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PREFACE 
Mechanics of Materials (MOM) is a key sophomore/junior level course in many 
engineering majors including civil, mechanical, aerospace, biomedical, mining, and 
optical engineering. It is typically offered as a three-unit course over the period of one 
semester. Over my many years of experience in teaching MOM and many courses 
relevant to MOM, I have found that some of the most popular MOM books suffer from 
the following drawbacks in connection to student learning: 

- They provide	   only	   limited	   resources	   to	   students	   requiring	   further	   assistance	   in	  
comprehending	   the	  material.	   If,	   for	   example,	   a	   student	   is	   unable	   to	   understand	   a	  
certain	  concept	  or	  chapter,	  even	  after	  going	  to	  class	  and	  studying	  the	  textbook,	  the	  
only	   alternative	   is	   visiting	   the	   instructor,	   or	   external	   tutoring,	   both	   of	   which	   are	  
often	  difficult	   or	   inconvenient.	   Some	  books	   that	   offer	   supplements	   such	   as	   videos	  
and	  web-‐based	  aids	  have	  the	  drawback	  that	  the	  student	  has	  to	  “disengage”	  from	  the	  
book	  and	  visit	  relevant	  resources	  with	  no	  direct	  connection	  to	  the	  book	  material	  

- Individual	  classroom	  lectures	  do	  not	  correspond,	   in	  detail,	   to	  specific	  sections	  and	  
chapters	   in	   the	   textbook.	   Thus,	   students	   that	   do	   not	   comprehend	   the	   material	  
during	  classroom	  time,	  often	  have	  difficulty	  in	  identifying	  what	  sections	  of	  the	  book	  
were	   covered	   and	  what	   should	   be	   studied.	   This	   problem	   is	   particularly	   acute	   for	  
students	  that	  stay	  behind	  in	  the	  course	  due	  to	  illness	  or	  other	  reasons. 

 
About the Book 
This book is offered in either electronic or printed version and offers: 

- Clearly	  identified	  material	  broken	  into	  individual	  study	  modules	   
- Individual study modules that correspond to specific class lectures or weekly 

course material 
- A	  printed	  version	  of	  the	  book,	  intended	  for	  (a)	  the	  student	  to	  study	  on	  his/her	  own	  

schedule	  and	  pace	  without	  disturbances;	  (b)	  the	  student	  to	  bring	  in	  class	  so	  that	  its	  
correspondence	   to	   the	   instructor’s	   teaching	   can	  be	   identified	   in	   a	   live	   fashion;	   (c)	  
the	  student	  to	  take	  additional	  notes	  and/or	  highlight	  material	  in	  the	  printed	  version	  
while	  the	  instructor	  presents	  the	  material 

- An electronic version	  of	  the	  book	  that,	  in	  addition	  to	  being	  available	  continuously	  in	  
students’	  laptop,	  it	  is	  intended	  for	  (a)	  students	  to	  access	  in	  order	  to	  comprehend	  the	  
material	  better	  and	  link	  directly	  to	  additional	  exercises,	   including	  interactive	  ones,	  
movies,	   and	  other	   electronic	   supplements;	   (b)	   the	   students	   to	   have	   the	   electronic	  
material	   ready	   in	   order	   to	   effectively	   link	   to	   other	   students,	   discussions	   and	  
discussion	  groups,	  access	  additional	  resources	  and	  links.	  
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Preface to the Second Edition 
The second edition includes many more homework assignment problems, more 
examples presented in chapters, improved figures, and errata present in the first edition 
have been corrected. 
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Module 1: Introduction, Normal Stress

MECHANICS OF MATERIALS

Introduction

Mechanics  of  materials  (MOM) is  the  area  of  engineering dealing with  the mechanical
behavior  of  materials,  including  their  strength.  A  prime  objective  is  to  determine  the
stresses,  strains,  displacements in structures or structural  components when subjected to
external loads.
       Examples of structures are cranes, buildings, bridges, airplanes, machines, and ships;
examples of structural components are cables, beams, airplane wings, turbine blades, engine
pistons, and bolts. MOM is based on understanding the physical properties of materials and
provides a foundation to many essential techniques that allow engineers to design structures
(civil, mechanical, aerospace, mining, etc.), predict failures, and estimate safety margins. A
basic MOM course provides the tools for determining stresses, strains, and displacements in
structures subjected to applied loads. Engineering design concepts and basic safety concepts
are also integrated into the course.
       Equivalent course/subject titles are: "Solid Mechanics," "Strength of Materials," and
"Mechanics  of  Deformable  Bodies."  Independently  of  the  title,  they  all  extend  the
equilibrium concepts learned in statics to determine the stresses, strains and displacements
in structures or structural components.  The problem statement in the following explains
MOM in a general context.

Problem statement and MOM

Consider a structure. An example would be a bridge or an airplane, which may include a
structural component (e.g., one of the bridge's columns or one of the airplane's wings), or
even a subcomponent (e.g., a rivet in the wing). Other examples include structures as small
as microchips and their subcomponents, or as large as an offshore platform or a ship. We
often use the term "body" to designate an engineering structure or structural component.

A general mechanics of materials problem can be defined as follows.

Figure A-1 A structure (body) externally
supported and subjected to loads.

For the structure (body) shown in Figure A-1
the following is given:
• The geometry of the body (structure)
• The type and position of the external supports
• The external load configuration, i.e., the
position and type of load
• The material(s) the body is made of
Example: A wood truss of given dimensions,
loaded by a given vertical load at C, and
supported by a pin at A and a roller at D

MOM addresses how to evaluate:



Figure A-2 A wood truss.

• All displacements, e.g., deflections in the
truss
• Stresses and strains at every truss component
• Stresses and strains at all connections
• The failure safety margins of the structure for
the given loads and supports

 



Moodule 1: Introduction

This MOM course contributes primarily to the students' knowledge of engineering topics,
and provides analysis and design experience. The difference between analysis and design
can be efficiently explained by an example. Consider the development of a crane to perform
specific tasks, namely moving certain types of loads from one point to another. The design
of the crane involves defining its geometry in space, the materials to be used as components
of the crane, and the dimensions of the components. The analysis of the crane involves
calculation of deformations, strain, and stresses in the structural components to ensure the
adequate and safe operation of the crane during its lifetime.

The  output  of  a  design  is  usually  a  set  of
drawings and specifications that should produce a
working  product  such  as  the  crane  mentioned
above, with very little final adjustment needed. If
significant rework is required in the construction,
startup, or manufacturing phase, the engineer did
not  do  an  acceptable  job,  or  could  not  foresee
potential  problems  with  the  analysis  of  the
product.  This  ability  to  foresee  potential
problems is a key skill for an engineer.

Points to be understood

Before the MOM course is completed, it helps to know an answer to the following question:
what is the difference between a MOM problem and an engineering design problem? The
answer to this is that MOM addresses mostly analysis with little design content. However, it
provides  the  basic  background needed for  design,  typically  taught  in  courses  following
MOM.
        This example should help to further clarify the difference between analysis and design.
Consider, as an example, a problem of choosing the right material for a specific bridge or
for an automotive engine. Is that problem within the context of MOM? The answer is that
choosing the material for a particular structure is part of the design process. The analysis
part will have the properties of the material chosen as parameters.

Background/prerequisites

The following list  of  topics  furnishes the material  a  student  needs to have mastered or
appropriately reviewed, most of which are typically taught in a statics course:

• Use of significant figures and units (both SI and US customary)
• Force and moment vectors
• Reactions at supports of simple structures
• The use of equilibrium equations
• The idea of statically determinate and statically indeterminate problems
• Centroid of composite areas; moments of areas
• Area moments of inertia



Module 1: Introduction
MOM Topics

An  engineer  with  extensive  background  on  MOM  can  analyze  complex  structures  or
structural components. Some structures require use of numerical techniques and computer
programs for their analysis. However, simple structures allow for the development of the
concepts and application of the seconcepts to analysis. Understanding of the mechanical
behavior of simple structures is fundamental to MOM and also finds applications. Thus, this
course addresses the following MOM problems.
        When axial load is applied on a prismatic bar (Fig. A-3), we have a so-called axially
loaded member, bar or rod. An example is a cable or a truss member. Bars are relatively
simple to analyze within the context of MOM.

Figure A-3 A bar or rod.

When torsional load is applied on a prismatic bar (Fig. A-4) we have a so-called shaft in
torsion problem. Analysis of torsion of shafts of circular or hollow cross section is easier
than that of other cross sections.

Figure A-4 A torsional
shaft.

When bending load is applied on a prismatic bar (Fig. A-5) we have a beam bending
problem. Analysis of bending of slender beams is easier than in non slender ones.

Figure A-5 A beam.

Often a combined load is applied (Fig. A-6), and MOM analysis of such cases calls for the
combined application of methods for bars, shafts, and beams.

Figure A-6 Combined load,
bending and torsion.

When compressive load is applied in a bar, there is always the problem of buckling. Bars
under compressive load are called columns. MOM analysis of columns is important and



typically studied as a stability of structures problem.
        Thus, the terms bar, shaft, beam, and column are relevant to the type of external load
imposed rather than to the shape or material of these (uniaxial) structures. After studying
such "simple"  structures,  the  multi-dimensional  nature  of  stress  and strain  is  examined,
which leads to stress and strain transformation in space and graphical representation of such
transformations using the so-called Mohr's circle. This is followed by the study of "special"
structures such as spherical and cylindrical vessels.



Module 1: Normal Stress and Strain
Two fundamental concepts in mechanics are those of stress and strain. A simple example
illustrating these concepts is shown in Figure B-1. Pressure, for example the air pressure in
an automobile tire, is force per unit area. The units of pressure are N/m² or psi. Similarly to
pressure, axial or normal stress is defined as the "pressure" in a solid member. In particular,
axial or normal stress, symbolized in engineering by the Greek letter sigma (σ), is defined
as the force perpendicular to the cross sectional area of the member divided by the cross
sectional area. Thus, for a cable supporting weight W or a force P, in general, the stress is
defined as the force per area, σ = P/A, where A denotes the cross sectional area of the cable.

Figure B-1 A cable, in its load-free
state (left), supporting weight W
(middle), and a section at some point
along its length (right).

Due to W or P, the cable experiences elongation (δ). The elongation in this case is also the
displacement of the bottom point of the cable, since the displacement of the fixed top is
zero.  The  elongation  will  be  used  in  the  following  to  define  the  strain  in  the  cable.
Furthermore, the cable transfers W to the support at the top, and this creates stress in the
cable at any section along its length L. The cable can be considered as a prismatic bar, i.e., a
straight structural member showing the same cross section throughout its length, subjected
to an axial force (weight W or force P in general). The force W or P is used to define the
stress  in  the  cable.  Normal  stresses  are  tensile  when the  force  P  stretches  the  bar  and
compressive when P compresses the bar. It is customary in most engineering applications to
have a sign convention assigning tensile stresses as positive and compressive stresses as
negative.

It is important to note that the definition σ = P/A assumes that the stress distribution in the
cross  section  is  uniform.  The  validity  of  this  assumption  is  examined  in  detail  in  the
following.



Module 1: Normal Stress and Strain
It is crucial to understand the concept of stress and strain as applied to a bar, thus defined as
normal stress and normal strain. Consider a bar, which also forms a structural member, with
constant cross sectional area along its length, supported (fixed) at one of its ends as shown
in Figure B-2. The cross section of the bar can be rectangular, square, circular, etc. The bar
is subjected to tensile load, P.

Figure B-2 A bar fixed at one end without any
external force (top). The same bar subjected to
external force P (middle). An imaginary part
of the loaded bar (bottom) after a cut
transverse to the main axis of the bar. The area
of the cut is termed the cross sectional area of
the bar. The force P is equilibrated by the
stress σ.

Because of the external force P, the bar stretches, i.e., elongates by an amount, δ.  Also,
since the bar is  in equilibrium, internal forces,  denoted as σ,  must act at  the imaginary
section. The stress and strain in the bar can now be defined. Before doing so, it is noted that
the  elongation  δ  in  the  figure  is  exaggerated.  Usually  in  engineering  structures
displacements are small. For example a 1-m-long steel bar will experience displacements of
less than 1/2cm under working conditions. The elongation δ is, by sign convention, positive
when the bar is subjected to tensile load, which stretches the bar. Similarly, δ is negative
when the bar is subjected to compressive load which compresses the bar. In general, the
elongation of a segment of the bar is equal to the segment's length divided by the total
length L and multiplied by the total elongation δ. Thus, for example, half of the bar (L/2)
elongates/compresses by 1/2 δ, one-quarter of the bar (L/4) elongates/compresses by 1/4 δ,
etc. This makes the definition of elongation/contraction per unit length convenient, which is
precisely the normal strain defined in detail in the following.

Now imagine a "cut" as shown in Figure B-2. Next we consider the equilibrium of this piece
of material.



Module 1: Normal Stress and Strain

Equilibrium of the piece of the bar shown in Figure B-2 must be satisfied.  The arrows
shown at the left edge are actually force per unit of cross sectional area, and they are the
so-called internal stresses, σ. More precisely, for equilibrium of the piece of the bar in the
horizontal direction, the force acting at the right edge, P, should be equal to the force acting
at the left edge. The latter is equal to the stress σ (units of force per area) multiplied by the
area (units of area) The net result for the force acting on the left edge is σ A. It is repeated
herein that σ denotes the force per unit of cross sectional area. For equilibrium, it should
hold that P = σA from which it follows that

σ = P
A

This is the definition of stress, i.e., force P divided by the area A over which P acts.

Sign convention and units of stress

When P stretches the bar, the resulting stresses are tensile (or in other words, thebar is under
tension)  and σ  is  considered,  by convention,  positive.  When P compresses  the bar,  the
resulting stresses are compressive  (or in other words, the bar is under tension) and σ is
considered, by convention, negative.

The above equation is valid as long as the the stress is uniformly distributed over the cross
sectional area A. For bars of uniform cross section in their longitudinal direction loaded at
their centroid (the force P is applied at the centroid) this is true. When this is not the case,
the definition of stress σ cannot be defined over the entire cross section but is rather defined
as a local quantity of force applied over an infinitesimal area ΔA. For example, if  P is
applied eccentrically to the centroid of A, the stress distribution ceases to be uniform over
A. This case will be examined later when studying beams. As another example, when the
cross sectional area is not uniform in the longitudinal direction, possibly due to the presence
of voids or cracks, the stress distribution also ceases to be uniform over the cross section.
The concept of uniform and non uniform stress distribution is examined throughout the
course.

As far as the units of stress are concerned, we have:

σ = Force
Area = Newtons(N)

m2   or    Pounds
inch2   

Units used in engineering are the Pascal (symbolized as Pa) and the psi (pounds per inch).
By definition:

1 Pa = 1 N/m2 1 psi = 1 lb/in2

Also, the following "derivatives" are commonly used:



1 kPa = 1,000 Pa 1 MPa = 1,000,000 Pa 1 GPa = 109 Pa 1 ksi = 1,000 psi

 

Example: Consider a cylindrical bar of radius 2 cm (0.02 m) subjected to a tensile load of
100 kN along its axis.

The stress on each cross section is: σ = P
A = 100 kN

π(0.02)2 = 79,577.5 kPa

 



Module 2: Non-uniform Normal Stress, Normal Strain

Stress is defined as force per unit area. As such, it can be defined for an arbitrary area, e.g., a
very small or very large area. Therefore, a more precise definition of stress is similar to σ =
P/A, but it is defined for an infinitesimally small area, i.e., for ΔA 0. Thus,

σ = lim
ΔA → 0

  ΔF
ΔA

is a point-wise quantity, and the equation σ = P/A should be written more precisely as

σave = P
A

where ave denotes average. As mentioned before, for a bar of uniform cross section along
the bar's longitudinal direction and for external load P applied at the centroid of the cross
section, the stress distribution is uniform. Obviously, in this case, σ = σave = P/A, i.e., for
uniform  stress  distribution.  For  bars,  we  assume  this  is  the  case  (uniform  stress
distribution) unless specifically stated otherwise.
       The definition of stress σ = P/A, is obviously valid up to the point where the bar will
break. The maximum stress the bar can take before breaking is called ultimate stress, σu,
and it is strongly material dependent. For example, for a certain aluminum alloy σu= 310
MPa, or 45 ksi, while for some plastics σu is usually less than 80 MPa (12 ksi).

Example: The bar shown below has a circular cross section of radius equal to 2 cm. Is the
load the bar is subjected to, i.e., an axial force P = 100 kN, below the maximum load the bar
can withstand, provided the ultimate stress of the material σu is 150,000 kPa?

The maximum load this bar can sustain, Pmax, is that load that creates a stress equal to the
ultimate stress. Then,

σu = 150,000 =   Pmax
A = Pmax

π(0.02)2   

which yields Pmax = 188.5 kN. Thus, since 100 kN is less than 188.5 kN, the load of 100 kN
is below the ultimate load the bar can sustain.

Non uniform stress

Figure B-3 shows schematically the definition of stress at a point, and the notion of uniform



and nonuniform stress at a cross section. Actually, a point here implies a small infinitesimal
area, ΔA, where a force is applied on it, as shown in Figure B-3 (a). In Figure B-3 (b), all
forces in each infinitesimal area ΔA are equal to each other, and this defines a uniform state
of stress. In Figure B-3 (c) the force varies in each ΔA, thus we have a nonuniform state of
stress.

  

Figure B-3 (a) Schematic of the definition of stress over an infinitesimally small area ΔA,
(b)  an  example  of  uniform  stress  distribution  over  an  area  A,  (c)  nonuniform  stress
distribution over an area A.

       As is obvious, the stress distribution in Figure B-3 (b) (uniform) results in a force acting
at  the  centroid  of  the  cross  section.  The  stress  distribution  in  Figure  B-3  (c)  however
(nonuniform) results in a force acting eccentric to the centroid of the cross section. This
holds true not only for cross sections of rectangular shape but for every shape of cross
section.

  P = ∬
A

dF = ∬
A

σdA

However,  calculation of such integrals is  often not necessary in engineering mechanics.
Typically the nonuniformity is of known shape, therefore calculation of such integrals is not
necessary for the evaluation of a volume and its centroid.

Figure B-4 Details of the normal stress σx at two material elements in a hollow cylindrical
bar subjected to load P. The cross sectional area of the bar is A.



	  

The stress σ = P/A in a bar of cross-sectional area A subjected to tensile or compressive load P is 
uniform. Thus, as shown in the "movie" above, the stress is the same at every material element in 
the bar. Also, for a coordinate system where the x-direction is along the bar's length, the stress is 
designated as σ x = P/A. Even though designating the stress for a bar as σ x instead of σ is not 
necessary, for more complex stress states examined later in this course, e.g. two-dimensional or 
three-dimensional stress states, the index designation referring to the axis of action will become 
necessary. 
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designated as σ x=P/A. Even though designating the stress for a bar as σ x instead of σ is not 
necessary, for more complex stress states examined later in this course, e.g. two-dimensional or 
three-dimensional stress states, the index designation referring to the axis of action will become 
necessary. 



Example: Stress in a Cone-Shaped “Structure” 

The cone-shaped “structure” is 
subjected to a force from its own 
weight. Find the normal stress at 
the bottom of the structure. 

Given: g  = 12 gm/cm3 

  

Normal stress is equal to zero at the top 
and is maximum at the base. 
 
Total volume 
 
 
 
Total weight 
 
 
 
 
 

= 200+ 400
3

150

= 30,000×12× 9.81
1,000

σ = W
A

= 3,531.6
400

σ = 8.829 N cm2 = 88.29 KPa

A1 = 200 cm2
 

A2 = 400 cm2
 

150 cm = 30,000 cm3

= 3,531.6 N



Module 2: Non-uniform Normal Stress, Normal Strain

Normal strain

Consider, as in the previous sections, a prismatic bar, i.e. a structural member with constant
area along its length as shown schematically in Figure C-1. In this figure the cross section of
the bar is circular. When the bar is in its free state without any load applied, its length is L
and its cross sectional area is A. When a tensile load P is applied, the bar stretches by δ,
thus δ denotes the change in length, or elongation of the bar.

Figure C-1 (a) A bar without any
external force; bar length is L. (b)
Subjected to external force; the bar
elongates by δ. (c) An imaginary
part of it; the bar is "cut" at a certain
position.

Now we consider an imaginary "cut" as shown in Figure C-1 (b).  The external force P
[Figure  C-1  (c)],  is  equilibrated  by  internal  forces  at  the  cross  section  at  the  cut.  As
discussed in previous sections, the stress in the bar is σ, which, by the way it was defined,
provides a measure of the internal "forces" in a structure ( i.e., the bar shown in the figure).
To describe deformations in the bar the notion of strain is defined as

normal  strain = change  in length
original  length   

or, using the notation δ for the elongation, it follows that

normal  strain = δ
L  

In general, the elongation of a segment of the bar is equal to the segment's length divided by
the total length L and multiplied by the total elongation δ. Thus, for example, half of the bar
(L/2) elongates/compresses by 1/2 δ, one-quarter of the bar (L/4) elongates/compresses by
1/4 δ, etc. This makes the definition of elongation/contraction per unit length convenient,
which is precisely the normal strain defined above. The letter ε is used to designate normal
strain, thus, by definition the normal strain is expressed as



ε = δ
L  

The strain ε is, by sign convention, positive when the bar is subjected to tensile load, which
stretches the bar. In this case, the elongation δ is also positive. Similarly, ε is negative when
the bar is subjected to compressive load, which compresses the bar, where the contraction
δ is also negative.

Sign convention and units of strain

As  mentioned  before,  when  P  is  tensile,  the  bar  is  elongated  and  ε  is  considered,  by
convention,  positive,  or  in  other  words,  the  bar  is  under  tensile  strain.  When  P  is
compressive,  the  bar  is  shortened  (or  the  bar  is  under  compressive  strain)  and  ε  is
considered, by convention, negative. As far as the units of stress are concerned, we have

ε = units  of   length
units  of   length

thus, in engineering terminology, strain is dimensionless.

Example: Consider a steel bar of length L = 2.0 m. When loaded in tension by a load P, the
displacement was measured to be δ = 1.4 mm. (The elongation is exaggerated in the figure!)

ε = δ
L = 1.4 ×10−3  m

2.0 m = 0.0007 = 0.07 %

Normal strain is more commonly referred to in percent than in absolute value. For most
engineering structures the "working" strains are rather small, i.e., up to 2%. Here, "working"
strain indicates the strain under the conditions of loading of a bar,  i.e.,  when loads are
applied.



Example: Normal Strain in a Truss Structure 

P 

x 
A’ 

For the truss structure, determine the normal 
strain in bars AB and AC if point A moves 
2mm to the right. 

300 
300 

A 

D 

C 

0.4 m 

C 

B 

30o 

30o 

A 

P 

 

L
AC

=
0.4

cos30
= 0.462 m

L
DA

= AA'cos30 = 2cos30 = 1.732 mm

L
A'C

= L
CD

+ L
DA'

But, L
AC
≈ L

CD

L
A'C

= 0.462 +
1.732

1000
= 0.464 m

e =
DL

L
=

L
A'C

- L
AC

L
AC

=
0.464 - 0.462

0.462

= 0.00375 m / m

= 0.375%

= 3750 m microstrain( )

2 mm 



1m

1m

4m

D

A

C

B

x

y

20KN

5m

1m

1m

4m

D

A

C

B

x

y

20KN

5m

 
Normal Stress: 1   Bars CE and DE in the truss have a cross-sectional 
area A = 25cm2. Find the normal stress in each of these bars.  
 
 
 
 
 
 
 
 
 
Normal Stress: 2  Given the following 
structure, find and draw: (a) the distribution 
of normal stress σ along the length of the 
structure; (b) the distribution of normal 
strain ε along the length of the structure.  
 
 
 
 
 
 
Normal Stress: 3 Beam AB is vertical and the 20 
kN load is applied in the y-direction. Find the 
stress in the two identical cables, of diameter d = 
2cm. 
 

 

 

 

 

 

 

 
 
 
 
Normal Stress: 4  Find the minimum diameter the steel 
cable BC must have such that the normal stress in the cable 
will not exceed its yield stress,  σ yield = 340 MPa . Consider 

only the stress imposed on t he cable by the 100 kg weight. 
Consider beam ABED as being rigid and pinned at A and D.  
 

 

 
 
 
 

4m 

A C 

B D 
E 

3m 3m 

20k

N 
20k

N 

A 

1.2m 

0.5m 

1m 

0.5m 

100 kg 

C 

B E 

D 

x 

y 

L1=600 mm L2=800 mm 

200 kN 200 kN 

A1=1500 mm2 
E1=70 GPa 

A2=1000 mm2 
E2=200 GPa 



Normal Stress: 5  The tensile force T is equal to the weight of the 
wooden box W = 300 lbs. The weight W is transmitted to the rope 
through 4 cables that are inclined at an angle of 30o to the horizontal 
plane. (a) If all 4 cables have a diameter of 1/4 inch, find the stress in 
each cable. (b) If the cables have an ultimate stress  σU = 60ksi , find the 
safety factor the cables are operating at. (c) What would it mean if the 
safety factor was found to be less than unity?  
 

 

 

 

 

 
Normal Stress: 6  A tow truck is using a cable to pull the classic car up a 15o hill. If the classic car 
weighs 4000 lbs and the cable has a diameter of 3/4 inch, find the stress in the cable when the truck comes 
to a stop while on the hill. Ignore friction between the car and the pavement. 

 
Normal Stress: 7 A mechanical test is performed on a synthetic rubber 
material by imposing tensile load on a pad as the one shown. For a = 3 
inches, h = 1.5 inches, a force P = 180 lbs results in a 0.015 inch vertical 
elongation of the pad. What is the elasticity modulus of the rubber, E?  
 
 
 
Normal Stress: 8 A block of material (E = 2.8GPa, ν = 0.1) 
has dimensions a × b × c  before the tensile load F is 
applied. For a = 50 cm, b = 8 cm, c = 4 cm, and 
F = 1,000,000 N, find the percent change of 
the volume of the block after the load is 
applied. Indicate clearly whether the 
volume increased, decreased, or remained 
the same. Note that the material in this case is a 
flexible one, e.g. a plastic, thus the strains may be 
relatively large. 
 
 
 
Normal Stress: 9  Truss ABC is loaded by P at joint B, and P is oriented at 
an angle θ from the vertical direction as shown. The cross-sectional area of 
bar AB is A and of bar BC is 2A. Find the angle θ such that the normal 
stress in bar AB will be the same as the normal stress in bar BC. 

P 

h 
a 

a 
P 

b 

!a!a!

!b!

!c!

c 

�!�!

4ft  

A 

B 
C 3ft 

P θ 



Module 3: Bar Behavior and Hooke's Law

Normal stress versus normal strain: stress-strain diagrams

In previous sections,  the normal stress  σ  and normal strain ε  were defined.  In order  to
determine the mechanical behavior of materials, typically experiments are performed where
small specimens are placed in a testing machine, as shown in Figure D-1. Load is applied
and measurements of deformation and load are taken.

Figure D-1 A mechanical testing machine.
The  arrow  points  to  the  sample  being
tested.

So-called dog-bone specimens (Figure D-2) are tested in tension by pulling the two ends
through large grips and measuring the applied load P (using load cells) and the deformation
δ (using extensometers). Elongation is measured over the so-called gage length L. While
load P in a bar increases, the elongation of L(δ) increases. Since the cross sectional area A
and length L are known, determination of σ  and ε  is straightforward through use of the
standard  relations,  σ  =  P/A,  ε  =  δ/L.  Thus,  by  continuously  increasing  P  and  taking
measurements, the material stress-strain response can be determined. The normal stress is
related to the normal strain, and the exact relation is strongly dependent on the material.

Figure D-2 Typical shape of dog-bone
specimens subjected to load P. L denotes the
gauge length.

Let us compare two bars of initially identical size and shape. The first bar is made of a
"flexible" material, e.g., rubber, and the second one is made of a "stiff" material, e.g., steel.
Naturally, when the two bars are subjected to the same load P, one expects the strain in the
first one to be greater than in the second one. In other words, the stress-strain relation is



characteristic of each material. Figure D-3 shows a schematic of the deformed shape of the
two  bars  of  initially  identical  shape  and  size;  note  that  the  flexible  material  deforms
significantly more than the stiff one.

Figure D-3 Deformed shape of two
specimens of initially identical shape and
size: top, flexible material; bottom, stiff
material. The gauge lengths are L1 and L2

From the experiment, the stress σ versus strain ε diagram can be plotted, which contains
information on the mechanical behavior of the material tested.
       Experiments of the type described above are typically carried out until the bar ruptures.
Figure D-4 shows typical stress-strain (σ versus ε) curves for various materials. The "x" in
the function graphs represents failure of the specimen. Ductile metals like structural steel
are able to undergo large permanent strain before failure, after reaching a yield stress (i.e., a
point of noticeable increase in strain with a small increase in stress). Many aluminum alloys
also show ductile behavior,  yet  they do not have a clearly defined yield point.  Rubber
maintains a linear relationship between stress and strain up to relatively large strains as
compared to metals. Materials that fail in tension at relatively low values of strain, with only
a little  elongation after  the proportional  limit,  are classified as brittle.Examples include
ceramics, concrete, glass, cast iron, etc.

Figure  D-4  Stress-Strain  curves  (schematic)  for
some engineering materials: (a) structural steel; (b)
certain  aluminum  alloy;  (c)  a  brittle  ceramic
material; (d) hard and soft rubber.

Figure D-5 shows the details of a stress-strain diagram. There is an elastic region in which
the stress is directly proportional to the strain. The slope of the straight line is called the
modulus of elasticity, E . The point at which the elastic region ends is called the elastic
limit. The elastic limit is the point at which permanent deformation occurs. That is, after the
elastic limit, if the force is taken off the sample, it will not return to its original size and
shape; permanent deformation has occurred. The proportional limit is the point at which
the deformation is no longer directly proportional to the applied force (Hooke's law (see



modules ahead) no longer holds). Although these two points are slightly different, we will
treat them as the same in this course. At point 2 (the yield point), considerable elongation
of the test specimen occurs with no significant increase in loading. This is called yielding
and the corresponding stress is termed yield stress. Beyond point 2 the material becomes
plastic since it deforms irreversibly. At point 3 the maximum stress is called the ultimate
stress, and further stretching would lead to fracture at point 5 the failure point where the
sample fails.  If  the specimen is unloaded in while the stress exceeds the yield stress,  it
unloads on a path as that of point 3 to point 4, i.e., at a slope equal to the elasticity modulus
E.

Figure  D-5  Detailed  stress-strain  diagram  showing  different  regions  and
material behavior in those regions.

Often,  material  stress-strain  response  is  categorized  as  shown  schematically  in  the
following. Usually, the complete response to failure is not utilized in engineering analysis
and design. For many problems, knowing the response for a small amount of strain, i.e., up
to the proportionality limit in Figure D-6(a), suffices; here the slope of the (σ-ε) curve is E,
and is called Young's modulus or modulus of elasticity. The arrows in the figure indicate the
behavior under loading or unloading.

The vast majority of engineering analysis and design problems consider the stress-strain
response to be linear, provided, of course, that the yield (end of linearity in the figure) or
failure stress or strain is never exceeded. Therefore, this linear response pertains to what is
termed Hooke's law. More details are given in the following section. In general, Hooke's
law relates stress σ to strain ε in a linear fashion. Figures D-6(b), (c), (d) show various and
"typical" stress-strain relations, and the arrows indicate loading or unloading behavior.



Figure D-6 Schematic of some typical stress-strain
relation "categories": (a) linear elastic, (b)
nonlinear elastic, (c) elastic plastic, (d) elastic
perfectly plastic. Plastic response refers to the
process of "plastic flow" within a material. A
material is characterized as plastic if the unloading
response is different than the loading one, i.e.,
sections (c) and (d) of the figure.

Terminology relevant to mechanics of materials:

Elasticity is a property of a material that allows the material to follow the same curve back
to the origin in a stress-strain diagram. The material returns to its original dimensions during
unloading.

Plasticity is a characteristic of a material by which it undergoes inelastic strains beyond the
strain at the elastic limit. On the stress-strain curve, we have the elastic region followed by
the plastic region.

Creep is typically defined as a characteristic of a material to undergo additional stains when
loaded for long periods of time. It is the gradual change in strain after loading has taken
place over a period of time.

Ductility is the property of a material that enables it to be drawn out or elongated to an
appreciable extent before rupture occurs.

Brittleness is the property of a material that is opposite to ductility. Material, having very
little property of deformation, either elastic or plastic is called Brittle.

Stiffness is the property of a material that enables it to resist deformation. Flexibility is the
inverse of stiffness.



Module 3: Bar Behavior and Hooke's Law
Most engineering materials show a linear stress-strain response, for relatively small strains,
i.e.,  well below the strain at failure. In this case, we have a linear stress-strain relation,
termed Hooke's law. Robert Hooke, who in 1676, stated that the linear relationship between
stress and strain for a bar in simple tension or compression is expressed by the equation σ =
Eε, where E is the constant of proportionality called the modulus of elasticity. It isoften
referred to as Young’s modulus, after scientist Thomas Young (1773-1829), who introduced
the idea of the modulus of elasticity. Thus: Hooke's Law linear stress-strain elation states
that, according to Figure D-6(a) in the previous page:

σ = Eε  

where E is the Young's modulus of the material. The units of E are those of stress, i.e., Pa in
SI units and psi in customary units. Figure D-7 shows schematically Hooke's law as a stress
versus  strain  linear  relation.  Note  that  normal  stress  is  always  accompanied  by  normal
strain. In subsequent chapters it will be shown that shear stress is always accompanied by
shear  strain  (to  be  defined).  As  known  from  physics,  the  product  of  a  force  and  the
displacement it produces on a body is the work done. In other words, it is customary to say
that  force  and  displacement  are  conjugate.  Similarly,  it  will  be  shown  in  subsequent
chapters that stress and strain are also conjugate, i.e., their product is work or energy.
       The equation σ = Eε relates only to the longitudinal stresses and strain developed when
a bar is subjected to tension or compression, i.e., under uniaxial stress conditions. For more
complex states of stress, such as those found in most structures and machines, the so-called
generalized Hooke's law applies, which relates three-dimensional state of stress to the state
of strain. Such topics are examined later in the course.

Figure D-7 Hooke's law (σ = Eε) shown as a graph.
The linear curve is valid up to the yield stress of a
material. The stress a bar is subjected to is

σworking= Pworking/A

where Pworking is the load the bar is subjected to and
A is its cross sectional area.

The value of E for most engineering materials can be found in tables (see Appendices) since
they have been tested experimentally. The value of E for most materials is high as compared
to the yield or ultimate stress. For steel, E is approximately 210 GPa or 30,000 ksi, while E
for  aluminum alloys is  about  1/3 of  these values.  Thus steel,  in  general,  is  stiffer  than
aluminum alloys. Soft materials like plastics and rubber have much lower values of E. For
example, it is easy to stretch a rubber band, yet not as easy to stretch a steel wire of the



same diameter. For most engineering materials, the value of E in tension and compression is
approximately the same.

The following relevant definitions are used often in engineering.

Extensometer is used to measure extension (stretch) of a bar, i.e., an instrument used to
measure small increments of deformation.

Gauge length is the original length of the sample of which extension calculations are made.
It is normally less than the full specimen length and is user defined. The gauge length is
sometimes taken as the distance between the grips.

Static test  is  a test  examining the mechanical behavior of a material  where the load is
applied slowly, i.e. at a slow rate. As opposed to that, in a Dynamic Test the load is applied
at a high rate.

In a one-dimensional system, such as a uniaxially loaded bar, stress is simply equal to the
applied force divided by the cross sectional area of the bar. The above definition of stress, σ
= F/A, where A is the initial cross sectional area prior to the application of the load, is
called engineering stress or nominal stress. However, when any material is stretched, its
cross sectional area reduces by an amount that depends on the Poisson's ratio of the material
(see following module). Engineering stress neglects this change in area. The stress axis on a
stress-strain  graph  is  often  engineering  stress,  even  though  the  sample  may  undergo  a
substantial  change  in  cross  sectional  area  during  testing.  True  stress  is  an  alternative
definition  in  which  the  initial  area  is  replaced  by  the  current  area.  In  engineering
applications,  the  initial  area  is  always  known,  so  calculations  using  nominal  stress  are
generally easier. For small deformation, the reduction in cross sectional area is small and the
distinction between nominal  and true stress is  insignificant.  This is  not  so for the large
deformations  typical  of  materials  such  as  rubbers,  plastics,  elastomers,  etc.,  when  the
change in cross sectional areas can be significant. In uniaxial tension, true stress is greater
than the  nominal  stress,  since  the  cross  sectional  area  decreases  with  deformation.  The
converse holds in compression. Similarly to the true stress, a true strain measure can be
defined, where the deformed length of a bar is used instead of its original length. Such
definitions  are  used  in  specialized  fields  of  engineering  with  materials  exhibiting  large
deformations, such as elastomers.



Module 3: Bar Behavior and Hooke's Law

Summary of Mechanical Behavior of a Bar

Structural members subjected only to tension or compression are known as bars, prismatic
bars, or axially loaded members. A bar subjected to a tensile or compressive force along
its length experiences normal stress. Normal stress is the result of force acting transverse to
a surface, and is defined as force per unit area. A normal stress is always accompanied by a
normal strain, which is a measure of deformation, i.e., change in length over original length.
Every material has its own stress-strain behavior, which is determined experimentally by
testing specimens in tension or compression. Such behavior is usually complicated for most
materials. However, a great number of problems are solved in engineering by using Hooke's
law, which considers a linear stress-strain behavior, usually for strains (much) smaller than
the strain at failure (rupture) or yield.

Deformation of Bars

Consider a bar of length L, cross sectional area A subjected to load P. We have the following
definitions and experimental result:

σ = P/A Definition of normal stress, i.e., force per unit area

ε=δ /L Definition of strain, i.e., change in length per unit length

σ = E ε
Experimental stress-strain relation, where
E is the Young's modulus or the modulus of elasticity, a
material-dependent property

By  combining  these  three  basic  relations,  i.e.,  by  solving  the  second  one  for  δ  and
substituting the expression for ε from the third one and then the expression for σ from the
first relation, we obtain

Force-displacement relation: 

These  expressions  show  that  elongation  (bar  under  tension)  or  contraction  (bar  under
compression)  is  directly  proportional  to  the  load  P  and  the  length  L  and  inversely
proportional to modulus of elasticity E and cross sectional area A.

Springs: Recall that the action of force P on a spring lengthens (or shortens) the spring by
an amount δ and its final length becomes L + δ (or L minus δ). If the spring material is
linearly elastic, the elongation produced by the load P is directly proportional to δ .  The
proportionality constants are k (for stiffness) and f (for flexibility). Thus, the above relations
clearly indicate that a bar behaves as a linear spring, which is examined in more detail in
the following section.

The Spring Analogy



As is known, the force displacement relation for a (linear) spring is P = kδ, where P denotes
the force the spring is subjcted to, δ denotes the spring elongation or contraction, and k is
the spring stiffness or constant. Figure D-8 shows a spring subjected to tensile load P. Thus,
from the force-displacement relation for a bar shown in the previous section, it can be easily
seen that a bar behaves like a spring and the spring constant or stiffness k is equal to (EA)/L.
This analogy is useful especially in understanding the response of a structure, e.g., a truss, to
external load application.

Relevant Definitions

Stiffness (k): the force required to produce a unit displacement in a bar or spring. From the
force-displacement  relation,  by  setting  δ  =  1,  we  have  the  bar  stiffness  being  equal  to
(EA)/L. Note that stiffness is different than strength. Strength indicates the load that will
break the bar, while stiffness indicates the resistance to deformation when loaded by P.
Flexibility (f): this is defined as the inverse of stiffness, i.e., the displacement produced by a
unit load. It is equal to L/(EA).

Figure D-8 A spring with a spring constant of k is
subjected to a load P.

The usual sign convention calls for elongation being positive and contraction (shortening)
negative.  The  change  in  length  in  engineering  prismatic  bars  is  normally  very  small
compared to their length, i.e., the strains are small as compared to unity. Cables are very
commonly used in engineering (Figure D-9) and they do act as a prismatic bar, with the
restriction that they cannot bear compressive loads. Cables are usually constructed by a large
number of wires wound together using a specific pattern. Their cross sectional area is the
total area of the wires, called the effective area. Cable manufacturers provide properties of
the cables they produce, such as nominal diameter, effective area, weight per linear foot or
meter, and ultimate load the cable can carry.

Figure D-9 Cables behave as bars and are quite common
in many branches of engineering.



Module 4: Poisson Effects, Safety Factor

Poisson effects

In general,  when a bar  is  subjected to tension it  experiences lateral  contraction (Figure
D-10(a)) and when it is under compression it experiences lateral expansion (Figure D-10(b).
The lateral strain is proportional to the axial strain caused by the normal load. The Poisson's
ratio ν  is a material-dependent dimensionless constant which is measured experimentally,
and is defined as

ν = − lateral  strain
axial  strain = −

εlat
ε   

and the lateral strain is expressed as εlat = δlat /d , i.e., change in lateral dimension, δlat per
original lateral dimension, d. Thus, if we consider a coordinate system as that in Figure
D-10, the z-direction being transverse to the “paper,” then the lateral direction is the y- or
the z-direction.  Thus,  ε lat= εx= εy and the subscript  indicates the direction the strain is
measured. Then, the axial strain is actually εx instead of ε so that for a bar loaded in the
x-direction

εy = εz = − νεx  

and

εx = σx
E   

The negative sign has the interpretation that a tensile normal strain induces compressive
lateral stress and vice versa.

Figure D-10 A bar of length L and lateral
dimension d elongates in the axial direction
and contracts in the lateral direction when
loaded by a tensile load P.



Figure D-11 A bar of length L and lateral
dimension d contracts in the axial direction and
expands in the lateral direction when loaded by a
compressive load P.

Poisson attempted to calculate the ν ratio in the early 19th century using a molecular theory
of materials. His and more recent studies agree with experimental observations that show ν
to be in the range 0.25-0.4, for most metals as well as many other materials. As mentioned
above, ν is dimensionless. In the appendix, typical values of ν are shown. Note that cork has
a value of ν almost equal to zero, which is a reason why it is relatively easy to put the cork
back into an already open wine bottle. A compressive load on the cork does not increase its
diameter since ν is practically zero in this case, thus the cork slides into the bottle easily.
Rubber  shows  a  value  of  ν  close  to  0.5,  which  is  also  a  theoretical  upper  limit  for  ν
(advanced mechanics of materials courses examine this upper limit).
       Note that ν is constant for so-called isotropic materials only. An isotropic material has
identical  mechanical  properties in all  directions.  Wood, for example,  is  not  an isotropic
material  since  it  has  different  properties  in  the  direction  of  the  grain  than in  the  other
directions.  Such materials  have more than one Poisson ratio and are examined in more
advanced courses on three-dimensional mechanics of materials. Most metal alloys, rubbers,
plastics,  concrete,  and  ceramics  are  (macroscopically)  isotropic  and  thus  have  a  single
Poisson ratio. In this course we mostly deal with isotropic engineering materials.



Module 4: Poisson Effects, Safety Factor
Stress and factor of safety

A structure is any object that must support or transmit loads. To avoid failure, the actual
design  strength  of  the  structure  must  be  greater  that  the  required  strength.  One  of  the
objectives of engineering mechanics is to examine failure safety margins for a structure.
Materials can sustain stress up to a certain limit before failure occurs. Of course, the load
imposed on a structure must always be smaller than the load that would cause failure. The
failure load is often termed “ultimate” and the load a structure is subjected to is termed
“working” or “design” load. The factor of safety for a structure is defined as the ratio of the
load that will cause failure to the load that the structure is actually subjected to:

Factor  of   safety = n = Failure  load
Working  load

For engineering structures n can be as low as 1.1 and as high as 10, depending on the
structure and design criteria. The factor of safety being greater than unity can be termed
"overengineering" and accounts for imperfections in materials, flaws in assembly, material
degradation,  and  uncertainty  in  load  estimates.  Prime  considerations  in  assigning  an
appropriate safety factor for a structure or component are the accuracy of load and wear
estimates, the consequences of failure, and the cost of overengineering the component to
achieve  that  factor  of  safety.  For  example,  components  whose  failure  could  result  in
substantial financial loss, serious injury or death usually use a safety factor of four or higher
(often ten). Noncritical components generally have a safety factor of two or are specified by
available codes. An interesting exception is in the field of aerospace engineering, where
safety factors are kept low (about 1.15-1.25) because the costs associated with structural
weight are so high. This low safety factor is why aerospace parts and materials are subject
to more stringent quality control.

Another way to consider factor of safety for a structure is to find the maximum stress under
working load and the maximum working stress under ultimate load. In this case

Factor  of   safety = n = Failure  stress
Working  stress  

This equation can be easily derived from the previous one since the stress is simply the load
divided by the cross sectional area A. Calculation of factor of safety for simple structures or
components (e.g., bars) is relatively straightforward. Figures D-12 and D-13 show a bar
loaded with load P and the stress-strain behavior of the material

Figure D-12 A bar of cross sectional area
A loaded by load P.



Figure D-13 The stress versus strain of
the material of the bar shown in Figure
D-12.

The factor of safety is, for such a simple structure (here with respect to the material yield
stress), considered to be the "failure stress"

n = Yield  stress
Working  stress =

σyield
σ =

Pyield /A
P/A =

Pyield
P   

The allowable stress for such a structure is defined as

σall
σyield

n   

It designates the maximum stress the structure is allowed to bear, and is typically used in
design as the stress that cannot be exceeded.



Module 5: Nonuniform Bars
Previous modules on bar behavior considered that the load P, and thus the stress σ and strain
ε were uniform in a bar. This is not always the case, thus, let us consider nonuniform bars,
as the examples shown in Figure D-14. Nonuniformity can be either due to spatially varying
cross sectional area, or spatially varying load (and thus stress), or both. In this case, then, in
order  to  find  the  total  elongation/contraction  δ  of  a  bar,  we  need  to  add  the
elongations/contractions in each part of the bar. Non-uniformity can also result by spatially
varying Young's modulus. For example, consider the case where (Figure D-14(b)), AB is
made of aluminum and BC is made of steel. In general, for a bar consisting of n segments,
where  in  each  segment  i  all  Pi,  Ei  and  Ai  are  constant,  the  total  displacement  is  the
summation of the displacements in each segment.

 

Figure D-14 Nonuniform bar deformation problems:
(a) the load is varying spatially, i.e., in AB it is equal
to P1 while in BC it is equal to P1 + P2; (b) both the
load and the cross sectional area are varying spatially;
and (c) the cross sectional area varies continuously.

Example: Let us calculate the displacement at A and B for the steel bar (E = 210 GPa)
shown in Figure D-14(b), where P1 = 2 kN, P2 = 4 kN; the cross sectional areas in AB and

BC are AAB = 0.01 m2, ABC = 0.02 m2, and the bar lengths are LAB = LBC = 0.3m. Note
that the equation δ = PL/EA provides the elongation/contraction δ and not displacement
of a point in the bar. However, as is obvious from Figure D-14(b), since end C is fixed, the
elongation of  CB is  equal  to  the displacement  of  point  B,  or  δCB = δB.  Similarly,  the
elongation of CB plus the elongation of BA is equal to the displacement of point A, or δCB
+ δBA = δA. Using the force-elongation relation, δ = PL/EA, these two facts are expressed
as:

δB =
(P2 +P1)LBC

EABC
= (4,000+2,000)0.3

210×109×0.02
= 4.29 × 10−7m  

δA = δB +
P1LAB
EAAB

= 4.29 × 10−7 + 2,000×0.3
210×109×0.01

= 7.15 × 10−7m

Note that the force in bar AB is equal to P1, and the force in bar BC is equal to P1 + P2. This
can  be  verified  easily  by  "cutting"  the  bar  within  AB and  within  BC and  considering
equilibrium of forces.



Example: For the bar shown in Figure D-15, find the displacement at B and at C. Assume E
of the material for the entire bar is equal to 30,000 psi.

 

Figure D-15 Nonuniform bar
deformation problem, where
the bar is loaded at end D and
at section B. The bar is of
circular cross section.

It is repeated that the formula δ = PL/EA does not provide the actual displacement of a bar
but rather the bar elongation (for tensile load P) or contraction (for compressive load P). If
the bar is fixed on its left end, then δ is also the displacement of its right end.

Let us calculate the displacement at B and C, first in "words" (below "elongation" is used
even though the actual deformation may be "contraction").

displacement of B = elongation of AB

displacement of C = elongation of AB + elongation of BC

Although not a question in this particular problem, for completeness note that

displacement of D = elongation of AB + elongation of BC + elongation of CD

In mathematical terms:

δB =
PABLAB
EABAAB

= (−100−50)1×12
30,000π×42/4

= −0.015 in

δC =
PABLAB
EABAAB

PBCLBC
EBCABC

= − 0.015   + (−100)2×12
30,000π×22/4

= − 0.095 in

 



Module 5: Nonuniform Bars
The approach for addressing nonuniform bars illustrated in the previous examples can be
applied for several bar segments each having different axial forces, different dimensions
such  as  length  and  cross  section,  and  made  of  different  materials.  Thus  for  a  general,
piece-wise nonuniform bar, the change in length over a number of segments is expressed as

δ = ∑i
PiLi
EiAi

  

which is the expression for the elongation/contraction of a piece-wise nonuniform bar.
Here the total elongation is the summation of elongations over i pieces of the bar. Over each
piece i, force Pi, cross sectional area Ai, and elasticity modulus Pi are constant. This formula
can be applied for any number of segments for which the total elongation or contraction is
desired.

For bars of continuously varying properties (as compared to distinctly or piece-wise, e.g.,
Figure  D-16),  the  problem can be considered as  a  summation of  an infinite  number  of
segments, thus the above equation becomes an integral where now Li is replaced by dx.
Further, the internal axial load P is expressed as a function of x along its length P(x) and by
knowing the  dimensions  of  the  bar  we also  express  the  cross  sectional  area  A(x)  as  a
function of x. Usually the modulus of elasticity does not vary continuously with x, thus E is
not generally expressed as E(x). The elongation of the bar along its entire length is obtained
by integrating over the length. Thus, for a problem like that shown in Figure D-16

δ = ∫
0

L
   P(x)

EA(x)dx  

which is the expression for the elongation/contraction of a continuously nonuniform bar.

 

Figure D-16 A bar with continuously varying area. In general,
force, Young's (elasticity) modulus, and cross sectional area can
vary as well.

Example: Let the cross section of the bar in the figure above be circular with a diameter of
0.02 m at its left end (at A) and 0.01 m at its right end (at B) and the diameter varies
linearly. The length of the bar is 1.5 m, E = 106 Pa (e.g., a rubber-type material), and P =
6,000 N. Then,  since for  a circle the area is  equal  to πD2/4,  for  the coordinate system
shown, we have:

D(x) = 0.02 − 0.01
1.5 x = 0.02 − 0.0067x = σdA



A(x) = π
4 (0.02 − 0.0067x)2

δB = δAB = ∫
0

1.5
6,000 dx

106 π
4 (0.02 − 0.0067x)2   

This integral can be evaluated analytically using integral tables, or even numerically.

Summary of mechanical behavior of bars

In summary, when a bar is subjected to a load P there is normal stress created. When the
x-axis is along the load direction (Figure D-17) the normal stress is designated as σx. In the
same manner, the normal stress is designated as εx. Based on the definitions of normal stress
and strain, and Hooke's law, the following table summarizes all equations applicable in the
mechanical behavior of a bar.

Figure D-17 (a) A bar
under tensile load P; (b) a
material element within the
bar; and (c) side view of
the material element before
(solid line) and after (dot
line) load application.

σx = P
A normal stress definition

εx = P
A normal strain definition

ν = − εy
εx

= − εz
εx

Poisson ratio definition

σx = Eεx Hooke's Law law

δ = PL
EA derived equation derived



δ = ∑i = 1
n PiLi

EiAi
consequence for piecewise nonuniform bars consequence

δ = ∫0
L P(x)

EA(x)dx consequence for continuously nonuniform bars consequence

Summary of the equations for the mechanical behavior of a bar.



Module 6: Statically Indeterminate Bars
Statically indeterminate bar problems

In the preceding modules all the structures examined were in equilibrium implying that their
reactions and internal forces can be determined solely from free-body diagrams and the
equations  of  equilibrium.  These  structures  are  referred to  as  statically  determinate.  The
same  definition  holds  for  a  bar,  which  is  a  relatively  simple  structure  or  structural
component. For example, the bar shown in Figure D-18(a) is statically determinate since
equilibrium of  forces  in  the  horizontal  direction  yields  the  reaction  force,  i.e.,  R  =  P.
Similarly, the force at any cross section in the bar can be determined, being equal to P in
this case. Yet, the bar in Figure D-18(b) is statically indeterminate, since equilibrium of
forces in the horizontal direction implies R1 + R2 = P, which is only one equation for the
two  unknown  reactions,  R1  and  R2.  Therefore  additional  equations,  pertaining  to  the
displacements  of  the  structure,  need  to  be  used  for  solving  statically  indeterminate
structures.

Figure D-18 (a) A statically determinate
bar; and (b) a statically indeterminate bar

It  is  repeated  herein  that  a  structure  is  statically  determinate  when  all  forces  can  be
calculated by simply using the equilibrium equations. As an example, for the bar in Figure
D-18(a) the forces at every cross section can be calculated from the equilibrium equations;
e.g.,  to  find the force in  any cross  section we can consider  the free body diagram and
equilibrium equation, Figure D-19. The cross section (hypothetical cut) and the equilibrium
equation are used to find the force in the cross section of the bar which is the resultant of the
internal stresses σ. The cross section is between the left end support and the right end where
P is applied. Obviously, the internal force at the cross section is P and is equal to σA, where
A denotes the cross sectional area. However, for a statically indeterminate structure, the
forces cannot be evaluated this way.

Figure D-19 (a) A bar loaded at its right end;
(b) a section of the same bar; and (c) free-body
diagram of the piece to the right of the section

Statically indeterminate structures are such that the equilibrium equations are not adequate
to  solve  for  the  unknown  forces,  therefore  additional  equations  pertaining  to  the



displacements of the structure need to be used. In general, since additional restraints are
imposed on a statically indeterminate structure,  these additional restraints provide  the
additional equations needed for finding the unknown forces. These additional equations are
called  compatibility  equations.  Let  us  illustrate  the  process  of  solving  statically
indeterminate structures through examples. Consider the bar shown schematically in Figure
D-20(a),  where  the  problem  is  statically  indeterminate  since  there  are  two  unknown
reactions, RA and RB at A and B, respectively, and only one equilibrium equation, P = RA+
RB. Since, in this case there is only one excess unknown (i.e.,  if  the reaction at B was
known  the  problem  would  be  statically  determinate)  we  say  that  the  degree  of
indeterminacy is one.

Figure D-20 (a) A statically indeterminate
bar; and (b) release of the excess unknown
and the relevant free body diagram

This type of problem can be solved by the following general procedure The steps followed
to solve the problem, that is, determine forces, stress, displacements and strains, are:

Step 1: Assume that the structure is determinate by releasing the excess unknown force or
forces (Figure D-20(b)).

Step 2: Use the compatibility equation or equations, for the structure of the previous step
(i.e., express the fact that the displacement at the point of release is known). For the case
shown in Figure D-20 we simply know that the displacement at A and B is zero, thus the
total elongation of the bar from A to B is zero. We have

δAB = 0 → δAC + δBC = 0  or   (RB +P)LAC
EACAAC

+
RBLCB

ECBACB
= 0  

In this equation the only unknown is RB and by solving it the reaction RB results. Then the
structure  can  be  treated  as  a  statically  determinate  one  for  calculation  of  any  desired
quantities. For example, the reaction RA can be evaluated from the equilibrium equation,
RA+ RB= P.

Example: Consider that the bar in Figure D-20(a) is made of aluminum (E = 70 Ga), the
cross section is circular with radius 3 cm (0.03 m) and AC = 0.5 m, BC = 0.7 m, and P = 2
kN. Then, equilibrium implies that

(RB +2000)0.5
70×109π0.032 +

RB0.7
70×109π0.032 = 0



which, together with the equilibrium equation yields, RB = 833.33 N and RA = 1166.67 N.

 



Module 6: Statically Indeterminate Bars
Comments on statically indeterminate structures

The analysis of statically indeterminate structures involves the usual equilibrium equations,
and additionally, equations of compatibility. The equilibrium equations are simply those of
static equilibrium (three (3) equations for two-dimensional structures and six (6) equations
for  three-dimensional  structures).  The  compatibility  equations  have  to  do  with
displacements  in  the  structure,  in  the  sense  that  some of  the  displacements  have  to  be
compatible. For that reason, compatibility equations are also known as kinematic equations
or equations of consistent deformations.  The deformations required for expressing the
compatibility  equations are obtained from the force-displacement relations,  such as  δ  =
PL/EA for bars. The number of such equations is equal to the degree of indeterminacy of
the structure.

Example: The problem shown in Figure D-21 has a degree of indeterminacy equal to one.
This can be easily verified by considering the free body diagram of the (herein assumed
rigid) part AB, which shows (see Figure D-21) the four unknown reactions: Ax, Ay, FC and
FD  .  Thus,  one  compatibility  equation  is  needed  in  addition  to  the  three  equilibrium
equations.
       One  effective  way to  determine  the  compatibility  relation  is  to  consider  the
deformed  shape  of  the  structure,  and  try  to  identify  the  relation  between  unknown
displacements. For this specific example, the comparability equation is a relation between
the vertical displacements at points C and D, since beam AB is considered rigid.

Figure D-21 (a) A statically indeterminate
problem, where identification of the compatibility
relation is crucial. Here, the vertical
displacements at C and D are related; (b) the free
body diagram of the rigid beam; and (c), the
deformed shape, where two similar triangles can
be identified yielding the compatibility condition.

From the similar triangles in Figure D-21(c), it follows that

δC
a =

δD
b  or   

FCh
aEA =

FDh
bEA   or  FC =

2aFD
b  .

From this, and the equilibrium equation of moments with respect to point A we obtain two



equations for two unknowns, namely FC and FD.

Example: The problem shown in Figure D-22 has a degree of indeterminacy equal to one.
The only load the bar is subjected to is its own weight. Find the displacement at the middle
of the bar.

Figure D-22 A fixed end bar subjected to its own weight only. The bar length is L, the
radius of its circular cross section is r, the cross sectional area is A = πr2, and the weight
density  of  the  material  is  γ .  The  weight  imposes  a  distributed  load  on  the  beam,  w,
expressed as force per unit area. A typical cut is shown at y = L/2, and the internal force at
that section. A section can be imagined at any position y between zero and L.

Solution: Let w be the weight of the bar per unit length; here, w = γA. The displacement at
the bottom end is zero, which yields the following compatibility equation. It is noted that
the distributed load w makes the load at a cross section a function of y, thus integration is
required in order to find the displacement due to w.

δdue  to  R = RL
EA = δdue  to  w = ∫

0

L (wy)
EA dy = wL2

2E

which can be solved for R, i.e. R = Lw
2 . Then, from the equation for the equilibrium of the

bottom half of the bar, RL/2 = R − Lw
4 = 0 . The same process can be applied to find the

displacement at the middle of the bar. From Figure D-21, we obtain

δdue  to  RL/2 =
RL/2L/2

EA ;    δdue  to  w = ∫
0

L/2 (wy)
EA dy = wL2

8EA

and

δmiddle = δdue  to  w − δdue  to  L/2 = wL2

8EA  



since RL/2 = 0.



Module 7: Change of Temperature Effects
Change of temperature in bars

Changes in  temperature  produce expansion or  contraction of  structural  materials  resulting in
thermal strains and thermal stresses. Consider a cylindrical bar that rests freely on a surface, i.e.,
it is not restricted to deformation (see Figure D-23). If the temperature increases by ΔT then the
length increases by δΔT and the diameter increases by δD, thus we have

δΔT = α(ΔT)L          and          δD = α(ΔT)D  

where α denotes the so-called coefficient of thermal expansion, a characteristic of the material,
L denotes the length, and D the diameter of the bar. Values of α for some engineering materials
are given in the Appendices. Of course, for temperature decrease, the length and diameter of the
bar both decrease accordingly. Then, dividing both sides of the above equation by L, it follows
that the change in temperature creates a normal strain equal to

εΔT = α(ΔT)  

which is the normal strain due to ΔT, i.e., change in length over original length. The usual sign
convention is that expansion is considered positive and contraction is considered negative.

Figure D-23 A bar before and after temperature
increase

Note that  a lateral  strain is  also the result  of  the temperature change ΔT. Lateral  strains are
discussed in the next section. For this unrestricted bar, although there is temperature induced
strain, there is no stress (σ = 0). This is because the unrestricted bar is statically determinate. As a
general rule it is true that thermal expansion or thermal contraction of a statically determinate
structure induces strains and displacements, but not stresses. This is not the case, however, for
statically indeterminate structures, an example being the bar below. An increase in temperature
will create compressive stress, and a decrease in temperature will create tensile stress. Note that
due to the restrictions imposed on the bar by its external supports at its ends, the strain is null in
this case.



Figure D-24 A fixed-end bar subjected
to temperature increase ΔT. The bar is
statically indeterminate, thus, the
temperature change creates stresses.
The statically indeterminate bar can be
considered as the superposition of the
two bars and load shown.

To solve the statically indeterminate structure, we follow the process of the previous section, thus
it  is  necessary  to  identify  the  compatibility  equation  and  express  it  in  mathematical  terms.
Compatibility of displacements here implies that the total length of the bar remains unchanged,
i.e., the displacement caused by ΔT and that caused by the load P should add up to exactly zero,
as shown from the equivalence in Figure D-24,

δΔT − δR = 0   ⇒  α(ΔT)L − RL
EA = 0  

which can be solved for the force R, yielding

R = EAα(ΔT)

Thermal  expansion or  contraction can create  quite  sizable  stresses  in  structures.  In  a  certain
statically indeterminate steel bar for example, a temperature change of about 100oF can create
stresses well within the range of allowable stresses  for steel. However, there are many cases
where structures and materials are near or at their allowable stresses from structural loads. In that
case, if a thermal stress develops, the total stress may well exceed the allowable stress and cause
the structure to fail. This, of course, is the reason bridges are built with expansion joints which
allow the structure to expand and contract freely and thus avoid thermal stresses. Additionally,
this  is  why  concrete  sidewalks  are  built  with  spaces  separating  adjacent  slabs,  allowing
expansions to avoid thermal stresses. Concrete highways used to have expansion built-in spaces,
however, modern concrete highways are designed without them. Normally, they withstand these
stresses,  but  occasionally  long  hot  or  cold  periods  will  allow stresses  to  build  up  until  the
highway actually explodes in an area, producing a large hole in the concrete.

Statically determinate structures do not develop thermal stresses.  It is easy to understand
why a bar fixed on only one end does not develop thermal stresses while when both ends are
fixed it  does develop thermal stresses under temperature change ΔT. In the former case,  the
structure is statically determinate and in the latter case it is statically indeterminate. This holds



true for all structures, and is in many occasions a reason the engineers designs certain structures
as statically determinate or with a few degrees of indeterminacy, in order to make the structure
more  flexible  and  less  prone  to  failure  due  to  temperature  changes.  To  understand  why
statically determinate structures do not develop thermal stresses, consider the simple truss in
Figure D-25(a). Even if each member of the truss is exposed to different temperature changes, the
members are free to change their length without creating stresses. However, when bar BC is
added (Figure D-25(b)) this is not the case anymore, and the truss members will develop stresses
under temperature change. For example, consider that bar BC is heated and the other ones are
not. If BC was free, it would expand by a distance δ. However, the other two bars resist this
expansion, and the final "compromise" will be that B will move only a fraction of δ. Similarly, if
the entire truss is heated by the same temperature change, the distance B would move in the
absence of BC is different than the expansion BC would experience if it was free. This difference
creates a stress in all truss members.

Figure D-25 The statically determinate
structure at (a) allows its two bar members
to expand/contract under temperature change
without developing thermal stresses. This is
not true for the statically indeterminate
structure at (b).

Example - temperature increase and load in statically determinate nonuniform bar: The
stepped  bar  ABC  in  Figure  D-26,  consisting  of  solid  circular  segments,  is  subjected  to
temperature increase ΔT = 130oC while it is fixed at A and load F acts at C. Find the magnitude
of F, such that the displacement of point B is zero. The material is steel with E = 100x106 kPa,
and α = 12x10-6/oC. In the figure, d denotes diameter.

Figure D-26 A statically determinate bar is
subjected to temperature increase as well as
external compressive load F

In order for the displacement of B to be zero, the following must hold: expansion of AB due to
ΔT = contraction of AB due to F. Note that bar AB is subjected to compressive load F.

Expansion of AB due to ΔT: α(ΔT)L



Contraction of AB due to F: − FLAB
EAAB

Then, α(ΔT)LAB − FLAB
EAAB

= 0, which, when solved for F, yields

F = α(ΔT)AAB = 12 × 10−6 × 130 × 100 × 109 3.14×0.152

4 = 2.75535 × 106  N = 2,755.35 kN



Example: Rod Design 

A crane is designed to sustain a maximum load 
of 10000 lb. A 15-inch-long steel rod (E = 29 x 
106 psi) of 0.25 in2 cross-sectional area is used 
at the tip of the crane. 

a) Under the design load, calculate how much 
the rod will elongate 
b) Will the rod support the full design weight? 
σu=58 ksi (ultimate stress of the rod, in 
tension) 
c) Under full load, will the rod plastically 
deform? σy=36 ksi (yield stress of the rod, in 
tension) 

  

15 in 

10 kips 

Crane tip 

A=0.25 in2 

 
δ =

PL
EA

=
10,000 lb ×15 in

29 ×106 psi × 0.25 in2 = 0.021 in

 
σ =

P
A

=
10,000 lb
0.25 in2 = 40,000 psi < 58,000 psi

 
SF =

critical stress
working stress

=
36,000 psi
40,000 psi

= 0.9

 
σ =

P
A

= 40,000 psi > 36,000 psi

Note on safety factor: 

Since SF<1, the design is unacceptable 



Example: Stress in a Cable 

An adventurer weighing 182 lb slides under a 
cable using a smooth pulley. The cable at a 
specific instant is such that θ1=30o and θ2=36o. 

The diameter of the cable is 60 mils (wire 
diameters are often specified and measured in 
mils: 1 mil = 1/1000 in). Determine the 
maximum tensile stress in the cable. 

Considering equilibrium of forces at B: 
 

θ1 θ2 

A 

B 

C 

FAB 

182 lb 

x θ2 

FBC 

θ1  

FAB cos[θ1] = FBC cos[θ2 ]

FAB sin[θ1]+ FBC sin[θ2 ] = 182 lb

These two equations yield, for the given 
Values of θ1 and θ2:  

 FAB = 161.2 lb, FBC = 172.5 lb

 

σmax =
Pmax

A
=

172.5

π 60 / 1000( )2
/ 4

= 61,009 psi



Example: Stress in a Bar 

While constructing the wooden truss shown 
below, it was found that bar BC was shorter 
than specified. The truss was forced together, 
and this created stress and strain in each bar. 
The strain was measured in bar BC to be 0.004 
(0.4%). Determine the force created by forcing 
the truss together in each member. For the type 
of wood,  yield stress, σY = 8ksi, E = 1700ksi. 
Each bar’s cross-sectional area is A = 20in2. Is 
the yield stress in any bar exceeded? If yes, 
how would you solve this problem of finding 
the stress in each bar? 

FAB 

x 
45o 

FBC 

B 

A 
D 

C 

45o 45o 

FBD 

45o 

From the known strain in BC, it 
follows that  

 σBC = EεBC = 1700 × 0.004 = 6.8 ksi < 8 ksi

and thus 

 FBC = σBCA = 6.8 × 20 = 136.0 kips

Equilibrium of joint B implies that 

 

FAB = FBD ,

FBC = 2FAB sin(45o ) ⇒

FAB = FBC / (2sin(45o )) = 136.0 / (2 × 0.707) =

96.18 kips
Thus, 

 

σAB = σBD = FAB / A = 96.18 / 20 =
4.8 ksi < 8 ksi

Note that the forces in AB and BD are 
compressive. If the yield stress was exceeded in 
any of the bars, the complete stress vs. strain curve 
would be needed to solve this problem. 



Example: Forces in a Truss 

For the truss find the maximum possible P 
such that the allowable stresses are not 
exceeded: 

(σall)tension = 50 MPa 

(σall)compression = 25 MPa 

 
Given: 
(A)AB = 12 cm2 

(A)AC =   9 cm2 

         From statics: 

         FAB = 0.75P (C)  

         FAC = 0.75P (T) 

         Let : 

 

 

 

 

       833.3P = 25 x 106    or   P = 30 KN 

       1041.6P = 50 x 106  or   P = 48 KN 

       Thus, maximum allowable P = 30 KN. 

FAB 

x 

4 m 

3 m 

A 

C 

B 

P 

FAC 

P 

4 

3 

 
σAB =

-0.75P
9 ×10-4 = -833.3P N mm2 Pa( )

( )PammNP6.1041
1012

1.25Pσ 2
4-AC +=

×
=



P 
x 

L 

a a 

A B C 

A1 A2 A2 

The horizontal rigid beam ABC is subjected to vertical load 
P and it is supported by three equally spaced steel cables of 
length L. Due to an ordering error, the cable at A has cross-
sectional area A1 that is 15% larger than the area of the other 
two cables, A2, i.e. A1 = 1.15A2. Find the distance x from A 
the load P should be applied such that the rigid beam ABC 
stays horizontal. Consider the Young’s modulus of each 
cable to be E. 

P 
x 

a a 

A B C 
F2 F2 F1 

Since two cables are identical and their elongation is the same, they 
are subjected to the same load, F2.  

Equilibrium: 

 

 

Compatibility: 

 

 

The above three equations when solved for F1, F2 and x yield: 

x = 0.95a, F1 = 0.365P, F2 = 0.317P 

 

  

  

 

Fy = 0 ⇒ F1 + 2F2 = P∑
MA = 0∑ ⇒ P ⋅ x = F2 ⋅a + F2 ⋅2a

 
δ1 = δ2 ⇒

F1 ⋅ L
E ⋅A1

=
F2 ⋅ L
E ⋅A2

⇒
F1

F2

= 1.15

Example: Forces in Bars/Cables 



Example: In Series and In Parallel Bars 

Find displacement of point G. 
Assume beam BED is rigid, and BE = DE. 
Given : 
AAB = 400 mm2, EAB = 200 GPa 
ACD = 600 mm2, ECD = 80 GPa 
AEG = 900 mm2, EEG = 200 GPa 

 
δ

EG
=

PL

EA
=

50000 × 0.6

200 × 109 × 900 × 10−6
= 0.166 mm

 
δ

AB
=

PL

EA
=

25000 × 0.8

200 × 109 × 400 × 10−6
= 0.25 mm

 
δ

CD
=

PL

EA
=

25000 × 0.8

80 × 109 × 600 × 10−6
= 0.4166 mm

 

δ
G
= δ

EG
+ E ′E = 0.166 +

1

2
(0.25 + 0.4166) = 0.45 mm

80 cm 

60 cm 

50 kN 

A C 

B 

E 

D 

G 

B E D 

B` 
E` 

D` 

0.25 cm 0.4166cm 

d = EE` = 0.333 cm 



Example: Steel-Concrete Column 

 Aconc
= πr2 = π 9( )2

= 254.47 in2

 F
y∑ = 0

 
A

steel
= π 10( )2

− 9( )2⎡
⎣

⎤
⎦ = 56.69 in2

From statics, 

 ∴ R
steel

+ R
conc

= 90 k ( )1…
From compatibility, 

steel concδ = δ
 
∴

R
steel

L

A
steel

E
steel

=
R

conc
L

A
conc

E
conc

 

R
steel

L

56.69 × 30000
=

R
conc

L

254.47 × 10000
( )2…

Solve equations (1) & (2), 

 R steel
= 36.05 k = 40.06%

 R conc
= 53.95 k = 59.94%

20” 

18” 

10 ft 
Steel 

Concrete 

Rigid Block 

A steel encased concrete column is subjected 
to 90 kips concentric load. 
Find the percentage of load distribution 
between concrete and steel. 
Given: 
Esteel = 30000 ksi 
Econc = 10000 ksi 

Rconc 

Rsteel 

90k 



Example: Temperature Effect on a Bar 

If the allowable compressive stress in the bar 
is σall = 11,000 psi, find the maximum  
allowable increase in temperature ΔT. 

L = 2.0 ft 

d = 1.5 in (circular cross-section) 

E = 30x106 psi 

α = 6.5x10-6
 /oF 

 

δ = α ΔT( )L or 0.02 = 6.5 × 10−6 × ΔT( )
1
× 24

⇒ ΔT( )
1
=

0.02

6.5 × 10−6 × 24
= 128°F

Then, α ΔT( )
2

L =
RL

EA
= σ

all

L

E

⇒ α ΔT( )
2
=
σ

all

E

⇒ 6.5 × 10−6 ΔT( )
2
=

11000

30 × 106

⇒ ΔT( )
2
= 56.4°F

ΔT( ) = ΔT( )
1
+ ΔT( )

2
= 128°F + 56.4°F = 184.4°F

L 

D = 0.02” 



Example: Displacement in a Bar Due to Temperature 

The bar of length L, cross-sectional area A, 
Young’s modulus E and coefficient of thermal 
expansion α is subjected to temperature 
increase ΔT. Determine the displacement at 
quarter point. 

 

R ⋅ L

EA
= α ΔT( )L

R = EAα ΔT( )
At quarter point,

δ
1/4

= α ΔT( ) L

4

⎛
⎝⎜

⎞
⎠⎟
−

R L 4( )
EA

∴δ
1/4

=
α ΔT( )L

4
−

EAα ΔT( )L

4EA

R 

ΔT 

R 

L 

L/4 

ΔT 

R 



Example: Temperature Displacement in a Bar 

A brass wire of diameter d = 1/16 in. is 
tightly stretched between two fixed points 
so that it under a tensile strain of 0.02% 
What is the maximum permissible 
temperature change ΔT if the allowable 
stress in the wire is 10 ksi in both tension 
and compression? 
Use a coefficient of thermal expansion for 
the wire of α = 10-6 / oF, a modulus of 
elasticity E = 15 x 106 psi, and examine 
both temperature increase and temperature 
drop. 

 

σ = Eε = 15 × 106 × 0.02% = 3,000 psi

R ⋅ L

EA
= α ΔT( )L

R = EAα ΔT( )
σ

ΔT( ) =
R

A
= Eα ΔT( )

R 

ΔT 

R 

L 

ΔT 

         For temperature decrease (tension), 

          For temperature increase (compression), 
 

EAα ΔT( ) + 3000 = 10000

⇒ ΔT( ) = −7000

EA
= −466oF

 

EAα ΔT( ) − 3000 = 10000

⇒ ΔT( ) = 13000

EA
= 866o F



Example: Beam Supported by Cables and Pin 

Rigid beam ACB is supported 
through a pin at C and two cables, 
AD and BE.  
 
Find P such that the vertical 
deflection of point B is 12 cm 
 
Both cables have cross-sectional 
area A = 15 cm2 and their elasticity 
modulus is 200 GPa. 

 

δ
BE

= 12 cm = 0.12 m

δ
AD

δ
BE

=
2

8
⇒δ

AD
=

12 × 2

8
= 3 cm = 0.3 m

A = 15 cm2 = 0.0015 m2

δ =
PL

EA
⇒ P =

EA

L
δ

P
AD

=
200 × 109 × 0.0015

3
× 0.03

      = 3.0 × 106N

P
BE

=
200 × 109 × 0.0015

2.5
× 0.12

      = 14.4 × 106N

Moments, point C:

P ⋅8 = 14.4 × 106 × 8 + 3.0 × 106 × 2

⇒ P = 14.4 × 106 +
1

4
× 3.0 × 106

⇒ P = 15.15 × 106N

8 m 

P 

2 m 

3 m 

2.5 m C 

A B 

D 

E 

P 

12 cm 



Example: Design Problem 

Find the maximum possible load 
(w) before allowable stresses are 
reached in (ST) and (AL). 
Given:  

 

From statics:

2F
AL
+ F

ST
= 3w 1( )

From compatibility:

δ
ST
= δ

AL

F
ST

L
ST

A
ST

E
ST

=
F

AL
L

AL

A
AL

E
AL

∴ F
ST
= 3.81 F

AL
2( )

Solve 1( )  and 2( )  to get:

F
AL

= 0.516w

F
ST
= 1.967w

Check: 2F
AL
+ F

ST
= 3w    ok( )

Case 1:

σ
all

( )
ST
=

1.967w

400 × 10-6
= 180 × 106

w = 36.6 kN/m

Case 2:

σ
all

( )
AL

=
0.516w

300 × 10-6
= 100 × 106

w = 58.1 kN/m

∴w
max

= 36.6 kN/m steel reaches all

 

A
ST
= 400 mm2

E
ST
= 200 GPa

σ
all( )

ST
= 180 MPa

A
AL

= 300 mm2

E
AL

= 70 GPa

σ
all( )

AL
= 100 MPa

ALU ALU ST 

3 m 

w 

2 m 

FAL FST FAL 



Example: Design Problem 

A concrete column is reinforced 
with four A-36 steel bars. 
Determine the diameter of the 
rebars, so that the steel carries 1/4 
of the 800 kN load. 
Given: 

 

Load on four rebars =  
800

4
= 200 kN

Load on each rebar =  
200

4
= 50 kN

δ
ST
= δ

con

δ
con

=
PL

AE
=

600 × 103 × 1

0.3× 0.3× 25 × 109
= 0.267 mm

∴δ
ST
= 0.267 × 10−3 =

PL

AE

⎛
⎝⎜

⎞
⎠⎟

ST

A
req.

=
PL

δ
ST

E
ST

=
50 × 103 × 1

0.267 × 10−3 × 200 × 109

A
req.

= 0.0009375 m2

∴A
req.

= 9.375 cm2 = π r 2

⇒ r
req.

= 1.727 cm

Choose diameter of rebars =  36 mm each

GPa 52E
GPa 002E

con

ST

=
=

800 kN 

1 m 

300 mm 

300 mm 



 Self-Assessment  
 
 Allowable Load: Bar  
Find the allowable load (in kN) on a 2-cm diameter, 1-m-long steel rod if its maximum elongation cannot 
exceed 0.2 cm. 

 95 

 110 

 132 

 75 

 
 Elongation of a Bar: 1  
A crane carries a total load of 7000 lbs by 1/2" diameter, 100-ft-long steel cable. How much, in inches, 
will the cable elongate? 

 1.43 

 0.92 

 1.31 

 1.18 

 
Elongation of a Bar: 2  
Two steel plates were constructed in warm weather. Due to 
temperature change, a 1/32" hole mismatching occurred. What is 
the puling force, in lbs, to be applied for one of the plates to 
match the two holes? The plate length is 3 ft (from the left end to 
the hole) and its cross section is 1/8"x1". 

 2405 

 3255 

 2752 

 3108 
 
Mechanical Behavior of a Bar: 1  
Deformation is reversible if: 

 The deformation rate is slow 

 Hooke's law holds 

 There is no work hardening 

 Applied stress is less than the yield stress 
 



Mechanical Behavior of a Bar: 2  
 
From the tensile test data of 
aluminum alloy shown in the figure. 
find the tensile strength in psi. 

 40000 

 44000 

 39000 

 45000 
 
 
 
 

Mechanical Behavior of a Bar: 3  
 
 
From the tensile test data of 
aluminum alloy shown in the figure, 
find the yield strength in psi: 

 40000 

 25000 

 37000 

 35000 

 
 
 
 

Mechanical Behavior of a Bar: 4 
From the tensile test data of aluminum alloy shown in the figure, find the modulus of elasticity in psi: 

 325000 

 10000000 

 366667 

 2200000 

 
 



Bars: 1  The bar is fixed at ends A and B and force P = 50 kN 
is acting at C.  The area of the cross section is 200 mm2 and 
the modulus of elasticity E is 200 GPa.  Find the horizontal 
reactions at A and B. 
 

Bars: 2 A steel bolt and nut are tightened around an aluminum 
sleeve. Given the following cross-sectional areas (AST and 
AAL), thermal expansion coefficients (αST & αAL) and moduli 
of elasticity (EST and EAL) for both the steel and aluminum, 
find the stress in the steel (σST) and the stress in the aluminum 
(σAL) if a change in temperature (ΔT) of 65˚C is imposed.  

AST = 400 mm2 AAL = 600 mm2 

αST = 12 x 10-6 /˚C αAL = 23x10-6 /˚C 
EST = 200 GPa  EAL = 73.1 GPa 
ΔT = 65˚C 
 
Bars: 3  A steel bolt and nut are tightened around an aluminum 
sleeve.  Find the internal forces as the nut is rotated 1 turn (1 turn 
= 1.5 mm) given the cross sectional areas and the moduli of 
elasticity for the steel and the aluminum. 

AST = 150 mm2 AAL = 100 mm2 
EST = 200 GPa EAL = 70 GPa 
 
 
 
 
Bars: 4  Thermal stress: α = linear coefficient of thermal expansion (units = 
strain/1˚C) 
 e.g.:  αsteel = 12 ×10−6 / 1°C  
  ε = α(ΔT) ,  ΔT = change in degrees of temperature 
  δT = α(ΔT)L  
 
Thermal stress occurs when free movement of member is constrained. Find the 
stress when temperature changes by 30˚C for the steel rod shown. 
 
   αST = 12 ×10−6 1°C  

   EST = 200 GPa  
 
Bars: 5 For the stepped bar, find the total displacement of point A 
(δA).  The bar has a modulus of elasticity E = 200 GPa.  
 
     
 
 
 

150 mm 

Initial Position 

Final Position 

(δST)T 
(δST)F 

δTOTAL 

(δAL)F 
(δAL)T 

L=150 mm 

ΔST 

ΔAL 
1.5 mm Final 

Position 

1 m 

 

4 m 1 m 

P 

B  C A 

600 mm 

400 mm 

A=600 mm2 

A=200 mm2 

P=200 kN 
A 

B 

C 



 
 
Bars: 6  The given cantilever system consists of a beam with a pin 
connection, and is held up by two wires connected as shown in the 
diagram.  One wire is aluminum with a cross-sectional area (AA) 
of 0.2 in2 and a modulus of elasticity value (EA) of 10x106 psi.  
The other wire is steel with a cross-sectional area (AS) of 0.2 in2 

and a modulus of elasticity value (ES) of 30x106 psi.  Given this 
system, find: 
a) What are the two equations of equilibrium from statics? 
b) How is the deflection at C related to the deflection at B? 
c) What are the three equations that must be solved to find FA, 

FB, and FC? 
d) What are FA, FB, and FC? 
e) What is the stress in each wire? 
 
Bars: 7 To account for approximations in analysis (misused or incorrect fabrications) most structures are 
made stronger than suggested by the analysis. This extra margin of strength is described by 

 
 
Margin of safety = 

Yield stress
Maximum stress

 - 1
 

or
 

 

  
 
Safety factor = 

Yield stress
Maximum stress

 

 
The minimum value of margin of safety = 0 
The minimum value of safety factor = 1 
 
Example: 

 
 
A circular rod is subjected to a tensile force of 10,000 lb. If σyield = 45,000 psi and 
the factor of safety = 5, find the required diameter. 
 
 
 
 
 

 
 
Bars: 8  A round bar is made of two materials and loaded as shown. Find the deflection (δAD) from point 
A to point D. AB = CD = 1.0 m, BC = 2.0 m 

 

700 N 

Aluminum Steel 

1000 N 
10 mm 

2000 N 

D B C 
Aluminum 

A 

Fixed at 
this end 

EST=200 GPa 
EAL=70 GPa 

Steel 

10’ 10’ 
B 

C 

A 
1000 lb 

10’ 

Aluminum 

D 

10,000 lb 

10,000 lb 



 
 
Bars: 9  Given the following structure, find the overall deformation (change in length), ΔL. 

 
 
Bars: 10  Beam AB is vertical before the 20 KN load is 
applied in the y-direction, and can be considered rigid 
relevant to the stiffness of cables BC and BD. Find the 
displacement of B in the y-direction, considering that the 
two cables are identical, of diameter d = 2cm and E = 
200GPa. 
 

 

 

 
 
 
 
 
 
Bars: 11  Find the vertical (in x-direction) displacement of 
point B imposed by the 100 kg weight. Cable BC is of 
diameter d = 2cm and E = 200GPa. Consider beam ABED 
as being rigid and pinned at A and D.  
 

 

 

 

 

 

 

 

 
 
 
Bars: 12 For the structure, find:  
a) FA 
b) FB 

c) δA 

d) δB 
 
 
 
 
 

L1=600 mm L2=800 mm 

200 kN 200 kN 

A1=1500 mm2 
E1=70 GPa 

A2=1000 mm2 
E2=200 GPa 

A 
1.2
m 

0.5
m 

1
m 

0.5
m 

100 kg 

C 

B E 

D 

x 

y 

1000 lb 

• 

• • 

A 

B 

E=10x106 psi 
A=1/2 in2 

E=30x106 psi 
A=1 in2 

8΄ 

6΄ 10΄ 



 
Bars: 13  A bar is elongated by an end load as indicated 
below. The displacement at point A is measured to be 

 uA = u0 . What is the displacement at point B?  
 
 
 
 
Bars: 14  Determine the displacement of point A due to the applied load P = 10 kips. The three horizontal 
rods all have a cross-sectional area of 1.2 in2 and are made of steel (E = 29,000 ksi). Assume the vertical 
connection pieces on the left are rigid. 

 
Bars: 15  A rigid bar OBC of length L is supported at 
three points as shown. It is pinned at O and connected to 
two elastic Bars: BD and CF. BD and CF have pin joints 
at both ends, are made of a material with elastic modulus 
of E and are of length s. The area of cross section of BD 
is A and that of CF is 2A. A force P is applied at C as 
shown. (a) Determine the downward deflection δ of 
point C (in terms of P, E, A and s). What are the forces 
in BD and CF in terms of P? (b) The temperature of BD 
and CF is then increased by ΔT. The coefficient of thermal expansion of BD and CF is α. What are the 
forces in BD and CF due to the combined effect of the load P and the temperature increase ΔT (in terms 
of P, E, A, ΔT and α)? Note that the temperature increase has no effect on the rigid bar. (c) At what 
temperature ΔT (in terms of P, E, A and α) does the force in BD become zero? 
 
Bars: 16  Three plates (Bars:), each of length 35 cm, 
thickness 3cm and width 8 cm, are designed to form 
a structure as shown, i.e. fixed at one end and bolted 
together at 30 cm from the fixed ends.  After the 
plates were fixed at the ends, it was found that there 
was a 0.3cm misfit in the position of the holes. In 
order to bolt the plates together, the plate on the 
right side is pulled with a force F enough to match 
the position of the holes. After the plates are bolted, 
the force F is released. Find the force in each of the 
three plates (Bars:). For all plates, E = 70GPa 
 
 Bars: 17  The stepped column, made of wood (E = 10.0 GPa)  is supported at A and B and 
is loaded by a total force P through the bearing plate at C. The displacement of the cross-
section at C was measured to be 0.01 cm (0.0001 m). Find the load P that created this 
displacement, ignoring the column’s own weight. The length of AC is 1.0m, and the 

 LB 

P 

LA 

B A 

uA=u0 uB=? 

A΄ B  ́

35 cm 

35 cm 

30 cm 

30 cm 3 cm 
3 cm 

3 cm 

P/2 P/2

A

C

B



diameter of column AC is 6cm (0.06m). The length of BC is 0.7m, and the diameter of column BC is 9cm 
(0.09m). 
 
 
 
 
 
Bars: 18 Find the total elongation of the rod system shown hanging under its own 
weight with cross-sectional areas, A1 and A2, weight density, γ, and elastic modulus, 
E. 
 
  
 
 
Bars: 19 Clearly describe, using complete sentences, clear diagrams, and 
appropriate equations, how you could use a tensile test to accurately determine the shear modulus of a bar 
composed of a homogeneous, isotropic, linear, elastic material. Indicate the measurements you would 
make, noting that only loads (forces) and displacement (elongations, contractions, etc.) can be measured 
experimentally. The initial dimensions of the bar are known or can be measured. 
 
Bars: 20 Beam ABED, with a  90O  angle at B, is pinned at 
A and D, is supported through cable BC at B, and is loaded 
by a 100kg (mass) at E. In this problem, ignore the weight 
of the beam, the weight of cable BC and the weight of the 
cable supporting the 100kg mass. For cable BC, E = 
200GPa, α = 12x10-6 /OC and its diameter is d = 2cm. (a) 
Find the strain in cable BC imposed by the 100 kg mass. (b) 
Find the temperature difference ΔT that should be applied to 
cable BC in order to reduce its strain to zero. (c) If the 
temperature evaluated in (b) is actually applied to BC, what 
will be the stress in cable BC? 
 
 
 
 
 
 
 
Bars: 21 Beam ABC is subjected to load P at B and supported 
by cables of cross-sectional area A1, A2, at A, B, respectively. 
Both cables are made of the same material of elasticity 
modulus E and coefficient of thermal expansion α. The 
engineer wants beam ABC to be horizontal, so she makes the 
decision to decrease the temperature (cool down) of the cable 
at A by ΔT. Find the formula for the evaluation of ΔT. Ignore 
the weight of beam ABC  
 
 
 

A 

1.2m 

0.5m 

1m 

0.5m 

100 kg 

C 

B E 

D 

x 

y 

P 
b 

L 

a 

A B C 

A1 A2 



Bars: 22 Rigid beam ABC is supported by two 
identical vertical bars at A and B and subjected to 
force P at C. Length BC is 2.5 m and length AB is 1.0 
m. The modulus of elasticity of the vertical bars is 50 
GPa, each has a length of 1.0 m, and cross-sectional 
area of 4 cm2. Determine the maximum load P such 
that the deflection of C will not exceed 1.0 cm. 
 
 
 
Bars: 23 The stepped column, made of a material having a 
modulus of elasticity E = 90.0 GPa and coefficient of 
thermal expansion α =10×10−6 / OC , is fixed at A and 
loaded by a compressive force F = 400 kN at C. The 
engineer is asked whether there is a way to keep the 
displacement of B at zero after F is applied. In order to do 
so, the engineer proposes to heat part AB up by ΔT  in order 
to achieve zero displacement of B. What is the required ΔT ? 
 
 
Bars: 24 Truss ABC is subjected to a horizontal force P 
= 600 kN. All bars in the truss are made of steel (E = 
200 GPa) and have a cross-sectional area of 3000 mm2. 
What is the horizontal displacement of joint C? 
 
 
 
 
Bars: 25 A high altitude balloon has a long steel wire hanging from it. The length of the wire is 7,000 m, 
the weight density of the steel is 78 kN/m3 and its ultimate stress is 620 MPa. Find the safety factor of the 
wire against breaking from its own weight. 
 
 Bars: 26 Rigid beam ABC is supported through a pin at B, 
and through bars AD and CE pinned at A,D and C,E, 
respectively. Bars AD and CE are identical, with cross-
sectional area A, and elasticity modulus E.  A vertical load P is 
applied at A. For technical reasons, rigid beam ABC should 
not incline more than an angle θ  (angle expressed in radians) 
counter-clock-wise from horizontal so, for this, the engineer 
decides to apply a dead-weight load Q at C. Find the minimum 
magnitude of the load Q, considering that θ  is small enough 
such that θ ≅ tan(θ )  
 

A B 

C 

P 

A 
B C 

F 

0.3m 
0.27m 

d=150mm 

d=80mm 

B 

A C 

P 

3 m 3 m 

2.5 m 

a a/2 

A B C 

L L 

D E 

P Q 



Module 8: Shear Stress
Shear stress

In previous modules, we examined bars and saw that stretching or compressing a bar creates
normal stress that is acting transverse to the bar's cross sectional area. Now, if we "shear"
the bar, as shown schematically in Figure E-1, we create what is termed shear stress, which
is now acting parallel to the surface.  The letter τ is used to designate shear stress.  For the
case shown below we have

τave = P
A  

where P is shearing the cross section and A is the cross sectional area. It is important to
remember that P/A is only the "average" shear stress. In actual shear stress distribution, it is
not uniform and the maximum shear stress will be higher than the average shear stress. For
some problems, such as beam bending and shear, the shear stress distribution is evaluated
later in this course. Thus, for the time being, it is assumed that the shear load is uniformly
distributed across the shear surface.  Obviously a more precise definition is,  similarly to

normal stress: τ = lim
ΔA → 0

ΔP
ΔA where ΔP is now shearing ΔA.

Figure E-1 A shearing force P
acting on a bar creates shear
stresses τ. A side view of the bar
and a section in the vicinity of the
force is shown at the top, and a 3-D
view of the part left to the section at
the bottom.

Good illustrations of shear stress development are bolt, rivet, screw, and nail connections.
These create shear stresses in the connecting element such as bolt, and bearing stresses in
the bolt  and clevis.  In the next few sections,  the shear stress in connecting elements is
addressed. Then the bearing stresses and the shear strains are addressed in detail.

Normal stress, shear stress, bearing stress

With the definition of normal and shear stress presented in previous sections, it is useful to
summarize the different stresses and introduce the notion of bearing stress.

Normal stress (σ) on a surface is the result of a force acting transverse to it, and is defined
as force per unit area. A typical example of development of normal stresses is a bar in
tension or compression.



Shear stress (τ), on a surface is the result of force acting parallel to it, and is also defined as
force  per  unit  area.  A  typical  example  of  development  of  shear  stress  is  a  connecting
element, like the bolt shown in Figure E-2. The force F is transmitted from one plate to the
other via the bolt, as shear stress at the cross section of the bolt positioned between the two
plates.

Bearing stress  (σb)  is  a  normal  stress  defined as  the  force  pushing against  a  structure
divided by the area. In the two plates connected through a bolt in Figure E-2, loads F press
against the bolt in bearing, and contact stresses (pushing against), called bearing stresses,
develop.

The following examples should clarify the relevant definitions and provide an idea of how
such stresses are calculated.
Example 1-bolted connection, single shear: Figure E-2 shows two plates/bars connected
together via a bolt. The loads, F, create normal stress (σ) on the crosssections of bars/plates
and shear stresses on the cross section of the bolt positioned between the two plates/bars.
In addition, F pushes against the bolt, creating bearing stress. For the bars/plates, the cross-
sectional area, Abar, is simply the area of the cross section transverse to F. For the bolt, Abolt
is simply the cross sectional area of the bolt. The bearing area, Abear, is defined as the
projected (net) area of the curved bearing surface. Such a net or projected area is equal to
the thickness of the plates/bars multiplied by the diameter of the bolt. The bearing force in
this example is equal to F. Equilibrium equations for part of the bar and part of the bolt as
shown  in  the  figure  make  calculations  of  (average)  stresses  for  this  example  possible.
Relevant definitions are shown below.

Abar= cross section of bar/plate

Abolt= cross section of bolt

σ = F
Abar

 = normal stress in plates/bars

τave
bolt = F

Abolt
= V

Abolt
 = shear stress in bolt

σb = F
Abear

 = bearing stress in bolt.



Figure E-2 Example 1-Single
Shear: (a) shows a bolt
connecting two plates in
"single shear"; (b) the free
body diagem of the bolt and
the two forces F shearing the
cross section in the middle;
and (c) the free body diagram
of half the bolt and the shear
force V created, which results
in shear stress τ. Forces F are
also responsible for the
bearing stresses created on the
bolts as well as on the plates.

Example 2-bolted connection, double shear: This example (Figure E-3) is similar to the
first one, though the bolt is subjected to "double shear," meaning that two cross sections of
the bolt are sheared, one at the interface between the top and middle plate/bar and one at the
interface between the middle and bottom plate/bar. Using a similar notation as before, i.e.,
Abar= cross section of each bar/plate (the three plates are considered here of the same cross
sectional area); Abolt= cross section of bolt, the stresses are calculated as follows:

σ = F
Abar

 = normal stress in the bar to the right (the one subjected to F);

σ = F/2
Abar

= F
2Abar

 = normal stress in the two bars to the left (the ones subjected to F/2;

τave
bolt = F/2

Abolt
= F

2Abolt
 = shear stress (average) in the bolt, at each sheared cross section;

σb = F
Abear

 = bearing stress (average) on the bolt (at the part of the bolt being in the middle

plate/bar). Abear is defined as the projected or net bearing area, in this case the product of
the thickness of the middle plate and the diameter of the bolt;

σb = F/2
Abear

= F
2Abear

 = bearing stress (average) on the bolt, i.e. at the part of the bolt being in

the top or bottom plate/ bar. Here, again, Abear is defined as the projected or net bearing
area, in this case, the product of the thickness of the top or bottom plate and the diameter of
the bolt.

Figure E-3 Example 2-double shear.
Two plates at the left each subjected to
force F/2 are connected to a plate
subjected to force F through a bolt. The
bolt is subjected to double shear at two
interfaces between the plates.

Note: The rationale for defining the bearing area as the projected instead of the actual



area is: (a) The actual bearing stress distribution is complex, and defining the area as the
projected one implies the bearing stress is actually an average one that is easier to deal with;
and (b) similarly to hydrostatics where the total pressure force on a surface submerged in a
liquid is  the product  of  the net  (projected)  area and the pressure at  the centroid of  the
projected  area,  the  total  bearing  force  is  simply  defined  as  the  product  of  the  average
bearing stress and the net (projected) area.



Module 8: Shear Stress
Shear stress on inclined sections of a bar in tension or compression

The previous sections discussed the creation of shear stresses in problems such as two plates
connected  through  bolts.  However,  shear  stresses  are  created  in  almost  all  engineering
problems involving mechanical loads. Even though the general case of stress distribution in
two- and three-dimensions is examined later in this course, here we consider the simple case
of  the  stress  distribution  in  an  inclined  cross  section  of  a  bar  subjected  to  tensile  or
compressive load. Consider a prismatic bar subjected to a load T on both sides as shown in
Figure E-4. First, by considering a section mn transverse to T, as shown while studying a
bar, for equilibrium, normal stresses σ act on plane mn. Now, if we consider an oblique
(inclined) cross section that is not transverse but rather makes an angle θ with respect to T,
such an oblique section, jk, indicates that both normal and shear stresses act on the plane jk.
In other words the force T that must act on jk for equilibrium can be decomposed into two
components, one transverse to jk, N, and one parallel to jk, V . The former creates normal
stresses on jk and the latter shear stresses on jk. This can be verified easily by considering
equilibrium in both x' and y' direction of the piece of the bar extending from jk to the right
(or left) end of the bar. Considering that normal stress σ and shear stress τ act on jk, the two
equilibrium equations shown below indicate that both σ and τ are, in general, nonzero. Note
that the angle of the oblique plane increases from 0o to 45o, the shear stress increases while
the normal stress decreases.

Figure E-4 (a) A bar subjected to force
T and a section mn transverse to T; (b)
equilibrium of the part of the bar in (a) to
the left of mn showing the normal
stresses σ that develop; (c) the same bar
as in (a) but an inclined section kl is now
considered; and (d) equilibrium of the
part of the bar in (c) to the left of kl
showing the normal force N and shear
force V that develop. N creates normal
stress σ and V creates shear stress τ on
kl.

Equilibrium of the part of the bar shown in Figure E-4(d) in the x' and y' directions yields

ΣFy′ = 0 ⇒ V = Tsin(θ)cos(θ)    ΣFx′ = 0 ⇒ N = Tcos(θ)cos(θ)



The first of these equations yields the shear stress at the cross section kl and the second
yields the normal stress. In general, on every plane within a solid subjected to an external
load, there is one normal and two shear stresses, as shown schematically in Figure E-5,
where only the three stresses on the plane parallel to x are shown for illustration. Also, in
Figure E-5, the shear stresses are designated by indexes, the convention for which will be
demonstrated in subsequent sections. The most useful way of representing the stresses in a
structure, e.g., in a bar, is to isolate a small element of material and consider all the stresses
(and  thus  the  forces)  acting  on  it.  Such  a  material  element  can  be  considered  at  any
position within a structure and can have any desired orientation. Figure E-5 below shows
such an element. Also, when considering section jk in Figure E-4, the entire section or part
of it can be considered as the side of one element. In two dimensions, there are two stresses
on  each  plane,  namely  one  normal  and  one  shear  stress.  Two  dimensional  analysis  of
engineering problems is very common.

Figure E-5 Normal and shear stresses for a
general three-dimensional case.

Notation for normal and shear stresses

The notion of the infinitesimal material element was introduced in the previous module.
Even though such an element is of infinitesimal dimensions, usually it is drawn large so all
the stresses on it  can be visualized.  Material  elements can have any desired orientation
within  a  structure  and  are  parallelepipeds.  In  general,  we  consider  a  three-dimensional
coordinate system, x-y-z and a material element aligned to that coordinate system as in
Figure E-6.  The three normal stresses  are  designated as  σx,  σy,  σz  ,  and the subscripts
corresponds to the plane the normal stress acts on. Shear stresses require the use of two
subscript  and  there  are  six  such  stresses  τxy,  τyx,  τxz,  τzx,  τyz,  τzy.  The  first  subscript
corresponds  to  the  plane  the  shear  stress  acts  on,  and  the  second  to  its  direction.  For
example, τxy denotes the shear stress that acts on the plane transverse to the x-axis (called
the x-plane) and its direction is parallel to axis y. Figure E-6shows all such stresses, i.e.
shear as well as normal ones.



Figure  E-6  Stresses  acting  on  a  material  element,  i.e.,  an  infinitesimal  parallelepiped
embedded in a structure. On the left are the shear stresses and the normal stresses are on
the right.  For clarity,  only the shear stresses in three planes (not on all  six planes) are
shown.



Module 8: Shear Stress

A very important relation among shear stresses

Consider the free body diagram of a small material element (parallelepiped) centered at a
point in a structure (Figure E-7). There are three stresses and corresponding forces (force =
stress times area) acting on each side of the element, one normal force and two shear forces;
each force is equal to the stress multiplied by the area it acts upon, i.e., ΔA. For simplicity
let us consider that the material element is a cube of side α, thus ΔA = α2. A more general
case where the element is not a cube is considered in the following section. Let us first
consider  the  moment  equilibrium of  the  cube,  since,  as  will  be  shown,  satisfaction  of
moment equilibrium will end up implying force equilibrium as well;

ΣFx = 0,    ΣFy = 0, ΣFz = 0

will also be satisfied.

Figure E-7 (a) normal and shear stresses
for a general three-dimensional case; and
(b), normal and shear stresses in the x and y
planes.

Let us consider one of the three moment equilibrium equations, namely ΣMz = 0.  This
implies that  (since the normal forces acting on the x and y planes do not  produce any
moment around axis z):

  (τxy ⋅ ΔA)α − (τyx ⋅ ΔA)α = 0

where α is the side of the cube. Then this implies that τxy = τyx, and writing similar moment
equilibrium equations for the other two axes we have

τxy = τyx;    τxz = τzx; τyz = τzy;

Thus although there are originally nine stress components at a "point" or material element,
namely three normal stresses and six shear stresses, the above relation implies that only six
of  them are  independent.  Thus  for  a  problem of  mechanics  of  materials,  there  are  six
unknown stresses at each point to be determined. In short, we have that:

1.  Shear  stresses  on  opposite  faces  of  a  material  element  are  equal  in  magnitude  and
opposite in direction.



2. Shear stresses on adjacent faces of a material element are equal in magnitude and they
both point toward or both point away from the intersection of the two faces.

For a more formal proof of the above relation, see the following module. Finally, note that
when there are no normal stresses on an element, but only shear stresses, the element is
considered to be in a state of pure shear.

Shear stress symmetry

We now look at the issue of shear stress symmetry in more detail, since this is important in
mechanics of materials. In the previous section some simplifying assumptions were made
on the material element.

Figure E-8 (a) A material element subjected to a shear stress on its x-plane only; (b) for
equilibrium of element in (a) an equal shear stress must be present on the negative x-plane;
(c) for equilibrium of the couple in (b) an opposite sign couple must act as shown; and (d)
equilibrium of forces implies the shear stress symmetry.

The two forces acting on the positive and negative x-planes (Figure E-8(b)) form a couple,
which must be equilibrated by another couple. Since normal forces that may also act on the
element do not produce any moments, a couple must form by shear stresses on the positive
and negative y-planes, as shown in Figure E-8(b).Then, moment equilibrium around the
z-axis implies that

τyx[(dx)(dz)](dy) = τxy[(dy)(dz)](dx) ... (stress) × (area) = (force), ... (force) x (distance) =
(moment)

which further implies that τxy= τyx.



Module 9: Shear Strain, Shear Modulus
Shear strain and Hooke's law in shear

Normal stresses create normal strain, i.e., a stress σx creates normal stress in direction x and
lateral normal strains in the other two directions. Shear stress creates shear strain, i.e., an
initially  cubic  element  transforms  into  a  rhombus-type  element  since  the  initially  right
angles change by some amount. The shear strain is defined as the change of an initially right
angle (Figure E-9).  It  is  a measure of distortion,  expressed in radians.  For a linear and
elastic  material,  the  shear  strain  is  proportional  to  the  shear  stress,  and  the  factor  of
proportionality is called shear modulus, denoted as G. Thus,

τxy = Gγxy  

The shear modulus is a material property and values for certain engineering materials are
shown  in  the  Appendix.  Usually  a  plot  of  shear  stress  versus  shear  strain  is  obtained
experimentally  and  from it  the  G  modulus  is  calculated.  Such  plots  are  shown  in  the
following module which discusses factor of safety with respect to shear stress.

Figure E-9 Deformed state of a material element
subjected to shear stress τ. In the undeformed state, the
angle γ is equal to zero.

The elasticity modulus E and the shear modulus G are related by

G = E
2(1+ν)

The proof of this relation between E and G will be presented in a subsequent module. At
this point it is mentioned that even though an element may be subjected to shear as in Figure
E-9, at inclined planes there is normal stress created.

Sign convention for shear stress and shear strain

Unlike normal stress with compression or tension, shear stress is the same if it shears left to
right or right to left. The magnitude of shear stress is the important parameter that needs to
be considered. However, in certain applications it is necessary to use a sign convention for
shear stresses. The shear stress will be considered positive when a pair of shear stresses



acting  on  opposite  sides  of  the  material  element  produce  a  counterclockwise  torque
(couple). (Some texts use the opposite direction for the positive shear stress. This changes a
sign in several equations, so we must be somewhat careful of signs when working problems
and examples.) This sign convention also yields that a shear stress acting on a positive face
(in the positive x axis for example) is positive if  it  acts in the positive direction of the
coordinate axes and negative if it acts in the negative direction of an axis. A shear stress
acting on a negative face of an element is positive if it acts in the negative direction of an
axis and negative if it acts in a positive direction. A positive shear stress creates positive
shear strain and vice versa.

Shear stress and factor of safety

The factor of safety under shear is defined similarly to the factor of safety under normal
stress. Materials can sustain stress up to a certain limit before failure occurs. Of course, the
load imposed on a structure must always be smaller than the load that would cause failure.
The failure load is often termed “ultimate” and the load a structure is subjected to is termed
the “working” or “design” load. The factor of safety for a structur in shear is defined as the
ratio

Factor&InvisibleTimes;  of&InvisibleTimes;  safety = n = Failure  load
Working  load

where  load  here  creates  shear  stresses.  Another  way  to  consider  factor  of  safety  for  a
structure is to find the maximum shear stress under working load and the maximum shear
stress under ultimate load. In this case

Factor  of   safety = n = Failure  stress
Working  stress

For certain cases and materials, instead of using the ultimate stress or ultimate load in the
above two relations, the yield stress and corresponding yield load are used. Calculation of
factor  of  safety  for  simple  structures  is  relatively  straightforward,  given  the  stress
distribution in a structure and the shear stress versus shear strain response of the material.
Figure  E-10 shows a  shear  stress  versus  shear  strain  curve for  a  metal  such as  certain
aluminum alloys.

Figure E-10 Shear stress versus shear strain
of the material.



The factor of safety in shear is defined (here with respect to the material yield stress) as

n = Yield  stress
Working  stress =

τyield
τ

The allowable or design shear stress is then defined as

  τall =
τyield

n

For problems such as shearing of a bolt, where a shearing force V creates the shear stresses
on the bolt, we have

n =
τyield

n =
Vyield/A

V/A =
Vyield

V



Module 9: Shear Stress, Bearing Stresses
Shear stress and bearing stress-further examples

A typical example of shear and bearing stress development is that of a bolt connecting two
plates/bars. However, shear and bearing stresses are developed extensively in practically all
engineering  applications.  Some  further  examples  of  such  stresses  are  presented.  As
mentioned  before,  bearing  stress  is  defined  as  the  compressive  stress  created  by  direct
contact of two surfaces. Shear stress in one part of a component, such as a bolt are usually
accompanied by bearing stresses in other surfaces. The actual distribution of bearing stress
is  not  easily  determined,  so  usually  the  average  bearing  stress  is  determined  and  is
compared to the failure bearing stress of the material. Thus, bearing stress is defined as σb =
P/A where P denotes the bearing force and A the force bearing area.

 

Figure E-11 Schematic of a cylindrical body
(top) pushing on the bottom part by load P.

Figure  E-12 shows the  case  of  a  nail  or  bolt  positioned through a  hole  in  a  plate  and
subjected to a load P. Load P imposes shear stress on the areas indicated by dot lines (see
arrow in Figure E-12) and bearing stress on the area of contact between the top and bottom
body (see arrow in Figure E-12).

Figure E-12 A bolt or nail-like object is pulled
through a hole in a plate.

A schematic of the so-called punching operation is shown in Figure E-13. Force P imposes
shear stress on the cylindrical area (see dotted line in Figure E-13) in the bottom plate, and
bearing stress on the contact area between the punching object and the bottom plate.



Figure E-13 The punching operation is
such that an impact load P is imposed on
an object such that it punches through a
sheet or plate.

Figure E-14 shows a cylindrical hole of diameter d through a plate of thickness t. Such holes
are common in fastener applications, and often a force is imposed transverse to the axis of
the cylindrical hole. In such a case, the bearing stress is the force divided by the net area.
Thus the bearing stress is expressed as

σb = F
d×t  

where F is the bearing force, d is the diameter and t the thickness, as shown in Figure E-14.

Figure E-14 The shearing force F also creates
bearing stress, the average value of which is
denoted as σb.



Example: Bearing and Shearing Stresses 

The figure shows a bolted connection between three 
aluminum members. When the bolt is tightened, the 
aluminum is compressed laterally and the bolt is in tension. 
The allowable tensile stress in the 1/2-inch-diameter bolt is 
20,000 psi, and the allowable bearing stress between the 1.0-
inch-diameter washers and the aluminum is 2,400 psi. a) 
What is the maximum permissible tensile force in the bolt? b) 
Under that maximum load, what is the average shear stress 
on the washers if the perimeter of the hexagonal bolt heads is 
1.2 inches and the thickness of the washers is 0.1 inches.  

Cross-sectional area of the bolt:                                                            thus the maximum load so that the 20,000 psi is not exceeded is:  

                                                           .   

The bearing area of the washer is:                                                       thus the maximum load so that the 1200 psi stress is not exceeded is: 

                                                                                      

Then the maximum allowable load is 1,416.0 lb. 

The area of the washer subjected to shear stress is equal to the perimeter of the bolt head multiplied by the thickness of the washer. Thus  

                                        .  Then, the average shear stress to the washer is  

 

   

 Ab
= πd2 / 4 = 3.14 ⋅0.52 / 4 = 0.197 in2

 F1
= σ

all
A

b
= 20,000 × 0.197 = 3,940.0 lb

 
A

w
= π 1.02 − 0.52( ) / 4 = 0.59 in2

Washer 
Bolt head 

 F2
= σ

all
A

w
= 2,400 × 0.59 = 1,416.0 lb

 Ashear
= 1.2 ⋅0.1 = 0.12 in2

 
τ

ave
=

F
max

A
shear

=
1,416.0

0.12
= 11,800 psi



Example: Design Problem 

Combinations: 

   Tension-Shear 

   Tension-Bearing 

   Shear-Bearing 

Allowable stress 

Area 

Tension Shear Bearing 

 P = σA

 

36,000

2.5
= 14,400 psi

 

14,000

2.5
= 5,600 psi

 

22,000

2.5
= 8,800 psi

A flat bar of width b = 2.5 inches 
and thickness t = 0.5 inch transmits 
an axial load P (see figure). Two 
holes of diameter d are drilled 
through the bar for pin supports. 
The ultimate tensile strength of the 
bar (σt,ult) is 36,000 psi on the net 
cross section of the bar, the ultimate 
shear strength of the pins (τs,ult) is 
14,000 psi, and the ultimate bearing 
stress between the bar and pins 
(σb,ult) is 22,000 psi. Using a factor 
safety of 2.50, determine the 
diameter of the pins for which the 
load P will be maximum. Find d 
and P. 

 P = 8,800d P = 5,600 πd2

 P = 14,400 1.25 − d( )
 P = 18,000 − 14,400 d

 t b − 2d( ) = 1.25 − d  4πd2 / 4 = πd2  2 dt = d

P 

P t 

b 
d 

d 



Example: Design Problem 

 

18,000 − 14,400 d = 8,800 d

d = 0.776 in

P = 6,830 lb

Check shear P =  10,590 lb
OK 

 

5600 πd2 = 8,800 d

d =
8,800

5,600 π
= 0.500 in

P = 4,400 lb

Check tension P =  10,800 lb

OK 

 

Tension-Bearing >  Shear-Bearing

d = 0.776 in

P = 6,830 lb

Tension-Bearing: Shear-Bearing: 

 

18,000 − 14,400d = 5600 πd2

∴5,600 πd2 + 14,400 d − 18,000 = 0

d =
−14,400 + 14,4002 − 4( )  5,600 π( )  −18,000( )

2( )  5,600 π( ) = 0.682 in

NOT OK 

Tension-Shear: 
A flat bar of width b = 2.5 inches 
and thickness t = 0.5 inch transmits 
an axial load P (see figure). Two 
holes of diameter d are drilled 
through the bar for pin supports. 
The ultimate tensile strength of the 
bar (σt,ult) is 36,000 psi on the net 
cross section of the bar, the ultimate 
shear strength of the pins (τs,ult) is 
14,000 psi, and the ultimate bearing 
stress between the bar and pins 
(σb,ult) is 22,000 psi. Using a factor 
safety of 2.50, determine the 
diameter of the pins for which the 
load P will be maximum. Find d 
and P. 



Example: Design Problem 
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Shear: 1  Two 12-mm-thick steel plates are joined by two bolts, 4 mm in diameter. The tensile force 
applied is 2,000 N. (a) Evaluate the (average) shear stress in the bolts, and (b) evaluate the bearing stress 
on the steel plates.  

 
 
 
 
Shear: 2  The axle of a pulley is subjected to double shear 
as shown in the figure. The width of the pulley is 1 inch and 
the bracket is 0.4 inch thick. Find: (a) the shear stress in the 
axle, (b) the bearing stress in the bracket, and (c) the 
bearing stress in the pulley.  
 

 
    
 
 
 
 
 
 
 
 
 
 

 
Shear: 3 A truss joint connecting bars OA, OB, and OC is shown. 
The connecting plate is 20 mm thick and the diameter of the 
connection bolts is D = 10 mm. Find: (a) the shear stress for each 
of the six bolts connecting bar OC to the joint and (b) the bearing 
stress on the plate at OC. Note that the bars are only on one side of 
the plate, thus the bolts are subjected to single shear. 
 
 
 
 
 
 
 
 
 
 
 

12 mm 

4 mm 

2000 N 

2000 N 

 

60o 

30o 

D=1/2 in 

T=500 lb 

T=500 lb 

 

F/2 

1.0 in 

Pulley Axle under Double Shear 

F/2 

F 

0.4 in 

0.4 in 

0.5 in 

y 

x 

T 

C 

B 

A 

FOA 
8 kN 

4 
5 

4 
5 3 

3 



 
 
Shear: 4. Circular disks of diameter D = 4 inches are to be punched from a 1/4-inch-thick aluminum 
plate. The ultimate shear stress of the aluminum is 12,500 psi. Find the force required to punch the discs. 
 

                        
 
 
 
Shear: 5  The beam is pinned at A and 
at B the pin is subjected to double shear. 

Find the diameter of pin B such that  τave
=1,250 psi 
 
 
 
 
 
Shear: 6 Find the rivet diameter so that three rivets in double shear will support 180 kN given a rivet 
material with allowable shear stress of 100 MPa. 
 

 
 
 

 
We assume that there is no free play so that each rivet bears an equal 
load. 
 
 
Shear: 7 A punching operation produces circular disks 1 inch in 
diameter from 1-inch-thick stock. Given that  τult = 1200 psi , how 
much force is required to punch the disks? 
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Shear: 8 A mechanical test is performed on a synthetic rubber material 
by imposing shear  load on a pad like the one shown. For a = 3 inches, 
h = 1.5 inches, a force V = 100 lbs results in that the top part of 
the pad moves laterally by 0.0238 inch relative to the bottom 
plate. What is the shear modulus of the rubber, G? Note that a 
test like this is usually performed by bonding steel plates at the 
top and bottom of the pad and imposing the force on the plates; 
this is however not relevant to the solution of the problem.  
 
Shear: 9 The two 0.75x4.0-inch tension bars are riveted together 
through two 0.8x6.0-inch splice plates, and rivets of 1.0-inch diameter. The allowable stress for the bars 
and splice plates is  σall

bar ,plate = 20.0 ksi , the allowable shear stress on the rivets is  τall
rivets = 9.0 ksi , and the 

allowable bearing stress on the rivets and splice plates is  σall,bearing
rivet,plate = 25.0 ksi . Find the maximum load P 

such that none of the allowable stresses will be exceeded. Which part of this connection would you first 
replace to make it more efficient ? 

 
Shear: 10  The steel bar (E = 200 GPa) is of rectangular cross section (4x10 cm2) and is to be bolted on a 
structure by 10 bolts on each side; the diameter of each bolt is 3.5 cm. Due to an error, the length L shown 
was 1.795 m instead of 1.80 m, thus there is a gap of 0.5 cm, which makes it difficult to bolt the bar on 
the structure. The engineer suggests a tensile force is imposed in order to close the gap. (a) Find the force 
F required to close the gap. After the gap is closed and the bar is bolted, F is released. (b) Find the shear 
stress on each bolt. (c) Find the bearing stress on the bar.  
 

 
Shear: 11 The steel bar shown above (problem Shear 10) (E = 200 GPa,  α = 11x10−6 /o C ) is of 
rectangular cross-section (4cm x 10cm) and is to be bolted on a structure by 10 bolts on each side; the 
diameter of each is 3.5cm. Due to an error, the length L shown was 1.795 m instead of 1.80 m, thus there 
is a gap of 0.5 cm, which makes it difficult to bolt the bar on the structure. The engineer suggests the bar 
is heated up by - ΔT  in order to close the gap. (a) Find the  ΔT  required to close the gap. After the gap is 
closed and the bar is bolted, the bar is brought back to its original temperature. (b) Find the shear stress on 
each bolt. (c) Find the bearing stress on the bar. 
 

      
     

     
     

L 

 

cross section: 
4 cm x 10 cm 

V 

V 

h 
a 

a 

Bar Bar 

Splice Plates 
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Shear: 12 A steel rod, connected to a steel plate of diameter 30 
mm and thickness 11 mm as shown, is subjected to load P and 
supported by an aluminum plate 12 mm thick into which a 10 mm 
diameter hole has been drilled. The allowable shear stress in the 
aluminum is 65 MPa and in the steel 170 MPa. Further, the 
bearing stress between the steel and the aluminum is not to 
exceed 250 MPa. Determine the largest load P that can be 
applied. Ignore all weights. 
 
 
Shear: 13 A vertical cylindrical rod is supported by a collar 
and bearing plate, as shown. Determine the maximum axial 
load P that can be applied to the rod if the average punching 
shear stress in the collar and the average bearing stress 
between the collar and the plate are limited to 70 and 100 
MPa, respectively. 
 
 
Shear: 14  A concrete column of square cross section (d × 
d) is subjected to compressive load P and is connected to a 
square footing of dimensions b × b and thickness t. The 
footing rests on soil at depth D. Assume the bearing stress on the soil is uniform, and ignore the weight of 
the column and the footing and the soil. Let the allowable bearing stress on the soil be σallowable

bearing  and the 
allowable punching shear strength of the 
concrete be τallowable

shear . (a) Find the load P that will 
create a bearing stress on the soil equal to 
σallowable
bearing . (b) Find the load P that will create a 

shear stress on the footing (due to the punching 
operation of the column on the footing) equal to 
τallowable
shear  . (c) Set the load P found in (a) equal to 

the load P found in (b) and find the relation 
between b, d, t for such a condition to hold if 
τallowable
shear = 15σallowable

bearing .  
 
Shear: 15  Two plates of 10 in × 3/8 in cross section are connected by four bolts each of diameter d = ½ 
in as shown. A tensile force T = 2 kips and two horizontal couples T = 600 lb-in are imposed on the 
plates. Consider that the couples T are equilibrated by horizontal forces R on each bolt as shown. Find (a) 
the maximum shear stress on the bolts; (b) the maximum bearing stress on the plates.  
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Shear: 16  Beam ACB has a square cross section 1.5 in. × 1.5 in. 
and column CE has a square cross section 1.0 in × 1.0 in. If the 
allowable stresses for the connecting bolt at C are and 

, determine the minimum diameter of the bolt 
required. 
 
 
 
 
Shear: 17 The airplane wing is subjected to a uniform lifting force 
of 500 N/m over its entire length of 14 m. The wing is pinned at A 
and also supported by bar BC through pins at B and C. The pin at B 
is realized through a bolt of radius r = 1 cm that connects the two 
plates of thickness d = 0.90 cm each to the plate of thickness b = 
1.60 cm, as shown schematically in the connection detail drawing. If 
the failure shear stress in the bolt is 80 MPa and the failure bearing 
stress in the bolt is 120 MPa, find the factor of safety in the 
connection for the 500 N/m load on the wing. Ignore the weight of 
the wing and bar BC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear: 18 Rigid beam ABC is supported through a pin at B, 
and through bars AD and CE pinned at A,D and C,E, 
respectively. Bars AD and CE are identical, with cross-
sectional area A = 800 cm2, and elasticity modulus E = 200 
GPa.  A vertical load of 6 kN is applied at A and 3 kN at C. 
The pin at B is through a bolt that is subjected to double 
shear. Find the average shear stress on the bolt if its diameter 
is 4 cm. 
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Module 10: Mechanical Behavior of a Shaft
Mechanical behavior of a shaft

Previously, the behavior of perhaps the simplest type of structural member (i.e., a bar under
tensile or compressive load) was studied. Now the behavior of a torsional shaft is studied
(i.e., twisting of a straight bar by a moment or torque). A typical example is the twisting of a
screwdriver, where torque or moment is applied in order to drive a screw in or out. Note that
the term "shaft" pertains to a bar subjected to torque. Torsion, like any force, will produce
both stress and strain.  However,  unlike axial  stress and strain,  torsion causes a twisting
stress, called shear stress (τ), and shear strain (γ). These are exactly as they were when
studying shear stress and strain in previous modules. Thus, it is important to understand
how such stresses and strains develop in a shaft subjected to torque T.

Figure F-1 A torsional shaft subjected to a torque T,
also termed as moment, or couple.

Figure F-2 Double arrow is used as the symbol for
twisting moment or torque.

Thus, if we consider an infinitesimally small piece of the shaft of length dx (Figure F-3) the
right end of that piece will twist relative to the left end. Based on the relative rotation of the
right end with respect to the left end of the piece of length dx, relevant geometrical angles
can be defined. In the following are the definitions for the relative angle, γ , the angle of
rotation, φ, and the angle of twist per unit length, θ. These are illustrated over a small length
of a torsional shaft, dx (Figure F-3). Line segment ab is parallel to the axis of the cylinder
before the torque is applied. The torque moves line ab to ab'. Note that this is a relative
motion of the right end with respect to the left end. In the following, definitions relevant to
torsion problems are given.



Figure F-3 Schematic of a small piece of a torsional shaft
of infinitesimal length dx.

Definitions

γ = bb′
ab  is the so called relative angle, and since this angle is small, tan(γ) is almost equal to

γ (expressed in radians). But, as is obvious from Figure F-3, bb' = r(dφ), which indicates arc
length. Actually, bb' = r tan(dφ )≈ r (dφ) holds. Further, ab = dx, therefore

  γ = rdφ
dx = rθ

where

θ = dφ
dx   

is the angle of twist per unit length. Note that γ is the change in an initially 90o angle, which
is precisely the shear strain defined in previous modules.

Uniform torsion

Consider the shaft shown in Figure F-4. Its length is L and it is subjected to torque T on one
end. The other end is fixed. As is easily verified, the torque at every position of the shaft is
T. Then the angle of twist per unit length is constant, thus dφ

dx = constant holds

Figure F-4 Free body diagram
of a shaft

Then θ = dφ
dx = constant → φ = xθ or for θ, which implies that for the total length L, θ = φ

L

which implies that γ = rθ = rφ
L  for T being constant along the bar.  This case when T is

constant along a shaft, is called uniform torsion. Nonuniform torsion is addressed later.
Uniform  torsion  is  in  a  sense  similar  to  uniform  tension  or  compression  in  a  bar  as
examined  in  previous  modules,  which  imply  that  the  tensile  or  compressive  load  P  is



constant along the bar. Figure F-5 shows the shape a shaft subjected to uniform torsion
attains after the torque is applied. The rate of change of the rotation is constant throughout
the length of the shaft.

Figure F-5 Top (a) The deformed
shape of a torsional shaft
subjected to uniform torsion, and
(b) a line before and after the
torque is applied.

Uniform torsion requires that a shaft has the same cross section along its length, and the
applied torque is constant along its length as well. If any of those is not the case, then the
shaft is subjected to nonuniform torsion. This is examined later in this module, and here it is
mentioned that nonuniform torsion is treated mathematically in the same way non-uniform
bars were treated.



Module 10: Mechanical Behavior of a Shaft

Hooke's law in shear

As mentioned before,  normal  stress  in  bars  creates  normal  strain  as  well.  Accordingly,
normal strain creates normal stress. Similarly, shear stress creates shear strain, defined as γ
(see previous modules on shear stress),  and vice versa. It  turns out that the shear stress
created in a torsional shaft is the same (shear force per unit area) as the shear stress created
in direct shear, such as in bolts examined previously. Thus we have a relation between the
shear stress τ and shear strain γ that reads:

τ = Gγ

where G is the shear modulus of elasticity. At an arbitrary point A in the cross section, γ =
ρθ and τ = Gρθ. This implies that τ varies linearly with ρ, as is illustrated in Figures F-6
F-7. Note that the symmetry of shear stresses implies that a shear stress acting on the cross
section of a shaft also creates a shear stress in planes transverse to the cross section, as
shown in Figure F-7. These shear stresses tend to "slice" the shaft along its length. In wood
shafts, where typically the grain is in the direction of the shaft, such shear stresses can result
in cracks along the length of the shaft since the direction transverse to the wood grain is
typically weak in shear.

Figure F-6 Distribution of shear stress τ along the radius of the
cross section of a shaft subjected to torque T.

While for a solid circular cross section ρ varies between zero and r (r denoting the radius of
the circle) and the maximum shear stress occurs for ρ = r. Further, for ρ = 0 the shear stress
is zero, i.e., at the center of the cross section.

Figure F-7 Schematic of shear stress
distribution in a circular shaft. A cut
in the shaft is shown for illustration
of the shear stresses. The shear stress
on the cross section also implies
shear stress on planes transverse to
the cross section.

Consider  the shaft  shown in Figure F-8,  of  circular  cross  section,  subjected to external
torque  T.  At  each  material  point  (area  dA),  τ  =  Gρθ  holds.  Then  the  moment  that  τ
produces, with respect to the center of the cross section ,is expressed as



τ(dA)ρ = Gρθρ dA = Gρ2θ dA

The total torque is the integral of the moments over the whole cross section, and this is
expressed mathematically as

T = ∫
A

Gρ2θdA = Gθ∫
A

ρ2dA

This relation can be written as

T = GθIP

where

IP = ∫
A

ρ2  dA

IP is termed the polar moment of inertia, and it is a property of the cross section. For a
circular cross section or radius r (diameter d = 2r), the polar moment of inertia is given by

Ip = πr4

2 = πd4

32

 

Figure F-8 (a) A shaft subjected to torque
T, and (b) cross section of the shaft and an
element of area dA.

We have then for the torsion problem that θ = φ
L → φ = θL, and also θ = T

GIP
 holds. Then it

follows that

φ = TL
GIP

   or   T =
GIP
L φ

The product GIP is termed "torsional rigidity" and GIP/L is termed the "torsional stiffness."
Note  that  a  shaft  acts  like  a  rotational  (torsional)  spring  where  the  moment  (T)  is



proportional to the rotation (φ). The spring constant is equal to the torsional stiffness of the
shaft.

The following terminology applies to torsional problems:

GIP/L: torsional stiffness, L/(GIP): torsional flexibility

The maximum shear stress is of interest to engineers, which can be found for ρ = r. Thus,

τmax = Tr
IP

holds, while at any point in the cross section we have

τ = Tρ
IP

Note that the shear stress at the center line of the shaft is zero since ρ = 0 at the center.

Example-hollow cylindrical shaft: For optimum use of material and resources, engineers
seek to maximize the torsional rigidity with respect to cross sectional area. It turns out that
hollow cylindrical shafts are very effective in this regard (see Figure F-9). As mentioned
previously,  the  shear  stress  at  the  center  of  a  cross  section,  where  ρ  =  0  is  zero,  and
increases linearly with increasing ρ. Thus, it is efficient to have hollow cylindrical cross
sections. Hollow cross sections are efficient,  yet they cannot be too thin since this may
create local buckling of the cross section. Buckling phenomena are examined later in this
course. In this example, let the outside diameter of the cross section be d2 = 100 mm, the
inside diameter be d1 = 70 mm, and the torque applied to the cross section be T = 7000 Nm,
which is an external torque applied onto the shaft.

Figure F-9 A hollow cylindrical cross section of a shaft.

The shear stress τ  is evaluated from τ = Tρ
Ip

 .  The polar moment of inertia of the cross

section is evaluated as

IP = π
32 (d2

4 − d1
4) = 7.460 × 106  mm4  

Stresses, τ1 at the inner and τ2 at the outer part of the cross section are now evaluated.



τ1 = (7000 Nm)(35 mm)
7.460×106  mm4

= 32.8 MPa  

τ = (7000 Nm)(50 mm)
7.460×106  mm4

= 46.9 MPa  

For this hollow cylindrical shaft, the shear stress distribution along the radius is shown in
Figure F-10.

Figure  F-10  Shear  stress  distribution  for  the  hollow
cylindrical shaft.



Module 11: Shear Stress in Shafts, Shafts vs Bars
The "equivalence" of a bar and a shaft

So far  the  stresses  created  in  a  bar  and  in  a  shaft  have  been  examined  (Figure  F-11).
Physically, they are very different, since tensile stresses are created in a bar while shear
stresses are created in a shaft.  However,  from the mathematical point of view there are
similarities, as shown in the following table, which also summarizes all the equations for
bars  and  shafts.  Even  though  nonuniform  shafts  have  not  been  addressed  yet,  the
mathematical  similarities  should  help  in  understanding  them.  Nonuniform  shafts  are
presented in the section immediately following this one.

Figure F-11 A bar (top) subjected to force P and a shaft (bottom) subjected to a torque T.

Table showing relations for bars and shafts. Mathematical similarities can be identified.
Shaft Bar Terminology

γ = ρθ = ρφ
L

γmax = rθ = rφ
L   

ε = δ
L relative angle (shear strain)/normal strain

τ = Gγ σ = Eε Hooke's law shear/tension

τ = Tρ
Ip

τmax = Tr
Ip

  

σ = P
A shear/normal stress

φ = TL
GIp

δ = PL
EA relative rotation/elongation



φ = ∑
i=1

n TiLi
GiIpi

δ = ∑
i=1

n PiLi
EiAi

nonuniform bar/shaft

φ = ∫
0

L
T(x)dx
GIp(x)

δ = ∫
0

L
P(x)dx
EA(x)

continuously nonuniform bar/shaft



Module 12: Nonuniform Shafts

Nonuniform torsion

The previous discussion was for uniform torsion, i.e., for a shaft of constant cross section, of the
same material  throughout,  subjected  to  constant  torque  T.  There  are  many reasons  for  such
uniformity to be invalid. When the cross section of the shaft changes along its length, either
step-wise or continuously, or when the material along the length of the shaft changes, we have
non-uniform torsion.  It  is  similar to nonuniform bars,  in the sense that  similar mathematical
formulas hold for the analysis of nonuniform shafts as for nonuniform bars. Figure F-12 shows a
case of step-wise uniformity and a continuously nonuniform shaft.

Figure F-12 (a) A shaft of piece-wise constant
cross section subjected to torques T1, T2, T3,
T4; and (b) a shaft of continuously varying cross
sections subjected to constant torque T.

For a piece-wise uniform shaft the total relative angle of twist can be evaluated as

ϕ = ∑
i=1

n TiLi
GiIPi

where i = 1,2,...,n denotes a piece of the shaft, in a shaft consisting of n pieces. For example, the
shaft  in Figure F-12(a) consists  of three pieces,  AB, BC, and CD. The torque in AB, using
equilibrium,  is  T4,  in  BC it  is  T4 −  T3,  and in  CD it  is  T4 −  T3 + T2 or  -T1.  Note  that
equilibrium of the entire shaft implies that T4 − T3 + T2 − T1 = 0.

Continuously nonuniform shafts are examined in the following section. In the remainder of this
section is an example illustrating the analysis of piece-wise uniform shafts.

Example of piece-wise uniform bar: A shaft of piece-wise constant circular cross section is
subjected to the torques shown in Figure F-13. The problem here is to: (a) find Tb so that the
twist at C is zero, and (b) calculate τmax for member AB. The material in the entire shaft is the
same and of shear modulus G.



Figure F-13 A piecewise uniform shaft
subjected to two external torques as shown.

We use the formula for piece-wise uniform torque. In order to find the torque in each piece,
consider equilibrium of part of the shaft. For example, using section α-α, we have the following
free body diagram (Figure F-14). As is obvious, TBC = 6 in-K. Similarly, TAB = 6 in-K-Tb. Then
in order to find the rotation at C, designated here as φC, the relative rotations φAB and φBC need
to be added. Thus,

ϕC = ϕAB + ϕBC =
TABLAB
GIPBC

+
TBCLBC
GIPBC

= 1
G

⎛

⎝
⎜⎜⎜

(6.0−Tb)36

3.14×1.24
32

+ 6.0×1.0
3.14×1.04

32

⎞

⎠
⎟⎟⎟ = 0

which yields Tb = 6.34 in-K. With this value for Tb, the torque in member AB is TAB = 6.0 −
6.34 = −0.34 in-K. Then, the maximum shear stress in AB can be calculated as

τmax
AB = 16×300

3.14×0.153 = 452.0 kPa  

Figure F-14 Equilibrium implies that TBC = 6 in-K, and that is
the torque in shaft BC.

Example of piece-wise uniform bar: The stepped shaft ABCD (Figure F-14) consisting of solid
circular segments is subjected to the torques shown at points C and D. The material is steel with
G = 80x106 kPa. (a) Calculate the maximum shear stress in the shaft. (b) Calculate the angle of
twist (in degrees) at point C. In the figure, d denotes diameter.

Figure F-14 A stepped shaft subjected
to two torques as shown.



Torques in each part are TAB = 300 Nm, TBC = 300 Nm, TCD = 900 Nm. It is noted that the sign
of the torques does not matter for finding extreme shear stresses. The maximum shear stress for
the entire shaft is the in either AB, BC, or CD for a solid shaft,

τmax = Tr
Ip

=
T d

2
πd4
32

= 16T
πd3   

Then

τmax
AB = 16×300

3.14×0.153 = 452.0 kPa    τmax
BC = 16×300

3.14×0.083 = 2, 985.7 kPa

τmax&
CD = 16×900

3.14×0.073 = 13, 370.0 kPa

The above imply clearly that the maximum shear stress in the entire shaft is 13,370.2 kPa. In
order to find the rotation at C, designated here as ϕC, the relative rotations ϕAB and ϕBC need to
be added. Thus,

ϕC = ϕAB + ϕBC =
TABLAB
GIPBC

+
TBCLBC
GIPBC

= 300
80×109

⎛

⎝
⎜⎜⎜

0.3
3.14×0.154

32

+ 0.27
3.14×0.084

32

⎞

⎠
⎟⎟⎟ = 0.000274 rad



Module 12: Nonuniform Shafts
If the cross section of a shaft or the applied torque varies continuously along its length, the
summation formula applicable to stepped shafts  does not  apply.  Instead,  the summation
formula becomes an integral. Thus, for a shaft as that shown in Figure F-16, since the torque
T and polar moment of inertia Ip are a function of x, they are expressed as T(x) and Ip(x),
respectively. They can be considered constant over an infinitesimal distance dx, thus, the
following holds for the relative rotation over dx

dφ = T(x) dx
GIP(x)

Integrating this relation over the entire length of the shaft L yields

φ = ∫
0

L

dφ = ∫
0

L
T(x)dx
GIP(x)

  

Figure F-16 A continuously nonuniform torque
problem. (a) Shaft of non-uniform cross section and
torque, and (b) a small chunk of length dx.

Example- continuously non-uniform torsion: In this example, we derive a formula for the
angle of twist φ, of a thin tube as that in Figure F-17, when torques T act at the ends. Note
that for a thin tube of thickness, t,  and diameter,  d, the polar moment of inertia can be
approximated as

Ip ≃ πd3t
4   



Figure F-17 A hollow shaft of length L and
continuously varying cross section subjected to
end torques T. The cross section is such that the
thickness t is small compared to the radius. The
cross section of the shaft at a specific point in
the longitudinal direction of the shaft is shown.

In order to solve this problem, it is required to find the expression of Ip as a function of the
coordinate x along the length of the shaft. In order to do that, it helps to draw the schematic
shown in Figure F-18. Based on that, the diameter as a function of x, d(x) is expressed as

d(x) = a
L x

Figure F-18 Schematic of the
shaft in Figure F-17 showing a
side view and te tip of the cone
the shaft is part of. This
schematic helps in finding the
expression for the diameter of
the shaft as a function of x.

Since the torque is constant along the length of the shaft, we have

dφ = T( dx)
GIP(x), Ip ≃ π(d(x))3t

4 = πta3

4L3 x3  

which yield

φ = ∫
L

2L

T
GIp(x)

dx = 4TL3

πGta3 ∫
L

2L

dx
x3 = 3TL

2πGta3   

Example-continuously non-uniform torsion: Figure F-19 shows a shaft of length L and
constant along its length torsional rigidity GIP subjected to distributed torque q, which is
torque per unit length, and fixed at one end. Here we derive a formula for the relevant



rotation φ at the free end.

Figure F-19 A shaft of constant G and Ip subjected to
distributed  torque  q,  and  the  free  body  diagram of  a
piece of the shaft of length x.

Consider  equilibrium  of  a  piece  of  the  shaft  of  length  x,  as  shown  in  Figure  F-19.
Equilibrium of such a piece implies that T(x) = qx, where T(x) is the torque at the left end
of the shaft in Figure F-19. We then have

φ = ∫
0

L

T(x) dx
GIP

= q
GIP ∫

0

L

xdx = qL2

2GIP
  



	  

	  

The stress τ in a shaft subjected to torque T is not uniform. Thus, as shown in the "movie" above, 
the stress is not in the same direction at every material element in the shaft. Also, for a coordinate 
system where the x-direction is along the shaft's length, the stress is designated as τxy or as τxz 



Module 13: Pure Shear and the Shear Modulus of Elasticity
Pure shear, and shear modulus of elasticity G

Consider a shaft as in Figure F-20, and an infinitesimal material element abcd. The external
torque creates shear stresses on this element, and shear stress symmetry dictates that shear
stress τ acts on all sides of abcd as shown in Figure F-21(a).

Figure F-20 A shaft subjected to torque,
and  a  material  element,  abcd,  on  its
surface.

Let  us  also  consider  that  element  abcd  has  constant  thickness.  Figure  F-21(b)  shows a
section, α-α, in the element at an arbitrary angle θ. Isolating one part on one side of α-α,
and given that the thickness of the wedge-shaped chunk of material is constant, we have the
trigonometric expressions for the area of each side ( shown in Figure F-21(b)) if the area of
the vertical edge is A0.

Figure F-21 (a) Material element abcd and the
shear stresses acting on its four sides. A section
is made at an arbitrary angle θ. (b) The chunk of
material on one side of section α-α made on
abcd.

The free-body diagram of the wedge in Figure F-21 is shown in Figure F-22. Note that the
stresses are multiplied by the respective areas they act on, in order to obtain forces. On the
inclined plane, a normal stress σθ and a shear stress τθ are considered, where subscript θ
denotes the plane those stresses act on.

Figure F-22 The free body diagram of the wedge shown in the
previous figure.

Equilibrium of the free body diagram in Figure F-22 implies that (a) ΣF (in the direction of
σθ ) = 0 and (b) ΣF (in the direction of τθ ) = 0. These can be written as

(a)  σθA0
1

cosθ = (τA0)sinθ + (τA0tanθ)cosθ



(b)   τθA0
1

cosθ = (τA0)cosθ − (τA0tanθ)sinθ

The term A0 cancels on both sides, and using trigonometric identities, it ends up that

σθ = τsin2θ;  τθ = τcos2θ  

Interestingly, for θ = 45o, we have σ45 = τ, and τ45 = 0. Repeating the process for 135oand

205o, we obtain the stress state graphically shown in Figure F-23.

Figure F-23 The state of stress at 45o inclined planes.

Let us consider the so-called pure shear state of stress, i.e., a material element subjected to
shear stresses only. Figure F-24 shows such a material element subjected to τ, where the
symmetry of shear stress implies all four sides are subjected to τ as shown. Also in this
figure is shown the element after the shear stress is applied. Note that the initially square
element becomes a rhombus, and the decrease/increase of the initially 90o angles denotes
the shear strain γ, expressed in radians. Figure F-25 shows a material element, embedded in
the material element of Figure F-24, specifically at 45o to that element, before and after
deformation. Transformation of stress as noted before implies that the stresses shown in
Figure F-25 are applied on this material element. With these stresses, the initially square
element becomes a rectangle, elongated along the tensile stress and contracted along the
compressive stress.

Figure F-24 The initially square material element
subjected to τ before (black/dark) and after (red/light
line) the stress is applied.



Figure F-25 The initially square material element at
45osubjected to σ and -σ before (black/dark line) and
after (blue/light line) the stress is applied.

The two elements shown above are at the same material point, i.e., one is embedded in the
other. Figure F-26 shows them as they are supposed to be, i.e., at the same material point.
Notice the triangle ABC formed drawn separately in Figure F-27.

Figure F-26 The material elements of Figures F-24
and F-25 shown together, as they are (at the same
material point).

Figure  F-27  Triangle  ABC,  same  as  the  one  in
Figure F-26, drawn separately.

Let h denote the length of the rhombus (Figs. F-24, F-26). From the state of stress shown in
Figure F-24,

γ = τ
G  

For the state of stress shown in Figure F-25, we have superposition of normal strain and
strain from Poisson effects, or

ε = τ
E + ντ

E   



Let δAC denote the change in length of AC during deformation and LAC denote the final
length of AC (after deformation). The original (before deformation) length of AC is equal to
√2 h. Then,

δAC = ( 2√ h)epsilon; ⇒ LAC = 2√ h + δAC

Also from triangle ABD, it follows that

cos⎛⎝π
4 − γ

2
⎞⎠ − LAC

2h = 2√ h+ 2√ hε
2h   

Using the trigonometric identity cos(a − b) = cosa cosb + sina sinb, and the fact that for γ
small enough, cos(γ/2) ≈ 1, and sin(γ/2) ≈ γ/2, it follows that ε = γ/2, which finally implies
that

G = E
2(1+ν)



Example: Shear Stress and Strain in a Steel Shaft 

A torque of 300 Nm is applied to a 0.05 m 
diameter steel shaft.  

Find τmax, γmax 

Consider G = 70x109 Pa  

 
I

p
=

π

32
0.05( )4

= 6.13592 × 10−7 m4

 = 174.6 micro strain

A 

B 

d = 0.0 5m 
T = 300 Nm 

T = 300 Nm 

Ip 

 
τ

max
=

T ⋅ r

I
p

=
300 × 0.05 2( )
6.13592 × 10−7

= 12.22 MPa

 
γ

max
=
τ

max

G
=

1.222 × 107

70 × 109



Example: Torque in a Hollow Tube 

A torque of 50 Nm is applied to a tube of 120 
mm outer diameter and 80 mm inner diameter. 
 
Evaluate shear stresses at the inner and outer 
diameter material points. 

 
I

p
=
π

2
0.12( )4

− 0.08( )4⎡
⎣

⎤
⎦ = 2.614 × 10−4 m4

 
τ =

Tρ

I
p

 
τ

i
=

50 × 0.08

2.614 × 10−4
= 15302.2 N m2 Pa( )

240 mm 

160 mm 

to 

ti 

 
τ

o
=

50 × 0.12

2.614 × 10−4
= 22953.3 N m2 Pa( )

 = 22.953 KPa

Note: Inner half of a 
solid shaft accounts 
for (1/16) of the 
applied torque! 



Example: Circular Shaft with Distributed Torque 

The shaft of circular cross-section is 
subjected to a distributed torque per 
unit length q. Find the rotation φ at 
the middle of the bar. 
Given: 
q = 4.0 kN.m/m 
G = 28 GPa 
Ip = 1 x 10-5 m4 

 

ϕ =
T x( )
GI

p0

L

∫ dx

T x( ) = q x

ϕ
middle

=
1

GI
p2

4

∫ q x dx

=
4

28 × 109 × 10−5
x dx

2

4

∫

= 1.4286× 10−5 ×
1

2
x2⎡⎣ ⎤⎦2

4

= 7.14286 × 16 − 4( )
= 8.5714× 10−5 rads

= 4.914× 10−3 degrees

4.0 m 

q 

x 



Self Assessment 
Mechanical Behavior of a Shaft: 1 

 

For the same cross-sectional area and the same torque, which will be more efficient (least 
maximum shear stress)? 

 Circular hollow 

 Circular Solid 

 Triangular Solid 

 
Square Solid 

 
 
Mechanical Behavior of a Shaft: 2 

 

A 70-cm-long, 2-cm-diameter manual steel drill (G=83 GPa) is operated by applying two opposite 
forces by the two hands with a moment arm of 25 cm for each force. What is the maximum 
allowable force, in kN, that can be safely applied so that a relative angle of twist of 2.5° is not 
exceeded in the shaft? 

 

From the T vs θ relation, for a 2.5 degrees 
relative twist the torque required can be found. 
Is answer 5,6 or 7 correct? 

 
Torque T vs angle of twist θ relation. Is 1 or 2 
correct? 

 
From the T versus P relation, the required force P 
is found. Is 8, 9,1 0 or 11 correct? 

 Torque T vs force P relation. Is 3 or 4 correct? 
 

 

1. The applied torque T is linearly 
related to the angle of twist θ 

2. 
The applied torque T is non-
linearly related to the angle of 
twist θ 

3. Torque T is linearly related to 
force P 

4. Torque T is nonlinearly related 
to force P 

5. 4134 N-m 

6. 813 N-m 

7. 103 N-m 

8. 813 N  

9. 2356 N 

10. 6400 N 

11. 1625 N 
 

 



Shaft: 1     A hollow steel shaft, depicted in the following 
diagram, must transmit a torque of 300,000 in-lb.  The 
ultimate shear stress (τmax) is 21,000 psi.  If the safety factor is 
3.0 and the inner diameter is half of the outer diameter, find 
the following: 
a. What is the outer diameter (Do)? 
b. What is the polar moment of inertia (IP)? 
c. If the shear modulus of elasticity (G) is 11x106 psi and the length (L) is 44 inches, what is the 

torsional angle of rotation, θ? 
 
Shaft: 2  A shaft with four externally applied torques is shown. Find the relative angleof twist for the 
shaft between points B and D ( φBD ).  

 
Shaft: 3  Two masses are 
connected by a rigid, massless bar 
and suspended from a single steel 
wire as shown in the diagram. Find 
the minimum diameter of wire, the 
gravitational force between mass A 
and mass B, and the resulting 
rotation,φ  from this force. Note:  
The gravitational (pull) force F 
between two masses  MA  and  MB  being a distance r apart is 

 
F =

G gravMAMB

r2
  where 

 
G grav = 6.673×10−11 m3

kg ⋅s2  is constant. 

 
Shaft: 4  The figure shows a street sign supported by a 16’ 
hollow cylindrical pole of internal diameter 3.2” and external 
diameter of 4.0”. The sign has an area of 2 ft2 and its centroid is 
4’ from the center of the pole. While the sign is subjected to a 
wind load of 40 lb/ft2, determine: 

a) The absolute rotation of the pole at the top, in degrees. 
b) The maximum shear strain the pole experiences. 

 
 
 

L 

G=10x106 psi

Dout=4 in

Din=3.2 in

4th Avenue

16΄

A=2 ft2
4΄

G=10x106 psi

Dout=4 in

Din=3.2 in

4th Avenue

16΄

A=2 ft2
4΄

!

Fixed end 

d=50 mm G=80 GPa 

25 N
*m

 (cw
) 

200 N
*m

 (ccw
) 

50 N
*m

 (ccw
) 

75 N
*m

 (cw
) 

150 N
*m

 (cw
) 

1 m 1.5 m 1 m 0.5 m 
A B C D E 

5 m 

100 
kg 

100 
kg 

100 
kg 

B 

A 
40 cm 

5 m 

θ 

Steel 
E=200 GPa 

G=77 Gpa 

τmax=500 MPa 



Shaft: 5 You are involved in the design of a torsional 
shaft, and you have been asked to calculate how much 
the shaft can be bored out while maintaining certain 
performance criteria. The outer diameter of the shaft is 2 
inches. (a) Determine the limit on the bore diameter, d′ 
such that the maximum torsional shear stress in the 
bored shaft is no greater than 140% of the shear stress in 
the unbored case. (b) Assume the bore diameter is 1.5 
inches, and determine the bore length, a, such that the 
overall rotation of the shaft is no greater than 120% of 
the rotation for the original, unbored shaft. Your answer 
will be expressed in terms of the overall length, L. 
 
Shaft: 6 The torsion shafts shown below are made of the same material and are subjected to the same 
torque T. Which shaft will have the higher rotation under load? Which shaft will have the higher stress 
under load? Justify your answer. Note that the diameter of the thick shaft at left is the same as the 
diameter of the shaft at right. 

 
 
 
 
Shaft: 7 The aluminum shaft of L = 20cm, fixed at one 
end and free at the other, is to be twisted by torque T 
such that the rotation at the free end is 2.0o (0.0349 rad). 
If the allowable shear strain in the aluminum is 0.0005 
rad, what is the maximum permissible radius of the shaft.  
 
 
 
 
 
Shaft: 8 The solid shaft of radius r = 0.5 
inches and shear modulus G = 10,000ksi  is 
subjected to the torques shown. At the 
surface of the shaft at point A, the angle 
between the line “before torques are applied” 
and the same line “after torques are applied” 
was measured to be 3o (0.052 rad). Find the 
torque M. 
 
 
Shaft: 9 A cylindrical shaft of length L = 2.5m and diameter d = 10cm is fixed at one end and the other 
end is subjected to a torque T = 10 kNm. The rotation of the cross section at the loaded end was measured 
to be 0.2o (0.00349 rads). Find the shear modulus G of the material the shaft is made of.  
 

 

T 

L 

a 

T 

L 

M M 

Line before torques 
are applied 

2M 

Line after torques 
are applied 



Shaft: 10 A steel hollow cylindrical shaft is 1.3 m long and its inside radius is 4 mm. The shaft is to be 
designed such that (1) the angle of twist of the shaft shall not exceed 4o when a torque of 700.0 Nm is 
applied; (2) the allowable shear stress will not be exceeded. Determine the minimum outside diameter of 
the shaft if the allowable shear stress for the steel is 85 MPa and the shear modulus is 77 GPa. 
 
 
Shaft: 11 The solid shaft of radius r = 0.5 
inches and shear modulus G = 10,000 ksi  
is subjected to the torques shown, and T = 
10,000 lb − in. At the surface of the shaft, 
the angle between the “line before torques 
are applied” and the same line “after 
torques are applied” is shown in the 
figure. (a) Find the magnitude of that 
angle; (b) If the length of the shaft is 48 
inches, find the relative rotation between 
the left and the right end of the shaft. 
 
 
Shaft: 12 The shaft is fixed at one end and subjected to torque T at the 
other end as shown. While the torque is applied, the fixed-end “gives” 
so that it (the fixed-end of the shaft) rotates by 2O (0.0349 rads) in the 
direction of the torque. The free end of the shaft rotates by 5O (0.08727 
rads). Determine the value of the torque T that is applied, if the length 
of the shaft is 1.2 m, its diameter is d = 2.5 cm, and it is made out of 
steel, G = 75 GPa. 
 
 
Shaft: 13 The stepped shaft, made of a material having a 
shear modulus of elasticity G = 34.0 GPa, is fixed at A and 
loaded by a torque T = 40.0 Nm at C. (a) Find the maximum 
shear strain γ  in the entire shaft and mention the location(s) 
where such strain occurs. (b) If shaft AB were hollow 
cylindrical (instead of solid as in part (a), with inside 
diameter 60 mm and outside diameter 150 mm, will the 
maximum shear strain evaluated at (a) change if T remained 
the same? Explain your answer but do not evaluate the 
maximum shear strain in this case. 
 
Shaft: 14  A hollow steel shaft is subjected to torque T = 300,000 in-
lb. The shaft is such that the inner diameter is half of the outer 
diameter. (a) What should be the outer diameter of the shaft, Do if the 
maximum shear stress in the shaft cannot exceed 7,000 psi? (b) If a 
solid shaft is subjected to the same torque T = 300,000 in-lb, what 
should be its diameter so that the maximum shear stress in the shaft 
cannot exceed 7,000 psi? (c) What is the ratio of the cross-sectional 
area of the hollow shaft in (a) over the cross-sectional area of the solid 
shaft in (b)  
 

T 

T 

Line before torques 
are applied 

Line after torques 
are applied 

T 

A 
B 

C T 

0.3m 
0.27m 

d=150mm 

d=80mm 

(a) 

(b) 

T 

T 



Shaft: 15 The hollow steel shaft (G = 80 GPa, L = 0.16 m) is 
subjected to torque T at its right end and is fixed at its left end. 
For design purposes the maximum shear strain anywhere in the 
beam must be limited to γ max = 500×10

−6 rad  and the maximum 
angle of twist at the right end must be limited to 1.0o (0.0174 
rad). If the inside radius of the shaft is rin = 3cm = 0.03m  and 

the outside radius is rout = 5cm = 0.05m  what is the maximum torque T that can be applied? 
 

L 

T 



Module 14: Beams-Shear Force and Bending Moment
Shear force V- and bending moment M-diagrams

The first few modules of this part of the course are a tutorial for constructing shear force V-
and  bending  moment  M-diagrams  for  statically  determinate  beams.  Depending  on
background and experience, the reader may skip parts of this tutorial; sections on stress
distributions in beams follow.
       Statically determinate beams have three nonoverlapping supports in two dimensions or
six  in  three  dimensions.  Typical  external  supports  are  rollers  (1  force  support  in  the
directions transverse to the roller in Figure G-1(a)), pins (two force supports, transverse to
each other in Figure G-1(b)) and fixed ends (three supports,  i.e.,  one moment,  and two
forces transverse to each other in Figure G-1(c)).

Figure G-1 (a) A roller restricts
displacement in one direction (v) and
creates force in the same direction. (b) A
pin restricts displacement in two
orthogonal directions (u,v) and creates
forces in these directions. (c) A fixed-end
restricts displacement in two directions as
well as rotation, and creates forces in the
same directions and bending moment.

Some  examples  of  statically  determinate,  indeterminate,  and  unstable  beams  in  two
dimensions are shown in Figure G-2. Here, the beam in (a) is statically determinate since it
is supported by three independent supports. Beam (b) is statically indeterminate since it has
four supports, i.e., one rotation at A and three displacements, two at A and one at B; the
degree of indeterminacy is 1 (4 supports minus 3 supports required for determinacy). The
beam in (c) is statically determinate. The beam in (d) is statically indeterminate with degree
of  indeterminacy  equal  to  1.  The  beam  in  (e)  is  unstable  since  uA  and  uB  are  not
independent  and any vertical  load  on this  beam cannot  be  sustained since  the  moment
equilibrium around point A cannot be satisfied. The beam in (f) is indeterminant with degree
of indeterminacy equal to 1.



Figure G-2  Cases of statically determinate, indeterminate, and unstable beams. Arrows
denote displacements or rotations restricted by the supports: (a) simply supported beam;
(b) fixed-end, roller beam; (c) cantilever beam; (d) pin, pin beam; (e) unstable beam; and
(f) continuous beam.

Analysis  of  statically determinate beams is  done using free body diagrams (FBD) from
which, using equilibrium equations, all external supports can be determined. In general, at
every cross section for any beam there is a shear force V, and a bending moment M acting
on it. When the values of V and M are found for the entire length of the beam, we have V
and M expressed as functions of x, the coordinate along the length of the beam, thus V(x),
M(x).  The  plot  of  these  functions  is  the  shear  force  and  bending  moment  diagrams,
respectively. There are various ways to obtain the V- and M-diagrams. One straightforward
way is to make an imaginary section of the beam at an arbitrary position x and evaluate V
and M at that position. This automatically yields V(x) and M(x). In order to do this, V and
M at any arbitrary cross section should be found. Figure G-3 illustrates how this is done for
a simple problem. Subsequently the sign convention for V and M is described.

Figure G-3 A simply supported beam with
an imaginary section ("cut") at 2 m from the
left support and the forces and moments
acting on the section. The 40 N force acts at
midspan.

By definition, V  is  the shear force at the section, and M  is  the bending moment at the
section. Equilibrium of the part from A to the section implies that



V = RA= 20 N, M = 20x2 = 40 Nm

where the former results from equilibrium of forces in the vertical direction and the latter
from equilibrium of  moments  around  any  point.  It  is  important  to  have  a  unified  sign
convention, so that V- and M-diagrams can be communicated effectively between engineers.

Sign Convention for shear forces and bending moment: Positive V tends to rotate the beam
element clockwise as shown in Figure G-4(a). Positive M bends the beam in a concave
fashion, or it creates a "smiling face" as shown in Figure G-4b.

Figure  G-4  (a)  Sign  convention  for  shear
force V and (b) sign convention for bending
moment M.

Note: If equilibrium of the part of the beam from the section to B is considered, the
resulting V and M will be the same, i.e. at the section, V = RA= 20 N, M = 20x2 = 40 Nm



Module 14: Beams-Shear Force and Bending Moment

Analysis of the beam material element

In order to understand the way the shear forces V and bending moments M are distributed
along the length of a beam, it helps to consider equilibrium of a small piece of it, actually of
infinitesimal length dx. First, let us consider the free body diagram of a small piece of a
beam  subjected  to  distributed  load  q  as  shown  in  Figure  G-5.  Even  of  the  external
distributed load is not constant, it can be considered constant over a small length dx. Then
the resulant forrce from the distributed load is qdx.

Figure G-5 Free body diagram of a small piece
of a beam of length dx subjected to distributed
load q.

Equilibrium of  forces  in  the  vertical  direction  implies  that,  noting  that  q  is  considered
positive downwards,

∑Fy = 0 → V = qdx + V + dV →  dV
dx = − q  

Then, dV = −qdx holds, which when integrated over a piece of the beam AB (Fig. G-6)
yields

∫
A

B

dV = ∫
A

B

−qdx  

Figure G-6 A piece of a beam
from point A to point B subjected
to a distributed load q(x). The shear
forces and bending moments at A
and B are shown.

Then



VA − VB = − ∫
A

B

qdx

holds, which is nothing but the area of the load-intensity or distributed load q(x) diagram
between A and B. Moment equilibrium of the piece dx implies that

∑M = 0 → M + dM − M − qdx
dx
2

− (V + dV)dx = 0

Disregarding second-order differentials (dxdx and dVdx), it follows that

dM
dx = V

Thus we have the two fundamental equations

dV
dx = − q,  dM

dx = V

Now we consider a similar small piece of beam dx but now it is subjected to concentrated
load P instead of a distributed force. Figure G-7 shows the beam element and the free body
diagram.

Figure G-7 Free body diagram of a small piece
of a beam of length dx subjected to a
concentrated load P.

Equilibrium of forces in the vertical direction implies that

∑Fy = 0 → V = P + V + V1 → V1 = P  

The fact that V1 = P implies an abrupt change in the shear force. Equilibrium of moments
implies that

∑M = 0 → − M − P
dx
2

− (V + V1)dx + M + M1 = 0  



Then,

M1 = P dx
2 + Vdx + V1dx

Since dx is small, M1 ≈ 0, which implies that no change in bending moment occurs
in the vicinity of a concentrated load P.

From the above we can conclude that:

At  the  concentrated  load,  V  changes  are  abrupt  and  equal  to  the  value  of  the
concentrated load.  This  means that  the V-diagram "jumps" by an amount equal  to the
concentrated load at the location of the concentrated load.

At the concentrated load, M changes are small and dM/dx changes are large. This, in
other words, means that the M-diagram "knees" at the location of the concentrated load.

Finally we consider a small piece of the beam dx subjected to a concentrated moment M0,
as shown in Figure G-8.

Figure G-8 Free body diagram of a small piece
of a beam of length dx subjected to a
concentrated moment M0.

Equilibrium of forces in the vertical direction implies that

∑Fy = 0 → V = V + V1 → V1 = 0  

Equilibrium of moments about a point on the left edge of the element implies

∑M = 0 ⇒ − M + M0 + (V + V1)dx + M + M1 = 0

Disregarding the term with the differential  (since it  is  negligible compared to the finite
terms), it follows that M1 = M0. Thus, in the vicinity of a concentrated moment, the
shear  force  does  not  change  while  the  bending  moment  changes  abruptly  by  an
amount equal to M0.



Module 15: Beams-Shear Force and Bending Moment Diagrams

Shear force and bending moment diagrams

For engineering problems involving beams, the shear force V- and the bending moment
M-diagrams are usually drawn. They are the identity of the beam showing how it performs,
and allow one to evaluate extreme stresses that the beam encounters. The straightforward
way to draw the V and M diagrams is to evaluate the V and M at a section of the beam at a
location x. This then provides V(x) and M(x). Even though this is effective, it is tedious and
does not provide the understanding the engineer needs to have about the behavior of the
beam. Thus, by plotting V(x) and M(x) using the rules stated below, one cannot only plot
the diagrams efficiently, but can also understand how the beam behaves. These rules also
make recognition of errors in plotting the diagrams easier.

Rules for plotting V/M diagrams

Let q denote the distributed load (force/length) on a part of a beam. In Example 1 below, q =
0 over the entire length, while in Example 2 q = 0 for segment AC and segment CB.

As a direct consequence of

dV
dx = − q,  dM

dx = V  

we have that:

RULE 1:

- Where q = 0, V = constant and M = linear.

- Where q = constant, V = linear and M = quadratic.

- Where q = linear, V = quadratic and M = cubic.

As a direct consequence of the material in the previous section regarding concentrated loads
and concentrated moments, we have

RULE 2: At a concentrated load P, the V-diagram "jumps" by an amount equal to P, while
the M-diagram does not change (it develops a "knee" at the concentrated load position).

RULE 3: At a concentrated moment M0, the M-diagram "jumps" by an amount equal to
M0,  while  the  V-diagram is  not  influenced  by  the  presence  of  M0  (M0  influences  the
reactions, which, in turn, modify the V-diagram).

These three rules are enough, for all practical purposes, for effective construction of the
V/M  diagrams,  for  recognizing  errors  in  existing  diagrams,  and  for  understanding  the
overall behavior of beams. Even though the rules are simple, it takes extensive practice to
become familiar with them and use them effectively. Several examples are presented in the



sequence.  Yet  the reader should draw example diagrams on his  or  her  own in order  to
capture all the relevant details.

Example 1: Consider the cantilever beam subjected to end load P as shown in Figure G-9.
In this example we have only one segment in the beam, i.e. from the left end (fixed) to the
right end (where P is applied). First, we find the V and M diagrams by considering a section
at an arbitrary position x. The free body diagram shown in Figure G-9 clearly implies that
for the coordinate system shown, V(x) = P, M(x) = -P(L-x). This is the straightforward way
to obtain the diagrams. Also, for this beam q=0 over its entire length, thus, according to rule
1, V = constant and M = linear. According to rule 2, we expect a jump in the V-diagram at A
and B since we have a reaction equal to P at A and a concentrated force P at B. Also,
according  to  rule  3,  the  reaction  moment  at  A,  equal  to  -PL  creates  a  jump  for  the
M-diagram at A. In order to draw the V-diagram, we only need the any point in the segment.
Conveniently,  V  =  +P  at  either  end  (see  the  free  body  diagram  in  Figure  G-9).  The
M-diagram is linear, thus we need two points where M is known. Conveniently, M = 0 at the
right end and M = -PL at the left end.

Figure G-9 A cantilever beam subjected to
end load P. Also the free-body diagram of
part of the beam to the right of a section at
distance x is shown.

Figure G-10 shows the V- and M-diagrams.

Figure G-10 The V- and M-diagrams for
the beam in Example 1. Note that the
V-diagram is constant and the M-diagram
is linear, since q = 0.

Example 2: Here we have a simply supported beam with concentrated load P shown in



Figure G-11. We have two segments, AC and CB. In both of these, q = 0, thus (rule 1) V =
constant, M = linear. Also, at C, we expect a jump equal to P in the V-diagram and a "knee"
in the M-diagram (rule 2). The reactions at A,B easily provide that in AC, V = +RA, and in
CB, V = -RB. Note that this results in a jump equal to P at point C. More efficiently, rule 2
can be used to construct the V-diagram by "scanning" the beam from left to right (or right to
left). The steps are: a) at A, V = +RA, thus in segment AC, V = +RA; b) at C, the V-diagram
jumps by an amount equal to P, and, since P is in opposite direction to RA,  the jump is
downward (see the V-diagram in Figure G-11). The M-diagram being linear in AC and CB
requires the M value at two points in each segment. At both ends (A,B) M =0, and at C we
have a common M value (rule 2). The M at C is easily found, and thus the M-diagram for
the beam consists of two linear segments as shown in Figure G-11.

Figure G-11 A simply supported
beam subjected to a concentrated load
P, and its V- and M-diagrams.

Example 3: In this example we have a simply supported beam with uniformly distributed
load q = constant (Fig. G-12). Here, from rule 1, the V-diagram is linear and the M-diagram
is quadratic. Two points are needed in the V-diagram and three points in the M-diagram.
The V value at the two ends is enough and convenient for drawing the V-diagram, while the
M value at the two ends and the middle points is enough for drawing a schematic of the
M-diagram. Also, for this beam we have

RA = RB = qL
2 , V(x) = qL

2 − qx, M(x) = qLx
2 − qx2

2   



Also, since V = dM
dx

M is maximum where V = 0. For this problem, M is maximum at midspan and equal to
qL2/8.

Figure G-12 A simply supported beam
subjected to a distributed load q, its V-
and M- diagrams.

Exercise 1: Verify the following diagrams and draw the M-diagram for the beam to the
right.



Module 16: Beams-Examples of V and M Diagrams

Example 4: Figure G-13 shows a simply supported beam subjected to four concentrated
loads P. Symmetry of the problem implies that the reactions at A and B are equal, and that
the M-diagram is symmetric. The V-diagram, however, is skew symmetric for this and for
every symmetric problem. The reason for this is the sign convention for shear stress. At the
left end, the shear force V is equal to the reaction there. At each concentrated load P, the V
value jumps (drops, i.e. jumps in the direction opposite to the reaction at the left end) by P.
The reactions are expressed as RA = RB = 2P. At A, V = RA = 2P (positive shear force V)
and at B, V = −RB = −2P (negative shear force).

Figure G-13 A simply supported
beam subjected to four
concentrated loads at distance a
from each other as shown. The
beam and the load are symmetric in
this case.

Exercise 2: Draw the M-diagram for the problem in Figure G-13.

Exercise 3: Verify the diagrams in Figure G-14 and evaluate the maximum moment M.
Hint: Since V = dM/dx, The M diagram is extreme (max/min) where V = 0. Note that for
this beam the reaction at the left end RA, the reaction at the right end RA, and the moment at
C MC are expressed as

RA = qC
2 (2 − C

L), RB = qC2

2L , MC = qC2

2 (1 − C
L)  



Figure G-14 This simply supported beam
is subjected to load q over length c. The V-
and M-diagrams are also shown.

Example 5: This simply supported beam, shown in Figure G-15, is subjected to a linearly
varying distributed load q.  Then,  the V-diagram is  cubic,  and the M-diagram is  quadric
(polynomial  of  degree  4).  Finally,  the  M  is  maximum  where  V  =  0.  The  relevant
expressions,  by  considering  a  section  of  the  beam  at  an  arbitrary  x  and  writing  the
equilibrium equations of the part of the beam to the right or the left of the section, are

RA = 1
6 qL, RB = 1

3 qL, V = qL
6 (1 − 3 x2

L2 ), M = qL
6 (1 − x2

L2 )

Figure G-15 This simply supported
beam is subjected to linearly varying
load q. The V- and M-diagrams are
also shown.

Exercise 6: For the beam in Figure G-15, find the maximum bending moment, and the
location where it occurs.



Example 6: Even though this example (Fig. G-16) appears complex, it is easily decomposed
into  three  beam  segments:  (  a)  from  the  left  end  to  the  pin,  (b)  from  the  pin  to  the
concentrated load and moment, and (c) from the concentrated load and moment to the roller
at the right end. By applying the three rules for each segment, the V- and M-diagrams result.
For this beam, Ra = 20kN, Rb = - 4kN.

Figure G-16 This simply supported beam
has a cantilevered-out part at its left and is
subjected to a distributed load, a
concentrated load and a concentrated
moment. The V- and M-diagrams are also
shown.

Exercise 7: Rreproduce the diagrams in Figure G-16 by evaluating V and M at each of the
three segments and scanning the beam from left to right or right to left. In doing so, apply
the three rules for the M/V diagrams.
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From FBD for ABC: 
ΣFx  = 0, then Rcx  = 0 kN 
ΣMc = 0,  then RAy = 20 kN 
ΣFy  = 0, then Rcy  = 20 kN 
 
 
for segment  AB  where 0 ≤ x < 3 
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ΣMA  = 0, then RBY =  35kN 
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V = 15 – 5 x 
M = 15 x – 5 x2/2 A

x V 

M 

15kN 

B 

V 

N 

M 
x 

15kN 35kN 

5kN/m 

x − 6 6m 

V = 20kN 
M = 20x - 120 

20kN 

A 
B C 

VkN 

-15 

+20 +20 

_ 
+ 

+ 

MkNm 

5kN/m 

80kNm 

30kN 

6m 4m 15kN 

80kNm 20kN 

35kN 

+ 

+ 

22.5kNm 

+15 

+80kNm 

Example: V and M Diagrams 



Module 17: Beams-Deflection and Curvature
Previous modules addressed shear forces V and bending moments M in beams. When these
are known, then the beam's deflections beams can be evaluated, and, as will be seen in this
and following modules, from the deflections the stresses and strains can be evaluated. These
are important to the engineer since they form the core of beam design.

Beam deflection and curvature

Beams deflect when subjected to a load. Figure G-17 shows a schematic of the deflected
shape of a simply supported beam subjected to P at midspan. Assuming the beam does not
fracture under the load, i.e., the beam remains continuous, it is important to mathematically
define the quantities that describe the beam deflections.

Figure G-17 Schematic of the deflected shape
of a simply supported beam subjected to a
concentrated load P. The deflection at a point,
u(x) is shown.

These are definitions relevant to beam deflection and curvature:

   u(x): deflection of the beam at coordinate x

   ρ(x): radius of curvature at coordinate x

   κ(x)=1/ρ(x): curvature at coordinate x

In general, it is the bending moment M that creates deflection. Thus, let us consider a piece
of a beam subjected to bending moment M as shown in Figure G-18 (M is usually obtained
from the M-diagram of a beam). A small chunk dx is also shown in its deformed state, i.e.
the rectangle abba  in the beam before the moment is applied becomes a'b'b'a'  after the
moment is applied.



Figure G-18 A beam before and
after it is subjected to a bending
moment M. The deformed shape
of a piece of length dx is shown
enlarged.

As can be seen from the deformed piece a'b'b'a' the top line element ab contracts while the
bottom element  ab  expands.  There  should  be  a  line  element  in  between which  neither
contracts nor expands. This element is said to be along the neutral axis (NA). It will be
shown later that the neutral axis is at the centroid of the cross section of the beam. The cross
section of the beam can be seen at the top right corner of Figure G-18, where the x,y axes
are shown; the neutral axis is at the origin; and the y-coordinate is upward from the NA. A
typical line element ef is shown at an arbitrary distance y. That particular element contracts
after the bending moment is applied.

tan(dθ) ≃ dθ = ds
ρ

At the NA, by definition we have that ds = dx. Then, it follows that

dθ
dx = 1

ρ(x) = κ(x)   which implies that   dx = ρdθ

In strength of  materials  for  beams made of  engineering materials,  the assumption that
plane cross sections before loading remain plane after loading is made. This, based on
Figure G-18, implies that the contraction of line element ef is proportional to its distance
from the NA, y. In other words, the two sections a-a and b-b remain plane but rotate to
positions a'-a' and b'-b'. Then, for string ef, we have that

L1 = ef = (ρ − y)dθ = dx − y
ρ dx  

Then at coordinate y, an original (before bending deformation) length dx becomes dx − y
ρ dx

.  The  strain  ε x,  for  string  dx,  defined  as  the  change  in  length  over  original  length  is
expressed as



εx =
−

y
ρ dx
dx = − y

ρ = − κy   or

εx = − κy  

Note that in the above relation, y = 0 implies that εx = 0, i.e., the strain along the NA is zero.
Thus, the length of dx does not change along the neutral axis. With this last equation, if the
curvature is known, the strains at each point in the cross section can be evaluated, and using
Hooke's  law,  the  stress  can  be  evaluated.  Before  doing  that,  remember  that  the  exact
position of the NA is not known at this point. It turns out, as shown in the following section,
that it passses through the centroid of the cross section.



Module 18: Beam -Bending Normal Stress

Let us consider the beam shown in Figure G-19 subjected to bending moment M. The cross
section of the beam is, in general, nonsymmetric with respect to any axis. For simplicity, the
one in Figure G-19 is symmetric with respect to y, but this does not change any parts of this
section.

Figure G-19 A beam
subjected to bending
moment M. The cross
section is shown and the
neutral axis is at the
intersection of the x- and
y-axis.

From the previous section, we have that ϵx = − κy . Using Hooke's law, with E being the
elasticity modulus of the material the beam is made of, it follows that

σx = Eϵx = − Eκy  

This implies that the normal stress σx varies linearly in the vertical direction y, and it is zero
at the NA where y = 0. Figure G-20 shows the distribution of σx along the y-axis.

Figure G-20 Stress
distribution for a beam
subjected to positive bending
moment M, showing
compression above the NA
and tension below. The two
resultant forces form a couple
equal to M.

So far the NA was considered but its exact position was not determined. Equilibrium of a
cross section of a beam subjected to bending moment M requires that the net force on the
section is equal to zero, and that the total moment on the section is equal to M. Referring to
Figure G-20, this implies that, first, the resultant compressive force is equal to the resultant
tensile force, and, second, that these to forces form a couple with a moment equal to M. The
first of these equations referring to Figure G-21 imply that

∑Fx = 0 ⇒ ∫
A

σxdA = − ∫
A

EκydA = 0 ⇒ ∫
A

ydA = 0  



Figure G-21 The cross section of the beam shown in
Figure G-20, and a material element dA at distance y from
the NA. A denotes the total area of the cross section.

This last equation implies that the neutral axis is at the centroid of the cross section.

Now we consider the implications of the fact that the net moment on the cross section is
equal to M. The material element dA, shown in Figure G-21 is subjected to stress σx. That
stress,  when multiplied by dA provides the force on dA, and the force multiplied by y
provides the moment with respect to the NA, denoted as dM. Thus, we have

dM = − σxydA  

It is noted that for an element dA located above the NA a positive (tensile) σx produces a
moment opposite to the positive bending moment M, thus the negative sign in the above
equation. The total moment acting on the cross section is the integral of dM over area A, or

M = ∫
A

dM = − ∫
A

σxydA  

and since σx = − Eκy, it follows that

M = κE∫
A

y2dA  

We now use the definition

I = ∫
A

y2dA ,

which is the moment of inertia of the cross section. With this definition, we have

M = κEI  

which is called the moment-curvature relation. The above formulas yield the expression
of normal stress σx as a function of M, known as the flexure formula



σx = − My
I   

The flexure formula provides the stresses in the cross section as a function of the bending
moment M and the coordinate y. It is noted that a positive moment M yields compressive
stress for postitive y and tensile for negative y.  Similarly,  a  negative moment M yields
tensile stress for positive y, and compressive for negative y. From the flexure formula, the
maximum  normal  stresses  can  be  evaluated  by  substituting  in  the  flexure  formula  the
extreme (positive or negative) values of y. Let c1 denote the extreme negative value of y and
c2 the extreme positive one. Then, the extreme values of normal stress, denoted as σ1 for the
tensile and σ2 for the compressive, respectively, are (referring to Figure G-22)

Figure G-22 At the top and
bottom of the cross section we
have extreme stresses, i.e. for y =
c1, and y = c2.

σ1 =
Mc1

I = M
S1

;      σ2 = Mc2
I = M

S2
   

The variables S1 = I/c1 and S2 = I/c2 are called the section moduli, and are crucial for beam
design. For a symmetric cross section with respect to axis z, the two section moduli are
equal, and the section modulus is denoted as S, thus S=S1=S2=I/c, where c denotes the
distance from the centroid of the cross section to the top or the bottom of the cross section.

Example-beam of rectangular cross section:

A rectangular cross section, of base b and height h (Fig. G-23) is symmetric with respect to
both y- and z-axis, thus c = c1 = c2 = h/2. Also, for a rectangular cross section

I = bh3
12    



Figure G-23 A beam of
rectangular cross section
(right), of base b and height h,
subjected to bending moment
M.

For this beam, the stresses are evaluated as

σx = − My
I = − 12My

bh3   

and the extreme stresses noting that S1 = S2 = S = I/(h/2) are expressed as

σ1 = Mc1
I = M

S1
=

M h
2

bh3

12

= 6M
bh2 ; σ2 = − Mc2

I = − M
S2

= −
M h

2
bh3

12

= − 6M
bh2   



	  

The normal stress σx in a beam subjected to positive bending moment is illustrated above. Note 
that σx is proportional to the y-coordinate of the material element. 

 

The normal stress σx in a beam subjected to negative bending moment is illustrated above. Note 
that σx is proportional to the y-coordinate of the material element. 

 

 



Module 19: Bending Stress and Beam Design

Example-Extreme Bending Stresses: The beam shown in Figure G-24 is 10.0 m long and loaded
at midspan by a 100kN force. The cross section is rectangular, 20cm × 50cm. For this beam, we
are interested in finding the maximum tensile and maximum compressive stresses.

Figure G-24 A simply
supported beam loaded at
midspan.

The shear force diagram for this beam is piece-wise constant, and the bending moment diagram is
linear from the left end to the centerline, and from the centerline to the right end. The bending
moment is  zero at  the two ends.  The two reactions are equal  to 50kN each,  and the bending
moment at the centerline is (50 kN) × (5 m)=250 kNm. Using the flexure formula, the ymax is
used, i.e. (50 cm)/2=25 cm.

I = (base)(height)3

12 = 0.2×0.53

12 = 0.0020833 m4  

σx = − My
I ⇒ σx

max = −
Mymax

I = − M
S   

For  this  problem,  due  to  symmetry  of  the  cross  section  the  maximum tensile  stress  and  the
maximum compressive stress are equal. The section modulus is S = I/ymax= 0.0020833/0.25 m3.

  σx
max− tensile = − σx

max−compressive = −
Mymax

I = − M
S = 250.0×0.25

0.0020833 = 30,000.5 Pa

Example-Extreme Bending  Stresses:  The  beam shown in  Figure  G-25  is  made  of  a  plastic
(nylon) for  which the allowable stress  is  24.0 MPa in tension and 30.0 MPa in compression.
Determine the highest possible value of P such that the loads shown can be applied.



Figure G-25 A simply
supported beam with a
cantilever end. The reactions
and the M-diagram are shown.

The first step is find the support reactions, and then draw the M-diagram. Also the centroid of the
cross section is needed. The centroid, for y-coordinate from the top of the cross section directed
downwards is evaluated first, and the moment of inertia I is evaluated with respect to the centroid,
using the parallel axes theorem; d denoting the distance of a sub-area of the cross section from the
global centroid of the cross section

y ̅̅ = ∑Aiyi

∑Ai
= (80×30)15+(40×30)45

(80×30)+(40×30) = 25 mm

I = ∑(I0i + Aidyi
2 ) = 80×303

12 + (80 × 30)102 + 40×303

12 + (40 × 30)202 = 9.9 × 10−7m4

In order to find the maximum allowable P, both the positive moment of 0.15P and the negative
moment of −0.2P have to be examined. This is because the cross section is not symmetric in the
y-direction, and also the allowable stresses in tension and compression are different.

At moment +0.15P, the extreme stress is set equal to the allowable stress, thus, since we have two
extreme stresses, one compressive and one tensile

σx
max = σx

allowable−compression = − Mymax
I ⇒ 0.15P×0.025

9.9×10−7 = 30 ⇒ P = 0.00792 MN  

σx
max = σx

allowable− tension = − Mymax
I ⇒ 0.15P×0.035

9.9×10−7 = 24 ⇒ P = 0.0045 MN  

Similarly, at moment of -0.2P,

σx
max = σx

allowable−compression = − Mymax
I ⇒ 0.2P×0.035

9.9×10−7 = 30 ⇒ P = 0.00424 MN  

σx
max = σx

allowable− tension = − Mymax
I ⇒ 0.2P×0.025

9.9×10−7 = 24 ⇒ P = 0.0047 MN  

Thus, the maximum allowable P is 0.00424 MN or 4.24kN.



Module 20: Shear Stresses in Beams

So far we found out that the bending moment M acting on a beam creates normal stresses
σx. However, since M and shear force V are related, there are also V forces acting on a cross
section in addition to M. We now study the effects of V on a beam.

Consider a beam which at a cross section is subjected to shear force V and bending moment
M. As shown in Figure G-26, at a particular element in the cross section of area dA, M (not
shown) creates σx, and let us suppose that V (also not shown) creates a shear stress on dA as
denoted as τxy. At the right in Figure G-26 a volume element of side dA is shown as well as
the shear forces acting on it.  As shown in previous sections,  due to symmetry of shear
stress, when one such stress acts on one side of a material volume element, the same shear
stresses must act as shown in Figure G-26.

Figure G-26 A cross section
of a beam and an element of
area dA. The volume element
of side dA is shown to the
right with the shear stresses
acting on it.

Now, for simplicity, let us consider a beam of rectangular cross section, of base b and height
h, and then consider more general cross sectional areas. The force V is distributed as shear
stress over the entire cross sectional area, but we do not know this distribution yet. The aim
here is to find the distribution of V over the cross sectional area b × h. As shown in Figure
G-26, any element of area dA is subjected to shear stress τxy. We now consider a piece of
the beam of length dx, as shown in Figure G-27, and further a horizontal "cut" isolating the
piece of the beam shown in red/dark. Since shear stress τxy acts along the cross section, the
same shear stress τxy must act along the horizontal cut.

Figure G-27 A piece of a beam of
length dx and the stresses acting on
it from the bending moment M and
M + dM. To the right the free body
diagram of a piece below a certain
distance y is shown.

The normal stresses are expressed as

σx = − My
I   



Equilibrium of a piece of the beam (red/dark rectangle in Figure G-27) of length dx implies
that in the x-direction the following must hold

∑Fx = 0 ⇒ ∫
A

My
I
 dA + τxybdx = ∫

A

(M + dM)y
I

 dA

where A is the area of the piece considered transverse to the x-axis, i.e. where the normal
stresses σx act, and b is the width of the cross section. By solving this equation for the term
that contains the shear stress τ, it follows that

τxybdx = ∫
A

(M + dM)y
I

 dA − ∫
A

My
I
 dA = ∫

A

dMy
I

 dA ⇒ τxy = dM
dx

1
Ib ∫

A

ydA   

But, as shown in previous sections

V = dM
dx   

From the previous two equations, it follows that

τxy = V
Ib ∫

A

ydA  

where the so-called moment of area Q is defined as

Q = ∫
A

ydA

Here, Q is the first moment of the portion of the cross section below the point where the
shear stress τxy is evaluated (in the red/dark part of the beam in Figure G-27) with respect to
the centroid of the cross section. The above equations yield

τxy = VQ
Ib   

Example: Let us consider the general case of a rectangular cross section as shown in Figure
G-28. The width of the beam is b, the height h, and the shear stress τxy is to be evaluated at
a distance y1 from the centroid.



Figure G-28 A rectangular cross section for
which the shear stress is to be evaluated at a
distance y1 from the centroid.

Q in this case is the moment of the area below y = y1 (the shaded area in Figure G-28) with
respect to the centroid of the cross section. Thus,

Q = b(h
2 − y1)

⎛

⎝
⎜⎜⎜
y1 +

h
2 −y1

2

⎞

⎠
⎟⎟⎟

= b
2 (h2

4 − y1
2)  

Then, for this beam, it follows that

τxy = V
2I (h2

4 − y1
2)  

which shows a quadratic variation of shear stress along y. Figure G-29 shows the plot of
shear stress τxy as a function of y, i.e. for y varying from -h/2 to +h/2. It is parabolic, and the
maximum shear stress occurs for y = 0, i.e.

τxy
max = τxy

|
|
||y = 0

= Vh2

8I = 3V
2A = 1.5 V

A  

It is noted that the average shear stress on the cross section is V/A, thus the average stress is
less than the maximum stress, or the maximum stress is 50% higher than the average stress
in this case. Also, it is important to note that the shear stress is zero at both the top and
bottom of the beam. The mathematical reason for this is that the Q at those positions is zero
since it is the moment of the entire area A of the cross section with respect to the centroid of
A.  The  physical  reason  is  that  if  the  shear  stress  at  these  positions  was  not  zero,  the
symmetry of shear stress would imply that there is a nonzero shear stress at the top and
bottom of the beam, which is not true.



Module 20: Shear Stresses in Beams and Examples of Stress Analysis

Example-beam stress analysis: The cantilever beam shown in Figure G-29 is loaded by a
constant distributed load q. For this beam, the allowable bending stress, σallow, and the
allowable shear stress, τallow, are given. Stress analysis calls for determining the allowable
load qall so that the σallow is not exceeded, and also the qall so that the τallow is not exceeded.
Further analysis calls for determining for what beam length L0 both the allowable shear
stress and allowable bending stress are reached concurrently.

Figure G-29 A cantilever beam of
length L and rectangular cross
section (b × h) loaded by a
constant load q.

For this beam, the maximum shear force and maximum moment occur at the fixed end. For
the maximum shear force, Vmax = qL holds, and for the rectangular cross section,

τmax = 1.5 Vmax
A   

holds, where A is the area of the cross section. It is repeated that this expression for the
maximum shear stress holds only for rectangular cross sections. Then, by setting the τallow
equal to the τmax, it follows that

τall = 1.5 qL
bh ⇒ qall = 1

1.5
τallbh

L   

For the maximum moment, Mmax = 0.5qL holds, and for the rectangular cross section,

σmax = Mmax
S = 6Mmax

bh2   

Then, by setting σallow equal to the σmax, it follows that

σall = 3qL2

bh2 ⇒ qall = σallbh2

3L2   

For the last part of this example, the following must hold



1
1.5

τallbh
L = σallbh2

3L2 ⇒ L = hσall
τall

Example-shear stress: For the beam shown in Figure G-30, the problem in this example is
to find the maximum shear stress, and the location in the cross section where that stress
occurs.

Figure G-30 A beam, its
supports, its cross section, and
its V-diagram.

The first and most important step in this problem is to find the reactions at the supports,
shown in Figure G-30. With the reactions, the V-diagram is drawn, from which it follows
that the maximum shear force is Vmax = 112N. The shear stress is given by τ = VQ/Ib. Since
the  cross  section is  symmetric,  in  order  to  evaluate  the  moment  of  inertia  of  the  cross
section, I, it is not necessary to apply the parallel axes theorem. Thus, calculating I for the
entire 80 mm × 90 mm area and subtracting I of the empty space, it follows that

I = 80×903

12 − 40×303

12 = 4,770,000 mm4

Maximum shear stress occurs at the locations where Q is maximum, i.e. at the centroid of
the cross section. Then,

Q = ∑ (area  ×   distance) = 80 × 30 × 30 + 40 × 15 × 7.5 = 76,500 mm4

and

τmax = VmaxQmax
Ib = 112×76,500

4,770,000×40 = 0.0449 N/mm2 = 44.9kPa

Example-normal and shear stresses in beams: The simply supported I-beam shown in
Figure G-31 is loaded at mid-span by P = 15 KN. In this example: (a) find the maximum
shear stress at A, at the interface between the flange and the web; and (b) determine length L
so that the maximum compressive stress is 10 MPa.



Figure G-31 The I-beam is
simply supported and loaded
at midspan.

For this beam, the maximum shear force is Vmax = P/2 = 7.5 kN, and the maximum bending
moment is Mmax= PL/4 = 3.75L kNm. In order to evaluate the maximum shear stresses, the
values of I and Q (at point A), denoted as QA are needed

I = 0.2×0.233

12 − 0.17×0.153

12 = 1.5497 × 10−4 m4

QA = (0.2 × 0.04)0.095 = 0.00076 m3

With these values, the shear stress at A is evaluated as

τmax
A = VmaxQA

IbA
= 7.5×0.00076

1.5497×10−4 ×0.03
= 1226 kPa

where bA denotes the width of the cross section at A. The minimum value of bA is used
(width of the web) since this provides maximum shear stress. Now, the maximum normal
stress can be evaluated for part (b) of this example

σmax =
Mmaxymax

I = 10,000 kPa ⇒
3.75L× 0.23

2
1.5497×10−4 = 10,000 ⇒ L = 3.59 m  



Module 20: Examples of Beam Stress Analysis

Example-maximum normal stress in a wooden beam: A wooden beam, shown in Figure
G-32, is made of three 2x8s (nominally 1.5" wide × 7.5" tall) capped with a 2 × 6
(nominally 1.5" tall × 5.5" wide) on each end. The beam is assembled with 16d nails. Given
this built-up wooden beam, in this example we determine the maximum tensile stress and
the cross section where such a stress occurs.

Figure G-32 A simply supported
built-up wooden beam, loaded by P
and M. The reactions, and the V-
and M-diagrams are shown.

Using  the  static  equilibrium equations,  the  reaction  forces  are  found and are  shown in
Figure  G-32.  The  maximum  bending  moment,  then,  is  41998.8  lb-in.  From  the  cross
section, the moment of inertia I is found as the moment of the entire cross section minus the
I of the empty space

I = 5.5× (7.5+1.5+1.5)3

12 − (5.5−4.5)×7.53

12 = 495.422 in4  

Then the maximum normal stress is evaluated as

σmax =
Mmaxymax

I = 41,998.8×5.25
495.422 = 445.05 psi

Example-maximum stresses in beams: The I-beam shown in Figure G-33 is loaded with P
= 15 KN at midspan. In this example, we will: (a) find the maximum shear stress τxy at A,
i.e.,  at  the interface between the flange and web of the I-beam;  and (b) determine the
maximum compressive stress σx over the entire beam.

Figure G-33 Simply
supported I-beam, loaded at
midspan.



For this beam, the maximum shear force is Vmax = P/2 = 7.5 kN. In order to find the shear
stress at A, the moment of inertia I of the cross section and the Q at A, QA are needed. They
are

I = 0.2×0.243

12 − (0.2−0.04) ×0.163

12 = 0.0001758 m4

QA = 0.2 × 0.04 × (0.08 + 0.04
2 ) = 0.0008 m3

Then at point A,

  τ = VQA
Ib = 7.5×0.008

0.0001758×0.04 = 853.24 kPa

The maximum bending moment for the entire beam is at midspan, and

Mmax = 1
2 P × 5 = 37.5 kNm

Then,

σmax =
Mmaxymax

I =
37.5× (0.08+0.04)

0.0001758 = 25597.3 kPa  

Shear strains

The variation of  shear  stress  along the  height  of  the  beam is  quadratic  (parabolic).  As
explained, the shear stress is zero at the top and at the bottom of the cross section, and, in
most cases, it is maximum at the centroid of the cross section. Since shear stresses τ imply
that shear strains γ exist, such that γ = τ/G, the cross sections of the beam become warped
under the shear stresses. Figure G-34 shows this warping (the deformations in the figure are
exaggerated for clarity). Originally plane cross sections become curved under the action of
the shear stress. The curve is most pronounced at the centroid of the cross section (where
shear  stresses  are  maximum) and there  is  no curve at  the  top and bottom of  the  cross
section.

Figure G-34 A cantilever beam subjected to an
end load P. The shear force is constant along the
length of the beam. Warping of cross sections is
shown schematically and is exaggerated for
clarity.

If the shear force V is constant along a certain segment of a beam, warping from shear stress



is the same at every cross section in this segment. In this case, the warping does not affect
the longitudinal stretching along the length of the beam, thus, the normal strains created
from the bending moment M. In cases where V is not constant, advanced theoretical and
experiment studies have shown that the effects of warping on normal strains are negligible.
This is often mentioned in the mechanics of materials literature as the fact that the distortion
of the beam from shear strains is negligible when compared to the distortion from normal
stresses.

Example-shear strain: In the example shown in Figure G-33, the shear stress at point A
was found to be 853.24 kPa. Considering that the material is steel with shear modulus of
elasticity G = 80GPa, the shear strain is

γxy = τxy

G = 853.24×103

80×109 = 0.00001 rad = 0.0006o  



Example: Simply Supported T-Section Beam 

Determine the maximum permissible value of P if the 
allowable bending stress is 40 MPa in tension and 70 MPa 
in compression.  

100 mm 

20 mm 

20 mm 

80 mm 
2m 

P 

1m 

B C A 

P 

0.5P 

+ 

- 

P + 

V-diagram 

M-diagram 

100 mm 

20 mm 

20 mm 

80 mm centroid 

y

 

y =
2000 × 10 +1600 × 60

100 × 20 + 80 × 20
= 32.2 mm

I =
20 ⋅803

12
+1600 × 27.82 +

100 × 203

12
+ 200 × 22.22 =

3142224mm4 = 3.142 × 10−6 m4

σ
tens

max =
P × 32.2

3142224
= σ

tens

all = 40 × 106 Pa = 400 N / mm2 ⇒

P = 3903 N

σ
comp

max =
P × 67.8

3142224
= σ

comp

all = 70 × 106 Pa = 700 N / mm2 ⇒

P = 3244 N



Example: Simply Supported Inverted T-section Beam 

Two 50 × 200 mm structural 
members are used to fabricate a 
beam with an inverted T cross-
section (flange at the bottom). The 
beam is simply supported at the 
ends and is 4 m long.  
If the maximum normal stress must 
be limited to 30 MPa, determine:  
(a) the maximum moment that can 
be resisted by the beam; and 
(b) the largest concentrated load P 
that can be supported at the center 
of the span. 

 

y =
200 × 50 × 25 + 200 × 50 × 150

2 × 50 × 200
= 87.5 mm

I =
0.2 × 0.053

12
+ (0.05 × 0.2) × 0.06252 +

0.05 × 0.23

12
+ (0.05 × 0.2) × 0.06252

= 0.000113542 m4

σ
max

= 30 MPa =
M

max
⋅ 0.1625

0.000113542

⇒ M
max

= 20.96 kN ⋅ m

⇒ P = 20.96 kN

2 m 2 m 

P 

P 

P/2 P/2 

V 

M 

Mmax = P (4/4) = P 

2 m 2 m 

P/2 

P/2 

200 mm 

50 mm 

50 mm 

200 mm 

87.5 mm 

162.5 mm 



Example: Selecting Beam Cross Section 

Select Beam (AB)? 
Given:  

 

s
req

=
M

max

σ
all

=
140 × 12

24
= 70 in3

Choose w 16 × 45

Check for shear:

Assume web only resists shear

t
w
= 0.25 in

d ≈ 16 in

V
max

= 35k

τ
ave

=
V

max

A
web

=
35

16 × 0.25

⇒ τ
ave

= 8.25 ksi ≤  14.5 ksi

or

τ
max

=
VQ

Ib
=

35 × 8 × 0.25 × 4

1

12
× 0.25 × 163 × 0.25

⇒ τ
max

= 13.125 ksi ≤ 14.5 ksi

 

τ
all
= 14.5 ksi

σ
all
= 24 ksi

w 18 × 40    s = 68.4 in3

w 16 × 45    s = 72.7 in3

w 14 × 43    s = 62.7 in3

w 10 × 54    s = 60.0 in3

OK 

4’ 6’ 

35k
 

b 

tw d 

web  

Wide flange beam

w 18 × 40 means

d = 18 in

weight/ft = 40 lb

35k
 

35k
 35k

 

4’ 
A B 

35k
 

35k
 

140k
 140k

 

V(k)
 

M(k.ft)
 

+ 

+ 

- 

flange 



 Beam Design Example 

Select dimension (a)? 

 

s
req

=
M

max

σ
all

=
10.67

9000
= 0.00119 m3

s
req

=
I

c
=

1

12
a( ) 3a( )3

1.5a
= 1.5a3 = 0.00119

⇒ a
min

= 0.0925 m = 9.25 cm (say 10 cm)

Check for shear:

τ
max

=
V

max
Q

Ib
≤ 0.6 MPa

τ
max

=
20 × 1000 × 0.1× 0.15 × 0.075[ ]

1

12
× 0.1× 0.33 × 0.1

= 1 MPa

1 MPa > 0.6 MPa

Select a = 0.12 m (12 cm)

τ
max

=
20000 × 0.12 × 0.18 × 0.09

1

12
× 0.12 × 0.363 × 0.12

= 694,444 Pa

> 0.6 MPa

Say a = 0.13 m (13 cm)

N.G. 

N.G. 

A B 3 m  

w = 12 kN/m 

C 
1 m  

16 kN  32 kN  

V (kN) 

16 kN 

- 20 kN 

12 kN 

10.67 kNm 

-6 kNm 

M kNm 

a 

3a N.A. 



Beam Design Example 

Beam ABCD is loaded as 
shown below. 
 
Find minimum required 
width (b), given:  

 

Find reactions:

R
Ay

= 3.2 kN

R
Dy

= 4.0 kN

Draw shear force and 

bending moment diagrams

V
max

= 4 kN

M
max

= 4 kNm

Design for shear:

τ
all
=

VQ

Ib
=

4,000 × 0.075 b( ) × 0.075 2( )
b × 0.15( )3

× 1
12

× b

∴τ
all
=

40,000

b
= 9 × 105

⇒ b = 0.044 m

Design for bending:

σ
all
=

MC

I
=

4,000 × 0.15 2( )
b × 0.15( )3

× 1
12

= 12 × 106

⇒ b = 0.088 m

Select b =  100 mm

 

σ
all
= 12 MPa

τ
all
= 0.9 MPa

150 mm 

A D 

2.4 kN 

B 

4.8 kN 

C 

3.2 kN 4 kN 

-4 kN 

0.8 kN 
3.2 kN 3.2 kN 

4 kNm 3.2 kNm 

V (kN) 

M (kNm) 

b 

1 m 1 m 1 m 



Example: No Compressive Stress in a Beam 

For the beam shown below, find the maximum load q such that no compressive stresses are 
induced at any cross section. 
Note: the N-, V-, and M-diagrams are as shown, and P = 120 kips 

 

A = 4 × 12 = 48 in2

I =
4 × 123

12
= 4 × 122 = 576 in4

M ax  M =
qL2

8
= q

10000

8
= 1250 q

σ =
N

A
+

My

I
Set σ = 0 at y = − ′′6

0 =
120,000

48
−

1250 q × 6

576
∴ 2500 = 13.02 q

∴ q = 192

q 

A B 

l 100′′=

4′′

12′′

Cross section 

1 ql2 ql 2xV 1
2 l
⎛ ⎞= −⎜ ⎟⎝ ⎠

1 ql221 ql8
2 2

2

ql x xM
2 l l

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

x

x

x

N

V

M

+ 

+ 

- 

+ 

P

P 



Example: Beam Bending and Normal Load 

(a)  For F = 64 K and P = 10 K determine the maximum tensile and 
compressive stress in the beam. 

(b)  For what value of P are there no tensile stresses induced at any cross-
section, for F = 64K. 

 

M
max

=
1

2
× 64,000 × 5 × 12 = 1.92 × 106  lb-in

I = 666.7 in4

A = 20 × 2 + 2 × 2 × 10 = 80 in2

σ
max

compr =
10,000

80
+

1.92 × 106

666.7
× 3 = 8,764 psi

σ
max

tens =
1.92 × 106

666.7
× 7 −

10,000

80
= 20,034 psi

1.92 × 106

666.7
× 7 =

P

80

⇒ P = 1.6127 × 106  lbs

10 in 

F 

5 ft 

P 

5 ft 

24 in 

t 
t t 7 in 

3 in 

t = 2” 



Example: Beam Bending 

The built-up beam is loaded with P = 10 kN and M = 6 kNm. 
Determine the maximum compressive stress at point A, for the cross-
section at midspan.  

 

A + B = 10 kN

B × 10 = 10 × 5 + 6

⇒ B = 5.6 kN, A = 4.4 kN

At midspan, M
max

= 5.6 × 5 = 28 kN-m

y =
100 × 60 × 30 + 160 × 40 × 140 + 200 × 40 × 240

100 × 60 + 160 × 40 + 200 × 40

y = 146.863

c
1
= 260 − 146.863 = 113.137

I =
100 × 603

12
+ 146.863 − 30( )2

× 100 × 60

+
40 × 1603

12
+ 146.863 − 140( )2

× 40 × 160

+
200 × 403

12
+ 146.863 − 240( )2

× 200 × 40

∴ I = 1.68159 × 103  mm4 = 0.00016816 m4

σ
max

= 28 ×
0.113137 − 0.040

0.00016816
= 12,178 kPa

5 m 5 m 

M 

P 

A B 

C 

c1 

y 

( )200 40 mm×

( )40 160 mm×

( )100 60 mm×

A 



Self Assessment	  
Beams: 1 

 

 
The moment diagram for a cantilever beam with a 
concentrated load on its free end is 
 

 Triangle 

 Trapezoid 

 Rectangle 

 Parabola 

 
 
Beams: 2 

 

 
Find the bending moment in kN-m at B. 

 

In order to find the moment at B, the beam is "cut" 
at B and the free body diagram of the part left of B 
or right of B must be constructed. Thus, which of 
1,2, or 3 is correct? 

 
Draw the free body diagram of part AB or BCD. 
Which one is more convenient, 4 or 5 

 

 

1. In order to find the moment 
at B, I need to evaluate the 
reactions at A and C 

2. In order to find the moment 
at B, I need to evaluate the 
reaction at A only 

3. In order to find the moment 
at B, I do not need to 
evaluate any of the reactions 
at A or C 

4. AB 

5. BCD 
 

 
 
 
 
 
 
 
 
 
 
 
 



Beams: 3 
 

 
The maximum bending moment will occur at point A,B,C,D or at any other point in the beam? 

 
Which of 1,2,3 is the correct 
way to proceed? 

 

Did you find the bending 
moment at C to be that shown 
in 4 or 5 ? 

 

 

1. My strategy will be that I will draw the entire M-
diagram, and from there I will find the maximum 
bending moment 

2. In order to find the maximum bending moment, I 
will find where the V-diagram is equal to zero 

3. I will evaluate the moment at B and C, since I 
know the moment at A and D is zero 

4. 16 kN-m 

5. 18 kN-m 
 

 



Beams: 1 Find the percentage of the moment carried by the flanges of a W12 × 
50 wide-flange beam. (Hint: find the stress distribution for the entire cross-
section of the beam and for a hypothetical beam consisting only of the flanges 
or the web.)  I = 394 in4  
    
Beams: 2 A simply supported 
beam of square tube cross section 
is subjected to load F at midspan. 
Find the maximum load F such 
that  σx

max ≤ 10 ksi . 
 
 
 
Beams: 3 Find the moment of inertia (Ix) with respect to the centroid in a 
beam with the given cross section. 
 
 
 
 

 
Beams: 4 A built-up beam of T cross-
section is loaded with force P = 15 kN.  Find 
the maximum shear stress at A and 
determine L so that the maximum 
compressive stress is 10 MPa. 
 
 
Beams: 5 A concrete beam is being used 
to support a load as shown. Find the 
compressive force, F, required to ensure 
that the concrete is in compression 
everywhere (no tensile stress). 
 
 
Beams: 6  A strut-braced airplane wing is subjected to 
a distributed load (lift) as shown. Find the maximum 
shear load and maximum bending moment, using the 
shear and bending moment diagrams. 
 
 
 
 
 
 
Beams: 7 A beam of cross section as shown 
(dimensions in centimeters) is loaded by a positive moment M = 800 Nm. 
Find: (a) the maximum tensile stress  σx  (x-direction is along the length of 

the beam); (b) the maximum compressive stress  σx . 

3ft 

6ft 

A B 

F 
3ft 

Cross section 

y 
z 

0.20 in 

4 in 

4 in x 

10.91x0.37 

A 

!

0.25 in 

0.25 in 

0.25 in 

2 in 

2 in 
y 

x 

! 200 mm 

40 mm 

40 mm 

160 mm 
64.4 A 

P 

! L ! L 

!

20 

20 

100 

y 

20 

!

x 

y 

10’ 

20 ft 

F F B 

A 

100,000 lb 

3’ 

2’ 

A = 24 in x 36 in = 864 
in2 

A C 

B 

500 N/m 

40o 

5 m 9 m 



 
 
 
 
Beams: 8 A support beam on a barn is used for lifting hay into the hay 
loft. A particularly heavy bale (125 lb) is being hoisted up. Find the 
shear and normal stress distribution in the beam where it is fixed to the 
barn wall. (E = 1.5 × 106 lb/in2). 
 

 
 

Beams: 9  The walkboard on a scaffold is 12 
ft between supports. A 200 lb person is 
standing in the middle. The walkboard is 
made from wood (E = 1.5 × 106 psi) with 2 in 
× 12 in cross-section.  Find:  
 a)  Stress at mid-span (max) 
 b)  Result if board is reinforced with a 2 × 4 (the 2 inches being in the 
horizontal direction) 
 
 
 
Beams: 10  Beam ABCD is pinned at B, loaded by force P at 
D and supported through a spring and bar CE at A and C, 
respectively. Is the beam statically determinate? If statically 
indeterminate, what is the degree of indeterminacy? Explain 
your answer. 
 

 
 
Beams: 11  A rectangular tube is to be fabricated 
out of two identical channels as shown. (a) 
Determine the maximum bending stress in this 
cross section for the loading shown. 
 
 
 
 
 
 
 
Beams: 12 A built-up beam is to be made by bonding four 
identical planks together. Each plank has a rectangular cross 
section 4 cm × 16 cm. (a) Which configuration will have the 
highest bending stiffness EI? (b) For the same bending 
moment M, which configuration will produces the lowest 
normal stress  σx (x is along the length of the beam)? (c) For 

!

2 in 

10 in 

125 lb 

72 in 

200 lb 

12 in 
Cross section 



the same shear force V, which configuration produces the lowest shear stress 
 
τxy  (y is along the height of 

the beam)? 
 
Beams: 13 A steel (E = 29,000 ksi) beam of rectangular cross section 
is bent over a rigid mandrel (R = 20 in) as shown. If the maximum 
flexural stress σ x  in the beam is not to exceed the yield strength 
(σy=36 ksi) of the steel, determine the maximum allowable thickness h 
of the bar. 
 
 
Beams: 14 The wooden (E=1.6 ksi) beam/bar is subjected to the 
loads P and moment M as shown. For P=2 kips and M=12 k-in, find 
the minimum axial compressive load N such that there will be no 
tensile stress xσ  at any location in the beam/bar. The cross section 
is square, 12 × 12 inches 
 

 
 
Beams: 15 The “legger” at the left end of the trailer 
consists of a horizontal beam and two legs. The 
horizontal beam can be considered as a pinned beam as 
shown, and the force from the trailer onto the beam is 
200 lb/ft imposed over 1.0 ft at the middle of the beam. 
For the beam cross-section being 2.5˝ × 2.5˝, calculate: 
(a) the maximum tensile bending stress xσ  in the entire 
beam, in psi; and (b) the maximum shear stress τ  in the 
entire beam, in psi.  
 
 
 
 
Beams: 16  Two I-beams are bolted together as shown to form a single built-up beam loaded in the 
vertical direction. Each I-beam has a height of 14.48˝, moment of inertia with respect to the centroid Izz = 
1,380 in4 and a cross-sectional area of 35.3 in2. For an allowable bending stress  σx

all = 20 ksi , find the 
maximum moment M the built-up beam can sustain. 
 
 

 
 
 
 
 
 
 
 
 
 
 

!

"!
"!

#!

$!

36 in 36 in 

P=2 kips 

M=12 k-in x 

833.3 lb 1167.7 lb 

N 

2.5 x 2.5 in 

200 lb/ft 

1 ft 

5 ft 

cross section 

14.48" A=35.3 in2 

Izz=1380 in4 

z 



Beams: 17 The cantilever beam of length L and elasticity modulus E is subjected to load W (weights) at 
its free end. A dial indicator (considered weightless) and other measurements concluded that the radius of 
curvature at distance s from the fixed end is ρ. Considering that the cross section of the beam is square of 
side b, find, in terms of E, b, L, s, ρ: (a) the weight W; (b)the maximum tensile stress in the beam; (c) the 
maximum shear stress in the beam. Note that the moment of inertia of a square cross section of side b 
with respect to its center is  I = b4 / 12 . 

 
 
 
Beams: 18 For the beam loaded as shown, find the stress state at the top of the beam at a cross-section 
that is an infinitesimal distance to the right of roller B. 
 
 
 

 
 
 
 
 

 
 

 
 
 
Beams: 19 The C-shaped steel bar (E = 200 GPa) is used as a 
dynamometer. Knowing that the cross section of the bar is 1.5 cm × 
1.5 cm and that the strain was measured on the inner edge at the 
bottom (point A shown) and was found to be 0.001, determine the 
magnitude of the forces P.  
  
Beams: 20 For the extruded aluminum beam shown it is known that 
the maximum shear stress in the beam is 10 ksi. Determine the force 
P. Note that the cross section is symmetric with respect to both y- and z-axis. 
 

Experimental setup:

L

δ
Weights

Dial indicator
s

3m 4m 

B 

D 

C 
2m 

w = 15N/m 
3 

4 

cross section 
15 x 40 cm 

2 kN 

P P 

10 cm 

1.5 cm 

A 

P 
x 

A B 

L 

Cross section 

y 
z 

0.5 in 

2 in 

2.5 in 

0.5 in 



Beams: 21 For the extruded aluminum beam shown the maximum allowable normal stress from bending 
(tensile or compressive) is  σall = 40,000 psi . For P = 1,600 lbs, find the maximum length L the beam can 
have such that the allowable stress will not be exceeded. Note that the cross section is symmetric with 
respect to both y- and z-axis. For the cross-section, the moment of inertia with respect to the z-axis is 
1.375 in4. 

 
 
Beams: 22 For the cantilever beam, draw the shear force V and bending 
moment M diagrams. 
 
 

 
Beams: 23 For the simply supported beam subjected to the 
two end moments as shown, (a) draw the bending moment 
diagram; (b) is the shear force diagram constant and equal to the 
reaction at the left support? 
 
Beams: 24 For the simply supported beam loaded by two 
concentrated forces of 200 lbs and 180 lbs as shown draw the 
shear force and bending moment diagrams. 
 
 
 
Beams: 25 For the cantilever beam shown, draw the V and M 
diagram. 
 
 
 
 
Beams: 26 For the cantilever beam shown, draw the V and M 
diagram. 
 
 
 
 
Beams: 27 For the beam shown, draw the V and M diagram. 
The concentrated moment acts in the middle between the pin 
and the roller, i.e., 1.0 m from the pin. 
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A 

B 

L 

C 

a b 

100 N 

1 m 0.2 m 
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P 
x 

A B 

L 

Cross section 

y 
z 
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Beams: 28 The cantilever beam is fixed on its left 
end and loaded by the 2 kN force as shown. Find the 
principal stresses at material points A,B,C, all of 
which are on the surface of the beam. 
 
 
 
 
 
 
 
 
 
 
Beams: 29  If the force P is 4.0 kN, determine (a) the maximum normal tensile stress σx from bending in 
the beam; (b) the maximum shear stress τ at the flange, web interface (point O) 
 

 
Beams: 30  The beam is designed to bear the two loads P as shown (but not the two moments M0 shown).  
It turns out that the material the beam is made of is too weak in shear and it would fail (in shear) under the 
desired applied loads P. A designer suggests that by applying two properly evaluated equal and opposite 
moments M0 as shown the maximum shear stress in the beam can be reduced or can even be reduced to 
zero. Is this suggestion feasible? Explain your answer 

 
 
 
 
 
 
 

 
 
Beams: 31  The cantilever beam of length L = 3.5 m and hollow square cross section is loaded by a force 
P at the free end. The maximum tensile stress σ x  in the entire bream was found to be 160 MPa. What is 
the maximum shear stress τxy  in the entire beam?  

1m 

P 

1m 

B D A C 

P 

4 cm 4 cm 

8 cm 

12 cm 

4 cm 
O 

Cross section 

1m 

P 

1m 

B D A C 

P Cross section 

M0 M0 



 
Beams: 32  The cantilever beam of length L = 3.5 m and hollow square cross section is loaded by a force 
P = 2.0 kN at the free end. (a) At what location(s) (x, y, z) in the beam is the normal tensile stress σ x  
maximum? (b) At what location(s) (x, y, z) in the beam is the shear stress τxy  maximum? (c) What is the 

shear stress τxy  at (x, y, z) = (1m, 0mm, 50mm)? 

 
  
Beams: 33 The stepped cantilever beam of circular cross section 
changes diameter from 6.0 cm (radius 3.0 cm) to 3.6 cm (radius 1.8 
cm). For the load shown, i.e. F = 500.0 N (F acts transverse to the 
beam), determine the maximum tensile stress in the beam and find 
the location of this maximum for two different cases. (a) LAB = 
30.0 cm and LBC = 15.0 cm; (b) LAB = 40.0 cm and LBC = 3.5 cm. 
For a circular cross section of radius r, the moment of inertia with 

respect to an axis through its centroid is Iyy = Izz =
πr4

4
 

 
Beams: 34 Draw the shear force and bending moment diagrams. 

         
 
 
 
Beams: 35 A T-shaped beam is made by connecting a web and a flange as shown. 
The beam is subjected to positive moment M. The web dimensions are 3 in. × 8 in. 
and the flange is 10 in. × 3 in.. Find the ratio of the maximum tensile stress over 
the maximum compressive stress, i.e.  
σmax
tensile

σmax
compressive

  

 
  

100 mm 

100 mm 

5 mm 

P 

  3.5 m 

x

y
y

z 

100 mm 

100 mm 

5 mm 

P 

  3.5 m 

x

y
y

z 

3 m 1 m 
1 m 

12 kN 
A C

B
D

8 kN 

A 
B 

C 

F 

LAB 
LBC 

Web 

Flange 



Beams: 36 A T-shaped beam is made by connecting a web and a flange as 
shown. The beam is subjected to positive moment M. The web dimensions are 3 
in. × 8 in. and the thickness of the flange is 3 in. For what width of the flange b  
will the maximum tensile stress in the beam equal to 2 times the maximum 
compressive stress? 

Web 

Flange 



Module 21: Shear Flow in Beams
The development of shear stresses in beams implies that,  in addition to shear stresses in
vertical cross sections, shear stresses in horizontal sections along the beam develop as well.
The formula

τxy = VQ
Ib   

evaluates the shear stress at any point in a cross section where the shear force is V. The same
shear stress acts at a horizontal section along the beam at the same point. In the beam shown
in Figure H-1, a point or material element A positioned at distance yA from the neutral axis
is subjected to a shear stress on its horizontal planes equal to τxy. This shear stress tends to
split the beam along its length, thus, if there is an interface in the beam, the interface is
subjected to this shear stress.

Figure H-1 A beam of
rectangular cross section
subjected to V, and M. The
shear stress distribution and the
stresses at a material point A are
shown.

This is illustrated in Figure H-2, where the beam is built up by adhering two pieces together.
The adhesive at the interface is subjected to shear stress τxy, called shear flow.  Built-up
beams  are  common  in  engineering,  where  pieces  are  typically  connected  by  adhesives,
welds,  bolts,  nails,  rivets,  etc.  Engineers  typically  analyze  the  beams  and  design  the
connecting elements for their ability to withstand the shear flow.

Figure H-2 A beam similar to
the one in Figure H-1, yet it is
built up of two pieces adhered
together at the interface shown.

Some typical built-up beams are shown in Figure H-3. For the I-beam for example, the shear



flow is  such that  the flange tends to  slide relevant  to  the web.  This  sliding tendency is
counteracted by elements connecting the flange to the web (e.g., welds).

Figure H-3 cross sections of
typical built-up beams.

Connections can be continuous, such as welds; discontinuous, such as bolts, screws, nails
and rivets; or surface covering such as adhesives. The problem of shear flow addresses the
analysis and design of such connecting elements.

In general, there is shear in every arbitrary longitudinal cut, like the cut shown in Figure H-4.
If we look at the expression for the shear stress

τxy = VQ
Ib   

we can consider that this shear stress acts along the length of the beam. If we multiply both
sides of this equation by b, we obtain

τxyb = q = VQ
I   

Figure H-4 The rectangular cross section of
a beam is shown with an arbitrary cut in a
beam along the length of the beam. The
area of the cross section above the cut is A,
and the distance of the centroid of A from
the centroid of the cross section is dA.

Here, q is the so-called shear flow, and its units are force per unit length. If we look at the
derivation of the expression for τxy presented in previous sections in detail, it will become
evident that it holds for an arbitrary b, which can also be the length of the cut shown in
Figure H-4. In this case, the Q value in the expression for the shear flow q is the moment of
A with respect to the centroid, or, according to Figure H-4

Q = AdA

The shear flow can be evaluated for every part of a beam's cross section. However, it is
important for built-up beams connected through welds, rivets, bolts or nails. In this case,
these connections resist the shear stresses (shear flow). For the examples of built-up beams



in Figure H-3, Figure H-5 shows the cuts for which the shear flow is to be evaluated. In these
cases, Q in the expression for shear flow q is the moment of the area above the cut with
respect to the centroid of the cross section. It is noted that the cuts are through the connecting
elements (weld, nail, screw). For the I-beam, a similar yet downward facing cut can be made
for the welds at the bottom part. Q in this case is the moment of the area below the cut with
respect to the centroid of the cross section.

Figure H-5 For the beams in
Figure H-3, the cuts required
for evaluation of the shear flow
q are shown in dashed lines.



Module 21: Shear Flow in Built-up Beams
Built-Up Beams

In  general,  built-up  beams  behave  as  if  they  were  solid  ones,  provided  the  connecting
elements are able to resist the imposed shear flow effectively. Thus, for the analysis and
design of built-up beams, engineers are called to: (1) examine the beam as a single member
(in bending, and in shear); (2) examine the connecting elements for resisting the imposed
shear flow. The first task is no different than the same task for solid beams. Yet, this part of
the analysis provides the shear flow, especially at critical parts of the beam, which can be
used for the second task. There are two types of connections. The first one is continuous
ones such as welds or adhesives. Here the shear flow q, expressed as force per beam length,
has to be lower than the capacity of the connections in withstanding shear force. The second
is point-wise connections such as bolts, screws, nails and rivets. Here, the capacity of the
connecting  elements  (units  of  force)  divided  by  the  spacing  between  the  connecting
elements should exceed the shear flow. These are best illustrated through examples.

Example of built-up beam with continuous connecting elements

Here we consider a built-up I-beam as shown in Fig. H-6. Each weld has an allowable shear
force F=2400lb/in. Given that we have two welds at each connection of the web with the
flanges,  the  problem  here  is  to  determine  the  maximum  shear  force  V  this  beam  can
withstand so that the allowable shear force on the welds will not be exceeded. It is reminded
that the allowable force F includes a safety factor.

FIG H-6 A built-up I-beam with two welds
connecting each flange to the web.

The shear flow is expressed as

q = VQ
I

where  Q  has  to  be  evaluated  for  the  area  of  the  cross-section  above  (or  below)  the
connecting elements. As seen from Fig. H-5, Q for this case is the moment of the area of the
flange with respect to the centroid of the cross-section. It is important that the cut through
the connecting elements goes through two welds at each case. The shear flow q has units of
force per unit length of the beam. Also F has the units of force per unit length. Then, at
capacity

q = 2F



holds. The above two equation yield

V = 2FI
Q

Q is the moment of the area above (or below) the welds with respect to the centroid of the
I-beam, and I is the moment of inertia of the entire cross-section

Q = yflangeAflange = 35.5(1 × 18) = 639in3, I = 18×723

12 − 17.625×703

12 = 56,090in4

where yflange denotes the distance from the centroid of the flange to the global centroid and
Aflange denotes the area of the flange. Then,

V = 2FI
Q = 2×400×56,090

639 = 421,000lbs = 421Kips

which means that the beam can withstand a shear force V of 421K without exceeding the
allowable shear stress on the welds.

Example of built-up beam with discrete connecting elements

For the wooden cross-section shown in Fig. H-7, the allowable shear force for each screw is
F=250lbs and the maximum shear force the beam is V=920lbs. In this case, the problem is
to find the minimum required spacing for the screws, i.e. the distance between screws along
the length of the beam.

FIG  H-7  A  built-up
wooden cantilever beam,
and  its  cross-section.
Each  wooden  piece  is
6x1in, and are connected
with 4 screws as shown.

The shear flow is expressed as

q = VQ
I

where  Q  has  to  be  evaluated  for  the  area  of  the  cross-section  above  (or  below)  the
connecting screws. Q for this case is the moment of the area of the top or bottom piece with
respect to the centroid of the cross-section. The shear flow q has units of force per unit
length of the beam. Here F has the units of force. Let the spacing between screws along the
length of the beam be s, as seen in Fig. H-7. Each set of screws is responsible for distance s
along the length of the beam. Then



q = 2F
s

holds. The above equation yields

s = 2F
q = 2F

VQ
I

= 2FI
VQ

Q is the moment of the area above (or below) the screws with respect to the centroid of the
I-beam, and I is the moment of inertia of the entire cross-section. For the given cross-section

Q = 3.5(1 × 6) = 21in3, I = 6×83

12 − 4×63

12 = 184in4

which yield s= 4.76in. In a design, a value of s=4.5 or even 4.0in would be chosen.

Example of built-up beam using adhesives

The beam shown in  Fig.  H-8 is  made of  an  80x30 mm and an 40x30mm beam glued
together. For P=200N, the engineer needs to specify the shear strength of the adhesive (glue)
to be used. Herein, we'll find the required glue strength, without accounting for a safety
factor, as shear force per unit area.

FIG H-8 A beam built-up using
adhesives. The reactions and the
V-diagram are shown, yielding a
maximum V=200N. The centroid
of  the  cross-section  is  at  25mm
from the top.

For this problem, the maximum shear force is 200N, and it is that force that will dominate
the design of the glue. The position of the centroid of the cross-section is evaluated first, and
is found to be 25mm from the top of the cross-section. The evaluated first, and the moment
of inertia I is evaluated with respect to the centroid, using the parallel axes theorem, and is
found to be 990,000 mm4. The adhesive is distributed over the area of the interface, thus it
is subjected to the shear shear stress at the interface. Thus, for this problem, evaluation of
the shear flow q is not necessary. The shear stress on the adhesive is evaluated as

τxy
adhesive = VQ

Ib = 200((80×30)10)
990,000×40 = 0.1212N/mm2 = 121.2kPa

It is noted that Q is the moment of the top part (80x60mm) with respect to the centroid of



the entire cross section. The distance of the top part from the centroid is 10mm.

 



Module 21: Examples of Shear Flow in Beams
Example-built-up  T-beam:  For  the  T-beam  shown  in  Figure  H-9,  constructed  by
connecting the flange to the web using nails, the maximum spacing between the nails needs
to be evaluated in order for the beam to withstand a V = 1800 N. Each nail can withstand F
= 800 N in shear.

Figure H-9 The cross section of a
built-up beam, where the flange and the
web are connected by single nails.

This example is similar to the one with the wooden section presented previously (Fig. H-7)
yet at every connecting point there is only one nail, while in the example in Figure H-7
there are two screws. Then, instead of 2F, we have F in this problem, and the spacing s is
expressed as

s = FI
VQ

In order to evaluate I and Q, the centroid of the cross section is needed. Using a coordinate
from the top of the beam downwards, we have for the distance of the centroid from the top

c = ∑Aiyi

∑Ai
= (200×50)25+ (200×50)150

(200×50) + (200×50) = 87.5 mm

where A denotes area and y is distance from the top of the cross section. Using the parallel
axes theorem, the moment of inertia is evaluated

I = ∑ Ii + Aidi
2 = 200×503

12 + 200 × 50(87.5 − 25)2 +   

50×2003

12 + 200 × 50 × 37.52 = 113.5 × 106mm4

where di  denotes  distance of  the  centroid of  Ai  from the centroid of  the  cross  section.
Moment Q is evaluated as the moment of the are of the top part with respect to the centroid
of the cross section

Q = (200 × 50)(87.5 − 25) = 635 × 103 mm3

With the above values



s = FI
VQ = 800×113.5×106

1800×625×103 = 81 mm = 8.1 cm

Example-built-up wooden beam: A wooden beam (Fig. H-10) is made of three 2 × 8s
(nominally 1.5" wide × 7.5" tall) capped with a 2 × 6 (nominally 1.5" tall × 5.5" wide) on
each end. The beam is assembled with 16d nails. Given this built-up wooden beam, in this
example we determine the maximum allowable nail spacing given that each nail can carry
250 lb of shear per nail.

Figure H-10 A built-up
wooden beam loaded at
midspan.

In the expression for the shear flow for this problem, V = 1 Kip, and Q is the moment of the
area of the cross section above the three nails at the interface

Q = (5.5 × 1.5)⎛⎝⎜7.5
2 + 1.5

2
⎞⎠⎟ = 37.125 in3

I =
5.5(7.5+1.5+1.5)3

12 − (5.5−4.5)7.53

12 = 495.422 in4

With these values,

q = VQ
I = 1×37.125

495.422 = 0.0749 Kips/in

Three nails are present to resist the shear flow, thus

q = 3F
s ⇒ s = 3F

q = 3×250/1000
0.0749 = 10.01 in

where F denotes the shear force in each nail and s denotes the nail spacing. In this case, s =
10 in would be a good choice.



Example: Steel Plates with Rivets 

Two steel plates 2 × 6 in are 
connected with rivets as shown. The 
spacing of the rivets is 4 in apart and 
the allowable load per rivet is 500 
pounds. The steel plates are used as a 
simple beam.  
Determine the maximum allowable 
value for the force P.  
For steel, E = 30 × 106 psi 

 

V = P 2

F = 500 lbs

F 4" = f =
VQ

I

⇒ 125 =
VQ

I
Q = 2 × 6 × 1 = 12 in3

I =
6 × 43

12
= 32 in4

V =
I

Q
× 125 =

32

12
× 125 = 333.33

P = 2V = 666.66 lbs

3 ft 3 ft 

P 

4 in 

6 in 

2 in 

2 in 



Example: T-Section Beam with Weld Joints 

A built-up beam of T cross-section 
is loaded by M = 15 kNm. 
Find the maximum spacing s of the 
weld points, if each weld point can 
carry 8000 N in shear. 

 

R ⋅ 3 = M ⇒ R =
15

3
= 5 kN

Q = 40 × 200 × 44.5 = 356000 mm3

I =
200 × 403

12
+ 200 × 40 × 44.52

+
40 × 1603

12
+ 160 × 40 × 120 − 64.5( )2

∴ I = 50,275,600 mm4

f =
VQ

I
=

5 × 356,000

50,275,600
= 0.0354 kN/mm

fS = 2F

⇒ 0.0354 S = 2 × 8000

⇒ S = 452 mm

1 m 2 m 

R R 

M 

weld points 
weld point 

200 mm 

40 mm 

40 mm 

16 0mm 

64.5 mm 



Example: Stress in T-section Beam with Weld Joints 

A built-up beam of T cross section 
is loaded with P = 15 kN. 

(a)  Find the maximum shear 
stress at A 
 (Note: Point A is at the weld 
points) 

(b)  Determine L so that the 
maximum compressive stress 
is 10 MPa 

 

τ =
VQ

Ib

V =
P

2
=

15

2
= 7.5 kN

Q = 40 × 200 × 44.5 = 356,000 mm3

I =
200 × 403

12
+ 200 × 40 × 44.52

+
40 × 1603

12
+ 160 × 40 × 120 − 64.5( )2

∴ I = 50,275,600 mm4 = 5.02756 × 10−5m4

b = 40 mm

τ =
7.5 × 356000

50,275,600 × 40
= 1.3277 × 10−3 kN/mm2

M
max

=
1

2
P ×

1

2
L =

15

4
× L = 3.75L

σ
max

comp =
M

max
× 0.0645

5.02756 × 10−5

⇒ 10 × 103 =
3.75L × 0.0645

5.02756 × 10−5
= 2.078 m

L/2 L/2 

weld points A 
weld point A 

200 mm 

40 mm 

40 mm  

160 mm 

64.5 mm 

P 



Example: Shear Stress at Joining Plane in T-Section Beam 

Find the shear stress at the joining 
plane. 

4 m 4 m 

6.5 kN/m 

6.5 kN 19.5 kN 

V 

4 m 4 m 

6.5 

-19.5 

 

Maximum applied shear = V = 19.5 kN

Locate NA, y = 0.12 m

Find I = 27.0 × 10−6 m4

Deter min e Q at the glue line

Q = 0.15 × 0.03 × 0.045

= 0.2025 × 10−3 m3

Deter min e "smaller width at

location : t = 0.03 m

τ =
19500 × 0.2025 × 10−3

27 × 10−6 × 0.03
= 4.88 MPa

Note: shear stress is reduced drastically, 

just above the glue line!

N 

150 mm 

30 mm 

30 mm 

150 mm 

Glue line 
A 

y

6.5 kN/m 

A B 

A B 



Example: Simply Supported T-section Beam 

If the flange and the web in the beam are glued together, 
determine the shear stress in the glue for the portions AB 
and BC when the load P = 2 KN.  

100 mm 

20 mm 

20 mm 

80 mm 
2 m 

P 

1 m 

B C A 

P 

0.5P 

+ 

- 

P + 

V-diagram 

M-diagram 

100 mm 

20 mm 

20 mm 

80 mm centroid 

y

 

y =
2,000 × 10 +1600 × 60

100 × 20 + 80 × 20
= 32.2mm

I =
20 × 803

12
+1,600 × 27.82 +

100 × 203

12
+ 200 × 22.22 =

3,142, 224 mm4 = 3.142 × 10−6 m4

AB → V = P / 2 = 1 kN

BC → V = P = 2 kN

Q = 100 × 20 × 22.2 = 44, 400 mm3 = 4.44 ⋅0−5 m3

τ
AB

glue =
VQ
Ib

=
1 × 4.44 × 10−5

3.142 × 10−6 × 0.02
= 707.2 kPa

τ
BC

glue =
VQ
Ib

=
2 × 4.44 × 10−5

3.142 × 10−6 × 0.02
= 1, 414.4 kPa



Example: Spacing of Weld Points in Built-up I-section Beam 

The welded built-up beam of I 
cross section is loaded by moment 
M = 15 kNm. 
Find the maximum spacing s of the 
weld points if each one can carry 
8,000 N in shear. 

200 mm 

40 mm 

40 mm 

160 mm 
S S 

1 m 2 m 

R R 

M 

 

R × 3 = M ⇒ R =
15

3
= 5 kN

I =
200 × 2403

12
−

160 × 1603

12
∴ I = 175,786,667 mm4

Q = 40 × 200 × 100 = 800,000 mm3

q =
VQ

I
=

5 × 800,000

175786667
= 0.02279 kN/mm

qs = 2F

⇒ 0.02279 s = 2 × 8,000

⇒ s = 703 mm



Self Assessment	  
Shear Stress: 1 

 

 
 
 

The shearing stress distribution  τ = VQ / Ib  
on the shown T-type cross section most 

resembles which sketch? 
 
 
 
 
 
 

 

d  c  b  a  

 
 
Shear Stress: 2 

 

 
Calculate the maximum shear stress, in MPa, in 
the T section shown knowing that maximum 
applied shear on the section is 25 KN  

 
Q is what, 3 or 
4? 

 
Which is true, 1 
or 2? 

 

 

1. The maximum shear stress occurs at the neutral axis (NA) of the 
cross-section 

2. The maximum shear stress occurs at the distance half way from 
top to bottom of the cross section 

3. For the NA, Q is the moment of the area above it (NA) w.r.t. the 
NA 

4. For the NA, Q is the moment of the area below it (NA) w.r.t. the 
NA 

 

 
 
 
 
 
 
 
 
 



Shear Stress: 3 
 

 
What is the shear force on bolt A due to 20 KN load acting 
on the free point of the built-up cross section cantilever 
shown? It is known that the bolt spacing is 15 cm in the 
longitudinal direction of the cantilever beam. 
 

 2.3 kN 

 1.9 kN 

 1.6 kN 

 2.6 kN 

 
Shear Stress: 4 

 

What is the maximum shearing stress, in psi, of a 20 ft 1.5" X 1.5" cantilever carrying a 1000Ib load 
at its free end? 

 963 psi 

 667 psi 

 324 psi 

 1004 psi 

 



Shear Flow: 1  A T-shaped beam is made by attaching two 1 × 4 in 
boards using nails as shown. The shear force is 200 lb.  Find the shear 
stress at the neutral axis and the shear flow at the joint. 
 
 
 
 
 
 
 
 
 
 
Shear Flow: 2  A built-up wooden beam is made by gluing together a 1 × 4 in2 
and a 2 × 4 in2 beams as shown in the figure. For a shear force of 200 lb, find: (a) 
the shear stress at the neutral axis; and (b) the shear stress at the glue seam. 
 
 
 
 
 
 
 
Shear Flow: 3 A beam made of 2 × 4s is nailed together as shown and each 
nail can withstand 150 lb of shear force. Find the largest nail spacing that 
will support a vertical shear load V = 200 lb. 
 
 
 
 
 
 
Shear Flow: 4 A built-up beam is to be made by bonding 
four identical planks together. Each plank has a rectangular 
cross-section 4 × 16 cm. For the same shear force V, which 
configuration produces the lowest shear stress τ  at bonding 
interfaces? 
 
 
Shear Flow: 5  A rectangular tube is to be 
fabricated out of two identical channels as 
shown. For the loading shown below, a certain 
design for connecting the channels is to use a 
series of discrete weld segments as shown. 
Determine the maximum weld segment spacing 
that could be used for this alternative, assuming 
each weld segment can carry 5 kips of force. 
 
 
 

!

1 in 

1 in 

4 in 

4 in 

y 

 Box 1 

Box 2 

!

!

!

"#$!

%#$!

&#$!

'()*+$,-!-.,/!/#+*0)#.$!

!

1.5 in 

3.5 in 

1.5 in 

!



 
 
 
 
 
 
 
 
Shear Flow: 6 For the two alternative built-
up beam sections shown below, choose the 
configuration that would require the most 
connectors per unit length along the beam to 
carry a given shear. Explain your answer. 
 
 
Shear Flow: 7 A beam is built up by laminating six 2 × 6s 
resulting into a 6 × 12 in cross section. If this section is to be 
used in a simply supported span of 30' with a design load of 300 
lb/ft, what is the minimum requirement for the shear strength 
for the glue? (For this problem, assume that the dimensions of a 

2 × 6 are actually 2" × 6".)  
 
 
 
Shear Flow: 8 Two I-beams are bolted together as shown to 
form a single built-up beam loaded in the vertical direction. 
Each I-beam has a height of 14.48˝, moment of inertia with 
respect to the centroid Izz = 1380 in4 and a cross-sectional area 
of 35.3 in2. If the allowable shear force in each bolt is F = 3.1 
kips, and the spacing between bolts along the length of the 
beam is 14˝, find the maximum allowable shear force V the 
built-up beam can sustain. 
 
 
 
 
 
Shear Flow: 9 The cantilever beam shown below has a built-up cross section as indicated. (a) Determine 
the maximum bending stress in the beam. The section's moment of inertia is I =18325 in4. (b) Determine 
the weld capacity (kip/in/weld) required for the welds shown. 
 

 

!

a b 

A B 30 ft 

300 lb/ft 

18x1.5 (in) 

6/8x36 (in) 

Weld 

18x1.5 (in) 

50 kips 
x 

A B 

40 ft 



Shear Flow: 10 In order to test the 
mechanical properties of an adhesive, 
a so-called dog-bone specimen is 
prepared where a horizontal slit is 
made and filled up with the adhesive 
as shown in the figure. The 
specimen’s cross section in the 
vicinity of the slit is  2 × 5 cm, and the slit is at the middle of the cross section. For a bending moment M 
= 125Nm, what is the shear stress τ the adhesive is subjected to? Draw τ at the interface as a vector. Note: 
the specimen is pinned as shown, and the distance between the two pins is 15 cm. 
 
Shear Flow: 11 In order to test the 
mechanical properties of certain 
(small-scale) weld spots, a so-called 
dog-bone specimen is prepared where 
a horizontal slit is made and welded 
by weld spots on both sides of the 
specimen. The distance between weld 
spots is 2.5 cm (figure not to scale). The specimen’s cross-section in the vicinity of the slit is  2 × 5 cm, 
and the slit is at the middle of the cross-section. For a bending moment M = 125 Nm, what is the shear 
force on each weld spot? (Note: the specimen is pinned as shown, and the distance between the two pins 
is 15 cm.) 
 
Shear Flow: 12  The built-up beam is subjected to forces P as shown. The flange is connected to the two 

webs by an industrial adhesive. If the allowable shear stress on the adhesive is  τallowable
adhesive = 250kPa

determine the maximum value of P such that this stress will not be exceeded. 

 
 
Shear Flow: 13 The so-called “glulam” beams 
are made by laminating several beams (or 
laminae) together as shown. An adhesive is used 
to bond the laminae (beams) together. Let a 
glulam be made by laminating 10 beams, each 
being 20 inches wide and 3 inches thick. The 
glulam beam is loaded at midspan by a 200 kips 
concentrated force. (a) Find the maximum shear stress the adhesive is subjected to anywhere in the beam. 
(b) If the beam were made of 5 laminae, each being each being 20 inches wide and 6 inches thick and was 
loaded as in (a), would the maximum shear stress on the adhesive be less, equal, or more than that in (a)? 
For part (b) explain your answer in words but do not perform calculations. 
 

2M M x 

y 

Cross-section 

2cm x 5 cm 

slit 
2.5 cm 

2M M x 

y 

Cross-section 

2cm x 5 cm 

slit 
2.5 cm 

weld spots 

1m 

P 

1m 

B D A C 

P 

4 cm 4 cm 

8 cm 

12 cm 

4 cm 
Cross section 

adhesive 



Shear Flow: 14 Three wooden boards are glued together to form an I-beam (figure to the left). The 
allowable shear stress of the glue is 100 
N/cm2. (a) Determine the maximum shear 
force V the beam can sustain such that the 
allowable shear stress in the glue will not be 
exceeded; (b) if nails are to be used instead 
of the glue (figure to the right) and the nails 
are spaced 12 cm apart along the axis of the 
beam, what is the minimum required 
allowable shear force on the nails such that 
the maximum V the beam can sustain is that 
found in (a). 
 

10×2 cm 

2×15 cm 

10×2 cm 

nail 

10×2 cm 

2×15 cm 

10×2 cm 

glue 



Module 22: Plane Stress and Stress Transformation

General three-dimensional state of stress

As seen in previous sections, depending on the external load, normal or shear stresses can
be created.  For  example,  a  bar  experiences normal  stress  σ  on planes transverse to  the
direction of the applied load; a beam experiences normal stress σ as well as shear stress τ, a
shaft experiences shear stress τ. In general, a material element as that shown in Figure J-1
can experience one normal stress and two shear stresses on each of its three planes. For
example, plane x (the plane transverse to the x-axis) can have a normal stress σx and two
shear stresses, τxy and τxz. The normal stress index indicates the plane the normal stress acts
on. The first index in shear stress indicates the plane the shear stress acts on, and the second
index indicates the direction of the shear stress.

Figure J-1 General three-dimensional state of
stress, showing three normal stresses and six
shear stresses.

Thus, in general, the state of stress at a point in a body can be characterized by three normal
and  six  shear  stress  components.  However,  as  shown in  previous  sections,  equilibrium
implies certain equalities in shear stresses, i.e.

τxy = τyx, τxz = τzx, τyz = τzy  

reducing the number of independent stresses to three, i.e., three normal stresses and three
shear stresses.

Plane Stress

For certain structures or structural components,  engineers often reduce the analysis to a
single plane by assuming a state of plane stress. Usually plate-like structures where there is
no load on the face of the plates are analyzed under the plane stress assumption, which
implies, for a plate in the xy-transverse to z direction, that only the in-plane stresses are
nonzero, i.e. σx,  σy, τxy= τyx . All other stresses are zero, i.e., σz= τyz= τxz= 0. Figure J-2
shows a schematic of a structure under plane stress and Figure J-3 the general state of stress
of a plane stress material element.



Figure J-2 Schematic of a structure or a structural
component in plane stress conditions. The thickness
of the plate is small compared to its other
dimensions. The material element is infinitesimally
small and its state of stress is shown schematically in
Figure J-3.

Figure J-3 General state of plane stress, in
three dimensions (top). Usually a plane
stress element is drawn as shown at the
bottom (the front view of the element).



Module 22: Plane Stress and Stress Transformation
Stress transformation under plane stress

Consider material element in plane stress conditions as shown in Figure J-4, and a section at
an arbitrary angle θ. Since the entire element is in equilibrium, the "wedge-like" part of the
element shown in Figure J-5 should also be in equilibrium.

Figure J-4 A section (red/dark line) on a
plane stress material element.

Figure J-5 The free body diagram, i.e., the
stresses acting on the element cut in Figure J-4.

If x1 denotes the axis transverse to the section and x2 the axis parallel to it (Fig. J-5), the
angle between the x- and x1-axes is equal to θ. Figure J-6 shows the areas that the stresses
shown in Figure J-5 act on.

Figure J-6 The plane stress material element of
Figure J-5 is of constant thickness (transverse to the
paper) and the figure shows the areas on each of its
sides.

The forces acting on each surface of the element are equal to the stress acting on the surface



multiplied by the area. For example, the force acting on the x1 plane is equal to σx1 A0 sec θ.
Decomposing all forces acting on the element in the x1- and y1-directions and expressing the
equilibrium equations  in  these directions,  we obtain  (the same equations  are  obtained if
equilibrium is expressed in the x- and y-directions)

σx1 =
σx +σy

2 +
σx −σy

2 cos2θ + τxysin2θ  

τx1y1 = −
σx −σy

2 sin2θ + τxycos2θ  

These are the transformation equations for plane stress. They express the normal stress
σx1 , and shear stress τx1y1  , in terms of the stresses on the x- and y-planes, i.e., σx, σy, and
τxy. The angle θ is the angle between the x- and x1-axes, or equivalently, between the y- and
the y1-axes. Formally, it is defined as the angle measured when rotating the x-axis to the

x1-axis. It is positive if this rotation is counter-clockwise. By setting θ → θ + 90o in the first
equation above, it follows that

σy1 = σx +σy

2 − σx −σy

2 cos2θ − τxysin2θ

This way, the stresses at all angles θ, i.e., 90o, 180o and 270o (or −90o) can be found. Thus,
from  the  stresses  in  Figure  J-7,  the  stresses  in  Figure  J-8  can  be  found  using  the
transformation equations for plane stress.

Figure J-7 A plane stress element in the x-y
coordinate system and the stresses on each plane.

Figure J-8 The same plane stress element as in Figure
J-7 but in the rotated x1-y1 coordinate system and the
stresses on each plane.



Example-uniaxial state of stress: Here we consider a uniaxial state of stress on a thin plate
as  shown in  Figure  J-9.  The  state  of  stress  on  a  material  element  oriented  parallel  and
transverse to the applied load is shown, where the only non-zero stress is σx. For an element
oriented  at  an  angle  θ  however,  the  stress  state  is  quite  different.  The  figure  shows an
element at 45o.

Figure J-9 Uniaxial state of
stress on a thin plate. A
material element is oriented
parallel to the external load
and another one at 45o to the
load P.

For that element, all stress components can be evaluated from the transformation equations
for stress. For θ = 45o, we have

σx1 = σx +σy

2 + σx −σy

2 cos2θ + τxysin2θ = σx +0
2 + σx −0

2 cos90o + 0sin90o = σx
2

and

τx1y1 = − σx −σy

2 sin2θ + τxycos2θ = − σx −0
2 sin90o + 0cos90o = − σx

2

Similarly, for θ = 135o, it follows that

σx1 = − σx
2 , τx1y1 = + σx

2

Figure J-10 shows the axial state of stress for the inclined material element. Note that a
negative  normal  stress  is  compressive,  while  a  negative  shear  stress  implies  it  is  in  the
negative direction. For example, at 45o the x1-axis is positive (normal to the plane) so a
negative shear stress is oriented in the negative y1-direction.

Figure J-10 The actual stress at the inclined
plane. Both the normal and shear stresses are
equal to σx/2.



Module 23: Plane Stress and Stress Transformation

Example-pure shear state of stress: Consider a pure shear state of stress, as it occurs at the
neutral axis of a beam subjected to bending moment M and shear force V. In Figure J-11, all
shear stresses are positive. For example, the one on the positive x-plane is in the positive
y-direction, thus the shear stress is positive. The one on the negative x-plane, the shear
stress is in the negative y-direction, thus the shear stress is positive. Similar considerations
hold for the shear stresses on the y-planes.

Figure J-11 Pure shear state of stress. All four shear
stresses are positive.

The transformation of stress equations in this case reduce to (since σx = 0 and σy = 0)

σx1 = τxysin2θ

τx1y1 = τxycos2θ  

Note that at 45o the shear stress is zero, even though at the original material element we
have a pure shear state of stress!

Stress Transformation Invariants

The transformation equations for plane stress presented in the previous section provide the
stresses σx1  and τx1y1  as a function of stresses σx,  σy,   τxy  and the transformation (rotation)

angle θ. The normal stress σy1  can be obtained by setting θ → θ + 90o in the expression for

σx1  .  By adding the  expression for  σx1  and σy1  and simplifying the  final  expression it
follows that

σx1 + σy1 = σx + σy

Thus, the summation of the two normal stresses in a plane stress state remains the same for
any angle of rotation θ. It is called the invariant of the stress state. Note that this invariant
for the pure shear state of stress examined in the previous example is equal to zero.

Example-biaxial  tension/compression  with  σ x  =  σy:  A  biaxial  state  of  stress  implies



normal stresses σx and σy act not a material element while τxy = 0. A particular case is when
σx = σy, as shown in Figure J-12 (either both stresses tensile or compressive).

Figure J-12 Biaxial tension, with σx = σy.

The transformation of stress equations in this case reduce to (since τxy = 0)

σx1 = σx = σy

σy1 = σx = σy  

and this holds for every possible angle of rotation θ. This is "reminiscent" of hydrostatic
stress in a fluid, where the same stress acts at any orientation, thus, such a biaxial state of
stress is often called a "hydrostatic" state of stress.

Principal Stresses

The equations for transformation of stress provide the normal and shear stress for a plane
oriented  at  any  angle  θ.  Engineers  are  mostly  interested  on  the  extreme  values  of  the
stresses. Thus, a relevant question asks for the angle θ at which the normal stress becomes
an extreme and for the value of the normal stress at that angle. Similar questions pertain to
the shear stresses. In order to find the direction θ at which the normal stresses become an
extreme, we set

dσx1
dθ = − (σx − σy)sin2θ + 2τxycos2θ = 0  

which yields

tan2θp =
2τxy

σx −σy   

where the subscript p stand for "principal." Using basic trigonometric relations, cos2θ and
sin2θ  can  be  evaluated  from  the  above  equation.  After  substituting  these  in  the
transformation equation for σx, the two principal stresses result, denoted as σ1 and σ2.



σ1,2 =
σx +σy

2 ± (σx −σy
2 )

2
+ τxy

2√   

with the plus (+) sign for σ1 and the minus (-) sign for σ2. The above expression provides
the principal normal stresses, and the angle θp is the direction (planes) where these principal
stresses occur. There is an important property about the principal directions. If one asks the
question: at what angle θ does the shear stress τx1y1  become zero, the answer is (by setting

τx1y1  = 0)

tan2θ = 2τxy
σx −σy

  

which is the same as the principal directions. Thus in the principal directions the shear
stress is zero. A very important consequence, then, is that if the shear stress on a plane is
zero, then the normal stress on that plane is a principal stress, and the plane is in the
principal directions.

Example-uniaxial stress: Under uniaxial stress conditions (shown in Fig. J-14), it can be
easily shown that tan2θp = 0, which implies that θp = 0o, 90o, 180o, ...

Figure J-13 Uniaxial state of stress, σy= τ xy = 0.

Thus x and y are the principal directions in this case. It is noted that the shear stresses are
zero in these principal directions.

Example-pure shear: Under pure shear state of stress (Fig. J-11), since σx = σy = 0, it

follows that  cos2θp= 0 implies that  θp  = 45o,  135o,  ...  The stresses at  these angles are

evaluated yielding that at 45o σ1 = τxy and at 135o σ2 = −τxy. This state of stress, i.e., in the
principal directions, is shown schematically in Figure J-14. Note that the shear stresses in
the principal directions are zero.

Figure J-14 The material element in the principal
directions of the pure shear stress state (Fig. J-11), and
the principal stresses.



Maximum Shear Stresses

Another important task of engineers is to find the extreme shear stresses. We examine this
task here for plane stress states. By solving

dτx1y1
dθ = − (σx − σy)cos2θ − 2τxysin2θ = 0

it follows that

tan2θs = − σx −σy

2τxy

where the subscript s stands for shear. Using basic trigonometric relations, cos2θ and sin2θ
can be evaluated from the above equation. After substituting these in the transformation
equation for τxy the following expression for the maximum shear stress results

τmax = (σx −σy

2 )2
+ τxy

2√

which occurs, of course, at θs. It is straightforward to show that 2θs = 2θp − 90o or θs = θp
− 45o, which implies that the principal directions are inclined 45o from the directions of
the maximum shear. Also, from the expression for the shear stress it is easy to show that

τmax = σ1 −σ2
2

thus, the maximum shear stress is equal to the semi-difference of the two principal
stresses.

Example-maximum shear stress under uniaxial stress: Under uniaxial stress (shown in
Fig. J-13), it can be easily shown that cot2θ s= 0, which implies that θs = 45o, −45o ... and
τmax = σx/2. It is noted that for the uniaxial state of stress, σ1 = σx, and σ2 = 0. Thus

  τmax = σ1 −σ2
2

as expected.



Module 24: Mohr's Circle for Plane Stress

Mohr's circle for plane stress

In 1882, Otto Mohr, a German engineer, combined the transformation of stress equations in
order  to  form  a  comprehensive  pictorial  method  of  representing  them.  Using  basic
trigonometric relations in the equations for stress transformation in plane stress, i.e.,

σx1 = σx +σy

2 + σx −σy
2 cos2θ + τxysin2θ

τx1y1 = − σx −σy

2 sin2θ + τxycos2θ  

results in the following, by eliminating the angle θ (i.e., by solving one of the equations for
θ and substituting the resulting expression into the other equation)

(σx1 − σx +σy

2 )
2

+ τx1y1
2 = (σx −σy

2 )2
+ τxy

2

This is the equation of a circle in the σx1  versus τx1y1  space. The center of the circle is on
the horizontal axis, as shown in Figure J-15, and its radius R is equal to the square root of
the right-hand side of the above equation, i.e.

R = (σx −σy

2 )2
+ τxy

2√   

Figure J-15 Mohr's circle constructed by
positioning its center, which is always on the
horizontal axis, and evaluating its radius R.

Mohr′s  circle  provides  a  graphic  understanding  of  the  stress  transformation  equations.
Besides this, it can be used to determine the state of stress in any direction, or the principal
stresses,  or  the  maximum  shear  stresses  and  the  direction  those  occur  at.  The  sign
convention is such that tension is positive, and shear stress is negative when rotating the



material element counter-clock wise and positive when rotating the element clock wise.

Graphic illustration of construction of Mohr's circle

In the following interactive illustration, a uniaxial state of plane stress is considered, i.e. a
bar subjected to σx ≠ 0, and σy = 0, τxy = 0. By "cutting" the bar at different angles, the
normal stress and shear stress on the inclined planes are evaluated and then plotted on a σ
versus τ  coordinate system. The end result is the Mohr's circle for this uniaxial state of
stress.

 



A material element subjected to uniaxial tension (top left figure) and the plot of normal stress σ vs shear stress τ as the orientation of the element 
changes progressively, from left to right and top to bottom. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  



Module 24: Mohr's Circle for Plane Stress

Construction of Mohr's circle

Mohr's circle has information on the state of stress at any angle θ. Instead of constructing it
by evaluating the radius R, a more efficient way is as follows (referring to Fig. J-16). Given
are the values of stress at the x-y coordinate system, i.e. σx, σy, τxy. The steps in drawing the
Morh's circle are:

Figure J-16 The stresses
in the x-y planes are σx,
σy, τxy. From those, the
Mohr's circle is
constructed..

1. On the coordinate system σx1  (horizontal axis), −τx1y1  (vertical axis), place the center of

the circle at σx +σy
2  (center is on the horizontal axis).

2. Place point A, i.e. the point corresponding to θ = 0o, where σx1 = σx and τx1y1 = τxy.
3. Measure angles from point A counter-clock wise (see note below).

NOTE: Point B (i.e., the point corresponding to θ = 0o, where σx1 = σy and τx1y1 = − τxy )
is diametrically opposite to point A. In the stress space, from point A to point B angle θ
changes from 0 to 90o. In the Mohr's circle, however, it  changes from 0 to 180o. Thus,
angles in Mohr circle are measured counter-clockwise from point A as 2θ.

Properties of Mohr's circle

Figure J-17 shows further details of the Mohr's circle, constructed from the given values of
σx, σy, τxy as follows:

1. Draw a coordinate system with σx1  as the horizontal axis and τx1y1  as the vertical axis.

Note that +τx1y1  is downward, the + indicating counter-clockwise moment produced by the
shear stresses.

2. Locate the center on the horizontal axis at σx +σy
2 .

3. Locate point A, i.e., the point in the circle with coordinates σx, τxy corresponding to θ =

0o.



Measure angle 2θ counter-clockwise from A.

Figure J-17 A typical Mohr's circle and various
points on it.

The following properties of the Mohr's circle are important and help in understanding the
state of stress at a material point:
- The principal stresses are the extremes of the normal stress, located at the far right and far
left of the circle. Note that shear stress at principal directions is zero.
- Maximum shear stress occurs at point S and point T.
- From triangle OCA it follows that

  R = ||OA|| = ||OC||2 + ||CA||2√ = (σx − (σx +σy

2 ))
2

+ τxy
2√ = (σx −σy

2 )2
+ τxy

2√
and thus

σ1 = (σx +σy

2 ) + R = (σx +σy

2 ) + (σx −σy

2 )2
+ τxy

2√   

σ2 = (σx +σy

2 ) − R = (σx +σy

2 ) − (σx −σy

2 )2
+ τxy

2√   

Also, from triangle OCA it follows that

tan2θp = τxy

(σx − (σx +σy
2 ))

= 2τxy
σx +σy

Example-Mohr's circle: Given the plane stress state shown in Figure J-18, in this example
we will:
- Draw the Mohr's circle
- Eevaluate the two principal stresses from the Mohr's circle
- Draw the principal stresses in the principal directions



Figure J-18 A plane stress state.

For this state of stress, σx = +60 MPa (tensile), σy = +20 MPa, and τxy = +40 MPa (shear
stress is in the positive x-plane and its direction is in the positive y-axis, or the moment it
creates is counter-clockwise). The center of the circle is at (60 + 20)/2 = 40 MPa. This,
together with the position of point A (at (60,40)) yields the Mohr's circle shown in Figure
J-19.

Figure J-19 Mohr's circle corresponding to the stress state of
Figure J-18.

From triangle OCA, tan2θp = 40/20 = 2, which implies that 2θp = 63.43o or θp = 31.7o.

Also from triangle OCA, the radius R is
R = ||OA|| = ||OC||2 + ||CA||2√ = 402 + 202√ = 44.72 MPa

Thus, σ1=40+44.72 = 84.72MPa and σ2 = 40−44.72 = −4.72MPa (compressive).  Figure

J-20 shows the material element in the principal directions, i.e., the element rotated by 31.7o

counter-clockwise from the original material element.

Figure J-20 The material element in the principal
directions.



Module 24: Mohr's Circle for Plane Stress

Example-Mohr's circle: Given the uniaxial plane stress state shown in Figure J-21, in this
example we will:
- Draw the Mohr's circle
- From the Mohr's circle evaluate the two principal stresses and the maximum shear stress

Figure J-21 Uniaxial state of stress, under
plane stress conditions.

Figure J-22 Mohr's circle for the uniaxial
state of stress of Figure J-21.

The center of the circle for this problem is located at (−3000 + 0)/2 = −1500 psi. Point A has
coordinates of (−3000 psi, 0), and the coordinates of point B are (0,0). Figure J-22 shows
the circle. Note that the principal directions are the original x-y ones. This is also verified
from the fact that the shear stress at the x and y planes is zero. The maximum shear stress is
equal to R, which is 1500 psi.

Example-Mohr's circle: Given the pure shear plane stress state shown in Figure J-23, in
this example we will:
- Draw the Mohr's circle
- Evaluate the two principal stresses and the maximum shear stress from the Mohr's circle
- Evaluate the state of stress at the plane inclined 22.5o clockwise from the x-plane from the
Mohr's circle

Figure J-23 Pure shear state of stress, under plane
stress conditions.



Figure J-24 Mohr's circle for the state of stress of
Figure J-23.

Figure J-24 shows the circle. The center of the circle for this problem is located at (0 + 0)/2
= 0 MPa. Point A has coordinates of (0 MPa, 34 MPa), and the coordinates of point B are (0
MPa,−34 MPa). Note that the principal directions are 90o from points A and B in the Mohr's
circle, or 90/2 = 45o from the x-y coordinates.

Note that  22.5o clockwise in the stress space corresponds to 22.5 ×  2  = 45o clockwise
rotation in the Mohr's circle. The corresponding point is denoted by C in Figure J-24. The
stress state at point C is easily evaluated, i.e.

σx1 = − 34cos(45o) = 24.04 MPa  

τx1y1 = 34cos(45o) = 24.04 MPa

Example-Mohr's circle: The thin plate shown in Figure J-25 is subjected to the biaxial
state of stress as shown. The plate is welded together by a weld oriented 60o from the
horizontal axis. In this example we will:
- Determine the normal stress perpendicular to the weld and the shear stress parallel to it.
- Draw the Mohr′s circle and pinpoint the stress point in the direction of the weld (i.e., 60o

from the horizontal axis).

Figure J-25 A welded thin plate subjected to biaxial tension.

The state of plane stress is: σx = 7 MPa, σy = 12 MPa, τxy = 0. For the weld, the axis

transverse to it makes a −30o angle with the positive x-axis, thus, θ = −30o. With these
values, the equation for transformation of stress read

σx1 = σx +σy

2 + σx −σy

2 cos2θ + τxysin2θ = 7+12
2 + 7−12

2 cos( − 60o) = 8.3MPa



τx1y1 = − σx −σy

2 sin2θ + τxycos2θ = − 7−12
2 sin( − 60o) = − 2.165 MPa

The center of the Mohr's circle is at (7 + 12)/2 = 9.5 MPa, and point A is at (7,0) MPa.
Figure J-26 shows the Mohr's circle and the point for the weld (at −60o ).

Figure J-26 Mohr's circle for the state of stress
in the plate of Figure J-25 and the point
indicating the state of stress at the weld.

Example-stress on inclined plane: In this example, a wooden beam/bar is fractured at 55o

and is held together temporarily by an adhesive while it is subjected to the stress shown in
Figure J-27. The problem in this example is to find the shear stress in the adhesive.

Figure J-27 A fractured beam is held together by an
adhesive.

For the fracture, the axis transverse to it makes a −35o angle with the positive horizontal
x-axis, thus, θ=−35o. With these values, the equation for transformation of the shear stress
reads

τx1y1 = − σx −σy

2 sin2θ + τxycos2θ = − 7−0
2 sin( − 70o) = 3.29 MPa



Stresses - Transformation 
Given the state of stress: (a) find principal 
stresses and principal planes (direction), and (b) 
draw the principal stresses in a properly oriented 
element.  
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= 31.7o

σ1  = 84.72MPa 

σ2  = −4.72 MPa 

31.7o 

σ2  = −4.72 MPa 

σ1  = 84.72 MPa 



Example: Stresses in Elements at Different Angles 

Find stresses at elements A, B, 
and C. 

 
σ

x
=

P

A
=

200,000

0.02 × 0.1
= 100 MPa

 

σ ′x
=

100

2
+

100

2
cos90° + 0 = 50 MPa

σ ′y
= 50 MPa

τ ′x ′y
= −50 MPa

0o 45o 30o 

A B C 200 kN 200 kN 

0.02 m 

0.1 m 

 

σ ′x
=

100

2
+

100

2
cos60° + 0 = 75 MPa

σ ′y
=

100

2
−

100

2
cos60° − 0 = 25 MPa

τ ′x ′y
= −

100

2
sin60° = −43.3 MPa

A) Element A: 

B) Element B: 

C) Element C: 

0σy =

xσ

0τxy =

xσ

yσ ′

xσ ′

yxτ ′′

yσ ′

xσ ′

45o 

x′

x

yσ ′

xσ ′

yxτ ′′

yσ ′

xσ ′

30o 

x′

x



Example: Maximum Shear Stresses 

Repeat past example for 
maximum shear stresses. 

 

tan 2θ
s( ) = −σ

x
− σ

y( ) 2

τ
xy

=
−20 − 90( ) 2

60
= −

55

60

2θ
s1
= 42.5°

⇒ θ
s1
= 21.3°

2θ
s2
= 2θ

s1
+ 180°

⇒ θ
s2
= θ

s1
+ 90° = 111.3°

τ
max

=
σ

x
− σ

y

2

⎛

⎝⎜
⎞

⎠⎟

2

+ τ
xy
2 =

−20 − 90

2

⎛
⎝⎜

⎞
⎠⎟

2

+ 602

⇒ τ
max

= 81.4 MPa

σ
ave

=
σ

x
+ σ

y

2
=
−20 + 90

2
= 35 MPa

⇒ σ
ave

= 35 MPa

 35 MPa
 35 MPa

 81.4 MPa



Example: Maximum Shear Stress Using Mohr’s Circle 

For the plane stress state 
 
 
 
 
Draw the Mohr’s circle. Then, 
using the circle, evaluate the 
maximum shear stress and draw it 
on properly oriented elements. 

 R = τ
max

= 202 + 202 = 28.28 MPa

 
σ

y
= −20 MPa

 
τ

xy
= −20 MPa

45o 

A (20, -20) 

 σx
= 20 MPa

maxτ

X 

Y 

22.5o 

28.28 MPa 

X 

Y 



Example: Mohr’s Circle to Determine Stresses 

The state of stress of a point is 
shown in the diagram. Use and 
show Mohr’s circle to determine 
the stresses on the element having 
surface A-A as indicated. Show the 
required element with its stresses 
and orientation. 

 

Center: 
80 + 40

2
= 60 psi

A (40, 60) and B(80, 60)

40 psi 

60 psi 

80 psi 

50o 

50o 

A 

A 

X′

B (80, 60) 

A (40, 60) 

B′

A′

71.56o 
100o 

28.44o 

 

R = 602 + 202 = 63.2

tanθ =
60

20
= 3 ⇒ θ = 71.56°

 

′A 60 − 63.2 cos 28.44°( ) , 63.2 sin 28.44°( )( )
⇒ ′A 4.43, 30.1( )
′B 60 + 63.2 cos 28.44°( ) , 30.1( )

⇒ ′B 115.6, 30.1( )

40o 30.1 psi 50o 

115.6 psi 30.1 psi 

4.43 psi 



Module 25: Hooke's Law in Plane Stress

Hooke's law in three dimensions

Recall that a material element embedded in a bar under tension/compression loaded in the
x-direction experiences εx = σx ⁄ E  and from Poisson effects, εy = −νεx = −νσx ⁄ E and  εy =
−νεy  =  −νσx  ⁄  E.  Similarly,  the  strains  created  by  stress  σ y  and  σ z  can  be  evaluated.
Superimposing, i.e. assuming a general state of stress where all three stresses, σy, σy and σz
are applied to a material element, it follows that

εx = σx
E − ν

σy
E − ν σz

E

εy =
σy
E − ν σx

E − ν σz
E

εz = σz
E − ν σx

E − ν
σy
E

If, in addition, shear stresses act, we have

γxy = γyx =
τxy
G =

τyx
G

γxz = γzx = τxz
G = τzx

G γyz = γzy =
τyz
G =

τzy
G

The above six (6) equations are termed the generalized Hooke's law, or Hooke's law in
three dimensions. Given the state of stress (i.e., all six components), Hooke's law allows
for the evaluation of the six strains (i.e., three normal and three shear ones). The above
equations can be inverted to yield the expression for the stresses as a function of the strains
in a material element. Under plane stress conditions, the generalized Hooke's law simplifies
significantly as shown in the following.

Specialization of generalized Hooke's law for plane stress

Under plane stress conditions,  σz = 0,  and τxz = τyz = 0.  The generalized Hooke's law
equations then reduce to

εx = 1
E (σx − νσy)

εy = 1
E (σy − νσx)

εz = 1
E (σx − νσy)



γxy = γyx =
τxy
G =

τyx
G

It is interesting that the lateral normal strain in the z-direction is not equal to zero. This is
because  of  Poisson  effects,  which  dictate  that  the  material  expands  or  contracts  in  the
z-direction due to normal strains in the x- and y-directions.

Inverting the above, it follows that

σx = E
1−ν2 (εx + νεy)

σy = E
1−ν2 (εy + νεx)

τxy = τyx = Gγxy = Gγyx

which express the Hooke's law for plane stress.

Physical interpretation of strains-volume changes

Even though the definition of strain in uniaxial tension or compression is easy to interpret,
in three dimensions there is an interaction between strains, which makes theit interpretation
more  difficult.  In  the  following,  the  strains  in  three  dimensions  are  related  to  volume
changes in a material element, Consider a material element subjected to stresses as shown in
Figure K-1, i.e. only three normal stress are applied.

Figure K-1 A material element subjected to normal stresses in
three dimensions.

Without loss of generality, let the material element before application of the stress be a unit
cube, i.e., its volume is V0 = 1 × 1 × 1 = 1. After the stresses are applied, the volume of the
element is Vf = (1 + εx)(1 + εy)(1 + εz). For strains small enough, which usually the case for
engineering structures, higher order terms can be neglected, thus Vf ≈ 1 + εx + εy + εz. The
volumetric strain is defined as

e = ΔV
V0

= Vf −V0
V0

  



From the above equations, it follows that

e = εx + εy + εz = 1−2ν
E (σx + σy + σz)  

where the generalized Hooke's law was used. Note that only for ν = 0.5 the volume changes
are zero. For engineering materials, ν ≤ 0.5, thus, for tensile stresses the volume increases,
while for  compressive stresses the volume decreases.  Another important  and commonly
used “definition” is that of the “hydrostatic” pressure of the material element defined as

p = 1
3 (σx + σy + σz)  

From  these  last  two  equations,  obviously,  the  hydrostatic  pressure  is  related  to  the
volumetric strain by

p = E
3(1−2ν) e  

For this reason, the quantity E/3(1 - 2ν), is called the “bulk modulus” of the material and the
letter kappa (κ) is used to denote it, thus, by definition

κ = E
3(1−2ν)   

denotes the bulk modulus

 



Example: Total Volume Change in a Plate 

The plate of thickness t is in plane stress. 
(a)  Determine the ratio fx/fy so that the volume changes are 

zero. 
(b)  For fx = 10 K/in, fy = -20 K/in and t = 2 in, determine the 

total volume change of the plate.  

 

e =
1− 2ν

E
σ

x
+ σ

y( )

σ
x
=

f
x

t
,  σ

y
=

f
y

t

e = 0 ⇒ σ
x
= −σ

y
⇒ f

x
= −f

y

e =
1− 0.6

30 × 103

10

2
−

20

2

⎛
⎝⎜

⎞
⎠⎟
=

0.4

30 × 103
5 − 10( )

⇒ e = −6.667 × 10−5

ΔV = e × V
0
= −6.667 × 10−5 10 × 5 × 2( )

⇒ ΔV = −0.00667

 

E = 30 × 103 ksi

ν = 0.3

10” 

5” X 

Y fy (Force per length) 

fx (Force per length) 



Module 26: Plane Strain

Definition of plane strain

As mentioned before, for certain structures or structural components engineers often reduce
the analysis to a single plane. One such case is that of plane stress examined earlier. Recall
that plane stress considers that all stresses in the z-direction are zero, i.e., σz = τyz = τxz = 0.
Usually plate-like structures, where there is no load on the face of the plates, are analyzed
under  the  plane  stress  assumption.  An  example  is  a  thin  wall  where  there  is  no  load
transverse to the plane of the wall.

The plane strain analysis considers that all strains in the z-direction are zero, i.e., εz = γyz =
γxz = 0. Usually long structures (long enough that expansion in the z-direction from Poisson
effects  can  be  neglected)  loaded  on  the  x-y  plane  are  analyzed  under  the  plane  strain
assumption.  Examples  are  a  long  pipe  or  a  long  dam  structure.  Figure  K-2  shows
schematically a case of plane stress and a case of plane strain, both loaded on the x-y plane
by forces and moments.

Figure K-2 Illustration of material
elements under plane stress (left) and
plane strain (right). A thin plate in the x-y
directions loaded only in the x-y plane is
under plane stress conditions. A long
(thick) structure loaded homogeneously in
the x-y plane is under plane strain
conditions.

It is noted that a material can not be in both plane stress and plane strain states at the same
time. If this was not the case, certain stresses and strains in the element would have to be
equal to zero and equal to a finite value at the same time.

Examples-plane strain and plane stress: Figures K-3 and K-4 show examples of plane
stress and plane strain cases. As an exercise, list some example of problems in engineering
(civil, mechanical, aerospace) that can be assumed to be under either plane stress or plane
strain.



Figure K-3 A thin plate with a hole (e.g., for a
bolt) is, in general, under plane stress conditions
when loaded on its plane, as shown in the figure
(top). A slender beam (bottom) is also under
plane strain conditions. Typical stresses on a
material element are shown in the figure as well
(middle).

Figure K-4 A long dam (top of figure) is
under plane strain conditions. Usually a
slice of unit thickness is analyzed (shown to
the right) with a schematic of a material
element. A long cylindrical pressure vessel
subjected to internal/external pressure and
constrained at the ends (bottom) is also
under plane strain conditions.

The following two tables summarize the cases of plane stress and plane strain.

Plane stress and plane strain deformations and stresses. Undeformed material elements are
shown in red/dark

Figure K-5
Plane stress.

Element expands/contracts in x → εx
≠ 0, σx ≠ 0

Element expands/contracts in y → εy
≠ 0, σy ≠ 0

Element expands/contracts in z due
to Poisson effects only → εz ≠ 0, σz
= 0 



Element shears in x-y, but not in x-z
and y-z → τxy ≠ 0, τxz = τyz = 0

Figure K-6
Plane Strain

Element expands/contracts in x → εx
≠ 0, σx ≠ 0

Element expands/contracts in y → εy
≠ 0, σy ≠ 0.

Element is not allowed to
expand/contract in z → εz = 0, σz ≠
0 

Element shears in x-y, but not in x-z
and y-z → τxy ≠ 0,τxz = τyz = 0

NOTE: The above declaration of a variable being ≠0 does not exclude the special case of
the variable being equal to zero. So, it should be interpreted that it is only zero under
special stressing/straining circumstances.
 Primary requirements Consequences

Plane Stress
σz = 0

τxz = τyz = 0 → γxz = γyz = 0 

All other stresses and strains not
equal to zero. Note that in general εz
≠ 0

Plane
Strain

εz = 0

γxz = γyz = 0 →  τxz = τyz = 0

All other stresses and strains not
equal to zero. Note that in general σz
≠ 0



Stress Transformation: 1 A simple tension element is made from two shorter pieces of material with the 
glue joint at 15° from the loading axis. Find the shear and normal stresses at the glue seam. The modulus 
of elasticity (E) and Poisson's ratio (ν) are as follows: E = 0.5 × 106 psi, ν = 0.35 (Nylon 6) 
 

 
 
 
 

Stress Transformation: 2 A stress element is as shown. Find τmax, σmax, 
σmin, and the direction of σmax. 
 
  
 
 
Stress Transformation: 3 (a) Given 

 
σx = 12,000psi, σ y = −4,000psi, τxy = 1,000psi , draw the stress element; (b) Given 

 
σx = 15,000psi, σ y = 8,000psi, τxy = −2,000psi , draw the stress element. 
 
Stress Transformation: 4 For the stress element in Problem 3(a), find the principal stresses and the 
maximum shear stress. 
 
Stress Transformation: 5 Match each stress state to the corresponding Mohr’s circle 

 
 
 

!

15° 
1,000 lb 1,000 lb 

A =4 in2 
x 

y 

m 

!

 

 

 

 

σx = 2500 psi 

τxy = 1000 psi 

σy = 1500 psi 



Stress Transformation: 6 The slope of the grain in the post has a 
maximum deviation from the axis of the member of 15°, and there is some 
concern that the relatively low shear strength of wood along its grain could 
cause problems. Calculate the shear stress along the grain for a 15° 
deviation as shown. 
 
Stress Transformation: 7 An element is made from two shorter pieces of 
material with the glue joint at 15° from the loading axis. A 1,000 lb tensile 
load is applied as shown, and in the vicinity of the glue joint, a 
compressive stress of 87.5 psi is applied. Find the shear and normal 
stresses at the glue seam by drawing and using the Mohr’s circle. Then 
draw the element and its stresses oriented at the pale of the joint and 
transverse to it. 

 
Stress Transformation: 8 In order to test the mechanical properties of an adhesive, a so-called dog-bone 
specimen is prepared by adhering two pieces together at an angle β as shown in the figure. The 
specimen’s cross-section in the vicinity of the adhesive is  2 cm × 5 cm. For a tensile force T = 2kN and β 
= 30O what is the shear stress τ and normal stress σ the interface is subjected to? Draw τ and σ at the 
interface as vectors. 
 
 

 
 

 
 
 
Stress Transformation: 9  A piece of material in its undeformed 
state has dimensions 6 cm × 4 cm × 2 cm in the x, y, z directions, 
respectively. The modulus of elasticity of the material is E = 100 
GPa, and the Poisson ratio is ν = 0.2. Two tensile forces are 
applied as shown, i.e. Px = 200 N, Py =  150 N.  
 

(a) True or false: the change in length in the z-direction, δz = 
0. 

(b) True or false: the normal stress in the z-direction, σz = 0. 
(c) True or false: there are no shear stresses anywhere (at any 

inclined plane) in the element. Explain your answer. 
(d) Determine the change in length in the x-direction, δx. 
(e) Determine the maximum shear stresses anywhere (at any inclined plane) in the element. 

 
Stress Transformation: 10 For the stress element in Problem 3(b), find the principal stresses and the 
maximum shear stress. 
 
Stress Transformation: 11 For the stress element in Problem 3(a), find the principal stresses and the 
maximum shear stress using Mohr’s circle. 

Px 

Py 

6 cm 

4 cm 

2 cm 

x 

y 

z 

75° 1,000 lb 1,000 lb 
x 

y 

! 

"y 



Stress Transformation: 12 For the stress element in Problem 3(b), find the principal stresses and the 
maximum shear stress using Mohr’s circle. 
 
Stress Transformation: 13 A simple tension element is made from two shorter pieces of material with 
the glue joint at 15° from the loading axis. Using Mohr’s circle, find the shear and normal stresses at the 
glue seam.  

 
 
 
 
 

 
Stress Transformation: 14 At a material element the state of plane 
stress is as shown in the figure. (a) Draw the Morh’s circle 
representing this state of stress. (b) Using the Mohr’s circle 
determine the principal stresses σ1 and σ2. (c) draw the material 
element in the principal directions, i.e. in a properly oriented 
element. 
 

Stress Transformation: 15 A metal sheet is cut at 55O as 
shown and then put together by weld spots (one weld spot 
on each side) equally spaced at distance s between them. 
The sheet is 1 cm (0.01 m) thick (in the direction 
transverse to the paper) and is subjected to a stress of 7.0 
MPa in one direction as shown. Each weld spot has an 
allowable load in tension/compression,  Ftension

allowable = 15 kN , and an allowable load in shear,  Fshear
allowable = 10 kN

. Find the minimum spacing, s, such that the allowable force on the weld spots in tension and in shear will 
not be exceeded. 
 
Stress Transformation: 16  The shaft has a circular cross section of diameter d = 35 mm, and is 
subjected to torque T = 24 Nm in the direction shown. Consider a material element positioned on the 
outer surface of the cylinder and oriented at 45O as shown. Find the magnitude of the stresses on that 
element and draw them (with the correct direction) in a properly oriented element. 
 

 
 
 
 
 

!y1
!x1

!y1 !x1!x1y1 !x1y1
!x1y1 !x1y1

T T 

45o 

!

15° 
1,000 lb 1,000 lb 

A =4 in2 
x 

y 

m 

48.0 kPa 

20.7 kPa 

fra
ctu

re 

55o 

7MPa 7MPa 



Stress Transformation: 17  The cantilever beam of length L = 3.5 m and hollow square cross section is 
loaded by a force P = 2.0 kN at the free end. (a) What is the state of stress (σ x , τxy ) at (x, y, z) = (1m, 
0mm, 50mm)? (b) What is the radius of the Mohr’s circle at (x, y, z) = (1m, 0mm, 50mm)? (c) What is 
the maximum shear stress τx1y1  at (x, y, z) = (1m, 0mm, 50mm). 

 
Stress Transformation: 18  For a state of plane stress where σx =11,000psi, σy = 0, τxy = 4,775psi , 
(a) find the maximum tensile normal and maximum shear stress; (b) draw the element where the principal 
stress take place in a properly oriented element. 
 
Stress Transformation: 19  For the beam shown 
it was found that the principal stress σ1  in the x-y 
plane at A is equal to 30 kPa. Based on that, find 
the value of the load P in kN. 
 
 
 
 
 
  
 
 
 Stress Transformation: 20 For the beam shown it 
was found that the principal stress σ1  in the x-z 
plane at A is equal to 30 MPa. Based on that, find 
the value of the load P in kN (P is in the z-direction).

 

 
 
 

100 mm 

100 mm 

5 mm 

P 

  3.5 m 

x

y
y

z 

P 

3 cm 

3 cm 

2 cm 
2 cm 

12 cm 

x 

y 

A 

P 

3 cm 

3 cm 

2 cm 
2 cm 

12 cm 

x 

y 

A 

z 



Module 27: Spherical and Cylindrical Pressure

Stress analysis of a thin-wall spherical pressure vessel

Pressure vessels are structures enclosing a liquid or gas under pressure. Provided the wall
thickness is small, compared to the other dimensions of the sphere (i.e., its radius), the stress
analysis  of  such  structures  is  relatively  straightforward  as  shown below.  Spherical  and
cylindrical pressure vessels belong to a category of structures called shells, such as domes,
certain structural roofs, airplane wings, etc.
       Figure L-1 shows a spherical vessel and two material elements, one on the outside of
the wall and one on the inside. Since the wall is thin, the normal stress on the wall can be
considered constant, denoted as σ. Due to symmetry in the sphere, the normal stress should
then be equal to σ in any direction. Thus, in general, σx = σy. For elements on the outside of
the wall, the pressure σz is equal to the atmospheric pressure, considered to be zero. For
elements on the inside of the wall, however, σz = −p.

Figure L-1 A thin-wall pressure vessel subjected to
internal pressure p. Also shown are two material
elements, one in the outside of the wall (left), and one in
the inside of the wall (right).

Normal stresses in spherical vessels

Let us consider a spherical vessel and a cross section as shown in Figure L-2. A further
cross section, as shown in Figure L-3 reveals the normal stress σ acting on the wall, which
is assumed constant due to the small thickness of the wall.

Figure L-2 A cross section of a spherical vessel showing the
internal pressure, p, wall thickness, t, and radius, r.

Based on Figure L-3, the resultant of all the pressure forces acting on the inside of each



hemispherical half of the shell must equal the sum of all the stresses that act on the cut
surface.

Figure L-3 Cross section of the vessel in two
hemispherical parts.

The area of the cut surface is 2πrt. Now the question is, what is the force exerted by internal
pressure on the inside curved surface? As shown in Figure L-4, and as also known from
fluid statics, the resultant of the pressure forces acting on the inside curved surface of the
hemisphere must be equal to the same pressure acting on a flat disk of the same diameter.
Thus, the net force on the curved and hypothetical flat surface is equal to πr2p. Equating this
force to the force produced by σ, we have that

σ(2πr)t = πr2p  

which yields

σ = pr
2t   

Figure L-4 Schematic showing the pressure on the
curved surface of the shell and on a hypothetical flat
disk of the same diameter.

Shear stresses in spherical shells

The stresses in material elements positioned at the outer and inner surfaces of a cylindrical
vessel/shell are shown in Figure L-5, where also a relevant three-dimensional coordinate
system is shown. Since there are no shear stresses, these are all principal stresses. Thus, at
the outer surface

σ1 = σ2 = σ = pr
2t, σ3 = 0

and at inner surface



σ1 = σ2 = σ = pr
2t, σ3 = − p

Figure L-5 Stresses on an element positioned in the
outer surface (left) and inner surface (right).

As is recalled from Mohr's circle,  the maximum shear stress on a plane is equal to the
semi-difference of the two principal stresses in that plane. For example, in plane x-y, where
the principal stresses are designated as σ1 and σ2, the maximum shear stress is

τxy
max = σ1 −σ2

2

The maximum shear stress is mathematically expressed as

τmax = Max⎡⎣σ1 −σ2
2 , σ1 −σ3

2 , σ2 −σ3
2

⎤⎦  

For the elements shown in Figure L-5, it follows that at the inner surface

τmax = σ1 −σ3
2 =

pr
2t − ( −p)

2 = pr
4t + p

2  

and at the outer surface

τmax = σ1 −σ3
2 =

pr
2t −0

2 = pr
4t

Example-spherical vessel: Let a spherical tank be subjected to internal pressure p = 3.0
MPa, its inside diameter be 230 mm, and its thickness 5 mm. Find: (a) maximum shear
stress in the plane of the wall of the tank, and(b) maximum absolute shear stress.
(a) In the plane of the tank, σ1 = σ2, thus the in-plane maximum shear stress is zero.
(b) For any of the three planes, the maximum difference of principal stresses is that of σ1 −
σ3, where σ1 = pr/2t, and σ3 = −p. Thus, (σ1 − σ3)/2 = pr/4t + p/2. Or,

τmax = pr
4t + p

2 = 3.0×106 ×0.115
4×0.005 + 3.0×106

2 = 18.75 MPa  



Module 28: Spherical and Cylindrical Pressure

Cylindrical vessels

The stress  distribution in  cylindrical  vessels  differs  little  from that  in  spherical  vessels.
Figure L-5 shows a material element positioned on the outer wall surface and one on the
inner wall surface.

Figure L-5 A spherical vessel subjected to internal
pressure p. Also shown are two material elements
and the stresses acting on them, one positioned on the
outer surface (left) and one on the inner surface
(right).

For thin-wall vessels, the stresses along the thickness can be considered uniform. Also, due
to symmetry, there are no shear stresses. Thus, as shown in Figure L-5, each stress is a
principal stress. These principal stresses can be evaluated as shown in the following.

Normal stresses in cylindrical vessels

In order to find the principal stress σ1, consider a one-unit length "slice" of the cylindrical
part of the vessel as shown in Figure L-6.

Figure L-6 A "slice" of the cylindrical part of a
pressure vessel, also diametrically cut. Based on this,
principal stress σ1 can be evaluated.

Stress σ1 acts on total area of 2t (for unit length width of the "slice"), while p produces a net



force of p2r. Thus, σ12t = p2r, which implies that

σ1 = pr
t   

Now considering  equilibrium in  the  direction  of  the  cylinder,  as  shown in  Figure  L-7,
stresses σ2 are created from the internal pressure p acting on the semi-spherical end cups of
the vessel.

Figure L-7 A cut of the cylindrical surface showing
the normal stress σ2 created by the pressure p on the
end cups.

The total force on the end cups is the product of pressure p and the net area of the end cup
(πr2).  This is  equilibrated by the force on the section shown in the figure,  which is the
product  of  the  stress  σ2  and the  area  of  the  section (2πrt).  Thus,  pπr2 = σ22πrt,  which
implies

σ2 = pr
2t   

Thus, from the previous derivation, the circumferential stress is twice as high as longitudinal
stress, or σ1 = 2σ2.

Shear stresses in cylindrical vessels

The state of stress in a typical element on the inside and outside of the cylindrical part of a
vessel is shown in Figure L-8.

Figure L-8 Stresses on an element on the outside (left)
and inside (right) of a cylindrical pressure vessel.

All of these stresses are principal ones, since the shear stress on each of the planes is zero.
The maximum shear stress is (e.g., from Mohr's circle) equal to the semi-difference of the



principal stresses. Thus, in general, for a three-dimensional state of stress with principal
stresses σ1, σ2, σ3, the overall maximum shear stress is

τmax = max⎛⎝σ1 −σ2
2 , σ1 −σ3

2 , σ2 −σ3
2

⎞⎠  

This implies that on the outer surface

τmax = τmax
xy = σ1 −σ3

2 =
pr
t −0

2 = pr
2t   

where the superscript xy indicates shear stress on the x-y plane, as shown in Figure L-8. As
for the inner surface, however, we have

τmax = τmax
yz = σ1 −σ3

2 =
pr
t − ( −p)

2 = pr
2t + p

2  

This indicates that the absolute maximum shear stress takes place on elements on the inner
surface.

Example-cylindrical vessel: The metal tank shown in Figure L-9 is welded together. The
two semi-spherical end cups are welded to the cylindrical part, which also consists of three
cylindrical  parts  welded  together.  The  inside  diameter  of  the  tank  is  300  mm,  and  the
internal  pressure  p  is  2.0  MPa.  If  the  allowable  normal  stress  for  the  welds  is
σall

weld = 40 MPa and for the metal it is σall = 60 MPa then

Figure L-9 A spherical tank welded
together. The welds are shown in
blue, for clarity

(a) Determine the minimum thickness of the cylindrical part of the tank; (b) Determine the
minimum thickness of the hemispherical cups.

(a) For the cylindrical part: σ1 = pr
t → t = pr

σall
= 2×150

60 = 5.00 mm

For the welding: σ2 = pr
2t → t = pr

2σall
weld = 2×150

2×40 = 3.75 mm

Thus, minimum thickness is 5.0 mm



(b) For the hemispherical cups: t = pr
2σall

= 2×150
2×60 = 2.5 mm

At the welds connecting the cups: t = pr
2σall

weld = 2×150
2×40 = 3.75 mm

Thus, minimum thickness here is 3.75 mm.



Example: Cylindrical Shell Subjected to Internal Pressure 

The cylindrical shell is subjected 
to internal pressure p = 1,000 psi 
and a torque of 6000 in-lb.  
Fill in the table for the stresses at 
points A and B.  
Note that point A is at the outside 
and B at the inside wall of the 
shell. Both points A and B are at 
section 1-1. The inside diameter 
of the hollow cylindrical part is 
36 in and the outside diameter is 
37 in.  

σ
1
=

Pr

t
=

1000 × 36.5 2

1 2
= 36,500 psi

σ
2
=

Pr

2t
=

1000 × 36.5 2

2 1 2( ) = 18,250 psi

I
p
=

π

32
374 − 364( ) = 19099.41

τ =
Tr

I
p

=
6000 × 36.5 2

19099.41
= 5.733 psi

p 

T T 

1 

1 

Y

XB

A

Cross section (hollow cylinder) 

Stress Point A Point B 

36,500 psi −1,000 psi 

36,500 psi 

18,250 psi 18,250 psi 

5.733 psi 

5.733 psi 

 σ x

 σ y

 σ z

 
τ

xy

 τ xz

 τ yz



Pressure Tanks: 1 The diameter of a ping pong ball is 40 mm and the wall thickness 
is 0.5 mm.  The ball is made of nylon with an ultimate compressive strength of 95 
MPa.  Find the pressure required to crush the ball. 
 
 
 
 
 
Pressure Tanks: 2 A cylindrical pressure tank with 
hemispherical end caps is to be fabricated from mild steel 3/8 in 
thick.  The length of the tank is to be three times the diameter.  
Find the dimensions of the tank if σallowable = 20 ksi and internal 
pressure is 500 psi. 
 
 
 
Pressure Tanks: 3 A cylindrical pressure vessel of inner diameter d = 4 ft (48 in) and 
wall thickness t = 1/2 in is fabricated from a welded pipe with helix angle φ = 38o.  
Two spherical caps, also of wall thickness t are welded to the cylindrical part. If the 
pressure inside the vessel is p = 200 psi, find the normal stress  σw  perpendicular to 
the weld. 
 
 
Pressure Tanks: 4 For problem 3, find the shear stress  τw  parallel to the weld. 
 
Pressure Tanks: 5 For the vessel in problem 3, find the maximum shear stress anywhere in the vessel, 
and in any possible plane.  
 
Pressure Tanks: 6 A pipe is formed by bolting together parts as the one shown. 
The internal radius of the pipe is r=20cm and the wall thickness is t = 1.2 cm. 
While the pipe is subjected to internal pressure from a fluid of p = 2,000 Pa, find 
the force on each of the 12 bolts that connect the parts. 
 
 
 
Pressure Tanks: 7 The tank shown is filled up with petrol of density ρ = 720g/lt 
(grams per liter). Its height is 17 m, and its internal radius is r = 12m. Assuming that 
the only load on the tank is the pressure from the petrol, find the minimum thickness 
of the tank wall such that the maximum shear stress anywhere on the wall will not 
exceed 120 MPa. Note that the hydrostatic pressure from a fluid of density ρ at depth 
h is given by  p = ρgh , where g denotes the acceleration of gravity. 
 
 
 
Pressure Tanks: 8  A cylindrical pressure tank is constructed by welding together sheet 
metal at angle φ as shown. Two options are considered, one for φ =30o and one for φ 
=50o. Which of the two is more efficient, with respect to creating the least shear stress on 
the weld.  
 φ

x

y

!

D0 

2D0 ! D0 ! D0 

D0 

2D0 ! D0 ! D0 

!

!

!"



Pressure Tanks: 9 A spherical pressure tank is constructed by bolting together 
two semi-spherical shells as shown. Thirty-six bolts are used and the tank, of 
radius r and shell thickness t is subjected to internal pressure p. Evaluate the 
force on each bolt. 
 
 
 
 
 
Pressure Tanks: 10  Under plane stress conditions, a state of pure shear is one that at some orientation 
θ the state of stress is σx1 = 0, σy1 = 0, τx1y1 ≠ 0 . (a) Draw a schematic of the Mohr’s circle for a state of 

pure shear. (b) A cylindrical thin-walled pressure vessel of radius r and wall thickness t is subjected to 
internal pressure p, and at the same time to a compressive force F; find the magnitude of F such that the 
state of stress on the wall of the cylindrical part of the vessel is a state of pure shear. 
 

 
 
 
 
 
 

 
Pressure Tanks: 11  A cylindrical thin-walled pressure vessel of 
radius r and wall thickness t is subjected to internal pressure p. The 
vessel needs to be moved by a crane while under pressure p. It was 
determined that while being lifted the cylindrical part of the vessel 
(considered to be a beam) will be subjected to a maximum bending 
moment M. For what value of M will the longitudinal stress in the 
vessel equal the hoop stress at some point in the cylindrical part of 
the vessel? Note that the moment of inertia of a thin circular ring 
can be approximated as Ix = Iy = πr3t  
 
Pressure Tanks: 12  The cylindrical pressure vessel (cross section shown to the right) is subjected to 
internal pressure p = 12.0 MPa and at the same time it is subjected to a torque T = 18 kNm. The internal 
radius of the vessel is r = 0.2 m, and its thickness is t = 0.02 m. (a) What is the stress state (all six stresses) 
on the cylindrical part of the vessel at y = 0.2 m, z = 0? (b) What is the maximum shear stress at y = 0.2 
m, z = 0? 

 
 
Pressure Tanks: 13  The cylindrical pressure vessel (cross section shown to the right) is subjected to 
internal pressure p = 12.0 MPa, and at the same time it is lifted by wrapping a cable around its cross 
section at its center as shown. The weight of the vessel (including the pressurized fluid) creates a bending 

r z 

y 

t 

T T 

F F 

r x 

y 



moment at the cross-section at the center (x = 0) M = -80.0 kNm. The internal radius of the vessel is r = 
0.2 m, and its thickness is t = 0.02 m. (a) What is the stress state (all six stresses) on the cylindrical part of 
the vessel at x = 0, y = 0.22 m, z = 0? (b) What is the maximum shear stress at x = 0, y = 0.22 m, z = 0? 
Note: for a circular cross section of radius r, the moment of inertia with respect to any axis passing 
through the center of the cross 

section is I = πr4

4
  

 

r z 

y 

t 

W 

x 



Module 29: Combined Loads and Combined Stresses

Combined Loads

So far  in  this  course,  the stresses  developed in bars  (axial  load),  shafts  (torsional  load),
beams (bending load),  and pressure vessels  have been examined.  Often in engineering a
structure  or  structural  component  is  subjected  to  a  combination  of  loads  that  creates  a
combination  of  stresses.  As  an  example,  consider  the  simultaneous  actions  of  bending,
torsion, and axial load in a prismatic bar. The beam/bar/shaft, is then subjected to combined
loads. Due to the linearity of the governing equations, all quantities such as stresses, strains,
and displacements, can be superimposed. Another example is a cantilever beam subjected to
end load P and torque T as shown in Figure M-1.

Figure M-1 A cantilever beam
subjected to torque T and
bending/shear load P.

A question relevant to this problem can be, for example, to find the stresses of any desired
point, e.g., points A and B with respect to x, y, and z. From load P, at the cross section where
point A is, we have:

- Bending moment M, creating normal stress σ: σx
bend = My

I

- Shear force V, creating shear stress τ : τxy
shear = VQ

Ib

- Torque T, creating shear stress τ : τij
torque = Tr

Ip

Here the index ij is either xy or xz, depending on whether the point of interest is B or A. This
is explained in detail in the following. Consider a material element at point A as shown in
Figure M-2.

Figure M-2 Material element positioned at point A in Figure
M-1.

At this element, the non-zero stresses are:

- Bending creates σx
bend = My

I

- Shear force V creates τxy
shear = VQ

Ib



- Torque T creates τij
torque = Tr

Ip
 N

ext consider an element of volume at point B as shown in Figure M-1.

Figure M-3 Material element positioned at point B in Figure
M-1.

Here, T creates τxy, V also creates τxy, yet M does not create σx since y = 0 at B. Thus, at B
the only nonzero stress is

τxy = τxy
shear + τxy

torque = Tr
Ip

+ VQ
Ib   

In general, at every material point we have three normal stresses, σx, σy, σz and three shear
stresses,  τxy  = τyx,  τxz  = τyz,  τyz  = τzy.  Given those stresses,  an analysis  process  seeks
maximum normal stresses, maximum shear stresses, etc. Here is an example, referring to
Figure M-4.

Figure M-4 A cantilever beam
subjected at its free end to transverse
force P and normal force F. Points A
and B are of particular interest in this
example.

At the cross section at A and B, i.e., at a distance a from the right end, we have that the
normal force is equal to F, the bending moment M is equal to −P(a), and the shear force V is
equal to P.

The normal force F produces normal stress,

σx = F
bh  

at both points A and B, where b denotes the width and h the height of the cross section.

The bending moment also creates normal stress

σx = My
I = Pay

bh3 /12
  

Since y = 0 for point B, the normal stress from bending is zero at B. Similarly, for point A (y
= h/2), we have



σx
A−bending = My

I = Pah/2
bh3 /12

  

The shear force V creates shear stress τxy at both points A and B. At A, however, this shear
stress is zero since it is at the top of the cross section, where Q = 0. At B, however,

Q = b(h
2)(h

4)  

thus

τxy
B =

Vb(h/2)(h/4)
(bh3 /12)b

  

In summary:

Point A: σx
A = F

bh + Pah/2
bh3 /12

and all other stresses are equal to zero.

Point B: σx
B = F

bh; τxy
B =

Vb(h/2)(h/4)
(bh3 /12)b

and all other stresses are zero.

1.  From  the  stresses  at  x,  y,  and  z  the  maximum  normal  and  shear  stresses  under
transformation can be found, e.g., in the x-y plane, since σy = 0

σ1,2 = σx
2 ± ⎛⎝σx

2
⎞⎠

2
+ τxy

2√ ; τmax
⎛⎝σx

2
⎞⎠

2
+ τxy

2√   

2. Identify critical points (fixed end for this problem) where the bending moment is
maximum

Point A: max σx due to bending, zero τxy due to bending. Point B: min (zero) σx due to 
bending, max τxy due to bending.



Module 29: Combined Loads and Combined Stresses

In general, every structure or structural component has so-called critical points or hot spots
where stresses are extreme. No general  guidelines for locating critical  points  exist.  The
engineer uses rational procedures and experience to find the critical points and the stresses
on them. Figure M-5 shows a fixed-end beam loaded at its free end, and five points at a
certain cross section. The state of stress at each of these five points is examined.

Figure M-5 A fixed end beam and points A, B, C, D, E

Figure M-6 shows the elements and the stress acting at A, B, C, D, and E as well as the
principal stresses. At point A we have normal stress σx but no shear stress τxy. Then the
compressive stress at A is a principal stress. Based on the state of stress, the maximum shear
stress can be found. At B, we have both normal stress σx and shear stress τxy. At C, we have
shear stress τxy but zero normal stress. At D, we have tensile normal stress and nonzero τxy.
At E, we only have tensile normal stress σx.

Figure M-6 Schematic of the state of stress at material
elements A, B, C, D, E. To the right, the principal stresses in
the principal directions are shown. For points A and E the
stresses shown are also the principal stresses. The maximum
shear stresses occur at 45o from the principal directions.

Figure M-7 shows the so called stress trajectories, i.e., the contours of principal tensile and
compressive stress. Those can be plotted from either evaluating the principal stresses on a
grid or analytically by plotting the expression for the principal stresses as a function of the



coordinates x and y.

Figure M-7 Contours of the
principal stresses for the beam
shown in Figure M-5.

Example-beam  bending:  For  the  fixed-end  beam  shown  in  Figure  M-8,  loaded  by  a
moment at end B and a force at midspan, find all six stresses σx, σy, σz, τxy, τxz, and τyz, at
the following two material points (x, y, z, in meters): (0.9, 0.0, 0.02) and (1.5, −0.02, 0.0).

Figure M-8 A cantilever beam
loaded by a concentrated force and a
concentrated moment as shown.

At the first point, M = 1.0-2 × 0.1 = 0.8 kNm, V = −2 kN. The moment of inertia of the
cross section, I, is expressed as

I = 0.12×0.13

12 = 0.00001 m4  

At y = 0, z = 0.02, the moment Q is expressed as

Q = 0.12 × 0.1
2 × 0.1

4 = 0.00015 m3  

Then, for the first point,

σx = 0; τxy = 2×0.00015
0.00001×0.12 = 250 kPa  

At the second point, M = 1 kNm, V = 0. Then, at this point

τxy = 0; σx = 1×0.02
0.00001 = 2,000 kPa  

The following table shows all the stresses



 Point at (0.9, 0.0, 0.02) Point at (1.5, −0.02, 0.0)

 σx 0 2,000 kPa

 σy 0 0

 σz 0 0

 τxy 250 kPa 0

 τxz 0 0

 τyz 0 0



	  

The stress σ=P/A in a bar of cross-sectional area A subjected to tensile or compressive load P is 
uniform. Thus, as shown in the "movie" below, the stress is the same at every material element in 
the bar. Also, for a coordinate system where the x-direction is along the bar's length, the stress is 
designated as σx=P/A. 

 

 

The stress τ in a shaft subjected to torque T is not uniform. Thus, as shown in the "movie" below, 
the stress is not in the same direction at every material element in the shaft. Also, for a coordinate 
system where the x-direction is along the shaft's length, the stress is designated as τxy or as τxz 



 

The normal stress σx in a beam subjected to positive bending moment is illustrated above. Note 
that σx is proportional to the y-coordinate of the material element. 

 

 

The normal stress σx in a beam subjected to negative bending moment is illustrated above. Note 
that σx is proportional to the y-coordinate of the material element. 



Module 30: Combined Loads and Combined Stresses

Example-combined stresses: The three-dimensional beam shown in Figure M-9 is fixed at
D and is bent 90o at B and C. It is loaded by a compressive load of 300 lb at A, and length
BC is 36 inches. For the beam cross section and the coordinate system shown in the figure,
find all six stresses, σx, σy, σz, τxy, τxz, and τyz at points D1 and D2, both being at the fixed
end D.

Figure M-9 The three-
dimensional beam is
loaded at its free end and
fixed at the other end.

The 300 lb force can be moved to C, adding the moment produced in doing so (i.e., 300 lb ×
36 in), which yields a moment M = 10800 lb-in. Thus, the problem for beam CD reduces to
the one shown in Figure M-10.

Figure M-10 The beam in
Figure M-9 can be reduced
to the one shown here by
moving the applied force
at C, as typically done in
statics.

Note the coordinate system and the orientation of the cross section with respect to these
coordinates. Thus, the cross section at D is subjected to a combined load consisting of a
compressive force of 300 lb and a bending moment of 10,800 lb-in.

Due to the compressive load at both D1 and D2, we have

σx = P
A = −300

2×6 = − 25 psi  

From the bending moment, the stress at D2 is zero (since the point is at the centerline),
while at D1,

σx = My
I = 10,800×1

6×23 /12
= 2,700 psi  

Thus, at D1, σx = 2,700 − 25 = 2,675 psi, and all other stresses are zero, and at D2, σx = −25



psi, and all other stresses are zero.

Example-combined stresses: The 3-m-long cantilever I-beam shown in Figure M-11 is
subjected to a horizontal force P at its left end and a moment M0 at midspan. Find the range
the ratio M0/P can have such that there is no compressive stress σx anywhere on the cross
section at the fixed end of the beam. Note that M0 can be either clockwise or counter-
clockwise, and P can be directed either left to right (compressive) or right to left (tensile).

Figure M-11 A cantilever
I-beam subjected to a
concentrated compressive
force and a concentrated
moment.

For the cross section, the moment of inertia is evaluated as

I = 0.2×0.243

12 − (0.2−0.04) ×0.163

12 = 0.0001758 m4  

The area A of the cross section is A = 2 × 0.2 × 0.04 + 0.16 × 0.04 = 0.0224 m2. Note that
M0  produces  stress  σ x  such  that  the  maximum  tensile  stress  it  produces  is  equal  and
opposite to the maximum compressive stress. Then, if P is compressive, there is no way that
compressive stress does not take place at the fixed end. Thus, P must be tensile (right to
left). Then the maximum compressive stress σx is expressed as

σx
max,comp = − M0c

I + P
A = − M00.12

0.0001758 + P
0.0224  

Setting this stress equal to zero, it follows that

M0
P = 0.0001758

0.12×0.0224 = 0.0654 m.



Combined Stresses 

 

R
Ax

= 16.45 kN

R
Ay
= 21.93 kN

R
B
= 97.59 kN

From Statics, 

Axial stress: 

 

N = −16.45 kN (c)

V = 21.93 kN

M = 32.89 kN ⋅m

 
σ

c
=

P

A
=

16,450

0.050 × 0.250
= −1.32 MPa comp.( )

  

τ
c
=

VQ

Ib
= 0

… because Q = 0 no area above C( ){ }

Shear stress: 

4 m 2 m 

50 kN/m 
A 

B 

 

σ
c
=

MC

I
= −

32,890 × 0.125

1

12
0.050 × 0.2503( )

= −63.15 MPa

 σ c
( )

total
= −1.32 − 63.15 = −64.47 MPa

Bending stresses: 

Combined stress: 

C 

RB 

RAx 

RAy 

1.5 m 

1.5 m 

A C 
16.45 kN 

21.93 kN 

1.5 m M 

V 

N 

50 mm 

250 mm 

c 

c 

c 

Find the stresses at the top of the 
rectangular cross-section (c) at  
section C located 1.5m from  
support A 



Example: No Compressive Stresses in a Plate 

The vertical force P acts on the 
bottom of the plate having a 
negligible weight. Determine the 
shortest distance d to the edge of 
the plate at which it can be applied 
so that it produces no compressive 
stresses on the plate at section a-a. 
The plate has a thickness of 10 mm 
and P acts along the centerline of 
this thickness. 

 

σ
A
= 0 =

P

A
−

MC

I

⇒
P

0.2 × 0.01
=

P(d − 0.1) × 0.1

1

12
× 0.01 × 0.23

⇒ P =
12P × (d − 0.1) × 0.1

0.22

⇒ 12 × 0.1 = 0.22

⇒ d − 0.1 =
0.22

12 × 0.1

⇒ d = 0.133 m =  133 mm

P 

a a 

200 mm 

d 

300 mm 

500 mm 

P (d – 0.1) 

P 

M = P (d − 0.1) 
B A 



Example: Combined Stress 

The structure is fixed at A and subjected to P = 2 kN, F = 6 kN and 
T = 0.3 kNm in the directions and positions shown in the figure. 
Find the state of stress, i.e., all normal and shear stresses at the 
points with coordinates, in m/mm: (0, 75 mm, 0) and (0.4 m, 0, 
−40 mm). For a circular area, the moment of inertia with respect to 
axes x and y are:  

Then, at the first point: 

 

I
xx
= I

yy
=
πd4

64
, where d denotes diameter of the circular area

and the polar moment of inertia IP  is expressed as

I
p
=
πd4

32

A 
B 

C F 

0.3 m 
0.27 m 

d  =150mm 

d = 80 mm 

P 

T 
x 

z 

y 

 

M → σ
x
= −

My

I
= −

−0.6 ⋅ 0.15 / 2

π ⋅ 0.154 / 64
= 1811.75 kPa

N → σ
x
=

N

A
=

−6.0

π ⋅ 0.152 / 4
= −339.7 kPa

T → τ
xz
=

Tr

I
p

=
0.3 ⋅ 0.15 / 2

π ⋅ 0.154 / 32
= 452.9 kPa

 

σ
x
= 1811.75 − 339.7 = 842.05 kPa

τ
xz
= 452.9 kPa

 

N → σ
x
=

N

A
=

−6.0

π ⋅ 0.082 / 4
= −1,194.3 kPa

T → τ
xy
=

Tr

I
p

=
0.3 ⋅ 0.08 / 2

π ⋅ 0.084 / 32
= 2,985.7 kPa

Note that the shear force V does not create shear stress at this 
first point (top of the cross-section). 
 
Then at the second point:  

and all other stresses are equal to zero. 

 At x = 0.4 m,  M = 0.0, V = 0.0, N = − 6 kN,  T = 0.3 kNm

Then,  

 

At the fixed end,  M = − 2 × 0.3 = −0.6 kNm, V = 2 kN,

N = − 6 kN,  T = 0.3 kNm



Example: Cylindrical Shell Subjected to Internal Pressure 

The cylindrical shell is subjected 
to internal pressure p = 1,000 psi 
and a torque of 6,000 in-lb.  
Fill in the following table, for the 
stresses at points A and B.  
Note that point A is at the outside 
and B at the inside wall of the 
shell. Both points A and B are at 
section 1-1. The inside diameter 
of the hollow cylindrical part is 
36 in. and the outside diameter 37 
in.  

σ
1
=

Pr

t
=

1,000 × 36.5 2

1 2
= 36,500 psi

σ
2
=

Pr

2t
=

1,000 × 36.5 2

2(1 / 2)
= 18,250 psi

I
p
=

π

32
374 − 364( ) = 19,099.41

τ =
Tr

I
p

=
6,000 × 36.5 2

19,099.41
= 5.733 psi

p 

T T 

1 

1 

Y

XB

A

Cross section (hollow cylinder) 

Stress Point A Point B 

36,500 psi −1,000 psi 

36,500 psi 

18,250 psi 18,250 psi 

5.733 psi 

5.733 psi 

 σ x

 σ y

 σ z

 
τ

xy

 τ xz

 τ yz



Combined Stress: 1 The rear axle on a truck has tubular elements as 
shown. The axle tubes are made of 4-in outside diameter steel tube with 
0.1-in wall thickness.  If the brakes can apply a torque of 150 ft-lb to each 
tube, find the stresses on a stress element at the bottom of the axle tube 
just inboard of the spring. The stress element is at point A is shown below 
 

 
 

 
 
Combined Stress: 2 The cantilever beam 
is 10 ft long and is subjected to the inclined 
force F = 1000 lb. Find the maximum 
tensile normal stress  σx

max−tension  and 
maximum compressive normal stress 

 σx
max−comp . 

 
 
 
 
 
 
Combined Stress: 3 The cantilever wooden post 
is supporting two off-axis loads as shown. (a) Find 

yσ  and  τmax  at point A. (b) Repeat the calculation 

of  σ y  and  τmax  if only one of the off-axis loads 
acts on the post. The radius of the post is 10 in and 

 Ewood = 1× 106 psi  
 
 
 
 
 
 
 
Combined Stress: 4 A round table 4 ft in diameter is supported by a 3-in  
diameter pipe with 0.25-in wall thickness. A 200 lb person sits on the 
edge of the table. Find the maximum normal stress  σz  in the pipe. Note: 
neglect the weight of the table and the pipe, and assume the pipe is fixed 
on the floor. 
 
 
 
 
 
 
 

differential 

1,000 lb 1,000 lb 

12 in 12 in 

1,000 lb 1,000 lb 

A 

x 

stress element 

!

x 

Cross section 

F 

y 

z 150 

0.25 in 

4 in 

8 in 

A 

20o 

2,000 lb 

240 in 

A A 

20o 20o 

2,000 lb 2,000 lb 

Cross section 

240 in 

y 

200 lb 

3 in 

r =24 in 



Combined Stress: 5 For the cantilever 
beam: (a) find the maximum normal stress 

 σx  at location A, and (b) find the shear 

stress  
τxy  at location A at the neutral axis. 

 
 
Combined Stress: 6 An aircraft nose gear experiences compressive and drag loads when brakes are 
applied after landing. Loads are as shown. Find the maximum stress in the landing gear leg. 

 
Combined Stress: 7 Given an L-shaped bracket that is subject to 
a single force as shown find the following: 
 a) Stress element at point A 
 b) Max normal stress at point A 
 c) Max shear stress at point A 
 d) Draw Mohr’s circle for point A 
 e) Repeat (a)-(d) for point B 
 
 
 
 
 
 
Combined Stress: 8 Find stresses at point A. 
 
 
 
 
Combined Stress: 9 A beam with a distributed load and a cross section as shown is given.  The allowable 
normal stress is 10 MPa and the allowable shear stress is 0.8 MPa. Each nail can resist 1.5 kN shear. 
Check the safety of the section and provide the required nail spacing. 

 
 
 
 
 

 
 
 

  
Combined Stress: 10 A piece of 2-1/2-in schedule 40 pipe is loaded as shown. Find 
the normal stress at points A and B (σA and σB). The diameter of the pipe is D = 
2.875 in, its cross-sectional area a = 1.704 in2, and its section modulus s = 1.064 in3. 

x 

Cross section 

1,000 lb 
y 

z 

0.5 in 

2 in 

2.5 in 
500 lb 

2 ft 5 ft 3 ft 

A 

!

1000 lb 60” 

2000 lb 

3” 

3” 

Gear leg 
cross-section 

Wall thickness 
= 0.20 in 

!

30 mm 
300 mm 

F=1,500 N 

150 mm 

Point A 

Point B 

7000 lb-in 

8000 lb-in 

500 lb 

11200 lb-in 
800 lb 

r = 0.75” 
A 

!

3.6 m 

A B 

3.6 kN 3.6 kN 

2 kN/m !

30 mm 

30 mm 

200 mm 

200 mm 

Y=157.5 mm 

 N A 

!

5 ft 

A B 

30˚ 

F=300 lb 
!



 
 
 

 
 
Combined Stress: 11 A traffic light pole carries 
the weight of the traffic light and signs, D, and a 
horizontal wind load, W, acting along the z-axis. 
Characterize the state of stress at point A at the 
base of the pole by drawing appropriate stress 
arrows on each stress block indicated. For each 
case, indicate the equation to use to determine the 
corresponding stress value expressed in terms of D, 
W, h, L, E, A, I, a, b, IP, and/or G, as appropriate. 
For the bending shear case, show on a sketch, the 
area you would use to compute Q. Note that you do 
not need to evaluate A, IP, or I, but you do need to 
use a and b for those stress expressions that include 
location terms or thickness terms. 
 
 
 
 
 
 
 
 
 
 
Combined Stress: 12 A 16-in steel rod is loaded with a 
wrench as shown below. What is the maximum shear stress (

max ) at point A (the top of the rod at the wall) when the 300 
lb force is vertical and the arm of the wrench is horizontal. 
Note that this rod is subject to both bending and torsion 
loads. For a circular cross-section  I = πr4 / 4, Ip = πr4 / 2 . 
 
 
 
 
 
 
Combined Stress: 13 A cylindrical pressure vessel of inner diameter d = 4 ft 
(48 in) and wall thickness t = 1/2 in is fabricated from a welded pipe with 
helix angle φ = 38o. Someone claims that by imposing an appropriate 
compressive or tensile force F (compressive F is shown), the total shear 
stress parallel to the weld,  τw  (i.e., the one from the combined effects of the 
internal pressure and the compressive force), can be reduced to zero. Is this 
possible? Explain your answer, and, if the answer is that it is possible, 
evaluate the magnitude of F that would do that. 
 

!

"!

#$%&'
(!

)*
(!

+%%!,-!

)'
(!

! 

F 

F 

! 
x 

y 



 
 
 
 
Combined Stress: 14 A cylindrical pressure vessel of inner diameter d = 4ft 
(48 in) and wall thickness t = 1/2 in is fabricated from a welded pipe with 
helix angle φ=38o. Someone claims that by imposing an appropriate torque T 
as shown, the total shear stress parallel to the weld,  τw  (i.e., the one from the 
combined effects of the internal pressure and the torque), can be reduced to 
zero. Is this possible? Explain your answer, and, if the answer is that it is 
possible, evaluate the magnitude of T that would do that. 
 
 
 
Combined Stress: 15 The belt shown is subjected to tensile force T = 150.0 N. In addition, at the curved 
part, the small pulley (pulleys not shown) imparts a maximum 
contact compressive stress of –1,200.0 Pa onto the belt. 
Consider that the width of the belt is 12.0 cm, its thickness is 
4.0 cm, its modulus of elasticity is E = 0.5 GPa, and the small 
pulley’s radius is 25.0 cm. Find the maximum shear stress 
anywhere in the belt. Note: ignore any friction (shear stress) 
between the belt and the pulley; do not examine the state of 
stress at the large radius pulley; ignore any “teeth” the belt may 
have; and consider the radius of curvature of the belt at the 
small pulley to be 25.2 cm. Note that considering the belt 
without teeth yields relatively large bending stresses, thus the 
need to introduce teeth. 
 
Combined Stress: 16 The tank shown is filled up with petrol of density ρ = 720 g/lt 
(grams per liter). Its height is 17 m, its internal radius is r = 12 m, and its thickness is 
2.5 cm. At the bottom of the tank, the petrol creates a hydrostatic pressure of 120.07 
kPa, while the hydrostatic pressure at the top of the tank is zero. The top cover weight 
is W = 11.0 kN, which is distributed as compressive stress on the tank wall. Find the 
maximum shear stress anywhere on the tank wall, examining material elements at the 
bottom, midpoint, and top of the tank only. 

 

Combined Stress: 17 The industrial door handle shown is 
subjected to F = 80N at a distance d = 9 cm as shown. The main 
cylindrical rod at left (cylinder axis is along the z-direction) has 
a radius r = 2 cm, length l = 4 cm, and is fixed at z = –4 cm. 
Find the state of stress at point A shown with coordinates x = 0, 
y = r = 2 cm, z = –4 cm. For a circular area of radius r, I = πr4/4, 
Ip =  πr4/2. 
 
 
 
 
 
 

! 

T 

T 

! 
x 

y 

A 

X

Y

Z
r 

F 

9 cm 



Combined Stress: 18 The cantilever beam is loaded by the 20 kN load at the top of its free end as shown, 
and the load is applied in a plane of symmetry. Determine the principal stresses  σ1, σ2  and maximum 
shearing stresses at point A in the web just above the junction between the flange and the web. The 
moment of inertia of the cross section is I = 94.5 × 106 mm4. Note: Find only the principal stresses and the 
maximum shear stress in the x-y plane. 

 
 
 
 
 
 
 
 
 

Combined Stress: 19 The hollow drill pipe for an oil well is 15 cm in outer diameter and 
0.3 cm in thickness. Just above the bit, the compressive force in the pipe due to the weight of 
the pipe is 52 kN and the torque due to drilling is 7 kNm. The pipe also carries an internal 
fluid that is at pressure of 2.8 MPa (over atmospheric). Determine the extreme normal 
stresses  

σx ,σ y ,σz , and extreme shear stresses  
τxy ,τxz ,τyz  . The x-axis is along the pipe axis.  

 
 
Combined Stress: 20 The cantilever beam is loaded by the P = 20 kN load as shown. (a) 
Find the stress state at the material element A. (b) Draw the stress state of the material 
element A. (c) Draw the Mohr’s circle for the stress state at A. (d) Using the Mohr’s circle 
find the principal stresses at A. (e) Draw the material element at A in the principal directions 
and show the principal stresses.  
 
 
 
 
 
 
 
 
 
 
 
Combined Stress: 21 The cantilever beam is loaded by P = 20 kN load as shown. Find at what angle θ 
the load P should be oriented so that the normal stress  σx at material element A would be equal to zero. 
 
 
 
 
 
 
 
 
 
 

Cross section 
A 

y 

z 

0.5 m 

x 

A 

P 

N.A. 

45o 

0.05 m 

0.1 m 
0.03 m 

Cross section 
A 

y 

z 

0.5 m 

x 

A 

P 

N.A. 

! 

0.05 m 

0.1 m 
0.03 m 

30o 

20 kN 

cross 
section 

y 

z 
15 mm 

120 mm 

240 mm 

15 mm 

30 mm 

30 mm 

A 

A 

500 mm 

x 



Combined Stress: 22 The 
cantilever beam is fixed on its left 
end and loaded by the 2 kN and 3 
kN forces as shown. Find all six 
stresses, σx ,σy ,σz ,τxy ,τxz ,τyz   at 
material points A,B,C, all of which 
are on the surface of the beam. 
 
 
 
 
 
 
 
 
Stress Point A Point B Point C 
σx     
σy     

σz     
τxy     

τxz     
τyz     

 
Combined Stress: 23 The solid circular shaft shown has a diameter of 4 inches and is fixed at its left end. 
If the maximum normal tensile and shear stresses at point A must be limited to 7,500 psi tension and 
5,000 psi, respectively, determine the maximum permissible value for the transverse load V. For a 
circular cross section, the polar moment of inertia is twice the moment of inertia with respect to an axis 
passing through the centroid of the circle. 
 

 
 

7,500 ft-lb 

12,500 ft-lb 

10,000 lb 

V 

2 ft 

4 ft 

A 

!



Module 31: Beam Theory

Beam theory

A beam subjected to load deflects as shown schematically in Figure N-1. The deflection, u,
is a function of x, i.e., u = u(x).

Figure N-1 A beam deflects under
external load. At location x, the
deflection is u(x).

The classical beam theory is based on the analysis of a small beam element of length dx
positioned at x along the beam. The element dx becomes ds after deflection is imposed from
the externally applied load. Figure N-2 shows a schematic of the beam element before and
after deflection.

Figure N-2 The element dx before
deflection becomes element ds after load
application and beam deflection. The
element is positioned at x along the
beam.

The following definitions are useful, and they are all functions of the coordinate x.

u: deflection θ: angle of rotation (slope of deflection curve)
κ: curvature ρ: radius of curvature
Note: the radius of curvature is the inverse of the curvature, i.e., ρ = 1/κ 

For small beam deflections, ds ≈ dx and θ ≈ tanθ hold. Thus

κ = 1
ρ = dθ

ds ≅ dθ
dx  

Also, we have that

xθ ≅ tan θ = du
dx  

The above two equations yield



κ = 1
ρ = d2u

dx2   

Now, recall from the modules on normal stresses in beams that M = EIκ holds. Then,

M = EI d2u
dx2   

Also, from the study of V- and M-diagrams, we have that V = dM/dx and q = −dV/dx. Then,
it follows that

V = EI d3u
dx3   

and

q = − EI d4u
dx4   

The above three equations are known as the differential equations of classical beam theory.
Defining, for convenience in notation,

u' = du
dx, u" = d2u

dx2 , u'" = d3u
dx3 , uiv = d4u

dx4   

the three equations of beam theory read

M(x) = EIu"(v), V(x) = EIu'"(x), q(x) = EIuiv(x)

In words, these equations can be interpreted as:
- The bending moment diagram M(x) is proportional to the second derivative (curvature) of
the deflection curve, and the proportionality constant is EI
- The shear force diagram V(x) is proportional to the third derivative of the deflection curve,
and the proportionality constant is EI
- The distributed load Q(x) is proportional to the fourth derivative of the deflection curve,
and the proportionality constant is −EI

In order to find the deflection one then can:
- Integrate the q(x) four times
- Integrate the V(x) three times
- Integrate M(x) twice
In  all  cases,  constants  of  integration  are  evaluated  from the  boundary  conditions.  It  is
interesting to note that q(x) is considered positive when its direction is upwards.



Module 32: Beam Deflections

Example-beam deflection  by  integration:  The  simply  supported  beam of  length  L  is
subjected to two end moments as shown in Figure N-3. Find the equation for the deflection
of the beam as a function of x by integrating the bending moment equation.

Figure N-3 A simply supported beam loaded by
two concentrated moments at the supports. The
M-diagram and a schematic of the deflected beam
are also shown.

The bending moment diagram is linear, and the equation that describes it is

M(x) = − M0
L x + 2M0  

Then, we have,

EIu"(x) = − M0
L x + 2M0  

Integrating, twice, with respect to x, we obtain

EIu ′ (x) = − M0
2L x2 + 2M0x + c1, EIu(x) = − M0

6L x3 + M0x2 + c1x + c2  

where c1 and c2 are constants of integration, to be determined from boundary conditions. At
x = 0, and x = L, the deflection is zero, due to the enforcement by the supports. Thus u(0) =
0, which implies, from the last equation above, that c2 = 0. Also, u(L) = 0 implies from
above that c1 = −1.5M0L. The deflection line is shown schematically in Figure N-3. Note
that the maximum deflection is not in the middle. An exercise for the reader is to find the
position where maximum deflection occurs, and the expression for the maximum deflection.

Example-beam deflection by integration: The beam of length L shown in Figure N-4 is
subjected to force P at mid-span. Using the equation for the fourth order derivative of the
deflection, find the expression for the deflection as a function of x and the beam stiffness EI.
Then, find the deflection at mid-span. Hint: using the symmetries in the problem reduces the
process significantly.



Figure N-4 A simply supported beam loaded with a
concentrated load at midspan. The beam geometry
and the loading are symmetric with respect to the
section at x = L/2.

Due to the symmetry in this problem, only the deflection for the left L/2 can be found by
integration. This avoids integrating in two regions (from 0 to L/2 and from L/2 to L). The
governing equation and the relevant integrations are shown below.

EIuiv = 0 → EIu'" = c1 → EIu" = c1x + c2 → EIu′ = 1
2 c1x2 + c2x + c3

→ EIu = 1
6 c1x3 + 1

2 c2x2 + c3x + c4  

At x = 0, we have that V = P/2, from which the second equation above gives c1 = P/2. Also,
at x = 0, we have that M = 0, from which the third equation above gives c2 = 0. At x = L/2,
the slope of the deflected beam is zero (due to symmetry), and the fourth equation above
gives c3 = −PL2/16. Finally, at x = 0 the deflection u is zero, and the fifth equation above
gives that c4 = 0. Thus, the final expression for the deflection reads

u = Px
EI (x3

12 − L2

16)  

Note that the above holds only for x between 0 and L/2. At midspan (i.e., at x = L/2, the
deflection is

u⎛⎝L
2

⎞⎠ = PL3

48EI.  



Module 32: Beam Deflections

Beam deflections and slopes

Click on the images (online/DVD) to see the expression for the beam deflection and slope.



Module 32: Beam Deflections

Example-beam deflection: The three-dimensional beam shown in Figure N-5 is fixed at D
and is bent 90o at B and C. It is loaded by a compressive load of 300 lb at A, and length BC
is 36 inches, as shown in the figure. Find the deflection of point C in the z-direction. Note
that the desired deflection will depend on the length of beam CD denoted as LCD.

Figure N-5 A three-dimensional
cantilever beam loaded by a
compressive load at its free end.

The 300 lb force can be moved to C, adding the moment produced in doing so (i.e., 300 lb ×
36 in, which yields a moment M = 10,800 lb-in. Thus, the problem for beam CD reduces to
the one shown in the following Figure N-6.

Figure N-6 The beam of Figure
N-5 can be reduced, based on
statics, to the one shown.

Note the coordinate system and the orientation of the cross section with respect to these
coordinates. Thus, the cross section at D is subjected to a combined load consisting of a
compressive force of 300 lb and a bending moment of 10,800 lb-in.

Only the bending moment contributes to the displacement of C in the z-direction. Note that
the bending moment diagram for this beam is constant. Furthermore, defining the coordinate
system as shown in Figure N-7 simplifies the calculations.

Figure N-7 Simplified analysis of part CD of
the beam in Figure N-5 where the bending
moment diagram is evaluated, which is used
for finding the desired deflection.

Starting from the second order differential equation for the beam, we have

EIu" (x) = M(x) = 10,800 → EIu ′ (x) = 10,800x + c1  

Since the slope at D (x = 0) is zero, c1 = 0. Then



EIu(x) = 1
2 10,800x2 + c2  

since the deflection at D (x = 0) is zero, c2 = 0. Then, at C

uC = u(LCD) =
1
2 10800LCD

2

1600×1000× 6×23

12

= 0.000844LCD
2   



Module 33: Statically Indeterminate Beams

Statically determinate beams

Statically  determinate  beams  have  three  independent  supports,  and  the  corresponding
external forces/moments can be determined by using only the equilibrium equations. The
following three figures (Figs. N-8 - N-10) illustrate the three major support types for beams.
The first one is that the roller provides one (1) independent support (Fig. N-8).

Figure N-8 A roller restricts displacement v, while
displacement u and rotation θ are unrestricted. It accounts for
one unknown reaction, RAy.

A pin provides two independent supports (Fig. N-9).

Figure N-9 A pin restricts both u and v displacements, while
rotation θ is unrestricted. It accounts for two unknown
reactions, RAx and RAy.

A fixed-end provides three independent supports (Fig. N-10).

Figure N-10 A fixed end restricts u and v displacements as
well as rotation θ. It accounts for three unknown reactions,
RAx, RAy and MA.

Below are two examples of statically determinate beams, and one example of an unstable
beam. Figure N-11 shows a statically determinate beam with three independent supports;
i.e., horizontal displacement at A, uA; vertical displacement at A, vA; and vertical reaction at
B, vB. Respectively, the reactions are the horizontal and vertical reactions at A, and the
vertical reaction at B.

Figure N-11 A simply supported beam, which has three
independent supports.

Figure  N-12 shows a  cantilever  beam, which is  also statically  determinate.  It  has  three
independent supports; i.e., horizontal displacement at A, uA; vertical displacement at A, vA;
and rotation at A, θA. Respectively, the reactions are the horizontal and vertical reactions at
A, and the moment at A.



Figure N-12 A cantilever beam, which has three independent
supports.

Figure N-13 shows a beam that is unstable, even though it has three supports. Two supports
are  not  independent;  i.e.,  the  horizontal  displacement  at  A,  uA;  and  the  horizontal
displacement at B, uB. Note that moment equilibrium around A cannot be satisfied in the
presence of any vertical load between A and B.

Figure N-13 An unstable beam, which has three yet not
independent supports.

Statically indeterminate beams

When  a  beam  has  supports  in  addition  to  three  independent  ones,  it  is  statically
indeterminate. Below are some examples illustrating the point. Figure N-14 shows a beam
that has four supports; i.e., horizontal displacements at A, uA, and at B, uB; and vertical
displacements at A, vA, and B, vB. The degree of indeterminacy is 1 (4 minus 3). There are
four unknown reactions corresponding to the four displacements.

Figure N-14 A beam supported by two pins has four
supports, thus the degree of indeterminacy is one.

Figure  N-15  shows  a  beam with  four  supports;  i.e.,  horizontal  displacement  at  A,  uA;
vertical  displacements  at  A,  vA,  and  B,  vB;  and  rotation  at  A,  θ A.  The  degree  of
indeterminacy  is  1  (4  minus  3).  There  are  four  unknown  reactions,  three  forces
corresponding to the three displacements, and one moment, corresponding to the rotation at
A.

Figure N-15 A beam supported by a fixed end and a
roller, where the degree of indeterminacy is 1.

Similarly to the previous beams above, the degree of indeterminacy of the beam shown in
Figure N-16 is 2 (5 minus 3).



Figure N-16 A beam supported by a fixed end and a pin,
where the degree of indeterminacy is 2.

The degree of indeterminacy of the beam shown in Figure N-17 is 1 (4 minus 3). Beams of
these types are called continuous bemas and are common in civil engineering structures
such as bridges.

Figure N-17 A so-called continuous beam, supported by a
pin and two rollers, where the degree of indeterminacy is
1.

The degree of indeterminacy of the beam shown in Figure N-18 is 3 (6 minus 3). This is
called a fixed-end beam.

Figure N-18  A so-called fixed-end beam, supported by
two fixed ends, where the degree of indeterminacy is 1.

Superposition for solving statically indeterminate beams

The excess unknown reactions in a statically indeterminate beam are called redundants. For
example, a beam of degree of indeterminacy equal to 1 has one redundant reaction. The
method of superposition can be used to express the compatibility equations, additional to the
equilibrium ones, that will yield the redundants. The process is schematically illustrated in
Figure N-19.

Figure N-19 The beam to the left has a degree of indeterminacy equal to 1, thus one
redundant. Choosing this redundant to be the reaction at B, we have that the original beam
(left) is equivalent to the superposition (designated by the + symbol) of the two beams to
the right. Since the deflection of end B is zero, compatibility implies that ΔB1 + ΔB2 = 0
(considering that upwards deflections are positive and downwards deflections are negative).
The following page provides an actual numerical example of this problem.



Example: Consider the beam shown in Figure N-19, where, q = 5kN/m and L = 2m. Also,
let the stiffness of the beam be EI, where E denotes the elasticity modulus and I the moment
of inertia of the cross section. The values of ΔB1 and ΔB2 can be found by either integration
of  the  beam  differential  equations,  or  from  available  tables.  Using  the  latter  for  this
example, we have

ΔB1 = −qL4

8EI = −5×24

8EI = 10
EI   

ΔB2 = RBL3

3EI = 8
3

RB
EI   

Since compatibility requires ΔB1 + ΔB2 = 0, it follows that

−qL4

8EI + RBL3

3EI = 0 → RB = 3
8 qL = 3.75 kN  



Module 34: Statically Indeterminate Beams

Example: The beam (Fig. N-20) of length L is loaded by q and is fixed at both ends. Find the moment
at the two ends, denoted as MR. Note the symmetry in the problem.

Figure N-20 A fixed-end beam loaded by a
distributed load q.

Due to symmetry in this problem, the reactions at the beam's ends are equal. Also, equilibrium in the
vertical direction implies that the vertical reactions are qL/2. Figure N-21 shows the reactions at the
ends, where MR denotes the unknown moment reaction at the ends.

Figure N-21 The free body diagram of the
beam in Figure N-20

EIuiv(x) = − q → EIu'" (x) = − qx + C1  

At x = 0, however, the shear force is equal to the reaction there, i.e. V(0) = qL/2. This implies that C1 =
qL/2. Then, by integrating once more

EIu"' (x) = − qx + qL
2 → EIu" (x) = M(x) = − 1

2 qx2 + qL
2 x + C2  

At x = 0, M(0) = MR, which implies that c2 = MR. Further integration yields

EIu" (x) = M(x) = − 1
2 qx2 + qL

2 x + MR → EIu ′ (x) = θ(x) = − 1
6 qx3 + qL

4 x2 + MRx + C3  

At x = 0, the slope is zero, or θ(0) = 0, which implies that c3 = 0. Further, at x = L, the slope is zero as
well, which implies that

EIu ′ (L) = EIθ(L) = − 1
6 qL3 + qL

4 L2 + MRL → MR = − qL2

12   



Example: Radius of curvature of Beam 

Given:  
Beam ABCD is loaded as shown 
E = 200 GPa 
 
Find: 
ρ, radius of curvature between B and C. 

 
ε =

−c

ρ
=
σ

E

 
But, σ =

Mc

I

 
∴σ =

−cE

ρ

 
∴

−cE

ρ
=

Mc

I

 
I =

bd3

12
=

0.2 × 0.43

12
= 0.001 m4

 M = 50,000 × 1 = 50,000 Nm

 
ρ =

200 × 109 × 0.001

50,000
= 4,000 m = 4 km

3 m 1 m 1 m 

50 KN 50 KN 

B 
D A 

C 

O 

ρ 

 
∴ρ =

EI

M

0.2 m 

0.4 m 



Example: Expression for the Deflection of the Beam 

By integrating the bending moment 
equation, find the expression for the 
deflection of the beam. 

L 

M0 

 

M = M
0
+

M
0
x

L

EI ′′u = −M
0
−

M
0
x

L

EI ′u = −M
0
x −

1

2

M
0

L
x2 + C

1

EIu = −
1

2
M

0
x2 −

1

6

M
0

L
x3 + C

1
x + C

2

x = 0 ⇒ u = 0

⇒ C
2
= 0

x = L ⇒ u = 0 ⇒ −
1

2
M

0
L2 −

1

6

M
0

L
L3 + C

1
L = 0

⇒ −
1

2
M

0
L −

1

6
M

0
L + C

1
= 0

⇒ C
1
=

1

2
M

0
L +

1

6
M

0
L

EIu = −
1

2
M

0
x2 −

1

6

M
0

L
x3 +

1

2
M

0
L +

1

6
M

0
L

⎛
⎝⎜

⎞
⎠⎟

x

2M0 

x 

M0 

2M0 
(+) 



Example: Maximum Deflection in a Beam 

Find umax for beam AB. 
EI = constant 

RAy= wL/2 
L 

w N/m 

 

M
x
=

wLx

2
−

wx2

2

EI
d2u

dx2
= M

x

∴
d2u

dx2
=

wLx

2EI
−

wx2

2EI

du

dx
=

wLx2

4EI
−

wx3

6EI
+ C

1

u =
wLx3

12EI
−

wx4

24EI
+ C

1
x + C

2

Take section at x distance from A 
Find Mx as function of (x): 

  

Boundary conditions:

u = 0 at x = 0 …(1)

u = 0 at x = L …(2)

From (1), we obtain, C
2
= 0

From (2), we obtain, C
1
= −

wL4

12EIL
+

wL4

24EIL
= −

wL3

24EI

 

u =
wLx3

12EI
−

wx4

24EI
−

wL3x

24EI

at x =
L

2
, u = −

wL4

384EI
= u

max

maxυ

RBy= wL/2 

A 
B 

wL/2 

x 

Mx 

wx 



Example: Deflection and Slope in a Cantilever Beam 

Find uA and slope at A. 

 

d2u

dx2
=

M
x

EI

M
x
= −Px

∴
d2u

dx2
= −

Px

EI

du

dx
= −

Px2

2EI
+ C

1

u = −
Px3

6EI
+ C

1
x + C

2

Start with the moment equation: 

 

Boundary conditions:

du

dx
= 0 at x = L ⇒ C

1
=

PL2

2EI

u = 0 at x = L ⇒ C
2
= −

PL3

3EI

∴ u = −
Px3

6EI
+

PL2x

2EI
−

PL3

3EI

 

For point A, x = 0

u
A
= −

PL3

3EI

slope at A =
du

dx
=

PL2

2EI

A B 
uA 

P 

x 

E, I, L constant 

P 

x 

Mx 

PxMx −=



Example: Calculating Slope and Deflection 

The simply supported beam of stiffness EI and length 72 in 
is subjected to a moment M = 1 k-ft (= 12 k-in) at midspan. 
Find the slope and deflection at midspan (x = 36 in) 

 EI ′′′′u x( )=0, 0 ≤ x ≤ 36

 EI ′′′u x( )=c
1
, 0 ≤ x ≤ 36

 But at x = 0,  V = − 12 72 = −0.167 kips

 Then, C
1
= −0.167 kips

 EI ′′u x( ) = − 0.167x + C
2
, 0 ≤ x ≤ 36

 But, at x = 0,  M = 0, then C2 = 0

 
EI ′u x( ) = −

1

2
0.167x2 + C

3
, 0 ≤ x ≤ 36

 
EIu x( ) = −

1

6
0.167x3 + C

3
x + C

4
, 0 ≤ x ≤ 36

 But, at x = 0,  u = 0, then C4 = 0
Also, due to the skew-symmetry of the problem, the deflection at             
in. is zero. This implies that x = 36 in. 

 
EIu 36( ) = -

1

6
0.167 ⋅ 363 + C

3
36, 0 ≤ x ≤ 36

 
C

3
= −

1

6
0.167 ⋅ 362 = 36.07

 
Then, EIu x( ) = −

1

6
0.167x3 +36.07x, 0 ≤ x ≤ 36

 At x = 36 in,  u = 0 and

 
EI ′u 36( ) = −

1

2
0.167 36( )2

+ 36.07 = −72.146

36 in 36 in 

M=1 k-ft 

x 



Example: Statically Indeterminate Beams 

The two cantilever beams of length L1 and L2, respectively, 
are pinned together as shown in the figure. Find the moment 
at the two fixed ends. Note that the beam on the left side is 
longer and stiffer than the one on the right, such that L1 = 
1.2L2 and E1I1 = 1.5E2I2. Consider P = 20 Kips.  

P 

E2I2 
E1I1 

L1 L2 

Note: for a cantilever beam (shown below) of length L and 
stiffness EI, loaded at its end by F, 

  

 
u(x) = −

Fx2

6EI
3L − x( )

EI 

L 

F x 

Let P = P1 + P2, where P1 loads the left and P2 loads the right cantilever beam. 
The compatibility condition is that the deflection at the point where P is 
applied is the same for both beams. Since the deflection at the end of a 
cantilever beam loaded at its end by F is 

 

                

we have: 

 

 

Solving P1 + P2 = 20 K and P1/P2 = 0.868, it follows that P1 = 9.3 K and P2 = 
10.7 K 

Then,  

Mleft  = −9.3L1 K-ft (L1 in feet),  

Mright = −10.7L2 K-ft (L2 in feet). 

 
δ

end
=

FL3

3EI

 
δ

pin
=

P
1
L

1

3

3E
1
I

1

=
P

2
L

2

3

3E
2
I

2

⇒
P

1

P
2

=
L

2

3

L
1

3

E
1
I

1

E
2
I

2

=
1

1.2

⎛
⎝⎜

⎞
⎠⎟

3

1.5( ) = 0.868



Beam Deflections: 1 The wood beam (E=11 GPa) is 4 cm thick, 30 
cm wide and in equilibrium. The moment at A is 300 Nm. Find the 
radius of curvature ρ in span AB. 
 
 
 
Beam Deflections 2 The 200 lb person is standing at 
the end of the cantilever beam made of wood (E = 
1.5 × 106 psi). Determine the shape of the deformed 
beam. 
 
Beam Deflections: 3 The deflection of the simply supported beam of 
rigidity EI, length L, and subjected to load P as shown in the top 
figure is expressed as 

, 

the slope is expressed as 

′υ (x) =
− Pb
6LEI

L2 − b2 − 3x2( ) 0 ≤ x ≤ a( )

− Pb
6LEI

L2 − b2 − 3x2( )− P x − a( )2
2EI

a ≤ x ≤ L( )

⎧

⎨

⎪
⎪

⎩
⎪
⎪

 

and the slope at A and B is expressed as 

θA = ′υ 0( ) = Pb L
2 − b2( )

6LEI
, θB = ′υ L( ) = Pb 2L

2 − 3bL + b2( )
6LEI

 

Based on that, find the deflection at end C for the beam shown in the bottom figure loaded by the two 20 
kN forces as shown. Consider EI =100,000N ⋅m2 . 
 
Beam Deflections: 4 A 100-mm square pipe with a wall thickness of 5 
mm is fixed at one end and a load of 3,500 N is applied to the free end. 
The beam is 3 mm long. E = 210 GPa.  Find the deformed shape of the 
beam. 
 
 
 
 
Beam Deflections: 5 A pinned beam is subject to a distributed load 
as shown. Find the deformed shape of the beam, y(x). 
 
 
 

υ(x) =
− Pbx
6LEI

L2 − b2 − x2( ) 0 ≤ x ≤ a( )

− Pbx
6LEI

L2 − b2 − x2( )− P x − a( )3
6EI

a ≤ x ≤ L( )

⎧

⎨

⎪
⎪

⎩
⎪
⎪

1.5 m 

A B 

x 

A 
B 

L = 12 ft 

12 in ! 2 in 

Cross section 

!

3,500 N 

3 m 

100 mm 

100 mm 

5 mm 

!

20 ft 

20 lb/ft 

P 

A B C 

a b 

x 

2 m 1 m 

B C A 

0.6 m 0.6 m 

20 kN 20 kN 



Beam Deflections: 6 The walkboard on a scaffold is 12 ft between supports. A 200 lb person is standing 
in the middle. The walkboard is made from wood (E = 1.5 × 106 psi) with 2 in × 12 in cross-section. Find: 
(a) deflection at the middle of the walkboard, and (b) deflection at the middle of the walkboard if the 
board is reinforced with a 2 × 4 (the 2 inch dimension being horizontal). Note: the actual dimensions of 
the 2 × 4 are 1.5 in × 3.5 in. 

 
 
Beam Deflections: 7 For a cantilever beam of length L and stiffness EI loaded at its end by load P, the 

deflection is given by 
 
u(x) =

Px2

6EI
(3L − x) . Based on that, find the deflection at the end C of a cantilever 

beam of length 2L and stiffness EI loaded at x = L by load P. 
 

 
 

 
 
 

 
Beam Deflections: 8 The beams shown below differ only with respect to the material used. How would 
the maximum displacements in the two beams compare?  

  
 
 
 
 
 
 

 
 
Beam Deflections: 9 For a cantilever beam ACB loaded at B by a 
load P as shown, the deflection is expressed as 

 

u =
Px3 − 3aPx2

6EI

⎛

⎝⎜
⎞

⎠⎟
for 0 < x < a

u =
Pa3 − 3a2Px

6EI

⎛

⎝⎜
⎞

⎠⎟
for a < x < L

 

 
For the cantilever beam ACB shown below subjected to the 10k N 
force and supported at B by cable BD, it was found that the cable 
elongates by 1.0c m. Consider that cable BD has axial rigidity (the 
product of the modulus of elasticity E and cross-sectional area A), 

2 in 
200 lb 

12 in 
Cross section 

12 in 

2 in 

Cross section 

1.5 
in 

3.5 in 

y 

1 

2 

! "!
#!

$! %!

&!

! "!
#!

$! %!

&! &!

'!

P 
x 

A B 

L 

C 

a b 

10 kN 
x 

A B C 

2.0 m 1.0 m 

D 

1.5 m 



EA = 750 kN. Find the stiffness EI (product of modulus of elasticity E and moment of inertia I) of beam 
ACB.   
 
Beam Deflections: 10 For a beam of elasticity modulus E, moment of inertia I, and length L = 15 m, the 
deflection as a function of x ( 0 ≤ x ≤15 ),  u(x),  along its length is found to be 

 
u(x) =

1
EI

x3 − 23x2 +132x −180( ) . (a) Find the extreme moment (maximum positive or negative) in the 

beam, and (b) find the extreme shear force in the beam. 
 
Beam Deflections: 11 Associate the beams below with all appropriate conditions necessary for solving 
for the beam deflection u(x). The same conditions may be applicable to both beams. Each beam has 
stiffness EI.

 a)  u 0( ) = 0 ,    b)  u L( ) = 0 ,     c)  u 2L( ) = 0 ,    d) 

 

du x( )
x

x=1.2L

= 0 ,    e) 

 

du x( )
dx

x=L

= 0  

f) 

 

EI
d2u x( )

dx2

x=2.2L

= −M0 ,    g) 

 

EI
d3u x( )

dx3

x=2.2L

= q ,    

h) 

 

EI
d3u x( )

dx3

x=0

= −F  

i) 

 

EI
d4u x( )

dx4

x=0.1L

= −q ,    j) 

 

EI
d4u x( )

dx4

x=2L

= −q  

 
 Appropriate Conditions 
Beam 1  
Beam 2  

 
Beam Deflections: 12 The cantilever beam of uniform stiffness EI is fixed at A. Part AC is loaded by a 
constant distributed force q, while there is no load in CB.  

(a) True or false: free end B will displace upward 
(b) True or false: the slope of the deflected beam at A is 

zero 
(c) True or false: the slope of the deflected beam at C is 

zero 
(d) Find the deflection at point B, uB 

 
 
Beam Deflections: 13 Note: you may use the results from the previous problem to solve this one. The 
beam of stiffness EI is fixed at A and supported by a roller at C. Part AC is loaded by a constant 
distributed force q, while there is no load in CB.  

(a) True or false: free end B will displace upward 
(b) True or false: the slope of the deflected beam at A is 

zero 
(c) True or false: the slope of the deflected beam at C is 

zero 

q 
x 

A 
B 

L 

C 

a b 

q 
x 

A 
B 

L 

C 

a b 



(d) Find the reaction at point C, RC 
Note: for a cantilever beam of length a, loaded at its free end by 

P, the deflection is given as 
 
u(x) = −

Px2

6EI
3a − x( )  

 
 
Beam Deflections: 14 Using the method of integration for deflection of beams for AC, find the deflection 
and slope of the beam at B in terms of M, a, b, L, and the beam stiffness EI. The external bending 
moment M is applied at C. 

 
 
Beam Deflections: 15 The simply supported beam is loaded by a 200 lb and a 180 lb loads as shown. 
Find the deflection, y(x), across the beam. The beam is made of a material with modulus of elasticity E = 
900 ksi. 

 
 
 
 
 
 

 
 Beam Deflections: 16 Beam AB of length L1 and bending stiffness 
E1I1 is fixed at A and connected via a pin to bar BC of length L2, bar 
stiffness E2A2 and coefficient of thermal expansion α2 . If bar BC is 
subjected to a temperature increase ΔT , find the upward deflection 
of point B. Note that for a cantilever beam of length L and stiffness 
EI subjected to a load P at its free end, the deflection of the free end 

δend  is given as δend =
PL3

3EI
. 

x 

A B 

L 

C 

a b 

M 

P 
x 

A C 

a 

x 

A B 

L1 

C 

L2 



Module 35: Buckling and Stability

Buckling and stability

Load-carrying structures consist of several structural components, and each one is typically
designed against failure. The design is such that the failure stress and strains will not be
exceeded during the lifetime of the structure. In addition, when possible, it is desired that
each structural component and the entire structure do not fail catastrophically in case the
design  loads  are  exceeded.  Columns  are  typically  slender  long  structures  that  carry
compressive load.

Columns in a highway ramp.

Beam  columns  carry  bending  loads  in  addition  to  compressive  ones.  Such  structural
components are important not only because they carry compressive load, but, because they
often fail catastrophically. In other words, columns and beam-columns are susceptible to
buckling when subjected to excessive compressive loads. Figure O-1 shows some typical
so-called buckling modes of a cantilever and of a simply supported column.

Figure O-1 Schematic of beam-columns
under buckling load. Top: two possible
buckling modes (shapes) of a cantilever
beam. Bottom: two possible buckling
modes of a simply supported beam.

Columns and beam-columns are not the only structural components susceptible to buckling.



Plates and shells can buckle when subjected to excessive compressive loads. The analysis
presented  here,  mainly  for  columns,  illustrates  the  process  of  analysis  of  structures  in
buckling.

Stable equilibrium: A small external perturbation is recovered

Buckling of columns and beam-columns is closely related to the concept of stability. An
example demonstrating unstable equilibrium is an empty aluminum can when one steps on
the top of it. While there is no disturbance to the can, the can is in equilibrium. However, a
small disturbance to the can results in catastrophic failure. This is because the can is under
unstable equilibrium conditions, so even a small disturbance is able to reveal this.

Neutral,  stable,  and unstable  equilibrium can be  illustrated  effectively  by considering a
sphere in a flat, concave and convex surface, respectively, as shown schematically in Figure
O-2. For equilibrium to be stable (sphere resting on concave surface), a small perturbation
(disturbance, i.e., moving the sphere a little) is recovered - the sphere comes back to its
original position. The opposite is true for unstable equilibrium (sphere on convex surface).
Neutral equilibrium is in between stable and unstable ones.

Figure O-2 Illustration of
neutral (left), stable
(middle), and unstable
(right) equilibrium.

Critical (Euler) load

Consider  (Fig.  O-3)  a  rigid  column pinned  at  A and  supported  horizontally  at  the  top
through a spring with spring constant β. A compressive force P is applied at the top. Since
the column is considered rigid (e.g., of very high EI, E being the elasticity modulus and I
the moment of inertia) it can only rotate around A. Considering a small perturbation θ, as
shown in Figure O-3, the force P tends to collapse the column, while the spring force tends
to restore it to its original position. The moment (around point A) of P is considered the
"collapsing moment,"  while  the  moment  of  the  spring force  is  the  "restoring moment."
When those two moments are equal, the critical load P, Pcr is defined. Considering moments
around A, and noting that angle θ is small, it follows that: PcrLθ = (βLθ)L, which implies
that Pcr = βL.

Figure O-3 Schematic of a rigid column subjected to a
compressive load P. The column is supported by a pin at
A and a linear spring of spring constant β at the top.



A schematic diagram of stability (i.e., force P versus angle of rotation θ plot for the problem
described in Fig. O-3) is shown in Figure O-4. For P < Pcr we have stability, while for P >
Pcr  (and  equal  to  Pcr)  we  have  a  bifurcation  point  implying  the  transition  to  unstable
equilibrium, i.e., where Pcr = βL.

Figure O-4 Schematic of the so-called bifurcation
diagram, i.e., transition from stable (P < Pcr) to unstable (P
> Pcr) equilibrium.

Example-rigid  column:  Consider  a  rigid  beam  AB  (Fig.  O-5)  supported  at  A  by  a
rotational spring of spring constant α and by a linear spring at B of spring constant β. In
order to find Pcr, we displace the beam by a small amount as shown in Figure O-5.

Figure O-5 A rigid column AB (left)
supported by a rotational spring and by a
linear spring. To the right a schemastic of
the displaced column configuration is
shown.

The moment created at A due to the imposed displacement is M = αθ. In order to determine
Pcr, for moment equilibrium of the column around point A, we have:

∑MA = 0 → PcrθL − βθL2 − αθ = 0 → Pcr = βL + α
L.



Module 36: Buckling and Stability

Buckling of flexible columns

Here we are faced with the problem of finding the buckling load (Pcr) of a simply supported
beam that is not considered rigid. As shown in Figure O-6, a small disturbance from the
equilibrium position is imposed, i.e,.  an unspecified small deflection u(x). Considering a
section at an arbitrary point A positioned at distance x, equilibrium of moments implies that

EIu" (x) = − Pu(x)  

where E denotes the elasticity modulus of the beam-column, I its moment of inertia, and
double prime denotes the second derivative with respect to the argument.

Figure O-6 A flexible
column subjected to a
compressive force P at a
state perturbed slightly from
its original straight state.
The compressive force
creates a moment at a cross
section.

In general, we have three possibilities

1.  if P < Pcr no bending is created, thus the column remains straight.
2.  if P = Pcr the beam either remains straight or is slightly bent.
3.  if P > Pcr buckling occurs, typically in a catastrophic function.

The critical load, Pcr, needs to be evaluated from the above governing equation as follows.
We rewrite the above equation as

EIu" (x) + Pu(x) = 0  

This  is  a  second  order  linear  equation  with  constant  coefficients.  The  solution  of  this
equation can be found in textbooks on differential equations. When solved (some details are
given subsequently) the equation for Pcr comes out-the details of the solution are shown in
the following.

In the differential equation shown previously, it is convenient to set

κ2 = P
EI  



Then the differential equation is written as

u" + κ2 = 0  

The solution of this differential equation is

u = C1sin κx + C2cos κx  

where C1 and C2 are constants of integration to be determined from boundary conditions.
The boundary conditions, due to the support at x = 0 and x = L, and their implications are:
u(0) = u(L) = 0 → C2 = 0. This implies that C1sin κL = 0.

If C1 = 0, then the beam remains straight. This is called the trivial solution. For nontrivial

solutions implying a buckled beam, we have sin κL = 0 → κL = nπ , where n = 1, 2, 3,....
Then, we have that

P = n2π2EI
L2 , n = 1, 2, 3, ...

Figure O-7 depicts a schematic of the trivial solution (n = 0) as well as the ones for n = 1,
and n = 2. For the n = 1 case, we have the so-called first buckling mode

n = 1 → P = 12π2EI
L2 , u(x) = C1sin πx

L

For n=2, we have the so-called second buckling mode

n = 2 → P = 22π2EI
L2 , u(x) = C1sin 2πx

L

 

 

Figure O-7 The trivial mode (top), first
(middle) and second (bottom) buckling
modes of a simply supported column.

Interest is in the minimum value of P for which a nontrivial solution exists. This implies that
n = 1, thus,



Pcr = π2EI
L2   

Example: Figure O-8 shows a simply supported column of length L and cross section of
dimensions b × h. The first problem in this example is to find the critical buckling load

Figure O-8 A simply
supported column of
rectangular cross section. The
weak buckling direction is
that of minimum moment of
inertia I.

Provided h > b, the maximum moment of inertia for this cross section is I1 = bh3/12 and the

minimum is I2 = hb3/12. As mentioned in statics and in relevant textbooks, moment of
inertia for any orientation is between these two extreme values, I1 and I2. Since we are
seeking the minimum possible critical load, we have:

I1 = bh3

12 , I2 = hb3

12 , Pcr = π2EI
L2

where I2 is the minimum moment of inertia. In other words, the beam-column is prone to
buckle in the weak moment of inertia direction. For this reason, it is common to support
(brace) the weak buckling direction as shown in Figure O-9.

Figure O-9 The simply
supported beam is braced in the
weak buckling direction to
reduce the overall buckling
load.

Then the beam would buckle in mode I (n = 1) in the strong direction but it is forced (due to
the  bracing)  to  buckle  in  mode  II  (n  =  2)  in  the  weak  direction.  Thus,  the  bracing
significantly increases the buckling load of the beam.



Module 37: Column Buckling

Buckling under other support conditions

So  far,  the  stability  analysis  so  far  addressed  a  simply  supported  column subjected  to
compressive load P. The critical load for such a column,

Pcr = π2EI
L2

was  obtained  by  solving  the  governing  differential  equation  subject  to  the  boundary
conditions.  For  beams  with  other  types  of  support,  the  governing  differential  equation
remains the same, yet the boundary conditions change, and thus the critical load is different.

Fundamental cases of buckling

Besides the simply supported column, the so-called fundamental cases of buckling are those
shown in Figure O-10. The critical load for such cases is given in the following.

Figure O-10 Fundamental cases of
buckling other than the simply
supported column. Cantilever
column (top), fixed-pin supported
column (middle), and fixed-end
column (bottum). On the right is a
schematic of the buckled column
under mode I.

Critical load for cantilever column

The governing equation for buckling of a cantilever column is similar to that for buckling of
a  simply supported column.  It  is  informative to  show that  this  is  indeed the  case.  The
governing equation for buckling of a cantilever column can be obtained from the moment
equilibrium of part of the beam, i.e., the part from the section at A to the right end B (Fig.
O-11).

Figure O-11 A cantilever columnin an assumed
buckled state. The equilibrium of part AB
yields the governing equation for buckling.

The free body diagram of part AB in Figure O-11 is shown in Figure O-12.



Figure O-12 The free body diagram of part AB
of the beam shown in Figure O-11.

Moment equilibrium implies that the moment M at the cross section at A is M = −P(δ − u).
Then,  using  the  fact  that  the  bending moment  at  a  cross  section  is  proportional  to  the
curvature of the beam at that cross section (M = EIu"(x)), we have

EIu" (x) = − P(δ − u(x))  

By setting, as done for the simply supported column,

κ2 = P
EI  

the governing differential (equilibrium) equation reduces to

u" (x) + κ2u(x) = κ2δ  

which has the solution

u(x) = C1sin κx + C2cos κx + δ  

The boundary condition u(0) = 0 implies that C2 = −δ. Another boundary condition is that
u'(0) = 0. This latter boundary condition implies that C1 = 0, since

u ′ (x) = C1κcos κx − C2κsin κx  

The solution then reduces to u(x) = δ(1 − cosκx). Finally, u(L) = δ, which implies that δcos
κL = 0. The trivial solution is, of course, δ = 0 (stability). The nontrivial solution, cos κL =
0 implies that

κL = nπ
2 , n = 1, 3, 5, ...  

Then,

Pcr = n2π2EI
4L2   

For n = 1, the minimum critical load (mode I) is obtained

Pcr = π2EI
4L2   



A similar process (as done for the simply supported and cantilever beam) can be followed
for other types of supports. The differential equation is similar, yet the boundary conditions
change because the support conditions are different. The following table gives the relevant
resulting equations.

 

Table O-1 Showing the type of beam and the critical load. For n = 1, the minimum critical
load is obtained.

Pcr = n2π2EI
L2

Pcr = n2π2EI
(2L)2

 

Pcr = n2π2EI
(0.7L)2

 

Pcr = n2π2EI
(0.5L)2

 

Effective buckling length

Note that for every case in the above Table O-1, we have:

Pcr = n2π2EI
Le

2

where Le = kL is called the effective buckling length, and:

for pinned ends (simply supported column), k = 1.0

for cantilever column, k = 2.0

for fixed-ends column, k = 0.5



for fixed-pin column, k = 0.7

Figure O-13 schematically shows the mode I buckling shape of a cantilever beam of length
L, and its mirror image. Clearly, a cantilever beam of length L is buckling-wise equivalent
to a simply supported beam of length 2L. In other words, for a cantilever beam, Le = 2L.
Similarly, for a fixed-end column, Le = L/2, and a schematic of this fact is shown in Figure
O-14. Finally, as schematically shown in Figure O-15, the effective length of a fixed-pinned
beam ends up being Le = 0.7L.

Figure O-13 Mode I buckling shape of a cantilever beam of
length L, and its mirror image.

Figure O-14 Mode I buckling of a fixed-end column and
schematic designation of the effective length, L/2.

Figure O-15 Mode I buckling of a fixed-pin column, and
schematic designation of the effective length, 0.7L.

Example: Consider a simply supported beam of length L, and rectangular cross section (1 ×
2 units of length) (Fig. O-16). The "weak" buckling direction is braced at midspan. Thus,
we have a simply supported column, with additional supports at the middle in the "weak"
direction.



Figure O-16 A simply
supported column, braced in
the weak buckling direction
at mid-span.

First, the moments of inertia in the strong (Izz) and weak (Iyy) directions are evaluated

Izz = 1×23

12 = 2
3 = 4

6, Iyy = 2×13

12 = 1
6  

For buckling in the yy direction, the effective length Le is equal to L/2, thus

Pcr
yy = n2π2EI

Le
2 =

22πE 1
6

(L
2 )

2 = 4πE
6L2   

For buckling in the zz direction, the effective length Le is equal to L, thus

Pcr
yy = n2π2EI

Le
2 =

12πE 4
6

(L
2 )

2 = 4πE
6L2   

If the cross section was 1 × 3 units, then the yy-direction would be critical.

Exercise: Perform the analysis as above, but for a cantilever beam of length L and
rectangular cross section, 1 × 3 units of length. The weak buckling direction is braced at the
top of the cantilever beam as schematically shown in Figure O-17.

Figure O-17 A cantilever column braced at the free end in
the weak buckling direction.



Module 38: Column Buckling

Example: For the configuration depicted in Figure O-18, the problem here is to determine
the thickness t  of the hollow cylindrical pipe if  its  outside diameter is  110 mm and the
(desired) factor of safety is n = 3. E = 72 GPa.

Figure O-18 Pipe AB is pinned to a beam at
A and fixed at B.

The  compressive  force  in  the  pipe  is  2Q,  as  can  be  obtained  by  considering  moment
equilibrium around point O. The moment of inertia for a hollow cylindrical cross section is

I = π
64 [1104 − (110 − 2t)4]

For the fixed-pin column BA,

Pcr = π2EI
(0.7L)2 = 2(3Q) = 6Q  

which can be solved for I, thus obtaining the desired thickness. Note that the pipe is fixed at
B and pinned at A, thus its effective buckling length is 0.7L.

Example:  The rigid  column AB of  length  2  m (Fig.  O-19)  is  supported  through two
identical horizontal cables (AC and AD) and is pinned at B. Find the in-plane (plane of the
paper) critical load Pcr. Each horizontal cable is 3 m long, with a cross-sectional area of 3

cm2 and elasticity modulus of 70 GPa. Note that cables do not support compressive load,
and that column AB is rigid.

Figure O-19 A rigid column supported through cables
at A and pinned at B.

Each cable is practically a spring that can only resist load in tension. Then the problem



reduces to the configuration shown in Figure O-20, i.e., a rigid column supported by a spring
at A and a pin at B. The buckled state of the columen is also shown in Figure O-20, as well
as the forces acting on it.

Figure O-20 Schematic of what the problem
shown in Figure O-19 reduces to: a rigid column
supported by a pin and a spring.

Let the cable, at the buckled state, elongate by δ, and

δ = FL0
EA → F = EA

L0
δ  

where E denotes the elasticity modulus, and A the cross sectional area of the cables. Then
the spring stiffness κ is expressed as

κ = EA
L0

  

Equilibrium of moments around point B implies that FL = Pδ, or

δ EA
L0

L = Pcrδ  

Solving this last equation for Pcr, it follows that

Pcr = EAL
L0

= 70×109 ×3×10−4 ×2
3 = 140 × 105 Pa  

Example-temperature buckling: A beam of length 2 m and square cross section (10
cm × 10 cm) is pinned at both ends (Fig. O-21). Find the temperature increase ΔT that will
buckle the beam. E = 10 GPa, α = 6 × 10-6/oC

Figure O-21 A pin-pin supported beam,
subjected to temperature increase.

This is a statically indeterminate problem, thus a compatibility equation should be used. The
compatibility equation for this problem is that the elongation due to ΔT should equal the
contraction from the compressive load created at the pins. From ΔT → δT = α(ΔT)L, where



δT denotes elongation from ΔT. From the reaction, P, created at the pins → δP = PL/EA,
where A denotes the cross sectional area.

Compatibility implies that

δT = δP → PL
EA = α(ΔT)L → P = EAα(ΔT)  

The critical (buckling) load, Pcr for this beam is expressed as

Pcr = π2EI
L2   

Then,

π2EI
L2 = EAα(ΔT) → ΔT = π2I

L2Aα
=

3.142 0.1×0.13

12
22 ×0.12 ×6×10−6 = 342oC  

Note that if the length of the beam is doubled, the critical temperature reduces by a factor of
four. Also note that the critical temperature is independent of the modulus of elasticity E.

Example-temperature buckling: The bar/column of length L and circular cross section of
radius r is fixed at its left end (Fig. O-22). At its right end there is a small gap, δ. Find the
minimum temperature increase, ΔT, that will  create critical buckling conditions. Assume
that δ  is small compared to L, and find the solution in terms of L, E (bar′s modulus of
elasticity), r, δ, and α (coefficient of thermal expansion). For buckling analysis, consider the
right end of the bar/column as fixed after the gap closes. Note: for a circular area, I = πr4/4.

Figure O-22 A column is heated until a
gap closes and then until the column
buckles.

In order to close the gap without creating any stress, a temperature increase ΔT1 is required
such that

δα(ΔT1)L → ΔT1 = δ
αL  

 

After the gap closes, an additional temperature increase ΔT2 is required to create a critical
compressive load Pcr in the bar. The bar at this point is statically indeterminate, and the
compatibility  condition  dictates  that  the  elongation  from  ΔT2  should  be  equal  to  the



contraction by the compressive force Pcr. Or

 

α(ΔT2)L = PcrL
EA → ΔT2 = Pcr

αEA = Pcr
αEπr2   

 

For buckling under fixed-end conditions

 

Pcr = π2EI
Le

2 = π2Eπr4 /4
(0.5L)2 = π3Er4

L2   

 

where Le denotes the effective buckling length. Then

 

ΔT2 = Pcr
αEA = π3Er4

L2αEπr2
= π2r2

αL2   

 

and

 

ΔT = ΔT1 + ΔT2 = δ
αL + π2r2

αL2   



Example: Buckling in a Truss Member 

Each bar in the truss has the same E, I, and A. For L 
= 2 m, find the minimum load P that will buckle bar 
BD. The truss is braced at D in the direction 
transverse to the paper. 
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Example: Temperature Increase for Buckling a Column 

A beam of length 2 m and square cross section (10 cm × 10 
cm)  is pinned at both ends. Find the temperature increase 
ΔT that will buckle the beam. No other load acts on the 
beam. 
Given: 

 

α ΔT( )L =
PL

EA

∴ P =
EAα ΔT( )L

L
= EAα ΔT( )

EAα ΔT( ) = π 2EI

L2

ΔT =
π 2I

AαL2
=

π 2 0.1 × 0.13

12
0.12 × 6 × 10−6 × 22

∴ΔT =
0.12 × π 2

12 × 4 × 6 × 10−6
= 342°C

 

E = 10 GPa

α = 6 × 10−6 / °C



Example: Buckling of a “Shell” 

 An empty coke can is placed on a flat surface while 
subjected to an external compressive force (weight 
of a person, for example). (a) Find the minimum 
weight that will render the can unstable, by 
assuming one end of the column (can) is fixed and 
the other free. The outside diameter of the can is 2.6 
inches, the wall thickness is 0.004 inches and its 
length (height) is 3.85 inches. E = 10 × 106 psi. (b) 
considering a yield strength of about 30 ksi, find the 
load required to yield the can. For a solid circular 
cross section of diameter d, I = πd4/64. 
Note: The solution of this problem should show that 
the buckling load is rather large. Because the can 
wall is thin, this “structure” is bound to buckle from 
localized instabilities instead of buckling as a beam.  

coke 

W 

 
I =

π

64
2.64 − 2.5924( ) = 0.0275 in4

 Le
= 2L = 2 × 3.85 = 7.7 in

 
P

cr
=
π 2EI

L
e

2
=

3.142 × 107 × 0.0275

7.72
= 45,731 lbs

 
A =

π

4
2.62 − 2.5922( ) = 0.0326 in2

 Pyield
= σ

yield
A = 30,000 ⋅ 0.0326 = 978.1 lbs



Self Assessment 
Columns: 1 

 

To consider a 10 cm × 10 cm wooden post as a long column, what should be its minimum length? 
Assume the maximum slenderness ratio as 60. 

 4.03 m 

 1.73 m 

 2.24 m 

 3.12 m 
 
 
Columns: 2 

 

A 10-cm diameter vertical aluminum strut (E = 70 MPa) is supporting a 2,000 N load. Using a 
factor of safety of 2, what is the maximum length of the strut? 

 9.8 m 

 2.8 m 

 14.6 m 

 12.5 m 
 
 
Columns: 3 

 

How much can a 2-cm-diameter, 4-m-long, steel rod (α = 11.7 ×10 −6/oC) fixed from both ends 
can resist increase in temperature (oC) without buckling?  

 9.8 deg 

 5.27 deg 

 16.4 deg 

 4.26 deg 
 



Columns: 1 A steel column (E = 30 × 106 psi) of square tube cross-section, 8 × 8 × 1/4, is in compression 
and simply supported at its ends.  With the given moment of inertia (Ix and Iy) and  area (A), find the 
buckling load. 
 
Ix = Iy  = 75.1 in4 
A = 7.59 in2 
L = 38 in 
 
Columns: 2 A flag pole is subjected to 
compressive load P. The geometry of the pole is as 
shown. Find the maximum possible P if the 
outside column diameter is 12 inches. 
 
 
 
 
 
Columns: 3 What should be the minimum diameter of the cane, d, such that the 
cane (length L and modulus E) will not buckle while supporting half of Charlie’s 
weight, i.e., W/2 ? Assume pin-pin boundary conditions for the cane.  
 
 
 
 
 
 
Columns: 4 A strut-braced 
airplane wing is subjected to a 
distributed load (its own weight 
plus inertia force while landing) 
as shown. Find the minimum 
required EI for the two strut bars 
such that they will not buckle. 
 
 
 
 
Columns: 5 Beam ACB is simply supported by a roller at 
A, a pin at B, and by column CE which is pinned to the 
beam at C and pinned externally at E. Find the load F that 
will buckle column CE. Beam ACB has stiffness EI and 
the column is of circular cross section and has stiffness 
0.25EI. Note that for a simply supported beam of length L 
and stiffness EI loaded at midspan by load P, the 

deflection at midspan is 
 
umidspan =

PL3

48EI
 

 
  
 
 

!

30 ft 
t = 0.25 in 

12 in 

Column is of circular cross section 

E = 29 x 106 lb/in2 

P 

3ft 

3ft 

A B 

F 
3ft 

x C 

E 

A C 

B 

40 lb/ft 

40o 

5 ft 9 ft 

C 

B1 B2 

30o 30o 

Strut detail – side view 

Front view 
EI EI 

6 ft 



Columns: 6 Consider the truss shown in the figure 
subjected to a force P. Each rod of the truss is made of 
a material of elastic modulus E and has a circular 
cross section (radius of cross section R). All joints are 
pin joints. What is the critical force P at which one or 
both rods buckle (in terms of E, R, H)? For a circle of 

radius R, 
 
I =

πR4

4
 

 
 
 
Columns: 7 A third rod of the same material, with a circular cross section of radius R/2, of length H, is 
added to the truss as shown below. The top end is connected to the other two rods with a pin joint, 
whereas, it has “fixed” boundary condition at the bottom end as shown. As P is increased, which rod(s) 
buckle(s) first and what is the corresponding critical buckling load Pcr (in terms of E, R, H)? 

 
 
 
Columns: 8 Determine the factor of safety against 
buckling of bar CD, which has circular cross section of 
0.25 inch diameter d, E = 70,000ksi. It is pinned at C and 
D. For a circle,  I = πd4 / 64 . 
 
 
 
 
 
Columns: 9 Bar CB, of cross-sectional area A = 0.05 
cm2, E = 0.2 GPa, I = 0.000208 cm4 and coefficient of 
thermal expansion α = 13 × 10-6/oC is pinned at both its 
ends. Beam AB has I = 140.0 cm4 and in the vertical 
direction and E = 200 GPa. Bar CB is subjected to 
temperature increase ΔT while the beam is not. Find the 
ΔT that will buckle bar CB. Note that for a cantilever 
beam of length L, stiffness EI, and loaded at the free end 

by load F, the deflection at the free end is 
 
δ =

FL3

3EI
. 

P 

H 

!

"!

x 

A B 

2.5 cm 

C 

1.5 cm 

A B 

C 

D 

6 in 

2 in 

6 in 

8 in 

80 lbs 



 
Columns: 10 A cylindrical steel bar of radius r has a buckling strength of 1,000 N under simply 
supported (pin-pin) conditions. If seven of these bars are put together as shown, what will be their 
buckling strength under the same simply supported conditions ? Note that the moment of inertia of a 
circular cross section with respect to its centroid is  πr4 / 4 . 

a)  
 

b)  
 
 
Columns: 11 The truss is loaded with a vertical force, P, at point B. The 
truss is to be composed of bars with rectangular cross section of 1 in. × 
3/2 in, and E = 2 × 106 psi. Considering only the condition for failure by 
buckling of bar BC, what is the maximum allowable load, P, that can be 
safely applied to the structure if the factor of safety of 2 is required? 
 
 
 
Columns: 12 Column CD of length L and rectangular cross-section b×h, 
where h>b, is fixed at D and at C it is 
braced (motion restricted) in the “weak” y-
direction but not braced in the “strong” z-
direction.  For what ratio of h/b will the 
critical load for buckling in the “weak” 
direction be equal to the critical load for 
buckling in the “strong” direction? 
 
Columns: 13  Thus, for h/b=2.857, bracing will make the buckling load in the “weak” direction equal to 
the buckling load in the “strong” direction. 
 
A column can either fail due to the material yielding, or because the column buckles. It is of interest to the 
engineer to determine when this point of transition occurs.  
Consider the Euler buckling equation  

PE =
π2EI
Le
2  

where Le denotes the effective buckling length. The least moment of inertia I can be expressed as I = Ar2
where A is the cross sectional area and r is the radius of gyration of the cross sectional area, i.e.  

r = I
A

 

Note that the smallest radius of gyration of the column, i.e. the least moment of inertia I should be taken 
in order to find the critical stress. The slenderness ratio of a column is defined as the ratio Le /r. (a) Find 
the critical slenderness ratio at the point of transition mentioned above. (b) For a simply supported 
column of length L and square cross section (b × b), find the ratio L/b at the critical slenderness ratio 
when E /σy = 250 , where the yield stress of the material in compression is denoted as σy . 
 
Columns: 14  For a cantilever beam of length L and stiffness EI loaded at its end by load P, the 

deflection is given by 
 
u(x) =

Px2

6EI
(3L − x) , and the slope is given by ′u (x) = Px

2EI
(2L − x) .  Beam ACB 
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is fixed at A, loaded by a 10 kN force at C, and supported by column BD at B. Both the beam and the 
column are made of steel (E = 200 GPa) and both are of square cross section, 10 cm ×	 10 cm. Find the 
factor of safety with respect to buckling of column BD. Assume pin-pin boundary conditions for BD. 
Note that a safety factor less than unity implies the column is likely to fail. Also, for certain cases the 
safety factor may be much larger than unity. 
 
 

 
 
 
 
 
 
Columns: 15 In the structure shown, beam AB is vertical and 
rigid, pinned at A, and supported by two bars/columns, BC and 
BD, which are pinned at B, C, and D. Bars/columns BC and 
BD are of circular cross section and have a rigidity 
EI = 75kN ⋅m2 . The 20 kN load is applied in the y-direction. 
Find the factor of safety of the structure against buckling of 
BC and/or BD. Note that a safety factor less than unity implies 
an unsafe structure. 
 
 
 
Columns: 16 A column of length L is pinned at both its ends, 
and is designed to carry a compressive load P. The column is 
free to buckle in any direction, and a material of modulus of elasticity E is to be used for the column. The 
engineer has the choice to use either a circular cross section or a square one. Considering that the design 
is based on the buckling load of the column such that P = Pcritical , determine the ratio Vc / Vs  where Vc,Vs  
denotes the volume of material for the column of circular, square cross section design, respectively. For a 
circular cross section, the moment of inertia with respect to an axis passing through the centroid of the 
circle is equal to π r4 / 4 , r denoting the radius of the cross section. 
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Review

Table P-1 Notation Used in This Book

σ: normal stress (psi or Pa)

σx, σy, σz: normal stress in x-, y-, z-plane,
respectively.

ε: normal strain (in/in or m/m)

εx, εy, εz: normal strain in x-,y-,z-plane,
respectively.

τ: shear stress (psi or Pa)

τxy: shear stress in x-plane in y-direction
(similarly, τxz, τyz, etc.)

γ: shear strain (in/in or m/m)

γxy: shear strain in xy-plane (similarly,
γxz, γyz, etc.)

I: area moment of inertia (in4 or m4)

Ip: polar area moment of inertia (in4 or m4)

E: modulus of elasticity (psi or Pa)

G: modulus of rigidity (psi or Pa)

ν: Poisson’s ratio

M: bending moment in beams

V: shear force in beams

T: torque in shafts

α: coefficient of thermal expansion (/oF
or /oC)

ΔT: temperature change (oF or oC)

εt = α(ΔT): thermal strain

Factor of Safety: n = failure load/allowed load  

Stress is defined as force per unit area acting on a plane. Table P-2 illustrates the different
types of stress, and the corresponding strains.

Table P-2 Normal Stress, Strain and Shear Stress, Strain



Normal stress (σ): the force acts
perpendicular to the plane.
Normal stress σ produces normal
strain ε as well as lateral strains
due to Poisson effects.

 A material element subjected to a compressive force P.
The deformed material element is shown schematically

(dotted red/dark line).

Shear stress (τ): force acts
parallel to the plane. Shear stress
τ produces shear strain γ.

A material element subjected to a shear force S. The
deformed material element is shown schematically

(dotted red/dark line).

A shearing force P is
equilibrated by internal
shear stresses, τ.

The shearing force tendency to shear off the beam is resisted
by internal shearing stresses.

Schematic of the shear stresses τ created by P. They act parallel to the cross section.



V = Shear force on pin and
V = F.
A = Cross sectional area of
pin.

A fastener is subjected to shear force.

The shear force V is equilibrated by the internal shear stresses acting on the cross section.
Equilibrium implies , τave = V/A subscript "ave" denotes average.

Bearing Stress in Fasteners

σb = F
d× t

where
F = force
d = diameter of fastener
t = thickness of part.

The bearing stress can be defined
as force per net area (d times t)

The shearing force F also creates bearing stress, the
average value of which is denoted as σb



Review
Axial loading

Axial load relations: a bar is, by definition, subjected to axial load when the line of action of
the load, P, passes through the centroid of the cross section. This is shown in Table P-3.

Table P-3 Definitions for Axial Loading and Hooke's Law.

Stress (definition): σ = P
A. Strain (definition): ϵ = δ

L.

If the material is also linear elastic, then: Hooke’s

law: ϵ = σ
E, where E denotes the modulus of

elasticity for the material.

The relationship between axial loading and deformation becomes, by rearranging the above

three equations δ = PL
EA    or P = EA

L δ. The last equation indicates that a bar behaves like a

spring of spring constant equal to AE/L.

Lateral strain (Poisson effects): ϵlat = ϵy = ϵz = − νϵx where ν denotes the Poisson ratio of
the material.

Statically determinate members

Static Equilibrium

ΣF = 0 = −F1 + F2 – F3 + F4

Internal Forces

PAB = F1 (tension)

PBC = F1 – F2 (tension)



PCD = F1 – F2 + F3 (tension)

Deformation

δAD = δAB + δBC + δCD = PABLAB
AABEAB

+ PBCLBC
ABCEBC

+ PCDLCD
ACDECD

  

Since  the  Ps  were  assumed  in  tension,  negative  values  will  indicate  compression  and
contraction for the deformation rather than elongation.

Thermal deformation is expressed as

δAB
thermal = αABLABΔT.

Thermal  deformation  may  be  added  to  any  mechanical  deformation  caused  by  internal
forces acting on the material to obtain a total deformation.

Statically indeterminate members

After the load P is applied on the rigid bearing plate

Equilibrium

ΣFy = 0 = RA + RB – P  or  RA + RB = P

D = displacement of bearing plate

Bar AB

δBAB = RALAB
AABEAB

  (positive for elongation)

Bar BC



δBC = − RBLBC
ABCEBC

 (negative for contraction)

Compatibility

RALAB
AABEAB

− RBLBC
ABCEBC

= 0

This compatibility condition implies that the total elongation/contraction of AB is zero.

The horizontal beam is rigid, pinned at B and supported by a spring at A and a bar CE at C.
After external load P is applied, the bar rotates around B. Thus the spring stretches by AA' =
δA and the bar is compressed by CC' = δC.

Equilibrium of beam ABCD: ΣMB = 0 = FA (LAB) + FC (LBC) – P (LBC + LCD)

Compatibility of displacements:  δA
LAB

= δC
LBC

Also, δA = FA
k , δC = FCLCE

ECEACE
,

thus the compatibility equation is written as

FA
LABk = FCLCE

ECEACE

This equation together with the moment equilibrium forms two equations for the two
unknowns: FA and FC.



Review

Torsion of circular cross section shafts

If the shaft has a circular cross section and the material remains in the linear-elastic region,
the shear stress in the shaft varies as a linear function of the distance ρ from the center of
the shaft and is given by:

Shear Stress: τ = Tρ
Ip

 

 

The maximum shear stress in the shaft is on the outer surface independent of whether the
shaft is solid or hollow and is given by:

τmax = Tr
Ip

  

The polar area moment of inertia is, for a solid circular section: IP = πr4

2

and for a hollow circular section: IP =
πrout

4

2 −
πrin

4

2

 

The calculated stresses act on the element as shown.



The deformation is measured by the angle of twist (φ) of one end relative to the other and is
given by

φ = TL
GIp

  

where G is the modulus of rigidity for the material and L is the length of shaft. The shaft
also has maximum and minimum normal stresses acting on an element rotated 45° from the
element for which the shear stress was calculated.  The maximum tensile and compressive
stresses are related to the shear stress by

σten. = − σcomp. = τmax = Tr
IP

  

Beam bending and shear

In general, a beam cross section will be subjected to both shear and bending.  This results in
a general stress element as shown in the Figure, where

σbending = My
I   

and

τshear = VQ
Ib   

Failure is most likely to occur on a cross section where V or M is maximum.  On the cross
section, failure due to pure bending may occur at the top or bottom and failure due to pure



shear may occur at the neutral axis.  Wide-flange or other nonuniform cross sections may
have principal stresses or maximum shearing stresses at the web-flange intersection or other
points  of  change in cross section width that  exceed other  stresses on the cross section.
Maximum shear and bending moment values are found most easily and reliably using the
shear and bending moment diagrams.

The location of the centroid can be determined by considering the area moments about any
axis parallel to the bending moment axis

Ay ̅̅ = ∑
i

Aiyi  

where A is the entire area of the cross section, Ais are the subareas making up the cross
section, and yis are the perpendicular distance from the reference axis to the centroid of the
associated area.

If the cross section can be divided into common shaped areas for which the location of the
centroid and the area moment of inertia (Ii) about the centroid are known, then the area
moment of  inertia  (INA) for  the cross section can be determined from the parallel  axes
theorem,

INA = ∑
i

(Īi + Aidi
2)  

where Iis are the area moments of inertia of the individual areas about their own centroidal
axis and d is the perpendicular distance between the area centroidal axis and the neutral axis
of the cross section.

Beams-shear stress distribution

The transverse and longitudinal horizontal shearing stress in a beam is given by

τ = VQ
Ib   

where Q is the first moment of the shaded area about the neutral axis if the shearing stress is
being evaluated along the inside edge of the shaded area. Also, b is the width of the cross
section at the material element position where the shear stress is evaluated.



For a rectangular cross section

Q = ab⎛⎝c − a
2

⎞⎠  

Note that y = c −  a in this case. The maximum shearing stress will occur where Q/b is
maximum.  Q is always maximum at the neutral surface.  However, Q/b may or may not be
maximum at the neutral surface, thus one needs to check all possibilities.

The shear flow or force per unit length of the beam acting on the joint between sections
making up a built-up cross section is given by

q = VQ
I  (N/m     or      lb/in)  

where the area on either side of the joint is used to calculate Q. Shear flow and discrete
fastener strength are related by 

F = qs

where F is the net shearing strength of the joint fasteners on a single cross section of the
beam and s is  the distance along the beam between cross sections containing fasteners.
Continuous fasteners such as welds are designed such that they resist the actual shear flow
multiplied by an appropriate factor of safety.

Beam deflection-method of integration

The deflection of straight beams is determined from any of the following three governing
equations

EIy"(x) = M(x); EIy'"(x) = V(x); EIy""(x) = − q(x)  



Here y(x) is the lateral displacement (deflection) of the beam from its original position, the
primes denote derivatives with respect to x, and M(x) is the bending moment as a function
of position along the beam, V(x) is the shear force as a function of position along the beam,
and q(x) is the distributed load as a function of position along the beam. Integration of any
of these equations and use of appropriate boundary conditions yields the equation of the
deflection as a function of position along the beam.

Beam deflection-superposition method

The solutions for the above equations for many different types of supports and loads are
given  in  many  of  the  common engineering  handbooks;  some are  also  given  in  special
modules herein.  The principle of superposition allows the solutions of different loads to be
added together to give the solution for the combined loads. The limitations of this method
depend on how extensive the available beam tables are.  It must be kept in mind that the
table entry must exactly match the portion of the load being represented using only a scaling
factor and/or mirror imaging.  Loads in the tables may have either positive or negative
values.
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Transformation equations for stress

It  is  assumed  that  all  the  stresses  in  one  direction  are  zero.   The  coordinate  axes  are
orientated to place the z-axis in that direction.  This situation is common in engineering
applications.  A free surface is the classic example. The stresses representing the state of
stress  at  a  point  are  different  when  measured  with  respect  to  two  different  coordinate
systems that are rotated with respect to each other.  If the first system is labeled xy then the
x'y' is rotated counter-clockwise by an angle q.

σx1 = σx +σy

2 − σx −σy

2 cos 2θ + τxysin 2θ  

τx1y1 = − σx −σy
2 sin 2θ + τxycos 2θ  

The primed stresses may be determined from the unprimed by the equations: σy' = σx'(θ +

90o)

Principal stress and maximum shear stress

There will always be a maximum and minimum stress value, referred to as the principal
stresses, occurring at some orientation.  There will also be a maximum shearing stress that
occurs on two different planes. The values of the principal stresses are given by:

σ1,2 = σx +σy

2 ± (σx −σy

2 )2
+ τxy

2√
The plus sign is used for the larger σ1 and the minus sign for the smaller σ2. The value of
the maximum shearing stress is given by:

τmax = ± (σx −σy

2 )2
+ τxy

2√
The orientation of the σ1 plane relative to the σx plane is given by:

θp = 1
2 tan−1

⎛

⎝
⎜⎜⎜

τxy
σx −σy

2

⎞

⎠
⎟⎟⎟

θP is the counter-clockwise angle from the σx plane to the σ1 plane. The two principal
planes are perpendicular to each other and the two maximum shearing stress planes are at
45o to either of the principal planes.



Mohr's circle for plane stress

Mohr's Circle is a mapping of the normal and shear stress acting on a plane at a point in real
space to the coordinates of a point in the σ-τ-plane.  All the points associated with the
stresses on planes at a single point lie on a circle centered at

σavg = σx +σy

2   

and τ = 0.  The radius of the circle is equal to the maximum in-plane shearing stress.

Mohr's circle can best be used as a road map relating various planes and their stresses at the
point.   Rotation  in  real  space  from  one  plane  to  another  results  in  a  corresponding
movement around the circle in the same direction, but twice as far.  The coordinates of the
new point represent the stresses acting on the new plane.  The two points at which the circle
crosses the horizontal axis represent the two principal stress planes and the points at the top
and bottom of the circle represent the two maximum in-plane shearing stress planes.  The
principal stresses are then given by σ1,2 = σavg ± R, where R = τmax. Sign convention for
the normal stress is the usual positive to the right and negative to the left.  Shear stresses are
best treated by considering which way the shear stress on a given plane is trying to twist the
element; clockwise twist is plotted in the upper half of the σ-τ plane and counter-clockwise
in the lower half of the plane.  The sign information works both ways since there is a unique
one-to-one mapping.

Mohr's Circle for Plane Stress



Transformation equations for strain

The analysis is based on a plane strain state in which all strains in the z-direction are zero. 
The analysis  can also be used for a plane stress state with one minor modification.   A
material  cannot  have  both  plane  stress  and  plane  strain  states  at  the  same  time.  The
relationship between the strains at a point measured relative to a set of axes x-y and a set of
axes x'-y', which have the same origin but are rotated counter-clockwise from the original
axes by an angle θ, are given by

ϵx1 = ϵx +ϵy

2 − ϵx −ϵy

2 cos 2θ +
γxy

2 sin 2θ

for the normal strains and by

γx1y1
2 = − ϵx −ϵy

2 sin 2θ +
γxy

2 cos 2θ

for the shearing strain.  Note the similarity of form between these equations and the stress
transformation equations.

Principal strains and maximum shearing strain

As with the stresses, there are maximum and minimum (principal) values of the normal
strains for particular orientations at the point and maximum shearing strains.  The principal
strains are given by

ϵ1,2 = ϵx +ϵy

2 ± (ϵx −ϵy

2 )
2

+ (γxy
2

2 )
2

√   

and the maximum shearing strain is given by

γmax
2 = ± (ϵx −ϵy

2 )
2

+ (γxy

2 )
2

√   

The orientation of the larger principal strain to the positive x-direction is given by

θp = 1
2 tan−1

⎛

⎝
⎜⎜⎜

γxy
2

ϵx −ϵy
2

⎞

⎠
⎟⎟⎟
  

The direction of the smaller principal strain is perpendicular to the first.  The directions
involved with the maximum shearing strain are the two directions at 45o to both of the
principal directions.

Mohr's circle for strain



A Mohr's circle mapping between the strains acting with respect to a set of x-y axes at a
point and a point in the strain plane can be made.  The same rules apply as for the stress
circle with ε replacing σ and γ replacing τ. This makes the radius of the circle equal to half
the in-plane maximum shearing strain.  Sign convention for the shear strain is  based on
which way that axis has to twist to have the right angle closed for a positive shear strain and
open for a negative shear strain. The circle is centered at

ϵavg = ϵx +ϵy

2   

 and γ = 0, with a radius R = γmax/2 . As with the stresses, the principal strains are located
where the circle crosses the horizontal axis.  Maximum shearing strains are located at the
top and bottom of the circle.
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Thin-walled pressure vessels

Thin-walled pressure vessels are defined as having the ratio t/r ≤ 0.1, where t is the wall
thickness and r is the internal radius of either the sphere or cylinder. The pressure, p, is the
gauge pressure  and the  analysis  is  only  safe  for  compressive  internal  pressures  (tensile
pressures  can easily  induce buckling in  the vessel  wall.)  The analysis  assumes that  the
in-plane stresses are uniform across the thickness of the wall. The radial stress is zero on the
exterior surface and equal to −p on the interior surface.

Spherical vessels

Stresses in a Spherical Vessel: element on the outside
surface (left) and on the inside surface (right)

For a spherical shell at any point and in any direction,

σ = pr
t ; σ1 = σ2 = pr

2t; ϵx = ϵy = 1
E

⎡⎣
pr
2t (1 − ν)⎤⎦  

On the inside surface, σ3 = −p and on the outside surface, σ3 = 0. For the maximum shear
stress on the inside surface we have

τmax = Max⎛⎝
σ1 −σ2

2 , σ1 −σ3
2 , σ2 −σ3

2
⎞⎠ = σ1 −σ3

2 =
pr
2t − ( −p)

2 = pr
4t + p

2  

On the outside surface

τmax = σ1 −σ3
2 =

pr
2t −0

2 = pr
4t   

and the shear strains are expressed as



ϵz = − ν
1−ν (ϵx + ϵy)  

for any x-y coordinate system in the plane of the surface.

Cylindrical vessels

Stresses in a cylindrical vessel: element on the outside
surface (left) and on the inside surface (right).

The principal stresses in the plane of the shell are expressed as

σ1 = pr
t ; σ2 = pr

2t   

On the inside surface, σ3 = −p and on the outside surface, σ3 = 0. For the shear stresses,

τmax = σ1 −σ3
2 =

pr
t − ( −p)

2 = pr
2t + p

2  

and the strains are expressed as

ϵx = ϵ1 = 1
E

⎡⎣pr
2t (1 − 2ν)⎤⎦, ϵy = ϵ2 = 1

E
⎡⎣pr

t
⎛⎝1 − ν

2
⎞⎠⎤⎦  

On the outside surface

ϵz = − ν
1−ν (ϵx + ϵy)  
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Stability of columns-buckling

Columns are long, slender members under compressive axial loading.  Column buckling is a
stability problem, which means failure can occur without the material reaching the yield or
ultimate stress.  Columns are divided into three classes; slender, intermediate, and short,
based on both material and slenderness ratio (Le/r, i.e., length Le defined in the following

over r, r being the radius of gyration for the cross section r = (I/A)1/2). The critical buckling
load or stress for slender columns is given by Euler's buckling equation

Pcr = π2EI
(Le)2

where Le denotes the effective buckling length of the column and depends on the type of
supports at its ends.  The four common support combinations are (L denotes the actual
length of the column):

pinned-pinned (simply supported): Le=L

fixed-fixed (fixed end): Le=L/2

fixed-free (cantilever): Le=2L

fixed-pinned: Le=0.7L

Higher buckling modes can be realized when certain kinematic restrictions are imposed on a
column, e.g., by bracing the column at a certain location, thus restricting lateral motion at
the bracing point. For such cases,



Pcr = n2π2EI
(Le)2   

where n is a positive integer denoting the buckling mode. The pinned-pinned column shown
below is braced at midspan, so n = 2 in this case.

This simply supported column (pinned-pinned) is braced
in the middle, thus it is forced to buckle in mode II, i.e., n
= 2.

Often parts of a column can be assumed rigid, thus simplifying the calculation of the critical
buckling  load.  This  assumption  also  serves  for  understanding  the  buckling  instability
concept.

Figure Schematic of a column assumed to
be piece-wise rigid. Under such
assumptions, equilibrium equations of the
various pieces can yield the critical
buckling load.



TABLE OF MATERIAL PROPERIES-SI UNITS 

 
 
 
 Material – SI Units 

Young’s 
Modulus  

 E  

Yield 
Stress  

       σy 

Ultimate 
Stress  

      σU 

Shear 
Modulus 

G  

Poisson’s 
ratio  
ν 

 

 
Density  

       ρ    
  

Coeff. 
Thermal 

Exp.   
       α 

  (GPa)  (MPa)  (MPa)  (GPa)    (kg/m
3
)  10

 - 6
/
o
C  

 Aluminum (99%)  70  35  90  28  0.33  2,800   23  
Aluminum 6061 - T6  70  270  310  28  0.33  2,800  23  
Aluminum 7075 - T6  72  500  570  28  0.33  2,800  23  
 Brass (annealed)  100  95  315  40   0.34  8,400   20  
Brass (cold worked)  100  410  500  40  0.34  8,400  20  
Cast Iron  90  170  205  36   0.25  7,200  10  
Concrete (in 
compression)  

17 - 31    10 - 70     0.1 - 0.2  1,100  - 
2,400  

7 - 14  

Copper  117  70  220  45  0.34  8,900  16.6 - 
17.6  

Nickel  210  100 - 620  310 - 750  80  0.31  8,800  13  
Nylon  2.8  80        880 - 

1,100  
 70 - 140  

Polyethylene (low 
density)  

0.17    13      960 - 
1,400  

 140 - 290  

Polyethylene (high 
density)  

0.82    26      990 - 
1,440  

140 - 290  

Plexiglas  2.9    52      1,250  140 - 290  
Polyvinyl chloride 
(rigid)  

0.0024 - 
0.004  

  40 - 52      1,410    

Rubber  0.0007 - 
0.004  

1.3 - 7  6.8 - 20  0.0002  - 
0.001  

0.45 - 
0.49  

960 - 
1,300  

130 - 200  

Steel, type 1015 (0.15% 
C) (hot finished)  

200  180  340  75   0.33  7,850     

Steel, type 1030 (0.30% 
C) (hot finished)  

200  250  470  75   0.33  7,850    

Steel, type 1050 (0.50% 
C) (hot finished)  

200  340  620  75  0.33  7,850    

Steel, type 304 stainless 
(annealed)  

190  240  580  70  0.33  7,900  17  

Steel, type 304 stainless 
steel (cold worked)  

190  510  750  70  0.33  7,900    

Titanium alloys  100 - 120  750 - 
1000  

900 - 
1170  

39 - 44  0.33  4,500  8.1 - 11  

Wood, Softwood 
(Douglas fir, air dried)  

10  65        480 - 720    

across grain    2.7            
Wood, Hardwood 

(white oak, air dried)  
16  70        900 - 

1,400  
  

across grain    5.5            
                
        
        
        
        



TABLE OF MATERIAL PROPERIES-US UNITS 
	  

 

Material – US Customary 
Units  

Young 
Modulus 

E  

Yield 
Stress 
σy  

Ultimat
e Stress  

σU  

Shear 
Modulu

s G  Poisson 
ratio ν  

Density
ρ  

Coeff. 
Thermal 

Exp. 
α  

 (103 psi)  (103 psi)  (103 psi)  (103 psi)   (lb/in3)  10-6/oF  
Aluminum (99%)  10,000  5  13  4,000  0.33  0.1  13  
Aluminum 6061 - T6  10,000  40  45  4,000  0.33  0.1  13  
Aluminum 7075 - T6  10,400  73  83  4,000  0.33  0.1  13  
Brass (annealed)  15,000  14  46  6,000  0.34  0.306  11  
Brass (cold worked)  15,000  60  74  6,000  0.34  0.306  11  
Cast Iron  13,000  25  30  5,200  0.25  0.253  5.5 - 6.6  

Concrete (in compression)  
2,500-
4,500  

 1.5 - 
10.0  

 
0.1 - 0.2  

0.040.08  4 - 8  

Copper  17,000  10  32  6,500  0.34  0.323  9.2 - 9.8  
Nickel  30,000  15 - 90  45 - 110  11,400  0.31  0.318  7.2  
Nylon  410  11.8     0.04  40 - 80  
Polyethylene (low density)  25   2    0.033  80 - 160  
Polyethylene (high density)  120   4    0.034  80 - 160  
Plexiglas  420   8    0.043  80 - 160  
Polyvinyl chloride (rigid)  350 - 600   6.0 - 8.0    0.05   

Rubber  0.1 - 0.6  0.2 - 1.0  1.0 - 3.0  
0.03 - 

0.2  
0.450.49  0.034-

0.046  70 - 110  
Steel, type 1015 (0.15% C) 
(hot finished)  29,000  27  50  11,000  0.33  0.284  

 

Steel, type 1030 (0.30% C) 
(hot finished)  29,000  37  68  11,000  0.33  0.284  

 

Steel, type 1050 (0.50% C) 
(hot finished)  29,000  50  90  11,000  0.33  0.284  

 

Steel, type 304 stainless 
(annealed)  28,000  35  85  10,000  0.33  0.286  

9.6 

Steel, type 304 stainless 
steel (cold worked)  28,000  75  110  10,000  0.33  0.286  

 

Titanium alloys  
15,000-
17,000  

110 - 
150  

130 - 
170  

5,600-
6,400  0.33  0.16  4.5 - 6.0  

Wood, Softwood (Douglas 
fir, air dried)  1,400  9.5  

   
0.011  

 

across grain   0.4       
Wood, Hardwood (white 
oak, air dried)  2,300  10.2  

   
0.026  

 

across grain   0.8       
        
        
        
        
        
        



Centroid -1st Area Moment 

•  Locate the center of an area 

•  For a symmetric (e.g. rectangular) cross section, 
centroid is at the symmetry axis/axes 

x 

y 

dA 

 

ydA
A∫ = Ay

x dA
A∫ = Ax

x 

y 

x
y

C 

x 

y 

C 



Moment of Inertia - 2nd Area Moment 

•  Area moment of inertia defined as 

•  For rectangular cross-section (b=base, h=height) 
 

I
x
= y2 dA

A∫
I

y
= x2 dA

A∫

b/2 -b/2 

h/2 

x 

y 

-h/2 

dy 
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y 

dA 

 

I
x
= y2bdy

− h / 2

+ h / 2

∫
I

x
=

1

12
bh3

C 



Moments of Composite Areas 

Parallel axes theorem 

 
 
 
 
Where Ix’ is the moment of inertia of the area about its centroid 
For composite areas 

–  Identify the centroid of the whole 
–  Find centroidal moments of each part 
–  Use parallel axis theorem to find total moment about the 

centroidal axis of the whole 
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Composite Areas 

For centroid: 
 
 
 
 
 
 
Combined moment of inertia is: 
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