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Preface

to Volumes III and IV

The first two volumes of this monograph can be regarded as an expansion
and updating of my book “Linear partial differential operators” published
in the Grundlehren series in 1963. However, volumes III and IV are almost
entirely new. In fact they are mainly devoted to the theory of linear
differential operators as it has developed after 1963. Thus the main topics
are pseudo-differential and Fourier integral operators with the underlying
symplectic geometry. The contents will be discussed in greater detail in the
introduction.

I wish to express here my gratitude to many friends and colleagues who
have contributed to this work in various ways. First I wish to mention
Richard Melrose. For a while we planned to write these volumes together,
and we spent a week in December 1980 discussing what they should
contain. Although the plan to write the books jointly was abandoned and
the contents have been modified and somewhat contracted, much remains of
our discussions then. Shmuel Agmon visited Lund in the fall of 1981 and
generously explained to me all the details of his work on long range
scattering outlined in the Goulaouic-Schwartz seminars 1978/79. His ideas
are crucial in Chapter XXX. When the amount of work involved in writing
this book was getting overwhelming Anders Melin lifted my spirits by
offering to go through the entire manuscript. His- detailed and constructive
criticism has been invaluable to me; I as well as the readers of the book
owe him a great debt. Bogdan Ziemian’s careful proofreading has eliminated
numerous typographical flaws. Many others have also helped me in my
work, and I thank them all.

Some material intended for this monograph has already been included in
various papers of mine. Usually it has been necessary to rewrite these
papers completely for the book, but selected passages have been kept from a
few of them. I wish to thank the following publishers holding the copyright
for granting permission to do so, namely:

Marcel Dekker, Inc. for parts of [41] included in Section 17.2;

Princeton University Press for parts of [38] included in Chapter XXVII;
D. Reidel Publishing Company for parts of [40] included in Section 26.4;
John Wiley & Sons Inc. for parts of [39] included in Chapter XVIII.
(Here [N] refers to Hormander [N] in the bibliography.)

Finally I wish to thank the Springer-Verlag for all the support 1 have
received during my work on this monograph.

Djursholm in November, 1984 Lars Hormander
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Introduction

to Volumes III and IV

A great variety of techniques have been developed during the long history
of the theory of linear differential equations with variable coefficients. In
this book we shall concentrate on those which have dominated during the
latest phase. As a reminder that other earlier techniques are sometimes
available and that they may occasionally be preferable, we have devoted the
introductory Chapter XVII mainly to such methods in the theory of second
order differential equations. Apart from that Volumes III and IV are in-
tended to develop systematically, with typical applications, the three basic
tools in the recent theory. These are the theory of pseudo-differential oper-
ators (Chapter XVIII), Fourier integral operators and Lagrangian distri-
butions (Chapter XXV), and the underlying symplectic geometry (Chapter
XXI). In the choice of applications we have been motivated mainly by the
historical development. In addition we have devoted considerable space and
effort to questions where these tools have proved their worth by giving
fairly complete answers.

Pseudo-differential operators developed from the theory of singular in-
tegral operators. In spite of a long tradition these played a very modest role
in the theory of differential equations until the appearance of Calderdn’s
uniqueness theorem at the end of the 1950°s and the Atiyah-Singer-Bott
index theorems in the early 1960’s. Thus we have devoted Chapter XXVIII
and Chapters XIX, XX to these topics. The early work of Petrowsky on
hyperbolic operators might be considered as a precursor of pseudo-differen-
tial operator theory. In Chapter XXIII we discuss the Cauchy problem
using the improvements of the even older energy integral method given by
the calculus of pseudo-differential operators.

The connections between geometrical and wave optics, classical me-
chanics and quantum mechanics, have a long tradition consisting in part of
heuristic arguments. These ideas were developed more systematically by a
number of people in the 1960’s and early 1970’s. Chapter XXV is devoted to
the theory of Fourier integral operators which emerged from this. One of its
first applications was to the study of asymptotic properties of eigenvalues
(eigenfunctions) of higher order elliptic operators. It is therefore discussed in
Chapter XXIX here together with a number of later developments which
give beautiful proofs of the power of the tool. The study by Lax of the
propagation of singularities of solutions to the Cauchy problem was one of



2 Introduction

the forerunners of the theory. We prove such results using only pseudo-
differential operators in Chapter XXIIIL. In Chapter XXVI the propagation
of singularities is discussed at great length for operators of principal type. It
is the only known approach to general existence theorems for such oper-
ators. The completeness of the results obtained has been the reason for the
inclusion of this chapter and the following one on subelliptic operators. In
addition to Fourier integral operators one needs a fair amount of symplectic
geometry then. This topic, discussed in Chapter XXI, has deep roots in
classical mechanics but is now equally indispensible in the theory of linear
differential operators. Additional symplectic geometry is provided in the
discussion of the mixed problem in Chapter XXIV, which is otherwise
based only on pseudo-differential operator theory. The same is true of
Chapter XXX which is devoted to long range scattering theory. There too
the geometry is a perfect guide to the analytical constructs required.

The most conspicuous omission in these books is perhaps the study of
analytic singularities and existence theory for hyperfunction solutions. This
would have required another volume - and another author. Very little is
also included concerning operators with double characteristics apart from a
discussion of hypoellipticity in Chapter XXII. The reason for this is in part
shortage of space, in part the fact that few questions concerning such operators
have so far obtained complete answers although the total volume of results
is large. Finally, we have mainly discussed single operators acting on scalar
functions or occasionally determined systems. The extensive work done on
for example first order systems of vector fields has not been covered at all.



Chapter XVII. Second Order Elliptic Operators

Summary

The study of differential operators with variable coefficients has led to the
development of quite elaborate techniques which will be exposed in the
following chapters. However, much simpler classical methods will often
work in the second order case, and some results are in fact only valid then.
Moreover, second order operators (or rather related first order systems) play
an important role in many geometrical contexts, so it seems natural to
exploit the simplifications which are possible for them. However, the well
motivated reader aiming for the most high powered machinery can very
well skip this chapter altogether.

Elliptic operators are of constant strength so the results proved in
Chapter XIII are applicable to them. The perturbation arguments used in
Chapter XIII are recalled in Section 17.1 in the context of elliptic operators
with low regularity assumptions on the coefficients and with I? or Holder
conditions on the solutions. However, we shall not aim for such refinements
later on since their main interest comes from the theory of non-linear
differential equations which is beyond the scope of this book.

Section17.2 is mainly devoted to the Aronszajn-Cordes uniqueness
theorem stating in particular that if

Y a,(x)D*u=0

lel <2
is an elliptic equation where g, are real valued Lipschitz continuous func-
tions for |#|=2 and g, are bounded for |a|<2, then u vanishes identically if
u vanishes of infinite order at some point. No such result is true for
operators of higher order than two although there are weaker uniqueness
theorems concerning solutions vanishing in an open set (see also Chapter
XXVIII). In this context we also return to the uniqueness theorems of
Section 14.7 where we now allow first order perturbations.

In Section 17.3 we study the simplest classical boundary problem, the
Dirichlet problem, consisting in finding a solution of Au=f with given
boundary values. When the coefficients are constant and the boundary is flat,
a reduction to the results of Section 17.1 is obtained by a simple reflection
argument. As in Section17.l we can then use perturbation methods to



4 XVII Second Order Elliptic Operators

handle variable coefficients and a curved boundary. Thus the boundary is
flattened, coefficients are frozen at a boundary point, the norm of the error
then committed is estimated, and a Neuman series is applied. Obviously no
good information on the singularities of solutions can be obtained in that
way. In Section 17.4 we therefore present the Hadamard parametrix method
which exploits the simple form of a second order operator in geodesic
coordinates to describe the singularities of the fundamental solution with
arbitrarily high precision. This method is in fact applicable to all second
order operators with real non-degenerate principal symbol. It can also be
applied to the Dirichlet problem although with considerable limitations due
to the possible occurence of tangential or multiply reflected geodesics.

In Section 17.5 we combine the results of Sections 17.3 and 174 to a
study of the asymptotic properties of eigenfunctions and eigenvalues of the
Dirichlet problem. First we prove the precise error estimate of Avakumovit
away from the boundary. A fairly precise analogue at the boundary is given,
but one component of the proof cannot be completed until Chapter XXIV.
Further refinements will be given in Chapter XXIX.

17.1. Interior Regularity and Local Existence Theorems

Despite the title of the chapter we shall here study a differential operator
P(x,D)= ). a,(x)D*
la| gm
of arbitrary order m in an open set X cIR". We assume that for some
pe(l, )
(i) a, is continuous when |x|=m;
(i) B,(0,D)= Y a,0) D*is elliptic;
la=m :
(i) a,el¥m=1=D if m—|«| <n/p, a,eI5%* for some ¢>0 if

loc

m—\a|=n/p, a,el, if m—|a|>n/p.

loc

We can then supplement Theorem 13.2.1 as follows:
Theorem 17.1.1. If (i)-(iii) are fulfilled and X is a sufficiently small neigh-
borhood of O, then there is a linear operator E in IF(X) such that

(17.1.1) IX(X)afr>D*EfelX(X) is continuous if p<qZ 0 and
l/g=1/p —(m—|al)/n with strict inequality if g=0;

(17.12) P(x,D)Ef=f, felI’(X),
(17.1.3) EP(x,D)u=u if ueCX(X).

Proof. Let p(D)=EF,(0,D) and choose F,e¥”" according to Theorem7.1.22 so
that Fy(&)=1/p(€) when [&|=1 and Foe C*. Then it follows from Theorems
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7.9.5 and 4.5.9 that
(17.1.4) ID*Fo *gllLa= Cligl e
if gel’né&’, 1/q=1/p—(m—|a})/n, g<oo.

Moreover, D*FyeL,, if m—|a|>n(l1-1/r), for D*F, is essentially homo-

geneous of degree m—|a| —n> —n/r. :

Let E, be a fundamental solution of p(D). Then F,— E e C*. If geI’(X)
we define go=g in X and go=0 in [X, and set Eog=Eq*gox. From
(17.1.4) and the subsequent observations it follows if X is contained in the
unit ball that

(17.1.5) ID*Eogll Lagxy = C 18| Lox)» 8ELF(X).

Here 1/g=1/p—(m—|a«|)/n when m—|a|<n/p, we choose g=p(p+¢)/e with ¢
as in condition (iii)) when m—|aj=n/p, and g=o0 when m—|u|>n/p (take
1/r+1/p=1). Now

P(x,D)E,g=p(D)E,g +(P(x,D)—-p(D)E,g=g+Rg,
Rg= Y (a,()~a,(0)D*Eog+ } a,(x)D°Eog.

laj=m la] <m
By Holder’s inequality, (17.1.5) and conditions (i) and (iii), we have
”Rg“LP(X)é%Hg“LP(X)a ge’(X),

if X is sufficiently small. Thus I+R is then invertible, and E=E (I +R)~!
has properties (17.1.1) and (17.1.2) by (17.1.5) and the fact that

Px,D)Ef=(I+R)I+R)"'f=.

Finally, if f=P(x,D)u, ue CS"(X), then the unique solution of the equation
g+Rg=f is g=p(D)u, for Eog=u, hence

p(D)u+ Rp(D)u=p(D)u+ Z (a,(x)—a,0)D*u+ . a,(x)Du

laj=m laj<m
is equal to P(x, D)u in X. This completes the proof.

If one replaces the I? conditions by Holder conditions one obtains the
following theorem instead:

Theorem 17.1.1°. Assume that for some ye(0,1) the coefficients of P(x,D) are
in C” in a neighborhood of 0, and that F,(0,D) is elliptic. If X is a sufficiently
small ball with center at O then there exists a linear operator E in C'(X) such
that

(17.1.1y C'(X)af—D*EfeC’(X) is continuous if |a|<m;
(17.1.2y P(x,D)Ef=f, feC'(X);
(17.1.3y EP(x,Dyu=u if ueCy(X).
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Here C?(X) is the set of all continuous functions in X such that the
norm

sup |g(x)|+ sup |g(x)—gWMI/|x—yI’
xeX x,yeX

is finite. If X has radius r, then a C? extension to the whole space is given
by

go(x)=g(x), xeX;
go(X)=g(rx/Ix))(2—|x|/r), r=ix|=2r;
2o(x)=0, |x]>2r.

The proof of Theorem17.1.1" is identical to that of Theorem17.1.1 except
that g, is defined in this way and that (17.1.4) is replaced by the continuity
in C?” when |a|=m, which follows from Theorem 7.9.6. We leave the details
for the reader since the result will never be used here.

By a slight twist of the proof of Theorem17.1.1 one can prove a loga-
rithmic convexity theorem for the I norms of the derivatives which will be
useful later on. To shorten the proofs we exclude lower order terms now.
First we prove a lemma.

Lemma 17.1.2. If P(D) is homogeneous and elliptic of order m, then
(17.1.6) >, Am1E D], < C(| P(D)vll o+ A™ 0]l 1)

fal <m

if A>0 and D*vel?, ja]<m.

Proof. Introducing Ax as a new variable instead of x makes A disappear in
(17.1.6) so we may assume in the proof that 4=1. We define F; as in the
proof of Theorem 17.1.1, thus P(D)F,=0+ w where we¥. Then we have

D*v=D*F, % P(D)v—(D*w) * v,

and (17.1.6) follows since D*wel! and D*F, satisfies the hypotheses of
Theorem 7.9.5.

Remark. 1t follows from the proof that C can be taken independent of P if P
varies in a compact set of elliptic polynomials of degree m.

Theorem 17.1.3. Assume that P.(x, D) satisfies the hypotheses (i) and (ii) above
in a compact neighborhood K of 0. Let X =K be an open set, and denote by
d(x) the distance from xe X to [ X. If D*ueI?(X), |a|<m, it follows then that

(17.1.7) | d(x)* D*u| Loy < C(|d(x)" Bulx, DYull Loy + 4l o) ™™ 1 ull 25 8™,
where C is independent of X.
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Proof. Let B=B(y,R) be a ball with radius R and center yeX with
d(»)22R. Set yp(x)=yx(x—y)/R) with a fixed ye CF(B(0,1)) which is equal
to 1 in B(0,3). Applying (17.1.6) to P(D)=P,(y,D) and v=yzu gives with
another C .

Z Aptm—lal) j’ iD*ufPdx

laj£m " B(»3R)
<C( | IB(x,D)ulPdx+¢(R) Y. [ |D*ulPdx
B(.R) laf=m BG,R)
+ Y R-Pm-lD [ |DfuPdx+ AP | ul? dx).

|| <m B(y, R} B(y,R)

Here we have expanded P(D)(xzu) by Leibniz’ formula and estimated
1Py, D)— B, (x, D)) u(x) by means of the modulus of continuity ¢ of the
coefficients. Thus ¢(R)— 0 when R—0. Now we take A=M/R where M is a
large constant and multiply by RP™. This gives

ZMp(m—lal)RpluI [ 1D*ulPdx

laf <m B(y,4R)

<C( | |R"B(x,DyuPdx+s®) Y | IR"D*ulPdx

B(y,R) laj=m B(y,R)

+ Y R | |D*uPdx+MP™ | |ul?dx).

jaf <m B(y,R) B(y,R)

With some small R, to be chosen later we define

R(y)=min (Ry,d(y)/2)

and integrate with respect to R(y)~"dy over X. Since |R(x)— R(})| £|x —y|/2
it follows if |x — y| <R(y) that |R(y) —R(x)| < R(y)/2, hence

R(y)/2<R(x)<3R(y)/2.
On the other hand, if |x — y| <2R(x)/5 then |R(y)— R(x)} < R(x)/5 so

4R(x)/5 < R(y)<6R(x)/5.
Hence
[ dy/ROI'SG/2" [ dy/Rx)y=3" [ dy,
*€BG,RON Jx—y|<2R(x) i<t
[ dy/ROY'2(/6 [ dy/Rxy'=3"" [ dy.
xEB(,3R0Y) lx—y|<2R(x)/5 i<t

With a new constant C independent of R, it follows that

Z MPm—iah) j [R(x)lal D*ulPdx

lal £m

< C([ IR By(x, Dl dx+e(Ro) Y. [IR("D*ul? dx
|

a|l=m

+ Y [IR()"™ D*ulP dx + MP™ { |u|? dx).

|a] <m
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Choose R, so small that Ce(Ro)<3. When M = M, say, we can then cancel
the two sums on the right-hand side against half of the left-hand side and
obtain

M™ R D*ull 1o < C(IR(X)™ By(x, DYull Lo+ M™ [ut] .0).

We choose M=M, if |R(x)"E,(x,D)ull;, <M%|ull.,; otherwise we take M
so that

M™ufl o= |R(x)" B,(x, DYu| Lo,
which gives (17.1.7).

Corollary 17.1.4. Assume that P, satisfies the hypotheses (i), (ii) in a neigh-
borhood K of 0. If D*uel? in K~ {0} for |a|<m and

(17.1.8) j |u|?dx=0(RY), R0,
R<|xj<2R
(17.19) P, D)ul<C ¥ |D%u||x"-™ in K~ {0}
la|<m

then it follows if |a| <m that

(17.1.10) [ IRMD*uPdx=0(R"Y), R-0.

R<|x]<2R

Proof. We can apply Theorem 17.1.3 with X = B(0,2R)~ B(0,R) if R is small.
Then

d(x)"|B,(x,D)u|< C Y. d(x)*|D*uj

laf <m

because d{x) < R <|x|. Hence it follows from (17.1.7) that

S§= Z ”dlml Dau"LP(X)é C, Stm=1im “u”ilp'?X)

la|<m

Thus
| IRABYD*ulpdx< Y |4 D*ul2,

laj<m 4R<3|x|<5R laf <m
SCYP ||u||{p(x)=0(RN),

which proves (17.1.10) for |x|<m. Another application of (17.1.7) gives
(17.1.10) when || =m also.

With applications to global existence theory in mind we shall discuss in
Section 17.2 whether a solution u of a differential equation with principal
symbol B, must be zero when (17.1.8) is valid for all N (or, equiva-
lently, if (17.1.10) is valid for all « with |¢|<m and all N). We shall then
have to assume that the coefficients of P, are Lipschitz continuous, that is,
|a,(x)—a,(»)| = C|x—y|, |a|=m. Then we can define E,(x,D)u in the distribu-
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tion sense if D*uel?, |a| <m, and Theorem 17.1.3 as well as Corollary 17.1.4
can be improved by means of Friedrichs’ lemma:

Lemma 17.1.5. Let velIP(R") and let ja(x)—a()|EM|x—y| if x,yeR" If
¢eCy and ¢ (x)=p(x/e)e™", then

(17.1.11)  |(@D;v)*¢,—a(D;v% )L, <M |[v], [ (9l +IyIID; Pl dy.
For fixed v the left-hand side tends to O when ¢ —0.

Proof. Since CY is dense in I? we may assume that ve Cy, and it suffices to
prove (17.1.11) since it is then obvious that the limit is 0. The quantity to
estimate is

If (a(x —y)—a(x))(D;v) (x — y) $,(») dy|
=|f(a(x—y)—ax) v(x—y) D;$,(»)dy—[(D;a)(x —y) v(x—y) . (y)dy|
M [lox—(¥ID; o) +d. () dy.

(17.1.11) follows now from Minkowski’s inequality since

[0 +1y11D;6.())dy

is independent of ¢.

Let us now return to Theorem 17.1.3 assuming only that D*uel?(X),
|a] <m, but that a, are Lipschitz continuous and that B, (x,D)ucI?(X). Let
Xo» X1€CT(X), x;=1 in a neighborhood of supp ,, and set v=y,u. Then
ved'(X) and D*vel?, jo|<m, B,(x,D)vel’. Choose ¢peCy with |pdx=1
and set v,=v*¢, where ¢, (x)=¢(x/e)/c". Then v,eCy and if b,=y, a, we
have for small ¢

B(x,D)v,= ) b,D*v,—>B,(x,D)v in I?
laj=m

by Lemma 17.1.5 since B,(x,D)v=) b,D*v. Hence we can apply (17.1.7) to
v,—vs; and conclude that D*v, has a limit in I? when ¢—0 if |¢| =m. Hence
D*uelf,.(X) when |a|<m. The estimate (17.1.7) is therefore true if X is
replaced by {xeX;d(x)>p}. Letting p—0 we obtain (17.1.7) as it stands.
Thus Theorem 17.1.3 and Corollary 17.1.4 are valid when a, are L1psch1tz
continuous and D“ueL" jal <m.

17.2. Unique Continuation Theorems
We shall begin with a unique continuation theorem similar to Theorem 8.6.5
where operators of higher order are allowed. Let

P(x,D)= Y a,()D"

laj=m
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be defined in an open set X cIR" and assume
(i) a, is Lipschitz continuous in X,
(ii) B, is elliptic in X.
By X we denote the closed conic set
(17.2.1) ¥ ={(x,N) € T*(X)\0; Pn(x,£+TN) has a zero 7 of multiplicity =2
with £ + 7N # 0 for some £ € R"}.

Of course 7 cannot be real then.

Theorem 17.2.1. If D*ueli (X), || <m, and B,(x,D)ue 3 (X),
1722) B, D)ul<C Y |D*u| in X

lal <m

then N(suppu)c X, where X is defined by (17.2.1).

For the notation N and the global uniqueness results which follow from
Theorem 17.2.1 we refer to Sections 8.5 and 8.6. The definitions of X~ and of
N are both local and invariant under local diffeomorphisms so it is suf-
ficient to prove that if 0eX and (O,N)¢2, N=(0,...,0,1) then u=0 in a
neighborhood of 0 if suppun{x;x,=0}={0}. This will be done by means
of estimates with respect to high powers of a weight function with maxi-
mum in the support of u taken at 0 only.

Set p(&)=P,(0,%). Then the hypothesis (0, N)¢Z means that p(£+itN)
and p"™(é+it N)=0p(¢+itN)/o&, have no common zero (& t)eR"*!\ {0}.
Thus

1723) Y PSR LCpE+iTt NP+ p"(E+iTN)P);
lo £ m
(& eR™

for both sides are homogeneous of degree 2m and can only vanish if 7 =0
and p(€) =0, that is £ =0. Next we need an identity of Treves which is
closely related to the commutation relations.

Lemma 17.2.2. Let Q(x)=) a;x;+ ) b;x}/2 be a real quadratic polynomial in
R" and let P(D) be a differential operator with constant coefficients. If
ue CY(R") and v=ue%? then

(17.2.4) [ |P(DYil*edx = [ |P(D +iQ' /2)v|*dx
= [T |P9OD i@’ /20| 6% /ot dx.
a
Proof. The first equality is obvious since D,u=e~%*(D;+i0;Q/2)v. The
adjoint of D;+i0;Q/2 is D;—id;Q/2 so we must show that

(17.25) P(D—iQ2)P(D+iQ//2)=Y PO(D+iQ'/2) P(D—iQ'[2)b%/a!.
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Now the commutators
[D;—i0;Q/2,D,+i0,Q/2]=0,0,Q=b;5
are the same as the commutators of d; and b, x,. Since as operators
P(3) P(bx)=Y. (6" P(b x)) P¥(3)/a!
by Leibniz’ rule and this is a purely algebraic consequence of the com-
mutation relations, it follows that (17.2.5) holds.

The following is the crucial estimate in the proof of Theorem 17.2.1.

Proposition 17.2.3. Let P, (x, D) satisfy conditions (i) and (ii} above in a neigh-
borhood of 0 and assume that (0, N)¢X. Then there is a neighborhood Xy, X
of 0 such that with ¢(x)=x,+x2/2 we have for small ¢>0 and large 1>0

(17.26) Z 1'2("‘—1““— 15|Dau|2 e2:¢dx

lal <m
SC[IB(ex,D)ul*e*?dx, ueCP(X,).
Proof. If we write v(x)=u(x)e"*™ then
Du=e "(D+it¢)v and Dv=e*D—it¢d)u.
Apart from the size of the constant, (17.2.6) is therefore equivalent to

(1726)' Z Tl(m—lul)— 1 j"DaL U[Z dx

laf <m

SC{IB(ex,D+itd)v|?dx, veCI(X,).

Assume first that the coefficients of B, are constant, thus B,=p. If we apply

(17.2.4) with P=p and Q =21 ¢ it follows that

(17.2.7) [1P(D—it¢)vlPdx+21[|p™(D—it¢)v|>dx
<flp(D+it¢)v]*dx.

By (17.2.3) and Parseval’s formula we have for all ve CF(R")
(17.2.3) Y g¥m-ld f1pey2 dx < C(f|p(D—itN)v|*dx

la] £m

+ 22 {|p"(D—iTN)v|2dx)
If ve CT(X,) and {x|<é in X, it follows from (17.2.3) that

(172.8) Y 2=l [|D*y2 dx <2 C([ |p(D—it ¢') v|? dx

la} gm

+2 [P (D—it¢) o dx)+ C'(1+5%7%) Y 2= 1=lad{|p=p|? dx.

lal=m
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When 6 is small and 7 is large we have C'(1+46%1%)<1?/2 which allows us
to cancel the last sum against half of the left hand side. (17.2.6) is then a
consequence of (17.2.8) and (17.2.7).

To complete the proof we need an elementary lemma which allows us to
handle variable coefficients. We denote the I? norm simply by | |.

Lemma 17.2.4. Let X <R"” be an open set, and let A be a Lipschitz con-
tinuous function with |A(x)— AW\ L L|x—y| for x, yeX. Then

| A(x)(D*u(x) D? v(x) — D u(x) D* v(x)) dx| S |a+ B| LM
if u, ve Cg(X) and
ID* ull [DP v <M when |+ B'|<|a+Bl, max(|o|,|B'])<max(al,|Bl).

Also the last inequality can be taken strict when |a|=|p|.

Proof. This is obvious when o+ f=0. If jx+ |=1 we just have to note that
§ A(x)(D;u(x) v(x) —u(x) D;v(x)) dx= — | D; A(x) u(x) v(x) dx.
An integration by parts also gives the statement when |a|=|f]|=1,
§ A(x)(D;u(x) D, v(x) — D, u(x) D;v(x)) dx =
— [ u(x)(D;A(x)Dv(x) — DyA(x)Djv(x)) dx.
These two identities allow us to exchange indices between o and g and

transfer excess derivatives at a cost of LM for each index affected.

End of Proof of Propositionl17.2.3. Writing P,(0,D)=p(D) and r(x,D)
=P,(x,D)—p(D) now, we know by hypothesis that the coefficients of
r(ex,D) and their Lipschitz constants are O(¢) in X. With the notation in
the first part of the proof we form

fIBex,D+it¢)v|>dx—{|B,(ex,D—it¢")v|*dx.
Inserting B,=p +r we first obtain the terms
fIp(D+it¢)v)Pdx—[|p(D—it¢)v|*dx =221 [|p"™(D~it¢')v|*dx.
The other terms where no derivative falls on ¢’ are of the form
2=l =11 § 4(x) (D* v(x) DP v(x) — DP v(x) D*v(x)) dx; el <m, |BISm;

where the Lipschitz constant of A is O(g). These terms can be estimated by
means of Lemma 17.2.4. In addition there are terms of the form

T fAX) D*v(x)DPv(x)dx;  v+laj+]Bl<2m, |e|<m, |Bl<m;
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where sup |A| = 0O(g). Thus ‘
IBex,D—itd)v|*+7|F"(D~it )|
<|Bex,D+itd)v|?+ Ce Yy, t2m=ld=1|p=p|2,
laf<m
If we observe that (17.2.8) remains valid with p(D—it¢’) replaced by

P (ex,D~it¢’) provided that <3, we complete the proof of (17.2.6) just as
in the constant coefficient case.

Proof of Theorem 17.2.1. We recall that it suffices to prove that if 0eX
and (O,N)¢2, N=(0,...,0,1) then u=0 in a neighborhood of 0 if
suppun{x;x,=0} c{0}. In doing so we set u (x)=u(ex) where ¢ is chosen
so small that (17.2.6) is valid for a neighborhood X,cX/e of 0. Let
1€CT(X,) be equal to 1 in a neighborhood V of 0, and set U=yu,. If
P (x,D)u= f then

Pex,D)U=e"y(x)f(ex)+ Y D*yxP®(ex,D)uja!

O<lajsm

which implies that P, (¢ x,D) UeI? and that, by (17.2.2),
|B(ex,D)UISC Y e iD*U| in V.

lal <m
By the remarks at the end of Section 17.1 we have D* UeI? when || <m, so
it is clear that (17.2.6) may be applied to U. If suppy is small enough we
have ¢ £ —c for some ¢>0 in supp U~ V. Hence we obtain using (17.2.6)
Y |e?D* U Cle?Bex,D)U|SC Y |e?D*U|+C"e

la] <m fel <m

For large v it follows that

Y €D U|£2C e

la| <m

Hence U =0 when ¢ > —¢, which proves the theorem.

In the second order case the following lemma shows that the set 2 has a
very simple description:

Lemma 17.2.5. Let p be a quadratic form in R" with complex coefficients
which is elliptic, that is, p({)+0 when 0+&(cR"” If NeR"~0 and
EeR"~RN, n2, it follows that the equation p(é +1t N)=0 has one root with
Im >0 and one with Imt<0. When n=2 the roots are distinct unless p is the
square of a linear form.

Proof. R"~RN is connected if n>2. Since p(£+1N) has no real zero if
telR"~ RN it follows that the number of zeros with Im1>0 is independent
of & Replacing ¢ by —¢& changes the sign of 7 also so there must be one
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zero in each half plane. When n=2 there is a factorization p(&)=L (&) L,(&)
with linear factors L; and L,. They must be proportional if they have a
common zero; and then they can be chosen equal.

If m=2 it follows that X is empty when n>2 and that = U(T}* ~0) for
all x such that B,(x,¢&) is the square of a linear form when n=2. If X is
connected and B,(x, ) is real for some x then X is empty, for the two zeros
of B,(x,é+tN) must remain in different half planes for reasons of con-
tinuity.

In what follows we shall only consider the second order case and shall
then use the notation p(x,D) instead of B,(x,D). We shall prove that if u
satisfies a weakened form of (17.2.2) and vanishes of infinite order at a point
where the coefficients are real, then u is equal to 0.

Theorem 17.2.6. Let p(x, D)=Zajk(x)DjDk be an elliptic operator in a con-
nected neighborhood X of O such that a,(0) is real, a; is continuous in X,
Lipschitz continuous in X~ {0}, and |a3|SC|x’~" for some 6>0. If
D*ueli ., |a| <1, and

(17.2.2y lp(x,D)ulSC Y |xP+1=-2]D*yl,
lajs1
(17.2.9) [ lu*dx=0("), &0,

x| <e

for every N, then u=0in X.

Proof. Since (17.2.2) implies (17.1.9) it follows from Corollary17.1.4 in the
extended form discussed at the end of Section 17.1 that for Ja| <2 and all N
(17.2.9y § ID*ul?dx=0("), &—0.
e<lxf<2e

Hence u is the sum of a function in H{$5(X) and a distribution with support
at 0. However, no distribution with support at 0 is in I3 so it follows that
ueH}‘iﬁ(X). By Theorem17.2.1 it suffices to show that =0 in a neigh-
borhood of 0. Without restriction we may assume that p(0, D)=ZD?.

As in the proof of Proposition 14.7.1 we introduce polar coordinates in
R"~. {0} by writing x =¢' w where teR and weS"~ 1. Then we have

0/0x;=e™"(w;0/0t+Q))

yvhere Q; is a vector field in S"-1. With the notation p(x, D)=Zajk(x) D;D,
it follows that

p(x, D)= —e~ 'Y a, (€ )(w(0/0t— 1)+ Q) (w, 0/0t + Q).
With U(t, w)=u(¢ w) the inequality (17.2.2) can be written
(1722)" 1Y a,(e 0)(@;(0/0t—1)+ Q) (0, 0/0t + QY UISC Y, &|U,
' I

als1

WA
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where U,=(wd/0t+Q)*U. By assumption we have a; (¢’ w)=35; +0(e”) as
t— — oo, first order derivatives are O(e%), and

Y (0,00t — 1)+ Q) (e, /0t + Q)= */t* + (n—2)8/0t + ¥, 22
since ). @;Q2;=0and ) Q,w,=Y rdw;/dx;=3 rd(x;/r)/0x;=n—1. The oper-
ator ) Q7 is the Laplace-Beltrami operator 4, in the unit sphere. The
adjoint of Q; as an operator in I*($"~') is (n —1) w;— Q;. In fact,
§@uyvdx+[uQ;vdx=[Quv)dx=[|x| d(uv)/0x;dx— [ w;d(uv)/orr"dodr
=—fowuvdx+nfwuvr-tdodr
=(n—1)fouvdx.
In spite of this 4, is of course self-adjoint; indeed, we have
Yn—Do;-2) =m-12-n-1)Y Qu+) Q}=) Q2

In the proof of Theorem17.2.1 the essential estimate (17.2.7) was ob-
tained from (17.2.4) thanks to the positivity of b;, that is, the convexity of
the exponent ¢. To obtain a similar effect we introduce for some & with
0<e<é a new variable T instead of ¢,

t=T+eT; dt/dT=1+¢eT>0.

Note that T<t<T+1<T/2 if T<—~2. After multiplication by (1 +¢&eT)?
the operator in the left-hand side of (17.2.2)" becomes

Q=0T +c(T)00T+(1+ee T Y 22+ Y ¢, (Tw)(9/0TY @~

lal +j<2
Here c(T)=(n—2)(1+eeT)—e?e*T/(1+eeT) is close to n—2 at — oo, and
(17.2.10) ¢, ;=0(%), dc, ;=0(") as T——c0.

(Note that this change of variables is not smooth in the original variables.)
We shall prove that for some T,

(17.2.11) Y, B2l (10/0TY Q* U e~ >~ 9T dwdT

J+lals2
SCf1QU)P e *TdwdT, UeCy(— o0, Ty)xS" 1)
(When jo|=2 we define Q* for example as a product 2,0, with j<k.) This
will serve the same purpose as (17.2.6) did in the proof of Theorem 17.2.1.
Proof of (17.2.11). Set U=¢€"T V and
Q.V=e"TQ(TV).
Thus @, is obtained from Q when /0T is replaced by ¢/0T+t. Then
(17.2.11) is equivalent to
(17.211y Y TRt (f18/0TY @* V|2 T dwdT

j+lel g2

<CffIQ, VP dwdT, VeCP(— o, Ty)x S Y).
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Let Q- be the operator obtained from Q, when 0/0T and Q, are replaced by

—0/0T and —Q; while ¢, ; is replaced by ¢, ;. (With our present notation
this is essentially equivalent to the complex conjugation in the proof of
Proposition 17.2.3.) We shall examine the difference

(17.2.12) §{10. VI?dwdT— ({107 V|*dwdT.

In addition to paying attention to the powers of 7 and orders of differen-
tiation as in the proof of Proposition17.2.3 we must now take the exponen-
tial decrease at —oo into account. It will follow from (17.2.10) that the
terms involving c, ; are not important, so we first consider the other terms

inQ_ and @,
(£0/0T+7)*+c(T)(£0/0T+7)+ (1 +e€T)> Y. Q7.
The corresponding contribution to (17.2.12) is
4Re((@*/0T* + 2 +c(T)t+(1+€ ") Y. QN YV, 21+)0V/dT)
= —2Re(c'(T)OV/OT, V/OT)—-2((31*+2c 1)’ V, V)+2 Y. (hQ,V,2, V).

Here we have used that )" w,Q,=0, and
d
hzd—T(l +eeTP2t+c)=(21+c)2e2 T+ (1 +eeT) )1 +eeT)

>2e2teT

when 7 is large enough. All other terms in (17.2.12) are of the form

v {[ a(T, ) (B/0T)* 2V (0/0TY° PV
—(=3/aT)Po(— QY V (= 8/0Ty(— QY V)dwdT

with j+og+|al+Bo+I81S4, «o+]al£2, Bo+IBIS2 and a=0("T), o
=0(e’T). We can estimate them by an obvious modification of the proof of
Lemma 17.2.4, which can also be used directly after decomposition by an
appropriate partition of unity. (Recall that the adjoint of Q; differs from
—Q; by an operator of order 0.) Hence we obtain

(17.213) Q7 V2 +4e2 1) {[1Q;V*eTdwdT < |Q. V|?
+C Y D [10RTY VX (T +17  eT)dwdT.

J+lal=2

This is an adequate substitute for (17.2.7). Instead of (17.2.8) we shall prove
that for some T,

(17.2.14) Y o204 [ 13/0TY Q* V|2 eT dwdT

jtlel 2
SCIIQ. VIE+IQ; VI +2* L 12, V) e dwdT,
Ve CF((— oo, To) x §"7 1),
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if 7 is large enough. If we introduce Ve*”’? as a new dependent variable,

freeze the coefficients at — oo, and drop terms of lower order, we find that it
is sufficient to prove that

(17.2.15) Y 2D ([ 10/0TY Q* VI*dwdT

J+lel =2
< C“ (/0T +7)*+A4,) VI*+|((0/0T —1)*+ 4,) V|*
+12Y1Q; V) dwdT.

The integral in the right-hand side is equal to
ffQl@*/oT?* +*+4,) VI*+812|0V/OTI> +1* Y |Q,V|*)dwdT.
Furthermore

I@*/0T> + 72+ 4,) V=92 V/OT?|* +1* | VI> + |14, V|*
+23 10/0TQ; V> =22} |Q; VII*+ 8V /0T||?).
By the ellipticity of 4, we have
MZ=2 I VI C(l4, V|I2+M§§:1 12* V).
If we combine these estimates we obtain (17.2.15), hence (17.2.14). Using

(17.2.13) to estimate the right-hand side of (17.2.14) we obtain when 7 is
large enough

z 1.4—2(j+|a|) ” |(a/aT);Qa V|2(eeT_ C/(e6T+T— 1 eeT)/EZ)dwdT

j+le £2

< Cr262 10, V>

When t is sufficiently large and e is sufficiently small, the estimate
(17.2.11) follows.

End of Proof of Theorem17.2.6. First recall that the function u in the
theorem satisfies the differential inequality (17.2.2)” when considered as a

function U of w and t. When we take t=T+eT the inequality is replaced
by

(17.2.2y" lQuIsC Y &TU,

jal 21

where U,=|U| and U,=|0U/0T|+|Q*U| when |x|=1. Choose yeC*(R)
equal to 1 in (— o0, T, —1) and 0 in (T, o), and set

UYT, w)=y(T) U(T, ).

It follows from (17.2.9) that the derivatives of UY of order <2 multiplied by
e ™T are in I? for any N. By cutting u off for large negative T and

regularizing we conclude that (17.2.11) is valid for UY. The right-hand side
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can then be estimated by

C//(e—2r(To—1)+ Z §§|anl2e—2T(t—6)dwdT)
lef <1

where U¢=|U¥| and UY=|0UY/0T|+|Q*UY| if |a|=1. Hence (17.2.11) gives
for large 1, since £<24,

Y o2t 100y QU 2e 9T dwdT £2C"e™ *(T, ).

j+lal 52

When 7—o0 it follows that U=0 when T<T,—1. Thus the function u in
Theorem 17.2.6 vanishes in a neighborhood of 0. The proof is complete.

As we saw in Chapters X and XIII a major application of uniqueness
theorems is the proof of global existence theorems. We shall give another
example here using Theorem 17.2.1.

Theorem 17.2.7. Let a;,(x) be Lipschitz continuous in an open set X <R” (or a
C? manifold), aj = axj, and assume that (Re ay(x)) is positive definite. Then
(17.2.16) Y Dja;Duy=f

implies uEH}‘f)(X) if uel? (X), which makes the equation defined, and
feLloc(X) Moreover, the equation has a solution ueH{‘;ﬁ(X) for every

fE loc(X)
Proof. 1) To prove the regularity statement we first show that
uel? (X), ZDj(ajkau)eH}‘fl)(X):ueH:‘;ﬁ(X).

loc
This statement has the advantage that the hypotheses remain valid if we
replace u by yu where ye CF(X). In the proof we may therefore assume that
ueé'(X). Let K< X be a compact neighborhood of supp u. If ve C§(K) then

(17.2.17) Y fIDjv?dx< CRe[Y a,(x) Do D,v dx
=CRe (Y (D;a;(x)D,v)7dx.

As at the end of Section17.1 we choose v=u,=ux¢, where peCy, |pdx
=1 and ¢ (x)=¢(x/e)e”". By Lemma17.1.5 we know that

apDyu,—(a;Du)* ¢,
is bounded in I? when ¢—0. Hence
fi=Y DjapDyu)=Y (D;apDyu)x ¢+ Dy} apDyu,— (3 ajDyu) x ¢,)
is bounded in H._,,. By (17.2.17) it follows that
lu ity = Co Y IDu 1> < Coll foll -yl

which implies that |lu[,,< C,| fll_,, is bounded. Thus ueH,,. If fel? it
follows as we saw at the end of Section 17.1 that ue H,,,.
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2) To construct u it is enough to show that
(17.2.18) I ONSIMY D;aDidlyz, ¢eCH(X)

for some positive continuous function M. In fact, by the Hahn-Banach
theorem it follows then that for some geI?

(ﬁ¢)=(g,MZDjdjka¢)> $eCy(X),

which means that u= M g satisfies the equation (17.2.16); by the first part of
the proof u is in H{$S. If K is a compact subset of X we also know from the
first part of the proof that

lol,=Cll ZDjdjka¢”(—l)7 peCF(K)

which of course implies (17.2.18) if M > C | fl 12 and supp ¢ =K. As in
the proof of Theorem 10.7.8 the only problem is to increase the compact set
K without increasing M much on a somewhat smaller set. Let K, K, ... be
a sequence of compact sets with union X, each contained in the interior of
the following one and chosen so that X ~K; has no component which is
precompact in X. Let M be a function such that (17.2.18) holds when
peCF(K;) for some j>2, and let ¢>0. Then we claim that (17.2.18) remains
valid when ¢eC§(K;,,) for some M such that M=(1+&M in K; ;.
Taking a sequence ¢; with H(l +¢;)<co we conclude from this that there is
a function M such that (17.2.18) is valid.

If the claim were false then (17.2.18) would be false with M>=(1+¢e)M
everywhere and M very large on (K j—1» S0 we can find a sequence
PneCT(K ;) with

(fdn=1, (1+8IMY D;a D dyl..<1,
”ZDiajka[pN”Lil(cKj_ ‘)_.<= 1/N.

By the first part of the proof the sequence ¢, remains bounded in H,,, as
N —o0 so it has a subsequence converging in H y, to a limit ¢ with

(LP)=1, (1+¢lIM} D,a;D P|.,.£1,
supp®<K;, ,, > D;a,D®=0 in (K,

By hypothesis every component of X~ K, ;, contains points outside the
compact set K; ;. Hence it follows from Theorem 17.2.1 that =0 there, so
supp®@<K;_,. By the first part of the proof ®eH,,,. If we regularize ¢ we
obtain functions in C3(K)) violating the assumption that (17.2.18) is valid in
C3'(K ), which completes the proof.

We shall now prove an extension of Theorem14.7.2 which gives a
uniqueness theorem for a perturbation of the Laplacean at infinity rather
than at 0. After passage to polar coordinates the problem will be very close
to that discussed in Theorem 17.2.6. We assume now that a;, are Lipschitz
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continuous and that
(17.2.19) lap(X) =8, S CAx*+%,  |aj(x)| £ C/|x|>+°

in a neighborhood of infinity. Thus p(x,D)=) a #«(x) D;D, approaches minus
the Laplacean at infinity; any other homogeneous elliptic operator of sec-
ond order with real coefficients could of course be used as well.

Theorem 17.2.8. Let X be a connected neighborhood of o in R" where
(17.2.19) is valid, and let (1+|x|yfD*uel®(X) for all T when |a|<1. If A>0
and

(17.2.20) Ip(x,Dyu—Aul < Clx|™' ) |D"u|, xeX,
Jat =1

it follows that u=0.

Proof. As in the proof of Theorem 17.2.6 we introduce polar coordinates
x =¢é'w where telR and weS" !, and obtain with U(t, w)=u(ew)
(17.2.20) IZajk(e‘w)(wj(a/at—1)+Qj)(wk6/at+!2k)U+le2‘U|

<C Z e(1~lal)t|Ual

lel 1
where U, = (w0/0t + £2)*U . By assumption we have aj(e’w) = 6 + O(e——%)
as t — +0o0, first order derivatives are also O(e~*~%), and at infinity the sum is

(02012 + (n—2)8/0t + 4,)U

as before. Since we work with large positive t now we set t=T—e ¢T for
some £€(0, 6), which is legitimate since dt/dT=1+¢ce *T>0. When >0 we
have T >0, hence |t— T|<1. After multiplication by (dt/dT)* the operator in
the left-hand side of (17.2.20) becomes

Q=0%0T?+c(T)OOT+(1+se= TV A+ Y ¢, (T0)@/dTY Q"+ A(T)

lal +j52
where ¢, ;=0(e~T~%7), dc, ;= O(e~"~°T), and
(T)=(n-2)1+ee ") +e%e *T/(1 +ee~*7),
MT)=Ae*Te 27" (1 4 ge*T)2
Note that A'(T)Z 427 for large T. We shall prove that for large T, and «
(17221) Y [eTe+1-lbpey)?

lef =1

SCle T2 41" Y| TQUIL,  UeCP((T,, ) xS" ).

Here D* denotes any product of |af factors ; and 0/0T. In view of Fried-
richs’ lemma it follows as in the proof of Theorem 14.7.2 that (17.2.21) may
be applied to the function U in (17.2.20) multiplied by a cutoff function of
T which is O for T<Ty;+1 and 1 for T>T,+2. When T, is chosen large
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enough we obtain as before when 7 — o0 that U=0 when T> T, +2; thus u
=0 in X by Theorem17.2.1. What remains is therefore to prove the es-
timate (17.2.21).
Set V=Ue" and
Q.V=eTQ(Ve )

which is the operator obtained when 0/0T is replaced by 3/0T—7 in Q.
Then (17.2.21) is a consequence of the estimate

(17221 Y l(x+e") Dy )2

lef =1

SCle ™+ DIQ. V%, VeCP((T,, 0)x 51,

apart from the size of the constant. Denoting by Q_, the operator obtained
from Q, when /0T and Q; are replaced by —d/0T and —Q; while ¢, ; is

replaced by ¢, ;, we shall again consider the difference Q. V|*—|Q; V||* in
order to prove the following analogue of (17.2.13)

(17222) Q7 V|2 +4e2tY e *T2Q, V| +1Ale" V> <|Q, V|2 + CR(V),
where Ve CY((T,, 0)x 8"~ 1), T, is large, and
(17223) R(M)= Y lle"™D*V||*/r+ ¥ (le TD*V |21+ | D*V||?)7? -2k,

ja}=2 lejg1
First assume that all ¢, ; vanish. Then Q,=L,+L,, @; =L, — L, where
L, =3*/0T*+1*—c(T)t+(1+ee *T)? 4, + A(T); L,=—(21—c(T))d/oT.
L, is symmetric and the adjoint of L, is — L, —¢'(T). Hence
2. Vi 2— "Qr_ Vi 2 =2(L1 V.L,V)+2(L,V,L, V)=2([L,, Lz] v.V)
—2(c'L,V, V).
Computing the commutator [L,,L,] and using the definition of L, we find
that the right-hand side can be estimated by CR(V) apart from the terms
(—4tele T (1 +ee )4, V, V) + (Rt —c(TH A (T) -2 ATV, V).

Since A(T)=AeT for large T we obtain (17.2.22) in this case even with A
replaced by 31/2 say in the last term on the left. If the coefficients c, ; are
not all 0 then we have three other types of terms to consider:

a) The crossproducts involving A(T) and c, ; are
2Re Y ((c, (0/0T—Y 2V, A(T)V)—(MTHV, ¢, (—8/0T—y(—Q)*V)).

After an integration by parts as in Lemma 17.2.4 we find that these can be
estimated by

Cife™ V> + 3, ID*V||V])dodT <" V|2 + C' Y, 2~ 2| D"V

laj=1 laf <1
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The last sum can be estimated by means of R and the preceding term can
be cancelled against the extra At|le” V|?/2 which we had in the left-hand
side in the “unperturbed case”.

b) After a similar integration by parts, crossproducts between c, ; and
some other term than A(T) in the unperturbed operator can be estimated by

CY [e~Ta+90|D*V||DFV| dwdT

where j+|a]+ (8| <3 and |« <2, |B]=2 in the sum. If |a|=2 we can write the
integrand as t~Y2|e~TD*V|1/+12)e~°TDFV|, where j+|B|<1, so the in-
tegral can be estimated by CR(V). The same is obviously true when |8|=2.
If Jx/|gl and |[B|£1 we <can estimate the integrand by
rri- =0T |pey|¢1-IBle=3T|DFV| for & may be assumed <1, and the
integral can therefore again be estimated by CR(V).

¢) Terms containing two coefficients c, ; are smaller for large T than
those examined in b) so the same estimates hold for them. This completes
the proof of (17.2.22).

Next we shall estimate the T derivative of V which is missing in the left-
hand side of (17.2.22). To do so we observe that

(Q.—0)V/2=L,V=—Q2r—c(T))0V/oT
when all c,,; are equal to 0; otherwise terms which can be estimated by
Y. e~T+972=l|p2 V| may occur. Hence
2oVRATIPSIQ.VIP+IQ; VIP+C Y fle” T +PDay |2 ¢~ 2lel,
lal =2

If we divide by 7 and add to (17.2.22) we obtain, with a new constant of
course,

(17.224) &%t |le™*T2Q;V|>*+1||0V/oT|*+ At|e" V2L C(|Q. V1> + R(V)).

Finally we shall prove an analogue of (17.2.3). It is complicated by the
fact that Q, contains the exponentially large term A(T) which has to be cut
down to a size which can be controlled by the term Az|e”V||? in (17.2.24).
In the following lemma the right-hand side contains also the other terms
from the left-hand side of (17.2.24), with 4 playing the role of eT. The left-
hand side contains what is needed to introduce variable coefficients, es-
timate the essential contribution to the error term R in (17.2.24), and finish
the proof of (17.2.21). We denote by A’ the Laplace operator in x'
=(Xg, 0.0 X,_q)ER* L,

Lemma17.2.9. For ue CF(IR") and large positive A and T we have
(17.225) K- % 42l | Doy |2 + A3 |u|2+ M ¥ | D%ul|272~ 20

lals2 el =1

n—1
<c (K-lu(A'+(a/ax,,—r)2)u||2+m—ﬂ Y 1Djul?+ 42 ul?)
provided that '
(17226) A 12 <3 /K + 4%, 3 /KSA-*1?+ A% M2K<tA% M<A'-92,
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Proof. By Parseval’s formula the estimate is equivalent to one of the form

(17.2.25) (€2 +122/K+ A1+ M(E> +12)
SC(IEPE -T2 +2itE 2K +TA~ | &) + T A).

We distinguish two cases:
a) If ||&'/t]>*—1|21/2 or [£,/t|=1/2 then

(1P + 018 =2+ 2ic, | = (&1 + DAL/ =1+ 288,/

is bounded so the estimate of the first term in (17.2.25) is obvious. The
estimate of the second term follows since 4~°t®<1*/K+1A4? and that of
the third term follows from the inequality between geometric and arithmetic
means since M2 <1A4%/K.
b) If ||€/7]> —1]<1/2 and |&,/t|£1/2 then |¢'|2Zt%/2 and the estimate is
equivalent to
K+ A3+ M2 C'(12 A2 4+142)

The estimate of the first term follows from the second inequality (17.2.26),
that of the second term is trivial, and the estimate of the third term follows
from the last condition (17.2.26). The proof is complete.

Proof of Theorem 17.2.8 continued. If we take w,,...,®,_, as coordinates on
the unit sphere in a neighborhood of (0,...,0,1) then Q. differs from
A, +(8/0T —1)* by A(T), by an operator with coefficients O(|w’| + e~ %), and
by an operator of first order in 7 and D. If 1/e<|eT/A|<e, T=T,, and ||
is small enough in supp V, it follows from (17.2.25) that

(17.2.27) Z ”K—1/2DaV”2+T3 ”e—-eT/Z V“2+M Z “DaV”Z,L.Z—Zlal

lal=2 laj <1

SCK2QVIP+ ) e QVII* +1]e"V|?)
if in addition to (17.2.26) we have
(17.2.28) A?/K<t

which implies that the term A(T)V in Q,V can be absorbed in the last term.
For the proof we just have to observe that the other perturbing terms in Q,
can be cancelled against half of the first sum in the left-hand side of
(17.2.25) with |a| <2 still. To satisfy (17.2.28) and respect the lower bounds in
(17.2.26) with K as small as possible we choose

K=A%t if A2*¢<1?,
(17.2.29) K=13/4%2 if A’<t2<54%*¢
K=A4%1 if 1242
The first two inequalities (17.2.26) are then fulfilled, and t4%2/K=A?"*¢ in

the first case, t42/K=A*/12= A%"? in the second case, while T42/K =12 in
the third case. The remaining conditions are therefore satisfied if
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M<min(A'~%%1). We take M=(e~T">+1/1r)~! in what follows. Since
K= A in all cases we can replace K—'/? by e~T/? in the right-hand side of
(17.2.27), and since K~ 2>MA-17~Y2 by (17.2.26) we replace K~ /2 by
Me~T1~ 12 in the left-hand side. This gives with a new constant

(17227) M( Y le"TD*V|*/r+ ¥ DV |2c? 2l 413 e=<T2Y |2

laj=2 le] £1

SCle™2Q. VP +1} lle "2 Q;V |2+t V]|*).

The point (0,...,0,1) on the unit sphere has no special properties. We
can therefore choose a partition of unity 1= Zd) on the unit sphere and a
partition of unity 1=) y(T—k) on R such that suppyc(—1,1) and
(17.2.27) is applicable to V,=¢(w)Y(T—k)V(T,w) for all j and k when
Ve CF((T,, 0) x S"~1). If we sum over j and k we find that (17.2.27) is valid
for V itself with a larger C. In the left-hand side we just use that at most a
fixed number of supports can overlap, and in the right-hand side we use the
later terms in (17.2.27) to take care of terms where a derivative falls on ¢;
or on .

Fix ¢ now so that 0 <e< 4. Since

RV)E Y e ™DV | /e+ Y, |D*V||222 2
el =2 lal =1
+ Cle(a—-Z&)To Z "e—zT/ZDa V||2,r3—2|a|’

laj=1
it follows from (17.2.27) if T, and 7 are large enough that the term CR(V)
in (17.2.24) is less than ||Q,V|? plus one half of the left hand side. Thus
ety lle T2V |2+ AT VII* L2(C+D)IIQ, V2.

If this estimate is used in the right-hand side of (17.2.27) we obtain (17.2.21)
which completes the proof.

17.3. The Dirichlet Problem

In the study of subharmonic functions in Section16.1 we discussed the
Dirichlet problem for the Laplacean in a half space. We shall continue the
study here, adding I? estimates and some variable coefficient theory. This
will allow us to sketch with a minimum of technicalities various methods
which have been used in the study of general boundary problems for elliptic
differential equations but which will not be covered by this book.

First we shall just study the Dirichlet problem for the Laplacean in

R" ={xeR";x,>0}.
It consists in finding for given f and ¢ a solution u of

(17.3.1) du=f in R%; u=¢ on JR".
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If ¢ is defined in i’; and sufficiently smooth, then replacing u—¢ by u and
f—4¢ by f reduces (17.3.1) to the Dirichlet problem with homogeneous
boundary data

(17.3.1y Au=fin R%; u=0 in JR",
and we shall study it in that form.

We recall from Appendix B the notation H(l)(]l{';) for the set of re-
strictions to R”, of functions in H,)(R"). By Corollary B.2.5 we have

(17.3.2) H, (R")={uc ZR"); D*uc*R"), |o|=1}.

It follows from Theorem B.2.7 that every ueﬁ(l)(]R';) can be considered as a
bounded continuous function of x,€R, with values in H, (R"™"). If u,
=u when x,>0 and u,=0 when x,<0 then u,eI*(R") and

Ouo/0x,=u(.,0)®4(x,)+ (0u/0x,)y, Oup/dx;=(0ufdx), if j*n.

Thus u,eH ;,(R") if and only if u(.,0)=0.
The following is an analogue of Theorem 13.2.1, and the proof is similar.

Theorem 17.3.1. Let P(x,D)= ) a,(x)D* have continuous coefficients in a

lel <2
neighborhood of 0, and assume that p(§)= ) a,0)¢* is elliptic with real
jal=2
coefficients. If X is a sufficiently small neighborhood of 0 in R" and X
=XNR", X =X nJIR", there is a linear operator E in I*(X ) such that

(17.3.3) P(x,D)Ef=f, Ef=0 inX,if fel*(X,);

(17.3.4) EP(x,D)u,=u, if u_ is the restriction to X ,
of some ue C3(X) with u=0in X,;

(17.3.5) D*E is a bounded linear operator in I(X ) if || 2.

By (173.5) we have D*EfelI*(X,) for |a|<2 if feIXX,). Thus
xEfeH,(R") for every yeCg(X), so boundary values of Ef are defined in
X,

Proof. We may assume that p(£)=|&|? for this can be achieved by a
linear change of variables respecting the boundary plane. Let e be a funda-
mental solution of p(D) which is even in x,, for example the Newton kernel
(Theorem3.3.2). If fel*(X,) we define Tf =fin X, Tf (x, —x,)= — (¥, x,
if (x',x,)eX ., and Tf =0 elsewhere. Then TfeI?  (R") if X is bounded, as
we assume, and Tf is odd as a function of x,. Hence e * Tf e HS5(R") is also
odd in x, so the restriction to the plane x,=0 must vanish. Let E, f be the

restriction to X, . Then

(17.33)  p(D)Ef=fin X,, Eof=0in X, if fel’(X,);
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(17.3.4y Eop(D)u,=u, if u, is the restriction to X,
of some ue C3(X) with u=01in X;
(17.3.5y D°E, is bounded in I*(X,) if |« <2.

We have already verified (17.3.3). To prove (17.3.4) we first observe that
Tu, is continuous. Hence D, Tu, is the even extension of D,u,, which is
continuous, and D? Tu_ is the odd extension TD}u, of D?u_ . This means
that Tp(D)u,_=p(D)Tu, so ex Tp(D)u, =exp(D)Tu, =Tu, which proves
(17.3.4). (Here it is important that p(D) has no term which is odd in D,.)
Condition (17.3.5) follows from Theorem 10.3.1 for example.
Now we just copy the proof of Theorem 13.2.1. Writing
P(x,D)=p(D)+ 3, b,(x)D",
I

a2
where b,(0)=0 when |a|=2, we look for a solution of the equation
P(x,D)u=p(D)u+Y b,(x)D*u= fel>(X )

which is of the form u=E,g, gel*(X,). By (17.3.3) this guarantees the
Dirichlet condition for u, so we only have to solve the equation

g+Ag=f, Ag=)b,D*E,g.

The operator 4 in I*(X,) has norm <% if ) sup|b,| is small enough. Then
we define

E=E,(I+A)!

and deduce (17.3.3)-(17.3.5) from (17.3.3)-(17.3.5) exactly as in the proof of
Theorem 13.2.1. If the coefficients b, are not small we can apply this con-
clusion with b, replaced by b,(ex)e?~!* if ¢ is small enough. Taking ex as a
new variable we then obtain Theorem 17.3.1 with X replaced by ¢X. The
proof is complete.

Remarks. 1. If a,e C* we can adapt the proof of Theorem13.3.3 to show
that there is a linear map E: LZ(IR'jr)—>H(2)(]R"+) such that

P(x,D)Ef=fin X,, Ef=0in X, if fe*(R");

EP(x,D)u_=u, in X if u_ is the restriction to X _
of some ue CJ(X) with u=0 in X,;

D*Efe?(R"), |a|<s+2, if D*fe?(R"), |«|<s.

Here s is any integer =0.

2. In Theorem 17.3.1 we assumed p(D) real just to have a simple explicit
solution of the constant coefficient Dirichlet problem (17.3.3) given by the
reflection argument. However, this is by no means essential. If n>2 or n=2
and the zeros of p(l,t) are in opposite half planes Im7Z0 then we can
easily construct E, by taking Fourier transforms with respect to x' and
solving an ordinary differential equation. The same approach is in fact
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applicable to elliptic operators or systems of arbitrary order with quite
general boundary conditions. To obtain a sufficiently general framework for
perturbation arguments one should then start by solving the constant coef-
ficient boundary problem with inhomogeneous boundary data too. This
approach was used systematically in Chapter X of “Linear partial differen-
tial operators”, but in the study of boundary probiems in Chapter XX
below we shall use another more constructive method.

(17.3.3) and (17.3.5) give a local existence theorem for solutions of the
Dirichlet problem (17.3.1) such that D*uel?, |x|<2, if feI?. One can pass
to a global existence theorem with the methods used in the proof of
Theorem 17.2.7 for example. We shall not do so here but show instead how
to use (17.3.4) and (17.3.5) to prove a regularity theorem analogous to one
for interior regularity at the end of Section 17.1.

Theorem 17.3.2. Assume in addition to the hypotheses in Theorem17.3.1 that
a, is Lipschitz continuous when |a|=2. If D*uelI*(X,), |a|£1, and

P(x,D)u=fel*(X,), u=0 in X,,
it follows that D*ueI*(Y,), |a| <2, for every YE X, and that

(17.3.6) Y [1D%ull 2y.,S Cll P, DYl oy, )+ Y. IID*ull 2y, )

la| =2 la] £1

Proof. Choose yeCJ(X) equal to 1 in Y, and set v=yu. Then P(x,D)v
=gel*(X,), D*vel*(X,) when |a|<1, v=0 in X,, and v=0 outside a
compact subset of X. Choose ¢e Cy(R"™') with ¢ 20, [ ¢(x')dx'=1, and set
v,(x)=fo(x'—ey,x,) 9 (y)dy.
By Minkowski’s inequality we have with | || denoting the norm in I*(X )
ID*v < ID*vl, |al=1,

and D*v,eI?(X ) if D* has at most one factor D,, for we can let the others
act on ¢. Since P(x,D) can be divided by the coefficient ¢ of D?, we may
assume that ¢=1. Then

P(x,D)v,—g,= Y (a,D*v,—(a, D“v))
an<2
When |«|=2 we can write D*=D;D, for some j+n and apply Friedrichs’
lemma (Lemma 17.1.5) for every fixed x,. This gives
|P(x,D)v,—g. | =0, &—0.

In particular it follows that D? v,e [*(X,).
By (17.3.4) and (17.3.5) we have

(17.3.6) Y, ID*w, < ClP(x,Dyw, |

el 22
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if w, is the restriction to X, of a function we C3(X) vanishing in X,. If
Tv, is the odd continuation of v, from R" to R" then D*Tv.el? if ¢,<2
(see the proof of Theorem 17.3.1). If we apply (17.3.6) to the regularizations
w of Tv. by convolution with even functions, it follows at once that (17.3.6)
can be applied to w, = v.. When € — 0 we conclude that D®v € L?, |a| <2, and
that (17.3.6) is valid. The proof is complete.

The Dirichlet problem can be solved with great ease and in great
generality by means of Dirichlet’s principle. Consider a differential operator
of divergence form

P(x,D)u=) D(a; D, u)

where (a;(x)) is a real positive definite symmetric matrix which is a con-
tinuous function of x in the closure of an open bounded subset X of R". If
P(x,D)u= f in X the equation is equivalent to the weak form

(17.3.7) (f,v)= [fodx = [T apDuDjvdx, ve€ C§OX).

This condition makes sense if D*ueI?(X), |2} <1, and remains valid then for
all v in the closure H of Cy(X) in H,,(R". If yeCPR") it is clear that
xu € H forevery u € H.If 8X € C! at xy € X we can choose a C! map 1 of a
neighborhood of 0 in R” on a neighborhood X, of x, mapping R" to X
and conclude if yeCy(X,) that w*(xu)eﬁm(lk") and that w*(xu) 0 on
JR", . Conversely, if 0XeC ! and this condition is fulfilled at every boundary
pomt then ucH. (We could also identify H with the space H“)(X) of
distributions in H;,(IR") with support in X, for no such distributions have
support in 8X.) The condition ueH is therefore a generalization to an
arbitrary domain of our previous statement of the homogeneous Dirichlet
condition. The Dirichlet problem can thus be restated as follows: Find ueH
satisfying (17.3.7) for all ve H. This is Dirichlet’s principle.
The solution is extremely simple. Write

O(u, v)=2ajijuD—kvdx; u, ve CY(X);

which is a non-negative hermitian symmetric form. With | || denoting the
I? norm we have

Y iD;ul? = CQu,u), ueCF(X).
The left-hand side is equivalent to 1|u|i(21) since for example
flul?dx=—2Re[x, uda/ox,dx <% [|ul*dx+2[|x, D ul*dx
and this implies
lul?<4ix, D, ul®

Hence (Q(u, u))? is a norm equivalent to full;, on CF(X) and therefore on
H. For every feI*(X) we have

LIS IS IS C QW  veH,
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which proves that there is a unique ueH satisfying (17.3.7) for every veH.
Taking veCy we obtain P(x,D)u=f, and ucH means that the homo-
geneous Dirichlet boundary conditions are fulfilled. We can strengthen the
conclusion if 9XeC? and a,, is Lipschitz continuous. In fact, at any bound-
ary point we can then take a C? diffeomorphism ¥ as above which flattens
out the boundary in a neighborhood. Using Theorem17.3.2 we obtain
D*uel?(X) when |a| <2, and

Z 1D*ull L2y S C Il f W L2xy-

lels2

If ay, f and 0X are smooth it is not hard to deduce that u is also smooth.

We shall finally outline another classical method for solving the Dirich-
let probiem and indicate how it will be modified in Chapter XX. For a
change we shall now emphasize the role of the boundary data. Thus we
assume that X <cIR” is bounded and that 0XeC*®, and we consider the
Dirichlet problem for the homogeneous Laplace equation

(17.3.8) Au=0in X, u=¢ on 0X.
If X were a half space, then the solution given in Section 16.1 would be

u(X)=26§X ¢ (y) OE(x — y)/0n, dS(y)

where E is the fundamental solution given by the Newton kernel (Theo-
rem 3.3.2), n is the exterior unit normal and dS the surface area on dX. This
is just another way of stating the reflection method used to prove Theo-
rem17.3.1. In the general case one therefore tries to find ¢ so that the
double layer potential

u(x)=2 [y (y)0E(x — y)/0n,dS(y)

will satisfy the boundary condition in (17.3.8); u is automatically harmonic
in X. This gives an equation of the form

V+Ky=o

where K is a compact (Fredholm) integral operator. The reason for this is
that K would be 0 if the boundary were flat so K just expresses the
deviation from that case. Fredholm theory was developed precisely to solve
the preceding equation.

If instead of the Dirichlet problem one is interested in the Neumann
problem, that is, the boundary condition du/dn=¢, one obtains in the half
space case the solution :

u(x)=—~2§ () E(x—y)dS().

In the general case one therefore tries a simple layer potential
u(x)=—2 ¥ () E(x—y)dS(y),

and the problem again becomes a Fredholm equation Y+ Ky =¢.
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To carry these arguments over to general operators and boundary con-
ditions is rather cumbersome. First one must solve constant coefficient
problems in all tangential half spaces to find appropriate kernels for the
problem at hand. Then one makes an “ansatz” as above and has to show
that it leads to a Fredholm equation. However, there is a useful modifica-
tion of this approach. By Green’s formula

(17.3.9) u(x)= { uy(y)dE(x—y)/dn,dS— | u,(y) E(x—y)dS
0X [22.4

if u, and u; are the boundary values and the normal derivative of u
respectively. Thus we know u if u, and u, are known. The formula (17.3.9)
defines a harmonic function for arbitrary u, and u, but it need not have
boundary values and normal derivative equal to u, and u,. Indeed, we
know that a harmonic function is determined by its boundary values so u,
=Au, for some operator A4 if u, and u,; are boundary values and normal
derivatives of a harmonic function. The operator calculus which we shall
develop in Chapter XVIII will give a quite explicit representation of oper-
ators such as A. By using the differential equation 4u=0 we can write any
differential boundary condition in the form Byu,+ B, u, =¢ where B, and
B, are differential operators in 0X. Thus the solution of the boundary
problem is reduced to solving the equation (B,+ B, A)u,=¢ in the ma-
nifold without boundary dX. The operator B,+ B, A is not a differential
operator but it belongs to a closely related class of operators to which the
theory of elliptic differential operators, for example, is easily extended.

These remarks are admittedly and purposely vague. We just hope to
convince the sceptical reader that there are good reasons for the introduc-
tion of a fairly large machinery in Chapter XVIII, and that the effort it
requires will be rewarded when we return to boundary problems in Chapter
XX.

17.4. The Hadamard Parametrix Construction

We have seen in Chapter XIII and again in Sections 17.1 and 17.3 how to
extend results on constant coefficient elliptic operators to variable coef-
ficient ones. However, this gives only the existence of fundamental solutions
and information on their continuity as operators. One is often interested in
the precise form of their singularities. We shall therefore present a re-
markably simple and precise construction due to J. Hadamard, which gives
the singularities of the fundamental solution with any desired precision. It is
also applicable in non-elliptic cases where the methods of Chapter XIII and
Sections 17.1, 17.3 fail completely. In the second half of the section we shall
indicate this in a special case needed in Section 17.5. The extension to
general second order hyperbolic equations should cause the reader no
difficulty. (See also the notes to Chapter XXIIL.)
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Let P be a second order differential operator of the form
P=—Y 8/ox;(g’*8/0x,)+) b 8/0x;+c

where g’*, b/, ¢ are C* functions in an open set X <IR" and (g/*) is a real
positive definite matrix. We wish to construct a right parametrix for P, or
rather for P—z when ze€~\ R, since this will eliminate some irrelevant
difficulties in the constant coefficient case. First we assume that P is equal
to minus the Laplacean 4,

A=Y 5%/ox2.

The inverse Fourier transform of (|¢|>—z)~! is a fundamental solution of
— A—z. We shall also introduce the powers, for these occur inevitably when
one makes a perturbation (cf. Section 12.5). Thus we set (in the distribution
sense) for v=0,1, ...

(17.4.1) F,(x)=v1Qm)~"{*=(¢1>—z) "t dE.

It follows from Theorem7.1.22 that F,eC*(IR"~.0), and D*F, is a locally
integrable function also at O when || <2 unless v=0 and |¢|=2; then we
also have a term which is homogeneous of degree —n. It is obvious that F,
is a function of |x|=(x3+ ... +x2)%. It would be easy to give an expression
for F, in terms of Bessel functions, but that would just suggest lengthy

proofs for the essential properties which are easily seen from (17.4.1). They
are first of all

(17.42) (—4—2)F,=vF,_,, v>0; (—A—2)F,=8,;
(17.4.3) —20F/ox=xF,_,, v>0.

(17.42) is obvious, and (17.4.3) follows from the fact that the Fourier
transform of —20F,/0x, is

—2v1iE(EP—2) " L= (v =) (= DY(E)P —2)

We shall keep z fixed in the following discussion and have therefore not
indicated in the notation that F, depends on z also.

As a first step to an extension of (17.4.2), (17.4.3) we pull back the
identities by a linear bijection T in R". If y=Tx then *T0/0y=0/0x so

A,=Y) 0/ox;g™0/ox, if @)=T-"'T-.

Since F, is rotationally symmetric we may by some abuse of notation write
F,(x)=F,(|x]), and then we have F (y)=F(|x[) if

|x'g2=zgjkxjxk

where (g;,) is the inverse of (g’%). Recalling Example6.1.3 we obtain since
(det T)~?=det(g/*)
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(1742)  (=L0,8"0~DF(xl)=vF,_,(x), v>0;
=(detg’tts, if v=0;
(17.4.3y -2 g% 0, F(xl)=x;F,_,(xl), v>O0.

The preceding formulas are valid for any symmetric positive definite
matrix (g¥) but the whole point is that they are applicable also if P has
variable coefficients provided that the coordinates are well chosen. Recall
that the principal symbol ) g/*(x)¢;¢, of P is invariantly defined in the
cotangent bundle. The dual quadratic form ) gi(x)dx;dx, in the tangent
bundle defines a Riemannian metric. As proved for example in Appendix
C5 we can for every point in X introduce geodesic normal coordinates
which vanish there and satisfy the condition

(17.4.4) zgjk(x)xk=zgjk(0)xka j=1...n
k k

This means that the rays through O are geodesics with arc length equal to
the distance in the Euclidean metric

x|y =1xly, 0= 8:(0) x; x*.

We have g,,(x)—g,(0)=0(x|?) and similarly for g’*. Usually one requires
that g,,(0)=4;, which can of course be achieved by an additional linear
coordinate change. However, it will be more convenient for us later on to
require only (17.4.4).

From (17.4.4) we obtain if feC!

Y ®) 0 f(x)=2 g™ @8, f(x7), j=1,....n.

This shows that (17.4.2) remains valid when x40 with g/*(0) replaced by
g’*(x). The same is true at O in the distribution sense, for replacing g*(0) by
g’*(x) can only add locally integrable terms since the difference is O(}x|?). By
the product rule and (17.4.2), (17.4.3) we obtain if u,eC* and v>0

(P—z)(u,F)=vu,F,_+(Pu,)F,—(hu,—2{x,0u,/0x})F,_,/2,
(17.4.5) h(x)=Y g 0)b(x) x, =Y g(x) b (x) x,.
Similarly we obtain if F,(x)=f(x|?)
(P —2)(ug Fy) = uo(0)(det g7 64 +(Pug) Fy—2(hug—2<x, dug/dxD) f".
When we add for v=0,..., N, it follows that

N

(17.4.6) (P—2)> u,F,=uy(0)(det g™ 6, + (P uy) Fy
0

if u, are chosen so that

(1747 2vu,—hu,+2{x,0u,/0xy+2Pu, =0, v=0,...,N,

for this makes the coefficients of f* and of F,, ..., Fy_, all equal to 0. (When
v=0 one should interpret u,_, as 0 in (17.4.7).)



17.4. The Hadamard Parametrix Construction 33

We shall now prove that the equations (17.4.7) have a unique smooth
solution with u,{0)=1; no boundary condition is required for u, when v=0.

Lemma 174.1. Let X be an open subset of R" which is starshaped with
respect to O, that is, xeX =txeX if 0t<L1. If he C*(X) and h(0)=0 then
the equation

(174.8) huy=2{x,0u,/0x)

has a unique solution uye C*(X) with uy(0)=1. If fe C®(X) and v>0 then the
equation

(17.4.9) Q2v—hyu,+2<{x,0u,joxy>=f

has a unique solution u,, € C>(X).

Proof. If we introduce polar coordinates x=rw with weS"~! and r>0, then
(17.4.8) means for x40 that duy/0r=huy/2r. If u,(0)=1 we obtain

r 1
uy(x)=exp (g h{sw) ds/2s) =exp (g h(t x)dt/2t>.

Since h(0)=0 the quotient h(t x)/t is a C* function of (x,1)eX x[0,1], so
u,€C*(X) and u,+0 in X. To solve (17.4.9) we set u,=u,v and obtain the
equation

vutrdvfor=g, g=f/,2u,.

Thus 0(r* v)/or=r"—"' g, which gives
r v(rw)=(j:s”‘ ! g(sw)ds;r” i ' lg(trw)dt.
It follows that
u, (X)=uy(x) 5) Lt x)2uq(t x) dt
is the only solution of (17.4.9); that u,e C*(X) is obvious.

Remark. If b’, ¢ and therefore h are square matrices, the preceding con-
structions work with no essential modification. Only the formula for u,
becomes less explicit. This makes the Hadamard construction applicable to
systems with principal symbol Y g/*(x)&;£, I where I is the identity matrix.
This observation is quite useful, for the Laplacean on forms defined in a
Riemannian manifold is of this type.

Let us now just assume that we are given a second order operator P in
an open set X <cR" with C™ coefficients and positive definite principal
symbol p(x, &)=Y g*(x) &, &,. Then it follows from Corollary C.5.2 that there
is a neighborhood V of {0} xX in R"x X, a neighborhood W of the
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diagonal in X x X, and a uniquely defined diffeomorphism

Va(X, y)— (y(%, ), y)eW

with y(0, )=y, y:(0,y) equal to the identity, and the principal symbol in the
X coordinates

Y EME N E E=p0(X, ), (X))

satisfying (17.4.4). We choose V so that {X;(%X,y)eV} is convex for every
yeX. If (x, y)e W we have a well defined Riemannian distance s{x, y),

s((%,1),9) =0 £x(0,y) X; %)

The square is in C*(W). Pulling the functions u,(%X,y) defined by (17.4.7)
back to W from V, we obtain uniquely defined U,e C*(W) such that

(1746), (P(X, D)_Z); Uv(x’y)Fv(S(xa y))

=(det g™ (y))* 6,(x) +(P(x, D) Uy(x, )) Fy(s(x, ).

This works of course equally well on a manifold. Note that é,(x) is a
distribution density on X which becomes a distribution when divided by the
natural Riemannian density (det g¢/*)~*dx.

Since Fy(s(x,y))eC***1~" the error term on the right-hand side of
(17.4.6) is as smooth as we please when N is large. All terms are C® off the
diagonal. If we choose yeC*(X x X) with support in W so that y=1 in
some neighborhood of the diagonal and set

F(x,y)=x(x, y)% U,(x,y) F,(s(x, ),

it follows that
(P(x, D) —z) F(x,y)=(det g/*(y))* 6,(x)+ R(x, y)

where Re C?¥*+1-" The operator
Zf(x)=[F(x,y)f(y) (detg™(y) *dy

maps &'(X) to 9'(X) and preserves wave front sets. With & defined similar-
ly with F replaced by R, we have

P-2)F=I+R

so & is a right parametrix in the sense that # is as smooth as we wish if N
is large. Taking the adjoint of a right parametrix for the adjoint of P—z we
obtain a left parametrix for P—z also. (A simple argument which we
postpone until Section 18.1 shows that they have essentially the same singu-
larities.) From these facts it is easy to derive for P the results on existence
and regularity of solutions proved in Chapter XIII for general elliptic
differential equations. (In Section18.1 we shall also give a simple general
method for the construction of a parametrix for an arbitrary elliptic opera-
tor.)
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The preceding construction can also be applied to the wave equation
0ot + P

in R"*! associated with P, and this will be essential in Section17.5. If we
replace z by 72 in (17.4.1) and take the inverse Fourier-Laplace transform
defined by

(1741) E,(,x)=v!Qm)~""' [ OI(E2 ) -1dEds

Imt=c<0

in the sense of distribution theory, we obtain a distribution with support in
the forward light cone {(t,x); t=|x|} (cf. (7.4.7)). We have

(1742y" (8*/or>*—A)E,=vE, |, v>0; (8*/0t*—A)Ey=35, o;
(17.4.3) —20E /0x=xE,_,, v>0.
In the following lemma we collect some further properties which will be
required in this section and in Section 17.5.
Lemma 17.4.2. E, is a homogeneous distribution of degree 2v+1—n with
support in the forward light cone,
(17.4.10) E, =272 1g=m/2, »=m2q2 _ 12y p 5,
E, is a C* function of t with values in 2'(R") when t =0, and

HKE(+0,.)=0 when k<2v, O»*1E,(+0,.)=v!4,.
Furthermore,
(17.4.11) WEF(E,—E)={(t,x;1,£); t*=|x%,

?=|¢]?, tx+1£=0},

and E,~E,, 8,(E,—E,) are continuous functions of x with values in 2'**(R) if
k is an integer withk 2 (n —1)/2 —v. Ifk =(n — 1)/2 — v then for x =0

OUE, — E,) = 2%+ 1g(=m/2_1ykp 163 (1) /(2k)1.
3,(E,—E,) is the Fourier transform of {sgnt dey(x,t%), where

(17.4.12) eo(x,72)=2m)™" j ei<=D g,
1€l <zl

Proof. (17.4.10) was proved in Section 6.2 when v=0. Since
(@ /01— A) x4 (& ~|x1?) =(4a+2n—2) y47 1 (£* —|x|?)

by the computations preceding Theorem6.2.1, the recursion formula
(17.4.2)" follows from (17.4.10). By Theorem 6.2.3 the equation (17.4.2)’ has
only one solution E, with support in the forward light cone when E, | is
known. Hence (17.4.10) follows by induction. The statement on the wave
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front set follows at once from Theorem8.2.4 when t+0. When x=t=0 we
just have to note that the wave front set is closed and that

(02/0¢2— AY* 1 (E,— E,)=v!(89,0—60.0)=0;

by Theorem 8.3.1 it follows that 72 =|&|? in the wave front set.

In particular (17.4.11) implies that E,—E, is a C® function of x with
values in &'. Set a=v+(1—n)/2 and let §=|x|2>0. Then 6,(EV—EV) is a
constant times the distribution

d
e =x% Ht*—8)2|t| =t/lt] Ex‘:’ (t2—9).

If ¢ is an odd test function then {e;,,¢>=0, and if ¢ is an even test
function then

(5,090 = —{s0v1,¥),  W(O=¢'(1)21.

¥ is also an even test function, and by Taylor’s formula
sup [y <suplg!*2).

Since e, , and e, , are obviously continuous with values in 2'°, it follows
that e, , is continuous with values in 2% if k and 2a are integers and a
+k=0. We have e, _,=2(—1)k!335/2k)!

E, is the limit when e—»0 of E _,

E, t,x)=2m)~"" ' | O+ —eRIP(1£12 _12)~1 g ¢ dr,
Imeg=—1

Since
ferit/(E)? —t?)dr=2mi%/(—2) (el +e ),

if the integral is taken from —i—o0 to —i+ oo and from i+ oo to i— o0, it
follows that O(E,,—E, )@t is the Fourier transform of
Lsgnte *"de,y(x,72). When ¢—0 we obtain the last statement in Lem-
ma 17.4.2. The proof is complete.

With some abuse of the notation we shall write E (¢,|x|) instead of
E (t,x) in what follows; when t=0 this should be interpreted as the limit
when t— +0. If the coordinates are geodesic in the convex neighborhood
X, of 0, it follows from (17.4.6) with u,(0)=1 that in X,

(17.4.6) (8%/01* + P(x, D))iuv(x)Ev(t,lxlg)
0

=(det g™t §, o+ (P(x, D) uy(x)) Ex(t,|x|,).

The error term is in C* if k< N—(n—1)/2. If |xl,<c implies xeX, then
E,(t,x)=0 for t<c in a neighborhood of {x;|x|,zc}, so (17.4.6)" remains
valid in (—00,c) x X for any X o X, if u, is extended arbitrarily to X.

As in the elliptic case we can extend the construction to general coor-
dinates by taking the pullback by the inverse of the map (t,X,y)
—(t,y(X, y), y) to geodesic coordinates. Then we obtain:
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Proposition17.4.3. For any open YEXcIR" one can choose c¢>0 and
U;e C*(X x Y) such that, with s(x,y) denoting the geodesic distance from x to
y, we have in (—o0,c)x X XY

(17.4.6)" (9%/0t* + P(x, D))i U,(x, y) E, (t,5(x, y))
4]

=(det g™)* 3, , +(P(x, D) Uy(x, y)) Ex(t, (%, y))

When s(x,y)<c the coefficients U; are defined by integrating the equa-
tions (17.4.7) in geodesic coordinates, and when s(x,y)>c their definition is
irrelevant.

If the coefficients of P are in C*(X) and P remains elliptic in X, we can
extend the coefficients to a neighborhood of X and then take Y=X.
However, the situation is much more difficult when we want to construct a
parametrix for the mixed problem for the wave operator 6%/0t*+P in
R x X with Dirichlet data on 0X. Then Proposition 17.4.3 can only be used if
t <d(y), where d(y) is the geodesic distance from y to 0X. If P=—4 and X
is a half space, then the “Green’s function” with pole at (0, y) introduced in
Theorem 12.9.12 is just E,(t,x —y)— E,(t, x — y*) where y* is the reflection of
y in 0X. We shall prove that this construction can be modified in a manner
completely analogous to (17.4.6)” when ¢ is not larger than a fixed multiple
of the distance d(y) of y from the boundary. It is possible to extend the
construction to all ¢ which are small compared to d* which has to be
assumed in order to guarantee that no light rays emanating from y arrive
tangentially at the boundary. However, this is more laborious and will not
be essential in the application in Section 17.5.

Before proceeding it is useful to rephrase the existence of geodesic
normal coordinates as the existence of an exponential map. Given

P=—% 08/ox(g’*0/0x)+ ) b 0/0x;+c

in X =R" we define again the Riemannian metric )’ g;(x)dx;dx, where (g;)
is the inverse of (g/*). When yeX and s is a tangent vector at y with small

norm,
Islg,y = ‘S|y =(Z gjk(Y)Sjsk)%

then one defines exp,s as the point at distance |s|, from y on the geodesic
with tangent vector s at y. If we introduce geodesic normal coordinates at y,
then this becomes the identity map. Hence it follows that

()~ (y, exp, )

is a diffeomorphism of a neighborhood of the zero section in the tangent
bundle of X on a neighborhood of the diagonal in X x X. (The right setting
for this is of course a Riemannian manifold.)

Let us now consider a Riemannian manifold with boundary, or for
simplicity an open bounded subset X of R" with C* boundary dX. We
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assume that g/*e C*(X) and choose some extension of g’* to a neigh-
borhood of X. When the geodesic distance d(y) from y to 0X is sufficiently
small and [s|,<4d(y), say, we shall then define a reflected exponential map
as follows. First we start from y on the geodesic with direction s. If the
boundary 0X is encountered at a distance <|s|, we shall prove that the
intersection is transversal and that continuing on the geodesic with direction
obtained by the usual law of reflection to a total arc length [s|, we obtain a
point exp; s with the standard properties of the exponential map. (In the flat
case discussed above it will be the point (y+s)*.) In particular, (17.44) is
valid for the metric in X when these coordinates are used. When |[s|, =2d(y)
and s has the direction of the geodesic from y minimizing the boundary
distance, we obtain exp}s=3y.

To simplify the discussion of the reflected exponential map we assume
that X is defined by x,=20 in a neighborhood of 0eR"” and that the
coordinates are geodesic with respect to the boundary plane 6X defined by
x,=0 (Corollary C.5.3). Thus

gin=0 for j#n, g, =1

Let K, be a compact subset of dX. Translating and changing scales we
obtain the metric G’ defined by

Y 2a(V,0)+y,x)8;S, =IS)E>

If (y',0)eK,, this is defined in any desired bounded subset of R" when y, is
small enough, and when y,=0 we obtain a flat metric with no cross
products between dx, and dx; for j+n. The point y corresponds to the fixed
point II=(0,...,0,1). The exponential map

B’ ={SeRR"; |S|;<4}3Sr>expyS

corresponding to G* is a C* function of (S,y). For y,=0 it reduces to S
S+11, so for fixed small y, it is a diffeomorphism in a neighborhood of
B9, The n™ coordinate F(S,y) of exp}S is equal to 1+S, when y,=0.
Hence the zero set of this function is a C*® hypersurface close to the plane
§,= —1 which divides B” into the starshaped inverse image B’, of X and
the complement BY =B’~ B’, mapped to [X. When SeBY the equation
F(A4S,y)=0 has a unique solution A(S, y)e[0,1]; it is a C* function equal to
—1/8, when y,=0. The point of reflection

x(S, y)=expp(A(S, y)S)

is therefore also a C® function of S and y, and so is the tangent T(S,y) of
the geodesic there. When y,=0 it is equal to S. Let T(S, ) be the reflection
of T(S,y) in the tangent plane of dX at x(S, y), which just means a change of
sign for the n'" coordinate. Then our reflected exponential map is defined by

expy’ S =expls , (1 -4, y) T(S,y),  SeB’.
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Vn

Fig. 1

For small y, this is a C* function of (S, y) and it reduces to
S(Sy,..sS,_ 1, —1=8,); S, -1, |Si<4;

when y,=0. Note that the reflected exponential map gives another coor-
dinate system in a neighborhood of II. (See Fig. 1.)

The differential with respect to S of the total length {S|}; of the broken
geodesic from II to x(S,y) and on to Y(S,y)=expy’S is equal to the
differential of the length of the geodesic from x(S,y) to Y(S,y) when x(S,y)
is left fixed, for the reflection law means that it is stationary with respect to
variations of x(S, y). Thus the surface {exp};”S;|S|; =R} is orthogonal to the
geodesic from x(S,y) to Y(S,y). For the metric G™” in B’ obtained by
pulling the metric G* back from X by the reflected exponential map expj’,
the rays through O are therefore geodesics with arc length |S[}; and they are
orthogonal to the spheres |S|};=constant. But this means precisely that G"”
satisfies (17.4.4). We can therefore use the Hadamard construction with
these coordinates in (¥ =expp’B® to construct the reflection of the para-
metrix of P at y.

To do so we first rewrite (17.4.6)” in terms of the stretched coordinates.
Set

B(x,D)=—) 3/0x (g™ ((y/,0)+ y,x)8/0x,)
+ Y, 2. by, 0) + y,%) /0% ;4 y2 (', 0) + y,.x))-

Then (17.4.6)"”" means that

N
(6%/0¢> + B(x, D) ¥, U((Y', 0+ y,x, Y) E (¢, (x, M) yz*
0

=(det g’(y))* 8o,y +(B(x, D) Uy((¥', 0) + y, x, »)) En(t, 8 (x, M) y2"

Here s'(x,II) is the G’ distance from IT to x, and we have used that the
Dirac measure in R"*! is homogeneous of degree —n—1 and that E, is
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homogeneous of degree 2v+1—n. Let Q, be the operator B, pulled back to
B” by the reflected exponential map. The coefficients of Q, are C* func-
tions of (x, y), and when y,=0 we have

Q,=Y.g™(v',0)) 6°/x;0x,.
Now we determine v,e C*(B” ) so that
(17.4.7y 2vo,—H,v,+2(8,dv,/65>+2Q,v, ;=0

where H is defined by (17.4.5), for the operator Q, of course. To satisfy the
Dirichlet boundary conditions we must impose the boundary conditions

(17.4.13) v,(8)=y2" U (v, 0) +y,expyS,y), SeBy,

where B} =B"n0B>.. It is clear that this determines all v, as C*™ functions
of (S,y). When y,=0 we obtain v,=1 and v,=0 for v+0. Define V,(.,y) in
€ so that the pullback by exp}y’ is v,, and set

(17.4.14) &N x,y) =§: (U, 0)+ y,x, y)y2 E (t,5(x, IT))
- Vv(x7 y) Ev(t’ Sr,y(x’ H)))’ ery,

where s"¥(x, II) is the reflected G’ distance from IT to x. Let Q be the set of
all (x,y) with xe€’ and y in a small neighborhood w of K<dX. Then we
have &¥(t,x,y)=0 in the sense of distribution theory when x,=0, and

(17.4.15) (92/04 + B(x, D)) €%(¢, . y)
=(det g*(M)* 8, , + (B(x, D) Up((¥',0) + y, X, ) y2" Ex(t, 5" (x, IT))
—(B(x, D) Vy(x,y)) Ex(t, s (x, II));  (x,y)eQ.

Note that the error term becomes arbitrarily smooth when N is large.
Summing up, we have proved

Proposition17.44. Let K, be a compact subset of dX. Then K, has a
neighborhood w in X such that (17.4.14) for every N defines a parametrix &Y
for the Dirichlet-Cauchy mixed problem in Q={(x,y); yew, s"’(x,IT)<4}
when t<4; this means that &"(t,x,y)=0 when x,=0, in the distribution sense,
and that

(17415  (0*/0t* + B(x, D)) &"(t, x, y)=(det g*(y))* 6,y + Ry(t, X, ¥)

where Rye C* when u<N —(n—1)/2. The coefficients V,(x,y) are C* functions
of (x,y)eQ, and Vy(x,y)=1, V,(x,y)=0 for v+0 when y,=0.

Since the coefficients of the incident wave in (17.4.14) vanish as y2* when
y,=0, and differentiation with respect to x increases the order of the zero,
one might ask if the last statement can be improved. However, this is not
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possible. To see this we shall carry out the proof of Proposition 17.4.4 to
first order in y,=0 when y'=0. We may assume that the metric is Euclidean
at 0 and geodesic inside the boundary, hence

G’=Y dx?—26x,H(dx)

where = means equality mod O(6%). Here the quadratic form H is the
second fundamental form of 6X at 0 with normal oriented towards X.
Since only the second fundamental form at O is important, we can as well

do the calculation in IR" with the metric ) dx} and X defined by

x,>0H(x")/2, for this gives rise to a metric G* of the preceding form when
one takes geodesic coordinates with respect to 6X. We may assume that
H(x)=Y H jxf where H; are the principal curvatures, and we shall write
H(x')={x',Hx") with H diagonal.
The first step is to find A so that (1S, 1 +AS,)ed X, that is,
1+1S,=30H(AS)/2.

Thus AS,=—1+0(d) and AS,= —1+06H(S'/S,)/2. The reflection takes place
at x=(4S',0H(4S')/2). The normal is there (-6Hx',1)=(6HS'/S,,1), with
length =1. The reflection S of S in the tangent plane is

S=S—2(8H(S")/S,+S)HS'/S,,1)=(S'—26HS', —S,—~25H(S")/S,).
Thus

expy’S=(S'-2(1+1/S,)6HS’, —1—S,—dH(S)(1/S> +2/S,)).

The pullback Q of A4 by this map is equal to the pullback by the map S+—
S+ 6y(S) where

Y(S)=(—-2(1+1/S,)HS’, (1/S} +2/S,) H(S"),
hence
Q=44—96 Z 6/OSjwjk6/85k+5 Z a? l//j/asjask 0/08,

where Y ;,(S)=0y,/0S ;+ 0y ;/0S,. The function h in (17.4.5) becomes
0 8,0%y;/08,;08,=25(Tr H+H(S'/S,))/S,.
The first transport equation is in polar coordinates
2r 0vg/0r =hv,

with boundary condition vy=1 at AS. Thus v,=1+Jw, where 2rdw,/or
=2(TrH+ H(S'/S,))/S,, wo=0 when S, = —1. This gives
wo=—{(Tr H+H(S'/S)(1+1/S,),
Qvo=04w,=0(—2Tr H(S,+2)/S? — 6 H(S')(S, +2)/S2).
The next transport equation (2rd/dr+2)v, —hv,=—2Qu, with boundary

condition v, =0 when S,= —1 has a solution O(d) so we can drop the term
hv, and integrate explicitly to get

v, = —26(Tr H +3H(S'/S,))(1 +8,)/S>.
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Inductively we obtain for v>0
(17.416) v,=—82"Qv-DINTrH+Q2v+1)H(S'/S)(1 +8,)/S2"+1.

In particular, taking $'=0 and S,== —2 we obtain

Proposition 17.4.5. For the reflection coefficients V, in (17.4.14) we have when
¥a=0
OV,UL y)/0y,= —27""12v= DI F(y)

where F(y') is the mean curvature of 0X at (y',0). Here (—1)!! should be
interpreted as 1.

17.5. Asymptotic Properties of Eigenvalues and Eigenfunctions

As in Section 17.4 we denote by P(x, D) a second order differential operator
of the form

P(x, D)= —Y. 6/6x (g"/ox,)+ . bIojox,+c

with coefficients in C*(X) where X is a bounded open subset of R" with
C*® boundary. We assume that (g/) is real and positive definite in X and
that P is symmetric with respect to a density Ydx with 0< Ye C*(X),

(17.5.1) (P(x, Dyu,v)y =(u, P(x,D)v)y; u, ve CF(X),

where
(u, )y =fudYdx.

(The density simplifies coordinate changes but should be disregarded as
otherwise irrelevant.) Let 2 be the operator defined by P(x, D) in L3(X) with
Dirichlet boundary conditions. As explained in Section17.3 we have ue9%,
if and only if P(x, D)u=felI? and u is in the closure H of Co(X) in H,(X).
Then we have ‘

Y (g™ Dyu, Do)+ Y. (W o,u,v)+(cu,v)=(f,v); ve H.

If ve2, we conclude using (17.5.1) that (Pu,v)y=(u, #v),. With v=Yu we
obtain

YAIDull?+ ull? S C(Pu,u)p + Cylul®s ueDy;

where || || denotes the I? norm in X. Hence 2 is closed. As in Section 17.3
it follows that P+ C,/C, is bijective from 2, to I[?, which proves that 2 is
self-adjoint. If P(x, D) is replaced by P(x, D)+ C,/C, we do not affect any of
the statements on the eigenfunctions proved below, and then we have

(17.5.2) lulld) S Cy(Pu,u);  ueDy,;
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where we have used the notation

lullgy= Z ID*uli?.

al £k

From now on we assume that (17.5.2) is valid. We shall also write ﬁ(k)(X )
for the set of all u with D*uelI?(X), |«| <k, and with the norm just defined.
By Cauchy-Schwarz’ inequality and (17.5.2) we have

1752y ull £ Cil1Pull, ueD,.

In Section  17.3 we proved the stronger estimate (17.3.6), and we shall
elaborate it further as follows.

Lemma17.5.1. If ue9, and g’ueH(k)(X )} where k is a non-negative integer,
then ueH(k+2)(X) and

(17.5.3) Nl s 2y ClPutll )y uEDy.

Proof. For k=0 this follows from Theorem17.3.2. When k>0 we may
assume that the lemma has already been proved with k replaced by k 1. If
¢ CY(R") we then obtain

12(@w)l gy =sup ol | Pully+ Cllul o, 1= C' 1 Pul ).

Hence it suffices to prove (17.5.3) when u has support in a coordinate patch.
We can then assume the coordinates chosen so that X is there equal to the
half space x,>0. If j<n then Djueﬁ and PDju=D;Pu+iF;u where F; is
also a second order operator. Hence (17.5.3) with k replaced by k—1 gives

1D; ””(k+ 1)<Ck (1D; g’u”(k 1)+]]“|](k+1))< C’W’ullm

This gives the desired estimate for all D*u, |a|=k+2, except D**2u. Now
the differential equation gives

Diu=@E") (= ¥ Dig*Diu)+...+ Pu)
Jok#n,n
where dots denote lower order terms, so the estimate of D:*2u follows at
once. The proof is complete.

A useful consequence of (17.5.3) 1s that, with new constants,

(17.5.4) [l oS CelPrull,  ueDp.
This is clear if k=1. If k>1 and (17.5.4) is proved for smaller values of k,
then
n'@u”(zk_z)é ClekuH, U€D px,
and (17.5.4) follows from (17.5.3).

Already the estimate (17.5.2) implies that £ has a discrete spectrum, and
2 is positive by (17.5.2). In fact, if E, is the spectral family and u=E,u, then
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[Pul| £Alull so |ull,<C,Allull by (17.5.2). The set of all such u with
|ul <1 is compact in I? by Theorem 10.1.10. Thus E,I[*(X) is a finite
dimensional space (see e.g. Lemma 19.1.4). Let ¢, ¢,,... be an orthonormal
basis in L% for the eigenfunctions such that 0<4,<1,<i,<... for the
corresponding eigenvalues. Then the kernel of E, is ¥{y) times

(17.5.5) ey )= 3, ¢,x)8,0).

and ¢;e C*(X) since qﬁjeﬁ(k)(X) for every k. Here we have used a supple-
ment to the Sobolev lemma (Lemma 7.6.3) which will also give an estimate
for the spectral function e:

Lemma 17.5.2. If v4+n/2 <k then ueH(k)(X) implies ue C*(X) and
(17.5.6) A3 sup |D*ul? < C(lulldy+ A4ul?®), Azl

lef=v

Proof. Decomposition of u by a partition of unity shows that it is sufficient
to prove this when u has support in a coordinate patch, so we may assume
that X=R" and that « has compact support. By Theorem B.2.1 it suffices
to prove (17.5.6) when ue CX(R"). Then we shall even prove that

(17.5.6) A =Fsup DU CC Y IDPull* + 2 ul?),  Jal<v.
6=k

Taking A*x as a new variable we see that it suffices to prove the estimate
when A=1. Then we first prove that

(17.5.7) Y 1Diul? < C(IDjull? + Jlull?).

This is clear when k=1. To prove (17.5.7) for k=2 we observe that

o0

F QPP =102 +ol?)de= [ |v" +0 +v]2dt +|v(0)+v' ()%, veCIR ).
0 4]

It suffices to prove this when v is real valued, and then we have
vri2 _v/2 + DZ _(v// + U/ + U)2 =(U” + U/)(v// _v/ _U” __U/ . 2U)= _ 2(0” + U/)(U + U,).

(a deeper reason for this identity is that &*—¢2+1=[¢2—if—1]%, feRR,
where (2 —if—1 has its zeros in the upper half plane.) Hence we obtain
(17.5.7) with k=2 and C=2. Changing scales we have with I* norms on
(0, ) :
v <elp"|?+e ol &>0,

which proves that ||v'[|><2||v”|| |vll. If now (17.5.7) is proved for a certain
value of k, we obtain when applying it to D,u

k+1

Y IDjul* < CUIDE* tull®+ 1 Dul ) < CUIDL* Hull® + 2 [ull | D ull).
1
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Since 2C|ull|{D?ul| <||D?ul?/2+2C*|lul?, we obtain (17.5.7) with k re-
placed by k+1 and another C after cancellation of {|D?u|?/2.
Using Parseval’s formula for fixed x, we can strengthen (17.5.7) to

(17.5.7y Y ID*u*< C(|Z- ID*ull® + [[u]}?).

lel =k al=k

This is obvious if «,=0 in the two sums and follows without such a
restriction if we then use (17.5.7). The proof of (17.5.6) is now reduced to
proving the estimate

sup [ul?< Cllullgy, ueHgR%),

Xp>0

if k>n/2. By Corollary B.2.6 it follows from the same result in H,(IR")
which is precisely Lemma 7.6.3. The proof is complete.

We can now prove a crude but useful estimate for the spectral function.

Theorem 17.5.3. There are constants C, such that

(17.5.8) D2 e(x,y, )| S C A2 x, yeX.

Proof. Let feI? and apply (17.5.6) to u=E, f with 2k>|x|+n/2. Since
[l < Cill P ul < CAI S
by (17.5.4), it follows from (17.5.6) that

ID*E, f(x)|>< C, A"+ £1]%.
Here
DE, f(x)=(f,8)y=(E, f. 8y, &()=Dlelx, 1)

Thus E,g=g and ||g||?< C,A®+"2 Now |P*g|| < i*||g|| so (17.5.6) gives
IDSg(y)I? < Copall 1Al +r
which completes the proof.
An immediate consequence of (17.5.8) is that if N(1) is the number of
eigenvalues <4, counted with multiplicities, then
N =TrEy = [ e(x,x, )T (x)dx = OO\"/?).

where Tr denotes the trace. (We just have to integrate the definition
(17.5.5).) The goal of this section is to prove rather precise asymptotic
properties of N(4) by estimating e(x, x, A1) first in compact subsets of X and
then at the boundary.

Remark. If the coefficients of P(x,D) are just in C*(X) and £ is any self
adjoint extension of P(x, D) with domain C{ which is bounded from below,
then a slight modification of the proof of Theorem 17.5.3 shows that E, has
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a C*™ kernel satisfying (17.5.8) on compact subsets of X x X. If dX has a
smooth part w, the coefficients of P(x,D) remain smooth in X Uw, and the
domain of # contains the smooth functions with support in X Uw vanishing
on w, then (17.5.8) remains valid on compact subsets of (X Uw) x (X vw). In
these circumstances 2 may not have a discrete spectrum so (17.5.5) is no
longer meaningful. However, the results proved below on the spectral func-
tion remain valid.

Although the aim is to study the kernel of E, we shall first examine the
kernel of another function of 2 which is easier to approach. A particularly
convenient choice is the cosine transform of the spectral measure

cos(t)/2) =T cos(ty/4)dE,.

To identify the kernel of this operator we take ye%(R) and feCg(X)
which gives

[ (cos@VP)f, e ¥(t)dt= [ Y(t)dt [cos(t/A)de(f, ], 1)
where
e(f, L )=(E, f, N)y=[e(x,y,2) f(x) f() Y(x) Y(y)dx dy

is an increasing function of 1 bounded by | f||%. Interchanging the orders of
integration we obtain

T (Cos(tV/P) . )y (0 di

LB/ + $(—VR)de(f, £, A) = %fw(r) (=) de(f, £, 7?)

§§ £0) FO) Y(x) Y(y)dxdy g W@ +P(—1)d,elx,y,7%)/2.

The last interchange of orders of integration is obviously justified if e Cg.

Hence the distribution kernel K(t,x, y)e 2'(R x X x X) of fr—»cos(xﬁ}f is
the Fourier transform with respect to 7 of the temperate measure dm(x, y, 1),

(17.5.9) m(x, y,7)=Y(y)(sgn t) e(x, y, v*)/2.
That this is a temperate measure follows by polarization from the fact that
lal? e(x,x,A)+abe(x, y, ) +abe(y, x, 1) +|b|® e(y, y, A)

is increasing and O(4"?) (by Lemma 17.5.3) for arbitrary complex a and b. If

we can get good information on cos(t)/#) then inversion of the Fourier
transformation should give the desired results concerning e(x, y, 4).
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If feCy then u(t,x)=cos (tﬁ) f(x) is equal to f when t=0, we have
0u/0t=0 when t=0, and

1(@/0tY P*ul| SNPH*!S |
for arbitrary positive integers j and k. In view of (17.5.4) and Lemma17.5.2
it follows that ue C*(R x X) and that u=0 on R xdX. Furthermore, we

have
(P+0%/0t*)u=0.

Using the parametrices constructed in Section 17.4 and the initial conditions
u=f and O0u/0t=0 when t =0 we can therefore reconstruct 4 approximately.
Before writing down the approximation we prove a lemma which will allow
us to estimate the error.

Lemma 17.5.4. Let ve C*([0, T] x X) be a solution of the mixed problem
P+ w=h in[0,T]xX; |
(17.5.10) v=0 in[0,T]xd0X;
v=0v/0t=0 ift=0.
Assume that 3'h/0t! =0 when t=0 if j<k. Then it follows that
k+1 t k—1
(17.5.11) %: D5~ ot, M = Ci (f IDSh(s, )l ds+ %: HDf_.l‘jh(t,-)H(,))-

[o]

Proof. If k=0 the assertion is a standard energy estimate proved as follows.
Since (P 0v/0t, v), =(0v/0t, Pv)y, we have

2 Re(h, dv/0t)y=08/0t(||0v/0t]|E+ (P, v)y).

Integration from O to t gives in view of (17.5.2)
t
10v/0tl3+ l0llZ)/C, S2M [ lIACs, )ir ds,
0

M?= sup |0v(s,.)/dsl2+ [[v(s, )IZ,/C.

0<sst

The same estimate holds for smaller values of ¢, so
t
M2<2M | l|h(s, )y ds.
4]

which proves (17.5.11) when k=0. If k>0 we have 0?v/0t?=h—Pv=0 when
t=0. If (17.5.11) is proved for smaller values of k we can therefore apply
(17.5.11) to dv/dt and obtain (17.5.11) with the term for j=k+1 missing in
the left-hand side. Now it follows from (17.5.3) that

ot Mg 1y S CIPOE - 1y S CUIAE M e 1)+ 1DF0(E ) - 1)

which completes the proof.
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Choose ¢>0 so that (17.4.6)” holds for all (x,y)eX x X at geodesic
distance s(x,y)<c. Let d(y) denote the geodesic distance from y to dX and
?16:[/ fg)j {yeX;d(y)>p} for some p<c. If yeX, and t<p the parametrix in

N
€t x,y) =Y U,(x, ) E,(t,5(x,))
0

is well defined when xeX and vanishes near 0X. If fe C3(X ) then

u(t,x)={ &(t, x, y)(det g™“(y)) " f(y)dy

is in C([0,p]x X); u=0 in [0,p]xdX and u=0, du/dt=f when t=0.
Moreover, u depends continuously on f in the C* topology. This follows at
once from Lemma 17.4.2 if we introduce instead of y a new variable z with
exp,z=x, for then we obtain a sum of terms with E (t,z) acting on a C*
function of z and x, as a function of z. Thus

v=cos(t V' P)f — du/ot
has zero Cauchy and Dirichlet data, and by (17.4.6)"”
h(t, x)=(P(x, D)+ 8%/dt?) v(t, x)
= —JORy(t, x, y)/Ot(det g (y)) ¥ f (y) d,
Ry(t,x,y) = (P(x,D)Un(x,y))En(t,5(x,y)).

By Lemma17.4.2 we have RyeC**! if N>k+(n+1)/2, and for |a|<k we
then obtain
D% ., ORy(t,x, )/ot| < C $2N=n—la|

Since s(x, y)<t in the support it follows that

k-1

t
FIDEh(s, M ds+ 3 NDE I h(t, M= CEN T4 | fli .
0 0

Hence Lemma 17.5.4 gives

ot Mgy 1y + 1D, 0 )y S C?N+1-dn—k Il 20,

We may replace k by 0 here. If |¢|+3in<k+1, hence if |a|+n+1<N, we
obtain using Lemma 17.5.2 with A=t~ that D% v is continuous and that

(17.5.12) IDgv| S CeN el g,

provided that at most one derivative is taken with respect to t. This

restriction is removed at once by means of the equation 8> v/dt> =h—Pu.
Set ~

Ky(t,x, y)=dm(x, y,1)— &,(t,x, y)(det g*(y) ", t>0,

which is a continuous function of ¢ with values in 2'(X x X ). If we replace
f by D?f in the proof of (17.5.12) we obtain

D%, Kn(t;x, ), DPf ()] S COoN -l blom £
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if la+pB|+n+1<N. Choose yeCYP(R") with j'xdx=1 and set y.(x)
= y(x/e)/e". Taking f(y)=y.(z—y) we then obtain

D%, (Kylt, X, ), g (z— IS CPN =" ol +n+1<N.
Letting ¢ —0 we conclude that K,e C¥~"~2 and that
!Da KN(t7x>y)|§Ct2N_lal_ns |a|§N_n_3

X, ¥,

Since dm is even we obtain the same result when ¢ € IR with K ~(t,x,y) replaced

b o~
y dm(x,y,0)— 3,(8(—t,%,y) — & (—1,x, y)¥det g(y) ~*.

Here all terms are continuous functions of (x, y) with values in Z'(R) so we
can put x=y and obtain

Theorem 17.5.5. Let 2 = {(z,x) € R x X |t| < min(d(x),c)}. Then
dm(x,x,0)—= Y O,(E,(t,0)—E, (t,0)) U,(x, x)(det g*(x))~*

2v<n
is in C®(Q) if n is even, and in C*(Q) after division by |t| if n is odd. All
derivatives are bounded in Q. For t =20 the Taylor expansion with respect to t
is in both cases
Y. 8.(E,(t,0)—E, (5, 0) U (x, x)(det g™ (x)) .
2vzn
Here U,(x,x) are the coefficients in Proposition17.4.3 restricted to the diago-

nal, so they are polynomials in. the coefficients of P, their derivatives, and
(det g/(x))~ .

It follows from Lemma 17.4.2 with the notation (3.2.10) that
0,(E,(t,0)—E,(£,0)) =22 g1 =™2 ¥ ="/T'(y 4 (1 —n)/2)

if n is even; when n is odd we just have to replace ¢ by |t]| unless 2v=n—1
—2k where k is an integer =0; then we have

0,(E(t,00—E, (t,0)=2-2" a1 =2 (— 1) k15@0 /2 k) 1.

This is clear when t+0 and follows at O since the left-hand side is homo-
geneous of degree 2v—n and even in t, so a distribution with support at 0
can only occur in the last case which was discussed explicitly in Lem-
mal74.2.

If the Fourier transform of a measure du is known in an interval I, then
we can compute the convolution of du with any function ¢ such that supp ¢
<. The following lemma will give some estimates for du which can then be
obtained. We denote by ¢ a positive function in #(R) with | ¢(r)dt=1 and
supp ¢ =(—1,1), such as ¢=|y|?+|y|?> where Je CP(—1%,1) and the I? norm
of ¥ is 1. Set ¢,(t)=¢(t/a)/a, a>0, so that ¢, (t)=d¢(at) has support in
(~1/a,1/a).
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Lemma 17.5.6. If p is an increasing temperate function with u(0y=0, and v is
a function of locally bounded variation such that v(0)=0 and
(17.5.13) ldv(t S My (] +ap) ' dx,

ldp—dv)xo, (=M, (1|+a,), 1R,
for some ke[0,n—1] and ag=a, a, =a, then
(17.5.14) |u(@)—v (@I < C(My a(tl+ap!~ 4+ M, (| +a) (7l +a,))

where C only depends on x and n.

Proof. Choose ¢,>0 so that ¢ >c, in (—3,%). Then

t+3%a

coa”! f% dusdpx ¢ (=M (| +a,)*+ Cy Mo(ltl+a0)" ",

since
[@as)t—sl+ap) " ds=[P(s)(t—as|+ap)~'ds
S(ltl+ae) ' o)1 +1s])* ds.
From this estimate it follows that
colu(@®)—pr—as) a(s|+1)(C, My(lt) +ap+alsly" !
+M (| +a; +alsl))

if we divide (0,s) into <|s|+1 intervals of length <1. Multiplication by ¢(s)
and integration yields

() —pxd ()= Cra(Mo(tl+a0)" " + M (7] +a,)).

The first part of (17.5.13) gives such an estimate with u replaced by v and
M, replaced by 0. Since integration of the second part of (17.5.13) from 0 to
7 proves that

e —v)*¢, (1) = (u—v)* ¢, (O =M, ||(t| +ay),
the estimate (17.5.14) follows.

In the following theorem e,(0,4) is defined by (17.4.12), hence equal to
(27)~" A"? times the volume of the unit ball.

Theorem 17.5.7. For the spectral function e(x,y,A) of the Dirichlet problem in
X we have, if d(x) is the distance from x to 0X,

(17.5.15) le(x,x, ) Y'(x)—e,(0, A)(det g/*(x))~ ¥ < CA"2/(1 +d(x) A?).

Proof. We shall apply Lemma 17.5.6 with a=1/min(d(x),c) and
p(m)=m(x,x,7)=Y(x)sgnze(x,x,t%)/2
v(t)=sgn 1 ey(0,72)(det g™*(x))~ /2.
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By Lemma17.4.2 the leading term in the expansion of j,t\t given by Theo-
rem17.5.5 is the Fourier transform of dv; the other singular terms are
Fourier transforms of [t["~!~?' times smooth functions of x for 0<i1<
(n—1)/2. Hence (du—dv)*¢, is the sum of the regularizations of these func-
tions and a bounded function, so (17.5.13) is valid with x=max(n-3,0).
Hence (17.5.14) is valid which proves (17.5.15) when d(x)A*>1. Since
(17.5.15) is a consequence of (17.5.8) when d(x) A* <1, the proof is complete.

Corollary 17.5.8. If N(A) is the number of eigenvdlues <4 of the Dirichlet
problem in X, then

(17.5.16) IN()—(2m)~" C, vol(X) M2 < C A"~ D2 Jog }

where vol(X) is the Riemannian volume of X and C, is the Euclidean volume
of the unit ball.

Proof. Since
N@)=[e(x,x,4) Y(x)dx

X
we obtain (17.5.16) by integration of (17.5.15).

(17.5.16) is a vast improvement compared to our earlier bound N(A)
=0(A"?). However, we shall show now that the factor logl can also be
eliminated. The interest of this improvement is that an example below
shows that the error term O(A"~1/2) is sometimes optimal. We shall also
show that the boundary X has an influence proportional to A"~*¥2 and to
its Riemannian volume.

The main point is an extension of Theorem 17.5.5 which gives better
information at 6X. To state it we first introduce the map

X x [0,c]a(x, ) x(x’, 6)e X

such that é+— x(x’,d) is the geodesic with arc length  normal to 0X at x’
when 6=0. For small ¢ this is a diffeomorphism on a neighborhood X, of
0X in X. We shall denote the inverse by x> (p(x), d(x)). Thus d(x) denotes
the geodesic distance from x to 0X as before, and y(x) is the point on dX
with geodesic distance d(x) to x.

Theorem 17.5.9. If ¢ is sufficiently small and xeX,, 0<t<c, then

(17.5.17) e dmix,x, )=1(x,0)~ L, (p(x), d(x)/t, 1)

where _
(i) 1,eC®(X x[0,c)) and the Taylor expansion at t=0 is given by

Y272 g =mZ2 2Y( (v +(1 —n)/2)) " U, (x, x)(det g/*(x))~*
with U, defined in Proposition17.4.3;
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(ii) 201 in the support of 1,(x',0,t) and 20=1 in the singular support,
p—1
I, (x,0,8)= 3, V,(IT,x(x',0t)(det g/ (x(x', 01))) "+ 6~ " E}(1,26)
0

eCoX x[3,11x[0,c)), k<u—(n—1)/2,
with V, as in Proposition17.4.4 and E.(t,x)=0E (t,x)/0t. Moreover, I,(x',6,0)
= Eq(1,20)(det g’*(x', 0)) .

Before discussing the proof, which we cannot complete until Chapter
XXIV, we shall apply Lemmal7.5.6 to draw conclusions concerning the
spectral function.

Theorem 17.5.10. For the spectral function e(x,y,A) of the Dirichlet problem in
X we have

(17.5.18)  le(x,x, ) T(x) — (eo(0, X) — eo(2d (x), M)(det g ()~} |

S CAPOE +d(x)~ 1y
Here and below we sometimes write ey(6, \) instead of ey(y, ) when |y| = 6.
Proof. When d(x)>c>0 this is a consequence of Theorem 17.5.7, for

(17.5.19) leo(2d(x), DI < C272(1 +d(x) 4%)=+ 12

by Corollary 7.7.15, and the right-hand side is O(A"~/2/d(x)). When d(x)<c
we shall use Lemma 17.5.6 with a=1/c fixed and

p(t)y=m(x,x,7)=3 Y(x)sgnre(x,x, 2,
V(1) =350 1(eq(0, %) —e,(24d(x), 7) Vo (I1, X)) (det g'(x)) 2.

From (17.4.12) it follows that

ldeo(x,72)/del=2m)™" [ €&<=dS|
where dS is the Euclidean surface measure.léli—lelr'lce

|deo(x, T3 S Clt|"~dr

where (2n)" C is the area of the unit sphere. This proves the first part of
(17.5.13). The theorem will follow if we prove that
(17.5.20) l(dp—dv)* ¢ (D) £ C(lt]+d(x)~ )2
In fact, V,(IT,x)—1=0(d(x)), and d(x)e,(2d(x),7*)=0(x""1) by (17.5.19).

The proof of Theorem 17.5.7 gives the bound C(1 +1z])"~2 for the inverse
Fourier transform of

B(e/e)(dm(x, x,0)— =" I, (p(x), d(x)/t, )
— (Ep(t,0)+ Ey(—t,0))(det g) %),

What remains is to estimate the inverse Fourier transform of

B(t/c)t ™" (I, (y(x), d(x)/t, 1)~ Vo (11, %) Eg (1, 2d (x)/r)(det g™ ) ).
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When 0<6 <4 and x,=d(x) then
£ dm(x, x, 1) — (Ep(1,0)— Vo (IT, x) Ep (1, 20)) (det g*(x))~*

has uniformly bounded derivatives with respect to (x',0,t) for small ¢t and
vanishes when =0 or t=0, so this difference is O(6¢}=0(d(x)). Hence we
have, with d=d(x)

[, (x',6,8)— Vo(I1, %) Eg(1,26) (det g™ (x))#|<t? +d,  0=0=3.

When {<0<1 it follows from (i) in Theorem17.5.9 that such an estimate
holds after subtraction of sufficiently many singular terms. For a function
S Cldt/o) (> +d)/(t +d)"+1) the inverse Fourier transform with respect to
t can be estimated by

C(c+d}(t+d)*"dt+§(t+d)2‘”dt)§ Cle+d*>~"(1/(n—1)+c)).

Choose 9 € C§°((—4,4)) even, with 1 = 1 in (1,3) and ¢ = 0 in (0,3). What
remains is to estimate the inverse Fourier transform of the singular terms in
I, with v=+0 cut off by a factor ¥(t/d). First we prove that the inverse
Fourier transform with respect to ¢ of W(t/d) E.(t/d,2)/d" can be estimated by
Cd*"(1+|7|d)"~¥2->, Introducing t/d as a new variable we reduce the
proof to the case where d=1. Then

V(O E(,2)=C (D) t(e+2)~ 0 D2 m e D2 (- 2),

The inverse Fourier transform of the last factor is apart from a constant
factor e*'*(t +i0)"~1/2~¥ (Example 7.1.17), so the statement follows since the
inverse Fourier transform of the other factor is in & Recall that V,=0(d).

Now
(4]t Ay DTS C@ ),

for (m—1)2—v=n—2 when v+0. This proves (17.5.20) and completes the
proof of the theorem.

We shall now prove that the logarithm can be dropped in (17.5.16). To
prepare for a refinement in Chapter XXIX we shall in fact prove somewhat
more:

Corollary 17.5.11. If e C(X) then
(17.5.21) lim A% ="2| [y (x) e(x, x, ) Y(x)dx —
A 00
—A"2Q2m)~" C,f(det g ()" Y (y)dy +
+41Ae-02omt-n e (Y dSISC [yl Ydx
X

where dS is the Riemannian volume element in 0X and C, is the volume of the
unit ball in R”; C is independent of .
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Proof. Let ¢ be so small that 0X x[0,c]a(x,8) x(x',5) is a diffeomor-
phism. If d(x)>c¢/2 in suppy then (17.5.21) follows from Theorem 17.5.7 so
we may assume that d(x)<c¢ in suppy. By (17.5.8) and (17.5.19) we may
replace the right-hand side of (17.5.18) by C A", and this is a better estimate
if d(x)>~">A"~1/2 After modifying (17.5.18) in this way then, we multiply
by A1~"2|y(x)| and integrate over X. If n=2 the integral of the right-hand
side is obviously bounded by the L' norm of y. If n>2 this remains true for
the integral over the set where d(x)A*¥>1. The measure of the set where
d(x)2 "> A2 is QA VI2-m) and the integral of A* over this set is
therefore O(AY“~2"), The integral of A2~™24d(x)2~" over the set where
d(x)* "< A"~ V2 but d(x) A* <1 has a bound of the same type, multiplied by
logi if n=3. Hence the integral over the set where d(x)i*<1 is
O(AME=210g )0 as 41— 0.
It remains to show that

(17.522) A" ([ (x) eo(2d (x), D) (det g*(x)) ¥ dx —
—4-1 l("_l)/Z(Zn)l_" C,._lfl//dS)—)O as 1o o0,

To do so we shall use the coordinates (x',d). Then the Riemannian volume
element (det g*(x))~* dx becomes a(x’,8)dS dS where a(x’,0)=1. Thus

[ll,(x(x/, 5))a(x’, 6) —!//(x’, 0)| é Cé,
and
leg(26, )| S CAME(1 4§ A1)~ (n+ D2

by (17.5.19). We have

cat

AE[S(1+643) D245 =)= [ t(1 46~ D2 40
o

(=X Y

for the integral is O(4*) since n=2. We also have

[ Q+p-t24r=0(1-%)

CAZ

W[ (1+8a3) "0 D2 5=

so we may replace the first integral in (17.5.22) by

AE=m12 [ 4S [ y(x',0) e0(25, 4)db.
x 0
Now

o0 o0
Jeo25,))d6 =% [ eo(8,N)dé.
V]

—o0
With the notation &'=(¢,,...,£,) we have
o0, )=2n)"f &%1de, | g,

112 <a-¢3
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so Fourier’s inversion formula gives

[ e, )dé=0n)' ™" [ d&'=Q2n)'~"C,_, A"V
T I&2<2

This completes the proof of (17.5.22) and of Corollary 17.5.11.

(17.5.21) with yy=1 gives in particular
(17.5.16y IN(A)—Q27)~" C,vol(X) A"?| < CA"- 12,

We can also choose  equal to 1 in a neighborhood of X so that the right-
hand side of (17.5.21) is as small as we wish. If it is possible to determine
e(x,x, A) on compact subsets of X with an error o(4”~"/2) we shall therefore
be able to determine N(A) too with such an error; the boundary contri-
bution will be

—4-1m=020 pyl-n C yol(8X).

This will be discussed in Section 29.3 after the required technical tools have
been developed. However, we shall now discuss examples which show that
some additional hypothesis must then be made.

Our first example is the Laplace-Beltrami operator on the sphere S”
cRR"**!. The discussion so far in this section has been restricted to open
sets X <R". This was only done for the sake of readers who might not feel
familiar with Riemannian geometry. All arguments were local and can
therefore be carried over to an arbitrary compact Riemannian manifold
with boundary; we shall consider the unit sphere S".

In R"*! we shall use the polar coordinates x =r @ where r>0 and weS™
Then the Laplace operator assumes the form

A=r=%4,+0*/0r* +n/rdjor

outside the origin. Here A4 is the Laplace-Beltrami operator in S". If u(x)=
r*v(w) is a homogeneous function of degree p, it follows that outside the
origin

Au=r*"2(4 v+ u(u+n—1)v).

Hence Au=0 outside the origin if and only if v is an eigenfunction of —4,,
with eigenvalue A=p(u+n—1). Since A assumes all values =20 when p<
1 —n, we obtain all eigenfunctions of —4, by restricting to S* all distri-
butions u in R"*! which are harmonic and homogeneous of degree p<1—n
outside the origin. (Cf. Section 3.2.) Then Au has to be a linear combination
of the derivatives of the Dirac measure at 0, so we find that u=1-n—k
where k is an integer =0, and that
u(x)= > a,D*E

lal=k
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where E is the fundamental solution of 4 and g, are constants. (When k=0
and n=1 the logarithmic potential E must be replaced by a constant.
Otherwise there is no harmonic function homogeneous of degree p in
R"*') The Fourier transform of u is Y a,&*&|=% so it follows that u is
supported by the origin if and only if |£]* divides the polynomial ) a, &~
Let N, be the dimension of the space of homogeneous polynomials of degree
k in n+1 variables,

N,— (":k) — k(1 +O(1/k)/n.

We define N,=0 for k<O0. Then it follows that the multiplicity of the
eigenvalue A, =k(k+n—1) of —4,is N.—N,_, for k=0,1,.... If N(4) is the
number of eigenvalues <4 of —4, it follows that

N(lk+0)—N(lk—0)=Nk—Nk_2=2k"‘1(1 +O0(1/k)/(n—-1)!.
Thus
ME=WHN(A,+0) =N, —0)->2/(n—-1)!, k- o0,

which proves that it is impossible to find an asymptotic formula for N(4)
with continuous main term and error o(A®~1/2),

If X is the hemisphere where x,,,>0 then the eigenfunctions of the
Dirichlet problem in X are the eigenfunctions in S" which are odd with
respect to x,, ;. Let N and N be the dimensions of the spaces of homo-
geneous polynomials of degree k in n+1 variables which are odd and even
respectively with respect to x,, ,. Clearly

N=N+Ng,  N=N_,

since the odd polynomials are products of x,,, and even polynomials. It
follows that

Nk"‘Mc—2=Nko_Nk0—2+Nke_Mce_z=(N;—N;—2)+(Nko+1 "’Nko— 1)-

Now N2 —N?_, is the dimension of the eigenspace of the Dirichlet problem
with the eigenvalue 4,, so we obtain again jumps of the order of magnitude
A®=12 The conclusion is the same as for $”, and now we can of course
realize X by stereographic projection as a ball in R" with a Riemannian
metric conformal to the Euclidean one.

Before embarking on the proof of Theorem 17.5.9 we need two additions
to Lemma17.5.4. The first is the finite propagation speed for solutions of
the mixed Dirichlet-Cauchy problem.

Lemma 17.5.12. Let ve C*([0, o) x X) be a solution of the mixed problem
(0%/ot>*+Pyv=h in [0,00)x X;
v=0 in [0,00)x0X; v=v, and Jv/0t=v, when t=0.
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Let s(x,y) be the geodesic distance from x to y and set

¥ (x)=min(min {t + s(x, y); (¢, y)esupp h},
min{s(x, y); yesuppv,Usuppv,}).
Then v(t, x)=0 if t <yr{x).

Proof. By the triangle inequality for s we have ‘
W) —¥ISs(x,y);  x,yeX.

For 0<g<1 we can approximate (1—ég)y by Y,eC=(X) so that ¥, -y
uniformly in X when ¢—0, ¥, <y, and |y, (x) —¢. ()| (1 —1 &) s(x, y), that is,

2.8 (x) 0y (x)/0x ;09 (x)/0x, S 1 —Fe.

Thus the surfaces S,={(t,x); t=¥,(x)+a, xeX} are non-characteristic, and
h, v, and v, vanish below S,. Let A be the supremum of all a<0 such that
v=0 below S,. If 4<0 then it follows from the uniqueness theorem for the
Cauchy problem (Theorem23.2.7) or the Dirichlet-Cauchy mixed problem
(Theorem 24.1.4) that v=0 in a neighborhood of S,. (The proofs are just
slight variations of the energy identity used to prove Lemma17.54 but
would not be convenient to give here.) Hence 4 must be 0 so v=0 when
t<i,(x). When ¢ — 0 the lemma follows.

In particular we note that if fe C3(X) and s(z,y)<d(y) when zesuppf,
then s(x,y)<d(y)+t in supp(cos(t]/.?é) f), for the triangle inequality gives
s(x,y) ¢ (x)+d(y) for the function in Lemma 17.5.12. When t<3d(y) we

obtain s(x,y)<4d(y). Thus we can study cos(tﬁ) f then by blowing up a
neighborhood of y with diameter proportional to d(y) to a fixed size, as we
did in the proof of Proposition17.4.4. Before doing so we must prove
another supplement to Lemma17.54 where parameter dependence is al-
lowed.

By B(x,D) we shall denote an elliptic operator of the same form as
before except that it now depends on a parameter zeZ where Z is a
compact convex body in RY for some N. We assume that the coefficients of
P are in C*(X x Z) and that (17.5.2) is valid uniformly for all B.

Lemma 17.5.13. Let v,e C*([0, T] x X x Z) be a solution of the mixed problem
(17.5.10y (B+0%*/0t)v,=h, in [0,T]xX xZ;
v,=0in [0, TI]x0X xZ; v,=0v,/0t=0 if t=0.

Assume that 0/ h /0t =0 when t=0 if j<k. Then it follows that with sup-
remum taken over [0, T]x X xZ

(17.5.11y Y suplDi, v, (t,)<C Y sup|D?_, h,(t,x).
k

,X,2
lal+4n<k lal=
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Proof. Let the sum in the right-hand side be equal to 1. Then it follows from
(17.5.11) that we have a uniform bound for [D¥*'~7y (t,))], if jSk+1.
Differentiating the differential equation (82/0t*> + B)v,=h, with respect to z,
we obtain
(0*/0t*+ B) 0v/dz,=0h, )0z, — 0B /dz,v,=H.

We have a bound for [|[Di~'~7H|; if j<k—1 and conclude using (17.5.11)
again that there is a uniform bound for [|Df~/dv/dz,|, if j<k. Continuing
in this way we obtain uniform bounds for |D}*'~l=7o2p (z,.)] , when j<k
+1—lal, |ej £k, and the lemma is therefore a consequence of Lemma 17.5.2.
The proof is complete.

Remark. In this lemma it is not necessary to assume that X is bounded; it
suffices to assume that all v, vanish outside [0,T]xK for some fixed
compact set K< X.

Proof of Theorem17.5.9. Let K, be a compact part of X as in Proposi-
tion 17.4.4, defined by x,=0 in local coordinates. Let zeX be close to K.
From (17.4.15) we can obtain a parametrix for B when y is close to IT
=(0,...,0,1). In fact, we can first pull (17.4.15) back by the inverse of the
map

t,x,) = Ont, 0", 0) + yux,y),
that is

(t,X,}’) — (f/}’m(x - (}’,10))/}’:”)’),

to construct a parametrix for 92/0t2+ P with pole at (0,y). Then the pull-
back by the map

t,x, y)—(z,t,(z,0)+2,x,(z,0)+z,¥)
gives a parametrix for §%/0t*>+ P with pole at (0, y). The composition of the
maps is
(€, %, )= (t/y,, X =, 0))/y,, (2, 0) + 2, y).
The conclusion is that with the notation y,=(z',0)+z,y we have
Ya(8%/0t2 + B(x, D) EN(t/ys (x — (¥, 0}/, ¥,)
=(det g™ (¥ )} 8o, yu* ' + Ry(t/ys (x = (', 00/ ¥, ¥2)

when y is close to II, |t|<4 and s"?(x,y)<4. We can now argue as in the
proof of Theorem 17.5.5, but with

P
KN(t, x, y’ z)=Z:dm(xz’yz’zn t)
0 .
=5, 8" /Y (=, 00/, y2) (det g ()" F 3, 7
For fe C3(R") with support close to IT we have
v,(t,x)=[ Kp(t,x,y,2) D f (y)dye C*,
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the Cauchy and Dirichlet data are 0, and
hy(t,x) = (828t + P )v, (¢, x)

has N —n—2 —1p| uniformly bounded derivatives with respect to x,t,z when
IfIl.:<1 and |t|<3. By Lemma 17.5.12 we have s*(x, IT)<% in the support.
Thus we can apply Lemma 17.5.13, by the remark following its proof, and
conclude as in the proof of Theorem 17.5.5 that for z in a neighborhood of
KO

Ky(t,x,y,2)eC¥~"~* for x and y close to II.

In particular the restriction to x=y=1II has this property which means that
N N .
zZydm(z,2,2,1) =) (U,(2) 27" E,(t,0) = V,(I1, 2) E\(t, 2)) (det g (2))
0

is in CV~""* when 0<t<3 and z is in a neighborhood of K in X; all
derivatives have uniform bounds.

Let M be the function corresponding to m when X is replaced by a
neighborhood Y of X and the coefficients of P are smoothly extended to Y.
Then we know from Theorem 17.5.5 that

N
d/I\}(z, z,t) =), U,(2) E, (¢, 0)(det g’*(z)) ~*e C¥ " ~*
0
for smali ¢, hence
A N )
2 dM(z2,2,2,8) =Y. U,(2) 22" E,(t,0)(det g’*(z))~*
0

is in C¥—"=* If we put
N
I(z,t)y=t"dM(z,2,1)

then (i) of Theorem 17.5.9 holds and, with I, defined by (17.5.17),
N .
t (2, 1Lt 2,) =) V,(I1,2) E, (¢, 2)(det g/*(2))*
1]

has bounded derivatives of order N—n—4 when t<3. It follows from
Lemma17.5.12 that t=2 in the support. Now introduce new variables 6
=1/te(3,1) and s=tz,. Then we have t=1/8 and z,=s6 which shows that

N
1,(z,6,8) =L V,(I1,(z,s 6)) 0~* E,(1,26)(det (2,5 0)) ~*
0

has bounded derivatives with respect to z,6,s of order N—n—4. This
proves condition (ii) in Theorem 17.5.9 when #=3. The same proof is appli-
cable when 026 for some fixed 6>0, but the proof for small § requires
another argument.



60 XVIL Second Order Elliptic Operators

I,(x',t6,t) is a C* function equal to Ej(1,0)(det g*(x’,0))~* when t=0.
Thus the remaining statement’in the theorem is that t"dm(x,x,t) when x,
=t and 0<0<% is a C* function of (x',6,t) for small ¢, and equal to
(E,(1,0)—Ep(1,260))(det g/*(x',0))~* when t=0. For the proof we shall study
the kernel

FaN
K(t,x,y,z)=zhdm(x,,y,,2,1);

no approximation is attempted now. If feCF(IR") has support where
s*(x,IT) <2, say, and ! norm <1, then

(17.5.23) v,(t,x)=(K(t,x,y,z) D? f (y)dy

is a C™ function with (3%0t? + P, )v,(t,x) = 0, the Dirichlet data are 0 and v, =
DAf, Ov, /Ot = 0 when t = 0. When ¢ < 2 we have s%(x, IT) < 4 in the support
by Lemma 17.5.12. We wish to prove uniform bounds for all derivatives
with respect to t,x,z when t=1 and s"*(x,y)<% when yesuppf. Assuming
for a moment that this has been done, we conclude as in the proof of
Theorem 17.5.5 that Ke C* and, taking t=1, x'=y' =2/, x,=y,=0<%, that

zndm(x,x,z,), x=(z,0z,)
has uniformly bounded derivatives with respect to z,6,z, when 0<6<% and
z, is small. When z,=0 we obtain
K(t,x,y,2) =(E4(t, s*(x, y)) — Eo(t, s"*(x, y))(det g'(2))*

and the parenthesis reduces to (E;(1,0)—Ey(1,20)) for the preceding choice
of t,x,y. Changing notation so that z, is called ¢ we shall therefore have
proved the theorem.

It is easy to see that with v, defined by (17.5.23) and any k the map (t, 2)
Fv,(t,.) is k times differentiable for t<2 with values in 2'®, and that
derivatives of order <k are uniformly bounded in Z'*, if u>|p|+k+n/2. To
do so we observe that P, is self adjoint with respect to a C® density Y,

hence
(v (t, ), D), + (DPf,89,(1,0,.)/05)r, =0
if §,(t,s,x) is the solution of the mixed problem
' (% /8s* + P&, (t,5,%) = O;
&,(t,5,x)=0, if x € dX; 8P,(t,5,x)/0s = —(x)
and &,(t,s,x)=0 if x€X, s=t.

B,(t,s,x) = ((sin(t — 59V B[V P) $(x).

It follows at once from the spectral theorem, (17.5.4) and Lemma 17.5.2, that
we have uniform estimates for the (x,t) derivatives of @, of order <u+1
—n/2 if ¢ is bounded in C§. As in the proof of Lemma 17.5.13 we obtain by
successive differentiations with respect to z that this is true for all (x,t,2)
derivatives of order <u—n/2 also. If u>|B|+k+n/2 we conclude that v, has

Thus
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the stated differentiability properties. The proof will therefore be completed
by the following lemma.

Lemma 17.5.14. Let v,(t, x) be a solution of
(0%/0t2 + B)v,(t,x)=0

when |t| <3 which is a C® function of (z,t,x) when z,>0 and z is close to a
compact set K, {zeR";z,=0}. Assume that

(i) v,(t,x)=0 when x,=0 (Dirichlet condition)

(i) s*(y,(z',0))<% when (0, y)esuppv, ( Cauchy data condition)

(iii) for every o one can find p such that D%v(t,.) belongs to a fixed
bounded subset of 9'*(R",).

Then there are fixed bounds for the derivatives with respect to z,t,x of
v,(t,x) when z is in a neighborhood K' of K,, 1<t<2 and s*(x,(z,0))<%.

Note that when z,=0 this is quite clear since v, is equal to the solution
of a constant coefficient Cauchy problem with data satisfying (ii) together
with the reflection in the boundary plane x,=0. There can be no singulari-
ties in the considered set then since it cannot be reached by light rays from
the Cauchy data. The proof of the lemma will be given in Section 24.7 after
a systematic study of the propagation of singularities of solutions to the
mixed problem. It will show that the constant coefficient situation remains
true for small perturbations.

Notes

As pointed out in the notes to Chapter XIII the methods used in Sections
17.1 and 17.3 have a long history. For the elliptic case we might add
references to Agmon-Douglis-Nirenberg [1,2], Agmon [1,5], Browder [1],
Gérding [2], Lions and Magenes [1], Schechter [1] although this list is far
from complete. Lemma 17.1.5 comes from Friedrichs [2]. Uniqueness theo-
rems such as Theorem 17.2.1 were first proved by Carleman [1] in the two
dimensional case. It was he who introduced the idea of using norms con-
taining powers of a weight function. It has dominated all later work in the
field. For second order operators in several variables Miilier [1], Heinz [1],
Aronszajn [2], Cordes [1], Aronszajn-Krzywcki-Szarski [1] and Agmon [4]
proved Theorem17.2.6 in increasing generality for real a;. Alinhac and
Baouendi [1] showed that it is then only necessary to assume the coef-
ficients real at the distinguished point. Counterexamples due to Alinhac [2]
show essentially that this condition is necessary and also that such strong
uniqueness theorems do not hold for operators of higher order. We have
here followed the exposition in Hormander [41] where weaker conditions
on the lower order terms are also discussed. (Jerison and Kenig [1] have
shown that they are not optimal) Calderén [1] was the first to prove
general uniqueness theorems such as Theorem 17.2.1 for operators of higher
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order in more than two variables. Here we have just included his result in
the elliptic case assuming only that the coefficients are Lipschitz continuous.
Pli§ [3] has proved that this condition cannot be replaced by any weaker
Holder condition. For the background of Theorem17.2.8 we refer to the
notes of Chapter XIV.

The parametrix construction of Hadamard discussed in Section17.4 is
essentially taken from Hadamard [1] although the arguments used here in
some ways are closer to those of M.Riesz [1]. Seely [3] studied a parametrix
E(t,x,y) with three terms for the mixed Dirichlet problem for the wave
equation in R* defined when the square of the distance between x and y is
small compared to the boundary distance of y. He applied it to prove
Corollary 17.5.1 for the Laplace operator in X <R® In Seeley [4] the
results were extended to higher dimensions, and Pham The Lai [1] did so
too about the same time. In the latter paper it is evident that it is the
Hadamard construction which is being used, and it is clear that it is not
essential to start from the constant coefficient Laplace operator. (Some
estimates seem incorrect but the end results are valid.)

Carleman [3] found a way to determine the asymptotic behavior of the
spectral function of a second order elliptic operator with Dirichlet boundary
condition. (The corresponding results on the eigenvalues go back to Weyl
[4]) His idea was to study the kernel of the resolvent and then apply a
Tauberian theorem; this approach was extended to general elliptic operators
by Garding [7]. Minakshisundaram and Pleijel [1] showed that one can
study the Laplace transform of the spectral function as well, for this is
related to the Green’s function of a heat operator. These methods do not
give precise error bounds, but Levitan [1,2] and Avakumovi¢ [1] disco-
vered that taking the cosine transform one obtains optimal result result by
means of the properties of the corresponding wave equation. Thus Theo-
rem17.5.7 is due to Avakumovi€ [1] but our proof follows to some extent
Hoérmander [22] where the results were extended to higher order operators
(See Chapter XXIX.) As mentioned above, precise results on the spectral
function close to the boundary were first obtained by Seeley {3, 4] and
Pham The Lai [1]. They only considered the Laplace operator. Ivrii [3]
showed by a quite different method that the asymptotic formula for the
eigenvalues is valid without this restriction, with the error term given by
Seeley and Pham The Lai. He also showed that there is a better asymptotic
formula with a second term when there are not too many closed multiply
reflected geodesics. The proof was greatly simplified by Melrose [7] who
derived Ivrii’s result from the basic facts on propagation of singularities. We
have combined these ideas in Section 17.5 to give improved estimates for the
spectral function near the boundary. The Hadamard type of construction
from Seeley [3,4] and Pham The Lai [1] is only used in the simplest
situation to approximate E(t,x,y) when t is less than a constant times the
distance from y to the boundary. We have presented the arguments in
Section17.5 so that they prepare for the full proof of Ivrii’s results in
Section 29.3.
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Summary

There is no major difficulty in extending the study of second order elliptic
operators in Sections 17.1 and 17.3 to higher order operators. From Theo-
rem 7.1.22 we know that an elliptic operator P(D) with constant coefficients
has a parametrix E of the form

Ef()=Q2n)"[*®a(¢) f(§)d¢, fe,

where a(&)=1/P(&) for large |&|. As in Chapter XIII an elliptic operator
P(x, D) with variable coefficients (cf. Section 8.3) can then be regarded near a
point x, as a perturbation of the constant coefficient operator P(x,,D)
obtained by freezing the coefficients at x,. The proof of Theorem 13.3.3
gives a local fundamental solution E of P(x, D) as a norm convergent series.
However, the smoothness of the terms in the series does not grow in
general, so it is not suitable for a precise description of the singularities of
E. The situation can be improved by taking as a first approximation for E
the operator 4 defined by

(18.1) Af)=Qn)~" [ a(x, &) f(£)dE,  fes,

where a(x,£)=1/P(x,¢) for large |£|. This means that we define Af(x)
=E_f(x) where E_ is a parametrix for P with coefficients frozen at x.
Differentiation under the integral sign in (18.1) gives

P(x,D) Af(x)=(m) " [&*® P(x,E+ D )a(x, &) f(&)d¢, fes.
Here
P(x,£+D,)a(x,&)=P(x, &) a(x, &)+ Y P9Ax,¢&) Dl a(x,{)/a!
=1+0(1/I¢)

which suggests that P(x,D)A = I + R where [ is the identity operator and R
is an operator improving differentiability by one unit. A right parametrix
should then be given by A(l + R)"'=A — AR + AR?> —... where the smooth-
ness of the terms increases indefinitely.

The preceding somewhat formal argument can actually be justified, but
it is preferable to move the successive approximation to the construction of
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a function a such that
(18.2) Px,é+Dya(x,)=1+b(x,&)
with b rapidly decreasing as & — o0, If

P, E=P.(x,E)+P,_,(x,&)+...

is a decomposition of P(x,{) in homogeneous terms with respect to &, then
it is natural to expect a to have an asymptotic expansion

(18.3) ax,f)~a_,(x,0+a_,_ (H+..., {—oo,

where g, is homogeneous of degree k. The condition (18.2) then gives if we
equate terms of equal homogeneity

(18.4) F(x.8a_n(x,0)=1,
F(x,8)a_,_ (. O+F,_(x,8)a_,(x7)
+ Z B,Ej)(x, é) ija—m(x7 é)=09

and a sequence of equations expressing P, (x,&)a_,,_.(x,&) for any k>0 in
terms of a_,,,...,a_, .., Since P,(x,{)%0, ££0, if P is elliptic, the se-
quence a_,,, d_,,_,,-.. is uniquely determined and gives a solution of (18.2)
with b decreasing as rapidly as we please. (Compare the proof of Theo-
rem 8.3.1 which is based on the same principle.)

The preceding argument indicates that any elliptic operator has a para-
metrix of the form (18.1) with a admitting an asymptotic expansion of the
form (18.3). Such operators A are called pseudo-differential operators. The
reason why they are so useful is that they form an algebra, invariant under
passage to adjoints and change of variables, so that it can also be defined
on a C*® manifold. The correspondence between the operator 4 and the
function a in (18.1), called the symbol of A, allows one to give formulas for
these operations in terms of the symbols which are as simple as those for
differential operators. We shall develop these facts in Section 18.1.

The Schwartz kernel K(x,y) of a pseudo-differential operator is singular
only at the diagonal. There it is singular essentially as a homogeneous
function of x —y, so application of a first order differential operator which is
tangential to the diagonal does not make K more singular. In Section 18.2
we study the space of distributions I(X, Y)= 2'(X) with the same relation to
a C® submanifold Y of the C* manifold X. For these distributions the
wave front set is contained in the conormal bundle N(Y) of Y; accordingly
we call them conormal distributions for Y. They play an important role also
in the development of the calculus of totally characteristic pseudo-differen-
tial operators in a manifold with boundary presented in Section18.3. In
particular, the invariance under coordinate transformations of these oper-
ators follows from a characterization of their kernels as conormal distri-
butions on a modification of X x X. Section 18.3 is intended to give a solid
framework for the study of boundary problems, in particular a discussion of
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spaces of distributions in a manifold with boundary and their wave front
sets. However, little use will be made of the results in the later chapters
where we use more conventional but non-invariant techniques. The notions
introduced in Section 18.3 seem so natural though that they are bound to
play an increasingly important role.

The calculus built up in Sections 18.1, 18.2 and 18.3 is based on the
study of Gaussian convolutions in Section7.6. In Section 184 we resume
their study in preparation for the calculus of operators with general symbols
developed in Sections 18.5 and 18.6. In addition to operators of the form
(18.1) with general symbols we also discuss the Weyl calculus which has
important advantages due to various symmetry properties. For example, a
real valued symbol always gives rise to a self-adjoint operator; this is why it
was originally introduced in quantum mechanics. The main theorems in the
calculus are proved in Section 18.5, and Section 18.6 is devoted to estimates
for such operators. They will be needed in parts of Chapters XXVI and
XXVIIL, but apart from that it will usually suffice to have absorbed the
material in Section 18.1 in order to read the following chapters.

18.1. The Basic Calculus

When studying operators of the form (18.1) we must first specify the con-
ditions which a must satisfy. We definitely want to accept all smooth
functions a(x, &) which are homogeneous in ¢ for large |£| and also their
linear combinations. The following is a slightly wider class which is techni-
cally more convenient:

Definition 18.1.1. If m is a real number then $™=S"(R" xR") is the set of all
ae C*(R" xR") such that for all o, B the derivative af)(x, &) =250% a(x, £) has
the bound

(18.1.1) ) 0x, O S C, (L HIEN 1 x, ZeR™

S™ is called the space of symbols of order m. We write S~ =(") 8", §°=

L sm.

Definition 18.1.1 is a global version of the special case of Definition 7.8.1
with 6=0 and p=1. Later on we shall localize S™ and also consider general
p and 4.

It is clear that S™ is a Fréchet space with semi-norms given by the
smallest constants which can be used in (18.1.1). One advantage of not
insisting on homogeneity is that a(x, &)=yx(¢) is in S° if ye& The following
proposition is mainly used in this case where it is closely related to the
regularization which was introduced already in Section 1.3.
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Proposition 18.1.2. Let acS°(R"xR") and set a,x,&)=a(x,ef). Then a, is
bounded in $°,0<¢<1, and a,—a, in S™ for every m>0 when ¢—0.

Proof. Since a,eS° the statement follows if we show that for 0Sm<1
(A+1ED=-m0308(a,(x, &) —a(x,0)| S Cppe™, 0=Ze=1.
When a=0 this follows since by Taylor’s formula

lagy(x,68) —agpy(x, 0)| = Cpled™

When a0 we just have to use that
(AN =m(1 +]e&) el —m < + DA +IED < 1.

When working with the spaces S™ it is useful to keep in mind that
(18.1.2) aeS"=aeS™" 1, aeS™ and beS™ =abeS"*™.

The proofs are obvious and show for cxample the continuity of the bilinear
map (a,b) — ab.

We shall now prove a simple result which gives a precise meaning to
asymptotic sums like (18.3).

Proposition 18.1.3. Let a;eS™, j=0,1,... and assume that m;— — o0 as j— .
Set m,=max;,,m;. Then one can find aeS™ such that suppac|)suppa;
and for every k
(18.1.3) a— ZajeS"'i.

i<k
The function a is uniquely determined modulo S~ % and has the same property
relative to any rearrangement of the series Y a;; we write

a~y a;.

Proof. The uniqueness follows immediately from (18.1.3) and so does the
invariance under rearrangements. To prove the existence we choose yeCJ
equal to 1 in a neighborhood of 0. By Proposition 18.1.2 we can find a
positive sequence ¢; converging to 0 so rapidly that

10308((1 —x(&;0) a0, N <27+ LY+ =1, o +1B1 <),

for 1 —x(e.)—>0 in S! when £¢—-0. Set Aix, &)=(1—yx(e;0) ayx,{). Then the
sum a=ZA ; 18 locally finite, hence ae C*. Given a, §,k we can choose N so
large that N>|«|+|f} and my +1<m;. Then we obtain

100%alx, &) — ¥ A%, NS A+,

j<N



18.1. The Basic Calculus 67

Since a;—A,€S~* and A;eS™ when j2Kk, it follows that
(18.1.3y 0208(a(x, &) — ¥ a(x, E)| S Copp1+1E[m e,
i<k

This is the explicit meaning of (18.1.3), so the proof is complete.

When one has a good candidate for g, the verification of (18.1.3) is often
simplified by the following observation which shows that little attention has
to be paid to the derivatives.

Proposition18.1.4. Let a,eS™, j=0,1,... and assume that m;—> —oc when
j—oo. Let aeC*(R"xR") and assume that for all «, f we have for some C
and p depending on o gnd B

(18.1.4) la@(x, O < CA+IE);  x, LeR™

If there is a sequence p,— — oo such that

(18.1.3)" la(x, &) — 3 a,x, )l < C(1+Ely™,
i<k

it follows that aeS™, m=supm;, and that a~  a;.

Proof. Subtraction from a of some 4eS™ with A~Zaj reduces the proof to
the case where all a; are equal to 0. The hypothesis is then that a is rapidly
decreasing when £ — oo and that (18.1.4) is valid. We have to show that all
derivatives of a are rapidly decreasing when & —co. It suffices to do so for
the first order derivatives and iterate the conclusion. If # is a unit vector we
obtain using Taylor’s formula and (18.1.4) that

la(x, & +en)—a(x, &) —<ayx, &, eny| < Ce2(1+ ¢,  xeK, O0<e<l,
for some C, u. Hence
[Kap(x, &), ndI < Ce(1+ (8N +alx, ) —a(x, £ +en)i/e,

which gives [ay(x, &)| < C'(1+|€[}*~V if we take e=(1+|&)~". The derivatives
with respect to x can be discussed in the same way, and this completes the
proof.

Definition 18.1.5. If meC and h is the reciprocal of a positive integer, the set
of all aeS®*™ such that

a(e,&)~3 a,x,8)
0

where a; is homogeneous of degree m—jh when [£|>1, will be called
polyhomogeneous of degree m and step h. We write acSTh;". When h=1 the
step size will be omitted.

The homogeneity in the definition means that

afx,t&)=t"""a(x,&); |€>1, t>1.
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This implies homogeneity of degree m—jh—|«| for alf), so a; is automati-
cally in $®%™~/* if ;e C and vanishes for large x. That a;eC* excludes of
course in general that a; is homogeneous for all £+0, but since the formula
a~Y a; is only a condition for large |¢| and the proof of Proposition 18.1.3
cuts away singularities of a; for small |{| we shall use this notation even if g;
is just in C® when £+0 and homogeneous there.

The symbols in Spy, are those to which we were led in the summary
apart from the fact that the discussion there was local in the x variable. We
shall later on localize S™ in the x variables and Sometimes in the ¢ variables
also. However, before doing so we shall discuss pseudo-differential operators
in R” with symbols in $™, for the results are then stronger than in the local
case and the proofs are cleaner.

Theorem 18.1.6. If aeS™ and ue ¥, then
(18.1.5) a(x, Dyu(x)=Q2n)~" [ &% a(x, &) 4(£)d¢

defines a function a(x,Dyuc%’, and the bilinear map (a,u) — a(x,D)u is con-
tinuous. The commutators with D; and multiplication by x; are

(18.1.6) [a(x, D), D;] = iag(x,D);
La(x, D), x;]1= —ia¥(x, D).
One calls a(x, D) a pseudo-differential operator of order m.
The notation (18.1.5) is justified by the fact that if a is a polynomial in &
then a(x, D) is obtained from a(x,&) by replacing ¢ with D= —id/dx put to

the right of the coefficients. This follows from Fourier’s inversion formula.
Sometimes we write Op a instead of a(x, D).

Proof. Since fie ¥ it is clear that (18.1.5) defines a continuous function with
la(e, Dyul < (2m) ™" (1 +1€)"[a(0)IdE sup lalx, OI(1 +1&) ™™
The first relation (18.1.6) states that
D;a(x, D)u(x)=a(x, D) D;u(x) —ia(x, D) u(x).

It follows by differentiation of (18.1.5) under the integral sign since £;(¢) is
the Fourier transform of D;u. The Fourier transform of x;u(x) is —D;d(¢) so
an integration by parts gives the second relation (18.1.6),

a(x, D)(x;u) =x;a(x, D)u —ia¥(x, D) u.
Repeated use of (18.1.6) shows that x*Dfa(x, D)u is a linear combination of
agl(x,D)x* D¥'u; o +a’=a, P +p'=8.

Hence x*D?a(x, D)u is bounded by the product of a semi-norm of u in &
and a semi-norm of a in §™. The proof is complete.
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Remark. If we introduce the definition of # in (18.1.5), it follows that the
Schwartz kernel K of a(x, D) is given by

(18.1.7) Kx,n)=Q2n) " [ a(x, &)dE,

which exists as an oscillatory integral (see section 7.8). Alternatively we can
interpret (18.1.7) as d(x,y—x)/(2n)" where 4 is the Fourier transform of
a(x, &) with respect to the ¢ variable, defined by an obvious modification of
Definition 7.1.9. Hence Fourier’s inversion formula gives

(18.1.8) a(x, &) =] K(x,x—y)e 1 dy

which should again be read as the Fourier transform of K(x,x—y) with
respect to y. The formulas (18.1.7) and (18.1.8) establish a bijection a — K
between distributions in &'(IR2"). Now a variant of Schwartz’ kernel theo-
rem {Theorem 5.2.1), which we leave for the reader to verify, states that the
maps with kernel in &'(IR"*"2) are precisely the continuous linear maps
from Z(R™) to &' (R™). For any ac¥'(R?") we can thus interpret (18.1.5)
as a continuous map a(x,D): MR- F'(R"). The meaning of Theo-
rem 18.1.6 is that it maps £(R"} into itself when aeS™ Later on this will
also be proved under much weaker hypotheses on a.

We shall now determine the adjoint of a(x, D) with respect to the sesqui-
linear scalar product

(u,v)=[uddx; u, ve&.
Assume first that ac%. The kernel K of a(x, D), given by (18.1.7), is then in
& and so is the kernel K* of the adjoint,

K*(x,y)=K(y,x)=2m) " [ 77" a(y,n) dn.
Since K*(x,x —y)=Q2m)™" [ d(x —y,n)dn it follows from (18.1.8) that
K* is the kernel of b(x, D) where be.% and
b(x,&)=Q2n)" "1~ a(x—y,n)dydny
=Qn)~"fe ' ax—y,E~n)dydn

Since the quadratic form (y,7) — 2{y,7n) in R? has signature 0, determinant
(—1), and is its own dual, the Fourier transform of (27)~"e¢ " is by
Theorem 7.6.1 equal to &< if , # are the dual variables of y and 5. Thus

(18.1.9) b(x,§)=e'P=P2> g(x, &)

in the sense that the Fourier transform of b is equal to that of & multiplied
by e<** (see Section7.6). The map ar—b defined by (18.1.9) is continuous
in &, so it follows that

(18.1.10) (a(x,D)u,v)=(u,b(x,D)v); u,ve;
for every ae¥”’ if bes” is defined by (18.1.9).
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Theorem 18.1.7. If acS™ then b(x, {)=¢'P= P2 g(x, £)eS™,

(18.1.11)  b(x,&) ~i(i (D, D) alx, §)/kt =} 0: DL a(x, &)/!.

(18.1.10) is valid and shows that a(x, D) can be extended to a continuous map
from &' to &', as the adjoint of b(x, D).

Proof. Choose ye CZ(R™ so that y(£)=1 when |¢|<4 and x(£)=0 when
|{é]>1, and set for integers v=0

a,(x,&)=x(&/2)a(x,8), b, (x,f)=€P="2a,(x,f).
In view of Proposition 18.1.2 we have for all v, if (x, £)esuppa,,
|als (%, O S Cop (L +1EN" < C gL +2),

Hence Theorem 7.6.5 gives
(18.1.12) |b,(x,&)— Y. (({D,, DY a,(x,E)j!l < C, 2",

<k
If |§|>2"*! then the distance from (x,¢) to suppa, is at least equal to
&} —2"=1&l/2=(1 +|&])/4 so the sum drops out and we are allowed to insert
a factor (1+|¢))~* in the right-hand side. Given ¢ denote by u the smallest
integer =0 with |£|<2**2. Then either u=0 and |£]<4 or u>0 and
2"+t <|¢|<2#*2, In both cases (18.1.12) with the improvement just men-
tioned gives

(18.1.12) b, (x,8)— Y. (i{D,, DY a,(x, &)/j!I < Ci(1 +|EY~
i<k
To estimate

b(x, &)=, (6, =3 (by , 15, &) b, (x, )

we set A,(x,8)=a,,,(x,{)—a,(x, &), B,(x,&)=b, ,(x,£)—b,(x,£), and observe
that
|45 (x, &) £ Cpy 270D

since 2"~ 1< |€[£2°*! in supp 4,. Hence
|ag ag Av(x: 2\' é)' é C;ﬂ 2”'\’.

Since )

B (x, 2" ) =eP=P0 ™ 4,(x,2°)
we obtain from Theorem 7.6.5 where the factor |4 is now important

IB,(x,2" &)= ¥ (i{D,, D>/2"Y A,(x,2" §)/j!| £ C} 2,

i<k

that is,
IB,(x,&)— Y. (i{D,, DY A,(x, &)/j!| £ C} 20" ~4.

J<k
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Let k=zm+1 and sum for v=px to co. The sum on the right-hand side is at
most twice the first term, and (1 +4|&[)/2* lies between fixed bounds. Hence
we obtain

Y (B,(x, &)~ Y (i{D,, DY A,(x, O/jH| S C (L +[€™*

i<k
which combined with (18.1.12) proves that with a new constant C,
U8.LLY 1B &)= T (<D, DY alx, OIS Cyll +1e)m
j<k
Since
b (x, &)= ¢ P02 (x, )

a similar expansion is valid for the derivatives of b, which completes the
proof of (18.1.11) and of the theorem.

Remark. The proof gives (18.1.11) with a constant C, depending only on a
finite number of semi-norms of a in S™. (Since such statements can also be
recovered from the qualitative statement in Theorem 18.1.7 by means of the
closed graph theorem we shall usually omit them in what follows.) If a* is a
bounded sequence in S™ which tends to 0 in C® it follows that
e <P=D> gv(x F) is bounded in $™ and tends to 0 in &', hence in C®.

Next we study the composition of operators.

Theorem 18.1.8. If a;eS™, j=1,2, then as operators in & or &'

(18.1.13) a,(x, D)a,(x,D)=b(x, D)

where beS™ *™ is given by

(18.1.14) b(x,8) =& PP a,(x,n) a, (%, &)y y-x
and has the asymptotic expansion

(18.1.15) b(x, &)~ (i{Dy, D,>Y a;(x, 1) a5y, )y g,y /!

=Y a®(x, &) D2 a,(x, &)/at.

Proof. Assume first that ;€4 If ue& then a,(x,D)ue and the Fourier
transform is

N> Q2m)~" [ ay(y, §) 4(¢)dE dy.
Hence
a,(x, D) ay(x, D)u(x)=(2m)~2" [[ XM+ 6= g, (x, 1) a,(y, §) 4(¢) dE dy dn
s0 (18.1.13) is valid with
b(x,O)=@2m)~"{fe """ a,(x,n) a,(y,{)dydn
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which is equivalent to (18.1.14) as shown before the statement of Theo-
rem 18.1.7. Now consider for arbitrary a;eS™

B(x,&, y,n) =" PP ay(x,m) a,(, ).
Since
10205 ay(x, m) ay (9, O S Cop(L+Inly™ =4 (1 +1ED™
it follows from Theorem 18.1.7 and the remark after its proof that
|B(x3 é) S ’1) - Z (l <Dy>D7,>)ja1(x9 '7) aZ(y’ é)/.]'l
i<k
SC A+ A +]EN™
Here C, can be estimated by a finite sum of products of semi-norms of a4, in

S™ and a, in S™. Since differentiations commute with ¢'<P»?»> we have
more generally

103380 88 (B(x &, y,m) — T, (<D, D,pY ay(x,m) 4,0, D)
i<k
< Crrnaspp (LI 1 [
where C, , . 5 p has a similar bound. Hence b(x, &)= B(x, &, x, £)eS™ *™ and
the bilinear map (a;,a,)>b is continuous from S™ xS™ to S™*™2. It
remains to verify (18.1.13) in general.
Choose yeCy equal to 1 in a neighborhood of 0 and set
a;(x, §)=x(x/v) x(&/v) a;(x, &).
Since x(¢/v)a;(x,&)—a,(x, &) in S™*' when v— oo (Proposition18.1.2) we
have a}(x, Dyu—a,(x,D)u in & as v— o, if ue ¥, Hence
aj(x,Dyal(x,D)u—a,(x,D)a,(x,D)u in &

If b(x, §) is defined by (18.1.14) with a; replaced by aj then b” is bounded in
S™*+m2 and converges to b pointwise, hence in &', so b*(x, D)u-»>b(x,D)u in
& as v—oo. Since b'(x,Dyu=aj(x,D)a}(x,D)u it follows that (18.1.13)
holds. The proof is complete.

Theorem 18.1.8 permits us to give a precise form to the discussion of
inversion of elliptic operators in the summary.

Theorem 18.1.9. Let aeS™ and beS~™. Then the conditions
() a(x,D)b(x,D)—1€0p8~~
(ii) b(x,D)a(x,D)—1eOpS—®

are equivalent, and a determines b mod S~%. (I is the identity operator Op 1.)
They imply

(iii) a(x,&)b(x,&)—1eS!
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which in turn implies that for some positive constants ¢ and C
(iv) latx, OI>clél™  if |£1>C.
Conversely, if (iv) is fulfilled one can find beS™"™ satisfying (i), (ii), (ii).
Proof. (i) and (ii) both imply (iii) by Theorem 18.1.8. From (iii) it follows that
la(x, &) b(x, &) — 1| <4 for |£|> C, hence
3<lale Ob(x, < Clalx, O™, K> C,

which proves (iv). From (iii) it also follows that

a(x,D)b(x,D)=1—r(x, D), reS;l.
We want to invert I —r(x, D) by the Neuman series, so we set

b(x, D)r(x,Dy=b,(x,D), - b,eS™™ "

With &'~ b; we obtain
0

a(x,D)b'(x, D) —I=a(x,D)(b'(x,D)— Y. b;(x, D)) —r(x, DycOp S~*

j<k
for every k. This proves that (i) is valid with b replaced by b'. In the same
way we can find b”eS~™ such that (ii) is fulfilled with b replaced by b".
When

a(x,D)b'(x,D)—I1eOpS~* and b"(x,D)a(x,D)—IcOpS~—*
then
b"(x, D) —b'(x, D)=b"(x, D)(I —a(x, D) b'(x, D))
+("(x,D)a(x, D) —1)b'(x, D)
is in OpS~® so b and b” satisfy both (i) and (ii). This proves the
equivalence of (i) and (ii) and also that a determines b mod S~ %. It remains
to prove that (iv)=> (iii). The proof is reduced to the case m=0 if we

introduce a(x, &)(1 +|£]%)~™2 and b(x, &)(1 +|¢|?)™? instead of a and b. Then
it is a consequence of the following:

Lemma 18.1.10. If a,, ...,a,€S° and Fe C*(C*) then F(a,,...,a,)eS°".

Proof. Since Rea,, Ima,eS°® we may assume that a; are real valued and that

FeC*(R¥). We have '
0F(a)/0x;=Y 0F/0a,a,;, OF(a)/0¢;=) 0F/da,a?,

and a,,€S° aeS~". Hence it follows by induction with respect to |af+ ||

that the derivatives of F(a) satisfy (18.1.1).

End of Proof of Theorem 18.1.9. Assume that (iv) is fulfilled and that m=0.
Choose FeC®(C) so that F(z)=1/z when |z|>c. Then b=F(a)eS°® and
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a(x, &) b(x, &)=1 when |£|> C, which strengthens (iii) to
{11y’ a(x,&)b(x,&)=1  when [&é|>C.
This completes the proof.

Theorems 18.1.7 to 18.1.9 are the core of the calculus of pseudodifferen-
tial operators. They lead to improved continuity properties:

Theorem 18.1.11. If aeS° then a(x, D) is bounded in [*(R™).

For the proof we need a classical lemma of Schur:

Lemma 18.1.12. If K is a continuous function in R x R" and

sup [ IK(x, )ldx<C, sup[IK(x,y)Idy<C,
y x
then the integral operator with kernel K has norm < C in [*(R").

Proof. Cauchy-Schwarz’ inequality gives

IK u(x)> < fIKCx, p)l fu()I® dy 1K (x, y)ldy.
If the last integral is estimated by C, an integration with respect to x gives

FIKu()? dx < C ffIK(x, pl lu()|? dxdy < C* [ lu(y)|* dy.
Proof of Theorem 18.1.11. Assume first that aeS~"~'. Then the kernel K of
a(x, D) is continuous and
IK(, )IS@m)~" flax, idE<C.

Now (x —y)* K(x,y) is the kernel of the commutator

[xy,[%45 ..., [x,, alx, DY]1] =i a®(x, D),
by (18.1.6), so this is also a bounded function. Hence

(1 +]x=yl"* K,y C,

and the I? continuity of a(x, D) follows from Lemma 18.1.12.
Next we prove by induction that a(x, D) is L? continuous if aeS* and k<
—1. To do so we form for ue¥

la(x, Dyu||> =(a(x, D)u, a(x, D)u)=(b(x, D) u, u)

where b(x, D)=a*(x, D) a(x, D)eOp S?*. The continuity of a(x, D) is therefore
a consequence of that of b(x, D),
laCe, Dyull® < |b(x, D)ull full < ||b(x, D)I| fju|>.

From the first part of the proof the continuity of a(x,D) for all aeS* now
follows successively for k< —(n+1)/2, k< —(n+1)/4,..., hence for k< —1
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after a finite number of steps. Assume now that aeS® and choose
M >2sup|a(x, &)|%. Then

c(x,&)=(M —la(x, £)*)*eS°

by Lemma 18.1.10 since M/2<M —|a(x,¢)|* and we can choose FeC*(R)
with F(t)=1t* when t=M/2. Now Theorems 18.1.7 and 18.1.8 show that

¢(x, D)* ¢(x, D)= M —a(x, D)* a(x, D)+r(x, D),
where reS~!. Hence
la(x, Dyul|> <M ||u)| +(r(x, D)u,u)

which completes the proof since r is already known to be I continuous.

It follows from the proof that the norm of a(x, D) can be estimated by a
semi-norm of a in S° There is a very simple proof of I? continuity which
requires no smoothness at all in ¢ but instead some decay as x — .

Theorem 18.1.11". Let a(x,&) be a measurable function which is n+1 times
continuously differentiable with respect to x for fixed &. If

Y [ID%a(x,&)|dxsM, EeR”,

le] Sn+1

for some M< o, it follows that a(x,D) is bounded in I*(R") with norm
<CM.

Proof. If fe Cg the Fourier transform of a(x, D)u is
i [ Al —& &) (e de
A, O)=QRn)"fa(x,&)e " dx.

where

By hypothesis
A +In)"Am OIS Ci M
which implies that
[lAm=¢&,Oldn=CM, [lA(n—¢QldE<CM.

In view of Lemma18.1.12 it follows that the I? norm of the Fourier
transform of a(x, D)u is at most CM |/}, which completes the proof.

Let us now reconsider the spaces H, introduced in Definition7.9.1: we
have ueH ) if ue¥” and deli,,

lullg=(2m)~" J 141> (1 +1&IPy d&)* < co.
If E(&)=(1+1]¢*)¥? then E.,eS* and the Fourier transform of E(D)u is
E(£)#(£), so the definition means exactly that E(D)uel?. This gives a

precise meaning to the idea that H consists of the distributions with
derivatives of order s in I?, and we have
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Theorem 18.1.13. If acS™ then a(x,D) is a continuous operator from H, to
H_,, for every s.

Proof. If ueH , then v=E (D)ueI? and
E,_.(D)a(x,D)u=E,_,(D)ya(x,D)E_D)vel?
by Theorem 18.1.11 since E,_, (D)a(x,D)E_(D)eOp S°.

Remark. a(x, D) is also continuous ’H,—?H,_,, by Corollary B.1.6.

The proof of continuity in Theorem 18.1.11 was based on estimating
a(x, Dy* a(x, D) from above. We shall now prove a stronger one sided es-
timate which is often important. It is usually called the sharp Garding
inequality. Various improvements of it will be given later on, and a shorter
proof will be possible when we have developed stronger techniques. How-
ever, we give a direct and in principle elementary proof here for the benefit
of readers who do not wish to go through Sections 18.4 to 18.6.

Theorem 18.1.14. If aeS2"+* and Re a=0 then

(18.1.16) Re(a(x,D)u,u)z —Cl|ul},, ueS.

Proof. (18.1.16) follows from Theorem 18.1.13 if aeS*™. Since
(a(x, D)+ a(x, D)*)/2 —(Re a)(x, D)eOp §2™

it is therefore sufficient to prove (18.1.16) with a replaced by Rea. Thus we
assume a =0 in what follows. To prove (18.1.16) we shall then write a(x, D)
as a superposition of positive operators with an error of order 2m. We start
by choosing an even function ¢geCP(R?" with I? norm one and define
Yed by y(x,D)=¢(x,D)* ¢(x,D). Then ¥ is even by (18.1.14) and (18.1.9),
and we claim that

(18.1.17) (f¥Gmdydn=1.

For the proof we observe that if K, and K, are the kernels of ¢(x,D) and
of Y(x, D) then
Cm) " [fy(x,Hdxdé=[K,(x,x)dx=[[|K,(x,y)|*dxdy
=2m) " [[lo(x, P dxde

where the last equality follows from (18.1.7) and Parseval’s formula.
Having proved (18.1.17) we now set a=a,+a,; where

(18.1.18) a;(x, &)= ¥ ((x—y)am), (& —n)/a(m) a(y,n)dydn,
qa(my=(1+In*?*.
Since (Y(x,D)u,u)={p(x,D)ul|>=0 we obtain W(tx,D/tyu,u)=0 if we re-
place u by u(x/t). Hence it follows that
W (tx~y,(D—n/Du,u)z0, ue¥, (y,neR>",
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if u is replaced by u(x+y)e~"<*" It is therefore clear that
(a,(x,Dyu,u)=0, ue,

so (18.1.16) will follow if we prove that a,eS*".

When we differentiate with respect to x; under the integral sign in
(18.1.18), the derivative can be replaced by —d/dy;. After an integration by
parts the net result is that a has been differentiated with respect to y;.
Differentiation of a, with respect to ¢; is more complicated since

(0/0& ;4 0/an ) w((x —yYq(m), (& —n)/q(n)
=y'((x —y) g(n), (& —n)/q(n) F;(n),
where Fj(n)=q(n)~ ' 8q(n)/0n;eS~* and

(18.1.19)  ¥'(x, §)=§tlﬁ(tx, E/Dimy =<x, 0Y/0x) — L&, Y /0>

is another even function in & Note that H Y'(x, &)dxdf=0. Differentiation
of a, with respect to ¢; therefore gives one term of the form (18.1.18) with a
replaced by a¥ and one where y is replaced by y’ and a factor F,eS~" is
introduced. Inductively it follows that a$), =a(y)—af); is a finite sum of
terms of the form

(18.1.20) bo(x, &) =¥ ((x —y) a(m).(& —m)/am) b(y,m)dydn
—b(x, &) [[¥1(y,mdydn
where €% is even and beS?™*!~1# The theorem will be proved if we

show that beS* implies |b,(x, &} < C(1+]€( .
a) When | —n|=(1+|¢&|)/2 we have 1 +|n|<3|&—n| and

AHIEY/A+nh=1+1E=nl,  (L+n)/A+IEN=1+]E—n].
The factor y, in the first integral in (18.1.20) can be estimated by

Cy(t+1x ~ylam)+1E —nl/gm) ="~ (1 +1¢ —nl*/q(m)*) ™"

for any N. Since q(n)*<1+|n| <3| —n| the last factor may be replaced by
(1+1&—1l/3)"Y. Hence the integrand in the first term in (18.1.20) has the
bound

Cho(L+1x —y| q(&) +1E —nl/q(&) 2" 1(1 +| gl +n+1-N

when |&—n|=(1+1&])/2 and N>|u|+n+1. The integral of the first factor
with respect to y and 5 over R?" is finite and independent of (x, &), so we
obtain the desired bound for the corresponding part of the first term in
(18.1.20) if N is large enough.

b) When |& —75]< (1 +{&])/2 we have

(L+1ED<2(1+16) <3(1+[&l)
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for every 0 on the line segment between £ and 5. Hence Taylor’s formula
gives

B(x,y,&m=Ib(y,m— Y. bR(x,Oy—xPn—E&F/alp!

le+pls2
S Clx—yl g+ —nl/a@)* A +Igly

(Note that the scales in i were chosen to match in this estimate.) Thus

if B,y Emiv((x—y) g, (& —n/gm)ldydn = C(1+|&y 1

2{8-ni<1+{g

It remains to evaluate the integrals

0 v =»am,E—n/gm)y —x)P(n—&*dydn.

2{-nl<1+K|

To do so we would like to replace g(n) by ¢(£). With the notation ¥ in
(18.1.19) we have for any N when t and 1/t have a fixed bound

¥1(22,6/6) = 1(2,0)~(t = D ¥ (2, O] < Cy(1 +]z| +16) N —1)*
Assuming still that [€ —n| <(1 +|£])/2 we shall take t=q(n)/q(£). Then

4Ot -1)=4q(n)—q()=<{q'&),n—& +0(n—¢&l/q(&)*/q(&)
so replacing (z, 6) by ((x —y) q(&), (¢ —n)/q(£)) we conclude that

W1 ((x = y) q(m), (E —n)/a(m) =¥ 1 (x =) 4(£), (£ —n)/q(2))
—<q'(8), (n —&)/q (&) ¥1((x ~ ) g(& (£ ~n)/g ()
S Cy1+1x—yla(©)+1E —nl/g@)*~ (1 +Igh~".
Since 2|£ —n|>1+]¢| implies [ —nl/q()>(1+|¢DA24q(£)) we obtain

if | ¥ ((x —y) g, (€ —n)/am)(y —x (n — &) dydny

2[E-nl<1+|¢

=q(&"- Iy, (v,m) ¥ n*dydn
+{§ 10, m) Y in, (&) dydn+ O((1+[E) 1]

The first integral on the right vanishes when |oa+ j=1 and the second
vanishes when a+pf=0. When ja+p8|=2 we get the bound Cgq(&)"!-!F!
=Cq(¢)**-2, when |a+Bl=1 we get the bound Cgq(&)ll-1#Fi-1
=Cq(&)*™-2, and when a+f=0 the integral is [y, (v,m)dydn+
O((1+1&)~"). If we multiply by b5(x,&)/a! B! and sum, we obtain after
subtraction of the second integral in (18.1.20)

bo(, N=Cy 3 IBGHeL OL+IED 1+ Cp(1+1E] %

la+pl=2

This completes the proof.

Remarkl. In Section22.3 we shall prove some refinements of Theo-
rem 18.1.14. It will then be important that the preceding proof shows that if
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0<aeS? then one can find a,eS’ such that a(x, D) —a,(x, D) is non-negative
and

(18.121)  fap(,O=C( Y (L+IED™="la(x, Ol +(1 +IENH).

le+B1=2

This is a special case of the preceding estimate of b,.

Remark 2. The calculus of pseudo-differential operators works equally well if
we allow symbols aeS™ with values in %(B,,B,) where B, and B, are
reflexive Banach spaces. Thus a(x,D) maps ¥(R", B,) to ¥(R",B,) and
S (R" B,) to &¥'(R", B,). We just have to replace absolute values by norms
in the arguments above. When B, and B, are Hilbert spaces the results on
I? continuity remain valid and the proofs only require obvious modifica-
tions. Also the sharp Garding inequality (Theorem 18.1.14) is valid if
aeS*™*! has values in Z(H,H) where H is a Hilbert space, and the
function u in (18.1.16) takes its values in H. In fact, if 4 is a positive
bounded operator in H then

W(x—y)/t,(D—n)/t) Au,u)20;  y, neR", t>0;

when ¢ is defined as in the proof of Theorem18.1.14, for the spectral
theorem reduces the proof to the scalar case. Thus the first part of the proof
remains valid, and the second part requires essentially no change at all.

The following simple consequence of Theorem18.1.14 gives Theo-
rem 18.1.11 a more precise form which is often important.

Theorem 18.1.15. For every bounded subset A of S° there is a constant C such
that

(18.1.22) Re(a(x,D)u,u)= —C3é |ul|®>, ue¥,

if a4, a=20,0<d<1, and a(x,&)=0 when |£ 5| < 1. We also have

(18.1.23) la(x, D)| Ssuplal+(Cd)?}, ued,

if acA, 0< o<1, and a(x, £)=0 when |£| < 1.

Proof. Let A,={a/d;aeA and a(x,&)=0 when [£d|<1, 0<d<1}. Since
6-1<1+|¢| in supp a it follows that A, is a bounded subset of S'. Hence
(18.1.16) is valid uniformly with m=0 for all aeA,, which proves (18.1.22).

Choose yeC*(R") with 0<y<1, x(£)=1 when |é]>1 and x(£)=0 when
|| <4%. Then we can apply (18.1.22) to

M? x(68)* ~la(x,&)?

if aeA, M =supla| and a(x, £)=0 when |6&|<1 for some §€(0,1). This gives
with another C

M2 |ju|?—Re(lal*(x,D)u,u)= — Cé |ul|?>, ues.
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We have a*(x, D)a(x, D)=|a|*(x, D)+ b(x, D) where b(x, ) is bounded in S~
and vanishes when |6¢| <1. Hence b(x,¢)/d belongs to a bounded set in S°
so ||b(x, D)/é|| £ C" by Theorem 18.1.11 and

M? ||ull?—lla(x, Dyul*Z —~(C+ C)é |lul®.
This completes the proof of (18.1.23).

In the following theorem we sum up some smoothness properties of the
kernel of a pseudo-differential operator, partly encountered already.

Theorem 18.1.16. Let acS™ and denote by Ke &' (R" x R") the Schwartz kernel
of a(x,D) defined by (18.1.7). Then KeC/(R"xR" if m+j+n<0, and
KeC®(R"xR"\4) for any m if A is the diagonal {(x,x); xeR"}. More
precisely

(18.1.24) WF(K)<={(x,x,0, —0); x,0eR"}
which is the conormal bundle of A. We have

(18.1.25) WF(a(x,Dyu)c WF(u),ue s,
(18.1.26) sing supp a(x, Dyu csing supp u, ue ¥".

If aeS~ then a(x,D) ¥ = C*™.

Proof. (18.1.7) is absolutely convergent and remains so after j differentiations
if m+j+n<0. This proves the first statement. To prove the second one we
observe that if y, ye C3 then x(x) K(x,y)¥(y) is the kernel of the operator

ur—yax,Dyyu, ues,

which is in OpS~® by Theorem18.1.8 if suppynsuppy¥ =9. Hence the
kernel is in C* then. The more precise result (18.1.24) follows at once from
Theorem 8.1.9 with ¢(x,y,0)=<{x—y,0>. If ue&’ then Theorem8.2.13 gives
(18.1.25) which implies (18.1.26). (It is also easy to prove (18.1.26) directly
when ued”, for singsupp a(x, D)u csuppusince Ke C*(R"xIR"~ 4), and we
can write u=u, +u, with u,e C¥, hence a(x,D)u,e C*, and suppu, close to
singsupp u.) If aeS~* and ue¥”’ then

D a(x, Dyu(x)=(2m)~"<d, Di(e"** a(x, &),

for this is true when ue % and the right-hand side is a continuous map from
& to C° Hence a(x,D) ¥ < C®. If x,yeCY and y=1 in a neighborhood of
supp ¥, it follows that

Ya(x,Dyu—y a(x,D)(xw)=y a(x,D)(1 —y)ueC".
Thus WF(y a(x, D)u) = WF(yx u) which yields (18.1.25) for any ue.%".

Remark. (18.1.26) is often called the pseudo-local property while (18.1.25) is
referred to as the microlocal property of a(x, D).
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Before discussing the effect of a change of variables on Op S™ we observe
that if aeS™ then a direct computation gives

a(x, D) uy=e*a(x,D+Eu; ued’, EeR™
If we take u(x)=uv(ex) where 9e CY and v(0)=1, it follows when ¢— 0 that
(18.1.27) a(x,D)e'*® =a(x, &) ' ¥,

This gives a convenient way to recover the symbol from the operator.

Theorem 18.1.17. Let X and X, be open subsets of R" and x: X—>X, a
diffeomorphism. If aeS™ and the kernel of a(x,D) has compact support in
X x X then

(18.1.28) a, (K(x),n)=e <M g(x, D) g F1>

a,.(y»,8)=0 if y¢X,, defines a function a,eS™ such that the kernel of a.(x,D)
has compact support in X, x X, and

(18.1.29) (a.(x, D)uyox =a(x, DY{(ucx), ues".
For a, we have the asymptotic expansion
(18.1.30) a (k(x), 1)~ a®(x, 'k (x) ) D3 P~ o]

where p. (y)=k(y)—x(x)—K'(x)(y —x) vanishes of second order at x. The
terms in the series are in S™~14/2,

Proof. If we show that a,eS™ then (18.1.28) means precisely that (18.1.29) is
valid when u(x)=e*". This proves (18.1.29) since both sides are con-
tinuous from &’ to £(X) and linear combinations of exponential functions
are dense in &’. Before the proof that a,eS™ and that (18.1.30) is valid we
observe that

(18.1.31) G (x,m)=D5 el P=m

is a polynomial in n of degree =Z|u|/2 with C* coefficients. In fact, a
differentiation producing a factor n; also brings out a derivative of p.(y)
vanishing at x. If k derivatives bring out a coordinate of # each, we must get
a zero term unless |a| —k=k, that is, 2k<|a], so that there are enough
derivatives left to remove these zeros. This shows that the terms in (18.1.30)
are indeed in S™~!#/2 50 that the asymptotic series is well defined. Note the
values of the first few polynomials ¢,:

(18.1.31y bo=1; ¢,=0, |a=1;
P (x,n)=D%ilk(x),n), |a|=2 or 3.

By Proposition18.1.4 we shall obtain that a (x(x),n)eS™ hence that
a,e8™, and that (18.1.30) is valid, if we just prove estimates of the form
(18.1.3)". In fact, differentiation of (18.1.28) gives a finite sum of monomials
in # multiplied by a similar expression with another a, so {18.1.4) follows.
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Choose ¢peCY(X) so that ¢(x)=¢(y)=1 for (x,y) in a neighborhood of
the support of the kernel of a(x, D). Then
(18.1.28)  a,(x(x),n)=(x) e~ a(x, D) (@ (x) &' <),

which shows at once that a e C*. To study a, for large n we introduce the
Fourier transform

B, 1) =[ P(y) & KOID =08 gy

The differential of the phase is ‘K'(y)n—¢. If (K (P C and |K'(y)"Y=ZC,
yesupp ¢, then

I''(n—<&l218/2  if [&l/22 Clnl,
'Kn—¢ClzC Hin="' ()~ E&izInl/2C if Cl&|<Inl/2.
In both cases we can normalize the exponent by writing
k() 1) =<y, O =w(x@)nfw) -y, {w)),  w=[L+n]
and obtain using Theorem 7.7.1 for any N
B, MI< Cy(L+1E|+[n)~Y  unless |7l/2 C<[¢|<2Clnl.

Now choose ye CF(R") equal to 1 when 1/2C<|¢|<2C and equal to 0
when |&} <1/4 C. Then

a(x, D)(d(x) &Y =1, (x, )+ 1,(x, ),
where
Ii(x,m=2m)~" [ % a(x, &) D&, n)(1 — x(&/Inl)dE

decreases faster than any power of 1/(1+|y|) as n— co and

I(x,n)=(w/2m)" | Cx=» O+ &0y g(x, o E) 1 (£) p(y)dy dE.

Here w=|n|. The integral I, is of the form studied in Theorem7.7.7 if y—x
is taken as a new variable instead of y, the roles of x and y are in-
terchanged, and another parameter n/w occurs. Note that y(¢)=1 near the
critical point £ ="K'(x) n/w. Hence we obtain for I, the asymptotic expansion

ei(x(x),n) Z <iDy’ Dé/w>j ei(px(y),n) a(x, w é)/] ' |y=x,§=‘x’(x)n/wa

if we observe that all derivatives of a(x,w &) can be estimated by w™ in the
support of the integrand, and that ¢(x)=1 in a neighborhood of the support
of a,(x(x),n). The proof is complete.
The simplest consequence of (18.1.30) is by (18.1.31) that
ax(K(X), ") - a(x, !K’(X) f])ESm— l'

In particular, if a is polyhomogeneous with principal symbol a°, that is, if a°
is the homogeneous. term of highest degree, then g, is polyhomogeneous
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with principal symbol a? satisfying
ay(x(x), ) =a’ (x,"x'(x) 7).
The principal symbol therefore transforms as a function invariantly defined
on the cotangent bundle, just as in the case of differential operators dis-
cussed in Section 6.4. For the next term a! resp.al we obtain (assuming that
the step is 1)
ax(k(x),my=a' (e K x)m+ Y, a®®(x,'x'(x)n) DS (i xc(x), n)/n!.

lael=2
A simpler transformation law is valid for the subprincipal symbol defined by
(18.1.32) a's(x, &) =a'(x, &) +i/2 Y al(x, &).
To compute it for a, we use that
a (y,m)=a’(x,'x'(x) ), y=x(x),
where (‘c'(x) n),=0{y, n)/0x,, which gives

Z ‘128} =Z 0xk/8yj 0/0x Z a®® 0y;/ox
=Y ady 0x,/0y;0y;/0x;+ Y, 0x,/0y;(a®P 0% y;/0x, 0%,
+3a%P 92 Ly, 1) /0x, 0x, Dy ;/0xy).

If J=det(dy;/0x,) then J(0x,/0y;) is the cofactor matrix of the matrix
(Qy;/0xi) so T~ 8J/dx; =Y. 0? y;/0x, 0x,0x,/dy;. Hence

(18.1.33)  a’(x(x), m)=a"(x, K (x) 1) —3 3 a®V(x, K () n) (D )/J.

This may not look much simpler at first sight, but we note that a'¢ is at
least invariantly defined at the points in the cotangent bundle where a°
vanishes of second order. It is also an invariant under measure preserving
changes of variables, and we shall see later that a slight modification of our
point of view gives a complete invariant. A more conceptual motivation for
the notion of subprincipal symbol will be given in Section 18.5.

Our next aim is to define pseudo-differential operators on a manifold.
First we must discuss symbols. If X cR" is open we define SJi (X xR") as
the set of all aeC®(X xR") such that ¢(x)a(x, )eS™(R"xR" for every
¢e Cy(X). This means that for every compact set K<X we can find C,zx
such that

(18.1.1y | (x, I S Copell +IENH; xeK, EeR"

By means of a partition of unity we can immediately extend Proposi-
tion 18.1.3 to this local case.

More generally, let 'cIR"xIR" be open and conic with respect to the
second variable, that is, (x,&)el’ = (x,t&)el’ if t>0. Then we define ST, .(I)
as the set of all aeC*®(I') such that for every compact set K'cI' the
estimate (18.1.1) is valid in {(x,t&); (x,&eK’, t=1}. Taking K'=
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K x {£;{£]<1} we find that this agrees with the earlier definition when I'=
X x R". We shall usually simplify notation by writing S™(I') instead of ST, (I")
since there can be no ambiguity unless '=R"xR" Symbols behave well
under a change of variables:

Lemma 18.1.18. Let X, and X, be open sets in R" and let ¢: X, - X, and
&: X, > GL(n,R) (the group of invertible n x n matrices) be C* maps. If I
cX, xR" and LLcX,xR" are open and conic, (¢p(x), P(x)&)el, when
{x,6)el;, then .

ay(x, ) =a,(o(x), #(x) &)
is in S™(I}) for every a,eS™(I}).
Proof. K,={(¢(x), P(x)&);(x,£)eK,} is a compact set in [, if K, is a

compact set in I;. Since [®(x) £|/|£] is bounded from above and below when
(x,£)eK, and

a‘{’=Za(z’" D al(j)=zaZ(k)aqsk/axj‘*'za(zk)aq)kv/axjfv

the required estimates (18.1.1) follow inductively.

If X<R"is open and aeS™(X x IR"), then an operator
a(x,D): (RN — 2'(X)
is still defined by (18.1.5), and it restricts to an operator §'(X)— 2'(X) or
CP(X)— C=(X). In fact, if peCP(X) then ¢(x)a(x,£)eS™ so the correspond-
ing operator has already been discussed. It follows also that a(x,D) is a

continuous map H,— HZ® . (X). However, there is some lack of symmetry

between right and left multiplication which must be removed before one can
take adjoints. The situation is clarified by the following

Proposition 18.1.19. If A: C3(X)— C*(X) is a continuous linear map and for
all ,yeC(X) the operator
FSur— dAYu

is in Op 8™, then one can find acS™(X x R") such that
A=alx,D)+ A4,

where the kernel of A, is in C®(X xX). Here a is uniquely determined
modulo S~°(X xR").

Proof. Let 1=% y,(y) be a locally finite partition of unity in X. Then
YAy u=a,(x,D)u, ues, where a;es™ and a;(x,£)=0 when x¢suppy ;.
Set

a(x,f)=zlajk(x, 9

where we sum over all j and k for which supp;nsupp ¥, +@. The sum is
locally finite since any compact subset of X meets only finitely many



18.1. The Basic Calculus 85

suppy; and they meet only finitely many suppy,. Hence aeS™(X xR"). If
K is the kernel of 4 then the kernel of A —a(x, D) is the sum

¥ () K(x, 1) ¥ )

taken over the indices for which suppy;nsuppy,=0. It is in C*(X x X)
since the sum is locally finite and the terms are in C* by Theorem 18.1.16.
Now if beS™ and the kernel is in CF(R" x R”"), then

b(x, {)=e ¥ b(x, D) ¥

is rapidly decreasing when &— o0 so beS™®. If A=0 we can apply this
conclusion to b(x,D)u=¢ a(x,D)Yu taking ¢=1y=1 near any given point
in X. This proves that aeS~*(X x R") which completes the proof.

We are now ready to define pseudo-differential operators on manifolds:

Definition 18.1.20. A pseudo-differential operator of order m on a C® ma-
nifold X is a continuous linear map A4: CF(X)— C®(X) such that for every
local coordinate patch X,<X with coordinates X, > x — k(x)
=(x;,...,x,)eX, cR" and all ¢, yeCP(X,) the map

FRYD u— Hr™DNA*@u)

is in OpS™ We shall then write Ae¥P™(X) and extend 4 to a
map §'(X) - 2'(X).

_ If X<R” it follows from Proposition18.1.19 that 4 must be the sum of
an operator a(x,D) with aeS™(X xIR") and an operator with kernel in
C*(X x X). Theorem 18.1.17 shows that conversely every such operator is in
Y™(X). Definition 18.1.20 just means that the restriction of A to each coor-
dinate patch is of the preceding form in the local coordinates. It is of course
sufficient to know this for so many coordinate patches X, in X that the
products X, x X, form an atlas for X x X. It suffices to use an atlas for X if
one requires in addition that the kernel of A is smooth outside the diagonal.
In particular, if a,eS™ and the kernel of a.(x, D) has compact support in
X, x X, then we can define Ae ¥™(X) by

Au=x*a,(x,D) (k" )*u in X, Aueé(X)).

If A is polyhomogeneous it follows from Theorem18.1.17 that a prin-
cipal symbol a° is invariantly defined on T*(X)~0, where 0 denotes the 0
section. It is obtained by just pulling the principal symbol back from
T*(X,)~0 to T*(X )~0. To define the principal symbol for any AeP™ we
first define $™(T*(X)) as the set of all ae C*(T*(X)) such that the pullback
to T*(X,)=X,xR" is in $"(X, xIR") for every coordinate patch. By Lem-
ma 18.1.18 it is enough to require this for an atlas, and the definition agrees
with our earlier one if X cR". If Ae¥P™ then the restriction of 4 to X,
identified with X, defines a symbol in $™(X, x R")/S—*(X,x R") by Propo-
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sition 18.1.19. If a4,eS™(T*(X,)) is the pullback of a representative then
a — e €S" HT*(X,.nX,)) by Theorem 18.1.17 for every pair of coordinate
patches. With a partition of unity {i;} subordinate to a covering by coor-
dinate patches X, we set

a= Zl// a,eS"(T*(X))

and obtain a—a,eS" {(T*(X,)) for every k. This determines a modulo
S™~1 5o we obtain a principal symbol isomorphism

XY P HX) = S™(TH(X)/S™ HT*(X)).
To prove surjectivity we take i; now with )" y?=1 and set for aeS™(T*(X))
A;u=y;xtai(x, D)y V*(W;u), ueC(X),

where q; is the pullback of a to T*(X «;)- Then A=) A; has the principal
symbol a. We also have an isomorphism between ¥~ °(X) and the oper-
ators with C* kernel, that is, operators mapping &'(X) into C*(X).

To be able to compose operators freely one needs to have some infor-
mation on the support of the distribution kernel, which is a distribution in
X x X with values in 1[X Q, that is, a distribution density in the second
variable.

Definition 18.1.21. The (pseudo-differential) operator A in X is said to be
properly supported if both projections from the support of the kernel in
X x X to X are proper maps, that is, for every compact set K< X there is a
compact set K'< X such that

suppucK =suppAucK’';u=0at K'=Au=0 at K.

Note that 4 can then be extended to a map 2'(X)— 2'(X) so that the
last property is preserved.

Proposition 18.1.22. Every Ae¥Y™ can be written as a sum A=A+ A, where
A,e¥" is properly supported and the kernel of A, is in C™.

Proof. As in the proof of Proposition18.1.19 we take a partition of unity 1

=) ¥;in X and set
A, u=Z’ ‘/’jA(‘/’ku)

with the sum taken over all j and k such that suppy;nsuppiy,+@. The
same proof shows that A, is properly supported and that 4,=4—A4, has a
C* kernel.

Using the preceding decomposition and Proposition 18.1.3 it is easy to
show that if 4,&'¥™/(X), m;| — oo, then one can find A€ P™ with

A—Y Age¥P™ for every k.

j<k

The details of the proof are left for the reader.
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Since the asymptotic formulas in the calculus of pseudo-differential
operators only allow one to recognize them modulo ¥ ~%, we shall usually
be working with P™/% - instead of ¥™. By Proposition18.1.22 it is then
always possible to pick a properly supported representative for the class
considered. It is therefore no essential restriction that we require proper
supports in the following immediate consequence of Theorem 18.1.8.

Theorem 18.1.23. If A;e¥™(X) are properly supported, j=1,2, then A
=A,A,e¥™*"™(X) is properly supported and the principal symbol is the
product of those of A, and of A,.

Proof. Let ¢, e C3(Y) where Y is a coordinate patch, and choose ye C3(Y)
equal to 1 in a neighborhood of supp . Then

DA A=A, DA )+ A,(1— 1) A, ¥

The first term on the right is in Y™ by Theorem 18.1.8 and the other has a
C* kernel.

The proof that (iii) = (i), (ii) in Theorem 18.1.9 gives with no change an
extension of Theorem 7.1.22:

Theorem 18.1.24. If Ae¥P™ is properly supported and elliptic in the sense that
the principal symbol aeS™(T*(X))/S™ Y (T*(X)) has an inverse in
S™™(T*(X))/S~™ Y(T*(X)) then one can find Be¥ ~™ properly supported such
that

BA—Ie¥~>®, AB—Ie¥~™.

One calls B a parametrix for A. -

In Chapter XIX we shall discuss the existence theory for elliptic oper-
ators which follows from the existence of a parametrix. Here we proceed to
discuss local versions of Theorem 18.1.24.

Definition 18.1.25. If aeS™(T*(X)) is a principal symbol of 4e¥P™ then A4 is
said to be non-characteristic at (x,, ,)e T*(X)~0 if ab—1eS~! in a conic
neighborhood of (x,,&,) for some beS~™. The set of characteristic points is
denoted by Char A.

The definition is of course independent of the choice of a. The proof of
the equivalence of (iii) and (iv) in Theorem 18.1.9 shows that in terms of
local coordinates an equivalent condition is that |a(x, &)l 2c|é|™ for large ||
in a conic neighborhood of (x,,&,). If 4 has a homogeneous principal
symbol a, the condition is equivalent to a(x,,&,)+0 so our present defini-
tion of Char A4 coincides with (8.3.4) for differential operators.

If Ae¥™ and k<m we shall say that 4 is in V¥ or of order k, at
(x0,&0)eT*(X)~0 if for the complete symbol a(x,&) of A restricted to a
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coordinate patch containing x, we have aeS* in a conic neighborhood of
(xg,&0)- By Proposition 18.1.19 and Theorem 18.1.17 this condition is inde-
pendent of the choice of a and of the local coordinates. The case k= — 0 is
of particular importance:

Proposition 18.1.26. If AcW™(X) and I is a closed conic subset of T*(X)~0,
the following conditions are equivalent, of denoting the kernel of A:
(i) Ais of order —oo in T*(X)\ O\ I
(i) WF'(A) C {(v,hveT}
(i) WFAu) C I'NWF@u),u € &'X).

Proof. The statements are local so we may assume that X cR” and that
A=a(x,D), where aeS™ and a(x,£)=0, |£]< 1. If a is rapidly decreasing in a
conic neighborhood V of (xq,&,) we can choose ge C*(R” x (R" ~.0)) with-
support in ¥ so that g(x, ) is homogeneous in ¢ of degree 0 and equal to 1
in a neighborhood of (x,, ,). Then the kernel of (ag)(x,D) is in C*, and
(x05&0,%0> —&,) 1s not in the wave front set of the kernel of (a(l —g))(x, D)
by Theorem 8.1.9. In view of (18.1.24) it follows that (i) = (1i). That (i1) = (iii)
is a consequence of Theorem 8.2.13. Finally assume that (iii) is valid, and let
(xg>Eo)¢T. Choose geS® with support in a closed cone I; with I; nI'=§ and
equal to 1 at oo in a conic neighborhood of (x,,&,). Then WF(g(x,D)u)<I;
for every ueé&’ since (i)=>(iii), so WF(a(x,D)q(x,D)u)cI' nI;=9. Thus
a(x,D)q{x,D) has a C*™ kernel K. Choose ¢eCy equal to 1 in a neigh-
borhood of x, and set a(x, D)g(x, D) ¢ u=b(x, D)u. By (18.1.27) we have

b(x,)=e""* [K(x,y) p(y) &> dy

and the right-hand side is rapidly decreasing when £ — oo. The same is true
for the derivatives so beS~* in a neighborhood of x,. But b—aeS~® in a
conic neighborhood of (x,,&,) so it follows that aeS~* in a conic neigh-
borhood of (x,, £y). Thus (iii) = (i) which completes the proof.

Since WF'(«/) is contained in the diagonal of T*(X)~0x T*(X)~0 it is
natural to identify it with a conic subset of T*(X)~. 0. We shall write

(18.1.34) WF(A)={yeT*(X)~0,(y,y)e WF'()}.

By Proposition 18.1.26 WF(A) is the smallest conic set such that A4 is of
order — o in the complement, we have

(18.1.35) WF(AuycWF(A)NnWF@u), ued'(X),
and no smaller set than WF(A) can be used in the right-hand side. It is
clear that WF(AB)c WF(A)nWF(B) if AeP™(X), Be ™ (X).

We can now state a microlocal version of Theorem 18.1.24:

Theorem 18.1.24°. If AeW™ is properly supported and (x,,¢,)¢ Char A then
one can find a properly supported Be ¥ ~™ such that (x,,&¢,)¢ WF(BA—1) and
(x0,E0)¢ WF(AB —I); these conditions are equivalent.
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Proof. By Definition 18.1.25 we can choose B,e¥~™ properly supported
(like all operators in what follows) so that AB; —1I is of order —1 at (x,, £y).
This means that AB,=1+R,+R, where R,e¥ ! and (x4, ¢,)¢ WF(R,). By
Theorem18.1.24 we can find B,e¥® with (I+R,)B,—Ie¥~*®. Since
(xq,&0)¢ WF(R, B,) it follows that (x,,&,)¢ WF(AB—1I) if B=B, B,. Similar-
ly we find B’ with (x,,&,)¢ WF(B’ A—1I). Since

B —~B=(B A-I)B—B(AB—1I)

it follows that (x,,&,)¢ WF(B'—B). Hence (x,,{)¢ WF(BA—1I), and the
proof is complete.

Theorem 18.1.24" allows us to give an alternative description of the wave
front set of a distribution.

Theorem 18.1.27. If ue2'(X) we have for every melR
(18.1.36) WF(u)= (") Char A

where the intersection is taken over all properly supported Ae ¥™(X) such that
AueC*(X).

Proof. Assume that (x,,f,)¢ WF(u). Then we can choose Ae¥™ with
WF(A)N"WFu)=0 and (x,,&,)¢Char A, by just working in a coordinate
patch containing x,. This proves that () Char Ac WF(u). On the other
hand, assume that Ae ¥™, Aue C* and that (x,,¢,)¢Char A. We must then
prove that (x,,¢,)¢ WF(u). Choose Be¥ ~™ using Theorem18.1.24 so that
(xg,Eo)¢WF(BA—1I). Then

u=BAu+(I—BA)u

where BAueC® and (x,,E,)¢ WF((I—BA)u) by Proposition18.1.26. The
proof is complete.

From now on we shall always fall back on (18.1.36) as our definition of
WF(u). With this definition the analogue of Theorem 8.3.1 is obvious:
Theorem 18.1.28. If Ac¥™(X) is properly supported and ue2'(X) then
(18.1.37) WF(u)c WF(Au)u Char A,

Proof. If (x,£)¢ WF(Au) we can find Be ¥° with BAue C* and (x, )¢ Char B.
If (x, £)¢Char A then (x, £)¢Char BA so (x,E)¢ WF(u).

Remark. If T is a closed cone «=T*(X)\0 we introduced in Section 8.2 the

space
DUX)={ueP'(X), WF(u)<T}.

In Definition 8.2.2 we introduced a notion of convergence for sequences in
9r(X). The preceding arguments show with little change that u;—u in
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21(X) is equivalent to u;—u in 2'(X) and Au;—> Au in C¥(X) for every
properly supported 4 with FT'nWF(4)=§. We leave the details for the
reader.

In appendix B we have defined the space H\3(X) of distributions u on X
such that (x~)*(¢ u)eH,(R") for every local coordinate system x: X K—-»X .
<" and every ¢peCg(X,). The main point was the invariance of HJ"*(X,)
under changes of variables proved in Theorem B.1.8. This is also an im-
mediate consequence of Theorem 18.1.13 and Theorem 18.1.17. If Ae¥™ we
have A¢pueC®(X ~supp¢), and ApueH® , (X,) by Theorem18.1.13, if

ueH{;’f(X ), so we obtain, using Theorem 18.1.24 to prove the converse,

Theorem 18.1.29. If ueH}‘s’f(X ) (resp. HG™ (X)) and Ae¥Y™ is properly sup-
ported then AueH}‘s”_m)(X ) (resp. Aue HZ™% (X)) The converse is true if A is

—m)
elliptic.

Thus one can define H{(X) as the set of all ue2'(X) mapped to L2, (X)

by every (some elliptic) properly supported operator in ¥*(X). The preced-
ing discussion can be localized with the following terminology:

Definition 18.1.30. If ue2'(X) then ueH at x,eX if u=u +u, with
u,eH%(X) and u,eC™ in a neighborhood of x,. If (x4,£0)eT*(X)\0 we
say that wueHly at (xo,&,) if w=u,+u, with u,eHX(X) and

(x0,E0)E WF(u,). ®

It is obvious that ueH at x, if and only if ¢ueH{F(X) for some

¢e C*(X) with ¢(x,)+0. The condition ueH}‘s’)c at (x4, &) can be expressed
in a similar way with pseudo-differential operators replacing cutoff func-

tions:

Theorem 18.1.31. If ue2'(X) and AcW™(X) is properly supported then
(18.1.38) ueH at (xo,&o) = AueHZ , at (x4,&0).

One can choose A so that AueHS ,(X) and (x,,&0)¢Char A. On the other
hand,

(18.1.39) AueHZ® . at (x4,&0) and (x,,&0)¢Char 4
= ueH% at (x4, o)

If ueHYY at (xo,&,) for every £, T~ 0 then ueHy at x,.

S

Proof. If u=u,+u, and wu,eH(X) then Au,eHZ (X) by Theo-
rem18.1.29, and if (x,,&,)¢WF(u,) then (x,,&,)¢ WF(Au,). This proves
(18.1.38) and also that AueHg® . (X) if WFu)nWF(A)=0. If
(xg,Eo)¢Char A we choose Be P~ ™(X) according to Theorem 18.1.24° and

obtain if AueH® , at (x,,&,) that BAue HSS at (x,,&,), and WF(u—BAu)
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= WF(I —BA) which does not contain (x,,&,). Hence (18.1.39) follows. As-
sume now that ue Hf at (x,, ) for every £eT* 0. Since the unit sphere in
Tz is compact and Char 4 is closed, we can choose finitely many 4 ;e vo(X)
such that 4,ueHi(X) and

T*nChar A;n...nChar 4,=0.

Let 4 € w9 have a principal symbol which is complex conjugate to that of
A; and set A=Y A4 ;A;. Then Ae¥° and 4 is elliptic in a neighborhood of
X,. Using Theorem 18.1.24 we can choose Be ¥° such that BA—1 is of order
— oo in a neighborhood of x,. Hence BAu—ueC* in a neighborhood of x,,
and since BAueH\%(X) it follows that ueHY in a neighborhood of x,.

Remark. The discussion above is equally valid for ?H , for any p.

Occasionally it is useful to introduce functions in X or in T*(X)\0
which measure the smoothness of u by means of H ,, spaces,

(18.1.40) s,(x)=sup {s;ueH at x}
(18.1.41) s¥(x,&)=sup {s;ucH at (x,£)}.

These are obviously lower semi-continuous functions with s,(x) < s)(x,§). If
s<sp(x,E)forevery{ € T\ Othenu € H(ls")c at (x,&) forevery §,sou € H(‘J,")c at
x, hence

(18.1.42) s, (x)=1infs*(x, £).
¢

By Theorem 18.1.31 we have s¥,(x,&)=s¥(x,&)—m if Ae¥P™, and there is
equality if (x, £)¢Char A.

We have postponed until now the discussion of adjoints of pseudo-
differential operators. The reason is that the dual objects of functions are
densities, as we saw in Section6.3. The adjoint of a pseudo-differential
operator is therefore a pseudo-differential operator from densities to densi-
ties, unless a positive density is distinguished which allows identification of
functions and densities. We must therefore make some comments on
pseudo-differential operators between sections of vector bundles E and F
over X. This will also be important in Chapters XIX and XX.

Definition 18.1.32. Let E and F be complex C* vector bundies over the C*®
manifold X. Then a pseudo-differential operator of order m from sections of
E to sections of F is a continuous linear map

A: CF(X,E)- C*(X,F)
such that for every open Y <X where E and F are trivialized by

¢p: Ely>YxC% g Fly-»YxCT/,
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there is a f x e matrix of pseudo-differential operators 4;,€ ¥™(Y) such that

(¢r(4 u)lY)i=ZAij(¢Eu)ja ue Cg (Y E).
We shall then write 4e Y™(X; E, F).

Naturally it suffices to assume that there is a covering of X x X by
coordinate patches Y xY such that 4;; can be expressed as an operator in
Op S™ modulo C* in the local coordinates. We leave as an exercise for the
reader to verify that the principal symbol of 4 is well defined as an element
in

S™(T*(X); Hom(E, F))/S™~(T*(X); Hom(E, F))

where Hom(E, F) is the vector bundle with fiber at (x, &) consisting of the
linear maps from E, to F,. (See also Section6.4 for the case of differential
operators.) We also leave for the reader to convince himself that spaces
H{Z(X,E) of sections of E can be defined as in the scalar case and that
Ae¥Y™(X; E, F) implies that A: HY(X,E)— Hg® (X, F) is continuous if 4 is
properly supported. The obvious extension of Theorem 18.1.23 to operators
between sections of bundies is also left for the reader.

In Section 6.4 we defined the density bundle @ on X: a section of Q
expressed in local coordinates x,,...,x, is a function u such that the mea-
sure u|dx| is independent of how they are chosen, |dx| denoting the Lebes-
gue measure in the local coordinates. For the representation #’ in the local
coordinates x’ we therefore have

u'ldx'|=uldx|.

We can define the powers Q° of @ for any aeC by just changing the
transformation law to

' ldx'|*=uldx|*
or, more formally, we take the transition functions
g, =|det(kox’ ~Y|%K’  in X, nX,

if k and ' are arbitrary local coordinates with coordinate patches X, and
X ... We shall now work out the transformation law for the second term in
the symbol of a polyhomogeneous operator acting on half densities, that is,
sections of Q*. This means that (18.1.29) must be replaced by

(18.1.29y ((ac(x, D) wyor) | I ¥ =a(x, D) ((uor) |J|#)
where J =det x'(x). Now

[JI~*a(x, D)(v|J|*)=b(x, D)v
where
b(x, &)~ I *a®(x, &) D*|J|*/a!
=a(x,&)+5Y,a®(x,&) D, J/J mod S™ 2.
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The sum cancels that in (18.1.33). For the subprincipal symbol we now have
the simple transformation law

(18.1.33y a*(1(x), 1) =a"*(x, " (x) )

so it is an invariantly defined function on T*(X)~0. The same calculation
can be applied to any symbol in S™ If we repeat the argument in the
definition of the principal symbol we obtain

Theorem 18.1.33. If Ae¥™(X ; Q% Q%) then A has a refined principal symbol
o(A)eS™(T*(X))/S™~2(T*(X)) such that if A is defined by a(x,D) in a local
coordinate system then

o(A)—a—i)2y aleS™2

When A is polyhomogeneous this means that the subprincipal symbol (18.1.32)
is invariantly defined on T*(X)~0.

The product of two half densities is a density so the (anti-)dual space of
CF(X, Q% is 2'(X,Q?%). Hence the adjoint of a continuous linear operator
CP(X, 2 - C*(X,0Q% is a map £'(X, Q%) - 2'(X,Q*). From Theorem 18.1.7
we now obtain:

Theorem 18.1.34. Every Ac¥™(X; Q% Q%) has an adjoint A*eP™(X; Q% Q%),
thus
(Au,v)=(u, A*v); u, veCF(X,Q*).

If a is a (refined ) principal symbol for A, then a is one for A*.

The (anti-)dual of a complex vector bundle E over X is defined so that
the fibers are the (anti-)duals of those of E. Thus the transition matrices g;;
of E are replaced by ‘g;;! for the dual and g}~' for the anti-dual E*. We
also define E® Q% as the vector bundle with transition matrices obtained by
multiplying those of E and of Q% the latter being scalars. If
ue C*(X, E® Q%) and ve C*(X, E* ® 2%), then (u(x), v(x))e C*(X,Q) and can
be integrated over X if the support is compact. The following is an obvious
extension of Theorem 18.1.34:

Theorem18.1.34'. If E, F are complex vector bundles, then every
AeP"(X; EQ Q*, FQ Q) has an adjoint A*eWP™(X; F*® 2%, E*® Q%),
(Au,v)=(u,A*v); ueCP(X,EQQY, veCI(X,F*®02%).
If a is a principal symbol for A then a* is one for A*.
Another advantage of always having a half density bundle factored out
is seen in the form that the Schwartz kernel theorem (Theorem 5.2.1) takes

for manifolds: Every continuous linear map Cg(X JEQR Q) -2 (Y,FRQ})
has a kernele 2'(Y x X, Hom(E, F)® Q} , x) where (Hom(E, F)), . is the space
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of linear maps from E, to F,. The verification is obvious once one satisfies
oneself that the converse is true. It was only to avoid being involved in such
discussions that we stated Theorem 8.2.12 and the following results in Sec-
tion 8.2 only for open subsets of R".

The results proved in this section are valid for more general symbol
spaces. In particular one can use some of the spaces S7 ; obtained when
(18.1.1) is replaced by

U811 |a o OIS C, p(L+IEmPll 0 x ceR"

Here 0<p<1 and 0<J<1. These spaces were already introduced in Sec-
tion7.8. The basic reason for their interest is that by Theorem11.1.3 we
have estimates of the form (18.1.1)" for 1/P(¢) if P is hypoelliptic and |&] is
large. Since S} ,o87 ,=8", Proposition 18.1.3 and 18.1.4 are valid with no
change, and so is Theorem 18.1.6. The asymptotic series in (18.1.11) is only
defined when 6<p, but Theorem18.1.7 is valid when §<p apart from the
breakdown of (18.1.11) when d=p. The same is true for Theorem18.1.8
whereas in Theorem 18.1.9 we must assume that 6 <p. Theorems18.1.11 and
18.1.13 are valid when 6<p but the proofs given are only applicable when
d<p. In Theorem 18.1.14 the hypothesis should be replaced by aeS>7**~°.
Changing variables requires an additional condition, for Lemma18.1.18 is
only valid when 1—p<4, that is, p=1~3. When 6<p this implies p=1
with equality only when 6=1 also. Now Theorem18.1.17 remains valid
when 1 —p=<Jd<p except for the asymptotic expansion which we only have
when §<p. The rest of the section is really just formal and requires no
change. The notation ¥,";(X;E,F) is used for the pseudo-differential oper-
ators based on S7 ;

We shall not carry out the proofs of the preceding statements They may
be supplied by a reader wanting to consolidate his grasp of the material in
this chapter. Alternatively, the classes S, ; may be regarded as very special
cases of the general classes of pseudo-differential operators discussed later
on in this chapter. (See the end of Section 18.4.) However, we shall prove a
technically useful result concerning products of pseudo-differential operators
in R" and pseudo-differential operators in x'=(x,,... JeR"~! depend-
ing on the parameter x,

Theorem 18.1.35, Let acS™(R"x R"), beS"' (R"xIR""Y), and assume that for
some £>0 we have

(18.1.43) alx,§)=0 if e|&,|>1 and |&|ZelS,l.

Then a(x,D)b(x,D’) and b(x,D'Ya(x,D) are in Op(S™*™), and the asymptotic
expansion of the symbols can be obtained from (18.1.15).

’nl

Note that in the estimate

IDEDEb(x, &)= Cpp(1+1E 1y
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we can replace |£'| by |£] in the set where ¢|&,| <[, for
LSS 1+1E S +1ED 1 +1/e).

The asymptotic series (18.1.15) for the compositions are thus well defined.

Proof of Theorem18.1.35. Choose ye C*(IR") homogeneous of degree 0 out-
side a compact set so that |e&,|>1 and {&'|<|e&,] if Eesuppy, and y(&)=1
when {e&,|=2 and 2|&|<leé,|. Then

bi(x,&)=b(x,&)(1 —x(&)es™

and b,=b in a neighborhood of suppa. Hence b,(x,D)a(x, D)eOp S™*™
and the asymptotic expansion of the symbol is given by the usual formuila
for b(x,D)a(x,D). By (18.1.43) we have y(D)a(x,D)=c(x,D) where ceS~*.
Now
b(x,D')c(x, D)ei*% =b(x, D) e ** ¢(x, £)
=e*nnp(x,D')c(x, D', &) e 5

where r(x,D’,&é,)=b(x,D")c(x,D’,£,) is a composition of pseudo-differential
operators in n—1 variables containing x, and £, as parameters. Since
Di b(x',x,,&) is uniformly bounded in S™(R"~'xR""') when xR, for
any j, and (1+|&,)Y DL D% c(x,x,,&,¢&,) is also uniformly bounded in
S MR !xR""!) when (x,,¢&,)eR? for any jk and N, it follows that
reS™®(IR" x R"). We have

b(x,D)Yc(x,D)u=r(x,D)u, ues¥’,
since both sides are continuous in &’ and the equality holds for exponen-
tials. Hence
b(x,D’)a{x, D)=b(x, D)a(x, D)+r(x,D)eOp S™*™
and the symbol has the usual asymptotic expansion. Thus b(x, D')* a(x, D)*

belongs to OpS™*™, which implies that a(x,D)b(x,D')eOpS™*™; the sym-
bol has the usual asymptotic expansion.

The kernel of b(x, D'} is equal to d(x,—y,) K(x,y) where K is defined by
the oscillatory integral

K(x,y)=@Qm)' [ " b(x,£)dE".

Even if b is of order — oo so that Ke C® we can only be sure that the wave
front set is in the conormal bundle of {(x,y); x,=y,} (Theorem8.1.5). How-
ever, these are always the only singularities which can occur besides those
for pseudo-differential operators:

Theorem 18.1.36. If beS™(R" x R"~!) is of order — oo outside the closed cone
TF'cR"x(R"~1\0), then the wave front set of the kernel of b(x,D’) is
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contained in the union of {(x,x,& —&); (x,&)el'} and {(x,y,& —&); X, =Y,
&' =0}. Thus we have for ucé”

(18.1.44) WF(b(x,DYu)= {(x, &)e Wf(u); (x,&)el’}
ui{(x,0,¢,); (v, x,,0,&,)e WF(u) for some y'}.
On the other hand,
(18.1.45) WF(u)< WF(b(x,D")u)
u{lx, &); &=0 or (x,&)eChar b}.

Proof. By Theorems 8.1.9 and 8.1.5
WF(K)C {(x, ya é’ _5), xl =y,a §n=0> (x7 il)er},
WEF((x,—y ) ={(x,5,¢, —&); x,=y,, {'=0}.

The statement on the wave front set of the kernel of b(x,D’) is therefore a
consequence of Theorem 8.2.10, and (18.1.44) follows from Theorem 8.2.13.
To prove (18.1.45) we choose aeS°(R" x R") with support in a compactly
generated cone which does not intersect the right-hand side of (18.1.45).
Then a(x,D)b(x,D')ue C*® by Proposition 18.1.26, and a(x,D)b(x,D’) is a
pseudo-differential operator which is non-characteristic where a is. Hence
WF(u)=Char a, which proves (18.1.45).

18.2. Conormal Distributions

By (18.1.7) the Schwartz kernel of an operator in OpS™ is an oscillatory
integral of the form

(18.2.1) K(x,y)=Qmn) "D a(x,&)dE;  x, yeR™;

where aeS™(IR" xR"). It is singular only at the diagonal in IR” x R" where
the wave front set is contained in the conormal bundle (Theorem 18.1.16). In
this section we shall discuss a corresponding class of distributions associated
with an arbitrary C® submanifold Y of a manifold X, starting with the case
of a vector space and a linear subspace. To see where we should aim we
introduce in (18.2.1) new variables x'=x—y, x"=x, so that the diagonal is
defined by x'=0, and obtain the distribution

(18.2.2) Qm)" [P a(x", &) d¢E.

Another choice of x” variable, say x” =y would have made a dependent on
both x' and x” though. We change notation now so that R?*" becomes R"
with the variables x=(x,,...,x,) split into two groups x'=(x,,...,x,) and x”
=(X;,15---,X,). First we show that it does not really matter if one allows a
in (18.2.2) to depend on x’ or not. In doing so we also note that in
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Definition 18.1.1 and the following statements of the properties of symbols it
is of course irrelevant that there are as many x variables as & variables.

Lemma 18.2.1. If acS™(R" x R*) and u is defined by the oscillatory integral

(18.2.3) u(x)=[e*"a(x,&)dE

then we also have

(18.2.3y u(x)=[e " a(x", &)d¢

where GeS™(R"~* x R¥) is defined by

(18.2.4) a(x",&)=e 7P P50 a(x, &) Lo

and has the asymptotic expansion

(18.2.5) a(x", &)~ —iDy, Dy alx, &)/j s o

Proof. Assume first that ae#, Then ue.% and (18.2.3) means that (2n)*d is
the Fourier transform of u with respect to x/,

a(x", Ey=Q2n)~*{[e<"0=>a(x,0)d0 dx’

=e PP g(x, EN .

The last equality follows from the discussion preceding Theorem 18.1.7.
Now the map ‘
ar> e~ <PxDe g(x &)

is continuous in &’ and maps bounded sets in S™ to bounded sets; this
follows from Theorem 18.1.7 since the presence of the parameters x” is
obviously immaterial. For a general aeS™ we can take a sequence a,e¥
which is bounded in S™ and converges to a in %, that is, uniformly on
every compact set, and conclude that (18.2.3) is always valid with d defined
by (18.2.4). The asymptotic expansion also follows from Theorem 18.1.7.

We shall now determine the precise regularity properties of distributions
of the form (18.2.3Y with geS™ Noting that a density on the subspace
defined by x’' =0 can be written in the form (18.2.3), with d independent of £
we first prove an extension of Theorem 7.1.28.

Proposition18.2.2. Let ¢cC,(IR") be equal to 0 in a neighborhood of 0, let
a(x", EYeS™(R"*x RY vanish for x" outside a compact set, and let u be
defined by the oscillatory integral

(18.2.6) u(x)={e*"*>a(x",&)de.
Then ficl?

loc

(18.27) fla@)i1p/RNdE< CR¥ 2", R>1.

and
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If aeST (R"*xR) and a, is the principal symbol, m'=Rem, then

(1828 lim R™=2 Q)" [ 4(Q) $(&/R)de
={flao(x", &)* ¢(¢, 0)dx" d&'.

Proof. Let 4 be the Fourier transform of a with respect to x”. Then #(¢)
=(2n)d(g", &), so
F1a(1? ¢(¢/RydE =2 m)** fla(g", &)* p(&/R)d¢
=@2n)**R*[la¢",RE ) ¢(&,&"/R)dL.
Since |x”| is bounded in the support of a we have for every N
1a(&", &N < CyL+1E" )N +1E)™

We can write ¢ =¢, + @, where ¢;eC,(R") and |{'|Zc in supp @, [{'|2c
in supp ¢,, for some ¢>0. When ¢ is replaced by |¢,| we have |£’|>¢R in
the support of the integrand and the integral is rapidly decreasing as R — co.
When ¢ is replaced by |¢,| then |£'| = ¢ in the support of the integrand, and
(18.2.7) follows. If a is polyhomogeneous then

R=2" (42", RE)? (&, &"/R)d¢
={]d(&", RE)R™2 §,(&,&"/R)d¢
= [lao(&", &N (&', 0)d¢
=Qn)*[flag(x", &) $(&,0)dx" d&

by dominated convergence and Parseval’s formula. This proves (18.2.8).
The singularities of u lie in the plane x'=0:

Proposition 18.2.3. If the hypotheses of Proposition18.2.2 are fulfilled and
x€CY(RY) is equal to 1 in a neighborhood of 0, then (1 —x(x"))ue Z(R".

Proof. If a=(a,,..., %, 0,...,0) then
x*u(x)=[e (=D, ra(x",&)d¢

is a bounded continuous function if m—|a|< —k so that the integral is
absolutely convergent. If m—|a| < —k—v then the derivatives of order <v
are also bounded and continuous. This proves the statement, for
(1 —x(x))1x’|~ 2N has bounded derivatives of all orders for any N.

From Proposition 18.2.3 we see that the behavior of 4 at infinity exam-
ined in Proposition 18.2.2 depends only on the regularity properties of u
when x'=0. Using Definition B.1.1 of the Besov spaces “H, we can state
(18.2.7) in the form

(18.2.7y UE®H_p_ypyR")  if aeS™
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(Note in particular that if u is the kernel of an operator in OpS™ in n/2
variables, then ue*H _, _,.4,.) The regularity property (18.2.7) is preserved
under suitable differentiations of u. In fact, if u is defined by (18.2.3) then

Dju(x)=[e "D, a(x,£)de; j>k;
xliju(x)=je‘<""€'>(x,.ij——Dgiéj)a(x,é’)dé’; i,j<k;
so these operations preserve the form (18.2.3) and the order of the symbol a.
(The order of the factors x and D is not important since x,D;—D;x,=id;.)
We shall now prove a converse:
Lemma 18.2.4. Let ueé’'(R") and assume that
x*DPue®H _, 112

Jor all o and B with |o'|=|B'|. Then u is of the form (18.2.3) with an amplitude
aeS™(R" % x R¥).
Proof. By hypothesis the Fourier transform « is in C* and

1D a@)PdESC e R*™,,  RZ1, |a|2I,

R/2<|¢| <2R

for the order of x* and D’ is irrelevant, as just pointed out. Taking |f'|=0
and |B"|> N +m+k/2 we conclude that for any N

. SI 1lD“ﬁ(n)|2dn§ca,N|¢|-” if (&2 e

By Lemma 7.6.3 for example it follows that [D*@(&)| < C,, y1EI7F, if [&7]>]&].
To deal with the opposite case we introduce

Ug(&)=0(R &, E")/R™
and observe that
Ff 1E8 D* Up(&)?dES Cpp, | =]

if Eg is the ellipsoidal annulus defined by 1<|&'|?+[&/R|*<4. Since the
maximum of [£'#'| when |f'|=|«/| is bounded from below in a neighborhood
of the unit sphere in R¥, we obtain for all « and N using Lemma7.6.3

ID* Up@I = C, \A+IEDY,  1E1=1, [E"|<R.
Returning to the original scales we have proved the estimate
ID*4(E) < C; w(1+1E D™+
for all ¢. Hence
a(x",&)y=Q2mn) 7" f (&) e " ag

is in S™(R"~* x R¥) as claimed.
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The vector fields considered in Lemma 18.2.4 are tangential to the plane
defined by x'=0, and they generate all such vector fields:

Lemma 18.2.5. Any C* vector field in R" which is tangential to the subspace
defined by x' =0 can be written in the form

Y, a,0%0/0x,+ ¥, a,090/0%,

i j=k

where a;; and a; are in C*.

Proof. Let Zaj(x) 0/0x; be a C* vector field which is tangent to the
subspace defined by x'=0. This means that a,(0,x")=0 when j<k. Hence
Theorem 1.1.9 (with parameters) gives that for some a,;€ C*

4= Y ayx)x, j<k,

i<

which proves the lemma.

Let X be an open set in R” and let ue2'(X) be defined by (18.2.3) where
aeS™(X xRY). Then it follows from Lemma18.2.5 and the remarks preced-
ing Lemma 18.2.4 that L, ... Lyue®H{, _, ,\(X) if L,,...,Ly are any num-
ber of first order differential operators tangential to the plane x'=0. The
converse follows from Lemma18.2.4. In fact, if y ;€ C3'(X) have locally finite
supports and ) y?=1, then Lemma 18.2.4 gives

Yiux) = ax", &)de

where d,eS™(IR"™*xR¥), and (18.2.3) follows with a=} y;a;. Thus we are
led to the following definition.

Definition 18.2.6. Let X be a C* manifold, E a C* (complex) vector bundle
over X and Y a closed C* submanifold of X. Then the space I"(X, Y; E) of
distribution sections of E, conormal with respect to Y and of degree m, is
defined as the set of all ue2'(X, E) such that

(18.2.9) Ly..Lyue®H, . (X,E), n=dimX,

for all N and all first order differential operators L; between distribution
sections of E with C® coefficients tangential to Y. The topology is the
weakest one which makes the maps u—L, ... Lyue*H, _ . continuous.

Recall that the principal symbol of L; is a linear function on the fibers
T*(X) with values in the linear transformations in E_. The condition in
Definition 18.2.6 is that it vanishes on the conormals of Y. The normaliza-
tion in (18.2.9) has been chosen so that the kernel of a pseudo-differential
operator in Y™"(X; Q*QE,Q*®F) is in I"(X x X, 4; 2* ® Hom(E, F)), where
4 is the diagonal in X x X
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It is sufficient to take the operators L; in (18.2.9) among a system of
generators, that is, a set M,,...,M, of first order differential operators
tangential to Y such that every tangential operator is of the form

(18.2.10) L=Ya;M;+a,

where a;6 C*(X,Hom(E, E)). In fact, we can replace Ly by such a sum in
(18.2.9). This gives a sum with one factor L; less if we replace Ly_, by the
product Ly _, a;. Continuing in this way we obtain at last a sum of terms of
the form aM; ... M, u with aeC*(X,Hom(E,E)). In particular, we can

always take all M; with principal symbols proportional to the identity.

Theorem 18.2.7. If uel™(X,Y;E) and Ae'f’""(X ; E,F) is properly supported,
then AueI™*™ (X, Y; F).

Proof. Let L; be first order differential operators between sections of F
which are tangential to Y and have principal symbols proportional to the
identity. We have to show that

L,...Ly Aue®H"*

(—m—m’

——n/4)(X, F)

If N=0 this follows from the continuity of A4 from “HP,_ .. to
CHE, e —nay- If N>0 we choose a first order operator Ly on sections of E
whose principal symbol is the same multiple of the identity as that of L.
Then

LyA=ALy+ A,

where A,e¥™(X;E,F). Since Lyuel™(X,Y;E) the proof is reduced to a
smaller value of N and therefore it follows by induction.

We can now show that I™(X,Y;E) does in fact consist of the distri-
butions which are locally of the form we first set out to study.

Theorem 18.2.8. ue I"(X, Y; E) if and only if y,uel™(X,Y; E) for every ; in a
partition of unity on X. If X is an open set in R" and Y is defined by x’'
=(X;,...,%,)=0 while E=X x C", then any ueI™(X, Y, E) with compact sup-
port is of the form

(18.2.11) u(x)={e"a(x", &)d¢

where aeS™t-2R/4(R—kx R¥*; CY). Conversely, every u of this form is in
I"(X, Y; E).

Proof. The first statement is an immediate consequence of Theorem 18.2.7.
The second one follows from Lemma18.2.4, and the final statement is a
consequence of Proposition 18.2.2 and Lemma 18.2.5. The proof is complete.
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Next we shall introduce a principal symbol for elements in I"(X,Y; E).
In doing so we start with the simplest case where E=Q?*, the half density
bundle on X, and we take X cR". If u has compact support and is of the
form (18.2.11) with aeSh+®~2*(R"~* x R*) and principal symbol a,, then
(18.2.8) gives if M’ =Rem

(18.2.8y lim R=2"="2(2m)=" [1i(&)|* p(E/R) d¢&

R- 00
=(2n) flag(x", &) $(£',0)dx" .

Since u is a half density in IR" it follows from Parseval’s formula that @
transforms as a half density under linear changes of variables. The left-hand
side is therefore invariant under such changes of variables. Now the normal
bundle of the plane x'=0 is parametrized by

(18.2.12) (x",€) - ©0,x",¢,0)

so it is natural to expect a,(x",&’) to define invariantly a half density there,
making the right-hand side of (18.2.8) also invariant. Since the codimen-
sion k does not occur in the left-hand side we want to make it disappear in
the right-hand side by including a factor (27)¥? in the principal symbol, or
rather inserting a factor (2m)~%2 in (18.2.11). If u is the kernel of a pseudo-
differential operator of order m in n/2 variables this does not quite give the
customary factor (27)" in (18.1.7) so we take an additional factor (27)~"/*
to get agreement. Thus we change (18.2.11) to

(18.2.11y u(x)=(2m)~"+20N4 {80 g (7, Y dE,
geS§mtin-21/4
We want to show that the half density
a(x",&)ldx"|*|de'*

which this defines on the normal bundle of the plane x'=0 with the
parametrization (18.2.12) is invariantly defined modulo symbols one degree
lower.

Theorem 18.2.9. Let X and X, be open subsets of R" and let k: X > X, be a
diffeomorphism preserving the plane Y={x;x'=0}. Let u,eé'(X,) and let u
=|detx'|*k*u, €8 (X) be the pullback to X as a half density. If
uel™(X,,Y),

(18.2.1 1)” ux(x) =(2 n)—("+ 2k)/4 j' ei(x’,{’) an(xn, é')dél,
then ueI™(X,Y) is of the form (18.2.11Y with
(18213)  a(x",&)=a, 06,0, "), i, (0,x")~ &)l det i}, (0, x|+

- |det &5,(0, x")| teSm+ (-2 -1,
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KI KI
KI = ( ,11 ’12)
Ka1 Ka2
are the splittings of x and of k' corresponding to the splitting of the variables;
we have i ,(0,x")=0 since x,(0,x")=0.

Here k=(x,,x,) and

Proof. Since x,(0,x")=0 it follows from Theorem 1.1.9 that we can choose a
C* function ¥ with k x k matrix values so that

K(x', X") = (Y (x) X', 55 (x))-

Then Y(0,x")=x;,(0,x") is non-singular. Since u, and u are in C* when x’
40 we may shrink X so that this is true in all of X. Now we have

u(x)=|det k' (X))~ 204 § 1<V X0 (i, (), ') dif
=(2m)= T2 [ 80 g, (i, (), W () &)ldet & ()1 det Y ()] T

Here we have put ' ="(x)~! & in the oscillatory integral. It follows from
Lemmas 18.2.1 and 18.1.18 that u is of the form (18.2.11) with

(182.14) a(x",{)=e~"P=De2 q,(ic5(x), " (x) ™ 1 &) [det & (x)}*/|det Y ()l]x- = o-

Modulo S™*+®"~28/4-1 this is given by the first term in (18.2.5), that is,
a, (1,0, x),"¥(0,x")~ ! &) |det (0, x”)|* |det Y (0, ")~ 1.

Since |det k'(0, x")| ={det ¥ (0, x"")| |det k), , (0, x"")| because x'(0,x") is triangular,
we obtain (18.2.13).

The half density a(x”, &')|dx"[*|d&|* on the conormal bundle N(Y) of Y
should be considered to have order m+n/4 when aeS™*"4-%2 In fact, a
function f on N(Y) is homogeneous of degree u if M}*f=t*f, t>0, where
M, (x",&)=(x",t &) denotes multiplication by ¢ in the fibers. If we define
homogeneity of a half density f by the same condition then the half density
[dx"|*|d&* corresponding to a=1 is homogeneous of degree k/2 where k is
the number of £’ variables.

Definition 18.2.10. Let V be a real C* vector bundle of fiber dimension k
over a C® manifold Y. Then the space S*(V,Q%) of half density valued
symbols on V of order p is the space of half densities which in' a local
coordinate patch x: Y, — Y. C R? with local coordinates yeR‘ take the form
a(y,n)|dy|? |dn|* with aeS*~¥*(¥_x R¥) if V is identified with ¥ x R*.

With this terminology Theorem 18.29 means that the correspondence
a — u given by (18.2.11Y gives rise to an isomorphism
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Srn+n/4(N(Y); Q%(Y))/Sm+"/4_ 1(N(Y); Q%(y))
— (X, Y; /"X, Y; @),

There is no difficulty in extending this result to distributions with values in
other vector bundles than Q} because multiplication of u by a transition
matrix will just affect the symbol in the same way. Thus we have:

Theorem 18.2.11. Let X be a C® manifold, Y a closed C® submanifold and E
a C® complex vector bundle over X. Then there is an isomorphism

ST (N(Y), Qb ® B)/S™ 4= (N(Y), Qb ® B)
- I"X, Y, Q4 @E)I™ (X, Y; Q ®E)

defined locally by (18.2.11Y. Here E is the lifting of the bundle E to N(Y) (the
fiber of E at (y,n) is equal to E,). The image under the inverse map is called
the principal symbol.

Note that we have half density bundles on different spaces here. This is
why it is convenient to factor out a half density bundle from the beginning.
Also note that the codimension of Y has now disappeared. The presence of
the term n/4 in the degree of the symbol is caused by our insistence on
agreement with the degree of pseudo-differential operators. In that case we
did not have a half density as symbol. However, the normal bundle of the
diagonal in X x X is isomorphic to the cotangent bundle in X so it has a
natural density defined invariantly by the symplectic form and given in local
coordinates by |dx||d¢|. Hence there is a natural half density |dx|*|dé|F of
order (dim X)/2=dim(X x X)/4. When the function defined as principal
symbol in Section 18.1 is multiplied by this half density the order is raised as
in Theorem18.2.11. In general there is no natural half density in N(Y)
permitting us to identify half densities with functions.

By Theorem 18.2.7 we know how pseudo-differential operators act on
I'"(X,Y; E). We shall now determine this operation more explicitly on the
symbols. To do so it is of course sufficient to work locally, with a trivial
bundle.

Thus we assume that ueé’(R") is of the form (18.2.11). Let p be in
S™(R" x ]R") To compute p(x, D)u we first observe that Fourier’s mversxon
formula gives

(E) =@+ W4 [ a(y, £) eI dy",
Hence we obtain, taking p and a in & at first,

P, D)u(x) = (2t ="=0< 204 [ £50 p(x, ) aly', ) e ~0"8 g dy
—(27:) ‘"+2k)/4je‘<x €>a (x f)df ’
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where
a,(x, &) =Quf" [ 8 p(x, &) aly”, &) dE" dy”
= i{Dy s D> p(x, &aly", 5/){)},,:)‘,1’5“:0

by the calculations preceding Theorem 18.1.7. The proof of Theorem18.1.7
gives with no essential change that a,eS™*™ *"4-¥2 and that

ay(x,&)~Y {iDy, Dy p(x, &) a(y”, EVillyr_ o e _ o
Hence it follows from Lemma 18.2.1 that

(18.2.15) p(x, D) u(x)=(2m)~"+20/4 [ D p(x”, &) dE,
(18.2.16) b(x", &)= (Prn e =ParDe) p(x, &) a(y', &)y v v = =0
~ Z(<iDy”9 D{"> - <li’, D§’>)j P(x> 6) a(y”’ é/)/] ”y": X x=&"=0"

We have now proved

Theorem 18.2.12. If ucI™(X,Y;E) and PeW™ (X;E,F) is properly supported,
then PucI™ ™ (X,Y; F) and the principal symbol is that of u multiplied by the
restriction to N(Y) of the principal symbol of P. If u has compact support in a
local coordinate patch where Y is defined by x' =0 and u is given by (18.2.11),
then the complete symbol of Pu is given by (18.2.15), (18.2.16) where p is the
complete symbol of P.

So far we have made no comments on the polyhomogeneous case.
However, it is perfectly clear from the formulas (18.2.14) and (18.2.16) that
everything said is applicable then since the step is the reciprocal of an
integer. We shall need this remark in what follows.

In the theory of boundary problems one encounters the following situa-
tion. X is a C* manifold, Y is the closure of an open subset of X with C®
boundary 8Y. Let E, F be vector bundles on X and P a properly supported
operator in ¥ (X; E,F). We want P to induce a map C*(Y,E)— C*(Y,F)
which is not always the case.

Definition 18.2.13. P is said to satisfy the transmission condition with respect
to Y if for every ue C*(Y, E) the restriction of Pu, to the interior Y° of Y is
in C*(Y®,E), that is, has a C* extension to X. Here uy=u in Y and uy,=0
m X\Y

We want to determine the conditions on the symbol required for P to
satisfy the transmission condition. The question is obviously local so we
consider the case where X cR”, Y is defined by x; 20, and E, F are trivial
bundles. We assume also that the support of u is compact in Y. Then

(18.2.17) ug(x)=Q2m)~ ! fe™tra(x", &,)dE,
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where x"=(x,,...,x,) and

(18.2.18) a(x", &)= fu(x)e ™1 dx, ~ =iy 7 7% D u(0,x")
0 4]
is in S5 (IR"~! xR"). The asymptotic expansion follows by repeated partial

integrations of course. Thus u,el &*+2/*(X,8Y). In the symbol a the terms
of odd (even) order are odd (even), and by appropriate choice of u we can
get modulo S~ any symbol aeS, (R"~'xR') with this property and
compact support in x”. Now assume that Pe¥; where m is an integer.
Then Pu is of the form (18.2.17) with a new amplitude beS’l;'h;‘ given by
(18.2.16). Without affecting the asymptotic expansion of the symbol we can
multiply by a function in CY(X) which is 1 in a neighborhood of suppu to
make the support compact. We shall now prove a lemma which is closely
related to the Paley-Wiener-Schwartz theorem (cf. Theorem 7.4.3).

Lemma 18.2.14. If ve&'(X), X «R", and
o(x)=[e™ 14 b(x",£,)dE,

with beS*, (R"~! xR?') for some peC, that is,

phg
b~2bj(x", &)
0

where b; is homogeneous of degree pu—j, then vl _, has a C* extension to

the closed half space x,Z0 if and only if for every j
(18.2.19) by(x", —1)=by(x",1)e™ =7,
This means that b; is the restriction to ]If\ 0 of b(x", 1)¢} 7 with ¢t - equal to

1 at 1 and analytic in the upper half plane.

Proof. a) Sufficiency. Let I' be the curve in € consisting of the real axis with
(—1,1) replaced by the half unit circle in the upper half plane. Then

v— Y [exbb(x", 1)t d{,eC’

j<NT .
if N>Reu+v+1. Writing the terms in the sum as

D [eitrb,(x, ) (4 *dE,
r

with Reu—j—k < —1 and using Cauchy’s integral formula we find that they
vanish when x, >0. Hence all derivatives of v are bounded when x, >0.

b) Necessity. By Borel’s theorem (Theorem 1.2.6) we can find we Cg(X)
equal to v when x,>0. Then

bl )=2m)~ v—w, e ™8 p(x"), peCF({xeX;x,=0}),
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is an entire function and
Iby(CNSCA+ILHY, Im{ =0,

by the Paley-Wiener-Schwartz theorem (Theorem 7.3.1). On the real axis we
have b,(t&,)t™* > bJ(&,), t > + oo, where

bY(E )= bo(x", &) P(x")dx".
Hence
by(C) (i (i+e )Mkt

tends to 0 at co in the upper half plane and has a bound on I which is
independent of &. By the maximum principle it follows that there is also a
fixed bound above I'. Thus

lb¢(C1)|§CiC1|Re”, [{;i>1, Im{,20.
Now we can choose t,~ + o so that
B((,)=limb,(t,{;)t;*

exists and is analytic in the upper half plane. The boundary values on the
real axis are b3(¢,) in view of say (3.1.13) with N=0. Hence B({,)=b3(1){},
O<arg{, <, which proves that b, satisfies (18.2.19). By part a) of the proof
we can now subtract a distribution corresponding to b, and vanishing when
x,>0 and then conclude that b, satisfies (18.2.19) and so on. The proof is
complete.

Suppose now that Pe % (X) and that the symbol has the expansion

2P

0
where p; is homogeneous of degree m—j. Then Pu, is of the form (18.2.15)
with b given by (18.2.16) and a defined by (18.2.18) If P satisfies the
transmission condition with respect to the half space x, 20 it follows from
Lemma 18.2.14 that the principal part p,(0,x",¢,,0)u(0,x")/i £; must satisfy
(18.2.19), sc

Po(0,x", —1,0)=e™"po(0,x",1,0).

Note that this condition would still have followed if we had weakened the
transmission condition by demanding in Definition 18.2.13 that u vanishes of
some fixed order on J0Y. This weakened transmission condition remains
valid if P is multiplied to the right or to the left by any differential operator,
for D% u, will not contain any terms supported by the plane x, =0 if u
vanishes at least of order k. In particular, the commutators of P with D; and
x; any number of times satisfy this weakened transmission condition, so it
follows in view of (18.1.6) that for arbitrary o, 5 we have

(18.2.20) P (0, X", —1,0)= €™ m=1eD p@ (0, x" 1,0).
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Conversely, {18.2.20) guarantees in view of (18.2.16) and Lemma 18.2.14 that
the operator with symbol p, satisfies the transmission condition. Subtracting
it from P we conclude that p, has the same property and so on. Hence

(18.2.20y P (0,x", —1,0)=emm=le =0 & (0 x" 1,0)

is a necessary and sufficient condition for P to satisfy the transmlssmn
condition.
To put (18.2.20)" in an invariant form we introduce for peS”

PNija
(4]

where p; is homogeneous of degree m —j, a new symbol p such that

(X xR"),

phg

(18.2.21) P(x, §)~§e—""""‘” pi(x, —=&).
0

Clearly p—e 2"mpeS~® so prse™™p defines an involution of

Shhg(X X R")/S™2(X x R"). 1t gives rise to an involution of ¥ (X)/¥~*(X)
for any C* manifold. Indeed, since =g if g is any polynomial, we obtain
with the notation of Theorem 18.1.17

(P (), )~ L PP (x, ="k () m) e =310 ¢, (x, )/t !

which is equal to the expansion of (), (x(x),n). A similar calculation using
(18.1.15) shows that we have an involution of the algebra phg(X)/‘I’ “(X)
and that it commutes with taking adjoints as weil. No change is required if
bundles are present. We have now proved

Theorem 18.2.15. A properly supported pseudo-differential  operator
Pe Wi (X ; E, F) satisfies the transmission condition with respect to the closure

Y of an open subset with C® boundary if and only if

(18.2.22) the symbol of P—P vanishes of infinite order on the interior
conormal bundle of 0Y.

The vanishing condition must of course be worked out_in local coor-
dinates but it is independent of how they are chosen. Since P=e2mmp we
obtain from (18.2.22) the equivalent condition

(18.2.22) the symbol of P —e?™™ P vanishes of infinite order on the exterior
conormal bundle of Y.

The orientation of 8Y as a boundary is therefore irrelevant when m is an
integer.

The proof of the sufficiency of (18.2.20) shows that Pu admits a C®
extension from Y° to Y also if u is a smooth simple (or multiple) layer on
0Y. We shall now study the boundary values of Pu in that case. Again we
may work locally so we assume that X =IR" that Y is defined by x, 20 and
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that P=p(x,D) where p~) p; for some p;, homogeneous of degree m—j
satisfying (18.2.20). Let u=4d(x,)® v(x”) where ve CZ(R"~!). To compute
Pu we take ¢peCgF(—1,1)) with jqb(t)dt———l and note that Pu=Ilim Py, if
us(X) = P(x;/¢) v(x")/e. Now

Pu(x)=2m)~" [ p(x, &) $le &;) 9(¢") e,

and we shall prove that the integral with respect to £, has a limit when
e—0.

Lemma 18.2.16. Let g(t), teR, be a continuous function and assume that there
is an analytic function Q(t) in Qp={teC; Imt=0, {t|=R} for some R, such
that Q(t)=0(t") for some N when t— o in Qy, and q(t) —Q(t)=0(t"?) when
t— oo on R. Then

R
(18.2.23) i+ q(t)dt=I |j R(q(t) —Q(t)dt+ qu(t)dt
—(5) Q(Re®)Rie*dh

is independent of the choice of Q. If F(t,s) is an analytic function of t when
Imt=0, for 0<s<1, and F is a bounded continuous function of (s,t) then
{*a@)F(t,5)dt is a continuous function of s.

Proof. If ¢=0 it follows from the maximum principle that
sup|t* Q(e)(1 —iet)™V~*| <sup|t? Q(¥)),
Qg g

for |t —iet|21+elmt=1 in 0Q,. Letting e—0 we conclude that 2 Q(t) is
bounded in Qg, so it follows from Cauchy’s integral formula that

{ Qdt=0.

MNr
This proves that (18.2.23) gives a unique definition of |* g(t)dt. The last
statement follows at once by dominated convergence after Q(z) F(t,s) has
been subtracted from q(t) F(t, s).

Remark. If q is a rational function with no real pole, then the hypothesis of
the lemma is fulfilled with Q equal to the sum of the terms of degree = —1
in the Laurent expansion at infinity. Since g(t) —Q(t)=0(t~?) at infinity in
C, it follows from Cauchy’s integral formula that {* q(¢t)dt is equal to 2mi
times the sum of the residues of g in the upper half plane.

Let us now return to the boundary values of Pu. For fixed £’ and large
&, we have when ¢, —

PO, )=} T M pP(x,1,0) £ /et =O(¢7 %)
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if we sum over all j and « with «, =0 and j+|a| <2+ Rem. This follows if
we write p(x, é)=|£1|'“‘jpj(x,él/l§1|, E"/\¢,D), expand by Taylor’s formula
and apply (18.2.20). We have

|eix1§1 $(5§1)'§“¢(t)l dt, Imél =0,
provided that ¢<x,. Hence it follows that
fe* & p(x, &) Plel ) dE, — [* ™% p(x, &) dE,

when £¢—0, and the integral can be bounded by a power of (1+|&"])
independent of ¢ and x,. Letting x, -0 also now, we conclude that
Pu(x)—q(x",D")v(x") when x, — 0, where

g(x", &=~ |+ p(0,x", &, &")dE,.
We have g~} q; where

(18.2.24) q;(x", &) =2m) {* p;(0,x",&;, &) dE,

is homogeneous of degree m+1—j. Indeed, choose N so that N>Rem+2
and set
p= z p j+RN'

j<N
Then we have RyeS**™~¥ when |£”|> 1, say, and it follows that

1D D% [ R0, X', 1, &' 1| S Cop [(LH1E]+1E7DmN11de,
S Cpy(LH[E7PReme =N

This proves that g~ ¢ ;- Summing up, we have

Theorem 18.2.17. Assume that p~) p;eSn (R"xIR") and that the trans-
mission conditions (18.2.20) are fulfilled. If ve C3(R"~ 1) and u=245(x,)® v(x")
then p(x,D)u has a C* extension from the half space {x € R";x; > 0} to its
closure, and

lim p(x, D)u=q(x", D"} v(x")
x110

where g~ q,€Spt ' (R"~! x R"~1) with q; defined by (18.2.24).

The boundary values of D¥p(x,D)(D!u) are of course also given by
pseudo-differential operators acting on v; we just have to apply the theorem
to the pseudo-differential operator D¥p(x,D)D}, the symbol of which is
given by the calculus.

A crucial point in the proof of Theorem 18.2.15 was the fact that functions
in X with support in ¥ and with C™ restriction to Y can be identified with
the elements in I;0*?/%(X,0Y; E) with support in Y. For any complex
number u we can define the closely related space

(18.2.25) C2(Y, E)={uel*s "= P*(X,0Y; E), suppuc Y}.

phg



18.2. Conormal Distributions 11

(We have omitted X in the notation since it does not matter how the
manifold with boundary Y is extended to an open manifold X.) If u has
support in a local coordinate patch where Y is defined by x,; =0 and E is
trivial, then we can write

(18.2.26) u(x)=f e 4 a(x", &) d¢,
where
(18.2.27) a~Yy a;(x",¢,)

4]

and a; is homogeneous of degree u~—j. If we change the signs of x, and of
¢, it follows from Lemma18.2.14 that a;(x",{,) can be extended to a
homogeneous analytic function of &, in the half plane Im ¢, <0. In view of
Example 7.1.17 it follows when p is not an integer that u has an asymptotic

expansion

u(x)~§u,~(x")®x’;1"“; u,e C*(R""1).

Here we have used the notation of Section 3.2 and the expansion means that
the difference between u and a partial sum of high order is as smooth as we
please. If u is an integer < —1 we obtain the functions vanishing when
x,; <0 which are in C® and O(x;#~!) when x,>0. Finally, when u is an
integer =0 then u is the sum of a function U, which is in C® when x;20
and vanishes when x, <0, and a multiple layer

Y u(x")®6V(x,),
isnu

where u;e C®(R""!). There are boundary problems for which one expects
the solutions to behave as in one of these cases.

With Y still denoting the closure of an open subset of the C® manifold
X with 0Ye C®, we can now extend Theorem 18.2.15 as follows.
Theorem 18.2.18. Let Pe ¥ (X ; E, F) be properly supported and assume that
Jor every ueC?(Y,E) the restriction of Pu to the interior Y° of Y is in
C*(Y®,F). Then the symbol of

(18.2.28) P—e?risp
vanishes of infinite order on the interior normal bundle of 0Y and conversely.
Proof. We can follow the proof of Theorem 18.2.15 closely, working again in

local coordinates. If u is of the form (18.2.26), (18.2.27) with a; homogeneous
of degree u—j, then

a;(x", 1)=e"*"D g (x", —1)

by Lemma 18.2.14 with the sign of x, changed, for u vanishes when x, <O.
Now Pu is of the form (18.2.26) with a replaced by a polyhomogeneous
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symbol with the leading term p,(0,x",¢,,0)a4(x", ;). Hence it follows from
Lemma 18.2.14 that if Pue C*(Y°) then

Po(0,x”, —1,0)ay(x", —1)=e™™*® p (0,x",1,0) ao(x", 1)
=emm+2mp (0,x",1,0)a4(x", —1).
Since we can choose g, so that a,(x”, —1)%0 at any point, it follows that
Po(0,x”, —1,0)=e™™+28 p (0,x",1,0).

Following the proof of Theorem 18.2.15 we can now obtain the correspond-
ing condition for arbitrary derivatives of p, or of the lower -order terms. The
repetition of the details is left for the reader.

Remark. It follows from Theorem 18.2.18 that the modified transmission
condition examined in the theorem only depends on the residue class of p in
C/Z. 1f (18.2.28) is valid then the symbol of

e—zni(m+u)P_p'
vanishes of infinite order on the exterior normal bundle. If
(18.2.29) m+u+pel
it follows that
f) _eZ nip’ P
vanishes of infinite order on the exterior normal bundle. Hence we may

replace Y by Y’=W if u is replaced at the same time by some y’ satisfying
(18.2.29).

18.3. Totally Characteristic Operators

This section is devoted to the study of a class of pseudo-differential oper-
ators in a C® manifold X with boundary dX. (This notion is defined in
section B.2 of Appendix B.) In Section 18.2 we introduced the transmission
condition with respect to X for a pseudo-differential operator P in an open
manifold of the same dimension containing X. This condition guarantees
that P defines a map from CJ(X) to C*(X) but P does not restrict to an
operator from C§(0X) to C*(0X) which is sometimes desirable in the study
of boundary problems. A first order differential operator L has this property
if and only if it is tangential to éX (cf. Definition 18.2.6). The algebra of
operators which we shall define is built up from such first order differential
operators in the same way that standard pseudo-differential operators are
built up from general first order differential operators.

As a model for a manifold with boundary we shall use the closure R",
of the half space R” ={xeR";x,>0}. As explained in Section B.2, if F is a
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space of distributions in IR” we shall use the notation F(R") for the space
of restrictions to R of elements in F and we shall write F(R") for the set
of distributions in F supported by R”%. The space C*(R") is by Theo-
rem 1.2.6 identical to the space C*(IR") of C* functions in R" and we shall
use both notations.

According to Lemma 18.2.5 the first order differential operators in R"
which are tangential to JR", are generated by the operators d/0x j»J<n, and
x,0/0x,. We can extend Lemma 18.2.5 as follows:

Lemma 18.3.1. The algebra Diff,( R") generated by the first order differential
operators with coefficients in C®(R") tangential to OR". consists of the
operators of the form

P=Y a,(x)x D"
where a,eC *(R").
Proof. Since x,D,=D,x,-+i, the operators (x,D,y, j<k, are linear com-

binations of the operators x} DJ, j<k, and vice versa. The lemma is there-
fore a consequence of Lemma 18.2.5.

The elements of Diff,(IR%) will be called totally characteristic. Lem-
ma 18.3.1 suggests extending the subspace DIifff'(IR"%) of operators of order
<m to a class of operators defined by

(18.3.1) a(x, Dyu=Q2mn)~"[ =P d(x, &) 4(E)dE, ueCP(RM,
(18.3.2) a(x,&)=a(x, &, x,&,),
x,20, &=(;,.-,&_1);  dx$=0, x,<0.

Since our primary concern is the behavior as x,—0 we shall choose a in a
symbol class §% defined so that 4 will satisfy (18.1.1) for x,>1:

Definition 18.3.2. By S% we shall denote the set of all ae C2(R" xR") such
that for all multi-indices «, § and all integers v=0

(1833)  |af)(x, OIS Cap ol +1EN™ (1 +x)"",  xeRY, EeR™
The kernel of (18.3.1) is the inverse Fourier transform
(18.3.4) K(x,y)=Qmn)~"[" "2 a(x,&)dE;  (x,y)eR™;

defined in the sense of Schwartz. It is a continuous function of x with values
in #(R}) when x,20 and vanishes when x,<0. We want (18.3.1) to depend
only on the restriction of u to R", so we must require that y, =0 in supp K.
This means that the oscillatory integral

J‘ei(xn—yn)én a(x, 5/, x{‘ én)dén
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which is well defined when x,20 and y,<0 must vanish then. Taking x,¢&,
as a new integration variable when x,>0 we write this condition in the
form

(18.3.5) femna(x,&,&)dE, =0 if t< —1 and x,20,
that is, the Fourier transform with respect to ¢, must vanish when t< —1.
Definition 18.3.3. We shall say that aeS", is lacunary or satisfies the lacunary

condition if (18.3.5) is fulfilled. The set S}, of all aeS” satisfying (18.3.5) is a
closed subspace of S, thus a Fréchet space.

The lacunary condition is not very restrictive, for just like the condition
of proper support it only affects the residual part of the symbol:

Lemma 18.34. Let pc¥(R), p=1 in a neighborhood of 0 and supppc
(=41, 1). If aeS™ it follows that

«w

ap(x’ €)= 5 a(x9 éls én _t) p(t) dt

-
is in Sy, we have a—a, €S, the map S sar>a—~a,eS, % is continuous, and
X,/25y,S2x, in the support of the kernel of a,(x, D).

Proof. The Fourier transform of a, with respect to £, is the product of §
and that of g, so we obtain not only (18.3.5) but a stronger condition

(18.3.5y femna,(x,&,E)dE, =0 i t¢(—3,1).

- This implies that x,/2<y,<2x, in the support of the kernel of a,(x, D).
Now the condition on p implies that [ pdr=1, {/ pdt=0, j>0. Hence

a,(x,8)—a(x, &)= ?w(a(x,é’,f,,-t)*KZNa"a(x,é)/aéi(—t)’/j!)p(t)dt
for any N. By Taylor’s formula the integrand can be estimated by
Cont™ A+ MU +x) o) if Je]<]El/2.
Evaluating each term separately we obtain the bound
Co a1+ D™ N1 +x,)7 |p ()
SC, A+ MU +x) A+ 20> M o), (el >1E1/2.

Since pe& and N is arbitrary this shows that a,(x,{)—a(x,) can be
estimated by any power of (1+]¢])~*(1+x,)~!; the constants obtained are
semi-norms in S7. This is also true for all derivatives of a,—a since
convolution with p commutes with them. The proof is complete.

From the lemma it follows that

ST/Sia®=ST/57".
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The restriction to lacunary symbols will therefore have no effect on the
symbol calculus which we shall develop along the lines of Section 18.1. First
we give an analogue of Theorem 18.1.6.

Theorem 18.3.5. If aeS7y, and ueSf(]RU then (18.3.1) applied to any extension
of u in L(R") defines d(x, D)ue#(R",), and the bilinear map (a,u)+> d(x, D)u
is continuous in these spaces. We have

(18.3.6) [a(x, D), D1 = i agyx, D) +i 8y a®(x, D) D,
[@(x,D),x] = —i aPD(x,D) — i §j x, a®™)(x, D).

For any integer k=0

k .
(18.3.7) D:a(x, Dyul, o= (, )akj(x’,D’)(D{,ule s
isk

a,(x, &)=Y (’l ) D=1 D} a(x',0,&,0)eS™(R"~ ' x R"~ ).

igj

Proof. The lacunary condition guarantees that y,=0 in the support of the
kernel K. Hence (18.3.1) is independent of the extension chosen. Since te¥
it is clear that d(x,D)u is a C® function with all derivatives bounded.
Differentiation under the integral sign or integration by parts gives (18.3.6).
As in the proof of Theorem18.1.6 it follows then that the map
S x P(R")3(a,up—>d(x,D)u is continuous with values in Z(R%).
When we differentiate with respect to x, under the integral sign in (18.3.1) a
factor &, appears when the derivative falls on the exponential function or
the last argument of a(x,&,x,&,). When there are j such derivatives altog-
ether we obtain (18.3.7) since

@m~'f&lag,¢,)de,

is the Fourier transform of D/ u(x’,0) with respect to x’.

(18.3.7) shows that the purpose of the definition of the operators d(x, D)
has been achieved: all normal derivatives of d(x,D)u on the boundary can
be calculated by letting pseudo-differential operators in the boundary act on
the normal derivatives of at most the same order. We shall now show that
the main structure of the calculus of pseudo-differential operators is pre-
served in spite of the fact that d(x,¢), defined by (18.3.2), has rather bad
symbol properties with respect to x,. One of the main differences is that the
kernel of d(x,D) may have some singularities even when aeS~®. We shall
therefore examine such operators now, using the notation

0={(x,y)eR>"; x,20, 5,20}, 9,0={(x,y)eR*, x,=y,=0}

for the quaterspace containing the support of the kernel K and for its
distinguished boundary. In Q it is convenient to use the symmetric singular
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o~

2ol @9

Fig.2

(polar) coordinates with respect to x, and y, given by (see Fig.2)
(18.3.8) t=(X, Y2, =X, =y )/t=2(x, =y )/(x, +¥,),
that is, x,=t(14r/2), y,=t(1 —r/2). Note that t 20 and |r| 2 if (x, y)eQ.
Theorem 18.3.6. If aeS;,™ then the kernel K of a(x,D) is in L .(R?") and in
C*(R*"~0,0Q), suppK <=Q, and
F(x',y,t,ry=t K(x",t(1+7/2),y,t(1 —r/2))
is in C*® when t20, equal to 0 when |r|Z22. For all a, B, 7, p,v we have
(18.39) |D% DA D;D?F(x',y,t,r)|<C (A 4[x"=y|+t)"
Conversely, if KeIl (R2"), suppK <Q, and F has these properties, then K is

loc

the kernel of d@(x, D) for some aeS;,*.

aftpv

Proof. The inverse Fourier transform

(18.3.10) Ax, ) =2m) " [ a(x, £)dE

is a C® function when x,2=0. The proof of Lemma 7.1.3 gives
(18.3.11) ID; DY A(x, S Copp(l+yD M1 +x,)7",  x,20,

for all &, 8, N and shows that conversely every A4 satisfying (18.3.11) with
A(x,y)=0 for y,>1 is of the form (18.3.10) with aeS;*. The kernel K is a
continuous function of x with values in &’ when x,20, and (18.3.4) gives

(18.3.12) K(x,y)=A(x,x" =y, (x, —y)/X)/%Xp, %,>0.

Hence KeL} (R*"), suppK<=Q and KeC™ when x,>0. If =20 and r> -2
then .

(18.3.13) F(x,y,t,r)=2A(",t(1 +r/2),x" =y, 2r/(2+1)/2+7).
This is a C* function. With x,=t(1+r/2) and y,=2r/(2+r) we have
L+, |22/2+7, 1+|y,|+x,=2¢k

We can therefore estimate F by any power of (1+7r/2)(1+|x"—y'|+1)~t. The
same is true for all derivatives of F since these are sums of terms of the
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same form as F but with A4 replaced by a derivative and powers of ¢ and
1/(2+7r) as factors. If we set F(x',y,t,r)=0 when r< —2 it follows that
FeC* when t 20 and that (18.3.9) holds.

Conversely, assume that KeL! (IR>"), that supp K<Q and that FeC®

loc

when t=0, the estimates (18.3.9) being valid. Since t(1+r/2)=x, and
2r/2+r)=y, implies r=2y,/(2—y,), t=x,(2—y,)/2 if x,>0 and y, <2, we set

(18.3.13)  A(x,y)=2F(x,x' =¥, %,(2=y,)/2,2y,/2 =y, )/2 = y,)

v,<2, and A(x,y)=0 when y,>1. The two definitions agree in the common
domain since 2y,/(2—y,)>2 when 1 <y,<2. When y,<1 we have

2y,/2 -y )+2=4/2—-y,)<8/1+|y,),
14+x,2-y)2z1+x,/2.

Note that since F=0 when r< —2 we can use Taylor’s formula to streng-
then (18.3.9) to

(18.3.9y |D%. D%, D; D2 F(x', y',t,7)|
SC 4., A+[x —y [+ (r+2).

aftpv

This shows that (18.3.11) follows from (18.3.9) and completes the proof.

Remarks. 1. In terms of the notions introduced in Section 18.2 the condition
FeC*™ means precisely that Kel "*(R*",d, Q). We leave the simple verifi-
cation for the reader.

2. The proof shows that if aeS;;"~2 then

(18.3.14) IK(x, YIS CA+IX =y 7" 1, vl 1%, + 13,03
In fact, since (1 +|y')"(1 +1y,)* |4(x, y)| < C we have
A +|x" =y VK, | S C(L+1x, = yl/%,) "2 /%, = Cx, (X, +y, —X,)*
S8Cx, yf(x,+y)® if 0<x,<y,.

In addition (1+{y')*[AC, )= Cil—y,l, for A(x,y)=0 when y,>1 and
(I+1y')"|0A(x, y)/dy,l < C. Hence
| (L+1x =y )" IK (X, DS Cy,/x2 S8CX, y,/(x,+7)° i 0<y,<x,.

This proves (18.3.14) which will be a convenient starting point for the proof
of I? estimates below.

It follows from Theorem 18.3.6 that if aeS;;® then &(x,D)*=b(x,D)
where beS;;*. To prepare for the proof of the analogous result for S7, we
shall now give an analytic expression for b when aeS[,® and the strong
lacunary condition

(18.3.5)" [e'na(x,&,&)de, =0 if t¢(—1,%)
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is fulfilled. With the notation (18.3.10) this means that A(x,y)=0 when y,¢
(=1,%), thus $=|x,/y.l £2 if (x, y)esupp K. By (18.1.9) and (18.1.10) we have

(18.3.15) (@0, Dyu,v)=(u,b(x,D)v); u, veS(R");

where b=¢'P~P2 G(x, £)es’ and x,20 in suppb. If peC*(R) and ¢ =0 in
(—0,1), =1 in (2,00), then $(x,/e)d(x,&)=d(x,/e)a(x,{,x,&,)eS™™ and
converges to d in &’ as ¢ 0. Hence b is the &’ limit as e—0 of

(x, ) Qm)~" [fe i *=»¢=m @(y, fe)aly, 0, y,n,)dydn

defined by Theorem 7.6.5 or interpreted as an integral first with respect to 7,
then with respect to y. The integral with respect to #, vanishes by (18.3.5)"
unless (y, —x,)/y,e(—1,3), that is, $<y,/x,<2. Choose xeC¥(3,3) equal to 1
in (3,2). Without changing the integral we can insert a factor x(y,/x,).
Letting ¢ —0 we then obtain when x,>0

b(x,¢&,x,¢)=b(x,¢)
=2m)" [ e a(x—y, & =1, (%0 = Yu) (En—~1a)) 4 (X0 — Yn)/Xs) dy dn.

Yn<Xn

The integral exists as a repeated integral. Replacing y, by x,y, and 75, by
n,/x, we conclude that

(18.3.16) b(x,&)
=Q2m) " [fe P ax -y, x,1—y), & —n',(1 =y )&, —n) x(1 —y,)dydn
=& PP @y, X, Yoo s Yl Xy . 1y, &

We shall now study this formula when aeS”; for some finite m.

Lemma 18.3.7. If aeS" and ye C3(0, ) is equal to 1 in a neighborhood of 1,
then (18.3.16) defines a symbol beS}, such that

1 . i =y '
(18317) b(x, €)~Z}-—!<Dy>qu>Ja(y 3 Xy Vs s Vn nn)‘y’:;c’,y,‘: 1,p=¢

1 i
=ZF <Dy, lDy,>J a(y,ﬂ s .V.. r’n)ly=x, ‘=& n=gnfXn"
The map S”; sa+— beSy, is continuous.
The asymptotic sum is well defined in the sense of Proposition 18.1.3 for
if a y derivative falls on the argument y,#, it causes the degree of a to

decrease by one unit which compensates for the appearance of a factor #,.

Proof. There is a constant M such that supp y <(M ~*, M). If we set
Coa M=, Xy Vs s Y 1) X (V)
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it follows from the bounds 1/M<y,<M in the support that (1+x,)"c,
belongs to a bounded set in $™ for every v and x,20. By Theorem 18.1.7
Cy,m,x,)=eP»P>c_ (y,1)
is a C® function of (y,n), and we have for all o, 8, v
ID5 D} C(y, 1, x,)| £ g, (1 +1m)™ (1 +x,) .

Since the derivatives of ¢, with respect to x, are of the same form it follows
that C is a C* function of all variables and that

IDJ, D DY C(y, 1, x ) £ Cog, j(L+In" (1 +x,)7

Hence b(x, &)= C(x',1,&,x,) is in 87 . The asymptotic expansion also follows
at once from Theorem 18.1.7 since y=1 in a neighborhood of 1. If aeS]”
we obtain by taking £,—#, as new integration variable in the first form of
(18.3.16)

[b(x,&) e dE,

=Q@m)t " ffet O g~y x, (1 =), & — 1, (1= 1) n,) x(1 —t)dy dn
which is equal to O unless M~ <1—t<M, thatis, —1-M<Zr<1-M-LIf
aeS” we obtain the same conclusion by taking a;€S, ™ converging to a in
S™+1. Thus beS], which completes the proof.

Remark. That the lacunary condition holds is no surprise since y has the
effect of cutting off the kernel of d(x, D) by a factor y(x,/y,)-

Theorem 18.3.8. For every aeS™ the adjoint of d(x,D) is equal to b(x, D) for
some beS}, in the sense that (18.3.15) is valid. If a satisfies the strong
lacunary condition (18.3.5)" and yeC¥(0, o) is equal to 1 in (,2) then b is
given by (18.3.16) and has the asymptotic expansion (18.3.17).

Proof. If aeS;,* the first statement follows from Theorem18.3.6 for

(x,y) — K(y,x) has the same properties as K. Thus the first statement follows
from the second one and Lemma 18.3.4. If aeS}, and (18.3.5)" is fulfilled we

choose ;€57 so that g;—a in S7*' as j—»oo and define g;, as in

Lemma18.34. Then a;,eS;,” satisfies (18.3.5)" and q;,—a, in Sm+1 as
j— 0. Let b;eS;” and b,eSy, be defined by (18.3.16) with a replaced by a;,
and by a,. Then

@;,(x, D)u,v)=(u,b,(x,D)v); u, ve;
and b;— b, in S;,** as j— co. Hence it follows from Theorem 18.3.5 that
(@,(x, Dyu,v)=(u,bo(x,D)v); u,ves. '
Since a — a, € S;;*° satisfies (18.3.5)” we also have with b — by € S;;
(@(x, Dy —a,(x, D)) u,v)=(u,(b(x, D) —by(x, D)) v); u, veS;
which gives (18.3.15) and completes the proof.
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By Theorem 18.3.5 d(x, D) is a continuous map & (R")— Z(R"), and the
same is true for the adjoint b(x, D). Hence a continuous map

i(x,D): #'(R%)—F'(R")

is defined by (18.3.15) with ue #'(R") and ve Z(R%). If ue #Z(R".) is extend-
ed to upe¥'(R%) by defining uo=u in R% and uo=0 elsewhere, then
d(x,D)u, is the function d(x,D)u defined by (18.3.1). By the Hahn-Banach
theorem the restriction map #'(R%)— %'(R") is surjective. The kernel is

(18.3.18) Z'(R",0R")={ues (R"); suppu<dR”} =] K ®R",IR"),
(18.3.18y S (R ,0R" )= {ue L' (R"); xku = 0}.
Here we have used Theorem 2.3.5 and the fact that temperate distributions
are of finite order. Now

(xka(x, D)u,v)=(u, b(x, D) xkv)=0, veF(R%), ues (R%,IR")
for b(x,D)x*v vanishes of order k when x,=0 by virtue of (18.3.7), so we
can take out a factor x* which annihilates u when moved to the left. Hence
(18.3.19)  d(x,D)K' (R, 0R% )= K (R",0R"%)  for every k.

Thus d(x,D) induces a map &'(R%)—<(R%) which is still defined by
(18.3.15), now with ue_?i(]k’i,) and ve&£(R%). Its restriction to CF(R")
determines d(x, D) on &'(R") since CF(R"%) is dense there.

In the standard calculus of pseudo-differential operators one ignores C®
functions since they are in the range of operators of order —o0. A some-
what larger class of distributions is neglected in the totally characteristic
calculus.

Theorem 18.3.9. If aeS;;® and ue¥'(R") then &(x,D)ucl*(R",JR") for
some k, and supp d(x,DyucR".

Proodf. By Definition 18.2.6 the statement means that the order of the distri-
bution D* (x, D,)* d(x, D)u has a bound independent of a. Now
(D% (x, D,y (x, D)u, v) =(u, b(x, D) D* (D, x,)* v) = (u, b,(x, D) v),
if ve#(R") and
bo(x, &) =E* (£, ~i—i&,0/08, ) b(x,)eS>.

It suffices to verify this for the operator b(x, D) D, x,=b(x, D) x, D, —ib(x, D).
Then it follows from (18.3.1) since the Fourier transform of x,D,v is
—D,¢&, 0 and

8D, (€O b(x, ) = x, &, (b(x, §) =i 6™ (x, ).
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Hence it follows from Theorem 18.3.5 that for suitable y, 4’ independent of «
(D (xs D) @(x, D)u,0)l S Csup Y |x* D7b,(x,D)v)
T R
SC,sup Y XDl
R |B+ylsy

Here we have used the following lemma:

Lemma 18.3.10. The quotient topology in & (R") is defined by the semi-norms
F(R%)av-sup|x* D? v|.
R

Proof. That these are continuous semi-norms in £(R") is obvious for they
are continuous in &(R") and constant in each equivalence class. On the
other hand, let ¢ be a continuous semi-norm on &(IR”). Then q is a
continuous semi-norm on S (R"), so

g)SC Y, sup|x*D?y|

la+p|sk R
and q(v)=0 if v=0 in R",. If ve #(R") we now set
i()=ov(x), x,20, B(x)=x(x,) Y Go(x,0x}j!, x,<0,
Jgk
where yeC¥ and y=1 in (—1,1). Choose ¢ CF(R") with [ $dx=1 and set
¢, (x)=¢(x/e)e™". Then D*x¢,e¥, v+, =P*¢, in R" and v*x¢p,—v in &
when ¢— 0. Hence
q(v)=limg(vx¢,)=limg(Fxp)<C’" )  sup|x*DFy|,
e—0 e—0 ¢l

la+ Bl <2k Ry

which completes the proof. (Using the proof of Theorem2.3.5 we could of
course replace 2k by k here.)

Recall that for the distributions in the theorem the wave front set is
contained in the conormal bundle of the boundary. In many contexts one
can exclude such singularities for other reasons. However, we postpone the
discussion of this and related matters until we have completed the remain-
ing parts of the calculus, the product formula and the invariance under
change of variables.

Theorem 18.3.11. If a,eSyy, j=1,2, then &,(x,D)d,(x,D)=b(x,D) where
beSy ™ is given by
(18.3.20) b(x, &)=€P»P> g (x,m) ay(y, X, ¥ &> €, Ylye s 1yt

~ Y aP(x,&) D% DI ay(x', 5%, &, E)/all,_ .

Proof. Assume first that a,eS;,® and that a,(x,£)=0 for large |x|. If
ueZ(R") it follows then that d,(x, D)ued’ has the Fourier transform

N Q2m) " [ a, (y, O (&) dy dE.
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When a is of order — oo then (18.3.1) remains valid for reasons of continuity
when ue&’(R%) and x,>0, for £ e ®® G(x, &) is then in & and is a C*
function of x with values in & Hence we obtain as in the proof of
Theorem 18.1.8 that &,(x, D) d,(x, Dyu=b(x, D)u, x,>0, if

b(x,&)=Q2m) " [e "= G, (x,n) d,(y, &) dy dn,
that is, replacing ¢, by ¢,/x,, 1, by 7,/x, and y, by x,y,,
(18.3.20) b(x, &)
=Q2m)" [ e ix TG g, (x, 1) ay (Y, Xy Yo €5 Ea Vi) Ay .

Yn>0

We shall now show that (18.3.20)" defines for arbitrary m,, m, a continuous
bilinear map S}i! x S723(a,, a,)—beSy ™2, It will then be easy to show that

b(x, D)=a,(x, D) &, (x, D) without the simplifying assumptions made above.
Choose xeCZ(R ) as in Lemma 18.3.7. To study (18.3.20) with a cutoff
function x(y,) inserted in the integral we introduce

o cm=a,(,n)ay(y', %, ¥, &, & V) ()

Then (y, 7)) (1 +[E) "™ (1 +x,)" f, (¥, 1) is uniformly bounded in $™ for any
v. In fact, y, lies between fixed positive bounds in the support, a differen-
tiation with respect to y, bringing out a factor £, is accompanied by a
decrease in the order of a,, and |&,|/(1 +|&|+1&, v, =1/ly,|. Hence it follows
from Theorem 18.1.7 that

bl(x, é) = ei<Dy,D">fx, g(y, ’1)|y= (x', 1),n= &>
is defined and that

|b1(x’ f)_ Z <iDy,D,,>jal(x,r’)a2(ylsynxm él7ényn)‘y=(x’,1),n=§/j!|

j<N
S Cy,, (1 +x,) 7" (A +|glymrme =N,

In view of Proposition 18.1.4 it follows that b,€S™**™ and that b, has the
stated asymptotic expansion.
Set

A1 (%, )=Q2r)""(1 = (1 —yy) €€ ay(x, &) dE.
Since x(1 —y,)=1 in a neighborhood of 0, the proof of (18.3.11) gives
(18.3.11y ID3DE A, (x, )| £ Copn(L+1y) V(1 +x,)¥

for any N; the constants C,gy are semi-norms of a; in $™. Since A4,(x,y)
=0 when y,> 1 by the lacunary condition, we also have by Taylor’s formula

(18.3.11)" D2 D8 A, (%, )1y, — 11~ < Clpn(1 +[y) (1 +x,) Y.
Now we have b=b, +b, where
by(x, &)= [e =Dl g(x, y, &) dy,
8(%, 3, 8)=A106X =y, 1=y,) @y, %, ¥, &', £, V)
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If we observe again that a differentiation with respect to y, which brings out
a factor £, is accompanied by a decrease of the order of a,, we obtain

|D2 DB DY g(x,y, NS Cpoppnll +1x — yl+x,) N1 +|Efyr2— 1

in view of (18.3.11)" and the fact that 1+|&|+|&, v, 21y, (1 +IEDAL +1y,D.
Since for every f

EPby(x,§)=[e i =" =itlmbn( D Pg(x,y,£)dy

it follows at once that b,eS7*.

When a,€8;,% and a,eS722, a,(x, £)=0 for large |x|, we have now shown
that a,(x,D)a,(x,D)u=b(x,D)u in R", ues, where beS;® is given by
(18.3.20). Since this is O when u=0 in R”. we have beS;,®. If a, does not
vanish for large |x| we set a, (x, &)= y(x/v)a,(x, £) where yeCg is equal to 1
in a neighborhood of 0. Then &,(x, D)d,,(x, D)=b,(x, D) where b eS;;® and
b,—b in S7® as v— oo by the proof above, b always being defined by
(18.3.20y. Hence beS;;® and &,(x, D)d,(x,D)=b(x, D). The hypothesis that
m,;= —oo is now removed exactly as in the proof of Theorem 18.3.8 which
completes the proof.

The proof of Theorem18.1.11 is now easily modified to a proof of I?
estimates for totally characteristic operators.

Theorem 18.3.12. If acSY, then @(x, D) is continuous in I*(R").

Proof. 1f aeS;;"~? then the kernel K of d(x, D) satisfies (18.3.14) and the I?
continuity follows from Lemma 18.1.12. If aeS;;* we bave

|a@(x, Dy u||? =(b(x, D) d(x, D) u,u) = (&(x, D) u, u),uc %,
where b(x,D) is the adjoint of d(x,D) and ceS;;%*. If &(x,D) is already

la
known to be I? continuous we obtain the same result for d(x, D), so the
theorem follows for all aeS;* if k< —(n+2)/2, then if k< —(n+2)/4 and so
on. The proof is then completed by taking an approximate square root
satisfying the lacunary condition just as in the proof of Theorem 18.1.11.
(Note that (M2 —|a|*)* —M eSS if aeS% and supla]<MeR.) The repetition
is left as an exercise for the reader.

Since d(x,D) commutes approximately with differential operators it is
possible to extend Theorem 18.3.12 to H , spaces:

Theorem 18.3.13. If aeS?, then d(x,D) is continuous in H(s,(]R'L) and in
H,(R",) for every seRR.

Proof. For s=0 this is just Theorem 18.3.12. If ue #(R") we have by Theo-
rem 18.3.5

D;a(x,D)u=d(x,D)D;u—id;,a™(x,D) D, u—id(x,D)u.



124

If s is a non-negative integer for which the theorem is proved we obtain
if ue#(R")

la(x, DYullg, . 1,=laCx, Dyullg,+3 | D;a(x, Dyullf,
1

S Clullgy+ 2 1D;ulig) = C lullf, -
1

Now #(R") is dense in H,(R"%) by TheoremB.2.1 so this proves con-
tinuity in H(S +1(R%). Using (B.2.2) we obtain in the same way the con-
tinuity in H ;,(R"). By Theorem 18.3.8 the adjoint of d(x, D) in H,(R",) is
for every s the operator b(x,D) in H_(IR%) where beS},. By duality we
therefore obtain the continuity for negative integers s also. The proof will be
completed by an interpolation argument close to the proof of
Corollary B.1.6, which establishes continuity in H, ., (R") if k is an integer
and [s| 1.

Choose ye CF(R",) with Y(&)=1+0(¢|?) as ¢ 0. To do so we can first
take peCP(R") with $(0)=1 and set y=2¢—p*¢, for Y=1—(1—¢)>
then. Writing ¥, (x)=¢~"/(x/¢) we have for |s|<3

1 1
2 o -3
gllillc*ullmuﬁl 2348+£|Iu—!//8*ull(2;,_1,8 3720 de < Cllullyy

when ue 4 This is equivalent to the elementary inequalities

1 1

[ EoIPe "2 de< CA+IEPY,  JIl—dedPe > de< C(1+|EPy+!

0 0

Both are obvious if |£]<1, since |1 —y(e&)i2e~3-2% is bounded then, and
when |£|>1 they follow if ¢ is replaced by ¢/|¢| and the integrals are
extended to + oo. Set v, =a(x, D)(Y,*u), w,=a(x, D)(u —y,*u). Then

1

— 2 -3-2 2
§(|1U5“(21¢+ 1)81 2sde+ sz:“(k—-l)a de<C, l|u“(s+k)
0

in view of the continuity in H. ,,(IR%), that is,

1
Cm) " [U5OP(* +e T 19,7 (% +le P e 7267 dEde
0
SCyllullfy i
If U=a(x, D)u we have U=14,+W,, hence
[0(E)? < C,(15,(EW (2 +1e &P+ T+ 19, (D12 (% +1e 1))
if 1 <2&(1+]&j)<2. Since

g 12640 ge > C (14|12 HE
1<2e(1+[&)<2



18.3. Totally Characteristic Operators 125
we obtain the required estimate HUH(ZS +k)§c4uunfs +n- The proof is com-
plete.

The interpolation argument is also applicable to Besov spaces; we con-
tent ourselves with the case of interest here:

Theorem 18.3.14. If aeS}, then d(x, D) is continuous in ”H(s,( ") for every s.

Proof. First we show that for ue“’H(ﬁk,(]R'ir) and |s|<4 0<e<l,
I *ullfer & 2+ Ju—y *ulf_ e 22 S C®ullg, o

This follows if we show with the notation in (B.1.2) that
ZSUP(W(eé)IZ(eR,-)Z‘“wL|1 —P(e&)P(eR) ™72 < 0.

The terms where &R;<1 can all be estimated by (¢R)*~?° since
H—yEd)><Cled|* then and those with eéR;>1 can be estlmated by
(eR;)=2~2 since /(e §)|<C/|£€l2 then. The sum of a geometric series with
ratio <3 is at most twice the largest term which proves the statement. Now
we obtain with the notation in the proof of Theorem 18.3.13

e v G,y Hem T B Iw Gy S C ullG, ),
that is,
e= 26D [ (5,1 + eI+ W (D)2 (2 +e &l 1) de
SC®lulg .y
If we restrict the integration to X; and take ¢=1/R; it follows that
R'}“(J,{[_Ifj(f)lzdf)*é CPlullg s

which completes the proof.

We can apply Theorem 18.3.14 to the spaces I* in Definition 18.2.6:

Corollary 18.3.15. If acSy: and ucI*(R", 6R")~ & (R"), then
a(x, Dyuel*(R", 6R".)n Z'(R™).

Proof. We must show that P(x,D)d(x,D)ue*H\ _,4, if PeDifff (R%).
Choose an even integer M >m+m’ and set Q(¢)=|£|™. By Theorem 18.3.11
we can use the argument in the proof of Theorem 18.1.9 to show that

P(x, D) d(x, D)= F(x, D) (x, D)+ G(x, D)

for some F, GeS?, if the coefficients of P have compact support. Since
Q(x,D)u and u are in “H _i_na4 by hypothesis, the statement follows now

from Theorem 18.3.14.
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We shall later on use a dual version of Corollary 18.3.15 to obtain the
continuity of d(x, D) in another space which occurs in the study of boundary
problems. (See Proposition 18.3.23.)

All operators of order —oco do not map H(s) into H(S,) for any s'>s. In

fact, let us consider (d(x,D)u,,v,)=[{K(x,y)u,(y)v,(x)dxdy with u,(y)
=&~ u(y, yufe), v.(x)=¢e"*v(x,x,/e) and suitable u, veCP. As -0 it is
easily seen that if d(x, D) is continuous from H ) tO H ) and s'>s then the
function F in Theorem 18.3.6 must vanish when t=0. However, operators of
positive order cannot consume more differentiability than in the case of

standard pseudo-differential operators:

Theorem 18.3.16. If aeSf; and m20, then d(x, D) is continuous from H(s,(]i'i,)
to Hi_,y(R") and from H, (R") to H_ ,,(IR") for any seR.

Proof. The first statement implies the second one by duality. When proving
it we first assume that m is a positive integer and that the statement has
already been established for smaller values of m. We can write

a(x, &)=Y &;a;(x,&)+ay(x, &)
1
where a;€S7,~". In fact, writing

bi(x,&)=&,a(x,&)/1+[E]%), j*0; bolx,&)=a(x, &)1 +|¢);
we have a(x,&)=) &b, (x,&)+by(x, &) and can take

a;=(b),, Jj*0; ag=bo+Y ¢b;—a)=a-Y¢;a;,
1 1

with the notation in Lemma 18.3.4. Since

n-1

d(x,Dyu= 3 d,(x,D)D;u+x,d,(x,D)D,u+d,(x,D)u
T

it follows from the inductive hypothesis that a has the stated continuity
property. Moreover, (a,u)—d(x, D)u is continuous from Sf x H,(R%) to
H(s—m)(]R';- )

A complex interpolation argument similar to that in the proof of Theo-
rem 7.1.12 will now prove the general statement. Set

B,(x,)=alx, )1 +|£A)*~™%  A,=(B),+a—a,

Then A, is analytic in z, A,,=a and A, eS. ?; the semi-norms can be
estimated by a power of (1+|z]) when Rez is bounded. If M is an integer
>m it follows from the first part of the proof that when Rez=0 or Rez

=M we have for some C, and u

(A (e, D)u, (1 +|DP) 2 o) < C(1 + |2 ul ) ol s ueF(RY), veF(R").
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When 0<Rez<M we have a weaker estimate with |ul|, replaced by
lttll 54 ary> fOT A,€S}F and the semi-norms there can be estimated by a power
of (1+|z]). Since 1+|z|Z122z+2|, Rez=0, it follows from the Phragmén-
Lindel6f theorem that when 0 < Re z< M we have for the same u and v

(4, (x, Dyu, (1 +1DI*) "2 v)| < C,122+ 2" flull , o) -
This means that
”Az(x’ D)u”(s—kez)é Cs I22+2!u ”uH(S)’ uef(lf{'ir)

When z=m this proves the first part of the theorem when m>0, hence the
second part when m<0. The proof is completed by the argument at the
beginning.

To discuss invariance under a change of variables we shall resume the
study of the kernel K of d(x, D) begun with Theorem 18.3.6, assuming only
that aeS}, now. The inverse Fourier transform

Alx,y)=Qm)~" [ a(x, n)dn

is then a conormal distributionelI™(R?", {y=0}) with principal symbol
a(x,n)|dx|*|dn|* on the normal bundle {(x,0,0,%)} of the plane y=0. (To be
quite precise we should observe that a and therefore A is only defined when
x,20. However, this is obviously inessential since x, is just a parameter on
which A depends in a C* fashion. Quite generally, if X is a manifold with
boundary and Y a submanifold intersecting X transversally, then the defi-
nition of I"™(X,Y) in Section 18.2 can be applied if we just use local coor-
dinate systems near the boundary such that X is defined by x,=0, say, and
Y by x,=...=x,=0. We leave this slight extension for the reader.) The
kernel K of d(x, D) is given by (18.3.12),

K(x7y):A(xax’_y,’(xn_yn)/xn)/xn’ xn>0'

By (18.3.1) K is a continuous function of x with values in % when x,20,
and K=0 when x,<0. To interpret this we introduce again the symmetric
singular coordinates (18.3.8). Since D(t,r)/D(x,,y,)= —1/t, we obtain if K is
transformed as a half density to k(x',y,t,r)=K(x, y)t*

(18.3.21) k(x,y,t,n)=A(x,t(1+r/2),x" =y, 2r/Q+r)(1+r/2)~ %

Thus t¥k(x',y,t,r) is a C® function when 0<|r|<2, t=0. All derivatives
tend to 0 when |r|—> 2. In fact, this follows when r— —2 from the fact that
(18.3.11) is valid when |y,| is bounded away from 0. When r—2 the state-
ment also follows from (18.3.11) and the fact that A(x,y)=0 when y,>1 by
the lacunary condition. Defining k=0 when |r|=2 we obtain t*kel™(R?", 4)
where R?" is defined by t>0 and
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which corresponds to the diagonal in the original coordinates. With the
corresponding parametrization of the conormal bundle of 4 as {(x',x,t,0,&,
—&,0,p)} the principal symbol of t* k is

(18.3.22) a(x',t,&, p)ldx'[*|de|* |dE'|* |dpl*.

In fact, t*(1 +r/2)* k is the pullback of A as a half density by the diffeomor-
phism (X', y,t,ry— (X, t(14+r/2),x' —y",2r/(2+7r)). When r=0 the differential
is (dx',dy,dt,dr)r(dx',dt+tdr/2,dx’ —dy',dr); the adjoint maps the ele-
ment (x,0,0,¢) in the normal bundle of R" x {0} to (x',x,x,,0; &, —&,0,¢,).
When ueCy the substitution y,=sx, gives, with all integrals representing
the action of a distribution

JK(x, yyu(y)dy=ff k., x,(1+5)/2,2(1 =s)/(s + D)(1 +5)/2)~*
~u(y,sx,) xtdy ds.
If k, is the limit of t*k as t — 0 then this converges to

[T ko', 2(1 =s)/(s + 1) /1 +5) u(y', 0)dy ds
when x, —0.
Conversely, given a distribution t*kelI™(R%",4) of compact support,
vanishing when |r|>2, we can reverse the argument by introducing for
x,20

(18321) A, )=k, x =y, x,(2=y,)/2,2y,/2 =y ) xt (1 —=y,/2)*

which vanishes for y,>1, decreases rapidly as y—oo, and is conormal
with respect to the plane y=0. From A we return to aeSjy, by

a(x,m)=[ A(x,y)e " >"dy.

Hence we have an identification of the operators d(x, D), acSy,, and the
conormal distributions in I™(IR2", A), at least when the kernels have compact
supports. Thus we recover locally the invariance under passage to the adjoint
(Theorem 18.3.8). Invariance under coordinate transformations will follow
when we have discussed the intrinsic meaning of the new coordinates

(18.3.3).

If X is a C® manifold and Y is a C® submanifold, then a new manifold
X, the blowup of X along Y, can be defined as the union of X~ Y and the
projective normal bundle of Y, that is, the quotient by multiplication with
real numbers +0 of the normal bundle (T(X)|y~ T(Y))/T(Y). If f and g are
C* functions in X vanishing on Y then f/g is well defined in

{xeX,g(x)x£0}u{fe X\ X, (f,dg) +0},

as a limit in the second set. We declare such sets to be open and f/g to be
in C® there. Together with the C* functions in X lifted to X these
quotients define a C* structure on X. To see this we choose local coor-
dinates x=(x,,...,x,) in X such that Y is defined by x'=(x,,...,x,)=0.
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Then X can be identified with the quotient of R x §*~! xIR"~* by identifi-
cation of (t, w, x") with

i(ft,0,x"y=(—t, —w, x").

Note that the projection m: (f,w,x”) — (tw,x”) € X is defined on X since
wi=n.If f,g € C*®(X) and both vanish on ¥ then

(f/8)(0, 0, x") = f(0,x"), w>/{gx (0, x"), 0>

when the denominator is not 0 and then we have g(t w,x”)=+=0 for small |z|.
Thus f/g is defined and C® in an open subset of R x S*~1 x IR** and even
under the involution i. Where w, *0, for example, all such functions are C*
functions of w/w,(j<k), x,=tw, and x, ,,...,x, so we have indeed a C*
structure. We could have taken these polar coordinates as the definition of
the blowup of course, but then we would have been obliged to prove that
the procedure is coordinate free.

If X and Y are two manifolds with boundary, we can blow up the
manifold with corner X x Y with respect to the corner manifold éX x 0¥, of
codimension 2. Without embedding X and Y in open manifolds we then
obtain the stretched product X X Y which is the union of X x Y~ (30X x 0Y)
and the projective interior normal bundle of 0X xdY in X x Y defined as

(T oy + T (Vloy)~ T(OX x 8Y))/T(0X x 3Y)

modulo multiplication by positive reals. Choose local coordinates in X and
in Y such that X is defined by x,20 and Y by y,,=0. Then X x Y has local
coordinates (x',y,t,7); t 20, —2<r <2; with the map into X x Y given by

&Ly ) &L +r/2),y 0 (1 = r/2)).

Thus the C* structure defined by these coordinates is coordinate free and
agrees with our earlier singular coordinates (see Fig.2).

In the particular case where X =Y the closure in X X X of the diagonal
in (X~ 0X)x(X~0X)is a C* manifold A< X X X which does not meet the
corners of X X X, and it intersects the boundary transversally. In fact, with
our local coordinates it is defined by x' =y and r=0. The restriction to 4 of
the C® map X x X » X xX is a diffecomorphism on the diagonal 4 in X
x X. Now recall that the normal and conormal bundles of 4 in X x X are
naturally isomorphic to T{X) and T*(X) lifted to 4 by the projection on
one of the factors. More precisely, a cotangent vector yeT*(X) corresponds
to n¥y—n%yeN,, ., (4) where n, and =, are the two projections, and if v is
a tangent vector to X xX at (xg,x,) then m, v—m, v is a tangent
vectore T, (X) depending only on the class of v modulo T, . (4). Now the
C® map X x X - X x X defines maps

(18.3.23) T(X xX)»T(X xX), T*XxX),— T*(X x X);.

0s X0
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Let T(X) and T*(X) be the dual vector bundles obtained by pulling the
normal and conormal bundles of 4 in X x X back to X by the inverse of
the projection A - X, which is a diffeomorphism since it is a product of two
diffeomorphisms 4 — 4 % X. Then we have natural maps

(18.3.24) T(X)-»T(X), T*X)-T*X).
The first is the composition
T(X)- T(X x X)|3/T(4) > T(X x X)/T(4) - T(X)

where the maps in turn are obtained from the definition of 7 the first part
of (18.3.23) and the discussion of the normal bundle of 4 above. The second
map is similarly the composition

T*(X)— N(4)— N(4d) - T*(X)

where the second map comes from the second part of (18.3.23). With our
local coordinates the cotangent vector {&,dx) at xeX corresponds to {£,dx
—dy) at (x,x)eX xX and is mapped to {&,dx'—dy)+t&,dr. Thus we
have in local coordinates the map

T*(X)3(x, &) (x, X, x,,0,&, —&,0,x, £, )eN(A) = T*(X).

Every element in the normal bundle of A at (x',x',x,,0) has a unique
representative of the form

n—1

21: v;0/0x;+v,0/0r.

By duality we see that (18.3.24) maps it to

n—1

Y v;0/0x;+x,v,08/0x,eT(X).

1
In view of Lemma18.2.5 it follows that the map T(X)— T(X) sends the
sections of T(X) to the vector fields which are tangent to 0X. This closes a
circle; it was on these vector fields that we set out to model an algebra of
pseudo-differential operators in this section.
We sum up the preceding conventions and results in the following

Definition 18.3.17. Let X be a C® manifold with boundary.

a) The stretched product X x X is a C® manifold with corner obtained
by replacing 6X x0X in X x X by the interior projective normal bundle.
There is a natural C® map X x X - X x X.

b) The diagonal 4 in X x X is the diffeomorphic image of a manifold 4
in X XX which only intersects the new smooth boundary and does so
transversally.

c) The compressed cotangent bundle T*(X) is the pullback of the conor-
mal bundle of 4 in X X X by the inverse of the difffomorphic projection on
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X. There is a natural map T*(X)— T*(X) which maps T*(X) linearly to
T*(X), bijectively if xe X ~0X and with kernel N,(6X) and a hyperplane as
range if xedX. The range can then be identified with T.*(X)/N,(0X)= T*(0X)
which makes T*(@X) a subbundle of T*(X)|,;. The sections of the dual
bundle T'(X) are mapped in T(X) to the vector fields tangent to 6X.

The pullback of the symplectic form in T*(X) (see (6.4.8)) to T*(X), thus
to the conormal bundle of 4 in X X X, is a symplectic form with singularity
at 6X. In the local coordinates above it is given by

n—1

(18.3.25) Y dé;ndx;+1~'dp dt.
1

Thus the half density |d&|*|dx'|*t=*|dp|*|dt|? is invariantly defined. The
principal symbol of k, which is t=* times (18.3.22), can therefore invariantly
be identified with the function a on N(4)~0, that is, on the compressed
cotangent bundle T*(X)~0.

We have now developed all that is needed for a global calculus:

Definition 18.3.18. If X is a C® manifold with boundary then the space
Pm(X; Q2% Q% of totally characteristic pseudo-differential operators 4 of
“order m on half densities in X is the set of all continuous linear maps
C2(X, Q%) - C*(X,0Q% with Schwartz kernel K obtained by pushforward
from the stretched product X x X to X x X of a distribution half density k
such that kt*eI™(X xX,4) and k vanishes of infinite order on
(X x X)~(0X x 6X). Here ¢t is a C* function in X x X which is positive in
X x X~ (0X x0X) and vanishes simply on the other part of the boundary.

The pushforward is defined as follows: If f: X X X — X x X is the natural
C” map and ¢ is a half density of compact support in X x X, then f* ¢ is a
half density of compact support in X x X so the equation

(18.3.26) K(¢)=k(f* $)

defines a distribution half density K in X x X.
Locally 4 can be defined by (18.3.1). As we have just seen this leads to a
principal symbol isomorphism

(18327)  Wr(X; Q%L Q) 9~ 1(X; @, @)= s (T*(X))/s™~ (T*(X))

where T*(X) is the compressed cotangent bundle on X. The adjoint of an
operator in %" is in %", and the principal symbol is obtained by complex
conjugation. If Ae¥" and Be¥{™ are propetly supported then ABe¥"*™ is
properly supported and the principal symbol of AB is the product of those
of A and of B; the isomorphism (18.3.27) also holds if one takes only
properly supported operators in the left-hand side. All these basic facts of
the calculus as well as extensions where vector bundles are present follow
just as in Section 18.1. One just has to replace say Theorems 18.1.6, 18.1.7,
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18.1.8, 18.1.17 by Theorems 1§.3.5, 18.3.8, 18.3.11 and the connection with
conormal distributions on X x X established above. We have also proved
that all operators in %" map H{™(X) continuously into H. };’c_m)(X yif m=0.
The spaces HS™(X), 2'(X), 8'(X), C3(X),... are all defined without any
reference to an extension of X to an open manifold. So is the subspace

(18.3.28) ™ (X)=I"(X,0X) < D'(X)

of distributions # remaining in °°H2"_°m_n/4), n=dim X, after any totally
characteristic differential operator has been applied to u. (We tacitly allow
values in a vector bundle but do not wish to burden the notation by making
this explicit when it is not essential) By Theorem 18.3.9 every operator in
¥, * maps &'(X) into &/ (X)=|J) #™(X), and by Corollary 18.3.15 £ (X)

comp

is mapped into /™ (X) by any operator in ¥° =|) ¥. In these respects the
k

relation of «/(X) to totally characteristic operators is similar to the relation
of C*(X) to pseudo-differential operators when X is an open manifold. It is
therefore natural to expect that the dual space of .« will be a useful space
of distributions, and we shall introduce it after a preparatory lemma.

Lemma 18.3.19. There exist linear smoothing operators Q,: 9'(X)— C®(X)
such that Q u—u in o™, ¢—0, whenever ues/™ for some m' <m. For
every compact set K< X there is another compact set K'<X such that
suppQ,ucK’ if suppucK and O0<e<l.

Proof. By a partition of unity the proof is reduced to the case X=IR".
Choose ye CF(R") with #(0)=1 and set Q,u=y *u, 3,(£)=1(&). Then the
statement on the supports is obvious. Taking y(x)=¢(x)y¥(x,), x'
=(Xy,..-,X,_1), We obtain if

u=[a(x,&,) e dg,
that

Qeu=[a(x,g)e™ndE,;  a(x,E)=y(e&) falx' —ey, &) d (Y)Y

If aeS* and u>y it follows in view of Proposition 18.1.2 that a,—a in S*
when ¢—0.

Definition 18.3.20. By &/'(X) we shall denote the set of all ue%’(X) such that
for every compact set K<X and every mz—(n+2)/4 the form
© C¥(K)a¢ru(¢) is continuous in the topology of /™, defined in (18.3.28).

We recall from the discussion after Definition 18.2.13 that C®(X)c &/
if m= —(n+2)/4 which is the reason for this condition in the definition.
Since the embedding /™ — o™ is continuous when m’ <m the continuity
condition becomes stronger when m increases, and ¢ +— u(¢) is continuous in
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the o/™ topology for every m if pcCP(KnX°) where X°=X 38X is the
interior of the manifold. By Lemma 18.3.19 the restriction of u(¢) to CP(X°)
already determines a continuous extension to &/ ¢ uniquely. In particu-
lar, the restriction

' (X)suru| € D'(X°)

is injective. It is really the range of this map which is dual to & which must
be kept in mind when arguing by duality.

As topology in o/’ we shall use the weak topology defined by the semi-
norms u + |u(¢)| when ¢ € ANE&E'. Now C>°(X) is a subset of /&' since the
topology in /™ is stronger than that in- ©H 4, and CF(X) is weakly
dense for if peo Né" then u(¢)=0 for all ue CZ(X) implies ¢ =0.

Proposition 18.3.21. There is a unique continuous restriction map
o' (X)— D'(0X) which agrees with the standard restriction on C*(X).

Proof. To underline the invariance we consider distributions with values in a
vector bundle E. If ue C3(X, E) then

(18.3.29) Culoy, > =<u, TPy, $eCF(0X,E'®L(IX))

where Q is the density bundle and T¢=¢ ® 5(x,) if x, as usual is a local
coordinate vanishing on J0X. This is independent of the choice of local
coordinates since d(x,) is a distribution density on R. Now the map

CP(0X,E ®QOX)op—Toped?*~"4(X,E ® QX))

is continuous so (18.3.29) defines a weakly continuous map u — u|sx. Since
the uniqueness is obvious this completes the proof.

Differentiation is continuous from &/ to &/™+", This implies that the
space of restrictions to X° of elements in o/’ is invariant for differentiation,
so using Proposition 18.3.21 we can define boundary values of arbitrary
derivatives of u. (In view of Corollary 8.2.7 this means that the elements of
&' have a certain regularity at N(0X) although &'(X°) is a subset of &/'(X).)
However, differentiation does not preserve the space &/’ unless one takes
boundary terms into account as we already did in Theorem3.1.9. To sim-
plify the statement we take X =R":

Proposition 18.3.22. If ues/'(R") then D;u+i6;,ul,,-o®d(x, e/ (R"); the
restriction to ", is equal to D; applied to the restriction of u.

Proof. D;u is defined by regarding u as an element in 2'(R%), thus '
(Dju,¢>=~<u,D;¢>, ¢eCFR?).

If ¢, is the element in o defined by ¢, that is, ¢,=¢ when x,20 and ¢,
=0 when x, <0, then

Dj¢0=(Dj¢)0—i6jn (., 00®6(x,).
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The inclusion CP(R"%)< ™ identifies D; ¢ with (D;¢),. Thus
<Dju’ ¢> = —<ua Dj ¢O> —i 5jn<u, d)(' ’ O)® 5(xn)>

Since
<u7 d)(' 70)® 5(X")> = <u|x,.= 0> ¢(' ’ 0)> = <ulx"= 0 ® 5(xn)’ ¢>’
and
A™ AE' (K)oy—{u,D; ¥
is continuous for every m and every compact set K, the proposition is
proved.

Proposition 18.3.23. If Be'W,*(X) is properly supported and ues/'(X) then
Bueg'(X).

Proof. Bue%'(X) and if ¢eC2(K), K€ X, then
(Bu, ¢)=(u, B* ¢).

Here B* ¢ C7(X) has support in a fixed compact set, and the continuity in
-the /™ topology follows since

&E'K)YN A™ > ¢— B*p € A™

is continuous by Corollary 18.3.15.

Note that (18.3.7) can now be extended by continuity to ues/".

The elements of &/(X) are smooth in the interior of X and have tangen-
tial smoothness at the boundary while those in &/'(X) have normal deriva-
tives on 0X of all orders. This suggests the following

Proposition 18.3.24. On any C*® manifold X with boundary one has
A'(X)n(X)=C*(X).

Proof. It is obvious that Cw(X)c;z{’(X)r\&?ILX). To prove the opposite
inclusion it suffices to show that if ue&(R"%)n .« (R%)NZ(R"%) then
ue CP(R"%). Since ue/ we have ue C*(R%). From Proposition 18.3.22 it
follows that for every a there is an element u e/’ such that D*u—u, has
support in JRR", .

Choose m so that ue.o/™. Then v=x" D*ues/™+*~", that is,

DE(x,DYrve HYs_ . . . us<L? forall B,

where the last inclusion holds if N>a,+m-+n/4. Let yeCg(R), 0=y =1,
and y=1 in a neighborhood of 0. Set y°(x) = x(x,/¢). Then

DE(x,D,)P~x*v is bounded in [?< ®H g, for all B, 0<e<1.

In fact, {x,D,, 1= if x,(t)=1t D, x(t) so we can commute x* through to the
left, obtaining a sum of similar terms with a factor yj to the left instead, x;(t)
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=(tD) x(t) and the [? estimate is obvious for them. Thus (1—x%)v is
bounded in /~"* for 0<e<1. Since u,es/’ and D*u=u, when x,>0, it
follows that

(D*u,(1 —x*) v)=[ID*u|* x}(1 - x*(x,)) dx

is bounded when ¢-»0, hence

{ ID*ul*x) dx < oo if N>o,+m+n/4.
Xn>0
Now we recall Hardy’s inequality for functions ve C*(IR ,) vanishing far
away,

[Iol>?*de<4/2u+1)? [ |22+ 2dt,  u=0.
V] o]

In the proof one can assume that v is smooth at O and integrate by parts,
which gives

lot*)>=—2/2u+1) [ Revv >** 1 de <2/2 pu+ 1) |t# off i+ 1 /).
. 1]

Hardy’s inequality follows after cancellation of a factor. Now we obtain

{ ID*ul*dx<4 | |D*Dlu|*x}*dx<oo
xn>0 xp>0
if v is a positive integer with 2v>a,+v+m+n/4, that is, v>a,+m+n/4. In
view of Theorem B.2.8 it follows that u= U, + U, where U,e CZ(R"), consid-
ered as an element of &', and x,=0 in supp U,. Thus U,eo/’ so U,=0 in
view of Lemma 18.3.19, which compietes the proof.

For the wave front set of a distribution in a manifold with boundary we
can now give a definition parailel to the characterization in Theo-
rem 18.1.27:

Definition 18.3.25. If ue Z'(X) then WF,(u)c T*(X) is defined by
(18.3.30) WF,(u)=(") Char B
with intersection over all properly supported Be ¥2(X) such that Bue/(X).

Here Char B« T*(X)~0 is the set of all (x,£eT*(X)~0 such that the
principal symbol b of B is not invertible at (x, £) (cf. Definition 18.1.25). We
have used the space #(X) and not C®(X) because it contains the residual
terms in the calculus by Theorem 18.3.9. Thus it follows at once from the
definition and Theorem 18.3.9 that WF,(Au)cI if the symbol of- 4 is of
order — oo outside the closed conic set I'« T*(X)~ 0. However, C*(X) may
be used if we assume more about u:

Proposition 18.3.26. If uco/'(X) then (18.3.30) is valid with the intersection
taken over all properly supported Be ¥ (X) such that Bue C*(X).
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Proof. If ueo'(X) and Bueo/(X) as in Definition 18.3.25 then Bue C*(X) by
Proposition 18.3.24, for Bue&/'(X) by Proposition 18.3.23.

Theorem 18.3.27. If X is a C® manifold with boundary 0X and interior X°,
and ue%'(X) then

(i) WF,w)|y.=WF(uly.).

(i) WE,(Bu)c WF,(u) if Be ¥"(X) is properly supported or if B is a differ-
ential operator with C* coefficients.

(iil) If WEF,(u)=0 then ue ot (X), hence ue C*(X) if uet'(X).

(iv) WF(ul,x) = WE, (W) T*(0X), ues'(X).

Note that T*(X)|y. is identified with T*(~X °) and that the map T*(X)|,x
— T*(X)|,x defines an embedding T*(0X)— T*(X)|,x.

Proof of Theorem18.3.27. (i) follows since every Be¥°(X°) with kernel of
compact support in X°x X° is also in ¥2(X) and vice versa. To prove (ii)
assume that yeT*(X)~O0~ WF,(4), and choose B,e¥°(X) properly sup-
ported and non-characteristic at y so that B,ues/. We can then find
C,e'¥? properly supported. so that C, B, =I+R, where the symbol of R,
(in local coordinates) is of order — oo in a conic neighborhood of y. Thus

CBu=CBC,B,u—CBR, ucsd

by Corollary 18.3.15 and Theorem 18.3.9 if the symbol of C is of order — o
outside a sufficiently small conic neighborhood of y. Hence y¢ WF,(Bu). It
remains to prove (ii) when X =R", ue?'(R%) and B= D;. If a(x,Dyuesf
and a is non-characteristic at (0, £,) then we can choose b(x £) non-charac-
teristic at (0, &,) so that b(x, £)=>5(0, £) when x is in a neighborhood U of 0,
and the support of b is in a cone where a is non-characteristic. Then we
have b(x, D)= &(x, D) d(x, D)+ #(x, D) where ceS?, and reS;;®, so b(x,D)ucst
by Corollary 18.3.15 and Theorem 18.3.9. Choose yeCZ(U) with x(0)+0.
Then we have by (18.3.6)

xb(x,D)D;u=yD;b(x,D)u+%ié;,6*(x,D)D,u.

Since xb and y(b—ib™) are non-characteristic at (0,&,) the statement (ii)
follows. To prove (iii) we choose for ¢eCF(X) properly supported
B,e¥’(X), j=1,...,N, with B,ues/ and (| CharB; empty over supp ¢.
Then we can choose Cy,... NG'I’,, {X) properly supported so that

CiB,+...+CyBy=¢+R

where Re¥,”® and ¢ denotes multiplication by ¢. Since C;B; ues and
Rued, by Corollary 18.3.15 and Theorem 18.3.9, it follows that ¢ued The
last statement in (iii) follows from Proposition 18.3.24. To prove (iv), finally,
we assume that ye T*(0X)~0 is not in WF,(u). Then we can find Be %°(X)
properly supported with y¢Char B and Bue C*(X). We have

Buloy=Bg(ulsx)
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where B,e¥°(0X); the principal symbol is equal to the restriction to
T*(0X) of that of B by (18.3.7). Hence B, is non-characteristic at y, so
y¢ WF(ul,y). The proof is complete.

From (18.3.30) it follows at once that
(18.3.31) WE,(u)c WF,(Bu)UChar B, ue%'(X),

if Be¥"(X) is properly supported. Assume now instead that P is any
differential operator with coefficients in C®(X), of order m, and let ue 2'(X),
Pu=f If ¢ is a C® function vanishing simply on 0X, then ¢™ PeDiff] and
¢™ Pu=¢™f. With the usual local coordinates at the boundary we can take
¢ =x, and have
xPP(x,D)= Y xMa,(x)D*u=Y X7 a,(x)xD"u
le]<m

which shows that the principal symbol when x,=0 is a,(x)&r, where «
=(0,...,0,m). Thus it is identically 0 in some fibers unless 0X is non-
characteristic, and then it vanishes precisely when £,=0, that is, in T*(0X).
Thus we have

Proposition 18.3.28. Let P be a differential operator of order m with coef-
ficients in C*(X), let ¢ C®(X) vanish simply on 0X and assume that 0X is
non-characteristic for P. Then

(18332)  WE,lwc WE(@" Pu,y UT*@X), ued'(X).

We shall now prove a result which is closely related to Theorem4.4.8'.
As in that statement we just assume partial hypoellipticity at the boundary
and not that the boundary is non-characteristic. Let X, be an open set in
R"~! and set X=X, x[0,c)cR", considered as a manifold with boundary -
0X =X, x {0} and interior X°=X x (0, ¢).

Proposition 18.3.29. Let uc 2'(X°) satisfy a differential equation of the form
Pu=Dru+a, D" 'u+..+agu=f in X°

where a; is a differential operator in x'=(x,...,x,_,) with coefficients in
C®(X), and fed'(X). Then there is a unique Uesf'(X) with restriction u to
X°. We have x™(PU —f)=0 in 9'(X), and there is no other Ue%'(X) with
this property. Here u may have values in CV, the coefficients of a; being N
x N matrices then.

Proof. 1t suffices to prove the proposition when m=1. In fact, if uj=D{; u,
0<j<m, then

Dnum—1+ Z aju]=f; D u'=u}'+1, ]<m—1

n”j
jgm-1
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The statement with m=1 will then give extensions U/’ satisfying these
equations multiplied by x,. In particular, x,(D,U;— UJ .1)=0 for j<m—1,
hence

x}U=xiD, U;_,=...=xiDi"* U =x]DiU,, j<m,

for if k<j then xj D} can be rewritten as a sum with a factor x, to the right.
Thus x'(PU,—f)=0. If Ve@'(X), supp V<= 0X and x7 PV =0 then V=0. In
fact, if YE X we can by Theorem 2.3.5 write in Y

u
V=3 1,Q38%(x,).
0
Now
x:l Dﬁ 5(j)(xn) = kaj 5(j+k_m)

which should be read as 0 if m>k+j; here ¢
xy PV =0 gives v”=0, hence v,_;=0 and so on.

From now on we assume m=1. Let K,€ X, and set K=K, x[0,c/2].
By Lemma 18.3.19 it suffices to show that ¢ — (u,¢) is continuous in the
topology of ™ for every k if e CZ(K). Recall that the semi-norms in this
topology are

(18.3.33) P2 x5 D* Dl i _ wjay-

By hypothesis {u(¢)| = C ||¢|, for some s so the continuity is clear when k<
—s—n/4. We must prove that continuity in &/*® follows from continuity in
#*=1 To do so we set ¥y =i dp+(5® H(x,)), that is,

0. Thus the equation

mmj

V=i | $(x,0)dr.

Then D,y=¢. Let yeCF(—c,c) be equal to 1 in (—c¢/2,¢/2). With
1 (x)=y(x,) we have for ¢p€ C§(K)

<u, ¢>=<U,XnDnl/I>= -<Dnu,X,.'//> _<ua|l/Dan>
= _<f;an//>+<u’ta0(Xn l//)‘—l/anXn>'

Writing H(x,)=hq(x,)+h,(x,) where h,eC* and the support of h, is close
to 0, we can estimate ¥ in C*(X°) by the semi-norms (18.3.33) on ¢. We
can also estimate

“ND; x5 D* Gy Y —k— miay

in this way for arbitrary j and a. It suffices to do so for j=n for this implies
an estimate of “|xi*D*(x, Y)(_y_na) Since x,=1 near O it suffices to
estimate

2w Dy X5 D Yl i iay-
Now
D, xiDirp=xinDinp —ia, x5 Din-1 ¢p
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where the last term should be dropped when o,=0, so this estimate is
obvious. Thus the semi-norms ©||xg" D*(x, ¥)ll; _x_pay Of X, ¥ in L%~V can
be estimated in terms of the semi-norms (18.3.33) of ¢, which completes the
proof.

In the non-characteristic case it follows from (18.3.32) that WF,(u)l,x
c T*(0X) if fe C*(X) We introduce a notation for such distributions:

Definition 18.3.30. If X is a C* manifold with boundary X then A7(X) is
the set of all ue o' (X) with WE, (u)l,x < T*(0X).

From Propositions 18.3.28 and 18.3.29 we obtain

Corollary 18.3.31. Let P be a differential operator with C® coefficients in X
such that 80X is non-characteristic. If fe ¥ (X) and ue@'(X°) satisfies the
equation Pu=f in the interior X° of X, then u has a unique extension
u e N(X).

In Chapters XX and XXIV we shall study the wave front set when u
also satisfies boundary conditions. It will then be technically simpler - at
least in the present state of the art - not to use the nice invariant definitions
of this section but rather work with pseudo-differential operators along the
boundary. We have seen in Theorem 18.1.36 how they act on the wave front
set in the interior and shall now study the behavior at the boundary.

Theorem 18.3.32. Let X be an open subset\of ]—I_{'ir and set 0X=XnoR" . If
ue ¥/ (X) and beS™(X x R"~ ) defines a properly supported operator b(x,D’)
in X, then b(x,D)ue &/ (X) and

(18.3.34) WE,(b(x, D) u)l,x c WE,u)l,x " I’

if T'is a closed cone cdX xIR"~! such that b is of order —oo in a conic
neighborhood of (0X xIR"~')N\T in X x R"~'. On the other hand,

(18.3.35) WE,(u}l,y < WF,(b(x,D") u)| ;v Char b,
where by (x', &)=b(x',0, ).

Proof. Since WF,(u) is closed in T*(X)~0 and the restriction to X is a
subset of T*(0X), the set

Y={xeX; x,=0 or 3x,|&,|<|€| when (x, E)e WF(u)}

is an open neighborhood of 60X in X. If YyeCP(Y) we have u,
=yue N (X)n&'(X), and the wave front set of Yyu in X~ 40X has no
element (x,&) with & =0 causing trouble in Theorem 18.1.36. Choose teS9
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so that
(18.3.36) t(x,&)=1 when 2|&,|<|&[&]>1, x,<1;
Hx, &)=0  when |&,|>]€].
We can take t(x, &) independent of the x’ variables. If v=1 »(x, D)u, we have
WF,(u, —v)=WE,((1 -1, (x, D)) ug)=0

in view of Theorem 18.3.27(ii) and the first part of (18.3.36). Hence
uo—ves Nned = C*(IR"); it follows from Theorem 18.3.5 that the difference
is in Z(R"). If beS™(R"x R"~!) then

(18.3.37) b(x, D')t,(x, D) tig = &(x, D) u,

where a(x,{)=b(x,{')t,(x, {)eSy, by _the second part of (18.3.36). In fact, if
we S then the Fourier transform of £,(x, D)w with respect to x' is

@m)~t [ (x,, &) W(E)dE,,

so (18.3.37) is valid wi:ch u, replaced by w. Letting w—u, in &’ we obtain
(18.3.37). Since (%, Dyug —uoe S (R%) we obtain b(x,D)ug,
—d(x, D)uge Z(R™), hence b(x, Dyup,e A(X) and

WEF,(b(x, D"y ug)lox = WEF,(ug) T’

since a is of order —oo in a conic neighborhood of {(x,¢&); x,=¢&,=0,
(x, &)¢TI}. This proves (18.3.34).

Let (y,n)eT*(0X)~ 0 be a point not belonging to the right-hand side of
(18.3.35). Then we can choose YyeC(Y) equal to 1 in such a large subset
that b(x, D')(u,—u) vanishes in a neighborhood of (y',0) if u,=y u as above.
Then (¥, n )¢ WF,(b(x, D'Yus)=WEF,(d(x,D)u,), and a is non-characteristic at
(',0,%',0) since b, is non-characteristic at ()/,n’). Hence (v, )¢ WF, (u,) as
claimed.

Remark. In the open subset of X where b(x,D’)u is determined by the
restriction of u to {xeX°; (x,6)¢ WF(u) when & =0} we conclude using
Theorem 18.1.36 that WF,(b(x, D')u)< WF,(u). However, the set where this
holds depends on u.

Corollary 18.3.33. If ueA'(X) then (¥,n)¢WF(u) if and only if
b(x,DYue C*(X) for some properly supported tangential pseudo-differential
operator b(x, D) which is non-characteristic at (y',0,#').

Proof. In view of Proposition 18.3.24 this is an immediate consequence of
Theorem 18.3.32.

Our definition of WF,(u) is obviously coordinate free. Hence this is also
true for the alternative definition given by Corollary 18.3.33 which by Corol-
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lary 18.3.31 is applicable to solutions of differential equations with reason-
ably regular right-hand sides. The invariance is all that we shall actually use
of the results of this section, but the general philosophy will also be helpful
in discussions of regularity at a boundary.

18.4. Gauss Transforms Revisited

The reader will have noticed that the calculus in Sections 18.1 and 18.3 was
mainly based on the results in Section7.6 on the Gauss transform
exp(i{D,, D) in RR2". Indeed, the proof of Theorem 18.1.7 was based on
Theorem 7.6.5 and a localization argument; the multiplicative properties
were then reduced to Theorem18.1.7. In this section we shall make a
systematic study of the localization properties of exp(iA(D)) when A is a real
quadratic form. The results will be used in Section 18.5 to extend the
calculus of Section18.1 to more general symbols and to develop an alter-
native to it, the Weyl calculus, which in many respects has better properties.

To motivate the definitions we first recall that by Definition 18.1.1 the
symbol class S™ is the set of all C* functions a in R*" such that

a (x, &) < Cp(L+[ENm 15 x,EeR™

To reinterpret this condition we introduce at (x, ) an orthonormal basis
with respect to the metric

(18.4.1) ldx| +1dEP /1 +]E1).

Then the derivatives of order k with respect to the new coordinates can be
estimated by C,(1+[&)™ for some C, independent of £ Our generalization
consists in considering in a finite dimensional vector space V any slowly
varying metric in the sense of Section 1.4. By Lemma 1.4.3 it is no restriction
to assume that it is Riemannian, that is, that for every xeV we have a
positive definite quadratic form g, (y) in yeV.

Definition 18.4.1. g is said to be slowly varying if there are positive constants
¢ and C such that

(18.4.2) gV =c=g.,,()= Cg, ).

This is precisely the condition in Definition1.4.7 for the metric |y,
=(g,(y)/c)}. Decreasing c if necessary we may therefore as observed in
Section 1.4 give (18.4.2) a symmetric form:

(18.4.2y g(M=sc=¢.(1)/C=g,.,()=Cg,0).
An example is the metric (18.4.1) or more generally
(18.4.1y ldx[? (1 +1E17° +1dE 1P (1 +1£1%) 77
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if p<1. Indeed, if g, .(y,n)<c then In1? < (1 +|&]?) which implies
(T+1EN2=1+18+01 =2(1+1Z)

if c<%. The slow variation follows at once.
If G is a fixed quadratic form and ueC* in a neighborhood of xeV we
" shall norm the k'® differential at x by

k
|ulf(X)=Su§lu""(X; ty, ---,tk)l/ﬂ G(t)*
tje 1

For fixed k an equivalent norm is of course the maximum of the derivatives
of order k with respect to a G orthonormal coordinate system. Leibniz’ rule
gives

(1843) juol¢ (x)<2 (7) wtzcotote_ 0.

If u(x)=1 and we put u=1-v, then the k'™ differential at x of 1/u is equal

to the k'™ differential of ) v/ which can be estimated by a sum of products
igk

v];, with j,>1 and ) j,=k. Thus

(18.4.4) [L/ulg () £ Co(lulf(x)+ ... +1uld ()MH),

if u{x)=1. For general u we obtain a bound by homogenizing this estimate.
When g is a Riemannian metric we shall write |ul¢(x) for |ul¢(x) when G
=g.. Now we define corresponding symbol:classes as follows:

o], ...

Definition 18.4.2. If g is slowly varying then a positive real-valued function m
in V is said to be g continuous if there are positive constants ¢ and C such
that

(184.5) g.(y)<c=m(x)/C Em(x+y) < Cm(x).

We define S(m, g) to be the set of all ue C*(V) such that, for every integer
k=0

(18.4.6) sup |ul§(x)/m(x) < co.

It is obvious that S(m, g) is a Fréchet space with the topology defined by the
quantities in (18.4.6). It is important to note that the seminorms are indexed
by the non-negative integers k so that it makes sense to talk about “the
same seminorms” in the spaces S(m, g) with different m and g.

If g is the metric (18.4.1 we can take m=(1+|¢*"? for any real
number p. Then S(m,g) becomes the symbol space S ; introduced in Sec-
tion 7.8 already.

The following lemma is an immediate consequence of (18.4.3) and
(18.4.4):

Lemma 184.3. If ueS(m,g) and veS(m',g) then uveS(mm',g). If 1/luj<C/m
for some C, then 1/ueS(1/m, g).
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It is clear that C§(V)<S(m,g), for g, and m(x) are bounded from above
and from below when x is in a compact set. Assuming always that (18.4.2)
is fulfilled we can apply Lemma 1.49 and Theorem 1.4.10 to |y|, =(g,(y)/c)?
and obtain

Lemma 18.4.4. If 0 <¢<1 one can find a sequence x,,x,,... €V such that the

balls
B,={x;g, (x,—x)<R?}

cover V if ec<R?* and the intersection of more than N, balls B, is always
empty if R*<c. If 2ec<R?<c one can choose non-negative ¢ € Cg(B,) with
Y ¢,=1 so that for all v and k

(18.4.7) 19,1§ = Cy, -

The partition of unity can be used to regularize the metric and the
weight function m. In fact, if we set

my(x)=3 ¢,(x)m(x,)
and observe that g, (x —x,)<c when ¢ (x)+0, it follows from (18.4.5) that
m(x,)/C<m(x)<Cm(x,)  insupp @,
which implies that
m(x)/C £m,(x)< Cm(x).
In addition we obtain
Im, [f(x) = C; m(x),
which means that m,eS(m,g)=5(m,,g). In particular, we conclude that
S(m,g)=S(m', g) if and only if m/m’ is bounded. In the same way we can of
course regularize the metric g.

If ueS(m, g) it follows from (18.4.7), (18.4.3) and (18.4.5) that u,=¢, u has
the bounds

(18.4.7y luf(x)< C,m(x,) for xeV, all v and k.

Here g may be replaced by g, . Conversely, if we have any sequence of
functions u, with supports in the balls B, with R* <c¢ and satisfying (18.4.7),
then u=Y u,eS(m,g). It is therefore clear that optimal estimates for linear
functionals on symbol classes must be obtained by studying just functions
with the properties of u,. We shall do so for the Gauss transforms.

Let A be a real-valued quadratic form in the dual space V' of V. Then
A(D) is a differential operator in V characterized by

A(D)exp<ix, &> =A()exp(ix, &), xeV,
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for every fixed £€V’. When u is in & or in & we can define exp(iA(D))u as

the inverse Fourier transform of exp(iA(¢))#(¢) where @ is the Fourier
transform of u. Let g be a positive definite quadratic form in ¥; and let

K={x;glx)<1}

be the corresponding unit ball. By (7.6.7) applied to a g orthogonal coor-
dinate system we have for ue Cg(K)

(18.4.8) lexp(iA(D)u— Z (i ADYY ufj|

< Csup sup|A(D) uls(y)/k!.

j=s yek

Here s is an integer >dim V/2. Outside K the sum vanishes, and we shall
then improve (18.4.8) by an argument equivalent to that used to prove
Lemma 7.6.4. However, we phrase it differently to prepare for another ana-
logous proof in Section 18.6.

Let L be a real affine linear (i.e. not necessarily homogeneous) function
in V. Then

Lexp(iA(D)), L]1=exp(i4(D)){4'(D), L

where L is regarded as a multiplication operator and LeV’. This is a case of
(18.1.6) but of course perfectly elementary, for after Fourier transformation
the identity becomes

Lexp(iA4(Z)), L(—D)] =exp(iA(£)<4'(¢), L.

Set L(y)=<y—x,n> and assume that L+0 in K. We have {(A'(D),n)
=2A(D,n)=2{An, D> where A( , ) is the symmetric bilinear form defined
by A in V' and A is the corresponding linear transformation V'— V. Thus
the preceding formula gives

(18.4.9) exp{iA(D)) u(x)
=2exp(iA(D))(KAn, Dy L~  u)(x), ueCF(K),

and this result may be iterated any number of times.

Lemma 18.4.5. If L is linear and never 0 in {y; g(y)<R?} where R>1, then
(18.4.10) ILO)/LE(DSk!RAR-1F*!,  yeK.

Proof. 1t is no restriction to assume that g(y)=) y; and that L(y)=1—ay,
where 0<aR £1. Then (18.4.10) follows since a*(1 —ay,) * ' <R/R —1)+!
when |y, |<1.

If we iterate (18.4.9) and use (18.4.10), (18.4.3), and (18.4.8), with k=0, it
follows after k iterations that

lexp(i4(D)) u(x)| £ C,, r(g(Am)?*/ILO)) Sup sup lulf, ueCP(K).



18.4. Gauss Transforms Revisited 145

To examine how small the new factor g(A#n)*/|L(0)|=g(4n)*/|{x,n>| can be
made we introduce the dual form of &—g(A4¢&)
(18.4.11) g(x)= sup <x, &2

g(48) <1
g* is of course + oo except in the orthogonal space of the radical {&;4¢=0}
={&; A(&)=0}, that is, the range of A. If we set x=An and note that
{An, &> =<A¢&,n) we obtain

g4 n)=§ugl<y,n>lz/g(y)

so g* is the composition of A~ ! and the dual form of the restriction of g to
the range of 4. Note that sup, {x, £>?/g4(x)=g(4 &).

Now assume that the g# distance from x to RK is 2a>0. By the Hahn-
Banach theorem we can then find # so that

oy <{x+z,n) if g(y)<R? and gi(z)<a’.
This means that
>y <{x,my—agdn)!,  yeRK.
For L(y)={y—x,n) it follows that
LO)= —{x,my < —ag(An)?
We have therefore proved that for k=0, 1, ...

(18.4.12) lexp(i A(D)) u(x)|
< C, g(1+ inf g#(x —y))~*? sup sup [ulé,

yeRK JSs+k

if ue C3(K). We sum up our results so far:

Proposition 18.4.6. Let g be a positive definite quadratic form in V and A a
real quadratic form in V'. Denote by K the unit ball with respect to g, and
define g* by (18.4.11). Then the estimates (18.4.8), (18.4.12) are valid for all
k=z0and R>1if 2s>dim V.

Since exp(i A(D)) commutes with differentiation it would have been easy
to add estimates for the derivatives. The important point in (18.4.12) is that
the right-hand side is very small at large g distance from a neighborhood
of K. This localization property allows us to get estimates for &4® in
appropriate symbol classes; in a special case it was already used in the
proof of Theorem 18.1.7. The following is the required condition.

Definition 18.4.7. The Riemannian metric g (and the positive function m) in
V is said to be A temperate (resp. A, g temperate) with respect to xeV if g is
slowly varying (and m is g continuous) and there exist constants C and N
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such that for all y,teV

(18.4.13) g, (= Cg ()1 +gi(x — ),

(18.4.14) m(y) < Cm(x)(1 +g(x —y)".
Note that (18.4.13) implies _

(18.4.13y g = Cgl (1 +gfx—y).

Conversely, (18.4.13) implies (18.4.13) if A is non-degenerate. When t=x—y
we obtain in particular

(18.4.13)" 1+glx—y)SCl+glx—y)V L.

To remove the condition on the support of u in Proposition 18.4.6 we
shall use the partition of unity in Lemma 18.4.4. Choose R, with R<R,<c?
and introduce in addition to the balls B, containing supp ¢, the neigh-
borhoods

U={x;g, (x—x)SR3}, U-={x;g, (x—x,)=c}

When ue C§ we shall apply (18.4.12) to u,=¢,u with R and g replaced by
Ry/R and ng/RZ. To add up the estimates for exp(iA(D))u, we need the
following lemma:

Lemma 18.4.8. Assume that g <g? and that g is A temperate with respect to
x. Then there are constants C and N depending only on those in (18.4.13) such
that

(18.4.15) YA+d,x)V<C, d,(x)=inf gi(x—y).

v yeU,

Proof. We may assume that g, is the square of the Euclidean norm | |,
which is then a lower bound for gZ. Let k=1 and set

M, ={v;d,(x)=k}.
When veM, we choose y,eU, with gi! (x—y,)<k. By (18.4.13)
g, = CltPk".

Now y,+zeU; if g, (z2)<(c*—R,)? and since g is slowly varying we have
fixed upper and lower bounds for g, /g, . It follows that a Euclidean ball V, -
of radius ¢, k™2 and center at y, is contained in U.. In view of (18.4.13)"
we have

Ix—y > =g (x—y)<glx—y,) S CKV*1;

hence the balls V, are contained in a Euclidean ball of radius C'k™*1/?

with center at x. Since we have a bound for the number of U, and therefore
for the number of ¥, which can overlap, we obtain

¢IMJ k=MLY mV)< Cm(| V) S C kNP2,
My M



18.4. Gauss Transforms Revisited 147

if |M,| is the number of elements in M,. Hence |M,|<Ck"~! for some new
constants C and N. If we add successively the terms in (18.4.15) with
veM,,M,~M,,....,Mu~M,. ., the estimate follows.

With u,=¢,u we obtain using (18.4.12)
(18.4.16) lexp(i A(D)u,(x)| < C (1 +d,(x))™? sup suplu,|3=.
kU

JSs+ v

Since g varies slowly we may replace g, by g here. With y, defined as
above we have

m(y)= Cm(y,)< C'mx)(1+d,x)¥,  yel,
provided that m satisfies (18.4.14). If the hypotheses of Lemma18.4.8 are
also fulfilied then (18.4.16), (18.4.15), and (18.4.7) yield
(18.4.17) Y lexp(iA(D)u,(x)| < Cm(x) sup sup ult/m,
v k

jSs+

provided that k is large enough.

We shall use (18.4.17) to extend the definition of exp(i 4(D)) from CY to
S(m,g). However, an arbitrary continuous linear form on S(m,g) is not
determined by its restriction to Cg for this is not adense subset. We shall
therefore be interested in a stronger continuity condition:

Definition 18.4.9. A continuous linear form on S(m,g) will be called weakly
continuous if the restriction to a bounded subset is continuous in the C®
topology.

A weakly continuous form is determined by its restriction to Cg, since
the partial sums of the partition u=) u, are bounded in S(m, g) if ueS(m, g);
they converge to u in the C* topology since they are ultimately equal to u
on any compact set.

The proof of (18.4.17) actually gave a convergent majorant series for the
left-hand side of (18.4.17) which is valid for all u in a bounded set in S(m, g).
It follows that the sum

exp(i AD)u(x)=}. exp(i A(D))u,(x)
defines a weakly continuous linear form on S(m, g). Thus we have proved:

Theorem 18.4.10. The map CYsur—exp(iA(D))u(x)eC has a unique extension
to a weakly continuous linear form on S(m,g) for every x such that g is A
temperate, g. < g2, and m is A, g temperate with respect to x. We have

(18.4.18) lexp(i A(D)) u(x)| = m(x) [lul,

where the seminorm Jull in S(m,g) only depends on the constants in (18.4.2),
(18.4.5), (18.4.13) and (18.4.14).
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The hypotheses in Theorem 18.4.10 also allow us to estimate the deriva-
tives of exp (iA(D))u(x). Let us first assume that ue Cg so that we know that
they exist. Then we have

k
(18.4.18)  [{D,t;)...<D, 1) expiAD) u(x) Sm(x) [1g.(t)* lul,

where |u] is a seminorm in S(m,g) which depends only on k in addition to
the constants in (18.4.2), (18.4.5), (18.4.13), (18.4.14). To prove this we set

k
v=L_D,t;>...{D,t;yu, m,()"):m(Y)l:[gy(tj)%‘

m’ is also a A4, g temperate function with respect to x, with bounds depend-
ing only on the bounds for g and m in addition to k. Any seminorm of v in
S(m’,g) is bounded by a fixed seminorm of u in S(m,g). Hence (18.4.18)
applied to v gives (18.4.18). (It is sometimes useful to observe that it is
sufficient to have (18.4.6) for the differentials of order =k.) The following
statement is an immediate consequence:

Theorem 18.4.10°. Assume that the hypotheses of Theorem18.4.10 are fulfilled
uniformly for all x in a linear subspace V,, of V. Then the map

S(m, g)aur—exp(iA(D))uly,

is weakly continuous with values in the space S(m,g)ly, of symbols in V,
corresponding to the restrictions of m and of g.

For the proof we just have to take ¢,,...,t,€V, in (18.4.18) and note that
on bounded subsets of S(m,g) the C* topology is equal to the topology of
pointwise convergence.

The preceding results can all be improved when
(18.4.19) h(x)* =supg.(t)/g5 (t)
13

is not only less than or equal to 1 but is small. (If the coordinates are
chosen so that g, is the Euclidean metric and A(&)=} b;&7, then h(x)
=sup|b;|.) First of all we note that h is A4, g temperate with the same
constants as in (18.4.13). In fact, h is obviously g continuous. We can write
(18.4.13) in the form g, < Mg, which implies g >g#/M and g /g <M?*g /g2,
hence h(y)< M h(x). Let us now return to the estimate (18.4.16). Recall that
there is a bound for the number of overlapping balls U, and that

8., (x—y)2(ct*—Ry)*=c, >0 when x¢U, and yeU,.
This implies that
€, £8,(x—Y)Sh()* g (x —y) = Ch(x)*(1 + g (x =)V,
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hence that

1S Ch(x)*(1+d (x)Y  if x¢U.
This means that (18.4.17) can be improved by any power of h(x) in the
right-hand side if we only sum over all v with x¢ U;. The remaining bound-

edly many terms can be estimated by means of (18.4.8) with A(D) as above
which proves that the remainder term

(18.4.20) Ry=exp(iAD)u— Y (iAD) ufj!
j<N

has the bound
k

(18.4.21) IRQ(x;25, ..., ) Sh(x) m(x) [ 2.(t,)? Iul,
1

where lull is a fixed seminorm in S(m,g). (The proof for k=0 is reduced to
the case k=0 as in the proof of Theorem 18.4.10'.) Thus we obtain

Theorem 18.4.11. Assume that the hypotheses of Theorem 18.4.10 are satisfied
uniformly for all x in a linear subspace V, of V, and define h by (18.4.19). With
Ry defined by (18.4.20) it follows that

S(m, g)sursRyeS(mh", gy,

is weakly continuous. The seminorm in (18.4.21) depends only on N, k and the
constants in (18.4.2), (18.4.5), (18.4.13) and (18.4.14).

Thus it is justified to calculate exp(iA(D))u(x) by the formal expansion
where h(x) is small. An example is Theorem 18.1.7. There the metric is
(18.4.1), and A is the quadratic form (x, &—<(x, &> in R"@R" so A is the
map (x, &)—(&,x) and g*=(1+1¢)%)|dx|?+|dE)2. Thus h2=(1+|>)~?, and
(18.1.11) follows from Theorem 18.4.11 with the weight function m(&)=
(14162, if m is replaced by g in Theorem 18.1.7. In fact, (18.4.13) and
(18.4.14) follow with N=1 and N =p/2 respectively since

A+IEPYA+ ) A +(nl+1E—aD?)A +nl*) A+ —n)).

More generally, the metric g defined by (18.4.1) is slowly varying if p<1.
We have
g4 =(1+I21%P 1dx|*+ (1 +]&%)°1dEP,

hence h?=(1+|¢|?°*-?<1 if and only if §<p. The condition for g to be A
temperate is
A+ A+ + A+ PP A+ ) ~°
SCA+|E=n> A +|n2) ).

If |£] <|nl/2 it is valid if and only if 8 < N(1 —9), that is, S N/(N +1). When
mi/2 <|&él<2y| it is true for large C, and when |£}|>2|n| it follows if N = p.
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When the condition is fulfilled then (1+|£{?)*/% is A,g temperate. Hence
Theorem 18.1.7 remains valid if 0<6<p<1 and d<1, as observed before
Theorem 18.1.35.

18.5. The Weyl Calculus

Let ¥V be an n dimensional vector space over R and V' its dual. In
Section 18.1 we associated with any ae (W), W=V@® V', the operator

(18.5.1)  a(x,Dyu(x)=Q2n)""(fa(x,8) " u(y)dydé, ues.

(Here dy is a Lebesgue (Haar) measure in V and d¢& is the dual one in V'
such that Fourier’s inversion formula holds with the usual constant. Replac-
ing dy by cdy one must change d¢ to ¢~ 1d¢ so dyd¢ is invariantly defined.)
The weak version of (18.5.1)

Calx,D)u,vy=2m)~" [[fa(x,&) e u(y)v(x)dydx d¢
=2m)"[ffa(x,&) e u(x—r)v(x)ydx dtdé

makes sense for any ae ¥’ (W) and defines a continuous operator from ¥ (V)
to &'(V). The adjoint of a(x, D) is the operator

(18.5.2) a(x,Dyu(x)=2mn)""[fa(y, &) €< u(y)dydé,

interpreted in the weak sense too. If a is a polynomial in ¢ then a(x, D) is
obtained when £ is replaced by D= —id/0x placed to the right of the
coefficients. Putting the coefficients to the right instead we obtain the
operator d(x, D).

If aeS™ then Theorem 18.1.6 means that a(x,D) maps & to &. By
Theorem 18.1.7 the class of operator (18.5.1) with aeS™ is the same as the
class of operators (18.5.2) with aeS™ so they can be extended to continuous
operators from &' to & as well.

In the Weyl calculus one adopts the symmetric compromise

(18.5.3) a*(x,D)=2m)"[fa((x +)/2, &)<~ u(y)dydé,

again defined in the weak sense. The Schwartz kernel K is

(185.4) K(x,y)=2n)"[a((x+y)/2, &)= d¢,
that is,

(18.5.4y K(x+t/2,x—t/2)=2n) " [a(x, &) dé&
is the inverse Fourier transform of a with respect to &, so
(18.54y" a(x, &)=[K(x+1/2,x~1/2) e "D dt.

(These formulas are analogous to (18.1.7) and (18.1.8).) If L is linear then
L(x, D)= L(x,D)=I"(x, D). To explain the definition (18.5.3) we first compute
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L¥(x,D)a"(x, D) for ae & when L is linear. Since

(L(x, D) — L(Gx + y)/2, ) al(x +y)/2, §) e ==&
=(L(0,D,) a((x + y)/2, &) + a((x+y)/2, ) L(D,/2,0)) &= 7>,
we obtain after an integration by parts in &
(18.5.5) L*(x,D)a"(x,D)=b"(x,D), b=La+{L,a}/2i,

where

(L, a} ={AL/dE, dajox> — (OL/dx,0a/dE>

is the Poisson bracket introduced already in Section 6.4. Recall that it is the
bilinear form in W’ @ W’ which is dual to the symplectic form

U(X,é§y,'1)=<f’}’>“<xﬂ1>’ (x’ é)EVVa (y’r’)GW

This indicates already the symplectic invariance of the Weyl calculus which
is an important property to which we shall return later on. At the moment
we just observe that although the proof of (18.5.5) above assumed that ae ¥
the formula extends by continuity to all ae¥’. Let L be a real linear form
and set a,=exp(itL). Then we obtain

iL(x,D)a} (x, D)= 0a) (x, D)/0t

for {L,a,}=0. A simple explicit computation of a(x,D)u shows that
a’(x,Dyue¥ if ue¥ Now the closure in I? of L(x,D) with domain & is
self-adjoint. In fact, let ue > and L(x, D)u= fel? in the sense of distribution
theory. Choose ye# (W) with x(0)=1. Then 3y.(x,D)u—u and
x.(x, D)f— fin I? as ¢—~0, and

L(x, D)y (x, Dyu—yx,(x, D) f = —&i{L, x} (¢x,eD)u—0
where y,(x, &)=y(ex, £&). This proves the statement. It follows that
a;’(x, D)=exp(it L(x, D))

in the operator theoretical sense. The general definition of ¢* is deduced
from this case by Fourier decomposition of a, so the preceding property
characterizes the Weyl calculus.

From (18.5.3) it follows at once that the adjoint of ¢” is equal to @”. In
particular, a* is its own adjoint when a is real valued, which is an essential
advantage of the Weyl calculus and an important reason why it was in-
troduced by Hermann Weyl for the purposes of quantum mechanics.

In order to motivate the conditions which will be placed on the symbol
a we shall now derive a formula for the composition of a¥(x, D) and a%(x, D)
when g, and a, are in #(W). The kernel of a}(x, D)a%(x, D) is equal to

Qm)~2"[{f ay ((x+2)/2,0) a,((z+y)/2, 7) e <20 +e=rD gz 4 de,
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by (18.5.4), so it follows from (18.5.4)" that a¥ ay =a" if
a(x,&)=2m)~ 2" [[[f a;(x+z+1/2)/2,0) a,(x +z—1/2)/2,7) eF dzd{ dtdr,
E={x—z+t/2,D+{z—x+1t/2,7>—<Lt, &
={(x—z+t/2,{—E>+{z—x+1t/2,T—&).

We introduce {—¢&, t1—¢, (z—x+1t/2)/2 and (z—x—1t/2)/2 as new variables
instead of ¢, 7, z and t. The Jacobian is 22". Hence

ax,&)y=n"2"[[fa,(x+z E+ D ay(x+1,E+1)e* =5V dzd  drd.

Here we regard the symplectic form as a quadratic form on W@ W.
For fe#(IR?) we have

51 y) e dxdy=@m)~" [[f(&n)e "> dEdn.

This follows from the Fourier inversion formula if f(x, y)=g(x)h(y). Hence
the formula above can be written in the form

(18.5.6) a(x,&)=exp(io(D,, DD, D")/2)a1(x, &) as(y, n)l(x,{):(y,n)‘

We can therefore use the results of Section18.4 to study a if a;, and a,
belong to suitable symbol classes. Since we have a product a,(x, &)a,(y,n) in
the right-hand side we shall encounter quadratic forms in W@ W of the

form
G(ty,t,)=g,(t)+g,(t2)

where g, and g, are quadratic forms in W, If (x, &, y,n))e W@ W and (%, &, §,7)
denote dual variables, then the linear map associated in (18.4.11) with the

quadratic form R
A=20(%,E9,M)=2¢E 9> -2<% D
maps (%, &, §,%) to (=4, §, €, —%). Hence
GA(x, &, y,m)=sup [<x, %> + (& E + 3, 5> + (D281 (— 1, ) + 8, (& —H)).
If we write (x, £)=w and (£, —£)=w'e W then {(x, %> + (£, &) =a(w,w'). Let

(18.5.7) g5(w)=supla(w,w)?/g;(w')

be the dual quadratic form of g; when W is identified with its dual by
means of the duality defined by the symplectic form. Then we obtain

(18.5.8) GAwy, wa)=g1(wy)+85(w)),
(18.59) GLH’G* < g,<H’g] < g, <Hg3,
for the second and third conditions are both equivalent to
(18.5.9y lo(w, w)|> < H? g{(w) g5(),

and the first is equivalent to the conjunction of the second and third.
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If g, and g, are slowly varying Riemannian metrics in W, and G is the
Riemannian metric g, ®g, in W® W, it is obvious that G is slowly varying.
To discuss (18.5.6) we must examine if G is uniformly A temperate with
respect to the points on the diagonal, that is, if for arbitrary
W, W, Wyt t,eW
(18510)  g9,(t)+85.,(t2) = Clgl,, (1) + 85, (t2)) MY,

M=1 +g¢;w1(w2 _W)+g§w2(wl —W)
If g, =g, =g it follows in particular when w, =w, that for teW
(18.5.11) gn(=Cgl, (O +gs, w,—w)';  w,weW;
or equivalently
(18511 g, (0= Ca )L +g5,0m,—w)'s  w,w,eW.

We therefore introduce a definition parallel to Definition 18.4.7.

Definition 18.5.1. The metric g in W=V@® V"' is called ¢ temperate if it is
slowly varying and (18.5.11) is valid. A positive function m in W is called o,
g temperate if m is g continuous and

(18.5.12) mw) S Cmw)(1+g% (w—w))";  w, weW.
Note that by (18.5.11) I/m is o, g temperate if m is.

Proposition 18.5.2. If g is ¢ temperate and m,,m, are o, g temperate in W=
V@V’ then the metric G=g, @D g, in WD W, where g, =g, =g, and the weight
Junction m=m, ®m, are uniformly A temperate and A, G temperate with
respect to the diagonal. If h(w)*=supg,/g’, then supG,, /G4, =h(w)? too.

Proof. The last statement follows from (18.5.9). To prove the others we must
show that

g, (W, —w)+g5 (w, —w)< CMY, M=1+ g5, (W —w)+g% (w; —w).
Writing w'=w, +w,—~w we have w —w, =w, —w, w —w,=w, —w, hence
guw,—w)=Cgll (w, —w)(1+ g5, (w, — w)¥ < CMN*Y,
g2 w, —w) S CMV+1,
gh, W —w)=Cgl(w —w)(1+g5,(w,—w)'SC' MY,
g‘:vz(wz - W) é C, MNla
which proves the statement with the constants C’ and N'.
Occasionally it is necessary to consider the general case where g, and g,

are different. However, this is a rare situation so it might be best to skip the
following result during a first reading.
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Proposition 18.5.3. Ler g, and g, be o temperate in W. Then G=g, ®g, is
uniformly A temperate with respect to the diagonal in W@ W if and only if

(18.5.13) gwt)= Cgl,, (L +g5, (W —w)'s  tw,w eW;
g Cgs, (L +g7, (W, —w)Ys  tw,weW.
The metric g=(g,+g,)/2 is then o temperate in W. If we set
hyw)*=supg;./g5w; H(w)’=supg,,/g5,=supg,,/8l..
then
(18.5.14) max (h,(w)?, h,(w)% H(w)?)
<dsupg, /g7, < hy (W) +h, (w2 + 2 H(w)

If m; is o,g; temperate then m=m; ®m, is uniformly A, G temperate with
respect to the diagonal in W® W if and only if
(18.5.15) m(w) < Cm W) (1 +g5,w—w))¥;  ww eW,

my(wy) < Cmy(w) (1487, (w—wo)";  w,w,eW.

These conditions are equivalent to m; being g, g temperate.

Proof. If (18.5.10) is valid we obtain (18.5.13) by taking ¢, =t, t,=0, w,=w
or t,=0, t,=t, w, =w. Assume now that (18.5.13) is valid. We shall then
prove that for all t,w,w,eW

(18.5.16) g (E Cg; ()1 +g5, (w—w))".

This implies that g is ¢ temperate, so it follows from the proof of Proposi-
tion 18.5.2 that for some other C and N

g1w,(t1)+gzm(t2)_—<—_ Clgy,(t)+ 82, (t)) (1 + g5, (W, —w)+ g3, (W, —w)¥

which is a stronger estimate than (18.5.10) since g” =2gS. Thus G is uniform-
ly A temperate with respect to the diagonal.

To prove (18.5.16) we first observe that if F; and F, are positive definite
quadratic forms on a vector space V, then the dual form of F, +F, on V' is
inf_, (Fi(. — 1)+ F;5(2)), if F] is the dual form of F; on V' If we diagonalize F,
and F, simultaneously we find that it suffices to prove this for the forms F, (x)
=x2/a and F,(x)=ax? on R. Then F/=F, and F,=F, and the verification is
elementary. Thus we have

gu()=1nf2(g7,,(t —to) + 83, (t0))-

The estimate (18.5.16) is therefore equivalent to

(185'16)’ gjwl(t)§Cg]w(t)MN7 M=1+ggw;(w_wo)+g;w1(w0_w1)
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for all t,w,w,,w,eW. Since g; is ¢ temperate and (18.5.13) is assumed, we
obtain for some C and N
g, = ngwo(l + 85w, (Wo "Wx))N_S_ Cgjw, M",
gjwoé Cg]w(l +g¢17w0(w —WO))N'
Since again by (18.5.13) and the fact that g, is ¢ temperate
g‘l’wO(W —wg) < Cg‘ljwl(w —wo)(1 +g§wl(W0 *W1))N§ CMN*,

we obtain (18.5.16). The same proof shows that m; is o, g temperate.
Copversely, ?f m; is.a, g temperate then (}8.5.15) follows since §g%,<g9,; if
m; is g, continuous it also follows that m; is g, g, temperate.

Since g;, <2g,, hence g7, <2g7,, we have for jk=1,2

42,,/8%2 & jwl/iws

which proves the left-hand inequality in (18.5.14). To prove the right-hand
one we use that

2g,=g1,+ 82 =(h] + H) g5,
which implies

28, S +H)E, =12,
and therefore

4g,<(hi+h3+2H%)g,,

which is the right-hand inequality in (18.5.14). The proof is complete.

Combining Theorem 18.4.11 and Proposition 18.5.2 we now obtain the
main theorem of the Weyl calculus:

Theorem 18.5.4. Let g be a ¢ temperate Riemannian metric in W=V@® V' with
g=g° and let m,,m, be o, g temperate weight functions in W. Then the
composition formula (18.5.6) can be extended to a weakly continuous bilinear
map (a,,a,)—~>a=a,$¥a, from S(m,,g)x S(m,,g) to S(m, m,,g). If

(18.5.17) h(x,&)*=supg, /g%

then the map from a, €S(m,,g) and a,eS(m,,g) to the remainder term
a#a,(x,8)— ) (6D, Dy D,,D,)2)Y a;(x, &) ay (v, m))j!
j<N
evaluated for (x,&)=(y,n), is continuous with values in S(h® m, m,,g) for every
integer N. It is zero if a, or a, is a polynomial of degree less than N.

The terms with j even (odd) are (skew) symmetric in a,, a,. This implies
that
ay¥a,—a,%a,—{a,,a,}/ieS(h>mym,, g),

a, #a,+a,¥a,—2a,a,eSh*m, m,,g).
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In both cases we would have a factor kh less in the calculus developed in
Section 18.1.

Using Proposition 18.5.3 instead of Proposition 18.5.2 we obtain a more
general result:

Theorem 18.5.5. Let g, and g, be o temperate metrics in W=V@® V' satisfying
(18.5.13), and assume that the function

(18517)r H(X, 6)2 = Sup glx, é/ggx, 4 = sup g2x, {/gclrx, 4

is <1. Set g=(g,+g,)/2, and let m; be g; continuous o, g temperate weight
Sunctions. Then the composition formula (18.5.6) can be extended to a weakly
continuous bilinear map (a,,a)—a=a,#*a, from S(m,,g,)xS(m,,g,) to
S(mym,,g). The map to the N*™ remainder term is continuous with values in
S(HYm, m,,g) for every integer N.

Note that the error terms in the calculus improve by powers of H which
may be much smaller than the function h defined by (18.5.17).
To give some examples we first observe that if B(x,&)=2<{x,&> then

g2 (v, ) =27 ¢(y, — ) since
0, & +Lxmy=a((y, —n), —(x, &)

If the ¥ and V' directions are g orthogonal at every point it follows that g?
=g’. From the discussion at the end of Section 18.4 it follows therefore that
the metric (18.4.1) is ¢ temperate if 0<6<p=<1 and 6 <1. More general ¢
temperate metrics enter the theory in the following way:

Proposition 18.5.6. Assume that g is o temperate, that G=mg, where m=1, is
slowly varying, and that GZXG°. Then it follows that G is o temperate.

Proof. We must show that for some C and N

(18.5.18) G, £CG (1+GS (w —-w ).

If G, (w—w,) is sufficiently small this follows from the hypothesis that G is
slowly varying, so we may assume that G, (w—w,)=c,. Next assume that
g, (w—w, )<c with ¢ so small that this implies

C'<g,/8.,=C.
Then (18.5.18) follows with N =1 if we show that
m(w )< C'm(w) g5, (w—w,)/m(w,).
Now
¢y Sm(w) g, (w—w,) S Cm(w)g,, (w—w,)< Cm(w)h(w,)? g%, (w—w,)

if h is defined by (18.5.17), and h(w,)*m(w,)*<1 since G <G°. This proves
the assertion, and it only remains to study the case where g, (w—w,)=c,
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for some fixed ¢, >0. Then we have
gfvl(w—W1)/m(w1)=G;,(W_W1)§GWI(W_W1)§‘32 m(w,),
which implies
sz(w1)2§gfv,(w_w1)’ ng?vj(W_WOéval(W_Wﬁz-
Since ‘
8w, = C' g, (L+g5, (w—w)¥
and m=1, we obtain (18.5.18) with N=2N'+1. The proof is complete.

For conformal metrics the condition in Theorem 18.5.5 also simplifies:

Proposition 18.5.7. Assume that g, and g, are conformal ¢ temperate metrics
with hj(w)2=sup %jw/g;wgl. Then (18.5.13) is valid and the function H in
(18.5.17) is (hy hy)*

Proof. By hypothesis g,=mg, for some m. Thus h3=m?h} and
H(w)*=supg,,/gf,,=mWw) hy(w)* =h, (W) h,(w).

The first estimate (18.5.13) follows from the slow variation of g, when
glw(wl "‘W)éc If glw(wl —W)gc then

g;w(w - Wl)z = m(W)~ : gtlyw(w - W1)2
Zm(w)~? h1(W)—2 giw(Ww—w,) gl (w—wy)
gc g;w(w _Wl)

since m(w)h;(w)=h,(w)<1. Since g, is o temperate the first estimate
(18.5.13) follows, and the other is proved in the same way.

Theorems 18.5.4 and 18.5.5 will give a farreaching generalization of
Theorem 18.1.8 once we have an analogue of Theorem 18.1.6 allowing us to
regard a, #a, as the symbol of a composition of operators in & or in &
Since this is not quite straight-forward we postpone the proof to Sec-
tion 18.6. Instead we shall discuss here the invariance of the Weyl calculus
under affine symplectic transformations y, that is, affine maps y in W with
r*o=o0. In doing so we may assume that V=IR". Examples of such maps
are

(a) The translation x+—x+x, in V.

(b) The translation é&— ¢+ &, in V.

(c) The map x(x,&) replacing x;,¢; by &;, —x;, leaving the other coor-
dinates unchanged.

(d) The map y(x,&)=(Tx,"T~* &) where T is a linear bijection in R™

(e) The map y(x, &)=(x,£ — Ax) where 4 is a symmetric matrix.

Lemma 18.58. Every dffine symplectic map is a composition of maps of the
preceding types (a)-(e).
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Proof. Since {a) and (b) supply all translations it is sufficient to consider
linear maps y. The group G generated by the maps of type (c)-(e) is
transitive. In fact, the basis vector e, =(1,0,...,0) is mapped to (1,0,...,0,¢)
for any desired ¢ by the map (e) for an appropriate choice of A4, hence to
any (x, &) with x=0 if we follow with a map of type (d). All elements of the
form (0,&), £+0, are obtained if we use the maps (d) and (c). Any y is
therefore the product of an element in G and a symplectic linear map ¥,
with x, e, =e,. Thus

o(x,(x, &), e)=0((x,8),e)=¢,

so x, preserves the £, coordinate. If x'=(x,,...,x,) and &'=(¢,,...,&) it
follows that the map y,(x, &) defined by y,(0,x',0,&) when the x, and ¢,
coordinates are dropped is also symplectic. If n>1 and the statement is
already proved for smaller values of n we can now write y; =);x, Where x,
is in the group G corresponding to the x' ¢ variables and

X3 E=(x;+a, &, x,+a, 80,8, E,+b, 80, L E+ D EY)

That y, is symplectic means that

YdEjnade +b;dé ndx)=0

2
so a,=..=a,=b,=..=b,=0. Thus y,; is the map (¢) with Ax
=(a, x,,0,...,0) conjugated by (c) with j=1. This completes the proof.

Theorem 18.5.9. For every affine symplectic transformation y in W=vV@V’
there is a unitary transformation U in I*(V), uniquely determined apart from a
constant factor of modulus 1, such that for all linear forms L in W

(18.5.19) U~'L(x,D) U= (Loy)(x, D).
U is also an automorphism of & and of &', and
(18.5.19) U='a¥(x,D)U=(aoy)"(x,D)

Sor every ae ' (W).

Proof. 1t is sufficient to prove uniqueness when y is the identity. So let U be
a unitary transformation with

UL(x,D)=L(x,D)U

for all linear forms L. Then U commutes with the one parameter group
generated by L. In particular, U(fg)=f(Ug) if geI*(V) and f is a bounded
exponential, hence if f is any function in &, for it can be decomposed into
exponentials by the Fourier inversion formula. It follows that Ug=hg for
some h of modulus 1 almost everywhere. Since U commutes with trans-
lations also, it is clear that h must be a constant. (Note that the result is
extremely close to Lemma7.1.4.)
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To prove the existence of some U satisfying (18.5.19) it suffices to
consider the cases (a)-(e) above. Then we can take

(@) Uf(x)=f(x—x0); (b) Uf(x)=f(x)exp<ix,¢o). (¢) U= Fourier
transformation with respect to x;; (d) Uf(x)=f (T~ tx)|det T|~%; (e) Uf(x)
=exp(—i{4x,x>/2)f(x). This completes the proof of (18.5.19). If a(x,&)
=exp(iL(x,&)) for a real linear form L then a”(x,D)=exp(iL(x,D)) in the
operator theoretical sense so (18.5.19) is valid then. Since bounded exponen-
tials are weakly dense in &’ it follows that (18.5.19) is always true, which
completes the proof.

We shall now study the relation between the Weyl calculus and the
calculus established in Section 18.1. First assume that ae #(W). Then a(x, D)
has a kernel Ke% given by (18.1.7), so we can write a(x, D)=b"(x, D) where
be¥ is given by (18.5.4)",

b(x,8) = K(x+1/2,x—t/2)e " dt

=Q2n)"" [[a(x+1/2,n) 1" dndt

=n"" [falx+t,E+n) e P didy

= P12 g x, 8)
Here the last equality follows from the argument which led to (18.5.6). If
é(x, D) is defined by (18.5.2) then it follows from (18.1.9) that a(x, D)=¢(x, D)
if

a(x,&)=e"P=P2 c(x, §).

For reasons of continuity these observations are also true if a,b,ce&#’. Now
we pointed out after Theorem 18.5.5 that a ¢ temperate metric g with

8, :(t,7)=g, ((t, —7) is also B temperate if B(x, {)=2(x,{), and m is then o,
g temperate if and only if m is B, g temperate. Hence we obtain:

Theorem 18.5.10. Let g be o temperate, g<g°, and let m be o, g temperate. If
g, :(t,T)=g, ((t, —7) then exp{ixD,,D.> is a weakly continuous isomorphism
of S(m,g) for every ke,
e P=PD a(x, &)~ Y ik D, D> alx, &)/jleS(hY m, g)
j<N

for every integer N if h is defined by (18.5.17). If a,b,ceS(m,g) then a(x, D)
=b"(x,D)=2(x, D) if and only if
(18520)  b(x,&)=e PP a(x, £ = P= DO c(x, ),

a(x, &)= P=PI2 p(x, {) =" P=P2 c(x, §),

c(x, &) =e 7" PP g(x, §)= e "I P=POI2 p(x, £).
If g, £0, 1)<|1|? then the bilinear maps (a, u)— a(x, D)u, (b, u)— b*(x, D)u and
(c,u)— &(x,D)u are continuous from S{m,g)x & to & and from S(m,g)x &’
to I,
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Proof. It suffices to show that (a,u)r>a(x,D)u is continuous from S(m,g)
x & to & Since

m(x, )< Cm(0,0)(1 +g5 o(x, )= C'(1 +Ix|* +[£*)Y

for some C, C' and N, the map is continuous with values in the space of
continuous functions f with sup|f(x)|/(1 +]x|*)¥ < co. By (18.1.6) we have for
some constants c,,
A+Ixa(,D)= Y c,za®(x,D)x’,
le+BlSN

and the assumption on the metric implies that ar—a® is a continuous map
in S(m,g) for every a. Hence a(x,D) is continuous with values in the
continuous bounded functions in RR". The continuity with values in &
follows from the proof of Theorem 18.1.6 since for any teW

{D,t)aeS(m,g)

where m'(x,{)=m(x, &) g, é(t)%‘ is also o, g temperate. (See also the proof of
Theorem 18.4.10".) This completes the proof.

Remark. Theorem 18.6.2 below will show that the restriction imposed on the
metric in the continuity statement is superfluous. However, the proof is
much less elementary then, and the easy result proved above covers the
metrics which are most frequent in the applications.

If a;eS(m;, g) and ue ¥ we can conclude under the assumptions made in
the theorem that

at(x,Dyay(x,Dyu=(a,¥#a,)”(x,D)u.

In fact, we can take sequences a;,€% which are bounded in S(m;,g) and
equal to a; on any compact set for large v. Then a%,(x,D)u—a%(x,D)u in &
as v— o0, SO

(a;,%a,,)"(x, D)yu=al,(x, D)a},(x, Dyu—~ay(x, D)a}(x,D)u in &

Since a,,4a,, converges weakly to a, #a, the assertion follows.

Still under the hypotheses in Theorem 18.5.10 one can easily recover
composition rules for standard pseudo-differential operators from the pre-
ceding results. Suppose for example that a;eS(m;,g) and set a,(x, D)a,(x, D)
=a,(x, D). Then a;(x, D)=bY(x, D) for

by(x,f)=e~"P=P2I2q (x, ),
and
b3 (X, 6) = ei«Dg’ Dy> =D Da2i2 b1 (X, é) bz(y, ”)lx, E=y,n°
Since
(<Dx+Dy’D{+Dn>+<D§7Dy>"<Dx7Dq>
—(D,,Dy—<D,,D,»)2=(Dy, D>
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it follows that
(18.5.21) as(x,&)=e" P a,(x, &) a, (1, M, ey o

which is precisely (18.1.14) which is therefore proved now in much greater
generality than in Section 18.1.

If a(x, D) is a pseudo-differential operator with polyhomogeneous symbol

a(x, g)Nam(x’ é)+am-—1(x5 é)+ ey

where a; is homogeneous in ¢ of degree j, we can use Theorem18.5.10 to
write a(x, D)=b"(x, D) where b(x, &)~ b,, _ ;(x,&). Then

bm(-xa €)=am(x’ é)v bm— l(xa f):am__ 1(x’ £)+ l 2 62 am(x9 é)/axjafl/z’

and b,,_, is the subprincipal symbol introduced in (18.1.32). Thus the Weyl
calculus explains the role of the subprincipal symbol, and the composition
formula in the Weyl calculus gives immediately rules of computation for the
subprincipal symbol.

18.6. Estimates of Pseudo-Differential Operators

In this section we shall first prove that a*(x, D) is continuous in & and in
&’ when aeS(m,g) if g is ¢ temperate and m is o, g temperate. In a special
but important case this was proved in Theorem 18.5.10. When the hy-
potheses of Theorem 18.5.4 or Theorem 18.5.5 are fulfilled the result gives as
in the special case that (a;#a,)"(x,D) is the composition of a%(x,D) and
ay(x,D)yin & as well as in &’. When g<g® and m is bounded (resp. m —»0 at
o0) we shall prove that a”(x, D) is bounded (resp. compact) in I2. This result
combined with the calculus in Section 18.5 will give efficient lower bounds
for operators with non-negative symbol.

As usual we shall split the symbol by means of the partition of unity in
Lemma 18.4.4. To handle an individual term it suffices to have the following
elementary result:

Lemma 18.6.1. For every ac ¥ (IR2") we have with operator norm in I?

la* (e, D) < 2m) =" [l 1 = Hall ppo-

Proof. The Schwartz kernel K of a*(x, D) is
K(x,y)=2m) " fa((x+y)/2,§) =" d¢
=Q2n)"2" {40,y —x) 792 44,
Hence
JIK(pldx<lallpes,  [IKCoy)dySlalpys,

so the lemma follows from Lemma 18.1.12.
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Remark. When using the lemma we shall need the obvious fact that fjafly;.
can be estimated by a finite number of seminorms in & It is also essential
that this norm is invariant under composition with affine transformations,
which is obvious since it is the total mass of characters in the Fourier
decomposition of a.

Theorem 18.6.2. If g is o temperate and m is g, g temperate, then a”(x,D) is a
continuous map from & to & and from ¥’ to &' for every acS(m,g), and it is
weakly continuous as a function of a.

Proof. 1t suffices to prove the continuity in & since the continuity of @” in
& implies that of a” in &’. Let {¢,} be the partition of unity introduced in
Lemma 18.4.4, define the neighborhoods U, of supp¢, as before Lem-
ma 18.4.8, and set

a=Y a, a,=d,a.

If w, is the center of U,, the seminorms of a, in S(m(w,),g,, ) have bounds
independent of v. By Lemma 18.6.1 and the remark following it we conclude
that

lay (x, D)| £ Cm(w,),

for all positive definite quadratic forms are equivalent under arbitrary linear
transformations. Thus we have with I? norms

lay (x, Dyul| = Cm(w,) [[ul.

To obtain a better estimate we shall use an argument parallel to the proof
of Proposition 18.4.6.

Let L be an arbitrary linear form on W which is positive in U,. By
Lemma18.4.5 we have a uniform bound for L(w,)/L in S(1,g, ) over the
support of ¢,. Now Theorem 18.5.4 or just (18.5.5) gives

(18.6.1) a}(x,Dyu=(a,/L)"(x,D)L{x,D)u+i{a,/L.L}"(x,D)u/2.
Here the symbol of a,/L is uniformly bounded in S(m(w,)/L(w,), g,, ). If we
write L(w)=c(w,t), teR?", then
{a,/L,L}= —L"{t,da)>.
Thus we have uniform bounds for the seminorms of {a,/L,L} in
S(m(w,)g,,(O*/L(w,),g,,)-

L(x,D)u is a linear combination of x;u and D;u with coefficients bounded

by the length of t in a fixed metric such as g,. Iterated use of (18.6.1) gives
(18.6.2) lar(x,Dyull SCymw)R;N Y |x*D*ul, ueZ,

le+Bl=N
for every positive integer N, provided that O0<R,<L(w)), L+0 in U,, g,(1)
+g,. () £1, L(w)=0(w,t). By the Hahn-Banach theorem we can take for R,
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the distance from 0 to U, in the norm dual to (g0+ng)* with respect to o.
This norm is defined by

HW“vzinf(g?v‘,(wﬂ"'gg(wz))%y witw,=w,
(See the proof of Proposition 18.5.3.). Thus we can take

R,=min [wl,.

wel,,
In a moment we shall prove that for some N
(18.6.3) Y (1+R,)"¥<o0, hence R,— 0,
(18.6.4) gow,)S CA+R)N.

Admitting these estimates we conclude using (18.6.2) for large v that
la¥(x, D)u|| can be estimated by a seminorm of u in & if

m(w,) < C(L+gow,)"

for some N, which is always true when m is o, g temperate. Let M(x, D) be
linear in (x, D). Then M(x, D)aY(x, D) has the symbol

Ma,+{M,a,}/2i

which is bounded in S(m,, g, ) for some other m, bounded by a power of 1
+go(w,). Hence the I? norm of M(x,D)a’(x,D)u can be estimated by a
seminorm of u in & Repeating the argument we conclude that a*(x, D) is
continuous in %,

It remains to verify the estimates (18.6.3) and (18.6.4). The proof is
parallel to that of Lemma 18.4.8. Let

M, ={v;R2<k}.
When ve M, we can choose w,eU, and w/] so that
gn. W, —w)<k, gi(w))=k.

In the first inequality we pass to the equivalent norm g, and conclude
using (18.5.11) that

85, (W, —w) S CKY,  ga(w,—w)< C'kY
Hence ’

gw, = Cg?v; =C, gfv;_’ kN1 C, g5 kM,

8, =C 8w = C Ew; kM= Clgo ke

gow,—w) < C, g, (w,~W)k" S C k™,

8o(W)/2 = go(w, —w)) +go(wy) < Cs k2.

The estimate (18.6.4) is an immediate consequence, and (18.6.3) follows if we
repeat the proof of Lemma 18.4.8. This is left for the reader.

Next we shall discuss continuity in I2.
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Theorem 18.6.3. Assume that g <g° that g is ¢ temperate, and that m is o, g
temperate. Then the operator a®(x,D) is L* continuous for every acS(m,g) if
and only if m is bounded. The L* norm of a*(x,D) is then a continuous semi-
norm in S(m, g).

In the proof of necessity we shall need the following lemma:

Lemma 18.6.4. If g is a positive definite quadratic form in R?" then there is a
linear symplectic map y in R*" such that

glx(x, )= 4;(x} +¢&).
Here A; are uniquely determined by g, and

sup g/g® =max A},

Proof. Since supg/g® is symplectically invariant it suffices to prove the last
statement when g(x,&)=) A,(x}+¢2). Then we have g°(x,&)=) (x?+£})/4,
so the statement is obvious. To prove the lemma we shall consider the
eigenvalues and eigenvectors of the map

F: (x,§)m H,(x, §)/2=(0g/0¢, — 0g/0x)/2

which is defined in a symplectically invariant way. Note that if g(x,¢)
=Y A;(x}+¢;) then

Fx,8)=(A, &1, An sy — Ay Xy ey — A X,0),
so x;=1, {;= +i, all other coordinates 0, is an eigenvector with eigenvalue
+i4;. Hence 4,,..., 4, are uniquely defined by g apart from the order. For
general g, if z is an eigenvalue with eigenvector (y,7)eC?", then

dgfon=2zy, 0g[dy=—2zn.

Writing (6, w)=) 0,W; if 6, weC", we obtain

(0g/3y, y)+(0g/on,m)=2z((y,m) —(n, y))-

In the left-hand side we have a positive definite Hermitian form, and

(. m)—(n,»)=2i((Imy,Ren) —<Rey,Imn))=—2ia(e,,e,)
if e, and ¢, are the real and imaginary parts of (y,7). Hence A=2z/i is real
and not 0. Taking the complex conjugates of y,n,z if necessary we may
assume that i>0. Then we have o(g,,e,)>0, or o(e;,e,)=1 if we muitiply
by an appropriate constant. Using the symplectic maps (c)-(e) in Lem-
ma18.5.8 it is easy to find a linear symplectic map y mapping the unit
vectors along the x, and £, axes to e, and e&; respectively. (See also
Proposition 21.1.3 for a complete proof.) Replacing g by goy we have then

g(x’ é)":)‘(x% +éi)+g1(x’ ¢)

where g, is independent of x, and {,, for 0g/0x;=0g/0;=0, j*1, at the
eigenvectors (1,0,...,0, £i,0,...,0) of F. This proves the lemma by induction
with respect to n.
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Remark. In Theorem21.5.3 we shall give a much more thorough discussion
of the symplectic equivalence of quadratic forms using the tools developed
in Section 21.1. Note that in Lemma 18.6.4 we can equally well reduce g to the
quadratic form ) (x7+A4}¢7). Lemma18.6.4 is well known in classical me-
chanics where 4; occur as the fundamental frequencies of the small oscil-
lations of a mechanical system around an equilibrium point.

In the proof of sufficiency in Theorem18.6.3 we shall use the same
decomposition of a as in the proof of Theorem 18.6.2. To control the sum
we need the following lemma of Cotlar, Knapp, Stein, Calderdn, Vaillancourt,
Bony and Lerner on sums of almost orthogonal operators, with an additional
remark on compactness which prepares for Theorem 18.6.6.

Lemma 18.6.5. Let A;, i € I, be a countable number of bounded oper-
ators from one Hilbert space H; to another Ho such that for j € I

(18.6.5) Secr I3 463 <M, Teer I4;A71E < M.
Then Y-, 1 |(Axu, Aju)| < M2||u|?, u € Hy, the sum

Su= ZA,-'U,, u € Hy,
jeI

exists with norm conergence in Ha, and ||S|| < M. If the sum

Sy=)_A;
JjeJ
is compact for every J C I, then ||A;]| — 0 when j — oo in I.

Proof. Set T = 3 cpAFA, where o € C, |ax| < 1 and only a finite number
N are not zero. Then T* = } G AfA;. We have IT|> = |T*T||, and more
generally ||T||*" = |(T*T)™| by the spectral theorem, if m is a positive integer.
For the terms in the expansion

(T*7)" = Za_m—lA;; Aj, oy, Aj*; Ajy o O jn A

*
Jam—1

Aji
we have the estimate
145 Az - - A, Ajen
< min(|lAf Ayl .- |45, _, Ajenl>
A7 147 AN - - - 1Az A || 1A -
Taking the geometric mean of the two upper bounds, and noting that ||A;|| £ M
by hypothesis, we obtain

N>l £ M 3 loyl 147, Al 145 AR R - 1AS, _, AiallF.
The sum is taken over ji,...,jam. If we use (18.6.5) to estimate successively the

sum OVer jan, ..., J2, then only the sum over j; is left over and we see that
IT[>" SN M*".
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Taking 2m™ roots and letting m — oo yields || T|| < M?, hence
1Yo (Agu, A;u) = (Tw,u)l < M?||u||?, ueH,,
and taking the supremum over all choices of (x;) we obtain
> A, Ajw)| S MY|ul?, ueH.

JkEl
If J C 1 is finite and A(J) = 3, A; it follows that |A(U)u| < M ||ul|, and if
J’ D J is another finite subset then _

IAUY — AP S Y [Au, Aw)l.

k€N
Since 3 [(Aju,Au)]| is convergent it follows that Su = 3°. ., A;u converges in
H,, and that ||Su|| £ M ||u]|.
To prove the last statement it suffices to show thatif | 4;] =2 ¢ > 0, jel, then

Y ;es A;is not compact for some J C I. To do so we shall choose ji, j,,...€1 so
that Y ,.,ll4; A% | <1/u for every u. Assume that j,,...,jy—, have already

been chosen so that this is true with strict inequality for u<N if v< N in the
sums. We must then choose jy=j so that

ZNHA;VA,*H<1/N, §HAJVA}LIIJrIIAjA}’;H<1/u, p<N.
v< viu

By the second part of (18.6.5) the first inequality holds except for finitely
many j, and since |4;A} | =14, A%|l the same is true for the other inequal-
ities, by the inductive hypothesis. Set J=1{j,,j,,...}. For every j we choose
uj € Hy with ||u;|| = 1 and |Afw|| 2 ||A7|1/2 2 ¢/2if j € J. Then v; = Af u;
converges weakly to 0 in H;. In fact,

(AYuj, Af v)=(A, AT u;,0)>0 as j—oo

s0 (A¥u;,w)—0 for every w in the closed linear hull of the ranges of the
operators Ayf. Since 4, w=0 for every k if w is in the orthogonal comple-

ment, we have (A} u;, w)=0 for all j then. Thus v; converges weakly to 0. If

§, is compact, it follows that ||S,; vl =0 as j— co. We have with j,keJ

S;v;=A;A¥u+ Y A, A%u,.

k¥j
The norm of the sum is at most 1/p if j = j,. Hence ||A; AF u;|| — 0, so
A¥u;ll>=(A4; A% u;,u)—0.
This is a contradiction which completes the proof.
Proof of Theorem18.6.3. First we prove the necessity so we assume that
a*(x, D) is I* continuous for all aeS(m, g). Since the map

S aar{a"(x,D)u,v)



18.6. Estimates of Pseudo-Differential Operators 167

is continuous for all u,ve; it follows that the map
S(m, g)3ar a”(x, D)e (12, I?)

given by the hypothesis is closed. Hence it is continuous by the closed
graph theorem. Let w, be a sequence going to co in W. We shall prove that
the sequence m(w,) has a bounded subsequence. By Lemma 18.6.4 we can
take a linear symplectic transformation y, from R?", with the usual sym-
plectic structure, to W such that g, (x,(y, 11)) is reduced to the diagonal form

Y Wi+An}

Since g<g°, all 4;, are bounded by 1. Thus we may assume that their limits
exist as v— o0, Let pe CY(R>") and set

(18.6.6) e,(x, )=d(x, 4,8 =b,(w,+x,(x %)

where A, &=(4,,¢,,...,4,, &) If the support of ¢ is small enough it follows
that m(w )b, is a bounded sequence in S(m, g). The norm of b¥(x, D) is equal
to the norm of e(x,D) since these operators are unitarily equivalent by
Theorem 18.5.9. Now

ey (x, D)u=2m) " [[ p((x+)/2, 4,8 &P u(y)dyd¢
has a non-zero limit as v— oo, for a suitable choice of ue CY. It follows that
ey (x, D)u|l is bounded from below for large v. Hence

lim(w,) by (x, D)| > cm(w,)

which proves that m(w,) must be bounded. This ends the proof of the
necessity.

To prove the sufficiency we assume now that m=1. Writing a=) a, as
in the proof of Theorem 18.6.2 we have, again by Lemma 18.6.1,

fay(x, D)l < C.
To prove that (18.6.5) is valid for 4 =a(x, D) we must consider the com-

positions

W o__ =W W W o W=w
ay,=aya,, by, =ayay.

Of course it suffices to discuss a,,. By (18.5.6) we have
(x’ 6) ew(Dx P Dy D,,)/Z (X é)a (y’ r’)l(x &)= (y,n)"

We apply (18.4.16) with d, replaced by d,, defined by substituting g for g
in the definition (18.4.15) of d,. This is legitimate since 1 +d, < C'(1+d,)¥ by
(18.4.13)". Hence we have for any positive integer k
la, (Wi = Ci(1+Mw) 7%,
where
M(w)=ming?,(w—w')+ming’ (w—w").

U, Uy
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It is clear that
25,00 —w)S2M(w)

if w'eU, and w”eU, are chosen so that the minimum in the definition of M

is attained. We also have )
(186.7) g, (W —w)sCgl W —w)sCyglw —w")(1+g(w—w)
S C(L+Mw)',
(1868)  1+g, W=w)< C1+g, (w—w)< C,(1+g5(w—w)
SC,A+gw—w) TS C,(1+ M)V,

With the notation

—_ M a 7z 21
dw— min ng(w —w")
wel,,w'el,

it follows from (18.6.7) with new constants C and N that for all w
1+d,, £ C(1L+MwW) .

vp=
Taking also (18.6.8) into account we conclude that for any &
(18.6.9) la,, WI= C,(1+4,,) (L +g,, (w—w,)) "

The same estimate is valid for any seminorm in S(1,g,). In fact, if g, (1) <1
and we apply the differential operator {D,t) to a,,, we obtain one term
where the differentiation falls on a,, which does not affect the estimate, and
one where it falls on a,. This may lead to a loss of a factor (gwu(t)/ng(t))’f‘ in
the estimates. Since it is bounded by some power of 1+d,,, our assertion is
proved. Hence Lemma 18.6.1 combined with the remark following it gives

”ava(x5 D)H é (jN(1 +dvu)_N
for any N. We shall prove in a moment that for some C and N

(18.6.10) Y(+d,)""sC, Y(+d,)N<C.
v 3
From Lemma 18.6.5 it follows then that |a¥(x, D) < C".
It remains to prove (18.6.10), which is closely related to Lemma18.4.8.
Since for w'eU, and w”eU, we have
L+g;, W —w)<C(L+g, (W —w)=S C1+g5.w~w))
<C'(L+g, W —w))Y,
it follows that
14d,2C'(1+d,)".
Hence it suffices to consider the sum in (18.6.10) with respect to u. We
choose g, orthonormal coordinates with O at w,. Then g;, is at least as
large as the Euclidean metric g, . If d,,<k then there is some point w”eU,
with Euclidean distance at most Ck?* from 0. The metric at w” can be
estimated by a power of k times the Euclidean metric, so a ball of radius
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k=" with center at w” is contained in U,. As in the proof of Lemma 18.4.8 it
follows at once that the number of indices u with d, <k is bounded by a
power of k, which proves (18.6.10).

Theorem 18.6.6. Assume that g <g°, that g is o temperate, and that m is o, g
temperate. Then the operators a”(x, D) with aeS(m,g) are all compact in I? if
and only if m—0 at «©

Proof. With the notation used in the proof of Theorem 18.6.3 it is clear that
a?¥ is compact for every v. If m—0 at oo we can for every £¢>0 choose a

v

finite set N(g) such that
(a_ Z av)/8

veN(e)

is bounded in S(1, g) when ¢— 0. Thus we have by Theorem 18.6.3
la*(x, D)= 3, ay(x,D)|=Ce,

veN(e)
which proves that a"(x,D) is compact. Assume on the other hand that all
a*(x,D) with aeS(m,g) are compact. Then it follows from Theorem 18.6.3
that m is bounded. If b, is defined as in the proof of necessity in Theo-
rem 18.6.3 and m,=m(w,) then

2 m,b,eS(m,g)

velJ

for every subset J of the index set. Hence

Y. m,b¥(x,D)

vedJ
is compact by hypothesis, and bY satisfy (18.6.5) by the proof of sufficiency
in Theorem18.6.3, so it follows from Lemma18.6.5 that m, b} (x, D)} —0.
Since ||b}(x, D)|| is bounded from below we conclude that m,—0 as v— oo,
which implies that m(x, &) — 0 as (x, &) — oo. The proof is complete.

So far we have only considered scalar pseudo-differential operators.
However, it is clear that the calculus developed in Section18.5 is not
changed at all if one allows the functions u to take their values in a Banach
space B, and the symbol a to take its values in Z(B,, B,), so that a”(x,D)u
takes 1ts values in B,. However, the discussion of I? estimates here depends
on Lemma 18.6.5 where ‘the Hilbert space structure is vital. Theorems 18.6.3
and 18.6.6 are therefore applicable only when B, and B, are Hilbert spaces
which in the second case must also be finite dimensional.

As a first application we shall prove a general version of Theo-
rem 18.1.14. Note that with the notation there the Weyl symbol of (a(x, D)
+a(x,D)*)/2 is Re(a+i/2y 0% a/0x;0¢;) modulo S™~2. We only consider the
case of Theorem 18.1.14 where m=0, for spaces corresponding to H, have
not been defined here in the general context.
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Theorem 18.6.7. Let g be o temperate,

(18.6.11) h(x, &) =supg, /87 <1,
and assume that 0<aeS(1/h, g). Then it follows that
(18.6.12) @ (x,D)u,u)= ~C ||u]|?>, ue,

with scalar product and norm in [*(R".

Proof. For the metric
G=(a+1)""h-1g
we have
supG,/G%=(a(w)+1)"2h(w)~?supg,/g’=(a(w)+1)"2<1.

If we show that G is slowly varying it will follow from Proposition18.5.6
that G is o temperate, for h(a+1) may be replaced by min (1, h(a+1)) since
h(a+1) is bounded. Thus a+1 is o, G temperate. We shall also prove that

(18.6.13) a+1eSa+1,G),
that is,
k
(18.613)  [a®(w;ty,....t)l < Cila(w)+1)' T2 h(w) "2 [] g, (2 )*.
1
When k=2 this follows from the hypothesis aeS(1/h,g), so we only have to
show that
(18.6.13)" lh(w)a'(w)t| < C(h(w)a(w))? g,,(1)*.

If we introduce g, orthonormal coordinates z,,...,2,, with the origin at w
and regard h(w)a as a function F(z), then

IDJF(2)=C,, lzl<e,
for all « since aeS(1/h,g), and F Z0. Thus it follows from Lemma 7.7.2 that
|F'(0) = CF(0)*
which proves (18.6.13)". By Taylor’s formula we obtain
F(2)+hwW)Z(FO)+hWw))/2  if |2|* <c,(FO)+h(w)),
that is,
2h(wla(w)+ )2 h(w)aw)+1) if G (w—w,)<c,.

Thus G, < CG,, then so G is slowly varying,
If F is a C*™ function with

| FO@) < C;F(t), >0,

and meS(m,G), it is immediately verified that F(m)eS(F(m), G). (Cf. Lem-
ma 18.4.3)) Taking F(t)=t* and m=a+1 we obtain b=(a+1)*eS(b, G). Now
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Theorem 18.5.4 gives
a”(x,D)+1=>5b"(x,D)? +c”(x, D)

where ceS((a+1)"!,G)=S(1, G). Hence c*(x, D) is bounded which provés the
theorem since b*(x, D)? is positive.

In the last part of the proof there was so much information given away
that one might suspect that a better result is valid. Indeed, we shall now
prove the stronger Fefferman-Phong inequality:

Theorem 18.6.8. If g is o temperate and (18.6.11) is fulfilled then (18.6.12) is
valid for every acS(1/h? g) with a=0.

A crucial point in the proof of Theorem 18.6.7 was the application of
Lemma 7.7.2. We shall now prove a similar result which takes derivatives of
order £4 into account. By B, we shall denote the ball {xeR";|x|<r} where
|x|?>=e is the Euclidean metric form.

Lemma 18.6.9. Let 0< fe C*(B,) and assume that

(18.6.14) Iflax) =1, xeB,,
(18.6.15) max (£ (O),1f12(0)=1.

Then we can find r >0 independent of f such that
(18.6.16) s<max(f(x),|f15(x))<2, xeB,,
(18.6.17) If15(x)<8, if j<4, xe€B,,
(18.6.18) fx)=fi(x)+g(x)?, xeB,,

where f,,geC*(B,) and f, 20, {y,0)> f,(x)=0 when xeB, for some yeR"~\0.
The supremum of |D*f,| and of |D*g| in B, can be estimated by the supremum
of ID’f1 in B, for |Bl<2+|al.

Proof. We shall first estimate |f|{(0) and |f]5(0). Let f;(x) be the Taylor
polynomial of order j at 0. Then
0= f()S1+f100)+1x1?/2+ f3(x) +1x1*/24,  |x|<2,
by Taylor’s formula. Hence
10D+ SIS T+IxP/2+Ix(%24,  |x]S2.
If |x| =1 we obtain if x is also replaced by 2x
i)+ () £3/2+1/24,  12fi(x)+8f3(x)|=3+2/3,

which implies
6lfi(x)<16, 6|f;(x)I<T.

Thus |f]5(0)<3 and |f]5(0)<7. From Taylor’s formula it follows now that
(8.6.16) and (8.6.17) hold if » is small enough.
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First assume that |f|5(0)=1 and that f(0) is small. By Lemma7.7.2 we
have |rf’(0)> <21 (0) if r <%, so f'(0) is also small. The quadratic form f,(x)
has an eigenvector y with eigenvalue +31. After an orthogonal transfor-
mation we may assume that y=e, =(1,0,...,0). Thus 8%f(0)/0x?= %1 and
0 f(0)/0x, 0x;=0 for j+1. Since

0= f(x,,0,...,0)= £(0)+x, 0 (0)/dx, +x3/2+7|x,1/6 + x4/24
we conclude by taking x,=+3 that 0%f(0)/0x}=+1 if f(0)<1/100, for
1/100—1/18+7/162+3~4/24<0. If |x,|=r and |x'|<r, X' =(x,,...,X,), then
the estimate
0 (x)/0x; —0f (0)/dx, —x;| <4|x|*+]xI°/6
implies that 6f/0x, has the sign of x; if
r>18f(0)/0x,|+4r*+r/6.

We fix r so small that 4r+r?/6<1/2 and 1/2<3*f(x)/0x? <2 when x€B,,.
If f(0)<r*/8 then |f'(0)| <r/2 so we conclude that the equation
(18.6.19) 0,f(x,,x)=0
has a unique solution x, = X(x) with |{x,|<r if |x'| <r. Since
0X/0x;= —315jf(X,x')/aff(X,x'),
we obtain successively bounds for all derivatives of X of order k from

bounds for the derivatives of f of order k+1, for 82f(X,x)=1/2. By
Taylor’s formula and (18.6.19) we obtain f = f, +g* in B, where

J1(0)=f(X(x),x')

is independent of x,, and
g(x)?=f(x)— f (X (x),x)=(x; = X (x))* Q(x),
O(x)={ 3 f(x, + (X (x")—x,),x) t dt.
0

We have Q=1/4, and the derivatives of Q of order k can be estimated in
terms of the derivatives of f of order k+2, so g=(x, — X(x"))Q*e C*(B,) has
the required properties.

It remains to examine the case where f(0)=r*/8. Then we can find r,<r
so that

Fx)>r*9  if |x|<r,.

If we replace r by r, in the lemma then g(x)=f(x)* has the required
properties. The proof is complete.

The following lemma is the special case of Theorem 18.6.8 where g is a
constant metric; it is the essential step in the proof.
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Lemma18.6.10. Let g be a positive definite quadratic form in R2" with
g/g° <A?<1. Let 0<ae C*(R?"), and assume that

(18.6.20) lalfw)<4~%,  if weR* and k<N.
If N is large enough it follows that
(18.6.21) (@ (x,Dyu,u)2 ~ C |u]|*>, ue,

where C is independent of g and of a.

Proof. In the proof we may assume that ae #(IR*"). By Lemma 18.6.4 and
Theorem 18.5.9 it is no restriction to assume that

g(x, &)=3 4;(x; +&3).
Here A;</. The hypotheses in the lemma therefore remain valid if we
replace all 4; by 4, and (18.6.20) can then be written
(18.6.20y lalg(w)SA®=*2 k<N, weR?.

Here e is again the Euclidean metric form. We may also assume that the
lemma has already been proved for lower dimensions than 2n. This implies
that (18.6.21) is valid if a is independent of &, say, for a”(x, D) can then be
regarded as an operator in the variables x’'=(x,,...,x,) depending on x, as
a parameter, and it has a lower bound — C for every x,. Using Theo-
rem 18.5.9 we conclude that this is also true if a is constant in some other
direction. This will allow us to handle the term f; in Lemma 18.6.9.

As in the proof of Theorem 18.6.7 we shall change the metric Ae to a
metric G with G, ,=H(x,{)e such that H<1 and aeS(1/H?,G). This re-
quires in particular that

a<H™? |als<H™ .
To make sure that these conditions are satisfied we define
(18.6.22) 1/H(w)=max(1, a(w)?, |al5(w)).
Now we apply Lemma 18.6.9 to
f(@=HW)*a(w+z/Hw)?), zeR*
From (18.6.20) we obtain | f]; <1, and we have

fO=HWw) aw), |f150)=H(w)lal5(w).

These quantities are <1 by (18.6.22). We can always apply Lemma 18.6.9 to
f(@)+1—f(0). From (18.6.16) we obtain

1I/HwW)<2/H(w,) if lw—w,|> Hw)<r?,
that is, G, <2G, if G (w—w,)<r

Hence G is slowly varying so it follows from Proposition 18.5.6 that G is ¢
temperate. The proof in the present situation is so simple. that we repeat it
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to emphasize the uniformity. We must show that

G,, 2CG (1+G5, (w—wy))
or equivalently that

H(w)< CHW) (A +w—w,|*/H(w,)).

In doing so we may assume that G, (w—w;)=c, that is, that H(w)|w
—w,|?=c, and then the estimate holds with C=1/c.

Choose ye Cy {z;|z| <r} real valued and equal to 1 in {z;|z|<r/2}. Then
we have uniform bounds for y(z)f(z) and its derivatives of order <N. This
follows from Lemma 18.6.9 and the fact that (18.6.20) gives estimates for the
derivatives of f of order =4. By an obvious modification of Lemma 18.4.4
we can find a sequence w,elR*" such that there is a fixed bound for the
number of overlapping balls B,={w;G,, (w—w,)<r’} and for suitable real
valued ¢,€ C3(B)), B,={w; G, (w—w)<r?/4}, we have |¢,|f < C, and

Y ¢, w)?=1.

et a,(w)=x(Hw}} (w—w,))* a(w).

Then we have

Yé.wla,wy=aw); aeCFB); laf<C,H? ksN.
We shall prove in a moment that there is a constant C, such that
(18.6.23) (@¥(x,Dyu,uy= — C,(u,u), ues.
Admitting this we replace u by ¢V(x,D)u and sum. We can consider
{d,(x, &)} as a symbol in S(1, G) with values in 2~ .£(C, %), for at any point
there are only a fixed number of terms to consider. Hence it follows from
Theorem 18.6.3 that the operator

@ ur {¢*(x, Dyu}e*(R",1?)

is I? continuous, that is,
(18.6.24) 2@ (x, Dyuli> < C; [lul®.

The sum ) @¥(x,D)a’(x,D) $¥(x, D) can be regarded as the composition of
@, the operator A with the diagonal matrix symbol {a,(x, é)évu} in
[*(R",1?), and the adjomt of ®. We have control of as many seminorms of
the symbol of 4 in S(H™2,G) as we like. Since ¢, {a,,¢,} +{d,,a,} ¢,=0 the
first order terms in the composition formula in Theorem18.5.4 cancel.

Hence
2 Y (x, D)ay(x,D) ¢} (x, D)=a”(x, D)+ R*(x, D),

where any desired number of seminorms of R in S(1,G) are bounded. By
Theorem 18.6.3 and (18.6.23), (18.6.24) it follows that

(a@”(x, D)u,u)= Z (x,D)d*(x, D)u, p*(x, D)u)— (R¥(x, D) u, u)

—C, Cy |Jull*— C4 [Jul)?
as claimed.



18.6. Estimates of Pseudo-Differential Operators 175

It remains to verify (18.6.23). In Lemma 18.6.9 we can write

227 f(2)=1(2) f(2)+(x(2) g (2))
where f, 20 is obtained by multiplying f; with a cutoff function which is
constant in the direction y and 1 in supp x. Then we have bounds for the
derivatives of f, of order <N —2. Going back to the original variables we
set H,= H(w,) and
L= —w)HY,  b=f(.~w)HY/H],
¢,=(xg)(. —w)Hi)/H,

where f, and g are obtained from Lemma 18.6.9 applied to H? a(w,+ ./H?).

By (18.6.18) we have
av=X3 bv+03a

and we have bounds for any desired number of seminorms of b, ¥, and c,
in S(H; 2, H,e), S(1,H, e) and S(H; ', H, e). By the inductive hypothesis

(b:,"(x,D)u,u)g - C5 ”unz
From Theorem18.54 we obtain as above a bound for any number of
seminorms of the symbol of a¥(x,D)—yx¥(x,D)b%(x,D)y¥(x,D)
—cv(x,D)cy(x,D) in S(1,H,e) if N is large, so Theorem 18.6.3 gives a
bound for the norm of this difference. Thus (18.6.23) and the lemma are
proved.

Proof of Theorem18.6.8. We just have to repeat a part of the proof of
Lemma 18.6.10. Choose ¢, as in Lemma 18.4.4 but so that ) ¢Z=1. We can
arrange so that ¢,y ,=¢, for some non-negative Y € C§(B,) which are also
bounded in S(1,g). Set a, =y, a, which implies that a=) ¢,a,¢,. Hence we
obtain as before that

2 ¢¥(x, D)ay(x, D) ¢ (x, D)—a"(x, D)
is a bounded operator. By Lemma 18.6.10 we have
(@ (x, Dyu,u)z — C ||ul®
where C does not depend on v, so it follows that
2.(@y(x, D) ¢ (x, D)u, ¢2 (x, D)u)Z — C ulf?
since (18.6.24) remains valid for our new choice of ¢,. This completes the

proof.

Specializing to the metric (18.4.1) we have proved:

Corollary 18.6.11. If 0<aeS25?(R"xR") and 0<5<p=<1 then a*(x,D) is
bounded from below and so is a(x, D)+ a(x, D)*.

It is not possible to replace A~ 2 in Lemma 18.6.10 by a larger power:
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Example 18.6.12. Set b(x, &)=x &, (x, £)elR2. Then

b*(x,D)*=a"(x,D)+%
where a=b?, for —87'(0,0,-0,0,)* x ¢ yn=4. Thus

(@*(x,D)u,u)= |b"(x,D)ull>*— |u/2|?>, ue.
The equation b”(x,D)u=0 can be written 2xu' +u=0 so it is satisfied by
u(x)=x"* Let ye C§ be equal to 1 in a neighborhood of 0 and set for small
e>0
u,(x) = (x (e x) — x X))/ x|,
Then it follows that
b™(x, Dyu,(x)=1x|~* x D(x(e x) — x(x)),

so |b*(x,D)u,l|>< C but |ul|*/loge— —2 as e—~0. Thus (a*(x, D)u,,u,)<0 if
¢ is small enough. Now choose a,e CP(IR?) so that a,=0 and a,(x, &) =x? &2
in a neighborhood of 0. When 41— 0 we obtain

(@ (/4 %,V AD)u,,u)/A> - (@*(x, D) u,, u,),

for ao()/Ax,1/A&)/A* converges weakly to a in S((1+ x>+ &)%) when A—0.
Since the right-hand side can be negative this proves that we cannot
improve the exponent —2 in (18.6.20) or in Theorem 18.6.8.

However, the condition a=0 in Theorem 18.6.8 and Lemma 18.6.10 is
too strong. The reason is that in the proof of Lemma 18.6.10 we discarded
quadratic terms which can give essential contributions when combined with
other such terms in a later stage of the inductive proof. We shall return to
this matter in Section22.3.

Theorem 18.6.7 remains valid in the vector valued case but cannot be
improved then. The key to the proof of the positive result is the following
rather weak analogue of Lemma 18.6.10.

Lemma 18.6.13. Let g be a positive definite quadratic form in R with
g/g°<A* L1, Let 0<aeC*(R?", £ (H, H)) where H is a Hilbert space, and
assume that

(18.6.25) lafw)<i=!  if weR?*" and k<N.

If N is large enough it follows that

(18.6.26) (@ (x,D)u,u)= — C |lul?, ueF(R" H).

Proof. As in the proof of Lemma 18.6.10 we may assume that g=Ae where e
is the Euclidean metric form. Then

(18.6.25) lalf(w) S Ak- 212,
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Let Ao+ Ay(x, &) be the first order Taylor expansion of a at 0. By (18.6.25)
we have for all veH

(Ao v,0)+(4,(x,0)v,0)+[x|? lv]| /220,

(4o v,0)+(4,(0, &) v, v)+&|* [l */220.
If ue#(R",H) we obtain by applyihg these inequalities with v=u(x) or v
=17(&) respectively, with x and & replaced by 2x and 2¢,
(18.6.27) (Aou,u)+ (A, (x, Dyu,u) = — 3 (llx;ull >+ | D;ul?),

where the scalar products are now in I?(R" H). (This is a substitute for
Lemma 7.7.2.) Next we prove that

(18.6.28) (@ (x, Dyu,u)= — C Y (lx;ull>+|D;ul?).
To do so we use Taylor’s formula to write
a(x, )= Ao+ 4,068+ x; %, R (6, )+ 3 8,8, 8,(x,§)
+23 %8 Ty, &),

where R, and S, are symmetric in j and k and we control any number of
seminorms of R, §;, and T, in S(1,g). Then we have

a*(x,D)=Ag+A,(x,D)+ ) x,;R}(x, D)xk+ZD1 8%(x,D) D,
+Y x; Ty(x,D) D, +2Dk »(x,D)x;— R*(x, D)

where

4R=Y 0? R, [0L;0¢ +Y.0° Sjk/axjaxk—2202 T,/0&;0x,
has bounded seminorms in S(2,g). This follows from the fact that left (right)
multiplication by x; or D; means that the symbol is multiplied by x;
+3i0/0¢; or £;¥5i0/0x;, after a short calculation. The estimate (18.6.28) is
an 1mmed1ate consequence since |lu]|* < fix;ull®+ |D;ul

From (18.6.28) it follows that more generally
(18.628)  (a"(x,D)u,u)= ~ C Y. (I(x;—yull*+ I(D;—n)ull®)
for arbitrary (y,)eR2". We just have to apply (18.6.28) to a(x+y, & +1) with
u transformed according to Theorem18.5.9 to verify this. Now choose
¢ CY(R") so that
Y p(x—v?=1

when v runs over the lattice points. Set ¢,(x)=¢(x—v) and. apply (18.6.28)
with y=v and u replaced by ¢, u. Then

2Ce=v)d,ul>< Clull®.

We can use the calculus with the metric |dx|*+ 1]|d¢|? to compute

Y. ¢V (x,D)a"(x, D) ¢} (x, D).
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The main term in the sum is a and the first order terms cancel, so we
conclude as in the proof of Lemma 18.6.10 that the symbol is a+ b where we
have bounds for a large number of seminorms of b in S(1,|dx|?+1]|d¢}?),
hence also a bound for the norm. It follows that

(18.6.28)" @ (x,Dyu,u)z — C(lull>+ Y 1(D;—n))ull?).

Here we replace u by ¢Y(D)u and 5 by v. Repetition of the preceding
argument then gives (18.6.26). The proof of the lemma is complete.

From the lemma we obtain at once using the localization argument in
the proof of Theorem 18.6.8:

Theorem 18.6.14. Let g be a ¢ temperate metric and assume that (18.6.11)
holds. If aeS(1/h,g) takes non-negative values in ¥ (H,H) where H is a
Hilbert space, it follows then that

@ (x,Dyu,u)z — Clul®>, ue¥(R" H).

Notes

Pseudo-differential operators have developed from the theory of singular
integral operators; these are essentially pseudo-differential operators with
homogeneous symbol of order 0. In the theory of singular integral operators
only the principal symbol is studied. Its multiplicative properties appear
somewhat mysteriously since the Fourier representation is avoided, and this
seems to be the historical reason for the term. (See Seeley [5].) Singular
integral operators were introduced in the study of elliptic problems, but it
was realized in the 1950’s that they are not really essential then. The work
by Calder6n [1] on the uniqueness of the Cauchy problem gave another
testimony to their importance, but in the predecessor of this book his
results were proved and extended by direct methods based on partial
integration, Fourier transforms and localization techniques. It seems likely
that it was the solution by Atiyah and Singer [1] of the index probiem for
elliptic operators which led to the revitalization of the theory of singular
integral operators. Anyway, shortly afterwards Kohn and Nirenberg [1]
introduced pseudo-differential operators with general polyhomogeneous
symbols. Thus they removed the artificial restriction to order 0 and gave
rules of computation for terms of lower order, which made the new tech-
niques highly competitive. Their proofs and definitions relied on the Fourier
representation except for the change of variables which was based on a return
to singular integral operators. This remnant was removed shortly afterwards
by Hormander [16]. The need to incorporate fundamental solutions of hy-
poelliptic operators of constant strength led to the introduction of symbols
of type p, 0 in Hormander [18], by many considered as an excessive
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generalization. However, these were in fact inadequate for the study of
differential operators of principal type, which led Beals and Fefferman [1],
Beals [1] to such a great extension of the class of symbols allowed that one
can adapt the symbois to the operator being studied. An extension of their
techniques, adapted to the Weyl calculus which has a tradition in quantum
mechanics going back to Weyl [5] is presented in Sections18.4 through
18.6. We have mainly followed Hormander [39] but some extensions are
adopted from Dencker [2]. One of the applications of the general calculus
given by Beals and Fefferman [1] was the “sharp Garding inequality” first
proved in Hormander [17] and later extended to the vector valued case by
Lax and Nirenberg [1]. In Section 18.1 we give an elementary proof of the
original result which will be needed frequently in the later chapters. A
generalization of the Lax-Nirenberg result as well as a much more precise
statement in the scalar case due to Fefferman and Phong [1] are given in
Section 18.6. For improvements in another direction we refer to Section 22.3
and the notes to Chapter XXII. The key to the estimates in Section 18.6 is a
result on sums of almost orthogonal operators often referred to as Cotlar’s
lemma which was proved by Cotlar [1] and by Knapp and Stein [17; the
more general statement given here is due to Calderon and Vaillancourt [1,
2].

The conormal distributions discussed in Section18.2 were defined in
Hormander [26]. They constitute the simplest case of Lagrangian (Fourier
integral) distributions which will be discussed fully in Chapter XXV. The
results on the transmission condition are due to Boutet de Monvel [1]; the
extended version in Theorem 18.2.18 comes from old lecture notes inspired
by the work of Visik and ESkin [1-5]. Section 18.3 is almost entirely due to
Melrose [1]. We refer to his paper for further developments of the theme
parallel to the theory of Fourier integral operators in Chapter XXV.



Chapter XIX. Elliptic Operators
on a Compact Manifold Without Boundary

Summary

For an elliptic pseudo-differential operator on a compact manifold it follows
immediately from the calculus of such operators that the kernel and the
cokernel are both finite dimensional. Thus elliptic operators are Fredholm
operators. The main topic of this chapter is the study of the index, that is,
the difference between the dimensions of the kernel and the cokernel. This is
an interesting quantity to study because it is very stable under pertur-
bations; for many operators which occur in geometry the index gives
important information on the topology. Thus the classical Riemann-Roch
theorem, as well as some of its modern analogues for several complex
variables, is a case of the index theorem.

..&We start in Section 19.1 by reviewing abstract Fredholm theory. In doing
so we add some points which are not quite standard. These concern the
stability of the index of strongly continuous families of operators, the
expression of the index by means of traces in the case of operators in
Hilbert space, and finally related results on invariance of Euler characteris-
tics under passage to homology. The main analytical properties of the index
of elliptic pseudo-differential operators are then established in Section 19.2.
For pseudo-differential operators in IR” an explicit index formula is proved
in Section 19.3 by means of evaluation of certain traces. As indicated at the
end of Section 19.2 the results of Sections 19.2 and 19.3 can be used to
derive the Atiyah-Singer index formulas. However, this is mainly a problem
in differential geometry, and we do not wish to develop the necessary
prerequisites on characteristic classes to discuss it so the remarks will be
quite brief. Instead we pass in Section19.4 to the Lefschetz formula of
Atiyah and Bott which can be stated and proved without any extensive
background in geometry. A discussion of the extent to which ellipticity is a
necessary condition for the Fredholm property is given in Section19.5; a
more general notion of ellipticity is introduced in this context.

19.1. Abstract Fredholm Theory

If B, and B, are finite dimensional vector spaces (over €) and T is a linear
transformation B, — B, then the rank of T is the codimension of the kernel
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Ker T or equivalently the dimension of the range, that is,
dim B, —dim Ker T=dim B, —dim Coker T
where Coker T=B,/TB,. This means that
dim Ker T—dim Coker T=dim B, —dim B,

is independent of T. This is the basic reason for the stability properties of
the left-hand side in the infinite dimensional case; it is called the index of T.
If B, and B, are Banach spaces and Te #(B,, B,) then

Ker T={feB,; Tf =0}

is a closed subspace of B, but need not be finite dimensional. The range
TB, need not be closed, but we have

Lemma19.1.1. If Te¥(B,,B,) and the range TB, has finite codimension in
B, then TB, is closed.

Proof. We may assume that T is injective for otherwise we can consider
instead the map from B,/Ker T to B, induced by T. If n is the codimension
of TB, we can choose a linear map

S: C*- B,

such that SC" is a supplement of TB,, that is, the map

T,: B®C">(x,y)—Tx+SyeB,
is bijective. By Banach’s theorem it is then a homeomorphism, which proves
that TB, =T,(B, @ {0}) is closed.
Definition 19.1.2. Te #(B,,B,) is called a Fredholm operator if dim Ker T is
finite and TB, (is closed and) has finite codimension; one then defines
(19.1.1) ind T=dim Ker T—dim Coker T.

Sometimes we shall also use the definition (19.1.1) when only dim Ker T
is finite and TB, is closed. This situation can be characterized as follows:

Proposition 19.1.3. If Te #(B,, B,) the following conditions are equivalent :

(i) dimKer T < o0 and TB, is closed.

(i) Every sequence f;eB, such that Tf, is convergent and f; is bounded has
a convergent subsequence.

For the proof we need a classical lemma of F. Riesz:

Lemma 19.1.4. The unit ball in a Banach space B of infinite dimension is
never compact (in the norm topology ).
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Proof. We can choose a sequence f;e B such that

Ifil=1= Hfj+kzvakf;<“
<J
for all j and all q,€C. In fact, if f;,...,f;_, have already been chosen we can
take g outside the linear space L spanned by these elements. There is a
point he L which minimizes |g—h|| for L is finite dimensional and the norm
— 0 if h—o0. Then f;=(g—h)/llg —h| has the required properties. In partic-
ular we have | f;— fill21 for j+k so there is no convergent subsequence.

Proof of Proposition 19.1.3. If (ii) is fulfilled it follows in particular that the
unit ball in KerT is compact, so KerT is finite dimensional by Lem-
ma 19.1.4. By the Hahn-Banach theorem the finite dimensional space Ker T
has a topological supplement B, B,. It also follows from condition (ii)
that

(19.1.2) Ifl,SCITfll,, feB,.

In fact, otherwise there is a sequence f,eB, with | fj[l;=1 and [Tfl[,<1/j.
By condition (ii) a subsequence has a limit f such that feB,, | fll=1, Tf=0
which is a contradiction proving (19.1.2). Conversely, assume that (19.1.2) is
valid and that f; is a bounded sequence in B, such that Tf; is convergent.
We can write f;=g;+h; where g;eKer T and h;e B, are also bounded. Since
Th;=Tf; it follows from (19.1.2) that the sequence h; is convergent, and the
bounded sequence g; in the finite dimensional space Ker T has a convergent
subsequence. Thus (ii) holds. Now it follows from Banach’s theorem that
(19.1.2) holds if and only if T restricted to By is injective with closed range.

This proves the equivalence of (i) and (ii).

Our first stability result on the index is the following

Theorem 19.1.5. If T satisfies the conditions in Proposition 19.1.3 and
Se #(By,B,) has sufficiently small norm then dimKer(T+S)<dimKer T,
T+ S has closed range, and ind(T+ S)=ind T.

Proof. Assume first that T is bijective. Then
T+S=TU+T"'8)
is bijective if |T~'|||S||<1, for I+ T~'S can then be inverted by the

Neuman series. Thus the theorem is valid then. Next assume only that T is
in