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Bridging the gap between what is traditionally taught in textbooks and what is
actually practiced in engineering firms, Introduction to Structural Analysis:
Displacement and Force Methods clearly explains the two fundamental methods
of structural analysis: the displacement method and the force method. It also shows
how these methods are applied, particularly to trusses, beams, and rigid frames.

Acknowledging the fact that virtually all computer structural analysis programs are
based on the matrix displacement method of analysis, the text begins with the
displacement method. A matrix operations tutorial is also included for review and
self-learning. To minimize any conceptual difficulty readers may have, the displacement
method is introduced with the plane truss analysis and the concept of nodal
displacement.

The book then presents the force method of analysis for plane trusses to illustrate
force equilibrium, deflection, statistical indeterminacy, and other concepts that help
readers to better understand the behavior of a structure. It also extends the force
method to beam and rigid frame analysis. Toward the end of the book, the
displacement method reappears along with the moment distribution and slope-
deflection methods in the context of beam and rigid frame analysis. Other topics
covered include influence lines, non-prismatic members, composite structures,
secondary stress analysis, and limits of linear and static structural analysis.

Integrating classical and modern methodologies, this book explains complicated
analysis using simplified methods and numerous examples. It provides readers with
an understanding of the underlying methodologies of finite element analysis and
the practices used by professional structural engineers.
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Preface

There are two new developments in the last 30 years in the civil engineering 
curricula that have a direct bearing on the design of the content of a course 
in structural analysis: the reduction of credit hours to three required hours 
in structural analysis in most civil engineering programs and the increasing 
gap between what is taught in textbooks and classrooms and what is being 
practiced in engineering firms. The former is brought about by the recog-
nition of civil engineering educators that structural analysis as a required 
course for all civil engineering majors need not cover in great detail all the 
analytical methods. The latter is certainly the result of the ubiquitous appli-
cations of personal digital computers and handheld devices.

This structural analysis text is designed to bridge the gap between 
engineering practice and education. Acknowledging the fact that virtu-
ally all computer structural analysis programs are based on the matrix 
displacement method of analysis, the text begins with the matrix dis-
placement method. A matrix operations tutorial is included as a review 
and a self-learning tool. To minimize the conceptual difficulty a student 
may have with the displacement method, it is introduced with the plane 
truss analysis, where the concept of nodal displacement is presented. 
Introducing the matrix displacement method early also makes it easier 
for students to work on term project assignments that involve the utiliza-
tion of computer programs.

The force method of analysis for plane trusses is then introduced to pro-
vide the coverage of force equilibrium, deflection, statistical indeterminacy, 
and so forth, that are important in the understanding of the behavior of a 
structure and the development of a feel for it.

The force method of analysis is then extended to beam and rigid frame 
analysis, almost in parallel to the topics covered in truss analysis. The beam 
and rigid frame analysis is presented in an integrated way so that all the 
important concepts are covered concisely without undue duplicity.

The displacement method then reappears when the moment distribution 
and slope-deflection methods are presented as a prelude to the matrix dis-
placement method for beam and rigid frame analysis. The matrix displace-
ment method is presented as a generalization of the slope-deflection method.

The aforementioned description outlines the introduction of the two fun-
damental methods of structural analysis, the displacement method and the 
force method, and their applications to the two groups of structures, trusses, 
and beams and rigid frames. Other related topics such as influence lines, 
non-prismatic members, composite structures, secondary stress analysis, 
and limits of linear and static structural analysis are presented at the end.
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1
Truss Analysis: Matrix 
Displacement Method

1.1 � What Is a Truss?

In a plane, a truss is composed of relatively slender members often form-
ing triangular configurations. An example of a plane truss used in the roof 
structure of a house is shown in the following figure.

A roof truss called Fink truss.

The circular symbol in the figure represents a type of connection called 
hinge, which allows members to rotate in the plane relative to each other 
at the connection but not to move in translation against each other. A hinge 
connection transmits forces from one member to the other but not force cou-
ple, or moment, from one member to the other.

In real construction, a plane truss is most likely a part of a structure in the 
three-dimensional space we know. An example of a roof structure is shown 
next. The bracing members are needed to connect two plane trusses together. 
The purlins and rafters are for the distribution of roof load to the plane trusses.

BracingRafter

Purlin

A roof structure with two Fink trusses.
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Some other truss types seen in roof or bridge structures are shown next.

Sawtooth Truss �ree-Hinged Arch

Parker Truss: Pratt with Curved Chord K-Truss

Deck-Pratt Truss Warren Truss

Pratt Truss Howe Truss

Different types of plane trusses.

1.2 � A Truss Member

Each member of a truss is a straight element, taking loads only at the two 
ends. As a result, the two forces at the two ends must act along the axis of the 
member and of the same magnitude in order to achieve equilibrium of the 
member as shown in the following figure.

Truss member in equilibrium (left). Truss member not in equilibrium (right).

Furthermore, when a truss member is in equilibrium, the two end forces 
are either pointing away from each other or against each other, creating ten-
sion or compression, respectively, in the member.
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F

F F

F

Truss member in tension (left). Truss member in compression (right).

Whether a member is in tension or compression, the internal force acting on 
any chosen section of the member is the same throughout the member. Thus, 
the state of force in the member can be represented by a single member force 
entity, represented by the notation F, which is the axial member force of a 
truss member. There are no other member forces in a truss member.

The internal force is the same at any section of a truss member.

A tensile member force is signified by a positive value in F and a compres-
sive member force is signified by a negative value in F. This is the sign con-
vention for the member force of an axial member.

Whenever there is force in a member, the member will deform. Each seg-
ment of the member will elongate or shorten and the cumulative effect of the 
deformation is a member elongation, or shortening, ∆.

F ∆

Member elongation.

Assuming the material the member is made of is linearly elastic with 
Young’s modulus E, and the member is prismatic with a constant cross-sec-
tional area, A, and length, L, then the relationship between the member elon-
gation and member force can be shown to be:

	
= =F k k

EA
L

with 	 (1.1)
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where the proportional factor k is called the member rigidity. Equation 1.1 
is the member stiffness equation expressed in local coordinate, namely the 
axial coordinate. This relationship will eventually be expressed in a coordi-
nate system that is common to all members in a truss, that is, a global coor-
dinate system. For this to be done, we must examine the relative position of 
a member in the truss.

1.3 � Member Stiffness Equation in Global Coordinates

The simplest truss is a three-member truss as shown. Once we have defined 
a global coordinate system, the x,y system, then the displaced configuration 
of the whole structure is completely determined by the nodal displacement 
pairs (u1, v1), (u2, v2), and (u3, v3).

v3

u33

2

1

x

y

A three-member truss (left). Nodal displacements in global coordinates (right).

Furthermore, the elongation of a member can be calculated from the 
nodal displacements.

2'

2
∆

θ
u2 – u1

v2 – v1

x

2'2

1 1'
1'

1

2
2'

Displaced member (left). Overlapped configurations (right).

	 Δ = (u2 – u1) Cosθ + (v2 – v1) Sinθ	 (1.2a)
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or

	 Δ = – (Cosθ)u1 – (Sinθ)v1 + (Cosθ)u2 + (Sinθ)v2	 (1.2b)

In Equation 1.2, it is understood that the angle θ refers to the orientation of 
members 1 and 2. For brevity we did not include the subscript that designates 
the member. We can express the same equation in a matrix form, letting C 
and S represent Cosθ and Sinθ, respectively.

	

= − −C S C S

u
v
u
v

1

1

2

2

	 (1.3)

Again, the subscripts 1 and 2 are not included for ∆, C, and S for brev-
ity. One of the advantages of using the matrix form is that the functional 
relationship between the member elongation and the nodal displacement is 
clearer than that in Equation 1.2. Thus, the above equation can be cast as 
a transformation between the local quantity of deformation ∆L= ∆ and the 
global nodal displacements ∆G:

	 ∆L = Γ ∆G	 (1.4)

where

	
Γ = − −C S C S 	 (1.5)

and

	

u
v
u
v

G

1

1

2

2

= 	 (1.6)

Here and elsewhere a boldfaced symbol represents a vector or a matrix. 
Equation 1.4 is the deformation transformation equation. We now seek the trans-
formation between the member force in local coordinate, FL = F and the nodal 
forces in the x,y coordinates, FG.
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x

y

Fx1

Fx2

Fy1

Fy2

F

F

=
θ

Member force F and nodal forces in global coordinates.

From the preceding figure and the equivalence of the two force systems, 
we obtain

	 

F

F
F

F
F

C
S
C
S

FG

x

y

x

y

1

1

2

2

= =

−
−

 

	 (1.7)

where C and S represent the cosine and sine of the member orientation angle 
θ. Noting that the transformation vector is the transpose of Γ, we can rewrite 
Equation 1.7 as

	 FG = ΓT FL	 (1.8)

Equation 1.8 is the force transformation equation.
By simple substitution, using Equation 1.1 and Equation 1.4, the force 

transformation equation leads to

	 FG = ΓT FL = ΓT kΔL = ΓT kΓ ΔG

or

	 FG = kGΔG	 (1.9)

where

	 kG = ΓT kΓ	 (1.10)

Equation 1.10 is the stiffness transformation equation, which transforms the 
member stiffness in local coordinate, k, into the member stiffness in global 
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coordinate, kG. In the expanded form, that is, when the triple multiplication 
in Equation 1.10 is carried out, the member stiffness is a 4 × 4 matrix:

	

=

− −

− −

− −

− −

k
EA
L

C CS C CS
CS S CS S
C CS C CS
CS S CS S

G

2 2

2 2

2 2

2 2

	 (1.11)

The meaning of each of the components of the matrix, (kG)ij, can be explored 
by considering the nodal forces corresponding to the four sets of “unit” 
nodal displacements in the following figure.

∆G =

∆G =

∆G =

∆G =

v2

u2

v1

u1

=

0

0

0

1

v2

u2

v1

u1

=

0

0

1

0

v2

u2

v1

u1

=

0

1

0

0

v2

u2

v1

u1

=

1

0

0

0

1

2

1

2

1

2

1

2

Four sets of unit nodal displacements.

When each of the “unit” displacement vectors is multiplied by the stiff-
ness matrix according to Equation 1.9, it becomes clear that the resulting 
nodal forces are identical to the components of one of the columns of the 
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stiffness matrix. For example, the first column of the stiffness matrix con-
tains the nodal forces needed to produce a unit displacement in u1, with all 
other nodal displacements being zero. Furthermore, we can see (kG)ij is the ith 
nodal force due to a unit displacement at the jth nodal displacement.

By examining Equation 1.11, we observe the following features of the stiff-
ness matrix:

	 a.	The member stiffness matrix is symmetric, (kG)ij = (kG)ji.

	 b.	The algebraic sum of the components in each column or each row 
is zero.

	 c.	The member stiffness matrix is singular.

Feature (a) can be traced to the way the matrix is formed, via Equation 1.10, 
which invariably leads to a symmetric matrix. Feature (b) comes from the 
fact that nodal forces due to a set of unit nodal displacements must be in 
equilibrium. Feature (c) is due to the proportionality of the pair of columns 
1 and 3, or 2 and 4.

The fact that member stiffness matrix is singular and therefore cannot 
be inverted indicates that we cannot solve for the nodal displacements cor-
responding to any given set of nodal forces. This is because the given set 
of nodal forces may not be in equilibrium and therefore it is not meaning-
ful to ask for the corresponding nodal displacements. Even if they are in 
equilibrium, the solution of nodal displacements requires a special proce-
dure described under “eigenvalue problems” in linear algebra. We shall not 
explore such possibilities herein.

In computing the member stiffness matrix, we need to have the member 
length, L, the member cross-section area, A, the Young’s modulus of the 
member material, E, and the member orientation angle, θ. The member ori-
entation angle is measured from the positive direction of the x-axis to the 
direction of the member following a clockwise rotation. The member direc-
tion is defined as the direction from the starting node to the end node. In the 
following figure, the orientation angles for the two members differ by 180 
degrees if we consider node 1 as the starting node and node 2 as the end node. 
In the actual computation of the stiffness matrix, however, such distinction in 
the orientation angle is not necessary because we do not need to compute 
the orientation angle directly, as will become clear in the following example.

2

1

1

2

θ

θ

x

x

Member direction is defined from the starting node to the end node.
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Equation 1.9 can now be expressed in its explicit form as

	

= =

F
F

F
F

k k k k
k k k k
k k k k
k k k k

u
v
u
v

x

y

x

y

1

1

2

2

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1

1

2

2
  

	 (1.12)

where the stiffness matrix components, kij, are given in Equation 1.11.

Example 1.1

Consider a truss member with E = 70 GPa, A = 1430 mm2, L = 5 m, and 
orientated as shown in the following figure. Establish the member stiffness 
matrix.

x

y

x

y

Fx1,u1

Fx2,u2

Fy2,v2

Fy1,v1

1

2

1

2

4 m

θ θ

3 m 2 m2 m

	 A truss member and its nodal forces and displacements.

Solution

The stiffness equation of the member can be established by the following 
procedures.

	 a.	Define the starting and end nodes.
Starting Node: 1. End Node: 2.

	 b.	Find the coordinates of the two nodes.
Node 1: (x1, y1) = (2,2)
Node 2: (x2, y2) = (5,6)

	 c.	Compute the length of the member and the cosine and sine of the 
orientation angle.

	
= − + − = + =L x x y y( ) ( ) 3 4 52 1

2
2 1

2 2 2

 

	
= θ =

−
= = =C Cos

x x
L

x
L

( ) ( ) 3
5

0.62 1

	
= θ =

−
= = =S

y y
L

y
L

Sin
( ) ( ) 4

5
0.82 1
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	 d.	Compute the member stiffness factor.

	
=

×
= × =

EA
L

(70 10 )(0.00143)
5

20 10 N/m 20 MN/m
9

6

 

	 e.	Compute the member stiffness matrix.

=

− −

− −

− −

− −

=

− −
− −

− −
− −

K
EA
L

C CS C CS
CS S CS S
C CS C CS
CS S CS S

7.2 9.6 7.2 9.6
9.6 12.8 9.6 12.8
7.2 9.6 7.2 9.6
9.6 12.8 9.6 12.8

G

2 2

2 2

2 2

2 2

 

	 f.	Establish the member stiffness equation in global coordinates 
according to Equation 1.12.

	

− −
− −

− −
− −

=

u
v
u
v

F
F

F
F

7.2 9.6 7.2 9.6
9.6 12.8 9.6 12.8
7.2 9.6 7.2 9.6
9.6 12.8 9.6 12.8

x

y

x

y

1

1

2

2

1

1

2

2
 

PROBLEM 1.1

Consider the same truss member with E = 70 GPa, A = 1430 mm2, and 
L = 5 m as in Example 1.1, but designate the starting and ending nodes 
differently as shown in the following figure. Compute the member 
stiffness matrix components (a) k11, (b) k12, and (c) k13 and find the corre-
sponding quantity in Example 1.1. What is the effect of the change of the 
numbering of nodes on the stiffness matrix components?

x

y

x

y

Fx2,u2

Fx1,u1

Fy1,v1

Fy2,v2

2

1

2

1

4 m

3 m 2 m

θ θ

2 m

Problem 1.1
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1.4 � Unconstrained Global Stiffness Equation

Consider the following three-bar truss with E = 70 GPa, A = 1430 mm2 for 
each member. This is a truss yet to be supported and loaded, but we can 
establish the global stiffness equation with the global coordinate system 
shown. Since the truss is not constrained by any support and load, the stiff-
ness equation is called the unconstrained stiffness equation.

x

y

1

2

4 m

3 m 2 m2 m
3

3 m

1 2

3

An unconstrained truss in a global coordinate system.

We will show that the unconstrained global stiffness equation for the truss 
in the preceding figure is

	

− − −
− −

− − −
− − −
− −

− −

=

u
v
u
v
u
v

P
P

P
P

P
P

23.9 9.6 7.2 9.6 16.6 0
9.6 12.8 9.6 12.8 0 0
7.2 9.6 14.4 0 7.2 9.6
9.6 12.8 0 25.6 9.6 12.8

16.6 0 7.2 9.6 23.9 19.6
0 0 9.6 12.8 9.6 12.8

x

y

x

y

x

y

1

1

2

2

3

3

1

1

2

2

3

3
 

where the six-component displacement vector contains the nodal displace-
ments and the six-component force vector on the right-hand side (RHS) 
contains the externally applied forces at the three nodes. The 6 × 6 matrix 
is called the unconstrained global stiffness matrix. The derivation of the 
expression of the matrix is given next. The displacements are expressed in 
the unit of meter (m) and the forces are in meganewton (MN).

Equilibrium equations at nodes. What makes the three-bar assembly into a 
single truss is the fact that the three bars are connected by hinges at the 
nodes numbered in the preceding figure. This means that (a) the bars joining 
at a common node share the same nodal displacements and (b) the forces 
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acting on each of the three nodes are in equilibrium with any externally 
applied forces at each node. The former is called the condition of compat-
ibility and the latter is called the condition of equilibrium. The condition of 
compatibility is automatically satisfied by the designation of the following 
six nodal displacements:

	

u
v
u
v
u
v

1

1

2

2

3

3

= 	 (1.13)

where each pair of the displacements (u,v) refers to the nodal displacements 
at the respective nodes. The condition of compatibility implies that the dis-
placements at the ends of each member are the same as the displacements at 
the connecting nodes. In fact, we can number the members as shown in the 
preceding figure and designate the starting and end nodes of each member 
as in the following table.

Starting and End Node Numbers

Member Starting Node End Node

1 1 2
2 2 3
3 1 3

Then, we can establish the following correspondence between the four nodal 
displacements of each member (local) and the six nodal displacements of the 
whole structure (global).

Corresponding Global DOF Numbers

Global Number

Local Number Member 1 Member 2 Member 3

1 1 3 1
2 2 4 2
3 3 5 5
4 4 6 6

Note that we use the terminology of DOF, which stands for degrees of free-
dom. For the entire truss, the configuration is completely defined by the six 
displacements in Equation 1.13. Thus, we state that the truss has six degrees 
of freedom. Similarly, we may state that each member has four DOFs, since 
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each node has two DOFs and there are two nodes for each member. We may 
also use the way each of the DOF is sequenced to refer to a particular DOF. 
For example, the second DOF of member 2 is the fourth DOF in the global 
nodal displacement vector. Conversely, the third DOF in the global DOF 
nodal displacement vector is u2 according to Equation 1.13 and it shows up as 
the third DOF of member 1 and first DOF of member 2 according to the pre-
vious table. This table will be very useful in assembling the unconstrained 
global stiffness matrix as will be seen later.

The unconstrained global stiffness equation is basically equilibrium equa-
tions expressed in terms of nodal displacements. From the layout of the 
three-bar truss and Equation 1.13, we can see that there are six nodal dis-
placements or six DOFs, two from each of the three nodes. We can see from 
the following figure that there will be exactly six equilibrium equations, two 
from each of the three nodes.

1

2

3

1 2

3
1

2

1

2

3

2

1 3
3

Py2

Px2

(Fy2)1+(Fy2)2

(Fx2)1+
(Fx2)2

Py3

Px3

(Fy3)2+(Fy3)3

(Fx3)2+
(Fx3)3

Py1

Px1

(Fy1)1+(Fy1)3

(Fx1)1+
(Fx1)3

(Fy1)3

(Fx1)3

Node 2 FBD

Node 1 FBD Node 3 FBD

(Fx1)1

(Fy1)1

(Fx2)2(Fx2)1

(Fy2)1
(Fy2)2

(Fx3)2

(Fy3)2

(Fx3)3

(Fy3)3

Free-body diagrams of nodes and members.

The preceding figure, as complicated as it seems, is composed of three 
parts. At the center is a layout of the truss as a whole. The three FBDs (free-
body diagrams) of the members are the second part of the figure. Note that 
we need not be concerned with the equilibrium of each member because 
the forces at the member ends will be generated from the member stiffness 
equation, which guarantees that the member equilibrium conditions are 
satisfied. The third part, the FBDs encircled by dashed lines, is the part 
we need to examine to find the six nodal equilibrium equations. In each 
of the nodal FBDs, the externally applied nodal forces are represented by 
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the symbol P, whereas the other forces are the internal forces forming a 
pair with the respective nodal forces acting at the end of each member. 
The subscript outside the parentheses of these forces indicates the mem-
ber number.

From the three nodal FBDs and noting that the nodal force vector has six 
components, we can easily arrive at the following six equilibrium equations 
expressed in matrix form:

	 

= = + +P
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3

	 (1.14)

where the subscript outside each vector on the RHS indicates the member 
number. Each of the vectors at the RHS, however, can be expressed in terms 
of their respective nodal displacement vector using Equation 1.12, with the 
nodal forces and displacements referring to the global nodal force and dis-
placement representation:
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Each of the previous equations can be expanded to fit the form of 
Equation 1.14:
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When each of the RHS vectors in Equation 1.14 is replaced by the RHS of 
the previous three equations, the resulting equation is the unconstrained 
global stiffness equation,
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 	 (1.15)
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where the components of the unconstrained global stiffness matrix, Kij, is 
the superposition of the corresponding components in each of the three 
expanded stiffness matrices in the previous equations.

In actual computation, it is not necessary to expand the stiffness equation 
in Equation 1.12 into the six-equation form as we did earlier. That was neces-
sary only for the understanding of how the results are derived. We can use 
the local-to-global DOF relationship in the global DOF table and place the 
member stiffness components directly into the global stiffness matrix. For 
example, component (1,3) of the member-2 stiffness matrix is added to com-
ponent (3,5) of the global stiffness matrix. This simple way of assembling 
the global stiffness matrix is called the direct stiffness method.

To carry out the aforementioned procedures numerically, we need to use 
the dimension and member property given at the beginning of this section 
to arrive at the stiffness matrix for each of the three members:

k
EA
L

C CS C CS
CS S CS S
C CS C CS
CS S CS S
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7.2 9.6 7.2 9.6
9.6 12.8 9.6 12.8
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0 0 9.6 0

G 3
3

2 2

2 2
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When the three member stiffness matrices are assembled according to the 
direct stiffness method, the unconstrained global stiffness equation given 
at the beginning of this section is obtained. For example, the unconstrained 
global stiffness matrix component k34 is the superposition of (k34)1 of member 
1 and (k12)2 of member 2. Note that the unconstrained global stiffness matrix 
has the same features as the member stiffness matrix: symmetric and singu-
lar, and so forth.
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1.5 � Constrained Global Stiffness Equation and Its Solution

Example 1.2

Now consider the same three-bar truss as shown before with E = 70 GPa 
and A = 1430 mm2 for each member but with the support and loading con-
ditions added.

x

y

1

2

4 m

3 m 2 m2 m

3

3 m

1 2

3

1.0 MN

0.5 MN

A constrained and loaded truss in a global coordinate system.

Solution

The support conditions are u1 = 0, v1 = 0, and v3 = 0. The loading conditions 
are Px2 = 0.5 MN, Py2 = –1.0 MN, and Px3 = 0. The stiffness equation given 
at the beginning of the last section now becomes
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3
 

Note that there are exactly six unknowns in the six equations. The solu-
tion of the six unknowns is obtained in two steps. In the first step, we notice 
that the three equations, third through fifth, are independent from the other 
three and can be dealt with separately.
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	 (1.16)
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Equation 1.16 is the constrained stiffness equation of the loaded truss. 
The constrained 3 × 3 stiffness matrix is symmetric but not singular. The 
solution of Equation 1.16 is u2 = 0.053 m, v2 = –0.053 m, and u3 = 0.037 m. 
In the second step, the reactions are obtained from the direct substitution 
of the displacement values into the other three equations, first, second, 
and sixth:
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− −
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The member deformation represented by the member elongation can be 
computed by the member deformation equation, Equation 1.3:

	 

C S C S

u
v
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v

Member 1:

0.6 0.8 0.6 0.8

0
0
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1
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1
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For member 2 and member 3, the elongations are ∆2 = –0.052 m and ∆3 = 
0.037 m.

The member forces are computed using Equation 1.1.

	
= = = = =F k

EA
L

F F F–0.20 MN, –1.04 MN, 0.62MN1 2 3
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The results are summarized in the following table.

Nodal and Member Solutions

Displacement (m) Force (MN)

Node x-direction y-direction x-direction y-direction

1 0 0 –0.50 0.17
2 0.053 –0.053 0.50 –1.00
3 0.037 0 0 0.83

Member Elongation (m) Force (MN)
1 –0.011 –0.20
2 –0.052 –1.04
3 0.037 0.62

PROBLEM 1.2

Consider the same three-bar truss as that in Example 1.2 but with a dif-
ferent numbering system for members. Construct the constrained stiff-
ness equation, Equation 1.16.

x

y

1

2

4 m

3 m 2 m2 m

3

3 m

1 3

2

1.0 MN

0.5 MN

Problem 1.2

1.6 � Procedures of Truss Analysis

Example 1.3

Consider the following two truss problems, each with member properties 
E = 70 GPa and A = 1430 mm2. The only difference is the existence of an 
additional diagonal member in the second truss. It is instructive to see how 
the analyses and results differ.
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1 MN

0.5 MN

1 4

32

4 m

3 m

1

2

3
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5 

1 MN

0.5 MN

1 4

32

4 m

3 m

1

2

3

4 

5 6

Two truss problems.

Solution

We will carry out a step-by-step solution procedure for the two problems, 
referring to the truss at the left and at the right in the preceding figure as the 
first and second truss, respectively. We also define the global coordinate 
system in both cases as one with the origin at node 1 and its x- and y-direc-
tion coincide with the horizontal and vertical directions, respectively.

	 1.	Number the nodes and members, and define the nodal coordinates.

Nodal Coordinates

Node x (m) y (m)

1 0 0
2 0 4
3 3 4
4 3 0

	 2.	� Define member property, starting and end nodes and compute 
member data.

Member Data

Input Data* Computed Data

Member
S 

Node
E 

Node
EA 

(MN) Δx Δy L C S EA/L

1 1 2 100 0 4 4 0.0 1.0 25.00
2 2 3 100 3 0 3 1.0 0.0 33.33
3 3 4 100 0 – 4 4 0.0 –1.0 25.00
4 1 4 100 3 0 3 1.0 0.0 33.33
5 2 4 100 3 – 4 5 0.6 –0.8 20.00
6 1 3 100 3 4 5 0.6 0.8 20.00

*	 S Node and E Node represent starting and end nodes.
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	 3.	Compute member stiffness matrices.
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kMember 6 (for the second truss only): ( ) =

7.2 9.6 7.2 9.6
9.6 12.8 9.6 12.8
7.2 9.6 7.2 9.6
9.6 12.8 9.6 12.8

G 6

	 4.	Assemble the unconstrained global stiffness matrix.
In order to use the direct stiffness method to assemble the global stiffness 

matrix, we need the following table, which gives the global DOF number 
corresponding to each local DOF of each member. This table is generated 
using the member data given in the table in step 2, namely, the starting and 
end nodes data.
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Global DOF Number for Each Member

Local DOF 
Number

Global DOF Number for Member

1 2 3 4 5 6*

1 1 3 5 1 3 1
2 2 4 6 2 4 2
3 3 5 7 7 7 5
4 4 6 8 8 8 6

*	 For the second truss only.

Armed with this table we can easily direct the member stiffness compo-
nents to the right location in the global stiffness matrix. For example, the 
(2,3) component of (kG)5 will be added to the (4,7) component of the global 
stiffness matrix. The unconstrained global stiffness matrix is obtained after 
all the assembling is done.

K

For the first truss:

33.33 0 0 0 0 0 33.33 0
0 25.00 0 25.00 0 0 0 0
0 0 40.53 9.60 33.33 0 7.20 9.60
0 25.00 9.60 37.80 0 0 9.60 12.8
0 0 33.33 0 33.33 0 0 0
0 0 0 0 0 25.00 0 25.00

33.33 0 7.20 9.60 0 0 40.53 9.60
0 0 9.60 12.80 0 25.00 9.60 37.80

1=

−
−
− − −

− − −
−

−
− − −

− − −

For the second truss:

	

K2 = 

37.80–9.60–25.000–12.809.6000

–9.6040.53009.60–7.200–33.33

–25.00037.809.6000–12.80–9.60

009.6040.520–33.33–9.60–7.20

–12.89.600037.80–9.60–25.000

9.60–7.200–33.33–9.6040.5300

00–12.80–9.60–25.00037.809.60

0–33.33–9.60–7.20009.6040.53

Note that K2 is obtained by adding (KG)6 to K1 at the proper locations in 
columns and rows 1, 2, 5, and 6 (enclosed in dashed lines above).

	 5.	Assemble the constrained global stiffness equation.
Once the support and loading conditions are incorporated into the stiff-

ness equations we obtain:
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For the first truss:

37.80–9.60–25.000–12.809.6000

–9.6040.53009.60–7.200–33.33
–25.00025.0000000

0000–33.3300

–12.89.600037.80–9.60–25.000

9.60–7.200–33.33–9.6040.5300

0000–25.00025.000

0–33.330000033.33

0

0

0

u4

v3

u3

v2

u2

=

0

0

0

–1.0

0.5

Py4

Py1

Px1

33.33

For the second truss:

–9.60

–9.60

–25.00

–12.8

–7.20

–33.33

37.80–25.000–12.809.6000

40.53009.60–7.200–33.33

037.809.6000–12.80–9.60

009.6040.520–33.33–9.60–7.20

9.600037.80–9.60–25.000

9.600–33.33–9.6040.5300

00–12.80–9.60–25.00037.809.60

0–9.60–7.20009.6040.53

0

0

0
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u3
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u2

=
–1.0

0

0

0

0.5

Py4

Py1

Px1

	 6.	Solve the constrained global stiffness equation.
The constrained global stiffness equation in either case contains five 

equations corresponding to the third through seventh equations (enclosed 
in dashed lines above) that are independent from the other three equations 
and can be solved for the five unknown nodal displacements.

For the first truss:
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For the second truss:
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4
  

The reactions are computed by direct substitution.
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For the first truss:
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For the second truss:
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Results will be summarized at the end of the example.
	 7.	Compute the member elongations and forces.

For a typical member i:
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	 8.	Summarize results.

Results for the First Truss

Displacement (m) Force (MN)

Node x-direction y-direction x-direction y-direction

1 0 0 –0.50 0.33
2 0.066 –0.013 0.60 –1.00
3 0.067 0 0 0
4 0.015 0 0 0.67

Member Elongation (m) Force (MN)
1 –0.013 –0.33
2 0 0
3 0 0
4 0.015 0.50
5 –0.042 –0.83

Results for the Second Truss

Displacement (m) Force (MN)

Node x-direction y-direction x-direction y-direction

1 0 0 –0.50 0.33
2 0.033 –0.021 0.60 –1.00
3 0.029 –0.007 0 0
4 0.011 0 0 0.67

Member Elongation (m) Force (MN)
1 –0.021 –0.52
2 –0.004 –0.14
3 –0.008 –0.19
4 0.011 0.36
5 0.030 –0.60
6 0.012 0.23

Note that the reactions at node 1 and 4 are identical in the two cases, but 
other results are changed by the addition of one more diagonal member.

	 9.	Concluding remarks.
If the number of nodes is N and the number of constrained DOF is 

C, then
	 a.	 The number of simultaneous equations in the unconstrained 

stiffness equation is 2N.
	 b.	 The number of simultaneous equations for the solution of 

unknown nodal displacements is 2N – C.
In the present example, both truss problems have five equations for the five 
unknown nodal displacements. These equations cannot be easily solved 
with hand calculation and should be solved by computer.
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PROBLEM 1.3

The truss shown next is made of members with properties E = 70 GPa 
and A = 1430 mm2. Use a computer to find support reactions, member 
forces, member elongations, and all nodal displacements for (a) a unit 
load applied vertically at the mid-span node of the lower chord mem-
bers, and (b) a unit load applied vertically at the first internal lower 
chord node. Draw the deflected configuration in each case.

Problem 1.3

1.7 � Kinematic Stability

In the previous analysis, we learned that the unconstrained stiffness matrix 
is always singular, because the truss is not yet supported or constrained. 
What if the truss is supported but not sufficiently or properly supported, 
or the truss members are not properly placed? Consider the following three 
examples. Each is a variation of the example truss problem (Example 1.3) we 
have just solved.

1

Three unstable truss configurations.

	 1.	Truss at left. The three roller supports provide constraints only in 
the vertical direction but not in the horizontal direction. As a result, 
the truss can move in the horizontal direction indefinitely. There is 
no resistance to translation in the horizontal direction.
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	 2.	Truss in the middle. The reactions provided by the supports all point 
to node 1. As a result, the reaction forces cannot counterbalance any 
applied force that produces a nonzero moment about node 1. The 
truss is not constrained against rotation about node 1.

	 3.	Truss at the right. The supports are fine, providing constraints 
against translation as well as rotation. The members of the truss 
are not properly placed. Without a diagonal member, the truss will 
change shape as shown. The truss cannot maintain its shape against 
arbitrarily applied external forces at the nodes.

The first two cases are such that the trusses are externally unstable. The 
last one is internally unstable. The resistance against changing shape or 
location as a mechanism is called kinematic stability. Although kinematic 
stability or instability can be inspected through visual observation, math-
ematically it manifests itself in the characteristics of the constrained global 
stiffness matrix. If the matrix is singular, then we know the truss is kine-
matically unstable. In the example problem 1.3 in the last section, the two 
5 × 5 stiffness matrices are both nonsingular, otherwise we would not have 
been able to obtain the displacement solutions. Thus, kinematic stability of 
a truss can be tested mathematically by investigating the singularity of the 
constrained global stiffness matrix of a truss. In practice, if the displacement 
solution appears to be arbitrarily large or disproportionate among some dis-
placements, then it may be the sign of an unstable truss configuration.

Sometimes, kinematic instability can be detected by counting constraints 
or unknown forces, for external instability and internal instability. External 
instability happens if there is insufficient number of constraints. Since it takes 
at least three constraints to prevent translation and rotation of an object in a 
plane, any support condition that provides only one or two constraints will 
result in instability. The left truss in the following figure has only two support 
constraints and is unstable. Internal instability happens if the total number of 
force unknowns is less than the number of displacement DOFs. If we denote 
the number of member force unknowns as M and support reaction unknowns 
as R, then internal instability results if M + R < 2N. The truss at the right in the 
following figure has M = 4 and R = 3 but 2N = 8. It is unstable.

Kinematic instability resulting from insufficient number of supports or members.
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PROBLEM 1.4.
Discuss the kinematic stability of each of the plane trusses shown next.

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

Problem 1.4

1.8 � Summary

The fundamental concept in the displacement method and the procedures of 
solution are the following:

	 1.	 If all the key displacement quantities of a given problem are known, 
then the deformation of each member can be computed using the 
conditions of compatibility, which is manifested in the form of 
Equation 1.2 through Equation 1.4.

	 2.	Knowing the member deformation, we can then compute the mem-
ber force using the member stiffness equation, Equation 1.1.
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	 3.	The member force of a member can be related to the nodal forces 
expressed in the global coordinate system by Equation 1.7 or 
Equation 1.8, which is the forced transformation equation.

	 4.	The member nodal forces and the externally applied forces are in 
equilibrium at each node, as expressed in Equation 1.14, which is the 
global equilibrium equation in terms of nodal forces.

	 5.	The global equilibrium equation can then be expressed in terms of 
nodal displacements through the use of the member stiffness equa-
tion, Equation 1.11. The result is the global stiffness equation in terms 
of nodal displacements, Equation 1.15.

	 6.	Since not all the nodal displacements are known, we can solve for 
the unknown displacements from the constrained global stiffness 
equation, Equation 1.16 in Example 1.3.

	 7.	Once all the nodal displacements are computed, the remaining 
unknown quantities are computed by simple substitution.

The displacement method is particularly suited for computer solution 
because the solution steps can be easily programmed through the direct 
stiffness method of assembling the stiffness equation. The correct solution 
can always be computed if the structure is stable (kinematically stable), 
which means the structure is internally properly connected and externally 
properly supported to prevent it from becoming a mechanism under any 
loading conditions.
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2
Truss Analysis: Force Method—Part I

2.1 � Introduction

In the chapter on matrix displacement method of truss analysis, truss analy-
sis is formulated with nodal displacement unknowns as the fundamental 
variables to be determined. The resulting method of analysis is simple and 
straightforward and is very easy to be implemented into a computer pro-
gram. As a matter of fact, virtually all structural analysis computer packages 
are coded with the matrix displacement method.

The one drawback of the matrix displacement method is that it does not 
provide any insight on how the externally applied loads are transmitted and 
taken up by the members of the truss. Such an insight is critical when an 
engineer is required not only to analyze a given truss but also to design a 
truss from scratch.

We will now introduce a different approach, the force method. The essence of 
the force method is the formulation of the governing equations with the forces 
as unknown variables. The beginning point of the force method is the equilib-
rium equations expressed in terms of forces. Depending on how the free-body 
diagrams (FBDs) are selected to develop these equilibrium equations, we may 
use either the method of joints or the method of sections or a combination of 
both to solve a truss problem.

In the force method of analysis, if the force unknowns can be solved by the 
equilibrium equations alone, then the solution process is very straightfor-
ward: finding member forces from equilibrium equations, finding member 
elongation from member forces, and finding nodal displacements from mem-
ber elongation. Assuming that the trusses considered herein are all kine-
matically stable, the only other prerequisite for such a solution procedure is 
that the truss be a statically determinate one, that is, the total number of force 
unknowns is equal to the number of independent equilibrium equations. In 
contrast, a statically indeterminate truss, which has more force unknowns 
than the number of independent equilibrium equations, requires the intro-
duction of additional equations based on the geometric compatibility or con-
sistent deformations to supplement the equilibrium equations. We shall study 
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the statically determinate problems first, beginning by a brief discussion of 
determinacy and truss types.

2.2 � Statically Determinate Plane Truss Types

For statically determinate trusses, the force unknowns, consisting of M 
member forces if there are M members and R reactions, are equal in number 
to the equilibrium equations. Since one can generate two equilibrium equa-
tions from each node, the number of independent equilibrium equations is 
2N, where N is the number of nodes. Thus by definition M + R = 2N is the 
condition of statical determinacy. This is to assume that the truss is stable, 
because it is meaningless to ask whether the truss is determinate if it is not 
stable. For this reason, stability of a truss should be examined first. One class 
of plane trusses, called simple truss, is always stable and determinate if prop-
erly supported externally. A simple truss is a truss built from a basic triangle 
of three bars and three nodes by adding two bars and a node one at a time. 
Examples of simple trusses are shown next.

Simple trusses.

The basic triangle of three bars (M = 3) and three nodes (N = 3) is a stable 
configuration and satisfies M + R = 2N if there are three reaction forces (R = 3). 
Adding two bars and a node creates a different but stable configuration. The 
two more force unknowns from the two bars are compensated exactly by the 
two equilibrium equations from the new node. Thus, M + R = 2N is still satisfied.

Another class of plane truss is called compound truss. A compound truss is a 
truss composed of two or more simple trusses linked together. If the linkage 
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consists of three bars placed properly, not forming parallel or concurrent 
forces, then a compound truss is also stable and determinate. Examples of 
stable and determinate compound trusses are shown next, where the dotted 
lines cut across the links.

Compound trusses.

A plane truss can neither be classified as a simple truss nor as a compound 
truss is a complex truss. A complex truss is best solved by the computer version 
of the method of joints to be described later. A special method, called method of 
substitution, was developed for complex trusses in the precomputer era. It has 
no practical purposes nowadays and will not be described herein. Two complex 
trusses are shown in the following figure, the one at the left is stable and deter-
minate, and the other at the right is unstable. The instability of complex trusses 
cannot be easily determined. There is a way, however: the self-equilibrium test. 
If we can find a system of internal forces that are in equilibrium by themselves 
without any externally applied loads, then the truss is unstable. It can be seen 
that the truss at the right can have the same tension force of any magnitude, S, 
in the three internal bars and compression force, –S, in all the peripheral bars, 
and they will be in equilibrium without any externally applied forces.

60°

60°
60°

60°

60°
60°

Stable and unstable complex trusses.

Mathematically such a situation indicates that there will be no unique solu-
tion for any given set of loads, because the self-equilibrium “solution” can 
always be superposed onto any set of solutions and create a new set of solu-
tions. Without a unique set of solutions is a sign that the structure is unstable.
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We may summarize the aforementioned discussions with the following 
conclusions:

	 1.	Stability can often be determined by examining the adequacy of 
external supports and internal member connections. If M + R < 2N, 
however, then it is always unstable, because there is not enough 
number of members or supports to provide adequate constraints to 
prevent a truss from turning into a mechanism under certain loads.

	 2.	For a stable plane truss, if M + R = 2N, then it is statically determinate.
	 3.	A simple truss is stable and determinate.
	 4.	 For a stable plane truss, if M + R > 2N, then it is statically indeterminate. 

The discrepancy between the two numbers, M + R – 2N, is called 
the degrees of indeterminacy, or the number of redundant forces. 
Statically indeterminate truss problems cannot be solved by equilib-
rium conditions alone. The conditions of compatibility must be uti-
lized to supplement the equilibrium conditions. This way of solution 
is called method of consistent deformations and will be described in 
the next chapter. Examples of indeterminate trusses are shown next.

1 4

1 3

4 

5 

1 4

32

1

2

3

4

5

2

1 4

32

1 3

4

5 6

Statically indeterminate trusses.

In the preceding figure, the truss at the left is statically indeterminate to 
the first degree because there is one redundant reaction force: M = 5, R = 4, 
and M + R – 2N = 1. The truss in the middle is also statically indeterminate to 
the first degree because of one redundant member: M = 6, R = 3, and M + R – 
2N = 1. The truss at the right is statically indeterminate to the second degree 
because M = 6, R = 4, and M + R – 2N = 2.

2.3 � Method of Joints and Method of Sections

The method of joints draws its name from the way a FBD is selected: at the joints 
of a truss. The key to the method of joints is the equilibrium of each joint. From 
each FBD, two equilibrium equations are derived. The method of joints pro-
vides insight on how the external forces are balanced by the member forces at 
each joint, whereas the method of sections provides insight on how the member 
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forces resist external forces at each “section.” The key to the method of sections 
is the equilibrium of a portion of a truss defined by a FBD, which is a portion of 
the structure created by cutting through one or more sections. The equilibrium 
equations are written from the FBD of that portion of the truss. There are three 
equilibrium equations as opposed to the two for a joint. Consequently, we make 
sure there are no more than three unknown member forces in the FBD when we 
choose to cut through a section of a truss. In the following example problems 
and elsewhere, we use the terms joint and node interchangeably.

Example 2.1

Find all support reactions and member forces of the loaded truss shown next.

x

y

1

2

4 m

3 m

3

3 m

1 2

3

1.0 kN

0.5 kN

A truss problem to be solved by the method of joints.

Solution

We shall give a detailed step-by-step solution.

	 1.	 Identify all force unknowns. The very first step in any force method 
of analysis is to identify all force unknowns. This is achieved by 
examining the reaction forces and member forces. The reaction 
forces are exposed in an FBD of the whole structure.

1 2

3

2

31

1.0 kN

0.5 kN

Ry1

Rx1

Ry3

Free-body diagram of the three-bar-truss to expose the reaction forces.
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	 Note that in the figure, the subscripts of the reaction forces indi-
cate the direction (first subscript) and the location of the reactions 
(second subscript). The three reaction forces are Rx1, Ry1, and Ry3. 
The member forces are F1, F2, and F3.

	 2.	Examine the static determinacy of the structure. Before we pro-
ceed to find the force unknowns by the method of joints, we must 
be sure that all the force unknowns can be determined by the 
static equilibrium conditions alone, because that is the essence 
of the method of joints, namely, using joint equilibrium equations 
to find force unknowns. Denote the number of all member force 
unknowns as M and the number of reaction forces as R, and the 
total number of force unknowns is M + R. In the present example, 
M = 3, R = 3, and M + R = 6. This number is to be compared to the 
number of equilibrium equations available.
	 There are three nodes in the truss. We can write two equilib-

rium equations at each node of a plane truss:

	 F Fx y0, 0Σ = Σ = 	 (2.1)

Thus the total number of equilibrium equations available is 2N, where N is 
the number of nodes in a truss. In the present example, N = 3 and 2N = 6. 
Thus, the number of available static equilibrium equations exactly matches 
the total number of force unknowns, M + R = 2N. The problem posed in the 
present example is statically determinate. We can reach the same conclu-
sion if we note that the truss is a simple truss.

	 3.	Solve for force unknowns. The most obvious next step is to write up 
the six nodal equilibrium equations and solve for the six unknown 
forces simultaneously. That would require the use of a computer. 
For the present example, and many other cases, an experienced 
structure engineer can solve a problem by hand calculation faster 
than using a computer. This hand-calculation process gives insight 
to the force flow from externally applied load, through members, 
and to the supports. This is the process that is presented herein.

	 a.	 Find all reactions. Although not necessary, finding all reaction 
forces from the FBD of the whole structure first is often the 
fastest way of solving a plane truss problem.

1 2

3

2

31

1.0 kN

0.5 kN

Rx1

Ry1 Ry3

3 m 3 m

4 m

Free-body diagram for finding reactions.
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	 The three reaction forces can be solved one at a time by 
applying the three equilibrium equations one by one:

∑ Fx = 0 Rx1 + 0.5 = 0 Rx1 = –0.5 kN

∑ M1 = 0 Ry3(6) – (1.0) (3) – (0.5) (4) = 0 Ry3 = 0.83 kN

∑ Fy = 0 Ry1 + 0.83  – 1.0 = 0 Ry1 = 0.17 kN

	 b.	 Find member forces. The member forces are solved by apply-
ing nodal equilibrium equations joint by joint. The selection of 
the sequence by which each joint is utilized is based on a sim-
ple rule: No joint should contain more than two unknowns, 
with one unknown in each equation preferred. Based on this 
rule, we take the following sequence and use the FBD of each 
joint to write the equilibrium equations:

Joint 3

Σ Fy = 0, F2(4/5) + 0.83 = 0, F2 = –1.04 kN

Σ Fx = 0, –F2(3/5) – F3 = 0, F3 = 0.62 kN

Joint 1

Σ Fy = 0, F1(4/5) + 0.17 = 0, F1 = –0.21 kN

F2

3F3

0.83 kN

1
0.5 kN

0.17 kN

F1

0.62 kN

3
4 5

3
45

	 Note that only one equation from the FBD of joint 1 is needed 
to find the remaining unknown of F1. The second equilibrium 
equation is identically satisfied. The two equilibrium equations 
from the FBD of joint 2 would also be identically satisfied. 
These three “unused” equations can serve as a “check” for 
the accuracy of the computation. We need not use these three 
joint equations because we have already used three equations 
from the equilibrium of the whole structure at the beginning 
of the solution process. This fact also points to an important 
point: There are no more than six independent equilibrium 
equations. Any additional equations are not “independent” 
from the six equations we just used, because they can be 
derived from the linear combination of the six equations. Any 
six “independent” equations are equally valid. The selection 
of which six equations to use is a matter of preference and we 
always select those equations that give us the easiest way of 
getting the answer to the unknown forces as we just did. 
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Example 2.2

Find all reaction and member forces for the loaded truss shown next.

x

y

1

2

3 m

2 m

3

2 m

1 2
3

6 kN

1.5 m

4

5 6
4

5

Another truss example problem for the method of joints.

Solution

A slightly different solution strategy is followed in this example.

	 1.	 Identify all force unknowns. The FBD of the whole structure shows 
there are four reactions. Adding the six member forces, we have 
M = 6, R = 4, and M + R = 10, a total of ten force unknowns.

2

1 2
3

6 kN

4

5 6

Ry1

Rx1
1

3

4

5
Rx5

Ry5

FBD of the whole truss.

	 2.	Examine the static determinacy of the structure. There are five 
nodes, N = 5. Thus M + R = 2N = 10. This is a statically determi-
nate problem.

	 3.	Solve for force unknowns. This is a problem for which there is no 
advantage in solving for the reactions first. The FBD of the whole 
structure will give us three equations of equilibrium while we 
have four reaction unknowns. Thus, we cannot solve for the four 
reactions with the equations from the FBD of the whole structure 
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alone. On the other hand, if we go from joint to joint in the follow-
ing order, 3, 2, 4, 1, and 5, we will be able to solve for member 
forces one node at a time and eventually get to the reactions.

	

Joint 3 Σ Fy = 0, F5(3/5) + F6(3/5) = –6

Σ Fx = 0, –F5(4/5) + F6(4/5) = 0

F5 = –5 kN, F6= –5 kNF5

3
4
5

6 kN

3

F6

3
4

5

In this case, solving the two equations simultaneously is inevitable.

Joint 2
Σ Fx = 0, F5(4/5) + F4(4/5) = 0 F4 = 5 kN

Σ Fy = 0, F5(3/5) – F4(3/5) – F1 = 0

F1 = –6 kN

Joint 4
Σ Fx = 0, F6(4/5) + F3(4/5) = 0 F3 = 5 kN

Σ Fy = 0, F6(3/5) – F3(3/5) – F2 = 0

F2 = –6 kN

Joint 1
Σ Fx = 0, Rx1 + F3(4/5) = 0 Rx1 = –4 kN

Σ Fy = 0, Ry1 + F3(3/5) + F1 = 0

Ry1 = 3 kN

Joint 5
Σ Fx = 0, Rx5 – F4(4/5) = 0 Rx5 = 4 kN

Σ Fy = 0, Ry5 + F4(3/5) + F2 = 0

Ry5 = 3 kN

2

F5

F4F1
3 5

4

3
4
5

4
F6

F3 F2

3 5
4

3
4

5

1
F3

F1

Ry1

Rx1 3
4

5

F4
F2

Ry5

5 Rx53 5
4

	 Note in both example problems, we always assume the member 
forces to be in tension. This results in FBDs that have member 
forces pointing away from the joints. This is simply an easy way to 
assign force directions. It is highly recommended because it avoids 
unnecessary confusion that often leads to mistakes.
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Example 2.3

Find the member forces in bars 4, 5, 6, and 7 of the loaded Fink truss shown 
next.

10 kN
3@2 m = 6 m

1 32 4

5

6

7

1 2 3

5 6
7

8

10

11 2 m

9

4

Fink truss to be solved by the method of joints.

Solution

We shall illustrate a special feature of the method of joints.

	 1.	 Identify all force unknowns. The FBD of the whole structure would 
have shown that there are three reactions. Adding the eleven 
member forces, we have M = 11, R = 3, and M + R = 14, a total of 
14 force unknowns.

	 2.	Examine the static determinacy of the structure. There are seven 
nodes, N = 7. Thus M + R = 2N = 14. This is a statically determinate 
problem.

	 3.	Solve for force unknowns. Normally, Fink trusses are used to take 
roof loading on the upper chord nodes. We deliberately apply a 
single load at a lower chord node in order to make a point about a 
special feature of the method of joints. We start by concentrating 
on joint 5.

Joint 5
Σ Fy = 0 F4 = 0

Σ Fx = 0, – F8 + F9 = 0

F8 = F9

5xy

F4F8

F9

	 In this case, it is advantageous to line up the coordinate system 
with the local geometry at the node. F4 is found to be zero because 
it is the only force in that direction. The pair of forces in the x-direc-
tion must be equal and opposite because they are collinear.
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Joint 2
Σ Fy = 0, and F4 = 0 F5 = 0

Σ Fx = 0 F1 = F2

Joint 7
F7 = 0 F10 = F11

Joint 3
F7 = 0, from equilibrium of Joint 7

Σ Fy = 0, F6 (2/2.23) = 10 F6 = 11.15 kN

�at completes the solution for F4, F5, F6, and F7.

2

F5
F4

F2F1

7 F10

F11F7

3 10 kN
F3F2

F6 F71
2 2.2

	 Thus, with the exception of member 6, all the web members are 
zero-force members for this particular loading case. For purpose 
of analysis under the given load, the Fink truss is equivalent to the 
truss shown next.

10 kN

4 m

2 m

2 m

Equivalent truss to the Fink truss for the given load.

	 This brings up the interesting feature of the method of joints: we 
can identify zero-force members easily. This feature is further illus-
trated in the next example.

Example 2.4

Identify zero-force members and equal-force members in the loaded trusses 
in the following figure.
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PA B C

D

E

F

G

P

FCG
FCDFBC

F P

C

FFG

FEF

FAF

An example of zero-force members and equal force members.

Solution

The equilibrium of forces at joint C leads to FCG = 0 and FBC = FCD. Once we 
know FCG = 0, it follows FBG = 0 and then FBF = 0, based on the equilibrium 
of forces at node G and node B, respectively. The equilibrium of forces at 
joint F leads to FAF = P and FEF = FFG.

We can identify:

Zero force members. At each joint, all the forces are concurrent 
forces. If all the forces are collinear except one then the lone 
exception must be zero.

Equal force members. If two forces at a joint are collinear and all 
other forces at the joint are also collinear in another direction, then 
the two forces must be equal.

P
A

D

E

F
P

An equivalent truss.

For practical purposes, the original truss problem is equivalent to the truss 
problem shown in this example for the given loading case.
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PROBLEM 2.1

Use the method of joints to find all reaction and member forces in the 
trusses shown next.

(1–a) (1–b) (1–c)

(2–a) (2–b) (2–c)

(3–a) (3–b) (3–c)

(4–a) (4–b) (4–c)

3 m

4 m

3 kN

3 m

4 m

3 m

8 kN

3 m

4 m

3 m

8 kN

3 kN

3 m

4 m

4 kN

3 m

4 m

4 kN

3 m

2 m

6 kN

2 m

1.5 m

1.2 m

1.6 m 0.9 m

2 m2 m

1.2 m

0.9 m0.7 m

5 kN 4 kN

0.9 m 0.9 m0.7 m

4 kN

0.9 m

5 kN

1.2 m

1 m

1 m

1 kN

2 m2 m

1 m
1 m

2 kN

2 m2 m

1 m
1 m

2 kN

1 kN

Problem 2.1
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Example 2.5

Find member forces in bars in the third panel from the left of the truss in 
the following figure.

4 m

6@3 m = 18 m 30 kN

An example problem for the method of sections.

Solution

We shall solve this problem by the method of sections with the following 
procedures.

	 1.	Name all joints. We can refer to each joint by a symbol and each 
member by the two end joints as shown next. We also define an 
x,y coordinate system as shown. We need to find FIJ, FCJ, and FCD. 
The truss is stable and determinate.

	 2.	Find reactions. We have to look at the FBD of the whole truss.

4 m

6@3 m = 18 m 30 kN
B C D E F G

H

A

I J K L

RAV RGV

RAH

x

y

The FBD to find the reactions.

	 ΣMA = 0,  (12)(30) – (18) RGV = 0,  RGV = 20 kN

	 ΣFx = 0,  RAH = 0

	 ΣMG = 0,  (18) RAV – (6)(30) = 0,  RAV = 10 kN

	 3.	Establish FBD. We make a vertical cut through the third panel from 
the left, thus exposing the member force of members IJ, CJ, and 
CD. We can take the left or the right portion as the FBD. We 
choose the left portion because it has a fewer number of external 
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forces to deal with. We always assume the member forces are 
tensile. We have already obtained RAV = 10 kN.

A

B C

H I J

RAV

x

y

FCJ

FCD

4 m

3@3 m = 9 m

FBD exposing a section through the third panel from the left.

Σ MC = 0, (4) FIJ + (6) RAV = 0 FIJ = –1.5 RAV = –1.5 kN

Σ MJ = 0, –(4) FCD + (9) RAV = 0 FCD = 2.25 RAV = 22.5 kN

Σ Fy = 0, (0.8) FCJ + RAV = 0 FCJ = –1.25 RAV = –12.5 kN

	 Note that we choose the moment center at C and J, respectively, 
because in each case the resulting equation has only one unknown 
and therefore can be solved easily.

	 To illustrate the effect of taking a different FBD, let us choose the 
right part of the cut as the FBD. Note that we already know RGV = 
20 kN.

4@3 m = 12 m

x

y 4 m

30 kN

C
D E F G

J K L

RGV

FIJ

FCJ

FCD

Alternative FBD exposing the member forces of the third panel.

	 By taking the right portion as the FBD we include the applied 
30 kN force in the FBD and it will show up in all equilibrium 
equations.

	 ΣMC = 0, –(4) FIJ + (6) (30) – (12) RGV = 0, FIJ = –3 RGV + 45 = –15 kN

	 ΣMJ = 0, (4) FCD + (3) (30) – (9) RGV = 0, FCD = 2.25 RGV – 22.5 = 22.5 kN

	 ΣFy = 0, – (0.8) FCJ – 30 + RGV = 0, FCJ = –37.5 + 1.25 RGV = –12.5 kN
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Example 2.6

Find member forces in bars in the second panel from the left of the truss in 
the following figure.

A

3 kN 6 kN 9 kN

B
C D E

F

G

H

4@4 m = 16 m

2 m

3 m

Another example problem for the method of sections.

Solution

The inclined chord geometry will cause complications in computation, but 
the process is the same as that of the last example.

	 1.	Find reactions. This is a simple truss, stable and determinate.

A

3 kN 6 kN 9 kN

B C D E

F

G

H

4@4 m = 16 m

2 m

3 m

REVRAV

RAH

x

y

FBD for reaction forces.

	 ΣMA = 0, 	 – (16) REV + (4)3 + (8)6 + (12)9 = 0, 	REV = 10.5 kN

	 ΣME = 0, (16) RAV – (12)3 – 8(6) – (4)9 = 0,	 RAV = 7.5 kN

	 ΣFx = 0,	 RAH = 0 kN

	 2.	Establish FBD. We make a cut through the second panel from the 
left and choose the left portion as the FBD.

A

3 kN

B

F

7.5 kN

FFG

FFC

FBC

3 m
C

4 m 4 m

FBD for the second panel member forces.
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	 In order to find FBC we want to find a moment center that is the 
intersection of the two other unknowns. The intersection point of 
FFG and FFC is point F. Similarly, we take the moment about point C 
so that the only unknown force in the ensuing equilibrium equa-
tion would be FFG. In writing the moment equilibrium equation, 
we utilize the fact that FFG can be transmitted to point K and the 
horizontal component of FFG at K has no contribution to the equi-
librium equation while the vertical component is (2/4.47) FFG  = 
0.447 FFG as shown in the left of the following figure.

Σ MF = 0 –(3) FBC + (4) 7.5 = 0 FBC = 10.00 kN

Σ MC = 0 (10) 0.447 FFG + (8)7.5 – (4)3 = 0, FFG = –10.74 kN

A

3 kN

B

F

7.5 kN

K

FFG

FFC

FBC

3 m
0.447 FFG

2 m

C

4 m 4 m

FFG

4
24.47

A

3 kN

B

F

7.5 kN

FFG

FFC

FBC

3 m

G

4 m 4 m

2 m

FFG

0.894 FFG

C

Two FBDs to find FFG.

	 Alternatively, we can transmit FFG to point G, and use the horizon-
tal component (4/4.47) FFG = 0.894 FFG in the moment equation, as 
shown in the right figure above.

	 ΣMC = 0, (5) 0.894FFG + (8)7.5 – (4)3 = 0  FFG = –10.74 kN

	 To find FFC we need to go out of the region of the truss to find the 
moment center (K) as shown in the left of the preceding figure, 
and use the vertical component of the transmitted FFC at point C.

Σ MK = 0 (10) 0.6FFC – (2) 7.5 + (6)3 = 0 FFC = –0.50 kN

	 Note that all these additional efforts are caused by the inclined 
upper chord of the truss.

Example 2.7

Find the force in the top and bottom chord members of the third panel from 
the left of the K-truss in the following figure.
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K-truss example.

Solution

The K-truss is a simple truss that requires a special cut for the solution of top 
and bottom chord member forces as we shall see shortly. It is stable and 
determinate.

	 1.	Find reactions. Since the truss and the loading are symmetric, the 
reactions at both supports are easily found to be 8 kN upward and 
there is no horizontal reaction at the left support.

	 2.	Establish FBD. The special cut is shown by the dotted line in the 
following figure.

16 kN

A cut to establish FBD for the top and bottom chord member forces.

	 This particular cut separates the truss into two parts. We shall use 
the left part as the following FBD.

B

D

8 kN

C

A

FEH

E H

G

FGJ
J

8 m

6 m

FBD for top and bottom chord member forces.
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	 Although there are four forces at the cut, two of them are on the 
same line. When moment center is selected at either node E or 
node G, these two forces will not appear in the equilibrium equa-
tion, leaving only one unknown in each equation.

Σ ME = 0, (6)8 – (8)FGJ = 0 FGJ = 6 kN

Σ MG = 0, (6)8 – (8)FEH = 0 FEH = –6 kN

	 Alternatively, we may choose the right part as the FBD. The same 
results will follow but the computation is slightly more involved.

16 kN 8 kN

J

HE

G

FEH

FGJ

8 m

3 m 9 m

Alternative FBD for the top and bottom chord member forces.

Σ ME = 0, (12)8 – (3)16 – (8)FGJ = 0 FGJ = 6 kN

Σ MG = 0, (12)8 – (3)16 + (8)FEH = 0 FEH = –6 kN

Example 2.8

Find the force in the inclined web members of the third panel from the left 
of the K-truss shown next.

6@3 m = 18 m

4 m

4 m

16 kN

K-truss example, inclined web members.
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Solution

A different cut from that of the last example is needed to expose the web 
member forces. First establish FBD. To expose the force in the inclined web 
members, we may make a cut through the third panel.

16 kN

F

J

H

A cut to expose web member forces.

This cut exposes the top and bottom member forces, which are known from 
the last example solution, and the two inclined unknown web member 
forces, FFH and FFJ.

FH

FJ

FBD for the inclined web members of the third panel.

In this case, the application of two force equilibrium equations produces 
the desired results. In writing the equation for the horizontal forces, we note 
that the top and bottom chord member forces cancel each other and will 
not appear in the equation. In fact this is a special feature, which is useful 
for the analysis of web member forces.

Σ Fx = 0 (0.6)FFH + (0.6)FFJ = 0

Σ Fy = 0 (0.8)FFH – (0.8)FFJ = 8

Solving the simultaneous equations, we obtain

FFH = 5 kN and  FFJ = –5 kN

We observe that not only the top and bottom chord members have the 
same magnitude forces with opposite signs, the inclined web members are 
in the same situation. Furthermore, in the present example, the inclined 
web member forces are the same in the second and third panel, that is,

	 FCE = FFH = 5 kN

	 FCG = FFJ = –5 kN
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This is because the FBD for these member forces yields equations identi-
cal to those for the third panel.

F

G

E

FCE

FCG

8 kN

4 m

4 m

3 m

C

FBD for the inclined web members of the second panel.

Σ Fx = 0 (0.6)FCE + (0.6)FCG = 0

Σ Fy = 0 (0.8)FCE – (0.8)FCG = 8

Example 2.9

Discuss methods to find the force in the vertical web members of the 
K-truss shown next.

6@3 m = 18 m

4 m

4 m

16 kN

K-truss analysis, vertical web members.

Solution

We can use either the method of sections or the method of joints, but the 
prerequisite is the same: need to know the force in either the lower inclined 
web member or the upper inclined web member first.

	 1.	Method of sections.

16 kN

A BC

a

a

b

b

Cuts to expose vertical web members
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	 Cut A exposes an upper vertical web member, a, and a lower inclined 
web member, a′, whose forces have a vertical component. Once Fa′ is 
known, Fa can be computed from the equilibrium equation for forces 
in the vertical direction of the FBD to the left of the cut.

	 Cut B exposes the forces of a lower vertical web member, b, and an 
upper inclined web member, b′; each force has a vertical component. 
Once Fb′ is known, Fb can be computed from the equilibrium equation 
for forces in the vertical direction of the FBD to the right of the cut.

	 Cut C exposes the forces of the central vertical web member and 
two inclined web members; each force has a vertical component. 
Once the forces in the two inclined web members are known, the 
force in the central vertical member can be computed from the 
equilibrium equation for forces in the vertical direction of the FBD 
to the left or right of the cut.

	 2.	Method of joints.

16 kN

Joints used to solve for vertical web member forces.

		  At each of the circled joints, the vertical web member forces can 
be computed if the force of the inclined web member is known. 
For the central vertical web member, we need to know the forces 
of the two joining inclined web members. In the present case, 
since the load is symmetrical, the two inclined web members have 
identical forces. As a result, the force in the central vertical web 
member is zero.

Example 2.10

Find the force in member a of the compound truss shown next.

3@3 m = 9 m

4 m

4 m

15 kN

aA B

b

c

A compound truss example.
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Solution

The method of sections is often suitable for compound truss analyses.

	 1.	 Identify truss type. This is a stable and determinate truss. It is a 
compound truss with three links, a, b, and c, linking two simple 
trusses. Each node has at least three joining members. Thus, the 
method of joints is not a good option. We need to use the method 
of sections.

	 2.	Find reactions. Since the geometry is simple enough, we can see 
that the horizontal reaction at support A is zero and the vertical 
reactions at support A and B are 10 kN and 5 kN, respectively.

	 3.	Establish FBD. By cutting through the three links, we obtain two 
FBDs. We choose the upper-left one because it does not involve 
the applied force.

	
3 @ 3 m = 9 m

4 m

4 m

A B

10 kN

Fa

Fc

Fb
5

34
5

4

3

x

FBD for the central link.

	 To find Fa we note that the other two unknown forces, Fb and Fc, 
are parallel to each other, making it impossible to take moment 
about their intersection. On the other hand, it becomes useful to 
examine the force equilibrium in the direction perpendicular to 
the two parallel forces. This direction is denoted in the preceding 
figure as the x-direction. We can decompose the 10 kN reaction 
at support A and the unknown force Fa into components in the 
x-direction and write the equilibrium equation, accordingly.

Σ Fx= 0, (0.6)10 + (0.6)Fa = 0 Fa = –10 kN
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PROBLEM 2.2

Solve for the force in the marked members in each truss shown next.

(1–a) (1–b)

(2)

(3)

(4–a) (4–b)

4 m

4@3 m = 12 m

1 kN

a

b 4 m

4@3 m = 12 m

1 kN

a

b

12 kN
4@4 m = 16 m

2 m

3 m

a b

c

6@3 m = 18 m

4 m

4 m

12 kN

a

b

c

3@3 m = 9 m

4 m

4 m

15 kN

a
A B

b
c

3@3 m = 9 m

4 m

4 m

15 kN
a

A B

b

Problem 2.2
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2.4 � Matrix Method of Joints

The development of the method of joints and the method of sections predates 
the advent of the electronic computer. Although both methods are easy to 
apply, it is not practical for trusses with many members or nodes, especially 
when all member forces are needed. It is, however, easy to develop a matrix 
formulation of the method of joints. Instead of manually establishing all the 
equilibrium equations from each joint or from the whole structure and then 
putting the resulting equations in a matrix form, there is an automated way 
of assembling the equilibrium equations as shown herein.

Assuming there are N nodes and M member force unknowns and R reac-
tion force unknowns and 2N = M + R for a given truss, we know there will be 
2N equilibrium equations, two from each joint. We shall number the joints or 
nodes from one to N. At each joint, there are two equilibrium equations. We shall 
define a global x-y coordinate system that is common to all joints. We note, how-
ever, it is not necessary for every node to have the same coordinate system, but it 
is convenient to do so. The first equilibrium equation at a node will be the equi-
librium of forces in the x-direction and the second will be for the y-direction. 
These equations are numbered from one to 2N in such a way that the x-direction 
equilibrium equation from the ith node will be the (2i – 1)th equation and the 
y-direction equilibrium equation from the same node will be the (2i)th equation. 
In each equation, there will be terms coming from the contribution of mem-
ber forces, externally applied forces, or reaction forces. We shall discuss each of 
these forces and develop an automated way of establishing the terms in each 
equilibrium equation.

Contribution from member forces. A typical member, k, having a starting node, 
i, and an ending node, j, is oriented with an angle θ from the x-axis as shown 
next.

k

i

j

θ
θ

θ

θ

x

y

k

i

j

Fk

Fk

Fk

Fk

i

j

Member orientation and the member force acting on member-end and nodes.

The member force, assumed to be tensile, pointing away from the member 
at both ends and in opposite direction when acting on the nodes, contributes 
to four nodal equilibrium equations at the two end nodes (we designate the 



56 Introduction to Structural Analysis: Displacement and Force Methods

right-hand side [RHS] of an equilibrium equation as positive and put the 
internal nodal forces to the left-hand side [LHS]):

	 (2i – 1)th equation (x-direction): (–Cosθ)Fk to the LHS

	 (2i)th equation (y-direction): (–Sinθ)Fk to the LHS

	 (2j – 1)th equation (x-direction): (Cosθ)Fk to the LHS

	 (2j)th equation (y-direction): (Sinθ)Fk to the LHS

Contribution from externally applied forces. An externally applied force, 
applying at node i with a magnitude of Pn making an angle α from the x-axis, 
contributes to:

i

Pn

α

Externally applied force acting at a node.

	 (2i – 1)th equation (x-direction): (Cosα)Pn to the RHS

	 (2i)th equation (y-direction): (Sinα)Pn to the RHS

Contribution from reaction forces. A reaction force at node i with a magnitude 
of Rn making an angle β from the x-axis, contributes to:

i
β

Rn

Reaction force acting at a node.

	 (2i – 1)th equation (x-direction): (–Cosβ)Rn to the LHS

	 (2i)th equation (y-direction): (–Sinβ)Rn to the LHS

Input and solution procedures. From the aforementioned definition of forces, 
we can develop the following solution procedures.

	 1.	Designate member number, global node number, global nodal coor-
dinates, and member starting and end node numbers. From these 
input, we can compute member length, L, and other data for each 
member with starting node i and end node j:

	
x x x y y L x y

x
L

y
L

; ; ( ) ( ) ; Cos ; Sinj i i
2 2= − = = + θ = θ =
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	 2.	Define reaction forces, including where the reaction is at and the 
orientation of the reaction, one at a time. The cosine and sine of the 
orientation of the reaction force should be input directly.

	 3.	Define externally applied forces, including where the force is applied 
and the magnitude and orientation, defined by the cosine and sine of 
the orientation angle.

	 4.	Compute the contribution of member forces, reaction forces, and 
externally applied forces to the equilibrium equation and place 
them to the matrix equation. The force unknowns are sequenced 
with the member forces first, F1, F2, …, FM, followed by reaction force 
unknowns, FM+1, FM+2, …, FM+R.

	 5.	Use a linear simultaneous algebraic equation solver to solve for the 
unknown forces.

Example 2.11

Find all support reactions and member forces of the loaded truss shown 
next.

x

y

1

2

4 m

3 m

3

3 m

1 2

3

1.0 kN

0.5 kN

A truss problem to be solved by the matrix method of joint.

Solution

We shall provide a step-by-step solution.

	 1.	Designate member number, global node number, global nodal 
coordinates, and member starting and end node numbers, and 
compute member length, L, and other data for each member.

Nodal Input Data

Node x-coordinate y-coordinate

1 0.0 0.0
2 3.0 4.0
3 6.0 0.0
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Member Input and Computed Data

Member
Start 
Node

End 
Node Δx Δy L Cosθ Sinθ

1 1 2 3.0 4.0 5.0 0.6 0.8
2 2 3 3.0 –4.0 5.0 0.6 –0.8
3 1 3 6.0 0.0 6.0 1.0 0.0

	 2.	Define reaction forces.

Reaction Force Data

Reaction At Node Cosβ Sinβ

1 1 1.0 0.0
2 1 0.0 1.0
3 3 0.0 1.0

	 3.	Define externally applied forces.

Externally Applied Force Data

Force At Node Magnitude Cosα Sinα

1 2 0.5 1.0 0.0
2 2 1.0 0.0 –1.0

	 4.	Compute the contribution of member forces, reaction forces, and 
externally applied forces to the equilibrium equations and set up 
the matrix equation.

Contribution of Member Forces

Member 
Number

Force 
Number

Equation Number and Value of Entry

2i – 1 Coeff. 2i Coeff. 2j – 1 Coeff. 2j Coeff.

1 1 1 –0.6 2 –0.8 3 0.6 4 0.8
2 2 3 –0.6 4 0.8 5 0.6 6 –0.8
3 3 1 –1.0 2 0.0 5 1.0 6 –0.0

Contribution of Reaction Forces

Reaction 
Number

Force 
Number

Equation Number and Value of Entry

2i – 1 Coeff. 2i Coeff.

1 4 1 –1.0 2 0.0
2 5 1 0.0 2 –1.0
3 6 5 0.0 6 –1.0
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Contribution of Externally Applied Forces

Equation Number and Value of Entry

Applied Force 2i – 1 Coeff. 2i Coeff.

1 1 1.0 2 0.0
2 1 0.0 2 1.0
3 5 0.0 6 1.0

	 Using the aforementioned data, we obtain the equilibrium equa-
tion in matrix form:

− − −

− −

−

− −

0.6 0 1.0 1.0 0.0 0

0.8 0 0.0 0.0 1.0 0

0.6 0.6 0 0 0 0

0.8 0.8 0 0 0 0

0 0.6 1.0 0 0 0.0

0 0.8 0.0 0 0 1.0

F

F

F

F

F

F

0

0

0.5

1.0

0

0

1

2

3

4

5

6

−
=

	 5.	Solve for the unknown forces. An equation solver produces the 
following solutions, where the units are added by the user:

	 F1 = –0.21 kN;	 F2 = –1.04 kN;	 F3 = 0.62 kN;

	 F4 = –0.50 kN;	 F5 = 0.17 kN;	 F6 = 0.83 kN 
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PROBLEM 2.3

The loaded truss shown next is different from that in Example 2.11 only 
in the externally applied loads. Modify the results of Example 2.11 to 
establish the matrix equilibrium equation for this problem.

x

y

1

2

4 m

3 m

3

3 m

1 2

3

1.0 kN

0.5 kN

Problem 2.3

PROBLEM 2.4

Establish the matrix equilibrium equation for the loaded truss shown 
next.

x

y

1

2

4 m

3 m

3

3 m

1 2

1.0 kN

0.5 kN

Problem 2.4

Force transfer matrix. Consider the same three-bar truss as in the previous 
example problems. If we apply a unit force one at a time at one of the six 
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possible positions, that is, x- and y-directions at each of the three nodes, we 
have six separate problems as shown in the following figure.

x

y

1

2

4 m

3 m
3

3 m

1 2

3 x

y

1

2

4 m

3 m
3

3 m

1 2

3

x

y

1

2

4 m

3 m
3

3 m

1 2

3 x

y

1

2

4 m

3 m
3

3 m

1 2

3

x

y

1

2

4 m

3 m
3

3 m

1 2

3 x

y

1

2

4 m

3 m
3

3 m

1 2

3

1 kN 1 kN

1 kN 1 kN

1 kN

1 kN

Truss with unit loads.
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The matrix equilibrium equation for the first problem appears in the fol-
lowing form:

	

− − −

− −

−

− −

=

F

F

F

F

F

F

0.6 0 1.0 1.0 0.0 0

0.8 0 0.0 0.0 1.0 0

0.6 0.6 0 0 0 0

0.8 0.8 0 0 0 0

0 0.6 1.0 0 0 0.0

0 0.8 0.0 0 0 1.0

1

0

0

0

0

0

1

2

3

4

5

6

		  (2.2)

The RHS of the equation is a unit vector. For the other five problems the 
same matrix equation will be obtained only with the RHS changed to unit 
vectors with the unit load at different locations. If we compile the six RHS 
vectors into a matrix, it becomes an identity matrix:

	

I

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

=

 

	 (2.3)
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The six matrix equations for the six problems can be put into a single 
matrix equation if we define the six-by-six matrix at the LHS of Equation 2.2 
as matrix A,

	

− − −

− −

−

− −

= A

0.6 0 1.0 1.0 0.0 0

0.8 0 0.0 0.0 1.0 0

0.6 0.6 0 0 0 0

0.8 0.8 0 0 0 0

0 0.6 1.0 0 0 0.0

0 0.8 0.0 0 0 1.0
 

	 (2.4)

and the six force unknown vectors as a single six-by-six matrix F:

	 A6×6 F6×6 = I6×6	 (2.5)

The solution to the six problems, obtained by solving the six problems one 
at a time, can be compiled into the single matrix F,

	

=

−

−

− − −

− − −

− −

×F

0.0 0.0 0.83 0.63 0.0 0.0

0.0 0.0 0.83 0.63 0.0 0.0

0.0 0.0 0.5 0.38 1.0 0.0

1.0 0.0 1.0 0.0 1.0 0.0

0.0 1.0 0.67 0.5 0.0 0.0

0.0 0.0 0.67 0.5 0.0 1.0

6 6

		  (2.6)

where each column of the matrix F is a solution to a unit load problem. Matrix 
F is called the force transfer matrix. It transfers a unit load into the member 
force and reaction force unknowns. It is also the “inverse” of the matrix A, as 
apparent from Equation 2.5.

We can conclude that the nodal equilibrium conditions are completely 
characterized by the matrix A. The inverse of A, matrix F, is the force transfer 
matrix, which transfers any unit load into member and reaction forces.
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If the force transfer matrix is known, either by solving the unit load 
problems one at a time or by solving the matrix equation, Equation 2.5, 
with an equation solver, then the solution to any other loads can be 
obtained by a linear combination of the force transfer matrix. Thus the 
force transfer matrix also characterizes completely the nodal equilibrium 
conditions of the truss. The force transfer matrix is particularly useful if 
there are many different loading conditions that one wants to solve for. 
Instead of solving for each load separately, one can solve for the force 
transfer matrix, then solve for any other load by a linear combination as 
shown in the following example.

Example 2.12

Find all support reactions and member forces of the loaded truss shown 
next, knowing that the force transfer matrix is given in Equation 2.6.

x

y

1

2

4 m

3 m

3

3 m

1 2

3

1.0 kN

0.5 kN

A truss problem to be solved with the force transfer matrix.

Solution

The given loads can be cast into a load vector, which can be easily computed 
as the combination of the third and fourth unit load vectors as shown next.

	

−
= + −

0

0

0.5

1.0

0

0

(0.5)

0

0

1.0

0

0

0

( 1.0)

0

0

0

1.0

0

0
 

	 (2.7)
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The solution is then the same linear combination of the third and fourth 
vectors of the force transfer matrix:

F

F

F

F

F

F

(0.5)

0.83

0.83

0.5

1.0

0.67

0.67

( 1.0)

0.63

0.63

0.38

0.0

0.5

0.5

0.21

1.04

0.62

0.50

0.17

0.83

kN

1

2

3

4

5

6

=

−

−

−

+ −

−

−

−

=

−

−

−

 

PROBLEM 2.5

The loaded truss shown next is different from that in Example 2.11 only 
in the externally applied loads. Use the force transfer matrix of Equation 
2.6 to find the solution.

x

y

1

2

4 m

3 m

3

3 m

1 2

3

1.0 kN

0.5 kN

Problem 2.5
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PROBLEM 2.6

The following loaded truss is different from that in Example 2.11 only in 
the externally applied loads. Use the force transfer matrix of Equation 
2.6 to find the solution.

x

y

1

2

4 m

3 m

3

3 m

1 2

3

1.0 kN

0.5 kN

1.0 kN

Problem 2.6
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3
Truss Analysis: Force Method—Part II

3.1 � Truss Deflection

A truss has a designed geometry and an as-built geometry. Displacement 
of nodes from their designed positions can be caused by manufacturing or 
construction errors. Displacement of nodes from their as-built positions is 
induced by applied loads or temperature changes. Truss deflection refers 
to either deviation from the designed positions or from the as-built posi-
tions. No matter what is the cause for deflection, one or more members 
of the truss may have experienced a change of length. Such a change of 
length makes it necessary for the truss to adjust to the change by displac-
ing the nodes from its original position as shown in the following figure. 
Truss deflection is the result of displacements of some or all of the truss 
nodes, and nodal displacements are caused by the change of length of one 
or more members.

1 3

1 2

3
3

Elongation of member 3 induces nodal displacements and truss deflection.

From the figure, it is clear that geometric relations determine nodal dis-
placements. In fact, nodal displacements can be obtained graphically for any 
given length changes as illustrated in the following figure.
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1

2

3

1 2

3
3

2

Displacements of nodes 3 and 2 determined graphically.

Even for more complex truss geometry, a graphical method can be devel-
oped to determine all the nodal displacements. In the age of computers, 
however, such a graphical method is no longer practical and necessary. 
Truss nodal displacements can be computed using the matrix displacement 
method or, as we shall see, using the force method, especially when all the 
member elongations are known. The method we shall introduce is the unit 
load method, the derivation of which requires an understanding of the con-
cept of work done by a force. A brief review of the concept follows.

Work and virtual work. Consider a bar fixed at one end and being pulled at 
the other end by a force P. The displacement at the point of application of the 
force P is Δ as shown in the following figure.

P

Δ

Force and displacement at the point of application of the force.

As assumed throughout the text, the force is considered a static force, that 
is, its application is such that no dynamic effects are induced. To put it simply, 
the force is applied gradually, starting from zero and increasing its magni-
tude slowly until the final magnitude P is reached. Consequently, as the force 
is applied, the displacement increases from zero to the final magnitude Δ 
proportionally as shown next, assuming the material is linearly elastic.

P

Δ
Displacement

Fo
rc
e

Force-displacement relationship.
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The work done by the force P is the integration of the force-displacement 
function and is equal to the triangular area shown in the preceding figure. 
Denoting work by W we obtain

	 W = ½PΔ	 (3.1)

Now, consider two additional cases of load displacement after the load P is 
applied. The first is the case with the load level P held constant and an addi-
tional amount of displacement δ is induced. If the displacement is not real 
but one which we imagined as happening, then the displacement is called 
a virtual displacement. The second is the case with the displacement level 
held constant, but an additional load p is applied. If the load is not real but 
one that we imagined as happening, then the force is called a virtual force. 
In both cases, we can construct the load-displacement history as shown in 
the following figure.

P

Disp.
Δ Δ

δ

Fo
rc
e

Disp.

Fo
rc
e P

p

A case of virtual displacement (left) and a case of virtual force (right).

The additional work done is called virtual work in both cases, although 
they are induced with different means. The symbol for virtual work is δW, 
which is to be differentiated from dW, the real increment of W. The symbol 
δ can be considered as an operator that generates a virtual increment just 
as the symbol d is an operator that generates an actual increment. From the 
preceding figure, we can see that the virtual work is different from the real 
work in Equation 3.1.

	 δW = Pδ due to virtual displacement δ	 (3.2)

	 δW = pΔ due to virtual force p	 (3.3)

In both cases, the factor ½ in Equation 3.1 is not present.
Energy principles. The work or virtual work by itself does not provide any 

equations for the analysis of a structure, but it is associated with numerous 
energy principles that contain useful equations for structural analysis. We 
will introduce only three: conservation of mechanical energy, principle of 
virtual displacement, and principle of virtual force–unit load method.



70 Introduction to Structural Analysis: Displacement and Force Methods

The conservation of mechanical energy principle states that the work done by 
all external forces on a system is equal to the work done by all internal forces 
in the system for a system in equilibrium.

	 Wext = Wint	 (3.4)

where

Wext = work done by external forces
Wint = work done by internal forces

EXAMPLE 3.1

Find the displacement at the loaded end, given the bar shown next has a 
Young’s modulus E, cross-sectional area A, and length L.

P

∆

Example problem on conservation of mechanical energy.

Solution

We can use Equation 3.4 to find the tip displacement Δ. The internal work 
done can be computed using the information contained in the following 
figure.

P
∆

PP

x

dx
d∆

Internal forces acting on an infinitesimal element.

The elongation of the infinitesimal element, dΔ, is related to the axial force 
P by

	 d dx
dx
E

Pdx
EA

= ε =
σ

=

where ε and σ are the normal strain and stress in the axial direction, respectively. 
The internal work done by P on the infinitesimal element is then

	 =dW P
Pdx
EA

int
1
2
P(d ) =

1
2
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The total internal work done is the sum of the work over all the infinitesimal 
elements:

	 ∫ ∫= = =W dW P
Pdx
EA

P L
EA

int
1
2

1
2

2

The external work done is simply:

	 =W Pext
1
2

Equation 3.4 leads to

	
=P

P L
EA

1
2

1
2

2

From which, we obtain

	 =
PL
EA

This is of course the familiar formula for the elongation of an axially loaded 
prismatic bar. We went through the derivation to show how the principle 
of conservation of energy is applied. We note the limitations of the energy 
conservation principle: unless there is a single applied load and the displace-
ment we want is the displacement at the point of application of the single 
load, the energy conservation equation, Equation 3.4, is not very useful for 
finding displacements. This energy conservation principle is often used for 
the derivation of other useful formulas.

Imagine a virtual displacement or displacement system is imposed on a 
structure after a real load system has already been applied to the structure. 
This principle of virtual displacement is expressed as

	 δW = δU	 (3.5)

where

δW = virtual work done by external forces upon the virtual displacement
δU = virtual work done by internal forces upon the virtual displacement

The application of Equation 3.5 will produce an equilibrium equation relat-
ing the external forces to the internal forces. This principle is sometimes 
referred to as the principle of virtual work. It is often used in conjunction 
with the displacement method of analysis. Since we are developing the force 
method of analysis herein, we shall not explore the application of this prin-
ciple further at this point.
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To develop the unit load method, we express the principle of virtual force as

	 δW = δU	 (3.6)

where

δW = work done by external virtual forces upon a real displacement system
δU = work done by internal virtual forces upon a real displacement system

We illustrate this principle in the context of the truss problems. Consider 
a truss system represented by rectangular boxes as in the following figure.

Member Elongation
Vj, j = 1, 2, …, M

Virtual Member Force
fj, j = 1, 2, …, M

∆o
1

o o

A real system (left) and a virtual load system (right).

The left figure represents a truss with known member elongations, Vj, j = 1, 
2, …, M. The cause of the elongation is not relevant to the principle of virtual 
force. We want to find the displacement, Δo, in a certain direction at a point o. 
We create an identical truss and apply an imaginary (virtual) unit load at 
point o in the direction we want, as shown in the right figure. The unit load 
produces a system of internal member forces fj, j =1, 2, …, M.

The work done by the unit load (virtual system) upon the real displace-
ment is

	 δW = 1 (Δo)

The work done by internal virtual forces upon a real displacement system 
(elongation of each member) is

	 ∑δ =
=

U f Vj
j

M

j

1

The principle of virtual force states that

	 ∑
=

f V1( ) =o j

j

M

j

1

	 (3.7)

Equation 3.7 gives the displacement we want. It also shows how simply one 
can compute the displacement. Only two sets of data are needed: the elonga-
tion of each member and the internal virtual force of each member corre-
sponding to the virtual unit load.
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Before we give a proof of the principle, we shall illustrate the application of 
it in the following example.

EXAMPLE 3.2

Find the vertical displacement at node 2 of the truss shown next, given 
(a) bar 3 has experienced a temperature increase of 14°C, (b) bar 3 has a 
manufacturing error of 1 mm overlength, and (c) a horizontal load of 16 kN 
has been applied at node 3 acting toward the right. All bars have Young’s 
modulus E = 200 GPa, cross-sectional area A = 500 mm2, and length L as 
shown. The linear thermal expansion coefficient is α = 1.2(10–5)/°C.

1

2

4 m

3 m

3

3 m

1 2

3

Example for the unit load method.

Solution

All three conditions result in the same consequences, the elongation of 
member 3 only, but nodes 2 and 3 will be displaced as a result. Denoting 
the elongation of member 3 as V3 , we have

	 a.	V3 = α(ΔT)L = 1.2(10–5)/°C (14°C) (6000 mm) = 1 mm
	 b.	V3 = 1mm
	 c.	V3 = 16 kN (6 m)/[200(106) kN/m2 (500)(10–6)m2] = 0.001 m = 1 mm

Next we need to find f3. Note that we do not need f1 and f2 because V1 
and V2 are both zero. Still, we need to solve the unit load problem posed in 
the following figure in order to find f3.

1

2

4 m

3 m

3

3 m

1 2

3

1 kN

A virtual load system with an applied unit load.
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The member forces are easily obtained and f3 = 0.375 kN for the given 
downward unit load. A direct application of Equation 3.7 yields

	 ∑= = =
=

f V f Vo j

j

M

j1KN ( ) 0.375kN (1mm)
1

3 3

and

	Δ o = 0.38 mm (downward)

We now give a derivation of this principle in the context of truss member 
elongation caused by applied loads. Consider a truss system, represented by 
the rectangular boxes in the following figure, loaded by two different load-
ing systems: a real load system and a virtual unit load. The real load system 
is the actual load applied to the truss under consideration. The unit load is 
a virtual load of unit magnitude applied at a point whose displacement we 
want and applied in the direction of the displacement we want. These loads 
are shown outside of the boxes together with the displacements under the 
loads. The corresponding internal member force and member elongation are 
shown inside of the boxes.

Real System:
Fj, Vj, j = 1, 2, …, M

Virtual System:
fj, vj, j = 1, 2, …, M

∆oPi, i = 1, 2, …n
∆i, i = 1, 2, ...n

1
∆o

o o

∆i, i = 1, 2, …n

A real system (left) and a virtual system (right).

In the figure,

Pi:  ith applied real load
Δi:  real displacement under the ith applied load
Δo:  displacement we want to find
Fj:  ith member force due to the applied real load
Vj:  ith member elongation due to the applied real load
fj:  jth member force due to the virtual unit load
vj:  jth member elongation due to the virtual unit load
Δi

′:  displacements in the direction of the ith real applied load but 
induced by the virtual unit load
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We will now consider three loading cases:

	 1.	The case of externally applied loads act alone. The applied loads, Pi, 
and internal member forces, Fj, generate work according to the force-
displacement histories shown in the following figure.

∆i

Pi

Disp.

Ex
te

rn
al

 F
or

ce

Vj
Elong.

In
te

rn
al

 F
or

ce

Fj

Work done by external force (left) and work done by internal force (right), case 1.

	 The conservation of mechanical energy principle calls for

	

P FV
1
2

1
2i

i

n

i j

j

M

j

1 1
∑ ∑=
= =

	 (3.8)

	 2.	The case of virtual unit load acts alone. The following figure illustrates 
the force-displacement histories.

∆o

1

Disp.
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vj
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fj

Work done by external force (left) and work done by internal force (right), case 2.

	 Again, the energy conservation principle calls for

	

f v
1
2
(1)

1
2o j

j

M

j

1
∑=
=

	 (3.9)
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	 3.	The case of the virtual unit load being applied first, followed by the 
application of the real loads. The force-displacement histories are 
shown in the following figure.

1

Disp.

Disp.
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∆o

∆o

vj
Vj

fj

∆i

Pi
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al

 F
or

ce
Fj

Work done by external forces (left) and work done by internal forces (right), case 3.

		  Application of the energy conservation principle leads to

	

P f v FV f V
1
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	 (3.10)

Subtracting Equation 3.10 by Equation 3.8 and Equation 3.9 yields

	
∑=
=

f V(1) ( )o j

j

M

j

1

which is the principle of virtual force statement (Equation 3.7) expressed in 
the unit load context.
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EXAMPLE 3.3

Find the vertical displacement at node 2 of the truss shown next, given E = 
10 GPa and A = 100 cm2 for all bars.

1

2

∆ 4 m

3

1 2

3

1.0 kN

0.5 kN

3 m 3 m

Example to find a nodal displacement by the unit load method.

Solution

Using the unit load method requires the solution for the member elonga-
tion, Vi, under the applied load and the virtual member force, fi, under the 
unit load as shown.

1

2

4 m

3 m

3

3 m

1 2

3

1 kN

A unit load applied in the direction of the displacement to be solved.

The computation in Equation 3.7 is carried out in the following table, 
keeping in mind that the virtual member forces are associated with the vir-
tual unit load and the nodal displacement is associated with the member 
elongation as indicated next.

1 (∆) = Σfi (Vi)
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Since both the real loading problem and the virtual unit load problem have 
been solved in earlier examples, we shall not go through the process again 
except to note that in order to find member elongation Vi, we must find 
member force Fi first. The sequence of computation is implied in the layout 
of the following table.

Computing the Vertical Displacement at Node 2

Member

Real Load Unit Load Cross-Term

F EA/L Vi fi fiVi

(kN) (kN/m) (mm) kN (kN-mm)

1 –0.20 20,000 –0.011 –0.625 0.0069
2 –1.04 20,000 –0.052 –0.625 0.0325
3 0.62 16,700 0.037 0.375 0.0139
Σ 0.0533

Thus, the vertical displacement at node 2 is 0.0533 mm, downward.

EXAMPLE 3.4

Find (a) the relative movement of nodes 2 and 6 in the direction joining them 
and (b) the rotation of bar 2, given E = 10 GPa and A = 100 cm2 for all bars.

1
2 3 4

5 6

1 2 3

4
5

6 7
8

9

120 kN

4 m

3@4 m = 12 m

Example on finding relative displacements.

Solution

The nodal displacements related to the relative movement and rotation in 
question are depicted in the following figure.

2

120 kN

6

∆2

∆6

2

120 kN

6

∆2 ∆3

Relevant nodal displacements.

To find the relative movement between node 2 and node 6, we can apply a 
pair of unit loads as shown next. We shall call this case as case (a).
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2

6

1 kN
1 kN

Unit load for movement between node 2 and node 6 in the direction of 2–6, case (a).

To find the rotation of bar 2, we can apply a pair of unit loads as shown 
next. We shall call this case as case (b).

6

2

1 kN 1 kN

Unit load to find rotation of bar 2, case (b).

The computation entails the following:

	 1.	Find member forces, Fi, corresponding to the real applied load.
	 2.	Compute member elongation, Vi.
	 3.	Find member force, fia, corresponding to the case (a) load.
	 4.	Find member force, fib, corresponding to the case (b) load.
	 5.	Apply Equation 3.7 to find the displacement quantities.
	 6.	Make necessary adjustments to put member rotation in the right 

unit.

Steps 1 to 5 are summarized in the following table.

Computing for Relative Displacement Quantities

Member

Real Load Unit Load Cross-Term

F EA/L Vi fia fib fiaVi fibVi

(kN) (kN/m) (mm) (kN) (kN) (kN-mm) (kN-mm)

1 80.00 25,000 3.20 0.00 –0.33 0.00 –1.06
2 80.00 25,000 3.20 –0.71 –0.33 –2.26 –1.06
3 40.00 25,000 1.60 0.00  0.33 0.00 0.53
4 –113.13 17,680 –6.40 0.00 0.47 0.00 –3.00
5 120.00 25,000  4.80 –0.71 –1.00 –3.40 –4.80
6 –56.56 17,680 –3.20 1.00 0.94 −3.20 –3.00
7 40.00 25,000 1.60 −0.71 0.33 –1.14 0.53
8 –56.56 17,680 –3.20 0.00 –0.47 0.00 1.50
9 –40.00 25,000 –1.60 –0.71 –0.33 1.14 0.53
Σ –8.86 –9.83
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For case (a), Equation 3.7 becomes

	 ∑+ = −
=

f Vj
j

M

j(1)( ) = 8.86mm2 6

1

The relative movement in the direction of 2–6 is 8.86 mm in the opposite 
direction of what was assumed for the unit load, that is, away from each 
other, not toward each other.

For case (b), Equation 3.7 becomes

(1) (∆2 + ∆3) =
M

fj Vj = –9.83 mmΣ
j=1

9.83 mm

4 m

For the rotation of bar 2, we note that the –9.83 mm computed represents 
a relative vertical movement between node 2 and node 3 of 9.83 mm in the 
opposite direction of what was assumed for the pair of unit loads. That rela-
tive vertical movement translates into a counterclockwise rotation of 9.83 
mm/4000 mm = 0.0025 radian.

PROBLEM 3.1

Find the horizontal displacement of node 2 of the loaded truss shown 
next, given E = 10 GPa and A = 100 cm2 for all bars.

1

2

4 m

3 m

3

3 m

1 2

3

1.0 kN

0.5 kN

Problem 3.1

PROBLEM 3.2

Find the horizontal displacement of node 2 of the loaded truss shown 
next, given E = 10 GPa and A = 100 cm2 for all bars. The magnitude of the 
pair of loads is 141.4 kN.
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1 2 3 4

5 6

1 2 3

4
5

6
7 8

9

4 m

3@4 m = 12 m

Problem 3.2.

PROBLEM 3.3

The lower chord members 1, 2, and 3 of the truss shown next are hav-
ing a 20°C increase in temperature. Find the horizontal displacement 
of node 5, given E = 10 GPa and A = 100 cm2 for all bars and the linear 
thermal expansion coefficient is α = 5(10–6)/°C.

1 2 3 4

5 6

1 2 3

4
5

6
7 8

9

4 m

3@4 m = 12 m

Problem 3.3

3.2 � Indeterminate Truss Problems: Method 
of Consistent Deformations

The truss shown in the following figure has 15 members (M = 15) and four 
reaction forces (R = 4). The total number of force unknowns is 19. There are 
nine nodes (N = 9). Thus, M + R – 2N = 1. The problem is statically indeter-
minate to the first degree. In addition to the 18 equilibrium equations we can 
establish from the nine nodes, we need to find one more equation in order 
to solve for the 19 unknowns. This additional equation can be established by 
considering the consistency of deformations (deflections) in relation to geo-
metrical constraints.

P

Statically indeterminate truss with one degree of redundancy.
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We notice that if the vertical reaction at the central support is known, then 
the number of force unknowns becomes 18 and the problem can be solved 
by the 18 equilibrium equations from the nine nodes. The key to the solution 
is then to find the central support reaction, which is called the redundant 
force. Denoting the vertical reaction of the central support by Rc, the original 
problem is equivalent to the problem shown next as far as force equilibrium 
is concerned.

P Rc

c

Statically equivalent problem with the redundant force Rc as unknown.

The truss above, with the central support removed, is called the primary 
structure. Note that the primary structure is statically determinate. The mag-
nitude of Rc is determined by the condition that the vertical displacement 
of node c of the primary structure, due to (1) the applied load P and (2) the 
redundant force Rc, is zero. This condition is consistent with the geometric 
constraint imposed by the central support on the original structure. The ver-
tical displacement at node c due to the applied load P can be determined by 
solving the problem associated with the primary structure as shown next.

c

P ∆c

Displacement of node c of the primary structure due to the applied load.

The displacement of node c due to the redundant force Rc cannot be com-
puted directly because Rc itself is unknown. We can compute, however, the 
displacement of node c of the primary structure due to a unit load in the direc-
tion of Rc. This displacement is denoted by δcc, the double subscript cc signifies 
displacement at c (first subscript) due to a unit load at c (second subscript).

c

1 kN δcc

Displacement at c due to a unit load at c.
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The vertical displacement at c due to the redundant force Rc is then Rcδcc, as 
shown in the following figure.

c

Rc Rcδcc

Displacement at c due to the redundant force Rc.

The condition that the total vertical displacement at node c, Δc, be zero is 
expressed as

	 Δc = Δ ′c + Rcδcc = 0	 (3.11)

This is the additional equation needed to solve for the redundant force Rc. 
Once Rc is obtained, the rest of the force unknowns can be computed from 
the regular joint equilibrium equations. Equation 3.11 is called the condition 
of compatibility.

We may summarize the concept behind the aforementioned procedures 
by pointing out that the original problem is solved by replacing the inde-
terminate truss with a determinate primary structure and superposing the 
solutions of two problems, each determinate, as shown next.

c

P ∆c

c

Rc Rcδcc

+

The superposition of two solutions.

And, the key equation is the condition that the total vertical displacement at 
node c must be zero, consistent with the support condition at node c in the 
original problem. This method of analysis for statically indeterminate struc-
tures is called the method of consistent deformations.
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EXAMPLE 3.5

Find the force in bar 6 of the truss shown next, given E = 10 GPa and A = 
100 cm2 for all bars.

1 kN

0.5 kN

1 4

3
2

4 m

3 m

3
6

1

2

4

5

Example of an indeterminate truss with one redundant force.

Solution

The primary structure is obtained by introducing a cut at bar 6 as shown in 
the left panel of the following figure. The original problem is replaced by 
that of the left panel and that of the middle panel.

1 kN

1 4

32

1

2

3

4

5

1 4

32

1

2

3

4

5 F6

F6δ∆

1 kN

0.5 kN

1 4

32

1

2

3

4

5 6

0.5 kN

+ =

Superposition of two solutions.

The condition of compatibility in this case requires that the total relative 
displacement across the cut obtained from the superposition of the two 
solutions be zero:

	 Δ = Δ′ + F6 δ = 0

where Δ′ is the overlap length (opposite of a gap) at the cut due to the 
applied load and δ is, as defined in the following figure, the overlap length 
across the cut due to a pair of unit loads applied at the cut.
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1 4

32

1

2

3

4 

5 
11

Overlap displacement at the cut due to the unit-force pair.

The computation needed to find Δ′ and δ is tabulated next.

Computing for Δ′ and δ

Member

Real Load For Δ′ For δ

Fi EA/L Vi fi  fi Vi vi fi vi

(kN) (kN/m) (mm) (kN/kN) (mm) (mm/kN) (mm/kN)

1 –0.33 25,000 –0.013 –0.8 0.010 –0.032 0.026
2 0 33,333 0 –0.6 0 –0.018 0.011
3 0 25,000 0 –0.8 0 –0.032 0.026
4 0.50 33,333 0.015 –0.6 –0.009 –0.018 0.011
5 –0.83 20,000 –0.042 1.0 –0.042  0.050 0.050
6 0 20,000 0 1.0 0  0.050 0.050
Σ –0.040 0.174

Note:	 Fi = ith member force due to the real applied load; Vi = Fi/(EA/L)i = ith member 
elongation due to the real applied load; fi = ith member force due to the virtual 
unit load pair at the cut; vi = fi/(EA/L)i is the ith member elongation due to the 
virtual unit load pair at the cut; Δ′ = −0.040 mm; δ = 0.174 mm/kN.

	 0.040 mm, 0.174 mm/kN= − δ = 	
From the condition of compatibility:

∆′ + F6 δ = 0 F6 = –
0.174

–0.040
= 0.23 kN

EXAMPLE 3.6

Formulate the conditions of compatibility for the truss problem shown.

P

c d

Statically indeterminate truss with two degrees of redundancy.
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Solution

The primary structure can be obtained by removing the supports at node 
c and node d. Denoting the reaction at node c and node d as Rc and Rd, 
respectively, the original problem is equivalent to the superposition of the 
three problems as shown in the following figure.

c

P ∆c ∆d

c

Rc Rcδcc

c

Rd
Rdδcd

d

Rcδdc

d

d

Rdδdd

+

+

Superposition of three determinate problems.

In the figure:

Δ′c: vertical displacement at node c due to the real applied load
Δ′d: vertical displacement at node d due to the real applied load
δcc: vertical displacement at node c due to a unit load at c
δcd: vertical displacement at node c due to a unit load at d
δdc: vertical displacement at node d due to a unit load at c
δdd: vertical displacement at node d due to a unit load at d

The conditions of compatibility are that the vertical displacements at 
nodes c and d are zero:

	 Δc = Δ′c + Rcδcc + Rd  δcd = 0

	 Δd = Δ′d + Rc δdc + Rd  δdd = 0
	 (3.12)
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Equation 3.12 can be solved for the two redundant forces Rc and Rd. Denote

Vi: ith member elongation due to the real applied load
fic: ith member force due to the unit load at c
vic: ith member elongation due to the unit load at c
fid: ith member force due to the unit load at d
vid: ith member elongation due to the unit load at d

We can express the displacements according to the unit load method as

Δ′c = Σ fic (Vι )
Δ′d = Σ fid (Vι )
δcc = Σ fic (vιc )
δdc = Σ fic (vιd )
δcd = Σ fid (vιc )
δdd = Σ fid (vιd )

The member elongation quantities in the equations are related to the 
member forces through
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i
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i i
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f L
E A

id
id i

i i
=

Thus, we need to find only member forces Fi, fic, and fid, corresponding to 
the real load, a unit load at node c, and a unit load at node d, respectively, 
from the primary structure.

3.3 � Laws of Reciprocity

In the last example we came across δcd and δdc, which can be expressed in 
terms of member forces:

	 f v f
f L
E A

( ) =cd id ic id
ic i

i i
δ = ∑ ∑

	 f v
f L
E A

= ( ) fdc ic id ic
id i

i i
δ ∑ = ∑
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Comparing the two equations we conclude that

	 δcd = δdc	 (3.13)

Equation 3.13 states “displacement at point c due to a unit load at point 
d is equal to the displacement at d due to a unit load at point c.” Here, all 
displacements and unit loads are in the vertical direction, but the state-
ment is also true even if the displacements and unit loads are in different 
directions as long as there is a cross-correspondence as shown in the fol-
lowing figure.

c

1

c

1δcd

d

d

δdc

Reciprocal displacements.

Equation 3.13 is called the Maxwell’s law of reciprocal displacements. As a 
result of Maxwell’s law, the equations of compatibility, Equation 3.12, when 
put into a matrix form, will always have a symmetrical matrix because δcd is 
equal to δdc.

	

δ δ

δ δ
=

−

−

R
R

cc cd

dc dd

c

d

c

d

	 (3.14)

Consider now two systems, system A and system B, each derived from 
the two figures by replacing the unit load by a load of magnitude P and Q, 
respectively. Then the magnitude of displacements will be proportionally 
adjusted to what is shown in the next figure.
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c

P

c

QQδcd

Pδdc

d

d

System A

System B

Two loading and displacement systems.

We state “ the work done by the load in system A upon the displacement of 
system B is equal to the work done by the load in system B upon the displace-
ment in system A.” This statement is true because P(Qδcd) = Q(Pδdc), accord-
ing to the Maxwell’s law of reciprocal displacement. This statement can be 
further generalized to include multiple loads: “the work done by the loads in 
system A upon the displacements of system B is equal to the work done by 
the loads in system B upon the displacements in system A.” This statement is 
called Betti’s law of reciprocity. It is the generalization of the Maxwell’s recip-
rocal law. Both are applicable to linear, elastic structures.

3.4 � Concluding Remarks

The force method is easy to apply with hand calculation for stati-
cally determinate problems or indeterminate problems with one or two 
redundants. For three or more redundants, a systematic approach using a 
matrix formulation can be developed. Such a matrix force method formu-
lation is of theoretical interest only and its practical application is virtu-
ally nonexistent.

PROBLEM 3.4

Find the force in member 10 of the loaded truss shown, given E = 10 GPa 
and A = 100 cm2 for all bars.
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1 2 3 4

5 6

1 2 3

4
5

6 7
8

9

4 m

3@4 m = 12 m

10

120 kN

Problem 3.4

PROBLEM 3.5

Find the force in bar 6 of the truss shown, given E = 10 GPa and A = 100 
cm2 for all bars.

10 kN

1 4

32

4 m

3 m

1

2

3

4 

5 6

Problem 3.5
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4
Beam and Frame Analysis: 
Force Method—Part I

4.1 � What Are Beams and Frames?

The following figure illustrates the various components in a plane frame 
system. Each of these components can take loads acting in any direction at 
any point along its length. A frame is consisted of beams and columns. In a 
gravity field, the vertical components are called columns and the horizontal 
components beams. Since the gravity load is usually the predominant load, 
we expect that the columns will carry mostly axial load and the beams trans-
verse load, even though both can take axial and transverse loads.

Overhang
Cantilever

Beam

Column

Clamped (Fixed)
Support 

Roller SupportHinge Support

A plane frame system.

As shown in the figure, a frame can be supported by hinge or roller sup-
ports as a truss can but it can also be supported by a so-called clamped 
or fixed support, which prevents not only translational motions but also 
rotational motion at a section. As a result, a fixed support provides three 
reactions—two forces and a moment. The frames we refer to herein are 
called rigid frames, which means the connection between its components 
are rigid connections that do not allow any translational and rotational 
movement across the connection. In the figure, since it is a rigid frame, all 
angles at the beam–column junction will remain at 90 degrees before or 
after any deformations. For other rigid frame systems, the angles at con-
nections between all components will remain at the same angle before and 
after deformations.
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Let us examine an element of a beam or column and show all the internal 
as well as external forces acting on the element.

M

V

T
T

V

M

Beam or column element with internal and external forces.

As we can see, at a typical section there are three possible actions or inter-
nal forces, bending moment, M, shear force, V, and axial force or thrust, T. For 
a beam, the dominant internal forces are bending moments and shear forces; 
for a column, the axial force dominates. In any case, the internal actions are 
much more complicated than those of a truss member, which has only a 
constant axial force.

4.2 � Statical Determinacy and Kinematic Stability

Instability due to improper support. A beam or frame is kinematically unsta-
ble if the support conditions are such that the whole structure is allowed to 
move as a mechanism. Examples of improper support and insufficient sup-
port are shown next.

Improper or insufficient support conditions.

Instability due to improper connection. A beam or frame is kinematically 
unstable if the internal connection conditions are such that part of or the 
whole structure is allowed to move as a mechanism. Examples of improper 
connections are shown next.
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Improper internal connections.

Statical determinacy. A stable beam or frame is statically indeterminate if 
the number of force unknowns is greater than the number of equilibrium 
equations. The difference between the two numbers is the degree of indeter-
minacy. The number of force unknowns is the sum of the number of reac-
tion forces and the number of internal member force unknowns. For reaction 
forces, a roller has one reaction, a hinge has two reactions, and a clamp has 
three reactions, as shown next.

Reaction forces for different supports.

To count internal member force unknowns, first we need to count how 
many members are in a frame. A frame member is defined by two end nodes. 
At any section of a member there are three internal unknown forces: T, V, 
and M. The state of force in the member is completely defined by the six 
nodal forces, three at each end node, because the three internal forces at any 
section can be determined from the three equilibrium equations taken from 
a free-body diagram (FBD) cutting through the section as shown below, if 
the nodal forces are known.

x

T

V

M

Internal section forces are functions of the nodal forces of a member.

Thus, each member has six nodal forces as unknowns. Denoting the 
number of members by M and the number of reaction forces at each sup-
port as R, the total number of force unknowns in a frame is then 6M + ΣR. 
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On the other hand, each member generates three equilibrium equations 
and each node also generates three equilibrium equations. Denoting 
the number of nodes by N, the total number of equilibrium equations is 
3M + 3N.

Nodal
Equilibrium

Member
Equilibrium

Member
Equilibrium

FBDs of a node and two members.

Because the number of members, M, appears both in the count for 
unknowns and the count for equations, we can simplify the expression for 
counting unknowns as shown next.

Number of Unknowns = 6M + ΣR

Number of Equations = 3M + 3N

Number of Unknowns = 3M + ΣR

Number of Equations = 3N

Counting unknowns against available equations.

This is equivalent to considering each member having only three force 
unknowns. The other three nodal forces can be computed using these three 
nodal forces and the three member equilibrium equations. Thus, a frame is 
statically determinate if 3M + ΣR = 3N.

If one or more hinges are present in a frame, we need to consider the con-
ditions generated by the hinge presence. As shown in the upcoming figure, 
the presence of a hinge within a member introduces one more equation, 
which can be called the condition of construction. A hinge at the junction 
of three members introduces two conditions of construction. The other 
moment at a hinge is automatically zero because the sum of all moments at 
the hinge (or any other point) must be zero. We generalize to state that the 
conditions of construction, C, is equal to the number of joining members 
at a hinge, m, minus one, C = m – 1. The conditions of construction at more 
than one hinge is ΣC.

Since the conditions of construction provide additional equations, the 
available equation becomes 3N + C. Thus, in the presence of one or more 
internal hinges, a frame is statically determinate if 3M + ΣR = 3N + ΣC.
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M
T
V

M = 0
T
V

M
T
V

M
T
V

M
T
V

M
T
V

M = 0
T
V

M = 0
T
V

M
T
V

M
T
V

= 0

= 0

Presence of hinge introduces additional equations.

Example 4.1

Discuss the determinacy of the beams and frames shown.

Solution

The computation is shown with the figures.

R = 3

R = 2
Number of unknowns = 3M + R = 7
Number of equations = 3N + ΣC = 7
Statically determinate.

R = 1

R = 3

Number of unknowns 3M + ΣR = 15
Number of equations = 3N + C = 13
Indeterminate to the 2nd degree.

Number of unknowns = 3M + ΣR = 21
Number of equations = 3N + C = 20
Indeterminate to the 1st degree.

R = 3 R = 3 R = 2 R = 1

R = 3

R = 1
Number of unknowns = 3M + ΣR = 10
Number of equations = 3N + C = 10
Statically determinate.

Number of unknowns = 3M + ΣR = 12
Number of equations = 3N + ΣC = 11
Indeterminate to the 1st degree.

R = 1
R = 3

R = 2

M = 1, N = 2, C = 0 M = 1, N = 2, C = 1

M = 3, N = 4, C = 1 M = 5, N = 6, C = 2

M = 2, N = 3, C = 1

M = 2, N = 3, C = 2

R = 3

Number of unknowns = 3M + ΣR = 8
Number of equations = 3N + ΣC = 6
Indeterminate to the 2nd degree.

Counting internal force unknowns, reactions, and available equations.
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For frames with many stories and bays, a simpler way of counting 
unknowns and equations can be developed by cutting through members 
to produce separate “trees” of frames; each is stable and determinate. The 
number of unknowns at the cuts is the number of degrees of indeterminacy, 
as shown in Example 4.2.

Example 4.2

Discuss the determinacy of the frame shown.

Multistory, multibay indeterminate frame.

Solution

We make nine cuts that separate the original frame into four “trees” of 
frames as shown.

1

2

3

4

5

6

7

8

9

Nine cuts pointing to 27 degrees of indeterminacy.

We can easily verify that each of the stand-alone trees is stable and stati-
cally determinate, that is, the number of unknowns is equal to the number 
of equations in each of the tree problems. At each of the nine cuts, three 
internal forces are present before the cut. All together, we have removed 
27 internal forces in order to have equal numbers of unknowns and equations. 
If we put back the cuts, we introduce 27 more unknowns, which is the 
degrees of indeterminacy of the original uncut frame.

This simple way of counting can be extended to multistory, multibay 
frames with hinges: simply treat the conditions of construction of each 
hinge as “releases” and subtract the ∑C number from the degrees of inde-
terminacy of the frame with the hinges removed. For supports other than 
fixed, we can replace them with fixed supports and count the releases for 
subtracting from the degrees of indeterminacy.
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Example 4.3

Discuss the determinacy of the frame shown.

Indeterminate frame example.

Solution

Two cuts and five releases amounts to 2 × 3 – 5 = 1. The frame is indeter-
minate to the first degree.

1 2

C = 1 C = 2

C = 2

Shortcut to count degrees of indeterminacy.

PROBLEM 4.1

Discuss the determinacy of the beams and frames shown.

(1) (2)

(3) (4)

(5) (6)

(7) (8)

Problem 4.1



98 Introduction to Structural Analysis: Displacement and Force Methods

4.3 � Shear and Moment Diagrams

A beam is supported on a roller and a hinge and is taking a concentrated 
load, a concentrated moment, and distributed loads as shown next.

x dx

T + dT
V + dV

M + dM

q
F

P
Mo

dx

M
T

V

C

A loaded beam and the FBD of a typical infinitesimal element.

A typical element of width dx is isolated as a FBD and the forces acting on the 
FBD are shown. All quantities shown are depicted in their positive direction. It 
is important to remember that the positive direction for T, V, and M depends 
on which face they are acting. It is necessary to remember the following fig-
ures for the sign convention for T, V, and M.

T V M

Positive directions for T, V, and M.

We can establish three independent equilibrium equations from the FBD.

Σ Fx = 0 –T + F + (T + dT ) = 0 dT = –F

Σ Fy = 0 V – P – qdx – (V + dV ) = 0 dV = –P – qdx

Σ Mc = 0 M + Mo – (M + dM) + Vdx = 0 dM = Mo + Vdx

The first equation deals with the equilibrium of all forces acting in the axial 
direction. It states that the increment of axial force, dT, is equal to the exter-
nally applied axial force, F. If a distributed force is acting in the axial direc-
tion, then F would be replaced by fdx, where f is the intensity of the axially 
distributed force per unit length. For a beam, even if axial forces are present, 
we can consider the axial forces and their effects on deformations separately 
from those of the transverse forces. We shall now concentrate only on shear 
and moment.
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The second and the third equations lead to the following differential and 
integral relations

	

dV
dx

q x V qdx– ( ), for distributed loads= = −∫ 	 (4.1a)

	 V P for concentrated loads= − 	 (4.1b)

	

dM
dx

V M Vdx,= = ∫ 	 (4.2a)

	 ΔM = Mo for concentrated moments	 (4.2b)

Note that we have replaced the differential operator d with the symbol Δ in 
Equation 4.1b and Equation 4.2b to signify the fact that there will be a sudden 
change across a section when there is a concentrated load or a concentrated 
moment externally applied at the location of the section.

Differentiating Equation 4.2a once with respect to x and eliminating V 
using Equation 4.1a, we arrive at

	

d M
dx

q M qdxdx– , –
2

2 = = ∫∫ 	 (4.3)

The preceding equations reveal the following important features of shear 
and moment variation along the length of a beam.

	 1.	The shear and moment change along the length of the beam as a 
function of x. The shear and moment functions, V(x) and M(x), are 
called shear and moment diagrams, respectively, when plotted 
against x.

	 2.	According to Equation 4.1a, the slope of the shear diagram is equal 
to the negative value of the intensity of the distributed load, and 
the integration of the negative load intensity function gives the 
shear diagram.

	 3.	According to Equation 4.1b, wherever there is a concentrated load, 
the shear value changes by an amount equal to the negative value of 
the load.

	 4.	According to Equation 4.2a, the slope of the moment diagram is 
equal to the value of the shear, and the integration of the shear func-
tion gives the moment diagram.

	 5.	According to Equation 4.2b, wherever there is a concentrated 
moment, the moment value changes by an amount equal to the value 
of the concentrated moment.

	 6.	According to Equation 4.3, the moment function and load intensity 
are related by twice differentiation/integration.
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Furthermore, integrating once from Equation 4.1a and Equation 4.2a leads to

	

V V qdxb a

a

b

∫= + − 	 (4.4)

and

	

M M Vdxb a

a

b

∫= + 	 (4.5)

where a and b are two points on a beam.
Equations 4.4 and 4.5 reveal practical guides to drawing the shear and 

moment diagrams:

	 1.	When drawing a shear diagram starting from the leftmost point 
on a beam, the shear diagram between any two points is flat if 
there are no loads applied between the two points (q = 0). If there 
is an applied load (q ≠ 0), the direction of change of the shear dia-
gram follows the direction of the load and the rate of change is 
equal to the intensity of the load. If a concentrated load is encoun-
tered, the shear diagram, going from left to right, moves up or 
down by the amount of the concentrated load in the direction of 
the load (Equation 4.1b). These practical rules are illustrated in the 
figure below.

a b

a bV

VbVa

a b

a bV

VbVa

q

q
1

a b

V

VbVa

P

a
b P

Shear diagram rules for different loads.

	 2.	When drawing a moment diagram starting from the leftmost point 
on a beam, the moment diagram between any two points is (a) linear 
if the shear is constant, (b) parabolic if the shear is linear, and so 
forth. The moment diagram has a zero slope at the point where the 
shear is zero. If a concentrated moment is encountered, the moment 



101Beam and Frame Analysis: Force Method—Part I

diagram, going from left to right, moves up or down by the amount 
of the concentrated moment if the moment is counterclockwise or 
clockwise (Equation 4.2b). These practical rules are illustrated in the 
following figure.

a b
V

a bM

a b

M

Mo

Moa
b

a bM

MbMa

Va

1
Va

a
b

V

Moment diagram rules for different shear diagrams and loads.

Example 4.4

Draw the shear and moment diagrams of the loaded beam shown.

3 kN/m

2 m 3 m 3 m

6 kN

Example for shear and moment diagrams of a beam.

Solution

We shall give a detailed step-by-step solution.

	 1.	Find reactions. The first step in shear and moment diagram con-
struction is to find the reactions. Readers are encouraged to verify 
the reaction values shown in the following figure, which is the 
FBD of the beam with all the forces shown.

3 kN/m

2 m 3 m 3 m

6 kN

10 kN
2 kN

FBD of the beam showing applied and reaction forces.
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	 2.	Draw the shear diagram from left to right.

V

Linear
–6 kN1 m

3 kN

2 m

V

–6 kN

4 kN Flat

10 kN

V

–6 kN
–2 kN Flat

4 kN

6 kN

Drawing the shear diagram from left to right.

	 3.	Draw the moment diagram from left to right.

–6 kN-m

–6 kN-m

–6 kN-m

Parabolic

M

Linear

6 kN-m

6 kN-m

M

M
Linear

1 m
4 kN

2 m

Drawing the moment diagram from left to right.
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Example 4.5

Draw the shear and moment diagrams of the loaded beam shown.

3 kN/m

2 m 6 m

6 kN

2 m

6 kN

Example for shear and moment diagrams of a beam.

Solution

We shall draw the shear and moment diagrams directly.

	 1.	Find reactions.

3 kN/m

2 m 3 m 3 m

6 kN

2 m

6 kN

15 kN 15 kN

FBD showing all forces.

	 2.	Draw the shear diagram from left to right.

3 kN/m

2 m 3 m 3 m

6 kN

2 m

6 kN

15 kN

15 kN

6 kN

–6 kN

9 kN

–9 kN

V

V

Drawing shear diagram from left to right.
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	 3.	Draw the moment diagram from left to right.

2 m 3 m 3 m 2 m

15 kN

13.5 kN-m
M

–6 kN/m 6 kN/m

1.5 kN
M

–12 kN/m –12 kN/m

Drawing moment diagram from left to right.

Example 4.6

Draw the shear and moment diagrams of the loaded beam shown next.

30 kN-m

2 m

6 kN

2 m

6 kN

3 m 3 m

Example for shear and moment diagrams of a beam.

Solution

	 1.	Find reactions.

30 kN/m

2 m 3 m 3 m

6 kN

2 m

6 kN

5 kN 5 kN

FBD showing all forces.

	 2.	Draw the shear diagram from left to right.

2 m 3 m 3 m

6 kN

2 m

6 kN
V

V

5 kN 5 kN

6 kN

1 kN

6 kN

Drawing shear diagram from left to right.
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	 3.	Draw the moment diagram from left to right.

2 m 3 m 3 m 2 m

30 kN-m
M

6 kN/m

6 kN/m

M

1 kN/m

1 kN/m

15 kN-m12 kN-m

–12 kN-m–15 kN-m

Drawing moment diagram from left to right.

4.4 � Statically Determinate Beams and Frames

Analysis of statically determinate beams and frames starts from defining the 
FBDs of members and then utilizes the equilibrium equations of each FBD to find 
the force unknowns. The process is best illustrated through example problems.

Example 4.7

Analyze the loaded beam in the following figure and draw the shear and 
moment diagrams.

3 m 3 m 1 m

6 kN

1 kN/m

A B C D

A statically determinate beam problem.

Solution

The presence of an internal hinge calls for a cut at the hinge to produce two 
separate FBDs. This is the best way to expose the force at the hinge.

	 1.	Define FBDs and find reactions and internal nodal forces.

3 m 1 m

6 kN1 kN/m

3 m

1 kN/m

VBVB
C

RC

RA

MA

Two FBDs exposing all nodal forces and support reactions.
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	 The computation under each FBD is self-explanatory. We start 
from the right FBD because it contains only two unknowns and 
we have exactly two equations to use. The third equation of equi-
librium is the balance of forces in the horizontal direction, which 
produces no useful equation since there is no force in the horizon-
tal direction.

Σ MC = 0, VB (3) – 3(1.5) + 6(1) = 0

VB = –0.5 kN

Σ Fy = 0, –0.5 – 3 – 6 + RC = 0

RC = 9.5 kN

Σ MA = 0, MA + 3(1.5) – 0.5(3) = 0

MA = –3 kN-m

Σ Fy = 0, 0.5 – 3 + RA = 0

RA = 2.5 kN

	 2.	Draw the FBD of the whole beam and then shear and moment 
diagrams.

3 m 3 m 1 m

6 kN

1 kN/m

A B C D

2.5 kN

9.5 kN

3 kN-m

2.5 kN

–3.5 kN

6 kN

2.5 m

V

0.125 kN-m

2 m

M

–6 kN-m

x

3 m–3 kN-m

Shear and moment diagrams drawn from the force data of the FBD.
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	 Note that the point of zero moment is determined by solving the 
second order equation derived from the FBD shown next.

x

1 kN/m

A

2.5 kN

3 kN-m Mx

Vx

FBD to determine moment at a typical section x.

M(x) = –3 + 2.5 x – 0.5 x2 = 0, x = 2 m, 3 m

		  The local maximum positive moment is determined from the 
point of zero shear at x = 2.5 m, from which we obtain M(x = 2.5) = 
–3 + 2.5 (2.5) – 0.5 (2.5)2 = 0.125 kN-m.

Example 4.8

Analyze the loaded beam shown next and draw the shear and moment 
diagrams.

3 m 3 m

6 kN-m

3 kN/m

A beam loaded with a distributed force and a moment.

Solution

The problem is solved using the principle of superposition, which states that 
for a linear structure the solution of the structure under two loading systems 
is the sum of the solutions of the structure under each force system.

The solution process is illustrated in the following self-explanatory 
sequence of figures.
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V(x) = 3 – 0.5 x2 = 0, x = 2.45 m

M(x = 2.45) = 3 x – 0.5 x2 (x/3) = 4.9 kN-m

3 m 3 m

3 kN/m

3 m 3 m

3 kN/m 6 kN-m
4.5 kN1 m

1.5 kN 3.0 kN 1 kN 1 kN

x

x

1.5 kN

x

4.9 kN-m4.5 kN-m

–1 kN

3.0 kN-m

–3.0 kN-m

M

V

3.0 kN

2.45 m
–3.0 kN

Solving two separate problems.

The superposed shear and moment diagrams give the final answer.

V(x) = 4 – 0.5 x2 = 0, x = 2.83 m

x = 2.83

–4.0 kN

0.5 kN

7.55 kN-m

1.5 kN-m

7.5 kN-m

M

V

Combined shear and moment diagrams.
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Example 4.9

Analyze the loaded frame shown next, and draw the thrust, shear, and 
moment diagrams.

A statically determinate frame.

Solution

The solution process for a frame is no different from that for a beam.

	 1.	Define FBDs and find reactions and internal nodal forces. Many 
different FBDs can be defined for this problem, but they may 
not lead to simple solutions. After trial-and-error, the follow-
ing FBD offers a simple solution for the axial force in the two 
columns.

10 kN

c

TT

4 m4 m

3 m

FBD to solve for the axial force in columns.

Σ Mc = 0, T(8) = 10(3), T = 3.75 kN

		  Once the axial force in the two columns is known, we can 
proceed to define four FBDs to expose all the nodal forces at the 
internal hinges, as shown in the upcoming figure, and solve for any 
unknown nodal forces one by one using equilibrium equations 
of each FBD. The solution sequence is shown by the numbers 
attached with each FBD. Within each FBD, the bold-faced force 
values are those that are known from previous calculations and 
the other three unknowns are obtained from the equilibrium equa-
tions of the FBD itself.
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10 kN

3.75 kN3.75 kN

5 kN

5 kN

3.75 kN3.75 kN

5 kN

5 kN 5 kN

5 kN 5 kN

3.75 kN 3.75 kN15 kN-m 15 kN-m

12

5 kN

3.75 kN

3 2

4 m4 m

3 m

3 m

3 m

3 m

3.75 kN

Four FBDs exposing all internal forces at the hinges.

		  We note that we could have used the 12 equilibrium equations 
from the above four FBDs to solve for the twelve force unknowns 
without the aid of the previous FBD to find the axial force in the 
two columns first. But the solution strategy presented offers the 
simplest computing sequence without having to solve for any 
simultaneous equations.

	 2.	Draw the thrust, shear, and moment diagrams. For the thrust dia-
gram, we designate tension force as positive and compression 
force as negative. For shear and moment diagrams, we use the 
same sign convention for both beams and columns. For the verti-
cally orientated columns, it is customary to equate the “inside” of 
a column to the “downside” of a beam and draw the positive and 
negative shear and moment diagrams accordingly.
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3 m

3 m

4 m 4 m

3 m

3 m

4 m 4 m

3 m

3 m

4 m 4 m

T

V

M

3.75 kN –3.75 kN

–5 kN

–3.75 kN

5 kN 5 kN

15 kN-m

–15 kN-m

15 kN-m–15 kN-m

Thrust, shear, and moment diagrams of the example problem.
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Example 4.10

Analyze the following loaded frame, and draw the thrust, shear, and 
moment diagrams. The intensity of the horizontal force is 15 kN per unit 
vertical length.

5 m3 m

4 m
15 kN/m

Statically determinate frame example problem.

Solution

The inclined member requires a special treatment in finding its shear 
diagram.

	 1.	Find reactions and draw FBD of the whole structure.

5 m3 m

4 m

60 kN

R = 15 kN

15 kN60 kN

c

FBD for finding reactions.

Σ Mc = 0, 60(2) –R(8) = 0, R = 15 kN

	 2.	Draw the thrust, shear, and moment diagrams. Before drawing the 
thrust, shear, and moment diagrams, we need to find the nodal 
forces that are in the direction of the axial force and shear force. 
This means we need to decompose all forces not perpendicular to 
or parallel to the member axes to those that are. The upper part of 
the following figure reflects that step. Once the nodal forces are 
properly oriented, the drawing of the thrust, shear, and moment 
diagrams is effortlessly achieved.
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60 kN

48 kN 36 kN

15 kN

12 kN
9 kN

7.2 kN/m

9.6 kN/m

12 kN 9 kN

39 kN

48 kN

60 kN

15 kN
15 kN

60 kN

T

V

–12 kN

–48 kN

–60 kN

75 kN-m

9 kN

–39 kN

15 kN

M

–75 kN-m

75 kN-m

48 kN/5 m = 9.6 kN/m
36 kN/5 m = 7.2 kN/m

0.94 m
5 m (9)/(39+9) = 0.94 m

4.22 kN-m
M(x = 0.94) = (9)(0.94) – (9.6)(0.94)2/2 = 4.22 kN-m 0.94 m

5 m

Thrust, shear, and moment diagrams of the example problem.
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PROBLEM 4.2

Analyze the beams and frames shown, and draw the thrust (for frames 
only), shear, and moment diagrams.

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

3 m5 m

10 kN

3 m5 m

10 kN

3 m5 m

3 kN/m

3 m5 m

3 kN/m

3 m5 m

10 kN-m

3 m5 m

10 kN-m

6 m

10 kN-m

6 m4 m

2 kN/m

5@2 m = 10 m

10 kN

5@2 m = 10 m

2 kN/m

4 m

Problem 4.2 beam problems.



115Beam and Frame Analysis: Force Method—Part I

(11) (12)

(13) (14)

(15) (16)

5 m

5 m

10 kN

5 m

5 m

10 kN-m

5 m

5 m

10 kN

5 m

5 m

10 kN-m

5 m

5 m

10 kN

5 m

5 m

10 kN-m

Problem 4.2 frame problems.
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5
Beam and Frame Analysis: 
Force Method—Part II

5.1 � Deflection of Beams and Frames

Deflection of beams and frames is the deviation of the configuration of 
beams and frames from their undisplaced state to the displaced state, mea-
sured from the neutral axis of a beam or a frame member. It is the cumula-
tive effect of deformation of the infinitesimal elements of a beam or frame 
member. As shown in the following figure, an infinitesimal element of 
width dx can be subjected to all three actions: thrust (T), shear (V), and 
moment (M). Each of these actions has a different effect on the deformation 
of the element.

dxx

T V M

dx dx dx

Effect of thrust, shear, and moment on the deformation of an element.

The effect of axial deformation on a member is axial elongation or shorten-
ing, which is calculated in the same way as a truss member’s. The effect of 
shear deformation is the distortion of the shape of an element that results in 
the transverse deflections of a member. The effect of flexural deformation 
is the bending of the element, resulting in transverse deflection and axial 
shortening. These effects are illustrated next.
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Effects of axial, shear, and flexural deformations on a member.

While both the axial and flexural deformations result in axial elonga-
tion or shortening, the effect of flexural deformation on axial elongation 
is considered negligible for practical applications. Thus, bending induced 
shortening, Δ, will not create axial tension in the following figure, even 
when the axial displacement is constrained by two hinges as in the right 
part of the figure, because the axial shortening is too small to be of any sig-
nificance. As a result, axial and transverse deflections can be considered 
separately and independently.

∆

Bending induced shortening is negligible.

We shall be concerned with only transverse deflection henceforth. The 
shear deformation effect on transverse deflection, however, is also negli-
gible if the length-to-depth ratio of a member is greater than 10, as a rule of 
thumb. Consequently, the only effect to be included in the analysis of beam 
and frame deflection is that of the flexural deformation caused by bending 
moments. As such, there is no need to distinguish frames from beams. We 
shall now introduce the applicable theory for the transverse deflection of 
beams.

5.2 � Integration Methods

Linear flexural beam theory—classical beam theory. The classical beam theory is 
based on the following assumptions:

	 1.	Shear deformation effect is negligible.
	 2.	Transverse deflection is small (<< depth of beam).
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Consequently:

	 1.	The normal to a transverse section remains normal after deformation.
	 2.	The arc length of a deformed beam element is equal to the length of 

the beam element before deformation.

n.a.

ds

dx

dθ

ρ

dθds

Beam element deformation and the resulting curvature of the neutral axis (n.a.).

From the preceding figure, it is clear that the rotation of a section is equal 
to the rotation of the neutral axis. The rate of change of angle of the neutral 
axis is defined as the curvature. The reciprocal of the curvature is called the 
radius of curvature, denoted by ρ.

	

θ
= =

θ
=
ρ

d
ds

d
ds

rate of change of angle curvature

1
	 (5.1)

For a beam made of linearly elastic materials, the curvature of an element, 
represented by the curvature of its neutral axis, is proportional to the bend-
ing moment acting on the element. The proportional constant, as derived in 
textbooks on strength of materials or mechanics of deformable bodies, is the 
product of the Young’s modulus, E, and the moment of inertia of the cross-
section with respect to the horizontal neutral surface line of the section, I. 
Collectively, EI is called the sectional flexural rigidity.

	
M x k

x
( )

1
( )

=
ρ

where k = EI.
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Rearranging the previous equation, we obtain the following moment-cur-
vature formula:

	
=
ρ

M
EI

1
	 (5.2)

Equation 5.2 is applicable to all beams made of linearly elastic materials and 
is independent of any coordinate system. In order to compute any beam 
deflection, measured by the deflection of its neutral axis, however, we need 
to define a coordinate system as shown next. Henceforth, it is understood 
that the line or curve shown for a beam represents that of the neutral axis of 
the beam.

y, v

x, u

v(x)

Deflection curve and the coordinate system.

In the preceding figure, u and v are the displacements of a point of the neu-
tral axis in the x- and y-direction, respectively. As explained earlier, the axial 
displacement, u, is separately considered and we shall concentrate on the 
transverse displacement, v. At a typical location, x, the arc length, ds, and its 
relation with its x- and y-components are depicted in the next figure.

x, u

y, v
dv

dx
θ

ds

Arc length, its x- and y-components, and the angle of rotation.

The small deflection assumption of the classical beam theory allows us 
to write

	
Tan

dv
dx

v ds dxandθ = θ = = = 	 (5.3)

where we have replaced the differential operator d/dx by the simpler symbol, 
prime (′).

A direct substitution of the previous formulas into Equation 5.1 leads to

	

θ
=
ρ
=

θ
= θ =

d
ds

d
dx

v
1

	 (5.4)
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which in turn leads to, from Equation 5.2,

	
=
ρ
=

M
EI

v
1

	 (5.5)

This last equation, Equation 5.5, is the basis for the solution of the deflection 
curve, represented by v(x). We can solve for v′ and v from Equation 5.4 and 
Equation 5.5 by direct integration.

Direct integration. If we express M as a function of x from the moment dia-
gram, then we can integrate Equation 5.5 once to obtain the rotation

	
θ = = ∫v

M
EI

dx
	 (5.6)

Integrate again to obtain the deflection

	
= ∫∫v

M
EI

dxdx
	 (5.7)

We shall now illustrate the solution process by the following example.

Example 5.1

The following beam has a constant EI and a length L, find the rotation and 
deflection formulas.

Mo
x

A cantilever beam loaded by a moment at the tip.

Solution

The moment diagram is easily obtained as shown next.

Mo
M

Moment diagram.

Clearly,

	 M x M( ) o=
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Integrate once: EIv =  Mo EIv =  Mo x + C1

Condition 1: v = 0 at x = L C1 = –Mo L

EIv = Mo (x–L)

Integrate again: EIv = Mo (x – L) EIv = Mo (
2
x2

– Lx) + C2

Condition 2: v = 0 at x = L C2 = Mo 2
L2

EIv =  Mo ( 2
x2 + L2

– Lx)

Rotation: θ = v =
EI
Mo (x – L) at x = 0, v= –

EI
Mo L

Deflection: v =
EI
Mo (

2
x2 + L2

– Lx) at x = 0, v = EI
Mo

2
L2

The rotation and deflection at x = 0 are commonly referred to as the tip 
rotation and the tip deflection, respectively.

Example 5.1 demonstrates the lengthy process one has to go through to obtain 
a deflection solution. On the other hand, we notice the process is nothing but 
that of integration, similar to what we have used for the shear and moment 
diagram solutions. Can we devise a way of drawing rotation and deflection 
diagrams in much the same way as drawing shear and moment diagrams? The 
answer is yes and the method is called the conjugate beam method.

Conjugate beam method. In drawing the shear and moment diagrams, the 
basic equations we rely on are Equation 4.1 and Equation 4.3, which are 
reproduced next, respectively, in equivalent forms

	 ∫= −V qdx

	
M qdxdx∫∫= −

Clearly, the operations in Equation 5.6 and Equation 5.7 are parallel to those 
in the previous equations. If we define –M/EI as “elastic load” in parallel to 
q as the real load, then the two processes of finding shear and moment dia-
grams and rotation and deflection diagrams are identical.

Shear and moment diagrams: q V M

Rotation and deflection diagrams: –
EI
M vθ

We can now define a “conjugate beam,” on which an elastic load of mag-
nitude –M/EI is applied. We can draw the shear and moment diagrams of 
this conjugate beam and the results are actually the rotation and deflection 
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diagrams of the original beam. Before we can do that, however, we have to 
find out what kind of support or connection conditions we need to specify for 
the conjugate beam. This can be easily achieved by following the reasoning 
in the following table from left to right, noting that M and V of the conjugate 
beam corresponds to deflection and rotation of the real beam, respectively.

Support and Connection Conditions of a Conjugated Beam

Original Beam Conjugate Beam
Support/Connection v v= θ M V M V Support/Connection 

Fixed 0 0 ≠0 ≠0 0 0 Free
Free ≠0 ≠0 0 0 ≠0 ≠0 Fixed

Hinge/Roller End 0 ≠0 0 ≠0 0 ≠0 Hinge/Roller End
Internal Support 0 ≠0 ≠0 ≠0 0 ≠0 Internal Connection

Internal Connection ≠0 ≠0 0 ≠0 ≠0 ≠0 Internal Support

At a fixed end of the original beam, the rotation and deflection should be 
zero and the shear and moment are not. At the same location of the conjugate 
beam, to preserve the parallel, the shear and moment should be zero. But, 
that is the condition of a free end. Thus, the conjugate beam should have a 
free end at where the original beam has a fixed end. The other conditions are 
derived in a similar way.

Note that the support and connection conversion summarized in the pre-
vious table can be summarized in the following figure, which is easy to 
memorize. The various quantities are also attached but the important thing 
to remember is a fixed support turns into a free support and vice versa while 
an internal connection turns into an internal support and vice versa.

θ = 0 θ ≠ 0
v = 0 v ≠ 0

θ = 0
v = 0 v ≠ 0

V ≠ 0
M ≠ 0

V ≠ 0
M = 0

V ≠ 0
M = 0

V = 0
M = 0

V = 0
M = 0

V ≠ 0
M ≠ 0

V ≠ 0
M ≠ 0

V ≠ 0
M = 0

V ≠ 0
M = 0

Real

Conjugate

θ ≠ 0
v = 0
θ ≠ 0

v = 0
θ ≠ 0

V = 0
M = 0

V ≠ 0
M ≠ 0

V = 0
M = 0

Conversion from a real beam to a conjugate beam.

We can now summarize the process of constructing the conjugate beam 
and drawing the rotation and deflection diagrams:

	 1.	Construct a conjugate beam of the same dimension as the original 
beam.

	 2.	Replace the supports and connections in the original beam with 
another set of supports and connections on the conjugate beam 
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according to the previous table, that is, fixed becomes free, free 
becomes fixed, internal hinge becomes internal support, and so forth.

	 3.	Place the M/EI diagram of the original beam onto the conjugate beam 
as a distributed load, turning positive moment into upward load.

	 4.	Draw the shear diagram of the conjugate beam; positive shear indi-
cates counterclockwise rotation of the original beam.

	 5.	Draw the moment diagram of the conjugate beam; positive moment 
indicates upward deflection.

Example 5.2

The following beam has a constant EI and a length L. Draw the rotation and 
deflection diagrams.

Mo
x

A cantilever beam load by a moment at the tip.

Solution

	 1.	Draw the moment diagram of the original beam.

Mo

M

Moment diagram.

	 2.	Construct the conjugate beam and apply the elastic load.

x

Mo/EI

Conjugate beam and elastic load.

	 3.	Analyze the conjugate beam to find all reactions.

x

Mo/EIMoL/EI

MoL2/2EI

Conjugate beam, elastic load, and reactions.

	 4.	Draw the rotation diagram (the shear diagram of the conjugate 
beam).

–MoL/EI

Shear (rotation) diagram indicating clockwise rotation.
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	 5.	Draw the deflection diagram (the moment diagram of the conju-
gate beam).

MoL2/2EI

Moment (deflection) diagram indicating upward deflection.

Example 5.3

Find the rotation and deflection at the tip of the loaded beam shown. EI is 
constant.

Mo

2a a

Find the tip rotation and deflection.

Solution

The solution is presented next in a series of diagrams.

Mo

Mo

2a aMo/2a

Mo/2a

2a a

Mo/EI

Mo/EI

2aMo/3EI
aMo/3EI

Mo/EI

5aMo/3EI

7a2Mo/6EI

aMo/EI

Reactions

Moment Diagram

Conjugate Beam

Reactions

Solution process to find tip rotation and deflection.

At the right end (tip of the real beam):

Shear = 5aMo/3EI θ = 5aMo/3EI

Moment = 7a2Mo/6EI v = 7a2Mo/6EI
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Example 5.4

Draw the rotation and deflection diagrams of the loaded beam shown. EI 
is constant.

2a a a

P

Beam example on rotation and deflection diagrams.

Solution

The solution is presented next in a series of diagrams. Readers are encour-
aged to verify all numerical results.

2a a a

P
Pa

Reactions

Pa/2

–Pa
Moment Diagram

2a a a
Conjugate Beam

Pa/2EI
Pa/EI

2a a a
Reactions

Pa/2EIPa/EI

11Pa2/12EI 5Pa2/12EI

Shear (Rotation) Diagram
(Unit: Pa2/EI)

–1

–1/12

5/121/6

Moment (Deflection) Diagram
(Unit: Pa3/EI )

a/6

–2701/7776 = –0.35–1/3 = –0.33

P/2 P/2

Solution process for rotation and deflection diagrams.

PROBLEM 5.1

Draw the rotation and deflection diagrams of the loaded beams shown. 
EI is constant in all cases.
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(1)

(2)

(3)

(4)

(5)

L/2 L/2

1 kN-m

L/2 L/2

1 kN

L/2 L/2

Mo = 1 kN-m

L/2 L/2

1 kN

2a a a

2Pa

Problem 5.1

5.3 � Energy Methods

The conjugate beam method is the preferred method for beam deflections, 
but it cannot be easily generalized for rigid frame deflections. We shall now 
explore energy methods and introduce the unit load method for beams and 
frames.

One of the fundamental formulas we can use is the principle of conservation 
of mechanical energy, which states that in an equilibrium system, the work 
done by external forces is equal to the work done by internal forces:

	 Wext = Wint	 (5.8)
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For a beam or frame loaded by a group of concentrated forces, Pi, distrib-
uted forces, qj, and concentrated moments, Mk, where i, j, and k run from 
one to the total number in the respective group, the work done by external 
forces is

	
= Σ + Σ ∫ + Σ θW P q dx v M

1
2

1
2
( )

1
2ext i i j j k k 	 (5.9)

where Δi, vj, and θk are the deflection and rotation corresponding to Pi, qj, and 
Mk. For a concentrated load, the load-displacement relationship for a linear 
system is shown next and the work done is represented by the shaded trian-
gular area. Similar diagrams can be drawn for qdx and M.

Lo
ad

Displacement

P

∆

Work done by a concentrated load.

For the work done by internal forces, we shall consider only internal 
moments, because the effect of shear and axial forces on deflection is neg-
ligible. We introduce a new entity, strain energy, U, which is defined as the 
work done by internal forces. Then

	
W U Md

M dx
EI

1
2

1
2int

2

= = Σ ∫ θ = Σ ∫ 	 (5.10)

where the summation is over the number of frame members, and the integra-
tion is over the length of each member. For a single beam, the summation is 
redundant. Equation 5.10 is derived as the angle of rotation of an infinitesi-
mal element induced by a pair of internal moments.

x
dx

dθ

M M

dx

Change of angle induced by internal moments.
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The change of angle is related to the internal moment, according to 
Equation 5.2 and Equation 5.4,

	
d

Mdx
EI

θ =

which leads to Equation 5.10.

Example 5.5

Find the rotation at the tip of the beam shown. EI is constant, and the beam 
length is L.

Mo

x

Example on tip rotation.

Solution

We shall use the principle of conservation of mechanical energy to find the 
tip rotation, which is denoted by θo. The work done by external forces is

	
W Mext o o

1
2

= θ

To find the expression for strain energy, we noted that

	

M x M

U
M dx
EI

M L
EI

o

o

( )

1
2

1
2

2 2

=

= ∫ =

Equating Wext to U yields

θo = EI
MoL

It is clear that the principle of conservation of mechanical energy can 
only be used to find the deflection under a single external load. A more 
general method is the unit load method, which is based on the principle of 
virtual force.

The principle of virtual force states that the virtual work done by an external 
virtual force upon a real displacement system is equal to the virtual work 
done by internal virtual forces, which are in equilibrium with the external 
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virtual force, upon the real deformation. Denoting the external virtual work 
by δW and the internal virtual work by δU, we can express the principle of 
virtual force as

	 δW = δU	 (5.11)

In view of Equation 5.10 which defines the strain energy as work done by 
internal forces, we can call δU the virtual strain energy. When applying the 
principle of virtual force to find a particular deflection at a point, we apply a 
fictitious unit load at the point of interest and in the direction of the deflec-
tion we are to find. This unit load is the external virtual force. The inter-
nal virtual force for a beam, corresponding to the unit load, is the bending 
moment in equilibrium with the unit load and is denoted by m(x). Denoting 
the internal moment induced by the real applied load as M(x), the real defor-
mation corresponding to the virtual moment m(x) is then

	
θ =d

M x dx
EI
( )

The strain energy of an infinitesimal element is m(x)dθ and the integration 
of m(x)dθ over the length of the beam gives the virtual strain energy.

	
δ = ∫U m x

M x dx
EI

( )
( )

The external virtual work is the product of the unit load and the deflection 
we want, denoted by Δ.

	 δW = 1(Δ)

The principle of virtual force then leads to the following useful formula of 
the unit load method.

1 (∆) = ∫m(x)
EI

M(x)dx

In Equation 5.12, we indicated the linkage between the external virtual 
force, 1, and the internal virtual moment, m(x), and the linkage between the 
real external deflection, Δ, and the real internal element rotation, M(x)dx/EI.

Example 5.6

Find the rotation and deflection at the midspan point C of the beam shown. 
EI is constant and the beam length is L.

Mo

L/2 L/2
C

Beam example of the unit load method.
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Solution

	 1.	Draw the moment diagram of the original beam problem.

Mo

M(x)

Moment diagram of the original beam problem.

	 2.	Draw the moment diagram of the beam with a unit moment at C.

C

1 kN-m

1 kN-m

L/2

m1(x)

L/2

Moment diagram of the beam under the first unit load.

	 3.	Compute the rotation at C.

	
m x

M x dx
EI

M
EI

L M L
EI

c
o o

1( ) ( )
( )

1
2

1
2

radian1θ = ∫ = =

(θc) = 2EI
MoL radian

	 4.	Draw the moment diagram of the beam with a unit force at C.

L/2 L/2
C

1 kN

–L/2

m2(x)

Moment diagram of the beam under the second unit load.

	 5.	Compute the deflection at C.

	
m x

M x dx
EI

L M
EI

L M L
EI

c
o o

1( ) ( )
( )

1
1
2 2 2

1
8

2

2

= ∫ = − = −

	
(∆c) = –

MoL
2

8EI
m    Upward

		  In the last integration, we have used a shortcut. For simple 
polynomial functions, the following table is easy to remember and 
easy to use.
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Integration Table for Integrands as a Product of Two Simple Functions

Case (1) (2) (3) (4)

f1(x)

f2(x)

L
∫f1 f2dx
o 2

1 a b L
3
1 a b L

6
1 a b L a b L

a

b b

a a a

b b

Example 5.7

Find the deflection at the midspan point C of the beam shown. EI is constant 
and the beam length is L.

L/2 L/2
C

Mo = 1 kN-mBA

Example problem to find deflection at midspan.

Solution

The solution is presented next in a series of figures.

1 kN-m

L/2 L/2
C

1 kN

L/4 kN-m

0.5
M(x)

m(x)

Solution to find deflection at midspan.

The computing is carried out using the integration table as a shortcut. The 
large triangular-shaped function in M(x) is broken down into two triangles 
and one rectangle, as indicated by the dashed lines, in order to apply the 
formulas in the table.

	

m x
M x dx
EI

EI
L L L L L L

c1( ) ( )
( )

1 1
3

1
2 4 2

1
2

1
2 4 2

1
6

1
2 4 2

= ∫

= + +
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∆c = 
L2

16EI
m  Downward

Example 5.8

Find the rotation at the end point B of the beam shown. EI is constant and 
the beam length is L.

L/2 L/2
C

1 kN
BA

Example problem to find rotation at end B.

Solution

The solution is presented next in a series of figures.

L/4 kN-m

L/2 L/2
C

1 kN-m

1 kN-m
0.5

M(x)

m(x)

Solution to find the rotation at the right end.

The computing is carried out using the integration table as a shortcut. The 
large triangular shaped function in m(x) is broken down into two triangles 
and one rectangle, as indicated by the dashed lines, in order to apply the 
formulas in the table.

	

m x
M x dx
EI

EI
L L L L L L

B1( ) ( )
( )

1 1
3

1
2 4 2

1
2

1
2 4 2

1
6

1
2 4 2

θ = ∫

= + +

θB =
L2

16EI
radian Counterclockwise

The fact that the results of the last two examples are numerically identical 
prompts us to look into a comparison of the two computational processes.
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L/2 L/2
C

Mo = 1 kN-m

L/2 L/2C

1 kN

0.5

L/4 kN-m

L/2 L/2C

L/2 L/2C

1 kN-m

0.5

1 kN

Mo = 1 kN-m

1 kN-m
L/4 kN-m

M(x)

m(x)

Side-by-side comparison of the two processes in Example 5.7 and Example 5.8.

It is clear from the comparison that the roles of M(x) and m(x) are reversed 
in the two examples. Since the integrands used to compute the results are 
the products of M(x) and m(x) and are identical, no wonder the results are 
identical in their numerical values. We can identify the deflection results 
we obtained in the two examples graphically as shown next.

L/2 L/2
C

Mo = 1 kN-m

L/2 L/2C

1 kN

θB∆c

Reciprocal deflections.

We state that the deflection at C due to a unit moment at B is numerically 
equal to the rotation at B due to a unit force at C. This is the Maxwell’s recipro-
cal law, which may be expressed as:

	 δij = δji	 (5.13)

where
δij = displacement at i due to a unit load at j
δji = displacement at j due to a unit load at i
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The following figure illustrates the reciprocity further.

1 kN 1 kN

i

i

j

j

δijδji

Illustration of the reciprocal theorem.

Example 5.9

Find the vertical displacement at point C due to a unit applied load at a 
location x from the left end of the beam shown. EI is constant and the length 
of the beam is L.

a

x

C

1 kN

Find deflection at C as a function of the location of the unit load, x.

Solution

Clearly, the deflection at C is a function of x, which represents the location 
of the unit load. If we plot this function against x, then a diagram or curve 
is established. We call this curve the influence line of deflection at C. We 
now show that Maxwell’s reciprocal law is well suited to find this influence 
line for deflections.

According to Maxwell’s reciprocal law, the deflection at C due to a unit 
load at x is equal to the deflection at x due to a unit load at C. A direct appli-
cation of Equation 5.13 yields

	 cx xcδ = δ

The influence line of deflection at C is δcx, but it is equal in value to δxc, 
which is simply the deflection curve of the beam under a unit load at C. By 
applying Maxwell’s reciprocal law, we have transformed the more difficult 
problem of finding deflection for a load at various locations to a simpler 
problem of finding deflection of the whole beam under a fixed unit load.

a

x
C

1 kN

Deflection of the beam due to a unit load at C.
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We can use the conjugate beam method to find the beam deflection. 
Readers are encouraged to find the moment (deflection) diagram from the 
conjugate beam.

PROBLEM 5.2

EI is constant in all cases. Use the unit load method in all problems.

(1) Find the deflection at point C.

(2) Find the sectional rotation at point B.

(3) Find the deflection at point B.

(4) Find the sectional rotation at point C.

(5) Find the deflection and sectional rotation at point C.

L/2 L/2

1 kN-m

L/2 L/2

1 kN

L/2 L/2

Mo = 1 kN-m

L/2 L/2

1 kN

2a a a

2Pa

C

B

B

C

C

Problem 5.2
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Sketch the Deflection Curve. Only the conjugate beam method gives the 
deflection diagram. The unit load method gives deflection at a point. If we 
wish to have an idea on what the deflection curve looks like, we can sketch a 
curve based on what we know about the moment diagram.

Equation 5.5 indicates that the curvature of a deflection curve is propor-
tional to the moment. This implies that the curvature varies in a similar 
way as the moment varies along a beam if EI is constant. At any location 
on a beam, the correspondence between the moment and the appearance of 
the deflection curve can be summarized in the following table. At the point 
of zero moment, the curvature is zero and the point becomes an inflection 
point.

Sketch Deflection from Moment

Moment Deflection 

Example 5.10

Sketch the deflection curve of the beam shown. EI is constant and the beam 
length is L.

3 m 3 m 1 m

6 kN

1 kN/m

A B C D

Beam example on sketching the deflection.

Solution

The solution process is illustrated in a series of figures.
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3 m 3 m 1 m

6 kN
1 kN/m

A B C D

2.5 kN

9.5 kN

2.5 kN

–3.5 kN

6.0 kN

2.5 m
V

0.125 kN-m

2 m

M

6 kN-m
3 m

3 m 3 m 1 m
A B C D

Inflection Point

3 kN-m

Sketching a deflection curve.

5.4 � Frame Deflection

The unit load method can be applied to rigid frames using Equation 5.12 and 
summing the integration over all members.

	
m x

M x dx
EI

1( ) ( )
( )

= ∑ ∫ 	 (5.12)

Within each member, the computation is identical to that of a beam.
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Example 5.11

Find the horizontal displacement at point b.

a d

b

L

2L

2EI

EIEI

P
c

Frame example to find displacement at a point.

Solution

	 1.	Find all reactions and draw the moment diagram M of the entire 
frame.

Σ Ma = 0 RdV = 2P

Σ Md = 0 RaV = 2P

Σ Fx = 0 RaH = P

a d

b c

L

2L

2EI

EIEI

P

RaH

RaV RdV

M

2PL

Reaction and moment diagrams of the entire frame.

	 2.	Place unit load and draw the corresponding moment diagram m.

L

2L

1

1

22

2L

m

Moment diagram corresponding to a unit load.
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	 3.	Compute the integration member by member.

	

a b m
M
EI
dx

EI
L PL L

PL
EI

b c m
M
EI
dx

EI
L PL L

PL
EI

c d m
M
EI
dx

Member :
1 1

3
(2 )(2 )(2 )

8
3

Member :
1
2

1
3

(2 )(2 )( )
2
3

Member : 0

3

3

∫ = =

∫ = =

∫ =

	 4.	Sum all integration to obtain the displacement.

	
m x

M x dx
EI

PL
EI

PL
EI

PL
EI

b1( ) ( )
( ) 8

3
2
3

10
3

3 3 3

= ∑ ∫ = + =

∆b = 3EI
10PL3

to the right

Example 5.12

Find the horizontal displacement at point d and the rotations at b and c.

a d

b

L

2L

2EI

EIEI

P
c

Example problem to find displacement and rotation.

Solution

This is the same problem as that in Example 5.11. Instead of finding Δb, now 
we need to find θb, θc, and Δd. We need not repeat the solution for M, which 
is already obtained. For each of the three quantities, we can place the unit 
load as shown in the following figure.

b

a d

c1 b

a d

c 1

a d

b c

1

for θb for θc for θd

Placing unit loads for θb, θc, and Δd.
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The computation process, including the reaction diagram, moment dia-
gram for m, and integration can be tabulated as shown next. In the table, the 
computation in Example 5.11 is also included so that readers can see how 
the tabulation is done.

Computation Process for Four Different Displacements
Actual Load Load for ∆b Load for ∆b Load for ∆c Load for ∆d

Load
Diagram

Moment
Diagram

(M) (m) (m) (m) (m)

∫m
EI
Mdx a~b

EI
1 (

3
1 )

(2PL) (2L) (2L)

=
3EI
8PL3

0 0
EI
1 ( 3

1 ) 

(2PL) (2L) (2L)

=
3EI
8PL3

b~c
2EI

1 (
3
1 ) 

(2PL) (2L) (L)

=
3EI

2PL3

2EI
1 (

3
1 ) 

(2PL) (1) (L)

= PL2

3EI

2EI
1 (

6
1 ) 

(2PL) (1) (L)

= PL2

6EI

2EI
1 (

2
1 )

(2PL) (2L) (L)

=
EI
PL3

c~d 0 0 0 0

Σ∫m
EI
Mdx

∆b = ∆d =θb = θc =3EI
10PL3 PL2

3EI
PL2

6EI 3EI
11PL3

P

2P2P

P

1

22

1

1

1/L1/L

1

1/L1/L 11

2PL 2L 1 1 2L 2L

Knowing the rotation and displacement at key points, we can draw the 
displaced configuration of the frame as shown next.

P

Displaced configuration.
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Example 5.13

Find the horizontal displacement at point b and the rotation at b of member 
b~c.

L

LL

P

a

b c

d

2EI

EIEI

Frame example for finding rotation at a hinge.

Solution

It is necessary to clearly specify that the rotation at b is for the end of mem-
ber b~c, because the rotation at b for member a~b is different. The solution 
process is illustrated next in a series of figures.

a

b b c

d

PP/2

P/2 P/2

P/2

L

LL
a

b c

d

PL/2

M

a

b c

d
1/2 1/2

L

LL
a

b
c

d

–L

m

L

LL
a

b c

d
m

1

1

–L

a

b
c

d
1/2

1/2

1 1

Drawing moment diagrams.
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Computation Process for a Displacement and a Rotation

Actual Load Load for ∆b Load for θb
Load
Diagram

Moment
Diagram 

(M) (m) (m)

∫m
EI
Mdx a~b 0 0

b~c
2EI
–1

[ (
2
PL

)(
2
L

)(L) 

+
2
1

(
2
PL

)(
2
L

)(L)

+
6
1

(
2
PL

)(
2
L

)(L)]

= – 48EI
5PL3

2EI
1

[
6
1

(
2
PL

)(
2
1

)(L)

+
2
1

(
2
PL

)(
2
1

)(L)

+
3
1

(
2
PL

)(
2
1

)(L)]

=
PL2

8EI
c~d 0 0

Σ∫m
EI
Mdx

∆b = – θb =48EI
5PL3 PL2

8EI

P/2 P/2

P

1/2 1/2

1

1/2L 1/2L

1

PL/2

1

L
1

The displaced configuration is shown next.

P

Displaced configuration.

In the following problems, use the unit load method to find displace-
ments indicated.
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PROBLEM 5.3

Find the rotation at a and the rotation at d.

a d

b

L

2L

2EI

EIEI

P c

Problem 5.3

PROBLEM 5.4

Find the horizontal displacement at b and the rotation at d.

a d

b

L

2L

2EI

EIEI

c

PL

Problem 5.4

PROBLEM 5.5

Find the horizontal displacement at b and the rotation at d.

L

LL

PL

a

b c

d

2EI

EIEI

Problem 5.5
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6
Beam and Frame Analysis: 
Force Method—Part III

6.1 � Statically Indeterminate Beams and Frames

When the number of force unknowns exceeds that of independent equilibrium 
equations, the force method of analysis calls for additional conditions based on 
support or member deformation considerations. These conditions are compat-
ibility conditions and the method of solution is called the method of consistent 
deformations. The procedures of the method of consistent deformations are:

	 1.	Determine the degree(s) of redundancy, select the redundant force(s), 
and establish the primary structure.

	 2.	 Identify equation(s) of compatibility, expressed in terms of the 
redundant force(s).

	 3.	Solve the compatibility equation(s) for the redundant force(s).
	 4.	Complete the solution by solving the equilibrium equations for all 

unknown forces.

6.2 � Indeterminate Beam Analysis

Example 6.1

Find all reaction forces, draw the shear and moment diagrams, and sketch 
the deflection curve. EI is constant.

L/2 L/2

P

a b

Beam statically indeterminate to the first degree.
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Solution

	 1.	Degree of indeterminacy is one. We choose the reaction at b, Rb 
as the redundant force.

P

a b

Rb

The statically determinate primary structure and the redundant force.

	 2.	Establish the compatibility equation. Comparing the previous two 
figures, we observe that the combined effect of the load P and the 
reaction Rb must be such that the total vertical displacement at b 
is zero, which is dictated by the roller support condition of the 
original problem. Denoting the total displacement at b as Δb, we 
can express the compatibility equation as

Rb b b bb 0= + δ =

	 where b  is the displacement at b due to the applied load and 
δbb is the displacement at b due to a unit load at b. Together, Rbδbb 

represents the displacement at b due to the reaction Rb. The com-
bination of b  and Rbδbb is based on the principle of superposi-
tion, which states that the displacement of a linear structure due to 
two loads is the superposition of the displacement due to each of 
the two loads. This principle is illustrated next.

P

a b

Rb

P
a b

a b

Rb Rbδbb

∆b

=

+

∆b = 0

Compatibility equation based on the principle of superposition.
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	 3.	Solve for the redundant force. Clearly, the redundant force is 
expressed by

Rb = –
δbb

∆′
b

	 To find b  and δbb, we can use the conjugate beam method for 
each separately, as shown next.

a b
∆b

a
b

PL/2EI

Conjugate Beam

L/2 L/2

L/3

Conjugate beam method to find b .

	 Use the conjugate beam method to find b. The deflection is 
computed as the moment at b of the conjugate beam.

∆′
b = (ΣMb) = EI

1
(

2
1

2
PL

2
L

)(
3
L

+
2
L

) =
48EI
5PL3

Downward

a b
δbb

1

a
b

L/EI

Conjugate Beam

2L/3

	 Use the conjugate beam method to find δbb.

δbb = (ΣMb) = 
EI
1

[(
2
1

)(L)(L)] (
3
2
L) =

L3

3EI
Downward

Rb = –
δbb
∆′
b = –

16
5
P Upward

	 4.	Find other reaction forces and draw the shear and moment dia-
grams. This is achieved through a series of diagrams.
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P
a b

5P/16

11P/16

3PL/16

V

M

∆

5PL/32

11P/16

–5P/16

–3PL/16

Inflection Point

L/2 L/2

Reaction, shear, moment, and deflection diagrams.

Example 6.2

Find all reactions of the same beam as in Example 6.1, but choose a differ-
ent redundant force. EI is constant.

L/2 L/2

P

a b

Beam statically indeterminate to the first degree.

Solution

There are different ways of establishing a primary structure. For example, 
inserting a hinge connection at any point along the beam introduces one 
condition of construction and renders the resulting structure statically deter-
minate. We now choose to put the hinge at the fixed end, effectively select-
ing the end moment, Ma, as the redundant force.

L/2 L/2

P

a
b

Ma

Primary structure and redundant moment Ma.



149Beam and Frame Analysis: Force Method—Part III

The compatibility equation is established from the condition that the total 
rotation at a of the primary structure due to the combined effect of the 
applied load and the redundant force Ma must be zero, which is required by 
the fixed end support.

P

a b

P

a
b

a
b

=

+
θa

Ma

Maθaa

θa = 0

Compatibility condition and principle of superposition.

θa = θ′a + Maθaa = 0

The conjugate beam method is used to find θ′a and θaa.

a
b

M

PL/4

PL/4EI

PL2/16EI

Conjugate Beam

PL2/16EI

PL2/16EIPL2/16EI

Conjugate beam for aθ .

From the conjugate beam, the rotation at point a is computed as the shear 
of the conjugate beam at a.

θ ′
a = (Va) = – (

PL2

16EI
)
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To find θaa, the following figure applies.

a
b

1

a b

M

1/EI

L/6EI

1

L/3EI

θaa

L/2EI

Conjugate Beam

Conjugate beam for θaa.

From the conjugate beam, the rotation at point a is computed as the shear 
of the conjugate beam at a.

θaa = (Va) = (
L

3EI
)

The redundant moment is computed from the compatibility equation as

Ma = –
θaa

= –
16
3PLθ ′

a

This is the same end moment as obtained in Example 6.1. All reaction forces 
are shown next.

P

a b

5P/16

11P/16

3PL/16
L/2

Solution showing all reaction forces.

Example 6.3

Analyze the indeterminate beam shown next, and draw the shear, moment, 
and deflection diagrams. EI is constant.
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L L

w

Statically indeterminate beam with one redundant force.

Solution

We choose the reaction at the center support as the redundant force. The 
compatibility condition is that the vertical displacement at the center sup-
port be zero. The primary structure, deflections at center due to the load, 
the redundant force, and so forth, are shown next. The resulting computa-
tion is self-evident.

L L

w

w

∆c

c

Rc

Rcδcc

=

+

∆c = 0

Principle of superposition used to find compatibility equation.

The compatibility condition is

	 Rc c c cc 0= + δ =

For such a simple geometry, we can find the deflections from published 
deflection formulas.

	
= = =

w length
EI

w L
EI

wL
EI

c
5 ( )

384
5 (2 )
384

5
24

4 4 4

	

P length
EI

P L
EI

PL
EI

cc
( )
48

(2 )
48 6

3 3 3

δ = = =
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Hence

	
R

wL
Upwardc

5
4

= − ↑

The reaction, shear, moment, and deflection diagrams are shown next.

L L

w

c

5wL/4 3wL/83wL/8

3wL/8

–3wL/8

5wL/8

–5wL/8

9wL2/128
M

∆

V
3/8L

3/4L
wL2/8

Reaction, shear, moment, and deflection diagrams.

Example 6.4

Outline the formulation of the compatibility equation for the beam shown.

L L

w

L

Statically indeterminate beam with two redundant forces.

Solution

We choose the reaction forces at the two internal supports as the redun-
dant forces. As a result, the two conditions of compatibility are the vertical 
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displacements at the internal support points be zero. The superposition of dis-
placements involves three loading conditions as shown in the following figure.

L L

w

L

∆1 ∆2

L L

w

L

R1δ11 R1δ21
R1

1 2

1 2

L L

w

L

R2δ12 R2δ22R2

1 2

L L

w

L

+

+

=

∆1 = 0 ∆2 = 0

21

Superposition of primary structure solutions.

The two compatibility equations are:

	

R R

R R

0

0

1 1 1 11 2 12

2 2 1 21 2 22

= + δ + δ =

= + δ + δ =

These two equations can be put in the following matrix form.

	

R
R

11 12

21 22

1

2

1

2

δ δ

δ δ
= −

 

Note that the square matrix at the left-hand side (LHS) is symmetric because 
of Maxwell’s reciprocal law. For problems with more than two redundant 
forces, the same procedures apply and the square matrix is always symmetric.
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While we have chosen support reactions as redundant forces in the pre-
ceding beam examples, it is sometimes advantageous to choose internal 
moments as the redundant forces as shown in the frame example next.

6.3 � Indeterminate Frame Analysis

Example 6.5

Analyze the frame shown and draw the moment and deflection diagrams. 
EI is constant for all members.

L

2L

P

A rigid frame with one degree of redundancy.

Solution

We choose the moment at midspan of the beam member as the redundant 
force: Mc.

P c

P
c

θc Mcθcc

Mc

+

=

θc = 0

Principle of superposition and compatibility equation.

The compatibility equation is

	 Mc c c cc 0θ = θ + θ =
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To find cθ , we use the unit load method. It turns out that c 0θ =  because 
the contribution of the column members cancels out each other and the 
contribution from the beam member is zero due to the antisymmetry of M 
and symmetry of m. Consequently, there is no need to find θcc and Mc is 
identically zero.

c

θc

1

P

L

L L

P/2
P/2

P/2
P/2

1/L 1/L

PL/2

M m
–1

Unit load method to find relative angle of rotation at C.

The moment diagram shown above is the correct moment diagram for the 
frame and the deflection diagram is shown next.

∆

Deflection diagram of the frame.

Example 6.6

Analyze the frame shown and draw the moment and deflection diagrams. EI 
is constant for the two members.

Mo
c

L

L

A frame example with one degree of redundancy.
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Solution

We choose the horizontal reaction at C as the redundant force: Rch.

Mo

c

L

L c

L

L

Mo

c

L

L Rch

Rchδcc

= +

∆c = 0 ∆c

Principle of superposition and compatibility equation.

The compatibility equation is

	 Rc c ch cc 0= + δ =

We use the unit load method to compute Δc ′ and δcc.

Load diagrams for applied load and unit load.

Moment diagrams for applied load and unit load.

∆c = Σ ∫m EI
Mdx =

EI
1

3
1 (Mo) (L) (L) = MoL2

3EI

δcc = Σ ∫m EI
mdx = 

EI
1

3
1 ( L)( L)( L) (2)=

3EI
2L3

∆c + Rchδcc = 0 Rch = – Mo
2L

L

L
c

L

L

Mo 1

1

1

1

Mo/L

Mo/L

Mo L

M m

L

L

Mo

Mo/2L

Mo/2

–Mo/2

Mo/2L
Mo/2L

Mo/2L

Load, moment, and deflection diagrams.
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Example 6.7

Outline the formulation of the compatibility equation of the rigid frame 
shown. EI is constant for all members.

L

L

P

A rigid frame with three degrees of redundancy.

Solution

We choose three internal moments as the redundant forces. The resulting 
primary structure is one with three hinges as shown in the following figure 
(the circles at 1 and 3 are meant to represent hinges). At each of the three 
hinges, the cumulative effect on the relative rotation must be zero. That is 
the compatibility condition, which can be put in a matrix form.

P

1

2

3

M1

θ1

θ2

θ3

M1
M2θ21

M1θ21

M1θ11 M1θ31

M2θ22

M2θ32

M3θ31

M3θ23

M3θ33

M3

θ2 = 0

θ3 = 0θ1 = 0

P

Primary structure and the relative rotation at each hinge.

	

θ θ θ

θ θ θ

θ θ θ

= −

θ

θ

θ

M
M
M

11 12 13

21 22 23

31 32 33

1

2

3

1

2

3

The matrix on the left-hand side is symmetric because of the Maxwell’s 
reciprocal law.

Beam deflection formulas. For statically determinate beam configurations, 
simple deflection formulas can be easily derived. They are useful for the 
solution of indeterminate beam problems using the method of consistent 
deformations. Some of the formulas are given in the upcoming table.
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Approximate methods for statically indeterminate frames. As we can see from 
the previous examples, the force method of analysis for frames is practical 
for hand calculation only for cases of one to two degrees of redundancy. 
Although we can computerize the process for high redundancy cases, an 
easier way for computerization is through the displacement method, which is 
covered next in Chapter 8. In the meantime, for practical applications, we can 
use approximate methods for preliminary design purposes. The approximate 
methods described herein give good approximation to the correct solutions.

Beam Deflection Formulas

Beam  Configuration Formulas for Any Point Formulas for Special Points

θ = –

θ =

θ =

θ = –

θ = –

θ = –

θ =

EI
Mo (L – x)

v =
EI

Mo
2

(L – x)2

θo =
EI

MoL

vo =
MoL2

2EI

P
2EI

(L2 – x2)

v = –

v = –

v = –

v = –

PL3

3EI
+

Px
6EI

(3L2 – x2)

θo =
PL2

2EI

vo = –

θo =

θo = –

θo = –

θo = –
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The basic concept of the approximate methods is to assume the location of 
zero internal moment. At the point of zero moment, the conditions of con-
struction apply, that is, additional equations are available. For rigid frames of 
regular geometry, we can guess at the location of zero moment fairly accu-
rately from experience. When enough conditions of construction are added, 
the original problem becomes statically determinate. We shall deal with two 
classes of problems separately according to loading conditions.

Vertical loads. For regular-shaped rigid frames loaded with vertical floor 
loads such as shown in the following figure, the deflection of the beams are 
such that zero moment exists at a location approximately one-tenth of the 
span from each end.

L

0.1L 0.1L

Vertically loaded frame and approximate location of zero internal moment.

Once we put a pair of hinge-and-roller at the location of zero moment in 
the beams, the resulting frame is statically determinate and can be analyzed 
easily. The following figure illustrates the solution process.

Roller Hinge

Beams and columns as statically determinate components.

This approach neglects any shear force in the columns and axial force 
in the beams, which is a fairly good assumption for preliminary design 
purposes.

Horizontal loads. Depending on the configuration of the frame, we can 
apply either the portal method or the cantilever method. The portal method is 
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generally applicable to low-rise building frames of no more than five stories 
high. The assumptions are:

	 1.	Every midpoint of a beam or a column is a point of zero moment.
	 2.	 Interior columns carry twice the shear as that of exterior columns.

2V VV

P

0.5P 0.25P

P

0.25P

Assumptions of the portal method.

The shear forces in the columns are computed first from the free-body diagram 
(FBD) in the preceding figure using the horizontal equilibrium condition. The 
rest of the unknowns are computed from the FBDs in the sequence shown in the 
following figure one at a time. Each FBD contains no more than three unknowns. 
The curved arrows link dashed circles containing internal force pairs.

0.5P 0.25P0.25P

1 3

2

2

44

0.25P

P

0.25P

FBDs to compute internal forces in the sequence indicated.

The assumptions of the portal method are based on the observation that the 
deflection pattern of low-rise building frames is similar to that of the shear 
deformation of a deep beam. This similarity is illustrated next.

Deflections of a low-rise building frame and a deep beam.
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On the other hand, the cantilever method is generally applicable to high-
rise building frames, whose configurations are similar to those of vertical 
cantilevers. We can then borrow the pattern of normal stress distribution in 
a cantilever and apply it to the high-rise building frame.

+
– + –

Normal stress distribution in a cantilever and axial force distribution in a frame.

The assumptions of the cantilever method are:

	 1.	The axial forces in columns are proportional to the column’s dis-
tance to the center line of the frame.

	 2.	The midpoints of beams and columns are points of zero moment.

The solution process is slightly different from that of the portal method. It 
starts from the FBD of the upper story to find the axial forces. Then, it pro-
ceeds to find the column shears and axial forces in beams one FBD at a time. 
This solution process is illustrated in the following figure. Note that the FBD 
of the upper story cuts through midheight, not the base, of the story.

10 kN

3 m

3 m

3 m3 m 4 m

10 kN

3 m

3 m

3 m3 m 2 m

10 kN

1.5 m

S
2.5S2.5S

a

S

a

2.5S

10 kN

S

2 m

Cantilever method and the FBDs.
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In the figure, the external columns have an axial force 2.5 times that of the 
interior columns because their distance to the center line is 2.5 times that of 
the interior columns. The solution for the axial force, S, is obtained by taking 
moment about any point on the midheight line:

Σ Ma = (1.5) (10) – (2.5S) (10) – S (7 – 3) = 0 S = 0.52 kN

The rest of the computation goes from one FBD to another, each with no more 
than three unknowns and each takes advantage of the results from the previ-
ous one. Readers are encouraged to complete the solution of all internal forces.

PROBLEM 6.1

Find all the reaction forces and moments at a and b. EI is constant and 
the beam length is L.

a

b

Mb

Problem 6.1

PROBLEM 6.2

Find all the reaction forces and moments at a and b, taking advantage of 
the symmetry of the problem. EI is constant.

a b

L/2L/2

P

Problem 6.2

PROBLEM 6.3

Find the horizontal reaction force at d.

L

2L

PL

b c

d

2EI

EIEI

a

Problem 6.3
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PROBLEM 6.4

Find the internal moment at b.

L

2L

PL

a

b c

d

2EI

EIEI

Problem 6.4
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7
Beam and Frame Analysis: 
Displacement Method—Part I

7.1 � Introduction

The basic concept of the displacement method for beam and frame analysis 
is that the state of a member is completely defined by the displacements of 
its nodes. Once we know the nodal displacements, the rest of the unknowns, 
such as member forces, can be obtained easily.

For the whole structure, its state of member force is completely defined by 
the displacements of its nodes. Once we know all the nodal displacements 
of the structure, the nodal displacements of each member are obtained and 
member forces are then computed.

Defining a node in most cases is easy; it either appears as a joining point of 
a beam and a column, or it is at a location where there is a support. In other 
cases, it is a matter of preference of the analyzer, who may decide to define a 
node anywhere in a structure to facilitate the analysis.

We will introduce the displacement method in three stages. The moment 
distribution method is introduced as an iterative solution method that does 
not explicitly formulate the governing equations. The slope-deflection method 
is then introduced to formulate the governing equations. Both are identical 
in their assumptions and concepts. The matrix displacement method is then 
introduced as a generalization of the moment distribution and slope-deflec-
tion methods.

7.2 � Moment Distribution Method

The moment distribution method is a unique method of structural analysis 
in which the solution is obtained iteratively without ever formulating the 
equations for the unknowns. It was invented in an era, out of necessity when 
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the best computing tool was a slide rule, to solve frame problems that nor-
mally require the solution of simultaneous algebraic equations. Its relevance 
today, in the era of the personal computer, is in its insight on how a beam and 
frame react to applied loads by rotating its nodes and thus distributing the 
loads in the form of member-end moments (MEMs). Such an insight is the 
foundation of the modern displacement method.

Take the very simple frame in the following figure as an example. The 
externally applied moment at node b tends to create a rotation at node b. 
Because member ab and member bc are rigidly connected at node b, the 
same rotation must take place at the end of member ab and member bc. 
For rotation at the end of member ab and member bc to happen, an end 
moment must be internally applied at the member end. This member-end 
moment comes from the externally applied moment. Nodal equilibrium 
at b requires the applied external moment of 100 kN be distributed to 
the two ends of the two joining members at b. How much each member 
will receive depends on how “rigid” each member is in its resistance to 
rotation at b. Since the two members are identical in length, L, and cross-
section rigidity, EI, we assume for the time being that they are equally 
rigid. Thus, half of the 100 kN-m goes to member ab and the other half 
goes to member bc.

100 kN-m

EI, L

a

c

b

100 kN-m

50 kN-m

50 kN-m

b

EI, L

EI, L

EI, L

a

c

b
b

50 kN-m

50 kN-m

Moment equilibrium 
of node b

A frame example showing member-end moments.
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In the preceding figure, only the member-end moments are shown. The 
member-end shear and axial forces are not shown to avoid overcrowding the 
figure. The distributed moments (DMs) are “member-end” moments denoted 
by Mba and Mbc, respectively. The sign convention of member-end moments and 
applied external moments is clockwise is positive. We assume the two members 
are equally rigid and receive half of the applied moment, not only because they 
appear to be equally rigid but also because each of the two members is under 
identical loading conditions: fixed at the far end and hinged at the near end.

In other cases, the beam and column may not be of the same rigidity, but 
they may have the same loading and supporting conditions: fixed at the far 
end and allowed to rotate at the near end. This configuration is the funda-
mental configuration of moment loading from which all other configurations 
can be derived by the principle of superposition. We shall delay the deriva-
tion of the governing formulas until we have learned the operating proce-
dures of the moment distribution method.

Mba

EI, L

a

c

b

b
Mbc

θb

θb

Beam and column in a fundamental configuration of a moment applied at the end.

Suffice it to say that given the loading and support conditions shown in the 
following figure, the rotation θb and the member-end moment Mba at the near 
end, b, are proportional. The relationship between Mba and θb is expressed in 
the following equation, the derivation of which will be given later.

Mba = 4EKθbEI, La bθb
Mba = 2EKθb

Vba= 6EKθb/LVab = 6EKθb/L

The fundamental case and the reaction solutions.

	 Mba = 4(EK)abθb	 (7.1a)

where K I L( / )ab ab= .
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We can write a similar equation for Mbc of member bc.

	 Mbc = 4(EK)bcθb	 (7.1b)

where K I L( / )bc bc= .
Furthermore, the moment at the far end of member ab, Mab at a is related to 

the amount of rotation at b by the following formula:

	 Mab = 2(EK)abθb	 (7.2a)

Similarly, for member bc,

	 Mcb = 2(EK)bcθb	 (7.2b)

As a result, the member-end moment at the far end is one-half of the near-
end moment:

	
=M M
1
2ab ba 	 (7.3a)

and

	
=M M
1
2cb bc 	 (7.3b)

Note that in the preceding equations, it is important to keep the subscripts 
because each member may have a different EK.

The significance of Equation 7.1 is that it shows that the amount of the 
member-end moment, distributed from the unbalanced nodal moment, is 
proportional to the member stiffness 4EK, which is the moment needed at 
the near end to create a unit rotation at the near end, while the far end is 
fixed. Consequently, when we distribute the unbalanced moment, we need 
only to know the relative stiffness of each of the joining members at that par-
ticular end. The equilibrium equation for moment at node b is

	 Mba + Mbc = 100 kN-m	 (7.4)

Since

	 Mba : Mbc = (EK)ab : (EK)bc

we can “normalize” the previous equation so that both sides would add up 
to one, that is 100%, utilizing the fact that (EK)ab = (EK)bc in the present case:

	

M
M M

M
M M

EK
EK EK

EK
EK EK

:
( )

( ) ( )
:

( )
( ) ( )

1
2
:
1
2

ba

ba bc

bc

ba bc

ab

ab bc

bc

ab bc+ +
=

+ +
=

 
  	 (7.5)
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Consequently

	
M M M

1
2
( )

1
2
(100 kN-m) 50 kN-mba ba bc= + = =

	
M M M

1
2
( )

1
2
(100 kN-m) 50 kN-mbc ba bc= + = =

From Equation 7.2, we obtain

	
M M

1
2

25 kN-mab ba= =

	
M M

1
2

25 kN-mcb bc= =

Now that all the member-end moments are obtained, we can proceed 
to find member-end shears and axial forces using the free-body diagrams 
(FBDs) shown next.

Vab Vba

Vbc

Vcb

25 kN-m

25 kN-m

50 kN-m 50 kN-m

FBDs to find shear and axial forces.

The dashed lines indicate that the axial force of one member is related to 
the shear force from the joining member at the common node. The shear 
forces are computed from the equilibrium conditions of the FBDs:

 	
= =

+
V V

M M
Lab ba

ba ab

ab

and

	 
= =

+
V V

M M
Lbc cb

bc cb

bc
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The moment and deflection diagrams of the whole structure are shown next.

50 kN-m

25 kN-m

25 kN-m

+

M ∆

Moment and deflection diagrams.

In drawing the moment diagram, note that the sign conventions for inter-
nal moment (as in moment diagram) and the member-end moment (as in 
Equation 7.1 through Equation 7.5) are different. The former depends on the 
orientation and which face the moment is acting on, and the latter depends 
only on the moment direction (clockwise is positive).

Positive internal moment
Positive member-end moment

Positive internal moment
Negative member-end moment

Difference in sign conventions.

Let us recap the operational procedures of the moment distribution method:

	 1.	 Identify the node that is free to rotate. In the present case, it was 
node b. The number of “free” rotating nodes is called the degree of 
freedom (DOF). In the present case, the DOF is one.

	 2.	 Identify the joining members at this node and compute their rela-
tive stiffness according to Equation 7.5, which can be generalized to 
cover more than two members.

	

M
M

M
M

M
M

EK
EK

EK
EK

EK
EK

: :
( )
( )

:
( )
( )

:
( )
( )

ab

xy

bc

xy

cd

xy

ab

xy

bc

xy

cd

xy∑ ∑ ∑
…=

∑ ∑ ∑
…

	

	 where the summation is over all joining members at the particular 
node. Each of the expressions in this equation is called a distribution 
factor (DF), which adds up to 1 or 100%. Each of the moment at the 
end of a member is called a member-end moment.
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	 3.	 Identify the unbalanced moment at this node. In the present case, it 
was 100 kN-m.

	 4.	To balance the 100 kN-m, we need to add –100 kN-m to the node, 
which, when viewed from the member end, becomes positive 100 kN-m. 
This 100 kN-m is distributed to member ab and bc according to the 
DF of each member. In this case the DF is 50% each. Consequently, 
50 kN-m goes to Mba and 50 kN-m goes to Mbc. They are called the 
distributed moment. Note that the externally applied moment is dis-
tributed as member-end moments in the same sign, that is, positive 
to positive.

	 5.	Once the balancing moment is distributed, the far ends of the joining 
members should receive 50% of the distributed moment at the near 
end. The factor of 50% or ½ is called the carryover factor (COF). The 
moment at the far end thus distributed is called the carryover moment 
(COM). In the present case, they are 25 kN-m for Mab and 25 kN-m 
for Mcb, respectively.

	 6.	We note that at the two fixed ends, whatever moments are carried 
over, they are balanced by the support reaction. That means the 
moment equilibrium is achieved at the fixed ends with no need for 
additional distribution. This is equivalent to say that the stiffness 
of the support relative to the stiffness of the member is infinite. Or, 
even simpler, we may formally designate the distribution factors at 
a fixed support as 1:0, with one being assigned for the support and 
zero assigned to the member. The zero DF means we need not redis-
tribute any moment at the member end.

	 7.	The moment distribution method operations end when all the nodes 
are in moment equilibrium. In the present case, node b is the only 
node we need to concentrate on and it is in equilibrium after the 
unbalanced moment is distributed.

	 8.	To complete the solution process, however, we still need to find the 
other unknowns such as shear and axial forces at the end of each 
member. That is accomplished by drawing the FBD of each member 
and writing equilibrium equations.

	 9.	The moment diagram and deflection diagram can then be drawn.

We shall now go through the solution process by solving a similar problem 
with a single degree of freedom (SDOF).

Example 7.1

Find all the member-end moments of the beam shown. EI is constant for all 
members.
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30 kN-m

a b c

10 m 5 m

Beam problem with a SDOF.

Solution

	 1.	Preparation.
	 a.	 Unbalanced moment: At node b there is an externally applied 

moment (EAM), which should be distributed as member-end 
moments in the same sign.

	 b.	 The distribution factors at node b:

	
EK EK

EI
L

EI
L

ba bc ab bc
ab bc

DF : DF 4 : 4 4 : 4
1
10

:
1
5

0.33 : 0.67= = = =

	 c.	 As a formality, we also include DFab = 0, and DFbc = 0, at a and 
c, respectively.

	 2.	Tabulation. All the computing can be tabulated as shown next. 
The arrows indicate the destination of the carryover moment. The 
dashed lines show how the DF is used to compute the DM.

Moment Distribution Table for an SDOF Problem

Mab Mba Mbc Mcb

Node a b c
Member ab bc
DF 0 0.33 0.67 0
MEM1

EAM2 30
DM3 +10 +20
COM4 +5 +10

+10Sum5 +5 +10 +20
1. Member-end moment.
2. Externally applied moment.
3. Distributed member-end moment. 
4. Carryover moment.
5. Sum of member-end moments.

	 3.	Post moment-distribution operations. The moment and deflection 
diagrams are shown next.

20 kN-m

–10 kN-m–10 kN-m

5 kN-m

Inflection Point

Moment and deflection diagrams.



173Beam and Frame Analysis: Displacement Method—Part I

The moment distribution method becomes iterative when there are more 
than one DOF. The aforementioned procedures for one DOF problem can 
still apply if we consider one DOF at a time. That is to say that when we 
concentrate on one DOF, the other DOFs are considered “locked” into a 
fixed support and are not allowed to rotate. When the free node gets its 
distributed moment and the carryover moment reaches the neighboring 
and previously locked node, that node becomes unbalanced, thus requir-
ing “unlocking” to distribute the balancing moment, which in turn creates 
carryover moment at the first node. That requires another round of distribu-
tion and carrying over. Thus begins the cycle of “locking–unlocking” and 
the balancing of moments from one node to another. We shall see, however, 
in each subsequent iteration, the amount of unbalanced moment becomes 
progressively smaller. The iteration stops when the unbalanced moment 
becomes negligible. This iterative process is illustrated in the following 
example of two DOFs.

Example 7.2

Find all the member-end moments of the beam shown. EI is constant for all 
members.

3 m 5 m 5 m
a b c d

30 kN-m

Example of a beam with two DOFs.

Solution

	 1.	Preparation.
	 a.	 Both nodes b and c are free to rotate. We choose to balance 

node c first.
	 b.	 Compute DF at b:

= =EK EK
EI
L

EI
L

ba bc ab bc
ab bc

DF : DF = 4 : 4 = 4 : 4
1
3
:
1
5

0.625: 0.375

	 c.	 Compute DF at c:

= = = =EK EK
EI
L

EI
L

cb cd bc cd
bc cd

DF : DF 4 : 4 4 : 4
1
5
:
1
5

0.5 : 0.5

	 d.	 Assign DF at a and d: DFs are zero at a and d.
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	 2.	Tabulation.

Moment Distribution for a Two-DOF Problem
Node a b c d
Member ab bc cd
DF 0 0.625 0.375 0.5 0.5 0
MEM Mab Mba Mbc Mcb Mcd Mdc
EAM 30
DM +15 +15
COM +7.50 +7.50
DM –4.69 –2.81
COM –2.35 –1.41
DM +0.71 +0.70
COM +0.36 0.35
DM –0.22 –0.14
COM –0.11 –0.07
DM +0.04 +0.03
COM +0.02 +0.02
DM –0.01 –0.01
COM 0.00 0.00
Sum –2.46 –4.92 +4.92 +14.27 +15.73 +7.87

		  In the table, the encircled moment is the unbalanced moment. 
Note how the circles move back and forth between nodes b and 
c. Also note how the EAM at c and the unbalanced moment, cre-
ated by the COM at b, are treated differently. The EAM is balanced 
by distributing the amount in the same sign to the member ends, 
while the unbalanced moment at a node is balanced by distribut-
ing the negative of the unbalanced moment to the moment ends.

	 3.	Post moment-distribution operations. The moment and deflection 
diagrams are shown next.

–2.46

4.92

–14.27

15.73

–7.87

Inflection Point

Moment and deflection diagrams.

Treatment of load between nodes. In the previous examples, the applied load 
was an applied moment at a node. We can begin the distribution process 
right at the node. In most practical cases, the load will be either concentrated 
loads or distributed loads applied between nodes. These cases call for an 
additional step before we can begin the distribution of moments.

Load applied between nodes.
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We imagine that all the nodes are “locked” at the beginning. Then each 
member is in a state of a clamped beam with a transverse load applied 
between the two ends.

a b
MF

baMF
ab

P

Fixed-end beam with applied load.

The moment needed to “lock” the two ends are called fixed-end moments 
(FEMs). They are positive if acting clockwise. For typical loads, the FEMs can 
be precomputed and are tabulated in the FEM table given at the end of this 
chapter. These FEMs are to be balanced when the node is “unlocked” and 
allowed to rotate. Thus, the effect of the transverse load applied between 
nodes is to create moments at both ends of a member. These FEMs should be 
balanced by moment distribution.

Example 7.3

Find all the member-end moments of the beam shown. EI is constant for all 
members.

2 m 2 m 4 m

a c
b 3 kN/m4 kN

Example with load applied between nodes.

Solution

	 1.	Preparation.
	 a.	 Only node b is free to rotate. There is no externally applied 

moment at node b to balance, but the transverse load between 
nodes creates FEMs.

	 b.	 FEM for member ab. The concentrated load of 4 kN creates 
FEMs at end a and end b. The formula for a single transverse 
load in the FEM table gives us:

	
M

P Length
ab
F ( ) ( )

8
(4) (4)
8

2kN-m= − = − = −

	
M

P Length
ba
F ( ) ( )

8
(4) (4)
8

2kN-m= = =
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	 c.	 FEM for member bc. The distributed load of 3 kN/m creates 
FEMs at end b and end c. The formula for a distributed trans-
verse load in the FEM table gives us:

	
M

w Length
bc
F ( ) ( )

12
(3) (4)
12

4 kN-m
2 2

= − = − = −

	
M

w Length
cb
F ( ) ( )

12
(3) (4)
12

4 kN-m
2 2

= = =

	 d.	 Compute DF at b:

	
= = =EK EK

EI
L

EI
L

ba bc ab bc
ab bc

DF :DF 4 : 4 = 4 : 4
1
4
:
1
4

0.5 : 0.5

	 e.	 Assign DF at a and c: DFs are zero at a and c.
	 2.	Tabulation.

Moment Distribution for an SDOF Problem with FEMs
Node a b c
Member ab bc
DF 0 0.5 0.5 0
EAM
MEM Mab Mba Mbc Mcb
FEM –2 +2 –4 +4
DM +1 +1
COM +0.5 +0.5
Sum –1.5 +3 –3 +4.5

	 3.	 Post moment-distribution operations. The shear forces at both ends of 
a member are computed from the FBDs of each member. Knowing 
the member-end shear forces, the moment diagram can then be 
drawn. The moment and deflection diagrams are shown next.

FBDs of the two members.

–1.5 –3
–4.5

1.75
5.79

1.875 m

Inflection Point

1.5 kN-m 2 m 2 m

4 kN

3 kN-m

2.38 kN1.62 kN

3 kN-m 4 m

3 kN/m

4.5 kN-m

6.38 kN5.62 kN

Moment and deflection diagrams.
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Treatment of hinged ends. At a hinged end, the MEM is equal to zero or 
whatever an externally applied moment is at the end. During the process of 
moment distribution, the hinged end may receive COM from the neighbor-
ing node. That COM must then be balanced by distributing 100% of it at the 
hinged end. This is because the distribution factor of a hinged end is 1 or 
100%; the hinged end may be considered to be connected to air, which has 
zero stiffness. This new distributed moment starts another cycle of carryover 
and distribution. This process is illustrated in Example 7.4.

The cycle of iteration is greatly simplified if we recognize at the very begin-
ning of moment distribution that the stiffness of a member with a hinged 
end is fundamentally different from that of the standard model with the 
far end fixed. We will delay the derivation but will state that the moment 
needed at the near end to create a unit rotation at the near end with the far 
end hinged is 3EK, less than the 4EK if the far end is fixed.

Mba = 3EKθb

θb

θb

Mba = 4EKθbMab= 2EKθb

Mba = 0
a

a

b

b

Member with a hinged end versus the standard model with the far end fixed.

Note that there is no COM at the hinged end (Mba = 0) if we take the mem-
ber stiffness factor as 3EK instead of 4EK. We can thus compute the relative 
distribution factors accordingly, and when distributing the moment at one 
end of the member, we need not carry over the distributed moment to the 
hinged end. This simplified process with a modified stiffness from 4EK to 
3EK is illustrated in Example 7.5.

Example 7.4

Find all the member-end moments of the beam shown. EI is constant for all 
members.

2 m 2 m 4 m

a
c

b 3 kN/m4 kN

2 m

2 kN

2 m 2 m 4 m

a
c

b 3 kN/m4 kN4 kN-m

Turning a problem with a cantilever end into one with a hinged end.
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Solution

The original problem with a cantilever end can be treated as one with a 
hinged end as shown. We shall solve only the problem with a hinged end. 
Note that the vertical load is not shown in the equivalent hinged-end prob-
lem because it is taken up by the support at a.

	 1.	Preparation. Since the geometry and loading are similar to that of 
Example 7.3, we can copy the preparation part but note that an 
externally applied moment is present.

	 a.	 Only nodes b and a are free to rotate. There is an externally 
applied moment at node a and the transverse load between 
nodes create FEMs at all nodes.

	 b.	 FEM for member ab. The concentrated load of 4 kN creates 
FEMs at end a and end b. The formula for a single transverse 
load in the FEM table gives us:

	
M

P Length
ab
F ( ) ( )

8
(4)(4)
8

2kN-m= − = − = −

	
M

P Length
ba
F ( ) ( )

8
(4)(4)
8

2kN-m= = =

	 c.	 FEM for member bc. The distributed load of 3 kN/m creates 
FEMs at end b and end c. The formula for a distributed trans-
verse load in the FEM table gives us:

	
M

w Length
bc
F ( ) ( )

12
(3) (4)
12

4kN-m
2 2

= − = − = −

	
M

w Length
cb
F ( ) ( )

12
(3) (4)
12

4 kN-m
2 2

= = =

	 d.	 Compute DF at b:

	
= = = =EK EK

EI
L

EI
L

ba bc ab bc
ab bc

DF :DF 4 : 4 4 : 4
1
4
:
1
4

0.5 : 0.5

	 e.	 Assign DF at a and c: DFs are one at a and zero at c.
	 2.	Tabulation. In the moment distribution process shown next, we 

must deal with the unbalanced moment at the hinged end first. 
The EAM of –4 kN-m and the FEM of –2 kN-m at node a add up 
to 2 kN-m of unbalanced moment, not –6 kN-m. This is because 
the FEM and DM at node a should add up to the EAM, which is 
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–4 kN-m. Thus, we need to distribute (–4 kN-m) – (–2 kN-m) = –2 
kN-m to make the node balanced. The formula to remember is 
DM = EAM – FEM. This formula is applicable to all nodes where 
there are both EAMs and FEMs.

Moment Distribution Table for a Beam with a Hinged End
Node a b c
Member ab bc
DF 1 0.5 0.5 0
MEM Mab Mba Mbc Mcb
EAM –4
FEM –2 +2 –4 +4
DM –2
COM –1
DM +1.5 +1.5
COM +0.8 +0.8
DM –0.8
COM –0.4
DM +0.2 +0.2
COM +0.1 +0.1
DM –0.1
COM 0.0
Sum –4 +2.3 –2.3 +4.9

The aforementioned back-and-forth iteration between nodes a and b is 
avoided if we use the simplified procedures as illustrated next.

Example 7.5

Find all the member-end moments of the beam shown. EI is constant for 
all members. Use the modified stiffness to account for the hinged end at 
node a.

2 m 2 m 4 m

a
c

b 3 kN/m4 kN4 kN-m

Beam with a hinged end.

Solution

	 1.	Preparation. Note the stiffness computation in step d.
	 a.	 Only nodes b and a are free to rotate. Node a is considered 

a hinged node and needs no moment distribution except at 
the very beginning. There is an externally applied moment at 
node a and the transverse load between nodes create FEMs 
at all nodes.
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	 b.	 FEM for member ab. The concentrated load of 4 kN creates 
FEMs at end a and end b. The formula for a single transverse 
load in the FEM table gives us:

	
M

P Length
ab
F ( ) ( )

8
(4)(4)
8

2kN-m= − = − = −

	
M

P Length
ba
F ( ) ( )

8
(4)(4)
8

2kN-m= = =

	 c.	 FEM for member bc. The distributed load of 3 kN/m creates 
FEMs at end b and end c. The formula for a distributed trans-
verse load in the FEM table gives us:

	
M

w Length
bc
F ( ) ( )

12
(3) (4)
12

4 kN-m
2 2

= − = − = −

	
M

w Length
cb
F ( ) ( )

12
(3) (4)
12

4 kN-m
2 2

= = =

	 d.	 Compute DF at b:

	
= =EK EK

EI
L

EI
L

ba bc ab bc
ab bc

DF : DF = 3 : 4 = 3 : 4
3
7
:
4
7

0.43 : 0.57

	 e.	 Assign DF at a and c: DFs are one at a and zero at c.
	 2.	Tabulation. In the moment distribution process below, we must deal 

with the unbalanced moment at the hinged end first. Using the for-
mula DM = EAM – FEM, we begin by distributing –2 kN-m and car-
rying over half of it to node b. From this point on, node a is balanced, 
will not receive any COM from node b, and will stay balanced 
throughout the moment distribution process. The zero COM at node 
a in the following table serves to emphasize there is no carryover.

Moment Distribution Table for a Problem with a Hinged End
Node a b c
Member ab bc
DF 1 0.43 0.57 0
MEM Mab Mba Mbc Mcb
EAM –4
FEM –2 +2 –4 +4
DM –2
COM –1
DM +1.3 +1.7 
COM 0.0 +0.8
Sum –4.0 +2.3 –2.3 +4.8
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	 3.	Post moment-distribution operations. The moment and deflection 
diagrams are shown next.

–4 –2.3
–4.8

0.85
2.52

1.79 m

Inflection Point

Moment and deflection diagrams.

Treatment of a central-symmetric or antisymmetric span. In a problem with at 
least three spans, if the geometry and stiffness are symmetric about the cen-
ter line of the structure, then the central span is in (a) a state of symmetry if 
the load is symmetric about the center line, and (b) a state of antisymmetry 
if the load is antisymmetric about the center line. For these special spans, we 
can develop special stiffness formulas so that no carryover is needed across 
the line of symmetry when member-end moments are distributed. The basic 
information needed for moment distribution is shown in the following figure.

Mcb = 2EKθcMbc = 2EKθb Mcb = 6EKθcMbc = 6EKθb

b c b c

θb = –θc θb = θc

Symmetric and antisymmetric spans.

We shall delay the derivation of the stiffness formulas but will simply state 
that for a symmetric span, the moments needed at both ends to create a unit 
rotation at both ends are 2EK, and for an antisymmetric span they are 6EK. The 
following two examples will illustrate the solution processes using these modi-
fied stiffness factors. Because of symmetry/antisymmetry, we need to deal with 
only half of the span. The other half is a mirror image of the first half in the case 
of symmetry and an upside down mirror image in the case of antisymmetry.

Example 7.6

Find all the member-end moments of the beam shown. EI is constant for 
all members. Use the modified stiffness to account for the symmetric span 
between nodes b and c.

2 m 2 m 4 m

a d
b

4 kN
c

4 m

Beam with a symmetric central span.
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Solution

	 1.	Preparation. Note the stiffness computation in step c.
	 a.	 Only nodes b and c are free to rotate. Only the transverse load 

between nodes b and c will create FEMs at b and c.
	 b.	 FEM for member bc. The formula for a single transverse load 

in the FEM table gives us, as in Example 7.5:

	 Mbc
F 2kN-m= −

	 Mcb
F 2kN-m=

	 c.	 Compute DF at b:

	
= = = =

EI
L

EI
Lab bc

DF : DF 4EK : 2EK 4 : 2
4
6
:
2
6

0.67 : 0.33ba bc ab bc

	 d.	 Assign DF at a: DF is zero at a. No need to consider node d.
	 2.	Tabulation. In the moment distribution process, we need to deal 

with only half of the beam. There is no carryover moment from b 
to c. We include node c just to illustrate that all its moments are 
the reflection of those at node b.

Moment Distribution Table for a Symmetric Problem

Node a b c
Member ab bc
DF 0 0.67 0.33 0
MEM
EAM
FEM –4 +4
DM
COM
Sum

+1.33
+1.33 +2.67

+2.67

–2.67

+1.33 –1.33

+2.67

Mab Mba Mbc Mcb

	 3.	Post moment-distribution operations. The moment and deflection 
diagrams are shown next.

1.33 1.331.33
Inflection Point

–2.67–2.67

Moment and deflection diagrams.
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Example 7.7

Find all the member-end moments of the beam shown. EI is constant for all 
members. Use the modified stiffness to account for the antisymmetric span 
between nodes b and c.

2 m 2 m 4 m

a d
b

4 kN
c

2 m2 m

4 kN

Beam with a central antisymmetric span.

Solution

	 1.	Preparation. Note the stiffness computation in step c. There is no 
need for node c.

	 a.	 Only nodes b and c are free to rotate. The transverse load 
between nodes a and b will create FEMs at a and b. No need 
to consider member cd.

	 b.	 FEM for member ab. The formula for a single transverse load 
in the FEM table gives us, as in Example 7.5 with the signs 
reversed:

	 Mab
F 2kN-m=

	 Mbc
F 2kN-m= −

	 c.	 Compute DF at b:

	
= =EK EK

EI
L

EI
L

ba bc bc
ab bc

DF : DF = 4 : 6 = 4 : 6
4
10

:
6
10

0.4 : 0.6ab

	 d.	 Assign DF at a: DF is zero at a. No need to consider node d.
	 2.	Tabulation. In the moment distribution process shown next, we need 

to deal with only half of the beam. There is no COM from b to c.

Moment Distribution Table for a Beam with an Antisymmetric Span
Node a b c
Member ab bc
DF 0 0.4 0.6 0
MEM
EAM
FEM
DM
COM
Sum

McbMbcMbaMab

+0.4
+0.4

+2 –2
+0.8

–1.2 +1.2

+1.2

+1.2

+1.2
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	 3.	Post moment-distribution operations. The moment and deflection 
diagrams are shown next.

0.4 1.2
3.8 Inflection Point

–0.4–1.2–3.8

Moment and deflection diagrams.

While the antisymmetric loading seems improbable, it often is the result of 
decomposition of a general loading pattern applied to a symmetrical structure. It 
is always possible to decompose a general loading pattern applied on a symmet-
ric structure into a symmetric component and an antisymmetric component, as 
illustrated next. Each loading component can then be treated with the simplified 
procedure of the moment distribution method. The results of the two analyses 
are then superposed to obtain the solution for the original loading pattern.

P P/2 P/2 P/2 P/2

= +
Decompose a load into a symmetric component and an antisymmetric component.

Example 7.8

Find all the member-end moments of the frame shown.

100 kN

5 m

5 m 5 m 20 m 10 m

a b c d

e f
4EI2EI 2EI

EI EI

A three-span bridge frame.

Solution

Symmetry of the structure calls for the decomposition of the load into a 
symmetric component and an antisymmetric component.

50 kN
a b c d

e f

50 kN

50 kN
a b c d

e f

50 kN

Symmetric and antisymmetric loads.
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We shall solve both problems in parallel.

	 1.	Preparation. Note the stiffness computation in steps c and d.
	 a.	 Only nodes a and b are free to rotate when we take advantage of 

the symmetry/antisymmetry. Furthermore, if we use the modi-
fied stiffness for the hinged-end situation in member ab, then we 
need to concentrate on node b only.

	 b.	 FEM for member ab. The concentrated load of 50 kN creates FEMs 
at end a and end b. The formula for a single transverse load in the 
FEM table gives us:

	
M

P Length( ) ( )
8

(50)(10)
8

62.5 kN-mab
F = − = − = −

	
M

P Length( ) ( )
8

(50)(10)
8

62.5 kN-mba
F = = =

	 c.	 Compute DF at b (symmetric case):

	

EK EK EK

EI EI EI

DF : DF :DF 3 : 2 : 4

3
2
10

: 2
4
20

: 4
5

6
10

:
8
20

:
4
5

3
5
:
2
5
:
4
5

3
9
:
2
9
:
4
9

0.33 : 0.22 : 0.45

ba bc be ab bc be

ab bc be

=

= =

= = =
	

	 d.	 Compute DF at b (antisymmetric case):

	

EK EK EK

EI EI EI

DF :DF :DF 3 : 6 : 4

3
2
10

: 6
4
20

: 4
5

6
10

:
24
20

:
4
5

3
5
:
6
5
:
4
5

3
13

:
6
13

:
4
13

0.23 : 0.46 : 0.21

ba bc be ab bc be

ab bc be

=

= =

= = =

	 e.	 Assign DFs at a and e: DF is one at a and zero at e.
	 2.	Tabulation. We need to include only nodes a, b, and e in the follow-

ing table.
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Moment Distribution Table for a Symmetric Case and an Antisymmetric Case

Symmetric Case Antisymmetric Case
Node a b e a b e
Member ab bc be ab bc be
DF 1 0.33 0.22 0.45 0 1 0.23 0.46 0.31 0
MEM Mba Mbc Mbe Meb Mab Mba Mbc Mbe Meb

EAM
FEM 62.5 62.5
DM 62.5 62.5
COM 31.3 31.3
DM
COM 0.0 0.0
Sum 0.0 62.8 72.2

–62.5

–31.0 –20.6

–20.6 –42.2

–42.2
–21.1
–21.1

–29.0

–29.0

–43.2

–43.2

–21.6

–14.5
–14.5

Mab

–62.5

		  The solution to the original problem is the superposition of the two 
solutions in the preceding table.

	 Mab = 0.0 + 0.0 = 0.0 kN-m

	 Mba = 62.8 + (72.2) = 135.0 kN-m

	 Mbc = –20.6 + (–43.2) = –63.8 kN-m

	 Mbe = –42.2 + (–29.0) = –71.2 kN-m

	 Meb = –21.1 + (–14.5) = –35.6 kN-m

	 The superposition for the right half of the structure requires cau-
tion: moments at the right half are negative to those at the left half 
in the symmetric case and are of the same sign in the antisymmet-
ric case.

	 Mdc = 0.0 + 0.0 = 0.0 kN-m

	 Mcd = −62.8 + (72.2) = 9.4 kN-m

	 Mcb = 20.6 + (–43.2) = –22.6 kN-m

	 Mcf = 42.2 + (–29.0) = 13.2 kN-m

	 Mfc = 21.1 + (–14.5) = 6.6 kN-m

	 As expected, the resulting moment solution is neither symmetric 
nor antisymmetric.
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	 3.	Post moment-distribution operations. The moment and deflection dia-
grams are shown next.

182.5

22.6 9.471.2

6.6

Inflection Point

–135 –35.6
–63.8

–13.2

Moment and deflection diagrams.

Example 7.9

Find all the member-end moments of the frame shown. EI is constant for 
all members.

2 m

2 m

2 m

4 kN

a

b c

d

Solution

	 1.	Preparation. Note the stiffness computation in step c.
	 a.	 Only nodes b and c are free to rotate. There is no side sway 

because the support at c prevents that. Only the transverse 
load between nodes a and b will create FEMs at a and b.

	 b.	 FEM for member ab. The formula for a single transverse load 
in the FEM table gives us, as in Example 7.5:

	

M

M

bc
F

cb
F

2kN-m

2kN-m

= −

= −

	 c.	 Compute DF at b:

	
= =EK EK

EI
L

EI
L

ba bc ab bc
ab bc

DF : DF = 4 : 4 = 4 : 4
4
4
:
4
2

0.33 : 0.67
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	 d.	 Compute DF at c:

	
= =EK EK

EI
L

EI
L

cb cd bc cd
ab bc

DF : DF = 4 : 4 = 4 : 4
4
2
:
4
2

0.5 : 0.5

	 e.	 Assign DF at a and d: DF is zero at a and d.
	 2.	Tabulation.

Moment Distribution Table for a Two-DOF Frame
Node a b c d
Member ab bc cd
DF 0 0.33 0.67 0.5 0.5 0
MEM Mab Mba Mbc Mcb Mcd Mdc
EAM
FEM –2 +2
DM –0.67 –1.33
COM –0.33 –0.67
DM +0.33 +0.34
COM +0.17
DM –0.06 –0.11
COM –0.03 –0.06
DM +0.03 +0.03
COM
Sum –2.36 +1.27 –1.27 –0.37 –0.37 +0.19

+0.02

+0.17

	 3.	Post moment-distribution operations. The member-end shear 
forces (underlined) are determined from the FBD of each member. 
The axial forces are determined from the shear forces of the join-
ing members. The reaction at the support at node c is determined 
from the FBD of node c.

4 kN

a

b

c

d

2.36 kN-m

1.27 kN-m

2.27 kN

1.73 kN

b

1.27 kN-m 0.37 kN-m

0.81 kN0.81 kN

1.73 kN

1.73 kN

0.37 kN-m

0.17 kN-m

0.28 kN

0.28 kN

0.81 kN

0.81 kN

0.81 kN

0.81 kN1.73 kN

0.28 kN

Reaction
= 2.01 kN

c

c

FBDs of the three members and node c.
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The moment and deflection diagrams are shown next.

2 m

2 m

2 m

2.18

0.37

Inflection Point
–0.19

–2.36

–1.27

Moment and deflection diagrams.

Treatment of side sway. In all the example problems we have solved so far, 
each member may be allowed to have end-node rotations but not end-node 
translations perpendicular to the member length direction. Consider the two 
problems shown next.

2 m

2 m

2 m

4 kN

a

b c

d
2 m

2 m

2 m

4 kN

a

b

∆ ∆
c

d

A frame without side sway and one with side sway.

Nodes b and c of both frames are free to rotate, but no translation move-
ment of nodes is possible in the frame at the left. For the frame at the right, 
nodes b and c are free to move sidewise, thus creating side sway of members 
ab and cd. Note that member bc still does not have side sway, because there is 
no nodal movement perpendicular to the member length direction.

As shown in the upcoming figure, side sway of a member can be char-
acterized by a member rotation, φ, which is different from member nodal 
rotation. The member rotation is the result of relative translation movement 
of the two member-end nodes in a direction perpendicular to the member 
length direction, defined as positive if it is a clockwise rotation, same way as 
for nodal rotations.

	
=

L
	 (7.6)

where Δ is defined in the figure and L is the length of the member.
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bEI, La

Mab = –6EKφ
φ ∆

Mba = –6EKφ

A member with side sway.

The moment-rotation formula is

	 Mab = Mba = −6EKφ	 (7.7)

As indicated in the previous figure, to have a unit side-sway angle takes 
−6EK of a pair of member-end moments, while holding nodal rotation to 
zero at both ends. The member-end shear forces are not shown.

We can easily develop a moment distribution process that includes the 
side sway. The process, however, is more involved than the one without 
the side sway and tends to diminish the advantage of the moment distribu-
tion method. A better method for treating side sway is the slope-deflection 
method, which is introduced next after the derivation of the key formulas, 
which are central to both the moment distribution method and the slope-
deflection method.

Derivation of the moment-rotation (M-θ and M-φ) formulas. We need to derive 
the formula for the standard model shown next in detail; the other formulas 
can be obtained by the principle of superposition.

a

b

EI, Lx

v θb

(Mab + Mba)/L
Mba

Mab

The standard model with the far-end fixed and the near-end hinged.

There are different ways to derive the moment-rotation formula, but the 
direct integration method is the shortest and most direct way. We seek to show

	 Mba = 4EKθb  and  Mab = 2EKθb

The governing differential equation is

	 EI v″ = M(x)



191Beam and Frame Analysis: Displacement Method—Part I

Using the shear force expression at node a, we can write

	
= +M x M M M

x
L

( ) – ( )ab ab ba

The second order differential equation, when expressed in terms of the 
member-end moments, becomes

	
= +EI v M M M

x
L

– ( )ab ab ba

Integrating once, we obtain

	 
EI v M x M M

x
L

C( ) – ( )
2ab ab ba

2

1= + +

The integration constant is determined by using the support condition at the 
left end:

C1 = 0At x = 0, v´ = 0,

The resulting first-order differential equation is

	
= +EI v M x M M

x
L

( ) – ( )
2ab ab ba

2

Integrating again, we obtain

	
= − + +EI v M

x
M M

x
L

C
2

( )
6ab ab ba

2 3

2

The integration constant is determined by the support condition at the left end:

At x = 0, v = 0, C2 = 0

The solution in v becomes

	
= − +EI v M

x
M M

x
L2

( )
6ab ab ba

2 3
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Furthermore, there are two more boundary conditions we can use to link 
the member-end moments together:

At x = L, v = 0,

At x = L, v´ = –θb,

Mba = 2 Mab

LMbaθb = 
4EI

Thus,

	 Mba = 4EKθb  and  Mab = 2EKθb

Once the moment-rotation formulas are obtained for the standard model, 
the formulas for other models are obtained by superposition of the standard 
model solutions as shown in the following series of figures.

a
b

EI, L

a
b

EI, L

a
b

EI, L

=

+

Mab = 2EKθb

Mba = 4EKθb 

Mba = –EKθb

Mab = –2EKθb

θb

θa = –0.5θbMab = 0

Mba = 3EKθb

θb

Superposition of two standard models for a hinged-end model solution.
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a
b

EI, L

b

EI, L

a
b

EI, L

a

=

+

Mba = 4EKθb

θb

Mab = 2EKθb

Mba = –2EKθb

Mab = –4EKθb

Mab = –2EKθb

θa = –θb θb

Mba = 2EKθb

Superposition of two standard models for a symmetric model solution.

a
b

EI, L

a
bEI, L

a
b

EI, L

=

+

Mab = 2EKθb

θb

Mba = 4EKθb

Mba = 2EKθb

Mab = 4EKθb

θbθa = θb

Mba = 6EKθbMab = 6EKθb

Superposition of two standard models for an antisymmetric model solution.
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The superposition of standard models to obtain the solution for a trans-
lation model requires an additional step in creating a rigid-body rotation 
of the member without incurring any member-end moments. Two standard 
models are then added to counter the rotation at member-ends so that the 
resulting configuration has zero rotation at both ends but a side sway for the 
whole member.

a
b

EI, L
φ

a
b

EI, L

a

bEI, L

=

+

a b

EI, L

+

φ

φ

φ

Mba = 2EKφ

Mba = 6EKφ

∆

Mab = 2EKφ

φ

Mba = 4EKφ

Mab = 4EKφ

Mab = 6EKφ

Superposition of a rigid-body solution and two standard models for a side sway solution.
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PROBLEM 7.1

Find all the member-end moments of the beams and frames shown, 
and draw the moment and deflection diagrams.

(1) (2)

(3)      

(4) (5)

(6) EI is constant in all members. (7) EI is constant in all members.

2 m 2 m 3 m

a c
b 3 kN/m4 kN

2EI EI
2 m 2 m 3 m

a cb
8 kN

2EI EI

2 kN-m

50 kN
a b c d

50 kN

2 m 2 m 2 m 2 m 4 m

50 kN
a b c

4 m 4 m

4 m

8 m

2EI 2EIEI

EI
2EI2EI

50 kN
a b c

4 m 4 m

4 m

8 m

EI
2EI2EI

2 m

2 m

2 m

4 kN

a

b c

d

2 m

2 m

2 m

4 kN

a

b c

d

d d

Problem 7.1
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Loads

–
8
PL

8
PL

–
12
wL2

12
wL2

–
20
wL2

12
wL2

–
96

5wL2

Note: Positive moment acts clockwise.

aL

w

L

w

L

w

L

w

L/2

P

aL aL

P P

aL bL

P

M

bLaL

Fixed-End Moments

L/2

MF MF

a(2b–a)M

96
5wL2

12
a3wL2

(4–3a)

a(1–a)PL

–a2bPL

– b(2a–b)M

12
– (6–8a+3a2) a

2wL2

– a(1–a)PL

– ab2PL
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8
Beam and Frame Analysis: 
Displacement Method—Part II

8.1 � Slope-Deflection Method

The slope-deflection method treats member-end slope (nodal rotation θ) and 
deflection (nodal translation Δ) as the basic unknowns. It is based on the same 
approach as that of the moment distribution method with one difference: the 
slopes and deflections are implicitly and indirectly used in the moment dis-
tribution method but explicitly used in the slope-deflection method. When we 
“unlock” a node in the moment distribution process, we implicitly rotate a node 
until the moment at the node is balanced while all other nodes are “locked.” 
The process is iterative because we balance the moment one node at a time. It 
is implicit because we need not know how much rotation is made in order to 
balance a node. In the slope-deflection method, we express all member-end 
moments (MEMs) in terms of the nodal slope and deflection unknowns. When 
we write the nodal equilibrium equations in moments, we obtain the equi-
librium equations in terms of nodal slope and deflection unknowns. These 
equations, equal in number to the unknown slopes and deflections, are then 
solved directly.

We shall use a simple frame to illustrate the solution process of the slope-
deflection method.

100 kN-m

EI, L

EI, L

a

c

b

A simple frame problem to be solved by the slope-deflection method.

We observe there are three nodes: a, b, and c. Only node b is free to rotate 
and the nodal rotation is denoted by θb. This is the only basic unknown of 
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the problem. We seek to express the moment equilibrium condition at node 
b in terms of θb. This is achieved in two steps: express moment equilibrium 
of node b in terms of member-end moments and then express member-end 
moments in terms of θb. A simple substitution results in the desired equilib-
rium equation for θb. The following figure illustrates the first step.

EI, L

EI, L

a

c

b

b
Mba

Mbc

100 kN-mbMba

Mbc

Moment equilibrium at node b expressed in terms of member-end moments.

The moment equilibrium at node b calls for

	 Σ Mb = 0	 (8.1a)

which is expressed in terms of member-end moments as

	 Mba + Mbc = 100	 (8.1b)

As we have learned in the moment distribution method, the member-end 
moments are related to nodal rotation by

	 Mba = (4EK)ab θb	 (8.2a)

	 Mbc = (4EK)bc θb	 (8.2b)

By substitution, we obtain the equilibrium equation in terms of θb

	 [(4EK)ab + (4EK)bc] θb = 100	 (8.3)

Solving for θb, noting in this case (4EK)ab = (4EK)bc = 4EK, we obtain

	
θ =

EK
12.5

1
b
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Consequently, when we substitute θb back to Equation 8.2, we obtain

	
= θ = =M EK EK

EK
(4 ) (4 )(12.5)

1
50 kN-mba ab b

	
= θ = =M EK EK

EK
(4 ) (4 )(12.5)

1
50 kN-mbc bc b

Furthermore, the other member-end moments not needed in the equilibrium 
equation at node b are computed using the moment-rotation formula:

	
= θ = =M EK EK

EK
(2 ) (2 )(12.5)

1
25 kN-mab ab b

	
= θ = =M EK EK

EK
(2 ) (2 )(12.5)

1
25 kN-mcb bc b

The aforementioned solution process may be summarized as:

	 1.	 Identify nodal rotations as degrees of freedoms (DOFs).
	 2.	 Identify nodal equilibrium in terms of member-end moments.
	 3.	Express member-end moments in term of nodal rotation.
	 4.	Solve for nodal rotation.
	 5.	Substitute back to obtain all member-end moments.
	 6.	Find other quantities, such as member-end shears and so forth.
	 7.	Draw the moment and deflection diagrams.

We skip the last two steps because these are already done in the moment 
distribution section.

Example 8.1

Find all the member-end moments of the beam in the following figure. EI is 
constant for all members.

30 kN-m

a b c

10 m 5 m

Beam problem with a single degree of freedom (SDOF).
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Solution

We observe that there is only one DOF, the rotation at b: θb.
The equation of equilibrium is

	 Σ Mb = 0, or Mba + Mbc = 30

Before we express the member-end moments in terms of nodal rotation 
θb, we try to simplify the expression of the different EKs of the two members 
by using a common factor, usually the smallest EK among all EKs.

	
EK EK

EI EI
ab bc:

10
:
5

1: 2= =

EKbc = 2EKab = 2EK

	 EKab = EK

Now we are ready to write the moment-rotation formulas:

	 Mba = (4EK)abθb = 4EKθb

	 Mbc = (4EK)bcθb = 8EKθb

By substitution, we obtain the equilibrium equation in terms of θb:

	 [(4EK) + (8EK)]θb = 30

Solving for θb and EKθb, we obtain

	 EKθb = 2.5

 	
θ =

EK
b 2.5

1

Consequently,

	 Mba = (4EK)abθb = (4EK)θb = 10 kN-m

	 Mbc = (4EK)bcθb = (8EK)θb = 20 kN-m

	 Mab = (2EK)abθb = (2EK)θb = 5 kN-m

	 Mcb = (2EK)bcθb = (4EK)θb = 10 kN-m

Note that we need not know the absolute value of EK if we are interested 
only in the value of member-end moments. The value of EK is needed only 
when we want to know the amount of nodal rotation.
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For problems with more than one DOF, we need to include the contribu-
tion of nodal rotations from both ends of a member to the member-end 
moments:

	 Mab = (4EK)abθa + (2EK)abθb	 (8.4a)

	 Mba = (4EK)abθb + (2EK)abθa	 (8.4b)

Equation 8.4 is easy to remember; the near-end contribution factor is 4EK and 
the far-end contribution factor is 2EK.

Example 8.2

Find all the member-end moments of the beam in the following figure. EI is 
constant for all members.

3 m 5 m 5 m

a
b c

d

30 kN-m

Beam problem with two DOFs.

Solution

We observe that there are two DOFs, the rotations at nodes b and c: θb and 
θc, respectively.

The two equations of equilibrium are:

Mba + Mbc = 0

Σ Mc = 0 Mcb + Mcd = 30

Σ Mb = 0 

and 

Since EI is constant for all members, we can write

	
= = =K K K
EI EI EI

ab bc cd: :
3
:
5
:
5

5 : 3 : 3 1.67 :1:1

Thus,

	 EKab = 1.67EK

	 EKbc = EK

	 EKcd = EK
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The moment-rotation formulas can be written for the four member-end 
moments appearing in the two equilibrium equations as

	 Mba = (4EK)abθb = 6.68EKθb

	 Mbc = (4EK)bcθb + (2EK)bcθc = 4EKθb + 2EKθc

	 Mcb = (4EK)bcθc + (2EK)bcθb = 4EKθc + 2EKθb

	 Mcd = (4EK)cdθc = 4EKθc

Note that both rotations at node b and rotation at node c contribute to the 
member-end moments, Mbc and Mcb.

By substituting the moments by rotations, we obtain the two equilibrium 
equations in terms of θb and θc.

	 10.68 EKθb + 2EKθc = 0

	 2EKθb + 8EKθc = 30

It is advantageous to treat EKθb and EKθc as unknowns.

	 10.68(EKθb) + 2 (EKθc) = 0

	 2(EKθb) + 8 (EKθc) = 30

If we choose to put the above equation into a matrix form, the matrix at 
the left-hand side (LHS) would be symmetric, always:

	

θ

θ
=

EK
EK

b

c

10.68 2
2 8

0
30

Solving the two equations, we obtain

	 (EKθb) = –0.74 kN-m

	 (EKθc) = 3.93 kN-m

Substitute back for member-end moments:

	 Mba = 6.68EKθb = –4.92 kN-m

	 Mbc = 4EKθb + 2EKθc = 4.92 kN-m

	 Mcb = 4EKθc + 2EKθb = 14.26 kN-m

	 Mcd = (4EK)cdθc = 4EKθc = 15.74 kN-m

For the other two member-end moments that were not in the equilibrium 
equations, we have

	 Mdc = (2EK)cdθc = 2EKθc = 7.87 kN-m

	 Mab = 3.34EKθb = –2.96 kN-m
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Treatment of load between nodes. If loads are applied between nodes, we 
consider the nodes as initially “locked.” That results in fixed-end moments 
(FEMs) being created at the locked ends. The total member-end moments 
are the sum of the fixed-end moments due to the load, the moment due to 
the rotation at the near end, and the moment due to the rotation at the far 
end.

a b
MF

ab MF
ba

Load between nodes and the fixed-end moment created by the load.

The moment-rotation formula of Equation 8.4 is expanded to become

	 M EK EK M(4 ) (2 )ab ab a ab b ab
F= θ + θ + 	 (8.5a)

	 M EK EK M(4 ) (2 )ba ab b ab a ba
F= θ + θ + 	 (8.5b)

Example 8.3

Find all the member-end moments of the following beam. EI is constant for 
all members.

2 m 2 m 4 m

a c
b 3 kN/m4 kN

Beam with load applied between nodes.

Solution

There is only one DOF, the rotation at node b: θb.
The equation of equilibrium is:

Σ Mb = 0 Mba + Mbc = 0

Kab  : Kbc = 1 : 1 EKab = EKbc = EK

The relative stiffness factors of the two members are such that they are identical.

The fixed-end moments are obtained from the FEM table (pg. 196):
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For member ab:

	
= − = − = −M

P length
ab
F ( )

8
4(4)
8

2kN-m

	
= = =M
P length

ba
F ( )

8
4(4)
8

2kN-m

For member bc:

	
= − = − = −M

w length
bc
F ( )

12
3(4)
12

4 kN-m
2 2

	
= = =M
w length

cb
F ( )

12
3(4)
12

4 kN-m
2 2

The moment-rotation formulas are:

	

M EK EK M EK

M EK EK M EK

ba ab b ab a ba
F

b

bc bc b bc c bc
F

b

(4 ) (2 ) 4 2

(4 ) (2 ) 4 – 4

= θ + θ + = θ +

= θ + θ + = θ

The equilibrium equation Mba + Mbc = 0 becomes

	 8EKθb – 2 = 0, ⇨ EKθb 0.25 kN-m

Substituting back to the member-end moment expressions, we obtain

	 Mba = 4EKθb + 2 = 3 kN-m

	 Mbc = 4EKθb – 4= –3 kN-m

For the other two member-end moments not involved in the equilibrium 
equation, we have

	

M EK M

M EK M

ab ab b ab
F

cb bc b cb
F

(2 ) 0.5 2 1.5kN-m

(2 ) 0.5 4 4.5kN-m

= θ + = − = −

= θ + = + =

Treatment of side sway. The end nodes of a member may have translation 
displacements perpendicular to the axis of the member, creating a “rotation”-
like configuration of the member. This kind of displacement is called a side 
sway. We can isolate the effect of the side sway by maintaining zero rotation 
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at the two ends and imposing a relative translation (side sway) and find the 
member-end moments that are needed to maintain such a configuration.

b
∆

Mba = −6EKφ

Mab = −6EKφ

EI, La

φ

Side sway of a member and the member-end moments.

The member-end moments given in the figure were derived in the context 
of the moment distribution method. We recall that although side sway usu-
ally refers to Δ, a better representation of it is an angle defined by

	
=

L

We call φ the member rotation. With the member-end moments caused by 
side sway quantified as shown in the preceding figure, we can now summarize 
all the contributions to the member-end moments by the following formulas:

	 M EK EK EK M(4 ) (2 ) – (6 )ab ab a ab b ab ab
F= θ + θ + 	 (8.6a)

	 M EK EK EK M(4 ) (2 ) – (6 )ba ab b ab a ab ba
F= θ + θ + 	 (8.6b)

The presence of one member rotation φab requires one additional equa-
tion in force equilibrium—usually from force equilibrium that involves 
member-end shear, which can be expressed in terms of member-end 
moments, which in turn can be expressed by nodal and member rotations.

Example 8.4

Find all the member-end moments of the frame in the following figure. EI is 
constant for all members.

10 kN

4 m

4 m
a

b
c

A frame with side sway.



206 Introduction to Structural Analysis: Displacement and Force Methods

Solution

We observe that in addition to the rotation at node b, there is another DOF, 
which is the horizontal displacement of node b or c, designated as Δ as 
shown in the following figure.

a

b c
∆∆

Nodal lateral displacement that creates side sway of member ab.

Note that node b and node c move laterally by the same amount. This is 
because the axial elongation of membere ab is assumed to be negligible. 
Assuming the lateral displacements Δ are going to the right as shown, 
then member ab has a positive (clockwise) member rotation φab = Δ/Lab, 
but member bc does not have any member rotation. There is only one 
independent unknown associated with side sway, either Δ or φab. We 
shall choose φab as the representative unknown. With nodal rotation θb 
and φab we now have two unknowns. We seek to write two equilibrium 
equations.

The first equilibrium equation comes from the nodal moment equilibrium 
at node b:

Σ Mb = 0 Mba + Mbc = 0 (8.7)

The second comes from the horizontal force equilibrium of the whole structure:

Σ Fx = 0 10 + Va = 0 (8.8)

10 kN

a

b c

Va
Mab

Rc

Ra

Mcb

FBD of the whole structure.
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It is necessary to express the shear force in terms of member-end 
moments. This is achieved by applying a moment equilibrium equation on 
the FBD of member ab.

Σ Mb = 0 Va = −
4

Mab + Mba

FBD of member ab.

a Va

MabRa

Vb

MbaTb

4 m

Substituting the preceding formula for the shear into Equation 8.8 and 
multiplying the whole equation by 4, we turn the second equilibrium equa-
tion, Equation 8.8, into a new form involving member-end moments:

	 Mab + Mba = –40	 (8.8)

There are three member-end moment unknowns in the two equilibrium 
equations, Equation 8.7 and Equation 8.8. We need to apply the moment-
rotation formulas in order to turn the moment expressions into expressions 
containing the two displacement unknowns, θb and φ.

We observe that EKba = EKbc and we can designate EK for both EKba and EKbc:

	 EKba = EKbc = EK

By successive substitution, the moment-rotation formulas are simplified to 
include only terms in EKθb and EKφab.

M EK EK EK M EK EK

EK EK

M EK EK EK M EK EK

EK EK

M EK EK EK M EK

EK

ba ab b ab a ab ba
F

ab b ab ab

b ab

ab ab a ab b ab ab
F

ab b ab ab

b ab

bc bc b bc c bc bc
F

bc b

b

(4 ) (2 ) – (6 ) (4 ) – (6 )

4 – 6

(4 ) (2 ) – (6 ) (2 ) – (6 )

2 – 6

(4 ) (2 ) – (6 ) (4 )

4

= θ + θ φ + = θ φ

= θ φ

= θ + θ φ + = θ φ

= θ φ

= θ + θ φ + = θ

= θ
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Substituting these member-end moment expressions into the two equilib-
rium equations, we obtain two equations with two unknowns.

Mba + Mbc = 0 8EKθb – 6EKφab = 0

Mab + Mba = – 40 6EKθb – 12EKφab = – 40

In matrix form these two equations become one matrix equation:

	

EK
EK

b

ab

8 6
6 12

0
40

−
−

θ
=

 

To obtain the preceding form, we have reversed the sign for all expres-
sions in the second equilibrium equation so that the matrix at the LHS is 
symmetric. The solution is

	 EKθb = 4 kN-m

	 EKφab = 5.33 kN-m

Substituting back to the moment-rotation formulas, we obtain

	 Mba = –16 kN-m

	 Mab = –24 kN-m

	 Mbc = 16 kN-m

For the member-end moment not appearing in the two equilibrium equa-
tions, Mcb, we obtain

	

M EK EK EK M EK

EK

cb bc b bc c bc bc
F

bc b

b

(2 ) (4 ) – (6 ) (2 )

2

8 kN-m

= θ + θ + = θ

= θ

=

We can now draw the moment diagram and a new deflection diagram, 
which is refined from the rough sketch done at the beginning of the solution 
process, using the information contained in the moment diagram.

a
–24 kN-m

–8 kN-m

16 kN-m

Inflection Point

Moment and deflection diagrams.
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Example 8.5

Find all the member-end moments of the frame shown. EI is constant for 
all members.

10 kN

4 m

4 m

a

b
c

3 m

A frame with an inclined member.

Solution

There is clearly one nodal rotation unknown, θb, and one nodal translation 
unknown, Δ. The presence of an inclined member, however, complicates 
the geometric relationship between nodal translation and member rotation. 
We shall, therefore, deal with the geometric relationship first.

a

b
c

∆

b

∆

∆1

∆2

b

b

∆

Details of nodal displacement relationship.

Because the member lengths are not to change, the postdeformation new 
location of node b is at b′, the intersection of a line perpendicular to mem-
ber ab and a line perpendicular to member bc. Member rotations of mem-
ber ab and member bc are defined by the displacements perpendicular to 
the member axis. They are Δ1 for member bc and Δ2 for member ab, respec-
tively. From the little triangle, b–b′–b″, we obtain the following formulas:

	

=
3
4

1

	

5
4

2 =
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The rotations of member ab and member bc are defined by, respectively:

	 L
ab

ab 5
2 2= =

	 L
bc

bc 4
1 1= − = −

Since Δ1 and Δ2 are related to Δ, so are φab and φbc. We seek to find the 
relative magnitude of the two member rotations:

ab bc:
5

:
4

1
5

5
4

:
1
4

3
4

1
4

:
3
16

1:
3
4

2 1= − = − = − = −

 

Consequently,

	
bc ab

3
4

= −

We shall designate φab as the member rotation unknown and express φbc 
in terms of φab. Together with the nodal rotation unknown, θb, we have two 
DOFs, θb and φab. We seek to write two equilibrium equations.

The first equilibrium equation comes from the nodal moment equilibrium 
at node b:

Σ Mb = 0 Mba + Mbc = 0 (8.9)

The second comes from the moment equilibrium of the whole structure 
about a point o:

Σ Mo = 0 (8.10)10(4)(
3
4 ) + Va [5+4(

3
5 )] + Mab + Mcb = 0

10 kN

a

b
c

Va
Mab

Ra

Rc a
Va

Mab
Ra

Vb

Mba

Tb

5 m

o

3
4

4 m

Mcb

b

FBDs of the whole structure and the inclined member.
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Note that it is necessary to select the intersection point, o, for the moment 
equation so that no axial forces are included in the equation. From the FBD 
of the inclined member, we obtain

	
V M Ma ab ba

1
5
( )= − +

Substituting the above formula into Equation 8.10, it becomes

	 –4Mab – 7Mba + 3Mcb = 160	 (8.10)

There are four moment unknowns, Mab, Mba , Mbc, and Mcb, in two equa-
tions. We now establish the moment-rotation (M–θ –φ) formulas, noting 
that φbc is expressed in terms of φab and

	
=EK EKab bc:
1
5

EI:
1
4
EI =1:1.25

We can designate EK for EKab and express EKbc in EK as well:

	 EKab = EK

	 EKbc = 1.25 EK

After successive substitution, the moment-rotation formulas are:

	

M EK EK EK M

EK EK

EK EK

M EK EK EK M

EK EK

EK EK

M EK EK EK M

EK EK

EK EK

M EK EK EK M

EK EK

EK EK

ba ab b ab a ab ab ba
F

ab b ab ab

b ab

ab ab a ab b ab ab ab
F

ab b ab ab

b ab

bc bc b bc c bc bc bc
F

bc b bc bc

b ab

cb bc c bc b bc bc cb
F

bc b bc bc

b ab

(4 ) (2 ) – (6 )

(4 ) – (6 )

4 – 6

(4 ) (2 ) – (6 )

(2 ) – (6 )

2 – 6

(4 ) (2 ) (6 )

(4 ) – (6 )

5 5.625

(4 ) (2 ) – (6 )

(2 ) – (6 )

2.5 5.625

= θ + θ +

= θ

= θ

= θ + θ +

= θ

= θ

= θ + θ − +

= θ

= θ +

= θ + θ +

= θ

= θ +

Substituting the preceding moment expressions into Equation 8.9 and 
Equation 8.10, we obtain the following two equations in θb and φab.

	 9EKθb – 0.375EKφab = 0

	 –28.5EKθb + 82.875EKφab = 160
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Multiplying the first equation by 8 and the second equation by (1/9.5), 
we obtain

	 72EKθb – 3EKφab = 0

	 –3EKθb + 8.723EKφab = 16.84

In matrix form, we have

	

EK
EK

b

ab

72 3
3 8,723

0
16.84

−
−

θ
=

The solution is

	 EKθb = 0.0816 kN-m

	 EKφab = 1.959 kN-m

Substituting back to the moment-rotation formulas, we obtain the mem-
ber-end moments:

	 Mba = –11.43 kN-m

	 Mab = –11.59 kN-m

	 Mbc = 11.43 kN-m

	 Mcb = 11.22 kN-m

From the member-end moments we can easily obtain all the member-end 
shears and axial forces as shown next.

a

11.43 kN-m

10.52 kN

10.52 kN
11.59 kN-m

4.60 kN

4.60 kN

b
11.43 kN-m 11.22 kN-m 

5.66 kN 5.66 kN

5.66 kN4.60 kN

10 kN

10.52 kN

b

b c

FBDs of members ab, bc, and node b.

Note the shear forces are always the first to be determined from the 
member-end moments. The axial force of member ab is then determined 
from the FBD of node b, using the equilibrium equation of all vertical forces.

The moment diagram is shown next, together with a new deflection dia-
gram refined from the initial sketch done at the beginning of the solution 
process, utilizing the information presented in the moment diagram.
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a

b
11.43 kN-m

– 11.22 kN-m

–11.59 kN-m 

Inflection Point

Moment and deflection diagrams.

Example 8.6

Find all the member-end moments of the frame shown. EI is constant for 
all members.

2 m

2 m

2 m

4 kN

a

b c

d

A frame with rotation and translation DOFs.

Solution

We observe that nodes b and c are free to rotate. Nodes b and c are also 
free to translate in the horizontal direction by the same amount. As a result 
of this translation of both node b and node c, member ab and member cd 
have member rotations, but not member bc, which has no member rotation.

a

b c

d

∆∆

Sketch of the deflection of the frame.

The two member rotations are related to the single translation, Δ, and we 
can find the relative magnitude of the two easily.

	 L L
ab cd

ab cd
: :

4
:
2

1: 2= = =
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Thus,

	 φcd = 2φab

In sum, there are three degrees of freedom: θb, θc, and φab. We need three 
equations of equilibrium. The first equilibrium equation comes from the 
nodal moment equilibrium at node b:

Σ Mb = 0 Mba + Mbc = 0

The second comes from the nodal moment equilibrium at node c:

Σ Mc = 0 Mcb + Mcd = 0

The third comes from the horizontal force equilibrium of the whole structure:

Σ Fx = 0 Va + Vd = 4

4 kN

a

b c

d

Mab

Va

Ra

Mdc

Vd

Rd

FBD of the whole structure.

The two shear forces in the third equation can be expressed in terms of 
member-end moments, via the FBD of each member.

	
= − + +V M Ma ab ba

1
4
( ) 2

	
= − +V M Md dc cd

1
2
( )

Vb

Mba

4 kN

2 m

2 m

Va
Mab

c

d

Mdc

Vd

Mcd

Vc
b

a

2 m

FBDs of the two column members of the rigid frame.
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By virtue of the shear-moment relationship, the third equation becomes:

Va + Vd = 4 – Mab – Mba – 2Mdc – 2Mcd  = 8

There are six moment unknowns in the three equilibrium equations. We 
now express the member-end moments in terms of the three displacement 
unknowns: θb, θc, and φab.

Note that we can designate a common stiffness factor EK for all three members:

	 EKab = EK, EKbc = 2EK, EKcd = 2EK

Noting φcd = 2φab, we can simplify the moment-rotation by expressing it 
as shown next.
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Substituting all the moment-rotation formulas into the three equilibrium 
equations, we obtain the following three equations for three unknowns.

	 12EKθb + 4EKθc – 6EKφab = –2

	 4EKθb + 16EKθc – 24EKφab = 0

	 –6EKθb – 24EKθc + 84EKφab = 8
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The matrix form of the preceding equation reveals the expected symme-
try in the square matrix on the LHS:

	

EK
EK
EK

b

c

ab

12 4 6
4 16 24
6 24 84

2
0
8

−
−

− −

θ

θ =
−

 

The solution is

	 EKθb = –2/11 kN-m

	 EKθc = 13/44 kN-m

	 EKφab = 1/6 kN-m

Substituting back, we obtain, for the member-end moments:

	 Mba = 3/11 kN-m = 0.27 kN-m

	 Mab = –37/11 kN-m = –3.36 kN-m

	 Mbc = –3/11 kN-m = –0.27 kN-m

	 Mcb = –18/11 kN-m = 1.64 kN-m

	 Mcd = –18/11 kN-m = –1.64 kN-m

	 Mdc = –9/11 kN-m = –0.82 kN-m

From the member-end moments, the shear forces at member ends are 
computed from the FBD of each member. The axial forces are obtained 
from the nodal force equilibrium.

c

d

0.27 kN-m

1.64 kN-m 0.69 kN

0.69 kN

cb

1.64 kN-m

0.82 kN-m

1.23 kN

1.23 kN

1.23 kN

0.69 kN

0.69 kN

4 kN

a

b

2.77 kN

3.36 kN-m

1.23 kN
0.27 kN-m

0.69 kN

0.69 kN

1.23 kN

0.69 kN

1.23 kN

c

1.23 kN1.23 kN

0.69 kN

b

1.23 kN

FBDs of each member and nodes b and c (force only).
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The moment diagram and a refined deflection diagram are shown next.

a

b c

d

a

b c

d

3.36 kN-m

–0.27 kN-m

2.18 kN-m

–1.64 kN-m

0.82 kN-m
Inflection Point

Moment and deflection diagrams.

PROBLEM 8.1

Use the slope-deflection method to find all the member-end moments 
of the beams and frames shown, and draw the moment and deflection 
diagrams.

(1) (2)

(3) (4)

(5) (6)

2 m 2 m 3 m

a c
b 3 kN/m4 kN

2EI EI
2 m 2 m 3 m

a
cb

8 kN

2EI EI

2 kN-m

50 kN
a b c

4 m 4 m

4 m

8 m

EI
2EI2EI

50 kN
a b c

4 m 4 m

4 m

8 m

EI
2EI2EI

2 m

2 m

2 m

4 kN

a

b c

2 m

2 m

2 m

4 kN

a

b c
EIEI

EIEI

dd

Problem 8.1
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8.2 � Matrix Stiffness Analysis of Frames

Overview. The slope-deflection method was developed for hand calculation. 
In order to minimize the number of nodal rotation and member rotation 
unknowns, the axial deformation of each member is neglected. As a result, 
the member rotations are often interrelated. As we have observed in the 
example problems, if we encounter an inclined member, the formulas for 
the geometric relations can be very involved. On the other hand, if we allow 
the axial deformation to be included in the displacement calculation, then 
the nodal displacements at one node are completely independent from those 
at the other end of a member and we will have three nodal unknowns at 
each node: two translation unknowns and one rotation unknown. Although 
the number of unknowns for a given frame will be more than that in a 
slope-deflection formulation, the formulation process becomes much more 
straightforward. The formulation presented herein parallels that for truss 
analyses.

Consider the following rigid frame problem. We treat this problem as one 
with two members and three nodes.

2 m

2 m

2 m

4 kN

a

b c

A rigid frame problem.

We shall convert the preceding problem into the superposition of two 
problems: one with member ab locked at both ends and the other with 
external forces and moments applied only at nodal points. The first prob-
lem can be solved at the level of a single member. Indeed, the member-end 
moments are tabulated in the fixed-end moment table. The member-end 
shear forces can then be computed from the FBD of the member. The mem-
ber-end moments and forces in the first problem, when reversed in signs, 
become the nodal moments and forces of the second problem, which has 
applied moments and forces only at the nodes. We shall henceforth concen-
trate on the second problem, with external forces/moments applied only at 
nodal points.
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+

a

b
c

2 kN

2 kN

4 kN

a

b

2 kN

2 kN

2 kN-m

2 kN-m

2 kN-m

2 kN-m

Superposition of two problems.

The moment and force applied at support a are taken up by the support 
directly. They should be included in the calculation of forces acting on the 
support but be excluded in the forces acting on the nodes of the frame. The 
problem is reduced to the one shown in the left part of the following fig-
ure. The right part of the figure includes a global coordinate system, which 
is necessary because each member is oriented in different directions and 
we need a common coordinate system to relate member displacements and 
forces to those of other members. We also replace the alphabetic system by 
the numeric system for naming nodes because the latter is easier to program 
for computer solutions.

a

b
c2 kN

2 kN-m

1

2
32 kN

2 kN-m

x

y

Frames with loads applied only at nodes.

In the matrix displacement formulation, it is easier to begin without 
applying the displacement and force conditions first. Only when the global 
displacement-force equations are formulated can we then impose the dis-
placement and force conditions in preparation for a numerical solution. Thus, 
the next step is to define the nodal displacements and the corresponding 
nodal forces of the frame without the support and loading conditions. Since 
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each node has three DOFs, the frame has a total of nine nodal displacements 
and nine corresponding nodal forces, as shown in the following figure.

1

2
3

x

y

θ1

θ2 θ3

1

2
3

x

y

Fx1
M1

Fy1

Fx3
Fx2

Fy3Fy2

M3
M2

∆y1

∆x1

∆y2

∆x2

∆y3

∆x3

The nine nodal displacements and the corresponding nodal forces.

It should be emphasized that the nine nodal displacements completely 
define the deformation of each member and the entire frame. In the matrix 
displacement formulation, we seek to find the matrix equation that links the 
nine nodal forces to the nine nodal displacements in the following form:

	 KG ΔG = FG	 (8.11)

where KG, ΔG, and FG are the global unconstrained stiffness matrix, global 
nodal displacement vector, and global nodal force vector, respectively. 
Equation 8.11 in its expanded form is shown next, which helps identify the 
nodal displacement and force vectors.

	
θ3

θ2

θ1

∆y3

∆y2

∆x3

∆x2

∆y1

∆x1

= 

M3

Fx3

Fx3

M2

Fy2

Fx2

M1

Fy1

Fx1

Member 1–2

Member 2–3

	 (8.11)

According to the direct stiffness method, the contribution of member 1–2 
to the global stiffness matrix will be at the locations indicated in the previous 
figure, that is, corresponding to the DOFs of the first and the second nodes, 
while the contribution of member 2–3 will be associated with the DOFs at 
nodes 2 and 3.
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Before we assemble the global stiffness matrix, we need to formulate the 
member stiffness matrix.

Member stiffness matrix in local coordinates. For a frame member, both axial 
and flexural deformations must be considered. As long as the deflections 
associated with these deformations are small relative to the transverse 
dimension of the member, say depth of the member, the axial and flexural 
deformations are independent from each other; thus allowing us to consider 
them separately. To characterize the deformations of a frame member, i–j, we 
need only four independent variables, Δx, θi, θj, and φij, as shown next.

∆x = 1
EA/LEA/L

θi = 1 

4EK
θi = 1

2EK

6EK/L 6EK/L

2EK 4EK

6EK/L 6EK/L

φij = 1
–6EK

–6EK

–12EK/L
–12EK/L

θj = 1
θj = 1

∆x = 1

φij = 1

The four independent deformation configurations and the associated nodal forces.

Each of the four member displacement variables is related to the six nodal 
displacements of a member via geometric relations. Instead of deriving these 
relations mathematically, then use mathematical transformation to obtain 
the stiffness matrix, as was done in the truss formulation, we can establish 
the stiffness matrix directly by relating the nodal forces to a nodal displace-
ment, one at a time. We shall deal with the axial displacements first.

There are two nodal displacements, ui and uj, related to axial deforma-
tion, Δx. We can easily establish the nodal forces for a given unit nodal dis-
placement, utilizing the nodal force information in the previous figure. For 
example, ui = 1 while other displacements are zero corresponds to a negative 
elongation. As a result, the nodal force at node i is EA/L, while that at node j 
is –EA/L. On the other hand, for uj = 1, the force at node i is –EA/L, while that 
at node j is EA/L. These two cases are depicted in the following figure. Note 
we must express the nodal forces in the positive direction of the defined 
global coordinates.

–EA/LEA/L EA/L–EA/L
ui = 1 uj = 1

ui = 1,  uj = 0 ui = 0,  uj = 1

Nodal forces associated with a unit nodal displacement.
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From the previous figure, we can immediately establish the following stiff-
ness relationship:

	

EA
L

EA
L

EA
L

EA
L

u
u

f

f
i

j

xi

xj

−

−
=

 

	 (8.12)

Following the same principle, we can establish the flexural relations one at 
a time as shown in the following figure.

θi = 1

4EK 2EK

–6EK/L 6EK/L

2EK 4EK

–6EK/L 6EK/L

Vi = 1
–6EK/L

–6EK/L

12EK/L2
–12EK/L2

Vj = 1

6EK/L6EK/L 

–12EK/L2 12EK/L2

vi = 0, θi = 1, vj = 0, θj = 0 vi = 0, θi = 0, vj = 0, θj = 1

vi = 1, θi = 0, vj = 0, θj = 0 vi = 0, θi = 0, vj = 1, θj = 0

θj = 1

From the figure we can establish the following flexural stiffness relationship.
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	 (8.13)

Equation 8.13 is the member stiffness equation of a flexural member, while 
Equation 8.12 is that of an axial member. The stiffness equation for a frame 
member is obtained by the merge of the two equations.
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	 (8.14)

Equation 8.14 is the member stiffness equation in local coordinates and the 
six-by-six matrix at the LHS is the member stiffness matrix in local coordi-
nates. Equation 8.14 can be expressed in matrix symbols as

	 kLδL = fL	 (8.14)

Member stiffness matrix in global coordinates. In the formulation of equilib-
rium equations at each of the three nodes of the frame, we must use a com-
mon set of coordinate system so that the forces and moments are expressed 
in the same system and can be added directly. The common system is the 
global coordinate system, which may not coincide with the local system of a 
member. For a typical orientation of a member as shown, we seek the mem-
ber stiffness equation in the global coordinates:

	 kGδG = fG	 (8.15)

We shall derive Equation 8.15 using Equation 8.14 and the formulas that 
relate the nodal displacement vector, δL, and the nodal force vector, fL, to 
their global counterparts, δG and fG, respectively.

β

uj

ui

vj

vi

∆xj

∆yj

∆xi

∆yi

θj θj

θi θi
i i

j j

Nodal displacements in local and global coordinates.
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β

fxj

Fxj

Fxi

Fyi

j j

i i

fyj 

fxi fyi

Fyj

Mj
Mj

MiMi

Nodal forces in local and global coordinates.

∆xj

∆yj

β

uj

∆xj

∆yj

β

vj

Vector decomposition.

From the vector decomposition, we can express the nodal displacements in 
local coordinates in terms of the nodal displacements in global coordinates.

	 Δxj = (Cosβ) uj – (Sinβ) vj

	 Δyj = (Sinβ) uj + (Cosβ) vj

	 θj = θj

Identical formulas can be obtained for node i. The same transformation also 
applies to the transformation of nodal forces. We can put all the transforma-
tion formulas in matrix form, denoting Cosβ and Sinβ by C and S, respectively.
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The transformation matrix τ has a unique feature, that is, its inverse is 
equal to its transpose matrix.

	 τ−1 = τT

Matrices satisfying the above equation are called orthonormal matrices. 
Because of this unique feature of orthonormal matrices, we can easily write 
the inverse relationship for all the previous four equations. We need, how-
ever, only the inverse formulas for nodal displacements:
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Tττ

θ

= −

θ

=

The nodal displacement vector and force vector of a member, δG, δL, fG, and 
fL, are the collections of the displacement and force vectors of node i and 
node j:
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To arrive at Equation 8.15, we begin with
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	 (8.17)
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From Equation 8.14, and the transformation formulas for nodal displace-
ments, we obtain

	

δδ
ττ
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ΓΓ δδ= = =f k k k k0

0
=L L L L
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jL
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jG
L G

T

T
T

	(8.18)

Combining Equation 8.18 with Equation 8.16, we have

	 fG = Γ fL = Γ kL ΓT δG

which is in the form of Equation 8.15, with

	 kG = Γ kL ΓT	 (8.19)

Equation 8.19 is the transformation formula of the member stiffness matrix. 
The expanded form of the member stiffness matrix in its explicit form in 
global coordinates, kG, appears as a 6-by-6 matrix:
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The corresponding nodal displacement and force vectors, in their explicit 
forms, are
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Unconstrained global equilibrium equation. The member stiffness matrices are 
assembled into a matrix equilibrium equation, which is formulated from the 
three equilibrium equations at each node: two force equilibrium and one 
moment equilibrium equations. The method of assembling is according to 
the direct stiffness method outlined in the matrix analysis of trusses. For the 
present case, there are nine equations from the three nodes, as indicated in 
Equation 8.11.

Constrained global equilibrium equation. Out of the nine nodal displacements, 
six are constrained to be zero because of support conditions at nodes 1 and 3. 
There are only three unknown nodal displacements: Δx2, Δy2, and θ2. On the 
other hand, out of the nine nodal forces, only three are given: Fx2 = 2 kN, Fy2 
= 0, and M2 = –2 kN-m; the other six are unknown reactions at the supports. 
Once we specify all the known quantities, the global equilibrium equation 
appears in the following form:
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	 (8.11)

The solution of Equation 8.11 comes in two steps. The first step is to solve 
for only the three displacement unknowns using the three equations in the 
fourth to sixth rows of Equation 8.11.
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	 (8.21)

Once the nodal displacements are known, we can carry out the second 
step by substituting back to Equation 8.11 all the nodal displacements and 
computing the six other nodal forces, which are the support reaction forces. 
We also need to find the member-end forces through Equation 8.14, which 
requires the determination of nodal displacements in local coordinates.

We shall demonstrate the aforementioned procedures through a numeri-
cal example.
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Example 8.7

Find the nodal displacements, support reactions, and member-end forces 
of all members of the frame shown. E = 200 GPa, A = 20000 mm2, and I = 
300 × 106 mm4 for the two members.

1

2
32 kN

2 kN-m

x

y

4 m

2 m

Example problem.

Solution

We will carry out a step-by-step solution procedure for the problem.

	 1.	Number the nodes and members and define the nodal coordinates.

Nodal Coordinates

Node x (m) y (m)

1 0 0
2 0 4
3 2 4

	 2.	Define member property, starting and end nodes, and compute 
member data.

Member Input Data

Member Starting Node End Node E (GPa) I (mm4) A (mm2)

1 1 2 200 3 × 108 2 × 104

2 2 3 200 3 × 108 2 × 104

Computed Data

Member ΔX (m) ΔY (m) L (m) C S EI (kN-m2) EA (kN)

1 0 4 4 0.0 1.0 6 × 104 4 × 109

2 2 0 2 1.0 0.0 6 × 104 4 × 109
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	 In computing the member data, the following formulas were used:

	
= − + −L x x y yj i j i( ) ( )2 2

	
= β =

−
=C Cos

x x
L L

j i x( )

	
= β =

−
=S Sin

y y
L L

j i y( )

  

	 3.	Compute member stiffness matrices in global coordinates: 
Equation 8.19.

Member 1:

(kG)1 =

(kG)2 =

60,0000–22,50030,000022,500
01×10900–1×1090

–22,500011,250–22,5000–11,250
30,0000–22,50060,000022,500

0–1×109001×1090
22,5000–11,25022,500011,250

Member 2:

12×10490,00006×104–90,0000
90,000–90,000090,000–90,0000

002×10900–2×109
6×10490,000012×104–90,0000

–90,000–90,0000–90,00090,0000
00–2×109002×109

	 4.	Assemble the unconstrained global stiffness matrix. In order to use 
the direct stiffness method to assemble the global stiffness matrix, 
we need the following table, which gives the global DOF num-
ber corresponding to each local DOF of each member. This table 
is generated using the member data given in the table in step 2, 
namely, the starting and end nodes data.

Global DOF Number for Each Member

Local Nodal DOF Number Global DOF Number for Member

1 2

Starting Node i
1 1 4
2 2 5
3 3 6

End Node j
4 4 7
5 5 8
6 6 9
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Armed with this table we can easily direct the member stiffness compo-
nents to the right location in the global stiffness matrix. For example, the 
(2,3) component of (kG)2 will be added to the (5,6) component of the global 
stiffness matrix. The unconstrained global stiffness matrix is obtained after 
the assembling is done.

KG =

–90,000 60,000

–90,000–90,000

–90,000–22,500

–90,000–90,000–1×109

–2×109–22,500–22,500–11,250

–22,500

–1×109

–11,250

120,00090,00000000

90,000090,0000000

002×10900–2×109000

60,00090,0000180,00030,000022,500

90,00001×109000

0002×1090

00030,000060,000022,500

0000001×1090

00022,500022,500011,250

	 5.	Constrained global stiffness equation and its solution. Once the 
support and loading conditions are incorporated into the stiffness 
equations, we obtain the constrained global stiffness equation as 
given in Equation 8.11, which is reproduced next for easy refer-
ence, with the stiffness matrix shown in the previous equation.

	

∆y2

∆x2

000
000
000

000
000
000

K98K97K96K95K94

K88K87K86K85K84

K78K77K76K75K74

K68K67K62K61

K58K57K52K51

K47 K48

K99

K89

K79

K69

K59

K49K42K41

K32K31

K22K21

K12

K63

K53

K43

K33

K23

K13

K64

K54

K44

K34

K24

K14

K65

K55

K45

K35

K25

K15

K66

K56

K46

K36

K26

K16K11

0
0
0

0
0
0

θ2

=
–2
0
2

M3

Fx3
Fx3

M1

Fy1
Fx1

	 (8.11)

	 For the three displacement unknowns, the following three equa-
tions, taking from the fourth to sixth rows of the unconstrained 
global stiffness equation, are the governing equations.

	

−

−

− − θ

=
−

x

x

x

y

2 10 0 22,500

0 1 10 90,000
22,500 90,000 180,000

2
0
2

9

9

2

2

2
 

	 (8.21)
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	 The solutions are: Δx2 = 0.875 × 10–9
 m, Δy2 = 1 × 10–9 m, and 

θ2 = 1.11 × 10–5 rad. Upon substituting the nodal displacements 
into Equation 8.18, we obtain the nodal forces, which are support 
reactions:

	

F
F

M

F
F

M

x

y

x

y

0.25kN

1.00 kN

0.33kN-m

and

1.75kN

1.00 kN

0.67 kN-m

1

1

1

3

3

3

=

−

−

=

−

−

−
 

	 6.	Compute member nodal forces in local coordinates. The mem-
ber nodal forces in local coordinates are needed to draw shear 
and moment diagrams and are obtained using Equation 8.14. The 
nodal displacements in local coordinates in Equation 8.14 are 
computed using the transformation formula

	
θ

= −

θ

= τ

u
v

C S
S C

i

i

i

xi

yi

i

T
0
0

0 0 1
or iL iG

	 The results are presented in the following reaction, shear, moment, 
and deflection diagrams.

1

2
32 kN

2 kN-m 0.67 kN-m

0.33 kN-m
0.25 kN

1 kN

1 kN

0.25 kN

1 kN

0.33 kN-m

0.67 kN-m
0.67 kN-m

1.33 kN-m

Inflection Point

Reaction, shear, moment, and deflection diagrams.
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PROBLEM 8.2

The matrix analysis of frames is often solved using a computer pro-
gram. Most of the computation presented in the text is done automati-
cally within the computer program. Prepare the minimum input data 
set needed for the computer solution of the frame shown. Begin with 
the numbering of nodes and members. E = 200 GPa, A = 20000 mm2, 
and I = 300 × 106 mm4 for the three members.

2 kN

5 kN-m

4 m

2 m3 m

Problem 8.2
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9
Influence Lines

9.1 � What Is an Influence Line?

In structural design, it is often necessary to find out what the expected max-
imum quantity is for a selected design parameter, such as deflection at a 
particular point, a particular stress at a section, and so forth. The answer 
obviously depends on how the load is applied. The designer must apply the 
load in such a way that the maximum quantity for the selected parameter is 
obtained. The load could be concentrated loads, single or multiple, or distrib-
uted loads over a specified length or area. For a single concentrated load, it 
is often possible to guess where the load should be placed in order to result 
in a maximum quantity for a sectional moment of a beam, for example. For 
a multiple load, it is less likely that a correct answer can come from a guess.

Take the following beam as an example. We are interested in finding the 
maximum moment of section c for a concentrated vertical load of a unit mag-
nitude. Intuition tells us that we should place the vertical load directly at c. 
This guess turns out to be the correct answer. If, however, we have two unit 
loads, one-tenth of the span, L, apart from each other. We have at least two 
possibilities as shown and intuition cannot tell us which will produce the 
maximum moment at c.

L/2 L/2

a c b

a c b a c b
0.1 L

L/2 L/2

0.1 L

L/2 L/2

A beam with two loading possibilities to produce maximum moment at c.

A systematic way of finding the maximum quantity of a parameter is the 
influence line approach. The concept is simple: compute the response of 
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the targeted parameter to a unit load at “every” location and plot the result 
against the location of the unit load. The x,y plot is the influence line. For a 
single concentrated load, the peak of the influence line gives the location of 
the load. The maximum quantity is then the product of the influence line 
value at the peak and the magnitude of the load. For a multiple load, the 
maximum is the summation of each load computed in the same way as the 
single load. The shape of the influence line usually reveals the locations for 
the multiple load. For a distributed load, the maximum is achieved by plac-
ing the load where the area under the influence line is the greatest.

To construct the influence line, it is not necessary to analyze the structure 
for every location of the unit load, although it can be done with a computer 
program for any number of selected locations. We shall introduce the ana-
lytical way of constructing influence lines.

9.2 � Beam Influence Lines

Consider the following beam. We wish to construct the influence lines for 
Rb, Vc, and Mc.

L/2 L/2

a c b

Influence lines for Rb, Vc, and Mc are to be constructed.

The problem can be defined as finding Rb, Vc, and Mc as a function of x. The 
location of the unit load is shown next.

a c b

1x

Location of the unit load is the variable.

We recognize that the three parameters Rb, Vc, and Mc are all related to the 
reactions at a and b. Thus, we solve for Ra and Rb first.

a c b

1x

Ra Rb

Free-body diagram to solve for Ra and Rb.

	 ΣMb = 0 → Ra = (L – x)/L;  ΣMa = 0 → Rb = x/L
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Having obtained Ra and Rb as linear functions of the location of the unit load, 
we can plot the functions as shown next with the horizontal coordinate being x. 
These influence lines can be used to find influence lines of Rb, Vc, and Mc.

1

1

Ra

Rb

Influence lines for Ra and Rb.

For Vc and Mc, we need to solve for them using appropriate free-body dia-
grams (FBDs).

Ra Rb

McMc

VcVc

For x > L/2 For x < L/2

FBDs to solve for Vc and Mc.

The preceding FBDs are selected so that we do not have to include the unit 
load in the equilibrium equations. Consequently, the left FBD is valid for the 
unit load being located to the right of section c (x > L/2) and the right FBD is 
for the unit load located to the left of the section (x < L/2). From each FBD, we 
can obtain the expressions of Vc and Mc as functions of Ra and Rb.

Left FBD: Valid for x > L/2 Right FBD: Valid for x < L/2
Vc = Ra Vc = –Rb

Mc = RaL/2 Mc = RbL/2

Using the influence lines of Ra and Rb, we can construct the influence lines of 
Vc and Mc by cut and paste and adjusting for the factors L/2 and the negative 
sign.

1

1

Ra

Rb

1/2

1/2
Vc

L/4
Mc

Use the influence lines of Ra and Rb to construct the influence lines of Vc and Mc.



236 Introduction to Structural Analysis: Displacement and Force Methods

Müller-Breslau principle. The aforementioned process is laborious but 
serves the purpose of understanding the analytical way of finding solutions 
for influence lines. For beam influence lines, a quicker way is to apply the 
Müller-Breslau principle, which is derived from the virtual work principle. 
Consider the FBD and the same FBD with a virtual displacement shown next.

a c b

1x

Ra Rb

a
c

b

1x

Ra Rb

1 y

FBDs of a beam and a virtually displaced beam.

The virtual work principle states that for an equilibrium system, the work done 
by all forces upon a set of virtual displacement is zero. Since the only forces hav-
ing a corresponding virtual displacement are Ra and the unit load, we obtain:

(1) Ra + (–y) 1 = 0 Ra = y

The result indicates that the influence line of Ra is numerically equal to 
the virtual displacement of the beam, when the virtual displacement is con-
structed with a unit displacement at Ra and no displacements at any forces 
except the unit load.

Consider one more set of virtual displacement of the beam aimed at expos-
ing the sectional force Vc.

a c b

x

a

x

b 1/2
1/2

Mc

Vc

McVc

y

1

1

Beam and associated virtual displacement for Vc.



237Influence Lines

Application of the virtual work principle leads to

(1) Vc + (y) 1 = 0 Vc = –y

where y is positive if upward and negative if downward.
Another set of virtual displacement designed for solving Mc is shown next.

a

x

b

Mc
Vc

Mc

Vc

y

1

1

Virtual displacement for solving Mc.

The application of the virtual work principle leads to

(1) Mc + (–y) 1 = 0 Mc =  y

From the above results, we can state that a properly constructed virtual 
displacement that does not incur any work done by any force other than the 
force of interest and the unit load gives the shape of the influence line for the 
force of interest. This is called the Müller-Breslau principle.

The step-by-step process of applying the Müller-Breslau principle can be 
summarized as follows:

	 1.	Expose the quantity of interest by a cut (or remove a support).
	 2.	 Impose a virtual displacement such that
	 a.	 At the cut there is a unit displacement (or rotation)
	 b.	 The quantity of interest produces a positive work
	 c.	 No other internal forces produce any work
	 3.	The resulting displacement shape is the desired influence line.

Example 9.1

Construct the influence lines for Ra, Rb, Vc, Mc, Vd, and Md of the following 
beam.

a bc d

Beam with an overhang.
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Solution

We shall use the Müller-Breslau principle to construct the influence lines. It 
is a trial-and-error process to make sure the condition that no other forces 
produce any work is satisfied.

a bc d

1
Ra

a
b

c d

1

Rb

a bc d
1

Vc

a b
c

d
1

Mc α αh

h

a bc d

1

Vd

a bc d
1

Md

Influence line solutions.

Example 9.2

Construct the influence lines for Ra, Rd, Md, Mb, Vd, VcR, and VcL of the fol-
lowing beam.

a bc d

Beam with an internal hinge.
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Solution

Applications of the Müller-Breslau principle yield the following solutions.

a c d

1

Ra

a
c

d

1

Rd

a bc d
1Md

a bc d
1Mb

a bc d
1

Vb

a bc d
VcR

1

a bc d
VcL

1

Influence line solutions.

Influence lines for statically indeterminate beam and frames. The Müller-Breslau 
principle is especially useful in sketching influence lines for a statically 
indeterminate beam or frame. The process is the same as that for a statically 
determinate structure but the precise shape cannot be obtained without fur-
ther computation, which is very involved. We shall demonstrate only the 
qualitative solution process without any computations.

Example 9.3

Sketch the influence lines for Ra, Rc, Vd, and Md of the following beam.

a bc d

Two-span beam example.
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Solution

The influence lines are curved because the virtual displacements must be 
curved to accommodate the support constraints.

a bc d1
Ra

Rc
a bc d1

a bc d
Vd

1

a bc

d
Md

1

Influence line solutions.

Example 9.4

Sketch the influence lines for Ma of the following frame.

a

Frame example.

Solution

According to the Müller-Breslau principle, we need to make a cut at section 
a and impose a unit relative rotation at the cut. Trial and error leads to the 
following sketch that satisfies all constraints of the principle.

1

a

Sketch of influence line for Ma of section a.
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Example 9.5

Place uniformly distributed loads anywhere on the second floor of the frame 
shown in Example 9.4 to maximize Ma.

Solution

Using the influence line of Ma as the guide, we place the load at locations as 
shown in the following figure for maximum positive and maximum negative 
moments at section a.

a a

Loading pattern for maximum positive Ma (left) and negative Ma (right).

Applications of influence lines. The following examples illustrate the use of 
influence lines to find the maximum of a desired design parameter.

Example 9.6

Find the maximum moment at c for (1) a single load of 10 kN and (2) a pair 
of 10 kN loads 1 m apart.

5 m 5 m

a c b

A simply supported beam.

Solution

The influence line for Mc has been obtained earlier and is reproduced next.

2.5 kN-m/kN

Mc

Influence line for Mc.

For a single load of 10 kN, we place it at the location of the peak of the 
influence line and we compute

	 (Mc)max = 10 kN (2.5 kN-m/kN) = 25 kN-m
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For the pair of loads, we place them as shown next.

2.5 

Mc
1 m

2.0 

10 kN10 kN

	 (Mc)max = 10 kN (2.5 kN-m/kN) + 10 kN (2.0 kN-m/kN) = 45 kN-m

For this case, it turns out that the pair of loads can be placed anywhere 
within 1 m of the center point of the beam and the resulting maximum Mc 
would be the same.

Example 9.7

Find the maximum shear at c for uniformly distributed loads of intensity 10 
kN/m and unlimited length of coverage.

a bc d

5 m 5 m 5 m

Beam with an overhang.

Solution

The influence line as constructed earlier is reproduced next.

a bc dVc

5 m 5 m 5 m

1/2
1/2 1/2

Influence line for Vc.

In beam design, the sign of shear force is often not important. Thus, we 
want to find the maximum shear regardless of its sign. From the influence 
line, the following load application produces the maximum shear force.

a
bc d

5 m 5 m 5 m

10 kN-m 10 kN-m

Loads to maximize Vc.
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The maximum value of Vc is computed using the influence line and the 
area below the influence line of the loaded portion:

	
Vc( ) ( ) 10

1
2

(5)
1
2

( )10
1
2

(5)
1
2

25kNmax = − + − = −

Deflection influence lines. In design we need to answer the question: What is 
the maximum deflection of any given point on the center line of a beam? The 
answer is in the influence line for deflections. Surprisingly, the deflection 
influence line is identical to the deflection curve under a unit load applied at 
the point of interest.

Consider the beam and unit load configuration shown next.

i
x

j

δji

Deflection at j due to a unit load at i.

According to the Maxwell’s reciprocal theorem, however,

	 δji = δij

And, δij is defined in the following figure:

i

1

j

δij

Influence line for deflection at j.

Thus, to find the deflection influence line of a point, we need only to find the 
deflection curve corresponding to a unit load applied at the point.

PROBLEM 9.1

Construct the influence lines of Vb and Md of the beam shown and find 
the maximum value of each for a distributed load of intensity 10 kN/m 
and indefinite length of coverage.

a bc d

5 m 5 m 5 m

Problem 9.1
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PROBLEM 9.2

Construct the influence lines of VbL and VbR of the beam shown and find 
the maximum value of each for a distributed load of intensity 10 kN/m 
and indefinite length of coverage.

a bc d

5 m 5 m 5 m

Problem 9.2

PROBLEM 9.3

Construct the influence lines of VcL, VcR, Mc, and Me of the beam shown.

a b c d

2.5 m 5 m 5 m2.5 m

e

Problem 9.3

PROBLEM 9.4

Sketch the influence line of Va of the frame shown.

a

Problem 9.4

9.3 � Truss Influence Lines

For a truss, the question relevant in design is: How does a member force 
change when a unit load moves along the span of the truss? The answer is 
again in the influence line, but the truss itself only accepts loads at the joints. 
Thus, we need to examine how a load, moving continuously along the truss 
span, transmits its force to the truss joints.
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As shown in the following figure, a truss has a floor system that trans-
mits a load from the floor slab (not shown) to the stringers, then to the floor 
beams. The floor beams transmit force to the joints of the truss. Thus, a plane 
truss accepts a load only at the joints.

Stringer
Stringer

Floor
beam 

Floor 
beam

Floor system of a bridge truss.

As a load is applied between the joints, the load is transmitted to the two 
encompassing joints by the equivalent of a simply supported beam. The 
resulting effect is the same as that of two forces with the magnitudes as 
shown acting at the two joints. The magnitude of each force is a linear func-
tion of the distance from each joint.

1
a

L L

L
L – a

L
a

i ij j

Transmission of force to truss joints.

Assuming that a member force S due to a downward unit load at joint i is Si 
and the member force S due to a downward unit load at joint j is Sj, then the 
member force due to a unit load applied between joints i and j and located 
from joint i by a distance of a is

	
=

−
+S

L a
L

S
a
L

Si j

We conclude that the force of any member due to a load applied between 
two joints can be computed by a linear interpolation of the member force 
due to the same load applied at each joint separately. The implication in con-
structing influence lines is that we need only to find the member force due 
to a unit load applied at the truss joints. When the member force is plotted 
against the location of the unit load, we can connect two adjacent points by 
a straight line.
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Example 9.8

Construct the influence line of member forces FIJ, FCD, and FCJ. Load is 
applied only at the level of lower chord members.

4 m

6@3 m = 18 m

A
B C D E G

H I J K L

F

Truss example for influence line construction.

Solution

We shall use the method of sections and make a cut through I–J and C–D. 
Two FBDs are needed: one for loads applied to the right of the section and 
the other for loads to the left of the section.

FBD for unit load acting at x > 6m.

∑ MC = 0 FIJ = –1.5 RA ( x > 6 m )

∑ MJ = 0 FCD =  3.0 RG ( x > 9 m )

∑ Fy = 0 FCJ  = –1.25 RG ( x > 6 m )

( x > 6 m )

( x > 9 m )

( x > 6 m )

FBD for unit load acting at x < 6m.

∑ MC = 0 FIJ = –3.0 RG

∑ MJ = 0 FCD = 3.0 RG

∑ Fy = 0 FCJ = 1.25 RG

4 m

2@3 m = 6 m
B C

H I

RA

FIJ

A 1

x

FCJ

FCD

J

F

4 m

4@3 m = 12 m
C D E G

I J K LFIJ

RG
1

x

FCJ

FCDA
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We need to find influence lines of RA and RG first before we can construct 
the influence lines of the three members IJ, CD, and CJ. Using the FBD of the 
whole truss as shown next, we can easily obtain the expression for the two 
support reactions.

FBD of the whole truss to �nd reactions.

Σ MA = 0 RG =  
18
x

Σ MG = 0 RA =  
18

18 – x

4 m

6@3 m = 18 m

A
B C D E G

H I J K L

RGRA
x

1

The influence lines of the two support reactions are identical in shape to 
those of a simply supported beam and are shown together next with the 
influence lines of FIJ, FCD, and FCJ, which are obtained by cutting and pasting 
and applying the proper factors to the reaction influence lines.

1

1

3
1.5 1

33
1.5

1.25

1.25
0.625

0.41

RA

RG

6 m

9 m

FIJ 

FCD 

FCJ 

Constructing member force influence lines using support reaction influence lines.
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From the preceding three influence lines, we observe that the upper 
chord member IJ is always in compression, the lower chord member CD is 
always in tension, and web member CJ can be in tension or compression 
depending on whether the load is to the left or right of the panel.

Example 9.9

For the truss in Example 9.8, find the maximum force in member CJ for the 
four kinds of loads shown in the following figure.

1 kN 1 kN 2 kN

1m 2 m

2 kN 10 kN/m 10 kN/m

x 6 m

A single load, a group load, and uniform loads with indefinite and finite length.

Solution

	 1.	Single concentrated load.

1.25

1.25
0.625

0.41
FCJ 

2 kN

Placing load at peak point on the influence line.

	 (FCJ)max = 2(0.625) = 1.25 kN

	 2.	Group load: The group load can be applied in any orientation. 
Trial and error leads to the following location of the group load.

1.25

1.25
0.625

0.41
FCJ 

2 kN 1kN 1kN

1 m2 m

7 m
9 m

Placing the group load to maximize FCJ.

	 (FCJ)max = –[2(0.625) + 1(0.625)(7/9) + 1(0.625)(6/9)] = –2.15 kN
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This is a compression force maximum. To find the tension force maxi-
mum, the group load is placed in a different way, as shown next.

1.25

1.25
0.625

0.41
FCJ 

1 kN 1 kN 2 kN
1m 2 m

6 m

Placing group load for maximum tension in member CJ.

	 (FCJ)max = [2(0.41) + 1(0.41)(4/6) + 1(0.41)(3/6)] = 1.30 kN

	 3.	Distributed load of indefinite length.

1.25

1.25 0.625

0.41
FCJ

10 kN/m

6 m 9 m1.18 1.82

Placing distributed load for maximum tension in member CJ.

	 (FCJ)max = 10[0.5(1.18)(0.41) + 0.5(6)(0.41)] = 14.7 kN

1.25

1.25
0.625

0.41
FCJ

10 kN/m

6 m 9 m1.18 1.82

Placing distributed load for maximum compression in member CJ.

	 (FCJ)max = –10[0.5(1.82)(0.625) + 0.5(9)(0.625)]= –33.8 kN
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	 4.	Distributed load of finite length.

10 kN/m

6 m

1.25

1.25 0.625

0.41
FCJ 

6 m 9 m1.18 1.82

Placing finite length uniform load for maximum tension in member CJ.

(FCJ)max = 10[0.5(1.18)(0.41) + 0.5(6)(0.41) – 0.5(1.18)(0.41)(1.18/6)] = 14.65 kN

10 kN/m

6 m

1.25

1.25
0.625

0.41
FCJ 

6 m 9 m1.18 1.82

Placing finite length uniform load for maximum compression in member CJ.

(FCJ)max = –10[0.5(1.82)(0.625) + 0.5(9)(0.625) – 0.5(4.82)(0.625)(4.82/9)] = –33.0 kN

PROBLEM 9.5

Construct the influence line of member forces FHI, FHC, and FCI. Load is 
applied only at the level of the upper chord members.

4 m

6@3 m  = 18 m

A

B C D E

GH I J K L

F

Problem 9.5
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PROBLEM 9.6

Construct the influence line of member forces FHI, FBI, and FCI. Load is 
applied only at the level of the upper chord members.

4 m

6@3 m = 18 m

A

B C D E

GH I J K L

F

Problem 9.6
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10
Other Topics

10.1 � Introduction

The present text mainly covers the two major methods of linear structural 
analysis: the force method and the displacement method under static loads. 
There are other topics either within the realm of linear static analysis or 
beyond that are fundamental to structural analysis. We will briefly touch 
on these topics and outline the relevant issues and encourage readers to 
study in more depth in other courses of structural engineering or through 
self-study.

10.2 � Non-Prismatic Beam and Frame Members

In actual structural design, especially in reinforced concrete or prestressed 
concrete design, the structural members often are not prismatic. Examples 
of configurations of non-prismatic beam or frame members are shown next.

Example configurations of non-prismatic members.

We recall that the governing equation for a prismatic beam member is:

	
=
ρ
=

M
EI

v
1
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where EI is constant. For non-prismatic members, we assume that this equa-
tion still applies but EI is treated as a variable. The integration of the equation 
leads to rotation and deflection:

	
v

M
EI

dx∫θ = =

	
v

M
EI

dxdx∫∫=

From the aforementioned equations we can derive the stiffness factors 
and carryover factors used in the moment distribution, slope-deflection, and 
matrix displacement methods. We shall not derive any of these factors for 
any given non-prismatic configurations herein except to point out that these 
factors are tabulated in handbooks of structural analysis. We do need to gen-
eralize the form of these factors as shown in the following figure.

Prismatic Members Non-Prismatic Members

Mab = 2EKθb

Mab = 4EKθb

Mba = 4EKθb

Mba = 2EKθb

θb
θb

EI, L

EI, L

EI, L

EI, L
a

a

a

a
b

b

b

b

Mab = CbaSbaθb

Mba = CabSabθa

Mba = Sbaθb

Mab = Sabθa

Moment-rotation formulas for non-prismatic members—nodal rotation.

In this figure:

Sab = stiffness factor of node a, equal to 4EK for a prismatic member
Cab = �carryover factor from node a to node b, equal to 0.5 for a prismatic 

member
 Sba = stiffness factor of node b, equal to 4EK for a prismatic member
Cba = �carryover factor from node b to node a, equal to 0.5 for a prismatic 

member

These factors are tabulated in handbooks for commonly used non-prismatic 
members. We note that the fixed-end moments for any given loads between 
nodes are also different from those for a prismatic member and are tabulated 
as well. Furthermore, we state without proof the following identity.

	 CabSab = CbaSba 	 (10.1)
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The effect of member rotation, φab, can be generalized in a similar way as 
shown next.

Non-Prismatic Members

EI, L
a

b
Mab = –(Sab+CbaSba)φ

Mba = –(Sba+CabSba)φ

φ
φ

Prismatic Members

EI, L
a

b
Mab = 6EKφ

Mba = 6EKφ

φ
φ

Moment-rotation formulas for non-prismatic members—member rotation.

Using the identity in Equation 10.1, the moment-rotation formulas can be 
recast as:

	 Mab = –Sab(1 + Cab)φab 	 (10.2a)

	 Mba = –Sba(1 + Cba)φab 	 (10.2b)

Combining the preceding formulas, we can write the moment-rotation for-
mulas for a non-prismatic member as

	 Mab = Sabθa + CbaSbaθb – Sab(1 + Cab)φab + MF 
ab	 (10.3a)

	 Mba = CabSabθa + Sbaθb – Sba(1 + Cba)φab + MF 
ba	 (10.3b)

These two equations are to be used in any displacement method of analysis. A 
sample of the numerical values of the factors in these two equations is given in 
the following table for two configurations of rectangular sections. The EK in the 
table refers to the EK calculated from the least sectional dimension of the member.

Stiffness and Carryover Factors and Fixed-End Moments

a

SbaSabCbaCab

SbaSabCbaCab

0.691 0.691 9.08EK9.08EK

0.694 0.475 6.57EK4.49EK

wP

0.6 L

–0.159PL –0.102wL2 0.102wL20.159PL

–0.097PL –0.067wL2 0.119wL20.188PL

0.2 L

0.8 L 0.2 L

0.2 L

L/2L/2

P
L/2L/2

L

w
L

MF
baMF

ab MF
ab MF

ba

MF
baMF

ab MF
ab MF

ba

b
h
h

a b
h
h
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Example 10.1

Find all the member-end moments of the beam shown. L = 10 m.

10 kN/m
100 kN

0.3 L 0.2 L0.2 L0.2 L0.8 L

c

ba h
h

h
h

0.3 L

Non-prismatic beam example.

Solution

We choose to use the slope-deflection method. There is only one degree of 
freedom (DOF), the rotation at node b: θb.

The equation of equilibrium is:

Mba + Mbc = 0Σ Mb = 0

The EK based on the minimum depth of the beam, h, is the same for both 
members.

The fixed-end moments are obtained from the earlier table:

For member ab:

	 MF
ab = –0.067 wL2 = –67 kN-m

	 MF
ba = 0.119 wL2 = 119 kN-m

For member bc:

	 MF
bc = –0.159 PL= –159 kN-m

	 MF
cb = 0.159 PL = 159 kN-m

The moment-rotation formulas are:

	 Mba = CabSabθa + Sbaθb + MF
ba = 6.57EKθb + 119

	 Mbc = Sbcθb + CcbScbθc + MF
bc = 9.08EKθb – 159

The equilibrium equation Mba + Mbc = 0 becomes

15.65 EKθb – 40 = 0 EKθb = 2.56 kN-m

Substituting back to the member-end moment expressions, we obtain

	 Mba = 6.57EKθb + 119 = 135.8 kN-m

	 Mbc = 9.08EKθb – 159 = –135.8 kN-m
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For the other two member-end moments not involved in the equilibrium 
equation, we have

	 Mab = CbaSbaθb + MF 
ab = (0.475)(6.57EK)θb – 67 = –59.0 kN-m

	 Mcb = CbcSbcθb + MF 
cb = (0.694)(9.08EK)θb + 159 = 175.0 kN-m

PROBLEM 10.1

Find the reaction moment at support b. L = 10 m.

10 kN/m

0.2 L0.8 L

b
a h

h

Problem 10.1

PROBLEM 10.2

Find the reaction moment at support c. L = 10 m.

10 kN/m

0.2 L0.8 L0.5 L

b c
a h

h

Problem 10.2

10.3 � Effects of Support Movement, Temperature, 
and Construction Error

A structure may exhibit displacement or deflection from its intended con-
figuration for causes other than externally applied loads. These causes are 
support movement, temperature effect, and construction errors. For a stati-
cally determinate structure, these causes will not induce internal stresses 
because the members are free to adjust to the change of geometry without 
the constraint from supports or from other members. In general, however, 
internal stresses will be induced for statically indeterminate structures.
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Rigid-body rotation without stress Deformed beam with stress

Statically determinate and indeterminate structures react differently to settlement.

Support movement. For a given support movement or settlement, a structure 
can be analyzed with the displacement method as shown in the following 
example.

Example 10.2

Find all the member-end moments of the beam shown. The amount of set-
tlement at support b is 1.2 cm, downward. EI = 24,000 kN-m2.

b

4 m6 m
1.2 cm

a c

A beam with a downward settlement at support b.

Solution

We shall use the slope-deflection method. The downward settlement at 
support b causes member ab and member bc to have member rotations by 
the amount shown next:

	 φab = 1.2 cm/6 m = 0.002 rad  and  φbc = –1.2 cm/4 m = –0.003 rad

There is only one unknown, the rotation at node b: θb.
The equation of equilibrium is

Mba + Mbc = 0Σ Mb = 0

The stiffness factors of the two members are

	 EKab = 4000 kN-m  and  EKbc = 6000 kN-m

The moment-rotation formulas are

	 Mba = (4EK)abθb – 6EKabφab = 16,000θb – 24,000(0.002)

	 Mbc = (4EK)bcθb – 6EKbcφbc = 24,000θb – 36,000(–0.003)

The equilibrium equation Mba + Mbc = 0 becomes

40,000θb = –60 θb = –0.0015 rad
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Substituting back to the member-end moment expressions, we obtain

	 Mba = (4EK)abθb – 6EKabφab = 16,000(–0.0015) – 48 = –72 kN-m

	 Mbc = (4EK)bcθb – 6EKbcφbc = 24,000(–0.0015) + 108 = 72 kN-m

For the other two member-end moments not involved in the equilibrium 
equation, we have

	 Mab = (2EK)abθb – 6EKabφab = 8000(–0.0015) – 48 = –60 kN-m

	 Mcb = (2EK)bcθb – 6EKbcφbc = 12,000(–0.0015) + 108 = 90 kN-m

Temperature change and construction error. The direct effect of temperature 
change and construction or manufacturing error is the change of shape or 
dimension of a structural member. For a statically determinate structure, 
this change of shape or dimension will lead to displacement but not inter-
nal member forces. For a statically indeterminate structure, this will lead to 
internal forces.

An easy way of handling temperature change or manufacturing error is to 
apply the principle of superposition. The problem is solved in three stages. In 
the first stage, the structural member is allowed to deform freely for the tem-
perature change or manufacturing error. The deformation is computed. Then, 
the member-end forces needed to “put back” the deformation and restore 
the original or designed configuration are computed. In the second stage, the 
member-end forces are applied to the member and restored to the original 
configuration. In the third stage, the applied member-end forces are applied 
to the structure in reverse and the structure is analyzed. The summation of 
the results in stage 2 and stage 3 gives the final answer for internal forces.

Stage 2 Stage 3Stage 1

P

PP

P
Δ Δ

Superposition of stage 2 and stage 3 gives the effects of temperature 
change or construction error.

The second stage solution for a truss member is straightforward:

	
=P

EA
L

where L is the original length of the member, Δ = αL(T), and α is the lin-
ear thermal expansion coefficient of the material, and T is the temperature 
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change from the ambient temperature, positive if elevated. For manufactur-
ing error, the “misfit” Δ is measured and known.

For a beam or frame member, consider a temperature rise that is linearly 
distributed from the bottom of a section to the top of the section and is con-
stant along the length of the member. The strain at any level of the section 
can be computed as shown:

y
ε c

c
Neutral Axis

T2

T1

T2

T1

Strain at a section due to temperature change.

The temperature distribution through the depth of the section can be rep-
resented by

	
T y

T T T T y
c

( )
2 2

1 2 2 1=
+

+
−

The stress, σ, and strain, ε, are related to T by

	 σ = Eε = EαT

The axial force, F, is the integration of forces across the depth of the section:

	
F dA E T dA E

T T T T y
c

dA EA
T T

2 2 2
1 2 2 1 1 2∫∫∫= σ = α = α
+

+
−

= α
+

The moment of the section is the integration of the product of forces and 
the distance from the neutral axis:

M ydA E Ty dA E
T T T T y

c
ydA EI

T T
c2 2 2

1 2 2 1 2 1∫∫∫= σ = α = α
+

+
−

= α
−

Note that (T1 + T2)/2 = Tave. is the average temperature rise and (T2 – T1)/2c = T′ 
is the rate of temperature rise through the depth. We can write

	 F = EAα Tave.  and  M = EIα T′
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Example 10.3

Find all the member-end moments of the beam shown. The temperature 
rise at the bottom of member ab is 10°C and at the top is 30°C. No tempera-
ture change for member bc. The thermal expansion coefficient is 0.000012 
m/m/°C. EI = 24,000 kN-m2 and EA = 8,000,000 kN and the depth of the 
section is 20 cm for both members.

a b c

4 m
10°C

30°C

0°C

0°C

6 m

Beam experience temperature rise.

Solution

The average temperature rise and the temperature rise rate are

	 Tave. = 20°C;  T′ = 20°C/20 cm = 100°C/m

Consequently,

	 F = EAα Tave. = (8,000,000 kN)(0.000012 m/m/°C)(20°C) = 1,920 kN

	 M = EIα T′ = (24,000 kN-m2)(0.000012 m/m/°C)(100°C/m) = 28.8 kN-m

We shall not pursue the effect of the axial force F because it does not affect 
the moment solution. Member ab would be deformed if unconstrained. The 
stage 2 and stage 3 problems are defined in the following figure.

Stage 2 Stage 3
28.8 kN-m

28.8 kN-m
a b c a b c

28.8 kN-m

Superposition of two problems.

The solution to the stage 3 problem can be obtained via the moment 
distribution method.

	 Kab : Kbc = 2 : 3 = 0.4 : 0.6

The 28.8 kN-m moment at b is distributed in the following way:

	 Mba = 0.4 (28.8) = 11.52 kN-m

	 Mbc = 0.6(28.8) = 17.28 kN-m
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The carryover moments are

	 Mab = 0.5(11.52) = 5.76 kN-m

	 Mcb = 0.5(17.28) = 8.64 kN-m

The superposition of two solutions gives

	 Mba = 11.52 – 28.80 = –17.28 kN-m

	 Mbc = 17.28 kN-m

	 Mab = 5.76 + 28.80 = 34.56 kN-m

	 Mcb = 8.64 kN-m

The moment and deflection diagrams are shown next.

17.28 kN-m

34.56 kN-m
8.64 kN-m

Moment and deflection diagrams.

PROBLEM 10.3

The support at c of the frame shown is found to have rotated by 
10 degrees in the counterclockwise direction. Find all the member-end 
moments. EI = 24,000 kN-m2 for both members.

b
c

8 m

8 m

a

Problem 10.3

PROBLEM 10.4

Find all the member-end moments of the beam shown. The tempera-
ture rise at the bottom of the two members is 10°C and at the top is 
30°C. The thermal expansion coefficient is 0.000012 m/m/°C. EI = 
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24,000 kN-m2 and EA = 8,000,000 kN and the depth of the section is 20 
cm for both members.

a b c

4 m
10°C

30°C

10°C

30°C

6 m

Problem 10.4

10.4 � Secondary Stresses in Trusses

In truss analysis, the joints are treated as hinges, which allow joining mem-
bers to rotate against each other freely. In actual construction, however, 
rarely a truss joint is made as a true hinge. The joining members at a joint are 
often connected to each other through a plate, called a gusset plate, either by 
bolts or by welding.

Five angle members connected by a gusset plate.

This kind of connection is closer to a rigid connection than to a hinged 
connection. Nonetheless, we still assume the connection can be treated as a 
hinge as long as external loads are applied at the joints only. This is because 
the triangular configuration of the truss structure minimizes any moment 
action in the members and the predominant force in each member is always 
the axial force. The stress in a truss member induced by the rigid connection 
is called the secondary stress, which is negligible for most practical cases. 
We shall examine the importance of secondary stress through an example.

Example 10.4

Find the end-moments of the two-bar truss shown, if all connections are rigid. 
The sections of both members are square with a side dimension of 20 cm. 
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E = 1000 kN/cm2. Discuss the significance of the secondary stress for three 
cases: θ = 60°, 90°, and 120°.

50 kN

4 m

b
θ

d d

a c

Two-bar truss example.

Solution

For the dimension given, EI = 1,333.33 kN-m2 and EA = 400,000 kN. If 
we treat the structure as a rigid frame, we shall find member-end moments 
in addition to axial force. If we treat the structure as a truss, we will have 
zero member-end moments and only axial force in each member. We shall 
present the truss analysis results and the frame analysis results in the table 
that follows. Because of symmetry, we need to concentrate on one member 
only. It turns out that the end-moments at both ends of member ab are the 
same. We need to examine the maximum compressive stress at node b as a 
way of evaluating the relative importance of secondary stress.

Truss and Frame Solutions

Member Force/Stress Results

θ = 60° θ = 90° θ = 120°

Truss Frame Truss Frame Truss Frame

Member compression (kN) 28.87 28.84 35.35 35.27 50.00 49.63
Moment at end b (kN-cm) 0 8.33 0 17.63 0 42.98
σ due to axial force (kN/cm2) 0.072 0.072 0.088 0.088 0.125 0.124

σ due to moment (kN/cm2) 0 0.006 0 0.013 0 0.032

Total σ (kN/cm2) 0.072 0.078 0.088 0.101 0.125 0.156
Error (truss result as base) 8.3% 15% 25%

In computing the normal stress from moment, we have used the formula:

	 
σ =

Mc
I

where c is the half height of the section. We observe that the compressive 
stress computed from a rigid connection assumption is higher than that from 
the hinge connection assumption. The error becomes larger when the angle 
θ becomes larger. The results of the preceding analysis, however, are those 
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for the worse possible case, because in reality node a and node c would 
not have been fixed completely if the basic triangle a–b–c is part of a larger 
truss configuration. Nonetheless, secondary stress should be considered 
when the angle between two joining members becomes greater than 90°.

10.5 � Composite Structures

We have learned the methods of analysis for truss structures and beam/
frame structures. In reality, many structures are composite structures in 
the sense that both truss and frame members are used in a single structure. 
Bridge and building structures are often composite structures as illustrated 
in the following figure, in which thin lines represent truss members and 
thick lines represent frame members.

Cable-stayed bridge and building frame as composite structure examples.

The analysis of composite structures can be accomplished with either the 
force method or the displacement method. All computer packages allow the 
mixture of truss and frame members. For very simple composite structures, 
hand calculation can be effective as shown in the following example.

Example 10.5

As a much simplified model of a cable-stayed bridge, the composite struc-
ture shown is subjected to a single load at the center. Find the force in the 
cables. The cross-sectional properties: Acable = 100 cm2, Abeam = 180 cm2, 
and Ibeam = 19,440 cm4. E = 20,000 kN/cm2 for both the cables and the 
beam. Neglect the axial deformation effect of the beam.

100 kN
3 m

cb
a

4 m4 m

Beam-cable composite structure.
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Solution

Because of symmetry, node b will have a downward deflection only, without 
a rotation. We need to concentrate on only half of the structure. Denoting 
the downward deflection as x, we observe that the elongation of the cable 
and the member rotation of member ab are related to x.

	
= xcable
3
5

	
= xab
1
4

3 m

x

ba

4 m

φab

5 m

Deflected configuration.

The vertical force equilibrium at node b involves the shear force of the beam, 
the vertical component of the force in the cable, and the externally applied load.

	
= = = =F
EA
L

EA
L

x x xcable cable
3
5

(20000)(100)
500

3
5

2400

	
= =F F xcable vertical cable( )
3
5

1440

	
= = =V

EK
L

x xbeam ab12 12
(20000)(19440)

(400)(400)
1
4

7290

The equilibrium equation for vertical forces at node b calls for the sum 
of the shear force in the beam and the vertical component of the cable 
force be equal to half of the externally applied load, and the equation 
appears as:

	 1440x + 7290x = 50 ⇨ x = 0.00573 cm

The shear force in the beam is

	 Vbeam = 7290x = 41.8 kN
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The tension in the cables is

	 Fcable = 2400x = 13.8 kN

10.6 � Materials Nonlinearity

We have assumed that materials are linearly elastic. This means that 
the stress–strain relationship is proportional (linear), and when stress is 
removed, the strain will return to the original state of zero strain (elastic). In 
general, however, a stress–strain relationship can be elastic but nonlinear or 
inelastic and nonlinear. In truss and beam/frame analysis, we deal with only 
uniaxial stress–strain relationships. The following figure illustrates different 
uniaxial stress–strain relationships.

Elastic-plastic hardening (Steel) Nonlinear, inelastic (Concrete)

Elastic, nonlinearElastic, linear

σσ

σσ

ε ε

ε ε

Various uniaxial stress–strain relationships.

The linear analysis we have been learning is valid only for linear material 
behavior, but, as illustrated for the concrete stress–strain relationship, a linear 
relationship is a good approximation if the stress–strain level is limited to a 
certain range. The highest level of stress that can be sustained by a material is 
called the ultimate strength, which is usually beyond the linear region. Present 
design practice does require the consideration of the ultimate strength, but the 
design process has been developed in such a way that a linear analysis is still 
useful for preliminary design. The interested reader is encouraged to study 
advanced strength of materials for nonlinear material behavior.
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10.7 � Geometric Nonlinearity

A basic assumption in the linear structural analysis is that the deflected configura-
tion is very close to the original configuration. This is called the small-deflection 
assumption. With this assumption, we can use the original configuration to set 
up equilibrium equations. If, however, the deflection is not “small,” then the error 
induced by the small deflection assumption could be too large to be ignored.

We will use the following example to illustrate the error of a small deflec-
tion assumption.

Example 10.6

For the two-bar truss shown, quantify the error of a small-deflection analysis 
on the load-deflection relationship at node b. The two bars are identical and 
are assumed to keep a constant cross-section area even under large strain.

The last assumption about a constant cross-section area is to ignore the 
Poisson’s effect and to simplify the analysis. We further assume the material 
remains linearly elastic so as to isolate materials’ nonlinearity effect from the 
geometric nonlinearity effect we are investigating herein.

P

c

b

f

d

a a

Two-bar truss example.

Solution

We shall derive the load-deflection relationship with and without the small-
deflection assumption.

P

L

δ

c

b

f

d

a a

Deflected configuration as the base of the equilibrium equation.
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Denote the compression force in the two bars by F; we can write the verti-
cal force equilibrium equation at node b as

	 P = 2Fvertical

The small-deflection assumption allows us to write, using the original 
geometry,

	
=F F

d
L

vertical

The bar shortening, Δ, is geometrically related to the vertical deflection at b:

	
= δ

d
L

The bar force is related to bar shortening by

	
=F
EA
L

Combining the previous equations, we obtain the load-deflection (P-δ) 
relationship according to the small-deflection assumption:

	
= δ =

δ
P

EA
L

d
L

d
L

EA
d
L d

2 2
3

	 (10.4)

For large deflection, we have to use the deflected configuration to com-
pute bar shortening and the vertical component of the bar force.

	

=
− δ

= −

= = −

= =
− δ

F F
d
L

L L

F
EA
L

EA
L
L

P F EA
L
L

d
L

vertical

vertical

1

2 2 1– 	 (10.5)

We can express Equation 10.5 in terms of two non-dimensional geomet-
ric factors, a/d and δ/d, as shown next.

	 L a d L a d( ) ;2 2 2 2= + − δ = +

Dividing both sides by d, we have

	

L
d

a
d d

L
d

a
d

1 ; 1
2 2 2

= + −
δ

= +
 



270 Introduction to Structural Analysis: Displacement and Force Methods

Also,

	

− δ
=

− δd
L

d
L d

1 /
/

We can see that Equation 10.4 and Equation 10.5 depend on only two 
geometric factors: the original slope of the bar, a/d, and the deflection ratio, 
δ/d. Thus, the error of the small-deflection assumption also depends on 
these two factors. We study two cases of a/d and four cases of δ/d and 
tabulate the results.

Error of Small-Deflection Assumption as a Function of a/d and δ/d

δ/d 0.01 0.05 0.10 0.15

a/d = 1.00

P
EA

L
L

d
L

Equation 10.5 :
2

1= −
− δ 0.0035 0.0169 0.0325 0.0466

P
EA

d
L d

Equation 10.4 :
2

3

=
δ

0.0035 0.0177 0.0354 0.0530

Equation 10.4/Equation 10.5 1.00 1.05 1.09 1.14
Error (%): (Equation 10.4/Equation 10.5) – 1 0% 5% 9% 14%

a/d = 2.00

P
EA

L
L

d
L

Equation 10.5 :
2

1= −
− δ 0.0009 0.0042 0.0079 0.0110

P
EA

d
L d

Equation 10.4 :
2

3

=
δ

0.0009 0.0045 0.0089 0.0134

Equation 10.4/Equation 10.5 1.00 1.07 1.13 1.22
Error (%): (Equation 10.4/Equation 10.5) – 1 0% 7% 13% 22%

The results indicate that as deflection becomes increasingly larger (δ/d var-
ies from 0.01 to 0.15), the small-deflection assumption introduces a larger 
and larger error. This error is larger for a shallower configuration (larger a/d 
ratio). The P/2EA values are plotted in the following figure to illustrate the 
size of the error. We may conclude that the small-deflection assumption is 
reasonable for δ/d less than 0.05.

P/2EA
0.0530

a/d = 1.00

δ/d δ/d

a/d = 2.00

0.100.05 0.15 0.100.05 0.15

0.0134Error Error

P/2EA

Error of small-deflection assumption.



271Other Topics

It is clear from the figure that the load-deflection relationship is no longer 
linear when deflection becomes larger.

10.8 � Structural Stability

In truss or frame analysis, members are often subjected to compression. If 
the compression force reaches a critical value, a member or the whole struc-
ture may deflect in a completely different mode. This phenomenon is called 
buckling or structural instability. The following figure illustrates two buck-
ling configurations relative to the nonbuckling configurations.

Δ Δ Δ

δ δ δ δ

Buckling configurations of a column and a frame.

Mathematically, the buckling configuration is an alternative solution to a 
nonbuckling solution of the governing equation. Since a linear equation has 
only one unique solution, a buckling solution can be found only for a non-
linear equation. We shall explore where the nonlinearity comes from via the 
equation of a column with hinged ends and subjected to an axial compression.

x

PP

v

Nonbuckling and buckling configurations as solutions to the beam equation.
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The governing equation of beam flexure is

	
=

d v
dx

M
EI

2

2

Because of the axial load and the lateral deflection, M = –Pv. Thus, the gov-
erning equation becomes

	
+ =

d v
dx

Pv
EI

0
2

2
 

This equation is linear if P is kept constant, but nonlinear if P is a variable 
as it is in the present case. The solution to the preceding equation is

	
=v A

P
EI

xSin

where A is any constant. This form of solution to the governing equation 
must also satisfy the end conditions: v = 0 at x = 0 and x = L. The condition at 
x = 0 is automatically satisfied, but the condition at x = L leads to either

	 A = 0

or

	
=

P
EI

Lsin 0

The former is the nonbuckling solution. The latter, with A ≠ 0, is the buck-
ling solution, which exists only if

	

P
EI
L n n, 1, 2, 3,= π = …

The load levels at which a buckling solution exists are called the critical loads:

	
�=

π
=P

n
L

EI n 1,2, 3cr

2 2

2

The lowest critical load is the buckling load.

	
=
π

P
L

EIcr

2

2
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The preceding derivation is based on the small deflection assumption and 
the analysis is called linear buckling analysis. If the small deflection assump-
tion is removed, then a nonlinear buckling analysis can be followed. The 
linear analysis can identify the critical load at which buckling is to occur 
but cannot trace the load–lateral deflection relationship on the postbuckling 
path. Only a nonlinear buckling analysis can produce the postbuckling path. 
Interested readers are encouraged to study structural stability to learn about a 
full spectrum of stability problems, elastic and inelastic, linear and nonlinear.

Postbuckling Path

P

P

Δ

Δ

Pcr
Linear Analysis

Prebuckling Path

Linear and nonlinear buckling analyses results.

10.9 � Dynamic Effects

In all the previous analyses, the load is assumed to be static. This means a 
load is applied slowly so that the resulting deflection of the structure also 
occurs slowly, and the velocity and acceleration of any point of the structure 
during the deflection process are small enough to be neglected. How slow is 
slow? What if velocity and acceleration cannot be neglected?

We know from Newton’s second law, or the derivative of it, that the 
product of a mass and its acceleration constitutes an inertia term equiva-
lent to force. In an equilibrium system, this term, called D’Alembert force, 
can be treated as a negative force and all the static equilibrium equations 
would apply. From physics, we learn that a moving subject often encounters 
resistance either from within the subject or from the medium it is moving 
through. This resistance, called damping, in its simplest form, can be repre-
sented by the product of the velocity of the subject and a constant. Including 
both the inertia term and the damping term in the equilibrium equations of 
a structure is necessary for responses of a structure excited by wind, blast, 
earthquake excitations, or any sudden movement of the support or part of 
the structure. The dynamics effects are effects caused by the presence of the 
inertia and the damping in a structural system and the associated motion of 
the structure is called vibration. The equilibrium, including dynamic effects, 
is called dynamic equilibrium.
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It is not easy to quantify an excitation as a static one, but it is generally 
true that the dynamic effects can be neglected if the excitation is gradual in 
the sense that it takes an order longer to complete than the natural vibration 
period of the structure. The concept of the natural vibration period can be 
easily illustrated by an example.

Example 10.7

Find the natural vibration period of a cantilever beam as shown. EI is con-
stant and the mass is uniformly distributed with a density ρ per unit length 
of the beam. Assume there is no damping in the system.

L
x

A cantilever beam with uniformly distributed mass.

Solution

We shall limit ourselves to exploring the lateral vibration of the beam, 
although the beam can also have vibration in the axial direction. A rigorous 
analysis would consider the dynamic equilibrium of a typical element mov-
ing laterally. The resulting governing equation would be a partial differential 
equation with two independent variables, a spatial variable, x, and a time 
variable, t. The system would have infinite degrees of freedom because the 
spatial variable, x, is continuous and represents an infinite number of points 
along the beam. We shall pursue an approximate analysis by lumping the 
total mass of the beam at the tip of the beam. This results in a single degree 
of freedom (SDOF) system because we need to consider dynamic equilib-
rium only at the lumped mass at the tip.

v(x)

x

v
mpdx

V kvL
V+dV

d2v

dt2
d2v

dt2

Dynamic equilibrium of a distributed mass system and a lumped mass system.

The dynamic equilibrium of this SDOF system is shown in the preceding 
figure. The dynamic equilibrium equation of the lumped mass is

	
+ =

d v
dt

m kv 0
2

2 	 (10.6)
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where m = ρL and k is the force acting on the lumped mass per unit length 
of lateral deflection at the tip. We learn from beam analysis that the force 
at the tip of the beam needed to produce a unit tip deflection is 3EI/L3, thus 
k = 3EI/L3.

An equivalent form of Equation 10.6 is

	
+ =

d v
dt

k
m
v 0

2

2 	 (10.6)

The factor associated with v in the equation is a positive quantity and can 
be represented by

	

k
m

ω =
	 (10.7)

Then Equation 10.6 can be put in the following form:

	
+ ω =

d v
dt

v 0
2

2
2

	 (10.8)

The general solution of Equation 10.8 is

	 v = A Sin nωt + B Cos nωt,  n = 1, 2, 3, …	 (10.9)

The constants A and B are to be determined by the position and velocity 
at t = 0. No matter the conditions, which are called initial conditions, the 
time variation of the lateral deflection at the tip is sinusoidal or harmonic 
with a frequency of nω. The lowest frequency, ω, for n = 1, is called the 
fundamental frequency of natural vibration. The other frequencies are fre-
quencies of higher harmonics. The motion, plotted against time, is periodic 
with a period of T:

	  
=

π
ω

T
2

	 (10.10)

T

t

v

Harmonic motion with a period T.
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In the present case, if EI = 24,000 kN-m2, L = 6 m, and ρ = 100 kg/m, then 
k = 3EI/L3 = 333.33 kN/m, m = ρL = 600kg, and ω2 = k/m = 0.555 (kN/m.kg) 
= 555 (1/sec2). The fundamental vibration frequency is ω = 23.57 rad/sec and 
the fundamental vibration period is T = 0.266 sec. The inverse of T, denoted 
by f, is called the circular frequency:

	
=f
T
1

	 (10.11)

which has the unit of circle per second (cps), which is often referred to as 
Hertz or Hz. In the present example, the beam has a circular frequency of 
3.75 cps or 3.75 Hz.

Interested readers are encouraged to study structural dynamics, in which 
undamped vibration, damped vibration, free vibration and forced vibra-
tion of SDOF systems, multidegree-of-freedom (MDOF) systems, and other 
interesting and useful subjects are explored.

10.10 � Finite Element Method

The types of structures considered so far are trusses, beams, and frames. In 
practical structural analysis, even a simple building has elements such as 
floor slabs that cannot be analyzed by the methods introduced in this book. 
For structures with more general geometry than mere beams and frames, an 
effective analytical tool is the finite element method.

We may view the finite element method as a mathematical solution to cer-
tain types of differential equations or as a generalized method of matrix 
analysis of structures. The most popular type of the finite element method 
is the generalized stiffness analysis method. It follows the same procedure 
as the matrix displacement method we have introduced earlier in the book. 
One major difference is a structure other than truss, beam, or frame must 
be divided first into a finite number of elements connected to each other 
through nodes, as shown next for a flat plate.

Elements

Nodes

Finite element grid for a flat plate.
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Once the finite element grid is completed, the rest of the procedure paral-
lels that of the matrix displacement method. The finite element method is 
also an approximate method in that the solution produced is an approxi-
mate solution, which is close to the “exact” solution when the size of ele-
ments is small and the number of elements is large. Because the finite 
element method can be applied to virtually any shape of structures it is 
widely used in practical structural analysis. Numerous computer pro-
grams are commercially available with interactive graphics and automated 
grid generation. Readers are encouraged to take a course on the finite ele-
ment method.
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Appendix A: Matrix Algebra Review

A.1 � What Is a Matrix?

A matrix is a two-dimensional array of numbers or symbols that follows a 
set of operating rules. A matrix having m rows and n columns is called a 
matrix of order m-by-n and can be represented by a bold-faced letter with 
subscripts representing row and column numbers, for example, A3×7. If m = 
1 or n = 1, then the matrix is called a row matrix or a column matrix, respec-
tively. If m = n, then the matrix is called a square matrix. If m = n = 1, then the 
matrix is degenerated into a scalar.

Each entry of the two-dimensional array is called an element, which is 
often represented by a plain letter or a lowercase letter with subscripts rep-
resenting the locations of the row and column in the matrix. For example, a23 
is the element in matrix A located at the second row and the third column. 
Diagonal elements of a square matrix A can be represented by aii. A matrix 
with all elements equal to zero is called a null matrix. A square matrix 
with all nondiagonal elements equal to zero is called a diagonal matrix. A 
diagonal matrix with all the diagonal elements equal to one is called a unit 
or identity matrix and is represented by I. A square matrix whose elements 
satisfy aij = aji is called a symmetric matrix. An identity matrix is also a sym-
metric matrix. A transpose of a matrix is another matrix with all the row 
and column elements interchanged: (aT)ij = aji. The order of a transpose of 
an m-by-n matrix is n-by-m. A symmetric matrix is one whose transpose is 
the same as the original matrix: AT

 = A. A skew matrix is a square matrix 
satisfying aij = –aji. The diagonal elements of a skew matrix are zero.

EXERCISE A.1

Fill in the blanks in the sentences below.

	

A B C
2 4
7 3
1 10

2 7 1
4 3 10

2 1 3
1 5 4
3 4 8

= = =

	

D E F
2
5
7

2 5 7
2 0 0
0 5 0
0 0 8

= = =
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G H K
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 1 3
1 0 4
3 4 0

= = = −
− −

Matrix A is a ___-by-___ matrix and matrix B is a ___-by-___ matrix.
Matrix A is the _____________ of matrix B and vice versa.
Matrices C and F are _________ matrices with ________ rows and ________ 

columns.
Matrix D is a ________ matrix and matrix E is a ______ matrix; E is the 

_________ of D.
Matrix G is an ________ matrix; matrix H is a ______ matrix; matrix K is a 

_______ matrix.
In the example, there are _____ symmetric matrices and they are 

__________________.

A.2 � Matrix Operating Rules

Only matrices of the same order can be added to or subtracted from each 
other. The resulting matrix is of the same order with an element-to-element 
addition or subtraction from the original matrices.

	

C F
2 1 3
1 5 4
3 4 8

2 0 0
0 5 0
0 0 8

4 1 3
1 10 4
3 4 16

+ = + =

	

C F
2 1 3
1 5 4
3 4 8

2 0 0
0 5 0
0 0 8

0 1 3
1 0 4
3 4 0

− = − =

The following operations using matrices defined earlier are not admis-
sible: A + B, B + C, D – E, and D – G.

Multiplication of a matrix by a scalar results in a matrix of the same order 
with each element multiplied by the scalar. Multiplication of a matrix by 
another matrix is permissible only if the column number of the first matrix 
matches with the row number of the second matrix, and the resulting matrix 
has the same row number as the first matrix and the same column number 
as the second matrix. In symbols, we can write

	

B D Q Q B Dand ij ik kj

k 1

3

�� � �
�
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Using the numbers given earlier we have

	

Q B D BD 2 7 1
4 3 10

2
5
7

2 2 7 5 1 7
4 2 3 5 10 7

46
113

= × = = =
× + × + ×
× + × + ×

=

	
P Q E QE 46

113
2 5 7

92 230 322
226 565 791

= × = = =

We can verify numerically that

	 P = QE = BDE = (BD)E = B(DE)

We can also verify multiplying any matrix by an identity matrix of the right 
order will result in the same original matrix, thus the name identity matrix.

The transpose operation can be used in combination with multiplication 
in the following way, which can be easily derived from the definition of the 
two operations.

	 (AB)T = BTAT and (ABC)T = CTBTAT

EXERCISE A.2

Complete the following operations.

	

=

=

EB

DE

5 2
3 6

2 7 1
4 3 10

2
5
7

2 5 7

A.3 � Matrix Inversion and Solving 
Simultaneous Algebraic Equations

A square matrix has a characteristic value called determinant. The math-
ematical definition of a determinant is difficult to express in symbols, but we 
can easily learn the way of computing the determinant of a matrix by the fol-
lowing examples. We shall use Det to represent the value of a determinant. 
For example, DetA means the determinant of matrix A.
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Det

Det Det Det

[5] 5

5 2
3 6

5 [6] – 3 [2] 30 – 6 24

=

= × × = =

Det Det Det Det
1 4 7
2 5 8
3 6 9

1 5 8
6 9

– 2 4 7
6 9

3 4 7
5 8

1 (–3) – 2 (–6) 3 ( 3) 0

= × × + ×

= × × + × − =

A matrix with a zero determinant is called a singular matrix. A nonsingu-
lar matrix A has an inverse matrix A–1, which is defined by

	 AA–1 = I

We can verify that the two symmetric matrices at the left-hand side (LHS) 
of the following equations are inverse to each other.

	

1 1 2

1 4 1
2 1 8

31/3 10/3 3

10/3 4/3 1

3 1 1

1 0 0

0 1 0
0 0 1

31/3 10/3 3

10/3 4/3 1

3 1 1

1 1 2

1 4 1
2 1 8

1 0 0

0 1 0
0 0 1

−

−

− −

−

−

=

− −

−

−

−

−

=

This is because the transpose of an identity matrix is also an identity matrix and

	 (AB) = I ⇨ (AB)T = (BTAT) = (BA) = IT = I

The above statement is true only for symmetric matrices.
There are different algorithms for finding the inverse of a matrix. We shall 

introduce one that is directly linked to the solution of simultaneous equa-
tions. In fact, we shall see matrix inversion is an operation more involved 
than solving simultaneous equations. Thus, if solving simultaneous equa-
tions is our goal, we need not go through a matrix inversion first.

Consider the following simultaneous equations for three unknowns.

	 x1 + x2 + 2x3 = 1

	 x1 + 4x2 – x3 = 0

	 2x1 – x2 + 8x3 = 0
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The matrix representation of this is

	

x
x
x

1 1 2
1 4 1
2 1 8

1
0
0

1

2

3

−
−

=

Imagine we have two additional sets of problems with three unknowns 
and the same coefficients in the LHS matrix but different right-hand side 
(RHS) figures.

	

x
x
x

x
x
x

1 1 2
1 4 1
2 1 8

0
1
0

and
1 1 2
1 4 1
2 1 8

0
0
1

1

2

3

1

2

3

−
−

= −
−

=

Since the solutions for the three problems are different, we should use dif-
ferent symbols for them. But, we can put all three problems in one single 
matrix equation.

	

x x x
x x x
x x x

1 1 2
1 4 1
2 1 8

1 0 0
0 1 0
0 0 1

11 12 13

21 22 23

31 32 33

−
−

=

or,

	 AX = I
By definition, X is the inverse of A. The first column of X contains the solu-

tion to the first problem, and the second column contains the solution to the 
second problem, and so on. To find X, we shall use a process called Gaussian 
elimination, which has several variations. We shall present two variations. 
The Gaussian process uses each equation (row in the matrix equation) to 
combine with another equation in a linear way to reduce the equations to a 
form from which a solution can be obtained.

	 1.	The first version. We shall begin by a forward elimination process, 
followed by a backward substitution process. The changes as the 
result of each elimination or substitution are reflected in the new 
content of the matrix equation.
Forward elimination. Row 1 is multiplied by –1 and added to row 2 to 

replace row 2, and row 1 is multiplied by –2 and added to row 3 
to replace row 3, resulting in:

	

x x x
x x x
x x x

1 1 2
0 3 3
0 3 4

1 0 0
1 1 0
2 0 1

11 12 13

21 22 23

31 32 33

−
−

= −
−
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	 Row 2 is added to row 3 to replace row 3, resulting in:

	

x x x
x x x
x x x

1 1 2
0 3 3
0 0 1

1 0 0
1 1 0
3 1 1

11 12 13

21 22 23

31 32 33

− = −
−

	 The forward elimination is completed and all elements below 
the diagonal line in A are zero.

Backward substitution. Row 3 is multiplied by 3 and added to row 2 to 
replace row 2, and row 3 is multiplied by –2 and added to row 1 
to replace row 1, resulting in:

	

x x x
x x x
x x x

1 1 0
0 3 0
0 0 1

7 2 2
10 4 3
3 1 1

11 12 13

21 22 23

31 32 33

=
− −

−
−

	 Row 2 is multiplied by –1/3 and added to row 1 to replace row 1, 
resulting in:

	

x x x
x x x
x x x

1 0 0
0 3 0
0 0 1

31/3 10/3 3

10 4 3
3 1 1

11 12 13

21 22 23

31 32 33

=
− −

−
−

Normalization. Now that matrix A is reduced to a diagonal matrix, 
we further reduce it to an identity matrix by dividing each row 
by the diagonal element of each row, resulting in:

	

x x x
x x x
x x x

1 0 0
0 1 0
0 0 1

31/3 10/3 3

10/3 4/3 1

3 1 1

11 12 13

21 22 23

31 32 33

=

− −

−

−

	 or

	

X
x x x
x x x
x x x

31/3 10/3 3

10/3 4/3 1

3 1 1

11 12 13

21 22 23

31 32 33

= =

− −

−

−

	 Note that X is also symmetric. It can be derived that the inverse 
of a symmetric matrix is also symmetric.



285Appendix A: Matrix Algebra Review

	 2.	The second version. We combine the forward and backward operations 
and the normalization together to reduce all off-diagonal terms to zero, 
one column at a time. We reproduce the original matrix equation below.

	

x x x
x x x
x x x

1 1 2
1 4 1
2 1 8

1 0 0
0 1 0
0 0 1

11 12 13

21 22 23

31 32 33

−
−

=

		  Starting with the first row, we normalize the diagonal element of the 
first row to one (in this case, it is already one) by dividing the first row 
by the value of the diagonal element. Then we use the new first row to 
eliminate the first column elements in row 2 and row 3, resulting in

	

x x x
x x x
x x x

1 1 2
0 3 3
0 3 4

1 0 0
1 1 0
2 0 1

11 12 13

21 22 23

31 32 33

−
−

= −
−

		  We repeat the same operation with the second row and the diago-
nal element of the second row to eliminate the second column ele-
ments in row 1 and row 3, resulting in

	

x x x
x x x
x x x

1 0 3
0 1 1
0 0 1

4/3 1/3 0

1/3 1/3 0

3 1 1

11 12 13

21 22 23

31 32 33

− =

−

−

−

		  The same process is done using the third row and the diagonal 
element of the third row, resulting in

	

x x x
x x x
x x x

1 0 0
0 1 0
0 0 1

31/3 10/3 3

10/3 4/3 1

3 1 1

11 12 13

21 22 23

31 32 33

=

− −

−

−

	 or

	

X
x x x
x x x
x x x

31/3 10/3 3

10/3 4/3 1

3 1 1

11 12 13

21 22 23

31 32 33

= =

− −

−

−

		  The same process can be used to find the solution for any given 
column on the RHS, without finding the inverse first. This is left to 
readers as an exercise.
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EXERCISE A.3

Solve the following problem by the Gaussian elimination method.

	

x
x
x

1 1 2
1 4 1
2 1 8

3
6
1

1

2

3

−
−

=

Forward elimination. Row 1 is multiplied by –1 and added to row 2 to replace 
row 2, and row 1 is multiplied by –2 and added to row 3 to replace row 3, 
resulting in:

	

x
x
x

1 1 2
0 3 3
0 3 4

1

2

3

−
−

=

Row 2 is added to row 3 to replace row 3, resulting in:

	

x
x
x

1 1 2
0 3 3
0 0 1

1

2

3

− =

Backward substitution. Row 3 is multiplied by 3 and added to row 2 to 
replace row 2, and row 3 is multiplied by –2 and added to row 1 to replace 
row 1, resulting in:

	

x
x
x

1 1 0
0 3 0
0 0 1

1

2

3

=

Row 2 is multiplied by (–1/3) and added to row 1 to replace row 1, resulting in:

	

x
x
x

1 0 0
0 3 0
0 0 1

1

2

3

=

Normalization. Now that matrix A is reduced to a diagonal matrix, we fur-
ther reduce it to an identity matrix by dividing each row by the diagonal 
element of each row, resulting in:

	

x
x
x

1 0 0
0 1 0
0 0 1

1

2

3

=
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If, however, the inverse is already obtained, then the solution for any given 
column on the RHS can be obtained by a simple matrix multiplication, as 
shown next.

	 AX = Y

Multiply both sides with A–1, resulting in

	 A–1AX = A–1Y

or,

	 X = A–1Y

This process is left as an exercise.

EXERCISE A.4

Solve the following equation by using the inverse matrix of A.

	

A A

A

x
x
x

x
x
x

1 1 2
1 4 1
2 1 8

3
6
1

1 1 2
1 4 1
2 1 8

31/3 10/3 3

10/3 4/3 1

3 1 1

3
6
1

31/3 10/3 3

10/3 4/3 1

3 1 1

3
6
1

1

2

3

1

1

2

3

1

−
−

=

= −
−

=

− −

−

−

= =

− −

−

−

=

−

−
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Appendix B: Supplementary 
Review Notes

B.1 � Cartesian and Polar Coordinate Systems

In solving problems in a two- or three-dimensional space, it is often nec-
essary to define a coordinate system to describe the location of bodies or 
to place a force, displacement, or any vector quantities relative to other 
quantities. The most commonly used system is the Cartesian system. In 
a plane, it consists of two mutually perpendicular axes oriented in any 
direction, although they are often oriented in the horizontal and vertical 
directions as

x

x

y
y

shown in the right figure. Any point, P, in the 2-D plane can then be repre-
sented by its two coordinates x and y. If we make a line between the point 
and the origin, o, then a line of length L is defined. The x- and y-coordinates 
are then simply the projection of the line of length L onto the x- and y-axes, 
respectively.

x

y

o

P

x

y L
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The pair of numbers (x,y) completely defines the location of the point P in 
the x-y coordinate system. Alternatively, we can also define the point P by its 
distance from the origin and the orientation of the line between the point P 
and the origin as shown next.

x

y

o

P

r

θ

The pair of numbers (r, θ) also completely defines the location of the point 
P, where the angle θ is measured from the positive direction of the x-axis 
counterclockwise. The r–θ coordinate system is called the polar coordinate 
system. A direct comparison of the representations of the same point by the 
two coordinate systems gives the following relationship.

	 x = r Cosθ

	 y = r Sinθ

These equations allow the conversion from the polar coordinates into the 
Cartesian coordinates. The following inverse relationship allows the conver-
sion of Cartesian coordinates into the polar coordinates.

	
= +r x y2 2

	
θ = −Tan

y
x

1

B.2 � Trigonometric Formulas

There are six basic trigonometric functions. Consider a circle with a radius 
r. If a radius, defined by its origin, o, and its end point on the circle, P, moves 
about its origin, the projection of the radius on the x- and y-axes change as 
the position of the radius changes.
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xo

P
r

x

y
θ

The most commonly used two functions are defined as the ratios of the 
two projections to the radius:

	
θ =

y
r

Sin

	
θ =

x
r

Cos

Clearly, the value of these two functions cannot exceed one. As the angle 
θ changes from zero to 2π, the radius moves from the first quarter to the 
second, third, and the fourth quarter, and the sign of the x- and y-projections 
also changes accordingly. It can be easily shown that, expressing the angle in 
radians,

	

π
= π =

π
= − π =Sin 0 = 0, Sin

2
1, Sin 0, Sin

3
2

1, Sin 2 0

	
=

π
= π =

π
= πCos 0 1, Cos

2
0, Cos –1, Cos

3
2

0, Cos 2 = 1

These two functions are periodical functions because they repeat themselves 
in value every period of 2π.

θ

θ

–2π

2π

2π

–2π

Sinθ

Cosθ
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The sine function is called an “odd” function because it is antisymmetric 
about θ = 0, that is,

	 Sinθ = –Sin(–θ)

The cosine function is called an “even” function because it is symmetric 
about θ = 0, that is,

	 Cosθ = Cos(−θ)

The two functions have the identical shape but with a shift in the angle θ,

	
θ +

π
= θSin

2
Cos

This formula leads to

	

π
− θ = θSin

2
Cos

An often-used identity involving these two functions is

	 Sin2θ + Cos2θ = 1

This identity is the direct result of the definition of the two functions. 
Another useful formula, called the sine law of triangles, links the three inter-
nal angles of a triangle to their respective side lengths.

	
= =

a
A

b
B

c
CSin Sin Sin

A

B C
a

bc

Equivalently, the preceding equation can be expressed as

	 Sin A : Sin B : Sin C = a : b : c
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Example B.1

The supports of the two-bar truss move horizontally outward by the small 
amounts, a and b, as shown. Find the rotation of the two bars as a result of 
the support movement.

a b

A B

c d

Solution

As a result of the supports moving outward horizontally, the two bars’ new 
positions are shown next, assuming the two bars are connected at the top 
with a hinge connection.

a

a b

b
A B

g dc h

BA

A + B

90°-B90°-A

Because the support movements are small quantities, the difference 
between the final configuration shown and the original configuration is 
exaggerated, but the geometry of the small triangle defined by the three 
sides (a + b), g, and h, is correct. Clearly, the rotation of the two bars are 
defined by g/c and h/d, respectively. Thus, we need to relate g and h to the 
support movements a and b and the two angles A and B. The sine law can 
be applied to relate g and h to a + b.

	 −
=

−
=

+
+

g
B

h
A

a b
A BSin(90 ) Sin(90 ) Sin( )o o

 

From the above, the length g and h can be computed.
Let us carry out the above with given dimensions A = 30°, B = 60°, c = 

20 m, d = 11.55 m and a = 0.02 ft, b = 0.01 m. Then the preceding equation 
becomes

	 −
=

−
=

+
+

=
g h

Sin(90 60 ) Sin(90 30 )
0.02 0.01

Sin(30 60 )
0.03o o o o o o

  

	 g = Sin (30°)(0.03) = (0.5)(0.03) = 0.015 m

	 h = Sin (60°)(0.03) = (0.886)(0.03) = 0.026 m
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The rotations are, as expected, very small angles:

	
= =

g
c

0.015
20

= 0.00075 radian = 0.00075
180

3.1416
0.043 degree and

	

h
d

0.026
20

0.0013 radian = 0.0013
180

3.1416
0.074 degree= = =

 

The other four trigonometric functions can be derived from the sine and 
cosine functions.

	
θ = =

θ
θ

θ = =
θ
θ

y
x

x
y

Tan
Sin
Cos

, Cot
Cos
Sin

	
θ = =

θ
θ = =

θ
r
x

r
y

Sec
1

Cos
; CSC

1
Sin

B.3 � Differentiation and Integration

Consider a continuous curve in a two-dimensional space specified by the 
following function:

	 y = f (x)

x

y

y = f (x)

If we trace the curve from any point, x, on this curve to an immediate 
adjacent point, x′, we see that an increment in the x-direction leads to an 
increment in the y-direction. These increments are denoted by Δx and Δy, 
respectively.
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x

y

x x

y
y

∆y

∆x θ

If we connect the two points, y and y′, by a straight line, then the triangle 
formed will lead to the following relationship about the angle between the 
straight line and the horizontal axis:

	
θ =

y
x

Tan

If we let the point on the x-axis x′ approach x, that is, Δx approaches zero, 
then the triangle becomes smaller and the above quantity approaches a limit

∆x
∆y

dx
dy

The dy and dx are called the differentials. They are infinitesimal quantities. The 
ratio of dy to dx is called the derivative of the function y = f (x) and can be conve-
niently represented by y′ or f′. As x′ approaches x, the straight line between the 
two points becomes the tangent to the curve and the slope of the tangent line is

	
θ = =

dy
dx

yTan

Thus, the derivative of a function is the slope of the tangent line to the curve 
representing the function. The derivative of a function is a measure of the 
rate of change of the function, y, with respect to the independent variable, x. 
Some frequently encountered derivatives are shown next.

	
= θ = θ = θy y

dy
dx

d
dx

Sin ; = (Sin ) Cos

	  
= θ = = θ = − θy y

dy
dx

d
dx

Cos ; (Cos ) Sin

	
= = =y x y

dy
dx

d
dx

x nx; = ( )n n n–1



296 Appendix B: Supplementary Review Notes

In the preceding formulas, the operator for taking the derivative, or dif-
ferentiation, is denoted by d

dx . The following rules are useful for finding the 
derivative of combined or compound functions:

	

d
dx

u v
du
dx

dv
dx

( ) ++ =

	
+

d
dx

uv v
du
dx

u
dv
dx

( ) =

	
=

d
dx

u v
du
dv

dv
dx

[ ( )]

	
=

−
=

d
dx v

v
v

v
dv
dx

1
, where2

  

	
=

−
= =

d
dx

u
v

v u u v
v

u
du
dx

v
dv
dx

( ) ( )
, where and2

Example B.2

Find the derivatives of the following functions.

	 y = f (x) = x3 −3x2 + x + 1

	 y = f (x) = Sec (x)

	 y = f (x) = Tan (x)

Solution

	

dy
dx

d
dx

x x x x x( 3 1) 3 6 13 2 2= − + + = − +

	

dy
dx

d
dx

x
d
dx x

x
x

x xSec( )
1

Cos
Sin

Cos
Sin Sec2

2= = =
−

= −

	
= = =

−
= −

dy
dx

d
dx

x
d
dx

x
x

x x
x

xTan ( )
Sin
Cos

Cos Sin
Cos

1 Tan
2 2

2
2

Integration is the reverse operation of differentiation. Consider a continu-
ous curve in a two-dimensional space specified by the following function.

	 y = f (x)
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x

y

y = f (x)

As one moves from one point, y, on the curve to an immediate adjacent 
one, y′,

x

y

x x´

y

f (x)

y

∆x

the area under the curve from y to y′ can be approximated by the rectangular 
area represented by f(x)Δx. This quantity is an incremental one as it is gener-
ated by the x-increment Δx and we may denote it by ΔA.

	 ΔA = f(x)Δx

The summation of the preceding incremental areas between any two 
points on the curve, a and b is

	
∑ ∑= =A A f x x( ) ( )
a

b

a

b

x

y

a b

f (x)
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As the point x′ approaches x, that is, Δx approaches zero, the limit of the 
incremental quantities become

∆A = f (x)∆x dA =  f (x)dx

b

a

b

a
A = Σ (∆A) = Σ  f (x)∆x

b

a
A = ∫dA = ∫ f (x)dx

b

a

The quantity denoted by A is actually the area under the curve, the shaded 
area. Clearly, the quantity A is a function of the starting and ending points 
a and b, which are called the lower and upper limits, respectively, of inte-
gration. We called the above operation integrating f(x)dx between the two 
points a and b and the function f(x) the integrand. The integration defined 
above is called definite integral because it has definite lower and upper inte-
gration limits.

Let us denote the function of the area by the symbol G and make the end 
point a variable, that is, b = x, then

	
∫=G x f x dx( ) ( )
a

x

To avoid confusing the variable x under the integration sign (the integra-
tion variable x) with the variable as the upper limit of the integration, we can 
change the integration variable to any symbol, say t. Thus,

	
∫=G x f t dt( ) ( )
a

x

The integration variable t is called a dummy variable because it can be 
denoted by any symbol without changing the outcome of the integration, the 
value of the function G.

We state without proof the relationship between differentiation and inte-
gration as

	
∫= =

d
dx

G x
d
dx

f t dt f x[ ( )] ( ) ( )
a

x

 

In other words, to find the integration of f(x), we need to find a function, 
whose derivative gives f(x). An equivalent statement about differentiation 
and integration is

	 ∫= = +
d
dx

G x f x f t dt G x CIf ( ) ( ), then ( ) ( )
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The integration shown above is called the indefinite integral because no 
specific lower and upper limits of integration are given. Once the limits are 
specified, the indefinite integral becomes definite integral and the formula 
for definite integral is

	
∫ ∫= = −f t dt f t dt G b G a( ) ( ) ( ) ( )
a

b

a

b

The most commonly used integration formulas, in the indefinite integral 
form, are

	 ∫ =
+

+
+

t dt
t
n

n
1

C, except when = –1n
n 1

 

	
∫ ∫= = +−t dt

t
dt t C

1
log1

 

	
∫ θ θ =  θ +d CSin – Cos

 

	
∫ θ θ = θ +Cos d Sin C

 

Example B.3

Compute the following integrals:

	

y f x x x f x dx( ) 3 – 6 1, ( )2

0

1

∫= = +

	 
∫=

π

y f x x f x dx( ) = Cos( ), ( )
0

2

	 
∫= =

π

y f x x f x dx( ) Sin( ), ( )
0

2
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Solution

	
∫ ∫= 3  −  + 1 = − + + = − = −2f x dx x x dx x x x( ) ( 6 ) [ 3 1] (0) (1) 1
0

1

0

1

3 2
0
1

	
∫ ∫ [ ]= = = − =

π π

πf x dx x dx x( ) Cos ( ) Sin ( ) (1) (0) 1
0

2

0

2

0

/ 2

	
∫ ∫ [ ]= = = − − − =

π π

πf x dx x dx x( ) Sin ( ) –Cos ( ) ( 0) ( 1) 1
0

2

0

2

0

/ 2

B.4 � Force, Equilibrium, and Free-Body Diagram

Force. Force is a very abstract concept. We can observe its effect, such as a 
body is pushed into motion, but cannot measure it directly. One may say we 
can measure the force as weight of a body, but in actuality we are measur-
ing its effect on the measuring device, such as the elongation of a spring. 
Physicists tend to give the fundamental definition of force, via Newton’s sec-
ond law, as f = ma. For the purpose of structural analysis, we see a force as 
an action, acting on a body, with a direction of the action and a magnitude.

Consider a vessel containing water or a dam withstanding a reservoir of 
water behind it.

p∆A

The water in the vessel and behind the dam exerts pressure on the surface 
of the vessel and the dam. Consider a small area of the vessel, ΔA. On this 
area, the pressure is distributed. We use a group of arrows to represent this 
distributed pressure and p to represent the pressure. If we examine the pres-
sure on the dam surface, we see the intensity of the pressure changes with 
the height. If we examine the pressure exerted on the bottom of the reservoir, 
we see the pressure is of constant intensity. The pressure exerted on the dam 
surface and the bottom of the reservoir is called distributed force, because it is 
distributed over an area. In a two-dimensional plane setting, they are dis-
tributed over a length.
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If the area upon which the distributed force is acting is small relative to 
the dimension of a body, such as the wheel load from a car on the surface 
of a bridge, then we may represent the distributed force by a concentrated 
force.

A concentrated force acts on a point. Because a point has no area, it must 
be understood that a point is simply the representative of a small area in the 
same way that a concentrated force is a representative of a distributed force 
over a small area.

A concentrated force can be represented by a vector, with a direction and a 
magnitude, and follows all the vector operational rules. The most frequently 
used rules in structural analysis are the decomposition and combination rules. 
Any vector can be decomposed into its components along any two axes in a 
plane as shown next.

A

B C

A

B C

x

y

The vector A and B are the component vectors of C. In a Cartesian system, 
we can use the unit vector i and j (not shown) in the x- and y-direction, 
respectively, to express the magnitude of the components, while the unit vec-
tors provide the direction.

	 A = a i,    B = b j

Then, the vector C has its x-component as a and y-component as b.

	 C = A + B = (a i + b j )

The above equation can also be seen as vector’s combination or addition rule. 
That is

	 A + B = C

This combination rule is called a parallelogram rule if we look at the pre-
ceding diagrams, because the resulting vector C is the diagonal of the paral-
lelogram formed by the two vectors A and B. Or, equivalently, we can use the 
triangular rule as shown next to find the resultant, C.
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A

B C

A

B
C

B B

The preceding combination rules are vector addition rules. Obviously, vector 
subtraction as an inverse operation of vector addition can be derived from the 
addition rules graphically.
	 C – B = C + (–B) = A
where –B is a vector of the same magnitude of B but pointing in the oppo-
site direction.

A

B C

A

B C –B–B

Moment. Force has a tendency to push the body it acts on into a translational 
motion.

If the body is hinged at a point, then obviously the force tends to push the 
body into a rotational motion. The measure of the magnitude of the tendency 
of pushing into a translational motion is the force magnitude itself, while the 
magnitude of the tendency of pushing into a rotational motion is measured 
by not only the force magnitude but also how far the force is acting from the 
hinge point. This latter measure is called moment. Moment is also a vector 
with a magnitude and a direction. In a three-dimensional space, a moment 
of a force f is defined about a point, as the cross-product of r and f, where r is a 
position vector leading from the point to any point on the force vector f.

f

r
f

r

(r×f )Sinθu

	 M = r × f = (r × f) Sinθ u



303Appendix B: Supplementary Review Notes

The preceding equation comes from the definition of vector cross-product, 
where θ is the angle between the two vectors r and f. The direction of the result-
ing vector is perpendicular to the plane containing the two vectors r and f. The 
direction of the unit vector u can be found in the following way. If we imagine 
to use our right hand to point to r and turn in the direction of the f vector, then 
the thumb of the right hand points to the direction of the resulting vector.

It is much easier to visualize the cross-product in a two-dimensional set-
ting. Imagine an axis is perpendicular to a plane in which the force is acting. 
When we plot the force in a plane, the axis appears only as a point, o.

f

r
o

θ

d

f

o

d

M = fd

It can be seen that the magnitude of the moment vector (r × f) Sinθ becomes 
f × d, where d is the distance from the point o to the force vector f. Thus, the 
computation of the magnitude of M is much simpler in a plane and can be 
simply put in a scalar form as f × d. The direction of M is either pointing out 
of the plane of the paper or in and can be best represented by the symbol 
shown at the point o. Finding the moment of a force about a point is often 
called taking the moment about a point.

Equivalent force. We can find an equivalent simpler force system to a more 
complex system of forces by equating the “effect” on the body both systems 
of forces are acting on. That is to say the tendency of pushing into transla-
tion in all directions and rotation about any point (in a plane) is the same 
in both systems. In a two-dimensional setting, there are two possibilities of 
translation (in any two directions) and one rotational possibility (about an 
axis perpendicular to the plane or a point in the plane). Thus, we can state 
that two force systems are equivalent if the summation of forces in two inde-
pendent directions and the summation of moments about any point are the 
same. In a Cartesian system with an x- and y- axis, we have the following 
three equations:

	 ∑ ∑ ∑ ∑ ∑ ∑= = =f f f f M M( ) ( ) ( ) ( ) ( ) ( )x x y y o o
1 2 1 2 1 2

Obviously, one simple force system in a plane is two single forces acting in 
x and y direction, respectively, and a single moment about a point.

	 ∑ ∑ ∑= = =f f f f M M( ) ( ) ( )x x y y o o
1 1 1

The system of two forces and a moment, fx, fy, and Mo, are sometimes called 
the resultant of the original force system acting in a plane.
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Example B.4

Find the resultant of the forces shown.

80 N60 N

o

30°
45°

Solution

Since the two forces are acting at the same point, summation of moments 
about this point o would result in a zero moment. The x- and y-components 
of the resulting force can be found by

	

∑

∑

= = ° + °

= + =

= = ° + °

= + =

f f

f f

x x

y y

( ) (60N)(Cos 45 ) (80N)(Cos 30 )

(60N)(0.707) (80N)(0.866) 93.38N

( ) (60N) (Sin 45 ) (80N) (Sin 30 )

(60N)(0.707) (80N)(0.500) 82.42N  

It is often sufficient to find the components of a force. If we want the 
magnitude and the direction of the resultant, then we can use the same for-
mulas that convert Cartesian coordinates into polar coordinates to convert 
the components into magnitude and angles:

	
= + θ =r x y

y
x

; Tan2 2 –1

	
= + = + =f f fx y 93.38 82.42 124.55N2 2 2 2

	
θ = = = = = °

y
x

f
f
y

x
Tan Tan Tan

82.42
93.38

Tan (0.883) 41.4–1 –1 –1 –1

Graphically, we have

80 N60 N

o

124.55 N

30°
45°

41.4°
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Example B.5

Find the resultants of the two distributed forces.

L L

q
q

Solution

For the constant intensity distributed force shown at the left in the previous 
figure, the constant intensity is represented by q, which is to be expressed 
in force per unit length. For the linear varying distributed force at the right, 
the intensity varies from the maximum intensity of q at the left end to zero 
at the right end. We can denote the intensity as a function of the location, 
measured from the left end toward the right, expressed as f(x). The resultants 
of the two distributed forces can be computed by knowing the force acting 
in the horizontal direction is zero in both cases and we need to only find

L L

q

x x
o o

f (x)f(x) = q

	
∑ ∫= =f f f x dxy y

L

( ) ( )
0

	
∑ ∫= =M M xf x dxo o

L

( ) ( )
0

We observe that the two integrals represent the area under the line of f(x) 
and the first moment of the area, respectively. Furthermore, the location 
of the centroid of an area is located at a point measured by the distance 
from one end of the area, C, and the distance C is related to the above two 
quantities by

	
∫ ∫= •xf x dx C f x dx
L L

( ) ( )
0 0

The area and the location of the centroid of many shapes are tabulated 
quantities that can be looked up from textbooks and manuals. For the rect-
angular and triangular shapes, they are given next.
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L3
L

L
2
L

q
q

A =
2

qLA = qL

The vertical locations of the two centroids are not shown because they 
are not needed in the present case. With the aforementioned information, 
we can easily find the resulting force and moment.

For the constant intensity distributed force,

	
∫ ∫= = = = =f f x dx qL M xf x dx

L
qL

qL
y

L

o

L

( ) ; ( )
2

( )
2

0 0

2

   

For the linearly varying distributed force,

	

f f x dx
qL

M xf x dx
L qL qL

y

L

o

L

( )
2

; ( )
3 2 6

0 0

2

∫ ∫= = = = =

Both distributed forces, with the above force and moment resultants, can be 
represented by a single force acting at a distance from the left end as shown.

L L

q
q

o o

2
L

3
LqL 2

qL

Example B.6

Find the resultant of a couple of forces with the same magnitude but oppo-
site direction.

ff d

Solution

Since the two forces are opposite to each other, summation of forces in 
the x- and y-directions would result in zero forces. Thus, the only resultant 
would be the moment. We select an arbitrary point o. Then

	
M M f d f d f d d f do o( ) x – x x ( – ) x1 2 1 2∑= = = =
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ff
d

o

ff
d

=
d2

fd

d1
fd

Since the result depends on the perpendicular distance between the 
line of action of the two forces, and not on the location of the point o, 
we conclude that the resulting moment is always of the magnitude fd and 
the moment orientation/direction is in the direction of the rotation the two 
forces tend to create no matter where the point about which we are tak-
ing the moment. We call such a pair of forces as a couple of a moment or 
simply a couple.

Example B.7

Find the resultant of the normal stress distribution shown on the face of a 
rectangular beam section with width b and depth h.

2
h

2
h

b q

2
h

2
h

q

q

o

y

Solution

The stress distribution shown represents distributed forces acting across a 
beam section with section depth h and width b. Because the intensity of 
the forces does not change across the width, we can treat this distribution 
of forces as if they act on a line as shown, keeping in mind that the same 
pattern and intensity applies throughout the width. Furthermore, the forces 
are acting normal (perpendicular) to the line or surface. Thus, there is no 
component in the vertical direction. We need to find only the horizontal 
force resultant and the moment resultant. Denoting the midpoint of the line 
as point o, we see that the direction of the forces changes when the point o 
is crossed. The “upper” part of the stress distribution is identical to that of 
the “lower” part and they are of the same shape. Because the two parts act 
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in opposite direction, it is obvious that the net result is zero in the horizontal 
direction:

2
h

2
h

q

q

o

y

x h2q/6

hq/4

2h/3

hq/4

∫ ∫ ∫= = + = −
− −

f f y dy f y dy f y dy
h

c
h

cx

h

h

h

h

( ) ( ) ( )
1
2 2

( ) +
1
2 2

( ) = 0
/2

/2

/ 2

0

0

/2

  

On the other hand, the two resulting forces of identical magnitude hq/4 
form a couple.

	
∫= = =M xf x dx

hq h h q
o

L

( )
4

2
3 6

0

2

Remember the above is obtained from the integration over a line of the 
section. We need to include the effect of the width in the integration. Since 
the variation across the width is constant, the effect is simply the multiplica-
tion of the above expression by the width b.

	
=M
bh q

o
6

2

We conclude that the resultant of the linearly varying normal stress act-
ing on the face of a rectangular beam section as shown is a couple. The 
magnitude of the couple is proportional to the maximum stress, q, and the 
section dimensions.

In the previous computation, we did not use any expression of the linearly 
varying stress because we are taking advantage of the simple shape of the 
stress distribution and getting the resultants accordingly. From observing 
the linearly varying nature of the stress with respect to the distance from the 
midpoint, we can see, denoting stress at any point y as σ(y), that

	
y

y
h

q( )
/2

σ =

Combining the previous two equations in order to eliminate q, we obtain

	

y
I
M(y) oσ =

	
I

bh
where

12

3

=
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One may recall I represents the second moment of the area of the beam 
section about the midsection axis. The preceding formula is used to find the 
normal stress at any point of the section once the moment acting on the sec-
tion is known.

Equilibrium. We say a system of forces is in equilibrium if the resultant of 
the forces is identically zero. For forces acting in a plane, this means

	 ∑ ∑ ∑= = =f f M0, 0, 0x y o
 

The above equations are called conditions of equilibrium. Oftentimes we are 
interested in a system of forces because the forces are acting on a body of 
interest. We say the body is in equilibrium if all the forces acting on the body 
are in equilibrium.

Free-body diagram. Because equilibrium of forces is often examined in the 
context of a body on which the forces are acting, it is important that we select 
the body of interest and display all the forces acting on the body in a dia-
gram. Such a diagram is called a free-body diagram, or FBD for short.

Consider a car parked on a bridge represented by a simply supported 
beam, which by definition is supported by a hinge (shown at the left end) 
and a roller (shown at the right end). A hinge is a support that prevents 
translation in any direction but allows rotation. Thus, it provides reactions 
in any two directions in the present context of a two-dimensional problem. 
A roller prevents translation only in a direction perpendicular to the sup-
port surface. In the present case, it prevents motion vertically but not hori-
zontally and it provides a reaction in the vertical direction but not in the 
horizontal direction.

If we are interested in the equilibrium of the car, we can isolate the car 
and put on all the forces acting on the car, that is, the weight of the car repre-
sented by a vertical force and the two reactions at the wheels.
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On the other hand, if we are interested in the equilibrium of the beam, we 
can draw the FBD of the beam.

In other words, the drawing of an FBD depends on what we wish to accom-
plish. In fact, an FBD does not necessarily involve a well-defined whole body 
of an object. It could involve part of an object as illustrated in part (b) of the 
following example.

Example B.8

Find (a) the reactions of a simply supported beam subjected to the applied 
force as shown and (b) the sectional forces at the left one-third section of 
the beam.

30 m30 m

80°

4000 kN

Solution

(a) Since our interest is in the reactions, we need to include the reactions at 
the two supports in the FBD. We include the reactions by removing the two 
supports and put the reaction forces in their place. We give each reaction 
a symbol as shown.

RH

RVL RVR

80°

30 m30 m

4000 kN

In case of an inclined force acting in a two-dimensional system, it is often 
more convenient to decompose the single force into its horizontal and verti-
cal components.

Vertical Component = (4000 kN)(Sin 80°) = (4000 kN)(0.951) = 3804 kN ↓

Vertical Component = (4000 kN) (Cos 80°) = (4000 kN)(0.309) = 1236 kN ←



311Appendix B: Supplementary Review Notes

Thus, the problem is equivalent to the one shown next.

1236 kNo
RH

RVL RVR30 m 30 m

3804 kN

We shall neglect the slight out of alignment of the two horizontal forces and 
assume they both act on the middle line of the depth of the beam. Designating 
the horizontal and vertical direction as x- and y-directions, respectively, and 
applying the conditions of equilibrium to the preceding FBD, we obtain

	
f R Rx H H= 0; – 1236 = 0; = 1236 kN•  

	
f R R R Ry VL VR VL VR0; – 3804 0; 3804 kN∑ = + = + =

 

	
M R Ro VR VR0; (3804)(30) – ( )(60) 0; 1902 kN∑ = = =

 

From the last two equations we obtain

	 RVL = 1902 kN

(b) The left one-third section of the beam is located 20 m from the left sup-
port. We need to place an imaginary cut at the section and expose the left 
portion of the beam. On the exposed section, we can place two forces and 
a moment as shown. Note that the applied forces do not appear in this FBD 
because they are outside of the FBD.

V

o
T

M
1236 kN

1902 kN
20 m

Applying the three conditions of equilibrium, we obtain

	
f T Tx 0; 1236 – 0; 1236 kN∑ = = =

 

	
f V Vy 0; 1902– 0; 1902 kN∑ = = =

 

	
M V Mo 0; ( )(20) – ( M) 0; (1902)(20) 38,040 kN-m∑ = = = =
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The three sectional forces are called shear (V), moment (M), and thrust (T), 
respectively. The shear and moment are of particular importance. Clearly, 
the value of shear and moment depends on the location of the section. If 
we designate the location of the section by the distance from the left end, x, 
then both shear and moment are functions of x.

x

RH

4000 kN

80°

30 m 30 m
RVRRVL

That is

	 V = V(x);  M = M(x)

for the given load. To find V(x) and M(x), we can use a similar FBD as long 
as x < 30 m

x

V

o
T

M

1902 kN

1236 kN

Using only two of the three conditions of equilibrium, we obtain

	
f V x V xy 0; 1902– ( ) 0; ( ) 1902 kN∑ = = =

 

	
M V x M M xo 0; ( )( ) – ( ) 0; (1902)( ) 1902x kN-m∑ = = = =

 

Thus, the shear is a constant but the moment is increasing linearly with x.
When x >30 m, the preceding FBD is no longer correct, we must include 

the applied forces

x

1236 lb

1902 lb

V
o

T
M

3804 kN

1236 kN

30 m
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The two conditions of equilibrium give

	
f V x V xy= 0; 1902 – 3804 – ( ) 0; ( ) –1902 kN∑ = =

 

M V x M M xo 0; ( )( ) (3804)(30) – ( ) 0; ( – 1902)( ) 114,120 kN-m.∑ = + = = +
 

In this range (x > 30 m), the shear remains constant but reverse direction 
and the moment decreases linearly from 57,060 kN-m (at x = 30 m) to zero 
(at x = 60 m).

We can plot the shear and moment variation with x as shown next.

x

x

30 m30 m

1902 kN

–1902 kN
V(x)

M(x) –1902 kN

57,060 kN-m

30 m 30 m

These two diagrams are called shear and moment diagrams and are very 
important in the analysis and design of beams.





K14511_cover 3/27/12 11:27 AM Page 1 

Composite

C M Y CM MY CY CMY K

Bridging the gap between what is traditionally taught in textbooks and what is
actually practiced in engineering firms, Introduction to Structural Analysis:
Displacement and Force Methods clearly explains the two fundamental methods
of structural analysis: the displacement method and the force method. It also shows
how these methods are applied, particularly to trusses, beams, and rigid frames.

Acknowledging the fact that virtually all computer structural analysis programs are
based on the matrix displacement method of analysis, the text begins with the
displacement method. A matrix operations tutorial is also included for review and
self-learning. To minimize any conceptual difficulty readers may have, the displacement
method is introduced with the plane truss analysis and the concept of nodal
displacement.

The book then presents the force method of analysis for plane trusses to illustrate
force equilibrium, deflection, statistical indeterminacy, and other concepts that help
readers to better understand the behavior of a structure. It also extends the force
method to beam and rigid frame analysis. Toward the end of the book, the
displacement method reappears along with the moment distribution and slope-
deflection methods in the context of beam and rigid frame analysis. Other topics
covered include influence lines, non-prismatic members, composite structures,
secondary stress analysis, and limits of linear and static structural analysis.

Integrating classical and modern methodologies, this book explains complicated
analysis using simplified methods and numerous examples. It provides readers with
an understanding of the underlying methodologies of finite element analysis and
the practices used by professional structural engineers.

K14511

w w w. c rc p r e s s . c o m

an informa business

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK w w w. c r c p r e s s . c o m

INTRODUCTION TO
STRUCTURAL ANALYSIS
Displacement and Force Methods

MAU

IN
TRO

D
U

C
TIO

N
 TO

 STRU
C

TU
R

A
L A

N
A

LYSIS

STRUCTURAL ENGINEERING


