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PREFACE

This book on the fundamentals of creep plasticity is a review and analysis of
investigations in a variety of areas relevant to creep plasticity. These areas
include five-power-law creep, which is sometimes referred to as dislocation
climb-controlled creep (in metals, alloys, and ceramics), viscous glide or
three-power-law creep (in alloys), diffusional creep, Harper–Dorn creep,
superplasticity, second-phase strengthening, and creep cavitation and
fracture. Many quality reviews and books precede this attempt to write an
extensive review of creep fundamentals and the improvement was a chal-
lenge. One advantage with this attempt is the ability to describe the sub-
stantial work published subsequent to these earlier reviews. An attempt was
made to cover the basic work discussed in these earlier reviews but
especially to emphasize more recent developments.

This is the second edition of this book and one aspect of this recent
edition is correcting errors in the first edition, also, many advances occurred
over the five years since the first edition and theses are also incorporated.
Dr Maria-Teresa Perez-Prado was a co-author of the first edition. While
she did not participate in the formulation of the second and third editions,
Chapters 5, 6, and 9 remain largely a contribution by Dr Perez-Prado, and
her co-authorship is indicated on these chapters.

xi
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CHAPTER 1

Fundamentals of Creep in
Materials
Contents

1. Introduction 1
1.1 Description of Creep 1
1.2 Objectives 6

1. INTRODUCTION

1.1 Description of Creep
Creep of materials is classically associated with time-dependent plasticity
under a fixed stress at an elevated temperature, often greater than roughly
0.5 Tm, where Tm is the absolute melting temperature. The plasticity under
these conditions is described in Figure 1 for constant stress (a) and constant
strain rate (b) conditions. Several aspects of the curve in Figure 1 require
explanation. First, three regions are delineated: Stage I, or primary creep,
which denotes that portion where (in (a)) the creep rate (plastic strain rate),
_ε ¼ dε=dt is changing with increasing plastic strain or time. In Figure 1(a),
the primary creep rate decreases with increasing strain, but with some types
of creep, such as solute drag with “3-power creep,” an “inverted” primary
occurs where the strain rate increases with strain. Analogously, in (b), under
constant strain rate conditions, the metal hardens, resulting in increasing
flow stresses. Often, in pure metals, the strain rate decreases or the stress
increases to a value that is constant over a range of strain. The phenomenon
is termed Stage II, secondary, or steady-state (SS) creep. Eventually, cavi-
tation and/or cracking increases the apparent strain rate or decreases the flow
stress. This regime is termed Stage III, or tertiary, creep and leads to fracture.
Sometimes, Stage I leads directly to Stage III and an “inflection” is observed.
Thus, care must sometimes be exercised in concluding a mechanical SS.

The term “creep” as applied to plasticity of materials likely arose from
the observation that at modest and constant stress, at or even below the
macroscopic yield stress of the metal (at a “conventional” strain rate), plastic
deformation occurs over time as described in Figure 1(a). This is in contrast
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with the general observation, such as at ambient temperature, where a
material deformed at, for example, 0.1–0.3 Tm, shows very little plasticity
under constant stress at or below the yield stress, again, at “conventional” or
typical tensile testing strain rates (e.g., 10�4

–10�3 s�1). (The latter obser-
vation is not always true as it has been observed that some primary creep is
observed (e.g., a few percent strain, or so) over relatively short periods of
time at stresses less than the yield stress (e.g., [1,2])).

We observe in Figure 2 that at the “typical” testing strain rate of about
10�4 s�1, the yield stress is sy1. However, if we decrease the testing strain
rate to, for example, 10�7 s�1, the yield stress decreases significantly, as will
be shown is common for metals and alloys at high temperatures. To a “first
approximation,” we might consider the microstructure (created by dislo-
cation microstructure evolution with plasticity) at just 0.002 plastic strain to
be independent of _ε. In this case, we might describe the change in yield

Figure 1 Constant true stress and constant strain rate creep behavior in pure and
Class M (or Class I) metals.
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stress to be the sole result of the _ε change and predicted by the “constant
structure” stress-sensitivity exponent, N, defined by.

N ¼ ½v ln _ε=v ln s�T;s (1)

where T and s refer to temperature and the substructural features, respec-
tively. Sometimes, the sensitivity of the creep rate to changes in stress is
described by a constant structure strain-rate sensitivity exponent, m ¼ 1/
N. Generally, N is relatively high at lower temperatures [3] which implies
that significant changes in the strain rate do not dramatically affect the flow
stress. In pure fcc metals, N is typically between 50 and 250 [3]. At higher
temperatures, the values may approach 10, or so [3–10]. N is graphically
described in Figure 3. The trends of N versus temperature for nickel are
illustrated in Figure 4.

Another feature of the hypothetical behaviors in Figure 2 is that (at the
identical temperature) not only is the yield stress at a strain rate of 10�7 s�1

lower than it is at 10�4 s�1, but also the peak stress or, perhaps, SS stress,
which is maintained over a substantial strain range, is less than the yield stress
at a strain rate of 10�4 s�1. (Whether SS occurs at, for example, ambient
temperature has not been fully settled, as large strains are not easily
achievable. Stage IV and/or recrystallization may preclude this SS [11–13].)

Figure 2 Creep behavior at two different constant strain rates.
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Figure 3 A graphic description of the constant structure strain rate sensitivity
experiment, N (1/m) and the steady-state stress exponent, n.

Figure 4 The values of n and N as a function of temperature for nickel. Data from
Ref. [7].
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Thus, if a constant stress sss2 is applied to the material, then a substantial
strain may be easily achieved at a low strain rate despite the stress being
substantially below the “conventional” yield stress at the higher rate of
10�4 s�1. Thus, creep is, basically, a result of significant strain rate sensitivity
together with low strain hardening. We observe in Figure 4 that N de-
creases to relatively small values above about 0.5 Tm, while N is relatively
high below about this temperature. This implies that we would expect that
“creep” would be more pronounced at higher temperatures, and less
obvious at lower temperatures, because, as will be shown subsequently,
work-hardening generally diminishes with increasing temperature and N
also decreases (more strain rate sensitive). The above description/explana-
tion for creep is consistent with earlier descriptions [14]. Again, it should be
emphasized that the maximum stress, sss2 , in a constant strain rate ð _εÞ test, is
often referred to as a SS stress (when it is the result of a balance of hardening
and dynamic recovery processes, which will be discussed later). The creep
rate of 10�7 s�1 that leads to the SS stress ðsss2Þ is the same creep rate that
would be achieved in a constant stress test at sss2 . Hence, at sss2 , 10

�7 s�1 is
the SS creep rate. The variation in the SS creep rate with the applied stress is
often described by the SS stress exponent, n, defined by.

n ¼ ½d ln _εss=d ln sss�T (2)

This exponent is described in Figure 3. Of course, with hardening, n is
expected to be less than N. This is illustrated in Figures 3 and 4. As just
mentioned, generally, the lower the strain rate, or higher the temperature,
the less pronounced is the strain hardening. This is illustrated in Figure 5,
reproduced from [15], where the stress-versus-strain behavior of high-
purity aluminum is illustrated over a wide range of temperatures and
strain rates. All these tests use a constant strain rate. The figure shows that
with increasing temperature, the yield stress decreases, as expected. Also, for
a given temperature, increases in strain rate are associated with increases in
the yield stress of the annealed aluminum. That is, increases in temperature
and strain rate tend to oppose each other with respect to flow stress. This
can be rationalized by considering plasticity to be a thermally activated
process. Figure 5 also illustrates that hardening is more dramatic at lower
temperatures (and higher strain rates). The general trend that the strain to
achieve SS increases with increasing stress (decreasing temperature and/or
increasing strain rate) is also illustrated. This explanation describes constant-
stress behavior in terms of constant strain rate stress-versus-strain behavior
and cannot be considered a fundamental explanation of creep.
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1.2 Objectives
There have been other, often short, reviews of creepdnotably, Sherby and
Burke [16], Takeuchi and Argon [17], Argon [18], Orlova and Cadek
[19], Cadek [20], Mukherjee, [21], Blum [22], Nabarro and de Villiers [23],
Weertman [24,25], Evans and Wilshire [28], Kassner and Pérez-Prado [29],
and others [30–32]. These, however, often do not include some important
recent work and have sometimes been relatively brief (and, as a result, are
not always very comprehensive). Thus, it was believed important to provide
a new description of creep that is extensive, current, and balanced. Creep is
discussed in the context of traditional 5-power-law creep, Nabarro-Herring,
Coble, diffusional creep, Harper-Dorn, low-temperature creep (power-
law-breakdown), as well as with 3-power viscous glide creep, particle-
strengthening super-plasticity, low-temperature creep, creep of amorphous
metals and alloys, and creep fracture. Each will be discussed separately.
Deformation maps have been formulated for a variety of metals [33].

Figure 5 The stress-versus-strain behavior of high-purity aluminum. Data from Ref. [15].
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1. MACROSCOPIC RELATIONSHIPS

1.1 Activation Energy and Stress Exponents
In pure metals and Class M alloys (similar creep behavior to pure metals),
there is an early, established, largely phenomenological relationship be-
tween the steady-state strain rate, _εss (or creep rate), and stress, sss, for
steady-state five-power-law (PL) creep:

_εss ¼ A0 exp½�Qc=kT �ðsss=EÞn (3)

where A0 is a constant, k is Boltzmann’s constant, and E is Young’s
modulus (although, as will be discussed subsequently, the shear modulus,
G, can also be used). This is consistent with Norton’s Law [34]. The acti-
vation energy for creep, Qc, has been found to often be about that of lattice
self-diffusion, Qsd. The exponent n is constant and is about 5 (4–7) for pure
metals, ceramics, and many alloys over a relatively wide range of tempera-
tures and strain rates (hence “five-power-law” behavior) until the temper-
ature decreases below roughly 0.5–0.6 Tm, where power-law breakdown
(PLB) occurs, and n increases and Qc generally decreases. Steady-state creep
is often emphasized over primary or tertiary creep due to the relatively large
fraction of creep life within this regime. The importance of steady-state
creep is evidenced by the empirical Monkman-Grant relationship [35]:

_εm
00

ss tf ¼ kMG (4)

where tf is the time to rupture and m00 and kMG are constants.
A hyperbolic sine (sinh) function is often used to describe the transition

from PL to PLB:

_εss ¼ A1 exp½�Qc=kT �½sinh a1ðsss=EÞ�5 (5)

(although some have suggested that there is a transition from five- to seven-
power-law behavior prior to PLB [25,36], and this will be discussed later).
Equations (3) and (5) will be discussed in detail subsequently. The discus-
sion of five-power-law creep will be accompanied by a significant
discussion of the lower-temperature companion, PLB.
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As discussed earlier, time-dependent plasticity or creep is traditionally
described as a permanent or plastic extension of the material under fixed
applied stress. This is usually illustrated for pure metals or Class M alloys
(again, similar behavior to pure metals) by the constant stress curve of
Figure 1, which also illustrates, of course, that creep plasticity can occur
under constant strain-rate conditions as well. Stage I, or primary creep,
occurs when the material experiences hardening through changes in the
dislocation substructure. Eventually Stage II, or secondary or steady-state
creep, is observed. In this region, hardening is balanced by dynamic re-
covery (e.g., dislocation annihilation). The consequence of this is that the
creep rate or plastic strain rate is constant under constant true von Mises
stress (tension, compression, or torsion). In a constant strain-rate test, the
flow stress is independent of plastic strain except for changes in texture (e.g.,
changes in the average Taylor factor of a polycrystal), often evident in larger
strain experiments (such as ε> 1) [37–39]. It will be illustrated that a
genuine mechanical steady state is achievable. As mentioned earlier, this
stage is particularly important as large strains can accumulate during steady
state at low, constant stresses that can lead to failure.

Since Stage II or steady-state creep is important, the creep behavior of a
material is often described by the early steady-state creep plots such as in
Figure 6 for high-purity aluminum [16]. The tests were conducted over a
range of temperatures from near the melting temperature to as low as
0.57 Tm. Data have been considered unreliable below about 0.3 Tm, as it
has recently been shown that dynamic recovery is not the exclusive
restoration mechanism [11], since dynamic recrystallization in 99.999%
pure Al has been confirmed. Dynamic recrystallization becomes an addi-
tional restoration mechanism that can preclude a constant flow stress (for a
constant strain rate) or a “genuine” mechanical steady state, defined here as
a balance between dynamic recovery and hardening. The plots in Figure 6
are important for several reasons. First, the steady-state data are in sets at
fixed temperatures and it is not necessary for the stress to be modulus-
compensated to illustrate stress dependence, e.g., Eqn (3). Thus, the
power-law behavior is clearly evident for each of the four temperature sets
of high-purity aluminum data without any ambiguity (from modulus
compensation). The stress exponent is about 4.5 for aluminum. Although
this is not precisely 5, it is constant over a range of temperature, stress, and
strain rate, and falls within the range of 4–7 observed in pure metals and
class M alloys (as will be shown later, ceramics may have exponents less than
this range). This range has been conveniently termed “five power.” Some

Five-Power-Law Creep 9



have referred to five-power-law creep as “dislocation climb-controlled
creep,” but this term may be misleading as climb control appears to
occur in other regimes such as Harper-Dorn, superplasticity, power-law
breakdown (PLB), etc. We note from Figure 6 the slope increases with
increasing stress and the slope is no longer constant with changes in the
stress at higher stresses (often associated with lower temperatures). Again,
this is PLB and will be discussed later. The activation energy for steady-state
creep, Qc, calculations have been based on plots similar to Figure 6. The
activation energy here simply describes the change in (steady-state) creep
rate for a given substructure (strength), at a fixed applied “stress” with
changes in temperature. It will be discussed in detail later, for at least steady
state, that the microstructures of specimens tested at different temperatures
appear approximately identical, by common microstructural measures, for a
fixed modulus-compensated stress, sss/E or sss/G. (Modulus compensation
(modest correction) will be further discussed later.) For a given substructure,
s, and relevant “stress,” sss/E (again, it is often assumed that a constant sss/E
or sss/G implies constant structure, s), the activation energy for creep, Qc,
can be defined by:

Qc ¼ �k½dðln=_εssÞ=dð1=TÞ�sss=E;s (6)
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Figure 6 The steady-state stress versus strain rate for high-purity aluminum at four
temperatures. From Ref. [16].
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It has been very frequently observed that Qc seems to be essentially
equal to the activation energy for lattice self-diffusion Qsd for a large
number of materials. This is illustrated in Figure 7, where over 20 (bcc, fcc,
hcp, and other crystal structures) metals show excellent correlation between
Qc and Qsd (although it is not certain that this figure includes the (small)
modulus compensation). Another aspect of Figure 7 that is strongly sup-
portive of the activation energy for five-power-law creep being equal to
Qsd is based on activation volume (DV ) analysis by Sherby and Weertman
[5]. That is, the effect of (high) pressure on the creep rate
ðv_εss=vPÞT ;sss=Eðor GÞ ¼ DVc is the same as the known dependence of self-
diffusion on the pressure ðvDsd=vPÞT ;sss=Eðor GÞ. Other more recent ex-
periments by Campbell, Tao, and Turnbull on lead have shown that
additions of solute that affect self-diffusion also appear to identically affect
the creep rate [40]. Some modern superalloys have their creep resistance
improved by solute additions that decrease Dsd [600].
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Figure 8 describes the data of Figure 9 on what appears as a nearly single
line by compensating the steady-state creep rates ( _εss) at several tempera-
tures by the lattice self- diffusion coefficient, Dsd. At higher stresses PLB is
evident, where n continually increases. The above suggests for power-law
creep, typically above 0.6 Tm (depending on the creep rate):

_εss ¼ A2 exp½�Qsd=kT �ðsssÞnðy5Þ (7)

where A2 is a constant, and varies significantly among metals. For
aluminum, as mentioned earlier, n¼ 4.5, although for most metals and class
M alloys ny 5, hence “five-power” (steady-state) creep. Figure 7 also
shows that, phenomenologically, the description of the data may be
improved by normalizing the steady-state stress by the elastic (Young’s in
this case) modulus. This will be discussed more later. (The correlation be-
tween Qc and Qsd (the former calculated from Eqn (6)) utilized modulus
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compensation of the stress. Hence, Eqn (7) actually implies some modulus
compensation.)

It is now widely accepted that the activation energy for five-power-law
creep closely corresponds to that of lattice self-diffusion, Dsd, or QcyQsd,
although this is not a consensus judgment [41–43]. Thus, most have sug-
gested that the mechanism of five-power-law creep is associated with
dislocation climb.

Although within PLB, Qc generally decreases as n increases, some still
suggest that creep is dislocation climb controlled, but Qc corresponds to the
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σ /G 
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(c)

.

ε. ε.

Figure 9 (a) The compensated steady-state strain rate versus modulus compensated
steady-state stress. (Based on Ref. [26] for selected FCC metals.) (b) The compensated
steady-state strain rate versus modulus compensated steady-state stress. (Based on
Ref. [26] for selected BCC metals.) (c) The compensated steady-state strain rate versus
modulus compensated steady-state stress. (Based on Ref. [21] for selected HCP metals.)
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activation energy for dislocation-pipe diffusion [5,44,45]. Vacancy super-
saturation resulting from deformation, associated with moving dislocations
with jogs, could explain this decrease with decreasing temperature
(increasing stress) and still be consistent with dislocation climb control [4].
Dislocation glide mechanisms may be important [26] and the rate-
controlling mechanism for plasticity in PLB is still speculative. It will be
discussed more later, but recent studies observe very well defined subgrain
boundaries that form from dislocation reaction (perhaps as a consequence of
the dynamic recovery process), suggesting that substantial dislocation climb
is at least occurring [11,12,46,47] in PLB. Equation (7) can be extended to
additionally phenomenologically describe PLB including changes in Qc

with temperature and stress by the hyperbolic sine function in Eqn (5)
[44,48].

Figure 9 (taken from Refs [16,21,26]) describes the steady-state creep
behavior of some hcp, bcc, and fcc metals (solid solutions will be presented
later). The metals all show approximate five-power-law behavior over the
specified temperature and stress regimes. These plots confirm a range of
steady-state stress exponent values in a variety of metals from 4 to 7, with 5
being a typical value [49]. Many additional metal alloy and ceramic systems
are described later. Normalization of the stress by the shear modulus G
(rather than E) and the inclusion of additional normalizing terms (k, G, b, T)
for the strain rate will be discussed in the next section. It can be noted from
these plots that for a fixed steady-state creep rate, the steady-state flow stress
of metals may vary by over two orders of magnitude for a given crystal
structure. The reasons for this will also be discussed later. A decreasing slope
(exponent) at lower stresses has often been suggested to be due to diffu-
sional creep or Harper-Dorn creep [50]. Diffusional creep includes
Nabarro-Herring [51] and Coble [52] creep. These will be discussed more
later, but briefly, Nabarro-Herring creep consists of volume diffusion
induced strains in polycrystals while Coble creep consists of mass transport
under a stress by vacancy migration via short circuit diffusion along grain
boundaries. Harper-Dorn creep is not fully understood [53–55] and appears
to involve dislocations within the grain interiors. There has been some
recent controversy as to the existence of diffusional creep [56–61] as well as
Harper-Dorn creep [55,949].

1.2 Influence of the Elastic Modulus
Figure 10 plots the steady-state stress versus the Young’s modulus at a fixed
lattice self-diffusion-coefficient-compensated steady-state creep rate.
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Clearly, there is an associated increase in creep strength with Young’s
modulus, and the flow stress can be described by:

sssj _εss=Dsd
¼ K0G (8)

where K0 is a constant. This, together with Eqn (7), can be shown to imply
that five-power-law creep is described by the equation utilizing modulus-
compensation of the stress, such as with Eqn (3):

_εss ¼ A3 exp½�Qsd=kT �ðsss=GÞ5 (9)

where A3 is a constant. Utilizing modulus compensation produces less vari-
ability of the constant A3 among metals, as compared to A2, in Eqn (7). It
was shown earlier that the aluminum data of Figure 7 could, in fact, be
more accurately described by a simple power law if the stress is modulus
compensated (Qsd used). The modulus compensation of Eqn (9) may also
be sensible for a given material, as the dislocation substructure is better
related to the modulus-compensated stress rather than just the applied stress.
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Figure 10 The influence of the shear modulus on the steady-state flow stress for a
fixed self-diffusion-coefficient-compensated steady-state strainrate, for selected
metals. Based on Ref. [26].
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The constant A3 will be discussed more later. Sherby and coworkers
compensated the stress using the Young’s modulus, E, while most others
use the shear modulus, G. The choice of E versus G is probably not critical
in terms of improving the ability of the phenomenological equation to
describe the data. The preference by some for use of the shear modulus
may be based on a theoretical “palatability,” and is also used in this review
for consistency.

Thus, the “apparent” activation energy for creep, Q0
c, calculated from

plots such as Figure 6 without modulus compensation, is not exactly equal
to Qsd even if dislocation climb is the rate-controlling mechanism for five-
power-law creep. This is due to the temperature dependence of the elastic
modulus. That is:

Q0
c ¼ Qsd þ 5k½dðln GÞ=dð1=TÞ� (10)

Thus, Q0
c > QsdyQc. The differences are relatively small near 0.5 Tm

but become more significant near the melting temperature.
As mentioned earlier and discussed more later, dislocation features in

creep-deformed metals and alloys can be related to the modulus-
compensated stress. Thus, the s in Eqn (6), denoting constant structure,
can be omitted if constant modulus compensated stress is indicated, since for
steady-state structures in the power law regime, a constant sss/E (or sss/G)
will imply, at least approximately, a fixed structure. Figure 11 [6] illustrates
some of the Figure 6 data, as well as additional PLB data on a strain rate
versus modulus-compensated stress plot. This allows a direct determination
of the activation energy for steady-state creep, Qc, since changes in _εss can
be associated with changes in T for a fixed structure (or sss/G). Of course,
Konig and Blum [62] showed that with a change in temperature at a
constant applied stress, the substructure changes, due at least largely to a
change in s/G in association with a change in temperature. We observe in
Figure 11 that activation energies are comparable to that of lattice self-
diffusion of aluminum (e.g., 123 kJ mol�1 [63]). Again, below about
0.6 Tm or so, depending on the strain rate, the activation energy for creep
Qc begins to significantly decrease below Qsd. This occurs at about PLB
where n> 5 (>4.5 for Al). Figure 12 plots steady-state aluminum data
along with steady-state silver activation energies from references [12] and
[44]. Other descriptions of Qc versus T/Tm for Al [64] and Ni [65] are
available that utilize temperature-change tests in which constant structure is
assumed (but not assured) and s/G is not constant. The trends observed are
nonetheless consistent with those of Figure 12. The question as to whether
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the activation energy for steady-state and primary (or transient, i.e., from
one steady-state to another) creep are identical does not appear established,
and this is an important question. However, some [66,67,978] have sug-
gested that the activation energy from primary to steady state does not
change substantially. Luthy, Miller, and Sherby, [44] and Sherby and Miller
[68], present a Qc versus T/Tm plot for steady-state deformation of W,
NaCl, Sn, and Cu that is frequently referenced. This plot suggests two
activation energies, one regime where QcyQsd (as Figure 12 shows for Ag
and Al) from 0.60 to 1.0 T/Tm. They additionally suggest that, with PLB,
Qc is approximately equal to that of vacancy diffusion through dislocation
pipes, QP (two “plateaus” of Qc). That is, it was suggested that the rate-
controlling mechanism for steady-state creep in PLB is still dislocation
climb, but facilitated by short-circuit diffusion of vacancies via the elevated
density of dislocations associated with increased stress between 0.3 and
about 0.6 T/Tm. (The interpretation of the NaCl results are ambiguous and
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may actually be more consistent with Figure 12 if the original NaCl data is
reviewed [16]). The situation for Cu is ambiguous. Raj and Langdon [70]
reviewed activation energy data and it appears that Qc may decrease
continuously below at least 0.7 Tm from Qsd, in contrast to earlier work on
Cu that suggested Qc¼Qsd above about 0.7 Tm and “suddenly” decreases
to QP. As mentioned earlier, the steady-state torsion creep data of Luthy,
Miller, and Sherby, on which the lower temperature activation energy
plateau calculations were based, are probably unreliable. Dynamic recrys-
tallization is certainly occurring in their high-purity aluminum along with
probable (perhaps 20%) textural softening (decrease in the average Taylor
factor, M ) along with adiabatic heating. Use of solid specimens also com-
plicates the interpretation of steady state as outer portions may soften while
inner portions are hardening. Lower-purity specimens could be used to

Figure 12 The variation of the activation energy for creep versus fraction of the
melting temperature for (a) Al (based on Ref. [44]) and (b) Ag (based on Ref. [12]).
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avoid dynamic recrystallization, but Stage IV hardening [11,13] may occur
and may preclude (although sometimes just postpone) a mechanical steady
state. Thus, steady state, as defined here, as a balance between dislocation
hardening and, exclusively, dynamic recovery, is not relevant. Weertman
[25] suggested that the Sn results may show an activation energy transition
to a plateau value of Qp over a range of elevated temperatures. This
transition occurs already at about 0.8 Tm and Qc values at temperatures less
than 0.6 Tm do not appear available. Thus, the values of activation energy,
between 0.3 and 0.6 Tm (PLB), and the question as to whether these can be
related to the activation energy of dislocation pipe diffusion, are probably
unsettled. Quality activation energy measurements over a wide range of
temperatures both for steady-state and primary creep for a variety of pure
metals are surprisingly unavailable.

Sherby and Burke have suggested that vacancy supersaturation may
occur at lower temperatures where PLB occurs (as have others [71]). Thus,
vacancy diffusion may still be associated with the rate-controlling process
despite a low, activation energy. Also, as suggested by others [9,26,41–43],
cross-slip or the cutting of forest dislocations (glide) may be the rate-
controlling dislocation mechanisms rather than dislocation climb.

1.3 Stacking Fault Energy and Summary
In the above, the steady-state creep rate for five-power-law creep was
described by:

_εss ¼ A4Dsdðsss=GÞ5 (11)

where:

Dsd ¼ Do expð�Qsd=kTÞ: (12)

Many investigators [4,21,26,72] have attempted to decompose A4 into
easily identified constants. Mukherjee et al. [72] proposed that:

_εss ¼ A5ðDsdGb=kTÞðsss=GÞ5 (13)

This review will utilize the form of Eqn (13) since this form has been
more widely accepted than Eqn (11). Equation (13) allows the expression of
the power law on a logarithmic plot more conveniently than Eqn (11), due
to dimensional considerations.

The constants A0 through A5 depend on stacking fault energy, in at least
fcc metals, as illustrated in Figure 13. The way by which the stacking fault
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energy affects the creep rate is unclear. For example, it does not appear
known whether the climb rate of dislocations is affected (independent of
the microstructure) and/or whether the dislocation substructure, which
affects creep rate, is affected (or both). In any case, for fcc metals, Mohamed
and Langdon [73] phenomenologically suggested:

_εss ¼ A6ðc=GbÞ3ðDsdGb=kTÞðsss=GÞ5 (14)

where c is the stacking fault energy.
Thus, in summary it appears that, over five-power creep, the activation

energy for steady-state creep is approximately that of lattice self-diffusion.
(Exceptions with pure metals above 0.5 T/Tm have been suggested. One
example is Zr, where a glide-control mechanism [74] has been suggested to
be rate controlling, but self-diffusion may still be viable [75], just obscured
by impurity effects.) This suggests that dislocation climb is associated with
the rate-controlling process for five-power-law creep. The activation
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energy decreases below about 0.5 Tm, depending, of course, on the strain
rate. There is a paucity of reliable steady-state activation energies for creep
at these temperatures, and it is difficult to associate these energies with
specific mechanisms. The classic plot of effective diffusion coefficient Deff-
compensated strain rate versus modulus-compensated stress for aluminum
by Luthy, Miller, and Sherby may be the most expansive in terms of the
ranges of stress and temperature. It appears in other creep reviews [23,24]
and may have some critical flaws. They modified Eqn (11) to a Garofalo
(hyperbolic sine) [48] equation to include PLB:

_εss ¼ BDeff ½sinh a1ðsss=EÞ�5 (15)

where a1 and B are constants. Here, again, Deff reflects the increased contri-
bution of dislocation pipe diffusion with decreasing temperature. Deff-
compensated strain rate utilizes a composite strain rate controlled by lattice
and dislocation pipe diffusion. The contributions of each of these to Deff

depend on both the temperature and the dislocation density (which at
steady-state is non-homogeneous, as will be discussed). Equation (15),
above, was later modified by Wu and Sherby [53] for aluminum to account
for internal stresses, although a dramatic improvement in the modeling of
the data of the five-power law and PLB was not obvious. The subject of
internal stresses will be discussed later. Diffusion is not a clearly established
mechanism for plastic flow in PLB, and Deff is not precisely known. For this
reason, this text will avoid the use of Deff in compensating strain rate.

Just as PLB bounds the high-stress regime of five-power-law creep, a
diffusional creep mechanism or Harper-Dorn creep may bound the low-
stress portion of five-power-law creep (for alloys, superplasticity
(2-power) or viscous glide (3-power) may also be observed, as will be
discussed later). For pure aluminum, Harper-Dorn creep is generally
considered to describe the low-stress regime and is illustrated in Figure 14.
The stress exponent for Harper-Dorn is 1 with an activation energy often of
Qsd, and Harper-Dorn is grain-size independent. The precise mechanism
for Harper-Dorn creep is not understood [53,54] and some have suggested
that it may not exist [55,949]. Figure 14, from Blum and Straub [76,77], is a
compilation of high-quality steady-state creep in pure aluminum and de-
scribes the temperature range from about 0.5 Tm to near the melting
temperature, apparently showing three separate creep regimes. It appears
that the range of steady-state data for Al may be more complete than for
any other metal. The aluminum data presented in earlier figures are
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consistent with the data plotted by Blum and Straub. It is intended that this
data not include the temperature/stress regime where Stage IV and
recrystallization may obfuscate recovery-controlled steady state. This plot
also (probably not critical to the PLB transition) uses the same activation
energy, Qsd (142 kJ mol�1) [76], over the entire stress/strain-rate/
temperature regime. As discussed earlier, Qc seems to decrease with
decreasing temperature (increasing strain rate) within PLB. The aluminum
data shows a curious undulation at sss/G¼ 2� 10�5, that is not under-
stood, although impurities were a proposed explanation [76]. It will be
discussed in the Harper-Dorn section, but other more recent Al data in the
low-stress regime will be mentioned.

There are other metallic systems for which a relatively large amount of
data from several investigators can be summarized. One is copper, which is
illustrated in Figure 15. The summary was reported recently in references
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Figure 14 The compensated steady-state strain rate versus the modulus-
compensated steady-state stress for 99.999 pure Al. Based on Refs [76,77].
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[78] and [949]. Again, a well-defined five-power-law regime is evident.
Again, this data is consistent with the (smaller quantity of reported) data of
Figure 8. Greater scatter is evident here as compared with Figure 14, as the
results of numerous investigators were used and the purity varied. Copper is
a challenging experimental metal as oxygen absorption and discontinuous
dynamic recrystallization can obfuscate steady-state behavior in five-power-
law creep, which is a balance between dislocation hardening and dynamic
recovery.

Figure 15 Summary of the diffusion-coefficient compensated steady-state strain rate
versus the modulus-compensated steady-state stress for copper of various high pu-
rities from various investigations. From Ref. [78].
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Also, at this point, it should be mentioned that it has been suggested that
somemetals and classM alloysmaybe deformedby glide-controlmechanisms.
Ardell and Sherby [74] and others suggested a glidemechanism for zirconium.
Recent analysis of zirconium, however, suggests that this HCPmetal behaves
as a classic five-power-law metal [80]. Figure 16, just as Figure 15, is a
compilation of numerous investigations on zirconiumof varying purity. Here,
with zirconium, as with copper, oxygen absorption and DRX can be
complicating factors. The lower portion of the figure illustrates lower stress
exponent creep (as in Figure 14), of uncertain origin. Harper-Dorn creep,
grain boundary sliding, and diffusional creep have all been suggested.

Recent work [1100] on equal-channel angular pressed (ECAP)
Zr-2.5wt%Nb concluded that the mechanisms were consistent with
Figure 16, albeit with faster creep rates. Figure 17 illustrates that the
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five-power-law regime in ceramics is associated with somewhat lower stress
exponents than metals. In LiF, an exponent of 3.5 is observed, as is typical
for other ceramics described in the Harper-Dorn chapter.

1.4 Natural Three-Power Law
It is probably important to note here that Blum [22] suggests the possibility
of some curvature in the five-power-law regime in Figure 14. Blum

Figure 17 Plot of steady-state creep rate of LiF.
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cautioned that the effects of impurities in even relatively high-purity
aluminum could obscure the actual power-law relationships and that the
value of “strain rate-compensated creep” at s/Gy 10�5 was consistent
with three-power-law creep theory [81]. Curvature was also suggested by
Nix and Ilschner [26] in bcc metals (in Figure 8) at lower stresses, and
suggested a possible approach to a lower slope of 3, or “natural” power law
exponent consistent with some early arguments by Weertman [25]
(although Springarn, Barnett, and Nix [69] earlier suggested that dislocation
core diffusion may rationalize five-power-law behavior). Both groups
interpreted five-power behavior as a disguised “transition” from three-
power-law to PLB. Weertman suggested that five-power-law behavior is
unexpected. The three-power-law exponent, or so-called natural law, has
been suggested to be a consequence of:

_ε ¼ ð1=2Þvbrm (16)

where v is the average dislocation velocity and rm is the mobile dislocation
density. As will be discussed later in a theory section, the dislocation climb
rate, which controls v, is proportional to s. It is assumed that s2f rm (the
relation is phenomenological, although dislocation hardening is not always
assumed), which leads to three-power behavior in Eqn (16).

Wilshire et al. [82, 83, 856] described and predicted steady-state creep
rates phenomenologically over wide temperature regimes without as-
sumptions of transitions from one rate-controlling process to another across
the range of temperature/strain-rates/stresses in earlier plots (which sug-
gested to include, for example, Harper-Dorn creep, five-power-law creep,
and PLB). Although this is not a widely accepted interpretation of the data,
it deserves mention, particularly as some investigators, just referenced, have
questioned the validity of five-power law. A review confirms that nearly all
investigators recognize that power-law behavior in pure metals and Class M
alloys appears to be generally fairly well defined over a considerable
range of modulus-compensated steady-state stress (or diffusion-coefficient-
compensated steady-state creep rate). Although this value varies, a typical
value is 5. Thus, for this review, the designation of five-power-law creep is
judged meaningful. The full meaning of three-power-law creep will be
addressed in the rate-controlling mechanisms section of this chapter.

1.5 Substitutional Solid Solutions
Two types of substitutional solutions can be considered: cases where a
relatively large fraction of solute alloying elements can be dissolved, and
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those cases with small amounts of either intentional or impurity (sometimes
interstitial) elements. The addition of solute can lead to basically two phe-
nomena within the five-power-law regime of the solvent. Hardening or
softening while maintaining five-power-law behavior can be observed, or
three-power, viscous glide behavior, the latter being discussed in a separate
section, may be evident. Figure 18 shows the effects of substitutional solid-
solution additions for a few alloy systems for which five-power-law behavior
is maintained. This plot was adapted from Mukherjee [21].

Figure 18 The compensated steady-state strain rate versus modulus-compensated
steady-state stress for a variety of Class M (Class I) alloys. Based on Ref. [21].
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2. MICROSTRUCTURAL OBSERVATIONS

2.1 Subgrain Size, Frank Network Dislocation Density,
Subgrain Misorientation Angle, and the Dislocation
Separation within the Subgrain Walls in Steady-State
Structures

Certain trends in the dislocation substructure evolution have been fairly
well established when an annealed metal is deformed at elevated temper-
ature (e.g., under constant stress or strain rate) within the five-power-law
regime. Basically, on commencement of plastic deformation, the total
dislocation density increases, and this is associated with the eventual for-
mation of generally low-misorientation subgrain walls. That is, in a poly-
crystalline aggregate, where misorientations, q (defined here as the
minimum rotation required to bring two lattices, separated by a boundary,
into coincidence), between grains are typically (e.g., cubic metals) 10�–62�,
the individual grains become filled with subgrains. The subgrain boundaries
are low-energy configurations of the dislocations generated from creep
plasticity.

The misorientations, ql, of these subgrains are generally believed to be
low at elevated temperatures, often roughly 1� at modest strains. The
dislocations within the subgrain interior are generally believed to be in the
form of a Frank network [84–87]. A Frank network is illustrated in
Figure 19) [88]. The dislocation density can be reported as dislocation line
length per unit volume (usually reported as mm mm�3) or intersections
per unit area (usually reported as mm�2). The former is expected to be
about a factor of 2 larger than the latter. Sometimes the method by which
r is determined is not reported. Thus, microstructurally, in addition to the
average grain size of the polycrystalline aggregate, g, the substructure of
materials deformed within the five-power-law regime is more frequently
characterized by the average subgrain size l (often measured as an average
intercept), the average misorientation across subgrain boundaries, qlave , and
the density of dislocations not associated with subgrain boundaries, r. Early
reviews (e.g., Ref. [16]) did not focus on the dislocation substructure, as
these microstructural features are best investigated by transmission electron
microscopy (TEM). A substantial amount of early dislocation substructure
characterization was performed using metallographic techniques such as
polarized light optical microscopy (POM) and dislocation etch-pit analysis.
As TEM techniques became refined and widely used, it became clear that
the optical techniques are frequently unreliable, often, for example,
overestimating subgrain size [89] partly due to a lack of ability (particularly
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POM) to detect lower-misorientation-angle subgrain boundaries. Etch-
pit-based dislocation density values may be unreliable, particularly in
materials with relatively high r values [90]. Unambiguous TEM charac-
terization of the dislocation substructure is not trivial. Although dislocation
density measurements in metals may be most reliably performed by TEM,
several shortcomings of the technique must be overcome. Although the
TEM can detect subgrain boundaries of all misorientations, larger areas of
thin (transparent to the electron beam) foil must be examined to

Figure 19 A three-dimensional Frank network of dislocations within a subgrain or
grain. Based on Ref. [88].
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statistically ensure a meaningful average intercept, l. The dislocation
density within a subgrain may vary substantially within a given specimen.
This variation appears independent of the specimen-preparation pro-
cedures. The number of visible dislocations can be underestimated by a
factor of 2 by simply altering the TEM imaging conditions depending on
the material [91]. Furthermore, it has been suggested that in high stacking-
fault energy materials, such as pure aluminum, dislocations may “recover”
from the thin foil, leading, again, to an underestimation of the original
density [92,93]. Misorientation angles of subgrain boundaries, ql, have
generally been measured by X-rays, selected area electron diffraction
(SAED, including Kikuchi lines), and more recently, by electron back-
scattered patterns (EBSP) [94], although this latter technique, to date,
cannot easily detect lower (e.g., <2�) misorientation boundaries. Some-
times the character of the subgrain boundary is alternatively described
by the average spacing of dislocations, d, that constitute the boundary.
A reliable determination of d is complicated by several considerations. First,
with conventional bright-field or weak-beam TEM, there are limitations
as to the minimum discernable separation of dislocations. This appears to
be within the range of d frequently possessed by subgrain boundaries
formed at elevated temperatures. Second, boundaries in at least some fcc
metals [95–97] may have two to five separate sets of Burgers vectors,
perhaps with different separations, and can be of tilt, twist, or mixed
character. Often, the separation of the most closely separated set is re-
ported. Determination of ql by SAED requires significant effort, since for a
single orientation in the TEM, only the tilt angle by Kikuchi shift is
accurately determined. The rotation component cannot be accurately
measured for small total misorientations, and ql can only be determined
using Kikuchi lines with some effort, involving examination of the crystals
separated by a boundary using several orientations [42,43,966]. Again,
EBSP cannot always detect lower ql boundaries, which may comprise a
large fraction of subgrain boundaries.

Figure 20 is a TEM micrograph of 304 austenitic stainless steel, a class M
alloy, deformed to steady state within the five-power-law regime. A well-
defined subgrain substructure is evident and the subgrain walls are “tilted”
to expose the sets of dislocations that comprise the walls. The dislocations
not associated with subgrain walls are also evident. Because of the finite
thickness of the foil (y100 nm), the Frank network has been disrupted.
The heterogeneous nature of the dislocation substructure is evident. A high
magnification TEM micrograph of a hexagonal array of screw dislocations
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comprising a subgrain boundary with one set (of Burgers vectors) satisfying
invisibility [98,99] is also in Figure 20.

It has long been observed, phenomenologically, that there is an
approximate relationship between the subgrain size and the steady state
flow stress:

sss=G ¼ C1ðlssÞ�1 (17)

It should be emphasized that this relationship between the steady-state
stress and the steady-state subgrain size is not for a fixed temperature and
strain rate. Hence, it is not of a same type of equation as, for example, the
Hall–Petch relationship, which relates the strength to the grain size, g, at a
reference T and _ε. It will be discussed later that the variation of the stress

Figure 20 TEM micrographs illustrating the dislocation microstructure of 304 stainless
steel deformed at the indicated conditions on the compensated steady-state strain
rate versus modulus- compensated steady-state stress plot. The micrograph on the
right is a high magnification image of the subgrain boundaries such as illustrated on
the left. (Based on [98,99].) (Modulus based on 316 values.)
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with subgrain size at a fixed T and _ε is different than Eqn (17). Some (e.g.,
Refs [89,100]) have normalized the subgrain size in Eqn (17) by the Burgers
vector, although this is not a common practice.

The subgrains contain a dislocation density in excess of the annealed
values, and are often believed to form a three-dimensional, Frank, network.
The conclusion of a Frank network is not firmly established for five-power
creep, but indirect evidence of a large number of nodes in thin foils
[54,85,101–103] supports this common contention [84,104–109]. Analo-
gous to Eqn (17), there appears to be a relationship between the density of
dislocations not associated with subgrain boundaries [17] and the steady-
state-stress:

sss=G ¼ C2ðrssÞp (18)

where C2 is a constant and rss is the density of dislocations not associated
with subgrain boundaries. The dislocation density is not normalized by
the Burgers vector as suggested by some [18]. The exponent p is generally
considered to be about 0.5, and the equation reduces to:

sss=G ¼ C3
ffiffiffiffiffi
rss

p
(19)

As will be discussed in detail later in this text, this relationship between the
steady-state stress and the dislocation density is not necessarily athermal, i.e.,
independentof temperature and strain rate.Hence, it is not necessarily of a same
type of microstructure-strength equation as the classic Taylor relationship,
which is generally presumed athermal. That is, this equation tells us the
dislocation density not associatedwith subgrainwalls that can be expected for a
given steady-state stress that varies with the temperature and strain rate, anal-
ogous to Eqn (17). However, the flow stress associated with this density could
depend on _ε and T. We will further discuss this equation later.

As mentioned in the discussion of the “natural stress exponent,” rss is
sometimes presumed equal, or at least proportional, to the mobile dislo-
cation density, rm. This appears unlikely for a Frank network and the
fraction mobile over some time interval, dt, is unknown, and may vary with
stress. In Al, at steady state, rm may only be about 1/3 r or less [107],
although this fraction was not firmly established.

Proponents of dislocation hardening also see a resemblance of Eqn (19)
to:

s ¼ Gb
[c

(20)
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leading to:

szGb
ffiffiffiffiffi
rss

p

where s is the stress necessary to activate a Frank Read source of critical link
length, [c. Again, the above equation must be regarded as athermal or valid
only at a specific temperature and strain rate. It does not consider the sub-
stantial solute and impurity strengthening evident in (even 99.999% pure)
metals and alloys, as shown in Figures 21 and 22, which is very temperature
dependent. Weertman [25] appears to justify Eqn (19) by the dislocation (all
mobile) density necessarily scaling with the stress in this manner, although
he does not regard these dislocations as the basis for the strength. This seems
contradictory; a dislocation relationship to stress would appear to suggest
dislocation hardening, particularly with r1/2. Consequently, Al-5at%Zn
alloy, which has basically identical creep behavior, but possible precipitation
pinning of dislocations during cooling, was used to determine the r versus
sss trends in Al instead. These data (Al and stainless steel) were used for
Figures 23 and 24, as particular reliability is assigned to these investigations.

Figure 21 TEM micrographs illustrating the evolution of the dislocation substructure
during primary creep of AISI 304 stainless steel torsionally deformed at 865 �C at
_ε ¼ 3:2� 10�5s�1, to strains of 0.027 (a), 0.15 (b), 0.30 (c), and 0.38 (d).
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Figure 22 Work-hardening at a constant strain-rate primary creep transient in AISI 304
stainless steel, illustrating the changes in (a) l, (b) r, and (c) d and (d) stress with
strain. Based on Ref. [98].
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(a)

(b)

(c)

Figure 23 The average steady-state subgrain intercept, (a) l, density of dislocations
not associated with subgrain walls, (b) r, and the average separation of dislocations
that comprise the subgrain boundaries, (c) d, for Al (and Al-5at%Zn that behaves,
mechanically, essentially identical to Al, but is suggested to allow for a more accurate
determination of r by TEM). Based on Refs [22,90].
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(a)

(b)

(c)

Figure 24 The average steady-state subgrain intercept, (a) l, density of dislocations
not associated with subgrain boundaries, (b) r, and average separation of dislocations
that comprise the subgrain boundaries, (c) d, for 304 stainless steel. Data from Refs
[66,98,103,110,111].
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They are reflective of the general observations of the community, and are
also supportive of Eqn (17) with an exponent of �1. Both sets of data are
consistent with Eqn (18) with py 0.5. It should, however, be mentioned
that there appears to be some variability in the observed exponent, p, in
Eqn (18). For example, some TEM work on aFe [112] suggests 1 rather
than 0.5. Hofmann and Blum [113] more recently suggested 0.63 for Al
modeling. Figure 25(a) and (b) illustrate the NaCl trends and suggests
r¼ 0.5–1.0. Equation (18) may not uniquely relate rss to sss/G. It may
only be approximately valid. The above two equations, of course, mandate
a relationship between the steady-state subgrain size and the density of dis-
locations not associated with subgrain boundaries:

lss ¼ C4ðrssÞ�p0 (21)

rendering it difficult, simply by microstructural inspection of steady-state
substructures, to determine which feature is associated with the rate-
controlling process for steady-state creep or elevated-temperature strength.

Figure 25 Modulus-compensated steady-state stress versus dislocation density.
Illustrates NaCl trends and suggests r¼ 0.5–1.0.
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Figures 23 and 24 additionally report the spacing, d, of dislocations that
constitute the subgrain walls. The relationship between d and sss is not
firmly established, but Figures 23 and 24 suggest that:

sss

G
yd�q (22)

where q may be between 2 and 4. Other [90] work on Fe- and Ni-based
alloys suggests that q may be closer to values near 4. One possible reason for
the variability may be that d (and qlave ) may vary during steady state, as will
be discussed in a later section. Figure 24 relies on d data well into steady
state using torsion tests ðεy1:0Þ. Had d been selected based on the onset
of steady state, a q value of about 4 would also have been obtained. It
should, of course, be mentioned that there is probably a relationship be-
tween d and ql. Straub and Blum [90] suggested that:

qly2 arcsinðb=2dÞ (23)

2.2 Constant Structure Equations
2.2.1 Strain-Rate Change Tests
A discussion of constant structure equations necessarily begins with strain-
rate change tests. The constant-structure strain-rate sensitivity, N, can
perhaps be determined best by two methods. The first is the strain-rate
increase test, as illustrated in Figure 3, where the change in flow stress
with a sudden change in the imposed strain rate (cross-head rate) is
measured. The new flow stress at a fixed substructure is that at which
plasticity is initially discerned. There are, of course, some complications.
One is that the stress at which plastic deformation proceeds at a “constant
dislocation” substructure can be ambiguous. Also, the plastic strain rate at
this stress is not always the new cross-head rate divided by the specimen
gage length due to substantial machine compliances. These complications
notwithstanding, there still is value in the concept of Eqn (1) and strain-rate
increase tests.

Another method to determine N (or m) is with stress-drop (or dip) tests
illustrated in Figure 26 (based on Ref. [10]). In principle, N could be
determined by noting the new creep rate or strain rate at the lower stress for
the same structure as just prior to the stress dip. These stress dip tests
originated about 50 years ago by Gibbs [114], and the interpretation is still
ambiguous [10]. Biberger and Gibeling [10] published an overview of creep
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transients in pure metals following stress drops, emphasizing work by
Gibeling and coworkers [10,87], Nix and coworkers [27], and Blum and
coworkers [22,77, 92,121–125], all of whom have long studied this area, as
well as several others [66,104,114,126–131]. The following discussion on
the stress dip test relies on this overview.

With relatively large stress drops, there are quick contractions that may
occur as a result of an initial, rapid, anelastic component, in addition, of
course, to elastic contractions, followed by slower anelastic backflow [119].
Researchers in this area tend to report a “first maximum” creep rate, which
occurs at “B” in Figure 26. It has been argued that the plastic strain pre-
ceding “B” is small and that the dislocation microstructure at “B” is
essentially identical to that just prior to the stress drop. Some investigators
have shown, however, that the interior or network density, r, may be
different [131]. Also, since the creep rate decreases further to a minimum
value at “C” (in Figure 26), the creep at “B” has been occasionally termed
“anomalous.” _εC (point “C”) has also been referred to as “constant

(a)

(b)

Figure 26 Description of the strain (a) and strain rate (b) versus time and strain for
stress-dip (drop) tests associated with relatively small and large decreases in the
applied stress. From Ref. [10].
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structure,” probably primarily as a consequence of the subgrain size, l, at
“C”, probably being very close to the same value as just prior to the stress
drop, despite the observation that the interior dislocation density, r, appears
to change [4,6,120,125,132]. Thus, with the stress dip test, the constant
structure stress exponent, N, or related constant-structure descriptors, such
as the activation area, Da, or volume, DV0, [132,133] may be ambiguous as
the strain rate immediately on unloading is negative, and the material does
not have a fixed substructure at definable stages such as at “B” and “C.”
Eventually, the material “softens” to “D” as a consequence of deformation
at the lower stress, to the strain rate that most investigators have concluded
corresponds to that which would have been obtained on loading the
annealed metal at same temperature and stress, although this is not
necessarily a consensus view (e.g., Refs [128,134]). Parker and Wilshire
[134], for example, find that at lower temperatures, Cu, with a stress drop,
did not return to the creep rate for the uninterrupted test. Of course, it is
unclear whether the rate would have eventually increased to the unin-
terrupted rate with larger strains that can be precluded by fracture in tensile
tests.

The anelastic strains are very small for small stress-reductions and may
not be observed. The creep rate cannot be easily defined until _εC, and an
“anomalous” creep is generally not observed as with large stress reductions.
Again, the material eventually softens to a steady state at “D.”

The stress-dip test appears to at least be partially responsible for the
introduction of the concept of an internal backstress. That is, the backflow
associated with the stress dip, observed in polycrystals and single crystals
alike, has been widely presumed to be the result of an internal stress. At
certain stress reductions, a zero initial creep rate can result, which would
presumably be at an applied stress about equal to the backstress
[81,115,126,135]. Blum and coworkers [22,77,122,125,135,136], Nix and
coworkers [26,117], Argon and coworkers [18,137], Morris and Martin
[42,43], and many others [20,53,138] (to reference a few) have suggested
that the backflow or backstress is a result of high local internal stresses that
are associated with the heterogeneous dislocation substructure, or subgrain
walls. Recent justification for high internal stresses beyond the stress-dip test
has included X-ray diffraction (XRD) and convergent beam electron
diffraction (CBED) [136]. Gibeling and Nix [117] have performed stress
relaxation experiments on aluminum single crystals and found large
anelastic “backstrains,” which they believed were substantially in excess of
that which would be expected from a homogeneous stress state [26,117].
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This experiment is illustrated in Figure 27 for a stress drop from 4 to
0.4 MPa at 400 �C. If a sample of cubic structure is assumed with only one
active slip system, and an orthogonal arrangement of dislocations, with a
density r, and all segments are bowed to a critical radius, then the anelastic
unbowing strain is about:

gA ¼ y
pb

ffiffiffi
r

p
8
ffiffiffi
3

p (24)

or about 10�4, much smaller than that suggested by Figure 27. Because the
average stress is the applied stress, single crystals should only suggest back-
strains comparable with the elastic unloading strains, so the results of
Figure 27 are perplexing. Equation (22) only assumes one-third of r are
bowing as two-thirds are on planes without a resolved shear stress. In real-
ity, slip on {111} and {110} [130] may lead to a higher fraction of bowed
dislocations. Furthermore, it is known that the subgrain boundaries are mo-
bile. The motion may well involve (conservative) glide, leading to line ten-
sion and the potential for substantial backstrain. It is known that substantial
elastic incompatabilities are associated with grain boundaries [140].
Although Nix et al. suggest that backstrain from grain boundary sliding
(GBS) is not a consideration for single crystals, it has been later demon-
strated that for single crystals of Al, in creep, such as Figure 27, high angle

Figure 27 The backstrain associated with unloading an aluminum single crystal from 4
to 0.4 MPa at 400 �C. From Ref. [117].
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boundaries are readily formed in the absence of classic discontinuous dy-
namic recrystallization (DRX) [141,142]. These incompatability stresses
may relax during (forward) creep, but “reactivate” on unloading, leading
to strains that may be a fraction of the elastic strain. This may explain large
(over 500 microstrain) backflow observed in a-Ti alloys after just 0.002
strain creep, where subgrains may not form [143] but fine grains are present.
The subject of internal stress will be discussed more later. Substructural
changes (that almost surely occur during unloading) may lead to the back-
strains, not a result of long-range internal stress, such as of Figure 27,
although it is not clear how these strains would develop.

2.2.2 Creep Equations
Equations such as Eqn (14):

_εss ¼ A6ðc=GbÞ3ðDsdGb=kTÞðsss=GÞ5

are capable of relating, at a fixed temperature, the creep rate to the steady-
state flow stress. However, in associating different steady-state creep rates
with (steady-state) flow stresses, it must be remembered that the dislocation
structures are different. This equation does not relate different stresses and
substructures at a fixed temperature and strain rate as, for example, the
Hall–Petch equation, at ambient temperature and a “conventional” strain
rate.

Sherby and coworkers reasoned that relating the flow stress to the (e.g.,
steady-state) substructure at a fixed strain rate and temperature may be
performed with knowledge of N (or m) in Eqn (1):

N ¼
�
vln_ε

vln s

�
T ;s

Sherby and coworkers suggested that the flow stress at a fixed elevated
temperature and strain rate is predictable through [4,6]:

_ε ¼ A7

�
l3
�
exp½�Qsd=kT �ðs=EÞN (25)

for substructures resulting from steady-state creep deformation in the five-
power regime. It was suggested that Ny 8. Steady-state (ss) subscripts are
notably absent in this equation. This equation is important in that the flow
stress can be directly related to the microstructure at any fixed (e.g., refer-
ence) elevated-temperature and strain rate. Sherby and coworkers, at least at
the time that this equation was formulated, believed that subgrain
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boundaries were responsible for elevated-temperature strength. Sherby and
coworkers believed that particular value was inherent in this equation, since
if Eqn (17):

sss

G
¼ C1l

�1
ss

were substituted into Eqn (25), then the well-established five-power-law
equation (Eqn (9)) results:

_εss ¼ A3 exp½�Qsd=kT �
�sss

G

�5
Equation (25) suggests that at a fixed temperature and strain rate:

s

E

			
_ε;T

¼ C5ðlÞ�3=8 (26)

Sherby normalized stress with the Young’s modulus although the shear
modulus could have been used. This is very different from Eqn (17).
This equation, of course, does not preclude the importance of the interior
dislocation network over the heterogeneous dislocation substructure (or
subgrain walls) for steady-state substructures, on which Eqn (25) was
based. This is because there is an approximately fixed relationship be-
tween the steady-state subgrain size and the steady-state interior disloca-
tion density. Equation (26) could be reformulated, without a loss in
accuracy, as:

s

G

			
_ε;T

¼ k2ðrÞ�3p=8y�3=16 (27)

2.2.3 Dislocation Density- and Subgrain-Based Constant–Structure
Equations

Equation (26) for subgrain strengthening does not have a strong resem-
blance to the well-established Hall–Petch equation for high-angle grain-
boundary strengthening:

sy

		
_ε;T

¼ so þ kyg
�1=2 (28)

where syj_ε;T is the yield or flow stress (at a reference or fixed temperature
and strain rate), ky is a constant, g is the average grain diameter, and so is
the single crystal strength and can include solute strengthening as well as
dislocation hardening. Of course, subgrain boundaries may be the

Five-Power-Law Creep 43



microstructural feature associated with elevated temperature strength
and the rate-controlling process for creep, without obedience to
Eqn (28). Nor does Eqn (27) resemble the classic dislocation hardening
equation [144]:

sy

		
_ε;T

¼ s0
0 þ aMGbðrÞ1=2 (29)

where syj _ε;T is the yield or flow stress (at a reference or fixed temperature
and strain rate), s00 is the near-zero dislocation density strength and can
include solute strengthening as well as grain-size strengthening, M is the
Taylor factor, 1–3.7, and a is a constant, often about 0.3 at ambient tem-
perature. As Eqn (29) has an athermal hardening component (aMGbr1/2)
(s00 varies with T and _ε), the designation of a constant T and _ε of sy is
not necessary. (This constant will be dependent upon the units of r, as
line-length per unit volume, or intersections per unit area, the latter being
a factor of two lower for identical structure.) Both Eqns (28) and (29) as-
sume that these hardening features can be simply summed to obtain their
combined effect. Although this is reasonable, there are other possibilities
[145]. Equation (29) can be derived on a variety of bases (e.g., bowing
stress, passing stress, or cutting stress in a “forest” of dislocations, etc.),
some essentially athermal, and others not, and may not always include a
s00 term.

Even with high-purity aluminum experiments (99.999% pure), it is
evident in constant strain-rate mechanical tests that annealed polycrystal
has a yield strength (0.002 plastic strain offset) that is about one-half the
steady state flow stress [4,146] that cannot be explained by subgrain (or
dislocation) hardening; yet this is not explicitly accounted in the
phenomenological equations, e.g., Eqns (26) and (27). When accounted,
by assuming that s0ðor s00Þ ¼ syjT ; _ε for annealed metals, Sherby and
coworkers showed that the resulting subgrain-strengthening equation that
best describes the data form would not resemble Eqn (28), the classic
Hall–Petch equation; the best-fit (1/l) exponent is somewhat high at
about 0.7. Kassner and Li [147] also showed that there would be problems
with assuming that the creep strength could be related to the subgrain size
by a Hall–Petch equation. The constants in Eqn (28), the Hall–Petch
equation, were experimentally determined for high-purity annealed
aluminum with various (HAB) grain sizes. The predicted (extrapolated)
strength (at a fixed elevated temperature and strain rate) of aluminum
with grain sizes comparable to those of steady-state subgrain sizes was
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substantially lower than the observed value. Thus, even if low misorien-
tation subgrain walls strengthen in a manner analogous to HABS, then an
“extra strength” in steady-state, subgrain-containing structures appears
from sources other than that provided by boundaries. Kassner and Li
suggested that this extra strength may be due to the steady-state dislo-
cation density not associated with the subgrains, and dislocation hardening
was observed. Additional discussion of grain-size effects on the creep
properties will be presented later.

The hypothesis of dislocation strengthening was tested using data on
high-purity aluminum as well as a Class M alloy, AISI 304 austenitic
stainless steel (19Cr-10Ni) [107,148]. It was discovered that the classic
dislocation hardening (e.g., Taylor) equation is reasonably obeyed if s00 is
approximately equal to the annealed yield strength. Furthermore, the
constant a in Eqn (29), at 0.29, is comparable to the observed values from
ambient temperature studies of dislocation hardening [144,149–151] as will
be further discussed later. Figure 28 illustrates the polycrystalline stainless
steel results. The l and r values were manipulated by combinations of creep
and cold work. Note that the flow stress at a reference temperature and
strain rate that corresponds to nearly within five-power-law creep (750 �C
in Figure 23) is independent of l for a fixed r. The dislocation-
strengthening conclusions are consistent with the experiments and anal-
ysis of Ajaja and Ardell [152,153] and Shi and Northwood [154,155] also
on austenitic stainless steels.

Henshall, Kassner, and McQueen [156] also performed experiments on
Al-5.8at%Mg in the 3-power regime where subgrain boundaries only
sluggishly form. Again, the flow stress was completely independent of the
subgrain size (although these tests were relevant to 3-power creep). The Al-
Mg results are consistent with other experiments by Weckert and Blum
[121] and the elevated temperature in situ TEM experiments by Mills [157].
The latter experiments did not appear to show interaction between sub-
grain walls and gliding dislocations. The experiments of this paragraph will
be discussed in greater detail later.

2.3 Primary Creep Microstructures
Previous microstructural trends in this review emphasized steady-state
substructures. This section discusses the development of the steady-state
substructure during primary creep where hardening is experienced. A
good discussion of the phenomenological relationships that describe
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primary creep was presented by Evans and Wilshire [28]. Primary creep is
often described by the phenomenological equation:

[ ¼ [o
�
1þ bt1=3

�
ec

0t (30)

This is the classic Andrade [158] equation. Here, [ is the instantaneous
gage length of a specimen and [o is the gage length on loading (apparently
including elastic deflection) and b and c0 are constants. This equation leads
to equations of the form:

ε ¼ at1=3 þ ct þ dt4=3 (31)

which is the common phenomenological equation used to describe primary
creep. Modifications to this equation include [159]:

ε ¼ at1=3 þ ct (32)

Figure 28 The elevated temperature yield strength of 304 stainless steel as a function
of the square root of the dislocation density (not associated with subgrain boundaries)
for specimens of a variety of subgrain sizes. (Approximately five-power-law temper-
ature/strain-rate combination.) Based on Ref. [148].
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and [160]:

ε ¼ at1=3bt2=3 þ ct (33)

or:

ε ¼ atb þ ct (34)

where [161]:
0 < b < 1:

These equations cannot be easily justified, fundamentally [23].
For a given steady-state stress and strain rate, the steady-state micro-

structure appears to be independent as to whether the deformation occurs
under constant stress or constant strain-rate conditions. However, there are
some differences between the substructural development during a constant
stress as compared to constant strain-rate primary-creep. Figure 29 shows
Al-5at%Zn at 250 �C at a constant stress of 16 MPa [77]. Again, this is a
class M alloy, which mechanically behaves essentially identically to pure Al.

The strain rate continually decreases to a strain of about 0.2, where
mechanical steady state is achieved. The density of dislocations not asso-
ciated with subgrain boundaries is decreasing from a small strain after
loading (<0.01) to steady state. This constant-stress trend with the “free”
dislocation density is consistent with early etch pit analysis of Fe-3at%Si
[162], and the TEM analysis of 304 stainless steel [163], a-Fe [164], and Al
[165,166]. Some have suggested that the decrease in dislocation density in
association with hardening is evidence that hardening cannot be associated
with dislocations and is undisputed proof that subgrains influence the rate of
plastic deformation [81]. However, as will be discussed later, this may not
be accurate. Basically, Kassner [107,901] suggested that for constant-stress
transients, the network dislocations cause hardening but the fraction of
mobile dislocations may decrease, leading to strain rate decreases not
necessarily associated with subgrain formation. Figure 29 plots the average
subgrain size only in areas of grains that contain subgrains. The volume of
Al-5at%Zn is not completely filled with subgrains until steady state, at
εy 0.2. Thus, the subgrain size averaged over the entire volume would
show a more substantial decrease during primary creep. The average
spacing, d, of dislocations that comprises subgrain walls decreases both during
primary, and at least during early steady-state. This trend in d and/or ql was
also observed by Suh, Cohen, and Weertman in Sn [167], Morris and
Martin [42,43] and Petry et al. [168] in Al-5at%Zn, Orlova, et al. [166] in
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Figure 29 (a) The constant-stress primary creep transient in Al-5at%Zn (essentially
identical behavior to pure Al) illustrating the variation of the average subgrain inter-
cept, (b) l, (in those areas in which subgrains are observed) density of dislocations not
associated with subgrain walls, (c) r, and the spacing, (d) d, of dislocations that
comprise the boundaries. (e) The fraction of material occupied by subgrains is indi-
cated by fsub. Based on Ref. [77].
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Al, Karashima et al. [112] in aFe, and Kassner et al. in Al [146] and 304 [98]
stainless steel. These data are illustrated in Figure 30.

Work hardening for constant strain-rate creep, microstructural trends
were examined in detail by Kassner and coworkers [98,107,146] and are

Figure 30 (a) The variation of the average misorientation angle across subgrain walls,
qlave , and (b) separation of dislocations comprising subgrain walls with fraction of strain
required to achieve steady state, ε/εss for various metals and alloys. q�l;ave and d* are
values at the onset of steady-state.
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illustrated in Figures 21 and 22 for 304 stainless steel and Figure 31 for pure
Al. Figure 21 illustrates the dislocation substructure, quantitatively described
in Figure 22. Figure 31(a) illustrates the small strain region and that steady
state is achieved by ε ¼ 0:2. Figure 31(b) considers larger strains achieved
using torsion of solid aluminum specimens. Figure 32 illustrates a subgrain
boundary in a specimen deformed in Figure 31(b) to an equivalent uniaxial
strain (torsion) of 14.3 (a) with all dislocations in contrast in the TEM under
multiple beam conditions and (b) one set out of contrast under two beam
conditions (as in Figure 20). The fact that, at these large strains, the mis-
orientations of subgrains that form from dislocation reactions remain rela-
tively low ðqlave < 2�Þ and subgrains remain equiaxed suggests boundaries
migrate and annihilate. Here, with constant strain rate, we observe similar
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Figure 31 The work hardening during a constant strain-rate creep transient for Al,
illustrating the variation of l, r, d, and qlave over primary and secondary creep. The
bracket refers to the range of steady-state dislocation density values observed at larger
strains; (a) for strains to 0.6 and (b) to very large steady-state strains to over 16.
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subgrain trends to the constant stress trends of Blum in Figure 29 at a similar
fraction of the absolute melting temperature. Of course, 304 has a relatively
low stacking fault energy while aluminum is relatively high. In both cases,
the average subgrain size (considering the entire volume) decreases over
primary creep. The lower stacking fault energy 304 austenitic stainless steel,
however, requires substantially more primary creep strain (0.4 vs 0.2) to
achieve steady state at a comparable fraction of the melting temperature. It
is possible that the subgrain size in 304 stainless steel continues to decrease
during steady state.

Under constant-strain rate conditions, the density of dislocations not
associated with subgrain boundaries monotonically increases with increased
flow stress for both austenitic stainless steel and high-purity aluminum. This
is opposite to constant-stress trends. Similar to the constant-stress trends,
both pure Al and 304 stainless steel show decreasing d (increasing q) during
primary and “early” steady-state creep. Measurements of d were considered
unreliable at strains beyond 0.6 in Al and only misorientation angles are
reported in Figure 30(b). It should be mentioned that HABs here form
primarily by elongation of the starting grains through geometric dynamic
recrystallization, but these are not included in Figure 31(b). This

Figure 32 TEM micrographs of a subgrain boundary in Al deformed at 371 �C at
_ε ¼ 5:04� 10�4s�1, to steady state under (a) multiple and (b) two-beam diffraction
conditions. Three sets of dislocations, of, apparently, nearly screw character. From
Ref. [146].
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mechanism is discussed in greater detail in a later section. More recent
experiments by Sadnabadi et al. [593] on CaF2 show very similar primary
creep trends as just described for 304 stainless steel and Al.

2.4 Creep Transient Experiments
As mentioned earlier, creep transient experiments have been performed by
several investigators [127,129,170] on high-purity and commercial-purity
aluminum, where a steady state is achieved at a fixed stress/strain rate
followed by a change in the stress/strain rate. The strain rate/stress change is
followed by a creep “transient,” which leads to a new steady state with,
presumably, the characteristic dislocation substructure associated with an
uninterrupted test at the (new) stress/strain rate. These investigators
measured the subgrain size during the transient and subsequent mechanical
steady state, particularly following a drop in stress/strain rate. Although
Ferriera and Stang [127] found, using less reliable polarized light optical
microscopy (POM), that changes in l in Al correlate with changes in _ε
following a stress drop, Huang and Humphreys [129] and Langdon et al.
[170] found the opposite using TEM; the l continued to change even once
a new mechanical steady state was reached. Huang and Humphreys [129]
and Langdon et al. [170] showed that the dislocation microstructure
changes with a stress drop, but the dislocation density follows the changes in
creep rate more closely than the subgrain size in high-purity aluminum.
This led Huang and Humphreys to conclude, as did Evans et al. [171], that
the “free” dislocation density was critical in determining the flow properties
of high-purity aluminum. Parker and Wilshire [134] made similar con-
clusions for Cu in the five-power-law regime. Blum [22] and Biberger and
Gibeling [10] suggest that interior dislocations can be obstacles to gliding
dislocations, based on stress drop experiments leading to aluminum acti-
vation area calculations.

2.5 Internal Stress
2.5.1 Introduction
One of the important suggestions within the creep community is that of
the internal (or back) stress, which of course has been suggested for plastic
deformation, in general. Stress fields in crystals can be either short range or
long range, the former occurring on the nanometer scale. Long-range in-
ternal stress (LRIS) refers to variations in stress that occur over longer length
scales, such as the microstructure (often microns). LRIS appears to be
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important for a variety of practical reasons possibly including the
Bauschinger effect and cyclic deformation (fatigue) and springback in metal
forming [27].

Bauschinger Effect
The concept of long-range internal backstresses in materials may have been
first discussed in connection with the Bauschinger effect (BE). The material
strain hardens, and on reversal of the direction of the straining, the metal
plastically flows at a stress less in magnitude than in the forward direction, in
contrast to what would be expected based on isotropic hardening.
(A Bauschinger effect is illustrated in Figure 33.) Not only is the flow stress
lower on reversal but the hardening features are different as well. The BE is

Figure 33 The Bauschinger effect in austenitic stainless steel. The specimen is loaded
to A, unloaded and reverse deformation occurs at B. This curve (B–D00) is “reversed” to
B–D. Subtracting the Orowan-Sleeswyk strain b, similar to a Bauschinger strain εB,
brings the reversed curve and is nearly coincident to the forward curve, AD0. From
Ref. [172].
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important as it appears to be the basis for low hardening rates and low
saturation stresses (and failure stresses) in cyclic deformation (fatigue).

Non-LRIS explanation for BE Sleeswyk et al. [173] analyzed the
hardening features in several metals at ambient temperature and found that
the hardening behavior on reversal can be modeled by that of the mono-
tonic case provided a small (e.g., 0.01) “reversible” strain is subtracted from
the (early) plastic strain associated with each reversal. This led to the
conclusion of an Orowan-type mechanism (no long-range internal stress or
backstress) [174] with dislocations easily reversing their motion (across cells).
Sleeswyk et al. suggested that gliding dislocations, during work hardening,
encounter increasingly effective nonregularly spaced obstacles and the stress
necessary to activate further dislocation motion or plasticity continually
increases. On reversal of the direction of straining from a “forward” sense,
s, the dislocations will need to move only past those obstacles that have
already been surmounted at a lower stress.

Thus, the flow stress is initially relatively low, <s. There is a relatively
large amount of plastic strain on reversal to � (sþ ds) in comparison to the
strain associated with an incremental increase in stress to (sþ ds) in the
forward direction. Long-range internal stresses or backstresses were not
believed to be important. This is referred to as the Orowan-Sleeswyk
explanation for the Bauschinger effect.

LRIS (composite model) BE In an influential development, Mughrabi
[138] advanced the concept of relatively high long-range internal stresses in
association with heterogeneous dislocation substructures (e.g., cell/subgrain
walls and dipole bundles, PSB walls, etc.). He advocated the simple case
where “hard” (high dislocation density walls, etc.) and “soft” (low dislo-
cation density channels, or cell subgrain interiors) elastic perfectly plastic
regions are compatibly sheared. Each component yields at different stresses
and it is suggested that the composite is under a heterogeneous stress state
with the high-dislocation density regions having the higher stress. Thus,
LRIS is present. This composite picture was suggested to rationalize the
Bauschinger effect, the basic element of cyclic deformation. As soft and
hard regions are unloaded in parallel, the hard region eventually places the
soft region in compression while the stress in the hard region is still positive.
When the total, or average, stress is zero, the stress in the hard region is
positive while negative in the soft region. Thus, a BE may be observed
where plasticity occurs on reversal at a lower average magnitude of stress
than just prior to unloading due to reverse plasticity in the soft region. The
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composite model for backstress is illustrated in Figure 34. This concept has
also been widely embraced for monotonic deformation [954,181] including
elevated-temperature creep deformation. The long-range internal stresses
are defined by:

syw ¼ sa þ Dsw (35)

syI ¼ sa þ DsI (36)

where sa is the applied stress, and Dsw and DsI are LRIS in the composite
substructure. Simply stated, LRIS is the deviation from the average (or
applied) stress in a loaded material.

Experimental History
Bauschinger effect In early work performed by Kassner et al. a

random dislocation arrangement in monotonically deformed stainless steel
produces nearly the same elevated temperature Bauschinger effect (BE) as
one with cells and/or subgrains where LRIS should be more substantial
from the composite model [111]. Also, it can be noted from the aluminum
experiments of [180,955] that a very pronounced BE is evident in the first
cycle (1/20% monotonic plastic strain) at 77 K when a cellular substructure
is not expected to be evident during the very early Stage I deformation.
The BE is comparable to the case where a heterogeneous vein/channel
substructure developed after hundreds or thousands of cycles. Perhaps
consistent with the Orowan-Sleeswyk explanation, the principal features of
the BE may be independent of LRIS.

X-ray peak asymmetry Evidence for internal stresses in the past has
also been suggested based on X-ray diffraction (XRD) experiments during
both cyclic and monotonic deformation at both high and low temperatures
[138,954,956–959]. Basically, X-ray peaks may asymmetrically broaden
with plastic deformation. A decomposition can be performed on the
asymmetric peak profile into two symmetric peaks, one peak is suggested to
represent the material in the vicinity of the high dislocation-density het-
erogeneities such as dipole bundles, such as, PSB (dipole) walls or cell walls
or subgrain boundaries with elevated local stresses. The second peak in
cyclically deformed metals is suggested to represent the lower dislocation
density material (e.g., cell interiors) where the stresses are smaller in
magnitude than the applied stress. This asymmetry is illustrated in
Figure 35. Asymmetry analysis varies but often suggests that (under load)
stresses in the walls that are about a factor of 1.3–2.8 larger than the applied
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stress [137,954,961] with PSB walls in cyclically deformed metals having
relatively high values. The single crystal Cu compression deformation by
Ungar, Mughrabi, et al. suggested the lowest values by this technique at
þ0.10 sA in the cell interiors and �0.4 sA in the cell walls [960]. X-ray
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Figure 34 The composite model illustrating the Bauschinger effect. The different
stress versus strain behaviors of the (hard) subgrain walls and the (soft) subgrain in-
teriors are illustrated in (a), while the stress versus strain behavior of the composite is
illustrated in (b). When the composite is completely unloaded, the subgrain interior is
under compressive stress. This leads to a yielding of the softer component in
compression at a “macroscopic” stress less than syI under initial loading. Hence, a
Bauschinger effect due to inhomogeneous (or internal) stresses is observed. Note that
the individual components are elastic-perfectly plastic.
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peak asymmetry persists after unloading in creep-deformed Cu. This sug-
gests that if, in fact, the asymmetry is due to internal stresses, then these
stresses persist in the unloaded case [956].

In-situ experiments In situ deformation in the TEM experiments by
Lepinoux and Kubin [179] and particularly the neutron irradiation exper-
iments by Mughrabi [138] of Figure 36 have long been cited as early ev-
idence for long-range internal stresses in cyclically deformed metals; the
stresses are, roughly, a factor of 3 higher than the applied stress for dipole
bundles in Cu PSB walls (i.e., LRIS is about twice the applied stress). These
two studies assessed LRIS by measuring dislocation loop radii as a function
of position within the heterogeneous microstructure in cyclically deformed
single-crystal Cu. More recent work by Mughrabi et al. suggests that these
values may be 50% higher than the actual LRIS [962]. One could also
interpret [963] the data of Figure 36 to suggest that there is a real variation
in LRIS at heterogeneities and an average value of LRIS to roughly half the
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Figure 35 The X-ray diffraction peak in Cu deformed to various strains, showing
asymmetric broadening. A decomposition is performed that leads to two symmetric
peaks that has been interpreted as a heterogeneous stress state. Based on Ref. [181].
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maximum value. Figure 37 illustrates very high local stresses at subgrain
boundaries (up to 20� the applied stress) in Al-5at%Zn creep-deformed
alloys based on pinned dislocation loops via a precipitation reaction on
cooling under load. Other in situ TEM experiments were inconclusive
[180]. In situ X-ray diffraction experiments will be discussed later.

Dipole height measurements Dipole heights may allow the pre-
diction of stresses in cyclically deformed materials. The approximate stress
to separate a dipole of height h can be calculated from:

sd ¼ Gb
8pð1� nÞh (37)

where G is the shear modulus, b is the Burgers vector, and n is Poisson’s
ratio.

Cyclic deformation experiments on aluminum and copper single crystals
[955] showed that the dipole heights in the presaturation microstructure are

Figure 36 Dislocation loop-radii-calculated LRIS in neutron-irradiated cyclically
deformed Cu single crystals (under load) with persistent slip bands (PSBs). From
Ref. [138] with recent modifications [962].
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also approximately independent of location, being equal in the dipole bundles
(or veins) and the channels, consistent with other Ni work [964,965]. This
could suggest a uniform stress state across the microstructure. Furthermore,
the maximum dipole heights are the widest stable dipoles and suggest,
through Eqn (37), a maximum stress in the vicinity of the dipole. The
maximum dipole height translates to a stress, according to Eqn (37), that is
about equal to the applied (cyclic) stress for Al. The stress to separate dipoles
is within a factor of 2–3 in Cu while for Ni is within a factor of 4
[78,955,964,965].

Convergent beam electron diffraction (CBED) experiments were
used to assess internal stresses in unloaded monotonically deformed Cu
[181]. CBED, with a 20–100 nm beam size, can probe smaller volumes
than the X-ray studies referenced so far, which irradiate over large portions
of the specimens. The CBED results by Borbely et al. [181] suggest high
local stresses in the vicinity of subgrain boundaries in Cu, based on CBED;
however, this may be speculative. The data are sparse and definitive
trends were not evident. CBED tests are most easily performed on
unloaded thin films.

Figure 37 Dislocation loop-radii-calculated LRIS based on precipitate pinning (under
load) in creep deformed Al–Zn alloy with subgrains. (From [42].) The high stresses are
located at the subgrain walls.
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Lattice parameter measurements were made near (within 80 nm)
dipole bundles and within channels in cyclically deformed Cu to pre-
saturation and near cell/subgrain walls and interiors in creep-deformed
Al and Cu [78,185, 186]. The errors, however, were equal to the flow
stress for the cyclically deformed Cu examined and 1.5–2 times the
applied stress for the creep tests. No evidence of a long-range internal
stress was noticed. Smaller stresses might be undetected by this technique.
Of course, another difficulty with these experiments (besides error) is that
the region of the foils examined in CBED is fairly thin, under 100 nm.
Any “extra” effects of relaxation of any LRIS at this dimension are
unknown.

Table 1 illustrates the LRIS value from various studies, many already
discussed.

Synchrotron X-ray microdiffraction experiments Recently, Larson
and Ice developed an X-ray technique that allows measurement of the
X-ray line profile as well as having the ability to calculate the internal stress
state in relatively small volumes within the bulk specimen [974]. The
submicron (y0.5 mm) spot size of this new technique is small enough to
allow probing within individual dislocation cells and subgrains within a
bulk specimen [974,975]. Local data acquisition is possible on the length
scale that is necessary to answer many questions regarding LRIS discussed
earlier.

This technique was applied to analyze the strain state along a line that
traverses the various high and low dislocation density regions of a deformed
substructure in [001] oriented copper single crystals in both tension and
compression to strains that led to dislocation cell structures. Thus, a syn-
chrotron beam can probe across cells of bulk deformed Cu samples in
which the length scale of the microstructure has been characterized by
TEM. Broadening of the diffraction profiles confirmed that the mono-
tonically deformed Cu samples exhibit the asymmetry expected based on
other work [957].

It should be mentioned that the microbeam studies were performed on
unloaded specimens. Borbely, Blum, and Ungar made asymmetry mea-
surements in situ or under load [954]. The XRD line profiles provided the
expected asymmetry under stress at elevated temperature. However, the
unloaded specimen retained a majority of the asymmetry. If the asymmetry
under load is reflective of LRIS, then unloaded specimens appear to sub-
stantially “lock in” these stresses.
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Table 1 LRIS values from various studies

Material References
Deformation
mode Strain

LRIS (sA) Observation
method Temp. NotesWalls Interior

Cu Mughrabi [138] Cyclic Saturation
w/PSBs

þ2.0 �0.5 In-situ
neutron
irrad.

RT
Mughrabi et al.
[962]

þ1.3 �0.37 Reanalysis
of above

Mughrabi et al.
[958,960,967,968]

Tension þ0.4 �0.1 X-ray peak
asymm.

Unloaded
[001]
oriented
single
crystal

Lepinoux and
Kubin [179]

Cyclic Saturation
w/PSBs

þ2.5 �0.5 In-situ TEM RT Loaded
single
crystal

Kassner [185] Cyclic Pre-sat. no
PSBs

0 0 CBED RT Unloaded
[123] single
crystal

Dipole sep.

Borbely et al.
[954]

Creep Steady
state

þ1.0 �0.08 X-ray peak
asymm.

527 K Loaded

Kassner et al. [78] Creep Steady
state

e 0 CBED 823 K Unloaded

Straub et al. [136] Compression �0.3 to
�0.6

þ0.05e0.08 X-ray peak
asymm.

RTd633 K

e Observed CBED RTd633 K
Levine et al.
[970]

Compression e þ0.29 X-ray
microbeam

RT Unloaded
[001]
oriented
single
crystal

Tension e �0.17

Continued

Five-Pow
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Table 1 LRIS values from various studiesdcont'd

Material References
Deformation
mode Strain

LRIS (sA) Observation
method Temp. NotesWalls Interior

Levine et al.
[199]

Compression �0.1 þ0.1

Ni Hecker et al.
[961]

Cyclic Saturation
w/PSBs

�
1.4e1.8

�0.16e0.2 X-ray peak
asymm.

RT Loaded

Pre-sat. no
PSBs

0 0

Al Kassner et al.
[180,185]

Cyclic Pre-sat no
PSBs

0 0 Dipole
separation

77 K Unloaded
[123]
oriented
single
crystal

Kassner et al. [78] Creep Steady
state

0 0 CBED 664 K Unloaded

Al-
5at%Zn

Morris and
Martin [42]

Creep Steady
state

þ25 þ1 Disl. loops
from
precipitation
pinning

483e523 K

e Sedlacek et al.
[971]

Creep 1.5e10.0 0.5e1.0 Theoretical Creep

e Gibeling and Nix
[26,118]

Creep 7.7 0.1e0.2 Theoretical Creep

Si Legros et al.
[119]

Cyclic Pre-sat. 0 0 CBED RT Unloaded
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Figure 38 (a) and (b) illustrate the (006) diffraction peaks for
compression (�0.277) and tension (þ0.306) deformed [100]-oriented Cu
single crystals (also recently reported in Ref. [970]). The deformation-
induced change in the lattice parameter in cell interiors reverses sign in
tension and compression (negative in tension, positive in compression as
measured locally by DAXM). Also, (006) X-ray Bragg reflections (not
DAXM), from tension- and compression-deformed samples (Figure 38),
were found to contain asymmetry, and the asymmetry “sense” was
reversed when comparing tension and compression samples. These two
results, when taken together, are the most direct evidence that a long-
range internal stress remains after plastic deformation, specifically
showing that cell interiors are under compressive stress after tensile
deformation and vice versa. Further, these two results are in qualitative
agreement with the predictions of the composite model. Preliminary
results [199] suggest the presence of a stress with a sign opposite to that of
the cell interior in the cell wall (that appears of a similar magnitude) is
consistent with the data.

Thus X-ray peak asymmetry here (and perhaps in general) appears
reflective of LRIS. The magnitude of the range of average of the LRIS in
cell interiors for tension and compression appears to be on the order of
0.16–0.29 the applied stress [199], while cell walls appear of opposite sign
and a similar magnitude. Of course, the interpretation of these stresses is
the summation of the individual stress fields of the dislocations in each
region, unlike multiphase systems where coherency can lead to long-
range residual stress [182]. More recent work [115] refined the earlier
work and directly measured LRIS in both cell interiors and cell walls as
þ0.1 sa in cell interiors and �0.1 sa in cell walls for compression. Recent
molecular dynamics work [896] also appears consistent with these
findings.

There is reasonable agreement between the Cu microbeam work and
the work of Mughrabi and Ungar et al. [958] that was revised in [960]. The
values are lower than other X-ray asymmetry measurements and other
measurements of LRIS as discussed earlier. Our estimates for the volume
fractions of cell wall and cell interiors at �0.248 strain in [001] oriented Cu
is fwy 0.44–0.58 based on a fairly simple image analysis of TEM micro-
graphs that partitions high and low dislocation density regions. High and
low were qualitatively based on image analysis as well as by specifically
designating regions with about 10� dislocation density as cell interiors.
The cell wall estimates of LRIS are in rough agreement with the Mughrabi

Five-Power-Law Creep 63



Figure 38 The (006) X-ray peak profile of (a) compression-deformed, (b) tension-
deformed [001] oriented Cu single crystal, and (c) measured stress distributions for
cell interiors (right) and cell walls (left) [115]. Asymmetry is observed and the vertical
line represents the lattice parameters within cell interiors as determined by X-ray
microbeams. From Ref. [970].
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et al. value of 0.4 based on X-ray diffraction of unloaded specimens that
include a large number of cells, if Mughrabi et al. had used more appro-
priate values of fw.

Earlier work by Kassner et al. [78] failed to observe LRIS within subgrains
by CBED in creep-deformedCu and Al. The CBED results do not agree with
the Al-5at%Zn tensile creep work of Morris and Martin, who found up to
þ20 sALRIS at or near the subgrainwalls andoverþ2 sA away fromthewalls.
However, the error in the unloadedCBEDpureAlmeasurements are about�
2 sA. Neither did the CBED of creep-deformed Cu find LRIS which is not
really consistent with the X-ray peak asymmetry work of [954] (1 sA in walls,
0.1 sA in the interiors). In this case, the�1.0 sACBED errormay have left the
LRIS in these specimens undetected.

The work of Mughrabi [138] and Lepinoux and Kubin [179] suggests
LRIS of about a 2 sA in PSB walls. (As mentioned earlier, however,
Mughrabi recently revised his original estimates to lower values of about
1.3 sA [962].) Similar values were found in Ni cyclically deformed with
PSBs [961]. Hence, PSB laden structures may be cases of relatively high
LRIS in the dislocation walls. In summary, the magnitudes of LRIS in
plastically deformed materials appear smaller than generally suggested, and
the magnitudes in creep are not firmly established, if present. Some ma-
terials such as those cyclically deformed to saturation (PSB formation)
and equal-channel angular pressed (ECAP) may be cases of relatively high
LRIS [116].

2.5.2 Other Creep Notes Regarding Long-Range Internal Stresses
High-temperature work by Hasegawa et al. [175] suggested that disso-
lutions of the cell/subgrains occurred with a reversal of the strain, indi-
cating an “unraveling” of the substructure in Cu-16at%Al, perhaps
consistent with the ideas of Sleeswyk and coworkers and the concept that
backstress applied to high temperatures is related to dislocation configu-
rations. This suggestion was proposed by Argon and Takeuchi [137], and
subsequently adopted by Gibeling and Nix [117] and Nix and Ilschner
[26]. With this model, the subgrain boundaries that form from dislocation
reaction, bow under action of the shear stress, and this creates relatively
high local stresses. The high stresses in the vicinity of the boundary are
suggested to be roughly a factor of 3 larger than the applied stress. On
unloading, a negative stress in the subgrain interior causes reverse plas-
ticity (or anelasticity), such as illustrated in Figure 27. Whether the LRIS
in creep-deformed materials really rises to levels much higher than those
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deformed at ambient temperature remains an important question,
although it increasingly appears unlikely.

3. RATE-CONTROLLING MECHANISMS

3.1 Introduction
The mechanism for plastic flow for five-power-law creep is generally
accepted to be diffusion controlled. Evidence in addition to the activation
energy being essentially equal to that of lattice self-diffusion includes the
Sherby and Weertman analysis showing that the activation volume for
creep is also equal to that of self-diffusion [5]. More recent elegant
experiments by Campbell et al. [40] showed that impurity additions that
alter the self diffusivity also correspondingly affect the creep-rate. However,
an established theory for five-power-law creep is not available although
there have been numerous attempts to develop a fundamental mathematical
description based on dislocation-climb control. This section discusses some
selected attempts.

3.1.1 Weertman Model [25,187–189]
Weertman made one of the early attempts to fundamentally describe creep
by dislocation climb. Here, the creep process consists of glide of dislocations
across relatively large distances, xg, followed by climb at the rate-controlling
velocity, vc, over a distance, xc. The dislocations climb and annihilate at a
rate predictable by a concentration gradient established between the
equilibrium vacancy concentration:

cv ¼ c0 expð�Qv=kTÞ (38)

and the concentration near the climbing dislocation.
The formation energy for a vacancy, QV, is altered in the vicinity of a

dislocation in a solid under an applied stress, s, due to work resulting from
climb:

cdv ¼ c0 expð�Qv=kT Þexpð�sU=kTÞ (39)

where U is the atomic volume. Again, the (steady-state) flux of vacancies
determines the climb velocity:

vcy2p

�
D
b

�
ðsU=kTÞlnðR0=bÞ (40)
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where R0 is the diffusion distance, related to the spacing of dislocations
(Weertman suggests Pn(R0/b)y 3 Pn 10).

Weertman approximates the average dislocation velocity, v:

vyvcxg


xc (41)

_εss ¼ rmbv (42)

Weertman assumes:

rmy
�sss

Gb

�2
(43)

Weertman appears to suggest that the density of dislocations ry rm
and dislocation interaction suggests that rm should scale with sss by Eqn
(43). This is also analogous to the phenomenological Eqn (19), leading to:

_εss ¼ K6
Dsd

b2
ðGU=kTÞ

�
xg
xc

��s
G

�3
(44)

the classic “natural” or three-power-law equation.

3.1.2 Barrett and Nix Model [190]
Several investigators considered five-power-law creep as controlled by the
nonconservative (climb) motion of (edge) jogs of screw dislocations
[112,190,191]. The models appear similar to the earlier description by
Weertman, in that climb motion controls the average dislocation velocity
and that the velocity is dictated by a vacancy flux. The flux is determined
by the diffusivity and the concentration gradient established by climbing
jogs.

The model by Barrett and Nix [190] is reviewed as representative of
these models. Here, similar to the previous Eqn (42):

_gss ¼ rmsvb (45)

where _gss is the steady-state (shear) creep rate from screws with dragging
jogs and rms is the density of mobile screw dislocations.

For a vacancy producing jog in a screw segment of length, j, the
chemical dragging force on the jog is:

fp ¼ kT
b
ln
cp
cv

(46)
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where cp is the concentration of vacancies in the vicinity of the jogs. The
jog is considered a moving point source for vacancies, and it is possible
to express cp as a function of Dv, and the velocity of the jog, vp:

c�p � cv ¼ vp
4pDvb2

(45)

where c�p is the steady-state vacancy concentration near the jog. Substitution
of Eqn (47) into Eqn (46) leads to:

fp ¼ kT
b
ln

�
1þ vp

4pDvb2cv

�
(48)

and with sbj¼ fp:

vp ¼ 4pDvb
2cv

�
exp

�
sb2j
kT

�
� 1

�
(49)

Of course, both vacancy-producing and vacancy-absorbing jogs are
present, but for convenience, the former is considered, and substituting Eqn
(49) into Eqn (45) yields:

_gss ¼ 4pDb2

�
b
a0

�
rms

�
exp

�
sb2j
kT

�
� 1

�
(50)

where a0 is the lattice parameter.
Barrett andNix suggest the rms¼A8s

3 (rather than rf s2) and _gssyA9s4

is obtained. One difficulty with the theory (Eqn (50)) is that all (at least screw)
dislocations are consideredmobile.With stress drops, the strain rate is predicted
to decrease, as observed. However, rms is also expected to drop (with
decreasing rss) with time and a further decrease in _gss is predicted, despite the
observation that _g (and _gss) increases. Jog-screw models have more recently
been applied to Ti-alloys including TiAl [79] and Zr [815].

3.1.3 Ivanov and Yanushkevich [192] Model
These investigators were among the first to explicitly incorporate subgrain
boundaries into a fundamental climb-control theory [192]. This model is
widely referenced. However, the described model (after translation) is less
than very lucid and other reviews of this theory [187] do not appear to
clarify all of the details of the theory.

Basically, the investigators suggest that there are dislocation sources within
the subgrains and that the emitteddislocations are obstructed by subgrainswalls.
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The emitted dislocations experience the stress fields of boundary and other
emitted dislocations. Subsequent slip or emission of dislocations requires
annihilation of the emitted dislocations at the subgrain wall, which is climb
controlled. The annihilating dislocations are separated by a mean height:

hm ¼ k3
Gb
s

(51)

where the height is determined by equating a calculated backstress to the
applied stress, s. The creep-rate is:

_εss ¼ l2bvr0m
hm

(52)

where r0m ¼ 1=hml
2; where r0m is the number of dislocation loops per unit

volume. The average dislocation velocity:

v ¼ k4Dvb
2 expðsb3=kT � 1Þ (53)

is similar to Weertman’s previous analysis. This yields:

_εss ¼ k5DsdbG
kT

� s
G

�3
(54)

In this case, the third power is a result of the inverse dependence of the
climb distance on the applied stress. Modifications to the model have been
presented by Nix and Ilschner, Blum and Weertman [26,193–195].

3.1.4 Network Models (Evans and Knowles, [105] with Modifications
[938])

Several investigators have developed models for five-power creep based on
climb control utilizing dislocation networks, including early work by
McLean and coworkers [84,196], Lagneborg and coworkers [85,197], Evans
and Knowles [105], Wilshire and coworkers [104,126], Ardell and coworkers
[54,86,101,102,152,153], and Mott and others [106,109,198–200,938].
There are substantial similarities between the models. A common feature is
that the dislocations interior to the subgrains are in the form of a Frank
network [87]. This is a three-dimensional mesh illustrated in Figure 19.

Network models generally consider coarsening of the dislocation
network due to recovery of sessile links (l< lc where l is the dislocation
link-length and lc is the critical dislocation link-length required for
activating dislocation sources). Refinement occurs by multiplications
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(e.g., Frank-Read sources) once lc< l. A discussion of the network-based
models by Ardell and Lee [101] in the Harper-Dorn regime (all link
lengths< lc) is presented elsewhere [18]. Evans and Knowles [105] pre-
sented a recovery based model for the evolution of dislocation network that
may also be consistent with natural three-power law at low stresses [19].
The Evans and Knowles model is attractive but needs modification.

Here [938] the model of Evans and Knowles [105] is modified in order
to develop a dislocation network theory for the creep.

It is assumed that the distribution of the dislocation link-lengths is
uniform with the smallest length equal to Burgers vector, b, and the largest
link length equal to the critical link length for a Frank-Read source, Lc. Shi
and Northwood [154] presented a statistical model for calculating the
dislocation link lengths based on the dislocation density, r:

l ¼
�
2
pc

�1
2 1ffiffiffi

r
p (55)

where l is the average dislocation link length and c is the dislocation
network geometry factor relating the volume of a polyhedron to its edge
length, which is the dislocation link-length. Further, Shi and Northwood
[154] state that for a tight, uniform, network:�

2
pc

�1
2

¼ 1 (56)

Phenomenologically, it is known approximately that [29]:

sss ¼ k0Gb
ffiffiffiffiffi
rss

p
(57)

where sss is the steady state stress value, k0 is a constant, and G is the shear
modulus. Equation (57) is shown to be consistent with a verified Taylor
equation for five-power law steady-state creep of aluminum [169]:

sss ¼ s0 þ aMGb
ffiffiffiffiffi
rss

p
(58)

where a in Eqn (58) is a value consistent with the expected value for dislo-
cation hardening and is equal to z 0.2 and M is the Taylor factor. Equa-
tions (55) and (57) give the following for l:

l ¼ 1ffiffiffi
r

p ¼ a0Gb
Saves

(59)

where a0 is a constant and Save is the average Schmid factor.
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By definition, the dislocation density is equal to the product of the average
dislocation link length and the total number of dislocation links per unit vol-
ume,N. Hence, the following expression forN is calculated based onEqn (59):

N ¼ r
3
2 ¼ 1

l
3 (60)

Like Evans and Knowles [105], it is assumed that the glide of dislocation
links is rapid and creep is controlled by dislocation climb. For a three-
dimensional dislocation network, both nodes and dislocation links
may climb. The slowest of the above two will govern the creep rate.
Based on the concentration of vacancies and assuming dislocation links as a
perfect sink and source of vacancies, the following climb velocities are
calculated [105]:

vn ¼ 4pDLFb
kT

(61)

vl ¼ 2pDsdFb

kT ln
�

l
2b

� (62)

where vn is the climb velocity of nodes, Dsd is the lattice diffusion coeffi-
cient, F is the total force per unit length of the dislocations, k is Boltzmann
constant, T is the temperature, and vl is the climb velocity of dislocation
links. Equation (61) assumes that the climb velocity of a single node is
equivalent to that of a jog and is taken from Hirth and Lothe [347]. Equa-
tion (62) is originally from Weertman [187]:

vl ¼ 2pDsdb

b ln
�
R
b

� �exp�s00U
kT

�
� 1

�
(63)

where R is the distance from the dislocation to the point at which the va-
cancy concentration is nearly equal to the equilibrium vacancy concentra-
tion in the crystal, s00 is the stress acting on the dislocation that produces a
climb force, and U is the atomic volume. Equation (63) reduces to the form
of Eqn (62) based on the following reasonable assumptions: Rz l=2,
U z b3, F z sb, and the activation volume s00U/kT< 1.

Equations (61) and (62) give the following as the ratio of vn and vl:

vn
vl
¼ 2 ln

�
l
2b

�
(64)

which is >1 and hence the climb of dislocation links will govern the creep.
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Of course, vacancies can diffuse both through dislocations and through
lattice. Since in a network, dislocations links may provide the short circuit
path for the vacancies from one point to any other, it may be possible that
pipe diffusion becomes dominant over lattice diffusion [105]. The gov-
erning diffusion path is assessed by the ratio:

P ¼ bG2Dsd

3s2Dp ln
�
b

2s

� (65)

where b is a constant of the order of unity and Dp is the pipe diffusion co-
efficient. Lattice diffusion will be the creep-governing process for P>> 1.
Based on the values of Dp and Dsd it can be concluded that at higher tem-
peratures and low stresses, as in the case of five-power-law creep, lattice
diffusion will be the controlling process.

It is assumed here that only the external forces acting on the dislocation
links should affect the climb velocity of dislocation links. There may be two
obvious external forces on the dislocations: (1) the applied stress and (2) the
stresses due to other dislocations (elastic interaction). Nevertheless, there is a
tendency of a dislocation link to increase its length in order to reduce the line
tension (strain energy) and hence this tendency due to line tension, given by
Gb2=l, also contributes to the total climb force. This force was not consid-
ered by Zbib et al. [950] in their three-dimensional dislocation network
model. However, the line tension is responsible for the coarsening of the
network decreasing the dislocation density during an annealing process
conducted in the absence of any applied stress. Hence the following will be
an approximate expression for force per unit length of the dislocations:

F ¼ snbþGb2

pl
þGb2

l
(66)

where sn is the component of the applied stress along the direction of climb.
The first term in Eqn (64) is due to the applied load whereas the second term
comes from the elastic interaction of the dislocations. The third term is due
to the line tension. The form of Eqn (66) is similar to the form used by Evans
and Knowles [105]. Assuming sn¼Cs where C is the geometric constant
correlating the applied stress and the normal stress acting upon climbing dis-
locations, the following expression is calculated for the climb force:

F ¼ CsbþGb2

l

�
1þ 1

p

�
(67)
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Using the value of l from Eqn (59) and combining all constant in one
term, the following expression for F is calculated:

F ¼ gsb (68)

where g is a constant and is given by the following equation:

g ¼ C þ Save
a0

�
1þ 1

p

�
(69)

Substituting the value of l from Eqn (59) and F from Eqn (68) in Eqn
(62), the following expression for climb velocity is obtained:

vl ¼ 2pDsdb

kT ln

�
a0

Save2
G
s

�gsb (70)

The swept area by a dislocation loop, f, can be given by:

f ¼ ls (71)

where s is the slip distance of the dislocation loop. It is assumed here that
slip is caused by the movement of the individual links.

The rate of release of the dislocation loops for the network, _N , can be
given by:

_N ¼ 2

(
vl�

Lc � l
�Nn0

)
(72)

where n0 is the total number of dislocation loops generated by a Frank-
Read source before the source length becomes subcritical by mesh refine-
ment resulting from other dislocation sources. The form of Eqn (72) differs
from the one used by Evans and Knowles [105]. Equation (72) uses ðLc � lÞ
whereas Evans and Knowles [105] use only l. ðLc � lÞ is the distance
climbed by a dislocation link (of length l) in order to activate a Frank-
Read source and hence is more appropriate. The term in the curly bracket
gives the number of dislocation loops per unit volume generated by the
Frank-Read sources, which are activated purely by the climb of the dislo-
cation links. It may also be possible to generate a dislocation loop if two
nodes break, freeing a dislocation link. It is a viable assumption as the critical
shear stress required to untangle a Lomer-Cottrell node in FCC material is
equal tow0.8 Gb/LB, where LB is the dislocation link length [951] and this
stress is of the same order as of the critical stress required to release a
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dislocation loop from a Frank-Read source. Hence, like Evans and
Knowles, a multiplying factor of 2 is used in Eqn (72) to show that the
probability of release of a dislocation loop from either a Frank-Read source
(for which critical length is Lc) or due to the breakage/untangling of nodes
(i.e., when the dislocation link length LB is less than Lc for the resultant
concentrated force on a node is more than node strength.

In order to fully quantify Eqn (72), it is required to calculate the number
of dislocation loops, n0, generated per Frank-Read source. It may be
calculated using the basic property of the steady state:

rþ ¼ r� (73)

where rþ is the rate of increase in the dislocation density whereas r� is the
rate at which dislocations are annihilated. The following gives the disloca-
tion density generation-rate:

rþ ¼ Nvl�
Lc � l

�n0c00l (74)

where c 00 is a geometrical constant relating average link length to the
average length of the dislocation loops generated by the Frank-Read
source. Dislocation annihilation can take place by climb of a dislocation
link, bringing two opposite-signed dislocation links on same slip plane.
In this case, two links will be annihilated and this annihilation rate can
be given by:

r� ¼ vlN (75)

Substituting Eqns (74) and (75) into Eqn (73) and assuming c 00 z 1
gives:

n0 ¼ Lc

l
� 1 (76)

Taking Lc¼ bG/s, where s is the resolved shear stress in the plane and
in the direction of b [169,952] and for a single crystal, s¼ Ss where S is the
Schmidt factor, Eqn (76) suggests that n0 z 1.

Substituting the value of vl from Eqn (70) in Eqn (72) and assuming
n0 z 1 (Eqn (76)) leads to:

_N ¼ 4pg�
Lc � l

�
l
3

2664 Dsdb2s

kT ln
�

a0
Save2

G
s

�
3775 (77)
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Now, substituting the value for l from Eqn (59) and taking Lc¼ bG/s:

_N ¼ 4pg�
bG
s � a0bG

Saves

��
a0bG
Saves

�3
2664 Dsdb2s

kT ln
�

a0
Save2

G
s

�
3775 (78)

For a single crystal, s¼ Ss where S is the Schmidt factor, hence the
following expression:

_N ¼ 4pg�
1

Save
� a0

Save

��
a0
Save

�3�
bG
s

�4
2664 Dsdb2s

kT ln
�

a0
Save2

G
s

�
3775 (79)

Strain rate is given by:

_ε ¼ b _Nfb (80)

where b is a constant that converts the shear strain into the uniaxial strain
(S for single crystals). Now substituting the values of parameters, f and _N ,
in Eqn (80) from Eqns (71) and (79), respectively:

_ε ¼ b
4pg�

1
Save

� a0
Save

��
a0
Save

�3�
bG
s

�4
2664 Dsdb2s

kt ln
�

a0
Save2

G
s

�
3775�ls�b (81)

Taking l ¼ 2, i.e., hardening is independent of applied stress [15, 29]:

_ε ¼ 4pgb�
1

Save
� a0

Save

��
a0
Save

�3�
bG
s

�4
2664 Dsdb2s

kt ln

�
a0

Save2
G
s

�
3775l2b (82)

Substituting the value for l from Eqn (59) and re-arranging Eqn (82)
gives:

_ε ¼ 4pgb
ð1�a0Þa0

S2ave

1

ln
�

a0
2Save

G
s

� DsdGb
kT

�s
G

�3
(83)

This equation is indicated in Figure 39, for the data reported earlier in
Figure 15. The network model predicts the low-stress region very well, but
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cannot model the five-power regime very well. It will also be shown in the
Harper-Dorn section that this equation predicts the low-stress region of
pure Al very well.

3.1.5 Recovery-Based Models
One shortcoming of the previously discussed models is that a recovery
aspect is not included in detail. It has been argued by many (e.g., Refs
[81,201]) that steady state, for example, reflects a balance between dislo-
cation hardening processes, suggested to include strain-driven network
refinements, subgrain-size refinement or subgrain-boundary mesh-size
refinement, and thermally activated softening processes that result in
coarsening of the latter features.

Figure 39 A comparative plot showing the prediction based on dislocation network
theory for polycrystalline pure Cu. The data fit well with the present model at low and
moderate stresses. From Ref. [938].
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Maruyama, Karashima, and Oikawa [202] attempted to determine the
microstructural feature associated with the rate-controlling (climb) process
for creep by examining the hardening and recovery rates during transients
in connection with the Bailey-Orowan [203,204] equation:

_εss ¼ rr
hr

(84)

where rr¼ ds/dt is the recovery rate and hr¼ ds/dε is the hardening rate.
The recovery rates in several single-phase metals and alloys were esti-

mated by stress reduction tests, while work-hardening rates were calculated
based on the observed network dislocation densities within the subgrains
and the average dislocation separation within the subgrain walls, d. De-
terminations of _εss were made as a function of sss. The predictions of Eqn
(84) were inconclusive in determining whether a subgrain wall or network
hardening basis was more reasonable, although a somewhat better
description was evident with the former.

More recently, Daehn et al. [205,206] attempted to formulate a more
basic objective of rationalizing the most general phenomenology such as
five-power-law behavior, which has not been successfully explained.
Hardening rates (changes in the (network) dislocation density) are based on
experimentally determined changes in r with strain at low temperatures:

rtþdt ¼ rt þMr

�
r

ro

�c

_gdt (85)

where Mr is the dislocation breeding constant and c and ro are constants.
Refinement is described by the changes in a substructural length-scale [ 0

(r, d, or l) by:

d[ 0

dt
¼ �

 
Mr$

�
[ 0
o

�2cð[ Þ3�2c

2g02

!
_g (86)

where [ 0
o is presumably a reference length scale and g0 is a constant.

The flow stress is related to the substructure by:

s ¼
bk
b[ 0 (87)

Daehn et al. note that if network strengthening is relevant, the above
equation should reduce to the Taylor equation.
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Coarsening is assumed to be independent of concurrent plastic flow and
diffusion controlled:

dð[ 0Þmc ¼ KDdt (88)

where mc and K are constants and D is the diffusivity. Constants are based
on microstructural coarsening observations at steady-state, refinement and
coarsening are equal, and the authors suggest that:

_g ¼ BD
� s
G

�n
(89)

results in n¼ 4–6.
This approach to understanding five-power behavior seems attractive

and can potentially allow descriptions of primary and transient creep.

3.1.6 The Effect of Stacking-Fault Energy
The basic effect of stacking-fault energy on the creep rate may be explained
in terms of the effect of g on the climb rate of dislocations. Of course, the
climb of edge dislocations appears to be by climb of individual jogs [87].
In the case of extended dislocations, it has often been suggested that
partial dislocations must constrict before climb is possible. Basically, for an
extended edge dislocation in fcc, the (extra half) {220} planes perpendicular
to the Burgers vector have an ABAB stacking sequence. The climb of a
partial would lead to an energetically very unfavorable AA stacking
sequence. Argon and Moffatt [969] suggested a climb mechanism for
extended dislocations, and suggested the climb velocity of extended dis-
locations is:

vc ¼ AsUDsd

bkT

� c

Gb

�2
(90)

where A¼ 2(24p(1� v)/(2þ v))2. The main effect of the extension (of the
jog) is an attenuation of the frequency vector. The exponent, 2, is reason-
ably close to the value observed by Mohammed and Langdon. Equation
(90) is substituted into the earlier equations that relate creep rate to climb
velocity. They proposed an atomic model where partial vacancies must coa-
lesce and the time required for the coalescence is dependent on the
stacking-fault energy.

Gottstein and Argon [894] later considered the influence of stacking-
fault energy on the mobile dislocation density and derived a dependence
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of creep rate on (g/Gb)3. Li and Kong [976] considered the time needed to
constrict a jog, and also derived (g/Gb)3 dependence on the creep rate.

3.2 Dislocation Microstructure and the Rate-Controlling
Mechanism

Consistent with the earlier discussion, the details by which the dislocation
climb controldwhich is, of course, diffusion controlleddis specifically
related to the creep rate, are not clear. The existing theories (some
prominent models discussed earlier) basically fall within two broad cate-
gories: (1) those that rely on the heterogeneous dislocation substructure
(i.e., the subgrain boundaries) and (2) those that rely on the more uniform
Frank dislocation network (not associated with dislocation heterogeneities
such as cells or subgrain walls).

3.2.1 Subgrains
The way by which investigators rely upon the former approach varies, but
basically theories that rely on the dislocation heterogeneities believe that
one or more of the following are relevant:
1. The subgrain boundaries are obstacles for gliding dislocations, perhaps

analogous to suggestions for high-angle grain boundaries in an (e.g.,
annealed) polycrystal described by the Hall–Petch relation. In this
case, the misorientation across the subgrain boundaries, which is related
to the spacing of the dislocations that constitute the boundaries, has
been suggested to determine the effectiveness of the boundary as an
obstacle [207]. (One complication with this line of reasoning is that it
now appears well established that, although these features may be obsta-
cles, the mechanical behavior of metals and alloys during five-power-
law creep appears independent of the details of the dislocation spacing,
d, or misorientation across subgrain boundaries ql,ave, as shown in
Figure 30.)

2. It has been suggested that the boundary is a source for internal stresses, as
mentioned earlier. Argon et al. [137], Gibeling and Nix [117], Morris
and Martin [42,43], and Derby and Ashby [177] suggested that subgrain
boundaries give rise to high local internal stresses that are relevant to the
rate-controlling mechanism. Morris and Martin claim to have measured
high local stresses that were 10–20 times larger than the applied stress
near Al-5at%Zn subgrains walls formed within the five-power-law
regime. Their stress calculations were based on dislocation loop radii
measurements. Many have suggested that subgrain boundaries are
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important as they may be “hard” regions, such as, according to
Mughrabi [138], discussed earlier, extended to the case of creep by
Blum and coworkers in a series of articles (e.g., Ref. [136]). Basically,
here the subgrain wall is considered three dimensional with a high yield
stress compared to the subgrain or cell interior. Mughrabi originally sug-
gested that there is elastic compatibility between the subgrain wall and
the matrix. This gives rise to a high internal stress. These investigators
appear to suggest that these elevated stresses are the relevant stress for
the rate-controlling process (often involving dislocation climb) for
creep, usually presumed to be located in the vicinity of subgrain walls.

3. Others have suggested that the ejection of dislocations from the bound-
aries is the critical step [42,43,202]. The parameter that is important here
is basically the spacing between the dislocations that comprise the
boundary, which is generally related to the misorientation angle across
the boundary. Some additionally suggest that the relevant stress is not
the applied stress, but the stress at the boundary, which may be high,
as just discussed above.

4. Similar to (1), it has been suggested that boundaries are important in that
they are obstacles for gliding dislocations (perhaps from a source within
the subgrain) and that, with accumulation at the boundary (e.g., a pile-
up at the boundary), a backstress is created that “shuts off” the source,
which is only reactivated once the number of dislocations within a
given pile-up is diminished. It has been suggested that this can be
accomplished by climb and annihilation of dislocations at the same sub-
grain boundary [26,192–195]. This is similar to the model discussed in
Section 3.1.3. Some suggest that the local stress may be elevated as dis-
cussed in (2) above.

3.2.2 Dislocations
Others have suggested that the rate-controlling process for creep plasticity is
associated with the Frank dislocation network within the subgrains, as was
discussed earlier. That is, the strength associated with creep is related to the
details (often the density) of dislocations in the subgrain interior [54,84–
86,98,101,102,104–106,108–110,129,146,152,153,155,196–200,208].
One commonly proposed mechanism by which the dislocation network is
important is that dislocation sources are the individual links of the network.
As these bow, they can become unstable, leading to Frank-Read sources,
and plasticity ensues. The density of links that can be activated sources
depends on the link length distribution and, thus, related to the density of
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dislocation line length within the subgrains. The generated dislocation
loops are absorbed by the network, leading to refinement or decreasing [.
The network also naturally coarsens at elevated temperature and plasticity is
activated as links reach the critically long segment length, [c. Hence, climb
(self-diffusion) control is justified. Some of the proponents of the impor-
tance of the interior dislocation density have based their judgments on
experimental evidence that shows that creep strength (resistance) is asso-
ciated with higher dislocation density and appears independent of the
subgrain size [110,129,141,153].

3.2.3 Theoretical Strength of Obstacles
In view of the different microstructural features (e.g., l; d; qlave ; r; [c) that
have been suggested to be associated with the strength or rate-controlling
process for five-power-law creep, it is probably worthwhile to assess
strength associated with different obstacles. These are calculable from simple
(perhaps simplistic) equations. The various models for the rate-controlling,
or strength-determining process, are listed below. Numerical calculations
are based on pure Al creep deforming as described in Figure 31.
1. The network stress sN. Assuming a Frank network, the average link

length, [ (assumed here to be uniform y[c):

sNy
Gb
[

(91)

Using typical aluminumvalues forfive-power-law creep (e.g., ly 1=
ffiffiffiffiffi
rss

p
)

sNy 5 MPa (fairly close to sssy 7 MPa for Al at the relevant rss).
2. If the critical step is regarded as ejection of dislocations from the sub-

grain boundary:

sBy
Gb
d

(92)

sBy 80 MPa, much higher (by an order of magnitude or so) than the
applied stress.
3. If subgrain boundaries are assumed to be simple tilt boundaries with a

single Burgers vector, an attractive or repulsive force will be exerted
on a slip dislocation approaching the boundary. The maximum stress is:

sbdy
0:44Gb
2ð1� nÞd (93)
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from Ref. [88] based on Ref. [209]. This predicts a stress of about
sbd¼ 50 MPa, again much larger than the observed applied stress.
4. For dragging jogs resulting from passing through a subgrain boundary,

assuming a spacingy jy d:

sjy
Ej

b2j
(94)

from Ref. [88]. For Al, Ej, the formation energy for a jog, y1 eV [88] and
sjy 45 MPa, a factor 6–7 higher than the applied stress.
5. The stress associated with the increase in dislocation line length (jog or

kinks) to pass a dislocation through a subgrain wall (assuming a wall
dislocation spacing, d ) from above is expected to be [88]:

sLy0:2
Gb3

b2d
y0:2

Gb
d
y16MPa (95)

about a factor of 2 larger than the applied stress.
Thus, it appears that stresses associated with ejecting dislocations

from, or passing dislocations through, subgrain walls are typically 16–
45 MPa for Al within the five-power-law regime. This is roughly two to
seven times larger than the applied stress. Liu et el. [360] used dislocation
dynamics simulations to show that subgrain boundaries are effective ob-
stacles. Based on the simplified assumptions, this disparity may not be
considered excessive and does not eliminate subgrain walls as important,
despite the favorable agreement between the network-based (using the
average link length, [ ) strength and the applied stress (internal stresses
not considered). These calculations indicate why some subgrain-based
strengthening models utilize elevated internal stresses. It must be
mentioned that care must be exercised in utilizing the above, athermal
equations for time-dependent plasticity. These equations do not consider
other hardening variables (solute, etc.) that may account for a substantial
fraction of the applied stress, even in relatively pure metals. Thus, these
very simple theoretical calculations do not provide obvious insight into
the microstructural feature associated with the rate-controlling process,
although a slight preference for network-based models might be
argued as the applied stress best matches network predictions for dislo-
cation activation. The position is particularly reasonable if there are
generally sources within the subgrains, which appears to be the case based
on Eqn (91).
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3.3 In situ and Microstructure-Manipulation Experiments
3.3.1 In situ Experiments
In situ straining experiments, particularly those of Calliard and Martin [95],
are often referenced by the proponents of subgrain (or heterogeneous
dislocation arrangements) strengthening. Here thin foils (probably less than
1 mm thick) were strained at ambient temperature (about 0.32 Tm). It was
concluded that the interior dislocations were not a significant obstacle for
gliding dislocations; rather, the subgrain boundaries were effective obstacles.
This is an important experiment, but is limited in several ways: first, it is low
temperature (i.e., y0.32 Tm) and may not be relevant for the five-power-
law regime; also, in thin foils such as these, as McLean mentioned [84] long
ago, a Frank network is disrupted as the foil thickness approaches [. Finally,
subgrains can be obstacles, of course, but the important event may be
dislocation emission from network sources, with annihilation at the
subgrain wall. Henderson-Brown and Hale [210] performed in situ high-
voltage transmission electron microscope (HVEM) creep experiments on
Al-1Mg (class M) at 300 �C, in thicker foils. Dislocations were obstructed
by subgrain walls, although the experiments were not described in
substantial detail. As mentioned earlier, Mills [157] performed in situ
deformation on an Al-Mg alloy within the three-power or viscous-drag
regime, and subgrain boundaries were not concluded as obstacles.

3.3.2 Prestraining Experiments
Work by Kassner et al. [98,110,111], discussed earlier, utilized ambient
temperature prestraining of austenitic stainless steel to (1) show that the
elevated temperature strength was independent of the subgrain size and
(2) that the influence of the dislocation density on strength was reasonably
predicted by the Taylor equation. Ajaja and Ardell [152,153] also per-
formed prestraining experiments on austenitic stainless steels and showed
that the creep rate was influenced only by the dislocation density. Their
prestrains led to elevated r, without subgrains, and quasi steady-state
creep rates. Presumably, this prestrain led to decreased average and
critical link lengths in a Frank network. (Although, eventually, a new
“genuine” steady state may be achieved [211] at the elevated temperature,
this may not occur over the convenient strain/time ranges. Hence, the
conclusion of a steady state being independent of the prestrain may be, in
some cases, ambiguous.)

Others, including Parker and Wilshire [212], performed prestraining
experiments on Cu showing that ambient temperature prestrain (cold
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work) reduces the elevated temperature creep rate at 410 �C. This was
attributed by the investigators as being due to the refinement Frank
network. Well-defined subgrains did not form; rather, cell walls were
observed. A quantitative microstructural effect of the cold work was not
clear.

3.4 Additional Comments on Network Strengthening
Previous work on stainless steel in Figure 28 showed that the density of
dislocations within the subgrain interior or the network dislocations in-
fluence the flow stress at a given strain rate and temperature. The hardening
in stainless stress is shown to be consistent with the Taylor relation if a linear
superposition of “lattice” hardening (so, or the stress necessary to cause
dislocation motion in the absence of a dislocation substructure) is present
and the dislocation hardening (aMGbr1/2) is assumed (regardless of the
source of dislocation hardening, e.g., bowing stress, passing stress, etc.). The
Taylor equation also applies to pure aluminum (with a steady-state struc-
ture), having both a much higher stacking fault energy than stainless steel
and an absence of substantial solute additions.

If both the phenomenological description of the influence of the
strength of dislocations in high-purity metals such as aluminum have
the form of the Taylor equation and also have the expected values for the
constants, then it would appear that the elevated temperature flow stress is
actually provided by the “forest dislocations” (Frank network).

Figure 23 illustrates the well-established trend between the steady-state
dislocation density and the steady-state stress. From this and from Figure 14,
which plots modulus-compensated steady-state stress versus diffusion-
coefficient compensated steady-state strain rate, the steady-state flow
stress can be predicted at a reference strain rate (e.g., 5� 10�4 s�1), at a
variety of temperatures, with an associated steady-state dislocation density.
If Eqn (29) is valid for Al as for 304 stainless steel, then the values for a
could be calculated for each temperature, by assuming that the annealed
dislocation density and the so values account for the annealed yield strength
reported in Figure 40.

Figure 41 indicates, first, that typical values of a at 0.5 Tm are within the
range of those expected for Taylor strengthening. Stated a different way,
the phenomenological relationship for strengthening of (steady-state)
structures suggests that the strength can be reasonably predicted based on
a Taylor equation. We expect the strength we observe, based only on
the (network) dislocation density, is completely independent of the
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Figure 40 The yield strength of annealed 99.999% pure Al as a function of temper-
ature. (From Ref. [149].) _ε ¼ 5� 10�4s�1.
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Figure 41 The values of the constant alpha in the Taylor Eqn (29) as a function of
temperature. The alpha values depend somewhat on the assumed annealed
dislocation density. Dark dots, r¼ 1011 m�2; hollow, r¼ 2.5� 1011 m�2.
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heterogeneous dislocation substructure. This point is consistent with the
observation that the elevated temperature yield strength of annealed
polycrystalline aluminum is essentially independent of the grain size and
misorientation of boundaries. Furthermore, the values of a are completely
consistent with the values of a in other metals (at both high and low
temperatures) in which dislocation hardening is established (see Table 2).
The fact that the higher temperature a values of Al and 304 stainless steel
are consistent with the low temperature a values of Table 1 is also
consistent with the athermal behavior of Figure 41.

One point to note in Figure 41 is the variation in a with temperature
depends on the value selected for the annealed dislocation density. For a
value of 2.5� 1011 m�2 (or higher), the values of the a constant are nearly
temperature independent, suggesting that the dislocation hardening is
athermal. The bowing stress is expected to be athermal. The annealed
dislocation density for which athermal behavior is observed is very close to
the observed value in Figure 30(a) and according to Blum [214]. The
suggestion of athermal dislocation hardening is consistent with the model
by Nes [215], where as in the present case, the temperature dependence of
the flow stress is provided by the temperature-dependent so term. It
perhaps should be mentioned that if it is assumed both that so¼ 0 and that
the dislocation hardening is athermal, then a is about equal to 0.53, or
about a factor of 2 larger than anticipated for dislocation hardening. Hence,
aside from not including a so term that allows temperature dependence, the
alpha terms appears somewhat large to allow athermal behavior.

Table 2 Taylor equation a values for various metals
Metal T/Tm a (Eqn (6)) Notes References

304 0.57 0.28 sos 0, polycrystal [107]
Cu 0.22 0.31 so¼ 0, polycrystal [144]
Ti 0.15 0.37 soy 0.25e0.75 flow

stress, polycrystal
[151]

Ag 0.24 0.19e0.34 Stage I and II single
crystal, M¼ 1.78e1,
sos 0

[213]

Ag 0.24 0.31 so¼ 0, polycrystal [150]
Al 0.51e0.83 0.20 sos 0, polycrystal [149]
Fe d 0.23 sos 0, polycrystal [144]

Note: a values of Al and 304 stainless stress are based on dislocation densities of intersections per
unit area. The units of the others are not known, and these a values would be adjusted lower by
a factor of 1.4 if line length per unit volume was utilized.
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The trends in dislocation density during primary creep have been less
completely investigated for the case of constant strain-rate tests. Earlier
work by Kassner et al. [98,110,111] on 304 stainless steel found that at
0.57 Tm, the increase in flow stress by a factor of 3, associated with increases
in dislocation density with strain, is consistent with the Taylor equation.
That is, the r versus strain and stress versus strain give a s versus r that falls
on the line of Figure 28. Similarly, the aluminum primary transient in
Figure 31(a) can also be shown as consistent with the Taylor equation. The
dislocation density monotonically increases to the steady-state value under
constant strain-rate conditions.

Challenges to the proposition of Taylor hardening for five-power-law
creep in metals and Class M alloys include the microstructural observa-
tions during primary creep under constant-stress conditions. For example,
it has nearly always been observed during primary creep of pure metals
and Class M alloys that the density of dislocations not associated with
subgrain boundaries increases from the annealed value to a peak value, but
then gradually decreases to a steady-state value that is between the
annealed and the peak density [38,92,163–165] (e.g., Figure 29). Typi-
cally, the peak value, rp, measured at a strain level that is roughly one-
fourth of the strain required to attain steady state (εss/4), is a factor of
1.5–4 higher than the steady-state rss value. It was believed by many to be
difficult to rationalize hardening by network dislocations if the overall
density is decreasing while the strain rate is decreasing. Therefore, an
important question is whether the Taylor hardening, observed under
constant strain-rate conditions, is consistent with this observation
[169]. This behavior could be interpreted as evidence that most of these
dislocations have a dynamic role rather than a (Taylor) hardening role,
since the initial strain rates in a constant stress test may require by the
equation:

_ε ¼ ðb=MÞrmv (96)

a high mobile (nonhardening) dislocation density, rm, that gives rise
to high initial values of total density of dislocations not associated
with subgrain boundaries, r (v is the dislocation velocity). As steady
state is achieved and the strain rate decreases, so does rm and in turn, r.
(We can suggest that rhþ rm¼ r, where r is the total density of dislo-
cations not associated with subgrain boundaries and rh are those disloca-
tions that at any instant are part of the Frank network and are not
mobile.)
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More specifically, Taylor hardening during primary (especially during
constant stress) creep may be valid based on the following argument. From
Eqn (96) _ε ¼ rmvb=M , we assume [216]:

v ¼ k7s1 (97)

and, therefore, for constant strain-rate tests:

_εss ¼ ½k7b=M �rms (98)

In a constant strain-rate test at yielding ð _ε ¼ _εssÞ, εp (plastic strain) is
small, there is only minor hardening, and the mobile dislocation density is a
fraction f om of the total density:

f omrðεp¼0Þ ¼ rmðεp¼0Þ

Therefore, for aluminum (see Figure 31(a)):

r
mðεp¼0Þ ¼ f om0:64rss

�
based on r at εp ¼ 0:03

�
(99)

where f om is basically the fraction of dislocations in the annealed metal that
are mobile at yielding (half the steady-state flow stress) in a constant
strain-rate test. Also from Figure 4, sy/sss¼ 0.53. Therefore, at small
strains:

_εss ¼ f om0:34½k7b=M �rsssss (100)

(constant strain rate at εp¼ 0.03).
At steady state, s¼ sss and rm ¼ f smrss, where f sm is the fraction of the

total dislocation density that is mobile and:

_εss ¼ f sm½k7b=M �rsssss (101)

(constant strain rate at εp> 0.20.)
By combining Eqns (100) and (101) we find that fm at steady state is

about one-third the fraction of mobile dislocations in the annealed poly-
crystals ð0:34f om ¼ f smÞ. This suggests that during steady state only one-third
or less of the total dislocations (not associated with subgrain boundaries) are
mobile and the remaining two-thirds or more participate in hardening. The
finding that a large fraction are immobile is consistent with the observation
that increased dislocation density is associated with increased strength for
steady-state and constant strain-rate testing deformation. Of course, there is
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the assumption that the stress acting on the dislocations as a function of
strain (microstructure) is proportional to the applied flow stress. Further-
more, we have presumed a 55% increase in r over primary creep with some
uncertainty in the density measurements.

For the constant stress case we again assume:

_ε
εpy0 ¼ f pm½k7b=M �rpsss

�
constant stress

�
(102)

where f pm is the fraction of dislocations that are mobile at the peak (total)
dislocation density of rp, the peak dislocation density, which will be
assumed equal to the maximum dislocation density observed experimen-
tally in a r–ε plot of a constant stress test. Since at steady-state:

_εssy0:34f om½k7b=M �rsssss (103)

by combining with Eqn (102):

_ε
εpy0



_εss ¼

�
f pm
f om

�
3rp


rss ðconstant stressÞ (104)

ð f pm=f omÞ is not known but if we assume that at macroscopic yielding, in a
constant strain-rate test, for annealed metal, f omy1, then we might also
expect at small strain levels and relatively high dislocation densities in a
constant-stress test, f pmy1. This would suggest that fractional decreases
in _ε in a constant stress test are not equal to those of r. This apparent
contradiction to purely dynamic theories, i.e., based strictly on Eqn
(96), is reflected in experiments [92,162–165] where the kind of trend
predicted in this last equation is, in fact, observed. Equation (104) and
the observations of _ε against ε in a constant stress test at the identical tem-
perature can be used to predict roughly the expected constant-stress r–ε
curve in aluminum at 371 �C and about 7.8 MPa, the same conditions
as the constant strain-rate test. If we use small plastic strain levels,
εy εss/4 (where r values have been measured in constant stain-rate tests),
we can determine the ratio (e.g., _ε

ε¼ðεss=4Þ= _εε¼εss
) in constant stress tests.

This value seems to be roughly 6 at stresses and temperatures comparable
to the present study [92,165,212]. This ratio was applied to Eqn (102)
assuming ð f pm=f cmÞy1; the estimated r–ε tends are shown in Figure 42.
This estimate, which predicts a peak dislocation density of 2.0 rss, is
consistent with the general observations discussed earlier for pure metals
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and Class M alloys that rp is between 1.5 and 4 rss(1.5–2.0 for aluminum
[92]). Thus, the peak behavior observed in the dislocation density versus
strain-rate trends, which at first glance appears to impugn dislocation
network hardening, is actually consistent, in terms of the observed r

values, to Taylor hardening.
One imprecision in the argument above is that it was assumed (based on

some experimental work in the literature) that the stress exponent for the
elevated temperature (low stress) dislocation velocity, v, is 1. This exponent
may not be well known and may be greater than 1. The ratio rp/rss increases
from a value of 3 in Eqn (19) to higher values of 3 (2n�1), where n is defined
by v¼ sn. This means that the observed strain rate peaks would predict
smaller dislocation peaks or even an absence of peaks for the observed initial
strain rates in constant-stress tests. In a somewhat circular argument, the
consistency between the predictions of Eqn (104) and the experimental
observations may suggest that the exponents of 1–2 may be reasonable. Also,
the values of the peak dislocation densities and strain rates are not unam-
biguous, and this creates additional uncertainty in the argument.

Figure 42 The predicted dislocation density (- - -) in the subgrain interior against
strain for aluminum deforming under constant stress conditions is compared with that
for constant strain-rate conditions (dd). The predicted dislocation density is based on
Eqn (74), which assumes Taylor hardening.
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4. OTHER EFFECTS ON FIVE-POWER-LAW CREEP

4.1 Large Strain Creep Deformation and Texture Effects
Traditionally, creep has been associated with tensile tests, and accord-
ingly, with relatively small strains. Of course, elevated temperature creep
plasticity can be observed in torsion or compression, and the phenome-
nological expressions presented earlier are still valid, only with modifi-
cation due to different texture evolution (or changes in the average
Taylor factors) with the different deformation modes. These differences in
texture evolution have been discussed in detail by several investigators
[38,217] for lower temperature deformation. Some lower temperature
deformation texture trends may be relevant to five-power-law creep
trends. A fairly thorough review of elevated temperature torsion tests and
texture measurements on aluminum is presented by Kassner et al. and
McQueen et al. [218,219]. Some of the mechanical results are illustrated
in Figure 43. Basically, the figure shows that with torsion deformation,
the material hardens to a genuine steady state that is a balance between
dislocation hardening and dynamic recovery. However, with the rela-
tively large strain deformation that is permitted by torsion, the flow stress
decreases, in this case, about 17% to a new stress that is invariant even
with very large strains to 100 or so. (Perhaps there is an increase in torque
of 4% in some cases with ε> 10 of uncertain origin.) These tests were
performed on particularly precise testing equipment. The essentially
invariant stress over the extraordinarily large strains suggests a genuine
mechanical steady state. The cause of this softening has been carefully
studied, and dynamic recrystallization and grain-boundary sliding (GBS)
were considered. Creep measurements as a function of strain through the
“softened” regime [220], and microstructural analysis using both polarized
light optical (POM) and transmission electron microscopy (TEM) [218]
reveal that five-power-law creep is occurring throughout the softened
regime and that the modest decrease in flow stress is due to a decrease in
the average Taylor factor, M .

This has been confirmed by X-ray texture analysis [37] and is also
consistent in magnitude with theoretical texture modeling of deformation
in torsion [38,217]. If compression specimens are extracted from the torsion
specimen deformed into the softened regime, the flow stress of the
compression specimen is actually higher than the torsion flow stress, again
confirming the texture conclusion [218].
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Figure 43 The stress versus strain behavior of Al deformed in torsion to very large
strains at two strain rates, (a) and (b). Based on Ref. [39].
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The microstructural evolution of specimens deformed to large strains,
not achievable in tension or compression, is quite interesting and has also
been extensively researched in a few metals and alloys. The initial high-
angle grain boundaries of the aluminum polycrystalline aggregate spiral
about the torsion axis with deformation within the five-power-
law regime. At least initially, the total number of grains in the poly-
crystalline aggregate remains constant and the grains quickly fill with
subgrains with low misorientation boundaries. The grains thin until they
reach about twice the average subgrain diameter with increasing strain in
torsion. Depending on the initial grain size and the steady-state subgrain
size, this may require substantial strain, typically about 10. The high-angle
grain boundaries of the polycrystalline aggregate are serrated (triple
points) as a result of subgrain boundary formation. As the serrated
spiraling grains of the polycrystalline aggregate decrease in width to about
twice the subgrain size, there appears to be a pinching off of impinging
serrated grains. At this point, the area of high-angle boundaries, which
was gradually increasing with torsion, reaches a constant value with
increasing strain. Despite the dramatic increase in high-angle boundaries,
no change in flow properties has been observed so far (e.g., to diffusional
creep or enhanced strain rate due to the increased contribution of grain
boundary sliding). Figure 44 is a series of POM micrographs illustrating
this progression. Interestingly, the subgrain size is about constant from the
peak stress at about 0.2 strain to the very large torsion strains. This, again,
suggests that subgrain boundaries are mobile and annihilate to maintain
the equiaxed structure and modest misorientation. Examination of those
boundaries that form from dislocation reaction (excluding the high-angle
boundaries of the starting polycrystal) reveals that the average misorien-
tation at the onset of steady state was, as stated earlier, only 0.5�.
However, by a strain of between 1 and 1.5 it had tripled to 1.5�dsee also
Figure 31(b)d but appears to be fixed beyond this strain. This is, again,
consistent with earlier work referenced that indicates that qlave may in-
crease (d decreases) during at least early steady state. Furthermore, at the
onset of steady state, nearly all of the subgrain boundaries formed are low-
ql dislocation boundaries. However, with very large strain deformation
there is an increase in high-angle boundary area (geometric dynamic
recrystallization or GDX). Nearly one-third of the subgrain boundaries
are high-angle boundaries, but these appear to have ancestry back to the
initial, or starting, polycrystal. Notwithstanding, the flow stress is un-
changed. That is, at a strain of 0.2, at about 0.7 Tm and a modest strain

Five-Power-Law Creep 93



rate, the average subgrain size is about 13 mm and the average misori-
entation angle of subgrain boundaries is about 0.5�. If we increase the
plastic strain by nearly two orders of magnitude to about 16, the subgrain
size and interior or network dislocation density is unchanged, but we
have “replaced” nearly one-third of the subgrain facets with high-angle
boundaries (through GDX) and tripled the misorientation of the
remaining two-thirds. However, the flow stress is unchanged. This, again,
suggests that the details of the subgrain boundaries are not an important
consideration in the rate-controlling process for five-power-law creep.

Figure 44 Polarized light optical micrographs of aluminum deformed at 371 �C at
5.04� 10�4 s�1 (Figure 31(b)) to equivalent uniaxial strains of (a) 0, (b) 0.2, (c) 0.60,
(d) 1.26, (e) 4.05, and (f) 16.33. Geometric dynamic recrystallization (GDX) is
observed. From Ref. [18].
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Other elevated temperature torsion tests on other high-stacking fault
energy alloys in the five-power-law regime have shown a similar softening
as theoretically predicted [221]. The cause of softening was not ascribed to
texture softening by those investigators but (probably incorrectly) rather to
continuous reactions (continuous dynamic recrystallization) [222].

Recent work by Hughes et al. [141] showed that polycrystals deformed
at elevated temperature may form geometrically necessary boundaries
(GNBs) from dislocation reactions to accommodate differences in slip
within a single grain. Whether these form in association with GDX is
unclear, although it appears that the grain boundary area with large strain
deformation is at least approximately consistent with grain thinning in the
case of Al just discussed. HABs, however, have been observed to form in
single crystals at elevated temperature from dislocation reaction [142], and
the possibility that these form from dislocation reaction in polycrystals
should also be considered.

It should be also mentioned that it has been suggested that in at least
Al and some Al-alloys [130], slip on {110} planes (or non-octahedral slip)
can occur, leading to nontraditional textures such as the cube {001} type.
Finally, it should be mentioned that the decrease in the Taylor factor is
expected to decrease the flow stress at low temperatures, but it is only a
“climb stress” decrease that would be expected to decrease the five-
power-law stress. An analysis should be done to assess whether the
decrease in M is accompanied with a corresponding decrease in the
dislocation climb stress.

4.2 Effect of Grain Size
First, of course, it has been suggested that with fine-grain size refinement,
the mechanism of plastic flow may change from five-power behavior to
Coble creep [52], which, as discussed earlier, is a diffusion creep mechanism
relying on short-circuit diffusion along grain boundaries. Grain boundary
sliding comprising a more significant role is also possible. However, the
influence of high-angle grain boundaries on five-power-law creep is less
clear. Some work has been performed on the Hall–Petch relationship in
copper [224] and aluminum [147] at elevated temperatures. Some results
from these studies are illustrated in Figure 45. Basically, both confirm that
decreasing grain size results in increased elevated temperature strength in
predeformed copper and annealed aluminum (a constant dislocation density
for each grain size was not confirmed in Cu). The temperature and applied
strain rates correspond to five-power-law creep in these pure metals.
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Interestingly, though, the effect of diminishing grain size may decrease
with increasing temperature. Figure 46 shows that the Hall–Petch con-
stant, ky, for high-purity aluminum significantly decreases with increasing
temperature. The explanation for this in unclear. First, if the effect
of decreasing grain size at elevated temperature is purely the effect of a
Hall–Petch strengthening (e.g., not GBS), the explanation for decreasing
Hall–Petch constant would require knowledge of the precise strength-
ening mechanism. It is possible, for instance, that increased strengthening

Figure 45 The effect on grain size on the elevated temperature strength of (a) pre-
strained Cu and (b) annealed Al. From Refs [147,224].
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with smaller grain sizes is associated with the increased dislocation density
in the grain interiors due to the activation of dislocation sources [225].
Therefore, thermal recovery may explain a decreased density and less
pronounced strengthening. This is, of course, speculative and one must be
careful that other effects such as grain boundary sliding are not becoming
important. For example, it has been suggested that in aluminum, grain
boundary sliding becomes pronounced above about 0.5 Tm [226,227].
Thus, it is possible that the decreased effectiveness of high-angle
boundaries in providing elevated temperature strength may be the
result of GBS, which would tend to decrease the flow stress. However,
the initial Al grain size decreased from about 250 mm to only about 30 mm
through GDX in Figure 44, but the flow properties at 0.7 Tm appear
unchanged since the stress exponent, n, and activation energy, Q, appear
to be unchanged [218,220].

The small effect of grain size changes on the elevated-temperature flow
properties is consistent with some earlier work reported by Barrett et al. on
Cu and Garafalo et al. on 304 stainless steel, where the steady-state creep
rate appeared at least approximately independent of the starting grain size in
the former case and not substantially dependent in the latter case [228,229].
Thus, it appears that decreasing grain size has a relatively small effect on
increasing the flow stress at high temperatures over the range of typical
grain sizes in single-phase metals and alloys.

Figure 47 plots the effect of grain size on the yield stress of annealed
polycrystalline aluminum with the effect of (steady-state structure)

Figure 46 The variation of the Hall–Petch constant in Al with temperature. Based on
Ref. [147].
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Figure 47 (a) The variation of the yield strength of annealed aluminum with various
grain sizes, g, and creep-deformed aluminum with various subgrain sizes, l, at 350 �C.
Both l and g data are described by the Hall–Petch equation. The annealed aluminum
data is from Figure 45(b) and the subgrain containing Al strength data at a fixed T, _ε is
based on interpolation of data from [4,230] and also summarized in [147,148,231].
(b) As in (a) but at 400 �C and less pure Al, based on [147,148,232]. The subgrain
containing metal here and in (a), above, is stronger than expected based on Hall–Petch
strengthening by the subgrains alone.
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subgrain size on the elevated flow stress all at the same temperature and
strain rate, as well. Of course, while polycrystalline samples had an
annealed dislocation density, the steady-state substructures with various
subgrain sizes had various elevated dislocation densities that increased with
decreasing subgrain size. Nonetheless, the figure reveals that for identical,
small sizes, the subgrain substructure (typical qlavey0:5� 1�) had higher
strength than polycrystalline annealed aluminum (typical q¼ 30�–35�).
There might be an initial inclination to suggest that subgrain boundaries,
despite the very low misorientation, are more effective in hardening than
high-angle grains of identical size. However, as discussed earlier, the extra
strength may be provided by the network dislocations that are of
significantly higher density in steady-state structures as compared to the
annealed metal. This increase in strength appeared at least approximately
predictable based solely on Eqn (29) for dislocation strengthening
assuming appropriate values for the constants, such as a [107,148,231].
Wilshire [82] also recently argued that subgrains are unlikely sources for
strength in metals and alloys due to the low strength provided by high-
angle boundaries at elevated temperature. More recently, there has
been work on the creep behavior of materials subjected to severe plastic
deformation (SPD), generally through equal channel angular pressing
[604, 1100]. SPD can reduce the grain size of materials [721]. However,
there are complications in terms of isolating the hardening effects of grain
boundaries as HABs may be “non-equilibrium” with long-range internal
stresses [782] and elevated dislocation densities.

4.3 Impurities and Small Quantities of Strengthening
Solutes

It appears that the same solute additions that strengthen at ambient tem-
perature often provide strength at five-power-law temperatures. Figure 48
shows the relationship between stress and strain rate of high-purity
(99.99%) and lower-purity (99.5%) aluminum. The principal impurities
were not specified, but probably included a significant fraction of Fe and Si,
and some second phases may be present. The strength increases with
decreasing purity for a fixed strain rate. Interestingly, Figure 49 shows that
the subgrain size is approximately predictable mostly on the basis of the
stress, independent of composition for Al.

Straub and Blum [90] also showed that the subgrain size depends only
on the modulus-compensated stress in Al and several dilute Al alloys,
although the stress/strain rate may change substantially with the purity at a
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specific strain rate/stress and temperature. If the lSS versus sSS/G in Figures
29 and 30 were placed in the same graph, it would be evident that, for
identical subgrain sizes, the aluminum, curiously, would have higher
strength. (The opposite is true for fixed rSS.) Furthermore, it appears that l
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Figure 49 A plot of the variation of the steady-state subgrain size versus modulus-
compensated steady-state flow stress for Al of different purities. The relationship
between sss and lss for less pure Al is at least approximately described by the high-
purity relationship.
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Figure 48 The steady-state strain rate versus steady-state stress for Al of different
purities. Data from Figure 23 and Perdrix et al. [233].
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is not predictable only on the basis of sSS/G for dispersion-strengthened Al
[90]. Steels do not appear to have lSS values predictable on the basis of aFe
lSS versus sSS/G trends, although this failure could be a result of carbides
present in some of the alloys. Thus, the aluminum trends may not be as
evident in other metals. It should, however, be mentioned that for a wide
range of single-phase metals, there is a rough relationship between the
subgrain size and stress [77]:

l ¼ 23Gb=s (105)

Of course, sometimes ambient-temperature strengthening interstitials
(e.g.,C ing-Fe) canweaken at elevated temperatures. In the case ofC ing-Fe,
Dsd increases with C concentration and _εSS correspondingly increases [16].

4.4 Sigmoidal Creep
Sigmoidal creep behavior occurs when in, e.g., a single-phase alloy, the
creep rate decreases with strain (time) but with further strain curiously
increases. This increase is followed by, again, a decrease in creep rate. An
example of this behavior is illustrated in Figure 50 taken from Evans and

Figure 50 Transient creep curves obtained at 324 �C for 70–30 a-brass, where ts is the
time to the start of steady-state creep. From Ref. [235].
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Wilshire for 70–30 a-brass [234,235]. This behavior was also observed in
the Cu–Al alloy described elsewhere [175] and also in Zr of limited purity
[236]. The sigmoidal behavior in all of these alloys appears to reside within
certain (temperature)/(stress/strain-rate) regimes. The explanations for
sigmoidal creep are varied. Evans and Wilshire suggest that the inflection is
due to a destruction in short-range order in a-brass leading to higher creep
rates. Hasegawa et al. [175], on the other hand, suggest that changes in the
dislocation substructure in Cu–Al may be responsible. More specifically, the
increase in strain rate prior to the inflection is associated with an increase in
the total dislocation density, with the formation of cells or subgrains. The
subsequent decrease is associated with cellular tangles (not subgrains) of
dislocations. Evans and Wilshire suggest identical dislocation substructures
with and without sigmoidal behavior, again, without subgrain formation.
Warda et al. [236] attributed the behavior in Zr to dynamic strain aging. In
this case oxygen impurities give rise to solute atmospheres. Eventually, the
slip bands become depleted and normal five-power behavior resumes.
Dramatic increases in the activation energy are suggested to be associated
with the sigmoidal behavior. Thus, the explanation for sigmoidal behavior
is unclear. One common theme may be very planar slip at the high
temperatures.
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CHAPTER 3

Diffusional Creep
M.-T. Perez-Prado, M.E. Kassner

Non-dislocation-based diffusional creep at high temperatures (T z Tm)
and very low stresses in fine-grained materials was qualitatively suggested
50 years ago by Nabarro [237]. This was rigorously (quantitatively) proposed
and described by Herring [51]. Mass transport of vacancies through the
grains from one grain boundary to another was described. Excess vacancies
are created at grain boundaries perpendicular to the tensile axis with
a uniaxial tensile stress. The concentration may be calculated using [23]

c ¼ cv

�
exp

�
sb3

kT

�
� 1

�
(106)

where cv is the equilibrium concentration of vacancies. Usually
(sb3/kT) >> 1, and therefore Eqn (106) can be approximated by

c ¼
�
cv

�
sb3

kT

��
(107)

These excess vacancies diffuse from the grain boundaries lying normal to
the tensile direction towards those parallel to it, as illustrated in Figure 51.

σ

σ

Figure 51 Nabarro-Herring model of diffusional flow. Arrows indicate the flow of
vacancies through the grains from boundaries lying normal to the tensile direction to
parallel boundaries. Thicker arrows indicate the tensile axis.
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Grain boundaries act as perfect sources and sinks for vacancies. Thus, grains
would elongate without dislocation slip or climb. The excess concentration
of vacancies per unit volume is, then, cvs/kT. If the linear dimension of
a grain is g, the concentration gradient is cvs/kTg. The steady-state flux of
excess vacancies can be expressed as Dvcvs/kTg, where g is the grain size.
The resulting strain rate is given by,

_εss ¼ Dsdsb3

kTg2
(108)

In 1963, Coble [52] proposed a mechanism by which creep was instead
controlled by grain boundary diffusion. He suggested that, at lower
temperatures (T < 0.7 Tm), the contribution of grain boundary diffusion is
larger than that of self-diffusion through the grains. Thus, diffusion of
vacancies along grain boundaries controls creep. The strain rate suggested
by Coble is

_εss ¼ a3Dgbsb4

kTg3
(109)

where Dgb is the diffusion coefficient along grain boundaries and a3 is
a constant of the order of unity. The strain rate is proportional to g�2 in
the Herring model, whereas it is proportional to g�3 in the Coble model.
Greenwood [238] more recently formulated expressions that allow an
approximation of the strain rate in materials with nonequiaxed grains under
multiaxial stresses for both lattice and grain-boundary diffusional creep.

Several studies reported the existence of a threshold stress for diffusional
creep below which no measurable creep is observed [239–242]. This
threshold stress has a strong temperature dependence that Mishra et al. [243]
suggest is inversely proportional to the stacking fault energy. They proposed
a model based on grain boundary dislocation climb by jog nucleation and
movement to account for the existence of the threshold stress.

The occurrence of Nabarro-Herring creep has been reported in poly-
crystalline metals [244–247] and in ceramics [248–252]. Coble creep has
also been claimed to occur in Mg [251], Zr and Zircaloy-2 [253], Cu [254],
Cd [255], Ni [255], copper–nickel [256], copper–tin [256], iron [257],
magnesium oxide [258,259], bCo [242], aFe [240], and other ceramics
[260]. The existence of diffusional creep must be inferred from indirect
experimental evidence, which includes agreement with the rate equations
developed by Herring and Coble, examination of marker lines visible at the
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specimen surface that lie approximately parallel to the tensile axis
[261], or by the observation of some microstructural effects such as
precipitate-denuded zones (Figure 52). These zones are predicted to
develop adjacent to the grain boundaries normal to the tensile axis in
dispersion-hardened alloys. Denuded zones were first reported by Squires
et al. [263] in a Mg-0.5 wt% Zr alloy. They suggested that magnesium
atoms would diffuse into the grain boundaries perpendicular to the tensile
axis. The inert zirconium hydride precipitates act as grain boundary
markers. The investigators proposed a possible relation between the
appearance of these zones and diffusional creep. Since then, denuded zones
have been observed on numerous occasions in the same alloy and suggested
as proof of diffusional creep.

The existence of diffusional creep has been questioned [264] during the
past two decades by some investigators [59,61,265–270] and defended by
others [56–58,60,261,271,272]. One major point of disagreement is the
relationship between denuded zones and diffusional creep. Wolfenstine
et al. [59] suggested that previous studies on the Mg-0.5 wt% Zr alloy [273]
are sometimes inconsistent and incomplete since they do not give
information regarding the stress exponent or the grain-size exponent. By

25 μm

Figure 52 Denuded zones formed perpendicular to the tensile direction in a hydrated
Mg-0.5 wt% Zr alloy at 400 �C and 2.1 MPa [262].
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analyzing data from those studies, Wolfenstine et al. [59,265] suggested that
the stress exponents corresponded to a higher-exponent power-law creep
regime. Wolfenstine et al. also suggested that the discrepancy in creep rates
calculated from the width of denuded zones and the average creep rates (the
former being sometimes as much as six times lower than the latter) as ev-
idence of the absence of correlation between denuded zones and diffusional
creep. Finally, the same investigators [59,265,266] claim that denuded zones
can also be formed by other mechanisms including the redissolution of
precipitates due to grain boundary sliding accompanied by grain-boundary
migration and the drag of solute atoms by grain-boundary migration.

Several responses to the critical report of Wolfenstine et al. [59] were
published defending the correlation between denuded zones and diffusional
creep [57,58,271]. Greenwood [57] suggests that the discrepancies between
theory and experiments can readily be interpreted on the basis of the
inability of grain boundaries to act as perfect sinks and sources for vacancies.
Bilde-Sørensen and Smith [58] agree that denuded zones may be formed by
other mechanisms than diffusional creep but they claim that, if the structure
of the grain boundary is taken into consideration, the asymmetrical
occurrence of denuded zones is fully compatible with the theory of
diffusional creep. Similar arguments were presented by Kloc [271].

Recently, McNee et al. [274] claim to have found additional evidence
of the relationship between diffusional creep and denuded zones. They
studied the formation of precipitate-free zones in a fully hydrided
magnesium plate around a hole drilled in the grip section. The stress state
around the hole is not uniaxial, as shown in Figure 53. They have observed
a clear dependence of the orientation of denuded zones on the direction of
the stress in the region around the hole. Precipitate-free zones were mainly

A
B

C
D

Figure 53 Orientation of stresses around a hole.
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observed in boundaries perpendicular to the loading direction at each
location. They claim that this relationship between the orientation of the
denuded zones and the loading direction is consistent with the mechanism
of formation of these zones being diffusional creep.

Ruano et al. [266–268], Barrett et al. [269], and Wang [270] suggest
that the dependence of the creep rate on stress and grain size is not always in
agreement with that of the diffusional creep theory. A reinterpretation of
several data reported in previous studies led Ruano et al. to propose that the
creep mechanism is that of Harper–Dorn creep in some cases and grain
boundary sliding in others, reporting a better agreement between experi-
ments and theory using these models.

This suggestion has been contradicted by Burton and Reynolds [60],
Owen and Langdon [56], and Fiala and Langdon [272].

McNee et al. [275] recently reported that what they suggest is direct
microstructural evidence of diffusional creep in an oxygen-free high con-
ductivity copper tensile tested at temperatures between 673 and 773 K and
stresses between 1.6 and 8 MPa. The temperature and stress dependencies
were found to be consistent with diffusional creep. Scanning electron
microscope surface examination revealed, first, displacement of scratches at
grain boundaries and, second, widened grain boundary grooves on grain
boundaries transverse to the applied stress in areas associated with scratch
displacements. In principle, both diffusional creep and some alternative
mechanism involving grain boundary sliding could be responsible for the
observed scratch displacements. The use of atomic force microscopy to
profile lines traversing boundaries both parallel and perpendicular to the
tensile axis led to the conclusion that the scratch displacements originated
from the deposition of material at grain boundaries transverse to the tensile
axis and the depletion of material at grain boundaries parallel to the tensile
axis. The investigators claimed that these features can only be attributed to
the operation of a diffusional flow mechanism. However, a strain rate an
order of magnitude higher than that predicted by Coble creep was found.
Thus, the investigators questioned the direct applicability of the diffusional
creep theory.

Nabarro himself, perhaps the principal champion of diffusional creep,
recently suggested that diffusional creep may or must be accompanied by
Harper-Dorn creep [276,277]. This may be a case of Nabarro “hopping
from the frying pan and into the fire,” because Harper-Dorn creep, as will
be discussed subsequently, may be tenuous. Lifshitz [278] in 1963 pointed
out the necessity of grain boundary sliding for maintaining grain coherency
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during diffusional creep in a polycrystalline material. More recent theo-
retical studies have also emphasized the essential role of grain boundary
sliding for continuing steady-state diffusional creep [279–282]. The ob-
servations reported by McNee et al. [275] may, in fact, reflect the coop-
erative operation of both mechanisms. Many studies have been devoted to
assess the separate contributions from diffusional creep and grain boundary
sliding to the total strain [283–292]. Some claim that both diffusional creep
and grain boundary sliding contribute to the overall strain and that they can
be distinctly separated [284–288]; others claim that one of them is an ac-
commodation process [289–292]. Many of these studies are based on several
simplifying assumptions, such as the equal size of all grains and that the total
strain is achieved in a single step. Sahay and Murty [282] claimed that when
the dynamic nature of diffusional creep is taken into account (changes in
grain size, etc. that take place during deformation), separation of the strain
contributions from diffusion and sliding becomes impossible.
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CHAPTER 4

Harper-Dorn Creep
M.E. Kassner
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1. INTRODUCTION

The steady-state, time-dependent plasticity, or creep, at high and
intermediate temperatures of pure metals, type M alloys, and many ceramics
and minerals over a fairly wide range of stress, that usually comprises
conventional creep regimes, follows a classic 5-power-law behavior and
power-law breakdown that is illustrated in Figure 14. At low stress (often at
high temperatures) the steady-state creep rate is often suggested to evince
Newtonian, or 1-power, behavior. The figure has some, but certainly not
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all, of the steady-state creep data of Al but describes part of the general
trends of Al and many other metals and ceramics to start the discussion of
this review.

A new low-stress mechanism for creep at high temperatures and low
stresses in Figure 14 was originally proposed in a 1957 study by Harper and
Dorn [50]. This mechanism has since been termed “Harper-Dorn creep.”
By performing creep tests on aluminum of high purity and large grain sizes,
these investigators found that the steady-state creep rate increased linearly
with the applied stress and the activation energy was that of self-diffusion.
The observed creep process could not be ascribed diffusional creep
discussed in the previous chapter. They reported creep rates as high as a
factor of 1400 greater than the theoretical rates calculated by the Herring
and Coble models. The same observations were reported some years later
by Barrett et al. [269], Mohamed et al. [294,334], and Ardell and Lee [101],
as summarized in Figure 54. The right-hand portion shows a few

Figure 54 A comparison between the diffusion-coefficient compensated strain-rate
versus modulus-compensated stress for pure aluminum based on early data
[50,101,294,324], with theoretical predictions for Nabarro-Herring creep [295] (dashed
lines) for 3.3- and 9 mm grain sizes. Harper-Dorn creep was presumed in the low-stress
exponent regime, a different mechanism than 5-power-law creep at higher stresses.
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5-power-law data points, but mostly 1-power, at the left hand portion of
Figure 14. A primary stage of creep was observed, which would not be
expected according to the Herring diffusional model because the concen-
tration of vacancies immediately upon stressing cannot exceed the steady
state value. Furthermore, grain boundary shearing was reported to occur
during creep and similar steady-state creep rates were observed in
aluminum single crystals and in polycrystalline specimens with a 3.3 mm
grain size. Diffusional creep is not expected, of course, in single crystals.
This evidence led these investigators to conclude that low-stress creep at
high temperatures in materials of large grain sizes occurred via a dislocation-
climb mechanism. (It should be mentioned that a “threshold” stress is
subtracted from the applied stress by Harper and Dorn, which may be
problematic. This fact appears to often be overlooked by subsequent
investigators.)

The relationship between the applied stress and the steady-state creep
rate for Harper-Dorn creep is phenomenologically described by [295]

_εss ¼ AHD

�
DsdGb
kT

��s
G

�1
(110)

where AHD is a constant. Since these early observations [50], Harper-Dorn
creep has been reported to occur in a large number of metals and alloys as
well as a variety of ceramics and ice (see Table 3). Interests in ceramics and
minerals lie in predicting low-stress creep plasticity in geological systems
such as the lower crust, lower mantle, and inner core of the Earth [910].
Figures 55–59 illustrate Harper-Dorn in CaO, MgO, Mg2SiO4, olivine,
and NaCl. Metallic systems are sometimes chosen on the basis of expected
satisfactory service in long-term structural applications. The importance of
Harper-Dorn may have been enhanced by the suggestions that diffusional
creep does not occur and that rather (rare) cases of (Newtonian) diffusional
creep are actually Harper-Dorn (dislocation Newtonian creep) [322].

Several studies have been published during the past 30 years that
distinguished Harper-Dorn from classic 5-power-law creep (and diffusional
creep). Yavari et al. [295] provided more evidence that the Harper-Dorn
creep rate is independent of the specimen grain size. Similar rates were
observed both in polycrystalline materials and in single crystals. They
determined, by etch-pits, that the dislocation density was relatively low
and independent of the applied stress, unlike 5-power-law creep. Owen
and Langdon [889] suggested that the values of the dislocation density of
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Al-5at% Mg are near 109 m�2. (Dislocations were found to be predomi-
nantly close to edge orientation.) Ardell [34] suggested, using etch-pit
analysis, that the dislocation density would not reach values less than a
“frustration” level, effectively rendering the density independent of stress in
aluminum with a density of about 108 m�2. Barrett et al. also found r

stress-independent in Al [269] at 7� 107 m�2 using etch pits. Nes [215],
however, suggested that the dislocation density using X-ray topography
apparently showed that r was dependent of stress by s1.3 although the creep

Table 3 Materials for which Harper-Dorn creep has been suggested to operate with
relevant references

Metals Ceramics (and minerals)

Material References Material References

Al [50,55,86,101,
199,269,294e296,
900,905]

CaO [300,301,898]

Pb [294] UO2 [302]
a-Ti [297] MgO [303,304,

911e915,925]
a-Fe [240] TiO2 [887]
a-Zr [298] Mn0.5Zn0.5Fe2O4 [305]
bCo [299] BeO [305]
Sn [294] Al2O3 [305]
Cu [78,228,244,

890e893,
895,897,899a]

Co0.5Mg0.5O [84a,308]

NaCl [309,310,916a,
917a,918a]

MgCl2$6H2O [307]
KZnF3 [31]
KTaO3 [312]
CaTiO3 [307]
Ice [306]
CaCO3 [305]
SiO2 [31]
(Mg,Fe)2SiO4 [315,888,903a,

919a,920a,921a,
922a]

NaAlSi3O8eCaAl2Si2O8 [315,888]
aFor basic creep articles making no reference to Harper-Dorn creep.
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behavior was not well defined. His technique may be the ideal method to
assess the low dislocation densities.

The fact that the activation energy for Harper-Dorn creep is about equal
to that of self-diffusion suggests that Harper-Dorn creep occurs by climb of
edge dislocations. Weertman and Blacic [320] suggested that creep is not
observed at constant temperatures, but only with low amplitude temper-
ature fluctuations, where the vacancy concentration would not be in
thermal equilibrium, thus leading to climb stresses on edge dislocations of
the order of 3–6 MPa. This explanation does not appear widely accepted,
partly due to the observation that Harper-Dorn creep is consistently
observed by a wide assortment of investigators, presumably with different
temperature control abilities [321].

In summary, the early low-stress experiments, primarily in metals,
indicated that Harper-Dorn includes:
1. activation energy about equal to lattice self-diffusion,
2. grain-size independence, with grain boundary shearing,
3. steady-state stress exponent of about one,
4. dislocation density that appears independent of stress, and
5. primary creep stage.

These combined aspects distinguish the phenomenon from
5-power-law creep, and low-stress exponent grain-boundary sliding
(superplasticity), and the Herring diffusional creep model.

Figure 55 Creep behavior at a single temperature for CaO.

Harper-Dorn Creep 113



Figure 56 Steady-state creep behavior of MgO.
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2. THEORIES FOR HARPER-DORN

The theories of Harper-Dorn creep will be, briefly, reviewed.

2.1 Harper and Dorn [50,199,900]
As discussed by Langdon [318], Harper-Dorn was initially described by the
motion of jogged screw dislocations, analogous to that described by Mott

Figure 57 The steady-state creep behavior of Mg2SiO4.

Figure 58 The steady-state creep behavior of olivine.
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NaCl

Figure 59 Steady-state creep behavior of the NaCl single and polycrystals.
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[198] and later by Barrett and Nix [190]. This leads to a steady-state
strain rate.

_g ¼ 12pr‘jsb

�
DsdGb
kT

�� s
G

�1:0
(111)

where r is the dislocation spacing and ‘js is the jog spacing in screw dislo-
cations. Langdon criticized this model on the basis that it requires unrealis-
tically small jog spacings.

2.2 Friedel [87]
Langdon also states that Friedel suggested that the “Harper-Dorn” is
actually diffusion creep where vacancies diffuse between the relatively small
subgrain boundaries.

_g ¼ ANH

�
DsdGb
kT

��
b
l

�2� s
G

�1:0
(112)

As Langdon points out, subgrains are not always observed in the
Harper-Dorn region. When subgrains do form, the size, according to
Barrett et al. [269], tends to be stress dependent and this would increase the
stress-dependence in Eqns (110) and (112) beyond that of the observed
value of 1.0.

2.3 Barrett, Muehleisen, and Nix [269]
Barrett et al. suggested that, as with many other diffusion-controlled creep
processes, dislocation generation occurs with dislocation climb (at an
assumed fixed number of sources). The rate of dislocation generation _rþ is

_rþ ¼ r0
vC
x

(113)

Where r0 is the fixed dislocation length per unit volume, vC is the climb
velocity, and x is the distance over which climb must occur to create glide
dislocations. The climb velocity under a climb stress s is [347]

vC ¼ Db2s
kT

(114)

They assume x ¼ Gb
s

(which appears to assume Taylor hardening)
leading to

_rþ ¼ r0Dbs2

kTG
: (115)
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Dislocation annihilation is assumed to occur only at subgrain
boundaries. (This is a complication as subgrain boundaries may not always
exist.) The annihilation rate is

_r� ¼ rvg
l

(116)

Where vg is the glide velocity and l is the subgrain size (phenomeno-
logically l¼ l0/s). It was assumed.

vg ¼ v0s (117)

(and a stress exponent of one for dislocation velocity, here, is a critical
assumption) leading to

_r� ¼ rv0s2

l0
(118)

at steady state

_r ¼ _rþ � _r� ¼ 0 and (119)

r0Dbs2

kTG
¼ rv0s2

l0
or (120)

r ¼ r0Dbl0
kTGv0

(121)

and r is independent of s, another critical assumption. Combining with the
Orowan equation,

_εss ¼ rbvg (122)

_εss ¼ r0Db2sl0
kTG

(123)

Again, critical to this derivation is a stress exponent of one for vg and the
assumption x¼ (Gb)/s, which appear tenuous.

2.4 Langdon et al. [318]
Langdon et al. suggested that the rate-controlling processes for
Harper-Dorn is based on the climb of jogged edge-dislocations under
vacancy saturation conditions, and
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_g ¼ 6prb2

‘nð1=r1=2bÞ
�
DsdGb
kT

�� s
G

�1:2
(124)

Here, vacancy saturation implies that the steady-state vacancy concen-
tration near and away from the climbing jog is fixed by a steady state be-
tween vacancy emission/absorption from the jog and longer-range
diffusion to and from the jog.

2.5 Wu and Sherby [53]
The fact that within both the Harper-Dorn and the 5-power-law
regimes, the underlying mechanism of plastic flow appeared to be
diffusion controlled, led Wu and Sherby to propose a unified relation that
describes the creep behavior over both ranges. This model incorporates an
internal stress that arises from the presence of random stationary
dislocations present within subgrains. At any time during steady-state
flow, they assume half of the dislocations moving under an applied
stress are aided by the internal stress field (the internal stress adds to the
applied stress), whereas the motion of the other half is inhibited by the
internal stress. The internal stress is calculated from the dislocation density
by the dislocation hardening equation (s ¼ aGb

ffiffiffi
r

p
, where ay 0.5). The

unified equation is [322]

_εss ¼ 1
2
AWS

Deff

b2

��
sþ si

E

�n

þ js� sij
ðs� siÞ

����s� si

E

����
n	

(125)

where AWS is a constant and si is the internal stress. At high stresses, where
s[ si, si is negligible compared with s and Eqn (125) reduces to the
(5-power-law) relation

_εss ¼ A10
Deff

b2

�s
E

�n
�
with n ¼ 4� 7

�
(126)

At low stresses, where s� si (Harper-Dorn regime), Eqn (125) reduces
to Eqn (110). A reasonable agreement has been suggested between the
predictions from this model and experimental data [53,322] for pure
aluminum, g-Fe, and b-Co. The internal stress model was criticized by
Nabarro [321], who claimed a unified approach to both 5-power-law and
Harper-Dorn creep is not possible because none of these processes are, in
themselves, well understood and unexplained dimensionless constants were
introduced in order to match theoretical predictions with experimental data.
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Also, the dislocation density in Harper-Dorn creep is constant, whereas it
increases with the square of the stress in the power-law regime. Thus, the
physical processes occurring in both regimes must be different (although
Ardell [54] attempts to rationalize this using network-creep models).

2.6 Wang [323,325,326,328]
The internal stress model of Sherby and Wu was also criticized by Wang
[323], who proposed that the transition between power-law creep and
Harper-Dorn creep takes place instead at a stress (s) equal to the “Peierls
stress (sp)” [325,328]. Wang [326] suggests that the steady-state dislocation
density is related to the Peierls stress. In equilibrium, the stress due to the
mutual interaction of moving dislocations is in balance not only with the
applied stress but also with lattice friction, which fluctuates with an
amplitude of the Peierls stress. As a result, the steady-state dislocation
density r in dislocation creep can be written as

br1=2 ¼ 1:3


� s
G

�2
þ
�sp
G

�2
�1=2

(127)

where s is the applied shear stress. When s[ sp, the dislocation density is
proportional to the square of the applied stress, and 5- (or 3-) power-law
creep is observed. This is consistent with the recent work of Kassner
[901]. Conversely, when s� sp, the dislocation density is independent
of the applied stress and Harper-Dorn occurs. As will be discussed later,
it appears that the dislocation density does vary with stress within the so-
called Harper-Dorn regime.

2.7 Ardell [54,86,101,401]
A different and fairly extensive approach to Harper-Dorn is based on the
dislocation network theory by Ardell et al. The dislocation link length
distribution contains no segments that are long enough to glide freely. That
is, the longest links of length Lm are smaller than the critical link length to
activate a (e.g., Frank-Read) dislocation source. Harper-Dorn is, therefore,
a phenomenon in which all the plastic strain in the crystal is a consequence
of dislocation network coarsening. The recovery of the dislocation density
during Harper-Dorn creep is comparable to static recovery in the absence
of an applied stress; climb of nodes is facilitated by line tension of dislocation
links. The stress dependence of the _εss arises because the applied stress biases
the collisions, since the lengths of all the links must increase as sss increases,

120 Fundamentals of Creep in Metals and Alloys



thereby increasing the collision possibilities. The climb velocity of the
nodes is mostly affected by the resolved force arising from the line tensions
of the dislocations at the nodes. Accidental collisions between these links
can refine the network and stimulate further coarsening.

_ε ¼ pCb3D
2kT

rs (128)

where

C ¼ a

hui2
Zuc
0

u2�mðu� 1ÞFðuÞdu (129)

and Fu is the scaled-link-length (u) distribution function, ay 0.5 and
m is a phenomenological exponent. The independence of r with s is a
consequence of the frustration of the dislocation network coarsening that
arises because of the exhaustion of Burgers vectors that can satisfy Frank’s
rule at the nodes.

3. MORE RECENT DEVELOPMENTS

3.1 The Effect of Strain
Aluminum is clearly the most extensively studied material in the
Harper-Dorn regime. Blum et al. [55] recently questioned the existence of
Harper-Dorn creep, not having been able to observe the decrease of the
stress exponent to a value of one when performing compression tests with
changes in stress in pure aluminum (99.99% purity), in a low-stress regime
where Harper-Dorn had been observed by others. These results are illus-
trated, later, in Figure 61. Nabarro [330] responded to these reservations
claiming that the lowest stress used by Blum et al. (0.093 MPa) was still too
high to observe Harper-Dorn. Blum et al. [331] subsequently performed
compression tests using even lower stresses (as low as 0.06 MPa), failing again
to observe n¼ 1 stress exponents. Instead, exponents close to five were
measured, indicating normal, 5-power-law creep extending into the
so-called Harper-Dorn regime. Basically, Blum suggested that earlier
Harper-Dorn studies did not accumulate sufficient strain (hardening) to
achieve steady state. Strain-rates in the Harper-Dorn regime are so low that
unusually long testing periods are required to achieve modest strains. In some
Al cases, Blum is correct that creep-rates reported by other investigators are
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too high based on a failure to achieve steady state. However, in other cases
where Harper-Dorn is suggested, steady state appears to have been achieved.

3.2 The Effect of Impurities
Recently, Mohamed et al. [334–336] suggested that impurities may play
an essential role in Harper-Dorn creep. They performed relatively large
strain (up to 10%) creep tests at stresses lower than 0.06 MPa in Al
polycrystals of 99.99 and 99.9995 purity. They observed Harper-Dorn
creep only in the latter (most pure) metal. Accelerations in the creep
curve corresponding to the high purity Al are apparent in Figure 60. These
accelerations are absent in the less-pure 99.99 Al creep curve, at an
identical temperature and stress.

Mohamed et al. also reported that the microstructure of the 99.9995 Al
includes wavy grain boundaries, an inhomogeneous dislocation density
distribution as determined by etch-pits, small new grains forming at the
specimen surface, and large dislocation density gradients across grain
boundaries. Well-defined subgrains were not observed. However, the
microstructure of the deformed 99.99 Al is formed by a well-defined array
of subgrains. These observations led Mohamed et al. to conclude that the
restoration mechanism taking place during so-called Harper-Dorn creep
includes discontinuous dynamic recrystallization (DRX) rather than the
contended dynamic recovery. Nucleation of recrystallized grains would

Figure 60 Creep curve corresponding to very pure 99.9995% Al, from Mohamed et al.
[334]. The undulations are suggested to result from new restoration mechanisms.
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take place at the specimen surfaces and, due to the low amount of impu-
rities, highly mobile boundaries would migrate toward the specimen
interior. This restoration mechanism would give rise to the periodic
accelerations observed in the creep curve, by which much of the strain is
produced. Therefore, Mohamed et al. believed that high purity leads to
DRX. It is difficult to accurately determine the stress exponent due to the
appearance of periodic accelerations in the creep curves. However,
Mohamed et al. [335] claimed that n¼ 1 exponent are only obtained if
creep curves up to small strains (1–2%) are analyzed, as was done in the past.
Mohamed et al. estimated stress exponents of about 2.5 at larger strains for
high-purity DRX specimens of Al.

The work by Mohamed et al. has received some criticism. Langdon
[337] argues that the jumps in the creep curves are not very clearly
defined. Also, Mohamed claims that DRX occurs during creep of very
high purity metals at regular strain increments, whereas the incremental
strains corresponding to the accelerations tend to be relatively
non-uniform. Grain growth might be a more appropriate restoration
mechanism. It is certainly true that 99.999% pure Al has a greater
propensity for (static) recrystallization (and presumably DRX and grain
growth) than 99.99% pure Al, but Figure 54 shows the so-called
Harper-Dorn present in just 99.99% pure Al in other studies, in
contradiction to the suggestion by Mohamed.

Additional recent experiments were performed by McNee et al. [905]
on, generally, 99.999% pure Al. These investigators generally, consistent
with Blum, observed the extension of 5-power-law creep into Harper-
Dorn regime. A few tests, however, show relatively high strain-rates
(creep-rates) and might be more consistent with the early experiments
supportive of a low-stress exponent. Despite these new experiments,
Langdon [904] appears to have suggested that Harper-Dorn is, nonetheless,
an independent mechanism.

3.3 Size Effects
Raj et al. [923,924] suggeested the surfaces are dislocation sources which
leads to a size effect. Nes et al. [201] suggested that, under conditions
typical of Harper-Dorn creep, the statistical slip-length may become
comparable to or even exceed the specimen diameter (a size effect).
That is, it was suggested that under Harper-Dorn conditions, the size
influences the rates of generation and loss of dislocations. The role of
dislocation generation is reduced and the loss of dislocations is no longer
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controlled by dynamic recovery, but by static recovery. The result is that
creep rate scales linearly with the applied stress. Size effects with specimen
dimensions approaching the obstacles spacing was demonstrated by Uchic
et al. [909].

3.4 Recent Experiments
Figure 61 summarizes the data of the more recent experiments just
described. The 99.999% pure Al data of Mohamed and coworkers show
lower stress exponents of 1–2.5 due to the suggested additional restoration
mechanisms (e.g., grain growth (GG) or DRX). The data of Blum and
coworkers and Mohammed and coworkers on lower purity, 99.99% where
the impurities presumably suppress DRX and GG, show normal,
five-power-law behavior into the so-called Harper-Dorn regime. The
polycrystalline data of McNee et al., which include 99.999% and 99.99%
pure Al, do not appear to evince low stress exponent behavior, although the
high purity of the McNee tests may have been sometimes compromised.
Rather, some threshold behavior is observed, with an exponent above 4.5.

Figure 61 The trends of Figure 14 and Figure 54 are plotted with straight lines with
the additional, in particular, recent data (mostly 1999–2001) relevant to Harper-Dorn.
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The curious aspect of the more recent data of Figure 61 is that the low stress
Al data are more consistent with 5-power-law behavior than “Harper-
Dorn.” In summary, the aluminum data are ambiguous as to whether
Harper-Dorn is, in fact, a separate creep mechanism. One complication is
that polycrystalline specimens were used in these more recent studies and
average Taylor factors may be variable in coarse grain (e.g., 5 mm) in
small-dimension (e.g., <0.5 mm) specimens.

Creep experiments were recently conducted using relatively large
single crystals of high-purity aluminum at temperatures and stresses within
the range where it is reasonable to anticipate the occurrence of
Harper-Dorn creep [139, 953]. A stress exponent of greater than three was
observed. These are illustrated in Figure 62. Additionally, the results from
these experiments suggest that, contrary to several earlier reports, the
dislocation substructure is not independent of the applied stress and instead
the network dislocation density varies with stress as a direct extension of
the behavior anticipated within the conventional 5-power creep regime.
This is illustrated in Figure 63. It should also be emphasized that Harper
and Dorn report their data after a threshold stress correction (based on
surface and interface energies (tension)). If these corrections are not made,
then the data appear very close to those of Figure 62. Another interesting
observation of this work is that subgrains are not observed.

The network-based creep model proposed by Evans and Knowles [105]
in Chapter 2 was modified [938] and was compared with the recent
experimental results in the Harper-Dorn regime. Despite the simplicity of
the present model, the experimental results on pure Al single crystals and
polycrystalline copper show an excellent match with the theory. Thus,
there is a possibility that Harper-Dorn as a separate mechanism does not
exist, although new experiments (particularly on ceramics and minerals) are
clearly warranted.

4. OTHER MATERIALS FOR WHICH HARPER-DORN HAS
BEEN SUGGESTED

Table 3 lists materials for which Harper-Dorn has been suggested to occur,
either by the (original) experiments or by subsequent reinterpretation of
original data by subsequent investigators. However, the Harper-Dorn
conclusions are ambiguous in several instances. As was discussed
previously, the large volume of Al work is particularly ambiguous. It should
also be mentioned that ceramics and minerals deforming within the
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5-power-law creep regime tend to have lower stress exponents than metals;
values are closer to 3 rather than 5.

4.1 a-Zr
Harper-Dorn was suggested for helical specimens of a-Ti, a-Zr, and b-Co
[297–299]. The a-Zr data are particularly ambiguous as there is a grain-size
dependence in the purported Harper Dorn regime. For example, in an
earlier review by Hayes et al. [80], it was shown that the creep rate of

Figure 62 The stress-strain rate behavior of pure Al single crystals [139,953]. Lines with
slopes 4.5 and 3 are shown in the plot.
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zirconium at low values of sss/G varies approximately proportional to the
applied stress. The rate-controlling mechanism (s) for creep within this
regime is unclear. A grain-size dependency may exist, particularly at small
(<90 mm) sizes, suggesting a diffusional or perhaps a grain-boundary sliding
mechanism. A grain-size independence at larger grain sizes supports, by
itself, Harper-Dorn, but the low observed activation energy
(y90 kJ mol�1) is not consistent with those observed at similar tempera-
tures at higher stresses in the 5-power-law regime (270 kJ mol�1) where
creep is also believed to be lattice self-diffusion controlled. The stress
dependence in this regime is not consistent with traditional grain-boundary
sliding mechanisms.

4.2 NaCl
Banerdt and Sammis [309] suggested Harper-Dorn in NaCl, although
required temperature variation corrections were substantial at the lower
stresses. NaCl shows 5 (3.5)-power-law behavior and one study appears to
have shown low stress exponent behavior. Bandert and Sanmis, however,
appears to have unusually low total strains (<1%) and steady states are not
clearly established.

Figure 63 The dislocation density (subgrain boundaries not present) in pure (99.999%)
Al single crystal at 923 K at low stresses.
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4.3 Cu
Figure 15 shows classic 5-power-law behavior in copper. Shrivastava et al.
[891] recently found a low stress exponent (w2). The Cu was poly-
crystalline and some grain boundary sliding was reported. The author
concluded, however, that the interior dislocations cause slip, although
Harper-Dorn was not concluded.

4.4 CaO
CaO is confusing, because two studies have been performed within the
low strain regime; Dixon-Stubbs and Wilshire [300] find 5-power-law
transitions to 1.6 power in single crystals that Langdon [301] later suggested
was Harper-Dorn. Duong and Wolfenstine [898], however, observe
5-power-law also in single crystals over the same stress range that
Dixon-Stubbs and Wilshire observed low-stress exponents.

4.5 MgO
MgO appears to have contradictory data. Five (actually 3.2)-power data of
Routbort [925] is of higher strain- rates than other studies, while others
appear unusually low [915]. Ramesh et al. [304] observed a low-stress
exponent at lower stresses in single crystals.

4.6 Forsterite (Mg2SiO4)
Forsterite shows three or four stress exponent behavior in single crystals of
different orientation. The low stress tests by Relendeau [919] on relatively
fine-grained material show low stress-exponent behavior.

4.7 MgCl26H2O(CO0.5Mg0.5)O and CaTiO3

The Harper-Dorn creep behaviors of these were recently questioned by
Berbon and Langdon [316]. Discontinuous DRX was suggested in
MgCl26H2O(CO0.5Mg0.5)O, while it was suggested that a transition in
mechanism is not evident for CaTiO3 on a double logarithmic plot.

5. SUMMARY

In summary, there is real question as to whether Harper-Dorn creep, as
classically defined, exists. Whether there is a stress exponent decrease from
5-power-law creep with decreasing stress without a dramatic change in
creep mechanisms, is an open question that requires further study.
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CHAPTER 5

The 3-Power-Law Viscous
Glide Creep
M.-T. Perez-Prado, M.E. Kassner

Creep of solid solution alloys (designated Class I [16] or Class A alloys
[338]) at intermediate stresses and under certain combinations of materials
parameters, which will be discussed later, can often be described by three
regions [36,339,340]. This is illustrated in Figure 64. With increasing stress,
the stress exponent, n, changes in value from 5 to 3 and again to 5 in regions
I, II, and III, respectively. This section will focus on region II, the so-called

Figure 64 Steady-state creep rate versus applied stress for an Al–2.2 at% Mg alloy at
300 �C. Three different creep regimes, I, II, and III, are evident. Based on Refs [341,342].
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3-power-law regime. The mechanism of deformation in region II is often
described as viscous glide of dislocations [36]. This is due to the fact that the
dislocations interact in several possible ways with the solute atoms, and their
movement is impeded [343]. There are two competing mechanisms over
this stress range: dislocation climb and glide, and glide is slower and thus
rate controlling. A 3-power-law may follow naturally then from Eqn (16)
[24,344,345],

_ε ¼ 1=2vbrm

It has been theoretically suggested that v is proportional to s [346,347]
for solute-drag viscous glide. It has been determined empirically that rm is
proportional to s2 for Al–Mg alloys [76,93,118,318,341,348]. Weertman
[344,345] and Horiuchi et al. [349] have suggested a possible theoretical
explanation for this relationship. Thus, _εfs3. More precisely, following
the original model of Weertman [344,345], viscous glide creep is described
by the equation

_εss y
0:35
A

G
�s
G

�3
(130)

where A is an interaction parameter that characterizes the particular viscous
drag process controlling dislocation glide.

There are several possible viscous drag (by solute) processes in region II,
or 3-power-law regime [344,350–353]. Cottrell and Jaswon [350] proposed
that the dragging process is the segregation of solute atmospheres to moving
dislocations. The dislocation speed is limited by the rate of migration of the
solute atoms. Fisher [351] suggested that, in solid solution alloys with short-
range order, dislocation motion destroys the order, creating an interface.
Suzuki [352] proposed a dragging mechanism due to the segregation of
solute atoms to stacking faults. Snoek and Schoeck [353,354] suggested that
the obstacle to dislocation movement is the stress-induced local ordering of
solute atoms. The ordering of the region surrounding a dislocation reduces
the total energy of the crystal, pinning the dislocation. Finally, Weertman
[344] suggested that the movement of a dislocation is limited in long-range-
ordered alloys since the implied enlargement of an antiphase boundary
results in an increase in energy. Thus, the constant A in Eqn (130) is the
sum of the different possible solute-dislocation interactions described
earlier, such as

A ¼ AC�J þ AF þ AS þ ASn þ AAPB (131)
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Several investigators proposed different 3-power models for viscous
glide where the principal force retarding the glide of dislocations was
due to Cottrell–Jaswon interaction (AC–J þ AF þ AS þ ASn þ AAPB)
[87,118,345,355]. In one of the first theories, Weertman [345] suggested
that dislocation loops are emitted by sources and sweep until they are
stopped by the interaction with the stress field of loops on different planes,
and dislocation pile-ups form. The leading dislocations can, however, climb
and annihilate dislocations on other slip planes. Mills et al. [118] modeled
the dislocation substructure as an array of elliptical loops, assuming that no
drag force exists on the pure screw segments of the loops. Their model
intended to explain transient 3-power creep behavior. Takeuchi and Argon
[355] proposed a dislocation glide model based on the assumption that once
dislocations are emitted from the source, they can readily disperse by climb
and cross-slip, leading to a homogeneous dislocation distribution. They
suggested that both glide and climb are controlled by solute drag. The final
relationship is similar to that by Weertman. Mohamed and Langdon [73]
derived the following relationship that is frequently referenced for
3-power-law viscous creep when only a Cottrell–Jaswon dragging mech-
anism is considered

_εss y
p
�
1� n

�
kT ~D

6e2Cb5G

�s
G

�3
(132)

where e is the solute–solvent size difference, C is the concentration of solute
atoms, and ~D is the diffusion coefficient for the solute atoms, calculated us-
ing Darken’s [357] analysis. Later, Mohamed [358] and Soliman et al. [359]
suggested that Suzuki and Fischer interactions are necessary to accurately
predict the 3-power-law creep behavior of several Al–Zn, Al–Ag, and
Ni–Fe alloys.

Region II has been reported to occur preferentially in materials with a
relatively large atom size mismatch [361,362]. Higher solute concentra-
tions also favor the occurrence of 3-power-law creep [73,338,340,344].
As illustrated in Figure 65, for sufficiently high concentrations, region III
can even be suppressed. The difference between the creep behaviors
corresponding to Class I (A) and Class II (M) is evident in Figure 66 [349]
where strain rate increases with time with the former and decreases with
the latter. Others have observed even more pronounced primary creep
features in Class I (A) Al–Mg [156,363]. Alloys with 0.6% and 1.1 at% Mg
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are Class II (M) alloys and those with 3.0, 5.1, and 6.9% are Class I (A)
alloys. Additionally, inverse creep transient behavior is observed in Class I
(A) alloys [118,349,364,365] and is illustrated in Figure 67 [349]. A drop
in stress is followed by a decrease in the strain rate in pure aluminum,
which then increases with a recovering dislocation substructure until
steady state at the new, lower, stress. However, with a stress decrease in
Class I (A) alloys (Figures 67(b) and (c)), the strain rate continually de-
creases until the new steady state. Analogous disparities are observed with
stress increases (i.e., decreasing strain rate to steady state in Class II (M)
while increasing rates with Class I (A)). Horiuchi et al. [349] argued that
this is explained by the strain rate being proportional to the dislocation
density and the dislocation velocity. The latter is proportional to the
applied stress, while the square root of the former is proportional to the
stress. With a stress drop, the dislocation velocity decreases to the value

Figure 65 Steady-state creep rate versus applied stress for three Al–Mg alloys (Al–
0.52 at% Mg, n; Al–1.09 at% Mg, •; Al–3.25 at% Mg, :) at 323 �C [356].
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Figure 66 Creep behavior of several aluminum alloys with different magnesium
concentrations 0.6 and 1.1 at% (Class II (M)) and 3.0, 5.1, and 6.9 at% (Class I (A)). The
tests were performed at 359 �C and at a constant stress of 19 MPa [349].
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Figure 67 Effect of changes in the applied stress to the creep rate in (a) high-purity
aluminum, (b) Al–3.0 at% Mg (Class I (A) alloy), and (c) Al–6.9 at% Mg (Class I (A)
alloy), at 410 �C [349].
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corresponding to the lower stress. The dislocation density continuously
decreases, also leading to a decrease in strain rate. It is presumed that
nearly all of the dislocations are mobile in Class I (A) alloys while this may
not be the case for Class II (M) alloys and pure metals. Sherby et al. [366]
emphasized that the transition from strain softening to strain hardening at
lower stresses in Class I alloys is explained by taking into account that,
within the viscous glide regime, the mobile dislocation density controls
the creep rate. Upon a stress drop, the density of mobile dislocations is
higher than that corresponding to steady state, and thus it will be lowered
by creep straining, leading to a gradual decrease in stain rate (strain
hardening). If the stress is increased, the initial mobile dislocation density
will be low, and, thus, the creep strength will be higher than that cor-
responding to steady state. More mobile dislocations will be generated as
strain increases, leading to an increase in the creep rate, until a steady-state
structure is achieved (strain softening). The existence of internal stresses
during 3-power-law creep is also not clearly established. Some in-
vestigators have reported internal stresses as high as 50% the applied stress
[367]. Others, however, suggest that internal stresses are negligible
compared to the applied stress [121,349].

The transitions between regions I and II and between regions II and III
are now well established [361]. The condition for the transition from region
I (n ¼ 5, climb-controlled creep behavior) to region II (n ¼ 3, viscous
glide) with increasing applied stress is, in general, represented by [358]

kT
DgbA

¼ C
� c
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�3
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�� s
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�2

t
(133)

whereDc andDg are the diffusion coefficients for climb and glide, respectively,
C is a constant and (s/G)t is the normalized transition stress. If only the Cot-
trell–Jaswon interaction is considered [73,358], Eqn (133) reduces to
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The transition between regions II (n ¼ 3, viscous glide) and III (n ¼ 5,
climb-controlled creep) has been the subject of several investigations
[36,344,345,368–371]. It is generally agreed that it is due to the breakaway
of dislocations from solute atmospheres and are thus able to glide at a much
faster velocity. The large difference in dislocation speed between disloca-
tions with and without clouds has been measured experimentally [372].
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Figure 68 (from Ref. [372]) shows the s versus ε and _ε versus ε curves
corresponding to Ti of commercial purity, creep tested at 450 �C at
different stresses after initial loading at 10�3 s�1. Instead of a smooth
transition to steady-state creep, a significant drop in strain rate occurs at the
beginning of the creep test, which is associated with the significant decrease
in dislocation speed due to the formation of solute clouds around dislo-
cations. Thus, after a critical break-away stress, glide becomes faster than
climb and the latter is, then, rate controlling in region III. Friedel [87]
predicted the break-away stress for unsaturated dislocations as

sb ¼ A11

�
W 2

m

kTb3

�
C (135)

where A11 is a constant, Wm is the maximum interaction energy between a
solute atom and an edge dislocation, and C is the solute concentration.
Endo et al. [342] showed, using modeling of mechanical experiments,
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Figure 68 The s versus ε and _ε versus ε curves corresponding to Ti of commercial
purity, creep tested at 450 �C at different stresses after initial loading at 10�3 s�1. The
circles mark the end of loading/beginning of creep testing. From Ref. [372].
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that the critical velocity, vcr, at breakaway agrees well with the value pre-
dicted by the Cottrell relationship, is

vcr ¼ DkT
eGbR3

S

(136)

where RS is the radius of the solvent atom and e is the misfit parameter.
It is interesting that the extrapolation of Stage I (5-power) predicts

significantly lower Stage III (also 5-power law) stress than observed (see
Figure 64). The explanation for this is unclear. TEM and etch pit obser-
vations within the 3-power-law creep regime [118,338,373–376] show a
random distribution of bowed long dislocation lines, with only a sluggish
tendency to form subgrains. However, subgrains eventually form in Al–Mg
[121,156,377], as illustrated in Figure 69 for Al–5.8at% Mg.

Class I (A) alloys have an intrinsically high strain-rate sensitivity
(m ¼ 0.33) within regime II and therefore are expected to exhibit high
elongations due to resistance to necking [378–380]. Recent studies by
Taleff et al. [381–384] confirmed an earlier correlation between the
extended ductility achieved in several binary and ternary Al–Mg alloys and
their high strain-rate sensitivity. The elongations to failure for single phase
Al–Mg can range from 100% to 400%, which is sufficient for many (“su-
perplastic”) manufacturing operations, such as the warm stamping of
automotive body panels [384]. These elongations can be achieved at lower
temperatures than those necessary for conventional superplasticity in the
same alloys and still at reasonable strain rates. For example, enhanced
ductility has been reported to occur at 10�2 s�1 in a coarse-grained Al–Mg
alloy [384] at a temperature of 390 �C, whereas a temperature of 500 �C is
necessary for superplasticity in the same alloy with a grain size ranging from
5 to 10 mm. The expensive grain refinement processing routes necessary to
fabricate superplastic microstructures are unnecessary. The solute concen-
tration in a binary Al–Mg alloy does not affect significantly mechanical
properties such as tensile ductility, strain-rate sensitivity, or flow stress [385].
For example, under conditions of viscous-glide creep, variations in Mg
concentration ranging from 2.8 to 5.5 wt% only change the strain-rate
sensitivity from 0.29 to 0.32, which does not have a substantial effect on
the elongation to failure [381]. McNelley et al. [377] attributed this
observation to the saturation effect of Mg atoms in the core of the moving
dislocation. However, ternary additions of Mn, Fe, and Zr seem to
significantly affect the mechanical behavior of Al–Mg alloys [381]. The
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stress exponent increases and ductility decreases significantly, especially for
Mn concentrations higher than 0.46 wt%. Ternary additions above the
solubility limit favor the formation of second-phase particles around which
cavities tend to preferentially nucleate. Thus, a change in the failure mode
from necking-controlled to cavity-controlled may occur, accompanied by a
decrease in ductility [381]. Also, Mn atoms may interfere with the solute
drag. The hydrostatic stress by which an atom interacts with a dislocation is
determined by the volumetric size factor (U). The U values corresponding
to Mg and Mn in Al are [362] UAl�Mg ¼ þ40.82 and UAl�Mn ¼ �46.81.
Both factors are nearly equal in magnitude and of opposite sign. Therefore,

Figure 69 Al–5.8 at% Mg deformed in torsion at 425 �C to (a) 0.18 and (b) 1.1 strain in
the 3-power regime.
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each added Mn atom acts as a sink for one atom of Mg, thus reducing the
effective Mg concentration [381]. If Mn is added in sufficient quantities that
the effective Mg concentration is lower than that required for viscous-drag
creep, the stress exponent would increase and the ductility would, conse-
quently, significantly decrease. This effect seems to be less important than
the change in failure mode described earlier [381].

Class I behavior has been reported to occur in a large number of metallic
alloys. These include Al–Mg- [16,73,378,386], Al–Zn- [361], Al–Cu-
[387], Cu–Al- [388], Au–Ni- [371], Mg- [324, 385,389–391], Pb- [371],
In- [371], and Nb- [392,393] based alloys. Viscous glide creep has also been
observed in dispersion strengthened alloys. Sherby et al. [366] attributed the
differences in the creep behavior between pure Al–Mg and DS Al–Mg
alloys to the low mobile dislocation density of the latter. Dislocations are
pinned and their movement is impeded due to the presence of precipitates.
Therefore, at a given strain rate ð _g ¼ brvÞ, the velocity of the dislocations is
very high. Thus, much higher temperatures are required for solute atoms to
form clouds around dislocations. The viscous glide regime is, therefore,
observed at higher temperatures than in the pure Al–Mg alloys. A value of
n¼ 3 has been observed in intermetallics with relatively coarse grain sizes
(g> 50 mm), such as Ni3Al [394], Ni3Si [395], TiAl [396], Ti3Al [397],
Fe3Al [398,399], and FeAl [400]. The mechanism of creep, here, is still not
clear. Yang [402] argued that, since the glide of dislocations introduces
disorder, the steady-state velocity is limited by the rate at which chemical
diffusion can restore order behind the gliding dislocations. Finally, dislo-
cation drag has also been attributed to lattice friction effects [401]. Viscous
glide has also been reported to occur in metal matrix composites [403],
although this is still controversial [404].
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CHAPTER 6

Superplasticity
M.-T. Perez-Prado, M.E. Kassner
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1. INTRODUCTION

Superplasticity is the ability of a polycrystalline material to exhibit, in a
generally isotropic manner, very high tensile elongations prior to failure
(T > 0.5 Tm) [405]. The first observations of this phenomenon were made
as early as 1912 [406]. Since then, superplasticity has been extensively
studied in metals. It is believed that both the arsenic bronzes used in Turkey
during the Bronze Age (2500 BC) and the Damascus steels utilized from
300 BC to the end of the nineteenth century were already superplastic
materials [407]. One of the most spectacular observations of superplasticity
is perhaps that reported by Pearson in 1934 of a Bi–Sn alloy that underwent
nearly 2000% elongation [408]. He also claimed, for the first time, that
grain boundary sliding was the main deformation mechanism responsible
for superplastic deformation. The interest in superplasticity has increased
due to the recent observations of this phenomenon in a wide range of
materials, including some materials (such as nanocrystalline materials [409],
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ceramics [410,411,589], metal-matrix composites [412], and intermetallics
[413]) that are difficult to form by conventional forming processes.
Extensive reviews on superplasticity are available [414–417].

There are two types of superplastic behavior. The best known and
studied, fine-structure superplasticity (FSS), will be briefly discussed in the
following sections. The second type, internal stress superplasticity, refers to
the development of internal stresses in certain materials, which then
deform to large tensile-strains under relatively low externally applied
stresses [417].

2. CHARACTERISTICS OF FSS

FSS materials generally exhibit a high strain-rate sensitivity exponent (m)
during tensile deformation. Typically, m is larger than 0.33. Thus, n in Eqn
(3), is usually smaller than three. In particular, the highest elongations have
been reported to occur when m w 0.5 (n w 2) [417]. Superplasticity in
conventional materials usually occurs at low strain rates ranging from
10�5 s�1 to 10�3 s�1. However, it has been reported in recent work that
large elongations to failure may also occur in selected materials at strain rates
substantially higher than 10�2 s�1 [418]. This phenomenon, termed high-
strain-rate superplasticity (HSRS), has been observed in some conventional
metallic alloys, in metal-matrix composites, and in mechanically alloyed
(MA) materials [419], among others. This will be discussed in Section 5.
Very recently, HSRS has been observed in cast alloys prepared by ECAP
(equal channel angular pressing) [420–423]. In this case, very high tem-
peratures are not required and the grain size is very small (<1 mm). The
activation energies for FSS tend to be low, close to the value for grain
boundary diffusion, at intermediate temperatures. At high temperatures,
however, the activation energy for superplastic flow is about equal to that
for lattice self-diffusion.

The microscopic mechanism responsible for superplastic deformation
is still not thoroughly understood. However, since Pearson’s first obser-
vations [408], the most widely accepted mechanisms involve grain
boundary sliding (GBS) [424–431]. GBS is generally modeled assuming
sliding takes place by the movement of extrinsic dislocations along the
grain boundary. This would account for the observation that the amount
of sliding is variable from point to point along the grain boundary [432].
Dislocation pile-ups at grain boundary ledges or triple points may lead to
stress concentrations. In order to avoid extensive cavity nucleation and
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growth, GBS must be aided by an accommodation mechanism [290].
The latter must ensure rearrangement of grains during deformation in
order to achieve strain compatibility and relieve any stress concentrations
resulting from GBS. The accommodation mechanism may include grain
boundary migration, recrystallization, diffusional flow or slip. The ac-
commodation process is generally believed to be the rate-controlling
mechanism.

A large number of models have emerged in which the accommodation
process is either diffusional flow or dislocation motion [433]. The best-
known model for GBS accommodated by diffusional flow is depicted
schematically in Figure 70, and was proposed by Ashby and Verral [434].
This model explains the experimentally observed switching of equiaxed
grains throughout deformation. However, it fails to predict the stress
dependence of the strain rate. According to this model:

_εss ¼ K1ðb=gÞ2Deff ðs� sTHs=EÞ (137)

where Deff ¼ Dsd9[1 þ (3.3 w/g)(Dgb/Dsd)], K1 is a constant, sTHs is the
threshold stress, and w is the grain boundary width. The threshold stress
arises since there is an increase in boundary area during grain switching
when clusters of grains move from the initial position (Figure 70(a)) to
the intermediate one (Figure 70(b)).

Several criticisms of this model have been reported [435–440].
According to Spingarn and Nix [435], the grain rearrangement proposed by
Ashby–Verral cannot occur purely by diffusional flow. The diffusion paths

(a) (c)(b)

Figure 70 Ashby–Verral model of grain boundary sliding accommodated by
diffusional flow [434].
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are physically incorrect. The first models of GBS accommodated by
diffusional creep were proposed by Ball and Hutchison [441], Langdon
[442], and Mukherjee [443]. Among the most cited are those proposed by
Mukherjee and Arieli [444] and Langdon [432]. According to these
investigators, GBS involves the movement of dislocations along the grain
boundaries, and the stress concentration at triple points is relieved by the
generation and movement of dislocations within the grains (Figure 71).
Figure 72 illustrates the model proposed by Gifkins [445], in which the
accommodation process, which also consists of dislocation movement, only
occurs in the “mantle” region of the grains, i.e., in the region close to the
grain boundary. According to all of these GBS accommodated-by-slip
models, n ¼ 2 in a relationship such as:

_εss ¼ K2ðb=gÞp
0
Dðs=EÞ2 (138)

where p0 ¼ 2 or 3 depending on whether the dislocations move within the
lattice or along the grain boundaries, respectively. K2 is a constant, which
varies with each of the models, and the diffusion coefficient, D, can be
Dsd or Dgb, depending on whether the dislocations move within the lattice
or along the grain boundaries to accommodate stress concentrations from
GBS. In order to rationalize the increase in activation energy at high tem-
peratures, Fukuyo et al. [446] proposed a model based on the GBS mech-
anism in which the dislocation accommodation process takes place by

Pile up

Stress 
concentration

Climb along 
grain boundary 

Plane of easy 
grain boundary sliding 

Figure 71 Ball–Hutchinson model of grain boundary sliding (GBS) accommodated by
dislocation movement [441].
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sequential steps of climb and glide. At intermediate temperatures, climb
along the grain boundaries is the rate-controlling mechanism due to the
pile-up stresses. Pile-up stresses are absent and the glide of dislocations
within the grain is the rate-controlling mechanism at high temperatures.
It is believed that slip in superplasticity is accommodating and does not
contribute to the total strain [447]. Thus, GBS is traditionally believed to
account for all of the strain in superplasticity [448]. However, recent
studies, based on texture analysis, indicate that slip may contribute to the
total elongation [449–464].

The proposed mechanisms predict some behavior but have not suc-
ceeded in fully predicting the dependence of the strain rate on s, T, and g
during superplastic deformation. Ruano and Sherby [465,466] formulated
the following phenomenological equations, which appear to describe the
experimental data from metallic materials:

_εss ¼ K3ðb=gÞ2Dsdðs=EÞ2 (139)

_εss ¼ K4ðb=gÞ3Dgbðs=EÞ2 (140)

where K3 and K4 are constants. These equations, with n ¼ 2, correspond to
a mechanism of GBS accommodated by dislocation movement. Equation
(139) corresponds to an accommodation mechanism in which the disloca-
tions would move within the grains (g2) and Eqn (140) corresponds to an
accommodation mechanism in which the dislocations would move along
the grain boundaries (g3). Only the sliding of individual grains has been
considered. However, currently the concept of cooperative grain boundary

Core 

Mantle 

Figure 72 Gifkins “core and mantle” model [445].
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sliding (CGBS), i.e., the sliding of blocks of grains, is gaining acceptance.
Several deformation models that account for CGBS are described in
Ref. [420].

3. MICROSTRUCTURE OF FINE-STRUCTURE SUPERPLASTIC
MATERIALS

The microstructures associated with FSS are well established for conven-
tional metallic materials. They are, however, less clearly defined for in-
termetallics, ceramics, metal-matrix composites, and nanocrystalline
materials.

3.1 Grain Size and Shape
GBS in metals is favored by the presence of equiaxed small grains that-
should generally be smaller than 10 mm. Consistent with Eqns (137)–(140),
the strain rate is usually inversely proportional to grain size, according to:

_εss ¼ K5g
�p0 (141)

where p0 ¼ 2 or 3 depending, perhaps, on the accommodation mechanism,
and K5 is a constant. Also, for a given strain rate, the stress decreases as grain
size decreases. Grain size refinement is achieved during the thermomechan-
ical processing by successive stages of warm and cold rolling [465–470].
However, the present understanding of microstructural control in engi-
neering alloys during industrial processing by deformation and recrystalliza-
tion is still largely empirical.

3.2 Presence of a Second Phase
The presence of small second-phase particles uniformly distributed in the
matrix prevents rapid grain growth that can occur in single-phase materials
within the temperature range over which superplasticity is observed.

3.3 Nature and Properties of Grain Boundaries
GBS is favored along disordered high-angle (not CSL, or coincident lattice
site) boundaries. Additionally, sliding is influenced by the grain boundary
composition. For example, a heterophase boundary (i.e., a boundary that
separates grains with different chemical composition) slides more readily
than a homophase boundary. Stress concentrations develop at triple points
and at other obstacles along the grain boundaries as a consequence of GBS.
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Mobile grain boundaries may assist in relieving these stresses. Grain
boundaries in the matrix phase should not be prone to tensile separation.

4. TEXTURE STUDIES IN SUPERPLASTICITY

Texture analysis has been utilized to further study the mechanisms of su-
perplasticity [432,440–464,471], using both X-ray texture analysis and
computer-aided EBSP techniques [472]. Commonly, GBS, involving grain
rotation, is associated with a decrease in texture [416], whereas crystallo-
graphic slip leads to the stabilization of certain preferred orientations,
depending on the number of slip systems that are operating [473,474].

A large number of investigations based on texture analysis have led to the
conclusion that crystallographic slip (CS) is important in superplastic
deformation. According to these studies, CS is not merely an accommo-
dation mechanism for GBS but also operates in direct response to the applied
stress. Some investigators [450–455,471] affirm that both GBS and CS
coexist at all stages of deformation; other investigators [456–458] conclude
that CS only operates during the early stages of deformation, leading to a
microstructure favoring GBS. Others [459–464] even suggest that CS is the
principal deformation mechanism responsible for superplastic deformation.

5. HIGH-STRAIN-RATE SUPERPLASTICITY

HSRS has been defined by the Japanese Standards Association as super-
plasticity at strain rates equal to or greater than 10�2 s�1 [417,475,476].
This field has generated considerable interest in the last 25 years since these
high strain rates are close to the ones used for commercial applications
(10�2

–10�1 s�1). Higher strain rates can be achieved by reducing the grain
size (see Eqn (138)) or by engineering the nature of the interfaces in order
to make them more suitable for sliding [475,476]. HSRS was first
observed in a 20% SiC whisker-reinforced 2124 Al composite [418]. Since
then, it has been observed in several metal-matrix composites, MA
materials, conventional alloys that undergo continuous reactions
(or continuous dynamic recrystallization), and alloys processed by power
consolidation, by physical vapor deposition, and by intense plastic
straining [423] (for example, ECAP, high-pressure torsion, or by friction
stir processing [477]). The details of the microscopic mechanism respon-
sible for HSRS are not yet well understood, but some recent theories are
reviewed next.
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5.1 HSRS in Metal-Matrix Composites
HSRS has been achieved in a large number of metal-matrix composites.
Some of them are listed in Table 4, and more complete lists can be found
elsewhere [475,478]. The microscopic mechanism responsible for HSRS in
metal-matrix composites is still a matter of controversy. Any theory must
account for several common features of the mechanical behavior of metal-
matrix composites that undergo HSRS, such as [487]:
1. Maximum elongations are achieved at very high temperatures, some-

times even slightly higher than the incipient melting point.
2. The strain-rate sensitivity exponent changes at such high temperatures

from w0.1 (n w 10) (low strain rates) to w0.3 (n w 3).
3. High apparent activation energy values are observed. Values of

920 kJ mol�1 and 218 kJ mol�1 have been calculated for SiCw/2124
Al at low and high strain rates, respectively. These values are signifi-
cantly higher than the activation energy for self-diffusion in Al
(140 kJ mol�1).
Both grain boundary sliding and interfacial sliding have been proposed

as the mechanisms responsible for HSRS. The significant contribution of
interfacial sliding is evidenced by extensive fiber pull-out that is apparent on
the fracture surfaces [487]. However, an accommodation mechanism has to
operate simultaneously in order to avoid cavitation at such high strain rates.
The nature of this accommodation mechanism, which enables the
boundary and interface mobility, is still uncertain.

Table 4 Superplastic characteristics of some metal-matrix-composites exhibiting
high-strain-rate superplasticity

Material
Temperature
(�C)

Strain
rate (s�1)

Elongation
(%) References

SiCw/2124 Al 525 0.3 w300 [418]
SiCw/2024 Al 450 1 150 [479]
SiCw/6061 Al 550 0.2 300 [480]
SiCp/7075 Al 520 5 300 [481]
SiCp/6061 Al 580 0.1 350 [482]
Si3N4w/6061 Al 545 0.5 450 [483]
Si3N4w/2124 Al 525 0.2 250 [484]
Si3N4w/5052 Al 545 1 700 [485]
AlN/6061 Al 600 0.5 350 [486]

w ¼ whisker; p ¼ particle.
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A fine matrix grain size is necessary but not sufficient to explain HSRS.
In fact, HSRS may or may not appear in two composites having the same
fine-grained matrix and different reinforcements. For example, it has been
found that a 6061 Al matrix with b-Si3N4 whiskers experiences HSRS,
whereas the same matrix with b-SiC does not [487]. The nature, size, and
distribution of the reinforcement are critical to the onset of HSRS.

5.1.1 Accommodation by a Liquid Phase: Rheological Model
Nieh and Wadsworth [487] have proposed that the presence of a liquid
phase at the matrix–reinforcement interface and at grain boundaries within
the matrix is responsible for accommodation of interface sliding during
HSRS and thus for strain-rate enhancement. The presence of this liquid
phase would be responsible for the observed high activation energies. A
small grain size would favor HSRS, since the liquid phase would then be
distributed along a larger surface area and thus can have a higher capillarity
effect, preventing decohesion. The occurrence of partial melting even
during tests at temperatures slightly below solvus has been explained in two
different ways. First, as a consequence of solute segregation, a low melting
point region could be created at the matrix–reinforcement interfaces.
Alternatively, local adiabatic heating at the high strain rates used could
contribute to a temperature rise that may lead to local melting.

It has been suggested [488] that HSRS with the aid of a liquid phase can
be modeled in rheological terms in a similar way to semi-solid metal
forming. A fluid containing a suspension of particles behaves like a non-
Newtonian fluid, for which the strain-rate sensitivity and the shear strain
rate are related by:

s ¼ K7$ _g
m (142)

where s is the shear stress, and K7 and m are both material constants, m be-
ing the strain-rate sensitivity of the material. The shear stress and strain rate
of a semi-solid that behave like a non-Newtonian fluid are related to the
shear viscosity by the following equations:

h ¼ K7$ _g
�u (143)

h ¼ s= _g (144)

where h (is the shear viscosity and u is a material constant, related to the
strain- rate sensitivity by the expression m ¼ 1 � u. The viscosity of several
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Al-6.5% Si metal-matrix composites was measured experimentally [417] at
700 �C as a function of shear rate. High-strain-rate sensitivity values, similar
to those reported for MMCs (w0.3–0.5) in the HSRS regime, were
obtained at very high shear strain rates (200�1000 s�1). These data support
the rheological model. The temperature used, however, is higher than the
temperatures at which HSRS was observed.

The role of a liquid phase as an accommodation mechanism for inter-
facial and grain boundary sliding has been supported by other investigators
[478,489–493] as well. It is suggested that the liquid phase acts as an ac-
commodation mechanism, relieving stresses originated by sliding and thus
preventing cavity formation. However, in order to avoid decohesion, it is
emphasized that the liquid phase must either be distributed discontinuously
or be present in the form of a thin layer. The optimum amount of liquid
phase may depend on the nature of the grain boundary or interface. Direct
evidence of local melting at the reinforcement–matrix interface was
obtained using in situ transmission electron microscopy by Koike et al.
[491] in a Si3N4p/6061 Al. The rheological model was criticized by
Mabuchi et al. [489], arguing that testing the material at a temperature
within the solid–liquid region is not sufficient to achieve HSRS. For
example, an unreinforced 2124 alloy fails to exhibit high tensile ductility
when tested at a temperature above solvus.

5.1.2 Accommodation by Interfacial Diffusion
Mishra et al. [494–496] rationalized the mechanical behavior of HSRS
metal-matrix composites by taking into account the presence of a threshold
stress. This analysis led them to conclude that the mechanism responsible for
HSRS in metal-matrix composites is grain boundary sliding accommodated
by interfacial diffusion along matrix–reinforcement interfaces. It is impor-
tant to note that the particle size is often comparable to the grain size, and
therefore interfacial sliding is geometrically necessary, as illustrated in
Figure 73. Partial melting, especially if it is confined to triple points, may be
beneficial for superplastic deformation, but it is not necessary to account for
the superplastic elongations observed.

Threshold stresses are often used to explain the variation of the strain-
rate sensitivity exponent with strain rate in creep studies. The presence of
a threshold stress would explain the transition to a lower strain-rate sensi-
tivity value (and thus to a higher n) at low strain rates that occur during
HSRS in metal-matrix composites. Calculating threshold stresses and a
(true) stress exponent, nhsrs, that describes the predominant deformation
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mechanism, is a nontrivial process, as explained in [495]. Mishra et al.
[495,496] concluded that a true-stress exponent of 2 would give the best fit
for their data, suggesting the predominance of grain boundary sliding as a
deformation mechanism responsible for HSRS in metal-matrix composites.
Additionally, activation energies (Qhsrs) of the order of 300 kJ mol�1 were
obtained from this analysis. Both dependencies (nhsrs ¼ 2 and
Qhsrs y 300 kJ mol�1) are best predicted by Arzt’s model for “interfacial
diffusion-controlled diffusional creep” [497]. Mishra et al. [498] suggested
that both diffusional creep and grain boundary sliding are induced by the
movement of grain boundary dislocations, and the atomic processes
involved are similar for both processes. Therefore it is reasonable to
conclude that n and Q would be similar in both interfacial diffusion-
controlled diffusional creep and interfacial diffusion-controlled super-
plasticity. Thus, the latter is invoked to be responsible for HSRS. Figure 73
illustrates this deformation mechanism.

The phenomenological constitutive equation proposed by Mishra et al.
for HSRS in metal-matrix-composites is:

_εss ¼ A12
DiGb
kT

 
b2

gmgp

!�
s� sTHhsrs

E

�2

(145)

where Di is the coefficient for interfacial diffusion, gm is the matrix grain
size, gp is the particle/reinforcement size, sTHhsrs is the threshold stress for
HSRS, and A12 is a material constant. An inverse grain size and reinforce-
ment size dependence is suggested.

According to this model [496], as temperature rises, the accommodation
mechanism would change from slip accommodation (at temperatures lower

Grain A

Diffusional
accommodation

Grain B

Ceramic 
phase

Figure 73 Interfacial diffusion controlled grain boundary sliding. The ceramic phase
would not allow slip accommodation.
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than the optimum) to interfacial diffusion accommodation. The need for
very high temperatures to attain HSRS is due to the fact that grain
boundary diffusivity increases with temperature. Therefore, the higher the
temperature, the faster interface diffusion, which leads to less cavitation and
thus higher ductility.

Mabuchi and Higashi [499,500] claim the importance of a liquid phase
in HSRS arguing that, when introducing threshold stresses, the activation
energy for HSRS at temperatures at which no liquid phase is present is
similar to that corresponding to lattice self-diffusion in Al. However, at
higher temperatures, at which partial melting has taken place, the activa-
tion energy increases dramatically. It is at these temperatures that the
highest elongations are observed. The origin of the threshold stress for
superplasticity is not well known. Its magnitude depends on the shape and
size of the reinforcement and it generally decreases with increasing
temperature.

5.1.3 Accommodation by Grain Boundary Diffusion in the Matrix:
The Role of Load Transfer

The two theories described above were critically examined by Li and
Langdon [501–503]. First, the rheological model was questioned, since
HSRS had been recently found in Mg–Zn metal-matrix composites at
temperatures below the incipient melting point, where no liquid phase is
present [504]. Second, Li and Langdon [501] claim that it is hard to estimate
interfacial diffusion coefficients at ceramic–matrix interfaces, and therefore
validation of the interfacial diffusion-controlled grain boundary sliding
mechanism is difficult. These investigators used an alternative method for
computing threshold stresses, described in detail in Ref. [501], which does
not require an initial assumption of the value of n. This methodology also
rendered a true-stress exponent of 2 and true activation energy values that
were higher than those for matrix lattice self-diffusion and grain boundary
self-diffusion. These results were explained by the occurrence of a transfer
of load from the matrix to the reinforcement. Following this approach,
which was used before to rationalize creep behavior in metal-matrix
composites [505], a temperature-dependent load-transfer coefficient a0

was incorporated in the constitutive equation:

_εss ¼ A0000DGb
kT

�
b
g

�p0�ð1� a0Þðs� sTHhsrsÞ
G

�n
(146)
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where A0000 is a dimensionless constant. In their calculations, Li and Lang-
don assumed that D is equal to Dgb and the remaining constants and vari-
ables have the usual meaning. Load-transfer coefficients are expected to
vary between zero (no load transfer) and one (all of the load is transferred
to the reinforcement). It was found that the load-transfer coefficients ob-
tained decreased with increasing temperature, becoming zero at tempera-
tures very close to the incipient melting point. This indicates that load
transfer would be inefficient in the presence of a liquid phase. The effec-
tive activation energies Q* calculated by introducing the load-transfer co-
efficient into the rate equation for flow are similar to those corresponding
to grain boundary diffusion within the matrix alloys (until up to a few de-
grees from the incipient melting point). Therefore, Li and Langdon pro-
posed that the mechanism responsible for HSRS is grain boundary sliding
controlled by grain boundary diffusion in the matrix. This mechanism,
which is characteristic of conventional superplasticity at high tempera-
tures, would be valid up to temperatures close to the incipient melting
point.

The origin of the threshold stress is still uncertain. It has been shown
that it decreases with increasing temperature, and that it depends on the
shape and size of the reinforcement [498]. The temperature-dependence of
the threshold stress may be expressed by an Arrhenius-type equation of the
form:

sTHhsrs

G
¼ B exp

�
QTHhsrs

RT

�
(147)

where sTHhsrs is the threshold stress for HSRS, B is a constant, and QTHhsrs is
an energy term that seems to be associated with the process by which the
mobile dislocations surpass the obstacles in the glide planes. (The threshold
stress concept will be discussed again in Chapter 8.)

Li and Langdon [503] claim that the threshold stress values obtained
in metal-matrix composites tested under HSRS and under creep con-
ditions may have the same origin. They showed that similar values of
QTHhsrs are obtained under these two conditions when, in addition to
load transfer, substructure strengthening is introduced into the rate
equation for flow. Substructure strengthening may arise, for example,
from an increase in the dislocation density due to the thermal mismatch
between the matrix and the reinforcement or to the resistance of the
reinforcement to plastic flow. The “effective stress” acting on the
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composite in the presence of load-transfer and substructure strengthening
is given by:

se ¼ ð1� FÞs� sTHhsrs (148)

where F is a temperature-dependent coefficient. At the low temperatures
at which creep tests are performed, the value of F may be negligible, but
since HSRS takes place at very high temperatures, often close to the
melting point, the temperature dependence of F must be taken into ac-
count to obtain accurate values of QTHhsrs . In fact, when the temperature
dependence of F is considered, QTHhsrs values close to 20–30 kJ mol�1,
typical of creep deformation of MMCs, are obtained under HSRS
conditions.

5.2 HSRS in MA Materials
HSRS has also been observed in some MA materials that are listed in
Table 5.

As can be observed in Table 5, MA materials attain superplastic elon-
gations at higher strain rates than metal-matrix composites. Such high strain
rates are often attributed to the presence of a very fine microstructure (with
average grain size of about 0.5 mm) and oxide and carbide dispersions
approximately 30 nm in diameter that have an interparticle spacing of about
60 nm [417]. These particle dispersions impart stability to the microstruc-
ture. The strain-rate sensitivity exponent (m) increases with temperature,
reaching values usually higher than 0.3 at the temperatures where the
highest elongations are observed. Optimum superplastic elongations are
often obtained at temperatures above solvus.

Table 5 Superplastic properties of some mechanically alloyed materials

Material
Temperature
(�C)

Strain rate
(s�1)

Elongation
(%) References

IN9021 450 0.7 300 [506]
IN90211 475 2.5 505 [507,508]
IN9052 590 10 330 [509]
IN905XL 575 20 190 [510]
SiC/
IN9021

550 50 1250 [510]

MA754 1100 0.1 200 [511]
MA6000 1000 0.5 308 [511]
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After introducing a threshold stress, n ¼ 2 and the activation energy is
equal to that corresponding to grain boundary diffusion. These values are
similar to those obtained for conventional superplasticity and would indi-
cate that the main deformation mechanism is grain boundary sliding
accommodated by dislocation slip. The rate-controlling mechanism would
be grain boundary diffusion [498,501,512]. Mishra et al. [498] claim that
the small size of the precipitates allows for diffusion relaxation of the stresses
at the particles by grain boundary sliding, as illustrated in Figure 74. Higashi
et al. [512] emphasized the importance of the presence of a small amount of
liquid phase at the interfaces that contributes to stress relaxation and thus
enhanced superplastic properties at temperatures above solvus. Li and
Langdon [501] state that, given the small size of the particles, no load
transfer takes place, and thus the values obtained for the activation energy
after introducing a threshold stress are the true activation energies. Ac-
cording to Li and Langdon, the same mechanism (GBS rate controlled by
grain boundary diffusion) predominates during HSRS in both metal-matrix
composites and MA materials.

6. SUPERPLASTICITY IN NANOCRYSTALLINE AND
SUBMICROCRYSTALLINE MATERIALS

The development of grain-size reduction techniques in order to produce
microstructures capable of achieving superplasticity at high strain rates
and low temperatures has been the focus of significant research in recent
years [423,513–517]. Some investigations on the mechanical behavior of

Climb

Glide

Grain C

Grain B

Grain A

Diffusional
relaxation

Slip
accommodation

Figure 74 Grain boundary sliding accommodated by boundary-diffusion controlled
dislocation slip.
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submicrocrystalline (1 mm > g > 100 nm) and nanocrystalline
(g < 100 nm) materials have shown that superplastic properties are
enhanced in these materials, with respect to microcrystalline materials of
the same composition [513–525]. Improved superplastic properties have
been reported in metals [513–517,519–524], ceramics [518], and in-
termetallics [522,524,525]. The difficulties in studying superplasticity in
nanomaterials arise from (1) increasing uncertainty in grain size mea-
surements, (2) difficulty in preparing bulk samples, (3) high flow stresses
may arise that may approach the capacity of the testing apparatus, and (4)
the mechanical behavior of nanomaterials is very sensitive to the pro-
cessing details.

The microscopic mechanisms responsible for superplasticity in nano-
crystalline and submicrocrystalline materials are still not well understood.
Together with superior superplastic properties, significant work hardening
and flow stresses larger than those corresponding to coarser microstructures
have often been observed [521–523]. Figure 75 shows the stress–strain
curves corresponding to Ni3Al deformed at 650 �C and 725 �C at a strain
rate of 1 � 10�3 s�1 (Figure 75(a)) and to Al-1420 deformed at 300 �C at
1 � 10�2 s�1, 1 � 10�1 s�1, and 5 � 10�1 s�1 (Figure 75(b)). It is observed
in Figure 75(a) that nanocrystalline Ni3Al deforms superplastically at tem-
peratures that are more than 400 �C lower than those corresponding to the
microcrystalline material [527]. The peak flow stress, which reaches 1.5 GPa
at 650 �C, is the highest flow stress ever reported for Ni3Al. Significant strain
hardening can be observed. In the same way, Figure 75(b) shows that the
alloy Al-1420 undergoes superplastic deformation at temperatures about
150 �C lower and at strain rates several orders of magnitude higher
(1 � 10�1 s�1 vs 4 � 10�4 s�1) than the microcrystalline material [528].
High flow stresses and considerable strain hardening are also apparent.

The origin of these anomalies is still unknown. Mishra et al. [523,526]
attributed the presence of high flow stresses to the difficulty in slip
accommodation in nanocrystalline grains. Islamgaliev et al. [524] support
this argument. The difficulty of dislocation motion in nanomaterials
has also been previously reported in [529]. The stress necessary to generate
the dislocations responsible for dislocation accommodation is given
by [523]:

s ¼ Gb
4plð1� nÞ

�
ln

�
lp

b

�
� 1:67

�
(149)

154 Fundamentals of Creep in Metals and Alloys



where lp is the distance between the pinning points and s is the shear stress
required to generate the dislocations (see Figure 76). Figure 77 is a plot
showing the variation with grain size of the stress calculated from Eqn
(149) and the flow stress required for overall superplastic deformation ob-
tained from Eqn (138) assuming the main deformation mechanism is
GBS accommodated by lattice-diffusion controlled slip. It can be observed
that, for coarser grain sizes, the flow stress is high enough to generate
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Figure 75 Stress–strain curves corresponding to (a) Ni3Al deformed at 650 �C (dotted
line) and 725 �C (full line) at a strain rate of 1 � 10�3 s�1 and (b) to Al-1420 deformed at
300 �C at 1 � 10�2 s�1, 1 � 10�1 s�1, and 5 � 10�1 s�1. From Refs [524] and [526].
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dislocations for the accommodation of grain boundary sliding. For submi-
crocrystalline and nanocrystalline grain sizes, however, the stress required
for slip accommodation is higher than the overall flow stress. This is still
a rough approximation to the problem, since Eqn (149) does not include
strain-rate dependence, temperature dependence other than the modulus,
as well as the details for dislocation generation from grain boundaries.
However, Mishra et al. use this argument to emphasize that the microcrys-
talline behavior apparently cannot be extrapolated to nanomaterials.
Instead, there may be a transition between both kinds of behavior. The
large strain hardening found during superplasticity of nanocrystalline mate-
rials has still not been thoroughly explained.

A classification of nanomaterials according to the processing route has
been made by the same investigators [523,526]. Nanomaterials processed
by mechanical deformation (such as ECAP) are denoted by “D” and
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Figure 77 Theoretical stress for slip accommodation and flow stress for overall su-
perplasticity versus grain size in a Ti-6Al-4V alloy deformed at 1 � 10�3 s�1. From
Ref. [526]. (Solid line, theoretical stress for slip accommodation; dashed line, predicted
stress from empirical correlation _εss ¼ 5� 109ðs=EÞ2ðDsd=g2Þ).

Figure 76 Generation of dislocations for slip accommodation of grain boundary
sliding. From Ref. [526].
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nanomaterials processed by sintering of powders are denoted by “S.”
A large amount of dislocations are already generated during D processing
that can contribute to deformation by an “exhaustion plasticity” mecha-
nism. Thus, at the initial stage of deformation, the applied stress is
not sufficient to generate new dislocations for slip accommodation; rather,
existing dislocations move. As the easy paths of grain boundary sliding
become exhausted, the flow stress increases until it is high enough
to generate new dislocations. S nanomaterials may not be suitable for
obtaining large tensile-strains, due to the absence of preexisting
dislocations.

A significant amount of grain growth occurs during deformation even
with superplasticity at lower temperatures. In fact, the transition from low
plasticity to superplasticity in nanomaterials is often accompanied by the
onset of grain growth. This seems unavoidable, since both grain growth and
grain boundary sliding are thermally activated processes. It has been found
that a reduction of the superplastic temperature is usually offset by a
reduction of grain growth temperature [522]. As the grain size decreases,
the surface area of grain boundaries increases, and thus the reduction of
grain boundary energy emerges as a new driving force for grain growth.
This force is much less significant for coarser grain sizes (which, in turn,
render higher superplastic temperatures).

Tensile-loading molecular dynamic simulations on nanocrystalline SiC
suggests superplastic behavior [783] through forming a thin amorphous
layer at the grain boundaries.
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1. INTRODUCTION

The earlier chapters have described creep as a process where dislocation
hardening is accompanied by dynamic recovery. It should be discussed at
this point that dynamic recovery is not the only (dynamic) restoration
mechanism that may occur with dislocation hardening. Recrystallization
can also occur and this process can also “restore” the metal and reduce
the flow stress. Often, recrystallization during deformation (dynamic
recrystallization (DRX)) is observed at relatively high strain rates which is
outside the common creep realm. However, any complete discussion of
elevated temperature creep, and particularly, a discussion of high temper-
ature plasticity must include this restoration mechanism. An understanding
of the hot working (high strain rates and high temperatures) requires an
appreciation of both dynamic recovery and recrystallization processes. Some
definitions are probably useful, and we will use those definitions adopted by
Doherty et al. [222].

During deformation, energy is stored in the material mainly in the form
of dislocations. This energy is released in three main processes, those of
recovery, recrystallization, and grain coarsening (subsequent to recrystalli-
zation). The usual definition of recrystallization [222] is the formation and
migration of high-angle boundaries, driven by the stored energy of
deformation. The definition of recovery includes all processes releasing
stored energy that do not require the movement of high-angle boundaries.
In the context of the processes discussed, creep is deformation accompanied
only by dynamic recovery. Typical recovery processes involve the
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rearrangement of dislocations to lower their energy, for example by the
formation of low-angle subgrain boundaries, and annihilation of dislocation
line length in the subgrain interior, such as by Frank network coarsening.
Grain coarsening is the growth of the mean grain size driven by the
reduction in grain boundary area.

It is now recognized that recrystallization is not a Gibbs I transformation
that occurs by classic nucleation and growth process as described by
Turnbull [530] and Christian [531]. DG* and r*, the critical Gibb’s free
energy and critical-sized embryos, are unrealistically large if the proper
thermodynamic variables are used. As a result of this disagreement, it is now
universally accepted [532], as first proposed by Cahn [533], that the
new grains do not nucleate as totally new grains by the atom by atom
construction assumed in the classic kinetic models. Rather, new grains grow
from small regions, such as subgrains, that are already present in
the deformed microstructure. Special grains do not have to form. These
embryos are present in the starting structure. Only subgrains with a high
misorientation angle to the adjacent deformed material appear to have the
necessary mobility to evolve into new, recrystallized, grains. Typical
nucleation sites include pre-existing high-angle boundaries, shear
bands, and highly misoriented deformation zones around hard particles.
Misoriented “transition” bands (or geometric necessary boundaries (GNBs))
inside grains are a result of different parts of the grain having undergone
different lattice rotations due to different slip systems being activated
and can also be included as nucleation sites. Figure 78 (from Ref. [222])
illustrates an example of recrystallization in 40% compressed
pure aluminum. New grains 3 and 17 are only growing into the deformed
regions A and B, respectively, with which they are strongly misoriented and
not into regions with which they share a common misorientation; 17 has a
low-angle misorientation with A and 3 with B. It should be mentioned that
recrystallization often leads to a characteristic texture(s), usually different
that any texture developed as a consequence of the prior deformation that is
the driving force for any recrystallization.

2. DISCONTINUOUS DRX

Recrystallization can occur under two broad conditions: static and
dynamic. Basically, static occurs in the absence of plasticity during the
recrystallization. The most common case for static is heating cold-worked
metal leading to a recrystallized microstructure. DRX occurs with
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concomitant plasticity. This distinction is complicated, somewhat, by the
more recent suggestion of meta-dynamic recrystallization (MDRX) [534]
that can follow DRX, generally at elevated temperature. Although it occurs
without external plasticity, it can occur, quickly. It is distinguished from
static recrystallization (SRX) in that MDRX is relatively sensitive to prior
strain rate but insensitive to prestrain and temperature. SRX depends on
prestrain and temperature, but only slightly on strain rate. The recrystalli-
zation remarks in the previous section are equally valid for these two cases
(although Figure 78 was an SRX example) but differences are apparent.
DRX is more important to discuss in the context of creep plasticity.

Figure 78 Static recrystallization in aluminum cold worked 40%. A large grain has
fragmented into two regions, A and B. From Ref. [222].
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A single broad stress peak, where the material hardens to a peak stress,
followed by significant softening is often evidenced in DRX. The softening
is largely attributable to the nucleation of growing, “new,” grains that
annihilate dislocations during growth. This is illustrated in Figure 79. The
restoration is contrasted by dynamic recovery, where the movement of, and
annihilation of, dislocations at, high-angle boundaries is not important.
DRX may commence well before the peak stress. This becomes evident
without microstructural examination by examining the hardening rate, q, as
a function of flow stress. For customary Stage III hardening, q decreases at a
constant or decreasing “rate” with stress. DRX, on the other hand, causes
an “acceleration” of the decrease in hardening rate.
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Sometimes the single peak in the stress versus strain behavior in DRX is
not observed, rather multiple peaks may be evident leading to the
appearance of undulations in the stress versus strain behavior that “dampen”
into an effective “steady state.” This is also illustrated in Figure 79. It has
been suggested that the cyclic behavior indicates that grain coarsening is
occurring while a single peak is associated with grain refinement [535].

Although DRX is frequently associated with commercial metal forming
strain rates (e.g., 1 s�1 and higher), Figure 79 illustrates that DRX can occur
at more modest rates that approach those in ordinary creep conditions.
This explains why some ambiguity has been experienced in interpreting
creep deformation where both dynamic recovery and DRX are occurring.
As some recent analysis indicated, some of the creep data of Figure 16 of
Zr may include some data for which some DRX may be occurring.
Metals such as pure Ni and Cu frequently exhibit DRX [7,78]. A
substantially greater discussion of DRX, particularly in Al and Al-alloys, is
available in [223].

3. GEOMETRIC DRX

The starting grains of the polycrystalline aggregate distort with relatively
large strain deformation. These boundaries may thin to the dimensions
of the subgrain diameter with strain approaching 2–10 (depending on the
starting grain size), achievable in torsion or compression. In the case of Al,
the starting high-angle grain boundaries (HABs) (typically 35� misorien-
tation) are serrated as a result of subgrain-boundary formation, in association
with dynamic recovery (DRV), where the typical misorientations are about
a degree, or so. As the grains thin to about twice the subgrain diameter,
nearly one-third to one-half of the subgrain facets have been replaced by
high-angle boundaries, which have ancestry to the starting polycrystal. The
remaining two-thirds are still of low misorientation polygonized boundaries
typically of a degree or so. As deformation continues, “pinching off” may
occur which annihilates HABs and the high-angle boundary area remains
constant. Thus, with geometric dynamic recrystallization (GDX), the HAB
area can dramatically increase but not in the same discontinuous way as
DRX. GDX has been confused with DRX, as well and continuous
recrystallization (CR) (discussed in a later section), but has been confirmed
in Al and Al–Mg alloys [146,156], and may occur in other alloys as well,
including Fe-based and Zr [221,536]. Figure 44 showed the progression of
GDX in Al at elevated temperature in torsion [18].
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4. PARTICLE-STIMULATED NUCLEATION

As pointed out by Humphreys [222], an understanding of the effects
of second-phase particles on recrystallization is important since most
industrial alloys contain second-phase particles and such particles have a
strong influence on the recrystallization kinetics, microstructure, and
texture. Particles are often known for their ability to impede the motion of
high-angle boundaries during high temperature annealing or deformation
(Zener pinning). During the deformation of a particle-containing alloy, the
enforced strain gradient in the vicinity of a nondeforming particle creates a
region of high dislocation density and large orientation gradients, which is
an ideal site for the development of a recrystallization nucleus. The
mechanisms of recrystallization in two-phase alloys do not differ from those
in single-phase alloys. There are not a great deal of systematic measurements
of these zones, but it appears that the deformation zone may extend a
diameter, or so, from the particle into the matrix and lead to misorientations
of tens of degrees from the adjacent matrix.

5. CONTINUOUS REACTIONS

According to McNelley [222], it is now recognized that refined grain
structures may evolve homogeneously and gradually during the annealing
of deformed metals, either with or without concurrent straining. This
can occur even when the heterogeneous nucleation and growth stages of
primary recrystallization do not occur. “Continuous reactions” is a term
that is sometimes used in place of others that imply at least similar process
such as “continuous recrystallization,” “in situ recrystallization,” and
“extended recovery.” It is commonly observed that deformation textures
sharpen and components related to the stable orientations within the prior
deformation textures are retained [537]. These observations are consistent
with recovery as the sole restoration mechanism, suggesting that the term
“continuous reactions” may be more meaningful a description than
“continuous recrystallization.”

Mechanisms proposed to explain the role of recovery in high-angle
boundary formation include subgrain growth via dislocation motion
[535], the development of higher-angle boundaries by the merging of
lower-angle boundaries during subgrain coalescence [537], and the increase
of boundary misorientation though the accumulation of dislocations into
the subgrain boundaries [535]. These processes have been envisioned to
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result in a progressive buildup of boundary misorientation during (static or
dynamic) annealing, resulting in a gradual transition in boundary character
and formation of high-angle grain boundaries. Of course, one must
consider that some of the HABs may be formed as a result of GNBs,
discussed earlier.
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1. INTRODUCTION

This chapter will discuss the behavior of two types of materials that have
creep properties enhanced by second phases. These materials contain
particles with square or spherical aspect ratios that are both coherent and
incoherent with the matrix, and are of relatively low volume fractions. This
chapter is a review of work in this area, but it must be recognized that other
reviews have been published and this chapter reflects the particularly
high-quality reviews by Reppich and coworkers [538–540], Arzt [541,542],
and others [543–549]. It should also be mentioned that this chapter will
emphasize those cases where there are relatively wide separations between
the particles, or stated another way, the volume fractions of the precipitate
discussed here are nearly always less than 30% and usually less than 10%.
This contrasts with the case of some g/g0 alloys where the precipitate, g0,
occupies a substantial volume fraction of the alloys; these are discussed in
Chapter 11.
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2. SMALL VOLUME-FRACTION PARTICLES COHERENT
AND INCOHERENT WITH THE MATRIX WITH SMALL
ASPECT RATIOS

2.1 Introduction and Theory
It is well known that second-phase particles provide enhanced strength at
lower temperatures, and there have been numerous discussions on the
source of this strength. A review of low-temperature strengthening by
second-phase particles was published by Reppich [539]. Although a
discussion of the mechanisms of lower-temperature second-phase
strengthening is outside the scope of this chapter, it should be mentioned
that the strength by particles has been believed to be provided in two
somewhat broad categories of strengthening, Friedel cutting or Orowan
bypassing. Basically, the former involves coherent particles and the flow
stress of the alloy is governed by the stress required for the passage of the
dislocation through a particle. The Orowan stress is determined by the
bypass stress based on an Orowan loop mechanism. In the case of oxide
dispersion strengthened (ODS) alloys, in which the particles are incoherent,
the low temperature yield stress is reasonably predicted by the Orowan loop
mechanism [539,550]. The Orowan bowing stress is approximated by the
classic equation:

sor ¼ Gb=L ¼
�
2Td

bL

�
(150)

where sor is the bowing stress, L is the average separation between particles,
and Td is the dislocation line tension. This equation, of course, assumes that
the elastic strain energy of a dislocation can be estimated by Gb2=2, which,
though reasonable, is not firmly established [88].

This chapter discusses how the addition of second phases leads to
enhanced strength (creep resistance) at elevated temperatures. This dis-
cussion is important for at least two reasons. First, as Figure 80 illustrates,
the situation at elevated temperature is different than at lower tempera-
tures. This figure illustrates that the yield stress of the single-phase matrix is
temperature-dependent, of course, but there is a superimposed strength-
ening (suggested in the figure to be approximately athermal) by Orowan
bowing [550]. It is generally assumed that the bowing process cannot be
thermally activated, but the non-shearable particles can be negotiated by
climb. At higher temperatures, it is suggested that the flow stress becomes
only a fraction of this superimposed stress and an understanding of the
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origin is a significant focus of this chapter. Second, in the previous chapters
it was illustrated how solute additions, basically obstacles, lead to increased
creep strength. There is, essentially, a roughly uniform shifting of the
power law, power-law breakdown, and low-stress-exponent regimes to
higher stresses. This is evident in Figure 81, where the additions of Mg to
Al are described. In the case of alloys with second-phase particles, however,
there is often a lack of this uniform shift and sometimes the appearance that
many investigators have termed a “threshold stress,” sth. The intent of this

(a)

(b)

Figure 80 Compressive 0.2% yield stress versus temperature. (Shaded: Orowan stress
given as low-temperature yield-stress increment due to oxide dispersoids.) (a) ODS
Superalloy MA 754. (b) Pt-based ODS alloys. From Ref. [539].
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term is illustrated in Figure 82, based on the data of Lund and Nix and
additional interpretations by Pharr and Nix [552,553]. Figure 82 reflects
“classic” particle strengthening by oxide dispersoids (ThO2) in a Ni–Cr
solid solution matrix. These particles, of course, are incoherent with the
matrix. The “pure” solid solution alloy behavior is also indicated. Particle
strengthening is evident at all steady-state stress levels, but at lower stresses
there appears a modulus-compensated stress below which creep does
not appear to occur or is at least very slow. Again, this has been termed the
threshold stress, sth. Said another way, there is not a uniform shift of the
strengthening on logarithmic axes; there appears a larger fraction of
the strength provided by the particles at lower stress (high temperatures)
than at higher stresses (lower temperatures). In fact, the concept of a

Figure 81 Steady-state relation between strain rate _ε and flow stress for the alloys of
this work compared to literature data from slow tests (Al, Al–Mg, Al–Mn). Adapted from
Ref. [551].
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threshold stress was probably originally considered one of athermal
strengthening. This will be discussed more later, but this “coarse”
description identifies an aspect of particle strengthening that appears
generally different from dislocation-substructure strengthening and
solution strengthening (although the latter, in certain temperature regimes,
may have a nearly athermal strengthening character). The threshold stress
of Figure 82 is only about half the Orowan bowing stress, suggesting that
Orowan bowing may not be the basis of the threshold. Activation energies
appear relatively high (greater than lattice self-diffusion of the matrix) as
well as the stress exponents being relatively high (n >> 5) in the region
where a threshold is apparent.

Particle strengthening is also illustrated in Figure 81, based on a figure
from reference [551], where there is, again, a nonuniform shift in the

Figure 82 The normalized steady-state creep-rate versus modulus compensated
steady-state stress. Adapted from Refs [552,553].
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behavior of the particle-strengthened Al. The figure indicates the classic
creep behavior of high-purity Al. Additionally, the behavior of Mg
(4.8 wt%)-solute strengthened Al is plotted (there is additionally about
0.05 wt% Fe and Si solute in this alloy). The Mg atoms significantly
strengthen the Al. The strengthening may be associated with viscous glide
in some temperature ranges in this case. However, an important point is
that at higher modulus-compensated stresses, the Al–Mn alloy (strength-
ened by incoherent Al6Mn particles) has slightly greater strength than
pure Al (there is also an additional 0.05 wt% Fe and Si solute in this alloy).
It does not appear to have as high a strength as the solute-strengthened
Al-4.8wt% Mg alloy. However, at lower applied stresses (lower strain
rates) or higher temperatures, the second-phase strengthened alloy has higher
strength than both the pure matrix and the solution strengthened alloy. As
with the ODS alloy of Figure 82, a threshold behavior is evident. The
potential technological advantage of these alloys appears to be provided by
this threshold-like behavior. As the temperature is increased, the flow stress
does not experience the magnitude of decreases as by the other (e.g., solute
and dislocation) strengthening mechanisms.

Basically, the current theories for the threshold stress fall into one of two
main categories: a threshold arising due to increased dislocation line length
with climb over particles and the detachment stress to remove the
dislocation from the particle matrix interface after climb over the particle.

2.2 Local and General Climb of Dislocations over Obstacles
It was presumed long ago, by Ansell and Weertman [554], that dislocation
climb allowed for passage at these elevated temperatures and relatively low
stresses. The problem with this early climb approach is that the creep rate is
expected to have a low stress-dependence with an activation energy
equivalent to that of lattice self-diffusion. As indicated in the figures just
presented in this chapter, the stress dependence in the vicinity of the
threshold is relatively high and the activation energy in this threshold
regime can be much higher than that of lattice self-diffusion. More recent
analysis has attempted to rationalize the apparent threshold. One of the
earlier approaches suggested that for stresses below the cutting, sct (relevant
for some cases of coherent precipitates) or Orowan bowing stress, sor, the
dislocation mustdas Ansell and Weertman originally suggesteddclimb
over the obstacle. This climbing process could imply an increase in dislo-
cation line length and hence total elastic strain energy, which would act as
an impediment to plastic flow [555–560]. The schemes by which this has
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been suggested are illustrated in Figure 83. Figure 84 shows an edge
dislocation climbing, with concomitant slip, over a spherical particle. As the
dislocation climbs, work is performed by the applied shear. The total energy
change can be described by:

dEyðGb2=2ÞdL � sbLdx� snbLdy� dEel (151)

The first term is the increase in elastic strain energy associated with the
increase in dislocation line length. This is generally the principal term giving
rise to the (so-called or apparent) threshold stress. The second term is the
work done by the applied stress as the dislocation glides. The third term is
the work done by the normal component of the stress as the dislocation
climbs. The fourth term accounts for any elastic interaction between the

L

(a)

(b)

Local climb

General climb

node 

Gl id e  

P l a n e

Figure 83 Compilation by Blum and Reppich [538] of models for dislocation climb
over second-phase particles.
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dislocation and the particle [561], which does not, in its original
formulation, appear to include coherency stresses, although this would be
appropriate for coherent particles. This equation is often simplified to:

dE ¼ ðGb2=2ÞdL � sbLdx (152)

The critical stress for climb of the dislocation over the particle is defined
under the condition where:

ðdE=dxÞ ¼ 0

or:

sc ¼ Gb=Lð0:5a0Þ (153)

Arzt and Ashby defined the a0 parameter ¼ (dL/dx)max as the climb
resistance, and sc can be regarded as the apparent threshold stress. Estimates
have been made of a0 by relating the volume fraction of the particles, and
the particle diameter to the value of L in Eqn (153). Furthermore, there is a
statistical distribution of particle spacings, and Arzt and Ashby suggest:

sc=ðGb=LÞ ¼ a0=ð1:68þ a0Þ (154)

dz 
dy

z
y, b 

x

Glide plane xy 

σn

τ 

Climb direction 

Slip direction 

L/2 

2rs

Ldy 

 dy 

(b)(a)
Figure 84 (a) Climb of an edge dislocation over a spherical particle. (b) Top view. From
Ref. [538].
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while Blum and Reppich use a similar relationship that includes the
so-called Friedel correction:

sc=ðGb=LÞ ¼ a01:5
.�

2
ffiffiffi
2

p
þ

ffiffiffiffiffiffi
a03

p �
(155)

Equations (153)–(155), together with the values of a0, allow a deter-
mination of the threshold stress. Note that for general climb there is the
suggestion that sc is particle-size independent.

The determination of a0 will depend on whether climb is local or general;
both cases are illustrated in Figure 83. The portion of the dislocation that
climbs can be either confined to the particle matrix interfacial region (local),
or the climbing region can extend beyond the interfacial region, well into the
matrix (general). This significantly affects the a0 calculation.

First, Eqn (153) suggests a maximum value for a0 that corresponds to the
Orowan bowing stress. It has been suggested that the Orowan stress can be
altered based on randomness and elastic interaction considerations
[556,559], giving values of 0.5 < a0 < 1.0. For local climb, the value of a0

depends on the shape of the particle, with 0.77 < a0 < 1.41, from spherical
to square shapes [555,556,559]. For extended or general climb, which is a
more realistic configuration in the absence of any particular attraction to the
particle [562], the a0 is one order of magnitude or so smaller. Additionally,
the value of a0 will be dependent on the volume fraction, f, as f1/2 and
values of a0 range from 0.047 to 0.14 from 0.01 < f < 0.10 [538]. Blum and
Reppich suggested that for these circumstances:

for local climb; sc ¼ 0:19½Gb=L�
and for general climb; sc ¼ 0:004 to 0:02½Gb=L�

This implies that there is a threshold associated with the simple climbing
of a dislocation over particle obstacles, without substantial interaction. This
threshold stress is a relatively small fraction of the Orowan stress. There is
the implicit suggestion in all of this analysis that the stress calculated from
the above equations is athermal in nature, and this will be discussed
subsequently.

2.3 Detachment Model
In connection with the above, however, there has been evidence that
dislocations may interact with incoherent particles. This was observed by
Nardone and Tien [563] and later by Arzt and Schroder [564] and others
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[565] using transmission electron microscopy (TEM) of creep-deformed
ODS alloys. Figures 85 and 86 illustrate this. The dislocations must un-
dergo local climb over the precipitate and then the dislocation must undergo
“detachment.” Srolovitz et al. [566] suggested that incoherent particles have
interfaces that may slip and can attract dislocations by reducing the total
elastic strain energy. Thus, there is a detachment stress that reflects the in-
crease in strain energy of the dislocation on leaving the interface. Basically,
Arzt and coworkers suggest that the incoherent dispersoids strengthen by
acting as, essentially, voids. Arzt and coworkers [557,568–570] analyzed the
detachment process in some detail and estimated sd as:

(a)

(b)

Figure 85 The mechanism of interfacial pinning. (a) Perspective view illustrating serial
local climb over spherical particles of mean (planar) radius rs and spacing l and
subsequent detachment. (b) Circumstantial TEM evidence in the creep-exposed ferritic
ODS superalloy PM 2000. From Ref. [565].
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sd ¼
�
1� k2R

�1=2ðGb=LÞ (156)

where kR is the relaxation factor described by:

ðGb2Þp ¼ kRðGb2Þm (157)

where “p” refers to the particle interface and “m” the matrix. In the limit
that kR ¼ 1, there is no detachment process.

Reppich [572] modified the Arzt et al. analysis slightly, using Fleischer–
Friedel obstacle approximation, and suggested that:

sd ¼ 0:9
	
1� k2R


3=4.h
1þ 	

1� k2R

3=4iðGb=LÞ (158)

This decreases the values of Eqn (156) by roughly a factor of 2. Note
that as with general climb, sd and sc are independent of the particle size. It
was suggested by both of the above groups that this detachment process

(a) (b)

Figure 86 TEM evidence of an attractive interaction between dislocation and
dispersoid particles. (a) Dislocation detachment from a dispersoid particle in a Ni alloy.
(b) Dissociated superdislocation detaching from dispersoid particles in the interme-
tallic compound Ni3Al. From Refs [542,564,567].
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could be thermally activated. This equation suggests the sd is roughly
Gb=3L, substantially higher than sc for general climb, as illustrated in
Figure 87. Arzt and Wilkinson [557] showed that if kR is such that there is
just a 6%, or less, reduction in the elastic strain energy, then local climb
become the basis of the threshold stress instead of detachment. For general
climb, the transition point is kR about equal to 1.

Rosler and Arzt [570] extended the detachment analysis to a “full
kinetic model” and suggested a constitutive equation for “detachment-
controlled” creep:

_ε ¼ _εo exp
h	�Gbr2S

�
kT


ð1� kRÞ3=2ð1� s=sdÞ3=2
i

(159)

where _εo ¼ C2DvLrm=2b, and rS is the particle radius. This was shown to
be valid for random arrays of particles. Figure 88 plots this equation for

Figure 87 Creep behavior of particle-strengthened materials (schematic). The stress is
given in units of the classical Orowan stress. From Ref. [538].
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several values of kR as a function of strain rate. Threshold behavior is
apparent for modest values of kR. This model appears to reasonably predict
the creep behavior of various dispersion-strengthened Al alloys [541,571]
with reasonable kR values (0.75–0.95). As Arzt points out, this model,
however, does not include the effects of dislocation substructure. Arzt
noted from this equation that an optimum particle size is predicted. This
results from the probability of thermally activated detachment being raised
for small dispersoids and that large particles (for a given volume fraction)
have a low Orowan stress and, hence, small detachment stress [541]. It
should be noted that Figure 88 does not suggest a “pure” threshold stress
(below which plasticity does not occur). Rather, thermally activated
detachment is suggested, and this will be discussed more later.

Figure 88 Theoretical prediction of the creep rate (normalized) as a function of stress
(normalized) on the basis of thermally activated dislocation detachment from attrac-
tive dispersoids, as a function of interaction parameter k. The change of curvature at
high strain rates (broken line) indicates the transition to the creep behavior of
dispersoid-free material and does not follow from the equation. From Ref. [569].
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More recently, Reppich [540] reviewed the reported in situ straining
experiments in ODS alloys at elevated temperatures and concluded that the
observations of the detachment are essentially in agreement with the above
description (thermal activation aside). In situ straining experiments by Behr
et al., at 1000 �C in the TEM, also appear to confirm this detachment process
in dispersion-strengthened intermetallics [567], as shown in Figure 86.

2.4 Constitutive Relationships
The suggestion of the above is that particle-strengthened alloys can be
approximately described by relationships that include the threshold stress.
A common relationship that is used to describe the steady-state behavior of
second-phase strengthened alloys (at a fixed temperature) is:

_εss ¼ A0ðs� sthÞnm (160)

where sth is the threshold stress and nm is the steady-state stress exponent of
the matrix. Figure 89 graphically illustrates this superposition strategy. As
will be discussed subsequently, this equation is widely used to assess the
value of the threshold stress. Additional data that illustrates the value of
Eqn (160) for superalloys is illustrated in Figure 90. Figure 91 illustrates
that at higher stresses, above sor, decreases in stress (and strain-rate) illustrate
a threshold behavior. That is, a plot of _ε1=n versus s extrapolates to sor, an
“apparent sth.” However, as s decreases below sor, a new threshold ap-
pears, and this then is the sth relevant to creep plasticity. A sth can be esti-
mated with low stress plots such as Figure 91 [575,576] (also see Figure 87).
These give rise to estimates of sth and allow plots such as Figure 90. How-
ever, Figure 89(b) and (c) illustrate that the high-temperature sth is not a
true threshold and creep occurs below sth. This is why sth estimates based
on plots such as Figure 91 decrease with increasing temperature.

An activation energy term can be included in the form of:

_εss ¼ A00 expð�Q=kTÞ
�
s� sth

G

�nm

(161)

or

_εss ¼ A00DGb
kT

�
s� sth

G

�nm

(162)

where D is the diffusion coefficient. However, the use of D works in some
cases while not in others for both coherent and incoherent particles.
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Figure 92 illustrates somewhat different behavior from Figure 82 in that the
data do not appear to reduce to a single line when the steady-state stress is
modulus-compensated and the steady-state creep rates are lattice-self-
diffusion compensated. The activation energy for creep is reported to be
relatively high at 537 kJ mol�1 (as compared to 142 kJ mol�1 for lattice
self-diffusion). Cadek and coworkers [578,579] illustrated that for
experiments on ODS Cu, the (modulus-compensated) threshold stress,
determined by the extrapolation procedure described in Figure 92, is
temperature-dependent. They propose that the activation energies should
be determined using the usual equation but at constant (s � sth)/G rather
than s/G as used in typical (especially five-power law for single-phase
metals and alloys) creep activation energy calculations. The activation
energies they calculated using this procedure reasonably correspond to

(a) (b)

(c)

Figure 89 Comparison of the creep behavior of ZrO2 dispersion strengthened
Pt-based alloys at 1250 �C. (a) Double-logarithmic Norton plot of creep rate _ε versus
stress s. (b) Lagneborg–Bergman plot. (c) Dependence of sth on _ε. From Ref. [567].
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lattice or dislocation-core self-diffusion. Thus, the investigators argued that
the activation energy for diffusion could reasonably be used as the activation
energy term such as in Eqn (161).

Figure 87 is an idealized plot by Blum and Reppich that illustrates many
of the features and parameters for particle strengthening. This is a classic
logarithmic plot of the steady-state creep- (strain-) rate versus the steady-
state stress. The value of sor is indicated and apparent threshold behavior
is observed above this stress. A second threshold-like behavior is evident
below the Orowan stress, one for incoherent particles and another for
coherent particles at particularly low stresses (high temperature). The
incoherent particles evince interfacial pinning and the more effective (or
higher) threshold-like behavior is observed in the absence of a detachment

Figure 90 Double-logarithmic plot of creep rate versus reduced stress s � sth for
various superalloys. After Ajaja et al. [573].
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stress. There has been some discussion as to what mechanism may be
applicable at stresses below the apparent threshold, and it appears that grain
boundary sliding and even diffusional creep have been suggested [580,581].
These, however, are speculative, as even single crystals appear to show sub-
threshold plasticity. Figure 88 was basically an attempt to explain creep
below the apparent sth through thermally activated detachment. This
approach has become fairly popular [582], although recently it has been
applied below, but not above, an apparent threshold. A difficulty with this
approach is that Figures 85 and 86 suggest that a considerable length of
dislocation is trapped in the interface, which would appear to imply a very
large activation energy for detachment, much larger than that for Dv in Eqn
(159). In at least some instances, the plasticity below the apparent threshold
is due to a change in deformation mechanism [583]. Dunand and Jansen
[584,585] suggested, for larger-volume fractions of second-phase particles
(e.g., 25%), dislocation pile-ups become relevant and additional stress terms

Figure 91 _ε1=n versus s-plot for determination of sth in g0-hardened Nimonic PE 16 by
back extrapolation (arrows). From Ref. [574].
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must be added to the conventional equations. However, these consider-
ations do not appear relevant to the volume fractions being typically
considered here.

2.5 Microstructural Effects
2.5.1 Transient Creep Behavior and Dislocation Structure
The strain versus time behavior of particle-strengthened alloys during
primary and transient creep is similar to that of single-phase materials in
terms of the strain rate versus strain trends as illustrated in Figure 93.
Figure 93(a) illustrates Incoloy 800 H [544] and (b) Nimonic PE 16 [574].
Both generally evince Class M behavior although the carbide-strengthened
Incoloy shows an inverted transient (such as a Class A alloy) but this was
suggested to be due to particle structure changes, which must be considered
with prolonged high-temperature application. The Nimonic alloy at the

Figure 92 Lack of convergence of the different dispersion-strengthened creep curves
with Qsd compensation. From Ref. [577].
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lowest stress also shows such an inverted transient and this was suggested as
possibly being due to particle changes in this initially coherent
g0-strengthened alloy.

There has been relatively little discussed in the literature regarding creep
transients. Blum and Reppich suggest that the transients between steady
states with stress drops and stress jumps are analogous to the single-phase
metals both in terms of the nature of the mechanical (e.g., strain rate vs
strain) trends and the final steady-state strain-rate values, as well as the final
substructural dimensions.

The dislocation structure of particle-strengthened alloys has been
examined, particularly by Blum and coworkers [538,551]. The subgrain
size in the particle-strengthened Al–Mn alloy are essentially identical to
those of high-purity Al at the same modulus-compensated stresses. Similar
findings were reported for Incoloy 800H [586] and TD-Nichrome [558].
These results show that the total stress level affects the subgrain substruc-
ture, even if there is an interaction between the particles and the subgrain
boundaries. Blum and Reppich suggest, however, that the density of
dislocations within the subgrains seems to depend on s � sth rather than s,
suggesting that particle hardening diminishes the network dislocation
density compared to the single-phase alloy at the same value of sss/G.
Some of these trends are additionally evident from Figure 94. One
interpretation of this observation is that the subgrain size reflects the stress
but does not determine the strength. In contrast, Arzt suggests that only at
higher stresses, where the alloys approach the behavior of dispersoid-free
matrix, have dislocation substructures been reported [577]. Blum,

(a) (b)

Figure 93 Half-logarithmic plot of creep rate _ε versus (true) strain of a single-phase
material and particle-strengthened material. (a) Incoloy 800 H. (b) Nimonic PE
16. Adapted from Refs [538,574,586].
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however, suggests that this may be due to insufficient strain to develop the
substructure that would ultimately form in the absence of interdiction by
fracture [214].

2.5.2 Effect of Volume Fraction
As expected [580], higher-volume fractions, for identical particle sizes, are
associated with greater strengthening and, of course, threshold behavior.

Figure 94 Steady-state dislocation spacings of Ni-base alloys. Adapted from Ref. [90].
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Others [587] have also suggested that the volume fraction of the second-
phase particles can affect the value of the threshold stress.

2.5.3 Grain Size Effects
Lin and Sherby [548], Stephens and Nix [583], and Gregory et al. [511]
examined the effects of grain size on the creep properties of dispersion
strengthened Ni–Cr alloys and found that smaller grain size material may
not exhibit a threshold behavior and evince stress exponents more typical of
single-phase polycrystalline metals with high elongations [588]. Arzt [541]
reports this sigmoidal behavior occurs in single crystals as well and the loss in
strength (presumably below that of thermally activated detachment)
involves other poorly understood processes including changes in the size or
number of particles.

2.6 Coherent Particles
Strengthening from coherent particles can occur in a variety of ways that
usually involve particle cutting. This cutting can be associated with (1) the
creation of antiphase boundaries (e.g., g-g0 superalloys), (2) the creation of
a step in the particle, (3) differences in the stacking-fault energy between
the particle and the matrix, (4) the presence of a stress field around the
particle, and (5) other changes in the “lattice friction stress” [133].

Most of the earlier work referenced was relevant to incoherent particles.
This is probably in part due to the fact that coherent particles are often
precipitated from the matrix, as opposed to added by mechanical alloying,
etc. Precipitates may be unstable at elevated temperatures and as a conse-
quence, the discussion returns to that of incoherent particles. Of course,
exceptions include the earlier referenced g-g0 of superalloys and, more
recently, the AlSc3 precipitates in Al–Sc alloys by Seidman et al. [590,591].
In this latter work, coherent particles are precipitated. The elevated tem-
perature strengths are much less than the Orowan bowing stress and also less
than expected based on the shearing mechanism. Thus, it was presumed
that the rate-controlling process is general climb over the particle, consistent
with other literature suggestions. This, as discussed in the previous section,
is associated with a relatively low threshold stress that is a small fraction of
the Orowan bowing stress at about 0.03 sor, and is independent of the
particle size. Seidman et al. found that the normalized threshold stress
increases significantly with the particle size and argued that this could only
be rationalized by elastic interaction effects, such as coherency strain and
modulus effects. Detachment is not important. The results are illustrated in
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Figure 95. They also found that subgrains may or may not form. They do
appear to obey the standard equations that relate the steady-state stress to
subgrain size when they are observed. Seidman et al. do appear to suggest
that steady state was achieved without the formation of subgrains.

Figure 95 Normalized threshold stress versus coherent precipitate radius. From
Ref. [591].
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1. INTRODUCTION

The term “intermetallics” has been used to designate the intermetallic
phases and compounds that result from the combination of various metals,
and which form a large class of materials [592]. There are mainly three types
of superlattice structures based on the f.c.c. lattice, i.e., L12 with a variant of
L012 (in which a small interstitial atom of C or N is inserted at the cube
center), L10, and L12-derivative long-period structures such as DO22 or
DO23. The b.c.c.-type structures are B2 and DO3 or L21. The DO19

structure is one of the most typical superlattices based on h.c.p. symmetry.
Table 6 lists the crystal structure, lattice parameter, and density of selected
intermetallic compounds [593]. A comprehensive review on the physical
metallurgy and processing of intermetallics can be found in Ref. [594].

Intermetallics often have high melting temperatures (usually higher than
1000 �C), due partly to the strong bonding between unlike atoms, which is,
in general, a mixture between metallic, ionic, and covalent to different
extents. The presence of these strong bonds is also associated with high
creep resistance. Another factor that contributes to the superior strength of
intermetallics at elevated temperature is the high degree of long-range order
[596], which results in low diffusivity; the number of atoms per unit cell is
large in a material with long-range order. Therefore, in alloys in which
dislocation climb is rate-controlling, a decrease in the diffusion rate would
result in a drop in the creep rate and therefore an increase of the creep
resistance.

Table 6 Crystal structure, lattice parameters, and density of selected intermetallic
compounds

Alloy Structure (Bravais lattice)

Lattice
parameters

Density (g cm�3)a (nm) c (nm)

Ni3Al L12 (simple cubic) 0.357 e 7.40
NiAl B2 (simple cubic) 0.288 e 5.96
Ni2AlTi DO3 0.585 e 6.38
Ti3Al DO19 0.577 0.464 4.23
TiAl L10 0.398 0.405 3.89
Al3Ti DO22 0.395 0.860 3.36
FeAl B2 (simple cubic) 5.4e6.7 [599]
Fe3Al DO3 5.4e6.7 [599]
MoSi2 C11b 6.3
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One major disadvantage of these materials, which is limiting their
industrial application, is low fracture toughness [597]. This is attributed to
several factors. First, the strong atomic bonds as well as the long-range order
give rise to high Peierls stresses. Second, grain boundaries are intrinsically
weak. The low boundary cohesion results in part from the directionality of
the distribution of the electronic charge in ordered alloys [594]. The strong
atomic bonding between the two main alloy constituents is related to the
p-d orbital hibridization, which leads to a strong directionality in the charge
distribution. The directionality is reduced in grain boundaries and the
bonding becomes much weaker. Other factors that may contribute to the
brittleness in intermetallics are the limited number of operative slip systems,
segregation of impurities at grain boundaries, a high-work hardening rate,
planar slip, and the presence of constitutional defects. The latter may be, for
example, atoms occupying sites of a sublattice other than their own sub-
lattice (antisites) or vacancies of deficient atomic species (constitutional
vacancies). The planar faults, dislocation dissociations, and dislocation core
structures typical of intermetallics were summarized by Yamaguchi and
Umakoshi [598]. Other so-called extrinsic factors that cause brittleness are
the presence of segregants, interstitials, moisture in the environment, poor
surface finish, and hydrogen [599]. It appears that those intermetallics with
more potential as high-temperature structural materials, i.e., those that are
less brittle, are compounds with high crystal symmetry and small unit cells.
Thus, nickel aluminides, titanium aluminides, and iron aluminides have
been most studied over the last few decades. These investigations were
stimulated by both the possibility of industrial application and scientific
interest [592–601].

Creep resistance is a critical property in materials used for high-
temperature structural applications. Some intermetallics may have the po-
tential to replace nickel superalloys in parts such as the rotating blades of gas
turbines or jet engines [602] due to their higher melting temperatures, high
oxidation and corrosion resistance, high creep resistance, and in some cases
lower density. The creep behavior of intermetallics is more complicated
than that of pure metals and disordered solid solution alloys due to their
complex structures together with the varieties of chemical composition
[23,603]. The rate-controlling mechanisms are still not fully understood
despite significant efforts over the last couple of decades [592,598,604–612].

In the following, the current understanding of creep of intermetallics
will be reviewed, placing special emphasis on investigations published over
the last two decades and related to the compounds with potential for
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structural applications such as titanium aluminides, iron aluminides, and
nickel aluminides.

2. TITANIUM ALUMINIDES

2.1 Introduction
Titanium aluminide alloys have potential for replacing heavier materials in
high-temperature structural applications such as automotive and aerospace
engine components. This is due, first, to their low density (lower than that
of most other intermetallics), high melting temperature, excellent elevated
temperature strength, high modulus, oxidation resistance, and favorable
creep properties [613,614]. Second, they can be processed through con-
ventional manufacturing methods such as casting, forging, and machining
[610]. In fact, TiAl turbocharger turbine wheels have recently been used in
automobiles [610]. Table 7 compares the properties between titanium
aluminides, titanium-based conventional alloys, and superalloys (see the
phase diagram for phase compositions).

Many investigations have attempted to understand the creep mecha-
nisms in titanium aluminides over the last two decades. There are several
excellent reviews in this area [601,613,615,616]. The creep behavior of

Table 7 Properties of titanium aluminides, titanium-based conventional alloys,
and superalloys

Property
Ti-based
alloys

Ti3Al-based
a2 alloys

TiAl-based
g alloys Superalloys

Density (g cm�3) 4.5 4.1e4.7 3.7e3.9 8.3
RT modulus (GPa) 96e115 120e145 160e176 206
RT yield strength
(MPa)

380e1115 700e990 400e630 250e1310a

RT tensile strength
(MPa)

480e1200 800e1140 450e700 620e1620a

Highest temperature
with high creep
strength (�C)

600 750 1000 1090

Temperature of
oxidation (�C)

600 650 900e1000 1090

Ductility (%) at RT 10e20 2e7 1e3 3e5
Ductility (%) at
high T

High 10e20 10e90 10e20

Structure hcp/bcc DO19 L10 fcc/L12
aData added to the table provided in Ref. [614].
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titanium aluminides depends strongly on alloy composition and micro-
structure. The different Ti-Al microstructures are briefly reviewed in the
following.

Figure 96, the Ti-Al phase diagram, illustrates the following phases:
g-TiAl (ordered face-centered tetragonal, L10), a2-Ti3Al (ordered hexag-
onal, DO19), a-Ti (h.c.p., high-temperature disordered), and b-Ti (b.c.c.,
disordered). Gamma (g) or near g-TiAl alloys have compositions with
49–66 at.% Al, depending on temperature. The a2 alloys contain from
22 at.% to approximately 35 at.% Al. Two-phase (g-TiAl þ a2-Ti3Al)
alloys contain between 35 at.% and 49 at.% Al. The morphology of the two
phases depends on the thermomechanical processing [610]. Alloys, for
example, with nearly stoichiometric or Ti-rich compositions that are cast or
cooled from the b phase, going through the a single-phase region and
a / a þ g and a þ g/ a2 þ g reactions, have fully lamellar (FL) mi-
crostructures, as illustrated in Figure 97. An FL microstructure consists of
“lamellar grains,” or colonies of size gl, that are equiaxed grains composed of
thin alternating lamellae of g and a2. The average thickness of the lamellae,
termed the lamellar interface spacing, is denoted by ll. The g and a2
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Figure 96 Ti-Al phase diagram. From Ref. [594].

Creep of Intermetallics 193



lamellae are stacked such that {111} planes of the g lamellae are parallel to
(0001) planes of the a2 lamellae and the closely packed directions are
parallel. The lamellar structure is destroyed if an FL microstructure is
annealed or hot-worked at temperatures above 1150 �C within the (a þ g)
phase fields. A bimodal microstructure develops, consisting of lamellar
grains alternating with g grains (or grains exclusively of g-phase).
Depending of the amount of g-grains, the microstructure is termed “nearly
lamellar” (NL) when the fraction of g-grains is small, or duplex (DP) when
the fractions of lamellar and g-grains are comparable. Detailed studies of the
microstructures of TiAl alloys are given elsewhere [617,618].

Overall, two phase g-TiAl alloys have greater potential for high-
temperature applications than a-Ti3Al alloys due to their higher oxida-
tion resistance and elastic modulus [614]. Simultaneously, two-phase
g-TiAl alloys have comparatively lower creep strength at high tempera-
ture than a-Ti3Al alloys, and therefore significant efforts have been devoted
to improve the creep behavior of g-TiAl [615]. It is now well established
that the optimum microstructure for creep resistance in two-phase TiAl
alloys is FL [619–621]. As will be discussed in the subsequent sections, this
microstructure shows the highest creep resistance, the lowest minimum
creep rate, and the best primary creep behavior (i.e., longer times to attain a
specified strain). Figure 98 illustrates the creep curves at 760 �C and
240 MPa corresponding to a Ti-48% Al alloy with several different mi-
crostructures. The FL microstructure shows superior creep resistance.
Lamellar microstructures have also superior fracture toughness and fatigue

Figure 97 Fully lamellar microstructure corresponding to a Ti-Al based alloy with a
nearly stoichiometric composition. From Ref. [601].
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resistance as compared to DP structures, although the latter have, in general,
better ductility [601]. This section will review the fundamentals of creep
deformation in FL Ti-Al alloys. Emphasis will be placed on describing
prominent recent creep models, rather than on compiling the extensive
experimental data [615,616,619].

2.2 Rate-Controlling Creep Mechanisms in FL TiAl
Intermetallics during Secondary Creep

Several investigations have attempted to determine the rate-controlling
mechanisms during creep of FL TiAl intermetallics [396,615,616,
619–625]. Most creep studies were performed in the 676–877 �C tem-
perature range [616] and 80–500 MPa, which are relevant to the antici-
pated service conditions [396]. Clarifying the rate-controlling creep
mechanisms in FL TiAl alloys is difficult for several reasons. First, ration-
alization of creep data by conventional methods such as analysis of steady-
state stress exponents is controversial, since an unambiguous secondary
creep stage is not usually observed. Instead, a minimum strain rate, _εmin, is
measured, and the “secondary creep rate” or steady-state rate is presumed
close to the minimum rate. Second, a continuous increase in the slope of
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Figure 98 Creep curves at 760 �C and 240 MPa corresponding to several near g-TiAl
alloys with different microstructures. Ti-48Al alloy with a fully lamellar (FL) micro-
structure. Ti-48Al alloy with a nearly lamellar (NL) microstructure. Ti-48Al alloy with a
duplex (DP) microstructure. From Ref. [619].
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the curve is observed (i.e., the stress exponent steadily increases as stress
increases) when minimum strain rates are plotted versus modulus-
compensated stress over a wide stress range. Figure 99 illustrates a mini-
mum strain rate versus stress plot for an FL Ti-48Al-2Cr-2Nb at 760 �C.
The stress exponent varies from n ¼ 1, at low stresses, to n ¼ 10 at high
stresses [619]. Stress exponents as high as 20 have been measured at elevated
stresses [614]. Third, the analysis of creep data is a difficult task because of
the complex microstructures of FL TiAl alloys. Microstructural parameters
such as lamellar grain size (gl), lamellar interface spacing (ll), lamellar
orientation, precipitate volume fraction, and grain boundary morphology
all have significant influences on the creep properties that are difficult to
incorporate into the traditional creep models that have been discussed
earlier. Nevertheless, a variety of rate-controlling mechanisms of FL TiAl
alloys has been proposed over the last few years.

2.2.1 High Stress–High Temperature Regime
Beddoes et al. [619] suggested, based on their own results and data from
other investigators, that the gradual increase in the stress exponent with
increasing stress might be due to changes in the creep mechanisms from
diffusional creep at low stresses, to dislocation climb as the stress increases,
and finally to power-law breakdown at very high stresses. (A note should be
made that the creep data analyzed by Beddoes et al. originated from
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Figure 99 Minimum strain rate versus stress curve of a Ti-48Al-2Cr-2Nb alloy
deformed at 760 �C. From Ref. [619].
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strain-rate change tests, rather than from independent creep tests.) Thus,
these investigators claim that dislocation climb would most likely be rate-
controlling during creep of FL microstructures at stresses higher than
about 200 MPa and temperatures higher than about 700 �C. They sug-
gested that this argument is consistent with the previous work on the creep
of single-phase g-TiAl alloys by Wolfenstine and González-Doncel [626].
These investigators analyzed the creep data of Ti-50 at.%Al, Ti-53.4 at.%Al
and Ti-49 at.%Al tested from 700–900 �C, and concluded that the creep
behavior of these materials could be described by a single mechanism by
incorporating a threshold stress. The stress exponent was found to be close
to 5 and the activation energy equal to 313 kJ mol�1, a value close to that
for lattice diffusion of Ti in g-TiAl (291 kJ mol�1) [627]. Additionally,
several other studies on creep of FL TiAl alloys reported activation energies
of roughly 300 kJ mol�1 [627]. Therefore, the creep of FL TiAl alloys
appears to be controlled by lattice diffusion of Ti. The activation energy for
lattice diffusion of Al in g-TiAl has not been measured but it is believed to
be significantly higher than that of Ti [628]. Es-Souni et al. [620] also
suggested the predominance of a recovery-type dislocation-climb mecha-
nism based on microstructural observations of the formation of dislocation
arrangements (similar to subgrains) during creep. Several possible explana-
tions have been suggested to reconcile the proposition of dislocation climb
and the observation of high stress exponents (n > 5). First, it has been
suggested [615] that backstresses may arise within lamellar microstructures
due to the trapping of dislocation segments at the lamellar interfaces, which
leads to bowing of dislocations between interfaces. The shear stress required
to cause bowing, which was suggested as a source of backstresses during
creep, is inversely proportional to the lamellar interface spacing (ll). Sec-
ond, it has been proposed [629] that the occurrence of microstructural
instabilities such as dynamic recrystallization during deformation may
contribute to a rise in the strain rate, thus rendering stress exponents with
less physical meaning in terms of a single, rate-controlling restoration
mechanism. Finally, it has been suggested [615] that the subgrain size
corresponding to a specific creep stress if dislocation climb were rate-
controlling could be larger than the lamellar spacing, ll, which remains
constant with stress. In fact, subgrains are not observed, particularly at low
strains, where minimum creep rates are measured. Thus, it was suggested
that ll may actually become the “effective subgrain size.” These circum-
stances are similar to constant structure creep, which is associated with a
relatively high stress exponent of 8 or more.
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Beddoes et al. [619] later more precisely delineated the stress range in
which dislocation climb was rate-controlling by performing stress-
reduction tests on FL TiAl alloys. Figure 100 illustrates the results of the
reduction tests on a Ti-48Al-2Cr-2Nb alloy at 760 �C, with an initial stress
of 277 MPa. Data are illustrated for two different FL microstructures, both
with a (lamellar) grain size of 300 mm, but with different lamellar interface
spacing (120 and 450 nm). Deformation at a lower rate was observed upon
reduction of the stress. An incubation period was observed for reduced
stresses lower than a given stress (indicated with a dotted line) before
deformation would continue. This was attributed [619] to the predomi-
nance of dislocation climb in the low-stress regime (below the dotted line),
and to the predominance of dislocation glide in the high-stress regime
(above the dotted line). The stress at which the change in mechanism
occurs depends on the lamellar interface spacing. It was suggested that an
increase in the lamellar interface spacing results in an increase of the stress
below which dislocation climb becomes rate-controlling. Beddoes et al.
[619] proposed an explanation for the decrease in the minimum creep rate
with decreasing lamellar interface spacing for a given stress. First, for two
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microstructures deforming in the glide-controlled creep regime (for
example, for stresses higher than 190 MPa in Figure 100), narrower spacings
would increase the creep resistance, since the mean free path for dislocations
would significantly decrease. The lamellae interfaces would thus act as
obstacles for gliding dislocations. In fact, dislocation pile-ups have been
observed at interfaces in FL structures [621]. Second, there is a stress range
(for example, stresses between 130 and 190 MPa in Figure 100) for which
the rate-controlling creep mechanism in microstructures with very narrow
lamellae would be dislocation climb (associated with lower strain rates)
whereas in others with wider lamellae it would be dislocation glide. This
was attributed to the different backstresses originating at lamellae of
different thicknesses. A larger Orowan stress is necessary to bow dislocations
in narrow lamellae than in wider lamellae. Thus, an applied stress of
130–190 MPa would be high enough to cause dislocation bowing in the
material with wider lamellae. Dislocation glide would be controlled by the
interaction between dislocations and interfaces rather than climb. However,
in narrower lamellae, the applied stress is not sufficient to cause dislocation
bowing and dislocation movement is then controlled by climb.

Mills et al. [79,931] studied the creep properties of an FL Ti-48Al-2Cr-
2Nb alloy at high stresses (207 MPa) and high temperatures (around
800 �C), particularly examining the dislocation structures developed during
deformation. They mainly observed unit a/2 [110] dislocations with jogs
pinning the screw segments. They found that a distribution of lamellae
spacings exists in an FL microstructure. A higher dislocation density was
observed in the wider lamellae, suggesting, to these investigators, that wider
lamellae contribute more to creep strain than thinner lamellae. Addition-
ally, no subgrains were observed at the minimum creep rate (typically
1.5–2% plastic strains). The absence of subgrain formation during secondary
creep of single-phase TiAl alloys under conditions with an activation
energy similar to that of self-diffusion was observed (thus suggesting the
predominance of dislocation climb). In order to rationalize this apparent
discrepancy between the behavior of single-phase Ti-Al alloys and pure
metals, Mills and coworkers proposed a modification of the jogged-screw
creep model discussed in a previous chapter. The original model
[190,633,634] suggests that the nonconservative motion of pinned jogs
along screw dislocations is the rate-controlling process. Using this model,
the “natural” stress exponent is derived. The conventional jogged-screw
creep model predicts strain rates that are several orders of magnitude
higher than the measured values in TiAl [632]. The modification proposed
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by Mills et al. incorporated the presence of tall jogs instead of assuming the
jog heights as equal to the Burgers vector. Additionally, it is proposed that
there should be an upper bound for the jog height, above which the jog
becomes a source of dislocations. This maximum jog height, hd, depends on
the applied stress and can be approximated by:

hd ¼
�

Gb

f8pð1� nÞsg
�

(163)

This is suggested to reasonably predict the strain rates in single-phase
TiAl alloys and could account for the absence of subgrain formation dur-
ing secondary creep. At the same time, by introducing this additional stress
dependence in the equation for the strain rate, the phenomenological stress
exponent of 5 is obtained at intermediate stresses. This exponent increases
with increasing stress. Mills et al. [930,931] claim that the same model can
be applied to creep of FL microstructures, where deformation mainly
occurs within the wider g-laths by jogged a/2 [110] unit-dislocation slip.
Evidence of the presence of jogged screw dislocations has been extensively
reported [630,632,930–933].

Wang et al. [635] observed that, together with dislocation activity and
some twinning, thinning and dissolution of a2 lamellae and coarsening of
g-lamellae occurred during creep of two FL TiAl alloys at high stresses
(e.g., >200 MPa at 800 �C and >400 MPa at 650 �C). They proposed a
creep model based on the movement of ledges (or steps) at lamellar
interfaces to rationalize these observations. Wang et al. [635] observed the
presence of ledges at the lamellar interfaces already before deformation.
Two such ledges of height hL are illustrated in Figure 101. Growth of the g
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Figure 101 Interface separating g and a2 lamellae. Ledge size is denoted by hL. From
Ref. [635].
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phase at the expense of the a2 phase could occur by ledge movement as a
consequence of the applied stress. Ledge motion was suggested to involve
glide of misfit dislocations and climb of misorientation dislocations. Ledge
motion leading to the transformation from a2 to g may account for a
significant amount of the creep deformation, since (1) as mentioned above,
it requires dislocation movement; and (2) it also involves a volume change
from a2 to g. At high stresses, multiple ledges (i.e., ledges that are several
{111} planes in thickness) are suggested to be able to form and dissolve, and
thus deformation may occur. Diffusion of atoms is needed since the climb
of misorientation dislocations is necessary for a ledge to move. Also,
diffusion is needed for the composition change associated with the phase
transformation from a2 to g. Thus, lattice self-diffusion becomes rate-
controlling, in agreement with previous observations of activation
energies close to QSD.

Modeling of the creep behavior of FL microstructures has also been
undertaken by Clemens et al. [936,937], who found that, in the climb-
dominated regime, the strain rate can be related to the applied stress by a
conventional power law equation with an additional factor (a so-called
structure factor), which is a function of the lamellar orientation and the
mean lamellar interface spacing, ll. This micromechanical model reasonably
predicts the decrease in the minimum creep rate with decreasing ll.

Alloy additions are another factor that may influence the creep rate. It is
well known that additions of W greatly improve creep resistance [616]. It
has been suggested that solute hardening by W occurs within the glide-
controlled creep regime, whereas the addition of W may lower the
diffusion rate, thus reducing the dislocation climb rate in the climb-
controlled creep regime. The effect of ternary or quaternary additions on
the creep resistance may be more important than that of the lamellar
interface spacing [619]. Additions of W, O, Si, C, and N favor precipitation
hardening [636–639,939], which may hinder dislocation motion and sta-
bilize the lamellar microstructure. In particular, carbide and silicide particles
have been observed to precipitate preferentially during creep testing or
previous aging in places originally occupied by a2 laths. In essence, the
precipitates replace the a2 lamellae, thereby maintaining restricted dislo-
cation motion [940]. Other suggested hardening elements include Nb and
Ta [616]. The addition of B does not seem to have any effect on the
minimum strain rate of FL microstructures [616].

The lamellar orientation also has a significant influence on the creep
properties of FL TiAl alloys [602,640,641,941,942]. Hard orientations (i.e.,
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those in which the lamellae are parallel or perpendicular to the tensile axis)
show improved creep resistance and low strain to failure; soft orientations
(those in which the lamellae form an angle of 30�–60� with the tensile axis)
are weaker but are more ductile [602]. The different behaviors were
rationalized by considering changes in the Taylor factors and Hall–Petch
strengthening [602]. Basically, in soft orientations, the shear occurs parallel
to the lamellar boundaries. In hard orientations, however, the resolved
shear stress in the planes parallel to the lamellae is very low, and therefore
other systems are activated. Thus it was suggested that the mean free path
for dislocations is larger in soft orientations than in hard orientations
[640,641,943].

2.2.2 Low-Stress Regime
Hsiung and Nieh [396] investigated the rate-controlling creep mechanisms
during secondary creep (or minimum creep rate) at low stresses in an FL
Ti-47Al-2Cr-2Nb alloy. In particular, they studied the stress/temperature
range where stress exponents between 1 and 1.5 were observed. They
reported an activation energy equal to 160 kJ mol�1 within this range,
which is significantly lower than the activation energy for lattice diffusion
of Ti in g-TiAl (291 kJ mol�1) [627] and much lower than the activation
energy for lattice diffusion of Al in g-TiAl. They suggested that dislocation
climb is less important at low stresses. They also discarded grain boundary
sliding as a possible deformation mechanism due to the presence of inter-
locking grain boundaries such as those shown in Figure 97. These are
boundaries in which there is not a unique boundary plane. Instead, the
lamellae from adjacent (lamellar) grains are interpenetrating at the bound-
ary, thus creating steps and preventing easy sliding [619]. TEM examination
revealed both lattice dislocations (including those that are free within the
g-laths and threading dislocations that have their line ends within
the lamellar interfaces) and interfacial (Shockley) dislocations, the density of
the latter being much larger. They proposed that, due to the fine lamellar
interface spacing (ll < 300 nm), the operation and multiplication of lattice
dislocations at low stresses are very sluggish. Dislocations can only move
small distances (z ll) and the critical stress to bow threading dislocation
lines (which is inversely proportional to the lamellar interface spacing) is, on
average, higher than the applied stress. Thus, Hsiung and Nieh [396]
concluded that dislocation slip by threading dislocations could not ratio-
nalize the observed creep strain in alloys with thin laths. They proposed that
the predominant deformation mechanism was interfacial sliding at lamellae
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interfaces caused by the viscous glide of interfacial (Shockley) dislocation
arrays. These arrays might eventually be constituted by an odd number of
partials, in which case a stacking fault is created at the interface. Stacking
faults are indeed observed by TEM [396]. Segregation of solute atoms may
cause Suzuki locking. Thus, according to Hsiung and Nieh, the viscous
glide of interfacial dislocations (dragged by solute atoms) is the rate-
controlling mechanism. It was suggested that further reduction of the
lamellar interface spacing (in the range of ll � 300 nm) would not signif-
icantly affect the creep rate once the g-laths are thin enough for interfacial
sliding to occur.

Zhang and Deevi [616] recently analyzed creep data of several TiAl
alloys with Al concentrations ranging from 46 to 48 at.% compiled from
numerous other studies. They proposed expressions relating the minimum
creep rate and the stress that could reasonably predict most of the data.
They recognized that using the classical constitutive equations and power-
law models could be misleading, due to the large and gradual variations of
the stress exponent with stress. They utilized:

_εmin ¼ _ε0 sinh

�
s

sint

�
(164)

where s is the applied stress, and _ε0 and sint are both temperature and
material-dependent constants. Additionally:

_ε0frsrD0 exp

��Qsd

kT

�
(165)

where rsr is the dislocation-source density. The physical meaning of Eqn
(165) is based on a viscous glide process. They suggested [616] that sint
and _ε0 are independent of the lamellar interface spacing for FL microstruc-
tures with ll > 0.3 mm, and that sint and _ε0 increase with decreasing l
when ll < 0.3 mm. _ε0 is temperature dependent and Qsd is about
375 kJ mol�1 for microstructures with different lamellar interface spacing.
This value is slightly higher than the activation energy for diffusion of Ti
in TiAl (291 kJ mol�1). Zhang and Deevi [616] attributed this discrepancy
to the fact that the dislocation source density, rs, may not be constant as
assumed in Eqn (165), and that the creep of TiAl may be controlled by
diffusion of both Ti and Al in TiAl. Since the activation energy for self-
diffusion of Al is higher than that of Ti, a combination of diffusion of
both species could justify the higher Q values measured.
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The above equations do not predict the creep data of FL TiAl alloys
obtained at both stresses lower than about 150 MPa and low temperatures.
This was suggested to be due to grain boundary sliding being the dominant
mechanism [396]. In this stress-temperature range, Zhang and Deevi found
that most of the creep data could be described by:

_εminðGBÞ ¼ 63:4 expð � 2:18� 105=kTÞg�2s2 (166)

2.3 Primary Creep in FL Microstructures
g-TiAl alloys are characterized by a pronounced primary creep regime.
Depending on the temperature, the primary creep strain may exceed the
acceptable limits for certain industrial applications. Thus, several in-
vestigations have focused on understanding the microstructural evolution
during primary creep [619,623,629,640,642,643].

Figure 102 illustrates the creep curves corresponding to a TiAl binary
alloy deformed at 760 �C and at an applied stress of 240 MPa. The creep
curves correspond to a DP microstructure and a FL microstructure. The FL
microstructure shows lower strain rates during primary creep. It has been
suggested [629] that the pronounced primary creep regime in FL micro-
structures is due to the presence of a high density of interfaces and dislo-
cations, since both may act as sources of dislocations. Careful TEM
examination by Chen et al. [640] showed that dislocations formed loops
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Figure 102 Primary creep behavior of a binary TiAl alloy deformed at 760 �C at an
applied stress of 240 MPa. The creep curves corresponding to duplex (DP) and fully
lamellar (FL) microstructures are illustrated. From Ref. [619].
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that expand from the interface to the next lamellar interface. Other pro-
cesses that may occur during primary creep of TiAl alloys are twinning and
stress-induced phase transformations (SIPT) (a2 / g or g/ a2). SIPT
consists of the transformation of a2 laths into g laths (or vice versa). This
transformation, which is aided by the applied stress, has been suggested to
occur by the movement of ledge dislocations at the g/a2 interfaces, as
illustrated in Figure 101 [638]. The SIPT may be associated with a relatively
large creep strain. The finding that the primary strain in microstructures
with narrow lamellae (FLn) is not higher than the primary strain in alloys
with wider lamellae (FLw) suggests that the contribution of interface
boundary sliding by the motion of pre-existing interfacial dislocations is less
important [623]. It is possible that a sufficient number of interfacial dislo-
cations need to be generated during primary creep before the onset of
sliding.

Zhang and Deevi recently analyzed primary creep of TiAl-based alloys
[623] and concluded that the primary creep strain depends dramatically on
stress. At stresses lower than a critical value, scr, the primary strain is low
(about 0.1–0.2%), independent of the microstructure, temperature, and
composition. The relevant stresses anticipated for industrial applications are
usually below scr and therefore primary creep strain would be less
important [623]. The value of scr seems to be mainly related to the critical
stress to activate dislocation sources, twinning, and stress-induced phase
transformations. This value increases with W additions, with lamellar
refinement, and with precipitation of fine particles along lamellar interfaces
[623]. For example, the value of scr at 760 �C for an FL Ti-47 at.%
Al-2 at.%Nb-2 at.%Cr alloy with a lamellar spacing of 0.1 mm is close to
440 MPa, whereas the same alloy with a lamellar spacing larger than 0.3 mm
has a scr value of 180 MPa [623]. Primary creep strain increases significantly
above the threshold stress. In order to investigate additional factors influ-
encing the primary creep strain, Zhang and Deevi modeled primary creep
of various TiAl alloys using the following expression, also utilized previ-
ously in other works [615,642]:

εp ¼ ε
0
0 þ A0ð1� expð � a0tÞÞ (167)

This expression reflects that primary creep strain consists of an
“instantaneous” strain ðε00Þ that occurs immediately upon loading and a
transient strain that is time dependent. Zhang and Deevi suggested that the
influence of temperature on ε

0
0, A

0, and a0 could be modeled using the
relation X ¼ X0exp (�Q/RT), where X represents any of the three
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parameters. By fitting a large amount of data, they obtained that
Q ¼ 190 kJ mol�1 for A0, and Q ¼ 70 kJ mol�1 for ε00 and a0. The physical
basis for the temperature dependence is unclear. The effect of composition
and microstructure on these parameters is also complex [623]. Aging
treatments before creep deformation appear to have a beneficial effect in
increasing the primary creep resistance [623,638,643]. Precipitation at
lamellar interfaces has been suggested to hinder dislocation generation [34]
and reduces the instantaneous strain and the strain-hardening constant, A0.
Additionally, the presence of fine precipitates may inhibit interface sliding
and even twinning. Finally, the contribution of stress-induced phase
transformation to the primary creep strain decreases in samples heat treated
before creep deformation, since metastable phases are eliminated [623].

2.4 Tertiary Creep in FL Microstructures
Several investigations have studied the effect of the microstructure on
tertiary creep of FL TiAl alloys [615,619,640]. It has been suggested that
tertiary creep is initiated due to strain incompatibilities between lamellar
grains with soft and hard orientations leading to particularly elevated stresses
[619]. These incompatibilities may lead to intergranular and interlamellar
crack formation. Crack growth is retarded when lamellar grains are smaller
than 200 mm (lamellar grain sizes are typically 500 mm in diameter), since
cracks can be arrested by grain boundaries or by a triple points. Grain
boundary morphology also significantly influences tertiary creep behavior.
In FL microstructures with wide lamellae, a well-interlocked lamellae
network forms [619]. However, narrow lamellae are more planar. Grain
boundaries in which lamellae are well interlocked offer greater resistance to
cracking and allow larger strains to accumulate within the grains.

Tertiary creep in lamellar structures has been connected with the
breakdown of the structure by coarsening and spheroidization [943]. In-
terfaces of g–g are highly unstable and they migrate and coalesce with other
g–g boundaries, while a2 laths dissolve during high-temperature exposure.
Other processes that lead to tertiary creep are the onset of discontinuous
dynamic recrystallization, i.e., the nucleation and growth of equiaxed
gamma grains [943,944]. Coarsening and spheroidization can be prevented
by designing a lamellar structure with a large number of a2–g boundaries,
which have been shown to have a higher thermal stability [943].

In summary, the creep behavior of FL TiAl alloys is influenced by many
different microstructural features, and it is difficult to formulate a model that
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incorporates all of the relevant variables. Optimal creep behavior may
require [619]:
1. A lamellar grain size smaller than about 200 mm that helps to improve

creep life by preventing early fracture. Some studies have suggested
that grain size has only a small effect [16,17].

2. A narrow interlamellar spacing which reduces the minimum strain rate
during secondary creep.

3. Interlocked lamellar grain boundaries.
4. Alloy chemistry: W, Nb, Mo, and V have a large strengthening effect as

solutes; C, B, and N significantly influence properties via precipitation.
5. Stabilized microstructure, or presence of a large fraction of g–aI

interfaces.

3. IRON ALUMINIDES

3.1 Introduction
Fe3Al- and FeAl-based ordered intermetallic compounds have been
extensively studied due to their excellent oxidation and corrosion resistance
as well as other favorable properties such as low density, favorable wear
resistance, and potentially lower cost than many other structural materials.
Fe3Al has a DO3 structure. FeAl is a B2-ordered intermetallic phase with a
simple cubic lattice with two atoms per lattice site, an Al atom at position
(x,y,z) and a Fe atom at position (x þ 1/2, y þ 1/2, z þ 1/2). Several
recent reviews summarizing the physical, mechanical and corrosion prop-
erties of these intermetallics are available [592,594–596,599–601,644–646].
Iron aluminides are especially attractive for applications at intermediate
temperatures in the automotive and aerospace industry due to their high
specific strength and stiffness. Additionally, they may replace stainless steels
and nickel alloys to build long-lasting furnace coils and heat exchangers due
to superior corrosion properties. The principal limitations of Fe-Al inter-
metallic compounds are low ambient-temperature ductility (due mainly to
the presence of weak grain boundaries and environmental embrittlement)
and only moderate creep resistance at high temperatures [646]. Many efforts
have been devoted in recent years to overcoming these difficulties. The
present review will discuss the strengthening mechanisms of iron aluminides
as well as other high-temperature mechanical properties of these materials.

Figure 103 illustrates the Fe-Al phase diagram. The Fe3Al phase, with a
DO3 ordered structure, corresponds to Al concentrations ranging from
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approximately 22 at.% and 35 at.%. A phase transformation to an imperfect
B2 structure takes place above 550 �C. The latter ultimately transforms to a
disordered solid solution with increasing temperature. This, in turn, leads to
the degradation of creep and tensile resistance at high temperatures. The
FeAl phase, which has a B2 lattice, is formed when the amount of Al in the
alloy is between 35 at.% and 50 at.%.

3.2 Anomalous Yield Point Phenomenon
An anomalous peak in the variation of the yield stress with temperature has
been observed in Fe-Al alloys with an Al concentration ranging from
25 at.% up to 45 at.%. The peak appears usually at intermediate tempera-
tures, between 400 �C and 600 �C [601,645,646,648–667]. This phe-
nomenon is depicted in Figure 104, which illustrates the dependence of the
yield strength with temperature for several large-grain Fe-Al alloys in
tension at a strain rate of 10�4 s�1. Several mechanisms have been proposed
to rationalize the yield-strength peak, but the origin of this phenomenon is
still not well understood. The different models are briefly described in the
following. More comprehensive reviews on this topic as well as critical
analyses of the validity of the different strengthening mechanisms are
available [645,648].
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3.2.1 Transition from Superdislocations to Single Dislocations
Stoloff and Davies [654] suggested that the stress peak was related to the loss
of order that occurs in Fe3Al alloys at intermediate temperatures (transition
between the DO3 to the B2 structure). According to their model, at
temperatures below the peak, superdislocations would lead to easy defor-
mation, whereas single dislocations would, in turn, lead to easy deformation
at high temperatures. At intermediate temperatures, both superdislocations
and single dislocations would move sluggishly, giving rise to the
strengthening observed. It has been suggested, however, that this model
cannot explain the stress peak observed in FeAl alloys, where no disordering
occurs at intermediate temperatures and the B2 structure is retained over a
large temperature interval. Recently, Morris et al. also questioned the
validity of this model [651]. They observed that the stress peak occurred
close to the disordering temperature at low strain rates in two Fe3Al alloys
(Fe-28Al-5Cr-1Si-1Nb-2B and Fe-25Al, all atomic percent). The stress
peak occurred at higher temperatures at higher strain rates than those
corresponding to the transition. Thus, they concluded that the disordering
temperature being about equal to the peak stress temperature at low strain
rates was coincidental. Stein et al. [667] also did not find a correlation
between these temperatures in several binary, ternary, and quaternary
DO3-ordered Fe-26Al alloys.
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Figure 104 Variation of the yield strength with temperature for several large-grain
FeAl alloys strained in tension at a strain rate of 10�4 s�1. From Ref. [653].
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3.2.2 Slip Plane Transitions {110}/ {112}
Umakoshi et al. [655] suggested that the origin of the stress peak was the
cross-slip of <111> superdislocations from {110} planes to {112} planes,
where they become pinned. Experimental evidence supporting this
observation was also reported by Hanada et al. [656] and Schroer et al.
[657]. Since cross-slip is thermally activated, dislocation pinning would be
more pronounced with increasing temperatures, giving rise to an increase in
the yield strength.

3.2.3 Decomposition of <111> Superdislocations: Climb-Locking
Mechanism

The yield stress peak has often been associated with a change in the nature
of dislocations responsible for deformation, from <111> superdislocations
(dislocations formed by pairs of superpartial dislocations separated by an
antiphase boundary) at low temperatures, to <100> ordinary dislocations
at temperatures above the stress peak [658]. The <100> ordinary dislo-
cations are sessile at temperatures below those corresponding to the stress
peak and thus may act as pinning points for <111> superdislocations. The
origin of the <100> dislocations has been attributed to the combination of
two a/2 [111] superdislocations or to the decomposition of <111>
superdislocations on {110} planes into <110> and <100> segments on
the same {110} planes. As the temperature increases, decomposition may
take place more easily, and thus the number of pinning points would in-
crease leading to a stress peak. Experimental evidence consistent with this
mechanism has been reported by Morris et al. [650]. However, this
mechanism was also later questioned by Morris et al. [651], where detailed
TEM microstructural analysis suggested that anomalous strengthening is
possible without the <111> to <100> transition in some Fe3Al alloys.

3.2.4 Pinning of <111> Superdislocations by Antiphase Boundary
Order Relaxation

An alternative mechanism for the appearance of the anomalous yield stress
peak is the loss of order within antiphase boundaries (APBs) of mobile
<111> superdislocations with increasing temperature [660]. This order
relaxation may consist of structural changes as well as variations in the
chemical composition. Thus, the trailing partial of the superdislocation
would no longer be able to restore perfect order. A frictional force would
therefore be created that will hinder superdislocation movement. With
increasing temperature, APB relaxation would be more favored, and thus
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increasing superdislocation pinning would take place, leading to the
observed stress peak.

3.2.5 Vacancy Hardening Mechanism
The concentration of vacancies in FeAl is relatively high and increases in
Al-rich alloys. Constitutional vacancies are those required to maintain the
B2 structure in Al-rich non-stoichiometric FeAl alloys. Thermal vacancies
are those excess vacancies generated during annealing at high temperature
and retained upon quenching. For example, the vacancy concentration is
40 times larger at 800 �C than that corresponding to a conventional pure
metal at the melting temperature. Constitutional vacancies may occupy up
to 10% of the lattice sites (mainly located in the Fe sublattice) for Fe-Al
compositions with high Al content (>50 at.%) [661]. The high vacancy
concentration is due to the low value of the enthalpy of formation of a
vacancy as well as to the high value of the entropy of formation (around
6 k) [662]. Vacancies have a substantial influence on the mechanical
properties of iron aluminides [663].

It has been suggested that the anomalous stress peak is related to vacancy
hardening in FeAl intermetallics [664]. According to this model, a larger
number of vacancies are created with rising temperatures. These defects pin
superdislocation movement and lead to an increase in yield strength. At
temperatures higher than those corresponding to the stress peak the con-
centration of thermal vacancies is very large and vacancies are highly
mobile. Thus, they may aid dislocation climb processes instead of acting as
pinning obstacles for dislocations [665] and softening occurs.

The vacancy hardening model is consistent with many experimental
observations. Recently Morris et al. [650] reported additional evidence for
this mechanism in a Fe-40 at.%Al alloy. First, they observed that some time
is required at high temperature for strengthening to be achieved. This may
be consistent with the requirement of some time at temperature to create
the equilibrium concentration of vacancies required for hardening. Second,
they noted that the stress peak is retained when the samples are quenched
and tested at room temperature. They concluded that the point defects
created after holding the specimen at temperature for a given amount of
time are responsible for the strengthening both at high and low tempera-
tures. Additionally, careful TEM examination suggested to these in-
vestigators that vacancies were not present in the form of clusters. Instead,
the small dislocation curvature observed suggested that single vacancies were
mostly present, which act as relatively weak obstacles to dislocation motion.
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The concentration of thermal vacancies increases with increasing Al
content, and thus the effect of vacancy hardening would be substantially
influenced by alloy composition. Additionally, the vacancy-hardening
mechanism implies that the hardening should be independent of the
strain rate, since it only depends on the amount of point defects present. In
a recent investigation, Morris et al. [651] analyzed the effect of strain rate on
the flow stress of two Fe3Al alloys with compositions Fe-28Al-5Cr-1
Si-1Nb-2B and Fe-25Al-5Cr-1Si-1Nb-2B (at.%). The variation of the
flow stress with temperature and strain rate (ranging from 4 � 10�6 s�1 to
1 s�1) for the Fe-28 at.%Al alloy is illustrated in Figure 105. It can be
observed that the “strengthening” part of the peak is rather insensitive to
strain rate, consistent with the predictions of the vacancy-hardening model.
However, the investigators were skeptical regarding the effectiveness of this
mechanism in Fe3Al alloys, where the vacancy concentration is much lower
than in FeAl alloys, and moreover where the vacancy mobility is higher.
Highly mobile vacancies are not as effective obstacles to dislocation motion.
Another limitation of the vacancy model is that it fails to explain the
orientation dependence of the stress anomaly as well as the tension-
compression asymmetry in single crystals [649]. Thus, the explanation of
the yield stress peak remains uncertain. On the other hand, it is evident in
Figure 105 that the softening part of the peak is indeed highly dependent
on strain rate. This is attributed to the onset of diffusional processes at high
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Figure 105 Variation of the yield stress with temperature and strain rate corre-
sponding to the cast and homogeneized Fe-28 at.%Al alloy. From Ref. [651].
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temperatures, where creep models may be applied and rate dependence
may be more substantial [651].

3.3 Creep Mechanisms
The creep behavior of iron aluminides is still not well understood despite
the large amount of creep data available on these materials [399,646,668–
679]. The values of the stress exponents and activation energies corre-
sponding to several creep studies are summarized in Table 8 (based on [646]
with additional data). There are several factors that complicate the
formulation of a general creep behavior of Fe-Al alloys. First, creep
properties are significantly influenced by composition. Second, as discussed
elsewhere [594,680], both the stress exponent and the activation energy
have been observed to depend on temperature, in some cases. This suggests
that several mechanisms may control creep of Fe-Al and Fe3Al alloys. Other
reasons may be the frequent absence of genuine steady-state conditions as
well as the simultaneous occurrence of grain growth and discontinuous
dynamic recrystallization. Nevertheless, in general, it can be inferred from
Table 8 that a lower stress-exponent creep mechanism may dominate at
very low stresses and high temperatures. At intermediate temperatures and
stresses, diffusion-controlled dislocation climb and viscous drag have been
suggested [399,646,669,760].

3.3.1 Superplasticity in Iron Aluminides
Superplasticity has been observed in both FeAl and Fe3Al with coarse
grains ranging from 100 to 350 mm [398,681–684]. Elongations as high as
620% were achieved in a Fe-28 at.%Al-2 at.%Ti alloy deformed at 850 �C
and at a strain rate of 1.26 � 10�3 s�1. The corresponding n value was
equal to 2.5. Also, a maximum elongation of 297% was reported for a
Fe-36.5 at.%Al-2 at.%Ti alloy with an n value close to 3. Moreover, Lin
et al. [684] have reported an increasing number of boundaries misoriented
between 3� and 6� with deformation. They suggest that these could be
formed as a consequence of dislocation interaction, by a process of
continuous recrystallization (or continuous reactions). The unusually large
starting grain sizes as well as the values of the stress exponents (close to 3)
would be consistent with a viscous drag deformation mechanism.
However, significant grain refinement has been observed during defor-
mation [683,684]. The correlation of grain refinement and large ductil-
ities may, in turn, be indicative of the occurrence of grain boundary
sliding.
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Table 8 Stress exponents, activation energies, and suggested deformation mechanisms from various creep studies on iron aluminides
Alloy T (�C) Q (kJ mol�1) n Mechanism suggested Reference

Fe-19.4Al 500e600 305 4.6e6a Diffusion controlled [668]
Fe-27.8Al 550e615

Higher T
276
418

e Controlled by state of
order

Fe-15/20Al >500
<500

260e305a

s dependent
Diffusion controlled
Motion of jogged screw
dislocations

[669]

Fe-28Al 625 347 3.5 (low s)
7.7 (high s)

Viscous glide
Climb

Fe-28Al-2Mo 650 335 1.4 (low s)
6.8 (high s)

Diffusional flow
Climb

[670]

Fe-28Al-1Nb-0.013Zr 650 335 1.8 (low s)
19.0 (high
s)

Diffusional flow
Dispersion strengthening

FA-180 593 627 7.9 Precipitation
strengthening

[671]

Fe-28Al 600e675 e 3.4 Viscous glide [646]
Fe-26Al-0.1C 600e675

480e540
305
403

3.0
6.2

Viscous glide
e
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Fe-28Al-2Cr 600e675 325 3.7 Viscous glide
Fe-28Al-2Cr-0.04B 600e675 304 3.7 Viscous glide
Fe-28Al-4Mn 600e675 302 2.6 Viscous glide
FA-129 500e610 380e395 4e5.6 [672]
Fe-24Al-0.42 Mo-0.05B-0.09
C-0.1 Zr

650e750 e 5.5 [673]

FA-129 900e1200 335 4.81 [674]
Fe-39.7Al-0.05Zr-50 ppmB 500

700
260e300
425e445

11
11

Dispersion strengthening
Climb

[675]

Fe-27.6Al
Fe-28.7Al-2.5Cr
Fe-27.2Al-3.6Ti

425e625
425e625
425e625

375
325
375

2.7e3.4
3.5e3.8
3.4e3.7

Viscous glide
Viscous glide
Viscous glide

[399]

Fe-24Al-0.42Mo-0.1Zr-0.005B-
0.11C-0.31O

800e1150
1150
(Strain rate
<0.1 s�1)

340e430
365

4e7
3.3

Diffusion-controlled
(climb)
Diffusion-controlled
(superplasticity)

[676]

Fe-30.2Al-3.9Cr-0.94Ti-1.9B-
0.20Mn-0.16C

600e900 280 3.3 Viscous glide [677]

Fe-47.5Al 827e1127
(g ¼ 6 mm)

487 6.3e7.2 [678]

Fe-43.2Al 927e1127
(g ¼ 20 mm)

368 5.6e9.7 [678]

aDependent on Al concentration.
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3.4 Strengthening Mechanisms
The rather low creep strength of iron aluminides is a subject that has
received particular attention. Several strategies to increase the creep resis-
tance have been suggested, which are reviewed in Ref. [680]. The
reduction of the high-diffusion coefficient of the rate-controlling mecha-
nism, by micro- and macroalloying, was attempted with limited success.
Another way to achieve strengthening is to add alloying elements that may
hinder dislocation motion by forming solute atmospheres around disloca-
tions or by modifying lattice order. For example, additions of Mn, Co, Ti,
and Cr moderately increase the creep resistance due to solid solution
strengthening. Finally, the most promising strengthening mechanism seems
to be the introduction of dispersions of second phases, such as carbides,
intermetallic particles, or oxide dispersions [685–687]. A sufficient volume
fraction of precipitate phases (around 1–3%) must be present in order for
this mechanism to be effective and the precipitates should be stable at the
service temperatures. Alloying elements such as Zr, Hf, Nb, Ta, and B have
been effective in improving creep resistance of FeAl by precipitation
hardening.

Baligidad et al. [687,688] reported that improved creep strength is
obtained in a Fe-16 wt.%Al-0.5 wt.%C possibly due to combined carbon
solid-solution strengthening and mechanical constraint from the Fe3AlC0.5

precipitates. They claim that creep is recovery-controlled and that climb
assists the recovery. Morris-Muñoz [675] analyzed the creep mechanisms in
an oxide-dispersion-strengthened Fe-40 at.%Al intermetallic containing
Y2O3 particles at 500 �C and 700 �C. The absence of substructure for-
mation at either temperature suggested, to the investigators, constant-
structure creep with a temperature-dependent threshold stress. Particle–
dislocation interactions were also apparent. It was concluded that the
threshold stress, based on particle–dislocation interactions, operates at
500 �C (where dislocations are predominantly <111> superdislocations)
and that climb-controlled processes occur at 700 �C, where <100> dis-
locations are mainly present. The decrease in creep resistance observed
between 500 �C and 700 �C was attributed to the rapid increase in diffu-
sivity at high temperatures. Recently Sundar et al. [689] reported creep
resistance values for two Fe-40 at.%Al alloys (with additions of Mo, Zr, and
Ti for solute strengthening and additions of C and B for particle
strengthening) that were comparable to, if not better than, those of many
conventional Fe-based alloys. According to Sundar et al. [689], a
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combination of strengthening mechanisms is perhaps the best way to
improve creep resistance of iron aluminides.

4. NICKEL ALUMINIDES

4.1 Ni3Al
The Ni-Al binary phase diagram is illustrated in Figure 106. Ni3Al forms at
Al concentrations between 25 at.% and 27 at.%. This compound has a
simple cubic Bravais lattice with four atoms per lattice site: one Al atom,
located in the (x,y,z) position; and three Ni atoms, located, respectively, at
the (x þ 1/2,y,z), (x,y þ 1/2,z), and (x,y,z þ 1/2) positions. This inter-
metallic received substantial attention since it is the main strengthening
phase in superalloys. Furthermore it has been considered to be a techno-
logically important structural intermetallic alloy system especially after its
successful ductilization by microalloying with boron [690]. Additionally, it
exhibits a flow stress anomaly, i.e., the yield stress increases with increasing
temperature over intermediate temperatures (roughly ambient temperatures
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to 700 �C) as with iron aluminides. Thus, it has often been used as a model
material for understanding intermetallic compounds in general.

The crystal structure of Ni3Al is an ordered L12 (f.c.c.) structure having
Al atoms at the unit cell corners and Ni atoms at the face centers. Similar to
pure f.c.c. metals, the planes of easy glide are the octahedral planes {111}.
Slip along {001} planes is more difficult, since they are less compact, but it
may occur by thermal activation [691]. Figure 107 illustrates an octahedral
plane of this ordered structure. A perfect dislocation associated with primary
octahedral glide has a Burgers vector, b ¼ a<110>, that is twice as large as
that corresponding to a unit dislocation in the disordered f.c.c. lattice.
These dissociate into “super-partial” dislocations, with b ¼ a/2<110>, and
the latter may, in turn, dissociate into Shockley dislocations, with b ¼ a/
6<112>, as depicted in Figure 107.

The creep behavior of Ni3Al will be briefly reviewed in the following
sections.

a<110> 
Perfect 

a/2<110> 
Super-partials

a/6<112> 
Shockley partials 

APB 

APB 

CSF 

Figure 107 The octahedral {111} plane of the L12 crystal structure. The small circles are
atoms one plane out (above) of the page. Unit dislocations, b ¼ a<110>, can disso-
ciate into superpartial dislocations with b ¼ a/2<110>. The superpartials alter the
neighboring lattice positions creating an antiphase boundary (APB). Superpartials can
dissociate into Shockley partial dislocations, with b ¼ a/6<112>, that are connected
by a complex stacking fault (CSF) that includes both an APB and an ordinary stacking
fault. From Ref. [691].
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4.1.1 Creep Curves
Creep tests have been performed on both single-crystal [691–706] and
polycrystalline [703–705,707–720] Ni3Al alloys in tension and compres-
sion. Most creep curves exhibit a normal shape, which consists of the
conventional three stages. However, some [707–709] show sigmoidal
creep, where the creep rate decreases quickly to a minimum and this is
followed by a continuous increase in the creep rate with strain. A steady
state may or may not be achieved before reaching tertiary creep after
sigmoidal creep. This creep behavior is also frequently termed “inverse
creep” among the intermetallics community. Primary creep is often limited
to very small strains [605,697,706]. Figure 108 illustrates the creep curve of
a Ni3Al alloy (with 1 at.% Hf and 0.24 at.% B) deformed at 643 �C at a
constant stress of 745 MPa [691]. Initially, the creep rate decreases with
increasing strain and normal primary creep occurs. This is followed by an
extended region where the strain rate continually increases with strain.
Steady state may or may not be reached afterwards, as will be explained
later.

High-temperature creep refers to creep deformation at temperatures
higher than Tp, the temperature at which the peak yield stress is observed.
This temperature varies with alloy composition [720] and crystal orientation
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Figure 108 Sigmoidal creep curve corresponding to a Ni3Al alloy (with 1 at.% Hf and
0.24 at.% B) deformed at 643 �C at a constant stress of 745 MPa [691]. Normal primary
creep is followed by a continuous increase in the strain rate. This creep behavior has
been also termed “inverse creep.”
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[692] but is typically observed from 0.5 to 0.6 Tm. Intermediate tempera-
ture creep usually refers to creep deformation at temperatures lower than
(but close to) Tp. A steady-state regime is usually observed during high-
temperature creep. The relationship between the strain rate and the stress
in the high-temperature range usually follows a power-law relationship
with a stress exponent of about 3. This may suggest that the viscous glide of
dislocations is the rate-controlling mechanism [594]. However, at inter-
mediate temperatures, from about 0.3 to 0.6 Tm, sigmoidal creep may
occur depending on both the temperature and the stress [708,709]. Nicholls
and Rawlings [712] suggested that different creep mechanisms should
operate below and above Tp.

4.1.2 Sigmoidal (or Inverse) Creep
Sigmoidal creep has been observed in both single- and polycrystalline
Ni3Al alloys [691,698,700,707–709], as well as in some other intermetallics,
e.g., Ni3Ga [723] and TiAl [709]. The onset of sigmoidal creep (i.e., the
increase in the creep-rate after primary creep) usually takes place at very
small strains. This strain rate increase may extend over a large strain interval,
leading directly to tertiary creep in the absence of a steady-state stage
[691,798,707], as illustrated in Figure 108, or it may occur only for a small
strain previous to the steady state [693,708].

The conditions under which sigmoidal creep occurs are relatively nar-
row. Rong et al. [708] concluded that its occurrence depends on both
temperature and stress. It is generally accepted that sigmoidal creep is more
frequent and more pronounced at intermediate temperatures [709].
Smallman et al. [709] suggested that sigmoidal creep only occurs at tem-
peratures below but very close to Tp and at stresses close to the yield stress.

Hemker et al. [691], and previously Nicholls and Rawlings [712],
observed a decrease of creep strength with increasing temperature in a
single-crystal alloy, with composition Ni-22.18 at.%Al-1 at.%Hf-0.24
at.%B [691], in the temperature regime where the yield strength is known
to increase anomalously with temperature. This observation led them to
infer that different dislocation mechanisms would be responsible for
yielding (small strains) and for creep (large strains) and stimulated a detailed
investigation of the deformation mechanisms. Ni3Al intermetallic single
crystals (LI2) show a positive temperature dependence from ambient to
about 700�. A recent review of this subject by Choi et al. [595] describes
the various experimental, theoretical and analytical developments over the
past several decades. They proposed a constitutive model. They pointed out
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that experimental evidence shows that screw-superdislocations cross-slip
from the octahedral planes to the cubic planes, where the dislocation core
does not completely reside leading to immobilization by Kear-Wilsdorf
locks (KWLs). Later, macro (or super) kink models (MKs) were devel-
oped based on microscopy studies. The Choi et al. models reasonable
replicated the anomalous yield behavior. The mobilization of MKs is based
on the distribution of MK heights. Hemker et al. [691] proposed a model to
explain the sigmoidal creep of Ni3Al based on careful microstructural
examination. They suggested that octahedral slip during primary creep is
exhausted by the formation of KW locks, due to thermally activated cube
cross-slip of the screw segments. Thus, the strain rate is progressively
reduced until the cross-slipped segments become thermally activated and
are able to bow out and glide on the cube cross-slip plane. The KW locks
act as Frank-Read type dislocation sources for glide on the {001} cube
planes. The dislocation generation and subsequent glide on the cube planes
leads to an increasing mobile dislocation density and thus to a larger strain
rate and sigmoidal creep occurs. An alternative dislocation model for
sigmoidal creep was proposed by Hazzledine and Schneibel [724]. They
suggested that two highly stressed octahedral slip systems that share a
common cube cross-slip plane may interact “symbiotically” and unlock
each other’s superdislocations, giving rise to an increasing number of
<001> dislocations that are glissile on the cube plane. Thus, sigmoidal
creep occurs.

Smallman et al. [709] pointed out that cube cross-slip is a necessary but
not sufficient condition for sigmoidal creep. The operation of this mech-
anism, which leads to a strain rate increase under some conditions, is
compensated by the strain rate decrease due to the exhaustion of disloca-
tions on the octahedral slip systems. In fact, Smallman et al. [709] observed
cube cross-slip in a polycrystalline Ni3Al alloy creep deformed at 380 �C
(T << Tp), where sigmoidal creep was not apparent. Zhu et al. [692] also
reported cube cross-slip in the absence of sigmoidal creep in single crystals
of Ni3Al with different orientations. In order to rationalize these obser-
vations, Rong et al. [708] suggested that sigmoidal creep would occur only
when the length of a significant number of screw segments cross-slipped
onto cube planes from octahedral planes, as suggested by Hemker et al.
[691], is larger than a critical value. In this case, the density of mobile
dislocations on the cube cross-slip planes would increase significantly,
leading to an increase in the creep rate. Rong et al. [708] also observed an
anomalous temperature dependence of the creep strength in a
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polycrystalline Ni3Al alloy, contrary to what Hemker et al. [691] had re-
ported for their single-crystal alloy. Rong et al. [708] found this anomalous
dependence consistent with their TEM observations of a larger density of
dislocations on cube cross-slip planes at the lower temperatures. They
suggested that the average length of the screw segments on cube cross-slip
planes would increase with decreasing temperature. Thus, at low temper-
atures, there would be more dislocations with lengths larger than the critical
value or a higher mobile dislocation density and this would lead to a lower
creep resistance.

The occurrence of sigmoidal creep has not only been found to depend
on temperature and stress, but also on the prior deformation and processing
history. For example, sigmoidal creep disappears in a Ni3Al alloy prestrained
3% at ambient temperature [707]. A recent investigation of a single crystal of
Ni3Al(0.5%Ta) indicated that the temperature of pre-creep deformation also
affects the subsequent creep behavior [702]. The implications of these ob-
servations in terms of the nature of the creep mechanisms were not discussed.

4.1.3 Steady-State Creep
Steady-state creep can start very early in Ni3Al alloys and extend over a
considerable strain range (up to 20%) at high [696] as well as at intermediate
temperatures [692,706]. Occasionally this stage may be delayed or even
absent at intermediate temperatures if sigmoidal creep occurs, as described
above. As in many other intermetallic systems, the minimum creep rate is
used to calculate the stress exponent and the activation energy for creep,
using the well-established power-law relations described elsewhere in this
book, when clear steady state is not observed.

Table 9 summarizes some of the creep data obtained in various
investigations on Ni3Al-based alloys, mostly at high temperatures [694–699,
703–706,710–713,715–719,725–729]. This section will mainly focus on
single-phase alloys. The stress exponent, n, ranges mostly between 3.2 and
4.4 in both single-crystal and polycrystalline alloys. A lower value of about
1 was reported at low stresses in a polycrystalline Ni3Al(Hf, B) [713,716]. A
few studies have reported higher values of 6.7 [706], 8 [718], and 9 [730].
The values of the activation energy, Qc, for creep ranged from 263 to
530 kJ mol�1, but are generally between 320 and 380 kJ mol�1. It is not
possible to normalize all the creep data of various Ni3Al alloys in a single
plot, such as in earlier chapters, due to the lack of diffusion coefficient and
modulus of elasticity values at various temperatures over the large range of
compositions investigated.

222 Fundamentals of Creep in Metals and Alloys



Table 9 Creep data of Ni3Al alloys

Alloy Structure T (�C) n
Qc

(kJ mol�1) Reference

Single-phase

Ni3Al(10Fe) P 871e1177 3.2 327 [711]
Ni3Al(11Fe) P 680e930 2.6 355 [712]
Ni3Al(Zr, B) P 860e965 4.4 406 [710]
Ni3Al(Hf, B) P 760 2e3 (HS)

1 (LS)
e
e

[713]

Ni3Al(Zr, B) P 760e860 2.9 339e346 [704]
Ni3Al(8Cr,
Zr, B)

P 760e860 3.3 391e400 [704]

Ni3Al(5V) P 850e950 2.89e3.37 e [715]
Ni3Al(Hf, B) P 760e867 1 (LS) 313 [716]
Ni3Al(Ta) P 950e1100 3.3 383 [717]
Ni3(Al, 4Ti) P 750 8 e [718]
Ni3Al(8Cr, Hf,
Ta, Mo.)

P 650e900 4.7 327 [719]

Ni3Al(Hf, B) S 924e1075 4.3 378 [696]
Ni-23.5Al S 982 3.5 e [695]
Ni3Al(Cr, Ta,
Ti, W, Co)

S 900e1000 3.5 380 [697]

Ni3(Al, 4Ti) S 852e902 3.3 282 [699]
Ni3Al(Ta, B) S 810e915 3.2 320 [698]
Ni3Al(Ta, B) 1015e1115 3.2 (HS)

4.3 (LS)
360
530

[698]

Ni3Al(Ta, B) S 850e1000 3.5 420 [694]
Ni3Al(X),
X ¼ Ti,
Hf, Cr, Si

S 850e950 3.01e4.67 263e437 [703]

Ni3Al(4Cr) S 760e860 e 362e466 [705]
Ni3Al(Ti, 2Ta) S 850

1150
6.7
3.3

383
e

[706]

Multiphase (precipitation strengthened)

Ni3(Al, 4Ti) g/g0 650, 750 31, 22 e [718]
Ni-20.2Al-
8.2Cr-2.44Fe

g/g0-
a(Cr)

777e877 4.1 301 [725]

Oxide-dispersion strengthened Ni3Al

Ni3Al(5Cr, B) 2 vol.%
Y2O3

1000e1200 7.2, 7.8 650, 697 [726,727]

Ni3Al(5Cr, B) 2 vol.%
Y2O3

649
732, 816

982

13.5
5.1 (LS)
22, 13
(HS)

9.1

e
239

[728]
[729]

HS, high stress; LS, low stress; P, polycrystalline; S, single crystal.
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The rate-controlling mechanism during creep of Ni3Al intermetallics is
still unclear. Based on the analysis of the stress exponents, several studies
suggested dislocation glide (n z 3) [697,698,711,715,717], while others
propose that dislocation climb predominates (n z 4–5) [698,702,710,719],
and yet others point toward Coble or Nabarro-Herring creep (n ¼ 1)
[713,716]. However, others have questioned the predominance of a single
mechanism, since the stress exponents vary from 3 to 5. Also, the Qc values
have been found to be stress-dependent, in some cases [705], and values are
often much higher than the activation energy for diffusion (the activation
energy for diffusion of Ni in Ni3Al varies from 273 to 301 kJ mol�1 [731]).
The diffusivity of Al in NiAl is believed to be higher but it has still not been
measured directly due to the lack of suitable radioactive tracers [732].

Several TEM studies have been performed to investigate the micro-
structural evolution of Ni3Al alloys during steady-state creep. In general,
subgrains do not readily form. Wolfenstine et al. [698] observed randomly
distributed, curved, dislocations in the n ¼ 3 region between 810 �C and
915 �C, and a homogeneous dislocation distribution with some evidence
for subgrain formation in the n ¼ 4.3 region (lower stresses) but no evi-
dence for subgrain formation in the n ¼ 3 region (higher stresses) between
1015 �C and 1115 �C. Knobloch et al. [733] examined the microstructure
of [001], [011], and [111] oriented Ni3Al single crystals creep deformed at
850 �C at a stress of 350 MPa. They observed a homogeneous dislocation
distribution for all orientations and creep stages. Stress exponents and
activation energies were not calculated. As mentioned above, the most
common slip systems operative during creep of Ni3Al are the <110>{111}
(octahedral slip) and <110>{100} (cube slip) [692,734], although dislo-
cation glide on <100>{100} [735] and <110>{110} [733,736] systems
has also been reported. This suggests that multiple slip takes place and that
dislocation interactions may be important during creep [696,733].

4.1.4 Effect of Some Microstructural Parameters on Creep Behavior
Crystal orientation has a considerable influence on creep behavior
[692–696,706,734–736] and this influence is highly dependent on tem-
perature. At high temperatures, [001] is the weakest orientation, showing
the highest creep rate; [111] is the strongest orientation associated with the
lowest creep rate, about 1/5 to 1/2 of that of the [001] orientation. Finally,
the [011] and [123] orientations show an intermediate strength and the
creep rate is about 1/3 to 1/2 of the creep rate of the [001] orientation
[693,695,696,706,733]. At intermediate temperatures, the [111] orientation
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is softer than the [001], and the [123] has, again, an intermediate creep
strength [692,696]. Thus, the orientation dependence of creep strength at
intermediate temperatures is opposite to that at high temperatures. Models
considering the operation of octahedral slip, cube slip, and multiple slip
have been proposed to explain and predict the creep anisotropy at different
temperatures [599,695,737]. However, it seems that the crystal orientation
has no obvious influence on the stress exponent n [694,695,706] and on the
activation energy Qc for creep [694,706].

Only a few studies of the influence of grain size on the creep of Ni3Al
have been published. Schneibel et al. [713] observed a grain size depen-
dence of the creep rate of a cast Ni3Al(Hf, B) alloy creep deformed at
760 �C. They tested specimens with average grain sizes of 12, 50, and
120 mm. Figure 109 illustrates the strain rate versus stress data from tests
performed at high stresses in the samples with larger grain sizes. The stress
exponent is 3 for small grain sizes (50 mm) and significantly higher for larger
grain sizes (120 mm). The increase in the stress exponents is attributed to
scatter of the experimental data corresponding to the lowest strain rate.
Thus, these investigators assume a stress exponent around 3 to be charac-
teristic of the high-stress regime, which would be consistent with viscous
glide over the investigated grain sizes. The shear strain rate in the samples
with large grain sizes (>50 mm) was found to be proportional to g�1.9 at
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Figure 109 Stress dependence of the creep rate of Ni-23.5 at.%Al-0.5 at.%Hf-0.2 at.%B
at high stresses for two grain sizes. From Ref. [713].
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low stresses (s < 10 MPa). This observation, together with the finding of a
stress-exponent value equal to 1, may suggest Nabarro-Herring creep (if, in
fact, it exists). For smaller grain sizes (12 mm), Coble (if it exists) creep may
predominate, although conclusive evidence was not presented [713].
Hall–Petch strengthening was not discussed.

Hayashi et al. [715] and Miura et al. [703] investigated the effects of off-
stoichiometry on the creep behavior of binary and ternary Ni3Al alloys.
They reported that, in both single-crystal and polycrystalline alloys, the
creep resistance increases with increasing Ni concentration on both sides of
the stoichiometric composition and a discontinuity exists in the variation at
the stoichiometric composition. The values of the activation energy, Qc, for
creep were also found to be strongly dependent on the Ni concentration
and the alloying additions [703,704,715]. The characteristic variation in
creep resistance with Ni concentration was explained by the strong con-
centration dependence of the activation energy for creep [715]. The n
values (mostly about 3–4), however, appear nearly independent of the
stoichiometric composition and the alloying additions [703,715].

Attempts have been made to improve the creep strength of Ni3Al by
adding various alloying elements [697,700,703,711,713,715,738–741].
Several solutes have been found to be beneficial, such as Hf, Cr, Zr, and Ta
[594]. In some cases the improvement in creep strength was accompanied
by a non-desirable increase in density [594]. However, solid-solution
strengthening has not been effective enough to increase creep resistance
of Ni3Al alloys above the typical values of Ni-based superalloys
[697,740,742,743]. Therefore, research efforts have been directed to
develop multiphase alloys based on Ni3Al through precipitation strength-
ening [718,725] or dispersion strengthening (with addition of nonmetallic
particles or fibers, e.g., oxides, borides, and carbides) [726–729].

A few investigations of creep in multiphase Ni3Al alloys [718,725–729]
are listed in Table 9. Three ranges of n and Qc values were reported for
multiphase alloys, i.e., n ¼ 4.1–5.1 (Qc ¼ 239 kJ mol�1), n ¼ 7.2–9.1
(Qc ¼ 301 kJ mol�1), and n ¼ 13–31 (Qc ¼ 650–697 kJ mol�1). The
deformation mechanism governing creep of multiphase Ni3Al alloys is still
unclear. The steady-state creep in a precipitation-strengthened Ni3Al alloy
Ni-20.2 at.%Al-8.2 at.%Cr-2.44 at.%Fe [1725], where n ¼ 4.1 and
Qc ¼ 301 kJ mol�1 were observed, suggested to be controlled by the climb
of dislocation loops at Cr precipitate interfaces. In an oxide-dispersion
strengthened (ODS) Ni3Al alloy [726–729] the n values were showed
to be strongly dependent on the temperature and the stress. The stress
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exponents increased from 5.1 (with Qc ¼ 239 kJ mol�1) at low stresses to
13w 22 at high stresses at temperatures of 732 �C and 815 �C [728,729],
which are typical of ODS alloys, as discussed earlier. At higher temperatures
(from 1000 �C to 1273 �C) [726,727] the stress exponents were 7.2 and 7.8
(with Qc ¼ 650 and 697 kJ mol�1, respectively). It was suggested that the
stress exponent of 5.1 in the ODS Ni3Al should not be considered indic-
ative of dislocation climb-controlled creep as observed in pure metals and
Class M alloys, and as proposed for some single-phase Ni3Al alloys. Carreño
et al. [726] emphasized that both Arzt and co-workers’ detachment model
(described in the chapter on second-phase strengthening) and incorporating
a threshold stress [598] are not appropriate approaches to describe the creep
behavior of ODS Ni3Al at higher temperatures. There is relatively poor
agreement between the data and the predictions by these models. Alter-
natively, they developed a “ñ-model” approach, which separates the
contribution of the particles and that from the matrix. They assume the
measured stress exponent is equal to the sum of the stress exponent cor-
responding to the matrix, termed hñ, and an additional stress exponent, ñ,
that is necessary in order to account for the dislocation–particle interactions.
The measured activation energy can be obtained by multiplying the acti-
vation energy corresponding to the matrix deformed under the same stress
and temperature conditions by a factor equal to (hñ þ ñ/h). This approach
satisfactorily models the data.

Figure 110 illustrates a comparison of the creep properties of an ODS
Ni3Al alloy, Ni-19 at.%Al-5 at.%Cr-0.1 at.%B with 2 vol.% of Y2O3 (filled
circles) with a single crystal Ni3Al and two nickel-based superalloys,
NASAIR 100 and MA6000. Although the introduction of an oxide
dispersion contributed to strengthening of the Ni3Al alloy with respect to
the single crystal alloy, the creep performance of ODS Ni3Al was still
poorer than that of commercial nickel-based superalloys.

4.2 NiAl
4.2.1 Introduction
NiAl is a B2 ordered intermetallic phase with a simple cubic lattice with
two atoms per lattice site, an Al atom at position (x,y,z) and a Ni atom at
position (x þ 1/2,y þ 1/2,z þ 1/2). This is a very stable structure that
remains ordered until nearly the melting temperature. As illustrated in the
phase diagram of Figure 106, NiAl forms at Al concentrations ranging from
40 to about 55 at.%. Excellent reviews of the physical and mechanical
properties of NiAl are available in [594,745,746].
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NiAl alloys are attractive for many applications due to their favorable
oxidation, carburization and nitridation resistance, as well as their high
thermal and electrical conductivity. They are currently used to make
electronic metallizations in advanced semiconductor heterostructures, sur-
face catalysts, and high current vacuum circuit breakers [745]. Additionally,
these alloys are attractive for aerospace structural applications due to their
low density (5.98 g cm�3) and high melting temperature [599]. However,
two major limitations of single-phase NiAl alloys are precluding their
application as structural materials, namely poor creep strength at high
temperatures and brittleness below about 400 �C (brittle–ductile transition
temperature). The following sections of this chapter will review the
deformation mechanisms during creep of single-phase NiAl and the effects
of different strengthening mechanisms.

4.2.2 Creep of Single-Phase NiAl
Most of the available creep data of NiAl were obtained from compression
tests at constant strain rate or constant load [747–767]. Only limited data
from tensile tests are available [755,769]. It is generally accepted that creep
in single-phase NiAl is diffusion controlled. This has been inferred from the
analysis of the stress exponents and activation energies. The values for these
parameters are listed in Table 10. In most cases, the stress exponents range

Figure 110 Comparison of the creep behavior corresponding to an oxide-dispersion
strengthened (ODS) Ni3Al alloy of composition Ni-19 at.%Al-5 at.%Cr-0.1 at.%B with
2 vol.% of Y2O3 (g w 400 mm) [727] with a single-crystal Ni3Al alloy [796] and with the
Ni superalloys NASAIR 100 [744] and MA6000. From Ref. [581].
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from 4 to 7.5. Figure 111 illustrates the creep behavior of several binary
NiAl alloys. The values of the activation energies, in many investigations,
are close to 291 kJ mol�1, the value of the activation energy for bulk
diffusion of Ni in NiAl. Additionally, subgrain formation during defor-
mation was observed [173], consistent with climb.

Table 10 Creep parameters for NiAl

Al, at.% Grain size, mm T (�C) n
Q,
kJ mol�1 Reference

48.25 5e9 727e1127 6.0e7.5 313 [757]
44e50.6 15e20 727e1127 5.75 314 [761]
50 12 927e1027 6 350 [742]
50 450 800e1045 10.2e4.6 283 [763]
50 500 900 4.7 [764]
50.4 1000 802e1474 7.0e3.3 230e290 [765]
50 Single crystal

[123]
750e950 7.7e5.4 [766]

50 Single crystal 750e1055 4.0e4.5 293 [767]
49.8 39 727 5 260 [768]

From Ref. [746] with additional data from recent publications.

Figure 111 Creep behavior of several binary NiAl alloys. From Ref. [594].
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However, occasionally stress exponents different from those mentioned
above have been reported. For example, values as low as 3 were measured
in NiAl single crystals by Forbes et al. [768] and Vanderwoort et al. [765],
who suggested that both viscous glide and dislocation climb would operate.
The contributions of each mechanism would depend on texture, stress, and
temperature [765]. Recently, Raj et al. [769] reported stress exponents as
high as 13 in a Ni-50 at.%Al alloy tested in tension at 427 �C, 627 �C,
and 727 �C and at constant stresses of 100–170 MPa, 40–80 MPa, and
35–65 MPa, respectively. Although no clear explanations for this high stress
exponent value are provided, they note that the creep behavior of NiAl in
tension and compression is significantly different. For example, Raj et al.
observed that NiAl material creeps much faster in tension than in
compression, especially at the lower temperatures.

Diffusional creep has been suggested to occur in NiAl when tested at
low stresses (s < 30 MPa) and high temperatures (T > 927 �C) [764,770].
Stress exponents between 1 and 2 were reported under these conditions.

4.2.3 Strengthening Mechanisms
Several strengthening mechanisms have been utilized in order to improve
the creep strength of NiAl alloys. Solid solution of Fe, Nb, Ta, Ti, and Zr
produced only limited strengthening [747,771]. Solute strengthening must
be combined with other strengthening mechanisms in order to obtain
improved creep strength. Precipitation hardening by additions of Nb, Ta,
or Ti renders NiAl more creep resistant than solid solution strengthening
(i.e., alloys with the same composition and same alloying elements in
smaller quantities) but still significant improvements are not achieved [748].

An alternative, more effective strengthening method than solute or
precipitation strengthening is dispersion strengthening. Artz and Grahle
[751] mechanically alloyed dispersed particles in a NiAl matrix and obtained
favorable creep strength up to 1427 �C. Figure 112 compares the creep
strengths of an ODS NiAl-Y2O3 alloy with a ferritic superalloy (MA 956)
and AlN precipitation-strengthened NiAl alloy at 1200 �C. The ODS Ni
alloy is more creep resistant than the Ni superalloy MA956 at these high
temperatures. The ODS NiAl alloy is also more resistant than the
precipitation-strengthened alloy at low strain rates. Artz and Grahle [751]
also observed that the creep behavior of ODS NiAl is significantly influ-
enced by the grain size. In a coarse grain size (g ¼ 100 mm) ODS NiAl-
Y2O3 alloy, the creep behavior showed the usual characteristics of
dispersion-strengthened systems, i.e., high stress exponents (n ¼ 17) and
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activation energies much higher than that of lattice self-diffusion
(Q ¼ 576 kJ mol�1). However, intermediate stress exponents of 5 and
very high activation energies (Q ¼ 659 kJ mol�1) were measured in an
ODS NiAl-Y2O3 alloy with a grain size of 0.9 mm. This creep data could
not be easily modeled using established relationships for diffusional or for
detachment-controlled dislocation creep [751]. Arzt and Grahle [751]
suggested that the presence of particles at grain boundaries partially sup-
presses the sink/source action of grain boundaries by pinning the grain
boundary dislocations and thus hindering Coble creep. However, the low
stress exponent indicates that Coble creep (if it exists) may not be
completely suppressed. Artz and Grahle [751] proposed a phenomeno-
logical model based on the coupling between Coble creep and the grain
boundary dislocation–dispersoid interaction (controlled by thermally acti-
vated dislocation detachment from the particles, as described in an earlier
chapter). The predictions of this model correlate with the experimental
data. HfC and HfB2 can also provide significant particle strengthening
[747].

Matrix reinforcement by larger particles such as TiB2 and Al2O3 or
whiskers also increases significantly the strength of NiAl alloys [747,752].
Xu and Arsenault [752] investigated the creep mechanisms of NiAl matrix

Figure 112 Comparison of the creep behavior of a coarse-grained (g ¼ 100 mm)
oxide-dispersion strengthened (ODS) NiAl alloy [751] with the ferritic ODS superalloy
MA956 and with a precipitation strengthened NiAl-AlN alloy produced by
cryomilling. From Ref. [754].
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composites with 20 vol.% of TiB2 particles of 5 and 150 mm diameter, with
20 vol.% of Al2O3 particles of 5 and 75 mm diameter, and with 20 vol.% of
Al2O3 whiskers. They measured stress exponents ranging from 7.6 to 8.4
and activation energies similar to that of lattice diffusion of Ni in NiAl.
They concluded that the deformation mechanism is the same in unrein-
forced and reinforced materials, i.e., dislocation climb is rate-controlling in
NiAl matrix composites during deformation at high temperature. Addi-
tionally, TEM examination revealed long screw dislocations with superjogs.
Xu and Arsenault [752] suggested, based on computer simulation, that the
jogged screw dislocation model, described previously in this book, can
account for the creep behavior of NiAl metal matrix composites.
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Creep Fracture
M.E. Kassner
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1. BACKGROUND

Creep plasticity can lead to tertiary, or Stage III, creep and failure. It has
been suggested that creep fracture can occur by w-type, or wedge-type,
cracking, as illustrated in Figure 113(a), at grain boundary (GB) triple
points. Some have suggested that w-type cracks form most easily at higher
stresses (lower temperatures) and larger grain sizes [772] when GB sliding
(GBS) is not accommodated. Some have suggested that the w-type
cracks nucleate as a consequence of GBS. Another mode of fracture has
been associated with r-type irregularities or cavities illustrated in Figure 114.
The wedges may be brittle in origin or simply an accumulation of r-type
voids (Figure 113(b)) [773]. These wedge cracks may propagate only by
r-type void formation [774,775]. Inasmuch as w-type cracks are related to
r-type voids, it is sensible to devote this chapter on creep fracture to
cavitation.
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There has been, in the past, a variety of reviews of creep fracture by
Cocks and Ashby [776] and Needleman and Rice [778], a series of articles
in a single issue of a journal [779–781], a chapter by Cadek [20], and
particularly books by Riedel [785] and Evans [30], although most of these
were published 25–30 years ago. This chapter will review these and more
recent works. Some of these works are compiled in recent bibliographies
[786] and are quite extensive, of course, and this chapter is intended as
a balanced and brief summary. The books by Riedel and Evans are
considered good references for further reading. This chapter will also
reference those works published subsequent to these reviews.

Figure 114 Cavitation (r-type) or voids at a transverse grain boundary. Often, j is
assumed to be approximately 70�.

Figure 113 (a) Wedge (or w-type) crack formed at the triple junctions in association
with grain boundary sliding. (b) A wedge crack as an accumulation of spherical cavities.
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Creep fracture in uniaxial tension under constant stress has been
described by the Monkman-Grant relationship [35], which states that the
fracture of creep deforming materials is controlled by the steady-state creep
rate, _εss, Eqn (4),

_εm
00

ss tf ¼ kMG (168)

where kMG is sometimes referred to as the Monkman–Grant constant and
m00 is a constant, typically about 1.0. Some data that illustrate the basis for
this phenomenological relationship are given in Figure 115, based on
previous work [30,787]. Although not extensively validated over the
past 20 years, it has been shown recently to be valid for creep of
dispersion-strengthened cast aluminum [788] where cavities nucleate at
particles and not located at grain boundaries. Modifications have been
suggested to this relationship based on fracture strain [789]. Although
some more recent data on Cr-Mo steel suggest that Eqn 4 is valid [790],
the same data have been interpreted to suggest the modified version. The
Monkman–Grant (phenomenological) relationship, as will be discussed
subsequently, places constraints on creep cavitation theories.

Another relationship to predict rupture time uses the Larson-Miller
parameter [791] described by

LM ¼ T ½log tr þ CLM� (169)

This equation is not derivable from the Monkman–Grant or any
other relationship presented. The constant CLM is phenomenologically
determined as that value that permits LM to be uniquely described by the
logarithm of the applied stress. This technique appears to be currently used
for zirconium alloy failure time prediction [792]. CLM is suggested to be
about 20, independent of the material.

One difficulty with these equations is that the constants determined in a
creep regime, with a given rate-controlling mechanism, may not be used
for extrapolation to the rupture times within another creep regime, where
the constants may change [792]. The Monkman–Grant relationship appears
to be more popular.

The fracture mechanisms that will be discussed are those resulting from
the nucleation of cavities followed by growth and interlinkage, leading to
catastrophic failure. Figure 116 illustrates such creep cavitation in Cu,
already apparent during steady state (i.e., before Stage III or tertiary creep).
It will be initially convenient to discuss fracture by cavitation as consisting
of two steps: nucleation and subsequent growth.
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Figure 115 (a) The steady-state creep-rate (strain rate) versus time-to-rupture for Cu
deformed over a range of temperatures, adapted from Evans [30], and (b) dispersion
strengthened cast aluminum. Adapted from Dunand et al. [788].
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Figure 116 Micrograph of cavities in Cu deformed at 20 MPa and 550 �C to a strain of
about 0.04 (within stage II, or steady state). This is shown at (a) low and (b) high
magnification.
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2. CAVITY NUCLEATION

The mechanism by which cavities nucleate is still not well established. It
has generally been observed that cavities frequently nucleate on grain
boundaries, particularly on those whose projection is transverse to a tensile
stress (e.g., [775,793–797]). In commercial alloys, the cavities appear to be
associated with second-phase particles. It appears that cavities do not
generally form in some materials such as high-purity (99.999% pure) Al.
Cavitation is observed in lower-purity metal such as 99% Al [798] (in high-
purity Al, boundaries are serrated and very mobile). The nucleation theories
fall into several categories that are illustrated in Figure 117: (1) GBS leading
to voids at the head (e.g., triple point) of a boundary or formation of voids by
“tensile” grain boundary (GB) ledges, (2) vacancy condensation, usually at

Figure 117 Cavity nucleation mechanism. (a) Sliding leading to cavitation from ledges
(and triple points). (b) Cavity nucleation from vacancy condensation at a high stress
region. (c) Cavity nucleation from a Zener-Stroh mechanism. (d) The formation of a
cavity from a particle-obstacle in conjunction with the mechanisms described in (a–c).
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grain boundaries at areas of high stress concentration, and (3) the cavity
formation at the head of a dislocation pile-up such as by a Zener-Stroh
mechanism (or anti–Zener-Stroh mechanism [799]). These mechanisms
can involve particles as well (4).

2.1 Vacancy Accumulation
Raj and Ashby [800] developed an earlier [801] idea that vacancies can
agglomerate and form stable voids (nuclei) as in Figure 117(b). Basically, the
free energy terms are the work performed by the applied stress with cavity
formation balanced by two surface energy terms. The change in the total
free energy is given by

DGT ¼ �sUN þ Avgm � Agbggb (170)

where N is the number of vacancies, Av and Agb are the surface areas of the
void and (displaced) area of GB, respectively, and gm and ggb are surface
and interfacial energy terms of the metal and GB, respectively. (Note: All
stresses and strain rates are equivalent uniaxial and normal to the GB in
the equations in this chapter.)

This leads to a critical radius, a*, and free energy, DG�
T, for critical-sized

cavities and a nucleation rate

_Nyn�Dgb (171)

where n� ¼ no expð�DG�
T=kTÞ, Dgb is the diffusion coefficient at the GB,

and no is the density of potential nucleation sites. (The nucleation rate has
the dimensions m2 s�1.) (Some [20,785] have included a “Zeldovich” factor
in Eqn (171) to account for “dissolution” of “supercritical” nuclei a > a*.)

Some have suggested that vacancy supersaturation may be a driving
force rather than the applied stress, but it has been argued that sufficient
vacancy supersaturations are unlikely [785] in conventional deformation (in
the absence of irradiation or Kirkendall effects).

This approach leads to expressions of nucleation rate as a function of
stress (and the shape of the cavity). An effective threshold stress for
nucleation is predicted. Argon et al. [802] and others [785] suggest that the
cavity nucleation by vacancy accumulation (even with modifications to the
Raj-Ashby nucleation analysis to include, among other things, a Zeldovich
factor) requires large applied (threshold) stresses (e.g., 104 MPa) orders of
magnitude larger than observed stresses leading to fracture, which can be
lower than 10 MPa in pure metals [785]. Cavity nucleation by vacancy
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accumulation thus appears to require significant stress concentration. Of
course, with elevated temperature plasticity, relaxation by creep plasticity
and/or diffusional flow will accompany the elastic loading and relax the
stress concentration. The other mechanisms illustrated in Figure 117 can
involve cavity nucleation by direct “decohesion,” which, of course, also
requires a stress concentration.

2.2 Grain Boundary Sliding
GBS can lead to stress concentrations at triple points and hard particles on
the grain boundaries, although it is unclear whether the local stresses are
sufficient to nucleate cavities [20,803]. These mechanisms are illustrated in
Figures 117(a), (b), and (d). Another sliding mechanism includes (tensile)
ledges (Figure 117(a)) where tensile stresses generated by GBS may be
sufficient to cause cavity nucleation [804], although some others [805]
believed the stresses are insufficient. The formation of ledges may occur as
a result of slip along planes intersecting the grain boundaries.

One difficulty with sliding mechanisms is that transverse boundaries
(perpendicular to the principal tensile stress) appear to have a propensity to
cavitate where sliding may be less substantial. Cavitation has been observed in
bicrystals [806] where the boundary is perpendicular to the applied stress, such
that there is no resolved shear and an absence of sliding. Hence, it appears that
sliding is not a necessary condition for cavity nucleation. Others
[780,793,807], however, still do not appear to rule out a relationship between
GBS and cavitation along transverse boundaries. The ability to nucleate
cavities via GBS has been demonstrated by prestraining copper bicrystals in an
orientation favoring GBS, followed by subjecting the samples to a stress
normal to the previously sliding GB and comparing those results to tests on
bicrystals that had not been subjected to GBS [804]. Extensive cavitation was
observed in the former case while no cavitation was observed in the latter.
Also, as will be discussed later, GBS (and concomitant cavitation) can lead to
increased stress on transverse boundaries, thereby accelerating the caviation at
these locations. More recently, Ayensu and Langdon [793] found a relation
between GBS and cavitation at transverse boundaries, but also note a
relationship between GBS and strain. Hence, it is unclear whether GBS either
nucleates or grows cavities in this case. Chen [808] suggested that transverse
boundaries may slide due to compatibility requirements.

It must be remembered that so-called “transverse” boundaries may have
a significant shear as they may be inclined to the photographic/image plane
and only appear transverse in the particular two-dimensional projection.
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2.3 Dislocation Pile-ups
As transverse boundaries may slide less, in general, perhaps the stress
concentration associated with dislocation pile-ups against, particularly, hard
second phase particles at transverse grain boundaries, has received significant
acceptance [784,809,810] as a mechanism by which vacancy accumulation
can occur. Pile-ups against hard particles within the grain interiors may
nucleate cavities, but these may grow relatively slowly without short-circuit
diffusion through the GB and may also be of lower (areal) density than at
grain boundaries.

It is still not clear, however, whether vacancy accumulation is critical
to the nucleation stage. Dyson [784] showed that tensile creep specimens
that were prestrained at ambient temperature appeared to have a predis-
position for creep cavitation. This suggested that the same process that
nucleates voids at ambient temperature (that would not appear to include
vacancy accumulation) may influence or induce void nucleation at
elevated temperatures. This could include a Zener-Stroh mechanism
(Figure 117(c)) against hard particles at grain boundaries. Dyson [784]
showed that the nucleation process can be continuous throughout creep
and that the growth and nucleation may occur together, a point also made
by several other investigators [783,805,811,812]. This and the effect of
prestrain are illustrated in Figure 118. The impact of cavitation rate on
ductility is illustrated in Figure 119. Thus, the nucleation process may be
controlled by the (e.g., steady-state) plasticity. The suggestion that cavity
nucleation is associated with plastic deformation is consistent with the
observation by Watanabe et al. [813], Greenwood et al. [814], and Dyson
et al. [812] that the cavity spacing is consistent with regions of high
dislocation activity (slip band spacing). Davanas and Solomon [801] argue
that if continuous nucleation occurs, modeling of the fracture process can
lead to a Monkman–Grant relationship (diffusive and plastic coupling of
cavity growth and cavity interaction considered). One consideration
against the slip band explanations is that in situ straining experiments with
the transmission electron microscope, Dewald et al. [807] suggested that
slip dislocations may easily pass through a boundary in a pure metal and
that the stress concentrations from slip may be limited. This may not
preclude such a mechanism in combination with second phase particles.
Kassner et al. [69] performed creep fracture experiments on high-purity
Ag at about 0.25 Tm. Cavities appeared to grow by (unstable) plasticity
rather than diffusion. Nucleation was continuous, and it was noted that
nucleation only occurred in the vicinity of high-angle boundaries where
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obstacles existed (regions of highly twinned metal surrounded by low
twin-density metal). High-angle boundaries without barriers did not
appear to cavitate. Thus, nucleation (in at least transverse boundaries)
appears to require obstacles and a Zener-Stroh or anti–Zener-Stroh
mechanism appears most likely.

2.4 Location
It has long been suggested that (transverse) grain boundaries and second-
phase particles are the common locations for cavities. Solute segregation
at the boundaries may predispose boundaries to cavity nucleation [780].
This can occur due to the decrease in the surface and GB energy terms.

Some of the more recent work has found cavitation to be associated
with hard second-phase particles in metals and alloys [816–824].
Second-phase particles can result in stress concentrations on application of
a stress and increase cavity nucleation at a GB through vacancy conden-
sation by increasing the GB free energy. Also, particles can be effective
barriers to dislocation pile-ups.

Figure 118 The variation of the cavity concentration versus creep strain in Nimonic 80A
(Ni-Cr alloy with Ti and Al) for annealed and prestrained (cold-worked) alloy. Adapted
from Dyson [784]. Cavities were suggested to undergo unconstrained growth.
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The size of critical-sized nuclei is not well established, but the
predictions based on the previous equations is about 2–5 nm [20], which
are difficult to detect. Scanning electron microscopy under optimal
conditions can be used to observe (stable) creep cavities as small as 20 nm
[825]. It has been suggested the small-angle neutron scattering can char-
acterize cavity distributions from less than 10 nm to almost 1 mm [20]. TEM
has detected stable cavities (gas) to 3 nm [826]. Interestingly, observations of
cavity nucleation not only suggest continual cavitation but also no incu-
bation time [827] and that strain rather than time is more closely associated
with nucleation [20]. Figure 119 illustrates the effect of stress states on
nucleation. Torsion, for comparable equivalent uniaxial stresses in Nimonic
80 leads to fewer nucleated cavities and greater ductility than tension.
Finally, another nucleation site that may be important as damage progresses
in a material is the stress concentration that arises around existing cavities.
The initial (elastic) stress concentration at the cavity “tip” is a factor of
3 larger than the applied stress, and even after relaxation by diffusion, the
stress may still be elevated [828], leading to increased local nucleation rates.

Figure 119 Creep ductility versus the “rate” of cavity production with strain. Adapted
from Dyson [784] (various elevated temperatures and stresses).
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3. GROWTH

3.1 GB Diffusion-Controlled Growth
The cavity growth process at grain boundaries at elevated temperature has
long been suggested to involve vacancy diffusion. Diffusion occurs by
cavity surface migration and subsequent transport along the GB, with either
diffusive mechanism having been suggested to be controlling depending
on the specific conditions. This contrasts creep void growth at lower
temperatures where cavity growth is accepted to occur by (e.g., dislocation
glide-controlled) plasticity. A carefully analyzed case for this is
described [825].

Hull and Rimmer [829] were one of the first to propose a mechanism
by which diffusion leads to cavity growth of an isolated cavity in a material
under an applied external stress, s. A stress concentration is established just
ahead of the cavity. This leads to an initial “negative” stress gradient.
However, a “positive” stress gradient is suggested to be established due to
relaxation by plasticity [30]. This implicit assumption in diffusion-
controlled growth models appears to have been largely ignored in later
discussions by other investigators, with rare exception (e.g. [30]). The
equations that Hull and Rimmer and, later, others [785,800,830] subse-
quently derive for diffusion-controlled cavity growth are similar. Basically

Jgb ¼ � Dgb

UkT
Vf (172)

where Jgb is the flux, U is the atomic volume, f ¼ –slocU, and sloc is the
local normal stress on the GB. Also

Vfw
U

ls

�
s� 2gm

a

�
(173)

where “a” is the cavity radius, s is the remote or applied normal stress to the
GB, and ls is the cavity separation. Below a certain stress

�
s0 ¼ 2gm

a

�
, the

cavity will sinter. Equations 172 and 173 give a rate of growth

da
dt

y
Dgbd

�
s� 2gm

a

�
U

2kTlsa
(174)

where d is the GB width. Figure 120 is a schematic that illustrates the basic
concept of this approach.
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By integrating between the critical radius (below which sintering oc-
curs) and a ¼ ls/2

tr y
kTl3s

4Dgbd

�
s� 2gm

a

�
U

(175)

This is the first relationship between stress and rupture time for
(unconstrained) diffusive cavity growth. Raj and Ashby [800,831], Speight
and Beere [830], Riedel [785], and Weertman [832] later suggested
improved relationships between the cavity growth rate and stress of a similar
form to that of Hull and Rimmer (Eqn (174)). The subsequent improve-
ments included modifications to the diffusion lengths (the entire GB is a
vacancy source), stress redistribution (the integration of the stress over the
entire boundary should equal the applied stress), cavity geometry (cavities
are not perfectly spherical), and the “jacking” effect (atoms deposited on the
boundary causes displacement of the grains). Riedel, in view of these
limitations, suggested that the equation for unconstrained cavity growth of
widely spaced voids is, approximately

da
dt

¼ UdDgb½s� s00
o�

1:22kT lnðls=4:24aÞa2 (176)

where s00o is the sintering stress. Again, integrating to determine the time for
rupture shows that trf1=s. Despite these improvements, the basic

Figure 120 Cavity growth from diffusion across the cavity surface and through the
grain boundaries due to a stress gradient.
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description long suggested by Hull and Rimmer is largely representative
of unconstrained cavity growth. An important point here is a predicted
stress dependence of one and an activation energy of GB diffusion for
Eqns (174)–(176) for (unconstrained) cavity growth.

The predictions and stress dependence of these equations have been
frequently tested [45,815,833–844]. Raj [842] examined Cu bicrystals
and found the rupture time inversely proportional to stress, consistent
with the diffusion controlled cavity growth equations just presented. The
fracture time for polycrystals increases orders of magnitude over bicrystals.
Svensson and Dunlop [836] found that in a-brass, cavities grow linearly
with stress. The fracture time appeared, however, consistent with
Monkman–Grant and continuous nucleation was observed. Hanna and
Greenwood [837] found that density change measurements in prestrained
(i.e., prior cavity nucleation) and with hydrogen bubbles were consistent
with the stress dependency of the earlier equations. Continuous nucle-
ation was not assumed. Cho et al. [838] and Needham and Gladman
[843,844] measured the rupture times and/or cavity growth rate and
found consistency with a stress to the first power dependency if
continuous nucleation was assumed. Miller and Langdon [835] analyzed
the density measurements on creep-deformed Cu based on the work of
others and found that the cavity volume was proportional to s2 (for fixed
T, t, and ε). If continuous nucleation occurs with strain, which is
reasonable, and the variation of the nucleation rate is “properly” stress
dependent (unverified), then consistency between the density trends and
unconstrained cavity growth described by Eqns (168) and (170) can be
realized.

Creep cavity growth experiments have also been performed on
specimens with preexisting cavities by Nix and coworkers [45,834].
Cavities, here, were created using water vapor bubbles formed from
reacting dissolved hydrogen and oxygen. Cavities were uniformly
“dispersed” (unconstrained growth). Curiously, the growth rate, da/dt,
was found to be proportional to s3. This result appeared inconsistent
with the theoretical predictions of diffusion-controlled cavity growth.
The disparity is still not understood. Interestingly, when a dispersion
of MgO particles was added to the Ag matrix, which decreased the
Ag creep rate, the growth rate of cavities was unaffected. This supports
the suggestion that the controlling factor for cavity growth is diffusion
rather than plasticity or GBS. Similar findings were reported by
others [845].
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3.2 Surface Diffusion-Controlled Growth
Chuang and Rice [846] and later Needleman and Rice [778] suggested
that surface rather than grain-boundary diffusion may actually control
cavity growth (which is not necessarily reasonable) and that these
assumptions can give rise to a 3-power stress relationship for cavity growth
at low stresses [847].

da
dt

y
UdDs

2kTg2
m

s3 (177)

At higher stresses, the growth rate varies as s3/2. The problem with this
approach is that it is not clear in the experiments, for which three-power stress
dependent cavity growth is observed, that Ds < Dgb. Activation energy
measurements byNieh andNix [834] for (assumed unconstrained) growth of
cavities in Cu are inconclusive as to whether it better matches Dgb versusDs.
Also, the complication with all of these growth relationships (Eqns (174)–
(177)) is that they are inconsistent with the Monkman–Grant phenome-
nology. That is, for common 5-power-law creep, the Monkman–Grant
relationship suggests that the cavity growth rate (1/tf) should be proportional
to the stress to the fifth power rather than 1- to 3-power. This, of course, may
emphasize the importance of nucleation in the rate-controlling process for
creep cavitation failure, since cavity-nucleation may be controlled by the
plastic strain (steady-state creep rate). Of course, small nanometer-sized
cavities (nuclei), by themselves, do not appear sufficient to cause cavitation
failure. Dyson [784] suggested that the Monkman–Grant relationship may
reflect the importance of both (continuous) nucleation and growth events.

3.3 Grain Boundary Sliding
Another mechanism that has been considered important for growth is GBS
[848]. This is illustrated in Figure 121. Here cavities are expected to grow
predominantly in the plane of the boundary. This appears to have been
observed in some temperature-stress regimes. Chen appears to have
invoked GBS as part of the cavity growth process [779], also suggesting that
transverse boundaries may slide due to compatibility requirements.
A suggested consequence of this “crack sharpening” is that the tip velocity
during growth becomes limited by surface diffusion. A stress to the third
power, as in Eqn (177), is thereby rationalized. Chen suggests that this
phenomenon may be more applicable to higher strain rates and closely
spaced cavities (later stages of creep) [808]. The observations that cavities are
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often more spherical rather than plate-like or lenticular and that, of course,
transverse boundaries may be less prone to slide also suggest that cavity
growth does not substantially involve sliding.

Riedel [785] predicted that (constrained) diffusive cavity growth rates
are expected to be a factor of (lS/2a)

2 larger than growth rates by (albeit,
constrained) sliding. It has been suggested that sliding may affect growth in
some recent work on creep cavitation of dual phase intermetallics [849].

3.4 Constrained Diffusional Cavity Growth
Cavity nucleation may be heterogeneous, inasmuch as regions of a material
may be more cavitated than others. Adams [850] and Watanabe et al. [851]
both suggested that different geometry (e.g., as determined by the variables
necessary to characterize a planar boundary) high-angle grain boundaries
have a different tendencies to cavitate, although there was no agreement as
to the nature of this tendency in terms of the structural factors. A given
misorientation (3 of 5 degrees of freedom) boundary may have varying
orientations to the applied stresses. Another important consideration is that
the zone ahead of the cavity experiences local elongating with diffusional
growth, and this may cause constraint in this region by those portions of the
material that are unaffected by the diffusion (outside the cavity diffusion
“zone”). This may cause a “shedding” of the load from the diffusion zone
ahead of the cavity. Thus, cavitation is not expected to be homogeneous
and uncavitated areas may constrain those areas that are elongating under
the additional influence of cavitation. This is illustrated in Figure 122.
Fracture could then be controlled by the plastic creep rate in uncavitated
regions that can also lead to cavity nucleation. This leads to consistency
with the Monkman–Grant relationship [852,853].

Figure 121 Cavity growth from a sliding boundary. (a) initial cavity and (b) sliding
cavity. From [780].
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Constrained diffusional growth was originally suggested by Dyson and
further developed by others [776,793,808,846,853]. This constrained cavity
growth rate has been described by the relationship [785]

da
dt

y
s� �

1� u
�
s00
o

a2kT
UdDgb

þ sssp2ð1þ3=nÞ1=2
_εssl

2
s g

a2
(178)

where u is the fraction of the GB cavitated.
This is the growth rate for cavities expanding by diffusion. One notes

that for higher strain rates, where the increase in volume can be easily
accommodated, the growth rate is primarily a function of the GB diffusion
coefficient.

If only certain GB facets cavitate, then the time for coalescence, tc, on
these facets can be calculated

tc y
0:004kTl3

UdDgbsss

þ 0:24ð1þ 3=nÞ1=2l
_εssg

(179)

where, again, n is the steady-state stress exponent, g is the grain size, and sss
and _εss are the steady-state stress and strain rate, respectively, related by

_εss ¼ Ao exp½ �Qc=kT �ðsss=EÞn (180)

where n ¼ 5 for classic 5-power-law creep. However, it must be empha-
sized that failure is not expected by mere coalescence of cavities on isolated

Figure 122 Uniform (a) and heterogeneous (b) cavitation at (especially transverse)
boundaries. The latter condition can particularly lead to constrained cavity
growth. From [780].
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facets. Additional time may be required to join facet-size microcracks. The
mechanism of joining facets may be rate controlling. The advance of facets
by local nucleation ahead of the “crack” may be important (creep-crack
growth on a small scale). Interaction between facets and the nucleation
rate of cavities away from the facet may also be important. It appears likely,
however, that this model can explain the larger times for rupture (than
expected based on unconstrained diffusive cavity growth). This likely also
is the basis for the Monkman–Grant relationship if one assumes that the
time to cavity coalescence, tc, is most of the specimen lifetime, tf, so that
tc is not appreciably less than tf. Figure 123, adapted from Riedel, shows
the cavity growth rate versus stress for constrained cavity growth as solid
lines. Also plotted in this figure (as the dashed lines) is the equation for
unconstrained cavity growth (Eqn (176)). It is observed that the equation
for unconstrained growth predicts much higher growth rates (lower tf)
than constrained growth rates. Also, the stress dependency of the growth
rate for constrained growth leads to a time-to-fracture relationship that
more closely matches that expected for steady-state creep as predicted by
the Monkman–Grant relationship.

Figure 123 The cavity growth rate versus stress in steel. The dashed lines refer to
unconstrained growth and solid lines to constrained growth. Based on Riedel [785].
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One must, in addition to considering constrained cases, also consider
that cavities are continuously nucleated. For continuous nucleation and
unconstrained diffusive cavity growth, Riedel suggests

tf ¼
�

kT
5UdDgbs

	2=5�
uf

_N

�3=5

(181)

where uf is the critical cavitated area fraction and, consistent with
Figure 119 from Dyson [784]

_N ¼ a0 _ε ¼ a0bsn (182)

with _ε according to Eqn (180).
Equation (181) can be approximated by

tff
1

sð3nþ2Þ=5

For continuous nucleation with the constrained case, the development
of reliable equations is more difficult, as discussed earlier, and Riedel sug-
gests that the time for coalesce on isolated facets is

tc ¼ 0:38

2
664
p

�
1þ 3

=n

�
_N

3
775

1=3

uf

½ _εg�2=3
(183)

which is similar to the version by Cho et al. [838]. Figure 124, also from
Riedel, illustrates the realistic additional effects of continuous nucleation,
which appear to match the observed rupture times in steel. The theoretical
curves in Figure 124 correspond to Eqns (175), (190), (191), and (183). One
interesting aspect of this figure is that there is a very good agreement
between tc and tf for constrained cavity growth. These data were based
on the data of Cane [817] and Riedel [854], who determined the nucle-
ation rate by apparently using an empirical value of a0. No adjustable
parameters were used. Later, for NiCr steel, at 823K, Cho et al. [838]
were able to reasonably predict rupture times assuming continuous
nucleation and constrained cavity growth.

It should be mentioned that accommodated GBS can eliminate the
constraint illustrated in Figure 122 (two-dimensional); however, in the
three-dimensional case, sliding does not preclude constrained cavity
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growth, as shown by Anderson and Rice [855]. Yousefiani et al. [857] used a
calculation of the principal facet stress to predict the multiaxial creep rupture
time from uniaxial stress data. Here, it is suggested that GBS is accommo-
dated and the normal stresses on (transverse) boundaries are increased. Van
der Giessen and Tvergaard [858] appear to analytically (3D) show that
increased cavitation on inclined sliding boundaries may increase the normal
stresses on transverse boundaries for constrained cavity growth. Thus, the
Riedel solution may be nonconservative, in the sense that it overpredicts tf.
Dyson [859] suggested that within certain temperature and strain-rate re-
gimes, there may be a transition from constrained to unconstrained cavity
growth. For an aluminum alloy, it was suggested that decreased temperature
and increased stress could lead to unconstrained growth. Interestingly,
Dyson also pointed out that for constrained cavity growth, uncavitated
regions would experience accelerated creep beyond that predicted by the
decrease in load carrying area resulting from cavitation.

3.5 Plasticity
Cavities can grow, of course, exclusively by plasticity. Hancock [860]
initially proposed the creep controlled cavity growth model based on the

Figure 124 The time to rupture versus applied stress for unconstrained (dashed lines)
cavity growth with instantaneous or continuous nucleation, and constrained cavity
growth (tc) with instantaneous and continuous nucleation. Dots refer to experimental
tf. Based on Riedel [785].
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idea that cavity growth during creep should be analogous to McClintock’s
[818] model for a cavity growing in a plastic field. Cavity growth according
to this model occurs as a result of creep deformation of the material sur-
rounding the GB cavities in the absence of a vacancy flux. This mechanism
becomes important under high strain-rate conditions, where significant
strain is realized. The cavity growth rate according to this model is given as

da
dt

¼ a _ε� g

2G
(184)

This is fairly similar to the relationship by Riedel [785] discussed earlier.
It has been suggested, on occasion, that the observed creep cavity growth
rates are consistent with plasticity growth (e.g., [835]) but it is not always
obvious that constrained diffusional cavity growth is not occurring, which is
also controlled by plastic deformation.

3.6 Coupled Diffusion and Plastic Growth
Cocks and Ashby [776], Beere and Speight [861], Needleman and Rice
[778], and others [777,862–867] suggested that there may actually be a
coupling of diffusive cavity growth of cavities with creep plasticity of the
surrounding material from the far-field stress. It is suggested that as material
from the cavity is deposited on the GB via surface and GB diffusion, the
length of the specimen increases due to the deposition of atoms over the
diffusion length. This deposition distance is effectively increased (shortening
the effective required diffusion-length) if there is creep plasticity in the
region ahead of the diffusion zone. This was treated numerically by
Needleman and Rice and later by van der Giessen et al. [868]. Analytic
descriptions were performed by Chen and Argon [863]. A schematic of this
coupling is illustrated in Figure 125. The diffusion length is usually
described as [778]

L ¼
�
DgbUds

kT _ε

�1=3

(185)

Chen and Argon describe coupling by
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as illustrated in Figure 126.
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Figure 125 The model for coupled diffusive cavity growth with creep plasticity. The
diffusion length is suggested to be reduced by plasticity ahead of the cavity. Based
on [777].

Figure 126 Prediction of growth rate for different ratios of cavity spacing l and
diffusion zone sizes L. From [780].
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Similar analyses were performed by others with similar results
[60,778,863,864]. It has been shown that when L � a and l [863,869],
diffusion-controlled growth no longer applies. In the extreme, this occurs at
low temperatures. Creep flow becomes important as a/L increases. At small
creep rates, but higher temperatures, L approaches ls/2, a/L is relatively
small, and the growth rate can be controlled by diffusion-controlled cavity
growth (DCCG). Coupling, leading to “enhanced” growth rates over the
individual mechanisms, occurs at “intermediate” values of a/L as indicated
in Figure 126. Of course, the important question is whether, under “typical
creep” conditions, the addition of plasticity effects (or the coupling) is
important. Needleman and Rice suggest that for T > 0.5 Tm, the plasticity
effects are important only for s/G > 10�3 for pure metals (relatively high
stress). Riedel suggests that, for pure metals, as well as creep-resistant ma-
terials, diffusive growth predominates over the whole range of creep testing.
Figure 125 illustrates this coupling [777].

Even under the most relevant conditions, the cavity growth rate due to
coupling is, at most, a factor of 2 different than the growth rate calculated
by simply adding the growth rates due to creep and diffusion separately
[870]. It has been suggested that favorable agreement between Chen and
Argon’s analytical treatments is fortuitous because of limitations to the
analysis [865,866,869]. Of course, at lower temperatures, cavity growth
occurs exclusively by plasticity [860]. It must be recognized that cavity
growth by simply plasticity is not as well understood as widely perceived. In
single-phase metals, for example, under uniaxial tension, a 50% increase in
cavity size requires large strains, such as 50% [871]. Thus, a 1000-fold in-
crease in size from the nucleated nanometer-sized cavities would not appear
to be easily explained. Figure 115(b), interestingly, illustrates a case where
plastic growth of cavities appears to be occurring. The cavities nucleate
within grains at large particles in the dispersion-strengthened aluminum of
this figure. Dunand et al. [872] suggest that this transgranular growth occurs
by plasticity, as suggested by others [776] for growth inside grains. Perhaps
the interaction between cavities explains modest ductility. One case where
plasticity in a pure metal is controlling is constrained thin silver films under
axisymmetric loading where s1/s2 (¼s3) y 0.82 [2,825]. Here, unstable
cavity growth [873] occurs via steady-state deformation of silver. The
activation energy and stress-sensitivity appear to match those of steady-state
creep of silver at ambient temperature. Cavities nucleate at high-angle
boundaries where obstacles are observed (high twin-density metal) by
slip-plasticity. A scanning electron photomicrograph of these cavities is
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illustrated in Figure 127. The cavities in Figure 127 continuously nucleate
and appear to undergo plastic cavity growth. Interestingly, if a plastically
deforming base metal is used (creep deformation of the constraining base
metal of a few percent), the additional concomitant plastic strain (over that
resulting from a perfectly elastic base metal) increases the nucleation rate
and decreases the fracture time by several orders of magnitude, consistent
with Figure 124. Cavity growth can also be affected by segregation of
impurities, as these may affect surface and GB diffusivity. Finally, creep

Figure 127 Creep cavitation in silver at ambient temperature. Cavities grow by un-
stable cavity growth, with the rate determined by steady-state creep of silver.
(a) Optical and (b) SEM micrographs. From [2].
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fracture predictions must consider the scatter present in the data. This
important, probabilistic, aspect recently has been carefully analyzed [874].

3.7 Creep Crack Growth
Cracks can occur in creeping metals from preexisting flaws, fatigue,
corrosion-related processes, and porosity [875,876]. In these cases, the
cracks are imagined to develop relatively early in the lifetime of the metal.
This contrasts the case where cracks can form in a uniformly strained (i.e.,
unconstrained) cavity growth and uniform cavity nucleation metal where
interlinkage of cavities leading to crack formation is the final stage of the
rupture life. Crack formation by cavity interlinkage in constrained cavity
growth cases may be the rate-controlling step(s) for failure. Hence, the
subject of creep crack growth is relevant in the context of cavity formation.
Figure 128 (from [877]) illustrates a Mode I crack. The stress/strain ahead of
the crack leads to cavity nucleation and growth. The growth can be
considered to be a result of plasticity-induced expansion or diffusion-
controlled cavity growth. Crack growth occurs by the coalescence of
cavities with each other and the crack.

Nix et al. [877] showed that plastic growth of cavities ahead of the crack
tip can lead to a “steady-state” crack growth rate. Nucleation was not
included in the analysis. They considered the load parameter to be the stress
intensity factor for (elastic) metals with Mode I cracks, KI

vc ¼ k8ls
2ðn� 2Þlnðls=2aÞ

�
KI

n
ffiffiffiffi
ls

p
�n

(187)

where k8 is a constant.
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Figure 128 Grain boundary crack propagation controlled by the creep growth of
cavities near a crack tip. From [877].
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However, for cases of plasticity, and in the present case with time-
dependent plasticity, the load parameters have been changed to J and C*
[878], respectively. Much of the creep cavitation work since 1990 appears
to have focused on creep cracks and analysis of the propagation in terms of
C*. The C* term appears to be a reasonable loading parameter that
correlates crack growth rates, although factors such as plane-stress/plane-
strain (i.e., stress-state), crack branching, and extent of the damage zone
from the crack tip may all be additionally important in predicting the
growth rate [879–883].

Of course, another way that cracks can expand is by linking up with
diffusionally growing cavities. This appears to be the mechanism favored by
Cadek [20] and Wilkinson and Vitek [884,885] and others [882]. Later,
Miller and Pilkington [886] and Riedel [785] suggest that strain (plasticity)-
controlled growth models (with a critical strain criterion or with strain
controlled nucleation) better correlate with existing crack growth data than
diffusional growth models. However, Riedel indicates that the uncertainty
associated with strain-controlled nucleation complicates the unambiguous
selection of the rate-controlling growth process for cavities ahead of a crack.
Figure 129 illustrates a correlation between the crack growth rate, _c and the
loading parameter C*. Riedel argued that the crack growth rate is best

1 Cr -1/2 Mo steel
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600°C

10-10

10-9
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10-8
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10 102 1031
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Figure 129 The crack growth rate versus loading parameter C* for a steel. The line is
represented by Eqn (150). From [785].
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described by the plastic cavity growth relationship, based on a local critical
strain criterion

_c ¼ k9l
1=nþ1ðC�Þn=nþ1

"�
c � co
ls

�1=nþ1

� k10

#
(188)

Riedel similarly argued that if cavity nucleation occurs instantaneously,
diffusional growth predicts

_c ¼ k11DbðUdÞ
2kTl3s

C�1=nþ1ðc � coÞn=nþ1 (189)

where c0 is the initial crack length and c is the current crack length. These
constants are combined (some material) constants from Riedel’s original
equation and the line in Figure 129 is based on Eqn (188) using some of
these constants as adjustable parameters.

Note that Eqn (189) gives a strong temperature dependence (the
“constants” of the equation are not strongly temperature dependent).
Riedel also develops a relationship of strain-controlled cavity growth with
strain-controlled nucleation, which also reasonably describes the data of
Figure 129.
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Figure 130 The cavity density versus size and aspect ratio of creep deformed
304 stainless steel. From [866].
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3.8 Other Considerations
As discussed earlier, Nix and coworkers [811,815,833,834] produced
cavities by reacting with oxygen and hydrogen to produce water-vapor
bubbles (cavities). Other (unintended) gas reactions can occur. These
gases can include methane, hydrogen, and carbon dioxide. A brief review of
environmental effects was discussed recently by Delph [869].

The randomness (or lack or periodicity) of the metal microstructure
leads to randomness in cavitation and (e.g.) failure time. Figure 130
illustrates the cavity density versus major radius a1 and aspect ratio a1/a2.
This was based on metallography of creep deformed AlSl 304 stainless steel.
A clear distribution in sizes is evident. Creep failure times may be strongly
influenced by the random nature of grain boundary cavitation.
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g/g0 Nickel-Based Superalloys
M.E. Kassner
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1. INTRODUCTION

This book deals primarily with the fundamentals of creep in crystalline
materials. Systems have generally been well defined and have less ambig-
uous creep responses. These basic insights are intended to be useful in
understanding more complex systems. For this reason, the book often deals
with “simplified” materials. There have been several reviews of superalloys,
and those of Pollock et al. [600,1009] are important ones. This review
relied on these and other reviews [600,978,979]. A discussion of superal-
loys, albeit relatively brief, makes particular sense because intermetallics
were discussed earlier and it appears that superalloys (that often have an
ordered intermetallic phase as the majority component) have a continued
important role in high-temperature materials applications.

Superalloys are an example of at least two phases: one ordered and one
disordered. Industrial alloys often have additional phases to the primary
disordered and ordered phases, but a discussion of the fundamentals of
superalloys can be best reduced to a discussion of the common two-phase
g/g0 systems. These two-phase systems are often referred as single crystals in
the absence of high-angle grain boundaries. The Ni-Al binary phase dia-
gram, the basis of many superalloys, is illustrated in Figure 131 and shows
details absent in the earlier Figure 106.

Here, the phase diagram illustrates that at compositions in the vicinity of
80 atomic weight percent Ni, two phases exist: the disordered Ni fcc solid-
solution g and the Ni3Al ordered primitive cubic intermetallic g0, discussed
earlier in Chapter 9, which has the L12 structure. Typically, the g0 occupies
Fundamentals of Creep in Metals and Alloys
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60–75% of the alloy, although this fraction decreases with increasing
temperature as the phase diagram illustrates. As will be discussed further, an
important aspect of these alloys is coherency between the g and g0 phases.
The, ordered, cubic precipitates have faces that are parallel to <100>.
Hence, we are addressing a composite material, rather than precipitation-
strengthened or dispersion-strengthened material as discussed earlier, in
Chapter 8, where the fraction of second phase particles was much less.
Figure 132 is a micrograph of a g/g0 microstructure. The cubic g0 phase is
observed in the g matrix.

Superalloys that are discussed here will generally be single crystals (e.g.,
turbine blade applications) and include NASAIR 100 and CMSX-4, -6,
and -10. Typical compositions are listed in Table 11.

Obviously, elements are added to the Ni-Al “basis” for various purposes
and they may partition to different phases (i.e., g or g0). The elements Ti
and Ta are g0 hardening elements, while Re, Nb, and W are g hardening
elements [1009]. Mo may affect lattice misfit [978] and thereby affects the
spacing of interfacial dislocations, which, in turn, may affect the creep
properties. The role of specific additions to the creep properties of the
superalloys is not always well understood [999,1013].

Figure 131 Binary phase diagram of Ni–Al from [1011]. For a more complete phase
diagram and discussion. See Ref. [1012].
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NASAIR100 and CMSX-4 (over a temperature range of about
750–950 �C) have an average elevated-temperature creep activation energy
of 420 kJ/mol, which appears to be much higher than the activation energy
for creep of either pure Al or Ni at roughly 280 kJ/mol. Furthermore,
the creep-rate stress exponents may be higher than the pure elements as
well, at comparable fractions of the melting temperature [600,1000,1001]
(e.g., perhaps double). The Q and n values may show a trend of decreasing
with increasing temperature. It should be mentioned that these values
appear to be based on minimum rather than steady-state creep rates. As will
be observed subsequently, genuine steady states as defined in earlier
chapters may not be relevant here. Pollock and Field illustrate that the creep
resistance of an Ni-Al g/g0 superalloys is substantially better than the iso-
lated bulk phases.

The discussion of this system, in terms of elevated-temperature creep,
must consider that at different temperatures, different dislocation mecha-
nisms are observed, in conjunction with changes in the phase coherency as
well as phase morphology (e.g.,“rafting”). The approach, here, is to first
divide the discussion of the creep behavior of g/g0 coherency between the

Figure 132 Microstructure of a single-crystal Ni–Al superalloy CMSX-10 (variant). Courtesy
of S. Tin, IIT.
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Table 11 Typical compositions of some Ni–Al superalloys in weight percent
Alloy Co Cr Mo W Ta Al Ti Other

CMSX-4 9.2 6.6 0.6 5.9 6.2 5.6 0.9 3.3 Re
CMSX-6 5.0 10.0 3.0 e 6.0 4.8 4.7 0.1 Hf
CMSX-10 3.0 2.0 0.4 5.0 8.0 5.7 0.2 6.0 Re, 0.1 Nb, 0.3 Hf
NASAIR100 e 9.5 1.0 10.0 3.2 5.5 1.2 e
Rene 88 DTa 13.0 16.0 4.0 4.0 e 2.1 3.7 0.015 B, 0.3 C, 0.7 Nb
aPolycrystal.
From [600,978,1002,1003,1009]. Balance is Ni.
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superalloys by discussing the behavior of Ni-Al superalloys into regimes
where the overall behaviors are different. Stresses, composition, time, and
especially temperature can affect the creep mechanisms. Different reviews
separate these regimes at somewhat different temperature ranges, but here
we will identify the following three regimes:
1. Creep below 800 �C (or below about 0.66 Tm, where Tm is, here,

defined as the invariant temperature of the peritectic). This could be
referred as low-temperature creep. Creep occurs in both phases.

2. Creep between about 800 and 950 �C, where dislocation activity is
generally confined to the g channels and only at larger strains and/or
longer times, once interface dislocations form and rafting may begin,
does shear in the g0 occur.

3. Creep above 950 �C, or above about 0.75 Tm,where interface dislocation
networks form early in creep leading to rafting of the g0, particularly
at higher temperatures in this range. This is referred to as high-
temperature creep.
The meanings of “low,” “intermediate,” and “high” temperature have

different meanings than the systems discussed in earlier chapters. The uses
here are intended to be consistent with the conventions used with super-
alloys. It should be mentioned that in considering creep processes in these
commercial alloys, plastic strains of about 1% can become irrelevant in that
dimensional consideration of components would usually consider strains
above this level excessive. Therefore, creep investigations have focused on
smaller strains.

As an early, general, consideration of the superalloy microstructure,
it should be mentioned that there are residual stresses in the alloy
because of the coherency between the g/g0 interface. The coherency
can be manipulated by adjusting the composition (adding new ele-
ments), as well as by annealing and bringing edge dislocations to the
interface that relax the strains. The lattice misfit d, is defined here,
according to [978]:

d ¼ 2½ag0 � ag�
�½ag0 þ ag� (190)

Pollock and Argon [981] estimated these residual stresses for CMSX-3
Ni-Al superalloy with a negative misfit of about -0.3% at 850 �C. The
von Mises stress in the channels (g) was on 1 order of magnitude higher
than in the precipitate (g0) at about 456 MPa vs. 58 MPa in the unloaded
condition. These residual stresses can have a variety of effects on the
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elevated temperature behaviors, as will be discussed subsequently. This
misfit, if sufficient in magnitude, leads to the cubic morphology.

2. LOW-TEMPERATURE CREEP

The early consensus of investigations of creep in superalloys is that slip
occurs in <211> directions in both the g and g0, particularly below
roughly 5% strain. Slip occurs both in the matrix and the precipitates on
{111} planes. This has been confirmed by Burgers vector analysis in
transmission electron microscopy, as well as observations of the crystallo-
graphic rotations during single-crystal deformation. This suggestion goes
back to the early work of Leverant and Kear [985]. Detailed reactions of the
dislocations vary, but one recent summary is discussed [978] that captures
many of the essential elements of other recent reviews and investigations.

Basically, two a=2<110> dislocations react to form an a=2<112>
within the disordered g matrix that consists of two partials, a=6<112> and
a=3<112>, or

a
�
2
�
011

�þ a
�
2
�
101

�
/a

�
2
�
112

�
/a

�
3
�
112

�þ a
�
6
�
112

�

Then, an a=3½112� could shear the g0 on a ð111Þ plane, leaving a SISF
(superlattice intrinsic stacking fault). The a=6½112� could be considered,
initially, to remain at the g/g0 interface. Next, a second a=2½112� arrives
and the g0 precipitate now contains a=6½112� þ a=3½112� separated by an
SISF. The a=6½112� that is the leading partial of the “second” a=2½112� is
separated from the trailing a=6½112� partial of the “first” dislocation by an
antiphase boundary (APB). A superlattice extrinsic stacking fault (SESF)
separates the two partials of the second dislocation. This mechanism is
intended to rationalize the frequent observation of <211> type slip at
lower temperatures in g/g0 superalloys. This is a glide-type mechanism and
the thermal activation anticipated for creep processes is not easily ratio-
nalized. This mechanism is illustrated in Figure 133.

More recently, Viswanathan et al. [996], as a variation of a mechanism
by Condat and Decamps [997] and Mukherji [998], proposed a different
explanation (Figure 134) that is applicable to polycrystals (René 88DT, a
disk alloy). The a/2[011] matrix dislocation is dissociated into Shockley
partials (aC and Da) in the g matrix. As Da crosses into the precipitate, a
narrow complex stacking fault (CSF) is formed. This high-energy fault can
be eliminated by the nucleation of an identical Da Shockley partial on the
ð111Þ plane above or below the plane of the CSF. The two-layer, double
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Shockley partial 2Da can then essentially shear the precipitate as a net
super-Shockley partial dislocation. The low-energy SESF fault is actually
achieved only if the (Kolbe [983]) reordering of the nearest-neighbor vi-
olations occur, which is a rate-dependent diffusional process. Viswanathn
et al. suggest that, as the a/2[110] moves forward in the matrix, a net
Shockley partial aB wraps around the precipitate, composed of a aC and a
Da on adjacent planes. In smaller particles (in polycrystalline alloys with a
small bimodal dispersion such as René88 DT), this group suggests micro-
twinning as a deformation mechanism within this low temperature range. It
is proposed that shearing of the matrix and the precipitate, in this case,
occurs by the passage of identical a=6<112> Shockley partials on successive
{111} planes, similar to the above mechanism in large particles [996]. This
is a similar mechanism by which twinning may occur in traditional fcc
materials (e.g., one atom per lattice point). Twinning is strongly thermally

Figure 133 A mechanism for shearing g0 at low temperatures. From Ref. [996].
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activated because reordering back to the L12 structure, as originally pro-
posed by Kolbe [6], is required in the wake of the Shockley partials when
shearing the g0 particles. Later, this group [5] appears to suggest that the
microtwinning mechanism can occur in larger-phase g0 as with the tertiary
particles. That is, there is a suggestion that in single crystals, the “faulted
regions” frequently observed in the g0 within this temperature range may
be, in some instances, microtwins. The latter mechanisms by Vismanathan
et al. are somewhat more satisfying than the former, more-established
mechanism, in part, because thermal activation, in terms of a diffusional
reordering to the L12 structure, leads to a temperature dependence that
appears more consistent with observations (Figure 135).

It should also be mentioned that the creep properties in all temperature
ranges have a strong orientation effect [1010]. This is consistent with both
climb and glide control.

3. INTERMEDIATE-TEMPERATURE CREEP

This creep temperature range is generally regarded as consisting of slip
within the g channels. Plasticity occurs in the channels of the alloys with
(typical) negative misfit, as the von Mises stress is highest. There are

Figure 134 Another dislocation mechanism for shearing the (g0) at low
temperatures. From Ref. [996].
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Figure 135 The creep curves of CMSX-4 superalloy at (a) 750, (b) 950, and (c) 1150 �C
at a constant engineering stress and a <110> orientation. In (a), the strain rate over
the first few percent strain may increase by several factors. Taken from Ref. [978,1010].
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relatively few dislocation sources and the process of percolation throughout
the matrix may give rise to an incubation period (e.g., seconds) during
which only very small plastic strains accumulate. Here, three-dimensional
Frank networks may form and the rate-controlling process is generally
considered network coarsening leading to activation of, for example,
Frank-Read sources. During the early stages of creep (e.g.,<1%), shearing
of the g0 is not occurring to a significant degree. This occurs at larger strains
or at higher temperatures. Also, rafting of the microstructure is absent
except at the later stages of creep (of noncommercial interest). Here,
dislocation slip occurs on {111} planes just as at lower temperatures. It is
generally presumed that the Burgers vector (slip direction) in the matrix is
a=2<110>. Loops expand through the relatively narrow channels of the
matrix. Orowan looping of the large g0 precipitates by the dislocations is
rarely observed [986]. Some of the plastic flow at this stage can be described
by bowing of the dislocation in the channel together with some solute
strengthening. Also, the dislocations are reacting to the interfaces in such a
way the coherency stresses are reduced. Some cross-slip is generally sug-
gested with this plasticity that occurs within the channels.

After some plastic strain, typically on the order of 1%, the g0 particles
become sheared by the channel dislocations [600,979]. However, according
to Pollock and Argon [986], finite element method (FEM) calculations
indicate that the stresses within the g0 continue to rise to such a level that
slip occurs within the particles that have been otherwise dislocation free.
Presumably, this is due to stress concentrations from the matrix dislocations
and/or reduction of the coherency stresses that, in the absence of relaxation,
diminish the stresses in the precipitates. The dislocations that enter the
precipitate are often assumed to bow between interface dislocations.

It appears that Pollock and Argon suggest that a=2<110> {111} dis-
locations enter the g0 phase from the matrix by bowing around interfacial
(network) dislocations and suggest that there two a=2<110> dislocations
separated by an APB. Presumably, these are two different Burgers vectors
that do not sum to a<100>, the lattice translation vector [1007], which
may be a complication.

4. HIGH-TEMPERATURE CREEP

In high-temperature creep, interface dislocations and rafting occur more
quickly than at intermediate temperatures. Srinivasan et al. [993] and
Eggeler et al. [994] suggest slip occurs in the matrix but also in the
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Figure 136 The three-dimensional microphotographs of CMSX-10 (variant) before (a)
and after (b) rafting. The tensile stress is perpendicular to the plates and d is neg-
ative. Courtesy of S. Tin, IIT.
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precipitates by a<100> superdislocations on {110} planes. Here, two
a=2<110> g-channel dislocations with different Burgers’ vectors jointly
shear the g phase (just as with Pollock and Argon) but form a super-
dislocation with an overall Burgers’ vector of a[010]. Two different
configurations were observed associated with the pure edge a<010> and
the 45� a<001> dislocations by Srinivasan et al. They observed that the
cores of these superdislocations are not compact but rather are composed
of two different a=2<110> dislocations. Movement of the super-
dislocations in the g0 phase occurs by two superpartials moving by a
combined process of glide and climb, which requires diffusional exchange
of atoms/vacancies between the leading and the trailing superpartial. The
process is “self-fed,” and the overall vacancy equilibrium concentration is
maintained. Minimum creep rates can be rationalized on the basis of the
fluxes associated with the movement of superdislocations in the g0 phase.
This mechanism is attractive in that realistic slip planes and Burgers
vectors are considered and thermal activation is readily explained by
diffusion. However, slip cannot, by this mechanism, be plainly explained
for <100> orientations to the stress axis (zero Schmid factor) in which
creep is observed. This is an important orientation for turbine blades.
Others, however, appear to confirm this a<100> Burgers vector
[995,1004-1006]. Sarosi et al. and, more recently, Agudo Jácome [833]
address this orientation issue [984].

As mentioned earlier, two phenomena occur very early in creep at high
temperatures: rafting and the formation of interfacial dislocations, and these
will be discussed somewhat further.

4.1 Dislocations Networks
As mentioned earlier, dislocation networks form at the g/g0 interface,
quickly leading to rafting [600]. There appears to be the necessity of plastic
deformation for rafting [989]. The interfacial dislocation networks are
formed from a=2<110> dislocations of the channels. The interfacial dis-
locations have an edge character and reduce the interfacial strain energy.
These reactions are described in particular detail elsewhere [600]. A variety
of reactions between the matrix dislocations are suggested to give rise to the
interfacial dislocation meshes. Reed [978], Zhang et al. [990], and Koizumi
et al. [991] found that the smaller the interfacial dislocation spacing, the
lower was the creep rate. These were based on experiments on TMS-
75,�138, and �162. This could be explained by the bowing mechanism
suggested by Pollock and Argon.
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4.2 Rafting
Under external stress–free annealing, large magnitudes of d lead to sub-
stantial multidimensional coarsening [987]. However, with the application
of a uniaxial stress, the coarsening is directional, in one or two of the
<100> directions, which is referred to as rafting. Parallel rods or plates are
formed, as first reported by Tien et al. [988]. For negative d, such as
CMSX-4, the tensile loads are perpendicular to the plate rafts. When d is
positive, rod-shaped rafts are observed parallel to the applied tensile stress.
Compressive stresses change the nature of the rafting but are similar to the
tensile case for an accompanying change in the sign of d. A rafted micro-
structure is illustrated in Figure 136.

Partially crept superalloy single crystals continue rafting even after the
external stress is removed [978,1008] and the rafting “rate” appears un-
changed after external stress removal. As Pollock and Field suggest, plas-
ticity affects both the driving force and kinetics of the rafting process [600].
Matan et al. [989] suggest that there may even be a threshold strain in order
for rafting to occur. All this appears to suggest that dislocations may relax
the coherency strains in some orientations and a stress gradient may be
created. Sarosi [984] and others suggest that a stress gradient leads to a
vacancy flux and subsequent rafting.

It has been suggested that one consequence of rafting is that the g0

become the continuous phase rather than the g [992]. Rafting may then
increase the flow stress of the dislocations in the g phase leading to reduced
creep rates. It has also been suggested that lower stacking fault energies
retard rafting by increasing the difficulty in forming interfacial networks
that benefit from cross-slip.
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1. INTRODUCTION

Amorphous metals are a relatively new class of alloy, originating in about
1960 with the discovery of thin metallic ribbons by splat cooling [1015].
These are always alloys, and pure metal glasses have not yet been produced.
Because these alloys are noncrystalline, they have no dislocations, at least in
the sense normally described in crystalline materials. Thus, amorphous
metals have yield stresses that are higher than crystalline alloys. High
fracture stress, low elastic moduli, and sometimes-favorable fracture
toughness are observed. Often, favorable corrosion properties were
observed, as well, partly due to an absence of grain boundaries. Toward
1990, alloys with deep eutectics were developed that allowed liquid
structures to be retained in thicker sections in the amorphous state on
cooling to ambient temperature [1016–1027]. With this development,
there has been fairly intensive study of bulk metallic glasses (BMGs) for
possible structural applications. Most of the alloys in this chapter are
relevant to BMGs. Table 12 lists some of the short-term mechanical
properties of some BMGs taken from [1026], and some of the impressive
properties are given.

Figure 137, based on an illustration [1049], is a time-temperature-
transformation (T-T-T) diagram that illustrates some of the important
temperatures for metallic glasses. First, there is the equilibrium liquid-to-
solid transition at the melting temperature Tm, where, of course, multiple
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Table 12 Mechanical properties of some glassy alloys
Material E (GPa) sy (MPa) sf (MPa) εy (%) εp (%) Reference

Co43Fe20Ta5.5B31.5 268 5185 2 [1028]
Cu60Hf25Ti15 124 2024 2088 1.6 [1029]
(Cu60Hf25Ti15)96Nb4 130 2405 2.8 [1030]
Cu47Ti33Zr11Ni6Sn2Si1 1930 2250 [1031]
Cu50Zr50 84 1272 1794 1.7 6.2 [1032]
Cu64Zr36 92.3 2000 2.2 [1033]
(Fe0.9Co0.1)64.5Mo14C15B6Er0.5 192 3700 4100 0.55 [1034]
Fe71Nb6B23 4850 1.6 [1035]
Fe72Si4B20Nb4 200 4200 2.1 1.9 [1036]
Fe74Mo6P10C7.5B2.5 3330 3400 2.2 [1037]
[(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4 210 4100 4250 2 2.25 [1038]
Fe49Cr15Mo14C15B6Er1 220 3750 4140 0.25 [1039]
Gd60Co15Al25 70 1380 1.97 [1040]
Ni61Zr22Nb7Al4Ta6 3080 5 [1041]
Pd77.5Cu6Si16.5 1476 1600 11.4 [1042]
Pd79Cu6Si10P5 82 1475 1575 3.5 [1043]
Pt57.5Cu14.7Ni5.3P22.5 1400 1470 2 20 [1044]
Ti41.5Zr2.5Hf5Cu42.5Ni7.5Si1 95 2040 0 [1045]
Zr55Cu30Al10Ni5 1410 1420 [1046]
Zr41.25Ti13.75Cu12.5Ni10Be22.5 96 1900 1900 2 [1047]
Zr57Nb5Al10Cu15.4Ni12.6 86.7 1800 1800 2 [1048]

Note. εy, elongation at yielding; εp, plastic elongation. All the tests were conducted under compression, generally at strain rates from 1–5 � 10�4 s�1.
From Ref. [1027].
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solid crystalline phases form on cooling. Below this temperature, a T-T-T
curve is illustrated. Cooling below Tm must be sufficiently rapid to avoid
intersecting the “nose” of the curve. Also illustrated is the glass transition
temperature, Tg. This is generally assigned to that temperature where there
is a discontinuity in the change of a property (e.g., heat capacity, thermal
expansion coefficient, etc.) with temperature. The region between Tm and
Tg is generally referred to as the super-cooled liquid regime. Some values
for various BMGs are listed in Table 13.

The discussions in this chapter will be largely confined to temperatures
above 0.7Tg. As will be discussed subsequently, this is the regime in which
homogeneous deformation is observed. This review refers to this regime as
a “creep regime” of amorphous metals. A practical importance of this
regime is that this is where forming of a metallic glass is frequently
performed. This regime is contrasted by the regime of lower temperatures
where heterogeneous deformation or shear banding is often (but not
always) observed.

2. MECHANISMS OF DEFORMATION

2.1 Overview
The suggested mechanisms have generally fallen into three
categories: (1) dislocation-like defects [1062–1064], (2) diffusion-type
deformation [1065], and (3) shear transformation zones (STZs)

Figure 137 A time-temperature-transformation diagram that illustrates the important
temperature regions of BMGs. From Ref. [1049].
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Table 13 Deformation data of some BMGs in the super-cooled liquid region
Alloys (in atomic percent) Tg (K) Tx (K) m value Ductilitya Reference

La55Al25Ni20 480 520 1.0 1800 (T ) [1050]
Zr65Al10Ni10Cu15 652 757 0.8e1.0 340 (T ) [1051]
Zr52.5Al10Ti5Cu17.9Ni14.6 358 456 0.45e0.55 650 (T ) [1052]
Zr55Cu30Al10Ni5 683 763 0.5e1.0 N/A (C ) [1053]
La60Al20Ni10Co5Cu5 451 523 1.0 N/A [1054]
Pd40Ni40Pi20 589 670 0.5e1.0 0.94 (C ) [1055]
Zr65Al10Ni10Cu15 652 757 0.83 750 (T ) [1056]
Zr55Al10Cu30Ni5 670 768 0.5e0.9 800 (T ) [1057]
Ti45Zr24Ni7Cu8Be16 601 648 N/A 1.0 (T ) [1058]
Cu60Zr20Hf10Ti10 721 766 0.3e0.61 0.78 (C ) [1059]
Zr52.5Al10Cu22Ti2.5Ni13 659 761 0.5e1.0 >1.0 (C ) [1060]
Zf41.25Ti13.75Ni10Cu12.5Be22.5 614 698 0.4e1.0 1624 (T ) [1061]
a
“T ” and “C ” indicate tension and compression, respectively.
From Ref. [1071].
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[1066,1067]. These are illustrated in Figure 138 from Lu et al. [1068], as
well as Schuh et al. [1069], and are all early explanations for plasticity, but it
appears that the amorphous metals community has generally embraced the
third, STZs [1026,1027,1070].

The essence of this latter mechanism is that there is a “free volume” in
amorphous metals. The exact form and shape of these free volumes are not
known. Increasing free volume would be associated with decreased
density. Estimates for free volume for Zr41.2Ti13.8Cu12.5Ni10Be22.5
(Vitreloy 1) is about 3% [1072]. Decreases in free volume (tighter packing)
appear to increase ductility in homogeneous deformation at ambient
temperature [1073].

With an applied stress, groups of atoms (e.g., a few to 100
[1016,1070,1074]), under an applied shear stress, s, move and perform
work. This constitutes an STZ. Argon et al. [1066,1067] considered that
the STZ operation takes place within the elastic confinement of a sur-
rounding glass matrix, and the shear distortion leads to stress and strain
redistribution around the STZ region [1016,1066,1067]. When the STZs
exist throughout the alloy, we have homogeneous deformation. STZs also
occur in shear bands leading to heterogeneous deformation. They also have
been observed to create free volume during homogeneous deformation

Figure 138 (a) Two-dimensional representation of a dislocation line in crystalline (left)
and amorphous (right) solids; taken from [1026]; Atomistic deformation of amorphous
metals in the form of (b) shear transformation zones (STZ); and (c) local atomic
jump. Adapted from [1016].
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[1075,1076]. Steady-state flow within the homogeneous regime can be
considered a case where there is a balance between free volume creation
and annihilation.

Argon et al. described the activation energy for this process and Schuh
et al. estimated the predicted activation energy, Q, as 100–500 kJ mol.
Table 14 lists some of the experimentally observed activation energies that
are consistent with Argon et al.’s predictions.

The equations that have been used to describe the creep rate based on
STZ have used the classic rate equation formalism leading to [1016]

_g ¼ aovogo$exp

�
� Q
kT

�
sinh

�
sV
kT

�
; (191)

where ao is a constant that includes the fraction of material deforming by
activation, no is an attempt frequency, go is the characteristic strain of an
STZ, and V is the activation volume. The hyperbolic sine function arises,
as the there can be both a forward and a reverse “reaction.”

At low stresses ðs � kT=V Þ, this equation reduces to the Newtonian

_g ¼ aovogoV
kT

$ exp

�
� Q
kT

�
s; (192)

because “reverse” deformation is irrelevant.
Conversely, at stresses, s[kT=V

_g ¼ 1
2
aovogo$ exp

�
�Q� sV

kT

�
; (193)

Table 14 Activation energies for creep of selected metallic glasses
Composition Tg (K) Ttest (K) DQ (kJ mol)

Al20Cu25Zr55 740 573 230.12
Cu40Zr60 677 543 218.82
Cu56Zr44 727 573 217.57
Cu60Zr40 750 573 228.45
Pd80Si20 673 546 191.63
Zr55Cu30Al10Ni5 410
Au49Ag5.5Pd2.3Cu26.9Si16.3 103
Zr44Ti11Cu10Ni10Be25 625/632 366

From [1067,1074,1077,1078].
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Schuh et al. [1016] point out that Eqn (191) suggests a Newtonian
region followed by, with increasing stress, continual increase in stress
exponent. Examples of BMGs that have evinced Eqns (191)–(193)
behaviors are illustrated in Figures 139 and 140, which plot the steady-state
creep behavior of several BMGs [1016,1071].

Figure 139 Steady-state homogeneous flow data for Zr41.2Ti13.8Cu12.5Ni10Be22.5
metallic glass at elevated temperatures. From the work of Lu et al. [1068]. Figure based
on [1016].

Figure 140 Stress–strain rate curve for a Zr10Al5Ti17.9Cu14.6Ni glassy alloy shows
Newtonian flow at low strain rates but non-newtonian at high strain rates. Data from
Ref. [1051]. Figure based on [1071].
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The figures illustrate steady-state behavior such that, with increasing
strain rate and/or decreasing temperature, there is a breakdown in
Newtonian behavior and the apparent stress-exponent increases. Generally,
this has been regarded as a natural consequence of Eqn (192), the rate
equation that predicts Newtonian behavior at low stresses (higher
temperature and lower strain rates) but increased exponents with higher
stresses (low temperatures and higher strain rates). This explanation does not
appear to be unanimously embraced [1071]. For some, an important
question is whether the non-Newtonian homogeneous deformation region
is actually a reflection of nano-crystallization.

These equations suggest that free volume is largely responsible for plastic
flow; larger free volumes would appear to more easily lead to regions of
plastic flow. Schuh et al. point out that atomic simulations have suggested
that other variables such as short-range chemical ordering can affect
plasticity as well, which is not explicitly included in the above equations
[1079–1081]. The pressure sensitivity of these equations was addressed by
Sun et al. [1082].

Nieh and Wadsworth [1071] found that nano-crystallization occurred
in Zr10Al5Ti19.9Cu14.6Ni BMG coincident with the deviation from
Newtonian behavior. Nieh rationalized the nano-crystalline precipitates as
akin to dispersion strengthening. Suryanarayana and Inoue [1083] appear to
suggest that the stress exponent increases due to second phase strengthening
of the nanoparticles by a straightforward rule of mixtures for the flow
strength. Schuh et al. [1016] referenced the Nieh and Wadsworth work and
certainly acknowledged the observation that deformation can induce
crystallization (as have others [1083–1086]) but appear to favor the rate
equation as an explanation for the deviation from Newtonian behavior at
higher stresses. Wang et al. [1087] found only nonlinear creep behavior in
Vitreloy 1 if some crystallization occurred, whereas Newtonian conditions
led to elongations in La55Al25Ni20 in excess of 20,000% [1071]. Those at
higher rates with non-Newtonian behavior exhibited dramatically reduced
values. Many authors [1016,1026,1027] proposed metallic glass deforma-
tion maps, similar to the construct by Ashby and Frost for crystalline
materials. A metallic glass deformation–map is illustrated in Figure 141.

Newtonian deformation appears to reflect a fully amorphous alloy, but
at least in other regions, including heterogeneous deformation, nano-
crystallization may be occurring [1083–1086]. Furthermore, as will be
discussed in a subsequent section, homogeneous deformation may extend
to low temperatures, in at least some cases.
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2.2 Homogeneous Flow at Very Low Temperatures
Recent work [1075,1088–1090] shows that, given sufficient time,
homogeneous deformation can be detected under “electrostatic” (i.e., at
a stress less than the yield stress, sy) loading at room temperature (RT). The
stress exponent was not assessed, so it was unclear whether Newtonian flow
was observed. Alloys include Zr46.75Ti8.25Cu7.5Ni10Be27.5, Ni62Nb38,
Cu50Zr50, Cu57Zr43, and Cu65Zr35. Of course, some BMGs, such as
Zn20Cu20Tb20(Li0.55Mg0.45)20, may have a low Tg (323 K) allowing
homogeneous deformation at RT [1091]. Alloys with higher packing
densities exhibit greater plastic strain during homogeneous deformation at
room temperature but show less global plasticity during inhomogeneous
deformation in a typical compression test [1073]. Park et al. [1075] suggest
deformation induced structural disordering by molecular dynamics (MD)
simulations, although others [1090] imply STZ as the mechanism.
Compression tests on Pd77Si23 showed that as the sample size decreased to
the submicron range, homogeneous deformation occurs and was suggested
to occur due to the necessity of a critical size volume for shear bands [1092].
Similar results were noted by others [1093].

Figure 141 Deformation mechanism maps for metallic glass plotted in normalized
stress versus normalized temperature. The absolute stress values indicated in the
figure are for the Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass. Adapted from [1016,1026].
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2.3 Anelasticity
In the preceding discussion of the “electrostatic” regime, a substantial
fraction of the (small) nonelastic strain is anelastic. It should be noted that
the STZ model naturally predicts some anelasticity. An isolated STZ, by
the Argon et al. model, is elastically constrained during activation. This
implies that even at low applied stress (where backflow according to
Eqn (192) is negligible), there is, nonetheless, a back stress that on
unloading leads to anelastic backflow. It was additionally pointed out by
Ke et al. [1089] that there is a range of atomic environments in glass such
that some atoms reside in regions where the local topology is unstable. In
these regions, the response to shear stress may include not only atomic
displacements but also an anelastic reshuffling of the atomic near-neighbors
(i.e., an anelastic STZ operation). Even though the fraction of atoms
involved in these events may be small, the local strains are large enough
that their cumulative effect makes a significant contribution to the
macroscopic strain [1089].

2.4 Primary and Transient Creep (Non–Steady-State Flow)
Steady-state flow has principally been discussed, so far. It has been
presumed that STZs create free volume (leading to softening) and that
recovery processes promote the annihilation of free volume (leading to
hardening). Therefore, steady state has been regarded as a balance between
free volume creation and annihilation. Other hardening effects such as

Figure 142 Effect of strain rate on the uniaxial stress-strain behavior of Vitreloy 1 at
643 K and strain rates of 1.0 � 10�1, 3.2 � 10�2, 5.0 � 10�3 and 2.0 � 10�4 s�1 [1068].
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chemical ordering have not been explicitly considered for steady state. It has
been suggested that there can be a net free volume increase or decrease
during deformation that precedes a steady state. Figure 142 from Lu et al.
[1068] shows hardening at the onset of deformation that continues beyond
the eventual steady state. The interpretation of this peak stress followed by
softening to a steady state is unclear.
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Low-Temperature Creep
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M.E. Kassner, K.K. Smith

Contents

1. Introduction 287
1.1 Phenomenology 288
1.2 Objectives 289

2. Creep Behavior of Various Metals and Alloys 289
2.1 Titanium Alloys 289
2.2 Steels 290

2.2.1 AISI 4340 Steel 290
2.2.2 304 Stainless Steel 291

2.3 Pure Metals 293
2.3.1 Copper 293
2.3.2 Aluminum 293
2.3.3 Cadmium 293

3. Mechanisms 295
3.1 Logarithmic Creep 295
3.2 Power-Law Analysis 297
3.3 Activation Energies 299

1. INTRODUCTION

Temperature ranges for creep can be subdivided into three categories: (1)
high-temperature creep (T> 0.6 Tm), (2) intermediate-temperature creep
(0.3 Tm< T< 0.6 Tm), and (3) low-temperature creep (T< 0.3 Tm).
Generally, creep studies investigate high-temperature deformation; how-
ever, this chapter reviews the latter category. Less attention has been paid to
low-temperature creep due to the fact that materials generally neither fail
nor experience significant plasticity at lower (especially ambient and
cryogenic) temperatures.

Creep at low temperature can be understood as time-dependent
plasticity that occurs at T< 0.3 Tm and at stresses often below the
macroscopic yield stress ðs0:002y Þ. This is where creep is often not expected.
Still, even with the lesser attention paid to this area of creep, many materials
do experience very noticeable plasticity at lower temperatures. This has
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some commercial importance. These materials include Ti alloys and steels
[1094–1103], Al–Mg [1104], a-brass [1105], ionic solids [1106], pure Au,
Cd, Cu, Al, Ti, Hg, Ta, Pb, and Zn [1107–1121], precipitation-hardened
alloys [1122], and glass and rubber [1121].

Low-temperature creep has generally been investigated for two reasons:
(1) materials may undergo plasticity that affects its intended performance;
this category includes structural alloys and creep of Cu at cryogenic
temperatures, and (2) there has been theoretical curiosity regarding
low-temperature deformation and the mechanism of plasticity, particularly
at cryogenic temperatures. This includes the validity of the dislocation
intersection mechanism proposed by Seeger et al., [1123,1124] as investi-
gated by others [1112]. Also, there have been investigations of the
proposition of quantum mechanical tunneling of dislocations at very low
temperature [1106,1113,1115,1117,1119,1120].

1.1 Phenomenology
Generally, but not always, low-temperature creep is a discussion of primary
creep without the observation of a genuine mechanical steady state. One
study has suggested steady state at 4.2 K, but there were problems with the
data analysis [1125]. At high temperatures, primary creep is described by the
equations

ε ¼ bt1=3 þ c1 (194)

as suggested long ago by Andrade [1126] and Orowan [1127]. Evans and
Wilshire [1128] reviewed the high-temperature primary creep equations
and suggested a refinement. This refinement led to an equation of the form

ε ¼ at1=3 þ ct þ dt4=3 (195)

This is now the common phenomenological equation used to describe
primary creep at elevated temperatures. Variations to this equation include
[1129]

ε ¼ at1=3 þ ct (196)

and [1130]

ε ¼ at1=3bt2=3 þ ct (197)

or
ε ¼ atb þ ct (198)
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where [1131]

0 < b < 1

or [1094]

ε ¼ atb (199)

where

0 < b < 1

It is suggested that Eqns 194–199 are all of a similar (power-law) form.
Another form of equations was suggested by Phillips [1121], Laurent and
Eudier [1132], and Chévenard [1133]

εp ¼ a ln t þ c2 (200)

Wyatt [1111], long ago, suggested for pure metals, such as Al, Cd, and
Cu, that at higher temperatures, Eqn (194) was the proper descriptive
equation, but at lower temperatures, he then suggested Eqn (200) was often
the proper form.

1.2 Objectives
The following discussion will describe the phenomenological trends in
greater detail. The data appear to best be presented/described by material
category (e.g., alloy, metal, or ceramic). In particular, the low-temperature
creep behavior of both alloys and pure metals will be described in separate
sections. It will be shown that, generally, the descriptive equations generally
fall within the forms of Eqn (194) or Eqn (195). Distinctions will be made
for cases where the applied stress is above and below the conventional yield
stress (at an ordinary strain rate; e.g., 10�4 s�1), as well as at shorter times
than a few hours and much longer times.

2. CREEP BEHAVIOR OF VARIOUS METALS AND ALLOYS

2.1 Titanium Alloys
A useful discussion of low-temperature creep in Ti alloys was presented by
Neeraj et al. [1]. Figure 143 plots ambient-temperature creep data
[1096,1104,1134] for Ti alloys with different microstructures and different
compositions at 0.8 sy. Other, more recent, data are also available [1094].
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A particular value of these data is the extension of creep to longer times
(over a month). The data show that Eqn (194), the power–law relationship,
reasonably describes the data. In contradiction to some of the earliest
phenomenological equations, the exponent of 1/3 does not appear to be
unique for the b-value. Figure 143 suggests a b-value closer to 0.2. Also, the
applied stresses in this case are all below the macroscopic yield stress. As
Neeraj et al., point out, other literature confirms that 0.03< b< 1. The
relatively recent effort to theoretically justify a value for b¼ 1/3 by Cottrell
[1135–1137] and Nabarro [1138] may have been misspent.

2.2 Steels
2.2.1 AISI 4340 Steel
Oehlert and Atrens [1098] performed creep studies at ambient temperature,
where for all creep conditions, the applied stress is below the yield stress.
One of the tests was conducted at an applied stress of just half the yield
stress. The durations of the tests were relatively short, and the times are only
up to 20 min. These creep curves were described by a modification to
Eqn (200)

Figure 143 Ambient-temperature creep for various Ti-alloys of different microstruc-
tures and different compositions. From Neeraj et al., [1]. Power-law behavior is
observed (Eqn (199)). Applied stresses are 0.8 sy.
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εp ¼ εpy þ b
�
ln t

�
(201)

where εpy is the plastic strain on loading that is a function of stress. One
clumsiness with Eqn (201) is that, at t¼ 0, infinite creep rate is predicted.
This was eliminated by modifying the equation to:

εp ¼ εpy þ a ln
�
1þ ft

�
(202)

where a and f are constants. Oehlert and Atrens found that over the range
of stresses, the constant a varied by a factor of nearly 10 and b by a factor of
2. The authors also examined 3.5 NiCr MoV and AeroMet100 with similar
results.

2.2.2 304 Stainless Steel
Figure 144 shows the creep curves for annealed 304 stainless steel [2],
which evinces some typical features of low-temperature creep. This was
discussed in the previous section. Figure 144(a) is a creep plot of the total
plastic strain, εp, versus time, t, for annealed 304. Figure 144(b) is a semi-log
plot that illustrates the full time range of data [2]. Tests are conducted both
above and below the yield stress. Tests above the yield stress were generally
for a shorter term and strain was measured using an extensometer. How-
ever, below the yield stress, strain was measured for longer times using an
optical comparator. It appears that the creep data for this material, at
ambient temperature, follow a logarithmic behavior at a fixed stress, s, of
Eqn (201)

εp ¼ εpy þ b
�
ln t

�
(203)

where,

εpy ¼ aþ bs (204)

and a and b are constants and a basically reflects the strain on loading. Also,
b is the slope in Figure 144(b) and appears to decrease with decreasing
stress, approximated by

b ¼ �ksþ Co (205)

where k and Co are constants.
Regression analysis suggests that for Eqn (204):
Above yield stress: a¼�8.12 and b¼ 0.037
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Below yield stress: a¼�0.47 and b¼ 0.0027
And for Eqn (205):
Above yield stress: k¼�0.0040 and Co¼�0.52
Below yield stress: k¼�0.0028 and Co¼�0.38

(a) 

(b)

Figure 144 (a) The plastic strain vs time behavior of annealed 304 stainless steel under
different stresses. (b) Plastic strain vs log time behavior of annealed 304 stainless steel
[2]. Logarithmic behavior is observed (Eqn (200)).
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2.3 Pure Metals
2.3.1 Copper
Copper behavior is illustrated in Figure 145 with data from Wyatt for
shorter-duration tests. Copper data for longer-term creep is also shown
from Yen et al. [1125]. The two sets of data are not in agreement and the
explanation is unclear. The strains for the Yen et al. strain data appear low
for the magnitude of stress greater than the yield stress, sy. Eqn (200)
appears reasonable, except, possibly, for the lower two stresses of the Yen
data, which follow neither Eqn (194) nor Eqn (200).

2.3.2 Aluminum
The ambient-temperature (T< Tm) creep behavior of annealed high-
purity Al is illustrated in Figure 146. Here, it is unclear whether, power-
law behavior (Eqn (199)) or logarithmic (Eqn (200)) behavior dominate.

2.3.3 Cadmium
Figure 147 illustrates the creep behavior of pure annealed Cd at 77 K and at
ambient temperature. It was concluded by Wyatt that Eqn (200) better
describes the data at T< 0.3 Tm.
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Figure 145 Creep strain vs log time data for annealed copper at various low temper-
atures and stresses [1111,1125]. Logarithmic behavior appears to dominate (Eqn (200)).
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Figure 146 Ambient-temperature creep behavior pure, annealed, Al based on data by
[1111]. Power-law creep is occurring but logarithmic behavior may be observed as
well.
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Figure 147 Ambient-temperature creep behavior of pure, annealed, Cd based on data
by [1111]. Logarithmic creep may best describe the behavior, particularly at low
temperatures and longer times.
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3. MECHANISMS

3.1 Logarithmic Creep
The earliest discussion of low-temperature creep was based on dislocation
glide and dislocation exhaustion by Mott and Nabarro [1139]. There has
also been substantial discussion of low-temperature creep, especially
low-temperature plasticity, with published work on the dislocation inter-
section mechanism by Seeger et al., [1123,1124].

Here, the concept of activation volume and area were probably first
used. The product of the activation area, A, Burger’s vector, b, the
difference between the applied stress, s, and the back stress or long-range
internal stress (LRIS), sG, due to other dislocations, is the energy
supplied but is also the applied stress to allow a dislocation to surmount an
obstacle. The activation area is usually defined as the product of the width
of the obstacle, d, and the obstacle spacing, [. Alternatively, the activation
volume, v, equals Ab¼ [db. This leads to the classic rate equation
[1112,1123]

_g ¼ NAbvo exp

��DHo � vðs� sGÞ
kT

�
(206)

where _g¼ strain rate; N¼ number of dislocation segments per unit volume
held up at the intersection points of mean spacing, [. no is an atomic fre-
quency of the order of the Debye frequency; and DHo¼ energy required
for the intersection process (i.e., the energy for jog formation z Gb2/10)
[1140].

sG ¼ soG þ
Zg

0

hdg (207)

where soG ¼ stress due to the dislocations initially in the crystal and h¼ strain-
hardening coefficient, which is defined as ds/dg. It appears that sG� s for
small strains [1141].

Eqns (206) and (207) suggest

_g ¼ NAbvo exp

��DHo � v
�
s� soG � hg

�
kT

�
(208)
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Integrating

exp

�
DHo � v

�
s� soG � hg

�
kT

�
dg ¼ ðNAbvoÞdt (209)

�
kT
vh

�
exp

�
DHo � v

�
s� soG � hg

�
kT

�
¼ NAbvot þD (210)

exp

�
DHo � v

�
s� soG � hg

�
kT

�
¼ ðNAbvoÞ vhtkT

þD0 (211)

DHo � v
�
s� soG � hg

�
kT

¼ lnðv0t þD0Þ (212)

where

v0 ¼
�
NAbvovh

kT

�

�
hvg
kT

�
¼ lnðv0t þD0Þ � DHo þ v

�
s� soG

�
kT

(213)

g ¼
�
kT
hv

�
lnðv0t þD0Þ � E (214)

Choose a value for D0 so that g(0)¼ 0.

g ¼
�
kT
hv

�
lnðv0t þ 1Þ (215)

The last equation is in the form of Eqn (200). One difficulty with this
analysis is Eqn (207), which sG may equal nearly zero, in actuality. Other
attempts to justify this equation were made by Wyatt [1111], but the
methodology was unclear. Welch et al. appeared to attempt a similar
approach to that of Wyatt.

Other mechanisms considered include quantum mechanical tunneling,
which predicts athermal creep behavior at low temperatures. Early proponents
include [1113,1117,1119,1120]. Conversely, subsequent work by [1106,
1115,1116] suggests that, even to 4 K, creep is time dependent and is a result of
the thermal activation of dislocations. Dislocation kink mechanisms were
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suggested for body-centered cubic metals [1116]. However, it is unclear how
this mechanism, by itself, explains the observed creep behavior. In materials
with solutes, it is suggested that thermal activation past pinning solutes [1104] in
Al-Mg.

Increasing creep resistance at low temperatures appears to be accom-
plished in similar ways as at elevated temperatures. Where cold work
increased the creep resistance in 304 stainless steel at elevated temperatures, it
also increases creep resistance at low temperatures [1142]. Others have sug-
gested the role of other features [1096] such as twin boundaries. Of course,
solute strengthening is a variable, such as in the 304 stainless steel. The precise
mechanism by which the strengthening variables superimpose is unclear.

3.2 Power-Law Analysis
In an empirical analysis, Neeraj et al. [1094] assume the Holloman flow
equation

s ¼ Kε
n _εm (216)

where K is the strength parameter, n is the strain-hardening exponent, and
m is the strain-rate sensitivity exponent. This equation was suggested to
reasonably describe some Ti-alloy behavior. Thus, they show

_ε ¼ dε
dt

¼
�s
K

	1=m
ε
�n=m (217)

Z
ε
n=m ¼

Z �s
K

	1=m
dt (218)

under constant stress

ε ¼
�s
K

	1=mþn
�
mþ n
m

�m=mþn

tm=mþn

This is similar to Eqn 199

ε ¼ atb

with

b ¼
� m
mþ n

	
(219)

a ¼
�s
K

	1=mþn
�
mþ n
m

�m=mþn

(220)
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These equations relate constant strain-rate behavior to constant stress
behavior. These investigators show interesting predictions of the
low-temperature creep behavior in Ti-alloys from a limited set of constant
strain-rate data. They rationalized low-temperature creep of Ti-alloys as
being due to low n and moderatem values. This rationale may be extended to
steels. Certainly, as also pointed out by [1143], low n and high m certainly
predisposes a material to significant creep plasticity at low temperatures.
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Figure 148 Activation energy for (steady-state) creep of (a) Ag, (b) Ni, (c) Cu, and (d) Al
as a function of temperature. Adapted from Ref. [1141].
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3.3 Activation Energies
Figure 148 [1144,1145] shows that the activation energy decreases with
temperature below 0.3 Tm and is much lower than at higher temperatures
where Q is associated with lattice self-diffusion.

(c) 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

220 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Q
cr

ee
p (

kJ
/m

ol
) 

T/Tm 

Creep Activation Energies for Cu 
   QSD = 201 kJ/mol 

(d) 

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Q
cr

ee
p (

kJ
/m

ol
) 

T/Tm 

Creep Activation Energies for Al 

 
  QSD (T > 600K) 
  = 148 kJ/mol 

Figure 148 cont’d
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Natural stress exponent, 32
Natural three-power law, 25–26
Nearly lamellar (NL), 193–194
Negative stress gradient, 244
Network models, 69–76
Network-based creep model, 125
Newtonian deformation, 282
Ni3Al. See Nickel aluminides
NiAl alloys, 227–228

creep of single-phase, 228–230
strengthening mechanism, 230–232

Nickel aluminides (Ni3Al), 217–227.
See also Iron aluminides (Fe3Al);

Titanium aluminides (TiAl)
creep curves, 219–220
creep data, 223t
microstructural parameters, 224–227
Ni-Al phase diagram, 217f, 227–232
sigmoidal creep, 220–222
steady-state creep, 222–224

NL. See Nearly lamellar
Non–steady-state flow, 284–285
Nucleation, 241–242

O
Orowan bowing stress, 168
Orowan-Sleeswyk explanation, 54
Oxide dispersion strengthened alloys

(ODS alloys), 168, 226–227

P
Particle strengthening, 171–172
Particle-stimulated nucleation, 164
Peierls stress, 191
Pile-up stresses, 141–143
Plastic growth, 253–257
Plasticity, 1, 252–253. See also

Superplasticity
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PLB. See Power-law breakdown
Polarized light optical microscopy

(POM), 28–30, 52, 91
Positive stress gradient, 244
Power-law analysis, 297–298
Power-law breakdown (PLB), 8–10
Prestraining experiments, 83–84
Primary creep, 204–206, 284–285
microstructures, 45–52

R
Rafting, 273
Rate-controlling mechanisms, 66
additional comments on network

strengthening, 84–90
Barrett and Nix model, 67–68
dislocation microstructure, 79–82
Ivanov and Yanushkevich model,

68–69
network models, 69–76
recovery-based models, 76–78
in situ and microstructure-manipulation

experiments, 83–84
stacking-fault energy effect, 78–79
Weertman model, 66–67

Rate-controlling process, 199–200
Recovery-based models, 76–78
Recrystallization, 159
continuous reactions, 164–165
discontinuous DRX, 160–163
geometric DRX, 163
particle-stimulated nucleation, 164

Room temperature (RT), 283

S
Secondary creep rate, 195–196
Selected area electron diffraction

(SAED), 28–30
SESF. See Superlattice extrinsic stacking

fault
Severe plastic deformation (SPD), 97–99
Shear transformation zone (STZ),

277–279
Sigmoidal creep, 101–102, 220–222
SIPT. See Stress-induced phase

transformations
Slip plane transitions, 210

Small volume-fraction particles, 168
coherent particles, 187–188
constitutive relationships, 180–184
detachment model, 175–180
general climb of dislocations,

172–175
interfacial pinning, 176f
local climb of dislocations, 172–175
microstructural effects, 184–187
Orowan bowing stress, 168
particle strengthening, 171–172
steady-state relation, 170f

Sodium chloride (NaCl), 127
SPD. See Severe plastic deformation
Splat cooling, 275
SRX. See Static recrystallization
SS creep. See Steady-state creep
Stacking fault energy, 19–25, 78–79
Static recrystallization (SRX), 160–161
Steady-state creep (SS creep), 1, 3–5,

222–224
Steady-state rate, 195–196
Steels, 290–292
Strain rate, 1
change tests, 38–42

Strengthening mechanism, 216–217
Stress, 1, 103
Stress-dip test, 40–42
Stress-induced phase transformations

(SIPT), 204–205
STZ. See Shear transformation zone
Subgrains, 79–80
Substitutional solid solutions, 26–27
Super kink model. See Macro kink

model (MK model)
Superalloys, 261
<111>superdislocations
decomposition, 210
pinning, 210–211

Superlattice extrinsic stacking fault
(SESF), 266

Superplasticity, 139–140, 213
See also Plasticity
HSRS, 145–153
in nanocrystalline and submicrocrystal-

line materials, 153–157
texture studies in, 145
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Surface diffusion-controlled growth, 247
Synchrotron X-ray microdiffraction

experiments, 60–65

T
T-T-T. See Time-temperature-

transformation
Taylor relationship, 32
TEM. See Transmission electron

microscopy
Tensile stress, 103
Tensile-loading molecular dynamic

simulations, 157
3-power creep, 1
3-power-law regime, 129–130
3-power-law viscous glide creep,

129–130
Class I (A) alloys, 136–138
Cottrell–Jaswon interaction, 131
dragging process, 130
higher solute concentrations, 131–134
transitions, 134–136

304 stainless steel, 291–292
Threshold behavior, 178–179
TiAl. See Titanium aluminides
Time-temperature-transformation

(T-T-T), 275–277, 277f
Titanium alloys, 289–290
Titanium aluminides (TiAl), 192, 192t.
See also Iron aluminides (Fe3Al);

Nickel aluminides (Ni3Al)

FL TiAl alloys rate-controlling creep
mechanism, 195–204

g-TiAl alloys, 194–195
phase diagram, 193f
primary creep, 204–206
tertiary creep, 206–207

Total energy change, 172–173
Transient creep, 184–186, 284–285
Transmission electron microscopy

(TEM), 28–30, 91
Transverse boundaries, 240

V
Vacancy
accumulation, 239–240
hardening mechanism, 211–213

Volume fraction, 186–187

W
Wedge-type cracking, 233
Weertman model, 66–67
Wider fully lamellar (FLw), 204–205

X
X-ray diffraction (XRD), 40–42, 55–57
X-ray peak asymmetry, 55–57

Z
Zener pinning, 164

338 Index


	Fundamentals of Creep in Metals and Alloys
	Copyright
	Preface
	List of Symbols and Abbreviations
	1 . Fundamentals of Creep in Materials
	1. Introduction
	1.1 Description of Creep
	1.2 Objectives


	2 . Five-Power-Law Creep
	1. Macroscopic Relationships
	1.1 Activation Energy and Stress Exponents
	1.2 Influence of the Elastic Modulus
	1.3 Stacking Fault Energy and Summary
	1.4 Natural Three-Power Law
	1.5 Substitutional Solid Solutions

	2. Microstructural Observations
	2.1 Subgrain Size, Frank Network Dislocation Density, Subgrain Misorientation Angle, and the Dislocation Separation within the  ...
	2.2 Constant Structure Equations
	2.2.1 Strain-Rate Change Tests
	2.2.2 Creep Equations
	2.2.3 Dislocation Density- and Subgrain-Based Constant-Structure Equations

	2.3 Primary Creep Microstructures
	2.4 Creep Transient Experiments
	2.5 Internal Stress
	2.5.1 Introduction
	Bauschinger Effect
	Non-LRIS explanation for BE
	LRIS �挀漀洀瀀漀猀椀琀攀 洀漀搀攀氀 BE

	Experimental History
	Bauschinger effect
	X-ray peak asymmetry
	In-situ experiments
	Dipole height measurements
	Convergent beam electron diffraction
	Synchrotron X-ray microdiffraction experiments


	2.5.2 Other Creep Notes Regarding Long-Range Internal Stresses


	3. Rate-Controlling Mechanisms
	3.1 Introduction
	3.1.1 Weertman Model [25,187-189]
	3.1.2 Barrett and Nix Model [190]
	3.1.3 Ivanov and Yanushkevich [192] Model
	3.1.4 Network Models �䔀瘀愀渀猀 愀渀搀 䬀渀漀眀氀攀猀Ⰰ 嬀　㔀崀 眀椀琀栀 䴀漀搀椀昀椀挀愀琀椀漀渀猀 嬀㤀㌀㠀崀
	3.1.5 Recovery-Based Models
	3.1.6 The Effect of Stacking-Fault Energy

	3.2 Dislocation Microstructure and the Rate-Controlling Mechanism
	3.2.1 Subgrains
	3.2.2 Dislocations
	3.2.3 Theoretical Strength of Obstacles

	3.3 In situ and Microstructure-Manipulation Experiments
	3.3.1 In situ Experiments
	3.3.2 Prestraining Experiments

	3.4 Additional Comments on Network Strengthening

	4. Other Effects on Five-Power-Law Creep
	4.1 Large Strain Creep Deformation and Texture Effects
	4.2 Effect of Grain Size
	4.3 Impurities and Small Quantities of Strengthening Solutes
	4.4 Sigmoidal Creep


	3 . Diffusional Creep
	4 . Harper-Dorn Creep
	1. Introduction
	2. Theories for Harper-Dorn
	2.1 Harper and Dorn [50,199,900]
	2.2 Friedel [87]
	2.3 Barrett, Muehleisen, and Nix [269]
	2.4 Langdon et al. [318]
	2.5 Wu and Sherby [53]
	2.6 Wang [323,325,326,328]
	2.7 Ardell [54,86,101,401]

	3. More Recent Developments
	3.1 The Effect of Strain
	3.2 The Effect of Impurities
	3.3 Size Effects
	3.4 Recent Experiments

	4. Other Materials for Which Harper-Dorn Has Been Suggested
	4.1 α-Zr
	4.2 NaCl
	4.3 Cu
	4.4 CaO
	4.5 MgO
	4.6 Forsterite �䴀最㈀匀椀伀㐀
	4.7 MgCl26H2O�䌀伀　⸀㔀䴀最　⸀㔀O and CaTiO3

	5. Summary

	5 . The 3-Power-Law Viscous Glide Creep
	6 . Superplasticity
	1. Introduction
	2. Characteristics of FSS
	3. Microstructure of Fine-Structure Superplastic Materials
	3.1 Grain Size and Shape
	3.2 Presence of a Second Phase
	3.3 Nature and Properties of Grain Boundaries

	4. Texture Studies in Superplasticity
	5. High-Strain-Rate Superplasticity
	5.1 HSRS in Metal-Matrix Composites
	5.1.1 Accommodation by a Liquid Phase: Rheological Model
	5.1.2 Accommodation by Interfacial Diffusion
	5.1.3 Accommodation by Grain Boundary Diffusion in the Matrix: The Role of Load Transfer

	5.2 HSRS in MA Materials

	6. Superplasticity in Nanocrystalline and Submicrocrystalline Materials

	7 . Recrystallization
	1. Introduction
	2. Discontinuous DRX
	3. Geometric DRX
	4. Particle-Stimulated Nucleation
	5. Continuous Reactions

	8 . Creep Behavior of Particle-Strengthened Alloys
	1. Introduction
	2. Small Volume-Fraction Particles Coherent and Incoherent with the Matrix with Small Aspect Ratios
	2.1 Introduction and Theory
	2.2 Local and General Climb of Dislocations over Obstacles
	2.3 Detachment Model
	2.4 Constitutive Relationships
	2.5 Microstructural Effects
	2.5.1 Transient Creep Behavior and Dislocation Structure
	2.5.2 Effect of Volume Fraction
	2.5.3 Grain Size Effects

	2.6 Coherent Particles


	9 . Creep of Intermetallics
	1. Introduction
	2. Titanium Aluminides
	2.1 Introduction
	2.2 Rate-Controlling Creep Mechanisms in FL TiAl Intermetallics during Secondary Creep
	2.2.1 High Stress-High Temperature Regime
	2.2.2 Low-Stress Regime

	2.3 Primary Creep in FL Microstructures
	2.4 Tertiary Creep in FL Microstructures

	3. Iron Aluminides
	3.1 Introduction
	3.2 Anomalous Yield Point Phenomenon
	3.2.1 Transition from Superdislocations to Single Dislocations
	3.2.2 Slip Plane Transitions {110}ℿ{112}
	3.2.3 Decomposition of <111﹥ Superdislocations: Climb-Locking Mechanism
	3.2.4 Pinning of <111﹥ Superdislocations by Antiphase Boundary Order Relaxation
	3.2.5 Vacancy Hardening Mechanism

	3.3 Creep Mechanisms
	3.3.1 Superplasticity in Iron Aluminides

	3.4 Strengthening Mechanisms

	4. Nickel Aluminides
	4.1 Ni3Al
	4.1.1 Creep Curves
	4.1.2 Sigmoidal �漀爀 䤀渀瘀攀爀猀攀 Creep
	4.1.3 Steady-State Creep
	4.1.4 Effect of Some Microstructural Parameters on Creep Behavior

	4.2 NiAl
	4.2.1 Introduction
	4.2.2 Creep of Single-Phase NiAl
	4.2.3 Strengthening Mechanisms



	10 . Creep Fracture
	1. Background
	2. Cavity Nucleation
	2.1 Vacancy Accumulation
	2.2 Grain Boundary Sliding
	2.3 Dislocation Pile-ups
	2.4 Location

	3. Growth
	3.1 GB Diffusion-Controlled Growth
	3.2 Surface Diffusion-Controlled Growth
	3.3 Grain Boundary Sliding
	3.4 Constrained Diffusional Cavity Growth
	3.5 Plasticity
	3.6 Coupled Diffusion and Plastic Growth
	3.7 Creep Crack Growth
	3.8 Other Considerations


	11 . γ/γ′ Nickel-Based Superalloys
	1. Introduction
	2. Low-Temperature Creep
	3. Intermediate-Temperature Creep
	4. High-Temperature Creep
	4.1 Dislocations Networks
	4.2 Rafting


	12 . Creep in Amorphous Metals
	1. Introduction
	2. Mechanisms of Deformation
	2.1 Overview
	2.2 Homogeneous Flow at Very Low Temperatures
	2.3 Anelasticity
	2.4 Primary and Transient Creep �一漀渀ⴀ匀琀攀愀搀礀ⴀ匀琀愀琀攀 䘀氀漀眀


	13 . Low-Temperature Creep Plasticity
	1. Introduction
	1.1 Phenomenology
	1.2 Objectives

	2. Creep Behavior of Various Metals and Alloys
	2.1 Titanium Alloys
	2.2 Steels
	2.2.1 AISI 4340 Steel
	2.2.2 304 Stainless Steel

	2.3 Pure Metals
	2.3.1 Copper
	2.3.2 Aluminum
	2.3.3 Cadmium


	3. Mechanisms
	3.1 Logarithmic Creep
	3.2 Power-Law Analysis
	3.3 Activation Energies


	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X
	Z


