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About the Cover

The Liberty Bell appears on the cover of this textbook because the crack is internationally
known and perhaps recognized more than any other fracture. However, there is considerable
confusion as to the history of the bell and how it gained such worldwide recognition. The
following is intended to highlight major events in the bell’s existence from the casting foundry
to the present.

To commemorate the 50th anniversary of the granting of William Penn’s Charter of
Liberties, the Pennsylvania Assembly purchased a bell for the Statehouse. Since there were no
qualified bell foundries in the region, the bell was cast at the Whitechapel Foundry in London,
England. The inscription on the bell was to read ‘“Proclaim liberty through all the land unto all
the inhabitants thereof,” (Leviticus 25:10). On its completion, the bell was shipped to
Philadelphia and placed in the Statehouse belfry. To the dismay of all, the bell cracked the
first time it was struck. John Pass and Charles Stow, two area residents, agreed to recast the bell
in time for the Charter of Liberty’s jubilee celebration. After adjusting the alloy chemistry and
recasting the bell twice, these amateur bell founders produced a bell with an acceptable tone.
For their services, Pass and Stow were paid $295.25 and given a free advertisement: note their
names on the shoulder of the bell.

Not leaving anything to chance, the Pennsylvania Assembly commissioned a second bell
from the Whitechapel Foundry, which arrived from England when Pass and Stow had
completed the third casting of the original bell. What were they to do with two bells? It
was ultimately decided that the original bell (also known as the Liberty Bell) be used for grand
occasions such as convening townsfolk for the first public reading of the Declaration of
Independence and the second Whitechapel bell be used as the town’s clockbell.

During the Revolutionary War, the Liberty Bell was taken to Allentown, Pennsylvania, to
safeguard it from the advancing British armies. The city fathers were less concerned with
protecting an American historical treasure (the bell had no historical value at that time) than
with preventing the British from melting such bells to produce new artillery pieces. Cannon
metal (also known as Admiralty bronze) contains 88% copper and 12% tin whereas bell metal
contains roughly twice as much tin. After the bell was returned to Philadelphia in 1778, it
continued to ring until 1835 when it cracked while tolling the funeral of Chief Justice Marshall.
(The second Whitechapel bell was given to a church in 1828, before being destroyed in a fire.)
After grinding the mating surfaces of the crack to prevent them from rubbing together, the
Liberty Bell was struck once again in 1846 to celebrate Washington’s birthday. After ringing
for several hours, the original crack extended into the shoulder region. Since that time, the bell
has effectively remained silent.

After being sent on a series of national tours, beginning with a trip to New Orleans in 1885,
the Liberty Bell has become a symbol of American independence. It is now on permanent
exhibition in the historical section of Philadelphia.

BACK COVER IMAGES: Liberty Bell; helical fracture of human finger bone
(Figure 5.23c); instrumented tensile test (Figure 1.1b); macroscopic fatigue fracture markings
(Figure 9.3b).
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Foreword

It has been said that no hypothesis can ever be proven with absolute certainty. Such a
theoretical construct may stand the test of time for years with the benefit of supporting evidence.
And yet, that same theory can be disproved by a single conflicting, valid observation. The
annals of scientific writings bear witness to many theories that were struck down by some
fortuitous and/or unanticipated finding.

As such, scientific concepts and associated theories undergo constant scrutiny and
necessary revision as our knowledge base expands and new insights are formed. Surely, we
authors have recognized the need to revise and/or augment this text as it has evolved during
these past three-dozen years. Our fifth edition reflects such contemporary revision. The authors
have sought to update the subject matter of this text to the best of our abilities. It may well be the
responsibility of the reader to expand our collective knowledge base, thereby leading to new
insights. The quest for knowledge never ends.
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Preface to the Fifth Edition

OBJECTIVES

This book examines the macroscopic and microscopic aspects of the mechanical behavior
of metals, ceramics, polymers, and their composites. Particular emphasis is given to the
application of fracture mechanics and materials science principles toward the understanding of
material stiffness, strength, toughness, and time-dependent mechanical response. This text is
suitable for advanced undergraduate and first-level graduate courses in metallurgy and
materials, mechanical engineering, and civil engineering curricula, and provides a combined
fracture mechanics-materials approach to the fracture of engineering solids. The book also will
be useful to working engineers who want to learn more about the mechanical properties of
solids and, in particular, the fracture-mechanics approach to the fracture of solids. To that end,
the book contains more than 1500 references that are cited throughout the text. Furthermore, all
principal and secondary authors are identified in an author index along with separate material
and subject indices.

ORGANIZATION

The book is divided into two sections. In Section One, the principles of elastic and plastic
deformation are presented. Chapter 1 begins with a discussion of elastic deformation in solids.
Concepts of stress, strain, and stiffness are introduced for both isotropic and anisotropic materials.
Chapter 2 addresses the plastic deformation response of solids. Here, emphasis is placed on
continuum aspects of irreversible plastic deformation and the role of micro- and nanostructures,
crystallography, and crystal defects (e.g., dislocations) in explaining the material deformation
process. Subsequently, these parameters are used in Chapter 3 to understand various strengthen-
ing mechanisms in different material systems. The time—temperature dependent nature of
material deformation in metallic, ceramic, and polymeric materials is addressed in Chapter 4.
While familiarity with the topics discussed in Section One will be useful to the reader in Section
Two, readers with some prior exposure to mechanical behavior concepts may be able to proceed
directly from Chapter 1 to Chapter 5.

Section Two deals with the application of fracture mechanics principles to the subject of
fracture in solids. Chapter 5 begins with an overview of failed components, and discusses stress
concentrations and theoretical fracture strength, notch strengthening, statistical aspects of
fracture and fracture surface micromorphology. The importance of the stress intensity factor
and the fracture mechanics approach in analyzing the fracture of solids is developed in
Chapter 6 and is compared with the older transition temperature approach to engineering
design. From this macroscopic viewpoint, the emphasis shifts in Chapter 7 to a consideration of
the role of micro- and nanostructural variables in determining material fracture toughness and
embrittlement susceptibility, such as temper, irradiation, and 300°C embrittlement. Environ-
mental degradation (i.e., stress corrosion cracking and both hydrogen and liquid-metal
embrittlement) is described in Chapter 8 in terms of stress—environment—material systems.
Fatigue and associated crack propagation in solids is discussed at length in Chapters 9 and 10,
emphasizing the cyclic stress life, cyclic strain life, and fatigue crack propagation philosophies
pertaining to cyclically induced material damage. In Chapter 11, actual service failures are
examined to demonstrate the importance of applying fracture mechanics principles in failure

xxi
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analysis. Several bridge, aircraft, firearm, and generator rotor shaft failures are analyzed.
Finally, the consequences of component failure are introduced in Chapter 12 with a discussion
of product liability and product recall.

NEW TO THIS EDITION

With the timely addition of many new topics, including a new chapter on product liability
and product recall, this text continues to serve as an advanced undergraduate/early graduate
level textbook and as a reference volume for practicing engineers/scientists. The additions
reflect new developments pertaining to the mechanical behavior of engineering materials and
address the associated societal consequences of product failure. Furthermore, a considerable
reorganization of subject matter enhances the pedagogical effectiveness of the book. Of major
import, this edition benefits by the addition of two co-authors, whose talents and varied
experiences broaden the text’s perspective. The authors believe that this latest edition maintains
a good balance between discussions of the continuum mechanics understanding of the failure of
solids and the roles of the material’s nano- and microstructure as they influence the mechanical
properties of materials. This fifth edition contains over 300 additional references, thereby
raising the total to more than 1500. Several new examples have been added to the text along
with over 80 new figures, raising the latter total to more than 550. Over 300 new problems have
been added along with numerous problems being made available online. New additions/
modifications to this fifth edition include the following:

Elastic Behavior of Engineering Solids

e Chapter 1 has been reorganized to focus on the elastic behavior of engineering solids.

* Discussions about buckling failure of slender columns, compression testing, and the
elastic properties of bone have been added.

« Sections on elastic anisotropy and fiber-reinforced composites have been expanded.

» Some topics, such as short-term polymer elasticity and thermal stress development, have
been moved forward in the text to this initial chapter.

 Nonlinear irreversible deformation processes have been moved to Chapter 2.

Plastic Behavior of Engineering Solids

« Chapter 2 now deals with yielding and plastic deformation processes in solids.
« Coverage of widely used yield criteria in metals and in polymers has been expanded.

 Chapter 3 treats deformation micromechanisms in solids as they influence strengthening
mechanisms, and combines elements of Chapters 2 and 4 from earlier editions.

 The former chapter on creep and portions of the former chapter on polymeric solids have
been combined into a new Chapter 4 that addresses time-dependent deformation in solids
in a comparative fashion.

Failure and Fracture Mechanics of Solids

 Asin earlier editions, the second part of the book begins (Chapter 5) with an overview of
fracture and includes such topics as a discussion of actual failure case histories, electron
fractography, and the concept of stress concentration factors.

« New discussion pertaining to the fracture behavior and fractography of ceramics, glasses
and composite materials has been added.

« Several actual case history failure analyses and discussion of several failure processes
have been moved forward from the penultimate chapter to Chapters 6 and 7 to provide
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useful examples of the concepts developed in these chapters and to more fully develop
specific topics when they are introduced.

¢ The fourth edition chapter dealing with Charpy testing has been eliminated, but relevant
topics have been relocated to Chapter 6.

¢ A new section on adhesion has been added to the discussion of fracture mechanics
analysis.

¢ A section on natural materials, including bone and sea shells, has been added to Chapter 7
to introduce a number of natural toughening mechanisms that hold promise for the
improvement of toughness in engineering solids.

Subcritical Flaw Growth in Solids

e Chapter 8, which is focused on environment-assisted cracking, has been revised to
incorporate expanded discussion of environmental degradation mechanisms and current
research findings, including dynamic embrittlement and testing procedures for both metal
alloys and polymeric solids.

¢ The two fatigue chapters, 9 and 10, have been updated with regard to both S-N test
results, based on high-frequency test methods, a reexamination of the concept of a
meaningful endurance limit in ferrous alloys, and improved test methods designed to
better define the effective stress intensity factor range at the advancing tip of a fatigue
crack.

¢ The discussion of environmentally enhanced fatigue crack propagation processes has
been updated.

¢ A detailed fracture mechanics—based failure analysis case history, concerning the failure
of shotguns, has been introduced that describes the use of fractographic information and
leak-before-break failure criteria in the analysis of these failures.

Product Liability and Product Recall—a new chapter

With widespread attention being paid to component failures and associated product
liability litigation, the authors have concluded that students and engineers must be aware
of their role in identifying critical details of such failures. Similarly, the steadily increasing
drumbeat of product recalls, ranging from household items to automobiles, have thrust
engineers into the middle of such regulatory and safety issues. Accordingly, a new Chapter
12 has been added that focuses on:

« A historical perspective of the law as it pertains to products liability litigation.
¢ An overview of regulatory guidelines pertaining to product recalls.

¢ Furthermore, the reader is exposed to useful methodologies with regard to potential
product recall investigations.

Current circumstances dictate that engineers should become more familiar with these areas
of the law/regulatory requirements, as they relate to product safety.

Revised and supplemented appendices

¢ The text still concludes with an Appendix that contains information pertaining to fracture
surface preservation and image interpretation, K calibrations for typical fracture tough-
ness and fatigue crack propagation test specimens.

« Several test specimen configurations that are new to this edition.
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» Analytical formulas for calculating the Y calibration factors for elliptical and semi-
circular surface flaws are new to the 5™ edition.

 The Checklist for failure analysis has been relocated to an Appendix for more convenient
access.

END-OF-CHAPTER PROBLEMS

The problems concluding each chapter have been updated, and a new organizational
approach has been adopted that characterizes the problems in such a fashion that the student will

* Review the chapter concepts
* Practice methods, both qualitative and quantitative, introduced in the chapter
 Design, analyze, and modify structures based on chapter material

 Extend knowledge beyond that presented in the text by means of resources such as those
available on the Internet.

The solutions manual has been updated and is available to qualified instructors.
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Chapter 1

Elastic Response of Solids

What material should be chosen for a nuclear reactor pressure vessel to ensure 40 years of safe
operation? How can an aircraft wing skin be made lighter without sacrificing load-bearing
capacity? Is it safe to use glass as a structural material? How far can an aircraft reliably fly
between safety inspections? Why did a particular power plant generator shaft break in service,
and what could be done to prevent a recurrence? What makes natural seashell and bone possible
models for lighter, tougher future engineered materials? The information needed to address
these questions—and many more—is the subject of this book. We will examine the ways in
which engineering materials, and the components made from them, succeed or fail under load-
bearing conditions. Throughout, we will emphasize that a well-rounded understanding of the
interplay between material properties and design choices is the path to safe, efficient, and
effective engineered structures.

1.1 MECHANICAL TESTING

Material properties are determined using a wide variety of mechanical tests. Despite the
variety of specimen shapes and test conditions, however, all mechanical tests may be reduced to
one of two general descriptions: either a controlled load (or combination of loads) is imposed
and the resulting displacements are measured, or a controlled displacement (or combination of
displacements) is imposed and the load(s) developed in response to the imposed displacement
state is measured. Which type of test to use, and under what conditions, depends on the
objective of the test. On the one hand, one may wish to establish the load-bearing capability of
an engineering component under its expected loading conditions. In this case, a combination of
loads (or displacements) may be applied to a real component or assembly, and the overall
response will be measured. Often the question to be answered is something like, “Can the
component survive the design load plus some additional load increment (as a margin of safety)
without failing?”” This experimental process often falls under the category of product testing
(Fig. 1.1a). On the other hand, one may wish to establish fundamental material properties that
can subsequently be used in a more universal way for both evaluation of material properties and
their use for design purposes. The question here may be something like, “How does this
material compare to other materials evaluated in the same fashion?” In this case, it is often
desirable to use well-defined, simple, standardized specimen shapes and simple loading
conditions (e.g., along a single axis of the test specimen). This is the mode generally used
for material testing (Fig. 1.1b). In the end, it can be argued that the ultimate objective of both
test types (product or material) is to avoid failure of an engineering component in service.
Before discussing engineering component or fundamental material mechanical behavior,
however, it is necessary to establish some definitions of possible responses to loading, and
some definitions of failure.

There are three basic categories of mechanical response to an applied load: elasticity,
plasticity, and fracture. Elasticity is defined by a fully-recoverable response; that is, a
component is loaded and unloaded without any permanent change to its shape or integrity.
This is usually the desirable response of structural components in service. Plasticity and fracture
both involve permanent shape changes under load, but are clearly distinct from one another.
Plasticity is shape change without cracking, as one might require during forging of a metal
component, whereas fracture involves the creation or propagation of a crack that separates a
portion of the component from the remainder.
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Figure 1.1 (a) Cellular phone product testing by bending (photo copyright Nokia 2011). (b) Tensile testing for
fundamental material properties using a standardized tensile specimen. (Courtesy of Richard Vinci.). (¢) Bend
testing using a standardized fracture specimen (photo courtesy of Brett Leister, Lehigh University).

It is obvious to most people that fracture of an engineering component is undesirable, and
is considered a failure. What may be less obvious is that failure can also occur under plastic
or even elastic conditions. Consider, for example, a series of parallel columns topped by a
crossbeam that is under load. If sufficient load is introduced so that the columns are
plastically deformed without inducing total collapse, the shape of the overall structure
will be altered even after the load is removed. This can constitute failure if retention of the
original structure shape is important for aesthetic, functional, or safety reasons. If the
columns are slender, it is also possible under certain conditions for them to buckle elastically,
which means they suddenly bend outward to the side under loads that are too small to induce
plasticity or fracture. In doing so, they lose essentially all of their load-bearing capability. If
the crossbeam has other supports that can bear the load to avoid collapse, it may be possible
to return the structure to its original shape by unloading (demonstrating that the phenomenon
is elastic in nature). If there is no additional source of support, elastic buckling will rapidly
progress to plastic deformation and/or fracture, accompanied by collapse of the structure. In
either case, the columns will have failed to support the crossbeam in the intended manner, so
we may say that they have failed.

Throughout the remainder of Chapter 1 we will primarily address the fundamentals of
elastic material behavior. We will begin with behavior measured under tension because the
tensile test is the most widely employed experimental test method. Following this, other modes
of loading will be introduced, along with the elastic properties that can be measured under each
mode. Given that a complete test record may contain important information concerning not
only the material’s elastic properties but also its strength, the character and extent of plastic
deformation, and resistance to fracture, idealized stress—strain plots reflecting different
deformation and failure characteristics of a wide variety of materials will also be introduced
in this chapter. Finally, certain conditions that lead to failure (defined for the moment as a
departure from purely elastic behavior) will be introduced as a precursor of things to come in
later chapters.

1.2 DEFINITIONS OF STRESS AND STRAIN

Raw load and displacement information may be sufficient for certain product tests, but
evaluations of material properties must use size-independent parameters: stress and strain.
These essential terms may be defined in two generally accepted forms. The first definitions,
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Figure 1.2 Schematic illustration of a rectangular tensile specimen before (subscript 0) and during (subscript i) or
after (subscript f) loading. A cylindrical specimen with a circular cross section is also common. The same definitions
apply to both shapes.

used extensively in engineering practice, are

. . ) load P (1-1a)
Oene = €ngineering stress = —— - =— -la
cne & & initial cross-sectional area Ag

change in length  Ir — Iy

geng = engineering strain = = 1-1b
eng = CNEINCCTING SUAN = 2 = ial length o (1-1b)
where
ly= final gage length
lp = initial gage length
as depicted in Fig. 1.2.
Alternatively, stress and strain may be defined as
load P
Otrue = true stress = - o4 - =— (1-2a)
instantaneous cross-sectional area  A;
final length lf
&true = true strain = lnw = lni (1-2b)

initial length [y

The formula for true strain is derived by integrating the expression for engineering strain from
ly to l¢ so that accumulated strain is taken into account in each infinitesimal increment.

The fundamental distinction concerning the definitions for true stress and true strain is
recognition of the interrelation between gage length (/) and cross-sectional area changes
(AA) associated with plastic deformation. When a test specimen is deformed in tension,
there is ordinarily a corresponding reduction in cross-sectional area, as depicted in Fig. 1.2.
As discussed further in Section 1.5.1, when the deformation is purely elastic the volume of
the specimen is unlikely to be conserved, the axial strain will probably be quite small, and
the change in cross-sectional area is likely to be negligible (all good assumptions in most
cases, but not for rubber-like materials). However, when the limit of pure elastic deforma-
tion is reached and plastic deformation begins, it is safe to assume that most of the
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subsequent deformation is a constant-volume process such that
A1l; = Aply = constant (1-3)

and plastic extension of the original gage length would produce a potentially significant contraction
of the gage cross-sectional area. For example, if a 25-mm (l-in.)-long' sample were to be plastically
deformed uniformly in length by 2.5 mm owing to a tensile load P, the real or true stress would have
to be higher than that computed by the engineering stress formulation. Since I»/l{ = 1.1, from
Eq. 1-3A1/A> = 1.1, so that A, = A}/1.1. The true stress is then shown to be oyye = 1.1 P/A1 and is
larger than the engineering value. In fact, for common engineering materials the true stress in
tension is always larger than the engineering stress. Although the engineering stress is more
convenient in many ways, the material is actually responding to the true stress level, so it is often
important to use the true stress when describing fundamental material behavior.
By combining Eqgs. 1-la, 1-2a, and 1-3, the relationship between true and engineering

stresses is shown to be
P

(

Otrue = - —
Ao

li/lo) = O'eng(li/lo) = O'eng(l + 8eng> (1-4)

This expression is accurate once sufficient plastic deformation takes place so that the constant
volume assumption is valid (approximately at a strain equal to twice the strain at yielding).

Equation 1-4 is based on the assumption that the same AA is occurring everywhere along
the gage section during deformation. This is not always the case. For example, after the
maximum engineering stress (the tensile strength) for a typical metal has been reached, one
location along the gage section will reduce in cross-sectional area more quickly than the rest of
the specimen. This phenomenon is known as necking; after it occurs the necked region rapidly
reduces in size until failure occurs. After the unstable necking process has begun, Egs. 1-3 and
1-4 are no longer useful, and actual measurements of the cross-sectional area must be made to
determine the true stress.

True and engineering strains may be related by combining Egs. 1-1b and 1-2b to yield

Etrue = ln(geng + 1) (1-5)

The need to define true strain as in Eq. 1-2b stems from the fact that the actual strain at any given
time depends on the instantaneous gage length /;. Consequently, a fixed Al displacement will
result in a decreasing amount of incremental strain, since the gage length at any given time, /;,
will increase with each additional A/ increment. Furthermore, it should be possible to define the
strain imposed on a rod (for instance) by considering the total change in length of the rod as
having taken place in either one step or any number of discrete steps. Stated mathematically,
> nén =é&r. As a simple example, take the case of a wire drawn in two steps with an
intermediate annealing treatment. On the basis of engineering strain, the two deformation
strains would be (/1 — lp)/lg and (I — [1)/l;. Adding these two increments does not yield a final
strain of (I — [g)/lp. On the other hand, a summation of true strains does lead to the correct
result (as implied by the integral used to derive Eq. 1-2b). Therefore

In—=+In—= = In-= = &irye total
l

Note that Eq. 1-5, which links engineering and true strains, does not depend on constant
volume deformation, so it is valid even during pure elastic loading. It does, however,

! See the inside cover for conversion factors.
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EXAMPLE 1.1

A 25-cm (10-in.)-long rod with a diameter of 0.25 cm is loaded with a 4500-newton (1012-1b) weight. If the diameter
decreases to 0.22 cm, compute the following, assuming that the elastic portion of the deformation may be neglected:

(a) The final length of the rod:
Since A1l =Azl (from Eq. 1-3),

b

b

(b) The true stress and true strain at this load:

Otrue =

T 2
A, 70025)
=== - (25)
A2 2(0.22)
4
= 32.3cm
P
A;
4500

(/4)(2.2 x 1073)?

Otwe = 1185MPa(172,000 psi)

Etrue

Etrue

(c) The engineering stress and strain at this

The use of true strains offers an additional convenience when considering the constant-volume plastic
deformation process in that ¢, +¢,+¢,=0. In contrast, we find a less convenient relationship, (1 + &)

lnli

lo

32.3

25

= 0.2560r25.6%

load:

= In

P
Oeng = Ai()

4500
%(2.5 x 1073)2
Ueng — 917 MPa

lr — Iy
geng = f lo

- 32.3-25

a 25
geng = 0.2920r29.2%

(I +&y)(1+¢,)=1, for the case of engineering strains.

depend on a homogeneous change in length everywhere in the test specimen or component,
so it is invalid after necking begins. Once inhomogeneous deformation sets in, constant
volume deformation dominates in the necked region (Eq. 1-3) so a local measurement of the
cross-sectional area allows the true strain to be calculated using the expression
érue = In(initial area/final area) = In(Ag/Ay).
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1.3 STRESS-STRAIN CURVES FOR UNIAXIAL LOADING
1.3.1 Survey of Tensile Test Curves

Before further addressing elastic behavior, it is useful to understand the full spectrum of
material response to loading under tension. For structural purposes, materials may be catego-
rized as belonging to one of four groups: ceramics and glasses, metals, polymers, and
composites. There are other methods of grouping materials (e.g., solids vs. foams) but
separating by chemistry and atomic bonding has a number of advantages, so this is the method
that will be used here. Tensile test curves for the different categories of materials have
characteristic shapes, several of which will be reviewed immediately as a way of gaining
familiarity with the essential features of the curves and the typical behavior for each class.
Discussion of less universal aspects of tensile curves will be reserved for later.

Figure 1.3 (a—d) shows schematic engineering stress—strain curves for common ceramics,
glasses, and metals. As a steadily increasing tensile strain is applied, the tensile stress rises. (For
many testing machines, it is most convenient to apply a displacement and then measure the
resultlng load that develops as the test specimen resists the imposed extension.!! This convention
is followed in the tensile test descriptions, but most aspects of the curves would be identical under
load control.).! The initial response of each of the materials depicted here is linear-elastic in
nature; that is, the stress and the strain are linearly proportional to one another in the early part of
each curve. If the displacement (or the strain) is reversed at any time while in the elastic regime,
the unloading curve should exactly trace over the original loading curve; the values of stress and
strain reach zero at the same moment, indicating that the strain has been fully recovered. It is this
aspect of the tensile curve that allows elastic properties to be measured reliably.

There are two ways in which the elastic limit can be exceeded: immediate fracture, or plastic
deformation followed eventually by fracture. In the case of curve a in Fig. 1.3, which would be
typical of a ceramic, a silicate glass, or certain metals at low temperature, fracture occurs without
any noticeable plastic deformation or other warning. In contrast, curves b—d become nonlinear as
plastic deformation is introduced. After the onset of nonlinear behavior at the material’s
proportional limit, the curves follow different paths to a peak condition (defined as the tensile
strength) at which necking commences, the engineering stress begins to fall, and the material
ultimately fractures. Curves b—d are typical of most metals, and are fundamentally all the same, so
there are really only two general types of behavior depicted here: curve a with no ductility (i.e., no
capacity for plastic deformation), and a set of curves b—d with moderate to high ductility.

stress b stress

d
-—_

strain strain

Figure 1.3 Schematic depictions of typical engineering stress—strain tensile curves for (a) ceramic and glass
materials, (b—d) metals, (e—h) polymers. Not to scale.

ii Recommended specimen dimensions and conditions for testing are compiled in a series of standards by The American Society for Testing
and Materials (ASTM International). ASTM is an organization comprised of volunteer engineers and scientists who develop standardized
test procedures based on the consensus of experts in a particular field. ISO standards are similar procedures developed by an organization
based outside the U.S.A. References to selected ASTM standards are presented throughout this text, but the reader is strongly advised to
refer to the most recent book of standards to determine if a more relevant or updated standard is available for their situation before
proceeding with a mechanical test.
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Tensile curves typical of polymers are also depicted in Fig. 1.3. There are four distinct
curves shown: (e) brittle, (f) plastic but with limited ductility, (g) plastic with significant
ductility and strengthening, and (%) elastic (but nonlinear) to large strains. Whereas metal
curves (b—d) would each depict a different metal or alloy, polymer curves (e—g) in Fig. 1.3
could possibly be either different polymers or the same polymer tested under different strain
rate or temperature conditions. The polymer curves shown here have distinct linear (or nearly
linear) elastic behavior at first, like the metals and ceramics, followed by a nonlinear response.
Curves e—g owe their nonlinearity to viscoelastic or plastic behavior, but curve i depicts
hyperelasticity (known as rubber elasticity) at large strains.

1.3.2 Uniaxial Linear Elastic Response

With some general understanding of the variety of stress—strain responses that are possible,
we now turn to a closer study of linear elastic behavior. We will assume for the moment that the
loading condition is uniaxial—that is, that the load is applied uniformly along a single axis.
Furthermore, we will assume that the material under investigation is uniform in structure, and
therefore will exhibit the same elastic behavior no matter what direction within the material is
chosen as the loading axis. This uniform behavior is known as isotropic.

Over 300 years ago Robert Hooke reported in his classic paper “Of Spring” the following
observations?:

Take a wire string of 20 or 30 or 40 feet long and fasten the upper part . . . to a nail, and to the
other end fasten a scale to receive the weights. Then with a pair of compasses [measure] the
distance [from] the bottom of the scale [to] the ground or floor beneath. Then put . . . weights
into the . . . scale and measure the several stretchings of the said string and set them down.
Then compare the several stretchings of the . . . string and you will find that they will always
bear the same proportions one to the other that the weights do that made them.

This observation may be described mathematically by the equation for an elastic spring:
F = kx (1-6)

where
F = applied force
x = associated displacement
k = proportionality factor often referred to as the spring constant

When the force acts on a cross-sectional area A and the displacement x related to some reference
gage length [, Eq. 1-6 may be rewritten as

o = Ee (1-7)

where
o = F/A = stress
&= x/l =strain
E = proportionality constant (often referred to as Young’s modulus or the modulus of
elasticity)

Equation 1-7—called Hooke’s law—describes a material condition where stresses and strains
are proportional to one another, leading to the initial stress—strain response shown for all of the
curves in Fig. 1.3. In principle, Young’s modulus can be measured during the initial loading
behavior in a tensile test. In practice, it is often measured during unloading to ensure that no
possibility of plasticity exists.

A wide range of values of the modulus of elasticity for many materials is shown in Table 1.1.
Those with large elastic moduli are called stiff materials, and would provide significant resistance
to elastic deformation. Those with low elastic moduli are called compliant materials, and their
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Table 1.1a Elastic Properties of Engineering Materials®

E G

Material at 20°C (GPa) (GPa) v

Metals
Aluminum 70.3 26.1 0.345
Cadmium 49.9 19.2 0.300
Chromium 279.1 1154 0.210
Copper 129.8 48.3 0.343
Gold 78.0 27.0 0.44
Iron 211.4 81.6 0.293
Magnesium 44.7 17.3 0.291
Nickel 199.5 76.0 0.312
Niobium 104.9 37.5 0.397
Silver 82.7 30.3 0.367
Tantalum 185.7 69.2 0.342
Titanium 115.7 43.8 0.321
Tungsten 411.0 160.6 0.280
Vanadium 127.6 46.7 0.365

Other Materials
Aluminum oxide (fully dense) ~415 — —
Diamond ~965 — —
Glass (heavy flint) 80.1 31.5 0.27
Nylon 66 1.2-2.9 — —
Polycarbonate 2.4 — —
Polyethylene (high density) 0.4-1.3 — —
Poly(methyl methacrylate) 24-34 — —
Polypropylene 1.1-1.6 — —
Polystyrene 2.7-4.2 — —
Quartz (fused) 73.1 31.2 0.170
Silicon carbide ~470 — —
Tungsten carbide 534.4 219.0 0.22

“G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 14th ed., Longman, London, 1973, p. 31.

resistance to elastic deformation would be relatively low. The major reason for the large property
variations seen in Table 1.1 is related to differences in the strength of the interatomic forces
between adjacent atoms or ions. To illustrate this fact, let us consider how the potential energy &
between two adjacent particles changes with their distance of separation x(Fig. 1.4a). The
equilibrium distance of particle separation x, corresponding to a minimum in potential energy, is
associated with a balance of the energies of repulsion and attraction between two adjacent
atoms or ions. The form of this relationship is often given by & = —a/x™ + B/x", where
—a/x™ and B/x" correspond to the energies of attraction and repulsion, respectively, and n > m.
At xq, the force (F = dé&/dx) acting on the particles is equal to zero (Fig. 1.4b). The first
derivative of the force with respect to distance of separation, dF/dx (i.e., d*& / dxz), then describes
the stiffness or relative resistance to separation of the two atoms or ions. As such, dF/dx is
analogous to the Young’s modulus quantity, E, given in Eq. 1-7. A simple analysis of bonding
forces shows that the elastic stiffness is proportional to 1/x{;. Examples of the strong dependence
of elastic stiffness on xg for alkali metals are shown in Fig. 1.4c.

Since E depends on the strength of the interatomic forces that vary with the type of bonding
found in a given material, it is relatively insensitive to alloying or changes in microstructure.
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Table 1.1b  Elastic Properties of Engineering Materials”

Material at 68°F E (106 psi) G (10 psi) y

Metals
Aluminum 10.2 3.8 0.345
Cadmium 7.2 2.8 0.300
Chromium 40.5 16.7 0.210
Copper 18.8 7.0 0.343
Gold 11.3 3.9 0.44
Iron 30.6 11.8 0.293
Magnesium 6.5 25 0.291
Nickel 28.9 11.0 0.312
Niobium 15.2 54 0.397
Silver 12.0 4.4 0.367
Tantalum 26.9 10.0 0.342
Titanium 16.8 6.35 0.321
Tungsten 59.6 233 0.280
Vanadium 18.5 6.8 0.365

Other Materials
Aluminum oxide (fully dense) ~60 — —
Diamond ~140 — —
Glass (heavy flint) 11.6 4.6 0.27
Nylon 66 0.17 — —
Polycarbonate 0.35 — —
Polyethylene (high density) 0.058-0.19 — —
Poly(methyl methacrylate) 0.35-0.49 — —
Polypropylene 0.16-0.39 — —
Polystyrene 0.39-0.61 — —
Quartz (fused) 10.6 4.5 0.170
Silicon carbide ~68 — —
Tungsten carbide 77.5 31.8 0.22

“G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 14th ed., Longman, London, 1973, p. 31.

Therefore, while heat treatment and minor alloying additions may cause the strength of a steel
alloy to change from 210 to 2400 MPa, the modulus of elasticity of both materials remains
relatively unchanged—about 200 to 210 GPa. The result is that all steel alloys have similar
moduli, while all aluminum alloys have much lower, but also self-similar, moduli.

In many engineering materials, nonlinearity in the stress—strain plot is an indication that
plasticity or fracture has occurred. However, many polymers, as well as soft copper and gray
cast iron’, display a certain degree of nonlinear elasticity. As such, the elastic modulus must be
determined using either a rangent modulus*—the slope of a tangent line to the elastic portion of
the curve at a chosen value of stress—or a secant modulus®—the slope of a line drawn from the
origin to a chosen point on the stress—strain curve. The modulus is no longer a single value for a
given material, but depends instead on the loading conditions. Nevertheless, a single value
representing the initial slope is often reported and used for engineering purposes. It should be
noted that elastomers like silicone rubber can exhibit highly nonlinear elastic behavior over a
much wider range of strain than most other materials (e.g., recall Fig. 1.3h), so elastomer
tangent or secant moduli may be reported at strains of 100, 200, or even 300%. (See Section
1.3.3 and Chapter 4 for more information about nonlinear behavior of polymers.)
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Figure 1.4 Dependence of elastic stiffness on interatomic spacing: (a) Potential energy versus interatomic spacing;
(b) Force versus interatomic spacing; (c) Elastic stiffness of alkali metals versus interatomic spacing. (From

J. J. Gilman, Micromechanics of Flow in Solids, McGraw-Hill, New York, 1969, with permission.); (d) Variation

of Young’s modulus with temperature in selected metals and ceramics. (From K. M. Ralls, T. H. Courtney, and

J. Wulff, Introduction to Materials Science and Engineering, Wiley, 1976, with permission.)

There is another class of elastic behavior that is not linear, but in this case it is because the
response to loading is not instantaneous. Upon loading and unloading it appears at first that
plastic deformation has taken place because the strain is not zero at the time that the stress first
reaches zero. Over time, however, the strain is fully recovered. This behavior is called anelastic
deformation in metals, and viscoelastic deformation in polymers (although both indicate time-
dependent-reversible strain), and is discussed in Chapter 4.

It is also possible for a metal that is ordinarily considered linear elastic to exhibit nonlinear
elastic behavior under certain special conditions. For example, very high-strength metal
fibers—often called whiskers—can exhibit tensile elastic strains in excess of 2%, as can
tiny metal pillars tested in compression.6’7 In this range of very large elastic strains, the
modulus of elasticity reveals its weak dependence on strain—something that is completely
obscured when strains are very small. This can be understood by noting that the slope dF/dx in
Fig. 1.4b is not truly linear, but instead decreases with increasing distance of atom separation. If
it is possible to separate the atoms of a material by a large distance without inducing plasticity
or fracture, this fundamental nonlinearity at the atomic level becomes apparent at the
macroscopic scale as a gradual reduction in the elastic modulus. As such, Hooke’s law
(Eq. 1-7) represents an empirical relationship, albeit a good one at the small strains (typically
less than 0.2%) that mark the end of the elastic regime for many engineering materials.

From the preceding discussion regarding the atomic-level basis for elastic behavior, it follows
that values of E for metals, ceramics, and glasses should decrease with increasing temperature (i.e,
these materials become less stiff). This is related to the fact that the average distance of atom orion
separation increases with temperature, which manifests itself macroscopically as thermal
expansion upon heating, and contraction upon cooling. Note the dashed line in Fig. 1.4a, which
corresponds to the locus of values of the average separation at temperatures above absolute zero.
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The loss of stiffness with increasing temperature is gradual, with only a small percent decrease
occurring for a 100°C (180°F) temperature change (Fig. 1.4d).

1.3.3 Young's Modulus and Polymer Structure

The effect of temperature on the Young’s modulus of polymers can be another story
entirely. A polymer molecule is constructed with covalent bonds along its length, but links
between polymer chains may be strong covalent bonds (cross-links), weak secondary bonds, or
a mixture of the two. Polymers without cross-links are called thermoplastics because they have
the ability to melt and remelt. Polymers with many cross-links cannot melt after they have been
solidified, and so are called thermosets. In addition to this distinction, thermoplastic polymer
structure can range from completely amorphous (a “pile of spaghetti”) to mostly crystalline
(folded lamellar regions separated by amorphous regions). The wide variability in bonding and
structure gives the polymer class of materials the ability to take on many different properties,
but also introduces viscoelasticity (addressed in detail in Chapter 4). This is time-dependent
elasticity, in which the relationship between stress and strain changes over time. It is also highly
sensitive to temperature. As a result, the concept of using a simple elastic modulus to describe
the mechanical behavior of a particular polymer is dubious at best. But, despite their
inadequacy, tangent or secant moduli are widely used to screen polymers during preliminary
material selection procedures and for quality control.>>3 The elastic behavior of all useful
polymers tends to be nearly linear at small stresses and strains, so Hooke’s law serves as a good
first approximation of actual behavior for many applications as long as it is appreciated that a
simple modulus is only relevant for a limited range of time, strain rate, and temperature.

1.3.3.1 Thermoplastic Behavior

When short-term tensile tests of amorphous or semi-crystalline thermoplastics are performed
over arange of temperatures, it is found that the elastic modulus measured at a particular strain rate
decreases with increasing temperature as shown schematically in Fig. 1.5. At low temperatures
the modulus is relatively high, and is only mildly temperature-dependent. This is known as glassy
behavior, although it is not unique to amorphous polymers. As the test temperature rises, there is a
large transition in stiffness that occurs over a narrow temperature range. The midpoint in this
range is called the glass transition temperature, T,. (The actual temperature at which it occurs is a
characteristic of a particular material.) The magnitude of the T, modulus transition is strongly
dependent on the structure. For amorphous materials the change is very large, and the stiffness
rapidly declines to the point of melting (at which the elastic stiffness is zero). For this reason, load-
bearing amorphous thermoplastics must have T, values above the intended use temperature. This
is true for common amorphous thermoplastics, including polystyrene (PS), unplasticized poly-
vinylchloride (U-PVC), transparent polyethylene terephthalate (PET), polycarbonate (PC), and

Figure 1.5 Schematic depiction of the
W temperature dependence of the short-term
A modulus for polymeric solids. The glass
/ transition temperature, T, marks the
y ) ] largest modulus change, depicted here
Partially crystalline only for the amorphous case. The melting
points of amorphous (@) and partially-
crystalline (p-¢) thermoplastics are also
marked. The solid arrow indicates the
trend with increasing degree of
crystallinity, and the dashed arrow the
trend with cross-linking.

Modulus
(EorG)

Amorphous,
No cross-links

Temperature Ty Tma Tmpc
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acrylics like poly(methyl methacrylate) (PMMA), also known by such trademark names as
Plexiglas and Lucite. As some degree of crystallinity is introduced, the drop in modulus at T
becomes smaller, and a wide leathery (or tough) region appears before the stiffness final drop at
the melt temperature. Semi-crystalline thermoplastics may therefore be used at temperatures
above or below T,. The short secondary bonds found in folded lamellar crystals better resist
molecular reconfiguration than the longer secondary bonds between amorphous chains, which
explains the observed trend of increasing stiffness with increasing crystallinity. Examples of
common semicrystalline thermoplastics include low density polyethylene (LDPE), high-density
polyethylene (HDPE), polytetrafluoroethylene (PTFE), and opaque versions of polyethylene
terephthalate (PET). Plasticizers like dioctyl phthalate (DOP) may be added to thermoplastics to
lower T, and therefore alter room temperature behavior." They are short organic molecules that
are soluble in the polymer and that make changes in molecular configuration easier at a given
temperature. Whereas U-PVC is rigid at room temperature, plasticized PVC is flexible and tough.

Certain semicrystalline thermoplastics may be processed to form fibers in a manner that aligns
the molecular chains along the fiber axis. Not surprisingly, this leads to direction-dependent elastic
behavior (and strength). As the covalent bonds that make up the chains align with the tensile axis,
these oriented thermoplastics have great longitudinal stiffness compared to their unoriented
cousins. Ultra high molecular weight polyethylene (UHMWPE) can be processed in this way for
use in lightweight armor, fishing line, surgical sutures, high-performance ropes, and fiber
composite reinforcements.' A class of thermoplastics called liguid crystal polymers has the
unusual ability to retain their chain orientation even in the melt, which simplifies processing.
Highly aligned liquid crystal polymer fibers (including aramids such as Kevlar) are also well
known for extremely high stiffness (and strength) to weight ratio. Spider silk represents a biological
example of a highly aligned thermoplastic that is renowned for its remarkable properties. However,
itis difficult to produce artificial spider silk in bulk, so its use as an engineering material—although
extremely attractive—is limited.

The temperature-dependent behavior of the shear modulus (proportional to E; see Sections
1.4.2 and 1.5.1) for many thermoplastic and thermoset materials is summarized in Fig. 1.6. The
temperature axis is actually the reduced temperature, 7,4 =293 K/T,. Depicted in this way, it
is apparent that all of the polymers follow similar trends even though their actual T, values
differ. Any material with 7,4 < 1.0 has a T, > 293 K (approximately room temperature), and is
therefore typically used in its glassy mechanical state. Those with 7,4 > 1.0 have a Ty <293 K,
and are therefore typically used in the leathery state (or the rubbery state, in the case of the
elastomers). Those with T,.;~ 1.0 would be expected to show strong temperature sensitivity
near room temperature. For engineering design, it can be quite useful to know the T, values of
candidate polymers because they may limit the temperature range of safe operation.

1.3.3.2 Rigid Thermosets

Thermosets are highly cross-linked, so changes in molecular configuration are difficult. This
gives the materials in this class fairly high moduli that are relatively insensitive to temperature.
Furthermore, T, tends to be high, and there is no melt transition possible without significant
secondary bonding, so these materials retain much of their stiffness and strength up to the point
where they begin to thermally degrade. This general behavior can be seen in Fig. 1.5. Common
thermosets include epoxy resins, melamine resin, polyurethanes, and phenol-formaldehyde resins
(Bakelite).

iii Health concerns about absorption of certain phthalates like DOP limit their use for medical devices and drinking vessels, though they are
widely used for applications in which such exposure is unlikely.

IV UHMWPE is also used for hip prosthesis implants as acetabular socket replacements, but not in an oriented form. Unidirectional wear
processes have been shown to plastically deform the implant surface, creating highly oriented fibrils that have great strength and stiffness
along the longitudinal axis, but poor properties in the transverse axis. When the direction of joint motion is multi-directional, the fibrils can
be ruptured, leading to the production of undesirable wear particles. Increased cross-linking can prevent the orientation process and thereby

improve wear resistance.

37
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Figure 1.6 Shear modulus as a function of temperature for many polymer materials, plotted as a function of their
reduced temperature. (Reprinted from Osswald and Menges,? with permission.)

1.3.3.3 Rubber Elasticity

Although elastomers are cross-linked and therefore have some of the characteristics of rigid
thermosets, their tensile response is quite different from either the thermosets or thermoplastics. 10
Elastomer (or rubber) elasticity is distinguished by two basic characteristics: very large nonlinear
elastic strains (often in excess of 100%) and elastic moduli that increase with increasing
temperature. The latter response is opposite that found in other materials (including rigid
polymers). Elastomers are polymers that contain moderate numbers of chemical or physical
cross-links, and that are tested and used above their T, values. Some degree of amorphous
structure is essential to the ability to develop enormous elastic strains because it allows significant
extension simply by chain straightening and recoiling. Cross-linking (e.g., by vulcanization) is
also critical, as it prevents the possibility of plastic deformation associated with chains sliding past
one another. In fact, the degree of cross-linking ultimately determines the extensibility of an
elastomer, which is evident in the difference between the properties of moderately cross-linked
rubber bands and heavily cross-linked bowling balls.

Rubber elasticity is related primarily to the straightening of amorphous polymer chains from
their curled positions into partially extended conformations. As a result, the elastic moduli are
very low because of the small contribution of actual polymer chain stretching. That is, a curled
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chain of length / is extended so that its end-to-end length approaches / with little additional chain
lengthening attributed to the more difficult covalent bond extension mode. The straightening of
the chains and the increasing load fraction supported along the covalent bonds is responsible for
the apparent hardening of the material at large strains (Fig. 1.34). When the applied loads are
relaxed, the chains return to a curled position, indicating the latter conformation to be preferred.

By simple application of the first and second laws of thermodynamics, it is possible to
demonstrate that the elastic modulus of rubber should increase with increasing temperature.
Thermodynamics also provides the key to the reversibility of the large strain behavior of
elastomers. From the first law of thermodynamics,

dU = 0Q + oW (1-8)

where

dU = change in internal energy
0Q = change in heat absorbed or released
OW = work done on the system

For a reversible process, the second law of thermodynamics gives

dQ =TdS (1-9)

where

T = temperature
dS = change in entropy

If an elastomeric rod of length [ is extended by an amount d/ owing to a tensile force F, the work
OW done on the rod is Fdl. Combining Eqgs. 1-8 and 1-9 with the expression for OW gives

dU =TdS + Fdl (1-10)

oUu oS
F= (ﬁ% B T(EL (-1

related to the strain energy associated with
the application of a load

At constant temperature

oS
o3
N——
~
Il

(g) _ related to the change in entropy or order of the
T rod as it is stretched

Since the chains prefer a random curled configuration, their initial degree of order is low and
their entropy high. (Because of the very high degree of order of atoms in metals and ceramics,
their entropy term by comparison is negligible.) However, when a tensile load is applied, the
entropy decreases as the chains become straightened and aligned. As a consequence, (05/00)7is
negative. The force required to extend the elastomer rod, therefore, increases with increasing
temperature. By the same argument, it is entropy (not stored energy) that drives the chain
recoiling process and the recovery of large elastic strains.

As expected, rubber stiffness increases with increasing cross-link density and correspond-
ing decrease in the molecular weight of chain segments between cross-links (Mc). Regarding
the latter, the modulus of rubber is found to vary inversely with Mc. Interestingly, rubbers are
distinguished from most other materials in that their elastic moduli can be predicted from
molecular structural details.!!
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The elastic response of elastomers is approximately linear up to about 1%, but decidedly
nonlinear thereafter. Metals and ceramics typically undergo only small elastic strains, so the
definition of strain given in Eq. 1-1b is applicable. Elastomers deform to large extensions for
which the assumptions of small strain theory are invalid, hence these materials are often described
as being hyperelastic, and the stretch ratio or extension ratio, A, is used instead of strain:

l .
r="=c¢c+1 (1-12)
lo

Based on this definition, a nonlinear expression relating stress and extension ratio can be
developed from kinetic theory of rubber elasticity, with

_Eof, 1 1-13
“?( ‘ﬁ) (-1

where E is the elastic modulus as the extension ratio approaches 1 (i.e., zero extension). This
model works well for the typical extension ranges expected of elastomers in service (on the
order of 25-30%, or A =1.25 to 1.30).12 For extension ratios much larger than 1.25 or so, the
Mooney-Rivlin model based on strain energy considerations tends to fit better to experimental
data. For simple uniaxial tension, this model takes the form

o:2<C1 +%) (A—Aiz) (1-14)

where the Mooney-Rivlin constants C; and C, are fitting coefficients associated with a
particular material.

1.3.4 Compression Testing

Uniaxial compression tests provide much of the same information about material properties
as tension tests. However, the compression test specimen is comparatively simple in shape:
usually a cylinder with a ratio of length to diameter L/D < 2 to avoid non-axial motion. Elastic
behavior in compression should ideally be the same as in tension, although in practice it is not
always the case.!> Caution must be taken during compression testing to minimize friction
between the loading platen and the specimen because friction will provide an artificial resistance
to AA, and will therefore make the material appear stiffer and stronger than it actually is. Even
after plastic deformation has commenced, the true stress—true strain curve from a well-run
compression test of a metal should closely match that of a tensile test, although the engineering
curve will not because of tensile necking. The true stress—strain curve for a given polymer in
tension is always lower than in compression since the chains are more mobile under tensile
conditions. One potential advantage of compression testing is the avoidance of necking
instability, so larger strains can often be imposed than are possible under tension. This can
also be seen as a drawback if aspects of the necking behavior and ensuing tensile fracture are of
interest. Compression testing also avoids early failure due to brittle cracking in ceramic materials.

1.3.5 Failure by Elastic Buckling

When a slender component (e.g., a column or pole) is under a compressive load along its
long axis, an elastic instability can occur that leads to buckling under relatively low loads. As
introduced in Section 1.1, buckling is manifested as excessive lateral deflection. It becomes a
serious concern when the length/diameter ratio of the column is L/D > 10. If a column is aligned
perfectly with the loading axis, the column will shorten with applied compressive load
according to Hooke’s law, regardless of aspect ratio. However, if the column is even slightly
eccentric, the applied compressive load will generate a bending stress that can trigger the
buckling response known as Euler buckling. For example, consider the case of a column of
length L that has ends that are hinged and are therefore free to rotate but not to translate (i.e.,
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ends that are pinned). The critical load P, (the Euler buckling load) for the onset of elastic
buckling is given by
2
_ neEl

Por = L2 El = =5~ (1-15)
where E is the Young’s modulus and / is the appropriate moment of inertia for the column cross-
section shape. Note that the critical load for buckling decreases with the inverse square of L, the
column length. For the case of a column with a circular cross section of diameter d, I = wd*/64.
If we rewrite the expression as a function of the cross-sectional area A, it is easy to show that the
critical average stress is given by

2
ac,:Q:”—EZ (1-16)
A (L/g)

where g is the radius of gyration of the column (the distance from the column’s reference axis to
the location where the column area is concentrated). For the circular column case, g = d/4.

It can be seen from Eq. 1-16 that the buckling stress decreases markedly with increasing
slenderness ratio L/g. This is a strong motivation for the small L/D ratio recommended for
compression testing. Also, the buckling stress varies with the elastic modulus of the column
material, but is not dependent on the material strength (e.g., the yield strength). Therefore, two
dimensionally similar columns, one of high-strength steel and the other a low-strength steel alloy,
will buckle under the same critical load (recall that elastic modulus is not strongly affected by
alloying or heat treatment). However, if the applied load can exceed the proportional limit prior to
the onset of buckling, as may be the case for a column that is of intermediate length, then failure
will occur by crushing rather than buckling and alloy strength comes back into play.

The critical buckling load also is affected strongly by the boundary conditions at the ends of
the column. For the three cases of (a) both ends fixed, (b) one end fixed, one end pinned, and (c)
one end fixed, one end free (e.g., like a flagpole), the critical load equations are nearly identical,
but the effective unbuckled length between the points of zero moment, L., is used in place of the
actual unbuckled length, L, as indicated in Fig. 1.7. After substitution into Eq. 1-15 we find that
the critical loads for the three cases are given by

N2 ,  47’El
Pcr, fixed—fixed = 2 7°El = 12 (1-17a)
) 5
L 2m°El
Pcr, fixed—pinned = <ﬁ> 7’ El = 12 (1-17b)
29 n2El
Pcr, fixed—free = (ZL) nEl = F (1-17¢)

Figure 1.7 Schematic depictions of buckled slender
members with four different boundary conditions and
their corresponding equations: pinned-pinned, fixed-
fixed, fixed-pinned, and fixed-free.

K= T
K= T
T

Eq: 1-15 1-17a 1-17b 1-17c



1.3 Stress—Strain Curves for Uniaxial Loading 19

It is important to note that these equations provide upper-bound solutions for the critical
buckling load. Actual critical loads are lower due to the small eccentricities that are inevitable
in column construction. Hence, an appropriate safety factor should be used.

1.3.6 Resilience and Strain Energy Density

The resilience of a material is a measure of the amount of energy per unit volume (in units
of Pa=1J/m>) that can be absorbed under elastic loading conditions and that is released
completely when the loads are removed. From this definition, resilience may be measured from
the area under the initial elastic portion of any curve in Fig. 1.3. If it is linear, then

resilience = Y,0maxémax (1-18)

where

Omax = Maximum stress for elastic conditions
&max = elastic strain limit

And, from Eq. 1-7,

2

resilience = % (1-19)

Should an engineering design require a material that allows only for elastic response with large
energy storage (such as in the case of a mechanical spring), the appropriate material to choose
would be one possessing a high yield strength but low modulus of elasticity.

A similar analysis of stored elastic energy may be applied even after plastic deformation
has commenced. For any point along the stress—strain curve, the strain energy density (SED)
may be computed using Eq. 1-18, but with the substitution of the elastic portion of the total
strain, o] = o/E, and the stress at the point of interest, such that SED = Y06, = o? /2E. The
strain energy density describes the elastic energy that is stored in the material at any point in
the load history, all of which is available for release either upon intentional unloading or upon
sudden fracture.

1.3.7 Definitions of Strength

Strength is a measure of resistance to plastic deformation or fracture. Since there are several
ways to define strength that are dependent on the nature of the testing mode, it is appropriate to
introduce here those definitions that are relevant for uniaxial testing. The stress level indicated by
the proportional limit has already been discussed, but it should be appreciated that thisis nota very
useful engineering measure. It is usually difficult to discern exactly where the transition from
linear to nonlinear behavior occurs, and in some materials there is no such clean transition at all.

Instead, for ductile metals (Fig. 1.3 (b—d)) it is common to define a yield strength (or an
offset yield strength) that is a measure of the stress needed to induce a very small amount of
plastic strain (often 0.002, i.e., 0.2%). Either a specimen is loaded and unloaded to progres-
sively larger strains until the desired permanent strain is evident after unloading, or a
continuous test is performed to large strains and a line parallel to the elastic portion of the
curve is drawn emanating from the desired point on the strain axis until it intercepts the loading
curve.” This is the same path that would be followed if the material had been unloaded from that
intercept point. Ideally, either method should lead to the same yield strength value. This value is
very useful to an engineer because it reliably indicates the stress level at which plastic
deformation can be said to begin in earnest. Values of tensile yield strength for selected
materials are listed in Table 1.2.

¥V The recommended procedure for determining the “offset yield strength” is described in ASTM Standard ES.
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Table 1.2a Tensile Properties for Selected Engineering Materials®

Yield Tensile Elongation
Strength Strength in 5-cm Reduction in Area
Material Treatment (MPa) (MPa) Gage (%) (1.28-cm diameter) (%)
Steel Alloys
1015 As-rolled 315 420 39 61
1050 " 415 725 20 40
1080 " 585 965 12 17
1340 Q+T (205°C) 1590 1810 11 35
1340 " (425°C) 1150 1260 14 51
1340 " (650°C) 620 800 22 66
4340 " (205°C) 1675 1875 10 38
4340 " (425°C) 1365 1470 10 44
4340 " (650°C) 855 965 19 60
301 Annealed plate 275 725 55 —
304 " 240 565 60 —
310 " 310 655 50 —
316 " 250 565 55 —
403 Annealed bar 275 515 35 —
410 " 275 515 35 —
431 " 655 860 20 —
AFC-77 Variable 560-1605 835-2140 10-26 32-74
PH 15-7Mo " 380-1450 895-1515 2-35 —
Titanium Alloys
Ti-5A1-2.5Sn Annealed 805 860 16 40
Ti-8Al-IMo-1V Duplex annealed 950 1000 15 28
Ti-6A1-4V Annealed 925 995 14 30
Ti-13V-1ICr-3Al Solution + age 1205 1275 8 —
Magnesium Alloys
AZ31B Annealed 103-125 220 9-12 —
AZB0A Extruded bar 185-195 290-295 4-9 —
ZK60A Artificially aged 215-260 295-315 4-6 —
Aluminum Alloys
2219 -T31, -T351 250 360 17 —
2024 -T3 345 485 18 —
2024 -T6, -T651 395 475 10 —
2014 -T6, -T651 415 485 13 —
6061 -T4, -T451 145 240 23 —
7049 -T73 475 530 11 —
7075 -T6 505 570 11 —
7075 -T73 415 505 11 —
7178 -T6 540 605 11 —
Plastics
ABS Medium impact — 46 6-14 —
Acetal Homopolymer — 69 25-75 —
Poly(tetra-fluorethylene) — — 1448 100-450 —
Poly(vinylidene fluoride) — — 35-48 100-300 —
Nylon 66 — — 59-83 60-300 —
Polycarbonate — — 55-69 130 —
Polyethylene Low density — 7-21 50-800 —
Polystyrene — — 41-54 1.5-24 —
Polysulfone — 69 — 50-1000 e

“ Datebook 1974, Metal Progress (mid-June 1974).
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Table 1.2b Tensile Properties for Selected Engineering Materials®

Yield Tensile Elongation Reduction in
Strength Strength in 2-in. Area (0.505-in.
Material Treatment (ksi) (ksi) Gage (%) diameter) (%)
Steel Alloys
1015 As rolled 46 61 39 61
1050 " 60 105 20 40
1080 " 85 140 12 17
1340 Q+T (400°F) 230 260 11 35
1340 " (800°F) 167 183 14 51
1340 " (1200°F) 90 116 22 66
4340 " (400°F) 243 272 10 38
4340 " (800°F) 198 213 10 44
4340 " (1200°F) 124 140 19 60
301 Annealed plate 40 105 55 —
304 " 35 82 60 —
310 " 45 95 50 —
316 " 36 82 55 —
403 Annealed bar 40 75 35 —
410 " 40 75 35 —
431 " 95 125 20 —
AFC-77 Variable 81-233 121-310 10-26 32-74
PH 15-7Mo " 55-210 130-220 2-35 —
Titanium Alloys
Ti-5A1-2.5Sn Annealed 117 125 16 40
Ti-8Al-IMo-1V Duplex annealed 138 145 15 28
Ti-6A1-4V Annealed 134 144 14 30
Ti-13V-11Cr-3Al Solution + age 175 185 8 —
Magnesium Alloys
AZ31B Annealed 15-18 32 9-12 —
AZB0A Extruded bar 27-28 42-43 4-9 —
ZK60A Artificially aged 31-38 43-16 4-6 —
Aluminum Alloys
2219 -T31, -T351 36 52 17 —
2024 -T3 50 70 18 —
2024 -Té6, -T651 57 69 10 —
2014 -T6, -T651 60 70 13 —
6061 -T4, -T451 21 35 23 —
7049 -T73 69 77 11 —
7075 -T6 73 83 11 —
7075 -T73 60 73 11 —
7178 -T6 78 88 11 —
Plastics
ABS Medium impact — 6.8 6-14 —
Acetal Homopolymer — 10 25-75 —
Poly(tetra-
fluorethylene) — — 2-7 100450 —
Poly(vinylidene
fluoride) — — 5.1-7 100-300 —
Nylon 66 — — 8.6-12 60-300 —
Polycarbonate — — 8-10 130 —
Polyethylene Low density — 1-3 50-800 —
Polystyrene — — 6-9 1.5-2.4 —
Polysulfone — 10 — 50-100 —

“ Databook 1974, Metal Progress (mid-June 1974).
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Table 1.3 Elastic Modulus and Strength Properties of Selected Ceramics?

Modulus of Flexural Compressive
Elasticity Tensile Strength Strength Strength

Material [GPa (10° psi)] [MPa (ksi)] [MPa (ksi)] [MPa (ksi)]

Alumina (85% dense) 220 (32) 125 (18) 295 (42.5) 1620 (235)

Alumina (99.8% 385 (56) 205 (30) 345 (60) 2760 (400)

dense)

Alumina silicate 55 (8) 17 (2.5) 62 (9) 275 (40)

Transformation 200 (29) 350 (51) 635 (92) 1760 (255)

toughened zirconia

Partially stabilized 205 (30) — 690 (100) 1860 (270)

zirconia + 9% MgO

Cast SizNy 115 (17) 24 (3.5) 69 (10) 138 (20)

Hot-pressed SizNy — — 860 (125) 3450 (500)

“ Guide to Engineering Materials, Vol. 1(1), ASM, Metals Park, OH, 1986, pp. 16, 64, 65.

It has also been mentioned that for ductile metals the stress corresponding to the
maximum of the curve measured under tensile loading defines the tensile strength (or the
ultimate tensile strength). This is a useful value because it corresponds to the maximum load
sustainable by a particular material under tension, and also indicates the end of the plastic
region in which uniform elongation and thinning of the gage section occurs. Nonuniform
thinning is very dangerous when the component in question is bearing a fixed load (such
as a cable from which a mass is suspended) because fracture is virtually inevitable shortly
thereafter. Even when the component is not yet in service—for example, during fabrication
of a thin sheet that will serve as the hood of an automobile—tensile instability is undesirable
because it leads to locally thin areas that will act as points of weakness in the finished part (or,
at the very least, will be unsightly). As a reminder, this condition is not observable from a
compression test.

The yield strength of ductile polymers may be defined differently from that of metals. As
seen in Fig. 1.3 (f~g), the yield strength can be defined at the first maximum in the curve (the
point at which the true stress falls). If there is no local maximum then the yield strength can be
defined by a 0.2% offset yield point, just as for metals.

Brittle materials, whether they are metals, ceramics, glasses, or polymers, have the stress
at which sudden fracture occurs as their only measure of the strength. This is called the
fracture strength. Fracture in brittle materials is strongly influenced by the size and character
of surface flaws, so there is often a relatively large uncertainty associated with the fracture
strength value. The fracture strength of ceramic materials may be much greater under
compressive loading than under tensile loading, so compressive strength values are often
reported for ceramic materials (as shown in Table 1.3). Of course, ductile materials will also
fracture at sufficiently high strains, so the true fracture stress can be defined as the load at
fracture divided by the final cross-sectional area of the test specimen.

1.3.8 Toughness

Toughness is another measure of resistance to fracture, but is measured in units of energy.
We may define a brittle material as one absorbing little energy, while a tough material would
require a large expenditure of energy in the fracture process. For a smooth tensile bar, the
energy to break may be estimated from the area under the stress—strain curve.

o
energy/volume = / ode (1-20)
0
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o Figure 1.8 Stress—strain curves for strong material with little plastic
flow capacity, A; low-strength but high-ductility material, B; and a

A metal with optimum combination of strength and ductility for
maximum toughness, C.

B

4!

&

Maximum toughness, therefore, is achieved with an optimum combination of strength and
ductility; neither high strength (e.g., glass) nor exceptional ductility (e.g., taffy) alone provides
for large fracture energy absorption (Fig. 1.8). Material toughness will be considered in much
greater detail in Chapters 6-11.

1.4 NONAXIAL TESTING

In addition to axial tension and compression, engineering components may be subjected to
bending, shearing, and torsion. Not surprisingly, standardized tests for evaluating material
response under these loading conditions are well developed. While bend testing can be used to
measure Young’s modulus £ much like tensile or compression testing, shear and torsion tests
are used to measure G, a quantity known as the shear modulus.

1.4.1 Bend Testing

Although bend testing is an option for metals and polymers, flexural test methods are
most frequently used to determine the elastic behavior and strength characteristics of ceramic
and glass compounds. This arises from the fact that ceramics and glasses usually display
essentially no plastic deformation and, as such, the mechanical response of these materials is
very sensitive to the presence of complex sample shapes that introduce stress concentrations.
(Such is the case with threaded grips that are sometimes machined into tensile bars.) Stress
concentrations can cause premature failure, thereby limiting the usefulness of the standard
tensile bar in this case. By contrast, bend bars have a smooth configuration, are easy to
machine and test, and require simple load fixtures. The three-point and four-point methods
represent two common loading configurations (see Fig. 1.9).

Under tensile or compressive loading parallel to the axis of some uniform load-bearing
member, the stresses are typically constant over the entire component. In bending, however,
where stresses are applied normal to the component main axis (as shown in Fig. 1.9), the axial
stress (i.e., in the L direction) varies from one location to another within the beam. The surface on
one side of the beam will be in compression, while the other side is under tension. The stress
through the thickness of the beam varies linearly between the surface compression and tension
stress values, with zero stress at the neutral axis. The stress along the beam surfaces will also vary,
with maxima at the two surfaces either under the central load point for three-point bending, or
everywhere between the inner load points for four-point bending (Fig. 1.9). There is no axial stress
outside the outer load points in either case, even if the beam extends beyond these points.

The elastic modulus of a bend specimen can be measured using load (P) and midspan-
deflection (§) data collected at strains typically 20-50% of those needed to induce plasticity (if
plasticity is possible for the material in question). As in uniaxial tension or compression, elastic
loading in bending is linear for linear elastic materials. The elastic modulus is extracted from
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Figure 1.9 Bending and tensile stress formuli and distribution for (a) three-point bending; (b) four-point bending;
and (c) uniaxial tensile loading of a rectangular bar.

the slope of the loading curve in an analogous fashion:

> (AP
Ep3pr. = 4—bh3 <B) (1-21a)
_a(3L% —4a?) (AP
Epapr = B\ (1-21b)

As the reader may recall from his or her Strength of Materials or Mechanics courses, the
flexural stress in a bend bar is given by

Mc
Omax = - (1-22)

where M is the bending moment, c¢ is the distance from the neutral axis to the outermost
“fiber” surface, and I is the moment of inertia of the bar’s cross section (just as for the
columns discussed in Section 1.3.5). For a rectangular configuration,

_bi?

="
12

(1-23)
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Table 1.4 Tensile and Bend Strengths of Ceramic Compounds®

Tensile Strength Modulus of Rupture”
Material MPa (ksi) MPa (ksi)

A1,03 (0-2% porosity) 200-310 (30-45) 350-580 (50-80)
Sintered BeO (3.5% porosity) 90-133 (13-20) 172-275 (25-40)
Sintered stabilized ZrO, (<5% porosity) 138 (20) 138-240 (20-35)
Hot-pressed SizNy4 (< 1% porosity) 350-580 (50-80) 620-965 (90-140)
Fused SiO, 69 (10) 110 (16)

Hot-pressed TiC (<2% porosity) 240-275 (35-40) 275-450 (40-65)

“D. W. Richerson, Modern Ceramic Engineering, Marcel Dekker, Inc., New York (1992).
*Values corresponding to three- and four-point bending samples.

where b and & are the beam width and height, respectively. It follows from Eq. 1.23 that for
three-point loading, the bending moment increases linearly from the outer load points of the
beam to the maximum value at the midspan location, given by
_ 3PL
- 2bk?

For the four-point loading configuration, the bending moment increases linearly from
either loading point at the ends of the beam to a constant maximum value within the region
bounded by the interior loading points. Here the flexural stress is given by
3Pa
bh?

03-pt. (1-24)

Ot = (1-25)

where a is the distance from the exterior to interior loading points.

If the material being tested is a ductile metal, it is possible to measure a bending proof
strength that is analogous (but not identical) to the yield strength. It is defined as the minimum
stress needed to induce a permanent strain of some chosen level (e.g., 0.01 %).14 If the material
is a brittle ceramic, then the critical stress will correspond to the point of fracture. This value is
called the flexural strength or the modulus of rupture (although it is not an elastic property of the
material).!> Several modulus of rupture values for common ceramic materials are listed in
Tables 1.3 and 1.4.

EXAMPLE 1.2

A 50-mm-long rod of Si3N4 has a rectangular cross section with width and depth dimensions of 6 mm and
3 mm, respectively. When tested in 3-pt. bending, the rod fails with an applied load of 670 N. If the rod were
tested in tension, the breaking load would be 10 kN. What are the modulus of rupture and tensile strength
properties for this ceramic, and how well do these values agree with one another? Explain any property
differences.

From Eq. 1-24, the modulus of rupture for the SizNy4 rod is

3PL
o =—F
2bh?

3(670)(50 x 1073)

: 3 = 930 MPa
2(6 x 1073)(3 x 1073)

Modulus of Rupture =

(Continued)
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If the rod were pulled in tension and the load to break equal to 10 kN, then the tensile strength would be

B 10 x 10°

= — —+ = 556 MPa
(6x1077)(3 x 1072)

P
A

We see that the modulus of rupture (bend strength) is considerably greater than the tensile strength for this
material. This difference is supported by the numbers in Tables 1.3 and 1.4. Typically, this is the case for brittle
solids, which occurs since the mechanical properties of such materials are extremely sensitive to the presence of
defects in the sample. Correspondingly, the properties of a brittle solid depend strongly on the existence of a
defect in the region of the highest stress level. Since the maximum stress is experienced across the entire cross
section of a tensile bar, but is restricted to the surface layer beneath the center load point of a 3-pt. bend bar, it
follows that there is a lower probability of finding a defect in the peak stress zone of the bend bar than in the
tensile sample. Accordingly, the modulus of rupture in a brittle solid is higher than its corresponding tensile
strength value. Likewise, the modulus of rupture measured in a three-point bend configuration is generally

higher than in a four-point bend configuration.

1.4.2 Shear and Torsion Testing
Shearing is defined as the application of load in opposite directions along two parallel
surfaces (rather than normal to them). As displacement occurs, the parallel surfaces remain
parallel to one another, but are shifted such that a cube would become a parallelepiped, as
shown in Fig. 1.10a. (Note that an “extra” pair of vertical shear forces in Fig. 1.10a must be
present to avoid free-body rotation.) Hooke’s law is still obeyed under shear by linear elastic
materials, but for an isotropic material the shear stress T and the shear strain y are related by the

shear modulus'' G such that

=Gy (1-26)

The shear stress is given by
(1-27)

Figure 1.10 (a) Pure shear

(@ Al f A (b)
= { " r—’ T x  and (b) torsion loading. (c)
7 T ——>F /| 'l,’ / ’_?:f { Double lap joint with two
o! '/ ':' N N Y. = AR adhesive pads in shear. (d) A
RN IF \ K\ shaft in torsion due to chain
,’,,J ':' : drives operating in different
V4 directions.
F<—— A L T

FI2 %

Vi The symbol y is also used to denote the shear modulus.
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The shear strain calculation resembles that for axial loading with the form
y = Al/l (1-28)

but the direction of / is perpendicular to that of Al It is equivalent to defining the shear strain by
the shear angle 6, such that

y = tan6 (1-29)

There is no change in the area over which the force is imposed during pure shear loading, so
there is no distinction made between engineering and true stresses.

Many cases of shear loading can be found in real components. As an example, shear
loading is applied to the hinge pin in a pair of scissors or pliers that is closing on an object. Shear
loading is also present in the rivets holding two overlapping plates together when the plates are
pulled or pushed in opposite directions. In bonded lap joints, the shear load is borne by the
adhesive layer holding two parts of the joint together (Fig. 1.10c).

Torsion loading is the application of a torque force such that a member is twisted about its axis.
It is—not surprisingly—common in rotating shafts, from small screwdrivers to gigantic steam
turbines. Torsion loading results in shear stresses and strains that are calculated in essentially the
same manner as for pure shear, except that they are defined in terms of the torque 7, the distance
from the shaft axis r, and the rotational twist angle ¢ (in radians). The shear stress varies from zero
along the axis to its maximum value at the outside surface of the shaft in the form

t="Tr/l, (1-30)
where [, is the polar moment of inertia. The polar moment of inertia for a circular solid shaft is
I, = xD*/32 (1-31)

and for a circular hollow shaft
I, = n(D* — d*)/32 (1-32)

where D and d are the outer and inner shaft diameters, respectively. The twist angle ¢ varies with
position along the length of the shaft, ranging from zero at the fixed end to a maximum at the end
to which the twisting moment is applied, so the maximum shear strain in a circular solid shaft is

given by
_ (P)(2\_r® ]
Ymax = (2> <L) L (1-33)

where L is the twisted length of the shaft and ¢ is in radians. It is somewhat difficult to create pure
shear loading directly for measurement of elastic properties, so the shear modulus is often
measured in torsion instead, combining Egs. 1-26, 1-30, and 1-33 as G = Tl/Ip(p.16 Values of G
are listed in Table 1.1 for selected materials.

1.5 MULTIAXIAL LINEAR ELASTIC RESPONSE
1.5.1 Additional Isotropic Elastic Constants

Thus far we have only considered a stress coupled to a strain along the same axis, whether
under uniaxial conditions, bending, or shear. However, we have also acknowledged that a strain
applied in a uniaxial fashion along one axis will almost certainly result in orthogonal strains as
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the material attempts some degree of volume conservation. Hooke’s law can be generalized to
account for multiaxial effects with the addition of subscripts to indicate the direction so that

o

&y = % (1-34a)
Equivalent expressions exist for the X and Z directions. It is also necessary to introduce the
Poisson’s ratio v, the elastic constant that describes the proportionality between an imposed
normal strain along one axis (e.g., Y in Eq. 1-34a) and a resulting normal strain (generally of
opposite sign) along an orthogonal direction (e.g., X or Z) such that

v
Exx = &7z = —VEyy = —any (1-34b)

where

oyy = stress acting normal to the Y plane and in the Y direction
&yy = normal strain in the direction of the applied stress
&xy» &7z = corresponding normal strains in orthogonal directions
v = Poisson’s ratio (':.—exx/ayy: —&z,/¢yy for isotropic materials)
E = modulus of elasticity

This expression is only valid for small strains. At large strains, the behavior becomes nonlinear.

Poisson’s ratio must be v <0.5, and is generally greater than zero. At a value of 0.5,
volume is conserved during elastic deformation (i.e., the material is incompressible).
However, this is only the case for certain rubber-like materials. Most metals range from
0.25 to 0.45, with a typical value close to 0.33. Ceramics and glasses tend to be somewhat
lower, in the range of 0.1-0.3, and polymers somewhat higher at 0.3—0.5. Natural cork has a
Poisson’s ratio close to zero. Values of v for specific materials are listed in Table 1.1. There
is a small group of materials that are auxetic or dilatational. They actually expand laterally
under longitudinal tension so that —1 <v < 0. Most of these unusual materials derive their
odd behavior from the presence of internal pores with reentrant shapes.17

Although it appears that there are now three elastic constants (E, G, v), for isotropic
materials only two of these constants are independent of one another. Once two are known,
the third can be calculated by rearranging the expression

E
G:2(1+v) (1-35)

There is another elastic constant called the bulk modulus*™" K that describes the resistance to
uniform compression along three orthogonal axes. This situation can be conceptualized as three
applied stresses all causing Poisson responses simultaneously, so it may come as no surprise
that it, too, can be determined by knowing any two of the other moduli:

E EG
K=30=2)"366-p (1-36)

1.5.2 Multiaxial Loading

In practice, only certain structures are exposed to purely uniaxial or shear loading. Most
are subjected to loads that occur simultaneously along multiple axes. Multiaxial loading can

Vil The symbol B is sometimes used for the bulk modulus instead of K.
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Y Figure 1.11 Distortion of the Z
face of a cubical element. The
dashed lines indicate the
unstrained position of the cube.

oV
vy Y ol

B4

oV
A o B o X

L ”

Ju
dx | X dx

be described by the superposition and interplay of the individual stresses and strain in a form
sometimes called the generalized Hooke’s law.
From Fig. 1.11, typical normal and shear strain components may be given by

u
Exx = b (1-37a)
Ov
&yy = Dy (1-37b)
Yay = éxy —tana—Han,B—%—f—g—z (1-37¢)

with the other normal and shear strains defined in similar fashion. The double subscript for a
normal component of the stress or strain has the same meaning as in Eq. 1-34b. For a shear
component, the first subscript describes the face on which the load is imposed, and the second
subscript indicates the direction (as shown in Fig. 1.12).

When multiaxial stresses are applied, the total strain in any given direction is the sum of all
strains resulting from each normal and shear stress component. Thus for the case of biaxial
loading with normal stresses oy, and o, applied simultaneously along the X and Y axes, and no
stress along Z, the resulting strain ¢, along X is found to be the sum of the directly imposed
strain and the strain from a Poisson contraction:

1 —v 1
Exx = Eaxx + (f yy) = E (Gxx - Vo'yy) (1-38)

It can be deduced from the final term in Eq. 1-38 that the strain along X will be smaller in this
case than if it were loaded uniaxially. A biaxial stress state is also known as a state of plane
stress. Stretched membranes, windows constrained by rigid frames, and pressure vessels are all
typically loaded in plane stress.
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(72 Figure 1.12  Stress components acting on a
volume element.
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For the most general case of triaxial loading, the full set of strains can be expressed for an
isotropic material as

1 —v —v oxx — V(ioyw + 0
Exx = =O0xx + (—O'yy) + <fGZZ) — ( Yy ZZ)

E E E
—V 1 -V oyy —V(ox +0
Syy = <f0xx) +any + (fo'zz) = Yy (Exx ZZ)
—v —v 1 07z — V(0xx + Oyy)
&y = <faxx) + (70”) +EGZZ _ = bicx Yy (139)
Tay
Vxy = 6
Tyz
yyz = E
Txz
Yz = E

Note that there is no equivalent to a Poisson’s ratio effect for the shear strains; a shear stress
applied along one axis of an isotropic material does not cause shear strain along any other axis.
Likewise, there is no coupling between the normal and shear terms.

1.5.2.1 Thin-Walled Pressure Vessels

The description of stresses in a thin-walled pressure vessel is introduced here to demonstrate
an important application of biaxial stress, and to establish the basis for subsequent fatigue and
fracture analyses that are discussed in later chapters. Consider a cylindrical vessel section of length
L, internal diameter D, and wall thickness ¢ that is subjected to a uniform gas or fluid pressure p
(Fig. 1.13a). By examining a free-body diagram of the lower half of the cylinder (Fig. 1.135), one
sees that the summation of forces acting normal to the midplane is given by

[ZY:O}F:pDL:ZP (1-40)
or

(1-41)
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P = (nDt)o;
(@ (b) (©

Figure 1.13 Thin-walled pressure vessel. (a) Overall shape; (b) free-body diagram of diametral section; and
(c) free-body diagram of transverse section.

The tangential or “hoop” stress, o;, acting on the wall thickness is then found to be

P pDL pD
e T (1-42)
or
o= (1-43)

t

where r is the vessel radius. For the case of thin-walled cylinders, where r/t > 10, Eq. 1-43
describes the hoop stress at all locations through the wall thickness. (The reader is referred to
Strength of Materials texts for the more complex analysis of stresses in thick-walled cylinders
where hoop and radial stresses are found to vary with location through the wall thickness.)

A second free-body diagram to account for cylindrical stresses in the longitudinal direction
is shown in Fig. 1.13¢. Here we see the “bursting force” across the end of the cylinder is resisted
by the “tearing force” P acting over the vessel circumference. In this instance, the sum of forces
acting along the axis of the cylinder is

7TD2p
4

The cross-sectional area of the cylinder wall is characterized by the product of its wall thickness
and the mean circumference [i.e., 7(D + t)t]. For thin-walled pressure vessels where D >> t, the
cylindrical cross-sectional area may be approximated by wDt. Therefore, the longitudinal stress
in the cylinder is given by

=P (1-44)

_ n’sz _pD _pr
 4nDt 4t 2

o] (1-45)
By comparing Egs. 1-42 and 1-45, one finds that the tangential or hoop stress is twice that in the
longitudinal direction. Therefore, vessel failure is likely to occur along a longitudinal plane
oriented normal to the transverse or hoop stress direction. Furthermore, one can now calculate
that the strains in the transverse and longitudinal directions under elastic loading are

1 —v -V
oot ()= (5

and

— 1 —_—
& = lo*z + (—U)O"z = ( /2 U)Gt (1-46b)
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so that the strain along the length of the cylinder is typically much smaller than around the
circumference.

EXAMPLE 1.3

A cylindrical pressure vessel is fabricated by joining together 100-cm-diameter wide rings of 1015 as-rolled

steel with a series of circumferential welds. The tank contains gas under a pressure of 15 MPa. If the strength of

each weldment is 90% that of the base plate, where is failure most likely to occur and what is the minimum

required thickness to ensure that the operating stress is no greater than 50% of the material’s yield strength?

From Table 1.2, the yield strength of the 1015 alloy base plate is 315 MPa with the weldment strength

estimated to be 283.5 MPa. For a design stress/yield strength ratio of 0.5, the hoop stress is computed to be
pr

Ot ——
t

so that

15 x 10°(50 x 1072
0.5(315 x 106) = >~ (IX )

C.t=4.76cm

For the stresses in the longitudinal direction,

so that

15 x 10°(50 x 1072)
2t

0.5(283.5 x 10°) =

C.t=2.65cm

Therefore, the vessel must have a wall thickness of at least 4.76 cm, and any significant overpressurization
will cause failure along a longitudinal plane normal to the hoop stress direction and not as a result of longitudinal
stresses acting across the weaker circumferential weldments.

1.5.2.2 Special Cases of Multiaxial Loading

If biaxial stresses in an isotropic material happen to be equal in sign and magnitude so that
Oxx =0yy, then the in-plane strains will also be equal, and the out-of-plane strain will be
generated by the sum of two equal Poisson contractions:

1 —V 1 1—v
Exx = Effxx + (F yy) = E (Uxx — VO‘yy) = ( 5 >0bi = &y (1-47a)

O'bi=< E >8bi (l-47b)

1—v

—v —v —2v
== (Fow) + (Fow) =5 o (149
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This is a special case of plane stress loading, for which o, = 0 always. The term E/(1 — v) in Eq.
1-47b is known as the biaxial modulus, and is widely used for situations in which equal-biaxial
loading applies. Examples include the behavior of spherical pressure vessels, pressure-loaded or
centrally-loaded circular membranes, and thin films subjected to thermal stresses generated by
thermal expansion mismatch between the film (the coating) and the substrate (the surface
supporting the coating). For the case of plane strain, in which the strain along one axis is zero
due to an applied constraint, a similar derivation gives a plane strain modulus of E/(1 — v2).

The stress state resulting from equal triaxial loading is known as hydrostatic stress. It is the
situation found at great depths in the ocean, but also often at the tip of a growing crack. The
latter situation can have a profound effect on plasticity and fracture behavior, as discussed in

Chapters 2, 6, and 7.

1.5.3 Instrumented Indentation
Standard tests for measuring elastic properties work very well for macro-scale specimens, but
are very difficult to perform on very small quantities of material. The ability to measure very small
volumes is highly desirable for evaluating thin films and coatings, for establishing the properties
of individual phases within a multiphase material, or for evaluating materials that have complex
structures at the micrometer scale and below (e.g., bone). It is also the case that reliance on
standard test specimens precludes testing in situ—that is, without removing a component (or a
piece of a component) that is installed in its proper setting. In situ measurements are very useful
for evaluating components in service from which small samples cannot be easily or safely
removed (e.g., field testing of cooling pipes in a power plant). A technique known as instrumented
indentation (or sometimes nanoindentation) is very useful in these cases. >
Instrumented indentation tests rely on measurement of load, P, and displacement, A, as a
small indenter is driven into the surface of a specimen and then removed. The resulting load-
displacement plot (see Fig. 1.14) may then be used to extract material properties including an
elastic modulus and the hardness (yet another way to characterize strength). The initial slope of
the unloading curve, dP/dh, is used to determine the elastic modulus, thereby ensuring that the
material response is only due to elastic recovery. Because a triaxial stress state exists beneath the
indenter (due to constraint of the material surrounding the indented region), an interplay among
multiple stresses and strains exists, and the modulus extracted is the plane strain modulus
E/(1 — v?). Values for E and v cannot be independently determined using instrumented indentation,
so it is common to either report the plane strain modulus directly, or to estimate v (which does not
vary much within a single class of materials) in order to gain a reasonable approximation for E.
The indenter tip is usually a three-sided shallow pyramid (a Berkovich indenter) or a
sphere. Knowledge of the exact indenter shape allows calculation of the contact area, A,
between the indenter and the material as a function of depth, so a mean stress under the indenter

Figure 1.14 Schematic depiction of an instrumented

Pmax-
i indentation test performed with a pyramidal indenter in a
i ductile material. The loading and unloading directions are
i marked with curved arrows.
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can be determined. This mean stress (or pressure, if you like) at the maximum depth of
penetration, h,,,,, defines the indentation hardness, H = P,,,,,/Aax-

1.6 ELASTIC ANISOTROPY

Amorphous materials that have no long-range structure and polycrystalline materials that
have completely random grain orientations have elastic properties that do not vary as a function
of direction. But what about single crystals that have distinct crystallographic directions,
polymers with highly aligned chains, composites with aligned reinforcement fibers, or cortical
bone with its highly oriented internal structure? All of these materials display anisotropic
elastic properties. In order to address materials like these, we must modify our notation to take
into account moduli that correspond to specific directions, and we must identify symmetry
classes that will allow us to group together materials that show related degrees of anisotropy.

1.6.1 Stiffness and Compliance Matrices

Bone provides an excellent example of a material with strong elastic anisotropy that can be
tied directly to an important functional purpose. Long bones such as the human femur (thigh) or
humerus (upper arm) are designed to bear large loads, particularly in compression and bending.
The shaft of such a bone is approximately cylindrical in shape, with a thin outer shell of hard, fairly
dense cortical bone (also called compact bone) that surrounds highly porous trabecular (a.k.a.
cancellous) bone, as shown in Fig. 1.15. Compact bone is the primary load-bearing component. It
is actually made up of much smaller cylindrical units called osteons that are aligned with the long
axis of the bone. The osteons themselves are made up of smaller units of longitudinally-aligned
hydroxyapatite platelets (the hard ceramic constituent of bone) in a matrix of collagen (a soft
polymeric constituent) arranged in concentric cylindrical lamellae.

If specimens are cut from compact bone so that behavior in three orthogonal directions can be
tested, as shown schematically in Fig. 1.15, it is found that Young’s modulus measured along the
long axis (direction 3) differs significantly from the radial (1) and circumferential (2) directions, as
listed in Table 1.5. (Note that the two-index letter notation introduced in Sections 1.5.1 and 1.5.2
has simply been replaced by direction numbers.) The values of Poisson’s ratio and shear modulus
also vary with direction. It can be seen from the table that the stiffness along the primary load-
bearing axis, direction 3, is much greater than along the other two directions, which are similar to

Compact Bone & Spongy (Cancellous Bone)
Osteon of compact bone

Lacunae containing osteocytes /\
Lamellae ; et e / @

- SN Trabeculae of spongy
Canaliculi < bone

Haversian /ll—’ 2

canal

Volkmann’s canal

Figure 1.15 Graphical representation of long-bone construction."' Also shown: three orthogonal directions
relative to the bone axis.

Vil [mage source: U.S. National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) Program.
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Table 1.5 Elastic properties of human femoral bone measured as a function of direction. Young’s and shear moduli

have GPa units.20

E11

Ex E33 V12 V13 V23 V21 V31 V3 Gz Gz G3

12.0

134 200 038 022 024 042 037 035 45 5.6 6.2

one another (but not identical). From a physiological point of view, it makes great sense to have
the greatest stiffness align with the direction that will bear the greatest loads. The actual physical
basis for this phenomenon is clearly connected to the cylindrical symmetry of the individual
osteons and the alignment of the hard platelets within them.

Atfirst glance it appears that there are now 12 distinct elastic moduli and their ratios that must
be determined to fully describe the elastic properties of cortical bone using Eq. 1-39. Thankfully,
symmetry considerations and a slightly modified depiction of the generalized Hooke’s law reduce
this somewhat. A closer look at Eq. 1-39 reveals that the three equations for the normal strains and
stresses, and the moduli that link them, can be expressed in matrix notation as

1 —vip —vi3)
. Eyy Exn  Ess
3| o1
& | = E‘ﬁl Elzz E‘f; o (1-49)
€3 03
- —vn 1
L Ey1 Expn Esz

with 1 =x, 2 =y, 3 =z. The pairs of Poisson’s ratio indices indicate the strain number in the first
position, and the stress component that contributes to that strain in the second position. For
symmetry reasons, it makes physical sense that a strain along axis 2 (¢;) induced by a stress along
axis 1 (o) must be equal to a strain along axis 1 (¢1) induced by an identical stress along axis 2
(0o =01). Thus the terms —v1,/E»» and —v51/E 1| must be numerically equal. The same can be
said of all terms reflected across the matrix diagonally. Thus instead of 9 distinct terms, there are
only 6 that are unique.

Extending this matrix notation, the shear stresses and strains can be identified as 4 = yz =23,
5=xz=13,and 6 = xy =12, with o and ¢ in place of T and y for uniformity. Wherever there is no
connection between a certain imposed stress, o7, and the strain of interest, ¢;, a zero is inserted. The
full matrix expression for all six strain equations is therefore written as

1 —vip -3 ]
—_— : 0 0 0
Eiyn Exn  Es;
— 1 —
I V3 0 0
o Eiyn Ex  Ess -
€1 o1
e _ Eyy Exn  Ess 03 (1-50)
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It can be seen from this layout that there is no additional symmetry reduction possible in the
number of shear terms since they all lie on the diagonal. Thus symmetry considerations
reduce the modulus matrix to 9 independent terms. Not an enormous reduction, but better
than 12!

In this format, it is clear how the individual measured moduli would be combined to
build the full matrix. This approach is unnecessarily bulky, however, because all 12 constants
must be provided to perform useful calculations, even though there are only 9 distinct
combinations. A less cluttered notation, called Einstein summation, is therefore widely used
to describe the elastic behavior of anisotropic materials. The shorthand form of this notation
is ¢;=§;j0;, where a 6 X 6 §;; matrix substitutes for the matrix of elastic constants in Eq. 1-50.
In Einstein notation it is understood that summation over all j=1-6 is implied for each i
value. The most general expression for ¢; would therefore be written

&1 = 81101 + 81202 + 81303 + 51404 + S1505 + S1606 (1-51)
and for the specific case of bone, it would reduce to
&1 = 81101 + 81202 + §1303 (1-52)

because S14 =S15 =516 =0. Similar equations would apply for the other components of strain.
Matching matrix positions between Egs. 1-50 and 1-51, the S;; term would have a numerical
value equal to 1/E|{, S1p = —v2/E>3, and so forth.

Recalling that the corresponding isotropic version of Hooke’s law is ¢ = (1/E)o, and that 1/E
is measure of a material’s compliance, the matrix of moduli represented by S;; is called the
compliance matrix. Of course, it is also possible to write the anistropic version of Hooke’s law to

solve for the stresses, the equivalent of o = Ee¢. In this case, it takes on the form ;= C i€ with the
counterpart to Eq. 1-51 written as
o1 =Cr1e1 + Cper + Ci3e3 + Cra8q + Cise5 + Crpég (1-53)

The C;; matrix of moduli plays the role of £ in Hooke’s law, and is therefore called the stiffness
matrix (thereby virtually assuring that generations of students will be highly confused about
why S = compliance and C = stiffness). Applying symmetry considerations in the same way as
before, it must be true that S;;=S;; and C;; = Cj;. Unfortunately, it is not true that S;; = 1/C;.

1.6.1.1 Symmetry Classes

Bone is categorized as an orthotropic material'* because it has three elastically distinct a, b,
and ¢ axes that are each separated by interior angles of « = 8= y =90°. By definition, the
components of the S;; and C;; matrices are aligned with the principal axes of the material. All
orthotropic materials have 9 independent elastic constants (those for human femoral bone are
listed in Table 1.6). Other examples include orthorhombic single crystals, wood, and many
laminated aligned-fiber reinforced composites.

Table 1.6 Stiffness matrix components for human femoral bone. All elastic coefficients listed have GPa units. 20

11 (&3) Cs3 Cqa Css Ce6 Ci2 Ci3 Cy3

Coefficient

18.0 20.2 27.6 6.23 5.61 4.52 9.98 10.1 10.7

ix Although cortical bone is orthotropic, it is sometimes approximated as transversely isotropic (i.e., isotropic in a certain plane) because the
elastic constants for the radial and circumferential directions are nearly the same.
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Cubic materials also have three axes separated by o = 8=y =90°, but the three axes are
elastically equivalent. This means that S;; = S22 = S33, 544 = S55 = Sg¢6, and S1p = S13 = 523, S0
atable describing cubic materials need only report the 3 independent S 1, S17, and S44 values. The
user of such tables is expected to understand the symmetry implications, and to fill out the matrix
accordingly. Cubic single crystal metals and ceramics have cubic elastic symmetry, with the
stiffness and compliance principal axes corresponding to the unit cell axes. It is possible to
determine the conversion equations relating the S;;and C;; matrices by solving the linear equations
simultaneously, then equating coefficients of like terms. For cubic symmetry, the conversion
factors for compliance to stiffness are as follows:

Cip = S11+ 5812
(S11 — S12)(S11 +28712)
—S12
Cpp = (1-54)
(S11 — S12)(S11 +2812)
1
Cay

" Su

The conversions from stiffness to compliance have identical forms, but with § and C
exchanged.

Hexagonal systems have 5 independent elastic constants, reflecting their somewhat lower
symmetry than cubic crystals. Drawn fibers or wires tend to have fiber symmetry or fiber texture
that has a distinct longitudinal axis, but no distinct radial directions. This transversely isotropic
symmetry is essentially the same as hexagonal symmetry, and therefore also has 5 independent
elastic constants. Trigonal and tetragonal systems have either 6 or 7 independent elastic
constants, depending on the precise symmetry class within each system (e.g., Al,O3 is trigonal
and has 6 independent elastic constants).

Finally, isotropic materials can also be described using stiffness and compliance matrix
notation even though it usually isn’t necessary to do so. For this special case, S11=352=
S33=1/E, S44=S55=3S6¢6 = 1/G and S1p =513 =S523 = —V/E, just as in Eq. 1-39. There are
only 2 independent elastic constants, as previously described, so it must also be true that Sy4 =2
(S11—S12) and C4q =0.5(C11 — C12).

For materials with even lower symmetry than orthotropic, some of the locations filled with
zeros in Eq. 1-50 will be nonzero. In these systems, imposed shear stresses can potentially
induce normal strains, and vice versa. In the worst case, none of the elastic coupling constants
are zero, but symmetry across the matrix diagonal still applies. The largest stiffness or
compliance matrix therefore has 21 independent elastic constants.

The anisotropic elastic constants for several materials are given in Table 1.7, and certain
values of relative elastic anisotropy as indicated by the ratio 2(S;1 — S12)/S44 are tabulated in
Table 1.8. Note the large anisotropy exhibited by many of these crystals as compared with the
isotropic behavior of tungsten for which the elastic anisotropy ratio happens to be 1.

1.6.1.2 Loading Along an Arbitrary Axis

As previously indicated, the axes of the §;; and C;; matrices are aligned with the principal
axes of the material in question. What if the loading direction of interest is along a different
direction, such as the (111) direction in a cubic single crystal, or at a 45° angle to the fibers in an
aligned fiber-reinforced composite? In these cases, it is possible to mathematically rotate the S;;
or C;; matrix by Euler angles ¢, 6, and ¢ so that a new matrix S,-j’ or C,-J-’ is created with
directions 1’, 2/, and 3’ that align with the loading coordinate system. Many nonzero matrix
terms will be created in the rotation process, but the general form and usage remain unchanged.

In the special case of cubic crystals loaded uniaxially along an axis other than one of the
unit cell axes, there is a simplified version of this matrix rotation process. It can be shown for
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Table 1.7 Stiffness and Compliance Constants for Selected Crystals®

Material (1010 Pa) 10~ 1pa-1)

Cubic & C12 Caa | S11 S12 Sa4
Aluminum, Al 10.82 6.13 2.85 | 1.57 —0.57 3.51
Copper, Cu 16.84 12.14 7.54 | 1.50 —0.63 1.33
Gallium arsenide, GaAs 11.8 5.35 594 | 1.18 —-0.37 1.68
Gold, Au 18.60 15.70 420 | 2.33 —1.07 2.38
Iron, Fe 23.70 14.10 11.60 | 0.80 —0.28 0.86
Fe-17.5Cr-12Ni 21.6 14.4 12.9 1.00 —0.40 0.78
Lithium fluoride, LiF 11.2 4.56 6.32 | 1.16 —0.34 1.58
Magnesium oxide, MgO 293 9.2 15.5 ]0.401 —0.096 0.648
Molybdenum, Mo” 46.0 17.6 11.0 |0.28 —0.08 091
Nickel, Ni 24.65 14.73 12.47 | 0.73 —0.27 0.80
Silicon, Si 16.4 6.35 7.96 | 0.77 —-0.22 1.26
Silicon carbide, SiC (3C)¢ 352 14.0 23.3 [0.37 —0.11 0.43
Sodium chloride, NaCl? 4.87 1.26 1.27 | 2.29 —0.47 7.85
Spinel, MgAl,O4 27.9 15.3 153 | 0.585 —0.208 0.654
Titanium carbide, TiC? 51.3 10.6 17.8 |0.21 —0.036 0.561
Tungsten, W 50.1 19.8 15.14 | 0.26 —0.07 0.66
Zinc sulfide, ZnS 10.79 7.22 412 2.0 —0.802 2.43

Hexagonal Ci G2 Gsz Gz Gy | S Si2 S13 S33 Sua
Cadmium, Cd 12.10 4.81 442 513 1.85 [ 1.23 —0.15 -0.93 3.55 540
Cobalt, Co 30.70 16.50 10.30 35.81 7531047 —-0.23 -—-0.07 032 1.32
Magnesium, Mg 597 262 217 6.17 1.64 | 220 -0.79 —-0.50 197 6.10
Silicon carbide, SiC (4H, 6H)°  50.2 9.5 56 56.5 16.9 |[0.21 —-0.04 —-0.02 0.18 0.59
Titanium, Ti 16.0 9.0 6.6 18.1 4.65 | 0.97 —-047 -0.18 0.69 2.15
Zinc, Zn 16.10 342 501 6.10 3.83 |0.84 0.05 —-0.73 2.84 2.61

“Data adapted from H. B. Huntington, Solid State Physics, Vol. 7, Academic, New York, 1958, p. 213, and K. H. Hellwege, Elastic, Piezoelectric
and Related Constants of Crystals, Springer-Verlag, Berlin, 1969.

> Note that E100>E111-

¢SiC has many polymorphs, including 3C (B-SiC, cubic), 4H (hexagonal), and 6H (a-SiC, hexagonal).

Table 1.8a Elastic Anisotropy of Selected Materials

Relative Degree

of Anisotropy
Metal {Z(sl;fsn)] E111 (GPa) Ez00 (GPa) {g—]
44

Aluminum 1.219 76.1 63.7 1.19
Copper 3.203 191.1 66.7 2.87
Gold 2.857 116.7 429 2.72
Iron 2.512 272.7 125.0 2.18
Magnesium oxide 1.534 350.1 2494 1.404
Spinel (MgAl,0y4) 2.425 364.5 170.0 2.133
Titanium carbide 0.877 429.2 476.2 0.901
Tungsten 1.000 384.6 384.6 1.00
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Table 1.8b Elastic Anisotropy of Selected Materials

Relative Degree

of Anisotropy
Metal |:2(~"11—312)} E111 (106 pSi) E100 (106 pSi) [%;;]
S44

Aluminum 1.219 11.0 9.2 1.19
Copper 3.203 27.7 9.7 2.87
Gold 2.857 16.9 6.2 2.72
Iron 2.512 39.6 18.1 2.18
Magnesium oxide 1.534 50.8 36.2 1.404
Spinel (MgAl,04) 2.425 52.9 24.8 2.133
Titanium carbide 0.877 62.2 69.1 0.901
Tungsten 1.000 55.8 55.8 1.00

the cubic case that the modulus of elasticity in any given direction may be given by Eq. 1-55
in terms of the three independent elastic constants and the direction cosines of the
crystallographic direction under study:

1
5= 2[(S11 = S12) — /2844 (BB + BB + B13) (1-55)

where /1, [, I3 are direction cosines. Direction cosine values for the principal crystallographic
directions in the cubic lattice are given in Table 1.9. For example, the modulus in the (100)
direction is given by Ejgg9=1/S11, since ) li2lj2 = 0. By comparison, Y lizlj2 =1/3 (the
maximum value) in the (111) direction so that 1/Ej;; = 11 — 2/3 [(511 —S12) — YaSu4).
Depending on whether (S;; — S12) is larger or smaller than /58,4, the modulus of elasticity
may be greatest in either the (111) or (100) direction. By comparison, the modulus in the (110)
direction is in good agreement with the average value of Ejsotropic for a polycrystalline sample
of the same material (see Example 1.4).
For the case of hexagonal crystals, the rotation of the compliance matrix reduces to

1
B = Si(1— B)* + S5l + (2813 + Saa)5(1 - B) (1-56)

where [1, [, I3 are direction cosines for directions in the hexagonal unit cell. From Eq. 1-56 note
that in hexagonal crystals E depends only on the direction cosine /3, which lies normal to the
basal plane. Consequently, the modulus of elasticity in hexagonal crystals is isotropic every-
where in the basal plane, as previously discussed.

Table 1.9 Direction Cosines for Principal Directions in Cubic Lattice

Direction I b I3
(100) 1 0 0
(110) 1/V2 1/v2

0
(111) 1/V/3 1/V3 1/V/3
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EXAMPLE 1.4

Compute the modulus of elasticity for tungsten and iron in the (110) direction.
From Tables 1.7 and 1.9 we obtain the necessary information regarding elastic compliance values and
direction cosines. The modulus of elasticity in the (110) direction is then determined from Eq. 1-55. For tungsten,

26— 2{[0.26 - (~0.07)] - ' /2(0.66) } (/) =026 — (0)(V/4)

Ei10

Therefore,

E“o = 384.6 GPa

which is the same value given in Table 1.8a for £ and E;qg. For iron,

1 os0- 2{[0.80 —(—0.28)] - ‘/2(0.86)} (‘/4)

Eq10
. E119 = 210.5 GPa

Note that E111>E110> E190 and that Eqjg is in good agreement with the average value of E for a
polycrystalline sample (Table 1.1).

1.6.2 Composite Materials

Composite materials are combinations of two or more materials that together provide properties
not available when either of the individual materials are used alone. Referring to Fig. 1.3, we see that
strong but brittle materials (curve a) can withstand large stresses prior to failure but possess limited
ductility; soft, ductile materials (curve ) exhibit considerable plastic flow but little load-bearing
capacity. Though only a relatively few materials exhibit both exceptional strength and ductility, a
number of hybrid or composite materials have been developed to utilize the respective superior
properties of the constituents of the composite material. For example, certain engineering plastics
that possess considerable ductility are used as a matrix that is reinforced with high-strength glass,
carbon, or aramid fibers to produce composite materials that possess both high strength and
adequate ductility (see Table 1.10); such materials challenge metal alloys for use in numerous
components, particularly since many offer excellent mechanical behavior at very low weight. It is
now common for manufacturers to make significant use of polymer matrix composites in such items
as automotive body frames and hood and door panels, aircraft wings and fuselage*, boat hulls, and
sporting equipment. In parallel fashion, metal-matrix composites reinforced with silicon carbide,
silicon nitride, and/or alumina fibers are being used in a limited number of automobile engine
components, fighter jet landing gear, and even bicycle frames where the performance gain (or at
least the perceived performance gain) can justify the additional cost. Ceramic matrix composites are
attractive for use in high-performance engines and gas turbines due to their desirable combination of
temperature stability, hardness, and toughness. Tensile testing is widely used to characterize the
behavior of composites, although different testing standards apply to each class of materials.>! 24

Before analyzing the elastic response of composite materials in detail, it is appropriate to
consider the respective functions of both the matrix and reinforcing phases in the composite. The
many discrete fibers, filaments, or platelets are intended to carry much of the load applied to a
composite structure. The fact that there are many discrete fibers in a given composite provides
redundancy to the structure and precludes catastrophic fracture if one fiber were to contain a defect

* Notable examples include the Beechcraft Starship, the Airbus A320, and the Boeing 787.
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Table 1.10 Tensile Properties of Selected Fibrous Composites and Reinforcements® ¢

Modulus of
Elasticity Tensile Strength Elongation
Materials [GPa (10° psi)] [GPa (ksi)] (%)
Composite
Nylon 66 + 25 v/o carbon fibers 14 (2) ~0.2 (29) 2.2
Epoxy resin + 60 v/o carbon fibers 220 (32) 1.4 (200) 0.8
Polyester resin + 50 v/o aligned glass fibers 38 (5.5) 0.75 (110) 1.8
Polyester resin + 20 v/o random glass 8.5(1.2) 0.11 (16) 2
fibers
Epoxy + 50 v/o boron fibers® 200 (29.2) 1.4 (200) —
Epoxy + 72 v/o S-glassb 60.7 (8.8) 1.3 (187) —
2024A1 + 25 v/o SiC? 124-172 (18-25) 0.53-0.64 (77-93) <1
Reinforcement
A1,05 whiskers” 415-485 (60-70) 7.0-21.0 (1000-3000) —
Aramid (Kevlar 49)° 125 (18) 2.8-3.6 (400-520) 2-3
Boron 380 (55) 3.4 (500) —
Carbon fiber, Type I 390 (57) 2.2 (320) 0.5
Carbon fiber,” Type II 250 (36) 2.7 (390) 1.0
E glass® 76 (11) 1.4-2.5 (200-360) 2-3
S glass? 85 (12) 4.5 (650) —
SiC whiskers” 485 (70) 20.7 (3000) —
Si3N4 whiskers” 380 (55) 1.4 (200) —

“Z. D. Jastrzebski, The Nature and Properties of Engineering Materials, Wiley, New York, 1977, p. 546.
b Guide to Engineering Materials, Vol. 1 (1) ASM, Metals Park, OH, 1986, p. 10.
“D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge, England, 1981.

4 A. P. Divecha, C. R.

Crowe, and S. G. Fishman, Failure Modes in Composites IV, J. A. Cornei and F. W. Crossman, Eds., AIME, 1979, p. 406.

and, therefore, fracture prematurely. The matrix phase serves to isolate the fibers from one another
and to protect the fiber surface from damage. Of considerable importance, the matrix transmits the
applied loads to the fiber through localized shear stresses acting along the fiber—matrix interface.

1.6.3 Isostrain Analysis

The stress—strain response of a composite material depends on the respective properties
of the matrix and reinforcing phases, their relative volume fraction, the absolute length of the
fibers, and the orientation of the fibers relative to the applied stress direction. We begin our
analysis of the behavior of a reinforced composite by first assuming that the reinforcement
phase consists of fibers that are continuous (i.e., they extend the entire length of the sample),
possess uniform strength, and are oriented parallel to the applied stress direction as shown in
Fig. 1.16a. If the fibers are properly bonded to the matrix and both phases behave elastically,
the load applied to the composite in the direction of the fiber axes will be distributed such that

PCH =Pf—|—Pm (1-57)
where

P f.m = load carried by the composite, fiber, and matrix, respectively

To avoid detachment of the fibers from the matrix, the strains experienced by the two
phases must be identical so that &. = ¢,, = &;. From the definition of stress and Eq. 1-57, this
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Figure 1.16 () Fiber orientation for isostrain (||) and isostress (L) testing. (b) Tensile modulus in aligned glass-
fiber reinforced epoxy resin as predicted from Egs. 1-36 and 1-54.%3 (From N. G. McCrum, C. P. Buckley, and

C. B. Bucknall, Principles of Polymer Engineering, Oxford Science Pub., Oxford, U.K. (1988). Reprinted by
permission of Oxford University Press).

isostrain condition leads to
0c||Ac = 0fAf + omAn (1-58)
where
Oc,f,m= Stress in composite, fibers, and matrix, respectively

Ac, f.m = cross-sectional area of composite, fibers, and matrix, respectively

Since the area fraction of a continuous phase is equivalent to the volume fraction of the
phase (V).

Z‘i: v, and % _v, (1-59)
Therefore,
oc| = 0fVy+omVm =orVy+ om(1—Vy) (1-60)
From Hooke’s law (Eq. 1-7),
E.6c = EperVi+ EmgmVm (1-61)

and so, finally, the Young’s modulus for the isostrain case is
E =EVi+EnVm (1-62)

Also, the relative loads supported by the fibers and matrix are given by

Fr_EuVy _EVy (1-63)
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From Eq. 1-63, the load distributed to the fibers and matrix of the composite depends on the
respective moduli and volume fractions of the two phases. Therefore, the fibers will assume
much of the applied load when Ef>> E,, and V> V,,,. The moduli of several reinforcement
materials are listed in Table 1.10; for comparison, the modulus of a typical epoxy matrix may be
2-3 GPa, one to two orders of magnitude lower. If one assumes that the fibers are cylindrical in
cross section, are close-packed in a hexagonal configuration, and that the gaps between them are
completely filled with matrix material, it can be shown that it is impossible to exceed a fiber
volume fraction of 0.9. In reality, Vy~0.6 is more likely in a unidirectional aligned fiber
composite, and even lower fractions are likely for woven fabrics. This underscores the
importance of choosing a large modulus difference to ensure a favorable load distribution.

Assuming that the fibers are of uniform strength and are linear elastic when tested alone, the
composite will exhibit linear elastic behavior to the point at which the fibers fail, the matrix
fails, or the matrix deforms plastically. More will be said about failure in Section 1.6.6.

1.6.4 Isostress Analysis

When the applied stress direction is perpendicular to the fiber axes or reinforcing plates, the
matrix and reinforcing phases are described as being in series with one another. Here the loads
in the two phases are equal such that

P =P; =Py (1-64)

where
P f,m=load carried by the composite, fiber, and matrix, respectively.

Unlike the isostrain analysis condition, displacements in the two phases under the isostress
condition are additive, with the total composite strain being the weighted sum of strains in the
matrix and reinforcing phases. Accordingly,

&l = Vfo + Viem = Vfo + (1 — Vf)gm (1-65)

By combining Eq. 1-65 with Hooke’s law for the fiber and matrix components, one finds
that the composite modulus in the direction normal to the aligned reinforcing phase is

BB
- ViEn+ (1= Vy)Ey

Ec (1-66)

As shown by Eq. 1-62, it is obvious that the composite modulus EcH increases linearly with

fiber-volume fraction under isostrain conditions, whereas in Eq. 1-66 E.| increases nonlinearly
for isostress loading conditions (Fig. 1.16b).5 By examining moduli values (see Tables 1.1 and
1.10) for typical polymer matrices (E ~ 2.5 GPa) and glass fibers (E ~ 76 GPa), Eq. 1-66 can be
approximated by

Em

R 1-67
(= VE; (en

ECJ_%

We conclude that the elastic modulus of a composite loaded under isostress conditions is
strongly dependent on the stiffness of the matrix, unlike the isostrain case where fiber stiffness
dominates E. (recall Eq. 1-62). Accordingly, the isostrain composite modulus is consistently
larger than that associated with loading under isostress conditions (Fig. 1.16b).

In practice, unidirectional composites are only suitable for certain applications because of
the enormous disparity in stiffness (and in strength) between the two orientations. To address
this potential shortcoming, laminates can be formed from stacks of unidirectional plies
intentionally rotated with respect to one another. This creates a sheet with fibers oriented
in more than one direction in the plane of the sheet. The properties of the sheet will be
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determined by the fraction of plies oriented in any particular direction, and so may be tuned for
a particular application. One common lay-up is called quasi-isotropic, in which 0°, 90°, and
+45° plies are included in equal proportions. Note that this gives the laminate nearly isotropic
properties only in the plane of the plate, so it has transversely isotropic symmetry. Laminates
with only 0° and 90° orientations are orthotropic. In both cases, elastic behavior must be
described using the formalism already developed for anisotropic materials (i.e., with S;; and C;;
matrices). In many cases it is important that a laminate is balanced—that is, laid up
symmetrically with respect to the sheet thickness center plane (e.g., [0/90/90/0]) to avoid
bending or twisting associated with low-symmetry elastic coupling.

EXAMPLE 1.5

For the case of an epoxy + 70 v/o S-glass long-fiber composite, what is the elastic modulus of the composite
both parallel and perpendicular to the axis of the fibers? (Assume that Eepoxy =3 GPa.)
Using Eq. 1-62 and mechanical property data from Tables 1.1 and 1.10,

Ec| =EfVy+EnVm
so that E; = 85 x 10%(0.7) + 3 x 10°(0.3)
Therefore, E | = 60.4 GPa

<l

Notice good agreement between this value and the elastic modulus for a 72 v/o S-glass + epoxy matrix
composite (see Table 1.10).
For the case of loading perpendicular to the S-glass fibers, we see from Eq. 1-66 that

_ 85 x 10%(3 x 10%)
©0.7(3 x 10%) +0.3(85 x 10°)
E. =9.24GPa

cl

By comparison, Eq. 1-67 reveals the approximate elastic modulus to be

3 x 107
X~ 10GPa

ECL ~

which is in relatively good agreement with the initial computation for E | .

1.6.5 Aligned Short Fibers

Continuous fiber composites may offer the greatest stiffness and strength possible for a
given combination of matrix and reinforcement materials, but are not necessarily affordable for
all applications. Processing techniques such as injection molding, for instance, are incompatible
with continuous fibers, so short (discontinuous, chopped) fibers are used instead. It is often the
case that a manufacturing process based on fluid flow can create preferential fiber alignment.
The good news is that the behavior of aligned discontinuous fiber composites can be almost as
good as for continuous fiber composites as long as the fibers exceed a certain critical length, /...
Fibers that exceed this length carry the maximum load possible, whereas those that are shorter
do not support loads as effectively. In order to determine the elastic behavior (and eventually
the strength) of discontinuous fiber composites, we must first determine /..

An analysis of stress distributions within the composite reveals that the applied load is
actually transmitted from the matrix to the short fibers by shear stresses acting along the fiber—
matrix interface. This mode of fiber loading is often treated using shear lag analysis. For the
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case of a circular fiber with radius r, the interfacial shear stresses produce an axial stress along
the fiber according to a force balance given by

0T = 1,277 (1-68)

where

0,, = axial stress along the fiber length

7., = shear stress acting along the fiber—matrix interface at the ends of the fiber
r = fiber radius
7z = shear stress transfer length (distance from each fiber end)

Upon rearranging Eq. 1-68,

Oz = . (1-69)

Note that the axial stress o, is zero at the end of the fiber where z =0 and increases with
increasing transfer length, as shown in Fig. 1.17a.X' However, there are limits to the maximum
stress the fiber can support as the fiber length increases, as implied by Fig. 1.17b. One
possibility is that the stress level o, at the midpoint of the fiber will reach oy. (the fracture
strength of the fiber) and fiber fracture will occur. This effectively reduces the fiber length, the
maximum value of o,, and the load supported by the fiber. The critical length for fiber fracture
is one way to define /.. Alternatively, strain compatibility between the fiber and matrix may
prevent the fiber stress from rising beyond the level expected for a continuous fiber composite
loaded in the isostrain configuration (the configuration in which the fiber bears the greatest
possible fraction of the load). If this is the case, the stress profile will match Fig. 1.17b. The
critical length in this case is the minimum length required to reach the isostrain condition. Note
that if the limit imposed by strain compatibility is reached before the critical stress for fracture,
much of the fiber strength is wasted. The best short-fiber performance is therefore achieved
when the critical length as determined by the isostrain compatibility condition is the same as the

Oz7 077 Figure 1.17 Axial stress distribution
along fiber length when fiber strength is (a)
equal to and (b) greater than the strain
compatibility-limited critical length for
reinforcement. In case (a), the critical stress
oyis determined by the fiber fracture
strength. In case (b), oris determined by the
maximum strain possible in the isostrain
loading condition.

> Z

(@) (b)

Xi This theoretical analysis for the axial stress distribution along the length of the fiber (see H. L. Cox, Brit. J. Appl. Phys., 3,72 [1952]), was
confirmed for the polydiacetylene fiber-epoxy matrix model composite system in experiments conducted by Robinson et al. (see I. M.
Robinson, R. J. Young, C. Galiotis, and D. N. Batchelder, J. Mater. Sci., 22, 3942 [1987]).
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critical length for fiber fracture, thereby ensuring the greatest possible load-bearing benefit (i.e.,
fiber effectiveness is not preferentially limited by either fracture or strain compatibility). We
can now define z. =1./2, where [./2 is the critical transfer length for the particular stress-
limiting mechanism operating (Fig. 1.17). Therefore, upon substitution in Eq. 1-69,

_ 2rope 2roge (1-70)

.=
27, Om

where o, is the normal stress in the matrix.

To achieve a fiber stress of oy at the center of the fiber (the ideal condition), the critical
aspect length /. must increase with increasing fiber strength and decreasing shear stress (or
matrix normal stress)*" .For example, when the temperature of a polymer matrix composite is
increased, 7, tends to decrease faster than oy with the result that /. increases. If the actual fiber
length / < /., then maximum load-bearing potential cannot be reached.

From Fig. 1.17a, the average axial stress on a fiber of length /. is given by

__0p(le/2)

of = I =o07/2 (1-71)

When [ > [, the maximum axial stress remains constant but now extends along the midregion
of the fiber (Fig. 1.17b). For this condition (assuming that the axial stress increases linearly from
zero at each end)

[— lc/2 l
af:wzaf(l_fl) (1-72a)

And, if [ <., the maximum axial stress is never reached, so

_ _lam

o = o (1-72b)

Assuming that the short fibers are parallel to the loading axis, we can follow the same approach
used previously to determine the stiffness of continuous fiber composites under isostrain
loading (Eq. 1-60). For [ <., the stress on the composite is

_ [
a¢| ZUfo+0m(1 _Vf) ZO'm(l —Vf<1 —E>> (1-73)
and the composite stiffness is
E=E;|1 1 ! 1-74
of = Em\ 1= Vp(1-7 (1-74)
whereas if / > [_,then the stress on the composite is

_ l
oo = O’fo + (Im(l — Vf) = o‘f(l — 2—Cl> Vf —l—Om(] — Vf) (1-75)

Xii For short-fiber composites, strength and stiffness properties depend critically on the integrity of the fiber—matrix interface (e.g., see M. R.
Piggott, Polym. Compos., 3(4), 179 [1982]).
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and the composite stiffness is

l
Ey = Ef(l —Z—Cl> Vi + Em(1— Vy) (1-76)

If the fibers are not all aligned with the loading axis, the stiffness is clearly reduced from that of
the fully aligned case, as for continuous fibers.

1.6.6 Strength of Composites

Composite strength can be defined as the point at which the initial linear region of the stress—
strain diagram ends, regardless of which phase is responsible for the change in behavior. As before,
we will examine cases associated with continuous fibers before turning to discontinuous fibers.

1.6.6.1 Effects of Matrix Behavior

For some common polymer matrix composites, the matrix is fairly brittle (e.g., epoxy) and
has low strength compared to that of the fiber phase. When loaded in the isostrain condition, the
failure strain of the brittle matrix may be exceeded before the critical fiber strain is reached. In
this case, the critical failure strain is that of the matrix, and the elastic stress in the composite at
the point of fracture is described by

O¢| = ECHSm = o'fo + O'm<1 — Vf) = EmeVf + Emgm(l - Vf) 1-77)

where ¢,,, is the fracture strain of the brittle matrix. Once the matrix fractures, the fraction of the
load formerly borne by the matrix transfers to the fibers. If the additional stress is sufficient to
cause fiber fracture then the entire composite material will fail. This will almost certainly occur
if the volume fraction of fibers is small because the load transfer will be very large. If the
volume fraction of fibers is large then the load transferred upon matrix fracture will be relatively
small and the composite may remain intact, although severely compromised. Either way, the
composite stress at the point of matrix failure is much higher than the matrix material could ever
withstand on its own, thanks to the load-sharing of the fibers.

If the matrix is ductile (e.g., thermoplastic or metal) then the critical elastic strain at failure
is determined by the fiber properties, and the composite elastic stress at failure is

oc| = Ecjer = of Ve +om(l = Vi) = ErerVy + Emer(1 — V) (1-78)

This leads to a somewhat surprising situation: if Vyis less than some critical value Vi, the
strength of the composite is actually less than that of the matrix alone (Fig. 1.18). This occurs
because the matrix is capable of carrying a greater load than the fibers. In effect, the presence
of a subcritical amount of a reinforcing phase reduces the overall load-bearing capacity of

o Figure 1.18 Composite strength versus volume fraction
of reinforcing phase. Note the critical volume fraction
needed for reinforcement of the matrix.

| Vcrit

[
Vinin Vi
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the matrix. Above this value the overall strength increases as the fibers carry a greater fraction
of the total load so that yield in the matrix is less likely, and the composite strength will
eventually exceed that of the matrix alone. For most practical composites the critical fiber
volume fraction is fairly low, in the range of ~10%.

If a continuous fiber composite is loaded in the isostress orientation then, by definition, the
same stress exists in the fibers and the matrix. As a first approximation, one might expect that the
composite strength would be identical to that of the weaker matrix phase. Inreality, thisis an upper
bound because failure can occur at a fiber/matrix interface instead of within the matrix phase. If
this is the case, the actual composite strength may be significantly lower than that of either phase.

Advantageously aligned discontinuous fiber composites with /=1, can be modeled in the
same fashion as isostrain continuous fiber composites, but with the composite stress given by
Eq. 1-75 such that

_ of
oo = 0V +om(l = Vy) = - Vp+om(l = Vy) (1-79)
where ois the fiber fracture stress that occurs at the same load as the matrix fracture stress o,,.
Appropriate substitutions for the average fiber stress at the point of failure from Eq. 1-72a or
1-72b allow calculation of the composite strength for fibers that are longer or shorter than the
critical length.

It should be recognized that in all of the preceding discussion, the fiber strength parameter
is treated as if all fibers are identical. In truth, the strength of any given fiber falls within a
statistical distribution of fiber strengths. As a result, the weaker fibers fracture prematurely, and
the associated load is transferred to the shorter, broken fiber segments and to the remaining
unbroken fibers. After many local fracture events the average fiber length decreases. This
results in a corresponding decrease in composite stiffness and strength even before catastrophic
failure of the majority of fibers takes place.

1.6.6.2 Effects of Fiber Orientation

In addition to the factors just described, the strength of a composite varies with fiber
orientation. Due to processing variations or to unintended loading, fibers may not always be
oriented parallel to the primary stress axis. From Fig. 1.19, the cross-sectional area of the plane
normal to the fiber axes is given by

Ag

A= o (1-80)

With the resolved load in the direction of the fiber axis (Py) computed to be

Pf = Pgycos ¢ (1-81)
Po P; Figure 1.19 Applied load resolved in the direction
T ‘V of fiber orientation.
Ag
¢
Ay
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it follows that the stress acting parallel to the fibers is

_ Pocosd o cos?e (1-82)
Ag/cos ¢
Note that—as expected—the axial load-bearing capacity of the composite with off-axis fibers is
less than that associated with a composite that contains fibers aligned parallel to the axis of the
bar. For the case of off-axis loading, macroscopic shear stresses are developed in the matrix
parallel to the fibers. From Fig. 1.19, the resolved load parallel to the fibers is again given by Eq.

1-81, with the shear surface area A, described by

Oc

Ay = 20 (1-83)
sin ¢

The shear stress 1, acting in the matrix parallel to the axes of the fibers is then found to be
T = 0(Sin ¢ cos ¢ (1-84)
Finally, fracture can occur by separation transverse to the fiber length with

Py sin ¢
ON = ———
N Ag/sin ¢
Whether shear fracture in the matrix takes place rather than fiber fracture depends on the

angle of misorientation ¢ and the relative strengths of the matrix, interface, and fibers. For
example, equating Eqs. 1-82 and 1-84 with respect to o, shear failure will occur when

= opsin® ¢ (1-85)

tang > " (1-86)
Oc

From Eq. 1-86, shear failure will occur at small misorientations when the matrix shear strength is
small relative to that of the fiber breaking strength (e.g., see Fig. 1.20); it follows that shear failure

I Figure 1.20 Competitive fracture processes depend
on fiber misorientation.

Shear fracture
Tm

% = gin $cos ¢ +

Composite strength
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parallel to the fiber axis is more likely to occur in off-axis composites at elevated temperatures
since t,,, decreases more rapidly than o, with increasing temperature. Finally, transverse tensile
fracture perpendicular to the fiber axes will occur at large angles of fiber misorientation.

1.7 THERMAL STRESSES AND THERMAL SHOCK-INDUCED FAILURE

We conclude this chapter with a discussion of elastic loading and brittle failure induced by
temperature changes that generate residual stresses. Scientists, engineers, and homemakers have
long known that when hot ceramic components are cooled quickly, some will crack, whereas
others will not. The development of thermally induced stresses and the potential for thermal
shock-induced fracture have been the subject of study for at least 2200 years! Indeed, Roman
historians reported that Hannibal’s military engineers used thermal shock to fracture rocks that
blocked the path of the Carthaginian army during its advance across the Alps in 218 Bc. Two
hundred years later, Livy26 reported that “. . . It was necessary to remove a rock. Trees were
felled and the wood piled onto itin a huge pyre which was lighted and burned fiercely with the help
of a fortunate breeze. The hot stone was then drenched with vinegar [presumably sour wine] to
disintegrate it and attacked with pickaxes.” In all likelihood, the hot rocks were doused with water
to cause them to crack. For example, Pliny27 reported that ““. . . if fire has not disintegrated a
rock, the addition of water makes it split.” Other somewhat more recent reports of thermal shock-
induced fracture of rocks were cited by Agricola?® and de Beer.?’

The modern technical literature provides more rigorous analyses of thermal stresses and
thermal shock resistance than that found in early Roman documents. Of importance, Hasselman
and co-workers>?-3! developed a unified theory of thermal stress fracture that accounts for both the
initiation and propagation of cracks in a brittle solid. For the case of brittle materials, failure may
occur when the thermal stress exceeds the material’s fracture strength and a critical crack initiates.
In this instance, fracture may be characterized by a “maximum stress” failure theory, and is
suitable for analysis using the elasticity toolbox we have developed thus far. For the case of failure
by propagation of an existing crack, the Griffith theory of failure by crack growth accounts for the
fracture event. The crack propagation case requires an understanding of fracture mechanics, and so
it is deferred until Chapter 6. In ductile materials, thermal stresses can also cause yielding, which
can certainly be defined as failure if dimensional changes must be avoided.

1.7.1 Upper Bound Thermal Stress

Here, let us first consider the case where initiation-controlled fracture by thermal cracking
cannot be tolerated, as in glasses, porcelain, electronic ceramics, and whiteware ceramics. If an
unconstrained rod of length L is cooled from one temperature (77) to the other (75), it will
contract by an amount

AL =a(T — T»)L (1-87)

where o = linear coefficient of thermal expansion (CTE). If the rod were constrained between
two rigid walls, a uniaxial thermal stress would be generated with the magnitude

om = Eeyy = Ea(T1 — T2) (1-88)

where £ = Young’s modulus of elasticity and &, is the thermal strain. Although rigid walls are
not truly found in practice, the approximation is reasonable if one component cools very
quickly to match the ambient temperature (the rod) while the constraining component cools
more slowly (the walls). Equation 1-88 is therefore an upper bound for the possible value of
thermal stress. If the walls are also changing dimension with temperature, it is the difference
between the thermal expansion of the wall material and that of the rod that would determine
the difference in thermal strain, and hence the stress in the rod. The minimum thermal stress
is generated when the two materials cool at the same rate. In this case, the difference in CTE,
Aw, is used in place of « in Eq. 1-88.
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Note that if there is a mechanical stress also imposed on the rod, it is simply superimposed on
the thermal stress so that 0,47 = Oech + 0. If there are additional constraints, for example in
the radial direction, then the generalized Hooke’s law must be used to evaluate the total stress state,
justasifthe stresses were all generated mechanically. In the end, if the critical fracture stress for the
brittle material is exceeded, regardless of the sources of that stress, failure will suddenly occur.

Thermal stresses pose particular problems for thin films and coatings adhered to thick
substrates. If the film thickness is much smaller than the substrate thickness (by a factor of 100 x or
s0) then most of the thermal strain mismatch is borne by the film. This can cause fracture if the film
is brittle, or undesirable plasticity if the film is ductile. Even if failure by one of these modes is
avoided, thermal stress in a film on only one side of a substrate causes a bending moment that can
induce undesirable curvature in the pair.

An isotropic thin film that is constrained in two dimensions by a thick substrate is in a state
of equal biaxial thermal stress, as described previously by Eq. 1-47. Rearranging this equation
to solve for oy, (i.€., 0 ,) and realizing that the thermal strain in this case is a biaxial strain, the
film stress is given by

Ofim = IEﬂAaAT (1-89)
— Vfilm

where Efj,,, and vy, are the film’s Young’s modulus and Poisson’s ratio, respectively. Recall
from Section 1.5.2.2 that the elastic constant E/(1 — v) is often called the biaxial modulus. Its
usefulness is clear in this case. Equation 1-89 also assumes that the film and the substrate have
the same temperature. This is a reasonable assumption for the small masses and slow heating/
cooling rates typically involved in microelectronics materials.*"

The CTE for a given material depends on the bond strength between atoms. As discussed in
Section 1.3.2, increasing bond strength results in a decreasing interatomic distance of separation
and a higher elastic stiffness. Likewise, increased interatomic bond strength (associated with
higher melting points) leads to lower values of CTE3? (Fig. 1.21). (For the case of ceramics, CTE
decreases with both increasing bond strength and percentage of covalent bonding.) Additional
CTE values are given in Table 1.1 133 for various metals, ceramics, and organic solids. These data
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Figure 1.21 Relation between coefficient of thermal expansion (CTE) and melting point for metals, carbides, and
borides with close-packed structures. (Reprinted from Materials Research Bulletin, vol. 12, L. G. Van Uitert, H. M.
O’Bryan, M. E. Lines, H. J. Guggenheim, and G. Zydzik, Thermal expansion — An empirical correlation, p. 261,
1977, with permission from Elsevier.32)

Xiii It is also the case for the bi-metallic strips that are used as thermal indicator and control devices, and for micromachined thermal
actuators used for micro-scale tweezers.
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Table 1.11 Selected Coefficients of Thermal Expansion (CTE) for Metals, Ceramics, and
Organic Solids (10~6/°C).33

Metals
Invar 2
Molybdenum 5.2
Alloy 42 (FeNi) 6
Titanium 10
Iron 12
Gold 14.2
Nickel 13-15
Gold-tin eutectic 16
Copper and its alloys 16-18
Silver 19
Lead-tin eutectic 21
Aluminum and its alloys 22-25
5-95 tin-lead 28
Lead 29
Ceramics, semiconductors, etc.
Silica glasses 0.5-1.0
Silicon carbide 2.6
Silicon (single crystal) 2.8
Alumina 6.7
Beryllia 8
Gold-silicon eutectic 13
Gold-germanium eutectic 13
Organics™
Kevlar® -2
Epoxy-glass (FR4)—horizontal 11-15
vertical 60-80
Polyimides 40-50
Polycarbonates 50-70
Epoxies 60-80
Polyurethanes 180-250
Sylgard®™ 300
RTV 800

*Below glass transition temperature.

are approximate since CTE values tend to increase moderately with temperature. Note that the
highest CTE values are associated with organic solids, whereas ceramics display the lowest values
of CTE. As previously discussed, these trends reflect the fact that ceramics and organic solids
possess the highest and lowest interatomic bond strengths, respectively.

These trends imply that dissimilar material combinations, such as polymer coatings on
ceramic substrates, or metal components bonded to ceramic components, are most likely to
suffer from thermal stresses, particularly when elevated temperatures are involved in fabrica-
tion or bonding. Whichever phase has the larger value of o will be the phase in tension upon
cooling from the fabrication temperature. For example, thermal barrier coatings in gas turbine
engine components develop compressive residual thermal stresses in the outer ceramic layer
due to differences in contraction between the intermediate metallic bond (higher CTE) coating
layer (typically (Ni/Co)CrAlY) and the outer ceramic (lower CTE) thermal barrier coating
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(typically ZrO,-based). Failure of the coating then occurs by delamination and subsequent
spallation of the outer thermal barrier coating.34 Such difficulties can clearly be reduced by
selection of materials to minimize the CTE mismatch.

For the case of composite materials, internal thermal stresses are generated upon cooling
from an elevated fabrication temperature or during in-service temperature fluctuations; such
stresses will vary directly with differences in coefficients of thermal expansion between the
matrix (¢,;,) and reinforcing phases («,.). Thus metal matrix composites reinforced by ceramic
fibers or particles and processed at elevated temperatures may be particularly susceptible to
internal residual stress generation.

EXAMPLE 1.6

The temperature of a 10-cm-long rod of polycrystalline alumina (99.8% dense) decreases from 65 to 0°C.
(a) What would be the change in length if the rod were unconstrained?

(b) Would the rod survive this drop in temperature if it were fully constrained along its length?

(c) What is the critical temperature change to cause fracture?

(d) Having determined the critical AT, could the rod survive this same drop in temperature if it were constrained
along all axes? Assume that v=0.22.

To solve this problem, we must first collect relevant material property data. From Tables 1.3 and 1.11, we
find thermal expansion, isotropic elastic modulus, and tensile strength*'V values:

a=6.7x10"%/°C
E = 385GPa
015 = 205 MPa

(a) When the rod is unconstrained, we see from Eq. 1-87 that the 200°C temperature change generates a length
change of

AL = 6.7 x 1079°C~1(65°C) (10 cm)
AL = 0.0044 cm

which corresponds to a thermal strain of 0.00044, or 0.044%.

(b) If the rod were fully constrained along its length, the axial thermal stress is computed from Eq. 1-88, where

o = 385 x 10°N/m2(6.7 x 10-0°C~1)(65°C)
o = 168 MPa

Since the tensile strength of alumina is reported as 205 MPa, the rod would likely not have fractured under
these conditions.

(c) Indeed, the maximum allowable temperature rise for an axially constrained rod of alumina is calculated to be

B 205 x 10°
385 x 10°(6.7 x 107°)

=79.5°C

(Continued )

Xiv Recall from Section 1.4.1 that the fracture strength of a brittle material is not a constant, but instead depends on specimen size and testing
method. Thus for this problem it is critical that the strength value used was measured in a configuration similar to that of the alumina rod in
question, and not, for instance, in bending or compression. Furthermore, we must assume a similar specimen size and state of surface
preparation for a reasonably accurate calculation.
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(d) The thermal strains along all three axes are the same as that calculated in part (a) even though the
dimensions of the specimen are not the same in the axial and radial directions. Because the material is
elastically isotropic, the three stresses must also be equal. Applying the generalized Hooke’s law,

1 1—2v
en = AT = (o — Vo — vouy) = —— o,
and replacing the thermal stress with the tensile strength, we find
1 —2(0.22
AT = 0.22) (205MPa) = 44.5°C

(6.7 x 1076°C~1)(385 x 103 MPa)

because of the additional constraint in the radial direction that imposes a tensile Poisson strain in the axial
direction. Thus the rod probably would fracture during a 65 °C temperature change if fully constrained.

1.7.2 Cooling Rate and Thermal Stress

As discussed, the stress level given by Eq. 1-88 corresponds to a maximum value for the
case when the average temperature of a body after quenching is unchanged*’ but its surface
temperature matches that of the quenching medium. The latter condition is approached only
under extreme quenching conditions and in materials possessing a very low coefficient of
thermal conductivity.

The magnitude of thermal stress more typically depends on the heat transfer coefficient ()
between the cooling fluid and the quenched solid, the material’s coefficient of thermal
conductivity (k), and the geometry of the component. It is customary to compute the magnitude
of the thermal stress by including a nondimensional parameter [defined as the Biot modulus ()]
that incorporates these factors where

B = xh/k (1-90)

where x = specimen dimension such as slab thickness or rod diameter. For large component
dimensions, high heat transfer rates to the environment (corresponding to conductive rather
than convective or radiative heat transfer), and/or low levels of thermal conductivity, § values
are large (8> 20) and thermal stress levels approach those given by Eq. 1-88.

For the case of a coating on a substrate for which a temperature difference between the two
materials exists, Eq. 1-89 is rewritten in the form

Fo(AT

o= M (1-91)

1—v

where ¢ = function of specimen geometry. Jaeger® determined that values of ¢f fall in the

range 0 <cf<1. By rearranging Eq. 1-91 and combining with Eq. 1-90, the material’s

initiation-controlled thermal shock resistance is defined by the temperature change that can
be tolerated without fracture. Hence,

- Ufail(l - U)k

AT = Each (1-92)

*VIf the body of a component experiences a thermal gradient, there will exist a stress gradient from the surface to the core of the object.
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Table 1.12 Mechanical and Thermal Properties of Selected Ceramics and Associated Thermal Shock Resistance

Parameter>0
Thermal
Expansion Thermal
Bend Young's Coefficient ®, Conductivity
Strength Modulus  Poisson's ~ 0-1000°C  kat500°C R — 2%~V
Material o (MPa) E(GPa) Ratiov 10 °K1H  (WmlK? kWm-1)
Hot-pressed SizNy 850 310 0.27 32 17 11
Reaction-bonded SizNy4 240 220 0.27 32 15 3.7
Reaction-bonded SiC 500 410 0.24 4.3 84 18
Hot-pressed A1,03 500 400 0.27 9.0 8 0.8
Hot-pressed BeO 200 400 0.34 8.5 63 2.4
Sintered WC (6% Co) 1400 600 0.26 4.9 86 30

where oy, = fracture strength. Note that a material’s resistance to thermal stress-induced
failure is enhanced by a high fracture strength and coefficient of thermal conductivity, and low
values of the modulus of elasticity, coefficient of thermal expansion, and heat transfer rate. It is
ironic that those materials that possess superior high temperature stiffness and resistance to
environmental degradation are most susceptible to catastrophic thermal-shock failure.

Table 1.123¢ lists relevant thermal and mechanical property data for selected ceramics,
where R’ represents the measure of thermal fracture resistance, comparable to that expressed by
Eq. 1-92. Higher values of R’ reflect greater thermal shock resistance. The relative ranking of
these materials must be viewed with caution, however, since property values such as « and k
increase and decrease, respectively, with temperature. As a result, R’ values for a given
material will vary as a function of temperature. Consequently, it is not possible to provide a
simple ranking of materials in terms of their resistance to thermal shock.
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PROBLEMS

Review

1.1 In your own words, what are two differences between
product testing and material testing?

1.2 What are the distinguishing differences between elas-
ticity, plasticity, and fracture?

1.3 Write the definitions for engineering stress, true stress,
engineering strain, and true strain for loading along a single
axis.

1.4 Under what conditions is Eq. 1-4 valid? What makes it
no longer useful if those conditions are not met?

1.5 Sketch Figure 1.3, curve b (a ductile metal). Label it
with the following terms, indicating from which location
on the curve each quantity can be identified or extracted:
elastic region, plastic region, proportional limit, tensile
strength, onset of necking, fracture stress.

1.6 On a single set of axes, sketch schematic interatomic
force vs. atom separation distance curves (like the one shown
in Fig. 1.4b) for Li, Na, and Cs. Pay close attention to the point
xo and the slope dF/dx for each of the curves you draw.

1.7  State the critical difference in the processing behavior
of thermoplastics vs. thermosets.

29. G. de Beer, Alps and Elephants—Hannibal’s March,
Geoffrey Bles, London, 1955.

30. D. P. H. Hasselman, J. Am. Ceram. Soc. 52, 600 (1969).

31. D. P. H. Hasselman, and J. P. Singh, Thermal Stresses
I, Vol. 1, R.B. Hetnarski, Ed., North-Holland, New
York, Chap. 4, 264 (1986).

32. L. G. Van Uitert et al., Mater. Res. Bull. 12, 261 (1977).

33. Microelectronics Packaging Handbook, R. R. Tum-
mala and E. J. Rymaszewski, Eds., Van Nostrand
Reinhold, New York, 278 (1989).

34. R. A. Miller and C. E. Lowell, Thin Solid Films 95, 265
(1982).

35. J. C. Jaeger, Phil. Mag. 36, 419 (1945).

36. R. W. Davidge, Mechanical Behavior of Ceramics,
Cambridge University Press, Cambridge, 1979.

37. O. K. Muratoglu, in UHMWPE Biomaterials Hand-
book, Second Edition: Ultra High Molecular Weight
Polyethylene in Total Joint Replacement and Medical
Devices, S. M. Kurtz, Ed. Academic Press, 2009.

D. Hull, An Introduction to Composite Materials, Cam-
bridge University Press, Cambridge, 1981.

R. M. Jones, Mechanics of Composite Materials, McGraw-
Hill, New York, 1975.

1.8 What happens to the stiffness of a polymer as the
temperature 7, is exceeded? For what group of polymers is
this change the greatest? The smallest?

1.9 Write typical values of E for diamond, steel, alumi-
num, silicate glass, polystyrene, and silicone rubber sub-
jected to small strains (note that the latter value is not
included in this chapter, but is widely available). Clearly
indicate the units for each value.

1.10 What is the purpose of a plasticizer, and what specific
effect on room temperature behavior is likely when a
plasticizer is added?

1.11 Identify a minimum of two structural characteristics
and two mechanical characteristics that set elastomers
apart from other classes of materials (including other
polymers).

1.12 Define what is meant by uniaxial, biaxial, and tri-
axial loading.

1.13 State one advantage and disadvantage of compres-
sion testing.

1.14 Is Euler buckling failure initiated by an elastic,
plastic, or cracking process? Explain.



1.15 What is the difference between the resilience and the
strain energy density of a material under load? Illustrate your
answer by reproducing Figure 1.3, curve b (a ductile metal),
and annotating it appropriately.

1.16 Sketch Figure 1.3, curve b (a ductile metal) and show
on the figure the difference between the proportional limit
and the offset yield strength.

1.17 Describe when and why bend testing (flexural test-
ing) is most advantageous.

1.18 Where can the maximum stress be found for a rectan-
gular bar undergoing 3-point bending? 4-point bending?

1.19 Write the basic isotropic form of Hooke’s law relat-
ing stress and strain for uniaxial tension/compression load-
ing and shear loading. Define all quantities.

1.20 Why do we define engineering and true stresses
for tension/compression loading but not for shear loading?

1.21  Sketch a pair of pliers squeezing an object and use the
sketch to show why the hinge pin is under shear loading.

1.22  Write out the most general expression for tension or
compression strain along a single axis resulting from all possible
applied stresses, assuming that the material is elastically isotropic.

1.23 Write out the most general expression for shear
strain along a single axis resulting from all possible applied
stresses, assuming that the material is elastically isotropic.

1.24  Sketch and name the stress state present in the skin of
a cylindrical thin-walled pressure vessel. Repeat for the
Strain state.

1.25 What is the name of the matrix, Si;?

1.26 Why can the compliance and stiffness tensors for
cubic and orthotropic materials be greatly simplified from
the general case?

1.27 Describe the geometric criteria that differentiate
orthotropic and cubic symmetry.

1.28 Define hydrostatic stress state.

1.29 What is the primary purpose of the fibers in a
composite material? Of the matrix?

1.30  What does it mean for a fiber-reinforced composite to
be quasi-isotropic, and how is this typically achieved?

1.31 Which is the stiffer orientation for a unidirectional
fiber-reinforced composite, the isostress orientation or the
isostrain orientation? Explain, and provide a sketch to
support your answer.

1.32  Why are pairs of materials more likely to experience
thermal stress problems when they represent two different
material classes?

Practice

1.33  Sketch a tensile member with (a) a rectangular cross
section, (b) a solid circular cross section, and (c) a circular tube
cross section, and label the dimensions symbolically (e.g.,
label the radius for the solid circular case). For each
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member, write out the definition of engineering stress in
terms of the actual dimensions of the component. If the
rectangular member has dimensions of width and thickness
equal to 1 cm x 0.3 cm, what would be the radius of a solid
circular member such that the stress is equal for an equal
tensile load? If a tube has an outer radius equal to that of
this same solid cylinder, what is the maximum inner radius
such that the stress does not exceed 200% of the stress in
the solid cylinder?

1.34 A commercially-pure copper wire originally 10.00 m
long is pulled until its final length is 10.10 m. It is annealed,
then pulled again to a final length of 10.20 m. What is the
engineering strain associated with each of the two steps in the
process? What is the true strain for each step? What are the
total engineering and true strains for the combined steps?
Finally, what agreement (if any) is there between the total
strains calculated as the sum of two steps of 0.10 m vs. a single
step of 0.20m?

1.35 A 3-mm-long gold alloy wire intended to electrically
bond a computer chip to its package has an initial diameter of
30 um. During testing, it is pulled axially with a load of 15
grams-force. If the wire diameter decreases uniformly to
29 um, compute the following:

a. The final length of the wire.
b. The true stress and true strain at this load.
c. The engineering stress and strain at this load.

1.36 A cylindrical rod of Ni 200 alloy has the following
properties: E =204 GPa, v=0.31. It is loaded elastically in
compression at 12.5kN. If the original rod length and
diameter are 20mm and 15mm, respectively, determine
the rod length and diameter under load.

1.37 A 0.5-m-long rod of annealed 410 stainless steel was
loaded to failure in tension. The rod originally had a square
cross section measuring 1.25cm on a side. What was the
load necessary to break the sample? If 85% of the total
elongation occurred prior to the onset of localized deforma-
tion, compute the true stress at the point of incipient necking.

1.38 Natural rubber is tested in tension to a maximum
extension ratio of A =3. The Mooney-Rivlin constants for
this material are found to be C{ =0.069 MPa and C, =0.125
MPa. Plot the corresponding uniaxial stress vs. extension
ratio behavior over the tested range. Derive an expression for
the slope of the function, then determine the secant and
tangent moduli at 100% strain.

1.39 Compare the resilience of alloy Ti-6Al-4V (annealed)
with that of stainless steel alloy 304 (annealed). Assume for
the purpose of comparison that the elastic properties of these
alloys are very similar to those of pure Ti and Fe, respectively.
Then compare the elastic strain energy density just prior to the
onset of necking for both alloys.

1.40 A cylindrical elastomeric rope is used to make a
slingshot. The diameter is 15 mm and the original length is
I m. It is stretched to twice its original length (A =2), then



58 Chapter 1 Elastic Response of Solids

released. The behavior is fully elastic and not time-dependent
over the time span of the slingshot’s use. The stress-extension
ratio behavior is shown in the plot below.

3
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a. Ifthe first two data points were used to calculate an
initial linear elastic Young’s modulus E(, what
would that value be? Answer in GPa or MPa units.

b. Based on the plot above, what is the diameter of
the rope at A =27 Noting that this is a large strain,
state and justify any assumption you must make
to answer this question.

c. For a rubber material, one possible nonlinear
relationship relating stress and extension ratio
is given by Eq 1-13. Assume that this is a
reasonable expression for the behavior depicted
above, and calculate the expected stored energy
density at A =2. Be sure to report units.

1.41 A rectangular plate 125 mm long, 10 mm wide, and
3 mm thick is formed from fused silica (aka fused quartz). It
is tested in 3-point bending until it fails with a modulus of
rupture of 110 MPa at a load of 66 N. Assume the central
load point is on the top of the beam.

a. How far apart must have been the lower supports?

b. What was the maximum stress (magnitude and sign)
on the top side of the beam halfway between the
central load point and the left-hand lower load point?

c. What was the stress (magnitude and sign) directly
beneath the central load point exactly 1.5 mm from
the top surface?

d. If the same plate was tested in pure tension, would
the stress at failure probably be higher or lower
than measured by 3-point bending? Why?

1.42 A disk of SBR elastomer 3.0 cm in diameter x 0.5 cm
thick is used as a cushioning surface between two steel rods of
the same diameter, as shown below (not to scale).

SBR/steel
interface shear
G E v strength CTE
SBR 3.4MPa 10MPa 0.49 2MPa 220 x 10-0°C~!

_>(

D —

a. If the rods are brought together with an axial force
of 100 N such that the SBR is compressed
elastically between them, what is the thickness
of the SBR under load?

b. Under the same conditions as part (a), what is the
greatest possible diameter of the SBR under load?

c. If the SBR is bonded to the rods, how far can one
rod be rotated with respect to the other before the
SBR/rod interface fractures? Assume that the
rods are essentially rigid and the distance
between them remains constant. Please answer
in degrees of rotation.

—
( { Y

1.43  Asolid cylindrical rod 12 mm in diameter and 50 mm
in length is attached to a rigid support at one end and twisted
at its free end by 14°. If the Poisson’s ratio for this isotropic
material is 0.34 and Young’s modulus is 70 GPa, what is the
maximum shear stress induced?

1.44 Spinel (MgAl,04) “optical ceramic” is a transparent
polycrystalline ceramic with a combination of high hard-
ness, light weight, and optical properties that make it very
attractive for fracture-resistant windows (e.g., as armor or in
a future manned space vehicle). It has the mechanical
properties listed below.

Flexure
G E v strength CTE
Spinel 192GPa 277GPa 0.26 200GPa 7 x1076°C~!

a. A rectangular plate 1 mm x 10 mm x 100 mm is
mounted for use as a protective window over a
sensor. In the course of mounting, a compressive
load of 2.5 kN is exerted along the long (100-mm)
axis. There is no constraint along the other two
axes. What is the stress along the long axis?

b. What is the strain along the long axis?

¢. What is the strain along the width (10-mm) axis?

d. What is the strain along the thickness (1-mm)
axis?

e. Now the plate is rigidly constrained along its
width (the 10-mm axis). This has the conse-
quence that the plate cannot change length along
that axis, although it is still free to change thick-
ness dimension. The same 2.5 kN load is exerted



along the long axis. Now what is the strain along
the long axis?

1.45 Compute the moduli of elasticity for nickel and 3C
silicon carbide single crystals in the <100>, <110>, and
<111> directions. Compare these values with Young’s
modulus values reported for polycrystalline samples of Ni
and B-SiC (204 GPa and 410 GPa, respectively). Then cal-
culate the relative degree of anisotropy for both materials,
and compare it to that of aluminum, spinel, and copper.

1.46 Assume the following elastic loading exists on a
block of copper:

ox = 325MPa, oy = 80 MPa, and 7xy = 40 MPa

Calculate ey and ¢z for this block, assuming

a. that it is a random polycrystalline material.

b. that it is a single crystal with the tensile and shear
axes lining up along unit cell axes.

c. Explain why the relative strain values you calcu-
lated along the X axis make sense for the two cases,
based on the elastic anisotropy of copper.

1.47 A weight lifter holds 300 pounds over his head,
supporting the bar with both arms vertical.

a. What is the stress in each humerus (upper arm
bone), assuming that it can be approximated as a
solid cylindrical rod with cross-sectional area of
1.05 in?? Use SI units.

b. What are the corresponding axial and radial strains?

c. If the humerus is 9 inches long, what are the length
and diameter changes associated with this massive
load? Please give this answer in inches.

1.48 A thin-walled pressure vessel is subjected to internal
pressure such that a hoop stress of 100 MPa develops.
Imagine that the vessel is made of an orthotropic continuous
fiber composite with most of the fibers running around the
circumference. The elastic constants for this material are
given below, with direction 3 around the circumference,
direction 2 along the length, and direction 1 through the
thickness. What is the strain in the hoop direction?

11 22 33 44 55 66 12 13 23

S(GPa~1) 0.083 0.075 0.05 0.161 0.178 0221 0.031 0.019 0.018
C (GPa) 180 202 276 623 561 452 998 10.1 10.7

1.49 The mechanical properties of cobalt (Co) may be
improved by incorporating fine particles of tungsten carbide
(WC). Given that the moduli of elasticity of these materials
are, respectively, 200 GPa and 700 GPa, plot modulus of
elasticity vs. the volume percent of WC in Co from O to
100 vol% using both upper- and lower-bound expressions to
form a performance envelope into which the material will
fall. Please do this using plotting software, not by hand.

Problems 59

1.50 MgF, has the right refractive index to serve as an
antireflective coating on fracture-resistant spinel windows
(see the problem above). Assume that the MgF, can be
deposited as a polycrystalline thin film on thick spinel.
MgF, mechanical properties are listed below.

G E v CTE

MgF, 54.5GPa 1385GPa 027 10 x 106 °C!

a. If a thin coating of MgF, is deposited on a thick
polycrystalline spinel substrate at a temperature
of 200°C and then the film and substrate are
cooled to 20°C, what is the stress state of the
thin film? Use words like equal/unequal, uni/bi/
triaxial, and tension/compression. Name the state
and provide a supporting sketch.

b. What are the thermal strains induced in the MgF,
film under the conditions from part (a)? Please
give numerical answers for directions X, Y, and Z,
where Z is the direction normal to the film
surface.

c. What is the thermal stress induced? Please give
numerical answers for directions X, Y, and Z.

d. If the MgF, were replaced by a fluoropolymer
antireflective coating (like PTFE) deposited at
the same temperature, would you expect the
thermal strain in the film to be larger or smaller?
Why?

Design

1.51 Asolarpanel is to be mounted at the top of a cylindrical
post that is rigidly attached to the ground at its bottom, and that
is protected from extreme bending by four guy wires strung
from the top of the post to the ground. The post will be made of
recycled polyethylene terephthalate (PET), which has an
elastic modulus of approximately 3.5 GPa and a Poisson’s
ratio of 0.43. If the solar panel weighs 14.8 kg and the post
must be 8 m tall to lift the panel above surrounding obstacles,
what is the minimum post radius needed to avoid failure by
buckling? Is this post diameter actually likely to be a safe
design choice? Based only on the required post radius, what is
your opinion about the choice of PET for this application?

1.52  You are in charge of designing a new fixture for a
“universal testing machine” that will attach a tensile speci-
men to the machine using a clevis—a U-shaped piece with
holes drilled through the two arms—and a cylindrical pin
that passes through the clevis and the specimen. If the
maximum load exerted by the machine is 30kN and the
pin is to be made of some sort of steel, what is the minimum
pin diameter needed to ensure that the shear stress in the pin
does not exceed 600 MPa? Assume that the steel has similar
elastic properties to pure Fe.
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1.53 A 20-cm-diameter pipe is used to carry a pressure
of 8.274 MPa without yielding. Assuming a safety factor of
2x, compute:

a. the lighter

b. and theless expensive pipe per unit length based on
the following two possible material choices.

Copper C71500 pPvC
E (GPa) 150 3.25
oys (MPa) 540 43
p (g/cm?) 8.94 1.45
Cost (US$/kg) 27.00 1.75
1.54 A particular cylindrical rod will be subjected to axial

cyclic compressive loads. It is designed to fit snugly through a
hole in a separate plate, but it must not exert excessive
pressure on the surrounding material while under load or a
fatigue crack may develop in the plate. The diameter of the rod
(and the hole) is 10 mm. The maximum compressive load the
rod will experience is 24 kN. If the rod either yields plastically
or increases in diameter by more than 0.008 mm, the design
will not meet the specifications. Which of the four alloys listed
below will satisfy these requirements at the lowest cost?

E Oys o, US$/ p

(GPa) v (MPa) (MPa) kg (g/em?)
1020 alloy steel, 207 0.30 340 440 1.35 7.85
normalized
304 stainless steel, 193 0.30 510 865 8.50 8.00
cold worked
Al 6061-T6 69 033 275 310 775 270
Ti-6Al-4V, solution 114 0.34 1100 1170 125.00 4.43
& aged

1.55 A 6061-T4 aluminum alloy is to be used to make a
thin-walled cylindrical canister in which high-pressure
chemical reactions will be performed. The design calls
for a diameter of 50 cm, a length of 80 cm, and a maximum
operating pressure of 5 MPa. Assume a safety factor of four
is required (i.e., the maximum stress can never exceed one-
quarter of the alloy’s yield strength).

a. What wall thickness is required to ensure safe
operation?

b. Is this wall thickness a maximum or a minimum?
Explain.

c. How do your answers change if the cylinder is
made twice as long?

1.56 Imagine that you are designing a single crystal turbine
blade for use in a jet engine. It will experience large tensile
loads from the centripetal forces that exist during use. Min-
imizing the axial strain will allow for tighter gap tolerances
between the turbine blade tips and the surrounding shroud;
this leads to greater engine efficiency. You are restricted to

using a Ni-based superalloy.
i shroud

T

blade

T

a. Without performing any calculations, determine
which orientation (<100>, <111> or <110>)
you would choose along the tensile axis of the
blade in order to minimize the strain during use?
Why?

b. Justify your choice by calculating the Young’s
modulus for each orientation and then calculating
the corresponding strain at maximum load. For this
problem, assume that the Ni-based superalloy in
question has the same elastic behavior as pure Ni.
Also assume that the blade experiences a maxi-
mum load of 10,000 Ibs-force, and that the behav-
ior is elastic. Consider only a simple uniaxial
tensile load. Approximate the turbine blade airfoil
cross section as an isosceles triangle 5 mm at its
base by 50 mm tall. The blade length is 150 mm.

c. Calculate the thermal strain imposed on a turbine
blade after it has been heated from 25 °C to the
engine operating temperature of 1100°C.
Assume a coefficient of thermal expansion of
13.5 x 1070 C~! for this particular superalloy.

d. Calculate the best-case minimum gap size for a
cold (25 °C) engine with no turbine rotation such
that the blade will just barely touch the surrounding
shroud material when the engine is operating at full
rotation and maximum temperature.

Extend

1.57 Write a 1-2 page review of auxetic materials.
Assume that you are writing a supplementary article for



an introductory engineering text. Be sure to (1) define the
term “auxetic material” and (2) explain what is unusual
about the mechanical behavior of this class of materials.
Include (3) a picture (sketch, diagram, or photograph) of an
auxetic material. Also (4) describe at least two products that
could (or do) benefit from the auxetic behavior. Provide full
references for all of your information.

1.58 Select two thermoplastic materials from among those
listed in Section 1.3.3.1. Using any resources available to
you, determine a typical glass transition temperature, degree
of crystallinity, and a common use for each of the polymer
materials you selected. How does the use reflect the T, value
and the degree of crystallinity for each material?

1.59 Write a 1-2 page review of the structure and elastic
behavior of natural, highly elastic materials. Assume that
you are writing a supplementary article for an introductory
engineering text. Choose two or more materials for compar-
ison: dragline spider silk, non-dragline spider silk, collagen,
elastin, mussel byssal threads, and resilin. In your review, be
sure to (1) identify the natural use for each of the materials
you selected, and (2) explain how the particular properties of
the materials match their intended uses in nature. Mention
(3) approximately how much of the behavior is purely elastic
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(instantaneous recovery with no energy loss) and how much
is viscoelastic (time-dependent recovery with some energy
loss). Include (4) a picture (sketch, diagram, or photograph)
or a plot that adds to the reader’s understanding of the topic.
Strength is also interesting and certainly worth mentioning,
but is not the main focus of this paper. If you can find a case
in which there has been an attempt to synthesize the material
(s) for engineering purposes it would add much to this short
article. Provide full references for all of your information.

1.60 Search published science and engineering litera-
ture to find an example of an engineered material used for
bone replacement (partial or total). How well does the
elastic behavior of the material match that of natural
bone? Provide elastic property data from the source, a
brief explanation of the potential advantages of this
particular material, and a full reference for the source.

1.61 Search published science and engineering literature
to find an example of a microelectromechanical device in
which thermal mismatch strain is used to generate motion
and/or force. Provide a figure from the source, a brief
explanation of the device’s purpose and design, and a full
reference for the source.






Chapter 2

Yielding and Plastic Flow

In Chapter 1, the elastic limit of a given material was defined as the stress level above which
strains are irreversible. Beyond this point, we may say that a ductile material has yielded and is
undergoing plastic deformation. The objective of this chapter is to consider the manner by
which permanent deformations are generated and to estimate the magnitude of stresses
necessary for such movement.

2.1 DISLOCATIONS IN METALS AND CERAMICS
2.1.1 Strength of a Perfect Crystal

To begin our discussion of plasticity, we consider atom movements in a crystalline metal or
ceramic. If we apply a uniform tensile or compressive force on a crystal in all directions, the
atoms will move apart or move together, the bonds will lengthen or compress elastically (as
described in Chapter 1), and a temporary change in the crystal dimensions will occur. When the
hydrostatic force is removed, however, the crystal will return to its original dimensions; clearly
no plastic deformation has been accomplished. If, however, the atoms move under an applied
shearing force, something quite different can happen. Atom movements parallel to a particular
crystallographic plane can lead to the displacement of the upper half of a cube relative to the
bottom (Fig. 2.1). When the atoms in the upper half move along this slip plane by exactly one
atomic spacing, the crystal will look perfect everywhere except at the ends. At this point the
force can be removed and the displacement will be permanent. This will leave the crystal with a
new external shape, and we can say that plastic deformation has occurred.

If atom A in Fig. 2.1 is to move to position B, atom B to position C, etc., a simultaneous
translation of all atoms on the slip plane must occur. Since this would involve simultaneous
rupture of all the interatomic bonds acting across the slip plane (e.g., bonds A-A’, B-B', C-C/,
etc.), the necessary stress would have to be very large. From Fig. 2.2a we see that the
equilibrium atom positions within the crystalline lattice are located at P and R, with a separation
of b units. Midway between P and R the energy is a maximum at Q, which represents a
metastable equilibrium position. The exact shape of the energy curve shown in Fig. 2.2a
depends on the nature of the interatomic bonds. Since this is not known precisely, a sinusoidal
waveform is assumed for simplicity in this analysis. Locating the atoms on the slip plane
anywhere other than at an equilibrium position, such as P and R, requires a force defined by the
slope of the energy curve (Fig. 2.2b) at that position where F = —dé& /dx. For example, to place
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Figure 2.1 Movement of a solid cube along a particular slip plane. (a) Undeformed cube with anticipated slip
plane; (b) slipped cube revealing relative translation of part of cube; (¢) atom position showing bonds across slip

plane (A-A’, B-B', C-C' D-D').
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Figure 2.2 The periodic nature of a lattice.
(a) Variation of energy with atom position
in lattice. Preferred atom sites are at P and R,
associated with minimum energy;

Energy @ (b) variation in force acting on atoms
throughout lattice. Force is zero at
Displacement (x) equilibrium site positions and maximum
i at b/4, 3b/4,5b/4, . . ., 2n— 1)b/4.
(b)
Force Displacement (x)

an atom between P and Q (that is, 0 <x < b/2), a force acting to the right is required to
counteract the tendency for the atom to move back to the equilibrium site at P. Note that
between P and Q, the slope of the energy curve is everywhere positive so that the force is also
positive from 0 < x < b/2. When b/2 < x < b, the atom wants to slide into its new equilibrium
position at R (that is, the energy decreases continually from Q to R). To prevent this, a force
acting to the left is needed to keep the atom stationary at some location between Q and R.
This force is in an opposite direction to that needed between P and Q and is, therefore, negative.
Note that in the region between Q and R, the slope of the energy curve is negative. Therefore,
the corresponding portion of the force curve in this same region must also be negative.

From the above discussion it is clear that the shear stress necessary to move the atoms on
the slip plane varies periodically from zero at P, Q, and R to a maximum value at b/4 and 3b/4.
Therefore, the shear stress may be expressed in the following form (from an analysis due to
Frenkel!), based on an assumed sinusoidal variation in energy throughout the lattice:

27x

T= TmSiHT 2-1)

where

7 = applied shear stress

7,, = maximum theoretical strength of crystal
x = distance atoms are moved
b = distance between equilibrium positions

Plastic flow (that is, irreversible deformation) will then occur when the upper part of the cube
(Fig. 2.1) is translated a distance greater than b/4 because of an applied shear stress t,,.
For elastic strains, the shear stress may also be defined by Hooke’s law

=Gy (2-2)

and the shear strain may be approximated for small values by
X
y == (2-3)
a

where a = distance between slip planes. Combining Eqgs. 2-1, 2-2, and 2-3 with sin(2mx/b)
approximated by 2mx/b for small strains gives
2mx

X
G-~ 1p—— 2-4
p Tm b (2-4)
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Table 2.1 Theoretical and Experimental Yield Strengths in Various Materials?

G2 Experimental Yield Strength
Material GPa 10° psi MPa psi TmlTexp
Silver 4.6 0.67 0.37 55 ~1 x 10*
Aluminum 4.2 0.61 0.78 115 ~5x 10°
Copper 7.2 1.05 0.49 70 ~1x10%
Nickel 12.2 1.78 3.2-7.35 465-1,065 ~4 % 103
Iron 13.2 1.91 27.5 3,990 ~5 % 102
Molybdenum 19 2.76 71.6 10,385 ~3 % 102
Niobium 5.8 0.84 333 4,830 ~2 x 107
Cadmium 3.8 0.56 0.57 85 ~7 %103
Magnesium (basal slip) 2.8 0.4 0.39 55 ~7 %103
Magnesium (prism slip) 2.8 0.4 39.2 5,685 ~7 % 10!
Titanium (prism slip) 6.3 0.92 13.7 1,985 ~5 % 102
Beryllium (basal slip) 23.4 3.39 1.37 200 ~2 % 10*
Beryllium (prism slip) 23.4 3.39 52 7,540 ~5x 107
Upon rearranging,
Ty = Gb (2-5)
2ra

For most crystals b is of the same order as a, so Eq. 2-5 may be rewritten in the form

G
Tn N o (2-6)

Because of the approximations made in this analysis, especially with regard to the form of the
energy-displacement curve, the magnitude of the theoretical shear strength t,,, from Eq. 2-6 is
of an approximate nature. More realistic estimates place t,, in the range of G/30. Nevertheless,
it is instructive to compare theoretical strength values calculated with Eq. 2-6 with exper-
imentally determined shear strengths for single crystals of various materials. From Table 2.1, it
is immediately obvious that very large discrepancies exist between theoretical and exper-
imental values for all materials tabulated. Without question, the lack of precision regarding
computations based on Eq. 2-6 is not responsible for these large errors. Rather, the discrepanc-
ies must be accounted for in a different manner.

2.1.2 The Need for Lattice Imperfections: Dislocations

In 1934 Taylor, Orowan, and Polanyi postulated independently the existence of a lattice
defect that would allow the cube in Fig. 2.1 to slip at much lower stress levels3:*. By
introducing an extra half plane of atoms into the lattice (Fig. 2.3), they were able to show that
atom bond breakage on the slip plane could be restricted to the immediate vicinity of the bottom
edge of the half plane. This linear defect where only one row of bonds is broken is called the
dislocation line. As the dislocation line moves through the crystal, bond breakage across the slip
plane occurs consecutively rather than simultaneously as was necessary in the perfect lattice
(Fig. 2.1). The consecutive nature of bond breakage is shown in Fig. 2.4 where the dislocation
line (and its associated extra half plane of atoms) is shown at different locations during its
movement through the crystal. When the outer set of atoms becomes the extra half plane, the
dislocation emerges from the crystal and no longer exists. The end result of the movement of
this defect is the same as shown in Fig. 2.1—the upper half of the cube has been translated
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Figure 2.3 Lattice defect caused by introduction of an
extra half plane of atoms, A. Note symmetrical
displacement of planes B, B, C, C', etc. The dislocation
line is defined as the edge of the half plane, A. The
Burgers circuit XCC' YX' contains a closure failure X'X.
(From Guy,5 Elements of Physical Metallurgy, 2nd ed.,
Addison-Wesley, Reading, MA, 1959.)

relative to the bottom half by an amount equal to the distance between equilibrium atomic
positions; this displacement is a characteristic of the dislocation designated as b, the Burgers
vector. The major difference is the fact that it takes much less energy to break one bond at a time
than all the bonds at once. This concept is analogous to moving a large floor rug across the
room. If you have ever tried to grab the edge of the rug and pull it to a new position, you know
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Figure 2.4 Successive positions of dislocation as it moves through crystal. Note that the final offset of crystal
resulting from the passage of dislocation is the same as the simultaneous movement of the entire crystal. Also note
the perfect Burgers circuit in (c) demonstrating that the crystal is perfect after the dislocation has passed through.
(From Guy,’ Elements of Physical Metallurgy, 2nd ed., Addison-Wesley, Reading, MA, 1959.)
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Table 2.2 Theoretical and Experimental Strengths of Dislocation-Free Crystal (Whiskers)”

Theoretical Strength

(G/27) Experimental Strength
Material GPa 10° psi GPa 10 psi Error
Copper 19.1 2.77 3.0 0.44 ~6
Nickel 334 4.84 39 0.57 ~8.5
Iron 31.8 4.61 13 1.89 ~2.5
B4C 71.6 10.4 6.7 0.98 ~10.5
SiC 132.1 19.2 11 1.60 ~12
A1,03 65.3 9.47 19 2.76 ~3.5
C 156.0 22.6 21 3.05 ~7

that it is nearly impossible to move a rug in this manner. In this case, the “theoretical shear
stress” necessary to move the rug is strongly dependent on the frictional forces between the rug
and the floor. If you persisted in your task you probably discovered that the rug could be moved
quite easily in several stages by first creating a series of buckles at the edge of the rug and then
propagating them, one at a time, across the rug by shuffling your feet behind each buckle. In this
way you were able to move the rug by increments equal to the size of the buckle. Since the only
part of the rug to move at any given time was the buckled segment, there was no need to overcome
the frictional forces acting on the whole rug. Since the lattice dislocation is a similar work-saving
“device,” one may reconcile the large errors between theoretical and experimental yield strengths
(Table 2.1) by assuming the presence of dislocations in the crystals that were examined.

Before we begin to deal with more detailed behavior of dislocations, it is natural to wonder
whether the analysis leading to Eq. 2-6 is correct after all. What is needed, of course, are test
data for crystals possessing no dislocations. Fortunately, such perfect crystals—produced in the
form of fine wires called whiskers—have been prepared in the laboratory. The tensile strengths
of these extraordinary crystals, shown in Table 2.2, are seen to be in close agreement with
theoretical maximum values computed from Eq. 2-6. More recently, this result has been verified
with compression tests conducted on ~500-nm-diameter molybdenum pillars that were
prepared to be either dislocation-free or to contain pre-existing dislocations. The disloca-
tion-free pillars yielded suddenly at 9.3 GPa, which corresponds to a critical shear stress of
~4.6 GPa (~1/25 of the shear modulus, within the expected range), and collapsed. In contrast,
those pillars with preexisting dislocations yielded gradually at ~1.0 GPa.® Data and images are
shown in Fig. 2.5. On this basis, the Frenkel analysis is verified.

2.1.3 Observation of Dislocations

Long after it was initially determined that dislocations must exist, laboratory techniques were
developed to enable the direct examination of dislocations within a crystal. One successful
technique involves chemical or electrolytic etching of polished free surfaces. By carefully
controlling the strength of the etchant, the high-energy dislocation cores (i.e., the regions of
greatest lattice distortion) exposed at the surface are attacked preferentially with respect to other
regions on the polished surface. The result is the formation of numerous etch pits, each
corresponding to one dislocation (Fig. 2.6). This technique has been used to study the effect
of applied stress on dislocation velocity. Notable experiments by Johnston and Gilman® have
identified the stress-induced, time-dependent change in dislocation position by repeated etching,
with each new etch pit representing the new location of the moving dislocation. Note that this
technique is extremely useful for establishing the relative arrangement and number (or density) of
dislocations, but cannot elucidate the shape of the dislocations below the surface.
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Figure 2.5 Engineering stress—strain data measured during compression of Mo micropillars either as-grown
(initially dislocation-free) or prestrained (provided with preexisting dislocations). Accompanying images show the
pillar shapes after yielding, demonstrating complete plastic collapse for an as-grown pillar (top), and moderate shape
change for a prestrained pillar (bottom). (Data and images courtesy of H. Bei, S. Shim, G.M. Pharr and E.P. George,
reprinted with permission.)

The most widely used technique for the study of dislocations involves their direct
examination in the transmission electron microscope. Since electrons have little penetrating
power, the specimens used for such studies are very thin films—only about 0.1 to 0.2 m thick.
Because dislocations are lattice defects, their presence perturbs the path of the diffracted
electron beam relative to its path in a perfect crystal. As a result, various images are produced,
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Figure 2.6 Etch pits on polished surface of lithium fluoride, each associated with an individual dislocation. The
etch pit lineage indicates alignment of many dislocations in the form of low-angle boundaries (see Section 2.6).
(From Gilman and Johnston®; reprinted by permission of General Electric Co.)
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Figure 2.7 Observation of individual dislocations in thin foil. () Planar arrays of dislocations in 18Cr—8Ni
stainless steels (from Michalak,'” Metals Handbook, Vol. 8, copyright American Society for Metals, Metals Park,
OH, 1973; used with permission); (b) diagram showing position of dislocations on the guide plane in the foil (after
Hull!9).

depending on the prevailing diffraction conditions. Often, dislocations appear as single dark
lines like those shown in planar array in Fig. 2.7a. Each dislocation lies along a particular
crystallographic plane and extends from the top to the bottom of the foil (Fig. 2.7b). As a result,
the viewer sees only the projected length of the dislocation line, with the actual length being
dependent on the foil thickness and angle of the plane containing the dislocations. Some
important publications addressing interpretation of electron diffraction images and the identi-
fication of numerous dislocation configurations are cited at the end of the chapter.lo_16

2.1.4 Lattice Resistance to Dislocation Movement: The Peierls Stress

From Fig. 2.3 it is clear that the “insertion” of the extra half plane of atoms has perturbed
the lattice and caused atoms to be pushed aside laterally, particularly in the upper half of the
crystal. For example, atoms along planes B and C are displaced to the left, while atoms in
planes B’ and C’ are displaced to the right. Since the forces acting on these groups of atoms are
equal and of opposite sign (that is, pairing atoms in plane B with those in B" and those in C with
atoms in plane C’), movement of the extra half plane A either to the left or right would be met
by self-balancing forces on the other atoms within the distorted region. On this basis, the force
necessary to move a dislocation would be zero. However, Cottrell* pointed out that although
the above situation should prevail when the dislocation occurs in a symmetrical position (such
as the one shown for plane A in Fig. 2.3), it would not hold true when the dislocation passes
through nonsymmetrical positions. Consequently, some force is necessary to move the
dislocation through the lattice, even when no other impediments to dislocation motion are
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Figure 2.8 Characteristic width of an edge dislocation
that affects the Peierls-Nabarro stress.!8 (Reproduced by
courtesy of the Council of the Institution of Mechanical
Engineers from The Properties of Materials at High
Rates of Strain by A. H. Cottrell.)

Narrow

present. An important characteristic of this force (called the Peierls-Nabarro or Peierls force)
is that its magnitude varies periodically as the dislocation moves through the lattice.

It is known that the magnitude of the Peierls force (or lattice friction) depends to a large
extent on (1) the width of the dislocation W, which represents a measure of the distance over
which the lattice is distorted because of the presence of the dislocation (Fig. 2.8), and (2) the
distance between similar planes a. The Peierls stress has been shown to depend on W and b in
the form

Tpn x Ge=TW/b 2-7)

where
W=al(l —v).

From Eq. 2-7, the Peierls stress for a given plane is seen to decrease with increasing
distance between like planes. Since the distance between planes varies inversely with their
atomic density, slip is preferred on closely packed planes. In addition, the Peierls stress depends
on the dislocation width, which is dependent on atomic structure and the nature of the atomic
bonding forces. For example, when the bonding forces are spherical in distribution and act along
the line of centers between atoms, the dislocation width is large. Since this type of bonding is
found in close-packed structures, it is seen that the Peierls stress in face-centered-cubic and close-
packed hexagonal crystals is low. By contrast, when bonding forces are highly directional (as in
the case of covalent, ionic, and body-centered-cubic crystals), the dislocation width is narrow
and the Peierls stress correspondingly large. Although many attempts have been made to
compute precisely the magnitude of the Peierls stress in a given lattice, considerable difficulties
arise because the exact shape of the force—displacement curve is unknown. Foreman, Jaswon,
and Wood!? showed that when the amplitude of an assumed sinusoidal force—displacement law
was reduced by half, the width of the dislocation increased fourfold. This, in turn, had the effect
of reducing the computed Peierls stress value by more than six orders of magnitude. Until the
force—displacement relation between atoms can be defined more precisely, the magnitude of the
Peierls stress in crystals can be described only in qualitative terms. Nonetheless, even a
qualitative description can be useful for understanding differences in plasticity behavior from
one crystal structure to another.

2.1.4.1 Peierls Stress Temperature Sensitivity

One such qualitative characteristic of the Peierls stress relates to the temperature sensitivity
of the yield strength. Since the Peierls stress depends on the short-range stress field of the
dislocation core, it is sensitive to the thermal energy in the lattice and, hence, to the test
temperature. At low temperatures, where thermal enhancement of dislocation motion is limited,
the Peierls stress is larger than at higher temperatures. In crystals that have wide dislocations,
however, the increase in Peierls stress with decreasing temperature is insignificant, since the
Peierls stress is negligible to begin with.
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Table 2.3 Relation Between Dislocation Width and Yield-Strength Temperature Sensitivity

Yield-Strength

Temperature
Material Crystal Type Dislocation Width Peierls Stress Sensitivity
Metal FCC Wide Very small Negligible
Metal BCC Narrow Moderate Strong
Ceramic Tonic Narrow Large Strong
Ceramic Covalent Very narrow Very large Strong

Accordingly, there is little yield strength-temperature dependence in FCC metals such as
aluminum, copper, and austenitic stainless steel alloys. The situation is quite different in crystals
that contain narrow dislocations. Although the Peierls stress in these materials may be small at
elevated temperatures, it rises rapidly with decreasing temperature and represents a large
component of the yield strength in the low-temperature regime. This can manifest itself as an
increase in the elastic limit, an increase in hardness, and a decrease in ductility. The yield strength-
temperature sensitivity of several engineering materials is shown in Table 2.3. The large Peierls
stress in ceramic materials is partly responsible for their limited ductility at low and moderate
temperatures. However, the Peierls stress decreases rapidly with increasing temperature, thereby
enhancing plastic deformation processes in these materials at high temperatures.

2.1.4.2 Effect of Dislocation Orientation on Peierls Stress

The Peierls stress as described above represents an upper bound to the minimum stress
necessary to move a dislocation through a crystal. In fact, dislocations will seldom lie completely
along directions of lowest energy, or energy valleys, within the lattice. Rather, the dislocation line
will contain bends or kinks that lie across energy peaks at some angle (Fig. 2.9a). The angle 6 that
the kink makes with the rest of the dislocation line, as well as its length /, is a direct consequence of
the balance between two competing factors. On one hand, the dislocation will prefer to lie along
the energy valleys such that the kink length is minimized and the kink angle maximized
(90° (Fig. 2.9b)). (It should be noted that to create such a sharp kink angle will increase the
energy of the dislocation, since the energy of any curved segment of a dislocation line increases
with decreasing radius of curvature.) On the other hand, the dislocation line tries to be as short as

Figure 2.9 Position of dislocation line
containing kinks with respect to energy
troughs within lattice. (a) Typical
configuration showing kink of length /
with angle 6 between kink segment and
segment lying along energy trough; (b)
sharp kink formed when magnitude of
energy fluctuation in lattice is large. In
T this case / — 0 and 6 — 90°; (c) broad

kink formed when energy fluctuation in
__________________________________________ p (b) lattice is small. Here / — oo and €
becomes very small.

(€Y

(©




72 Chapter2 Yielding and Plastic Flow

possible to minimize its self-energy and in the limit would prefer a straight-line configuration
(Fig. 2.9¢; see also Section 2.1.6). The degree to which the kinked dislocation line approaches
either extreme will depend strongly on &, the amplitude of the periodic energy change along the
crystal. When this amplitude is large, the dislocation line will prefer to lie along energy troughs
such that short sharp kinks will be formed. Alternatively, when A& is small, long undulating kinks
(more like gradual bends) will be observed.

The relative ease of movement of both the dislocation line segments lying along energy
troughs and the kinked sections, respectively, is now considered. Since the kinked sections are
located across higher energy portions of the crystal, they can move more easily than the line
segments along the energy troughs, which must overcome the maximum energy barrier if they are
to move. Upon application of a shear stress, the kinked segments shown in Fig. 2.9a move to the
left or right (depending on the sense of the stress), which in effect allows the entire dislocation line
to move in a perpendicular direction from one energy trough to the adjacent one. The lateral
movement of such a kink may be likened to the motion of a whip that has been snapped.
Consequently, the introduction of kinks into dislocations eases their movement through the lattice.

It may be concluded, then, that the lattice resistance to the movement of a dislocation depends
on both the magnitude of the Peierls stress and the orientation of the dislocation line within the
periodically varying energy field in the lattice. Since both factors will depend on A&, which
depends on the force—displacement relation between atoms, the importance of the latter relation is
emphasized. Unfortunately, current lack of specific knowledge concerning the force law severely
hampers quantitative treatments of dislocation—lattice interactions, and we must be content for the
moment with a qualitative understanding of structure-moderated trends in strength.

2.1.5 Characteristics of Dislocations

At this point, the reader should examine certain fundamental characteristics of dislocations
that affect their motion in ways different from the Peierls stress. A dislocation is a lattice line
defect that defines the boundary between slipped and unslipped portions of the crystal. Two
basically different dislocations can be identified. The edge dislocation is defined by the edge of
the extra half plane of atoms shown in Fig. 2.3. Note how this extra half plane is wedged into the
top half of the crystal. As a result, the upper part of the crystal is compressed on either side of the
half plane, while the region below the dislocation experiences considerable dilatation. By
convention, the bottom edge of the half plane shown in Fig. 2.3 is defined as a positive edge
dislocation. Had the extra half plane been introduced into the lower half of the crystal, the
regions of localized compression and dilatation would be reversed and the dislocation line
defined as a negative edge dislocation. Clearly, if a crystal contained both positive and negative
edge dislocations lying on the same plane, their combination would result in mutual annihila-
tion and the elimination of two high-energy regions of lattice distortion.

The movement of an edge dislocation and its role in the plastic deformation process may be
understood more clearly by considering its Burgers circuit. (The Burgers circuit is a series of
atom-to-atom steps along lattice vectors that generate a closed loop about any location in the
lattice.) In a perfect lattice (Fig. 2.4c), the Burgers circuit beginning at A and progressing an
equal and opposite number of lattice vectors in the horizontal and vertical directions will return
to its starting position. When this occurs, the lattice contained within the circuit is considered
perfect. When an edge dislocation is present in the lattice, the circuit does not close (Fig. 2.3).
The vector needed to close the Burgers circuit (X'X) is called the Burgers vector b of the
dislocation and represents both the magnitude and direction of slip of the dislocation.

Another important feature of b is its orientation relative to the dislocation line. For the edge
dislocation, b is oriented normal to the line defect. Ordinarily, plastic flow via edge dislocation
movement is restricted to that one plane defined by the dislocation line and its Burgers vector.
Such conservative motion will occur with the edge dislocation moving in the same direction as
b (i.e., the direction of slip). From Section 2.1.4, the planes on which dislocations move are
usually those of greatest separation and atomic density. Recall that the Peierls-Nabarro stress is
generally lowest on these planes.
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Figure 2.10 Dislocation climb involving vacancy (00)
diffusion to an edge dislocation allowing its movement to
climb from slip plane A to slip plane B. Note that the only
atom (e) positions depicted are those in the extra half plane
above the dislocation line.

It is possible for an edge dislocation to undertake nonconservative motion, that is,
movement out of its normal glide plane. This can occur by removal of a row of atoms,
such as by the diffusion of lattice vacancies to the bottom of the extra half plane (Fig. 2.10). In
this manner, the dislocation climbs from one plane to another where conservative glide may
occur once again. Since vacancy diffusion is a thermally activated process, dislocation climb
becomes an important process only at elevated temperatures above about one-half the melting
point of the material. This mechanism will be discussed again in Chapter 4.

The other line defect, called the screw dislocation, is defined by the line AB in Fig. 2.11, the
latter being generated by displacement of one part of the crystal relative to the other. The Burgers
circuit about the screw dislocation assumes the shape of a helix, very much like a spiral staircase,
wherein a 360° rotation produces a translation equal to one lattice vector in a direction parallel to
the dislocation line AB. A right-handed screw dislocation is defined when a clockwise 360°
rotation causes the helix to advance one lattice vector. The same advance resulting from a 360°
counterclockwise rotation is a left-handed screw dislocation. Thus, the screw dislocation and its
Burgers vector are mutually parallel, unlike the orthogonal relationship found for the edge
dislocation. Note that while the slip direction is again parallel to b as was found for the edge
dislocation, the direction of movement of the screw dislocation is perpendicular to b. To better
visualize this fact, take a piece of paper and tear it partway across its width. Note that the
movement of your hands (the shear direction parallel to the Burgers vector) is perpendicular to the
movement of the terminal point (the screw dislocation) of the tear.

Unlike the edge dislocation, a unique slip plane cannot be identified for the screw dislocation.
Rather, an infinite number of potential slip planes may be defined, since the dislocation line and
Burgers vector are parallel to one another. In fact, the movement of a screw dislocation is confined
to those sets of planes that possess a low Peierls-Nabarro stress. Even so, the screw dislocation
possesses greater mobility than the edge dislocation in moving through the lattice.

Figure 2.11 Screw dislocation AB resulting from
displacement of one part of crystal relative to the
other. Note that AB is parallel to b.
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Figure 2.12 Cross-slip of a screw dislocation XY from (a) plane A to (b) plane B to (c) plane A. Slip always occurs
in direction of Burgers vector b.

Table 2.4 Characteristics of Dislocations

Type of Dislocation
Dislocation Characteristic Edge Screw
Slip direction Parallel to b Parallel to b
Relation between dislocation line and b Perpendicular Parallel
Direction of dislocation line movement relative to b Parallel Perpendicular
Process by which dislocations may leave the Nonconservative climb Cross-slip

glide plane

The movement of the screw dislocation from one slip plane to another takes place by a
process known as cross-slip and may be understood by examining Fig. 2.12. At the onset of
plastic deformation, the screw dislocation XY is seen to be moving on plane A (Fig. 2.12a). If
continued movement on this plane is impeded by some obstacle, such as a precipitate particle,
the screw dislocation can cross over to another equivalent plane, such as B, and continue its
movement (Fig. 2.12b). Since the Burgers vector is unchanged, slip continues to occur in the
same direction, though on a different plane. Movement of the screw dislocation may continue
on plane B or return to plane A by a second cross-slip process (Fig. 2.12¢). A summary of the
basic differences between edge and screw dislocations is presented in Table 2.4.

Since many dislocations in a crystalline solid are curved like the one shown in Fig. 2.13a,
they take on aspects of both edge and screw dislocations. With b the same along the entire
length of the dislocation, the dislocation is seen to be pure screw at A and pure edge at B. The
reader should verify this by constructing a Burgers circuit around the dislocation at A and B. It
follows that at all points between A and B the dislocation possesses both edge and screw
components. For this reason, AB is called a mixed dislocation. Another example of a mixed

N\

1
A
1
A1
L1

Figure 2.13 Curved dislocations containing edge and screw components. (a) Dislocation AB is pure screw
at A and pure edge at B; (b) dislocation loop that grows out radially with shear stress applied parallel to b.
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Figure 2.14 Network arrangement of dislocations

in crystal. Dislocations can terminate only at a node,

in a loop, or at a grain boundary or free surface.!®
(Reproduced by courtesy of the Council of the Institution
of Mechanical Engineers from The Properties of
Materials at High Rates of Strain, by A. H. Cottrell.)

dislocation is the dislocation loop. From Fig. 2.13b the loop is seen to be pure positive edge at A
and pure negative edge at B while being pure right-handed screw at D and pure left-handed
screw at C. Everywhere else the loop contains both edge and screw components. When a shear
stress is applied parallel to b, we see from Table 2.4 that the loop will expand radially.
Dislocations can terminate at a free surface or at a grain boundary but never within the
crystal. Consequently, dislocations either must form closed loops or networks with branches
that terminate at the surface (Fig. 2.14). A basic characteristic of a network junction point or
node involving at least three dislocation branches is that the sum of the Burgers vectors is zero:

by +by +b3 =0 (2-8)

Furthermore, when these dislocations are of the same sense,
b; =by + bj (2-9)

and the Burgers vector of one dislocation is equal to the sum of the other two Burgers vectors.
This holds when two dislocations combine to form a third or when one dislocation dissociates
into two separate dislocations.

2.1.6 Elastic Properties of Dislocations

As might be expected, there is an elastic stress field associated with the distorted lattice
surrounding a dislocation. It is easy to describe the stresses developed around a screw
dislocation (Fig. 2.15a). By rolling the cylindrical element out flat (Fig. 2.15b), the shear
strain g, is seen in polar coordinates to be

b
From Hooke’s law, the corresponding stress is
Gb
To: = GVor = T = 5 (2-11)

Since displacements are generated only in the z direction, the other stress components are zero.
Equation 2-11 shows that the stress 74, becomes infinitely large as r approaches zero. Since this is



76  Chapter2 Yielding and Plastic Flow

Figure 2.15 Elastic distortions surrounding
screw dislocation. (Reprinted with permission
from Hull,10 Introduction to Dislocations,
Pergamon Press, Elmsford, NY, 1965.)

(@) (b)

unreasonable, there exists a limiting distance r from the dislocation center (estimated to be 0.5 to
1 nm) within which Eq. 2-11 is no longer applicable. For the rectangular coordinates shown in
Fig. 2.15b, the shear stresses surrounding the screw dislocation can also be given by

o Gb y
xz2 — tzx — T S _"95
27 x% + y?
G x (2-12)
R Tyt

Again all other stresses are zero.
The stress field surrounding an edge dislocation is more complicated, since both hydro-
static and shear stress components are present. In rectangular coordinates these stresses are
: 4
given by

Gby  (3x% +y?)

T T a1 ) (2 1y2)?
oy = + 32 (¥ — )
2l =) (2 427 @-13)
Gbx (x> —y?)
'Exy =

~ T (1) (x2 4 y2)?

0z = V(0xx + 0Oyy)

Txz Tox = Ty = Ty = 0
where v =Poisson’s ratio, Comparing Eq. 2-13 with Fig. 2.16, we find a region of pure
compression directly above the edge dislocation (X = 0) and pure tension below the bottom edge
of the extra half plane. Along the slip plane (¥ =0) the stress is pure shear. For all other positions
surrounding the dislocation, the stress field is found to contain compressive and/or tensile
components as well as a shear component.

The elastic strain energy is another elastic property of a dislocation. For the simple case of
the screw dislocation, this quantity may be given by

1 [
Egcrew = E/ T, bdr (2-14)

o
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Figure 2.16 Elastic stress field surrounding
an edge dislocation. (From Read,3Dislocations
ﬂ/ in Crystals; © McGraw-Hill Book Co., New
L York, 1953. Used with permission of McGraw-

o
| e Hill Book Company.)
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Note that the energy is defined for the region outside the core of the dislocation rq to the outer
boundaries of the crystal r| (see Fig. 2.15). Combining Eqs. 2-11 and 2-14, we get

1 ("Gb?dr Gb* r
Egcrew = 5/ o - (2-15)
rn 2t r 4w
The elastic energy of the edge dislocation is slightly larger and given by
sz r
E =——In— 2-16
edee = 4 (1 —v) n ro (2-16)

Since a general dislocation contains both edge and screw components, its energy is intermediate to the
limiting values given by Eqgs. 2-15 and 2-16. For purposes of our discussion it is sufficient to note that

E = aGb? (2-17)

where

E = energy of any dislocation
o = geometrical factor with « taken between 0.5 and 1.0

A particularly important consequence of Eqs. 2-15 to 2-17 is that slip will usually occur in
close-packed directions so as to minimize the Burgers vectors of the dislocation. The preferred
slip directions in major crystal types are given in Section 2.2. Equations 2-15 to 2-17 also allow
one to determine whether or not a particular dislocation reaction will occur. From Eq. 2-9, such
a reaction will be favored when

b} > b3 + b3

(neglecting possible anisotropy effects associated with G).

Two other elastic properties of a dislocation are its line tension and the force needed to move
the dislocation through the lattice. The line tension 7 is described in terms of its energy per unit
length and is given by

T x Gb* (2-18)
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0.3 Figure 2.17 Force between
parallel edge dislocations.
Curve A corresponds to
dislocations of the same sign.
Force reversal when X <Y
causes like dislocations to
become aligned as in a tilt
boundary. Curve B

| corresponds to dislocations

8y  of opposite sign. Unit of

force Fy is Gb2/2m(1 — v)-x
(2 — Y202 +yH)2.18
(From A. H. Cottrell, The
Properties of Materials at
High Rates of Strain,
Institute of Mechanical
Engineering, London, 1957.)
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The line tension acts to straighten a dislocation line to minimize its length, thereby lowering the
overall energy of the crystal (see Fig. 2.9¢). Consequently, it is necessary to apply a stress T so
that the dislocation line remains curved. This stress is shown to increase with increasing line
tension T and decreasing radius of curvature R where

T

— 2-19
T X bR ( )
Combining Egs. 2-18 and 2-19, we find that
Gb
T — (2-20)
R

This relationship will be referred to in Section 3.2.1.

Finally, the force acting on a dislocation is found to depend on the intrinsic resistance to
dislocation movement through the lattice, the Peierls-Nabarro stress (Section 2.1.4), and inter-
actions with other dislocations. As shown by Read? for the case of parallel dislocations, screw
dislocations will always repel one another when the Burgers vectors of both dislocations are of the
same sign; they will always attract one another when the signs of the Burgers vectors are opposite.
In either case, the magnitude of the force is inversely proportional to the distance between the two
dislocations. The force between two edge dislocations is complicated by areversal in sign when the
horizontal distance between two dislocations becomes less than the vertical distance between
the two parallel slip planes (Fig. 2.17). Consequently, like edge dislocations are attracted to one
another when x <y. As a result, like edge dislocations can form stable arrays of dislocations
located vertically above one another in the form of simple tilt boundaries (Fig. 2.6).

2.1.7 Partial Dislocations

As noted in the previous section, the likelihood that dislocation by will dissociate into two
dislocations by and b3, often referred to as Shockley partial dislocations, depends on whether the
sum of the elastic energies of partial dislocations by and b3z is lower than the elastic energy
associated with dislocation by. From Eq. 2-17, the dissociation will occur when

Gb? > Gb3 + Gb3

Using the FCC lattice as a model, it can be shown that the whole dislocation by, oriented in
the (110) close-packed direction, can dissociate into two dislocations of type (112). We see
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(b)

Figure 2.18 (a) Path of whole and partial (Shockley) dislocations; (b) Shockley b, and b3 surrounding stacking
fault region A; (c) Long stacking fault ribbons (bands of closely spaced lines) in low SFE 18Cr—8Ni stainless steel.
Faults are bounded at ends by partial dislocations. Thin black bands are mechanical twins. (After Michelak!7;
reprinted with permission from Metals Handbook, Vol. 8, American Society for Metals, Metals Park, OH, © 1973.)

from Fig. 2.18a that the motion of the atoms on the slip plane is from A to B to C rather than
directly in the close-packed direction AC. That is, the whole dislocation AC dissociates into two
partial dislocations, AB and BC. For example,

a .- a - a-—
— 1101 — 211 +=|112
2[0]—>6[ ]+6[ ]

From Eq. 2-17

“2(1+0+1)>“2[4+1+1]+“2[1+1+4]
4 36 36

a2 a2

_>_

23
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Table 2.5 Selected Stacking Fault Energies for FCC Metals

Stacking Fault Energy
Metal (mJ/m2 = ergs/cmz)
Brass <10
Stainless steel <10
Ag ~25
Au ~75
Cu ~90
Ni ~200
Al ~250

(For simplicity, any anisotropy in elastic shear modulus has been ignored.) Therefore, the
dislocation reaction will proceed in the direction indicated. It is possible to sense this
dislocation reaction in a tactile way. If you were to hold a sheet of close-packed Ping-Pong
balls (glued together, of course) in one hand and then slide it across a second sheet of balls
parallel to one of the close-packed directions, you will note that the sheets prefer to slide past
one another in zigzag fashion along the troughs between the balls on the second sheet. In the
FCC lattice, these troughs are parallel to (112) directions. Because of the reduction in strain
energy and the fact that the partials have similar vector components, these partials will tend to
repel one another and move apart. The extent of separation, denoted by area A in Fig. 2.18b,
will depend on the nature of the change in stacking sequence that occurs between b, and bs.
Movement of these partial dislocations produces a change in the stacking sequence from the
FCC type—ABCABCABC—to include a local perturbation involving the formation of a layer of
HCP material—ABCBCABC. Examples of stacking faults are shown in Fig. 2.18c. For an FCC
crystal, the layer of HCP material that is introduced will elevate the total energy of the system.
Therefore, the equilibrium distance of separation of two partials reflects a balance of the net
repulsive force between the two partial dislocations containing Burgers vector components of
the same sign and the energy of the associated stacking fault. According to Cottrell,* this
separation distance varies inversely with the stacking fault energy (SFE) and may be given by

G(bb3)

d=
2ty

(2-21)
where
d = partial dislocation separation
by, b3 = partial dislocation Burgers vectors
G = shear modulus
v = stacking fault energy

The SFE of alloy crystals depends on their composition, and comparative values for pure
metals also differ. Typical values for different elements and alloys are given in Table 2.5. For the
case of copper-based alloys, Thornton el al.”® showed SFE to be strongly affected by the
material’s electron/atom ratio. They found that when e/a > 1.1, the stacking fault energy usually
decreased to below 20 mJ/m?.

2.1.7.1 Movement of Partial Dislocations

The movement of the two Shockley partial dislocations is restricted to the plane of the fault,
since movement of either partial on a different plane would involve energetically unfavorable
atomic movements. Therefore, cross-slip of an extended screw dislocation around obstacles is
not permitted without thermally activated processes and, as a consequence, the slip offsets seen
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Figure 2.19 Photomicrographs revealing slip character. (a) Planar glide in low stacking fault energy material; (b) wavy glide in high
stacking fault energy material.

2.2 SLIP

on a polished surface will be straight (Fig. 2.19a). Such is the case for a material of low stacking
fault energy and widely separated partial dislocations. This type of dislocation movement is
called planar glide. By the application of a suitably large stress, however, it is possible to
squeeze the partial dislocations together against a barrier to form a whole dislocation. If this
recombined dislocation is of the screw type, it may cross-slip (recall Fig. 2.12). As you might
imagine, the stress necessary to recombine the partial dislocations will depend on the
equilibrium distance of separation of the partials, which in turn depends on the magnitude
of the stacking fault energy (Eq. 2-21). For materials with low stacking fault energy, partial
dislocation separation is large (on the order of 10 to 20b) and the force necessary for
recombination is large. Conversely, little stress is necessary to recombine partial dislocations
in a high stacking fault energy material where partial dislocation separation is small (on the
order of 1b or less). When cross-slip is easy, slip offsets on a polished surface take on a wavy
pattern (Fig. 2.19b), and this deformation is called wavy glide.

Having introduced the concept of dislocation glide-induced slip in crystalline materials, it
is appropriate to ask how this phenomenon can be used to predict the yield strength of a material
at the macroscopic (continuum) level. Or, put another way, without attempting to determine the
behavior of billions of individual dislocations, how can we determine when dislocation motion
will commence, and the material will begin to yield? One key to understanding the onset of
yield behavior is to recall that slip by dislocation glide can only occur when a shear stress is
present at some critical fraction of the theoretical shear strength. All of the mechanical tests
described in Chapter 1 can induce yielding in ductile materials, and yet most of them do not
involve shear loading—or do they? By taking a closer look at the connection between slip and
crystallography, it will become clear that uniaxial tensile or compressive loading can, indeed,
cause shear stress and motion of dislocations.

2.2.1 Crystallography of Slip

We saw in the previous sections that plastic deformation occurs primarily by sliding along
certain crystallographic planes, with one part of a crystal moving relative to another. This
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Figure 2.20 Diagram showing predominant slip systems in (a) FCC; (b) BCC; and (c) HCP crystals.

block-like nature of slip produces crystal offsets (called slip steps) in amounts given by
multiples of the unit dislocation displacement vector b. To minimize the Peierls stress, slip
occurs predominantly on crystallographic planes of maximum atomic density. In addition, slip
will occur in the close-packed direction, which represents the shortest distance between two
equilibrium atom positions and, hence, the lowest energy direction. As shown in Fig. 2.20, the
dominant slip systems (combinations of slip planes and directions) vary with the material’s
crystal lattice, since the respective atomic density of planes and directions are different. Most
metals used for load-bearing purposes have one of three crystal structures: face-centered-cubic
(FCC), body-centered-cubic (BCC), and hexagonal close-packed (HCP). Ceramic materials
generally have more complicated crystal structures, but the principles underlying the crystal-
lography of slip are the same as for metals.

For the case of FCC crystals, slip occurs most often on {111} octahedral planes and in
(110) directions that are parallel to cube face diagonals. In all, there are 12 such slip systems
(four {111} planes and three (110) slip directions for each {111} plane). Other FCC slip
systems have been found but will not be considered here since they are activated only by
unusual test conditions.

In BCC crystals, slip occurs most easily in the (111) cube diagonal direction and on {110}
dodecahedral planes. Slip may occur in the (111) directions on {112} and {123} planes as
well, particularly at moderate to high temperatures. A total of 48 possible slip systems can be
identified, based on combinations of these three slip planes and the common (111) slip
direction. The fourfold greater number of slip systems in BCC as compared to FCC crystals
does not mean that the former lattice provides more ductility; in fact, the reverse is true
because FCC crystals have a much lower Peierls-Nabarro stress and thus contain more mobile
dislocations.

Prediction of the preferred slip systems in HCP materials is not an easy task, despite
the presence of clear close-packed planes in the ideal HCP structure. On the basis of the
Peierls stress argument wherein the most densely packed planes of greater separation
would be the preferred slip planes, one would expect the active slip planes in real
hexagonal crystals to vary with the c/a ratio (see Fig. 2.20c). That is, if the c/a ratio is
greater than that for ideal packing (1.633), the basal plane {0001} should be the preferred
slip plane as seen for the case of zinc and cadmium, and so the slip system would be {0001}
<11§O). On the other hand, when c/a <1.633, then the {1100} prism planes become
atomically more dense relative to the basal plane. For this case, {1010} prism slip would
be preferred in the <1 120) close-packed direction (Fig 2.20). This has been found true for
the case of zirconium and titanium (Table 2.6). Unfortunately, this neat trend is not true for
cobalt, magnesium, or beryllium. Researchers have sought with little success other
explanations to account for the observed slip behavior of these three metals.2! On the
other hand, when c/a > 1.633, the basal plane should be the preferred slip plane as shown
for the case of zinc and cadmium.
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Table 2.6 Observed Dominant Slip Planes in Hexagonal Crystals

Metal ¢/a Ratio Observed Slip Plane
Be 1.568 {0001}
Ti 1.587 1010}
7r 1.593 §1010}
Mg 1.623 {0001}
Co 1.623 {0001}
Zn 1.856 {0001}
Cd 1.886 {0001}

Thus far, our discussion has focused on the importance of the relative atomic density of
crystallographic planes and directions in deciding whether a particular plane and direction
combination could serve as a potential slip system. Certain slip-system combinations of
ceramic crystals seem reasonable on the basis of density considerations, but are negated by
the effects of strong directional bonding in covalent crystals or electrostatic interactions in ionic
crystals. Since such atomic movements would be energetically unfavorable, the number of
potential slip systems in these materials is restricted as is their overall ductility (except at
relatively high test temperatures). A compilation of reported slip systems in selected ceramic
crystals is given in Table 2.7.

The ductility of a material depends also on its ability to withstand a general homogeneous
strain involving an “arbitrary shape change” of the crystal. An arbitrary shape change is defined
as plastic deformation that can occur under the imposition of any combination of shear strains.
Von Mises?3 showed that it is possible for a material to accommodate such a shape change
when five independent slip systems are activated. If fewer than five independent slip systems are
available, then some combinations of strains will cause immediate fracture instead of plasticity.
If we allow one slip system to account for each of the six independent components of strain
(Fig.2.21), a total of six such systems would seem to be indicated; however, plastic deformation
is a constant-volume process where &yy + &y + &;; = 0, thereby reducing to five the number of
independent slip systems.

An independent slip system is defined as one producing a crystal shape change that cannot
be reproduced by any combination of other slip systems. On this basis, Taylor showed that for
the 12 possible {111}(110) slip systems in FCC crystals, only five are independent. Further-
more, Taylor found there to be 384 different combinations of five slip systems that could
produce a glven strain, the activated combination belng the one for which the sum of the glide
shears is a minimum. Likewise, Groves and Kelly found 384 combinations of five sets of
{110} (111) slip systems to account for slip in BCC metals. Since slip in BCC metals can occur

Table 2.7 Observed Slip Systems in Selected Ceramics??

Material Structure Type Preferred Slip System
C, Ge, Si Diamond cubic {111} TlO)
NaCl, LiF, MgO Rock salt {110} (110)
CsCl Cesium chloride {110} (001)
CaF,, UO,, ThO, Fluorite {001} (110)
TiO» Rutile {101} lOT)
MgAl,Oy Spinel {111} (110)

Al,O3 Hexagonal {0001} (1120)
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Figure 2.21 Diagram showing orientation of
slip plane and slip direction in crystal relative to
the loading axis.

Normal to
slip plane

I~ Slip direction

also on {112} (111) and {123} (111) systems, the total number of combinations of five
independent slip systems becomes incredibly large (as shown by Chin and coworkers, 2027 who
have relied on computer techniques to identify the preferred slip-system combinations for the
case of BCC metals).

Difficulties arise when one seeks five independent slip systems in the hexagonal materials.
Of the three possible {0001} ﬁl 120) slip systems, only two are independent.?> Similarly, only
two independent {0010} <1120> slip systems can be identified from the three possible prism
slip systems. Although four independent pyramidal {001 1}(1 120) slip systems may be
identified from a total of six such systems, the resulting deformations can be produced by
simultaneous operation of the two independent basal and prism slip systems, respectively.
Consequently, a fifth independent slip system is still needed. Besides some deformation
twinning (see Section 2.6), additional non-basal slip with a c-axis Burgers vector component
is necessary to explain the observed ductility in hexagonal engineering alloys,28

2.2.2 Geometry of Slip

It has been shown that the onset of plastic deformation in a single crystal takes place when
the shear stress acting on the incipient slip plane and in the slip direction reaches a critical value.
Recall from Chapter 1 that a shear stress is defined as a force applied parallel to, and distributed
over, a certain plane area. From Fig. 2.21, we see that the cross-sectional area of the arbitrary
slip plane depicted is given by

Ao

cosd (2-22)

Aslip plane —

where
A = cross-sectional area of single crystal rod
¢ = angle between the rod axis and the normal to the slip plane

Furthermore, we can treat the applied load, P, as a vector and therefore determine a
component normal to the slip plane and one parallel to the slip plane; by definition, the latter
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component is a shear force. Thus, the shear component of the applied load that lies in this plane,
resolved in the slip direction indicated, is given by

Presolved = Pcosi (2-23)

where
P = axial load
/ = angle between load axis and slip direction

By combining Eqs. 2-22 and 2-23 the resolved shear stress acting on the slip system is
P
TRSS = —— COS ¢ COS A (2-24)
Ag

where the term cos¢ cos/ represents an orientation factor (often referred to as the Schmid
factor). Note that P/A is just the applied axial stress, o, so the resolved shear stress, Tggg, will
change as the applied stress changes. Plastic deformation will occur when trgg reaches a
critical value, tcgss, which represents the shear yield strength of the single crystal. Unlike
TRsss the critical resolved shear stress, Tcrss, 1S a fixed value for a given material processed to
a certain state of strength. The relationship between the uniaxial yield stress, oy, and the critical
resolved shear stress in a single crystal is therefore

TCRSS = OyCOS ¢ cos A (2-25a)
or
! (2-25b)
oy =1 —_ -
Y CRSS\ cos ¢ cos A

From Eq. 2-24, we see that yielding will occur most readily on the slip system possessing
the greatest Schmid factor. Consequently, if only a few systems are available, such as in the case
of basal slip in hexagonal zinc and cadmium, the necessary load for yielding can vary
dramatically with the relative orientation of the slip system with respect to the loading axis
(i.e., the Schmid factor).?%:39 For example, the axial stress necessary for yielding anthracene
crystals (Fig. 2.22a, b) varies dramatically with crystal orientation, while the critical resolved
shear stress is unchanged.31 The invariance of tcggs at the point of yielding for these
anthracene crystals is best appreciated when the data from Fig. 2.22b are replotted as tggg
vs. the critical axial stress, P/A (Fig. 2.22c). (Note that the curve drawn in Fig. 2.22b was
computed from Eq. 2-24 using a value of 137kPa.) Clearly, yielding occurs when
(P/Ap)cosgcos/ values reach a critical level (i.e., Tcgss)-

Furthermore, the stress normal to the slip plane

P
op = —cos’ (2-26)
Ao

can vary considerably without any correlation to the onset of yielding, as shown in Fig. 2.22d.
As another example, Andrade and Roscoe? found for cadmium that measured values of TCRSS
varied only by 2% for all crystal orientations examined, while the normal stress o, experienced
a 20-fold change. This underscores the fact that it is the shear stress and not the normal stress on
a particular slip system that is critical for yielding.

I A solid component of coal-tar constructed from benzene rings, and therefore possessing strong hexagonal symmetry.
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Figure 2.22 Yield behavior
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EXAMPLE 2.1

Three cylindrically-shaped tensile samples, each 12mm in diameter, were machined from three different
spherically-shaped single crystals. Samples A and B yielded with applied loads of 77.1 and 56 N, respectively.
Does the difference in load level indicate that the crystals possessed different strength levels? Also, what load
level would be necessary to cause Sample C to deform and what is the controlling stress for yielding?

The fact that different load levels were needed to cause yielding in Samples A and B may indicate that the
materials in the two rods possessed different properties. Then, again, the materials may have been identical
but, instead, machined at arbitrarily different orientations from the three spherically shaped single crystals.
To resolve this issue, additional information is needed. Specifically, it is necessary to determine the
crystallographic orientation of the three single crystals, relative to their respective loading directions.
X-ray diffraction studies determined that the angles between the tensile axis and both slip plane normals and

slip directions are

¢ 2 P
Sample A 70.5 29 77.1
Sample B 64 23 56
Sample C 13 78 ?
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From Eq. 2-24, the resolved shear stresses for yielding in Samples A and B are

77.1
(6 x 10*3)2(
56
7(6 x 10—3)2(

P
Ta = ycos ¢pcos i = c0s 70.5)(cos 29) = 199,029 Pa

P
B = Kcosqﬁcos A= cosS 64)(COS 23) = 199,803 Pa

By contrast, the stress normal to the slip plane is given from Eq. 2-26 to be

P 5 77.1 2
op = —C0s“¢p = —————c0s7(70.5) = 75,961 Pa
A 7(6 x 1073)? (70.5)
56
2 2
0B = —cos“¢p = ————cos“(64) = 95,152 Pa
57 a (6 x 10-3)? (64

We conclude that the strengths of the two samples are similar (approximately 199 kPa) and that yielding is
controlled by the critical resolved shear stress acting on the slip system rather than the stress acting normal to the
slip plane. It follows that the load needed to deform Sample C will generate a shear stress of 199 kPa on the
active slip system.

Therefore,

P P
Tc=—cos¢pcosA = ———(cos 13)(cos 78) ~ 199,000 Pa
c = reosd 10 s 19(eosT8)

S.P=111N

2.2.3 Slip in Polycrystals

Most load-bearing materials are not used in single crystal form, so what is the relevance of
the preceding discussion to yield in a polycrystal that has an enormous number of grains, each
with its own orientation with respect to the loading axis? Each grain has its own resolved shear
stress on the most likely slip system, and so would be expected to yield at a different value of
applied uniaxial stress. As such, some grains within the material will be more resistant to yield
than others. Furthermore, if one grain yields and changes shape, that shape change must be
accommodated in some way by the surrounding grains, or grain boundary cracks will develop.
This compatibility constraint is an additional source of resistance to yield that is not found in
single crystals.

Taylor addressed these concerns by calculating an average reciprocal Schmid factor (the
Taylor factor M = 1/cos¢ cos/) for a polycrystalline material, assuming that the grain orientations
are random and that all grains experience the same strain. He also assumed that multiple slip could
take 3place over the required five independent slip systems to allow for arbitrary shape change-
5.24:32 In doing so, he showed that the value of the resulting average reciprocal Schmid factor for
FCC materials deforming by {111 }<1T0> slip is M~ 3.1. This calculation was confirmed by
Bishop and Hill.33 Kocks concluded that the Taylor factor for BCC materials deforming at low
temperatures by { 110} (111) slip was the same as for FCC.3* Recall, however, that there are several
slip systems in BCC metals that contain {111) directions and are of similar packing density. For BCC
slip acting simultaneously on {110}, {112}, and {123} planes in (111) directions, M ~ 2.7.3% From
Eq. 2-25b we can see that this decrease in the Taylor factor would correlate with a decrease in the
uniaxial yield strength, even though the fundamental critical resolved shear strength of the individual
grains is unchanged. The process of simultaneous slip on multiple BCC slip systems is called pencil
glide because of the faceted slip surface that can result.
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2.3 YIELD CRITERIA FOR METALS AND CERAMICS

The preceding discussion of yielding was framed in terms of a simple uniaxial load that
causes the onset of plastic deformation when the resolved shear stress on a certain slip system
exceeds the critical resolved shear stress for the material. This principle also can be used to
predict yielding under complex loading conditions. In Chapter 1, the combined elastic behavior
of multiple stresses was described using the generalized Hooke’s law. It can now be appreciated
that a different interplay of multiple normal loads must be assessed, along with the influence of
constraints imposed by contiguous grains, to determine the resolved shear stress on potential
slip systems in a given grain.

Figure 2.23 depicts three idealized loading scenarios, two of which are uniaxial and one of
which is biaxial. In a simple normal stress yield theory, yielding would occur whenever any of the
normal stress components (labeled o in the figure) exceeds a certain critical tensile (or
compressive) value. This does not match experimental observations of multiaxial loading,
however." Instead, we must consider the shear stresses induced by the normal stresses. In
each case depicted in Fig. 2.23, a plane and a slip direction within that plane 45° to the loading axis
is shown along with the sign of the shear stress resolved onto that particular slip system. The two
uniaxial cases create equal but opposite resolved shears on this particular plane. It can be seen for
the case of the equal biaxial stress state that the resolved shear stresses on this slip system cancel.
Assuming that no other slip systems exist, there is therefore no possibility of yielding regardless of
how large the applied stresses become. If the biaxial stresses are not equal then only partial
cancellation occurs, and yielding is possible but will occur at higher applied stresses than under
uniaxial loading. (Note that the resolved shear stresses occur in a different coordinate system than
the applied normal stresses, so there is no conflict with the lack of coupling between elastic normal
and shear stresses described by the generalized Hooke’s law for isotropic materials.)

The Tresca yield criterion uses this principle to predict the onset of yielding in a
polycrystalline material when the maximum resolved shear stress in the material exceeds
the shear strength associated with yielding measured by the uniaxial tension test:

Omax — Omi
Tmax = % > TCRSS (2-27)

where
Tmax = Maximum shear stress possible for any slip system orientation
Omax,min = largest and smallest principal tensile stresses, respectively

For uniaxial loading conditions (o5 = o3 =0), the shear yield strength is found to be equal to
one-half the yield strength in tension. This is to be expected because the maximum possible
value of the Schmid factor is (cos 45 cos 45)=0.5.

The Tresca theory provides a reasonable description of yielding in ductile materials, but the
maximum distortion energy or von Mises yield criterion is generally preferred because it is based
on better correlation with actual test data. In this theory, yielding is assumed to occur when the

TG T o Figure 2.23 Resolved shear stress on a 45°

plane under (a) vertical uniaxial loading,
/)(/ )//(
Tr
= TRSSZO

(D) horizontal unaxial loading, and (c) equal
biaxial loading.
@ (b) ©

ii Although it is not sufficient for predicting multiaxial yielding, it may work as a criterion for fracture of brittle materials where the normal
stress (and not the shear stress) may be the critical factor.
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distortional energy in a component that experiences multiaxial loading is equal to the distortional
energy required to induce a shape change during a tensile test. (Recall that plastic deformation
conserves volume. The energy associated only with a volume change must be elastic in nature and
is therefore not included in this analysis.) To characterize the distortional energy (proportional to
o2/E) within a specimen or component that experiences multiaxial loading, it is convenient to
consider an equivalent tensile stress, or a von Mises stress, 0, given by

e :\f\/(azol)z+(63 —01)* + (03 — )’ (2-28)

where 01, 05, 03 = principal stresses. The use of the normal stress differences ensures that only those
components that lead to shear stress are considered. The equivalent stress can also be described in
terms of the tensile and shear stresses acting on three arbitrary orthogonal planes wherein

V2 2 2 1/2
TeT [(Uyy = o)+ (02 — o)’ + (02 —oyy)” + 6(131 + T)Zcz + t)zfy)} (2-29)

If o, equals the yield strength from a uniaxial tensile test, yielding in the multiaxially loaded
sample is predicted.

Alternatively, the so-called octahedral shear stress, T4, existing under multiaxial loading
can be compared to the critical octahedral shear stress, 7,4, determined under unaxial loading
as another way to express the von Mises yield criterion. The octahedral shear stress is the
resolved shear stress that exists in equal magnitude on each of the eight octahedral planes that

make up a regular octahedron about the principal stress axes (each of which has a direction
cosine with respect to the principal axes of 1/y/3). The octahedral shear stress is defined as

1
o =31/ (01 = 027 + (92— 33)* + (01 — 032 (2:30)

and the critical octahedral shear stress is related to the uniaxial yield strength as

! V2
Toet0 =3/ (07)” + (0y)? = "oy (2-31)

Although the form of the von Mises criterion is somewhat different from that of the Tresca
criterion, the necessity of shear stress for inducing plasticity is retained. A two-dimensional
depiction of yield loci for the normal stress, shear stress, and distortion-energy theories is shown in
Fig. 2.24. The normal stress threshold is a square, the von Mises threshold an ellipse, and the

_ ' o, Figure 2.24 Failure envelopes for normal stress, Tresca,
Distortion and distortion energy theories. Failure occurs when stress
fr?ergy combinations fall outside the envelope for applicable theory.
eory

—_——\— —

Tresca Normal stress
theory theory
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Tresca threshold a six-sided polygon. Note that all three failure theories predict the same yielding
conditions under uniaxial (o] = 01; 0, = 03 =0) and balanced biaxial (¢ = 03; 03 =0) loading
conditions; however, different failure conditions are predicted for conditions of pure shear
(01 = —09; 03 =0) with the distortion-energy theory predicting yielding when the applied stress is
oyl\/3=0.57Toy. A three-dimensional version of the yield loci would reveal that the von Mises
yield surface is a cylinder with radius oy+/?; and an axis that lies along the hydrostatic axis
(01 =0, =03). The Tresca yield surface would be a hexagonal prism that fits just inside the von
Mises cylinder, so it is slightly more conservative predictor of yield (i.e., it predicts slightly
smaller yield stresses for most stress states). The two-dimensional depiction in Fig. 2.24 can
therefore be understood as a projection of these shapes onto the o1 and o, axes (o3 =0). Most
data conform best to predictions of the von Mises theory, but both options are generally available
to users of finite element computing codes that calculate stresses and strains in components with
complicated shapes. For a more detailed discussion of such classical failure theories, see the text
by Juvinall.3¢

Regardless of which yield criterion is used, the prediction of yield under multiaxial loading
is based on a comparison to an experimental measurement (usually uniaxial tension). What
experimentally-derived value of strength should be used for this purpose? This quantity is
difficult to define unequivocally, since the point where plastic flow appears to begin will depend
on the sensitivity of the displacement transducer. The more sensitive the gage, the lower the
stress level where some evidence of plastic flow is found. Special capacitance strain gages exist
that have been used to measure strains in the range of 10°. In fact, a number of studies>’
dealing with the mechanical behavior of materials in this microstrain region have been
undertaken as a result of this breakthrough in instrumentation. These investigations have
shown, for example, that plastic deformation—the irreversible movement of dislocations—
occurs at stress levels many times lower than the conventionally determined engineering yield
strength. However, for engineering purposes it is usually the case that the 0.2% offset yield
strength, as defined by ASTM Standard ES, is used.®

2.4 POST-YIELD PLASTIC DEFORMATION

Now that the micro- and macro-scale conditions associated with the onset of yielding have
been established, it is time to examine what happens to a typical metal at the macro scale as
plastic deformation progresses. Much more will be said about micro-scale plasticity processes
in Chapter 3.

2.4.1 Strain Hardening

When a material has the capacity for significant plastic flow, the stress—strain curve often
assumes the shape shown in Fig. 2.25. Here we see that the initial linear elastic region is
followed by a smooth parabolic portion of the curve, which is associated with homogeneous

Figure 2.25 Ductile stress—strain behavior revealing

c elastic behavior followed by a region of homogeneous

2= Corrected plastic deformation. Data are plotted on the basis of
engineering and true stress—strain definitions, as labeled.

True g~

Engineering
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plastic deformation processes such as the irreversible movement of dislocations in metals and
ceramics, and a number of other possible deformation mechanisms in polymers. That the curve
continues to rise to a maximum engineering stress level (the tensile strength) reflects an increasing
resistance on the part of the material to further plastic deformation—a process known as strain
hardening. The homogeneous plastic portion of the true stress-strain curve (from the onset of
yielding to the point of maximum load) may be described empirically by a relationship generally
attributed to Hollomon>?, although Biilfinger*® proposed a similar parabolic relationship between
stress and strain almost 200 years earlier. Regardless of origin, the true stress is related to true
plastic strain by:

Oy = KS[n (2-32)

where
o= true stress
& = true plastic strain
n = strain-hardening coefficient
K = strength coefficient, defined as the true stress at a true strain of 1.0

To ensure that the strain hardening behavior is adequately represented, a minimum of five
engineering stress and strain pairs are extracted at equal strain intervals from the portion of the
stress—strain curve in which homogeneous plasticity occurs."* Typically the data set begins
shortly after the yield point (or the lower yield point if one exists—see Section 2.4.3) and ends
at the onset of necking (the maximum engineering stress). The engineering values must be
converted" to true values using Egs. 1-4 and 1-5. (It is also possible to evaluate strain hardening
after necking commences if cross-section measurements are available.) Although Eq. 2-32 is
written in terms of the true plastic strain, it is generally acceptable to use the true total strain
as long as the elastic strain (¢,; = 0,/E) makes up no more than 10% of the value. Noting that
Eq. 2-32 may be rewritten as Ino; = InK + nlng;, so parameters n and K may be determined by
plotting" In o, vs. In &;, and evaluating the slope and the intercept at ¢, = 1. If Eq. 2-32 describes
the material behavior perfectly, the plot will be linear and a single n value will result. However,
this is not always the case, which reflects the fact that this relationship is only an empirical
approximation. I When a nonlinear log-log plot does result for a given material, the strain-
hardening coefficient is often defined at a particular strain value or over a particular range of
strain. In general, n increases with decreasing strength level and with decreasing mobility of
certain dislocations in the crystalline lattice.

The magnitude of the strain-hardening coefficient reflects the ability of the material to resist
further deformation. In the limit, » may be equal to unity, which represents ideally elastic
behavior (such that K is essentially E), or equal to zero, which represents an ideally plastic
material. Selected values of strain-hardening coefficients for some engineering metal alloys
determined using Eq. 2-32 are given in Table 2.8. (Note that n values are sensitive to
thermomechanical treatment; they are generally larger for materials in the annealed condition
and smaller in the cold-worked state.)

Although the Holloman relation is widely used to describe the behavior of a strain-
hardening material undergoing plastic deformation, it cannot be used to depict the entire stress—
strain curve from beginning to end. Furthermore, it implies an abrupt transition from elastic to
plastic behavior that is generally not seen with real materials. A convenient model that captures
elastic and plastic behavior with a gradual transition between the two was proposed by Ramberg
and Osgood in 1943 as an aid in the design of aircraft."! The basic form of the Ramberg-Osgood

iit ASTM E646, ASTM International, West Conshohocken, PA.

iV Repeated here for convenience: opye = Oeng(l + €eng) and &gye =In(l + &eng)

V Base 10 logs are also fine.

vViw, Ramberg and W. R. Osgood, NACE Technical Note No. 902, Washington, DC (1943).



92 Chapter2 Yielding and Plastic Flow

Table 2.8 Selected Strain-Hardening Coefficients

Material Strain-Hardening Coefficient, n
Stainless steel 0.45—-0.55
Brass 0.35—-0.4
Copper 0.3—-0.35
Aluminum 0.15-0.25
Iron 0.05-0.15

relation reflects the fact that the total true strain is a simple sum of the true elastic and plastic
strains, expressed in terms of the true stress as

Ot 0\ ko
b1 =t + 91 = 7+ Kro (E) (2-33)
where
0, = true stress
Kgro = Ramberg-Osgood strength coefficient
ngo = Ramberg-Osgood strain hardening exponent

When the true stress is very low, the elastic strain term dominates and the behavior is nearly
linear elastic. As the stress increases, the plastic strain term plays an increasing role and the
slope gradually changes, approaching a regime in which plasticity dominates.

Itis also possible to introduce an explicit yield strength term, o, to define a new parameter,
o :K(oy/E)”’l, so that Eq. 2-33 can be expressed as

nro
_ o @) gt -
o=t a(E (Gy> (2-34)

There is no distinct yield point on the Ramberg-Osgood stress—strain curve, so any reasonable
value for the yield stress may be chosen, but this choice also determines «. When o, =0, the
true plastic strain (i.e., the offset strain at yield) is given by &qffser = @o,/E. This makes it
possible to select a yield strength value at a chosen strain offset (such as the oft-used 0.002).

The Ramberg-Osgood strain hardening exponent, ng, can be extracted from the slope of a
Ing; vs. Ino plot (note that the axes are reversed as compared to the Holloman expression).
When evaluated for very large plastic strains, ngo = 1/n, so values of 2-5 (or even larger) are
common. In practice, it is often useful to rewrite the Ramberg-Osgood relation so that it more
closely resembles the Holloman relation by subtracting the elastic strain from the total strain to
leave only the true plastic strain

g o\ "ro
b1 = 1 — 7 = Ko (E’) (2-35a)
E"ro
(K ).spl — ol (2-35b)
RO
E \
oy = KT—RLO SPRIO = HSZI (2-35C)
RO

In this form (Eq. 2-35¢), the strain-hardening exponent (n) and strength coefficient (H) values
can be determined from a more conventional Inoy vs. Ingp, plot. Note that it is necessary to first
subtract the elastic strains from the true strains to solve for the plastic strains before plotting, as
in Eq. 2-35a—a step that is generally skipped when performing the Holloman analysis.
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Table 2.9 Slip Character and Strain-Hardening Coefficients for Several Metals

Stacking Fault Energy Strain-Hardening
Metal (mJ/m?) Coefficient Slip Character
Stainless steel <10 ~0.45 Planar
Cu ~90 ~0.3 Planar/wavy
Al ~250 ~0.15 Wavy

The direct connection between strain hardening and dislocation mobility makes it
possible to relate strain-hardening coefficients (from Table 2.8) with stacking fault energy
values (from Table 2.5) as shown in Table 2.9. One major implication of the dependence of
cross-slip on stacking fault energy is the dominant role the latter plays in determining the
strain-hardening characteristics of a material (discussed in more detail in Chapter 3). When
the stacking fault energy is low, cross-slip is restricted so that barriers to dislocation
movement remain effective to higher stress levels than in material of higher stacking fault
energy. That is to say, the low stacking-fault-energy material strain hardens to a greater
extent. Note that the strain-hardening coefficient increases with decreasing stacking fault
energy while the slip character changes from a wavy to a planar mode.

2.4.2 Plastic Instability and Necking

The true and engineering stress—strain plots from a tensile test reveal basic differences, as
shown in Fig. 2.25. While the engineering curve reaches a maximum at maximum load and
decreases thereafter to fracture, the true curve rises continually to failure. The inflection in the
engineering curve is due to the onset of localized plastic flow and the manner in which
engineering stress is defined (recall Chapter 1). To understand this, consider for a moment the
following sequence of events. When the stress reaches a critical level, plastic deformation will
occur at the weakest part of the test sample, somewhere along the gage length. This local
extension under tensile loading will cause a simultaneous area constriction so that the true local
stress is higher at this location than anywhere else along the gage length. Consequently, all
additional deformation would be expected to concentrate in this most highly stressed region.
Such is the case in an ideally plastic material (n =0). For all other materials, however, this
localized plastic deformation strain hardens the material in the highly stressed region, thereby
making it more resistant to further damage. At this point, the applied load must be increased to
produce additional plastic deformation at the second weakest position along the gage length.
Here again the material strain hardens and the process continues. On a macroscopic scale, it
appears that the gage length extends uniformly and there is a uniform reduction in cross-
sectional area. (Recall that plastic deformation is a constant-volume process.) Uniform
plasticity proceeds in this fashion as long as the increase in load-bearing capacity associated
with strain hardening is greater than the decreased load-bearing capacity due to the reduction in
cross-section area anywhere along the gage length. However, as the load required for continued
plasticity increases, the rate of strain hardening decreases. Eventually, the strain-hardening
capacity of the material exactly balances the change in cross-section area at a certain spot in the
material, and the maximum load-bearing capacity is achieved. After this point of maximum
load, further plastic deformation is localized in the same spot, and the true stress at that spot
increases continually with the subsequent areal contraction. The bar elongates preferentially in
this necked region. As it does so, the applied load required to sustain the plastic deformation
decreases as the material outside the necked area undergoes some degree of elastic unloading.
Since engineering stress is based on A, the decreasing load on the sample after the neck has
formed will result in the appearance of a decreasing stress. By comparison, the decreasing load
value is more than offset by the decrease in instantaneous cross-sectional area such that the true
stress continues to rise to failure even after the onset of necking, as shown in Fig. 2.25.
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Figure 2.26 (a) Engineering stress—strain curve. Tensile yield strength is defined at intersection of stress—strain
curve and 0.2% offset line. Points A, B, C, D, and E are the arbitrary stress levels shown in (b), a schematic
representation of specimen elongation along the gage length. Uniform extension occurs up to the onset of necking
(C). Additional displacements are localized in the necked region (D and E).

2.4.2.1 Strain Distribution in a Tensile Specimen

The total strain distribution along the specimen gage length is shown schematically in
Fig. 2.26 for various stress levels, as indicated on the accompanying engineering stress—strain
curve. Owing to the variation of elongation along the gage length of the tensile specimen,
engineers occasionally report both the total strain, (Ir— o)/l or In(///lp), and the uniform strain,
(l;, — lp)lg or In(l,,/1y), which is related to the elongation just prior to local necking (line C in
Fig. 2.26b). It should be emphasized that the total strain reported for a given test result will
depend on the gage length of the test bar. From Fig. 2.26, it is clear that as the gage length
decreases, the elongation involved in the necking process becomes increasingly more domi-
nant. Consequently, total strain values after necking commences will be larger for bars with
shorter gage lengths (for which the length of the necked region is a larger fraction of the total
length). For this reason, both specimen size and total strain data should be reported. ASTM has
standardized specimen dimensions to minimize variability in test data resulting from such
geometrical considerations. As noted in Table 2.10, the gage length to diameter ratio is
standardized to a value of about 4.

Table 2.10 Round Tension Test Specimen Dimensions>8

Diameter (D) Gage Length (L)
mm (in.) mm (in.)
12.5 0.5) 50 2.0)
8.75 (0.345) 35 (1.375)
6.25 (0.25) 25 (1.0)
4.0 (0.16) 16 (0.63)

2.50 0.1 10 (0.394)
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2.4.2.2 Extent of Uniform Strain

From the standpoint of material usage in an engineering component, it is desirable to maximize
the extent of uniform elongation prior to the onset of localized necking. It may be shown that the
amount of uniform strain is related to the magnitude of the strain-hardening exponent.

P = GTAi
dP = 0;dA; + Aido, (2-36)
Recalling that necking occurs at maximum load
dP=0
so that
doy  dA;
Ot N Ai
And, because constant volume requires that A;/; is also constant (Eq. 1-3),
Aidl; + 1;idA; = 0
dA;  dl;
A
Since dl/l = de, we find
dO't
= 2-37
Ot de; ( )

The discovery of this relationship as the critical condition for the onset of necking is due to
Considere in 1885. Connecting this relationship to the Hollomon relation (Eq. 2-32) we find that

Kel' = Kng'™!

Therefore,
n=g (2-38)

Thus, the true plastic strain at the point of necking instability is numerically equal to the strain-
hardening coefficient. The connection between n and g,,,..; means that the capacity of a material to
undergo large uniform elongations correlates directly with the material’s strain-hardening capabil-
ity. This is quite a useful relation because it can be difficult to unambiguously determine the strain at
necking from a stress—strain plot that is relatively flat near its peak. Thus it is common to use a strain-
hardening experiment to indirectly determine the limiting strain for homogeneous deformation.

2.4.2.3 True Stress Correction

In the preceding discussion, an implicit assumption was made regarding the stress state in an
unstable neck: namely, that it is uniaxial just as it was prior to necking. In reality, the development
of a neck creates a triaxial stress state in the local vicinity (Fig. 2.27). The new radial (o,) and
transverse (o) stresses that are induced are developed as a result of a Poisson effect. In order for
the more highly stressed material within the neck to undergo a large local extension associated
with an increase in load (as seen in Fig. 2.26), it should also undergo a large local decrease in cross-
section area. However, the material immediately outside the necked area experiences a much
lower stress level and smaller extension from the same increase in load, so the area change should
be small. The expected radial and transverse contractions in these adjacent areas are therefore in
conflict, so stresses in these directions must develop. Within the neck, tensile radial and transverse
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Figure 2.27 Triaxial tension stress distribution within
the necked region, which acts to constrain additional
deformation in the neck.

stresses are therefore present in addition to the expected normal stress. If the area change in the
neck is limited by this tensile constraint, the plastic extension in the neck also must be limited to
keep the volume constant. Put another way, once a triaxial stress state is induced in the neck then
the shear stresses available to drive dislocation motion are reduced (as seen by the Tresca or von
Mises yield criteria) and plastic deformation is limited.

To provide for additional plastic flow, the axial stress must be increased to overcome the
effect of the radial and transverse stresses. The stress values recorded on the true stress—strain
curve (Fig. 2.25) after the onset of necking reflect the higher axial stresses necessitated by the
local triaxial stress condition. Bridgman was able to correct the applied axial stress (oapp) to
determine the true stress (o¢,e) that would be necessary to deform the material were it not for
the presence of the triaxial stresses in the neck. The corrected true stress—strain curve shown in
Fig. 2.25 may be determined from the Bridgman*? relation

Otrue 1
oapp (1 +2R/a)[In(1 + a/2R)]

(2-39)

where R is the radius of curvature of the neck contour, and « is the radius of the minimum cross-
sectional area, as shown in Fig. 2.27. It is seen from this formula that the axial stress necessary
to produce a given level of plastic deformation will increase with increasing notch root acuity
for a given notch depth.

2.4.2.4 Failure of the Necked Region

At some critical point, the triaxial tensile stress condition within the necked region causes
small particles within the microstructure to either fracture or separate from the matrix. The
resulting microvoids then undergo a period of growth and eventual coalescence, producing an
internal, disk-shaped crack oriented normal to the applied stress axis. Final fracture then occurs by
a shearing-off process along a conical surface oriented 45° to the stress axis. This entire process
produces the classical cup—cone fracture surface appearance shown in Fig. 2.28. Sometimes the
circular region in the middle of the sample (called the fibrous zone) is generated entirely by slow,
stable crack growth, while the smooth shear walls are formed at final failure. Usually the fibrous
zone contains a series of circumferential ridges reflecting slight undulations in the stable crack
propagation direction. However, test conditions can be altered to suppress the extent of the slow,
stable crack growth region; instead, the crack continues to grow on the same plane but in unstable
fashion at a much faster rate. This new region, defined as the radial zone, contains radial markings
(Fig. 2.29) often associated with the fracture of oriented inclusions in test bars prepared from rod
stock. (More will be said of this fracture detail in Chapter 11.) The relative amount of fibrous,
radial, and shear lip fracture zones has been found to depend on the strength of the material and the
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Figure 2.28 Typical cup—cone fracture appearance of unnotched tensile bar: (@) cup portion; (b) cone portion.
(Courtesy of Richard Sopko, Lehigh University.)

(a)

Side view

F = Fibrous

R = Radial shear
S = Shear lip
Top view

(b)

Figure 2.29a Extent of fibrous, radial, and shear lip zones: (a) macrofractograph (Courtesy of Richard Sopko,
Lehigh University); (b) schema showing zone location. (After Larson and Carr™®; reprinted by permission of the
American Society for Metals, Metals Park, OH.)
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Figure 2.30 Effect of test temperature on relative size of fracture zones for AISI 4340 steel heat treated to R 46.
(After Larson and Carr*3; reprinted by permission of the American Society for Metals, Metals Park, OH.)

test temperature®> (Fig. 2.30). Since the internal fracture process depends on plastic constraint
resulting from the tensile triaxiality within the neck, the crack nucleation process could be
suppressed by introducing hydrostatic pressure. Indeed, Bridgman44 demonstrated that when a
sufficiently large hydrostatic pressure is applied, necking can proceed uninterrupted almost to
where the sample draws down to a point (Fig. 2.31).

Figure 2.31 Effect of increasing hydrostatic pressure in suppressing internal void formation within necked region.
(a) Atmospheric pressure, 10x; (b) 235-MPa hydrostatic pressure, 10x; (¢) 1000 MPa, 12x; (d) 1290 MPa, 12x;
(e) 1850 MPa, 12x; and (f) 2680 MPa, 18x. (After Bridgman®*; reprinted by permission of the American Society
for Metals, Metals Park, OH.)
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c Figure 2.32  Stress—strain behavior exhibiting a
narrow heterogeneous deformation region between
initial elastic and final homogeneous flow regions.
Onset of local yielding occurs at upper yield point A

A with corresponding load drop to B defined as the
lower yield point. After passage of the Liiders bands
B C throughout the gage section, homogeneous

deformation commences at C.

2.4.3 Upper Yield Point Behavior

In many body-centered-cubic iron based alloys and some nonferrous alloys, a relatively
narrow region of heterogeneous plastic deformation (with a range of approximately 1 to 3%
strain) separates the elastic region from the homogeneous plastic flow portion of the stress—
strain curve (Fig. 2.32). This segment of the curve is caused by interactions between
dislocations and solute atoms. After being loaded elastically to A, defined as the upper yield
point, the material is observed to develop a local deformation band (Fig. 2.33); the sudden onset
of plastic deformation associated with this Liiders band is responsible for the initial load drop to
B, defined as the lower yield point. Outside the Luiders band the material is still loaded
elastically. Since the upper yield point is very sensitive to minor stress concentrations,
alignment of the specimen in the test grips, and other related factors, measured values reflect

Figure 2.33 (a) Concentrated deformation (Liiders) bands formed in plain carbon steel test sample. The band will
grow across the gage section before homogeneous deformation develops at point C from Fig. 1.15. (b) Liiders band
development from weld-related residual tensile stresses. (Photo courtesy of P. Keating.)
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considerable scatter. For this reason, the yield strength of materials exhibiting this type of
behavior (Fig. 2.32) is usually reported as the lower yield-point value. The remainder of the
heterogeneous segment of deformation (B—C in Fig. 2.32) is consumed in the passage of the
Liiders band across the entire gage section. (Occasionally more than one band may propagate
simultaneously during this period.) When deformation has spread to all parts of the gage length,
the material then continues to deform in a homogeneous manner with work hardening, necking,
and eventual failure, as described previously. This localized plastic deformation phenomenon is
well known for low-C steels, in which interstitial carbon and nitrogen atoms can form
“atmospheres” around dislocations. These atmospheres strongly pin the dislocations, making
it difficult to move them initially (point A). However, once the dislocations break away from the
pinning solute atoms and become mobile, it is relatively easy to continue their movement (B to
(). Weaker yield point behavior associated with dislocation pinning by substitutional Mg atoms
in Al-Mg alloys has also been observed.* Yield points are also found in ionic and covalent
materials. These, and other related phenomena, are discussed more fully in Section 3.5.1.
The Luders bands associated with the inhomogeneous plastic deformation phenomenon
cause visible surface markings (or stretcher strains), often at ~45° to the tensile axis, that are
not desirable in parts for which surface finish is critical. The extent of the elongation associated
with the discontinuous yielding process is called the Yield Point Elongation (YPE) or the
Liiders strain, and is defined as the change in elongation between the upper and lower yield
points. A good surface finish requires that the YPE be minimized or avoided by appropriate
alloy design. Plastic deformation beyond the YPE stage also eliminates subsequent Liiders band
formation, although with a mild heat treatment it is possible for the solute atoms to reform
pinning atmospheres. This strain aging treatment restores the upper yield point behavior.

2.4.4 Temperature and Strain-Rate Effects in Tension

Brief mention was made in Section 2.4.2.4 of a temperature-induced transition in macroscopic
fracture surface appearance (as indicated in Fig. 2.30). Since this transition most often parallels
important changes in the strength and ductility of the material, some additional discussion is
indicated. It is known that the general flow curve for a given material will decrease with increasing
temperature 7 and decreasing strain rate & (Figs. 2.34a, b). The magnitude of these changes varies
with the material; body-centered-cubic metals (e.g., iron, chromium, molybdenum, and tungsten)
and ceramic materials are much more sensitive to 7'and ¢ than are face-centered-cubic metals (e.g.,
aluminum, copper, gold, and nickel), with polymeric solids being especially sensitive. Over the
years, a number of investigators have sought to define the overall response of a material in terms of
some generalized equation of state reflecting the dependence of true stress on strain, strain rate, and
temperature. The relationship between true stress and strain rate is of the same general parabolic

&

£>6,>§

@ (b) ©

Figure 2.34 Yield strength change as a function of (a) temperature and (b) strain rate. When the strain rate is
changed abruptly, (c) the strain rate sensitivity is evident in a corresponding change in stress.



2.4 Post-Yield Plastic Deformation 101

form as noted by the Holloman relationship in Eq. 2-32, and is given by
o, = Ki" (2-40)

where
m = strain-rate sensitivity factor
&= strain rate
K = material constant
o= true stress

In practice, m is determined by a “step test” in which the specimen is deformed at a constant
strain rate initially, then the strain rate is stepped up to a greater value for a short time before
returning to the original strain rate, as shown in Fig. 2.34c¢. Because logK = logo| — mlogé;
and logK = logoy — mlogéy, the step test allows the determination of m from the expression
m = log(oy/01)/log(é2/é1) when the stress values are measured at nominally the same strain
(i.e., on the step down from & to £;). When a series of strain rate steps are performed, m is often
found to be a function of the total strain.

For most metals m is low and varies between 0.02 and 0.2. Under certain conditions wherein
m > 0.3, a given material may exhibit a significant degree of strain-rate sensitivity in association
with superplastic deformation behavior (see Section 4.5). In the limit where m = 1, the stress—strain-
rate material response is analogous to that associated with Newtonian viscous flow (see Section 4.9).

Depending on the nature of the test or service condition, strain rates may vary by more than
a dozen orders of magnitude. At low strain rates, below about 1073 s~ !, material behavior is
characterized b]y its creep and stress rupture response (see Chapter 4) At strain rates between
103 and 105 s~ !, the material experiences impact conditions and may fail w1th reduced fracture
energy (Chapter 6). Ballistic conditions occur with strain rates above 10° s~! and involve the
shockwave—material interactions associated with such circumstances as projectile impact,
high-energy explosions, and meteorite impact with spacecraft (see Section 7.3.1).

Attempts have been made to characterize material properties in terms of parameters that
include both test tem erature and strain rate. For example, on the basis of simple rate theory,
Bennett and Sinclair*® proposed that the yield strength of iron and other body-centered-cubic
transition metals be described in terms of a rate—temperature parameter Tln(A/ s) where A is a
frequency factor with an approximate value of 108/sec for these materials. As seen in Fig.2.35, the

R Figure 2.35 Yield strength for seven
? ? 1{3 1? 1? steels in terms of the Bennett-Sinclair
parameter, T1n(A/£). (Reprinted with
2500 (— 1350 permission from A. K. Shoemaker and S. 1.
~ Rolfe, Engineering Fracture Mechanics,
D\ 2,319, © Pergamon Press, Elmsford, NY
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parameter provides good correlation for the case of seven steels. While the lower strength steels
reveal a somewhat larger yield-strength sensitivity to 7 and ¢ than do the stronger alloys at low
TIn(A/¢) levels, the seven curves are remarkably similar, reflecting comparable absolute changes
in yield strength with temperature and strain-rate variations. It is important to recognize, however,
that the relative change in yield strength with T1n(A /) is much greater in the lower strength alloys.

2.5 SLIP IN SINGLE CRYSTALS AND TEXTURED MATERIALS

Let us now consider in detail what happens to the shape and orientation of a single crystal
once it begins to yield. From Fig. 2.36 we see that slip on planes oriented x degrees away from
the tensile axis can occur in two ways. First, the planes can simply slide over one another
without changing their relative orientation to the load axis. This would be analogous to
offsetting groups of playing cards on a table. Since such lateral movement of the crystal planes
in a tensile bar would be forbidden by lateral constraints imposed by the specimen grips, the slip
planes are forced to rotate with x; < xo. X-ray diffraction studies have shown that crystal planes
undergo pure rotation in the middle of the gage length but experience simultaneous rotation and
bending near the end grips. If we focus attention on the simpler midregion of the sample, it can
be shown that the reorientation of the slip plane varies directly with the change in length of the
specimen gage length according to the relationship47

L;  siny

— = 2-41
Ly siny; ( )

where

Lo, L, = gage length before (0) and after (i) plastic flow
X0, Xi = angle between slip plane and stress axis before (0) and after (i) plastic flow

(Note that x + ® =90°. However, 4 + ® =90° only when the two vectors are coplanar.) By
analogy, the deformation-induced rotation of slip planes is similar to the rotation of
individual Venetian blind slats—the more you pull on the cord, the more the individual
slats change orientation.

Figure 2.36  Orientation of crystal slip
plane, (a) prior to deformation; () after
deformation without grip constraint

" Xi where crystal segments move relative to
one another but with no slip rotation;
S (c) after deformation with grip

constraint revealing slip plane rotation
in gage section (note x; < xo)-

Bending

7
7

@

(b) ©
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From the work of Schmid and Boas,*” when X0 = 4o, the shear strain vy, after a given
amount of extension, is found to be

1/2

1 L\* .,
Yy == (—) —sin“Ag — coslg (2-42)
siny Ly

Note that y is determined by the initial orientation of the glide elements and by the amount of
extension. Furthermore, Eq. 2-42 is valid when only one slip system is active, since multiple
slip involves an undefined amount of crystal rotation from each system. The resolved shear
stress is given by

) 1/2
sin“Ag } (2-43)

P .
T=-—sinyxg|l — ————=
A 0{ (Li/Lo)

For a detailed discussion of other relationships involving the shear stresses and strains in single
crystals, see Schmid and Boas.*’

2.5.1 Geometric Hardening and Softening

It is instructive to trace the path of rotation of the slip plane. This is accomplished most
readily with the aid of a stereographic projection."" For the purpose of this discussion, some
basic understanding of this method is desirable. For the crystal block shown in Fig. 2.37a,
imagine that a normal to each plane is extended to intersect an imaginary reference sphere that
surrounds the block. Now place a sheet of paper (called the projection plane) tangent to the
sphere. Next, take a position at the other end of the sphere diameter, which is oriented normal to

Figure 2.37 Geometric
constructions to develop a
stereographic projection.
(a) Intersection of plane
~ Projection plane normals or reference sphere.
(After C. W. Bunn, Chemical
« Reference sphere Crystallography, Clarendon
AN Press, Oxford, England, 1946,
p- 30.) (b) Projection of poles
QP N on the reference sphere to the
x‘ - AN projection plane. (After N. H.
" NS Light Polakowski and E. J. Ripling,
source  Strength and Structure of
. Engineering Materials, p. 83.
. Reprinted by permission of
y Prentice-Hall, Inc., Englewood
d Cliffs, NJ, © 1966.)

N
N
N

Basic circle

(b)

Vi See B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3e, Addison-Wesley, Reading, MA, 2001, for a treatment of
stereographic projections.
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Figure 2.38 Standard stereographic
projections for cubic crystals: (a) (001) and
(b) (011) projections.

the projection plane. From this position (called the point of projection) draw lines through the
points on the reference sphere and continue on to the projection plane (Fig. 2.37b). The points
on the projection plane then reflect the relative position of various planes (or plane normals)
with planar angle relationships faithfully reproduced. For convenience, standard stereographic
projections are used to portray the relative positions of major planes, such as those shown in
Fig. 2.38. Since a cubic crystal is highly symmetrical, the relative orientation of a crystal can be
given with respect to any triangle within the stereographic projection. As a result, attention is
usually focused on the central section of the projection. In Fig. 2.39a, for example, we see the axis
of arod in terms of its angular relationship with the (001), (011), and (Tl 1) planes, respectively.
That s, Pis the normal to the plane lying perpendicular to the rod axis. When this rod is stressed to
TCRSS, the crystal will yield on that slip system possessing the greatest Schmid factor and begin to
rotate. For all orientations within triangle I (sometimes referred to as the standard triangle), the
(111) [101] slip system possesses the greatest Schmid factor and will be the first to opelrate.“gv4

The rotation occurs along a great circle (corresponding to the trace of a plane on the reference
sphere that passes through the center of the sphere) of the stereographic projection and toward the
[101] slip direction. For simplicity, it is easier to consider rotation of the stress axis relative to the
crystal than vice versa, so that P is seen to move toward the [101] pole. As the crystal rotates,
will decrease while & increases. In situations where 1 > 45° > @), rotation of the crystal will
bring about an increase in the Schmid factor, since both /; and ®;, would approach 45°. As a
result, yielding can continue at a lower load and the crystal is said to have undergone geometrical
softening. Conversely, when @ > 45° > A, crystal rotation will bring about a reduction in the
Schmid factor, thereby increasing the load necessary for further deformation on the initial slip
system. Bear in mind that this geometrical hardening is distinct from strain hardening, which

101

Conjugate 111

011 011

_ AN
Cross 111 111 Primary

101

(@ (b)

Figure 2.39 (a) A (001) stereographic projection showing lattice rotation for FCC crystals during tensile
elongation. (b) Lattice rotation of FCC crystal involving “overshoot” of primary and conjugate slip systems.
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involves dislocation—dislocation interactions (see Section 2.4.1). Geometrical hardening con-
tinues as the crystal axis moves toward the [001]-[111] tie line. As soon as the relative crystal
orientation crosses over into the adjacent triangle II, the Schmid factor on the primary slip system
becomes less than that associated with the (TT 1) [011] system, the latter being the slip system that
would have operated had the crystal been oriented initially within triangle II. This newly activated
slip system (the conjugate system) now causes the crystal to rotate along a different great circle
toward the [011] direction of the conjugate slip system. Shortly, however, this movement returns
the axis of the crystal to within the bounds of triangle I, where primary slip resumes. The ultimate
effect of this jockeying back and forth between primary and conjugate slip systems is the
movement of the crystal axis along the [001]—[111] tie line to a location where further crystal
rotations in either slip direction occur along the same great circle. This point is reached when the
load axis is parallel to the [112] direction.

The above analysis reflects the classic geometrical arguments proposed originally by
Taylor and Elam.*3:4% In reality, some alloy crystals exhibit “overshooting,” wherein the
primary slip system continues to operate well into triangle II even though the Schmid factor of
the conjugate system is greater. Similarly, the conjugate system, once activated, may continue
to operate into triangle I (Fig. 2.39b). Koehler™? proposed that overshooting was caused by
weakening of the primary system by passage of dislocations that destroyed precipitates and
other solute atom clusters. Consequently, he argued that slip would be easier if continued on the
softened primary plane. Alternatively, Piercy et al.>! argued that overshooting resulted from a
“latent hardening” process involving increased resistance to conjugate slip movement resulting
from the dislocation debris found on the already activated primary system. That is, for slip to
occur on the conjugate system, dislocations on this plane would have to cut across many
dislocations lying on the primary plane. By comparison, then, Koehler?? argued that over-
shooting resulted from a relative weakening of the primary plane while Piercy et al>! argued
that the conjugate plane was strengthened relative to the primary plane by a latent hardening
mechanism. By careful experimentation, the latent hardening theory was proven correct.

From Fig. 2.39a, two other slip systems can be identified. These are denoted as the cross-
slip system (111)[101] and the critical slip system (111)[011]. The critical system is not
encountered very often; the cross-slip system is the system involving the movement of screw
dislocations that have cross-slipped out of the primary slip plane. Note that the slip direction is
the same in this case (recall the discussion in Section 2.1.5 and Fig. 2.12).

2.5.2 Crystallographic Textures (Preferred Orientations)

From the previous section, it should not be surprising to find individual grains in a
polycrystalline aggregate undergoing similar reorientation as a result of plastic deformation. If
this is the case, a material with an initially-random orientation of grains can be transformed into
one with a substantial fraction of grains aligned in a predictable way with the primary tensile
axis (and perhaps other axes as well). This is often the case with drawn wires and rolled plates.
Preferred grain orientations introduce anisotropic behavior, including direction-dependent
elastic, plastic, and fracture properties.

As might be expected, lattice reorientation in a given grain is impeded by constraints
introduced by contiguous grains, making the development of crystallographic textures (preferred
grain orientations) in polycrystalline aggregates a complex process. In addition, the preferred
orientation is found to depend on a number of additional variables, such as the composition and
crystal structure of the metal, and the nature, extent, and temperature of the plastic deformation
process.52 Asaresult, the texture developed by a metal usually is not complete, but instead may be
described by the strength of one orientation component relative to another.

Crystallographic textures are portrayed frequently by the pole figure, which is essentially a
stereographic projection showing the distribution of one particular set of {hkl} poles in
orientation space. That is, X-ray diffractometer conditions are fixed for a particular diffraction
angle and X-ray wavelength so that the distribution of one set of {hkl} poles in the
polycrystalline sample can be monitored. To illustrate, consider the single-crystal orientation
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Figure 2.40 Pole figures
depicting orientation of metals:
T (@) (100) pole figure for crystal
orientation shown in Fig. 3.7A;
0 0 (b) (110) pole figure for same
orientation; (c) (100) pole figure
& for [100] wire texture; (d) (110)
pole figure for [100] wire texture.
(b) Note rotational symmetry in
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responsible for the (100) stereographic projection shown in Fig. 2.38a. The (100) pole figure for
this crystal would reveal (100) diffraction spots at the north, south, east, and west poles and at
the center of the projection (Fig. 2.40a). No information concerning the location of {110},
{111}, or {hkl} poles is collected, since diffraction conditions for these planes are not met. Their
location would have to be surmised based on the position of the (100) poles and the known
angular relation between the { 100} and {hkl} poles. It is possible, of course, to change diffraction
conditions to “see” the location of these other poles, but then the {100} poles would “disappear”
from the {hkl} pole figure. Figure 2.40b shows the same crystal as in Fig. 2.40a, but with its
orientation portrayed by a (110) pole figure. It is important to appreciate that although these two
pole figures look different, they convey the same information—the orientation of the crystal. By
analogy, different {hkl} pole figures represent different languages by which the same thought
(the preferred orientation) is conveyed.

When wires or rods are produced, such as by drawing or swaging, a uniaxial preferred
orientation may develop in the drawing direction, with other crystallographic poles distributed
symmetrically about the wire axis. For a [100] crystallographic wire texture, such as heavily
deformed silver wire, the texture is given by Fig. 2.40c as portrayed by a (100) pole figure. Note
the presence of {100} poles at the north (and south) pole of the projection corresponding to the
drawing direction and the smearing out of the other {100} poles across the equator, the latter
reflecting the rotational symmetry found in wire textures. The same texture is shown in
Fig. 2.40d via a (110) pole figure. Here the rotational symmetry of the wire texture is again
evident while the [100] wire texture must be inferred from the relative position of the {110} poles.
Naturally, a (111) pole figure would present yet another interpretation of the same [100] wire
texture. (The reader is advised to sketch the (111) pole figure for the [100] wire texture for his or
her edification.) Typical wire textures for a number of FCC metals and alloys are given in
Fig. 2.41, where the variation of texture with a material’s stacking fault energy (SFE) is shown
clearly.53 (Recall that low stacking fault energy tends to inhibit dislocation motion.) The
explanation for the SFE dependence of texture transition and for the reversal in texture at
very low stacking fault energies has been the subject of considerable debate. Cross-slip,>*~>°
mechanical twinning,>’>8 overshooting,>?-%0 and extensive movement of Shockley partial
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Figure 2.41 Relation between strength of [100]
component in FCC wire texture and stacking fault
energy parameter, y/Gb. (After English and Chin’3;
reprinted with permission from Chin, Acta Met. 13
(1965), Pergamon Press, Elmsford, NY.)

Percent <100>

dislocation®! mechanisms have been proposed as possible contributing factors toward develop-
ment of both wire and sheet textures.

Interestingly, wire texture (also called fiber texture in this context) is also typical of many
polycrystalline thin films deposited by vapor deposition techniques on substrates such as silicon
or glass."" In this case, the texture development occurs during film growth rather than from
plastic deformation, and the preferred orientation normal to the film plane is selected primarily
by surface energy considerations. For FCC metals, a [111] fiber texture typically gives the
lowest surface energy. As with drawn wires, there can be significant anisotropy when
comparing the in-plane and normal directions of a fiber-textured thin film, but the average
behavior everywhere in-plane is isotropic.

For the case of BCC metals, the drawn wire texture is uncomplicated and found to be [110].
In HCP metals, texture is found to vary with the c/a ratio. When c/a < 1.633, a [1010] texture may
be developed with the basal plane lying parallel to the rod axis.’> By contrast, texture
development is more complex when c/a > 1.633.

Although wire textures may be defined by one component—the direction parallel to the
wire axis—sheet textures in rolled metal plates are given by both the crystallographic plane
oriented parallel to the rolling plane and the crystallographic direction found parallel to the
rolling direction. Hence, rolling textures are described by the notation (kkl) [uvw], where (hkl)
corresponds to the plane parallel to the rolling plane and [uvw] to the direction parallel to the
rolling direction. Rolling textures are very complex, with several different components often
existing simultaneously (Table 2.11).

The (110) [112] texture is often referred to as the brass or silver texture, typical of FCC
materials that possess low stacking fault energy. In copper, nickel, and aluminum, which
possess intermediate and high SFE, respectively, the major textural components are (123) [412],
(146) [211], and (112) [111]. This more complicated preferred orientation is called the copper
texture. Since the SFE for an alloy depends on solute content (i.e., changes in the electron to
atom ratio), the texture of a metal can change from copper to brass type with increasing alloy
additions. Some researchers have argued that the importance of SFE in controlling the type of
deformation texture is related to the relative ease by which cross-slip of dislocations occurs, the
brass texture being generated when cross-slip is more difficult. Others have suggested that the
brass texture develops when mechanical twinning (see Section 2.6) or deformation faulting (the
creation of stacking faults) is relatively easy. For this reason, the preferred orientation should
also be sensitive to the temperature of deformation, since cross-slip, mechanical twinning, and

viii Metal films on silicon are used in the semiconductor industry for integrated circuit wiring; metal coatings on glass are often used for their
optical properties on mirrors and on solar energy collectors.
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Table 2.11 Typical Rolling Textures in Selected Engineering Alloys 52

Alloy Rolling Texture
FCC

Brass, silver, stainless steel (110)[112] + (110)[001]
Copper, nickel, aluminum (123)[412] + (146)[211] + (112)[111]
BCC
Iron, tungsten, molybdenum,  (001)[110] o (111)[110] + (112)[110]¢0 (111)[211]
tantalum, niobium

HCP

Magnesium, cobalt (0001)[2110]
(c/a ~1.633)
Zinc, cadmium (c/a > 1.633)

(0001) plane tilted £20-25° from rolling plane about a
[1010] transverse direction axis
Titanium, zirconium, (
beryllium (c/a < 1.633) [

0001) plane tilted +30-40° from rolling plane about a
1010] rolling direction axis

faulting are thermally dependent processes. In studying the rolling texture in high-purity silver,
Hu and Cline®? found that cold rolling at 0°C produced a typical {110}(211)brass or silver
texture. However, when the silver was rolled at 200°C, near {123} (412) and {146} (211)
components were observed, reflecting a copper-type texture. A similar brass- to copper-type
texture transition was found when 18-8 stainless steel was rolled at 200 and 800°C,
respectively.63 Conversely, a reverse copper to brass texture transition was realized for copper
when the rolling temperature was reduced from ambient to-196°C.%4 Finally, by combinin§
the effects of alloy content and deformation temperature on SFE, Smallman and Green’
demonstrated for the silver—aluminum alloy that the brass to copper rolling texture transition
temperature increased with decreasing initial stacking fault energy.

Vapor-deposited polycrystalline films can exhibit sheet textures when there is a particular
crystallographic orientation between the film and an underlying crystalline substrate that
minimizes interfacial energy. In the extreme, a single crystal film can be grown epitaxially on a
single crystal substrate—the ultimate in film texture. This is the case for epitaxial growth of Si-
Ge on Si single crystals, GaN on sapphire (single crystal Al;Oz3) substrates, and many other
technologically important systems.

2.5.3 Plastic Anisotropy

It follows from the previous discussion that when a metal sheet or rod contains a pre-
ferred crystallographic orientation, the ability of the material to deform in an isotropic
manner is altered. For example, assume that a sheet of ¢-titanium possesses an idealized
texture with the (0001) basal planes oriented parallel plane of the sheet and <1§10) directions
aligned parallel to the rolling directions.®3=%7 Slip can occur on (0001), (1010), and (1011)
planes but only in the <1 120) close-packed directions; therefore, no sheet thinning can occur
in association with these slip systems. Recall that plastic deformation is a constant volume
process (Eq. 1-3) where

g1 = —(ew + &) (2-44a)
Since & =0,

€] = —&w (2-44b)
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Figure 2.42 (a) Tensile coupon and dimensions as cut from sheet stock.%3 (Walter A. Backofen, Ed., et al.,
Fundamentals of Deformation Processing (Syracuse, NY: Syracuse University Press, 1964). By permission of the
publisher.) (b) Yield loci for textured material.% When R > 1, material exhibits thinning resistance and high strength
under biaxial tension; when R < 1, the material displays easy thinning and low biaxial tensile strength. (W. F.
Hosford and R. M. Caddell, Metal Forming: Mechanics, and Metallurgy, 2d ed., Cambridge University Press, p. 273
(1993). Reprinted with the permission of Cambridge University Press.)

Therefore, tensile strains in a coupon prepared from a textured sheet (Fig. 2.42a) would be
balanced only by a reduction in sample width. Accordingly,

g1 = In(1/1ly) = —In(w/wq) (2-44c)
whereas
g = In(t/tg) =0 (2-444d)

A useful parameter to quantify the amount of plastic strain anisotropy in a sheet is identified by
R, where

R=2Y (2-452)
&t

Since R and elastic modulus values typically vary within the plane of the textured sheet, it is
common to describe an average R-value, R, where

Ry + 2R45 + Rog
4

R= (2-45b)
with the subscripts corresponding to the orientation within the sheet.

For the ideal texture described previously, R = co; alternatively, when no texture exists
and the material behaves in an isotropic manner, R = 1. For realistic crystallographic textures,
such as in o-titanium alloys where basal planes are tilted at £30°—40° from the rolling plane
(Table 2.11), R values of 3-7 are typically experienced; the higher the value of R the greater the
sheet’s resistance to thinning and the higher the material’s yield strength under through-
thickness compression or balanced biaxial tensile loading conditions (Fig. 2.42b). Note that the
existence of texture and its influence on yield strength is obscured under uniaxial loading
conditions and of limited importance in pure shear (i.e., where o, = — 0,).

The influence of plastic anisotropy on metal forming is demonstrated by the deep drawing
of flat sheets into cartridge cases, bathtubs, brass flashlight cases, and automobile panels.
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P Figure 2.43 Illustration revealing deep drawing of a cylindrical

cup (a) before and (b) after drawing.

“Apie punch
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In this process, a circular sheet of metal is clamped over a die opening and then pressed
through the die with a punch (Fig. 2.43). The load from the punch is transmitted along the
sidewall of the cup to the flange area, where most of the deformation takes place. Within
the flange area, the stress state approaches that of pure shear, corresponding to tension in the
radial direction and compression in the circumferential direction (Fig. 2.42b, Flange). By
contrast, a plane strain biaxial tension condition exists in the cup wall (Fig. 2.42b, Cup wall).
Failure occurs by localized necking within a narrow ring of material in the cup wall just above
the radius of the punch. Analysis of this forming process reveals that the upper-bound
theoretical limiting drawing ratio (LDR) is estimated to be%”

LDR =~ (DO> ~ el (2-46)
DP max

where Dy and D), are the original sheet and final cup diameters, respectively, and m is a

parameter that accounts for frictional losses in the drawing process. For ideal efficiency, =1

and LDR =~ 2.7. Typically, however, n~0.74 to 0.79; hence, LDR ~ 2.1 to 2.2.

The limiting drawing ratio can be increased—to permit the drawing of deeper cups—by
restricting the material’s ability to thin in the critical zone near the bottom of the cup wall. This
can be achieved by strengthening the sheet in the thickness direction through the development
of a crystallographic texture (R > 1) that limits deformation under the plane strain biaxial
tension conditions experienced in the cup wall (recall Fig. 2.42b, Cup wall). Notice that LDR
increases for several metal alloys with average plastic strain ratio, R (Fig. 2.44). For further

discussion of the influence of texture on metal forming, the reader is referred to texts by Hosford
and Caddell,66 and Dieter.%8

4.0 Figure 2.44 Influence of
o Copper, Titanium average strain ratio, R on
g 30 Ali:ﬁﬁim Steel __x-¥ -e¥ limiting drawing ratio for
g mas several sheet metal aIIOys.69
§ 20j0grgre—-ARNER A (M. Atkinson, Sheet Metal
o “Zinc Industries, 44, 167 (1967)
c . ..
ZE with permission.)
E

ol_l | | [ | | |

0.2 0.4 0.6 1.0 2.0 4.0 6.0
Average strain ratio, R
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2.6 DEFORMATION TWINNING

As was noted in Section 2.2.1, the simultaneous operation of at least five independent slip
systems is required to maintain continuity at grain boundaries in a polycrystalline solid. Failure
to do so will lead to premature fracture. If a crystal possesses an insufficient number of
independent slip systems, twin modes may be activated in some metals to provide the additional
deformation mechanisms necessary to bring about an arbitrary shape change.

2.6.1 Comparison of Slip and Twinning Deformations

The most obvious difference between a slipped versus a twinned crystal is the external
shape change resulting from these deformations. Whereas slip involves a simple translation
across a slip plane such that one rigid portion of the solid moves relative to the other, the
twinned body undergoes a significant shape change without any translation along the twinning
plane (Fig. 2.45).

According to Bilby and Crocker,’® “A deformation twin is a region of a crystalline body
which had undergone a homogeneous shape deformation in such a way that the resulting
product structure is identical with that of the parent, but oriented differently.” As pointed out
earlier in Section 2.1.2, dislocation movement associated with slip will take place in multiples
of the unit displacement, b. By contrast, the shape change found in the twinned solid results
from atom movements taking place on all planes in fractional amounts within the twin. In fact,
we see from Fig. 2.45¢ that the displacement in any plane within the twin is directly
proportional to its distance from the twin-matrix boundary. Upon closer examination of these
twinning displacements in a simple cubic lattice, it is seen that the twinning process has effected
a rotation of the lattice such that the atom positions in the twin represent a mirror image of those
in the untwinned material (Fig. 2.46). By contrast, slip occurs by translations along widely
spaced planes in whole multiples of the displacement vector, so that the relative orientation of
different regions in the slipped cube remains unchanged.

The differences associated with these deformation mechanisms are revealed when one
examines the deformed surface of a sample that was prepolished (Fig. 2.47). Offsets due to slip are
revealed as straight or wavy lines (depending on the stacking fault energy of the material and the
active slip systems) with no change in image contrast noted on either side of the slip offset. Twin
bands do exhibit a change in contrast, since the associated lattice reorientation within the twin
causes the incident light to be reflected away from the objective lens of the microscope. After
repolishing and etching the sample, only twin band markings persist, since they were associated
with a reorientation of the lattice, and not with surface features (Figs. 2.47b and 2.47d).

TSCSOSTSE Figure 2..45 Shape ?hange in a solid cupe caused by .plastlc
AV aSV/aSV/ e deformation. (@) Undistorted cube; (b) slipped cube with offsets
/\A\// /\A\/@/\Av\//ﬂt\/ nb; (c) twinned cube revealing reorientation within twin.
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O ® O ® O ® O { J Figure 2.46 Twinning on the
o ® O O ® O @ Twinned (120) plane in a simple cubic
o—e o—0 o—0 crystal. Gray circles represent
o-e ~ oo = oc-e Twinning original atom positions. Black
—©O O ° % ° plane circles are final atom positions.
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Before proceeding further, it is appropriate to distinguish between deformation twins
(Figs. 2.47a and 2.47b) and annealing twins (Figs. 2.47¢ and 2.47d). The deformation twins in
the zinc specimen were generated as a result of plastic deformation, where the annealing twins
in the brass sample preexisted plastic deformation. The annealing twins were formed instead
during prior heat treatment of the brass in association with recrystallization and growth of new
grains. During the formation of a new packing order in the new crystals, the emerging grains could
have encountered packing sequence defects in the original grains (such as stacking faults); this
interaction would result in the formation of annealing twins.

Figure 2.47 Surface markings resulting from plastic deformation. (a) Prepolished and deformed zinc revealing slip
lines (upper left to lower right markings) and twin bands (large horizontal band); (b) same as (a) but repolished and
etched to show only twin bands; (c) prepolished and deformed brass revealing straight slip lines (reflecting low
stacking fault energy) and preexisting annealing twins; (d) same as (c¢) but repolished and etched to show only
annealing twins.
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o Figure 2.48 Type III stress—strain behavior reflecting
elastic behavior followed by heterogeneous plastic flow.
The latter can be caused by twin controlled deformation
or solute atom-dislocation interactions.

For example, the error indicated by the vertical line in the following planar packing
sequence—ABCAB(IBACBA—constitutes a twin boundary. Note also that the two planes on
either side of the twin plane are similar: This arrangement constitutes a stacking fault (i.e.,
B(@B). Without the preexistence of stacking faults in the old grains, annealing twins are unlikely
to form. Hence, annealing twins are rarely seen in aluminum, which has a high stacking fault
energy (low stacking fault probability). Conversely, annealing twins are observed readily in
brass, which has a low stacking fault energy (high stacking fault probability). Since the stacking
fault probability also depends on the extent of deformation, the number of annealing twins
found in a given material should increase with increasing prior cold work. As such, the number
of annealing twins found in a recrystallized material provides a clue as to the deformation
history of the material.

2.6.2 Heterogeneous Plastic Tensile Behavior

Occasionally, a tensile test specimen will produce a stress—strain curve that exhibits a series of
serrations that are superimposed on the parabolic portion of Fig. 2.25 after the normal range of
elastic response. Such behavior, shown in Fig. 2.48, reflects nonuniform or heterogeneous
deformation within the material. As we can now appreciate, when hexagonal close-packed
metals are tested over a relatively wide temperature range, they tend to deform plastically by a
combination of slip along glide planes and twinning in discrete zones within the specimen. When
twinning occurs, extension of the gage length proceeds in discrete bursts that are associated with
twin band nucleation and growth. Often, these bursts of deformation are associated with audible
clicks emitted from within the sample. Whenever the instantaneous strain rate in the specimen
exceeds the rate of motion of the test machine crosshead, a load drop will occur. A similar stress—
strain response is found in body-centered-cubic metals tested at low temperatures and in face-
centered-cubic metals tested under a combination of low temperatures and high strain rates.

However, it should be recognized that serrated stress—strain curves are also encountered in
materials for which twinning is very unlikely, such as in room temperature body-centered-cubic
iron alloys containing carbon in solid solution, and in dilute solid solutions of aluminum. In
these cases the phenomenon is related to inhomogeneous dislocation motion (see Sections 2.4.3
and 3.5.1), not bursts of twinning activity, so serrated loading curves should not necessarily be
interpreted as evidence of twinning without other substantiating evidence.

2.6.3 Stress Requirements for Twinning

The establishment of a critical resolved shear stress (CRSS) is the basis for predicting the
conditions required for plastic deformation by dislocation motion. Given that mechanical
twinning is a shear process as well, it is logical to assume that a similar CRSS criterion might
apply to deformation by twinning. Unfortunately, the picture is quite cloudy even after
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decades of work, and there remains no consensus regarding the existence of an equivalent
simple twinning criterion.”! In a pure material undergoing deformation by dislocation glide,
the shear stress needed to initiate dislocation motion is the same as the level needed to
continue the motion. It is now known that the twin initiation stress is usually much greater
than the stress needed to propagate a preexisting twin. In a related observation, the nucleation
of a new twin is often associated with a sudden load drop (responsible for serrated stress-
strain curves as shown in Fig. 2.48), while the growth of an existing twin exhibits smoother
loading behavior. Furthermore, twinning is inherently “antisymmetric” in the sense that a
certain shear stress may cause twinning in a certain direction, but a shear stress of identical
magnitude applied in the opposite direction may have no such effect. This is quite different
from the behavior of a gliding dislocation, for which forward and reverse deformation occurs
under shear stresses of comparable magnitude. These observations cast serious doubt on the
validity of a single “CRSS for twinning.” Finally, even though there are studies that present
experimental evidence of a critical twinning stress, it is often difficult to rule out other
influences on the behavior, and the degree of scatter in the values is very large for a given
material. Thus, although twinning stress values have been reported and are sometimes used
for modeling deformation behavior, there is limited support for the concept of a universal
rule for twinning based on a resolved shear stress.

2.6.4 Geometry of Twin Formation’2

Consider the growth of a twin over the upper half of a crystalline unit sphere. Any point on
the sphere will be translated from coordinates X, Y, Z to X', Y’, Z', where X=X', Z=7' and
Y =Y+ SZ (Fig. 2.49). Since S represents the magnitude of the shear strain, we see that the
shear displacement on any plane is directly proportional to the distance from the twinning plane
(called the composition plane). Therefore, the equation for the distorted sphere is given by

X2 v+ 727 = 1=xX2+ V2 1257y + 222 1 22 =1 (2-47)

or

X2+ Y2 4252y + Z2(S2 +1) =1 (2-48)

Figure 2.49 Crystal sphere
distorted to that of an ellipsoid.
Undistorted planes are K| and K>,
separated by angle 2¢. Note
foreshortening of plane OA after
twinning, while plane OB is
extended.
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Table 2.12 Observed Twin Elements a Metals’# 75

Crystal cla a-0
Metal Structure Ratio Ky K n n2 S Inax
Al, Cu, Au, Ni, Ag, y-Fe FCC {111} {111} 112) (112) 0.707 41.4%
a-Fe BCC {112} {112} 111) (111) 0.707 414
Cd HCP 1.886 {1012} {1012} 1011) 1011)  0.17 8.9
Zn HCP 1.856 {1012} {1012} 1011) 1011)  0.139 7.2
Mg HCP 1.624 {1012} {1012} 1011) 1011)  0.131 6.8
{1121} {0001} 1126) <11§0> 0.64 37
Zr HCP 1.589 {1012} {1012} 1011) 1011)  0.167 8.7
{1121} {0001} 1126) 1120) 0.63 36.3
{1122} {1024} 1123) 2243)  0.225 119
Ti HCP 1.587 {1012} {1012} 1011) 1011)  0.167 8.7
{1121} {0001} 1126) 1120) 0.638  36.9
{1122} {1024} 1123) 2243) 0255 11.9
Be HCP 1.568 {1012} {1012} 1011) 1011)  0.199  10.4

which defines a quadric surface. Specifically, the distorted sphere forms an ellipsoid whose
major axis is inclined to m; by an angle ¢. It is clear from Fig. 2.49 that most planes contained
within the sphere are either foreshortened or extended. For example, consider the movement of
points A and B, which are translated by the twinning deformation to A’ and B’, respectively. If
AO and BO represent the traces of two different planes, it is clear that AO has been
foreshortened (A’O) while BO has been stretched (B’0). Only two planes remain undistorted
after the twin shear has been completed. The first is the composition plane, designated as K; the
direction of the shear is given by ;. The second undistorted plane is the one shown in profile by
the line OC. (Note that OC = OC'.) This plane is designated as the K> plane, where ) is defined
by the line of intersection of the K, plane and the plane of shear (the plane of this page). The
final position of this second undistorted plane is designated as the K, plane. Therefore, all
planes located between X and C will be compressed, while all planes located between C and Y
will be extended. Typical values for K ng, N1, and mp are shown in Table 2.12 and discussed in
the following sections. By definition,” when K 1 and m are rational and K, and m are not, we
speak of this twin as being of the first kind. The orientation change resulting from this twin can
be accounted for by reflection in the K plane or by a 180° rotation about the normal to Kj.
When K5 and m; are rational but Ky and m are not, the twin is of the second kind. The twin
orientation in this case may be achieved either by a 180° rotation about m; or by reflection in the
plane normal to n;. When all twin elements are rational, the twin is designated as compound.
This occurs often in crystals possessing high symmetry (such as most metals), where the
reflection and rotation operations are equivalent.

The magnitude of the shear strain S in the unit sphere is given by the angle 2¢ between the
two undistorted planes Ky and K». From Fig. 2.49

tanf = SZ/2/Z = “; (2-49)

Since

0+ 2¢ = 90°

2-50
cot2¢p = ; ( )
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2.6.5 Elongation Potential of Twin Deformation

Hall’? has shown that the total deformation strain to be expected from a completely
twinned crystal may be given by

/

’7: [+ Stany]'/2 @-51)

where [, I’ = initial and final lengths, respectively

S+V/S*+4
2

tan x =

From Eq. 2-51, the maximum potential elongation of the metals shown in Table 2.12 is
quite small, particularly in HCP crystals, which undergo {1012}-type twinning. Although the
twinning reaction contributes little to the total elongation of the sample, the rotation of the
crystal within the twin serves mainly to reorient the slip planes so that they might experience a
higher resolved shear stress and thereby contribute more deformation by slip processes.

2.6.6 Twin Shape

From the above geometrical analysis, one would assume twinned regions to be bounded by
two parallel composition planes representing the two twin-matrix coherent interfaces. In
practice, twins are often found to be lens-shaped, so that the interface must consist of both
coherent and noncoherent segments. These noncoherent portions of the interface can be
described in terms of particular dislocation arrays (Fig. 2.50). Mahajan and Williams’®
have reviewed the literature and found that twin formation has been rationalized both in
terms of heterogeneous nucleation at some dislocation arrangement or by homogeneous
nucleation in a region of high stress concentration. It is worth noting that dislocations are
also needed to account for the requirement of a much lower stress to move a twin boundary than
the theoretically expected value.

Cahn’? postulated that the lens angle 8 should increase with decreasing shear strain. Since
the magnitude of 8 controls the permissible thickness of the lens, Cahn’s postulate correctly
predicts the empirical fact that twin thickness increases with decreasing shear strain. More
recently, Friedel’® also concluded that the optimum lens thickness to length ratio should
increase with decreasing shear strain. Since twin formation involves discontinuous deforma-
tions, some type of lattice accommodation is necessary along the perimeter of the twin lens.
When the parent lattice possesses limited ductilit};, the lens angle B is kept small and the strain
discontinuity accommodated by crack formation.’® At the other extreme, lattice plane bending

and/or slip may be introduced to “smear out” the strain discontinuity resulting from the twin. If
the crystal is able to slip readily, the lens angle 8 can increase, thereby enabling the twin to
thicken. Therefore, we find that in ductile crystals, the thickness of deformation twins increases
with decreasing twin shear strain (Fig. 2.51). From this discussion, it follows that the twins seen
in the brass sample in Figs. 2.47¢ and d were of the annealing type since the deformation
twin strain (S =0.707) in this material would have produced thin deformation twins similar to
those shown in Fig. 2.51a.

Figure 2.50 Diagram of a lens-shaped twin with
dislocations to accommodate noncoherent twin-matrix
interface regions. Lens angle 8 increases with
decreasing twin shear and increasing ability of matrix
to accommodate the twin strain concentration.
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Figure 2.51 Prepolished and subsequently deformed surfaces revealing shape of twins. (@) Narrow deformation
twins in a-Fe (S =0.707); (b) broad deformation twins in Mg (§ =0.131). (After Eckelmeyer and Hertzberg77;
American Society for Metals, Metals Park, OH, © 1970.)

2.6.7 Twinning in HCP Crystals

Among the three major unit cells found in metals and their alloys, twinning is most prevalent
in HCP materials. Over a broad temperature range, twinning and slip are highly competitive
deformation processes. We saw from Section 2.2.1 that regardless of the c/a ratio (that is, whether
basal or prism slip was preferred), an insufficient number of independent slip systems can operate
to satisfy the von Mises requirement.® Since alloys of magnesium, titanium, and zinc are known
to possess reasonable ductility, some other deformation mechanisms must be operative. While
combinations of basal, prism, and pyramidal slip do not provide the necessary five independent
slip systems necessary for an arbitrary shape change in a polycrystalline material, deformation
twinning often is necessary to satisfy von Mises’ requirement.

Twinning in HCP metals and alloys has been observed on a number of different planes
(Table 2.12). One twin mode common to many HCP metals is that involving {1012} planes.
One of three possible sets of these planes is shown in Fig. 2.52a. Activation of one particular set
will depend on the respective Schmid factors. Naturally, twinning will occur on the {1012}
plane and <101 1) direction that experiences the highest resolved shear stress. For additional
clarification, the angular relationships between the undistorted {1012} planes and the prism and
basal planes are shown in Fig. 2.52b, where

c
tand = — 2-52
o (2-52)

J3a Figure 2.52 One set of {1012}-type K;
and K planes in HCP crystal. (a) Inclined
Prism 0 view of prism, basal, and two undistorted
plane 2¢ planes; (b) important planes viewed on
edge along ay direction.
c
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Table 2.13 Interplanar Angles in Beryllium and Zinc

{1012} — {0001} {1012} — {1012} {1012} — {1010}
Beryllium 42°10/ 84°20/ 47°50'
Zinc 46°59' 86°02/ 43°01'

Since 2¢ + 260 =180° and tan2¢ = 2/S,
tan2¢ = 2/S = tan(180 — 26) (2-53)

With trigonometric identities it may be shown that

2
tan“0 — 1
=— 2-54
tané ( )
Combining Eqgs. 2-52 and 2-54 and rearranging, we find
3
$ = [le/a)® — 3 ¥ (2-55)

3c

From Eq. 2-55, it is seen that the sense of the twin deformation is opposite for HCP metals
exhibiting c/a ratios # v/3. When ¢ Ja= /3, the analysis predicts that S = 0 and that twinning
would not occur by the {1012} mode. Stoloff and Gensamer®! have verified this in a
magnesium crystal alloyed with cadmium to produce a c/a ratio of /3. The reversal in sense
of the twin deformation is seen when the responses of beryllium (c/a=1.568) and zinc
(c/a=1.856) are compared using strain ellipsoid diagrams. The relevant interplanar angles in
each metal are determined by

3 2
hyhy + kiky + 5 (hyky + hoky) +4—321112

cosf =

and are given in Table 2.13. B

For the case of beryllium, the basal plane bisects the acute angle separating the {1012}
planes, and the prism plane bisects its supplement. In addition, the prism plane may be
positioned simply by the fact that it must lie 90° away from the basal plane. From Fig. 2.53, we
see that the twinning process in beryllium involves compression of the basal plane and tension
of the prism plane. Consequently, if a single crystal were oriented with the basal plane parallel
to the loading direction, the crystal would twin if the loads were compressive but not if the loads
were tensile. The crystal would be able to twin in tension only if the basal plane were oriented
perpendicularly to the loading axis.

Figure 2.53 Strain ellipsoid for beryllium revealing
twin-related foreshortening of the basal plane and
extension of the prism plane. Twinning by {1012}
mode will occur when compression is applied parallel
to the basal plane or tension applied parallel to the
prism plane.
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Figure 2.54 Strain ellipsoid for zinc revealing twin-
related foreshortening of the prism plane and extension of
the basal plane. Twinning by {1012} mode will occur
when compression is applied parallel to the prism plane
or tension applied parallel to the basal plane.

v3a Figure 2.55 Conditions for {1012}

V3a \:f; k:”,’ twinning in hexagonal crystals. () When
J3a ~ ~ o ¢/a < +/3 twinning results when the basal

< — 4 % NS plane is compressed or the {1010} planes
A . ¢ oo /X\ ¢ stretched; (b) when ¢/a = /3 no twinning

RN 2% c R 29 |c SN by {1012} mode occurs; () when c/a > /3
NESE AR ‘{j”/ AN / N\ twinning occurs when the prism planes are
g N 14 N / \
- .. K N / \ compressed or the basal planes stretched.

(@ (b) (c)

The situation is completely opposite for zinc. Here, because the prism plane bisects the
acute angle between K and K5, zinc will twin when the applied stress causes compression of
the prism or extension of the basal plane (Fig. 2.54). The response of any HCP metal that twins
by the {1012} mode is summarized in Fig. 2.55. When ¢/a < v/3 twinning will occur if
compressive loads are applied parallel to the basal plane or tensile loads applied parallel to the
prism planes. The opposite is true for the case of ¢/a > /3, where twinning occurs when the
prism plane is compressed or the basal plane extended.

The other HCP twin modes shown in Table 3.4 may operate under certain conditions; however,
they are generally not preferred since the strain energy of the twin increases with .23 Therefore, if
the resolved shear stress for given K| and | twin elements is sufficient, twinning will occur via the
mode possessing the lowest shear strain. As might be expected, there is competition not only
between twin modes but also between slig and twinning as the dominant deformation mechanism
under specific test conditions. Reed-Hill’* examined the likelihood of either prism slip or {1012}
twinning in zirconium and found these mechanisms to be complementary (Fig. 2.56). As such, slip
will occur on a viable slip system if the resolved shear stress is high enough; twinning will occur if
the resolved shear stress along the K and m twin elements is high enough and the direction of
loading consistent with the twinning process. For example, Fig. 2.56 shows that the highest shear
stress along the K| and m; elements, corresponding to the largest orientation factor, may generate

Figure 2.56 Competitive
aspects of prism slip and
{1012} twinning in zirconium.
(After Reed-Hill74; reprinted
with permission from Gordon
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twinning when the angle between the applied stress axis and pole of the basal plane is zero degrees.
In this situation, twinning will occur only when the applied stress is tensile; when this stress is
compressive in nature, the resolved shear stress will be the same, but no twinning will occur.

2.6.8 Twinning in BCC and FCC Crystals

Twinning in BCC materials has been examined most closely for the case of ferritic steels,
because of their engineering significance. Twin formation in steels (called Neumann bands)
occurs most readily under high strain rate and/or low-temperature test conditions. The twin
plane is found to be of type {112}, with the shearing direction parallel to [111] What is
intriguing again is the fact that twinning will depend on the direction of shear; twinning will
occur in the [111] direction but not in the opposite [111] direction.®? Deformation twinning is
found least frequently in FCC metals except under cryogenic temperature conditions, extremely
high strain rates, and in certain alloys. Since the twin elements {111}, {111}, <1 12), and (112)
produce a large twin strain (0.707), it would appear that slip processes are more highly favored
(i.e., partial dislocation motion along close-packed planes) than are twin-related movements.
By comparison, it should be pointed out that while deformation twinning is found only under
extreme conditions, some FCC alloys may exhibit many annealing twins. As discussed in
Section 2.6.1, these twins result from accidents associated with the growth of recrystallized
grains from previously deformed material possessing a high density of stacking faults.

2.7 PLASTICITY IN POLYMERS

In certain respects, the deformation of polymeric solids bears strong resemblance to that of
metals and ceramics: Polymers become increasingly deformable with increasing temperature,
as witnessed by the onset of additional flow mechanisms. Also, the extent of polymer
deformation is found to vary with time, temperature, stress, and microstructure consistent
with parallel observations for fully crystalline solids. In contrast, the macromolecular nature of
polymeric solids leads to a set of plasticity mechanisms that are quite different in many respects
from those typical of crystalline metals and ceramics. Unlike crystalline metals and ceramics,
which can be pictured as regular arrays of individual atoms connected by bonds of a certain
character, a polymer is made up of molecular chains that can be arranged either in a completely
amorphous fashion (picture a jar full of spaghetti) or with regions of crystalline order (picture a
rope folded neatly back and forth on itself). The bonds along the backbone of a chain are
covalent in nature, and are therefore quite strong, while the bonds between separate chains in
thermoplastics are of secondary character (e.g., Van der Waals) and are therefore relatively
weak. In the class of polymers known as thermosets, there are strong covalent cross-links
between the chains. As in ceramic materials, the covalent bonds in polymers are not easy to
break and reform, and as such do not contribute directly to any significant plastic strain.
Thermosets (whether stiff in the case of an epoxy or flexible in the case of a silicone elastomer)
are therefore unlikely to plastically deform in tension in any significant way. The key to large
plastic deformations in thermoplastic polymers is the ability of chains to slide past one another
thanks to the presence of the weak secondary bonds. In light of this departure from dislocation-
based plasticity, criteria for yielding and subsequent plastic flow of thermoplastic materials
must be established. Before doing so, however, it is appropriate to describe basic features of the
polymer structure that dominate flow (and fracture) properties. In particular, the conditions that
enhance or hinder molecular chain sliding must be considered. In preparing this section, several
excellent books about polymers were consulted to which the reader is referred.83—88 Additional
reading material on polymers is cited at the end of the reference section.

2.7.1 Polymer Structure: General Remarks

Individual macromolecular chains are formed by the union of two or more structural units
of a simple compound (a mer). In polymeric materials used in engineering applications, the
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— Figure 2.57 Molecular weight distribution
showing location of average number M,, and
average weight M,, molecular weights.

MwW

number of such unions—known as the degree of polymerization (DP)—often exceeds many
thousands. The length of a given polymer chain is determined by the statistical probability of a
specific activated mer attaching itself to a particular chain during a polymerization reaction.
Some chains will be very short, while others might be very long. Consequently, the reader
should appreciate a distinctive characteristic of a polymeric solid: There is no unique chain
length for a given polymer and no specific molecular weight (MW). Instead, there is a
distribution of these values. Contrast this with metal and ceramic solids that exhibit a well-
defined lattice parameter and unit cell density. An example of the molecular weight distribution
(MWD) for all the chains in a polymer is shown in Fig. 2.57; in this case, a larger number of
small chains exist relative to the very long chains. The MWD will vary with the nature of the
monomer and the conditions of polymerization so as to be skewed to higher or lower MW
and/or made narrower or broader. For example, when the processing temperature is high and/or
large amounts of initiator are added to the melt, MW will be low, and vice versa. Rather than
referring to a molecular weight distribution curve to describe the character of a polymer, it is
often more convenient to think in terms of an average molecular weight M. Such a value can be
described in a number of ways, but is usually described in terms of either a weight average or
number average molecular weight where M,, emphasizes relatively high MW fractions and M,
emphasizes the importance of the smaller MW chains. The molecular weight distribution can be
described by the ratio M\, /M,,. A narrow MWD prepared under carefully controlled conditions
may have M,,/M,, < 1.5, while abroad MWD would reveal M,, /M, in excess of 25. As will be
shown in later sections, MW exerts a very strong influence on a number of polymer physical and
mechanical properties.

2.7.1.1 Side Groups and Chain Mobility

The ability of a polymer solid to plastically deform by chain sliding is determined by the
mobility of its individual molecular chains. In order to understand the factors that determine
chain mobility, we now look more closely at a segment of a polyethylene (PE) chain. In the fully
extended conformation, the chain assumes a zigzag pattern, with the carbon—carbon bonds
describing an angle of about 109° (Fig. 2.58). With the zigzag carbon main chain atoms lying in
the plane of this page, the two hydrogen atoms are disposed above and below the paper. The
chain is truly three dimensional, though it is often represented schematically in two-dimen-
sional space only. Adjacent pairs of hydrogen atoms are positioned relative to one another so as
to minimize their steric hindrance (i.e., interference due to their spatial arrangement). That is,
as rotations occur about a C—C bond (permissible as long as the bond angle remains 109°), both
favorable and unfavorable juxtapositions of the hydrogen atom pairs are experienced. This is
perhaps more readily seen by examining the rotations about the C—C bond in ethane, C,Hg
(Fig. 2.59), recalling that the hydrogen atoms do not lie in the plane of the page. We see that when
the hydrogen atoms are located opposite one another, the potential energy of the system is
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Figure 2.58 Extended chain
of polyethylene showing
coplanar zigzag arrangement
of C—C bonds with hydrogen
pairs located opposite one
another.

maximized. Conversely, when they are staggered where ¢ = 0, 27/3, and 47/3, the configuration
has lowest potential energy. From this, it is seen that the facility by which C—C bond rotation
occurs will depend on the magnitude of the energy barrier in going from one low-energy
configuration to another. For the two pairs of adjacent hydrogen atoms in the PE chain, the lowest
potential energy trough occurs when the hydrogen atom pair associated with one carbon atom is
180° away from its neighboring hydrogen pairs (Fig. 2.58).

As might be expected, the extent of rotational freedom about the C—C bond depends on the
nature of side groups often substituted for hydrogen in the PE chain. When one hydrogen atom
is replaced, we have a vinyl polymer. As shown in Table 2.14, a number of different atoms or
groups can be added to form a variety of vinyl polymers, which all act to restrict C—C rotation to
a greater or lesser degree. Generally, the bigger and bulkier the side group and the greater its

Side view Figure 2.59 Potential energy variation associated with C-C
bond rotation in ethane.8¢ (Alfrey, T., and Gurnee, E. F.,
Organic Polymers, 1967. Reprinted by permission of Prentice-
Hall Inc., Englewood Cliffs, NJ.)
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Table 2.14 Selected Vinyl Polymers

Repeat Unit Polymer
- W oH A
_(:;_(';_ Polyethylene (PE)
]
19
—|C—?— Poly(vinyl chloride) (PVC)
L H H _
- '[' r -
—(IZ—(ll— Poly(vinyl fluoride) (PVF)
L H H _
- '[' C'['3 -
—(lt—(lt — Polypropylene (PP)
L H H -
- -
9
—(l:—(l:— Polystyrene (PS)
H H

polarity, the greater the resistance to rotation, since the peak-to-valley energy differences
(Fig. 2.59) would be greater. Restrictions to such movement may also be caused by double
carbon bonds in the main chain, which rotate with much greater difficulty. Furthermore, the
main chain in some polymers may contain flat cyclic groups (such as a benzene ring) which
prefer to lie parallel to one another. Consequently, C—C bond rotation would be made more
difficult by their presence.

C-C bond rotation is critical for the sliding mobility of polymer chains because steric
hindrance occurs between the side groups of unconnected adjacent chains. At low temperatures,
chain mobility is very limited and widespread interchain sliding is difficult. It is still possible,
however, for some local sliding to occur, so a limited capacity for plastic deformation exists. As
the temperature is elevated, thermal energy assists with C-C bond rotation, and side groups on
adjacent chains are increasingly likely to be able to rotate away from one another to reduce the
steric hindrance and enable chain sliding. Plastic deformation is therefore enhanced by increasing
temperature. At a certain temperature, called the glass transition temperature, Tg, a significant
change in chain mobility occurs, and the resistance to plastic deformation drops precipitously.

2.7.1.2 Side Groups and Crystallinity

Thus far, we have discussed the effect of side group size, shape, and polarity on main chain
mobility. The location of these groups along the chain is also of critical importance, since it
affects the relative packing efficiency of the polymer and, ultimately, the mechanical behavior.
It is seen from Fig. 2.60 that the side groups can be arranged either randomly along the chain,
only on one side, or on alternate sides of the chain. These three configurations are termed
atactic, isotactic, and syndiotactic, respectively. Atactic polymers with large side groups (e.g.,
polystyrene) have low packing efficiency, with the chains arranged in a random array.
Consequently, polystyrene, poly(methyl methacrylate), and, to a large extent, poly(vinyl
chloride) are amorphous. In a regular and symmetric polymer (e.g., polyethylene), the chains
can be packed close together, resulting in a high degree of crystallinity. In fact, the density of a
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H CH; H H CH; H H H H H Figure 2.60 Location of side groups in
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given polymer serves as a useful measure of crystallinity; the higher the density, the greater the
degree of crystallinity.

For the data shown in Table 2.15, densities were varied by the amount of main chain
branching produced during polymerization (Fig. 2.61). Extensive branching reduces the
opportunity for closer packing, and little branching promotes the polymerization of higher
density polyethylene. Polypropylene represents an example of a stereoregular polymer that has
a high packing efficiency and resultant crystallinity. Although it is not stereoregular, the
propensity for crystallinity in nylon 66 is enhanced by the highly polar nature of the nylon
chain. The H-N-C=O0 groups in adjacent chains have great affinity for one another, with the
associated hydrogen bond providing additional cause for closer packing and chain alignment.

To summarize, the degree to which polymers will crystallize depends strongly on the
polarity, symmetry, and stereoregularity of the chain and its tendency for branching. The extent
of crystallinity of several polymers is given in Table 2.16, along with other material character-
istics. In general, higher levels of crystallinity yield greater stiffness, strength, thermal stability,
and chemical resistance. Conversely, elongation and toughness are enhanced by reduced levels
of crystallinity.

2.7.1.3 Morphology of Amorphous and Crystalline Polymers

Certain polymers take on an amorphous structure when cooled from the melt. These
include polymethylmethacrylate (PMMA), polystyrene (PS), and natural rubber. For many
years, the structure of amorphous polymers was presumed to consist of a collection of randomly
coiled molecules surrounding a certain unoccupied volume. (A coiled molecule can be created
by a random combination of C—C bond rotations along the backbone of the molecule.) More
recent studies have suggested that this simple view is not correct. Instead, Geil and Yeh?0-92
have proposed that seemingly amorphous polymers actually contain small domains in which the

Table 2.15 Relation between Density—Crystallinity and Ultimate Tensile Strength
in Polyethylene89

Ultimate Tensile Strength

Density (g/cm3) Crystallinity (%) MPa ksi
0.92 65 13.8 2
0.935 75 17.2 2.5
0.95 85 27.6 4
0.96 87 31.0 4.5

0.965 95 379 55
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Figure 2.61 Degree of chain branching in polymeric

solid. (@) Linear; (b) branched.
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Material Repeat Unit Major Characteristics Applications
Low-density W oH A Considerable branching; Film; moldings; cold water
polyethylene | 55—70% crystallinity; excellent plumbing; squeeze bottles
(LDPE) _(f_(f_ insulator; relatively cheap

H H
Polypropylene S Extent of crystallinity depends Hinges; toys; fibers; pipe;
(PP) e on stereo-regularity; can be sheet; wire covering
_|C_?_ highly oriented to form integral
L H H | hinge with extraordinary
fatigue behavior
Acetal " HoH Highly crystalline; thermally Speedometer gears;
copolymer | | stable; excellent fatigue instrument housing;
_|C_o_|c_(|:_o_ resistance plumbing valves; glands;
H H H shower heads
Nylon 66 - - Excellent wear resistance; high ~ Gears and bearings;
I I strength and good toughness; rollers; wheels; pulleys;
_T'_(CHZ)G_'?‘_ C=CH—C—| ysed as plastic and fiber; highly =~ power tool housings; light
H H crystalline; strong affinity for machinery components;
water fabric
Poly _ - Extremely high MW high Coatings for cooking
F F Y : . .
(tetrafluoro- | crystallinity; extraordinary utensils; bearings and
ethylene) _?_?_ resistance to chemical attack; gaskets; pipe linings;
(PTFE, L F F | nonsticking insulating tape; nonstick,
Teflon) loadbearing pads
Poly(vinyl S Primarily amorphous; variable Floor covering; film;
chloride) | properties through polymeric handbags; water pipes;
PVO) _?_?_ additions; fire self- wiring insulation;
L H R | extinguishing; fairly brittle decorative trim; toys;
when unplasticized; relatively upholstery
cheap
Poly(methyl II4 CII_|3 Amorphous; brittle; general Signs; canopies; windows;
methacrylate) _(|: /c— replacement for glass windshields; sanitary ware
(PMMA,
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Crystalline lamellae in polymers. Models for (a) regular and (b) irregular chain folds, which produce thin

crystallites.?3 (Reprinted with permission from Chem. Eng. News, 43(33), copyright © by the American Chemical Society.)
(¢) Photomicrograph showing single crystals in polyethylene.”* (Reprinted with permission from John Wiley & Sons, Inc.)

molecules are aligned to some degree. However, it is undoubtedly the case that there is a lack of
long-range order in amorphous polymers, and it is this factor that is used to explain their overall
mechanical behavior.

Although it is possible to grow single crystal polymers (see Fig. 2.62c¢), in practice polymers
that tend to develop crystalline order (such as linear polyethylene) consist of crystallites that are
connected by amorphous regions. This mixed character has a profound effect on mechanical
behavior. The degree of crystallinity can vary widely, and can sometimes exceed 90%. The
crystalline structure of polymers can be described by two factors: chain conformation and chain
packing. The conformation of a chain relates to its geometrical shape. In polyethylene, the chains
assume a zigzag pattern, as noted above, and pack flat against one another. This is not observed in
polypropylene, which has a single large methyl group, and in poly(tetrafluoroethylene), which
contains four large fluorine atoms. Instead, these zigzag molecules twist about their main chain
axis to form a helix. In this manner, steric hindrance is reduced between side groups along a chain.
It is interesting to note that poly(tetrafluoroethylene)’s extraordinary resistance to chemical
attack, mentioned in Table 2.16, is believed partly attributable to the sheathing action of the
fluorine atoms that cover the helical molecule.

It is currently believed that chain packing in a crystalline polymer is achieved by repeated
chain folding, such that highly ordered crystalline lamellae are formed. Two models involving
extensive chain folding to account for the formation of crystalline lamellae are shown in
Fig. 2.62a,b.3:°* The thickness of these crystals is generally about 10 to 20 nm, while the
planar dimensions can be measured in micrometers. Since chains are many times longer than the
observed thickness of these lamellae, chain folding is required. Consequently, chains are seen to
extend across the lamellae but reverse direction on reaching the crystallite boundary. In this
manner, a chain is folded back on itself many times. The loose loop model depicting less perfect
chain folding (some folds occurring beyond the nominal boundary of the lamellae; see Fig. 2.62b)
is viewed by Clark® as being more realistic in describing the character of real crystalline polymers.

In addition to loose loops and chain ends (cilia) that lie on the surface of the lamellae, there
exist tie molecules (tie chains) that extend from one crystal to another’® (Fig. 2.63). The latter
provide mechanical strengthening to the crystalline aggregate, as is discussed later. In the
unoriented condition, crystalline polymers possess a spherulitic structure consisting of stacks of
lamellae positioned along radial directions (Fig. 2.64). Since the extended chains within the
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Figure 2.63 Schematic representation of chain-
folded model containing tie molecules, loose loops,
cilia (chain ends), and rejected molecules.?® (By
permission, from Polymeric Materials, © American
Society for Metals, Metals Park, OH, 1975).

Tie molecule
Loose loop

Rejected
molecule

Tight loops

lamellae are normal to the lamellae surface, the extended chains are positioned tangentially
about the center of the spherulite. Although this structure may bear some resemblance to that of
a metal or ceramic grain structure, it should be noted that each spherulite contains multiple
crystalline lamellae with many different orientations with respect to one another. A spherulite
has a boundary with its neighbor that can act mechanically much like a grain boundary, but
spherulites do not act like single crystals.

2.7.1.4 Polymer Additions

Often, commercial polymeric products contain a variety of additives that change the overall
structure and associated properties. It is, therefore, appropriate to identify the major types of
additives and their primary functions.

Pigments and Dyestuff. These materials are added to impart color to the polymer. They are
not expected to cause significant changes in mechanical behavior at typical concentrations.

Figure 2.64 Sheaf-like stacks of crystal lamellae in
polychlorotrifluoroethylene, which represent intersecting
spherulites.”* (Reprinted with permission from John Wiley
& Sons, Inc.)
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Stabilizers. Stabilizers suppress molecular breakdown in the presence of heat, light,
ozone, and oxygen. One form stabilizes the chain ends so the chains will not “unzip,” thereby
reversing the polymerization process. Other stabilizers act as antioxidants and antiozonants
that are attached preferentially by O; and O relative to the polymer chain. They aid in long-
term mechanical stability.

Fillers. Various ingredients are sometimes added to the polymer to enhance certain
properties. For example, the addition of carbon black to automobile tires improves their
strength and abrasion resistance. Fillers also serve to lower the volume cost of the polymer—
filler aggregate, since the cost of the filler is almost always much lower than that of the polymer.

Blowing Agents. These substances are used to form expanded or foamed polymers by
decomposing into gas bubbles within the polymer melt, producing stable holes. The porous
nature of the resulting polymer solid creates substantially different mechanical properties than
the solid version of the same material.

Plasticizers. Plasticizers are high-boiling-point, low-MW monomeric liquids that possess
low volatility. They are added to a polymer to improve its processability and/or ductility. These
changes arise for a number of reasons. Plasticizers add a low MW fraction to the melt, which
broadens the MWD and shifts M to lower values. This enhances polymer processability. The
liquid effectively shields chains from one another, thus decreasing their intermolecular attraction.
Furthermore, by separating large chains, the liquids provide the chains with greater mobility for
molecule segmental motion. The decrease in M and the lowering of intermolecular forces
contribute toward improving polymer ductility and toughness. It should be recognized that these
beneficial changes occur while stiffness and maximum service temperature decrease (as Ty
decreases). Consequently, the extent of polymer plasticization is determined by an optimization
of processability, ductility, strength, and stiffness, and service temperature requirements.
Unplasticized PVC is rigid at room temperature (e.g., pipes for plumbing) whereas plasticitized
PVC can be quite flexible (e.g., insulation for electrical wires). It is interesting to note that nylon
66 is inadvertently plasticized by the moisture it picks up from the atmosphere.

Cross-linking Agents. As previously discussed, the basic difference between thermoplastic
and thermosetting polymers lies in the nature of the dominant intermolecular bonds linking
adjacent chains. Sulfur is a classic example of a cross-linking agent as used in the vulcanization of
rubber. Cross-linking reduces the effect of temperature on stiffness and strength, and severely
restricts molecular mobility.

From this very brief description of polymer additives, it is clear that a distinction should be
made between a pure polymer and a polymer plus assorted additives; the latter is often referred to
as a plastic, though rubbers also may be compounded. Although the terms plastic and polymer are
often used synonymously in the literature, they truly represent basically different entities.

2.7.2 Plasticity Mechanisms

We now consider the mechanisms by which amorphous and crystalline polymers deform.
As discussed previously, significant plasticity is only possible in materials in which some
degree of chain sliding can occur, and that chain mobility is a strong function of temperature.
Furthermore, chain mobility and the details of the deformation mechanisms at work differ from
amorphous to crystalline phases.

2.7.2.1 Amorphous Polymers

In amorphous polymers, shear yielding can occur in a homogeneous fashion, or in an
inhomogenous fashion in the form of localized shear bands (somewhat reminiscent of Luders
bands in certain metals). At T, and above, chain mobility is very high and homogeneous
deformation with large plastic strains is favored. In this condition, amorphous polymers are
rubbery (not to be confused with elastomeric behavior, which requires cross-links). At tempera-
tures below T, amorphous thermoplastics are glassy. Chain mobility is reduced, and shear band
formation is favored. Within a shear band, the actual process of chain sliding is similar to that of
the homogeneous deformation mode, while outside a shear band little plastic deformation takes

place. Shear bands form in directions parallel to maximum shear stress, so in a uniaxial test they
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Figure 2.65 Schematic depiction of the cross section of an unplasticized PVC sheet deformed below T, in 4-point
bending. Under cross polarization, shear bands extending from the original surfaces are visible as bright streaks. The
approximate shear band depth is marked on the compressive (d.) and tensile (d;) sides of the specimen. The shear
band depth is different on the two sides due to pressure-dependent yield behavior.

appear at angles close to 45° to the tensile or compression axis. In bending, shear bands tend to
nucleate at the outer, high-stress surfaces and extend inward,”’ as shown in Fig. 2.65.

In many polymers, there is a significant load drop almost immediately after plastic
deformation begins. (Note the difference between this behavior and that of ductile metals
for which unstable necking is delayed until substantial work hardening has occurred.) It is often
easier to continue shear yielding than to initiate it, so there can be a local softening once
yielding commences. In some cases the material quickly necks in an unstable fashion, and
failure occurs. However, in many other cases the neck reduces to a certain cross section,
stabilizes, and spreads, causing a large reduction in cross-sectional area along the gage length of
the test specimen as shown in Fig. 2.66. Shear yielding mechanisms are associated with this
phenomenon of cold drawing. The propensity for cold drawing depends on strong work
hardening in the necked region that comes from an overall alignment of the chains along the
principal stress axes. In some amorphous polymers, the degree of alignment may actually be
significant enough to cause crystallization (e.g., in polyethylene terephthalate, PET) although
this need not be the case to develop reasonable work hardening.

In the presence of tensile stresses (particularly triaxial tensile stresses) there is another form
of inhomogeneous glassy polymer yielding called crazing that can compete with shear banding.
Crazes are micrometer-scale crack-like features that form within the material along an axis
perpendicular to the principal tensile stress direction. As shown in Fig. 2.67, a craze develops as
microvoids nucleate in regions of high stress concentration, and surrounding chains rotate to
align with the tensile axis. These fibrils bridge the craze, preventing the microvoids from

Figure 2.66 Cold drawing in
polypropylene, which produces greater
optical transparency in gage section as a
result of enhanced molecular alignment.
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Figure 2.67 (a) Schematic depiction of a craze illustrating the fibrils oriented along direction 2, the principal stress
axis, and (b) an idealization of a craze illustrating its evolution as it extends in direction 1.109 (Reprinted from
Journal of the Mechanics and Physics of Solids, 48, R. Estevez, M.G.A. Tijssens, and E. Van der Giessen,
“Modeling of the competition between shear yielding and crazing in glassy polymers,” p. 2585, 2000, with
permission from Elsevier.)

immediately linking up to form a true crack. The growth of a craze occurs laterally by extension
of the craze tip into uncrazed material. At the same time, the craze thickens by lengthening of
the fibrils. If the applied load is increased, the fibrils will eventually break, which leads to
macroscale fracture. Under conditions in which crazing dominates over shear yielding, failure
by craze embrittlement precludes cold drawing and large plastic strain development in tension.
In compression, craze formation cannot occur and so large plastic deformation by shear
yielding is possible even in glassy polymers that tend to have poor ductility in tension. For
several key reviews and current articles gertaining to craze formation and fracture, the reader is
referred to several key references.”8 108

2.7.2.2 Semi-crystalline Polymers

The amorphous regions of semi-crystalline polymers can undergo similar chain sliding and
alignment to that seen in fully-amorphous material. However, the constraint imposed by the
surrounding crystallites tends to make sliding more difficult than in the fully-amorphous case.
Unoriented crystalline regions like those found within spherulites are found to deform by a
complex process involving initial breakdown and subsequent reorganization.“o_112 After an
initial stage of plastic deformation in the amorphous regions of the spherulites, the latter begin
to break down. Lamellae packets oriented normal to the applied stress may separate along the
amorphous boundary region between crystals, while others begin to rotate toward the stress axis
(analogous to slip-plane rotation discussed in Section 2.5.1). The crystals themselves are now
broken into smaller blocks, but the chains maintain their folded conformation. As this phase of
the deformation process continues, these small bundles become aligned in tandem along the
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Figure 2.68 (a) Model depicting transformation of a stack of parallel lamellae into a bundle of densely packed and
aligned microfibrils.!!! Crystal blocks oriented as shown in b. (Reprinted from Macromol. Chem. 8, 277 (1973),
with permission.) (b) Alignment of crystal blocks in microfibrils. Intrafibrillar extended tie molecules shown at A
with interfibrillar extended tie molecule at B.!12 (By permission from Polymeric Materials, copyright © American
Society for Metals, Metals Park, OH, 1975.)

drawing direction, forming long microfibrils (Fig. 2.68). Note that the extended chains within
each bundle are positioned parallel to the draw axis along with a large number of fully extended
tie molecules. Since many tandem blocks are torn from the same lamellae, they remain
connected through a number of tie molecules created by unfolding chains from the original
lamellae. The combination of many more fully extended tie molecules and the orientation of the
bundles within each fibril contributes toward a rapid increase in strength and stiffness. By
contrast, few primary bonds join blocks in adjacent microfibrils, except those representing tie
molecules from the original lamellae (Fig. 2.68b). It is this initial spherulite structure break-
down, followed by microfibril formation, that gives rise to the substantial hardening associated
with aligned semi-crystalline polymers. Continued deformation of the microfibrillar structure is
extremely difficult because of the high strength of the individual microfibrils and the increasing
extension of the interfibrillar tie molecules. These tie molecules become more extended as a
result of microfibril shear relative to one another. This extreme work hardening is ideal for cold
drawing, and tends to result in an aligned material that is even stronger along the drawing axis
than aligned material produced from amorphous polymers.

2.7.3 Macroscopic Response of Ductile Polymers

Finally, we turn to the macroscopic deformation response of ductile polymers. For those
polymers that cold draw, there is a significant drop in stress immediately after yielding begins,
as seen in Fig. 2.69a. In this case, it is common to identify the peak stress as the yield stress. Not
all materials deform in this fashion, however, so an offset yield criterion sometimes becomes
necessary. When necking does occur, there is an apparent drop in the yield strength followed by
a long plateau if the neck propagates. This is somewhat deceptive, however, because the large
change in cross-sectional area associated with the neck makes engineering stress useless for
evaluating the intrinsic strengthening behavior of the material. This is arguably an even greater
challenge for polymers than for metals because the onset of necking in polymers can be
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Figure 2.69 (@) Raw load-displacement data for PVC and HDPE specimens tested in tension. Both exhibit large
load drops associated with necking. (b) True stress—true strain versions of the data demonstrating continuous
hardening.1 13 (Data from Springer Science + Business Media: Journal of Materials Science, 14, p. 583, 1979, C.
G’Sell and J. J. Jones, figure numbers 1 and 4.)

coincident with yielding, in which case there is no extended period of homogeneous plastic
deformation in which the equations relating engineering and true stress can be used (recall Egs.
1-4 and 1-5). Figure 2.69b shows the true stress and true strain measured within the necked
region using special instrumentation that tracked the local areal dimensions. It can be seen that
for necked PVC and HDPE there is a change in slope associated with yielding, but no load drop.
Furthermore, work hardening increases steadily to the point of failure. This is quite different
than work hardening in metals, which begins at a high rate and then declines. It is this increasing
rate of work hardening depicted in the PVC and HDPE curves that supports cold drawing.

Following the approach of G’Sell and Jonas,!!3 a relative strain-hardening coefficient
can be defined as y = (dIno/de),. For the curves in Fig. 2.69 it can be seen that -y increases
with increasing strain. If one also defines a strain rate sensitivity coefficient m = (dlno/d¢),,
the flow curve can be described in the form

&2
o(e, &) = Kémexp( 5 &) (2-57)
where K is a constant. G’Sell and Jonas found that m was equal to 0.06 for HDPE and 0.05 for
PVC (although it diminished to nearly zero with increasing strain for PVC). These values are
comparable to those of many metals (see Section 2.4.4).

Using hourglass-shaped tensile specimens and a video-based strain measurement instru-
ment, G’Sell et al. have also evaluated the yield behavior of semi-crystalline and amorphous
materials as a function of temperature. Applying a Bridgman correction for the triaxial stresses
developed in this narrow region of their specimens (recall Section 2.4.2.3), they report
corrected “effective” true stress values that are equivalent to pure uniaxial stresses in the
absence of the artificial neck (Fig. 2.70). They found in this study that glassy polymers (PC, PS,
PMMA, PVC) tested below T, all showed a large true stress drop followed by increasing strain
hardening. Semi-crystalline polymers tested below T, (PA6, PEEK) yielded with small stress
drops. Semi-crystalline polymers testing above T (PE, PP, PTFE, POM) showed no stress
drop, and progressed smoothly from elastic to plastic deformation. They attributed these trends
to the generation of transient defects that occur when an amorphous phase first yields in the
glassy state. When an amorphous material is above T, viscoelastic effects (i.e., time-dependent
elasticity) can smooth the transition (see Chapter 4 for discussion of viscoelasticity).
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150 T T T Figure 2.70 True stress and strain corrected for
triaxial stresses in the necked region showing a true
PEE stress drop (x) in some polymers (solid lines) and not
* Denote: Load Drop in others (pdashed lines)?(Dyata from Springer
* Science + Business Media: Journal of Materials
100 Nylon 6 Science, 27, p. 5031, 1992, C. G’Sell, J. M. Hiver,
A. Dahoun, and A. Souahi, figure number 10.)
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2.7.4 Yield Criteria

We conclude this discussion by revisiting the question of appropriate yield criteria for
polymer plasticity. Classical yield theories assume that (i) the material in question is isotropic
and homogeneous, (ii) yield is insensitive to the presence of normal (or hydrostatic) stresses,
(iii) yield is identical in tension and compression, and (iv) volume is conserved during plastic
deformation. As shown in Section 2.5.3, yield behavior of textured metals must be altered to
adjust for anisotropy. The same will be true for aligned polymers. The other assumptions hold
reasonably well for metals,'™™ but are not necessarily true for polymers. In particular, it has
been seen that polymers typically have very different yield behavior in tension and in
compression, and that this can be attributed to hydrostatic pressure effects.

The effect of pressure on yielding has been studied by a number of research groups, and
several trends have emerged. First, it is seen that yield in tension occurs at lower true stress
than yield in compression. This is evident in the shear band size asymmetry depicted in
Fig. 2.65 for a bend test of unplasticized PVC, and in the differences in tension and
compression curves for PMMA in Fig. 2.71. As positive pressure (compressive stress) is
exerted on these low-stiffness materials, the chains are pressed together and chain mobility is
diminished. Conversely, under negative pressure (tension stress) the average spacing
between the chains in the direction perpendicular to the principal normal stress is increased,
and chain mobility is enhanced.

In light of the significant influence of pressure on polymer yielding, several pressure-
dependent yield criteria have been proposed and compared to experimental results. The Mohr-
Coulomb model and the modified Tresca criterion are based on the existence of a critical shear
stress, just like the classical Tresca criterion. In the Mohr-Coulomb model, the pressure
influence is described as a simple normal stress imposed on the plane of sliding, with a
“frictional” term added to couple the normal stress to the critical shear stress. It takes the form

T™™MC = Tc — WMCOn (2-58a)
where 74 is the critical shear stress in the presence of a normal stress, .. is the critical shear
stress in the absence of normal stress, ¢ is the coefficient of friction, and o,, is the normal

stress (negative for compression as written). This is a significant departure from the case of

iX Cold-working of metals can cause yield asymmetry in tension and compression due to dislocation back-stresses. This is known as the
Bauschinger effect; it is a function of prior processing, not a fundamental property.
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Figure 2.71 Asymmetry in tensile and
80 ) compressive yield for PMMA tested
Compresswe under uniaxial conditions.!!> (Data from
Loading Springer Science + Business Media:
Journal of Materials Science, 9, p. 81,
1974, S. Rabinowitz and P. Beardmore,
figure number 14.)
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metals and ceramics, for which the normal stress plays no role in determining yield (recall
Section 2.2.2). The Mohr-Coulomb criterion is also sometimes written as

e = Tc — (tang)oy, (2-58b)

where ¢ is the angle that the yield surface makes with the classical failure surface, as shown in
Fig. 2.72. Note that the Mohr-Coulomb criterion does not distinguish between yielding under

T Figure 2.72 Failure envelopes for Tresca (short dash)
and pressure-modified Tresca (long dash) yield criteria
plotted on shear and normal stress axes. Note that the
. classical Tresca behavior is not dependent on the normal
¢§€ T _ Tresca W stress, and that an angle ¢ characterizes the deviation
""" ST YUK expressed by the introduction of normal stress dependence
‘}“~ in the pressure-modified version.

Pressure-modified
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uniaxial or multiaxial loading. The pressure-modified Tresca criterion, however, treats the
pressure phenomenon in three dimensions, but has a similar form:

T = Tro + urP
1 (2-59)
E (O'max - Umin) =170 + TP

where pp is the pressure coefficient and P is the mean (hydrostatic) pressure
1
P:—5(01+02+03) (2-60)

so that P is positive for hydrostatic compression.

The pressure-modified version of the von Mises yield criterion depends on a critical
distortion energy, just the like the classical version, and takes essentially the same overall form
as the modified Tresca:

VM = Toct0 + LvmP (2-61)

where Ty is the critical octahedral shear stress for yielding as a function of pressure, py;y is
again a pressure coefficient, and P is the mean pressure. Here, 7, is the critical octahedral
shear stress determined in the absence of hydrostatic pressure (i.e., in pure shear). When the
applied octahedral shear stress (Eq. 2-30) exceeds the pressure-modified critical value so that
Toer 2> Tym, yielding occurs. This is identical in form to the linear Drucker-Prager yield
criterion originally developed to describe the yield behavior of soil, which may be found as an
option in finite element analysis software.
Note that for uniaxial loading,

Toct =

P =-

ui&

(2-62)

wIQ

All the aforementioned pressure-modified yield criteria assume a linear dependence on the
pressure. It has been found that this works well at low pressures (e.g., 100 MPa) but may not be
suitable for very high hydrostatic pressures. If this is the case, a nonlinear version can be applied
such as the exponent Drucker-Prager criterion.!1©

Regardless of whether the maximum shear or distortion energy criterion is used, the effect on
the yield surface is similar. In biaxial stress space, the symmetric yield surfaces depicted in
Fig. 2.24 are shifted toward the biaxial compression quadrant, and are distorted as shown in
Fig. 2.73. A tractable method for determining which yield criterion is best for a particular polymer
is to test under several different stress states then to compare with the various model predictions. In
Fig. 2.73 this approach is demonstrated for PMMA and PS at several different temperatures.117
The tests consisted of uniaxial tension and compression (pure o1 and/or o), pure shear (01 = —0>;
03 =0), and plane strain compression (o1 = 0.507; 03 =0). Quinson et al. found that PMMA was
best described by the modified von Mises criterion for all temperatures tested, while the PS was
better described by the modified Tresca criterion at 90°C. Although not shown here, PC yield was
matched best by the modified Tresca criterion at 20°C and 90°C. These results confirmed those of
an earlier study by Bowden and Jukes.®’ The trends were explained by relating the assumptions
underlying the models to the observed plasticity modes. The PMMA exhibited diffuse shear
yielding over large deformation zones at all temperatures, whereas the PC showed thin, distinct
shear bands (conceptually matching the expectations of the Tresca maximum shear criterion). The
PS showed thin shear bands at 20°C but diffuse shear yielding at 90°C. Transmission optical
microscopy images of the diffuse and sharp shear deformation modes (photographed between
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Figure 2.73 Solid lines depict pressure-modified von Mises and Tresca biaxial stress yield envelopes for

(a) PMMA, and (b) PS as a function of temperature. It has been observed that the pressure modified von Mises
criterion best matches PMMA behavior for the temperature range 0-90°C, while PS undergoes a transition from
Tresca to von Mises as temperature increases.!1” For comparison, dashed lines indicate pressure-independent yield
envelopes based on the same critical shear conditions. (Data from R. Quinson, J. Perez, M. Rink, and A. Pavan,
Journal of Materials Science, 32, p. 1371, 1997.)

YOI

(@) l‘. At " pr\\

Figure 2.74 Schematic depictions of shear band appearance for two different polymers deformed at 20°C then
imaged at the same magnification with transmission optical microscopy between crossed polarizers. (a) Diffuse
shear yielding in PMMA, and (b) narrow shear bands in PS.

crossed polarizers) are shown in Fig. 2.74. In the earlier study by Bowden and Jukes, it was
suggested that any polymer that deforms in a relatively homogeneous manner (e.g., PVC, epoxy
resins, and HDPE) might be expected to match best with the modified von Mises criterion; those
that deform inhomogeneously by distinct shear band formation (e.g., PET) might therefore be best
described by the modified Tresca criterion. Confirmation of these trends awaits further exper-
imental proof.
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PROBLEMS

Review

2.1 Is a dislocation a physical item or substance? If not,
what is it?

2.2 Why are dislocations necessary for explaining the
plasticity typically seen for crystalline materials?

2.3 Identify two techniques for observing dislocations,
and describe at least one strength and one weakness of
each technique.

2.4 Rank the relative Peierls force in different materials
and material classes and briefly explain why you gave that
rank, in each case.

2.5 Which can cross-slip—an edge dislocation, a screw
dislocation, or a mixed dislocation? Why?

2.6 Sketch an edge dislocation and a screw dislocation as
if you are looking directly along the dislocation line in each
case. Clearly mark the line direction and the slip plane (if
there is a unique slip plane). Indicate on your sketches where
you will find regions of hydrostatic tension, hydrostatic
compression, and pure shear stress surrounding the disloca-
tion lines.

2.7 Sketch a representative portion of the TEM images in
Figures 2.7 and 2.18, including only the dislocation lines.
Indicate on your sketches which features are dislocation
lines, which are stacking faults, and which are the top and
bottom edges of the slip planes.

2.8 Identify the crystal structure in the faulted region of an
FCC crystal. Why is this the case?

2.9 When an FCC material has high stacking fault energy,
do you expect widely-spaced or closely-spaced leading and
trailing partial dislocations? Do you expect wavy or planar
glide? Briefly explain both trends.

2.10 Consider the following face-centered-cubic disloca-
tion reaction:

a

[110] - 2

a — a

— 211] +=[121

2 |+ 2021]
a. Prove that the reaction will occur.

b. What kind of dislocations are the (a/6)(121)?

c. What kind of crystal imperfection results from this
dislocation reaction?
d. What determines the distance of separation of the
(a/6)[211] and the (a/6)[121] dislocations?
2.11 List which main slip systems are active in FCC, BCC,
and HCP metals, and explain why those particular planes/
directions are favored.
2.12 Sketch a 3D FCC unit cell and indicate where all 12
FCC slip systems can be found.

2.13 What does it mean to be an independent slip
system?

139

Problems

2.14 What is the effect of resolved normal stress on the
yield behavior of crystalline metals and ceramics?

2.15 What is the role of the Taylor factor?

2.16 Reproduce Figure 2.23 twice, first adjusting it so
that it accurately depicts the case in which the horizontal
stress is half that of the vertical stress, and second so that
the horizontal stress is twice that of the vertical stress. Use
arrow length to indicate relative stress magnitude.

2.17 Which predicts the lower yield strength for most
combinations of applied stress—the Tresca or the von Mises
yield criterion? Under what stress conditions are the predic-
tions equal?

2.18 Identify the trend between stacking fault energy and
work-hardening coefficient, and then use it to predict which
is likely to work harden more strongly: pure copper or pure
nickel, the latter of which has a stacking fault energy of
approximately 240 mJ/m?.

2.19 What are the critical differences between work hard-
ening and geometric hardening?

2.20 Describe how a wire texture is different from rolling
texture, and sketch an example of each with arrows indicat-
ing the directions of preferred orientation.

2.21 After a dislocation has passed through a crystal,
thereby causing plastic deformation, what does the inside
of the crystal look like? Contrast this with the appearance of
the interior of a crystal that has deformed by twinning.

2.22  Under what conditions is twinning favored in BCC
and/or FCC crystals?

2.23 What is the basic molecular mechanism for polymer
plasticity, and how does it differ from that of ductile
crystalline metals?

2.24 What specific aspects of polymer molecule structure
(e.g., side group size, shape, polarity, and location) favor
chain sliding?

2.25 How does the structure of a crystalline polymer
differ from that of a crystalline metal? What are the
implications of this difference for plasticity in both classes
of material?

2.26 What are the two micro-scale plasticity mechanisms
active in amorphous polymers? Are they likely to occur
simultaneously? Explain.

2.27 Explain the role of crazing in determining the extent
of maximum plastic deformation for some polymers. Be sure
to include both tensile and compressive loading in your
answer.

2.28 What typically happens to the strength level of a
polymer that has undergone cold drawing? Why?

2.29 Whatis the typical effect of resolved normal stress on
the yield behavior of polymeric materials? Is this the same as
for crystalline metals and ceramics?
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Practice

2.30 The dislocations shown below (on three separate slip
planes) represent different characters. Assume that no neg-
ative edge or left-hand screw dislocations are included.

oy

of

/b

a. Sketch this diagram, then clearly identify the
character of each dislocation by writing a label
nearby. How do you know each type?

b. How does each dislocation behave under the
applied shear shown on the diagram? Sketch the
dislocation lines and indicate the direction of
motion, if any, on three separate projections of
the slip planes (i.e., as seen from above).

2.31 Two edge dislocations of opposite sign are found in a

material separated by several planes of atoms as shown
below.

L

T

Please provide a helpful sketch and an explanation
along with the answer for each of the following questions:

a. Without changing slip planes, will they spontane-
ously line up one under the other?

b. Under what circumstances could they move to the
same slip plane?

c. If they did so, what would tend to happen once
they were on the same plane?

2.32 For austenitic stainless steel, Cu, and Al (all FCC
metals):

a. Calculate the actual magnitudes of the full and
partial dislocations, assuming that the lattice
parameters are 0.365nm, 0.362nm, and
0.405 nm, respectively.

b. Calculate the equilibrium partial dislocation sep-
aration distance d for all three materials.

c. Put the numbers from part (b) in context by
comparing them to the atomic size (diameter)
and lattice parameter for each material.

d. In which of the three material(s) is wavy glide very
likely to be observed?

2.33 A cube of material is loaded triaxially, resulting in
the following stresses at the point of plastic yielding: o, =
140 MPa, oy, =20 MPa, and o, =35 MPa.

a. What is the shear strength of the material accord-
ing to the Tresca yield criterion?

b. If the stress in direction Z at failure were 70 MPa
instead, how does this change your result? Explain.

2.34 A single-crystal rod of FCC nickel is oriented with
the [001] direction parallel to the rod axis.

a. Identify the type of slip system involved in the
plastic flow of nickel.

b. How many such slip systems are in a position to be
activated at the same time when the load is applied
parallel to this crystallographic direction?

c. What is the Schmid factor for this slip system?
(The angles between the {100} and {110} and
{100} and {111} planes are 45 and 54.7°,
respectively.)

2.35 From the work of D. C. Jillson, Trans. AIME 188,
1129 (1950), the following data were taken relating to the
deformation of zinc single crystals.

] A F (newtons)
83.5 18 203.1
70.5 29 77.1
60 30.5 51.7
50 40 45.1
29 62.5 54.9
13 78 109.0

4 86 318.5

The crystals have a normal cross-sectional area of
122 x 1075 m?.

¢ = angle between loading axis and normal to slip plane

A =angle between loading axis and slip direction

F =force acting on crystal when yielding begins

a. Identify the slip system for this material.

b. Calculate the resolved shear Tggs and normal o,
stresses acting on the slip plane when yielding begins.

c. From your calculations, does trgs or o, control
yielding?

d. Plot the Schmid factor versus the normal stress P/
Ag acting on the rod. At what Schmid factor value
are these experimentally-measured yield loads at a
minimum? Does this make sense?

2.36 Draw the (111) pole figure for the [100] wire texture in
silver and for the [110] wire texture in iron wires.

2.37 A low-carbon steel alloy was loaded in tension until
just after yielding took place. A few Liiders bands were
visible on the surface. The bar can either be reloaded (a)
immediately, (b) after a brief and moderate temperature



aging treatment, or (c) after several weeks without any
exposure to elevated temperature. In each of the three cases,
how is the yield strength of the reloaded bar likely to
compare to that of the original test?

2.38 The tensile strength for cold-rolled magnesium alloy
AZ31B plate is approximately 160 MPa for specimens tested
either parallel or perpendicular to the rolling direction.
When similarly oriented specimens are compressed, the
yield strength is only 90 MPa. Why? (Hint: Consider the
possible deformation mechanisms available in the magne-
sium alloy and any crystallographic texture that might exist
in the wrought plate.)

2.39 An HCP alloy, known as Hertzalloy 200, has a c/a
ratio of 1.600.

a. Identify the most probable slip system for this
material.

b. For each of the following diagrams, determine
whether slip will occur and whether twinning will
occur (consider only {1012} twinning). Briefly
justify your answers.
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2.40 Assume that the yield behavior of PMMA is well
described by the pressure-modified von Mises yield criterion,
that yielding occurs under pure shear loading at 0] = —o;
60 MPa, and that yielding occurs under pure tension loading
at 01 =94.2 MPa. Predict the stress needed to cause yielding
(a) in uniaxial compression along direction 1 or 2, (b) under
equal biaxial tension, and (c) under equal biaxial compression.

Finally, plot these yield conditions in a fashion similar to that
of Fig. 2.73.

-

141

Problems

Design

2.41 The design of a metallic component is undergoing a
change such that the stress state will go from pure uniaxial
compression to biaxial loading, with the secondary load
applied at a 90° angle to the primary load, and with the
secondary stress at 20% of the primary stress but of opposite
sign. If the material in question is a plate of rolled 304
stainless steel in the annealed state, and the original uniaxial
compressive design stress was 50% of the yield strength (to
achieve a safety factor of 2x), what safety factor remains
under the new, biaxial loading condition?

2.42  An unplasticized PVC component is intended to be
loaded under uniaxial tension. After premature failure of a
prototype component, a cross section observed under
crossed polarizing lenses reveals that there are shear bands
extending from the surfaces into the material, but none in the
interior. What, if anything, does that tell you about the actual
loading of the component in service that could be used to
guide changes to the design?

2.43 Youhave been asked to use a finite element computer
model to predict the yield condition for a PMMA component
under a complex loading scenario. Among the many yield
criteria that are likely to be available in the finite element
software package, which would probably be the best choice
for this case? Why?

Extend

2.44 Acquire a journal paper that uses Neumann bands as
evidence in a failure analysis. Summarize the article, clearly
identify the role that the discovery of Neumann bands played
in the failure analysis, and provide a formal reference for the
paper.

2.45 Find five examples of products made of plasticized
PVC and five made of unplasticized PVC. How does the
choice of plasticized vs. unplasticized PVC match the
engineering requirements of the products in each category?






Chapter 3

Controlling Strength

3.1 STRENGTHENING: A DEFINITION

We are now in a position to examine the various ways by which a ductile material may be
strengthened; stated another way, we now seek to control the material’s resistance to plastic
deformation, thereby increasing or decreasing the strain range that is purely elastic. This topic
was introduced in Chapter 2, in which the post-yield and work hardening of metals were
discussed. The effects of polymer chain orientation on yield strength were also introduced in
Chapter 2. These effects are examples of intrinsic strengthening—the fundamental yield
behavior of the materials is altered. It should be noted that intrinsic strengthening in metals, per
se, primarily relates to processes by which dislocation motion is restricted within the lattice.
Intrinsic polymer strengthening is largely achieved by reducing the tendency for chain sliding.
Metals and polymers can also be strengthened by the addition of high-strength fibers, creating
composite materials. In a sense, such strengthening can be viewed as being extrinsic in nature
since the load on the matrix is transferred to the high-strength fibers while the intrinsic
resistance to deformation in the matrix is not changed. Note that discussion of the strength of
glass and ceramic materials will be deferred until Chapter 7 because the elastic limit in these
materials is determined by the onset of fracture processes rather than by plasticity.

3.2 STRENGTHENING OF METALS

A number of metal-strengthening mechanisms have been identified, all of which are
associated with control of dislocation density, and in particular the density of mobile
dislocations. That dislocation density is a critical factor in determining the strength of a metal
or metal alloys is evident in the trend shown in Fig. 3.1. It is interesting to note that the strength
of a metal approaches extremely high levels when there are either no dislocations present (recall
the behavior of dislocation-free metal whiskers and Mo micro-pillars in Chapter 2) or when the
number of dislocations is extremely high (>10'%cm?); low strength levels correspond to the
presence of moderate numbers of dislocations (~103-10°/cm?). The typical range of disloca-
tion density for structural metals and alloys is shown in Fig. 3.1, within which an increase in the
dislocation density monotonically increases the number of interaction events that inhibit
subsequent plastic deformation. These events include dislocation interactions with other
dislocations (strain hardening), grain boundaries, solute atoms (solid solution strengthening),
precipitates (precipitation hardening), and dispersoids (dispersion strengthening). Some of
these mechanisms work in pure metals, others only in alloys; some in single crystals, others
only in polycrystals; some over a range of temperatures, others only at low temperatures
relative to the metal’s melting point. These are critical distinctions that affect the processing
and use conditions of the material in question, so each mechanism will be discussed
individually and these distinctions will be made clear.

3.2.1 Dislocation Multiplication

A fundamental question to address before proceeding on to a discussion of individual
strengthening mechanisms is, “By what means does dislocation density change?” We can gain our
first insight into this phenomenon by reconsidering the macroscopic evidence of slip presented in
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~Gl2r|— Figure 3.1 Strength of metal crystals as a
function of dislocation density.

Strength

typical range

0 ~101%/cm?

Dislocation
density

Chapter 2. Because slip offsets are clearly visible in a light microscope (e.g., see Fig. 2.19), they
must be in the range of at least 1 wm in height. Since the typical Burgers vector for a dislocation is
on the order of 0.2 to 0.3 nm, there is a requirement for approximately 10* dislocations on each slip
plane to create the slip step. That so many dislocations of the same sign should lie on the same
plane before the crystal is stressed is highly unlikely. A possible alternative explanation is that
additional dislocations must have been generated during deformation. This view is supported by
the observations of electron microscoPists who have found the dislocation densities in thin metal
films to increase from 10%-10 to 10'1-1012 dislocations/cm? as one proceeds from the annealed
to heavily cold-worked state. This corresponds to an evolution from a strength state near the
minimum in Fig. 3.1 to a state at the far right.

A widely accepted mechanism for dislocation generation is based on the planar Frank-Read
source. In this model, a segment of a dislocation line is considered to be pinned either by foreign
atoms or particles, or by interactions with other dislocations (Fig. 3.2). Recalling Eq. 2-20,
when a shear stress is applied to the crystal, the segment AB will bow out with a radius given by

R x b (2-20)
T
Dislocation bowing will increase with increasing applied stress, while the radius of curvature
decreases to the point where R equals half the pinned segment length / (Fig. 3.2b). At this point,
the loop becomes unstable and begins to bend around itself (Fig. 3.2¢). The stress necessary to
produce this instability is given by

TR (3-1)
where [ = distance between pinning points. Finally, the loop pinches off at C and C’, since these
two regions correspond to screw dislocations of opposite signs (Fig. 3.2d). After this has
occurred, the loop and cusp ACB straighten, leaving the same segment AB as before but with an
additional loop containing the same Burgers vector as the original segment (Fig. 3.2¢). Upon
further application of the stress, the segment AB can bow again to form a second loop while the
initial loop moves out radially. With continued application of the shear stress, this source can
generate an unlimited number of dislocations. In reality, however, the source is eventually shut
down by “back stresses” produced by the pileup of dislocation loops against unyielding
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A Figure 3.2 Frank-Read source
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obstacles (e.g., grain boundaries as discussed in Section 3.4). The photograph shown in
Fig. 3.3a represents a classic illustration of a Frank-Read source in a silicon crystal.
Another closely related dislocation generation mechanism has been suggested by Koehler?
and modified by Low and Guard.3 The basic feature of this model is that through the process of
cross-slip, a screw dislocation can generate additional Frank-Read sources. From Fig. 3.3, we

&

(110) — Principal slip plane
A, B—Cross-slip planes
S— Screw component

E — Edge component

\'\}X\ o>

20
SIS
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b

Figure 3.3 Frank-Read sources. () Photomicrograph in silicon crystal. (From Dash;* reprinted with permission of
General Electric Co.) (b) Dislocation multiplication by double cross-slip mechanism. (From Low and Guard;?
reprinted with permission from Low, Acta Met. 7 (1959), Pergamon Press, Elmsford, NY.)
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see that a screw dislocation segment has cross-slipped twice to resume movement on a plane
parallel to the initial slip plane. Note the additional dislocation loops that may be generated by
this process.

3.2.2 Dislocation-Dislocation Interactions

Like dislocation multiplication, the interaction between dislocations plays a fundamental
role in many strengthening mechanisms. The key point is that dislocation—dislocation inter-
actions tend to create circumstances in which dislocation mobility is reduced, thereby
increasing resistance to further plastic deformation (i.e., strengthening the metal or alloy).

The first type of dislocation—dislocation interaction occurs between dislocations moving on
the same slip plane. Recall that in Section 2.1.6, the elastic properties of dislocations were
introduced. It was shown that elastic stress fields surround all dislocations due to the distortion of
the nearby lattice, and that there can be attractive or repulsive interactions between certain
dislocations in close proximity to one another. Since dislocations of the same sign will repel one
another and not coalesce, they will tend to pile up (each with a unit Burgers vector) against a
barrier on the slip plane such as a grain boundary or a hard particle (Fig. 3.4 ). The resulting back
stresses can immobilize the dislocations so that they can no longer cause slip. (As one might
expect, a large stress concentration is developed at the leading edge of the pileup, which can lead
to premature fracture in certain materials. See Chapter 7 for further discussion of this point.)

Equally important are the intersections of dislocations on different slip planes. Given that in
FCC metals there are 12 different slip systems that involve 4 distinct {111} planes oriented to
form a tetrahedron, it is easy to imagine that most dislocations in a crystal do not lie in the same
slip plane. In fact, one common model for hardening imagines that a single mobile dislocation
traveling on a certain slip plane encounters a forest of dislocations passing through the active
slip plane. As they are not on the most favorably oriented plane for slip, these forest dislocations
are considered to be sessile—that is, they are not moving, and serve as barriers rather than as
enablers of plastic deformation. There are four general categories of interaction between mobile

Figure 3.4 Dislocation pileups on two systems against a grain boundary in 309 stainless steel (y =35 mJ/m?).
(Courtesy of Anthony Thompson, Carnegie-Mellon University.)
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Figure 3.5 Intersection of two edge dislocations. (a) Burgers vectors are at right angles and produce an edge jog
PP’ in dislocations AB. (From Read,l Dislocations in Crystals; © McGraw-Hill Book Co., New York, 1953. Used
with permission of McGraw-Hill Book Company.) (b) Burgers vectors are parallel and produce two screw jogs PP’
and QQ'. (From Hull;’ reprinted with permission from Hull, Introduction to Dislocations, Pergamon Press,
Elmsford, NY, 1965.)

and forest dislocations: repulsion (similar to the case of like dislocations on a single plane),
attraction and formation of junctions or locks between dislocations, and the formation of jogs.

Two different jog-forming edge dislocation interactions are shown in Fig. 3.5. In the first
case, where the Burgers vectors of the two dislocations are at right angles, the intersection of
dislocation AB leads to a simple lengthening of dislocation XY. On the other hand, dislocation
XY with a Burgers vector by cuts dislocation AB, producing a jog PP’ that has a length equal to
that of by. The Burgers vector of PP’, however, is bo—the same as dislocation AB to which it
belongs. Since b, and PP’ are normal to one another, PP’ is of the edge type. This jog moves
under the same conditions as the original dislocation, and therefore its presence does not
impede the movement of the dislocation AB.

When the Burgers vectors of the edge dislocations are parallel, the jogs produced are different
in character. As shown in Fig. 3.5b, dislocation XY with its Burgers vector by produces ajog PP’ in
dislocation AB. Since the Burgers vector b, in dislocation AB is parallel to the jog PP’, the jog is of
the screw type. Similarly, the jog Q@' in dislocation XY is found also to be of the screw type. The
screw jogs PP' and QQ’ both have greater mobility than the edge dislocations to which they
belong. Consequently, their presence does not impede the overall motion of the dislocation. In
summary, jogs generated in edge dislocations will not affect the movement of the dislocation.

The same cannot be said for intersections involving screw dislocations. As illustrated in
Fig. 3.6q, the intersection of an edge and screw dislocation will produce a jog PP’ in the edge
dislocation AB and another jog QQ' in the screw dislocation XY. Since each jog assumes the
same Burgers vector as its dislocation, it may be seen that PP’ and Q@' are both edge jogs. From
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Figure 3.6 Intersection of screw dislocation XY with (a) edge dislocations AB to form two edge jogs PP’ and QQ'.
(From Read,1 Dislocations in Crystals; McGraw-Hill Book Co., New York, © 1953. Used with permission of
McGraw-Hill Book Company.) (b) Another screw dislocation AB which forms two edge jogs PP’ and QQ’. (From
Hulld; reprinted with permission from Hull, Introduction to Dislocations, Pergamon Press, Elmsford, NY, 1965.)
Edge jogs in screw dislocations impede their motion.

the above discussion, PP’ will not impede the motion of dislocation AB, whereas QQ' will
restrict the movement of the screw dislocation XY. The same can be said for the edge type jogs
PP’ and QQ’ found in the screw dislocations AB and XY, respectively, shown in Fig. 3.6b. The
restriction placed on the mobility of the screw dislocations is caused by the inability of the edge
jog to move on any plane other than that defined by the jog QQ’ and b (i.e., the plane QQ' YZ;
see Fig. 3.7). Consequently, when a shear stress is applied parallel to b,, the screw segments XQ
and Q'Y will produce displacements parallel to b, while the screw dislocation lines move to DE
and FG, respectively. The only way that the edge jog QQ' can follow along plane EFQQ is by
nonconservative motion involving vacancy-assisted dislocation climb. As shown schematically

Figure 3.7 Screw
dislocation XY containing an
edge jog QQ', which can
move conservatively on
plane QQ' YZ but
nonconservatively on plane
EFQ' O when screw
components XQ and Q' Y
move to DE and FG,
respectively.
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Figure 3.8 Detailed movement of jogged screw
Direction of movement dislocation. (a) Jogged dislocation under zero stress; (b)
applied shear stress causes screw component to bow out

(@  between edge jogs; (c) edge jogs follow screw segments
/\/m? by nonconservative climb, leaving behind a trail of
A vacancies. (From Hull;? reprinted with permission from

Hull, Introduction to Dislocations, Pergamon Press,
Elmsford, NY, 1965.)

Slip plane

in Fig. 3.8 for the case of small jogs with heights of one or two atom spacings, the screw
dislocation first bows out under application of a shear stress and then moves farther only by
dragging along the edge jogs, which leave behind a trail of vacancies. When the jog height is
greater as a result of multiple dislocation—dislocation intersections (e.g., about 5 to 10 nm in
silicon—iron), too many vacancies would be required for climb of the jog. As a result, long-edge
dislocation segments (called dipoles) are left behind as the screw segments of the dislocation
advance through the crystal (Fig. 3.9a). When the jog height is even larger (e.g., greater than
20nm in silicon—iron), the screw segments XP and P'Y move independently of one another
(Fig. 3.9b). Examples of the three height categories of edge jogs in screw dislocations are shown
in Fig. 3.10 for the case of silicon—iron. Thus the presence of an edge segment can induce a
significant impediment to the motion of screw dislocations, thereby creating another mechanism
(in addition to pinning or pileup) by which dislocation—dislocation interactions can cause a
reduction in dislocation mobility.

Interactions between mobile and forest dislocations that do not cause simple jog formation
can be categorized as repulsive or attractive. In both cases, the stress required to move the

@ (b)

Figure 3.9 Effect of jog height on screw dislocation mobility. (@) Intermediate jog height QQ’ causes long-edge
segments (dipoles) to form as screw segments glide through crystal; (b) large jog height PP’ allows screw segments
XP and YP' to move independently of one another. (From Gilman and J ohnston;® reprinted with permission of the
authors and Academic Press, Inc., New York.)
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Figure 3.10 Dislocations in silicon—iron
thin film. Note dipole trails at A, pinched-off
dipoles at B, and independent dislocation
movement at the large jog at C. (From Low
and Turkalo;’ reprinted with permission from
Low, Acta Met. 10 (1962), Pergamon Press,
Elmsford, NY.)

mobile dislocation past the barrier dislocation is greater than if there was no interaction. Of the
two, the attractive type of interaction provides the greater impediment to further dislocation
motion, so we concentrate here on the attractive formation of a dislocation junction, or a
dislocation lock. The basic principle underlying formation of a lock is that two dislocations with
different Burgers vectors react to form a combined dislocation segment that has lower energy
than either of the original dislocations (recall Eq. 2-17). If the Burgers vector of the new
segment does not lie in either of the slip planes, the original dislocations are pinned by the
sessile segment. An example of such a situation in FCC materials is given by

a

ﬁ[ :

011] + 21101] = £1110] (3-2)
2 2

The [011] and [101] dislocations, which move along their slip planes, (111) and (111),
respectively, join to produce the sessile dislocation [110], which cannot move along either
plane. The latter is therefore a sessile dislocation that impedes the motion of other dislocations
on their respective slip planes.

One strong type of lock that forms in FCC metals is the Lomer-Cottrell lock. An example of
this reaction occurring between partial dislocations in FCC metals is shown via computer
simulation of high stacking-fault energy aluminum in Fig. 3.11. In part a of the figure, the two
glide planes depicted are the (111) and the (111). Their intersection lies along the [110]
direction, similar to the example in Eq. 3-2. The relative line directions of the original partial
dislocations and the junction segment are indicated by the arrows in the figure. The
4[011](111) dislocation has split into Shockley partial dislocation A$ of type & [121] and
8C of type [1 12]. The splitting of the other dislocation is similar in nature. Where they react
along the [ 10] direction, two distinct junction segments are actually created. The first is a

o
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Figure 3.11 Computer simulation of (@) a junction formed between two dislocations in aluminum, and (b) the
same dislocations bowing under increasing stress normalized by the shear modulus w (usually G in this text). Note
that the dislocations are pinned together until a shear stress of 0.009 w (~235 MPa for aluminum) causes the junction
to break. (Adapted from Figure 1a and Figure 3 with permission from V. B. Shenoy, R. V. Kukta, and R. Phillips,
Physical Review Letters, 84, 1491 (2000). © 2000 by the American Physical Society.)8

Lomer-Cottrell dislocation segment denoted yd with Burgers vector g 2(110), which has a
stacking fault on either side.! The adjoining segment DC without the stacking faults is a
dislocation identified as a sessile Lomer lock. Note that these two segments are quite short—
3.8nm and 4.2nm, respectively, according to the simulation results. Nevertheless, their
influence on dislocation motion can be significant. The difficulty associated with moving
these merged dislocations can be seen in Fig. 3.11b, in which the dislocations bow out under
applied shear stress. The Lomer lock segment pins the two original dislocations along the [TIO]
direction. As the stress is increased, the Lomer lock segment slides to the left and reduces in
length. It eventually breaks, allowing the two dislocations to move forward separately on their
original slip planes. The stress required to break the lock is large, and represents a significant
resistance to plastic deformation.

3.3 STRAIN (WORK) HARDENING

Strain hardening (also referred to as work hardening or cold working) results from a
dramatic increase in the number of dislocation—dislocation interactions and the associated
reduction in dislocation mobility that occurs during plastic deformation via the mechanisms just
introduced in Section 3.2. As a result of these interactions, progressively larger stresses must be
applied in order that additional deformation may take place. An awareness of strain hardening
dates back to the Bronze Age, and is perhaps the first widely used strengthening mechanism for
metals. Artisans hammered and bent metals to desired shapes and achieved superior strength in
the process. Typical cold-worked commercial products that find use today include cold-drawn
piano wire and cold-rolled sheet metal.

To characterize more clearly the general strain-hardening behavior of metals and their
alloys, it is helpful to examine the stress—strain response of single crystals. From Fig. 3.12, the

! This arrangement of stacking faults on different planes meeting along a junction segment is a so-called stair-rod dislocation, in analogy to
the (now) decorative horizontal metal rods used to hold a carpet runner securely against the risers of a set of stairs.
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1l Figure 3.12 Shear stress—strain curve for single
I 6y crystal revealing elastic behavior when t < 7,4, and
Stage I, II, III plastic response when 7 > 7. 01, 011,
Il Oprr measure the strain hardening rate in each region.
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resolved shear stress—shear strain curve is seen to contain several distinct regions: an initial
region of elastic response where the resolved shear stress is less than tx4; Stage I, a region of
easy glide; Stage II, a region of linear hardening; and Stage III, a region of dynamic recovery or
parabolic hardening. The latter three regions involve different aspects of the plastic deformation
process for a given crystal. It is known that the extent of Stages I, II, and III depends on such
factors as the test temperature, crystal purity, initial dislocation density, and initial crystal
orientation.”> 10 It should be noted that Stage III closely resembles the stress—strain response of
the polycrystalline form of the same material.

A number of theories have been proposed to explain the strain-hardening process in
crystals, including the reason for the dramatic changes in strain-hardening rate associated with
the three stages of plastic deformation. An extensive literature!! has developed regarding these
theories, all of which have focused on some of the dislocation interaction mechanisms
described in the previous section. Unfortunately, a certain degree of confusion has arisen
in this field because of the varying importance of certain dislocation interactions in different
alloy crystals. One may wonder then why the three distinct stages of deformation are so
reproducible from one material to another and why the work-hardening coefficient Oy
associated with Stage II deformation is almost universally constant at G/300. For these reasons,
the “mesh length” theory of strain hardening proposed by Kuhlmann-Wilsdorf 12,13 §g appealing
pedagogically, since it does not depend on any specific dislocation model that might be
appropriate for one material but not for another. Her theory may be summarized as follows: In
Stage I a heterogeneous distribution of low-density dislocations exists in the crystal. Since these
dislocations can move along their slip planes with little interference from other dislocations, the
strain hardening rate 0y is low. The easy glide region (Stage I) is considered to end when a fairly
uniform dislocation distribution of moderate density is developed but not necessarily in
lockstep with the onset of conjugate slip where a marked increase in dislocation—dislocation
interactions would be expected. At this point Kuhlmann-Wilsdorf theorizes the existence of a
quasi-uniform dislocation array with clusters of dislocations surrounding cells of relatively low
dislocation density (Fig. 3.13a). It is believed that such cell structures represent a minimum
energy and, hence, preferred dislocation configuration within the crystal.14 Studies have shown
that high stacking fault energy metals (e.g., aluminum) exhibit cell walls that are narrower and
cell interiors that are more dislocation-free than in lower stacking fault energy metals (e.g.,
copper) (Fig. 3.13b). (In very low stacking fault energy metals (e.g., Cu—7%A1) the crystal
substructure is characterized by dislocation planar arrays, consistent with the tendency for these
materials to exhibit restricted cross-slip (Fig. 3.13c)). The stress necessary for further plastic
deformation is then seen to depend on the mean free dislocation length / in a manner similar to
that necessary for the activation of a Frank-Read source where

Gb

T (3-3)
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Figure 3.13 Dislocation substructures in metals: (@) aluminum; (b) copper; (¢) copper—7% aluminum. (Photographs
courtesy K. S. Vecchio.) (d) Variation in dislocation cell size with percentage reduction of area in polycrystalline niobium
steel alloy.! (Used with permission.)

Since the dislocation density is proportional to (7)_2 Eq. 3-3 may be written in the form
At < Gby/p (3-4)
where

p = dislocation density
At = incremental shear stress necessary to overcome dislocation barriers

This relationship has been verified experimentally for an impressive number of materials'® and
represents a necessary requirement for any strain-hardening theory. With increasing plastic
deformation, p increases resulting in a decrease in the mean free dislocation length /. From
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Egs. 3-3 and 3-4, the stress necessary for further deformation then increases. Kuhlmann-
Wilsdorf suggests12 that there is a continued reduction in cell size and an associated increase in
flow stress throughout the linear hardening region. In other words, the character of the
dislocation distribution remains unchanged, and only the scale of the distribution changes (see
region AB in Fig. 3.13d). With further deformation, the number of free dislocations within the
cell interior decreases to the point where glide dislocations can move relatively unimpeded
from one cell wall to another. Since the formation of new cell walls (and hence a reduction in /)
is believed to depend on such interactions, a point would be reached where the cell size [ would
stabilize or at best decrease slowly with further deformation. According to Kuhlmann-
Wilsdorf,!3 this condition signals the onset of Stage III and a lower strain-hardening rate,
since I would not decrease further. Bassin and Klassen!’ provided experimental confirmation
that Stage III behavior corresponds to strain levels where [ remains constant (see region BC in
Fig. 3.13d). Of particular note, the data reported in Fig. 3.13d are measurements taken from a
polycrystalline niobium steel alloy; as such, the mesh length theory of strain hardening is
applicable for both single-crystal and polycrystalline commercial alloys.

Stacking fault energy is considered to be important to the onset of Stage III. Seeger!” has
argued that Stage III begins when dislocations can cross-slip around their barriers, a view initially
supported by Kuhlmann-Wilsdorf. From Seeger’s point of view, Stage III would occur sooner for
high stacking fault energy materials since cross-slip would be activated at a lower stress.
Conversely, a low stacking fault energy material, such as brass, would require a larger stress
necessary to force the widely separated partial dislocations to recombine and hence cross-slip.
More recently, Kuhlmann-Wilsdorf!3-14 suggested that the mesh length theory could also explain
the sensitivity of tpy to stacking fault energy by proposing that enhanced cross-slip associated
with a high value of stacking fault energy would accelerate the dislocation rearrangement process.
Consequently, / would become stabilized at a lower stress level. Setting aside for the moment the
question of the correctness of the Seeger versus Kuhlmann-Wilsdorf interpretations, it is sufficient
for us to note that both theories account for the inverse dependence of tyyy on stacking fault energy.

In discussing the deformation structure of metals, it is important to keep in mind the
temperature of the operation. It is known that the highly oriented grain structure in a wrought
product, which has a very high dislocation density (10! to 103 dislocations/cm?), remains
stable only when the combination of stored strain energy (related to the dislocation sub-
structure) and thermal energy (determined by the deformation temperature) is below a certain
level. If not, the microstructure becomes unstable and new strain-free equiaxed grains are
formed by combined recovery, recrystallization, and grain growth processes. These new grains
will have a much lower dislocation density (in the range of 10* to 10° dislocations/cm?). When
mechanical deformation at a given temperature causes the microstructure to recrystallize
spontaneously, the material is said to have been hot worked. If the microstructure were stable at
that temperature, the metal experienced cold working. The temperature at which metals
undergo hot working varies widely from one alloy to another but is generally found to occur
at about one-third the absolute melting temperature. Accordingly, lead is hot worked at room
temperature, while tungsten may be cold worked at 1500 °C.

Before concluding the discussion of single-crystal stress—strain curves, it is appropriate to
consider whether one can relate qualitative and quantitative aspects of the stress—strain
response of single-crystal and polycrystalline specimens of the same material. For one thing,
the early stages of single-crystal deformation would not be expected in a polycrystalline sample
because of the large number of slip systems that would operate (especially near grain boundary
regions) and interact with one another. Consequently, the tensile stress—strain response of the
polycrystalline sample is found to be similar only to the Stage III single-crystal shear stress—
strain plot. A number of attempts have been made to relate these two stress—strain curves.
From Eq. 2-25 and Section 2.2.3, recall that

P 1
o =—=

R pu— M -
A Tcosq&cosk ¢ (3-3)
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where the Taylor factor M =1/(cos¢ cosA). Assuming the individual grains in a polycrystalline
aggregate to be randomly oriented, M would vary with each grain such that some average
orientation factor M would have to be defined,'® as discussed previously in Section 2.2.3. It
may be shown!® that the normal strain and the shear strain can be related by

e=yM (3-6)
By combining Eq. 3-5 and 3-6 it is seen that

do _—odt
— =M — 3-7
de dy -7
One can see from Eq. 3-7 that the strain-hardening rate of a polycrystalline material is many
times greater than its single-crystal counterpart.

3.4 BOUNDARY STRENGTHENING

The presence of grain boundaries has an additional effect on the deformation behavior of a
material b(;/ serving as an effective barrier to the movement of glide dislocations. From the work
of Petch?’ and Hall,2! the yield strength of a polycrystalline material could be given by

Oys = 0 + kyd /2 (3-8)

where

oys = yield strength of the polycrystalline sample
o; = overall resistance of the lattice to dislocation movement
ky = “locking parameter,” a measure of the relative hardening contribution of grain
boundaries
d = grain size

Although Eq. 3-8 is simply a fit to the experimental results of Petch and Hall, it works very well
for many materials. As a result, there have been many attempts to identify the underlying
physics and therefore to Justlfy the form of the equation. One such effort can be traced to the
work of Eshelby et al.22 In this model, the number of dislocations that can occupy the space
between the dislocation source and the grain boundary is given by

ated
Gb

(3-9)

n=
where

n = number of dislocations in the pileup
o = constant
Ty = average resolved shear stress in the slip plane
d = grain diameter
= shear modulus
b = Burgers vector

The stress acting on the lead dislocation is found to be » times greater than 5. When this local
stress exceeds a critical value 7., the blocked dislocations are able to glide past the grain
boundary. Hence

atld
Gb

(3-10)

Te = Nty =
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Since the resolved shear stress 74 is equal to the applied stress t less the frictional stress t;
associated with intrinsic lattice resistance to dislocation motion, Eq. 3-9 may be rewritten as

2
a(t —1;)“d
= 7 3-11
Te Gb ( )
After rearranging,
T =1+ kyd/? (3-12)

which is the shear stress form of Eq. 3-8. The Hall-Petch relation also characterizes alloy yield
strength in terms of other microstructural parameters such as the pearlite lamellae spacing and
martensite packet size in steel (see Section 3.8). It is readily seen that grain refinement
techniques (e.g., normalizing alloy steels) provide additional barriers to dislocation move-
ment and enhance the yield strength. As will be shown in Chapter 7, improved toughness also
results from grain refinement.

Conrad®3 has demonstrated clearly that o; may be separated into two components: o g7, which
is not temperature sensitive but structure sensitive where dislocation—dislocation, dislocation—
precipitate, and dislocation—solute atom interactions are important; and o7, which is strongly
temperature sensitive and related to the Peierls stress. The yield strength of a material may then be
given by

Oy = o1 + osT + kyd 12 (3-13)

where the o7 term describes short-range order Peierls stress effects (< 1nm), the og7 term
describes long-range order dislocation stress field effects (10—~100 nm), and the final term describes
very long-range structural size effects (>1000nm). Note that the overall yield strength of a
material depends on both short- and long-range stress field interactions with moving dislocations.

The universal use of the Hall-Petch relation to characterize the behavior of metal alloys
should be viewed with caution since other equations can sometimes better describe the observed
strength—microstructural size relation.2* There is some consensus that grain boundary-induced
dislocation pileups may not always be responsible for the yield-strength-microstructural size
relation described above. Instead, in this case thought focuses on the important role of the grain
boundary as a source for dislocations, with the yield strength being given by

T =1+ aGbp'/? (3-14)

Li? theorized that dislocations were generated at grain-boundary ledges and noted that the
dislocation density p was inversely proportional to the grain size, d. Consequently, Eq. 3-14 has
the same form as Eq. 3-12, with «GD standing in for k,,.

3.4.1 Strength of Nanocrystalline and Multilayer Metals

It has been noted that extrapolation of Eq. 3-8 to extremely small grain sizes leads to the
prediction of yield strength levels that approach theoretical levels.? Much effort has been
expended to explore the limits of the Hall-Petch relation as grain size shrinks to nanometer
dimensions. This has been done experimentally with nanocrystalline (nc) metals, with nano-
twinned (nt) metals, and with very thin metallic multilayers, and has also been examined using
computer modeling and simulation techniques.?’ A key aspect of nc metals is that with grain
sizes of less than 250 nm, and sometimes approaching 2—5 nm, the grain boundaries make up a
large volume fraction of the overall material. Likewise, in nt metals and multilayers, the
shortest distance between potential barriers to dislocation motion is only on the order of 10b to
1000b, where b is the Burgers vector.
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In early work with pure Cu and Pd deposited by a technique called inert gas condensation!
it was found that porosity negatively affects certain mechanical characteristics of nc metals.
However, even with some degree of porosity the materials exhibited compressive yield strength
values ranging from 0.65 to over 1.1 GPa.”® These are substantial increases over their larger-
grained counterparts. The density of these nc materials was over 90%, and the grain size varied
from approximately 20 nm to 65 nm. Unfortunately, the increase in strength in such nc metals
tends to be accompanied by a decrease in tensile ductility. This is different from the trend of
larger-grain metals (including those considered Ultra Fine Grained with sizes between 250 and
1000 nm) in which a grain size reduction often improves ductility. Some of the ductility penalty
is probably due to defects introduced during processing, but some may be inherent to the grain
structure of nc metals that discourages plasticity-enabling dislocation mobility and generates
high local stress concentrations that can nucleate cracks in tension.?’

While it appears that increased strengthening occurs with decreasing grain size well below
I pm, the behavior may deviate from the linear d=1/2 relationship, and may saturate or even
reverse as grain size falls below approximately 100 nm when non-dislocation-based deforma-
tion mechanisms like grain boundary sliding may come into play. Many reasons for a
breakdown of Hall-Petch behavior have been proposed, but one central argument is that grain
sizes below a certain critical value cannot accommodate multiple dislocations and therefore
cannot develop dislocation pileups in the classical sense. This can be seen from Eq. 3-9 when d
is not much bigger than b. If this is the case, the strengthening associated with pileups should
eventually level off as grain size decreases.

As an alternative to the nc metal strengthening approach, nt metals have been proposed. It
has been shown that coherent twin boundaries in Cu can block dislocation transmission while
avoiding some of the instabilities that accompany nc grains. In one study,30 it was shown that
Cu with grains of ~400—450nm filled with twins of width 15-96 nm increased in tensile
strength and in ductility as the nano-twin density increased (i.e., as the spacing between nano-
twins decreased). This trend can be seen in the curves labeled A—C in Fig. 3.14. Coarse Grained
(CG) and nc Cu fabricated by the inert gas condensation technique are shown for comparison.
The nt Cu follows the Hall-Petch trend with the mean twin lamella spacing substituting for
grain size.

1200 Figure 3.14 Curves A, B,
and C: true stress—true strain
tensile curves for nano-
twinned (nt) Cu. Nano-twin
density increases from curve
A to curve C. Inert gas
condensation (IGC) nc Cu
and conventional Coarse
Grained (CG) Cu specimens
=== Original are shown for comparison.3?
D= A (Reprinted from Scripta

400 Pp—-g C Materialia, vol. 52, Y. F.
Shen, L. Lu, Q. H. Lu, Z. H.
Jin, and K. Lu, “Tensile
properties of copper with
nano-scale twins,” p. 989,
2005, with permission from
Elsevier.)
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fiInert gas condensation is a process based on powder production by condensation from the vapor phase followed by mechanical

compaction.
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Finally, multilayer composites of dissimilar metals (as well as metal/intermetallic and
metal/ceramic combinations) have been used to explore the potential of a nanoscale multiphase
approach to strengthening. Like nc and nt metals, nanoscale multilayered composites can
demonstrate high strength levels because of the extremely high densities of interfaces that act as
strong barriers to slip transmission. In Cu—Nb multilayers, for instance, it has been seen that the
Hall-Petch model with its h~!/2 dependence works for layer thickness values down to
approximately 4 =75-100nm.3! Below this layer thickness, classical dislocation pileups
become increasingly unlikely, as noted above, and there is deviation from the h1/2 depen-
dence. However, the strength for the Cu—Nb multilayer system continues to increase even as
layer thickness is reduced to 4~ 5 nm, at which point the strength saturates. This trend, like
those observed for nc and nt metals, offers intriguing possibilities for the employment of
remarkably high-strength metal coatings and structural metals that derive their attractive
properties completely from feature size, and not from complex chemistry.

3.5 SOLID SOLUTION STRENGTHENING

Up to this point, we have considered strain-hardening and grain-boundary strengthening
mechanisms that would be operative both in pure metals and in alloys. When a metal is alloyed
in such a way that the elements involved form a single-phase solid solution, another important
strengthening mechanism comes into play that is not available in pure metals: solid solution
strengthening. Common alloys that derive much of their strength from solid solution hardening
include the Al 3xxx series (Mn and sometimes Mg in solution) and the Al 5xxx series (Mg in solution).

When two or more elements are combined such that a single-phase microstructure is
retained, various elastic, electrical, and chemical interactions take place between the stress
fields of the solute atoms and the dislocations present in the lattice.32735 Of these, elastic
interactions are believed to be most important and will be the focus of our discussion.

With reference to the stress fields surrounding both edge and screw dislocations, we see
from Figs. 2.15 and 2.16 that shear stresses are associated with a screw dislocation, whereas
both shear and hydrostatic stress fields surround an edge dislocation. Regarding the latter, one
finds that the edge dislocation is surrounded by combined shear/hydrostatic stress fields at all
locations except along the ¥ and X axes. Along the Y axis, the stress field is one of hydrostatic

Figure 3.15 Resolution of shear stress field into
normal stress components.

@ (b)

(d)

Figure 3.16 Nonsymmetrical stress fields in crystals, (a) Octahedral interstitial site in BCC crystal (<100>
anisotropy); (b) divalent ion-vacancy pair (<110> anisotropy); (c) interstitial pair in FCC crystal (<100>
anisotropy); (d) vacancy disk (<111> anisotropy).
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compression above the dislocation line and of hydrostatic tension below the dislocation line.
This should be intuitively obvious to the reader since the extra “half plane” associated with the
edge dislocation is squeezed into the top half of the crystal and, as such, acts to dilate the bottom
half of the crystal, much as an axe blade splits open a log of wood. Along the X axis, no
hydrostatic stresses are present and the stresses are pure shear in nature.

When the shear stress fields associated with both edge and screw dislocations are resolved
into their normal stress components (Fig. 3.15 ), note that the absolute magnitude of the shear
stress is equal to the normal stress; of importance, however, is the fact that the sign of the normal
stress is reversed along the & 45° directions. It follows that the shear stress field surrounding a
screw dislocation is distortional (i.e., stretched in one direction and compressed in the other),
whereas the edge dislocation contains both distortional and dilatational components.

The potential interaction between an edge or screw dislocation with a solute atom depends
on the stress field associated with the solute atom. For example, if an atom of chromium were to
substitute for an atom of FCC nickel or BCC iron, the host lattices would experience a
symmetrical (hydrostatic) misfit stress associated with differences in size between solute and
solvent atoms.3¢ Lattice distortion would be felt equally in all directions, with the strengthening
contribution being proportional to the magnitude of the misfit €., such that

. _lda
" ade

(3-15)

where

a = lattice parameter
¢ = solute concentration

The hydrostatic stress field of a substitutional solute atom interacts with the hydrostatic stress
field associated with edge dislocations but not with the distortional stress field surrounding
screw dislocations in the lattice. The level of hardening also depends on how much the local
modulus G of the crystal is altered as a function of solute content. In the case of a symmetrical
defect, a decrease in the local modulus associated with the addition of a relatively low modulus
solute causes the local dislocation line tension (recall Eq. 2-18) to be reduced, which pins the
dislocation at the site of the solute atom. In the case of a relatively high modulus solute atom the
opposite situation occurs, and there is repulsion. If the fractional change in modulus is
expressed as

1dG

=—— 3-16
G dc ( )

&G
then the difference between the cases of low and high modulus solute atom additions is captured
as a change in the sign of . Fleischer3’ showed that the concentration and modulus effects can
be either synergistic or antagonistic depending on the solute—solvent pair in question, and that
for many binary alloys the degree of strengthening correlates with

dt &G

dr ~ Bem 3-17
de ™ [(1+ Lleg) pe ©-17)

where § is a fitting parameter. This relationship can therefore often be used to predict the
relative strengthening effects of different solute atoms on a particular solvent. It can be seen that
for a given misfit strain, &, (which is always positive), the choice of a solute with a lower
modulus than the solvent causes &g to be negative, so the modulus and misfit terms in Eq. 3-17
are synergistic. In this case, the overall effect on the critical resolved shear stress is greater than
if the solute modulus were larger than that of the solvent.
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An even greater solute atom—dislocation interaction occurs when the misfit stress field
associated with the solute atom interacts with both edge and screw dislocations. The stress fields
associated with the four lattice defects shown in Fig. 3.16 satisfy this requirement in that they
are nonsymmetrical and, as such, will interact with the nonsymmetrical stress components of
both edge and screw dislocations. The defect type shown in Fig. 3.16a identifies one of the
octahedral interstitial sites within the BCC iron lattice where carbon and/or nitrogen atoms are
located. The size of this octahedral interstitial site along any edge in the BCC lattice (or its
equivalent location in the middle of each cube face) is not sgymmetrical and provides insufficient
room for carbon and nitrogen atoms in the (100) direction3®; this arises from the fact that the site
size is 0.038 and 0.156 nm in the (100) and (110) directions, respectively, whereas the diameter
of the carbon atom is 0.154 nm. Theoretical considerations as well as experimental findings
have shown that steel alloy strength increases rapidly at small carbon concentrations with a
relationship of the form

T o< cl/? (3-18)

as demonstrated in Fig. 3.18. (Note that the same proportionality exists between shear strength
and concentration for symmetric defects even though the absolute magnitude is not as large.)

Such alloy strengthening is of great commercial interest to the steel industry. The
insufficient amount of space available for the carbon atom in the BCC lattice also accounts
for the very limited solid solubility of carbon in BCC iron (approximately 0.02%) and leads to
the development of a body-centered-tetragonal lattice in high-carbon martensite rather than the
body-centered-cubic crystal form for pure iron. It should be noted that the octahedral interstitial
site in FCC iron is symmetrical and provides space for an atom whose diameter is as great as
0.102 nm. Since the extent of lattice distortion in the FCC lattice is much less than that found in
the BCC form, the strengthening contribution of carbon in FCC iron (i.e., austenite) is low. (At
the same time, the solubility limit of carbon in FCC iron is in excess of 2%—more than 100
times greater than that associated with carbon in the BCC ferrite phase.) To summarize, the
strengthening potential for carbon in FCC iron is much less than that for carbon in BCC iron
since the strain field surrounding the interstitial atom site is symmetrical in the FCC lattice;
solute atom interaction with screw dislocations is then much weaker than for the placement of
carbon atoms in the nonsymmetrical interstitial sites in the BCC lattice.

Other nonsymmetrical defects are shown in Fig. 3.16. The substitution of a divalent ion in a
monovalent crystal requires that two monovalent ions be replaced by a single divalent ion; this is
necessary tomaintainchargebalance. The divalentionand the associated vacancy have anaffinity for
one another, which establishes a nonsymmetrical stress field in the (110) direction (Fig. 3.16b).
Interstitial atom pairs such as those resulting from irradiation damage in an FCC crystal produce a
stress field in the (100) direction (Fig. 3.16¢). Finally, the collapsed vacancy disk in an FCC lattice
produces a dislocation loop with asymmetry in the (111) direction (Fig. 3.16d).

From the above discussion, it is seen that the relative strengthening potential for a given solute
atom is determined by the nature of the stress field associated with the solute atom. When the stress
field is symmetrical, the solute atom interacts only with the edge dislocation and solid solution
strengthening is limited. Examples of such symmetrical defects are shown in Table 3.1. In sharp
contrast, when the stress field surrounding the solute atom is nonsymmetrical in character, the
solute atom interacts strongly with both edge and screw dislocations; in this instance, the
magnitude of solid solution strengthening is much greater (Table 3.1). Note that the degree of
solid solution strengthening depends on whether the solute atom possesses a symmetrical or
nonsymmetrical stress field and not whether it is of the substitutional or interstitial type. Examples
of solid solution strengthening in both symmetrical (Pd or Pt in Cu) and asymmetrical distortional
stress fields (C in Fe and N in Nb) are shown in Fig. 3.17. Finally, it is interesting to note that the
addition of a given amount of solute atoms to the host metal may, in some instances, lead to solid
solution hardening at one temperature and softening at another.3”#Y It has been suggested that this
contrasting response is due to complex temperature-dependent interactions of screw dislocations
with Peierls and solute misfit strain fields.
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Table 3.1 Dislocation-Solute Interaction Potential3?

Material Defect Hardening Effect Z—z as flG)
Symmetrical Defects

Al Substitutional atom G/10

Cu Substitutional atom G/20

Fe Substitutional atom G/16

Ni Interstitial carbon G/10

Nb Substitutional atom G/10

NaCl Monovalent substitutional ion G/100

Nonsymmetrical Defects

Al Vacancy disk (quenched) 2G
Cu Interstitial Cu (irradiation) 9G
Fe Interstitial carbon 5G
LiF Interstitial fluorine (irradiation) 5G
NaCl Divalent substitutional ion 2G
150 | Figure 3.17  Alloy strength dependence on solute content.
CinEe — 20 Greater strengthening associated with nonsymmetrical
and defect sites. (Reprinted with permission from K. M. Ralls,
N in Nb T. H. Courtney, and J. Wulff, Introduction to Materials
T 100 — — 15 T Science and Engineering, Wiley, New York (1976).
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3.5.1 Yield-Point Phenomenon and Strain Aging

We are now in a position to describe in detail the discrete load drops sometimes observed
during tensile testing of certain metals as shown in Fig. 3.18. The curve marked A will be
familiar as one associated with the formation of Liiders bands, as introduced in Section 2.4.3.
As we noted in the previous section, carbon and nitrogen atoms possess a strong attraction for
both edge and screw dislocations within the BCC iron lattice; accordingly, a solute atmo-
sphere is formed around each dislocation core. A similar affinity appears to exist between
interstitial oxygen atoms and dislocations in commercial-purity -Ti.*! Since these dis-
locations are pinned by such solute atmospheres, dislocation motion is severely restricted
until a sufficiently high stress (the upper yield point on curve A) is ag]glied to enable the
dislocations to rip free and move through the lattice. According to theory,3%:4? these unpinned
dislocations multiply rapidly by a multiple-cross-slip mechanism (Fig. 3.3). As a result, the
number of mobile dislocations increases sharply, yielding becomes easier, and the load
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o Figure 3.18 Stress-strain curves influenced by
discontinuous yielding. Curve A: yield-point
behavior; curve B: ordinary homogeneous yield

A and strain-hardening response after reloading;

C curve C: serrated yield behavior associated with

dislocation-solute atom interactions leading to
heterogeneous plastic deformation; curve D:

D ordinary strain-hardening behavior associated

with homogeneous plastic deformation.

&

necessary for continued deformation decreases to the level associated with the lower yield
point (marked as point a on curve A). As additional regions (i.e., the Liiders bands) deform in
this manner, the stress level remains relatively constant until essentially all dislocations have
broken free from their respective solute atom clusters. At this point continued deformation
takes place by homogeneous plastic flow (curve A beginning at point b). Furthermore, if the
test was interrupted after completion of the Luders strain region (ab) and the load removed
and then immediately reapplied, the subsequent stress—strain curve would not display any
yield point (see Fig. 3.18, curve B).

Although this explanation for yield-point phenomenon may be appropriate for iron single
crystals containing small solute additions of interstitial carbon and nitrogen as well as for «-Ti
with oxygen in solution, it does not explain similar yield-point behavior in other material such
as silicon, germanium, and lithium fluoride. Johnston*3 and Hahn** have proposed that yield-
point behavior in these crystals is related to an initially low mobile dislocation density and a low
dislocation-velocigy stress sensitivity. Regarding the latter, studies by Stein and Low,* Gilman
and Johnston,*®#7 and others demonstrated that the dislocation velocity v depends on the
resolved shear stress as given by

v= (i)m (3-19)

where

v = dislocation velocity
7 = applied resolved shear stress
D, m = material properties

Defining the plastic strain rate by
&p o< Nbv (3-20)

where

&p = plastic strain rate

N = number of dislocations per unit area free to move about and multiply
b = Burgers vector

v = dislocation velocity

Johnston*3 argued that when the initial mobile dislocation density in these materials is low, the
plastic strain rate would be less than the rate of movement of the test machine crosshead and
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Figure 3.19 (a) Effect of stress sensitivity m in LiF. (From Johnston;* reprinted with permission of American
Institute of Physics, New York.) (b) Effect of initial mobile dislocation density n in Si on severity of yield drop.
(From Patel and Chaudhuri;*® reprinted with permission of American Institute of Physics, New York.)

little overall plastic deformation would be detected. At higher stress levels, the dislocations
would be moving at a higher velocity and also begin to multiply rapidly such that the total
plastic strain rate would then exceed the rate of crosshead movement. To balance the two rates,
the dislocation velocity would have to decrease. From Eq. 3-19, this may be accomplished by a
drop in stress, the magnitude of which would depend on the stress-sensitivity parameter m. If m
were very small (Iess than 20 as in the case of covalent- and ionic-bonded materials as well as in
some BCC metals), then a large drop in load would be required to reduce the dislocation
velocity by the necessary amount. If m were large (greater than 100 to 200 as found for FCC
metal crystals), only a small load drop would be required to effect a substantial change in
dislocation velocity. The severity of the yield drop is depicted in Fig. 3.19a for a range of
dislocation velocity stress sensitivity values. Note the magnitude of the yield drop increasing
with decreasing m. If there are many free dislocations present at the outset of the test, they may
multiply more gradually at lower stress levels, precluding the occurrence of a sudden avalanche
of dislocation generation at higher stress levels. The corresponding decrease in magnitude of the
yield drop with increasing initial mobile dislocation density is shown in Fig. 3.19b. From the
above discussion, a yield point is pronounced in crystals that (1) contain few mobile dislocations
at the beginning of the test, (2) have the potential for rapid dislocation multiplication with
increasing plastic strain, and (3) exhibit relatively low dislocation-velocity stress sensitivity.
Since many ionic- and covalent-bonded crystals possess these characteristics, ' yield points are
predicted and found experimentally in these materials.

For the case of carbon- and nitrogen-locked dislocations in iron, dislocation mobility is
essentially zero prior to the upper yield point where dislocations are finally able to tear away
from interstitial atmospheres. It is theorized that the unpinning of some dislocations, their rapid
multiplication, and weak velocity stress sensitivity (i.e., low m value) all contribute to the
development of a yield point in engineering iron alloys. By contrast, most FCC metals have an
initially high mobile dislocation density and a very high dislocation-velocity stress sensitivity,
thereby making a yield drop an unlikely event in most of these materials.

The serrated character of curve C in Fig. 3.18 sometimes observed in plain carbon steel
alloys and certain aluminum alloys (e.g., Al-Mg alloys) can also be explained in terms of
dislocation-solute atom interactions. Curve C is inhomogeneous in nature, but does not have the
distinctive horizontal segment that characterizes the upper and lower yield point phenomenon
seen in A. Bursts of mechanical twin formation and growth are one possible cause of the
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serrated behavior seen in curve C, as discussed in Section 2.6.2. However, in plain carbon steel
and Al-Mg alloys dislocation motion is the dominant (or only) plasticity mechanism active
under normal loading conditions. In these cases, the appearance of curve C is known as the
Portevin-Le Chatelier effect, and is evidence of dynamic strain aging. It has been argued that
the inhomogeneous behavior is due in these cases to solute atom or vacancy interactions with
lattice dislocations just like those associated with yield point behavior.”! When a sufficiently
large stress is applied, dislocations can break free from solute clusters and cause a load drop and
partial loss of strength. Recall that a metal component in this state can be unloaded and strain-
aged (held at a slightly elevated temperature) to enable the solute atoms to diffuse to the
unmoving dislocations, thereby restoring the upper yield point strength. In the case of dynamic
strain-aging behavior, however, testing (or forming a component) in a particular range of strain
rates and temperatures allows the solute atoms to diffuse quickly enough to retrap the moving
dislocations dynamically as deformation occurs. When this happens, the stress must build up
again to continue the deformation process. As long as the diffusion rate for the solute atoms is
equal to or slightly greater than the rate of plastic deformation, dislocations will alternately
break free from solute atmospheres and then be repinned, producing serrated curve C. If the
strain rate and test temperature were outside the critical range, homogeneous dislocation flow
would take place since solute atmosphere formation would no longer be favored; accordingly,
the stress—strain curve would be smooth (Fig. 3.18, curve D). Dynamic strain aging can cause
poor surface quality and reduced ductility associated with the formation of undesirable surface
marks similar to Luders bands, so it is preferable to avoid it through careful alloy selection and
choice of processing conditions when possible.

3.6 PRECIPITATION HARDENING

Like solid solution hardening, precipitation hardening is active only in alloy systems.
However, it differs significantly in that a precipitate is a particle comprised of multiple atoms in
the form of a second phase within the parent matrix. As such, precipitates can vary widely in
size, shape, volume fraction, composition, degree of atomic ordering, interphase boundary
details, and location; with these parameters as “knobs for the engineer to turn,” the effect of
precipitates on the strength of an alloy can often be tailored through appropriate processing.
Common precipitation hardened alloys include Al 2024 (with Cu and Mg as the key alloying
elements that form Al,Cu or Al,CuMg precipitates), Al 6061 (alloyed primarily with Si and
Mg), A17075 (alloyed with Zn, Mg, and Cu), maraging steel (alloyed with Ni, Mo, Ti, and Co),
and Inconel 718 Ni-based superalloy (alloyed with Nb).

3.6.1 Microstructural Characteristics

When the solute concentration in an alloy exceeds the limits of solubility for the matrix
phase, equilibrium conditions dictate the nucleation and growth of second-phase particles,
provided that suitable thermal conditions are present. From Fig. 3.20, which shows a portion of
an equilibrium phase diagram, we see that for an alloy of composition X, a single phase « is
predicted at temperatures above T whereas two phases, « and g, are stable below the solvus line
that separates the regions of phase stability. When such an alloy is heated into the single-phase
field (called a solution treatment) and then rapidly quenched, the resulting microstructure
contains only supersaturated solid solution o even though the phase diagram predicts a two-
phase mixture; the absence of the 8 phase is attributed to insufficient atomic diffusion. If this
alloy is heated to an intermediate temperature (called the aging temperature) below the solvus
temperature, diffusional processes are enhanced and result in the precipitation of 8 particles
either within « grains or at their respective grain boundaries.

The onset of precipitation depends strongly on the aging temperature itself (Fig. 3.21). At
temperatures approaching the solvus temperature, there is little driving force for the precipita-
tion process, even though diffusion kinetics are rapid. Alternatively, precipitation of the second
phase proceeds slowly at temperatures well below T despite the large driving force for
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Figure 3.20 Portion of equilibrium
phase diagram showing alloy composition
T X and associated solvus temperature 7.

L+«

solvus line

a+f

Composition

nucleation of the second phase; in this instance, diffusional processes are restricted. An optimal
temperature for rapid precipitation is then identified at an intermediate temperature corre-
sponding to an ideal combination of particle nucleation and growth rates.

The development of the two-phase mixture can most generally be described as taking place
in three stages. After an incubation period, clusters of solute atoms form and second-phase
particles nucleate and begin to grow either homogeneously within the host grains or heteroge-
neously along host grain-boundary sites. During the second stage of aging, particle nucleation
continues along with the growth of existing precipitates; these processes continue until the
equilibrium volume fraction of the second phase has been reached. In the third and final stage of
aging, these second-phase particles coarsen, with larger particles growing at the expense of
smaller ones. This process, referred to as Ostwald ripening, is diffusion-driven so as to reduce
the total amount of interfacial area between the two phases.

For reasons to be addressed shortly, the precipitation of second-phase particles throughout the
matrix increases the difficulty of dislocation motion through the lattice. (Conversely, little
strengthening has been attributed to the presence of grain-boundary precipitates.) Typically,
the hardness and strength of the alloy increases initially with time (and particle size) but may then
decrease with further aging (Fig. 3.22). The strength and sense of the strength—time slope (dt/dr)
depends on four major factors: the volume fraction, distribution, the nature of the precipitate, and

Figure 3.21 Precipitation rate is maximized at
&-————— —— intermediate aging temperatures.

logt
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Figure 3.22 (a) Aging curves in 6061-T4 aluminum alloy. (From J. E. Hatch, Ed., Aluminum Properties and
Physical Metallurgy, ASM, Metals Park, OH, 1984, p. 178; with permission.) (b) Schematic representation of aging
process at low (A), high (B), and intermediate (C) temperatures.

the nature of the interphase boundary. Surely, were all things to remain constant, the resistance to
dislocation motion through the lattice would be expected to increase with increasing volume
fraction of the dislocation barrier (i.e., the precipitate). Accordingly, the first two stages of aging
generally contribute to increased strengthening with time and/or particle dimension (i.e., positive
dt/dt). On the other hand, Ostwald ripening, corresponding to long aging times and/or the growth
of large second-phase particles, leads to negative dt/dt conditions (see curves B and Cin Fig. 3.22).

Whether the dislocation cuts through or avoids the precipitate depends on the structure of
the second phase and the nature of the particle—matrix interface. The interface between the two
phases may be coherent, which implies good registry between the two lattices. A dislocation
moving through one phase would then be expected to pass readily from the matrix lattice into
that of the precipitate. Such a coherent interface possesses a low surface energy. At the same
time, however, lattice misfit (related to the difference in lattice parameters between the two
phases) leads to the development of elastic strain fields surrounding the coherent phase
boundary. Researchers have found that the shape of the precipitate particles depends on the
degree of misfit. For example, when the misfit strain is small, spherical particles are formed
such as in the case of the Al-Li binary alloy (Fig. 3.23a). When such particles grow in size and/
or when a large misfit is developed, cuboidal particles are formed as in nickel superalloys
(Fig. 3.23b). With increasing particle size and/or misfit strain, the microstructure reveals
aligned cubes or rodlike particles.49 As these small coherent precipitates grow with time, their
interfaces may become semicoherent, with the increased lattice misfit between the two phases

Figure 3.23 Precipitate morphology dependence on degree of lattice misfit. (@) Low misfit spherical particles in
Al-Li alloy. (Courtesy of S. Baumann.) () Moderate misfit cuboidal particles in Ni—Al alloy. Both are sheared by
dislocations.
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being accommodated by the development of interface dislocations, which bring the two lattices
back into registry. At this stage, misfit energy decreases markedly, whereas surface energy
increases to a significant degree. Finally, in the latter stages of aging associated with the
development of coarse particles, the interface between the two phases may break down
completely and become incoherent; the surface energy associated with this interphase boundary
is then increased whereas its strain field is essentially eliminated.

3.6.2 Dislocation—Particle Interactions

Why do the strength—time plots, as shown in Fig. 3.22, vary with aging temperature? Why
does alloy strength increase with time (particle size) and then decrease after maximum strength
has been achieved? The answers to these questions involve assessment of several dislocation—
particle interactions that depend on whether dislocations are able to cut through precipitate
particles or, instead, are forced to loop around them. When particle cutting occurs, hardening
depends to some extent on the relative importance of elastic interactions between the dislocations
and the precipitates. As previously noted, differences in lattice parameter between the host and
precipitate phase will produce misfit strains that slow the movement of dislocations through the
host lattice. The misfit strain is simply &€ = (@ppt — d1attice)/@attice- Researchers*?>? have found
the strengthening contribution of misfit hardening to be

T o G2 (rf)1/? (3-21)

where

€ = misfit strain (proportional to difference in lattice parameter of the two phases)
r = particle radius

f= volume fraction of precipitated second phase

G = shear modulus

For many nickel-based superalloys, however, metallurgists tinker with alloy composition to
limit misfit strains so as to maintain coherency for larger precipitates. As a result, the
strengthening contribution of lattice misfit in these alloys is relatively minor.>! On the other
hand, low misfit strains minimize Ostwald ripening, which leads to enhanced creep resistance.
Other elastic interactions include those associated with differences in shear modulus and stacking
fault energy between the two phases. Here, again, for a number of important precipitation-
hardened commercial alloys, the strengthening contribution of these factors is relatively small.

A second group of dislocation—particle cutting interactions involves energy storing mecha-
nisms associated with the generation of new interphase boundary and antiphase-domain boundary
area. For example, when dislocations cut through a particle, additional precipitate—matrix
interfacial area is created, which increases the overall energy of the lattice (recall Fig. 3.23);
since the interfacial energy of coherent precipitates is small, this hardening mechanism con-
tributes little to the strength of alloys that contain low misfit precipitates. On the other hand, if the
precipitate has an ordered lattice (such as CuAl, particles in an aluminum alloy or NizAl (y))
precipitates in a nickel-based superalloy) the character of the deformation process is altered. In the
case of the intermetallic compound Ni3Al, the aluminum atoms are located at the eight corner
positions of the unit cell and the nickel atoms are located at the six cube faces (Fig. 3.24). Note that
the ordered NizAl phase is of the FCC type and contains four atoms (three nickel and one
aluminum) per unit cell. The passage of a dislocation through half of a spherical particle
containing this superlattice (consisting of Ni and Al atoms in specific lattice sites) generates an
unfavorable rearrangement of the aluminum and nickel atoms, as shown in Fig. 3.25a. We see that
the Ni (open circles) and Al (solid circles) atoms are opposite one another along that part of the slip
plane that was traversed by the dislocation. This arrangement of non-preferred atom pairs on the
slip plane creates an antiphase domain boundary (APB). Since there is an additional energy
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Figure 3.24 Nickel and aluminum atom locations
in ordered NizAl phase.

[ Wy
O
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associated with the APB, which depends on the degree of order in the lattice, dislocation motion is
restricted. However, if a second identical dislocation were to sweep across the same plane, atomic
disorder would be eliminated with atoms again assuming their preferred positions in the lattice
(Fig. 3.25b). Note that the right side of the particle is still disordered since the second dislocation
has passed through only half of the particle. The equilibrium distance separating these two
dislocations (referred to as a superlattice dislocation) reflects a balance between an attractive
force associated with minimization of APB energy and a repulsive force due to the stress fields of
identical dislocations (recall Eq. 2-21). An example of superlattice dislocations (i.e., dislocation
pairs) in NizAl is shown in Fig. 3.26.

Since the APB energy is roughly ten times greater than the interphase boundary energy in
nickel superalloys> and in Al-Li alloys, the strengthening contribution due to APB formation
in these systems is significant. Gleiter and Hornbogen497 4 and Ham> reported the strength-
ening contribution associated with this mechanism to be of the form

1/2
T oc /2 (g) (3-22)

where

v = APB energy.

It is interesting to note that the passage of superlattice dislocation pairs through a
precipitate particle effectively reduces the length of the ordered path for subsequent dislocation
pairs; for this reason, dislocation movement within microstructures containing ordered
precipitates is of a heterogeneous nature and typically involves the activity of relatively
few slip planes associated with large slip steps.
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Figure 3.25 (100) planar view of spherical Ni3Al particle in Ni lattice. (a) Initial superlattice dislocation disorders
atom pairs along slipped portion of glide plane. Note orientation of cube face in NizAl particle. (b) Passage of
second superlattice dislocation reorders NisAl lattice. Dashed horizontal line corresponds to APB. Nickel (O) and
aluminum (e) atom locations noted. (From Gleiter and Hornbogen.49)
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Figure 3.26 Superlattice dislocation pairs in
fully ordered NizAl. (Photo courtesy of
M. Khobaib.52)

If the misfit strain is large, the interface incoherent, or the average particle separation above a
certain critical value, dislocations are unable to cut through the precipitate; instead they loop
around individual particles as shown in Fig. 3.27. (In some alloy systems, both particle cutting and
looping can occur simultaneously.) Note the strong similarity of such dislocation looping with the
Frank-Read mechanism for dislocation multiplication (Fig. 3.2). The stress necessary for the
dislocation to loop around the precipitate is the same as that given for activation of the Frank-Read
source, where [ is the distance between the pau“ticles:56

_Gb
ol

With the passage of subsequent dislocations, the effective distance between two adjacent
precipitates ' decreases with the increasing number of dislocation loops surrounding the particles.
As such, the dislocation looping mechanism provides a measure of strain hrslrdf:ning.57 Foragiven
volume fraction of second-phase particles,  increases as the precipitates grow larger with further
aging. Consequently, the stress necessary for dislocations to loop around precipitates should
decrease with increasing particle size. It is important to note that dislocation looping (often
referred to as Orowan looping) is controlled by the spacing between particles and not by the nature

T (3-1)

(i) 2@5 l@;

Precipitate
) | particles
"
Dislocation
@

Figure 3.27 Dislocation looping around particles. (@) Schema revealing reduced “effective” particle spacing with
looping; (b) looping in Al-Li alloy. (Photo courtesy of S. Baumann.)
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of the particle itself. Furthermore, such slip activity is of a more homogeneous nature than that
described above for the case of deformation by particle cutting.

The complex interaction between this group of strengthening mechanisms is responsible for
the strength—time relations shown in Fig. 3.22, which may be summarized in the following manner.
After solution treatment and subsequent quenching, the alloy experiences the greatest potential for
solid solution strengthening, since the greatest amount of solute is present in the host matrix. If the
solute possesses a nonsymmetrical stress field, solid solution strengthening would be great, as in
the case of as-quenched carbon martensite (see Section 3.8). In sharp contrast, were the solute to
possess a symmetrical stress field (such as in aluminum- and nickel-based alloys), limited solid
solution strengthening would be expected. With aging, and the associated precipitation of second-
phase particles, the solute level in the host matrix would decrease along with the solid solution
strengthening component. This relatively small reduction in absolute strength in aluminum- and
nickel-based alloys is more than compensated for by several precipitation hardening mechanisms,
such as dislocation interactions with precipitate misfit strain fields, particle cutting, and elastic
modulus interaction effects. As noted above, the extent of such hardening increases with time (i.e.,
particle size). With further aging, leading to the loss of coherency, or a wide interparticle spacing,
dislocation looping around the particles takes place. Alloy strength then decreases with further
aging time and/or particle size. The overall aging response of the alloy may then be characterized
by the attainment of maximum strength at intermediate aging times and particle dimensions. A
schematic representation of the interplay between these hardening processes is shown in Fig. 3.28
and bears close resemblance to the experimental results given in Fig. 3.22. Regarding Fig. 3.22b,
underaged conditions are associated with curve A and the left portions of curves B and C;
overaging corresponds to aging times greater than those needed for peak strengthening. It should
be noted that with the exception of the ' phase in nickel superalloys, most homogeneous
precipitates in other alloy systems are metastable.

3.7 DISPERSION STRENGTHENING

It was seen in the previous section that the growth of hard precipitates can provide significant
strengthening, but it can also be appreciated that this approach is only possible for certain alloy
systems, and is only useful at temperatures below which overaging (or even re-solutionizing) are
possible. For use at elevated temperatures, or for material systems that are not thermodynamically
conducive to controlled precipitate formation, alloys can also be strengthened by the addition of
oxide particles that obstruct dislocation motion. By adding stable refractory A1,03, TiO,, ThO»,
or Y503 particles to a metal matrix such as aluminum, copper, or nickel, these metals achieve
attractive strength properties at temperatures approaching their melting points.”®3? The oxide
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particles block dislocation motion and also restrict high-temperature recrystallization that would
lead to larger grain size and reduced strength. As exFected, alloy strength increases with oxide
volume fraction and decreasing particle spacing.éo76 As such, it is critical that the particles are
uniformly dispersed in the matrix. Since the strengthening potential for dislocation looping
around noncoherent particles is less than that associated with particle cutting processes, such
oxide-dispersion-strengthened (ODS) alloys are not among the strongest structural materials. On
the other hand, the microstructures of dispersion-hardened alloys are more stable than those
associated with precipitation-hardened alloys, thereby making them more suitable for load-
bearing applications at elevated temperatures. As such, ODS alloys are discussed further in the
context of high temperature time-dependent deformation in Chapter 4.

Processing of ODS alloys by ingot methods is generally not possible because desirable oxide
particles are typically not soluble in the liquid metal. This necessitates the use of powder metallurgy
techniques instead. Although straightforward mixing of metal and oxide powders is possible for
very simple alloys, the high degree of microstructure control required for ODS superalloys has led to
the use of a mechanical alloying process.%> Mixtures of powder particles of different constituents
are blended together in a dry, high-energy ball mill. The discrete particles are repeatedly welded
together, fractured, and rewelded. Such intimate mechanical mixing leads to the formation of
particles with a homogeneous phase distribution that is extremely fine grained and heavily cold
worked. The powders are then hot compacted, hot extruded, and/or hot rolled to produce materials
with attractive mechanical properties.%3%4 By choosing a matrix alloy of virtually any composition,
it is possible to tailor a material to meet a wide range of property requirements. The compositions of
three commercial nickel-based ODS alloys are given in Table 3.2. These alloys contain Cr in solid
solution for elevated temperature corrosion resistance and Y,O3 for dispersion hardening. Alloy
MA754 contains a mixture of yttrium oxides and yttria aluminates in a size range from 5 to 100 nm;
these fine particles have a planar spacing of approximately 0.1 pum and constitute about 1 v/o of the
alloy.5> Inconel MA 6000 contains approximately 7 w/o Al + Ti, which introduces the precipita-
tion-hardening v’ phase to the nickel matrix. These alloys are intended for gas turbine vanes, turbine
blades, and sheets for use in oxidizing/corrosive atmospheres.

The elevated temperature strength and rupture behavior of ODS alloys are discussed in the
next chapter. For the present, it is timely to examine the rupture strength of ODS alloys versus
precipitation-hardened nickel-based superalloys (see Figs. 4.34 and 3.23). At 750°C, the
dispersion-strengthened ODS alloys are seen to exhibit lower strength levels than the
precipitation-hardened superalloys. However, at temperatures in excess of 900 to 950°C,
the more stable dispersion-strengthened ODS alloys are found to possess superior strengths to
those of the precipitation strengthened alloys; in the latter instance, the precipitate particles
have begun to coarsen and/or redissolve in the matrix in this temperature range. The primary
limits to the implementation of ODS alloys in a wide variety of high temperature applications
include the inability to join components by traditional fusion welding techniques (during which
the distribution of oxide particles is lost) and the high cost associated with the complicated
mechanical alloying process.

There is one ODS alloy system that is widely used for structural purposes in which
electrical and/or thermal conductivity is also critical — Al;O3 in copper. Because Al is soluble
in Cu to a fraction greater than 18 at% (>7 wt%), it is possible to create a solid solution powder
of the two metals. When exposed to oxygen, the Al inside the powder particles preferentially
oxidizes to form nanometer-scale Al,O3 dispersoids in a nearly pure Cu matrix. The ODS

Table 3.2 Chemical Composition of Mechanically Alloyed ODS Superalloys

Alloy Ni Cr Al Ti Y,03 w Mo Ta
Inconel MA754 bal 20 0.3 0.5 0.6 — — —
Inconel MA 6000 bal 15 4.5 2.5 1.1 4 2 2

Alloy 51 bal 9.5 8.5 — 1.1 6.6 34
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powder can then be consolidated without the need for mechanical alloying to form a uniform
dispersion. Due to the high purity of the matrix, the properties of the alloy (with the notable
exception of mechanical strength) closely resemble those of pure Cu. In contrast, conventional
Cu alloys have much poorer electrical and thermal conductivities, and experience a significant
drop in strength at temperatures greater than approximately 60% of the melting point
(~400°C). The superior properties of the ODS Cu alloys allow the use of smaller cross-
section sizes without loss of strength, current-carrying capacity, or heat-transport capacity for
applications such as resistance spot welding electrodes for the automotive industry.

3.8 STRENGTHENING OF STEEL ALLOYS BY MULTIPLE MECHANISMS

A brief discussion of the strengthening mechanisms associated with steel alloys is appropriate
since this class of materials is of major commercial importance. In addition, different steel alloys
derive their strength from various combinations of the strengthening mechanisms considered thus
far; as such, an analysis of the strength of steel alloys provides pertinent examples of these
strengthening mechanisms. Several review articles®®~8 concerning the strength of steel alloys
point to the fact that some or all of the major strengthening mechanisms that we have studied (i.e.,
solid solution strengthening, strain hardening, grain-boundary hardening, and precipitation and
dispersion strengthening) are operative in each alloy system, depending on the character of the
transformation product(s).

The four major microstructural features found in steel alloys are ferrite, pearlite, bainite or
lath martensite, and plate martensite (Fig. 3.29); these microstructural features are shown
schematically in Fig. 3.30. Clearly, ferrite (single-phase solid solution of iron) exhibits the

Figure 3.29 Typical microstructures in ferrous alloys: (a) ferrite; (b) pearlite; (c) lath martensite; (d) plate
(acicular) martensite. (Courtesy of A. Benscoter and J. Ciulik.)
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Figure 3.30 Schematic representation of microconstituents shown in Fig. 4.15.3 (Reprinted with permission from the proceedings of an
International Conference on Phase Transformations in Ferrous Alloys, A. R. Marder and J. I. Goldstein, Eds., 1984, The Metallurgical
Society, 420 Commonwealth Drive, Warrendale, PA 15086.)

simplest microstructure, with the principle strengthening mechanism corresponding to grain
refinement that follows the Hall-Petch trend of Eq. 3-8, with ferrite grain size d as the critical
parameter.®® Values of o; and ky, are found to vary with test temperature (Fig. 3.31a) and alloy
content (Fig. 3.31b). Note the stronger dislocation locking tendency, and thus a greater k,, value,
for nitrogen solute additions relative to that of carbon atoms. In pearlitic steels, the interlamellar
spacing (S) between the ferrite and iron carbide lamellae is the critical dimension for boundary
strengthening; little influence on alloy strength is noted with changes in austenite (the FCC form
of iron) grain size and nodule diameter.%8 Langford70 has shown that the strength of pearlitic
steels may be described by a modified version of the Hall-Petch expression

oys = 07+ kSTV2 4 kps7! (3-23)

where

S = interlamellar spacing
k1, kp = constants
o; = resistance of lattice to dislocation movement

The specific influence of S on alloy strength (i.e., S~ 1/2 versus §~1 dependence) varies with the
dominant hardening mechanism, which, in turn, reflects a change in the controlling free path for
movement of dislocations; an §~1/2 dependence of oy, corresponds to processes associated with
the formation of dislocation pileups (the original basis for Eq. 3-8). When strength is controlled by
the work required for the generation of dislocations, an S~ lamellae size—strength dependence
develops (similar to the behavior of a Frank-Read source described by Eq. 3-3).

When asked which strengthening mechanism controls the mechanical properties of
martensitic steels, the reader would not err by replying, “All of the above.” Indeed, the
high strength of martensite draws upon several mechanisms, with solid solution strengthening
exerting the greatest influence (recall Fig. 3.17). To illustrate, lath martensite contains up to 0.6
wt% carbon and possesses boundary obstacles (e.g., packet boundaries) along with a highly
dislocated substructure (>10' dislocations/cm?). Norstrom’! has proposed a comprehensive
relation to describe the yield strength of lath martensite:

0ys= 0; + kve + K,dY2 + a Gbvp
(3-24)

Peierls Solid solution Boundary Strain
stress  strengthening hardening hardening
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Figure 3.31 (a) Influence of grain size on yield strength in ferritic steel; (b) grain-size dependence of lower yield
point in steel reflecting greater dislocation locking k,, with nitrogen interstitial.® (Reprinted with permission from
MIT Press, Cambridge, MA.)
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where

o; = resistance of lattice to dislocation movement
k, o = constants

¢ = solute atom concentration

ky = locking parameter

d = packet size (recall Fig. 3.30)

G = shear modulus

b = Burgers vector

p = dislocation density

Furthermore, a dispersion-hardening component is introduced with the precipitation of iron
carbide particles during tempering. It should be noted, however, that total alloy strength
decreases with tempering since the solid solution strengthening contribution is correspondingly
reduced. For this reason, carbon martensites are strongest after rapid quenching from the
austenite region, but lose strength with tempering. Such behavior contrasts markedly with
precipitation-hardening alloys (as discussed in Section 3.6), which are soft upon quenching from
the solution treatment zone but then strengthen with aging. Maraging steels are alloys that con-
form to the latter strengthening type since precipitation of fine second-phase particles is
responsible for strengthening in such alloys; correspondingly, extremely low carbon levels in
these alloys preclude significant solid solution strengthening.

3.9 METAL-MATRIX COMPOSITE STRENGTHENING

Thus far, we have examined several intrinsic strengthening mechanisms in metal alloys. As
discussed in Section 1.6.2, metal alloys may also be strengthened extrinsically through the addition
of high-strength continuous fibers such as carbon, aramid (e.g., Kevlar), and boron, or
reinforcement may be achieved with A1,03 or SiC whiskers to form discontinuously-reinforced
composites (DRC). Furthermore, laminates of metals and nonmetallic materials offer benefits for
certain applications. The reader may recognize that at a certain level the ODS alloys introduced in
Section 3.7 are composites too. However, the techniques used to fabricate ODS alloys—and the
mechanisms behind their attractive properties—are quite different from those found for compo-
sites created with reinforcements of larger scale (nanometer vs. micrometer). As such, more
conventional whisker-reinforced or laminated metal-matrix composites merit separate discussion.

3.9.1 Whisker-Reinforced Composites

Continuous boron fiber Al matrix MMCs have found use in space applications as tubular
struts and in the landing gear of the Space Shuttle Orbiter. However, the high cost of such
materials has precluded much wider acceptance. DRC materials are attractive because they can be
fabricated at reasonable cost and can be processed by a variety of methods. Some metal-matrix
DRCs have been fabricated by liquid infiltration of the matrix around the fibers; other composite
systems have been prepared by extrusion of hot compacted matrix powders and high-strength
whiskers. Such powder—metallurgy composites, consisting of aluminum alloys reinforced with
SiC whiskers, have attracted considerable attention because they offer high strength (and good
resistance to fatigue damage) in a lightweight material. When further processed by deformation
techniques such as extrusion, a combination of plastic deformation of the matrix and whisker
alignment produces particularly high longitudinal strength. Several investigatorsn_75 have
noted that the strength of such Al-SiC composites exceeds that predicted from conventional
composite theory (recall Section 1.6.2). Transmission electron microscope studies have deter-
mined that these enhanced strength levels are attributed to the presence of relatively high
dislocation densities in the aluminum alloy matrices examined (Fig. 3.32). Arsenault and
coworkers’3:74 theorized and subsequently confirmed that such high dislocation-density levels
resulted from the large difference (10:1) in coefficients of thermal expansion between the
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Figure 3.32 High dislocation density on
6061 aluminum alloy reinforced with 20
v/o SiC.7 (Reprinted with permission
from M. Vogelsang, R. J. Arsenault, and
R. M. Fisher, Metallurgical Transactions,
17A, 379 (1986)).

aluminum alloy matrix and the SiC whiskers. Accordingly, when the composite is cooled from
elevated temperatures, the misfit strains that develop are relieved by the generation of dislocations
at the ends of the SiC whiskers. Studies have also shown that this increased dislocation density
accelerates the aging process within the aluminum alloy matrix by shortening the aging time to
achieve maximum strength relative to that associated with the unreinforced matrix alloy.72775
These findings are of major significance since computations of composite strength must account
for alterations in matrix properties due to the presence of the reinforcing phase. As such, the high-
strength phase serves to strengthen the matrix both extrinsically by load transfer to the fibers/
whiskers and intrinsically by increasing the dislocation density.

3.9.2 Laminated Composites

A number of laminated metal composites have been used in various engineering compo-
nents, with contiguous plies being joined together by such methods as diffusion bonding or with
the use of adhesives. Two fiber-metal laminate (FML) aluminum composites have been
designed specifically for aircraft structural components. The first material consists of thin
aluminum alloy sheets (typically 2024-T3 or 7075-T6) and epoxy/aramid composite layers that
are adhesively bonded together (Fig. 3.334).79~78 This material, called ARALL (ARamid
ALuminum Laminate), can be machined and formed into useful shapes. Its specific weight
(mass per unit volume) is lower than that of solid aluminum. Also, the aluminum alloy outer
layers provide impact resistance and damage detectability. Furthermore, cracks that may
initiate in the aluminum alloy surface layers are arrested when the crack front encounters the
epoxy/aramid fiber layer. As discussed in Chapter 10, this greatly extends overall fatigue
lifetime for components fabricated with this unusual material.

Panels of ARALL typically contain three layers of aluminum alloy (approximately 0.3 to
0.5 mm thick) that sandwich two epoxy/aramid fiber adhesive layers, each 0.25 mm thick. Since
the volume fraction of the aligned aramid fibers in the epoxy resin is between 40 and 50 v/o, the
overall volume fraction of aramid fibers in the hybrid composite is approximately 15%. Typical
stress—strain curves for ARALL along with its constituent layers are shown in Fig. 3.33b as a
function of loading direction relative to the alignment direction of the aramid fibers.”® As with
other aligned-fiber reinforced composites, the compressive strength of ARALL is inferior to
that in tension, owing to buckling of the hi%h-strength fibers. This tendency is reduced when the
aramid fibers are replaced by glass fibers. 9 A successor to ARALL called GLARE (GLAss-
REinforced fiber metal laminate) therefore uses unidirectional glass fiber/epoxy composite
layers in place of aramid/epoxy. Each fiber/epoxy composite layer is a prepreg sheet (i.e., fibers
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Figure 3.33 (a) Layup of ARALL hybrid composite, consisting of alternate layers of aluminum alloy and aramid/epoxy laminates. (b)
Tensile stress—strain curves for ARALL and constituent layers as function of loading angle relative to fiber axis. Compression test results
shown with dashed curve. (From R. J. Bucci, Alcoa Technical Center, with permission.)

pre-impregnated with resin) that can be made up of several unidirectional layers of different
orientations, thereby tuning the prepreg anisotropy and the overall mechanical behavior of the
laminate. It has been shown that a good approximation of static laminate mechanical properties
can be calculated using a simple rule of mixtures, similar to that used in Chapter 1 when
evaluating the elastic behavior of continuous-fiber composites.®? In this case, however, the
metal and composite layers are each treated as homogeneous, orthotropic sheets that contribute
linearly to the total laminate in proportion to their volume fraction. In the case of yield or
ultimate strength, this is simply

Lam = villott + (1 — viholre (3-25)
where a%’" is the laminate ultimate strength, JAl 1s the ultimate strength of the aluminum alloy,
aﬁlrt is the ultimate strength of the prepreg, and VAL s the aluminum volume fraction (typlcally
50-70%). This expression has been shown to work well in compression as well as in tension
over the range of volume fractions tested.8? The first structural application of GLARE in a
commercial aircraft was in the fuselage of the Airbus A380 airliner.8!

3.10 STRENGTHENING OF POLYMERS

The mechanisms by which amorphous and semi-crystalline polymers yield were intro-
duced in Chapter 2. As these mechanisms are quite distinct from those active in metals,
different approaches to strengthening should also be expected.

Strengthening through changes in chemistry can also be brought about by the introduction
of large side groups and intrachain groups that restrict C—C bond rotation (recall Section
2.7.1.1). Some polymers can also be cross-linked to lock their molecules together in rigid
fashion, thereby precluding viscous flow (recall Section 2.7.1.4 and the effect of cross-linking
agents). For example, a bowling ball contains a much higher cross-link density than a handball.

In another approach, the superstructure or architecture of a polymer can be modified to
effect dramatic changes in mechanical strength greater than those made possible by chemistry
adjustments. First, mechanical properties are found to increase with molecular weight (MW),



178 Chapter 3  Controlling Strength

2+ 2415 (350)
©
o
21 2070 (300)
=)
3
= 86 125} 8} 1725(250) J10
a = —
2 S
69 '@ 10.F
% 2 Strength 175 -g
5 @
& 52 75F
15
35} 5.1
17t 25} 125
Il Il Il Il O
0 5000 10000 15000 20000 25000

My

Figure 3.34 Mechanical properties in polycarbonate as a function of molecular weight.®3 (Reprinted with
permission from John Wiley & Sons, Inc.)

and relations®? often assume the forms

B
mechanical property = A — i (3-26a)

or
. B
mechanical property = C + i (3-26b)

An example of such data3? is shown in Fig. 3.34. It may be argued that as chain length increases
beyond a critical length, the combined resistance to flow from chain entanglement and inter-
molecular attractions exceeds the strength of primary bonds, which can then be broken.
Consequently, once the molecular weight exceeds a critical lower limit M, entanglement and
primary bond breakage occur. At this point the mechanical property becomes less sensitive to
MW. Studies have shown that polymer viscosity depends on MW. When MW < M, the Viscositif
v is proportional to MW. When MW > M., m is proportional to MW3- instead (Fig. 3.35).%

Mechanical properties are improved most dramatically by molecular and molecular
segment alignment parallel to the stress direction. This stands to reason, since the loads would
then be borne by primary covalent bonds along the molecule rather than by weak van der Waals
forces between molecules. Figure 3.36 illustrates the rapid increase in polymer stiffness with
increasing fraction of covalent bonds aligned in the loading direction.3> A similar curve would
describe the strength of the polymer. Such orientation hardening is distinct from the strain-
hardening phenomenon found in metals. In the latter case, strength is lost when the sample is
annealed due to the annihilation of dislocations. The strength of oriented polymers is high even
after annealing (below T) since the polymer chain orientation is retained.

The alignment of molecules in an amorphous polymer is described with the aid of Fig. 3.37.
Thermal energy causes the molecules in the polymer at 7> T, to vibrate with relative ease in
random fashion, but below T, the randomness is “frozen in.” If the material were drawn quickly
at a temperature not too far above T, (say, T1), some chain alignment could be achieved and
effectively “frozen in,” provided the stretched polymer were to be quenched from that
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Figure 3.35 Dependence of melt viscosity on
molecular weight in polydimethylsiloxane at 20 °C.84
(With permission, N. J. Mills, Plastics:
Microstructure, Properties and Applications, Edward
Arnold, London, 1986.)

Figure 3.36  Polymer stiffness dependence on
fraction of covalent bonds in the loading direction.®
(Reprinted with permission from M. F. Ashby and D.
R. H. Jones, Engineering Materials 2, Pergamon
Press, Oxford, 1986.)

5

Figure 3.37 Rapid drawing at 7'} followed by quenching can
produce molecular alignment and polymer strengthening. Viscous
flow during drawing at 7 precludes such alignment.
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temperature. (Recall that the cold drawing phenomenon was introduced in Section 2.7.2.1.) The
resulting material would be stronger in the direction of drawing and correspondingly weakened
in the lateral direction. An example of this anisotropy is shown in Fig. 3.38 for drawn
polystyrene. Note that the strength anisotropy parallels a deformation mechanism transition
from crazing to shear yielding as the tensile axis approaches the draw direction. If the drawing
were conducted slowly at 7| or even at T, (from Fig. 3.37), the elongation could be
accommodated by viscous flow without producing chain alignment. Consequently, no strength-
ening would result. It should be recognized that the oriented structure is unstable and will
contract upon subsequent heating above 7. By contrast, the polymer stretched at 7, would be
dimensionally stable, since it never departed from its preferred fully random state.

In semi-crystalline polymers, crystallite alignment may be produced by cold drawing
spherulitic material (recall Section 2.7.2.2) and by forcing or drawing liquid through a narrow
orifice. During the past few years, attempts have been made to extend the practice of polymer
chain orientation to its logical limit—the full extension of the molecule chain—with the
potential of producing a very strong and stiff fiber.37~8% Indeed, this has been partially
accomplished. Highly oriented and extended commercial fibers, such as DuPont Kevlar,
possess a tensile modulus two-thirds that of steel but with a much lower density (recall
Section 1.3.3.1). This is truly extraordinary, since unaligned commercial plastics generally
exhibit elastic moduli fully two orders of magnitude smaller than steel. By converting the
folded chain conformation to a fully extended one, the applied stresses are sustained by the very
strong main chain covalent bonds, which are less compliant than the much weaker inter-
molecular van der Waals forces. An example of the effect of draw ratio (final length/initial
length) on the tensile strength of a polycarbonate and liquid crystalline polymer (LCP) blend is
shown in Fig. 3.39. It can be seen that higher draw ratios that cause greater LCP fiber formation
and alignment correspond to greater tensile strength values. Highly oriented fibers have been
produced both by cold forming and direct spinning from the melt.

While the formation of engineered high-strength crystalline fibers or filaments directly from
the melt is an intriguing process, it is by no means a unique event in nature; rather, the materials
scientist must yield to the long-recorded activities of arachnids and silkworms. For example,
researchers have determined that spider silk is generated by the drawing of an amorphous protein
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50 Figure 3.39 Dependence of tensile strength for a
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with permission from S. H. Jung and S. C. Kim, Polymer 20(1),
73 (1988), The Society of Polymer Science, Japan.)
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liquid from various glands, which then converts quickly to a highly oriented, very long crystalline
filament with a diameter on the order of several tens of nanometers. The highly oriented and
crystalline morphology of these filaments is believed responsible for their reported strengths that
can sometimes exceed 1 GPa.?! In one intriguing investigation, for instance, Lucas’? showed that
a certain variety of spider silk had twice the fenacity, defined as grams-force/denier, of a 2070-
MPa steel wire and four times the extension at break."! Experimentally-measured mechanical
properties for two types of silk produced by the spider Araneus diadematus (anorb-web-weaving
araneid spider) are shown in Table 3.3 along with typical order-of-magnitude properties for
several other natural elastic materials as well as engineered fibers.

Table 3.3 Relative-magnitude tensile mechanical properties of spider silks and selected other
fiber materials.9* Reproduced with permission from J. M. Gosline, P. A. Guerette,
C. S. Ortlepp, and K. N. Savage, Journal of Experimental Biology 202, 3295 (1999).

Stiffness, Strength, Extensibility, Toughness
Material Einit (GPa) Omax (GPa) Emax (MJm3)
Araneus MA silk” 10 1.1 0.27 160
Araneus viscid silk™ 0.003 0.5 2.7 150
Bombyx mori cocoon silk 7 0.6 0.18 70
Tendon collagen 1.5 0.15 0.12 7.5
Bone 20 0.16 0.03 4
Wool, 100% RH 0.5 0.2 0.5 60
Elastin 0.001 0.002 1.5 2
Resilin 0.002 0.003 1.9 4
Synthetic rubber 0.001 0.05 8.5 100
Nylon fiber 5 0.95 0.18 80
Kevlar 49 fiber 130 3.6 0.027 50
Carbon fiber 300 4 0.013 25
High-tensile steel 200 1.5 0.008 6

*MA silk is produced by the spider’s major ampullate (MA) gland, which forms the dragline used by the spider for
suspension, and the web frame used to form the structure of the web.

**Viscid silk is produced by the spider’s flagelliform (FL) gland, and is used as the glue-covered insect-catching spiral fibers
of the web.

il A denier is a unit that quantifies the fineness of fiber, filament or thread in terms of the mass in grams per 9000 meters. A lower denier
number therefore indicates a finer yarn, and the tenacity is a dimensionless number analogous to specific strength (strength/weight ratio).
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Such high strengths along with the apparent abundant supply of spider silk have prompted
enterprising individuals to seek commercial markets for the product of our arachnid friends. In
one such feasibility study in 1709, several pairs of stockings and gloves were woven from spider
silk and presented to the French Academy of Science for consideration.”> However, as spiders
are not capable of producing sufficient silk to support the needs of industrly, more recent efforts
have sought artificial means of creating fibers with similar properties.9

3.11 POLYMER-MATRIX COMPOSITES

An extensive discussion of polymer-matrix composite strength was presented in Chapter 1,
Section 1.6.6, in the context of elastic behavior. Here, we add a few refinements to our
understanding. The addition of strong fibers such as glass and carbon to polymeric matrices
(e.g., epoxy, polyester, and nylon 66) enhances polymer strength, stiffness, dimensional
stability, and elevated temperature resistance at the expense of ductility. This strength
enhancement may be realized to such a degree that under certain conditions fiber fracture
determines the composite strength rather than polymer matrix yielding or cracking. The change
in tensile strength of selected polymers with the addition of glass and carbon fibers is shown in
Fig. 3.40, and tensile strength values for selected composites are listed in Table 1.11. Note the
superior strengthening potential of graphite fibers relative to that of glass. Since the density of
nonmetallic fibers is relatively low (see Table 3.4), the specific strength and stiffness of
polymeric composites (o7s/p and E/p, where p = density) exceeds that of conventional metal
alloys."Y For this reason, high-performance polymer composites are finding increasing use in
transportation applications, and in aircraft in particular, as discussed in Section 1.6.2.

The properties of fiber-reinforced plastics depend in a complex manner on processing
history. For example, during injection molding, the chopped fibers fracture, with the result that
many glass and carbon fibers have lengths in the range of 100 to 500 wm. In addition, fiber
orientation differs throughout the thickness of the injection-molded part. This follows from the

Tensile strength
of selected engineering
thermoplastics*

0 10 20 30 40 1000 psi
|
Acetal -
Nylon 6/6 R
PET 30% |55%| |:| Unreinf  *Strength of injection
I I moldable compounds
PC | 40% | |40% I:I Glass reflects additional
T T performance due to
PPS | 40% |4(|7% I:I Carbon fiber reinforcements.
I
PEEK | 30% |[30%|
I I
Liquid crystal | 30 |
I
70 140 210

Tensile strength, MPa

Figure 3.40 Tensile strength of selected engineering thermoplastics and their respective composites.”> (Reprinted
with permission from Guide to Engineering Materials, 2nd ed.; ASM International, Metals Park, OH, 1987.)

IV Manufacturers usually report fiber content in a composite by either weight or volume fraction. For the case of glass-reinforced plastics, the
density of the glass is roughly twice that of the polymer matrix; consequently, a 30 w/o glass content corresponds to approximately 15 v/o.
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Table 3.4 Density of Selected Fibers and Matrices®?

Fibers Density (g/cm3) Matrices Density (g/cm>)
Carbon Type 1 1.95 Epoxies 1.2-1.4
Carbon Type 2 1.75 Polyesters 1.1-1.4
E glass 2.56 Nylon 1.1-1.2
Kevlar 1.45 Concrete/cement 2.4-2.5
SiC 2.5-3.2 Aluminum alloys 2.6-2.9
Al1,03 3.9 Steel alloys 7.8-8.1

flow characteristics associated with injection molding.97’98 Near the mold wall (S), the fibers
tend to be aligned in the molding direction. In the interior core region (C), however, the fibers
tend to be aligned parallel to the advancing liquid front (Fig. 3.41); as such, these fibers are
nominally normal to the flow direction. Accordingly, the properties of an injection-molded
component depend both on the relative thickness of the surface and core layers and the direction
of loading. Likewise, extruded composites contain oriented fibers that were broken during the
extrusion process into lengths smaller than their initial size. Note that fiber breakage during
injection molding, extrusion, or any other process reduces the strength and stiffness of the
composite below the theoretical potential for the composite (recall Section 1.6.6). Figure 3.42
shows the difference in strength of nylon 66 composites as a function of fiber length.

Gate —>[ /

Velocity
profile

Figure 3.41 Through-thickness fiber orientation in injection-molded part.

280 L 1 40 Figure 3.42 Strength in nylon 66
composites as a function of fiber
content, type, and length.%® (Reprinted
with permission from Advanced
Materials and Processes, 131(2), 57
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PROBLEMS

Review

3.1 List and briefly define the five main strengthening
mechanisms in metals.

3.2 Calculate the approximate total dislocation line length
(or range of lengths) expected in a cubic cm of a very highly
cold-worked metal.

3.3 Does the strength of a metal always increase as
dislocation density increases? Explain.

3.4 In Fig. 3.2, must it be true that the dislocation seg-
ments at points C and C’ are screw dislocations? And must it
be true that they are of opposite sign?

3.5 If a series of dislocations produced by a single Frank-
Read source encounter an impassible barrier, a back stress is
created. What is the reason for this back stress, and why is it
very effective for dislocations produced by a single F-R source?

3.6 How dodislocation junctions contribute to strengthening?
3.7 Define cell wall and explain its role in strengthening.

3.8 Define hot work and cold work in the context of
dislocations and microstructure stability, then give an esti-
mate of the temperature (or fraction of the melting point) that
usually marks the transition between the two.

3.9 What data would you collect, and what axes would
you use, to make a linear plot for determining the grain-size
dependence of yield strength according to the Hall-Petch
relationship?

3.10 State two different possible functions of a grain bound-
ary that are often invoked to explain Hall-Petch behavior.

3.11 Explain which has a larger effect on solid solution
strengthening—symmetrical or  asymmetrical  point
defects—and identify which specific defects lead to sym-
metrical or asymmetrical stress fields. List at least one
example of an engineering material in which this factor
comes into play.

3.12 What do the formation of Liiders bands and dynamic
strain aging have in common, and how are they different?

3.13 Reproduce the binary phase diagram depicted
in Fig. 3.20. For the composition shown at X, mark on
the diagram approximate temperatures used for the three
main thermal process steps used in precipitation hardening:
solution treatment, quenching, and aging.

3.14 What is another name for Ostwald ripening, and what
effect does the process have on mechanical strength?

105. N. J. Mills, Plastic: Microstructure and Engineering
Applications, 3rd ed., Butterworth-Heinemann, 2005.

106. Modern Plastics: Plastics Handbook, McGraw-Hill,
New York, 1994.

107. Structural Plastics Design Manual, FHWA-TS-79-
203, U.S. Dept. of Transportation, 1979.

3.15 Describe the conditions that favor cutting of a parti-
cle vs. looping of a dislocation around a particle.

3.16 Describe the trends between strength change and
increasing particle spacing or particle size.

3.17 Why are NisAl (y) precipitates particularly effective
at strengthening nickel-based superalloys?

3.18 Compare and contrast precipitation strengthening
and dispersion strengthening.

3.19 Describe a method by which “ODS” alloys are
produced and explain why it is not possible to cast these
alloys using conventional techniques.

3.20 What is the difference between an intrinsic and an
extrinsic strengthening mechanism, and on which do metal
matrix composites depend?

3.21 What are three advantages of fiber-metal laminates
over conventional metals for certain aircraft applications?

3.22 What aspect of thermoset polymers can be controlled
to increase strength?

3.23 What are two fundamental differences between ori-
entation strengthening of metals vs. polymers? The first
should address the mechanism by which strengthening is
achieved, and the second the thermal stability of the high
strength characteristic.

Practice

3.24 A Frank-Read source created from a complete edge
dislocation segment in Al is observed in a transmission
electron microscope. Using a straining stage, it is possible
to load the specimen to watch the source in action. If the
pinning points are 55nm apart, estimate the minimum
resolved shear stress necessary to cause the dislocation
segment to become unstable, thereby generating a new loop.

3.25 Experimentally, it has been observed for single
crystals that the critical resolved shear stress Tcggs is a
function of the dislocation density pp as

Tcrss = To +Av/Pp

where 1 and A are constants. For copper, the critical resolved
shear stress is 0.69 MPa at a dislocation density of 10* mm~2.

a. If it is known that the value of 7y for copper is
0.069 MPa, please calculate the tcggs at a dislo-
cation density of 10® mm~2.



b. Plot 7gss for Cu over a dislocation density range
of 10 to 10'%cm?2. Does your plot look like some
or all of Fig. 3.1? What does this mean with regard
to the validity of the equation?

3.26 When making hardness measurements, whether by
nanoindentation or by conventional indentation testing, what
will be the effect of making an indent very close to a
preexisting indent? Why?

3.27 Summarize the general effect that Stacking Fault
Energy has on the ability of an FCC metal to work harden,
then briefly describe three mechanisms by which this
influence occurs. The first of your answers should address
the interaction between dislocations and second phase
particles, the second should address dislocation junctions,
and the third should address cell development.

3.28 The lower yield point for a certain plain carbon steel
bar is found to be 135 MPa, while a second bar of the same
composition yields at 260 MPa. Metallographic analysis
shows that the average grain diameter is 50 pum in the first
bar and 8 pum in the second bar.

a. Predict the grain diameter needed to cause a lower
yield point of 205 MPa.

b. If the steel could be fabricated to form a stable
grain structure of 500nm grains, what strength
would be predicted?

c¢. Why might you expect the upper yield point to be
more alike in the first two bars than the lower yield
point?
3.29 A high-carbon steel with a fully pearlitic micro-
structure was used to form a high-strength bolt (H.-C.
Lee et al., J. Mater. Proc. Tech. 211, 1044 (2011)). It
was found that the bolt head had an average interlamellar
spacing of 257 nm whereas the average spacing in the body
of the bolt was 134 nm. Assuming that dislocation pileup is
the primary mechanism responsible for the strength of this
alloy, what ratio of strength (or hardness) might be expected
in the head and body of the bolt?

3.30 A sketch of the Os-Pt binary phase diagram is
provided below.
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Problems

a. Reproduce the binary phase diagram and mark on
it approximate candidate composition ranges for
precipitation strengthened osmium-rich and plati-
num-rich Os-Pt alloys.

b. From a processing perspective alone, would pre-
cipitation strengthening be equally practical to
achieve in osmium-rich and in platinum-rich
Os-Pt alloys? Explain your reasoning.

c. Assume that an osmium-rich precipitation
strengthened alloy is created. What other strength-
ening mechanisms are likely to be acting in the
same alloy? List any critical assumptions behind
the existence of each mechanism you believe is
relevant.

3.31 The lattice parameters of Ni and NizAl are
352x107m and 3.567 x 107 10m, respectively. The
addition of 50at% Cr to a Ni-NizAl superalloy increases
the lattice parameter of the Ni matrix to 3.525 x 10710m
Calculate the fractional change in alloy strength associated
with the Cr addition, all other things being equal.

3.32 The addition of C to Fe greatly increases the room-
temperature strength of the alloy, but an equal amount of C
added to Ag has little effect. Why?

3.33 Some alloys use a combination of strain hardening and
precipitation hardening to achieve particularly high strength
levels. The usual order of strengthening is solution treatment,
quenching, cold working, and finally precipitation heat treat-
ment. Why not reverse the order of the cold working and
precipitation heat treatment steps?

Design

3.34 Provide a reasonable explanation for the following
observation: a welded component made of Al 6061-T6 alloy
is routinely found to deform plastically first in the region
adjacent to the weld joint despite the fact that the stress is
nominally the same everywhere in the component. What
solution would you propose to fix this problem, assuming
that the weld joint cannot be eliminated from the design?

3.35 An aircraft fuselage design calls for a 2/1 layup of
GLARE laminate (2 layers of Al and 1 layer of glass/epoxy
prepreg). A study of this material (H. F. Wu, L. L. Wu, W.J.
Slagter, and J. L. Verolme, J. Matl. Sci. 29, 4583-4591
(1994)) found that the 0.38-mm-thick glass prepreg layer
had an ultimate strength of 1507 MPa in the longitudinal
direction (along which 70% of the glass fibers were aligned),
while the 0.3-mm-thick 2024-T3 aluminum layers each had an
ultimate strength of 490 MPa. The density of the 2/1 layup was
2.45 g/em>. The density of 2024 alloy is 2.77 g/cm?. The study
also found that the laminate followed the rule of mixtures
(Eq. 3-25) with regard to density and to ultimate tensile
strength. It is proposed that a change from a 2/1 laminate
to a 3/2 laminate for the aircraft fuselage offers the opportu-
nity to reduce overall vehicle weight by reducing the com-
posite density. Calculate the density of the 3/2 layup to check



188 Chapter3  Controlling Strength

this assertion, then calculate the ultimate tensile strength of
both laminates to ensure that there is no significant tradeoff
with regard to ultimate strength. Finally, briefly discuss any
other potential drawbacks that would have to be evaluated
before selecting the 3/2 laminate over the 2/1 laminate.

Extend

3.36 A processing technique called Equal Channel Angu-
lar Pressing (ECAP) has been used for many metals and
alloys to impose severe plastic deformation, and therefore
create extreme dislocation densities. However, the primary
purpose of ECAP is not to create high strength by severe
work hardening. What is the main reason to perform ECAP
processing, and why is the technique particularly attractive
for this purpose?

3.37 Find a journal paper that describes either an exper-
imental study or a simulation of the so-called “reverse/inverse

Hall-Petch” phenomenon. To what mechanism does the paper
attribute the phenomenon, and over what grain size range is it
claimed to act? Provide a full reference for the paper in a
standard reference format.

3.38 Look up the standard aluminum alloy heat treatment
temper designations. Use the designations to justify the yield
strength behavior of the following aluminum alloys listed in
Table 1.2: 2024-T3 vs. 2024-T6 and 7075-T6 vs. 7075-T73.

3.39 Why are rivets of a 2017 aluminum alloy often
refrigerated until the time they are used?

3.40 Find publications that describe the structure and
properties of Araneus MA silk and Araneus viscid silk.
Use what you learn about the structure of these materials
to explain the differences in the stiffness, strength, and
extensibility reported in Table 3.3. Provide full references
in a standard reference format for any papers you used to
develop your explanations.



Chapter 4

Time-Dependent Deformation

For the most part, our discussions of deformation in solids thus far have been limited to the
instantaneous (i.e., time-independent) deformation response—elastic or plastic—to the appli-
cation of a load. This enabled us to develop several relatively simple stress—strain relations that
can describe material response under a number of different elastic and plastic loading
conditions. However, prior discussion in Chapters 1 and 2 briefly introduced the effects of
strain rate and temperature on the mechanical response of engineering materials. For example,
in Sections 1.3.1-1.3.3 the possibility of time- and temperature-dependent elastic behavior was
addressed, particularly for polymers. In Section 2.1.4.1, the temperature sensitivity of strength
in crystalline solids was attributed to the role played by the Peierls-Nabarro stress in resisting
dislocation movement through a given lattice. In addition, the potential importance of temperature
in controlling crystalline deformation through thermally activated edge dislocation climb was
mentioned in Section 2.1.5. Finally, in Section 2.4.4, it was also shown that the tensile strength of
many materials increases with increasing strain rate and decreasing temperature.

As such, a time-dependence of the observed stress or strain in a structural component adds a
new dimension to the problem, and requires a reformulation of some of the previously discussed
phenomena in terms of stress—strain—time relations. It also opens up the possibility of a new mode of
failure (creep) by time-dependent deformation. In the ensuing discussion, time and temperature
effects on elastic, plastic, and fracture properties are explored more extensively. Characteristics
common to crystalline materials (typical metals and ceramics) and to non-crystalline materials
(certain polymers as well as glassy materials) are presented first, followed by separate discussions of
the issues most relevant to these two categories of materials.

4.1 TIME-DEPENDENT MECHANICAL BEHAVIOR OF SOLIDS

Two consequences of time-dependent mechanical response to simple uniaxial tensile loading
are shown in Fig. 4.1. In the first case, Fig. 4.1a, itis imagined that a fixed load is rapidly applied to
the test bar, reaching a stress o in time #;. In the second case, Fig. 4.1b, a fixed displacement is
applied, inducing a strain &g in the same time 7. Unlike a purely elastic material that would exhibita
single, time-independent relationship between stress and strain as indicated by Hooke’s law,
oo=FEey, a test bar undergoing time-dependent deformation processes would elongate
with time under a fixed stress, causing the strain to increase over time (Fig. 4.1a). Under these
conditions, the material is said to undergo creep deformation. Likewise, were the same bar to have
been stretched to a certain length and then held firmly at constant strain, the necessary stress to
maintain the stretch would gradually decrease (Fig. 4.1b). This is known as stress relaxation. In
both cases depicted in Figs. 4a and b, slower loading might reach the target value of stress (or strain)
at times 1 or fp. It can be seen from the dashed lines that this would effectively create a time-
dependent modulus (the slope) that decreases in magnitude with decreasing strain rate (i.e., with
increasing time to reach the fixed value of stress or strain). If some or all of the strain is recoverable
after the load is removed, such response is said to be viscoelastic. If none of the strain is recovered,
the length change is permanent and the material is viscoplastic.

Under the standard tensile test conditions in which the specimen displacement is applied at a
constant rate, it is easy to imagine that dynamic stress relaxation occurring continuously
throughout the test could lead to nonlinear elastic behavior as shown in Fig. 4.1¢. As a result,
in addition to having time-dependent strain or stress values, viscoelastic materials that are
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Figure 4.1 Time-dependent stress—strain response: (a) creep, (b) stress relaxation, and (c) hysteresis during
loading/unloading.

elastically loaded and unloaded display hysteresis (i.e., a time-lag between the stress and strain
responses that causes the creation of a loop instead of a single load/unloading path.) Because the
area under the stress—strain curve is a measure of energy density, the shaded area between the
loading and unloading curves depicted in Fig. 4.1c¢ is a measure of the difference between the
energy put into the material during loading and the energy returned during unloading. Therefore,
unlike purely elastic materials that store energy in their stretched bonds, viscoelastic materials
also dissipate energy. To illustrate, the next time you complete a relatively long auto trip, feel how
warm your tires became as a result of the hysteretic heating of the tire rubber as you motored down
the highway.

All solids have some capacity for time-dependent mechanical behavior. However, for
many materials under normal use conditions it is acceptable to ignore the time-dependence, and
instead to treat the material as we have done in Chapters 1-3. The onset of substantial
viscoelastic or viscoplastic behavior can be estimated by comparing the operating temperature
to the melting temperature, 7,,, of a metal or a ceramic. For an amorphous polymer or a glass,
the glass transition temperature, T, is also a critical factor. (Recall that Ty was introduced in
Section 1.3.3 as the temperature at which a polymer or glass undergoes a transition between
low-temperature glassy behavior and high-temperature rubbery behavior.) For crystalline
metals, time-dependent deformation processes usually do not become significant until the
operation temperature is approximately 0.37},, (in Kelvin units) or higher.! For tin, then, creep
may start to become important at temperatures as low as approximately —120°C (153 K), and is
certainly a factor at room temperature, whereas nickel and tungsten should not be expected to
suffer in this way until at least 300°C (573 K) and 955°C (1228 K), respectively. Due to strong
directional atomic bonding, ceramic materials may not experience creep or stress relaxation in
any meaningful way until 0.4-0.5T,,, giving Al,O3 a creep threshold close to 1000°C
(~1273 K). Of course, even exceedingly slow deformation processes may become important
over very long time scales as observable in the creep of glaciers or the folding of sedimentary
rock layers, but such long times are generally not the purview of materials engineers. However,
since T and T}, of most polymeric materials are not much above ambient (and in fact may be
lower as in the case of natural rubbers), these materials can often exhibit viscoelastic creep and
relaxation phenomena at or below room temperature.

Other than the absolute temperature at which time-dependent deformation becomes
important, there are substantial differences between material classes (and even within a single
class of materials) with respect to the extent of strain recovery upon unloading. It is common to
think of viscoelasticity as a mixture of elastic solid behavior and viscous liquid behavior.
Whereas an elastic solid has strains that are instantaneously recoverable, and are predicted by
an elastic modulus, a viscous liquid experiences strains that are nonrecoverable, and are

I A temperature expressed as a fraction of a material’s melting point on the Kelvin scale is called the homologous temperature.
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predicted by a viscosity. For the specific case of creep, this approach makes it reasonable to
break up the total creep strain, ¢, into perfectly elastic, time-dependent elastic (viscoelastic),
and viscous (viscoplastic) components, here called ¢, ¢, and ¢,,,, respectively. The compo-
nents simply add so that

& = &+ &ve T &vp 4-1)

It has been found that the behavior of metals and ceramics is dominated by the elastic term at
low temperatures, and by the elastic and viscoplastic terms at high temperatures. There is no
sharp onset of viscoplastic behavior in these materials; instead, its importance grows steadily
with increasing temperature. A small viscoelastic component shows up as energy loss during
hysteretic anelastic damping of vibrations in certain metals and alloys, but otherwise the
fraction of recoverable time-dependent deformation is negligible in most cases.” Polymers are a
different story. Highly cross-linked and highly crystalline polymers have little or no visco-
plastic contribution to their overall behavior at any temperature, so the time-dependent
deformation that appears for 7> T is essentially all reversible. On the other hand, amorphous
polymers (or lightly crystallized polymers with a large amorphous fraction) can show a range of
behavior from a nearly elastic behavior for T < T, to a nearly viscous behavior for 7> T
(but still below T,,,), and they show a particularly strong viscoelastic contribution when 7= T,,.
With these thoughts in mind, it is now time to delve into the specific time-dependent behaviors
that are important for users of structural metals, ceramics, and polymers.

4.2 CREEP OF CRYSTALLINE SOLIDS: AN OVERVIEW

The irreversible time-dependent deformation typical of metals and ceramics at high
temperatures is most often characterized using the constant-load (or constant-stress) isothermal
creep test in which strain is recorded as a function of time. As shown in Fig. 4.24, after a load
has been applied, the strain increases with time until failure finally occurs. For convenience,
researchers have subdivided the creep curve into three regimes, based on the similar response of
many materials (Fig. 4.2b). After the initial instantaneous strain &g, materials often undergo a
period of transient response where the strain rate de/dt decreases with time to a minimum

high &

creep strain
strain

__________

Figure 4.2 (a) Typical creep curve depicting creep strain as a function of time, and the corresponding creep strain rate curve. The steady
state slope on the creep curve is fitted with a dashed line. The steady state creep rate is labeled as &g. (b) Four creep curves at different
stress levels. One curve is marked to indicate the three characteristic stages of creep.

il Certain metals of high purity have shown recoverable strains not found in the same metals in alloy form [T. S. Ke, Phys. Rev. 71, 533-546
(1947); N. Nir, E. W. Hart, and C. Y. Li, Scripta Met. 10, 189-194 (1976)]. Another exception to the relative unimportance of the
viscoelastic term for crystalline materials may be found for certain metals in thin film form, for which it has been shown that surprising
amounts of fully recoverable stress relaxation and creep can occur [S. Hyun, T. K. Hooghan, W. L. Brown, and R.P. Vinci, Appl. Phys. Lett.
87, 061902 (2005)].
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steady-state value that persists for a substantial portion of the material’s life. Appropriately,
these two regions are referred to in the literature as the transient or primary creep stage (Stage I)
and the steady-state creep stage (Stage II), respectively. Final failure with a rupture life tg then
comes soon after the creep rate increases during the third, or tertiary, stage of creep (Stage III).

It is generally believed that the varying creep response of a material reflects a continually
changing interaction between strain hardening and softening (recovery) processes, which
strongly affect the overall strain rate of the material at a given temperature and stress. Strain
hardening at elevated temperatures is believed to involve rearrangement of dislocations to form
subgrains,! while thermally activated cross-slip and edge dislocation climb represent two
dominant recovery processes (see Chapter 2). It is logical to conclude that the decrease in strain
rate in Stage I (Fig. 4.2b) must be related to substructure changes that increase overall resistance
to dislocation motion. Correspondingly, the low, approximately constant strain rate in Stage II
would indicate a stable substructure and a dynamic balance between hardening and softening
processes. Indeed, Barrett et al.2 verified that the substructure in Fe-3Si was invariant during
Stage II. (Note that the strain rate in Stage Il is the minimum creep rate exhibited by the material
during the test.) At high stress and/or temperature levels, the balance between hardening and
softening processes is lost, and the accelerating creep strain rate in the tertiary stage is dominated
by a number of weakening metallurgical instabilities. Among these microstructural changes are
localized necking, corrosion, intercrystalline fracture, microvoid formation, precipitation of
brittle second-phase particles, and dissolution of second phases that originally contributed toward
strengthening of the alloy. In addition, the strain-hardened grains may recrystallize and thereby
further destroy the balance between material hardening and softening processes.

The engineering creep strain curve shown schematically in Fig. 4.2a reflects the material
response under constant tensile loading conditions and represents a convenient method by
which most elevated temperature tests are conducted. However, from Eq. 1-2a, the true stress
increases with increasing tensile strain. As a result, a comparable true creep strain—time curve
should differ significantly if the test is conducted under constant stzress rather than constant load
conditions (Fig. 4.3). This is especially true for Stage II and III behavior. As a general rule, data
being generated for engineering purposes are obtained from constant load tests, while more
fundamental studies involving the formulation of mathematical creep theories should involve
constant stress testing. In the latter instance, the load on the sample is lowered progressively
with decreasing specimen cross-sectional area. This is done either manually or by the
incorporation of computer-controlled load-shedding devices in the creep stand load train.

The creep response of materials depends on a large number of material and external
variables. Certain material factors are considered in more detail later in this chapter. For the
present, attention will be given to the two dominant external variables—stress (Fig. 4.2b) and
test temperature (Fig. 4.4)—and how they affect the shape of the creep—time curve. Certainly,
environment represents another external variable because of the importance of corrosion and
oxidation in the fracture process. Unfortunately, consideration of this variable is not within
the scope of this book.

The effect of temperature and stress on the minimum creep rate and rupture life are the two
most commonly reported data for a creep or creep rupture test, although different material

Figure 4.3 Creep curves produced under
Constant constant load and constant stress conditions.
load

Creep Constant
strain stress

Log time
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Figure 4.4 Stress—rupture life plot at several test temperatures for iron-based alloy S-590. (From N. J. Grant and
A. G. Bucklin, copyright American Society for Metals, Metals Park, OH, © 1950.)

parameters are sometimes reported.3’4 The rupture life at a given temperature and stress is
obtained when it is necessary to evaluate the response of a material for use in a short-life situation,
such as for a rocket engine nozzle (g = 100 s) or a turbine blade in a military aircraft engine
(tg = 100 hr). In such short-life situations, the dominant question is whether the component will
or will not fail, rather than by how much it will deform. As a result, the details of the creep—time
curve are not of central importance to the engineering problem. For this reason, creep rupture
tests usually provide only one datum—the rupture life 7. Rupture life information is sometlmes
used in the design of engineering components that will have a service life up to 105 hr. An
example of such data is glven in Fig. 4.4 for the high- temperature, iron-based alloy, S590. As
expected the rupture life 7z is seen to decrease with increasing test temperature and stress. When
preparing this plot, Grant and Bucklin’ chose to separate the data for a given temperature into
several discrete regimes. This was done to emphasize the presence of several metallurgical
instabilities that they identified metallographically and that they believed to be responsible for
the change in slope of the log o—log tg curve.

For long-life material applications, such as in a nuclear power plant designed to operate for
several decades, component failure obviously is out of the question. However, it is equally
important that the component not creep excessively. For long-life applications, the steady-state
creep rate (or minimum creep rate) represents the key material response for a given stress and test
temperature. To obtain this information, creep tests are performed into Stage II, where the steady-
state creep rate &; can be determined with precision. Therefore, the creep test focuses on the early
deformation stages of creep and is seldom carried to the point of fracture. As one might expect, the
accuracy of & increases with the length of time the specimen experiences Stage II deformation.
Consequently, & values obtained during instrumented creep rupture tests are not very accurate
because of the inherently short time associated with the creep rupture test. The magnitude of &g
often depends strongly on stress. As aresult, steady-state creep rate data are usually plotted against
applied stress, as shown in Fig. 4.5. The significance of the &, differences between a—and )/—iron6
at the allotropic transformation temperature is discussed in Section 4.3.

Since the creep and creep rupture tests are similar (though defined over different stress and
temperature regimes), it would seem reasonable to assume the existence of certam relations
among various components of the creep curve (Fig. 4.2). In his text, Garofalo’ summarized a
number of log-log relations between 7z and other quantities, such as t, — t1, f, and the steady-state
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creep rate &. Regarding the latter, Monkman and Grant’ identified an empirical relation between
tg and & with the form

logtgr +mlogés =B (4-2a)

where
tg = rupture life
&g = steady-state creep rate
m, B = constants

For a number of aluminum, copper, titanium, iron, and nickel base alloys, Monkman and Grant
found 0.77 <m < 0.93 and 0.48 < B < 1.3. To a first approximation, then, the rupture life was
found to be inversely proportional to & such that

c c
tR = ;,”nG ~ ;” (4-2b)
S S

where Cy;; = 108 so that the typical range of Cps¢ is 3 to 20 when the unit of m is hours and C
is %/hr. This relation allows tg to be estimated as soon as & is determined. Of course, the
magnitude of tx can be estimated from Eq. 4-2b only after the validity of the relation for the
material in question is established and the constants m and B are identified.

A number of other empirical relations have been proposed to relate the primary creep strain
to time at stress and temperature. Garofalo’ summarized the work of others and showed that for
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low temperatures (0.05 < T, < 0.3)il and small strains, a number of materials exhibit loga-
rithmic creep:

& o< Int 4-3)

where
& = true strain
t = creep time

In the range 0.2 < T}, < 0.7, another relation has been employed with the form
& = &, + pt" (4-4)

where
€o, = instantaneous true strain accompanying application of the load
B, m = time-independent constants

Creep response in materials according to Eq. 4-4 is often referred to in the literature as
parabolic creep or B flow. Since 0 <m < 1 in transient creep, both Egs. 4-3 and 4-4 reflect a
decreasing strain rate with time. The strain rate ¢ can be derived from Eqs. 4-3 and 4-4 with the
form

goct (4-5)

as suggested by Cottrell,® where
& = strain rate
t= time
n = constant

Itis generally found that n decreases with increasing stress and temperature. At low temperatures
when n =1, Eq. 4-5 describes logarithmic creep (see Eq. 4-3). In the parabolic creep regime at
higher temperatures, m =1 — n. To provide a transition from Stage I to Stage II creep, another
term &z, has to be added to Eq. 4-4 to account for the steady-state creep rate in Stage II. Hence

& = &, + Bt + &gt (4-6)

where
és = steady-state creep rate in Stage I, reflecting a balance between strain hardening and
recovery processes.

When m = ! /3, Eq. 4-6 reduces to the relation originally proposed by Andrade in 1910.

4.3 TEMPERATURE-STRESS-STRAIN-RATE RELATIONS

Since the creep life and total elongation of a material depends strongly on the magnitude of
the steady-state creep rate &g (Egs. 4-2 and 4-6), much effort has been given to the identification
of those variables that strongly affect &;. As mentioned in Section 4.2, the external variables,
temperature and stress, exert a strong influence along with a number of material variables.
Hence the steady-state creep rate may be given by

’és :f(T7 0787m17m2) (4'7)

iii 7, represents the homologous temperature.
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where
T = absolute temperature
o = applied tensile stress
= creep strain
m| = various intrinsic lattice properties, such as the elastic modulus G and the crystal
structure
my = various metallurgical factors, such as grain and subgrain size, stacking fault
energy, and thermomechanical history

It is important to recognize that m, also depends on 7, o, and ¢. For example, subgrain diameter
decreases markedly with increasing stress. Consequently, there exists a subtle but important problem
of separating the effect of the major test variables on the structure from the deformation process itself
that controls the creep rate. Dorn, Sherby, and coworkers!?~13 suggested that where T3, > 0.5 for the
steady-state condition, the structure could be defined by relating the creep strain to a parameter 6

e =f(0) (4-8)

where
0 = te~AH/RT gescribed as the temperature-compensated time parameter
t= time
AH = activation energy for the rate-controlling process
T = absolute temperature
R = gas constant

The activation energy AH, shown schematically in Fig. 4.6, represents the energy barrier to be
overcome so that an atom might move from A to the lower energy location at B. Upon
differentiating Eq. 4-8 with respect to time, one finds

Z = f(e) = eeM/RT (4-9a)
¢ = Ze MH/RT (4-9b)
¢ = Ko"e AH/RT (4-9¢)

which describes the strain-rate-temperature relation for a given stable structure and applied
stress. The constant K and the creep stress exponent n are material constants. When the rate
process is described by the logarithm of the minimum creep rate & plotted against 1/7, a series
of parallel straight lines for different stress levels is predicted from Eq. 4-9c (Fig. 4.7). The
slope'¥ of these lines, AH/R or AH/2.303R, then defines the activation energy for the controlling

Figure 4.6 Diagram revealing significance of activation
energy required in moving an atom from A to B.

N

AH
Ener - _t
B

Distance

iV The slope is AH/R if In(&s) is plotted, or AH/2.303R if log(és) is plotted instead as in Fig. 4.7.



4.3 Temperature-Stress—Strain-Rate Relations 197

Figure 4.7 Log steady-state creep rate versus
1075 - Atm: air reciprocal of absolute temperature for rutile (TiO,) at
various stress levels. (From W. M. Hirthe and J. O.
. . 14. . . . .
Stress, MPA Brltta?n ; reprmFed Wth permission from the
+ 83 American Ceramic Society, © 1963.)
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creep process. The fact that the isostress lines were straight in Fig. 4.7 suggests that only one
process had controlled creep in the TiO, single crystals throughout the stress and temperature
range examined. Were different mechanisms to control the creep rate at different temperatures,
the log & vs. 1/T plots would be nonlinear. When multiple creep mechanisms are present and act
in a concurrent and dependent manner, the slowest mechanism would control &. The overall
strain rate would take the form

1 I 1 1 1
.*::+.*+.*+"'+; (4'10)

where
ér = overall creep rate
€1,2,3,..,n = creep rates associated with n mechanisms

For the simple case where only two mechanisms act interdependently,

&1
=2 (4-11)
&+ &
Conversely, if the » mechanisms were to act independently of one another, the fastest one would
control. For this case, é&r would be given by

er=¢é1+é&+é&3+ -+ ép 4-12)

To determine the activation energy for creep over a small temperature interval, where the
controlling mechanism would not be expected to vary, researchers often make use of the
temperature differential creep test method. After a given amount of strain at temperature 77, the
temperature is changed abruptly to T, which may be slightly above or below 7. The difference
in the steady-state creep rate associated with 71 and 7> is then recorded (Fig. 4.8). If the stress is
held constant and the assumption made that the small change in temperature does not change
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the alloy structure, then Z is assumed constant. From Eq. 4-9 the activation energy for creep
may then be calculated by

—Rlné/é

Me =1 =

(4-13)

where
AH ¢ = activation energy for creep
£1,&r = creep rates at T| and T», respectively

This value of AH,. should correspond to the activation energy determined by a data analysis like
that shown in Fig. 4.7, as long as the same mechanism controls the creep process over the
expanded temperature range in the latter instance. As shown in Fig. 4.9, this is not always the
case. The activation energy for creep in aluminum is seen to increase with increasing
temperature up to 77, ~ 0.5, whereupon AH, remains constant up to the melting point. Similar
results have been found in other metals.!> It would appear that different processes were rate
controlling over the test temperature range.13 Furthermore, it should be recognized that AH,.
may represent some average activation energy reflecting the integrated effect of several
mechanisms operating simultaneously and interdependently (see Section 4.4).

Dorn,!2 Garofalo,? and Weertman'® have compiled a considerable body of data to demon-
strate that at 7y, > 0.5, AH is most often equal in magnitude to AHgp, the activation energy for
self-diffusion (Fig. 4.10); this fact strongly suggests the latter to be the creep rate-controlling
process in this temperature regime. While the approximate equality between AH- and AHgp
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Figure 4.9 Variation of apparent activation energy for creep in aluminum as a function of temperature. (From
0. D. Sherby, J. L. Lytton, and J. E. Dorn,'3 reprinted with permission from Sherby and Pergamon Press, Elmsford,
NY, 1957.)

seems to hold for many metals and ceramics at temperatures equal to and greater than half the
melting point, some exceptions do exist, particularly for the case of intermetallic and nonmetallic
compounds. It is found that small departures from stoichiometry of these compounds have a
pronounced effect on AH¢, which in turn affects the creep rate. For example, a reduction in
oxygen content in rutile from TiO; to TiO; g9 causes a reduction in AH¢ from about 280 to
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Figure 4.10 Correlation between activation energy for self-diffusion and creep in numerous metals and ceramics.
(From J. Weertman,16 reprinted with permission from American Society for Metals, Metals Park, OH, © 1968.)
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120 kJ/mol (67-29 kcal/mol)¥ with an associated 100-fold increase in és.14 For the more general
case, however, the creep process is found to be controlled by the diffusivity of the material

D= Doe*AHSD/RT (4-14)
where
D = diffusivity, cm?/s
D = diffusivity constant ~1 cm?/s
AHgp = activation energy, J/mol
R = gas constant, J/(mol K)
T = absolute temperature, K
D = Dye~ KotV)T/T (4-15)
where

Ko = dependent on the crystal structure and equal to 14 for BCC lattice, 17 for FCC and
HCP lattices, and 21 for diamond-cubic lattice
V = valence of the material
T,, = absolute melting temperature

The constants K(y are estimates associated with an assumed diffusivity constant ~1 cm?/s.
By combining Eqs. 4-14 and 4-15

AHgp = RT (Ko + V) (4-16)

we see that the activation energy for self-diffusion increases (corresponding to a reduction in D)
with increasing melting point, valence, packing density, and degree of covalency. Consequently,
although refractory metals with high melting points, such as tungsten, molybdenum, and
chromium, seem to hold promise as candidates for high-temperature service, their performance
in high-temperature applications is adversely affected by their open BCC lattice, which enhances
diffusion rates. From Eq. 4-16, ceramics are identified as the best high-temperature materials
because of their high melting point and the covalent bonding that often exists.

It is important to recognize that creep rates for all materials cannot be normalized on the
basis of D alone because other test variables affect the creep process in different materials. For
example, Barrett and coworkers!® noted the important influence of elastic modulus on the creep
rate and on determination of the true activation energy for creep. A semi-empirical relationship
with the form

eskT (g)"
ven =G (4-17a)
. ADGb so\n
b=" (G) (4-17b)

has been proposed! to account for other factors where
& = steady-state creep rate
k = Boltzman’s constant
T = absolute temperature
D = diffusivity
G = shear modulus
b = Burgers vector
o = applied stress
A, n = material constants

V'To convert from keal to kJ, multiply by 4.184.
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Figure 4.11 Creep data in aluminum. (a) Stress versus steady-state creep rate &g at various test temperatures;
(b) data normalized by plotting stress versus & divided by the diffusion coefficient. (From O. D. Sherby and P. M.
Burke!7; reprinted with permission from Sherby and Pergamon Press, Elmsford, NY, 1968.)

By combining Eqs. 4-9 and 4-14, the steady-state creep rate at different temperatures can be
normalized with respect to D to produce a single curve, as shown in Fig. 4.11. This is an important
finding since it allows one to conveniently portray a great deal of data for a given material. For
example, we see from a reexamination of Fig. 4.5 that at the allotropic transformation tempera-
ture, the creep rate in y-iron (FCC lattice) is found to be approximately 200 times slower than that
experienced by a-iron (BCC lattice).® This substantial difference is traced directly to the 350-fold
lower diffusivity in the close-packed FCC lattice in y-iron. Similar findings were reviewed by
Sherby and Burke!” for the allotropic transformation from HCP to BCC in thallium. Therefore, it
is appropriate to briefly consider those factors that strongly influence the magnitude of D. Sherby
and Simnad!8 reported an empirical correlation showing D to be a function of the type of lattice,
the valence, and the absolute melting point of the material.

Here again we see that creep is assumed to be diffusion controlled. Even after normalizing
creep data with Eq. 4-17, a three-decade scatter band still exists for the various metals shown in
Fig. 4.12. While some of this difference might be attributable to actual test scatter or relatively
imprecise high-temperature measurements of D and G, other as yet unaccounted for variables
most likely will account for the remaining inexactness. For example, there appears to be a trend
toward higher creep rates in FCC metals and alloys possessing high stacking fault energy (SFE).
Whether the SFE variable should be incorporated into either A or n is the subject of current
discussion.2=22 The role of substructure on A and n must also be identified more precisely.

One important factor in Eq. 4-17 is the stress dependency of the steady-state creep rate. It is
now generally recognized that & varies directly with o at low stresses and temperatures near the
melting point. At intermediate to high stresses and at temperatures above 0.57;,, where the
thermally activated creep process is dominated by the activation energy for self-diffusion,
&g o< 047 (so-called power law creep). It should be noted that this stress dependency holds for
pure metals and their solid solutions. Much stronger stress dependencies of &g and ¢ have been
reported in oxide-dispersion-strengthened superalloys (see Section 4.8). At very high stress
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levels &5 o< €. Garofalo?® showed that power law and exponential creep represented limiting
cases for a general empirical relationship

és o< (sinhao)" (4-18)
Equation 4-18 reduces to power law creep when oo < 0.8, but approximates exponential creep

when oo > 1.2. An explanation for the changing stress dependence of & in several operative
deformation mechanisms is discussed in the next section.

4.4 DEFORMATION MECHANISMS

At low temperatures relative to the melting point of crystalline solids, the dominant
deformation mechanisms are slip and twinning (Chapter 2). However, at intermediate and
high temperatures, other mechanisms become increasingly important and dominate mate-
rial response under certain conditions. It is with regard to these additional deformation
modes that attention will now be focused.

Over the years a number of theories have been proposed to account for the creep data trends
discussed in the previous sections. In fact, the empirical form of Eq. 4-17 takes account of
mathematical formulations for several proposed creep mechanisms. At low stresses and hi%h
temperatures, where the creep rate varies with applied stress, Nabarro?* and Herring 5
theorized that the creep process was controlled by stress-directed atomic diffusion. Such
diffusional creep is believed to involve the migration of vacancies along a gradient from grain
boundaries experiencing tensile stresses to boundaries undergoing compression (Fig. 4.13);
simultaneously atoms would be moving in the opposite direction, leading to elongation of the
grains and the test bar. This gradient is produced by a stress-induced decrease in energy to
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Figure 4.13  Stress-directed flow of vacancies (solid lines) from
tensile to compressive grain boundaries and corresponding
reverse flow of atoms or ions (dashed lines).

ZAN
N

create vacancies when tensile stresses are present and a corresponding energy increase for
vacancy formation along compressed grain boundaries. Nabarro-Herring creep can be
described by Eq. 4-17 when A~ 7 (b/dz) (d = grain diameter) and n =1, such that?!

o ToDb
ST kTd?

(4-19)

where D, = volume diffusivity through the grain interior. As expected, & is seen to increase
with increasing number of grain boundaries (i.e., smaller grain size).

A closely related diffusional creep process described by Coble?® involves atomic or ionic
diffusion along grain boundaries. Setting A ~ 50(b/d)> and n = 1, Eq. 4-17 reduces to the Coble
creep relationship

_500Dgb*

oy R 4-20
Es de3 ( )

(Note that Coble creep is even more sensitive to grain size than is Nabarro-Herring creep.) In
complex alloys and compounds there is a problem in deciding which particular atom or ion
species controls the diffusional process and along what path such diffusion takes place. This is
usually determined from similitude arguments. That is, if AH¢ is numerically equal to AHgp
for element A along a particular diffusion path, then it is presumed that the self-diffusion of
element A had controlled the creep process.

At intermediate to high stress levels and test temperatures above 0.57,,,, creep deformation
is believed to be controlled by diffusion-controlled movement of dislocations. Several of these
theories have been evaluated by Mukherjee et al.,! with the Weertman'%-27 model being found
to suffer from the least number of handicaps and found capable of predicting best the
experimental creep results described in Section 4.3. Weertman proposed that creep in the
above-mentioned stress and temperature regime was controlled by edge dislocation climb away
from dislocation barriers. Again using Eq. 4-17 as the basis for comparison, Bird et al2l
showed that when A is constant and n~5, dislocation creep involving the climb of edge
dislocations could be estimated by

NADGb (3)5 421

&g R ————

*TkT \G
It should be noted that in many creep situations, the dislocation creep process dominates the
elevated temperature (7> 0.5T,,,) response of engineering alloys.
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Figure 4.14 Accommodation
mechanisms for grain-boundary sliding.
(a) Shear along boundary

(@  accommodated by diffusional flow of
vacancies of region AB to BC; (b) grain-
boundary sliding accommodated by
dislocation climb within contiguous
grains A and B.

(b)

The actual Weertman relationship expresses the shear strain rate y,, in terms of the shear
stress T by

Vs o T sinh 7% (4-22)

As such, the transition from power law to exponential creep mentioned earlier is readily
predicted from Eq. 4-22. Weertman?’ theorized that the onset of exponential creep (&5 o< %) at
high stress levels was related to accelerated diffusion, because of an excess vacancy concen-
tration brought about by dislocation-dislocation interactions.

Another high-temperature deformation mechanism involves grain-boundary sliding. The
problem in dealing with grain-boundary sliding, however, is that it does not represent an
independent deformation mechanism; it must be accommodated by other deformation modes.
For example, consider the shear-induced displacement of the two grains in Fig. 4.14a. At
sufficiently high temperatures, the local grain-boundary stress fields can cause diffusion of atoms
from the compression region BC to the tensile region AB by either a Nabarro-Herring or Coble
process. As might be expected, the rate of sliding should depend strongly on the shape of the
boundary. Raj and Ashby28 demonstrated that & increased rapidly as the ratio of perturbation
period A to perturbation height 4 increased. Furthermore, when A is small and the temperature
relatively low, diffusion is found to be controlled by a grain-boundary path. On the other hand,
when A is large and the temperature relatively high, volume diffusion controls the grain-boundary
sliding process.28 Consequently, grain-boundary sliding may be accommodated by diffusional
flow, which is found to depend on both the temperature and the grain-boundary morphology. For
this case, the sliding rate would be directly proportional to stress (see Eqs. 4-19 and 4-20). By
examining this problem from a different perspective, one finds that Nabarro-Herring and Coble
creep models are themselves dependent on grain-boundary sliding! From Fig. 4.15, note that the

Figure 4.15 Stress-induced diffusional flow elongates
grains and could lead to grain separation (b), but is

T accommodated by grain-boundary sliding, which brings
@ grains together (c).

(@ (b) (c)
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stress-directed diffusion of atoms from compression to tension grain boundaries causes the grain
boundaries to separate from one another (Fig. 4.15b). Grain-boundary slidin% is needed, therefore,
to maintain grain contiguity during diffusional flow processes (Fig. 4.15¢).?873% On the basis of
this finding, Raj and Ashby concluded that Nabarro-Herring and Coble diffusional creeé)
mechanisms were “identical with grain-boundary sliding with diffusional accommodation.”?

For the internal boundary shown in Fig. 4.14b, grain-boundary sliding could be accommodated
by dislocation creep within grains A and B. Matlock and Nix3! examined this condition for several
metals and found that the grain-boundary-sliding strain-rate contribution was proportional to " !,
where 7 is the exponent associated with the dislocation creep mechanism (n = 4 — 5). Unfortunately
this stress sensitivity does not agree with any presently known theoretical predictions.

Itis apparent from the above discussion that these high-temperature deformation mechanisms
all depend on atom or ion diffusion but differ in their sensitivity to other variables such as G, d, and
0. As such, a particular strengthening mechanism may strengthen a material only with regard to a
particular deformation mechanism but not another. For example, an increase in alloy grain size
will suppress Nabarro-Herring and Coble creep along with grain boundary sliding, but will not
substantially change the dislocation climb process.1 As a result, the rate-controlling creep
deformation process would shift from one mechanism to another. Consequently, marked
improvement in alloy performance requires simultaneous suppression of several deformation
mechanisms. This point is considered further in Section 4.6.

4.5 SUPERPLASTICITY

As we have just seen, fine-grained structures are to be avoided in high-temperature, load-
bearing components since this would bring about an increase in creep strains resulting from
Nabarro-Herring, Coble, and grain-boundary-sliding creep mechanisms. In fact, experience in
the turbine engine industry reveals improved creep response in alloys possessing either no grain
boundaries (i.e., single-crystal alloys) or highly elongated boundaries (produced by uni-
directional solidification) oriented parallel to the major stress axis. 3 However, where the
opposite of creep resistance (i.e., easy flow) is required, such as in hot-forming processes, fine-
grained structures are preferred. Some such materials are known to possess superplastic
behavior>* with total strains in excess of 1000% (Fig. 4.16). These large strains, generated at
low stress levels, drastically improve the formability of certain alloys.

" o T it R . e e e e,
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Figure 4.16 Tensile specimen having experienced superplastic flow.
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By expressing the flow stress—strain-rate relation (Eq. 2-37) in the form

o= F = K" (4-23)
A
where

F = applied force
A = cross-sectional area

= constant

_ ldl _ 1dA

— ldt T Adt
m = strain-rate sensitivity factor

34-36

superplasticity is found when m is large and approaches unity. Figures 4.17 and 4.18 show
the normalized stress—strain-rate relation for loading in the superplastic region. After substi-
tuting for ¢ and rearranging, the change in cross-sectional area with time, dA/dt, is given by

ar K| a(omym (4-24)

—dA  F/m) 1
=
In the limit, as the rate sensitivity factor m approaches unity, note that dA/dt depends only on the
applied force and is independent of any irregularities in the specimen cross-sectional area, such
as incipient necks and machine tool marks, which are maintained but not worsened. That is, the
sample undergoes extensive deformation without pronounced necking.

Superplastic behavior has been reported in numerous metals, alloys, and ceramics” and
associated in all cases with (1) a fine grain size (on the order of 1-10 wm), (2) deformation
temperature >0.5 T,,, and (3) a strain-rate sensitivity factor m > 0.3. The strain-rate range
associated with superplastic behavior has been shown to increase with decreasing grain size and

34
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Figure 4.17 Normalized stress versus strain rate plot in lead showing intermediate region associated with
superplastic behavior. (From M. F. Ashby and R. A. Verall;3” reprinted with permission from Ashby and Pergamon
Press, Elmsford, NY, 1973.)



4.5  Superplasticity 207

Diffusion—accommodated Two mechanisms | Dislocation creep
«—  flow dominhant —————<——contribute ——-<«———— dominant ——|

Lead T/T,,=0.5;

1
1
1
|
1
1.0 — d=1u !
- i
0.8 — !
— 1
1
0.6 |
n - i
0.4 i
— 1
1
0.2 — ,/' |
— s I
ol vl vl vl vl il vl
1078 1077 1078 1075 10 1078 1072

Strain rate (s-1)
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reprinted with permission from Ashby and Pergamon Press, Elmsford, NY, 1973.)

increasing temperature, as shown schematically in Fig. 4.19. There has been considerable debate,
however, regarding the mechanisms responsible for the superplastic process. Avery and Back-
ofen3% originally proposed that a combination of deformation mechanisms involving Nabarro-
Herring diffusional flow at low stress levels and dislocation climb at higher stresses were rate
controlling. The applicability of the Nabarro-Herring creep model in the low stress regime has
been questioned, based on experimental findings and theoretical considerations. First, it is
generally found that m is of the order 0.5 rather than unity, the latter being associated with
Nabarro-Herring creep. Furthermore, Nabarro-Herring creep would lead to the formation of
elongated grains proportional in length to the entire sample. To the contrary, equiaxed grain
structures are preserved during superplastic flow. More recent theories have focused with greater
success on grain-boundary-sliding arguments, with diffusion-controlled accommodation3’ 3 as
the operative deformation mechanism associated with superplasticity at low stress levels.

As mentioned above, the formability of a material is enhanced greatly when in the
superplastic state, while forming stresses are reduced substantially. To this end, grain
refinement is highly desirable. Grain sizes on the order of 1-3 um are commonly needed
to attain superplastic behavior. The alert reader will immediately recognize, however, that
once an alloy is rendered superplastic through a grain-refinement treatment, it no longer
possesses the optimum grain size for high-temperature load applications. To resolve this
dichotomy, researchers are currently seeking to develop duplex heat treatments to optimize

Figure 4.19 Temperature- and grain-
size-induced shift in strain-rate range
associated with superplastic behavior.
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both hot-forming and load-bearing properties of an alloy. For example, a nickel-based
superalloy to be used in a gas turbine engine may first receive a grain-refining heat treatment
to provide superplastic response during a forging operation. Once the alloy has been formed
into the desired component, it is given another heat treatment to coarsen the grains so as to
suppress Nabarro-Herring, Coble, and grain-boundary-sliding creep processes during high-
temperature service conditions. For reviews of the superplasticity literature, see the papers by
Edington et al.*% and Taplin et al.4! along with an analysis of current problems in our
understanding of superplasticity.*? Several additional articles pertaining to the mechanical,
microstructural, and fracture processes in superplastically formed materials are recommended
for the reader’s attention.*> Commercial applications of superplasticity are described by
Hubert and Kay44 (also see Section 4.8).

4.6 DEFORMATION-MECHANISM MAPS

It is important for the materials scientist and the practicing engineer to identify the
deformation mechanisms that dominate a material’s performance under a particular set of
boundary conditions. This can be accomplished by solving the various constitutive equations for
each deformation mechanism (e.g., Eqs. 4-17 to 4-21) and recognizing their respective inter-
dependence or independence (Eqs. 4-10 and 4-12). Solutions to these equations reveal over
which range of test variables a particular mechanism is rate controlling. Ashby and cow-
orkers®>~* have displayed such results pictorially in the form of maps in stress—temperature
space based on the original suggestion by Weertman. !0 Typical deformation-mechanism maps
for pure silver and germanium are shown in Fig. 4.20, where most of the high-temperature
deformation mechanisms discussed in Section 4.4 (as well as pure glide) are shown. Each
mechanism is rate controlling within its stress—temperature boundaries. Consistent with the
previous discussion, dislocation creep is seen to dominate the creep process in both materials at
relatively high stresses and homologous temperatures above 0.5. For the FCC metal, diffusional
creep by either Nabarro-Herring or Coble mechanisms dominates at high temperatures but lower
stress levels. The virtual absence of these two diffusional flow mechanisms in covalently
bonded diamond-cubic germanium is traced to its larger activation energy for self-diffusion and
associated lower diffusivity. The boundaries separating each deformation field are defined by
equating the appropriate constitutive equations (Egs. 4-17 to 4-21) and solving for stress as a
function of temperature. This amounts to the boundary lines representing combinations of stress
and temperature, wherein the respective strain rates from the two deformation mechanisms are
equal. Triple points in the deformation map occur when a particular stress and temperature
produce equal strain rates from three mechanisms.

The maps shown in Fig. 4.20 do not portray a grain-boundary-sliding region, since
uncertainties exist regarding the appropriate constitutive equation for this mechanism (see the
discussion in Section 4.4). Studies™’ have shown, however, that the dislocation creep field can be
subdivided with a grain-boundary-sliding contribution existing at the lower stress levels associated
with lower creep strain rates. Regarding the latter point, it is desirable to portray on the deformation
map the strain rate associated with a particular stress—temperature condition, regardless of the rate-
controlling mechanism. This may be accomplished by plotting the diagram contours of isostrain
rate lines calculated from the constitutive equations. Examples of such modified maps are given in
Fig. 4.21 for pure nickel prepared with two different grain sizes. These maps allow one to pick any
two of the three major variables—stress, strain rate, and temperature—which then identifies the
third variable as well as the dominant deformation mechanism. This is particularly useful in
identifying the location of testing domains (such as creep and tensile tests) relative to the stress—
temperature—strain-rate domains experienced by the material (e.g., hot-working, hot torsion, and
geological processes) (Fig. 4.22). Note that in most instances, the laboratory test domains do not
conform to the material’s application experience. Certainly a better correspondence would be
more desirable.

There are two additional points to be made regarding Fig. 4.21. First, the dislocation climb
field has been divided into low- and high-temperature segments, corresponding to dislocation
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climb controlled by dislocation core and lattice diffusion, respectively. Furthermore, since Coble
creep involves grain boundary diffusion, three diffusion paths are represented on these maps.
Second, a large change in grain size in pure nickel drastically shifts the isostrain rate contours and
displaces the deformation field boundaries. For example, at 77, = 0.5 and a strain rate of 10_9/5, a
100-fold decrease in grain size causes the creep rate-controlling process to shift from low-
temperature dislocation creep to Coble creep. Furthermore, the stress necessary to produce this
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strain rate decreases by almost three orders of magnitude! Both the expansion of the Coble creep
regime and the much lower stress needed to produce a given strain rate reflect the strong inverse
dependence of grain size on the rate of this mechanism (Eq. 4-20). The Nabarro-Herring creep
domain also expands for the same reason (Eq. 4-19). Since grain size effects on deformation maps
are large, some researchers®?*8 have further modified the maps to include grain size as one of the
dominant variables along with stress and isostrain rate contour lines. The diagrams, such as the
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Figure 4.22 Deformation map for 100-pwm nickel showing laboratory test regimes relative to deformation fields
experienced by the material. (From M. F. Ashby;* reprinted with permission of the Institute for Metals.)

one shown in Fig. 4.23, portray the deformation field boundaries at a fixed temperature, where the
grain-size dependence of each deformation mechanism is clearly indicated. (Note the lack of
grain-size dependence in the dislocation creep region.)

Figure 4.24 provides one final map comparison by showing the effect of nickel-based
superalloy (MAR-M200) multiple strengthening mechanisms in shrinking the dislocation climb
domain relative to that associated with pure nickel. In addition, the creep strain rates in the
stress—temperature region associated with gas turbine material applications are reduced
substantially. By combining alloying additions and grain coarsening, the isostrain rate contours
are further displaced, thereby providing additional creep resistance to the material.33 In
summary, it must be recognized that displacement of a particular boundary resulting from
some specific strengthening mechanism does not in itself eliminate an engineering design
problem. It may simply shift the rate-controlling deformation process to another mechanism.
The materials designer then must suppress the strain rate of the new rate-controlling process
with a different flow attenuation mechanism. As such, the multiple strengthening mechanisms
built into high-temperature alloys are designed to counteract simultaneously a number of
deformation mechanisms much in the same manner as an all-purpose antibiotic attacks a
number of bacterial infections that may assault living organisms.

Other studies involving deformation maps have focused on new mechanism portrayal
methods.**—32 For example, deformation maps have been constructed as a function of the creep
rate ¢ versus 7T,,/T as compared with normalized stress o/G versus T/T,, diagrams (e.g.,
Figs. 4.20—4.22). Furthermore, three-dimensional maps have been developed using coordinates
of ¢, T,/T, and d/b or /G, T,/T, and d/b where d is the grain size and b the atomic
diameter’132; as before, these maps identify those regions associated with a dominant
deformation mechanism. For example, Fig. 4.25 reveals the individual regions corresponding
to six different deformation mechanisms in a high stacking fault energy FCC alloy.>? Oikawa
suggested that é-based diagrams are useful in defining strain-rate conditions associated with
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Figure 4.25 Three-dimensional deformation mechanism maps for a high stacking fault energy FCC metal. Each
map reveals the conditions associated with a specific deformation mechanism: () Coble creep; (b) Nabarro-Herring
creep; (c) grain-boundary sliding controlled by grain-boundary diffusion; (d) grain-boundary sliding controlled by
lattice diffusion; (¢) power-law creep controlled by dislocation-core diffusion; and (f) power-law creep controlled by
lattice diffusion. (From Oikawa®2; with permission from Pineridge Press Ltd.)

easier hot working. On the other hand, o/G-based diagrams are useful in describing conditions
associated with higher creep resistance.

Proceeding in another direction, Ashby and coworkers>>~>> have constructed fracture
mechanism maps wherein the conditions for various failure mechanisms are defined. Thus far,
fracture mechanism maps have been compiled for various FCC, BCC, and HCP metals and
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alloys and ceramics.> 3% For a more detailed study of fracture micromechanisms in metals,
ceramics, and engineering plastics, see Sections 5.7, 10.3, and 10.8.

4.7 PARAMETRIC RELATIONS: EXTRAPOLATION PROCEDURES
FOR CREEP RUPTURE DATA

It goes without saying that an engineering alloy will not be used for a given elevated
temperature application without first obtaining a profile of the material’s response under these test
conditions. Although this presents no difficulty in short-life situations, such as for the rocket
engineer nozzle or military gas turbine blade, the problem becomes monumental when data are to
be collected for prolonged elevated temperature exposures, such as those encountered in a nuclear
power plant. If the component in question is to withstand 30 or 40 years of uninterrupted service,
should there not be data available to properly design the part? If this were done, however, final
design decisions concerning material selection would have to wait until all creep tests were
concluded. Not only would the laboratory costs of such a test program be prohibitively expensive,
but all plant construction would have to cease and the economies of the world would stagnate. In
addition, while such tests were being conducted, superior alloys most probably would have been
developed to replace those originally selected. Assuming that some of these new alloys were to
replace the older alloys in the component manufacture, a new series of long-time tests would have
to be initiated. Obviously, nothing would ever be built!

The practical alternative, therefore, is to perform certain creep and/or creep rupture tests
covering a convenient range of stress and temperature and then to extrapolate the data to the time—
temperature—stress regime of interest. A considerable body of literature has been developed that
examines parametric relations (of which there are over 30) intended to allow one to extrapolate
experimental data beyond the limits of convenient laboratory practice. A textbook* on the subject
has even been written. Although it is beyond the scope of this book to consider many of these
relations to any great length, it is appropriate to consider two of the more widely accepted parameters.

The Larson-Miller parameter is, perhaps, most widely used. Larson and Miller>’ correctly
surmised creep to be thermally activated with the creep rate described by an Arrhenius-type
expression of the form

- — Ae—AH/RT (4.25)

where
r = creep process rate
AH = activation energy for the creep process
T = absolute temperature
R = gas constant
A = constant

Equation 4-25 also can be written as

AH
Inr =InA — — (4-26)
RT

After rearranging and multiplying by 7, Eq. 4-26 becomes
AH/R =T(InA —Inr) (4-27)
Since r o (1/t) (also suggested by Eq. 4-2), Eq. 4-25 can be written as

1
S = Al AR (4-28)
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Therefore,

AH
—Int =InA" —=— 4.2
n n RT (4-29)

and after rearranging Eq. 4-29, multiplying by 7, and converting Int to log?,

AH/R =T(C +logt) (4-30)

which represents the most widely used form of the Larson-Miller relation. Assuming AH to be
independent of applied stress and temperature (not always true as demonstrated earlier) the
material is thought to exhibit a particular Larson-Miller parameter [7(C + log t)] for a given
applied stress. That is to say, the rupture life of a sample at a given stress level will vary with test
temperature in such a way that the Larson-Miller parameter 7(C + log ¢) remains unchanged.
For example, if the test temperature for a particular material with C =20 were increased from
800 to 1000°C, the rupture life would decrease from an arbitrary value of 100 hr at 800°C to
0.035hr at 1000°C. The value of this parametric relation is shown by examining the creep
rupture data in Fig. 4.26, which are the very same data used in Fig. 4.4. The normalization
potential of the Larson-Miller parameter for this material is immediately obvious. Furthermore,

T (20 + log t) x 10% (° R-hr)
29 325 36 40 43.2 47 50.4 54

1000

800
700 —-100

600 08\ o Y

500 o
400 =—-60

300 B — 40

200 &X{

100

90
70 Ro —-10
60

40 N\
30 Ny —-

. kY

10
16 18 20 22 24 26 28 30

T (20 + log t) x 103 (° K—hr)

go/ﬁ
|

|

N

o

ksi

Stress (MPa)

Figure 4.26 Larson-Miller plot showing S-590 iron-based alloy data presented in Fig. 4.4.
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Figure 4.27 Convergence of isostress lines in plot
of log g versus 1/T to determine magnitude of
constant C in Larson-Miller parameter.
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long-time rupture life for a given material can be estimated by extrapolating high-temperature,
short rupture life response toward the more time-consuming low-temperature, long rupture life
regime. It is generally found that such extrapolations to longer time conditions are reasonably
accurate at higher stress levels because a smaller degree of uncertainty is associated with this
portion of the Larson-Miller plot. Increased extrapolation error is found at lower stress levels
where experimental scatter is greater. A comparison between predicted and experimentally
determined rupture lives will be considered later in this section.

The magnitude of C for each material may be determined from a minimum of two sets of
time and temperature data. Again, assuming AH/R to be invariant and rearranging Eq. 4-30,

_ Tylogn, —Tylogr

C
Ty —T,

(4-31)

It is also possible to determine C graphically based on a rearrangement of Eq. 4-30 where

logt = —C + Ln;t ant (4-32)
When experimental creep rupture data are plotted as shown in Fig. 4.27, the intersection of the
different stress curves at 1/7=0 defines the value of C. It is important to note that not all creep
rupture data give the same trends found in Fig. 4.27. For example, isostress lines may be parallel, as
shown in Fig. 4.7, for the case of rutile (TiO,) and other ceramics and metals. Representative values
of C for selected materials®’ are given in Table 4.1. For convenience, the constant is sometimes not
determined experimentally but instead assumed equal to 20. Note that the magnitude of the material
constant C depends on units of time. (Since practically all data reported in the literature give both the

Table 4.1 Material Constants for Selected Alloys>’

C
Alloy Time, hr Time, s
Low carbon steel 18 21.5
Carbon moly steel 19 22.5
18-8 stainless steel 18 21.5
18-8 Mo stainless steel 17 20.5
21/, Cr—1 Mo steel 23 26.5
S-590 alloy 20 23.5
Haynes Stellite No. 34 20 23.5
Titanium D9 20 23.5

Cr—Mo-Ti-B steel 22 25.5
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Figure 4.28 Parametric comparison of alloy behavior. (@) Alloy A = alloy B; (b) and (c) alloy A superior to alloy B.

material constant C and the rupture life in more convenient units of hours rather than in seconds—
the recommended SI unit for time—test results in this section will be described in units of hours.)

In addition to being used for the extrapolation of data, the Larson-Miller parameter also
serves as a figure of merit against which the elevated temperature response of different materials
may be compared (e.g., in the case of alloy development studies). For example, when the curves
for two materials with the same constant C are coincident, the materials obviously possess the
same creep rupture behavior (Fig. 4.28a). The same conclusion does not follow, however, when
the coincident curves result from materials with different values of C (Fig. 4.28b). When
C4 < Cp, material A would be the stronger of the two. (For the same parameter P, and at the same
test temperature, log fg4 for alloy A would have to be greater than log tz g since Cg > C4.) A direct
comparison of material behavior is evident when C is the same but the parametric curves are
distinct from one another (Fig. 4.28¢). Here alloy A is clearly the superior material.

While such alloy comparisons for specified conditions of stress and temperature are
possible using the Larson-Miller parameter (and other parameters as well), it should be
understood that such parameters provide little insight into the mechanisms responsible for
the creep response in a particular time-temperature regime. This is done more successful}lg b¥
examining deformation maps (Section 4.5). The Sherby-Dorn (SD) parameter 6 = tRe_A /R
(where t =tg) described in Eq. 4-8 has been used to compare creep rupture data for different
alloys much in the same manner as the Larson-Miller (LM) parameter. Reasonably good results
have been obtained with this parameter in correlating high-temperature data of relatively pure
metals!? (Fig. 4.29). The reader should recognize that if the Sherby-Dorn parameter does apply
for a given material, then when 6 is constant, a plot of the logarithm of rupture life against 1/T
should yield a series of straight lines corresponding to different stress levels. This is contrary to
the response predicted by the Larson-Miller parameter, where the isostress lines converge when
1/T= 0. The choice of the LM or SD parameters to evaluate a material’s creep rupture response
would obviously depend on whether the isostress lines converge to a common point or are
parallel. In fact, the choice of a particular parameter (recall that over 30 exist) to correlate creep
data for a specific alloy is a very tricky matter. Some parameters seem to provide better
correlations than others for one material but not another. This may be readily seen by
considering Goldhoff’s tabulated results’® for 19 different alloys (Table 4.2). Shown here
are root-mean-square (RMS) values reflecting the accuracy of the LM, SD, and other
parameters in predicting creep rupture life. The RMS value is defined as

1/2
> (log actual time to rupture — log predicted time to rupture)2 /

RMS =
number of long-time data points

(4-33)

Note that for some metals, either the LM or SD parameter represented the best time—
temperature parameter (TTP) of the four examined by Goldhoff and predicted actual test results
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most correctly. Alternatively, these two parameters provided poor correlations when compared
to other parameters for different materials; the use of the LM or SD parameters in evaluating
these alloys led to significant error in the prediction of actual rupture life.

The inconsistency with which a particular TTP predicts actual creep rupture life for
different alloys represents a severe shortcoming of the parametric approach to creep design.
These deficiencies may be traced in part to some of the assumptions underlying each parameter.
For example, the LM and SD parameters are based on the assumption that the activation energy
for the creep process is not a function of stress and temperature. Clearly, the test results shown
in Fig. 4.9 and the extended discussion in Section 4.4 discredit this supposition. (Recall,
however, that when 7> 0.57},,, the activation energy for creep is essentially constant and
equivalent to the activation energy for self-diffusion.) Furthermore, none of the TTP make
provision for metallurgical instabilities.

Attempts are being made to standardize creep data parametric analysis procedures through
the establishment of required guidelines by which an investigator arrives at the selection of a
particular TTP. In this regard, the minimum commitment method (MCM)>?:90 holds consid-
erable promise in that it presumes initially a very general time—temperature—stress relation.
The precise form is obtained on the basis of actual test data. As such, the MCM can lead to the
selection of a standard parametric relation, such as LM or SD, or it may define a new parameter
that can reflect the possible existence of metallurgical instabilities. Note the reduced RMS
values for the MCM method as compared to the LM, SD, or the other two TTP evaluated by
Goldhoff (Table 4.2).

Another method, referred to as the graphical optimization procedure (GOP), also has been
used to improve the accuracy of life predictions based on various extrapolation procedures.61 ,62
To illustrate this point, Woodford employed the GOP to demonstrate that the material constant
C used in the Larson-Miller parameter was a function of rupture life. For example, he found for
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Table 4.2 Comparative RMS Values Reflecting Accuracy of Different Time—Temperature Parameters>®

Data Points
Short- Long- Best
Data Set Alloy Time Time LM MH?  SD¢ MS?  TTPF MCW
1 Al 1100-0 53 11 0.347 0.377  0.308 0.488  0.308 0.260
2 Al 5454-0 68 7 0.099 0.166  0.143 0.287  0.099 0.081
4 Carbon steel 18 8 0.456 0.313 0415 0.396 0.313 0.084
5 Cr-Mo steel 23 10 0.152 0.102  0.056 0.191  0.056 0.122
6 Cr-Mo-V steel 17 9 0.389 0.091 0.162 0.477 0.091 0.102
TA 304 stainless steel 33 19 0.375 0.207  0.185 0.309 0.185 0.194
7B 304 stainless steel 41 11 0.454 0.167 0.272 0.292  0.167 0.179
8 304 stainless steel 26 13 0.334 0.349 0.237 0.457 0.237 0.228
9 316 stainless steel 28 10 0.244 0.296 0.212 0.323  0.212 0.073
11A 347 stainless steel 18 24 0.368 0.203  0.298 0.265 0.203 0.123
11B 347 stainless steel 31 13 0.291 0.173  0.267 0211  0.173 0.107
12 A-286 19 5 0.097 0.338  0.089 0.111  0.089 0.220
13 Inco 625 78 21 0.343 0.283  0.337 0.329 0.283 0.317
14 Inco 718 17 9 0.104 0.565 0.110 0.100  0.100 0.084
15 René 41 26 11 0.106 0.144  0.139 0.113  0.106 0.131
16 Astroloy®™ 21 12 0.302 0.343  0.231 0.264  0.231 0.107
17A Udimet 500 65 38 0.252 0.342 0.316 0.348 0.252 0.268
17B Udimet 500 93 12 0.111 1.057 0.247 0.173  0.111 0.124
18A L-605 51 49 0.319 0.652  0.420 0.261  0.261 0.247
18B L-605 76 28 0.374 0.641  0.460 0.305 0.305 0.290
19 Al 6061-T651 74 25 0.361 0.382  0.217 0473  0.217 0.311
Average of above 21 data sets 0.280 0.342  0.244 0.294  0.190 0.174
Average excluding B data sets 0.273 0.303  0.228 0.305 0.191 0.174

“Larson-Miller.

> Manson-Haferd parameter.

¢ Sherby-Dorn parameter.
4Manson-Succop parameter.
e_Time—temperature parameter.
Minimum commitment method.

the case of IN718 nickel-based alloy that C varied from 27.1 at short lives to 20 at a 10,000
rupture hour.61:62 By utilizing the correct time-dependent value of C in the Larson-Miller
formula, less scatter was observed in the data normalization procedure.

4.8 MATERIALS FOR ELEVATED TEMPERATURE USE

From the previous discussions, a material suitable for high-temperature service should
possess a high melting point and modulus of elasticity, and low diffusivity. In addition, such
materials must possess a combination of superior creep strength, thermal fatigue resistance, and
oxidation and hot corrosion resistance. As a result, alloy development has focused primarily on
nickel- and cobalt-based superalloys, with earlier iron-based alloys being replaced because of
their relatively low melting point and high diffusivity.®3~%8 These high-temperature alloys have
been produced by several methods including casting, mechanical forming, powder metallurgy,
directional solidification of columnar and single crystals, and mechanical alloying.

For the case of nickel-based superalloys, constituent elements are introduced to enhance solid
solution properties, as precipitate and carbide formers, and as grain-boundary and free surface
stabilizers.© Tungsten (W), molybdenum (Mo), and titanium (T1) are very effective solid solution
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Figure 4.30 Electron micrographs revealing Ni3Al precipitates (3) in a nickel solid solution (y) matrix. (a) Cubic
form in MAR M-200. (b) Rafted morphology in Ni-14.3Mo-6Ta-5.8Al (Alloy 143). Tensile stress axis is in vertical
direction and parallel to [001] direction. Creep tested with 210 MPa at 1040C.73 (Courtesy of E. Thompson.)

strengtheners; W and Mo also serve to lower the diffusion coefficient of the alloy. (There is a
general inverse relation between the melting point and alloy diffusivity.) Though the incremental
influence of chromium (Cr) on solid solution strengthening is small (i.e., dt/dc is low), the overall
solid solution strengthening potential of Cr in nickel (Ni) alloys is large since large amounts of Cr
can be dissolved in the Ni matrix. Cobalt (Co) provides relatively little solid solution strengthening
but serves to enhance the stability of the submicron-size Niz(Al,X) (/) precipitates within the
nickel solid solution (y) matrix (Fig. 4.30a). Within the )’ phase, X corresponds to the presence
of Ti, niobium (Nb), or tantalum (Ta). The difficulty of dislocation motion through the ordered
¥/ particles in these alloys is responsible for their high creep strength at elevated temperatures. Of
particular note, the )’ phase exhibits unusual behavior in that strength increases by three-to sixfold
with increasing temperature from ambient to approximately 700°C.70~72

Also noteworthy is the fact that y precipitates in single-crystal alloys tend to coarsen under
stress at 1000°C and form thin parallel plate-like arrays that are oriented normal to the applied
stress axis (Fig. 4.30b). Studies have confirmed that alloy creep resistance is enhanced by the
development of this “rafted” microstructure73,74, it is believed that the absence of dislocation
climb around the y’ particles, due to their lenticular shape, forces dislocations to cut across the
ordered y’ phase. As noted in Section 3.6.2, this dislocation path enhances the alloy’s resistance
to plastic flow.

The presence of carbides along grain boundaries in polycrystalline alloys serves to restrict
grain-boundary sliding and migration. Carbide formers such as W, Mo, Nb, Ta, Ti, Cr, and
vanadium (V) lead to the formation of M7C3, M»3Cg, MgC, and MC, with MC carbides being
most stable (e.g., TiC). When Cr levels are relatively high, Cro3Cg particles are formed.

Surface stabilizers include Cr, Al, boron (B), zirconium (Zr), and hafnium (Hf). The
presence of Cr in solid solution allows for the formation of Cr,O3, which reduces the rate of
oxidation and hot corrosion. Aluminum contributes to improved oxidation resistance and
resistance to oxide spalling. Finally, B, Zr, and Hf are added to impart improved hot strength,
hot ductility, and rupture life.”> Cobalt-based alloys derive their strength from a combination of
solid solution hardening and carbide dispersion strengthening. The mechanical properties of
representative nickel-based and cobalt-based alloys are given in Table 4.3; references 63 to 68
provide additional information concerning these materials.

More recent efforts to improve the high-temperature performance of superalloys have
tended more toward optimizing component design and making use of advanced processing
techniques rather than tinkering with alloy chemistry.”® One such technique involves the
directional solidification of conventional superalloys to produce either highly elongated grain
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Table 4.3 Mechanical Properties of Selected Superalloys

Yield Strength [MPa(ksi)] 100-hr Rupture Strength [MPa(ksi)] 1000-hr Rupture Strength [MPa(ksi)]

Alloy Designation 21°C (70°F) 760°C (1400°F) 982°C (1800°F) 760°C (1400°F) 982°C (1800°F) 760°C (1400°F) 982°C (1800°F)

Cast Alloys
B1900 825 (120) 808  (117) 415 (60) 505 (73)4 170 (25) 380 (55 105 (15)
IN-100 850 (123) 860  (125) 370 (54) 625 91 170 (25) 515 (75) 105 (15)
MAR-M-200 840 (122) 840  (122) 470 (68) 635 (92) 179 (26) 580 (84) 130 (18.5)
MAR-M-200(DS)? 860 (125) 925 (134 620 (90) 725  (105) 200 (29) 660 (96) 140 (20)
TRW-NASA VI A 940 (136) 945  (137) 520 (75) 725  (105)¢ 215 (31) 585 (85) 140 (20)
MAR-M 509 570 (83) 365 (53) 180 (26) 345 (50) 105 (15) 260 (38) 79 (11.5)
Wrought Alloys
Astroloy 1050 (152) 910  (132) 275 (40) 540 (78) 105 (15) 430 (62) 55 (8.0)
Hastelloy X 360 (52) 260 (38) 110 (16) 145 (21) 26 (3.8) 100 (15) 14 (.0
Waspalloy 795 (115) 675 (98) 140 (20) 415 (60) 45  (6.5) 290 (42) — —
ODS Alloys
MA 6000 1069 (155) 781  (113) 344 (50) 485 (70) 210 (30) 410 (59) 180 (26)
Alloy 51 903 (131) 972 (141) 517 (75) 600 (87) 221 (32) 469 (68) 186 (27)

“Data corresponds to 816°C (1500°F).
® Directionally solidified.

¢ Extrapolated values.

9Data courtesy of Inco Alloys Inc.
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Conventional casting Columnar grain Single crystal

Figure 4.31 Conventional and directional solidification used to prepare gas turbine blades with equiaxed,
columnar, and single-crystal morphologies. (F. L. VerSnyder and E. R. Thompson, Alloys for the 80’s, R. Q. Barr,
Ed., Climax Molybdenum Co., 1980, p. 69; with permission.)

boundaries or single-crystal components (Fig. 4.31). Helical molds are used to cast single-
crystal turbine blades; multiple grains form initially and grow into the helical section of the
mold. The faster growing (100)-oriented grains then crowd out other grains until a single (100)
grain is left to fill the mold cavity.”’~7° Current sophisticated mold designs now allow for the
simultaneous growth of two turbine blades from the same single crysta1.79 The alignment of
airfoils (turbine blades) along the (100) axis parallel to the centrifugal stress direction allows for
a40% reduction in the elastic modulus and associated lower plastic strain range during thermal
fatigue cycling; a 6- to 10-fold improvement in thermal fatigue resistance is thus achieved.
Since grain boundaries are eliminated, their influence on grain-boundary sliding, cavitation,
and cracking is obviated.””+78 Furthermore, it is no longer necessary to add such elements as
hafnium, boron, carbon, and zirconium for the purpose of improving grain-boundary hot
strength and ductility.3 Without these elements, the incipient melting temperature of the alloy
is increased by approximately 120°C and the alloy chemistry simplified. The development of
cast superalloy turbine blades is shown in Fig. 4.32a; the relative ranking of the rupture lifetime
for equiaxed and columnar polycrystalline alloys is compared with that of single-crystal alloys

9 [ [ [ L
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Figure 4.32 (a) Development of turbine blade temperature capability. (b) Comparative high temperature strength
and corrosion resistance of equiaxed, columnar, and single-crystal superalloys.”® (Reprinted with permission from
Journal of Metals, 39(7), 11 (1987), a publication of the Metallurgical Society, Warrendale, PA. 15086.)
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Figure 4.33  1000-hr strength as a function of temperature in eutectic superalloys and conventional directionally
solidified single-crystal and oxide-dispersion-strengthened superalloys. In situ (eutectic) composites reveal generally
superior stress rupture behavior. (From Lemkey®!; reprinted by permission of the publisher from F. D. Lemkey,
Proceedings, MRS Conference, CISC IV, Vol. 12, F. D. Lemkey, H. E. Cline, and M. McLean, Eds., copyright by
Elsevier Science Publishing Co., Inc., Amsterdam, © 1982.)

in Fig. 4.32b. By applying unidirectional solidification to alloys of eutectic composition, it has
been possible to produce eutectic composite alloys possessing properties superior to those
found in conventional superalloys81 (Fig. 4.33). A number of these alloys contain a y/)’ matrix
that is reinforced with high-strength whiskers of a third phase; these strong filamentary particles
are oriented parallel to the maximum stress direction. Although the properties of these alloys
are very good, the allowable solidification rates for their manufacture are much lower than those
permissible in the manufacture of directionally solidified columnar or single-crystal micro-
structures. One is then faced with a trade-off between the superior properties of eutectic
composites and their higher manufacturing costs.

Another newer fabrication technique involves forging under superplastic conditions.®? In this
process, the material is first hot extruded just below the )’ solvus temperature, which causes the
material to undergo spontaneous recrystallization. Since the 3 precipitates in the nickel solid
solution matrix tend to restrict grain growth, the recrystallized grain diameter remains relatively
stable in the size range of 1 to 5 um. The part is then forged isothermally at a strain rate that enables
the material to deform superplastically (recall Section 4.5). At this point, the superplastically
formed component is solution treated to increase the grain size for the purpose of enhancing creep
strength. The material is then quenched and aged to optimize the /)’ microstructure and the
associated set of mechanical properties. One major advantage of superplastic forging is its ability
to produce a part closer to its final dimensions, thereby reducing final machining costs.

Superalloys also can be fabricated from powders produced by vacuum spray atomization of
liquid or by solid-state mechanical alloying techniques (recall Section 3.7). Powders then may
be placed in a container that is a geometrically larger version of the final component shape.
The can then is heated under vacuum and hydrostatically compressed to yield a fully dense
component with dimensions close to the design values. The microstructure of hot isostatically
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Figure 4.34 Transmission electron micrographs of P/M nickel-based alloys. (a) Microstructure of HIP’d Astroloy superalloy. Note
persistent necklaces of prior particle boundary borides, carbides, and oxides.33 (Reprinted with permission from J. S. Crompton and
R. W. Hertzberg, J. Mater Sci., 21, 3445 (1986), Chapman & Hall Pub.) (b) Microstructure of MA 6000 showing )’ precipitates
(large light areas) and Y,O3 dispersoids (small dark regions). [(Photo courtesy of W. Hoffelner from W. Hoffelner and R. F. Singer,
Metallurgical Transactions 16A, 393 (1985).)]

pressed (HIP) Astroloy superalloy is shown in Fig. 4.34a.33 Note the persistence of the necklace
of prior particle boundary borides, carbides, and oxides that surround the atomized powder
particles. Hot isostatic pressing also is being used to heal defects in conventionally cast parts
and to heal certain defects in parts that experience creep damage in service.

With significant additions of )’ formers, such as Al and Ti, mechanically alloyed oxide-
dispersion-strengthened (MA/ODS) products possess attractive strength levels over a broad
temperature range.847 85 Two such alloys are MA6000 and Alloy 51, which contain approximately
55v/oand 75 v/o Y/, respectively (Fig. 4.34b).8%:85 The 1000-hr rupture strength (normalized with
respect to density) of these alloys and others is shown in Fig. 4.35 as a function of temperature. As
expected, directionally solidified (DS MAR-M200) and single-crystal (PWA 1480) cast alloys are
superior to the two mechanically alloyed products at temperatures up to 900°C with the relative
rankings being reversed above this temperature. At high temperatures near the 3’ solvus tempera-
ture, the )/ particles that dominate the precipitation hardening process tend to coarsen and/or go
back into solution. The superiority of MA materials relative to that of directionally solidified and
single-crystal cast alloys at temperatures in excess of 900°C is due to the oxide-dispersion-
strengthening influence of the Y,O3 particles that remain in the microstructure and do not coarsen to
any significant degree.

Much attention has focused on the unusual creep rate and rupture-life stress dependence of
ODS alloys (introduced in Section 3.7). Whereas most pure metals and associated solid
solutions reveal a %> dependence of ¢ (recall Eq. 4-16 and 4-21), the steady-state creep rate
in ODS alloys exhibits a stress dependency of 20 or more.”0-84:36 Furthermore, the apparent
activation energy for the creep process is found to be two to three times greater than the
activation energy for self-diffusion. Tien and coworkers’?:8¢ have suggested that these
apparent differences in creep response can be rationalized by considering creep to be dominated
by an effective stress rather than the applied stress; the effective stress is defined as the applied
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Figure 4.35 Comparison of 1000-hr rupture strength (density corrected) in directionally solidified and oxide-
dispersion-strengthened nickel-based superalloys.3> Note superior properties of ODS alloys at temperatures above
900°C. (Reprinted with permission from S. K. Kang and R. C. Benn, Metallurgical Transactions, 16A, 1285
(1985).)

stress minus a back stress that reflects dislocation interactions with Y,O3 dispersion
strengthening particles. When the applied stress level is replaced by the effective stress value
in Eq. 4-21, the stress dependency of & and the apparent activation energy for creep are found to
be similar to those values corresponding to pure metals (i.e., n ~4-5 and AH. ~ AHgp).

In corresponding fashion, the rupture life of ODS alloys can reveal a very strong applied stress
dependency and an upward slope change with increasing rupture lifetime, opposite to that
observed in many other alloys (e.g., recall Fig. 4.4). Figure 4.36 reveals that MA6000 and Alloy
51 exhibit two regions of behavior; Region I corresponds to high stress levels and intermediate
temperatures and is dominated by the Y’ precipitates. At higher temperatures, lower stress levels
and longer times (Region II), stress rupture is dominated by the Y,0O3 dispersoid phase. Note that
ODS alloy MA754, which contains no ' phase, does not exhibit Region I behavior; conversely,
cast alloy IN939, which contains no dispersion strengthening phase, exhibits no Region II
behavior. Recent studies have sought to clarify the nature of the dislocation—dispersoid particle
interaction so as to better understand the unique phenomenological behavior of ODS alloys.87
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Finally, fiber-reinforced superalloys also make interesting candidate materials for structural
use at elevated temperatures. Tungsten fibers hold promise as a suitable reinforcement for
superalloys in that they possess superior high-temperature strength and creep resistance.® In
addition, a good interface is developed between the superalloy matrix and the tungsten fibers
without excessive surface reactions that degrade W-fiber mechanical properties. Preliminary
studies have shown that operating temperatures of fiber-reinforced superalloys may be increased
by 175°C over that of unreinforced superalloys.

While alloy development continues, there are other paths to achieving greater operating
temperatures for metal components. For example, cooling channels integrated into a gas turbine
engine blade can be used to extract heat. This allows the superalloy component to run at an effective
temperature much lower than that of the surrounding environment, thereby improving its creep
performance. Enormous gains in turbine engine operating temperature have also been achieved
through the use of ceramic coatings that insulate the metal from the surrounding combustion gas.
These thermal barrier coatings (TBCs) can reduce superalloy turbine blade surface temperatures
by as much as 125-250°C. Because there can be a significant difference between the thermal
expansion of the ceramic TBC layer and the underlying metal, the tendency for spallation due to
thermally induced strains must be suppressed. As a result, porous yttria-stabilized zirconia (YSZ) is
commonly used. However, this layer does not protect the underlying superalloy from oxidation
damage. In the end, no single material can provide an optimum combination of both thermal
insulation and oxidation resistance, so layered TBC systems have been developed that consist of a
metallic bondcoat layer adhered directly to the superalloy, a very thin thermally grown aluminum
oxide layer on top of the bondcoat, and a porous Y SZ layer on the outside surface. The bondcoat is
an oxidation barrier coating made up of MCrAlY (where M = Ni, Co, and Fe) or PtNiAl; surface
coatings with such compositions promote the natural formation and retention of a thin layer of
A1,03, which serves as an effective barrier to the diffusion of oxygen into the component
interior.”® The bondcoat layer also serves to bond the YSZ layer securely to the superalloy.

Given that ceramic coatings can survive gas temperatures that would destroy uncoated
metals, researchers looking beyond metal superalloys have focused attention on the develop-
ment of a gas turbine engine using components made entirely of ceramic materials. Ceramics
often possess higher melting points, higher moduli of elasticity, and lower diffusivities than
metal systems, so they offer considerable potential in such applications. Unfortunately,
monolithic ceramics such as SiC and SizNy suffer from low ductility and brittle behavior
in tension (see Table 7.8). This serious problem must be resolved before the ceramic engine can
become a reality. Significant progress toward this end has been made with the development of
continuous ceramic fiber reinforced ceramic matrix composites. In particular, materials such as
melt-infiltrated SiC/SiC composites exhibit many promising characteristics for gas turbine
applications including relatively high creep rupture resistance and thermal conductivity, as well
as enhanced thermal shock and oxidation resistance, compared to many other ceramic-based
materials. Two significant challenges that affect creep performance in these materials are the
tendency for matrix cracking and time-dependent crack growth that is exacerbated by
oxidation, and time-dependent degradation of the fiber strength associated with creep-con-
trolled flaw growth in the fiber material."' The mechanisms behind the improved fracture
properties of ceramic matrix composites are discussed in detail in Section 7.5.1.

4.9 VISCOELASTIC RESPONSE OF POLYMERS AND THE ROLE OF STRUCTURE

As discussed in Section 4.1, polymers are likely to exhibit significant viscoelastic behavior
over a wide range of common operating temperatures. Thus, it is possible for a polymer to
undergo viscoelastic creep or viscoelastic stress relaxation, unlike metals or ceramics for which
such behavior is almost invariably viscoplastic. If the polymer has a significant amorphous
volume fraction and is not heavily cross-linked, a viscoplastic component of the total strain is
also likely, particularly at higher temperatures.

Vi G. N. Morscher et al., AFRL Technical Report AFRL-RX-WP-TP-2009-4053, 2007.
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The source of this strong tendency for time-dependent deformation on the part of polymer
materials can be found at the molecular level. At all temperatures above absolute zero, the
existing thermal energy causes the polymer chains to vibrate and wriggle about. First, small-
scale vibrations are permitted. Then, with increasing temperature, molecule segments begin to
move more freely. Finally, at sufficiently high temperatures associated with the molten state,
entire chains are free to move about. It is seen from Fig. 4.37 that these large-amplitude
molecular vibrations cause the polymer to become less dense. If crystallization is likely for
the particular type of polymer in question, upon cooling the material undergoes a first-order
transformation at B associated with the melting point 7,,,. Heat of fusion is liberated and the
specific volume drops abruptly to C. Further cooling involves additional change in the specific
volume (D) as molecular oscillations become increasingly restricted. When crystallization does
not occur in the polymer, the liquid cools beyond 7;,, (location B) without event. However, a
point is reached where molecular motions are highly restricted and the individual chains are no
longer able to arrange themselves in equilibrium configurations within the supercooled liquid.
Below this point (G) (the glass transition temperature T), the material is relatively frozen into a
glassy state. The change from a supercooled liquid to glass represents a second-order
transformation that does not involve a discrete change in specific volume or internal heat.
From Fig. 4.37, it is seen that the polymer in the amorphous state occupies more volume than in
the crystalline form. This is to be expected, since higher density forms of a particular polymer
are associated with greater crystallinity as a result of greater chain-packing efficiency (recall
Table 2.15). The relative difference in chain-packing density can be described in terms of the
fractional unoccupied volume (the free volume) given by Litt and Tobolsky®? as

- — d
FoVaTVe_ o <_) (4-34)
Uy d.

where ~
f = fractional unoccupied free volume
v, d, = specific volume and density of amorphous phase

V., d. = specific volume and density of crystalline phase

For many polymers, 0.01 < f < 0.1. Greater free volume enables the molecules to slide more
easily past one another.
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Table 4.4 Comparison of Typical Creep Behavior in Metals, Ceramics, and Polymers

Creep Behavior Metals and Ceramics Polymers
Linear elastic No Sometimes
Recoverable No Partially
Temperature range Temperatures above All temperatures above
~0.3 T;,, (metals) or approximately —200°C

~0.5 T,,, (ceramics)

Since the glass transition occurs where molecular and segmental molecular motions are
restricted, it is sensitive to cooling rate. Consequently, a polymer may not exist at its glassy
equilibrium state. Instead, nonequilibrium cooling rates could preclude the attainment of the
lowest possible free volume in the amorphous polymer. In Fig. 4.37, this would correspond to
line EF with the glass transition temperature increasing to T%. Petrie?” describes the difference
between the equilibrium and actual glassy free volume as the excess free volume and postulates
that this quantity is important in understanding the relation between polymer properties and
their thermodynamic state. Note that the free volume will differ from one polymer to another;
within the same polymer, the excess free volume is sensitive to thermal history.

In metals and ceramics, only the grain boundary regions can be considered to have
significant free volume. As such, there is much less freedom for rearrangement at the atomic
scale unless the material has extremely small grains (at the nanometer scale) and/or is operating
at very high temperature. This goes a long way to explaining the greater tendency for time-
dependent deformation in polymers. Also, as pointed out in Section 1.3.3.3, amorphous high-
molecular-weight polymer chains are highly kinked in the unloaded state. When a chain is
straightened under load, there is a strong entropic driving force to rekink it once the load is
removed. This provides a driving force for viscoelastic strain recovery in amorphous polymers
that is absent in metals and ceramics. In light of these differences, a comparison of creep
behavior between metals and polymers is summarized in Table 4.4.

4.9.1 Polymer Creep and Stress Relaxation

In many circumstances, the viscoelastic response of a polymer exhibits a set of character-
istics that together are called linear viscoelasticity. When the elastic strains and viscous flow
rate are small (approximately 1 to 2% and 0.1 s~ !, respectively), the viscoelastic strain may
often be approximated by

c=o0-f(1) (4-35)

That s, the stress—strain ratio is a function of time only, and no unique elastic modulus exists. This
response can be described by the simple addition of linear elastic and linear viscous (Newtonian)
flow components. When the stress—strain ratio of a material varies with time and stress

¢ =g(o,1) (4-36)
the response is nonlinear viscoelastic.

On the basis of the simple creep test it is possible to define a linear viscoelastic creep
modulus E.(t) or its inverse, a creep compliance J.(t), such that

Ec(t) = «;?) (4-37a)
Jo(r) =20 (4-37b)
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Glassy Figure 4.38 Time-temperature dependence
of elastic modulus in thermoplastic polymeric
solids: (a) change in relaxation modulus E,(f)
as function of time; (b) change in tensile
modulus as function of temperature.
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where
oo = constant applied stress
&(f) = time-dependent strain

Likewise, in a stress relaxation test where the strain &g is fixed and the associated stress is time
dependent, a relaxation modulus E,(f) may be defined"™

B0 =22 (4-38)

The reader may recognize that these creep moduli are extracted from the time-dependent behavior
shown in Fig. 4.1. They can be plotted against log time to reveal their strong time dependence, as
shown schematically in Fig. 4.38a for E,(#). (For small strains and up to moderate temperatures,
corresponding to linear viscoelastic behavior, E, =~ E..) It is clear that material behavior changes
radically from one region to another. For very short times, the relaxation modulus approaches a
maximum limiting value where the material exhibits glassy behavior associated with negligible
molecule segmental motions. At longer times, the material experiences a transition to leathery
behavior associated with the onset of short-range molecule segmental motions. At still longer
times, complete molecule movements are experienced in the rubbery region associated with a
further drop in the relaxation modulus. Beyond this point, liquid flow occurs.

It is interesting to note that the same type of curve may be generated by plotting the modulus
(from a simple tensile test) against test temperature (Fig. 4.38b; recall also Fig. 1.5). In this
instance, the initial sharp decrease in E from its high value in the glassy state occurs at T,. The
shape of this curve can be modified by structural changes and polymer additions. For example, the
entire curve is shifted downward and to the left as a result of plasticization (Fig. 4.39a). As M
increases, the rubbery flow region is displaced to longer times (Fig. 4.39b), because molecular and

Vil The notation G(¥) is often used for the stress relaxation modulus, but there is a danger of confusing it with the shear modulus G as defined
in Chapter 1.
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Figure 4.39 Effect of (a) plasticization
and (b) molecular weight on elastic
modulus as a function of temperature.
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segmental molecular movements are suppressed when chain entanglement is increased. Molecu-
lar weight has relatively little effect on the onset of the leathery region, since Ty is relatively
independent of M except at low M values (Fig. 4.40). The effect of M on Ty is believed to be
related to the chain ends.”! Since the ends are freer to move about, they generate a greater than
average amount of free volume. Adjacent chains are then freer to move about and contribute to
greater mobility of the polymer. Since the chain ends are more sensitive to M, than M, Tqis best
correlated with the former measure of molecular weight. The leathery region is greatly retarded by
cross-linking, while the flow region is completely eliminated, the latter being characteristic of
thermosetting polymers (Fig. 4.41).

The temperature—time (i.e., strain rate~!) equivalence seen in Fig. 4.38 closely parallels
similar observations made earlier in this chapter. It is seen that the same modulus value can be
obtained either at low temperatures and long times or at high test temperatures but short times.
In fact, this equivalence is used to generate E, versus log# curves as shown in Fig. 4.38a. The

Figure 4.40 Glass transition temperature in PMMA
(0) and polystyrene (e) as a function of M. (M. Miller,
The Structure of Polymers, © 1966 by Litton
Educational Publishing by permission of Van Nostrand

100 Reinhold.)
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Figure 4.41 Effect of molecular

::r;grsiaﬁl;rllg weight and degree of cross-linking on
10 — density relaxation modulus.%4 (Reprinted with
permission from McGraw-Hill Book
Company.)
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reader should appreciate that since such plots extend over 10 to 15 decades of time, they cannot
be determined conveniently from direct laboratory measurements. Instead, relaxation data are
obtained at different temperatures over a convenient time scale. Then, after choosing one
temperature as the reference temperature, the remaining curves are shifted horizontally to
longer or shorter times to generate a single master curve (Fig. 4.42). This approach was first
introduced by Tobolsky and Andrews’> and was further developed by Williams et al.”3
Assuming that the viscoelastic response of the material is to be controlled by a single function
of temperature (i.e., a single rate-controlling mechanism), Williams, Landel, and Ferry93
developed a semiempirical relation for an amorphous material, giving the time shift factor aras

logar :logt_T:M
7, Co+T—-Ty

0

(4-39)
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Figure 4.42 Modulus—time master plot for polyisobutylene based on time—temperature superposition of data to a
reference temperature of 25°C. (From Catsiff and Tobolsky,”® with permission from John Wiley & Sons, Inc.)
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where
ar = shift factor that is dependent on the difference between the reference and data
temperatures 7 — T
tr,tr, = time required to reach a specific E, at temperatures 7 and T, respectively
C1, C = constants dependent on the choice of the reference temperature T
T = test temperatures where relaxation data were obtained, K

This relation is found to hold in the temperature range T, < T < T, + 100K, but is sometimes
used beyond these limits on an individual basis as long as time—temperature superposition still
occurs. This would indicate that the same rate-controlling processes were still operative. Two
reference temperatures are often used to normalize experimental data—T and Ty + 50 K—for
which the constants C; and C, are given in Table 4.5.

Table 4.5 Constants for WLF Relationship

Reference Temperature (& (&)
T, —17.44 51.6
T,+50K —8.86 101.6

The shift function may be used to normalize creep data,”® enabling this information to be
examined on a single master curve as well. Furthermore, by normalizing the creep strain results
relative to the applied stress o, the normalization of both axes converts individual creep—time
plots into a master curve of creep compliance versus adjusted time (Fig. 4.43). These curves can be
used to demonstrate the effect of MW and degree of cross-linking on polymer mechanical
response much in the manner as the modulus relaxation results described in Figs. 4.39 and 4.41.
Note that viscous flow is eliminated and the magnitude of the creep compliance reduced with
increasing cross-linking in thermosetting polymers. For the thermoplastic materials, compliance
decreases with increasing viscosity, usually the result of increased MW.

As previously noted (e.g., see Eqgs. 4-37 and 4-38), the elastic modulus of engineering
plastics varies with time as a result of time-dependent deformation. For this reason, the
designer of a plastic component must look beyond basic tensile data when computing the
deformation response of a polymeric component. For example, if a designer were to limit
component strain to less than some critical value ¢., the maximum allowable stress would be
given by E¢. so long as the material behaved as an ideally elastic solid. Since most engineering
plastics experience creep, the level of strain in the component would increase with time as
noted by the creep curves in Fig. 4.44a. To account for this additional deformation, designers
often make use of isochronous stress—strain curves, which are derived from such creep data
(e.g., see Fig. 4.44a line XY). Figure 4.44b shows three isochronous stress—strain curves
corresponding to loading times of 102, 10, and 10°s, respectively. To illustrate the use of
these curves, we see that to limit the strain in a component to no more than 0.02 after 10* s, the
allowable stress must not exceed 32 MPa.

Figure 4.43 Master creep curve revealing effect of increasing
MW (a — b — c) and degree of cross-linking (d — e — f) on creep
strain. (T. Alfrey and E. F. Gurnee, Organic Polymers, © 1967.
Reprinted by permission of Prentice-Hall Inc., Englewood Cliffs,
NIJ.)
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Figure 4.44 Creep response in PVC pipe resin at 20°C. (a) Creep curve; (b) isochronous stress—strain curves; (c)
isometric stress—time curves.®’ (By permission of ICI Ltd.)

EXAMPLE 4.1

A PVC rod experiences a load of 500 N. An acceptable design calls for a maximum strain of 1% after one year of
service. What is the minimum allowable rod diameter?

We will assume that the creep characteristics of the PVC pipe are identical to data shown in Fig. 4.44. Since
one year is equal to 3.15 x 107 s, we see from Fig. 4.44a that an allowable strain of 1% would correspond to a
stress of approximately 15 MPa. A similar result could have been identified with an isometric stress—time curve
corresponding to 1% strain or with an isochronous stress—strain curve, corresponding to 3.15 x 107 s. The
minimum rod diameter is then found to be

P
0 = =——
i)
—d

4
15 % 10° :iio
ol 22

4

C.d ~ 6.5mm
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The creep data shown in Fig. 4.44a can be analyzed in alternative fashion by considering
the stress—time relation associated with various strain levels (e.g., line AB, Fig. 4.44a). The
resulting isometric curves provide stress—time plots corresponding to different strain levels
(Fig. 4.44c¢). For example, if a component were designed for which strain must be less than 0.02
after 10* s, the maximum permissible stress level would again be 32 MPa.

4.9.2 Mechanical Analogs

The linear viscoelastic response of polymeric solids has for many years been described by a
number of mechanical models (Fig. 4.45). Many, including these authors, have found that these
models provide a useful physical picture of time-dependent deformation processes. The spring
element (Fig. 4.45a) is intended to describe linear elastic behavior

o T
e=— and =— 1-7
Fa Y=3 (1-7)
such that resulting strains are not a function of time. (The stress—strain—time diagram for the
spring is shown in Fig. 4.46a.) Note the instantaneous strain upon application of stress o, no
further extension with time, and full strain recovery when the stress is removed. The dashpot (a
piston moving in a cylinder of viscous fluid) represents viscous flow (Fig. 4.45b).

. O .T
é=— and y=— (4-40)
n n
where
&,y = tensile and shear strain rates
o, T = applied tensile and shear stresses
n = fluid viscosity in units of stress-time
The viscosity n varies with temperature according to an Arrhenius-type relation
n = AAH/RT (4-41)
where
AH = viscous flow activation energy at a particular temperature

T = absolute temperature

On the basis of time—temperature equivalence, 1 is seen, therefore, to depend strongly on
time as well. For example, at =0 the viscosity will be extremely high, while at t — oo, 71 is

:
8 H %?l_\_,_l

@ (b) © (d) ©

Figure 4.45 Mechanical analogs reflecting deformation processes in polymeric solids: (a) elastic; (b) pure viscous;
(c) Maxwell model for viscoelastic flow; (d) Voigt model for viscoelastic flow; (e) four-element viscoelastic model.



236 Chapter 4

Time-Dependent Deformation

<—%—> <_%t
Op Op

@ (b)

(o]
[y
E n
Oo
€ \ €

. /

Opt

Le 20 7 T
/"n“?

© )

Figure 4.46 Stress-strain—time diagrams for mechanical analogs: (@) simple spring; (b) simple dashpot;
(c) Maxwell model; (d) Voigt model.

small. The deformation response of a purely viscous element is shown in Fig. 4.46b. Upon
loading (t=0), the dashpot is infinitely rigid. Consequently, there is no instantaneous strain
associated with oq (the same holds when the stress is removed). With time, the viscous
character of the dashpot element becomes evident as strains develop that are directly
proportional to time. When the stress o is removed these strains remain. When the spring
and dashpot are in series, as in Fig. 4.45¢ (called the Maxwell model), we are able to describe
the mechanical response of a material possessing both elastic and viscous components.

The stress—strain—time diagram for this model is shown in Fig. 4.46¢. Note that all the
elastic strains are recovered, but the viscous strains arising from creep of the dashpot remain.
Since the elements are in series, the stress on each is the same, and the total strain or strain rate is
determined from the sum of the two components. Hence

dg_a 1do

— =4t 4-42
dt n+Edt ( )

For stress relaxation conditions, ¢ =¢g and de/dt =0. Upon integration, Eq. 4-42 becomes
o(t) = ooe B/ = gpet/T (4-43)

where t, =relaxation time defined by n/E. From Eq. 4-43, the extent of stress relaxation for a
given material will depend on the relationship between t, and #. When ¢ >> t, there is time for
viscous reactions to take place so that o(f) will drop rapidly. When ¢ < 1, the material behaves
elastically such that o(f) = o).

When the spring and dashpot elements are combined in parallel, as in Fig. 4.45d (the Voigt
model), this unit predicts a different time-dependent deformation response. First, the strains in
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the two elements are equal, and the total stress on the pair is given by the sum of the two
components

E&r = &5 = &p
4-44
or = og+o0p ( )
Therefore
d
or(t) = s+, (4-45)

For a creep test, o (f) = 0¢ and after integration
et) = % (1 et fr) (4-46)

The strain experienced by the Voigt element is shown schematically in Fig. 4.46d. The absence
of any instantaneous strain is predicted from Eq. 4-46 and is related in a physical sense to the
infinite stiffness of the dashpot at t=0. The creep strain is seen to rise quickly thereafter, but
reach a limiting value o/E associated with full extension of the spring under that stress. Upon
unloading, the spring remains extended, but now exerts a negative stress on the dashpot. In this
manner, the viscous strains are reversed, and in the limit when both spring and dashpot are
unstressed, all the strains have been reversed. Consequently, the Maxwell and Voigt models
describe different types of viscoelastic response. A somewhat more realistic description of
polymer behavior is obtained with a four-element model consisting of Maxwell and Voigt
models in series (Fig. 4.45¢). By combining Eqs. 1-7, 4-40, and 4-46, it can be readily shown
that the total strain experienced by this model may be given by

o o o
(1) = — — 1 —_ 71‘/‘[’) — 4'47
=5 +E2( e o (4-47)

which takes account of elastic, viscoelastic, and viscous strain components, respectively
(Fig.4.47). Even this model is overly simplistic with many additional elements often required
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Figure 4.47 Creep response of four-element model with E; =5 x 102 MPa, E, = 10> MPa, 1o =5 x 102 MPa-sec,
n3 =50 GPa-sec, and o = 100 MPa.?® (L. Nielsen, Mechanical Properties of Polymers, © 1962 by Litton
Educational Publishing Inc., reprinted by permission of Van Nostrand Reinhold.)
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to adequately represent mechanical behavior of a polymer. For example, such a model might
include a series of Voigt elements, each describing the relaxation response of a different
structural unit in the molecule.

Even so, the four-element model is useful in characterizing the response of different types
of polymers. For example, a stiff and rigid material, such as a polyester thermoset resin, can be
simulated by choosing stiff springs and high-viscosity dashpots. These elements would predict
high stiffness and little time-dependent deformation, characteristic of a thermoset material. On
the other hand, a soft and flexible material such as low-density polyethylene could be simulated
by choosing low stiffness springs and dashpots with low viscosity levels. Accordingly,
considerable time-dependent deformation would be predicted. Finally, the temperature depen-
dence of the mechanical response of a polymer can be modeled by appropriate adjustment in
dashpot and spring values (i.e., lower spring stiffness and dashpot viscosity levels for higher
temperatures and vice versa for lower temperature conditions).

EXAMPLE 4.2

Let us examine the viscoelasticity of a soft and flexible material—cheese. This edible commodity is composed
primarily of protein substances that are polymeric in nature. Sperling and coworkers"!! conducted experiments to
examine the viscoelastic response of Velveeta™ brand processed cheese. Such cheeses are plasticized or softened
by the addition of water. A 15-cm-long block of this cheese, with cross-sectional dimensions of 4 cm x 6 cm, was
supported in a slightly tilted holder and subjected to a compressive load of 4.9 N for approximately 2 h. The height
of the cheese block was measured prior to loading and every 5 minutes thereafter. No additional displacement
measurements were made after removal of the load. A duplicate experiment was conducted with a second cheese
block under a compressive load of 6.85 N. The two creep curves from these experiments are illustrated below. With
the exception of the unloading portion of the curve shown in Fig. 4.47, note the similarity in shape between the
experimental Velveeta™ creep curves and the computed curve for the stiffer polymer.

If we assume that the creep response of the Velveeta™ cheese may be characterized by a four-element
viscoelastic model (Fig. 4.45¢), the strain—time plot is given by Eq. 4-47

o o —(E—z) o
e=—+—|[1—e \” +—(7)

I ) n3
30
=2.85 kP
20 |- o 85 kPa
R o = 2.04 kPa
—
X _-
c -
s Sl -
e e e
10 Tt
£ I IPr e 3
1y g | | | |
0 20 40 60 80 100
Time (min.)

Vil yy 'S Chang, J. S. Guo, Y. P. Lee, and L. H. Sperling, J. Chem. Ed., 63, 1077 (1986).
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For the two experiments, the applied stress, o, is equal to

_P 4.9 =2.04kPa
A (4x1072)(6 x 1072)
Also
o=—= 085 = 2.85kPa

TA (4x1072)(6 x 1072)

polymer, described in Fig. 4.47.

Experimentally Determined Constants for Four-Element Viscoelastic Model of
Velveeta™ Cheese*

4.8 Newtons 6.85 Newtons
E; (kPa) 4.88 x 10* 5.18 x 10%
E; (kPa) 2.82 x 10* 4.24 x 10*
H> (MPa-s) 1.52 x 107 1.78 x 107
M2 (MPa-s) 1.00 x 108 1.21 x 108

“V. S. Chang, J. S. Guo, Y. P. Lee, and L. H. Sperling, J. Chem. Ed., 63, 1077 (1986).

As shown in Fig. 4.47, the elastic modulus, E7, for the spring in series is determined by the strain at zero time (i.
e., E1 = 9/;). The viscosity, m3, of the dashpot in series is determined from the slope of the linear portion of the
creep curve at long times. Finally, the strain associated with the viscoelastic Voigt elements is obtained from the
total strain less that associated with the spring and dashpot series elements. By simple curve fitting, the Voigt
elements, £, and m), can then be determined. The constants for the four-element model are listed in the
accompanying table. We see relatively good agreement between the two sets of values. As expected, the elastic
and viscous elements for the processed cheese are much lower than those associated with the engineering

4.9.3 Dynamic Mechanical Testing and Energy-Damping Spectra

Another method by which time-dependent moduli and energy-dissipative mechanisms
are examined is through the use of dynamic test methods. These studies have proven to be
extremely useful in identifying the major molecular relaxation at T as well as secondary
relaxations below T,. It is believed that such relaxations are associated with motions of
specific structural units within the polymer molecule. Two basically different types of
dynamic test equipment have been utilized by researchers. One type involves the free
vibration of a sample, such as that which takes place in the torsion pendulum apparatus
shown in Fig. 4.48. A specimen is rotated through a predetermined angle and then released.
This causes the sample to oscillate with decreasing amplitude resulting from various
energy-dissipative mechanisms. The extent of mechanical damping is defined by the

decrement in amplitude of successive oscillations as given by

A A A
A=InZA=mZ2=. . =2
Ap Az An+1

where
A = log (base ¢) decrement which the amount of damping
A1, Ay = amplitude of successive oscillations of the vibrating sample

(4-48)



240 Chapter4 Time-Dependent Deformation

Figure 4.48 Simple torsion pendulum
and amplitude-time curve for free
decay of torsional oscillation.?8 (L.
Nielsen, Mechanical Properties of
Polymers, © 1962 by Litton
Educational Publishing Inc., reprinted
by permission of Van Nostrand
Reinhold.)
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From these same observations, stiffness of the sample is determined from the period of
oscillation P, the shear modulus G increasing with the inverse square of P.

The other type of dynamic instruments introduces to the sample a forced vibration at
different set frequencies. The amount of damping is found by noting the extent to which the
cyclic strain lags behind the applied stress wave. The relation between the instantaneous stress
and strain values is shown in Fig. 4.49. Note that the strain vector &g lags the stress vector o by
the phase angle 8. It is instructive to resolve the stress vector into components both in phase and
90° out of phase with ¢p. These are given by

opcos$ (in-phase component)

Q
I

(4-49)
0" = ogsind (out-of-phase component)

The corresponding in-phase and out-of-phase moduli are determined directly from Eq. 4-49
when the two stress components are divided by &y. Hence

/
E =2 =%0¢0s5 = E* cos 8
& &
o o (4-50)
E' = — ==sind = E*sin$

&0 &0
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Y Figure 4.49 Forced vibration resulting in phase lag &
between applied stress o and corresponding strain &g.

Op
[0X4 S

where E* = absolute modulus = (E'% + E” 2)1/ 2. E reflects the elastic response of the material,
since the stress and strain components are in phase. This part of the strain energy, introduced to
the system by the application of stress oy, is stored but then completely released when oy is
removed. Consequently, E is often referred to as the storage modulus. E”, on the other hand,
describes the strain energy that is completely dissipated (mostly in the form of heat) and for this
reason is called the loss modulus. The relative amount of damping or energy loss in the material
is given by the loss tangent, tan d:

E" E*sin$
E " Ecoss tan D
By comparison,”®
G A
Vel ~ — (4-52)
with the result that
A= mtan$ (4-53)

When dynamic tests are conducted, the values of the storage and loss moduli and damping
capacity are found to vary dramatically with temperature (Fig. 4.50). Note the correlation
between the rapid drop in G/, the rise in G”, and the corresponding damping maximum. The
relaxation time associated with these changes (occurring in Fig. 4.38b in the vicinity of T) is
considered to have an Arrhenius-type temperature dependence associated with a specific
activation energy. In turn, the activation energy is then used to identify the molecular motion
responsible for the change in dynamic behavior. Dynamic tests can be conducted either over a
range of test temperatures at a constant frequency or at different frequencies for a constant
temperature. Since the fixed frequency tests are usually more convenient to perform, most
studies employ this procedure. Experiments of this type are now conducted routinely in many
laboratories to characterize polymers with regard to effects of thermal history, degree of
crystallinity, molecular orientation, polymer additions, molecular weight, plasticization, and
other important variables. Consequently, the extant literature for such studies is enormous.
Fortunately, a number of books and review articles have been prepared”®190:194 on the subject
to which the interested reader is referred. Within the scope of this book, we can only highlight
some of the major findings.

When dynamic tests are performed over a sufficiently large temperature range, multiple
secondary relaxation peaks are found in addition to the T, peak shown in Fig. 4.50. Boyer” has
summarized some of these data in the schematic form shown in Fig. 4.51. He noted that
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Figure 4.50 Dynamic mechanical response of un-cross-linked styrene and butadiene copolymer revealing
temperature dependence of G/, G, and A.%8 (L. Nielsen, Mechanical Properties of Polymers, © 1962 by Litton
Educational Publishing Inc., reprinted by permission of Van Nostrand Reinhold.)

relaxation response in amorphous and semicrystalline polymers could be separated conve-
niently into four regions, as summarized in Table 4.6. Furthermore, crude temperature relations
between various damping peaks were identified (e.g., T, & 1.5T and the T < T, transition (5)
occurring at about 0.757 ). The dynamic mechanical spectra for a given material characterizes
localized molecular movement such as small-scale segmental motions and side-chain group

Tan &

TIT,

Figure 4.51 Energy damping spectra
for semicrystalline and amorphous
polymers at various temperatures
normalized to 7. Several damping
peaks are found for each material.”® (By
permission, from Polymeric Materials,
copyright American Society for Metals,
Metals Park, OH, © 1975.)
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Table 4.6 Transition Regions in Polymers®’
Region Temperature of Cause
Occurrence
I T <<Tg (the y peak)  Believed to be caused by movements of small groups
involving only a few atoms
II T <Tjg (the B peak) Believed to be related to movement of 2-3 consecutive repeat
units
III T, (the a peak) Believed to be related to coordinated movements of 10-20
repeat units
v T>T, Large-scale molecular motions

rotations. These transitions have been described by different activation energy levels that
increase with increasing temperature of the transition and size of the side group responsible for
the transition. Boyer10 and Heijboer100 have considered possible correlations between the size
of the B peak and impact resistance (toughness). The reader also is referred to Section 10.8 for a
discussion on the influence of the 8 peak and test frequency on fatigue crack propagation rates

in numerous polymeric solids.
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PROBLEMS

Review

4.1 Reproduce Fig. 4.1a. Imagine that the material in
question is viscoelastic, and that very rapid elastic loading
is followed by creep deformation over a long period of time
designated by 7. Add to the sketch two additional curves
showing the behavior (i) during rapid unloading to zero
stress, and (ii) during a long period of time (¢ > t,) at zero
stress after unloading.

4.2 Follow the instructions for Review Problem 4.1, but
for a material that is viscoplastic.

4.3 State at what homologous temperature creep may start
to become an issue for metals and for ceramics. Then
estimate the actual temperature for Al, Ti, ZrO,, and SiC.
Is the onset of creep behavior with respect to temperature
sudden or gradual?
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4.4 What factors determine whether polymer behavior is
predominantly elastic, viscoelastic, or viscoplastic?

4.5 Describe the standard loading conditions for a creep
test. Explain why these loading conditions are chosen.

4.6 Whattwo general competing processes control the creep
rate of a metal? Whatis the relative strength (or rate) of the two
processes during Stage I and Stage II creep behavior?

4.7 What leads to a change from Stage II to Stage III
behavior? Be specific about the mechanisms involved, and
what can influence the time of this transition.

4.8 Describe under what circumstances the steady-state
creep rate may be a more useful parameter than rupture life,
and vice versa.

4.9 Describe the general trends that connect stress level and
temperature with steady-state creep rate and rupture life.
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4.10 Why do the curves in Fig. 4.4 have more than one
linear segment, and what does the transition from one
segment to the next indicate?

4.11 What data would have to be collected to determine
the stress exponent for creep? What plot axes would give a
linear relationship using this data set?

4.12 What data are typically collected to determine the
activation energy for the controlling creep mechanism?

4.13 How would you know if there were different creep
mechanisms acting at different temperatures?

4.14 The plot in Fig. 4.5 shows significant differences in
the creep rates of a- and y-iron tested at the same tempera-
ture, 910°C. How can this difference be explained?

4.15 List and briefly describe the four major creep defor-
mation mechanisms active in crystalline materials.

4.16 Under what high temperature circumstances is a very
small grain size detrimental, and under what circumstances
is it advantageous?

4.17 What do the regions on a Deformation Mechanism
Map (DMM) represent?

4.18 When designing an alloy for creep resistance, why is
it generally advantageous to employ multiple composition
and microstructure strategies?

4.19 Explain what the Larson-Miller parameter is used
for, and what assumption underlies the form of the expres-
sion that makes use of this parameter.

4.20 What are the units of temperature and time for which
the typical Larson-Miller parameter is equal to ~20 for
many metallic alloys?

4.21 What is the advantage in casting turbine blades that
have either highly aligned grain boundaries or no grain
boundaries at all?

4.22 What is a TBC and what important roles does it play?

4.23 What is a fundamental difference between the degree
of recoverable strain after creep of metals and ceramics vs.
many polymers?

4.24 What is the link between polymer free volume and
creep rate, and why is free volume a more important concept
for polymers than for metals and ceramics?

4.25 What provides the driving force for rekinking of an
amorphous polymer chain when loaded and unloaded?

4.26 What is an important consequence of time-tempera-
ture equivalence for testing of polymer time-dependent elastic
moduli?

4.27 What data from a standard creep plot does an iso-
chronous diagram extract? An isometric diagram?

4.28 What two mechanical components are often used to
model the time-dependent behavior of polymers?

4.29 If a simple Maxwell model and a simple Voigt model
for viscoelastic flow are loaded at time 7, held for a certain
time 71, and then unloaded, what is different about their
responses during the loading and unloading processes? Also,
what is different about the final state of the two mechanical
models? Sketch a plot of strain vs. time for both cases to
illustrate your descriptions.

4.30 Of what phenomenon is tand a measure, and what
does it mean when tand is large?

Practice

4.31 A study of creep in ODS-Al alloys™* found the
following relationships between the minimum creep strain
rate and the rupture life. Determine the Monkman-Grant
constants m, B, and Cy;¢ using units of hours and %/hr, then
predict the rupture lifetime in hours for a minimum creep
rate of 1.0 x 1072 s~ 1. How does this value of Cjs¢ com-
pare to typical values for other materials?

Strain Rate s~ tr (ks)
3.00x 10~8 183.7
9.00 x 10~8 55.3
1.00 x 1077 72.6
430x 108 133.4
5.90x 107 884
1.20x 107 13.8

4.32 Use the diagram below to answer the following
questions.

1000
——454C
— —538C
---621C
G 100 — 7
o .
T
g R
A R
S
9 =—-—-" .-
°c - _.--
s | ____.-
® 104 ———z==——m==="
1 T "
0.01 0.10 1.00
SS Creep Rate (271000 h)
a. Determine the value of the creep exponent “n” at

454°C (850°F).

XD, C. Dunand, B. Q. Han, and A. M. Jansen, Metal. Mater. Trans. A 30, 829 (1999).



b. What mechanism or category of mechanism is
implied by this “n” value—diffusion or disloca-
tion creep?

c. Without calculating “n” for the other two tem-
peratures, is “n” a strong function of temperature?

How do you know?

d. Determine the activation energy for creep in units
of kJ/mol, assuming that “n” is not a strong

function of temperature (regardless of reality).

4.33 For a certain high-temperature alloy, failure was
reported after 4100 hrs at 680°C when subjected to a stress
level of 270 MPa. If the same stress were applied at 725°C,
how long would the sample be expected to last? State any
assumptions you must make to allow you to make this
determination.

4.34 Construct a Larson-Miller plot using the following
creep rupture data, assuming C = 20.

Temp. Stress Rupture Temp. Stress Rupture

(°0) (MPa) Time (hr) °C) (MPa) Time (hr)
650 480 22 815 140 29
650 480 40 815 140 45
650 480 65 815 140 65
650 450 75 815 120 90
650 380 210 815 120 115
650 345 2700 815 105 260
650 310 3500 815 105 360
705 310 275 815 105 1000
705 310 190 815 105 700
705 240 960 815 85 2500
705 205 2050 870 83 37
760 205 180 870 83 55
760 205 450 870 69 140
760 170 730 870 42 3200
760 140 2150 980 21 440
1095 10 155

a. Plot the data twice: (i) with axes of Stress vs. the
LM parameter in thousands of hours, and (ii) with
axes of Log(Stress) vs. the LM parameter in
thousands of hours. Fit a second-order polyno-
mial to the second plot.

b. Using your fitted line, determine the expected life
for a sample tested with a stress of 240 MPa at
650°C, and with a stress of 35MPa at 870°C.
(This may be easiest if you add a curve to the first
plot based on the polynomial fit to the log(stress)
data.)

c. What is the maximum operational temperature
such that failure should not occur in 5000 hr at
stress levels of 140 and 420 MPa, respectively?

4.35 A 200-mm-long polypropylene rod, with a rectangu-
lar cross-section that is 20 mm by 4 mm, is subjected to a

Problems 247
tensile load of 300 N, directed along its length. If the rod
extends by 0.5 mm after being under load for 100s, deter-
mine the creep modulus.

4.36 Calculate the typical relaxation time for silicate glass
and comment on its propensity for stress relaxation at room
temperature. E~70GPa and m~1 x 1012GPa-s (1022
poise).

4.37 The deformation response of a certain polymer can
be described by the Voigt model. If E=400MPa and n =2
x 10'2 MPa-s, compute the relaxation time. Compute &(¢)
for times to 5T when the steady stress is 10 MPa. How much
creep strain takes place when =T and when = 00?

Design

4.38 A solder joint between a computer chip connector
and a printed circuit board is typically subjected to shear
due to thermal expansion differences. For optical commu-
nications devices (e.g., those that use lasers to transmit
information), dimensional stability is critical or the com-
ponents will lose alignment. A crude approximation of a
circuit board, solder joint, and connector is shown here
with the shear load indicated by arrows. For this problem,
assume that the critical joint is 0.5 mm thick, 2 mm wide,
and 4 mm long.

connector

-
printed circuit board

a. If the component is designed to last for five years
under ordinary use, which is likely to be more
important solder data: steady state creep rate or
rupture life? Explain briefly.

b. It is found that accelerated creep tests of a
particular solder give the following results. If it
is known that the stress exponent for this partic-
ular solder is n=06, calculate the steady-state
creep rate at a stress level of 100MPa and a
temperature of 100°C.

Shear Stress (MPa)  Strain Rate (s™!) T (°C)
70 1x107° 190
70 2.5% 1073 225

¢. What assumption did you make about the nature
of the creep at 100, 190, and 225°C in order for
the calculation in part (b) to be possible? How
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could you check the validity of this assumption
experimentally?

d. If the maximum allowable shear displacement of
the connector relative to the printed circuit board
after 3 years of continuous use is 0.25 pm, will
the joint meet the design criteria?

e. Possible solder materials for this application in-
clude Indium, Lead-Tin alloy, Bismuth-Tin alloy,
and Tin-Silver-Copper alloy. Without doing any
mechanical testing or looking up any mechanical
data on these metals, how could you make a reason-
able attempt at rank ordering them from slowest
creep rate to fastest creep rate at 100°C? Don’t
actually make thelist; justexplain whatinformation
you would need and how you would use it.

4.39 A 200-mm-long polypropylene rod, with a rectangu-
lar cross-section that is 20 mm by 4 mm, is subjected to a
tensile load of 300 N, directed along its length. If the rod
extends by 0.5 mm after being under load for 100s, deter-
mine the creep modulus. How does this value compare with
the typical static modulus for polypropylene, and what does
the comparison imply about the amount of creep that has
probably taken place in 100s?

4.40 A superalloy gas turbine component was originally
designed to operate at temperatures up to 760°C and exhibited
astress rupture life of 900 h under this operating condition. An
updated design calls for a thermal barrier coating to be added
to the same component to allow engine operation under the
same conditions, but with an increase in reliability. If an
increase in rupture life to 1800 h is desired, what temperature
differential between the inside and outside of the component
must be achieved by the addition of the TBC?

4.41 A 10-cm-long cylindrical rod of polypropylene is
subjected to a tensile load of 550 N. If the maximum
allowable strain of 2% is experienced no earlier than after
four months of service, what is the minimum required rod
diameter? Also, what is the rod diameter after the four-
month service period? You will find the plot in the next
problem to be useful.

4.42 For safe and reliable operation, a certain poly-
propylene pipe must withstand an internal pressure of
0.5 MPa for a minimum of three years. If the pipe diameter
is 100 mm, what is the minimum necessary wall thickness to
ensure that the pipe will not experience a strain greater than
1.3%? To solve this problem, use the accompanying graph

that reveals the room temperature creep response for poly-
propylene. (R. J. Crawford, Plastics Engineering, SPE,
Brookfield Center, CT (1981). Reprinted by permission.)
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4.43 What are the dictionary definitions and the etymol-
ogies of the words isochronous and isometric?

4.44 Using information acquired from the National Trans-
portation Safety Board (NTSB), explain the role that epoxy
creep played in the 2006 collapse of a 3-ton concrete ceiling
panel in Boston’s Fort Point Channel Tunnel. What could have
been done to prevent this disaster?
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Chapter 5

Fracture: An Overview

5.1 INTRODUCTION

On January 15, 1919, something frightening happened on Commercial Street in Boston. A
huge tank, 27 meters in diameter and about 15 meters high, fractured catastrophically, and over
7.5 x 10° liters (2 x 100 gallons) of molasses cascaded into the streets.

Without an instant’s warning the top was blown into the air and the sides were burst apart. A
city building nearby, where the employees were at lunch, collapsed burying a number of victims
and a firehouse was crushed in by a section of the tank, killing and injuring a number of
ﬁremen.1

On collapsing, a side of the tank was carried against one of the columns supporting the
elevated structure [of the Boston Elevated Railway Co.]. This column was completely sheared
off . . . and forced back under the structure . . . the track was pushed out of alignment and the
superstructure dropped several feet. . . . Twelve persons lost their lives either by drowning in
molasses, smothering, or by wreckage. Forty more were injured. Many horses belonging to the
paving department were drowned, and others had to be shot.”

The molasses tank failure dramatically highlights the necessity of understanding events that
contribute to premature fracture of any engineering component. Other manufactured structures
are susceptible to the same fate. For example, several bridges have fractured and collapsed in
various countries throughout the world during the past 50 years, resulting in the loss of many lives.
Two such case histories are described in Chapter 11. In addition, numerous cargo ship failures
have occurred, dating from World War II to the present (Fig. 5.1a). Subsequent studies concluded
that these failures, which broke the vessels in two, were primarily attributable to the presence of
stress concentrations in the ship superstructure and the ability of cracks to traverse welds that
joined adjacent steel plates; the existence of faulty weldments and inferior steel quality were also
cited as contributing factors in the fracture process.3 A number of more recent oil cargo ship
failures have resulted in extensive pollution of rich fishing grounds and coastal resort beach areas.

It is intriguing to note the similar fracture path of the cargo tanker (Fig. 5.1a) with that of
the passenger liner Titanic, which struck a large iceberg during its maiden voyage in 1912 and
sank, causing the death of 1500 passengers and crew members (Fig. 5.1b). The remains of this
vessel were first discovered in 1985 at a depth of 3.6 km beneath the surface of the Atlantic
Ocean during a joint expedition by the French oceanographic agency IFREMER and the Woods
Hole Oceanographic Institute, led by Dr. Robert Ballard and co-workers aboard the Alvin,
Angus, and Argo minisubmarine research vessels.* Garzke et al.’ speculated that the Titanic’s
sinking was caused by a brittle fracture of the steel superstructure as a result of the ship having
struck an iceberg in the North Atlantic Ocean. More recently, Foecke et al.%7 discounted the
brittle steel idea, and instead proposed an alternative failure theory, based in part on new on-site
observations and metallurgical findings taken from ship components. They argued that when
the large iceberg (reported to be three to six times the mass of the ship) smashed along the
starboard (right) side of the ship, hull plates were damaged, and numerous rivet heads were
popped off. The latter condition enabled seawater to gush through six separate ruptured hull
plate seams, thereby hastening the ship’s sinking. Discussion as to why the rivet heads popped
off will be deferred until the reader is familiar with certain metallurgical characteristics
associated with the wrought iron rivets used to join the ship hull’s steel plates (see Section 7.3).
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Figure 5.1 (a) Fractured T-2 tanker, the S. S.
Schenectady, which failed in 1941 3 (Reprinted with
permission of Earl R. Parker, Brittle Behavior of
Engineering Structures, National Academy of
Sciences, National Research Council, Wiley, New
York, 1957.) (b) Bow portion of the Titanic. (Painting
by Ken Marschall, based on photographs taken aboard
Alvin, Angus, and Argo research vessels. (Courtesy of
Dr. Robert D. Ballard, The Discovery of the Titanic.)

Various aircraft and rockets also are not immune to periodic failure. The debris from a
ruptured 660-cm-diameter rocket motor casing is shown in Fig. 11.20, and the failure is analyzed
in Section 11.5, Case 7. Additional fractures of domestic products are shown in Fig. 5.2.

It is quite apparent, then, that the subject of fracture in engineering components and
structures is certainly a dynamic one, with new examples being provided continuously for

Figure 5.2 Fractured components and devices. (a) Ruptured beer barrel; (b) fractured toilet seat.
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evaluation. You might say that things are going wrong all the time. (In all seriousness, the
reader should recognize that component failures are the exception and not the rule.)

5.2 THEORETICAL COHESI