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1 INTRODUCTION

For computers to process digital images,
whether satellite photos or x-rays, there is
a need to recognize the edges of objects.
Image edges, which are rapid changes or
discontinuities in image intensity, reflect
a boundary between dissimilar regions in
an image and thus are important basic

Ideal Edge Real Edge

characteristics of an image. They often indi-
cate the physical extent of objects in the
image or a boundary between light and
shadow on a single surface or other regions
of interest.

The lowermost two figures at the left indicate

the changes in image intensity of the ideal and

real edges above, when moving from right to left.

We see that real intensities can change rapidly, but

not instantaneously. In principle, the edge may be

found by looking for very large changes over small

distances.

However, a digital image is discrete rather than

continuous: it is a matrix of nonnegative entries

that provide numerical descriptions of the shades of gray for the pixels in the

image, where the entries vary from 0 for a white pixel to 1 for a black pixel. An

analysis must be done using the discrete analog of the derivative to measure

the rate of change of image intensity in two directions.

From Chapter 1 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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2 1 Introduction

The Sobel matrices, S1 =



−1 0 1
−2 0 2
−1 0 1


 and S2 =




1 2 1
0 0 0

−1 −2 −1


 provide a method for measuring

these intensity changes. Apply the Sobel matrices S1

and S2 in turn to the 3x3 subimage centered on each
pixel in the original image. The results are the changes of
intensity near the pixel in the horizontal and the vertical
directions, respectively. The ordered pair of numbers
that are obtained is a vector in the plane that provides

the direction and magnitude of the intensity change
at the pixel. This vector may be thought of as the dis-
crete analog of the gradient vector of a function of two
variables studied in calculus.

Replace each of the original pixel values by the
lengths of these vectors, and choose an appropriate
threshold value. The final image, called the thresholded
image, is obtained by changing to black every pixel for
which the length of the vector is greater than the thresh-
old value, and changing to white all the other pixels.
(See the images below.)

Original Image Thresholded Image

Notice how the edges are emphasized in the
thresholded image. In regions where image intensity is
constant, these vectors have length zero, and hence the
corresponding regions appear white in the thresholded

image. Likewise, a rapid change in image intensity, which
occurs at an edge of an object, results in a relatively dark
colored boundary in the thresholded image.
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CHAPTER

1
MATRICES, VECTORS,
AND SYSTEMS OF LINEAR
EQUATIONS

The most common use of linear algebra is to solve systems of linear equations,
which arise in applications to such diverse disciplines as physics, biology,
economics, engineering, and sociology. In this chapter, we describe the most

efficient algorithm for solving systems of linear equations, Gaussian elimination. This
algorithm, or some variation of it, is used by most mathematics software (such as
MATLAB).

We can write systems of linear equations compactly, using arrays called matrices
and vectors. More importantly, the arithmetic properties of these arrays enable us to
compute solutions of such systems or to determine if no solutions exist. This chapter
begins by developing the basic properties of matrices and vectors. In Sections 1.3
and 1.4, we begin our study of systems of linear equations. In Sections 1.6 and 1.7,
we introduce two other important concepts of vectors, namely, generating sets and
linear independence, which provide information about the existence and uniqueness
of solutions of a system of linear equations.

1.1 MATRICES AND VECTORS
Many types of numerical data are best displayed in two-dimensional arrays, such as
tables.

For example, suppose that a company owns two bookstores, each of which sells
newspapers, magazines, and books. Assume that the sales (in hundreds of dollars) of
the two bookstores for the months of July and August are represented by the following
tables:

July
Store 1 2

Newspapers 6 8
Magazines 15 20

Books 45 64

and

August
Store 1 2

Newspapers 7 9
Magazines 18 31

Books 52 68

The first column of the July table shows that store 1 sold $1500 worth of magazines
and $4500 worth of books during July. We can represent the information on July sales
more simply as




6 8
15 20
45 64


 .

3



4 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

Such a rectangular array of real numbers is called a matrix.1 It is customary to refer to
real numbers as scalars (originally from the word scale) when working with a matrix.
We denote the set of real numbers by R.

Definitions A matrix (plural, matrices) is a rectangular array of scalars. If the matrix
has m rows and n columns, we say that the size of the matrix is m by n, written
m × n . The matrix is square if m = n . The scalar in the i th row and j th column is
called the (i, j )-entry of the matrix.

If A is a matrix, we denote its (i , j )-entry by aij . We say that two matrices A and
B are equal if they have the same size and have equal corresponding entries; that is,
aij = bij for all i and j . Symbolically, we write A = B .

In our bookstore example, the July and August sales are contained in the matrices

B =



6 8
15 20
45 64


 and C =




7 9
18 31
52 68


 .

Note that b12 = 8 and c12 = 9, so B �= C . Both B and C are 3 × 2 matrices. Because
of the context in which these matrices arise, they are called inventory matrices.

Other examples of matrices are

[
2
3 −4 0
π 1 6

]
,




3
8
4


 , and

[−2 0 1 1
]
.

The first matrix has size 2 × 3, the second has size 3 × 1, and the third has size 1 × 4.

Practice Problem 1 � Let A =
[
4 2
1 3

]
.

(a) What is the (1, 2)-entry of A?

(b) What is a22? �

Sometimes we are interested in only a part of the information contained in a
matrix. For example, suppose that we are interested in only magazine and book sales
in July. Then the relevant information is contained in the last two rows of B ; that is,
in the matrix E defined by

E =
[
15 20
45 64

]
.

E is called a submatrix of B . In general, a submatrix of a matrix M is obtained
by deleting from M entire rows, entire columns, or both. It is permissible, when
forming a submatrix of M , to delete none of the rows or none of the columns of M .
As another example, if we delete the first row and the second column of B , we obtain
the submatrix [

15
45

]
.

1 James Joseph Sylvester (1814–1897) coined the term matrix in the 1850s.
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1.1 Matrices and Vectors 5

MATRIX SUMS AND SCALAR MULTIPLICATION
Matrices are more than convenient devices for storing information. Their usefulness
lies in their arithmetic. As an example, suppose that we want to know the total numbers
of newspapers, magazines, and books sold by both stores during July and August. It
is natural to form one matrix whose entries are the sum of the corresponding entries
of the matrices B and C , namely,

Store 1 2
Newspapers
Magazines

Books




13 17
33 51
97 132


 .

If A and B are m × n matrices, the sum of A and B , denoted by A + B , is the
m × n matrix obtained by adding the corresponding entries of A and B ; that is, A + B
is the m × n matrix whose (i , j )-entry is aij + bij . Notice that the matrices A and B
must have the same size for their sum to be defined.

Suppose that in our bookstore example, July sales were to double in all categories.
Then the new matrix of July sales would be




12 16
30 40
90 128


 .

We denote this matrix by 2B .
Let A be an m × n matrix and c be a scalar. The scalar multiple cA is the

m × n matrix whose entries are c times the corresponding entries of A; that is, cA is
the m × n matrix whose (i , j )-entry is caij . Note that 1A = A. We denote the matrix
(−1)A by −A and the matrix 0A by O . We call the m × n matrix O in which each
entry is 0 the m × n zero matrix.

Example 1 Compute the matrices A + B , 3A, −A, and 3A + 4B , where

A =
[
3 4 2
2 −3 0

]
and B =

[−4 1 0
5 −6 1

]
.

Solution We have

A + B =
[−1 5 2

7 −9 1

]
, 3A =

[
9 12 6
6 −9 0

]
, −A =

[−3 −4 −2
−2 3 0

]
,

and

3A + 4B =
[
9 12 6
6 −9 0

]
+

[−16 4 0
20 −24 4

]
=

[−7 16 6
26 −33 4

]
.

Just as we have defined addition of matrices, we can also define subtraction. For
any matrices A and B of the same size, we define A − B to be the matrix obtained by
subtracting each entry of B from the corresponding entry of A. Thus the (i , j )-entry
of A − B is aij − bij . Notice that A − A = O for all matrices A.

5



6 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

If, as in Example 1, we have

A =
[

3 4 2
2 −3 0

]
, B =

[−4 1 0
5 −6 1

]
, and O =

[
0 0 0
0 0 0

]
,

then

−B =
[

4 −1 0
−5 6 −1

]
, A − B =

[
7 3 2

−3 3 −1

]
, and A − O =

[
3 4 2
2 −3 0

]
.

Practice Problem 2 � Let A =
[

2 −1 1
3 0 −2

]
and B =

[
1 3 0
2 −1 4

]
. Compute the following matrices:

(a) A − B

(b) 2A

(c) A + 3B �

We have now defined the operations of matrix addition and scalar multiplication.
The power of linear algebra lies in the natural relations between these operations,
which are described in our first theorem.

THEOREM 1.1

(Properties of Matrix Addition and Scalar Multiplication) Let A, B , and C be
m × n matrices, and let s and t be any scalars. Then

(a) A + B = B + A. (commutative law of matrix addition)

(b) (A + B ) + C = A + (B + C ). (associative law of matrix addition)

(c) A + O = A.

(d) A + (−A) = O .

(e) (st)A = s(tA).

(f) s(A + B ) = sA + sB .

(g) (s + t)A = sA + tA.

PROOF We prove parts (b) and (f). The rest are left as exercises.
(b) The matrices on each side of the equation are m × n matrices. We must

show that each entry of (A + B ) + C is the same as the corresponding entry
of A + (B + C ). Consider the (i , j )-entries. Because of the definition of matrix
addition, the (i , j )-entry of (A + B ) + C is the sum of the (i , j )-entry of A + B ,
which is aij + bij , and the (i , j )-entry of C , which is cij . Therefore this sum equals
(aij + bij ) + cij . Similarly, the (i , j )-entry of A + (B + C ) is aij + (bij + cij ).
Because the associative law holds for addition of scalars, (aij + bij ) + cij =
aij + (bij + cij ). Therefore the (i , j )-entry of (A + B ) + C equals the (i , j )-entry
of A + (B + C ), proving (b).

(f) The matrices on each side of the equation are m × n matrices. As in
the proof of (b), we consider the (i , j )-entries of each matrix. The (i , j )-entry of
s(A + B ) is defined to be the product of s and the (i , j )-entry of A + B , which is
aij + bij . This product equals s(aij + bij ). The (i , j )-entry of sA + sB is the sum
of the (i , j )-entry of sA, which is saij , and the (i , j )-entry of sB , which is sbij .
This sum is saij + sbij . Since s(aij + bij ) = saij + sbij , (f) is proved. �

Because of the associative law of matrix addition, sums of three or more matrices
can be written unambiguously without parentheses. Thus we may write A + B + C
instead of either (A + B ) + C or A + (B + C ).

6



1.1 Matrices and Vectors 7

MATRIX TRANSPOSES
In the bookstore example, we could have recorded the information about July sales
in the following form:

Store Newspapers Magazines Books
1 6 15 45
2 8 20 64

This representation produces the matrix
[
6 15 45
8 20 64

]
.

Compare this with

B =



6 8
15 20
45 64


 .

The rows of the first matrix are the columns of B , and the columns of the first matrix
are the rows of B . This new matrix is called the transpose of B . In general, the
transpose of an m × n matrix A is the n × m matrix denoted by AT whose (i , j )-entry
is the (j , i )-entry of A.

The matrix C in our bookstore example and its transpose are

C =



7 9
18 31
52 68


 and C T =

[
7 18 52
9 31 68

]
.

Practice Problem 3 � Let A =
[
2 −1 1
3 0 −2

]
and B =

[
1 3 0
2 −1 4

]
. Compute the following matrices:

(a) AT

(b) (3B )T

(c) (A + B )T �

The following theorem shows that the transpose preserves the operations of
matrix addition and scalar multiplication:

THEOREM 1.2

(Properties of the Transpose) Let A and B be m × n matrices, and let s be any
scalar. Then

(a) (A + B )T = AT + BT .

(b) (sA)T = sAT .

(c) (AT )T = A.

PROOF We prove part (a). The rest are left as exercises.
(a) The matrices on each side of the equation are n × m matrices. So we

show that the (i , j )-entry of (A + B )T equals the (i , j )-entry of AT + BT . By the
definition of transpose, the (i , j )-entry of (A + B )T equals the (j , i )-entry of A + B ,
which is aji + bji . On the other hand, the (i , j )-entry of AT + BT equals the sum
of the (i , j )-entry of AT and the (i , j )-entry of BT , that is, aji + bji . Because the
(i , j )-entries of (A + B )T and AT + BT are equal, (a) is proved. �

7



8 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

VECTORS
A matrix that has exactly one row is called a row vector, and a matrix that has exactly
one column is called a column vector. The term vector is used to refer to either a
row vector or a column vector. The entries of a vector are called components. In this
book, we normally work with column vectors, and we denote the set of all column
vectors with n components by Rn .

We write vectors as boldface lower case letters such as u and v, and denote the

i th component of the vector u by ui . For example, if u =



2
−4

7


, then u2 = −4.

Occasionally, we identify a vector u in Rn with an n-tuple, (u1, u2, . . . , un ).
Because vectors are special types of matrices, we can add them and multiply them

by scalars. In this context, we call the two arithmetic operations on vectors vector
addition and scalar multiplication. These operations satisfy the properties listed in
Theorem 1.1. In particular, the vector in Rn with all zero components is denoted by
0 and is called the zero vector. It satisfies u + 0 = u and 0u = 0 for every u in Rn .

Example 2
Let u =




2
−4

7


 and v =




5
3
0


. Then

u + v =



7
−1

7


 , u − v =




−3
−7

7


 , and 5v =




25
15
0


 .

For a given matrix, it is often advantageous to consider its rows and columns

as vectors. For example, for the matrix

[
2 4 3
0 1 −2

]
, the rows are

[
2 4 3

]
and

[
0 1 −2

]
, and the columns are

[
2
0

]
,

[
4
1

]
, and

[
3

−2

]
.

y

x

v
(a, b)

Figure 1.1 A vector in R2

Because the columns of a matrix play a more important role than the rows,
we introduce a special notation. When a capital letter denotes a matrix, we use the
corresponding lower case letter in boldface with a subscript j to represent the j th
column of that matrix. So if A is an m × n matrix, its j th column is

aj =




a1j

a2j
...

amj


 .

GEOMETRY OF VECTORS
For many applications,2 it is useful to represent vectors geometrically as directed line

segments, or arrows. For example, if v =
[
a
b

]
is a vector in R2, we can represent v

as an arrow from the origin to the point (a , b) in the xy-plane, as shown in Figure 1.1.

2 The importance of vectors in physics was recognized late in the nineteenth century. The algebra of
vectors, developed by Oliver Heaviside (1850–1925) and Josiah Willard Gibbs (1839–1903), won out over
the algebra of quaternions to become the language of physicists.

8



1.1 Matrices and Vectors 9

Example 3 Velocity Vectors A boat cruises in still water toward the northeast at 20 miles per
hour. The velocity u of the boat is a vector that points in the direction of the boat’s
motion, and whose length is 20, the boat’s speed. If the positive y-axis represents
north and the positive x -axis represents east, the boat’s direction makes an angle of

45◦ with the x -axis. (See Figure 1.2.) We can compute the components of u =
[

u1

u2

]

by using trigonometry:

RIVER

45�

N

E

u

Figure 1.2

u1 = 20 cos 45◦ = 10
√

2 and u2 = 20 sin 45◦ = 10
√

2.

Therefore u =
[

10
√

2

10
√

2

]
, where the units are in miles per hour.

VECTOR ADDITION AND THE PARALLELOGRAM LAW
We can represent vector addition graphically, using arrows, by a result called the
parallelogram law.3 To add nonzero vectors u and v, first form a parallelogram with
adjacent sides u and v. Then the sum u + v is the arrow along the diagonal of the
parallelogram as shown in Figure 1.3.

(a � c, b � d )

u � v

(a, b)

(c, d)

y

x

v
u

Figure 1.3 The parallelogram law of vector addition

Velocities can be combined by adding vectors that represent them.

Example 4 Imagine that the boat from the previous example is now cruising on a river, which
flows to the east at 7 miles per hour. As before, the bow of the boat points toward
the northeast, and its speed relative to the water is 20 miles per hour. In this case,

the vector u =
[

10
√

2
10

√
2

]
, which we calculated in the previous example, represents the

boat’s velocity (in miles per hour) relative to the river. To find the velocity of the
boat relative to the shore, we must add a vector v, representing the velocity of the
river, to the vector u. Since the river flows toward the east at 7 miles per hour, its

velocity vector is v =
[

7
0

]
. We can represent the sum of the vectors u and v by using

the parallelogram law, as shown in Figure 1.4. The velocity of the boat relative to the
shore (in miles per hour) is the vector

u + v =
[

10
√

2 + 7

10
√

2

]
.

3 A justification of the parallelogram law by Heron of Alexandria (first century C.E.) appears in his Mechanics.

9



10 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

North

East

water
velocity

boat
velocity

v

u

u � v

45�

Figure 1.4

To find the speed of the boat, we use the Pythagorean theorem, which tells us
that the length of a vector with endpoint (p, q) is

√
p2 + q2. Using the fact that the

components of u + v are p = 10
√

2 + 7 and q = 10
√

2, respectively, it follows that
the speed of the boat is

√
p2 + q2 ≈ 25.44 mph.

SCALAR MULTIPLICATION

We can also represent scalar multiplication graphically, using arrows. If v =
[
a
b

]
is

a vector and c is a positive scalar, the scalar multiple cv is a vector that points in
the same direction as v, and whose length is c times the length of v. This is shown
in Figure 1.5(a). If c is negative, cv points in the opposite direction from v, and has
length |c| times the length of v. This is shown in Figure 1.5(b). We call two vectors
parallel if one of them is a scalar multiple of the other.

(ca, cb)

(ca, cb)

(a, b)

(a, b)

(a) c � 0

cv

cv

v

c � 0(b)

vy

x

y

x

Figure 1.5 Scalar multiplication of vectors

VECTORS IN R3

If we identify R3 as the set of all ordered triples, then the same geometric ideas that

hold in R2 are also true in R3. We may depict a vector v =



a
b
c


 in R3 as an arrow

emanating from the origin of the xyz -coordinate system, with the point (a , b, c) as its

10



1.1 Matrices and Vectors 11

z

y

x

u � v

u

v

u3 � v3

u1 � v1

u2 � v2

u3

u1

u2 v2

v1

v3

z

y

x

a

b

c
v

(a, b, c)

(a) (b) 

Figure 1.6 Vectors in R3

endpoint. (See Figure 1.6(a).) As is the case in R2, we can view two nonzero vectors
in R3 as adjacent sides of a parallelogram, and we can represent their addition by
using the parallelogram law. (See Figure 1.6(b).) In real life, motion takes place in
3-dimensional space, and we can depict quantities such as velocities and forces as
vectors in R3.

EXERCISES

In Exercises 1–12, compute the indicated matrices, where

A =
[
2 −1 5
3 4 1

]
and B =

[
1 0 −2
2 3 4

]
.

1. 4A 2. −A 3. 4A − 2B

4. 3A + 2B 5. (2B )T 6. AT + 2BT

7. A + B 8. (A + 2B )T 9. AT

10. A − B 11. −(BT ) 12. (−B )T

In Exercises 13–24, compute the indicated matrices, if possible,
where

A =
[
3 −1 2 4
1 5 −6 −2

]
and B =




−4 0
2 5

−1 −3
0 2


 .

13. −A 14. 3B 15. (−2)A

16. (2B )T 17. A − B 18. A − BT

19. AT − B 20. 3A + 2BT 21. (A + B )T

22. (4A)T 23. B − AT 24. (BT − A)T

In Exercises 25–28, assume that A =



3 −2
0 1.6

2π 5


.

25. Determine a12. 26. Determine a21.
27. Determine a1. 28. Determine a2.

In Exercises 29–32, assume that C =
[

2 −3 0.4
2e 12 0

]
.

29. Determine c1. 30. Determine c3.
31. Determine the first row of C .

32. Determine the second row of C .

y

x

30�

East

North

Figure 1.7 A view of the airplane from above

33. An airplane is flying with a ground speed of 300 mph
at an angle of 30◦ east of due north. (See Figure 1.7.)
In addition, the airplane is climbing at a rate of 10 mph.
Determine the vector in R3 that represents the velocity
(in mph) of the airplane.

34. A swimmer is swimming northeast at 2 mph in still water.

(a) Give the velocity of the swimmer. Include a sketch.

(b) A current in a northerly direction at 1 mph affects the
velocity of the swimmer. Give the new velocity and
speed of the swimmer. Include a sketch.

35. A pilot keeps her airplane pointed in a northeastward
direction while maintaining an airspeed (speed relative
to the surrounding air) of 300 mph. A wind from the west
blows eastward at 50 mph.

11



12 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

(a) Find the velocity (in mph) of the airplane relative to
the ground.

(b) What is the speed (in mph) of the airplane relative to
the ground?

36. Suppose that in a medical study of 20 people, for each i ,
1 ≤ i ≤ 20, the 3 × 1 vector ui is defined so that its com-
ponents respectively represent the blood pressure, pulse
rate, and cholesterol reading of the i th person. Provide an
interpretation of the vector 1

20 (u1 + u2 + · · · + u20).

In Exercises 37–56, determine whether the state-
ments are true or false.

37. Matrices must be of the same size for their sum to be
defined.

38. The transpose of a sum of two matrices is the sum of the
transposed matrices.

39. Every vector is a matrix.

40. A scalar multiple of the zero matrix is the zero scalar.

41. The transpose of a matrix is a matrix of the same size.

42. A submatrix of a matrix may be a vector.

43. If B is a 3 × 4 matrix, then its rows are 4 × 1 vectors.

44. The (3, 4)-entry of a matrix lies in column 3 and row 4.

45. In a zero matrix, every entry is 0.

46. An m × n matrix has m + n entries.

47. If v and w are vectors such that v = −3w, then v and w
are parallel.

48. If A and B are any m × n matrices, then

A − B = A + (−1)B .

49. The (i , j )-entry of AT equals the (j , i )-entry of A.

50. If A =
[
1 2
3 4

]
and B =

[
1 2 0
3 4 0

]
, then A = B .

51. In any matrix A, the sum of the entries of 3A equals three
times the sum of the entries of A.

52. Matrix addition is commutative.

53. Matrix addition is associative.

54. For any m × n matrices A and B and any scalars c and
d , (cA + dB )T = cAT + dBT .

55. If A is a matrix, then cA is the same size as A for every
scalar c.

56. If A is a matrix for which the sum A + AT is defined, then
A is a square matrix.

57. Let A and B be matrices of the same size.

(a) Prove that the j th column of A + B is aj + bj .

(b) Prove that for any scalar c, the j th column of cA is
caj .

58. For any m × n matrix A, prove that 0A = O , the m × n
zero matrix.

59. For any m × n matrix A, prove that 1A = A.

60. Prove Theorem 1.1(a). 61. Prove Theorem 1.1(c).
62. Prove Theorem 1.1(d). 63. Prove Theorem 1.1(e).
64. Prove Theorem 1.1(g). 65. Prove Theorem 1.2(b).
66. Prove Theorem 1.2(c).

A square matrix A is called a diagonal matrix if aij = 0 when-
ever i �= j . Exercises 67–70 are concerned with diagonal matri-
ces.

67. Prove that a square zero matrix is a diagonal matrix.
68. Prove that if B is a diagonal matrix, then cB is a diagonal

matrix for any scalar c.
69. Prove that if B is a diagonal matrix, then BT is a diagonal

matrix.
70. Prove that if B and C are diagonal matrices of the same

size, then B + C is a diagonal matrix.

A (square) matrix A is said to be symmetric if A = AT . Exercises
71–78 are concerned with symmetric matrices.

71. Give examples of 2 × 2 and 3 × 3 symmetric matrices.
72. Prove that the (i , j )-entry of a symmetric matrix equals

the (j , i )-entry.
73. Prove that a square zero matrix is symmetric.
74. Prove that if B is a symmetric matrix, then so is cB for

any scalar c.
75. Prove that if B is a square matrix, then B + BT is sym-

metric.
76. Prove that if B and C are n × n symmetric matrices, then

so is B + C .
77. Is a square submatrix of a symmetric matrix necessarily

a symmetric matrix? Justify your answer.
78. Prove that a diagonal matrix is symmetric.

A (square) matrix A is called skew-symmetric if AT = −A.
Exercises 79–81 are concerned with skew-symmetric matrices.

79. What must be true about the (i , i )-entries of a skew-
symmetric matrix? Justify your answer.

80. Give an example of a nonzero 2 × 2 skew-symmetric
matrix B . Now show that every 2 × 2 skew-symmetric
matrix is a scalar multiple of B .

81. Show that every 3 × 3 matrix can be written as the sum
of a symmetric matrix and a skew-symmetric matrix.

82.4 The trace of an n × n matrix A, written trace(A), is
defined to be the sum

trace(A) = a11 + a22 + · · · + ann .

Prove that, for any n × n matrices A and B and scalar c,
the following statements are true:

(a) trace(A + B ) = trace(A) + trace(B ).
(b) trace(cA) = c · trace(A).
(c) trace(AT ) = trace(A).

83. Probability vectors are vectors whose components are
nonnegative and have a sum of 1. Show that if p and q are
probability vectors and a and b are nonnegative scalars
with a + b = 1, then ap + bq is a probability vector.

4 This exercise is used in Sections 2.2, 7.1, and 7.5 (on pages 115, 495, and 533, respectively).

12



1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 13

In the following exercise, use either a calculator with matrix
capabilities or computer software such as MATLAB to solve the
problem:

84. Consider the matrices

A =




1.3 2.1 −3.3 6.0
5.2 2.3 −1.1 3.4
3.2 −2.6 1.1 −4.0
0.8 −1.3 −12.1 5.7

−1.4 3.2 0.7 4.4




and

B =




2.6 −1.3 0.7 −4.4
2.2 −2.6 1.3 −3.2
7.1 1.5 −8.3 4.6

−0.9 −1.2 2.4 5.9
3.3 −0.9 1.4 6.2




.

(a) Compute A + 2B .

(b) Compute A − B .

(c) Compute AT + BT .

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) The (1, 2)-entry of A is 2.

(b) The (2, 2)-entry of A is 3.

2. (a) A − B =
[
2 −1 1
3 0 −2

]
−

[
1 3 0
2 −1 4

]

=
[
1 4 −1
1 1 −6

]

(b) 2A = 2

[
2 −1 1
3 0 −2

]
=

[
4 −2 2
6 0 −4

]

(c) A + 3B =
[
2 −1 1
3 0 −2

]
+ 3

[
1 3 0
2 −1 4

]

=
[
2 −1 1
3 0 −2

]
+

[
3 9 0
6 −3 12

]

=
[
5 8 1
9 −3 10

]

3. (a) AT =



2 3
−1 0

1 −2




(b) (3B )T =
[
3 9 0
6 −3 12

]T

=



3 6
9 −3
0 12




(c) (A + B )T =
[
3 2 1
5 −1 2

]T

=



3 5
2 −1
1 2




1.2 LINEAR COMBINATIONS, MATRIX–VECTOR
PRODUCTS, AND SPECIAL MATRICES

In this section, we explore some applications involving matrix operations and introduce
the product of a matrix and a vector.

Suppose that 20 students are enrolled in a linear algebra course, in which two

tests, a quiz, and a final exam are given. Let u =




u1

u2
...

u20


, where ui denotes the score

of the i th student on the first test. Likewise, define vectors v, w, and z similarly for the
second test, quiz, and final exam, respectively. Assume that the instructor computes
a student’s course average by counting each test score twice as much as a quiz score,
and the final exam score three times as much as a test score. Thus the weights for the
tests, quiz, and final exam score are, respectively, 2/11, 2/11, 1/11, 6/11 (the weights
must sum to one). Now consider the vector

y = 2

11
u + 2

11
v + 1

11
w + 6

11
z.

The first component y1 represents the first student’s course average, the second com-
ponent y2 represents the second student’s course average, and so on. Notice that y is
a sum of scalar multiples of u, v, w, and z. This form of vector sum is so important
that it merits its own definition.

13



14 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

Definitions A linear combination of vectors u1, u2, . . . , uk is a vector of the form

c1u1 + c2u2 + · · · + ckuk ,

where c1, c2, . . . , ck are scalars. These scalars are called the coefficients of the linear
combination.

Note that a linear combination of one vector is simply a scalar multiple of that
vector.

In the previous example, the vector y of the students’ course averages is a linear
combination of the vectors u, v, w, and z. The coefficients are the weights. Indeed,
any weighted average produces a linear combination of the scores.

Notice that
[
2
8

]
= (−3)

[
1
1

]
+ 4

[
1
3

]
+ 1

[
1

−1

]
.

Thus

[
2
8

]
is a linear combination of

[
1
1

]
,

[
1
3

]
, and

[
1

−1

]
, with coefficients −3, 4,

and 1. We can also write
[
2
8

]
=

[
1
1

]
+ 2

[
1
3

]
− 1

[
1

−1

]
.

This equation also expresses

[
2
8

]
as a linear combination of

[
1
1

]
,

[
1
3

]
, and

[
1

−1

]
,

but now the coefficients are 1, 2, and −1. So the set of coefficients that express one

vector as a linear combination of the others need not be unique.

Example 1

(a) Determine whether

[
4

−1

]
is a linear combination of

[
2
3

]
and

[
3
1

]
.

(b) Determine whether

[−4
−2

]
is a linear combination of

[
6
3

]
and

[
2
1

]
.

(c) Determine whether

[
3
4

]
is a linear combination of

[
3
2

]
and

[
6
4

]
.

Solution (a) We seek scalars x1 and x2 such that

[
4

−1

]
= x1

[
2
3

]
+ x2

[
3
1

]
=

[
2x1

3x1

]
+

[
3x2

1x2

]
=

[
2x1 + 3x2

3x1 + x2

]
.

That is, we seek a solution of the system of equations

2x1 + 3x2 = 4
3x1 + x2 = −1.

Because these equations represent nonparallel lines in the plane, there is exactly

one solution, namely, x1 = −1 and x2 = 2. Therefore

[
4

−1

]
is a (unique) linear

14



1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 15

combination of the vectors

[
2
3

]
and

[
3
1

]
, namely,

[
4

−1

]
= (−1)

[
2
3

]
+ 2

[
3
1

]
.

(See Figure 1.8.)

2 
3

2 
3

3 
1

3 
1

4 
�1

2

(�1)

y

x

Figure 1.8 The vector

[
4

−1

]
is a linear combination of

[
2
3

]
and

[
3
1

]
.

(b) To determine whether

[−4
−2

]
is a linear combination of

[
6
3

]
and

[
2
1

]
, we

perform a similar computation and produce the set of equations

6x1 + 2x2 = −4
3x1 + x2 = −2.

Since the first equation is twice the second, we need only solve 3x1 + x2 = −2. This
equation represents a line in the plane, and the coordinates of any point on the line
give a solution. For example, we can let x1 = −2 and x2 = 4. In this case, we have

[−4
−2

]
= (−2)

[
6
3

]
+ 4

[
2
1

]
.

There are infinitely many solutions. (See Figure 1.9.)

y

x

6 
3

2 
1

�4 
�2

Figure 1.9 The vector

[−4
−2

]
is a linear combination of

[
6
3

]
and

[
2
1

]
.

15



16 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

(c) To determine if

[
3
4

]
is a linear combination of

[
3
2

]
and

[
6
4

]
, we must solve

the system of equations

3x1 + 6x2 = 3
2x1 + 4x2 = 4.

If we add − 2
3 times the first equation to the second, we obtain 0 = 2, an equation

with no solutions. Indeed, the two original equations represent parallel lines in the

plane, so the original system has no solutions. We conclude that

[
3
4

]
is not a linear

combination of

[
3
2

]
and

[
6
4

]
. (See Figure 1.10.)

y

x

3 
4

3 
2

6 
4

Figure 1.10 The vector

[
3
4

]
is not a linear combination of

[
3
2

]
and

[
6
4

]
.

Example 2 Given vectors u1, u2, and u3, show that the sum of any two linear combinations of
these vectors is also a linear combination of these vectors.

Solution Suppose that w and z are linear combinations of u1, u2, and u3. Then we
may write

w = au1 + bu2 + cu3 and z = a ′u1 + b ′u2 + c′u3,

where a , b, c, a ′, b ′, c′ are scalars. So

w + z = (a + a ′)u1 + (b + b′)u2 + (c + c′)u3,

which is also a linear combination of u1, u2, and u3.

STANDARD VECTORS

We can write any vector

[
a
b

]
in R2 as a linear combination of the two vectors

[
1
0

]

and

[
0
1

]
as follows:

[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]

16



1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 17

The vectors

[
1
0

]
and

[
0
1

]
are called the standard vectors of R2. Similarly, we can

write any vector




a
b
c


 in R3 as a linear combination of the vectors




1
0
0


,




0
1
0


, and




0
0
1


 as follows:




a
b
c


 = a




1
0
0


 + b




0
1
0


 + c




0
0
1




The vectors




1
0
0


,




0
1
0


, and




0
0
1


 are called the standard vectors of R3.

In general, we define the standard vectors of Rn by

e1 =




1
0
...

0


 , e2 =




0
1
...

0


 , . . . , en =




0
0
...

1


 .

(See Figure 1.11.)

e1

e2

x

x

y

e2

e3

e1

y

z

The standard vectors of R2 The standard vectors of R3

Figure 1.11

u

w

v

y

x
bv

au

Figure 1.12 The vector w is a lin-
ear combination of the nonparal-
lel vectors u and v.

From the preceding equations, it is easy to see that every vector in Rn is a linear
combination of the standard vectors of Rn . In fact, for any vector v in Rn ,

v = v1e1 + v2e2 + · · · + vnen .

(See Figure 1.13.)
Now let u and v be nonparallel vectors, and let w be any vector in R2. Begin

with the endpoint of w and create a parallelogram with sides au and bv, so that w
is its diagonal. It follows that w = au + bv; that is, w is a linear combination of the
vectors u and v. (See Figure 1.12.) More generally, the following statement is true:

If u and v are any nonparallel vectors in R2, then every vector in R2 is a linear
combination of u and v.

17



18 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

v2e2

v1e1

x

x

y

The vector v is a
linear combination of

standard vectors in R2.

The vector v is a
linear combination of

standard vectors in R3.

v � v1e1 � v2e2 v3e3

y

z

v � v1e1 � v2e2 � v3e3

v1e1 � v2e2

v2e2

v1e1

Figure 1.13

Practice Problem 1 � Let w =
[−1

10

]
and S =

{[
2
1

]
,

[
3

−2

]}
.

(a) Without doing any calculations, explain why w can be written as a linear combi-
nation of the vectors in S.

(b) Express w as a linear combination of the vectors in S. �

Suppose that a garden supply store sells three mixtures of grass seed. The deluxe
mixture is 80% bluegrass and 20% rye, the standard mixture is 60% bluegrass and
40% rye, and the economy mixture is 40% bluegrass and 60% rye. One way to record
this information is with the following 2 × 3 matrix:

B =
deluxe standard economy[

.80 .60 .40

.20 .40 .60

]
bluegrass

rye

A customer wants to purchase a blend of grass seed containing 5 lb of bluegrass
and 3 lb of rye. There are two natural questions that arise:

1. Is it possible to combine the three mixtures of seed into a blend that has exactly
the desired amounts of bluegrass and rye, with no surplus of either?

2. If so, how much of each mixture should the store clerk add to the blend?

Let x1, x2, and x3 denote the number of pounds of deluxe, standard, and economy
mixtures, respectively, to be used in the blend. Then we have

.80x1 + .60x2 + .40x3 = 5

.20x1 + .40x2 + .60x3 = 3.

This is a system of two linear equations in three unknowns. Finding a solution of this
system is equivalent to answering our second question. The technique for solving
general systems is explored in great detail in Sections 1.3 and 1.4.

Using matrix notation, we may rewrite these equations in the form

[
.80x1 + .60x2 + .40x3

.20x1 + .40x2 + .60x3

]
=

[
5
3

]
.

18
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Now we use matrix operations to rewrite this matrix equation, using the columns of
B , as

x1

[
.80
.20

]
+ x2

[
.60
.40

]
+ x3

[
.40
.60

]
=

[
5
3

]
.

Thus we can rephrase the first question as follows: Is

[
5
3

]
a linear combination of the

columns

[
.80
.20

]
,

[
.60
.40

]
, and

[
.40
.60

]
of B? The result in the box on page 17 provides an

affirmative answer. Because no two of the three vectors are parallel,

[
5
3

]
is a linear

combination of any pair of these vectors.

MATRIX–VECTOR PRODUCTS
A convenient way to represent systems of linear equations is by matrix–vector prod-

ucts. For the preceding example, we represent the variables by the vector x =
⎡
⎣

x1

x2

x3

⎤
⎦

and define the matrix–vector product Bx to be the linear combination

Bx =
[
.80 .60 .40
.20 .40 .60

]⎡
⎣

x1

x2

x3

⎤
⎦ = x1

[
.80
.20

]
+ x2

[
.60
.40

]
+ x3

[
.40
.60

]
.

This definition provides another way to state the first question in the preceding

example: Does the vector

[
5
3

]
equal Bx for some vector x? Notice that for the

matrix–vector product to make sense, the number of columns of B must equal the
number of components in x. The general definition of a matrix–vector product is given
next.

Definition Let A be an m × n matrix and v be an n × 1 vector. We define the
matrix–vector product of A and v, denoted by Av, to be the linear combination of
the columns of A whose coefficients are the corresponding components of v. That is,

Av = v1a1 + v2a2 + · · · + vnan .

As we have noted, for Av to exist, the number of columns of A must equal the
number of components of v. For example, suppose that

A =
⎡
⎣

1 2
3 4
5 6

⎤
⎦ and v =

[
7
8

]
.

Notice that A has two columns and v has two components. Then

Av =
⎡
⎣

1 2
3 4
5 6

⎤
⎦

[
7
8

]
= 7

⎡
⎣

1
3
5

⎤
⎦ + 8

⎡
⎣

2
4
6

⎤
⎦ =

⎡
⎣

7
21
35

⎤
⎦ +

⎡
⎣

16
32
48

⎤
⎦ =

⎡
⎣

23
53
83

⎤
⎦ .
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20 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

Returning to the preceding garden supply store example, suppose that the store
has 140 lb of seed in stock: 60 lb of the deluxe mixture, 50 lb of the standard mixture,

and 30 lb of the economy mixture. We let v =



60
50
30


 represent this information. Now

the matrix–vector product

Bv =
[
.80 .60 .40
.20 .40 .60

] 


60
50
30




= 60

[
.80
.20

]
+ 50

[
.60
.40

]
+ 30

[
.40
.60

]

=
seed (lb)[

90
50

]
bluegrass

rye

gives the number of pounds of each type of seed contained in the 140 pounds of
seed that the garden supply store has in stock. For example, there are 90 pounds of
bluegrass because 90 = .80(60) + .60(50) + .40(30).

There is another approach to computing the matrix–vector product that relies
more on the entries of A than on its columns. Consider the following example:

Av =
[
a11 a12 a13

a21 a22 a23

]


v1

v2

v3




= v1

[
a11

a21

]
+ v2

[
a12

a22

]
+ v3

[
a13

a23

]

=
[
a11v1 + a12v2 + a13v3

a21v1 + a22v2 + a23v3

]

Notice that the first component of the vector Av is the sum of products of the corre-
sponding entries of the first row of A and the components of v. Likewise, the second
component of Av is the sum of products of the corresponding entries of the second
row of A and the components of v. With this approach to computing a matrix–vector
product, we can omit the intermediate step in the preceding illustration. For example,
suppose

A =
[
2 3 1
1 −2 3

]
and v =




−1
1
3


 .

Then

Av =
[
2 3 1
1 −2 3

]


−1
1
3


 =

[
(2)(−1) + (3)(1) + (1)(3)

(1)(−1) + (−2)(1) + (3)(3)

]
=

[
4
6

]
.
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In general, you can use this technique to compute Av when A is an m × n matrix and
v is a vector in Rn . In this case, the i th component of Av is

[ai1 ai2 . . . ain ]




v1

v2
...

vn


 = ai1v1 + ai2v2 + · · · + ainvn ,

which is the matrix–vector product of the i th row of A and v. The computation of all
the components of the matrix–vector product Av is given by

Av =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...

am1 am2 . . . amn







v1

v2
...

vn


 =




a11v1 + a12v2 + · · · + a1nvn

a21v1 + a22v2 + · · · + a2nvn
...

am1v1 + am2v2 + · · · + amnvn


 .

Practice Problem 2 � Let A =
[
2 −1 1
3 0 −2

]
and v =




3
1

−1


. Compute the following vectors:

(a) Av
(b) (Av)T �

Example 3 A sociologist is interested in studying the population changes within a metropolitan
area as people move between the city and suburbs. From empirical evidence, she has
discovered that in any given year, 15% of those living in the city will move to the
suburbs and 3% of those living in the suburbs will move to the city. For simplicity,
we assume that the metropolitan population remains stable. This information may be
represented by the following matrix:

To City
Suburbs

From
City Suburbs[
.85 .03
.15 .97

]
= A

Notice that the entries of A are nonnegative and that the entries of each column
sum to 1. Such a matrix is called a stochastic matrix. Suppose that there are now
500 thousand people living in the city and 700 thousand people living in the suburbs.
The sociologist would like to know how many people will be living in each of the
two areas next year. Figure 1.14 describes the changes of population from one year to
the next. It follows that the number of people (in thousands) who will be living in the
city next year is (.85)(500) + (.03)(700) = 446 thousand, and the number of people
living in the suburbs is (.15)(500) + (.97)(700) = 754 thousand.

If we let p represent the vector of current populations of the city and suburbs, we
have

p =
[
500
700

]
.

21



22 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

City
500 thousand

Suburbs
700 thousand

(.85)(500) � (.03)(700)
City

Next year

This year

(.15)(500) � (.97)(700)
Suburbs

85%

15% 3%

97%

Figure 1.14 Movement between the city and suburbs

We can find the populations in the next year by computing the matrix–vector product:

Ap =
[
.85 .03
.15 .97

] [
500
700

]
=

[
(.85)(500) + (.03)(700)
(.15)(500) + (.97)(700)

]
=

[
446
754

]

In other words, Ap is the vector of populations in the next year. If we want to determine
the populations in two years, we can repeat this procedure by multiplying A by the
vector Ap. That is, in two years, the vector of populations is A(Ap).

IDENTITY MATRICES

Suppose we let I2 =
[
1 0
0 1

]
and v be any vector in R2. Then

I2v =
[
1 0
0 1

] [
v1

v2

]
= v1

[
1
0

]
+ v2

[
0
1

]
=

[
v1

v2

]
= v.

So multiplication by I2 leaves every vector v in R2 unchanged. The same property
holds in a more general context.

Definition For each positive integer n , the n × n identity matrix In is the n × n
matrix whose respective columns are the standard vectors e1, e2, . . . , en in Rn .

For example,

I2 =
[
1 0
0 1

]
and I3 =




1 0 0
0 1 0
0 0 1


 .

Because the columns of In are the standard vectors of Rn , it follows easily that Inv = v
for any v in Rn .

ROTATION MATRICES
Consider a point P0 = (x0, y0) in R2 with polar coordinates (r , α), where r ≥ 0 and
α is the angle between the segment OP0 and the positive x -axis. (See Figure 1.15.)
Then x0 = r cosα and y0 = r sin α. Suppose that OP0 is rotated by an angle θ to the
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O

P0 � (x0, y0)

P1 � (x1, y1)

x0

x

y

y0

�

�

Figure 1.15 Rotation of a vector through the angle θ .

segment OP1, where P1 = (x1, y1). Then (r , α + θ ) represents the polar coordinates
for P1, and hence

x1 = r cos(α + θ )

= r(cosα cos θ − sinα sin θ )

= (r cosα) cos θ − (r sin α) sin θ

= x0 cos θ − y0 sin θ.

Similarly, y1 = x0 sin θ + y0 cos θ . We can express these equations as a matrix equation
by using a matrix–vector product. If we define Aθ by

Aθ =
[
cos θ − sin θ

sin θ cos θ

]
,

then

Aθ

[
x0

y0

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x0

y0

]
=

[
x0 cos θ − y0 sin θ

x0 sin θ + y0 cos θ

]
=

[
x1

y1

]
.

We call Aθ the θ -rotation matrix, or more simply, a rotation matrix. For any vector
u, the vector Aθu is the vector obtained by rotating u by an angle θ , where the rotation
is counterclockwise if θ > 0 and clockwise if θ < 0.

Example 4
To rotate the vector

[
3
4

]
by 30◦, we compute A30◦

[
3
4

]
; that is,

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦
] [

3
4

]
=




√
3

2
−1

2
1

2

√
3

2




[
3
4

]
=




3
√

3

2
− 4

2
3

2
+ 4

√
3

2


 = 1

2

[
3
√

3 − 4

3 + 4
√

3

]
.

Thus when

[
3
4

]
is rotated by 30◦, the resulting vector is

1

2

[
3
√

3 − 4

3 + 4
√

3

]
.

It is interesting to observe that the 0◦-rotation matrix A0◦ , which leaves a vector
unchanged, is given by A0◦ = I2. This is quite reasonable because multiplication by
I2 also leaves vectors unchanged.
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Besides rotations, other geometric transformations (such as reflections and pro-
jections) can be described as matrix–vector products. Examples are found in the
exercises.

PROPERTIES OF MATRIX–VECTOR PRODUCTS
It is useful to note that the columns of a matrix can be represented as matrix–vector
products of the matrix with the standard vectors. Suppose, for example, that A =[
2 4
3 6

]
. Then

Ae1 =
[
2 4
3 6

] [
1
0

]
=

[
2
3

]
and Ae2 =

[
2 4
3 6

] [
0
1

]
=

[
4
6

]
.

The general result is stated as (d) of Theorem 1.3.
For any m × n matrix A, A0 = 0′, where 0 is the n × 1 zero vector and 0′ is the

m × 1 zero vector. This is easily seen since the matrix–vector product A0 is a sum of
products of columns of A and zeros. Similarly, for the m × n zero matrix O , Ov = 0′
for any n × 1 vector v. (See (f ) and (g) of Theorem 1.3.)

THEOREM 1.3

(Properties of Matrix–Vector Products) Let A and B be m × n matrices, and
let u and v be vectors in Rn . Then

(a) A(u + v) = Au + Av.

(b) A(cu) = c(Au) = (cA)u for every scalar c.

(c) (A + B )u = Au + Bu.

(d) Aej = aj for j = 1, 2, . . . , n , where ej is the j th standard vector in Rn .

(e) If B is an m × n matrix such that Bw = Aw for all w in Rn , then B = A.

(f) A0 is the m × 1 zero vector.

(g) If O is the m × n zero matrix, then Ov is the m × 1 zero vector.

(h) Inv = v.

PROOF We prove part (a) and leave the rest for the exercises.
(a) Because the i th component of u + v is ui + vi , we have

A(u + v) = (u1 + v1)a1 + (u2 + v2)a2 + · · · + (un + vn )an

= (u1a1 + u2a2 + · · · + unan ) + (v1a1 + v2a2 + · · · + vnan )

= Au + Av. �
It follows by repeated applications of Theorem 1.3(a) and (b) that the

matrix–vector product of A and a linear combination of u1, u2, . . . , uk yields a linear
combination of the vectors Au1, Au2, . . . , Auk . That is,

For any m × n matrix A, any scalars c1, c2, . . . , ck , and any vectors u1, u2, . . . , uk

in Rn ,

A(c1u1 + c2u2 + · · · + ckuk ) = c1Au1 + c2Au2 + · · · + ckAuk .

24



1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 25

EXERCISES

In Exercises 1–16, compute the matrix–vector products.

1.

[
3 −2 1
4 0 2

]


1
−2

5


 2.




1 −3
0 2

−1 4




[
1
2

]

3.




2 −1 3
1 0 −1
0 2 4







2
1
2


 4.

[
4 2
7 −3

] [
5
1

]

5.

[
1 0
0 1

] [
a
b

]
6.

[
2 1 3

]



−2
4
6




7.

[
3 0
2 1

]T [
4
5

]
8.




1 0 0
0 1 0
0 0 1







a
b
c




9.




s 0 0
0 t 0
0 0 u







a
b
c


 10 .




4
2

−3




T 


2
−1

0




11.




2 −3
−4 5

3 −1




[
4
2

]
12.




3 −3
−2 4

1 2




[
0
1

]

13.

[
3 −1 4

−2 6 −1

] 


0
1
0


 14.




2 −3 4
−4 5 −2

3 −1 0







1
1
1




15.

([
3 0

−2 4

]T

+
[
1 2
3 −3

]T
)[

4
5

]

16.

([
3 0

−2 4

]
+

[
1 2
3 −3

]) [
4
5

]

In Exercises 17–28, an angle θ and a vector u are given. Write
the corresponding rotation matrix, and compute the vector found
by rotating u by the angle θ . Draw a sketch and simplify your
answers.

17. θ = 45◦, u = e2 18. θ = 0◦, u = e1

19. θ = 60◦, u =
[
3
1

]
20. θ = 30◦, u =

[
1
2

]

21. θ = 210◦, u =
[−1
−3

]
22. θ = 135◦, u =

[
2

−1

]

23. θ = 270◦, u =
[−2

3

]
24. θ = 330◦, u =

[
4
1

]

25. θ = 240◦, u =
[−3
−1

]
26. θ = 150◦, u =

[
5

−2

]

27. θ = 300◦, u =
[
3
0

]
28. θ = 120◦, u =

[
0

−2

]

In Exercises 29–44, a vector u and a set S are given. If possible,
write u as a linear combination of the vectors in S.

29. u =
[
1
1

]
, S =

{[
1
0

]
,

[
0
1

]}

30. u =
[

1
−1

]
, S =

{[
4

−4

]}

31. u =
[

1
−1

]
, S =

{[
4
4

]}

32. u =
[
1
1

]
, S =

{[
1
0

]
,

[
0

−1

]}

33. u =



1
1
2


, S =







1
0
1


 ,




1
0

−1







34. u =
[
1
1

]
, S =

{[
1
0

]
,

[
0

−1

]
,

[
0
0

]}

35. u =
[−1

11

]
, S =

{[
1
3

]
,

[
2

−1

]}

36. u =
[
1
1

]
, S =

{[
1
0

]
,

[
0

−1

]
,

[
1
1

]}

37. u =
[
3
8

]
, S =

{[
1
2

]
,

[
2
3

]
,

[−2
−5

]}

38. u =
[
a
b

]
, S =

{[
1
1

]
,

[
2

−1

]}

39. u =



3
5

−5


, S =







2
0

−1


 ,




−1
1
0







40. u =



2
−2

8


, S =







0
1
2


 ,




−1
3
0







41. u =



3
−2

1


, S =







2
−1

2


 ,




3
−2

1


 ,




−4
1
3







42. u =



5
6
7


, S =







1
0
0


 ,




0
1
0


 ,




0
0
1







43. u =



−4
−5
−6


, S =







1
0
0


 ,




0
1
0


 ,




0
0
1







44. u =



−1
3
2


, S =







1
−1

1


 ,




0
−2

3


 ,




−1
3
2







In Exercises 45–64, determine whether the state-
ments are true or false.

45. A linear combination of vectors is a sum of scalar multi-
ples of the vectors.

46. The coefficients in a linear combination can always be
chosen to be positive scalars.
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47. Every vector in R2 can be written as a linear combination
of the standard vectors of R2.

48. Every vector in R2 is a linear combination of any two
nonparallel vectors.

49. The zero vector is a linear combination of any nonempty
set of vectors.

50. The matrix–vector product of a 2 × 3 matrix and a 3 × 1
vector is a 3 × 1 vector.

51. The matrix–vector product of a 2 × 3 matrix and a 3 × 1
vector equals a linear combination of the rows of the
matrix.

52. The product of a matrix and a standard vector equals a
standard vector.

53. The rotation matrix A180◦ equals −I2.
54. The matrix–vector product of an m × n matrix and a vec-

tor yields a vector in Rn .
55. Every vector in R2 is a linear combination of two parallel

vectors.
56. Every vector v in Rn can be written as a linear combi-

nation of the standard vectors, using the components of v
as the coefficients of the linear combination.

57. A vector with exactly one nonzero component is called a
standard vector.

58. If A is an m × n matrix, u is a vector in Rn , and c is a
scalar, then A(cu) = c(Au).

59. If A is an m × n matrix, then the only vector u in Rn

such that Au = 0 is u = 0.
60. For any vector u in R2, Aθu is the vector obtained by

rotating u by the angle θ .
61. If θ > 0, then Aθu is the vector obtained by rotating u by

a clockwise rotation of the angle θ .
62. If A is an m × n matrix and u and v are vectors in Rn

such that Au = Av, then u = v.
63. The matrix vector product of an m × n matrix A and a

vector u in Rn equals u1a1 + u2a2 + · · · + unan .

64. A matrix having nonnegative entries such that the sum
of the entries in each column is 1 is called a stochastic
matrix.

65. Use a matrix–vector product to show that if θ = 0◦, then
Aθv = v for all v in R2.

66. Use a matrix–vector product to show that if θ = 180◦,
then Aθv = −v for all v in R2.

67. Use matrix–vector products to show that, for any angles
θ and β and any vector v in R2, Aθ (Aβv) = Aθ+βv.

68. Compute AT
θ (Aθu) and Aθ (AT

θ u) for any vector u in R2

and any angle θ .
69. Suppose that in a metropolitan area there are 400 thousand

people living in the city and 300 thousand people living
in the suburbs. Use the stochastic matrix in Example 3 to
determine
(a) the number of people living in the city and suburbs

after one year;
(b) the number of people living in the city and suburbs

after two years.

70. Let A =



1 2 3
4 5 6
7 8 9


 and u =




a
b
c


. Represent Au as a

linear combination of the columns of A.

In Exercises 71–74, let A =
[−1 0

0 1

]
and u =

[
a
b

]
.

71. Show that Au is the reflection of u about the y-axis.

72. Prove that A(Au) = u.

73. Modify the matrix A to obtain a matrix B so that Bu is
the reflection of u about the x -axis.

74. Let C denote the rotation matrix that corresponds to
θ = 180◦.
(a) Find C .

(b) Use the matrix B in Exercise 73 to show that

A(Cu) = C (Au) = Bu and

B (Cu) = C (Bu) = Au.

(c) Interpret these equations in terms of reflections and
rotations.

In Exercises 75–79, let A =
[
1 0
0 0

]
and u =

[
a
b

]
.

75. Show that Au is the projection of u on the x -axis.

76. Prove that A(Au) = Au.

77. Show that if v is any vector whose endpoint lies on the
x -axis, then Av = v.

78. Modify the matrix A to obtain a matrix B so that Bu is
the projection of u on the y-axis.

79. Let C denote the rotation matrix that corresponds to
θ = 180◦. (See Exercise 74(a).)

(a) Prove that A(Cu) = C (Au).

(b) Interpret the result in (a) geometrically.

80. Let u1 and u2 be vectors in Rn . Prove that the sum of
two linear combinations of these vectors is also a linear
combination of these vectors.

81. Let u1 and u2 be vectors in Rn . Let v and w be linear
combinations of u1 and u2. Prove that any linear com-
bination of v and w is also a linear combination of u1

and u2.

82. Let u1 and u2 be vectors in Rn . Prove that a scalar multi-
ple of a linear combination of these vectors is also a linear
combination of these vectors.

83. Prove (b) of Theorem 1.3.

84. Prove (c) of Theorem 1.3.

85. Prove (d) of Theorem 1.3.

86. Prove (e) of Theorem 1.3.

87. Prove (f) of Theorem 1.3.

88. Prove (g) of Theorem 1.3.

89. Prove (h) of Theorem 1.3.

In Exercises 90 and 91, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.
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90. In reference to Exercise 69, determine the number of peo-
ple living in the city and suburbs after 10 years.

91. For the matrices

A =




2.1 1.3 −0.1 6.0
1.3 −9.9 4.5 6.2
4.4 −2.2 5.7 2.0
0.2 9.8 1.1 −8.5




and

B =




4.4 1.1 3.0 9.9
−1.2 4.8 2.4 6.0

1.3 2.4 −5.8 2.8
6.0 −2.1 −5.3 8.2




and the vectors

u =




1
−1

2
4


 and v =




7
−1

2
5


 ,

(a) compute Au;

(b) compute B (u + v);

(c) compute (A + B )v;

(d) compute A(Bv).

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) The vectors in S are nonparallel vectors in R2.

(b) To express w as a linear combination of the vectors
in S, we must find scalars x1 and x2 such that

[−1
10

]
= x1

[
2
1

]
+ x2

[
3

−2

]
=

[
2x1 + 3x2

x1 − 2x2

]
.

That is, we must solve the following system:

2x1 + 3x2 = −1
x1 − 2x2 = 10

Using elementary algebra, we see that x1 = 4 and
x2 = −3. So

[−1
10

]
= 4

[
2
1

]
− 3

[
3

−2

]
.

2. (a) Av =
[
2 −1 1
3 0 −2

]


3
1

−1


 =

[
4

11

]

(b) (Av)T =
[

4
11

]T

= [
4 11

]

1.3 SYSTEMS OF LINEAR EQUATIONS
A linear equation in the variables (unknowns) x1, x2, . . . , xn is an equation that can
be written in the form

a1x1 + a2x2 + · · · + anxn = b,

where a1, a2, . . . , an , and b are real numbers. The scalars a1, a2, . . . , an are called
the coefficients, and b is called the constant term of the equation. For example,
3x1 − 7x2 + x3 = 19 is a linear equation in the variables x1, x2, and x3, with coeffi-
cients 3, −7, and 1, and constant term 19. The equation 8x2 − 12x5 = 4x1 − 9x3 + 6
is also a linear equation because it can be written as

−4x1 + 8x2 + 9x3 + 0x4 − 12x5 = 6.

On the other hand, the equations

x1 + 5x2x3 = 7, 2x1 − 7x2 + x 2
3 = −3, and 4

√
x1 − 3x2 = 15

are not linear equations because they contain terms involving a product of variables,
a square of a variable, or a square root of a variable.

A system of linear equations is a set of m linear equations in the same n
variables, where m and n are positive integers. We can write such a system in the
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form
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm ,

where aij denotes the coefficient of xj in equation i .
For example, on page 18 we obtained the following system of 2 linear equations

in the variables x1, x2, and x3:

.80x1 + .60x2 + .40x3 = 5

.20x1 + .40x2 + .60x3 = 3
(1)

A solution of a system of linear equations in the variables x1, x2, . . . , xn is a

vector




s1

s2
...

sn


 in Rn such that every equation in the system is satisfied when each xi

is replaced by si . For example,




2
5
1


 is a solution of system (1) because

.80(2) + .60(5) + .40(1) = 5 and .20(2) + .40(5) + .60(1) = 3.

The set of all solutions of a system of linear equations is called the solution set of
that system.

Practice Problem 1 � Determine whether (a) u =




−2
3
2
1


 and (b) v =




5
8
1
3


 are solutions of the system of

linear equations

x1 + 5x3 − x4 = 7
2x1 − x2 + 6x3 = 8. �

SYSTEMS OF 2 LINEAR EQUATIONS IN 2 VARIABLES
A linear equation in two variables x and y has the form ax + by = c. When at least
one of a and b is nonzero, this is the equation of a line in the xy-plane. Thus a system
of 2 linear equations in the variables x and y consists of a pair of equations, each of
which describes a line in the plane.

a1x + b1y = c1 is the equation of line L1.

a2x + b2y = c2 is the equation of line L2.

Geometrically, a solution of such a system corresponds to a point lying on both of
the lines L1 and L2. There are three different situations that can arise.

If the lines are different and parallel, then they have no point in common. In this
case, the system of equations has no solution. (See Figure 1.16.)

If the lines are different but not parallel, then the two lines have a unique point
of intersection. In this case, the system of equations has exactly one solution. (See
Figure 1.17.)
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L1

L2

y

x

L1 and L2 are parallel.
No solution

Figure 1.16

L1 and L2 are different but not parallel.
Exactly one solution

L1

L2

y

x

Figure 1.17

Finally, if the two lines coincide, then every point on L1 and L2 satisfies both
of the equations in the system, and so every point on L1 and L2 is a solution of the
system. In this case, there are infinitely many solutions. (See Figure 1.18.)

L1 and L2 are the same.
Infinitely many solutions

x

y

L1 � L2

Figure 1.18

As we will soon see, no matter how many equations and variables a system has,
there are exactly three possibilities for its solution set.

Every system of linear equations has no solution, exactly one solution, or infinitely
many solutions.

A system of linear equations that has one or more solutions is called consistent;
otherwise, the system is called inconsistent. Figures 1.17 and 1.18 show consistent
systems, while Figure 1.16 shows an inconsistent system.

ELEMENTARY ROW OPERATIONS
To find the solution set of a system of linear equations or determine that the system
is inconsistent, we replace it by one with the same solutions that is more easily
solved. Two systems of linear equations that have exactly the same solutions are
called equivalent.

Now we present a procedure for creating a simpler, equivalent system. It is based
on an important technique for solving a system of linear equations taught in high
school algebra classes. To illustrate this procedure, we solve the following system of
three linear equations in the variables x1, x2, and x3:

x1 − 2x2 − x3 = 3
3x1 − 6x2 − 5x3 = 3
2x1 − x2 + x3 = 0

(2)

We begin the simplification by eliminating x1 from every equation but the first.
To do so, we add appropriate multiples of the first equation to the second and third
equations so that the coefficient of x1 becomes 0 in these equations. Adding −3
times the first equation to the second makes the coefficient of x1 equal 0 in the
result.

−3x1 + 6x2 + 3x3 = −9
3x1 − 6x2 − 5x3 = 3

− 2x3 = −6

(−3 times equation 1)
(equation 2)
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Likewise, adding −2 times the first equation to the third makes the coefficient of x1

0 in the new third equation.

−2x1 + 4x2 + 2x3 = −6
2x1 − x2 + x3 = 0

3x2 + 3x3 = −6

(−2 times equation 1)
(equation 3)

We now replace equation 2 with −2x3 = −6, and equation 3 with 3x2 + 3x3 = −6 to
transform system (2) into the following system:

x1 − 2x2 − x3 = 3
− 2x3 = −6

3x2 + 3x3 = −6

In this case, the calculation that makes the coefficient of x1 equal 0 in the new second
equation also makes the coefficient of x2 equal 0. (This does not always happen, as
you can see from the new third equation.) If we now interchange the second and third
equations in this system, we obtain the following system:

x1 − 2x2 − x3 = 3
3x2 + 3x3 = −6

− 2x3 = −6
(3)

We can now solve the third equation for x3 by multiplying both sides by − 1
2 (or

equivalently, dividing both sides by −2). This produces

x1 − 2x2 − x3 = 3
3x2 + 3x3 = −6

x3 = 3.

By adding appropriate multiples of the third equation to the first and second, we can
eliminate x3 from every equation but the third. If we add the third equation to the first
and add −3 times the third equation to the second, we obtain

x1 − 2x2 = 6
3x2 = −15

x3 = 3.

Now solve for x2 by multiplying the second equation by 1
3 . The result is

x1 − 2x2 = 6
x2 = −5

x3 = 3.

Finally, adding 2 times the second equation to the first produces the very simple
system

x1 = −4
x2 = −5

x3 = 3,
(4)

whose solution is obvious. You should check that replacing x1 by −4, x2 by −5,

and x3 by 3 makes each equation in system (2) true, so that




−4
−5

3


 is a solution of

system (2). Indeed, it is the only solution, as we soon will show.
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In each step just presented, the names of the variables played no essential role. All
of the operations that we performed on the system of equations can also be performed
on matrices. In fact, we can express the original system

x1 − 2x2 − x3 = 3
3x1 − 6x2 − 5x3 = 3
2x1 − x2 + x3 = 0

(2)

as the matrix equation Ax = b, where

A =



1 −2 −1
3 −6 −5
2 −1 1


 , x =




x1

x2

x3


 , and b =




3
3
0


 .

Note that the columns of A contain the coefficients of x1, x2, and x3 from system (2).
For this reason, A is called the coefficient matrix (or the matrix of coefficients) of
system (2). All the information that is needed to find the solution set of this system
is contained in the matrix




1 −2 −1 3
3 −6 −5 3
2 −1 1 0


 ,

which is called the augmented matrix of the system. This matrix is formed by
augmenting the coefficient matrix A to include the vector b. We denote the augmented
matrix by [A b].

If A is an m × n matrix, then a vector u in Rn is a solution of Ax = b if and

only if Au = b. Thus




−4
−5

3


 is a solution of system (2) because

Au =



1 −2 −1
3 −6 −5
2 −1 1







−4
−5

3


 =




3
3
0


 = b.

Example 1 For the system of linear equations

x1 + 5x3 − x4 = 7
2x1 − x2 + 6x3 = −8,

the coefficient matrix and the augmented matrix are

[
1 0 5 −1
2 −1 6 0

]
and

[
1 0 5 −1 7
2 −1 6 0 −8

]
,

respectively. Note that the variable x2 is missing from the first equation and x4 is
missing from the second equation in the system (that is, the coefficients of x2 in the
first equation and x4 in the second equation are 0). As a result, the (1, 2)- and (2, 4)-
entries of the coefficient and augmented matrices of the system are 0.

In solving system (2), we performed three types of operations: interchanging the
position of two equations in a system, multiplying an equation in the system by a

31



32 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

nonzero scalar, and adding a multiple of one equation in the system to another. The
analogous operations that can be performed on the augmented matrix of the system
are given in the following definition.

Definition Any one of the following three operations performed on a matrix is called
an elementary row operation:

1. Interchange any two rows of the matrix. (interchange operation)

2. Multiply every entry of some row of the matrix by the same nonzero scalar.
(scaling operation)

3. Add a multiple of one row of the matrix to another row. (row addition oper-
ation)

To denote how an elementary row operation changes a matrix A into a matrix B ,
we use the following notation:

1. A
ri ↔rj � B indicates that row i and row j are interchanged.

2. A
cri →ri � B indicates that the entries of row i are multiplied by the scalar c.

3. A
cri +rj →rj� B indicates that c times row i is added to row j .

Example 2 Let

A =



2 1 −1 3
1 2 1 3
3 1 0 2


 and B =




1 2 1 3
0 1 1 1
0 −5 −3 −7


 .

The following sequence of elementary row operations transforms A into B :

A =



2 1 −1 3
1 2 1 3
3 1 0 2


 r1↔r2 �




1 2 1 3
2 1 −1 3
3 1 0 2




−2r1+r2→r2�




1 2 1 3
0 −3 −3 −3
3 1 0 2




−3r1+r3→r3�




1 2 1 3
0 −3 −3 −3
0 −5 −3 −7


 − 1

3 r2→r2�




1 2 1 3
0 1 1 1
0 −5 −3 −7


 = B .

We may perform several elementary row operations in succession, indicating the
operations by stacking the individual labels above a single arrow. These operations are
performed in top-to-bottom order. In the previous example, we could indicate how
to transform the second matrix into the fourth matrix of the example by using the
following notation:




1 2 1 3
2 1 −1 3
3 1 0 2




−2r1 + r2 → r2
−3r1 + r3 → r3�




1 2 1 3
0 −3 −3 −3
0 −5 −3 −7
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Every elementary row operation can be reversed. That is, if we perform an ele-
mentary row operation on a matrix A to produce a new matrix B , then we can perform
an elementary row operation of the same kind on B to obtain A. If, for example, we
obtain B by interchanging two rows of A, then interchanging the same rows of B
yields A. Also, if we obtain B by multiplying some row of A by the nonzero constant
c, then multiplying the same row of B by 1

c yields A. Finally, if we obtain B by
adding c times row i of A to row j , then adding −c times row i of B to row j results
in A.

Suppose that we perform an elementary row operation on an augmented matrix
[A b] to obtain a new matrix [A′ b′]. The reversibility of the elementary row oper-
ations assures us that the solutions of Ax = b are the same as those of A′x = b′.
Thus performing an elementary row operation on the augmented matrix of a system of
linear equations does not change the solution set. That is, each elementary row oper-
ation produces the augmented matrix of an equivalent system of linear equations. We
assume this result throughout the rest of Chapter 1; it is proved in Section 2.3. Thus,
because the system of linear equations (2) is equivalent to system (4), there is only
one solution of system (2).

REDUCED ROW ECHELON FORM
We can use elementary row operations to simplify any system of linear equations until
it is easy to see what the solution is. First, we represent the system by its augmented
matrix, and then use elementary row operations to transform the augmented matrix
into a matrix having a special form, which we call a reduced row echelon form. The
system of linear equations whose augmented matrix has this form is equivalent to the
original system and is easily solved.

We now define this special form of matrix. In the following discussion, we call a
row of a matrix a zero row if all its entries are 0 and a nonzero row otherwise. We
call the leftmost nonzero entry of a nonzero row its leading entry.

Definitions A matrix is said to be in row echelon form if it satisfies the following
three conditions:

1. Each nonzero row lies above every zero row.

2. The leading entry of a nonzero row lies in a column to the right of the column
containing the leading entry of any preceding row.

3. If a column contains the leading entry of some row, then all entries of that
column below the leading entry are 0.5

If a matrix also satisfies the following two additional conditions, we say that it is in
reduced row echelon form.6

4. If a column contains the leading entry of some row, then all the other entries
of that column are 0.

5. The leading entry of each nonzero row is 1.

5 Condition 3 is a direct consequence of condition 2. We include it in this definition for emphasis, as is
usually done when defining the row echelon form.

6 Inexpensive calculators are available that can compute the reduced row echelon form of a matrix. On
such a calculator, or in computer software, the reduced row echelon form is usually obtained by using
the command rref.
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34 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

A matrix having either of the forms that follow is in reduced row echelon form.
In these diagrams, a ∗ denotes an arbitrary entry (that may or may not be 0).




1 * 0 0 *
0 0 1 0 *
0 0 0 1 *
0 0 0 0 0







1 0 * * 0 0 *
0 1 * * 0 0 *
0 0 0 0 1 0 *
0 0 0 0 0 1 *
0 0 0 0 0 0 0




Notice that the leading entries (which must be 1’s by condition 5) form a pattern
suggestive of a flight of stairs. Moreover, these leading entries of 1 are the only nonzero
entries in their columns. Also, each nonzero row precedes all of the zero rows.

Example 3 The following matrices are not in reduced row echelon form:

A =




1 0 0 6 3 0
0 0 1 5 7 0
0 1 0 2 4 0
0 0 0 0 0 1


 B =




1 7 2 −3 9 4
0 0 1 4 6 8
0 0 0 2 3 5
0 0 0 0 0 0
0 0 0 0 0 0




Matrix A fails to be in reduced row echelon form because the leading entry of the
third row does not lie to the right of the leading entry of the second row. Notice,
however, that the matrix obtained by interchanging the second and third rows of A is
in reduced row echelon form.

Matrix B is not in reduced row echelon form for two reasons. The leading entry
of the third row is not 1, and the leading entries in the second and third rows are not
the only nonzero entries in their columns. That is, the third column of B contains the
first nonzero entry in row 2, but the (2, 3)-entry of B is not the only nonzero entry in
column 3. Notice, however, that although B is not in reduced row echelon form, B
is in row echelon form.

A system of linear equations can be easily solved if its augmented matrix is in
reduced row echelon form. For example, the system

x1 = −4
x2 = −5

x3 = 3

has a solution that is immediately evident.
If a system of equations has infinitely many solutions, then obtaining the solution

is somewhat more complicated. Consider, for example, the system of linear equations

x1 − 3x2 + 2x4 = 7
x3 + 6x4 = 9

x5 = 2
0 = 0.

(5)

The augmented matrix of this system is



1 −3 0 2 0 7
0 0 1 6 0 9
0 0 0 0 1 2
0 0 0 0 0 0


 ,

which is in reduced row echelon form.
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1.3 Systems of Linear Equations 35

Since the equation 0 = 0 in system (5) provides no useful information, we can
disregard it. System (5) is consistent, but it is not possible to find a unique value for
each variable because the system has infinitely many solutions. Instead, we can solve
for some of the variables, called basic variables, in terms of the others, called the
free variables. The basic variables correspond to the leading entries of the augmented
matrix. In system (5), for example, the basic variables are x1 , x3, and x5 because the
leading entries of the augmented matrix are in columns 1, 3, and 5, respectively. The
free variables are x2 and x4. We can easily solve for the basic variables in terms of
the free variables by moving the free variables and their coefficients from the left side
of each equation to the right.

The resulting equations

x1 = 7 + 3x2 − 2x4

x2 free
x3 = 9 − 6x4

x4 free
x5 = 2

provide a general solution of system (5). This means that for every choice of values
of the free variables, these equations give the corresponding values of x1, x3, and x5

in one solution of the system, and furthermore, every solution of the system has this
form for some values of the free variables. For example, choosing x2 = 0 and x4 = 0

gives the solution




7
0
9
0
2




, and choosing x2 = −2 and x4 = 1 yields the solution




−1
−2

3
1
2




.

The general solution can also be written in vector form as




x1

x2

x3

x4

x5




=




7 + 3x2 − 2x4

x2

9 − 6x4

x4

2




=




7
0
9
0
2




+ x2




3
1
0
0
0




+ x4




−2
0

−6
1
0




.

In vector form, it is apparent that every solution of the system is the sum of




7
0
9
0
2




and

an arbitrary linear combination of the vectors




3
1
0
0
0




and




−2
0

−6
1
0




, with the coefficients

being the free variables x2 and x4, respectively.

Example 4 Find a general solution of the system of linear equations

x1 + 2x4 = 7
x2 − 3x4 = 8

x3 + 6x4 = 9.
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36 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

Solution Since the augmented matrix of this system is in reduced row echelon
form, we can obtain the general solution by solving for the basic variables in terms
of the other variables. In this case, the basic variables are x1, x2, and x3, and so we
solve for x1, x2, and x3 in terms of x4. The resulting general solution is

x1 = 7 − 2x4

x2 = 8 + 3x4

x3 = 9 − 6x4

x4 free.

We can write the general solution in vector form as



x1

x2

x3

x4


 =




7
8
9
0


 + x4




−2
3

−6
1


 .

There is one other case to consider. Suppose that the augmented matrix of a
system of linear equations contains a row in which the only nonzero entry is in the
last column, for example,




1 0 −3 5
0 1 2 4
0 0 0 1
0 0 0 0


 .

The system of linear equations corresponding to this matrix is

x1 − 3x3 = 5
x2 + 2x3 = 4

0x1 + 0x2 + 0x3 = 1
0x1 + 0x2 + 0x3 = 0.

Clearly, there are no values of the variables that satisfy the third equation. Because a
solution of the system must satisfy every equation in the system, it follows that this
system of equations is inconsistent. More generally, the following statement is true:

Whenever an augmented matrix contains a row in which the only nonzero entry
lies in the last column, the corresponding system of linear equations has no
solution.

It is not usually obvious whether or not a system of linear equations is consis-
tent. However, this is apparent after calculating the reduced row echelon form of its
augmented matrix.

Practice Problem 2 � The augmented matrix of a system of linear equations has



0 1 −4 0 3 0
0 0 0 1 −2 0
0 0 0 0 0 1




as its reduced row echelon form. Determine whether this system of linear equations
is consistent and, if so, find its general solution. �
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1.3 Systems of Linear Equations 37

SOLVING SYSTEMS OF LINEAR EQUATIONS
So far, we have learned the following facts:

1. A system of linear equations can be represented by its augmented matrix, and any
elementary row operations performed on that matrix do not change the solutions
of the system.

2. A system of linear equations whose augmented matrix is in reduced row echelon
form is easily solved.

Two questions remain. Is it always possible to transform the augmented matrix of a
system of linear equations into a reduced row echelon form by a sequence of elementary
row operations? Is that form unique? The first question is answered in Section 1.4, where
an algorithm is given that transforms any matrix into one in reduced row echelon form.
The second question is also important. If there were different reduced row echelon
forms of the same matrix (depending on what sequence of elementary row operations
is used), then there could be different solutions of the same system of linear equations.
Fortunately, the following important theorem assures us that there is only one reduced
row echelon form for any matrix. It is proved in Appendix E.

THEOREM 1.4

Every matrix can be transformed into one and only one matrix in reduced row
echelon form by means of a sequence of elementary row operations.

In fact, Section 1.4 describes an explicit procedure for performing this transfor-
mation. If there is a sequence of elementary row operations that transforms a matrix
A into a matrix R in reduced row echelon form, then we call R the reduced row
echelon form of A. Using the reduced row echelon form of the augmented matrix of
a system of linear equations Ax = b, we can solve the system as follows:

Procedure for Solving a System of Linear Equations

1. Write the augmented matrix [A b] of the system.

2. Find the reduced row echelon form [R c] of [A b].

3. If [R c] contains a row in which the only nonzero entry lies in the last column,
then Ax = b has no solution. Otherwise, the system has at least one solution.
Write the system of linear equations corresponding to the matrix [R c], and
solve this system for the basic variables in terms of the free variables to obtain
a general solution of Ax = b.

Example 5 Solve the following system of linear equations:

x1 + 2x2 − x3 + 2x4 + x5 = 2
−x1 − 2x2 + x3 + 2x4 + 3x5 = 6
2x1 + 4x2 − 3x3 + 2x4 = 3

−3x1 − 6x2 + 2x3 + 3x5 = 9

Solution The augmented matrix of this system is



1 2 −1 2 1 2
−1 −2 1 2 3 6

2 4 −3 2 0 3
−3 −6 2 0 3 9


 .
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In Section 1.4, we show that the reduced row echelon form of this matrix is



1 2 0 0 −1 −5
0 0 1 0 0 −3
0 0 0 1 1 2
0 0 0 0 0 0


 .

Because there is no row in this matrix in which the only nonzero entry lies in the last
column, the original system is consistent. This matrix corresponds to the system of
linear equations

x1 + 2x2 − x5 = −5
x3 = −3

x4 + x5 = 2.

In this system, the basic variables are x1, x3, and x4, and the free variables are x2 and
x5. When we solve for the basic variables in terms of the free variables, we obtain
the following general solution:

x1 = −5 − 2x2 + x5

x2 free
x3 = −3
x4 = 2 − x5

x5 free

This is the general solution of the original system of linear equations.

Practice Problem 3 � The augmented matrix of a system of linear equations has




0 1 −3 0 2 4
0 0 0 1 −1 5
0 0 0 0 0 0




as its reduced row echelon form. Write the corresponding system of linear equations,
and determine if it is consistent. If so, find its general solution, and write the general
solution in vector form. �

EXERCISES

In Exercises 1–6, write (a) the coefficient matrix and (b) the
augmented matrix of the given system.

1.
−x2 + 2x3 = 0

x1 + 3x2 = −1
2. 2x1 − x2 + 3x3 = 4

3.
x1 + 2x2 = 3

−x1 + 3x2 = 2
−3x1 + 4x2 = 1

4.
x1 + 2x3 − x4 = 3

2x1 − x2 + x4 = 0

5.
2x2 − 3x3 = 4

−x1 + x2 + 2x3 = −6
2x1 + x3 = 0

6.
x1 − 2x2 + x4 + 7x5 = 5
x1 − 2x2 + 10x5 = 3

2x1 − 4x2 + 4x4 + 8x5 = 7

In Exercises 7–14, perform the indicated elementary row oper-
ation on




1 −1 0 2 −3
−2 6 3 −1 1

0 2 −4 4 2


 .

7. Interchange rows 1 and 3.

8. Multiply row 1 by −3.

9. Add 2 times row 1 to row 2.

10. Interchange rows 1 and 2.
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11. Multiply row 3 by 1
2 .

12. Add −3 times row 3 to row 2.

13. Add 4 times row 2 to row 3.

14. Add 2 times row 1 to row 3.

In Exercises 15–22, perform the indicated elementary row oper-
ation on 


1 −2 0

−1 1 −1
2 −4 6

−3 2 1


 .

15. Multiply row 1 by −2.

16. Multiply row 2 by 1
2 .

17. Add −2 times row 1 to row 3.

18. Add 3 times row 1 to row 4.

19. Interchange rows 2 and 3.

20. Interchange rows 2 and 4.

21. Add −2 times row 2 to row 4.

22. Add 2 times row 2 to row 1.

In Exercises 23–30, determine whether the given vector is a solu-
tion of the system

x1 − 4x2 + 3x4 = 6
x3 − 2x4 = −3.

23.




1
−2
−5
−1


 24.




2
0

−1
1


 25.




3
0
2
1


 26.




4
1
1
2




27.




6
−3

0
0


 28.




6
0

−3
0


 29.




9
0

−5
−1


 30.




−1
−1
−1

1




In Exercises 31–38, determine whether the given vector is a solu-
tion of the system

x1 − 2x2 + x3 + x4 + 7x5 = 1
x1 − 2x2 + 2x3 + 10x5 = 2

2x1 − 4x2 + 4x4 + 8x5 = 0.

31.




0
0
1
0
0




32.




0
1
0
0
0




33.




2
1
1
0
0




34.




0
−2

4
0

−1




35.




1
0
1
1
0




36.




0
−1

0
−1

0




37.




0
3

−1
3
0




38.




0
1
0
1
0




In Exercises 39–54, the reduced row echelon form of the
augmented matrix of a system of linear equations is given.
Determine whether this system of linear equations is consistent
and, if so, find its general solution. In addition, in Exercises
47–54, write the solution in vector form.

39.
[
1 −1 2

]
40.

[
1 0 −4
0 1 5

]

41.

[
1 −2 6
0 0 0

]
42.




1 −4 5
0 0 0
0 0 0




43.




1 −3 0
0 0 1
0 0 0


 44.




1 0 −6
0 1 3
0 0 0




45.




1 −2 0 4
0 0 1 3
0 0 0 0


 46.




1 −2 0 0
0 0 1 0
0 0 0 1




47.




1 0 0 −3 0
0 1 0 −4 0
0 0 1 5 0


 48.




1 0 −1 3 9
0 1 2 −5 8
0 0 0 0 0




49.




0 1 0 0 −3
0 0 1 0 −4
0 0 0 1 5


 50.




1 −2 0 0 −3
0 0 1 0 −4
0 0 0 1 5




51.




1 3 0 −2 6
0 0 1 4 7
0 0 0 0 0


 52.




0 1 0 3 −4
0 0 1 2 9
0 0 0 0 0




53.




1 −3 2 0 4 0
0 0 0 0 0 1
0 0 0 0 0 0




54.




0 0 1 −3 0 2 0
0 0 0 0 1 −1 0
0 0 0 0 0 0 0




55. Suppose that the general solution of a system of m linear
equations in n variables contains k free variables. How
many basic variables does it have? Explain your answer.

56. Suppose that R is a matrix in reduced row echelon form. If
row 4 of R is nonzero and has its leading entry in column
5, describe column 5.

In Exercises 57–76, determine whether the following
statements are true or false.

57. Every system of linear equations has at least one solution.

58. Some systems of linear equations have exactly two solu-
tions.

59. If a matrix A can be transformed into a matrix B by an
elementary row operation, then B can be transformed into
A by an elementary row operation.

60. If a matrix is in row echelon form, then the leading entry
of each nonzero row must be 1.

61. If a matrix is in reduced row echelon form, then the lead-
ing entry of each nonzero row is 1.

62. Every matrix can be transformed into one in reduced row
echelon form by a sequence of elementary row operations.

63. Every matrix can be transformed into a unique matrix
in row echelon form by a sequence of elementary row
operations.
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64. Every matrix can be transformed into a unique matrix in
reduced row echelon form by a sequence of elementary
row operations.

65. Performing an elementary row operation on the aug-
mented matrix of a system of linear equations produces
the augmented matrix of an equivalent system of linear
equations.

66. If the reduced row echelon form of the augmented matrix
of a system of linear equations contains a zero row, then
the system is consistent.

67. If the only nonzero entry in some row of an augmented
matrix of a system of linear equations lies in the last col-
umn, then the system is inconsistent.

68. A system of linear equations is called consistent if it has
one or more solutions.

69. If A is the coefficient matrix of a system of m linear
equations in n variables, then A is an n × m matrix.

70. The augmented matrix of a system of linear equations
contains one more column than the coefficient matrix.

71. If the reduced row echelon form of the augmented matrix
of a consistent system of m linear equations in n vari-
ables contains k nonzero rows, then its general solution
contains k basic variables.

72. A system of linear equations Ax = b has the same solu-
tions as the system of linear equations Rx = c, where
[R c] is the reduced row echelon form of [A b].

73. Multiplying every entry of some row of a matrix by a
scalar is an elementary row operation.

74. Every solution of a consistent system of linear equations
can be obtained by substituting appropriate values for the
free variables in its general solution.

75. If a system of linear equations has more variables than
equations, then it must have infinitely many solutions.

76. If A is an m × n matrix, then a solution of the system
Ax = b is a vector u in Rn such that Au = b.

77.7 Let [A b] be the augmented matrix of a system of linear
equations. Prove that if its reduced row echelon form is
[R c], then R is the reduced row echelon form of A.

78. Prove that if R is the reduced row echelon form of a
matrix A, then [R 0] is the reduced row echelon form of
[A 0].

79. Prove that for any m × n matrix A, the equation Ax = 0
is consistent, where 0 is the zero vector in Rm .

80. Let A be an m × n matrix whose reduced row echelon
form contains no zero rows. Prove that Ax = b is consis-
tent for every b in Rm .

81. In a matrix in reduced row echelon form, there are three
types of entries: The leading entries of nonzero rows are
required to be 1s, certain other entries are required to
be 0s, and the remaining entries are arbitrary. Suppose
that these arbitrary entries are denoted by asterisks. For
example, 


0 1 ∗ 0 ∗ 0 ∗
0 0 0 1 ∗ 0 ∗
0 0 0 0 0 1 ∗




is a possible reduced row echelon form for a 3 × 7 matrix.
How many different such forms for a reduced row echelon
matrix are possible if the matrix is 2 × 3?

82. Repeat Exercise 81 for a 2 × 4 matrix.

83. Suppose that B is obtained by one elementary row oper-
ation performed on matrix A. Prove that the same type
of elementary operation (namely, an interchange, scaling,
or row addition operation) that transforms A into B also
transforms B into A.

84. Show that if an equation in a system of linear equations is
multiplied by 0, the resulting system need not be equiva-
lent to the original one.

85. Let S denote the following system of linear equations:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

Show that if the second equation of S is multiplied by a
nonzero scalar c, then the resulting system is equivalent
to S .

86. Let S be the system of linear equations in Exercise 85.
Show that if k times the first equation of S is added to
the third equation, then the resulting system is equivalent
to S .

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) Since 2(−2) − 3 + 6(2) = 5, u is not a solution of
the second equation in the given system of equations.
Therefore u is not a solution of the system. Another
method for solving this problem is to represent the
given system as a matrix equation Ax = b, where

A =
[
1 0 5 −1
2 −1 6 0

]
and b =

[
7
8

]
.

Because

u =
[
1 0 5 −1
2 −1 6 0

]



−2
3
2
1


 =

[
7
5

]
�= b,

u is not a solution of the given system.

7 This exercise is used in Section 1.6 (on page 70).
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(b) Since 5 + 5(1) − 3 = 7 and 2(5) − 8 + 6(1) = 8, v
satisfies both of the equations in the given system.
Hence v is a solution of the system. Alternatively,
using the matrix equation Ax = b, we see that v is a
solution because

Av =
[
1 0 5 −1
2 −1 6 0

]



5
8
1
3


 =

[
7
8

]
= b.

2. In the given matrix, the only nonzero entry in the third
row lies in the last column. Hence the system of linear
equations corresponding to this matrix is not consistent.

3. The corresponding system of linear equations is

x2 − 3x3 + 2x5 = 4
x4 − x5 = 5.

Since the given matrix contains no row whose only
nonzero entry lies in the last column, this system is con-
sistent. The general solution of this system is

x1 free
x2 = 4 + 3x3 − 2x5

x3 free
x4 = 5 + x5

x5 free.

Note that x1, which is not a basic variable, is therefore a
free variable.

The general solution in vector form is



x1

x2

x3

x4

x5




=




0
4
0
5
0




+ x1




1
0
0
0
0




+ x3




0
3
1
0
0




+ x5




0
−2

0
1
1




.

1.4 GAUSSIAN ELIMINATION
In Section 1.3, we learned how to solve a system of linear equations for which the
augmented matrix is in reduced row echelon form. In this section, we describe a
procedure that can be used to transform any matrix into this form.

Suppose that R is the reduced row echelon form of a matrix A. Recall that the
first nonzero entry in a nonzero row of R is called the leading entry of that row. The
positions that contain the leading entries of the nonzero rows of R are called the pivot
positions of A, and a column of A that contains some pivot position of A is called a
pivot column of A. For example, later in this section we show that the reduced row
echelon form of

A =




1 2 −1 2 1 2
−1 −2 1 2 3 6

2 4 −3 2 0 3
−3 −6 2 0 3 9




is

R =




1 2 0 0 −1 −5
0 0 1 0 0 −3
0 0 0 1 1 2
0 0 0 0 0 0


 .

Here the first three rows of R are its nonzero rows, and so A has three pivot positions.
The first pivot position is row 1, column 1 because the leading entry in the first row of
R lies in column 1. The second pivot position is row 2, column 3 because the leading
entry in the second row of R lies in column 3. Finally, the third pivot position is row
3, column 4 because the leading entry in the third row of R lies in column 4. Hence
the pivot columns of A are columns 1, 3, and 4. (See Figure 1.19.)

The pivot positions and pivot columns are easily determined from the reduced row
echelon form of a matrix. However, we need a method to locate the pivot positions so
we can compute the reduced row echelon form. The algorithm that we use to obtain
the reduced row echelon form of a matrix is called Gaussian elimination.8 This

8 This method is named after Carl Friedrich Gauss (1777–1855), whom many consider to be the greatest
mathematician of all time. Gauss described this procedure in a paper that presented his calculations
to determine the orbit of the asteroid Pallas. However, a similar method for solving systems of linear
equations was known to the Chinese around 250 B.C.
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Figure 1.19 The pivot positions of the matrix R

algorithm locates the pivot positions and then makes certain entries of the matrix 0 by
means of elementary row operations. We assume that the matrix is nonzero because
the reduced row echelon form of a zero matrix is the same zero matrix. Our procedure
can be used to find the reduced row echelon form of any nonzero matrix. To illustrate
the algorithm, we find the reduced row echelon form of the matrix

A =



0 0 2 −4 −5 2 5
0 1 −1 1 3 1 −1
0 6 0 −6 5 16 7


 .

Step 1. Determine the leftmost nonzero column. This is a pivot column, and the
topmost position in this column is a pivot position.

Since the second column of
A is the leftmost nonzero
column, it is the first pivot
column. The topmost posi-
tion in this column lies in
row 1, and so the first pivot
position is the row 1, column
2 position.

0

0A �

0

0

1

6

2

�1

0

1

�4

�6

3

�5

5

1

2

16

�1

5
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pivot columns

pivot position

Step 2. In the pivot column, choose any nonzero9 entry in a row that is not above the
pivot row, and perform the appropriate row interchange to bring this entry
into the pivot position.

Because the entry in the
pivot position is 0, we
must perform a row inter-
change. We must select a
nonzero entry in the pivot
column. Suppose that we
select the entry 1. By inter-
changing rows 1 and 2, we
bring this entry into the
pivot position.

r1↔r2 �




0 1 −1 1 3 1 −1
0 0 2 −4 −5 2 5
0 6 0 −6 5 16 7




9 When performing calculations by hand, it may be advantageous to choose an entry of the pivot column
that is ±1, if possible, in order to simplify subsequent calculations.
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Step 3. Add an appropriate multiple of the row containing the pivot position to each
lower row in order to change each entry below the pivot position into 0.

In step 3, we must add multiples of row 1 of the matrix produced in step 2
to rows 2 and 3 so that the pivot column entries in rows 2 and 3 are changed
to 0. In this case, the entry in row 2 is already 0, so we need only change
the row 3 entry. Thus we add −6 times row 1 to row 3. This calculation is
usually done mentally, but we show it here for the sake of completeness.

0 −6 6 −6 −18 −6 6
0 6 0 −6 5 16 7
0 0 6 −12 −13 10 13

(−6 times row 1)
(row 3)

The effect of this row
operation is to transform
the previous matrix into
the one shown at the
right.

−6r1+r3→r3�




0 1 −1 1 3 1 −1
0 0 2 −4 −5 2 5
0 0 6 −12 −13 10 13




During steps 1–4 of the algorithm, we can ignore certain rows of the matrix.
We depict such rows by shading them. At the beginning of the algorithm, no
rows are ignored.

Step 4. Ignore the row containing the pivot position and all rows above it. If there
is a nonzero row that is not ignored, repeat steps 1–4 on the submatrix that
remains.

We are now finished with row 1, so we repeat steps 1–4 on the submatrix
below row 1.

0

0

0

1

0

0

�1

2

6

1

�4

�12

3

�5

�13

1

2

10

�1

5

13

pivot columns

pivot position

The leftmost nonzero column of this submatrix is column 3, so column 3
becomes the second pivot column. Since the topmost position in the second
column of the submatrix lies in row 2 of the entire matrix, the second pivot
position is the row 2, column 3 position.

Because the entry in the current pivot position is nonzero, no row inter-
change is required in step 2. So we continue to step 3, where we must add
an appropriate multiple of row 2 to row 3 in order to create a 0 in row 3,
column 3. The addition of −3 times row 2 to row 3 is shown as follows:

0 0 −6 12 15 −6 −15
0 0 6 −12 −13 10 13
0 0 0 0 2 4 −2

(−3 times row 2)
(row 3)

The new matrix is
shown at the right.

−3r2+r3→r3�




0 1 −1 1 3 1 −1
0 0 2 −4 −5 2 5
0 0 0 0 2 4 −2
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We are now finished with row 2, so we repeat steps 1–4 on the submatrix
below row 2, which consists of a single row.

0
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�1

2
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0
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�1

5
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pivot columns

pivot position

At this stage, column 5 is the leftmost nonzero column of the submatrix. So
column 5 is the third pivot column, and the row 3, column 5 position is the
next pivot position. Because the entry in the pivot position is nonzero, no row
interchange is needed in step 2. Moreover, because there are no rows below
the row containing the present pivot position, no operations are required in
step 3. Since there are no nonzero rows below row 3, steps 1–4 are now
complete and the matrix is in row echelon form.

The next two steps transform a matrix in row echelon form into a matrix
in reduced row echelon form. Unlike steps 1–4, which started at the top of
the matrix and worked down, steps 5 and 6 start at the last nonzero row of
the matrix and work up.

Step 5. If the leading entry of the row is not 1, perform the appropriate scaling
operation to make it 1. Then add an appropriate multiple of this row to every
preceding row to change each entry above the pivot position into 0.

We start by applying
step 5 to the last nonzero
row of the matrix, which
is row 3. Since the lead-
ing entry (the (3, 5)-
entry) is not 1, we mul-
tiply the third row by
1
2 to make the leading
entry 1. This produces
the matrix at the right.

1
2 r3→r3�




0 1 −1 1 3 1 −1
0 0 2 −4 −5 2 5
0 0 0 0 1 2 −1




Now we add appropri-
ate multiples of the third
row to every preced-
ing row to change each
entry above the leading
entry into 0. The result-
ing matrix is shown at
the right.

5r3 + r2 → r2
−3r3 + r1 → r1�




0 1 −1 1 0 −5 2
0 0 2 −4 0 12 0
0 0 0 0 1 2 −1




Step 6. If step 5 was performed on the first row, stop. Otherwise, repeat step 5 on
the preceding row.
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Since we just performed
step 5 using the third row,
we now repeat step 5 using
the second row. To make
the leading entry in this
row a 1, we must multiply
row 2 by 1

2 .

1
2 r2→r2�




0 1 −1 1 0 −5 2
0 0 1 −2 0 6 0
0 0 0 0 1 2 −1




Now we must change the
entry above the leading entry
in row 2 to 0. The resulting
matrix is shown at the right.

r2+r1→r1�




0 1 0 −1 0 1 2
0 0 1 −2 0 6 0
0 0 0 0 1 2 −1




We just performed step 5 on the second row, so we repeat it on the first row.
This time the leading entry in the row is already 1, so no scaling operation
is needed in step 5. Moreover, because there are no rows above this row, no
other operations are needed. We see that the preceding matrix is in reduced
row echelon form.

Steps 1–4 of the preceding algorithm are called the forward pass. The
forward pass transforms the original matrix into a matrix in row echelon
form. Steps 5 and 6 of the algorithm are called the backward pass. The
backward pass further transforms the matrix into reduced row echelon form.

Example 1 Solve the following system of linear equations:

x1 + 2x2 − x3 + 2x4 + x5 = 2
−x1 − 2x2 + x3 + 2x4 + 3x5 = 6
2x1 + 4x2 − 3x3 + 2x4 = 3

−3x1 − 6x2 + 2x3 + 3x5 = 9

Solution The augmented matrix of this system is




1 2 −1 2 1 2
−1 −2 1 2 3 6

2 4 −3 2 0 3
−3 −6 2 0 3 9


 .

We apply the Gaussian elimination algorithm to transform this matrix into one in
reduced row echelon form.

Operations Resulting Matrix

The first pivot position is in
row 1, column 1. Since this entry is
nonzero, we add appropriate multi-
ples of row 1 to the other rows to
change the entries below the pivot
position to 0.

r1 + r2 → r2
−2r1 + r3 → r3
3r1 + r4 → r4�




1 2 −1 2 1 2
0 0 0 4 4 8
0 0 −1 −2 −2 −1
0 0 −1 6 6 15




The second pivot position is row 2,
column 3. Since the entry in this
position is presently 0, we inter-
change rows 2 and 3.

r2↔r3 �




1 2 −1 2 1 2
0 0 −1 −2 −2 −1
0 0 0 4 4 8
0 0 −1 6 6 15
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Next we add −1 times row 2 to
row 4.

−r2+r4→r4�




1 2 −1 2 1 2
0 0 −1 −2 −2 −1
0 0 0 4 4 8
0 0 0 8 8 16




The third pivot position is in
row 3, column 4. Since this entry is
nonzero, we add −2 times row 3 to
row 4.

−2r3+r4→r4�




1 2 −1 2 1 2
0 0 −1 −2 −2 −1
0 0 0 4 4 8
0 0 0 0 0 0




At this stage, step 4 is complete, so
we continue by performing step 5
on the third row. First we multiply
row 3 by 1

4 .

1
4 r3→r3�




1 2 −1 2 1 2
0 0 −1 −2 −2 −1
0 0 0 1 1 2
0 0 0 0 0 0




Then we add 2 times row 3 to row
2 and −2 times row 3 to row 1.

2r3 + r2 → r2
−2r3 + r1 → r1�




1 2 −1 0 −1 −2
0 0 −1 0 0 3
0 0 0 1 1 2
0 0 0 0 0 0




Now we must perform step 5 using
row 2. This requires that we multi-
ply row 2 by −1.

−r2→r2�




1 2 −1 0 −1 −2
0 0 1 0 0 −3
0 0 0 1 1 2
0 0 0 0 0 0




Then we add row 2 to row 1.
r2+r1→r1�




1 2 0 0 −1 −5
0 0 1 0 0 −3
0 0 0 1 1 2
0 0 0 0 0 0




Performing step 5 with row 1 produces no changes, so this matrix is the reduced
row echelon form of the augmented matrix of the given system. This matrix corre-
sponds to the system of linear equations

x1 + 2x2 − x5 = −5
x3 = −3

x4 + x5 = 2.
(6)

As we saw in Example 5 of Section 1.3, the general solution of this system is

x1 = −5 − 2x2 + x5

x2 free
x3 = −3
x4 = 2 − x5

x5 free.

Practice Problem 1 � Find the general solution of

x1 − x2 − 3x3 + x4 − x5 = −2
−2x1 + 2x2 + 6x3 − 6x5 = −6

3x1 − 2x2 − 8x3 + 3x4 − 5x5 = −7. �
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THE RANK AND NULLITY OF A MATRIX
We now associate with a matrix two important numbers that are easy to determine
from its reduced row echelon form. If the matrix is the augmented matrix of a system
of linear equations, these numbers provide significant information about the solutions
of the corresponding system of linear equations.

Definitions The rank of an m × n matrix A, denoted by rank A, is defined to be
the number of nonzero rows in the reduced row echelon form of A. The nullity of A,
denoted by nullity A, is defined to be n − rank A.

Example 2 For the matrix



1 2 −1 2 1 2
−1 −2 1 2 3 6

2 4 −3 2 0 3
−3 −6 2 0 3 9




in Example 1, the reduced row echelon form is



1 2 0 0 −1 −5
0 0 1 0 0 −3
0 0 0 1 1 2
0 0 0 0 0 0


 .

Since the reduced row echelon form has three nonzero rows, the rank of the matrix
is 3. The nullity of the matrix, found by subtracting its rank from the number of
columns, is 6 − 3 = 3.

Example 3 The reduced row echelon form of the matrix

B =




2 3 1 5 2
0 1 1 3 2
4 5 1 7 2
2 1 −1 −1 −2




is 


1 0 −1 −2 −2
0 1 1 3 2
0 0 0 0 0
0 0 0 0 0


 .

Since the latter matrix has two nonzero rows, the rank of B is 2. The nullity of B is
5 − 2 = 3.

Practice Problem 2 � Find the rank and nullity of the matrix

A =




0 1 0 −1 0 1 2
0 0 1 −2 0 6 0
0 0 0 0 1 2 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.

�

47



48 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

In Examples 2 and 3, note that each nonzero row in the reduced row echelon form
of the given matrix contains exactly one pivot position, so the number of nonzero rows
equals the number of pivot positions. Consequently, we can restate the definition of
rank as follows:

The rank of a matrix equals the number of pivot columns in the matrix.
The nullity of a matrix equals the number of nonpivot columns in the matrix.

It follows that in a matrix in reduced row echelon form with rank k , the standard
vectors e1, e2, . . . , ek must appear, in order, among the columns of the matrix. In
Example 2, for instance, the rank of the matrix is 3, and columns 1, 3, and 4 of the
reduced row echelon form are

e1 =




1
0
0
0


 , e2 =




0
1
0
0


 , and e3 =




0
0
1
0


 ,

respectively. Thus, if an m × n matrix has rank n , then its reduced row echelon form
must be precisely

[
e1 e2 . . . en

]
. In the special case of an n × n (square) matrix,

[
e1 e2 . . . en

] =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


 = In ,

the n × n identity matrix; therefore we have the following useful result:

If an n × n matrix has rank n , then its reduced row echelon form is In .

Consider the system of linear equations in Example 1 as a matrix equation Ax = b.
Our method for solving the system is to find the reduced row echelon form [R c] of
the augmented matrix [A b]. The system Rx = c is then equivalent to Ax = b, and
we can easily solve Rx = c because [R c] is in reduced row echelon form. Note that
each basic variable of the system Ax = b corresponds to the leading entry of exactly
one nonzero row of [R c], so the number of basic variables equals the number of
nonzero rows, which is the rank of A. Also, if n is the number of columns of A, then
the number of free variables of Ax = b equals n minus the number of basic variables.
By the previous remark, the number of free variables equals n − rank A, which is the
nullity of A. In general,

If Ax = b is the matrix form of a consistent system of linear equations, then

(a) the number of basic variables in a general solution of the system equals the
rank of A;

(b) the number of free variables in a general solution of the system equals the
nullity of A.

Thus a consistent system of linear equations has a unique solution if and only
if the nullity of its coefficient matrix equals 0. Equivalently, a consistent system
of linear equations has infinitely many solutions if and only if the nullity of its
coefficient matrix is positive.
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The original system of linear equations in Example 1 is a system of 4 equations
in 5 variables. However, it is equivalent to system (6), the system of 3 equations in
5 variables corresponding to the reduced row echelon form of its augmented matrix.
In Example 1, the fourth equation in the original system is redundant because it is a
linear combination of the first three equations. Specifically, it is the sum of −3 times
the first equation, 2 times the second equation, and the third equation. The other three
equations are nonredundant. In general, the rank of the augmented matrix [A b] tells
us the number of nonredundant equations in the system Ax = b.

Example 4 Consider the following system of linear equations:

x1 + x2 + x3 = 1
x1 + 3x3 = −2 + s
x1 − x2 + rx3 = 3

(a) For what values of r and s is this system of linear equations inconsistent?

(b) For what values of r and s does this system of linear equations have infinitely
many solutions?

(c) For what values of r and s does this system of linear equations have a unique
solution?

Solution Apply the Gaussian elimination algorithm to the augmented matrix of
the given system to transform the matrix into one in row echelon form:




1 1 1 1
1 0 3 −2 + s
1 −1 r 3




−r1 + r2 → r2
−r1 + r3 → r3�




1 1 1 1
0 −1 2 −3 + s
0 −2 r − 1 2




−2r2+r3→r3�




1 1 1 1
0 −1 2 −3 + s
0 0 r − 5 8 − 2s




(a) The original system is inconsistent whenever there is a row whose only nonzero
entry lies in the last column. Only the third row could have this form. Thus the original
system is inconsistent whenever r − 5 = 0 and 8 − 2s �= 0; that is, when r = 5 and
s �= 4.

(b) The original system has infinitely many solutions whenever the system is
consistent and there is a free variable in the general solution. In order to have a free
variable, we must have r − 5 = 0, and in order for the system also to be consistent,
we must have 8 − 2s = 0. Thus the original system has infinitely many solutions if
r = 5 and s = 4.

(c) Let A denote the 3 × 3 coefficient matrix of the system. For the system to
have a unique solution, there must be three basic variables, and so the rank of A must
be 3. Since deleting the last column of the immediately preceding matrix gives a row
echelon form of A, the rank of A is 3 precisely when r − 5 �= 0; that is, r �= 5.

Practice Problem 3 � Consider the following system of linear equations:

x1 + 3x2 = 1 + s
x1 + rx2 = 5

(a) For what values of r and s is this system of linear equations inconsistent?

(b) For what values of r and s does this system of linear equations have infinitely
many solutions?
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(c) For what values of r and s does this system of linear equations have a unique
solution? �

The following theorem provides several conditions that are equivalent10 to the
existence of solutions for a system of linear equations.

THEOREM 1.5

(Test for Consistency) The following conditions are equivalent:

(a) The matrix equation Ax = b is consistent.

(b) The vector b is a linear combination of the columns of A.

(c) The reduced row echelon form11 of the augmented matrix [A b] has no row
of the form [0 0 · · · 0 d ], where d �= 0.

PROOF Let A be an m × n matrix, and let b be in Rm . By the definition of a
matrix–vector product, there exists a vector

v =




v1

v2
...

vn




in Rn such that Av = b if and only if

v1a1 + v2a2 + · · · + vnan = b.

Thus Ax = b is consistent if and only if b is a linear combination of the columns
of A. So (a) is equivalent to (b).

Finally, we prove that (a) is equivalent to (c). Let [R c] be the reduced row
echelon form of the augmented matrix [A b]. If statement (c) is false, then the
system of linear equations corresponding to Rx = c contains the equation

0x1 + 0x2 + · · · + 0xn = d ,

where d �= 0. Since this equation has no solutions, Rx = c is inconsistent. On
the other hand, if statement (c) is true, then we can solve every equation in the
system of linear equations corresponding to Rx = c for some basic variable. This
gives a solution of Rx = c, which is also a solution of Ax = b. �

TECHNOLOGICAL CONSIDERATIONS∗

Gaussian elimination is the most efficient procedure for reducing a matrix to its
reduced row echelon form. Nevertheless, it requires many tedious computations. In
fact, the number of arithmetic operations required to obtain the reduced row echelon
form of an n × (n + 1) matrix is typically on the order of 2

3n3 + 1
2n2 − 7

6n . We can

10 Statements are called equivalent (or logically equivalent) if, under every circumstance, they are all true
or they are all false. Whether any one of the statements in Theorem 1.5 is true or false depends on the
particular matrix A and vector b being considered.

11 Theorem 1.5 remains true if (c) is changed as follows: Every row echelon form of [A b] has no row in
which the only nonzero entry lies in the last column.

∗ The remainder of this section may be omitted without loss of continuity.
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easily program this algorithm on a computer or programmable calculator and thus
obtain the reduced row echelon form of a matrix. However, computers or calculators
can store only a finite number of decimal places, so they can introduce small errors
called roundoff errors in their calculations. Usually, these errors are insignificant. But
when we use an algorithm with many steps, such as Gaussian elimination, the errors
can accumulate and significantly affect the result. The following example illustrates
the potential pitfalls of roundoff error. Although the calculations in the example are
performed on the TI-85 calculator, the same types of issues arise when any computer
or calculator is used to solve a system of linear equations.

For the matrix



1 −1 2 3 1 −1
3 −1 2 4 1 2
7 −2 4 8 1 6


 ,

the TI-85 calculator gives the reduced row echelon form as




1 0 −1E–14 0 −.999999999999 2
0 1 −2 0 4 1.3E–12
0 0 0 1 2 −1


 .

(The notation aEb represents a × 10b .) However, by exact hand calculations, we find
that the third, fifth, and sixth columns should be




0
−2

0


 ,




−1
4
2


 , and




2
0

−1


 ,

respectively. On the TI-85 calculator, numbers are stored with 14 digits. Thus a number
containing more than 14 significant digits is not stored exactly in the calculator. In
subsequent calculations with that number, roundoff errors can accumulate to such a
degree that the final result of the calculation is highly inaccurate. In our calculation
of the reduced row echelon form of the matrix A, roundoff errors have affected the
(1, 3)-entry, the (1, 5)-entry, and the (2, 6)-entry. In this instance, none of the affected
entries is greatly changed, and it is reasonable to expect that the true entries in these
positions should be 0, −1, and 0, respectively. But can we be absolutely sure? (We
will learn a way of checking if these entries are 0, −1, and 0 in Section 2.3.)

It is not always so obvious that roundoff errors have occurred. Consider the system
of linear equations

kx1 + (k − 1)x2 = 1
(k + 1)x1 + kx2 = 2.

By subtracting the first equation from the second, this system is easily solved, and the
solution is x1 = 2 − k and x2 = k − 1. But for sufficiently large values of k , roundoff
errors can cause problems. For example, with k = 4,935,937, the TI-85 calculator
gives the reduced row echelon form of the augmented matrix

[
4935937 4935936 1
4935938 4935937 2

]

as
[
1 .999999797404 0
0 0 1

]
.
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Since the last row of the reduced row echelon form has its only nonzero entry in
the last column, we would incorrectly deduce from this that the original system is
inconsistent!

The analysis of roundoff errors and related matters is a serious mathematical
subject that is inappropriate for this book. (It is studied in the branch of mathematics
called numerical analysis.) We encourage the use of technology whenever possible
to perform the tedious calculations associated with matrices (such as those required
to obtain the reduced row echelon form of a matrix). Nevertheless, a certain amount
of skepticism is healthy when technology is used. Just because the calculations are
performed with a calculator or computer is no guarantee that the result is correct. In
this book, however, the examples and exercises usually involve simple numbers (often
one- or two-digit integers) and small matrices; so there is little chance of serious errors
resulting from the use of technology.

EXERCISES

In Exercises 1–16, determine whether the given system is con-
sistent, and if so, find its general solution.

1. 2x1 + 6x2 = −4 2.
x1 − x2 = 3

−2x1 + 2x2 = −6

3.
x1 − 2x2 = −6

−2x1 + 3x2 = 7
4.

x1 − x2 − 3x3 = 3
2x1 + x2 − 3x3 = 0

5.
2x1 − 2x2 + 4x3 = 1

−4x1 + 4x2 − 8x3 = −3

6.
x1 − 2x2 − x3 = 3

−2x1 + 4x2 + 2x3 = −6
3x1 − 6x2 − 3x3 = 9

7.
x1 − 2x2 − x3 = −3

2x1 − 4x2 + 2x3 = 2

8.
x1 + x2 − x3 − x4 = −2

2x2 − 3x3 − 12x4 = −3
x1 + x3 + 6x4 = 0

9.
x1 − x2 − 3x3 + x4 = 0

−2x1 + x2 + 5x3 = −4
4x1 − 2x2 − 10x3 + x4 = 5

10.
x1 − 3x2 + x3 + x4 = 0

−3x1 + 9x2 − 2x3 − 5x4 = 1
2x1 − 6x2 − x3 + 8x4 = −2

11.
x1 + 3x2 + x3 + x4 = −1

−2x1 − 6x2 − x3 = 5
x1 + 3x2 + 2x3 + 3x4 = 2

12.

x1 + x2 + x3 = −1
2x1 + x2 − x3 = 2
x1 − 2x3 = 3

−3x1 − 2x2 = −1

13.

x1 + 2x2 + x3 = 1
−2x1 − 4x2 − x3 = 0

5x1 + 10x2 + 3x3 = 2
3x1 + 6x2 + 3x3 = 4

14.

x1 − x2 + x3 = 7
x1 − 2x2 − x3 = 8

2x1 − x3 = 10
−x1 − 4x2 − x3 = 2

15.
x1 − x3 − 2x4 − 8x5 = −3

−2x1 + x3 + 2x4 + 9x5 = 5
3x1 − 2x3 − 3x4 − 15x5 = −9

16.
x1 − x2 + x4 = −4
x1 − x2 + 2x4 + 2x5 = −5

3x1 − 3x2 + 2x4 − 2x5 = −11

In Exercises 17–26, determine the values of r, if any, for which
the given system of linear equations is inconsistent.

17.
−x1 + 4x2 = 3
3x1 + rx2 = 2

18.
3x1 + rx2 = −2
−x1 + 4x2 = 6

19.
x1 − 2x2 = 0

4x1 − 8x2 = r
20.

x1 + rx2 = −3
2x1 = −6

21.
x1 − 3x2 = −2

2x1 + rx2 = −4
22.

−2x1 + x2 = 5
rx1 + 4x2 = 3

23.
−x1 + rx2 = 2
rx1 − 9x2 = 6

24.
x1 + rx2 = 2

rx1 + 16x2 = 8

25.
x1 − x2 + 2x3 = 4

3x1 + rx2 − x3 = 2
26.

x1 + 2x2 − 4x3 = 1
−2x1 − 4x2 + rx3 = 3

In Exercises 27–34, determine the values of r and s for which the
given system of linear equations has (a) no solutions, (b) exactly
one solution, and (c) infinitely many solutions.

27.
x1 + rx2 = 5

3x1 + 6x2 = s
28.

−x1 + 4x2 = s
2x1 + rx2 = 6
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29.
x1 + 2x2 = s

−4x1 + rx2 = 8
30.

−x1 + 3x2 = s
4x1 + rx2 = −8

31.
x1 + rx2 = −3

2x1 + 5x2 = s
32.

x1 + rx2 = 5
−3x1 + 6x2 = s

33.
−x1 + rx2 = s
3x1 − 9x2 = −2

34.
2x1 − x2 = 3
4x1 + rx2 = s

In Exercises 35–42, find the rank and nullity of the given matrix.

35.




1 −1 −1 0
2 −1 −2 1
1 −2 −2 2

−4 2 3 1
1 −1 −2 3




36.




1 −3 −1 2
−2 6 2 −4

3 −9 2 1
1 −3 4 −3

−1 3 −9 8




37.




−2 2 1 1 −2
1 −1 −1 −3 3

−1 1 −1 −7 5




38.




1 0 −2 −1 0 −1
2 −1 −6 −2 0 −4
0 1 2 1 1 1

−1 2 6 3 1 2




39.




1 1 1 1
1 2 4 2
2 0 −4 1




40.




1 0 1 −1 6
2 −1 5 −1 7

−1 1 −4 1 −3
0 1 −3 1 1




41.




1 −2 0 −3 1
2 −4 −1 −8 8

−1 2 1 5 −7
0 0 1 2 −6




42.




1 −2 −1 0 3 −2
2 −4 −2 −1 5 9

−1 2 1 1 −2 7
0 0 0 1 1 5




43. A mining company operates three mines that each pro-
duce three grades of ore. The daily yield of each mine is
shown in the following table:

Daily Yield
Mine 1 Mine 2 Mine 3

High-grade ore 1 ton 1 ton 2 tons
Medium-grade ore 1 ton 2 tons 2 tons
Low-grade ore 2 tons 1 ton 0 tons

(a) Can the company supply exactly 80 tons of high-
grade, 100 tons of medium-grade, and 40 tons of

low-grade ore? If so, how many days should each
mine operate to fill this order?

(b) Can the company supply exactly 40 tons of high-
grade, 100 tons of medium-grade, and 80 tons of
low-grade ore? If so, how many days should each
mine operate to fill this order?

44. A company makes three types of fertilizer. The first type
contains 10% nitrogen and 3% phosphates by weight, the
second contains 8% nitrogen and 6% phosphates, and the
third contains 6% nitrogen and 1% phosphates.

(a) Can the company mix these three types of fertilizers
to supply exactly 600 pounds of fertilizer containing
7.5% nitrogen and 5% phosphates? If so, how?

(b) Can the company mix these three types of fertilizers
to supply exactly 600 pounds of fertilizer containing
9% nitrogen and 3.5% phosphates? If so, how?

45. A patient needs to consume exactly 660 mg of magne-
sium, 820 IU of vitamin D, and 750 mcg of folate per day.
Three food supplements can be mixed to provide these
nutrients. The amounts of the three nutrients provided by
each of the supplements is given in the following table:

Food Supplement
1 2 3

Magnesium (mg) 10 15 36
Vitamin D (IU) 10 20 44
Folate (mcg) 15 15 42

(a) What is the maximum amount of supplement 3 that
can be used to provide exactly the required amounts
of the three nutrients?

(b) Can the three supplements be mixed to provide
exactly 720 mg of magnesium, 800 IU of vitamin D,
and 750 mcg of folate? If so, how?

46. Three grades of crude oil are to be blended to obtain 100
barrels of oil costing $35 per barrel and containing 50 gm
of sulfur per barrel. The cost and sulfur content of the
three grades of oil are given in the following table:

Grade
A B C

Cost per barrel $40 $32 $24
Sulfur per barrel 30 gm 62 gm 94 gm

(a) Find the amounts of each grade to be blended that use
the least oil of grade C.

(b) Find the amounts of each grade to be blended that use
the most oil of grade C.

47. Find a polynomial function f (x ) = ax 2 + bx + c whose
graph passes through the points (−1, 14), (1, 4), and
(3, 10).

48. Find a polynomial function f (x ) = ax 2 + bx + c whose
graph passes through the points (−2,−33), (2, −1), and
(3, −8).

49. Find a polynomial function f (x ) = ax 3 + bx2 + cx + d
whose graph passes through the points (−2, 32), (−1, 13),
(2, 4), and (3, 17).
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50. Find a polynomial function f (x ) = ax 3 + bx2 + cx + d
whose graph passes through the points (−2, 12), (−1,−9),
(1, −3), and (3, 27).

51. If the third pivot position of a matrix A is in column
j , what can be said about column j of the reduced row
echelon form of A? Explain your answer.

52. Suppose that the fourth pivot position of a matrix is in
row i and column j . Say as much as possible about i and
j . Explain your answer.

In Exercises 53–72, determine whether the state-
ments are true or false.

53. A column of a matrix A is a pivot column if the corre-
sponding column in the reduced row echelon form of A
contains the leading entry of some nonzero row.

54. There is a unique sequence of elementary row operations
that transforms a matrix into its reduced row echelon form.

55. When the forward pass of Gaussian elimination is com-
plete, the original matrix has been transformed into one
in row echelon form.

56. No scaling operations are required in the forward pass of
Gaussian elimination.

57. The rank of a matrix equals the number of pivot columns
in the matrix.

58. If Ax = b is consistent, then the nullity of A equals the
number of free variables in the general solution of Ax = b.

59. There exists a 5 × 8 matrix with rank 3 and nullity 2.

60. If a system of m linear equations in n variables is equiva-
lent to a system of p linear equations in q variables, then
m = p.

61. If a system of m linear equations in n variables is equiva-
lent to a system of p linear equations in q variables, then
n = q .

62. The equation Ax = b is consistent if and only if b is a
linear combination of the columns of A.

63. If the equation Ax = b is inconsistent, then the rank of
[A b] is greater than the rank of A.

64. If the reduced row echelon form of [A b] contains a zero
row, then Ax = b must have infinitely many solutions.

65. If the reduced row echelon form of [A b] contains a zero
row, then Ax = b must be consistent.

66. If some column of matrix A is a pivot column, then the
corresponding column in the reduced row echelon form
of A is a standard vector.

67. If A is a matrix with rank k , then the vectors e1, e2, . . . , ek

appear as columns of the reduced row echelon form of A.

68. The sum of the rank and nullity of a matrix equals the
number of rows in the matrix.

69. Suppose that the pivot rows of a matrix A are rows
1, 2, . . . , k , and row k + 1 becomes zero when applying
the Gaussian elimination algorithm. Then row k + 1 must
equal some linear combination of rows 1, 2, . . . , k .

70. The third pivot position in a matrix lies in row 3.

71. The third pivot position in a matrix lies in column 3.

72. If R is an n × n matrix in reduced row echelon form that
has rank n, then R = In .

73. Describe an m × n matrix with rank 0.

74. What is the smallest possible rank of a 4 × 7 matrix?
Explain your answer.

75. What is the largest possible rank of a 4 × 7 matrix?
Explain your answer.

76. What is the largest possible rank of a 7 × 4 matrix?
Explain your answer.

77. What is the smallest possible nullity of a 4 × 7 matrix?
Explain your answer.

78. What is the smallest possible nullity of a 7 × 4 matrix?
Explain your answer.

79. What is the largest possible rank of an m × n matrix?
Explain your answer.

80. What is the smallest possible nullity of an m × n matrix?
Explain your answer.

81. Let A be a 4 × 3 matrix. Is it possible that Ax = b is
consistent for every b in R4? Explain your answer.

82. Let A be an m × n matrix and b be a vector in Rm . What
must be true about the rank of A if Ax = b has a unique
solution? Justify your answer.

83. A system of linear equations is called underdetermined
if it has fewer equations than variables. What can be
said about the number of solutions of an underdetermined
system?

84. A system of linear equations is called overdetermined if
it has more equations than variables. Give examples of
overdetermined systems that have

(a) no solutions,

(b) exactly one solution, and

(c) infinitely many solutions.

85. Prove that if A is an m × n matrix with rank m, then
Ax = b is consistent for every b in Rm .

86. Prove that a matrix equation Ax = b is consistent if and
only if the ranks of A and [A b] are equal.

87. Let u be a solution of Ax = 0, where A is an m × n matrix.
Must cu be a solution of Ax = 0 for every scalar c? Justify
your answer.

88. Let u and v be solutions of Ax = 0, where A is an m × n
matrix. Must u + v be a solution of Ax = 0? Justify your
answer.

89. Let u and v be solutions of Ax = b, where A is an m × n
matrix and b is a vector in Rm . Prove that u − v is a
solution of Ax = 0.

90. Let u be a solution of Ax = b and v be a solution of
Ax = 0, where A is an m × n matrix and b is a vector in
Rm . Prove that u + v is a solution of Ax = b.

91. Let A be an m × n matrix and b be a vector in Rm such
that Ax = b is consistent. Prove that Ax = cb is consistent
for every scalar c.
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92. Let A be an m × n matrix and b1 and b2 be vectors in
Rm such that both Ax = b1 and Ax = b2 are consistent.
Prove that Ax = b1 + b2 is consistent.

93. Let u and v be solutions of Ax = b, where A is an m × n
matrix and b is a vector in Rm . Must u + v be a solution
of Ax = b? Justify your answer.

In Exercises 94–99, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

In Exercises 94–96, use Gaussian elimination on the augmented
matrix of the system of linear equations to test for consistency,
and to find the general solution.

94.
1.3x1 + 0.5x2 − 1.1x3 + 2.7x4 − 2.1x5 = 12.9
2.2x1 − 4.5x2 + 3.1x3 − 5.1x4 + 3.2x5 = −29.2
1.4x1 − 2.1x2 + 1.5x3 − 3.1x4 − 2.5x5 = −11.9

95.

x1 − x2 + 3x3 − x4 + 2x5 = 5
2x1 + x2 + 4x3 + x4 − x5 = 7
3x1 − x2 + 2x3 − 2x4 + 2x5 = 3
2x1 − 4x2 − x3 − 4x4 + 5x5 = 6

96.

4x1 − x2 + 5x3 − 2x4 + x5 = 0
7x1 − 6x2 + 3x4 + 8x5 = 15
9x1 − 5x2 + 4x3 − 7x4 + x5 = 6
6x1 + 9x3 − 12x4 − 6x5 = 11

In Exercises 97–99, find the rank and the nullity of the matrix.

97.




1.2 2.3 −1.1 1.0 2.1
3.1 1.2 −2.1 1.4 2.4

−2.1 4.1 2.3 −1.2 0.5
3.4 9.9 −2.0 2.2 7.1




98.




2.7 1.3 1.6 1.5 −1.0
1.7 2.3 −1.2 2.1 2.2
3.1 −1.8 4.2 3.1 1.4
4.1 −1.1 2.1 1.2 0.0
6.2 −1.7 3.4 1.5 2.0




99.




3 −11 2 4 −8
5 1 0 8 5

11 2 −9 3 −4
3 14 −11 7 9
0 2 0 16 10




SOLUTIONS TO THE PRACTICE PROBLEMS

1. The augmented matrix of the given system is



1 −1 −3 1 −1 −2
−2 2 6 0 −6 −6

3 −2 −8 3 −5 −7


 .

Apply the Gaussian elimination algorithm to the aug-
mented matrix of the given system to transform the matrix
into one in row echelon form:




1 −1 −3 1 −1 −2
−2 2 6 0 −6 −6

3 −2 −8 3 −5 −7




2r1 + r2 → r2
−3r1 + r3 → r3�




1 −1 −3 1 −1 −2
0 0 0 2 −8 −10
0 1 1 0 −2 −1




r2↔r3 �




1 −1 −3 1 −1 −2
0 1 1 0 −2 −1
0 0 0 2 −8 −10




1
2 r3→r3�




1 −1 −3 1 −1 −2
0 1 1 0 −2 −1
0 0 0 1 −4 −5




−r3+r1→r1�




1 −1 −3 0 3 3
0 1 1 0 −2 −1
0 0 0 1 −4 −5




r2+r1→r1�




1 0 −2 0 1 2
0 1 1 0 −2 −1
0 0 0 1 −4 −5




The final matrix corresponds to the following system of
linear equations:

x1 − 2x3 + x5 = 2
x2 + x3 − 2x5 = −1

x4 − 4x5 = −5

The general solution of this system is

x1 = 2 + 2x3 − x5

x2 = −1 − x3 + 2x5

x3 free
x4 = −5 + 4x5

x5 free.

2. The matrix A is in reduced row echelon form. Further-
more, it has 3 nonzero rows, and hence the rank of A is
3. Since A has 7 columns, its nullity is 7 − 3 = 4.

3. Apply the Gaussian elimination algorithm to the aug-
mented matrix of the given system to transform the matrix
into one in row echelon form:
[

1 3 1 + s
1 r 5

] −r1+r2→r2�
[

1 3 1 + s
0 r − 3 4 − s

]

(a) The original system is inconsistent whenever there is a
row whose only nonzero entry lies in the last column.
Only the second row could have this form. Thus the
original system is inconsistent whenever r − 3 = 0
and 4 − s �= 0; that is, when r = 3 and s �= 4.

(b) The original system has infinitely many solutions
whenever the system is consistent and there is a free
variable in the general solution. In order to have a free
variable, we must have r − 3 = 0, and in order for the
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system also to be consistent, we must have 4 − s = 0.
Thus the original system has infinitely many solutions
if r = 3 and s = 4.

(c) Let A denote the coefficient matrix of the system. For
the system to have a unique solution, there must be

two basic variables, so the rank of A must be 2. Since
deleting the last column of the preceding matrix gives
a row echelon form of A, the rank of A is 2 precisely
when r − 3 �= 0; that is, when r �= 3.

1.5∗ APPLICATIONS OF SYSTEMS OF LINEAR
EQUATIONS

Systems of linear equations arise in many applications of mathematics. In this section,
we present two such applications.

THE LEONTIEF INPUT–OUTPUT MODEL
In a modern industrialized country, there are hundreds of different industries that
supply goods and services needed for production. These industries are often mutually
dependent.

The agricultural industry, for instance, requires farm machinery to plant and
harvest crops, whereas the makers of farm machinery need food produced by the
agricultural industry. Because of this interdependency, events in one industry, such as
a strike by factory workers, can significantly affect many other industries. To better
understand these complex interactions, economic planners use mathematical models
of the economy, the most important of which was developed by the Russian-born
economist Wassily Leontief.

While a student in Berlin in the 1920s, Leontief developed a mathematical model,
called the input–output model, for analyzing an economy. After arriving in the United
States in 1931 to be a professor of economics at Harvard University, Leontief began
to collect the data that would enable him to implement his ideas. Finally, after the
end of World War II, he succeeded in extracting from government statistics the data
necessary to create a model of the U.S. economy. This model proved to be highly
accurate in predicting the behavior of the postwar U.S. economy and earned Leontief
the 1973 Nobel Prize for Economics.

Leontief’s model of the U.S. economy combined approximately 500 industries into
42 sectors that provide products and services, such as the electrical machinery sector.
To illustrate Leontief’s theory, which can be applied to the economy of any country
or region, we next show how to construct a general input–output model. Suppose that
an economy is divided into n sectors and that sector i produces some commodity
or service Si (i = 1, 2, . . . , n). Usually, we measure amounts of commodities and
services in common monetary units and hold costs fixed so that we can compare
diverse sectors. For example, the output of the steel industry could be measured in
millions of dollars worth of steel produced.

For each i and j , let cij denote the amount of Si needed to produce one unit of Sj .
Then the n × n matrix C whose (i , j )-entry is cij is called the input–output matrix
(or the consumption matrix) for the economy.

To illustrate these ideas with a very simple example, consider an economy that
is divided into three sectors: agriculture, manufacturing, and services. (Of course, a
model of any real economy, such as Leontief’s original model, will involve many
more sectors and much larger matrices.) Suppose that each dollar’s worth of agri-
cultural output requires inputs of $0.10 from the agricultural sector, $0.20 from the

∗ This section can be omitted without loss of continuity.
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manufacturing sector, and $0.30 from the services sector; each dollar’s worth of man-
ufacturing output requires inputs of $0.20 from the agricultural sector, $0.40 from the
manufacturing sector, and $0.10 from the services sector; and each dollar’s worth of
services output requires inputs of $0.10 from the agricultural sector, $0.20 from the
manufacturing sector, and $0.10 from the services sector.

From this information, we can form the following input–output matrix:

C =

Ag. Man. Svcs.


.1 .2 .1

.2 .4 .2

.3 .1 .1




Agriculture
Manufacturing
Services

Note that the (i , j )-entry of the matrix represents the amount of input from sector
i needed to produce a dollar’s worth of output from sector j . Now let x1, x2, and
x3 denote the total output of the agriculture, manufacturing, and services sectors,
respectively. Since x1 dollar’s worth of agricultural products are being produced, the
first column of the input-output matrix shows that an input of .1x1 is required from
the agriculture sector, an input of .2x1 is required from the manufacturing sector, and
an input of .3x1 is required from the services sector. Similar statements apply to the
manufacturing and services sectors. Figure 1.20 shows the total amount of money
flowing among the three sectors.

Note that in Figure 1.20 the three arcs leaving the agriculture sector give the total
amount of agricultural output that is used as inputs for all three sectors. The sum of
the labels on the three arcs, .1x1 + .2x2 + .1x3, represents the amount of agricultural
output that is consumed during the production process. Similar statements apply to
the other two sectors. So the vector




.1x1 + .2x2 + .1x3

.2x1 + .4x2 + .2x3

.3x1 + .1x2 + .1x3




Agriculture

ServicesManufacturing

.1x2

.1x1

.2x3

.2x1

.2x2

.1x3

.3x1

.1x3.4x2

Figure 1.20 The flow of money among the sectors
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gives the amount of the total output of the economy that is consumed during the
production process. This vector is just the matrix–vector product Cx, where x is the
gross production vector

x =



x1

x2

x3


 .

For an economy with input–output matrix C and gross production vector x, the
total output of the economy that is consumed during the production process is
Cx.

Example 1 Suppose that in the economy previously described, the total outputs of the agriculture,
manufacturing, and services sectors are $100 million, $150 million, and $80 million,
respectively. Then

Cx =



.1 .2 .1

.2 .4 .2

.3 .1 .1







100
150
80


 =




48
96
53


 ,

and so the portion of the gross production that is consumed during the production
process is $48 million of agriculture, $96 million of manufacturing, and $53 million
of services.

Since, in Example 1, the amount of the gross production consumed during the
production process is

Cx =



48
96
53


 ,

the amount of the gross production that is not consumed during the production pro-
cess is

x − Cx =



100
150
80


 −




48
96
53


 =




52
54
27


 .

Thus x − Cx is the net production (or surplus) vector; its components indicate the
amounts of output from each sector that remain after production. These amounts are
available for sale within the economy or for export outside the economy.

Suppose now that we want to determine the amount of gross production for each
sector that is necessary to yield a specific net production. For example, we might
want to set production goals for the various sectors so that we have specific quantities
available for export. Let d denote the demand vector, whose components are the
quantities required from each sector. In order to have exactly these amounts available
after the production process is completed, the demand vector must equal the net
production vector; that is, d = x − Cx. Using the algebra of matrices and vectors and
the 3 × 3 identity matrix I3, we can rewrite this equation as follows:

x − Cx = d

I3x − Cx = d

(I3 − C )x = d

Thus the required gross production is a solution of the equation (I3 − C )x = d.
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For an economy with n × n input–output matrix C , the gross production neces-
sary to satisfy exactly a demand d is a solution of (In − C )x = d.

Example 2 For the economy in Example 1, determine the gross production needed to meet a
consumer demand for $90 million of agriculture, $80 million of manufacturing, and
$60 million of services.

Solution We must solve the matrix equation (I3 − C )x = d, where C is the
input–output matrix and

d =



90
80
60




is the demand vector. Since

I3 − C =



1 0 0
0 1 0
0 0 1


 −




.1 .2 .1

.2 .4 .2

.3 .1 .1


 =




.9 −.2 −.1
−.2 .6 −.2
−.3 −.1 .9


 ,

the augmented matrix of the system to be solved is




.9 −.2 −.1 90
−.2 .6 −.2 80
−.3 −.1 .9 60


 .

Thus the solution of (I3 − C )x = d is




170
240
150


 ,

so the gross production needed to meet the demand is $170 million of agriculture,
$240 million of manufacturing, and $150 million of services.

Practice Problem 1 � An island’s economy is divided into three sectors—tourism, transportation, and ser-
vices. Suppose that each dollar’s worth of tourism output requires inputs of $0.30
from the tourism sector, $0.10 from the transportation sector, and $0.30 from the
services sector; each dollar’s worth of transportation output requires inputs of $0.20
from the tourism sector, $0.40 from the transportation sector, and $0.20 from the ser-
vices sector; and each dollar’s worth of services output requires inputs of $0.05 from
the tourism sector, $0.05 from the transportation sector, and $0.15 from the services
sector.

(a) Write the input–output matrix for this economy.

(b) If the gross production for this economy is $10 million of tourism, $15 million
of transportation, and $20 million of services, how much input from the tourism
sector is required by the services sector?

(c) If the gross production for this economy is $10 million of tourism, $15 million of
transportation, and $20 million of services, what is the total value of the inputs
consumed by each sector during the production process?
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(d) If the total outputs of the tourism, transportation, and services sectors are $70
million, $50 million, and $60 million, respectively, what is the net production of
each sector?

(e) What gross production is required to satisfy exactly a demand for $30 million of
tourism, $50 million of transportation, and $40 million of services? �

CURRENT FLOW IN ELECTRICAL CIRCUITS
When a battery is connected in an electrical circuit, a current flows through the circuit.
If the current passes through a resistor (a device that creates resistance to the flow of
electricity), a drop in voltage occurs. These voltage drops obey Ohm’s law,12 which
states that

V = RI ,

where V is the voltage drop across the resistor (measured in volts), R is the resistance
(measured in ohms), and I is the current (measured in amperes).

20 volts

2 ohms 3 ohms

I

Figure 1.21 A simple electrical
circuit

Figure 1.21 shows a simple electrical circuit consisting of a 20-volt battery
(indicated by ) and two resistors (indicated by ) with resistances of 3 ohms
and 2 ohms. The current flows in the direction of the arrows. If the value of I is
positive, then the flow is from the positive terminal of the battery (indicated by
the longer side of the battery) to the negative terminal (indicated by the shorter
side). In order to determine the value of I , we must utilize Kirchhoff’s13 voltage
law.

Kirchhoff’s Voltage Law

In a closed path within an electrical circuit, the sum of the voltage drops in any
one direction equals the sum of the voltage sources in the same direction.

In the circuit shown in Figure 1.21, there are two voltage drops, one of 3I and
the other of 2I . Their sum equals 20, the voltage supplied by the single battery. Hence

3I + 2I = 20

5I = 20

I = 4.

Thus the current flow through the network is 4 amperes.

Practice Problem 2 � Determine the current through the following electrical circuit:

52 volts

20 volts

3 ohms 5 ohms

I

�

12 Georg Simon Ohm (1787–1854) was a German physicist whose pamphlet Die galvanische Kette
mathematisch bearbeitet greatly influenced the development of the theory of electricity.

13 Gustav Robert Kirchhoff (1824–1887) was a German physicist who made significant contributions to
the fields of electricity and electromagnetic radiation.
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C

D

A

B

E

F

1 ohm

1 ohm

4 ohms 2 ohms

I1
I1

I1
I2 I3

I3

I330 volts

Figure 1.22 An electrical circuit

A more complicated circuit is shown in Figure 1.22. Here the junctions at A and
B (indicated by the dots) create three branches in the circuit, each with its own current
flow. Starting at B and applying Kirchhoff’s voltage law to the closed path BDCAB ,
we obtain 1I1 + 1I1 − 4I2 = 0; that is,

2I1 − 4I2 = 0. (7)

Note that, since we are proceeding around the closed path in a clockwise direction,
the flow from A to B is opposite to the direction indicated for I2. Thus the voltage
drop at the 4-ohm resistor is 4(−I2). Moreover, because there is no voltage source in
this closed path, the sum of the three voltage drops is 0.

Similarly, from the closed path BAEFB , we obtain the equation

4I2 + 2I3 = 30, (8)

and from the closed path BDCAEFB , we obtain the equation

2I1 + 2I3 = 30. (9)

Note that, in this case, equation (9) is the sum of equations (7) and (8). Since
equation (9) provides no information not already given by equations (7) and (8), we
can discard it. A similar situation occurs in all of the networks that we consider, so
we may ignore any closed paths that contain only currents that are accounted for in
other equations obtained from Kirchoff’s voltage law.

At this point, we have two equations (7) and (8) in three variables, so another
equation is required if we are to obtain a unique solution for I1, I2, and I3. This
equation is provided by another of Kirchhoff’s laws.

Kirchoff’s Current Law

The current flow into any junction equals the current flow out of the junction.

In the context of Figure 1.22, Kirchhoff’s current law states that the flow into
junction A, which is I1 + I2, equals the current flow out of A, which is I3. Hence we
obtain the equation I1 + I2 = I3, or

I1 + I2 − I3 = 0. (10)

Notice that the current law also applies at junction B , where it yields the equation
I3 = I1 + I2. However, since this equation is equivalent to equation (10), we can ignore
it. In general, if the current law is applied at each junction, then any one of the resulting
equations is redundant and can be ignored.
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Thus a system of equations that determines the current flows in the circuit in
Figure 1.22 is

2I1 − 4I2 = 0 (7)

4I2 + 2I3 = 30 (8)

I1 + I2 − I3 = 0. (10)

Solving this system by Gaussian elimination, we see that I1 = 6, I2 = 3, and I3 = 9,
and thus the branch currents are 6 amperes, 3 amperes, and 9 amperes, respectively.

Practice Problem 3 � Determine the currents in each branch of the following electrical circuit:

2 ohms

6 ohms

1 ohm 3 ohms

I1 I2
I333 volts

8 volts

�

EXERCISES

In Exercises 1–6, determine whether the statements
are true or false.

1. The (i , j )-entry of the input–output matrix represents the
amount of input from sector i needed to produce one unit
of output from sector j .

2. For an economy with n × n input–output matrix C , the
gross production necessary to satisfy exactly a demand d
is a solution of (In − C )x = d.

3. If C is the input–output matrix for an economy with gross
production vector x, then C x is the net production vector.

4. In any closed path within an electrical circuit, the alge-
braic sum of all the voltage drops in the same direction
equals 0.

5. At every junction in an electrical circuit, the current flow
into the junction equals the current flow out of the junction.

6. The voltage drop at each resistor in an electrical network
equals the product of the resistance and the amount of
current through the resistor.

In Exercises 7–16, suppose that an economy is divided into
four sectors (agriculture, manufacturing, services, and enter-
tainment) with the following input–output matrix:

C =

Ag. Man. Svcs. Ent.⎡
⎢⎢⎣

.12 .11 .15 .18

.20 .08 .24 .07

.18 .16 .06 .22

.09 .07 .12 .05

⎤
⎥⎥⎦

Agriculture
Manufacturing
Services
Entertainment

7. What amount of input from the services sector is needed
for a gross production of $50 million by the entertainment
sector?

8. What amount of input from the manufacturing sector is
needed for a gross production of $100 million by the agri-
culture sector?

9. Which sector is least dependent on services?

10. Which sector is most dependent on services?

11. On which sector is agriculture least dependent?

12. On which sector is agriculture most dependent?

13. If the gross production for this economy is $30 million
of agriculture, $40 million of manufacturing, $30 million
of services, and $20 million of entertainment, what is the
total value of the inputs from each sector consumed during
the production process?

14. If the gross production for this economy is $20 million
of agriculture, $30 million of manufacturing, $20 million
of services, and $10 million of entertainment, what is the
total value of the inputs from each sector consumed during
the production process?

15. If the gross production for this economy is $30 million
of agriculture, $40 million of manufacturing, $30 million
of services, and $20 million of entertainment, what is the
net production of each sector?

16. If the gross production for this economy is $20 million
of agriculture, $30 million of manufacturing, $20 million
of services, and $10 million of entertainment, what is the
net production of each sector?
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17. The input–output matrix for an economy producing trans-
portation, food, and oil follows:

Tran. Food Oil


.2 .20 .3

.4 .30 .1

.2 .25 .3




Transportation
Food
Oil

(a) What is the net production corresponding to a gross
production of $40 million of transportation, $30 mil-
lion of food, and $35 million of oil?

(b) What gross production is required to satisfy exactly a
demand for $32 million of transportation, $48 million
of food, and $24 million of oil?

18. The input–output matrix for an economy with sectors of
metals, nonmetals, and services follows:

Met. Nonm. Svcs.


.2 .2 .1

.4 .4 .2

.2 .2 .1




Metals
Nonmetals
Services

(a) What is the net production corresponding to a gross
production of $50 million of metals, $60 million of
nonmetals, and $40 million of services?

(b) What gross production is required to satisfy exactly a
demand for $120 million of metals, $180 million of
nonmetals, and $150 million of services?

19. Suppose that a nation’s energy production is divided into
two sectors: electricity and oil. Each dollar’s worth of
electricity output requires $0.10 of electricity input and
$0.30 of oil input, and each dollar’s worth of oil output
requires $0.40 of electricity input and $0.20 of oil input.

(a) Write the input–output matrix for this economy.

(b) What is the net production corresponding to a gross
production of $60 million of electricity and $50 mil-
lion of oil?

(c) What gross production is needed to satisfy exactly a
demand for $60 million of electricity and $72 million
of oil?

20. Suppose that an economy is divided into two sectors:
nongovernment and government. Each dollar’s worth of
nongovernment output requires $0.10 in nongovernment
input and $0.10 in government input, and each dollar’s
worth of government output requires $0.20 in nongovern-
ment input and $0.70 in government input.

(a) Write the input–output matrix for this economy.

(b) What is the net production corresponding to a gross
production of $20 million in nongovernment and $30
million in government?

(c) What gross production is needed to satisfy exactly a
demand for $45 million in nongovernment and $50
million in government?

21. Consider an economy that is divided into three sectors:
finance, goods, and services. Suppose that each dol-
lar’s worth of financial output requires inputs of $0.10
from the finance sector, $0.20 from the goods sec-
tor, and $0.20 from the services sector; each dollar’s
worth of goods requires inputs of $0.10 from the finance
sector, $0.40 from the goods sector, and $0.20 from
the services sector; and each dollar’s worth of services
requires inputs of $0.15 from the finance sector, $0.10
from the goods sector, and $0.30 from the services
sector.

(a) What is the net production corresponding to a gross
production of $70 million of finance, $50 million of
goods, and $60 million of services?

(b) What is the gross production corresponding to a net
production of $40 million of finance, $50 million of
goods, and $30 million of services?

(c) What gross production is needed to satisfy exactly a
demand for $40 million of finance, $36 million of
goods, and $44 million of services?

22. Consider an economy that is divided into three sectors:
agriculture, manufacturing, and services. Suppose that
each dollar’s worth of agricultural output requires inputs
of $0.10 from the agricultural sector, $0.15 from the man-
ufacturing sector, and $0.30 from the services sector; each
dollar’s worth of manufacturing output requires inputs of
$0.20 from the agricultural sector, $0.25 from the manu-
facturing sector, and $0.10 from the services sector; and
each dollar’s worth of services output requires inputs of
$0.20 from the agricultural sector, $0.35 from the manu-
facturing sector, and $0.10 from the services sector.

(a) What is the net production corresponding to a gross
production of $40 million of agriculture, $50 million
of manufacturing, and $30 million of services?

(b) What gross production is needed to satisfy exactly a
demand for $90 million of agriculture, $72 million of
manufacturing, and $96 million of services?

23. Let C be the input–output matrix for an economy, x
be the gross production vector, d be the demand vec-
tor, and p be the vector whose components are the unit
prices of the products or services produced by each sector.
Economists call the vector v = p − C T p the value-added
vector. Show that pT d = vT x. (The single entry in the
1 × 1 matrix pT d represents the gross domestic product
of the economy.) Hint: Compute pT x in two different
ways. First, replace p by v + C T p, and then replace x by
Cx + d.

24. Suppose that the columns of the input–output matrix

C =

Ag. Min. Tex.


.1 .2 .1

.2 .4 .2

.3 .1 .1




Agriculture
Minerals
Textiles
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measure the amount (in tons) of each input needed to
produce one ton of output from each sector. Let p1, p2,
and p3 denote the prices per ton of agricultural products,
minerals, and textiles, respectively.

(a) Interpret the vector C T p, where p =



p1

p2

p3


.

(b) Interpret p − C T p.

In Exercises 25–29, determine the currents in each branch of the
given circuit.

25.
29 volts

1 ohm

2 ohms

3 ohms

4 ohms

I2

I1

I3

26.

30 volts

5 volts

2 ohms

1 ohm

6 ohms

I2

I1

I3

27.

60 volts I1

I2

I3

2 ohms

5 ohms

1 ohm

1 ohm

28.

30 volts I1

I3

I2

54 volts

3 ohms

2 ohms

6 ohms

29.

60 volts

30 volts

I1 I2 I4
I3

I6

I52 ohms

1 ohm
1 ohm

2 ohms

1 ohm4 ohms

30. In the following electrical network, determine the value
of v that makes I2 = 0:

2 ohms

6 ohms

1 ohm 3 ohms

I1 I2
I332 volts

v volts

In the following exercise, use either a calculator with matrix
capabilities or computer software such as MATLAB to solve the
problem:

31. Let

C =




.12 .03 .20 .10 .05 .09

.21 .11 .06 .11 .07 .07

.05 .21 .11 .15 .11 .06

.11 .18 .13 .22 .03 .18

.16 .15 .07 .12 .19 .14

.07 .23 .06 .05 .15 .19




and

d =




100
150
200
125
300
180




,

where C is the input–outputmatrix for an economy that has
been divided into six sectors, and d is the net production
for this economy (where units are in millions of dollars).
Find the gross production vector required to produce d.
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SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) The input-output matrix is as follows:

C =

Tour. Tran. Svcs.


.3 .2 .05

.1 .4 .05

.3 .2 .15




Tourism
Transportation
Services

(b) Each dollar’s worth of output from the services sec-
tor requires an input of $0.05 from the tourism sector.
Hence a gross output of $20 million from the services
sector requires an input of 20($0.05) = $1 million
from the tourism sector.

(c) The total value of the inputs consumed by each sector
during the production process is given by

C




10
15
20


 =




.3 .2 .05

.1 .4 .05

.3 .2 .15







10
15
20


 =




7
8
9


 .

Hence, during the production process, $7 million in
inputs is consumed by the tourism sector, $8 million
by the transportation sector, and $9 million by the
services sector.

(d) The gross production vector is

x =



70
50
60


 ,

and so the net production vector is

x − Cx =



70
50
60


 −




.3 .2 .05

.1 .4 .05

.3 .2 .15







70
50
60




=



70
50
60


 −




34
30
40


 =




36
20
20


 .

Hence the net productions of the tourism, transporta-
tion, and services sectors are $36 million, $20 million,
and $20 million, respectively.

(e) To meet a demand

d =



30
50
40


 ,

the gross production vector must be a solution of the
equation (I3 − C )x = d. The augmented matrix of the
system is




.7 −.2 −.05 30
−.1 .6 −.05 50
−.3 −.2 .85 40


 ,

and so the gross production vector is




80
105
100


 .

Thus the gross productions of the tourism, transporta-
tion, and services sectors are $80 million, $105 mil-
lion, and $100 million, respectively.

2. The algebraic sum of the voltage drops around the cir-
cuit is 5I + 3I = 8I . Since the current flow from the
20-volt battery is in the direction opposite to I , the alge-
braic sum of the voltage sources around the circuit is
52 + (−20) = 32. Hence we have the equation 8I = 32,
so I = 4 amperes.

3. There are two junctions in the given circuit, namely, A
and B in the following figure:

C

D

A

B

E

F

2 ohms

6 ohms

1 ohm 3 ohms

I1 I2
I333 volts

8 volts

Applying Kirchoff’s current law to junction A or junction
B gives I1 = I2 + I3. Applying Kirchoff’s voltage law to
the closed path ABDCA yields

1I2 + 6I1 + 2I1 = 33.

Similarly, from the closed path AEFBA, we obtain

3I3 + 1(−I2) = 8.

Hence the system of equations describing the current flows
is

I1 − I2 − I3 = 0
8I1 + I2 = 33

−I2 + 3I3 = 8.

Solving this system gives I1 = 4, I2 = 1, and I3 = 3.
Hence the branch currents are 4 amperes, 1 ampere, and
3 amperes, respectively.
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1.6 THE SPAN OF A SET OF VECTORS
In Section 1.2, we defined a linear combination of vectors u1, u2, . . . , uk in Rn to be
a vector of the form c1u1 + c2u2 + · · · + ckuk , where c1, c2, . . . , ck are scalars. For a
given set S = {u1, u2, . . . , uk } of vectors from Rn , we often need to find the set of
all the linear combinations of u1, u2, . . . , uk . For example, if A is an n × p matrix,
then the set of vectors v in Rn such that Ax = v is consistent is precisely the set of
all the linear combinations of the columns of A. We now define a term for such a set
of linear combinations.

Definition For a nonempty set S = {u1, u2, . . . , uk } of vectors in Rn , we define the
span of S to be the set of all linear combinations of u1, u2, . . . , uk in Rn . This set is
denoted by SpanS or Span {u1, u2, . . . , uk }.

A linear combination of a single vector is just a multiple of that vector. So if u
is in S, then every multiple of u is in SpanS. Thus the span of {u} consists of all
multiples of u. In particular, the span of {0} is {0}. Note, however, that if S contains
even one nonzero vector, then SpanS contains infinitely many vectors. Other examples
of the span of a set follow.

Example 1 Describe the spans of the following subsets of R2:

S1 =
{[

1
−1

]}
, S2 =

{[
1

−1

]
,

[−2
2

]}
, S3 =

{[
1

−1

]
,

[−2
2

]
,

[
2
1

]}
,

and

S4 =
{[

1
−1

]
,

[−2
2

]
,

[
2
1

]
,

[−1
3

]}

Solution The span of S1 consists of all linear combinations of the vectors in S1.
Since a linear combination of a single vector is just a multiple of that vector, the span

of S1 consists of all multiples of

[
1

−1

]
—that is, all vectors of the form

[
c

−c

]
for

some scalar c. These vectors all lie along the line with equation y = −x , as pictured
in Figure 1.23.

The span of S2 consists of all linear combinations of the vectors

[
1

−1

]
and

[−2
2

]
.

Such vectors have the form

a

[
1

−1

]
+ b

[−2
2

]
= a

[
1

−1

]
− 2b

[
1

−1

]
= (a − 2b)

[
1

−1

]
,

where a and b are arbitrary scalars. Taking c = a − 2b, we see that these are the
same vectors as those in the span of S1. Hence SpanS2 = SpanS1. (See Figure 1.24.)

The span of S3 consists of all linear combinations of the vectors

[
1

−1

]
,

[−2
2

]
, and

[
2
1

]
. Note that the vectors

[
1

−1

]
and

[
2
1

]
are not parallel. Hence an arbitrary vector
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y

x

1 
�1

Span S1

Figure 1.23 The span of S1

y

x

1 
�1

�2 
2

Span S1 � Span S2

Figure 1.24 The span of S2

v in R2 is a linear combination of these two vectors, as we learned in Section 1.2.

Suppose that v = a

[
1

−1

]
+ b

[
2
1

]
for some scalars a and b. Then

v = a

[
1

−1

]
+ 0

[−2
2

]
+ b

[
2
1

]
,

so every vector in R2 is a linear combination of the vectors in S3. It follows that the
span of S3 is R2.

Finally, since every vector in R2 is a linear combination of the nonparallel vectors[
1

−1

]
and

[
2
1

]
, every vector in R2 is also a linear combination of the vectors in S4.

Therefore the span of S4 is again R2.

Example 2 For the standard vectors

e1 =



1
0
0


 , e2 =




0
1
0


 , and e3 =




0
0
1
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Span{e1, e2} � xy-plane

Span{e3} � z-axis

e2

e3

e1

y

x

z

Figure 1.25 The span of {e1, e2} in R3

Span {u, v}u

v

x

z

y

Figure 1.26 The span of {u, v}, where u and v are nonparallel vectors in R3

in R3, we see that the span of {e1, e2} is the set of vectors of the form

ae1 + be2 = a




1
0
0


 + b




0
1
0


 =




a
b
0


 .

Thus Span {e1, e2} is the set of vectors in the xy-plane of R3. (See Figure 1.25.) More
generally, if u and v are nonparallel vectors in R3, then the span of {u, v} is a plane
through the origin. (See Figure 1.26.)

Furthermore, Span {e3} is the set of vectors that lie along the z -axis in R3. (See
Figure 1.25.)

From the preceding examples, we see that saying “v belongs to the span of S =
{u1, u2, . . . , uk }” means exactly the same as saying “v equals some linear combination
of the vectors u1, u2, . . . , uk .” So our comment at the beginning of the section can be
rephrased as follows:

Let S = {u1, u2, . . . , uk } be a set of vectors from Rn , and let A be the matrix
whose columns are u1, u2, . . . , uk . Then a vector v from Rn is in the span of S
(that is, v is a linear combination of u1, u2, . . . , uk ) if and only if the equation
Ax = v is consistent.
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Example 3 Is

v =




3
0
5

−1


 or w =




2
1
3

−1




a vector in the span of

S =







1
2
1
1


 ,




−1
1

−2
1


 ,




1
8

−1
5







?

If so, express it as a linear combination of the vectors in S.

Solution Let A be the matrix whose columns are the vectors in S. The vector v
belongs to the span of S if and only if Ax = v is consistent. Since the reduced row
echelon form of [A v] is




1 0 3 1
0 1 2 −2
0 0 0 0
0 0 0 0


 ,

Ax = v is consistent by Theorem 1.5. Hence v belongs to the span of S.
To express v as a linear combination of the vectors in S, we need to find the

actual solution of Ax = v. Using the reduced row echelon form of [A v], we see that
the general solution of this equation is

x1 = 1 − 3x3

x2 = −2 − 2x3

x3 free.

For example, by taking x3 = 0, we find that

1




1
2
1
1


 − 2




−1
1

−2
1


 + 0




1
8

−1
5


 =




3
0
5

−1


 = v.

In the same manner, w belongs to the span of S if and only if Ax = w is consistent.
Because the reduced row echelon form of [A w] is




1 0 3 0
0 1 2 0
0 0 0 1
0 0 0 0


 ,

Theorem 1.5 shows that Ax = w is not consistent. Thus w does not belong to the span
of S.

Practice Problem 1 � Are u =



−1
3
1


 and v =




1
1
2


 in the span of S =







2
−1

1


 ,




−1
1
0





? �
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In our examples so far, we started with a subset S of Rn and described the set
V = SpanS. In other problems, we might need to do the opposite: Start with a set V
and find a set of vectors S for which SpanS = V . If V is a set of vectors from Rn

and SpanS = V , then we say that S is a generating set for V or that S generates
V . Because every set is contained in its span, a generating set for V is necessarily
contained in V .

Example 4 Let

S =






1
0
0


 ,




1
1
0


 ,




1
1
1


 ,




1
−2
−1





 .

Show that SpanS = R3.

Solution Because S is contained in R3, it follows that SpanS is contained in R3.
Thus, in order to show that SpanS = R3, we need only show that an arbitrary vector
v in R3 belongs to SpanS. Thus we must show that Ax = v is consistent for every
v, where

A =



1 1 1 1
0 1 1 −2
0 0 1 −1


 .

Let [R c] be the reduced row echelon form of [A v]. No matter what v is, R is the
reduced row echelon form of A by Exercise 77 of Section 1.3. Since

R =



1 0 0 3
0 1 0 −1
0 0 1 −1




has no zero row, there can be no row in [R c] in which the only nonzero entry lies
in the last column. Thus Ax = v is consistent by Theorem 1.5, and so v belongs to
SpanS. Since v is an arbitrary vector in R3, it follows that SpanS = R3.

The following theorem guarantees that the technique used in Example 4 can be
applied to test whether or not any subset of Rm is a generating set for Rm :

THEOREM 1.6

The following statements about an m × n matrix A are equivalent:

(a) The span of the columns of A is Rm .

(b) The equation Ax = b has at least one solution (that is, Ax = b is consistent)
for each b in Rm .

(c) The rank of A is m , the number of rows of A.

(d) The reduced row echelon form of A has no zero rows.

(e) There is a pivot position in each row of A.

PROOF Since, by Theorem 1.5, the equation Ax = b is consistent precisely
when b equals a linear combination of the columns of A, statements (a) and
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(b) are equivalent. Also, because A is an m × n matrix, statements (c) and (d) are
equivalent. The details of these arguments are left to the reader.

We now prove that statements (b) and (c) are equivalent. First, let R denote
the reduced row echelon form of A and em be the standard vector




0
...

0
1




in Rm . There is a sequence of elementary row operations that transforms A into
R. Since each of these elementary row operations is reversible, there is also a
sequence of elementary row operations that transforms R into A. Apply the latter
sequence of operations to [R em ] to obtain a matrix [A d] for some d in Rm .
Then the system Ax = d is equivalent to the system Rx = em .

If (b) is true, then Ax = d, and hence Rx = em , must be consistent. But then
Theorem 1.5 implies that the last row of R cannot be a zero row, for otherwise
[R em ] would have a row in which the only nonzero entry lies in the last column.
Because R is in reduced row echelon form, R must have no nonzero rows. It
follows that the rank of A is m , establishing (c).

Conversely, assume that (c) is true, and let [R c] denote the reduced row
echelon form of [A b]. Since A has rank m , R has no nonzero rows. Hence
[R c] has no row whose only nonzero entry is in the last column. Therefore, by
Theorem 1.5, Ax = b is consistent for every b. �

Practice Problem 2 � Is S =






1
0
1


 ,




−1
1
2


 ,




1
3
9


 ,




2
−1

1





 a generating set for R3? �

MAKING A GENERATING SET SMALLER
In Example 3, we found that v is in the span of S by solving Ax = v, a system
of 4 equations in 3 variables. If S contained only 2 vectors, the corresponding sys-
tem would consist of 4 equations in 2 variables. In general, it is easier to check if
a vector is in the span of a set with fewer vectors than it is to check if the vec-
tor is in the span of a set with more vectors. The following theorem establishes
a useful property that enables us to reduce the size of a generating set in certain
cases.

THEOREM 1.7

Let S = {u1, u2, . . . , uk } be a set of vectors from Rn , and let v be a vector in Rn .
Then Span {u1, u2, . . . , uk , v} = Span {u1, u2, . . . , uk } if and only if v belongs to
the span of S .

PROOF Suppose that v is in the span of S . Then v = a1u1 + a2u2 + · · · + akuk

for some scalars a1, a2, . . . , ak . If w is in Span {u1, u2, . . . , uk , v}, then w can
be written w = c1u1 + c2u2 + · · · + ckuk + bv for some scalars c1, c2, . . . , ck , b.
By substituting a1u1 + a2u2 + · · · + akuk for v in the preceding equation, we
can write w as a linear combination of the vectors u1, u2, . . . , uk . So the span
of {u1, u2, . . . , uk , v} is contained in the span of {u1, u2, . . . , uk }. On the other
hand, any vector in Span {u1, u2, . . . , uk } can be written as a linear combination
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of the vectors u1, u2, . . . , uk , v in which the coefficient of v is 0; so the span of
{u1, u2, . . . , uk } is also contained in the span of {u1, u2, . . . , uk , v}. It follows that
the two spans are equal.

Conversely, suppose that v does not belong to the span of S . Note that v is
in the span of {u1, u2, . . . , uk , v} because v = 0u1 + 0u2 + · · · + 0uk + 1v. Hence
Span {u1, u2, . . . , uk } �= Span {u1, u2, . . . , uk , v} because the second set contains
v, but the first does not. �

Theorem 1.7 provides a method for reducing the size of a generating set. If one
of the vectors in S is a linear combination of the others, it can be removed from S to
obtain a smaller set having the same span as S. For instance, for the set S of three
vectors in Example 3, we have




1
8

−1
5


 = 3




1
2
1
1


 + 2




−1
1

−2
1


 .

Hence the span of S is the same as the span of the smaller set







1
2
1
1


 ,




−1
1

−2
1







.

Practice Problem 3 � For the set S in Practice Problem 2, find a subset with the fewest vectors such that
Span S = R3. �

EXERCISES

In Exercises 1–8, determine whether the given vector is in

Span







1
0
1


 ,




−1
1
1


 ,




1
1
3





 .

1.




−1
4
7


 2.




0
0
1


 3.




0
5
2


 4.




2
−1

3




5.




−1
1
1


 6.




−3
2
1


 7.




1
1

−1


 8.




−5
3
1




In Exercises 9–16 determine whether the given vector is in

Span







1
2

−1
1


 ,




2
−1

1
0


 ,




−1
2
0
3







.

9.




0
−1

1
0


 10.




9
6
1
9


 11.




−8
9

−7
2


 12.




2
0

−3
4




13.




4
0
5
8


 14.




−1
0
2
3


 15.




−1
2

−3
5


 16.




5
−2
−2
−7




In Exercises 17–20, determine the values of r for which v is in
the span of S.

17. S =






1
0

−1


 ,




−1
3
2





, v =




2
r

−1




18. S =






1
2

−1


 ,




−1
−2

2





, v =




1
r
2




19. S =






−1
2
2


 ,




1
−1

0





, v =




2
r

−8




20. S =






−1
1
1


 ,




2
−3

1





, v =




r
4
0
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In Exercises 21–28, a set of vectors in Rn is given. Determine
whether this set is a generating set for Rn .

21.

{[
1

−1

]
,

[−2
2

]}
22.

{[
1

−2

]
,

[−2
1

]}

23.

{[
1

−4

]
,

[
3
2

]
,

[−2
8

]}
24.

{[−2
4

]
,

[
1

−2

]
,

[−3
6

]}

25.







1
0

−2


 ,




−1
1
4


 ,




1
2

−2







26.







−1
2
1


 ,




−1
1
3


 ,




1
−3

1







27.







−1
1
2


 ,




0
−1

2


 ,




3
−7

2


 ,




−5
7
6







28.







−1
3
0


 ,




0
1
1


 ,




2
−1

5


 ,




2
−1

1







In Exercises 29–36, an m × n matrix A is given. Determine
whether the equation Ax = b is consistent for every b in Rm.

29.

[
1 0

−2 1

]
30.

[
1 −2
2 −4

]

31.

[
1 0 −3

−1 0 3

]
32.

[
1 1 2

−1 −3 4

]

33.




1 −1
0 1

−2 2


 34.




1 0 −1
2 −1 1
0 3 −2
1 1 −3




35.




1 2 3
2 3 4
3 4 6


 36.




1 0 2 1
2 1 3 2
3 4 4 5




In Exercises 37–44, a set S of vectors in Rn is given. Find a
subset of S with the same span as S that is as small as possible.

37.

{[
1
3

]
,

[
0
1

]}
38.

{[−1
1

]
,

[
2

−2

]
,

[
1
0

]}

39.







1
0

−1


 ,




−2
0
2


 ,




0
1
0







40.







1
−1

2


 ,




2
−3

0


 ,




0
0
0







41.







1
−2

1


 ,




−2
4

−2


 ,




0
0
0







42.







1
0
1


 ,




1
1
0


 ,




0
1
1







43.







−1
0
1


 ,




0
1
2


 ,




1
2
3







44.







1
0
0


 ,




1
1
0


 ,




1
1
1


 ,




0
0
1







In Exercises 45–64, determine whether the state-
ments are true or false.

45. Let S = {u1, u2, . . . , uk } be a nonempty set of vectors
in Rn . A vector v belongs to the span of S if and
only if v = c1u1 + c2u2 + · · · + ckuk for some scalars
c1, c2, . . . , ck .

46. The span of {0} is {0}.
47. If A = [u1 u2 . . . uk ] and the matrix equation Ax = v

is inconsistent, then v does not belong to the span of
{u1, u2, . . . , uk }.

48. If A is an m × n matrix, then Ax = b is consistent for
every b in Rm if and only if the rank of A is n.

49. Let S = {u1, u2, . . . , uk } be a subset of Rn . Then the span
of S is Rn if and only if the rank of [u1 u2 . . . uk ] is n.

50. Every finite subset of Rn is contained in its span.

51. If S1 and S2 are finite subsets of Rn such that S1 is con-
tained in SpanS2, then SpanS1 is contained in SpanS2.

52. If S1 and S2 are finite subsets of Rn having equal spans,
then S1 = S2.

53. If S1 and S2 are finite subsets of Rn having equal spans,
then S1 and S2 contain the same number of vectors.

54. Let S be a nonempty set of vectors in Rn , and let v be in
Rn . The spans of S and S ∪ {v} are equal if and only if
v is in S.

55. The span of a set of two nonparallel vectors in R2 is R2.

56. The span of any finite nonempty subset of Rn contains
the zero vector.

57. If v belongs to the span of S , so does cv for every scalar c.

58. If u and v belong to the span of S , so does u + v.

59. The span of {v} consists of every multiple of v.

60. If S is a generating set for Rm that contains k vectors,
then k ≥ m.

61. If A is an m × n matrix whose reduced row echelon form
contains no zero rows, then the columns of A form a
generating set for Rm .

62. If the columns of an n × n matrix A form a generating
set for Rn , then the reduced row echelon form of A is In .

63. If A is an m × n matrix such that Ax = b is inconsistent
for some b in Rm , then rankA < m.

64. If S1 is contained in a finite set S2 and S1 is a generating
set for Rm , then S2 is also a generating set for Rm .
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65. Let u1 =
[−1

3

]
and u2 =

[
1

−2

]
.

(a) How many vectors are in {u1, u2}?
(b) How many vectors are in the span of {u1, u2}?

66. Give three different generating sets for the set of vectors
that lie in the xy-plane of R3.

67. Let A be an m × n matrix with m > n. Explain why
Ax = b is inconsistent for some b in Rm .

68. What can be said about the number of vectors in a gen-
erating set for Rm? Explain your answer.

69. Let S1 and S2 be finite subsets of Rn such that S1 is con-
tained in S2. Prove that if S1 is a generating set for Rn ,
then so is S2.

70. Let u and v be any vectors in Rn . Prove that the spans of
{u, v} and {u + v, u − v} are equal.

71. Let u1, u2, . . . , uk be vectors in Rn and c1, c2, . . . , ck

be nonzero scalars. Prove that Span {u1, u2, . . . , uk } =
Span {c1u1, c2u2, . . . , ckuk }.

72. Let u1, u2, . . . , uk be vectors in Rn and c be a scalar.
Prove that the span of {u1, u2, . . . , uk } is equal to the span
of {u1 + cu2, u2, . . . , uk }.

73. Let R be the reduced row echelon form of an m × n matrix
A. Is the span of the columns of R equal to the span of
the columns of A? Justify your answer.

74. Let S1 and S2 be finite subsets of Rn such that S1 is
contained in S2. Use only the definition of span to prove
that SpanS1 is contained in SpanS2.

75. Let S be a finite subset of Rn . Prove that if u and v are
in the span of S, then so is u + cv for any scalar c.

76. Let V be the span of a finite subset of Rn . Show that
either V = {0} or V contains infinitely many vectors.

77. Let B be a matrix obtained from A by performing a single
elementary row operation on A. Prove that the span of the
rows of B equals the span of the rows of A. Hint: Use
Exercises 71 and 72.

78. Prove that every linear combination of the rows of A can
be written as a linear combination of the rows of the
reduced row echelon form of A. Hint: Use Exercise 77.

In Exercises 79–82, use either a calculator with matrix capabili-
ties or computer software such as MATLAB to determine whether
each given vector is in the span of







1.2
−0.1

2.3
3.1

−1.1
−1.9




,




3.4
−1.7

0.0
2.4
1.7
2.6




,




−3.1
0.0
2.5
1.6

−3.2
1.7




,




7.7
−1.8
−0.2

3.9
3.8

−1.0







.

79.




1.0
−1.5
−4.6
−3.8

3.9
6.4




80.




−2.6
−1.8

7.3
8.7

−5.8
4.1




81.




1.5
−1.6

2.4
4.0

−1.5
4.3




82.




−4.1
1.5
7.1
5.4

−7.1
−4.7




SOLUTIONS TO THE PRACTICE PROBLEMS

1. Let A be the matrix whose columns are the vectors of S.
Then u is in the span of S if and only if Ax = u is con-
sistent. Because the reduced row echelon form of [A u] is
I3, this system is inconsistent. Hence u is not in the span
of S. On the other hand, the reduced row echelon form of
[A v] is 


1 0 2
0 1 3
0 0 0


 .

Thus Ax = v is consistent, and so v is in the span of S. In
fact, the reduced row echelon form of [A v] shows that

2




2
−1

1


 + 3




−1
1
0


 =




1
1
2


 .

2. Let A be the matrix whose columns are the vectors in S.
The reduced row echelon form of A is




1 0 0 9
0 1 0 5
0 0 1 −2


 .

Thus the rank of A is 3, so S is a generating set for R3

by Theorem 1.6.

3. From the reduced row echelon form of A in Practice
Problem 2, we see that the last column of A is a linear
combination of the first three columns. Thus the vector


2
−1

1


 can be removed from S without changing its span.

So

S ′ =






1
0
1


 ,




−1
1
2


 ,




1
3
9







is a subset of S that is a generating set for R3. More-
over, this set is the smallest generating set possible
because removing any vector from S ′ leaves a set of
only 2 vectors. Since the matrix whose columns are
the vectors in S ′ is a 3 × 2 matrix, it cannot have
rank 3 and so cannot be a generating set for R3 by
Theorem 1.6.
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1.7 LINEAR DEPENDENCE AND LINEAR
INDEPENDENCE

In Section 1.6, we saw that it is possible to reduce the size of a generating set if
some vector in the generating set is a linear combination of the others. In fact, by
Theorem 1.7, this vector can be removed without affecting the span. In this section,
we consider the problem of recognizing when a generating set cannot be made smaller.
Consider, for example, the set S = {u1, u2, u3, u4}, where

u1 =




1
−1

2
1


 , u2 =




2
1

−1
−1


 , u3 =




−1
−8
13
8


 , and u4 =




0
1

−2
1


 .

In this case, the reader should check that u4 is not a linear combination of the vectors
u1, u2, and u3. However, this does not mean that we cannot find a smaller set having
the same span as S because it is possible that one of u1, u2, and u3 might be a linear
combination of the other vectors in S. In fact, this is precisely the situation because

u3 = 5u1 − 3u2 + 0u4.

Thus checking if one of the vectors in a generating set is a linear combination of
the others could require us to solve many systems of linear equations. Fortunately, a
better method is available.

In the preceding example, in order that we do not have to guess which of u1, u2,
u3, and u4 can be expressed as a linear combination of the others, let us formulate
the problem differently. Note that because u3 = 5u1 − 3u2 + 0u4, we must have

−5u1 + 3u2 + u3 − 0u4 = 0.

Thus, instead of trying to write some ui as a linear combination of the others, we can
try to write 0 as a linear combination of u1, u2, u3, and u4. Of course, this is always
possible if we take each coefficient in the linear combination to be 0. But if there
is a linear combination of u1, u2, u3, and u4 that equals 0 in which not all of the
coefficients are 0, then we can express one of the ui ’s as a linear combination of the
others. In this case, the equation −5u1 + 3u2 + u3 − 0u4 = 0 enables us to express
any one of u1, u2, and u3 (but not u4) as a linear combination of the others. For
example, since −5u1 + 3u2 + u3 − 0u4 = 0, we have

−5u1 = −3u2 − u3 + 0u4

u1 = 3

5
u2 + 1

5
u3 + 0u4.

We see that at least one of the vectors depends on (is a linear combination of) the
others. This idea motivates the following definitions.

Definitions A set of k vectors {u1, u2, . . . , uk } in Rn is called linearly dependent if
there exist scalars c1, c2, . . . , ck , not all 0, such that

c1u1 + c2u2 + · · · + ckuk = 0.

In this case, we also say that the vectors u1, u2, . . . , uk are linearly dependent.
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A set of k vectors {u1, u2, . . . , uk } is called linearly independent if the only
scalars c1, c2, . . . , ck such that

c1u1 + c2u2 + · · · + ckuk = 0

are c1 = c2 = · · · = ck = 0. In this case, we also say that the vectors u1, u2, . . . , uk

are linearly independent.

Note that a set is linearly independent if and only if it is not linearly dependent.

Example 1 Show that the sets

S1 =
{[

2
3

]
,

[
5
8

]
,

[
1
2

]}
and S2 =

{[
0
0

]
,

[
1
0

]
,

[
0
1

]}

are linearly dependent.

Solution The equation

c1

[
2
3

]
+ c2

[
5
8

]
+ c3

[
1
2

]
=

[
0
0

]

is true with c1 = 2, c2 = −1, and c3 = 1. Since not all the coefficients in the preceding
linear combination are 0, S1 is linearly dependent.

Because

1

[
0
0

]
+ 0

[
1
0

]
+ 0

[
0
1

]
=

[
0
0

]

and at least one of the coefficients in this linear combination is nonzero, S2 is also
linearly dependent.

As Example 1 suggests, any finite subset S = {0, u1, u2, . . . , uk } of Rn that con-
tains the zero vector is linearly dependent because

1 · 0 + 0u1 + 0u2 + · · · + 0uk = 0

is a linear combination of the vectors in S in which at least one coefficient is nonzero.

! CAUTION While the equation

0

[
2
3

]
+ 0

[
5
8

]
+ 0

[
1
2

]
=

[
0
0

]

is true, it tells us nothing about the linear independence or dependence of the set S1

in Example 1. A similar statement is true for any set of vectors {u1, u2, . . . , uk }:
0u1 + 0u2 + · · · + 0uk = 0.

For a set of vectors to be linearly dependent, the equation

c1u1 + c2u2 + · · · + ckuk = 0

must be satisfied with at least one nonzero coefficient.
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Since the equation c1u1 + c2u2 + · · · + ckuk = 0 can be written as a matrix–
vector product

[u1 u2 . . . uk ]




c1

c2
...

ck


 = 0,

we have the following useful observation:

The set {u1, u2, . . . , uk } is linearly dependent if and only if there exists a nonzero
solution of Ax = 0, where A = [u1 u2 . . . uk ].

Example 2 Determine whether the set

S =






1
2
1


 ,




1
0
1


 ,




1
4
1


 ,




1
2
3







is linearly dependent or linearly independent.

Solution We must determine whether Ax = 0 has a nonzero solution, where

A =



1 1 1 1
2 0 4 2
1 1 1 3




is the matrix whose columns are the vectors in S. The augmented matrix of Ax = 0
is




1 1 1 1 0
2 0 4 2 0
1 1 1 3 0


 ,

and its reduced row echelon form is



1 0 2 0 0
0 1 −1 0 0
0 0 0 1 0


 .

Hence the general solution of this system is

x1 = −2x3

x2 = x3

x3 free
x4 = 0.

Because the solution of Ax = 0 contains a free variable, this system of linear equations
has infinitely many solutions, and we can obtain a nonzero solution by choosing any
nonzero value of the free variable. Taking x3 = 1, for instance, we see that




x1

x2

x3

x4


 =




−2
1
1
0
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is a nonzero solution of Ax = 0. Thus S is a linearly dependent subset of R3 since

−2




1
2
1


 + 1




1
0
1


 + 1




1
4
1


 + 0




1
2
3


 =




0
0
0




is a representation of 0 as a linear combination of the vectors in S.

Example 3 Determine whether the set

S =






1
2
1


 ,




2
2
3


 ,




1
0
1







is linearly dependent or linearly independent.

Solution As in Example 2, we must check whether Ax = 0 has a nonzero solution,
where

A =



1 2 1
2 2 0
1 3 1


 .

There is a way to do this without actually solving Ax = 0 (as we did in Example 2).
Note that the system Ax = 0 has nonzero solutions if and only if its general solution
contains a free variable. Since the reduced row echelon form of A is




1 0 0
0 1 0
0 0 1


 ,

the rank of A is 3, and the nullity of A is 3 − 3 = 0. Thus the general solution of
Ax = 0 has no free variables. So Ax = 0 has no nonzero solutions, and hence S is
linearly independent.

In Example 3, we showed that a particular set S is linearly independent without
actually solving a system of linear equations. Our next theorem shows that a similar
technique can be used for any set whatsoever. Note the relationship between this
theorem and Theorem 1.6.

THEOREM 1.8

The following statements about an m × n matrix A are equivalent:

(a) The columns of A are linearly independent.

(b) The equation Ax = b has at most one solution for each b in Rm .

(c) The nullity of A is zero.
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(d) The rank of A is n , the number of columns of A.

(e) The columns of the reduced row echelon form of A are distinct standard
vectors in Rm .

(f) The only solution of Ax = 0 is 0.

(g) There is a pivot position in each column of A.

PROOF We have already noted that (a) and (f) are equivalent, and clearly (f)
and (g) are equivalent. To complete the proof, we show that (b) implies (c), (c)
implies (d), (d) implies (e), (e) implies (f), and (f) implies (b).

(b) implies (c) Since 0 is a solution of Ax = 0, (b) implies that Ax = 0 has
no nonzero solutions. Thus the general solution of Ax = 0 has no free variables.
Since the number of free variables is the nullity of A, we see that the nullity of
A is zero.

(c) implies (d) Because rank A + nullity A = n , (d) follows immediately
from (c).

(d) implies (e) If the rank of A is n , then every column of A is a pivot
column, and therefore the reduced row echelon form of A consists entirely of
standard vectors. These are necessarily distinct because each column contains the
first nonzero entry in some row.

(e) implies (f) Let R be the reduced row echelon form of A. If the columns
of R are distinct standard vectors in Rm , then R = [e1 e2 . . . en ]. Clearly, the
only solution of Rx = 0 is 0, and since Ax = 0 is equivalent to Rx = 0, it follows
that the only solution of Ax = 0 is 0.

(f) implies (b) Let b be any vector in Rm . To show that Ax = b has at most
one solution, we assume that u and v are both solutions of Ax = b and prove that
u = v. Since u and v are solutions of Ax = b, we have

A(u − v) = Au − Av = b − b = 0.

So u − v is a solution of Ax = 0. Thus (f) implies that u − v = 0; that is, u = v.
It follows that Ax = b has at most one solution. �

Practice Problem 1 � Is some vector in the set

S =







−1
0
2
1


 ,




1
1

−1
−1


 ,




0
2

−1
1


 ,




−1
3
1
2







a linear combination of the others? �

The equation Ax = b is called homogeneous if b = 0. As Examples 2 and 3
illustrate, in checking if a subset is linearly independent, we are led to a homoge-
neous equation. Note that, unlike an arbitrary equation, a homogeneous equation must
be consistent because 0 is a solution of Ax = 0. As a result, the important question
concerning a homogeneous equation is not if it has solutions, but whether 0 is the
only solution. If not, then the system has infinitely many solutions. For example,
the general solution of a homogeneous system of linear equations with more vari-
ables than equations must have free variables. Hence a homogeneous system of linear
equations with more variables than equations has infinitely many solutions. According
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to Theorem 1.8, the number of solutions of Ax = 0 determines the linear dependence
or independence of the columns of A.

In order to investigate some other properties of the homogeneous equation Ax = 0,
let us consider this equation for the matrix

A =
[
1 −4 2 −1 2
2 −8 3 2 −1

]
.

Since the reduced row echelon form of [A 0] is
[
1 −4 0 7 −8 0
0 0 1 −4 5 0

]
,

the general solution of Ax = 0 is

x1 = 4x2 − 7x4 + 8x5

x2 free
x3 = 4x4 − 5x5

x4 free
x5 free.

Expressing the solutions of Ax = 0 in vector form yields



x1

x2

x3

x4

x5




=




4x2 − 7x4 + 8x5

x2

4x4 − 5x5

x4

x5




= x2




4
1
0
0
0




+ x4




−7
0
4
1
0




+ x5




8
0

−5
0
1




. (11)

Thus the solution of Ax = 0 is the span of

S =







4
1
0
0
0




,




−7
0
4
1
0




,




8
0

−5
0
1







.

In a similar manner, for a matrix A, we can express any solution of Ax = 0 as
a linear combination of vectors in which the coefficients are the free variables in the
general solution. We call such a representation a vector form of the general solution
of Ax = 0. The solution set of this equation equals the span of the set of vectors that
appear in a vector form of its general solution.

For the preceding set S, we see from equation (11) that the only linear combina-
tion of vectors in S equal to 0 is the one in which all of the coefficients are zero. So
S is linearly independent. More generally, the following result is true:

When a vector form of the general solution of Ax = 0 is obtained by the method
described in Section 1.3, the vectors that appear in the vector form are linearly
independent.

Practice Problem 2 � Determine a vector form for the general solution of

x1 − 3x2 − x3 + x4 − x5 = 0
2x1 − 6x2 + x3 − 3x4 − 9x5 = 0

−2x1 + 6x2 + 3x3 + 2x4 + 11x5 = 0. �
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LINEARLY DEPENDENT AND LINEARLY INDEPENDENT SETS
The following result provides a useful characterization of linearly dependent sets. In
Section 2.3, we develop a simple method for implementing Theorem 1.9 to write one
of the vectors in a linearly dependent set as a linear combination of the preceding
vectors.

THEOREM 1.9

Vectors u1, u2, . . . , uk in Rn are linearly dependent if and only if u1 = 0 or there
exists an i ≥ 2 such that ui is a linear combination of the preceding vectors
u1, u2, . . . , ui−1.

PROOF Suppose first that the vectors u1, u2, . . . , uk in Rn are linearly depen-
dent. If u1 = 0, then we are finished; so suppose u1 �= 0. There exist scalars
c1, c2, . . . , ck , not all zero, such that

c1u1 + c2u2 + · · · + ckuk = 0.

Let i denote the largest index such that ci �= 0. Note that i ≥ 2, for otherwise the
preceding equation would reduce to c1u1 = 0, which is false because c1 �= 0 and
u1 �= 0. Hence the preceding equation becomes

c1u1 + c2u2 + · · · + ciui = 0,

where ci �= 0. Solving this equation for ui , we obtain

ciui = −c1u1 − c2u2 − · · · − ci−1ui−1

ui = −c1

ci
u1 − c2

ci
u2 − · · · − ci−1

ci
ui−1.

Thus ui is a linear combination of u1, u2, . . . , ui−1.
We leave the proof of the converse as an exercise. �

The following properties relate to linearly dependent and linearly independent
sets.

Properties of Linearly Dependent and Independent Sets

1. A set consisting of a single nonzero vector is linearly independent, but {0} is
linearly dependent.

2. A set of two vectors {u1, u2} is linearly dependent if and only if u1 = 0 or u2

is in the span of {u1}; that is, if and only if u1 = 0 or u2 is a multiple of u1.
Hence a set of two vectors is linearly dependent if and only if one of the vectors
is a multiple of the other.

3. Let S = {u1, u2, . . . , uk } be a linearly independent subset of Rn , and v be in
Rn . Then v does not belong to the span of S if and only if {u1, u2, . . . , uk , v} is
linearly independent.

4. Every subset of Rn containing more than n vectors must be linearly dependent.

5. If S is a subset of Rn and no vector can be removed from S without changing
its span, then S is linearly independent.
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! CAUTION The result mentioned in item 2 is valid only for sets containing two vectors. For
example, in R3, the set {e1, e2, e1 + e2} is linearly dependent, but no vector in the set
is a multiple of another.

Properties 1, 2, and 5 follow from Theorem 1.9.
For a justification of property 3, observe that by Theorem 1.9, u1 �= 0, and for

i ≥ 2, no ui is in the span of {u1, u2, . . . , ui−1}. If v does not belong to the span of
S, the vectors u1, u2, . . . , uk , v are also linearly independent by Theorem 1.9. Con-
versely, if the vectors u1, u2, . . . , uk , v are linearly independent, then v is not a linear
combination of u1, u2, . . . , uk by Theorem 1.9. So v does not belong to the span of
S. (See Figure 1.27 for the case that k = 2.)

Span {u1, u2}

{u1, u2, v} is
linearly independent.

u1

u2

v

0

Span {u1, u2}

{u1, u2, v} is
linearly dependent.

u1

u2

v

0

Figure 1.27 Linearly independent and linearly dependent sets of 3 vectors

To justify property 4, consider a set {u1, u2, . . . , uk } of k vectors from Rn , where
k > n . The n × k matrix [u1 u2 . . . uk ] cannot have rank k because it has only n
rows. Thus the set {u1, u2, . . . , uk } is linearly dependent by Theorem 1.8. However,
the next example shows that subsets of Rn containing n or fewer vectors may be
either linearly dependent or linearly independent.

Example 4 Determine by inspection whether the following sets are linearly dependent or linearly
independent:

S1 =






3
−1

7


 ,




0
0
0


 ,




−2
5
1





 , S2 =







−4
12
6


 ,




−10
30
15





 ,

S3 =






−3
7
0


 ,




2
9
0


 ,




−1
0
2





 , and S4 =







2
0
1


 ,




−1
3
2


 ,




1
1
1


 ,




4
−2

3







Solution Since S1 contains the zero vector, it is linearly dependent.
To determine if S2, a set of two vectors, is linearly dependent or linearly inde-

pendent, we need only check if either of the vectors in S2 is a multiple of the other.
Because

5

2




−4
12
6


 =




−10
30
15


 ,

we see that S2 is linearly dependent.
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To see if S3 is linearly independent, consider the subset S = {u1, u2}, where

u1 =



−3
7
0


 and u2 =




2
9
0


 .

Because S is a set of two vectors, neither of which is a multiple of the other, S is
linearly independent. Vectors in the span of S are linear combinations of the vectors
in S, and therefore must have 0 as their third component. Since

v =



−1
0
2




has a nonzero third component, it does not belong to the span of S. So by property 3
in the preceding list, S3 = {u1, u2, v} is linearly independent.

Finally, the set S4 is linearly dependent by property 4 because it is a set of
4 vectors from R3.

Practice Problem 3 � Determine by inspection whether the following sets are linearly dependent or linearly
independent:

S1 =






1
−2

0





 , S2 =







3
−1

2


 ,




6
−2

4


 ,




1
2

−1





 ,

S3 =






1
3

−2


 ,




2
6

−1





 , and S4 =







1
0
1


 ,




−1
1
2


 ,




2
1
3


 ,




1
−2

4







�

In this chapter, we introduced matrices and vectors and learned some of their
fundamental properties. Since we can write a system of linear equations as an equation
involving a matrix and vectors, we can use these arrays to solve any system of linear
equations. It is surprising that the number of solutions of the equation Ax = b is
related both to the simple concept of the rank of a matrix and also to the complex
concepts of generating sets and linearly independent sets. Yet this is exactly the case,
as Theorems 1.6 and 1.8 show. To conclude this chapter, we present the following
table, which summarizes the relationships among the ideas that were established in
Sections 1.6 and 1.7. We assume that A is an m × n matrix with reduced row echelon
form R. Properties listed in the same row of the table are equivalent.

The rank The number of The columns The reduced row
of A solutions of of A echelon form R

Ax = b of A

rank A = m Ax = b has at least
one solution for
every b in Rm.

The columns of A
are a generating set
for Rm.

Every row of R
contains a pivot
position.

rank A = n Ax = b has at most
one solution for
every b in Rm.

The columns of
A are linearly
independent.

Every column of
R contains a pivot
position.
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EXERCISES

In Exercises 1–12, determine by inspection whether the given
sets are linearly dependent.

1.

{[
1
3

]
,

[
2
6

]}
2.

{[
2

−1

]
,

[−1
2

]}

3.







1
−3

0


 ,




−2
6
0





 4.







3
−1

2


 ,




0
0
0


 ,




−2
5
1







5.







0
0

−1


 ,




0
2
1


 ,




−3
7
2





 6.

{[
1

−4

]
,

[
2
3

]
,

[−5
6

]}

7.

{[−3
12

]
,

[
1

−4

]}
8.

{[
4
3

]
,

[−2
5

]
,

[
2
1

]}

9.

{[
5
3

]}
10.

{[
3
7

]
,

[
0
0

]
,

[−1
4

]}

11.







1
0
1


 ,




0
2
0


 ,




1
6
1







12.







1
−2

0


 ,




1
0
1


 ,




3
−1

4


 ,




2
0

−1







In Exercises 13–22, a set S is given. Determine by inspection a
subset of S containing the fewest vectors that has the same span
as S.

13.







1
−2

3


 ,




−2
4

−6





 14.







1
0
2


 ,




3
−1

1







15.







−3
2
0


 ,




1
6
0


 ,




0
0
0







16.







0
0
1


 ,




0
1
2


 ,




1
2
3


 ,




2
3
4







17.







2
−3

5


 ,




4
−6
10


 ,




1
0
2







18.







1
0

−1


 ,




−3
0
3


 ,




5
0

−5


 ,




−6
0
6







19.

{[
4
3

]
,

[−2
5

]
,

[
2
1

]}

20.







1
2

−3


 ,




4
−6

2


 ,




−2
3

−1


 ,




−3
−6

9







21.







−2
0
3


 ,




0
4
0


 ,




−4
1
6







22.







2
1
0


 ,




3
2
1


 ,




5
3
1







In Exercises 23–30, determine whether the given set is linearly
independent.

23.







1
−1
−2


 ,




−1
0
1


 ,




1
2
1







24.







1
−1

1


 ,




−1
0
2


 ,




2
1
1







25.







1
2
0

−1


 ,




1
−3

1
−2


 ,




1
2

−2
3







26.







−1
0
1
2


 ,




−2
1
1

−3


 ,




−4
1
3
1







27.







1
0
0

−2


 ,




0
1

−1
0


 ,




1
0
1
1


 ,




0
1
0
1







28.







1
0
1
0


 ,




−1
1
0
1


 ,




1
−1

1
0


 ,




3
−1

0
−3







29.







1
−1
−1

2


 ,




−1
0
1

−1


 ,




−1
−4

1
3


 ,




0
1

−2
1







30.







−1
0
1

−1


 ,




1
0

−2
0


 ,




0
−2

1
2


 ,




1
−1
−1

2







In Exercises 31–38, a linearly dependent set S is given. Write
some vector in S as a linear combination of the others.

31.







−1
1
2


 ,




3
−3
−6


 ,




0
1
2







32.







0
0
0


 ,




−2
3

−4


 ,




4
−3

2
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33.







0
1
1


 ,




1
0

−1


 ,




4
5
1







34.







1
2

−1


 ,




−1
−3

2


 ,




4
6

−2







35.

{[
1

−1

]
,

[
0
1

]
,

[
3

−2

]
,

[
1
4

]}

36.







1
0
3


 ,




2
−1

1


 ,




5
−4
−5







37.







1
2

−1


 ,




0
1

−1


 ,




−1
−2

0


 ,




2
1

−2







38.







1
0

−1
−1

1




,




−1
1
1
0
1




,




−1
−1

2
1
0




,




0
−1

3
−2

7







In Exercises 39–50, determine, if possible, a value of r for which
the given set is linearly dependent.

39.

{[
1

−1

]
,

[−3
3

]
,

[
4
r

]}

40.







−2
0
1


 ,




1
0

−3


 ,




−1
1
r







41.







−2
0
1


 ,




1
1

−3


 ,




−1
1
r







42.







1
0

−1
1


 ,




0
−1

2
1


 ,




−1
1
1
0


 ,




−1
9
r

−2







43.

{[
2
1

]
,

[
5
3

]
,

[
r
0

]}
44.







2
1
0


 ,




5
3
0


 ,




r
0
r







45.

{[
2

−1

]
,

[
1
3

]
,

[
8
r

]}
46.







−1
3
2


 ,




2
5
r







47.







1
2

−1


 ,




2
1

−3


 ,




−1
7
r







48.







−1
2
1


 ,




0
1
2


 ,




1
2
r







49.







1
2
3

−1


 ,




3
1
6
1


 ,




−1
3

−2
r







50.







0
−1

2
1


 ,




1
2

−1
3


 ,




0
0
0
0


 ,




−1
0
r

−1







In Exercises 51–62, write the vector form of the general solution
of the given system of linear equations.

51. x1 − 4x2 + 2x3 = 0 52.
x1 + 5x3 = 0

x2 − 3x3 = 0

53.
x1 + 3x2 + 2x4 = 0

x3 − 6x4 = 0
54.

x1 + 4x4 = 0
x2 − 2x4 = 0

55.
x1 + 4x3 − 2x4 = 0

−x1 + x2 − 7x3 + 7x4 = 0
2x1 + 3x2 − x3 + 11x4 = 0

56.
x1 − 2x2 − x3 − 4x4 = 0

2x1 − 4x2 + 3x3 + 7x4 = 0
−2x1 + 4x2 + x3 + 5x4 = 0

57.
−x1 + 2x3 − 5x4 + x5 − x6 = 0

x1 − x3 + 3x4 − x5 + 2x6 = 0
x1 + x3 − x4 + x5 + 4x6 = 0

58.

−x1 − 2x3 − x4 − 5x5 = 0
− x2 + 3x3 + 2x4 = 0

−2x1 + x2 + x3 − x4 + 8x5 = 0
3x1 − x2 − 3x3 − x4 − 15x5 = 0

59.
x1 + x2 + x4 = 0
x1 + 2x2 + 4x4 = 0

2x1 − 4x4 = 0

60.
x1 − 2x2 + x3 + x4 + 7x5 = 0
x1 − 2x2 + 2x3 + 10x5 = 0

2x1 − 4x2 + 4x4 + 8x5 = 0

61.

x1 + 2x2 − x3 + 2x5 − x6 = 0
2x1 + 4x2 − 2x3 − x4 − 5x6 = 0
−x1 − 2x2 + x3 + x4 + 2x5 + 4x6 = 0

x4 + 4x5 + 3x6 = 0

62.

x1 − x2 − 2x4 − x5 + 4x6 = 0
2x1 − 2x2 − x3 − 7x4 − x5 + 5x6 = 0
−x1 + x2 + x3 + 5x4 + x5 − 3x6 = 0

x3 + 3x4 + x5 − x6 = 0

In Exercises 63–82, determine whether the state-
ments are true or false.

63. If S is linearly independent, then no vector in S is a linear
combination of the others.

64. If the only solution of Ax = 0 is 0, then the rows of A are
linearly independent.

65. If the nullity of A is 0, then the columns of A are linearly
dependent.

66. If the columns of the reduced row echelon form of A are
distinct standard vectors, then the only solution of Ax = 0
is 0.

67. If A is an m × n matrix with rank n, then the columns of
A are linearly independent.
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68. A homogeneous equation is always consistent.

69. A homogeneous equation always has infinitely many solu-
tions.

70. If a vector form of the general solution of Ax = 0 is
obtained by the method described in Section 1.3, then
the vectors that appear in the vector form are linearly
independent.

71. For any vector v, {v} is linearly dependent.

72. A set of vectors in Rn is linearly dependent if and only
if one of the vectors is a multiple of one of the others.

73. If a subset of Rn is linearly dependent, then it must con-
tain at least n vectors.

74. If the columns of a 3 × 4 matrix are distinct, then they
are linearly dependent.

75. For the system of linear equations Ax = b to be homoge-
neous, b must equal 0.

76. If a subset of Rn contains more than n vectors, then it is
linearly dependent.

77. If every column of an m × n matrix A contains a pivot
position, then the matrix equation Ax = b is consistent for
every b in Rn .

78. If every row of an m × n matrix A contains a pivot posi-
tion, then the matrix equation Ax = b is consistent for
every b in Rn .

79. If c1u1 + c2u2 + · · · + ckuk = 0 for c1 = c2 = · · · =
ck = 0, then {u1, u2, . . . , uk } is linearly independent.

80. Any subset of Rn that contains 0 is linearly dependent.

81. The set of standard vectors in Rn is linearly independent.

82. The largest number of linearly independent vectors in Rn

is n.

83. Find a 2 × 2 matrix A such that 0 is the only solution of
Ax = 0.

84. Find a 2 × 2 matrix A such that Ax = 0 has infinitely
many solutions.

85. Find an example of linearly independent subsets {u1, u2}
and {v} of R3 such that {u1, u2, v} is linearly dependent.

86. Let {u1, u2, . . . , uk } be a linearly independent set of vec-
tors in Rn , and let v be a vector in Rn such that v =
c1u1 + c2u2 + · · · + ckuk for some scalars c1, c2, . . . , ck ,
with c1 �= 0. Prove that {v, u2, . . . , uk } is linearly indepen-
dent.

87. Let u and v be distinct vectors in Rn . Prove that the
set {u, v} is linearly independent if and only if the set
{u + v, u − v} is linearly independent.

88. Let u, v, and w be distinct vectors in Rn . Prove that
{u, v, w} is linearly independent if and only if the set
{u + v, u + w, v + w} is linearly independent.

89. Prove that if {u1, u2, . . . , uk } is a linearly independent
subset of Rn and c1, c2, . . . , ck are nonzero scalars, then
{c1u1, c2u2, . . . , ckuk } is also linearly independent.

90. Complete the proof of Theorem 1.9 by showing that if
u1 = 0 or ui is in the span of {u1, u2, . . . , ui−1} for some
i ≥ 2, then {u1, u2, . . . , uk } is linearly dependent. Hint:
Separately consider the case in which u1 = 0 and the case
in which vector ui is in the span of {u1, u2, . . . , ui−1}.

91.14 Prove that any nonempty subset of a linearly independent
subset of Rn is linearly independent.

92. Prove that if S1 is a linearly dependent subset of Rn that is
contained in a finite set S2, then S2 is linearly dependent.

93. Let S = {u1, u2, . . . , uk } be a nonempty set of vec-
tors from Rn . Prove that if S is linearly inde-
pendent, then every vector in Span S can be
written as c1u1 + c2u2 + · · · + ckuk for unique scalars
c1, c2, . . . , ck .

94. State and prove the converse of Exercise 93.

95. Let S = {u1, u2, . . . , uk } be a nonempty subset of Rn and
A be an m × n matrix. Prove that if S is linearly dependent
and S ′ = {Au1, Au2, . . . , Auk } contains k distinct vectors,
then S ′ is linearly dependent.

96. Give an example to show that the preceding exercise is
false if linearly dependent is changed to linearly indepen-
dent.

97. Let S = {u1, u2, . . . , uk } be a nonempty subset of Rn and
A be an m × n matrix with rank n. Prove that if S is a
linearly independent set, then the set {Au1, Au2, . . . , Auk }
is also linearly independent.

98. Let A and B be m × n matrices such that B can be
obtained by performing a single elementary row operation
on A. Prove that if the rows of A are linearly independent,
then the rows of B are also linearly independent.

99. Prove that if a matrix is in reduced row echelon form,
then its nonzero rows are linearly independent.

100. Prove that the rows of an m × n matrix A are linearly
independent if and only if the rank of A is m. Hint: Use
Exercises 98 and 99.

In Exercises 101–104, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to determine
whether each given set is linearly dependent. In the case that
the set is linearly dependent, write some vector in the set as a
linear combination of the others.

101.







1.1
2.3

−1.4
2.7
3.6
0.0




,




−1.7
4.2
6.2
0.0
1.3

−4.0




,




−5.7
8.1

−4.3
7.2

10.5
2.9




,




−5.0
2.4
1.1
3.4
3.3
6.1




,




2.9
−1.1

2.6
1.6
0.0
3.2







102.







1.2
−5.4

3.7
−2.6

0.3
1.4




,




−1.7
4.2
6.2
0.0
1.3

−4.0




,




−5.0
2.4
1.1
3.4
3.3
6.1




,




−0.6
4.2
2.4

−1.0
8.3

−2.2




,




2.4
−1.4

0.0
5.6
2.3

−1.0







14 This exercise is used in Section 7.3 (on page 514).
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103.







21
25

−15
42
17
10




,




10
−33

29
87

−66
11




,




32
−21

15
−11

25
16




,




13
32

−19
17

−15
22




,




26
18

−37
0

−7
22




,




16
18
21
19

−15
24







104.







21
25

−15
42
17
10




,




10
−33

29
87

−66
11




,




−21
11
23

−10
0
2




,




−14
3

15
0

45
15




,




14
3

−7
32

−28
−3




,




−8
21
30

−17
34
7







SOLUTIONS TO THE PRACTICE PROBLEMS

1. Let A be the matrix whose columns are the vectors in
S. Since the reduced row echelon form of A is I4, the
columns of A are linearly independent by Theorem 1.8.
Thus S is linearly independent, and so no vector in S is
a linear combination of the others.

2. The augmented matrix of the given system is



1 −3 −1 1 −1 0
2 −6 1 −3 −9 0

−2 6 3 2 11 0


 .

Since the reduced row echelon form of this matrix is



1 −3 0 0 −2 0
0 0 1 0 1 0
0 0 0 1 2 0


 ,

the general solution of the given system is

x1 = 3x2 + 2x5

x2 free
x3 = −x5

x4 = −2x5

x5 free.

To obtain its vector form, we express the general solution
as a linear combination of vectors in which the coefficients
are the free variables.




x1

x2

x3

x4

x5




=




3x2 + 2x5

x2

−x5

−2x5

x5




= x2




3
1
0
0
0




+ x5




2
0

−1
−2

1




3. By property 1 on page 81, S1 is linearly independent.

By property 2 on page 81, the first two vectors in S2 are
linearly dependent. Therefore S2 is linearly dependent by
Theorem 1.9.

By property 2 on page 81, S3 is linearly independent.

By property 4 on page 81, S4 is linearly dependent.

CHAPTER 1 REVIEW EXERCISES

In Exercises 1–17, determine whether the statements
are true or false.

1. If B is a 3 × 4 matrix, then its columns are 1 × 3 vectors.

2. Any scalar multiple of a vector v in Rn is a linear com-
bination of v.

3. If a vector v lies in the span of a finite subset S of Rn ,
then v is a linear combination of the vectors in S.

4. The matrix–vector product of an m × n matrix A and a
vector in Rn is a linear combination of the columns of A.

5. The rank of the coefficient matrix of a consistent sys-
tem of linear equations is equal to the number of basic
variables in the general solution of the system.

6. The nullity of the coefficient matrix of a consistent system
of linear equations is equal to the number of free variables
in the general solution of the system.

7. Every matrix can be transformed into one and only one
matrix in reduced row echelon form by means of a
sequence of elementary row operations.

8. If the last row of the reduced row echelon form of an aug-
mented matrix of a system of linear equations has only
one nonzero entry, then the system is inconsistent.

9. If the last row of the reduced row echelon form of an aug-
mented matrix of a system of linear equations has only
zero entries, then the system has infinitely many solutions.

10. The zero vector of Rn lies in the span of any finite subset
of Rn .

11. If the rank of an m × n matrix A is m, then the rows of
A are linearly independent.

12. The set of columns of an m × n matrix A is a generating
set for Rm if and only if the rank of A is m.
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13. If the columns of an m × n matrix are linearly dependent,
then the rank of the matrix is less than m.

14. If S is a linearly independent subset of Rn and v is a
vector in Rn such that S ∪ {v} is linearly dependent, then
v is in the span of S.

15. A subset of Rn containing more than n vectors must be
linearly dependent.

16. A subset of Rn containing fewer than n vectors must be
linearly independent.

17. A linearly dependent subset of Rn must contain more than
n vectors.

18. Determine whether each of the following phrases is a mis-
use of terminology. If so, explain what is wrong with each
one:

(a) an inconsistent matrix

(b) the solution of a matrix

(c) equivalent matrices

(d) the nullity of a system of linear equations

(e) the span of a matrix

(f) a generating set for a system of linear equations

(g) a homogeneous matrix

(h) a linearly independent matrix

19. (a) If A is an m × n matrix with rank n, what can be said
about the number of solutions of Ax = b for every b
in Rm?

(b) If A is an m × n matrix with rank m, what can be said
about the number of solutions of Ax = b for every b
in Rm?

In Exercises 20–27, use the following matrices to compute the
given expression, or give a reason why the expression is not
defined:

A =



1 3
−2 4

0 2


 , B =




2 −1
0 3
4 1


 , C =

[
1
5

]
, and

D = [1 − 1 2].

20. A + BT 21. A + B

22. BC 23. ADT

24. 2A − 3B 25. AT DT

26. AT − B 27. C T − 2D

28. A boat is traveling on a river in a southwesterly direction,
parallel to the riverbank, at 10 mph. At the same time, a
passenger is walking from the southeast side of the boat
to the northwest at 2 mph. Find the velocity and the speed
of the passenger with respect to the riverbank.

29. A supermarket chain has 10 stores. For each i such that
1 ≤ i ≤ 10, the 4 × 1 vector vi is defined so that its
respective components represent the total value of sales
in produce, meats, dairy, and processed foods at store i

during January of last year. Provide an interpretation of
the vector (0.1)(v1 + v2 + · · · + v10).

In Exercises 30–33, compute the matrix–vector products.

30.




3 1
0 −1
1 2




[
4
1

]
31.

[
1 3 1 2
1 −1 4 0

]T [−1
1

]

32. A45◦
[

2
−1

]
33. A−30◦

[
2

−1

]

34. Suppose that

v1 =



2
1
3


 and v2 =




−1
3
6


 .

Represent 3v1 − 4v2 as the product of a 3 × 2 matrix and

a vector in R2.

In Exercises 35–38, determine whether the given vector v is in
the span of

S =






−1
5
2


 ,




1
3
4


 ,




1
−1

1





 .

If so, write v as a linear combination of the vectors in S.

35. v =



5
3

11


 36. v =




1
4
3




37. v =



1
1
2


 38. v =




2
10
9




In Exercises 39–44, determine whether the given system is con-
sistent, and if so, find its general solution.

39. x1 + 2x2 − x3 = 1 40.
x1 + x2 + x3 = 3

−2x1 + 4x2 + 2x3 = 7
2x1 − x2 − 4x3 = 2

41.
x1 + 2x2 + 3x3 = 1

2x1 + x2 + x3 = 2
x1 − 4x2 − 7x3 = 4

42.
x1 + 3x2 + 2x3 + x4 = 2

2x1 + x2 + x3 − x4 = 3
x1 − 2x2 − x3 − 2x4 = 4

43.
x1 + x2 + 2x3 + x4 = 2

2x1 + 3x2 + x3 − x4 = −1

44.
2x1 + 4x2 − 2x3 + 2x4 = 4
2x1 + x2 + 4x3 + 2x4 = 1
4x1 + 6x2 + x3 + 2x4 = 1

In Exercises 45–48, find the rank and nullity of the given matrix.

45.
[
1 2 −3 0 1

]
46.

[
1 2 −3 0 1
0 0 0 0 0

]
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47.




1 2 1 −1 2
2 1 0 1 3

−1 −3 1 2 4


 48.




2 3 4
1 2 1

−1 1 2
3 0 2




49. A company that ships fruit has three kinds of fruit packs.
The first pack consists of 10 oranges and 10 grapefruit,
the second pack consists of 10 oranges, 15 grapefruit,
and 10 apples, and the third pack consists of 5 oranges,
10 grapefruit, and 5 apples. How many of each pack can
be made from a stock of 500 oranges, 750 grapefruit, and
300 apples?

In Exercises 50–53, a set of vectors in Rn is given. Determine
whether the set is a generating set for Rn .

50.







1
1

−1
1


 ,




1
0
0
2


 ,




1
3

−2
1







51.







−1
1
1


 ,




1
−1

1


 ,




1
1

−1







52.







1
0
1


 ,




1
1

−1


 ,




2
1
3







53.







1
2
1


 ,




1
−1

1


 ,




1
1
1


 ,




0
1
0







In Exercises 54–59, an m × n matrix A is given. Determine
whether the equation Ax = b is consistent for every b in Rn .

54.

[
1 2
3 6

]
55.

[
1 1
3 2

]

56.

[
1 −1 1
2 0 1

]
57.




−1 1 1
1 −1 1
1 1 −1




58.




1 2 1
3 0 −3

−1 1 2


 59.




1 2 1
2 −3 1

−1 1 2
0 1 2




In Exercises 60–63, determine whether the given set is linearly
dependent or linearly independent.

60.







1
3
2


 ,




1
−1

2


 ,




3
1
6





 61.







1
−1

2
0


 ,




0
1
2
3


 ,




1
0
1
1







62.







2
3
5
7


 ,




4
6

10
14







63.







22.40
6.02
6.63


 ,




9.11
1.76
9.27


 ,




3.14
2.72
1.41


 ,




31
37
41







In Exercises 64–67, a linearly dependent set S is given. Write
some vector in S as a linear combination of the others.

64.







1
−1

3


 ,




1
2
1


 ,




2
4
2





 65.







1
2
3


 ,




1
−1

2


 ,




3
3
8







66.







3
1
4
1


 ,




3
0
5
1


 ,




3
3
2
1







67.







1
−1

1
2


 ,




1
0
1
0


 ,




1
1
1
1


 ,




1
−1

1
−1







In Exercises 68–71, write the vector form of the general solution
of the given system of linear equations.

68. x1 + 2x2 − x3 + x4 = 0

69.
x1 + 2x2 − x3 = 0
x1 + x2 + x3 = 0
x1 + 3x2 − 3x3 = 0

70.
2x1 + 5x2 − x3 + x4 = 0
x1 + 3x2 + 2x3 − x4 = 0

71.
3x1 + x2 − x3 + x4 = 0
2x1 + 2x2 + 4x3 − 6x4 = 0
2x1 + x2 + 3x3 − x4 = 0

72. Let A be an m × n matrix, let b be a vector in Rm , and
suppose that v is a solution of Ax = b.

(a) Prove that if w is a solution of Ax = 0, then v + w is
a solution of Ax = b.

(b) Prove that for any solution u to Ax = b, there is a
solution w to Ax = 0 such that u = v + w.

73. Suppose that w1 and w2 are linear combinations of vec-
tors v1 and v2 in Rn such that w1 and w2 are linearly
independent. Prove that v1 and v2 are linearly indepen-
dent.

74. Let A be an m × n matrix with reduced row echelon form
R. Describe the reduced row echelon form of each of the
following matrices:

(a) [A 0]

(b) [a1 a2 · · · ak ] for k < n

(c) cA, where c is a nonzero scalar

(d) [Im A]

(e) [A cA], where c is any scalar
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CHAPTER 1 MATLAB EXERCISES

For the following exercises, use MATLAB (or comparable software) or a calculator with matrix capabilities. The MATLAB
functions in Tables D.1, D.2, D.3, D.4, and D.5 of Appendix D may be useful.

1. Let

A =




2.1 3.2 6.1 −2.3
1.3 −2.5 −1.7 1.5

−1.2 1.5 4.3 2.4
4.1 2.0 5.1 4.2
6.1 −1.4 3.0 −1.3




.

Use the matrix–vector product of A and a vector to com-
pute each of the following linear combinations of the
columns of A:

(a) 1.5a1 − 2.2a2 + 2.7a3 + 4a4

(b) 2a1 + 2.1a2 − 1.1a4

(c) 3.3a2 + 1.2a3 − a4

2. Let

A =




1.3 2.1 −3.3 4.1
6.1 2.4 −1.3 −3.1

−2.2 5.1 3.2 2.1
2.2 6.1 7.2 −5.1


 ,

B =




2.1 −1.1 1.2 4.2
−4.6 8.1 9.2 −3.3

2.5 5.2 −3.3 4.2
−0.7 2.8 −6.3 4.7


 ,

and

v =




3.2
−4.6

1.8
7.1


 .

(a) Compute 3A − 2B .

(b) Compute A − 4BT .

(c) Compute P = 1
2 (A + AT ).

(d) Compute Q = 1
2 (A − AT ).

(e) Compute PT and QT to see that P in (c) is symmet-
ric and Q in (d) is skew-symmetric. Then compute
P + Q . What does it equal?

(f) Compute Av.

(g) Compute B (Av).

(h) Compute A(Bv).

(i) Evaluate the linear combination

3.5a1 − 1.2a2 + 4.1a3 + 2a4,

and determine a vector w such that Aw equals this
linear combination.

(j) Let M be the 4 × 4 matrix whose j th column is Baj

for 1 ≤ j ≤ 4. Verify that M ej = B (Aej ) for all j , and
verify that M v = B (Av). State and prove the gener-
alization of this result to all vectors in R4.

3. Let Aθ denote the rotation matrix of θ degrees, as defined
in Section 1.2. For the following computations, it is use-
ful to apply the imported MATLAB function rotdeg, as
described in Table D.5 of Appendix D:

(a) Compute A20◦
[
1
3

]
.

(b) Compute A30◦
(

A20◦
[
1
3

])
.

(c) Compute A50◦
[
1
3

]
.

(d) Compute A−20◦
(

A20◦
[
1
3

])
.

(e) Make a conjecture about Aθ1+θ2 and its relationship
to Aθ1 and Aθ2 for any angles θ1 and θ2.

(f) Prove your conjecture.

(g) Make a conjecture about the relationship between Aθ

and A−θ for any angle θ .

(h) Prove your conjecture.

4. Let

A =




1.1 2.0 4.2 2.7 1.2 0.1
3.1 −1.5 4.7 8.3 −3.1 2.3
7.1 −8.5 5.7 19.5 −11.7 6.7
2.2 4.0 8.4 6.5 2.1 −3.4


 .

(a) Use elementary row operations to transform A
into reduced row echelon form. (Note that the
MATLAB function command A(i,:) described in
Table D.4 in Appendix D is useful for this purpose.
For example, to interchange row i and row j of
A, enter the three commands temp = A(i,:),
A(i,:) = A(j,:), and A(j,:) = temp. To
multiply the entries of row i of A by the scalar c,
enter the command A(i,:) = c*A(i,:). To add
the scalar multiple c of row i to row j of A, enter the
command A(j,:) = A(j,:) + c*A(i,:).)

(b) Use technology to compute the reduced row echelon
form of A directly. (For example, enter rref(A) when
using MATLAB.) Compare this to the result obtained
in (a).

5. For the matrix A in Exercise 4 and each of the follow-
ing vectors b, determine whether the system of linear
equations Ax = b is consistent. If so, find its general solu-
tion:

(a) b =




−1.0
2.3
8.9
1.6


 (b) b =




1.1
2.1
3.2

−1.4




(c) b =




3.8
2.9
1.1

12.0


 (d) b =




1
1

−1
2
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6. Let

C =




0.10 0.06 0.20 0.13 0.18
0.05 0.12 0.14 0.10 0.20
0.12 0.21 0.06 0.14 0.15
0.11 0.10 0.15 0.20 0.10
0.20 0.10 0.20 0.05 0.17




and

d =




80
100
150
50
60




,

where C is the input-output matrix for an economy that
has been divided into five sectors, and d is the net pro-
duction for this economy, where units are in billions
of dollars. Find the gross production vector required to
produce d, where each component is in units of bil-
lions of dollars, rounded to four places after the decimal
point.

7. Determine whether each of the sets that follow is linearly
dependent or linearly independent. If the set is linearly
dependent, write one of the vectors in the set as a linear
combination of the other vectors in the set.

(a) S1 =







1
2

−1
3
2
1




,




1
0
1
1
0
1




,




2
1

−1
2
0
1




,




3
−1

1
2

−1
1




,




0
1
1
2
2
1







(b) S2 =







2
1

−1
1
3
1




,




1
2
1
1
0

−1







−1
1
4
1

−1
2




,




2
1
1

−1
2
3




,




−2
1
0
1

−1
−2







8. Determine whether each of the vectors shown is in the
span of S1 as defined in (a) of Exercise 7. If the vec-
tor lies in the span of S1, then represent it as a linear
combination of the vectors in S1.

(a)




14
2

−1
12
−1

5




(b)




4
3

−2
7
3
2




(c)




10
6

−5
13
3
5




(d)




1
6

−5
4
3
1
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2 INTRODUCTION

Fingerprint recognition was accepted as
a valid personal identification method in the
early twentieth century and became a stan-
dard tool in forensics. The rapid expansion of
fingerprint recognition in forensics created
enormous collections of fingerprint cards.
Large staffs of human fingerprint examin-
ers struggled to provide prompt responses
to requests for fingerprint identification.
The development of Automatic Fingerprint
Identification Systems (AFIS) over the past
few decades has improved dramatically the
productivity of law enforcement agencies
and reduced the cost of hiring and training
human fingerprint experts. The technology

Ridge

Endpoint

Type

Bifurcation

point

has also made fingerprint recognition a prac-
tical tool for unsupervised access control.

Fingerprint identification for law enforcement is

based on the location and type of minutiae, which are

peculiarities in the friction ridges (or simply ridges) on

the fingertips. Analysis usually focuses on a particular

pair of minutiae: ridge endpoints where a ridge ter-

minates and bifurcation points where a ridge splits.

An example of each is shown in the center of each

of the figures at the left, where the ridges are black

against a white background. The identification then

hinges on locating the minutiae in the fingerprint,

a task originally performed by human examiners.

From Chapter 2 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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94 2 Introduction

The AFIS analysis uses a digital image, which is
usually acquired by a live-scan fingerprint sensor. The
original digital image goes through a preprocessing
phase that extracts the ridge pixels, converts them to
binary values (pixels are either 0 or 1), and thins the
image to obtain a set of one-pixel width curves that are
approximately the centerlines of the ridges, as shown
in the figure at the right. A few of the minutiae are
indicated by small squares.

Matrices such as

⎡
⎣

0 0 0
0 1 1
0 0 0

⎤
⎦ and

⎡
⎣

0 0 1
0 1 0
0 0 0

⎤
⎦

are used to detect ridge endpoints. Interpreting the
entries as 0 = white and 1 = black, the matrices match
the possible arrangements of pixels at a ridge endpoint.

Similarly, matrices such as

⎡
⎣

1 0 1
0 1 0
0 1 0

⎤
⎦ and

⎡
⎣

1 0 0
0 1 1
1 0 0

⎤
⎦ are used to find bifurcation endpoints.

The process of detection involves sliding the matri-
ces over the image and looking for 3x3 blocks of image
pixels that match one of the matrices. A match indicates
an endpoint.

Other uses of matrices whose entries consist of 0s
and 1s, called (0, 1)-matrices, are examined in Section 2.2.

94



CHAPTER

2
MATRICES AND LINEAR
TRANSFORMATIONS

In Section 1.2, we used matrix–vector products to perform calculations in examples
involving rotations of vectors, shifts of population, and mixtures of seed. For these
examples, we presented the data—points in the plane, population distributions,

and grass seed mixtures—as vectors and then formulated rules for transforming these
vectors by matrix–vector products.

In situations of this kind in which a process is repeated, it is often useful to
take the product of a matrix and the vector obtained from a previous matrix–vector
product. This calculation leads to an extension of the definition of multiplication to
include products of matrices of various sizes.

In this chapter, we examine some of the elementary properties and applications
of this extended definition of matrix multiplication (Sections 2.1–2.4). Later in the
chapter, we study the matrix–vector product from the functional viewpoint of a rule of
correspondence. This leads to the definition of linear transformation (Sections 2.7 and
2.8). Here we see how the functional properties of linear transformations correspond
to the properties of matrix multiplication studied earlier in this chapter.

2.1 MATRIX MULTIPLICATION

In many applications, we need to multiply a matrix–vector product Av on the left by
A again to form a new matrix–vector product A(Av). For instance, in Example 3 in
Section 1.2, the product Ap represents the population distribution in a metropolitan
area after one year. To find the population distribution after two years, we multiply
the product Ap on the left by A to get A(Ap). For other problems, we might need to
multiply a matrix–vector product Bv by a different matrix C to obtain the product
C (Bv). The following example illustrates such a product:

Example 1 In the seed example from Section 1.2, recall that

B =
deluxe standard economy[

.80 .60 .40

.20 .40 .60

]
bluegrass

rye

gives the proportions of bluegrass and rye in the deluxe, standard, and economy
mixtures of grass seed, and that

v =



60
50
30
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gives the number of pounds of each mixture in stock. Then Bv is the vector whose
components are the amounts of bluegrass and rye seed, respectively, in a blend
obtained by combining the number of pounds of each of the three mixtures in stock.
Since

Bv =
[
.80 .60 .40
.20 .40 .60

]


60
50
30


 =

[
90
50

]
,

we conclude that there are 90 pounds of bluegrass seed and 50 pounds of rye seed in
the blend.

Next suppose that we have a seed manual with a table that gives us the germination
rates of bluegrass and rye seeds under both wet and dry conditions. The table, given
in the form of a matrix A, is as follows:

A =
bluegrass rye[
.80 .70
.60 .40

]
wet
dry

The (1, 1)-entry, which is .80, signifies that 80% of the bluegrass seed germinates
under wet conditions, while the (1, 2)-entry, which is .70, signifies that 70% of the
rye seed germinates under wet conditions. Suppose also that we have a mixture of
y1 pounds of bluegrass seed and y2 pounds of rye seed. Then .80y1 + .70y2 is the
total weight (in pounds) of the seed that germinates under wet conditions. Similarly,
.60y1 + .40y2 is the total weight of the seed that germinates under dry conditions.
Notice that these two expressions are the entries of the matrix–vector product Av,

where v =
[
y1

y2

]
.

Let’s combine this with our previous calculation. Since Bv is the vector whose
components are the amounts of bluegrass and rye seed in a blend, the components of
the matrix–vector product

A(Bv) =
[
.80 .70
.60 .40

] [
90
50

]
=

lbs. of seed
germinated[

107
74

]
wet
dry

are the amounts of seed that can be expected to germinate under each of the two types
of weather conditions. Thus 107 pounds of seed can be expected to germinate under
wet conditions, and 74 pounds under dry conditions.

In the preceding example, a matrix–vector product is multiplied on the left by
another matrix. An examination of this process leads to an extended definition of
matrix multiplication.

Let A be an m × n matrix and B be an n × p matrix. Then for any p × 1 vector
v, the product Bv is an n × 1 vector, and hence the new product A(Bv) is an m × 1
vector. This raises the following question: Is there is an m × p matrix C such that
A(Bv) = Cv for every p × 1 vector v?

By the definition of a matrix–vector product and Theorem 1.3, we have

A(Bv) = A(v1b1 + v2b2 + · · · + vpbp)

= A(v1b1) + A(v2b2) + · · · + A(vpbp)
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2.1 Matrix Multiplication 97

= v1Ab1 + v2Ab2 + · · · + vpAbp

= [Ab1 Ab2 . . . Abp ]v.

Let C be the m × p matrix [Ab1 Ab2 . . . Abp ]—that is, the matrix whose j th col-
umn is cj = Abj . Then A(Bv) = Cv for all v in Rp . Furthermore, by Theorem 1.3(e),
C is the only matrix with this property. This convenient method of combining the
matrices A and B leads to the following definition.

Definition Let A be an m × n matrix and B be an n × p matrix. We define the
(matrix) product AB to be the m × p matrix whose j th column is Abj . That is,

C = [Ab1 Ab2 . . . Abp].

In particular, if A is an m × n matrix and B is an n × 1 column vector, then the
matrix product AB is defined and is the same as the matrix–vector product defined in
Section 1.2.

In view of this definition and the preceding discussion, we have an associative
law for the product of two matrices and a vector. (See Figure 2.1.)

For any m × n matrix A, any n × p matrix B , and any p × 1 vector v,

(AB )v = A(Bv).

(AB)v � A(Bv)

Bv

v

multiply
by A

multiply
by B

multiply
by AB

Rn

Rp Rm

Figure 2.1 The associative law of multiplication

Later in this section, we extend this associative law to the product of any three
matrices of compatible sizes. (See Theorem 2.1(b).)

Notice that when the sizes of A and B are written side by side in the same order
as the product, that is, (m × n)(n × p), the inner dimensions must be equal, and the
outer dimensions give the size of the product AB . Symbolically,

(m × n)(n × p) = (m × p).

Practice Problem 1 � Suppose that A is a 2 × 4 matrix and B is a 2 × 3 matrix.

(a) Is the product BAT defined? If so, what is its size?

(b) Is the product AT B defined? If so, what is its size? �
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Example 2 Let

A =
⎡
⎣

1 2
3 4
5 6

⎤
⎦ and B =

[−1 1
3 2

]
.

Notice that A has 2 columns and B has 2 rows. Then AB is the 3 × 2 matrix with
first and second column

Ab1 =
⎡
⎣

1 2
3 4
5 6

⎤
⎦

[−1
3

]
=

⎡
⎣

5
9

13

⎤
⎦ and Ab2 =

⎡
⎣

1 2
3 4
5 6

⎤
⎦

[
1
2

]
=

⎡
⎣

5
11
17

⎤
⎦ ,

respectively. Thus

AB = [Ab1 Ab2] =
⎡
⎣

5 5
9 11

13 17

⎤
⎦ .

Practice Problem 2 � For A =
[

2 −1 3
1 4 −2

]
and B =

⎡
⎣

−1 0 2
0 −3 4
3 1 −2

⎤
⎦, compute AB . �

Example 3 We return to Example 1 in this section and the matrix A =
[
.80 .70
.60 .40

]
. Recall the

matrix B =
[
.80 .60 .40
.20 .40 .60

]
and the vector v =

⎡
⎣

60
50
30

⎤
⎦ from the related example in

Section 1.2. Then

AB =
[
.80 .70
.60 .40

] [
.80 .60 .40
.20 .40 .60

]
=

[
.78 .76 .74
.56 .52 .48

]
,

� � �

�

�
v

x

y

A�v

A�(A�v) � A���v

Figure 2.2 Rotating a vector v in
R2 twice

and hence

(AB)v =
[
.78 .76 .74
.56 .52 .48

]⎡
⎣

60
50
30

⎤
⎦ =

[
107

74

]
.

This is the same result we obtained in Example 1, where we computed A(Bv).

Example 4 Recall the rotation matrix Aθ described in Section 1.2. Let v be a nonzero vector, and
let α and β be angles. Then the expression Aβ (Aαv) = (AβAα)v is the result of rotating
v by α followed by β. From Figure 2.2, we see that this is the same as rotating v by
β followed by α, which is also the same as rotating v by the angle α + β. Thus

(AβAα)v = (AαAβ )v = Aα+βv.

Since this equation is valid for every vector v in R2, we may apply Theorem 1.3(e)
to obtain the result

AβAα = AαAβ = Aα+β .
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2.1 Matrix Multiplication 99

Although AβAα = AαAβ is true for rotation matrices, as shown in Example 4,
the matrix products AB and BA are seldom equal.

Matrix Multiplication Is Not Commutative

For arbitrary matrices A and B , AB need not equal BA.

In fact, if A is an m × n matrix and B is a n × p matrix, then BA is undefined
unless p = m . If p = m , then AB is an m × m matrix and BA is an n × n matrix.
Thus, even if both products are defined, AB and BA need not be of the same size. But
even if m = n , AB might not equal BA, as the next example shows.

Example 5 Let

A =



0 0 1
0 1 0
1 0 0


 and B =




0 1 0
1 0 0
0 0 1


 .

Then

(AB )e1 = A(Be1) = Ae2 = e2 and (BA)e1 = B (Ae1) = Be3 = e3,

and hence AB �= BA. (See Figure 2.3.)

e3 � (BA)e1

e2 � (AB)e1e2

e1

e3

multiply
by A

multiply
by A

multiply
by B

multiply
by B

Figure 2.3 Matrix multiplication is not commutative.

Our definition of the matrix product tells how to compute a product AB by
finding its columns, as in Example 2. However, there is also a method for computing
an individual entry of the product, without calculating the entire column that contains
it. This is often called the row-column rule and is useful when we need to find only
some specific entries of the product. Observe that the (i , j )-entry of AB is the i th
component of its j th column, Abj . This entry equals

[ai1 ai2 . . . ain ]




b1j

b2j
...

bnj


 = ai1b1j + ai2b2j + · · · + ainbnj ,

which is the product of row i of A and column j of B . We can describe this formula
by means of the following diagram:
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a11 a12 · · · a1n
...

...
...

ai1 ai2 · · · ain
...

...
...

am1 am2 · · · amn







b11 · · · b1j · · · b1p

b21 · · · b2j · · · b2p
...

...
...

bn1 · · · bnj · · · bnp


row i of A

column j of B

�

�

Row-Column Rule for the (i, j)-Entry of a Matrix Product

To compute the (i , j )-entry of the matrix product AB , locate the i th row of A
and the j th column of B as in the preceding diagram. Moving across the i th
row of A and down the j th column of B , multiply each entry of the row by
the corresponding entry of the column. Then sum these products to obtain the
(i , j )-entry of AB . In symbols, the (i , j )-entry of AB is

ai1b1j + ai2b2j + · · · + ainbnj .

To illustrate this procedure, we compute the (2, 1)-entry of AB in Example 2. In
this case, when we multiply each entry of the second row of A by the corresponding
entry of the first column of B and sum the results, we get

[3 4]

[−1
3

]
= (3)(−1) + (4)(3) = 9,

which is the (2, 1)-entry of AB .
Identity matrices, introduced in Section 1.2, leave matrices unchanged under

matrix multiplication. (See Theorem 2.1(e) and Exercise 56.) Suppose, for example,

that A =
[
1 2 3
4 5 6

]
. Then

I2A =
[
1 0
0 1

] [
1 2 3
4 5 6

]
=

[
1 2 3
4 5 6

]
= A

and

AI3 =
[
1 2 3
4 5 6

]


1 0 0
0 1 0
0 0 1


 =

[
1 2 3
4 5 6

]
= A.

Also, the product of a matrix and a zero matrix is a zero matrix because each
column of the product is a zero vector. (See Theorem 1.3(f).)

The next theorem summarizes various properties of matrix multiplication and
illustrates the interplay between matrix multiplication and the other matrix operations.

THEOREM 2.1

Let A and B be k × m matrices, C be an m × n matrix, and P and Q be n × p
matrices. Then the following statements are true:
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(a) s(AC ) = (sA)C = A(sC ) for any scalar s .

(b) A(CP ) = (AC )P . (associative law of matrix multiplication)

(c) (A + B )C = AC + BC . (right distributive law)

(d) C (P + Q) = CP + CQ . (left distributive law)

(e) IkA = A = AIm .

(f) The product of any matrix and a zero matrix is a zero matrix.

(g) (AC )T = C T AT .

PROOF We prove (b), (c), and (g). The rest are left as exercises.
(b) First observe that both A(CP ) and (AC )P are k × p matrices. Let uj

denote column j of CP . Since uj = Cpj , column j of A(CP ) is Auj = A(Cpj ).
Furthermore, column j of (AC )P is (AC )pj = A(Cpj ) by the boxed result on
page 97. It follows that the corresponding columns of A(CP ) and (AC )P are
equal. Therefore A(CP ) = (AC )P .

(c) Both (A + B )C and AC + BC are k × n matrices, so we compare the
corresponding columns of each matrix. For any j , Acj and Bcj are the j th columns
of AC and BC , respectively. But the j th column of (A + B )C is

(A + B )cj = Acj + Bcj ,

by Theorem 1.3(c), and this is the j th column of AC + BC . This esta-
blishes (c).

(g) Both (AC )T and C T AT are n × k matrices, so we compare the corre-
sponding entries of each matrix. The (i , j )-entry of (AC )T is the (j , i )-entry of
AC , which is

[aj1 aj2 . . . ajm ]




c1i

c2i
...

cmi


 = aj1c1i + aj2c2i + · · · + ajmcmi .

Also, the (i , j )-entry of C T AT is the product of row i of C T and column j
of AT , which is

[c1i c2i . . . cmi ]




aj1

aj2
...

ajm


 = c1i aj1 + c2i aj2 + · · · + cmi ajm .

Since the two displayed expressions are equal, the (i , j )-entry of (AC )T is equal
to the (i , j )-entry of CT AT . This establishes (g). �

The associative law of matrix multiplication, Theorem 2.1(b), allows us to omit
parentheses when writing products of matrices. For this reason, we usually write ABC
for a product of the matrices A, B , and C .

If A is an n × n matrix, we can form products of A with itself any number of
times. As with real numbers, we use the exponential notation Ak to denote the product
of A with itself k times. By convention, A1 = A and A0 = In .
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Example 6
Recall that we can use the stochastic matrix A =

[
.85 .03
.15 .97

]
in Example 3 of

Section 1.2 to study population shifts between the city and suburbs. In that example, if
the components of p are the current populations of the city and suburbs, then the com-
ponents of Ap are the populations of the city and suburbs for the next year. Extending
the argument of that example to subsequent years, we see that A2p = A(Ap) is the
vector whose components are the populations of the city and suburbs after two years.
In general, for any positive integer m , Am p is the vector whose components are the

populations of the city and suburbs after m years. For example, if p =
[

500
700

]
(as in

Example 3 of Section 1.2), then the vector representing the city and suburb populations
in ten years is given by

A10p ≈
[

241.2
958.8

]
.

(Here the entries are rounded.)
A sociologist may need to determine the long-range trend that occurs in popula-

tions as a result of these annual shifts. In terms of matrix multiplication, this problem
reduces to the study of the vectors Am p as m increases. A deeper understanding of
matrices, which we will acquire in Chapter 5, provides us with tools to understand
the long-term behavior of this population better.

If A and B are matrices with the same number of rows, then we denote by [A B]
the matrix whose columns are the columns of A followed by the columns of B , in
order. We call [A B ] an augmented matrix. For example, if

A = I2 =
[

1 0
0 1

]
and B =

[
2 0 1

−1 3 1

]
,

then [A B] is the 2 × 5 matrix

[A B] =
[

1 0 2 0 1
0 1 −1 3 1

]
.

Occasionally, it is useful to include a vertical line when displaying an augmented
matrix [A B] in order to separate visually the columns of A from those of B . Thus,
for these matrices A and B , we may write

[A B] =
[

1 0 2 0 1
0 1 −1 3 1

]
.

Because of the way that matrix multiplication is defined, it is easy to see that if P is
an m × n matrix and A and B are matrices with n rows, then P [A B] = [PA PB ].

Example 7 Let

A = I2 =
[

1 0
0 1

]
, B =

[
2 0 1

−1 3 1

]
, and P =

⎡
⎣

1 2
2 −1
0 1

⎤
⎦ .

Use the equation P [A B] = [PA PB ] to compute the product P [A B].
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Solution Observe that PA = PI2 = P and

PB =



1 2
2 −1
0 1




[
2 0 1

−1 3 1

]
=




0 6 3
5 −3 1

−1 3 1


 .

Therefore

P [A B ] = [PA PB ] =



1 2 0 6 3
2 −1 5 −3 1
0 1 −1 3 1


 .

Practice Problem 3 � Let

A =
[
1 3 −1
2 5 4

]
, B =




2 −2
0 3

−4 1


 , and C =




3 0 −1
2 1 5

−6 0 2


 .

Find the fourth column of A[B C ] without computing the entire matrix. �

SPECIAL MATRICES
We briefly examine matrices with special properties that will be of interest later in
this text. We begin with diagonal matrices, which are important because of their
simplicity. The (i , j )-entry of a matrix A is called a diagonal entry if i = j . The
diagonal entries form the diagonal of A. A square matrix A is called a diagonal
matrix if all its nondiagonal entries are zeros. For example, identity matrices and
square zero matrices are diagonal matrices.

If A and B are n × n diagonal matrices, then AB is also an n × n diagonal matrix.
Moreover, the diagonal entries of AB are the products of the corresponding diagonal
entries of A and B . (See Exercise 60.) For example, suppose that

A =



1 0 0
0 2 0
0 0 3


 and B =




3 0 0
0 −1 0
0 0 2


 .

Then

AB =



3 0 0
0 −2 0
0 0 6


 .

The relationship between diagonal and nondiagonal square matrices will be studied in
depth in Chapter 5, where we will see that in many circumstances, an ordinary square
matrix can be replaced by a diagonal matrix, thus simplifying theoretical arguments
as well as computations.

Observe that any diagonal matrix is equal to its transpose. In general, a (square)
matrix A is called symmetric if AT = A. For example, diagonal matrices are symmet-
ric. As another example, let

A =



1 2 4
2 3 −1
4 −1 5


 .
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Then

AT =
⎡
⎣

1 2 4
2 3 −1
4 −1 5

⎤
⎦

T

=
⎡
⎣

1 2 4
2 3 −1
4 −1 5

⎤
⎦ = A.

So A is symmetric. In general, a square matrix A is symmetric if and only if aij = aji

for all i and j .

EXERCISES

In Exercises 1–3, decide whether each matrix product AB is
defined. If so, find its size.

1. A is a 2 × 3 matrix, and BT is a 2 × 3 matrix.

2. A is a 2 × 4 matrix, and B is a 4 × 6 matrix.

3. AT is a 3 × 3 matrix, and B is a 2 × 3 matrix.

4. Give an example of matrices A and B such that BA is
defined, but AB is not.

In Exercises 5–20, use the following matrices to compute each
expression, or give a reason why the expression is not defined:

A =
[

1 −2
3 4

]
B =

[
7 4
1 2

]
C =

[
3 8 1
2 0 4

]

x =
[

2
3

]
y =

⎡
⎣

1
3

−5

⎤
⎦ z = [7 −1]

5. C y 6. Bx 7. xz 8. By

9. AC x 10. AzT 11. AB 12. AC

13. BC 14. BA 15. CBT 16. CB

17. A3 18. A2 19. C 2 20. B2

In Exercises 21–24, use the matrices A, B, C , and z from
Exercises 5–20.

21. Verify that I2C = CI3 = C .

22. Verify that (AB)C = A(BC ).

23. Verify that (AB)T = BTAT .

24. Verify that z(AC ) = (zA)C .

In Exercises 25–32, use the following matrices to compute each
requested entry or column of the matrix product without com-
puting the entire matrix:

A =
⎡
⎣

1 2 3
2 −1 4

−3 −2 0

⎤
⎦ , B =

⎡
⎣

−1 0
4 1
3 −2

⎤
⎦ , C =

[
2 1 −1
4 3 −2

]

25. the (3, 2)-entry of AB 26. the (2, 1)-entry of BC

27. the (2, 3)-entry of CA 28. the (1, 1) entry of CB

29. column 2 of AB 30. column 3 of BC

31. column 1 of CA 32. column 2 of CB

In Exercises 33–50, determine whether the state-
ments are true or false.

33. The product of two m × n matrices is defined.

34. For any matrices A and B , if the product AB is defined,
then the product BA is also defined.

35. For any matrices A and B , if the products AB and BA are
both defined, then AB = BA.

36. If A is a square matrix, then A2 is defined.

37. If A and B are matrices, then both AB and BA are defined
if and only if A and B are square matrices.

38. If A is an m × n matrix and B is an n × p matrix, then
(AB)T = AT BT .

39. There exist nonzero matrices A and B for which AB = BA.

40. For any matrices A and B for which the product AB is
defined, the j th column of AB equals the matrix–vector
product of A and the j th column of B .

41. For any matrices A and B for which the product AB is
defined, the (i , j )-entry of AB equals aij bij .

42. For any matrices A and B for which the product AB is
defined, the (i , j )-entry of AB equals the sum of the prod-
ucts of corresponding entries from the i th column of A
and the j th row of B .

43. If A, B , and C are matrices for which the product A(BC )
is defined, then A(BC ) = (AB)C .

44. If A and B are m × n matrices and C is an n × p matrix,
then (A + B)C = AB + BC .

45. If A and B are n × n matrices, then the diagonal entries
of the product matrix AB are a11b11, a22b22, . . . , ann bnn .

46. If the product AB is defined and either A or B is a zero
matrix, then AB is a zero matrix.

47. If the product AB is defined and AB is a zero matrix, then
either A or B is a zero matrix.

48. If Aα and Aβ are both 2 × 2 rotation matrices, then AαAβ

is a 2 × 2 rotation matrix.

49. The product of two diagonal matrices is a diagonal matrix.

50. In a symmetric n × n matrix, the (i , j )- and (j , i )-entries
are equal for all i = 1, 2, . . . n and j = 1, 2, . . . , n.
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51. Let

To
City
Suburbs

From
City Suburbs[
.85 .03
.15 .97

]
= A

be the stochastic matrix used in Example 6 to predict
population movement between the city and its suburbs.
Suppose that 70% of city residents live in single-unit
houses (as opposed to multiple-unit or apartment hous-
ing) and that 95% of suburb residents live in single-unit
houses.

(a) Find a 2 × 2 matrix B such that if v1 people live
in the city and v2 people live in the suburbs, then

B

[
v1

v2

]
=

[
u1

u2

]
, where u1 people live in single-unit

houses and u2 people live in multiple-unit houses.

(b) Explain the significance of BA

[
v1

v2

]
.

52. Of those vehicle owners who live in the city, 60% drive
cars, 30% drive vans, and 10% drive recreational vehicles.
Of those vehicle owners who live in the suburbs, 30%
drive cars, 50% drive vans, and 20% drive recreational
vehicles. Of all vehicles (in the city and suburbs), 60%
of the cars, 40% of the vans, and 50% of the recreational
vehicles are dark in color.

(a) Find a matrix B such that if v1 vehicle owners live
in the city and v2 vehicle owners live in the suburbs,

then B

[
v1

v2

]
=




u1

u2

u3


, where u1 people drive cars, u2

people drive vans, and u3 people drive recreational
vehicles.

(b) Find a matrix A such that A




u1

u2

u3


 =

[
w1

w2

]
, where u1,

u2, and u3 are as in (a), w1 is the number of peo-
ple who drive dark vehicles, and w2 is the number of
people who drive light (not dark) vehicles.

(c) Find a matrix C such that

[
w1

w2

]
= C

[
v1

v2

]
, where v1

and v2 are as in (a) and w1 and w2 are as in (b).

53. In a certain elementary school, it has been
found that of those pupils who buy a hot lunch
on a particular school day, 30% buy a hot lunch and 70%
bring a bag lunch on the next school day. Furthermore, of
those pupils who bring a bag lunch on a particular school
day, 40% buy a hot lunch and 60% bring a bag lunch on
the next school day.

(a) Find a matrix A such that if u1 pupils buy a hot lunch
and u2 pupils bring a bag lunch on a particular day,

then A

[
u1

u2

]
=

[
v1

v2

]
, where v1 pupils buy a hot lunch

and v2 pupils bring a bag lunch on the next school
day.

(b) Suppose that u1 = 100 pupils buy a hot lunch and
u2 = 200 pupils bring a bag lunch on the first day

of school. Compute A

[
u1

u2

]
, A2

[
u1

u2

]
, and A3

[
u1

u2

]
.

Explain the significance of each result.

(c) To do this problem, you will need a calculator with
matrix capabilities or access to computer software
such as MATLAB. Using the notation of (b), com-

pute A100

[
u1

u2

]
=

[
w1

w2

]
. Explain the significance of

this result. Now compute A

[
w1

w2

]
, and compare this

result with

[
w1

w2

]
. Explain.

54. Prove (a) of Theorem 2.1.

55. Prove (d) of Theorem 2.1.

56. Prove (e) of Theorem 2.1.

57. Prove (f) of Theorem 2.1.

58. Let A = A180◦ , and let B be the matrix that reflects
R2 about the x -axis; that is,

B =
[
1 0
0 −1

]
.

Compute BA, and describe geometrically how a vector v
is affected by multiplication by BA.

59. A square matrix A is called lower triangular if the (i , j )-
entry of A is zero whenever i < j . Prove that if A and B
are both n × n lower triangular matrices, then AB is also
a lower triangular matrix.

60. Let A be an n × n matrix.

(a) Prove that A is a diagonal matrix if and only if its j th
column equals ajj ej .

(b) Use (a) to prove that if A and B are n × n diago-
nal matrices, then AB is a diagonal matrix whose j th
column is ajj bjj ej .

61. A square matrix A is called upper triangular if the (i , j )-
entry of A is zero whenever i > j . Prove that if A and B
are both n × n upper triangular matrices, then AB is also
an upper triangular matrix.

62. Let A =




1 −1 2 −1
−2 1 −1 3
−1 −1 4 3
−5 3 −4 7


. Find a nonzero 4 × 2

matrix B with rank 2 such that AB = O .

63. Find an example of n × n matrices A and B such that
AB = O , but BA �= O .

64. Let A and B be n × n matrices. Prove or disprove that
the ranks of AB and BA are equal.

65. Recall the definition of the trace of a matrix, given in
Exercise 82 of Section 1.1. Prove that if A is an m × n
matrix and B is an n × m matrix, then trace(AB ) =
trace(BA).
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66. Let 1 ≤ r , s ≤ n be integers, and let E be the n × n matrix
with 1 as the (r , s)-entry and 0s elsewhere. Let B be any
n × n matrix. Describe EB in terms of the entries of B .

67. Prove that if A is a k × m matrix, B is an m × n matrix,
and C is an n × p matrix, then (ABC )T = C TBTAT .

68. (a) Let A and B be symmetric matrices of the same size.
Prove that AB is symmetric if and only AB = BA.

(b) Find symmetric 2 × 2 matrices A and B such that
AB �= BA.

In Exercises 69–72, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

69. Let Aθ be the θ -rotation matrix.

(a) For θ = π/2, compute A2
θ by hand.

(b) For θ = π/3, compute A3
θ .

(c) For θ = π/8, compute A8
θ .

(d) Use the previous results to make a conjecture about
Ak

θ , where θ = π/k .

(e) Draw a sketch to support your conjecture in (d).

70. Let A, B , and C be 4 × 4 random matrices.

(a) Illustrate the distributive law A(B + C ) = AB + AC .

(b) Check the validity of the equation

(A + B )2 = A2 + 2AB + B2.

(c) Make a conjecture about an expression that is equal to
(A + B )2 for arbitrary n × n matrices A and B . Justify
your conjecture.

(d) Make a conjecture about the relationship that must
hold between AB and BA for the equation in (b) to
hold in general.

(e) Prove your conjecture in (d).

71. Let A be the stochastic matrix used in the population appli-
cation in Example 6.

(a) Verify that A10p is as given in the example.

(b) Determine the populations of the city and suburbs
after 20 years.

(c) Determine the populations of the city and suburbs
after 50 years.

(d) Make a conjecture about the eventual populations of
the city and suburbs.

72. Let A and B be 4 × 4 random matrices.

(a) Compute AB and its rank by finding the reduced row
echelon form of AB .

(b) Compute BA and its rank by finding the reduced row
echelon form of BA.

(c) Compare your answers with your solution to
Exercise 64.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) Since B is a 2 × 3 matrix and AT is a 4 × 2 matrix,
the product BAT is not defined.

(b) Since AT is a 4 × 2 matrix and B is a 2 × 3 matrix,
the product AT B is defined. Its size is 4 × 3.

2. The matrix AB is a 2 × 3 matrix. Its first column is

[
2 −1 3
1 4 −2

] 


−1
0
3


 =

[−2 + 0 + 9
−1 + 0 − 6

]
=

[
7

−7

]
,

its second column is

[
2 −1 3
1 4 −2

]


0
−3

1


 =

[
0 + 3 + 3
0 − 12 − 2

]
=

[
6

−14

]
,

and its third column is

[
2 −1 3
1 4 −2

]


2
4

−2


 =

[
4 − 4 − 6
2 + 16 + 4

]
=

[−6
22

]
.

Hence AB =
[

7 6 −6
−7 −14 22

]
.

3. Since the fourth column of [B C ] is e2, the fourth column
of A[B C ] is

Ae2 = a2 =
[
3
5

]
.

2.2∗ APPLICATIONS OF MATRIX MULTIPLICATION
In this section, we present four applications of matrix multiplication.

THE LESLIE MATRIX AND POPULATION CHANGE
The population of a colony of animals depends on the birth and mortality rates for
the various age groups of the colony. For example, suppose that the members of

∗ This section can be omitted without loss of continuity.
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a colony of mammals have a life span of less than 3 years. To study the birth
rates of the colony, we divide the females into three age groups: those with ages
less than 1, those with ages between 1 and 2, and those of age 2. From the mor-
tality rates of the colony, we know that 40% of newborn females survive to age
1 and that 50% of females of age 1 survive to age 2. We need to observe only
the rates at which females in each age group give birth to female offspring since
there is usually a known relationship between the number of male and female off-
spring in the colony. Suppose that the females under 1 year of age do not give
birth; those with ages between 1 and 2 have, on average, two female offspring; and
those of age 2 have, on average, one female offspring. Let x1, x2, and x3 be the
numbers of females in the first, second, and third age groups, respectively, at the
present time, and let y1, y2, and y3 be the numbers of females in the corresponding
groups for the next year. The changes from this year to next year are depicted in
Table 2.1.

Table 2.1 Age in years Current year Next year

0–1 x1 y1

1–2 x2 y2

2–3 x3 y3

The vector x =



x1

x2

x3


 is the population distribution for the female population

of the colony in the present year. We can use the preceding information to predict the

population distribution for the following year, which is given by the vector y =



y1

y2

y3


.

Note that y1, the number of females under age 1 in next year’s population, is simply
equal to the number of female offspring born during the current year. Since there are
currently x2 females of age 1–2, each of which has, on average, 2 female offspring,
and x3 females of age 2–3, each of which has, on average, 1 female offspring, we
have the following formula for y1:

y1 = 2x2 + x3

The number y2 is the total number of females in the second age group for next year.
Because these females are in the first age group this year, and because only 40% of
them will survive to the next year, we have that y2 = 0.4x1. Similarly, y3 = 0.5x2.
Collecting these three equations, we have

y1 = 2.0x2 + 1.0x3

y2 = 0.4x1

y3 = 0.5x2 .

These three equations can be represented by the single matrix equation y = Ax, where
x and y are the population distributions as previously defined and A is the 3 × 3
matrix

A =



0.0 2.0 1.0
0.4 0.0 0.0
0.0 0.5 0.0


 .
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For example, suppose that x =



1000
1000
1000


; that is, there are currently 1000 females in

each age group. Then

y = Ax =



0.0 2.0 1.0
0.4 0.0 0.0
0.0 0.5 0.0







1000
1000
1000


 =




3000
400
500


 .

So one year later there are 3000 females under 1 year of age, 400 females who are
between 1 and 2 years old, and 500 females who are 2 years old.

For each positive integer k , let pk denote the population distribution k years after
a given initial population distribution p0. In the preceding example,

p0 = x =



1000
1000
1000


 and p1 = y =




3000
400
500


 .

Then, for any positive integer k , we have that pk = Apk−1. Thus

pk = Apk−1 = A2pk−2 = · · · = Akp0.

In this way, we may predict population trends over the long term. For example, to
predict the population distribution after 10 years, we compute p10 = A10p0. Thus

p10 = A10p0 =



1987
851
387


 ,

where each entry is rounded off to the nearest whole number. If we continue this
process in increments of 10 years, we find that (rounding to whole numbers)

p20 =



2043
819
408


 and p30 = p40 =




2045
818
409


 .

It appears that the population stabilizes after 30 years. In fact, for the vector

z =



2045
818
409


 ,

we have that Az = z precisely. Under this circumstance, the population distribution z
is stable; that is, it does not change from year to year.

In general, whether or not the distribution of an animal population stabilizes for
a colony depends on the survival and birth rates of the age groups. (See, for example,
Exercises 12–15.) Exercise 10 gives an example of a population for which no nonzero
stable population distribution exists.

We can generalize this situation to an arbitrary colony of animals. Suppose that
we divide the females of the colony into n age groups, where xi is the number of
members in the i th group. The duration of time in an individual age group need not
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be a year, but the various durations should be equal. Let x =




x1

x2
...

xn


 be the population

distribution of the females of the colony, pi be the portion of females in the i th group
who survive to the (i + 1)st group, and bi be the average number of female offspring

of a member of the i th age group. If y =




y1

y2
...

yn


 is the population for the next time

period, then
y1 = b1x1 + b2x2 + · · · + bnxn

y2 = p1x1

y3 = p2x2
...

yn = pn−1xn−1.

Therefore, for

A =




b1 b2 · · · bn

p1 0 · · · 0
0 p2 · · · 0
...

...
...

0 0 · · · pn−1 0




,

we have
y = Ax.

The matrix A is called the Leslie matrix for the population. The name is due to
P. H. Leslie, who introduced this matrix in the 1940s. So if x0 is the initial population
distribution, then the distribution after k time intervals is

xk = Akx0.

Practice Problem 1 � The life span of a certain species of mammal is at most 2 years, but only 25% of the
females of this species survive to age 1. Suppose that, on average, the females under
1 year of age give birth to 0.5 females, and the females between 1 and 2 years of age
give birth to 2 females.

(a) Write the Leslie matrix for the population.

(b) Suppose that this year there is a population of 200 females under 1 year of age
and 200 females between 1 and 2 years of age. Find the population distribution
for next year and for 2 years from now.

(c) Suppose this year’s population distribution of females is given by the vector[
400
100

]
. What can you say about all future population distributions?

(d) Suppose that the total population of females this year is 600. What should be the
number of females in each age group so that the population distribution remains
unchanged from year to year? �
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x1

P1 P4 P7 w1z1y10.3 0.5

x2
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w4z3y31 0.4 0.3
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0.7

0.5
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Figure 2.4 Traffic flow along one-way streets

ANALYSIS OF TRAFFIC FLOW
Figure 2.4 represents the flow of traffic through a network of one-way streets, with
arrows indicating the direction of traffic flow. The number on any street beyond an
intersection is the portion of the traffic entering the street from that intersection. For
example, 30% of the traffic leaving intersection P1 goes to P4, and the other 70%
goes to P2. Notice that all the traffic leaving P5 goes to P8.

Suppose that on a particular day, x1 cars enter the network from the left of P1,
and x2 cars enter from the left of P3. Let w1, w2, w3, and w4 represent the number
of cars leaving the network along the exits to the right. We wish to determine the
values of the wi ’s. At first glance, this problem seems overwhelming since there are
so many routes for the traffic. However, if we decompose the problem into several
simpler ones, we can first solve the simpler ones individually and then combine their
solutions to obtain the values of the wi ’s.

We begin with only the portion of the network involving intersections P1, P2,
and P3. Let y1, y2, and y3 each be the number of cars that exit along each of the
three eastward routes, respectively. To find y1, notice that 30% of all cars entering
P1 continue on to P4. Therefore y1 = 0.30x1. Also, 0.7x1 of the cars turn right at
P1, and of these, 20% turn left at P2. Because these are the only cars to do so, it
follows that y2 = (0.2)(0.7)x1 = 0.14x1. Furthermore, since 80% of the cars entering
P2 continue on to P3, the number of such cars is (0.8)(0.7)x1 = 0.56x1. Finally, all the
cars entering P3 from the left use the street between P3 and P6, so y3 = 0.56x1 + x2.
Summarizing, we have

y1 = 0.30x1

y2 = 0.14x1

y3 = 0.56x1 + x2.

We can express this system of equations by the single matrix equation y = Ax,
where

y =



y1

y2

y3


 A =




0.30 0
0.14 0
0.56 1


 and x =

[
x1

x2

]
.

Now consider the next set of intersections P4, P5, and P6. If we let z1, z2, and z3

represent the numbers of cars that exit from the right of P4, P5, and P6, respectively,
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then by a similar analysis, we have

z1 = 0.5y1

z2 = 0.5y1 + y2 + 0.6y3

z3 = 0.4y3,

or z = By, where

z =



z1

z2

z3


 and B =




0.5 0 0
0.5 1 0.6

0 0 0.4


 .

Finally, if we set

w =




w1

w2

w3

w4


 and C =




1 0.30 0
0 0.20 0
0 0.35 0.7
0 0.15 0.3


 ,

then by a similar argument, we have w = C z. It follows that

w = C z = C (By) = (CB )Ax = (CBA)x.

Let M = CBA. Then

M =




1 0.30 0
0 0.20 0
0 0.35 0.7
0 0.15 0.3







0.5 0 0
0.5 1 0.6

0 0 0.4







0.30 0
0.14 0
0.56 1


 =




0.3378 0.18
0.1252 0.12
0.3759 0.49
0.1611 0.21


 .

For example, if 1000 cars enter the traffic pattern at P1 and 2000 enter at P3,

then, for x =
[
1000
2000

]
, we have

w = M x =




0.3378 0.18
0.1252 0.12
0.3759 0.49
0.1611 0.21




[
1000
2000

]
=




697.8
365.2

1355.9
581.1


 .

Naturally, the actual number of cars traveling on any path is a whole number, unlike
the entries of w. Since these calculations are based on percentages, we cannot expect
the answers to be exact. For example, approximately 698 cars exit the traffic pattern
at P7, and 365 cars exit the pattern at P8.

We can apply the same analysis if the quantities studied represent rates of traffic
flow—for example, the number of cars per hour—rather than the total number of
cars.

Finally, we can apply this kind of analysis to other contexts, such as the flow of a
fluid through a system of pipes or the movement of money in an economy. For other
examples, see the exercises.

Practice Problem 2 � A midwestern supermarket chain imports soy sauce from Japan and South Korea. Of
the soy sauce from Japan, 50% is shipped to Seattle and the rest is shipped to San
Francisco. Of the soy sauce from South Korea, 60% is shipped to San Francisco and
the rest is shipped to Los Angeles. All of the soy sauce shipped to Seattle is sent to
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Chicago; 30% of the soy sauce shipped to San Francisco is sent to Chicago and 70%
to St. Louis; and all of the soy sauce shipped to Los Angeles is sent to St. Louis.
Suppose that soy sauce is shipped from Japan and South Korea at the rates of 10,000
and 5,000 barrels a year, respectively. Find the number of barrels of soy sauce that
are sent to Chicago and to St. Louis each year. �

(0, 1)-MATRICES
Matrices can be used to study certain relationships between objects. For example,
suppose that there are five countries, each of which maintains diplomatic relations
with some of the others. To organize these relationships, we use a 5 × 5 matrix A
defined as follows. For 1 ≤ i ≤ 5, we let aii = 0, and for i �= j ,

aij =
{

1 if country i maintains diplomatic relations with country j

0 otherwise.

Note that all the entries of A are zeros and ones. Matrices whose only entries are zeros
and ones are called (0, 1)-matrices, and they are worthy of study in their own right.
For purposes of illustration, suppose that

A =




0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0




.

In this case, A = AT ; that is, A is symmetric. The symmetry occurs here because the
underlying relationship is symmetric. (That is, if country i maintains diplomatic rela-
tions with country j , then also country j maintains diplomatic relations with country i .)
Such symmetry is true of many relationships of interest. Figure 2.5 gives us a visual
guide to the relationship, where country i is shown to maintain diplomatic relations
with country j if the dots representing the two countries are joined by a line segment.
(The diagram in Figure 2.5 is called an undirected graph, and the relationships defined
in Exercises 21 and 26 lead to directed graphs.)

Let us consider the significance of an entry of the matrix B = A2; for example,

b23 = a21a13 + a22a23 + a23a33 + a24a43 + a25a53.

country 3

country 1

country 4

country 2

country 5

Figure 2.5 Diplomatic relations among countries
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A typical term on the right-side of the equation has the form a2k ak3. This term is 1 if
and only if both factors are 1—that is, if and only if country 2 maintains diplomatic
relations with country k and country k maintains diplomatic relations with country 3.
Thus b23 gives the number of countries that link country 2 and country 3. To see all
of these entries, we compute

B = A2 =




2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2




.

Since b23 = 1, there is exactly one country that links countries 2 and 3. A careful
examination of the entries of A reveals that a25 = a53 = 1, and hence it is country 5
that serves as the link. (Other deductions are left for the exercises.) We can visualize
the (i , j )-entry of A2 by counting the number of ways to go from country i to country
j in Figure 2.5 that use two line segments.

By looking at other powers of A, additional information may be obtained. For
example, it can be shown that if A is an n × n (0, 1)-matrix and the (i , j )-entry of
A + A2 + · · · + An−1 is nonzero, then there is a sequence of countries beginning with
country i , ending with country j , and such that every pair of consecutive countries in
the sequence maintains diplomatic relations. By means of such a sequence, countries
i and j can communicate by passing a message only between countries that maintain
diplomatic relations. Conversely, if the (i , j )-entry of A + A2 + · · · + An−1 is zero,
then such communication between countries i and j is impossible.

Example 1 Consider a set of three countries, such that country 3 maintains diplomatic rela-
tions with both countries 1 and 2, and countries 1 and 2 do not maintain diplomatic
relations with each other. These relationships can be described by the 3 × 3 (0, 1)-
matrix

A =



0 0 1
0 0 1
1 1 0


 .

In this case, we have

A + A2 =



1 1 1
1 1 1
1 1 2


 ,

and so countries 1 and 2 can communicate, even though they do not have diplomatic
relations. Here the sequence linking them consists of countries 1, 3, and 2.

A (0, 1)-matrix can also be used to resolve problems involving scheduling. Sup-
pose, for example, that the administration of a small college with m students wants
to plan the times for its n courses. The goal of such planning is to avoid scheduling
popular courses at the same time. To minimize the number of time conflicts, the stu-
dents are surveyed. Each student is asked which courses he or she would like to take
during the following semester. The results of this survey may be put in matrix form.
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Define the m × n matrix A as follows:

aij =
{

1 if student i wants to take course j

0 otherwise.

In this case, the matrix product ATA provides important information regarding the
scheduling of course times. We begin with an interpretation of the entries of this
matrix. Let B = AT and C = AT A = BA. Then, for example,

c12 = b11a12 + b12a22 + · · · + b1kak2 + · · · + b1mam2

= a11a12 + a21a22 + · · · + ak1ak2 + · · · + am1am2.

A typical term on the right side of the equation has the form ak1ak2. Now, ak1ak2 = 1
if and only if ak1 = 1 and ak2 = 1; that is, student k wants to take course 1 and course
2. So c12 represents the number of students who want to take both courses 1 and 2.
In general, for i �= j , cij is the number of students who want to take both course i
and course j . In addition, cii represents the number of students who desire class i .

Example 2 Suppose that we have a group of 10 students and five courses. The results of the
survey concerning course preferences are as follows:

Course Number

Student 1 2 3 4 5

1 1 0 1 0 1

2 0 0 0 1 1

3 1 0 0 0 0

4 0 1 1 0 1

5 0 0 0 0 0

6 1 1 0 0 0

7 0 0 1 0 1

8 0 1 0 1 0

9 1 0 1 0 1

10 0 0 0 1 0

Let A be the 10 × 5 matrix with entries from the previous table. Then

ATA =




4 1 2 0 2
1 3 1 1 1
2 1 4 0 4
0 1 0 3 1
2 1 4 1 5




.

From this matrix, we see that there are four students who want both course 3 and
course 5. All other pairs of courses are wanted by at most two students. Furthermore,
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we see that four students want course 1, three students desire course 2, and so on.
Thus, the trace (see Exercise 82 of Section 1.1) of AT A equals the total demand for
these five courses (counting students as often as the number of courses they wish to
take) if the courses are offered at different times.

Notice that although A is not symmetric, the matrix ATA is symmetric. Hence we
may save computational effort by computing only one of the (i , j )- and (j , i )-entries.

As a final comment, it should be pointed out that many of these facts about
(0, 1)-matrices can be adapted to apply to nonsymmetric relationships.

Practice Problem 3 � Suppose that we have four cities with airports. We define the 4 × 4 matrix A by

aij =
{

1 if there is a nonstop commercial flight from city i to city j

0 if not.

(a) Prove that A is a (0, 1)-matrix.

(b) Interpret the (2, 3)-entry of A2.

(c) If

A =




0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0


 ,

compute A2.

(d) How many flights are there with one “layover” from city 2 to city 3?

(e) How many flights are there with two layovers from city 1 to city 2?

(f) Is it possible to fly between each pair of cities? �

AN APPLICATION TO ANTHROPOLOGY
In this application,1 we see a fascinating use of matrix operations for the study of the
marriage laws of the Natchez Indians.

Everyone in this tribe was a member of one of four classes: the Suns, the Nobles,
the Honoreds, and the michy-miche-quipy (MMQ). There were well-defined rules
that determined class membership. The rules depended exclusively on the classes of
the parents and required that at least one of the parents be a member of the MMQ.
Furthermore, the class of the child depended on the class of the other parent, according
to Table 2.2.

We are interested in determining the long-range distributions of these classes—
that is, what the relative sizes are of these classes in future generations. It is clear that
there will be a problem of survival if the size of the MMQ becomes too small. To
simplify matters, we make the following three assumptions:

1. In every generation, each class is divided equally between males and females.

2. Each adult marries exactly once.

3. Each pair of parents has exactly one son and one daughter.

1 This example is taken from Samuel Goldberg, Introduction to Difference Equations (with Illustrative
Examples from Economics, Psychology, and Sociology), Dover Publications, Inc., New York, 1986, pp.
238–241.
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Table 2.2 Mother is in MMQ Father is in MMQ

Father Child Mother Child

Sun Noble Sun Sun

Noble Honored Noble Noble

Honored MMQ Honored Honored

MMQ MMQ MMQ MMQ

Because of assumption 1, we need keep track only of the number of males in each
class for every generation. To do this, we introduce the following notation:

sk = number of male Suns in the k th generation

nk = number of male Nobles in the k th generation

hk = number of male Honoreds in the k th generation

mk = number of male MMQ in the k th generation

Our immediate goal is to find a relationship between the numbers of members in
each class of the k th and the (k − 1)st generations. Since every Sun male must have
a Sun mother (and vice versa), we obtain the equation

sk = sk−1. (1)

The fact that every Noble male must have a Sun father or a Noble mother yields

nk = sk−1 + nk−1. (2)

In addition, every Honored male must have a Noble father or an Honored mother.
Thus

hk = nk−1 + hk−1. (3)

Finally, assumption 3 guarantees that the total number of males (and females) remains
the same for each generation.

sk + nk + hk + mk = sk−1 + nk−1 + hk−1 + mk−1 (4)

Substituting the right sides of equations (1), (2), and (3) into (4), we obtain

sk−1 + (sk−1 + nk−1) + (nk−1 + hk−1) + mk

= sk−1 + nk−1 + hk−1 + mk−1,

which simplifies to

mk = −sk−1 − nk−1 + mk−1. (5)

Equations (1), (2), (3), and (5) relate the numbers of males in different classes of
the k th generation to the numbers of males of the previous generation. If we let
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xk =




sk

nk

hk

mk


 and A =




1 0 0 0
1 1 0 0
0 1 1 0

−1 −1 0 1


 ,

then we may represent all our relationships by the matrix equation

xk = Axk−1.

Because this equation must hold for all k , we have

xk = Axk−1 = AAxk−2 = · · · = Akx0.

To evaluate Ak , let B = A − I4. We leave it to the exercises to show that, for any
positive integer k ,

Ak = I + kB + k (k − 1)

2
B2, for k ≥ 2.

(See Exercise 24.) Thus, carrying out the matrix multiplication, we obtain

xk =




s0

n0 + ks0

h0 + kn0 + k (k−1)
2 s0

m0 − kn0 − k (k+1)
2 s0




. (6)

It is easy to see from equation (6) that if there are initially no Suns or Nobles
(i.e., n0 = s0 = 0), the number of members in each class will remain the same from
generation to generation. On the other hand, consider the last entry of xk . We can
conclude that, unless n0 = s0 = 0, the size of the MMQ will decrease to the point
where there are not enough of them to allow the other members to marry. At this
point the social order ceases to exist.

EXERCISES

In Exercises 1–9, determine whether the statements
are true or false.

1. If A is a Leslie matrix and v is a population distribution,
then each entry of Av must be greater than the correspond-
ing entry of v.

2. For any population distribution v, if A is the Leslie matrix
for the population, then as n grows, Anv approaches a
specific population distribution.

3. In a Leslie matrix, the (i , j )-entry equals the average num-
ber of female offspring of a member of the i th age group.

4. In a Leslie matrix, the (i + 1, i )-entry equals the portion
of females in the i th age group who survive to the next
age group.

5. The application in this section on traffic flow relies on the
associative law of matrix multiplication.

6. If A and B are matrices and x, y, and z are vectors such
that y = Ax and z = By, then z = (AB )x.

7. A (0, 1)-matrix is a matrix with 0s and 1s as its only
entries.

8. A (0, 1)-matrix is a square matrix with 0s and 1s as its
only entries.

9. Every (0, 1)-matrix is a symmetric matrix.

Exercises 10–16 are concerned with Leslie matrices.

10. By observing a certain colony of mice, researchers found
that all animals die within 3 years. Of those offspring that
are females, 60% live for at least 1 year. Of these, 20%
reach their second birthday. The females who are under
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1 year of age have, on average, three female offspring.
Those females between 1 and 2 years of age have, on
average, two female offspring while they are in this age
group. None of the females of age 2 give birth.

(a) Construct the Leslie matrix that describes this situa-
tion.

(b) Suppose that the current population distribution for

females is given by the vector




100
60
30


. Find the pop-

ulation distribution for next year. Also, find the pop-
ulation distribution 4 years from now.

(c) Show that there is no nonzero stable population dis-
tribution for the colony of mice. Hint: Let A be the
Leslie matrix, and suppose that z is a stable popu-
lation distribution. Then Az = z. This is equivalent
to (A − I3)z = 0. Solve this homogeneous system of
linear equations.

11. Suppose that the females of a certain colony of animals
are divided into two age groups, and suppose that the
Leslie matrix for this population is

[
0 1
1 0

]
.

(a) What proportion of the females of the first age group
survive to the second age group?

(b) How many female offspring do females of each age
group average?

(c) If x =
[
a
b

]
is the current population distribution for

the females of the colony, describe all future popula-
tion distributions.

In Exercises 12–15, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

12. A certain colony of lizards has a life span of less than
3 years. Suppose that the females are divided into three
age groups: those under age 1, those of age 1, and those
of age 2. Suppose further that the proportion of newborn
females that survives until age 1 is .5 and that the propor-
tion of one-year-old females that survives until age 2 is q .
Assume also that females under age 1 do not give birth,
those of age 1 have, on average, 1.2 female offspring,
and those of age 2 have, on average, 1 female offspring.
Suppose there are initially 450 females of age less than 1,
220 of age 1, and 70 of age 2.

(a) Write a Leslie matrix A for this colony of lizards.

(b) If q = .3, what will happen to the population in 50
years?

(c) If q = .9, what will happen to the population in 50
years?

(d) Find by trial and error a value of q for which the lizard
population reaches a nonzero stable distribution. What
is this stable distribution?

(e) For the value of q found in (d), what happens to an
initial population of 200 females of age less than 1,
360 of age 1, and 280 of age 2?

(f) For what value of q does (A − I3)x = 0 have a
nonzero solution?

(g) For the value of q found in (f), find the general solu-
tion of (A − I3)x = 0. How does this relate to the
stable distributions in (d) and (e)?

13. A certain colony of bats has a life span of less than 3
years. Suppose that the females are divided into three age
groups: those under age 1, those of age 1, and those of
age 2. Suppose further that the proportion of newborn
females that survives until age 1 is q and that the pro-
portion of one-year-old females that survives until age 2
is .5. Assume also that females under age 1 do not give
birth, those of age 1 have, on average, 2 female offspring,
and those of age 2 have, on average, 1 female offspring.
Suppose there are initially 300 females of age less than 1,
180 of age 1, and 130 of age 2.

(a) Write a Leslie matrix A for this colony of bats.

(b) If q = .8, what will happen to the population in 50
years?

(c) If q = .2, what will happen to the population in 50
years?

(d) Find by trial and error a value of q for which the
bat population reaches a nonzero stable distribution.
What is this stable distribution?

(e) For the value of q found in (d), what happens to an
initial population of 210 females of age less than 1,
240 of age 1, and 180 of age 2?

(f) For what value of q does (A − I3)x = 0 have a
nonzero solution?

(g) For the value of q found in (f), find the general solu-
tion of (A − I3)x = 0. How does this relate to the
stable distributions in (d) and (e)?

14. A certain colony of voles has a life span of less than
3 years. Suppose that the females are divided into three
age groups: those under age 1, those of age 1, and those
of age 2. Suppose further that the proportion of newborn
females that survives until age 1 is .1 and that the pro-
portion of one-year-old females that survives until age 2
is .2. Assume also that females under age 1 do not give
birth, those of age 1 have, on average, b female offspring,
and those of age 2 have, on average, 10 female offspring.
Suppose there are initially 150 females of age less than 1,
300 of age 1, and 180 of age 2.

(a) Write a Leslie matrix A for this colony of voles.

(b) If b = 10, what will happen to the population in 50
years?

(c) If b = 4, what will happen to the population in 50
years?

(d) Find by trial and error a value of b for which the
vole population reaches a nonzero stable distribution.
What is this stable distribution?
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(e) For the value of b found in (d), what happens to an
initial population of 80 females of age less than 1,
200 of age 1, and 397 of age 2?

(f) For what value of b does (A − I3)x = 0 have a
nonzero solution?

(g) Let p =



p1

p2

p3


 be an arbitrary population vector, and

let b have the value found in (f). Over time, p
approaches a stable population vector q. Express q
in terms of p1, p2, and p3.

15. A certain colony of squirrels has a life span of less than
3 years. Suppose that the females are divided into three
age groups: those under age 1, those of age 1, and those
of age 2. Suppose further that the proportion of newborn
females that survives until age 1 is .2 and that the pro-
portion of one-year-old females that survives until age 2
is .5. Assume also that females under age 1 do not give
birth, those of age 1 have, on average, 2 female offspring,
and those of age 2 have, on average, b female offspring.
Suppose there are initially 240 females of age less than
one, 400 of age one, and 320 of age two.
(a) Write a Leslie matrix A for this colony of squirrels.

(b) If b = 3, what will happen to the population in 50
years?

(c) If b = 9, what will happen to the population in 50
years?

(d) Find by trial and error a value of b for which the
squirrel population reaches a nonzero stable distribu-
tion. What is this stable distribution?

(e) For the value of b found in (d), what happens to an
initial population of 100 females of age less than one,
280 of age one, and 400 of age two?

(f) For what value of b does (A − I3)x = 0 have a
nonzero solution?

(g) Let p =



p1

p2

p3


 be an arbitrary population vector, and

let b have the value found in (f). Over time, p
approaches a stable population vector q. Express q
in terms of p1, p2, and p3.

16. The maximum membership term for each member of the
Service Club is 3 years. Each first-year and second-year
member recruits one new person who begins the mem-
bership term in the following year. Of those in their first
year of membership, 50% of the members resign, and of
those in their second year of membership, 70% resign.
(a) Write a 3 × 3 matrix A so that if xi is currently the

number of Service Club members in their i th year of
membership and yi is the number in their i th year of
membership a year from now, then y = Ax.

(b) Suppose that there are 60 Service Club members in
their first year, 20 members in their second year, and
40 members in their third year of membership. Find
the distribution of members for next year and for 2
years from now.

Exercises 17 and 18 use the technique developed in the traffic
flow application.

17. A certain medical foundation receives money from two
sources: donations and interest earned on endowments. Of
the donations received, 30% is used to defray the costs of
raising funds; only 10% of the interest is used to defray the
cost of managing the endowment funds. Of the rest of the
money (the net income), 40% is used for research and 60%
is used to maintain medical clinics. Of the three expenses
(research, clinics, and fundraising), the portions going to
materials and personnel are divided according to Table
2.3. Find a matrix M such that if p is the value of dona-

tions and q is the value of interest, then M

[
p
q

]
=

[
m
f

]
,

where m and f are the material and personnel costs of the
foundation, respectively.

Table 2.3 Research Clinics Fundraising

material costs 80% 50% 70%

personnel costs 20% 50% 30%

18. Water is pumped into a system of pipes at points P1 and
P2 shown in Figure 2.6. At each of the junctions P3, P4,
P5, P6, P7, and P8, the pipes are split and water flows
according to the portions indicated in the diagram. Sup-
pose that water flows into P1 and P2 at p and q gallons
per minute, respectively, and flows out of P9, P10, and
P11 at the rates of a, b, and c gallons per minute, respec-
tively. Find a matrix M such that the vector of outputs is
given by




a
b
c


 = M

[
p
q

]
.

P3

P4

P5

P1

P2

P6

P8

P7

P9

P10

P11

0.4 0.2

0.6

0.5 0.7

0.8

0.5 0.3

Figure 2.6

Exercises 19–23 are concerned with (0, 1)-matrices.

19. With the interpretation of a (0, 1)-matrix found in Prac-
tice Problem 3, suppose that we have five cities with the
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associatedmatrixAgiven in theblock form(seeSection 2.1)

A =
[

B O1

O2 C

]
,

where B is a 3 × 3 matrix, O1 is the 3 × 2 zero matrix,
O2 is the 2 × 3 zero matrix, and C is a 2 × 2 matrix.

(a) What does the matrix A tell us about flight connections
between the cities?

(b) Use block multiplication to obtain A2, A3, and Ak for
any positive integer k .

(c) Interpret your result in (b) in terms of flights between
the cities.

20. Recall the (0, 1)-matrix

A =




0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0




in which the entries describe countries that maintain diplo-
matic relations with one another.

(a) Which pairs of countries maintain diplomatic rela-
tions?

(b) How many countries link country 1 with country 3?

(c) Give an interpretation of the (1, 4)-entry of A3.

21. Suppose that there is a group of four people and an asso-
ciated 4 × 4 matrix A defined by

aij =
{

1 if i �= j and person i likes person j

0 otherwise.

We say that persons i and j are friends if they like each
other; that is, if aij = aji = 1. Suppose that A is given by




0 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0


 .

(a) List all pairs of friends.

(b) Give an interpretation of the entries of A2.

(c) Let B be the 4 × 4 matrix defined by

bij =
{

1 if persons i and j are friends

0 otherwise.

Determine the matrix B . Is B a symmetric matrix?

(d) A clique is a set of three or more people, each of
whom is friendly with all the other members of the
set. Show that person i belongs to a clique if and only
if the (i , i )-entry of B 3 is positive.

(e) Use computer software or a calculator that performs
matrix arithmetic to count the cliques that exist among
the four friends.

Exercises 22 and 23 refer to the scheduling example.

22. Suppose that student preference for a set of courses is
given in the following table:

Course Number

Student 1 2 3 4 5

1 1 0 0 0 1

2 0 0 1 1 0

3 1 0 1 0 1

4 0 1 0 0 0

5 1 0 0 0 1

6 0 1 0 0 1

7 1 0 1 0 1

8 0 1 1 0 1

9 1 0 0 1 1

10 0 0 1 1 0

(a) Give all pairs of courses that are desired by the most
students.

(b) Give all pairs of courses that are desired by the fewest
students.

(c) Construct a matrix whose diagonal entries determine
the number of students who prefer each course.

23. Let A be the matrix in Example 2.

(a) Justify the following interpretation: For i �= j , the
(i , j )-entry of AAT is the number of classes that are
desired by both students i and j .

(b) Show that the (1, 2)-entry of AAT is 1 and the (9, 1)-
entry of AAT is 3.

(c) Interpret the answers to (b) in the context of (a) and
the data in the scheduling example.

(d) Give an interpretation of the diagonal entries of AAT .

Exercises 24 and 25 are concerned with the anthropology appli-
cation.

24. Recall the binomial formula for scalars a and b and any
positive integer k :

(a + b)k = ak + kak−1b + · · ·

+ k !

i !(k − i )!
ak−i bi + · · · + bk ,

where i ! (i factorial) is given by i ! = 1 · 2 · · · (i − 1) · i .

(a) Suppose that A and B are m × m matrices that com-
mute; that is, AB = BA. Prove that the binomial for-
mula holds for A and B when k = 2 and k = 3.
Specifically, prove that

(A + B )2 = A2 + 2AB + B2

and
(A + B )3 = A3 + 3A2B + 3AB2 + B3.
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(b) Use mathematical induction to extend the results in
part (a) to any positive integer k .

(c) For the matrices A and B on page 117, show B 3 = O
and that A and B commute. Then use (b) to prove

Ak = I4 + kB + k (k − 1)

2
B2 for k ≥ 2.

In Exercises 25 and 26, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

25. In reference to the application in the text involving the
Natchez Indians, suppose that initially there are 100 Sun
males, 200 Noble males, 300 Honored males, and 8000
MMQ males.

(a) How many males will there be in each class in k = 1,
2, and 3 generations?

(b) Use a computer to determine how many males there
will be in each class in k = 9, 10, and 11 generations.

(c) What do your answers to (b) suggest for the future
of the Natchez Indians if they hold to their current
marriage laws?

(d) Produce an algebraic proof that for some k there will
not be enough MMQ to allow the other members to
marry.

26. Suppose that we have a group of six people, each of whom
owns a communication device. We define a 6 × 6 matrix
A as follows: For 1 ≤ i ≤ 6, let aii = 0; and for i �= j ,

aij =
{

1 if person i can send a message to person j

0 otherwise.

(a) Show that A is a (0, 1)-matrix.

(b) Give an interpretation of what it means for the term
a32a21 to equal one.

(c) Show that the (3, 1)-entry of A2 represents the number
of ways that person 3 can send a message to person 1
in two stages —that is, the number of people to whom
person 3 can send a message and who in turn can send
a message to person 1. Hint: Consider the number of
terms that are not equal to zero in the expression

a31a11 + a32a21 + · · · + a36a61.

(d) Generalize your result in (c) to the (i , j )-entry of A2.

(e) Generalize your result in (d) to the (i , j )-entry of Am .

Now suppose

A =




0 0 0 1 0 1
1 0 1 1 0 0
0 1 0 1 0 0
1 0 1 0 0 0
1 1 1 0 0 1
0 0 1 1 0 0




.

(f) Is there any person who cannot receive a message
from anyone else in one stage? Justify your answer.

(g) How many ways can person 1 send a message to per-
son 4 in 1, 2, 3, and 4 stages?

(h) The (i , j )-entry of A + A2 + · · · + Am can be shown
to equal the number of ways in which person i can
send a message to person j in at most m stages. Use
this result to determine the number of ways in which
person 3 can send a message to person 4 in at most 4
stages.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) A =
[
0.50 2
0.25 0

]
.

(b) The population distribution of females for this year is

given by the vector

[
200
200

]
, and hence the population

distribution of females for next year is

A

[
200
200

]
=

[
0.50 2
0.25 0

] [
200
200

]
=

[
500
50

]
,

and the population distribution of females 2 years from
now is

A

[
500
50

]
=

[
0.50 2
0.25 0

] [
500
50

]
=

[
350
125

]
.

(c) Since

A

[
400
100

]
=

[
0.50 2
0.25 0

] [
400
100

]
=

[
400
100

]
,

the population distribution does not change from year
to year.

(d) Let x1 and x2 be the numbers of females in the first
and second age groups, respectively. Since next year’s
population distribution is the same as this year’s,
Ax = x, and hence

[
0.50 2
0.25 0

] [
x1

x2

]
=

[
0.50x1 + 2x2

0.25x1

]
=

[
x1

x2

]
.

Thus x1 = 4x2. But x1 + x2 = 600, and therefore
4x2 + x2 = 5x2 = 600, from which it follows that
x2 = 120. Finally, x1 = 4x2 = 480.

2. Let z1 and z2 be the rates at which soy sauce is shipped
to Chicago and St. Louis, respectively. Then

[
z1

z2

]
=

[
1 0.3 0
0 0.7 1

]


0.5 0.0
0.5 0.6

0 0.4




[
10000
5000

]
=

[
7400
7600

]
.
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3. (a) Clearly, every entry of A is either 0 or 1, so A is a
(0, 1)-matrix.

(b) The (2, 3)-entry of A2 is

a21a13 + a22a23 + a23a33 + a24a43.

A typical term has the form a2k ak3, which equals 1
or 0. This term equals 1 if and only if a2k = 1 and
ak3 = 1. Consequently, this term equals 1 if and only
if there is a nonstop flight between city 2 and city k ,
as well as a nonstop flight between city k and city 3.
That is, a2k ak3 = 1 means that there is a flight with
one layover (the plane stops at city k ) from city 2 to
city 3. Therefore we may interpret the (2, 3)-entry of
A2 as the number of flights with one layover from city
2 to city 3.

(c) A2 =




2 0 0 1
0 2 1 0
0 1 1 0
1 0 0 1


 .

(d) Because the (2, 3)-entry of A2 is 1, there is one flight
with one layover from city 2 to city 3.

(e) We compute A3 to find the number of flights with two
layovers from city 1 to city 2. We have

A3 =




0 3 2 0
3 0 0 2
2 0 0 1
0 2 1 0


 .

Because the (1, 2)-entry of A3 is 3, we see that there
are three flights with two layovers from city 1 to
city 2.

(f) From the entries of A, we see that there are nonstop
flights between cities 1 and 2, cities 1 and 3, and
cities 2 and 4. From A2, we see that there are flights
between cities 1 and 4, as well as between cities 2
and 3. Finally, from A3, we discover that there is a
flight between cities 3 and 4. We conclude that there
are flights between all pairs of cities.

2.3 INVERTIBILITY AND ELEMENTARY MATRICES
In this section, we introduce the concept of invertible matrix and examine special
invertible matrices that are intimately associated with elementary row operations, the
elementary matrices.

For any real number a �= 0, there is a unique real number b, called the multi-
plicative inverse of a , with the property that ab = ba = 1. For example, if a = 2,
then b = 1/2. In the context of matrices, the identity matrix In is a multiplicative
identity; so it is natural to ask for what matrices A does there exist a matrix B such
that AB = BA = In . Notice that this last equation is possible only if both A and B are
n × n matrices. This discussion motivates the following definitions:

Definitions An n × n matrix A is called invertible if there exists an n × n matrix B
such that AB = BA = In . In this case, B is called an inverse of A.

If A is an invertible matrix, then its inverse is unique. For if both B and C are
inverses of A, then AB = BA = In and AC = CA = In . Hence

B = BIn = B (AC ) = (BA)C = InC = C .

When A is invertible, we denote the unique inverse of A by A−1, so that AA−1 =
A−1A = In . Notice the similarity of this statement and 2 · 2−1 = 2−1 · 2 = 1, where
2−1 is the multiplicative inverse of the real number 2.

Example 1 Let A =
[
1 2
3 5

]
and B =

[−5 2
3 −1

]
. Then

AB =
[
1 2
3 5

] [−5 2
3 −1

]
=

[
1 0
0 1

]
= I2,
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and

BA =
[−5 2

3 −1

] [
1 2
3 5

]
=

[
1 0
0 1

]
= I2.

So A is invertible, and B is the inverse of A; that is, A−1 = B .

Practice Problem 1 � If A =



−1 0 1
1 2 −2
2 −1 −1


 and B =




4 1 2
3 1 1
5 1 2


, is B = A−1? �

Because the roles of the matrices A and B are the same in the preceding definition,
it follows that if B is the inverse of A, then A is also the inverse of B . Thus, in
Example 1, we also have

B−1 = A =
[
1 2
3 5

]
.

Just as the real number 0 has no multiplicative inverse, the n × n zero matrix O
has no inverse because OB = O �= In for any n × n matrix B . But there are also other

square matrices that are not invertible; for example, A =
[
1 1
2 2

]
. For if B =

[
a b
c d

]

is any 2 × 2 matrix, then

AB =
[
1 1
2 2

] [
a b
c d

]
=

[
a + c b + d

2a + 2c 2b + 2d

]
.

Since the second row of the matrix on the right equals twice its first row, it cannot

be the identity matrix

[
1 0
0 1

]
. So B cannot be the inverse of A, and hence A is not

invertible.
In the next section, we learn which matrices are invertible and how to compute

their inverses. In this section, we discuss some elementary properties of invertible
matrices.

The inverse of a real number can be used to solve certain equations. For example,
the equation 2x = 14 can be solved by multiplying both sides of the equation by the
inverse of 2:

2−1(2x ) = 2−1(14)

(2−12)x = 7

1x = 7

x = 7

In a similar manner, if A is an invertible n × n matrix, then we can use A−1 to solve
matrix equations in which an unknown matrix is multiplied by A. For example, if A
is invertible, then we can solve the matrix equation Ax = b as follows:2

Ax = b

A−1(Ax) = A−1b

2 Although matrix inverses can be used to solve systems whose coefficient matrices are invertible, the
method of solving systems presented in Chapter 1 is far more efficient.
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(A−1A)x = A−1b

Inx = A−1b

x = A−1b

If A is an invertible n × n matrix, then for every b in Rn , Ax = b has the unique
solution A−1b.

In solving a system of linear equations by using the inverse of a matrix A, we
observe that A−1 “reverses” the action of A; that is, if A is an invertible n × n matrix
and u is a vector in Rn , then A−1(Au) = u. (See Figure 2.7.)

A�1(Au) � u Au

multiply
by A�1

multiply
by A

Rn Rn

Figure 2.7 Multiplication by a matrix and its inverse

Example 2 Use a matrix inverse to solve the system of linear equations

x1 + 2x2 = 4
3x1 + 5x2 = 7.

Solution This system is the same as the matrix equation Ax = b, where

A =
[
1 2
3 5

]
, x =

[
x1

x2

]
, and b =

[
4
7

]
.

We saw in Example 1 that A is invertible. Hence we can solve this equation for x by
multiplying both sides of the equation on the left by

A−1 =
[−5 2

3 −1

]

as follows:
[
x1

x2

]
= x = A−1b =

[−5 2
3 −1

] [
4
7

]
=

[−6
5

]

Therefore x1 = −6 and x2 = 5 is the unique solution of the system.

Practice Problem 2 � Use the answer to Practice Problem 1 to solve the following system of linear equations:

−x1 + x3 = 1
x1 + 2x2 − 2x3 = 2

2x1 − x2 − x3 = −1 �
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Example 3 Recall the rotation matrix

Aθ =
[
cos θ − sin θ

sin θ cos θ

]

considered in Section 1.2 and Example 4 of Section 2.1. Notice that for θ = 0◦,
Aθ = I2. Furthermore, for any angle α,

AαA−α = Aα+(−α) = A0◦ = I2.

Similarly, A−αAα = I2. Hence Aα satisfies the definition of an invertible matrix with
inverse A−α . Therefore (Aα)−1 = A−α .

Another way of viewing A−αAα is that it represents a rotation by α, followed by
a rotation by −α, which results in a net rotation of 0◦. This is the same as multiplying
by the identity matrix.

The following theorem states some useful properties of matrix inverses:

THEOREM 2.2

Let A and B be n × n matrices.

(a) If A is invertible, then A−1 is invertible and (A−1)−1 = A.

(b) If A and B are invertible, then AB is invertible and (AB )−1 = B−1A−1.

(c) If A is invertible, then AT is invertible and (AT )−1 = (A−1)T .

PROOF The proof of (a) is a simple consequence of the definition of matrix
inverse.

(b) Suppose that A and B are invertible. Then

(AB )(B−1A−1) = A(BB−1)A−1 = AInA−1 = AA−1 = In .

Similarly, (B−1A−1)(AB ) = In . Hence AB satisfies the definition of an invertible
matrix with inverse B−1A−1; that is, (AB )−1 = B−1A−1.

(c) Suppose that A is invertible. Then A−1A = In . Using Theorem 2.1(g), we
obtain

AT (A−1)T = (A−1A)T = I T
n = In .

Similarly, (A−1)T AT = In . Hence AT satisfies the definition of an invertible matrix
with the inverse (A−1)T ; that is, (AT )−1 = (A−1)T . �

Part (b) of Theorem 2.2 can be easily extended to products of more than two
matrices.

Let A1, A2, . . . , Ak be n × n invertible matrices. Then the product A1A2 · · · Ak is
invertible, and

(A1A2 · · · Ak )
−1 = (Ak )

−1(Ak−1)
−1 · · · (A1)

−1.
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ELEMENTARY MATRICES
It is interesting that every elementary row operation can be performed by matrix
multiplication. For example, we can multiply row 2 of the matrix

A =
[
a b
c d

]

by the scalar k by means of the matrix product

[
1 0
0 k

] [
a b
c d

]
=

[
a b
kc kd

]
.

Also, we can interchange rows 1 and 2 by means of the matrix product

[
0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]
.

We can add k times row 1 of A to row 2 by means of the matrix product

[
1 0
k 1

] [
a b
c d

]
=

[
a b

ka + c kb + d

]
.

The matrices
[
1 0
0 k

]
,

[
0 1
1 0

]
, and

[
1 0
k 1

]

are examples of elementary matrices. In general, an n × n matrix E is called an
elementary matrix if we can obtain E from In by a single elementary row operation.

For example, the matrix

E =



1 0 0
0 1 0
2 0 1




is an elementary matrix because we can obtain E from I3 by the elementary row
operation of adding two times the first row of I3 to the third row of I3. Note that if

A =



1 2
3 4
5 6


 ,

then

EA =



1 0 0
0 1 0
2 0 1







1 2
3 4
5 6


 =




1 2
3 4
7 10


 .

Hence we can obtain EA from A by adding two times the first row of A to the third
row. This is the same elementary row operation that we applied to I3 to produce E .
A similar result holds for each of the three elementary row operations.

Let A be an m × n matrix, and let E be an m × m elementary matrix resulting
from an elementary row operation on Im . Then the product EA can be obtained
from A by the identical elementary row operation on A.
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Practice Problem 3 � Find an elementary matrix E such that EA = B , where

A =
[
3 −4 1
2 5 −1

]
and B =

[
3 −4 1

−4 13 −3

]
.

�

As was noted in Section 1.3, any elementary row operation can be reversed. For
example, a matrix obtained by adding two times the first row to the third row of A can
be changed back into A by adding −2 times the first row to the third row of the new
matrix. The concept of a reverse operation gives us a way of obtaining the inverse of
an elementary matrix. To see how this is done, consider the preceding matrix E . Let

F =



1 0 0
0 1 0

−2 0 1




be the elementary matrix obtained from I3 by adding −2 times the first row of I3 to
the third row of I3. If this elementary row operation is applied to E , then the result is
I3, and therefore FE = I3. Similarly, EF = I3. Hence E is invertible, and E−1 = F .
We can apply the same argument to any elementary matrix to establish the following
result:

Every elementary matrix is invertible. Furthermore, the inverse of an elementary
matrix is also an elementary matrix.

The value of elementary matrices is that they allow us to analyze the theoretical
properties of elementary row operations using our knowledge about matrix multiplica-
tion. Since we can put a matrix into reduced row echelon form by means of elementary
row operations, we can carry out this transformation by multiplying the matrix on the
left by a sequence of elementary matrices, one for each row operation. Consequently,
if A is an m × n matrix with reduced row echelon form R, there exist elementary
matrices E1, E2, . . . , Ek such that

EkEk−1 · · · E1A = R.

Let P = EkEk−1 · · ·E1. Then P is a product of elementary matrices, so P is an invert-
ible matrix, by the boxed result on page 125. Furthermore, PA = R. Thus we have
established the following result:

THEOREM 2.3

Let A be an m × n matrix with reduced row echelon form R. Then there exists
an invertible m × m matrix P such that PA = R.

This theorem implies the following important result that justifies the method of
row reduction (described in Section 1.4) for solving matrix equations:

Corollary The matrix equation Ax = b has the same solutions as Rx = c, where [R c]
is the reduced row echelon form of the augmented matrix [A b].

PROOF There is an invertible matrix P such that P [A b] = [R c] by Theorem 2.3.
Therefore

[PA Pb] = P [A b] = [R c],
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and hence PA = R and Pb = c. Because P is invertible, it follows that A = P−1R
and b = P−1c.

Suppose that v is a solution of Ax = b. Then Av = b, so

Rv = (PA)v = P (Av) = Pb = c,

and therefore v is a solution of Rx = c. Conversely, suppose that v is a solution
of Rx = c. Then Rv = c, and hence

Av = (P−1R)v = P−1(Rv) = P−1c = b.

Therefore v is a solution of Ax = b. Thus the equations Ax = b and Rx = c have
the same solutions. �

As a special case of the preceding corollary, we note that if b = 0, then c = 0.
Therefore Ax = 0 and Rx = 0 are equivalent.

THE COLUMN CORRESPONDENCE PROPERTY
In Section 1.7, we found that if a subset S of Rn contains more than n vectors, then
the set is linearly dependent, and hence one of the vectors in S is a linear combination
of the others. However, nothing we have learned tells us which vector in the set is
a linear combination of other vectors. Of course, we could solve systems of linear
equations to find out how to do this, but this method could be extremely inefficient.

To illustrate another approach, consider the set

S =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1

2
−3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
−2

4
−6

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
1

−3
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
2
2
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
3
0
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
6
3
9

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

Because S is a subset of R4 and has six vectors, we know that at least one vector
in this set is a linear combination of the others. Thus Ax = 0 has nonzero solutions,
where

A =

⎡
⎢⎢⎣

1 2 −1 2 1 2
−1 −2 1 2 3 6

2 4 −3 2 0 3
−3 −6 2 0 3 9

⎤
⎥⎥⎦

is the matrix whose columns are the vectors in the set. But as we have just proved,
the solutions of Ax = 0 are the same as those of Rx = 0, where

R =

⎡
⎢⎢⎣

1 2 0 0 −1 −5
0 0 1 0 0 −3
0 0 0 1 1 2
0 0 0 0 0 0

⎤
⎥⎥⎦

is the reduced row echelon form of A (obtained in Section 1.4). Since any solution of
Ax = 0 gives the coefficients of a linear combination of columns of A that equals 0,
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it follows that the same coefficients yield the equivalent linear combination of the
columns

S ′ =







1
0
0
0


 ,




2
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




−1
0
1
0


 ,




−5
−3

2
0







,

of R, and vice versa. As a consequence, if column j of A is a linear combination of the
other columns of A, then column j of R is a linear combination of the other columns
of R with the same coefficients, and vice versa. For example, in S ′ it is obvious that
r2 = 2r1 and r5 = −r1 + r4. Although it is less obvious, similar relationships hold in
S: a2 = 2a1 and a5 = −a1 + a4.

The preceding observations may be summarized as the column correspondence
property.

Column Correspondence Property

Let A be a matrix and R its reduced row echelon form. If column j of R is a linear
combination of other columns of R, then column j of A is a linear combination
of the corresponding columns of A using the same coefficients, and vice versa.

Practice Problem 4 � For the preceding matrix A, use the column correspondence property to express a6 as
a linear combination of the other columns. �

The column correspondence property and the following theorem are proved in
Appendix E:

THEOREM 2.4

The following statements are true for any matrix A:

(a) The pivot columns of A are linearly independent.

(b) Each nonpivot column of A is a linear combination of the previous pivot
columns of A, where the coefficients of the linear combination are the entries
of the corresponding column of the reduced row echelon form of A.

For example, in the previous matrices A and R, the first, third, and fourth columns
are the pivot columns, so these columns are linearly independent. Furthermore, the
fifth column of R is a linear combination of the preceding pivot columns. In fact,
r5 = (−1)r1 + 0r3 + 1r4. Hence Theorem 2.4(b) guarantees that a similar equation
holds for the corresponding columns of A; that is,

a5 = (−1)a1 + 0a3 + 1a4.

Example 4 The reduced row echelon form of a matrix A is

R =



1 2 0 −1
0 0 1 1
0 0 0 0


 .
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Determine A, given that the first and third columns of A are

a1 =



1
2
1


 and a3 =




2
2
3


 .

Solution Since the first and third columns of R are the pivot columns, these are
also the pivot columns of A. Now observe that the second column of R is 2r1, and
hence, by the column correspondence property, the second column of A is

a2 = 2a1 = 2




1
2
1


 =




2
4
2


 .

Furthermore, the fourth column of R is r4 = (−1)r1 + r3, and so, again by the column
correspondence property,

a4 = (−1)a1 + a3 = (−1)




1
2
1


 +




2
2
3


 =




1
0
2


 .

Thus

A =



1 2 2 1
2 4 2 0
1 2 3 2


 .

Practice Problem 5 � Suppose that the reduced row echelon form of A is

R =



1 −3 0 5 3
0 0 1 2 −2
0 0 0 0 0


 .

Determine A if the first and third columns of A are a1 =



1
−1

2


 and a3 =




2
0

−1


,

respectively. �

EXERCISES

For each of the matrices A and B in Exercises 1–8, determine
whether B = A−1.

1. A =
[
1 2
1 −1

]
and B =

[
1 0.5
1 −1

]

2. A =
[
1 2
3 5

]
and B =

[−5 2
3 −1

]

3. A =



1 2 1
1 1 2
2 3 4


 and B =




2 5 −3
0 −2 1

−1 −1 1




4. A =



1 1 2
0 1 1
0 0 1


 and B =




1 −1 1
1 2 1

−1 0 −1




5. A =




1 −2 1 0
2 −2 1 0
1 −1 0 −1

−1 0 −1 −1


 and

B =




−1 1 0 0
0 −1 1 −1
2 −3 2 −2

−1 2 −2 1
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6. A =




1 2 2 2
1 1 1 2
2 3 2 3
3 5 7 7


 and

B =




2 4 −4 −9
−1 −1 1 4

1 1 −2 −3
−1 −2 3 4




7. A =




1 −1 2 −1
−1 2 −4 3
−2 2 −2 3
−2 1 −1 1


 and

B =




2 1 −1 2
9 5 −4 6
1 1 −1 1

−4 −2 1 −2




8. A =




1 1 2 2
2 1 1 2
2 1 2 3
2 2 2 4


 and

B =




1 −1 2 −1
6 −4 3 −2

−2 2 −2 1
−2 1 −1 1




For Exercises 9–14, find the value of each matrix expression,
where A and B are the invertible 3 × 3 matrices such that

A−1 =



1 2 3
2 0 1
1 1 −1


 and B−1 =




2 −1 3
0 0 4
3 −2 1


 .

9. (AT )−1 10. (BT )−1 11. (AB )−1

12. (BA)−1 13. (ABT )−1 14. (AT BT )−1

In Exercises 15–22, find the inverse of each elementary matrix.

15.

[
1 0
1 1

]
16.

[
1 −3
0 1

]

17.




1 0 0
−2 1 0

0 0 1


 18.




0 0 1
0 1 0
1 0 0




19.




1 0 0 0
0 4 0 0
0 0 1 0
0 0 0 1


 20.




1 0 0
0 1 0
0 0 4




21.




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 22.




1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1




In Exercises 23–32, find an elementary matrix E such that
EA = B.

23. A =
[
1 2
3 4

]
and B =

[−1 −2
3 4

]

24. A =
[−1 5

2 3

]
and B =

[−1 5
0 13

]

25. A =
[
2 −3
7 10

]
and B =

[
7 10
2 −3

]

26. A =
[

1 2 −3
−1 4 5

]
and B =

[
1 2 −3
1 −4 −5

]

27. A =
[

3 2 −1
−1 0 6

]
and B =

[−1 0 6
3 2 −1

]

28. A =
[−2 1 4

1 −3 2

]
and B =

[
0 −5 0
1 −3 2

]

29. A =



1 −1 2
2 −3 1
0 4 5


 and B =




1 −1 2
2 −3 1

−10 19 0




30. A =



1 2 −2
3 −1 0

−1 1 6


 and B =




1 2 −2
3 −1 0
0 3 4




31. A =



1 2 3
4 5 6
7 8 9


 and B =




1 2 3
7 8 9
4 5 6




32. A =



1 2 3 4
−1 1 3 2

2 −1 0 4


 and

B =



1 2 3 4
−1 1 3 2

0 −5 −6 −4




In Exercises 33–52, determine whether the state-
ments are true or false.

33. Every square matrix is invertible.

34. Invertible matrices are square.

35. Elementary matrices are invertible.

36. If A and B are matrices such that AB = In for some n,
then both A and B are invertible.

37. If B and C are inverses of a matrix A, then B = C .

38. If A and B are invertible n × n matrices, then ABT is
invertible.

39. An invertible matrix may have more than one inverse.

40. For any matrices A and B , if A is the inverse of B , then
B is the inverse of A.

41. For any matrices A and B , if A is the inverse of BT , then
A is the transpose of B−1.

42. If A and B are invertible n × n matrices, then AB is also
invertible.

43. If A and B are invertible n × n matrices, then (AB )−1 =
A−1B−1.

44. An elementary matrix is a matrix that can be obtained by
a sequence of elementary row operations on an identity
matrix.

45. An elementary n × n matrix has at most n + 1 nonzero
entries.

46. The product of two elementary n × n matrices is an ele-
mentary n × n matrix.

47. Every elementary matrix is invertible.
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48. If A and B are m × n matrices and B can be obtained
from A by an elementary row operation on A, then there
is an elementary m × m matrix E such that B = EA.

49. If R is the reduced row echelon form of a matrix A, then
there exists an invertible matrix P such that PA = R.

50. Let R be the reduced row echelon form of a matrix A.
If column j of R is a linear combination of the previous
columns of R, then column j of A is a linear combination
of the previous columns of A.

51. The pivot columns of a matrix are linearly dependent.

52. Every column of a matrix is a linear combination of its
pivot columns.

53.3 Let Aα be the α-rotation matrix. Prove that (Aα)T =
(Aα)−1.

54. Let A =
[

a b
c d

]
.

(a) Suppose ad − bc �= 0, and

B = 1

ad − bc

[
d −b

−c a

]
.

Show that AB = BA = I2, and hence A is invertible
and B = A−1.

(b) Prove the converse of (a): If A is invertible, then
ad − bc �= 0.

55. Prove that the product of elementary matrices is invertible.

56. (a) Let A be an invertible n × n matrix, and let u and
v be vectors in Rn such that u �= v. Prove that
Au �= Av.

(b) Find a 2 × 2 matrix A and distinct vectors u and v in
R2 such that Au = Av.

57. Let Q be an invertible n × n matrix. Prove that the subset
{u1, u2, . . . , uk } of Rn is linearly independent if and only
if {Qu1, Qu2, . . . , Quk } is linearly independent.

58. Prove Theorem 2.2(a).

59. Prove that if A, B , and C are invertible n × n matrices,
then ABC is invertible and (ABC )−1 = C −1B−1A−1.

60. Let A and B be n × n matrices such that both A and AB
are invertible. Prove that B is invertible by writing it as
the product of two invertible matrices.

61. Let A and B be n × n matrices such that AB = In . Prove
that the rank of A is n. Hint: Theorem 1.6 can be useful.

62. Prove that if A is an m × n matrix and B is an n × p
matrix, then rank AB ≤ rank B . Hint: Prove that if the
k th column of B is not a pivot column of B , then the k th
column of AB is not a pivot column of AB .

63. Prove that if B is an n × n matrix with rank n, then
there exists an n × n matrix C such that BC = In . Hint:
Theorem 1.6 can be useful.

64. Prove that if A and B are n × n matrices such that
AB = In , then B is invertible and A = B−1. Hint: Use
Exercises 62 and 63.

65. Prove that if an n × n matrix has rank n, then it is invert-
ible. Hint: Use Exercises 63 and 64.

66. Let M =
[

A O1

O2 B

]
, where A and B are square and O1

and O2 are zero matrices. Prove that M is invertible if and
only if A and B are both invertible. Hint: Think about the
reduced row echelon form of M .

In Exercises 67–74, find the matrix A, given the reduced row
echelon form R of A and information about certain columns
of A.

67. R =
[

1 0 1
0 1 2

]
, a1 =

[
3

−1

]
, and a2 =

[
2
5

]

68. R =

⎡
⎢⎢⎣

1 2 0 −3 0 1
0 0 1 2 0 2
0 0 0 0 1 3
0 0 0 0 0 0

⎤
⎥⎥⎦, a1 =

⎡
⎢⎢⎣

2
0

−1
1

⎤
⎥⎥⎦,

a3 =

⎡
⎢⎢⎣

1
−1

2
0

⎤
⎥⎥⎦, and a5 =

⎡
⎢⎢⎣

2
3
0
1

⎤
⎥⎥⎦

69. R =
⎡
⎣

1 −1 0 0 1
0 0 1 0 2
0 0 0 1 3

⎤
⎦, a2 =

⎡
⎣

1
−2

1

⎤
⎦,

a3 =
⎡
⎣

1
−1

0

⎤
⎦, and a4 =

⎡
⎣

4
1
3

⎤
⎦.

70. R =

⎡
⎢⎢⎣

1 2 0 1 0 1
0 0 1 −1 0 −1
0 0 0 0 1 1
0 0 0 0 0 0

⎤
⎥⎥⎦, a2 =

⎡
⎢⎢⎣

2
4
6

−2

⎤
⎥⎥⎦,

a4 =

⎡
⎢⎢⎣

1
3

−1
1

⎤
⎥⎥⎦, a6 =

⎡
⎢⎢⎣

2
−1
−1

2

⎤
⎥⎥⎦

71. R =
[

1 2 0 4
0 0 1 3

]
, a2 =

[
2
4

]
, and a3 =

[
3
5

]

72. R =
⎡
⎣

1 −1 0 −2 −3 2
0 0 1 3 4 −4
0 0 0 0 0 0

⎤
⎦, a2 =

⎡
⎣

−1
−1
−1

⎤
⎦,

and a5 =
⎡
⎣

−3
5
1

⎤
⎦

73. R =
⎡
⎣

1 −1 0 −2 0 2
0 0 1 3 0 −4
0 0 0 0 1 1

⎤
⎦, a2 =

⎡
⎣

−1
0

−1

⎤
⎦,

a4 =
⎡
⎣

1
6

−2

⎤
⎦, and a6 =

⎡
⎣

−1
−7

3

⎤
⎦

3 The result of this exercise is used in Section 4.4 (page 269).
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74. R =




1 0 0 −3 1 3
0 1 0 2 −1 −2
0 0 1 0 0 −1
0 0 0 0 0 0


, a1 =




1
2

−1
0


,

a5 =




1
3

−2
−1


, and a6 =




4
9

−6
−3




In Exercises 75–78, write the indicated column of

A =



1 −2 1 −1 −2
2 −4 1 1 1
3 −6 0 6 9




as a linear combination of the pivot columns of A.

75. a2 76. a3 77. a4 78. a5

In Exercises 79–82, write the indicated column of

B =




1 0 1 −3 −1 4
2 −1 3 −8 −1 9

−1 1 −2 5 1 −6
0 1 −1 2 1 −3




as a linear combination of the pivot columns of B.

79. b3 80. b4 81. b5 82. b6

83. Suppose that u and v are linearly independent vec-
tors in R3. Find the reduced row echelon form of A =
[a1 a2 a3 a4], given that

a1 = u, a2 = 2u, a3 = u + v, and a4 = v.

84. Let A be an n × n invertible matrix, and let ej be the j th
standard vector of Rn .

(a) Prove that the j th column of A−1 is a solution of
Ax = ej .

(b) Why does the result in (a) imply that A−1 is unique?

(c) Why does the result in (a) imply that rank A = n?

85. Let A be a matrix with reduced row echelon form R.
Use the column correspondence property to prove the foll-
owing:

(a) A column of A is 0 if and only if the corresponding
column of R is 0.

(b) A set of columns of A is linearly independent if and
only if the corresponding set of columns of R is lin-
early independent.

86. Let R be an m × n matrix in reduced row echelon form.
Find a relationship between the columns of RT and the
columns of RT R. Justify your answer.

87. Let R be an m × n matrix in reduced row echelon form
with rank R = r . Prove the following:

(a) The reduced row echelon form of RT is the n × m
matrix [e1 e2 . . . er 0 . . . 0], where ej is the j th
standard vector of Rn for 1 ≤ j ≤ r .

(b) rank RT = rank R.

88. Let A be an m × n matrix with reduced row echelon
form R. Then there exists an invertible matrix P such
that PA = R and an invertible matrix Q such that QRT is
the reduced row echelon form of RT . Describe the matrix
PAQT in terms of A. Justify your answer.

89. Let A and B be m × n matrices. Prove that the following
conditions are equivalent.

(a) A and B have the same reduced row echelon form.

(b) There is an invertible m × m matrix P such that
B = PA.

90. Let A be an n × n matrix. Find a property of A that
is equivalent to the statement AB = AC if and only if
B = C . Justify your answer.

91. Let A be a 2 × 3 matrix, and let E be an elementary matrix
obtained by an elementary row operation on I2. Prove that
the product EA can be obtained from A by the identical
elementary row operation on A. Hint: Prove this for each
of the three kinds of elementary row operations.

92. Let A and B be m × n matrices. Prove that the following
conditions are equivalent:

(a) A and B have the same reduced row echelon form.

(b) The system of equations Ax = 0 is equivalent to
Bx = 0.

We can define an elementary column operation in a manner anal-
ogous to the definition in Section 1.3 of an elementary row oper-
ation. Each of the following operations on a matrix is called an
elementary column operation: interchanging any two columns
of the matrix, multiplying any column by a nonzero scalar, and
adding a multiple of one column of the matrix to another column
of the matrix.

93. Let E be an n × n matrix. Prove that E is an elementary
matrix if and only if E can be obtained from In by a single
elementary column operation.

94. Prove that if a matrix E is obtained from In by a single
elementary column operation, then for any m × n matrix
A, the product AE can be obtained from A by the identical
elementary column operation on A.

In Exercises 95–99, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

95. Let

A =




1 1 0 −1
0 1 1 2
2 1 0 −3

−1 −1 1 1


 .

Let B be the matrix obtained by interchanging rows 1 and
3 of A, and let C be the matrix obtained by interchanging
rows 2 and 4 of A.

(a) Show that A is invertible.

(b) Show that B and C are invertible.

(c) Compare B−1 and C −1 with A−1.
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(d) Now let A be any invertible n × n matrix, and let B
be the matrix obtained by interchanging rows i and j
of A, where 1 ≤ i < j ≤ n. Make a conjecture about
the relationship between B−1 and A−1.

(e) Prove your conjecture in (d).

96. Let

A =




15 30 17 31
30 66 36 61
17 36 20 35
31 61 35 65


 .

(a) Show that A is symmetric and invertible.

(b) Show that A−1 is symmetric and invertible.

(c) Prove that the inverse of any symmetric and invertible
matrix is also symmetric and invertible.

97. Let

A =




1 2 0 3
2 5 −1 8
2 4 1 6
3 6 1 8


 .

(a) Show that A and A2 are invertible by using their
reduced row echelon forms.

(b) Compute the inverse of A2, and show that it equals
(A−1)2.

(c) State and verify a similar result to (b) for A3.

(d) Generalize and prove a result analogous to (c) for the
nth power of any invertible matrix.

98. Consider the system Ax = b.

x1 + 3x2 + 2x3 + x4 = 4
x1 + 2x2 + 4x3 = −3

2x1 + 6x2 + 5x3 + 2x4 = −1
x1 + 3x2 + 2x3 + 2x4 = 2

(a) Compute the inverse of A and use it to solve the
system.

(b) Show that your solution is correct by verifying that it
satisfies the matrix equation Ax = b.

99. The purpose of this exercise is to illustrate the method
of finding an inverse described in Exercise 84. In
Exercise 97, you found the inverse of

A =




1 2 0 3
2 5 −1 8
2 4 1 6
3 6 1 8


 .

(a) Solve the system Ax = e1, and compare your solution
with the first column of A−1.

(b) Repeat (a) for the vectors e2, e3, and e4.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Since

AB =



−1 0 1
1 2 −2
2 −1 −1







4 1 2
3 1 1
5 1 2


 =




1 0 0
0 1 0
0 0 1




and

BA =



4 1 2
3 1 1
5 1 2







−1 0 1
1 2 −2
2 −1 −1


 =




1 0 0
0 1 0
0 0 1


 ,

B = A−1.

2. This system of linear equations can be written as the
matrix equation Ax = b, where A is the matrix given in
Practice Problem 1, and

b =



1
2

−1


 .

Since the matrix B given in Practice Problem 1 is equal
to A−1, we have




x1

x2

x3


 = x = A−1b =




4 1 2
3 1 1
5 1 2







1
2

−1


 =




4
4
5


 .

Therefore x1 = 4, x2 = 4, and x3 = 5.

3. The matrix B is obtained from A by adding −2 times row
1 of A to row 2. Adding −2 times row 1 of I2 to row 2 pro-

duces the elementary matrix E =
[

1 0
−2 1

]
. This matrix

has the property that EA = B .

4. From the matrix R, it is clear that r6 = −5r1 − 3r3 + 2r4.
So by the column correspondence property, it follows that
a6 = −5a1 − 3a3 + 2a4.

5. Let r1, r2, r3, r4, and r5 denote the columns of R. The
pivot columns of R are columns 1 and 3, so the pivot
columns of A are columns 1 and 3. Every other column
of R is a linear combination of its pivot columns. In fact,
r2 = −3r1, r4 = 5r1 + 2r3, and r5 = 3r1 − 2r3. Thus the
column correspondence property implies that column 2 of
A is

a2 = −3a1 = −3




1
−1

2


 =




−3
3

−6


 .

Similarly, the fourth and fifth columns of A are

a4 = 5a1 + 2a3 = 5




1
−1

2


 + 2




2
0

−1


 =




9
−5

8
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and

a5 = 3a1 − 2a3 = 3




1
−1

2


 − 2




2
0

−1


 =




−1
−3

8


 ,

respectively. Hence

A =



1 −3 2 9 −1
−1 3 0 −5 −3

2 −6 −1 8 8


 .

2.4 THE INVERSE OF A MATRIX
In this section, we learn which matrices are invertible and how to find their inverses.
To do this, we apply what we have learned about invertible and elementary matrices.
The next theorem tells us when a matrix is invertible.

THEOREM 2.5

Let A be an n × n matrix. Then A is invertible if and only if the reduced row
echelon form of A is In .

PROOF First, suppose that A is invertible. Consider any vector v in Rn such
that Av = 0. Then, by the boxed result on page 124, v = A−10 = 0. Thus the
only solution of Ax = 0 is 0, and so rank A = n by Theorem 1.8. However, by
the second boxed statement on page 48, the reduced row echelon form of A must
equal In .

Conversely, suppose that the reduced row echelon form of A equals In . Then,
by Theorem 2.3, there exists an invertible n × n matrix P such that PA = In . So

A = InA = (P−1P )A = P−1(PA) = P−1In = P−1.

But, by Theorem 2.2, P−1 is an invertible matrix, and therefore A is invertible.
�

Theorem 2.5 can be used as a test for matrix invertibility, as follows: To determine
if an n × n matrix is invertible, compute its reduced row echelon form R. If R = In ,
then the matrix is invertible; otherwise, if R �= In , then the matrix is not invertible.

Example 1 Use Theorem 2.5 to test the following matrices for invertibility:

A =



1 2 3
2 5 6
3 4 8


 and B =




1 1 2
2 1 1
1 0 −1




You should check that the reduced row echelon form of A is I3. Therefore A is
invertible by Theorem 2.5.

On the other hand, the reduced row echelon form of B is




1 0 −1
0 1 3
0 0 0


 .

So, by Theorem 2.5, B is not invertible.
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AN ALGORITHM FOR MATRIX INVERSION
Theorem 2.5 provides not only a method for determining whether a matrix is invert-
ible, but also a method for actually calculating the inverse when it exists. We know
that we can transform any n × n matrix A into a matrix R in reduced row echelon
form by means of elementary row operations. Applying the same operations to the
n × 2n matrix [A In ] transforms this matrix into an n × 2n matrix [R B ] for some
n × n matrix B . Hence there is an invertible matrix P such that P [A In ] = [R B ].
Thus

[R B ] = P [A In ] = [PA PIn ] = [PA P ].

It follows that PA = R, and P = B . If R �= In , then we know that A is not invertible by
Theorem 2.5. On the other hand, if R = In , then A is invertible, again by Theorem 2.5.
Furthermore, since PA = In and P = B , it follows that B = A−1. Thus we have the
following algorithm for computing the inverse of a matrix:

Algorithm for Matrix Inversion

Let A be an n × n matrix. Use elementary row operations to transform [A In ]
into the form [R B ], where R is a matrix in reduced row echelon form. Then
either
(a) R = In , in which case A is invertible and B = A−1; or
(b) R �= In , in which case A is not invertible.

Example 2 We use the algorithm for matrix inversion to compute A−1 for the invertible matrix A
of Example 1. This algorithm requires us to transform [A I3] into a matrix of the form
[I3 B ] by means of elementary row operations. For this purpose, we use the Gaussian
elimination algorithm in Section 1.4 to transform A into its reduced row echelon form
I3, while applying each row operation to the entire row of the 3 × 6 matrix.

[A I3] =



1 2 3 1 0 0
2 5 6 0 1 0
3 4 8 0 0 1




−2r1 + r2 → r2
−3r1 + r3 → r3�




1 2 3 1 0 0
0 1 0 −2 1 0
0 −2 −1 −3 0 1




2r2+r3→r3�




1 2 3 1 0 0
0 1 0 −2 1 0
0 0 −1 −7 2 1




−r3→r3�




1 2 3 1 0 0
0 1 0 −2 1 0
0 0 1 7 −2 −1




−3r3+r1→r1�




1 2 0 −20 6 3
0 1 0 −2 1 0
0 0 1 7 −2 −1




−2r2+r1→r1�




1 0 0 −16 4 3
0 1 0 −2 1 0
0 0 1 7 −2 −1


 = [I3 B ]
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Thus

A−1 = B =



−16 4 3
−2 1 0

7 −2 −1


 .

In the context of the preceding discussion, if [R B ] is in reduced row echelon
form, then so is R. (See Exercise 73.) This observation is useful if there is a calculator
or computer available that can produce the reduced row echelon form of a matrix. In
such a case, we simply find the reduced row echelon form [R B ] of [A In ]. Then, as
before, either

(a) R = In , in which case A is invertible and B = A−1; or
(b) R �= In , in which case A is not invertible.

Example 3 To illustrate the previous paragraph, we test

A =
[
1 1
2 2

]

for invertibility. If we are performing calculations by hand, we transform [A I2] into
a matrix [R B ] such that R is in reduced row echelon form:

[A I2] =
[

1 1 1 0
2 2 0 1

]
−2r1+r2→r2�

[
1 1 1 0
0 0 −2 1

]
= [R B ]

Since R �= I2, A is not invertible.
Note that in this case [R B ] is not in reduced row echelon form because of the

−2 in the (2, 3)-entry. If you use a computer or calculator to put [A I2] into reduced
row echelon form, some additional steps are performed, resulting in the matrix

[R C ] =
[

1 1 0 0.5
0 0 1 −0.5

]
.

Again, we see that A is not invertible because R �= I2. It is not necessary to perform
these additional steps when solving the problem by hand—you can stop as soon as it
becomes clear that R �= I2.

Practice Problem 1 � For each of the matrices

A =



1 −2 1
2 −1 −1

−2 −5 7


 and B =




1 1 0
3 4 1

−1 4 4


 ,

determine whether the matrix is invertible. If so, find its inverse. �

Practice Problem 2 � Consider the system of linear equations

x1 − x2 + 2x3 = 2
x1 + 2x2 = 3

−x2 + x3 = −1.
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(a) Write the system in the form of a matrix equation Ax = b.

(b) Show that A is invertible, and find A−1.

(c) Solve the system by using the answer to (b). �

Although the next theorem includes a very long list of statements, most of it follows
easily from previous results. The key idea is that when A is an n × n matrix, the reduced
row echelon form of A equals In if and only if A has a pivot position in each row and if
and only if A has a pivot position in each column. Thus, in the special case of an n × n
matrix, each statement in Theorems 1.6 and 1.8 is true if and only if the reduced row
echelon form of A equals In . So all these statements are equivalent to each other.

THEOREM 2.6

(Invertible Matrix Theorem) Let A be an n × n matrix. The following state-
ments are equivalent:

(a) A is invertible.

(b) The reduced row echelon form of A is In .

(c) The rank of A equals n .

(d) The span of the columns of A is Rn .

(e) The equation Ax = b is consistent for every b in Rn .

(f) The nullity of A equals zero.

(g) The columns of A are linearly independent.

(h) The only solution of Ax = 0 is 0.

(i) There exists an n × n matrix B such that BA = In .

(j) There exists an n × n matrix C such that AC = In .

(k) A is a product of elementary matrices.

PROOF Statements (a) and (b) are equivalent by Theorem 2.5. Because A is an
n × n matrix, statement (b) is equivalent to each of (c), (d), and (e) by Theorem
1.6 on page 70. Similarly, statement (b) is equivalent to each of (f), (g), and
(h) by Theorem 1.8 on page 78. Therefore statement (a) is equivalent to each of
statements (b) through (h).

Proof that (a) implies (k): The assumption that A is invertible implies that the
reduced row echelon form of A is In . Then, as in the proof of Theorem 2.5, there
exists an invertible n × n matrix P such that PA = In (Theorem 2.3). Therefore
A = P−1, and the discussion preceding Theorem 2.3 shows that P is a product of
invertible matrices. Thus P−1 is the product of the inverses of these elementary
matrices (in reverse order), each of which is an elementary matrix. It follows that
A is a product of elementary matrices, and so (a) implies (k).

Proof that (k) implies (a): Suppose that A is a product of elementary matrices.
Since elementary matrices are invertible, A is the product of invertible matrices and
hence A is invertible, establishing (a). Thus statements (a) and (k) are equivalent.

It remains to show that (a) is equivalent to (i) and (j).
Clearly, (a) implies (i), with B = A−1. Conversely, assume (i). Let v be any

vector in Rn such that Av = 0. Then

v = Inv = (BA)v = B (Av) = B0 = 0.

It follows that (i) implies (h). But (h) implies (a); so (i) implies (a). Thus state-
ments (a) and (i) are equivalent.
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Clearly, (a) implies (j), with C = A−1. Conversely, assume (j). Let b be any
vector in Rn and v = Cb. Then

Av = A(Cb) = (AC )b = Inb = b.

It follows that (j) implies (e). Since (e) implies (a), it follows that (j) implies (a).
Hence (a) and (j) are equivalent.

Therefore all of the statements in the Invertible Matrix Theorem are equiva-
lent. �

Statements (i) and (j) of the Invertible Matrix Theorem are the two conditions in
the definition of invertibility. It follows from the Invertible Matrix Theorem that we
need verify only one of these conditions to show that a square matrix is invertible.
For example, suppose that for a given n × n matrix A, there is an n × n matrix C
such that AC = In . Then A is invertible by the Invertible Matrix Theorem, and so we
may multiply both sides of this equation on the left by A−1 to obtain the equation
A−1(AC ) = A−1In , which reduces to C = A−1. Similarly, if BA = In for some matrix
B , then A is invertible by the Invertible Matrix Theorem, and

B = BIn = B (AA−1) = (BA)A−1 = InA−1 = A−1.

Note that the matrices B and C in statements (i) and (j) of the Invertible Matrix
Theorem must be square. There are nonsquare matrices A and C for which the product
AC is an identity matrix. For instance, let

A =
[
1 1 0
1 2 1

]
and C =




2 1
−1 −1

0 2


 .

Then

AC =
[
1 1 0
1 2 1

]


2 1
−1 −1

0 2


 =

[
1 0
0 1

]
= I2.

Of course, A and C are not invertible.

COMPUTING∗ A−1B
When A is an invertible n × n matrix and B is any n × p matrix, we can extend the
algorithm for matrix inversion to compute A−1B . Consider the n × (n + p) matrix
[A B ]. Suppose we transform this matrix by means of elementary row operations into
the matrix [In C ]. As in the discussion of the algorithm for matrix inversion, there is
an n × n invertible matrix P such that

[In C ] = P [A B ] = [PA PB ],

from which it follows that PA = In and C = PB . Therefore P = A−1, and hence
C = A−1B . Thus we have the following algorithm:

Algorithm for Computing A−1B

Let A be an invertible n × n matrix and B be an n × p matrix. Suppose that the
n × (n + p) matrix [A B ] is transformed by means of elementary row operations
into the matrix [In C ] in reduced row echelon form. Then C = A−1B .

∗ The remainder of this section may be omitted without loss of continuity.
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Example 4 Use the preceding algorithm to compute A−1B for

A =



1 2 1
2 5 1
2 4 1


 and B =




2 −1
1 3
0 2


 .

Solution We apply elementary row operations to transform [A B ] into its reduced
row echelon form, [I3 A−1B ].

[A B ] =



1 2 1 2 −1
2 5 1 1 3
2 4 1 0 2




−2r1 + r2 → r2
−2r1 + r3 → r3�




1 2 1 2 −1
0 1 −1 −3 5
0 0 −1 −4 4




−r3→r3�




1 2 1 2 −1
0 1 −1 −3 5
0 0 1 4 −4




r3 + r2 → r2
−r3 + r1 → r1�




1 2 0 −2 3
0 1 0 1 1
0 0 1 4 −4




−2r2+r1→r1�




1 0 0 −4 1
0 1 0 1 1
0 0 1 4 −4




Therefore

A−1B =



−4 1
1 1
4 −4


 .

One of the applications of the algorithm for computing A−1B is to solve several
systems of linear equations sharing a common invertible coefficient matrix. Suppose
that Ax = bi , 1 ≤ i ≤ k , is such a collection of systems, and suppose that xi is the
solution of the i th system. Let

X = [
x1 x2 · · · xk

]
and B = [

b1 b2 · · · bk
]
.

Then AX = B , and therefore X = A−1B .
So if A and B are as in Example 4 and b1 and b2 are the columns of B , then the

solutions of Ax = b1 and Ax = b2 are

x1 =



−4
1
4


 and x2 =




1
1

−4


 .

AN INTERPRETATION OF THE INVERSE MATRIX
Consider the system Ax = b, where A is an invertible n × n matrix. Often, we need
to know how a change to the constant b affects a solution of the system. To examine
what happens, let P = A−1. Then

[e1 e2 . . . en ] = In = AP = A[p1 p2 . . . pn ] = [Ap1 Ap2 . . . Apn ].
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It follows that for each j , Apj = ej . Suppose that u is a solution of Ax = b, and
assume that we change the k th component of b from bk to bk + d , where d is some
scalar. Thus we replace b by b + dek to obtain the new system Ax = b + dek . Notice
that

A(u + dpk ) = Au + dApk = b + dek ;

so u + dpk is a solution of Ax = b + dek . This solution differs from the original
solution by dpk ; that is, dpk measures the change in a solution of Ax = b when the
k th component of b is increased by d .

An example in which the vector b and the resulting solution are changed in this
way is provided by the Leontief input–output model (discussed in Section 1.5). When
an economy is being planned, the gross production vectors corresponding to several
different demand vectors may need to be calculated. For example, we may want to
compare the effect of increasing the demand vector from

d1 =



90
80
60


 to d2 =




100
80
60


 .

If C is the input–output matrix for the economy and I3 − C is invertible,4 then
such comparisons are easily made. For in this case, the solution of (I3 − C )x = d1 is
(I3 − C )−1d1, as we saw in Section 2.3. Hence the gross production vector needed to
meet the demand d2 is

(I3 − C )−1d1 + 10p1,

where p1 is the first column of (I3 − C )−1. For the economy in Example 2 of Section
1.5, we have

(I3 − C )−1 =



1.3 0.475 0.25
0.6 1.950 0.50
0.5 0.375 1.25


 and (I3 − C )−1d1 =




170
240
150


 .

So the gross production vector needed to meet the demand d2 is

(I3 − C )−1d1 + 10p1 =



170
240
150


 + 10




1.3
0.6
0.5


 =




183
246
155


 .

Example 5 For the input–output matrix and demand in Example 2 of Section 1.5, determine the
additional inputs needed to increase the demand for services from $60 million to $70
million.

Solution The additional inputs needed to increase the demand for services by one
unit are given by the third column of the preceding matrix (I3 − C )−1. Hence an
increase of $10 million in the demand for services requires additional inputs of

10




0.25
0.50
1.25


 =




2.5
5.0

12.5


 ,

4 In practice, the sums of the entries in each column of C are less than 1, because each dollar’s worth of
output normally requires inputs whose total value is less than $1. In this situation, it can be shown that
In − C is invertible and has nonnegative entries.
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that is, additional inputs of $2.5 million of agriculture, $5 million of manufacturing,
and $12.5 million of services.

Practice Problem 3 � Let A be an invertible n × n matrix and b be a vector in Rn . Suppose that x1 is the
solution of the equation Ax = b.

(a) Prove that for any vector c in Rn , the vector x1 + A−1c is the solution of Ax =
b + c.

(b) For the input–output matrix and demand vector in Example 2 of Section 1.5,
apply the result in (a) to determine the increase in gross production necessary
if the three demands are increased by $5 million for agriculture, $4 million for
manufacturing, and $2 million for services. �

EXERCISES

In Exercises 1–18, determine whether each matrix is invertible.
If so, find its inverse.

1.

[
1 3
1 2

]
2.

[
1 2
2 4

]

3.

[
1 −3

−2 6

]
4.

[
2 −4

−3 6

]

5.

[
2 3
3 5

]
6.

[
6 −4

−3 2

]

7.




1 −2 1
1 0 1
1 −1 1


 8.




1 3 2
2 5 5
1 3 1




9.




1 1 2
2 −1 1
2 3 4


 10.




2 −1 2
1 0 3
0 1 4




11.




2 −1 1
1 −3 2
1 7 −4


 12.




1 −1 1
1 −2 0
2 −3 2




13.




0 2 −1
1 −1 2
2 −1 3


 14.




1 −2 1
1 2 −1
1 4 −2




15.




1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1


 16.




1 2 1 −1
2 5 1 −1
1 3 1 2
2 4 2 −1




17.




1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


 18.




1 −1 1 −2
−1 3 −1 0

2 −2 −2 3
9 −5 −3 −1




In Exercises 19–26, use the algorithm for computing A−1B.

19. A =
[
1 2
2 3

]
and B =

[
1 −1 2
1 0 1

]

20. A =
[−1 2

2 −3

]
and B =

[
4 −1
1 2

]

21. A =
[
2 2
2 1

]
and B =

[
2 4 2 6
0 −2 8 −4

]

22. A =



1 −1 1
2 −1 4
2 −2 3


 and B =




3 −2
1 −1
4 2




23. A =



−2 3 7
−1 1 2

1 1 2


 and B =




2 0 1 −1
1 2 −2 1
3 1 1 3




24. A =



3 2 4
4 1 4
4 2 5


 and B =




1 −1 0 −2 −3
1 −1 2 4 5
1 −1 1 1 1




25. A =




1 0 1 1
0 1 1 −1
0 0 1 −1
0 0 0 1


 and B =




2 1 −1
0 1 1
1 0 1
3 1 2




26. A =




5 2 6 2
0 1 0 0
4 2 5 2
0 0 0 1


 and

B =




1 0 −1 −3 1 4
2 −1 −1 −8 3 9

−1 1 1 5 −2 −6
0 1 1 2 −1 −3




In Exercises 27–34, a matrix A is given. Determine (a) the
reduced row echelon form R of A and (b) an invertible matrix P
such that PA = R.

27.

[
1 −1 2

−2 1 −1

]
28.




1 1 −1
1 −1 2
1 0 1




29.




−1 0 2 1
0 1 1 −1
2 3 −1 −5


 30.

[
1 −2 1 −1 −2
2 −4 1 1 1

]
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31.

⎡
⎢⎢⎣

2 1 0 −2
0 1 −1 0

−1 −2 2 1
1 3 1 0

⎤
⎥⎥⎦

32.

⎡
⎣

1 −1 0 −1 2
−1 1 1 −2 1

5 −5 −3 4 1

⎤
⎦

33.

⎡
⎢⎢⎣

1 0 1 2 1
0 1 −1 −1 0
1 1 −2 7 4
2 1 3 −3 −1

⎤
⎥⎥⎦

34.

⎡
⎢⎢⎣

1 0 −1 −3 1 4
2 −1 −1 −8 3 9

−1 1 1 5 −2 −6
0 1 1 2 −1 −3

⎤
⎥⎥⎦

In Exercises 35–54, determine whether the state-
ments are true or false.

35. A matrix is invertible if and only if its reduced row ech-
elon form is an identity matrix.

36. For any two matrices A and B , if AB = In for some pos-
itive integer n, then A is invertible.

37. For any two n × n matrices A and B , if AB = In , then
BA = In .

38. For any two n × n matrices A and B , if AB = In , then A
is invertible and A−1 = B .

39. If an n × n matrix has rank n, then it is invertible.

40. If an n × n matrix is invertible, then it has rank n.

41. A square matrix is invertible if and only if its reduced
row echelon form has no zero row.

42. If A is an n × n matrix such that the only solution of
Ax = 0 is 0, then A is invertible.

43. An n × n matrix is invertible if and only if its columns
are linearly independent.

44. An n × n matrix is invertible if and only if its rows are
linearly independent.

45. If a square matrix has a column consisting of all zeros,
then it is not invertible.

46. If a square matrix has a row consisting of all zeros, then
it is not invertible.

47. Any invertible matrix can be written as a product of ele-
mentary matrices.

48. If A and B are invertible n × n matrices, then A + B is
invertible.

49. If A is an n × n matrix such that Ax = b is consistent
for every b in Rn , then Ax = b has a unique solution for
every b in Rn .

50. If A is an invertible n × n matrix and the reduced row
echelon form of [A B] is [In C ], then C = B−1A.

51. If the reduced row echelon form of [A In ] is [R B], then
B = A−1.

52. If the reduced row echelon form of [A In ] is [R B], then
B is an invertible matrix.

53. If the reduced row echelon form of [A In ] is [R B], then
BA equals the reduced row echelon form of A.

54. Suppose that A is an invertible matrix and u is a solution

of Ax =

⎡
⎢⎢⎣

5
6
7
8

⎤
⎥⎥⎦. The solution of Ax =

⎡
⎢⎢⎣

5
6
9
8

⎤
⎥⎥⎦ differs from u

by 2p3, where p3 is the third column of A−1.

55. Prove directly that statement (a) in the Invertible Matrix
Theorem implies statements (e) and (h).

In Exercises 56–63, a system of linear equations is given.

(a) Write each system as a matrix equation Ax = b.

(b) Show that A is invertible, and find A−1.

(c) Use A−1 to solve each system.

56.
x1 + 2x2 = 9

2x1 + 3x2 = 3
57.

−x1 − 3x2 = −6
2x1 + 5x2 = 4

58.
x1 + x2 + x3 = 4

2x1 + x2 + 4x3 = 7
3x1 + 2x2 + 6x3 = −1

59.
−x1 + x3 = −4

x1 + 2x2 − 2x3 = 3
2x1 − x2 + x3 = 1

60.
x1 + x2 + x3 = −5

2x1 + x2 + x3 = −3
3x1 + x3 = 2

61.
2x1 + 3x2 − 4x3 = −6
−x1 − x2 + 2x3 = 5

−x2 + x3 = 3

62.

x1 − x3 + x4 = 3
2x1 − x2 − x3 = −2
−x1 + x2 + x3 + x4 = 4

x2 + x3 + x4 = −1

63.

x1 − 2x2 − x3 + x4 = 4
x1 + x2 − x4 = −2

−x1 − x2 + x3 + x4 = 1
−3x1 + x2 + 2x3 = −1

64. Let A =
[

1 1
1 2

]
.

(a) Verify that A2 − 3A + I2 = O .

(b) Let B = 3I2 − A. Use B to prove that A is invertible
and B = A−1.

65. Let A =
⎡
⎣

1 −1 0
2 3 −1

−1 0 1

⎤
⎦.

(a) Verify that A3 − 5A2 + 9A − 4I3 = O .

(b) Let B = 1

4
(A2 − 5A + 9I3). Use B to prove that A is

invertible and B = A−1.

(c) Explain how B in (b) can be obtained from the
equation in (a).

66. Let A be an n × n matrix such that A2 = In . Prove that A
is invertible and A−1 = A.
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67. Let A be an n × n matrix such that Ak = In for some
positive integer k .

(a) Prove that A is invertible.

(b) Express A−1 as a power of A.

68. Prove that if A is an m × n matrix and P is an invert-
ible m × m matrix, then rank PA = rank A. Hint: Apply
Exercise 62 of Section 2.3 to PA and to P−1(PA).

69. Let B be an n × p matrix. Prove the following:

(a) For any m × n matrix R in reduced row echelon form,
rank RB ≤ rank R. Hint: Use the definition of the
reduced row echelon form.

(b) If A is any m × n matrix, then rank AB ≤ rank A.
Hint: Use Exercises 68 and 69(a).

70. Prove that if A is an m × n matrix and Q is an invertible
n × n matrix, then rank AQ = rank A. Hint: Apply the
result of Exercise 69(b) to AQ and (AQ)Q−1.

71. Prove that for any matrix A, rank AT = rank A.
Hint: Use Exercise 70, Exercise 87 of Section 2.3, and
Theorems 2.2 and 2.3.

72. Use the Invertible Matrix Theorem to prove that for any
subset S of n vectors in Rn , the set S is linearly indepen-
dent if and only if S is a generating set for Rn .

73. Let R and S be matrices with the same number of rows,
and suppose that the matrix [R S ] is in reduced row ech-
elon form. Prove that R is in reduced row echelon form.

74. Consider the system of linear equations Ax = b, where

A =



1 2 3
2 3 4
3 4 5


 and b =




20
30
40


 .

(a) Solve this matrix equation by using Gaussian elimi-
nation.

(b) On a TI-85 calculator, the value of A−1b is given as

A−1b =



8
10
4


 .

But this is not a solution of Ax = b. Why?

75. Repeat Exercise 74 with

A =



1 2 3
2 3 4
6 7 8


 , b =




5
6

10


 , and A−1b =




0
−8

3


 .

76. Repeat Exercise 74 with

A =



1 2 3
4 5 6
7 8 9


 , b =




15
18
21


 , A−1b =




−9
8
4


 .

77. In Exercise 19(c) of Section 1.5, how much is required
in additional inputs from each sector to increase the net
production of oil by $3 million?

78. In Exercise 20(c) of Section 1.5, how much is required in
additional inputs from each sector to increase net produc-
tion in the nongovernment sector by $1 million?

79. In Exercise 21(b) of Section 1.5, how much is required
in additional inputs from each sector to increase the net
production of services by $40 million?

80. In Exercise 22(b) of Section 1.5, how much is required
in additional inputs from each sector to increase the net
production of manufacturing by $24 million?

81. Suppose that the input–output matrix C for an econ-
omy is such that In − C is invertible and every entry of
(In − C )−1 is positive. If the net production of one partic-
ular sector of the economy must be increased, how does
this affect the gross production of the economy?

82. Use matrix transposes to modify the algorithm for com-
puting A−1B to devise an algorithm for computing AB−1,
and justify your method.

83. Let A be an m × n matrix with reduced row echelon
form R.

(a) Prove that if rank A = m, then there is a unique
m × m matrix P such that PA = R. Furthermore, P
is invertible. Hint: For each j , let uj denote the j th
pivot column of A. Prove that the m × m matrix
U = [u1 u1 . . . um ] is invertible. Now let PA = R,
and show that P = U −1.

(b) Prove that if rank A < m, then there is more than one
invertible m × m matrix P such that PA = R. Hint:
There is an elementary m × m matrix E , distinct from
Im , such that ER = R.

Let A and B be n × n matrices. We say that A is similar to B if
B = P−1AP for some invertible matrix P. Exercises 84–88 are
concerned with this relation.

84. Let A, B , and C be n × n matrices. Prove the following
statements:

(a) A is similar to A.

(b) If A is similar to B , then B is similar to A.

(c) If A is similar to B and B is similar to C , then A is
similar to C .

85. Let A be an n × n matrix.

(a) Prove that if A is similar to In , then A = In .

(b) Prove that if A is similar to O , the n × n zero matrix,
then A = O .

(c) Suppose that B = cIn for some scalar c. (The matrix
B is called a scalar matrix.) What can you say about
A if A is similar to B?

86. Suppose that A and B are n × n matrices such that A
is similar to B . Prove that if A is invertible, then B is
invertible, and A−1 is similar to B−1.

87. Suppose that A and B are n × n matrices such that A is
similar to B . Prove that AT is similar to BT .

88. Suppose that A and B are n × n matrices such that A
is similar to B . Prove that rank A = rank B . Hint: Use
Exercises 68 and 70.
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In Exercises 89–92, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

Exercises 89–91 refer to the matrix

A =




2 5 6 1
3 8 9 2
2 6 5 2
3 9 7 4


 .

89. Show that A is invertible by computing its reduced row
echelon form and using Theorem 2.5.

90. Show that A is invertible by solving the system Ax = 0
and using the Invertible Matrix Theorem.

91. Show that A is invertible by computing its rank and using
the Invertible Matrix Theorem.

92. Show that the matrix

P =




1 2 −1 3
2 3 2 8
2 4 −1 4
3 6 −2 8




is invertible. Illustrate Exercise 68 by creating several
random 4 × 4 matrices A and showing that rank PA =
rank A.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. The reduced row echelon form of A is




1 0 −1
0 1 −1
0 0 0


.

Since this matrix is not I3, Theorem 2.5 implies that A is
not invertible.

The reduced row echelon form of B is I3, so as
Theorem 2.5 implies, B is invertible. To compute B−1,
we find the reduced row echelon form of [B I3].




1 1 0 1 0 0
3 4 1 0 1 0

−1 4 4 0 0 1




−3r1 + r2 → r2
r1 + r3 → r3�




1 1 0 1 0 0
0 1 1 −3 1 0
0 5 4 1 0 1




−5r2+r3→r3�




1 1 0 1 0 0
0 1 1 −3 1 0
0 0 −1 16 −5 1




−r3→r3�




1 1 0 1 0 0
0 1 1 −3 1 0
0 0 1 −16 5 −1




−r3+r2→r2�




1 1 0 1 0 0
0 1 0 13 −4 1
0 0 1 −16 5 −1




−r2+r1→r1�




1 0 0 −12 4 −1
0 1 0 13 −4 1
0 0 1 −16 5 −1




Thus B−1 =



−12 4 −1
13 −4 1

−16 5 −1


.

2. (a) The matrix form of the given system of linear
equations is




1 −1 2
1 2 0
0 −1 1







x1

x2

x3


 =




2
3

−1


 .

(b) Because the reduced row echelon of the 3 × 3 matrix
in (a) is I3, the matrix is invertible.

(c) The solution of Ax = b is

x = A−1b =



2 −1 −4
−1 1 2
−1 1 3







2
3

−1




=



5
−1
−2


 .

Thus the unique solution of the given system of linear
equations is x1 = 5, x2 = −1, and x3 = −2.

3. (a) First observe that x1 = A−1b. If x2 is the solution of
Ax = b + c, then

x2 = A−1(b + c) = A−1b + A−1c = x1 + A−1c.

(b) In the context of (a), let A = I3 − C , where C is
the input–output matrix in Example 2 of Section 1.5
and b = d, the demand vector used in that example.
The increase in the demands is given by the vector

c =



5
4
2


, and therefore the increase in the gross pro-

duction is given by

(x1 + A−1c) − x1

=



1.3 0.475 0.25
0.6 1.950 0.50
0.5 0.375 1.25







5
4
2


 =




8.9
11.8
6.5


 .
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2.5∗ PARTITIONED MATRICES AND BLOCK
MULTIPLICATION

Suppose that we wish to compute A3, where

A =




1 0 0 0
0 1 0 0
6 8 5 0

−7 9 0 5


 .

This is a laborious process because A is a 4 × 4 matrix. However, there is another
approach to matrix multiplication that simplifies this calculation. We start by writing
A as an array of 2 × 2 submatrices.

A =




1 0 0 0
0 1 0 0
6 8 5 0

−7 9 0 5




We can then write A more compactly as

A =
[
I2 O
B 5I2

]
,

where

I2 =
[
1 0
0 1

]
and B =

[
6 8

−7 9

]
.

Next, we compute A2 by the row-column rule, treating I2, O , B , and 5I2 as if
they were scalar entries of A.

A2 =
[
I2 O
B 5I2

] [
I2 O
B 5I2

]
=

[
I2I2 + OB I2O + O(5I2)

BI2 + (5I2)B BO + (5I2)(5I2)

]
=

[
I2 O
6B 52I2

]
.

Finally,

A3 = A2A =
[

I2 O
6B 52I2

] [
I2 O
B 5I2

]

=
[

I2I2 + OB I2O + O(5I2)
(6B )I2 + (52I2)B (6B )O + (52I2)(5I2)

]

=
[

I2 O
31B 53I2

]
.

This method for computing A3 requires only that we multiply the 2 × 2 matrix B by
the scalar 31 and I2 by 53.

We can break up any matrix by drawing horizontal and vertical lines within the
matrix, which divides the matrix into an array of submatrices called blocks. The
resulting array is called a partition of the matrix, and the process of forming these
blocks is called partitioning.

∗ This section can be omitted without loss of continuity.

146



2.5 Partitioned Matrices and Block Multiplication 147

While there are many ways to partition any given matrix, there is often a natural
partition that simplifies matrix multiplication. For example, the matrix

A =



2 0 1 −1
0 2 2 3
1 3 0 0




can be written as

A =



2 0 1 −1
0 2 2 3
1 3 0 0


 .

The horizontal and vertical lines partition A into an array of four blocks. The first row
of the partition consists of the 2 × 2 matrices

2I2 =
[
2 0
0 2

]
and

[
1 −1
2 3

]
,

and the second row consists of the 1 × 2 matrices [1 3] and O = [0 0]. We can also
partition A as




2 0 1 −1
0 2 2 3
1 3 0 0


 .

In this case, there is only one row and two columns. The blocks of this row are the
3 × 2 matrices




2 0
0 2
1 3


 and




1 −1
2 3
0 0


 .

The first partition of A contains the submatrices 2I2 and O , which are easily multiplied
by other matrices, so this partition is usually more desirable.

As shown in the preceding example, partitioning matrices appropriately can sim-
plify matrix multiplication. Two partitioned matrices can be multiplied by treating the
blocks as if they were scalars, provided that the products of the individual blocks are
defined.

Example 1 Let

A =



1 3 4 2
0 5 −1 6
1 0 3 −1


 and B =




1 0 3
1 2 0
2 −1 2
0 3 1


 .

We can use the given partition to find the entries in the upper left block of AB by
computing

[
1 3
0 5

] [
1 0
1 2

]
+

[
4 2

−1 6

] [
2 −1
0 3

]
=

[
4 6
5 10

]
+

[
8 2

−2 19

]
=

[
12 8
3 29

]
.
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Similarly, we can find the upper right block of AB by computing
[
1 3
0 5

] [
3
0

]
+

[
4 2

−1 6

] [
2
1

]
=

[
3
0

]
+

[
10
4

]
=

[
13
4

]
.

We obtain the lower left block of AB by computing

[1 0]

[
1 0
1 2

]
+ [3 − 1]

[
2 −1
0 3

]
= [1 0] + [6 − 6] = [7 − 6].

Finally, we obtain the lower right block of AB by computing

[1 0]

[
3
0

]
+ [3 − 1]

[
2
1

]
= [3] + [5] = [8].

Putting these blocks together, we have

AB =



12 8 13
3 29 4
7 −6 8


 .

In general, we have the following rule:

Block Multiplication

Suppose two matrices A and B are partitioned into blocks so that the number of
blocks in each row of A is the same as the number of blocks in each column of B .
Then the matrices can be multiplied according to the usual rules for matrix mul-
tiplication, treating the blocks as if they were scalars, provided that the individual
products are defined.

TWO ADDITIONAL METHODS FOR COMPUTING A MATRIX PRODUCT
Given two matrices A and B such that the product AB is defined, we have seen how
to compute the product by using blocks obtained from partitions of A and B . In this
subsection, we look at two specific ways of partitioning A and B that lead to two new
methods of computing their product.

By rows Given an m × n matrix A and an n × p matrix B , we partition A into an
m × 1 array of row vectors a′

1, a
′
2, . . . , a

′
m and regard B as a single block in a 1 × 1

array. In this case,

AB =




a′
1

a′
2
...

a′
m


B =




a′
1B

a′
2B
...

a′
mB


 . (7)

Thus the rows of AB are the products of the rows of A with B . More specifically, the
i th row of AB is the matrix product of the i th row of A with B .

Example 2 Let

A =
[

1 2 −1
−1 1 3

]
and B =




−2 1 0
1 −3 4
1 −1 −1


 .
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Since

a′
1B = [

1 2 −1
]
⎡
⎣

−2 1 0
1 −3 4
1 −1 −1

⎤
⎦ = [−1 −4 9

]

and

a′
2B = [−1 1 3

]
⎡
⎣

−2 1 0
1 −3 4
1 −1 −1

⎤
⎦ = [

6 −7 1
]

,

we have AB =
[−1 −4 9

6 −7 1

]
.

It is interesting to compare the method of computing a product by rows with the
definition of a matrix product, which can be thought of as the method of computing
a product by columns.

By outer products Another method to compute the matrix product AB is to partition
A into columns and B into rows. Suppose that a1, a2, . . . , an are the columns of an
m × n matrix A, and b′

1, b′
2, . . . , b′

n are the rows of an n × p matrix B . Then block
multiplication gives

AB = [a1 a2 . . . an ]

⎡
⎢⎢⎢⎣

b′
1

b′
2
...

b′
n

⎤
⎥⎥⎥⎦ = a1b′

1 + a2b′
2 + · · · + anb′

n . (8)

Thus AB is the sum of matrix products of each column of A with the corresponding
row of B .

The terms ai b′
i in equation (8) are matrix products of two vectors, namely, column

i of A and row i of B . Such products have an especially simple form. In order to
present this result in a more standard notation, we consider the matrix product of v
and wT , where

v =

⎡
⎢⎢⎢⎣

v1

v2
...

vm

⎤
⎥⎥⎥⎦ and w =

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦ .

It follows from equation (7) that

vwT =

⎡
⎢⎢⎢⎣

v1wT

v2wT

...

vmwT

⎤
⎥⎥⎥⎦ .

Thus the rows of the m × n matrix vwT are all multiples of wT . If follows (see
Exercise 52) that the rank of the matrix vwT is 1 if both v and w are nonzero vectors.

Products of the form vwT , where v is in Rm (regarded as an m × 1 matrix) and w
is in Rn (regarded as an n × 1 matrix), are called outer products. In this terminology,
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equation (8) states that the product of an m × n matrix A and an n × p matrix B is
the sum of n matrices of rank at most 1, namely, the outer products of the columns
of A with the corresponding rows of B .

In the special case that A is a 1 × n matrix, so that A = [a1 a2 . . . an ] is a row
vector, the product in equation (8) is the linear combination

AB = a1b′
1 + a2b′

2 + · · · + anb′
n

of the rows of B with the corresponding entries of A as the coefficients. For example,

[2 3]

[−1 4
5 0

]
= 2[−1 4] + 3[5 0] = [13 8].

Example 3 Use outer products to express the product AB in Example 2 as a sum of matrices of
rank 1.

Solution First form the outer products in equation (8) to obtain three matrices of
rank 1, [

1
−1

]
[−2 1 0] =

[−2 1 0
2 −1 0

]
,

[
2
1

]
[1 − 3 4] =

[
2 −6 8
1 −3 4

]
,

and [−1
3

]
[1 − 1 − 1] =

[−1 1 1
3 −3 −3

]
.

Then
[−2 1 0

2 −1 0

]
+

[
2 −6 8
1 −3 4

]
+

[−1 1 1
3 −3 −3

]
=

[−1 −4 9
6 −7 1

]
= AB ,

as guaranteed by equation (8).

We summarize the two new methods for computing the matrix product AB .

Two Methods of Computing a Matrix Product AB

We assume here that A is an m × n matrix with rows a′
1, a

′
2, . . . , a

′
m and B is an

n × p matrix with rows b′
1, b

′
2, . . . , b

′
n .

1. By rows The i th row of AB is obtained by multiplying the i th row of A by
B —that is, a′

i B .

2. By outer products The matrix AB is a sum of matrix products of each column
of A with the corresponding row of B . Symbolically,

AB = a1b′
1 + a2b′

2 + · · · + anb′
n .
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EXERCISES

In Exercises 1–12, compute the product of each partitioned
matrix using block multiplication.

1. [−1 3 1]




1 2
−1 1

0 1




2.

[
1 −1 0
0 1 2

] 


1
3
2




3.

[
1 −1 0
0 1 2

]


1
3
2




4.

[
1 −1 0
0 1 2

]


1
3
2




5.




2 0
3 1

−1 5
1 2




[ −1 2 3 0
2 2 −1 2

]

6.




2 0
3 1

−1 5
1 2




[ −1 2 3 0
2 2 −1 2

]

7.




2 0
3 1

−1 5
1 2




[ −1 2 3 0
2 2 −1 2

]

8.




0 0
0 0
0 0
2 3




[
0 0 0 6
0 0 0 −1

]

9.




3 0
0 3
2 0
0 2




[
1 2
3 4

]

10.

[
1 2 2 −2
1 1 −2 2

]



1 0
0 1
1 1
1 1




11.




1 1 2 1
1 0 0 0
0 1 0 0







1 0 1 −1
0 1 −1 1
0 0 1 0
0 0 0 1




12.

[
A20◦
A30◦

] [
A40◦ A50◦

]

In Exercises 13–20, compute the indicated row of the given prod-
uct without computing the entire matrix.

A =



1 2 3
2 −1 4

−3 −2 0


 , B =




−1 0
4 1
3 −2


 ,

C =
[
2 1 −1
4 3 −2

]

13. row 1 of AB 14. row 1 of CA
15. row 2 of CA 16. row 2 of BC
17. row 3 of BC 18. row 2 of BT A
19. row 2 of A2 20. row 3 of A2

In Exercises 21–28, use the matrices A, B, and C from
Exercises 13–20.

21. Use outer products to represent AB as the sum of 3 matri-
ces of rank 1.

22. Use outer products to represent BC as the sum of 2 matri-
ces of rank 1.

23. Use outer products to represent CB as the sum of 3 matri-
ces of rank 1.

24. Use outer products to represent CA as the sum of 3 matri-
ces of rank 1.

25. Use outer products to represent BT A as the sum of 3
matrices of rank 1.

26. Use outer products to represent AC T as the sum of 3
matrices of rank 1.

27. Use outer products to represent AT B as the sum of 3
matrices of rank 1.

28. Use outer products to represent CAT as the sum of 3 matri-
ces of rank 1.

In Exercises 29–34, determine whether the state-
ments are true or false.

29. The definition of the matrix product AB on page 97 can
be regarded as a special case of block multiplication.

30. Let A and B be matrices such that AB is defined, and let
A and B be partitioned into blocks so that the number of
blocks in each row of A is the same as the number of
blocks in each column of B . Then the matrices can be
multiplied according to the usual rule for matrix multipli-
cation by treating the blocks as if they were scalars.

31. The outer product vwT is defined only if v and w are both
in Rn .

32. For any vectors v and w in Rm and Rn , respectively, the
outer product vwT is an m × n matrix.

33. For any vectors v and w in Rm and Rn , respectively, the
outer product vwT is an m × n matrix with rank 1.

34. The product of an m × n nonzero matrix and an n × p
nonzero matrix can be written as the sum of at most n
matrices of rank 1.
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In Exercises 35–40, assume that A, B, C , and D are n × n matri-
ces, O is the n × n zero matrix, and, in Exercises 35–36, A is
invertible. Use block multiplication to find each product.

35. [A−1 In ]

[
A
In

]
36.

[
A−1

In

]
[A In ]

37.

[
A O
O B

] [
O C
D O

]
38.

[
In O
O C

] [
A B
O In

]

39.

[
A B
C D

]T [
A B
C D

]
40.

[
In A
In B

] [
A B
In In

]

41. Show that if A, B , C , and D are n × n matrices such that
A is invertible,

[
In O

CA−1 In

] [
A O
O D − CA−1B

] [
In A−1B
O In

]

=
[
A B
C D

]
.

In this context, the matrix D − CA−1B is called the Schur
complement of A.

In Exercises 42–47, assume that A, B, C , and D are n × n matri-
ces, O is the n × n zero matrix, and A and D are invertible. Use
block multiplication to verify each equation.

42.

[
A O
O D

]−1

=
[
A−1 O
O D−1

]

43.

[
O A
D O

]−1

=
[

O D−1

A−1 O

]

44.

[
A B
O D−1

]−1

=
[
A−1 −A−1BD

O D

]

45.

[
C A
D O

]−1

=
[

O D−1

A−1 −A−1CD−1

]

46.

[
O A
D C

]−1

=
[−D−1CA−1 D−1

A−1 O

]

47.

[
In B
C In

]−1

=
[

P −PB
−CP In + CPB

]
, where In − BC is

invertible and P = (In − BC )−1.

48. Let A and B be n × n matrices and O be the n × n zero

matrix. Use block multiplication to compute

[
A O
O B

]k

for any positive integer k .

49. Let A and B be n × n matrices and O be the n × n zero

matrix. Use block multiplication to compute

[
A B
O O

]k

for any positive integer k .

50. Let A and B be invertible n × n matrices. Prove that[
A B
B A

]
is invertible if and only if A − BA−1B is

invertible.

51. Prove that if A and B are invertible n × n matrices, then[
A O
In B

]
is invertible. Find the inverse in terms of A−1,

B−1, and O .

52. Suppose a and b are nonzero vectors in Rm and Rn ,
respectively. Prove that the outer product abT has rank 1.

In Exercise 53, use either a calculator with matrix capabilities
or computer software such as MATLAB to solve each problem.

53. Suppose that A is a 4 × 4 matrix in the block form,

A =
[
B C
O D

]
,

where the blocks are all 2 × 2 matrices.

(a) Use a random matrix for A to illustrate that A2 =[
B2 ∗
O D2

]
, where * represents some 2 × 2 matrix.

(b) Use a random matrix for A to illustrate that A3 =[
B3 ∗
O D3

]
, where * represents some 2 × 2 matrix.

(c) Make a conjecture about the block form of Ak , where
k is a positive integer.

(d) Prove your conjecture for k = 3.

2.6∗ THE LU DECOMPOSITION OF A MATRIX

In many applications, it is necessary to solve multiple systems of linear equations with
the same coefficient matrix. In these situations, using Gaussian elimination on each
system involves a great deal of duplication of effort since the augmented matrices for
these systems are almost identical. In this section, we examine a method that avoids
this duplication.

For now, suppose that an m × n matrix A can be transformed into a matrix U in
row echelon form without the use of row interchanges. Then U can be written as

U = EkEk−1 · · · E1A,

∗ This section can be omitted without loss of continuity.
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where E1, . . . , Ek−1, Ek are the elementary matrices corresponding to the elementary
row operations that transform A into U . Solving this equation for A, we obtain

A = (EkEk−1 · · ·E1)
−1U = E−1

1 E−1
2 · · ·E−1

k U = LU ,

where

L = E−1
1 E−1

2 · · ·E−1
k . (9)

Observe that U is an m × n matrix and L, which is a product of invertible m × m
matrices, is an invertible m × m matrix. The matrices L and U have special forms,
which we now describe.

Since each elementary row operation used in the process of transforming A into U
is the result of adding a multiple of a row to a lower row of a matrix, the corresponding
elementary matrix Ep and its inverse E−1

p are of the forms

Ep =
row j →

row i →

↑
column j




1 · · · 0
. . .

...
... 1

...
. . .

c
. . .

0 1




and

E−1
p =

row j →

row i →

↑
column j




1 · · · 0
. . .

...
... 1

...
. . .

−c
. . .

0 1




,

where c is the multiple and j< i are the rows. Notice that Ep and E−1
p can be obtained

from Im by changing the (i , j )-entry from 0 to c, and from 0 to −c, respectively.
Since U is in row echelon form, the entries of U below and to the left of the

diagonal entries are all zeros. Any matrix with this description is called an upper
triangular matrix. Notice that the entries above and to the right of the diagonal
entries of each E−1

p are zeros. Any matrix with this description is called a lower
triangular matrix. Furthermore, the diagonal entries of each E−1

p are ones. A lower
triangular matrix whose diagonal entries are all ones is called a unit lower triangular
matrix. Since the product of unit lower triangular matrices is a unit lower triangular
matrix (see Exercise 44), L is also a unit lower triangular matrix. Thus we can factor
A = LU into the product of a unit lower triangular matrix L and an upper triangular
matrix U .
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Example 1 Let

A =



1 0 0
0 2 0
3 4 3


 , B =

[
1 0
4 1

]
, and

C =



2 0 1 −1
0 0 3 4
0 0 3 0


 .

Both A and B are lower triangular matrices because the entries above and to the right
of the diagonal entries are zeros. Both diagonal entries of B are ones, and hence B is
a unit lower triangular matrix, whereas A is not. The entries below and to the left of
the diagonal entries of C are zeros, and hence C is an upper triangular matrix.

Definition For any matrix A, a factorization A = LU , where L is a unit lower tri-
angular matrix and U is an upper triangular matrix, is called an LU decomposition
of A.

If a matrix has an LU decomposition and is also invertible, then the LU decom-
position is unique. (See Exercise 46.)

Not every matrix can be transformed into a matrix in row echelon form without

the use of row interchanges. For example, to put the matrix

[
0 1
1 0

]
into row echelon

form, you must interchange its rows. If a matrix cannot be transformed into a matrix
in row echelon form without the use of row interchanges, then the matrix has no LU
decomposition.

COMPUTING THE LU DECOMPOSITION
For the present, we consider a matrix A that has an LU decomposition. We describe
a method for finding the matrices L and U , and show how to use them to solve a
system of linear equations Ax = b. Given the LU decomposition of A, the number of
steps required to solve several systems of linear equations with coefficient matrix A is
significantly less than the total number of steps required to use Gaussian elimination
on each system separately.

We begin the process of finding an LU decomposition of A by using elemen-
tary row operations to transform A into an upper triangular matrix U . Then we use
equation (9) to compute L from Im by applying the elementary row operations corre-
sponding to the E−1

p ’s, starting with the last operation and working our way back to
the first. We illustrate this process in the following example:

Example 2 Find the LU decomposition of the matrix

A =



1 −1 2
3 −1 7
2 −4 5


 .

Solution First, we use Gaussian elimination to transform A into an upper triangular
matrix U in row echelon form without the use of row interchanges. This process
consists of three elementary row operations performed in succession: adding −3 times
row 1 to row 2 of A, adding −2 times row 1 to row 3 of the resulting matrix, and
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adding 1 times row 2 to row 3 of the previous matrix to obtain the final result, U .
The details are as follows:

A =



1 −1 2
3 −1 7
2 −4 5


 −3r1+r2→r2�




1 −1 2
0 2 1
2 −4 5


 −2r1+r3→r3�




1 −1 2
0 2 1
0 −2 1




r2+r3→r3�




1 −1 2
0 2 1
0 0 2


 = U

The reverse of the last operation, adding −1 times row 2 to row 3 of a matrix,
is the first operation used in the transformation of I3 into L. We continue to apply
the reverse row operations in the opposite order to complete the transformation of I3
into L.

I3 =



1 0 0
0 1 0
0 0 1


 −r2+r3→r3�




1 0 0
0 1 0
0 −1 1


 2r1+r3→r3�




1 0 0
0 1 0
2 −1 1




3r1+r2→r2�




1 0 0
3 1 0
2 −1 1


 = L

We can obtain the entries of L below the diagonal directly from the row operations
used to transform A into U . In particular, the (i , j )-entry of L is −c, where c times
row j is added to row i in one of the elementary row operations used to transform
A into U . For example, in the first of the three elementary row operations used to
transform A into U , −3 times row 1 is added to row 2. Thus the (2, 1)-entry of L is 3.
Since −2 times row 1 is added to row 3 in the second operation, 2 is the (3, 1)-entry
of L. Finally, 1 times row 2 is added to row 3 to complete the transformation of A to
U , and hence −1 is the (3, 2)-entry of L. These entries below the diagonal of L are
called multipliers.

We summarize the process of obtaining the LU decomposition of a matrix.

The LU Decomposition of an m × n Matrix A

(a) Use steps 1, 3, and 4 of Gaussian elimination (as described in Section 1.4)
to transform A into a matrix U in row echelon form by means of elementary
row operations. If this is impossible, then A has no LU decomposition.

(b) While performing (a), create an m × m matrix L as follows:

(i) Each diagonal entry of L is 1.

(ii) If some elementary row operation in (a) adds c times row j of a
matrix to row i , then lij = −c; otherwise, lij = 0.

Example 3 Find an LU decomposition of the matrix

A =



2 −2 2 4
−2 4 2 −1

6 −2 4 14


 .
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Solution First, we transform A to U .

A =



2 −2 2 4
−2 4 2 −1

6 −2 4 14


 r1+r2→r2�




2 −2 2 4
0 2 4 3
6 −2 4 14




(−3)r1+r3→r3�




2 −2 2 4
0 2 4 3
0 4 −2 2


 (−2)r2+r3→r3�




2 −2 2 4
0 2 4 3
0 0 −10 −4


 = U

We are now prepared to obtain L. Of course, the diagonal entries of L are 1s, and
the entries above the diagonal are 0s. The entries below the diagonal, the multipliers,
can be obtained directly from the labels above the arrows in the transformation of A
into U . A label of the form crj + ri → ri indicates that the (i , j )-entry of L is −c. It
follows that

L =



1 0 0
−1 1 0

3 2 1


 .

Practice Problem 1 � Find an LU decomposition of

A =



1 −1 −2 −8
−2 1 2 9

3 0 2 1


 .

�

USING AN LU DECOMPOSITION TO SOLVE A SYSTEM
OF LINEAR EQUATIONS
Given a system of linear equations of the form Ax = b, where A has an LU decom-
position A = LU , we can take advantage of this decomposition to reduce the number
of steps required to solve the system. Since

Ax = LU x = L(U x) = b,

we can set
U x = y, and hence Ly = b.

The second system of equations is easily solved for y because L is a unit lower
triangular matrix. Once y is obtained, the first system can then be easily solved for x
because U is upper triangular. (See Figure 2.8.)

To illustrate this procedure, consider the system

x1 − x2 + 2x3 = 2
3x1 − x2 + 7x3 = 10
2x1 − 4x2 + 5x3 = 4

with coefficient matrix

A =



1 −1 2
3 −1 7
2 −4 5


 .

The LU decomposition of A, which we obtained in Example 2, is given by

L =



1 0 0
3 1 0
2 −1 1


 and U =




1 −1 2
0 2 1
0 0 2


 .
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Ax � Ly � b

Ux � y

multiply
by U

x

multiply
by L

multiply
by A � LU

Rn

Rm

Rm

Figure 2.8 Solving a system of linear equations using an LU decomposition

The system Ax = b can be rewritten as LU x = b. Set y = U x so that the system
becomes Ly = b, where

y =



y1

y2

y3


 and b =




2
10
4


 .

Thus we have the system

y1 = 2
3y1 + y2 = 10
2y1 − y2 + y3 = 4.

The first equation gives us the value of y1. Substituting this into the second equation,
we solve for y2 to obtain y2 = 10 − 3(2) = 4. Substituting the values for y1 and y2

into the third equation, we obtain y3 = 4 − 2(2) + 4 = 4. Thus

y =



2
4
4


 .

We now solve the system U x = y, which we can write as

x1 − x2 + 2x3 = 2
2x2 + x3 = 4

2x3 = 4.

Solving the third equation, we obtain x3 = 2. Substituting this into the second equation
and solving for x2, we obtain x2 = (4 − 2)/2 = 1. Finally, substituting the values for
x3 and x2 into the first equation and solving for x1 gives x1 = 2 + 1 − 2(2) = −1.
Thus

x =



x1

x2

x3


 =




−1
1
2


 .

This method of solving U x = y is called back substitution.
If the coefficient matrix of a system of linear equations is not invertible—for

example, if the matrix is not square—we can still solve the system by using an LU
decomposition. In this case, the process of back substitution is complicated by the
presence of free variables. The following example illustrates this situation:
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Example 4 Use LU decomposition to solve the system

2x1 − 2x2 + 2x3 + 4x4 = 6
−2x1 + 4x2 + 2x3 − x4 = 4

6x1 − 2x2 + 4x3 + 14x4 = 20.

Solution The coefficient matrix of this system is

A =



2 −2 2 4
−2 4 2 −1

6 −2 4 14


 .

An LU decomposition of A was obtained in Example 3; it is given by

L =



1 0 0
−1 1 0

3 2 1


 and U =




2 −2 2 4
0 2 4 3
0 0 −10 −4


 .

Solve the system Ly = b, where

y =



y1

y2

y3


 and b =




6
4

20


 .

As before, the unique solution of this system can be shown to be

y =



6
10

−18


 .

Next, we use back substitution to solve the system U x = y, which we can write as

2x1 − 2x2 + 2x3 + 4x4 = 6
2x2 + 4x3 + 3x4 = 10

−10x3 − 4x4 = −18.

We begin with the last equation. In this equation, we solve for the first variable x3,
treating x4 as a free variable. This yields

x3 = 9

5
− 2

5
x4.

Working our way upwards, we substitute this solution into the second equation and
solve for the first variable in this equation, x2.

2x2 = 10 − 4x3 − 3x4 = 10 − 4

(
9

5
− 2

5
x4

)
− 3x4 = 14

5
− 7

5
x4

Hence

x2 = 7

5
− 7

10
x4.
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Finally, we solve for x1 in the first equation, substituting the expressions we have
already obtained in the previous equations. In this case, there are no new variables
other than x1, and hence no additional free variables. Thus we have

2x1 = 6 + 2x2 − 2x3 − 4x4

= 6 + 2

(
7

5
− 7

10
x4

)
− 2

(
9

5
− 2

5
x4

)
− 4x4

= 26

5
− 23

5
x4,

and hence

x1 = 13

5
− 23

10
x4.

Practice Problem 2 � Use your answer to Practice Problem 1 to solve Ax = b, where A is the matrix in
Practice Problem 1 and

b =



−3
5

−8


 .

�

WHAT IF A MATRIX HAS NO LU DECOMPOSITION?
We have seen that not every matrix has an LU decomposition. Suppose that A is such
a matrix. Then, by means of Gaussian elimination, A can be transformed into an upper
triangular matrix U by elementary row operations that include row interchanges. It
can be shown that if these row interchanges are applied to A initially, then the resulting
matrix C can be transformed into U by means of elementary row operations that do not
include row interchanges. Consequently, there is a unit lower triangular matrix L such
that C = LU . The matrix C has the same rows as A, but in a different sequence. Thus
there is a sequence of row interchanges that transforms A into C . Performing this same
sequence of row interchanges on the appropriate identity matrix produces a matrix
P such that C = PA. Any matrix P obtained by permuting the rows of an identity
matrix is called a permutation matrix. So if A does not have an LU decomposition,
there is a permutation matrix P such that PA has an LU decomposition.

In the next example, we illustrate how to find such a permutation matrix for a
matrix having no LU decomposition.

Example 5 Let

A =




0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5


 .

Find a permutation matrix P and an upper triangular matrix U such that PA = LU is
an LU decomposition of PA for some unit lower triangular matrix L.

159



160 CHAPTER 2 Matrices and Linear Transformations

Solution We begin by transforming A into a matrix U in row echelon form, keeping
track of the elementary row operations, as in Example 2.

A =




0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5




r1↔r3 �




1 2 2 1
0 2 2 2
0 2 2 4
2 6 7 5




−2r1+r4→r4�




1 2 2 1
0 2 2 2
0 2 2 4
0 2 3 3




−r2+r3→r3�




1 2 2 1
0 2 2 2
0 0 0 2
0 2 3 3




−r2+r4→r4�




1 2 2 1
0 2 2 2
0 0 0 2
0 0 1 1




r3↔r4 �




1 2 2 1
0 2 2 2
0 0 1 1
0 0 0 2


 = U

In this computation, two row interchanges were performed. If we apply these directly
to A, we obtain

A =




0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5




r1↔r3 �




1 2 2 1
0 2 2 2
0 2 2 4
2 6 7 5




r3↔r4 �




1 2 2 1
0 2 2 2
2 6 7 5
0 2 2 4


 = C .

To find P , simply perform the preceding row interchanges on I4 in the same order:

I4
r1↔r3 �




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




r3↔r4 �




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 = P

Then C = PA has an LU decomposition.

To complete the process of obtaining an LU decomposition for the matrix PA
given in Example 5, we could apply the methods described earlier in this section to
PA. However, it is more efficient to take advantage of the work we have already done.
The next example illustrates how.

Example 6 For the matrices A, P , and U in Example 5, find a unit lower triangular matrix L such
that PA = LU .

Solution The method used here is similar to the method in Example 3, but with one
complication. If, in the process of transforming A to U , two rows are interchanged,
then the multipliers that have already been computed are switched in the same way.
So, for example, in the process of transforming A into U in Example 5, we added
−2 times row 1 to row 4. This gave us a multiplier 2 in the (4, 1)-position. Then
several steps later, we interchanged rows 3 and 4, which moved this multiplier to the
(3, 1)-position. Since there are no more row interchanges, it follows that l31 = 2.
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A simple way of keeping track of these row interchanges is to temporarily place
multipliers, as they are created, in the appropriate positions of the intermediate matri-
ces. These replace the actual entries, which, of course, are zeros. Then, when two
rows are interchanged, the multipliers in these rows are also interchanged.

So as not to confuse these multipliers with the actual zero entries, we place each
multiplier in parentheses. Thus, enhancing the process used in Example 5, we obtain
the following sequence of matrices:

A =




0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5




r1↔r3 �




1 2 2 1
0 2 2 2
0 2 2 4
2 6 7 5




−2r1+r4→r4�




1 2 2 1
0 2 2 2
0 2 2 4

(2) 2 3 3




−r2+r3→r3�




1 2 2 1
0 2 2 2
0 (1) 0 2

(2) 2 3 3




−r2+r4→r4�




1 2 2 1
0 2 2 2
0 (1) 0 2

(2) (1) 1 1




r3↔r4 �




1 2 2 1
0 2 2 2

(2) (1) 1 1
0 (1) 0 2




Notice that if the entries in parentheses are replaced by zeros in the last matrix of
the previous sequence, we obtain U . Finally, we obtain L by using the entries in
parentheses in the last matrix of the sequence. The other nondiagonal entries of L are
zeros. Thus

L =




1 0 0 0
0 1 0 0
2 1 1 0
0 1 0 1


 and U =




1 2 2 1
0 2 2 2
0 0 1 1
0 0 0 2


 .

It is a simple matter to verify that LU = PA.

Practice Problem 3 � Find an LU decomposition of PA, where P is a permutation matrix and

A =




0 3 −6 1
−2 −2 2 6

1 1 −1 −1
2 −1 2 −2


 .

�

We now use these results to solve a system of linear equations.

Example 7 Use the results of Example 6 to solve the following system of linear equations:

2x2 + 2x3 + 4x4 = −6
2x2 + 2x3 + 2x4 = −2

x1 + 2x2 + 2x3 + x4 = 3
2x1 + 6x2 + 7x3 + 5x4 = 2
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Solution This system can be written as the matrix equation Ax = b, where

A =




0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5


 and b =




−6
−2

3
2


 .

In Example 6, we found a permutation matrix P such that PA has an LU decomposi-
tion. Multiplying both sides of the equation Ax = b on the left by P , we obtain the
equivalent equation PAx = Pb. Then PA = LU for the matrices L and U obtained
in Example 6. Setting b′ = Pb, we have reduced the problem to solving the system
LU = b′, where

b′ = Pb =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0







−6
−2

3
2


 =




3
−2

2
−6


 .

As in Example 4, we set y = U x and solve the system Ly = b′, which has the form

y1 = 3
y2 = −2

2y1 + y2 + y3 = 2
y2 + y4 = −6.

We solve this system to obtain

y =




y1

y2

y3

y4


 =




3
−2
−2
−4


 .

Finally, to obtain the solution of the original system, we solve U x = y, which has the
form

x1 + 2x2 + 2x3 + x4 = 3
2x2 + 2x3 + 2x4 = −2

x3 + x4 = −2
2x4 = −4.

Using back substitution, we solve this system to obtain the desired solution,

x =




x1

x2

x3

x4


 =




3
1
0

−2


 .

Practice Problem 4 � Use your answer to Practice Problem 3 to solve Ax = b, where A is the matrix in
Practice Problem 3 and

b =




−13
−6

1
8


 .

�
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THE RELATIVE EFFICIENCIES OF METHODS FOR SOLVING SYSTEMS
OF LINEAR EQUATIONS
Let Ax = b denote a system of n linear equations in n variables. Suppose that A is
invertible and has an LU decomposition. Then we have seen three different methods
for solving this system.

1. Use Gaussian elimination to transform the augmented matrix [A b] to reduced
row echelon form.

2. Apply elementary row operations to the augmented matrix [A In ] to compute
A−1, and then calculate A−1b.

3. Compute the LU decomposition of A, and then use the methods described in this
section to solve the system Ax = b.

We can compare the relative efficiencies of these methods by estimating the num-
ber of arithmetic operations (additions, subtractions, multiplications, and divisions)
used for each method. In calculations performed by computers, which are required for
matrices of substantial size, any arithmetic operation is called a flop (floating point
operation). The total number of flops used to perform a matrix computation by a
particular method is called the flop count for that method.

Typically, a flop count for a computation involving an n × n matrix is a polyno-
mial in n . Since these counts are usually rough estimates and are significant only for
large values of n , the terms in the polynomial of lower degree are usually ignored,
and hence a flop count for a method is usually approximated as a multiple of a power
of n .

The table that follows lists approximate flop counts for various matrix compu-
tations that can be used in solving a system of n equations in n unknowns. Note
that computing A−1 to solve Ax = b is considerably less efficient than using Gaussian
elimination or the LU decomposition.

Flop Counts for Various Procedures

In each case, we have a system Ax = b, where A is an n × n invertible matrix.

Procedure
Approximate
Flop Count

computing the LU decomposition of A 2
3n3

solving the system using Gaussian elimination 2
3n3

solving the system given the LU decomposition of A 2n2

calculating the inverse of A 2n3

If several systems with the same coefficient matrix are to be solved, then the
cost of using Gaussian elimination is approximately 2

3n3 flops to solve each system,
whereas the cost of using an LU decomposition involves an initial investment of
approximately 2

3n3 flops for the LU decomposition followed by a much lower cost
of approximately 2n2 flops to solve each system. For example, the cost of solving n
different systems by Gaussian elimination is approximately

n

(
2n3

3

)
= 2n4

3
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flops, whereas the cost for solving the same n systems by an LU decomposition is
approximately

2n3

3
+ n · 2n2 = 8n3

3

flops.

EXERCISES

In Exercises 1–8, find an LU decomposition of each matrix.

1.




2 3 4
6 8 10

−2 −4 −3




2.




2 −1 1
4 −1 4

−2 1 2




3.




1 −1 2 1
2 −3 5 4

−3 2 −4 0




4.

[
1 −1 2 4
3 −3 5 9

]

5.




1 −1 2 1 3
−1 2 0 −2 −2

2 −1 7 −1 1




6.




3 1 −1 1
6 4 −1 4

−3 −1 2 −1
3 5 0 3




7.




1 0 −3 −1 −2 1
2 −1 −8 −1 −5 0

−1 1 5 1 4 2
0 1 2 1 3 4




8.




−1 2 1 −1 3
1 −4 0 5 −5

−2 6 −1 −5 7
−1 −4 4 11 −2




In Exercises 9–16, use the results of Exercises 1–8 to solve each
system of linear equations.

9.
2x1 + 3x2 + 4x3 = 1
6x1 + 8x2 + 10x3 = 4

−2x1 − 4x2 − 3x3 = 0

10.
2x1 − x2 + x3 = −1
4x1 − x2 + 4x3 = −2

−2x1 + x2 + 2x3 = −2

11.
x1 − x2 + 2x3 + x4 = 1

2x1 − 3x2 + 5x3 + 4x4 = 8
−3x1 + 2x2 − 4x3 = 5

12.
x1 − x2 + 2x3 + 4x4 = 1

3x1 − 3x2 + 5x3 + 9x4 = 5

13.
x1 − x2 + 2x3 + x4 + 3x5 = −4

−x1 + 2x2 − 2x4 − 2x5 = 9
2x1 − x2 + 7x3 − x4 + x5 = −2

14.

3x1 + x2 − x3 + x4 = 0
6x1 + 4x2 − x3 + 4x4 = 15

−3x1 − x2 + 2x3 − x4 = 1
3x1 + 5x2 + 3x4 = 21

15.

x1 − 3x3 − x4 − 2x5 + x6 = 1
2x1 − x2 − 8x3 − x4 − 5x5 = 8
−x1 + x2 + 5x3 + x4 + 4x5 + 2x6 = −5

x2 + 2x3 + x4 + 3x5 + 4x6 = −2

16.

−x1 + 2x2 + x3 − x4 + 3x5 = 7
x1 − 4x2 + 5x4 − 5x5 = −7

−2x1 + 6x2 − x3 − 5x4 + 7x5 = 6
−x1 − 4x2 + 4x3 + 11x4 − 2x5 = 11

In Exercises 17–24, for each matrix A, find (a) a permutation
matrix P such that PA has an LU decomposition and (b) an LU
decomposition of PA.

17.




1 −1 3
2 −2 5

−1 2 −1




18.




0 2 −1
2 6 0
1 3 −1




19.




1 1 −2 −1
2 2 −3 −1

−1 −2 −1 1




20.




0 −1 4 3
−2 −3 2 2

1 1 −1 1




21.




0 1 −2
−1 2 −1

2 −4 3
1 −3 2




22.




2 4 −6 0
−2 1 3 2

2 9 −9 1
4 3 −3 0
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23.




1 2 1 −1
2 4 1 1
3 2 −1 −2
2 5 3 0




24.




1 2 2 2 1
2 4 2 1 0
1 1 1 2 2

−3 −2 0 −3 −5




In Exercises 25–32, use the results of Exercises 17–24 to solve
each system of linear equations.

25.
x1 − x2 + 3x3 = 6

2x1 − 2x2 + 5x3 = 9
−x1 + 2x2 − x3 = 1

26.
2x2 − x3 = 2

2x1 + 6x2 = −2
x1 + 3x2 − x3 = −1

27.
x1 + x2 − 2x3 − x4 = 1

2x1 + 2x2 − 3x3 − x4 = 5
−x1 − 2x2 − x3 + x4 = −1

28.
−x2 + 4x3 + 3x4 = −1

−2x1 − 3x2 + 2x3 + 2x4 = 2
x1 + x2 − x3 + x4 = 0

29.

x2 − 2x3 = 0
−x1 + 2x2 − x3 = −2
2x1 − 4x2 + 3x3 = 5
x1 − 3x2 + 2x3 = 1

30.

2x1 + 4x2 − 6x3 = 2
−2x1 + x2 + 3x3 + 2x4 = 7

2x1 + 9x2 − 9x3 + x4 = 11
4x1 + 3x2 − 3x3 = 7

31.

x1 + 2x2 + x3 − x4 = 3
2x1 + 4x2 + x3 + x4 = 2
3x1 + 2x2 − x3 − 2x4 = −4
2x1 + 5x2 + 3x3 = 7

32.

x1 + 2x2 + 2x3 + 2x4 + x5 = 8
2x1 + 4x2 + 2x3 + x4 = 12
x1 + x2 + x3 + 2x4 + 2x5 = 5

−3x1 − 2x2 − 3x4 − 5x5 = −8

In Exercises 33–41, determine whether the state-
ments are true or false.

33. Every matrix has an LU decomposition.

34. If a matrix A has an LU decomposition, then A can be
transformed into a matrix in row echelon form without
using any row interchanges.

35. An upper triangular matrix is one in which the entries
above and to the right of the diagonal entries are all zeros.

36. In an LU decomposition of A, all the diagonal entries of
U are 1s.

37. An LU decomposition of every matrix is unique.

38. The process for solving U x = y is called back substitu-
tion.

39. Suppose that, in transforming A into a matrix in row
echelon form, c times row i of a matrix is added to
row j . In an LU decomposition of A, the (i , j )-entry of
L is c.

40. Suppose that, in transforming A into a matrix in row ech-
elon form, c times row i of a matrix is added to row j .
In an LU decomposition of A, the (i , j )-entry of L is −c.

41. For every matrix A, there is a permutation matrix P such
that PA has an LU decomposition.

42. Let A and B be n × n upper triangular matrices. Prove that
AB is an upper triangular matrix and that its i th diagonal
entry is aii bii .

43. Let U be an invertible upper triangular matrix. Prove that
U −1 is an upper triangular matrix and that its i th diagonal
entry is 1/uii .

44. Let A and B be n × n lower triangular matrices.

(a) Prove that AB is also a lower triangular matrix.

(b) Prove that if both A and B are unit lower triangu-
lar matrices, then AB is also a unit lower triangular
matrix.

45. Prove that a square unit lower triangular matrix L is invert-
ible and that L−1 is also a unit lower triangular matrix.

46. Suppose that LU and L′U ′ are two LU decompositions
for an invertible matrix. Prove that L = L′ and U = U ′.
Thus an LU decomposition for an invertible matrix is
unique. Hint: Use the results of Exercises 42–45.

47. Let C be an n × n matrix and b be a vector in Rn .

(a) Show that it requires n multiplications and n − 1 addi-
tions to compute each component of Cb.

(b) Show that the approximate flop count for computing
Cb is 2n2.

48. Suppose we are given n systems of n linear equations in
n variables, all of which have as their coefficient matrix
the same invertible matrix A. Estimate the total flop count
for solving all of these systems by first computing A−1,
and then computing the product of A−1 with the constant
vector of each system.

49. Suppose that A is an m × n matrix and B is an n × p
matrix. Find the exact flop count for computing the prod-
uct AB .

50. Suppose that A is an m × n matrix, B is an n × p matrix,
and C is a p × q matrix. The product ABC can be com-
puted in two ways: (a) First compute AB , and then mul-
tiply this (on the right) by C . (b) First compute BC , and
then multiply this (on the left) by A. Use Exercise 49 to
devise a strategy that compares the two ways so that the
more efficient one can be chosen.
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In Exercises 51–54, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.5

In Exercises 51 and 52, find an LU decomposition of the given
matrix.

51.




2 −1 3 2 1
−2 2 −1 1 4

4 1 15 12 19
6 −6 9 −4 0
4 −2 9 2 9




52.




−3 1 0 2 1
−6 0 1 3 5

−15 7 4 1 12
0 −4 2 −6 8




In Exercises 53 and 54, for each matrix A, find (a) a permutation
matrix P such that PA has an LU decomposition and (b) an LU
decomposition of PA.

53.




0 1 2 −1 1
2 −2 −1 3 4
1 1 2 −1 2

−1 0 3 0 1
3 4 −1 2 4




54.




1 2 −3 1 4
3 6 −5 4 8
2 3 −3 2 1

−1 2 1 4 2
3 2 4 −4 0




SOLUTIONS TO THE PRACTICE PROBLEMS

1. First we apply Gaussian elimination to transform A into
an upper triangular matrix U in row echelon form without
using row interchanges:

A =



1 −1 −2 −8
−2 1 2 9

3 0 2 1




2r1+r2→r2�




1 −1 −2 −8
0 −1 −2 −7
3 0 2 1




−3r1+r3→r3�




1 −1 −2 −8
0 −1 −2 −7
0 3 8 25




3r2+r3→r3�




1 −1 −2 −8
0 −1 −2 −7
0 0 2 4


 = U

Then L is the unit lower triangular matrix whose (i , j )-
entry, i > j , is −c, where crj + ri → ri is a label over
an arrow in the preceding reduction process. Thus

L =



1 0 0
−2 1 0

3 −3 1


 .

2. Substituting the LU decomposition for A obtained in Prac-
tice Problem 1, we write the system as the matrix equation
LU x = b. Setting y = U x, the system becomes Ly = b,
which can be written

y1 = −3
−2y1 + y2 = 5

3y1 − 3y2 + y3 = −8.

We solve this system to obtain

y =



y1

y2

y3


 =




−3
−1
−2


 .

Next we use back substitution to solve the system U x = y,
which can be written

x1 − x2 − 2x3 − 8x4 = −3
−x2 − 2x3 − 7x4 = −1

2x3 + 4x4 = −2.

Treating x4 as a free variable, we obtain the following
general solution:

x1 = −2 + x4

x2 = 3 − 3x4

x3 = −1 − 2x4

x4 free

3. Using the method of Example 6, we have

A =




0 3 −6 1
−2 −2 2 6

1 1 −1 −1
2 −1 2 −2




r1↔r3 �




1 1 −1 −1
−2 −2 2 6

0 3 −6 1
2 −1 2 −2




2r1+r2→r2�




1 1 −1 −1
(−2) 0 0 4

0 3 −6 1
2 −1 2 −2




5 Caution! The MATLAB function lu does not compute an LU decomposition of a matrix as defined on page 154. (See page 568.)
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−2r1+r4→r4�




1 1 −1 −1
(−2) 0 0 4

0 3 −6 1
(2) −3 4 0




r2↔r4 �




1 1 −1 −1
(2) −3 4 0

0 3 −6 1
(−2) 0 0 4




r2+r3→r3�




1 1 −1 −1
(2) −3 4 0

0 (−1) −2 1
(−2) 0 0 4


 .

Thus

L =




1 0 0 0
2 1 0 0
0 −1 1 0

−2 0 0 1




and

U =




1 1 −1 −1
0 −3 4 0
0 0 −2 1
0 0 0 4


 .

Finally, we interchange the first and third rows and the
second and fourth rows of I4 to obtain P :

I4
r1↔r3 �




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




r2↔r4 �




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 = P

4. Using the permutation matrix P and the LU decomposi-
tion of PA obtained in Practice Problem 3, we transform
the system of equations Ax = b into

LU x = PAx = Pb =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







−13
−6

1
8


 =




1
8

−13
−6


 .

This system can now be solved by the method used in
Practice Problem 2 to obtain the unique solution

x =




x1

x2

x3

x4


 =




1
2
3

−1


 .

2.7 LINEAR TRANSFORMATIONS AND MATRICES
In Section 1.2, we defined the matrix–vector product Av, where A is an m × n matrix
and v is in Rn . The correspondence that associates to each vector v in Rn the vector
Av in Rm is an example of a function from Rn to Rm . We define a function as follows:

Definitions Let S1 and S2 be subsets of Rn and Rm , respectively. A function f from
S1 to S2, written f : S1 → S2, is a rule that assigns to each vector v in S1 a unique
vector f (v) in S2. The vector f (v) is called the image of v (under f ). The set S1 is
called the domain of a function f , and the set S2 is called the codomain of f . The
range of f is defined to be the set of images f (v) for all v in S1.

In Figure 2.9, we see that u and v both have w as their image. So w = f (u) and
w = f (v).

wu

v
range

domain codomain

S1

f
S2

Figure 2.9 The domain, codomain, and range of a function
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Example 1 Define f : R3 → R2 by the rule

f







x1

x2

x3





 =

[
x1 + x2 + x3

x 2
1

]
.

Then f is a function whose domain is R3 and codomain is R2. Notice that

f







0
1
1





 =

[
2
0

]
and f







0
3

−1





 =

[
2
0

]
.

So

[
2
0

]
is the image of both




0
1
1


 and




0
3

−1


. However, not every vector in R2 is

an image of a vector in R3 because every image must have a nonnegative second
component.

Example 2 Let A be the 3 × 2 matrix

A =



1 0
2 1
1 −1


 .

Define the function TA : R2 → R3 by

TA(x) = Ax.

Notice that, because A is a 3 × 2 matrix and x is a 2 × 1 vector, the vector Ax has
size 3 × 1. Also, observe that there is a reversal in the order of the size 3 × 2 of A
and the “sizes” of the domain R2 and the codomain R3 of TA.

We can easily obtain a formula for TA by computing

TA

([
x1

x2

])
=




1 0
2 1
1 −1




[
x1

x2

]
=




x1

2x1 + x2

x1 − x2


 .

A definition similar to that in Example 2 can be given for any m × n matrix A,
in which case we obtain a function TA with domain Rn and codomain Rm .

Definition Let A be an m × n matrix. The function TA : Rn → Rm defined by
TA(x) = Ax for all x in Rn is called the matrix transformation induced by A.

Practice Problem 1 � Let A =



1 −2
3 1

−1 4


.

(a) What is the domain of TA?
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wy

x

v

�

Figure 2.10 Every vector in R2 is
an image.

(b) What is the codomain of TA?

(c) Compute TA

([
4
3

])
.

�

We have already seen an important example of a matrix transformation in Section
1.2 using the rotation matrix A = Aθ . Here, TA : R2 → R2 represents the function that
rotates a vector counterclockwise by θ . To show that the range of TA is all of R2,
suppose that w is any vector in R2. If we let v = A−θw (see Figure 2.10), then, as in
Example 4 of Section 2.1, we have

TA(v) = Aθ (v) = AθA−θw = Aθ−θw = A0◦w = w.

So every vector w in R2 is in the range of TA.

Example 3 Let A be the matrix



1 0 0
0 1 0
0 0 0


 .

So TA : R3 → R3 is defined by

TA







x1

x2

x3





 =




1 0 0
0 1 0
0 0 0







x1

x2

x3


 =




x1

x2

0


 .

We can see from Figure 2.11 that TA(u) is the orthogonal projection of u on the
xy-plane. The range of TA is the xy-plane in R3.

u � 

y

x

z

u3

u2

u1

TA(u) � 
0
u2

u1

Figure 2.11 The orthogonal projection of u on the xy-plane

So far, we have seen that rotations and projections are matrix transformations.
In the exercises, we discover that other geometric transformations, namely, reflec-
tions, contractions, and dilations, are also matrix transformations. The next example
introduces yet another geometric transformation.
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Example 4
Let k be a scalar and A =

[
1 k
0 1

]
. The function TA : R2 → R2 is defined by

TA

([
x1

x2

])
=

[
x1 + kx2

x2

]
and is called a shear transformation. Notice the effect

on the vector u in Figure 2.12(a). The head of the vector is moved to the right, but
at the same height. In Figure 2.12(b), the letter “I” is centered on the y-axis. Notice
the effect of the transformation TA, where k = 2.

u TA(u)

(a) (b)

(�1, 6) (1, 6) (11, 6) (13, 6)

TA

y y

x x

Figure 2.12 A shear transformation

The next result follows immediately from Theorem 1.3.

THEOREM 2.7

For any m × n matrix A and any vectors u and v in Rn , the following statements
are true:

(a) TA(u + v) = TA(u) + TA(v).

(b) TA(cu) = cTA(u) for every scalar c.

We see from (a) and (b) that TA preserves the two vector operations; that is, the
image of a sum of two vectors is the sum of the images, and the image of a scalar
multiple of a vector is the same scalar multiple of the image. On the other hand, the
function f of Example 1 does not satisfy either of these properties. For example,

f







1
0
1


 +




2
0
0





 = f







3
0
1





 =

[
4
9

]
,

but

f







1
0
1





 + f







2
0
0





 =

[
2
1

]
+

[
2
4

]
=

[
4
5

]
.

So (a) is not satisfied. Also,

f


2




1
0
1





 = f







2
0
2





 =

[
4
4

]
, but 2f







1
0
1





 = 2

[
2
1

]
=

[
4
2

]
.

So (b) is not satisfied.
Functions that do satisfy (a) and (b) of Theorem 2.7 merit their own definition.
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Definition A function T : Rn → Rm is called a linear transformation (or simply
linear) if, for all vectors u and v in Rn and all scalars c, both of the following
conditions hold:

(i) T (u + v) = T (u) + T (v). (In this case, we say that T preserves vector addi-
tion.)

(ii) T (cu) = cT (u). (In this case, we say that T preserves scalar multiplication.)

By Theorem 2.7, every matrix transformation is linear.
There are two linear transformations that deserve special attention. The first is the

identity transformation I : Rn → Rn , which is defined by I (x) = x for all x in Rn .
It is easy to show that I is linear and its range is all of Rn . The second transformation
is the zero transformation T0 : Rn → Rm , which is defined by T0(x) = 0 for all x
in Rn . Like the identity transformation, it is easy to show that T0 is linear. The range
of T0 consists precisely of the zero vector.

The next theorem presents some basic properties of linear transformations.

THEOREM 2.8

For any linear transformation T : Rn → Rm , the following statements are true:

(a) T (0) = 0.

(b) T (−u) = −T (u) for all vectors u in Rn .

(c) T (u − v) = T (u) − T (v) for all vectors u and v in Rn .

(d) T (au + bv) = aT (u) + bT (v) for all vectors u and v in Rn and all scalars a
and b.

PROOF (a) Because T preserves vector addition, we have

T (0) = T (0 + 0) = T (0) + T (0).

Subtracting T (0) from both sides yields 0 = T (0).
(b) Let u be a vector in Rn . Because T preserves scalar multiplication, we

have
T (−u) = T ((−1)u) = (−1)T (u) = −T (u).

(c) Combining the fact that T preserves vector addition with part (b), we
have, for any vectors u and v in Rn ,

T (u − v) = T (u + (−v)) = T (u) + T (−v) = T (u) + (−T (v)) = T (u) − T (v).

(d) Because T preserves vector addition and scalar multiplication, we have,
for any vectors u and v in Rn and scalars a and b, that

T (au + bv) = T (au) + T (bv) = aT (u) + bT (v). �
We can generalize Theorem 2.8(d) to show that T preserves arbitrary linear com-

binations.

Let T : Rn → Rm be a linear transformation. If u1, u2, . . . , uk are vectors in Rn

and a1, a2, . . . , ak are scalars, then

T (a1u1 + a2u2 + · · · + ak uk ) = a1T (u1) + a2T (u2) + · · · + ak T (uk ).
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Example 5 Suppose that T : R2 → R2 is a linear transformation such that

T

([
1
1

])
=

[
2
3

]
and T

([
1

−1

])
=

[
4

−1

]
.

(a) Find T

([
3
3

])
.

(b) Find T

([
1
0

])
and T

([
0
1

])
, and use the results to determine T

([
x1

x2

])
.

Solution

(a) Since

[
3
3

]
= 3

[
1
1

]
, it follows that

T

([
3
3

])
= T

(
3

[
1
1

])
= 3T

([
1
1

])
= 3

[
2
3

]
=

[
6
9

]
.

(b) Observe that

[
1
0

]
= 1

2

[
1
1

]
+ 1

2

[
1

−1

]
. Hence

T

([
1
0

])
= T

(
1

2

[
1
1

]
+ 1

2

[
1

−1

])

= 1

2
T

([
1
1

])
+ 1

2
T

([
1

−1

])

= 1

2

[
2
3

]
+ 1

2

[
4

−1

]
=

[
3
1

]
.

Similarly,

T

([
0
1

])
= T

(
1

2

[
1
1

]
− 1

2

[
1

−1

])

= 1

2
T

([
1
1

])
− 1

2
T

([
1

−1

])

= 1

2

[
2
3

]
− 1

2

[
4

−1

]
=

[−1
2

]
.

Finally,

T

([
x1

x2

])
= T

(
x1

[
1
0

]
+ x2

[
0
1

])

= x1T

([
1
0

])
+ x2T

([
0
1

])

= x1

[
3
1

]
+ x2

[−1
2

]

=
[

3x1 − x2

x1 + 2x2

]
.
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Practice Problem 2 � Suppose that T : R2 → R3 is a linear transformation such that

T

([−1
0

])
=




−2
1
3


 and T

([
0
2

])
=




2
4

−2


 .

Determine T

([
x1

x2

])
. �

Theorem 2.8(a) can sometimes be used to show that a function is not linear.
For example, the function T : R → R defined by T (x ) = 2x + 3 is not linear because
T (0) = 3 �= 0 . Note, however, that a function f may satisfy the condition that f (0) = 0,
yet not be linear. For example, the function f in Example 1 is not linear, even though
f (0) = 0.

The next example illustrates how to verify that a function is linear.

Example 6
Define T : R2 → R2 by T

([
x1

x2

])
=

[
2x1 − x2

x1

]
. To verify that T is linear, let u and

v be vectors in R2. Then u =
[
u1

u2

]
, v =

[
v1

v2

]
, and u + v =

[
u1 + v1

u2 + v2

]
. So

T (u + v) = T

([
u1 + v1

u2 + v2

])
=

[
2(u1 + v1) − (u2 + v2)

u1 + v1

]
.

On the other hand,

T (u) + T (v) = T

([
u1

u2

])
+ T

([
v1

v2

])
=

[
2u1 − u2

u1

]
+

[
2v1 − v2

v1

]

=
[
(2u1 − u2) + (2v1 − v2)

u1 + v1

]
=

[
2(u1 + v1) − (u2 + v2)

u1 + v1

]
.

So, T (u + v) = T (u) + T (v).
Now suppose that c is any scalar. Then

T (cu) = T

([
cu1

cu2

])
=

[
2cu1 − cu2

cu1

]
.

Also,

cT (u) = c

[
2u1 − u2

u1

]
=

[
2cu1 − cu2

cu1

]
.

Hence T (cu) = cT (u). Therefore T is linear.

Another way to verify that the transformation T in Example 6 is linear is to find
a matrix A such that T = TA, and then appeal to Theorem 2.7. Suppose we let

A =
[
2 −1
1 0

]
.
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Then

TA

([
x1

x2

])
=

[
2 −1
1 0

] [
x1

x2

]
=

[
2x1 − x2

x1

]
= T

([
x1

x2

])
.

So T = TA.
Now we show that every linear transformation with domain Rn and codomain

Rm is a matrix transformation. This means that if a transformation T is linear, we
can produce a corresponding matrix A such that T = TA.

THEOREM 2.9

Let T : Rn → Rm be linear. Then there is a unique m × n matrix

A = [T (e1) T (e2) . . . T (en )],

whose columns are the images under T of the standard vectors for Rn , such that
T (v) = Av for all v in Rn .

PROOF Let A = [T (e1) T (e2) . . . T (en )]. We show that T = TA. Notice that

v =




v1

v2
...

vn


 = v1e1 + v2e2 + · · · + vnen

for any v in Rn ; so we have

T (v) = T (v1e1 + v2e2 + · · · + vnen )

= v1T (e1) + v2T (e2) + · · · + vnT (en )

= v1a1 + v2a2 + · · · + vnan

= Av

= TA(v).

Therefore T = TA.
To prove uniqueness, suppose that TA = TB for some m × n matrix B . Then

Av = Bv for every vector v in Rn , and therefore A = B by Theorem 1.3(e). �

Let T : Rn → Rm be a linear transformation. We call the m × n matrix

A = [T (e1) T (e2) . . . T (en )]

the standard matrix of T . Note that, by Theorem 2.9, the standard matrix A of T
has the property that T (v) = Av for every v in Rn .

Example 7
Let T : R3 → R2 be defined by T







x1

x2

x3





 =

[
3x1 − 4x2

2x1 + x3

]
. It is straightforward

to show that T is linear. To find the standard matrix of T , we compute its columns
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T (e1), T (e2), and T (e3). We have T (e1) =
[
3
2

]
, T (e2) =

[−4
0

]
, and T (e3) =

[
0
1

]
. So

the standard matrix of T is
[
3 −4 0
2 0 1

]
.

Example 8 Let U : R2 → R2 be defined by U

([
x1

x2

])
=

[
x1

−x2

]
. Then U is the reflection of

R2 about the x-axis. (See Figure 2.13.) It is straightforward to show that U is a linear
transformation. Observe that U (e1) = e1 and U (e2) = −e2. Hence the standard matrix
of U is

[
1 0
0 −1

]
.

� 

y

x

U

x1

x2

x1

�x2

x1

x2

Figure 2.13 Reflection of R2 about the x-axis

Practice Problem 3 � Determine the standard matrix of the linear transformation T : R3 → R2 defined by

T







x1

x2

x3





 =

[
2x1 − 5x3

−3x2 + 4x3

]
.

�

In the next section, we illustrate the close relationship between a linear transfor-
mation and its standard matrix.

EXERCISES

Exercises 1–20 refer to the following matrices:

A =
[
2 −3 1
4 0 −2

]
, B =




1 5 0
2 −1 3
0 4 −2


 , and

C =



1 2
0 −2
4 1




1. Give the domain and codomain of the matrix transforma-
tion induced by A.

2. Give the domain and codomain of the matrix transforma-
tion induced by B .

3. Give the domain and codomain of the matrix transforma-
tion induced by C .
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4. Give the domain and codomain of the matrix transforma-
tion induced by AT .

5. Give the domain and codomain of the matrix transforma-
tion induced by BT .

6. Give the domain and codomain of the matrix transforma-
tion induced by C T .

7. Compute TA







3
−1

2





. 8. Compute TB







1
0
1





.

9. Compute TC

([
2
3

])
. 10. Compute TA







2
−1

2





.

11. Compute TB







−4
2
1





. 12. Compute TC

([−1
4

])
.

13. Compute TA







4
0

−3





. 14. Compute TB







3
0
2





.

15. Compute TC

([
5

−3

])
. 16. Compute TA







−1
−2
−3





.

17. Compute TB







−3
0

−1





. 18. Compute TC

([−1
−2

])
.

19. Compute T(A+CT )







2
1
1





 and

TA







2
1
1





 + TCT







2
1
1





 .

20. Compute TA(e1) and TA(e3).

In Exercises 21–24, identify the values of n and m for each
linear transformation T : Rn → Rm.

21. T is defined by T







x1

x2

x3





 =

[
2x1

x1 − x2

]
.

22. T is defined by T

([
x1

x2

])
=




x1 + x2

x1 − x2

x2


.

23. T is defined by T

([
x1

x2

])
=




x1 − 4x2

2x1 − 3x2

0
x2


.

24. T is defined by T







x1

x2

x3

x4





 =




5x1 − 4x2 + x3 − 2x4

−2x2 + 4x4

3x1 − 5x3


.

In Exercises 25–34, linear transformations are given. Compute
their standard matrices.

25. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x2

x1 + x2

]

26. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x1 + 3x2

4x1 + 5x2

]

27. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + x2 + x3

2x1

]

28. T : R2 → R3 defined by T

([
x1

x2

])
=




3x2

2x1 − x2

x1 + x2




29. T : R2 → R4 defined by T

([
x1

x2

])
=




x1 − x2

2x1 − 3x2

0
x2




30. T : R3 → R3 defined by T







x1

x2

x3





 =




x1 − 2x3

−3x1 + 4x2

0




31. T : R2 → R4 defined by T

([
x1

x2

])
=




x1 − x2

0
3x1

x2




32. T : R4 → R3 defined by T







x1

x2

x3

x4





 =




2x1 − x2 + 3x4

−x1 + 2x4

3x2 − x3




33. T : R3 → R3 defined by T (v) = v for all v in R3

34. T : R3 → R2 defined by T (v) = 0 for all v in R3

In Exercises 35–54, determine whether the state-
ments are true or false.

35. Every function from Rn to Rm has a standard matrix.

36. Every matrix transformation is linear.

37. A function from Rn to Rm that preserves scalar multipli-
cation is linear.

38. The image of the zero vector under any linear transfor-
mation is the zero vector.

39. If T : R3 → R2 is linear, then its standard matrix has size
3 × 2.

40. The zero transformation is linear.

41. A function is uniquely determined by the images of the
standard vectors in its domain.

42. The first column of the standard matrix of a linear trans-
formation is the image of the first standard vector under
the transformation.

43. The domain of a function f is the set of all images f (x).

44. The codomain of any function is contained in its range.

45. If f is a function and f (u) = f (v), then u = v.

46. The matrix transformation induced by a matrix A is a
linear transformation.
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47. Every linear transformation T : Rn → Rm is a matrix
transformation.

48. Every linear transformation T : Rn → Rm is the matrix
transformation induced by its standard matrix.

49. The projection of a vector in R3 on the xy-plane in R3 is

the matrix transformation induced by

⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦.

50. Every linear transformation preserves linear combinations.

51. If T (u + v) = T (u) + T (v) for all vectors u and v in the
domain of T , then T is said to preserve vector addition.

52. Every function f : Rn → Rm preserves scalar multiplica-
tion.

53. If f : Rn → Rm and g : Rn → Rm are functions such that
f (ei ) = g(ei ) for every standard vector ei , then f (v) =
g(v) for every v in Rn .

54. If T and U are linear transformations whose standard
matrices are equal, then T and U are equal.

55. If T is the identity transformation, what is true about the
domain and the codomain of T ?

56. Suppose that T is linear and T

([
4

−2

])
=

[−6
16

]
. Deter-

mine T

([−2
1

])
and T

([
8

−4

])
.

57. Suppose that T is linear and T

([
8
2

])
=

⎡
⎣

2
−4

6

⎤
⎦.

Determine T

([
16

4

])
and T

([−4
−1

])
. Justify your

answers.

58. Suppose that T is linear and T

⎛
⎝

⎡
⎣

−2
6
4

⎤
⎦

⎞
⎠ =

[−4
2

]
. Deter-

mine T

⎛
⎝

⎡
⎣

1
−3
−2

⎤
⎦

⎞
⎠ and T

⎛
⎝

⎡
⎣

−4
12
8

⎤
⎦

⎞
⎠.

59. Suppose that T is linear and T

⎛
⎝

⎡
⎣

3
6
9

⎤
⎦

⎞
⎠ =

⎡
⎣

12
−9
−3

⎤
⎦.

Determine T

⎛
⎝

⎡
⎣

−4
−8

−12

⎤
⎦

⎞
⎠ and T

⎛
⎝

⎡
⎣

5
10
15

⎤
⎦

⎞
⎠.

60. Suppose that T is linear such that T

([
2
0

])
=

[−4
6

]

and T

([
0
3

])
=

[
9

−6

]
. Determine T

([
1
2

])
. Justify your

answer.

61. Suppose that T is linear such that T

([−3
0

])
=

⎡
⎣

6
3
9

⎤
⎦ and

T

([
0
4

])
=

⎡
⎣

8
0

−4

⎤
⎦. Determine T

([−2
6

])
. Justify your

answer.

62. Suppose that T is linear such that T

([
1
2

])
=

⎡
⎣

−2
0
1

⎤
⎦ and

T

([
0
3

])
=

⎡
⎣

6
−3

3

⎤
⎦. Determine T

([−3
3

])
. Justify your

answer.

63. Suppose that T is linear such that T

([
2
3

])
=

[
1
2

]
and

T

([−4
0

])
=

[−5
1

]
. Determine T

([−2
3

])
. Justify your

answer.

64. Suppose that T : R2 → R2 is a linear transformation such

that T (e1) =
[

2
3

]
and T (e2) =

[
4
1

]
. Determine T

([
5
6

])
.

Justify your answer.

65. Suppose that T : R2 → R2 is a linear transformation such

that T (e1) =
[

2
3

]
and T (e2) =

[
4
1

]
. Determine T

([
x1

x2

])

for any

[
x1

x2

]
in R2. Justify your answer.

66. Suppose that T : R2 → R2 is a linear transformation

such that T (e1) =
[

3
−1

]
and T (e2) =

[−1
2

]
. Determine

T

([
x1

x2

])
for any

[
x1

x2

]
in R2. Justify your answer.

67. Suppose that T : R3 → R3 is a linear transformation such
that

T (e1) =
⎡
⎣

−1
0
2

⎤
⎦ , T (e2) =

⎡
⎣

3
−1

0

⎤
⎦ , and T (e3) =

⎡
⎣

0
−3

2

⎤
⎦ .

Determine T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ for any

⎡
⎣

x1

x2

x3

⎤
⎦ in R3. Justify your

answer.

68. Suppose that T : R3 → R2 is a linear transformation such
that

T (e1) =
[−2

1

]
, T (e2) =

[
0

−3

]
, and T (e3) =

[
2
4

]
.

Determine T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ for any

⎡
⎣

x1

x2

x3

⎤
⎦ in R3. Justify your

answer.

69. Suppose that T : R2 → R2 is a linear transformation such
that

T

([
1

−2

])
=

[
2
1

]
and T

([−1
3

])
=

[
3
0

]
.

Determine T

([
x1

x2

])
for any

[
x1

x2

]
in R2. Justify your

answer.
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70. Suppose that T : R2 → R3 is a linear transformation such
that

T

([
3

−5

])
=

⎡
⎣

1
−1

2

⎤
⎦ and T

([−1
2

])
=

⎡
⎣

3
0

−2

⎤
⎦ .

Determine T

([
x1

x2

])
for any

[
x1

x2

]
in R2. Justify your

answer.

71. Suppose that T : R3 → R3 is a linear transformation such
that

T

⎛
⎝

⎡
⎣

−1
1
1

⎤
⎦

⎞
⎠ =

⎡
⎣

1
2
3

⎤
⎦ , T

⎛
⎝

⎡
⎣

1
−1

1

⎤
⎦

⎞
⎠ =

⎡
⎣

−3
0
1

⎤
⎦ , and

T

⎛
⎝

⎡
⎣

1
1

−1

⎤
⎦

⎞
⎠ =

⎡
⎣

5
4
3

⎤
⎦ .

Determine T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ for any

⎡
⎣

x1

x2

x3

⎤
⎦ in R3. Justify your

answer.

In Exercises 72–80, a function T : Rn → Rm is given. Either
prove that T is linear, or explain why T is not linear.

72. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x1

x2
2

]

73. T : R2 → R2 defined by T

([
x1

x2

])
=

[
0

2x1

]

74. T : R2 → R2 defined by T

([
x1

x2

])
=

[
1

2x1

]

75. T : R3 → R defined by T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ = x1 + x2 + x3 − 1

76. T : R3 → R defined by T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ = x1 + x2 + x3

77. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x1 + x2

2x1 − x2

]

78. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x2

|x1|
]

79. T : R → R2 defined by T (x ) =
[

sin x
x

]

80. T : R2 → R2 defined by T

([
x1

x2

])
=

[
ax1

bx2

]
, where a

and b are scalars

81. Prove that the identity transformation I : Rn → Rn equals
TIn and hence is linear.

82. Prove that the zero transformation T0 : Rn → Rm equals
TO and hence is linear.

Definitions Let T , U : Rn → Rm be functions and c be a
scalar. Define (T + U ) : Rn → Rm and cT : Rn → Rm by

(T + U )(x) = T (x) + U (x) and (cT )(x) = cT (x)

for all x in Rn .
The preceding definitions are used in Exercises 83–86:

83. Prove that if T is linear and c is a scalar, then cT is
linear.

84. Prove that if T and U are linear, then T + U is
linear.

85. Suppose that c is a scalar. Use Exercise 83 to prove that
if T is linear and has standard matrix A, then the standard
matrix of cT is cA.

86. Use Exercise 84 to prove that if T and U are linear with
standard matrices A and B , respectively, then the standard
matrix of T + U is A + B .

87. Let T : R2 → R2 be a linear transformation. Prove
that there exist unique scalars a, b, c, and d such that

T

([
x1

x2

])
=

[
ax1 + bx2

cx1 + dx2

]
for every vector

[
x1

x2

]
in R2.

Hint: Use Theorem 2.9.

88. State and prove a generalization of Exercise 87.

89. Define T : R2 → R2 by T

([
x1

x2

])
=

[
x1

0

]
. T repre-

sents the orthogonal projection of R2 on the x-axis.

(a) Prove that T is linear.

(b) Find the standard matrix of T .

(c) Prove that T (T (v)) = T (v) for every v in R2.

90. Define T : R3 → R3 by T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ =

⎡
⎣

0
x2

x3

⎤
⎦. T repre-

sents the orthogonal projection of R3 on the yz -plane.

(a) Prove that T is linear.

(b) Find the standard matrix of T .

(c) Prove that T (T (v)) = T (v) for every v in R3.

91. Define the linear transformation T : R2 → R2 by

T

([
x1

x2

])
=

[−x1

x2

]
. T represents the reflection of R2

about the y-axis .

(a) Show that T is a matrix transformation.

(b) Determine the range of T .

92. Define the linear transformation T : R3 → R3 by

T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ =

⎡
⎣

x1

x2

−x3

⎤
⎦. T represents the reflection of R3

about the xy-plane.

(a) Show that T is a matrix transformation.

(b) Determine the range of T .

93. A linear transformation T : Rn → Rn defined by T (x) =
kx, where 0 < k < 1, is called a contraction.

(a) Show that T is a matrix transformation.

(b) Determine the range of T .
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94. A linear transformation T : Rn → Rn defined by T (x) =
kx, where k > 1, is called a dilation.

(a) Show that T is a matrix transformation.

(b) Determine the range of T .

95. Let T : Rn → Rm be a linear transformation. Prove that
T (u) = T (v) if and only if T (u − v) = 0.

96. Find functions f : R2 → R2 and g : R2 → R2 such that
f (e1) = g(e1) and f (e2) = g(e2), but f (v) �= g(v) for some
v in R2.

97. Let A be an invertible n × n matrix. Determine
TA−1 (TA(v)) and TA(TA−1 (v)) for all v in Rn .

98. Let A be an m × n matrix and B an n × p matrix. Prove
that TAB (v) = TA(TB (v)) for all v in Rp .

99. Let T : Rn → Rm be a linear transformation with stan-
dard matrix A. Prove that the columns of A form a gen-
erating set for the range of T .

100. For a linear transformation T : Rn → Rm , prove that its
range is Rm if and only if the rank of its standard matrix
is m.

101. Let T : Rn → Rm be a linear transformation and S =
{v1, v2, . . . , vk } be a subset of Rn . Prove that if the set
{T (v1), T (v2), . . . , T (vk )} is a linearly independent subset
of Rm , then S is a linearly independent subset of Rn .

In Exercises 102 and 103, use either a calculator with matrix
capabilities or computer software such as MATLAB to solve each
problem.

102. Suppose that T : R4 → R4 is a linear transformation such
that

T







1
2
0

−1





 =




0
1
1
0


 , T







1
1
1

−1





 =




−2
1
3
2


 ,

T







0
1
0
1





 =




4
6
0

−3


 ,

and

T







−1
2

−3
1





 =




0
0
0
0


 .

(a) Find a rule for T .

(b) Is T uniquely determined by these four images? Why
or why not?

103. Suppose that T : R4 → R4 is the linear transformation
defined by the rule

T







x1

x2

x3

x4





 =




x1 + x2 + x3 + 2x4

x1 + 2x2 − 3x3 + 4x4

x2 + 2x4

x1 + 5x2 − x3


 .

Determine if the vector




2
−1

0
3


 is in the range of T .

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) Because A is a 3 × 2 matrix, the domain of TA is R2.

(b) The codomain of TA is R3.

(c) We have

TA

([
4
3

])
= A

[
4
3

]
=




1 −2
3 1

−1 4




[
4
3

]
=




−2
15
8


 .

2. Since e1 = (−1)

[−1
0

]
and e2 = 1

2

[
0
2

]
, it follows that

T

([
x1

x2

])
= T (x1e1 + x2e2)

= T

(
x1(−1)

[−1
0

]
+ x2

(
1

2

) [
0
2

])

= −x1T

([−1
0

])
+ 1

2
x2T

([
0
2

])

= −x1




−2
1
3


 + 1

2
x2




2
4

−2




=



2x1 + x2

−x1 + 2x2

−3x1 − x2


 .

3. Since

T (e1) =
[
2
0

]
, T (e2) =

[
0

−3

]
, and

T (e3) =
[−5

4

]
,

the standard matrix of T is
[
2 0 −5
0 −3 4

]
.
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2.8 COMPOSITION AND INVERTIBILITY
OF LINEAR TRANSFORMATIONS

In this section, we use the standard matrix to study some basic properties of a linear
transformation. We begin by determining whether a transformation is onto and one-to-
one, which is closely related to the existence and uniqueness of solutions of systems
of linear equations.

ONTO AND ONE-TO-ONE FUNCTIONS
Once we have found the standard matrix of a linear transformation T , we can use it
to find a generating set for the range of T . For example, suppose that T : R3 → R2

is defined by

T

⎛
⎝

⎡
⎣

x1

x2

x3

⎤
⎦

⎞
⎠ =

[
3x1 − 4x2

2x1 + x3

]
.

In Example 7 of Section 2.7, we saw that the standard matrix of T is

A = [T (e1) T (e2) T (e3)] =
[

3 −4 0
2 0 1

]
.

Now w is in the range of T if and only if w = T (v) for some v in R3. Writing
v = v1e1 + v2e2 + v3e3, we see that

w = T (v) = T (v1e1 + v2e2 + v3e3) = v1T (e1) + v2T (e2) + v3T (e3),

which is a linear combination of the columns of A. Likewise, it is clear from the same
computation that every linear combination of the columns of A is in the range of T .
We conclude that the range of T equals the span of

{[
3
2

]
,

[−4
0

]
,

[
0
1

]}
.

This argument can be generalized to prove the following result:

The range of a linear transformation equals the span of the columns of its standard
matrix.

In what follows, we obtain some additional properties about a linear transforma-
tion from its standard matrix. First, however, we recall some properties of functions.

Definition A function f : Rn → Rm is said to be onto if its range is all of Rm ;
that is, if every vector in Rm is an image.

From the preceding boxed statement, it follows that a linear transformation is
onto if and only if the columns of its standard matrix form a generating set for
its codomain. Thus we can illustrate that the reflection of R2 about the x -axis in
Example 8 of Section 2.7 is onto by showing that the columns e1, −e2 of its standard
matrix form a generating set for R2. Because e1 and −e2 are nonparallel vectors in
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R2, every vector in R2 is a linear combination of e1 and −e2. So the columns of the
standard matrix of U form a generating set for R2.

We can also use the rank of the standard matrix A to determine if T is onto. If
A is an m × n matrix, then, by Theorem 1.6, the columns of A form a generating set
for Rm if and only if rank A = m .

Example 1 Determine if the linear transformation T : R3 → R3 defined by

T







x1

x2

x3





 =




x1 + 2x2 + 4x3

x1 + 3x2 + 6x3

2x1 + 5x2 + 10x3




is onto.

Solution For T to be onto, the rank of its standard matrix must equal 3. But the
standard matrix A of T and its reduced row echelon form R are

A =



1 2 4
1 3 6
2 5 10


 and R =




1 0 0
0 1 2
0 0 0


 .

So rank A = 2 �= 3, and therefore T is not onto.

We now state the first of several theorems that relate a linear transformation
to its standard matrix. Its proof follows from our preceding observations and from
Theorem 1.6.

THEOREM 2.10

Let T : Rn → Rm be a linear transformation with standard matrix A. The follow-
ing conditions are equivalent:

(a) T is onto; that is, the range of T is Rm .

(b) The columns of A form a generating set for Rm .

(c) rank A = m .

There is a close relationship between the range of a matrix transformation and
the consistency of a system of linear equations. For example, consider the system

x1 = 1
2x1 + x2 = 3
x1 − x2 = 1.

The system is equivalent to the matrix equation Ax = b, where

A =



1 0
2 1
1 −1


 , x =

[
x1

x2

]
, and b =




1
3
1


 .

Because we can write the matrix equation as TA(x) = b, the system has a solution if
and only if b is in the range of TA.
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Now suppose that we define T : R3 → R2 by

T







x1

x2

x3





 =

[
x1 + x2 + x3

x1 + 3x2 − x3

]
and w =

[
2
8

]
.

It is easy to see that T = TB ,where B =
[
1 1 1
1 3 −1

]
; so T is linear. Suppose that we

want to determine if w is in the range of T . This question is equivalent to asking if
there exists a vector x such that T (x) = w, or, in other words, if the following system
is consistent:

x1 + x2 + x3 = 2
x1 + 3x2 − x3 = 8

Using Gaussian elimination, we obtain the general solution

x1 = −2x3 − 1
x2 = x3 + 3
x3 free.

We conclude that the system is consistent and there are infinitely many vectors whose
image is w. For example, for the cases x3 = 0 and x3 = 1, we obtain the vectors




−1
3
0


 and




−3
4
1


 ,

respectively. Alternatively, we could have observed that A has rank 2 and then
appealed to Theorem 2.10 to conclude that every vector in R2, including w, is in
the range of T .

Another important property of a function is that of being one-to-one.

Definition A function f : Rn → Rm is said to be one-to-one if every pair of distinct
vectors in Rn has distinct images. That is, if u and v are distinct vectors in Rn , then
f (u) and f (v) are distinct vectors in Rm .

In Figure 2.14(a), we see that distinct vectors u and v have distinct images, which
is necessary for f to be one-to-one. In Figure 2.14(b), f is not one-to-one because
there exist distinct vectors u and v that have the same image w.

Suppose that T : Rn → Rm is a one-to-one linear transformation. If w is a nonzero
vector in Rn , then T (w) �= T (0) = 0, and hence 0 is the only vector in Rn whose
image under T is the zero vector of Rm .

u w

v z

Rn Rmf

(a) Vectors with distinct images

u w

v

Rn Rmf

(b) Vectors with identical images

Figure 2.14
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Conversely, if 0 is the only vector whose image under T is the zero vector, then
T must be one-to-one. For suppose that u and v are vectors with T (u) = T (v). Then
T (u − v) = T (u) − T (v) = 0. So u − v = 0, or u = v, and hence T is one-to-one.

Definition Let T : Rn → Rm be linear. The null space of T is the set of all v in Rn

such that T (v) = 0.

The discussion preceding the definition proves the following result:

A linear transformation is one-to-one if and only if its null space contains only 0.

Note also that if A is the standard matrix of a linear transformation T , then the
null space of T is the set of solutions of Ax = 0.

Example 2 Suppose that T : R3 → R2 is defined by

T







x1

x2

x3





 =

[
x1 − x2 + 2x3

−x1 + x2 − 3x3

]
.

Find a generating set for the null space of T .

Solution The standard matrix of T is

A =
[

1 −1 2
−1 1 −3

]
.

Because the null space of T is the set of solutions of Ax = 0, we must compute the
reduced row echelon form of A, which is

[
1 −1 0
0 0 1

]
.

This matrix corresponds to the system

x1 − x2 = 0
x3 = 0.

So every solution has the form




x1

x2

x3


 =




x2

x2

0


 = x2




1
1
0


 .

Thus a generating set for the null space of T is







1
1
0





.

Using Theorem 1.8, we can give additional statements that are equivalent to the
statement that a linear transformation is one-to-one.
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THEOREM 2.11

Let T : Rn → Rm be a linear transformation with standard matrix A. Then the
following statements are equivalent:

(a) T is one-to-one.

(b) The null space of T consists only of the zero vector.

(c) The columns of A are linearly independent.

(d) rank A = n .

Example 3 Determine whether the linear transformation T : R3 → R3 in Example 1,

T







x1

x2

x3





 =




x1 + 2x2 + 4x3

x1 + 3x2 + 6x3

2x1 + 5x2 + 10x3


 ,

is one-to-one.

Solution For T to be one-to-one, the rank of its standard matrix A must be 3.
However, we saw in Example 1 that rank A = 2. Thus Theorem 2.11(d) does not
hold, and so T is not one-to-one.

Finally, we relate all three topics: linear transformations, matrices, and systems
of linear equations. Suppose that we begin with the system Ax = b, where A is an
m × n matrix, x is a vector in Rn , and b is a vector in Rm . We may write the system
in the equivalent form TA(x) = b. The following list compares the nature of solutions
of Ax = b and properties of TA:

(a) Ax = b has a solution if and only if b is in the range of TA.

(b) Ax = b has a solution for every b if and only if TA is onto.

(c) Ax = b has at most one solution for every b if and only if TA is one-to-one.

Practice Problem 1 � Let T : R2 → R3 be the linear transformation defined by

T

([
x1

x2

])
=




3x1 − x2

−x1 + 2x2

2x1


 .

(a) Determine a generating set for the range of T .

(b) Determine a generating set for the null space of T .

(c) Is T onto?

(d) Is T one-to-one? �

Example 4 Let

A =




0 0 1 3 3
2 3 1 5 2
4 6 1 7 2
4 6 1 7 1


 .
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Is the system Ax = b consistent for every b? If Ax = b1 is consistent for some b1, is
the solution unique?

Solution Although these questions can be answered by computing the rank of A
and using Theorems 1.6 and 1.8, we give here an alternative solution using the matrix
transformation TA : R5 → R4, which we denote by T . First, note that the reduced row
echelon form of A is

R =




1 1.5 0 1 0
0 0 1 3 0
0 0 0 0 1
0 0 0 0 0


 .

Because rank A = 3 �= 4, we see that T is not onto by Theorem 2.10. So there exists a
vector b0 in R4 that is not in the range of T . It follows that Ax = b0 is not consistent.
Also, Theorem 2.11 shows T is not one-to-one, so there exists a nonzero solution u
of Ax = 0. Therefore if for some b1 we have Av = b1, then we also have

A(v + u) = Av + Au = b1 + 0 = b1.

So the solution of Ax = b1 is never unique.

COMPOSITION OF LINEAR TRANSFORMATIONS
Recall that if f : S1 → S2 and g : S2 → S3, then the composition g ◦ f : S1 → S3 is
defined by (g ◦ f )(u) = g(f (u)) for all u in S1. (See Figure 2.15.)

S1 S2 S3

f g

u
f (u) g( f (u))

g    f

Figure 2.15 The composition of functions

Example 5 Suppose that f : R2 → R3 and g : R3 → R2 are the functions defined by

f

([
x1

x2

])
=




x 2
1

x1x2

x1 + x2


 and g







x1

x2

x3





 =

[
x1 − x3

3x2

]
.

Then g ◦ f : R2 → R2 is defined by

(g ◦ f )

([
x1

x2

])
= g

(
f

([
x1

x2

]))
= g







x 2
1

x1x2

x1 + x2





 =

[
x 2
1 − (x1 + x2)

3x1x2

]
.
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In linear algebra, it is customary to drop the “circle” notation and write the
composition of linear transformations T : Rn → Rm and U : Rm → Rp as UT rather
than U ◦ T . In this case, UT has domain Rn and codomain Rp .

Suppose that we have an m × n matrix A and a p × m matrix B , so that BA
is a p × n matrix. The corresponding matrix transformations are TA : Rn → Rm ,
TB : Rm → Rp , and TBA : Rn → Rp . For any v in Rn , we have

TBA(v) = (BA)v = B (Av) = B (TA(v)) = TB (TA(v)) = TBTA(v).

It follows that the matrix transformation TBA is the composition of TB and TA; that is,

TBTA = TBA.

This result can be restated as the following theorem:

THEOREM 2.12

If T : Rn → Rm and U : Rm → Rp are linear transformations with standard
matrices A and B , respectively, then the composition UT : Rn → Rp is also
linear, and its standard matrix is BA.

PROOF Theorem 2.9 implies that T = TA and U = TB . So, by our previous
observation, we have UT = TBTA = TBA, which is a matrix transformation and
hence is linear. Furthermore, since UT = TBA, the matrix BA is the standard
matrix of UT . �

Practice Problem 2 � Let U : R3 → R2 be the linear transformation defined by

U







x1

x2

x3





 =

[
x2 − 4x3

2x1 + 3x3

]
.

Determine UT

([
x1

x2

])
, where T is as in Practice Problem 1. �

Example 6 In R2, show that a rotation by 180◦ followed by a reflection about the x -axis is a
reflection about the y-axis.

Solution Let T and U denote the given rotation and reflection, respectively. We
want to show that UT is a reflection about the y-axis. Let A and B be the standard
matrices of T and U , respectively. Then A = A180◦ , and B is computed in Example 8
of Section 2.7. So

A =
[−1 0

0 −1

]
and B =

[
1 0
0 −1

]
.

Then T = TA, U = TB , and BA =
[−1 0

0 1

]
. Thus, for any u =

[
u1

u2

]
, we have

UT

([
u1

u2

])
= TBTA

([
u1

u2

])
= TBA

([
u1

u2

])

= BA

[
u1

u2

]
=

[−1 0
0 1

] [
u1

u2

]
=

[−u1

u2

]
,

which represents a reflection about the y-axis. (See Figure 2.16.)
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y

x

u �
u1

u2
(TBTA)(u) �

�u1

u2

TA(u) �
�u1

�u2

Figure 2.16 The rotation of u by 180◦ and its reflection about the y-axis

We can use the preceding result to obtain an interesting relationship between
an invertible matrix and the corresponding matrix transformation. First, recall that
a function f : S1 → S2 is invertible if there exists a function g : S2 → S1 such that
g(f (v)) = v for all v in S1 and f (g(v)) = v for all v in S2. If f is invertible, then
the function g is unique and is called the inverse of f ; it is denoted by f −1. (Note
that the symbol f −1 should not be confused with the reciprocal 1/f , which is usually
undefined.) It can be shown that a function is invertible if and only if it is one-to-one
and onto.

Now suppose that A is an n × n invertible matrix. Then for all v in Rn , we have

TATA−1 (v) = TA(TA−1 (v)) = TA(A−1v) = A(A−1v) = (AA−1)v = Inv = v.

Likewise, TA−1TA(v) = v. We conclude that TA is invertible and

T−1
A = TA−1 .

It is easy to see, for example, that if TA represents rotation in R2 by θ , then T−1
A rep-

resents rotation by −θ . Using the previous result, we can show this also by computing
the rotation matrix A−θ , as we did in Example 3 of Section 2.3.

If T : Rn → Rn is linear and invertible, then it is also one-to-one. By Theorem
2.11, its standard matrix A has rank n and hence is also invertible. Thus we have
T−1 = TA−1 . In particular, T−1 is a matrix transformation, and hence linear.

The following theorem summarizes this discussion:

THEOREM 2.13

Let T : Rn → Rn be a linear transformation with standard matrix A. Then T is
invertible if and only if A is invertible, in which case T−1 = TA−1 . Thus T−1 is
linear, and its standard matrix is A−1.

Example 7
Suppose that A =

[
1 2
3 5

]
so that TA

([
v1

v2

])
=

[
v1 + 2v2

3v1 + 5v2

]
. We saw in Example 1

of Section 2.3 that A−1 =
[−5 2

3 −1

]
. By Theorem 2.13, we have

T−1
A

([
v1

v2

])
= TA−1

([
v1

v2

])
=

[−5 2
3 −1

] [
v1

v2

]
=

[−5v1 + 2v2

3v1 − v2

]
.
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Practice Problem 3 � Let T : R2 → R2 be the linear transformation defined by

T

([
x1

x2

])
=

[
x1 + 4x2

2x1 + 7x2

]
.

Show that T is invertible, and determine T−1

([
x1

x2

])
. �

We list the highlights from this section in the next table. Let T : Rn → Rm be a
linear transformation with standard matrix A, which has size m × n . Properties listed
in the same row of the table are equivalent.

Property of T The number of Property of Property of the
solutions of the columns of A rank of A
Ax = b

T is onto. Ax = b has at least one
solution for every b in
Rm.

The columns of A
are a generating
set for Rm.

rank A = m

T is
one-to-one.

Ax = b has at most one
solution for every b in
Rm.

The columns of A
are linearly
independent.

rank A = n

T is
invertible.

Ax = b has a unique
solution for every b in
Rm.

The columns of A
are a linearly
independent
generating set for
Rm.

rank A = m = n

EXERCISES

In Exercises 1–12, find a generating set for the range of each
linear transformation T .

1. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x1 + 3x2

4x1 + 5x2

]

2. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x2

x1 + x2

]

3. T : R2 → R3 defined by T

([
x1

x2

])
=




3x2

2x1 − x2

x1 + x2




4. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + x2 + x3

2x1

]

5. T : R3 → R3 defined by

T







x1

x2

x3





 =




2x1 + x2 + x3

2x1 + 2x2 + 3x3

4x1 + x2




6. T : R3 → R3 defined by

T







x1

x2

x3





 =




5x1 − 4x2 + x3

x1 − 2x2

x1 + x3




7. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x1

0

]

8. T : R2 → R4 defined by T

([
x1

x2

])
=




x1 − 4x2

2x1 − 3x2

0
x2




9. T : R3 → R3 defined by T







x1

x2

x3





 =




x1

x2

0




10. T : R3 → R3 defined by T (v) = v for all v in R3

11. T : R3 → R2 defined by T (v) = 0 for all v in R3

12. T : R3 → R3 defined by T (v) = 4v for all v in R3

In Exercises 13–23, find a generating set for the null space of
each linear transformation T , and use your answer to determine
whether T is one-to-one.
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13. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x2

x1 + x2

]

14. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x1 + 3x2

4x1 + 5x2

]

15. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + x2 + x3

2x1

]

16. T : R2 → R3 defined by T

([
x1

x2

])
=




3x2

2x1 − x2

x1 + x2




17. T : R3 → R3 defined by

T







x1

x2

x3





 =




x1 + 2x2 + x3

x1 + 3x2 + 2x3

2x1 + 5x2 + 3x3




18. T : R3 → R3 defined by T







x1

x2

x3





 =




2x1 + 3x2

x1 − x3

x1 + x2 + 4x3




19. T : R3 → R3 defined by T (v) = v for all v in R3

20. T : R3 → R2 defined by T (v) = 0 for all v in R3

21. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x1

0

]

22. T : R3 → R defined by T







x1

x2

x3





 = x1 + 2x3

23. T : R4 → R3 defined by

T







x1

x2

x3

x4





 =




2x1 + x2 + x3 − x4

x1 + x2 + 2x3 + 2x4

x1 − x3 − 3x4




In Exercises 24–31, find the standard matrix of each linear trans-
formation T , and use it to determine whether T is one-to-one.

24. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x2

x1 + x2

]

25. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x1 + 3x2

4x1 + 5x2

]

26. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + x2 + x3

2x1

]

27. T : R2 → R3 defined by T

([
x1

x2

])
=




3x2

2x1 − x2

x1 + x2




28. T : R3 → R3 defined by T







x1

x2

x3





 =




x1 − 2x3

−3x1 + 4x2

0




29. T : R3 → R3 defined by T







x1

x2

x3





 =




x1 − x2

x2 − x3

x1 − x3




30. T : R4 → R4 defined by

T







x1

x2

x3

x4





 =




x1 − x2 + x3 + x4

−2x1 + x2 − x3 − x4

2x1 + 3x2 − 6x3 + 5x4

−x1 + 2x2 − x3 − 5x4




31. T : R5 → R4 defined by

T







x1

x2

x3

x4

x5







=




x1 + 2x2 + 2x3 + x4 + 8x5

x1 + 2x2 + x3 + 6x5

x1 + x2 + x3 + 2x4 + 5x5

3x1 + 2x2 + 5x4 + 8x5




In Exercises 32–40, find the standard matrix of each linear trans-
formation T , and use it to determine whether T is onto.

32. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x2

x1 + x2

]

33. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x1 + 3x2

4x1 + 5x2

]

34. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + x2 + x3

2x1

]

35. T : R2 → R3 defined by T

([
x1

x2

])
=




3x2

2x1 − x2

x1 + x2




36. T : R3 → R defined by T







x1

x2

x3





 = 2x1 − 5x2 + 4x3

37. T : R3 → R3 defined by

T







x1

x2

x3





 =




x2 − 2x3

x1 − x3

−x1 + 2x2 − 3x3




38. T : R4 → R4 defined by

T







x1

x2

x3

x4





 =




x1 − x2 + 2x3

−2x1 + x2 − 7x3

x1 − x2 + 2x3

−x1 + 2x2 + x3




39. T : R4 → R4 defined by

T







x1

x2

x3

x4





 =




x1 − 2x2 + 2x3 − x4

−x1 + x2 + 3x3 + 2x4

x1 − x2 − 6x3 − x4

x1 − 2x2 + 5x3 − 5x4




40. T : R4 → R4 defined by

T







x1

x2

x3

x4





 =




x1 + 2x2 + 2x3 + x4

x1 + 2x2 + x3

x1 + x2 + x3 + 2x4

3x1 + 2x2 + 5x4




In Exercises 41–60, determine whether the state-
ments are true or false.

41. A linear transformation with codomain Rm is onto if and
only if the rank of its standard matrix equals m.
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42. A linear transformation is onto if and only if the columns
of its standard matrix form a generating set for its range.

43. A linear transformation is onto if and only if the columns
of its standard matrix are linearly independent.

44. A linear transformation is one-to-one if and only if every
vector in its range is the image of a unique vector in its
domain.

45. A linear transformation is one-to-one if and only if its null
space consists only of the zero vector.

46. A linear transformation is invertible if and only if its stan-
dard matrix is invertible.

47. The system Ax = b is consistent for all b if and only if
the transformation TA is one-to-one.

48. Let A be an m × n matrix. The system Ax = b is consis-
tent for all b in Rm if and only if the columns of A form
a generating set for Rm .

49. A function is onto if its range equals its domain.

50. A function is onto if its range equals its codomain.

51. The set {T (e1), T (e2), . . . , T (en )} is a generating set for
the range of any function T : Rn → Rm .

52. A linear transformation T : Rn → Rm is onto if and only
if the rank of its standard matrix is n.

53. The null space of a linear transformation T : Rn → Rm

is the set of vectors in Rn whose image is 0.

54. A function T : Rn → Rm is one-to-one if the only vector
v in Rn whose image is 0 is v = 0.

55. A linear transformation T : Rn → Rm is one-to-one if and
only if the rank of its standard matrix is m.

56. If the composition UT of two linear transformations
T : Rn → Rm and U : Rp → Rq is defined, then m = p.

57. The composition of linear transformations is a linear trans-
formation.

58. If T : Rn → Rm and U : Rp → Rn are linear transfor-
mations with standard matrices A and B , respectively, the
standard matrix of TU equals BA.

59. For every invertible linear transformation T , the function
T−1 is a linear transformation.

60. If A is the standard matrix of an invertible linear transfor-
mation T , then the standard matrix of T −1 is A−1.

61. Suppose that T : R2 → R2 is the linear transformation
that rotates a vector by 90◦.
(a) What is the null space of T ?

(b) Is T one-to-one?

(c) What is the range of T ?

(d) Is T onto?

62. Suppose that T : R2 → R2 is the reflection of R2 about
the x -axis. (See Exercise 73 of Section 1.2.)

(a) What is the null space of T ?

(b) Is T one-to-one?

(c) What is the range of T ?

(d) Is T onto?

63. Define T : R2 → R2 by T

([
x1

x2

])
=

[
0
x2

]
, which is the

projection of

[
x1

x2

]
on the y-axis.

(a) What is the null space of T ?

(b) Is T one-to-one?

(c) What is the range of T ?

(d) Is T onto?

64. Define T : R3 → R3 by T







x1

x2

x3





 =




0
0
x3


, which is

the projection of




x1

x2

x3


 on the z -axis.

(a) What is the null space of T ?

(b) Is T one-to-one?

(c) What is the range of T ?

(d) Is T onto?

65. Define T : R3 → R3 by T







x1

x2

x3





 =




x1

x2

0


, which is

the projection of




x1

x2

x3


 on the xy-plane.

(a) What is the null space of T ?

(b) Is T one-to-one?

(c) What is the range of T ?

(d) Is T onto?

66. Define T : R3 → R3 by T







x1

x2

x3





 =




x1

x2

−x3


. (See

Exercise 92 in Section 2.7.)

(a) What is the null space of T ?

(b) Is T one-to-one?

(c) What is the range of T ?

(d) Is T onto?

67. Suppose that T : R2 → R2 is linear and has the property

that T (e1) =
[
3
1

]
and T (e2) =

[
4
2

]
.

(a) Determine whether T is one-to-one.

(b) Determine whether T is onto.

68. Suppose that T : R2 → R2 is linear and has the property

that T (e1) =
[
3
1

]
and T (e2) =

[
6
2

]
.

(a) Determine whether T is one-to-one.

(b) Determine whether T is onto.

Exercises 69–75 are concerned with the linear transformations
T : R2 → R3 and U : R3 → R2 defined as

T

([
x1

x2

])
=




x1 + x2

x1 − 3x2

4x1
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and

U







x1

x2

x3





 =

[
x1 − x2 + 4x3

x1 + 3x2

]
.

69. Determine the domain, the codomain, and the rule for UT .

70. Use the rule for UT obtained in Exercise 69 to find the
standard matrix of UT .

71. Determine the standard matrices A and B of T and U ,
respectively.

72. Compute the product BA of the matrices found in
Exercise 71, and illustrate Theorem 2.12 by comparing
your answer with the result obtained in Exercise 70.

73. Determine the domain, the codomain, and the rule for TU .

74. Use the rule for TU obtained in Exercise 73 to find the
standard matrix of TU .

75. Compute the product AB of the matrices found in
Exercise 71, and illustrate Theorem 2.12 by comparing
your answer with the result obtained in Exercise 74.

Exercises 76–82 are concerned with the linear transformations
T : R2 → R2 and U : R2 → R2 defined as

T

([
x1

x2

])
=

[
x1 + 2x2

3x1 − x2

]
and U

([
x1

x2

])
=

[
2x1 − x2

5x2

]
.

76. Determine the domain, the codomain, and the rule for UT .

77. Use the rule for UT obtained in Exercise 76 to find the
standard matrix of UT .

78. Determine the standard matrices A and B of T and U ,
respectively.

79. Compute the product BA of the matrices found in
Exercise 78, and illustrate Theorem 2.12 by comparing
your answer with the result obtained in Exercise 77.

80. Determine the domain, the codomain, and the rule for TU .

81. Use the rule for TU obtained in Exercise 80 to find the
standard matrix of TU .

82. Compute the product AB of the matrices found in
Exercise 78, and illustrate Theorem 2.12 by comparing
your answer with the result obtained in Exercise 81.

In Exercises 83–90, an invertible linear transformation T is
defined. Determine a similar definition for the inverse T −1 of
each linear transformation.

83. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x1 − x2

x1 + x2

]

84. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x1 + 3x2

2x1 + x2

]

85. T : R3 → R3 defined by

T







x1

x2

x3





 =




−x1 + x2 + 3x3

2x1 − x3

−x1 + 2x2 + 5x3




86. T : R3 → R3 defined by

T







x1

x2

x3





 =




x2 − 2x3

x1 − x3

−x1 + 2x2 − 2x3




87. T : R3 → R3 defined by

T







x1

x2

x3





 =




4x1 + x2 − x3

−x1 − x2

−5x1 − 3x2 + x3




88. T : R3 → R3 defined by

T







x1

x2

x3





 =




x1 − x2 + 2x3

−x1 + 2x2 − 3x3

2x1 + x3




89. T : R4 → R4 defined by

T







x1

x2

x3

x4





 =




2x1 − 3x2 − 6x3 + 3x4

3x1 − x2 − 3x3 + 3x4

−3x1 + 3x2 + 5x3 − 3x4

−3x1 + 6x2 + 9x3 − 4x4




90. T : R4 → R4 defined by

T







x1

x2

x3

x4





 =




8x1 − 2x2 + 2x3 − 4x4

−9x1 + 7x2 − 9x3

−16x1 + 8x2 − 10x3 + 4x4

13x1 − 5x2 + 5x3 − 6x4




91. Prove that the composition of two one-to-one linear trans-
formations is one-to-one. Is the result true if the transfor-
mations are not linear? Justify your answer.

92. Prove that if two linear transformations are onto, then their
composition is onto. Is the result true if the transforma-
tions are not linear? Justify your answer.

93. In R2, show that the composition of two reflections about
the x -axis is the identity transformation.

94. In R2, show that a reflection about the y-axis followed
by a rotation by 180◦ is equal to a reflection about the
x -axis.

95. In R2, show that the composition of the projection on
the x -axis followed by the reflection about the y-axis is
equal to the composition of the reflection about the y-axis
followed by the projection on the x -axis.

96. Prove that the composition of two shear transformations
is a shear transformation. (See Example 4 of Section 2.7.)

97. Suppose that T : Rn → Rm is linear and one-to-one. Let
{v1, v2, . . . , vk } be a linearly independent subset of Rn .

(a) Prove that the set {T (v1), T (v2), . . . , T (vk )} is a lin-
early independent subset of Rm .

(b) Show by example that (a) is false if T is not one-to-
one.

98. Use Theorem 2.12 to prove that matrix multiplication is
associative.

In Exercises 99 and 100, use either a calculator with matrix
capabilities or computer software such as MATLAB to solve each
problem.

99. The linear transformations T , U : R4 → R4 are defined
as follows:

T







x1

x2

x3

x4





 =




x1 + 3x2 − 2x3 + x4

3x1 + 4x3 + x4

2x1 − x2 + 2x4

x3 + x4
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and

U







x1

x2

x3

x4





 =




x2 − 3x4

2x1 + x3 − x4

x1 − 2x2 + 4x4

5x2 + x3




(a) Compute the standard matrices A and B of T and U ,
respectively.

(b) Compute the product AB .

(c) Use your answer to (b) to write a rule for TU .

100. Define the linear transformation T : R4 → R4 by the rule

T







x1

x2

x3

x4





 =




2x1 + 4x2 + x3 + 6x4

3x1 + 7x2 − x3 + 11x4

x1 + 2x2 + 2x4

2x1 + 5x2 − x3 + 8x4


 .

(a) Find the standard matrix A of T .

(b) Show that A is invertible and find its inverse.

(c) Use your answer to (b) to find the rule for T −1.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. The standard matrix of T is A =



3 −1
−1 2

2 0


.

(a) Since the columns of A form a generating set for the
range of T , the desired generating set is







3
−1

2


 ,




−1
2
0





 .

(b) The null space of A is the solution set of Ax = 0.

Since the reduced row echelon form of A is




1 0
0 1
0 0


,

we see that the general solution of Ax = 0 is

x1 = 0

x2 = 0.

Hence the null space of T is {0}, so a generating set
for the null space of T is {0}.

(c) From (b), we see that the rank of A is 2. Since
Theorem 2.10 implies that T is onto if and only if
the rank of A is 3, we see that T is not onto.

(d) From (b), we see that the null space of T is {0}. Hence
T is one-to-one by Theorem 2.11.

2. The standard matrices of T and U are

A =



3 −1
−1 2

2 0


 and B =

[
0 1 −4
2 0 3

]
,

respectively. Hence, by Theorem 2.12(a), the standard
matrix of UT is

BA =
[−9 2

12 −2

]
.

Therefore

UT

([
x1

x2

])
=

[−9 2
12 −2

] [
x1

x2

]
=

[−9x1 + 2x2

12x1 − 2x2

]
.

3. The standard matrix of T is A =
[
1 4
2 7

]
. Because the

rank of A is 2, A is invertible. In fact, A−1 =
[−7 4

2 −1

]
.

Hence, by Theorem 2.13, T is invertible, and

T−1
([

x1

x2

])
=

[−7 4
2 −1

] [
x1

x2

]
=

[−7x1 + 4x2

2x1 − x2

]
.

CHAPTER 2 REVIEW EXERCISES

In Exercises 1–21, determine whether the statements
are true or false.

1. A symmetric matrix equals its transpose.

2. If a symmetric matrix is written in block form, then the
blocks are also symmetric matrices.

3. The product of square matrices is always defined.

4. The transpose of an invertible matrix is invertible.

5. It is possible for an invertible matrix to have two distinct
inverses.

6. The sum of an invertible matrix and its inverse is the zero
matrix.

7. The columns of an invertible matrix are linearly indepen-
dent.

8. If a matrix is invertible, then its rank equals the number
of its rows.
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9. A matrix is invertible if and only if its reduced row ech-
elon form is an identity matrix.

10. If A is an n × n matrix and the system Ax = b is consis-
tent for some b, then A is invertible.

11. The range of a linear transformation is contained in the
codomain of the linear transformation.

12. The null space of a linear transformation is contained in
the codomain of the linear transformation.

13. Linear transformations preserve linear combinations.

14. Linear transformations preserve linearly independent sets.

15. Every linear transformation has a standard matrix.

16. The zero transformation is the only linear transformation
whose standard matrix is the zero matrix.

17. If a linear transformation is one-to-one, then it is inver-
tible.

18. If a linear transformation is onto, then its range equals its
codomain.

19. If a linear transformation is one-to-one, then its range
consists exactly of the zero vector.

20. If a linear transformation is onto, then the rows of its
standard matrix form a generating set for its codomain.

21. If a linear transformation is one-to-one, then the columns
of its standard matrix form a linearly independent set.

22. Determine whether each phrase is a misuse of terminol-
ogy. If so, explain what is wrong.

(a) the range of a matrix

(b) the standard matrix of a function f : Rn → Rn

(c) a generating set for the range of a linear transforma-
tion

(d) the null space of a system of linear equations

(e) a one-to-one matrix

23. Let A be an m × n matrix and B be a p × q matrix.

(a) Under what conditions is the matrix product BA
defined?

(b) If BA is defined, what size is it?

In Exercises 24–35, use the given matrices to compute each
expression, or give a reason why the expression is not defined.

A =
[
2 1
4 −1

]
, B =

[
2 3
4 6

]
, C =




2 −1
3 5
0 1


 ,

u =



3
2

−1


 , v = [

1 −2 2
]
, and w =

[
3
4

]

24. Aw 25. ABA 26. Au

27. Cw 28. vC 29. vA

30. AT B 31. A−1BT 32. B−1w

33. AC T u 34. B3 35. u2

In Exercises 36 and 37, compute the product of the matrices in
block form.

36.




1 0 3 1
0 1 2 4
0 0 2 1
0 0 −1 3







1 −1 0 0
2 1 0 0
0 0 2 0
0 0 0 2




37.
[

I2 −I2
]



1
3

−7
−4




In Exercises 38 and 39, determine whether each matrix is invert-
ible. If so, find its inverse; if not, explain why not.

38.




1 0 2
2 −1 3
4 1 8


 39.




2 −1 3
1 2 −4
4 3 5




40. Let A and B be square matrices of the same size. Prove
that if the first row of A is zero, then the first row of AB
is zero.

41. Let A and B be square matrices of the same size. Prove
that if the first column of B is zero, then the first column
of AB is zero.

42. Give examples of 2 × 2 matrices A and B such that A and
B are invertible, and (A + B )−1 �= A−1 + B−1.

In Exercises 43 and 44, systems of equations are given. First
use the appropriate matrix inverse to solve each system, and
then use Gaussian elimination to check your answer.

43.
2x1 + x2 = 3
x1 + x2 = 5

44.
x1 + x2 + x3 = 3
x1 + 3x2 + 4x3 = −1

2x1 + 4x2 + x3 = 2

45. Suppose that the reduced row echelon form R and three
columns of A are given by

R =



1 2 0 0 −2
0 0 1 0 3
0 0 0 1 1


 , a1 =




3
5
2


 ,

a3 =



2
0

−1


 , and a4 =




2
−1

3


 .

Determine the matrix A.

Exercises 46–49 refer to the following matrices:

A =
[
2 −1 3
4 0 −2

]
and B =




4 2
1 −3
0 1




46. Find the range and codomain of the matrix transformation
TA.

47. Find the range and codomain of the matrix transformation
TB .
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48. Compute TA







2
0
3





.

49. Compute TB

([
4
2

])
.

In Exercises 50–53, a linear transformation is given. Compute
its standard matrix.

50. T : R2 → R2 defined by T

([
x1

x2

])
=

[
3x1 − x2

4x1

]

51. T : R3 → R2 defined by T







x1

x2

x3





 =

[
2x1 − x3

4x1

]

52. T : R2 → R2 defined by T (v) = 6v for all v in R2

53. T : R2 → R2 defined by T (v) = 2v + U (v) for all v
in R2, where U : R2 → R2is the linear transformation

defined by U

([
x1

x2

])
=

[
2x1 + x2

3x1

]

In Exercises 54–57, a function T : Rn → Rm is given. Either
prove that T is linear or explain why T is not linear.

54. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x1 + 1

x2

]

55. T : R2 → R2 defined by T

([
x1

x2

])
=

[
2x2

x1

]

56. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x1x2

x1

]

57. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + x2

x3

]

In Exercises 58 and 59, find a generating set for the range of
each linear transformation T .

58. T : R2 → R3 defined by T

([
x1

x2

])
=




x1 + x2

0
2x1 − x2




59. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + 2x2

x2 − x3

]

In Exercises 60 and 61, find a generating set for the null space
of each linear transformation T . Use your answer to determine
whether T is one-to-one.

60. T : R2 → R3 defined by T

([
x1

x2

])
=




x1 + x2

0
2x1 − x2




61. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + 2x2

x2 − x3

]

In Exercises 62 and 63, find the standard matrix of each linear
transformation T , and use it to determine whether T is one-to-
one.

62. T : R3 → R2 defined by T







x1

x2

x3





 =

[
x1 + 2x2

x2 − x3

]

63. T : R2 → R3 defined by T

([
x1

x2

])
=




x1 + x2

0
2x1 − x2




In Exercises 64 and 65, find the standard matrix of each linear
transformation T , and use it to determine whether T is onto.

64. T : R3 → R2 defined by T







x1

x2

x3





 =

[
2x1 + x3

x1 + x2 − x3

]

65. T : R2 → R3 defined by T

([
x1

x2

])
=




3x1 − x2

x2

x1 + x2




Exercises 66–72 are concerned with the linear transformations
T : R3 → R2 and U : R2 → R3 defined by

T







x1

x2

x3





 =

[
2x1 + x3

x1 + x2 − x3

]

and

U

([
x1

x2

])
=




3x1 − x2

x2

x1 + x2


 .

66. Determine the domain, codomain, and the rule for UT .

67. Use the rule for UT obtained in Exercise 66 to find the
standard matrix of UT .

68. Determine the standard matrices A and B of T and U ,
respectively.

69. Compute the product BA of the matrices found in Exercise
68, and illustrate Theorem 2.12 by comparing this answer
with the result of Exercise 67.

70. Determine the domain, codomain, and the rule for TU .

71. Use the rule for TU obtained in Exercise 70 to find the
standard matrix of TU .

72. Compute the product AB of the matrices found in Exercise
68, and illustrate Theorem 2.12 by comparing this answer
with the result of Exercise 71.

In Exercises 73 and 74, an invertible linear transformation T is
defined. Determine a similar definition for T −1.

73. T : R2 → R2 defined by T

([
x1

x2

])
=

[
x1 + 2x2

−x1 + 3x2

]

74. T : R3 → R3 defined by T







x1

x2

x3





=




x1 + x2 + x3

x1 + 3x2 + 4x3

2x1 + 4x2 + x3
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CHAPTER 2 MATLAB EXERCISES

For the following exercises, use MATLAB (or comparable software) or a calculator with matrix capabilities. The MATLAB
functions in Tables D.1, D.2, D.3, D.4, and D.5 of Appendix D may be useful.

1. Let

A =




1 −1 2 1 3
0 1 1 0 1
1 2 0 −1 3
4 0 1 0 −2

−1 1 2 1 −3




,

B =



1 −1 2 3 1
1 0 1 2 2

−1 0 2 1 −1


 ,

C =



2 −1 1 2 3
1 −1 0 1 2
3 1 2 3 −1


 ,

D =




2 3 −1
1 0 4

−1 0 2
2 1 1
1 2 3




, and v =




1
3
1

−1
4




.

Compute each of the following matrices or vectors.

(a) AD (b) DB (c) (ABT )C

(d) A(BT C ) (e) D(B − 2C ) (f) Av

(g) C (Av) (h) (CA)v (i) A3

2. Suppose that

A =




0 .3 .5 .6 .3 0
.7 0 0 0 0 0
0 .9 0 0 0 0
0 0 .8 0 0 0
0 0 0 .3 0 0
0 0 0 0 .1 0




is the Leslie matrix for a colony of an animal species liv-
ing in an isolated region, where each time period is equal
to one year.

(a) Compute A10, A100, and A500. On the basis of your
results, what do you predict will be the ultimate fate
of the colony?

(b) Now suppose that each year, a particular population
of the species immigrates into the region from the
outside, and that the distribution of females in this
immigration is described by the vector b. Assume
that the original population of females in the region
is given by the population distribution x0, and after n
years, the population distribution is xn .

(i) Prove that, for any positive integer n,

xn = Axn−1 + b.

(ii) Assume that

x0 =




3.1
2.2
4.3
2.4
1.8
0.0




and b =




0
1.1
2.1

0
0
0




,

where each unit represents 1000 females. Com-
pute the population distributions x1, x2, x3, x4,
and x5.

(iii) Prove that, for any positive integer n,

xn = Anx0 + (A − I6)
−1(An − I6)b,

and use this formula to recompute x5, requested
in (ii). Hint for the proof: Apply either the for-
mula for the sum of terms of a geometric series
or the principle of mathematical induction.

(iv) Suppose that after n years, the population is sta-
ble, that is, xn+1 = xn . Prove that

xn = (I6 − A)−1b.

Use this result to predict the stable distribution
of females for the vector b given in (ii).

3. Let

A =




0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0




be the matrix that describes flights between a set of 8
airports. For each i and j , aij = 1 if there is a regularly
scheduled flight from airport i to airport j , and aij = 0
otherwise. Notice that if there is a regularly scheduled
flight from airport i to airport j , then there is a regu-
larly scheduled flight in the opposite direction, and hence
A is symmetric. Use the method described on page 113
to divide the airports into subsets so that one can fly,
with possible connecting flights, between any two airports
within a subset, but not to an airport outside of the subset.

4. Let

A =




1 2 3 2 1 1 1
2 4 1 −1 2 1 −2
1 2 2 1 1 −1 2
1 2 1 0 1 1 −1

−1 −2 1 2 1 2 −2




.

(a) Use the MATLAB function rref(A) to obtain the
reduced row echelon form R of A.
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(b) Use the function null(A, ′r′), described in Table D.2
of Appendix D, to obtain a matrix S whose columns
form a basis for Null A.

(c) Compare S and R, and outline a procedure that can be
applied in general to obtain S from R without solv-
ing the equation Rx = 0. Apply your procedure to the
matrix R in (a) to obtain the matrix S in (b).

5. Read Example 3 of Appendix D, which describes a
method for obtaining an invertible matrix P for a given
matrix A such that PA is the reduced row echelon form
of A.

(a) Justify the method.

(b) Apply the method to the matrix A in Exercise 6.

6. Let

A =




1 2 3 1 3 2
2 0 2 −1 0 3

−1 1 0 0 −1 0
2 1 3 1 4 2
4 4 8 1 6 6




.

(a) Compute M , the matrix of pivot columns of A listed
in the same order. For example, you can use the
imported MATLAB function pvtcol(A), described
in Table D.5 of Appendix D, to obtain M .

(b) Compute R, the reduced row echelon form of A, and
obtain the matrix S from R by deleting the zero rows
of R.

(c) Prove that the matrix product MS is defined.

(d) Verify that MS = A.

(e) Show that for any matrix A, if M and S are obtained
from A by the methods described in (a) and (b), then
MS = A.

7. Let

A =




1 1 1 1 2
1 2 1 1 2

−1 −1 0 −1 −2
2 3 2 2 5
2 2 2 3 4




and

B =




1 −1 2 4 0 2 1
0 1 −2 3 4 −1 −1

−3 1 0 2 −1 4 2
0 0 2 1 −1 3 2
2 −1 1 0 2 1 3




.

(a) Compute A−1B by using the algorithm in Section 2.4.

(b) Compute A−1B directly by computing A−1 and the
product of A−1 and B .

(c) Compare your results in (a) and (b).

8. Let

A =




1 −1 2 0 −2 4
2 1 1 −2 1 3
1 0 −1 3 −3 2
2 −1 1 1 2 3


 and b =




5
4
9

11


 .

(a) Obtain an LU decomposition of A.

(b) Use the LU decomposition obtained in (a) to solve
the system Ax = b.

9. Let T : R6 → R6 be the linear transformation defined by
the rule

T







x1

x2

x3

x4

x5

x6







=




x1 + 2x2 + x4 − 3x5 − 2x6

x2 − x4

x1 + x3 + 3x6

2x1 + 4x2 + 3x4 − 6x5 − 4x6

3x1 + 2x2 + 2x3 + x4 − 2x5 − 4x6

4x1 + 4x2 + 2x3 + 2x4 − 5x5 + 3x6




.

(a) Find the standard matrix A of T .

(b) Show that A is invertible and find its inverse.

(c) Use your answer to (b) to find the rule for T −1.

10. Let U : R6 → R4 be the linear transformation defined
by the rule

U







x1

x2

x3

x4

x5

x6







=




x1 + 2x3 + x6

2x1 − x2 + x4

3x2 − x5

2x1 + x2 − x3 + x6


 ,

let T be the linear transformation in Exercise 9, and let A
be the standard matrix of T .

(a) Find the standard matrix B of U .

(b) Use A and B to find the standard matrix of UT .

(c) Find the rule for UT .

(d) Find the rule for UT −1.
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3 INTRODUCTION

Geographic information systems (GIS) have
fundamentally changed the way cartogra-
phers and geographical analysts do their
jobs. A GIS is a computer system capable of
capturing, storing, analyzing, and displaying
geographic data and geographically refer-
enced information (data identified accord-
ing to location). Calculations and analyses
that would take hours or days if done by
hand can be done in minutes with a GIS.

The figure at the left, which shows the boundary

of a county (heavy line) and the boundary of a state

forest (light line), illustrates a relatively simple GIS

analysis. In this analysis, the goal is to answer the

question: How much of the forest is in the county?

In particular, we need to compute the area of the

shaded region, whose boundary is a polygon (a

figure composed of connected line segments). This

problem can be solved using determinants.

As explained in Section 3.1, the area of the

parallelogram having the vectors u and v as adjacent

sides is | det[u v]|. Because the area of the triangle

having u and v as adjacent sides is half that of the

parallelogram with u and v as adjacent sides, the area of this triangle is
1
2 | det [u v]|. Thus if a triangle has vertices at the points (0, 0), (a , b), and (c,

d ) as shown in the figure at the left on page 198, then its area is ±1
2 det A,

where A =
[

a c

b d

]
. The value of det A is positive if the vertices (0, 0),

From Chapter 3 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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(a , b), and (c, d ) are in a counterclockwise order, and
negative if the positions of (a , b) and (c, d ) are reversed.

(0, 0) (a, b)

(c, d)

This geometric interpretation of the determinant
can be used to find the areas of complex polygonal
regions, such as the intersection of the forest and the
county. A simple example is shown in the figure at the
right. Translate the polygon so that one of its vertices
P0 is at the origin, and label its successive vertices in
a counter-clockwise order around the boundary. Then
half the sum of the determinants

det




xi xi+1

yi yi+1




for i = 1, 2, . . . , 6 gives the area of the polygon.

P3 � (x3 , y3) P2 � (x2 , y2)

P5 � (x5 , y5)

P4 � (x4 , y4)

P6 � (x6 , y6)

P1 � (x1 , y1)P0 � (x0 , y0)

P7 � (x7 , y7)
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CHAPTER

3 DETERMINANTS

The determinant1 of a square matrix is a scalar that provides information about
the matrix, such as whether or not the matrix is invertible. Determinants were
first considered in the late seventeenth century. For over one hundred years

thereafter, they were studied principally because of their connection to systems of
linear equations. The best-known result involving determinants and systems of linear
equations is Cramer’s rule, presented in Section 3.2.

In recent years, the use of determinants as a computational tool has greatly dimin-
ished. This is primarily because the size of the systems of linear equations that arise
in applications has increased greatly, requiring the use of high-speed computers and
efficient computational algorithms to obtain solutions. Since calculations with deter-
minants are usually inefficient, they are normally avoided. Although determinants can
be used to compute the areas and volumes of geometric objects, our principal use of
determinants in this book is to determine the eigenvalues of a square matrix (to be
discussed in Chapter 5).

3.1 COFACTOR EXPANSION
We begin this section by showing that we can assign a scalar to a 2 × 2 matrix that
tells us whether or not the matrix is invertible. We then generalize this to n × n
matrices.

Consider the 2 × 2 matrices

A =
[
a b
c d

]
and C =

[
d −b

−c a

]
.

We see that

AC =
[
a b
c d

] [
d −b

−c a

]
=

[
ad − bc 0

0 ad − bc

]
= (ad − bc)

[
1 0
0 1

]
,

and similarly,

CA =
[

d −b
−c a

] [
a b
c d

]
=

[
ad − bc 0

0 ad − bc

]
= (ad − bc)

[
1 0
0 1

]
.

1 Although work with determinants can be found in ancient China and in the writings of Gabriel Cramer
in 1750, the study of determinants dates mainly from the early nineteenth century. In an 84-page
paper presented to the French Institut in 1812, Augustin-Louis Cauchy (1789–1857) introduced the
term determinant and proved many of the well-known results about determinants. He also used
modern double-subscript notation for matrices and showed how to evaluate a determinant by cofactor
expansion.
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Thus if ad − bc �= 0, the matrix
1

ad − bc
C is the inverse of A, and so A is in-

vertible.
Conversely, suppose that ad − bc = 0. The previous calculations show that AC

and CA equal O , the 2 × 2 zero matrix. We show by contradiction that A is not
invertible. For if A were invertible, then

C = CI2 = C (AA−1) = (CA)A−1 = OA−1 = O ,

and so all the entries of C are equal to 0. It follows that all the entries of A equal 0;
that is, A = O , contradicting that A is invertible.

We summarize these results.

The matrix A =
[
a b
c d

]
is invertible if and only if ad − bc �= 0, in which case

A−1 = 1

ad − bc

[
d −b

−c a

]
.

Thus the scalar ad − bc determines whether or not the preceding matrix A is
invertible. We call the scalar ad − bc the determinant of A and denote it by det A
or |A|.

Example 1 For

A =
[
1 2
3 4

]
and B =

[
1 2
3 6

]
,

the determinants are

det A = 1 · 4 − 2 · 3 = −2 and det B = 1 · 6 − 2 · 3 = 0.

Thus A is invertible, but B is not.
Since A is invertible, we can compute its inverse

A−1 = 1

−2

[
4 −2

−3 1

]
=

[
−2 1

3
2 − 1

2

]
.

Practice Problem 1 � Evaluate the determinant of

[
8 3

−6 5

]
. Is this matrix invertible? If so, compute A−1. �

Example 2 Determine the scalars c for which A − cI2 is not invertible, where

A =
[

11 12
−8 −9

]
.

Solution The matrix A − cI2 has the form

A − cI2 =
[

11 12
−8 −9

]
− c

[
1 0
0 1

]
=

[
11 − c 12

−8 −9 − c

]
.

200



3.1 Cofactor Expansion 201

Although we can use elementary row operations to determine the values of c for which
this matrix is not invertible, the presence of the unknown scalar c makes the calculations
difficult. By using the determinant instead, we obtain an easier computation. Since

det (A − cI2) = det

[
11 − c 12

−8 −9 − c

]

= (11 − c)(−9 − c) − 12(−8)

= (c2 − 2c − 99) + 96

= c2 − 2c − 3

= (c + 1)(c − 3),

we see that det (A − cI2) = 0 if and only if c = −1 or c = 3. Thus A − cI2 is not
invertible when c = −1 or c = 3. Calculate A − (−1)I2 and A + 3I2 to verify that
these matrices are not invertible.

Practice Problem 2 � Determine the scalars c for which A − cI2 is not invertible, where

A =
[

4 6
−1 −3

]
.

�

Our principal use of determinants in this book is to calculate the scalars c for
which a matrix A − cIn is not invertible, as in Example 2. In order to have such a test
for n × n matrices, we must extend the definition of determinants to square matrices
of any size so that a nonzero determinant is equivalent to invertibility. For 1 × 1
matrices, the appropriate definition is not hard to discover. Since the product of 1 × 1
matrices satisfies [a][b] = [ab], we see that [a] is invertible if and only if a �= 0.
Hence for a 1 × 1 matrix [a], we define the determinant of [a] by det [a] = a .

Unfortunately, for n ≥ 3, the determinant of an n × n matrix A is more complicated
to define. To begin, we need additional notation. First, we define the (n − 1) × (n − 1)
matrix Aij to be the matrix obtained from A by deleting row i and column j .

Aij =




a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

an1 · · · anj · · · ann




column j

row i�

�

Thus, for example, if

A =



1 2 3
4 5 6
7 9 8


 ,

then

A12 =
[
4 6
7 8

]
, A21 =

[
2 3
9 8

]
, A23 =

[
1 2
7 9

]
, and A33 =

[
1 2
4 5

]
.
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We can express the determinant of a 2 × 2 matrix by using these matrices. For if

A =
[
a b
c d

]
,

then A11 = [d ] and A12 = [c]. Thus

det A = ad − bc = a · detA11 − b · det A12. (1)

Notice that this representation expresses the determinant of the 2 × 2 matrix A in
terms of the determinants of the 1 × 1 matrices Aij .

Using equation (1) as a motivation, we define the determinant of an n × n matrix
A for n ≥ 3 by

det A = a11 · det A11 − a12 · det A12 + · · · + (−1)1+na1n · det A1n . (2)

We denote the determinant of A by det A or |A|. Note that the expression on the
right side of equation (2) is an alternating sum of products of entries from the first
row of A multiplied by the determinant of the corresponding matrix A1j . If we let
cij = (−1)i+j · det Aij , then our definition of the determinant of A can be written as

detA = a11c11 + a12c12 + · · · + a1nc1n . (3)

The number cij is called the (i, j)-cofactor of A, and equation (3) is called the cofactor
expansion of A along the first row.

Equations (1) and (2) define the determinant of an n × n matrix recursively. That
is, the determinant of a matrix is defined in terms of determinants of smaller matrices.
For example, if we want to compute the determinant of a 4 × 4 matrix A, equation (2)
enables us to express the determinant of A in terms of determinants of 3 × 3 matrices.
The determinants of these 3 × 3 matrices can then be expressed by equation (2) in
terms of determinants of 2 × 2 matrices, and the determinants of these 2 × 2 matrices
can finally be evaluated by equation (1).

Example 3 Evaluate the determinant of A by using the cofactor expansion along the first row, if

A =



1 2 3
4 5 6
7 9 8


 .

Solution The cofactor expansion of A along the first row yields

detA = a11c11 + a12c12 + a13c13

= 1(−1)1+1 detA11 + 2(−1)1+2 det A12 + 3(−1)1+3 detA13

= 1(−1)1+1 det

[
5 6
9 8

]
+ 2(−1)1+2 det

[
4 6
7 8

]
+ 3(−1)1+3 det

[
4 5
7 9

]

= 1(1)(5 · 8 − 6 · 9) + 2(−1)(4 · 8 − 6 · 7) + 3(1)(4 · 9 − 5 · 7)

= 1(1)(−14) + (2)(−1)(−10) + 3(1)(1)

= −14 + 20 + 3

= 9.
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As we illustrate in Example 5, it is often more efficient to evaluate a deter-
minant by cofactor expansion along a row other than the first row. The impor-
tant result presented next enables us to do this. (For a proof of this theorem,
see [4].)

THEOREM 3.1

For any i = 1, 2, . . . , n , we have

det A = ai1ci1 + ai2ci2 + · · · + aincin ,

where cij denotes the (i , j )-cofactor of A.

The expression ai1ci1 + ai2ci2 + · · · + aincin in Theorem 3.1 is called the cofac-
tor expansion of A along row i . Thus the determinant of an n × n matrix can be
evaluated using a cofactor expansion along any row.

Example 4 To illustrate Theorem 3.1, we compute the determinant of the matrix

A =



1 2 3
4 5 6
7 9 8




in Example 3 by using the cofactor expansion along the second row.

Solution Using the cofactor expansion of A along the second row, we have

det A = a21c21 + a22c22 + a23c23

= 4(−1)2+1 detA21 + 5(−1)2+2 det A22 + 6(−1)2+3 det A23

= 4(−1)2+1 det

[
2 3
9 8

]
+ 5(−1)2+2 det

[
1 3
7 8

]
+ 6(−1)2+3 det

[
1 2
7 9

]

= 4(−1)(2 · 8 − 3 · 9) + 5(1)(1 · 8 − 3 · 7) + 6(−1)(1 · 9 − 2 · 7)

= 4(−1)(−11) + 5(1)(−13) + (6)(−1)(−5)

= 44 − 65 + 30

= 9.

Note that we obtained the same value for detA as in Example 3.

Practice Problem 3 � Evaluate the determinant of



1 3 −3
−3 −5 2
−4 4 −6




by using the cofactor expansion along the second row. �
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Example 5 Let

M =




1 2 3 8 5
4 5 6 9 1
7 9 8 4 7
0 0 0 1 0
0 0 0 0 1




.

Since the last row of M has only one nonzero entry, the cofactor expansion of M
along the last row has only one nonzero term. Thus the cofactor expansion of M along
the last row involves only one-fifth the work of the cofactor expansion along the first
row. Using the last row, we obtain

det M = 0 + 0 + 0 + 0 + 1(−1)5+5 det M55 = detM55 = det




1 2 3 8
4 5 6 9
7 9 8 4
0 0 0 1


 .

Once again, we use the cofactor expansion along the last row to compute
detM55.

det M = det




1 2 3 8
4 5 6 9
7 9 8 4
0 0 0 1


 = 0 + 0 + 0 + 1(−1)4+4 det




1 2 3
4 5 6
7 9 8


 = detA

Here, A is the matrix in Example 3. Thus detM = detA = 9.
Note that M has the form

M =
[
A B
O I2

]
,

where

A =



1 2 3
4 5 6
7 9 8


 and B =




8 5
9 1
4 7


 .

More generally, the approach used in the preceding paragraph can be used to show
that for any m × m matrix A and m × n matrix B ,

det

[
A B
O In

]
= det A.

Evaluating the determinant of an arbitrary matrix by cofactor expansion is ex-
tremely inefficient. In fact, it can be shown that the cofactor expansion of an arbitrary
n × n matrix requires approximately e · n! arithmetic operations, where e is the base
of the natural logarithm. Suppose that we have a computer capable of performing
1 billion arithmetic operations per second and we use it to evaluate the cofactor
expansion of a 20 × 20 matrix (which in applied problems is a relatively small matrix).
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3.1 Cofactor Expansion 205

For such a computer, the amount of time required to perform this calculation is
approximately

e · 20!

109
seconds > 6.613 · 109 seconds

> 1.837 · 106 hours

> 76,542 days

> 209 years.

If determinants are to be of practical value, we must have an efficient method
for evaluating them. The key to developing such a method is to observe that we can
easily evaluate the determinant of a matrix such as

B =




3 −4 −7 −5
0 8 −2 6
0 0 9 −1
0 0 0 4


 .

If we repeatedly evaluate the determinant by a cofactor expansion along the last row,
we obtain

det B = det




3 −4 −7 −5
0 8 −2 6
0 0 9 −1
0 0 0 4


 = 4(−1)4+4 · det




3 −4 −7
0 8 −2
0 0 9




= 4 · 9(−1)3+3 · det

[
3 −4
0 8

]

= 4 · 9 · 8(−1)2+2 · det [3]

= 4 · 9 · 8 · 3.

In Section 2.6, we defined a matrix to be upper triangular if all its entries to
the left and below the diagonal entries are zero, and to be lower triangular if all its
entries to the right and above the diagonal entries are zero. The previous matrix B is
an upper triangular 4 × 4 matrix, and its determinant equals the product of its diagonal
entries. The determinant of any such matrix can be computed in a similar fashion.

THEOREM 3.2

The determinant of an upper triangular n × n matrix or a lower triangular n × n
matrix equals the product of its diagonal entries.

An important consequence of Theorem 3.2 is that det In = 1.

Example 6 Compute the determinants of

A =




−2 0 0 0
8 7 0 0

−6 −1 −3 0
4 3 9 5


 and B =




2 3 4
0 5 6
0 0 7


 .
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Solution Since A is a lower triangular 4 × 4 matrix and B is an upper triangular
3 × 3 matrix, we have

det A = (−2)(7)(−3)(5) = 210 and det B = 2 · 5 · 7 = 70.

Practice Problem 4 � Evaluate the determinant of the matrix



4 0 0 0
−2 −1 0 0

8 7 −2 0
9 −5 6 3


 .

�

GEOMETRIC APPLICATIONS OF THE DETERMINANT∗

Two vectors u and v in R2 determine a parallelogram having u and v as adjacent
sides. (See Figure 3.1.) We call this the parallelogram determined by u and v. Note
that if this parallelogram is rotated through the angle θ in Figure 3.1, we obtain the
parallelogram determined by u′ and v′ in Figure 3.2.

�

u

v

y

x

Figure 3.1 The parallelogram deter-
mined by u and v

y

u2

v1

x

u� � 
u1

u2

v� � 
v1

0

Figure 3.2 A rotation of the parallel-
ogram determined by u and v

Suppose that

u′ =
[
u1

u2

]
and v′ =

[
v1

0

]
.

Then the parallelogram determined by u′ and v′ has base v1 and height u2, so its
area is

v1u2 =
∣∣∣∣det

[
u1 v1

u2 0

]∣∣∣∣ = | det [u′ v′]|.

Because a rotation maps a parallelogram into a congruent parallelogram, the
parallelogram determined by u and v has the same area as that determined by u′
and v′. Recall that multiplying by the rotation matrix Aθ rotates a vector by the
angle θ . Using the facts that det AB = (detA)(det B ) for any 2 × 2 matrices A and B
(Exercise 71) and det Aθ = 1 (Exercise 65), we see that the area of the parallelogram

∗ The remainder of this section may be omitted without loss of continuity.
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determined by u and v is

| det [u′ v′]| = | det [Aθu Aθv]|
= | det (Aθ [u v])|
= |(det Aθ )(det[u v])|
= |(1)(det [u v])|
= | det [u v]|.

The area of the parallelogram determined by u and v is | det [u v]|.

Moreover, a corresponding result can be proved for Rn by using the appropriate
n-dimensional analog of area.

Example 7 The area of the parallelogram in R2 determined by the vectors
[−2

3

]
and

[
1
5

]

is ∣∣∣∣det

[−2 1
3 5

]∣∣∣∣ = |(−2)(5) − (1)(3)| = | − 13| = 13.

Example 8 The volume of the parallelepiped in R3 determined by the vectors



1
1
1


 ,




1
−2

1


 , and




1
0

−1




is ∣∣∣∣∣∣
det




1 1 1
1 −2 0
1 1 −1




∣∣∣∣∣∣
= 6.

Note that the object in question is a rectangular parallelepiped with sides of length√
3,

√
6, and

√
2. (See Figure 3.3.) Hence, by the familiar formula for volume, its

volume should be
√

3 · √
6 · √

2 = 6, as the determinant calculation shows.

z

y

x

1 
�2 

1

1 
1 
1

1 
0 

�1

Figure 3.3 The parallelepiped determined by 3 vectors in R3
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Practice Problem 5 � What is the area of the parallelogram in R2 determined by the vectors

[
4
3

]
and

[
2
5

]
?

�

The points on or within the parallelogram in R2 determined by u and v can
be written in the form au + bv, where a and b are scalars such that 0 ≤ a ≤ 1 and
0 ≤ b ≤ 1. (See Figure 3.4.) If T : R2 → R2 is a linear transformation, then

T (au + bv) = aT (u) + bT (v).

y

x

bv

au

v

u

au � bv

Figure 3.4 Points within the parallelogram determined by u and v

Hence the image under T of the parallelogram determined by u and v is the parallel-
ogram determined by T (u) and T (v). The area of this parallelogram is

| det [T (u) T (v)]| = | det [Au Av]| = | det A[u v]| = | det A| · | det [u v]|,

where A is the standard matrix of T . Thus the area of the image parallelogram is
| detA| times larger than that of the parallelogram determined by u and v. (If T is
not invertible, then det A = 0, and the parallelogram determined by T (u) and T (v) is
degenerate.)

More generally, the area of any “sufficiently nice” region R in R2 can be approx-
imated as the sum of the areas of rectangles. In fact, as the lengths of the sides of
these rectangles approach zero, the sum of the areas of the rectangles approaches the
area of R. Hence the area of the image of R under T equals | detA| times the area
of R. A corresponding theorem can be proved about the volume of a region in R3

with similar properties. In fact, by the appropriate n-dimensional analog of volume,
the following result is true:

If R is a “sufficiently nice” region in Rn and T : Rn → Rn is an invertible linear
transformation with standard matrix A, then the n-dimensional volume of the
image of R under T equals | det A| times the n-dimensional volume of R.

This result plays a crucial role when we make a change of variables in calculus.
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EXERCISES

In Exercises 1–8, compute the determinant of each matrix.

1.

[
6 2

−3 −1

]
2.

[
4 5
3 −7

]
3.

[−2 9
1 8

]

4.

[
9 −2
3 4

]
5.

[−5 −6
10 12

]
6.

[−7 8
4 −5

]

7.

[
4 3

−2 −1

]
8.

[
4 −2
3 −1

]

In Exercises 9–12, compute each indicated cofactor of the matrix

A =



9 −2 4
−1 6 3

7 8 −5


 .

9. the (1, 2)-cofactor 10. the (2, 3)-cofactor
11. the (3, 1)-cofactor 12. the (3, 3)-cofactor

In Exercises 13–20, compute the determinant of each matrix A
by a cofactor expansion along the indicated row.

13.




2 −1 3
1 4 −2

−1 0 1




along the first row

14.




1 −2 2
2 −1 3
0 1 −1




along the second row

15.




1 −2 2
2 −1 3
0 1 −1




along the third row

16.




2 −1 3
1 4 −2

−1 0 1




along the third row

17.




1 4 −3
5 0 0
2 0 −1




along the second row

18.




4 1 0
0 3 −2
2 0 5




along the first row

19.




1 2 1 −1
0 −1 0 1
4 −3 2 −1
0 3 0 −2




along the second row

20.




0 −1 0 1
−2 3 1 4

1 −2 2 3
0 1 0 −2




along the fourth row

In Exercises 21–28, compute each determinant by any legitimate
method.

21.




4 −1 2
0 3 7
0 0 5


 22.




8 0 0
−1 −2 0

4 5 3




23.




−6 0 0
7 −3 2
2 9 4


 24.




7 1 8
0 −3 4
0 0 −2




25.




2 3 4
5 6 1
7 0 0


 26.




5 1 1
0 2 0
6 −4 3




27.




−2 −1 −5 1
0 0 0 4
0 −2 0 5
3 1 6 −2


 28.




4 2 2 −3
6 −1 1 5
0 −3 0 0
2 −5 0 0




In Exercises 29–36, compute the area of each parallelogram
determined by u and v.

29. u =
[
3
5

]
, v =

[−2
7

]
30. u =

[−3
6

]
, v =

[
8

−5

]

31. u =
[
6
4

]
, v =

[
3
2

]
32. u =

[−1
2

]
, v =

[
4
5

]

33. u =
[
4
3

]
, v =

[
6

−1

]
34. u =

[
4

−2

]
, v =

[−2
5

]

35. u =
[

6
−1

]
, v =

[
4
3

]
36. u =

[−2
4

]
, v =

[
5

−2

]

In Exercises 37–44, find each value of c for which the matrix is
not invertible.

37.

[
3 6
c 4

]
38.

[
9 −18
4 c

]
39.

[
c 3
6 −2

]

40.

[
c −1
2 5

]
41.

[
c −2

−8 c

]
42.

[
c −3
4 c

]

43.

[
c 5

−2 c

]
44.

[
c 9
4 c

]

In Exercises 45–64, determine whether the state-
ments are true or false.

45. The determinant of a matrix is a matrix of the same size.

46. det

[
a b
c d

]
= ad + bc.

47. If the determinant of a 2 × 2 matrix equals zero, then the
matrix is invertible.

48. If a 2 × 2 matrix is invertible, then its determinant equals
zero.

49. If B is a matrix obtained by multiplying each entry of
some row of a 2 × 2 matrix A by the scalar k , then
detB = k detA.

50. For n ≥ 2, the (i , j )-cofactor of an n × n matrix A is the
determinant of the (n − 1) × (n − 1) matrix obtained by
deleting row i and column j from A.

51. For n ≥ 2, the (i , j )-cofactor of an n × n matrix A equals
(−1)i+j times the determinant of the (n − 1) × (n − 1)
matrix obtained by deleting row i and column j from A.

52. The determinant of an n × n matrix can be evaluated by
a cofactor expansion along any row.

53. Cofactor expansion is an efficient method for evaluating
the determinant of a matrix.

54. The determinant of a matrix with integer entries must be
an integer.
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55. The determinant of a matrix with positive entries must be
positive.

56. If some row of a square matrix consists only of zero
entries, then the determinant of the matrix equals zero.

57. An upper triangular matrix must be square.

58. A matrix in which all the entries to the left and below
the diagonal entries equal zero is called a lower triangular
matrix.

59. A 4 × 4 upper triangular matrix has at most 10 nonzero
entries.

60. The transpose of a lower triangular matrix is an upper
triangular matrix.

61. The determinant of an upper triangular n × n matrix or a
lower triangular n × n matrix equals the sum of its diag-
onal entries.

62. The determinant of In equals 1.

63. The area of the parallelogram determined by u and v is
det [u v].

64. If T : R2 → R2 is a linear transformation, then
det [T (u) T (v)] = det [u v] for any vectors u and v in
R2.

65. Show that the determinant of the rotation matrix Aθ is 1.

66. Show that if A is a 2 × 2 matrix in which every entry is
0 or 1, then the determinant of A equals 0, 1, or −1.

67. Show that the conclusion of Exercise 66 is false for 3 × 3
matrices by calculating

det




1 0 1
1 1 0
0 1 1


 .

68. Prove that if a 2 × 2 matrix has identical rows, then its
determinant is zero.

69. Prove that, for any 2 × 2 matrix A, detAT = det A.

70. Let A be a 2 × 2 matrix and k be a scalar. How does
det kA compare with detA? Justify your answer.

71. Prove that, for any 2 × 2 matrices A and B , det AB =
(detA)(det B ).

72. What is the determinant of an n × n matrix with a zero
row? Justify your answer.

For each elementary matrix E in Exercises 73–76, and for the
matrix

A =
[
a b
c d

]
,

verify that detEA = (det E )(detA).

73.

[
1 0
0 k

]
74.

[
0 1
1 0

]
75.

[
1 0
k 1

]
76.

[
1 k
0 1

]

77. Prove that

det

[
a b

c + kp d + kq

]
= det

[
a b
c d

]
+ k · det

[
a b
p q

]
.

78. The TI-85 calculator gives

det




1 2 3
2 3 4
3 4 5


 = −4 × 10−13.

Why must this answer be wrong? Hint: State a general
fact about the determinant of a square matrix in which all
the entries are integers.

79. Use a determinant to express the area of the triangle in
R2 having vertices 0, u, and v.

80. Calculate the determinant of

[
O Im
In O ′

]
if O and O ′ are

zero matrices.

In Exercises 81–84, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

81. (a) Generate random 4 × 4 matrices A and B . Evaluate
detA, detB , and det (A + B ).

(b) Repeat (a) with random 5 × 5 matrices.

(c) Does det (A + B ) = detA + det B appear to be true
for all n × n matrices A and B?

82. (a) Generate random 4 × 4 matrices A and B . Evaluate
detA, detB , and det (AB ).

(b) Repeat (a) with random 5 × 5 matrices.

(c) Does det (AB ) = (detA)(det B ) appear to be true for
all n × n matrices A and B?

83. (a) Generate a random 4 × 4 matrix A. Evaluate det A and
detAT .

(b) Repeat (a) with a random 5 × 5 matrix.

(c) Do you suspect that det A = det AT might be true for
all n × n matrices?

84. (a) Let

A =




0 −1 2 2
1 −1 0 −2
2 1 0 1

−1 1 2 −1


 .

Show that A is invertible, and evaluate detA and
detA−1.

(b) Repeat (a) with a random invertible 5 × 5 matrix.

(c) Make a conjecture about det A and detA−1 for any
invertible matrix A.

210



3.2 Properties of Determinants 211

SOLUTIONS TO THE PRACTICE PROBLEMS

1. We have det

[
8 3

−6 5

]
= 8(5) − 3(−6) = 40 + 18 = 58.

Because its determinant is nonzero, the matrix is invert-
ible. Furthermore,

A−1 = 1

8 · 5 − 3 · (−6)

[
5 −3
6 8

]
= 1

58

[
5 −3
6 8

]
.

2. The matrix A − cI2 has the form

A − cI2 =
[

4 6
−1 −3

]
− c

[
1 0
0 1

]
=

[
4 − c 6
−1 −3 − c

]
.

Thus

det(A − cI2) = (4 − c)(−3 − c) − 6(−1)

= c2 − c − 6 = (c − 3)(c + 2).

Since A − cI2 is not invertible if and only if we have
det(A − cI2) = 0, we see that A − cI2 is not invertible
when c − 3 = 0 or c + 2 = 0, that is, when c = 3 or
c = −2.

3. Let cij denote the (i , j )-cofactor of A. The cofactor expan-
sion along the second row gives the following value for
detA:

detA = (−3)c21 + (−5)c22 + 2c23

= −3(−1)2+1 · det

[
3 −3
4 −6

]

+ (−5)(−1)2+2 · det

[
1 −3

−4 −6

]

+ 2(−1)2+3 · det

[
1 3

−4 4

]

= −3(−1)[3(−6) − (−3)(4)]

+ (−5)(1)[1(−6) − (−3)(−4)]

+ 2(−1)[1(4) − 3(−4)]

= 3(−6) + (−5)(−18) + (−2)(16)

= 40

4. Because this matrix is lower triangular, its determinant is
4(−1)(−2)(3) = 24, the product of its diagonal entries.

5. The area of the parallelogram in R2 determined by the
vectors [

4
3

]
and

[
2
5

]

is ∣∣∣∣det

[
4 2
3 5

]∣∣∣∣ = |4(5) − 2(3)| = |14| = 14.

3.2 PROPERTIES OF DETERMINANTS
We have seen that, for arbitrary matrices, the computation of determinants by cofactor
expansion is quite inefficient. Theorem 3.2, however, provides a simple and efficient
method for evaluating the determinant of an upper triangular matrix. Fortunately, the
forward pass of the Gaussian elimination algorithm in Section 1.4 transforms any
matrix into an upper triangular matrix by a sequence of elementary row operations. If
we knew the effect of these elementary row operations on the determinant of a matrix,
we could then evaluate the determinant efficiently by using Theorem 3.2.

For example, the following sequence of elementary row operations transforms

A =



1 2 3
4 5 6
7 9 8




into an upper triangular matrix U :

A =



1 2 3
4 5 6
7 9 8


 −4r1+r2→r2�




1 2 3
0 −3 −6
7 9 8


 −7r1+r3→r3�




1 2 3
0 −3 −6
0 −5 −13




− 5
3 r2+r3→r3�




1 2 3
0 −3 −6
0 0 −3


 = U

211



212 CHAPTER 3 Determinants

The three elementary row operations used in this transformation are row addition
operations (operations that add a multiple of some row to another). Theorem 3.3
shows that this type of elementary row operation leaves the determinant unchanged.
Hence the determinant of each matrix in the preceding sequence is the same, so

det A = det U = 1(−3)(−3) = 9.

This calculation is much more efficient than the one in Example 3 of Section 3.1.
The following theorem enables us to use elementary row operations to evaluate

determinants:

THEOREM 3.3

Let A be an n × n matrix.

(a) If B is a matrix obtained by interchanging two rows of A, then detB =
− detA.

(b) If B is a matrix obtained by multiplying each entry of some row of A by a
scalar k , then det B = k · detA.

(c) If B is a matrix obtained by adding a multiple of some row of A to a different
row, then det B = det A.

(d) For any n × n elementary matrix E , we have detEA = (det E )(det A).

Parts (a), (b), and (c) of Theorem 3.3 describe how the determinant of a matrix
changes when an elementary row operation is performed on the matrix. Its proof is
found at the end of this section. Note that if A = In in Theorem 3.3, then (a), (b), and
(c) give the value of the determinant of each type of elementary matrix. In particular,
detE = 1 if E performs a row addition operation, and detE = −1 if E performs a
row interchange operation.

Suppose that an n × n matrix is transformed into an upper triangular matrix
U by a sequence of elementary row operations other than scaling operations. (This
can always be done by using steps 1–4 of the Gaussian elimination algorithm. The
elementary row operations that occur are interchange operations in step 2 and row
addition operations in step 3.) We saw in Section 2.3 that each of these elementary
row operations can be implemented by multiplying by an elementary matrix. Thus
there is a sequence of elementary matrices E1, E2, . . . , Ek such that

Ek · · ·E2E1A = U .

By Theorem 3.3(d), we have

(detEk ) · · · (det E2)(det E1)(det A) = detU .

Thus

(−1)r detA = detU ,

where r is the number of row interchange operations that occur in the transformation
of A into U . Since U is an upper triangular matrix, its determinant is the product
u11u22 · · · unn of its diagonal entries, by Theorem 3.2. Hence we have the following
important result, which provides an efficient method for evaluating a determinant:
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If an n × n matrix A is transformed into an upper triangular matrix U by ele-
mentary row operations other than scaling operations, then

det A = (−1)r u11u22 · · · unn ,

where r is the number of row interchanges performed.

Example 1 Use elementary row operations to compute the determinant of

A =




0 1 3 −3
0 0 4 −2

−2 0 4 −7
4 −4 4 15


 .

Solution We apply steps 1–4 of the Gaussian elimination algorithm to transform
A into an upper triangular matrix U .

A =




0 1 3 −3
0 0 4 −2

−2 0 4 −7
4 −4 4 15




r1↔r3 �




−2 0 4 −7
0 0 4 −2
0 1 3 −3
4 −4 4 15




2r1+r4→r4�




−2 0 4 −7
0 0 4 −2
0 1 3 −3
0 −4 12 1




r2↔r3 �




−2 0 4 −7
0 1 3 −3
0 0 4 −2
0 −4 12 1




4r2+r4→r4�




−2 0 4 −7
0 1 3 −3
0 0 4 −2
0 0 24 −11




−6r3+r4→r4�




−2 0 4 −7
0 1 3 −3
0 0 4 −2
0 0 0 1


 = U

Since U is an upper triangular matrix, we have det U = (−2) · 1 · 4 · 1 = −8.
During the transformation of A into U , two row interchanges were performed. Thus

det A = (−1)2 · det U = −8.

Practice Problem 1 � Use elementary row operations to evaluate the determinant of

A =



1 3 −3
−3 −9 2
−4 4 −6


 .

�

In Section 3.1, we mentioned that the cofactor expansion of an arbitrary n × n
matrix requires approximately e · n! arithmetic operations. By contrast, evaluating the
determinant of an n × n matrix with the use of elementary row operations requires
only about 2

3n3 arithmetic operations. Thus a computer capable of performing 1 billion
arithmetic operations per second could calculate the determinant of a 20 × 20 matrix
in about 5 millionths of a second by using elementary row operations, compared with
the more than 209 years it would need to evaluate the determinant by a cofactor
expansion.
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FOUR PROPERTIES OF DETERMINANTS
Several useful results about determinants can be proved from Theorem 3.3. Among
these is the desired test for invertibility of a matrix.

THEOREM 3.4

Let A and B be square matrices of the same size. The following statements are
true:

(a) A is invertible if and only if det A �= 0.

(b) det AB = (det A)(det B ).

(c) det AT = det A.

(d) If A is invertible, then det A−1 = 1

det A
.

PROOF We first prove (a), (b), and (c) for an invertible n × n matrix A. If A is
invertible, there are elementary matrices E1, E2, . . . , Ek such that A = Ek · · · E2E1

by the Invertible Matrix Theorem on page 138. Hence, by repeated applications
of Theorem 3.3(d), we obtain

detA = (detEk ) · · · (det E2)(det E1).

Since the determinant of an elementary matrix is nonzero, we have detA �= 0. This
proves (a) for an invertible matrix. Moreover, for any n × n matrix B , repeated
applications of Theorem 3.3(d) give

(det A)(det B ) = (det Ek ) · · · (det E2)(det E1)(det B )

= (det Ek ) · · · (det E2)(det E1B )

...

= det (Ek · · ·E2E1B )

= detAB .

This proves (b) when A is invertible. Furthermore, we also have

AT = (Ek · · ·E2E1)
T = ET

1 ET
2 · · ·ET

k .

We leave as an exercise the proof that detET = detE for every elementary matrix
E . It follows that

det AT = det (ET
1 ET

2 · · · ET
k )

= (det ET
1 )(det ET

2 ) · · · (det ET
k )

= (det E1)(det E2) · · · (detEk )

= (det Ek ) · · · (det E2)(det E1)

= det (Ek · · · E2E1)

= det A,

proving (c) for an invertible matrix.
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Now we prove (a), (b), and (c) in the case that A is an n × n matrix that
is not invertible. By Theorem 2.3, there exists an invertible matrix P such that
PA = R, where R is the reduced row echelon form of A. Since the rank of A is
not n by the Invertible Matrix Theorem, the n × n matrix R must contain a row
of zeros. Performing the cofactor expansion of R along this row yields det R = 0.
Because P−1 is invertible, (b) implies that

det A = det (P−1R) = (det P−1)(det R) = (det P−1) · 0 = 0,

completing the proof of (a).
To prove (b), first observe that since A is not invertible, AB is not invertible,

because otherwise, for C = B (AB )−1, we obtain AC = In , which is not possible
by the Invertible Matrix Theorem. Therefore

det AB = 0 = 0 · det B = (det A)(det B ),

completing the proof of (b).
For the proof of (c), observe, by Theorem 2.2, that AT is not invertible.

(Otherwise, (AT )T = A would be invertible.) Hence detAT = 0 = det A by (a).
This completes the proof of (c).

The proof of (d) follows from (b) and the fact that det In = 1. We leave the
details as an exercise. �

As we have said, our principal reason for studying determinants is that they
provide a means for testing whether a matrix is invertible, namely, the result of
Theorem 3.4(a). This fact is essential to Chapter 5, where it is used to determine the
eigenvalues of a matrix. The next example illustrates how this test can be used.

Example 2 For what scalar c is the matrix

A =



1 −1 2
−1 0 c

2 1 7




not invertible?

Solution To answer this question, we compute the determinant of A. The fol-
lowing sequence of row addition operations transforms A into an upper triangular
matrix:




1 −1 2
−1 0 c

2 1 7


 r1+r2→r2�




1 −1 2
0 −1 c + 2
2 1 7


 −2r1+r3→r3�




1 −1 2
0 −1 c + 2
0 3 3




3r2+r3→r3�




1 −1 2
0 −1 c + 2
0 0 3c + 9




Hence det A = 1(−1)(3c + 9) = −3c − 9. Theorem 3.4(a) states that A is not invert-
ible if and only if its determinant is 0. Thus A is not invertible if and only if
0 = −3c − 9, that is, if and only if c = −3.
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Practice Problem 2 � For what value of c is

B =



1 −1 2
−1 0 c

2 1 4




not invertible? �

For those familiar with partitioned matrices, the following example illustrates how
Theorem 3.4(b) can be used:

Example 3 Suppose that a matrix M can be partitioned as

[
A B
O C

]
,

where A is an m × m matrix, C is an n × n matrix, and O is the n × m zero matrix.
Show that detM = (det A)(det C ).

Solution Using block multiplication, we see that

[
Im O ′
O C

] [
A B
O In

]
=

[
A B
O C

]
= M ,

where O ′ is the m × n zero matrix. Therefore, by Theorem 3.4,

det

[
Im O ′
O C

]
· det

[
A B
O In

]
= detM .

As in Example 5 of Section 3.1, it can be shown that

det

[
A B
O In

]
= det A.

A similar argument (using cofactor expansion along the first row) yields

det

[
Im O ′
O C

]
= det C .

Hence

detM = det

[
Im O ′
O C

]
· det

[
A B
O In

]
= (det C )(det A).

Several important theoretical results follow from Theorem 3.4(c). For example,
we can evaluate the determinant of a matrix A by computing the determinant of its
transpose instead. Thus we can evaluate the determinant of A by a cofactor expansion
along the rows of AT . But the rows of AT are the columns of A, so the determinant
of A can be evaluated by cofactor expansion along any column of A, as well as any
row.
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! CAUTION Let A and B be arbitrary n × n matrices. Although det AB = (det A)(det B ) by
Theorem 3.4(b), the corresponding property for matrix addition is not true. Consider,
for instance, the matrices

A =
[
1 0
0 0

]
and B =

[
0 0
0 1

]
.

Clearly, det A = detB = 0, whereas det (A + B ) = det I2 = 1. Therefore

det (A + B ) �= det A + detB .

So the determinant of a sum of matrices need not be equal to the sum of their
determinants.

CRAMER’S RULE∗

One of the original motivations for studying determinants was that they provide a
method for solving systems of linear equations having an invertible coefficient matrix.
The following result was published in 1750 by the Swiss mathematician Gabriel
Cramer (1704–1752):

THEOREM 3.5

(Cramer’s Rule2) Let A be an invertible n × n matrix, b be in Rn , and Mi be
the matrix obtained from A by replacing column i of A by b. Then Ax = b has
a unique solution u in which the components are given by

ui = det Mi

detA
for i = 1, 2, . . . , n.

PROOF Since A is invertible, Ax = b has the unique solution u = A−1b, as we
saw in Section 2.3. For each i , let Ui denote the matrix obtained by replacing
column i of In by

u =




u1

u2
...

un


 .

Then

AUi = A[e1 · · · ei−1 u ei+1 · · · en ]

= [Ae1 · · · Aei−1 Au Aei+1 · · · Aen ]

= [a1 · · · ai−1 b ai+1 · · · an ]

= Mi .

∗ The remainder of this section may be omitted without loss of continuity.
2 Cramer’s rule was first stated in its most general form in a 1750 paper by the Swiss mathematician Gabriel

Cramer (1704–1752), where it was used to find the equations of curves in the plane passing through
given points.
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Evaluating Ui by cofactor expansion along row i produces

detUi = ui · det In−1 = ui .

Hence, by Theorem 3.4(b), we have

det Mi = det AUi = (det A) · (det Ui ) = (detA) · ui .

Because detA �= 0 by Theorem 3.4(a), it follows that

ui = det Mi

det A
.

�

Example 4 Use Cramer’s rule to solve the system of equations

x1 + 2x2 + 3x3 = 2
x1 + x3 = 3
x1 + x2 − x3 = 1.

Solution The coefficient matrix of this system is

A =



1 2 3
1 0 1
1 1 −1


 .

Since det A = 6, A is invertible by Theorem 3.4(a), and hence Cramer’s rule can be
used. In the notation of Theorem 3.5, we have

M1 =



2 2 3
3 0 1
1 1 −1


 , M2 =




1 2 3
1 3 1
1 1 −1


 , and M3 =




1 2 2
1 0 3
1 1 1


 .

Therefore the unique solution of the given system is the vector with components

u1 = det M1

detA
= 15

6
= 5

2
, u2 = det M2

det A
= −6

6
= −1, and u3 = det M3

det A
= 3

6
= 1

2
.

It is readily checked that these values satisfy each of the equations in the given system.

Practice Problem 3 � Solve the following system of linear equations using Cramer’s rule:

3x1 + 8x2 = 4
2x1 + 6x2 = 2 �

We noted earlier that evaluating the determinant of an n × n matrix with the use
of elementary row operations requires about 2

3n3 arithmetic operations. On the other
hand, we saw in Section 2.6 that an entire system of n linear equations in n unknowns
can be solved by Gaussian elimination with about the same number of operations.
Thus Cramer’s rule is not an efficient method for solving systems of linear equations;
moreover, it can be used only in the special case where the coefficient matrix is
invertible. Nevertheless, Cramer’s rule is useful for certain theoretical purposes. It
can be used, for example, to analyze how the solution of Ax = b is influenced by
changes in b.

We conclude this section with a proof of Theorem 3.3.
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Proof of Theorem 3.3. Let A be an n × n matrix with rows a′
1, a

′
2, . . . , a

′
n ,

respectively.
(a) Suppose that B is the matrix obtained from A by interchanging rows r and

s , where r < s . We begin by establishing the result in the case that s = r + 1. In
this case, arj = bsj and Arj = Bsj for each j . Thus each cofactor in the cofactor
expansion of B along row s is the negative of the corresponding cofactor in the
cofactor expansion of A along row r . It follows that det B = − detA.

Now suppose that s > r + 1. Beginning with rows r and r + 1, successively
interchange a′

r with the following row until the rows of A are in the order

a′
1, . . . , a

′
r−1, a

′
r+1, . . . , a

′
s , a

′
r , a

′
s+1, . . . , a

′
n .

A total of s − r interchanges are necessary to produce this ordering. Now suc-
cessively interchange a′

s with the preceding row until the rows are in the order

a′
1, . . . , a

′
r−1, a

′
s , a

′
r+1, . . . , a

′
s−1, a

′
r , a

′
s+1, . . . , a

′
n .

This process requires another s − r − 1 interchanges of adjacent rows and pro-
duces the matrix B . Thus the preceding paragraph shows that

det B = (−1)s−r (−1)s−r−1 · detA = (−1)2(s−r)−1 · det A = − detA.

(b) Suppose that B is a matrix obtained by multiplying each entry of row r
of A by a scalar k . Comparing the cofactor expansion of B along row r with that
of A, it is easy to see that det B = k · detA. We leave the details to the reader.

(c) We first show that if C is an n × n matrix having two identical rows, then
detC = 0. Suppose that rows r and s of C are equal, and let M be obtained from
C by interchanging rows r and s . Then det M = − detC by (a). But since rows r
and s of C are equal, we also have C = M . Thus detC = det M . Combining the
two equations involving det M , we obtain det C = − detC . Therefore detC = 0.

Now suppose that B is obtained from A by adding k times row s of A to
row r , where r �= s . Let C be the n × n matrix obtained from A by replacing
a′

r = [u1, u2, . . . , un ] by a′
s = [v1, v2, . . . , vn]. Since A, B , and C differ only in

row r , we have Arj = Brj = Crj for every j . Using the cofactor expansion of B
along row r , we obtain

detB = (u1 + kv1)(−1)r+1 det Br1 + · · · + (un + kvn )(−1)r+n detBrn

= (
u1(−1)r+1 det Br1 + · · · + un (−1)r+n detBrn

)

+ k
(
v1(−1)r+1 detBr1 + · · · + vn (−1)r+n det Brn

)

= [
u1(−1)r+1 detAr1 + · · · + un (−1)r+n det Arn

]

+ k
[
v1(−1)r+1 det Cr1 + · · · + vn (−1)r+n det Crn

]
.

In this equation, the first expression in brackets is the cofactor expansion of A
along row r , and the second is the cofactor expansion of C along row r . Thus
we have

det B = det A + k · detC .

However, C is a matrix with two identical rows (namely, rows r and s , which
are both equal to a′

s ). Since detC = 0 by the preceding paragraph, it follows that
detB = detA.
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(d) Let E be an elementary matrix obtained by interchanging two rows of In .
Then det EA = − detA by (a). Since detE = −1, we have detEA = (det E )(det A).
Similar arguments establish (d) for the other two types of elementary
matrices. �

EXERCISES

In Exercises 1–10, evaluate the determinant of each matrix using
a cofactor expansion along the indicated column.

1.




1 0 −1
−1 0 4

2 3 −2




second column

2.




1 −2 2
2 −1 3
0 1 −1




first column

3.




2 −1 3
1 4 −2

−1 0 1




second column

4.




−1 2 1
5 −9 −2
3 −1 2




third column

5.




1 3 2
2 2 3
3 1 1




third column

6.




1 3 2
2 2 3
3 1 1




first column

7.




0 2 0
1 1 2
0 −1 1




first column

8.




0 2 0
1 1 2
0 −1 1




third column

9.




3 2 1
1 0 −1

−2 −1 1




second column

10.




3 2 1
1 0 −1

−2 −1 1




third column

In Exercises 11–24, evaluate the determinant of each matrix
using elementary row operations.

11.




0 0 5
0 3 7
4 −1 −2


 12.




−6 0 0
2 9 4
7 −3 0




13.




1 −2 2
0 5 −1
2 −4 1


 14.




−2 1 −2
4 −2 −1
0 3 6




15.




3 −2 1
0 0 5

−9 4 2


 16.




−2 6 1
0 0 3
4 −1 2




17.




1 4 2
2 −1 3

−1 3 1


 18.




−1 2 1
5 −9 −2
3 −1 2




19.




1 2 1
1 1 2
3 4 8


 20.




3 4 2
2 −1 3

−1 3 1




21.




1 −1 2 1
2 −1 −1 4

−4 5 −10 −6
3 −2 10 −1


 22.




2 1 5 2
2 1 8 1
2 −1 5 3
4 −2 10 3




23.




0 4 −1 1
−3 1 1 2

1 0 −2 3
2 3 0 1


 24.




1 −1 2 −1
2 −2 −3 8

−3 4 1 −1
−2 6 −4 18




For each of the matrices in Exercises 25–38, determine the
value(s) of c for which the given matrix is not invertible.

25.

[
4 c
3 −6

]
26.

[
3 9
5 c

]

27.

[
c 6
2 c + 4

]
28.

[
c c − 1

−8 c − 6

]

29.




1 2 −1
0 −1 c
3 4 7


 30.




1 2 −6
2 4 c

−3 −5 7




31.




1 −1 2
−1 0 4

2 1 c


 32.




1 2 c
−2 −2 4

1 6 −12




33.




1 2 −1
2 3 c
0 c −15


 34.




−1 1 1
3 −2 −c
0 c −10




35.




1 0 −1 1
0 −1 2 −1
1 −1 1 −1

−1 1 c 0




36.




1 0 −1 1
0 −1 2 −1
1 −1 1 −1

−1 1 0 c




37.




1 0 −1 1
0 −1 2 −1
1 −1 c −1

−1 1 0 2




38.




1 0 −1 1
0 −1 2 −1
1 −1 1 c

−1 1 0 2




In Exercises 39–58, determine whether the state-
ments are true or false.

39. The determinant of a square matrix equals the product of
its diagonal entries.
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40. Performing a row addition operation on a square matrix
does not change its determinant.

41. Performing a scaling operation on a square matrix does
not change its determinant.

42. Performing an interchange operation on a square matrix
changes its determinant by a factor of −1.

43. For any n × n matrices A and B , we have det (A + B ) =
detA + detB .

44. For any n × n matrices A and B , det AB = (detA)(det B ).

45. If A is any invertible matrix, then det A = 0.

46. For any square matrix A, det AT = − detA.

47. The determinant of any square matrix can be evaluated
by a cofactor expansion along any column.

48. The determinant of any square matrix equals the product
of the diagonal entries of its reduced row echelon form.

49. If det A �= 0, then A is an invertible matrix.

50. The determinant of the n × n identity matrix is 1.

51. If A is any square matrix and c is any scalar, then
det cA = c det A.

52. Cramer’s rule can be used to solve any system of n linear
equations in n variables.

53. To solve a system of 5 linear equations in 5 variables with
Cramer’s rule, the determinants of six 5 × 5 matrices must
be evaluated.

54. If A is an invertible matrix, then det A−1 = 1

det A
.

55. If A is a 4 × 4 matrix, then det (−A) = det A.

56. If A is a 5 × 5 matrix, then det (−A) = det A.

57. For any square matrix A and any positive integer k ,
det (Ak ) = (det A)k .

58. If an n × n matrix A is transformed into an upper triangu-
lar matrix U by only row interchanges and row addition
operations, then detA = u11u22 · · · unn .

In Exercises 59–66, solve each system using Cramer’s rule.

59.
x1 + 2x2 = 6

3x1 + 4x2 = −3
60.

2x1 + 3x2 = 7
3x1 + 4x2 = 6

61.
2x1 + 4x2 = −2
7x1 + 12x2 = 5

62.
3x1 + 2x2 = −6
6x1 + 5x2 = 9

63.
x1 − 2x3 = 6

−x1 + x2 + 3x3 = −5
2x2 + x3 = 4

64.
−x1 + 2x2 + x3 = −3

x2 + 2x3 = −1
x1 − x2 + 3x3 = 4

65.
2x1 − x2 + x3 = −5
x1 − x3 = 2

−x1 + 3x2 + 2x3 = 1
66.

−2x1 + 3x2 + x3 = −2
3x1 + x2 − x3 = 1
−x1 + 2x2 + x3 = −1

67. Give an example to show that det kA �= k det A for some
matrix A and scalar k .

68. Evaluate det kA if A is an n × n matrix and k is a scalar.
Justify your answer.

69. Prove that if A is an invertible matrix, then detA−1 =
1

detA
.

70. Under what conditions is det (−A) = − det A? Justify your
answer.

71. Let A and B be n × n matrices such that B is invertible.
Prove that det (B−1AB ) = detA.

72. An n × n matrix A is called nilpotent if, for some posi-
tive integer k , Ak = O , where O is the n × n zero matrix.
Prove that if A is nilpotent, then detA = 0.

73. An n × n matrix Q is called orthogonal if QT Q = In .
Prove that if Q is orthogonal, then det Q = ±1.

74. A square matrix A is called skew-symmetric if AT = −A.
Prove that if A is a skew-symmetric n × n matrix and n
is odd, then A is not invertible. What if n is even?

75. The matrix

A =



1 a a2

1 b b2

1 c c2




is called a Vandermonde matrix. Show that

detA = (b − a)(c − a)(c − b).

76. Use properties of determinants to show that the equation
of the line in R2 passing through the points (x1, y1) and
(x2, y2) can be written

det




1 x1 y1

1 x2 y2

1 x y


 = 0.

77. Let B = {b1, b2, . . . , bn } be a subset of Rn containing n
distinct vectors, and let B = [b1 b2 . . . bn ]. Prove that
B is linearly independent if and only if det B �= 0.

78. Let A be an n × n matrix with rows a′
1, a

′
2, . . . , a

′
n and B

be the n × n matrix with rows a′
n , . . . , a′

2, a
′
1. How are the

determinants of A and B related? Justify your answer.

79. Complete the proof of Theorem 3.3(b).

80. Complete the proof of Theorem 3.3(d).

81. Prove that detET = detE for every elementary matrix E .

82. Let A be an n × n matrix and bjk denote the (k , j )-cofactor
of A.

(a) Prove that if P is the matrix obtained from A by
replacing column k by ej , then det P = bkj .

(b) Show that for each j , we have

A




b1j

b2j
.
..

bnj


 = (detA) · ej .

Hint: Apply Cramer’s rule to Ax = ej .

(c) Deduce that if B is the n × n matrix whose (i , j )-entry
is bij , then AB = (detA)In . This matrix B is called the
classical adjoint of A.

(d) Show that if det A �= 0, then A−1 = 1

det A
B .
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In Exercises 83–85, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve the
problem.

83. (a) Use elementary row operations other than scaling
operations to transform

A =




0.0 −3.0 −2 −5
2.4 3.0 −6 9

−4.8 6.3 4 −2
9.6 1.5 5 9




into an upper triangular matrix U .

(b) Use the boxed result on page 213 to compute detA.

84. (a) Solve Ax = b by using Cramer’s rule, where

A =




0 1 2 −1
1 2 1 −2
2 −1 0 3
3 0 −3 1


 and b =




24
−16

8
10


 .

(b) How many determinants of 4 × 4 matrices are evalu-
ated in (a)?

85. Compute the classical adjoint (as defined in Exercise 82)
of the matrix A in Exercise 84.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. The following sequence of elementary row operations
transforms A into an upper triangular matrix U :




1 3 −3
−3 −9 2
−4 4 −6




3r1 + r2 → r2
4r1 + r3 → r3�




1 3 −3
0 0 −7
0 16 −18




r2↔r3 �




1 3 −3
0 16 −18
0 0 −7


 = U

Since one row interchange operation was performed, we
have

detA = (−1)1 · detU = (−1)(1)(16)(−7) = 112.

2. The following sequence of elementary row operations
transforms B into an upper triangular matrix:




1 −1 2
−1 0 c

2 1 4




r1 + r2 → r2
−2r1 + r3 → r3�




1 −1 2
0 −1 c + 2
0 3 0




3r2+r3→r3�




1 −1 2
0 −1 c + 2
0 0 3c + 6




Because no row interchanges were performed, the deter-
minant of B is the product of the diagonal entries of the
previous matrix, which is −(3c + 6) = −3(c + 2). Since a
matrix is invertible if and only if its determinant is nonzero,
the only value for which B is not invertible is c = −2.

3. The coefficient matrix of this system is

A =
[
3 8
2 6

]
.

Since detA = 3(6) − 8(2) = 2, matrix A is invertible by
Theorem 3.4(a), and hence Cramer’s rule can be used. In
the notation of Theorem 3.5, we have

M1 =
[
4 8
2 6

]
and M2 =

[
3 4
2 2

]
.

Therefore the unique solution of the given system is the
vector with components

u1 = detM1

detA
= 8

2
= 4 and u2 = det M2

detA
= −2

2
= −1.

CHAPTER 3 REVIEW EXERCISES

In Exercises 1–11, determine whether the statements
are true or false.

1. det

[
a b
c d

]
= bc − ad .

2. For n ≥ 2, the (i , j )-cofactor of an n × n matrix A is the
determinant of the (n − 1) × (n − 1) matrix obtained by
deleting row j and column i from A.

3. If A is an n × n matrix and cij denotes the (i , j )-cofactor
of A, then det A = ai1ci1 + ai2ci2 + · · · + aincin for any
i = 1, 2, . . . , n.

4. For all n × n matrices A and B , we have det (A + B ) =
det A + detB .

5. For all n × n matrices A and B , det AB = (detA)(det B ).

6. If B is obtained by interchanging two rows of an n × n
matrix A, then detB = det A.

7. An n × n matrix is invertible if and only if its determinant
is 0.

8. For any square matrix A, det AT = detA.

9. For any invertible matrix A, det A−1 = − det A.
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10. For any square matrix A and scalar c, det cA = c detA.

11. If A is an upper or lower triangular n × n matrix, then
detA = a11 + a22 + · · · + ann .

In Exercises 12–15, compute each indicated cofactor of the
matrix 


1 −1 2

−1 2 −1
2 1 3


 .

12. the (1, 2)-cofactor 13. the (2, 1)-cofactor
14. the (2, 3)-cofactor 15. the (3, 1)-cofactor

In Exercises 16–19, compute the determinant of the matrix in
Exercises 12–15, using a cofactor expansion along each indi-
cated row or column.

16. row 1 17. row 3 18. column 2 19. column 1

In Exercises 20–23, evaluate the determinant of each matrix by
any legitimate method.

20.

[
5 6
3 2

]
21.

[−5.0 3.0
3.5 −2.1

]

22.




1 −1 2
2 −1 3
3 −1 4


 23.




1 −3 1
4 −2 1
2 5 −1




24. (a) Perform a sequence of elementary row operations on

A =




0 3 −6 1
−2 −2 2 6

1 1 −1 −1
2 −1 2 −2




to transform it into an upper triangular matrix.

(b) Use your answer to (a) to compute detA.

In Exercises 25–28, use a determinant to find all values of the
scalar c for which each matrix is not invertible.

25.

[
c − 17 −13

20 c + 16

]
26.

[
1 c + 1
2 3c + 4

]

27.




c + 4 −1 c + 5
−3 3 −4

c + 6 −3 c + 7




28.




−1 c − 1 1 − c
−c − 2 2c − 3 4 − c
−c − 2 c − 1 2




29. Compute the area of the parallelogram in R2 determined
by the vectors [

3
7

]
and

[
4
1

]
.

30. Compute the volume of the parallelepiped in R3 deter-
mined by the vectors


1
0
2


 ,




−1
2
1


 , and




3
1

−1


 .

In Exercises 31–32, solve each system of linear equations by
Cramer’s rule.

31.
2x1 + x2 = 5

−4x1 + 3x2 = −6
32.

x1 − x2 + 2x3 = 7
−x1 + 2x2 − x3 = −3
2x1 + x2 + 2x3 = 4

Let A be a 3 × 3 matrix such that detA = 5. Evaluate the deter-
minant of each matrix given in Exercises 33–40.

33. AT 34. A−1 35. 2A 36. A3

37.




a11 − 3a21 a12 − 3a22 a13 − 3a23

a21 a22 a23

a31 a32 a33




38.




a11 a12 a13

−2a21 −2a22 −2a23

a31 a32 a33




39.




a11 + 5a31 a12 + 5a32 a13 + 5a33

4a21 4a22 4a23

a31 − 2a21 a32 − 2a22 a33 − 2a23




40.




a31 a32 a33

a21 a22 a23

a11 a12 a13




41. A square matrix B is called idempotent if B 2 = B . What
can be said about the determinant of an idempotent
matrix?

42. Suppose that an n × n matrix can be expressed in the
form A = PDP−1, where P is an invertible matrix and
D is a diagonal matrix. Prove that the determinant of A
equals the product of the diagonal entries of D .

43. Show that the equation

det




1 x y
1 x1 y1

0 1 m


 = 0

yields the equation of the line through the point (x1, y1)
with slope m.
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CHAPTER 3 MATLAB EXERCISES

For the following exercises, use MATLAB (or comparable software) or a calculator with matrix capabilities. The MATLAB
functions in Tables D.1, D.2, D.3, D.4, and D.5 of Appendix D may be useful.

In Exercises 1 and 2, a matrix A is given. Use elementary row operations other than scaling to transform A into an upper
triangular matrix, and then use the boxed result on page 213 to compute detA.

1. A =




−0.8 3.5 −1.4 2.5 6.7 −2.0
−6.5 −2.0 −1.4 3.2 1.7 −6.5

5.7 7.9 1.0 2.2 −1.3 5.7
−2.1 −3.1 0.0 −1.0 3.5 −2.1

0.2 8.8 −2.8 5.0 11.4 −2.2
4.8 10.3 −0.4 3.7 8.9 3.6




2. A =




0 1 2 −2 3 1
1 1 2 −2 1 2
2 2 4 −5 6 3
2 3 6 −6 −4 5

−2 −6 5 −5 4 4
1 3 5 −5 −3 6




3. Let

A =




8 3 3 14 6
3 3 2 −6 0
2 0 1 5 2
1 1 0 −1 1


 , v = [

4 1 1 10 4
]
,

and w = [
2 1 2 −4 1

]
.

For any 1 × 5 row vector x, let

[
x
A

]
denote the 5 × 5

matrix whose rows are x followed by the rows of A in
the same order.

(a) Compute det

[
v
A

]
and det

[
w
A

]
.

(b) Compute det

[
v + w

A

]
and det

[
v
A

]
+ det

[
w
A

]
.

(c) Compute det

[
3v − 2w

A

]
and 3 det

[
v
A

]
− 2 det

[
w
A

]
.

(d) Use the results of (b) and (c) to make a conjecture
about any function T : Rn → R defined by T (x) =
det

[
x
C

]
, where C is an (n − 1) × n matrix.

(e) Prove your conjecture in (d).

(f) In (a)–(e), we considered the case where row 1 of a
matrix varies and the other rows remain fixed. State
and prove a result for the general case, in which row
i varies and all of the other rows remain fixed.

(g) What happens if rows are replaced by columns in (f)?
Investigate this situation, first by experimentation, and
then by formulating and proving a conjecture.
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4 INTRODUCTION

Solid modeling (three-dimensional geo-
metric modeling) systems have become an
indispensable tool for mechanical design-
ers. They create a virtual three-dimensional
representation of mechanical components
for machine design and analysis and also
provide tools for visualizing components
and computing volumes and surface areas.

z

x y
0

Engineering drawings can be created semi-
automatically from such a model, and tool
paths for machining parts can be generated
from it.

The models are constructed by a variety of

techniques. For instance, a polyhedron is con-

structed by specifying the coordinates of its ver-

tices and how the vertices are connected to form

the faces of the polyhedron. If the polyhedron

is positioned simply relative to the coordinate

system, the vertex coordinates can be easy to

compute. For example, a cube centered at the

origin with an edge length of 2 that has faces

parallel to the coordinate planes has vertex coor-

dinates of (±1, ±1, ±1). (See the figure at the left.)

If the polyhedron is not in such a simple position, as in the figure on

the next page, the construction is more complicated. Here again the goal

is to construct a cube with an edge length of 2 centered at the origin

having its top and bottom faces parallel to the xy-plane. In this polyhedron,

however, one pair of faces is perpendicular to the line y = x and the third

pair is perpendicular to the line y = −x . In this case, the new cube can

From Chapter 4 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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y
x

y � x

z

b2

b3

b1

0

be constructed by rotating the original cube by 45◦

about the z-axis. For less trivial orientations, multiple
rotations might be required, which can be difficult to
visualize and specify.

A simple alternative is to compute the vertices using
the vectors b1 = A45◦e1, b2 = A45◦e2, and b3 = e3, which
form a basis (Section 4.2) for the rotated coordinate sys-
tem. These are vectors of length 1 that are perpendicular

to the front, right, and top faces of the rotated cube,
as in the figure above. The coordinates (Section 4.4) of
the vectices of the cube relative to these basis vectors
are just (±1,±1,±1), and so the vertices of the cube are
linear combinations of b1, b2, and b3 with coefficients
±1. Thus, if the cube is centered on a point p, its vertices
are of the form p ± b1 ± b2 ± b3.
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CHAPTER

4
SUBSPACES AND THEIR
PROPERTIES

In many applications, it is necessary to study vectors only in a subset of Rn , which
is simpler than working with all vectors in Rn . For instance, suppose that A is
an m × n matrix and u and v are solutions of Ax = 0. Then

A(u + v) = Au + Av = 0 + 0 = 0,

so that u + v is a solution of Ax = 0. Likewise, for any scalar s , su is a solution
of Ax = 0. Therefore the solution set of Ax = 0 has the following closure properties:
(a) the sum of any pair of vectors in the set lies in the set, and (b) every scalar
multiple of a vector in the set lies in the set. Subsets that have these properties are
called subspaces of Rn . As another example, a plane passing through the origin of R3

is a subspace of R3. In Section 4.1, we define subspaces and give several examples.
The techniques learned in Chapter 1 enable us to find generating sets for particular

subspaces. A generating set of the smallest size, called a basis for the subspace, is
particularly useful in representing vectors in the subspace. In Section 4.2, we show
that any two bases of a subspace have the same number of vectors. This number is
called the dimension of the subspace.

In Sections 4.4 and 4.5, we investigate different coordinate systems on Rn and
describe examples in which it is preferable to use a coordinate system other than the
usual one.

4.1 SUBSPACES
When we add two vectors in Rn or multiply a vector in Rn by a scalar, the resulting
vectors are also in Rn . In other words, Rn is closed under the operations of vector
addition and scalar multiplication. In this section, we study the subsets of Rn that
possess this type of closure.

Definition A set W of vectors in Rn is called a subspace of Rn if it has the
following three properties:

1. The zero vector belongs to W .

2. Whenever u and v belong to W , then u + v belongs to W . (In this case, we say
that W is closed under (vector) addition.)

3. Whenever u belongs to W and c is a scalar, then cu belongs to W . (In this
case, we say that W is closed under scalar multiplication.)
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228 CHAPTER 4 Subspaces and Their Properties

The next two examples describe two special subspaces of Rn .

Example 1 The set Rn is a subspace of itself because the zero vector belongs to Rn , the sum
of any two vectors in Rn is also in Rn , and every scalar multiple of a vector in Rn

belongs to Rn .

Example 2 The set W consisting of only the zero vector in Rn is a subspace of Rn called the
zero subspace. Clearly, 0 is in W . Moreover, if u and v are vectors in W , then u = 0
and v = 0, so u + v = 0 + 0 = 0. Hence u + v is in W , so W is closed under vector
addition. Finally, if u is in W and c is a scalar, then cu = c0 = 0, so cu is in W .
Hence W is also closed under scalar multiplication.

A subspace of Rn other than {0} is called a nonzero subspace. Examples 3 and 4
show how to verify that two nonzero subspaces of R3 satisfy the three properties in
the definition of a subspace.

Example 3
We show that the set W =







w1

w2

w3


 ∈ R3 : 6w1 − 5w2 + 4w3 = 0


 is a subspace

of R3.

1. Since 6(0) − 5(0) + 4(0) = 0, the components of 0 satisfy the equation that defines

W . Hence 0 =



0
0
0


 is in W .

2. Let u =



u1

u2

u3


 and v =




v1

v2

v3


 be in W . Then 6u1 − 5u2 + 4u3 = 0, and also

6v1 − 5v2 + 4v3 = 0. Now u + v =



u1 + v1

u2 + v2

u3 + v3


. Since

6(u1 + v1) − 5(u2 + v2) + 4(u3 + v3) = (6u1 − 5u2 + 4u3) + (6v1 − 5v2 + 4v3)

= 0 + 0

= 0,

we see that the components of u + v satisfy the equation defining W . Therefore
u + v is in W , so W is closed under vector addition.

3. Let u =



u1

u2

u3


 be in W . For any scalar c, we have cu = c




u1

u2

u3


 =




cu1

cu2

cu3


.

Because

6(cu1) − 5(cu2) + 4(cu3) = c(6u1 − 5u2 + 4u3) = c(0) = 0,

the components of cu satisfy the equation defining W . Therefore cu is in W , so
W is also closed under scalar multiplication.
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v

u

u � v

cu

0

w1

w2

w3

W

Figure 4.1 The subspace W is a plane through the origin.

Since W is a subset of R3 that contains the zero vector and is closed under both
vector addition and scalar multiplication, W is a subspace of R3. (See Figure 4.1.)
Geometrically, W is a plane through the origin of R3.

Example 4 Let w be a nonzero vector in R3. Show that the set W of all multiples of w is a
subspace of R3.

Solution First, 0 = 0w is in W . Next, let u and v be vectors in W . Then u = aw
and v = bw for some scalars a and b. Since

u + v = aw + bw = (a + b)w,

we see that u + v is a multiple of w. Hence u + v is in W , so W is closed under
vector addition. Finally, for any scalar c, cu = c(aw) = (ca)w is a multiple of w.
Thus cu is in W , so W is also closed under scalar multiplication. Therefore W is a
subspace of R3. Note that W can be depicted as a line in R3 through the origin. (See
Figure 4.2.)

w

W

y

x

z

Figure 4.2 W is the set of all multiples of w.

Example 4 shows that the set of vectors in R3 that lie along a line through the
origin is a subspace of R3. However, the set of vectors on a line in R3 that does not
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pass through the origin is not a subspace, for such a set does not contain the zero
vector of R3.

In the following example, we consider two subsets of R2 that are not subspaces
of R2:

Example 5 Let V and W be the subsets of R2 defined by

V =
{[

v1

v2

]
∈ R2 : v1 ≥ 0 and v2 ≥ 0

}

and

W =
{[

w1

w2

]
∈ R2 : w 2

1 = w 2
2

}
.

The vectors in V are those that lie in the first quadrant of R2, and the nonnegative

parts of the x - and y-axes. (See Figure 4.3(a).) Clearly, 0 =
[
0
0

]
is in V . Suppose that

u =
[
u1

u2

]
and v =

[
v1

v2

]
are in V . Then u1 ≥ 0, u2 ≥ 0, v1 ≥ 0, and v2 ≥ 0. Hence

u1 + v1 ≥ 0 and u2 + v2 ≥ 0, so that

u + v =
[
u1 + v1

u2 + v2

]

is in V . Thus V is closed under vector addition. This conclusion can also be seen by
the parallelogram law. However, V is not closed under scalar multiplication, because

u =
[
1
2

]
belongs to V , but (−1)u =

[−1
−2

]
does not. Thus V is not a subspace of R2.

V is closed under vector addition,
but not under scalar multiplication.

(a)

Vy

x

u

v

u � v

(�1)u

W is closed under scalar multiplication,
but not under vector addition.

(b)

y

x

u

cu

W

0 
2

1 
1

�1 
1

Figure 4.3
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Consider a vector u =
[
u1

u2

]
in W . Since u2

1 = u2
2 , it follows that u2 = ±u1. Hence

the vector u lies along one of the lines y = x or y = −x . (See Figure 4.3(b).) Clearly,

0 =
[
0
0

]
belongs to W . Moreover, if u =

[
u1

u2

]
is in W , then u2

1 = u2
2 . So, for any

scalar c, cu =
[
cu1

cu2

]
is in W because (cu1)2 = c2u2

1 = c2u2
2 = (cu2)2. Thus W is

closed under scalar multiplication. However, W is not closed under vector addition.

For example, the vectors

[
1
1

]
and

[−1
1

]
belong to W , but

[
1
1

]
+

[−1
1

]
=

[
0
2

]
does

not. Thus W is not a subspace of R2.

Our first theorem generalizes Example 4.

THEOREM 4.1

The span of a finite nonempty subset of Rn is a subspace of Rn .

PROOF Let S = {w1, w2, . . . , wk }. Since

0w1 + 0w2 + · · · + 0wk = 0,

we see that 0 belongs to the span of S. Let u and v belong to the span of S. Then

u = a1w1 + a2w2 + · · · + akwk and v = b1w1 + b2w2 + · · · + bkwk

for some scalars a1, a2, . . . , ak and b1, b2, . . . , bk . Since

u + v = (a1w1 + a2w2 + · · · + akwk ) + (b1w1 + b2w2 + · · · + bkwk )

= (a1 + b1)w1 + (a2 + b2)w2 + · · · + (ak + bk )wk ,

it follows that u + v belongs to the span of S. Hence the span of S is closed
under vector addition. Furthermore, for any scalar c,

cu = c(a1w1 + a2w2 + · · · + akwk )

= (c1a1)w1 + (c2a2)w2 + · · · + (ckak )wk ,

so cu belongs to the span of S. Thus the span of S is also closed under scalar
multiplication, and therefore the span of S is a subspace of Rn . �

Example 6 We can use Theorem 4.1 to show that the set of vectors of the form

W =






2a − 3b
b

−a + 4b


 ∈ R3 : a and b are scalars




231



232 CHAPTER 4 Subspaces and Their Properties

is a subspace of R3. Simply observe that




2a − 3b
b

−a + 4b


 = a




2
0

−1


 + b




−3
1
4


 ,

so W = SpanS, where

S =






2
0

−1


 ,




−3
1
4





 .

Therefore W is a subspace of R3, by Theorem 4.1.

In Example 6, we found a generating set S for W , thereby showing that W is a
subspace. It follows from Theorem 4.1 that the only sets of vectors in Rn that have
generating sets are the subspaces of Rn . Note also that a generating set for a subspace
V must consist of vectors from V . So in Example 6, even though every vector in the
subspace W is a linear combination of the standard vectors in R3, the set of standard
vectors is not a generating set for W because e1 is not in W .

Practice Problem 1 � Show that

V =






−s
2t

3s − t


 ∈ R3 : s and t are scalars




is a subspace of R3 by finding a generating set for V . �

SUBSPACES ASSOCIATED WITH A MATRIX
There are several important subspaces associated with a matrix. The first one that we
consider is the null space, a term we introduced earlier for linear transformations.

Definition The null space of a matrix A is the solution set of Ax = 0. It is denoted
by Null A.

For an m × n matrix A, the null space of A is the set

Null A = {v ∈ Rn : Av = 0}.

For example, the null space of the matrix

[
1 −5 3
2 −9 −6

]

equals the solution set of the homogeneous system of linear equations

x1 − 5x2 + 3x3 = 0
2x1 − 9x2 − 6x3 = 0.
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More generally, the solution set of any homogeneous system of linear equations equals
the null space of the coefficient matrix of that system.

The set W in Example 3 is such a solution set. (In this case, it is the solution
set of a single equation in 3 variables, 6x1 − 5x2 + 4x3 = 0.) We saw in Example 3
that W is a subspace of R3. Such sets are always subspaces, as the next theorem
shows.

THEOREM 4.2

If A is an m × n matrix, then Null A is a subspace of Rn .

PROOF Since A is an m × n matrix, the vectors in Null A, which are the
solutions of Ax = 0, belong to Rn . Clearly, 0 is in Null A because A0 = 0.
Suppose that u and v belong to Null A. Then Au = 0 and Av = 0. Hence, by
Theorem 1.3(b), we have

A(u + v) = Au + Av = 0 + 0 = 0.

This argument proves that u + v is in Null A, so Null A is closed under vector
addition. Moreover, for any scalar c, we have by Theorem 1.3(c) that

A(cu) = c(Au) = c0 = 0.

Thus cu is in Null A, so Null A is also closed under scalar multiplication. There-
fore Null A is a subspace of Rn . �

Another important subspace associated with a matrix is its column space.

Definition The column space of a matrix A is the span of its columns. It is denoted
by Col A.

For example, if

A =
[
1 −5 3
2 −9 −6

]
,

then

Col A = Span

{[
1
2

]
,

[−5
−9

]
,

[
3

−6

]}
.

Recall from the boxed result on page 68 that a vector b is a linear combination
of the columns of an m × n matrix A if and only if the matrix equation Ax = b is
consistent. Hence

Col A = {Av : v is in Rn}.

It follows from Theorem 4.1 that the column space of an m × n matrix is a
subspace of Rm . Since the null space of A is a subspace of Rn , the column space
and null space of an m × n matrix are contained in different spaces if m �= n . Even
if m = n , however, these two subspaces are rarely equal.
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Example 7 Find a generating set for the column space of the matrix

A =



1 2 1 −1
2 4 0 −8
0 0 2 6


 .

Is u =



2
1
1


 in Col A? Is v =




2
1
3


 in Col A?

Solution The column space of A is the span of the columns of A. Hence one
generating set for Col A is







1
2
0


 ,




2
4
0


 ,




1
0
2


 ,




−1
−8

6





 .

To see whether the vector u lies in the column space of A, we must determine
whether Ax = u is consistent. Since the reduced row echelon form of [A u] is




1 2 0 −4 0
0 0 1 3 0
0 0 0 0 1


 ,

we see that the system is inconsistent, and hence u is not in Col A. (See Figure 4.4.)
On the other hand, the reduced row echelon form of [A v] is




1 2 0 −4 0.5
0 0 1 3 1.5
0 0 0 0 0


 .

Thus the system Ax = v is consistent, so v is in Col A. (See Figure 4.4.)

v

u

z

x

0

Col A

y

Figure 4.4 The vector v is in the column space of A, but u is not.
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Example 8

Find a generating set for the null space of the matrix A in Example 7. Is u =




2
−3

3
−1




in Null A? Is v =




5
−3

2
1


 in Null A?

Solution Unlike the calculation of a generating set for the column space of A in
Example 7, there is no easy way to obtain a generating set for the null space of A
directly from the entries of A. Instead, we must solve Ax = 0. Because the reduced
row echelon form of A is




1 2 0 −4
0 0 1 3
0 0 0 0


 ,

the vector form of the general solution of Ax = 0 is




x1

x2

x3

x4


 =




−2x2 + 4x4

x2

−3x4

x4


 = x2




−2
1
0
0


 + x4




4
0

−3
1


 .

It follows that

Null A = Span







−2
1
0
0


 ,




4
0

−3
1







.

So the span of the set of vectors in the vector form of the general solution of Ax = 0
equals Null A.

To see if the vector u lies in the null space of A, we must determine whether
Au = 0. An easy calculation confirms this; so u belongs to Null A. On the other hand,

Av =



1 2 1 −1
2 4 0 −8
0 0 2 6







5
−3

2
1


 =




0
−10

10


 .

Since Av �= 0, we see that v is not in Null A.

Practice Problem 2 � Find a generating set for the column space and null space of

A =
[

1 2 −1
−1 −3 4

]
.

�

In this book, the subspaces that we consider usually arise as the span of a given
set of vectors or as the solution set of a homogeneous system of linear equations. As
Examples 7 and 8 illustrate, when we define a subspace by giving a generating set,
there is no work involved in obtaining a generating set, but we must solve a system
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of linear equations to check whether a particular vector belongs to the subspace. On
the other hand, if V is a subspace that is the solution set of a homogeneous system
of linear equations, then we must solve a system of linear equations in order to find
a generating set for V . But we can easily check whether a particular vector lies in V
by verifying that its components satisfy the linear system defining the subspace.

Like the column space of a matrix, the row space of a matrix is defined to be
the span of its rows. The row space of a matrix A is denoted by Row A. So for the
matrix




1 2 1 −1
2 4 0 −8
0 0 2 6




in Example 7, we have

Row A = Span







1
2
1

−1


 ,




2
4
0

−8


 ,




0
0
2
6







.

Recall that, for any matrix A, the rows of A are the columns of AT . Hence
Row A = Col AT , and so the row space of an m × n matrix is a subspace of Rn .
Usually, the three subspaces Null A, Col A, and Row A are distinct.

SUBSPACES ASSOCIATED WITH A LINEAR TRANSFORMATION
In Section 2.8, we saw that the range of a linear transformation is the span of the
columns of its standard matrix. We have just defined the span of the columns of a
matrix to be its column space. Thus we can reformulate this statement from Section 2.8
as follows:

The range of a linear transformation is the same as the column space of its
standard matrix.

As a consequence of this result, the range of a linear transformation T : Rn → Rm

is a subspace of Rm .

Example 9 Determine a generating set for the range of the linear transformation T : R4 → R3

defined by

T







x1

x2

x3

x4





 =




x1 + 2x2 + x3 − x4

2x1 + 4x2 − 8x4

2x3 + 6x4


 .

Solution The standard matrix of T is

A =



1 2 1 −1
2 4 0 −8
0 0 2 6


 .

236



4.1 Subspaces 237

Since the range of T is the same as the column space of A, a generating set for the
range of T is







1
2
0


 ,




2
4
0


 ,




1
0
2


 ,




−1
−8
−6





 ,

the set of columns of A.

We also learned in Section 2.8 that the null space of a linear transformation is
the solution set of Ax = 0, where A is the standard matrix of T . We can now restate
this result as follows:

The null space of a linear transformation is the same as the null space of its
standard matrix.

This result implies that the null space of a linear transformation T : Rn → Rm is
a subspace of Rn .

Example 10 Determine a generating set for the null space of the linear transformation in Example 9.

Solution The standard matrix of T is given in Example 9. Its reduced row echelon
form is the matrix 


1 2 0 −4
0 0 1 3
0 0 0 0




in Example 8. From the latter example, we see that

Null A = Span







−2
1
0
0


 ,




4
0

−3
1







.

Practice Problem 3 � For the linear transformation T : R4 → R3 defined by

T







x1

x2

x3

x4





 =




x1 + x3 + 2x4

−x2 + x3 + x4

2x1 + 3x2 − x3 + x4


 ,

find generating sets for the null space and range. �

EXERCISES

In Exercises 1–10, find a generating set for each subspace.

1.

{[
0
s

]
∈ R2 : s is a scalar

}
2.

{[
2s

−3s

]
∈ R2 : s is a scalar

}

3.

{[
4s
−s

]
∈ R2 : s is a scalar

}
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4.







4t
s + t

−3s + t


 ∈ R3 : s and t are scalars




5.







−s + t
2s − t
s + 3t


 ∈ R3 : s and t are scalars




6.







−r + 3s
0

s − t
r − 2t


 ∈ R4 : r , s , and t are scalars




7.







−r + s
4s − 3t

0
3r − t


 ∈ R4 : r , s , and t are scalars




8.







r − s + 3t
2r − t

−r + 3s + 2t
−2r + s + t


 ∈ R4 : r , s , and t are scalars




9.







2s − 5t
3r + s − 2t
r − 4s + 3t
−r + 2s


 ∈ R4 : r , s , and t are scalars




10.







−r + 4t
r − s + 2t

3t
r − t


 ∈ R4 : r , s , and t are scalars




In Exercises 11–18, determine whether each vector belongs to
Null A, where

A =



1 −2 −1 0
0 1 3 −2

−2 3 −1 2


 .

11.




1
1

−1
−1


 12.




1
0
1
2


 13.




−1
2

−2
−2




14.




2
0
2
3


 15.




1
−1

3
4


 16.




1
−3

5
6




17.




3
1
1
2


 18.




3
2

−1
1




In Exercises 19–26, determine whether each vector belongs to
Col A, where A is the matrix used in Exercises 11–18.

19.




2
−1

3


 20.




−1
3

−1


 21.




1
−4

2




22.




−1
2
1


 23.




1
2

−4


 24.




1
−3

3




25.




5
−4
−6


 26.




2
−1

1




In Exercises 27–34, find a generating set for the null space of
each matrix.

27.

[−1 1 2
1 −2 3

]

28.




1 2 0
0 −1 1
1 0 2




29.




1 1 −1 4
2 1 −3 5

−2 0 4 −2




30.




1 1 1
0 −1 −3
1 1 1
0 −2 −6




31.




1 1 2 1
−1 0 −5 3

1 1 2 1
−1 0 −5 3




32.




1 1 0 2 1
3 2 1 6 3
0 −1 1 −1 −1




33.




1 −3 0 1 −2 −2
2 −6 −1 0 2 5

−1 3 2 3 −1 2




34.




1 0 −1 −3 1 4
2 −1 −1 −8 3 9

−1 1 1 5 −2 −6
0 1 1 2 −1 −3




In Exercises 35–42, find generating sets for the range and null
space of each linear transformation.

35. T







x1

x2

x3





 = [x1 + 2x2 − x3]

36. T

([
x1

x2

])
=

[
x1 + 2x2

2x1 + 4x2

]

37. T

([
x1

x2

])
=




x1 + x2

x1 − x2

x1

x2




38. T







x1

x2

x3





 =

[
x1 − 2x2 + 3x3

−2x1 + 4x2 − 6x3

]

39. T







x1

x2

x3





 =




x1 + x2 − x3

0
2x1 − x3




40. T







x1

x2

x3





 =




x1 + x2

x2 + x3

x1 − x3

x1 + 2x2 + x3
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41. T







x1

x2

x3





 =




x1 − x2 − 5x3

−x1 + 2x2 + 7x3

2x1 − x2 − 8x3

2x2 + 4x3




42. T







x1

x2

x3

x4





 =




x1 − x2 − 3x3 − 2x4

−x1 + 2x2 + 4x3 + 5x4

x1 − 2x3 + x4

x1 + x2 − x3 + 4x4




In Exercises 43–62, determine whether the state-
ments are true or false.

43. If V is a subspace of Rn and v is in V , then cv is in V
for every scalar c.

44. Every subspace of Rn contains 0.

45. The subspace {0} is called the null space.

46. The span of a finite nonempty subset of Rn is a subspace
of Rn .

47. The null space of an m × n matrix is contained in Rn .

48. The column space of an m × n matrix is contained in Rn .

49. The row space of an m × n matrix is contained in Rm .

50. The row space of an m × n matrix A is the set
{Av : v is in Rn }.

51. For any matrix A, the row space of AT equals the column
space of A.

52. The null space of every linear transformation is a sub-
space.

53. The range of a function need not be a subspace.

54. The range of a linear transformation is a subspace.

55. The range of a linear transformation equals the row space
of its standard matrix.

56. The null space of a linear transformation equals the null
space of its standard matrix.

57. Every nonzero subspace of Rn contains infinitely many
vectors.

58. A subspace of Rn must be closed under vector addition.

59. Rn contains at least two subspaces.

60. A vector v is in Null A if and only if Av = 0.

61. A vector v is in Col A if and only if Ax = v is consistent.

62. A vector v is in Row A if and only if AT x = v is consis-
tent.

63. Find a generating set containing exactly two vectors for
the column space of the matrix in Exercise 27.

64. Find a generating set containing exactly two vectors for
the column space of the matrix in Exercise 28.

65. Find a generating set containing exactly four vectors for
the column space of the matrix in Exercise 32.

66. Find a generating set containing exactly four vectors for
the column space of the matrix in Exercise 33.

In Exercises 67–70, for the column space of each matrix, find a
generating set containing exactly the number of vectors specified.

67.

[
1 −3 5

−2 4 −1

]
, 2 vectors

68.




−1 6 −7
5 −3 8
4 −2 3


, 3 vectors

69.




−2 −1 −1 3
4 1 5 −4
5 2 4 −5

−1 0 −2 1


, 3 vectors

70.




1 0 4
1 −1 7
0 1 −3
1 1 1


, 2 vectors

71. Determine the null space, column space, and row space
of the m × n zero matrix.

72. Let R be the reduced row echelon form of A. Is Null A =
Null R? Justify your answer.

73. Let R be the reduced row echelon form of A. Is Col A =
Col R? Justify your answer.

74. Let R be the reduced row echelon form of A. Prove that
Row A = Row R.

75. Give an example of a nonzero matrix for which the row
space equals the column space.

76. Give an example of a matrix for which the null space
equals the column space.

77. Prove that the intersection of two subspaces of Rn is a
subspace of Rn .

78. Let

V =
{[

v1

v2

]
∈ R2 : v1 = 0

}

and

W =
{[

v1

v2

]
∈ R2 : v2 = 0

}
.

(a) Prove that both V and W are subspaces of R2.

(b) Show that V ∪ W is not a subspace of R2.

79. Let S be a nonempty subset of Rn . Prove that S is a sub-
space of Rn if and only if, for all vectors u and v in S
and all scalars c, the vector u + cv is in S.

80. Prove that if V is a subspace of Rn contain-
ing vectors u1, u2, . . . , uk , then V contains the span
of {u1, u2, . . . , uk }. For this reason, the span of
{u1, u2, . . . , uk } is called the smallest subspace of Rn con-
taining the vectors u1, u2, . . . , uk .

In Exercises 81–88, show that each set is not a subspace of the
appropriate Rn .

81.

{[
u1

u2

]
∈ R2 : u1u2 = 0

}

82.

{[
u1

u2

]
∈ R2 : 2u2

1 + 3u2
2 = 12

}

83.







3s − 2
2s + 4t

−t


 ∈ R3 : s and t are scalars




84.

{[
u1

u2

]
∈ R2 : u2

1 + u2
2 ≤ 1

}
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85.







u1

u2

u3


 ∈ R3 : u1 > u2 and u3 < 0




86.







u1

u2

u3


 ∈ R3 : u1 ≥ u2 ≥ u3




87.







u1

u2

u3


 ∈ R3 : u1 = u2u3




88.







u1

u2

u3


 ∈ R3 : u1u2 = u2

3




In Exercises 89–94, use the definition of a subspace, as in
Example 3, to prove that each set is a subspace of the appro-
priate Rn .

89.

{[
u1

u2

]
∈ R2 : u1 − 3u2 = 0

}

90.

{[
u1

u2

]
∈ R2 : 5u1 + 4u2 = 0

}

91.







u1

u2

u3


 ∈ R3 : 2u1 + 5u2 − 4u3 = 0




92.







u1

u2

u3


 ∈ R3 : −u1 + 7u2 + 2u3 = 0




93.







u1

u2

u3

u4


 ∈ R4 : 3u1 − u2 + 6u4 = 0 and u3 = 0




94.







u1

u2

u3

u4


 ∈ R4 : u1 + 5u3 = 0 and 4u2 − 3u4 = 0




95. Let T : Rn → Rm be a linear transformation. Use the def-
inition of a subspace to prove that the null space of T is
a subspace of Rn .

96. Let T : Rn → Rm be a linear transformation. Use the def-
inition of a subspace to prove that the range of T is a
subspace of Rm .

97. Let T : Rn → Rm be a linear transformation. Prove that
if V is a subspace of Rn , then {T (u) ∈ Rm : u is in V } is
a subspace of Rm .

98. Let T : Rn → Rm be a linear transformation. Prove that
if W is a subspace of Rm , then {u : T (u) is in W } is a
subspace of Rn .

99. Let A and B be two m × n matrices. Use the definition
of a subspace to prove that V = {v ∈ Rn : Av = Bv} is a
subspace of Rn .

100. Let V and W be two subspaces of Rn . Use the definition
of a subspace to prove that

S = {s ∈ Rn : s = v + w for some v in V and w in W }

is a subspace of Rn .

In Exercises 101–103, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

101. Let

A =




−1 0 2 1 1
1 1 1 0 0
1 −1 −5 3 −2
1 1 1 −1 0
0 1 3 −2 1




,

u =




3.0
1.8

−10.3
2.3
6.3




, and v =




−.6
1.4

−1.6
1.2
1.8




.

(a) Is u in the column space of A?

(b) Is v in the column space of A?

102. Let A be the matrix in Exercise 101, and let

u =




0.5
−1.6
−2.1

0.0
4.7




and v =




2.4
−6.3

3.9
0.0

−5.4




.

(a) Is u in the null space of A?

(b) Is v in the null space of A?

103. Let A be the matrix in Exercise 101, and let

u =




−5.1
−2.2

3.6
8.2
2.9




and v =




−5.6
−1.4

3.5
2.9
4.2




.

(a) Is u in the row space of A?

(b) Is v in the row space of A?

SOLUTIONS TO THE PRACTICE PROBLEMS

1. The vectors in V can be written in the form

s




−1
0
3


 + t




0
2

−1


 .

Hence 





−1
0
3


 ,




0
2

−1







is a generating set for V .
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2. The set

{[
1

−1

]
,

[
2

−3

]
,

[−1
4

]}

consisting of the columns of A is a generating set for the
column space of A. To find a generating set for the null
space of A, we must solve the equation Ax = 0. Since the
reduced row echelon form of A is

[
1 0 5
0 1 −3

]
,

the vector form of the general solution is




x1

x2

x3


 =




−5x3

3x3

x3


 = x3




−5
3
1


 .

Hence







−5
3
1







is a generating set for the null space of A.

3. The standard matrix of T is

A =



1 0 1 2
0 −1 1 1
2 3 −1 1


 .

The null space of T is the same as the null space of A,
so it is the solution set of Ax = 0. Since the reduced row
echelon form of A is




1 0 1 2
0 1 −1 −1
0 0 0 0


 ,

the solutions of Ax = 0 can be written as




x1

x2

x3

x4


 =




−x3 − 2x4

x3 + x4

x3

x4


 = x3




−1
1
1
0


 + x4




−2
1
0
1


 .

Thus







−1
1
1
0


 ,




−2
1
0
1







is a generating set for the null space of T .
The range of T is the same as the column space of A.

Hence the set







1
0
2


 ,




0
−1

3


 ,




1
1

−1


 ,




2
1
1







of columns of A is a generating set for the range of T .

4.2 BASIS AND DIMENSION

In the previous section, we saw how to describe subspaces in terms of generating
sets. To do so, we write each vector in the subspace as a linear combination of the
vectors in the generating set. While there are many generating sets for a given nonzero
subspace, it is best to use a generating set that contains as few vectors as possible.
Such a generating set, which must be linearly independent, is called a basis for the
subspace.

Definition Let V be a nonzero subspace of Rn . A basis (plural, bases) for V is a
linearly independent generating set for V .

For example, the set of standard vectors {e1, e2, . . . , en} in Rn is both a linearly
independent set and a generating set for Rn . Hence {e1, e2, . . . , en} is a basis for Rn .
We call this basis the standard basis for Rn and denote it by E . (See Figure 4.5.)
However, there are many other possible bases for Rn . For any angle θ such that
0◦

< θ < 360◦, the vectors Aθe1 and Aθe2 obtained by rotating the vectors e1 and
e2 by θ form a basis for R2. (See Figure 4.6.) There are also other bases for R2 in
which the vectors are not perpendicular. Thus there are infinitely many bases for R2.
In many applications, it is natural and convenient to describe vectors in terms of a
basis other than the standard basis for Rn .
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e3

e2

e1

z

y

x

e2

e1

y

x

The standard basis for R2 The standard basis for R3

Figure 4.5

e2

e1

y

x

A�e2

A�e1

�

�

Figure 4.6 Rotated standard vectors

We can restate some of our previous results about generating sets and linearly
independent sets, using the concept of a basis. For example, recall that the pivot
columns of a matrix are those corresponding to the columns containing leading ones
in the reduced row echelon form of the matrix. We can restate Theorem 2.4 (which
states that the pivot columns of a matrix are linearly independent and form a generating
set for its column space), as follows:

The pivot columns of a matrix form a basis for its column space.

The following example illustrates this fact:

Example 1 Find a basis for Col A if

A =




1 2 −1 2 1 2
−1 −2 1 2 3 6

2 4 −3 2 0 3
−3 −6 2 0 3 9


 .
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Solution In Example 1 of Section 1.4, we showed that the reduced row echelon
form of A is




1 2 0 0 −1 −5
0 0 1 0 0 −3
0 0 0 1 1 2
0 0 0 0 0 0


 .

Since the leading ones of this matrix are in columns one, three, and four, the pivot
columns of A are




1
−1

2
−3


 ,




−1
1

−3
2


 , and




2
2
2
0


 .

As previously mentioned, these vectors form a basis for Col A. Note that it is the
pivot columns of A, and not those of the reduced row echelon form of A, that form a
basis for Col A.

! CAUTION As seen in Example 1, the column space of a matrix is usually different from that of
its reduced row echelon form. In fact, the column space of a matrix in reduced row
echelon form always has a basis consisting of standard vectors, which is not usually
the case for other matrices.

We can apply the method in Example 1 to find a basis for any subspace if we
know a finite generating set for the subspace. For if S is a finite generating set for a
subspace of Rn , and A is a matrix whose columns are the vectors in S, then the pivot
columns of A constitute a basis for Col A, which is the span of S. Note that this basis
is also contained in S. For example, if W is the span of

S =







1
−1

2
−3


 ,




2
−2

4
−6


 ,




−1
1

−3
2


 ,




2
2
2
0


 ,




1
3
0
3


 ,




2
6
3
9







,

then we can find a basis for W by forming the matrix whose columns are the
vectors in S and choosing its pivot columns.

THEOREM 4.3

(Reduction Theorem) Let S be a finite generating set for a nonzero subspace
V of Rn . Then S can be reduced to a basis for V by removing vectors from
S.

PROOF Let V be a subspace of Rn and S = {u1, u2, . . . , uk } be a generat-
ing set for V . If A = [u1 u2 . . . uk ], then Col A = Span {u1, u2, . . . , uk } =
V . Since the pivot columns of A form a basis for Col A, the set consisting
of the pivot columns of A is a basis for V . This basis is clearly contained
in S. �
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Example 2 Find a basis for SpanS consisting of vectors in S if

S =







1
2
1
1


 ,




2
4
1
1


 ,




1
−1

0
1


 ,




2
1
1
2


 ,




1
−1

2
1







.

Solution Let

A =




1 2 1 2 1
2 4 −1 1 −1
1 2 0 1 2
1 2 1 2 1


 ,

the matrix whose columns are the vectors in S. It can be shown that the reduced row
echelon form of A is




1 2 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0


 .

Since the leading ones of this matrix are in columns 1, 3, and 5, the corresponding
columns of A form a basis for S. Thus the set







1
2
1
1


 ,




1
−1

0
1


 ,




1
−1

2
1







is a basis for the span of S, consisting of vectors of S.

If {u1, u2, . . . , uk } is a generating set for Rn , then [u1 u2 . . . uk ] must have
a pivot position in each row, by Theorem 1.6. Since no two pivot positions can lie
in the same column, it follows that this matrix must have at least n columns. Thus
k ≥ n; that is, a generating set for Rn must contain at least n vectors.

Now suppose that {v1, v2, . . . , vj } is a linearly independent subset of Rn . As noted
in Section 1.7, every subset of Rn containing more than n vectors must be linearly
dependent. Hence, in order that {v1, v2, . . . , vj } be linearly independent, we must have
j ≤ n . That is, a linearly independent subset of Rn must contain at most n vectors.

Combining the observations in the two preceding paragraphs, we see that every
basis for Rn must contain exactly n vectors. In summary, we have the following
result:

Let S be a finite subset of Rn . Then the following are true:

1. If S is a generating set for Rn , then S contains at least n vectors.

2. If S is linearly independent, then S contains at most n vectors.

3. If S is a basis for Rn , then S contains exactly n vectors.

Our next theorem shows that every nonzero subspace of Rn has a basis.
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THEOREM 4.4

(Extension Theorem) Let S be a linearly independent subset of a nonzero sub-
space V of Rn . Then S can be extended to a basis for V by inclusion of additional
vectors. In particular, every nonzero subspace has a basis.

PROOF Let S = {u1, u2, . . . , uk } be a linearly independent subset of V . If the
span of S is V , then S is a basis for V that contains S, and we are done.
Otherwise, there exists a vector v1 in V that is not in the span of S. Property 3
on page 81 implies that S ′ = {u1, u2, . . . , uk , v1} is linearly independent. If the
span of S ′ is V , then S ′ is a basis for V that contains S, and again we are done.
Otherwise, there exists a vector v2 in V that is not in the span of S ′. As before,
S ′′ = {u1, u2, . . . , uk , v1, v2} is linearly independent. We continue this process of
selecting larger linearly independent subsets of V containing S until one of them
is a generating set for V (and hence a basis for V that contains S). Note that
this process must stop in at most n steps, because every subset of Rn containing
more than n vectors is linearly dependent by property 4 on page 81.

To prove that V actually has a basis, let u be a nonzero vector in V . Applying
the Extension Theorem to S = {u}, which is a linearly independent subset of V
(property 1 on page 81), we see that V has a basis. �

We have seen that a nonzero subspace of Rn has infinitely many bases.
Although the vectors in two bases for a nonzero subspace may be different, the
next theorem shows that the number of vectors in each basis for a particular
subspace must be the same.

THEOREM 4.5

Let V be a nonzero subspace of Rn . Then any two bases for V contain the same
number of vectors.

PROOF Suppose that {u1, u2, . . . , uk } and {v1, v2, . . . , vp} are bases for V , and
let A = [u1 u2 . . . uk ] and B = [v1 v2 . . . vp]. Because {u1, u2, . . . , uk } is a
generating set for V , there are vectors ci in Rk for i = 1, 2, . . . , p such that
Aci = vi . Let C = [c1 c2 . . . cp]. Then C is a k × p matrix such that AC = B .
Now suppose that Cx = 0 for some vector x in Rp . Then Bx = ACx = 0. But
the columns of B are linearly independent, and hence x = 0 by Theorem 1.8.
Applying Theorem 1.8 to the matrix C , we conclude that the columns of C are
linearly independent vectors in Rk . Because a set of more than k vectors from Rk

is linearly dependent (property 4 on page 81), we have that p ≤ k . Reversing the
roles of the two bases in the preceding argument shows that k ≤ p also. Therefore
k = p; that is, the two bases contain the same number of vectors. �

The Reduction and Extension Theorems give two different characteristics of a
basis for a subspace. The Reduction Theorem tells us that vectors can be deleted from
a generating set to form a basis. In fact, we learned from Theorem 1.7 that a vector
can be deleted from a generating set without changing the set’s span if that vector is
a linear combination of the other vectors in the generating set. Furthermore, we saw
in item 5 on page 81 that if no vector can be removed from a generating set without
changing the set’s span, then the set must be linearly independent.

A basis is a generating set for a subspace containing the fewest possible vectors.
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On the other hand, if we adjoin an additional vector to a basis, then the larger set
cannot be contained in a basis, because any two bases for a subspace must contain
the same number of vectors. Thus the Extension Theorem implies that the larger set
cannot be linearly independent.

A basis is a linearly independent subset of a subspace that is as large as possible.

According to Theorem 4.5, the size of every basis for a subspace is the same.
This permits the following definition:

Definition The number of vectors in a basis for a nonzero subspace V of Rn is called
the dimension of V and is denoted by dim V . It is convenient to define the dimension
of the zero subspace of Rn to be 0.

Since the standard basis for Rn contains n vectors, dimRn = n . In Section 4.3,
we discuss the dimensions of several of the types of subspaces that we have previously
encountered.

Practice Problem 1 � Is







0
−1

1


 ,




−1
1
2





 a basis for R3? Justify your answer. �

The next result follows from the preceding two theorems. It contains impor-
tant information about the size of linearly independent subsets of a subspace.

THEOREM 4.6

Let V be a subspace of Rn with dimension k . Then every linearly independent
subset of V contains at most k vectors; or equivalently, any finite subset of V
containing more than k vectors is linearly dependent.

PROOF Let {v1, v2, . . . , vp} be a linearly independent subset of V . By the Exten-
sion Theorem, this set can be extended to a basis {v1, v2, . . . , vp , . . . , vk } for V .
It follows that p ≤ k . �

Example 3 Find a basis for the subspace

V =







x1

x2

x3

x4


 ∈ R4 : x1 − 3x2 + 5x3 − 6x4 = 0




of R4, and determine the dimension of V . (Since V is defined as the set of solutions
of a homogeneous system of linear equations, V is, in fact, a subspace.)

Solution The vectors in V are solutions of x1 − 3x2 + 5x3 − 6x4 = 0, a system of 1
linear equation in 4 variables. To solve this system, we apply the technique described
in Section 1.3. Since

x1 = 3x2 − 5x3 + 6x4,
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the vector form of the general solution of this system is




x1

x2

x3

x4


 =




3x2 − 5x3 + 6x4

x2

x3

x4


 = x2




3
1
0
0


 + x3




−5
0
1
0


 + x4




6
0
0
1


 .

As noted in Section 1.7, the set

S =







3
1
0
0


 ,




−5
0
1
0


 ,




6
0
0
1







containing the vectors in the vector form is both a generating set for V and a linearly
independent set. Therefore S is a basis for V . Since S is a basis for V containing 3
vectors, dim V = 3.

Practice Problem 2 � Find a basis for the column space and null space of




−1 2 1 −1
2 −4 −3 0
1 −2 0 3


 .

�

To find the dimension of a subspace, we must usually determine a basis for that
subspace. In this book, a subspace is almost always defined as either

(a) the span of a given set of vectors, or

(b) the solution set of a homogeneous system of linear equations.

Recall that a basis for a subspace as defined in (a) can be found by the technique of
Example 1. When a subspace is defined as in (b), we can obtain a basis by solving
the system of linear equations. The method was demonstrated in Example 3.

CONFIRMING THAT A SET IS A BASIS FOR A SUBSPACE
As we mentioned earlier in this section, a nonzero subspace has many bases. Depend-
ing on the application, some bases are more useful than others. For example, we
might want to find a basis whose vectors are perpendicular to each other. While the
techniques of this section enable us to find a basis for any subspace, we might not
produce a basis with the most desirable properties. In Chapters 5 and 6, we describe
methods for finding bases with special properties. In the remainder of this section, we
show how to determine whether or not a set of vectors forms a basis for a subspace.

Consider, for example, the subspace

V =






v1

v2

v3


 ∈ R3 : v1 − v2 + 2v3 = 0




of R3 and the set

S =






1
1
0


 ,




−1
1
1





 .
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By using the method of Example 3, we can find a basis for V . Since this basis contains
two vectors, the dimension of V is 2. We would like to show that S, which contains
two perpendicular vectors, is also a basis for V . (In Section 6.2, we discuss a method
for transforming any basis into one whose vectors are perpendicular to each other.)
By definition, S is a basis for V if S is both linearly independent and a generating set
for V . In this case, it is clear that S is linearly independent because S contains two
vectors, neither of which is a multiple of the other. It remains to show only that S is
a generating set for V , that is, to show that S is a subset of V such that every vector
in V is a linear combination of the vectors in S. Checking that S is a subset of V is
straightforward. Because 1 − 1 + 2(0) = 0 and −1 − 1 + 2(1) = 0, the vectors in S
satisfy the equation defining V . Hence both




1
1
0


 and




−1
1
1




are in V . Unfortunately, checking that every vector in V is a linear combination of
the vectors in S is more tedious. This requires us to show that, for every




v1

v2

v3




such that v1 − v2 + 2v3 = 0, there are scalars c1 and c2 such that

c1




1
1
0


 + c2




−1
1
1


 =




v1

v2

v3


 .

The following result removes the need for this type of calculation:

THEOREM 4.7

Let V be a k -dimensional subspace of Rn . Suppose that S is a subset of V with
exactly k vectors. Then S is a basis for V if either S is linearly independent or
S is a generating set for V .

PROOF Suppose that S is linearly independent. By the Extension Theorem,
there is a basis B for V that contains S. Because both B and S contain k vectors,
B = S. Thus S is a basis for V .

Now suppose that S is a generating set for V . By the Reduction Theorem,
some subset C of S is a basis for V . But because V has dimension k , every
basis for V must contain exactly k vectors by Theorem 4.5. Hence we must have
C = S, so S is a basis for V . �

This theorem gives us three straightforward steps to show that a given set B is a
basis for a subspace V :

Steps to Show that a Set B is a Basis for a Subspace V of Rn

1. Show that B is contained in V .

2. Show that B is linearly independent (or that B is a generating set for V ).
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3. Compute the dimension of V , and confirm that the number of vectors in B
equals the dimension of V .

In the preceding example, we showed that S is a linearly independent subset of
V containing two vectors. Because dim V = 2, all three of these steps are satisfied,
and hence S is a basis for V . Therefore we need not verify that S is a generating set
for V .

Two more examples of this technique follow.

Example 4 Show that

B =







1
−1

1
0


 ,




1
0
1

−1


 ,




0
1
1

−1







is a basis for

V =







v1

v2

v3

v4


 ∈ R4 : v1 + v2 + v4 = 0




.

Solution Clearly, the components of the three vectors in B all satisfy the equation
v1 + v2 + v4 = 0. Thus B is a subset of V , so step 1 is satisfied.

Because the reduced row echelon form of



1 1 0
−1 0 1

1 1 1
0 −1 −1


 is




1 0 0
0 1 0
0 0 1
0 0 0


 ,

it follows that B is linearly independent, so step 2 is satisfied.
As in Example 3, we find that







−1
1
0
0


 ,




0
0
1
0


 ,




−1
0
0
1







is a basis for V . Hence the dimension of V is 3. But B contains three vectors, so
step 3 is satisfied, and hence B is a basis for V .

Practice Problem 3 � Show that






−1
1

−2
1


 ,




0
3

−4
2







is a basis for the null space of the matrix in Practice Problem 1. �
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Example 5 Let W be the span of S, where

S =







1
1
1
2


 ,




−1
3
1

−1


 ,




3
1

−1
1


 ,




1
1

−1
−1







.

Show that a basis for W is

B =







1
2
0
0


 ,




1
0
0
1


 ,




0
1
1
1







.

Solution Let

B =




1 1 0
2 0 1
0 0 1
0 1 1


 and A =




1 −1 3 1
1 3 1 1
1 1 −1 −1
2 −1 1 −1


 .

You should check that the equation Ax = b is consistent for each b in B. Therefore
B is a subset of W , so step 1 is satisfied.

We can easily verify that the reduced row echelon form of B is




1 0 0
0 1 0
0 0 1
0 0 0


 ,

so B is linearly independent. Thus step 2 is satisfied.
Since the reduced row echelon form of A is




1 0 0 − 2
3

0 1 0 1
3

0 0 1 2
3

0 0 0 0




,

we see that the first 3 columns of A are its pivot columns and hence are a basis for
Col A = W . Thus dim W = 3, which equals the number of vectors contained in B,
and step 3 is satisfied. Hence B is a basis for W .

EXERCISES

In Exercises 1–8, find a basis for (a) the column space and
(b) the null space of each matrix.

1.

[
1 −3 4 −2

−1 3 −4 2

]
2.

[
1 0 −2 1
2 −1 −3 4

]

3.




1 2 4
−1 −1 −1
−1 0 2


 4.




1 3 −2
−1 −3 2

2 6 −4




5.




1 −2 0 2
−1 2 1 −3

2 −4 3 1


 6.




1 1 −1 −2
−1 −2 1 3

2 3 1 4




7.




−1 1 2 2
2 0 −5 3
1 −1 −1 −1
0 1 −2 2


 8.




1 −1 2 1
3 −3 5 4
0 0 3 −3
2 −2 1 5
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In Exercises 9–16, a linear transformation T is given. (a) Find
a basis for the range of T . (b) If the null space of T is nonzero,
find a basis for the null space of T .

9. T







x1

x2

x3





 =




x1 + 2x2 + x3

2x1 + 3x2 + 3x3

x1 + 2x2 + 4x3




10. T







x1

x2

x3





 =




x1 + 2x2 − x3

x1 + x2

x2 − x3




11. T







x1

x2

x3

x4





 =




x1 − 2x2 + x3 + x4

2x1 − 5x2 + x3 + 3x4

x1 − 3x2 + 2x4




12. T







x1

x2

x3

x4





 =




x1 + 2x3 + x4

x1 + 3x3 + 2x4

−x1 + x3




13. T







x1

x2

x3

x4





 =




x1 + x2 + 2x3 − x4

2x1 + x2 + x3

0
3x1 + x2 + x4




14. T







x1

x2

x3

x4





 =




−2x1 − x2 + x4

0
x1 + 2x2 + 3x3 + 4x4

2x1 + 3x2 + 4x3 + 5x4




15. T







x1

x2

x3

x4

x5







=



x1 + 2x2 + 3x3 + 4x5

3x1 + x2 − x3 − 3x5

7x1 + 4x2 + x3 − 2x5




16. T







x1

x2

x3

x4

x5







=




−x1 + x2 + 4x3 + 6x4 + 9x5

x1 + x2 + 2x3 + 4x4 + 3x5

3x1 + x2 + 2x4 − 3x5

x1 + 2x2 + 5x3 + 9x4 + 9x5




In Exercises 17–32, find a basis for each subspace.

17.

{[
s

−2s

]
∈ R2 : s is a scalar

}

18.







2s
−s + 4t

s − 3t


 ∈ R3 : s and t are scalars




19.







5r − 3s
2r
0

−4s


 ∈ R4 : r and s are scalars




20.







5r − 3s
2r + 6s
4s − 7t

3r − s + 9t


 ∈ R4 : r , s , and t are scalars




21.







x1

x2

x3


 ∈ R3 : x1 − 3x2 + 5x3 = 0




22.







x1

x2

x3


 ∈ R3 : −x1 + x2 + 2x3 = 0 and

2x1 − 3x2 + 4x3 = 0




23.







x1

x2

x3

x4


 ∈ R4 : x1 − 2x2 + 3x3 − 4x4 = 0




24.







x1

x2

x3

x4


 ∈ R4 : x1 − x2 + 2x3 + x4 = 0 and

2x1 − 3x2 − 5x3 − x4 = 0




25. Span







1
2
1


 ,




2
1
3


 ,




1
−4

3







26. Span







1
1

−1


 ,




2
2

−2


 ,




1
2
0


 ,




−1
1
3







27. Span







1
−1

3


 ,




0
−1

1


 ,




2
3
1


 ,




1
−2

0


 ,




4
−7
−9







28. Span







2
3

−5


 ,




8
−12

20


 ,




1
0

−2


 ,




0
2

−1


 ,




7
2
0







29. Span







1
0

−1
2


 ,




1
1

−2
1


 ,




−2
3

−1
−7


 ,




1
−1

0
3


 ,




0
1

−1
2







30. Span







0
2
3
1


 ,




1
1
1
3


 ,




3
1
0
8


 ,




1
0
1

−1


 ,




−6
2
3

−7







31. Span







−2
4
5

−1


 ,




3
−4
−5

1


 ,




1
5
4

−2


 ,




−1
1
2
0







32. Span







1
3
3
1


 ,




1
−1
−1

1


 ,




0
0
0
0


 ,




1
0
0
1


 ,




2
−5
−5

2







In Exercises 33–52, determine whether the state-
ments are true or false.

33. Every nonzero subspace of Rn has a unique basis.

34. Every nonzero subspace of Rn has a basis.

35. A basis for a subspace is a generating set that is as large
as possible.

36. If S is a linearly independent set and SpanS = V , then S
is a basis for V .
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37. Every finite generating set for a subspace contains a basis
for the subspace.

38. A basis for a subspace is a linearly independent subset of
the subspace that is as large as possible.

39. Every basis for a particular subspace contains the same
number of vectors.

40. The columns of any matrix form a basis for its column
space.

41. The pivot columns of the reduced row echelon form of A
form a basis for the column space of A.

42. The vectors in the vector form of the general solution of
Ax = 0 form a basis for the null space of A.

43. If V is a subspace of dimension k , then every generating
set for V contains exactly k vectors.

44. If V is a subspace of dimension k , then every generating
set for V contains at least k vectors.

45. If S is a linearly independent set of k vectors from a
subspace V of dimension k , then S is a basis for V .

46. If V is a subspace of dimension k , then every set contain-
ing more than k vectors from V is linearly dependent.

47. The dimension of Rn is n.

48. The vectors in the standard basis for Rn are the standard
vectors of Rn .

49. Every linearly independent subset of a subspace is con-
tained in a basis for the subspace.

50. Every subspace of Rn has a basis composed of standard
vectors.

51. A basis for the null space of a linear transformation is
also a basis for the null space of its standard matrix.

52. A basis for the range of a linear transformation is also a
basis for the column space of its standard matrix.

53. Explain why







1
−1

2
1


 ,




1
3

−1
4


 ,




2
1
5

−3







is not a generat-

ing set for R4.

54. Explain why







1
−3

4


 ,




−2
5
3


 ,




−1
6

−4


 ,




5
3

−1





 is not

linearly independent.

55. Explain why







−4
6
2


 ,




2
−3

7





 is not a basis for R3.

56. Explain why







1
−3

3


 ,




−1
2
1





 is not a generating set for

R3.

57. Explain why

{[
1

−1

]
,

[−2
5

]
,

[−1
3

]
,

[
4

−3

]}
is not lin-

early independent.

58. Explain why

{[
1

−3

]
,

[−2
1

]
,

[
1

−1

]}
is not a basis for R2.

59. Show that







1
2
1


 ,




−1
3
2





 is a basis for the subspace in

Exercise 21.

60. Show that







1
0
1

−3


 ,




2
3

−2
5







is a basis for the subspace

in Exercise 24.

61. Show that







1
−3

2
2


 ,




2
−2

0
9


 ,




1
−6

5
2







is a basis for the

subspace in Exercise 29.

62. Show that







−2
1
4

−8


 ,




−2
5
7
1


 ,




−1
1
5

−9







is a basis for the

subspace in Exercise 30.

63. Show that







0
1
1
1


 ,




2
2
1
1







is a basis for the null space of

the matrix in Exercise 5.

64. Show that







0
3
1
1


 ,




−1
2
1
1







is a basis for the null space

of the matrix in Exercise 8.

65. Show that







1
3

−2
4


 ,




−2
1
3

−3


 ,




−3
9
2
3







is a basis for the

column space of the matrix in Exercise 7.

66. Show that







1
1
6

−4


 ,




0
1

−3
3







is a basis for the column

space of the matrix in Exercise 8.
67. What is the dimension of Span {v}, where v �= 0? Justify

your answer.
68. What is the dimension of the subspace






v1

v2
.
..

vn


 ∈ Rn : v1 = 0




? Justify your answer.

69. What is the dimension of the subspace





v1

v2
.
..

vn


 ∈ Rn : v1 = 0 and v2 = 0




? Justify your answer.

70. Find the dimension of the subspace





v1

v2
..
.

vn


 ∈ Rn : v1 + v2 + · · · + vn = 0




.

Justify your answer.
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71. Let A = {u1, u2, . . . , uk } be a basis for a k -dimensional
subspace V of Rn . For any nonzero scalars c1, c2, . . . , ck ,
prove that B = {c1u1, c2u2, . . . , ckuk } is also a basis for V .

72. Let A = {u1, u2, . . . , uk } be a basis for a k -dimensional
subspace V of Rn . Prove that

B = {u1, u1 + u2, u1 + u3, . . . , u1 + uk }
is also a basis for V .

73. Let A = {u1, u2, . . . , uk } be a basis for a k -dimensional
subspace V of Rn . Prove that {v, u2, u3, . . . , uk } is also a
basis for V , where v = u1 + u2 + · · · + uk .

74. Let A = {u1, u2, . . . , uk } be a basis for a k -dimensional
subspace V of Rn , and let B = {v1, v2, . . . , vk }, where

vi = ui + ui+1 + · · · + uk for i = 1, 2, . . . , k .

Prove that B is also a basis for V .

75. Let T : Rn → Rm be a linear transformation and
{u1, u2, . . . , un } be a basis for Rn .

(a) Prove that S = {T (u1), T (u2), . . . , T (un )} is a gener-
ating set for the range of T .

(b) Give an example to show that S need not be a basis
for the range of T .

76. Let T : Rn → Rm be a one-to-one linear transformation
and V be a subspace of Rn . Recall from Exercise 97 of
Section 4.1 that W = {T (u) : u is in V } is a subspace of
Rm .

(a) Prove that if {u1, u2, . . . , uk } is a basis for V ,
{T (u1), T (u2), . . . , T (uk )} is a basis for W .

(b) Prove that dim V = dimW .

77. Let V and W be nonzero subspaces of Rn such that each
vector u in Rn can be uniquely expressed in the form
u = v + w for some v in V and some w in W .

(a) Prove that 0 is the only vector in both V and W .

(b) Prove that dim V + dim W = n.

78. Let V be a subspace of Rn . According to Theorem 4.4,
a linearly independent subset L = {u1, u2, . . . , um } of
V is contained in a basis for V . Show that if S =
{b1, b2, . . . , bk } is any generating set for V , then the pivot
columns of the matrix [u1 u2 . . . um b1 b2 . . . bk ]
form a basis for V that contains L.

In Exercises 79–82, use the procedure described in Exercise 78
to find a basis for the subspace V that contains the given linearly
independent subset L of V .

79. L =






2
3
0





, V = R3

80. L =







−1
−1

6
−7


 ,




5
−9
−2
−1







,

V = Span







1
−2

0
1


 ,




1
−1
−2

3


 ,




0
1

−2
10







81. L =







0
2
1
0







, V = Null




1 −1 2 1
2 −2 4 2

−3 3 −6 −3




82. L =







0
0
1
0







, V = Col




1 −1 −3 1
−1 1 3 2
−3 1 −1 −1

2 −2 −6 1




83. Let V =






v1

v2

v3


 ∈ R3 : v1 − v2 + v3 = 0


 and

S =






1
−1

2


 ,




2
−1

3


 ,




2
1
2





 .

(a) Show that S is linearly independent.

(b) Show that

(−9v1 + 6v2)




1
−1

2


 + (7v1 − 5v2)




2
−1

3




+ (−2v1 + 2v2)




2
1
2


 =




v1

v2

v3




for every vector




v1

v2

v3


 in V .

(c) Determine whether S is a basis for V . Justify your
answer.

84. Let V =







v1

v2

v3

v4


 ∈ R4 : 3v1 − v3 = 0 and v4 = 0




and

S =







1
3
1
2


 ,




2
5
3
3


 ,




1
−1

3
0







.

(a) Show that S is linearly independent.

(b) Show that

(9v1 − 1.5v2 − 3.5v3)




1
3
1
2


 + (−5v1 + v2 + 2v3)




2
5
3
3




+ (2v1 − 0.5v2 − 0.5v3)




1
−1

3
0


 =




v1

v2

v3

v4




for every vector




v1

v2

v3

v4


 in V .
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(c) Determine whether S is a basis for V . Justify your
answer.

In Exercises 85–88, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

85. Let

A =



0.1 0.2 0.34 0.5 −0.09
0.7 0.9 1.23 −0.5 −1.98

−0.5 0.5 1.75 −0.5 −2.50


 .

(a) Find a basis for the column space of A.

(b) Find a basis for the null space of A.

86. Show that







29.0
−57.1

16.0
4.9

−7.0




,




−26.6
53.8
−7.0
−9.1
13.0







is a basis for the null space of the matrix A in Exercise 85.

87. Show that







1.1
−7.8
−9.0


 ,




−2.7
7.6
4.0


 ,




2.5
−4.5
−6.5







is a basis for the column space of the matrix A in
Exercise 85.

88. Let

A =




−0.1 −0.21 0.2 0.58 0.4 0.61
0.3 0.63 −0.1 −0.59 −0.5 −0.81
1.2 2.52 0.6 −0.06 0.6 0.12

−0.6 −1.26 0.2 1.18 −0.2 0.30


 .

(a) Compute the rank of A, the dimension of Col A, and
the dimension of Row A.

(b) Use the result of (a) to make a conjecture about the
relationships among the rank of A, the dimension of
Col A, and the dimension of Row A, for an arbitrary
matrix A.

(c) Test your conjecture, using random 4 × 7 and 6 × 3
matrices.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Since the given set contains 2 vectors, and R3 has dimen-
sion 3, this set cannot be a basis for R3.

2. The reduced row echelon form of the given matrix A is




1 −2 0 3
0 0 1 2
0 0 0 0


 .

Hence a basis for the column space of A is







−1
2
1


 ,




1
−3

0





 ,

the set consisting of the pivot columns of A. Thus the
dimension of Col A is 2.

Solving the homogeneous system of linear equations hav-
ing the reduced row echelon form of A as its coefficient
matrix, we obtain the vector form of the general solution

of Ax = 0, which is




x1

x2

x3

x4


 = x2




2
1
0
0


 + x4




−3
0

−2
1


 .

The set of vectors in this representation,







2
1
0
0


 ,




−3
0

−2
1







,

is a basis for the null space of A. Thus the dimension of
Null A is also 2.

3. Let A be the matrix in Practice Problem 1. Since each of
the vectors in the given set B is a solution of Ax = 0, B
is a subset of the null space of A. Moreover, B is linearly
independent since neither vector in B is a multiple of the
other. Because Practice Problem 1 shows that Null A has
dimension 2, it follows from Theorem 4.7 that B is a basis
for Null A.

4.3 THE DIMENSION OF SUBSPACES ASSOCIATED
WITH A MATRIX

In this section, we investigate the dimension of several important subspaces, including
those defined in Section 4.1.
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The first example illustrates an important general result.

Example 1 For the matrix

A =




1 2 −1 2 1 2
−1 −2 1 2 3 6

2 4 −3 2 0 3
−3 −6 2 0 3 9




in Example 1 of Section 4.2, we saw that the set of pivot columns of A,

B =







1
−1

2
−3


 ,




−1
1

−3
2


 ,




2
2
2
0







,

is a basis for Col A. Hence the dimension of Col A is 3.

As mentioned in Example 1, the pivot columns of any matrix form a basis for
its column space. Hence the dimension of the column space of a matrix equals the
number of pivot columns in the matrix. However, the number of pivot columns in a
matrix is its rank.

The dimension of the column space of a matrix equals the rank of the matrix.

The dimensions of the other subspaces associated with a matrix are also deter-
mined by the rank of the matrix. For instance, when finding the general solution of
a homogeneous system Ax = 0, we have seen that the number of free variables that
appear is the nullity of A. As in Example 3 of Section 4.2, each free variable in the
vector form of the general solution is multiplied by a vector in a basis for the solution
set. Hence the dimension of the solution set of Ax = 0 is the nullity of A.

The dimension of the null space of a matrix equals the nullity of the matrix.

The preceding boxed result can sometimes help to find the dimension of a
subspace without actually determining a basis for the subspace. In Example 4 of
Section 4.2, for instance, we showed that

B =







1
−1

1
0


 ,




1
0
1

−1


 ,




0
1
1

−1







is a basis for

V =







v1

v2

v3

v4


 ∈ R4 : v1 + v2 + v4 = 0




.

Our approach required that we know the dimension of V , so we solved the equation
v1 + v2 + v4 = 0 to obtain a basis for V . There is an easier method, however, because
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V = Null [1 1 0 1]. Since [1 1 0 1] is in reduced row echelon form, its rank is 1
and hence its nullity is 4 − 1 = 3. Thus dim V = 3.

Example 2 Show that

B =







−2
1
1
2
1




,




3
−6
−2
−2
−1







is a basis for the null space of

A =




3 1 −2 1 5
1 0 1 0 1

−5 −2 5 −5 −3
−2 −1 3 2 −10


 .

Solution Because each vector in B is a solution of Ax = 0, the set B is contained
in Null A. Moreover, neither vector in B is a multiple of the other, so B is linearly
independent. Since the reduced row echelon form of A is




1 0 1 0 1
0 1 −5 0 4
0 0 0 1 −2
0 0 0 0 0


 ,

the rank of A is 3 and its nullity is 5 − 3 = 2. Hence Null A has dimension 2, so B
is a basis for Null A by Theorem 4.7.

Practice Problem 1 � Show that







0
−2

1
−1

1




,




2
1

−1
1

−1







is a basis for the null space of the matrix




1 2 3 −2 −1
0 0 1 3 2
2 4 7 0 1
3 6 11 1 2


 .

�

We now know how the dimensions of the column space and the null space of a
matrix are related to the rank of the matrix. So it is natural to turn our attention to the
other subspace associated with a matrix, its row space. Because the row space of a
matrix A equals the column space of AT , we can obtain a basis for Row A as follows:

(a) Form the transpose of A, whose columns are the rows of A.

(b) Find the pivot columns of AT , which form a basis for the column space of AT .

This approach shows us that the dimension of Row A is the rank of AT . In order to
express the dimension of Row A in terms of the rank of A, we need another method
for finding a basis for Row A.
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It is important to note that, unlike the column space of a matrix, the row space is
unaffected by elementary row operations. Consider the matrix A and its reduced row
echelon form R, given by

A =
[

1 1
2 2

]
and R =

[
1 1
0 0

]
.

Notice that

Row A = Row R = Span

{[
1
1

]}
,

but

Col A = Span

{[
1
2

]}
�= Span

{[
1
0

]}
= Col R.

It follows from the next theorem that the row space of a matrix and the row space
of its reduced row echelon form are always equal.

THEOREM 4.8

The nonzero rows of the reduced row echelon form of a matrix constitute a basis
for the row space of the matrix.

PROOF Let R be the reduced row echelon form of a matrix A. Since R is in
reduced row echelon form, the leading entry of each nonzero row of R is the only
nonzero entry in its column. Thus no nonzero row of R is a linear combination
of other rows. Hence the nonzero rows of R are linearly independent, and clearly
they are also a generating set for Row R. Therefore the nonzero rows of R are a
basis for Row R.

To complete the proof, we need show only that Row A = Row R. Because R
is obtained from A by elementary row operations, each row of R is a linear com-
bination of the rows of A. Thus Row R is contained in Row A. Since elementary
row operations are reversible, each row of A must also be a linear combination
of the rows of R. Therefore Row A is also contained in Row R. It follows that
Row A = Row R, completing the proof. �

Example 3 Recall that for the matrix

A =

⎡
⎢⎢⎣

3 1 −2 1 5
1 0 1 0 1

−5 −2 5 −5 −3
−2 −1 3 2 −10

⎤
⎥⎥⎦

in Example 2, the reduced row echelon form is⎡
⎢⎢⎣

1 0 1 0 1
0 1 −5 0 4
0 0 0 1 −2
0 0 0 0 0

⎤
⎥⎥⎦ .

Hence a basis for Row A is ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1
0
1
0
1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
1

−5
0
4

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
0
0
1

−2

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Thus the dimension of Row A is 3, which is the rank of A.
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As Example 3 illustrates, Theorem 4.8 yields the following important fact.

The dimension of the row space of a matrix equals its rank.

We have noted that the row and column spaces of a matrix are rarely equal. (For
instance, the row space of the matrix A in Example 3 is a subspace of R5, whereas
its column space is a subspace of R4.) Nevertheless, the results of this section show
that their dimensions are always the same. It follows that

dim (Row A) = dim (Col A) = dim (Row AT ),

and thus we have the following result:

The rank of any matrix equals the rank of its transpose.

We can easily extend the results in this section from matrices to linear trans-
formations. Recall from Section 4.1 that the null space of a linear transformation
T : Rn → Rm is equal to that of its standard matrix A, and the range of T is equal
to the column space of A. Hence the dimension of the null space of T is the nullity
of A, and the dimension of the range of T is the rank of A. It follows that the sum of
the dimensions of the null space and range of T equals the dimension of the domain
of T . (See Exercise 71.)

Practice Problem 2 � Find the dimensions of the column space, null space, and row space of the matrix in
Practice Problem 1. �

SUBSPACES CONTAINED WITHIN SUBSPACES
Suppose that both V and W are subspaces of Rn such that V is contained in W .
Because V is contained in W , it is natural to expect that the dimension of V would
be less than or equal to the dimension of W . This expectation is indeed correct, as
our next result shows.

THEOREM 4.9

If V and W are subspaces of Rn with V contained in W , then dim V ≤ dim W .
Moreover, if V and W also have the same dimension, then V = W .

PROOF It is easy to verify the theorem if V is the zero subspace. Assume,
therefore, that V is a nonzero subspace, and let B be a basis for V . By the
Extension Theorem, B is contained in a basis for W , so dim V ≤ dim W .

Suppose also that both V and W have dimension k . Then B is a linearly
independent subset of W that contains k vectors, and B is a basis for W by
Theorem 4.7. Therefore V = SpanB = W . �

Theorem 4.9 enables us to characterize the subspaces of Rn . For example, this
theorem shows that a subspace of R3 must have dimension 0, 1, 2, or 3. First, a
subspace of dimension 0 must be the zero subspace. Second, a subspace of dimension 1
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must have a basis {u} consisting of a single nonzero vector, and thus the subspace must
consist of all vectors that are multiples of u. As noted in Example 4 in Section 4.1,
we can depict such a set as a line through the origin of R3. Third, a subspace of
dimension 2 must have a basis {u, v} consisting of two vectors, neither of which is a
multiple of the other. In this case, the subspace consists of all vectors in R3 having
the form au + bv for some scalars a and b. As in Example 2 of Section 1.6, we can
visualize such a set as a plane through the origin of R3. Finally, a subspace of R3

having dimension 3 must be R3 itself by Theorem 4.9. (See Figure 4.7.)

v

u

z

x

y

L

W

0

R3 is the only
3-dimensional

subspace of itself.

The 0-dimensional
subspace

The 2-dimensional
subspace with
basis {u, v}

The 1-dimensional
subspace with

basis {u}

Figure 4.7 Subspaces of R3

We conclude this section with a table summarizing some of the facts from
Sections 4.1 and 4.3 concerning important subspaces associated with an m × n matrix
A. (This table also applies to a linear transformation T : Rn → Rm by taking A to be
the standard matrix of T .)

The Dimensions of the Subspaces Associated with an m × n Matrix A

Subspace Containing Space Dimension

Col A Rm rank A

Null A Rn nullity A = n − rank A

Row A Rn rank A

You can use the following procedures to obtain bases for these subspaces:

Bases for the Subspaces Associated with a Matrix A

Col A: The pivot columns of A form a basis for Col A.

Null A: The vectors in the vector form of the solution of Ax = 0 constitute a basis
for Null A. (See page 80.)

Row A: The nonzero rows of the reduced row echelon form of A constitute a
basis for Row A. (See page 257.)
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EXERCISES

In Exercises 1–4, the reduced row echelon form of a matrix
A is given. Determine the dimension of (a) Col A, (b) Null A,
(c) Row A, and (d) Null AT .

1.




1 −3 0 2
0 0 1 −4
0 0 0 0


 2.




1 0 −2 0
0 1 5 0
0 0 0 1




3.




1 −1 0 2 0
0 0 1 6 0
0 0 0 0 1


 4.




1 0 0 −4 2
0 1 0 2 −1
0 0 1 −3 1
0 0 0 0 0




In Exercises 5–12, a matrix A is given. Determine the dimension
of (a) Col A, (b) Null A, (c) Row A, and (d) Null AT .

5.
[
2 −8 −4 6

]
6.




1 2 −3
0 −1 −1
1 4 −1




7.

[
1 −1 2
2 −3 1

]
8.

[
1 −2 3

−3 6 −9

]

9.




1 1 2 1
−1 −2 2 −2

2 3 0 3




10.




−1 2 1 −1 −2
2 −4 1 5 7
2 −4 −3 1 3




11.




1 1 1
1 −1 5
2 1 4
0 2 −4


 12.




0 −1 1
1 2 −3
3 1 −2

−1 0 4




In Exercises 13–16, a subspace is given. Determine its dimen-
sion.

13.

{[−2s
s

]
∈ R2 : s is a scalar

}

14.







s
0

2s


 ∈ R3 : s is a scalar




15.







−3s + 4t
s − 2t

2s


 ∈ R3 : s and t are scalars




16.







s + 2t
0
3t


 ∈ R3 : s and t are scalars




In Exercises 17–24, a matrix A is given. Find a basis for Row A.

17.

[
1 −1 1
0 1 2

]

18.

[
1 −1 0 −2
1 −1 2 4

]

19.




−1 1 1 −2
2 −2 −2 4
2 −1 −1 3




20.




1 −2 1 −1 −2
3 −6 3 −3 −6
2 −4 1 1 1




21.




1 0 −1 −3 1 4
2 −1 −1 −8 3 9

−1 1 0 5 −2 −5
0 1 1 2 −1 −3




22.




−1 1 1 5 −2 −6
2 −1 −1 −8 3 9
0 1 −1 2 −1 −1
1 0 −1 −3 1 4




23.




1 0 −1 1 3
2 −1 −1 3 −8
0 1 −1 −1 2

−1 1 1 −2 5
1 −1 1 2 −5




24.




1 0 −1 −3 1 4
2 −1 −1 −8 3 9
1 1 −2 −1 0 3

−1 3 −2 9 −4 −7
0 1 1 2 −1 −3




In Exercises 25–32, use the method described on page 256 to
find a basis for Row A.

25. Exercise 17 26. Exercise 18 27. Exercise 19
28. Exercise 20 29. Exercise 21 30. Exercise 22
31. Exercise 23 32. Exercise 24

In Exercises 33–40, determine the dimension of the (a) range
and (b) null space of each linear transformation T . Use this
information to determine whether T is one-to-one or onto.

33. T

([
x1

x2

])
=

[
x1 + x2

2x1 + x2

]

34. T

([
x1

x2

])
=

[
x1 − 3x2

−3x1 + 9x2

]

35. T







x1

x2

x3





 =

[−x1 + 2x2 + x3

x1 − 2x2 − x3

]

36. T







x1

x2

x3





 =

[−x1 + x2 + 2x3

x1 − 3x3

]

37. T

([
x1

x2

])
=




x1

2x1 + x2

−x2




38. T

([
x1

x2

])
=




x1 − x2

−2x1 + 3x2

x1




39. T







x1

x2

x3





 =

[−x1 − x2 + x3

x1 + 2x2 + x3

]

40. T







x1

x2

x3





 =




−x1 − x2 + x3

x1 + 2x2 + x3

x1 + x2
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In Exercises 41–60, determine whether the state-
ments are true or false.

41. If V and W are subspaces of Rn having the same dimen-
sion, then V = W .

42. If V is a subspace of Rn having dimension n, then
V = Rn .

43. If V is a subspace of Rn having dimension 0, then
V = {0}.

44. The dimension of the null space of a matrix equals the
rank of the matrix.

45. The dimension of the column space of a matrix equals the
nullity of the matrix.

46. The dimension of the row space of a matrix equals the
rank of the matrix.

47. The row space of any matrix equals the row space of its
reduced row echelon form.

48. The column space of any matrix equals the column space
of its reduced row echelon form.

49. The null space of any matrix equals the null space of its
reduced row echelon form.

50. The nonzero rows of a matrix form a basis for its row
space.

51. If the row space of a matrix A has dimension k , then the
first k rows of A form a basis for its row space.

52. The row space of any matrix equals its column space.

53. The dimension of the row space of any matrix equals the
dimension of its column space.

54. The rank of any matrix equals the rank of its transpose.

55. The nullity of any matrix equals the nullity of its trans-
pose.

56. For any m × n matrix A, the dimension of the null
space of A plus the dimension of the column space of
A equals m.

57. For any m × n matrix A, the dimension of the null
space of A plus the dimension of the row space of A
equals n.

58. If T is a linear transformation, then the dimension of the
range of T plus the dimension of the null space of T
equals the dimension of the domain of T .

59. If V is a subspace of W , then the dimension of V is less
than or equal to the dimension of W .

60. If W is a subspace of Rn and V is a subspace of W
having the same dimension as W , then V = W .

In Exercises 61–68, use the results of this section to show that
B is a basis for each subspace V .

61. B={e1, e2}, V =
{[

2s − t
s + 3t

]
∈ R2 : s and t are scalars

}

62. B={e1, e2}, V =
{[ −2t

5s + 3t

]
∈ R2 : s and t are scalars

}

63. B =






3
1
0


 ,




2
1

−1





,

V =






4t
s + t

−3s + t


 ∈ R3 : s and t are scalars




64. B =






0
1
4


 ,




4
−7

0





,

V =






−s + t
2s − t
s + 3t


 ∈ R3 : s and t are scalars




65. B =







1
0
0
0


 ,




1
0

−1
−1


 ,




1
0
1
2







,

V =







−r + 3s
0

s − t
r − 2t


 ∈ R4 : r , s , and t are scalars




66. B =







0
1
0
2


 ,




1
−1

0
0


 ,




1
−1

0
1







,

V =







−r + s
4s − 3t

0
3r − t


 ∈ R4 : r , s , and t are scalars




67. B =







4
1
1

−1


 ,




0
9

−3
−8


 ,




3
0

15
4







,

V =







r − s + 3t
2r − t

− r + 3s + 2t
−2r + s + t


 ∈ R4 : r , s , and t are scalars




68. B =







1
0
5

−4


 ,




−4
2

−5
5


 ,




1
9
8

−7







,

V =







2s − 5t
3r + s − 2t
r − 4s + 3t
−r + 2s


 ∈ R4 : r , s , and t are scalars




69. (a) Find bases for the row space and null space of the
matrix in Exercise 9.

(b) Show that the union of the two bases in (a) is a basis
for R4.

70. (a) Find bases for the row space and null space of the
matrix in Exercise 11.

(b) Show that the union of the two bases in (a) is a basis
for R3.
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71. Let T : Rn → Rm be a linear transformation. Prove the
Dimension Theorem: The sum of the dimensions of the
null space and range of T is n.

72. Is there a 3 × 3 matrix whose null space and column space
are equal? Justify your answer.

73. Prove that, for any m × n matrix A and any n × p matrix
B , the column space of AB is contained in the column
space of A.

74. Prove that, for any m × n matrix A and any n × p matrix
B , the null space of B is contained in the null space of
AB .

75. Use Exercise 73 to prove that, for any m × n matrix A
and any n × p matrix B , rankAB ≤ rankA.

76. Use Exercise 75 to prove that, for any m × n matrix A
and any n × n matrix B , nullityA ≤ nullityAB .

77. Use Exercise 75 to prove that, for any m × n matrix A and
any n × p matrix B , rank AB ≤ rank B . Hint: The ranks
of AB and (AB )T are equal.

78. Use Exercise 77 to prove that, for any m × n matrix A
and any n × p matrix B , nullityB ≤ nullityAB .

79. Find 2-dimensional subspaces V and W of R5 such that
the only vector belonging to both V and W is 0.

80. Prove that if V and W are 3-dimensional subspaces of R5,
then there is some nonzero vector that belongs to both V
and W .

81. Let V be a k -dimensional subspace of Rn having a basis
{u1, u2, . . . , uk }. Define a function T : Rk → Rn by

T







x1

x2
..
.

xk





 = x1u1 + x2u2 + · · · + xkuk .

(a) Prove that T is a linear transformation.

(b) Prove that T is one-to-one.

(c) Prove that the range of T is V .

82. Let V be a subspace of Rn and u be a vector in Rn that
is not in V . Define

W = {v + cu : v is in V and c is a scalar}.

(a) Prove that W is a subspace of Rn .

(b) Determine the dimension of W . Justify your answer.

83. (a) Show that for any vector u in Rn , uT u = 0 if and
only if u = 0.

(b) Prove that for any matrix A, if u is in Row A and v
is in Null A, then uT v = 0. Hint: The row space of A
equals the column space of AT .

(c) Show that, for any matrix A, if u belongs to both
Row A and Null A, then u = 0.

84. Show that, for any m × n matrix A, the union of a basis
for Row A and a basis for Null A is a basis for Rn . Hint:
Use Exercise 83(c).

85. Let

A =




1 0 −1 −2
−1 1 2 1

1 3 2 −5
−1 6 7 −4


 .

(a) Find a 4 × 4 matrix B with rank 2 such that AB = O .

(b) Prove that if C is a 4 × 4 matrix such that AC = O ,
then rankC ≤ 2.

In Exercises 86–88, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

86. Let

B =







−1
1
1
1
0




,




0
1

−1
1
1




,




1
0
3

−1
−2







.

Show that B is linearly independent and hence is a basis
for a subspace W of R5.

87. Let

A1 =







1.0
2.0
1.0
1.0
0.1




,




−1.0
3.0
4.0
2.0

−0.6




,




2.0
−1.0
−1.0
−1.4
−0.3







and

A2 =







2
1
0
0
0




,




−3
0
1
1
0




,




1
0

−2
0
1







.

(a) Is A1 a basis for the subspace W in Exercise 86?
Justify your answer.

(b) Is A2 a basis for the subspace W in Exercise 86?
Justify your answer.

(c) Let B , A1, and A2 be the matrices whose columns are
the vectors in B, A1, and A2, respectively. Compute
the reduced row echelon forms of B , A1, A2, BT , AT

1 ,
and AT

2 .

88. Let B be a basis for a subspace W of Rn , and B be
the matrix whose columns are the vectors in B. Suppose
that A is a set of vectors in Rn , and A is the matrix
whose columns are the vectors in A. Use the results of
Exercise 87 to devise a test for A to be a basis for W . (The
test should involve the matrices A and B .) Then prove that
your test is valid.
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SOLUTIONS TO THE PRACTICE PROBLEMS

1. Let A denote the given matrix. Clearly,




1 2 3 −2 −1
0 0 1 3 2
2 4 7 0 1
3 6 11 1 2







0
−2

1
−1

1




=




0
0
0
0




and




1 2 3 −2 −1
0 0 1 3 2
2 4 7 0 1
3 6 11 1 2







2
1

−1
1

−1




=




0
0
0
0


 .

Thus both




0
−2

1
−1

1




and




2
1

−1
1

−1




belong to Null A. Moreover, neither of these vectors is
a multiple of the other, and so they are linearly inde-
pendent. Since Null A has dimension 2, it follows from
Theorem 4.7 that







0
−2

1
−1

1




,




2
1

−1
1

−1







is a basis for Null A.

2. The reduced row echelon form of the given matrix A is




1 2 0 0 4
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 0


 ,

and so its rank is 3. The dimensions of both the column
space and the row space of A equal the rank of A, so these
dimensions are 3. The dimension of the null space of A
is the nullity of A, which is

5 − rankA = 5 − 3 = 2.

4.4 COORDINATE SYSTEMS
In previous sections, we have usually expressed vectors in terms of the standard basis
for Rn . For example,




5
2
8


 = 5




1
0
0


 + 2




0
1
0


 + 8




0
0
1


 .

However, in many applications, it is more natural to express vectors in terms of
some basis other than the standard one. For example, consider the ellipse shown in
Figure 4.8. With respect to the usual xy-coordinate system, it can be shown that the
ellipse has the equation

13x2 − 10xy + 13y2 = 72.

Observe that the axes of symmetry of the ellipse are the lines y = x and y = −x , and
the lengths of the semimajor and semiminor axes are 3 and 2, respectively. Consider
a new x ′y ′-coordinate system in which the x ′-axis is the line y = x and the y ′-axis
is the line y = −x . Because the ellipse is in standard position with respect to this
coordinate system, the equation of this ellipse in the x ′y ′-coordinate system is

(x ′)2

32
+ (y ′)2

22
= 1.
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2
3

y

x

x�y�

Figure 4.8 The ellipse with equation 13x2 − 10xy + 13y2 = 72

But how can we use this simple equation of the ellipse in the x ′y ′-coordinate system
to derive the equation of the same ellipse in the usual xy-coordinate system?

To answer this question requires a careful examination of what is meant by a

coordinate system. When we say that v =
[
8
4

]
, we mean that v = 8e1 + 4e2. That is,

the components of v are the coefficients used to represent v as a linear combination
of the standard vectors. (See Figure 4.9(a).)

Any basis for a subspace provides a means for establishing a coordinate system on
the subspace. For the ellipse in Figure 4.8, the standard basis does not lead to a simple

equation. A better choice is {u1, u2}, where u1 =
[
1
1

]
is a vector that lies along the

x ′-axis and u2 =
[−1

1

]
is a vector that lies along the y ′-axis. (Note that since u1

and u2 are not multiples of one another, B = {u1, u2} is a linearly independent subset
of two vectors from R2. Hence, by Theorem 4.7, {u1, u2} is a basis for R2.) For this

basis, we can write the vector v =
[
8
4

]
in Figure 4.9(a) as v = 6u1 + (−2)u2. Thus

the coordinates of v are 6 and −2 with respect to B, as shown in Figure 4.9(b). In
this case, the coordinates of v are different from those in the usual coordinate system
for R2.

4e2

e2

e1 8e1

v � 8e1 � 4e2

6u1

u1
u2

�2u2

v � 6u1 � (�2)u2

(b)(a)

Figure 4.9 Two coordinate systems for R2
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In order to identify the vector v with the coefficients 6 and −2 in the linear
combination v = 6u1 + (−2)u2, it is important that this is the only possible way to
represent v in terms of u1 and u2.

The following theorem assures us that whenever we have a basis for Rn , we can
write any vector in Rn as a unique linear combination of the basis vectors:

THEOREM 4.10

Let B = {b1, b2, . . . , bk } be a basis for a subspace V of Rn . Any vector v in V
can be uniquely represented as a linear combination of the vectors in B; that is,
there are unique scalars a1, a2, . . . , ak such that v = a1b1 + a2b2 + · · · + akbk .

PROOF Let v be in V . Since B is a generating set for V , every vector in V is a
linear combination of b1, b2, . . . , bk . Hence there exist scalars a1, a2, . . . , ak such
that v = a1b1 + a2b2 + · · · + akbk .

Now let c1, c2, . . . , ck be scalars such that v = c1b1 + c2b2 + · · · + ckbk . To
show that the coefficients in the linear combination are unique, we prove that
each ci equals the corresponding ai . We have

0 = v − v

= (a1b1 + a2b2 + · · · + akbk ) − (c1b1 + c2b2 + · · · + ckbk )

= (a1 − c1)b1 + (a2 − c2)b2 + · · · + (ak − ck )bk .

Because B is linearly independent, this equation implies that a1 − c1 = 0,
a2 − c2 = 0, · · · , ak − ck = 0. Thus a1 = c1, a2 = c2, · · · , ak = ck , which proves
that the representation of v as a linear combination of the vectors in B is unique.

�

The conclusion of Theorem 4.10 is of great practical value. A nonzero subspace
V of Rn contains infinitely many vectors. But V has a finite basis B, and we can
uniquely express every vector in V as a linear combination of the vectors in B. Thus
we are able to study the infinitely many vectors in V as linear combinations of the
finite number of vectors in B.

COORDINATE VECTORS
We have seen that we can uniquely represent each vector in Rn as a linear combination
of the vectors in any basis for Rn . We can use this representation to introduce a
coordinate system into Rn by making the following definition:

Definition Let B = {b1, b2, . . . , bn} be a basis1 for Rn . For each v in Rn , there are
unique scalars c1, c2, . . . , cn such that v = c1b1 + c2b2 + · · · + cnbn . The vector




c1

c2
...

cn




1 In order for the definition of a coordinate vector to be unambiguous, we must assume that the vectors
in B are listed in the specific sequence b1, b2, . . . , bn . When working with coordinate vectors, we always
make this assumption. If we wish to emphasize this ordering, we refer to B as an ordered basis.
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in Rn is called the coordinate vector of v relative to B, or the B-coordinate vector
of v. We denote the B-coordinate vector of v by [v]B.

Example 1 Let

B =






1
1
1


 ,




1
−1

1


 ,




1
2
2





 .

Since B is a linearly independent set of 3 vectors in R3, B is a basis for R3. Calcu-
late u if

[u]B =



3
6

−2


 .

Solution Since the components of [u]B are the coefficients that express u as a linear
combination of the vectors in B, we have

u = 3




1
1
1


 + 6




1
−1

1


 + (−2)




1
2
2


 =




7
−7

5


 .

Practice Problem 1 � Let B = {b1, b2} be the basis for R2 pictured in Figure 4.10. Referring to that figure,
find the coordinate vectors [u]B and [v]B.

v

0

u

b1

b2

Figure 4.10 �

Example 2 For

v =



1
−4

4


 and B =







1
1
1


 ,




1
−1

1


 ,




1
2
2





 ,

determine [v]B.

Solution To find the B-coordinate vector of v, we must write v as a linear combi-
nation of the vectors in B. As we learned in Chapter 1, this requires us to find scalars
c1, c2, and c3 such that

c1




1
1
1


 + c2




1
−1

1


 + c3




1
2
2


 =




1
−4

4


 .
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From this equation, we obtain a system of linear equations with augmented matrix




1 1 1 1
1 −1 2 −4
1 1 2 4


 .

Since the reduced row echelon form of this matrix is




1 0 0 −6
0 1 0 4
0 0 1 3


 ,

we see that the desired scalars are c1 = −6, c2 = 4, c3 = 3. Thus

[v]B =



−6
4
3




is the B-coordinate vector of v.

We can easily compute coordinate vectors relative to the standard basis E for Rn .
Because we can write every vector

v =




v1

v2
...

vn




in Rn as v = v1e1 + v2e2 + · · · + vnen , we see that [v]E = v.
It is also easy to compute the B-coordinate vector of any vector in a basis B. For

if B = {b1, b2, . . . , bn} is a basis for Rn , we have

bi = 0b1 + 0b2 + · · · + 0bi−1 + 1bi + 0bi+1 + · · · + 0bn ,

and so [bi ]B = ei .
In general, the following result provides a simple method for calculating coordi-

nate vectors relative to an arbitrary basis for Rn :

THEOREM 4.11

Let B be a basis for Rn and B be the matrix whose columns are the vectors in B.
Then B is invertible, and for every vector v in Rn , B [v]B = v, or equivalently,
[v]B = B−1v.

PROOF Let B = {b1, b2, . . . , bn} be a basis for Rn and v be a vector in Rn . If

[v]B =




c1

c2
...

cn


 ,
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then

v = c1b1 + c2b2 + · · · + cnbn

= [b1 b2 . . . bn ]




c1

c2
...

cn




= B [v]B,

where B = [b1 b2 . . . bn ]. Since B is a basis, the columns of B are linearly
independent. Hence B is invertible by the Invertible Matrix Theorem, and thus
B [v]B = v is equivalent to [v]B = B−1v. �

As an alternative to the calculation in Example 1, we can compute the vector u
by using Theorem 4.11. The result is

u = B [u]B =



1 1 1
1 −1 2
1 1 2







3
6

−2


 =




7
−7

5


 ,

in agreement with Example 1.

Practice Problem 2 � Verify that B =






1
1
0


 ,




1
1
1


 ,




3
2
1





 is a basis for R3. Then find u if [u]B =




5
−2
−1


.

�

We can also use Theorem 4.11 to compute coordinate vectors, as the next example
demonstrates.

Example 3 Let

B =






1
1
1


 ,




1
−1

1


 ,




1
2
2





 and v =




1
−4

4


 ,

as in Example 2, and let B be the matrix whose columns are the vectors in B. Then

[v]B = B−1v =



−6
4
3


 .

Of course, this result agrees with that in Example 2.

Practice Problem 3 � Find [v]B if v =



−2
1
3


 and B is defined as in Practice Problem 1. �
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CHANGING COORDINATES
To obtain an equation of the ellipse in Figure 4.8, we must be able to switch between
the x ′y ′-coordinate system and the xy-coordinate system. This requires that we be
able to convert coordinate vectors relative to an arbitrary basis B into coordinate
vectors relative to the standard basis, or vice versa. In other words, we must know
the relationship between [v]B and v for an arbitrary vector v in Rn . According to
Theorem 4.11, this relationship is [v]B = B−1v, where B is the matrix whose columns
are the vectors in B.

Although a change of basis could be useful between any two bases for Rn , the
examples we give next arise as rotations of the usual coordinate axes. Such changes
of bases are especially important in Chapter 6.

Consider the basis B = {b1, b2} obtained by rotating the vectors in the standard
basis through 45◦. We can compute the components of these vectors by using the
45◦-rotation matrix, as in Section 1.2:

b1 = A45◦e1 and b2 = A45◦e2

In order to write the x ′, y ′-equation

(x ′)2

32
+ (y ′)2

22
= 1

as an equation in the usual xy-coordinate system, we must use the relationship between
a vector and its B-coordinates. Let

v =
[
x
y

]
, [v]B =

[
x ′
y ′

]
,

and

B = [b1 b2] = [A45◦e1 A45◦e2] = A45◦ [e1 e2] = A45◦ I2 = A45◦ .

Since B is a rotation matrix, we have B−1 = BT by Exercise 53 in Section 2.3. Hence
[v]B = B−1v = BT v, and so

[
x ′
y ′

]
= BT

[
x
y

]
=




√
2

2

√
2

2

−
√

2

2

√
2

2




[
x
y

]
=




√
2

2
x +

√
2

2
y

−
√

2

2
x +

√
2

2
y


 .

Therefore substituting

x ′ =
√

2

2
x +

√
2

2
y

y ′ = −
√

2

2
x +

√
2

2
y

into an equation in the x ′y ′-coordinate system converts it into one in the xy-coordinate
system. So the equation of the given ellipse in the standard coordinate system is

(√
2

2 x +
√

2
2 y

)2

32
+

(
−

√
2

2 x +
√

2
2 y

)2

22
= 1,
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which simplifies to

13x 2 − 10xy + 13y2 = 72.

Example 4 Write the equation −√
3x 2 + 2xy + √

3y2 = 12 in terms of the x ′y ′-coordinate system,
where the x ′-axis and the y ′-axis are obtained by rotating the x -axis and y-axis through
the angle 30◦.

Solution Again, a change of coordinates is required. This time, however, we must
change from the xy-coordinate system to the x ′y ′-coordinate system. Consider the
basis B = {b1, b2} obtained by rotating the vectors in the standard basis through 30◦.
As we did earlier, let

v =
[
x
y

]
, [v]B =

[
x ′
y ′

]
, and B = [b1 b2] = A30◦ .

Since v = B [v]B, we have

[
x
y

]
= B

[
x ′
y ′

]
=




√
3

2
−1

2
1

2

√
3

2




[
x ′
y ′

]
=




√
3

2
x ′ − 1

2
y ′

1

2
x ′ +

√
3

2
y ′


 .

Hence the equations relating the two coordinate systems are

x =
√

3

2
x ′ − 1

2
y ′

y = 1

2
x ′ +

√
3

2
y ′.

These substitutions change the equation −√
3x 2 + 2xy + √

3y2 = 12 into 4x ′y ′ = 12;
that is, x ′y ′ = 3. From this equation, we see that the graph of the given equation is a
hyperbola (shown in Figure 4.11).

30o x

x�

y� y

Figure 4.11 The hyperbola with equation −√
3x2 + 2xy + √

3y2 = 12
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EXERCISES

In Exercises 1–6, the B-coordinate vector of v is given. Find v if

B =
{[

1
−1

]
,

[−1
2

]}
.

1. [v]B =
[
4
3

]
2. [v]B =

[−3
2

]
3. [v]B =

[
1
6

]

4. [v]B =
[−1

4

]
5. [v]B =

[
2
5

]
6. [v]B =

[
5
2

]

In Exercises 7–10, the B-coordinate vector of v is given. Find
v if

B =






0
1
1


 ,




−1
0
1


 ,




1
1
1





 .

7. [v]B =



2
−1

3


 8. [v]B =




3
1

−4




9. [v]B =



−1
5

−2


 10. [v]B =




3
−4

2




11. (a) Prove that B =
{[

1
3

]
,

[−2
1

]}
is a basis for R2.

(b) Find [v]B if v = 5

[
1
3

]
− 3

[−2
1

]
.

12. (a) Prove that B =
{[

3
−2

]
,

[−1
2

]}
is a basis for R2.

(b) Find [v]B if v = −2

[
3

−2

]
+ 4

[−1
2

]
.

13. (a) Prove that B =






−1
0
1


 ,




2
1

−1


 ,




1
−3

2





 is a basis

for R3.

(b) Find [v]B if v = 3




−1
0
1


 −




1
−3

2


.

14. (a) Prove that B =






1
−1

1


 ,




−1
1
1


 ,




1
1
1





 is a basis for

R3.

(b) Find [v]B if v =



−1
1
1


 − 4




1
1
1


.

In Exercises 15–18, a vector is given. Find its B-coordinate vec-
tor relative to the basis B in Exercises 1–6.

15.

[−4
3

]
16.

[−1
2

]
17.

[
5

−3

]
18.

[
3
2

]

In Exercises 19–22, a vector is given. Find its B-coordinate vec-
tor relative to the basis B in Exercises 7–10.

19.




4
3
2


 20.




−2
6
3


 21.




1
−3
−2


 22.




−1
5
2




23. Find the unique representation of u =
[
a
b

]
as a linear

combination of

b1 =
[

3
−1

]
and b2 =

[−2
1

]
.

24. Find the unique representation of u =
[
a
b

]
as a linear

combination of

b1 =
[

2
−1

]
and b2 =

[−1
1

]
.

25. Find the unique representation of u =
[
a
b

]
as a linear

combination of

b1 =
[−2

3

]
and b2 =

[
3

−5

]
.

26. Find the unique representation of u =
[
a
b

]
as a linear

combination of

b1 =
[
3
1

]
and b2 =

[
2
1

]
.

27. Find the unique representation of u =



a
b
c


 as a linear

combination of

b1 =



1
−1

1


 , b2 =




−1
2
1


 , and b3 =




1
0
2


 .

28. Find the unique representation of u =



a
b
c


 as a linear

combination of

b1 =



1
−1

2


 , b2 =




1
0
2


 , and b3 =




0
1
1


 .

29. Find the unique representation of u =



a
b
c


 as a linear

combination of

b1 =



1
0
1


 , b2 =




−1
1
0


 , and b3 =




−2
0

−1


 .
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30. Find the unique representation of u =



a
b
c


 as a linear

combination of

b1 =



−1
1
2


 , b2 =




2
−1
−1


 , and b3 =




0
1
2


 .

In Exercises 31–50, determine whether the state-
ments are true or false.

31. If S is a generating set for a subspace V of Rn , then
every vector in V can be uniquely represented as a linear
combination of the vectors in S.

32. The components of the B-coordinate vector of u are the
coefficients that express u as a linear combination of the
vectors in B.

33. If E is the standard basis for Rn , then [v]E = v for all v
in Rn .

34. The B-coordinate vector of a vector in B is a standard
vector.

35. If B is a basis for Rn and B is the matrix whose columns
are the vectors in B, then B−1v = [v]B for all v in Rn .

36. If B = {b1, b2, . . . , bn } is any basis for Rn , then, for
every vector v in Rn , there are unique scalars such that
v = c1b1 + c2b2 + · · · + cnbn .

37. If the columns of an n × n matrix form a basis for Rn ,
then the matrix is invertible.

38. If B is a matrix whose columns are the vectors in a basis
for Rn , then, for any vector v in Rn , the system Bx = v
has a unique solution.

39. If B is a matrix whose columns are the vectors in a basis
B for Rn , then, for any vector v in Rn , [v]B is a solution
of Bx = v.

40. If B is a matrix whose columns are the vectors in a basis
B for Rn , then, for any vector v in Rn , the reduced row
echelon form of [B v] is [In [v]B].

41. If B is any basis for Rn , then [0]B = 0.

42. If u and v are any vectors in Rn and B is any basis for
Rn , then [u + v]B = [u]B + [v]B.

43. If v is any vector in Rn , B is any basis for Rn , and c is
a scalar, then [cv]B = c[v]B.

44. Suppose that the x ′-, y ′-axes are obtained by rotating the

usual x -, y-axes through the angle θ . Then

[
x ′

y ′

]
= Aθ

[
x
y

]
.

45. Suppose that the x ′-, y ′-axes are obtained by rotating the

usual x -, y-axes through the angle θ . Then

[
x
y

]
= Aθ

[
x ′
y ′

]
.

46. If Aθ is a rotation matrix, then AT
θ = A−1

θ .

47. The graph of an equation of the form
(x ′)2

a2
+ (y ′)2

b2
= 1

is an ellipse.

48. The graph of an equation of the form
(x ′)2

a2
− (y ′)2

b2
= 1

is a parabola.

49. The graph of an ellipse with center at the origin can be

written in the form
(x ′)2

a2
+ (y ′)2

b2
= 1 by a suitable

rotation of the coordinate axes.

50. The graph of a hyperbola with center at the origin can

be written in the form
(x ′)2

a2
− (y ′)2

b2
= 1 by a suitable

rotation of the coordinate axes.

51. Let B = {b1, b2}, where b1 =
[
1
2

]
and b2 =

[
2
3

]
.

(a) Show that B is a basis for R2.

(b) Determine the matrix A = [ [e1]B [e2]B ].

(c) What is the relationship between A and B = [b1 b2]?

52. Let B = {b1, b2}, where b1 =
[
1
3

]
and b2 =

[−1
−2

]
.

(a) Show that B is a basis for R2.

(b) Determine the matrix A = [ [e1]B [e2]B ].

(c) What is the relationship between A and B = [b1 b2]?

53. Let B = {b1, b2, b3}, where b1 =



2
1

−1


, b2 =




−1
−1

1


,

and b3 =



−1
−2

1


.

(a) Show that B is a basis for R3.

(b) Determine the matrix A = [ [e1]B [e2]B [e3]B ].

(c) What is the relationship between A and B =
[b1 b2 b3]?

54. Let B = {b1, b2, b3}, where

b1 =



1
−2

1


 , b2 =




−1
3
0


 , and b3 =




0
2
1


 .

(a) Show that B is a basis for R3.

(b) Determine the matrix A = [ [e1]B [e2]B [e3]B ].

(c) What is the relationship between A and B =
[b1 b2 b3]?

In Exercises 55–58, an angle θ is given. Let v =
[
x
y

]
and

[v]B =
[
x ′
y ′

]
, where B is the basis for R2 obtained by rotating e1

and e2 through the angle θ . Write equations expressing x ′ and
y ′ in terms of x and y.

55. θ = 30◦ 56. θ = 60◦ 57. θ = 135◦ 58. θ = 330◦

In Exercises 59–62, a basis B for R2 is given. If v =
[
x
y

]
and

[v]B =
[
x ′
y ′

]
, write equations expressing x ′ and y ′ in terms of x

and y.
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59.

{[
1

−2

]
,

[−3
5

]}
60.

{[
3
4

]
,

[
2
3

]}

61.

{[
1

−2

]
,

[−1
1

]}
62.

{[
3

−5

]
,

[
2

−3

]}

In Exercises 63–66, a basis B for R3 is given. If v =



x
y
z


 and

[v]B =



x ′
y ′
z ′


, write equations expressing x ′, y ′, and z ′ in terms

of x , y, and z .

63.







1
0
1


 ,




1
1
0


 ,




0
−2

1





 64.







−1
−1

1


 ,




−2
−2

1


 ,




1
0
1







65.







0
1
2


 ,




−1
0
1


 ,




−2
−1

1





 66.







−1
2
0


 ,




1
2
1


 ,




1
1
1







In Exercises 67–70, an angle θ is given. Let v =
[
x
y

]
and

[v]B =
[
x ′
y ′

]
, where B is the basis for R2 obtained by rotating

e1 and e2 through the angle θ . Write equations expressing x and
y in terms of x ′ and y ′.

67. θ = 60◦ 68. θ = 45◦ 69. θ = 135◦ 70. θ = 330◦

In Exercises 71–74, a basis B for R2 is given. If v =
[
x
y

]
and

[v]B =
[
x ′
y ′

]
, write equations expressing x and y in terms of x ′

and y ′.

71.

{[
1
2

]
,

[
3
4

]}
72.

{[
2

−1

]
,

[
1
3

]}

73.

{[−1
3

]
,

[
3
5

]}
74.

{[
3
2

]
,

[
2
4

]}

In Exercises 75–78, a basis B for R3 is given. If v =



x
y
z


 and

[v]B =



x ′
y ′

z ′


, write equations expressing x , y, and z in terms of

x ′, y ′, and z ′.

75.







1
3
0


 ,




−1
1
1


 ,




0
−1

1







76.







2
−1

1


 ,




0
−1

1


 ,




1
−1

2







77.







1
−1

1


 ,




−1
3
2


 ,




−1
1
1







78.







−1
1
1


 ,




−1
2
2


 ,




1
−1

1







In Exercises 79–86, an equation of a conic section is given in
the x ′y ′-coordinate system. Determine the equation of the conic
section in the usual xy-coordinate system if the x ′-axis and the
y ′-axis are obtained by rotating the usual x-axis and y-axis
through the given angle θ .

79.
(x ′)2

42
+ (y ′)2

52
= 1, θ = 60◦

80.
(x ′)2

22
− (y ′)2

32
= 1, θ = 45◦

81.
(x ′)2

32
− (y ′)2

52
= 1, θ = 135◦

82.
(x ′)2

6
+ (y ′)2

4
= 1, θ = 150◦

83.
(x ′)2

32
− (y ′)2

22
= 1, θ = 120◦

84.
(x ′)2

22
+ (y ′)2

52
= 1, θ = 330◦

85.
(x ′)2

32
− (y ′)2

42
= 1, θ = 240◦

86.
(x ′)2

32
+ (y ′)2

22
= 1, θ = 300◦

In Exercises 87–94, an equation of a conic section is given in
the xy-coordinate system. Determine the equation of the conic
section in the x ′y ′-coordinate system if the x ′-axis and the y ′-
axis are obtained by rotating the usual x-axis and y-axis through
the given angle θ .

87. −3x2 + 14xy − 3y2 = 20, θ = 45◦

88. 6x2 − 2
√

3xy + 4y2 = 21, θ = 60◦

89. 15x 2 − 2
√

3xy + 13y2 = 48, θ = 150◦

90. x2 − 6xy + y2 = 12, θ = 135◦

91. 9x2 + 14
√

3xy − 5y2 = 240, θ = 30◦

92. 35x 2 − 2
√

3xy + 33y2 = 720, θ = 60◦

93. 17x 2 − 6
√

3xy + 11y2 = 40, θ = 150◦

94. 2x2 − xy + 2y2 = 12, θ = 135◦

95. Let A = {u1, u2, . . . , un } be a basis for Rn and
c1, c2, . . . , cn be nonzero scalars. Recall from Exercise 71
of Section 4.2 that B = {c1u1, c2u2, . . . , cnun } is also a
basis for Rn . If v is a vector in Rn and

[v]A =




a1

a2
..
.

an


 ,

compute [v]B.

96. Let A = {u1, u2, . . . , un } be a basis for Rn . Recall that
Exercise 72 of Section 4.2 shows that

B = {u1, u1 + u2, . . . , u1 + un }
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is also a basis for Rn . If v is a vector in Rn and

[v]A =




a1

a2
.
..

an


 ,

compute [v]B.

97. Let A = {u1, u2, . . . , un } be a basis for Rn . Recall that
Exercise 73 of Section 4.2 shows that

B = {u1 + u2 + · · · + un , u2, u3, . . . , un}

is also a basis for Rn . If v is a vector in Rn and

[v]A =




a1

a2
..
.

an


 ,

compute [v]B.

98. Let A = {u1, u2, . . . , un } be a basis for Rn . Recall that
Exercise 74 of Section 4.2 shows that

B = {v1, v2, . . . , vk },
where

vi = ui + ui+1 + · · · + uk for i = 1, 2, . . . , k

is also a basis for Rn . If v is a vector in Rn and

[v]A =




a1

a2
.
..

an


 ,

compute [v]B.

99. Let A and B be two bases for Rn . If [v]A = [v]B for
some nonzero vector v in Rn , must A = B? Justify your
answer.

100. Let A and B be two bases for Rn . If [v]A = [v]B
for every vector v in Rn , must A = B? Justify your
answer.

101. Prove that if S is linearly dependent, then every vector in
the span of S can be written as a linear combination of
the vectors in S in more than one way.

102. Let A and B be two bases for Rn . Express [v]A in terms
of [v]B.

103. (a) Let B be a basis for Rn . Prove that the function
T : Rn → Rn defined for all v in Rn by T (v) = [v]B
is a linear transformation.

(b) Prove that T is one-to-one and onto.

104. What is the standard matrix of the linear transformation
T in Exercise 103?

105. Let V be a subspace of Rn and B = {u1, u2, . . . , uk } be
a subset of V . Prove that if every vector v in V can be
uniquely represented as a linear combination of the vectors

in B (that is, if v = a1u1 + a2u2 + · · · + akuk for unique
scalars a1, a2, . . . , ak ), then B is a basis for V . (This is the
converse of Theorem 4.10.)

106. Let V =






v1

v2

v3


 ∈ R3 : −2v1 + v2 + v3 = 0


 and

S =






−1
1
1


 ,




1
0
1


 ,




1
−2
−2





 .

(a) Show that S is linearly independent.

(b) Show that

(2v1 − 5v2)




−1
1
1


 + (2v1 − 2v2)




1
0
1




+ (v1 − 3v2)




1
−2
−2


 =




v1

v2

v3




for every vector




v1

v2

v3


 in S.

(c) Is S a basis for V ? Justify your answer.

107. Let B be a basis for Rn and {u1, u2, . . . , uk } be a subset
of Rn . Prove that {u1, u2, . . . , uk } is linearly independent
if and only if {[u1]B, [u2]B, . . . , [uk ]B} is linearly indepen-
dent.

108. Let B be a basis for Rn , {u1, u2, . . . , uk } be a subset of
Rn , and v be a vector in Rn . Prove that v is a linear com-
bination of {u1, u2, . . . , uk } if and only if [v]B is a linear
combination of {[u1]B, [u2]B, . . . , [uk ]B}.

In Exercises 109–112, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

109. Let

B =







0
25

−21
23
12




,




14
73

−66
64
42




,




−6
−56

47
−50
−29




,




−14
−68

60
−59
−39




,




−12
−118

102
−106
−62







and v =




−2
3
1
2

−1




.

(a) Show that B is a basis for R5.

(b) Find [v]B.

110. For the basis B in Exercise 109, find a nonzero vector u
in R5 such that u = [u]B.

111. For the basis B in Exercise 109, find a nonzero vector v
in R5 such that [v]B = .5v.
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112. Let B and v be as in Exercise 109, and let

u1 =




1
0

−1
1
0




, u2 =




2
−1

0
1
1




, and u3 =




1
0

−6
0

−2




.

(a) Show that v is a linear combination of u1, u2, and u3.

(b) Show that [v]B is a linear combination of [u1]B, [u2]B,
and [u3]B.

(c) Make a conjecture that generalizes the results of (a)
and (b).

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Based on Figure 4.10, we see that

u = (−1)b1 + 2b2 and v = 4b1 + 2b2.

It follows that

[u]B =
[−1

2

]
and [v]B =

[
4
2

]
.

2. Let B be the matrix whose columns are the vectors in
B. Since the reduced row echelon form of B is I3, the
columns of B are linearly independent. Thus B is a lin-
early independent set of 3 vectors from R3, and hence it
is a basis for R3.

By Theorem 4.11, we have

u = B [u]B =



1 1 3
1 1 2
0 1 1







5
−2
−1


 =




0
1

−3


 .

3. By Theorem 4.11, we also have

[v]B = B−1v =



1 1 3
1 1 2
0 1 1




−1 


−2
1
3


 =




1
6

−3


 .

4.5 MATRIX REPRESENTATIONS OF LINEAR
OPERATORS

Our knowledge of coordinate systems is useful in the study of linear transformations
from Rn to Rn . A linear transformation where the domain and codomain equal Rn is
called a linear operator on Rn . Most of the linear transformations that we encounter
from now on are linear operators.

Recall the reflection U of R2 about the x -axis defined by

U

([
x1

x2

])
=

[
x1

−x2

]
,

given in Example 8 of Section 2.7. (See Figure 2.13 on page 175.) In that example,
we computed the standard matrix of U from the standard basis for R2 by using that
U (e1) = e1 and U (e2) = −e2. The resulting matrix is

[
1 0
0 −1

]
.

The reflection of R2 about the x -axis is a special case of a reflection of R2 about a
line.

In general, a reflection about a line L through the origin of R2 is a function
T : R2 → R2 defined as follows: Let v be a vector in R2 with endpoint P . (See
Figure 4.12.) Construct a line from P perpendicular to L, and let F denote the point
of intersection of this perpendicular line with L. Extend segment PF through F to a
point P ′ such that PF = FP ′. The vector with endpoint P ′ is T (v). It can be shown
that reflections are linear operators.

For such a reflection, we can select nonzero vectors b1 and b2 so that b1 is
in the direction of L and b2 is in a direction perpendicular to L. It then follows
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y

x

v

P

P�

F

T(v)

Figure 4.12 The reflection of the vector v about the line L through the origin of R2

that T (b1) = b1 and T (b2) = −b2. (See Figure 4.13.) Observe that B = {b1, b2} is
a basis for R2 because B is a linearly independent subset of R2 consisting of 2
vectors. Moreover, we can describe the action of the reflection T on B. In particular,
since

T (b1) = 1b1 + 0b2 and T (b2) = 0b1 + (−1)b2,

the coordinate vectors of T (b1) and T (b2) relative to B are given by

[T (b1)]B =
[
1
0

]
and [T (b2)]B =

[
0

−1

]
.

We can use these columns to form a matrix

[ [T (b1)]B [T (b2)]B ] =
[
1 0
0 −1

]

that captures the behavior of T in relation to the basis B. In the case of the previously
described reflection U about the x -axis, B is the standard basis for R2, and the matrix
[ [U (b1)]B [U (b2)]B ] is the standard matrix of U .

y

x

b2

T(b2) � �b2

b1 � T (b1)

Figure 4.13 The images of the basis vectors b1 and b2 under T
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A similar approach works for any linear operator on Rn in which the images of
vectors in a particular basis are given. This motivates the following definition:

Definition Let T be a linear operator 2 on Rn and B = {b1, b2, . . . , bn} be a basis
for Rn . The matrix

[ [T (b1)]B [T (b2)]B . . . [T (bn )]B ]

is called the matrix representation of T with respect to B, or the B-matrix of T .
It is denoted by [T ]B.

Notice that the j th column of the B-matrix of T is the B-coordinate vector of
T (bj ), the image of the j th vector in B. Also, when B = E , the B-matrix of T is

[T ]E = [ [T (b1)]E [T (b2)]E . . . [T (bn )]E ] = [T (e1) T (e2) . . . T (en )],

which is the standard matrix of T . So this definition extends the notion of a standard
matrix to the context of an arbitrary basis for Rn .

For the reflection T about line L and the basis B = {b1, b2} described earlier in
this section, we have seen that the B-matrix of T is

[T ]B = [ [T (b1)]B [T (b2)]B ] =
[
1 0
0 −1

]
.

Calling [T ]B a matrix representation of T suggests that this matrix describes the
action of T in some way. Recall that if A is the standard matrix of a linear operator
T on Rn , then T (v) = Av for all vectors v in Rn . Since [v]E = v for every v in Rn ,
we see that [T ]E[v]E = Av = T (v) = [T (v)]E. An analogous result is true for [T ]B: If
T is a linear operator on Rn and B is a basis for Rn , then the B-matrix of T is the
unique n × n matrix such that

[T (v)]B = [T ]B[v]B

for all vectors v in Rn . (See Exercise 100.)

Example 1 Let T be the linear operator on R3 defined by

T







x1

x2

x3





 =




3x1 + x3

x1 + x2

−x1 − x2 + 3x3


 .

Calculate the matrix representation of T with respect to the basis B = {b1, b2, b3},
where

b1 =



1
1
1


 , b2 =




1
2
3


 , and b3 =




2
1
1


 .

2 The definition of matrix representation of T generalizes to the case of any linear transformation
T : Rn → Rm. (See Exercises 101 and 102.)
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Solution Applying T to each of the vectors in B, we obtain

T (b1) =



4
2
1


 , T (b2) =




6
3
6


 , and T (b3) =




7
3
0


 .

We must now compute the coordinate vectors of these images with respect to B. Let
B = [b1 b2 b3]. Then

[T (b1)]B = B−1T (b1) =



3
−1

1


 , [T (b2)]B = B−1T (b2) =




−9
3
6


 ,

and

[T (b3)]B = B−1T (b3) =



8
−3

1


 ,

from which it follows that the B-matrix of T is

[T ]B =



3 −9 8
−1 3 −3

1 6 1


 .

As in Section 4.4, it is natural to ask how the matrix representation of T with
respect to B is related to the standard matrix of T (which is the matrix representation
of T with respect to the standard basis for Rn ). The answer is provided by the next
theorem.

THEOREM 4.12

Let T be a linear operator on Rn , B a basis for Rn , B the matrix whose columns
are the vectors in B, and A the standard matrix of T . Then [T ]B = B−1AB , or
equivalently, A = B [T ]BB−1.

PROOF Let B = {b1, b2, . . . , bn} and B = [b1 b2 . . . bn ]. Recall that T (u) =
Au and [v]B = B−1v for all u and v in Rn . Hence

[T ]B = [ [T (b1)]B [T (b2)]B . . . [T (bn )]B ]

= [ [Ab1]B [Ab2]B . . . [Abn ]B ]

= [B−1(Ab1) B−1(Ab2) . . . B−1(Abn )]

= [(B−1A)b1 (B−1A)b2 . . . (B−1A)bn ]

= B−1A[b1 b2 . . . bn ]

= B−1AB .

Thus [T ]B = B−1AB , which is equivalent to

B [T ]BB−1 = B (B−1AB )B−1 = A.
�
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If two square matrices A and B are such that B = P−1AP for some invertible
matrix P , then A is said to be similar to B . It is easily seen that A is similar to B
if and only if B is similar to A. (See Exercise 84 of Section 2.4.) Hence we usually
describe this situation by saying that A and B are similar.

Theorem 4.12 shows that the B-matrix representation of a linear operator on Rn

is similar to its standard matrix. Theorem 4.12 not only gives us the relationship
between [T ]B and the standard matrix of T , it also provides a practical method for
computing one of these matrices from the other. The following examples illustrate
these computations:

Example 2 Calculate [T ]B by Theorem 4.12 if T and B are the linear operator and the basis given
in Example 1:

T







x1

x2

x3





 =




3x1 + x3

x1 + x2

−x1 − x2 + 3x3


 and B =







1
1
1


 ,




1
2
3


 ,




2
1
1







Solution The standard matrix of T is

A = [T (e1) T (e2) T (e3)] =



3 0 1
1 1 0

−1 −1 3


 .

Taking B to be the matrix whose columns are the vectors in B, we have

[T ]B = B−1AB =



3 −9 8
−1 3 −3

1 6 1


 .

Note that our answer agrees with that in Example 1.

Practice Problem 1 � Find the B-matrix representation of the linear operator T on R3, where

T







x1

x2

x3





 =




−x1 + 2x3

x1 + x2

−x2 + x3


 and B =







1
1
0


 ,




1
1
1


 ,




3
2
1





 .

�

Example 3 Let T be a linear operator on R3 such that

T







1
1
0





 =




1
2

−1


 , T







1
0
1





 =




3
−1

1


 , and T







0
1
1





 =




2
0
1


 .

Find the standard matrix of T .

Solution Let A denote the standard matrix of T ,

b1 =



1
1
0


 , b2 =




1
0
1


 , and b3 =




0
1
1


 ,
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and

c1 =



1
2

−1


 , c2 =




3
−1

1


 , and c3 =




2
0
1


 .

Observe that B = {b1, b2, b3} is linearly independent and thus is a basis for R3. Hence
we are given the images of the vectors in a basis for R3. Let B = [b1 b2 b3] and
C = [c1 c2 c3]. Then Ab1 = T (b1) = c1, Ab2 = T (b2) = c2, and Ab3 = T (b3) = c3.
Thus

AB = A[b1 b2 b3] = [Ab1 Ab2 Ab3] = [c1 c2 c3] = C .

Because the columns of B are linearly independent, B is invertible by the Invertible
Matrix Theorem. Thus

A = A(BB−1) = (AB )B−1 = CB−1 =



1 0 2
.5 1.5 −1.5

−.5 −.5 1.5


 .

Therefore the standard matrix of T , and hence T itself, is uniquely determined by the
images of the vectors in a basis for R3.

Example 3 suggests that a linear operator is uniquely determined by its action on
a basis because we are able to determine the standard matrix of the operator in this
example solely from this information. This is indeed the case, as Exercise 98 shows.

To conclude this section, we apply Theorem 4.12 to find an explicit formula for
the reflection T of R2 about the line L, with equation y = 1

2x . In the earlier discussion
of this problem, we have seen that nonzero vectors b1 and b2 in R2 must be selected
so that b1 lies on L and b2 is perpendicular to L. (See Figure 4.13.) One selection
that works is

b1 =
[
2
1

]
and b2 =

[−1
2

]
,

because b1 lies on L, which has slope 1
2 , and b2 lies on the line perpendicular to L,

which has slope −2. Let B = {b1, b2}, B = [b1 b2], and A be the standard matrix of
T . Recall that

[T ]B = [ [T (b1)]B T (b2)]B ] =
[
1 0
0 −1

]
.

Then, by Theorem 4.12,

A = B [T ]BB−1 =
[
.6 .8
.8 −.6

]
.

It follows that the reflection of R2 about the line with equation y = 1
2x is given by

T

([
x1

x2

])
= A

[
x1

x2

]
=

[
.6 .8
.8 −.6

] [
x1

x2

]
=

[
.6x1 + .8x2

.8x1 − .6x2

]
.
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Practice Problem 2 � Let B be the basis in Practice Problem 1, and let U be the linear operator on R3 such
that

[U ]B =



3 0 0
0 2 0
0 0 1


 .

Determine an explicit formula for U (x). �

EXERCISES

In Exercises 1–10, determine [T ]B for each linear operator T
and basis B.

1. T

([
x1

x2

])
=

[
2x1 + x2

x1 − x2

]
and B =

{[
2
1

]
,

[
1
0

]}

2. T

([
x1

x2

])
=

[
x1 − x2

x2

]
and B =

{[
2
3

]
,

[
1
1

]}

3. T

([
x1

x2

])
=

[
x1 + 2x2

x1 + x2

]
and B =

{[
1
1

]
,

[
2
1

]}

4. T

([
x1

x2

])
=

[−2x1 + x2

x1 + 3x2

]
and B =

{[
1
3

]
,

[
2
5

]}

5. T







x1

x2

x3





 =




x1 + x2

x2 − 2x3

2x1 − x2 + 3x3


 and

B =






1
1
1


 ,




2
3
2


 ,




1
2
2







6. T







x1

x2

x3





 =




x1 + x3

x2 − x3

2x1 − x2


 and

B =






0
−1

1


 ,




1
0

−1


 ,




1
1

−1







7. T







x1

x2

x3





 =




4x2

x1 + 2x3

−2x2 + 3x3


 and

B =






1
0
1


 ,




1
−2

0


 ,




−1
3
1







8. T







x1

x2

x3





 =




x1 − 2x2 + 4x3

3x1

−3x2 + 2x3


 and

B =






1
−2

1


 ,




0
−1

1


 ,




1
−5

3







9. T







x1

x2

x3

x4





 =




x1 + x2

x2 − x3

x1 + 2x4

x2 − x3 + 3x4


 and

B =







1
−1

2
3


 ,




1
−2

1
4


 ,




1
−2

0
3


 ,




0
1
1

−2







10. T







x1

x2

x3

x4





 =




x1 − x2 + x3 + 2x4

2x1 − 3x4

x1 + x2 + x3

−3x3 + x4


 and

B =







1
1
1
2


 ,




2
3
3
3


 ,




1
3
4
1


 ,




4
5
8
8







In Exercises 11–18, determine the standard matrix of the linear
operator T using the given basis B and the matrix representation
of T with respect to B.

11. [T ]B =
[

1 4
−3 5

]
and B =

{[−1
0

]
,

[
3
1

]}

12. [T ]B =
[
2 0
1 −1

]
and B =

{[
1

−2

]
,

[−2
3

]}

13. [T ]B =
[−2 −1

1 3

]
and B =

{[
1

−2

]
,

[−3
5

]}

14. [T ]B =
[

3 1
−2 4

]
and B =

{[
1
2

]
,

[
1
1

]}

15. [T ]B =



1 0 −3
−2 1 2
−1 1 1


 and

B =






−2
−1

1


 ,




−1
−2

1


 ,




−1
−1

1







16. [T ]B =



−1 1 −2
0 2 1
1 2 0


 and

B =






1
0
1


 ,




1
−2

0


 ,




−1
3
1







17. [T ]B =



1 0 −1
0 2 1

−1 1 0


 and
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B =
⎧⎨
⎩

⎡
⎣

1
0
1

⎤
⎦ ,

⎡
⎣

−1
1
0

⎤
⎦ ,

⎡
⎣

2
0
1

⎤
⎦

⎫⎬
⎭

18. [T ]B =
⎡
⎣

−1 2 1
1 0 −2
1 1 −1

⎤
⎦ and

B =
⎧⎨
⎩

⎡
⎣

−1
1
2

⎤
⎦ ,

⎡
⎣

−2
1
1

⎤
⎦ ,

⎡
⎣

0
1
2

⎤
⎦

⎫⎬
⎭

In Exercises 19–38, determine whether the state-
ments are true or false.

19. A linear transformation T : Rn → Rm that is one-to-one
is called a linear operator on Rn .

20. The matrix representation of a linear operator on Rn with
respect to a basis for Rn is an n × n matrix.

21. If T is a linear operator on Rn and B = {b1, b2, . . . , bn } is
a basis for Rn , then column j of [T ]B is the B-coordinate
vector of T (bj ).

22. If T is a linear operator on Rn and B = {b1, b2, . . . , bn }
is a basis for Rn , then the matrix representation of T with
respect to B is

[T (b1) T (b2) · · · T (bn )].

23. If E is the standard basis for Rn , then [T ]E is the standard
matrix of T .

24. If T is a linear operator on Rn , B is a basis for Rn , B is
the matrix whose columns are the vectors in B, and A is
the standard matrix of T , then [T ]B = B−1A.

25. If T is a linear operator on Rn , B is a basis for Rn , B is
the matrix whose columns are the vectors in B, and A is
the standard matrix of T , then [T ]B = BAB−1.

26. If B is a basis for Rn and T is the identity operator on
Rn , then [T ]B = In .

27. If T is a reflection of R2 about a line L, then T (v) = −v
for every vector v on L.

28. If T is a reflection of R2 about a line L, then T (v) = 0
for every vector v on L.

29. If T is a reflection of R2 about a line, then there exists a

basis B for R2 such that [T ]B =
[

1 0
0 0

]
.

30. If T is a reflection of R2 about a line L, then there exists

a basis B for R2 such that [T ]B =
[

1 0
0 −1

]
.

31. If T , B, and L are as in Exercise 30, then B consists of
two vectors on the line L.

32. An n × n matrix A is said to be similar to an n × n matrix
B if B = PT AP .

33. An n × n matrix A is similar to an n × n matrix B if B
is similar to A.

34. If T is a linear operator on Rn and B is a basis for Rn ,
then the B-matrix of T is similar to the standard matrix
of T .

35. The only matrix that is similar to the n × n zero matrix
is the n × n zero matrix.

36. The only matrix that is similar to In is In .

37. If T is a linear operator on Rn and B is a basis for Rn ,
then [T ]B[v]B = T (v).

38. If T is a linear operator on Rn and B is a basis for
Rn , then [T ]B is the unique n × n matrix such that
[T ]B[v]B = [T (v)]B for all v in Rn .

39. Let B = {b1, b2} be a basis for R2 and T be a linear opera-
tor on R2 such that T (b1) = b1 + 4b2 and T (b2) = −3b1.
Determine [T ]B.

40. Let B = {b1, b2} be a basis for R2 and T be a lin-
ear operator on R2 such that T (b1) = 2b1 − 5b2 and
T (b2) = −b1 + 3b2. Determine [T ]B.

41. Let B = {b1, b2} be a basis for R2 and T be a lin-
ear operator on R2 such that T (b1) = 3b1 − 5b2 and
T (b2) = 2b1 + 4b2. Determine [T ]B.

42. Let B = {b1, b2, b3} be a basis for R3 and T be a lin-
ear operator on R3 such that T (b1) = b1 − 2b2 + 3b3,
T (b2) = 6b2 − b3, and T (b3) = 5b1 + 2b2 − 4b3. Deter-
mine [T ]B.

43. Let B = {b1, b2, b3} be a basis for R3 and T be a linear
operator on R3 such that T (b1) = −5b2 + 4b3, T (b2) =
2b1 − 7b3, and T (b3) = 3b1 + b3. Determine [T ]B.

44. Let B = {b1, b2, b3} be a basis for R3 and T be a linear
operator on R3 such that T (b1) = 2b1 + 5b2, T (b2) =
−b1 + 3b2, and T (b3) = b2 − 2b3. Determine [T ]B.

45. Let B = {b1, b2, b3, b4} a basis for R4 and T a linear
operator on R4 such that T (b1) = b1 − b2 + b3 − b4,
T (b2) = 2b2 − b4, T (b3) = −3b1 + 5b3, and T (b4) =
4b2 − b3 + 3b4. Determine [T ]B.

46. Let B = {b1, b2, b3, b4} be a basis for R4 and T be a
linear operator on R4 such that T (b1) = −b2 + b4,
T (b2) = b1 − 2b3, T (b3) = 2b1 − 3b4, and T (b4) =
−b2 + 2b3 + b4. Determine [T ]B.

In Exercises 47–54, determine (a) [T ]B, (b) the standard matrix
of T , and (c) an explicit formula for T (x) from the given infor-
mation.

47. B =
{[

1
1

]
,

[
1
2

]}
, T

([
1
1

])
=

[
1
2

]
, T

([
1
2

])
= 3

[
1
1

]

48. B =
{[

1
3

]
,

[
1
0

]}
, T

([
1
3

])
=

[
1
3

]
− 2

[
1
0

]
,

T

([
1
0

])
= 2

[
1
3

]
−

[
1
0

]

49. B =
{[−1

2

]
,

[
1

−1

]}
, T

([−1
2

])
= 3

[−1
2

]
−

[
1

−1

]
,

T

([
1

−1

])
= 2

[−1
2

]

50. B =
{[

1
2

]
,

[
1
3

]}
, T

([
1
2

])
= −

[
1
2

]
+ 4

[
1
3

]
,

T

([
1
3

])
= 3

[
1
2

]
− 2

[
1
3

]
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51. B =






1
0
1


 ,




0
1
0


 ,




1
1
0





, T







1
0
1





 = −




0
1
0


,

T







0
1
0





 = 2




1
1
0


, T







1
1
0





 =




1
0
1


 + 2




0
1
0




52. B =






1
1

−1


 ,




0
1
1


 ,




1
2
3





,

T







1
1

−1





 =




0
1
1


 + 2




1
2
3


,

T







0
1
1





 = 4




1
1

−1


 −




1
2
3


,

T







1
2
3





 = −




1
1

−1


 + 3




0
1
1


 + 2




1
2
3




53. B =






1
0
1


 ,




−1
1
0


 ,




−2
0

−1





,

T







1
0
1





 = 3




−1
1
0


 − 2




−2
0

−1


,

T







−1
1
0





 = −1




1
0
1


 + 4




−2
0

−1


,

T







−2
0

−1





 = 2




1
0
1


 + 5




−1
1
0




54. B =






0
1
1


 ,




1
0
2


 ,




1
−1

2





,

T







0
1
1





 = 3




0
1
1


 − 2




1
0
2


 +




1
−1

2


,

T







1
0
2





 = −1




0
1
1


 + 3




1
0
2


,

T







1
−1

2





 = 5




0
1
1


 − 2




1
0
2


 −




1
−1

2




55. Find T (3b1 − 2b2) for the operator T and the basis B in
Exercise 39.

56. Find T (−b1 + 4b2) for the operator T and the basis B in
Exercise 40.

57. Find T (b1 − 3b2) for the operator T and the basis B in
Exercise 41.

58. Find T (b2 − 2b3) for the operator T and the basis B in
Exercise 42.

59. Find T (2b1 − b2) for the operator T and the basis B in
Exercise 43.

60. Find T (b1 + 3b2 − 2b3) for the operator T and the basis
B in Exercise 44.

61. Find T (−b1 + 2b2 − 3b3) for the operator T and the basis
B in Exercise 45.

62. Find T (b1 − b3 + 2b4) for the operator T and the basis B
in Exercise 46.

63. Let I be the identity operator on Rn , and let B be any
basis for Rn . Determine the matrix representation of I
with respect to B.

64. Let T be the zero operator on Rn , and let B be any basis
for Rn . Determine the matrix representation of T with
respect to B.

In Exercises 65–68, find an explicit description of the reflection
T of R2 about the line with each equation.

65. y = 1
3x 66. y = 2x 67. y = −2x 68. y = mx

The orthogonal projection of R2 on line L through the origin
is a function U : R2 → R2 defined in the following manner: Let
v be a vector in R2 with endpoint P. Construct a line from P
perpendicular to L, and let F denote the point of intersection
of this perpendicular line with L. The vector with endpoint F is
U (v). (See Figure 4.14).

It can be shown that orthogonal projections of R2 on a
line containing 0 are linear.

P

F

y

x

v

U(v)

Figure 4.14 The orthogonal projection of a vector v on a line
through the origin of R2

69. Find U

([
x1

x2

])
, where U is the orthogonal projection of

R2 on the line with equation y = x . Hint: First, find [U ]B,

where B =
{[

1
1

]
,

[−1
1

]}
.

70. Find U

([
x1

x2

])
, where U is the orthogonal projection of

R2 on the line with equation y = − 1
2x .

71. Find U

([
x1

x2

])
, where U is the orthogonal projection of

R2 on the line with equation y = −3x .
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72. Find U

([
x1

x2

])
, where U is the orthogonal projection of

R2 on the line with equation y = mx .

Let W be a plane through the origin of R3, and let v be a vector
in R3 with endpoint P. Construct a line from P perpendicular to
W , and let F denote the point of intersection of this perpendic-
ular line with W . Denote the vector with endpoint F as UW (v).
Now extend the perpendicular from P to F an equal distance to
a point P ′ on the other side of W , and denote the vector with
endpoint P ′ as TW (v). In Chapter 6, it is shown that the func-
tions UW and TW are linear operators on R3. We call UW the
orthogonal projection of R3 on W and TW the reflection of
R3 about W . (See Figure 4.15).

W

P

F

P�

v

UW(v)

TW(v)

Figure 4.15 The orthogonal projection of a vector v on a
subspace W of R3 and the reflection of a vector about W

73. Let TW be the reflection of R3 about the plane W in R3

with equation x + 2y − 3z = 0, and let

B =






−2
1
0


 ,




3
0
1


 ,




1
2

−3





 .

Note that the first two vectors in B lie in W , and the third
vector is perpendicular to W . In general, we can apply a
fact from geometry that the vector




a
b
c


 ,

whose components are the coefficients of the equation of
the plane ax + by + cz = d , is normal (perpendicular) to
the plane.

(a) Find TW (v) for each vector v in B.

(b) Show that B is a basis for R3.

(c) Find [TW ]B.

(d) Find the standard matrix of TW .

(e) Determine an explicit formula for TW







x1

x2

x3





.

In each of Exercises 74–80, find an explicit formula for

TW







x1

x2

x3





, the reflection of R3 about the plane W defined

by the given equation.

74. 2x − y + z = 0 75. x − 4y + 3z = 0
76. x + 2y − 5z = 0 77. x + 6y − 2z = 0
78. x − 3y + 5z = 0 79. x − 2y − 4z = 0
80. x + 5y + 7z = 0

81. Let W and B be as in Exercise 73, and let UW be the
orthogonal projection of R3 on W .

(a) Find UW (v) for each vector v in B.

(b) Find [UW ]B.

(c) Find the standard matrix of UW .

(d) Determine an explicit formula for UW







x1

x2

x3





.

In each of Exercises 82–88, find an explicit formula for

UW







x1

x2

x3





, the orthogonal projection of R3 on the plane W

defined by the given equation.

82. x + y − 2z = 0 83. x − 2y + 5z = 0
84. x + 4y − 3z = 0 85. x − 3y − 5z = 0
86. x + 6y + 2z = 0 87. x − 5y + 7z = 0
88. x + 2y − 4z = 0

89. Let B be a basis for Rn and T be a linear operator on
Rn . Prove that T is invertible if and only if [T ]B is
invertible.

90. Let B be a basis for Rn and T and U be linear operators
on Rn . Prove that [UT ]B = [U ]B[T ]B.

91. Let B be a basis for Rn and T be a linear operator on
Rn . Prove that the dimension of the range of T equals the
rank of [T ]B.

92. Let B be a basis for Rn and T be a linear operator on Rn .
Prove that the dimension of the null space of T equals the
nullity of [T ]B.

93. Let B be a basis for Rn and T and U be linear operators
on Rn . Prove that [T + U ]B = [T ]B + [U ]B. (See page
178 for the definition of T + U .)

94. Let B be a basis for Rn and T be a linear operator on
Rn . Prove that [cT ]B = c[T ]B for any scalar c. (See page
178 for the definition of cT .)

95. Let T be a linear operator on Rn , and let A and B be two
bases for Rn . Prove that [T ]A and [T ]B are similar.

96. Let A and B be similar matrices. Find bases A and B for
Rn such that [TA]A = A and [TA]B = B . (This proves that
similar matrices are matrix representations of the same
linear operator.)

97. Show that if A is the standard matrix of a reflection of R2

about a line, then detA = −1.
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98. Let B = {b1, b2, . . . , bn } be a basis for Rn , and let
c1, c2, . . . , cn be (not necessarily distinct) vectors in Rn .

(a) Show that the matrix transformation T induced by
CB−1 satisfies T (bj ) = cj for j = 1, 2, . . . , n.

(b) Prove that the linear transformation in (a) is the
unique linear transformation such that T (bj ) = cj for
j = 1, 2, . . . , n.

(c) Extend these results to an arbitrary linear transforma-
tion T : Rn → Rm .

99. Let T be a linear operator on Rn and B = {b1, b2, . . . , bn }
be a basis for Rn . Prove that [T ]B is an upper trian-
gular matrix (see the definition given in Exercise 61 of
Section 2.1) if and only if T (bj ) is a linear combination
of b1, . . . , bj for every j , 1 ≤ j ≤ n.

100. Let T be a linear operator on Rn and B be an ordered
basis for Rn . Prove the following results:

(a) For every vector v in Rn , [T (v)]B = [T ]B[v]B.

(b) If C is an n × n matrix such that [T (v)]B = C [v]B
for every vector v in Rn , then C = [T ]B.

The following definition of matrix representation of a linear
transformation is used in Exercises 101 and 102:

Definition Let T : Rn → Rm be a linear transformation, and
let B = {b1, b2, . . . , bn } and C = {c1, c2, . . . , cm } be bases for
Rn and Rm , respectively. The matrix

[ [T (b1)]C [T (b2)]C . . . [T (bn )]C ]

is called the matrix representation of T with respect to B
and C. It is denoted by [T ]CB.

101. Let

B =






1
1
1


 ,




1
−1

1


 ,




1
1

−1





 and C =

{[
1
2

]
,

[
2
3

]}
.

(a) Prove that B and C are bases for R3 and R2, respec-
tively.

(b) Let T : R3 → R2 be the linear transformation defined
by

T







x1

x2

x3





 =

[
x1 + 2x2 − x3

x1 − x2 + 2x3

]
.

Find [T ]CB.

102. Let T : Rn → Rm be a linear transformation, and B =
{b1, b2, . . . , bn } and C = {c1, c2, . . . , cm } be bases for Rn

and Rm , respectively. Let B and C be the matrices whose
columns are the vectors in B and C, respectively. Prove
the following results:

(a) If A is the standard matrix of T , then [T ]CB = C −1AB .

(b) If U : Rn → Rm is linear and s is any scalar, then

(i) [T + U ]CB = [T ]CB + [U ]CB;

(ii) [sT ]CB = s[T ]CB (see page 178 for the definitions
of T + U and sT );

(iii) [T (v)]C = [T ]CB[v]B, for any vector v in Rn .

(c) Let U : Rm → Rp be linear, and let D be a basis for
Rp . Then

[UT ]DB = [U ]DC [T ]CB.

(d) Let B and C be the bases in Exercise 101, and let
U : R3 → R2 be a linear transformation such that

[U ]CB =
[
1 −2 4
3 −3 1

]
.

Use (a) to find an explicit formula for U (x).

In Exercises 103–107, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

103. Let T and U be the linear operators on R4 defined by

T







x1

x2

x3

x4





 =




x1 − 2x2

x3

−x1 + 3x3

2x2 − x4




and

U







x1

x2

x3

x4





 =




x2 − x3 + 2x4

−2x1 + 3x4

2x2 − x3

3x1 + x4


 ,

and let B = {b1, b2, b3, b4}, where

b1 =




0
1
1
1


 , b2 =




0
1
2

−1


 , b3 =




1
1

−1
0


 , and b4 =




1
0

−2
−2


 .

(a) Compute [T ]B, [U ]B, and [UT ]B.

(b) Determine a relationship among [T ]B, [U ]B, and
[UT ]B.

104. Let T and U be linear operators on Rn and B be a basis
for Rn . Use the result of Exercise 103(b) to conjecture
a relationship among [T ]B, [U ]B, and [UT ]B, and then
prove that your conjecture is true.

105. Let B and b1, b2, b3, b4 be as defined in Exercise 103.

(a) Compute [T ]B, where T is the linear operator on R4

such that T (b1) = b2, T (b2) = b3, T (b3) = b4, and
T (b4) = b1.

(b) Determine an explicit formula for T (x), where x is an
arbitrary vector in R4.

106. Let B = {b1, b2, b3, b4} be as in Exercise 103, and let T
be the linear operator on R4 defined by

T







x1

x2

x3

x4





 =




x1 + 2x2 − 3x3 − 2x4

−x1 − 2x2 + 4x3 + 6x4

2x1 + 3x2 − 5x3 − 4x4

−x1 + x2 − x3 − x4


 .
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(a) Determine an explicit formula for T −1(x), where x is
an arbitrary vector in R4.

(b) Compute [T ]B and [T−1]B.

(c) Determine a relationship between [T ]B and [T−1]B.

107. Let T be an invertible linear operator on Rn and B be
a basis for Rn . Use the result of Exercise 106(c) to con-
jecture a relationship between [T ]B and [T−1]B, and then
prove that your conjecture is true.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. The standard matrix of T is

A =



−1 0 2
1 1 0
0 −1 1


 .

Let

B =



1 1 3
1 1 2
0 1 1




be the matrix whose columns are the vectors in B. Then
the B-matrix representation of T is

[T ]B = B−1AB =



6 3 12
2 1 5

−3 −1 −6


 .

2. The standard matrix of U is

A = B [U ]BB−1 =



−2 5 −1
−3 6 −1
−1 1 2


 .

Hence

U







x1

x2

x3





 = A




x1

x2

x3


 =




−2x1 + 5x2 − x3

−3x1 + 6x2 − x3

− x1 + x2 + 2x3


 .

CHAPTER 4 REVIEW EXERCISES

In Exercises 1–25, determine whether the statements
are true or false.

1. If u1, u2, . . . , uk are vectors in a subspace V of Rn ,
then every linear combination of u1, u2, . . . , uk belongs
to V .

2. The span of a finite nonempty subset of Rn is a subspace
of Rn .

3. The null space of an m × n matrix is contained in Rm .

4. The column space of an m × n matrix is contained in Rn .

5. The row space of an m × n matrix is contained in Rm .

6. The range of every linear transformation is a subspace.

7. The null space of every linear transformation equals the
null space of its standard matrix.

8. The range of every linear transformation equals the row
space of its standard matrix.

9. Every nonzero subspace of Rn has a unique basis.

10. It is possible for different bases for a particular subspace
to contain different numbers of vectors.

11. Every finite generating set for a nonzero subspace contains
a basis for the subspace.

12. The pivot columns of every matrix form a basis for its
column space.

13. The vectors in the vector form of the general solution of
Ax = 0 constitute a basis for the null space of A.

14. No subspace of Rn has dimension greater than n.

15. There is only one subspace of Rn having dimension n.

16. There is only one subspace of Rn having dimension 0.

17. The dimension of the null space of a matrix equals the
rank of the matrix.

18. The dimension of the column space of a matrix equals the
rank of the matrix.

19. The dimension of the row space of a matrix equals the
nullity of the matrix.

20. The column space of any matrix equals the column space
of its reduced row echelon form.

21. The null space of any matrix equals the null space of its
reduced row echelon form.

22. If B is a basis for Rn and B is the matrix whose columns
are the vectors in B, then B−1v = [v]B for all v in Rn .

23. If T is a linear operator on Rn , B is a basis for Rn , B is
the matrix whose columns are the vectors in B, and A is
the standard matrix of T , then [T ]B = BAB−1.

24. If T is a linear operator on Rn and B is a basis for
Rn , then [T ]B is the unique n × n matrix such that
[T ]B[v]B = [T (v)]B for all v in Rn .

25. If T is a reflection of R2 about a line, then there exists a

basis B for R2 such that [T ]B =
[
1 0
0 −1

]
.

26. Determine whether each phrase is a misuse of terminol-
ogy. If so, explain what is wrong.

(a) a basis for a matrix

(b) the rank of a subspace

(c) the dimension of a square matrix

(d) the dimension of the zero subspace
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(e) the dimension of a basis for a subspace

(f) the column space of a linear transformation

(g) the dimension of a linear transformation

(h) the coordinate vector of a linear operator

27. Let V be a subspace of Rn with dimension k , and let S
be a subset of V . What can be said about m, the number
of vectors in S , under the following conditions?

(a) S is linearly independent.

(b) S is linearly dependent.

(c) S is a generating set for V .

28. Let A be the standard matrix of a linear transformation
T : R5 → R7. If the range of T has dimension 2, deter-
mine the dimension of each of the following subspaces:

(a) Col A (b) Null A (c) Row A
(d) Null AT (e) the null space of T

In Exercises 29 and 30, determine whether the given set is a
subspace of R4. Justify your answer.

29.







u1

u2

u3

u4


 in R4 : u2

1 = u3
3 , u2 = 0, and u4 = 0




30.







u1

u2

u3

u4


 in R4 : u2 = 5u3, u1 = 0, and u4 = 0




In Exercises 31 and 32, find bases for (a) the null space if it is
nonzero, (b) the column space, and (c) the row space of each
matrix.

31.




1 2 −1
−1 −1 −1

2 1 4
1 4 −5


 32.




−1 1 2 2 1
2 −2 −1 −3 2
1 −1 1 1 2
1 −1 4 8 3




In Exercises 33 and 34, a linear transformation T is given.
(a) Find a basis for the range of T . (b) If the null space of
T is nonzero, find a basis for the null space of T .

33. T : R3 → R4 defined by

T







x1

x2

x3





 =




x2 − 2x3

−x1 + 3x2 + x3

x1 − 4x2 + x3

2x1 − x2 + 3x3




34. T : R4 → R2 defined by

T







x1

x2

x3

x4





 =

[
x1 − 2x2 + x3 − 3x4

−2x1 + 3x2 − 3x3 + 2x4

]

35. Prove that







−1
2
2

−1


 ,




1
5
3

−2







is a basis for the null space

of the linear transformation in Exercise 34.

36. Prove that







1
0

−1
−5


 ,




1
−7
−4
−3


 ,




1
−5
−1

5







is a basis for the

column space of the matrix in Exercise 32.

37. Let B =






0
−1

1


 ,




1
0

−1


 ,




−1
−1

1





.

(a) Prove that B is a basis for R3.

(b) Find v if [v]B =



4
−3
−2


.

(c) Find [w]B if w =



−2
5
3


.

38. Let B = {b1, b2, b3} be a basis for R3 and T be the linear
operator on R3 such that

T (b1) = −2b2 + b3, T (b2) = 4b1 − 3b3, and

T (b3) = 5b1 − 4b2 + 2b3.

(a) Determine [T ]B.

(b) Express T (v) as a linear combination of the vectors
in B if v = 3b1 − b2 − 2b3.

39. Determine (a) [T ]B, (b) the standard matrix of T , and
(c) an explicit formula for T (x) from the given informa-
tion about the linear operator T on R2.

B =
{[

1
−2

]
,

[−2
3

]}
,

T

([
1

−2

])
=

[
3
4

]
, and T

([−2
3

])
=

[−1
1

]

40. Let T be the linear operator on R2 and B be the basis for
R2 defined by

T

([
x1

x2

])
=

[
2x1 − x2

x1 − 2x2

]
and B =

{[
1
2

]
,

[
3
7

]}
.

Determine [T ]B.

41. Determine an explicit description of T (x), using the given
basis B and the matrix representation of T with respect
to B.

[T ]B =



1 2 −1
−1 3 2

2 1 2


 and B =







2
1
1


 ,




1
2
1


 ,




1
1
1







42. Let T be the linear operator on R3 such that

T







1
0
1





 =




2
1

−2


 , T







0
−1

1





 =




1
3

−1


 ,

and

T







−1
1

−1





 =




−2
1
3


 .

Find an explicit description of T (x).

In Exercises 43 and 44, an equation of a conic section is given in
the x ′y ′-coordinate system. Determine the equation of the conic
section in the usual xy-coordinate system if the x ′-axis and the
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y ′-axis are obtained by rotating the usual x-axis and y-axis
through the given angle θ .

43.
(x ′)2

22
+ (y ′)2

32
= 1, θ = 120◦

44. −√
3(x ′)2 + 2x ′y ′ + √

3(y ′)2 = 12, θ = 330◦

In Exercises 45 and 46, an equation of a conic section is given
in the xy-coordinate system. Determine the equation of the conic
section in the x ′y ′-coordinate system if the x ′-axis and the y ′-
axis are obtained by rotating the usual x-axis and y-axis through
the given angle θ .

45. 29x 2 − 42xy + 29y2 = 200, θ = 315◦

46. −39x 2 − 50
√

3xy + 11y2 = 576, θ = 210◦

47. Find an explicit description of the reflection T of R2 about
the line with equation y = − 3

2x .

48. Find an explicit description of the orthogonal projection
U of R2 on the line with equation y = − 3

2x .

49. Prove that if {v1, v2, . . . , vn } is a basis for Rn and A is an
invertible n × n matrix, then {Av1, Av2, . . . , Avn } is also
a basis for Rn .

50. Let V and W be subspaces of Rn . Prove that V ∪ W is
a subspace of Rn if and only if V is contained in W or
W is contained in V .

51. Let B be a basis for Rn and T be an invertible linear
operator on Rn . Prove that [T−1]B = ([T ]B)−1.

Let V and W be subsets of Rn . We define the sum of V and W ,
denoted V + W , as

V + W = {u in Rn : u = v + w

for some v in V and some w in W }.
In Exercises 52–54, use the preceding definition.

52. Prove that if V and W are subspaces of Rn , then V + W
is also a subspace of Rn .

53. Let

V =






v1

v2

v3


 in R3 : v1 + v2 = 0 and 2v1 − v3 = 0




and

W =






w1

w2

w3


 in R3 : w1 − 2w3 = 0 and w2 + w3 = 0


 .

Find a basis for V + W .

54. Let S1 and S2 be subsets of Rn , and let S = S1 ∪ S2. Prove
that if V = Span S1 and W = Span S2, then Span S =
V + W .

CHAPTER 4 MATLAB EXERCISES

For the following exercises, use MATLAB (or comparable software) or a calculator with matrix capabilities. The
MATLAB functions in Tables D.1, D.2, D.3, D.4, and D.5 of Appendix D may be useful.

1. Let

A =




1.1 0.0 2.2 −1.3 −0.2
2.1 −1.5 2.7 2.2 4.3

−1.2 4.1 1.7 1.4 0.2
2.2 2.1 6.5 2.1 4.3
1.3 1.2 3.8 −1.7 −0.4
3.1 −4.0 2.2 −1.1 2.0




.

For each of the following parts, use Theorem 1.5 to deter-
mine whether each vector belongs to Col A.

(a)




−1.5
11.0

−10.7
0.1

−5.7
12.9




(b)




3.5
2.0

−3.8
2.3
4.3
2.2




(c)




1.1
−2.8

4.1
2.0
4.0

−3.7




(d)




4.8
−3.2

3.0
4.4
8.4
0.4




2. Let

A =




1.2 2.3 1.2 4.7 −5.8
−1.1 3.2 −3.1 −1.0 −3.3

2.3 1.1 2.1 5.5 −4.3
−1.2 1.4 −1.4 −1.2 −1.4

1.1 −4.1 5.1 2.1 3.1
0.1 −2.1 1.2 −0.8 3.0




.

For each of the following parts, determine whether each
vector belongs to Null A.

(a)




2.6
0.8
1.7

−2.6
−0.9




(b)




−3.4
5.6
1.1
3.4
4.5




(c)




1.5
−1.2

2.4
−0.3

3.7




(d)




1.3
−0.7

0.3
−1.3
−1.0




3. Let A be the matrix of Exercise 2.

(a) Find a basis for the column space of A consisting of
columns of A.

(b) Use Exercise 78 of Section 4.2 to extend this basis to
a basis for R6.
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(c) Find a basis for Null A.

(d) Find a basis for Row A.

4. Let

A =




1.3 2.1 0.5 2.9
2.2 −1.4 5.8 −3.0

−1.2 1.3 −3.7 3.8
4.0 2.7 5.3 1.4
1.7 4.1 −0.7 6.5

−3.1 1.0 −7.2 5.1




.

(a) Find a basis for the column space of A consisting of
columns of A.

(b) Use Exercise 78 of Section 4.2 to extend this basis to
a basis for R6.

(c) Find a basis for Null A.

(d) Find a basis for Row A.

5. Let

B =







1.1
3.3

−1.7
2.2
0.7
6.1




,




2.1
−1.3

2.4
1.5
4.2
2.2




,




−1.2
4.1
4.6

−4.2
1.6

−3.1




,




3.1
4.3

−3.2
3.1
3.8
0.4




,




4.5
2.5
5.3
1.3

−1.4
2.5




,




5.3
−4.5

1.8
4.1

−2.4
−2.3







.

(a) Show that B is a basis for R6.

(b) For each of the following parts, represent the given
vector as a linear combination of the vectors in B.

(i)




7.4
5.1

−10.8
14.0
−8.0
26.6




(ii)




−4.2
5.3

−20.0
2.9
7.5

−8.2




(iii)




−19.3
6.6

−30.2
−7.7

2.2
−18.9




(c) For each vector in (b), find the corresponding coordi-
nate vector relative to B.

Exercises 6 and 7 apply the results of Exercise 98 of Section 4.5.

6. Let B = {b1, b2, b3, b4, b5} be the basis for R5 given by

B =







−1.4
10.0
9.0
4.4
4.0




,




−1.9
3.0
4.0
2.9
1.0




,




2.3
2.5
1.0

−2.3
0.0




,




−3.1
2.0
4.0
4.1
1.0




,




0.7
8.0
5.0
1.3
3.0







.

Let T be a linear operator T on R5 such that

T (b1) =




1
−1

2
1
1




, T (b2) =




0
0
1
1

−2




, T (b3) =




−2
1
0
1
2




,

T (b4) =




3
1
0
1

−1




, T (b5) =




1
0
1

−1
2




.

Find the standard matrix of the linear operator T from the
given information.

7. Find the standard matrix of the linear transformation
U : R6 → R4 such that

U







2
1

−1
0
0

−1







=




1
−1

0
2


 , U







0
−1

0
1

−2
0







=




0
−1

1
2


 ,

U







−4
−2

1
2

−4
2







=




1
1

−2
3


 , U







0
−2

0
1

−2
0







=




−2
3
0
1


 ,

U







0
1
0
0
1
0







=




1
0
0

−1


 , U







−1
1
0
2
0
1







=




1
0
2
0


 .

8. It is clear that any subspace W of Rn can be described
as the column space of a matrix A. Simply choose a
finite generating set for W and let A be the matrix whose
columns are the vectors in this set (in any order). What
is less clear is that W can also be described as the null
space of a matrix. The method is described next.

Let W be a subspace of Rn . Choose a basis for W and
extend it to a basis B = {b1, b2, . . . , bn} for Rn , where
the first k vectors in B constitute the original basis for
W . Let T be the linear operator on Rn (whose existence
is guaranteed by Exercise 98 of Section 4.5) defined by

T (bj ) =
{

0 if j ≤ k

bj if j > k .

Prove that W = Null A, where A is the standard matrix
of T .
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9. Let W be the subspace of R5 with basis





1
3

−1
0
2




,




−1
0
1
2
1




,




0
2
0
2
3







.

Use the method described in Exercise 8 to find a matrix
A such that W = Null A.

10. An advantage of representing subspaces of Rn as null
spaces of matrices (see Exercise 8) is that these matri-
ces can be used to describe the intersection of two sub-
spaces, which is a subspace of Rn (see Exercise 77 of
Section 4.1).

(a) Let V and W be subspaces of Rn , and suppose
that A and B are matrices such that V = Null A and
W = Null B . Notice that A and B each consist of

n columns. (Why?) Let C =
[
A
B

]
; that is, C is the

matrix whose rows consist of the rows of A followed
by the rows of B . Prove that

Null C = Null A ∩ Null B = V ∩ W .

(b) Let

V = Span







1
2
1

−1


 ,




2
1
0
1


 ,




1
3
1
0







and

W = Span







1
−1

1
1


 ,




0
1
1
1


 ,




1
0
1
2







.

Use (a) and the MATLAB function null(A, ′r′)
described in Table D.2 of Appendix D to find a basis
for V ∩ W .
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5 INTRODUCTION

The control of vibrations in mechanical sys-
tems, such as cars, power plants, or bridges,
is an important design consideration. The
consequences of uncontrolled vibrations
range from discomfort to the actual fail-
ure of the system with damage to one or
more components. The failures can be spec-
tacular, as in the collapse of the Angers
Bridge (Maine River, France) in 1850 and the
Tacoma Narrows Bridge (Washington State,

F0 sin �t

United States) in 1940. The vibration prob-
lem and its solutions can be explained and
understood by means of eigenvalues and
eigenvectors of the differential equations
that model the system (Section 5.5).

It is convenient to model a mechanical system

as a mass attached to a spring. The mass-spring

system has a natural frequency determined by the

size of the mass and the stiffness of the spring. This

frequency is natural in the sense that if the mass is

struck, it will vibrate up and down at this frequency.

A final element of the model is a periodic external

force, F0 sin ωt , applied to the main mass. In a car,

this could come from the engine or from regular

defects on the highway. In the Angers Bridge collapse, the applied force came

from soldiers marching in step. In the Tacoma Narrows Bridge collapse3,

the applied force came from wind-induced vibrations. If the frequency, ω,

3 Video clips from this collapse are viewable at http://www.pbs.org/wgbh/nova/bridge/tacoma3.html and
http://www.enm.bris.ac.uk/anm/tacoma/tacoma.html#mpeg.

From Chapter 5 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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of the external force equals or is close to the natural fre-
quency of the system, a phenomenon called resonance
occurs when the variations of the applied force are in
step with, and reinforce, the motions of the main mass.
As a consequence, those motions can become quite
large. In the case of the bridges mentioned above, the
motions led to the collapse of the bridges.

main mass

absorber mass

The solution to the vibration problem is either to
redesign the system to shift its natural frequencies away
from that of the applied forces or to try to minimize
the response of the system to those forces. A classic
approach to minimizing response (the Den Hartog vibra-
tion absorber) is to attach an additional mass and spring
to the main mass. This new system has two natural fre-
quencies, neither of which is the same as that of the
original system. One natural frequency corresponds to a
mode of vibration where the masses move in the same
direction (the left pair of arrows in the figure). The other
natural frequency corresponds to a mode of vibration
where the masses move in opposite directions (the right
pair of arrows in the figure). If the size of the absorber
mass and the stiffness of the new spring are adjusted
properly, these two modes of vibration can be combined
so that the net displacement of the main mass is zero
when the frequency of the applied force, ω, equals the
natural frequency of the original system. In this case,
the absorber mass absorbs all of the vibration from the
energy applied to the main mass by the external force.
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CHAPTER

5
EIGENVALUES,
EIGENVECTORS, AND
DIAGONALIZATION

In many applications, it is important to understand how vectors in Rn are trans-
formed when they are multiplied by a square matrix. In this chapter, we see that
in many circumstances a problem can be reformulated so that the original matrix

can be replaced by a diagonal matrix, which simplifies the problem. We have already
seen an example of this in Section 4.5, where we learned how to describe a reflec-
tion in the plane in terms of a diagonal matrix. One important class of problems in
which this approach is also useful involves sequences of matrix–vector products of the
form Ap, A2p, A3p, . . . . For example, such a sequence arises in the study of long-term
population trends considered in Example 6 of Section 2.1.

The central theme of this chapter is the investigation of matrices that can be
replaced by diagonal matrices, the diagonalizable matrices. We begin this investigation
with the introduction of special scalars and vectors, called eigenvalues and eigenvec-
tors, respectively, that provide us with the tools necessary to describe diagonalizable
matrices.

5.1 EIGENVALUES AND EIGENVECTORS

In Section 4.5, we discussed the reflection T of R2 about the line with equation
y = 1

2x . Recall that the vectors

b1 =
[
2
1

]
and b2 =

[−1
2

]

played an essential role in determining the rule for T . The key to this computation
is that T (b1) is a multiple of b1 and T (b2) is a multiple of b2. (See Figure 5.1.)

x

y

b2

b1 � T (b1)

T (b2) � �b2

Figure 5.1 The images of the basis vectors b1 and b2 are multiples of the vectors.
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Nonzero vectors that are mapped to a multiple of themselves play an important role
in understanding the behavior of linear operators and square matrices.

Definitions Let T be a linear operator on Rn . A nonzero vector v in Rn is called an
eigenvector of T if T (v) is a multiple of v; that is, T (v) = λv for some scalar λ. The
scalar1 λ is called the eigenvalue of T that corresponds to v.

For the reflection T of R2 about line L and the vectors b1 and b2, where b1 is
in the direction of L and b2 is in a direction perpendicular to L, we have

T (b1) = b1 = 1b1 and T (b2) = −b2 = (−1)b2.

Therefore b1 is an eigenvector of T with corresponding eigenvalue 1, and b2 is an
eigenvector of T with corresponding eigenvalue −1. No nonzero vectors other than
multiples of b1 and b2 have this property.

Since the action of a linear operator is the same as multiplication by its standard
matrix, the concepts of eigenvector and eigenvalue can be defined similarly for square
matrices.

Definitions Let A be an n × n matrix. A nonzero vector v in Rn is called an eigen-
vector of A if Av = λv for some scalar 2 λ. The scalar λ is called the eigenvalue of
A that corresponds to v.

For example, let A =
[
.6 .8
.8 −.6

]
. In Section 4.5, we showed that A is the standard

matrix of the reflection of R2 about the line L with the equation y = 1
2x . Consider

the vectors

u1 =
[−5

5

]
, u2 =

[
7
6

]
, b1 =

[
2
1

]
, and b2 =

[
1

−2

]
.

It is a simple matter to verify directly that

Au1 =
[

1
−7

]
, Au2 =

[
9
2

]
, Ab1 =

[
2
1

]
= 1b1, and Ab2 =

[−1
2

]
= (−1)b2.

Therefore neither u1 nor u2 is an eigenvector of A. However, b1 is an eigenvector of
A with corresponding eigenvalue 1, and b2 is an eigenvector of A with corresponding
eigenvalue −1. Because A is the standard matrix of the reflection T of R2 about
the line L, we can verify that b1 is an eigenvector of A without calculating the
matrix product Ab1. Indeed, since b1 is a vector in the direction of L, we have
Ab1 = T (b1) = b1. Similarly, we can also verify that b2 is an eigenvector of A from
the fact that b2 is an eigenvector of T .

In general, if T is a linear operator on Rn , then T is a matrix transformation.
Let A be the standard matrix of T . Since the equation T (v) = λv can be rewritten as
Av = λv, we can determine the eigenvalues and eigenvectors of T from A.

1 In this book, we are concerned primarily with scalars that are real numbers. Therefore, unless an explicit
statement is made to the contrary, the term eigenvalue should be interpreted as meaning real eigenvalue.
There are situations, however, where it is useful to allow eigenvalues to be complex numbers. When
complex eigenvalues are permitted, the definition of an eigenvector must be changed to allow vectors
in Cn , the set of n-tuples whose components are complex numbers.

2 See footnote 1.
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The eigenvectors and corresponding eigenvalues of a linear operator are the same
as those of its standard matrix.

In view of the relationship between a linear operator and its standard matrix, eigen-
values and eigenvectors of linear operators can be studied simultaneously with those
of matrices. Example 1 shows how to verify that a given vector v is an eigenvector
of a matrix A.

Example 1 For

v =



1
−1

1


 and A =




5 2 1
−2 1 −1

2 2 4


 ,

show that v is an eigenvector of A.

Solution Because v is nonzero, to verify that v is an eigenvector of A, we need
only show that Av is a multiple of v. Since

Av =



5 2 1
−2 1 −1

2 2 4






1
−1

1


 =




4
−4

4


 = 4




1
−1

1


 = 4v,

we see that v is an eigenvector of A with corresponding eigenvalue 4.

Practice Problem 1 � Show that

u =



−2
1
2


 and v =




1
−3

4




are eigenvectors of

A =



5 2 1
−2 1 −1

2 2 4


 .

To what eigenvalues do u and v correspond? �

An eigenvector v of a matrix A is associated with exactly one eigenvalue. For if
λ1v = Av = λ2v, then λ1 = λ2 because v �= 0. In contrast, if v is an eigenvector of A
corresponding to eigenvalue λ, then every nonzero multiple of v is also an eigenvector
of A corresponding to λ. For if c �= 0, then

A(cv) = cAv = cλv = λ(cv).

The process of finding the eigenvectors of an n × n matrix that correspond to
a particular eigenvalue is also straightforward. Note that v is an eigenvector of A
corresponding to the eigenvalue λ if and only if v is a nonzero vector such that

Av = λv

Av − λv = 0

Av − λInv = 0

(A − λIn )v = 0.

Thus v is a nonzero solution of the system of linear equations (A − λIn )x = 0.
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Let A be an n × n matrix with eigenvalue λ. The eigenvectors of A corresponding
to λ are the nonzero solutions of (A − λIn )x = 0.

In this context, the set of solutions of (A − λIn )x = 0 is called the eigenspace
of A corresponding to the eigenvalue λ. This is just the null space of A − λIn , and
hence it is a subspace of Rn . Note that the eigenspace of A corresponding to λ consists
of the zero vector and all the eigenvectors corresponding to λ.

Similarly, if λ is an eigenvalue of a linear operator T on Rn , the set of vectors
v in Rn such that T (v) = λv is called the eigenspace of T corresponding to λ. (See
Figure 5.2.)

W

T

vw

u0

W

�v
�w

�u0

Figure 5.2 W is the eigenspace of T corresponding to eigenvalue λ.

In Section 5.4, we see that under certain conditions the bases for the various
eigenspaces of a linear operator on Rn can be combined to form a basis for Rn . This
basis enables us to find a very simple matrix representation of the operator.

Example 2 Show that 3 and −2 are eigenvalues of the linear operator T on R2 defined by

T

([
x1

x2

])
=
[ −2x2

−3x1 + x2

]
,

and find bases for the corresponding eigenspaces.

Solution The standard matrix of T is

A =
[

0 −2
−3 1

]
.

To show that 3 is an eigenvalue of T , we show that 3 is an eigenvalue of A. Thus we
must find a nonzero vector u such that Au = 3u. In other words, we must show that
the solution set of the system of equations (A − 3I2)x = 0, which is the null space of
A − 3I2, contains nonzero vectors. The reduced row echelon form of A − 3I2 is

[
1 2

3

0 0

]
.

Because this is a matrix of nullity

2 − rank (A − 3I2) = 2 − 1 = 1,

nonzero solutions exist, and the eigenspace corresponding to the eigenvalue 3 has
dimension equal to 1. Furthermore, we see that the eigenvectors of A corresponding
to the eigenvalue 3 have the form

[
x1

x2

]
=
[− 2

3x2

x2

]
= x2

[− 2
3

1

]
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for x2 �= 0. It follows that
{[− 2

3

1

]}

is a basis for the eigenspace of A corresponding to the eigenvalue 3. Notice that by
taking x2 = 3 in the preceding calculations, we obtain another basis for this eigenspace
(one consisting of a vector with integer components), namely,

{[−2
3

]}
.

In a similar fashion, we must show that there is a nonzero vector v such that
Av = (−2)v. In this case, we must show that the system of equations (A + 2I2)x = 0
has nonzero solutions. Since the reduced row echelon form of A + 2I2 is

[
1 −1
0 0

]
,

another matrix of nullity 1, the eigenspace corresponding to the eigenvalue −2 also
has dimension equal to 1. From the vector form of the general solution of this system,
we see that the eigenvectors corresponding to the eigenvalue −2 have the form

[
x1

x2

]
=
[
x2

x2

]
= x2

[
1
1

]

for x2 �= 0. Thus a basis for the eigenspace of A corresponding to the eigenvalue −2 is
{[

1
1

]}
.

(See Figures 5.3 and 5.4.)

Au � 3u y

x

� u�2
3

Figure 5.3 A basis vector for the
eigenspace of A corresponding
to eigenvalue 3

y

x

Av � �2v

v �
1 
1

Figure 5.4 A basis vector for the
eigenspace of A corresponding
to eigenvalue −2

Since 3 and −2 are eigenvalues of A, they are also eigenvalues of T . Moreover,
the corresponding eigenspaces of T have the same bases as those of A, namely,

{[−2
3

]}
and

{[
1
1

]}
.
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Practice Problem 2 � Show that 1 is an eigenvalue of the linear operator on R3 defined by

T






x1

x2

x3




 =




x1 + 2x2

−x1 − x2 + x3

x2 + x3


 ,

and find a basis for the corresponding eigenspace. �

The two eigenspaces in Example 2 each have dimension 1. This need not always
be the case, as our next example shows.

Example 3 Show that 3 is an eigenvalue of

B =



3 0 0
0 1 2
0 2 1


 ,

and find a basis for the corresponding eigenspace.

Solution As in Example 2, we must show that the null space of B − 3I3 contains
nonzero vectors. The reduced row echelon form of B − 3I3 is




0 1 −1
0 0 0
0 0 0


 .

Hence the vectors in the eigenspace of B corresponding to the eigenvalue 3 satisfy
x2 − x3 = 0, and so the general solution of (B − 3I3)x = 0 is

x1 free
x2 = x3

x3 free.

(Notice that the variable x1, which is not a basic variable in the equation x2 − x3 = 0,
is a free variable.) Thus the vectors in the eigenspace of B corresponding to the
eigenvalue 3 have the form




x1

x2

x3


 =




x1

x3

x3


 = x1




1
0
0


+ x3




0
1
1


 .

Therefore






1
0
0


 ,




0
1
1






is a basis for the eigenspace of B corresponding to the eigenvalue 3.

Not all square matrices and linear operators on Rn have real eigenvalues. (Such
matrices and operators have no eigenvectors with components that are real numbers
either.) Consider, for example, the linear operator T on R2 that rotates a vector by
90◦. If this operator had a real eigenvalue λ, then there would be a nonzero vector v
in R2 such that T (v) = λv. But for any nonzero vector v, the vector T (v) obtained by
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rotating v through 90◦ is not a multiple of v. (See Figure 5.5.) Hence v cannot be an
eigenvector of T , so T has no real eigenvalues. Note that this argument also shows
that the standard matrix of T , which is the 90◦-rotation matrix

[
0 −1
1 0

]
,

has no real eigenvalues.

y

x

v

T(v)

Figure 5.5 The image of v is not a multiple of v.

EXERCISES

In Exercises 1–12, a matrix and a vector are given. Show that
the vector is an eigenvector of the matrix and determine the
corresponding eigenvalue.

1.

[−10 −8
24 18

]
,

[
1

−2

]
2.

[
12 −14
7 −9

]
,

[
1
1

]

3.

[−5 −4
8 7

]
,

[
1

−2

]
4.

[
15 24
−4 −5

]
,

[−2
1

]

5.

[
19 −7
42 −16

]
,

[
1
3

]

6.




−9 −8 5
7 6 −5

−6 −6 4


,




3
−2

1




7.




4 6 −5
9 7 −11
8 8 −11


,




−1
2
1




8.




−3 14 10
−2 5 2

2 −10 −7


,




−3
−1

2




9.




2 −6 6
1 9 −6

−2 16 −13


,




−1
1
2




10.




−5 −1 2
2 −1 −2

−7 −2 2


,




1
−2

1




11.




5 6 12
3 2 6

−3 −3 −7


,




−2
−1

1




12.




6 5 15
5 6 15

−5 −5 −14


,




−1
−1

1




In Exercises 13–24, a matrix and a scalar λ are given. Show
that λ is an eigenvalue of the matrix and determine a basis for
its eigenspace.

13.

[
10 7

−14 −11

]
, λ = 3 14.

[−11 14
−7 10

]
, λ = −4

15.

[
11 18
−3 −4

]
, λ = 5 16.

[−11 5
−30 14

]
, λ = −1

17.




−2 −5 2
4 7 −2

−3 −3 5


, λ = 3

18.




6 9 −10
6 3 −4
7 7 −9


, λ = 5

19.




−3 12 6
−3 6 0

3 −9 −3


, λ = 0

20.




3 −2 2
−4 1 −2
−5 1 −2


, λ = 2
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21.




−13 −4 8
24 7 −16

−12 −4 7


, λ = −1

22.




−2 −2 −4
−1 −1 −2

1 1 2


, λ = 0

23.




4 −3 −3
−3 4 3

3 −3 −2


, λ = 1

24.




5 3 9
3 5 9

−3 −3 −7


, λ = 2

In Exercises 25–32, a linear operator and a vector are given.
Show that the vector is an eigenvector of the operator and deter-
mine the corresponding eigenvalue.

25. T

([
x1

x2

])
=
[−3x1 − 6x2

12x1 + 14x2

]
,

[−2
3

]

26. T

([
x1

x2

])
=
[
8x1 − 2x2

6x1 + x2

]
,

[
1
2

]

27. T

([
x1

x2

])
=
[−12x1 − 12x2

20x1 + 19x2

]
,

[−3
4

]

28. T

([
x1

x2

])
=
[
14x1 − 6x2

18x1 − 7x2

]
,

[
2
3

]

29. T






x1

x2

x3




 =




−8x1 + 9x2 − 3x3

−5x1 + 6x2 − 3x3

−x1 + x2 − 2x3


,




3
2
1




30. T






x1

x2

x3




 =




−2x1 − x2 − 3x3

−3x1 − 4x2 − 9x3

x1 + x2 + 2x3


,




−1
−3

1




31. T






x1

x2

x3




 =




6x1 + x2 − 2x3

−6x1 + x2 + 6x3

−2x1 − x2 + 6x3


,




−1
3
1




32. T






x1

x2

x3




 =




4x1 + 9x2 + 8x3

−2x1 − x2 − 2x3

2x1 − 3x2 − 2x3


,




−1
0
1




In Exercises 33–40, a linear operator and a scalar λ are given.
Show that λ is an eigenvalue of the operator and determine a
basis for its eigenspace.

33. T

([
x1

x2

])
=
[

x1 − 2x2

6x1 − 6x2

]
, λ = −2

34. T

([
x1

x2

])
=
[

4x1 + 6x2

−12x1 − 13x2

]
, λ = −5

35. T

([
x1

x2

])
=
[

20x1 + 8x2

−24x1 − 8x2

]
, λ = 8

36. T

([
x1

x2

])
=
[ − x1 + 2x2

−6x1 + 6x2

]
, λ = 3

37. T






x1

x2

x3




 =




x1 − x2 − 3x3

−3x1 − x2 − 9x3

x1 + x2 + 5x3


, λ = 2

38. T






x1

x2

x3




 =




4x1 − 2x2 − 5x3

3x1 − x2 − 5x3

4x1 − 4x2 − 3x3


, λ = −3

39. T






x1

x2

x3




 =




x1 + 4x2 + 5x3

2x1 + 6x2 + 2x3

−2x1 − 10x2 − 6x3


, λ = 3

40. T






x1

x2

x3




 =




5x1 + 2x2 − 4x3

−12x1 − 5x2 + 12x3

−4x1 − 2x2 + 5x3


, λ = 1

In Exercises 41–60, determine whether the state-
ments are true or false.

41. If Av = λv for some vector v, then λ is an eigenvalue of
the matrix A.

42. If Av = λv for some vector v, then v is an eigenvector of
the matrix A.

43. A scalar λ is an eigenvalue of an n × n matrix A if and
only if the equation (A − λIn )x = 0 has a nonzero solu-
tion.

44. If v is an eigenvector of a matrix, then there is a unique
eigenvalue of the matrix that corresponds to v.

45. If λ is an eigenvalue of a linear operator, then there are
infinitely many eigenvectors of the operator that corre-
spond to λ.

46. The eigenspace of an n × n matrix A corresponding to an
eigenvalue λ is the column space of A − λIn .

47. The eigenvalues of a linear operator on Rn are the same
as those of its standard matrix.

48. The eigenspaces of a linear operator on Rn are the same
as those of its standard matrix.

49. Every linear operator on Rn has real eigenvalues.

50. Only square matrices have eigenvalues.

51. Every vector in the eigenspace of a matrix A correspond-
ing to an eigenvalue λ is an eigenvector corresponding
to λ.

52. The linear operator on R2 that rotates a vector through
the angle θ , where 0◦

< θ < 180◦, has no eigenvectors.

53. The standard matrix of the linear operator on R2

that rotates a vector through the angle θ , where
0◦

< θ < 180◦, has no eigenvalues.

54. If a nonzero vector v is in the null space of a linear oper-
ator T , then v is an eigenvector of T .

55. If v is an eigenvector of a matrix A, then cv is also an
eigenvector for any scalar c.

56. If v is an eigenvector of a matrix A, then cv is also an
eigenvector for any nonzero scalar c.

57. If A and B are n × n matrices and λ is an eigenvalue of
both A and B , then λ is an eigenvalue of A + B .

58. If A and B are n × n matrices and v is an eigenvector of
both A and B , then v is an eigenvector of A + B .

59. If A and B are n × n matrices and λ is an eigenvalue of
both A and B , then λ is an eigenvalue of AB .
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60. If A and B are n × n matrices and v is an eigenvector of
both A and B , then v is an eigenvector of AB .

61. What are the eigenvalues of the identity operator on Rn?
Justify your answer. Describe each eigenspace.

62. What are the eigenvalues of the zero operator on Rn?
Justify your answer. Describe each eigenspace.

63. Prove that if v is an eigenvector of a matrix A, then for
any nonzero scalar c, cv is also an eigenvector of A.

64. Prove that if v is an eigenvector of a matrix A, then there
is a unique scalar λ such that Av = λv.

65. Suppose that 0 is an eigenvalue of a matrix A. Give another
name for the eigenspace of A corresponding to 0.

66. Prove that a square matrix is invertible if and only if 0 is
not an eigenvalue.

67. Prove that if λ is an eigenvalue of an invertible matrix A,
then λ �= 0 and 1/λ is an eigenvalue of A−1.

68. Suppose that A is a square matrix in which the sum of
the entries of each row equals the same scalar r . Show
that r is an eigenvalue of A by finding an eigenvector of
A corresponding to r .

69. Prove that if λ is an eigenvalue of a matrix A, then λ2 is
an eigenvalue of A2.

70. State and prove a generalization of Exercise 69.

71. Determine necessary and sufficient conditions on a vector
v such that the span of {Av} equals the span of {v}.

72. An n × n matrix A is called nilpotent if, for some posi-
tive integer k , Ak = O , where O is the n × n zero matrix.
Prove that 0 is the only eigenvalue of a nilpotent matrix.

73. Let v1 and v2 be eigenvectors of a linear operator T on
Rn , and let λ1 and λ2, respectively, be the corresponding
eigenvalues. Prove that if λ1 �= λ2, then {v1, v2} is linearly
independent.

74. Let v1, v2, and v3 be eigenvectors of a linear operator T
on Rn , and let λ1, λ2, and λ3, respectively, be the cor-
responding eigenvalues. Prove that if these eigenvalues
are distinct, then {v1, v2, v3} is linearly independent. Hint:
Letting

c1v1 + c2v2 + c3v3 = 0

for scalars c1, c2, and c3, apply T to both sides of this
equation. Then multiply both sides of this equation by λ3,
and subtract it from the first equation. Now use the result
of Exercise 73.

75. Let T be a linear operator on R2 with an eigenspace of
dimension 2. Prove that T = λI for some scalar λ.

In Exercises 76–82, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

76. Let

A =




−1.9 14.4 −8.4 34.8
1.6 −2.7 3.2 −1.6
1.2 −8.0 4.7 −18.2
1.6 −1.6 3.2 −2.7


 .

Show that

v1 =




−9
1
5
1


 , v2 =




−2
0
1
0


 , v3 =




−3
1
2
0


 , and

v4 =




−3
−5

0
2




are eigenvectors of A. What are the eigenvalues corre-
sponding to each of these eigenvectors?

77. Are the eigenvalues of A (determined in Exercise 76) also
eigenvalues of 3A? If so, find an eigenvector correspond-
ing to each eigenvalue.

78. Are v1, v2, v3, and v4 in Exercise 76 also eigenvectors of
3A? If so, what eigenvalue corresponds to each of these
eigenvectors?

79. (a) Based on the results of Exercises 76–78, make a con-
jecture about the relationship between the eigenvalues
of an n × n matrix B and those of cB , where c is a
nonzero scalar.

(b) Based on the results of Exercises 76–78, make a con-
jecture about the relationship between the eigenvec-
tors of an n × n matrix B and those of cB , where c
is a nonzero scalar.

(c) Justify the conjectures made in (a) and (b).

80. Are v1, v2, v3, and v4 in Exercise 76 also eigenvectors of
AT ? If so, what eigenvalue corresponds to each of these
eigenvectors?

81. Are the eigenvalues of A (determined in Exercise 76) also
eigenvalues of AT ? If so, find an eigenvector correspond-
ing to each eigenvalue.

82. Based on the results of Exercises 80 and 81, make a
conjecture about any possible relationship between the
eigenvalues or eigenvectors of an n × n matrix B and
those of BT .

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Since

Au =



5 2 1
−2 1 −1

2 2 4






−2
1
2


 =




−6
3
6


 = 3




−2
1
2


 = 3u,

u is an eigenvector of A corresponding to the eigenvalue
3. Likewise,

Av =



5 2 1
−2 1 −1

2 2 4






1
−3

4


 =




3
−9
12


 = 3




1
−3

4


 = 3v,
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so v is also an eigenvector of A corresponding to the
eigenvalue 3.

2. The standard matrix of T is

A =
⎡
⎣

1 2 0
−1 −1 1

0 1 1

⎤
⎦ ,

and the row echelon form of A − I3 is
⎡
⎣

1 0 −1
0 1 0
0 0 0

⎤
⎦ .

Therefore the vector form of the general solution of
(A − I3)x = 0 is

⎡
⎣

x1

x2

x3

⎤
⎦ =

⎡
⎣

x3

0
x3

⎤
⎦ = x3

⎡
⎣

1
0
1

⎤
⎦ ,

so ⎧⎨
⎩

⎡
⎣

1
0
1

⎤
⎦
⎫⎬
⎭

is a basis for the eigenspace of T corresponding to eigen-
value 1.

5.2 THE CHARACTERISTIC POLYNOMIAL
In Section 5.1, we learned how to find the eigenvalue corresponding to a given eigen-
vector and the eigenvectors for a given eigenvalue. But ordinarily, we know neither
the eigenvalues nor the eigenvectors of a matrix. Suppose, for instance, that we want
to find the eigenvalues and the eigenspaces of an n × n matrix A. If λ is an eigenvalue
of A, there must be a nonzero vector v in Rn such that Av = λv. Thus, as on page 295,
v is a nonzero solution of (A − λIn )x = 0. But in order for the homogeneous system of
linear equations (A − λIn )x = 0 to have nonzero solutions, the rank of A − λIn must
be less than n . Hence, by the Invertible Matrix Theorem, the n × n matrix A − λIn

is not invertible, so its determinant must be 0. Because these steps are all reversible,
we have the following result:

The eigenvalues of a square matrix A are the values of t that satisfy

det (A − tIn ) = 0.

The equation det (A − tIn ) = 0 is called the characteristic equation of A, and
det (A − tIn ) is called the characteristic polynomial of A. Thus the eigenvalues of
the matrix A are the (real) roots of the characteristic polynomial of A.

Example 1 Determine the eigenvalues of

A =
[−4 −3

3 6

]
,

and then find a basis for each eigenspace.

Solution We begin by forming the matrix

A − tI2 =
[−4 − t −3

3 6 − t

]
.

The characteristic polynomial of A is the determinant of this matrix, which is

det (A − tI2) = (−4 − t)(6 − t) − (−3) · 3

= (−24 − 2t + t2) + 9

= t2 − 2t − 15

= (t + 3)(t − 5).
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Therefore the roots of the characteristic polynomial are −3 and 5; so these are
the eigenvalues of A.

As in Section 5.1, we solve (A + 3I2)x = 0 and (A − 5I2)x = 0 to find bases for
the eigenspaces. Since the reduced row echelon form of A + 3I2 is

[
1 3
0 0

]
,

the vector form of the general solution of (A + 3I2)x = 0 is
[
x1

x2

]
=
[−3x2

x2

]
= x2

[−3
1

]
.

Hence {[−3
1

]}

is a basis for the eigenspace of A corresponding to the eigenvalue −3.
In a similar manner, the reduced row echelon form of A − 5I2, which is[

1 1
3

0 0

]
,

produces the basis {[−1
3

]}

for the eigenspace of A corresponding to the eigenvalue 5.

The characteristic polynomial of the 2 × 2 matrix in Example 1 is t2 − 2t − 15 =
(t + 3)(t − 5), a polynomial of degree 2. In general, the characteristic polynomial of
an n × n matrix is a polynomial of degree n.

! CAUTION Note that the reduced row echelon form of the matrix A in Example 1 is I2, which has
the characteristic polynomial (t − 1)2. Thus the characteristic polynomial of a matrix
is not usually equal to the characteristic polynomial of its reduced row echelon form.
In general, therefore, the eigenvalues of a matrix and its reduced row echelon form
are not the same. Likewise, the eigenvectors of a matrix and its reduced row echelon
form are not usually the same. Consequently, there is no way to apply elementary
row operations to a matrix in hopes of finding its eigenvalues or eigenvectors.

Computing the characteristic polynomial of a 2 × 2 matrix is straightforward, as
Example 1 shows. On the other hand, calculating the characteristic polynomial of a
larger matrix by hand can be quite tedious. Although a programmable calculator or
computer software can be used to determine the characteristic polynomial of matrices
that are not too large, there is no way to find the precise roots of the characteristic
polynomial of an arbitrary matrix that is larger than 4 × 4. Hence, for large matrices,
a numerical method is usually used to approximate the eigenvalues. Because of the
difficulty in computing the characteristic polynomial, in this book we usually use only
2 × 2 and 3 × 3 matrices in our examples and exercises.

It follows from Theorem 3.2, however, that there are some matrices for which
the eigenvalues can be easily determined:

The eigenvalues of an upper triangular or lower triangular matrix are its diagonal
entries.
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Example 2 Determine the eigenvalues of the matrix

A =




−3 −1 −7 1
0 6 9 −2
0 0 −5 3
0 0 0 8


 .

Solution Because A is an upper triangular matrix, its eigenvalues are its diagonal
entries, which are −3, 6, −5, and 8.

Practice Problem 1 � Determine the eigenvalues of the matrix



4 0 0 0
−2 −1 0 0

8 7 −2 0
9 −5 6 3


 .

�

Recall that the problem of finding eigenvalues and eigenvectors of a linear oper-
ator can be replaced by the corresponding problem for its standard matrix. In the
context of a linear operator T , the characteristic equation of the standard matrix of T
is called the characteristic equation of T , and the characteristic polynomial of the
standard matrix of T is called the characteristic polynomial of T . Thus the charac-
teristic polynomial of a linear operator T on Rn is a polynomial of degree n whose
roots are the eigenvalues of T .

Example 3 We have noted on page 298 that the linear operator T on R2 that rotates a vector by 90◦

has no real eigenvalues. Equivalently, the 90◦-rotation matrix has no real eigenvalues.
In fact, the characteristic polynomial of T , which is also the characteristic polynomial
of the 90◦-rotation matrix, is given by

det
(
A90◦ − tI2

) = det

([
0 −1
1 0

]
− tI2

)
= det

[−t −1
1 −t

]
= t2 + 1,

which has no real roots. This confirms the observation made in Section 5.1 that T ,
and hence the 90◦-rotation matrix, has no real eigenvalues.

THE MULTIPLICITY OF AN EIGENVALUE
Consider the matrix

A =



−1 0 0
0 1 2
0 2 1


 .

Using the cofactor expansion along the first row, we see that

det (A − tI3) = det




−1 − t 0 0
0 1 − t 2
0 2 1 − t




= (−1 − t) · det

[
1 − t 2

2 1 − t

]
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= (−1 − t)[(1 − t)2 − 4]

= (−1 − t)(t2 − 2t − 3)

= −(t + 1)(t + 1)(t − 3)

= −(t + 1)2(t − 3).

Hence the eigenvalues of A are −1 and 3. A similar calculation shows that the char-
acteristic polynomial of

B =



3 0 0
0 1 2
0 2 1




is −(t + 1)(t − 3)2. Therefore the eigenvalues of B are also −1 and 3. But, as we
explain next, the status of the eigenvalues −1 and 3 is different in A and B .

If λ is an eigenvalue of an n × n matrix M , then the largest positive integer
k such that (t − λ)k is a factor of the characteristic polynomial of M is called the
multiplicity3 of λ. Thus, if

det (M − tIn ) = (t − 5)2(t + 6)(t − 7)3(t − 8)4,

then the eigenvalues of M are 5, which has multiplicity 2; −6, which has multiplicity
1; 7, which has multiplicity 3; and 8, which has multiplicity 4.

Practice Problem 2 � If the characteristic polynomial of a matrix is

−(t − 3)(t + 5)2(t − 8)4,

determine the eigenvalues of the matrix and their multiplicities. �

For the preceding matrices A and B , the eigenvalues −1 and 3 have different
multiplicities. For A, the multiplicity of −1 is 2 and the multiplicity of 3 is 1, whereas
for B the multiplicity of −1 is 1 and the multiplicity of 3 is 2. It is instructive to
investigate the eigenspaces of A and B corresponding to the same eigenvalue, say, 3.
Since the reduced row echelon form of A − 3I3 is




1 0 0
0 1 −1
0 0 0


 ,

the vector form of the general solution of (A − 3I3)x = 0 is



x1

x2

x3


 =




0
x3

x3


 = x3




0
1
1


 .

Hence






0
1
1






3 Some authors use the term algebraic multiplicity. In this case, the dimension of the eigenspace
corresponding to λ is usually called the geometric multiplicity of λ.
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is a basis for the eigenspace of A corresponding to the eigenvalue 3. Therefore this
eigenspace has dimension 1. On the other hand, in Example 3 of Section 5.1, we
saw that 






1
0
0


 ,




0
1
1






is a basis for the eigenspace of B corresponding to the eigenvalue 3. Therefore this
eigenspace has dimension 2.

For these matrices A and B , the dimension of the eigenspace corresponding to the
eigenvalue 3 equals the multiplicity of the eigenvalue. This need not always happen,
but there is a connection between the dimension of an eigenspace and the multiplicity
of the corresponding eigenvalue. It is described in our next theorem, whose proof we
omit.4

THEOREM 5.1

Let λ be an eigenvalue of a matrix A. The dimension of the eigenspace of A
corresponding to λ is less than or equal to the multiplicity of λ.

Example 4 Determine the eigenvalues, their multiplicities, and a basis for each eigenspace of the
linear operator T on R3 defined by

T






x1

x2

x3




 =




−x1

2x1 − x2 − x3

−x3


 .

Solution The standard matrix of T is

A =



−1 0 0
2 −1 −1
0 0 −1


 .

Hence the characteristic polynomial of T is

det (A − tI3) = det




−1 − t 0 0
2 −1 − t −1
0 0 −1 − t




= (−1 − t) · det

[−1 − t −1
0 −1 − t

]

= (−1 − t)3

= −(t + 1)3.

Therefore the only eigenvalue of T is −1, and its multiplicity is 3. The eigenspace
of T corresponding to −1 is the solution set of (A + I3)x = 0. Since the reduced row
echelon form of A + I3 is




1 0 −.5
0 0 0
0 0 0


 ,

4 For a proof of Theorem 5.1, see [4, page 264].
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we see that






0
1
0


 ,




1
0
2






is a basis for the eigenspace of T corresponding to −1. Note that this eigenspace
is 2-dimensional and the multiplicity of −1 is 3, in agreement with Theorem 5.1.

Practice Problem 3 � Determine the eigenvalues of

A =



1 −1 −1
4 −3 −5
0 0 2


 ,

their multiplicities, and a basis for each eigenspace. �

THE EIGENVALUES OF SIMILAR MATRICES
Recall that two matrices A and B are called similar if there exists an invertible matrix
P such that B = P−1AP . By Theorem 3.4, we have

det (B − tIn ) = det (P−1AP − tP−1InP )

= det (P−1AP − P−1(tIn )P )

= det (P−1(A − tIn )P )

= (det P−1)[det (A − tIn )](det P )

=
(

1

det P

)
[det (A − tIn )](det P )

= det (A − tIn ).

Thus the characteristic polynomial of A is the same as that of B . Therefore the fol-
lowing statements are true (see Exercise 84):

Similar matrices have the same characteristic polynomial and hence have the same
eigenvalues and multiplicities. In addition, their eigenspaces corresponding to the
same eigenvalue have the same dimension.

In Section 5.3, we investigate matrices that are similar to a diagonal matrix.

COMPLEX EIGENVALUES∗

We have seen in Example 3 that not all n × n matrices or linear operators on Rn

have real eigenvalues and eigenvectors. The characteristic polynomial of such a matrix

∗ The remainder of this section is used only in the description of harmonic motion (an optional topic in
Section 5.5).
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must have no real roots. However, it is a consequence of the fundamental theorem
of algebra that every n × n matrix has complex eigenvalues. (See Appendix C.) In
fact, the fundamental theorem of algebra implies that the characteristic polynomial of
every n × n matrix can be written in the form

c(t − λ1)(t − λ2) · · · (t − λn )

for some complex numbers c, λ1, λ2, . . . , λn . Thus, if we count each eigenvalue as
often as its multiplicity, every n × n matrix has exactly n complex eigenvalues. How-
ever, some or all of these may not be real numbers.

There are applications (in such disciplines as physics and electrical engineering)
where complex eigenvalues provide useful information about real-world problems.
For the most part, the mathematical theory is no different for complex numbers than
for real numbers. In the complex case, however, we must allow complex entries in
matrices and vectors. Thus the set of all n × 1 matrices with complex entries, denoted
by Cn , replaces the usual set of vectors Rn , and the set C of complex numbers replaces
R as the set of scalars.

Example 5 illustrates the calculations required to find eigenvalues and eigen-
vectors involving complex numbers. However, with the exception of an application
discussed in Section 5.5 and designated exercises in Sections 5.2 and 5.3, in this
book we restrict our attention to real eigenvalues and eigenvectors having real com-
ponents.

Example 5 Determine the complex eigenvalues and a basis for each eigenspace of

A =
[
1 −10
2 5

]
.

Solution The characteristic polynomial of A is

det (A − tI2) = det

[
1 − t −10

2 5 − t

]
= (1 − t)(5 − t) + 20 = t2 − 6t + 25.

Applying the quadratic formula, we find that the roots of the characteristic polynomial
of A are

t = 6 ±
√

(−6)2 − 4(1)(25)

2
= 6 ± √−64

2
= 6 ± 8i

2
= 3 ± 4i .

Hence the eigenvalues of A are 3 + 4i and 3 − 4i . As with real eigenvalues, we find
the eigenvectors in C2 corresponding to 3 + 4i by solving (A − (3 + 4i )I2)x = 0. The
reduced row echelon form of A − (3 + 4i )I2 is

[
1 1 − 2i
0 0

]
.

Thus the vectors in the eigenspace corresponding to 3 + 4i have the form
[
x1

x2

]
=
[
(−1 + 2i )x2

x2

]
= x2

[−1 + 2i
1

]
,

so a basis for the eigenspace corresponding to 3 + 4i is
{[−1 + 2i

1

]}
.
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Similarly, the reduced row echelon form of A − (3 − 4i )I2 is
[
1 1 + 2i
0 0

]
.

Hence the vectors in the eigenspace corresponding to 3 − 4i have the form
[
x1

x2

]
=
[
(−1 − 2i )x2

x2

]
= x2

[−1 − 2i
1

]
,

and thus a basis for the eigenspace corresponding to 3 − 4i is
{[−1 − 2i

1

]}
.

Practice Problem 4 � Determine the complex eigenvalues and a basis for each eigenspace of the 90◦-rotation
matrix

A =
[
0 −1
1 0

]
.

�

When the entries of A are real numbers, the characteristic polynomial of A has
real coefficients. Under these conditions, if some nonreal number is a root of the
characteristic polynomial of A, then its complex conjugate can also be shown to be a
root. Thus the nonreal eigenvalues of a real matrix occur in complex conjugate pairs.
Moreover, if v is an eigenvector of A corresponding to a nonreal eigenvalue λ, then
the complex conjugate of v (the vector whose components are the complex conjugates
of the components of v) can be shown to be an eigenvector of A corresponding to the
complex conjugate of λ. Note this relationship in Example 5.

EXERCISES

In Exercises 1–12, a matrix and its characteristic polynomial
are given. Find the eigenvalues of each matrix and determine a
basis for each eigenspace.

1.

[
3 −3
2 8

]
, (t − 5)(t − 6)

2.

[−7 1
−6 −2

]
, (t + 4)(t + 5)

3.

[−10 6
−15 9

]
, t (t + 1)

4.

[−9 −7
14 12

]
, (t + 2)(t − 5)

5.




6 −5 −4
5 −3 −5
4 −5 −2


, −(t + 3)(t − 2)2

6.




−2 −6 −6
−3 2 −2

3 2 6


, −(t + 2)(t − 4)2

7.




6 −4 −4
−8 2 4

8 −4 −6


, −(t − 6)(t + 2)2

8.




−5 6 1
−1 2 1
−8 6 4


, −(t + 4)(t − 2)(t − 3)

9.




0 2 1
1 −1 −1
4 4 −3


, −(t + 3)(t + 2)(t − 1)

10.




3 2 2
−2 −1 −2

2 2 3


, −(t − 3)(t − 1)2

11.




−1 4 −4 −4
5 −2 1 6
0 0 −1 0
5 −5 5 9


, (t − 3)(t − 4)(t + 1)2

12.




1 6 −6 −6
6 7 −6 −12
3 3 −2 −6
3 9 −9 −11


, (t + 5)(t + 2)(t − 1)2
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In Exercises 13–24, find the eigenvalues of each matrix and
determine a basis for each eigenspace.

13.

[
1 3
0 −4

]
14.

[
8 2

−12 −2

]

15.

[−3 −4
12 11

]
16.

[−2 0
3 −1

]

17.




−7 5 4
0 −3 0

−8 9 5


 18.




−3 −12 0
0 3 0

−4 −8 1




19.




−1 0 0
2 5 0
1 −2 −1


 20.




3 0 0
9 3 10

−5 0 −2




21.




−4 0 2
2 4 −8
2 0 −4


 22.




−4 7 7
0 3 7
0 0 −4




23.




−1 −2 −1 4
0 1 2 0
0 0 −2 −1
0 0 0 2


 24.




1 0 0 0
9 −2 −3 3

−6 0 1 −3
−6 0 0 −2




In Exercises 25–32, a linear operator and its characteristic poly-
nomial are given. Find the eigenvalues of each operator and
determine a basis for each eigenspace.

25. T

([
x1

x2

])
=
[ −x1 + 6x2

−8x1 + 13x2

]
, (t − 5)(t − 7)

26. T

([
x1

x2

])
=
[ −x1 + 2x2

−4x1 − 7x2

]
, (t + 5)(t + 3)

27. T

([
x1

x2

])
=
[−10x1 − 24x2

8x1 + 18x2

]
, (t − 6)(t − 2)

28. T

([
x1

x2

])
=
[ −x1 + 2x2

−10x1 + 8x2

]
, (t − 4)(t − 3)

29. T






x1

x2

x3




 =




−2x2 + 4x3

−3x1 + x2 + 3x3

−x1 + x2 + 5x3


,

−(t + 2)(t − 4)2

30. T






x1

x2

x3




 =




−8x1 − 5x2 − 7x3

6x2 + 3x2 + 7x3

8x1 + 8x2 − 9x3


,

−(t + 3)(t + 2)(t + 9)

31. T






x1

x2

x3




 =




3x1 + 2x2 − 2x3

2x1 + 6x2 − 4x3

3x1 + 6x2 − 4x3


,

−(t − 1)(t − 2)2

32. T






x1

x2

x3




 =




3x1 + 4x2 − 4x3

8x1 + 7x2 − 8x3

8x1 + 8x2 − 9x3


,

−(t + 1)2(t − 3)

In Exercises 33–40, find the eigenvalues of each linear operator
and determine a basis for each eigenspace.

33. T

([
x1

x2

])
=
[−4x1 + x2

−2x1 − x2

]

34. T

([
x1

x2

])
=
[
6x1 − x2

6x1 + x2

]

35. T

([
x1

x2

])
=
[

2x2

−10x1 + 9x2

]

36. T

([
x1

x2

])
=
[−5x1 − 8x2

12x1 + 15x2

]

37. T






x1

x2

x3




 =




7x1 − 10x2

5x1 − 8x2

−x1 + x2 + 2x3




38. T






x1

x2

x3




 =




−6x1 − 5x2 + 5x3

−x2

−10x1 − 10x2 + 9x3




39. T






x1

x2

x3




 =




−3x1

−8x1 + x2

−12x1 + x3




40. T






x1

x2

x3




 =




−4x1 + 6x2

2x2

−5x1 + 5x2 + x3




41. Show that

[
6 −7
4 −3

]
has no real eigenvalues.

42. Show that

[
4 −5
3 −2

]
has no real eigenvalues.

43. Show that the linear operator T

([
x1

x2

])
=
[

x1 + 3x2

−2x1 + 5x2

]

has no real eigenvalues.

44. Show that the linear operator T

([
x1

x2

])
=
[
2x1 − 3x2

2x1 + 4x2

]

has no real eigenvalues.

In Exercises 45–52, use complex numbers to determine the
eigenvalues of each linear operator and determine a basis for
each eigenspace.

45.

[
1 − 10i −4i

24i 1 + 10i

]
46.

[
1 − i −4

1 1 − i

]

47.

[
5 51

−3 11

]
48.

[
2 −1
1 2

]

49.




2i 1 + 2i −6 − i
0 4 3i
0 0 1


 50.




2 −i −i + 1
0 0 i
0 0 i




51.




i 0 1 − 5i

0 1 1
2

0 0 2


 52.




2i 0 0
0 0 0
0 −i 1




In Exercises 53–72, determine whether the state-
ments are true or false.

53. If two matrices have the same characteristic polynomial,
then they have the same eigenvectors.
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54. If two matrices have the same characteristic polynomial,
then they have the same eigenvalues.

55. The characteristic polynomial of an n × n matrix is a
polynomial of degree n.

56. The eigenvalues of a matrix are equal to those of its
reduced row echelon form.

57. The eigenvectors of a matrix are equal to those of its
reduced row echelon form.

58. An n × n matrix has n distinct eigenvalues.

59. Every n × n matrix has an eigenvector in Rn .

60. Every square matrix has a complex eigenvalue.

61. The characteristic polynomial of an n × n matrix can be
written c(t − λ1)(t − λ2) · · · (t − λn ) for some real num-
bers c, λ1, λ2, . . ., λn .

62. The characteristic polynomial of an n × n matrix can be
written c(t − λ1)(t − λ2) · · · (t − λn ) for some complex
numbers c, λ1, λ2, . . ., λn .

63. If (t − 4)2 divides the characteristic polynomial of A, then
4 is an eigenvalue of A with multiplicity 2.

64. The multiplicity of an eigenvalue equals the dimension of
the corresponding eigenspace.

65. If λ is an eigenvalue of multiplicity 1 for a matrix A, then
the dimension of the eigenspace of A corresponding to λ

is 1.

66. The nonreal eigenvalues of a matrix occur in complex
conjugate pairs.

67. The nonreal eigenvalues of a real matrix occur in complex
conjugate pairs.

68. If A is an n × n matrix, then the sum of the multiplicities
of the eigenvalues of A equals n.

69. The scalar 1 is an eigenvalue of In .

70. The only eigenvalue of In is 1.

71. A square zero matrix has no eigenvalues.

72. The eigenvalues of an n × n matrix A are the solutions of
det(A − tIn ) = 0.

73. Let A be an n × n matrix, and suppose that, for a partic-
ular scalar c, the reduced row echelon form of A − cIn is
In . What can be said about c?

74. If f (t ) is the characteristic polynomial of a square matrix
A, what is f (0)?

75. Suppose that the characteristic polynomial of an n × n
matrix A is

an tn + an−1t
n−1 + · · · + a1t + a0.

Determine the characteristic polynomial of −A.

76. What is the coefficient of t n in the characteristic polyno-
mial of an n × n matrix?

77. Suppose that A is a 4 × 4 matrix with no nonreal eigen-
values and exactly two real eigenvalues, 5 and −9. Let
W1 and W2 be the eigenspaces of A corresponding to 5

and −9, respectively. Write all the possible characteristic
polynomials of A that are consistent with the following
information:

(a) dim W1 = 3

(b) dimW2 = 1

(c) dim W1 = 2

78. Suppose that A is a 5 × 5 matrix with no nonreal eigen-
values and exactly three real eigenvalues, 4, 6, and 7. Let
W1, W2, and W3 be the eigenspaces corresponding to 4,
6, and 7, respectively. Write all the possible characteristic
polynomials of A that are consistent with the following
information:

(a) dim W2 = 3

(b) dimW1 = 2

(c) dim W1 = 1 and dimW2 = 2

(d) dimW2 = 2 and dimW3 = 2

79. Show that if A is an upper triangular or a lower triangular
matrix, then λ is an eigenvalue of A with multiplicity k
if and only if λ appears exactly k times on the diagonal
of A.

80. Show that the rotation matrix Aθ has no real eigenvalues
if 0◦

< θ < 180◦.
81. (a) Determine a basis for each eigenspace of

A =
[

3 2
−1 0

]
.

(b) Determine a basis for each eigenspace of −3A.

(c) Determine a basis for each eigenspace of 5A.

(d) Establish a relationship between the eigenvectors of
any square matrix B and those of cB for any scalar
c �= 0.

(e) Establish a relationship between the eigenvalues of a
square matrix B and those of cB for any scalar c �= 0.

82. (a) Determine a basis for each eigenspace of

A =
[
5 −2
1 8

]
.

(b) Determine a basis for each eigenspace of A + 4I2.

(c) Determine a basis for each eigenspace of A − 6I2.

(d) Establish a relationship between the eigenvectors of
any n × n matrix B and those of B + cIn for any
scalar c.

(e) Establish a relationship between the eigenvalues of
any n × n matrix B and those of B + cIn for any
scalar c.

83. (a) Determine the characteristic polynomial of AT , where
A is the matrix in Exercise 82.

(b) Establish a relationship between the characteristic
polynomial of any square matrix B and that of BT .

(c) What does (b) imply about the relationship between
the eigenvalues of a square matrix B and those of BT ?

(d) Is there a relationship between the eigenvectors of a
square matrix B and those of BT ?
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84. Let A and B be n × n matrices such that B = P−1AP ,
and let λ be an eigenvalue of A (and hence of B ). Prove
the following results:

(a) A vector v in Rn is in the eigenspace of A corre-
sponding to λ if and only if P−1v is in the eigenspace
of B corresponding to λ.

(b) If {v1, v2, . . . , vk } is a basis for the eigenspace of A
corresponding to λ, then {P−1v1, P−1v2, . . . , P−1vk }
is a basis for the eigenspace of B corresponding to λ.

(c) The eigenspaces of A and B that correspond to the
same eigenvalue have the same dimension.

85. Let A be a symmetric 2 × 2 matrix. Prove that A has real
eigenvalues.

86. (a) The characteristic polynomial of A =
[
a b
c d

]
has the

form t2 + rt + s for some scalars r and s . Determine
r and s in terms of a, b, c, and d .

(b) Show that A2 + rA + sI2 = O , the 2 × 2 zero matrix.
(A similar result is true for any square matrix. It is
called the Cayley-Hamilton theorem.)

In Exercises 87–91, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

87. Compute the characteristic polynomial of




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 .

(This matrix is called the 3 × 3 Hilbert matrix. Com-
putations with Hilbert matrices are subject to significant
roundoff errors.)

88. Compute the characteristic polynomial of




0 0 0 −17
1 0 0 −18
0 1 0 −19
0 0 1 −20


 .

89. Use the result of Exercise 88 to find a 4 × 4 matrix whose
characteristic polynomial is t 4 − 11t3 + 23t2 + 7t − 5.

90. Let A be a random 4 × 4 matrix.

(a) Compute the characteristic polynomials of A and AT .

(b) Formulate a conjecture about the characteristic poly-
nomials of B and BT , where B is an arbitrary n × n
matrix. Test your conjecture using an arbitrary 5 × 5
matrix.

(c) Prove that your conjecture in (b) is valid.

91. Let

A =
[
6.5 −3.5
7.0 −4.0

]
.

(a) Find the eigenvalues of A and an eigenvector corre-
sponding to each eigenvalue.

(b) Show that A is invertible, and then find the eigenval-
ues of A−1 and an eigenvector corresponding to each
eigenvalue.

(c) Use the results of (a) and (b) to formulate a conjecture
about the relationship between the eigenvectors and
eigenvalues of an invertible n × n matrix and those
of its inverse.

(d) Test your conjecture in (c) on the invertible matrix




3 −2 2
−4 8 −10
−5 2 −4


 .

(e) Prove that your conjecture in (c) is valid.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Because the given matrix is a diagonal matrix, its eigen-
values are its diagonal entries, which are 4, −1, −2, and 3.

2. The eigenvalues of the matrix are the roots of its char-
acteristic polynomial, which is −(t − 3)(t + 5)2(t − 8)4.
Thus the eigenvalues of the matrix are 3, −5, and 8. The
multiplicity of an eigenvalue λ is the number of factors of
t − λ that appear in the characteristic polynomial. Hence
3 is an eigenvalue of multiplicity 1, −5 is an eigenvalue
of multiplicity 2, and 8 is an eigenvalue of multiplicity 4.

3. Form the matrix

B = A − tI3 =



1 − t −1 −1
4 −3 − t −5
0 0 2 − t


 .

To evaluate the determinant of B , we use cofactor expan-
sion along the third row. Then

detB = (−1)3+1b31 · detB31 + (−1)3+2b32 · detB32

+ (−1)3+3b33 · detB33

= 0 + 0 + (−1)6(2 − t ) · det

[
1 − t −1

4 −3 − t

]

= (2 − t )[(1 − t )(−3 − t ) + 4]

= (2 − t )[(t 2 + 2t − 3) + 4]

= (2 − t )(t 2 + 2t + 1)

= −(t − 2)(t + 1)2.
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Hence the eigenvalues of A are −1, which has multiplicity
2, and 2, which has multiplicity 1. Because the reduced
row echelon form of A + I3 is




1 −.5 0
0 0 1
0 0 0


 ,

we see that the vector form of the general solution of
(A + I3)x = 0 is




x1

x2

x3


 =




.5x2

x2

0


 = x2




.5
1
0


 .

Taking x2 = 2, we obtain the basis







1
2
0






for the eigenspace of A corresponding to the eigenvalue
−1. Also, 


1 0 0
0 1 1
0 0 0




is the reduced row echelon form of A − 2I3. Therefore
a basis for the eigenspace of A corresponding to the

eigenvalue 2 is 





0
−1

1




 .

4. The characteristic polynomial of A is

det (A − tI2) = det

[−t −1
1 −t

]
= t2 + 1 = (t + i )(t − i ).

Hence A has eigenvalues −i and i . Since the reduced row
echelon form of A + iI2 is

[
1 i
0 0

]
,

a basis for the eigenspace corresponding to the eigenvalue
−i is {[−i

1

]}
.

Furthermore, the reduced row echelon form of A − iI2 is

[
1 −i
0 0

]
,

so a basis for the eigenspace corresponding to the eigen-
value i is {[

i
1

]}
.

5.3 DIAGONALIZATION OF MATRICES
In Example 6 of Section 2.1, we considered a metropolitan area in which the current
populations (in thousands) of the city and suburbs are given by

City
Suburbs

[
500
700

]
= p,

and the population shifts between the city and suburbs are described by the following
matrix:

To City
Suburbs

From
City Suburbs[
.85 .03
.15 .97

]
= A

We saw in this example that the populations of the city and suburbs after m years are
given by the matrix–vector product Amp.

In this section, we discuss a technique for computing Amp. Note that when m is a
large positive integer, a direct computation of Amp involves considerable work. This
calculation would be quite easy, however, if A were a diagonal matrix such as

D =
[
.82 0
0 1

]
.
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For in this case, the powers of D are diagonal matrices and hence can be easily
determined by the method described in Section 2.1. In fact,

Dm =
[
(.82)m 0

0 1m

]
=
[
(.82)m 0

0 1

]
.

Although A �= D , it can be checked that A = PDP−1, where

P =
[−1 1

1 5

]
.

This relationship enables us to compute the powers of A in terms of those of D . For
example,

A2 = (PDP−1)(PDP−1) = PD(P−1P )DP−1 = PDDP−1 = PD2P−1,

and
A3 = (PDP−1)(PDP−1)(PDP−1) = PD3P−1.

In a similar manner, it can be shown that

Am = PDmP−1

=
[−1 1

1 5

] [
(.82)m 0

0 1

] [−1 1
1 5

]−1

=
[−1 1

1 5

] [
(.82)m 0

0 1

][− 5
6

1
6

1
6

1
6

]

= 1

6

[
1 + 5(.82)m 1 − (.82)m

5 − 5(.82)m 5 + (.82)m

]
.

Hence

Amp = 1

6

[
1 + 5(.82)m 1 − (.82)m

5 − 5(.82)m 5 + (.82)m

][
500
700

]

= 1

6

[
1200 + 1800(.82)m

6000 − 1800(.82)m

]

=
[

200 + 300(.82)m

1000 − 300(.82)m

]
.

Because lim
m→∞(.82)m = 0, we see that the limit of Amp is

[
200

1000

]
.

Hence after many years, the population of the metropolitan area will consist of about
200 thousand city dwellers and 1 million suburbanites.
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In the previous computation, note that calculating PDmP−1 requires only 2 matrix
multiplications instead of the m − 1 multiplications needed to compute Am directly.
This simplification of the calculation is possible because A can be written in the form
PDP−1 for some diagonal matrix D and some invertible matrix P .

Definition An n × n matrix A is called diagonalizable if A = PDP−1 for some diag-
onal n × n matrix D and some invertible n × n matrix P .

Because the equation A = PDP−1 can be written as P−1AP = D , we see that
a diagonalizable matrix is one that is similar to a diagonal matrix. It follows that if
A = PDP−1 for some diagonal matrix D , then the eigenvalues of A are the diagonal
entries of D .

The matrix

A =
[
.85 .03
.15 .97

]

in Example 6 of Section 2.1 is diagonalizable because A = PDP−1 for the matrices

P =
[−1 1

1 5

]
and D =

[
.82 0
0 1

]
.

Notice that the eigenvalues of A are .82 and 1.
Every diagonal matrix is diagonalizable. (See Exercise 79.) However, not every

matrix is diagonalizable, as the following example shows:

Example 1 Show that the matrix

A =
[
0 1
0 0

]

is not diagonalizable.

Solution Suppose, to the contrary, that A = PDP−1, where P is an invertible 2 × 2
matrix and D is a diagonal 2 × 2 matrix. Because A is upper triangular, the only
eigenvalue of A is 0, which has multiplicity 2. Thus the diagonal matrix D must be
D = O . Hence A = PDP−1 = POP−1 = O , a contradiction.

The following theorem tells us when a matrix A is diagonalizable and how to find
an invertible matrix P and a diagonal matrix D such that A = PDP−1:

THEOREM 5.2

An n × n matrix A is diagonalizable if and only if there is a basis for Rn consisting
of eigenvectors of A.

Furthermore, A = PDP−1, where D is a diagonal matrix and P is an invertible
matrix, if and only if the columns of P are a basis for Rn consisting of eigen-
vectors of A and the diagonal entries of D are the eigenvalues corresponding to
the respective columns of P .
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PROOF Suppose first that A is diagonalizable. Then A = PDP−1 for some diag-
onal matrix D and invertible matrix P . Let λ1, λ2, . . . , λn denote the diagonal
entries of D . Since P is invertible, its columns must be linearly independent and
hence form a basis for Rn . Rewriting A = PDP−1 as AP = PD , we have that
the j th columns of these matrices are equal; that is,

Apj = Pdj = P (λj ej ) = λj (Pej ) = λj pj .

Therefore each column of P is an eigenvector of A, and the diagonal entries of
D are the corresponding eigenvalues of A.

Conversely, suppose that {p1, p2, . . . , pn} is a basis for Rn consisting of
eigenvectors of A and that λj is the eigenvalue of A corresponding to pj . Let
P denote the matrix whose columns are p1, p2, . . . , pn and D denote the diag-
onal matrix whose diagonal entries are λ1, λ2, . . . , λn . Then the j th column of
AP equals Apj , and the j th column of PD is P (λj ej ) = λj (Pej ) = λj pj . But
Apj = λj pj for every j because pj is an eigenvector of A corresponding to the
eigenvalue λj . Thus AP = PD . Because the columns of P are linearly inde-
pendent, P is invertible by the Invertible Matrix Theorem. So multiplying the
preceding equation on the right by P−1 gives A = PDP−1, proving that A is
diagonalizable. �

Theorem 5.2 shows us how to diagonalize a matrix such as

A =
[
.85 .03
.15 .97

]

in the population example discussed earlier. The characteristic polynomial of A is

det (A − tI2) = det

[
.85 − t .03

.15 .97 − t

]

= (.85 − t)(.97 − t) − .03(.15)

= t2 − 1.82t + .82

= (t − .82)(t − 1),

so the eigenvalues of A are .82 and 1. Since the reduced row echelon form of
A − .82I2 is [

1 1
0 0

]
,

we see that

B1 =
{[−1

1

]}

is a basis for the eigenspace of A corresponding to .82. Likewise,

[
1 −.2
0 0

]

is the reduced row echelon form of A − I2, and thus

B2 =
{[

1
5

]}
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is a basis for the eigenspace of A corresponding to 1. The set

B =
{[−1

1

]
,

[
1
5

]}

obtained by combining B1 and B2 is linearly independent, since neither of its vectors
is a multiple of the other. Therefore B is a basis for R2, and it consists of eigenvectors
of A. So Theorem 5.2 guarantees that A is diagonalizable. Notice that the columns of
the matrix

P =
[−1 1

1 5

]

in the diagonalization of A are the vectors in this basis, and the diagonal matrix

D =
[
.82 0
0 1

]

has as its diagonal entries the eigenvalues of A corresponding to the respective columns
of P .

The matrices P and D such that PDP−1 = A are not unique. For example, taking

P =
[

2 −3
10 3

]
and D =

[
1 0
0 .82

]

also gives PDP−1 = A, because these matrices satisfy the hypotheses of Theorem 5.2.
Note, however, that although the matrix D in Theorem 5.2 is not unique, any two such
matrices differ only in the order in which the eigenvalues of A are listed along the
diagonal of D .

When applying Theorem 5.2 to show that a matrix is diagonalizable, we normally
use the following result: If the bases for distinct eigenspaces are combined, then the
resulting set is linearly independent. This result is a consequence of Theorem 5.3, and
is proved in [4, page 267].

THEOREM 5.3

A set of eigenvectors of a square matrix that correspond to distinct eigenvalues
is linearly independent.

PROOF Let A be an n × n matrix with eigenvectors v1, v2, . . . , vm having cor-
responding distinct eigenvalues λ1, λ2, . . . , λm . We give a proof by contradiction.
Assume that this set of eigenvectors is linearly dependent. Since eigenvectors are
nonzero, Theorem 1.9 shows that there is a smallest index k (2 ≤ k ≤ m) such
that vk is a linear combination of v1, v2, . . . , vk−1, say,

vk = c1v1 + c2v2 + · · · + ck−1vk−1 (1)

for some scalars c1, c2, . . . , ck−1. Because Avi = λivi for each i , when we multiply
both sides of equation (1) by A, we obtain

Avk = A(c1v1 + c2v2 + · · · + ck−1vk−1)

= c1Av1 + c2Av2 + · · · + ck−1Avk−1;
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that is,

λkvk = c1λ1v1 + c2λ2v2 + · · · + ck−1λk−1vk−1. (2)

Now multiply both sides of equation (1) by λk and subtract the result from
equation (2) to obtain

0 = c1(λ1 − λk )v1 + c2(λ2 − λk )v2 + · · · + ck−1(λk−1 − λk )vk−1. (3)

By our choice of k , the set {v1, v2, . . . , vk−1} is linearly independent, and thus

c1(λ1 − λk ) = c2(λ2 − λk ) = · · · = ck−1(λk−1 − λk ) = 0.

But the scalars λi − λk are nonzero because λ1, λ2, . . . , λm are distinct; so

c1 = c2 = · · · = ck−1 = 0.

Thus equation (1) implies that vk = 0, which contradicts the definition of an
eigenvector. Therefore the set of eigenvectors {v1, v2, . . . , vm} is linearly inde-
pendent. �

It follows from Theorem 5.3 that an n × n matrix having n distinct eigenvalues
must have n linearly independent eigenvectors.

Every n × n matrix having n distinct eigenvalues is diagonalizable.

The technique used to produce the invertible matrix P and the diagonal matrix
D on page 317 works for any diagonalizable matrix.

Algorithm for Matrix Diagonalization

Let A be a diagonalizable n × n matrix. Combining bases for each eigenspace of
A forms a basis B for Rn consisting of eigenvectors of A. Therefore, if P is the
matrix whose columns are the vectors in B and D is a diagonal matrix whose
diagonal entries are eigenvalues of A corresponding to the respective columns of
P , then A = PDP−1.

Example 2 Show that the matrix

A =



−1 0 0
0 1 2
0 2 1




is diagonalizable, and find an invertible matrix P and a diagonal matrix D such that
A = PDP−1.

Solution On pages 304–306 in Section 5.2, we computed the characteristic poly-
nomial −(t + 1)2(t − 3) of A, and we also found that

B1 =






0
1
1
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is a basis for the eigenspace of A corresponding to eigenvalue 3. Similarly,

B2 =






1
0
0


 ,




0
1

−1






is a basis for the eigenspace corresponding to −1. The combined set

B =






0
1
1


 ,




1
0
0


 ,




0
1

−1






is therefore linearly independent by the comment on page 317. It follows from the
Algorithm for Matrix Diagonalization that A is diagonalizable and A = PDP−1, where

P =



0 1 0
1 0 1
1 0 −1


 and D =




3 0 0
0 −1 0
0 0 −1


 .

Practice Problem 1 � The characteristic polynomial of

A =



−4 −6 0
3 5 0
3 3 2




is −(t + 1)(t − 2)2. Show that A is diagonalizable by finding an invertible matrix P
and a diagonal matrix D such that A = PDP−1. �

WHEN IS A MATRIX DIAGONALIZABLE?
As we saw in Example 1, not all square matrices are diagonalizable. Theorem 5.2
tells us that an n × n matrix is diagonalizable when there are n linearly independent
eigenvectors of A. For this to occur, two different conditions must be satisfied; they
are given next.5

Test for a Diagonalizable Matrix Whose Characteristic Polynomial Is
Known

An n × n matrix A is diagonalizable if and only if both of the following conditions
are true6:

1. The total number of eigenvalues of A, when each eigenvalue is counted as
often as its multiplicity, is equal to n .

2. For each eigenvalue λ of A, the dimension of the corresponding eigenspace,
which is n − rank (A − λIn ), is equal to the multiplicity of λ.

Note that, by Theorem 5.1, the eigenspace corresponding to an eigenvalue of
multiplicity 1 must have dimension 1. Hence condition (2) need be checked only

5 For a proof of this result, see [4, page 268].
6 It follows from the fundamental theorem of algebra that the first condition is always satisfied if complex

eigenvalues are allowed.

319



320 CHAPTER 5 Eigenvalues, Eigenvectors, and Diagonalization

for eigenvalues of multiplicity greater than 1. Therefore, to check if the matrix A in
Practice Problem 3 of Section 5.2 is diagonalizable, it is necessary to check condition
(2) only for the eigenvalue −1 (the one with multiplicity greater than 1).

Example 3 Determine whether each of the following matrices is diagonalizable (using real
eigenvalues):

A =



0 2 1
−2 0 −2

0 0 −1


 B =




−7 −3 −6
0 −4 0
3 3 2




C =



−6 −3 1
5 2 −1
2 3 −5


 M =




−3 2 1
3 −4 −3

−8 8 6




The respective characteristic polynomials of these matrices are

−(t + 1)(t2 + 4), −(t + 1)(t + 4)2, −(t + 1)(t + 4)2, and − (t + 1)(t2 − 4).

Solution The only eigenvalue of A is −1, which has multiplicity 1. Because A is a
3 × 3 matrix, the sum of the multiplicities of the eigenvalues of A must be 3 in order
to be diagonalizable. Thus A is not diagonalizable because it has too few eigenvalues.

The eigenvalues of B are −1, which has multiplicity 1, and −4, which has
multiplicity 2. Thus B has 3 eigenvalues if we count each eigenvalue as often as
its multiplicity. Therefore B is diagonalizable if and only if the dimension of each
eigenspace equals the multiplicity of the corresponding eigenvalue. As noted, it is
only the eigenvalues with multiplicities greater than 1 that must be checked. So B
is diagonalizable if and only if the dimension of the eigenspace corresponding to the
eigenvalue −4 is 2. Because the reduced row echelon form of B − (−4)I3 is




1 1 2
0 0 0
0 0 0


 ,

a matrix of rank 1, this eigenspace has dimension

3 − rank (B − (−4)I3) = 3 − 1 = 2.

Since this equals the multiplicity of the eigenvalue −4, B is diagonalizable.
The eigenvalues of C are also −1, which has multiplicity 1, and −4, which has

multiplicity 2. So we see that C is diagonalizable if and only if the dimension of its
eigenspace corresponding to eigenvalue −4 is 2. But the reduced row echelon form
of C − (−4)I3 is




1 0 1
0 1 −1
0 0 0


 ,

a matrix of rank 2. So the dimension of the eigenspace corresponding to eigenvalue
−4 is

3 − rank (C − (−4)I3) = 3 − 2 = 1,
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which is less than the multiplicity of the eigenvalue −4. Therefore C is not diagonal-
izable.

Finally, the characteristic polynomial of M is

−(t + 1)(t2 − 4) = −(t + 1)(t + 2)(t − 2).

We see that M has 3 distinct eigenvalues (−1, −2, and 2), and so it is diagonalizable
by the boxed result on page 318.

Practice Problem 2 � Determine whether each of the given matrices is diagonalizable. If so, express it in
the form PDP−1, where P is an invertible matrix and D is a diagonal matrix.

A =



2 2 1
0 0 3
0 −1 0


 B =




5 5 −6
0 −1 0
3 2 −4




The characteristic polynomials of A and B are −(t − 2)(t2 + 3) and −(t − 2)(t + 1)2,
respectively. �

In Section 5.4, we consider what it means for a linear operator to be diagonalizable.

EXERCISES

In Exercises 1–12, a matrix A and its characteristic polynomial
are given. Find, if possible, an invertible matrix P and a diago-
nal matrix D such that A = PDP−1. Otherwise, explain why A
is not diagonalizable.

1.

[
7 6

−1 2

]

(t − 4)(t − 5)
2.

[−2 7
−1 2

]

t2 + 3

3.

[
8 9

−4 −4

]

(t − 2)2
4.

[
9 15

−6 −10

]

t (t + 1)

5.




3 2 −2
−8 0 −5
−8 −2 −3




−(t + 5)(t − 2)(t − 3)

6.




−9 8 −8
−4 3 −4

2 −2 1




−(t + 3)(t + 1)2

7.




3 −5 6
1 3 −6
0 3 −5




−(t − 1)(t 2 + 2)

8.




−2 6 3
−2 −8 −2

4 6 −1




−(t + 5)(t + 4)(t + 2)

9.




1 −2 2
8 11 −8
4 4 −1




−(t − 5)(t − 3)2

10.




5 1 2
1 4 1

−3 −2 0




−(t − 3)3

11.




−1 0 0 0
0 −1 0 0
5 5 4 −5
0 0 0 −1




(t + 1)3(t − 4)

12.




−8 0 −10 0
−5 2 −5 0

5 0 7 0
−5 0 −5 2




(t + 3)(t − 2)3

In Exercises 13–20, a matrix A is given. Find, if possible, an
invertible matrix P and a diagonal matrix D such that A =
PDP−1. Otherwise, explain why A is not diagonalizable.

13.

[
16 −9
25 −14

]
14.

[−1 2
3 4

]

15.

[
6 6

−2 −1

]
16.

[
1 5

−1 −1

]

17.




−1 2 −1
0 −3 1
0 0 2


 18.




−3 0 −5
0 2 0
2 0 3




19.




0 0 0
1 1 0
0 −1 0


 20.




2 0 −1
1 3 −1
2 0 5




In Exercises 21–28, use complex numbers to find an invertible
matrix P and a diagonal matrix D such that A = PDP−1.

21.

[
2 −1
1 2

]
22.

[
5 51

−3 11

]

23.

[
1 − i −4

1 1 − i

]
24.

[
1 − 10i −4i

24i 1 + 10i

]
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25.




0 −1 1
3 3 −2
2 1 1


 26.




1 −1 + i 1 − 2i
0 i −i
0 0 0




27.




2i 0 0
0 1 −i
0 0 0


 28.




2i −6 − i 1 + 2i
0 1 0
0 3i 4




In Exercises 29–48, determine whether the state-
ments are true or false.

29. Every n × n matrix is diagonalizable.

30. An n × n matrix A is diagonalizable if and only if there
is a basis for Rn consisting of eigenvectors of A.

31. If P is an invertible n × n matrix and D is a diagonal
n × n matrix such that A = PDP−1, then the columns of
P form a basis for Rn consisting of eigenvectors of A.

32. If P is an invertible matrix and D is a diagonal matrix
such that A = PDP−1, then the eigenvalues of A are the
diagonal entries of D .

33. If A is a diagonalizable matrix, then there exists a unique
diagonal matrix D such that A = PDP−1.

34. If an n × n matrix has n distinct eigenvectors, then it is
diagonalizable.

35. Every diagonalizable n × n matrix has n distinct eigen-
values.

36. If B1,B2, . . . ,Bk are bases for distinct eigenspaces of a
matrix A, then B1 ∪ B2 ∪ · · · ∪ Bk is linearly inde-
pendent.

37. If the sum of the multiplicities of the eigenvalues of an
n × n matrix A equals n, then A is diagonalizable.

38. If, for each eigenvalue λ of A, the multiplicity of λ equals
the dimension of the corresponding eigenspace, then A is
diagonalizable.

39. If A is a diagonalizable 6 × 6 matrix having two distinct
eigenvalues with multiplicities 2 and 4, then the corre-
sponding eigenspaces of A must be 2-dimensional and
4-dimensional.

40. If λ is an eigenvalue of A, then the dimension of the
eigenspace corresponding to λ equals the rank of A − λIn .

41. A diagonal n × n matrix has n distinct eigenvalues.

42. A diagonal matrix is diagonalizable.

43. The standard vectors are eigenvectors of a diagonal
matrix.

44. Let A and P be n × n matrices. If the columns of P form
a set of n linearly independent eigenvectors of A, then
PAP−1 is a diagonal matrix.

45. If S is a set of distinct eigenvectors of a matrix, then S
is linearly independent.

46. If S is a set of eigenvectors of a matrix A that correspond
to distinct eigenvalues of A, then S is linearly independent.

47. If the characteristic polynomial of a matrix A factors into
a product of linear factors, then A is diagonalizable.

48. If, for each eigenvalue λ of a matrix A, the dimension of
the eigenspace of A corresponding to λ equals the multi-
plicity of λ, then A is diagonalizable.

49. A 3 × 3 matrix has eigenvalues −4, 2, and 5. Is the matrix
diagonalizable? Justify your answer.

50. A 4 × 4 matrix has eigenvalues −3, −1, 2, and 5. Is the
matrix diagonalizable? Justify your answer.

51. A 4 × 4 matrix has eigenvalues −3, −1, and 2. The eigen-
value −1 has multiplicity 2.

(a) Under what conditions is the matrix diagonalizable?
Justify your answer.

(b) Under what conditions is it not diagonalizable? Justify
your answer.

52. A 5 × 5 matrix has eigenvalues −4, which has multiplic-
ity 3, and 6, which has multiplicity 2. The eigenspace
corresponding to the eigenvalue 6 has dimension 2.

(a) Under what conditions is the matrix diagonalizable?
Justify your answer.

(b) Under what conditions is it not diagonalizable? Justify
your answer.

53. A 5 × 5 matrix has eigenvalues −3, which has multiplicity
4, and 7, which has multiplicity 1.

(a) Under what conditions is the matrix diagonalizable?
Justify your answer.

(b) Under what conditions is it not diagonalizable? Justify
your answer.

54. Let A be a 4 × 4 matrix with exactly the eigenvalues 2 and
7, and corresponding eigenspaces W1 and W2. For each
of the parts shown, either write the characteristic polyno-
mial of A, or state why there is insufficient information to
determine the characteristic polynomial.

(a) dimW1 = 3.

(b) dim W2 = 2.

(c) A is diagonalizable and dim W2 = 2.

55. Let A be a 5 × 5 matrix with exactly the eigenvalues 4,
5, and 8, and corresponding eigenspaces W1, W2, and W3.
For each of the given parts, either write the character-
istic polynomial of A, or state why there is insufficient
information to determine the characteristic polynomial.

(a) dimW1 = 2 and dimW3 = 2.

(b) A is diagonalizable and dimW2 = 2.

(c) A is diagonalizable, dimW1 = 1, and dim W2 = 2.

56. Let A =
[
1 −2
1 −2

]
and B =

[
2 0
1 0

]
.

(a) Show that AB and BA have the same eigenvalues.

(b) Is AB diagonalizable? Justify your answer.

(c) Is BA diagonalizable? Justify your answer.

In Exercises 57–62, an n × n matrix A, a basis for Rn consist-
ing of eigenvectors of A, and the corresponding eigenvalues are
given. Calculate Ak for an arbitrary positive integer k .
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57.

[
2 2

−1 5

]
;

{[
1
1

]
,

[
2
1

]}
; 4, 3

58.

[−4 1
−2 −1

]
;

{[
1
2

]
,

[
1
1

]}
; −2, −3

59.

[
5 6

−1 0

]
;

{[
2

−1

]
,

[−3
1

]}
; 2, 3

60.

[
7 5

−10 −8

]
;

{[−1
2

]
,

[−1
1

]}
; −3, 2

61.




−3 −8 0
4 9 0
0 0 5


;







−1
1
0


 ,




0
0
1


 ,




−2
1
0




; 5, 5, 1

62.




−1 0 2
0 2 0

−4 0 5


;







1
0
1


 ,




0
1
0


 ,




1
0
2




; 1, 2, 3

In Exercises 63–72, a matrix and its characteristic polynomial
are given. Determine all values of the scalar c for which each
matrix is not diagonalizable.

63.




1 0 −1
−2 c −2

2 0 4




−(t − c)(t − 2)(t − 3)

64.




−7 −1 2
0 c 0

−10 3 3




−(t − c)(t + 3)(t + 2)

65.




c 0 0
−1 1 4

3 −2 −1




−(t − c)(t 2 + 7)

66.




0 0 −2
−4 c −4

4 0 6




−(t − c)(t − 2)(t − 4)

67.




1 −1 0
6 6 0
0 0 c




−(t − c)(t − 3)(t − 4)

68.




2 −4 −1
3 −2 1
0 0 c




−(t − c)(t 2 + 8)

69.




−3 0 −2
−6 c −2

1 0 0




−(t − c)(t + 2)(t + 1)

70.




3 0 0
0 c 0
1 0 −2




−(t − c)(t + 2)(t − 3)

71.




c −9 −3 −15
0 −7 0 −6
0 7 2 13
0 4 0 3




(t − c)(t + 3)(t + 1)(t − 2)

72.




c 6 2 10
0 −12 0 −15
0 −11 1 −15
0 10 0 13




(t − c)(t + 2)(t − 1)(t − 3)
73. Find a 2 × 2 matrix having eigenvalues −3 and 5, with

corresponding eigenvectors

[
1
1

]
and

[
1
3

]
.

74. Find a 2 × 2 matrix having eigenvalues 7 and −4, with

corresponding eigenvectors

[−1
3

]
and

[
1

−2

]
.

75. Find a 3 × 3 matrix having eigenvalues 3, −2, and 1, with

corresponding eigenvectors




−1
0
1


,




−1
1
1


, and




−2
0
1


.

76. Find a 3 × 3 matrix having eigenvalues 3, 2, and 2, with

corresponding eigenvectors




2
1
1


,




1
0
1


, and




1
1
1


.

77. Give an example of diagonalizable n × n matrices A and
B such that A + B is not diagonalizable.

78. Give an example of diagonalizable n × n matrices A and
B such that AB is not diagonalizable.

79. Show that every diagonal n × n matrix is diagonalizable.

80. (a) Let A be an n × n matrix having a single eigenvalue
c. Show that if A is diagonalizable, then A = cIn .

(b) Use (a) to explain why

[
2 1
0 2

]
is not diagonalizable.

81. If A is a diagonalizable matrix, prove that AT is diagonal-
izable.

82. If A is an invertible matrix that is diagonalizable, prove
that A−1 is diagonalizable.

83. If A is a diagonalizable matrix, prove that A2 is diagonal-
izable.

84. If A is a diagonalizable matrix, prove that Ak is diagonal-
izable for any positive integer k .

85. Suppose that A and B are similar matrices such that
B = P−1AP for some invertible matrix P .

(a) Show that A is diagonalizable if and only if B is diag-
onalizable.

(b) How are the eigenvalues of A related to the eigenval-
ues of B? Justify your answer.

(c) How are the eigenvectors of A related to the eigen-
vectors of B? Justify your answer.

86. A matrix B is called a cube root of a matrix A if
B3 = A. Prove that every diagonalizable matrix has a cube
root.

87. Prove that if a nilpotent matrix is diagonalizable, then
it must be the zero matrix. Hint: Use Exercise 72 of
Section 5.1.

88. Let A be a diagonalizable n × n matrix. Prove
that if the characteristic polynomial of A is f (t ) =
antn + an−1t n−1 + · · · + a1t + a0, then f (A) = O , where
f (A) = anAn + an−1An−1 + · · · + a1A + a0In . (This
result is called the Cayley-Hamilton theorem.7) Hint: If
A = PDP−1, show that f (A) = Pf (D)P−1.

7 The Cayley-Hamilton theorem first appeared in 1858. Arthur Cayley (1821–1895) was an English mathematician who contributed greatly to the
development of both algebra and geometry. He was one of the first to study matrices, and this work contributed to the development of quantum
mechanics. The Irish mathematician William Rowan Hamilton (1805–1865) is perhaps best known for his use of algebra in optics. His 1833 paper
first gave a formal structure to ordered pairs of real numbers that yielded the system of complex numbers and led to his later development of
quaternions.
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89. The trace of a square matrix is the sum of its diagonal
entries.

(a) Prove that if A is a diagonalizable matrix, then the
trace of A equals the sum of the eigenvalues of A.
Hint: For all n × n matrices A and B , show that the
trace of AB equals the trace of BA.

(b) Let A be a diagonalizable n × n matrix with charac-
teristic polynomial (−1)n(t − λ1)(t − λ2) · · · (t − λn ).
Prove that the coefficient of t n−1 in this polynomial
is (−1)n−1 times the trace of A.

(c) For A as in (b), what is the constant term of the char-
acteristic polynomial of A?

In Exercises 90–94, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

For each of the matrices in Exercises 90–93, find, if possi-
ble, an invertible matrix P and a diagonal matrix D such that
A = PDP−1. If no such matrices exist, explain why not.

90.




2 1 1 1
1 2 1 1

−2 2 2 3
0 2 1 2


 91.




−4 −5 −7 −4
−1 −6 −4 −3

1 1 1 1
1 7 5 3




92.




7 6 24 −2 14
6 5 18 0 12

−8 −6 −25 2 −14
−12 −8 −36 3 −20

6 4 18 −2 9




93.




4 13 −5 −29 −17
−3 −11 0 32 24

0 −3 7 3 −3
−2 −5 −5 18 17

1 2 5 −10 −11




94. Let

A =



1.00 4.0 c
0.16 0.0 0
0.00 −0.5 0


 and u =




1
3

−5


 .

(a) If c = 8.1, what appears to happen to the vector Amu
as m increases?

(b) What are the eigenvalues of A when c = 8.1?

(c) If c = 8.0, what appears to happen to the vector Amu
as m increases?

(d) What are the eigenvalues of A when c = 8.0?

(e) If c = 7.9, what appears to happen to the vector Amu
as m increases?

(f) What are the eigenvalues of A when c = 7.9?

(g) Let B be an n × n matrix having n distinct eigenval-
ues, all of which have absolute value less than 1. Let
u be any vector in Rn . Based on your answers to (a)
through (f), make a conjecture about the behavior of
Bmu as m increases. Then prove that your conjecture
is valid.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. The given matrix A has two eigenvalues: −1, which has
multiplicity 1, and 2, which has multiplicity 2. For the
eigenvalue 2, we see that the reduced row echelon form
of A − 2I3 is




1 1 0
0 0 0
0 0 0


 .

Therefore the vector form of the general solution of
(A − 2I3)x = 0 is




x1

x2

x3


 =




−x2

x2

x3


 = x2




−1
1
0


+ x3




0
0
1


 ,

so 





−1
1
0


 ,




0
0
1






is a basis for the eigenspace of A corresponding to the
eigenvalue 2. Likewise, from the reduced row echelon

form of A + I3, which is



1 0 2
0 1 −1
0 0 0


 ,

we see that 





−2
1
1






is a basis for the eigenspace of A corresponding to the
eigenvalue −1.

Take

P =



−1 0 −2
1 0 1
0 1 1


 ,

the matrix whose columns are the vectors in the
eigenspace bases. The corresponding diagonal matrix D is

D =



2 0 0
0 2 0
0 0 −1


 ,
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the matrix whose diagonal entries are the eigenvalues
that correspond to the respective columns of P . Then
A = PDP−1.

2. The characteristic polynomial of A shows that the only
eigenvalue of A is 2, and that its multiplicity is 1. Because
A is a 3 × 3 matrix, the sum of the multiplicities of the
eigenvalues of A must be 3 for A to be diagonalizable.
Hence A is not diagonalizable.

The matrix B has two eigenvalues: 2, which has mul-
tiplicity 1: and −1, which has multiplicity 2. So the sum
of the multiplicities of the eigenvalues of B is 3. Thus
there are enough eigenvalues for B to be diagonalizable.

Checking the eigenvalue −1 (the eigenvalue with multi-
plicity greater than 1), we see that the reduced row echelon
form of B − (−1)I3 = B + I3 is




1 0 −1
0 1 0
0 0 0


 .

Since the rank of this matrix is 2, the dimension of the
eigenspace corresponding to eigenvalue −1 is 3 − 2 = 1,
which is less than the multiplicity of the eigenvalue.
Therefore B is not diagonalizable.

5.4∗ DIAGONALIZATION OF LINEAR OPERATORS

In Section 5.3, we defined a diagonalizable matrix and saw that an n × n matrix is
diagonalizable if and only if there is a basis for Rn consisting of eigenvectors of the
matrix (Theorem 5.2). We now define a linear operator on Rn to be diagonalizable
if there is a basis for Rn consisting of eigenvectors of the operator.

Since the eigenvalues and eigenvectors of a linear operator are the same as those
of its standard matrix, the procedure for finding a basis of eigenvectors for a linear
operator is the same as that for a matrix. Moreover, a basis of eigenvectors of the
operator or its standard matrix is also a basis of eigenvectors of the other. Therefore
a linear operator is diagonalizable if and only if its standard matrix is diagonalizable.
So the algorithm for matrix diagonalization on page 318 can be used to obtain a basis
of eigenvectors for a diagonalizable linear operator, and the test for a diagonalizable
matrix on page 319 can be used to identify a linear operator that is diagonalizable.

Example 1 Find, if possible, a basis for R3 consisting of eigenvectors of the linear operator T
on R3 defined by

T






x1

x2

x3




 =




8x1 + 9x2

−6x1 − 7x2

3x1 + 3x2 − x3


 .

Solution The standard matrix of T is

A =



8 9 0
−6 −7 0

3 3 −1


 .

Since T is diagonalizable if and only if A is, we must determine the eigenvalues and
eigenspaces of A. The characteristic polynomial of A is −(t + 1)2(t − 2). Thus the
eigenvalues of A are −1, which has multiplicity 2, and 2, which has multiplicity 1.

The reduced row echelon form of A + I3 is




1 1 0
0 0 0
0 0 0


 ,

∗ This section can be omitted without loss of continuity.
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so the eigenspace corresponding to the eigenvalue −1 has

B1 =






−1
1
0


 ,




0
0
1






as a basis. Since −1 is the only eigenvalue of multiplicity greater than 1 and the
dimension of its eigenspace equals its multiplicity, A (and hence T ) is diagonalizable.
To obtain a basis of eigenvectors, we need to examine the reduced row echelon form
of A − 2I3, which is




1 0 −3
0 1 2
0 0 0


 .

It follows that

B2 =






3
−2

1






is a basis for the eigenspace of A corresponding to the eigenvalue 2. Then







−1
1
0


 ,




0
0
1


 ,




3
−2

1






is a basis for R3 consisting of eigenvectors of A. This set is also a basis for R3

consisting of eigenvectors of T .

Example 2 Find, if possible, a basis for R3 consisting of eigenvectors of the linear operator T
on R3 defined by

T






x1

x2

x3




 =




−x1 + x2 + 2x3

x1 − x2

0


 .

Solution The standard matrix of T is

A =



−1 1 2
1 −1 0
0 0 0


 .

To determine if A is diagonalizable, we must find the characteristic polynomial of A,
which is −t2(t + 2). Thus A has the eigenvalues 0, which has multiplicity 2, and −2,
which has multiplicity 1. According to the test for a diagonalizable matrix, A is diago-
nalizable if and only if the eigenspace corresponding to the eigenvalue of multiplicity
2 has dimension 2. Therefore we must examine the eigenspace corresponding to the
eigenvalue 0. Because the reduced row echelon form of A − 0I3 = A is




1 −1 0
0 0 1
0 0 0


 ,
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we see that the rank of A − 0I3 is 2. Thus the eigenspace corresponding to the eigen-
value 0 has dimension 1, and so A, and hence T , is not diagonalizable.

Practice Problem 1 � The characteristic polynomial of the linear operator

T






x1

x2

x3




 =




x1 + 2x2 + x3

2x2

−x1 + 2x2 + 3x3




is −(t − 2)3. Determine if this linear operator is diagonalizable. If so, find a basis for
R3 consisting of eigenvectors of T . �

Practice Problem 2 � Determine if the linear operator

T

([
x1

x2

])
=
[−7x1 − 10x2

3x1 + 4x2

]

is diagonalizable. If so, find a basis for R2 consisting of eigenvectors of T . �

Let T be a linear operator on Rn for which there is a basis B = {v1, v2, . . . , vn}
consisting of eigenvectors of T . Then for each i , we have T (vi ) = λivi , where λi is
the eigenvalue corresponding to vi . Therefore [T (vi )]B = λi ei for each i , and so

[T ]B = [ [T (v1)]B [T (v2)]B . . . [T (vn )]B ] = [λ1e1 λ2e2 . . . λnen ]

is a diagonal matrix. The converse of this result is also true, which explains the use
of the term diagonalizable for such a linear operator.

A linear operator T on Rn is diagonalizable if and only if there is a basis B for
Rn such that [T ]B, the B-matrix of T , is a diagonal matrix. Such a basis B must
consist of eigenvectors of T .

Recall from Theorem 4.12 that the B-matrix of T is given by [T ]B = B−1AB ,
where B is the matrix whose columns are the vectors in B and A is the standard matrix
of T . Thus, if we take

B =






−1
1
0


 ,




0
0
1


 ,




3
−2

1






in Example 1, we have

[T ]B = B−1AB =



−1 0 0
0 −1 0
0 0 2


 ,

which is the diagonal matrix whose diagonal entries are the eigenvalues corresponding
to the respective columns of B .
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A REFLECTION OPERATOR
We conclude this section with an example of a diagonalizable linear operator of
geometric interest, the reflection of R3 about a 2-dimensional subspace. Although
previously defined in the Exercises for Section 4.5, we repeat the definition here.

Let W be a 2-dimensional subspace of R3, that is, a plane containing the origin,
and consider the mapping TW : R3 → R3 defined as follows: For a vector u in R3

with endpoint P (see Figure 5.6), drop a perpendicular from P to W , and extend this
perpendicular an equal distance to the point P ′ on the other side of W . Then TW (u)
is the vector with endpoint P ′.

Pu

P'TW (b3) � �b3

b3

W

0

TW (u)

Figure 5.6 The reflection of R3 about a subspace W

It will be shown in Chapter 6 that TW is linear. (See Exercise 84 in Section 6.3.)
Assuming that TW is linear, we show that reflections are diagonalizable. Choose any
two linearly independent vectors b1 and b2 in W , and choose a third nonzero vector
b3 perpendicular to W , as shown in Figure 5.6. Since b3 is not a linear combination
of b1 and b2, the set B = {b1, b2, b3} is linearly independent and hence is a basis
for R3. Furthermore, TW (b1) = b1 and TW (b2) = b2 because a vector in W coincides
with its reflection. In addition, TW (b3) = −b3 because TW reflects b3 through W
an equal distance to the other side. (See Figure 5.6.) It follows that b1 and b2 are
eigenvectors of TW with corresponding eigenvalue 1, and b3 is an eigenvector of
TW with corresponding eigenvalue −1. Therefore TW is diagonalizable. In fact, its
columns are

[TW (b1)]B =



1
0
0


 , [TW (b2)]B =




0
1
0


 , and [TW (b3)]B =




0
0

−1


 .

So

[TW ]B =



1 0 0
0 1 0
0 0 −1


 . (4)

Example 3 Find an explicit formula for the reflection operator TW of R3 about the plane W ,
where

W =






x1

x2

x3


 ∈ R3 : x1 − x2 + x3 = 0


 .

328



5.4 Diagonalization of Linear Operators 329

Solution As in Chapter 4, we can obtain a basis for W by solving the equation
that defines it, namely, x1 − x2 + x3 = 0:




x1

x2

x3


 =




x2 − x3

x2

x3


 = x2




1
1
0


+ x3




−1
0
1




Therefore

B1 =






1
1
0


 ,




−1
0
1






is a basis for W .

Recall from analytic geometry that the vector




a
b
c


 is perpendicular (normal) to

the plane with the equation ax + by + cz = d . So setting b3 =



1
−1

1


, we obtain a

nonzero vector perpendicular to W . Adjoin b3 to B1 to obtain a basis

B =






1
1
0


 ,




−1
0
1


 ,




1
−1

1






for R3 consisting of eigenvectors of TW . Then [TW ]B is as in Equation (4).
By Theorem 4.12, the standard matrix of A is given by

A = B [TW ]BB−1 =




1
3

2
3 − 2

3
2
3

1
3

2
3

− 2
3

2
3

1
3


 ,

where B = [b1 b2 b3]. So

TW






x1

x2

x3




 = A




x1

x2

x3


 =




1
3x2 + 2

3x2 − 2
3x3

2
3x1 + 1

3x2 + 2
3x3

− 2
3x1 + 2

3x2 + 1
3x3




is an explicit formula for TW .

Practice Problem 3 � Find an explicit formula for the reflection operator of R3 about the plane with equation
x − 2y + 3z = 0. �

EXERCISES

In Exercises 1–8, a linear operator T on R3 and a basis B for
R3 are given. Compute [T ]B, and determine whether B is a basis
for R3 consisting of eigenvectors of T .

1. T






x1

x2

x3




 =




2x3

−3x1 + 3x2 + 2x3

4x1


,
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B =






1
1
2


 ,




0
1
0


 ,




1
1
1






2. T






x1

x2

x3




 =




−x1 + x2 − x3

x1 − x2 + 3x3

2x1 − 2x2 + 6x3


,

B =






−1
1
2


 ,




0
1
2


 ,




2
1
0






3. T






x1

x2

x3




 =




−x2 − 2x3

2x2

x1 + x2 + 3x3


,

B =






−1
0
1


 ,




−1
1
1


 ,




−2
0
1






4. T






x1

x2

x3




 =




7x1 + 5x2 + 4x3

−4x1 − 2x2 − 2x3

−8x1 − 7x2 − 5x3


,

B =






−1
0
2


 ,




−1
−1

3


 ,




1
−2

1






5. T






x1

x2

x3




 =




−4x1 + 2x2 − 2x3

−7x1 − 3x2 − 7x3

7x1 + x2 + 5x3


,

B =






0
1

−1


 ,




−1
0
1


 ,




−1
−1

1






6. T






x1

x2

x3




 =




−5x1 − 2x2

5x1 − 6x3

4x1 + 4x2 + 7x3


,

B =






1
−4

2


 ,




0
−1

1


 ,




2
−4

1






7. T






x1

x2

x3




 =




−3x1 + 5x2 − 5x3

2x1 − 3x2 + 2x3

2x1 − 5x2 + 4x3


,

B =






−1
0
1


 ,




0
1
1


 ,




−1
1
1






8. T






x1

x2

x3




 =




−x1 + x2 + 3x3

2x1 + 6x3

−x1 − x2 − 5x3


,

B =






−2
−1

1


 ,




−1
−2

1


 ,




−1
−3

1






In Exercises 9–20, a linear operator T on Rn and its charac-
teristic polynomial are given. Find, if possible, a basis for Rn

consisting of eigenvectors of T . If no such basis exists, explain
why.

9. T

([
x1

x2

])
=
[
7x1 − 6x2

9x1 − 7x2

]
, t2 + 5

10. T

([
x1

x2

])
=
[

x1 + x2

−9x1 − 5x2

]
, (t + 2)2

11. T

([
x1

x2

])
=
[

7x1 − 5x2

10x1 − 8x2

]
, (t + 3)(t − 2)

12. T

([
x1

x2

])
=
[−7x1 − 4x2

8x1 + 5x2

]
, (t + 3)(t − 1)

13. T






x1

x2

x3




 =




−5x1

7x1 + 2x2

−7x1 + x2 + 3x3


,

−(t + 5)(t − 2)(t − 3)

14. T






x1

x2

x3




 =




−3x1

4x1 + x2

x3


, −(t + 3)(t − 1)2

15. T






x1

x2

x3




 =




−x1 − x2

−x2

x1 + x2


, −t (t + 1)2

16. T






x1

x2

x3




 =




3x1 + 2x2

x2

4x1 − 3x2


, −t (t − 1)(t − 3)

17. T






x1

x2

x3




 =




6x1 − 9x2 + 9x3

−3x2 + 7x3

4x3


,

−(t + 3)(t − 4)(t − 6)

18. T






x1

x2

x3




 =




−x1

−x2

x1 − 2x2 − x3


, −(t + 1)3

19. T







x1

x2

x3

x4





 =




−7x1 − 4x2 + 4x3 − 4x4

x2

−8x1 − 4x2 + 5x3 − 4x4

x4




(t + 3)(t − 1)3

20. T







x1

x2

x3

x4





 =




3x1 − 5x3

3x2 − 5x3

−2x3

5x3 + 3x4


, (t + 2)(t − 3)3

In Exercises 21–28, a linear operator T on Rn is given. Find, if
possible, a basis B for Rn such that [T ]B is a diagonal matrix.
If no such basis exists, explain why.

21. T

([
x1

x2

])
=
[

x1 − x2

3x1 − x2

]

22. T

([
x1

x2

])
=
[ −x1 + 3x2

−4x1 + 6x2

]
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23. T

([
x1

x2

])
=
[−2x1 + 3x2

4x1 − 3x2

]

24. T

([
x1

x2

])
=
[

11x1 − 9x2

16x1 − 13x2

]

25. T






x1

x2

x3




 =




−x1

3x1 − x2 + 3x3

3x1 + 2x3




26. T






x1

x2

x3




 =




4x1 − 5x2

−x2

−x3




27. T






x1

x2

x3




 =




x1

−x1 + x2 − x3

x3




28. T






x1

x2

x3




 =




3x1 − x2 − 3x3

3x2 − 4x3

−x3




In Exercises 29–48, determine whether the state-
ments are true or false.

29. If a linear operator on Rn is diagonalizable, then its stan-
dard matrix is a diagonal matrix.

30. For every linear operator on Rn , there is a basis B for Rn

such that [T ]B is a diagonal matrix.

31. A linear operator on Rn is diagonalizable if and only if
its standard matrix is diagonalizable.

32. If T is a diagonalizable linear operator on Rn , there is a
unique basis B such that [T ]B is a diagonal matrix.

33. If T is a diagonalizable linear operator on Rn , there is a
unique diagonal matrix D such that [T ]B = D .

34. Let W be a 2-dimensional subspace of R3. The reflection
of R3 about W is one-to-one.

35. Let W be a 2-dimensional subspace of R3. The reflection
of R3 about W is onto.

36. If T is a linear operator on Rn and B is a basis for Rn

such that [T ]B is a diagonal matrix, then B consists of
eigenvectors of T .

37. The characteristic polynomial of a linear operator T on
Rn is a polynomial of degree n.

38. If the characteristic polynomial of a linear operator T on
Rn factors into a product of linear factors, then T is diag-
onalizable.

39. If the characteristic polynomial of a linear operator T on
Rn does not factor into a product of linear factors, then
T is not diagonalizable.

40. If, for each eigenvalue λ of a linear operator T on Rn ,
the dimension of the eigenspace of T corresponding to λ

equals the multiplicity of λ, then T is diagonalizable.

41. Let W be a two-dimensional subspace of R3. If
TW : R3 → R3 is the reflection of R3 about W , then each
nonzero vector in W is an eigenvector of TW correspond-
ing to the eigenvalue −1.

42. Let W be a two-dimensional subspace of R3. If
TW : R3 → R3 is the reflection of R3 about W , then each
nonzero vector that is perpendicular to W is an eigenvec-
tor of TW corresponding to the eigenvalue 0.

43. If T is a diagonalizable linear operator having 0 as an
eigenvalue of multiplicity m, then the dimension of the
null space of T equals m.

44. If T is a linear operator on Rn , then the sum of the mul-
tiplicities of the eigenvalues of T equals n.

45. If T is a diagonalizable linear operator on Rn , then the
sum of the multiplicities of the eigenvalues of T equals n.

46. If T is a linear operator on Rn having n distinct eigen-
values, then T is diagonalizable.

47. If B1,B2, . . . ,Bk are bases for distinct eigenspaces of a
linear operator T , then B1 ∪ B2 ∪ · · · ∪ Bk is a lin-
early independent set.

48. If B1,B2, . . . ,Bk are bases for all the distinct eigenspaces
of a linear operator T , then B1 ∪ B2 ∪ · · · ∪ Bk is a basis
for Rn consisting of eigenvectors of T .

In Exercises 49–58, a linear operator and its characteristic poly-
nomial are given. Determine all the values of the scalar c for
which the given linear operator on R3 is not diagonalizable.

49. T






x1

x2

x3




 =




12x1 + 10x3

−5x1 + cx2 − 5x3

−5x1 − 3x3




−(t − c)(t − 2)(t − 7)

50. T






x1

x2

x3




 =




x1 + 2x2 − x3

cx2

6x1 − x2 + 6x3




−(t − c)(t − 3)(t − 4)

51. T






x1

x2

x3




 =




cx1

−x1 − 3x2 − x3

−8x1 + x2 − 5x3




−(t − c)(t + 4)2

52. T






x1

x2

x3




 =




−4x1 + x2

−4x2

cx3




−(t − c)(t + 4)2

53. T






x1

x2

x3




 =




cx1

2x1 − 3x2 + 2x3

−3x1 − x3




−(t − c)(t + 3)(t + 1)

54. T






x1

x2

x3




 =




−4x1 − 2x2

cx2

4x1 + 4x2 − 2x3




−(t − c)(t + 4)(t + 2)

55. T






x1

x2

x3




 =




−5x1 + 9x2 + 3x3

cx2

−9x1 + 13x2 + 5x3




−(t − c)(t 2 + 2)
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56. T






x1

x2

x3




 =




cx1

10x2 − 2x3

6x2 + 3x3




−(t − c)(t − 6)(t − 7)

57. T






x1

x2

x3




 =




−7x1 + 2x2

−10x1 + 2x2

cx3




−(t − c)(t + 3)(t + 2)

58. T






x1

x2

x3




 =




3x1 + 7x3

x1 + cx2 + 2x3

−2x1 − 3x3




−(t − c)(t 2 + 5)

In Exercises 59–64, the equation of a plane W through the origin
of R3 is given. Determine an explicit formula for the reflection
TW of R3 about W .

59. x + y + z = 0 60. 2x + y + z = 0
61. x + 2y − z = 0 62. x + z = 0
63. x + 8y − 5z = 0 64. 3x − 4y + 5z = 0

In Exercises 65 and 66, the standard matrix of a reflection of R3

about a 2-dimensional subspace W is given. Find an equation
for W .

65.
1

9




1 −8 −4
−8 1 −4
−4 −4 7


 66.

1

3




2 −2 −1
−2 −1 −2
−1 −2 2




Exercises 67–74 use the definition of the orthogonal projection
UW of R3 on a 2-dimensional subspace W , which is given in
the exercises of Section 4.5.

67. Let W be a 2-dimensional subspace of R3.

(a) Prove that there exists a basis B for R3 such that

[UW ]B =



1 0 0
0 1 0
0 0 0


.

(b) Prove that [TW ]B =



1 0 0
0 1 0
0 0 −1


, where B is the

basis in (a).

(c) Prove that [UW ]B = 1
2 ([TW ]B + I3), where B is the

basis in (a).

(d) Use (c) and Exercise 59 to find an explicit formula for
the orthogonal projection UW , where W is the plane
with equation x + y + z = 0.

In Exercises 68–74, find an explicit formula for the orthogo-
nal projection UW of R3 on the plane W in each specified
exercise. Use Exercise 67(c) and the basis obtained in the spec-
ified exercise to obtain your answer.

68. Exercise 60 69. Exercise 61
70. Exercise 62 71. Exercise 63

72. Exercise 64 73. Exercise 65
74. Exercise 66

75. Let {u, v, w} be a basis for R3, and let T be the linear
operator on R3 defined by

T (au + bv + cw) = au + bv

for all scalars a, b, and c.

(a) Find the eigenvalues of T and determine a basis for
each eigenspace.

(b) Is T diagonalizable? Justify your answer.

76. Let {u, v, w} be a basis for R3, and let T be the linear
operator on R3 defined by

T (au + bv + cw) = au + bv − cw

for all scalars a, b, and c.

(a) Find the eigenvalues of T and determine a basis for
each eigenspace.

(b) Is T diagonalizable? Justify your answer.

77. Let T be a linear operator on Rn and B be a basis for
Rn such that [T ]B is a diagonal matrix. Prove that B must
consist of eigenvectors of T .

78. If T and U are diagonalizable linear operators on Rn ,
must T + U be a diagonalizable linear operator on Rn?
Justify your answer.

79. If T is a diagonalizable linear operator on Rn , must cT
be a diagonalizable linear operator on Rn for any scalar
c? Justify your answer.

80. If T and U are diagonalizable linear operators on Rn ,
must TU be a diagonalizable linear operator on Rn? Jus-
tify your answer.

81. Let T be a linear operator on Rn , and suppose
that v1, v2, . . . , vk are eigenvectors of T correspond-
ing to distinct nonzero eigenvalues. Prove that the set
{T (v1), T (v2), . . . , T (vk )} is linearly independent.

82. Let T and U be diagonalizable linear operators on Rn .
Prove that if there is a basis for Rn consisting of eigen-
vectors of both T and U , then TU = UT .

83. Let T and U be linear operators on Rn . If T 2 = U (where
T 2 = TT ), then T is called a square root of U . Show that
if U is diagonalizable and has only nonnegative eigenval-
ues, then U has a square root.

84. Let T be a linear operator on Rn and B1,B2, . . . ,Bk be
bases for all the distinct eigenspaces of T . Prove that T
is diagonalizable if and only if B1 ∪ B2 ∪ · · · ∪ Bk is a
generating set for Rn .

In Exercises 85 and 86, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to find a basis
for R5 consisting of eigenvectors of each linear operator T ; or
explain why no such basis exists.
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85. T is the linear operator on R5 defined by

T




x1

x2

x3

x4

x5




=




−11x1 − 9x2 + 13x3 + 18x4 − 9x5

6x1 + 5x2 − 6x3 − 8x4 + 4x5

6x1 + 3x2 − 4x3 − 6x4 + 3x5

−2x1 + 2x3 + 3x4 − 2x5

14x1 + 12x2 − 14x3 − 20x4 + 9x5




.

86. T is the linear operator on R5 defined by

T




x1

x2

x3

x4

x5




=




−2x1 − 4x2 − 9x3 − 5x4 − 16x5

x1 + 4x2 + 6x3 + 5x4 + 12x5

4x1 + 10x2 + 20x3 + 14x4 + 37x5

3x1 + 2x2 + 3x3 + 2x4 + 4x5

−4x1 − 6x2 − 12x3 − 8x4 − 21x5




.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Since the characteristic polynomial of T is −(t − 2)3, the
only eigenvalue of T is 2, which has multiplicity 3. The
standard matrix of T is

A =



1 2 1
0 2 0

−1 2 3


 ,

and the reduced row echelon form of A − 2I3 is




1 −2 −1
0 0 0
0 0 0


 ,

a matrix of rank 1. Since 3 − 1 < 3, the dimension of the
eigenspace corresponding to eigenvalue 2 is less than its
multiplicity. Hence the second condition in the test for a
diagonalizable matrix is not true for A, and A (and thus
T ) is not diagonalizable.

2. The standard matrix of T is

A =
[−7 −10

3 4

]
,

and its characteristic polynomial is (t + 1)(t + 2). So A
has two eigenvalues (−1 and −2), each of multiplicity 1.
Thus A, and hence T , is diagonalizable.

To find a basis for R2 consisting of eigenvectors of
T , we find bases for each of the eigenspaces of A. Since
the reduced row echelon form of A + 2I2 is

[
1 2
0 0

]
,

we see that {[−2
1

]}

is a basis for the eigenspace of A corresponding to −2.
Also, the reduced row echelon form of A + I2 is

[
1 5

3

0 0

]
.

Hence {[−5
3

]}

is a basis for the eigenspace of A corresponding to
−1. Combining these eigenspace bases, we obtain the
set

{[−2
1

]
,

[−5
3

]}
,

which is a basis for R2 consisting of eigenvectors of A
and T .

3. We must construct a basis B for R3 consisting of two vec-
tors from W and one vector perpendicular to W . Solving
the equation x − 2y + 3z = 0, we obtain




x
y
z


 =




2y − 3z
y
z


 = y




2
1
0


+ z




−3
0
1


 .

Thus 





2
1
0


 ,




−3
0
1






is a basis for W . In addition, the vector




1
−2

3




is normal to the plane W . Combining these three vectors,
we obtain the desired basis

B =






2
1
0


 ,




−3
0
1


 ,




1
−2

3






for R3.
For the orthogonal projection operator UW on W ,

the vectors in B are eigenvectors corresponding to the
eigenvalues 1, 1, and 0, respectively. Therefore

[UW ]B =



1 0 0
0 1 0
0 0 0


 .

Letting B denote the matrix whose columns are the vec-
tors in B, we see by Theorem 4.12 that the standard matrix
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A of UW is

A = B [UW ]BB−1 = 1

14




13 2 −3
2 10 6

−3 6 5


 .

So the formula for UW is

UW






x1

x2

x3




 = A




x1

x2

x3


 = 1

14




13x1 + 2x2 − 3x3

2x1 + 10x2 + 6x3

−3x1 + 6x2 + 5x3


 .

5.5∗ APPLICATIONS OF EIGENVALUES
In this section, we discuss four applications involving eigenvalues.

MARKOV CHAINS
Markov chains have been used to analyze situations as diverse as land use in Toronto,
Canada [3], economic development in New Zealand [6], and the game of Monopoly
[1] and [2]. This concept is named after the Russian mathematician Andrei Markov
(1856–1922), who developed the fundamentals of the theory at the beginning of the
twentieth century.

A Markov chain is a process that consists of a finite number of states and known
probabilities pij , where pij represents the probability of moving from state j to state
i . Note that this probability depends only on the present state j and the future state
i . The movement of population between the city and suburbs described in Example 6
of Section 2.1 is an example of a Markov chain with two states (living in the city and
living in the suburbs), where pij represents the probability of moving from one location
to another during the coming year. Other possible examples include political affiliation
(Democrat, Republican, or Independent), where pij represents the probability of a son
having affiliation i if his father has affiliation j ; cholesterol level (high, normal, and
low), where pij represents the probability of moving from one level to another in a
specific amount of time; or market share of competing products, where pij represents
the probability that a consumer switches brands in a certain amount of time.

Consider a Markov chain with n states, where the probability of moving from
state j to state i during a certain period of time is pij for 1 ≤ i , j ≤ n . The n × n
matrix A with (i , j )-entry equal to pij is called the transition matrix of this Markov
chain. It is a stochastic matrix, that is, a matrix with nonnegative entries whose column
sums are all 1. A Markov chain often has the property that it is possible to move from
any state to any other over several periods. In such a case, the transition matrix of
the Markov chain is called regular. It can be shown that the transition matrix of a
Markov chain is regular if and only if some power of it contains no zero entries.
Thus, if

A =



.5 0 .3
0 .4 .7
.5 .6 0


 ,

then A is regular because

A2 =



.40 .18 .15

.35 .58 .28

.25 .24 .57




has no zero entries. On the other hand,

B =



.5 0 .3
0 1 .7
.5 0 0




∗ This section can be omitted without loss of continuity.
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is not a regular transition matrix because, for every positive integer k , Bk contains at
least one zero entry, for example, the (1, 2)-entry.

Suppose that A is the transition matrix of a Markov chain with n states. If p is
a vector in Rn whose components represent the probabilities of being in each state
of the Markov chain at a particular time, then the components of p are nonnegative
numbers whose sum equals 1. Such a vector is called a probability vector. In this
case, the vector Amp is a probability vector for every positive integer m , and the
components of Amp give the probabilities of being in each state after m periods.

As we saw in Section 5.3, the behavior of the vectors Amp is often of interest in
the study of a Markov chain. When A is a regular transition matrix, the behavior of
these vectors can be easily described. A proof of the following theorem can be found
in [4, page 300]:

THEOREM 5.4

If A is a regular n × n transition matrix and p is a probability vector in Rn , then

(a) 1 is an eigenvalue of A;

(b) there is a unique probability vector v of A that is also an eigenvector corre-
sponding to eigenvalue 1;

(c) the vectors Amp approach v for m = 1, 2, 3, . . . .

A probability vector v such that Av = v is called a steady-state vector. Such
a vector is a probability vector that is also an eigenvector of A corresponding to
eigenvalue 1. Theorem 5.4 asserts that a regular Markov chain has a unique steady-
state vector, and moreover, the vectors Amp approach v for m = 1, 2, 3, . . . , no matter
what the original probability vector p is.

To illustrate these ideas, consider the following example:

Example 1 Suppose that Amy jogs or rides her bicycle every day for exercise. If she jogs today,
then tomorrow she will flip a fair coin and jog if it lands heads and ride her bicycle if
it lands tails. If she rides her bicycle one day, then she will always jog the next day.
This situation can be modeled by a Markov chain with two states (jog and ride) and
the transition matrix

tomorrow
jog
ride

today
jog ride[
.5 1
.5 0

]
= A.

For example, the (1, 1)-entry of A is .5 because if Amy jogs today, there is a .5
probability that she will jog tomorrow.

Suppose that Amy decides to jog on Monday. By taking p =
[
1
0

]
as the original

probability vector, we obtain

Ap =
[
.5 1
.5 0

] [
1
0

]
=
[
.5
.5

]

and

A2p = A(Ap) =
[
.5 1
.5 0

] [
.5
.5

]
=
[
.75
.25

]
.
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Therefore on Tuesday the probabilities that Amy will jog or ride her bicycle are both
.5, and on Wednesday the probability that she will jog is .75 and the probability

that she will ride her bicycle is .25. Since A2 =
[
.75 .5
.25 .5

]
has no zero entries, A

is a regular transition matrix. Thus A has a unique steady-state vector v, and the
vectors Amp (m = 1, 2, 3, . . .) approach v by Theorem 5.4. The steady-state vector is
a solution of Av = v, that is, (A − I2)v = 0. Since the reduced row echelon form of
A − I2 is [

1 −2
0 0

]
,

we see that the solutions of (A − I2)v = 0 have the form

v1 = 2v2

v2 free.

In order that v =
[
v1

v2

]
be a probability vector, we must have v1 + v2 = 1. Hence

2v2 + v2 = 1
3v2 = 1

v2 = 1
3 .

Thus the unique steady-state vector for A is v =
[

2
3
1
3

]
. Hence, over the long run, Amy

jogs 2
3 of the time and rides her bicycle 1

3 of the time.

Practice Problem 1 � A car survey has found that 80% of those who were driving a car five years ago are
now driving a car, 10% are now driving a minivan, and 10% are now driving a sport
utility vehicle. Of those who were driving a minivan five years ago, 20% are now
driving a car, 70% are now driving a minivan, and 10% are now driving a sport utility
vehicle. Finally, of those who were driving a sport utility vehicle five years ago, 10%
are now driving a car, 30% are now driving a minivan, and 60% are now driving a
sport utility vehicle.

(a) Determine the transition matrix for this Markov chain.

(b) Suppose that 70% of those questioned were driving cars five years ago, 20%
were driving minivans, and 10% were driving sport utility vehicles. Estimate the
percentage of these persons driving each type of vehicle now.

(c) Under the conditions in (b), estimate the percentage of these persons who will be
driving each type of vehicle five years from now.

(d) Determine the percentage of these persons driving each type of vehicle in the
long run, assuming that the present trend continues indefinitely. �

GOOGLE SEARCHES
In December 2003, the most popular search engine for Web searches was Google,
which performed about 35% of the month’s Web searches. Although Google does not
reveal the precise details of how its search engine prioritizes the websites it lists for
a user’s search, one of the reasons for Google’s success is its PageRankTM algorithm,

336



5.5 Applications of Eigenvalues 337

which was created by its developers, Larry Page and Sergey Brin, while they were
graduate students at Stanford University.

Intuitively, the PageRankTM algorithm ranks Web pages in the following way:
Consider a dedicated Web surfer who is viewing a page on the Web. The surfer
moves to a new page by either randomly choosing a link from the current page (this
happens 85% of the time) or moves to a new page by choosing a page at random from
all of the other pages on the Web (this happens 15% of the time). We will see that
the process of moving from one page to another produces a Markov chain, where the
pages are the states, and the steady-state vector gives the proportions of times pages
are visited. These proportions give the ranks of the pages. It follows that a page with
many links to and from pages of high rank will itself be ranked high. In response to
a user’s search, Google determines which websites are relevant and then lists them in
order of rank.

To investigate this process formally, we introduce some notation. Let n denote the
number of pages that are considered by a Google search. (In November 2004, n was
about 8.058 billion.) Let A be the n × n transition matrix associated with the Markov
chain, where each of the n pages is a state and aij is the probability of moving from
page j to page i for 1 ≤ i , j ≤ n . To determine the entries aij of A, we make two
assumptions:

1. If the current page has links to other pages, then a certain portion p (usually
about 0.85) of the time, the surfer moves from the current page to the next page
by choosing one of these links at random. The complementary portion of time,
1 − p, the surfer randomly selects one of the pages on the Web.

2. If the current page does not link to other pages, then the surfer randomly selects
one of the pages on the Web.

To aid in the calculation of A, we begin with a matrix that describes the page
links. Let C be the n × n matrix defined by

cij =
{

1 if there is a link from page j to page i

0 otherwise.

For any j , let sj denote the number of pages to which j links; that is, sj equals the
sum of the entries of column j of C . We determine aij , the probability that the reader
moves from page j to page i , as follows. If page j has no links at all (that is, sj = 0)
then the probability that the surfer picks page i randomly from the Web is simply
1/n . Now suppose that page j has links to other pages; that is, sj �= 0. Then to move
to page i from page j , there are two cases:

Case 1. The surfer chooses a link on page j, and this link takes the surfer to
page i.
The probability that the surfer chooses a link on page j is p, and the probability that
this link connects to page i is 1/sj = cij /sj . So the probability of this case is p(cij /sj ).

Case 2. The surfer decides to choose a page on the Web randomly, and the page
chosen is page i.
The probability that the surfer randomly chooses a page on the Web is 1 − p, and the
probability that page i is the chosen page is 1/n . So the probability of this case is
(1 − p)/n .

Thus, if sj �= 0, the probability that the surfer moves to page i from page j is

pcij

sj
+ (1 − p)

n
.
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So we have

aij =




pcij

sj
+ 1 − p

n
if sj �= 0

1

n
if sj = 0.

For a simple method of obtaining A from C , we introduce the n × n matrix
M = [m1 m2 . . . mn

]
, where

mj =




1

sj
cj if sj �= 0

1

n




1

1
...

1




if sj = 0.

It follows that A = pM + 1 − p

n
W , where W is the n × n matrix whose entries are

all equal to 1. (See Exercise 34.)
Observe that aij > 0 for all i and j . (For n = 8.058 billion and p = 0.85, the

smallest possible value for aij is equal to (1 − p)/n ≈ 0.186 × 10−10.) Also observe
that the sum of the entries in each column of A is 1, and hence A is a regular transition
matrix. So, by Theorem 5.4, there exists a unique steady-state vector v of A. Over
time, the components of v describe the distribution of surfers visiting the various
pages. The components of v are used to rank the Web pages listed by Google.

Example 2 Suppose that a search engine considers only 10 Web pages, which are linked in the
following manner:

Page Links to pages

1 5 and 10

2 1 and 8

3 1, 4, 5, 6, and 7

4 1, 3, 5, and 10

5 2, 7, 8, and 10

6 no links

7 2 and 4

8 1, 3, 4, and 7

9 1 and 3

10 9

The transition matrix for the Markov chain associated with this search engine,
with p = 0.85 as the probability that the algorithm follows an outgoing link from one
page to the next, is:
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0.0150 0.4400 0.1850 0.2275 0.0150 0.1000 0.0150 0.2275 0.4400 0.0150
0.0150 0.0150 0.0150 0.0150 0.2275 0.1000 0.4400 0.0150 0.0150 0.0150
0.0150 0.0150 0.0150 0.2275 0.0150 0.1000 0.0150 0.2275 0.4400 0.0150
0.0150 0.0150 0.1850 0.0150 0.0150 0.1000 0.4400 0.2275 0.0150 0.0150
0.4400 0.0150 0.1850 0.2275 0.0150 0.1000 0.0150 0.0150 0.0150 0.0150
0.0150 0.0150 0.1850 0.0150 0.0150 0.1000 0.0150 0.0150 0.0150 0.0150
0.0150 0.0150 0.1850 0.0150 0.2275 0.1000 0.0150 0.2275 0.0150 0.0150
0.0150 0.4400 0.0150 0.0150 0.2275 0.1000 0.0150 0.0150 0.0150 0.0150
0.0150 0.0150 0.0150 0.0150 0.0150 0.1000 0.0150 0.0150 0.0150 0.8650
0.4400 0.0150 0.0150 0.2275 0.2275 0.1000 0.0150 0.0150 0.0150 0.0150




The steady-state vector for this Markov chain is approximately



0.1583
0.0774
0.1072
0.0860
0.1218
0.0363
0.0785
0.0769
0.1282
0.1295




.

The components of this vector give the rankings for the pages. Here, page 1 has
the highest rank of .1583, page 10 has the second-highest rank of .1295, page 9 has
the third-highest rank of .1282, etc. Notice that, even though page 3 has the greatest
number of links (5 links to other pages and 3 links from other pages), its ranking is
lower than that of page 9, which has only 3 links (2 links to other pages, and 1 link
from another page). This fact illustrates that Google’s method of ranking the pages
takes into account not just the number of links to and from a page, but also the
rankings of the pages that are linked to each page.

SYSTEMS OF DIFFERENTIAL EQUATIONS
The decay of radioactive material and the unrestricted growth of bacteria and other
organisms are examples of processes in which the quantity of a substance changes at
every instant in proportion to the amount present. If y = f (t) represents the amount
of such a substance present at time t , and k represents the constant of proportionality,
then this type of growth is described by the differential equation f ′(t) = kf (t), or

y ′ = ky . (5)

In calculus, it is shown that the general solution of equation (5) is

y = aekt ,

where a is an arbitrary constant. That is, if we substitute aekt for y (and its derivative
akekt for y ′) in equation (5), we obtain an identity. To find the value of a in the
general solution, we need an initial condition. For instance, we need to know how
much of the substance is present at a particular time, say, t = 0. If 3 units of the
substance are present initially, then y(0) = 3. Therefore

3 = y(0) = aek (0) = a · 1 = a ,

and the particular solution of equation (5) is y = 3ekt .
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Now suppose that we have a system of three differential equations:

y ′
1 = 3y1

y ′
2 = 4y2

y ′
3 = 5y3

This system is just as easy to solve as equation (5), because each of the three equations
can be solved independently. Its general solution is

y1 = ae3t

y2 = be4t

y3 = ce5t .

Moreover, if there are initial conditions y1(0) = 10, y2(0) = 12, and y3(0) = 15, then
the particular solution is given by

y1 = 10e3t

y2 = 12e4t

y3 = 15e5t .

As for systems of linear equations, the preceding system of differential equations can
be represented by the matrix equation




y ′
1

y ′
2

y ′
3


 =




3 0 0
0 4 0
0 0 5






y1

y2

y3


 .

Letting

y =



y1

y2

y3


 , y′ =




y ′
1

y ′
2

y ′
3


 , and D =




3 0 0
0 4 0
0 0 5


 ,

we can represent the system as the matrix equation

y′ = Dy

with initial condition

y(0) =



10
12
15


 .

More generally, the system of linear differential equations

y ′
1 = a11y1 + a12y2 + · · · + a1nyn

y ′
2 = a21y1 + a22y2 + · · · + a2nyn

...

y ′
n = an1y1 + an2y2 + · · · + annyn

can be written as
y′ = Ay, (6)

where A is an n × n matrix. For example, such a system could describe the numbers
of animals of three species that are dependent upon one another, so that the growth
rate of each species depends on the present number of animals of all three species.
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This type of system arises in the context of predator-prey models, where y1 and y2

might represent the numbers of rabbits and foxes in an ecosystem (see Exercise 67)
or the numbers of food fish and sharks.

To obtain a solution of equation (6), we make an appropriate change of variable.
Define z = P−1y (or equivalently, y = Pz), where P is an invertible matrix. It is not
hard to prove that y′ = Pz′. (See Exercise 66.) Therefore substituting Pz for y and
Pz′ for y′ in equation (6) yields

Pz′ = APz,

or
z′ = P−1APz.

Thus, if there is an invertible matrix P such that P−1AP is a diagonal matrix D ,
then we obtain the system z′ = Dz, which is of the same simple form as the one just
solved. Moreover, the solution of equation (6) can be obtained easily from z because
y = Pz.

If A is diagonalizable, we can choose P to be a matrix whose columns form a
basis for Rn consisting of eigenvectors of A. Of course, the diagonal entries of D are
the eigenvalues of A. This method for solving a system of differential equations with
a diagonalizable coefficient matrix is summarized as follows:

Solution of y′ = Ay When A Is Diagonalizable

1. Find the eigenvalues of A and a basis for each eigenspace.

2. Let P be a matrix whose columns consist of basis vectors for each eigenspace of
A, and let D be the diagonal matrix whose diagonal entries are the eigenvalues
of A corresponding to the respective columns of P .

3. Solve the system z′ = Dz.
4. The solution of the original system is y = Pz.

Example 3 Consider the system

y ′
1 = 4y1 + y2

y ′
2 = 3y1 + 2y2.

The matrix form of this system is y′ = Ay, where

y =
[
y1

y2

]
and A =

[
4 1
3 2

]
.

Using the techniques of Section 5.3, we see that A is diagonalizable because it has
distinct eigenvalues 1 and 5. Moreover,

{[−1
3

]}
and

{[
1
1

]}

are bases for the corresponding eigenspaces of A. Hence we take

P =
[−1 1

3 1

]
and D =

[
1 0
0 5

]
.
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Now solve the system z′ = Dz, which is

z ′
1 = z1

z ′
2 = 5z2.

The solution of this system is

z =
[

aet

be5t

]
.

Thus the general solution of the original system is

y = Pz =
[−1 1

3 1

] [
aet

be5t

]
=
[−aet + be5t

3aet + be5t

]
,

or
y1 = −aet + be5t

y2 = 3aet + be5t .

Note that it is not necessary to compute P−1.
If, additionally, we are given the initial conditions y1(0) = 120 and y2(0) = 40,

then we can find the particular solution of the system. To do so, we must solve the
system of linear equations

120 = y1(0) = −ae0 + be5(0) = −a + b
40 = y2(0) = 3ae0 + be5(0) = 3a + b

for a and b. Since the solution of this system is a = −20 and b = 100, the particular
solution of the original system of differential equations is

y1 = 20et + 100e5t

y2 = −60et + 100e5t .

Practice Problem 2 � Consider the following system of differential equations:

y ′
1 = −5y1 − 4y2

y ′
2 = 8y1 − 7y2

(a) Find the general solution of the system.

(b) Find the particular solution of the system that satisfies the initial conditions
y1(0) = 1 and y2(0) = 4. �

It should be noted that, with only a slight modification, the procedure we have
presented for solving y′ = Ay can also be used to solve a nonhomogeneous system
y′ = Ay + b, where b �= 0.

However, this procedure for solving y′ = Ay cannot be used if A is not diagonal-
izable. In such a case, a similar technique can be developed from the Jordan canonical
form of A. (See [4, pages 515–516].)

Under some circumstances, the system of differential equations (6) can be used
to solve a higher-order differential equation. We illustrate this technique by solving
the third-order differential equation

y ′′′ − 6y ′′ + 5y ′ + 12y = 0.
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By making the substitutions y1 = y , y2 = y ′, and y3 = y ′′, we obtain the system

y ′
1 = y2

y ′
2 = y3

y ′
3 = −12y1 − 5y2 + 6y3.

The matrix form of this system is


y ′
1

y ′
2

y ′
3


 =




0 1 0
0 0 1

−12 −5 6






y1

y2

y3


 .

The characteristic equation of the 3 × 3 matrix

A =



0 1 0
0 0 1

−12 −5 6




is −(t3 − 6t2 + 5t + 12) = 0, which resembles the original differential equation
y ′′′ − 6y ′′ + 5y ′ + 12y = 0. This similarity is no accident. (See Exercise 68.) Since
A has distinct eigenvalues −1, 3, and 4, it must be diagonalizable. Using the method
previously described, we can solve for y1, y2, and y3. Of course, in this case we are
interested only in y1 = y . The general solution of the given third-order equation is

y = ae−t + be3t + ce4t .

HARMONIC MOTION∗

Many real-world problems involve a differential equation that can be solved by the
preceding method. Consider, for instance, a body of weight w that is suspended
from a spring. (See Figure 5.7.) Suppose that the body is moved from its resting
position and set in motion. Let y(t) denote the distance of the body from its resting
point at time t , where positive distances are measured downward. If k is the spring
constant, g is the acceleration due to gravity (32 feet per second per second), and
−by ′(t) is the damping force,8 then the motion of the body satisfies the differential
equation

w

g
y ′′(t) + by ′(t) + ky(t) = 0.

w0

y

w
y(t)

Figure 5.7 A weight suspended from a spring

∗ This section requires knowledge of complex numbers. (See Appendix C.)
8 The damping force is a frictional force that reflects the viscosity of the medium in which the motion

occurs. It is proportional to the velocity, but acts in the opposite direction.
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For example, if the body weighs 8 pounds, the spring constant is k = 2.125 pounds
per foot, and the damping force constant is b = 0.75, then the previous differential
equation reduces to the form

y ′′ + 3y ′ + 8.5y = 0.

By making the substitutions y1 = y and y2 = y ′, we obtain the system

y ′
1 = y2

y ′
2 = −8.5y1 − 3y2,

or, in matrix form,

[
y ′
1

y ′
2

]
=
[

0 1
−8.5 −3

] [
y1

y2

]
.

The characteristic polynomial of the preceding matrix is

t2 + 3t + 8.5,

which has the nonreal roots −1.5 + 2.5i and −1.5 − 2.5i .
The general solution of the differential equation can be shown to be

y = ae(−1.5+2.5i )t + be(−1.5−2.5i )t .

Using Euler’s formula (see Appendix C), we obtain

y = ae−1.5t (cos 2.5t + i sin 2.5t) + be−1.5t (cos 2.5t − i sin 2.5t),

which can be written as

y = ce−1.5t cos 2.5t + de−1.5t sin 2.5t .

The constants c and d can be determined from initial conditions, such as the initial
displacement of the body from its resting position, y(0), and its initial velocity, y ′(0).
From this solution, it can be shown that the body oscillates with amplitudes that
decrease to zero.

DIFFERENCE EQUATIONS
To introduce difference equations, we begin with a counting problem. This problem
is typical of the type that occurs in the study of combinatorial analysis, which has
gained considerable attention in recent years because of its applications to computer
science and operations research.

Suppose that we have a large number of blocks of three colors: yellow, red, and
green. Each yellow block fills one space, and each red or green block fills two spaces.
How many different ways are there of arranging the blocks in a line so that they fill
n spaces?

Denote the answer to this question by rn , and let Y , R, and G represent a yellow,
a red, and a green block, respectively. For convenience, we let r0 = 1. The following
table lists the possible arrangements in the cases n = 0, 1, 2, and 3:
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n Arrangements rn

0 1

1 Y 1

2 YY , R, G 3

3 YYY , YR, YG, RY , GY 5

Now suppose that we have to fill n spaces. Consider the three possible cases:

Case 1. The last block is yellow.
In this case, the yellow block fills the last space, and we can fill the first n − 1 spaces
in rn−1 ways.

Case 2. The last block is red.
In this case, the red block fills the last two spaces, and we can fill the first n − 2
spaces in rn−2 ways.

Case 3. The last block is green.
This is similar to case 2, so the total number of ways to fill the first n − 2 spaces is
rn−2.

Putting these cases together, we have

rn = rn−1 + 2rn−2. (7)

Notice that this equation agrees with the table for n = 2 and n = 3:

r2 = r1 + 2r0 = 1 + 2 · 1 = 3

and

r3 = r2 + 2r1 = 3 + 2 · 1 = 5.

With this formula, we can easily determine that the number of arrangements for n = 4
is

r4 = r3 + 2r2 = 5 + 2 · 3 = 11.

Equation (7) is an example of a difference equation, or recurrence relation.
Difference equations are analogous to differential equations, except that the indepen-
dent variable is treated as discrete in a difference equation and as continuous in a
differential equation.

But how do we find a formula expressing rn as a function of n? One way is to
rewrite equation (7) as a matrix equation. First, write

rn = rn

rn+1 = rn + 2rn−1.

(The second equation is formed by replacing n by n + 1 in equation (7).) The system
can now be written in the matrix form

[
rn

rn+1

]
=
[
0 1
2 1

] [
rn−1

rn

]
,
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or sn = Asn−1, where

sn =
[

rn

rn+1

]
and A =

[
0 1
2 1

]
.

Furthermore, from the solutions for n = 0 and n = 1, we have

s0 =
[
r0

r1

]
=
[
1
1

]
.

Thus

sn = Asn−1 = A2sn−2 = · · · = Ans0 = An
[
1
1

]
.

To compute sn , we must compute powers of a matrix, a problem we considered in
Section 5.3 for the case in which the matrix is diagonalizable. Using the methods
developed earlier in this chapter, we find matrices

P =
[

1 1
−1 2

]
and D =

[−1 0
0 2

]

such that A = PDP−1. Then, as in Section 5.3, we have An = PDnP−1. Thus

sn = PDnP−1s0,

or [
rn

rn+1

]
=
[

1 1
−1 2

] [
(−1)n 0

0 2n

][ 2
3 − 1

3
1
3

1
3

][
1
1

]

= 1

3

[
(−1)n + 2n+1

(−1)n+1 + 2n+2

]
.

Therefore

rn = (−1)n + 2n+1

3
.

As a check, observe that this formula gives r0 = 1, r1 = 1, r2 = 3, and r3 = 5,
which agree with the values obtained previously. It is now easy with a calculator to
compute rn for larger values of n . For example, r10 is 683, r20 is 669,051, and r32 is
almost 3 billion!

In general, a kth-order homogeneous linear difference equation (or recurrence
relation) is an equation of the form

rn = a1rn−1 + a2rn−2 + · · · + ak rn−k , (8)

where the ai ’s are scalars, n and k are positive integers such that n > k , and ak �= 0.
Equation (7) enables us to compute successive values of rn if we know two con-

secutive values. In the block problem, we found that r0 = 1 and r1 = 1 by enumerating
the possibilities for filling 0 spaces and 1 space. Such a set of consecutive values of
rn is called a set of initial conditions. More generally, in equation (8), we need to
know k consecutive values of rn to have a set of initial conditions. Thus the number
of consecutive values required equals the order of the difference equation.

As in the preceding example, we can represent the k th-order equation (8) by a
matrix equation of the form sn = Asn−1, where A is a k × k matrix and sn is a vector
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in Rk . (See Exercise 82.) It can be shown (see Exercise 83) that if A has k distinct
eigenvalues, λ1, λ2, . . . , λk , then the general solution of equation (8) has the form

rn = b1λ
n
1 + b2λ

n
2 + · · · + bkλ

n
k . (9)

The bi ’s are determined by the initial conditions, which are given by the components
of the vector s0. Furthermore, the λi ’s, which are the distinct eigenvalues of A, can
also be obtained as solutions of the equation

λk = a1λ
k−1 + a2λ

k−2 + · · · + ak−1λ + ak . (10)

(See Exercise 84.)
Equations (9) and (10) offer us an alternative method for finding rn without

computing either the characteristic polynomial or the eigenvectors of A. We illustrate
this method with another example.

It is known that rabbits reproduce at a very rapid rate. For the sake of simplicity,
we assume that a pair of rabbits does not produce any offspring during the first month
of their lives, but that they produce exactly one pair (male and female) each month
thereafter. Suppose that, initially, we have one male–female pair of newborn rabbits
and that no rabbits die. How many pairs of rabbits will there be after n months?

Let rn denote the number of pairs of rabbits after n months. Let’s try to answer
this question for n = 0, 1, 2, and 3. After zero months, we have only the original pair.
Similarly, after 1 month, we still have only the original pair. So r1 = r0 = 1. After 2
months, we have the original pair and their offspring; that is, r2 = 2. After 3 months,
we have all the previous pairs and, in addition, the new pair of offspring of the original
pair; that is, r3 = r2 + r1 = 2 + 1 = 3. In general, after n months, we have the pairs
we had last month and the offspring of those pairs that are over 1 month old. Thus

rn = rn−1 + rn−2, (11)

a second-order difference equation. The numbers generated by equation (11) are 1, 1,
2, 3, 5, 8, 13, 21, 34, . . . . Each number is the sum of the preceding two numbers. A
sequence with this property is called a Fibonacci sequence. It occurs in a variety of
settings, including the number of spirals of various plants.

Now we use equations (9) and (10) to obtain a formula for rn . By equations (11)
and (10), we have

λ2 = λ + 1,

which has solutions (1 ± √
5)/2. Thus, by equation (9), there are scalars b1 and b2

such that

rn = b1

(
1

2
+

√
5

2

)n

+ b2

(
1

2
−

√
5

2

)n

.

To find b1 and b2, we use the initial conditions

1 = r0 = (1) b1 + (1) b2

1 = r1 =
(

1
2 +

√
5

2

)
b1 +

(
1
2 −

√
5

2

)
b2.

This system has the solution

b1 = 1√
5

(
1

2
+

√
5

2

)
and b2 = − 1√

5

(
1

2
−

√
5

2

)
.
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Thus, in general,

rn = 1√
5

(
1

2
+

√
5

2

)n+1

− 1√
5

(
1

2
−

√
5

2

)n+1

.

This complicated formula is a surprise, because rn is a positive integer for every value
of n . To find the fiftieth Fibonacci number, we compute r50, which is over 20 billion!

Our final example, which can also be solved by differential equations, involves
an application to heat loss.

Example 4 The water in a hot tub loses heat to the surrounding air so that the difference between
the temperature of the water and the temperature of the surrounding air is reduced by
5% each minute. The temperature of the water is 120◦F now, and the temperature of
the surrounding air is a constant 70◦F. Let rn denote the temperature difference at the
end of n minutes. Then

rn = .95rn−1 for each n and r0 = 120 − 70 = 50◦F.

By equations (9) and (10), rn = bλn and λ = 0.95, and hence rn = b(.95)n . Further-
more, 50 = r0 = b(.95)0 = b, and thus rn = 50(.95)n . For example, at the end of
10 minutes, rn = 50(.95)10 ≈ 30◦F, and so the water temperature is approximately
70 + 30 = 100◦F.

In Exercises 85–87, we show how to find a formula for the solution of the
first-order nonhomogeneous equation rn = arn−1 + c, where a and c are scalars.
This equation occurs frequently in financial applications, such as annuities. (See
Exercise 88.)

Practice Problem 3 � In the back room of a bookstore there are a large number of copies of three books:
a novel by Nabokov, a novel by Updike, and a calculus book. The novels are each
1 inch thick, and the calculus book is 2 inches thick. Find rn , the number of ways of
arranging these copies in a stack n inches high. �

EXERCISES

In Exercises 1–12, determine whether the statements
are true or false.

1. The row sums of the transition matrix of a Markov chain
are all 1.

2. If the transition matrix of a Markov chain contains zero
entries, then it is not regular.

3. If A is the transition matrix of a Markov chain and p is
any probability vector, then Ap is a probability vector.

4. If A is the transition matrix of a Markov chain and p is
any probability vector, then as m approaches infinity, the
vectors Amp approach a probability vector.

5. If A is the transition matrix of a regular Markov chain,
then as m approaches infinity, the vectors Amp approach
the same probability vector for every probability vector p.

6. Every regular transition matrix has 1 as an eigenvalue.

7. Every regular transition matrix has a unique probabil-
ity vector that is an eigenvector corresponding to eigen-
value 1.

8. The general solution of y ′ = ky is y = ket .

9. If P−1AP is a diagonal matrix D , then the change of vari-
able z = Py transforms the matrix equation y′ = Ay into
z′ = Dz.

10. A differential equation a3y ′′′ + a2y ′′ + a1y ′ + a0y = 0,
where a3, a2, a1, a0 are scalars, can be written as a system
of linear differential equations.

11. If A = PDP−1, where P is an invertible matrix and D is
a diagonal matrix, then the solution of y′ = Ay is P−1z,
where z is a solution of z′ = Dz.

12. In a Fibonacci sequence, each term after the first two is
the sum of the two preceding terms.
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In Exercises 13–20, determine whether each transition matrix is
regular.

13.

[
0.25 0
0.75 1

]
14.

[
0 .5
1 .5

]

15.




.5 0 .7

.5 0 .3
0 1 0


 16.




.9 .5 .4
0 .5 0
.1 0 .6




17.




.8 0 0

.2 .7 .1
0 .3 .9


 18.




.2 .7 .1

.8 0 0
0 .3 .9




19.




.6 0 0 .1
0 .5 .2 0
.4 0 0 .9
0 .5 .8 0


 20.




.6 0 .1 0
0 .5 0 .2
.4 0 .9 0
0 .5 0 .8




In Exercises 21–28, a regular transition matrix is given. Deter-
mine its steady-state vector.

21.

[
.9 .3
.1 .7

]
22.

[
.6 .1
.4 .9

]

23.




.5 .1 .2

.2 .6 .1

.3 .3 .7


 24.




.7 .1 .6
0 .9 0
.3 0 .4




25.




.8 0 .1
0 .4 .9
.2 .6 0


 26.




.7 0 .2
0 .4 .8
.3 .6 0




27.




.6 0 0 .1
0 .5 .2 0
.4 .2 .8 0
0 .3 0 .9


 28.




.6 0 0 .1
0 .5 .2 0
.4 0 0 .9
0 .5 .8 0




29. When Alison goes to her favorite ice cream store, she
buys either a root beer float or a chocolate sundae. If she
bought a float on her last visit, there is a .25 probability
that she will buy a float on her next visit. If she bought a
sundae on her last visit, there is a .5 probability that she
will buy a float on her next visit.

(a) Assuming that this information describes a Markov
chain, write a transition matrix for this situation.

(b) If Alison bought a sundae on her next-to-last visit,
what is the probability that she will buy a float on her
next visit?

(c) Over the long run, on what proportion of Alison’s
trips does she buy a sundae?

30. Suppose that the probability that the child of a
college-educated parent also becomes college-educated
is .75, and that the probability that the child of a
non-college-educated parent becomes college-educated
is .35.

(a) Assuming that this information describes a Markov
chain, write a transition matrix for this situation.

(b) If 30% of the parents are college-educated, what
(approximate) proportion of the population will be
college-educated in one, two, and three generations?

(c) Without any knowledge of the present proportion of
college-educated parents, determine the eventual pro-
portion of college-educated people.

31. A supermarket sells three brands of baking powder. Of
those who bought brand A last, 70% will buy brand A the
next time they buy baking powder, 10% will buy brand B,
and 20% will buy brand C. Of those who bought brand B
last, 10% will buy brand A the next time they buy baking
powder, 60% will buy brand B, and 30% will buy brand
C. Of those who bought brand C last, 10% will buy each
of brands A and B the next time they buy baking powder,
and 80% will buy brand C.

(a) Assuming that the information describes a Markov
chain, write a transition matrix for this situation.

(b) If a customer last bought brand B, what is the proba-
bility that his or her next purchase of baking powder
is brand B?

(c) If a customer last bought brand A, what is the proba-
bility that his or her second future purchase of baking
powder is brand C?

(d) Over the long run, what proportion of the supermar-
ket’s baking powder sales are accounted for by each
brand?

32. Suppose that a particular region with a constant population
is divided into three areas: the city, suburbs, and country.
The probability that a person living in the city moves to
the suburbs (in one year) is .10, and the probability that
someone moves to the country is .50. The probability is
.20 that a person living in the suburbs moves to the city
and is .10 for a move to the country. The probability is
.20 that a person living in the country moves to the city
and is .20 for a move to the suburbs. Suppose initially
that 50% of the people live in the city, 30% live in the
suburbs, and 20% live in the country.

(a) Determine the transition matrix for the three states.

(b) Determine the percentage of people living in each area
after 1, 2, and 3 years.

(c) Use either a calculator with matrix capabilities or
computer software such as MATLAB to find the per-
centage of people living in each area after 5 and 8
years.

(d) Determine the eventual percentages of people in each
area.

33. Prove that the sum of the entries of each column of the
matrix A in the subsection on Google searches is equal
to 1.

34. Verify that the matrix A in the subsection on Google
searches satisfies the equation

A = pM + 1 − p

n
W ,

where M and W are as defined in the subsection.

In Exercise 35, use either a calculator with matrix capabilities
or computer software such as MATLAB.
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35. In [5], Gabriel and Neumann found that a Markov chain
could be used to describe the occurrence of rainfall in Tel
Aviv during the rainy seasons from 1923–24 to 1949–50.
A day was classified as wet if at least 0.1 mm of precipita-
tion fell at a certain location in Tel Aviv during the period
from 8 am one day to 8 am the next day; otherwise, the
day was classified as dry. The data for November follow:

Current day wet Current day dry

Next day wet 117 80

Next day dry 78 535

(a) Assuming that the preceding information describes a
Markov chain, write a transition matrix for this situa-
tion.

(b) If a November day was dry, what is the probability
that the following day will be dry?

(c) If a Tuesday in November was dry, what is the prob-
ability that the following Thursday will be dry?

(d) If a Wednesday in November was wet, what is the
probability that the following Saturday will be dry?

(e) Over the long run, what is the probability that a
November day in Tel Aviv is wet?

36. A company leases rental cars at three Chicago offices
(located at Midway Airport, O’Hare Field, and the Loop).
Its records show that 60% of the cars rented at Midway
are returned there and 20% are returned to each of the
other locations. Also, 80% of the cars rented at O’Hare are
returned there and 10% are returned to each of the other
locations. Finally, 70% of the cars rented at the Loop are
returned there, 10% are returned to Midway, and 20% are
returned to O’Hare.

(a) Assuming that the preceding information describes a
Markov chain, write a transition matrix for this situa-
tion.

(b) If a car is rented at O’Hare, what is the probability
that it will be returned to the Loop?

(c) If a car is rented at Midway, what is the probability
that it will be returned to the Loop after its second
rental?

(d) Over the long run, if all of the cars are returned, what
proportion of the company’s fleet will be located at
each office?

37. Suppose that the transition matrix of a Markov chain is

A =



.90 .1 .3

.05 .8 .3

.05 .1 .4


 .

(a) What are the probabilities that an object in the first
state will next move to each of the other states?

(b) What are the probabilities that an object in the second
state will next move to each of the other states?

(c) What are the probabilities that an object in the third
state will next move to each of the other states?

(d) Use your answers to (a), (b), and (c) to predict the
steady-state vector for A.

(e) Verify your prediction in (d).

38. Give an example of a 3 × 3 regular transition matrix A
such that A, A2, and A3 all contain zero entries.

39. Let A be an n × n stochastic matrix, and let u be the
vector in Rn with all components equal to 1.

(a) Compute AT u.

(b) What does (a) imply about the eigenvalues of AT ?

(c) Prove that det (A − In ) = 0.

(d) What does (c) imply about the eigenvalues of A?

40. Use ideas from Exercise 37 to construct two regular 3 × 3
stochastic matrices having




.4

.2

.4




as their steady-state vector.

41. Prove that if A is a stochastic matrix and p is a probability
vector, then Ap is a probability vector.

42. Let A be the 2 × 2 stochastic matrix

[
a 1 − b

1 − a b

]
.

(a) Determine the eigenvalues of A.

(b) Determine a basis for each eigenspace of A.

(c) Under what conditions is A diagonalizable?

43. Let A be an n × n stochastic matrix.

(a) Let v be any vector in Rn and k be an index such
that |vj | ≤ |vk | for each j . Prove that the absolute
value of every component of AT v is less than or equal
to |vk |.

(b) Use (a) to show that if v is an eigenvector of AT that
corresponds to an eigenvalue λ, then |λ| · |vk | ≤ |vk |.

(c) Deduce that if λ is an eigenvalue of A, then |λ| ≤ 1.

44. Prove that if A and B are stochastic matrices, then AB is
a stochastic matrix.

In Exercises 45–52, find the general solution of each system of
differential equations.

45.
y ′
1 = 3y1 + 2y2

y ′
2 = 3y1 − 2y2

46.
y ′
1 = y1 + 2y2

y ′
2 = −y1 + 4y2

47.
y ′
1 = 2y1 + 4y2

y ′
2 = −6y1 − 8y2

48.
y ′
1 = −5y1 + 6y2

y ′
2 = −15y1 + 14y2

49.
y ′
1 = 2y1

y ′
2 = 3y1 + 2y2 + 3y3

y ′
3 = −3y1 − y3

50.
y ′
1 = y1 + 2y2 − y3

y ′
2 = y1 + y3

y ′
3 = 4y1 − 4y2 + 5y3

51.
y ′
1 = −3y1 + y2 + y3

y ′
2 = 8y1 − 2y2 − 4y3

y ′
3 = −10y1 + 2y2 + 4y3
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52.
y ′
1 = 12y1 − 10y2 − 10y3

y ′
2 = 10y1 − 8y2 − 10y3

y ′
3 = 5y1 − 5y2 − 3y3

In Exercises 53–60, find the particular solution of each system
of differential equations that satisfies the given initial conditions.

53.

y ′
1 = y1 + y2

y ′
2 = 4y1 + y2

with y1(0) = 15, y2(0) = −10

54.

y ′
1 = 2y1 + 2y2

y ′
2 = −y1 + 5y2

with y1(0) = 7, y2(0) = 5

55.

y ′
1 = 8y1 + 2y2

y ′
2 = −4y1 + 2y2

with y1(0) = 2, y2(0) = 1

56.

y ′
1 = −5y1 − 8y2

y ′
2 = 4y1 + 7y2

with y1(0) = 1, y2(0) = −3

57.

y ′
1 = 6y1 − 5y2 − 7y3

y ′
2 = y1 − y3

y ′
3 = 3y1 − 3y2 − 4y3

with y1(0) = 0, y2(0) = 2, y3(0) = 1

58.

y ′
1 = y1 + 2y3

y ′
2 = 2y1 + 3y2 − 2y3

y ′
3 = 3y3

with y1(0) = −1, y2(0) = 1, y3(0) = 2

59.

y ′
1 = −3y1 + 2y2

y ′
2 = −7y1 + 9y2 + 3y3

y ′
3 = 13y1 − 20y2 − 8y3

with y1(0) = −4, y2(0) = −5, y3(0) = 3

60.

y ′
1 = 5y1 − 2y2 − 2y3

y ′
2 = 18y1 − 7y2 − 6y3

y ′
3 = −6y1 + 2y2 + y3

with y1(0) = 4, y2(0) = 5, y3(0) = 8

61. Convert the second-order differential equation

y ′′ − 2y ′ − 3y = 0

into a system of differential equations, and then find its
general solution.

62. Convert the third-order differential equation

y ′′′ − 2y ′′ − 8y ′ = 0

into a system of differential equations, and then find its
general solution.

63. Convert the third-order differential equation

y ′′′ − 2y ′′ − y ′ + 2y = 0

into a system of differential equations, and then find the
particular solution such that y(0) = 2, y ′(0) = −3, and
y ′′(0) = 5.

64. Find the general solution of the differential equation
that describes the harmonic motion of a 4-pound weight
attached to a spring, where the spring constant is 1.5
pounds per foot and the damping force constant is 0.5.

65. Find the general solution of the differential equation that
describes the harmonic motion of a 10-pound weight
attached to a spring, where the spring constant is 1.25
pounds per foot and the damping force constant is 0.625.

66. Let z be an n × 1 column vector of differentiable func-
tions, and let P be any n × n matrix. Prove that if y = Pz,
then y′ = Pz′.

67. Let y1 denote the number of rabbits in a certain area at
time t and y2 denote the number of foxes in this area
at time t . Suppose that at time 0 there are 900 rabbits
and 300 foxes in this area, and assume that the system of
differential equations

y ′
1 = 2y1 − 4y2

y ′
2 = y1 − 3y2

expresses the rate at which the number of animals of each
species changes.

(a) Find the particular solution of this system.

(b) Approximately how many of each species will be
present at times t = 1, 2, and 3? For each of these
times, compute the ratio of foxes to rabbits.

(c) Approximately what is the eventual ratio of foxes to
rabbits in this area? Does this number depend on the
initial numbers of rabbits and foxes in the area?

68. Show that the characteristic polynomial of




0 1 0
0 0 1

−c −b −a




is −t3 − at2 − bt − c.

69. Show that if λ1, λ2, and λ3 are distinct roots of the poly-
nomial t 3 + at2 + bt + c, then y = aeλ1t + beλ2 t + ceλ3 t

is the general solution of y ′′′ + ay ′′ + by ′ + cy = 0. Hint:
Express the differential equation as a system of differential
equations y′ = Ay, and show that







1
λ1

λ2
1


 ,




1
λ2

λ2
2


 ,




1
λ3

λ2
3







is a basis for R3 consisting of eigenvectors of A.

In Exercises 70–78, use either of the two methods developed in
this section to find a formula for rn . Then use your result to
find r6.

70. rn = 2rn−1; r0 = 5

71. rn = −3rn−1; r0 = 8

72. rn = rn−1 + 2rn−2; r0 = 7 and r1 = 2

73. rn = 3rn−1 + 4rn−2; r0 = 1 and r1 = 1
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74. rn = 3rn−1 − 2rn−2; r0 = 1 and r1 = 3

75. rn = −rn−1 + 6rn−2; r0 = 8 and r1 = 1

76. rn = −5rn−1 − 4rn−2; r0 = 3 and r1 = 15

77. rn = rn−1 + 2rn−2; r0 = 9 and r1 = 0

78. rn = 2rn−1 + rn−2 − 2rn−3; r0 = 3, r1 = 1, and r2 = 3

79. Suppose that we have a large number of blocks. The
blocks are of five colors: red, yellow, green, orange, and
blue. Each of the red and yellow blocks weighs one ounce;
and each of the green, orange, and blue blocks weighs two
ounces. Let rn be the number of ways the blocks can be
arranged in a stack that weighs n ounces.

(a) Determine r0, r1, r2, and r3 by listing the possibilities.

(b) Write the difference equation involving rn .

(c) Use (b) to find a formula for rn .

(d) Use your answer to (c) to check your answers in (a).

80. Suppose that a bank pays interest on savings of 8% com-
pounded annually. Use the appropriate difference equation
to determine how much money would be in a savings
account after n years if initially there was $1000. What
is the value of the account after 5 years, 10 years, and 15
years?

81. Write the third-order difference equation

rn = 4rn−1 − 2rn−2 + 5rn−3

in matrix notation, sn = Asn−1, as we did in this section.

82. Justify the matrix form of equation (8) given in this
section: sn = Asn−1, where

sn =




rn

rn+1
..
.

rn+1

rn+k−1




and

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
.
..

.

..
.
..

.

..

0 0 0 · · · 0 1
ak ak−1 ak−2 · · · a2 a1




.

83. Consider a k th-order difference equation in the form of
equation (8) with a set of k initial conditions, and let the
matrix form of the equation be sn = Asn−1. Suppose, fur-
thermore, that A has k distinct eigenvalues λ1, λ2, . . . , λk ,
and that v1, v2, . . . , vk are corresponding eigenvectors.

(a) Prove that there exist scalars t1, t2, . . . , tk such that

s0 = t1v1 + t2v2 + · · · + tkvk .

(b) Prove that for any positive integer n,

sn = λn
1 t1v1 + λn

2 t2v2 + · · · + λn
k tkvk .

(c) Derive equation (9) by comparing the last components
of the vector equation in (b).

84. Prove that a scalar λ is an eigenvalue of the matrix A in
Exercise 82 if and only if λ is a solution of equation (10).
Hint: Let

wλ =




1
λ

λ2

...

λk−1




,

and prove each of the following results:

(i) If λ is an eigenvalue of A, then wλ is a corre-
sponding eigenvector, and hence λ is a solution of
equation (10).

(ii) If λ is a solution of equation (10), then wλ is an eigen-
vector of A, and λ is the corresponding eigenvalue.

In Exercises 85–87, we examine the nonhomogeneous first-
order difference equation, which is of the form

rn = arn−1 + c,

where a and c are constants. For the purpose of these exercises,
we let

sn =
[

1
rn

]
and A =

[
1 0
c a

]
.

85. Prove that sn = Ans0 for any positive integer n.

86. For this exercise, we assume that a = 1.

(a) Prove that An =
[

1 0
nc 1

]
for any positive integer n.

(b) Use (a) to derive the solution rn = r0 + nc.

87. For this exercise, we assume that a �= 1.

(a) Prove that 1 and a are eigenvalues of A.

(b) Prove that there exist eigenvectors v1 and v2 of A
corresponding to 1 and a, respectively, and scalars t1
and t2 such that

s0 = t1v1 + t2v2.

(c) Use (b) to prove that there exist scalars b1 and b2 such
that rn = b1 + anb2, where

b1 = −c

a − 1
and b2 = r0 + c

a − 1
.

88. An investor opened a savings account on March 1 with
an initial deposit of $5000. Each year thereafter, he
added $2000 to the account on March 1. If the account
earns interest at the rate of 6% per year, find a formula
for the value of this account after n years. Hint: Use
Exercise 87(c).
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In Exercises 89–91, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

89. Solve the system of differential equations

y ′
1 = 3.2y1 + 4.1y2 + 7.7y3 + 3.7y4

y ′
2 = −0.3y1 + 1.2y2 + 0.2y3 + 0.5y4

y ′
3 = −1.8y1 − 1.8y2 − 4.4y3 − 1.8y4

y ′
4 = 1.7y1 − 0.7y2 + 2.9y3 + 0.4y4

subject to the initial conditions y1(0) = 1, y2(0) = −4,
y3(0) = 2, y4(0) = 3.

90. In [3], Bourne examined the changes in land use in
Toronto, Canada, during the years 1952–1962. Land was
classified in ten ways:

1. low-density residential 2. high-density residential
3. office 4. general commercial
5. automobile commercial 6. parking
7. warehousing 8. industry
9. transportation 10. vacant

The following transition matrix shows the changes in land
use from 1952 to 1962:

Use in 1952
1 2 3 4 5 6 7 8 9 10

Use in
1962

1
2
3
4
5
6
7
8
9

10




.13 .02 .00 .02 .00 .08 .01 .01 .01 .25

.34 .41 .07 .01 .00 .05 .03 .02 .18 .08

.10 .05 .43 .09 .11 .14 .02 .02 .14 .03

.04 .04 .05 .30 .07 .08 .12 .03 .04 .03

.04 .00 .01 .09 .70 .12 .03 .03 .10 .05

.22 .04 .28 .27 .06 .39 .11 .08 .39 .15

.03 .00 .14 .05 .00 .04 .38 .18 .03 .22

.02 .00 .00 .08 .01 .00 .21 .61 .03 .13

.00 .00 .00 .01 .00 .01 .01 .00 .08 .00

.08 .44 .02 .08 .05 .09 .08 .02 .00 .06




Assume that the trend in land use changes from 1952 to
1962 continues indefinitely.

(a) Suppose that at some time the percentage of land use
for each purpose is as follows: 10%, 20%, 25%, 0%,
0%, 5%, 15%, 10%, 10%, and 5%, respectively. What
percentage of land will be used for each purpose two
decades later?

(b) Show that the transition matrix is regular.

(c) After many decades, what percentage of land will be
used for each purpose?

91. A search engine considers only 10 Web pages, which are
linked in the following manner:

Page Links

1 2, 6, 8, and 9

2 4 and 7

3 1, 4, 5, 8, and 10

4 no links

5 2 and 10

6 5 and 9

7 1, 5, 6, and 9

8 4 and 8

9 5 and 10

10 no links

(a) Apply the PageRank algorithm to find the transi-
tion matrix for the Markov chain associated with this
search engine, based on p = 0.85, the portion of the
time a surfer moves from the current page to the next
page by randomly choosing a link, provided that one
exists.

(b) Find the steady-state vector for the Markov chain
obtained in (a), and use it to rank the pages.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) The Markov chain has three states, which correspond
to the type of vehicle driven—car, van, or sport utility
vehicle (suv). The transition matrix for this Markov
chain is

Now
car
van
suv

Five Years Ago
car van suv


.8 .2 .1
.1 .7 .3
.1 .1 .6


 = A.

(b) The probability vector that gives the probability of
driving each type of vehicle five years ago is

p =



.70

.20

.10


 .

Hence the probability that someone in the survey is
now driving each type of vehicle is given by

Ap =



.8 .2 .1

.1 .7 .3

.1 .1 .6






.70

.20

.10


 =




.61

.24

.15


 .

Therefore 61% of those surveyed are now driving
cars, 24% are now driving minivans, and 15% are
now driving sport utility vehicles.

(c) The probability that five years from now someone
in the survey will be driving each type of vehicle is
given by

A(Ap) =



.8 .2 .1

.1 .7 .3

.1 .1 .6






.61

.24

.15


 =




.551

.274

.175


 .
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So we estimate that in five years 55.1% of those sur-
veyed will drive cars, 27.4% minivans, and 17.5%
sport utility vehicles.

(d) Note that A is a regular transition matrix, so, by
Theorem 5.4, A has a steady-state vector v. This vec-
tor is a solution of Av = v, that is, of the equation
(A − I3)v = 0. Since the reduced row echelon form
of A is 


1 0 −2.25
0 1 −1.75
0 0 0


 ,

we see that the solutions of (A − I3)v = 0 have the
form

v1 = 2.25v3

v2 = 1.75v3

v3 free.

In order that v =



v1

v2

v3


 be a probability vector, we

must have v1 + v2 + v3 = 1. Hence

2.25v3 + 1.75v3 + v3 = 1
5v3 = 1
v3 = .2.

So v1 = .45, v2 = .35, and v3 = .2. Thus we expect
that, in the long run, 45% of those surveyed will drive
cars, 35% minivans, and 20% sport utility vehicles.

2. (a) The matrix form of the given system of differential
equations is y′ = Ay, where

y =
[
y1

y2

]
and A =

[−5 −4
8 7

]
.

The characteristic polynomial of A is (t + 1)(t − 3),
so A has eigenvalues −1 and 3. Since each eigen-
value of A has multiplicity 1, A is diagonalizable. In
the usual manner, we find that

{[−1
1

]}
and

{[−1
2

]}

are bases for the eigenspaces of A. Take

P =
[−1 −1

1 2

]
and D =

[−1 0
0 3

]
.

Then the change of variable y = Pz transforms y′ =
Ay into z′ = Dz, which is

z ′
1 = −z1

z ′
2 = 3z2.

Hence

z =
[
z1

z2

]
=
[
ae−t

be3t

]
.

Therefore the general solution of the given system of
differential equations is

y = Pz =
[−1 −1

1 2

] [
ae−t

be3t

]
=
[−ae−t − be3t

ae−t + 2be3t

]
;

that is,
y1 = −ae−t − be3t

y2 = ae−t + 2be3t .

(b) In order to satisfy the initial conditions y1(0) = 1 and
y2(0) = 4, the constants a and b must satisfy the sys-
tem of linear equations

1 = y1(0) = −ae0 − be3(0) = −a − b
4 = y2(0) = ae0 + 2be3(0) = a + 2b.

It is easily checked that a = −6 and b = 5, so the
desired particular solution is

y1 = 6e−t − 5e3t

y2 = −6e−t + 10e3t .

3. As in the block example discussed earlier, r0 = 1 because
there is one “empty” stack. Furthermore, r1 = 2 because
each of the two novels is 1 inch high. Now suppose that
we have to pile a stack n inches high. There are three
cases to consider:

Case 1. The bottom book is the novel by Nabokov.
Since this novel is 1 inch thick, there are rn−1 ways of
stacking the rest of the books.

Case 2. The bottom book is the novel by Updike.
This is similar to case 1, so there are rn−1 ways of stacking
the rest of the books.

Case 3. The bottom book is a calculus book.
Since this book is 2 inches thick, there are rn−2 ways of
stacking the rest of the books.

Combining these three cases, we have the second-order
difference equation

rn = 2rn−1 + rn−2.

We use equation (10) to obtain

λ2 = 2λ + 1,

which has solutions 1 ± √
2. Thus, by equation (9), there

are scalars b1 and b2 such that

rn = b1(1 +
√

2)n + b2(1 −
√

2)n .

To find b1 and b2, we use the initial conditions

1 = r(0) = (1)b1 + (1)b2

2 = r(1) = (1 + √
2)b1 + (1 − √

2)b2.

This system has the solution

b1 =
√

2 + 1

2
√

2
and b2 =

√
2 − 1

2
√

2
.

Thus, in general,

rn = 1

2
√

2

[
(1 +

√
2)n+1 − (1 −

√
2)n+1

]
.
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CHAPTER 5 REVIEW EXERCISES

In Exercises 1–17, determine whether the statements
are true or false.

1. A scalar λ is an eigenvalue of an n × n matrix A if and
only if det (A − λIn ) = 0.

2. If λ is an eigenvalue of a matrix, then there is a unique
eigenvector of the matrix that corresponds to λ.

3. If v is an eigenvector of a matrix, then there is a unique
eigenvalue of the matrix that corresponds to v.

4. The eigenspace of an n × n matrix A corresponding to
eigenvalue λ is the null space of A − λIn .

5. The eigenvalues of a linear operator on Rn are the same
as those of its standard matrix.

6. The eigenspaces of a linear operator on Rn are the same
as those of its standard matrix.

7. Every linear operator on Rn has real eigenvalues.

8. Every n × n matrix has n distinct eigenvalues.

9. Every diagonalizable n × n matrix has n distinct eigen-
values.

10. If two n × n matrices have the same characteristic poly-
nomial, then they have the same eigenvectors.

11. The multiplicity of an eigenvalue need not equal the
dimension of the corresponding eigenspace.

12. An n × n matrix A is diagonalizable if and only if there
is a basis for Rn consisting of eigenvectors of A.

13. If P is an invertible n × n matrix and D is a diagonal
n × n matrix such that A = P−1DP , then the columns of
P form a basis for Rn consisting of eigenvectors of A.

14. If P is an invertible n × n matrix and D is a diagonal
n × n matrix such that A = PDP−1, then the eigenvalues
of A are the diagonal entries of D .

15. If λ is an eigenvalue of an n × n matrix A, then the dimen-
sion of the eigenspace corresponding to λ is the nullity of
A − λIn .

16. A linear operator on Rn is diagonalizable if and only if
its standard matrix is diagonalizable.

17. If 0 is an eigenvalue of a matrix A, then A is not invertible.

18. Show that

[
1 2

−3 −2

]
has no real eigenvalues.

In Exercises 19–22, determine the eigenvalues of each matrix
and a basis for each eigenspace.

19.

[
5 6

−2 −2

]
20.

[
1 −9
1 −5

]

21.




−2 0 2
1 −1 0
0 0 −2


 22.




−1 0 0
1 0 1

−1 −1 −2




In Exercises 23–26, a matrix A is given. Find, if possible,
an invertible matrix P and a diagonal matrix D such that
A = PDP−1. If no such matrices exist, explain why.

23.

[
1 2

−3 8

]
24.

[−1 1
−1 −3

]

25.




1 0 0
−2 0 1

2 −1 −2


 26.




−2 0 0
−4 2 0

4 −3 −1




In Exercises 27–30, a linear operator T on Rn is given. Find,
if possible, a basis for Rn consisting of eigenvectors of T . If no
such basis exists, explain why.

27. T

([
x1

x2

])
=
[

4x1 + 2x2

−4x1 − 5x2

]

28. T

([
x1

x2

])
=
[
x1 − 2x2

4x1 − x2

]

29. T






x1

x2

x3




 =




2x1

2x2

−3x1 + 3x2 − x3




30. T






x1

x2

x3




 =




x1

3x1 + x2 − 3x3

3x1 − 2x3




In Exercises 31–34, a matrix and its characteristic polynomial
are given. Determine all values of the scalar c for which each
matrix is not diagonalizable.

31.




1 0 1
0 c 0

−2 0 4




−(t − c)(t − 2)(t − 3)

32.




5 1 −3
0 c 0
6 2 −4




−(t − c)(t + 1)(t − 2)

33.




c −1 2
0 −10 −8
0 12 10




−(t − c)(t − 2)(t + 2)

34.




3 1 0
−1 1 0

0 0 c




−(t − c)(t − 2)2

In Exercises 35 and 36, a matrix A is given. Find Ak for an
arbitrary positive integer k .

35.

[
5 −6
3 −4

]
36.

[
11 8

−12 −9

]

37. Let T be the linear operator on R3 defined by

T






x1

x2

x3




 =




−4x1 − 3x2 − 3x3

−x2

6x1 + 6x2 + 5x3


 .

Find a basis B such that [T ]B is a diagonal matrix.

38. Find a 3 × 3 matrix having eigenvalues −1, 2, and 3 with

corresponding eigenvectors




−1
1
1


,




−2
1
2


, and




−1
1
2


.

39. Prove that




a 1 0
0 a 0
0 0 b


 is not diagonalizable for any

scalars a and b.
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40. Suppose that A is an n × n matrix having two distinct
eigenvalues, λ1 and λ2, where λ1 has multiplicity 1. State
and prove a necessary and sufficient condition for A to be
diagonalizable.

41. Prove that In − A is invertible if and only if 1 is not an
eigenvalue of A.

42. Two n × n matrices A and B are called simultaneously
diagonalizable if there exists an invertible matrix P such
that both P−1AP and P−1BP are diagonal matrices. Prove

that if A and B are simultaneously diagonalizable, then
AB = BA.

43. Let T be a linear operator on Rn , B be a basis for Rn ,
and A be the standard matrix of T . Prove that [T ]B and
A have the same characteristic polynomial.

44. Let T be a linear operator on Rn . A subspace W of Rn is
called T -invariant if T (w) is in W for each w in W . Prove
that if V is an eigenspace of T , then V is T -invariant.

CHAPTER 5 MATLAB EXERCISES

For the following exercises, use MATLAB (or comparable software) or a calculator with matrix capabilities. The MATLAB
functions in Tables D.1, D.2, D.3, D.4, and D.5 of Appendix D may be useful.

1. For each of the following matrices A, find, if possible,
an invertible matrix P and a diagonal matrix D such that
A = PDP−1. If no such matrices exist, explain why.

(a)




−2 −5 14 −7 6
−4 1 −2 2 2

2 1 −2 3 −3
−2 −2 8 −3 4
−6 −6 18 −10 11




(b)




−3 4 −9 15
2 3 −4 4

−11 10 −22 39
−7 6 −14 25




(c)




−39 −12 −14 −40
−11 −2 −4 −11

23 7 9 23
34 10 12 35




(d)




0 1 1 −2 2
−1 2 1 −2 2
−1 1 2 −2 2
−1 1 0 0 2

1 −1 0 0 0




2. Let A be an n × n matrix, and let 1 ≤ i < j ≤ n. Let B
be the matrix obtained from A by interchanging columns
i and j of A, and let C be the matrix obtained from A
by interchanging rows i and j of A. Use MATLAB to
investigate the relationship between the eigenvalues and
eigenvectors of B and those of C .
Hint: Experiment with

A =




−117 −80 −46 −30 −2
−12 −11 −5 −2 0
258 182 102 64 4
107 72 42 28 2

−215 −146 −85 −57 −5




.

3. Find the matrix with eigenvectors


1
1
0
2
3




,




2
1
0
2
6




,




−1
0
1
0

−3




,




2
1
0
1
6




,




2
1
0
2
7




and corresponding eigenvalues 1, −1, 2, 3, and 0.

4. A search engine considers only 10 Web pages, which are
linked in the following manner:

Page Links to pages

1 2, 5, 7, and 10

2 1, 8, and 9

3 7 and 10

4 5 and 6

5 1, 4, 7, and 9

6 4, 7, and 8

7 1, 3, 5, and 6

8 no links

9 2 and 5

10 1 and 3

(a) Apply the PageRank algorithm to find the transi-
tion matrix for the Markov chain associated with this
search engine, based on p = 0.85, the portion of the
time a surfer moves from the current page to the
next page by randomly choosing a link when one
exists.

(b) Find the steady-state vector for the Markov chain
obtained in (a), and use it to rank the pages.

5. For each of the following linear operators T , find a basis
for the domain of T consisting of eigenvectors of T , or
explain why no such basis exists.

(a) T







x1

x2

x3

x4





 =




x1 + x4

2x1 + x2 + x3 + 3x4

3x1 + x3 + 4x4

x1 + x2 + 2x3 + 4x4




(b) T







x1

x2

x3

x4

x5







=




12x1 + x2 + 13x3 + 12x4 + 14x5

10x1 + 2x2 + 6x3 + 11x4 + 7x5

−3x1 − x2 − x3 − 4x4 − 3x5

−13x1 − 2x2 − 11x3 − 14x4 − 13x5

3x1 + 2x2 − 3x3 + 5x4
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6. Let

v1 =




1
1
3
2


 , v2 =




−1
0
0

−3


 , v3 =




2
1

−2
1


 , v4 =




3
2
1
1


 ,

and let

B = {v1, v2, v3, v4}.
(a) Show that B is a basis for R4.

(b) Find the rule for the unique linear operator T on R4

such that

T (v1) = 2v1, T (v2) = 3v2, T (v3) = −v3, and

T (v4) = v3 − v4.

(c) Determine whether T is diagonalizable. If T is diag-
onalizable, find a basis for R4 of eigenvectors of T .

7. Let B be the basis given in Exercise 6, and let T be the
linear operator on R4 such that

T (v1) = v2, T (v2) = 2v1, T (v3) = −v3, and

T (v4) = 2v4.

(a) Find the rule for T .

(b) Determine whether T is diagonalizable. If T is diag-
onalizable, find a basis for R4 of eigenvectors of T .

8. Let

A =




0.1 0.2 0.4 0.3 0.2
0.2 0.2 0.2 0.1 0.3
0.1 0.1 0.1 0.2 0.4
0.5 0.3 0.1 0.1 0.1
0.1 0.2 0.2 0.3 0




and p =




8
2
3
5
7




.

(a) Show that A is a regular transition matrix.

(b) Find the steady-state vector v for A.

(c) Compute Ap, A10p, and A100p.

(d) Compare the last vector, A100p, with 25v. Explain.

9. Find the solution of the finite difference equation

rn = 3rn−1 + 5rn−2 − 15rn−3 − 4rn−4 + 12rn−5

with initial conditions r0 = 5, r1 = 1, r2 = 3, r3 = 1, and
r4 = 3.

357



This page intentionally left blank 



7 INTRODUCTION

Audio amplifiers lie at the heart of many
modern electronic devices such as radio
receivers, CD players, and television sets.
The fundamental task of an audio amplifier
is to take a weak signal and make it louder
without making any other changes to it.
This simple task is complicated by the fact
that audio signals typically contain multiple

�V

�V

frequencies. Even a simple note has a basic
frequency plus harmonics at frequencies
that are integral multiples of the basic fre-
quency. All of these frequency components
must be amplified by the same factor to
avoid changing the waveform and hence
the quality of the sound. For example, the
part of the music at 440 Hz must be amplified
by the same factor as the part at 880 Hz. An
amplifier that multiplies the amplitudes of
all frequencies by the same factor is called a
linear amplifier. It produces a louder version
of a piece of music with no distortion.

The sound waves that produce music can be

analyzed in terms of an infinite set of orthogonal sine and cosine functions.

The study of such functions is a branch of mathematics called Fourier analysis.

It provides a way to describe how components at different frequencies come

together to form a musical tone (see Section 7.5). It also offers a simple way

to define linear amplification and to test the linearity of an amplifier.

From Chapter 7 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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488 7 Introduction

Linear amplification of a Fourier series means that
each term of the infinite series is multiplied by the same
constant scale factor. The analysis of linearity uses a
particular periodic signal called a square wave, which is
illustrated by the first graph in the preceding figure on
page 487, and a display device called an oscilloscope.
Electrically, the square wave alternates between fixed
voltages +V and −V for time intervals of fixed length.
The low frequency components of the Fourier series
give the overall structure of the signal, and the high
frequencies give the detail such as the corners of the
square wave.

If the amplifier is linear, then the output for a
square wave input is just another, taller square wave.
If it is not linear, distortions occur. The second graph
shows the output if the amplifier multiplies high fre-
quencies more than low frequencies, so that there is
‘‘too much’’ high frequency detail. The third graph
shows the output if the amplifier multiplies high fre-
quencies less than low frequencies. Here, the overall
structure of the square wave is visible, but with little
detail.
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CHAPTER

7 VECTOR SPACES

Up to this point in our development of linear algebra, we have accumulated
a rich body of facts about vectors in Rn and linear transformations acting
on these vectors. In this chapter, we consider other mathematical systems

that share many of the formal properties of Rn . For example, consider differentiable
functions, which are encountered in the study of calculus. These functions can be
added and multiplied by scalars to yield differentiable functions. The operations of
differentiation and integration transform these functions in such a way that addition and
multiplication by scalars are preserved, much as linear transformations preserve the
corresponding operations on vectors. Because of these similarities, we can reformulate
such notions as linear combination, linear independence, and linear transformation in
the context of differentiable functions.

Transplanting these concepts to the context of function gives us a way to analyze
functions with the tools that we have developed earlier. As a dramatic example of
this, we see how to use the concept of orthogonal projection and the closest vector
property to devise a method of approximating a given function by polynomials or by
sines and cosines.

7.1 VECTOR SPACES AND THEIR SUBSPACES
The operations of addition and multiplication by scalars that are central to the study
of vectors in Rn have their analogs in other mathematical systems. For example,
real-valued functions defined on R can be added and multiplied by scalars to produce
real-valued functions defined on R. So again, we have the opportunity to start at
the beginning and develop a theory of functions imitating, as much as possible, the
definitions and theorems developed in the context of vectors in Rn .

In fact, there are many mathematical systems in which addition and multiplication
by scalars are defined. It is impractical to develop the formal properties of these
operations for each such system as we have done for Rn . For this reason, a general
theory of vector spaces has been developed that applies to each of these systems.
In this theory, a vector space is defined to be any mathematical system that satisfies
certain prescribed axioms, and general theorems about vector spaces are then deduced
from these axioms. Once it is shown that a particular mathematical system satisfies
these axioms, it follows immediately that all of the theorems about vector spaces apply
to that system.

We begin with the formal definition of vector space. The reader should compare
the following axioms with Theorem 1.1:

Definition A (real) vector space is a set V on which two operations, called vector
addition and scalar multiplication, are defined so that for any elements u, v, and w
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490 CHAPTER 7 Vector Spaces

in V and any scalars a and b, the sum u + v and the scalar multiple au are unique
elements of V , and such that the following axioms hold:

Axioms of a Vector Space
1. u + v = v + u. (commutative law of vector addition)

2. (u + v) + w = u + (v + w). (associative law of vector addition)

3. There is an element 0 in V such that u + 0 = u.

4. There is an element −u in V such that u + (−u) = 0.

5. 1u = u.

6. (ab)u = a(bu).

7. a(u + v) = au + av.

8. (a + b)u = au + bu.

The elements of a vector space are called vectors. The vector 0 in axioms 3 and 4
is called the zero vector. We show in Theorem 7.2(c) that it is unique; that is, there
cannot be distinct vectors in a vector space that both satisfy axiom 3. For any vector
u in a vector space V , the vector −u in axiom 4 is called the additive inverse of u.
We show in Theorem 7.2(d) that the additive inverse of a vector in a vector space is
unique. In view of the commutative law of vector addition (axiom 1), the zero vector
must also satisfy 0 + u = u for every u in V. Likewise, the additive inverse of every
vector u in V also satisfies (−u) + u = 0.

By applying Theorem 1.1 to the set of n × 1 matrices, we see that Rn is a vector
space with the operations of addition and scalar multiplication defined in Chapter 1.
Moreover, it can be shown that any subspace of Rn is also a vector space with the
same operations. (See Exercise 96.) We are already familiar with these examples.

FUNCTION SPACES
Among the most important vector spaces are those consisting of functions. Such vector
spaces are called function spaces. The area of modern mathematics called functional
analysis is devoted to the study of function spaces.

For a given nonempty set S , let F(S ) denote the set of all functions from S to
R. Recall that two functions f and g in F(S ) are equal if f (t) = g(t) for all t in S .
(See Appendix B, page 554.) The sum f + g of functions f and g in F(S ), and the
scalar multiple af of a function f in F(S ) and a scalar a , are the functions in F(S )
defined by

(f + g)(t) = f (t) + g(t) and (af )(t) = a(f (t))

for all t in S .
For example, suppose that S is the set R of real numbers and that f and g are in

F(R) defined by f (t) = t2 − t and g(t) = 2t + 1 for all t in R. Then

(f + g)(t) = f (t) + g(t) = (t2 − t) + (2t + 1) = t2 + t + 1

for all t in R. Also, the scalar multiple 3f is defined by

(3f )(t) = 3f (t) = 3(t2 − t)

for all t in R.
Next we define the zero function 0 in F(S ) by 0(t) = 0 for all t in S . This

function serves as the zero vector for axiom 3 in the definition of a vector space.
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Finally, for any f in F(S ), the function −f in F(S ) is defined by (−f )(t) = −f (t)
for all t in S . For example, if S = R and f (t) = t − 1, then

(−f )(t) = −f (t) = −(t − 1) = 1 − t

for all t in R. For any function f , the function −f serves as the additive inverse of f
for axiom 4 in the definition of a vector space.

In the context of F(S ), each axiom is an equation involving functions.

THEOREM 7.1

With the operations previously defined, F(S ) is a vector space.

PROOF To prove that F(S ) is a vector space, we must verify the eight axioms
of a vector space. We verify axioms 1, 3, and 7, leaving the verification of the
other axioms as exercises.

Axiom 1 Let f and g be functions in F(S ). Then, for any t in S ,

(f + g)(t) = f (t) + g(t) (definition of sum of functions)

= g(t) + f (t) (commutative law of addition for real numbers)

= (g + f )(t). (definition of sum of functions)

Therefore f + g = g + f , and axiom 1 is verified.

Axiom 3 Let f be any function in F(S ). Then, for any t in S ,

(f + 0)(t) = f (t) + 0(t) (definition of sum of functions)

= f (t) + 0 (definition of 0)

= f (t).

Therefore f + 0 = f , and hence axiom 3 is verified.

Axiom 7 Let f and g be functions in F(S ), and let a be a scalar. Then, for any
t in S ,

[a(f + g)](t) = a[(f + g)(t)] (definition of scalar multiplication)

= a[f (t) + g(t)] (definition of sum of functions)

= a[f (t)] + a[g(t)] (distributive law for real numbers)

= (af )(t) + (ag)(t) (definition of scalar multiplication)

= (af + ag)(t). (definition of sum of functions)

Therefore a(f + g) = af + ag , which verifies axiom 7.

�

OTHER EXAMPLES OF VECTOR SPACES
In what follows, we briefly consider three examples of vector spaces. In the first, the
vectors are matrices; in the second, the vectors are linear transformations; and in the
third, the vectors are polynomials. The notation and terminology introduced in these
three examples are used in other examples throughout this chapter.
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Example 1 For any given positive integers m and n , let Mm×n denote the set of all m × n
matrices. Then as a direct consequence of Theorem 1.1, Mm×n is a vector space with
the operations of matrix addition and multiplication of a matrix by a scalar. In this
case, the m × n zero matrix plays the role of the zero vector.

Example 2 For any given positive integers m and n , let L(Rn ,Rm) denote the set of all linear
transformations from Rn to Rm . Let T and U be in L(Rn ,Rm) and c be a scalar.
Define (T + U ) : Rn → Rm and cT : Rn → Rm by

(T + U )(x) = T (x) + U (x) and (cT )(x) = cT (x)

for all x in Rn . By Exercises 83 and 84 of Section 2.7, T + U and cT are in
L(Rn ,Rm). It can be shown that L(Rn ,Rm ) is a vector space under these operations.
The zero transformation T0 plays the role of the zero vector, and for any transforma-
tion T , we have that (−1)T is the additive inverse −T . The proof that L(Rn ,Rm) is
a vector space is very similar to the proof that F(S ) is a vector space, because both
of these are function spaces. For this reason, the proof is left as an exercise. (See
Exercise 74.)

Example 3 Let P denote the set of all polynomials

p(x ) = a0 + a1x + · · · + anxn ,

where n is a nonnegative integer and a0, a1, . . . , an are real numbers. For each i , the
scalar ai is called the coefficient of x i . We usually write x i in place of 1x i , and −ai x i

in place of (−ai )x i . Furthermore, if ai = 0, we often omit the term ai x i entirely. The
unique polynomial p(x ) with only zero coefficients is called the zero polynomial.
The degree of a nonzero polynomial p(x ) is defined to be the largest exponent of x
that appears in the representation

p(x ) = a0 + a1x + · · · + anx
n

with a nonzero coefficient. The zero polynomial is not assigned a degree, and a
constant polynomial has degree 0. Two nonzero polynomials p(x ) and q(x ) are called
equal if they have the same degree and all their corresponding coefficients are equal.
That is, if

p(x ) = a0 + a1x + · · · + anxn and q(x ) = b0 + b1x + · · · + bmxm ,

then p(x ) and q(x ) are equal if and only if m = n and ai = bi for i = 0, 1, . . . , n .
Notice that if two distinct polynomials p(x ) and q(x ) have different degrees, say, n
and m , respectively, with m < n , then we may still represent q(x ) in the form

q(x ) = b0 + b1x + · · · + bnxn

by simply requiring that bi = 0 for all i > m . With this in mind, for any polynomials

p(x ) = a0 + a1x + · · · + anx
n and q(x ) = b0 + b1x + · · · + bnx

n

(not necessarily of the same degree), and any scalar a , we define the sum p(x ) + q(x )
and the scalar multiple ap(x ) by

p(x ) + q(x ) = (a0 + b0) + (a1 + b1)x + · · · + (an + bn )x
n
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and

ap(x ) = (a · a0) + (a · a1)x + · · · + (a · an )xn .

For example, (1 − x + 2x 2) + (3 + 2x ) = 4 + x + 2x2 and 4(3 + 2x ) = 12 + 8x . We
can also define the additive inverse of a polynomial p(x ) by −p(x ) = (−1)p(x ). With
these definitions, it can be shown that P is a vector space with respect to the operations
just defined. The zero polynomial serves the role of the zero vector. We leave the
details to the exercises.

Practice Problem 1 � In Example 3, show that P satisfies axiom 8. �

The following example illustrates a set with two operations that is not a vector
space because it fails to satisfy at least one of the axioms:

Example 4 Let S be the set R2 with addition and scalar multiplication defined as

(a , b) ⊕ (c, d ) = (a + c, 0) and k � (a , b) = (ka , kb)

for all (a , b) and (c, d ) in R2. Show that S is not a vector space.

Solution We show that S has no zero vector. Suppose that (z , w ) is a zero vector
for S . Then

(1, 1) ⊕ (z , w ) = (1 + z , 0) �= (1, 1).

So (z , w ) does not satisfy axiom 3, and hence S has no zero vector.

PROPERTIES OF VECTOR SPACES
The results that follow are deduced entirely from the axioms of a vector space. They
are therefore valid for all examples of vector spaces.

THEOREM 7.2

Let V be a vector space. For any u, v, and w in V and any scalar a , the following
statements are true:

(a) If u + v = w + v, then u = w. (right cancellation law)

(b) If u + v = u + w, then v = w. (left cancellation law)

(c) The zero vector 0 is unique; that is, it is the only vector in V that satisfies
axiom 3.

(d) Each vector in V has exactly one additive inverse.

(e) 0v = 0.

(f) a0 = 0.

(g) (−1)v = −v.

(h) (−a)v = a(−v) = −(av).

PROOF We prove parts (a), (c), (e), and (g), leaving the proofs of parts (b), (d),
(f), and (h) as exercises.

365



494 CHAPTER 7 Vector Spaces

(a) Suppose that u + v = w + v. Then

u = u + 0 (by axiom 3)

= u + [v + (−v)] (by axiom 4)

= (u + v) + (−v) (by axiom 2)

= (w + v) + (−v)

= w + [v + (−v)] (by axiom 2)

= w + 0 (by axiom 4)

= w. (by axiom 3)

(c) Suppose that 0′ is also a zero vector for V . Then, by axioms 3 and 1,

0′ + 0′ = 0′ = 0′ + 0 = 0 + 0′,

and hence 0′ = 0 by the right cancellation law. It follows that the zero vector
is unique.

(e) For any vector v,

0v + 0v = (0 + 0)v (by axiom 8)

= 0v

= 0 + 0v. (by axioms 3 and 1)

So 0v + 0v = 0 + 0v, and hence 0v = 0 by the right cancellation law.

(g) For any vector v,

v + (−1)v = (1)v + (−1)v (by axiom 5)

= [1 + (−1)]v (by axiom 8)

= 0v

= 0. (by (e))

Therefore (−1)v is an additive inverse of v. But by (d), additive inverses are

unique, and hence (−1)v = −v. �

SUBSPACES
As is the case for Rn , vector spaces have subspaces.

Definition A subset W of a vector space V is called a subspace of V if W satisfies
the following three properties:

1. The zero vector of V is in W .

2. Whenever u and v belong to W , then u + v belongs to W . (In this case, we say
that W is closed under (vector) addition.)

3. Whenever u belongs to W and c is a scalar, then cu belongs to W . (In this
case, we say that W is closed under scalar multiplication.)
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It is a simple matter to verify that if V is a vector space, then V is a sub-
space of itself. In fact, V is the largest subspace of V . Moreover, the set {0} is
also a subspace of V . This subspace is called the zero subspace and is the small-
est subspace of V . A subspace of a vector space other than {0} is called a nonzero
subspace.

Example 5 Let S be a nonempty set, and let W be the subset of F(S ) consisting of all functions
f such that f (s0) = 0 for some particular element s0 in S . Clearly, the zero function
lies in W . For any functions f and g in S , and any scalar a ,

(f + g)(s0) = f (s0) + g(s0) = 0 + 0 = 0,

and

(af )(s0) = af (s0) = a · 0 = 0.

Hence f + g and af are in W . We conclude that W is closed under the operations of
F(S ). Therefore W is a subspace of V .

Suppose that A is a square matrix. We define the trace of A, denoted trace(A), to
be the sum of the diagonal entries of A. For any square matrices A and B of the same
size, and any scalar c, we have

trace(A + B ) = trace(A) + trace(B )

trace(cA) = c · trace(A)

trace(AT ) = trace(A).

(See Exercise 82 of Section 1.1.)

Example 6 Let W be the set of all n × n matrices with trace equal to zero. Show that W is a
subspace of Mn×n .

Solution Since the n × n zero matrix has trace equal to zero, it belongs to W .
Suppose that A and B are matrices in W . Then

trace(A + B ) = trace(A) + trace(B ) = 0 + 0 = 0,

and, for any scalar c,

trace(cA) = c · trace(A) = c · 0 = 0.

Therefore A + B and cA are in W . We conclude that W is closed under the operations
of Mn×n . Therefore W is a subspace of Mn×n .

Practice Problem 2 � Let W be the set of all 2 × 2 matrices of the form

[
a a + b
b 0

]
. Prove that W is a

subspace of M2×2. �

If W is a subspace of a vector space, then W satisfies all of the axioms in
the definition of vector space with the same operations as defined on V , and hence
W is itself a vector space. (See Exercise 96.) This fact provides a simpler way to
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prove that certain sets are vector spaces, namely, by verifying that they are actu-
ally subspaces of a known vector space. The next two examples demonstrate this
technique.

Example 7 Let C(R) denote the set of all continuous real-valued functions on R. Then C(R) is a
subset of F(R), the vector space of all real-valued functions defined on R. Since the
zero function is a continuous function, the sum of continuous functions is a continuous
function, and any scalar multiple of a continuous function is a continuous function, it
follows that C(R) is a subspace of F(R). In particular, C(R) is a vector space.

Example 8 Recall the vector space P of all polynomials considered in Example 3. Let n be
a nonnegative integer, and let Pn denote the subset of P consisting of the zero
polynomial and all polynomials of degree less than or equal to n . Since the sum
of two polynomials of degree less than or equal to n is the zero polynomial or has
degree less than or equal to n , and a scalar multiple of a polynomial of degree less
than or equal to n is either the zero polynomial or a polynomial of degree less than or
equal to n , it is clear that Pn is closed under both addition and scalar multiplication.
Therefore Pn is a subspace of P , and hence is a vector space.

LINEAR COMBINATIONS AND GENERATING SETS
As in Chapter 1, we can combine vectors in a vector space by taking linear combina-
tions of other vectors. However, in contrast to subspaces of Rn , there are important
vector spaces that have no finite generating sets. Hence it is necessary to extend the
definition of a linear combination to permit vectors from an infinite set.

Definition A vector v is a linear combination of the vectors in a (possibly infinite)
subset S of a vector space V if there exist vectors v1, v2, . . . , vm in S and scalars
c1, c2, . . . , cm such that

v = c1v1 + c2v2 + · · · + cmvm .

The scalars are called the coefficients of the linear combination.

We consider examples of linear combinations of vectors of both finite and infinite
sets.

Example 9 In the vector space of 2 × 2 matrices,
[−1 8

2 −2

]
= 2

[
1 3
1 −1

]
+ (−1)

[
4 0
1 1

]
+ 1

[
1 2
1 1

]
.

Hence

[−1 8
2 −2

]
is a linear combination of the matrices

[
1 3
1 −1

]
,

[
4 0
1 1

]
, and

[
1 2
1 1

]
,

with coefficients 2, −1, and 1.
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Example 10 Let S = {1, x , x 2, x 3}, which is a subset of the vector space P of all polynomials.
Then the polynomial f (x ) = 2 + 3x − x2 is a linear combination of the vectors in S
because there are scalars, namely, 2, 3, and −1, such that

f (x ) = (2)1 + (3)x + (−1)x2.

In fact, the zero polynomial and any polynomial of degree less than or equal to 3 is
a linear combination of the vectors in S . That is, the set of all linear combinations of
the vectors in S is equal to P3, the subspace of P in Example 8.

Example 11 Let S be the set of real-valued functions given by

S = {1, sin t , cos2 t , sin2 t},
which is a subset of F(R). Observe that the function cos 2t is a linear combination of
the vectors in S because

cos 2t = cos2 t − sin2 t

= (1) cos2 t + (−1) sin2 t .

Example 12 Let

S = {1, x , x 2, . . . , xn , . . .},
which is an infinite subset of P . Then the polynomial p(x ) = 3 − 4x 2 + 5x 4 is a linear
combination of the vectors in S because it is a linear combination of a finite number
of vectors in S , namely, 1, x 2, and x 4. In fact, any polynomial

p(x ) = a0 + a1x + · · · + anxn

is a linear combination of the vectors in S because it is a linear combination of
1, x , x 2, . . . , xn .

Example 13 Determine if the polynomial x is a linear combination of the polynomials 1 − x 2 and
1 + x + x 2.

Solution Suppose that

x = a(1 − x 2) + b(1 + x + x2)

= (a + b) + bx + (−a + b)x2

for scalars a , b, and c. Then

a + b = 0
b = 1

−a + b = 0.

Since this system is inconsistent, we conclude that x is not a linear combination of
the polynomials 1 − x 2 and 1 + x + x 2.
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Now that we have extended the definition of linear combination to include infinite
sets, we are ready to reintroduce the definition of span.

Definition The span of a nonempty subset S of a vector space V is the set of all
linear combinations of vectors in S . This set is denoted by Span S .

By the remarks made in Example 10,

Span {1, x , x 2, x 3} = P3,

and by the remarks in Example 12,

Span {1, x , . . . , xn , . . .} = P.

Example 14 Describe the span of the subset

S =
{[

1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

Solution For any matrix A in Span S , there exist scalars a , b, and c, such that

A = a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
=
[
a b
c −a

]
.

Therefore trace(A) = a + (−a) = 0. Conversely, suppose that A =
[
a b
c d

]
is a matrix

in M2×2 such that trace(A) = 0. Then a + d = 0, and hence d = −a . It follows that

A =
[
a b
c −a

]
, which is in Span S by the preceding calculation. Therefore Span S is

the subset of all 2 × 2 matrices with trace equal to zero. Since this set was proved to
be a subspace of M2×2 in Example 6, Span S is a subspace of M2×2.

In the previous examples, we have anticipated the next result, which is an exten-
sion of Theorem 4.1 (page 231) to vector spaces. We omit the proof, which is similar
to the proof of Theorem 4.1.

THEOREM 7.3

The span of a nonempty subset of a vector space V is a subspace of V .

This result gives us a convenient way to define vector spaces. For example, we
let T [0, 2π ] denote the subspace of F([0, 2π ]) defined by

T [0, 2π ] = Span {1, cos t , sin t , cos 2t , sin 2t , . . . , cos nt , sin nt , . . .}.

This vector space is called the space of trigonometric polynomials and is studied in
Section 7.5.
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Practice Problem 3 � Determine whether the matrix

[
1 2

−1 −3

]
is in the span of the set

S =
{[

1 −1
1 2

]
,

[
0 1
1 2

]
,

[
2 1
0 −1

]}
.

�

EXERCISES

In Exercises 1–9, determine whether each matrix is in the span
of the set

{[
1 2 1
0 0 0

]
,

[
0 0 0
1 1 1

]
,

[
1 0 1
1 2 3

]}
.

1.

[
0 2 0
1 1 1

]
2.

[
1 2 1
1 1 1

]
3.

[
2 2 2
2 3 4

]

4.

[
2 2 2
2 2 2

]
5.

[
2 2 2
1 1 1

]
6.

[
1 10 1
3 −1 −5

]

7.

[
2 5 2
1 −1 3

]
8.

[
1 3 6
3 5 7

]
9.

[−2 −8 −2
5 7 9

]

In Exercises 10–15, determine whether each polynomial is in
the span of the set

{1 − x , 1 + x2, 1 + x − x3}.

10. −3 − x2 + x3 11. 1 + x + x2 + x3

12. 1 + x2 + x3 13. −2 + x + x2 + x3

14. 2 − x2 − 2x3 15. 1 − 2x − x2

In Exercises 16–21, determine whether each matrix is in the
span of the set

{[
1 0

−1 0

]
,

[
0 1
0 1

]
,

[
1 1
0 0

]}
.

16.

[
1 0
0 1

]
17.

[
1 2

−3 4

]
18.

[
2 −1

−1 −2

]

19.

[
2 1
0 1

]
20.

[
3 1

−1 3

]
21.

[
1 −2

−3 0

]

In Exercises 22–27, determine whether each polynomial is in
the span of the set

{1 + x , 1 + x + x2, 1 + x + x2 + x3}.

22. 3 + x − x2 + 2x3 23. 3 + 3x + 2x2 − x3

24. 4x2 − 3x3 25. 1 + x

26. x 27. 1 + 2x + 3x2

For Exercises 28–30, use the set

S = {9 + 4x + 5x 2 − 3x3, −3 − 5x − 2x2 + x3}.

28. Prove that the polynomial −6 + 12x − 2x 2 + 2x3 is a
linear combination of the polynomials in S . Find the coef-
ficients of the linear combination.

29. Prove that the polynomial 12 − 13x + 5x 2 − 4x3 is a lin-
ear combination of the polynomials in S . Find the coeffi-
cients of the linear combination.

30. Prove that the polynomial 8 + 7x − 2x 2 + 3x3 is not a
linear combination of the polynomials in S .

31. Prove that Span {1 + x , 1 − x , 1 + x 2, 1 − x2} = P2.

32. Prove that

Span

{[
0 1
1 1

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]
,

[
1 1
1 0

]}
= M2×2.

In Exercises 33–54, determine whether the state-
ments are true or false.

33. Every vector space has a zero vector.

34. A vector space may have more than one zero vector.

35. In any vector space, av = 0 implies that v = 0.

36. Rn is a vector space for every positive integer n.

37. Only polynomials of the same degree can be added.

38. The set of polynomials of degree n is a subspace of the
vector space of all polynomials.

39. Two polynomials of the same degree are equal if and only
if they have equal corresponding coefficients.

40. The set of all m × n matrices with the usual definitions of
matrix addition and scalar multiplication is a vector space.

41. The zero vector of F(S ) is the function that assigns 0 to
every element of S .

42. Two functions in F(S ) are equal if and only if they assign
equal values to each element of S .

43. If V is a vector space and W is a subspace of V , then W
is a vector space with the same operations that are defined
on V .

44. The empty set is a subspace of every vector space.

45. If V is a nonzero vector space, then V contains a subspace
other than itself.

46. If W is a subspace of vector space V , then the zero vector
of W must equal the zero vector of V .

47. The set of continuous real-valued functions defined on a
closed interval [a, b] is a subspace of F([a, b]), the vector
space of real-valued functions defined on [a, b].
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48. The zero vector of L(Rn ,Rm ) is the zero transformation
T0.

49. In any vector space, addition of vectors is commutative;
that is, u + v = v + u for every pair of vectors u and v.

50. In any vector space, addition of vectors is associative; that
is, (u + v) + w = u + (v + w) for all vectors u, v, and w.

51. In any vector space, 0 + 0 = 0.

52. In any vector space, if u + v = v + w, then u = w.

53. The zero vector is a linear combination of any nonempty
set of vectors.

54. The span of any nonempty subset of a vector space is a
subspace of the vector space.

55. Verify axiom 2 for F(S ).

56. Verify axiom 4 for F(S ).

57. Verify axiom 5 for F(S ).

58. Verify axiom 6 for F(S ).

59. Verify axiom 8 for F(S ).

In Exercises 60–65, determine whether or not the set V is a
subspace of the vector space Mn×n . Justify your answer.

60. V is the set of all n × n symmetric matrices.

61. V is the set of all n × n matrices with determinant equal
to 0.

62. V is the set of all n × n matrices A such that A2 = A.

63. Let B be a specific n × n matrix. V is the set of all n × n
matrices A such that AB = BA.

64. V is the set of all 2 × 2 matrices of the form

[
a 2a
0 b

]
,

and n = 2.

65. V is the set of all n × n skew-symmetric matrices. (See
the definition given in Exercise 74 of Section 3.2.)

In Exercises 66–69, determine whether or not the set V is a
subspace of the vector space P. Justify your answer.

66. V is the subset of P consisting of the zero polynomial and
all polynomials of the form c0 + c1x + · · · + cmxm with
ck = 0 if k is odd.

67. V is the subset of P consisting of the zero polynomial and
all polynomials of the form c0 + c1x + · · · + cmxm with
ck �= 0 if k is even.

68. V is the subset of P consisting of the zero polynomial and
all polynomials of the form c0 + c1x + · · · + cmxm with
ci ≥ 0 for all i .

69. V is the subset of P consisting of the zero polynomial and
all polynomials of the form c0 + c1x + · · · + cmxm with
c0 + c1 = 0.

In Exercises 70–72, determine whether or not the set V is a sub-
space of the vector spaceF(S ), where S is a particular nonempty
set. Justify your answer.

70. Let S ′ be a nonempty subset of S , and let V be the set of
all functions f in F(S ) such that f (s) = 0 for all s in S ′.

71. Let {s1, s2, . . . , sn } be a subset of S , and let V be the set
of all functions f in F(S ) such that

f (s1) + f (s2) + · · · + f (sn ) = 0.

72. Let s1 and s2 be elements of S , and let V be the set of
all functions f in F(S ) such that f (s1) � f (s2) = 0.

73. Show that the set of functions f in F(R) such that
f (1) = 2 is not a vector space under the operations defined
on F(R).

In Exercises 74–78, verify that the set V is a vector space with
respect to the indicated operations.

74. V = L(Rn ,Rm ) in Example 2

75. V = P in Example 3

76. For a given nonempty set S and some positive integer n,
let V denote the set of all functions from S to Rn . For
any functions f and g and any scalar c, define the sum
f + g and the product cf by

(f + g)(s) = f (s) + g(s) and (cf )(s) = cf (s)
for all s in S .

77. Let V be the set of all 2 × 2 matrices of the form[
a 2a
b −b

]
, where a and b are any real numbers. Addition

and multiplication by scalars are defined in the usual way
for matrices.

78. Let V be the set of all functions f : R → R for which
f (t ) = 0 whenever t < 0. Addition of functions and mul-
tiplication by scalars are defined as in F(R).

79. Prove Theorem 7.2(b).

80. Prove Theorem 7.2(d).

81. Prove Theorem 7.2(f).

82. Prove Theorem 7.2(h).

83. Use the axioms of a vector space to prove that
(a + b)(u + v) = au + av + bu + bv

for all scalars a and b and all vectors u and v in a vector
space.

84. Prove that, for any vector v in a vector space, −(−v) = v.

85. Prove that, for any vectors u and v in a vector space,
−(u + v) = (−u) + (−v).

86. Let u and v be vectors in a vector space, and suppose that
cu = cv for some scalar c �= 0. Prove that u = v.

87. Prove that (−c)(−v) = cv for any vector v in a vector
space and any scalar c.

88. For a given nonzero vector v in Rn , let V be the set of all
linear operators T on Rn such that T (v) = 0. Prove that
V is a subspace of L(Rn ,Rn ).

89. Let W be the set of all differentiable functions from R to
R. Prove that W is a subspace of F(R).

90. Let S be the subset of the subspace W in Exercise 89 that
consists of the functions f such that f ′ = f . Show that S
is a subspace of W .

91. A function f in F(R) is called an even function if
f (t ) = f (−t ) for all t in R and is called an odd function
if f (−t ) = −f (t ) for all t in R.

(a) Show that the subset of all even functions is a sub-
space of F(R).

(b) Show that the subset of all odd functions is a subspace
of F(R).
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92. Let V be the set of all continuous real-valued functions
defined on the closed interval [0, 1].
(a) Show that V is a subspace of F([0, 1]).

(b) Let W be the subset of V defined by

W =
{
f ∈ V :

∫ 1

0
f (t ) dt = 0

}
.

Prove that W is a subspace of V .
93. Suppose that W1 and W2 are subspaces of a vector space

V . Prove that their intersection W1 ∩ W2 is also a subspace
of V .

94. Suppose that W1 and W2 are subspaces of a vector space
V . Define

W = {w1 + w2 : w1 is in W1 and w2 is in W2}.
Prove that W is a subspace of V .

95. Let W be a subset of a vector space V . Prove that W is
a subspace of V if and only if the following conditions
hold:

(i) 0 is in W .

(ii) aw1 + w2 is in W whenever w1 and w2 are in W and
a is a scalar.

96. Suppose that W is a subspace of a vector space V . Prove
that W satisfies the axioms in the definition of vector
space, and hence W is itself a vector space.

97. Suppose that W is a subset of a vector space V such that
W is a vector space with the same operations that are
defined on V . Prove that W is a subspace of V .

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Let p(x ) = a0 + a1x + · · · + anxn be a polynomial in P,
and let a and b be scalars. Then

(a + b)p(x ) = (a + b)(a0 + a1x + · · · + anxn )

= (a + b)a0 + (a + b)a1x

+ · · · + (a + b)anxn

= (aa0 + ba0) + (aa1 + ba1)x

+ · · · + (aan + ban )xn

= (aa0 + aa1x + · · · + aanxn )

+ (ba0 + ba1x + · · · + banxn )

= a(a0 + a1x + · · · + anxn )

+ b(a0 + a1x + · · · + anxn )

= ap(x ) + bp(x ).

2. (i) Clearly, W is a subset of M2×2 that contains the
2 × 2 zero matrix.

(ii) Suppose that

A =
[
a1 a1 + b1

b1 0

]
and B =

[
a2 a2 + b2

b2 0

]

are in W . Then

A + B =
[
a1 a1 + b1

b1 0

]
+
[
a2 a2 + b2

b2 0

]

=
[
a1 + a2 (a1 + b1) + (a2 + b2)
b1 + b2 0

]

=
[
a1 + a2 (a1 + a2) + (b1 + b2)
b1 + b2 0

]
,

which is clearly in W . So W is closed under vector
addition.

(iii) For the matrix A in (ii) and any scalar c, we have

cA = c

[
a1 a1 + b1

b1 0

]
=
[
ca1 c(a1 + b1)
cb1 c · 0

]

=
[
ca1 ca1 + cb1

cb1 0

]
,

which is clearly in W . So W is closed under scalar
multiplication.

3. Suppose that

[
1 2

−1 −3

]
= a

[
1 −1
1 2

]
+ b

[
0 1
1 2

]

+ c

[
2 1
0 −1

]

for some scalars a, b, and c. Then

a + 2c = 1
−a + b + c = 2

a + b = −1
2a + 2b − c = −3.

Since this system has the solution a = −1, b = 0, c = 1,
we conclude that the matrix is a linear combination of the
matrices in S and hence lies in the span of S .

7.2 LINEAR TRANSFORMATIONS
In this section, we study linear transformations, those functions acting on vector spaces
that preserve the operations of vector addition and scalar multiplication. The following
definition extends the definition of linear transformation given in Section 2.7:
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Definitions Let V and W be vector spaces. A mapping T : V → W is called a linear
transformation (or simply, linear) if, for all vectors u and v in V and all scalars c,
both of the following conditions hold:

(i) T (u + v) = T (u) + T (v). (In this case, we say that T preserves vector addi-
tion.)

(ii) T (cu) = cT (u). (In this case, we say that T preserves scalar multiplication.)

The vector spaces V and W are called the domain and codomain of T , respectively.

We gave examples of linear transformations from Rn to Rm in Chapter 2. In
the following examples, we consider linear transformations that are defined on other
vector spaces:

Example 1 Let U : Mm×n → Mn×m be the mapping defined by U (A) = AT . The linearity of U
is a consequence of Theorem 1.2 on page 7.

As in the case of Rn , a linear transformation from a vector space to itself is called
a linear operator.

Example 2 Let C∞ denote the subset of F(R) consisting of those functions that have derivatives
of all orders. That is, a function f in F(R) belongs to C∞ if the nth derivative of
f exists for every positive integer n . Theorems from calculus imply that C∞ is a
subspace of F(R). (See Exercise 58.) Consider the mapping D : C∞ → C∞ defined
by D(f ) = f ′ for all f in C∞. From elementary properties of the derivative, it follows
that

D(f + g) = (f + g)′ = f ′ + g ′ = D(f ) + D(g)

and

D(cf ) = (cf )′ = cf ′ = cD(f )

for all functions f and g in C∞ and for every scalar c. It follows that D is a linear
operator on C∞.

Example 2 shows that differentiation is a linear transformation. Integration pro-
vides another example of a linear transformation.

Example 3 Let C([a , b]) denote the set of all continuous real-valued functions defined on the
closed interval [a , b]. It can be shown that C([a , b]) is a subspace of F([a , b]), the set
of real-valued functions defined on [a , b]. (See Exercise 59.) For each function f in
C([a , b]), the definite integral

∫ b
a f (t) dt exists, and so a mapping T : C([a , b]) → R

is defined by

T (f ) =
∫ b

a
f (t) dt .
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The linearity of T follows from the elementary properties of definite integrals. For
example, for any f and g in C([a , b]),

T (f + g) =
∫ b

a
(f + g)(t) dt

=
∫ b

a
[f (t) + g(t)] dt

=
∫ b

a
f (t) dt +

∫ b

a
g(t) dt

= T (f ) + T (g).

Similarly, T (cf ) = cT (f ) for every scalar c. Thus T is a linear transformation.

Example 4 Let T : P2 → R3 be defined by

T (f (x )) =



f (0)
f (1)
2f (1)


 .

For example, T (3 + x − 2x 2) =



3
2
4


. We show that T is linear. Consider any poly-

nomials f (x ) and g(x ) in P2. Then

T (f (x ) + g(x )) =



f (0) + g(0)
f (1) + g(1)

2[f (1) + g(1)]


 =




f (0)
f (1)
2f (1)


+




g(0)
g(1)
2g(1)


 = T (f (x )) + T (g(x )),

and hence T preserves vector addition. Furthermore, for any scalar c,

T (cf (x )) =



cf (0)
cf (1)
2cf (1)


 = c




f (0)
f (1)
2f (1)


 = cT (f (x )),

and so T preserves scalar multiplication. We conclude that T is linear.

Practice Problem 1 � Let T : P2 → R3 be the mapping defined by

T (f (x )) =



f (0)
f ′(0)
f ′′(0)


 .

Prove that T is a linear transformation. �
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ELEMENTARY PROPERTIES OF LINEAR TRANSFORMATIONS
We now generalize results about linear transformations from Rn to Rm to other vector
spaces. In most cases, the proofs, with some notational changes, are identical to the
corresponding results in Chapter 2.

The first result extends Theorem 2.8 to all vector spaces. Its proof is identical to
the proof of Theorem 2.8, and hence we omit it.

THEOREM 7.4

Let V and W be vector spaces and T : V → W be a linear transformation. For
any vectors u and v in V and any scalars a and b, the following statements are
true:

(a) T (0) = 0.

(b) T (−u) = −T (u).

(c) T (u − v) = T (u) − T (v).

(d) T (au + bv) = aT (u) + bT (v).

As in Section 2.7, Theorem 7.4(d) extends to arbitrary linear combinations;
that is, T preserves linear combinations.

Let T : V → W be a linear transformation. If u1, u2, . . . , uk are vectors in V and
a1, a2, . . . , ak are scalars, then

T (a1u1 + a2u2 + · · · + akuk ) = a1T (u1) + a2T (u2) + · · · + akT (uk ).

Given a linear transformation T : V → W , where V and W are vector spaces,
there are subspaces of V and W that are naturally associated with T .

Definitions Let T : V → W be a linear transformation, where V and W are vector
spaces. The null space of T is the set of all vectors v in V such that T (v) = 0.
The range of T is the set of all images of T , that is, the set of all vectors T (v) for
v in V .

The null space and the range of a linear transformation T : V → W are subspaces
of V and W , respectively. (See Exercises 56 and 57.)

Example 5 Let U : Mm×n → Mn×m be the linear transformation in Example 1 that is defined by
U (A) = AT . Describe the null space and the range of U .

Solution A matrix A in Mm×n is in the null space of U if and only if AT = O ,
where O is the n × m zero matrix. Clearly, AT = O if and only if A is the m × n
zero matrix. Hence the null space of U contains only the m × n zero matrix.

For any matrix B in Mn×m , we have that B = (BT )T = U (BT ), and hence B is in
the range of U . We conclude that the range of U coincides with its codomain, Mn×m .

Example 6 Let D : C∞ → C∞ be the linear transformation in Example 2 defined by D(f ) = f ′.
Describe the null space and the range of D .
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Solution A function f in C∞ is in the null space of D if and only if D(f ) = f ′ = 0;
that is, the derivative of f is the zero function. It follows that f is a constant function.
So the null space of D is the subspace of constant functions.

Any function f in C∞ has an antiderivative g in C∞. Thus f = g ′ = D(g) is in
the range of D . Therefore the range of D is all of C∞.

The following is an example of a linear transformation T in which the range of
T does not coincide with its codomain:

Example 7 Let T : P2 → R3 be the linear transformation in Example 4 defined by

T (f (x )) =



f (0)
f (1)
2f (1)


 .

Describe the null space and the range of T .

Solution A polynomial f (x ) = a + bx + cx2 lies in the null space of T if and
only if

T (f (x )) =



f (0)
f (1)
2f (1)


 =




0
0
0


 ;

that is, f (0) = a = 0 and f (1) = a + b + c = 0. These two equations are satisfied if
and only if a = 0 and c = −b; that is, f (x ) = bx − bx 2 = b(x − x 2) for some scalar
b. Thus the null space of T is the span of the set {x − x 2}.

The image of an arbitrary polynomial f (x ) = a + bx + cx2 in P2 is

T (f (x )) =



f (0)
f (1)
2f (1)


 =




a
a + b + c

2(a + b + c)


 = a




1
1
2


+ b




0
1
2


+ c




0
1
2


 .

It follows that the range of T is the span of the set






1
1
2


 ,




0
1
2




 ,

which is a 2-dimensional subspace of R3.

Recall that a linear transformation T : V → W is onto if its range equals W .
Thus the linear transformations U and D in Examples 5 and 6, respectively, are onto.
The transformation T is one-to-one if every pair of distinct vectors in V has distinct
images in W .

The next result, which is an extension of Theorem 2.11 in Section 2.8, tells us how
to use the null space of a linear transformation to determine whether the transformation
is one-to-one. Its proof is identical to that given on page 182 and hence is omitted.

THEOREM 7.5

A linear transformation is one-to-one if and only if its null space contains only
the zero vector.
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The null space of the linear operator U in Example 5 contains only the zero
vector of Mm×n . Thus U is one-to-one by Theorem 7.5. In contrast, the linear trans-
formations in Examples 6 and 7 are not one-to-one because their null spaces contain
vectors other than the zero vector.

Example 8 Let T : P2 → R3 be the linear transformation defined by

T (f (x )) =



f (0)
f ′(0)
f ′′(0)


 .

Use Theorem 7.5 to show that T is one-to-one.

Solution Let f (x ) = a + bx + cx2. Then f ′(x ) = b + 2cx and f ′′(x ) = 2c. If f (x )
is in the null space of T , then f (0) = f ′(0) = f ′′(0) = 0. Hence a = 0, b = 0, and
2c = 0. We conclude that f (x ) is the zero polynomial, and so it is the only polynomial
in the null space of T . It follows that T is one-to-one by Theorem 7.5.

ISOMORPHISM
Linear transformations that are both one-to-one and onto play an important role in the
next section.

Definitions Let V and W be vector spaces. A linear transformation T : V → W is
called an isomorphism if it is both one-to-one and onto. In this case, we say that V
is isomorphic to W .

We have already seen that the linear transformation U in Example 5 is one-to-one
and onto, and hence it is an isomorphism.

Example 9 Show that the linear transformation T in Example 8 is an isomorphism.

Solution In Example 8, we showed that T is one-to-one, so it suffices to show that

T is onto. Observe that for any vector




a
b
c


 in R3,

T
(
a + bx + c

2
x 2
)

=



a
b
c


 , (1)

and hence every vector in R3 is in the range of T . So T is onto, and therefore T is
an isomorphism. So P2 is isomorphic to R3.

Practice Problem 2 � Let T : M2×2 → M2×2 be defined by T (A) =
[
1 1
1 2

]
A. Prove that T is an isomor-

phism. �

Because an isomorphism T : V → W is both one-to-one and onto, for every w in
W there is a unique v in V such that T (v) = w. Thus the function T has an inverse
T−1 : W → V defined by T−1(w) = v. For this reason, an isomorphism can also be
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called an invertible linear transformation, or in the case that the isomorphism is an
operator, an invertible linear operator.

The next result tells us that the inverse of an isomorphism is also an isomorphism.

THEOREM 7.6

Let V and W be vector spaces and T : V → W be an isomorphism. Then
T−1 : W → V is linear, and hence is also an isomorphism.

PROOF We first show that T−1 preserves vector addition. Let w1 and w2 be
vectors in W , and let T−1(w1) = v1 and T−1(w2) = v2. Then T (v1) = w1 and
T (v2) = w2. Hence

w1 + w2 = T (v1) + T (v2) = T (v1 + v2),

from which it follows that

T−1(w1 + w2) = v1 + v2 = T−1(w1) + T−1(w2).

To show that T−1 preserves scalar multiplication, let w be a vector in W , c be a
scalar, and v = T−1(w). Then T (v) = w, and hence

cw = cT (v) = T (cv).

Therefore

T−1(cw) = cv = cT−1(w). �

We have seen that the linear transformation T in Example 8 is an isomorphism.
Thus, by equation (1), the isomorphism T−1 satisfies

T−1






a
b
c




 = a + bx + c

2
x 2 for




a
b
c


 in R3.

Theorem 7.6 shows that if T : V → W is an isomorphism, so is T−1 : W → V .
Applying Theorem 7.6 again, we see that (T−1)−1 is also an isomorphism. In fact, it
is easy to show that (T−1)−1 = T . (See Exercise 52.)

One consequence of Theorem 7.6 is that if a vector space V is isomorphic to a
vector space W , then W is also isomorphic to V . For this reason, we simply say that
V and W are isomorphic.

COMPOSITION OF LINEAR TRANSFORMATIONS
Let V , W , and Z be vector spaces and T : V → W and U : W → Z be linear trans-
formations. As in Section 2.8, we can form the composition UT : V → Z of U and
T defined by UT (v) = U (T (v)) for all v in V .

The following result tells us that UT is linear if both U and T are linear:

THEOREM 7.7

Let V , W , and Z be vector spaces and T : V → W and U : W → Z be linear
transformations. Then the composition UT : V → Z is also a linear
transformation.
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PROOF Let u and v be vectors in V . Then

UT (u + v) = U (T (u + v))

= U (T (u) + T (v))

= U (T (u)) + U (T (v))

= UT (u) + UT (v),

and hence UT preserves vector addition. Similarly, UT preserves scalar multipli-
cation. Therefore UT is linear. �

Example 10 Let T : P2 → R3 and U : R3 → M2×2 be the functions defined by

T (f (x )) =



f (0)
f (1)
2f (1)


 and U






s
t
u




 =

[
s t
t u

]
.

Both T and U are linear transformations, and their composition UT is defined. For
any polynomial a + bx + cx 2 in P2, UT satisfies

UT (a + bx + cx 2) = U






a
a + b + c

2(a + b + c)




 =

[
a a + b + c

a + b + c 2(a + b + c)

]
.

By Theorem 7.7, UT is linear.

Suppose that T : V → W and U : W → Z are isomorphisms. By Theorem 7.7,
the composition UT is linear. Furthermore, since both U and T are one-to-one and
onto, it follows that UT is also one-to-one and onto. Therefore UT is an isomorphism.
The inverses of T , U , and UT are related by (UT )−1 = T−1U −1. (See Exercise 53.)
We summarize these observations as follows:

Let T : V → W and U : W → Z be isomorphisms.

(a) UT : V → Z is an isomorphism.

(b) (UT )−1 = T−1U −1.

Note that (b) in the preceding box extends to the composition of any finite number
of isomorphisms. (See Exercise 54.)

EXERCISES

In Exercises 1–8, determine whether each linear transformation
is one-to-one.

1. T : M2×2 → M2×2 is the linear transformation defined

by T (A) = A

[
1 2
3 4

]
.

2. U : M2×2 → R is the linear transformation defined by
U (A) = trace(A).

3. T : M2×2 → R2 is the linear transformation defined by
T (A) = Ae1.

4. U : P2 → R2 is the linear transformation defined by

U (f (x )) =
[

f (1)
f ′(1)

]
.

5. T : P2 → P2 is the linear transformation defined by
T (f (x )) = xf ′(x ).
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6. T : P2 → P2 is the linear transformation defined by
T (f (x )) = f (x ) + f ′(x ).

7. U : R3 → M2×2 is the linear transformation in
Example 10 defined by

U






s
t
u




 =

[
s t
t u

]
.

8. U : R2 → R is the linear transformation defined by

U (v) = det

[
v1 1
v2 3

]
.

In Exercises 9–16, determine whether each linear transforma-
tion is onto.

9. the linear transformation T in Exercise 1

10. the linear transformation U in Exercise 2

11. the linear transformation T in Exercise 3

12. the linear transformation U in Exercise 4

13. the linear transformation T in Exercise 5

14. the linear transformation T in Exercise 6

15. the linear transformation U in Exercise 7

16. the linear transformation U in Exercise 8

In Exercises 17–24, prove that each function is actually linear.

17. the function T in Exercise 1

18. the function U in Exercise 2

19. the function T in Exercise 3

20. the function U in Exercise 4

21. the function T in Exercise 5

22. the function T in Exercise 6

23. the function U in Exercise 7

24. the function T in Exercise 8

In Exercises 25–29, compute the expression determined by each
composition of linear transformations.

25. UT

([
a b
c d

])
, where U is the linear transformation in

Exercise 2 and T is the linear transformation in Exercise 1

26. UT (a + bx + cx 2), where U is the linear transforma-
tion in Exercise 4 and T is the linear transformation in
Exercise 5

27. UT (a + bx + cx2), where U is the linear transforma-
tion in Exercise 4 and T is the linear transformation in
Exercise 6

28. UT

([
a b
c d

])
, where U is the linear transformation in

Exercise 8 and T is the linear transformation in Exercise 3

29. TU






s
t
u




, where T : M2×2 → M2×2 is the linear

transformation defined by T (A) = AT and U is the linear
transformation in Exercise 7

In Exercises 30–37, determine whether each transformation T
is linear. If T is linear, determine if it is an isomorphism. Justify
your conclusions.

30. T : Mn×n → R defined by T (A) = det A

31. T : P → P defined by T (f (x )) = xf (x )

32. T : P2 → R3 defined by T (f (x )) =



f (0)
f (1)
f (2)




33. T : P → P defined by T (f (x )) = (f (x ))2

34. T : M2×2 → M2×2 defined by T (A) =
[
1 1
1 1

]
A

35. T : F(R) → F(R) defined by T (f )(x ) = f (x + 1)

36. T : D(R) → F(R) defined by T (f ) = f ′, where f ′ is the
derivative of f and D(R) is the set of functions in F(R)
that are differentiable

37. T : D(R) → R defined by T (f ) =
∫ 1

0
f (t )dt , where D(R)

is the set of functions in F(R) that are differentiable

38. Let S = {s1, s2, . . . , sn} be a set consisting of n elements,
and let T : F(S ) → Rn be defined by

T (f ) =




f (s1)
f (s2)

...

f (sn )


 .

Prove that T is an isomorphism.

In Exercises 39–48, determine whether the state-
ments are true or false.

39. Every isomorphism is linear and one-to-one.

40. A linear transformation that is one-to-one is an isomor-
phism.

41. The vector spaces Mm×n and L(Rn ,Rm ) are isomorphic.

42. The definite integral can be considered to be a linear trans-
formation from C([a, b]) to the real numbers.

43. The function f (t ) = cos t belongs to C∞.

44. The function t 4 − 3t2 does not belong to C∞.

45. Differentiation is a linear operator on C∞.

46. The definite integral is a linear operator on C([a, b]), the
vector space of continuous real-valued functions defined
on [a, b].

47. The null space of every linear operator on V is a subspace
of V .

48. The solution set of the differential equation y ′′ + 4y =
sin 2t is a subspace of C∞.

49. Let N denote the set of nonnegative integers, and let V
be the subset of F(N ) consisting of the functions that are
zero except at finitely many elements of N .

(a) Show that V is a subspace of F(N ).

(b) Show that V is isomorphic to P. Hint: Choose
T : V → P to be the transformation that maps a func-
tion f to the polynomial having f (i ) as the coefficient
of x i .
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50. Let V be the vector space of all 2 × 2 matrices with
trace equal to 0. Prove that V is isomorphic to P2 by
constructing an isomorphism from V to P2. Verify your
answer.

51. Let V be the subset of P4 of polynomials of the form
ax4 + bx2 + c, where a, b, and c are scalars.

(a) Prove that V is a subspace of P4.

(b) Prove that V is isomorphic to P2 by constructing an
isomorphism from V to P2. Verify your answer.

52. Let V and W be vector spaces and T : V → W be an
isomorphism. Prove that (T −1)−1 = T .

53. Let V , W , and Z be vector spaces and T : V → W and
U : W → Z be isomorphisms. Prove that UT : V → Z is
an isomorphism and (UT )−1 = T−1U −1.

54. Prove the following extension of Exercise 53: If
T1, T2, . . . , Tk are isomorphisms such that the composition
T1T2 · · ·Tk is defined, then T1T2 · · ·Tk is an isomorphism
and

(T1T2 · · · Tk )
−1 = (Tk )

−1(Tk−1)
−1 · · · (T1)

−1.

Definitions For vector spaces V and W , let L(V , W ) denote
the set of all linear transformations T : V → W . For T and
U in L(V , W ) and any scalar c, define T + U : V → W and
cT : V → W by

(T + U )(x) = T (x) + U (x) and (cT )(x) = cT (x)
for all x in V .
The preceding definitions are used in Exercise 55:

55. Let V and W be vector spaces, let T and U be in L(V , W ),
and let c be a scalar.

(a) Prove that for any T and U in L(V , W ), T + U is a
linear transformation.

(b) Prove that for any T in L(V , W ), cT is a linear trans-
formation for any scalar c.

(c) Prove that L(V , W ) is a vector space with these oper-
ations.

(d) Describe the zero vector of this vector space.

56. Let T : V → W be a linear transformation between vec-
tor spaces V and W . Prove that the null space of T is a
subspace of V .

57. Let T : V → W be a linear transformation between vector
spaces V and W . Prove that the range of T is a subspace
of W .

58. Recall the set C∞ in Example 2.

(a) Prove that C∞ is a subspace of F(R).

(b) Let T : C∞ → C∞ be defined by T (f )(t ) = et f ′′(t ) for
all t in R. Prove that T is linear.

59. Recall the set C([a, b]) in Example 3.

(a) Prove that C([a, b]) is a subspace of F([a, b]).

(b) Let T : C([a, b]) → C([a, b]) be defined by

T (f )(x ) =
∫ x

a
f (t )dt for a ≤ x ≤ b.

Prove that T is linear and one-to-one.

60. Review Examples 5 and 6 of Section 7.1, in which it is
shown that certain subsets of vector spaces are subspaces.
Give alternate proofs of these results using the fact that
the null space of a linear transformation is a subspace of
its domain.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Let

p(x ) = a0 + a1x + a2x
2 and q(x ) = b0 + b1x + b2x

2.

Then

T (f (x ) + g(x )) = T ((a0 + b0) + (a1 + b1)x + (a2 + b2)x
2)

=



a0 + b0

a1 + b1

2(a2 + b2)


 =




a0

a1

2a2


+




b0

b1

2b2




= T (f (x )) + T (g(x )),

and for any scalar c,

T (cf (x )) = T (ca0 + ca1x + ca2x
2) =




ca0

ca1

2ca2




= c




a0

a1

2a2


 = cT (f (x )).

2. Let B =
[
1 1
1 2

]
.

(a) For any matrices C and D in M2×2, and any scalar
k , we have

T (C + D) = B (C + D) = BC + BD

= T (C ) + T (D)

and

T (kC ) = B (kC ) = k (BC ) = kT (C ).

So T is linear.

(b) Observe that B is invertible. If T (A) = BA = O , then
A = B−1(BA) = B−1O = O , and hence T is one-to-
one by Theorem 7.5. Now consider any matrix A in
M2×2. Then T (B−1A) = B (B−1A) = A, and so T is
onto. We conclude that T is an isomorphism.
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7.3 BASIS AND DIMENSION
In this section, we develop the concepts of basis and dimension for vector spaces. Then
we identify a special class of vector spaces, the finite-dimensional vector spaces, which
are isomorphic to Rn for some n . We use these isomorphisms to transfer facts about
Rn that we have learned in earlier chapters to all finite-dimensional vector spaces.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE
For general vector spaces, the concepts of linear dependence and linear independence
are similar to the corresponding concepts for Rn , except that we must allow for infinite
sets. In fact, the definitions for finite sets are the same as for Rn . (See page 75.)

Definitions An infinite subset S of a vector space V is linearly dependent if some
finite subset of S is linearly dependent. An infinite set S is linearly independent if
S is not linearly dependent, that is, if every finite subset of S is linearly independent.

Example 1 The subset S = {x 2 − 3x + 2, 3x 2 − 5x , 2x − 3} of P2 is linearly dependent because

3(x2 − 3x + 2) + (−1)(3x2 − 5x ) + 2(2x − 3) = 0,

where 0 is the zero polynomial. As with linearly dependent subsets of Rn , S is linearly
dependent because we are able to represent the zero vector as a linear combination of
the vectors in S with at least one nonzero coefficient.

Example 2 In Example 14 of Section 7.1, we noted that the set

S =
{[

1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

is a generating set for the subspace of 2 × 2 matrices with trace equal to zero. We now
show that this set is linearly independent. Consider any scalars a , b, and c such that

a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
= O ,

where O is the zero matrix of M2×2. In Example 14 of Section 7.1, we observed that

this linear combination equals

[
a b
c −a

]
, and hence

[
a b
c −a

]
=
[
0 0
0 0

]
.

By equating corresponding entries, we find that a = 0, b = 0, and c = 0. It follows
that S is linearly independent.

Practice Problem 1 � Determine if the set

S =
{[

1 1
1 0

]
,

[
0 0
1 1

]
,

[
0 2
0 −1

]
,

[
0 1
1 0

]}

is a linearly independent subset of M2×2. �
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512 CHAPTER 7 Vector Spaces

Example 3 Let S = {et , e2t , e3t }. We show that S is a linearly independent subset of F(R). Con-
sider any scalars a , b, and c such that

aet + be2t + ce3t = 0,

where 0 is the zero function. By taking the first and second derivatives of both sides
of this equation, we obtain the two equations

aet + 2be2t + 3ce3t = 0

and

aet + 4be2t + 9ce3t = 0.

Since the left sides of these equations equal the zero function, they must equal 0 for
every real number t . So we may substitute t = 0 into these three equations to obtain
the homogeneous system

a + b + c = 0
a + 2b + 3c = 0
a + 4b + 9c = 0.

It is easy to show that this system has only the zero solution a = b = c = 0, and
hence S is linearly independent.

The next two examples involve infinite sets.

Example 4 The infinite subset {1, x , x 2, . . . , xn , . . .} of the vector space P is linearly independent.
Observe that any linear combination of a nonempty finite subset of this set is not
the zero polynomial unless all of the coefficients are zeros. So every nonempty finite
subset is linearly independent.

Example 5 The infinite subset

{1 + x , 1 − x , 1 + x 2, 1 − x 2, . . . , 1 + xn , 1 − xn , . . .}
of P is linearly dependent because it contains a finite linearly dependent subset. One
example of such a set is {1 + x , 1 − x , 1 + x 2, 1 − x 2}, because

1(1 + x ) + 1(1 − x ) + (−1)(1 + x2) + (−1)(1 − x2) = 0.

The next result tells us that isomorphisms preserve linear independence. We omit
the proof. (See Exercise 66.)

THEOREM 7.8

Let V and W be vector spaces, {v1, v2, . . . , vk } be a linearly independent subset
of V , and T : V → W be an isomorphism. Then {T (v1), T (v2), . . . , T (vk )}, the
set of images of v1, v2, . . . , vk , is a linearly independent subset of W .
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7.3 Basis and Dimension 513

BASES FOR VECTOR SPACES
As in Chapter 4, we define a subset S of a vector space V to be a basis for V if S
is both a linearly independent set and a generating set for V . Thus we see that the
set S in Example 2 is a basis for the subspace of 2 × 2 matrices with trace equal
to zero. In Example 4 of this section and Example 12 of Section 7.1, we saw that
{1, x , x 2, . . . , xn , . . .} is a linearly independent generating set for P; so it is a basis
for P . Thus, in contrast to the subspaces of Rn , the vector space P has an infinite
basis. The generating set for the vector space T [0, 2π ] of trigonometric polynomials
defined on page 498 is also linearly independent. (See Section 7.5.) This is another
example of an infinite basis for a vector space.

In Chapter 4, it was shown that any two bases for the same subspace of Rn contain
the same number of vectors. The preceding observations lead to three questions about
bases of vector spaces. We list these questions together with their answers.

1. Is it possible for a vector space to have both an infinite and a finite basis? The
answer is no.

2. If a vector space V has a finite basis, must any two bases for V have the same
number of vectors (as is the case for subspaces of Rn )? The answer is yes.

3. Does every vector space have a basis? If we use the axiom of choice from set
theory, the answer is yes.

We justify the first two answers in this section. The justification for the third
answer is beyond the scope of this book. (For a proof, see [4, pages 58–61].)

We begin with a study of vector spaces that have finite bases.1 For this pur-
pose, we revisit Theorem 4.10 on page 265. The next result is an extension of this
theorem to general vector spaces that have finite bases. Its proof is identical to that
of Theorem 4.10.

Suppose that B = {v1, v2, . . . , vn} is a finite basis for a vector space V . Then any
vector v in V can be uniquely represented as a linear combination of the vectors
in B; that is, v = a1v1 + a2v2 + · · · + anvn for unique scalars a1, a2, . . . , an .

Consider a vector space V having a finite basis B = {v1, v2, . . . , vn}. Because of
the uniqueness statement in the preceding box, we can define a mapping �B : V → Rn

as follows: For any vector v in V , suppose that the unique representation of v as a
linear combination of the vectors in B is given by

v = a1v1 + a2v2 + · · · + anvn .

Define �B by

�B(v) =




a1

a2
...

an


 .

We call �B the coordinate transformation of V relative to B. (See Figure 7.1.)
Then �B is one-to-one because the representation of a vector in V as a linear

combination of the vectors of B is unique. Furthermore, any scalars a1, a2, . . . , an are
the coefficients of some linear combination of the vectors of B, and hence �B is onto.

1 As in Chapter 4, we implicitly assume that the vectors in a given finite basis of a vector space are listed in
a specific order; that is, the basis is an ordered basis.
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514 CHAPTER 7 Vector Spaces

a1

v � a1v1 � a2v2 � . . . � anvn

a2

an
0

V Rn

�B

...

Figure 7.1 The coordinate transformation of V relative to B

We leave as an exercise the straightforward proof that �B is linear. (See Exercise 73.)
Thus we have the following result:

If V is a vector space with the basis B = {v1, v2, . . . , vn}, then the mapping
�B : V → Rn defined by

�B(a1v1 + a2v2 + · · · + anvn ) =




a1

a2
...

an




is an isomorphism. Therefore if V has a basis of n vectors, then V is isomorphic
to Rn .

In view of this result, a vector space with a finite basis has the same vector space
structure as Rn . It follows that we can answer questions about the number of vectors
in a basis for a vector space by comparing this vector space with Rn .

THEOREM 7.9

Let V be a vector space with a finite basis. Then every basis for V is finite and
contains the same number of vectors.

PROOF Let B = {v1, v2, . . . , vn} be a finite basis for V and �B : V → Rn be
the isomorphism defined previously. Suppose that some basis A for V contains
more vectors than B. Then there exists a subset S = {w1, w2, . . . , wn+1} of A con-
sisting of n + 1 distinct vectors. By Exercise 91 of Section 1.7, which applies to
all vector spaces, S is linearly independent. So {�A(w1), �A(w2), . . . , �A(wn+1)}
is a linearly independent subset of Rn by Theorem 7.8. But this is a contradic-
tion because a linearly independent subset of Rn contains at most n vectors. It
follows that A is finite and contains at most n vectors. Let m denote the number
of vectors in A. Then m ≤ n . We can now apply the argument given earlier, but
with the roles of B and A reversed, to deduce that n ≤ m . Therefore m = n , and
we conclude that any two bases for V contain the same number of vectors. �

As a consequence of Theorem 7.9, vector spaces are of two types. The first type
consists of the zero vector space and those vector spaces that have a finite basis.
These vector spaces are called finite-dimensional. The second type of vector space,
which is not finite-dimensional, is called infinite-dimensional. It can be shown that
every infinite-dimensional vector space contains an infinite linearly independent set.
(See Exercise 72.) In fact, every infinite-dimensional vector space contains an infinite
basis. (See [4, page 61].)
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7.3 Basis and Dimension 515

The preceding boxed result shows that a finite-dimensional vector space V having
a finite basis containing exactly n vectors is isomorphic to Rn . Moreover, every basis
for V must contain exactly n vectors. In such a case, we say that n is the dimension
of V , and we denote it by dim V . Furthermore, the dimension of a vector space is
preserved under isomorphism. That is, if V and W are isomorphic vector spaces and
V is finite-dimensional, then W is finite-dimensional and the two vector spaces have
the same dimension. (See Exercise 66.) On the other hand, if one of the vector spaces
is infinite-dimensional, then so is the other. (See Exercise 74.)

Because there is an isomorphism between an n-dimensional vector space and Rn ,
this isomorphism can be used to transfer properties of linear dependence and linear
independence from Rn to other n-dimensional vector spaces. The next box contains
several properties that are analogous to results proved in Section 4.2 for Rn . Their
proofs are left as exercises. (See Exercises 69 and 70.)

Properties of Finite-Dimensional Vector Spaces

Let V be an n-dimensional vector space.

1. Any linearly independent subset of V contains at most n vectors.

2. Any linearly independent subset of V containing exactly n vectors is a basis
for V .

3. Any generating set for V contains at least n vectors.

4. Any generating set for V containing exactly n vectors is a basis for V .

Example 6 Recall the vector space Pn in Example 8 of Section 7.1. The set B = {1, x , x 2, . . . , xn}
is a linearly independent subset of Pn . Furthermore, an arbitrary polynomial p(x ) =
a0 + a1x + · · · + anxn of degree at most n can be expressed as a linear combination
of the polynomials in B. Therefore B is a generating set for Pn , and we conclude
that B is a basis for Pn . Since B contains n + 1 polynomials, Pn is finite-dimensional
with dimension equal to n + 1.

The mapping �B : Pn → Rn+1 defined by

�B(a0 + a1x + · · · + anxn ) =




a0

a1
...

an




is an isomorphism.

Example 7 Recall Mm×n , the vector space of m × n matrices in Example 1 of Section 7.1. Let
m = n = 2, and define

E11 =
[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, and E22 =

[
0 0
0 1

]
.

Then any matrix A in M2×2 can be written as a linear combination

A =
[
a11 a12

a21 a22

]
= a11

[
1 0
0 0

]
+ a12

[
0 1
0 0

]
+ a21

[
0 0
1 0

]
+ a22

[
0 0
0 1

]

= a11E11 + a12E12 + a21E21 + a22E22
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of the vectors in S = {E11, E12, E21, E22}. Furthermore, if O is written as a linear
combination of the matrices in S , then all of the coefficients must be zeros, and so S
is linearly independent. It follows that S is a basis for M2×2.

Example 7 can be extended to Mm×n for any positive integers m and n . For
each 1 ≤ i ≤ m and 1 ≤ j ≤ n , let Eij be the m × n matrix whose (i , j )-entry is 1,
and whose other entries are 0. Then it can be shown that the set of all m × n matrices
of the form Eij constitutes a basis for Mm×n . Since there are mn such matrices, it
follows that dimMm×n = mn .

Practice Problem 2 � Use the boxed properties of finite-dimensional vector spaces on page 515 to determine
whether the set S in Practice Problem 1 is a basis for M2×2. �

Example 8 Recall the vector space L(Rn ,Rm) of linear transformations in Example 2 of Section
7.1. Let U : Mm×n → L(Rn ,Rm) be defined by U (A) = TA, where TA is the matrix
transformation induced by A (defined in Section 2.7). Then for any m × n matrices A
and B , we have

U (A + B ) = TA+B = TA + TB = U (A) + U (B ).

Similarly, U (cA) = c U (A) for any scalar c. By Theorem 2.9 on page 174, U is both
one-to-one and onto. It follows that U is an isomorphism, and Mm×n is isomorphic to
L(Rn ,Rm). Because the discussion immediately after Example 7 shows that Mm×n

has dimension mn , and because isomorphisms preserve dimension, it follows that
L(Rn ,Rm) is a finite-dimensional vector space of dimension mn .

Example 9 Let a0, a1, a2, c0, c1, and c2 be real numbers such that a0, a1, and a2 are distinct.
We show that there exists a unique polynomial p(x ) in P2 such that p(ai ) = ci for
i = 0, 1, 2.

Let p0(x ), p1(x ), and p2(x ) be the polynomials in P2 defined by

p0(x ) = (x − a1)(x − a2)

(a0 − a1)(a0 − a2)
, p1(x ) = (x − a0)(x − a2)

(a1 − a0)(a1 − a2)
,

and

p2(x ) = (x − a0)(x − a1)

(a2 − a0)(a2 − a1)
.

Observe that, for each i and j ,

pi (aj ) =
{

0 if i �= j

1 if i = j .

Now set

p(x ) = c0p0(x ) + c1p1(x ) + c2p2(x ).

Then
p(a0) = c0p0(a0) + c1p1(a0) + c2p2(a0)

= c0 � 1 + c1 � 0 + c2 � 0

= c0.

Similarly, p(a1) = c1 and p(a2) = c2.
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We now show that A = {p0(x ), p1(x ), p2(x )} is a basis for P2. Suppose that

b0p0(x ) + b1p1(x ) + b2p2(x ) = 0

for some scalars b0, b1, and b2, where 0 is the zero polynomial. Substituting x = ai

for i = 0, 1, 2 into this equation yields bi = 0 for i = 0, 1, 2, and hence A is linearly
independent. Since dimP2 = 3 and A is a linearly independent subset of P2 consisting
of three polynomials, it follows that A is a basis for P2 by the boxed result on
page 515.

To show the uniqueness of p(x ), suppose that q(x ) is a polynomial in P2 such
that q(ai ) = ci for i = 0, 1, 2. Since A is a basis for P2, there exist unique scalars d0,
d1, and d2 such that q(x ) = d0p0(x ) + d1p1(x ) + d2p2(x ). Then

c0 = q(a0) = d0p(a0) + d1p1(a0) + d2p2(a0) = d0 � 1 + d1 � 0 + d2 � 0 = d0.

Similarly, c1 = d1 and c2 = d2, and it follows that q(x ) = p(x ).
To illustrate this method, we find a polynomial p(x ) in P2 such that p(1) = 3,

p(2) = 1, and p(4) = −1. In the previous notation, we have a0 = 1, a1 = 2, and
a2 = 4 and c0 = 3, c1 = 1, and c2 = −1. Then

p0(x ) = (x − a1)(x − a2)

(a0 − a1)(a0 − a2)
= (x − 2)(x − 4)

(1 − 2)(1 − 4)
= 1

3
(x2 − 6x + 8)

p1(x ) = (x − a0)(x − a2)

(a1 − a0)(a1 − a2)
= (x − 1)(x − 4)

(2 − 1)(2 − 4)
= −1

2
(x2 − 5x + 4)

p2(x ) = (x − a0)(x − a1)

(a2 − a0)(a2 − a1)
= (x − 1)(x − 2)

(4 − 1)(4 − 2)
= 1

6
(x2 − 3x + 2).

Thus

p(x ) = (3)p0(x ) + (1)p1(x ) + (−1)p2(x )

= 3

3
(x2 − 6x + 8) − 1

2
(x2 − 5x + 4) − 1

6
(x2 − 3x + 2)

= 1

3
x 2 − 3x + 17

3
.

Example 9 extends to polynomials of any positive degree. In general, for any
positive integer n and any distinct real numbers a0, a1, . . . , an , define

pi (x ) = (x − a0)(x − a1) · · · (x − ai−1)(x − ai+1) · · · (x − an )

(ai − a0)(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an )

for all i . The set {p0(x ), p1(x ), . . . , pn (x )} is a basis for Pn . Using the same methods
as in Example 9, we can show that for any real numbers c0, c1, . . . , cn ,

p(x ) = c0p0(x ) + c1p1(x ) + · · · + cnpn (x )
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is the unique polynomial in Pn such that p(ai ) = ci for all i . The polynomials pi (x )
are called the Lagrange2 interpolating polynomials (associated with a0, a1, . . . , an ).

EXERCISES

In Exercises 1–8, determine whether each subset of M2×2 is
linearly independent or linearly dependent.

1.

{[
1 2
3 1

]
,

[
1 −5

−4 0

]
,

[
3 −1
2 2

]}

2.

{[
1 2
3 1

]
,

[
1 −1
0 1

]
,

[
1 0
1 1

]}

3.

{[
1 2
2 1

]
,

[
4 3

−1 0

]
,

[
12 9
−3 0

]}

4.

{[
1 2
2 1

]
,

[
1 3
3 1

]
,

[
1 2
3 1

]}

5.

{[
1 0 1

−1 2 1

]
,

[−1 1 2
2 −1 1

]
,

[−1 0 1
1 −1 0

]}

6.

{[
1 0 1

−1 2 1

]
,

[−1 1 2
2 −1 1

]
,

[
3 2 9

−1 8 7

]}

7.

{[
1 0

−2 1

]
,

[
0 −1
1 1

]
,

[−1 2
1 0

]
,

[
2 1

−4 4

]}

8.

{[
1 0

−2 1

]
,

[
0 −1
1 1

]
,

[−1 2
1 0

]
,

[
2 1
2 −2

]}

In Exercises 9–16, determine whether each subset of P is lin-
early independent or linearly dependent.

9. {1 + x , 1 − x , 1 + x + x2, 1 + x − x2}
10. {x2 − 2x + 5, 2x2 − 4x + 10}
11. {x2 − 2x + 5, 2x2 − 5x + 10, x2}
12. {x3 + 4x2 − 2x + 3, x3 + 6x2 − x + 4,

3x3 + 8x2 − 8x + 7}
13. {x3 + 2x2, −x2 + 3x + 1, x3 − x2 + 2x − 1}
14. {x3 − x , 2x2 + 4, −2x3 + 3x2 + 2x + 6}
15. {x4 − x3 + 5x2 − 8x + 6, −x4 + x3 − 5x2 + 5x − 3,

x4 + 3x2 − 3x + 5, 2x4 + 3x3 + 4x2 − x + 1,

x3 − x + 2}
16. {x4 − x3 + 5x2 − 8x + 6, −x4 + x3 − 5x2 + 5x − 3,

x4 + 3x2 − 3x + 5, 2x4 + x3 + 4x2 + 8x}
In Exercises 17–24, determine whether each subset of F(R) is
linearly independent or linearly dependent.

17. {t , t sin t} 18. {t , t sin t , e2t }
19. {sin t , sin2 t , cos2 t , 1} 20. {sin t , e−t , et }
21. {et , e2t , . . . , ent , . . .} 22. {cos2 t , sin2 t , cos 2t}

23. {t , sin t , cos t} 24. {1, t , t 2, . . .}
In Exercises 25–30, use Lagrange interpolating polynomials to
determine the polynomial in Pn whose graph passes through the
given points.

25. n = 3; (0, 1), (1, 0), and (2, 3)

26. n = 3; (1, 8), (2, 5), and (3, −4)

27. n = 3; (−1, −11), (1, 1), (2, 1)

28. n = 3; (−2,−13), (1, 2), (3, 12)

29. n = 4; (−1, 5), (0, 2), (1, −1), (2, 2)

30. n = 4; (−2, 1), (−1, 3), (1, 1), (2,−15)

In Exercises 31–48, determine whether the state-
ments are true or false.

31. If a set is infinite, it cannot be linearly independent.

32. Every vector space has a finite basis.

33. The dimension of the vector space Pn equals n.

34. Every subspace of an infinite-dimensional vector space is
infinite-dimensional.

35. It is possible for a vector space to have both an infinite
basis and a finite basis.

36. If every finite subset of S is linearly independent, then S
is linearly independent.

37. Every nonzero finite-dimensional vector space is isomor-
phic to Rn for some n.

38. If a subset of a vector space contains 0, then it is linearly
dependent.

39. In P, the set {x , x3, x5, . . .} is linearly dependent.

40. A basis for a vector space V is a linearly independent set
that is also a generating set for V .

41. If B = {v1, v2, . . . , vn } is a basis for a vector space V ,
then the mapping � : Rn → V defined by

�







c1

c2
..
.

cn





 = c1v1 + c2v2 + · · · + cnvn

is an isomorphism.

2 Joseph Louis Lagrange (1736–1813) was one of the most important mathematicians and physical
scientists of his time. Among his most significant accomplishments was the development of the
calculus of variations, which he applied to problems in celestial mechanics. His 1788 treatise on
analytical mechanics summarized the principal results in mechanics and demonstrated the importance
of mathematics to mechanics. Lagrange also made important contributions to number theory, the
theory of equations, and the foundations of calculus (by emphasizing functions and the use of Taylor
series).
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42. The dimension of Mm×n is m + n.

43. If T : V → W is an isomorphism between vector spaces
V and W and {v1, v2, . . . , vk } is a linearly independent
subset of V , then {T (v1), T (v2), . . . , T (vk )} is a linearly
independent subset of W .

44. If T : V → W is an isomorphism between finite-
dimensional vector spaces V and W , then the dimensions
of V and W are equal.

45. The dimension of L(Rn ,Rm ) is m + n.

46. The vector spaces Mm×n and L(Rn ,Rm ) are isomorphic.

47. The Lagrange interpolating polynomials associated with
n + 1 distinct real numbers form a basis for Pn .

48. If a vector space contains a finite linearly dependent set,
then the vector space is finite-dimensional.

49. Let N be the set of positive integers, and let f , g , and h be
the functions in F(N ) defined by f (n) = n + 1, g(n) = 1,
and h(n) = 2n − 1. Determine if the set {f , g , h} is lin-
early independent. Justify your answer.

50. Let N denote the set of nonnegative integers, and let V be
the subset of F(N ) consisting of the functions that are zero
except at finitely many elements of N . By Exercise 49 of
Section 7.2, V is a subspace of F(N ). For each n in N ,
let fn : N → R be defined by

fn (k ) =
{

0 for k �= n

1 for k = n.

Prove that {f1, f2, . . . , fn , . . .} is a basis for V .

In Exercises 51–58, find a basis for the subspace W of the vector
space V .

51. Let W be the subspace of symmetric 3 × 3 matrices and
V = M3×3.

52. Let W be the subspace of skew-symmetric 3 × 3 matrices
and V = M3×3.

53. Let W be the subspace of 2 × 2 matrices with trace equal
to 0 and V = M2×2.

54. Let W be the subspace of V = Pn consisting of polyno-
mials p(x ) for which p(0) = 0.

55. Let W be the subspace of V = Pn consisting of polyno-
mials p(x ) for which p(1) = 0.

56. Let W = {f ∈ D(R) : f ′ = f }, where f ′ is the derivative
of f and D(R) is the set of functions in F(R) that are
differentiable, and let V = F(R).

57. Let W = {p(x ) ∈ P : p ′′(x ) = 0} and V = P.

58. Let W = {p(x ) ∈ P : p(−x ) = −p(x )} and V = P.

59. Let S be a subset of Pn consisting of exactly one poly-
nomial of degree k for k = 0, 1, . . . , n. Prove that S is a
basis for Pn .

The following definitions and notation apply to Exercises 60–65:

Definition An n × n matrix is called a magic square of order
n if the sum of the entries in each row, the sum of the entries
in each column, the sum of the diagonal entries, and the sum of
the entries on the secondary diagonal are all equal. (The entries

on the secondary diagonal are the (1, n)-entry, the (2, n − 1)-
entry, . . . , the (n, 1)-entry.) This common value is called the
sum of the magic square.

For example, the 3 × 3 matrix




4 9 2
3 5 7
8 1 6




is a magic square of order 3 with sum equal to 15.
Let Vn denote the set of all magic squares of order n, and

let Wn denote the subset of Vn consisting of magic squares with
sum equal to 0.

60. (a) Show that Vn is a subspace of Mn×n .

(b) Show that Wn is a subspace of Vn .

61. For each positive integer n, let Cn be the n × n matrix all
of whose entries are equal to 1/n.

(a) Prove that Cn is in Vn .

(b) Prove that, for any positive integer n and magic square
A in Vn , if A has sum s , then there is a unique magic
square B in Wn such that A = B + sCn .

62. Prove that W3 has dimension equal to 2.

63. Prove that V3 has dimension equal to 3.

64. Use the result of Exercise 61 to prove that for any positive
integer n, dimVn = dim Wn + 1.

65. Prove that for any n ≥ 3, dim Wn = n2 − 2n − 1, and
hence Vn has dimension equal to n2 − 2n by Exercise 64.
Hint: Identify Mn×n with Rn2

and then analyze the
description of Wn as the solution space of a system of
homogeneous equations.

66. Let V and W be vector spaces and T : V → W be an
isomorphism.

(a) Prove that if {v1, v2, . . . , vn } is a linearly inde-
pendent subset of V , then the set of images
{T (v1), T (v2), . . . , T (vn )} is a linearly independent
subset of W .

(b) Prove that if {v1, v2, . . . , vn } is a basis for V , then the
set of images {T (v1), T (v2), . . . , T (vn )} is a basis for
W .

(c) Prove that if V is finite-dimensional, then W is finite-
dimensional and dim V = dim W .

67. Use Exercise 66 and Example 8 to find a basis for
L(Rn ,Rm ).

In Exercises 68–71, use an isomorphism from V to Rn to prove
the result.

68. Let n be a positive integer. Suppose that V is a vector
space such that any subset of V consisting of more than
n vectors is linearly dependent, and some linearly inde-
pendent subset contains n vectors. Prove that any linearly
independent subset of V consisting of n vectors is a basis
for V , and hence dimV = n.

69. Let V be a finite-dimensional vector space of dimension
n ≥ 1.
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(a) Prove that any subset of V containing more than n
vectors is linearly dependent.

(b) Prove that any linearly independent subset of V con-
sisting of n vectors is a basis for V .

70. Let V be a vector space of dimension n ≥ 1, and suppose
that S is a finite generating set for V . Prove the following
statements:

(a) S contains at least n vectors.

(b) If S consists of exactly n vectors, then S is a basis
for V .

71. Let V be a finite-dimensional vector space and W be a
subspace of V . Prove the following statements:

(a) W is finite-dimensional, and dimW ≤ dim V .

(b) If dim W = dimV , then W = V .

72. Let V be an infinite-dimensional vector space. Prove
that V contains an infinite linearly independent set. Hint:
Choose a nonzero vector v1 in V . Next, choose a vector
v2 not in the span of {v1}. Show that this process can be
continued to obtain an infinite subset {v1, v2, . . . , vn , . . .}
of V such that for any n, vn+1 is not in the span of
{v1, v2, . . . , vn }. Now show that this infinite set is linearly
independent.

73. Prove that if B is a basis for a vector space that con-
tains exactly n vectors, then �B : V → Rn is a linear
transformation.

74. Suppose that V and W are isomorphic vector spaces.
Prove that if V is infinite-dimensional, then W is infinite-
dimensional.

75. Let V and W be finite-dimensional vector spaces. Prove
that dimL(V , W ) = (dimV ) � (dimW ).

76. Let n be a positive integer. For 0 ≤ i ≤ n, define
Ti : Pn → R by Ti (f (x )) = f (i ). Prove that Ti is linear
for all i and that {T0, T1, . . . , Tn } is a basis for L(Pn ,R).
Hint: For each i , let pi (x ) be the i th Lagrange interpolat-
ing polynomial associated with 0, 1, . . . , n. Show that for
all i and j ,

Ti (pj (x )) =
{

0 if i �= j

1 if i = j .

Use this to show that {T0, T1, . . . , Tn} is linearly indepen-
dent. Now apply Exercises 75 and 69.

77. Apply Exercise 76 to prove that for any positive inte-
ger n and any scalars a and b, there exist unique scalars
c0, c1, . . . , cn such that

∫ b

a
f (x ) dx = c0f (0) + c1f (1) + · · · + cn f (n)

for every polynomial f (x ) in Pn .

78. (a) Derive Simpson’s rule: For any polynomial f (x ) in P2

and any scalars a < b,

∫ b

a
f (x ) dx = b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
.

(b) Verify that Simpson’s rule is valid for the polynomial
x3, and use this fact to justify that Simpson’s rule is
valid for every polynomial in P3.

In Exercises 79–83, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

In Exercises 79–82, determine whether each set is linearly
dependent. In the case that the set is linearly dependent, write
some vector in the set as a linear combination of the others.

79. {1 + x − x2 + 3x3 − x4, 2 + 5x − x3 + x4,
3x + 2x2 + 7x4, 4 − x2 + x3 − x4}

80. {2 + 5x − 2x2 + 3x3 + x4, 3 + 3x − x2 + x3 + x4,
6 − 3x + 2x2 − 5x3 + x4, 2 − x + x2 + x4}

81.

{[
0.97 −1.12
1.82 2.13

]
,

[
1.14 2.01
1.01 3.21

]
,

[−0.63 7.38
−3.44 0.03

]
,

[
2.12 −1.21
0.07 −1.32

]}

82.

{[
1.23 −0.41
2.57 3.13

]
,

[
2.71 1.40

−5.23 2.71

]
,

[
3.13 1.10
2.12 −1.11

]
,

[
8.18 2.15

−1.21 4.12

]}

83. In view of Exercise 77, find the scalars c0, c1, c2, c3, and
c4 such that

∫ 1

0
f (x ) dx = c0f (0) + c1f (1) + c2f (2) + c3f (3) + c4f (4)

for every polynomial f (x ) in P4. Hint: Apply this equation
to 1, x , x2, x3, and x4 to obtain a system of 5 linear
equations in 5 variables.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Suppose that

c1

[
1 1
1 0

]
+ c2

[
0 0
1 1

]
+ c3

[
0 2
0 −1

]
+ c4

[
0 1
1 0

]

=
[
0 0
0 0

]

for scalars c1, c2, c3, and c4. This equation may be rewrit-
ten as

[
c1 c1 + 2c3 + c4

c1 + c2 + c4 c2 − c3

]
=
[
0 0
0 0

]
.
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The last matrix equation is equivalent to the
system

c1 = 0
c1 + 2c3 + c4 = 0
c1 + c2 + c4 = 0

c2 − c3 = 0.

After we apply Gaussian elimination to this system, we
discover that its only solution is c1 = c2 = c3 = c4 = 0.
Therefore S is linearly independent.

2. From Example 7, we know that dimM2×2 = 4. By Prac-
tice Problem 1, the set S , which contains four matri-
ces, is linearly independent. Therefore S is a basis for
M2×2 by property 2 of finite-dimensional vector spaces
on page 515.

7.4 MATRIX REPRESENTATIONS OF LINEAR
OPERATORS

Given an n-dimensional vector space V with the basis B, we wish to use B to convert
problems concerning linear operators on V and vectors in V into ones involving
n × n matrices and vectors in Rn . We have already seen how to use the isomorphism
�B : V → Rn to identify a vector in V with a vector in Rn . In fact, we can use this
isomorphism to extend the definition of coordinate vector, given in Section 4.4, to all
finite-dimensional vector spaces.

COORDINATE VECTORS AND MATRIX REPRESENTATIONS

Definition Let V be a finite-dimensional vector space and B be a basis for V . For
any vector v in V , the vector �B(v) is called the coordinate vector of v relative to
B and is denoted by [v]B.

Since �B(v) = [v]B and �B is linear, it follows that for any vectors u and v in
V and any scalar c,

[u + v]B = �B(u + v) = �B(u) + �B(v) = [u]B + [v]B

and
[cv]B = �B(cv) = c�B(v) = c[v]B.

Let T be a linear operator on an n-dimensional vector space V with the basis B.
We show how to represent T as an n × n matrix. Our strategy is to use �B and T to
construct a linear operator on Rn and choose its standard matrix.

We can define a linear operator on Rn by using �B and T as follows: Starting at
Rn , apply �−1

B , which maps Rn to V . Now apply T and then �B to return to Rn . The
result is the composition of linear transformations �BT�−1

B , which is a linear operator

�B

T
V

Rn Rn

V

TA � �B T��1B

��1B

Figure 7.2 The linear operator TA, where A is the standard matrix of �BT�−1
B
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on Rn . (See Figure 7.2.) This linear operator equals TA, where A is the standard matrix
of �BT�−1

B . Thus we make the following definition:

Definition Let T be a linear operator on an n-dimensional vector space V , and
let B be a basis for V . The standard matrix of the linear operator �BT�−1

B on
Rn is called the matrix representation of T with respect to B and is denoted
by [T ]B. So if A = [T ]B , then TA = �BT�−1

B .

For a linear operator T on a finite-dimensional vector space V with the basis B =
{v1, v2, . . . , vn}, we now show how to compute the matrix representation [T ]B. Observe
that for each j , �B(vj ) = ej , the j th standard vector of Rn , and hence �−1

B (ej ) = vj

for all j . Let A = [T ]B. Then for each j , the j th column of A can be obtained as

aj = Aej = TA(ej ) = �BT�−1
B (ej ) = �BT (vj ) = [T (vj )]B.

We summarize this result as follows:

The Matrix Representation of a Linear Operator

Let T be a linear operator on a finite-dimensional vector space V with the basis
B = {v1, v2, . . . , vn}. Then [T ]B is the n × n matrix whose j th column is [T (vj )]B.
Thus

[T ]B = [ [T (v1)]B [T (v2)]B . . . [T (vn )]B ].

Example 1 Let T : P2 → P2 be defined by

T (p(x )) = p(0) + 3p(1)x + p(2)x2.

For example, if p(x ) = 2 + x − 2x 2, then p(0) = 2, p(1) = 1, and p(2) = −4. There-
fore T (p(x )) = 2 + 3x − 4x2. It can be shown that T is linear. Let B = {1, x , x 2},
which is a basis for P2, and let A = [T ]B. Then

a1 = [T (1)]B = [1 + 3x + x 2]B =



1
3
1


 ,

a2 = [T (x )]B = [0 + 3x + 2x 2]B =



0
3
2


 ,

and

a3 = [T (x2)]B = [0 + 3x + 4x 2]B =



0
3
4


 .

Thus the matrix representation of T with respect to B is

A =



1 0 0
3 3 3
1 2 4


 .
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Example 2 Let B = {et cos t , et sin t}, a subset of C∞, and let V = SpanB. It can be shown that
B is linearly independent and hence is a basis for V . Let D be the linear operator on
V defined by D(f ) = f ′ for all f in V . Then

D(et cos t) = (1)et cos t + (−1)et sin t

and

D(et sin t) = (1)et cos t + (1)et sin t .

Therefore the matrix representation of D with respect to B is

[D]B =
[

1 1
−1 1

]
.

Practice Problem 1 � Define T : P2 → P2 by T (p(x )) = (x + 1)p′(x ) + p(x ).

(a) Prove that T is linear.

(b) Determine the matrix representation of T with respect to the basis {1, x , x 2} for
P2.

�

The next result enables us to express the image of any vector under a linear
operator on a finite-dimensional vector space as a matrix-vector product. We use this
description to acquire information about a linear operator by applying what we already
know about matrices.

THEOREM 7.10

Let T be a linear operator on a finite-dimensional vector space V with the basis
B. Then, for any vector v in V ,

[T (v)]B = [T ]B[v]B.

PROOF Setting A = [T ]B, we have TA = �BT�−1
B . Thus, for any vector v in

V , we have

[T (v)]B = �BT (v) = �BT�−1
B �B(v) = TA([v]B) = A[v]B = [T ]B[v]B.

�

Example 3 Let D be the linear operator on P2 defined by D(p(x )) = p′(x ), B = {1, x , x 2} (which
is a basis for P2), and A = [T ]B. Then

a1 = [D(1)]B = [0]B =



0
0
0


 , a2 = [D(x )]B = [1]B =




1
0
0


 ,

and

a3 = [D(x2)]B = [2x ]B =



0
2
0


 .
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Therefore

[T ]B = [a1 a2 a3] =



0 1 0
0 0 2
0 0 0


 .

With this information, we can use Theorem 7.10 to compute the derivative of a poly-
nomial in P2.

Consider the polynomial p(x ) = 5 − 4x + 3x 2. Then

[p(x )]B =



5
−4

3


 .

By Theorem 7.10,

[p′(x )]B = [D(p(x )]B = [D]B[p(x )]B

=



0 1 0
0 0 2
0 0 0






5
−4

3




=



−4
6
0


 .

This vector is the coordinate vector of the polynomial −4 + 6x , which is the deriva-
tive of p(x ). Thus we can compute the derivative of a polynomial by evaluating a
matrix–vector product.

Practice Problem 2 � Let p(x ) = 2 − 3x + 5x2. Use the linear transformation T in Practice Problem 1 to
compute T (p(x )) in two ways—first by using the rule for T , and second by applying
Theorem 7.10. �

MATRIX REPRESENTATIONS OF INVERTIBLE LINEAR OPERATORS
As in Theorem 2.13, we can use matrix representations to derive a test for invertibility
of a linear operator on a finite-dimensional vector space and to obtain a method for
computing the inverse of an invertible operator.

Let T be a linear operator on a finite-dimensional vector space V with the basis
B, and let A = [T ]B.

First, suppose that T is invertible. Then TA = �BT�−1
B is a composition of iso-

morphisms and hence is invertible by the boxed result on page 508. Hence A is
invertible by Theorem 2.13. Conversely, suppose that A is invertible. Then TA is
invertible by Theorem 2.13, and hence T = �−1

B TA�B is also invertible by the boxed
result on page 508. Thus a linear operator is invertible if and only if any one of its
matrix representations is invertible.

When T is invertible, we can obtain a simple relationship between the matrix
representations of T and T−1 with respect to a basis B. Let C = [T−1]B. By definition,
TC = �BT−1�−1

B . Furthermore,

TA−1 = (TA)−1 = (�BT�−1
B )−1 = �BT−1�−1

B = TC .

Therefore C = A−1; that is, the matrix representation of T−1 is the inverse of the
matrix representation of T .
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We summarize these results as follows:

The Matrix Representation of an Invertible Linear Operator

Let T be a linear operator on a finite-dimensional vector space V with the basis
B, and let A = [T ]B.

(a) T is invertible if and only if A is invertible.

(b) If T is invertible, then [T−1]B = A−1.

Example 4 Find [D−1]B for the linear operator D and basis B in Example 2, and use it to find
an antiderivative of et sin t .

Solution In Example 2, we saw that

[D]B =
[

1 1
−1 1

]
.

Thus D is invertible because [D]B is invertible, and

[D−1]B = ([D]B)−1 =
[

1 1
−1 1

]−1

=
[

1
2 − 1

2
1
2

1
2

]
.

An antiderivative of et sin t equals D−1(et sin t). Since

[et sin t]B =
[
0
1

]
,

it follows that

[D−1(et sin t)]B =
[

1
2 − 1

2
1
2

1
2

][
0
1

]
=
[− 1

2
1
2

]
.

Thus D−1(et sin t) = (− 1
2 )et cos t + ( 1

2 )et sin t .

Practice Problem 3 � Let T be the linear transformation in Practice Problem 1. Show that T is invertible
and find a rule for its inverse. �

EIGENVALUES AND EIGENVECTORS
We now extend the definitions of eigenvector, eigenvalue, and eigenspace in Chapter 5
to general vector spaces.

Let T be a linear operator on a vector space V . A nonzero vector v in V is called
an eigenvector of T if there is a scalar λ such that T (v) = λv. The scalar λ is called
the eigenvalue of T corresponding to v. If λ is an eigenvalue of T , then the set of all
vectors v in V such that T (v) = λv is called the eigenspace of T corresponding to λ.
As in Rn , this eigenspace is the subspace of V consisting of the zero vector and all
the eigenvectors of T corresponding to λ. (See Exercise 49.)

Example 5 Let D : C∞ → C∞ be the linear operator in Example 2 of Section 7.2. Let λ be a
scalar, and let f be the exponential function f (t) = eλt . Then

D(f )(t) = (eλt )′ = λeλt = λf (t) = (λf )(t).

So D(f ) = λf , and therefore f is an eigenvector of D , and λ is the eigenvalue corre-
sponding to f . Since λ was chosen arbitrarily, we see that every scalar is an eigenvalue
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of D . Therefore D has infinitely many eigenvalues, in contrast to linear operators
on Rn .

Example 6 Let D be the derivative operator on C∞ in Example 2 of Section 7.2. Then D2 = DD
is also a linear operator on C∞, and D2(f ) = f ′′ for all f in C∞. Show that the solution
set of the differential equation

y ′′ + 4y = 0

coincides with the eigenspace of D 2 corresponding to the eigenvalue λ = −4.

Solution First, observe that the solutions of this differential equation lie in C∞.
For if f is a solution, then f must be twice differentiable, and f ′′ = −4f . Thus f ′′ is
also twice differentiable, and so f has four derivatives. We can now differentiate both
sides of this equation twice to find that f ′′′′ = −4f ′′, from which we can infer that the
fourth derivative of f is twice differentiable, and so f has six derivatives. Repetition
of this argument leads to the conclusion that f has derivatives of any order.

Since y ′′ = D2y , we can rewrite the given differential equation as

D2y = −4y .

But this last equation shows that y is in the eigenspace of D 2 corresponding to
the eigenvalue −4. Thus this eigenspace equals the solution set of the differential
equation.

Note that the functions sin 2t and cos 2t are solutions of this differential equation.
So they are also eigenvectors of D2 corresponding to the eigenvalue λ = −4.

We have defined a square matrix A to be symmetric if AT = A. We say that A is
skew-symmetric if AT = −A. Note that

[
0 1

−1 0

]

is a nonzero skew-symmetric matrix.

Example 7 Let U : Mn×n → Mn×n be the linear operator defined by U (A) = AT . We saw in
Section 7.2 that U is an isomorphism.

If A is a nonzero symmetric matrix, then U (A) = AT = A. Thus A is an eigenvec-
tor of U with λ = 1 as the corresponding eigenvalue, and the corresponding eigenspace
is the set of n × n symmetric matrices. In addition, if B is a nonzero skew-symmetric
matrix, then U (B ) = BT = −B . So B is an eigenvector of U with λ = −1 as the
corresponding eigenvalue, and the corresponding eigenspace is the set of all skew-
symmetric n × n matrices. It can be shown that 1 and −1 are the only eigenvalues
of U . (See Exercise 42.)

Finally, we apply Theorem 7.10 to analyze the eigenvalues and eigenvectors of
a linear operator T on a finite-dimensional vector space V with the basis B.

Suppose that v is an eigenvector of T with corresponding eigenvalue λ. Then
v �= 0, and hence [v]B �= 0. So, by Theorem 7.10,

[T ]B[v]B = [T (v)]B = [λv]B = λ[v]B,
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and therefore [v]B is an eigenvector of the matrix [T ]B with corresponding eigen-
value λ.

Conversely, suppose that w is an eigenvector in Rn of the matrix [T ]B with
corresponding eigenvalue λ. Let v = �−1

B (w), which is in V . Then [v]B = �B(v) = w.
Applying Theorem 7.10, we have

�B(T (v)) = [T (v)]B = [T ]B[v]B = λ[v]B = [λv]B = �B(λv).

Since �B is one-to-one, T (v) = λv. It follows that v is an eigenvector of T with
corresponding eigenvalue λ.

We summarize these results as follows, replacing �B(v) by [v]B:

Eigenvalues and Eigenvectors of a Matrix Representation of a Linear
Operator

Let T be a linear operator on a finite-dimensional vector space V with the basis
B, and let A = [T ]B. Then a vector v in V is an eigenvector of T with correspond-
ing eigenvalue λ if and only if [v]B is an eigenvector of A with corresponding
eigenvalue λ.

Example 8 Let T and B be as in Example 1. To find the eigenvalues and eigenvectors of T , let
A = [T ]B. From Example 1, we have that

A =



1 0 0
3 3 3
1 2 4


 .

As in Chapter 5, we find that the characteristic polynomial of A is −(t − 1)2(t − 6),
and so the eigenvalues of A, and hence of T , are 1 and 6. We now determine the
eigenspaces of T .

Eigenspace corresponding to the eigenvalue 1: The vector




0
−3

2




forms a basis for the eigenspace of A corresponding to λ = 1. Since this vector
is the coordinate vector of the polynomial p(x ) = −3x + 2x 2, the eigenspace of T
corresponding to the eigenvalue 1 equals Span {p(x )}.
Eigenspace corresponding to the eigenvalue 6: The vector




0
1
1




forms a basis for the eigenspace of A corresponding to λ = 6. Since this vector is the
coordinate vector of the polynomial q(x ) = x + x 2, the eigenspace of T corresponding
to the eigenvalue 6 equals Span {q(x )}.
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Example 9 Let U : M2×2 → M2×2 be the linear operator defined by U (A) = AT , which is a
special case of Example 7. We saw in that example that 1 and −1 are eigenvalues of
U . We now show that these are the only eigenvalues of U . Let

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

which is a basis for M2×2. Then

[U ]B =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

which has the characteristic polynomial (t − 1)3(t + 1). Therefore 1 and −1 are the
only eigenvalues of A, and we conclude that 1 and −1 are the only eigenvalues
of U .

Practice Problem 4 � Let T be the linear transformation in Practice Problem 1.

(a) Find the eigenvalues of T .

(b) For each eigenvalue λ of T , describe the eigenspace corresponding to λ. �

EXERCISES

In Exercises 1–8, a vector space V , a basis B for V , and a vector
u in V are given. Determine the coordinate vector of u relative
to B.

1. V = M2×2,

B =
{[

1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,

[
0 1
0 0

]}
,

and u is the matrix

[
1 2
3 4

]
.

2. V = P2, B = {x2, x , 1}, and u is the polynomial
2 + x − 3x2.

3. V = SpanB, where B = {cos2 t , sin2 t , sin t cos t}, and u
is the function sin 2t − cos 2t .

4. V = {u ∈ R3 : u1 − u2 + 2u3 = 0},

B =






1
1
0


 ,




−2
0
1




 , and u =




5
−1
−3


 .

5. V = {u ∈ R4 : u1 + u2 − u3 − u4 = 0},

B =







−1
1
0
0


 ,




1
0
1
0


 ,




1
0
0
1







, and u =




6
−3

2
1


 .

6. V = P3, B = {x3 − x2, x2 − x , x − 1, x3 + 1}, and u is
the polynomial 2x 3 − 5x2 + 3x − 2.

7. V is the vector space of all 2 × 2 matrices whose trace
equals 0,

B =
{[−1 0

0 1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
,

and u is the matrix

[
3 −2
1 −3

]
.

8. V is the vector space of all symmetric 2 × 2 matrices,

B =
{[

1 0
0 −1

]
,

[
1 0
0 2

]
,

[
1 1
1 1

]}
,

and u is the matrix

[
4 −1

−1 3

]
.

In Exercises 9–16, find the matrix representation [T ]B, where
T is a linear operator on the vector space V and B is a basis
for V .

9. B = {et , e2t , e3t }, V = SpanB, and T = D , the derivative
operator.

10. B = {et , tet , t2et }, V = SpanB, and T = D , the deriva-
tive operator.
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11. V = P2, B = {1, x , x2}, and

T (p(x )) = p(0) + 3p(1)x + p(2)x 2.

12. V = M2×2,

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

and T (A) =
[
1 2
3 2

]
A.

13. V = P3, B = {1, x , x2, x3}, and T (p(x )) = p ′(x ) − p ′′(x ).

14. V = P3, B = {1, x , x2, x3}, and

T (a + bx + cx2 + dx3) = d + cx + bx2 + ax3.

15. V = M2×2,

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

and T (A) = AT .

16. V is the vector space of symmetric 2 × 2 matrices,

B =
{[

1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]}
,

and T (A) = CAC T , where C =
[

1 2
−1 −2

]

17. Use the technique in Example 3 to find the derivatives of
the following polynomials:

(a) p(x ) = 6 − 4x 2

(b) p(x ) = 2 + 3x + 5x 2

(c) p(x ) = x 3

18. Use the technique in Example 4 to find an antiderivative
of et cos t .

19. Let B = {et , tet , t2et } be a basis for the subspace V of
C∞. Use the method in Example 4 to find antiderivatives
of the following functions:

(a) tet

(b) t2et

(c) 3et − 4tet + 2t2et

In Exercises 20–27, find the eigenvalues of T and a basis for
each of the corresponding eigenspaces.

20. Let T be the linear operator in Exercise 10.

21. Let T be the linear operator in Exercise 9.

22. Let T be the linear operator in Exercise 12.

23. Let T be the linear operator in Exercise 11.

24. Let T be the linear operator in Exercise 14.

25. Let T be the linear operator in Exercise 13.

26. Let T be the linear operator in Exercise 16.

27. Let T be the linear operator in Exercise 15.

In Exercises 28–39, determine whether the state-
ments are true or false.

28. Every linear operator has an eigenvalue.

29. Every linear operator can be represented by a matrix.

30. Every linear operator on a nonzero finite-dimensional vec-
tor space can be represented by a matrix.

31. For any positive integer n, taking the derivative of a
polynomial in Pn can be accomplished by matrix mul-
tiplication.

32. The inverse of an invertible linear operator on a finite-
dimensional vector space can be found by computing the
inverse of a matrix.

33. It is possible for a matrix to be an eigenvector of a linear
operator.

34. A linear operator on a vector space can have only a finite
number of eigenvalues.

35. For the linear operator U on Mn×n defined by U (A) =
AT , the eigenspace corresponding to the eigenvalue 1 is
the set of skew-symmetric matrices.

36. If T is a linear operator on a vector space with the basis
B = {v1, v2, . . . , vn}, then the matrix representation of T
with respect to B is the matrix [T (v1) T (v2) · · · T (vn )].

37. If T is a linear operator on a vector space with the
basis B = {v1, v2, . . . , vn}, then for any vector v in V ,
T (v) = [T ]Bv.

38. If T is a linear operator on a finite-dimensional vector
space V with the basis B, then a vector v in V is an
eigenvector of T corresponding to eigenvalue λ if and
only if [v]B is an eigenvector of [T ]B corresponding to
the eigenvalue λ.

39. Let V be an n-dimensional vector space and B be a basis
for V . Every linear operator on V is of the form �−1

B TA�B
for some n × n matrix A.

40. Let T be the operator D2 + D , where D is the derivative
operator on C∞.

(a) Show that 1 and e−t lie in the null space of T .

(b) Show that for any real number a, the function eat is
an eigenvector of T corresponding to the eigenvalue
a2 + a.

41. Let D be the derivative operator on P2.

(a) Find the eigenvalues of D .

(b) Find a basis for each of the corresponding eigen-
spaces.

42. Let U be the linear operator on Mn×n defined by U (A) =
AT . Prove that 1 and −1 are the only eigenvalues of A.
Hint: Suppose that A is a nonzero n × n matrix and λ is
a scalar such that AT = λA. Take the transpose of both
sides of this equation, and show that A = λ2A.

43. Let P denote the set of positive integers, and let
E : F(P ) → F(P ) be defined by E (f )(n) = f (n + 1).

(a) Prove that E is a linear operator on F(P ).
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(b) Since a sequence of real numbers is a function from
P to R, we may identify F(P ) with the space of
sequences. Recall the Fibonacci sequences defined in
Section 5.5. Prove that a nonzero sequence f is a
Fibonacci sequence if and only if f is an eigenvector
of E 2 − E with corresponding eigenvalue 1.

44. Let B be the basis for M2×2 given in Example 9, and let
T : M2×2 → M2×2 be defined by

T

([
a b
c d

])
=
[
b a + c
0 d

]
.

(a) Prove that T is linear.

(b) Determine the matrix representation [T ]B.

(c) Find the eigenvalues of T .

(d) Find a basis for each eigenspace.

45. For a given matrix B in M2×2, let T be the function on
M2×2 defined by T (A) = (trace(A))B .

(a) Prove that T is linear.

(b) Suppose that B is the basis for M2×2 given in

Example 9, and that B =
[
1 2
3 4

]
. Determine [T ]B.

(c) Prove that if A is a nonzero matrix whose trace is
zero, then A is an eigenvector of T .

(d) Prove that if A is an eigenvector of T with a cor-
responding nonzero eigenvalue, then A is a scalar
multiple of B .

46. Let B be an n × n matrix and T : Mn×n → Mn×n be the
function defined by T (A) = BA.

(a) Prove that T is linear.

(b) Prove that T is invertible if and only if B is invertible.

(c) Prove that a nonzero n × n matrix C is an eigenvec-
tor of T corresponding to the eigenvalue λ if and only
if λ is an eigenvalue of B and each column of C lies
in the eigenspace of B corresponding to λ.

47. Let B = {v1, v2, . . . , vn} be a basis for a vector space V .
Show that for any j , we have [vj ]B = ej , where ej is the
j th standard vector in Rn .

48. Let V be a finite-dimensional vector space with the basis
B. Prove that for any linear operators T and U on V ,

[UT ]B = [U ]B[T ]B.

Hint: Apply Theorem 7.10 to (UT )v and U (T (v)), where
v is an arbitrary vector in V .

49. Let T be a linear operator on a vector space V , and
suppose that λ is an eigenvalue of T . Prove that the
eigenspace of T corresponding to λ is a subspace of V
and consists of the zero vector and the eigenvectors of T
corresponding to λ.

The following definition of a diagonalizable linear opera-
tor is used in the next exercise. Compare this definition with the
definition given in Section 5.4.

Definition A linear operator on a finite-dimensional vector
space is diagonalizable if there is a basis for the vector space
consisting of eigenvectors of the operator.

50. Let T be a linear operator on a finite-dimensional vector
space V . Prove the following statements:

(a) T is diagonalizable if and only if there is a basis B
for V such that [T ]B is a diagonal matrix.

(b) T is diagonalizable if and only if, for any basis B,
[T ]B is a diagonalizable matrix.

(c) Prove that the linear operator U in Example 9 is diag-
onalizable.

The following definition of a matrix representation of a linear
transformation is used in Exercises 51–53:

Definition Let T : V → W be a linear transformation, where
V and W are finite-dimensional vector spaces, and let B =
{b1, b2, . . . , bn } and C be (ordered) bases for V and W , respec-
tively. The matrix

[ [T (b1)]C [T (b2)]C . . . [T (bn )]C ]

is called the matrix representation of T with respect to B
and C. It is denoted by [T ]CB.

51. Let v =
[
1
3

]
, and let T : M2×2 → R2 be defined by

T (A) = Av.

(a) Prove that T is a linear transformation.

(b) Let B be the basis for M2×2 given in Example 9, and
let C be the standard basis for R2. Find [T ]CB.

(c) Let B be the basis for M2×2 given in Example 9, and
let

D =
{[

1
1

]
,

[
1
2

]}
,

which is a basis for R2. Find [T ]DB .

52. Let T : V → W be a linear transformation, where V and
W are finite-dimensional vector spaces, and let B and C be
(ordered) bases for V and W , respectively. Prove the fol-
lowing results (parts (a) and (b) use the definitions given
on page 510):

(a) [sT ]CB = s[T ]CB for any scalar s .

(b) If U : V → W is linear, then

[T + U ]CB = [T ]CB + [U ]CB.

(c) [T (v)]C = [T ]CB[v]B for every vector v in V .

(d) Let U : W → Z be linear, where Z is a finite-
dimensional vector space, and let D be an (ordered)
basis for Z . Then

[UT ]DB = [U ]DC [T ]CB.

53. Let T : P2 → R2 be defined by T (f (x )) =
[
f (1)
f (2)

]
, let

B = {1, x , x2}, and let C = {e1, e2}, the standard basis for
R2.

(a) Prove that T is a linear transformation.

(b) Find [T ]CB.
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(c) Let f (x ) = a + bx + cx 2, for scalars a, b, and c.

(i) Compute T (f (x )) directly from the definition of
T . Then find [T (f (x )]C.

(ii) Find [f (x )]B, and then compute [T ]CB[f (x )]B.
Compare your results with your answer in (i).

In Exercises 54 and 55, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

54. Let T be the linear operator on P3 defined by

T (f (x )) = f (x ) + f ′(x ) + f ′′(x ) + f (0) + f (2)x 2.

(a) Determine the eigenvalues of T .

(b) Find a basis for P3 consisting of eigenvectors of T .

(c) For f (x ) = a0 + a1x + a2x2 + a3x3, find T−1(f (x )).

55. Let T be the linear operator on M2×2 defined by

T (A) =
[
1 2
3 4

]
A + 3AT

for all A in M2×2.

(a) Determine the eigenvalues of T .

(b) Find a basis for M2×2 consisting of eigenvectors
of T .

(c) For A =
[
a b
c d

]
, find T−1(A).

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) Let q(x ) and r(x ) be polynomials in P2, and let c be
a scalar. Then

T (q(x ) + r(x ))

= (x + 1)(q(x ) + r(x ))′ + (q(x ) + r(x ))

= (x + 1)(q ′(x ) + r ′(x )) + (q(x ) + r(x ))

= (x + 1)q ′(x ) + (x + 1)r ′(x ) + q(x ) + r(x )

= ((x + 1)q ′(x ) + q(x )) + ((x + 1)r ′(x ) + r(x ))

= T (q(x )) + T (r(x ))

and
T (cq(x )) = (x + 1)(cq(x ))′ + cq(x )

= c((x + 1)q ′(x ) + q(x ))

= cT (q(x )).

So T is linear.

(b) We have

T (1) = (x + 1)(0) + 1 = 1,

T (x ) = (x + 1)(1) + x = 1 + 2x ,

and
T (x2) = (x + 1)(2x ) + x 2 = 2x + 3x2.

Let B = {1, x , x2}. Then

[T (1)]B =



1
0
0


 , [T (x )]B =




1
2
0


 , and

[T (x2)]B =



0
2
3


 .

Therefore

[T ]B =



1 1 0
0 2 2
0 0 3


 .

2. Using the rule for T , we have

T (p(x )) = T (2 − 3x + 5x 2)

= (x + 1)(−3 + 10x )

+ (2 − 3x + 5x2)

= −1 + 4x + 15x 2.

Applying Theorem 7.10, we have

[T (2 − 3x + 5x 2)]B = [T ]B[2 − 3x + 5x 2]B

=



1 1 0
0 2 2
0 0 3






2
−3

5


 =




−1
4

15


 ,

and hence T (p(x )) = −1 + 4x + 15x 2.

3. The operator T is invertible because [T ]B is an invertible
matrix. To find the rule for T −1, we can use the result that
[T−1]B = [T ]−1

B . So

[T−1(a + bx + cx2)]B = [T−1]B




a
b
c




= [T ]−1
B




a
b
c




=




1 − 1
2

1
3

0 1
2 − 1

3

0 0 1
3







a
b
c




=




a − 1
2b + 1

3c
1
2b − 1

3c
1
3c


 .
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Therefore

T−1(a + bx + cx2)

= (a − 1
2b + 1

3c) + ( 1
2b − 1

3c)x + ( 1
3c)x2.

4. (a) The eigenvalues of T are the same as the eigenval-
ues of [T ]B. Since [T ]B is an upper triangular matrix,
its eigenvalues are its diagonal entries, that is, 1, 2,
and 3.

(b) Eigenspace corresponding to the eigenvalue 1: The
vector




1
0
0


 ,

which is the coordinate vector of the constant poly-
nomial 1, forms a basis for the eigenspace of [T ]B
corresponding to λ = 1. It follows that the multi-
ples of 1 (that is, the constant polynomials), form the
eigenspace of T corresponding to the eigenvalue 1.

Eigenspace corresponding to the eigenvalue 2: The

vector



1
1
0


 ,

which is the coordinate vector of the polynomial
1 + x , forms a basis for the eigenspace of [T ]B cor-
responding to λ = 2. Thus the eigenspace of T corre-
sponding to the eigenvalue 2 equals Span {1 + x}.
Eigenspace corresponding to the eigenvalue 3: The
vector




1
2
1


 ,

which is the coordinate vector of the polynomial
1 + 2x + x2, forms a basis for the eigenspace of [T ]B
corresponding to λ = 3. Thus the eigenspace of T cor-
responding to the eigenvalue 3 equals

Span {1 + 2x + x2}.

7.5 INNER PRODUCT SPACES

The dot product introduced in Chapter 6 provides a strong link between vectors and
matrices and the geometry of Rn . For example, we saw how the concept of dot product
leads to deep results about symmetric matrices.

In certain vector spaces, especially function spaces, there are scalar-valued prod-
ucts, called inner products, that share the important formal properties of dot products.
These inner products allow us to extend such concepts as distance and orthogonality
to vector spaces.

Definitions An inner product on a vector space V is a real-valued function that
assigns to any ordered pair of vectors u and v a scalar, denoted by 〈u, v〉, such that
for any vectors u, v, and w in V and any scalar a , the following axioms hold:

Axioms of an Inner Product
1. 〈u, u〉 > 0 if u �= 0
2. 〈u, v〉 = 〈v, u〉
3. 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉
4. 〈au, v〉 = a〈u, v〉

Suppose that 〈u, v〉 is an inner product on a vector space V . For any scalar r > 0,
defining 〈〈u, v〉〉 by 〈〈u, v〉〉 = r 〈u, v〉 gives another inner product on V . Thus there
can be infinitely many different inner products on a vector space. A vector space
endowed with a particular inner product is called an inner product space.

The dot product on Rn is an example of an inner product, where 〈u, v〉 = u � v
for u and v in Rn . Notice that the axioms of an inner product are verified for the dot
product in Theorem 6.1 on page 364.
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Many facts about dot products are valid for inner products. Often, a proof of a
result for inner product spaces requires little or no modification of the proof for the
dot product on Rn .

Example 1 presents a particularly important inner product on a function space.

Example 1 Let C([a , b]) denote the vector space of continuous real-valued functions defined on
the closed interval [a , b], which was described in Example 3 of Section 7.2. For f
and g in C([a , b]), let

〈f , g〉 =
∫ b

a
f (t)g(t) dt .

This definition determines an inner product on C([a , b]).
To verify axiom 1, let f be any nonzero function in C([a , b]). Then f 2 is a

nonnegative function that is continuous on [a , b]. Since f is nonzero, f 2(t) > 0 on
some interval [c, d ], where a < c < d < b. Thus

〈f , f 〉 =
∫ b

a
f 2(t) dt ≥

∫ d

c
f 2(t) dt > 0.

To verify axiom 2, let f and g be functions in C([a , b]). Then

〈f , g〉 =
∫ b

a
f (t)g(t) dt =

∫ b

a
g(t)f (t) dt = 〈g , f 〉 .

We leave the verifications of axioms 3 and 4 as exercises.

Our next example introduces the Frobenius inner product, an important example
of an inner product on Mn×n .

Example 2 For A and B in Mn×n , define

〈A, B〉 = trace(ABT ).

This definition determines an inner product, called the Frobenius3 inner product, on
Mn×n .

To verify axiom 1, let A be any nonzero matrix, and let C = AAT . Then

〈A, A〉 = trace(AAT ) = traceC

= c11 + c22 + · · · + cnn .

3 Ferdinand Georg Frobenius (1849–1917) was a German mathematician best known for his work in
group theory. His research combined results from the theory of algebraic equations, number theory,
and geometry. His representation theory for finite groups made important contributions to quantum
mechanics.
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Furthermore, for each i ,

cii = a2
i1 + a2

i2 + · · · + a2
in .

It follows that 〈A, A〉 is the sum of squares of all the entries of A. Since A �= O , it
follows that a2

ij > 0 for some i and j , and hence 〈A, A〉 > 0.
To verify axiom 2, let A and B be matrices in V . Then

〈A, B〉 = trace(ABT )

= trace(ABT )T

= trace(BAT )

= 〈B , A〉 .

We leave the verifications of axioms 3 and 4 as exercises.
It can be shown that the Frobenius inner product of two n × n matrices is simply

the sum of the products of their corresponding entries. (See Exercises 73 and 74.)
Thus the Frobenius inner product looks like an ordinary inner product in Rn2

, except
that the components are entries in a matrix. For example,

〈[
1 2
3 4

]
,

[
5 6
7 8

]〉
= 1 · 5 + 2 · 6 + 3 · 7 + 4 · 8 = 70.

As was done with the dot product on Rn , we can define the length of a vector
in an inner product space. For any vector v in an inner product space V , the norm
(length) of v, denoted by ‖v‖, is defined by

‖v‖ =
√

〈v, v〉 .

The distance between two vectors u and v in V is defined in the usual way as ‖u − v‖.
The norm of a vector depends, of course, on the specific inner product used. To

describe the norm defined in terms of a specific inner product, we may refer to the
norm induced by that inner product. For instance, the norm induced by the Frobenius
inner product on Mn×n in Example 2 is given by

‖A‖ =
√

〈A, A〉 =
√

trace(AAT ).

For obvious reasons, this norm is called the Frobenius norm.

Practice Problem 1 � Let A =
[
2 1
0 3

]
and B =

[
1 1
2 0

]
, matrices in M2×2. Use the Frobenius inner product

to compute ‖A‖2, ‖B‖2, and 〈A, B〉. �

As stated earlier, many of the elementary properties of dot products are also valid
for all inner products. In particular, all of the parts of Theorem 6.1 are valid for inner
product spaces. For example, the analog of Theorem 6.1(d) for inner products follows
from axioms 2 and 3 of inner products, since if u, v, and w are vectors in an inner
product space, then

〈u, v + w〉 = 〈v + w, u〉 (by axiom 2)

= 〈v, u〉 + 〈w, u〉 (by axiom 3)

= 〈u, v〉 + 〈u, w〉. (by axiom 2)
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The Cauchy–Schwarz inequality (Theorem 6.3 on page 368) and the triangle in-
equality (Theorem 6.4 on page 369) are also valid for all inner product spaces because
their proofs are based on the items of Theorem 6.1 that correspond to the axioms of an
inner product. Thus, in Example 1, we can obtain an inequality about the integrals of
functions in C([a , b]) by applying the Cauchy–Schwarz inequality and squaring both
sides:

[∫ b

a
f (t)g(t) dt

]2

≤
[∫ b

a
f 2(t) dt

] [∫ b

a
g2(t) dt

]

Here f and g are continuous functions on the closed interval [a , b].

Practice Problem 2 � Let f (t) = t and g(t) = t2 be vectors in the inner product space C([0, 1]) in Example 1.

(a) Compute ‖f ‖2, ‖g‖2, and 〈f , g〉.
(b) Verify that | 〈f , g〉 | ≤ ‖f ‖ � ‖g‖. �

ORTHOGONALITY AND THE GRAM-SCHMIDT PROCESS
Let V be an inner product space. As in Chapter 6, two vectors u and v in V are called
orthogonal if 〈u, v〉 = 0, and a subset S of V is said to be orthogonal if any two
distinct vectors in S are orthogonal. Again, a vector u in V is called a unit vector
if ‖u‖ = 1, and a subset S of V is called orthonormal if S is an orthogonal set and

every vector in S is a unit vector. For any nonzero vector v, the unit vector
1

‖v‖v,

which is a scalar multiple of v, is called its normalized vector. If S is an orthogonal

set of nonzero vectors, then replacing every vector in S by its normalized vector
results in an orthonormal set whose span is the same as S .

It was shown in Section 6.2 that any finite orthogonal set of nonzero vectors is
linearly independent (Theorem 6.5 on page 375). This result is valid for any inner
product space, and the proof is identical. Furthermore, we can show that this result is
also valid for infinite orthogonal sets. (See Exercise 76.)

Example 3 Let f (t) = sin 3t and g(t) = cos 2t be defined on the closed interval [0, 2π ]. Then f
and g are functions in the inner product space C([0, 2π ]) of Example 1. Show that f
and g are orthogonal.

Solution We apply the trigonometric identity

sinα cosβ = 1

2
[sin(α + β) + sin(α − β)]

with α = 3t and β = 2t to obtain

〈f , g〉 =
∫ 2π

0
sin 3t cos 2t dt

= 1

2

∫ 2π

0
[sin 5t + sin t] dt

= 1

2

[
−1

5
cos 5t − cos t

]∣∣∣∣
2π

0

= 0.

Hence f and g are orthogonal.
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Example 4 Recall the vector space of trigonometric polynomials T [0, 2π ] defined on page 498.
This function space is defined as the span of

S = {1, cos t , sin t , cos 2t , sin 2t , . . . , cos nt , sin nt , . . .},
a set of trigonometric functions defined on [0, 2π ]. So T [0, 2π ] is a subspace of
C([0, 2π ]) and is an inner product space with the same inner product as Example 3.

To show any two distinct functions f and g in S are orthogonal, there are several
cases to consider.

If f (t) = 1 and g(t) = cos nt for some positive integer n , then

〈f , g〉 =
∫ 2π

0
cos nt dt = 1

n
sin nt

∣∣∣∣
2π

0
= 0.

In a similar manner, if f (t) = sinmt and g(t) = 1, then 〈f , g〉 = 0.
If f (t) = sin mt and g(t) = cos nt for positive integers m and n , we can apply the

trigonometric identity in Example 3 to find that 〈f , g〉 = 0. The other two cases are
treated in the exercises. (See Exercises 58 and 59.)

So S is an orthogonal set. Since S consists of nonzero functions, S is lin-
early independent and hence is a basis for T [0, 2π ]. It follows that T [0, 2π ] is an
infinite-dimensional vector space.

In Section 6.2, we saw that the Gram–Schmidt process (Theorem 6.6 on page 378)
converts a linearly independent subset of Rn into an orthogonal set. It is also valid for
any inner product space, and its justification is identical to the proof of Theorem 6.6.
So we can use the Gram–Schmidt process to replace an arbitrary basis for a finite-
dimensional inner product space with an orthogonal or an orthonormal basis. It follows
that every finite-dimensional inner product space has an orthonormal basis.

For convenience, we restate Theorem 6.6 in the context of general vector spaces.

The Gram-Schmidt Process

Let {u1, u2, . . . , uk } be a basis for an inner product space V . Define

v1 = u1,

v2 = u2 − u2 � v1

‖v1‖2
v1,

v3 = u3 − u3 � v1

‖v1‖2
v1 − u3 � v2

‖v2‖2
v2,

...

vk = uk − uk � v1

‖v1‖2
v1 − uk � v2

‖v2‖2
v2 − · · · − uk � vk−1

‖vk−1‖2
vk−1.

Then {v1, v2, . . . , vi } is an orthogonal set of nonzero vectors such that

Span {v1, v2, . . . , vi } = Span {u1, u2, . . . , ui }

for each i . So {v1, v2, . . . , vk } is an orthogonal basis for V .
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Example 5 Define an inner product on P2 by

〈f (x ), g(x )〉 =
∫ 1

−1
f (t)g(t) dt

for all polynomials f (x ) and g(x ) in P2. (It can be verified that this does indeed
define an inner product on P2. See, for example, the argument in Example 1.) Use the
Gram–Schmidt process to convert the basis {1, x , x 2} into an orthogonal basis for P2.
Then normalize the vectors of this orthogonal basis to obtain an orthonormal basis
for P2.

Solution Using the notation of Theorem 6.6, we let u1 = 1, u2 = x , and u3 = x 2.
Then

v1 = u1 = 1,

v2 = u2 − 〈u2, v1〉
‖v1‖2

v1 = x −

∫ 1

−1
t � 1 dt

∫ 1

−1
12 dt

(1) = x − 0 � 1 = x ,

and

v3 = u3 − 〈u3, v1〉
‖v1‖2

v1 − 〈u3, v2〉
‖v2‖2

v2

= x 2 −

∫ 1

−1
t2 � 1 dt

∫ 1

−1
12 dt

(1) −

∫ 1

−1
t2 � t dt

∫ 1

−1
t2 dt

(x )

= x 2 −
( 2

3

)

2
� 1 − 0 � x

= x 2 − 1

3
.

Thus the set {1, x , x 2 − 1
3 } is an orthogonal basis for P2.

Next we normalize each vector in this set to obtain an orthonormal basis for P2.
Since

‖v1‖ =
√∫ 1

−1
12 dx =

√
2 ,

‖v2‖ =
√∫ 1

−1
x 2 dx =

√
2

3
,

and

‖v3‖ =
√∫ 1

−1

(
x 2 − 1

3

)2

dx =
√

8

45
,

the desired orthonormal basis for P2 is
{

1

‖v1‖v1,
1

‖v2‖v2,
1

‖v3‖v3

}
=
{

1√
2
,

√
3

2
x ,

√
45

8

(
x 2 − 1

3

)}
.
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The method in this example extends to Pn for any positive integer n by using
the same inner product and choosing {1, x , . . . , x n} as the initial basis. As the Gram–
Schmidt process is applied to polynomials of higher degree, the polynomials of lower
degree remain unchanged. Thus we obtain an infinite sequence of polynomials p0(x ),
p1(x ), . . . , pn(x ), . . . such that, for any n , the first n + 1 polynomials in the sequence
form an orthonormal basis for Pn . These polynomials, called the normalized Legen-
dre4 polynomials, form an orthonormal basis for the infinite-dimensional vector space
P . They have applications to differential equations, statistics, and numerical analysis.
In Example 5, we computed the first three normalized Legendre polynomials.

ORTHOGONAL PROJECTIONS AND LEAST-SQUARES APPROXIMATION
In an inner product space V , we define (as in Section 6.3) the orthogonal complement
of a set S to be the set S ⊥ consisting of all vectors in V that are orthogonal to every
vector in S . Just as in Rn , it is easy to prove that S ⊥ is a subspace of V .

Suppose that V is an inner product space and that W is a finite-dimensional
subspace of V with the orthonormal basis B = {v1, v2, . . . , vn}. Because the proof of
Theorem 6.7 on page 392 applies directly to this context, we assume the result here.
Thus, for any vector v in V , there exist unique vectors w in W and z in W ⊥ such
that v = w + z. Furthermore,

w = 〈v, v1〉 v1 + 〈v, v2〉 v2 + · · · + 〈v, vn〉 vn . (2)

The vector w is called the orthogonal projection of v on W . In equation (2), the
representation for w is independent of the choice of the orthonormal basis B because
the orthogonal projection w is unique.

Of particular interest to us is the closest vector property of orthogonal projections,
which is stated and justified on page 397 for subspaces of Rn . The property easily
extends to finite-dimensional subspaces of inner product spaces:

Closest Vector Property

Let W be a finite-dimensional subspace of an inner product space V and u be a
vector in V . Among all vectors in W , the vector closest to u is the orthogonal
projection of u on W .

If the inner product space V is a function space, then the closest vector property
can be used to express the best approximation to a function in V as a linear combina-
tion of some specified finite set of functions. Here, “best” means nearest, as measured
by the distance between two functions in V . In the examples that follow, we illustrate
the use of an orthogonal projection to approximate a function. In this context, the
orthogonal projection is called the least-squares approximation of the function.

Example 6 Find the least-squares approximation to the function f (x ) = 3
√

x in C([−1, 1]) as a
polynomial of degree less than or equal to 2.

Solution We may view the polynomials in P2 as functions and, restricting their
domains to [−1, 1], we see that they form a finite-dimensional subspace of C([−1, 1]).

4 Adrien Marie Legendre (1752–1833) was a French mathematician who taught at the École Militaire and
the École Normale in Paris. He is best known for his research on elliptic functions, but he also produced
important results in number theory such as the law of quadratic reciprocity. His paper Nouvelles méthodes
pour la détermination des orbites des comètes contained the first mention of the method of least squares.
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Then the required least-squares approximation to f is the orthogonal projection of
f on P2. We apply equation (2) with w = f and with the vi ’s as the vectors of the
orthonormal basis for P2 obtained in Example 5. So we set

v1 = 1√
2
, v2 =

√
3

2
x , and v3 =

√
45

8

(
x 2 − 1

3

)

and compute

w = 〈v, v1〉 v1 + 〈v, v2〉 v2 + 〈v, v3〉 v3

=
(∫ 1

−1

3
√

x �

1√
2
dx

)
1√
2

+
(∫ 1

−1

3
√

x �

√
3

2
x dx

)√
3

2
x

+
(∫ 1

−1

3
√

x �

√
45

8

(
x 2 − 1

3

)
dx

)√
45

8

(
x 2 − 1

3

)

= 0 �

1√
2

+ 6

7

√
3

2

√
3

2
x + 0 �

√
45

8

(
x 2 − 1

3

)

= 9

7
x .

Thus the function g(x ) = 9
7x , which is the orthogonal projection of f (x ) = 3

√
x on P2

with respect to the inner product used here, is the least-squares approximation of f
as a linear combination of 1, x , and x 2. This means that for any polynomial p(x ) of
degree less than or equal to 2, if p(x ) �= g(x ), then

‖f − p‖ > ‖f − g‖.

(See Figure 7.3.)

y

x

1�1

y � �x9 
7

y �    x3

Figure 7.3 The orthogonal projection of f (x) = 3
√

x on P2

APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS
A function y = f (t) is called periodic of period p if f (t + p) = f (t) for all t . Periodic
functions are used to model phenomena that regularly repeat. An example of this is
a vibration that generates a sound at a specific pitch or frequency. The frequency is
the number of vibrations per unit of time, usually measured in seconds. In this case,
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we can define a function f of time t so that f (t) is the relative pressure caused by the
sound at time t at some particular location, such as the diaphragm of a microphone.
For example, a musical instrument that plays a sustained note of middle C vibrates
at the rate of 256 cycles per second. The length of one cycle, therefore, is 1

256 of a
second. So the function f associated with this sound has a period of 1

256 seconds; that
is, f (t + 1

256 ) = f (t) for all t .
We can use orthogonal projections to obtain least-squares approximations of peri-

odic functions by trigonometric polynomials. Suppose that y = f (t) is a continuous
periodic function. To simplify matters, we adjust the units of t so that f has period
2π . Then we may regard f and all trigonometric polynomials as continuous functions
on [0, 2π ], that is, as vectors in C([0, 2π ]). The least-squares approximations of f of
interest are the orthogonal projections of f on particular finite-dimensional subspaces
of trigonometric polynomials.

For each positive integer n , let

Sn = {1, cos t , sin t , cos 2t , sin 2t , . . . , cos nt , sin nt}.

Then SpanSn is a finite-dimensional subspace of trigonometric polynomials, which
we denote by Wn . Furthermore, Sn is an orthogonal set, as we saw in Example 4.
We can normalize each function in Sn to obtain an orthonormal basis for Wn , which
can be used to compute the orthogonal projection of f on Wn . For this purpose, we
compute the norms of the functions in Sn as

‖1‖ =
√∫ 2π

0
1 dt =

√
2π ,

and for each positive integer k ,

‖ cos kt‖ =
√∫ 2π

0
cos2 kt dt

=
√

1

2

∫ 2π

0
(1 + cos 2kt) dt

=
√

1

2

(
t + 1

2k
sin 2kt

)∣∣∣∣
2π

0

= √
π.

Similarly, ‖ sin kt‖ = √
π for every positive integer k . If we normalize each function

in Sn , we obtain the orthonormal basis

Bn =
{

1√
2π

,
1√
π

cos t ,
1√
π

sin t ,
1√
π

cos 2t ,
1√
π

sin 2t , . . . ,
1√
π

cos nt ,
1√
π

sin nt

}

for Wn . We can use Bn to compute the orthogonal projection of f on Wn to obtain
its least-squares approximation, as described earlier in this section. The following
example illustrates this approach:

Example 7 Sounds are detected by our ears or by a device such as a microphone that measures
fluctuations in pressure as a function of time. The graph of such a function gives us
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period

pressure

period
time

Figure 7.4 A sawtooth tone

visual information about the sound. Consider a sound at a specific frequency whose
graph is in the shape of sawteeth. (See Figure 7.4.) To simplify our computations,
we adjust the units of time and relative pressure so that the function describing the
relative pressure has period 2π and varies between 1 and −1. Furthermore, we select
t = 0 at a maximum value of the relative pressure. Thus we obtain the function f in
C([0, 2π ]) defined by

f (t) =




1 − 2

π
t if 0 ≤ t ≤ π

2

π
t − 3 if π ≤ t ≤ 2π.

(See Figure 7.5.)

1

�1

f (t)

� 2�

t

3� 
2

� 
2

PERIOD

Figure 7.5 One period of the sawtooth tone

For each positive integer n , let fn be the orthogonal projection of f on Wn . We
can compute fn by equation (2) in conjunction with the orthonormal basis Bn :

fn =
〈
f , 1√

2π

〉
1√
2π

+
〈
f , 1√

π
cos t

〉
1√
π

cos t +
〈
f , 1√

π
sin t

〉
1√
π

sin t + · · ·

+
〈
f , 1√

π
cos nt

〉
1√
π

cos nt +
〈
f , 1√

π
sin nt

〉
1√
π

sin nt
(3)

To find fn , we must calculate the inner products in equation (3). First,

〈
f ,

1√
2π

〉
= 1√

2π

∫ π

0

(
1 − 2

π
t

)
dt + 1√

2π

∫ 2π

π

(
2

π
t − 3

)
dt

= 0 + 0

= 0.
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Next, for each positive integer k , we use integration by parts to compute

〈
f ,

1√
π

cos kt

〉
= 1√

π

∫ π

0

(
1 − 2

π
t

)
cos kt dt + 1√

π

∫ 2π

π

(
2

π
t − 3

)
cos kt dt

= 1√
π

[−2(−1)k

πk 2
+ 2

πk 2

]
+ 1√

π

[
2

πk 2
− −2(−1)k

πk 2

]

= 4

π
√

πk 2
(1 − (−1)k )

=




4

π
√

πk 2
if k is odd

0 if k is even.

Finally, a similar calculation shows that

〈
f ,

1√
π

sin kt

〉
= 0 for every positive integer k .

In view of the fact that
〈
f , 1√

π
cos kt

〉
=
〈
f , 1√

π
sin kt

〉
= 0 for even integers k , we

need to compute fn only for odd values of n . Substituting into equation (3) the inner
products computed previously, we obtain, for every odd positive integer n ,

fn (t) = 8

π2

[
cos t

12
+ cos 3t

32
+ · · · + cos nt

n2

]
.

1

t

t

t

t

�1

The graph of the sawtooth tone

1

�1

The graph of f5

1

�1

The graph of  f1

1

�1

The graph of  f15

� 2�3� 
2

� 
2

� 2�3� 
2

� 
2

� 2�3� 
2

� 
2

� 2�3� 
2

� 
2

Figure 7.6 f and 3 least-squares approximations of f

Figure 7.6 allows us to compare the graphs of f with three least-squares approxi-
mations, f1, f5, and f15, obtained by taking orthogonal projections of f on W1, W5, and
W15, respectively. Notice that as n increases, the graph of fn more closely resembles
the graph of f .

414



7.5 Inner Product Spaces 543

Simple electronic circuits can be designed to generate alternating currents described
by functions of the form cos kt and sin kt . These currents can be combined with a
simple direct current (corresponding to a constant function) to produce a current that
describes any chosen trigonometric polynomial. This current can be fed to an audio
amplifier to produce an audible tone that approximates a given tone, such as the sawtooth
tone of Example 7. Electronic devices called synthesizers do exactly this. Least-squares
approximations of musical tones produced on different instruments such as violins and
clarinets can be computed, and synthesizers can then use this information to produce
sounds that convincingly mimic these instruments.

An area of mathematics called Fourier5analysis is concerned with the study of
periodic functions, including many that are not continuous, and their approximations
by trigonometric polynomials.

Practice Problem 3 � Let W be the subset of M2×2 consisting of the 2 × 2 matrices A such that trace(A) = 0,

and let B =
[
1 2
3 5

]
. Find the matrix in W that is closest to B , where distance is

defined by using the Frobenius inner product on M2×2. �

EXERCISES

In Exercises 1–8, use the inner product in Example 1 for C([1, 2])
to compute each 〈f , g〉.

1. f (t ) = t 3 and g(t ) = 1

2. f (t ) = 2t and g(t ) = t − 1

3. f (t ) = t and g(t ) = t 2 + 1

4. f (t ) = t 2 and g(t ) = t 2

5. f (t ) = t 3 and g(t ) = t 2

6. f (t ) = t 2 and g(t ) = 1

t
7. f (t ) = t and g(t ) = et

8. f (t ) = t 2 and g(t ) = et

In Exercises 9–16, use the Frobenius inner product for M2×2

to compute each 〈A, B〉.

9. A =
[
5 0
0 5

]
and B =

[
1 2
3 4

]

10. A =
[
1 0
0 2

]
and B =

[
2 3
1 0

]

11. A =
[
1 −1
2 3

]
and B =

[
2 4
1 0

]

12. A =
[

0 5
−2 0

]
and B =

[
1 3
2 4

]

13. A =
[−1 2

0 4

]
and B =

[
3 2
1 −1

]

14. A =
[
0 −2
3 0

]
and B =

[
2 −1
1 0

]

15. A =
[
3 2
1 −1

]
and B =

[−1 2
0 4

]

16. A =
[

3 −2
−1 1

]
and B =

[
3 −2

−1 1

]

In Exercises 17–24, use the inner product for P2 in Example 5
to compute each 〈f (x ), g(x )〉.
17. f (x ) = 3 and g(x ) = −x + 2

18. f (x ) = x and g(x ) = 2x + 1

19. f (x ) = x 2 − 2 and g(x ) = 3x + 5

20. f (x ) = x + 1 and g(x ) = x − 1

21. f (x ) = x 2 + 1 and g(x ) = x

22. f (x ) = x + 1 and g(x ) = x 2

23. f (x ) = x 2 + 1 and g(x ) = x − 1

24. f (x ) = x 2 − 1 and g(x ) = x 2 + 2

In Exercises 25–44, determine whether the state-
ments are true or false.

25. The inner product of two vectors in an inner product space
is a vector in the same inner product space.

26. An inner product is a real-valued function on the set of
ordered pairs of vectors in a vector space.

27. An inner product on a vector space V is a linear operator
on V .

28. There can be at most one inner product on a vector space.

29. Every nonzero finite-dimensional inner product space has
an orthonormal basis.

5 Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician and professor of analysis at the
École Polytechnique in Paris. His Théorie analytique de la chaleur (1822) was an important contribution to
physics (to problems involving the radiation of heat) and to mathematics (to the development of what
are now called Fourier or trigonometric series). In 1798, he was appointed governor of Lower Egypt by
Napoleon.
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30. Every orthogonal set in an inner product space is linearly
independent.

31. Every orthonormal set in an inner product space is linearly
independent.

32. It is possible to define an inner product on the set of n × n
matrices.

33. The dot product is a special case of an inner product.

34. The definite integral can be used to define an inner product
on P2.

35. The indefinite integral can be used to define an inner prod-
uct on P2.

36. In an inner product space, the orthogonal projection of a
vector v on a finite-dimensional subspace W is the vector
in W that is closest to v.

37. In an inner product space, 〈v, v〉 = 0 if and only if v = 0.

38. In an inner product space, the norm of a vector v equals
〈v, v〉.

39. In an inner product space, if 〈u, v〉 = 〈u, w〉 for some vec-
tor u, then v = w.

40. The Frobenius inner product on Mm×n is defined by
〈A, B〉 = trace(AB ).

41. In an inner product space, the distance between vectors u
and v is defined to be ‖u − v‖.

42. If W is a finite-dimensional subspace of an inner prod-
uct space V , then every vector v in V can be written as
w + z, where w is in W and z is in W ⊥.

43. The normalized Legendre polynomials are the polynomi-
als obtained by applying the Gram–Schmidt process to
{1, x , x2, . . .}.

44. If B = {v1, v2, . . . , vn} is a basis for a subspace W of an
inner product space V , then the orthogonal projection of
u on W is the vector

〈u, v1〉 v1 + 〈u, v2〉 v2 + · · · + 〈u, vn〉 vn .

45. In Example 1, verify axioms 3 and 4 of the definition of
inner product.

46. In Example 2, verify axioms 3 and 4 of the definition of
inner product.

47. Let V be a finite-dimensional vector space and B be a
basis for V . For u and v in V , define

〈u, v〉 = [u]B � [v]B.

Prove that this rule defines an inner product on V .

48. Let A be an n × n invertible matrix. For u and v in Rn ,
define

〈u, v〉 = (Au) � (Av).

Prove that this rule defines an inner product on Rn .

49. Let A be an n × n positive definite matrix (as defined in
the exercises of Section 6.6). For u and v in Rn , define

〈u, v〉 = (Au) � v.

Prove that this rule defines an inner product on Rn .

In Exercises 50–57, a vector space V and a rule are given.
Determine whether the rule defines an inner product on V . Jus-
tify your answer.

50. V = Rn and 〈u, v〉 = |u � v|
51. V = Rn and 〈u, v〉 = 2(u � v)

52. V = R2, D =
[
3 0
0 2

]
, and 〈u, v〉 = (Du) � v

53. Let V = C([0, 2]), and

〈f , g〉 =
∫ 1

0
f (t )g(t ) dt

for all f and g in V . (Note that the limits of integration
are not 0 and 2.)

54. V = Rn and 〈u, v〉 = −2(u � v)

55. Let V be any vector space on which two inner products
〈u, v〉1 and 〈u, v〉2 are defined for u and v in V . Define
〈u, v〉 by

〈u, v〉 = 〈u, v〉1 + 〈u, v〉2 .

56. Let V be any vector space on which two inner products
〈u, v〉1 and 〈u, v〉2 are defined for u and v in V . Define
〈u, v〉 by

〈u, v〉 = 〈u, v〉1 − 〈u, v〉2 .

57. Let V be any vector space on which two inner products
〈u, v〉1 and 〈u, v〉2 are defined for u and v in V . Define
〈u, v〉 by

〈u, v〉 = a 〈u, v〉1 + b 〈u, v〉2 ,

where a and b are positive real numbers.

58. Use the inner product in Example 4 to prove that sinmt
and sin nt are orthogonal for any two distinct integers m
and n. Hint: Use the trigonometric identity

sin a sin b = cos (a + b) − cos (a − b)

2
.

59. Use the inner product in Example 4 to prove that cos mt
and cos nt are orthogonal for any two distinct integers m
and n. Hint: Use the trigonometric identity

cos a cos b = cos (a + b) + cos (a − b)

2
.

60. (a) Use the methods of Example 5 to obtain p3(x ), the
normalized Legendre polynomial of degree 3.

(b) Use the result of (a) to find the least-squares approx-
imation of 3√x on [−1, 1] as a polynomial of degree
less than or equal to 3.

61. Find an orthogonal basis for the subspace C([0, 1]) in
Example 1 having the generating set {1, et , e−t }.

62. Suppose that 〈u, v〉 is an inner product for a vector space
V . For any scalar r > 0, define 〈〈u, v〉〉 = r 〈u, v〉.
(a) Prove that 〈〈u, v〉〉 is an inner product on V .

(b) Why is 〈〈u, v〉〉 not an inner product if r ≤ 0?

In Exercises 63–70, let u, v, and w be vectors in an inner product
space V , and let c be a scalar.

63. Prove that ‖v‖ = 0 if and only if v = 0.

64. Prove that ‖cv‖ = |c|‖v‖.

65. Prove that 〈0, u〉 = 〈u, 0〉 = 0.

66. Prove that 〈u − w, v〉 = 〈u, v〉 − 〈w, v〉.
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67. Prove that 〈v, u − w〉 = 〈v, u〉 − 〈v, w〉.
68. Prove that 〈u, cv〉 = c 〈u, v〉.
69. Prove that if 〈u, w〉 = 0 for all u in V , then w = 0.

70. Prove that if 〈u, v〉 = 〈u, w〉 for all u in V , then v = w.

71. Let V be a finite-dimensional inner product space, and
suppose that B is an orthonormal basis for V . Prove that,
for any vectors u and v in V ,

〈u, v〉 = [u]B � [v]B.

72. Prove that if A is an n × n symmetric matrix and B is an
n × n skew-symmetric matrix, then A and B are orthog-
onal with respect to the Frobenius inner product.

73. Prove that if A and B are 2 × 2 matrices, then the Frobe-
nius inner product 〈A, B〉 can be computed as

〈A, B〉 = a11b11 + a12b12 + a21b21 + a22b22.

74. Extend Exercise 73 to the general case. That is, prove that
if A and B are n × n matrices, then the Frobenius inner
product 〈A, B〉 can be computed as

〈A, B〉 = a11b11 + a12b12 + · · · + annbnn .

75. Consider the inner product space M2×2 with the Frobe-
nius inner product.

(a) Find an orthonormal basis for the subspace of 2 × 2
symmetric matrices.

(b) Use (a) to find the 2 × 2 symmetric matrix that is
closest to

[
1 2
4 8

]
.

76. Prove that if B is an infinite orthogonal subset of nonzero
vectors in an inner product space V , then B is a linearly
independent subset of V .

77. Prove that if {u, v} is a linearly dependent subset of an
inner product space, then 〈u, v〉2 = 〈u, u〉 〈v, v〉.

78. Prove the converse of Exercise 77: If u and v are vectors
in an inner product space and 〈u, v〉2 = 〈u, u〉 〈v, v〉, then
{u, v} is a linearly dependent set. Hint: Suppose that u
and v are nonzero vectors. Show that

∥∥∥∥v − 〈u, v〉
〈u, u〉u

∥∥∥∥ = 0.

79. Let V be an inner product space and u be a vector in V .
Define Fu : V → R by

Fu(v) = 〈v, u〉

for all v in V . Prove that Fu is a linear transformation.

80. Prove the converse of Exercise 79 for finite-dimensional
inner product spaces: If V is a finite-dimensional inner
product space and T : V → R is a linear transformation,
then there exists a unique vector u in V such that T = Fu.
Hint: Let {v1, v2, . . . , vn} be an orthonormal basis for V ,
and let

u = T (v1)v1 + T (v2)v2 + · · · + T (vn )vn .

81. (a) Prove that BT B is positive definite (as defined in the
exercises of Section 6.6) for any invertible matrix B .

(b) Use (a) and Exercise 71 to prove the converse of
Exercise 49: For any inner product on Rn , there exists
a positive definite matrix A such that

〈u, v〉 = (Au) � v

for all vectors u and v in Rn .

The following definitions are used in Exercises 82 and 83:

Definition A linear transformation T : V → W is called a lin-
ear isometry if T is an isomorphism and 〈T (u),T (v)〉 = 〈u, v〉
for every u and v in V . The inner product spaces V and W are
called isometric if there exists a linear isometry from V to W .

82. Let V , W , and Z be inner product spaces. Prove the fol-
lowing statements:

(a) V is isometric to itself.

(b) If V is isometric to W , then W is isometric to V .

(c) If V is isometric to W and W is isometric to Z , then
V is isometric to Z .

83. Let V be an n-dimensional inner product space.

(a) Prove that, for any orthonormal basis B of V , the lin-
ear transformation �B : V → Rn defined by �B(v) =
[v]B is a linear isometry. Thus every n-dimensional
inner product space is isometric to Rn .

(b) Consider the inner product space Mn×n with the
Frobenius inner product. For A in Mn×n , define

T (A) =




a11

a12
..
.

a1n
...

an1
.
..

ann




.

Use (a) to prove that T : Mn×n → Rn2
is a linear

isometry.

84. Let {w1, w2, . . . , wn } be an orthonormal basis for a sub-
space W of an inner product space. Prove that, for any
vector v in W,

v = 〈v, w1〉w1 + 〈v, w2〉 w2 + · · · + 〈v, wn 〉 wn .
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85. Let {w1, w2, . . . , wn } be an orthonormal basis for a sub-
space W of an inner product space. Prove that, for any
vectors u and v in W , we have

u + v

= (〈u, w1〉 + 〈v, w1〉)w1 + · · · + (〈u, wn 〉 + 〈v, wn〉)wn .

86. Let {w1, w2, . . . , wn } be an orthonormal basis for a sub-
space W of an inner product space. Prove that, for any
vectors u and v in W , we have

〈u, v〉 = 〈u, w1〉 〈v, w1〉 + 〈u, w2〉 〈v, w2〉 + · · ·
+ 〈u, wn 〉 〈v, wn 〉 .

87. Let W be the 1-dimensional subspace Span {In } of Mn×n .
That is, W is the set of all n × n scalar matrices.
(See Exercise 85(c) of Section 2.4.) Prove that, for any
n × n matrix A, the matrix in W that is nearest to A is(

trace(A)
n

)
In , where distance is defined by using the Frobe-

nius inner product on Mn×n .

In Exercise 88, use either a calculator with matrix capabilities
or computer software such as MATLAB to solve the problem.

88. Let

A =




25 24 23 22 21
20 19 18 17 16
15 14 13 12 11
10 9 8 7 6
5 4 3 2 1




and

B =




1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25




.

Find the matrix in the 1-dimensional subspace Span {A}
that is nearest to B , where distance is defined by using
the Frobenius inner product on M5×5.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. ‖A‖2 = trace(AAT ) = trace

([
2 1
0 3

] [
2 1
0 3

]T
)

= trace

([
2 1
0 3

] [
2 0
1 3

])
= trace

([
5 3
3 9

])

= 14

‖B‖2 = trace(BBT ) = trace

([
1 1
2 0

] [
1 1
2 0

]T
)

= trace

([
1 1
2 0

] [
1 2
1 0

])
= trace

([
2 2
2 4

])

= 6

〈A, B〉 = trace(ABT ) = trace

([
2 1
0 3

] [
1 1
2 0

]T
)

= trace

([
2 1
0 3

] [
1 2
1 0

])
= trace

([
3 4
3 0

])

= 3

2. (a) ‖f ‖2 = 〈f , f 〉 = ∫ 1
0 f (t ) � f (t ) dt = ∫ 1

0 t2 dt

= 1
3 t3

∣∣1
0 = 1

3

‖g‖2 = 〈g , g〉 = ∫ 1
0 g(t ) � g(t ) dt = ∫ 1

0 t5 dt

= 1
5 t5

∣∣1
0 = 1

5

〈f , g〉 = ∫ 1
0 t � t2 dt = ∫ 1

0 t3 dt = 1
4 t4

∣∣1
0 = 1

4

(b) Observe that 1
4 ≤ 1√

3
�

1√
5
.

3. The set W is a subspace of M2×2 by Example 6 of
Section 7.1, and hence the desired matrix A is the orthog-
onal projection of B on W . Since

{A1, A2, A3} =
{

1√
2

[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

is an orthonormal basis for W , we can apply equation (2)
to obtain the orthogonal projection. For this purpose,
observe that

〈B , A1〉 = trace(BAT
1 ) = trace

([
1 2
3 5

]
1√
2

[
1 0
0 −1

]T
)

= − 4√
2
.

Similarly,

〈B , A2〉 = 2 and 〈B , A3〉 = 3.

Therefore

A = 〈B , A1〉A1 + 〈B , A2〉A2 + 〈B , A3〉A3

= − 4√
2

(
1√
2

)[
1 0
0 −1

]
+ 2

[
0 1
0 0

]
+ 3

[
0 0
1 0

]

=
[−2 2

3 2

]
.
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CHAPTER 7 REVIEW EXERCISES

In Exercises 1–7, determine whether the statements
are true or false.

1. Every subspace of a vector space is a subset of Rn for
some integer n.

2. Every m × n matrix is a vector in the vector space Mm×n .

3. dimMm×n = m + n

4. A matrix representation of a linear operator on Mm×n is
an m × n matrix.

5. The Frobenius inner product of two matrices is a scalar.

6. Suppose that u, v, and w are vectors in an inner product
space. If u is orthogonal to v and v is orthogonal to w,
then u is orthogonal to w.

7. Suppose that u, v, and w are vectors in an inner prod-
uct space. If u is orthogonal to both v and w, then u is
orthogonal to v + w.

In Exercises 8–11, determine whether each set V is a vector
space with respect to the indicated operations. Justify your con-
clusions.

8. V is the set of all sequences {an } of real numbers. For
any sequences {an} and {bn } in V and any scalar c, define
the sum {an } + {bn } and the product c{an } by

{an } + {bn } = {an + bn } and c{an } = {can }.
9. V is the set of all real numbers with vector addition, ⊕,

and scalar multiplication, �, defined by

a ⊕ b = a + b + ab and c � a = ca,

where a and b are in V and c is any scalar.

10. V is the set of all 2 × 2 matrices with vector addition, ⊕,
and scalar multiplication, �, defined by

A ⊕ B = A + B and t �
[
a b
c d

]
=
[
ta tb
c d

]

for all 2 × 2 matrices A and B and scalars t .

11. V is the set of all functions from R to R such that
f (x ) > 0 for all x in R. Vector addition, ⊕, and scalar
multiplication, �, are defined by

(f ⊕ g)(x ) = f (x )g(x ) and (c � f )(x ) = [f (x )]c

for all f and g in V , x in R, and scalars c.

In Exercises 12–15, determine whether each subset W is a sub-
space of the vector space V . Justify your conclusions.

12. V = F(R) and W is the set of all functions f in V such
that f (x ) ≥ 0 for all x in R.

13. V = P and W is the set consisting of the zero polynomial
and all polynomials of even degree.

14. For a given nonzero vector v in Rn , let W be the set of
all n × n matrices A such that v is an eigenvector of A,
and V = Mn×n .

15. For a given nonzero scalar λ, let W be the set of all
n × n matrices A such that λ is an eigenvalue of A, and
V = Mn×n .

In Exercises 16–19, determine whether each matrix is a linear
combination of the matrices in the set{[

1 2
1 −1

]
,

[
0 1
2 0

]
,

[−1 3
1 1

]}
.

16.

[
1 10
9 −1

]
17.

[
2 8
1 −5

]
18.

[
3 1

−2 −4

]

19.

[
4 1

−2 −4

]

In Exercises 20 and 21, let S be the following subset of P:

S = {x3 − x2 + x + 1, 3x2 + x + 2, x − 1}
20. Show that the polynomial x 3 + 2x2 + 5 is a linear com-

bination of the polynomials in S.

21. Find a constant c so that f (x ) = 2x 3 + x2 + 2x + c is a
linear combination of the polynomials in S.

In Exercises 22 and 23, find a basis for each subspace W of
each vector space V . Then find the dimension of W .

22. V = M2×2 and

W =
{
A ∈ V :

[
1 2
1 2

]
A =

[
0 0
0 0

]}

23. V = P3 and

W = {f (x ) ∈ V : f (0) + f ′(0) + f ′′(0) = 0}

In Exercises 24–27, determine whether each function T is linear.
If T is linear, determine whether it is an isomorphism.

24. T : R3 → P2 defined by

T






a
b
c




 = (a + b) + (a − b)x + cx 2

25. T : M2×2 → R defined by T (A) = trace(A2)

26. T : R3 → M2×2 defined by

T






a
b
c




 =

[
a b
c a + b + c

]

27. T : P2 → R3 defined by

T (f (x )) =




f (0)

f ′(0)
∫ 1
0 f (t ) dt




In Exercises 28–31, a vector space V , a basis B for V , and a
linear operator T on V are given. Find [T ]B.

28. V = P2, T (p(x )) = p(1) + 2p ′(1)x − p ′′(1)x 2 for all p(x )
in V , and B = {1, x , x2}

29. V = SpanB, where B = {eat cos bt , eat sin bt} for some
nonzero scalars a and b, and T is the derivative operator

30. V =SpanB,whereB={et cos t , et sin t}, andT =D2+2D ,
where D is the derivative operator
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31. V = M2×2,

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

and T is defined by T (A) = 2A + AT for all A in V .

32. Find an expression for T −1(a + bx + cx2), where T is the
linear operator in Exercise 28.

33. Find an expression for T −1(c1eat cos bt + c2eat sin bt ),
where T is the linear operator in Exercise 29.

34. Find an expression for T −1(c1et cos t + c2et sin t ), where
T is the linear operator in Exercise 30.

35. Find an expression for

T−1
([

a b
c d

])
,

where T is the linear operator in Exercise 31.

36. Find the eigenvalues and a basis for each eigenspace of
the linear operator in Exercise 28.

37. Find the eigenvalues and a basis for each eigenspace of
the linear operator in Exercise 29.

38. Find the eigenvalues and a basis for each eigenspace of
the linear operator in Exercise 30.

39. Find the eigenvalues and a basis for each eigenspace of
the linear operator in Exercise 31.

In Exercises 40–43, V = M2×2 with the Frobenius inner prod-
uct, and W is the subspace of V defined by

W =
{
A ∈ M2×2 : trace

([
0 1
1 0

]
A

)
= 0

}
.

40. Find 〈A, B〉 for A =
[

1 2
−1 3

]
and B =

[
2 −1
1 1

]
.

41. Find a basis for the subspace of V consisting of all matri-

ces that are orthogonal to

[
1 3
4 2

]
.

42. Find an orthonormal basis for W .

43. Find the orthogonal projection of

[
2 5
9 −3

]
on W .

In Exercises 44–47, let V = C([0, 1]) with the inner product
defined by

〈f , g〉 =
∫ 1

0
f (t )g(t )dt ,

and let W be the subspace of V consisting of all polynomial
functions of degree less than or equal to 2 with domain restricted
to [0, 1].

44. Let f and g be the functions in V defined by f (t ) =
cos 2π t and g(t ) = sin 2π t . Prove that f and g are orthog-
onal.

45. Find an orthonormal basis for W .

46. Determine the orthogonal projection of the function
f (t ) = t on W without doing any computations. Now
compute the orthogonal projection of f to verify your
answer.

47. Find the orthogonal projection of the function f (t ) = √
t

on W .

48. Prove that for any n × n matrix A, 〈A, In 〉 = trace(A),
where the inner product is the Frobenius inner product.

Let T : V1 → V2 be a linear transformation from a vector space
V1 to a vector space V2. For any nonempty subset W of V1, let
T (W ) denote the set consisting of the images T (w) for every w
in W . Exercises 49 and 50 use this notation.

49. Prove that if W is a subspace of V1, then T (W ) is a
subspace of V2.

50. Let V be an n-dimensional inner product space, and
T : V → Rn be a linear isometry. (See the definition in
the exercises for Section 7.5.) Let W be a subspace of V
and Z = T (W ), which is a subspace of Rn . Prove that
for any vector v in V , the orthogonal projection p of v
on W is given by

p = T−1(PZ T (v)),

where PZ is the orthogonal projection matrix for Z .

CHAPTER 7 MATLAB EXERCISES

For the following exercises, use MATLAB (or comparable software) or a calculator with matrix capabilities. The MATLAB
functions in Tables D.1, D.2, D.3, D.4, and D.5 of Appendix D may be useful.

In Exercises 1 and 2, determine whether each set is linearly
dependent. In the case that the set is linearly dependent, write
some vector in the set as a linear combination of the others.

1. {1 + 2x + x2 − x3 + x4, 2 + x + x3 + x4,
1 − x + x2 + 2x3 + 2x4, 1 + 2x + 2x2 − x3 − 2x4}

2.

{[
1 −1
3 1

]
,

[
1 2
1 2

]
,

[
0 1

−1 1

]
,

[
1 −3
4 1

]}

3. (a) Use Exercise 76 of Section 7.3 to prove that there
exist unique scalars c0, c1, . . . , cn such that

f (−1) + f (−2) = c0f (0) + c1f (1) + · · · + cn f (n)

for every polynomial f (x ) in Pn .

(b) Find the scalars c0, c1, c2, c3, and c4 such that

f (−1) + f (−2)
= c0f (0) + c1f (1) + c2f (2) + c3f (3) + c4f (4)

for every polynomial f (x ) in P4.

4. Let

B = {cos t , sin t , t cos t , t sin t , t 2 cos t , t2 sin t}
and V = SpanB, which is a subspace of C∞. Define
T : V → V by

T (f ) = f ′′ − 3f ′ + 2f
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for all f in V .

(a) Prove that T is an invertible linear operator on V .

(b) Find T −1(t2 sin t ) as a linear combination of the func-
tions in B.

Hint: It is easier to find [D]B first (where D is the deriva-
tive operator) and then use this matrix to compute [T ]B.

5. Let T be the linear operator on M2×3 defined by

T (A) =
[
1 3
1 −1

]
A




4 −2 0
3 −1 3

−3 3 1




for all A in M2×3.

(a) Determine the eigenvalues of T .

(b) Find a basis for M2×3 consisting of eigenvectors of
T . Hint: To avoid a messy answer, use the MATLAB
function null(A, ′r′) as explained in Appendix D.

The following exercise uses the definition preceding Exercise 49,
as well as Exercises 49 and 50 of the Review Exercises for
Chapter 7.

6. Apply Exercise 50 of the Review Exercises for Chapter 7
to find the orthogonal projection of any 3 × 3 matrix
on the subspace of 3 × 3 magic squares. (See the defi-
nition in the exercises for Section 7.3.) In particular, let
T : M3×3 → R9 be as in Exercise 83 of Section 7.5. Find
a 9 × 9 matrix P such that, for any matrix A in M3×3,
T−1(PT (A)) is the orthogonal projection of A on the sub-
space of 3 × 3 magic squares.

Hints: Use Exercises 60 and 61 in Section 7.3 to per-
form the following steps:

(i) Let Z = T (W3). Find a 7 × 9 matrix B of rank 7
such that Z = NullB .

(ii) Apply Exercise 79 in Section 6.3 to obtain the
orthogonal projection matrix PZ .

(iii) Show that C3 is orthogonal to every vector in W3

and that ‖C3‖ = 1.

(iv) Apply (i), (ii), (iii), Exercise 74 in Section 6.3, and
Exercise 50 of the Review Exercises for Chapter 7
to obtain the desired matrix.
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6 INTRODUCTION

Identity verification is increasingly impor-
tant in our modern and highly mobile
society. Applications of identity verification
range from national security to banking.
Most of us no longer conduct transactions
in person at a bank where the tellers know
our names. Today it is not unusual for a per-
son to obtain money at an Automated Teller
Machine (ATM) far from where the money
was deposited.

Increasingly, biometric authentication is used to

verify the identity of a person. Biometric authen-

tication is the automatic identification or identity

verification of living humans based on behavioral

and physiological characteristics. In contrast to com-

mon identification methods such as ID cards and

Personal Identification Numbers (PINs), biometric

identifiers cannot be lost or stolen and are more dif-

ficult to forge. The most commonly used biometric

methods are:

• Fingerprints

• Hand Geometry

• Iris Recognition

• Voice Recognition

• Facial Recognition

The earliest facial recognition technique is the eigenfaces method, which

is based on principal component analysis (see Section 6.8).

From Chapter 6 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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360 6 Introduction

Each facial image is a matrix of pixels in which
every pixel is represented by a numerical value cor-
responding to its intensity. In the eigenfaces method,
each image is converted initially to a single long vec-
tor (see the preceding figure on page 359). Principal
component analysis, based on the eigenvalues and
eigenvectors of the covariance matrix, yields a new and
relatively small set of vectors (the eigenfaces) that cap-
tures most of the variation in the original set of vectors
(images).

The image in the upper left corner of the preceding
figure corresponds to the first principal component of
an original image; the ghost-like images in the rest of the
figure correspond to its other principal components. The
original image can be expressed as a weighted sum of
vectors (eigenfaces) from the principal component anal-
ysis. These weights provide the identity of the person:
Different images of the same person have approximately
the same weights, and the image of another person will
have significantly different weights.
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CHAPTER

6 ORTHOGONALITY

Until now, we have focused our attention on two operations with vectors,
namely, addition and scalar multiplication. In this chapter, we consider such
geometric concepts as length and perpendicularity of vectors. By combining

the geometry of vectors with matrices and linear transformations, we obtain powerful
techniques for solving a wide variety of problems. For example, we apply these new
tools to such areas as least-squares approximation, the graphing of conic sections,
computer graphics, and statistical analyses. The key to most of these solutions is
the construction of a basis of perpendicular eigenvectors for a given matrix or linear
transformation.

To do this, we show how to convert any basis for a subspace of Rn into one
in which all of the vectors are perpendicular to each other. Once this is done, we
determine conditions that guarantee that there is a basis for Rn consisting of perpen-
dicular eigenvectors of a matrix or a linear transformation. Surprisingly, for a matrix,
a necessary and sufficient condition that such a basis exists is that the matrix be
symmetric.

6.1 THE GEOMETRY OF VECTORS
In this section, we introduce the concepts of length and perpendicularity of vectors
in Rn . Many familiar geometric properties seen in earlier courses extend to this
more general space. In particular, the Pythagorean theorem, which relates the squared
lengths of sides of a right triangle, also holds in Rn . To show that many of these
results hold in Rn , we define and develop the notion of dot product. The dot product
is fundamental in the sense that, from it, we can define length and perpendicularity.

Perhaps the most basic concept of geometry is length. In Figure 6.1(a), an appli-
cation of the Pythagorean theorem suggests that we define the length of the vector u

to be
√

u2
1 + u2

2 .

This definition easily extends to any vector v in Rn by defining its norm (length),
denoted by ‖v‖, by

‖v‖ =
√

v 2
1 + v 2

2 + · · · + v 2
n .

A vector whose norm is 1 is called a unit vector. Using the definition of vector norm,
we can now define the distance between two vectors u and v in Rn as ‖u − v‖. (See
Figure 6.1(b).)
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u

u2

u1

(a) The length of a vector u in R2

y

x

(b) The distance between vectors
      u and v in Rn

u

v

u � v ‖u � v‖

Figure 6.1

Example 1 Find ‖u‖, ‖v‖, and the distance between u and v if

u =



1
2
3


 and v =




2
−3

0


 .

Solution By definition,

‖u‖ =
√

12 + 22 + 32 =
√

14, ‖v‖ =
√

22 + (−3)2 + 02 =
√

13,

and the distance between u and v is

‖u − v‖ =
√

(1 − 2)2 + (2 − (−3))2 + (3 − 0)2 =
√

35.

Practice Problem 1 � Let

u =



1
−2

2


 and v =




6
2
3


 .

(a) Compute ‖u‖ and ‖v‖.

(b) Determine the distance between u and v.

(c) Show that both
1

‖u‖u and
1

‖v‖v are unit vectors. �

Just as we used the Pythagorean theorem in R2 to motivate the definition of the norm
of a vector, we use this theorem again to examine what it means for two vectors u and
v in R2 to be perpendicular. According to the Pythagorean theorem (see Figure 6.2),
we see that u and v are perpendicular if and only if

‖v − u‖2 = ‖u‖2 + ‖v‖2

(v1 − u1)
2 + (v2 − u2)

2 = u2
1 + u2

2 + v 2
1 + v 2

2

v 2
1 − 2u1v1 + u2

1 + v 2
2 − 2u2v2 + u2

2 = u2
1 + u2

2 + v 2
1 + v 2

2

−2u1v1 − 2u2v2 = 0

u1v1 + u2v2 = 0.
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u‖u‖

v

‖v‖

v � u

‖v � u‖

Figure 6.2 The Pythagorean theorem

The expression u1v1 + u2v2 in the last equation is called the dot product of u and v,
and is denoted by u �v. So u and v are perpendicular if and only if their dot product
equals zero.

Using this observation, we define the dot product of vectors u and v in Rn by

u �v = u1v1 + u2v2 + · · · + unvn .

We say that u and v are orthogonal (perpendicular) if u �v = 0.

Notice that, in Rn , the dot product of two vectors is a scalar, and the dot product
of 0 with every vector is zero. Hence 0 is orthogonal to every vector in Rn . Also,
as noted, the property of being orthogonal in R2 and R3 is equivalent to the usual
geometric definition of perpendicularity.

Example 2 Let

u =



2
−1

3


 , v =




1
4

−2


 , and w =




−8
3
2


 .

Determine which pairs of these vectors are orthogonal.

Solution We need only check which pairs have dot products equal to zero.

u �v = (2)(1) + (−1)(4) + (3)(−2) = −8

u �w = (2)(−8) + (−1)(3) + (3)(2) = −13

v �w = (1)(−8) + (4)(3) + (−2)(2) = 0

We see that v and w are the only orthogonal vectors.

Practice Problem 2 � Determine which pairs of the vectors

u =



−2
−5

3


 , v =




1
−1

2


 , and w =




−3
1
2




are orthogonal. �
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It is useful to observe that the dot product of u and v can also be represented as
the matrix product uT v.

uT v = [u1 u2 · · · un ]




v1

v2
...

vn


 = u1v1 + u2v2 + · · · + unvn = u �v

Notice that we have treated the 1 × 1 matrix uT v as a scalar by writing it as
u1v1 + u2v2 + · · · + unvn instead of [u1v1 + u2v2 + · · · + unvn ].

One useful consequence of identifying a dot product as a matrix product is that
it enables us to “move” a matrix from one side of a dot product to the other. More
precisely, if A is an m × n matrix, u is in Rn , and v is in Rm , then

Au �v = u �AT v.

This follows because

Au �v = (Au)T v = (uT AT )v = uT (AT v) = u �AT v.

Just as there are arithmetic properties of vector addition and scalar multiplication,
there are arithmetic properties for the dot product and norm.

THEOREM 6.1

For all vectors u, v, and w in Rn and every scalar c,

(a) u �u = ‖u‖2.

(b) u �u = 0 if and only if u = 0.

(c) u �v = v �u.

(d) u � (v + w) = u �v + u �w.

(e) (v + w) �u = v �u + w �u.

(f) (cu) �v = c(u �v) = u � (cv).

(g) ‖cu‖ = |c| ‖u‖.

PROOF We prove parts (d) and (g) and leave the rest as exercises.
(d) Using matrix properties, we have

u � (v + w) = uT (v + w)

= uT v + uT w

= u �v + u �w.

(g) By (a) and (f), we have

‖cu‖2 = (cu) � (cu)

= c2u �u

= c2‖u‖2.

By taking the square root of both sides and using
√

c2 = |c|, we obtain
‖cu‖ = |c|‖u‖. �
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Because of Theorem 6.1(f), there is no ambiguity in writing cu �v for any of the
three expressions in (f).

Note that, by Theorem 6.1(g), any nonzero vector v can be normalized, that is,

transformed into a unit vector by multiplying it by the scalar
1

‖v‖ . For if u = 1

‖v‖v,

then

‖u‖ =
∥∥∥∥

1

‖v‖v

∥∥∥∥ =
∣∣∣∣

1

‖v‖
∣∣∣∣ ‖v‖ = 1

‖v‖‖v‖ = 1.

This theorem allows us to treat expressions with dot products and norms just as
we would algebraic expressions. For example, compare the similarity of the algebraic
result

(2x + 3y)2 = 4x 2 + 12xy + 9y2

with
‖2u + 3v‖2 = 4‖u‖2 + 12u �v + 9‖v‖2.

The proof of the preceding equality relies heavily on Theorem 6.1:

‖2u + 3v‖2 = (2u + 3v) �(2u + 3v) by (a)

= (2u) � (2u + 3v) + (3v) � (2u + 3v) by (e)

= (2u) � (2u) + (2u) � (3v) + (3v) � (2u) + (3v) � (3v) by (d)

= 4(u �u) + 6(u �v) + 6(v �u) + 9(v �v) by (f)

= 4‖u‖2 + 6(u �v) + 6(u �v) + 9‖v‖2 by (a) and (c)

= 4‖u‖2 + 12(u �v) + 9‖v‖2

As noted earlier, we can write the last expression as 4‖u‖2 + 12u �v + 9‖v‖2. From
now on, we will omit these steps when computing with dot products and norms.

! CAUTION Expressions such as u2 and uv are not defined.

It is easy to extend (d) and (e) of Theorem 6.1 to linear combinations, namely,

u � (c1v1 + c2v2 + · · · + cpvp) = c1u �v1 + c2u �v2 + · · · + cpu �vp

and

(c1v1 + c2v2 + · · · + cpvp) �u = c1v1 �u + c2v2 �u + · · · + cpvp �u.

As an application of these arithmetic properties, we show that the Pythagorean
theorem holds in Rn .

THEOREM 6.2

(Pythagorean Theorem in Rn) Let u and v be vectors in Rn . Then u and v
are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2.
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PROOF Applying the arithmetic of dot products and norms to the vectors u and
v, we have

‖u + v‖2 = ‖u‖2 + 2u �v + ‖v‖2.

Because u and v are orthogonal if and only if u �v = 0, the result follows imme-
diately. �

ORTHOGONAL PROJECTION OF A VECTOR ON A LINE
Suppose we want to find the distance from a point P to the line L given in Figure 6.3.
It is clear that if we can determine the vector w, then the desired distance is given
by ‖u − w‖. The vector w is called the orthogonal projection of u on L. To find w
in terms of u and L, let v be any nonzero vector along L, and let z = u − w. Then
w = cv for some scalar c. Notice that z and v are orthogonal; that is,

0 = z �v = (u − w) �v = (u − cv) �v = u �v − cv �v = u �v − c‖v‖2.

So c = u �v
‖v‖2

, and thus w = u �v
‖v‖2

v. Therefore the distance from P to L is given by

‖u − w‖ =
∥∥∥∥u − u �v

‖v‖2
v

∥∥∥∥ .

L

y

x

z � u � w

u

w

v

P

Figure 6.3 The vector w is the orthogonal projection of u on L.

Example 3 Find the distance from the point (4, 1) to the line whose equation is y = 1
2x .

Solution Following our preceding derivation, we let

u =
[
4
1

]
, v =

[
2
1

]
, and

u �v
‖v‖2

v = 9

5

[
2
1

]
.

Then the desired distance is

∥∥∥∥
[
4
1

]
− 9

5

[
2
1

]∥∥∥∥ = 1

5

∥∥∥∥
[

2
−4

]∥∥∥∥ = 2

5

√
5.
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Practice Problem 3 � Find the orthogonal projection of u on the line through the origin with direction v,
where u and v are as in Practice Problem 2. �

We return to a more general case in Section 6.4, where we apply our results to
solve an interesting statistical problem.

AN APPLICATION OF THE DOT PRODUCT TO GEOMETRY∗

Recall that a rhombus is a parallelogram with all sides of equal length. We use
Theorem 6.1 to prove the following result from geometry:

The diagonals of a parallelogram are orthogonal if and only if the paral-
lelogram is a rhombus.

The diagonals of the rhombus are u + v and u − v. (See Figure 6.4.) Applying the
arithmetic of dot products and norms, we obtain

(u + v) �(u − v) = ‖u‖2 − ‖v‖2.

From this result, we see that the diagonals are orthogonal if and only if the preceding
dot product is zero. This occurs if and only if ‖u‖2 = ‖v‖2, that is, the sides have
equal lengths.

u � v u � vu

v

Figure 6.4 The diagonals of a rhombus

THE CAUCHY–SCHWARZ AND TRIANGLE INEQUALITIES
Recall that, in every triangle, the length of any side is less than the sum of the lengths
of the other two sides. This simple result may be stated in the language of norms of
vectors. Referring to Figure 6.5, we see that this statement is a consequence of the
triangle inequality in R2:

‖u + v‖ ≤ ‖u‖ + ‖v‖

u

v

u � v
‖u � v‖‖u‖

‖v‖

Figure 6.5 The triangle inequality

∗ The remainder of this section may be omitted without loss of continuity. However, the Cauchy–Schwarz
and the triangle inequalities are frequently used in later courses.

431



368 CHAPTER 6 Orthogonality

What we show is that this inequality holds not just for vectors in R2, but also for
vectors in Rn . We begin with the Cauchy–Schwarz inequality.

THEOREM 6.3

(Cauchy–Schwarz Inequality1) For any vectors u and v in Rn , we have

|u �v| ≤ ‖u‖ �‖v‖.

PROOF If u = 0 or v = 0, the result is immediate. So assume that neither u nor
v is zero, and let

w = 1

‖u‖u and z = 1

‖v‖v.

Then w �w = z �z = 1, and hence

0 ≤ ‖w ± z‖2 = (w ± z) � (w ± z) = w �w ± 2(w �z) + z �z = 2 ± 2(w �z).

It follows that ±w �z ≤ 1, and so |w �z| ≤ 1. Therefore

|u �v| = |(‖u‖w) � (‖v‖z)| = ‖u‖ ‖v‖ |w �z| ≤ ‖u‖ ‖v‖. �

The case where equality is achieved is examined in the exercises. At the end of
this section, we see an interesting application of the Cauchy–Schwarz inequality.

Example 4 Verify the Cauchy–Schwarz inequality for the vectors

u =



2
−3

4


 and v =




1
−2
−5


 .

Solution We have u �v = −12, ‖u‖ = √
29, and ‖v‖ = √

30. So

|u �v|2 = 144 ≤ 870 = (29)(30) = ‖u‖2
�‖v‖2.

Taking square roots confirms the Cauchy–Schwarz inequality for these vectors.

Example 5 contains another consequence of the Cauchy–Schwarz inequality.

Example 5 For any real numbers a1, a2, a3, b1, b2, and b3, show that

|a1b1 + a2b2 + a3b3| ≤
√

a2
1 + a2

2 + a2
3

√
b2

1 + b2
2 + b2

3 .

1 The Cauchy–Schwarz inequality was developed independently by the French mathematician Augustin-
Louis Cauchy (1789–1857), the German Amandus Schwarz (1843–1921), and the Russian Viktor
Yakovlevich Bunyakovsky (1804–1899). The result first appeared in Cauchy’s 1821 text for an anal-
ysis course at the École Polytechnique in Paris. It was later proved for functions by Bunyakovsky in 1859
and by Schwarz in 1884.
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Solution By applying the Cauchy–Schwarz inequality to u =



a1

a2

a3


 and v =




b1

b2

b3


,

we obtain the desired inequality.

Our next result is the promised generalization to Rn of the triangle inequality.

THEOREM 6.4

(Triangle Inequality) For any vectors u and v in Rn , we have

‖u + v‖ ≤ ‖u‖ + ‖v‖.

PROOF Applying the Cauchy–Schwarz inequality, we obtain

‖u + v‖2 = ‖u‖2 + 2u �v + ‖v‖2 ≤ ‖u‖2 + 2‖u‖ �‖v‖ + ‖v‖2 = (‖u‖ + ‖v‖)2.

Taking square roots of both sides yields the triangle inequality. �

The case where equality is achieved is examined in the exercises.

Example 6 Verify the triangle inequality for the vectors u and v in Example 4.

Solution Since u + v =



3
−5
−1


, it follows that ‖u + v‖ = √

35. Recalling that

‖u‖ = √
29 and ‖v‖ = √

30, the triangle inequality follows from the observation that

‖u + v‖ =
√

35 <
√

36 = 6 < 5 + 5 =
√

25 +
√

25 <
√

29 +
√

30 = ‖u‖ + ‖v‖.

COMPUTING AVERAGE CLASS SIZE
A private school for the training of computer programmers advertised that its average
class size is 20. After receiving complaints of false advertising, an investigator for the
Office of Consumer Affairs obtained a list of the 60 students enrolled in the school.
He polled each student and learned the student’s class size. He added these numbers
and divided the total by 60. The result was 27.6, a figure significantly higher than
the advertised number 20. As a result, he initiated a complaint against the school.
However, the complaint was withdrawn by his supervisor after she did some work of
her own.

Using the same enrollment list, the supervisor polled all 60 students. She found
that the students were divided among three classes. The first class had 25 students, the
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second class had 3 students, and the third class had 32 students. Notice that the sum
of these three enrollments is 60. She then divided 60 by 3 to obtain a class average
of 20, confirming the advertised class average.

To see why there is a difference between the results of these two computations,
we apply linear algebra to a more general situation. Suppose that we have a total
of m students who are divided into n classes consisting of v1, v2, . . . , vn students,
respectively. Using this notation, we see that the average of the class sizes is
given by

v = 1

n
(v1 + v2 + · · · + vn ) = m

n
.

This is the method used by the supervisor.
Now consider the method used by the investigator. A student in the i th class

responds that his or her class size is vi . Because there are vi students who give
this response, the poll yields a sum of vi vi = v 2

i that is contributed by the i th class.
Because this is done for each class, the total sum of the responses is

v 2
1 + v 2

2 + · · · + v 2
n .

Since m students are polled, this sum is divided by m to obtain the investigator’s
“average,” say v ∗, given by

v∗ = 1

m
(v2

1 + v 2
2 + · · · + v 2

n ).

To see the relationship between v and v ∗, we define the vectors u and v in Rn by

u =




1
1
...

1


 and v =




v1

v2
...

vn


 .

Then

u �u = n , u �v = m , and v �v = v 2
1 + v 2

2 + · · · + v 2
n .

Hence

v = m

n
= u �v

u �u
, and v ∗ = 1

m
(v2

1 + v 2
2 + · · · + v 2

n ) = v �v
u �v

.

By the Cauchy–Schwarz inequality,

(u �v)2 ≤ ‖u‖2‖v‖2 = (u �u)(v �v),

and so, dividing both sides of this inequality by (u �v)(u �u), we have

v = u �v
u �u

≤ v �v
u �v

= v∗.

Consequently, we always have that v ≤ v ∗. It can be shown that v = v ∗ if and only
if all of the class sizes are equal. (See Exercise 124.)
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EXERCISES

In Exercises 1–8, two vectors u and v are given. Compute the
norms of the vectors and the distance d between them.

1. u =
[

5
−3

]
and v =

[
2
4

]

2. u =
[
1
2

]
and v =

[
3
7

]

3. u =
[

1
−1

]
and v =

[
2
1

]

4. u =



1
3
1


 and v =




−1
4
2




5. u =



1
−1

3


 and v =




2
1
0




6. u =




1
2
1

−1


 and v =




2
3
2
0




7. u =




1
−1
−2

1


 and v =




2
3
1
1




8. u =




1
0

−2
1


 and v =




−1
2
1
3




In Exercises 9–16, two vectors are given. Compute the dot prod-
uct of the vectors, and determine whether the vectors are orthog-
onal.

9. u =
[

3
−2

]
and v =

[
4
6

]

10. u =
[
1
2

]
and v =

[
3
7

]

11. u =
[

1
−1

]
and v =

[
2
1

]

12. u =



1
3
1


 and v =




−1
4
2




13. u =



1
−2

3


 and v =




2
1
0




14. u =




1
2

−3
−1


 and v =




2
3
2
0




15. u =




1
−1
−2

1


 and v =




2
3
1
1




16. u =




−1
3

−2
4


 and v =




−1
−1

3
2




In Exercises 17–24, two orthogonal vectors u and v are given.
Compute the quantities ‖u‖2, ‖v‖2, and ‖u + v‖2. Use your
results to illustrate the Pythagorean theorem.

17. u =
[−2

4

]
and v =

[
6
3

]

18. u =
[
3
1

]
and v =

[−1
3

]

19. u =
[
2
3

]
and v =

[
0
0

]

20. u =
[
2
6

]
and v =

[
9

−3

]

21. u =



1
3
2


 and v =




−1
1

−1




22. u =



1
−1

2


 and v =




−2
0
1




23. u =



1
2
3


 and v =




−11
4
1




24. u =



2
−1

4


 and v =




−3
2
2




In Exercises 25–32, two vectors u and v are given. Compute the
quantities ‖u‖, ‖v‖, and ‖u + v‖. Use your results to illustrate
the triangle inequality.

25. u =
[
3
2

]
and v =

[−6
−4

]

26. u =
[
2
1

]
and v =

[
3

−2

]

27. u =
[
4
2

]
and v =

[
3

−1

]

28. u =
[−2

5

]
and v =

[
3
1

]

29. u =



1
−4

2


 and v =




3
1
1




30. u =



2
−3

1


 and v =




1
1
2




31. u =



2
−1

3


 and v =




4
0
1




32. u =



2
−3

1


 and v =




−4
6

−2




435



372 CHAPTER 6 Orthogonality

In Exercises 33–40, two vectors u and v are given. Compute the
quantities ‖u‖, ‖v‖, and u �v. Use your results to illustrate the
Cauchy–Schwarz inequality.

33. u =
[−2

3

]
and v =

[
5
3

]

34. u =
[
2
5

]
and v =

[
3
4

]

35. u =
[
4
1

]
and v =

[
0

−2

]

36. u =
[−3

4

]
and v =

[
1
2

]

37. u =



6
−1

2


 and v =




1
4

−1




38. u =



0
1
1


 and v =




−2
1
3




39. u =



4
2
1


 and v =




2
−1
−1




40. u =



3
−1

2


 and v =




1
3

−1




In Exercises 41–48, a vector u and a line L in R2 are given.
Compute the orthogonal projection w of u on L, and use it to
compute the distance d from the endpoint of u to L.

41. u =
[
5
0

]
and y = 0 42. u =

[
2
3

]
and y = 2x

43. u =
[
3
4

]
and y = −x 44. u =

[
3
4

]
and y = −2x

45. u =
[
4
1

]
and y = 3x 46. u =

[−3
2

]
and y = x

47. u =
[
2
5

]
and y = −3x 48. u =

[
6
5

]
and y = −4x

For Exercises 49–54, suppose that u, v, and w are vectors in Rn

such that ‖u‖ = 2, ‖v‖ = 3, ‖w‖ = 5, u �v = −1, u �w = 1,
and v �w = −4.

49. Compute (u + v) �w. 50. Compute ‖4w‖.

51. Compute ‖u + v‖2. 52. Compute (u + w) �v.

53. Compute ‖v − 4w‖2. 54. Compute ‖2u + 3v‖2.

For Exercises 55–60, suppose that u, v, and w are vectors
in Rn such that u �u = 14, u �v = 7, u �w = −20, v �v = 21,
v �w = −5, and w �w = 30.

55. Compute ‖v‖2. 56. Compute ‖3u‖.

57. Compute v �u. 58. Compute w � (u + v).

59. Compute ‖2u − v‖2. 60. Compute ‖v + 3w‖.

In Exercises 61–80, determine whether the state-
ments are true or false.

61. Vectors must be of the same size for their dot product to
be defined.

62. The dot product of two vectors in Rn is a vector in Rn .

63. The norm of a vector equals the dot product of the vector
with itself.

64. The norm of a multiple of a vector is the same multiple
of the norm of the vector.

65. The norm of a sum of vectors is the sum of the norms of
the vectors.

66. The squared norm of a sum of orthogonal vectors is the
sum of the squared norms of the vectors.

67. The orthogonal projection of a vector on a line is a vector
that lies along the line.

68. The norm of a vector is always a nonnegative real num-
ber.

69. If the norm of v equals 0, then v = 0.

70. If u �v = 0, then u = 0 or v = 0.

71. For all vectors u and v in Rn , |u �v| = ‖u‖ �‖v‖.

72. For all vectors u and v in Rn , u �v = v �u.

73. The distance between vectors u and v in Rn is ‖u − v‖.

74. For all vectors u and v in Rn and every scalar c,

(cu) �v = u � (cv).

75. For all vectors u, v, and w in Rn ,

u � (v + w) = u �v + u �w.

76. If A is an n × n matrix and u and v are vectors in Rn ,
then Au � v = u � Av.

77. For every vector v in Rn , ‖v‖ = ‖ − v‖.

78. If u and v are orthogonal vectors in Rn , then

‖u + v‖ = ‖u‖ + ‖v‖.
79. If w is the orthogonal projection of u on a line through

the origin of R2, then u − w is orthogonal to every vector
on the line.

80. If w is the orthogonal projection of u on a line through
the origin of R2, then w is the vector on the line closest
to u.

81. Prove (a) of Theorem 6.1.

82. Prove (b) of Theorem 6.1.

83. Prove (c) of Theorem 6.1.

84. Prove (e) of Theorem 6.1.

85. Prove (f) of Theorem 6.1.

86. Prove that if u is orthogonal to both v and w, then u is
orthogonal to every linear combination of v and w.

87. Let {v, w} be a basis for a subspace W of Rn , and define

z = w − v �w
v �v

v.

Prove that {v, z} is a basis for W consisting of orthogonal
vectors.

88. Prove that the Cauchy–Schwarz inequality is an equality
if and only if u is a multiple of v or v is a multiple of u.
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89. Prove that the triangle inequality is an equality if and only
if u is a nonnegative multiple of v or v is a nonnegative
multiple of u.

90. Use the triangle inequality to prove that | ‖v‖ − ‖w‖ | ≤
‖v − w‖ for all vectors v and w in Rn .

91. Prove (u + v) �w = u �w + v �w for all vectors u, v, and
w in Rn .

92. Let z be a vector in Rn . Let W = {u ∈ Rn : u �z = 0}.
Prove that W is a subspace of Rn .

93. Let S be a subset of Rn and

W = {u ∈ Rn : u �z = 0 for all z in S}.

Prove that W is a subspace of Rn .

94. Let W denote the set of all vectors that lie along the line
with equation y = 2x . Find a vector z in R2 such that
W = {u ∈ R2 : u �z = 0}. Justify your answer.

95. Prove the parallelogram law for vectors in Rn :

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2.

96. Prove that if u and v are orthogonal nonzero vectors in
Rn , then they are linearly independent.

97.2 Let A be any m × n matrix.

(a) Prove that AT A and A have the same null space. Hint:
Let v be a vector in Rn such that AT Av = 0. Observe
that AT Av �v = Av �Av = 0.

(b) Use (a) to prove that rankAT A = rank A.

v

u

‖v‖

‖u‖

v � u

‖v � u‖

�

Figure 6.6

98.3 Let u and v be nonzero vectors in R2 or R3, and let θ be
the angle between u and v. Then u, v, and v − u determine
a triangle. (See Figure 6.6.) The relationship between the
lengths of the sides of this triangle and θ is called the law
of cosines. It states that

‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖ ‖v‖ cos θ.

Use the law of cosines and Theorem 6.1 to derive the
formula

u �v = ‖u‖ ‖v‖ cos θ.

In Exercises 99–106, use the formula in Exercise 98 to determine
the angle between the vectors u and v.

99. u =
[−3

1

]
and v =

[
4
2

]

100. u =
[
1
2

]
and v =

[−1
3

]

101. u =
[−2

4

]
and v =

[
1

−2

]

102. u =
[−1

1

]
and v =

[
3
1

]

103. u =

−1

2
1


 and v =


1

1
2




104. u =



2
1

−3


 and v =




1
−3

2




105. u =



1
−2

1


 and v =




−1
1
0




106. u =

1

2
1


 and v =


1

1
0




Let u and v be vectors in R3. Define u × v to be the vector


u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


, which is called the cross product of u and v.

For Exercises 107–120, use the preceding definition of the cross
product.

107. For every vector u in R3, prove that u × u = 0.

108. Prove that u × v = −(v × u) for all vectors u and v in
R3.

109. For every vector u in R3, prove that u × 0 = 0 × u = 0.

110. For all vectors u and v in R3, prove that u and v are
parallel if and only if u × v = 0.

111. For all vectors u and v in R3 and all scalars c, prove that

c(u × v) = cu × v = u × cv.

112. For all vectors u, v, and w in R3, prove that

u × (v + w) = u × v + u × w.

113. For all vectors u, v, and w in R3, prove that

(u + v) × w = u × w + v × w.

114. For all vectors u and v in R3, prove that u × v is orthog-
onal to both u and v.

115. For all vectors u, v, and w in R3, prove that

(u × v) �w = u � (v × w).

116. For all vectors u, v, and w in R3, prove that

u × (v × w) = (u �w)v − (u �v)w.

2 This exercise is used in Section 6.7 (on page 439).
3 This exercise is used in Section 6.9 (on page 471).
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117. For all vectors u, v, and w in R3, prove that

(u × v) × w = (w �u)v − (w �v)u.

118. For all vectors u and v in R3, prove that

‖u × v‖2 = ‖u‖2‖v‖2 − (u �v)2.

119. For all vectors u and v in R3, prove that ‖u × v‖ =
‖u‖‖v‖ sin θ , where θ is the angle between u and v. Hint:
Use Exercises 98 and 118.

120. For all vectors u, v, and w in R3, prove the Jacobi identity:

(u × v) × w + (v × w) × u + (w × u) × v = 0

Exercises 121–124 refer to the application regarding the two
methods of computing average class size given in this section.
In Exercises 121–123, data are given for students enrolled in
a three-section seminar course. Compute the average v deter-
mined by the supervisor and the average v ∗ determined by the
investigator.

121. Section 1 contains 8 students, section 2 contains 12 stu-
dents, and section 3 contains 6 students.

122. Section 1 contains 15 students, and each of sections 2 and
3 contains 30 students.

123. Each of the three sections contains 22 students.

124. Use Exercise 88 to prove that the two averaging methods
for determining class size are equal if and only if all of
the class sizes are equal.

In Exercise 125, use either a calculator with matrix capabilities
or computer software such as MATLAB to solve the problem.

125. In every triangle, the length of any side is less than the
sum of the lengths of the other two sides. When this
observation is generalized to Rn , we obtain the triangle
inequality (Theorem 6.4), which states

‖u + v‖ ≤ ‖u‖ + ‖v‖

for any vectors u and v in Rn . Let

u =




1
2
3
4


 , v =




−8
−6

4
5


 , v1 =




2.01
4.01
6.01
8.01


 , and

v2 =




3.01
6.01
9.01

12.01


 .

(a) Verify the triangle inequality for u and v.

(b) Verify the triangle inequality for u and v1.

(c) Verify the triangle inequality for u and v2.

(d) From what you have observed in (b) and (c), make a
conjecture about when equality occurs in the triangle
inequality.

(e) Interpret your conjecture in (d) geometrically in R2.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) We have ‖u‖ =
√

12 + (−2)2 + 22 = 3 and ‖v‖ =√
62 + 22 + 32 = 7.

(b) We have ‖u − v‖ =
∥∥∥∥∥∥




−5
−4
−1



∥∥∥∥∥∥

=
√

(−5)2 + (−4)2 + (−1)2 = √
42.

(c) We have

∥∥∥∥
1

‖u‖u

∥∥∥∥ =
∥∥∥∥∥∥

1

3




1
−2

2



∥∥∥∥∥∥

=

∥∥∥∥∥∥∥




1
3

− 2
3
2
3




∥∥∥∥∥∥∥
=
√

1

9
+ 4

9
+ 4

9
= 1

and

∥∥∥∥
1

‖v‖v

∥∥∥∥ =
∥∥∥∥∥∥

1

7




6
2
3



∥∥∥∥∥∥

=

∥∥∥∥∥∥∥




6
7
2
7
3
7




∥∥∥∥∥∥∥
=
√

36

49
+ 4

49
+ 9

49
= 1.

2. Taking dot products, we obtain

u �v = (−2)(1) + (−5)(−1) + (3)(2) = 9

u �w = (−2)(−3) + (−5)(1) + (3)(2) = 7

v �w = (1)(−3) + (−1)(1) + (2)(2) = 0.

So u and w are orthogonal, but u and v are not orthogonal,
and v and w are not orthogonal.

3. Let w be the required orthogonal projection. Then

w = u �v
‖v‖2

v = (−2)(1) + (−5)(−1) + (3)(2)

12 + (−1)2 + 22




1
−1

2




= 3

2




1
−1

2


 .

6.2 ORTHOGONAL VECTORS
It is easy to extend the property of orthogonality to any set of vectors. We say that
a subset of Rn is an orthogonal set if every pair of distinct vectors in the set is
orthogonal. The subset is called an orthonormal set if it is an orthogonal set consisting
entirely of unit vectors.
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For example, the set

S =






1
2
3


 ,




1
1

−1


 ,




5
−4

1






is an orthogonal set because the dot product of every pair of distinct vectors in S
is equal to zero. Also, the standard basis for Rn is an orthogonal set that is also an
orthonormal set. Note that any set consisting of just one vector is an orthogonal set.

Practice Problem 1 � Determine whether each of the sets

S1 =
{[

1
−2

]
,

[
2
1

]}
and S2 =







1
1
2


 ,




1
1

−1


 ,




2
0

−1






is an orthogonal set. �

Our first result asserts that in most circumstances orthogonal sets are linearly
independent.

THEOREM 6.5

Any orthogonal set of nonzero vectors is linearly independent.

PROOF Let {v1, v2, . . . , vk } be an orthogonal subset of Rn consisting of k
nonzero vectors, and let c1, c2, . . . , ck be scalars such that

c1v1 + c2v2 + · · · + ckvk = 0.

Then, for any vi , we have

0 = 0 �vi

= (c1v1 + c2v2 + · · · + civi + · · · + ckvk ) �vi

= c1v1 �vi + c2v2 �vi + · · · + civi �vi + · · · + ckvk �vi

= ci (vi �vi )

= ci‖vi‖2.

But ‖vi‖2 �= 0 because vi �= 0, and hence ci = 0. We conclude that v1, v2, . . . , vk

are linearly independent. �

An orthogonal set that is also a basis for a subspace of Rn is called an orthogonal
basis for the subspace. Likewise, a basis that is also an orthonormal set is called an
orthonormal basis. For example, the standard basis for Rn is an orthonormal basis
for Rn .

Replacing a vector in an orthogonal set by a scalar multiple of the vector results
in a new set that is also an orthogonal set. If the scalar is nonzero and the orthogonal
set consists of nonzero vectors, then the new set is linearly independent and is a
generating set for the same subspace as the original set. So multiplying vectors in an
orthogonal basis by nonzero scalars produces a new orthogonal basis for the same
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subspace. (See Exercise 53.) For example, consider the orthogonal set {v1, v2, v3},
where

v1 =




1
1
1
1


 , v2 =




1
0

−1
0


 , and v3 = 1

4




1
−1

1
−1


 .

This set is an orthogonal basis for the subspace W = Span {v1, v2, v3}. In order to
eliminate the fractional components in v3, we may replace it with the vector 4v3

to obtain another orthogonal set {v1, v2, 4v3}, which is also an orthogonal basis for
W . In particular, if we normalize each vector in an orthogonal basis, we obtain an
orthonormal basis for the same subspace. So




1

2




1
1
1
1


 ,

1√
2




1
0

−1
0


 ,

1

2




1
−1

1
−1







is an orthonormal basis for W .
If S = {v1, v2, . . . , vk } is an orthogonal basis for a subspace V of Rn , we can

adapt the proof of Theorem 6.5 to obtain a simple method of representing any vector
in V as a linear combination of the vectors in S. This method uses dot products, in
contrast to the tedious task of solving systems of linear equations.

Consider any vector u in V , and suppose that

u = c1v1 + c2v2 + · · · + ckvk .

To obtain ci , we observe that

u �vi = (c1v1 + c2v2 + · · · + civi + · · · + ckvk ) �vi

= c1v1 �vi + c2v2 �vi + · · · + civi �vi + · · · + ckvk �vi

= ci (vi �vi )

= ci‖vi‖2,

and hence
ci = u �vi

‖vi‖2
.

Summarizing, we have the following result:

Representation of a Vector in Terms of an Orthogonal or
Orthonormal Basis

Let {v1, v2, . . . , vk } be an orthogonal basis for a subspace V of Rn , and let u be
a vector in V . Then

u = u �v1

‖v1‖2
v1 + u �v2

‖v2‖2
v2 + · · · + u �vk

‖vk‖2
vk .

If, in addition, the orthogonal basis is an orthonormal basis for V , then

u = (u �v1)v1 + (u �v2)v2 + · · · + (u �vk )vk .
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Example 1 Recall that S = {v1, v2, v3}, where

v1 =



1
2
3


 , v2 =




1
1

−1


 , and v3 =




5
−4

1




is an orthogonal subset of R3. Since the vectors in S are nonzero, Theorem 6.5 tells
us that S is linearly independent. Therefore, by Theorem 4.7, S is a basis for R3. So
S is an orthogonal basis for R3.

Let u =



3
2
1


. We now use the method previously described to obtain the coeffi-

cients that represent u as a linear combination of the vectors of S. Suppose that

u = c1v1 + c2v2 + c3v3.

Then

c1 = u �v1

‖v1‖2
= 10

14
, c2 = u �v2

‖v2‖2
= 4

3
, and c3 = u �v3

‖v3‖2
= 8

42
.

The reader should verify that

u = 10

14
v1 + 4

3
v2 + 8

42
v3.

Practice Problem 2 � Let

S =






1
1
2


 ,




1
1

−1


 ,




1
−1

0




 .

(a) Verify that S is an orthogonal basis for R3.

(b) Let u =



2
−4

7


. Use the preceding boxed formula to obtain the coefficients that

represent u as a linear combination of the vectors of S.

�

Since we have seen the advantages of using orthogonal bases for subspaces, two
natural questions arise:

1. Does every subspace of Rn have an orthogonal basis?

2. If a subspace of Rn has an orthogonal basis, how can it be found?

The next theorem not only provides a positive answer to the first question, but
also gives a method for converting any linearly independent set into an orthogonal
set with the same span. This method is called the Gram–Schmidt (orthogonalization)
process.4 We have the following important consequence:

Every subspace of Rn has an orthogonal and hence an orthonormal basis.

4 A modification of this procedure, usually called the modified Gram–Schmidt process, is more computa-
tionally efficient.
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v2 � u2 � w

v1 � u1

u2

w

L

0

Figure 6.7 The vector w is the orthogonal projection of u2 on the line L through v1.

The Gram–Schmidt process is an extension of the procedure in Section 6.1 for
finding the orthogonal projection of a vector on a line. Its purpose is to replace a basis
{u1, u2, . . . , uk } for a subspace W of Rn with an orthogonal basis {v1, v2, . . . , vk }
for W . For this purpose, we can choose v1 = u1 and compute v2 using the method

outlined in Section 6.1. Let w = u2 �v1

‖v1‖2
v1, the orthogonal projection of u2 on the line

L through v1, and let v2 = u2 − w. (See Figure 6.7.) Then v1 and v2 are nonzero
orthogonal vectors such that Span {v1, v2} = Span {u1, u2}.

Figure 6.8 visually suggests the next step in the process, in which the vector u3

is replaced by v3. See if you can relate this figure to the proof of the next theorem.

v3 � u3 � w

‖v1‖2

u3 � v1 v1 ‖v2‖2

u3 � v2 v2�w �

u3

v2

v1

0

Figure 6.8 The construction of v3 by the Gram–Schmidt process

THEOREM 6.6

(The Gram–Schmidt Process5) Let {u1, u2, . . . , uk } be a basis for a subspace W
of Rn . Define

v1 = u1,

v2 = u2 − u2 �v1

‖v1‖2
v1,

v3 = u3 − u3 �v1

‖v1‖2
v1 − u3 �v2

‖v2‖2
v2,

...

vk = uk − uk �v1

‖v1‖2
v1 − uk �v2

‖v2‖2
v2 − · · · − uk �vk−1

‖vk−1‖2
vk−1.

5 The Gram–Schmidt process first appeared in an 1833 paper by the Danish mathematician Jorgen P.
Gram (1850–1916). A later paper by the German mathematician Erhard Schmidt (1876–1959) contained
a detailed proof of the result.
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Then {v1, v2, . . . , vi } is an orthogonal set of nonzero vectors such that

Span {v1, v2, . . . , vi } = Span {u1, u2, . . . , ui }

for each i . So {v1, v2, . . . , vk } is an orthogonal basis for W .

PROOF For i = 1, 2, . . . , k , let Si = {u1, u2, . . . , ui } and S ′
i = {v1, v2, . . . , vi }.

Each Si consists of vectors in a basis for W , so each Si is a linearly independent
set. We first prove that S ′

i is an orthogonal set of nonzero vectors such that
SpanS ′

i = SpanSi for each i .
Note that v1 = u1 �= 0 because u1 is in S1, which is linearly independent.

Therefore S ′
1 = {v1} is an orthogonal set of nonzero vectors such that SpanS ′

1 =
SpanS1. For some i = 2, 3, . . . , k , suppose that S ′

i−1 is an orthogonal set of
nonzero vectors such that SpanS ′

i−1 = SpanSi−1. Since

vi = ui − ui �v1

‖v1‖2
v1 − ui �v2

‖v2‖2
v2 − · · · − ui �vi−1

‖vi−1‖2
vi−1,

vi is a linear combination of vectors contained in the span of Si . Furthermore,
vi �= 0 because, otherwise, ui would be contained in the span of Si−1, which is
not the case because Si is linearly independent. Next, observe that, for any j < i ,

vi �vj =
(

ui − ui �v1

‖v1‖2
v1 − ui �v2

‖v2‖2
v2 − · · · − ui �vj

‖vj‖2
vj − · · · − ui �vi−1

‖vi−1‖2
vi−1

)
�vj

= ui �vj − ui �v1

‖v1‖2
v1 �vj − ui �v2

‖v2‖2
v2 �vj − · · ·

− ui �vj

‖vj‖2
vj �vj − · · · − ui �vi−1

‖vi−1‖2
vi−1 �vj

= ui �vj − ui �vj

‖vj‖2
vj �vj

= ui �vj − ui �vj

= 0.

It follows that S ′
i is an orthogonal set of nonzero vectors contained in the span

of Si . But S ′
i is linearly independent by Theorem 6.5, and so S ′

i is a basis for the
span of Si by Theorem 4.7. Thus SpanS ′

i = SpanSi . In particular, when i = k ,
we see that SpanS ′

k is a linearly independent set of orthogonal vectors such that
SpanS ′

k = SpanSk = W . That is, S ′
k is an orthogonal basis for W . �

Example 2 Let W be the span of S = {u1, u2, u3}, where

u1 =




1
1
1
1


 , u2 =




2
1
0
1


 , and u3 =




1
1
2
1




are linearly independent vectors in R4. Apply the Gram–Schmidt process to S to
obtain an orthogonal basis S ′ for W .
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Solution Let

v1 = u1 =




1
1
1
1


 ,

v2 = u2 − u2 �v1

‖v1‖2
v1 =




2
1
0
1


− 4

4




1
1
1
1


 =




1
0

−1
0


 ,

and

v3 = u3 − u3 �v1

‖v1‖2
v1 − u3 �v2

‖v2‖2
v2 =




1
1
2
1


− 5

4




1
1
1
1


− (−1)

2




1
0

−1
0


 = 1

4




1
−1

1
−1


 .

Then S ′ = {v1, v2, v3} is an orthogonal basis for W .

Practice Problem 3 � Let

W = Span







1
−1
−1

1


 ,




−1
3

−3
5


 ,




1
6
3

−4







.

Apply the Gram–Schmidt process to obtain an orthogonal basis for W . �

Example 3 Find an orthonormal basis for the subspace W in Example 2, and write

u =




2
3
5
3




as a linear combination of the vectors in this basis.

Solution As noted previously, normalizing v1, v2, and v3 produces the orthonormal
basis

{w1, w2, w3} =




1

2




1
1
1
1


 ,

1√
2




1
0

−1
0


 ,

1

2




1
−1

1
−1







for W . To represent u as a linear combination of w1, w2, and w3, we use the boxed
formula on page 376. Since

u �w1 = 13

2
, u �w2 = −3√

2
, and u �w3 = 1

2
,

444



6.2 Orthogonal Vectors 381

we see that

u = (u �w1)w1 + (u �w2)w2 + (u �w3)w3

= 13

2
w1 +

(−3√
2

)
w2 + 1

2
w3.

Practice Problem 4 � Let

A =




1 −1 1
−1 3 6
−1 −3 3

1 5 −4


 .

(a) Use the result of Practice Problem 3 to find an orthonormal basis B for the column
space of A.

(b) Let

u =




1
4
7

−10


 ,

which is in the column space of A. Write u as a linear combination of the vectors
in the basis B. �

THE QR FACTORIZATION OF A MATRIX∗

Although we have developed methods for solving systems of linear equations and find-
ing eigenvalues, many of these approaches suffer from roundoff errors when applied
to larger matrices. It can be shown that if the matrix under consideration can be fac-
tored as a product of matrices with desirable properties, then these methods can be
modified to produce more reliable results. In what follows, we discuss one of these
factorizations.

We illustrate the process with a 4 × 3 matrix A having linearly independent
columns a1, a2, a3. First, apply the Gram–Schmidt process to these vectors to obtain
orthogonal vectors v1, v2, and v3. Then normalize these vectors to obtain the orthonor-
mal set {w1, w2, w3}. Note that

a1 is in Span {a1} = Span {w1},
a2 is in Span {a1, a2} = Span {w1, w2}, and

a3 is in Span {a1, a2, a3} = Span {w1, w2, w3}.

So we may write

a1 = r11w1

a2 = r12w1 + r22w2

a3 = r13w1 + r23w2 + r33w3

∗ The remainder of this section may be omitted without loss of continuity.
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for some scalars r11, r12, r22, r13, r23, r33. Define the 4 × 3 matrix Q = [w1 w2 w3].
Note that we have

a1 = Q




r11

0
0


 , a2 = Q




r12

r22

0


 , and a3 = Q




r13

r23

r33


 .

If we let

r1 =



r11

0
0


 , r2 =




r12

r22

0


 , and r3 =




r13

r23

r33


 ,

then we have
A = [a1 a2 a3] = [Qr1 Qr2 Qr3] = QR,

where R is the upper triangular matrix

R =



r11 r12 r13

0 r22 r23

0 0 r33


 .

Notice that, by the boxed result on page 376, we have rij = aj �wi for all i and j .
This result can be extended to any m × n matrix with linearly independent

columns, that is, with rank n .

The QR Factorization of a Matrix

Let A be an m × n matrix with linearly independent columns. There exists an
m × n matrix Q whose columns form an orthonormal set in Rm , and an n × n
upper triangular matrix R such that A = QR. Furthermore, R can be chosen to
have positive diagonal entries.6

In general, suppose that A is an m × n matrix with linearly independent columns.
Any factorization A = QR, where Q is an m × n matrix whose columns form an
orthonormal set in Rm and R is an n × n upper triangular matrix, is called a QR
factorization of A.

It can be shown (see Exercise 66) that for any QR factorization of A, the columns
of Q form an orthonormal basis for Col A.

Example 4 Find a QR factorization of the matrix

A =




1 2 1
1 1 1
1 0 2
1 1 1


 .

Solution We begin by letting

a1 =




1
1
1
1


 , a2 =




2
1
0
1


 , and a3 =




1
1
2
1


 .

6 See Exercises 59–61.
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To find vectors w1, w2, and w3 with the desired properties, we use the results of
Examples 2 and 3. Let

w1 = 1

2




1
1
1
1


 , w2 = 1√

2




1
0

−1
0


 , and w3 = 1

2




1
−1

1
−1


 .

So

Q =




1
2

1√
2

1
2

1
2 0 − 1

2
1
2 − 1√

2
1
2

1
2 0 − 1

2




.

As noted, we can quickly compute the entries of R:

r11 = a1 �w1 = 2 r12 = a2 �w1 = 2 r13 = a3 �w1 = 5

2

r22 = a2 �w2 =
√

2 r23 = a3 �w2 = − 1√
2

r33 = a3 �w3 = 1

2

So

R =




2 2 5
2

0
√

2 − 1√
2

0 0 1
2


 .

The reader can verify that A = QR.

Practice Problem 5 � Find the QR factorization of the matrix A in Practice Problem 4. �

AN APPLICATION OF QR FACTORIZATION TO SYSTEMS OF LINEAR
EQUATIONS
Suppose we are given the consistent system of linear equations Ax = b, where A is an
m × n matrix with linearly independent columns. Let A = QR be a QR factorization
of A. Using the result that QT Q = Im (shown in Section 6.5), we obtain the equivalent
systems

Ax = b

QRx = b

QTQRx = QT b

ImRx = QT b

Rx = QT b.

Notice that, because the coefficient matrix R in the last system is upper triangular,
this system is easy to solve.
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Example 5 Solve the system

x1 + 2x2 + x3 = 1
x1 + x2 + x3 = 3
x1 + 2x3 = 6
x1 + x2 + x3 = 3.

Solution The coefficient matrix is

A =




1 2 1
1 1 1
1 0 2
1 1 1


 .

Using the results of Example 4, we have A = QR, where

Q =




1
2

1√
2

1
2

1
2 0 − 1

2
1
2 − 1√

2
1
2

1
2 0 − 1

2




and R =




2 2 5
2

0
√

2 − 1√
2

0 0 1
2


 .

So an equivalent system is Rx = QT b, or

2x1 + 2x2 + 5
2x3 = 13

2√
2x2 −

√
2

2 x3 = − 5
√

2
2

1
2x3 = 1

2 .

Solving the third equation, we obtain x3 = 1. Substituting this into the second equation
and solving for x2, we obtain

√
2x2 −

√
2

2
x3 = −5

√
2

2
,

or x2 = −2. Finally, substituting the values for x3 and x2 into the first equation and
solving for x1 gives

2x1 + 2(−2) + 5

2
= 13

2
,

or x1 = 4. So the solution of the given system is



4
−2

1


 .

Practice Problem 6 � Use the preceding method and the solution of Practice Problem 5 to solve the system

x1 − x2 + x3 = 6
−x1 + 3x2 + 6x3 = 13
−x1 − 3x2 + 3x3 = 10

x1 + 5x2 − 4x3 = −15. �
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EXERCISES

In Exercises 1–8, determine whether each set is orthogonal.

1.

{[−2
3

]
,

[
2
3

]}
2.

{[
1
1

]
,

[
1

−1

]}

3.

⎧⎨
⎩

⎡
⎣

1
2
1

⎤
⎦ ,

⎡
⎣

1
−1

1

⎤
⎦ ,

⎡
⎣

2
−1

0

⎤
⎦
⎫⎬
⎭ 4.

⎧⎨
⎩

⎡
⎣

1
0
1

⎤
⎦ ,

⎡
⎣

−1
0
1

⎤
⎦ ,

⎡
⎣

0
−1

0

⎤
⎦
⎫⎬
⎭

5.

⎧⎨
⎩

⎡
⎣

2
1

−5

⎤
⎦ ,

⎡
⎣

2
1
1

⎤
⎦ ,

⎡
⎣

3
−1

1

⎤
⎦
⎫⎬
⎭ 6.

⎧⎨
⎩

⎡
⎣

1
−2

3

⎤
⎦ ,

⎡
⎣

1
2
1

⎤
⎦ ,

⎡
⎣

−1
1
1

⎤
⎦
⎫⎬
⎭

7.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
2
3

−3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

−1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
−3

0
−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

8.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
1

−1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
3
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−1

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

In Exercises 9–16, (a) apply the Gram–Schmidt process to
replace the given linearly independent set S by an orthogonal
set of nonzero vectors with the same span, and (b) obtain an
orthonormal set with the same span as S.

9.

⎧⎨
⎩

⎡
⎣

1
1
1

⎤
⎦ ,

⎡
⎣

5
−1

2

⎤
⎦
⎫⎬
⎭ 10.

⎧⎨
⎩

⎡
⎣

1
−2

1

⎤
⎦ ,

⎡
⎣

1
−1

0

⎤
⎦
⎫⎬
⎭

11.

⎧⎨
⎩

⎡
⎣

1
−2
−1

⎤
⎦ ,

⎡
⎣

7
7
5

⎤
⎦
⎫⎬
⎭ 12.

⎧⎨
⎩

⎡
⎣

−1
3
4

⎤
⎦ ,

⎡
⎣

−7
11
3

⎤
⎦
⎫⎬
⎭

13.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

14.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1

0
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
1
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
1
1
5

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

15.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0

−1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
1

−1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
−1
−1

3

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

16.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1
−1

0
1
1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

2
−1

0
3
2

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

1
−1

1
1
1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

3
1
1
1
1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

In Exercises 17–24, an orthogonal set S and a vector u in SpanS
are given. Use dot products (not systems of linear equations) to
represent u as a linear combination of the vectors in S.

17. S =
{[

2
1

]
,

[−1
2

]}
and u =

[
1
8

]

18. S =
{[−1

1

]
,

[
1
1

]}
and u =

[
5

−1

]

19. S =
⎧⎨
⎩

⎡
⎣

−1
3

−2

⎤
⎦ ,

⎡
⎣

−1
1
2

⎤
⎦ ,

⎡
⎣

4
2
1

⎤
⎦
⎫⎬
⎭ and u =

⎡
⎣

19
3
2

⎤
⎦

20. S =
⎧⎨
⎩

⎡
⎣

1
1
1

⎤
⎦ ,

⎡
⎣

1
2

−3

⎤
⎦
⎫⎬
⎭ and u =

⎡
⎣

2
1
6

⎤
⎦

21. S =
⎧⎨
⎩

⎡
⎣

1
0
1

⎤
⎦ ,

⎡
⎣

1
2

−1

⎤
⎦ ,

⎡
⎣

1
−1
−1

⎤
⎦
⎫⎬
⎭ and u =

⎡
⎣

3
1
2

⎤
⎦

22. S =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−2

0
−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
1
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0

−2
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

and u =

⎡
⎢⎢⎣

6
9
9
0

⎤
⎥⎥⎦

23. S =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1
−1

1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
1
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
1
1
3

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

and u =

⎡
⎢⎢⎣

1
5
5

−7

⎤
⎥⎥⎦

24. S =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−1
−1

1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

−1
−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

and u =

⎡
⎢⎢⎣

2
1

−1
2

⎤
⎥⎥⎦

In Exercises 25–32, let A be the matrix whose columns are the
vectors in each indicated exercise.

(a) Determine the matrices Q and R in a QR factorization of A.

(b) Verify that A = QR.

25. Exercise 9 26. Exercise 10
27. Exercise 11 28. Exercise 12
29. Exercise 13 30. Exercise 14
31. Exercise 15 32. Exercise 16

In Exercises 33–40, solve the system Ax = b using the QR fac-
torization of A obtained in each indicated exercise.

33. Exercise 25, b =
⎡
⎣

−3
3
0

⎤
⎦ 34. Exercise 26, b =

⎡
⎣

6
−8

2

⎤
⎦

35. Exercise 27, b =
⎡
⎣

−11
−20
−13

⎤
⎦ 36. Exercise 28, b =

⎡
⎣

13
−19
−2

⎤
⎦

37. Exercise 29, b =

⎡
⎢⎢⎣

4
1

−1
2

⎤
⎥⎥⎦ 38. Exercise 30, b =

⎡
⎢⎢⎣

8
0
1

11

⎤
⎥⎥⎦

39. Exercise 31, b =

⎡
⎢⎢⎣

0
−7
−1
11

⎤
⎥⎥⎦ 40. Exercise 32, b =

⎡
⎢⎢⎢⎢⎣

8
−4

4
6
6

⎤
⎥⎥⎥⎥⎦
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In Exercises 41–52, determine whether the state-
ments are true or false.

41. Any orthogonal subset of Rn is linearly independent.

42. Every nonzero subspace of Rn has an orthogonal basis.

43. Any subset of Rn consisting of a single vector is an
orthogonal set.

44. If S is an orthogonal set of n nonzero vectors in Rn , then
S is a basis for Rn .

45. If {v1, v2, . . . , vk } is an orthonormal basis for a subspace
W and w is a vector in W , then

w = (w �v1)v1 + (w �v2)v2 + · · · + (w �vk )vk .

46. For any nonzero vector v,
1

‖v‖v is a unit vector.

47. The set of standard vectors e1, e2, . . . , en is an orthonormal
basis for Rn .

48. Every orthonormal subset is linearly independent.

49. Combining the vectors in two orthonormal subsets of Rn

produces another orthonormal subset of Rn .

50. If x is orthogonal to y and y is orthogonal to z, then x is
orthogonal to z.

51. The Gram–Schmidt process transforms a linearly inde-
pendent set into an orthogonal set.

52. In the QR factorization of a matrix, both factors are upper
triangular matrices.

53. Let {v1, v2, . . . , vk } be an orthogonal subset of Rn .
Prove that, for any scalars c1, c2, . . . , ck , the set
{c1v1, c2v2, . . . , ck vk } is also orthogonal.

54. Suppose that S is a nonempty orthogonal subset of Rn

consisting of nonzero vectors, and suppose that S ′ is
obtained by applying the Gram–Schmidt process to S.
Prove that S ′ = S.

55. Let {w1, w2, . . . , wn } be an orthonormal basis for Rn .
Prove that, for any vectors u and v in Rn ,

(a) u + v =
(u �w1 + v �w1)w1 + · · · + (u �wn + v �wn )wn .

(b) u �v = (u �w1)(v �w1) + · · · + (u �wn )(v �wn ). (This
result is known as Parseval’s identity.)

(c) ‖u‖2 = (u �w1)2 + (u �w2)2 + · · · + (u �wn )2.

56.7 Suppose that {v1, v2, . . . , vk } is an orthonormal sub-
set of Rn . Combine Theorem 4.4 on page 245 with the
Gram–Schmidt process to prove that this set can be
extended to an orthonormal basis {v1, v2, . . . , vk , . . . , vn }
for Rn .

57. Let S = {v1, v2, . . . , vk } be an orthonormal subset of Rn ,
and let u be a vector in Rn . Use Exercise 56 to prove that

(a) (u �v1)2 + (u �v2)2 + · · · + (u �vk )2 ≤ ‖u‖2.

(b) the inequality in (a) is an equality if and only if u lies
in SpanS.

58. If Q is an n × n upper triangular matrix whose columns
form an orthonormal basis for Rn , then it can be shown
that Q is a diagonal matrix. Prove this in the special case
that n = 3.

For Exercises 59–65, we assume a knowledge of the QR factor-
ization of a matrix.

59. Show that in a QR factorization of A, the matrix R must
be invertible. Hint: Use Exercise 77 of Section 4.3.

60. Use the preceding exercise to prove that the matrix R in
a QR factorization has nonzero diagonal entries.

61. Use the preceding exercise to prove that the matrix R in a
QR factorization can be chosen to have positive diagonal
entries.

62. Suppose that A is an m × n matrix whose columns form
an orthonormal set. Identify the matrices Q and R of the
QR factorization of A.

63. Let Q be an n × n matrix. Prove that the columns of
Q form an orthonormal basis for Rn if and only if
QT Q = In .

64. Let P and Q be n × n matrices whose columns form
an orthonormal basis for Rn . Prove that the columns of
PQ also form an orthonormal basis for Rn . Hint: Use
Exercise 63.

65. Suppose that A is an invertible n × n matrix. Let A = QR
and A = Q ′R′ be two QR factorizations in which the diag-
onal entries of R and R′ are positive. It can be shown that
Q = Q ′ and R = R′. Prove this in the special case that
n = 3.

66. Prove that, for any QR factorization of a matrix A, the
columns of Q form an orthonormal basis for Col A.

In Exercises 67 and 68, a matrix A is given. Use either a cal-
culator with matrix capabilities or computer software such as
MATLAB to solve each problem.

(a) Verify that A has linearly independent columns by comput-
ing its rank.

(b) Find matrices Q and R in a QR factorization of A.

(c) Verify that A is approximately equal to the product QR.
(Note that roundoff error is likely.)

(d) Verify that QT Q is approximately equal to the identity
matrix.

67. A =

⎡
⎢⎢⎢⎢⎣

5.3000 7.1000 8.4000
−4.4000 11.0000 8.0000

−12.0000 13.0000 7.0000
9.0000 8.7000 −6.1000
2.6000 −7.4000 8.9000

⎤
⎥⎥⎥⎥⎦

68. A =

⎡
⎢⎢⎢⎢⎣

2.0000 −3.4000 5.6000 2.6000
0.0000 7.3000 5.4000 8.2000
9.0000 11.0000 −5.0000 8.0000

−5.3000 4.0000 5.0000 9.0000
−13.0000 7.0000 8.0000 1.0000

⎤
⎥⎥⎥⎥⎦

7 This exercise is used in Section 6.7 (on page 440).
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SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) Since the dot product of the two vectors in S1 is

(1)(2) + (−2)(1) = 0,

and these are the only distinct vectors in S1, we con-
clude that S1 is an orthogonal set.

(b) Taking the dot product of the second and third vectors
in S2, we have

(1)(2) + (1)(0) + (−1)(−1) = 3 �= 0,

and hence these vectors are not orthogonal. It follows
that S2 is not an orthogonal set.

2. (a) We compute the dot products




1
1
2


 �




1
1

−1


 = (1)(1) + (1)(1) + (2)(−1) = 0




1
1
2


 �




1
−1

0


 = (1)(1) + (1)(−1) + (2)(0) = 0




1
1

−1


 �




1
−1

0


 = (1)(1) + (1)(−1)(−1)(0) = 0,

which proves that S is an orthogonal set. It follows
that S is linearly independent by Theorem 6.5. Since
this set consists of three vectors, it is a basis for R3.

(b) For u =



2
−4

7


 and S = {v1, v2, v3}, we have

u = c1v1 + c2v2 + c3v3,

where

c1 = u �v1

‖v1‖2
= 2, c2 = u �v2

‖v2‖2
= −3, and

c3 = u �v3

‖v3‖2
= 3.

3. We apply the Gram–Schmidt process to the vectors

u1 =




1
−1
−1

1


 , u2 =




−1
3

−3
5


 , and

u3 =




1
6
3

−4




to obtain the orthogonal set {v1, v2, v3}, where

v1 = u1 =




1
−1
−1

1


 ,

v2 = u2 − u2 �v1

‖v1‖2
v1 =




−1
3

−3
5


− 4

4




1
−1
−1

1


 =




−2
4

−2
4


 ,

and

v3 = u3 − u3 �v1

‖v1‖2
v1 − u3 �v2

‖v2‖2
v2

=




1
6
3

−4


− (−12)

4




1
−1
−1

1


− 0




−2
4

−2
4


 =




4
3
0

−1


 .

4. (a) Using the basis obtained in Practice Problem 3, we
have

B =
{

1

‖v1‖v1,
1

‖v2‖v2,
1

‖v3‖v3

}

=




1

2




1
−1
−1

1


 ,

1√
10




−1
2

−1
2


 ,

1√
26




4
3
0

−1







.

(b) For each i , let wi = 1

‖vi‖vi . Then

u = (u �w1)w1 + (u �w2)w2 + (u �w3)w3

= (−10)w1 + (−2
√

10)w2 +
√

26w3.

5. Using the result of Practice Problem 4(a), we have

w1 = 1

2




1
−1
−1

1


 , w2 = 1√

10




−1
2

−1
2


 , and

w3 = 1√
26




4
3
0

−1


 .
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Thus

Q = [w1 w2 w3] =




1
2 − 1√

10
4√
26

− 1
2

2√
10

3√
26

− 1
2 − 1√

10
0

1
2

2√
10

− 1√
26




.

To compute R, observe that

r11 = a1 �w1 = 2 r12 = a2 �w1 = 2

r13 = a3 �w1 = −6 r22 = a2 �w2 = 2
√

10

r23 = a3 �w2 = 0 r33 = a3 �w3 =
√

26,

and hence

R =




2 2 −6

0 2
√

10 0

0 0
√

26


 .

6. Using the Q and R in the solution of Practice Problem 5,
we form the equivalent system Rx = QT b, or

2x1 + 2x2 − 6x3 = −16
2
√

10x2 = −2
√

10√
26x3 = 3

√
26.

Solving the third and second equations, we obtain x3 = 3
and x2 = −1. Finally, substituting the values of x3 and x2

into the first equation and solving for x1 gives

2x1 + 2(−1) − 6(3) = −16,

or x1 = 2. So the solution of the system is




2
−1

3


 .

6.3 ORTHOGONAL PROJECTIONS

Many practical applications require us to approximate a given vector u in Rn by a
vector in a particular subspace W . In such a situation, we obtain the best possible
approximation by choosing the vector w in W that is closest to u. When W is a plane
in R3, as in Figure 6.9, we find w by dropping a perpendicular from the endpoint of
u to W . Notice that we can find w if we can find the vector z = u − w, as depicted
in Figure 6.9. Because z is orthogonal to every vector in W , it makes sense to study
the set of all vectors that are orthogonal to every vector in a given set. Consider, for
example, the set

S =
{[−1

−2

]
,

[
2
4

]}
.

What vectors are orthogonal to every vector in S?

z � u � w
u

0

w

W

Figure 6.9 The best approximation of u by a vector w in W
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y

x

2 
4

�1 
�2

y � ��x1 
2

Figure 6.10 The vectors orthogonal to

[
2
4

]
and

[−1
−2

]
lie along the line y = − 1

2 x.

Note that the two vectors in S lie along the line with equation y = 2x . (See
Figure 6.10.) Hence the vectors orthogonal to the vectors in S lie along the line with
equation y = − 1

2 x . In this context, the set of vectors that lie along the line y = − 1
2 x

is called the orthogonal complement of S. More generally, we have the following
definition:

Definition The orthogonal complement of a nonempty subset S of Rn , denoted by
S⊥ (read “S perp”), is the set of all vectors in Rn that are orthogonal to every vector
in S. That is,

S⊥ = {v ∈ Rn : v �u = 0 for every u in S}.

For example, if S = Rn , then S⊥ = {0}; and if S = {0}, then S⊥ = Rn .

Example 1 Let W denote the xy-plane viewed as a subspace of R3; that is,

W =
⎧⎨
⎩

⎡
⎣

u1

u2

0

⎤
⎦ : u1 and u2 are real numbers

⎫⎬
⎭ .

A vector v =
⎡
⎣

v1

v2

v3

⎤
⎦ lies in W ⊥ if and only if v1 = v2 = 0. For if v1 = v2 = 0, then

v �u = 0 for all u in W , and hence v is in W ⊥. And if v is in W ⊥, then

v1 = e1 �v = 0

because e1 is in W . Similarly, v2 = 0 because e2 is in W . Thus

W ⊥ =
⎧⎨
⎩

⎡
⎣

0
0
v3

⎤
⎦ : v3 is a real number

⎫⎬
⎭ ,

and so W ⊥ can be identified with the z -axis.
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W

W⊥

0

Figure 6.11 The orthogonal complement of a 2-dimensional subspace W of R3

More generally, in Figure 6.11, we see a 2-dimensional subspace W of R3, which
is a plane containing 0. Its orthogonal complement W ⊥ is a line through 0, perpen-
dicular to W .

If S is any nonempty subset of Rn , then 0 is in S⊥ because 0 is orthogonal to
every vector in S. Moreover, if v and w are in S⊥, then, for every vector u in S,

(v + w) �u = v �u + w �u = 0 + 0 = 0,

and therefore v + w is in S⊥. So S⊥ is closed under vector addition. A similar
argument shows that S⊥ is closed under scalar multiplication. Therefore S⊥ is a
subspace of Rn . Hence we have the following result:

The orthogonal complement of any nonempty subset of Rn is a subspace of Rn .

In Figure 6.10, the span of

S =
{[−1

−2

]
,

[
2
4

]}

can be visualized as the line with equation y = 2x . We have already seen that S⊥
consists of the vectors that lie along the line y = − 1

2x . Note that (SpanS)⊥ also
consists of the vectors that lie along the line y = − 1

2x , and hence S⊥ = (SpanS)⊥.
A similar result is true in general. (See Exercise 57.)

For any nonempty subset S of Rn , we have S⊥ = (SpanS)⊥. In particular, the
orthogonal complement of a basis for a subspace is the same as the orthogonal
complement of the subspace.

The next example shows how orthogonal complements arise in the study of sys-
tems of linear equations.

Example 2 Find a basis for the orthogonal complement of W = Span {u1, u2}, where

u1 =




1
1

−1
4


 and u2 =




1
−1

1
2


 .
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Solution A vector v =




v1

v2

v3

v4


 lies in W ⊥ if and only if u1 �v = 0 and u2 �v = 0.

Notice that these two equations can be written as the homogeneous system of linear
equations

v1 + v2 − v3 + 4v4 = 0
v1 − v2 + v3 + 2v4 = 0.

(1)

From the reduced row echelon form of the augmented matrix, we see that the vector
form of the general solution of system (1) is




v1

v2

v3

v4


 =




−3v4

v3 − v4

v3

v4


 = v3




0
1
1
0


+ v4




−3
−1

0
1


 .

Thus

B =







0
1
1
0


 ,




−3
−1

0
1







is a basis for W ⊥.

Let A denote the coefficient matrix of system (1). Notice that the vectors u1 and
u2 in Example 2 are the rows of A, and hence W is the row space of A. Furthermore,
the set of solutions of system (1) is the null space of A. It follows that

W ⊥ = (Row A)⊥ = Null A.

This observation is valid for any matrix.

For any matrix A, the orthogonal complement of the row space of A is the null
space of A; that is,

(Row A)⊥ = Null A.

(See Figure 6.12.)
Applying this result to the matrix AT , we see that

(Col A)⊥ = (RowAT )⊥ = Null AT .

Practice Problem 1 � Let W = Span {u1, u2}, where

u1 =




1
0

−1
1


 and u2 =




−1
1
3

−4


 .

455



392 CHAPTER 6 Orthogonality

Row A

Null A

0

Figure 6.12 The null space of A is the orthogonal complement of the row space of A.

Find a basis for W ⊥ by first determining the matrix A such that W = RowA, and
then using the result that W ⊥ = Null A. �

z

xy-plane

y

x

u1
u2
u3

u1
u2
0

0
0
u3

Figure 6.13 Every vector in R3 is the sum of vectors in the xy-plane and its orthogonal
complement.

In the notation of Example 1, any vector




u1

u2

u3


 in R3 can be written as the sum

of the vector




u1

u2

0


 in W and the vector




0
0

u3


 in W ⊥. So, in some sense, a vector in

R3 is subdivided into two pieces, one in W and the other in W ⊥. (See Figure 6.13.)
The next theorem tells us that this is true in general.

THEOREM 6.7

(Orthogonal Decomposition Theorem) Let W be a subspace of Rn . Then, for
any vector u in Rn , there exist unique vectors w in W and z in W ⊥ such that
u = w + z. In addition, if {v1, v2, . . . , vk } is an orthonormal basis for W , then

w = (u �v1)v1 + (u �v2)v2 + · · · + (u �vk )vk .
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PROOF Consider any vector u in Rn . Choose B = {v1, v2, . . . , vk } to be an
orthonormal basis for W , and let

w = (u �v1)v1 + (u �v2)v2 + · · · + (u �vk )vk . (2)

Then w is in W because it is a linear combination of the basis vectors for W .
(Notice that equation (2) resembles the equation given in the representation of a
vector in terms of an orthonormal basis. Indeed, u = w if and only if u is in W .)

Let z = u − w. Then clearly, u = w + z. We show that z is in W ⊥. It suffices
to show that z is orthogonal to every vector in B. From equation (2) and the
computation on page 376, we see that w �vi = u �vi for any vi in B. Therefore

z �vi = (u − w) �vi = u �vi − w �vi = u �vi − u �vi = 0.

Hence z is in W ⊥.
Next, we show that this representation is unique. Suppose that u = w′ + z′,

where w′ is in W and z′ is in W ⊥. Then w + z = w′ + z′, and hence w − w′ =
z′ − z. But w − w′ is in W , and z′ − z is in W ⊥. Thus w − w′ lies in both W and
W ⊥. This means that w − w′ is orthogonal to itself. But, by Theorem 6.1(b), 0
is the only vector with this property. Hence w − w′ = 0, and therefore w = w′.
It follows that z = z′, and thus we conclude that the representation is unique. �

Suppose that we combine a basis for W with a basis for W ⊥. Using the orthogonal
decomposition theorem, we can show that the resulting set is a basis for Rn . One
simple consequence of this observation is the following useful result:

For any subspace W of Rn ,

dim W + dim W ⊥ = n.

ORTHOGONAL PROJECTIONS ON SUBSPACES
The orthogonal decomposition theorem gives us a computational method for represent-
ing a given vector as the sum of a vector in a subspace and a vector in the orthogonal
complement of the subspace.

Definitions Let W be a subspace of Rn and u be a vector in Rn . The orthogonal
projection of u on W is the unique vector w in W such that u − w is in W ⊥.

Furthermore, the function UW : Rn → Rn such that UW (u) is the orthogonal
projection of u on W for every u in Rn is called the orthogonal projection operator
on W .

In the case that n = 3 and W is a 2-dimensional subspace of R3, the orthogonal
projection operator UW defined here coincides with the orthogonal projection as dis-
cussed in the exercises of Sections 4.5 and 5.4. In fact, for any vector u in R3 that
is not in W , the vector u − UW (u) is orthogonal to W , and hence the line segment
connecting the endpoint of u to the endpoint of UW (u) is perpendicular to W and has
length equal to ‖u − UW (u)‖. (See Figure 6.14.)

Similarly, in the case that n = 2 and W is a line through the origin (a 1-
dimensional subspace), UW coincides with the orthogonal projection of R2 on W ,
as defined on page 283.

457



394 CHAPTER 6 Orthogonality

0

W

u
z � u � w

w � UW(u)

Figure 6.14 The vector w is the orthogonal projection of u on W .

We now show that any orthogonal projection UW of Rn is linear. Let u1 and u2

be vectors in Rn , and suppose that UW (u1) = w1 and UW (u2) = w2. Then there are
unique vectors z1 and z2 in W ⊥ such that u1 = w1 + z1 and u2 = w2 + z2. Thus

u1 + u2 = (w1 + w2) + (z1 + z2).

Since w1 + w2 is in W and z1 + z2 is in W ⊥, it follows that

UW (u1 + u2) = w1 + w2 = UW (u1) + UW (u2).

Hence UW preserves vector addition. Similarly, UW preserves scalar multiplication,
and therefore UW is linear.

Example 3
Find the orthogonal projection w = UW (u) of u =




1
3
4


 on the 2-dimensional sub-

space W of R3 defined by

x1 − x2 + 2x3 = 0.

Then find the vector z in W ⊥ such that u = w + z.

Solution First, observe that

B = {v1, v2} =



1√
2




1
1
0


 ,

1√
3




−1
1
1






is an orthonormal basis for W . (An orthonormal basis such as B can be obtained by
applying the Gram–Schmidt process to an ordinary basis for W .) We use B to find w,
as in the proof of the orthogonal decomposition theorem. By equation (2), we have

w = UW (u) = (u �v1)v1 + (u �v2)v2

= 4√
2
v1 + 6√

3
v2
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= 2




1
1
0


+ 2




−1
1
1




=



0
4
2


 .

Therefore

z = u − w =



1
3
4


−




0
4
2


 =




1
−1

2


 .

Note that z is orthogonal to v1 and v2, confirming that z is in W ⊥.

The standard matrix of an orthogonal projection operator UW on a subspace W
of Rn is called the orthogonal projection matrix for W and is denoted PW . The
columns of an orthogonal projection matrix PW are the images of the standard vectors
under UW —that is, the orthogonal projections of the standard vectors—which can be
computed by the method of Example 3. However, Theorem 6.8 gives an alternative
method for computing PW that does not require an orthonormal basis for W . Its proof
uses the following result:

Lemma Let C be a matrix whose columns are linearly independent. Then C T C is
invertible.

PROOF Suppose that C T Cb = 0. Recall from Section 6.1 that the dot product
of two vectors u and v in Rn can be represented as the matrix product u �v = uT v.
Therefore

‖Cb‖2 = (Cb) � (Cb) = (Cb)T Cb = bT C T Cb = bT (C T Cb) = bT 0 = 0,

and so Cb = 0. Since the columns of C are linearly independent, it follows that
b = 0. Thus 0 is the only solution of C T Cx = 0, and hence C T C is invertible
by the Invertible Matrix Theorem on page 138. �

THEOREM 6.8

Let C be an n × k matrix whose columns form a basis for a subspace W of Rn .
Then

PW = C (C T C )−1C T .

PROOF Let u be any vector in Rn , and let w = UW (u), the orthogonal pro-
jection of u on W . Since W = Col C , we have w = Cv for some v in Rk .
Consequently, u − w is in

W ⊥ = (Col C )⊥ = (Row C T )⊥ = Null C T .
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Hence
0 = C T (u − w) = C T u − C T w = C T u − C T Cv.

Thus
C T Cv = C T u.

By the lemma, C T C is invertible, and hence v = (C T C )−1C T u. Therefore the
orthogonal projection of u on W is

UW (u) = w = Cv = C (C T C )−1C T u.

Since this is true for every vector u in Rn , it follows that C (C T C )−1C T is the
standard matrix of UW . That is, PW = C (C T C )−1C T . �

Example 4 Find PW , where W is the 2-dimensional subspace of R3 with equation

x1 − x2 + 2x3 = 0.

Solution Observe that a vector w is in W if and only

w =



x1

x2

x3


 =




x2 − 2x3

x2

x3


 = x2




1
1
0


+ x3




−2
0
1


 ,

and hence 





1
1
0


 ,




−2
0
1






is a basis for W . Let

C =



1 −2
1 0
0 1


 ,

the matrix whose columns are the basis vectors just computed. Then

PW = C (C T C )−1C T = 1

6




5 1 −2
1 5 2

−2 2 2


 .

We can use the orthogonal projection matrix PW computed in Example 4 to find

the orthogonal projection of the vector u =



1
3
4


 of Example 3:

w = PW u = 1

6




5 1 −2
1 5 2

−2 2 2






1
3
4


 =




0
4
2




This calculation agrees with the result computed in that example. Note that, unlike
Example 3, this calculation does not require the use of the Gram–Schmidt process to
find an orthonormal basis for W .
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Figure 6.14 suggests that, for a vector u in R3 and a 2-dimensional subspace W
of R3, the orthogonal projection UW (u) is the vector in W that is closest to u. We
now show that this statement is true in general.

Let W be a subspace of Rn , w = UW (u), and w′ be any vector in W . Since u − w
is in W ⊥, it is orthogonal to w − w′, which lies in W . Thus, by the Pythagorean
theorem in Rn (Theorem 6.2),

‖u − w′‖2 = ‖(u − w) + (w − w′)‖2 = ‖u − w‖2 + ‖w − w′‖2 ≥ ‖u − w‖2.

Moreover, the final inequality is a strict inequality if w �= w′.

‖u � w‖

‖u � w'‖

w'
w � UW (u)

u

W

0

Figure 6.15 The vector UW (u) is the vector in W that is closest to u.

Figure 6.15 gives us a visual understanding of this inequality. In this figure,
notice that the line segment connecting the endpoint of u to the endpoint of w, which
has length ‖u − w‖, is the leg of a right triangle whose hypotenuse is the segment
connecting the endpoint of u to the endpoint of w′. Furthermore, the length of this
hypotenuse is ‖u − w′‖. Since the length of the hypotenuse of a right triangle is
greater than the length of either of its legs, we see that ‖u − w′‖ > ‖u − w‖.

We now state this important result:

Closest Vector Property

Let W be a subspace of Rn and u be a vector in Rn . Among all vectors in W ,
the vector closest to u is the orthogonal projection UW (u) of u on W .

We define the distance from a vector u in Rn to a subspace W of Rn to be the
distance between u and the orthogonal projection of u on W . So the distance between
u and W is the minimum distance between u and every vector in W .

In the context of Example 3, the distance between u and W is

‖u − w‖ = ‖z‖ =
∥∥∥∥∥∥




1
−1

2



∥∥∥∥∥∥

=
√

6.
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Practice Problem 2 � Let

W = Span







1
1

−1
1


 ,




3
2

−1
0







and u =




0
7
4
7


 .

(a) Use the method in Example 3 to find the vectors w in W and z in W ⊥ such that
u = w + z.

(b) Find the orthogonal projection matrix PW , and then use it to find the orthogonal
projection of u on W .

(c) Find the distance from u to W .

�

EXERCISES

In Exercises 1–8, find a basis for each subspace S⊥.

1. S =






1
−1

2




 2. S =







1
0
2






3. S =






−1
2
1


 ,




2
1
3




 4. S =







1
1
1


 ,




1
−1
−1






5. S =







1
−2

1
1


 ,




1
−1

3
2







6. S =







1
−1
−5
−1


 ,




2
−1
−7

0







7. S =







1
−1
−3

4


 ,




2
−1
−4

7







8. S =







1
−1

1
1


 ,




1
1

−1
1


 ,




1
1
1

−1







In Exercises 9–16, a vector u in Rn and an orthonormal basis
S for a subspace W of Rn are given.

(a) Use the method in Example 3 to obtain the unique vectors
w in W and z in W ⊥ such that u = w + z.

(b) Find the orthogonal projection of u on W .

(c) Find the distance from u to W .

9. u =
[
1
3

]
and S =

{
1√
2

[
1

−1

]}

10. u =



2
3

−1


 and S =




1√
2




1
1
0


 ,

1√
3




1
−1

1






11. u =



1
4

−1


 and S =




1√
6




−1
2
1


 ,

1√
3




1
1

−1






12. u =



3
1
1


 and S =




1

3




2
−1
−2


 ,

1

3




1
−2

2






13. u =




2
4
1
3


 and

S =




1√
3




1
0
1
1


 ,

1√
3




1
1
0

−1


 ,

1√
3




−1
1
1
0







14. u =




3
−2

4
1


 and S =




1

2




1
−1

1
−1


 ,

1

2




−1
−1

1
1







15. u =




0
5

−3
4


 and S =




1√
6




1
0

−2
1


 ,

1√
12




1
3
1
1







16. u =




3
−1
−1

7


, and

S =




1√
10




1
−1
−2

2


 ,

1√
10




2
−2

1
−1


 ,

1

2




1
1

−1
−1







In Exercises 17–32, a vector u in Rn and a subspace W of Rn

are given.

(a) Find the orthogonal projection matrix PW .

(b) Use your result to obtain the unique vectors w in W and z
in W ⊥ such that u = w + z.

(c) Find the distance from u to W .

17. u =
[−10

5

]
and W = Span

{[−3
4

]}

18. u =



1
3
7


 and W is the solution set of the equation

x1 − 2x2 + 3x3 = 0.
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19. u =



1
2

−1


 and W is the solution set of the system of

equations
x1 + x2 − x3 = 0
x1 − x2 + 3x3 = 0.

20. u =



−6
4
5


 and W = Col




1 3
−1 1

2 5




21. u =




1
1
2
6


 and W = Col




1 1 5
−1 2 1
−1 1 −1

2 −1 4




22. u =




−3
7

−1
5


 and W is the solution set of

x1 − x2 + 2x3 + x4 = 0.

23. u =




2
0

−3
5


 and W = Col




1 1 1
−1 −3 −7

0 −1 −2
2 1 2




24. u =




7
4
1
2


 and W = Span







1
2
1

−1


 ,




1
3
2
2







25. u =



3
1

−1


 and W is the solution set of

x1 + 2x2 − x3 = 0.

26. u =



1
3

−2


 and W is the solution set of

x1 + 2x2 − 3x3 = 0
x1 + x2 − 3x3 = 0.

27. u =



8
0
2


 and W is the solution set of

x1 + x2 − x3 = 0
x1 + 2x2 + 3x3 = 0.

28. u =




1
3

−3
1


 and W is the solution set of

x1 + x2 − x3 − x4 = 0.

29. u =




1
5
1

−1


 and W is the solution set of

x1 + x2 − x3 + x4 = 0
x1 − x2 + 3x3 + x4 = 0.

30. u =




1
1

−5
1


 and W = Null

[
2 −2 3 4
1 −1 1 1

]

31. u =
[
2
3

]
and W = Col

[
2 −2 3 4
1 −1 1 1

]

32. u =




4
1
3

−1


 and W = Row

[
2 −2 3 4
1 −1 1 1

]

In Exercises 33–56, determine whether the state-
ments are true or false.

33. For any nonempty subset S of Rn , (S⊥)⊥ = S.

34. If F and G are subsets of Rn and F⊥ = G⊥, then F = G .

35. The orthogonal complement of any nonempty subset of
Rn is a subspace of Rn .

36. For any matrix A, (ColA)⊥ = NullA.

37. For any matrix A, (NullA)⊥ = RowA.

38. Let W be a subspace of Rn . If {w1, w2, . . . , wk } is
an orthonormal basis for W and {z1, z2, . . . , zm } is an
orthonormal basis for W ⊥, then

{w1, w2, . . . , wk , z1, z2, . . . , zm }
is an orthonormal basis for Rn .

39. For any subspace W of Rn , the only vector in both W
and W ⊥ is 0.

40. For any subspace W of Rn and any vector u in Rn , there
is a unique vector in W that is closest to u.

41. Let W be a subspace of Rn , u be any vector in Rn , and
w be the orthogonal projection of u on W . Then u − w is
in W ⊥.

42. For any subspace W of Rn , dim W = dimW ⊥.

43. If {w1, w2, . . . , wk } is a basis for W and u is a vec-
tor in Rn , then the orthogonal projection of u on W is
(u �w1)w1 + (u �w2)w2 + · · · + (u �wk )wk .

44. For any subspace W of Rn and any vector v in Rn , the
distance from v to W equals ‖v − w‖, where w is the
orthogonal projection of v on W .

45. If u is in Rn and W is a subspace of Rn , then PW u is
the vector in W that is closest to u.

46. Every orthogonal projection matrix is invertible.

47. If W is a subspace of Rn , then, for any vector u in
Rn , the vector u − PW u is orthogonal to every vector
in W .

48. In order for C (C TC )−1C T to equal the orthogonal pro-
jection matrix for a subspace W , the columns of C must
form an orthonormal basis for W .

49. If C is a matrix whose columns form a generating set for
a subspace W of Rn and u is a vector in Rn , then the
orthogonal projection of u on W is C (C T C )−1C T u.

50. If C is a matrix whose columns form a basis for a sub-
space W of Rn , then the matrix C T C is invertible.
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51. If C is a matrix whose columns form a basis for a sub-
space W of Rn , then C (C T C )−1C T = In .

52. If B and C are matrices whose columns form bases for a
subspace W of Rn , then B(BT B)−1BT = C (C T C )−1C T .

53. If W is a subspace of Rn and u is a vector in Rn , then
u − PW u is in W ⊥.

54. If W is a subspace of Rn and u is a vector in Rn , then
the distance from u to W is ‖PW u‖.

55. If W is a subspace of Rn , then Null PW = W ⊥.

56. If W is a subspace of Rn and u is a vector in W , then
PW u = u.

57. Let S be a nonempty finite subset of Rn , and suppose that
W = SpanS. Prove that W ⊥ = S⊥.

58. Let W be a subspace of Rn , and let B1 and B2 be bases for
W and W ⊥, respectively. Apply the orthogonal decompo-
sition theorem to prove that

(a) B1 ∪ B2 is a basis for Rn .

(b) dim W + dim W ⊥ = n .

59. Suppose that {v1, v2, . . . , vn } is an orthogonal basis
for Rn . For any k , where 1 ≤ k < n, define W =
Span {v1, v2, . . . , vk }. Prove that {vk+1, vk+2, . . . , vn } is an
orthogonal basis for W ⊥.

60. Prove that for any subspace W of Rn , (W ⊥)⊥ = W .

61. Prove the following statements for any matrix A:

(a) (Row A)⊥ = Null A

(b) (Col A)⊥ = Null AT

62. Prove that if S1 and S2 are subsets of Rn such that S1 is
contained in S2, then S⊥

2 is contained in S⊥
1 .

63. Prove that for any nonempty finite subset S of Rn ,
(S⊥)⊥ = SpanS.

64. Use the fact that (Row A)⊥ = Null A for any matrix A
to give another proof that dim W + dim W ⊥ = n for any
subspace W of Rn . (Hint: Let A be a k × n matrix whose
rows constitute a basis for W .)

65. Let A be an n × n matrix. Prove that if v is a vector in
both Row A and Null A, then v = 0.

66. Let V and W be subspaces of Rn such that every vec-
tor in V is orthogonal to every vector in W . Prove that
dim V + dim W ≤ n.

67.8 Let W be a subspace of Rn .

(a) Prove that (PW )2 = PW .

(b) Prove that (PW )T = PW .

68. Let W be a subspace of Rn . Prove that, for any u in Rn ,
PW u = u if and only if u is in W .

69. Let W be a subspace of Rn . Prove that, for any u in Rn ,
PW u = 0 if and only if u is in W ⊥.

70. Let W be a subspace of Rn . Prove that a vector u in Rn

is an eigenvector of PW if and only if u is an eigenvector
of PW ⊥ .

71. Let W be a subspace of Rn . Prove that (PW u) �v =
u � (PW v) for every u and v in Rn .

72. Let W be a subspace of Rn . Prove that PW PW ⊥ =
PW ⊥PW = O , and hence PW ⊥ = In − PW .

73. Let W be a subspace of Rn . Prove that PW + PW ⊥ = In .

74. Let V and W be subspaces of Rn such that for any v
in V and w in W , the vectors v and w are orthogonal.
Prove that PV + PW is an orthogonal projection matrix.
Describe the subspace Z of Rn such that PZ = PV + PW .

75. Suppose that B = {v1, v2, . . . , vk } is an orthonormal basis
for a subspace W of Rn . Let C be the n × k matrix
whose columns are the vectors in B. Prove the following
statements:

(a) C T C = Ik .

(b) PW = CC T .

76. Show that for any vector u in Rn , the orthogonal projec-
tion of u on {0} is 0.

77. Let W be a subspace of Rn having dimension k , where
0 < k < n .

(a) Prove that 1 and 0 are the only eigenvalues of PW .

(b) Prove that W and W ⊥ are eigenspaces of PW corre-
sponding to the eigenvalues 1 and 0, respectively.

(c) Let B1 and B2 be bases for W and W ⊥, respectively.
Recall from Exercise 58 that B = B1 ∪ B2 is a basis
for Rn . Prove that if B is the matrix whose columns
are the vectors in B1 followed by the vectors in B2,
and if D is the diagonal n × n matrix whose first k
diagonal entries are 1s and whose other entries are 0s,
then PW = BDB−1.

78. Let V = Row A, where

A =

⎡
⎢⎢⎣

−1 1 0 −1
0 1 −2 1

−3 1 4 −5
1 1 −4 3

⎤
⎥⎥⎦ .

Use the method described in Exercise 77 to find PV . Hint:
Obtain a basis for V ⊥ as in Example 2 of Section 6.2.

79. (a) Let W = Null C , where C is an m × n matrix of rank
m. Prove that

PW ⊥ = C T (CC T )−1C
and

PW = In − C T (CC T )−1C .

Hint: Observe that W ⊥ = Row C .

(b) Let W = Null A, where A is the matrix in Exercise 78.
Use (a) to compute PW . Caution: Because A is a
4 × 4 matrix of rank 2, A must be replaced by an
appropriate 2 × 4 matrix of rank 2. This can be done
by replacing A by the 2 × 4 matrix of nonzero rows
of the reduced row echelon form of A.

8 This exercise is used in Section 6.6 (on page 432).
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(c) Let W = NullA, where A is the matrix in Exercise 78.
Use the method described in Exercise 77 to find
PW . Hint: Obtain a basis for W ⊥ as in Example 2
of Section 6.2. Compare your result with the result
obtained in (b).

80. Let V and W be as in Exercises 78 and 79. Compute
PV + PW . What accounts for your answer?

81. Let W = ColA, where

A =




1 0 5 −3
0 1 2 4

−1 −2 −9 −5
1 1 7 1


 .

Use the method described in Exercise 77 to find PW .

82.9 Suppose that P is an n × n matrix such that P 2 = PT =
P . Prove that P is the orthogonal projection matrix PW ,
where W = ColP = {Pu : u is in Rn }. Hint: Show that
for any u in Rn , u = Pu + (In − P )u, Pu is in W , and
(In − P )u is in W ⊥.

83. Let W be a 1-dimensional subspace of Rn , v be a nonzero
vector in W , and A the n × n matrix with aij = vi vj for

all i , j . Prove that PW = 1

‖v‖2
A.

84. Let W be a 2-dimensional subspace of R3. Use the defini-
tion of the reflection operator TW in Section 5.4 to prove
the following:

(a) TW (u) = 2UW (u) − u for every vector u in R3.

(b) TW is linear.

In Exercises 85–88, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

85. Let W = Span S , where

S =







0
−3

9
0

−4




,




−8
9

−8
0
2




,




−4
8
1

−1
8




,




−9
5
5
6

−7







and u =




−9
4
7
2
4




.

(a) Find an orthonormal basis for W .

(b) Use your answer to (a) to find the orthogonal projec-
tion of u on W .

(c) Use your answer to (b) to find the distance from u
to W .

86. Find a basis for the subspace W ⊥, where W is given in
Exercise 85.

87. Find PW , where W is given in Exercise 85. Use your
answer to find the orthogonal projection of the vector u
in Exercise 85, and compare the result with your answer
to Exercise 85(b).

88. Let

u =




6
−4
−2

1
−1




and

W = Span







−9
5
5
6

−7




,




−9
4
7
2
4




,




4
9
7

−5
−4







.

Compute the orthogonal projection matrix PW , and use it
to find the distance from u to W .

SOLUTIONS TO THE PRACTICE PROBLEMS

1. A =
[

1 0 −1 1
−1 1 3 −4

]
. Thus W ⊥ = NullA is the

set of solutions of the homogeneous system of linear
equations Ax = 0. The vector form of the general solution
of this system is




x1

x2

x3

x4


 = x3




1
−2

1
0


+ x4




−1
3
0
1


 .

Therefore 





1
−2

1
0


 ,




−1
3
0
1







is a basis for W ⊥.

2. (a) A vector x =




x1

x2

x3

x4


 is in W ⊥ if and only if it is a solu-

tion of the homogeneous system of linear equations

x1 + x2 − x3 + x4 = 0
3x1 + 2x2 − x3 = 0.

The vector form of the general solution of this sys-
tem is




x1

x2

x3

x4


 = x3




−1
2
1
0


+ x4




2
−3

0
1


 .

9 This exercise is used in Section 6.7 (on page 447).
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Thus 





−1
2
1
0


 ,




2
−3

0
1







is a basis for W ⊥.
Next, we apply the methods used in Practice Prob-

lem 1 to obtain an orthonormal basis {w1, w2} for W ,
where

w1 = 1

2




1
1

−1
1


 and w2 = 1

2
√

5




3
1
1

−3


 .

Thus

w = (u �w1)w1 + (u �w2)w2

= (5) · 1

2




1
1

−1
1


+ (−

√
5) · 1

2
√

5




3
1
1

−3




=




1
2

−3
4


 .

Finally,

z = u − w =




0
7
4
7


−




1
2

−3
4


 =




−1
5
7
3


 .

(b) Let

C =




1 3
1 2

−1 −1
1 0


 .

Then

PW = C (C TC )−1C T

=




1 3
1 2

−1 −1
1 0



[

0.7 −0.3
−0.3 0.2

] [
1 1 −1 1
3 2 −1 0

]

=




0.7 0.4 −0.1 −0.2
0.4 0.3 −0.2 0.1

−0.1 −0.2 0.3 −0.4
−0.2 0.1 −0.4 0.7


 .

Observe that the product PW u gives the same result
as obtained in (a).

(c) The distance from u to W is the distance between u
and the orthogonal projection of u on W , which is

‖z‖ =

∥∥∥∥∥∥∥∥




−1
5
7
3




∥∥∥∥∥∥∥∥
=

√
84.

6.4 LEAST-SQUARES APPROXIMATION AND
ORTHOGONAL PROJECTION MATRICES

In almost all areas of empirical research, there is an interest in finding simple math-
ematical relationships between variables. In economics, the variables might be the
gross domestic product, the unemployment rate, and the annual deficit. In the life sci-
ences, the variables of interest might be the incidence of smoking and heart disease.
In sociology, it might be birth order and frequency of juvenile delinquency.

Many relationships in science are deterministic; that is, information about one
variable completely determines the value of another variable. For example, the rela-
tionship between force f and acceleration a of an object of mass m is given by the
equation f = ma (Newton’s second law). Another example is the height of a freely
falling object and the time that it has been falling. On the other hand, the relationship
between the height and the weight of an individual is not deterministic. There are
many people with the same height, but different weights. Yet, in hospitals, there exist
charts that give the recommended weights for given heights. Relationships that are
not deterministic are often called probabilistic or stochastic.

We can apply what we know about orthogonal projections to identify relationships
between variables. We begin with a given set of data (x1, y1), (x2, y2), . . . , (xn , yn )

466



6.4 Least-Squares Approximations and Orthogonal Projection Matrices 403

y

x

(xi, a0 � a1xi)

(xi , yi)

y � a0 � a1x

|yi � (a0 � a1xi)|

Figure 6.16 A plot of the data

obtained by empirical measurements. For example, we might have a randomly selected
sample of n people, where xi represents the number of years of education and yi

represents the annual income of the i th person. The data are plotted as in Figure 6.16.
Notice that there is an approximately linear (straight line) relationship between x
and y . To obtain this relationship, we would like to find the line y = a0 + a1x that
best fits the data. The usual criterion that statisticians use for defining the line of best
fit is that the sum of the squared vertical distances of the data from it is smaller than
from any other line. From Figure 6.16, we see that we must find a0 and a1 so that the
quantity

E = [y1 − (a0 + a1x1)]
2 + [y2 − (a0 + a1x2)]

2 + · · · + [yn − (a0 + a1xn )]
2 (3)

is minimized. The technique to find this line is called the method of least squares,10

E is called the error sum of squares, and the line for which E is minimized is called
the least-squares line.

To find the least-squares line, we let

v1 =




1
1
...

1


 , v2 =




x1

x2
...

xn


 , y =




y1

y2
...

yn


 , and C = [v1 v2].

With this notation, equation (3) can be rewritten in the notation of vectors as

E = ‖y − (a0v1 + a1v2)‖2. (4)

(See Exercise 33.) Notice that
√

E = ‖y − (a0v1 + a1v2)‖ is the distance between y
and the vector a0v1 + a1v2, which lies in W = Span {v1, v2}. So to minimize E , we
need only choose the vector in W that is nearest to y. But from the closest vector
property, this vector is the orthogonal projection of y on W . Thus we want

a0v1 + a1v2 = C

[
a0

a1

]
= PW y,

the orthogonal projection of y on W .
For any reasonable set of data, the xi ’s are not all equal, and hence v1 and v2

are not multiples of one another. Thus the vectors v1 and v2 are linearly independent,

10 The method of least squares first appeared in a paper by Adrien Marie Legendre (1752–1833), entitled
Nouvelles Méthodes pour la détermination des orbites des comètes.
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and so B = {v1, v2} is a basis for W . Since the columns of C form a basis for W , we
may apply Theorem 6.8 to obtain

C

[
a0

a1

]
= C (C T C )−1C T y.

Multiplying on the left by C T gives

C T C

[
a0

a1

]
= C T C (C T C )−1C T y = C T y.

The matrix equation C T Cx = C T y corresponds to a system of linear equations called

the normal equations. Thus the line of best fit occurs when

[
a0

a1

]
is the solution of

the normal equations. Since C T C is invertible by the lemma preceding Theorem 6.8,
we see that the least-squares line has the equation y = a0 + a1x , where

[
a0

a1

]
= (C T C )−1C T y.

Example 1 In the manufacture of refrigerators, it is necessary to finish connecting rods. If the
weight of the finished rod is above a certain amount, the rod must be discarded. As the
finishing process is expensive, it would be of considerable value to the manufacturer
to be able to estimate the relationship between the finished weight and the initial rough
weight. Then, those rods whose rough weights are too high could be discarded before
they are finished. From past experience, the manufacturer knows that this relationship
is approximately linear.

From a sample of five rods, we let xi and yi denote the rough weight and the
finished weight, respectively, of the i th rod. The data are given in the following table:

Rough weight Finished weight
xi (in pounds) yi (in pounds)

2.60 2.00

2.72 2.10

2.75 2.10

2.67 2.03

2.68 2.04

From this information, we let

C =




1 2.60
1 2.72
1 2.75
1 2.67
1 2.68




and y =




2.00
2.10
2.10
2.03
2.04




.

Then

C T C =
[

5.0000 13.4200
13.4200 36.0322

]
and C T y =

[
10.2700
27.5743

]
,
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and the solution of the normal equations is

[
a0

a1

]
≈
[
0.056
0.745

]
.

Thus the approximate relationship between the finished weight y and the rough weight
x is given by the equation of the least-squares line

y = 0.056 + 0.745x .

For example, if the rough weight of a rod is 2.65 pounds, then the finished weight is
approximately

0.056 + 0.745(2.65) ≈ 2.030 pounds.

Practice Problem 1 � Find the equation of the least-squares line for the data (1, 62), (3, 54), (4, 50), (5, 48),
and (7, 40). �

The method we have developed for finding the best fit to data points (x1, y1),
(x2, y2), . . . , (xn , yn ) by a linear polynomial a0 + a1x can be modified to find the best
fit by a quadratic polynomial y = a0 + a1x + a2x 2. The only change in the method is
that the new error sum of squares is

E = [y1 − (a0 + a1x1 + a2x
2
1 )]2 + · · · + [yn − (a0 + a1xn + a2x

2
n )]2.

In this case, let

v1 =




1
1
...

1


 , v2 =




x1

x2
...

xn


 , v3 =




x 2
1

x 2
2

...

x 2
n




, and y =




y1

y2
...

yn


 .

Assuming that the xi ’s are distinct and n ≥ 3, which in practice is always the case,
the vectors v1, v2, and v3 are linearly independent (see Exercise 34), and hence they
form a basis for a 3-dimensional subspace W of Rn . So we let C be the n × 3 matrix
C = [v1 v2 v3]. As in the linear case, we can obtain the normal equations

C T C




a0

a1

a2


 = cT y,

whose solution is



a0

a1

a2


 = (C T C )−1C T y.

Example 2 It is known from physics that if a ball is thrown upward at a velocity of v0 feet per
second from a building of height s0 feet, then the height of the ball after t seconds
is given by s = s0 + v0t + 1

2gt2, where g represents the acceleration due to gravity.
To provide an empirical estimate of g , a ball is thrown upward from a building 100
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feet high at a velocity of 30 feet per second. The height of the ball is observed at the
times given in the following table:

Time (in seconds) Height (in feet)

0 100

1 118

2 92

3 48

3.5 7

For these data, we let

C =




1 0 0
1 1 1
1 2 4
1 3 9
1 3.5 12.25




and y =




100
118
92
48
7




.

Thus the quadratic polynomial y = a0 + a1x + a2x 2 of best fit satisfies




s0

v0
1
2g


 =




a0

a1

a2


 = (C T C )−1C T y ≈




101.00
29.77

−16.11


 .

(1, 118)

(0, 100)

(2, 92)

(3, 48)

(3.5, 7)

120

100

80

60

40

20

0
1 2 3 4

s

t

s � 101.00 � 29.77t � 16.11t2

Figure 6.17 The quadratic polynomial of best fit for the data in Example 2
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This yields the approximate relationship

s = 101.00 + 29.77t − 16.11t2.

(See Figure 6.17.) Setting 1
2 g = −16.11, we obtain −32.22 feet per second per second

as the estimate for g .

It should be pointed out that the same method may be extended to find the best-
fitting polynomial11 of any desired maximum degree, provided that the data set is
sufficiently large. Furthermore, by using the appropriate change of variable, many more
complicated relationships may be estimated by the same type of matrix computations.

The material treated in the rest of this section will be revisited from a different
perspective in Section 6.7.

INCONSISTENT SYSTEMS OF LINEAR EQUATIONS∗

The preceding examples are special cases of inconsistent systems of linear equations
for which it is desirable to obtain approximate solutions. In general, a system of linear
equations Ax = b arising from the application of a theoretical model to real data
may be inconsistent because the entries of A and b that are obtained from empirical
measurements are not precise or because the model only approximates reality. In
these circumstances, we are interested in obtaining a vector z for which ‖Az − b‖ is a
minimum. Let W denote the set of all vectors of the form Au. Then W is the column
space of A. By the closest vector property, the vector in W that is closest to b is the
orthogonal projection of b on W , which can be computed as PW b. Thus a vector z
minimizes ‖Az − b‖ if and only if it is a solution of the system of linear equations

Ax = PW b,

which is guaranteed to be consistent. (See Figure 6.18.)

‖Az � b‖

‖Au � b‖

Au
Az � PW b

b

W � Col A

0

Figure 6.18 The vector z minimizes ‖Az − b‖ if and only if it is a solution of the system of
linear equations Ax = PW b.

11 Caution! The MATLAB function polyfit returns the coefficients of the polynomial of best fit with
terms written in descending order (rather than in ascending order, as in this book).

∗ The remainder of this section may be omitted without loss of continuity.
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Example 3 Given the inconsistent system of linear equations Ax = b, with

A =

⎡
⎢⎢⎣

1 1 1
2 1 4

−1 0 −3
3 2 5

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

1
7

−4
8

⎤
⎥⎥⎦ ,

use the method of least squares to describe the vectors z for which ‖Az − b‖ is a
minimum.

Solution By computing the reduced row echelon form of A, we see that the rank
of A is 2 and that the first two columns of A are linearly independent. Thus the first
two columns of A form a basis for W = Col A. Let C be the 4 × 2 matrix with these
two vectors as its columns. Then

PW b = C (C T C )−1C T b = 1

3

⎡
⎢⎢⎣

1 0 1 1
0 1 −1 1
1 −1 2 0
1 1 0 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
7

−4
8

⎤
⎥⎥⎦ = 1

3

⎡
⎢⎢⎣

5
19

−14
24

⎤
⎥⎥⎦ .

As noted, the vectors that minimize ‖Az − b‖ are the solutions to Ax = PW b. The
general solution of this system is

⎡
⎣

x1

x2

x3

⎤
⎦ = 1

3

⎡
⎣

14
−9

0

⎤
⎦+ x3

⎡
⎣

−3
2
1

⎤
⎦ .

So these are the vectors that minimize ‖Az − b‖. Note that, for each of these vectors,
we have

‖Az − b‖ = ‖PW b − b‖ =

∥∥∥∥∥∥∥∥
1

3

⎡
⎢⎢⎣

5
19

−14
24

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

1
7

−4
8

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
= 2√

3
.

SOLUTIONS OF LEAST NORM
In solving the problem posed in Example 3, we obtained an infinite set of solutions of
a nonhomogeneous system of linear equations. In general, given a nonhomogeneous
system of linear equations with an infinite set of solutions, it is often useful to select
the solution of least norm. We show, using orthogonal projections, that any such
system has a unique solution of least norm.

Consider a consistent system Ax = c of linear equations with c �= 0. Let v0 be any
solution of the system, and let Z = Null A. By Exercise 35, a vector v is a solution of
the system if and only if it is of the form v = v0 + z, where z is in Z . Here, we wish to
select a vector z in Z so that ‖v0 + z‖ is a minimum. Since ‖v0 + z‖ = ‖ − v0 − z‖,
which is the distance between −v0 and z, the vector in Z that minimizes this distance
is, of course, the orthogonal projection of −v0 on Z ; that is, z = PZ (−v0) = −PZ v0.
Thus v0 + z = v0 − PZ v0 is the unique solution of the system of least norm.
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Example 4 Find the solution of least norm to the equation Ax = PW b in Example 3.

Solution Based on the vector form of the solution given in Example 3, a vector v
is a solution if and only if v = v0 + z, for z in Z , where

v0 = 1

3




14
−9

0


 and Z = Null A = Span







−3
2
1




 .

Setting C =



−3
2
1


, we compute the orthogonal projection matrix

PZ = C (C T C )−1C T = 1

14




9 −6 3
−6 4 2
−3 2 1


 .

Thus

v0 − PZ v0 = (I3 − PZ )v0 = 1

21




8
−3
30




is the solution of least norm.

EXERCISES

In Exercises 1–8, find the equation of the least-squares line for
the given data.

1. (1, 14), (3, 17), (5, 19), (7, 20)

2. (1, 30), (2, 27), (4, 21), (7, 14)

3. (1, 5), (2, 6), (3, 8), (4, 10), (5, 11)

4. (1, 2), (2, 4), (3, 7), (4, 8), (5, 10)

5. (1, 40), (3, 36), (7, 23), (8, 21), (10, 13)

6. (1, 19), (2, 17), (3, 16), (4, 14), (5, 12)

7. (1, 4), (4, 24), (5, 30), (8, 32), (12, 36)

8. (1, 21), (3, 32), (9, 38), (12, 41), (15, 51)

9. Suppose that a spring whose natural length is L inches is
attached to a wall. A force y is applied to the free end of
the spring, stretching the spring s inches beyond its natu-
ral length. Hooke’s law states (within certain limits) that
y = ks , where k is a constant called the spring constant.
Now suppose that after the force y is applied, the new
length of the spring is x . Then s = x − L, and Hooke’s
law yields

y = ks = k (x − L) = a + kx ,

where a = −kL. Apply the method of least squares to the
following data to estimate k and L:

Length x Force y

in inches in pounds

3.5 1.0

4.0 2.2

4.5 2.8

5.0 4.3

In Exercises 10–15, use the method of least squares to find the
polynomial of degree at most n that best fits the given data.

10. n = 2 with data (0, 2), (1, 2), (2, 4), (3, 8)

11. n = 2 with data (0, 3), (1, 3), (2, 5), (3, 9)

12. n = 2 with data (0, 1), (1, 2), (2, 3), (3, 4)

13. n = 2 with data (0, 2), (1, 3), (2, 5), (3, 8)

14. n = 3 with data (−2, −5), (−1,−1), (0,−1), (1, 1),
(2, 11)

15. n = 3 with data (−2, −4), (−1,−5), (0, 5), (1, −3),
(2, 12)
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In Exercises 16–19, an inconsistent system of linear equations
Ax = b is given. Use the method of least squares to obtain the
vectors z for which ‖Az − b‖ is a minimum.

16. A =



1 1
1 2
3 1


 and b =




3
5
4




17. A =



1 2 −1
1 −1 2
2 1 1


 and b =




1
3
1




18. A =




1 1 0 3
0 1 0 1
1 −1 1 2
0 −1 1 0


 and b =




1
2
1
0




19. A =




−1 1 1 0
2 1 4 3
0 −1 −1 0
0 2 4 2
1 1 3 2




and b =




1
0
1
1
1




In Exercises 20–23, a system of linear equations Ax = b is
given. Use the method of least squares to obtain the solution
of least norm.

20. A =
[
1 1 2
3 −1 −2

]
and b =

[
3
1

]

21. A =



1 2 −1
−3 −5 2

2 3 −1


 and b =




−1
0
1




22. A = [1 −3 2
]

and b = [5]

23. A =



2 −1 1 1
1 1 −1 2
1 −2 2 −1


 and b =




4
−1

5




In Exercises 24–27, find the vector z of least norm for which
‖Ax − b‖ is a minimum, where Ax = b is the inconsistent system
of linear equations given in each specified exercise.

24. Exercise 16 25. Exercise 17
26. Exercise 18 27. Exercise 19

In Exercises 28–32, determine whether the state-
ments are true or false.

28. For a given set of data plotted in the xy-plane, the least-
squares line is the unique line in the plane that minimizes
the sum of the vertical distances from the data points to
the line.

29. If

[
a0

a1

]
is a solution of the normal equations for the data,

then y = a0 + a1x is the equation of the least-squares line.

30. The method of least squares can be used only to approx-
imate data with a straight line.

31. For any inconsistent system of linear equations Ax = b,
the vector z for which ‖Az − b‖ is a minimum is unique.

32. Every consistent system of linear equations Ax = b has a
unique solution of least norm.

33. Let E be the error sum of squares for the data
(x1, y1), (x2, y2), . . . , (xn , yn ), as in equation (4). Prove that
E = ‖y − (a0v1 + a1v2)‖2, where

v1 =




1
1
..
.

1


 , v2 =




x1

x2
..
.

xn


 , and y =




y1

y2
..
.

yn


 .

34. Prove that for any set of data (x1, y1), (x2, y2), . . . , (xn , yn ),
where the xi ’s are distinct and n ≥ 3, the vectors

v1 =




1
1
.
..

1


 , v2 =




x1

x2
.
..

xn


 , and v3 =




x2
1

x2
2

..

.

x2
n




form a linearly independent subset of Rn .

35. Suppose that Ax = c is a consistent system of linear
equations with c �= 0, and v0 is a solution of the system.
Prove that a vector v is a solution of the system if and
only if v = v0 + z for some vector z in NullA.

Exercises 36 and 37 require familiarity with the material on QR
factorization in Section 6.2.

36. Let A = QR be a QR factorization of a matrix with lin-
early independent columns. Prove that PW = QQT , where
W = ColA.

37. Consider the consistent system Ax = b, where A has lin-
early independent columns. In Section 6.2, we learned
how to use a QR factorization of A to solve this by find-
ing the solution to the related system Rx = QT b, which
is always consistent. Show that if Ax = b is inconsistent,
the solution of Rx = QT b minimizes ‖Ax − b‖.

In Exercises 38–41, use either a calculator with matrix capabil-
ities or computer software such as MATLAB.

38. A space vehicle is launched from a space platform near a
space station. The vehicle moves in a direction away from
the station at a constant acceleration so that t seconds after
launch, its distance y from the station (in meters) is given
by the formula y = a + bt + ct 2. (Here, a is the distance
from the station to the platform at the time of launch, b
is the speed of the platform relative to the space station,
and 2c is the acceleration of the vehicle.) Use the method
of least squares to obtain the best quadratic fit to the data
that follows:

t 5 10 15 20 25 30
y 140 290 560 910 1400 2000

39. Use the method of least squares to find the best cubic fit
for the points (−2,−4), (−1, 1), (0, 1), (2, 10), and (3, 26).

40. The accompanying table gives the approximate values of
the function y = 10 sin x over the interval [0, 2π ]. We
use the method of least squares to approximate this func-
tion by linear and cubic polynomials.

474



6.5 Orthogonal Matrices and Operators 411

x y = 10 sin x

0.00000 0.00000

0.62832 5.87786

1.25664 9.51057

1.88496 9.51055

2.51328 5.87781

3.14160 −0.00007

3.76992 −5.87792

4.39824 −9.51060

5.02656 −9.51053

5.65488 −5.87775

6.28320 0.00014

(a) Use the method of least squares to find the equation
of the least-squares line for the data in the table.

(b) Compute the error sum of squares associated with (a).

(c) Graph y = 10 sin x and the least-squares line obtained
in (a) using the same set of axes.

(d) Use the method of least squares to produce the best
cubic fit for the data.

(e) Compute the error sum of squares associated with (d).

(f) Graph y = 10 sin x and the cubic polynomial obtained
in (d) using the same set of axes.

41. Suppose that a mathematical model predicts that two
quantities, x and y , are related by the equation y =
a cos x + b sin x , where x is in units of degrees. As
a result of experiments, the following table of data is
obtained:

x 5 10 15 20 25 30
y 2.8 2.6 2.4 2.1 1.9 1.6

Use the method of least squares to estimate the values of a
and b rounded to two significant figures. Hint: Let v1 and
v2 be the vectors in R6 whose entries are the cosines and
the sines of the angles 5◦, 10◦, . . . , 30◦, respectively, and
let y be the vector in R6 whose entries are the corre-
sponding values of y in the table. Let A = [v1 v2]. Use
the method of least squares to find the vector z that min-
imizes ‖Az − y‖.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Let

C =




1 1
1 3
1 4
1 5
1 7




and y =




62
54
50
48
40




.

Then y = a0 + a1x , where

[
a0

a1

]
= (C T C )−1C T y =

[
65.2
−3.6

]
.

Hence the equation of the least-squares line is

y = 65.2 − 3.6x .

2. (a) Let

C =




1 1
−1 1

2 −3
−1 2


 .

Then

PW = C (C T C )−1C T

= 1

41




38 −8 1 7
−8 6 −11 5

1 −11 27 −16
7 5 −16 11


 .

(b) The vector in W that is closest to u is given by

PW u = 1

41




38 −8 1 7
−8 6 −11 5

1 −11 27 −16
7 5 −16 11







4
0

−3
8




=




5
1

−5
4


 .

6.5 ORTHOGONAL MATRICES AND OPERATORS
In Chapter 2, we studied the functions from Rn to Rn that preserve the operations of
vector addition and scalar multiplication. Now that we have introduced the concept of
the norm of a vector, it is natural to ask which linear operators on Rn also preserve
norms; that is, which operators T satisfy ‖T (u)‖ = ‖u‖ for every vector u in Rn .
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These linear operators and their standard matrices are extremely useful in numerical
calculations because they do not magnify any roundoff or experimental error. Because
such operators on R2 preserve the angle between nonzero vectors (see Exercise 66),
it follows that they also preserve many familiar properties from geometry.

It is clear that an arbitrary operator on Rn does not have this property. For
if an operator U on Rn has an eigenvalue λ other than ±1 with corresponding
eigenvector v, then ‖U (v)‖ = ‖λv‖ = |λ| �‖v‖ �= ‖v‖. There are, however, familiar
operators that do have this property, as our first example shows.

Example 1 Let T be the linear operator on R2 that rotates a vector through an angle θ . Clearly,
T (v) has the same length as v for every v in R2, and therefore ‖T (v)‖ = ‖v‖ for
every v in R2.

A linear operator that rotates every vector in R2 through a particular angle is
called a rotation operator, or simply, a rotation. Clearly, a linear operator on R2 is
a rotation if and only if its standard matrix is a rotation matrix.

Because of the connection between linear operators and their standard matrices,
we can study linear operators on Rn that preserve norms by studying the n × n
matrices Q such that ‖Qu‖ = ‖u‖ for every u in Rn . Consider an arbitrary column
qj of such a matrix. Since

‖qj ‖ = ‖Qej‖ = ‖ej‖ = 1, (5)

the norm of every column of Q is 1. Moreover, if i �= j , we have

‖qi + qj‖2 = ‖Qei + Qej‖2 = ‖Q(ei + ej )‖2 = ‖ei + ej‖2 = 2 = ‖qi‖2 + ‖qj‖2.

(6)

Hence qi and qj are orthogonal by Theorem 6.2. It follows that the columns of Q
form an orthonormal set of distinct vectors, and so constitute an orthonormal basis
for Rn .

Because of this result, we say that an n × n matrix is an orthogonal matrix (or
simply, orthogonal) if its columns form an orthonormal basis for Rn . A linear operator
on Rn is called an orthogonal operator (or simply, orthogonal) if its standard matrix
is an orthogonal matrix.

To verify that an n × n matrix Q is orthogonal, it suffices to show that the columns
of Q are distinct and form an orthonormal set.

Example 2 Consider the θ -rotation matrix

Aθ =
[
cos θ − sin θ

sin θ cos θ

]
.

Since
[
cos θ

sin θ

]
�

[− sin θ

cos θ

]
= (cos θ )(− sin θ ) + (sin θ )(cos θ ) = 0,

[
cos θ

sin θ

]
�

[
cos θ

sin θ

]
= cos2 θ + sin2 θ = 1,
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6.5 Orthogonal Matrices and Operators 413

and

[− sin θ

cos θ

]
�

[− sin θ

cos θ

]
= sin2 θ + cos2 θ = 1,

Aθ is an orthogonal matrix because its columns form an orthonormal set of two distinct
vectors in R2.

The following theorem lists several conditions that are equivalent to a matrix
being orthogonal:

THEOREM 6.9

The following conditions about an n × n matrix Q are equivalent:

(a) Q is orthogonal.

(b) QT Q = In .

(c) Q is invertible, and QT = Q−1.

(d) Qu �Qv = u �v for any u and v in Rn . (Q preserves dot products.)

(e) ‖Qu‖ = ‖u‖ for any u in Rn . (Q preserves norms.)

PROOF We show that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a) to establish the
equivalence of these conditions.

To prove that (a) implies (b), suppose that Q is orthogonal. Then the columns
of Q form an orthonormal basis for Rn . Next, observe that the (i , j )-entry of QT Q
is the dot product of the i th row of QT and qj . But the i th row of QT equals qi ,
and hence the (i , j )-entry of QT Q equals qi �qj . Since qi �qj = 1 if i = j , and
qi �qj = 0 if i �= j , we see that QT Q = In .

To prove that (b) implies (c), suppose that QT Q = In . Then Q is invertible
and QT = Q−1 by the Invertible Matrix Theorem.

To prove that (c) implies (d), assume that (c) is true. Then for any u and v
in Rn ,

Qu �Qv = u �QT Qv = u �Q−1Qv = u �v.

To prove that (d) implies (e), assume that (d) is true. Then for any u in Rn ,

‖Qu‖ =
√

Qu �Qu = √
u �u = ‖u‖.

The proof that (e) implies (a) follows from equations (5) and (6). �

Theorem 6.9 shows that an n × n matrix Q is orthogonal if and only if QT =
Q−1. By the Invertible Matrix Theorem, this condition can be checked by showing
that QT Q = In or QQT = In . Normally we use one of these simple conditions to
prove that a matrix is orthogonal. For instance, we have

AT
θ Aθ =

[
cos θ sin θ

− sin θ cos θ

] [
cos θ − sin θ

sin θ cos θ

]
=
[

1 0
0 1

]
= I2.

Thus Aθ is an orthogonal 2 × 2 matrix, confirming the result of Example 2. Notice
also that the equation QQT = In is equivalent to the condition that the rows of Q
form an orthonormal basis for Rn . (See Exercise 46.)
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Practice Problem 1 � Determine whether each of the following matrices is orthogonal:

(a)

[
.7 −.3
.3 .7

]
(b)




.3
√

2 −.8 .3
√

2
.4

√
2 .6 .4

√
2

.5
√

2 0 −.5
√

2




�

The following general result lists some important properties of orthogonal
matrices:

THEOREM 6.10

Let P and Q be n × n orthogonal matrices.

(a) det Q = ±1.

(b) PQ is an orthogonal matrix.

(c) Q−1 is an orthogonal matrix.

(d) QT is an orthogonal matrix.

PROOF (a) Since Q is an orthogonal matrix, QTQ = In by Theorem 6.9(b),
and hence

1 = det In = det (QT Q) = (det QT )(det Q) = (det Q)(det Q) = (detQ)2.

Therefore det Q = ±1.
(b) Because P and Q are orthogonal, they are invertible, and hence PQ is

invertible. Therefore, by Theorem 6.9(c),

(PQ)T = QT PT = Q−1P−1 = (PQ)−1,

and hence PQ is an orthogonal matrix, also by Theorem 6.9(c).
(c) By the preceding remarks, QQT = In , and hence

(Q−1)T Q−1 = (QT )−1Q−1 = (QQT )−1 = (In )−1 = In

by Theorem 2.2. Thus, by Theorem 6.9(b), Q−1 is an orthogonal matrix.
(d) This follows immediately from (c) and Theorem 6.9(c). �

Since a linear operator is orthogonal if and only if its standard matrix is orthog-
onal, we can restate parts of Theorem 6.9 for orthogonal operators.

If T is a linear operator on Rn , then the following statements are equivalent:

(a) T is an orthogonal operator.

(b) T (u) �T (v) = u �v for all u and v in Rn . (T preserves dot products.)

(c) ‖T (u)‖ = ‖u‖ for all u in Rn . (T preserves norms.)

Likewise, we can restate parts of Theorem 6.10 for orthogonal operators.

If T and U are orthogonal operators on Rn , then TU and T−1 are orthogonal
operators on Rn .

It follows from Example 1 and the first boxed statement just presented that rota-
tions of the plane are orthogonal operators. It is clear geometrically that reflections
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6.5 Orthogonal Matrices and Operators 415

of the plane about a line through the origin, as defined in Section 4.5, also preserve
norms. Thus they are also orthogonal operators.

The following example illustrates how Theorems 6.9 and 6.10 can be used to
create orthogonal operators with specific properties:

Example 3 Find an orthogonal operator T on R3 such that

T







1√
2

0

− 1√
2





 =




0
1
0


 .

Solution Let

v =




1√
2

0

− 1√
2


 .

Suppose that T is such an operator with standard matrix A. Then A is an orthogonal
matrix, and AT A = In by Theorem 6.9(b). Moreover, Av = T (v) = e2. Thus T satisfies
T (v) = e2 if and only if

v = Inv = AT Av = AT e2,

which is the second column of AT . Hence it suffices to choose A so that AT is an
orthogonal matrix whose second column is v. Since the columns of an orthogonal
matrix form an orthonormal basis for R3, we must construct an orthonormal basis for
R3 containing v. One way to do this is to determine an orthonormal basis for {v}⊥.
Now the vectors in {v}⊥ satisfy

1√
2
x1 − 1√

2
x3 = 0,

or equivalently,
x1 − x3 = 0.

Thus a basis for the solution space of this equation is







1
0
1


 ,




0
1
0




 ,

which is an orthogonal set, and so







1√
2

0
1√
2


 ,




0

1

0







is an orthonormal basis for {v}⊥. (Note that if the basis for the solution space is not an
orthogonal set, we can use the Gram–Schmidt process to replace it by an orthogonal
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basis, and then by an orthonormal basis.) Hence one acceptable choice for AT is

AT =




1√
2

1√
2

0

0 0 1
1√
2

− 1√
2

0


 ,

in which case

A =




1√
2

0 1√
2

1√
2

0 − 1√
2

0 1 0


 .

Therefore one possibility for T is the matrix transformation induced by A.

Practice Problem 2 � Find an orthogonal operator T on R3 such that

T







1√
3

− 1√
3

1√
3





 =




1
0
0


 .

�

ORTHOGONAL OPERATORS ON THE EUCLIDEAN PLANE∗

We have noted that rotations and reflections are orthogonal operators on R2. We now
show that these are the only orthogonal operators on R2 and can be distinguished by
computing the determinants of their standard matrices.

THEOREM 6.11

Let T be an orthogonal linear operator on R2 with standard matrix Q .

(a) If detQ = 1, then T is a rotation.

(b) If det Q = −1, then T is a reflection.

PROOF Suppose that Q =
[
a c
b d

]
. Since Q is an orthogonal matrix, its columns

are unit vectors, and so a2 + b2 = 1 and c2 + d2 = 1. Thus there exist angles θ

and µ such that a = cos θ , b = sin θ , c = cosµ, and d = sin µ. Since the two
columns of Q are orthogonal, θ and µ can be chosen so that they differ by 90◦;
that is, µ = θ ± 90◦. (See Figure 6.19.) We consider each case separately.

Case 1. µ = θ + 90◦.
In this case,

cosµ = cos (θ + 90◦) = − sin θ and sin µ = sin (θ + 90◦) = cos θ.

∗ The remainder of this section may be omitted without loss of continuity.
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(c, d )

(a, b)
�

�

Case 1: � � � � 90�

(c, d )

(a, b)
�

�

Case 2: � � � � 90�

Figure 6.19 The angles θ and µ differ by 90◦.

Therefore Q =
[
cos θ − sin θ

sin θ cos θ

]
, which we recognize as the rotation matrix Aθ .

Furthermore,

det Q = det

[
cos θ − sin θ

sin θ cos θ

]
= cos2 θ + sin2 θ = 1.

Case 2. µ = θ − 90◦.
In this case,

cosµ = cos (θ − 90◦) = sin θ and sinµ = sin (θ − 90◦) = − cos θ.

Therefore Q =
[
cos θ sin θ

sin θ − cos θ

]
, and so the characteristic polynomial of Q is

det (Q − tI2) = det

[
cos θ − t sin θ

sin θ − cos θ − t

]

= (cos θ − t)(− cos θ − t) − sin2 θ

= t2 − cos2 θ − sin2 θ

= t2 − 1

= (t + 1)(t − 1).

It follows that Q , and hence T , has the eigenvalues 1 and −1. Let b1 and b2

be eigenvectors corresponding to the eigenvalues 1 and −1 , respectively. Then
T (b1) = b1 and T (b2) = −b2. Moreover, because T preserves dot products,

b1 �b2 = T (b1) �T (b2) = b1 � (−b2) = −b1 �b2.

Therefore 2b1 �b2 = 0, and hence b1 �b2 = 0. So b1 and b2 are orthogonal. Now
let L be the line containing 0 in the direction of b1. Then b2 is a nonzero
vector in a direction perpendicular to L. It follows that T is a reflection about L.
Furthermore,

det Q = det

[
cos θ sin θ

sin θ − cos θ

]
= − cos2 θ − sin2 θ = −1.

To summarize, we have shown that, under case 1, T is a rotation and
detQ = 1, and that, under case 2, T is a reflection and detQ = −1. Since these
are the only two cases, the result is established. �
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Example 4
For the matrix Q =

[
0.6 0.8
0.8 −0.6

]
, verify that Q is the standard matrix of a reflection,

and find the equation of the line of reflection L.

Solution First, observe that

QTQ =
[
0.6 0.8
0.8 −0.6

] [
0.6 0.8
0.8 −0.6

]
= I2,

and hence Q is an orthogonal matrix by Theorem 6.9(b). Next, observe that

det Q = −0.62 − 0.82 = −1,

and hence Q is the standard matrix of a reflection by Theorem 6.11. To determine the
equation of L, we first find an eigenvector of Q corresponding to the eigenvalue 1.
Such a vector is a nonzero solution of the homogeneous system of equations

(Q − I2)x = 0;

that is,
−0.4x1 + 0.8x2 = 0

0.8x1 − 1.6x2 = 0.

The vector b =
[
2
1

]
is such a solution. Notice that b lies on the line with equation

y = 0.5x , which is, therefore, the equation of L.

Example 5
For the matrix Q =

[−0.6 0.8
−0.8 −0.6

]
, verify that Q is the standard matrix of a rotation,

and find the angle of rotation.

Solution Observe that QTQ = I2 and detQ = 1. Hence Q is an orthogonal matrix
and is the standard matrix of a rotation by Theorem 6.11. Thus Q is a rotation matrix,
and so

Q =
[−0.6 0.8
−0.8 −0.6

]
=
[
cos θ − sin θ

sin θ cos θ

]
= Aθ

where θ is the angle of rotation. Equating corresponding entries in the first column,
we see that

cos θ = −0.6 and sin θ = −0.8.

It follows that θ is in the third quadrant, and

θ = 180◦ + cos−1(0.6) ≈ 233.2◦
.

Practice Problem 3 � Show that each of the given functions T : R2 → R2 is an orthogonal operator on R2.
Then determine whether it is a rotation or a reflection. If it is a rotation, give the angle
of rotation; if it is a reflection, give the line of reflection.

(a) T

([
x1

x2

])
= 1

13

[
5x1 − 12x2

12x1 + 5x2

]
(b) T

([
x1

x2

])
= 1

61

[−60x1 + 11x2

11x1 + 60x2

]

�
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We have seen that the composition of two rotations on R2 is also a rotation. But
what about the composition of two reflections, or the composition of a reflection and a
rotation? The next theorem, which is an easy consequence of Theorem 6.11, answers
these questions.

THEOREM 6.12

Let T and U be orthogonal operators on R2.

(a) If both T and U are reflections, then TU is a rotation.

(b) If one of T or U is a reflection and the other is a rotation, then TU is a
reflection.

PROOF Let P and Q be the standard matrices of T and U , respectively. Then
PQ is the standard matrix of TU . Furthermore, TU is an orthogonal operator,
since both T and U are orthogonal operators.

(a) Since both T and U are reflections, det P = detQ = −1 by Theorem 6.11.
Hence

det(PQ) = (det P )(det Q) = (−1)(−1) = 1,

and therefore PQ is a rotation by Theorem 6.11.
(b) The proof of (b) is similar and is left as an exercise. �

RIGID MOTIONS
A function F : Rn → Rn is called a rigid motion if

‖F (u) − F (v)‖ = ‖u − v‖

for all u and v in Rn . In geometric terms, a rigid motion preserves the distance
between vectors.

Any orthogonal operator is a rigid motion because if T is an orthogonal operator
on Rn , then for any u and v in Rn ,

‖T (u) − T (v)‖ = ‖T (u − v)‖ = ‖u − v‖.

Furthermore, any rigid motion that is also linear is an orthogonal operator because if
F is a linear rigid motion, then F (0) = 0, and hence, for any vector v in Rn ,

‖F (v)‖ = ‖F (v) − 0‖ = ‖F (v) − F (0)‖ = ‖v − 0‖ = ‖v‖.

Therefore F is an orthogonal operator by Theorem 6.9(e).
There is one kind of rigid motion that is not usually linear, namely, a translation.

For any b in Rn , the function Fb : Rn → Rn defined by Fb(v) = v + b is called the
translation by b. If b �= 0, then F is not linear because Fb(0) = b �= 0. However, Fb

is a rigid motion, because for any u and v in Rn ,

‖Fb(u) − Fb(v)‖ = ‖(u + b) − (v + b)‖ = ‖u − v‖.

We can use function composition to combine rigid motions to create new ones,
because the composition of two rigid motions on Rn is a rigid motion on Rn . (See
Exercise 56.) It follows, for example, that if Fb is a translation and T is an orthogonal
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operator on Rn , then the composition FbT is a rigid motion. It is remarkable that the
converse of this is also true; that is, any rigid motion on Rn can be represented as
the composition of an orthogonal operator followed by a translation. To establish this
result, we first prove the following theorem:

THEOREM 6.13

Let T : Rn → Rn be a rigid motion such that T (0) = 0.

(a) ‖T (u)‖ = ‖u‖ for every u in Rn .

(b) T (u) �T (v) = u �v for all u and v in Rn .

(c) T is linear.

(d) T is an orthogonal operator.

PROOF The proof of (a) is left as an exercise.
(b) Let u and v be in Rn . Observe that

‖T (u) − T (v)‖2 = ‖T (u)‖2 − 2T (u) �T (v) + ‖T (v)‖2

and

‖u − v‖2 = ‖u‖2 − 2u �v + ‖v‖2.

Since T is a rigid motion, ‖T (u) − T (v)‖2 = ‖u − v‖2. Hence (b) follows from
the two preceding equations and (a).

(c) Let u and v be in Rn . Then, by (a) and (b), we have

‖T (u + v) − T (u) − T (v)‖2

= [T (u + v) − T (u) − T (v)] � [T (u + v) − T (u) − T (v)]

= ‖T (u + v)‖2 + ‖T (u)‖2 + ‖T (v)‖2 − 2T (u + v) �T (u)

− 2T (u + v) �T (v) + 2T (u) �T (v)

= ‖u + v‖2 + ‖u‖2 + ‖v‖2 − 2(u + v) �u

− 2(u + v) �v + 2u �v.

We leave it to the reader to show that the last expression equals 0. Therefore
T (u + v) − T (u) − T (v) = 0, and so T (u + v) = T (u) + T (v). Thus T preserves
vector addition. Similarly (see Exercise 58), T preserves scalar multiplication,
and hence T is linear.

(d) Part (d) follows from (c) and (a). �

Consider any rigid motion F on Rn , and let T : Rn → Rn be defined by

T (v) = F (v) − F (0).

Then T is a rigid motion, and T (0) = F (0) − F (0) = 0. Therefore T is an orthogonal
operator by Theorem 6.13. Furthermore,

F (v) = T (v) + F (0)
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for any v in Rn . Thus, setting b = F (0), we obtain

F (v) = FbT (v)

for any v in Rn , and hence F is the composition F = FbT . Combining this observation
with Theorem 6.11 yields the following result:

Any rigid motion on Rn is the composition of an orthogonal operator followed
by a translation. Hence any rigid motion on R2 is the composition of a rotation
or a reflection, followed by a translation.

EXERCISES

In Exercises 1–8, determine whether the given matrix is orthog-
onal.

1.
1

3

[
2 −1 −2
2 2 1

]
2.

[
1 1
1 −1

]

3.

[
0.6 0.4
0.4 −0.6

]
4. I5

5.




0 1 0
0 0 1
1 0 0


 6.

1√
3




1 1 1
1 −1 1
1 0 −2




7.
1√
2




1 1
0 0
1 −1


 8.




2
3

√
2

2

√
2

6

2
3 −

√
2

2

√
2

6

1
3 0 −2

√
2

3




In Exercises 9–16, determine whether each orthogonal matrix is
the standard matrix of a rotation or of a reflection. If the opera-
tor is a rotation, determine the angle of rotation. If the operator
is a reflection, determine the equation of the line of reflection.

9.
1√
2

[
1 1
1 −1

]
10.

1√
2

[
1 −1
1 1

]

11.
1

2

[√
3 −1
1

√
3

]
12.

1

2

[−√
3 1
1

√
3

]

13.
1

13

[
5 12

12 −5

]
14.

[
0 1
1 0

]

15.

[
0 1

−1 0

]
16.

1

2

[−1
√

3√
3 1

]

In Exercises 17–36, determine whether the state-
ments are true or false.

17. The rows of an n × n orthogonal matrix form an orthonor-
mal basis for Rn .

18. If T : Rn → Rn is a function such that ‖T (u) − T (v)‖ =
‖u − v‖ for all vectors u and v in Rn , then T is an orthog-
onal operator.

19. Every linear operator preserves dot products.

20. If a linear operator preserves dot products, then it pre-
serves norms.

21. If P is an orthogonal matrix, then PT is an orthogonal
matrix.

22. If P and Q are n × n orthogonal matrices, then PQT is
an orthogonal matrix.

23. If P and Q are n × n orthogonal matrices, then P + Q is
an orthogonal matrix.

24. If P is an n × n matrix such that det P = ±1, then P is
an orthogonal matrix.

25. If P and Q are n × n orthogonal matrices, then PQ is an
orthogonal matrix.

26. If the columns of an n × n matrix form an orthogonal
basis for Rn , then the matrix is an orthogonal matrix.

27. For any subspace W of Rn , the matrix PW is an orthog-
onal matrix.

28. If P is a matrix such that PT = P−1, then P is an orthog-
onal matrix.

29. Every orthogonal matrix is invertible.
30. The linear operator on R2 that rotates a vector by an angle

θ is an orthogonal operator.
31. If Q is the standard matrix of an orthogonal linear operator

T on R2 and det Q = −1, then T is a rotation.
32. Every rigid motion is an orthogonal operator.
33. Every rigid motion is a linear operator.
34. Every orthogonal operator is a rigid motion.
35. The composition of two rigid motions on Rn is a rigid

motion on Rn .
36. Every rigid motion on Rn is the composition of an orthog-

onal operator followed by a translation.

37. Find an orthogonal operator T on R3 such that

T


1

7




3
−2

6




 =




0
0
1


 .

38. Find an orthogonal operator T on R3 such that T (v) = w,
where

v = 1√
10




3
1
0


 and w = 1√

5




0
−2

1


 .
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39. Let 0◦
< θ < 180◦ be a particular angle, and suppose that

T is the linear operator on R3 such that

T (e1) = cos θ e1 + sin θ e2

T (e2) = − sin θ e1 + cos θ e2

T (e3) = e3.

(a) Prove that T is an orthogonal operator.

(b) Find the eigenvalues of T and a basis for each
eigenspace.

(c) Give a geometric description of T .

40. Suppose that {v1, v2, . . . , vk } and {w1, w2, . . . , wk } are
orthonormal subsets of Rn , each containing k vectors.
The following sequence of steps can be used to obtain
an orthogonal operator T on Rn such that T (vi ) = wi for
i = 1, 2, . . . , k :

(i) Extend {v1, v2, . . . , vk } and {w1, w2, . . . , wk } to
orthonormal bases B = {v1, v2, . . . , vn} and C =
{w1, w2, . . . , wn}, respectively, for Rn .

(ii) Let B and C be the n × n matrices whose columns
are the vectors in B and C, listed in the same order.

(iii) Let A = CBT , and T = TA, the matrix transformation
induced by A.

Prove that the resulting operator T satisfies the stated
requirements; that is, T is an orthogonal operator on Rn

such that T (vi ) = wi for i = 1, 2, . . . , k .

41. Apply the result of Exercise 40 to obtain an orthogonal
operator T on R3 such that T (v1) = w1 and T (v2) = w2,
where

v1 = 1

3




1
2
2


 , v2 = 1

3




2
1

−2


 , w1 = 1

7




2
3
6


 , and

w2 = 1

7




6
2

−3


 .

42. Let T be the linear operator on R3 defined by

T






x1

x2

x3




 =




−x1

x2

x3


 .

Prove that T is an orthogonal operator.

43. Let Q be a 2 × 2 orthogonal matrix such that Q �= I2 and
Q �= −I2. Prove that Q is diagonalizable if and only if Q
is a reflection.

44. Let W be a subspace of Rn . Let T be the linear operator
on Rn defined by T (v) = w − z, where v = w + z, w is
in W , and z is in W ⊥. (See Theorem 6.7.)

(a) Prove that T is an orthogonal operator.

(b) Let U : Rn → Rn be the function defined by U (v) =
1
2 (v + T (v)) for v in Rn . Prove that the standard

matrix of U is PW , the orthogonal projection matrix
for W .

45. Let {v, w} be an orthonormal basis for R2, and let
T : R2 → R2 be the function defined by

T (u) = (u �v cos θ + u �w sin θ )v

+ (−u �v sin θ + u �w cos θ )w.

Prove that T is an orthogonal operator.

46. Let Q be an n × n matrix. Prove that Q is an orthogonal
matrix if and only if the rows of Q form an orthonormal
basis for Rn . Hint: Interpret the (i , j )-entry of QQT as
the dot product of the i th and j th rows of Q .

47. Use Theorem 6.10 to prove that if T and U are orthogonal
operators on Rn , then both TU and T −1 are orthogonal
operators.

48. Prove Theorem 6.12(b).

49.12Prove that if Q is an orthogonal matrix and λ is a (real)
eigenvalue of Q , then λ = ±1.

50. Let U be a reflection and T be a rotation of R2. Prove
the following equalities:

(a) U 2 = I , where I is the identity transformation on R2,
and so U −1 = U .

(b) TUT = U . Hint: Consider TU .

(c) UTU = T−1.

51. Let T be an orthogonal operator on R2.

(a) Prove that if T is a rotation, then T −1 is also a rota-
tion. How is the angle of rotation of T −1 related to
the angle of rotation of T ?

(b) Prove that if T is a reflection, then T −1 is also a
reflection. How is the line of reflection of T −1 related
to the line of reflection of T ?

52. Let U be a reflection of R2, and let T be the linear
operator on R2 that rotates a vector by an angle θ . By
Theorem 6.12, TU is a reflection. If U reflects about the
line L, we can describe the line about which TU reflects
in terms of L and θ . To do so, let S be the linear operator
on R2 that rotates a vector by the angle θ/2, and let b be
a nonzero vector parallel to L, so that b is an eigenvector
of U corresponding to the eigenvalue 1.

(a) Prove that S (b) is an eigenvector of TU correspond-
ing to eigenvalue 1. Hint: Show that TS −1 = S , and
use Exercise 50.

(b) Prove that if L′ is obtained by rotating L by the angle
θ/2, then TU is the reflection about L′.

53. Let W be a 1-dimensional subspace of R2. Regard W
as a line containing the origin. Let PW be the orthogonal
projection matrix on W , and let QW = 2PW − I2. Prove
the following results:

(a) QT
W = QW .

(b) Q2
W = I2.

(c) QW is an orthogonal matrix.

12 This exercise is used in Section 6.9 (on page 477).
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(d) QW w = w for all w in W .

(e) QW v = −v for all v in W ⊥.

(f) QW is the standard matrix of the reflection of R2

about W .

54. Let T be a linear operator on Rn , and suppose
that {v1, v2, . . . , vn } is an orthonormal basis for Rn .
Prove that T is an orthogonal operator if and only if
{T (v1), T (v2), . . . , T (vn )} is also an orthonormal basis
for Rn .

55. Suppose that {v1, v2, . . . , vn} and {w1, w2, . . . , wn} are
orthonormal bases for Rn . Prove that there exists a unique
orthogonal operator T on Rn such that T (vi ) = wi for
1 ≤ i ≤ n. (This is the converse of Exercise 54.)

56. Prove that the composition of two rigid motions on Rn is
a rigid motion.

57. Prove Theorem 6.13(a).

58. Complete the proof of Theorem 6.13(c) by showing that
T preserves scalar multiplication.

59. Let F : Rn → Rn be a rigid motion. By the final result
of this section, there exists an n × n orthogonal matrix Q
and a vector b in Rn such that

F (v) = Qv + b

for all v in Rn . Prove that Q and b are unique.

60. Suppose that F and G are rigid motions on Rn . By
Exercise 59, there exist unique orthogonal matrices P and
Q and unique vectors a and b such that

F (v) = Qv + b and G(v) = Pv + a

for all v in Rn . By Exercise 56, the composition of F and
G is a rigid motion, and hence by Exercise 59 there exist
a unique orthogonal matrix R and a unique vector c such
that F (G(v)) = Rv + c for all v in Rn . Find R and c in
terms of P , Q , a, and b.

In Exercises 61–64, a rigid motion F : R2 → R2 is given. Use
the given information to find the orthogonal matrix Q and the
vector b such that F (v) = Qv + b for all v in R2.

61. F

([
1
0

])
=
[
2
4

]
, F

([
0
1

])
=
[
1
3

]
, and

F

([
1
1

])
=
[
2
3

]

62. F

([
2
1

])
=
[
1
2

]
, F

([
1
3

])
=
[
2
0

]
, and

F

([
7
1

])
=
[
4
6

]

63. F

([
3

−1

])
=
[
3
4

]
, F

([
1
3

])
=
[−1

6

]
and

F

([
2
1

])
=
[
1
5

]

64. F

([
1
2

])
=
[
5
3

]
, F

([
3
1

])
=
[
3
4

]
and

F

([−2
1

])
=
[
6
0

]

65. Let T : Rn → Rn be a function such that T (u) �T (v) =
u �v for all u and v in Rn . Prove that T is linear, and hence
is an orthogonal operator. Hint: Apply Theorem 6.13.

66. Use Exercise 98 of Section 6.1 to prove that if T is an
orthogonal operator on R2, then T preserves the angle
between any two nonzero vectors. That is, for any nonzero
vectors u and v in R2, the angle between T (u) and T (v)
equals the angle between u and v.

67. Let En be the n × n matrix, all of whose entries are ones.
Let An = In − 2

n En .

(a) Determine An for n = 2, 3, 6.

(b) Compute AT
n An for n = 2, 3, 6, and use Theo-

rem 6.9(b) to conclude that An is an orthogonal
matrix.

(c) Prove that An is symmetric for all n.

(d) Prove that An is an orthogonal matrix for all n. Hint:
First prove that E 2

n = nEn .

68. In R2, let L be the line through the origin that makes an
angle θ with the positive half of the x -axis, and let U
be the reflection of R2 about L. Prove that the standard
matrix of U is

[
cos 2θ sin 2θ

sin 2θ − cos 2θ

]
.

69. In R2, let L be the line through the origin with slope m,
and let U be the reflection of R2 about L. Prove that the
standard matrix of U is

1

1 + m2

[
1 − m2 2m

2m m2 − 1

]
.

In Exercises 70–73, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

70. Find the standard matrix of the reflection about the line in
R2 that contains the origin and the point with coordinates
(2.43,−1.31).

71. Find the standard matrix of the reflection about the line in
R2 that contains the origin and the point with coordinates
(3.27, 1.14).

72. According to Theorem 6.12, the composition of two
reflections is a rotation. Find the angle, to the nearest
degree, that a vector is rotated if it is reflected about
the line with equation y = 3.21x and the result is then
reflected about the line with equation y = 1.54x .

73. According to Theorem 6.12, the composition of two
reflections is a rotation. Find the angle, to the nearest
degree, that a vector is rotated if it is reflected about
the line with equation y = 1.23x and the result is then
reflected about the line with equation y = −0.24x .

487



424 CHAPTER 6 Orthogonality

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) The product of this matrix and its transpose is

[
.7 −.3
.3 .7

] [
.7 −.3
.3 .7

]T

=
[
.7 −.3
.3 .7

] [
.7 .3

−.3 .7

]

=
[
.58 0

0 .58

]
�= I2,

and hence the matrix is not orthogonal.

(b) The product of this matrix and its transpose is




.3
√

2 −.8 .3
√

2
.4

√
2 .6 .4

√
2

.5
√

2 0 −.5
√

2






.3
√

2 .4
√

2 .5
√

2
−.8 .6 0

.3
√

2 .4
√

2 −.5
√

2




= I3,

and hence this matrix is orthogonal.

2. Let A be the standard matrix of such an operator, and let

v =




1√
3

− 1√
3

1√
3


 .

Then, as in Example 3, v = AT e1, which is the first col-
umn of AT . We choose the second and third columns of
AT so that the three columns form an orthonormal basis
for R3. These columns are orthogonal to v, and hence
satisfy

x1 − x2 + x3 = 0.

A basis for the solution space of this equation is







1
1
0


 ,




−1
0
1




 ,

which, unfortunately, is not an orthogonal set. We apply
the Gram–Schmidt process to this set and normalize the
resulting orthogonal set to obtain the orthonormal basis







1√
2

1√
2

0


 ,




− 1√
6

1√
6

2√
6







for {v}⊥. Hence one acceptable choice for AT is

AT =




1√
3

1√
2

− 1√
6

− 1√
3

1√
2

1√
6

1√
3

0 2√
6


 ,

in which case

A =




1√
3

− 1√
3

1√
3

1√
2

1√
2

0

− 1√
6

1√
6

2√
6


 .

Therefore one possibility for T is the matrix transforma-
tion induced by A.

3. (a) The standard matrix of T is

[
5
13 − 12

13
12
13

5
13

]
,

which has determinant equal to 1. Thus T is a rota-
tion, and its standard matrix is a rotation matrix Aθ ,
where θ is the angle of rotation. Hence

[
5
13 − 12

13
12
13

5
13

]
=
[
cos θ − sin θ

sin θ cos θ

]
.

Comparing the corresponding entries of the first col-
umn, we have that

cos θ = 5

13
and sin θ = 12

13
.

Thus θ can be chosen as the angle in the first quadrant
with

θ = cos−1
(

5

13

)
≈ 67.4◦

.

(b) The standard matrix of T is

Q = 1

61

[−60 11
11 60

]
,

which has determinant equal to −1. Hence T is a
reflection. To determine the line of reflection, we first
find an eigenvector of Q corresponding to the eigen-

value 1. One such eigenvector is b =
[

1
11

]
, which

lies on the line with equation y = 11x . This is the
line of reflection.
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6.6 SYMMETRIC MATRICES

We have seen in Sections 5.3 and 5.4 that diagonalizable matrices and operators
have important properties that allow us to solve difficult computational problems. For
example, in the case of an n × n diagonalizable matrix A, the existence of an invertible
matrix P and a diagonal matrix D such that A = PDP−1 allows us to compute powers
of A very easily because Am = PDmP−1 for any positive integer m . Recall that the
columns of P form a basis for Rn consisting of eigenvectors of A, and the diagonal
entries of D are the corresponding eigenvalues.

Now suppose that the columns of P also form an orthonormal basis for Rn ; that
is, P is an orthogonal matrix. By Theorem 6.9, PT = P−1. Therefore

AT = (PDP−1)T = (PDPT )T = (PT )T DTPT = PDPT = PDP−1 = A.

It follows that AT = A. Recall from Section 2.1 that such a matrix is called symmetric.
The preceding calculation shows that if there is an orthonormal basis for Rn

consisting of eigenvectors of a matrix, then the matrix must be symmetric. The next
result is useful in proving the converse.

THEOREM 6.14

If u and v are eigenvectors of a symmetric matrix that correspond to distinct
eigenvalues, then u and v are orthogonal.

PROOF Let A be a symmetric matrix. Suppose that u and v are eigenvectors of
A associated with distinct eigenvalues λ and µ, respectively. Then

Au �v = λu �v = λ(u �v).

Also, by a result in Section 6.1,

Au �v = u �AT v = u �Av = u �µv = µ(u �v).

So λ(u �v) = µ(u �v). Because λ and µ are distinct, we have u �v = 0; that is, u
and v are orthogonal. �

Consider a symmetric 2 × 2 matrix A =
[
a b
b c

]
. Its characteristic polynomial is

det(A − tI2) = det

[
a − t b

b c − t

]
= (a − t)(c − t) − b2 = t2 − (a + c)t + ac − b2.

To check if this quadratic polynomial has real roots, we compute its discriminant

(a + c)2 − 4(ac − b2) = (a − c)2 + 4b2.

Because this is a sum of two squares, it is nonnegative for all choices of a , b, and c.
Therefore the eigenvalues of A are real.
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Case 1. The discriminant is positive.
In this case, the eigenvalues of A are distinct and, by Theorem 6.14, any two corre-
sponding eigenvectors are orthogonal.

Case 2. The discriminant is zero.
If (a − c)2 + 4b2 = 0, then a = c and b = 0. Thus

A =
[
c 0
0 c

]
= cI2.

In this case, we may choose the two standard vectors as orthogonal eigenvectors of A.
In either case, multiplying each eigenvector by the reciprocal of its norm produces

an orthonormal basis for R2 consisting of eigenvectors of A.

Example 1
For the symmetric matrix A =

[
2 −2

−2 5

]
, find an orthogonal matrix P such that

PT AP is a diagonal matrix.

Solution We need to find an orthonormal basis for R2 consisting of eigenvectors
of A. Using the methods of Chapter 5, we find that the eigenvalues of A are 6 and 1

with corresponding eigenvectors

[−1
2

]
and

[
2
1

]
. Notice that these two vectors are

orthogonal, as predicted by Theorem 6.14. By multiplying each of these vectors by

the reciprocal of its norm, we obtain the orthonormal basis

{
1√
5

[−1
2

]
,

1√
5

[
2
1

]}

for R2. So, for

P =
[−1√

5
2√
5

2√
5

1√
5

]
= 1√

5

[−1 2
2 1

]
and D =

[
6 0
0 1

]
,

we have PT AP = D .

More generally, the following theorem is true:

THEOREM 6.15

An n × n matrix A is symmetric if and only if there is an orthonormal basis for
Rn consisting of eigenvectors of A. In this case, there exists an orthogonal matrix
P and a diagonal matrix D such that PT AP = D .

The proof of Theorem 6.15 requires knowledge of complex numbers; it can be
found in Appendix C.

We conclude from Theorem 6.14 that the vectors in any eigenspace of a symmetric
n × n matrix A are orthogonal to the vectors in any other eigenspace of A. So if we
combine all the vectors from orthonormal bases for the distinct eigenspaces of A, we
obtain an orthonormal basis for Rn consisting of eigenvectors of A.

Example 2 For the matrix

A =



4 2 2
2 4 2
2 2 4


 ,

find an orthogonal matrix P such that PT AP is a diagonal matrix D .
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Solution As in Example 1, we know that because A is symmetric, such a matrix P
exists. We compute the characteristic polynomial of A to be −(t − 2)2(t − 8). It can
be shown that the vectors




−1
1
0


 and




−1
0
1




form a basis for the eigenspace corresponding to the eigenvalue 2. Because these
vectors are not orthogonal, we apply the Gram–Schmidt process to these two vectors
and obtain the orthogonal vectors




−1
1
0


 and − 1

2




1
1

−2


 .

These two vectors form an orthogonal basis for the eigenspace corresponding to the
eigenvalue 2. Furthermore, we can choose any eigenvector corresponding to the eigen-

value 8, for example




1
1
1


 , because by Theorem 6.14 it must be orthogonal to the

two preceding vectors. So the set







−1√
2

1√
2

0


 ,




1√
6

1√
6

−2√
6


 ,




1√
3

1√
3

1√
3







is an orthonormal basis of eigenvectors of A. Consequently, one possible choice of
the orthogonal matrix P and diagonal matrix D is

P =




−1√
2

1√
6

1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3


 and D =




2 0 0
0 2 0
0 0 8


 .

Practice Problem 1 � For the matrix

A =



2 4 4
4 17 −1
4 −1 17


 ,

find an orthogonal matrix P and a diagonal matrix D such that PT AP = D . �

QUADRATIC FORMS
Historically, the conic sections have played an important role in physics. For example,
ellipses describe the motion of the planets, hyperbolas are used in the manufacture of
telescopes, and parabolas describe the paths of projectiles. In the plane, the equations
of all the conic sections (the circle, ellipse, parabola, and hyperbola) can be obtained
from

ax 2 + 2bxy + cy2 + dx + ey + f = 0 (7)
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by making various choices for the coefficients.13 For example, a = c = 1, b = d =
e = 0, and f = −9 yields the equation

x 2 + y2 = 9,

which represents a circle with radius 3 and center at the origin. If we change d to 8
and complete the square, we obtain

(x + 4)2 + y2 = 25,

which represents a circle with radius 5 and center at the point (−4, 0).
In the case that the coefficient of the xy-term of the equation of a conic section is

zero, its major axis is parallel to the x - or the y-axis. Figure 6.20 shows representative
graphs and the forms of the corresponding equations for an ellipse and a hyperbola
centered at the origin and having the x -axis as the major axis.

y y

x xa a

b

�b

�a �a

x2

a2

y2

b2
� � 1, a � b � 0 

x2

a2

y2

b2
� � 1

y � �
b
a x

y �
b
a x

Figure 6.20 The x-axis is the major axis of the conic section.

If the coefficient of the xy-term of the equation of a conic section is not zero, the
major axis is not parallel to either of the coordinate axes. (See Figure 6.21.) In this
case, it is always possible to rotate the x - and y-axes to new x ′- and y ′-axes so that
the major axis of the conic section is parallel to one of these new axes. When the
equation of the conic section is written in the x ′y ′-coordinate system by the techniques
of Section 4.4, the coefficient of the x ′y ′-term of the equation is zero. We can use our
knowledge of orthogonal and symmetric matrices to discover an appropriate angle θ

by which to rotate the original coordinate system.
We begin by considering the associated quadratic form of equation (7), namely,

ax 2 + 2bxy + cy2.

We assume that b �= 0, so the coefficient of the xy-term of equation (7) is not zero.
If we let

A =
[
a b
b c

]
and v =

[
x
y

]
,

13 The coefficient 2b is used for computational purposes.
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a2
� � 1, a � b � 0 

(x�)2

b2

(y�)2

a2
� � 1

(y�)2

b2

(x�)2

x

y

a
x�

x�

b

�a

y�

y�

y

x

a

�a
x� � �

b
a y�

x� �
b
a y�

�b

Figure 6.21 The x′-axis is the major axis of the ellipse, and the y′-axis is the major axis of the
hyperbola.

then the associated quadratic form can be written as vT Av. For example, the form
3x 2 + 4xy + 6y2 can be written as

[x y]

[
3 2
2 6

] [
x
y

]
.

We now show how to choose the appropriate angle of rotation θ that satisfies
0◦

< θ < 90◦. The method involves finding an orthonormal basis for R2 so that the
x ′- and y ′-axes corresponding to this basis are parallel to the axes of symmetry of the
conic section.

Because A is symmetric, it follows from Theorem 6.15 that there is an orthonor-
mal basis {b1, b2} for R2 consisting of eigenvectors of A. Necessarily, one of the
eigenvectors b1, b2, −b1, and −b2 must lie in the first quadrant; that is, both of its
components must be positive. (See Figure 6.22.) Since this vector is a unit vector, it
has the form

[
cos θ

sin θ

]

for some angle θ (0◦
< θ < 90◦). Let P be the rotation matrix Aθ ; that is,

P =
[
cos θ − sin θ

sin θ cos θ

]
.

y

x�

cos � 
sin �

sin � 
cos �

�

Figure 6.22 The eigenvectors b1, b2, −b1, and −b2
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Because the columns of P are eigenvectors of A, we see that

PT AP = D , where D =
[
λ1 0
0 λ2

]

is a diagonal matrix whose diagonal entries are the eigenvalues of A.
Consider the basis {Pe1, Pe2} obtained by rotating e1 and e2 by θ . By Theorem

4.11, the coordinate vector v′ =
[
x ′
y ′

]
of v relative to this basis satisfies v = Pv′;

that is,

x = (cos θ )x ′ − (sin θ )y ′

y = (sin θ )x ′ + (cos θ )y ′.

Furthermore,
ax 2 + 2bxy + cy2 = vT Av

= (Pv′)T A(Pv′)

= (v′)T PT APv′

= (v′)T Dv′

= λ1(x
′)2 + λ2(y

′)2,

and hence
ax 2 + 2bxy + cy2 = λ1(x

′)2 + λ2(y
′)2. (8)

So, by converting to the variables x ′ and y ′, we may rewrite the associated quadratic
form with no x ′y ′-term.

To see how all of this works in practice, consider the equation

2x 2 − 4xy + 5y2 = 36.

The associated quadratic form is 2x 2 − 4xy + 5y2, and so we let

A =
[

2 −2
−2 5

]
.

Recall from Example 1 that the eigenvalues of A are 6 and 1 with corresponding

unit eigenvectors
1√
5

[−1
2

]
and

1√
5

[
2
1

]
. The second of these has both components

positive, so we take

P =
[ 2√

5
− 1√

5
1√
5

2√
5

]
,

which is the θ -rotation matrix in which

cos θ = 2√
5

and sin θ = 1√
5
.

Since 0◦
< θ < 90◦, it follows that

θ = cos−1
(

2√
5

)
≈ 63.4◦

.
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In addition, by making the change of variable v = Pv′, that is,

x = 2√
5
x ′ − 1√

5
y ′

y = 1√
5
x ′ + 2√

5
y ′,

it follows from equation (8) that

2x 2 − 4xy + 5y2 = (x ′)2 + 6(y ′)2.

Thus the simplified equation is

(x ′)2 + 6(y ′)2 = 36,

or
(x ′)2

36
+ (y ′)2

6
= 1.

From this form, we see that the equation represents an ellipse whose axes of symmetry
are obtained by rotating the usual x - and y-axes by θ . (See Figure 6.23.)

x

y

x�

v1v2

y�

�

Figure 6.23 The graph of 2x2 − 4xy + 5y2 = 36

Practice Problem 2 � (a) Find a symmetric matrix A so that the associated quadratic form of the equation
−4x 2 + 24xy − 11y2 = 20 can be written as vT Av.

(b) Find a rotation of the x - and y-axes to x ′- and y ′-axes that transforms the equation
in (a) into one having no x ′y ′-term. Give the angle of rotation, identify the type
of conic section, and sketch its graph. �

SPECTRAL DECOMPOSITION OF A MATRIX
It is interesting to note that every symmetric matrix can be decomposed into a sum
of very simple matrices. With this decomposition in hand, it is an easy task to prove
deep results about matrices.

Consider an n × n symmetric matrix A and an orthonormal basis {u1, u2, . . . , un}
for Rn consisting of eigenvectors of A. Suppose that λ1, λ2, . . . , λn are the corre-
sponding eigenvalues. Let P = [u1 u2 . . . un ], and let D denote the n × n diagonal
matrix with diagonal entries λ1, λ2, . . . , λn , respectively. Then
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A = PDPT

= P [λ1e1 λ2e2 . . . λnen ]




uT
1

uT
2

...

uT
n




= [P (λ1e1) P (λ2e2) . . . P (λnen )]




uT
1

uT
2

...

uT
n




= [λ1Pe1 λ2Pe2 . . . λnPen ]




uT
1

uT
2

...

uT
n




= [λ1u1 λ2u2 . . . λnun ]




uT
1

uT
2

...

uT
n




= λ1u1uT
1 + λ2u2uT

2 + · · · + λnunuT
n .

Recall from page 149 in Section 2.5 that the matrix product Pi = uiuT
i is a matrix

of rank 1. So we have expressed A as a sum of n matrices of rank 1. It can be
shown (see Exercise 43) that Pi is the orthogonal projection matrix for Span {ui }.
The representation

A = λ1P1 + λ2P2 + · · · + λnPn

is called a spectral decomposition of A.
By Exercise 67 of Section 6.3, we have that each Pi is symmetric and satisfies

P2
i = Pi . Consequently, a number of other properties follow easily. They are given

in the next theorem. The proofs of parts (b), (c), and (d) are left as exercises. (See
Exercises 44–46.)

THEOREM 6.16

(Spectral Decomposition Theorem) Let A be an n × n symmetric matrix, and
let {u1, u2, . . . , un} be an orthonormal basis for Rn consisting of eigenvectors
of A with corresponding eigenvalues λ1, λ2, . . . , λn . Then there exist symmetric
matrices P1, P2, . . . , Pn such that the following results hold:

(a) A = λ1P1 + λ2P2 + · · · + λnPn .

(b) rank Pi = 1 for all i .

(c) PiPi = Pi for all i , and PiPj = O if i �= j .

(d) Piui = ui for all i , and Piuj = 0 if i �= j .
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Example 3
Find a spectral decomposition of the matrix A =

[
3 −4

−4 −3

]
in Example 1.

Solution Using the results of Example 1, we let u1 = 1√
5

[−2
1

]
, u2 = 1√

5

[
1
2

]
,

λ1 = 5, and λ2 = −5. So

P1 = u1uT
1 =

[
4
5 − 2

5

− 2
5

1
5

]
and P2 = u2uT

2 =
[

1
5

2
5

2
5

4
5

]
.

Therefore

A = λ1P1 + λ2P2 = 5

[
4
5 − 2

5

− 2
5

1
5

]
+ (−5)

[
1
5

2
5

2
5

4
5

]
.

Practice Problem 3 � Find a spectral decomposition of

A =



4 1 −1
1 4 −1

−1 −1 4


 .

�

SPECTRAL APPROXIMATION
Suppose that we wish to send a huge data set of information either quickly or by
means of a transmission method that does not allow long messages. Assume that the
data can be put into the form of a symmetric matrix14 A. We show that the spectral
decomposition of A allows us to reduce the amount of data we need to send with little
loss of information. To illustrate the technique, suppose that

A =




153 −142 56 256 37
−142 182 −86 −276 −44

56 −86 55 117 22
256 −276 117 475 68
37 −44 22 68 11




.

Using MATLAB, we find an orthogonal matrix P and a diagonal matrix D such that
PT AP = D .15 We have

P =




0.4102 −0.4886 −0.7235 0.2200 0.1454
−0.4536 −0.5009 −0.1590 −0.7096 −0.1211

0.2001 0.6693 −0.4671 −0.5211 0.1493
0.7572 −0.2275 0.4472 −0.4157 −0.0467
0.1125 0.1033 −0.1821 0.0614 −0.9694




14 If A is not symmetric, we can apply the technique that follows to the singular value decomposition of A.
(See Section 6.7.)

15 MATLAB often produces matrices with the columns in a different order than is listed here. For
convenience, in this subsection we list the eigenvalues and eigenvectors so that the eigenvalues are
in order of decreasing magnitude. Also, we occasionally replace an eigenvector produced by MATLAB
with a nonzero multiple of itself, which, of course, is still an eigenvector corresponding to the same
eigenvalue.
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and

D =




820.0273 0 0 0 0
0 42.1027 0 0 0
0 0 9.0352 0 0
0 0 0 4.9926 0
0 0 0 0 −0.1578


 .

Using the notation of Theorem 6.16, we obtain a spectral decomposition

A = 820.0273P1 + 42.1027P2 + 9.0352P3 + 4.9926P4 − 0.1578P5,

where each Pi is an orthogonal projection matrix.
Notice the wide variation in the magnitudes of the coefficients (eigenvalues), with

relatively small coefficients of P2, P3, P4, and P5. This observation suggests that we
approximate A by the matrix A1 = 820.0273P1, a matrix of rank 1, whereas A has
rank 5. We obtain

A1 =




137.9793 −152.5673 67.2916 254.6984 37.8456
−152.5673 168.6976 −74.4061 −281.6266 −41.8468

67.2916 −74.4061 32.8177 124.2148 18.4570
254.6984 −281.6266 124.2148 470.1522 69.8598
37.8456 −41.8468 18.4570 69.8598 10.3805


 .

How well does A1 approximate A? One criterion of closeness to consider is the relative
“size” of the error matrix

E1 = A − A1 =




15.0207 10.5673 −11.2916 1.3016 −0.8456
10.5673 13.3024 −11.5939 5.6266 −2.1532

−11.2916 −11.5939 22.1823 −7.2148 3.5430
1.3016 5.6266 −7.2148 4.8478 −1.8598

−0.8456 −2.1532 3.5430 −1.8598 0.6195


 .

To quantify the relative size of E1 compared with A, we use the Frobenius norm
of a matrix, which is defined on page 534. This norm is obtained in MATLAB
with the command norm(E1,′fro′). The value returned is 43.3500. The norm of A
is computed as 821.1723. So if we use A1 to approximate A, we have “lost” only
43.3500/821.1723 = 5.28% of the original information, and have replaced the matrix
A of rank 5 with the matrix A1 of rank 1. In this case, only the first column of A1

needs to be transmitted, along with the multiples of that column that yield columns 2
through 5.

For a smaller loss of information, we could use the matrix

A2 = 820.0273P1 + 42.1027P2,

a matrix of rank 2. We compute

A2 =




148.0324 −142.2625 53.5226 259.3786 35.7200
−142.2625 179.2604 −88.5199 −276.8293 −44.0256

53.5226 −88.5199 51.6763 117.8046 21.3683
259.3786 −276.8293 117.8046 472.3311 68.8702
35.7200 −44.0256 21.3683 68.8702 10.8299


 .

Let E2 = A − A2. Then

E2 =




4.9676 0.2625 2.4774 −3.3786 1.2800
0.2625 2.7396 2.5199 0.8293 0.0256
2.4774 2.5199 3.3237 −0.8046 0.6317

−3.3786 0.8293 −0.8046 2.6689 −0.8702
1.2800 0.0256 0.6317 −0.8702 0.1701


 .
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The norm of E2 is 10.3240. So we have lost only 10.3240/821.1723 = 1.26% of the
original information in this case, and have replaced the matrix A of rank 5 with the
matrix A2 of rank 2.

Note that, because the rank of A2 is 2, we need only transmit two linearly inde-
pendent columns and the coefficients in each of the three linear combinations that
represent the other three columns.

A number of interesting consequences of the spectral decomposition are given in
the exercises.

EXERCISES

In Exercises 1–12, answer the following parts for each equation
of a conic section.

(a) Find a symmetric matrix A so that the associated quadratic
form may be written as vT Av.

Find a rotation of the x- and y-axes to x ′- and y ′-axes that
transforms the given equation into one having no x ′y ′-term.

(b) Give the angle of rotation.

(c) Give the equations that relate x ′ and y ′ to x and y.

(d) Give the transformed equation.

(e) Identify the type of conic section.

1. 2x2 − 14xy + 50y2 − 255 = 0

2. 2x2 + 2xy + 2y2 − 1 = 0

3. x2 − 12xy − 4y2 = 40

4. 3x2 − 4xy + 3y2 − 5 = 0

5. 5x2 + 4xy + 5y2 − 9 = 0

6. 11x2 + 24xy + 4y2 − 15 = 0

7. x2 + 4xy + y2 − 7 = 0

8. 4x2 + 6xy − 4y2 = 180

9. 2x2 − 12xy − 7y2 = 200

10. 6x2 + 5xy − 6y2 = 26

11. x2 + 2xy + y2 + 8x + y = 0

12. 52x2 + 72xy + 73y2 − 160x − 130y − 25 = 0

In Exercises 13–20, a symmetric matrix A is given. Find an
orthonormal basis of eigenvectors and their corresponding
eigenvalues. Use this information to obtain a spectral decom-
position of each matrix.

13.

[
3 1
1 3

]
14.

[
7 6
6 −2

]

15.

[
1 2
2 1

]
16.

[
1 −1

−1 1

]

17.

⎡
⎣

3 2 2
2 2 0
2 0 4

⎤
⎦ 18.

⎡
⎣

0 2 2
2 0 2
2 2 0

⎤
⎦

19.

⎡
⎣

−1 0 0
0 0 2
0 2 3

⎤
⎦ 20.

⎡
⎣

−2 0 −36
0 −3 0

−36 0 −23

⎤
⎦

In Exercises 21–40, determine whether the state-
ments are true or false.

21. Every symmetric matrix is diagonalizable.

22. If P is a matrix whose columns are eigenvectors of a
symmetric matrix, then P is orthogonal.

23. If A is an n × n matrix and there exists an orthonormal
basis for Rn consisting of eigenvectors of A, then A is
symmetric.

24. Eigenvectors of a matrix that correspond to distinct eigen-
values are orthogonal.

25. Distinct eigenvectors of a symmetric matrix are orthogo-
nal.

26. By a suitable rotation of the xy-axes to x ′y ′-axes, the
equation of any conic section with center at the origin
can be written without an x ′y ′-term.

27. The associated quadratic form of an equation of any conic
section can be written as vT Av, where A is a 2 × 2 matrix
and v is in R2.

28. Every symmetric matrix can be written as a sum of orthog-
onal projection matrices.

29. Every symmetric matrix can be written as a sum of mul-
tiples of orthogonal projection matrices.

30. Every symmetric matrix can be written as a sum of mul-
tiples of orthogonal projection matrices of rank 1.

31. Every symmetric matrix can be written as a sum of mul-
tiples of orthogonal projection matrices, in which the
multiples are the eigenvalues of the matrix.

32. If the equation of a conic section is written without an
xy-term by a rotation of the coordinate axes through an
angle θ , where 0◦ ≤ θ < 360◦, then θ is unique.

33. Eigenvectors of a symmetric matrix that correspond to
distinct eigenvalues are orthogonal.

34. The spectral decomposition of a symmetric matrix is
unique, except for the order of the terms.

35. Every matrix has a spectral decomposition.

36. To rotate the coordinate axes in order to remove the
xy-term of the equation ax2 + 2bxy + cy2 = d , we must

determine the eigenvectors of

[
a b
c d

]
.

37. If a rotation of the x - and y-axes is used to write the
equation ax2 + 2bxy + cy2 = d as a ′(x ′)2 + b ′(y ′)2 = d ,

then the scalars a ′ and b ′ are eigenvalues of

[
a b
b c

]
.
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38. If B1,B2, . . . ,Bk are orthonormal bases for the distinct
eigenspaces of a symmetric n × n matrix, then their union
B1 ∪ B2 ∪ · · · ∪ Bk is an orthonormal basis for Rn .

39. If P is a 2 × 2 orthogonal matrix whose columns form an
orthonormal basis for R2, then P is a rotation matrix.

40. If P is a 2 × 2 orthogonal matrix whose columns form
an orthonormal basis for R2 consisting of eigenvectors of

A =
[
a b
b c

]
, then the change of variable

[
x
y

]
= P

[
x ′

y ′

]

changes ax2 + bxy + cy2 = d into λ1(x ′)2 + λ2(y ′)2 = d ,
where λ1 and λ2 are the eigenvalues of A.

41. Show that a spectral decomposition is not unique by find-
ing two different spectral decompositions with different
orthogonal projection matrices for the matrix 2I2.

42. Show that a spectral decomposition is not unique by
finding two different spectral decompositions with dif-
ferent orthogonal projection matrices for the matrix in
Exercise 19.

43. Let u be a unit vector in Rn , and let P be the matrix uuT .
Prove that P is the orthogonal projection matrix for the
subspace Span {u}.

44. Prove Theorem 6.16(b).

45. Prove Theorem 6.16(c).

46. Prove Theorem 6.16(d).

In Exercises 47–54, let A be an n × n symmetric matrix
with spectral decomposition A = λ1P1 + λ2P2 + · · · + λnPn .
Assume that µ1, µ2, . . . , µk are all the distinct eigenvalues of
A and that Qj denotes the sum of all the Pi ’s that are associated
with µj .

47. Prove A = µ1Q1 + µ1Q2 + · · · + µkQk .

48. Prove Qj Qj = Qj for all j , and QiQj = O if j �= i .

49. Prove Qj is symmetric for all j .

50. Prove that, for all j , Qj is the orthogonal projection matrix
for the eigenspace associated with µj .

51. Suppose that {w1, w2, . . . , ws } is an orthonormal basis for
the eigenspace corresponding to µj . Represent Qj as a
sum of matrices, each of rank 1.

52. Prove that the rank of Qj equals the dimension of the
eigenspace associated with µj .

53. Use the given spectral decomposition of A to compute
a spectral decomposition of As , where s is any positive
integer greater than 1.

54. Use the given spectral decomposition of A to find a spec-
tral decomposition of a matrix C such that C 3 = A.

Exercises 55–57 use the definition: For an n × n matrix B and a
polynomial g(t ) = an tn + an−1t n−1 + · · · + a1t + a0, define the
matrix g(B ) by

g(B ) = anBn + an−1B
n−1 + · · · + a1B + a0In .

55. Use Exercises 47 and 48 to show that for any polyno-
mial g ,

g(A) = g(µ1)Q1 + g(µ2)Q2 + · · · + g(µk )Qk ,

where A, µi , and Qi are as in Exercises 47–54.

56. Use Exercise 55 to prove a special case of the Cay-
ley–Hamilton theorem: If f is the characteristic polyno-
mial of a symmetric matrix A, then f (A) = O .

57. Let A, µi , and Qi be as in Exercises 47–54. It can be
shown that for any j , 1 ≤ j ≤ k , there is a polynomial fj
such that fj (µj ) = 1 and fj (µi ) = 0 if i �= j . (See [4, pages
51–52].) Use this result along with Exercise 55 to show
that Qj = fj (A). So the Qj ’s are uniquely determined by
the properties given in Exercises 47 and 48.

58. Use Exercise 57 to prove that an n × n matrix B com-
mutes with A (that is, AB = BA) if and only if B com-
mutes with each Qj .

An n × n matrix C is said to be positive definite if C is sym-
metric and vT Cv > 0 for every nonzero vector v in Rn . We say
C is positive semidefinite if C is symmetric and vT Cv ≥ 0 for
every vector v in Rn .

In Exercises 59–73, we assume the preceding definitions. The
equation vT Av = v �Av is often useful in solving these exercises.

59. Suppose that A is a symmetric matrix. Prove that A is
positive definite if and only if all of its eigenvalues are
positive.

60.16State and prove a characterization of positive semidefinite
matrices analogous to that in Exercise 59.

61. Suppose that A is invertible and positive definite. Prove
that A−1 is positive definite.

62. Suppose that A is positive definite and c > 0. Prove that
cA is positive definite.

63. State and prove a result analogous to Exercise 62 if A is
positive semidefinite.

64. Suppose that A and B are positive definite n × n matrices.
Prove that A + B is positive definite.

65. State and prove a result analogous to Exercise 64 if A and
B are positive semidefinite.

66. Suppose that A = QBQT , where Q is an orthogonal matrix
and B is positive definite. Prove that A is positive definite.

67. State and prove a result analogous to Exercise 66 if B is
positive semidefinite.

68. Prove that if A is positive definite, then there exists a
positive definite matrix B such that B 2 = A.

69. State and prove a result analogous to Exercise 68 if A is
positive semidefinite.

70. Let A be an n × n symmetric matrix. Prove that A is
positive definite if and only if∑

i ,j

aij ui uj > 0

for all scalars u1, u2, . . . , un , not all zero.

16 This exercise is used in Section 6.7 (on page 439).
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71. State and prove a result analogous to Exercise 70 if A is
positive semidefinite.

72.17Prove that, for any matrix A, the matrices AT A and AAT

are positive semidefinite.

73. Prove that, for any invertible matrix A, the matrices AT A
and AAT are positive definite.

In Exercises 74–76, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to solve each
problem.

74. Let

A =




4 0 2 0 2
0 4 0 2 0
2 0 4 0 2
0 2 0 4 0
2 0 2 0 4




.

(a) Verify that A is symmetric.

(b) Find the eigenvalues of A.

(c) Find an orthonormal basis for R5 of eigenvectors
of A.

(d) Use your answers to (b) and (c) to find a spectral
decomposition of A.

(e) Compute A6 by matrix multiplication.

(f) Use your answer to (d) to find a spectral decomposi-
tion of A6.

(g) Use your answer to (f) to compute A6.

75. Let

A =




56 62 96 24 3
62 61 94 25 1
96 94 167 33 1
24 25 33 9 1
3 1 1 1 2




.

(a) Find an orthogonal matrix P and a diagonal matrix D
such that A = PDPT .

(b) Use your answer to (a) to find the associated spectral
decomposition of A, arranged so that the coefficients
(eigenvalues) of the orthogonal projection matrices are
in order of decreasing magnitudes (absolute values).
Include the orthogonal projection matrices.

76. Let A be the matrix in Exercise 75.

(a) Using the spectral decomposition for A, form an
approximation A1 of A, based on the largest eigen-
value.

(b) Compute the Frobenius norms of the error matrix
E1 = A − A1 and the matrix A.

(c) Give the percentage of information lost when A1 is
used to approximate A.

SOLUTIONS TO THE PRACTICE PROBLEMS

1. Since A is symmetric, the matrices P and D exist.
We compute the characteristic polynomial of A to be

−t (t − 18)2. It can be shown that




−4
1
1


 is an eigenvec-

tor corresponding to the eigenvalue 0, and hence forms
a basis for the corresponding eigenspace. Furthermore, it
can be shown that







1
4
0


 ,




1
0
4






is a basis for the eigenspace corresponding to the eigen-
value 18. Applying the Gram–Schmidt process to the
vectors in this basis, we obtain an orthogonal basis







1
4
0


 ,




16
−4
68






for this eigenspace. Notice that the vectors in this basis
are orthogonal to the chosen eigenvector corresponding to

the eigenvalue 0. So the set







− 4
3
√

2

1
3
√

2

1
3
√

2


 ,




1√
17

4√
17

0


 ,




4
3
√

34

− 1
3
√

34

17
3
√

34







is an orthonormal basis of eigenvectors of A. It follows
that one possible choice of the orthogonal matrix P and
diagonal matrix D is

P =




− 4
3
√

2
1√
17

4
3
√

34

1
3
√

2
4√
17

− 1
3
√

34

1
3
√

2
0 17

3
√

34




and

D =



0 0 0
0 18 0
0 0 18


 .

2. (a) The entries of A are obtained from the coefficients
of the quadratic form a11 = −4, a22 = −11, and

17 This exercise is used in Section 6.7 (on page 439).
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a12 = a21 = 1

2
(24) = 12. Thus

A =
[−4 12

12 −11

]
.

(b) It can be shown that A has the eigenvalues λ1 = 5
and λ2 = −20 with corresponding unit eigenvectors[
0.8
0.6

]
and

[−0.6
0.8

]
. Since the first of these lies in the

first quadrant, we take

P =
[
0.8 −0.6
0.6 0.8

]
,

which is the θ -rotation matrix in which cos θ = 0.8
and sin θ = 0.6. Since 0◦

< θ < 90◦, it follows that

θ = cos−1(0.8) ≈ 36.9◦
.

x

y

x�y�

� y� � �
1
2

x�

y� �
1
2

x�

Figure 6.24 The graph of −4x2 + 24xy − 11y2 = 20

By equation (8), we have

−4x2 + 24xy − 11y2 = 5(x ′)2 − 20(y ′)2 = 20,

and so the original equation becomes

(x ′)2

4
− (y ′)2

1
= 1,

which is the equation of a hyperbola. For a sketch,
see Figure 6.24, which includes the two asymptotes
y ′ = ± 1

2x ′.
3. First, observe (we omit the details) that λ1 = λ2 = 3 and

λ3 = 6 are the eigenvalues of A, with an orthonormal basis
of R3 consisting of corresponding eigenvectors

{u1, u2, u3} =







1√
2

0
1√
2


 ,




− 1√
6

2√
6

1√
6







1√
3

1√
3

− 1√
3







.

Thus a spectral decomposition of A is given by

A = λ1u1uT
1 + λ2u2uT

2 + λ3u3uT
3

= 3




1
2 0 1

2

0 0 0
1
2 0 1

2


+ 3




1
6 − 2

6 − 1
6

− 2
6

4
6

2
6

− 1
6

2
6

1
6




+ 6




1
3

1
3 − 1

3
1
3

1
3 − 1

3

− 1
3 − 1

3
1
3


 .

6.7∗ SINGULAR VALUE DECOMPOSITION
We have seen that the easiest matrices to study are those that possess an orthonormal
basis of eigenvectors. The basis of eigenvectors gives us complete insight into the
way the matrix acts on vectors. If this basis is also an orthonormal set, then we have
the added benefit of a set of mutually perpendicular coordinate axes that illuminate
the geometric behavior of the matrix as it acts on vectors.

But alas, only the symmetric matrices enjoy all of these properties. Moreover, if
the matrix is not square, then eigenvectors are not even defined.

In this section, we consider a generalization of an orthonormal basis of eigenvec-
tors in the context of an arbitrary m × n matrix A of rank k . In this setting, we prove
that there exist two orthonormal bases, one for Rn and one for Rm , such that the
product of A and each of the first k vectors in the first basis is a scalar multiple of the
corresponding vector in the second basis. In the case that m = n and the two bases

∗ This section can be omitted without loss of continuity.
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6.7 Singular Value Decomposition 439

are identical, this approach reduces to the usual situation of an orthonormal basis of
eigenvectors, and A is, necessarily, a symmetric matrix.

With this in mind, we state the principal theorem of this section.

THEOREM 6.17

Let A be an m × n matrix of rank k . Then there exist orthonormal bases

B1 = {v1, v2, . . . , vn} for Rn and B2 = {u1, u2, . . . , um} for Rm

and scalars

σ1 ≥ σ2 ≥ · · · ≥ σk > 0

such that

Avi =
{

σiui if 1 ≤ i ≤ k

0 if i > k
(9)

and

AT ui =
{

σivi if 1 ≤ i ≤ k

0 if i > k .
(10)

PROOF By Exercise 72 of Section 6.6, AT A is an n × n positive semidefinite
matrix, and hence there is an orthonormal basis B1 = {v1, v2, . . . , vn} for Rn

consisting of eigenvectors of AT A with corresponding eigenvalues λi that are
nonnegative (see Exercise 60 of Section 6.6). We order these eigenvalues and the
vectors in B1 so that λ1 ≥ λ2 ≥ · · · ≥ λn . By Exercise 97 of Section 6.1, AT A
has rank k , and hence the first k eigenvalues are positive and the last n − k are
zero. For each i = 1, 2, . . . k , let σi = √

λi . Then σ1 ≥ σ2 ≥ · · · ≥ σk > 0.

Next, for each i ≤ k , let ui be the vector in Rm defined by ui = 1

σi
Avi . We

show that {u1, u2, . . . , uk } is an orthonormal subset of Rm . Consider any ui and
uj . Then

ui �uj = 1

σi
Avi �

1

σj
Avj

= 1

σiσj
Avi �Avj

= 1

σiσj
vi �A

T Avj

= 1

σiσj
vi �λj vj

= σ 2
j

σiσj
vi �vj .
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Thus

ui �uj = σj

σi
vi �vj =

{
0 if i �= j

1 if i = j ,

and it follows that {u1, u2, . . . , uk } is an orthonormal set. By Exercise 56 of
Section 6.2, this set extends to an orthonormal basis B2 = {u1, u2, . . . , um} for Rm .

Our final task is to verify equation (10). Consider any ui in B2. First, suppose
that i ≤ k . Then

AT ui = AT
(

1

σi
Avi

)

= 1

σi
AT Avi

= 1

σi
σ 2

i vi

= σivi .

Now suppose that i > k . We show that AT ui is orthogonal to every vector in B1.
Since B1 is a basis for Rn , it follows that AT ui = 0. Consider any vj in B1. If
j ≤ k , then

AT ui �vj = ui �Avj = ui �σj uj = σj ui �uj = 0

because i �= j . On the other hand, if j > k , then

AT ui �vj = ui �Avj = ui �0 = 0.

Thus AT ui is orthogonal to every vector in B1, and we conclude that AT ui = 0.
�

In the proof of Theorem 6.17, the vectors vi are chosen to be eigenvectors of
AT A. It can be shown (see Exercise 76) that if {v1, v2, . . . , vn} and {u1, u2, . . . , um}
are any orthonormal bases for Rn and Rm , respectively, that satisfy equations (9)
and (10), then each vi is an eigenvector of AT A corresponding to the eigenvalue σ 2

i if
i ≤ k and to the eigenvalue 0 if i > k . Furthermore, for i = 1, 2, . . . , k , the vector ui

is an eigenvector of AAT corresponding to the eigenvalue σ 2
i and, for i > k , the vector

ui is an eigenvector of AAT corresponding to the eigenvalue 0. It follows, therefore,
that the σi ’s are the unique scalars satisfying equations (9) and (10). These scalars are
called the singular values of the matrix A.

Although the singular values of a matrix are unique, the orthonormal bases B1

and B2 in Theorem 6.17 are not unique. Of course, this is also the case for bases
consisting of eigenvectors of a matrix, even if the eigenvectors are orthonormal.

Example 1 Find the singular values of

A =
[
0 1 2
1 0 1

]
,

and orthonormal bases {v1, v2, v3} for R3 and {u1, u2} for R2 satisfying equa-
tions (9) and (10).
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Solution The proof of Theorem 6.17 gives us the method for solving this problem.
We first form the product

AT A =



1 0 1
0 1 2
1 2 5


 .

Since A has rank 2, so does AT A. In fact, it can be shown (we omit the details) that
for

v1 = 1√
30




1
2
5


 , v2 = 1√

5




2
−1

0


 , and v3 = 1√

6




1
2

−1


 ,

{v1, v2, v3} is an orthonormal basis for R3 consisting of eigenvectors of AT A with
corresponding eigenvalues 6, 1, and 0. So σ1 = √

6, and σ2 = √
1 = 1 are the singular

values of A. Let

u1 = 1

σ1
Av1 = 1√

6

1√
30

[
0 1 2
1 0 1

]


1
2
5


 = 1

6
√

5

[
12
6

]
= 1√

5

[
2
1

]
,

and

u2 = 1

σ2
Av2 = 1√

5

[
0 1 2
1 0 1

]


2
−1

0


 = 1√

5

[−1
2

]
.

Then {u1, u2} is an orthonormal basis for R2. (See Figure 6.25.)

y

x

TA

u1

Av2 � u2

Av3 � 0
x

z

y

v1

v2

v3

Av1 � u16

Figure 6.25 The relationships among A and the bases B1 and B2

Example 2 Find the singular values of

A =



1 3 2 1
3 1 2 −1
1 1 1 0


 ,

and orthonormal bases {v1, v2, v3, v4} for R4 and {u1, u2, u3} for R3 satisfying equa-
tions (9) and (10).
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Solution We first form the product

AT A =




11 7 9 −2
7 11 9 2
9 9 9 0

−2 2 0 2


 .

It can be shown (we omit the details) that for

v1 = 1√
3




1
1
1
0


 , v2 = 1√

3




1
−1

0
−1


 , v3 = 1√

3




1
0

−1
1


 , and v4 = 1√

3




0
−1

1
1


 ,

{v1, v2, v3, v4} is an orthonormal basis for R4 consisting of eigenvectors of AT A with
corresponding eigenvalues 27, 6, 0, and 0, respectively. So σ1 = √

27 and σ2 = √
6

are the singular values of A. Let

u1 = 1

σ1
Av1 = 1√

27

1√
3




1 3 2 1
3 1 2 −1
1 1 1 0







1
1
1
0


 = 1

9




6
6
3


 = 1

3




2
2
1




and

u2 = 1

σ2
Av2 = 1√

6

1√
3




1 3 2 1
3 1 2 −1
1 1 1 0







1
−1

0
−1


 = 1

3
√

2




−3
3
0


 = 1√

2




−1
1
0


 .

The vectors u1 and u2 can be used as the first two of three vectors in the desired
orthonormal basis for R3. The only requirement for a third vector is that it be a unit
vector orthogonal to both u1 and u2 since any orthonormal set of three vectors is a
basis for R3. A nonzero vector is orthogonal to both u1 and u2 if and only if it is a
nonzero solution of the system

2x1 + 2x2 + x3 = 0
−x1 + x2 = 0.

For example (we omit the details), the vector w =



1
1

−4


 is a nonzero solution of this

system. Therefore we let

u3 = 1

‖w‖w = 1√
18




1
1

−4


 = 1

3
√

2




1
1

−4


 .

Thus we may choose {u1, u2, u3} for our orthonormal basis for R3.
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Practice Problem 1 � Find the singular values of

A =
[−2 −20 8

14 −10 19

]
,

and orthonormal bases {v1, v2, v3} for R3 and {u1, u2} for R2 satisfying equations (9)
and (10). �

Consider a linear transformation T : Rn → Rm . Since the image of a vector in
Rn is a vector in Rm , geometric objects in Rn that can be constructed from vectors
are transformed by T into objects in Rm . The singular values of the standard matrix A
of T can be used to describe how the shape of an object in Rn is affected by applying
the transformation T . Consider, for instance, a vector vi in an orthonormal basis B1

satisfying equations (9) and (10). The norm of the image of any vector cvi parallel
to vi is σi times the norm of cvi because

‖T (cvi )‖ = ‖Acvi‖ = ‖cσiui‖ = |c|σi = σi‖cvi‖,

where ui is the vector in B2 such that Avi = σiui .
As a simple example of how singular values can be used to describe shape

changes, we consider the image of the unit circle (the circle of radius 1 and center
0) under the matrix transformation TA, where A is an invertible 2 × 2 matrix with
distinct (nonzero) singular values.

Example 3 Let S be the unit circle in R2, and A be a 2 × 2 invertible matrix with the dis-
tinct singular values σ1 > σ2 > 0. Suppose S ′ = TA(S ) is the image of S under the
matrix transformation TA. We describe S ′. For this purpose, let B1 = {v1, v2} and
B2 = {u1, u2} be orthonormal bases for R2 satisfying equations (9) and (10). For a
vector u in R2, let u = x ′

1u1 + x ′
2u2 for some scalars x ′

1 and x ′
2. So

[u]B2 =
[
x ′
1

x ′
2

]
.

We wish to characterize S ′ by means of an equation in x ′
1 and x ′

2.
For any vector v = x1v1 + x2v2, the condition u = TA(v) means that

x ′
1u1 + x ′

2u2 = TA(x1v1 + x2v2) = x1Av1 + x2Av2 = x1σ1u1 + x2σ2u1,

and hence
x ′
1 = σ1x1 and x ′

2 = σ2x2.

Furthermore, v is in S if and only if ‖v‖2 = x 2
1 + x 2

2 = 1. It follows that u is in S ′ if
and only if u = T (v), where v is in S ; that is,

(x ′
1)

2

σ 2
1

+ (x ′
2)

2

σ 2
2

= x 2
1 + x 2

2 = 1.

This is the equation of an ellipse with the major and minor axes along the lines through
the origin containing the vectors u1 and u2, respectively. (See Figure 6.26.)
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S

x

y
v1

v2
u1

u2

S�
x�y�

�2
�1

TA

Av2 � �2u2

Av1 � �1u1

Figure 6.26 The image of the unit circle in R2 under TA

THE SINGULAR VALUE DECOMPOSITION OF A MATRIX
Theorem 6.17 can be restated as a single matrix equation that has many useful appli-
cations. Using the notation of Theorem 6.17, let A be an m × n matrix of rank k
with singular values σ1 ≥ σ2 ≥ · · · ≥ σk > 0, B1 = {v1, v2, . . . , vn} be an orthonor-
mal basis for Rn , and B2 = {u1, u2, . . . , um} be an orthonormal basis for Rm such
that equations (9) and (10) are satisfied. The n × n and m × m matrices V and U
defined by

V = [v1 v2 . . . vn ] and U = [u1 u2 . . . um ]

are orthogonal matrices because their columns form orthonormal bases. Let � be the
m × n matrix whose (i , j )-entry, sij , is given by

{
sii = σi for i = 1, 2, . . . , k

sij = 0 otherwise.

So

� =




σ1 0 . . . 0 0 0 . . . 0
0 σ2 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 σk 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 0 0 . . . 0




. (11)

By equation (9),

AV = A[v1 v2 . . . vn ]

= [Av1 Av2 . . . Avn ]

= [σ1u1 σ2u2 . . . σkuk 0 . . . 0]
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= [u1 u2 . . . um ]




σ1 0 . . . 0 0 0 . . . 0
0 σ2 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 σk 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 0 0 . . . 0




= U�.

Thus AV = U�. Since V is an orthogonal matrix, we may multiply both sides of this
last equation on the right by V T to obtain

A = U�V T .

In general, any factorization of an m × n matrix A into a product A = U�V T ,
where U and V are orthogonal matrices and � is an m × n matrix of the form given
in equation (11), is called a singular value decomposition of A.

We summarize the preceding discussion with the following result:

THEOREM 6.18

(Singular Value Decomposition) For any m × n matrix A of rank k , there
exist σ1 ≥ σ2 ≥ · · · ≥ σk > 0, an m × m orthogonal matrix U , and an n × n
orthogonal matrix V such that

A = U�V T ,

where � is the m × n matrix given in equation (11).

It can be proved that if A = U�V T is any singular value decomposition of an
m × n matrix A, then the nonzero diagonal entries of � are the singular values of
A, and the columns of V and the columns of U , which form orthonormal bases for
Rn and Rm , respectively, satisfy equations (9) and (10). (See Exercise 78.) For this
reason, the columns of U and V in a singular value decomposition of a matrix A are
sometimes referred to as left and right singular vectors of A, respectively.

Example 4 Find a singular value decomposition of the matrix

A =
[
0 1 2
1 0 1

]

in Example 1.

Solution We may use the results of Example 1 to obtain the decomposition. The
columns of the matrix U are the vectors in B2, the columns of V are the vectors in
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B1, and σ1 = √
6 and σ2 = 1 are the singular values. Thus

A = U�V T =
[ 2√

5
−1√

5
1√
5

2√
5

][√
6 0 0

0 1 0

]



1√
30

2√
5

1√
6

2√
30

−1√
5

2√
6

5√
30

0 −1√
6




T

.

Example 5 Find a singular value decomposition of the matrix

C =



0 1
1 0
2 1


 .

Solution Notice that C is the transpose of the matrix A in Examples 1 and 4. Using
the singular value decomposition A = U�V T , we have

C = AT = (U�V T )T = (V T )T �T U T = V �T U T .

Observe that

�T =



√
6 0

0 1
0 0




is the matrix satisfying equation (11) for AT . Therefore, since V T and U T are orthog-
onal matrices, V �T U T is a singular value decomposition of C = AT .

Practice Problem 2 � Find a singular value decomposition of the matrix A in Practice Problem 1. �

There are efficient and accurate methods for finding a singular value decomposi-
tion U�V T of an m × n matrix A, and many practical applications of linear algebra
use this decomposition. Because the matrices U and V T are orthogonal, multiplica-
tion by U and V T does not change the norms of vectors or the angles between them.
Thus any roundoff errors that arise in calculations involving A are due solely to the
matrix �. For this reason, calculations involving A are most reliable if a singular
value decomposition of A is used.

ORTHOGONAL PROJECTIONS, SYSTEMS OF LINEAR EQUATIONS,
AND THE PSEUDOINVERSE
Let A be an m × n matrix and b be in Rm . We have seen that the system of linear
equations Ax = b can be consistent or inconsistent.

In the case that the system is consistent, a vector u in Rn is a solution if and
only if ‖Au − b‖ = 0.

In the case that the system is inconsistent, ‖Au − b‖ > 0 for every u in Rn .
However, it is often desirable to find a vector z in Rn that minimizes the distance
between Au and b, that is, a vector z such that

‖Az − b‖ ≤ ‖Au − b‖ for all u in Rn .
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This problem, called the least-squares problem, was encountered in Section 6.4, where
we showed that ‖Az − b‖ is a minimum if and only if

Az = PW b, (12)

where W is the column space of A and PW is the orthogonal projection matrix for W .
The next theorem shows how we can use a singular value decomposition of A to

compute PW .

THEOREM 6.19

Let A be an m × n matrix of rank k having a singular value decomposition
A = U�V T , and let W = Col A. Let D be the m × m diagonal matrix whose
first k diagonal entries are 1s and whose other entries are 0s. Then

PW = UDU T . (13)

PROOF Let P = UDU T . Observe that P2 = PT = P , and hence by Exercise 82
of Section 6.3, P is an orthogonal projection matrix for some subspace of Rm .
We must show that this subspace is, in fact, W . For this purpose, we modify the
m × n matrix � to obtain a new n × m matrix �† defined by

�† =




1
σ1

0 . . . 0 0 0 . . . 0

0 1
σ2

. . . 0 0 0 . . . 0

...
...

. . .
...

...
...

...

0 0 1
σk

0 0 . . . 0

0 0 . . . 0 0 0 . . . 0

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . 0




. (14)

Observe that ��† = D , and hence

A(V �†U T ) = U�V T V �†U T = U��†U T = UDU T = P . (15)

It follows that, for any vector v in Rn , we have Pv = Aw, where w = (V �†U T )v.
Consequently, Pv lies in W . Thus the column space of P is a subspace of W .
Since D has rank k , P also has rank k , and hence the dimension of the column
space of P is k . It follows that the column space of P is W by Theorem 4.9 in
Section 4.3. We conclude that P = PW . �

We can use equation (15), whose right side we have shown to be PW , to select
the vector z in equation (12) that minimizes ‖Au − b‖. Let

z = V �†U T b. (16)

Then, by equation (15), Az = A(V �†U T )b = PW b. (See Figure 6.27.)
Besides the vector z = V �†U T b, there may be other vectors in Rn that also min-

imize ‖Au − b‖. However, we now show that among all such vectors, z = V �†U T b
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‖Az � b‖

‖Au � b‖

Au
Az � PW (b)

b

W � Col A

0

Figure 6.27 The vector V�†UT b satisfies Az = PW b.

is the unique vector of least norm. Suppose that y is any vector in Rn , different from
z, that also minimizes ‖Au − b‖. Then Ay = PW b by equation (12). Let w = y − z.
Then w �= 0, but

Aw = Ay − Az = PW b − PW b = 0.

Substituting the singular value decomposition of A, we have

U�V T w = 0.

Since U is invertible, it follows that

�V T w = 0.

This last equation tells us that the first k components of V T w are zeros. Furthermore,
since z = V �†U T b, we have that V T z = �†U T b, and hence the last n − k compo-
nents of V T z are zeros. It follows that V T w and V T z are orthogonal. Since V T is an
orthogonal matrix, it preserves dot products, and hence

z �w = (V T z) � (V T w) = 0.

Thus z and w are orthogonal. Since y = z + w, we may apply the Pythagorean theorem
to find that

‖y‖2 = ‖z + w‖2 = ‖z‖2 + ‖w‖2 > ‖z‖2,

and hence ‖y‖ > ‖z‖. It follows that z = V �†U T b is the vector of least norm that
minimizes ‖Au − b‖.

We summarize what we have learned in the following box:

Let A be an m × n matrix with a singular value decomposition A = U�V T , b
be a vector in Rm , and z = V �†U T b, where �† is as in equation (14). Then the
following statements are true:
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(a) If the system Ax = b is consistent, then z is the unique solution of least
norm.

(b) If the system Ax = b is inconsistent, then z is the unique vector of least
norm such that

‖Az − b‖ ≤ ‖Au − b‖

for all u in Rn .

Example 6 Use a singular value decomposition to find the solution of least norm to the system

x2 + 2x3 = 5
x1 + x3 = 1.

Solution Let A denote the coefficient matrix of this system, and let b =
[
5
1

]
. A

singular value decomposition of A was computed in Example 4, where we obtained

[
0 1 2
1 0 1

]
= A = U�V T =

[ 2√
5

−1√
5

1√
5

2√
5

][√
6 0 0

0 1 0

]



1√
30

2√
5

1√
6

2√
30

−1√
5

2√
6

5√
30

0 −1√
6




T

.

Let z denote the solution of least norm of the given system. Then

z = V �†U T b

=




1√
30

2√
5

1√
6

2√
30

−1√
5

2√
6

5√
30

0 −1√
6







1√
6

0

0 1

0 0



[ 2√

5
−1√

5
1√
5

2√
5

]T [
5
1

]

= 1

6




−5
8

11


 .

Practice Problem 3 � Use your answer to Practice Problem 2 to find the solution of least norm to the system

−2x1 − 20x2 + 8x3 = 5
14x1 − 10x2 + 19x3 = −5. �

Example 7 Let

A =



1 1 2
1 −1 3
1 3 1


 and b =




1
4

−1


 .

It is easy to show that the equation Ax = b has no solution. Find a vector z in R3

such that

‖Az − b‖ ≤ ‖Au − b‖
for all u in R3.
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Solution First observe (we omit the details) that

B1 =



1√
6




1
1
2


 ,

1√
5




0
2

−1


 ,

1√
30




−5
1
2






is an orthonormal basis of eigenvectors of AT A with corresponding eigenvalues 18,
10, and 0. So σ1 = √

18 and σ2 = √
10 are the singular values of A. Let v1 and v2

denote the first two vectors in B1, which correspond to the singular values σ1 and σ2,
respectively, and let

u1 = 1

σ1
Av1 = 1√

18

1√
6




1 1 2
1 −1 3
1 3 1






1
1
2


 = 1√

3




1
1
1




and

u2 = 1

σ2
Av2 = 1√

10

1√
5




1 1 2
1 −1 3
1 3 1






0
2

−1


 = 1√

2




0
−1

1


 .

As in Example 2, we are able to extend {u1, u2} to an orthonormal basis for R3 by

adjoining the vector u3 = 1√
6




2
−1
−1


. This produces a set of left singular vectors

B2 = {u1, u2, u3} of A. Next, set

U = [u1 u2 u3], V = [v1 v2 v3],

and

� =



σ1 0 0
0 σ2 0
0 0 0


 =




√
18 0 0
0

√
10 0

0 0 0


 .

Then A = U�V T is a singular value decomposition of A. Hence

z = V �†U T b

=




1√
6

0 −5√
30

1√
6

2√
5

1√
30

2√
6

−1√
5

2√
30







1√
18

0 0

0 1√
10

0

0 0 0







1√
3

0 2√
6

1√
3

−1√
2

−1√
6

1√
3

1√
2

−1√
6




T 


1
4

−1




= 1

18




4
−14

17




is the vector of least norm that satisfies the condition ‖Az − b‖ ≤ ‖Au − b‖ for all u
in R3.

Practice Problem 4 � Let

A =



1 1 2
1 −1 3
1 3 1


 and b =




27
36

−18


 .
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Use the singular value decomposition in Example 7 to find a vector z in R3 such that
‖Az − b‖ ≤ ‖Au − b‖ for all u in R3. �

In the previous discussion, a singular value decomposition of the coefficient matrix
A = U�V T of a system of linear equations Ax = b is used to find the solution of
least norm or the vector of least norm that minimizes ‖Au − b‖. The solution is the
product of the matrix V �†U T and b.

Although a singular value decomposition of a matrix A = U�V T is not unique,
the matrix V �†U T is unique; that is, it is independent of the choice of a singular
value decomposition of A. To see this, consider an m × n matrix A, and suppose that

A = U1�V T
1 = U2�V T

2

are two singular value decompositions of A. Now consider any vector b in Rm . Then
we have seen that both V1�

†U T
1 b and V2�

†U T
2 b are the unique vector of least norm

that minimizes ‖Au − b‖. So

V1�
†U T

1 b = V2�
†U T

2 b.

Since b is an arbitrarily chosen vector in Rn , it follows that V1�
†U T

1 = V2�
†U T

2 .
For a given matrix A = U�V T , the matrix V �†U T is called the pseudoinverse,

or Moore–Penrose generalized inverse, of A and is denoted by A†. Note that the
pseudoinverse of the matrix � in equation (11) is the matrix �† in equation (14). (See
Exercise 81.) The terminology pseudoinverse is due to the fact that if A is invertible,
then A† = A−1, the ordinary inverse of A. (See Exercise 82.)

Replacing U�V T by A†, the pseudoinverse of A, we can restate equations (15)
and (16) as follows:

Applications of the Pseudoinverse

For any m × n matrix A and any vector b in Rm , the following statements are
true:

1. The orthogonal projection matrix for Col A is AA†.

2. The unique vector of least norm that minimizes ‖Au − b‖ for u in Rn is A†b.
Therefore, if Ax = b is consistent, A†b is the unique solution of least norm.

Example 8 Find the pseudoinverse of the matrix

A =
[
0 1 2
1 0 1

]

in Example 4. Then use the result to solve the problem posed in Example 6 again.

Solution From Example 4, a singular value decomposition of A is given by

A = U�V T =
[ 2√

5
−1√

5
1√
5

2√
5

][√
6 0 0

0 1 0

]



1√
30

2√
5

1√
6

2√
30

−1√
5

2√
6

5√
30

0 −1√
6




T

.
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Hence the pseudoinverse of A is

A† = V �†U T =




1√
30

2√
5

1√
6

2√
30

−1√
5

2√
6

5√
30

0 −1√
6







1√
6

0

0 1
0 0



[ 2√

5
−1√

5
1√
5

2√
5

]T

=




− 1
3

5
6

1
3 − 1

3
1
3

1
6


 .

To solve the problem posed in Example 6, let b =
[
5
1

]
. The solution of least

norm to the system of equations in Example 6 is

A†b =




− 1
3

5
6

1
3 − 1

3
1
3

1
6



[
5
1

]
= 1

6




−5
8

11


 .

EXERCISES

In Exercises 1–10, find a singular value decomposition for each
matrix.

1.

[
1 0
1 0

]
2.

[
1 1
0 0

]

3.




1
2
2


 4.




1
1

−1
1




5.




1 1
1 −1
1 2


 6.




1 2
3 −1
1 0
1 1




7.

[
1 1 1
1 −1 −1

]
8.

[
1 0 0 0
0 2 0 0

]

9.




1 1 2
2 0 −1
1 −1 0


 10.




1 −1 3
1 −1 −1
2 1 −1




In Exercises 11–18, find a singular value decomposition of each
matrix A. In each case, the characteristic polynomial of AT A is
given.

11. A =
[

1 −1 2
−2 2 −4

]

−t2(t − 30)

12. A =
[
1 0 −2
2 0 −4

]

−t2(t − 25)

13. A =
[

1 −1 1
−1 2 1

]

−t (t − 2)(t − 7)

14. A =
[

1 0 −1
−1 1 0

]

−t (t − 1)(t − 3)

15.
A =




3 5 4 1
4 0 2 −2
0 0 0 0


 , t2(t − 60)(t − 15)

16.
A =




2 −3 2 −3
6 1 6 1
0 0 0 0


 , t2(t − 80)(t − 20)

17.
A =




3 0 1 3
0 3 1 0
0 −3 −1 0


 , t2(t − 18)(t − 21)

18.
A =




−4 8 0 −8
8 −25 0 7
8 −7 0 25


 , t2(t − 324)(t − 1296)

In Exercises 19 and 20, sketch the image of the unit circle under
the matrix transformation TA induced by each matrix A.

19.

[
2 1

−2 1

]
20.

[
1 2
2 1

]

In Exercises 21–28, find the unique solution of least norm to
each system of linear equations. In one of the exercises, you can
use an answer from Exercises 1–10.

21.
x1 + x2 = 2

2x1 + 2x2 = 4
22.

x1 − x2 = 2
2x1 − 2x2 = 4
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23.
x1 − x3 = 2

−x2 + x3 = 5
24.

x1 − x2 + 2x3 = −1

−x1 + 2x2 − 2x3 = 2

25.
x1 − 2x2 + x3 = 3

−x1 + x2 + 2x3 = −1
26.

x1 + x3 = 3

x2 = 1

27.
x1 + x2 + x3 = 5

x1 − x2 − x3 = 1
28.

x1 + x2 = 4

x1 − x2 − x3 = 1

In Exercises 29–36, the systems are inconsistent. For each sys-
tem Ax = b, find the unique vector z of least norm such that
‖Az − b‖ is a minimum. In a few of these exercises, you can use
answers from Exercises 1–18.

29.
x1 + 2x2 = −1

2x1 + 4x2 = 1
30.

x1 − x2 + 2x3 = 3

−2x1 + 2x2 − 4x3 = −1

31.

x1 + x2 = 3

x1 − x2 = 1

x1 + 2x2 = 2

32.

x1 + 2x2 = 4

3x1 − x2 = 5

x1 = 1

x1 + x2 = 0

33.

x1 + x2 − x3 = 4

x1 + x2 + x3 = 6

x3 = 3

34.

2x1 + x2 = 1

x1 − x2 = −4

x1 + 2x2 = 0

35.

x1 − x2 + x3 = 1

−x1 + 2x2 + x3 = 1

2x1 − x2 + 4x3 = 0

36.

x1 − x3 = −1

−x1 + x2 = 2

3x1 − x2 − 2x3 = 1

In Exercises 37–46, find the pseudoinverse of the given matrix.
In most cases, you can use the results of Exercises 1–28.

37.

⎡
⎣

1
2
2

⎤
⎦ 38.

[
1 −1

−2 2

]

39.

[
1 0 −1
0 −1 1

]
40.

⎡
⎢⎢⎣

1 2
3 −1
1 0
1 1

⎤
⎥⎥⎦

41.

⎡
⎣

1 1
1 −1
1 2

⎤
⎦ 42.

[
1 0 0 0
0 2 0 0

]

43.

[
1 1 1
1 −1 −1

]
44.

[
1 −1 2

−1 2 −2

]

45.

[
1 −1 1

−1 2 1

]
46.

⎡
⎣

3 5 4 1
4 0 2 −2
0 0 0 0

⎤
⎦

In equation (13), a singular value decomposition of a matrix A is
used to obtain the orthogonal projection on the subspace Col A.
Use this method in Exercises 47–54 to compute the orthogonal
projection matrix PW on the subspace W . You can use the results
of Exercises 1–10.

47. W = Span

⎧⎨
⎩

⎡
⎣

1
2
2

⎤
⎦
⎫⎬
⎭

48. W = Span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
1

−1
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

49. W = Span

⎧⎨
⎩

⎡
⎣

1
0
1

⎤
⎦ ,

⎡
⎣

0
−1

1

⎤
⎦
⎫⎬
⎭

50. W = Span

⎧⎨
⎩

⎡
⎣

1
1

−2

⎤
⎦ ,

⎡
⎣

1
−1

1

⎤
⎦
⎫⎬
⎭

51. W = Span

⎧⎨
⎩

⎡
⎣

1
−2

3

⎤
⎦ ,

⎡
⎣

2
1

−1

⎤
⎦
⎫⎬
⎭

52. W = Span

⎧⎨
⎩

⎡
⎣

3
−2

1

⎤
⎦ ,

⎡
⎣

−2
1
2

⎤
⎦
⎫⎬
⎭

53. W = Span

⎧⎨
⎩

⎡
⎣

1
1
1

⎤
⎦ ,

⎡
⎣

1
−1

2

⎤
⎦
⎫⎬
⎭

54. W = Span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
3
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
−1

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

In Exercises 55–75, determine whether the state-
ments are true or false. For the purpose of these
exercises, we consider a particular m × n matrix A
and orthonormal bases B1 and B2 of Rn and Rm,
respectively, such that the singular values of A and
these bases satisfy equations (9) and (10).

55. If σ is a singular value of a matrix A, then σ is an eigen-
value of AT A.

56. If the roles of B1 and B2 are reversed, then equations (9)
and (10) are satisfied for the matrix AT .

57. If a matrix is square, then B1 = B2.

58. Every matrix has the same singular values as its transpose.

59. A matrix has a pseudoinverse if and only if it is not invert-
ible.

60. B2 is an orthonormal basis of eigenvectors of AT A.

61. B2 is an orthonormal basis of eigenvectors of AAT .

62. B1 is an orthonormal basis of eigenvectors of AT A.

63. B1 is an orthonormal basis of eigenvectors of AAT .

64. If matrix A has rank k , then A has k singular values.

65. Every matrix has a singular value decomposition.

66. Every matrix has a unique singular value decomposition.

67. In a singular value decomposition U �V T of A, each diag-
onal entry of � is a singular value of A.

68. Suppose that A = U �V T is a singular value decomposi-
tion, A1 is the set of columns of V , and A2 is the set of
columns of U . Then equations (9) and (10) are satisfied
if A1 replaces B1 and A2 replaces B2.
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69. If U �V T is a singular value decomposition of A, then
V �U T is a singular value decomposition of AT .

70. If U �V T is a singular value decomposition of A hav-
ing rank k , and if W = ColA, then PW = UDU T , where
dii = 1 if i = 1, 2, · · · , k and dij = 0 otherwise.

71. If A is an m × n matrix and U �V T is a singular value
decomposition of A, then a vector u in Rn that minimizes
‖Au − b‖ is V �†U T b.

72. If A is an m × n matrix and U �V T is a singular value
decomposition of A, then V �†U T b is the unique vector
u in Rn that minimizes ‖Au − b‖.

73. If A is an m × n matrix and U �V T is a singular value
decomposition of A, then V �†U T b is the unique vector
u in Rn with least norm that minimizes ‖Au − b‖.

74. If U �V T is a singular value decomposition of A, then
A† = V �U T .

75. If A is an invertible matrix, then A† = A−1.

76. Suppose that A is an m × n matrix of rank k with sin-
gular values σ1 ≥ σ2 ≥ · · · ≥ σk > 0 and bases B1 and
B2 of Rn and Rm , respectively, satisfying equations (9)
and (10).

(a) Prove that B1 is a basis consisting of eigen-
vectors of AT A with corresponding eigenvalues
σ 2

1 , σ 2
2 , . . . , σ 2

k , 0, . . . , 0.

(b) Prove that B2 is a basis consisting of eigen-
vectors of AAT with corresponding eigenvalues
σ 2

1 , σ 2
2 , . . . , σ 2

k , 0, . . . , 0.

(c) Prove that the singular values of A are unique.

(d) Let B ′
1 and B ′

2 be the sets obtained from B1 and B2 by
multiplying the first vector in each set by −1. Prove
that, although B ′

1 �= B1 and B ′
2 �= B2, equations (9)

and (10) are still satisfied if B ′
1 and B ′

2 replace B1

and B2, respectively.

77. Let A be an m × n matrix of rank m with singular values

σ1 ≥ σ2 ≥ · · · ≥ σm > 0.

(a) Prove that σm‖v‖ ≤ ‖Av‖ ≤ σ1‖v‖ for every vector v
in Rn .

(b) Prove that there exist nonzero vectors v and w in Rn

such that

‖Av‖ = σm‖v‖ and ‖Aw‖ = σ1‖w‖.
78. Let A be an m × n matrix with rank k , and suppose that

A = U �V T is a singular value decomposition of A.

(a) Prove that the nonzero diagonal entries of � are the
singular values of A.

(b) Let B1 and B2 be the orthonormal bases of Rn and Rm

consisting of the columns of V and U , respectively.

Prove that for these bases, equations (9) and (10) are
satisfied.

79. Prove that the transpose of a singular value decomposition
of A is a singular value decomposition of AT , as illustrated
in Example 5.

80. Prove that, for any matrix A, the matrices AT A and AAT

have the same nonzero eigenvalues.
81. Prove that the pseudoinverse of the matrix � in

equation (11) is the matrix �† in equation (14).
82. Prove that if A is an invertible matrix, then A† = A−1.
83. Prove that, for any matrix A, (AT )† = (A†)T .
84. Prove that if A is a symmetric matrix, then the singu-

lar values of A are the absolute values of the nonzero
eigenvalues of A.

85. Let A be an n × n symmetric matrix of rank k , with singu-
lar values σ1 ≥ σ2 ≥ · · · ≥ σk > 0, and let � be the n × n
matrix in equation (11). Prove that A is positive semidef-
inite if and only if there is an n × n orthogonal matrix V
such that V �V T is a singular value decomposition of A.

86. Let Q be an n × n orthogonal matrix.

(a) Determine the singular values of Q . Justify your
answer.

(b) Describe a singular value decomposition of Q .

87. Let A be an n × n matrix of rank n. Prove that A is an
orthogonal matrix if and only if 1 is the only singular
value of A.

88. Let A be an m × n matrix with a singular value decompo-
sition A = U �V T . Suppose that P and Q are orthogonal
matrices of sizes m × m and n × n, respectively, such that
P� = �Q .

(a) Prove that (UP )�(VQ)T is a singular value decom-
position of A.

(b) Use (a) to find an example of a matrix with two dis-
tinct singular value decompositions.

(c) Prove the converse of (a): If U1�V T
1 is any singular

value decomposition of A, then there exist orthogonal
matrices P and Q of sizes m × m and n × n, respec-
tively, such that P� = �Q , U1 = UP , and V1 = VQ .

89. Prove that if A = U �V T is a singular value decomposi-
tion of an m × n matrix of rank k , then ��† is the m × m
diagonal matrix whose first k diagonal entries are 1s and
whose last m − k diagonal entries are 0s.

90. Prove that, for any matrix A, the product A†A is the orthog-
onal projection matrix for RowA.

91. Let A be an m × n matrix with rank k and nonzero
singular values σ1 ≥ σ2 ≥ · · · ≥ σk , and let A = U �V T

be a singular value decomposition of A. Suppose that
U = [u1 u2 · · · um

]
and V = [v1 v2 · · · vn

]
.

For 1 ≤ i ≤ k , let Qi be the m × n matrix defined by
Qi = uivT

i . Prove the following statements:
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(a) A = σ1Q1 + σ2Q2 + · · · + σk Qk .

(b) For all i , rank Qi = 1.

(c) For all i , Qi QT
i is the orthogonal projection matrix

for the 1-dimensional subspace Span {ui } of Rm .

(d) For all i , QT
i Qi is the orthogonal projection matrix

for the 1-dimensional subspace Span {vi } of Rn .

(e) For distinct i and j , Qi QT
j = O and QT

i Qj = O .

In Exercises 92 and 93, use either a calculator with matrix
capabilities or computer software such as MATLAB to find a
singular value decomposition and the pseudoinverse of each
matrix A.

92.

⎡
⎣

2 0 1 −1
1 3 1 2
1 1 −1 1

⎤
⎦ 93.

⎡
⎣

1 2 1 3
2 −1 1 4

−1 0 1 2

⎤
⎦

SOLUTIONS TO THE PRACTICE PROBLEMS

1. First observe that

AT A =

⎡
⎢⎢⎣

200 −100 250

−100 500 −350

250 −350 425

⎤
⎥⎥⎦ .

Then

B1 = {v1, v2, v3} =

⎧⎪⎪⎨
⎪⎪⎩

1

3

⎡
⎢⎢⎣

1

−2

2

⎤
⎥⎥⎦ ,

1

3

⎡
⎢⎢⎣

2

2

1

⎤
⎥⎥⎦ ,

1

3

⎡
⎢⎢⎣

2

−1

−2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

is an orthonormal basis for R3 consisting of eigenvec-
tors of AT A with corresponding eigenvalues λ1 = 900,
λ2 = 225, and λ3 = 0. Thus the singular values of A are
σ1 = √

λ1 = 30 and σ2 = √
λ2 = 15.

Next, set

u1 = 1

σ1
Av1 = 1

30
· 1

3

[
54

72

]
= 1

5

[
3

4

]

and

u2 = 1

σ2
Av2 = 1

15
· 1

3

[
−36

27

]
= 1

5

[
−4

3

]
.

Then B2 = {u1, u2} is an orthonormal basis for R2 that
satisfies equations (9) and (10).

2. Let v1, v2, v3, u1, and u2 be as in the solution to Practice
Problem 1. Define

U = [u1 u2] =
⎡
⎣

3
5 − 4

5

4
5

3
5

⎤
⎦ ,

V = [v1 v2 v3] =

⎡
⎢⎢⎢⎣

1
3

2
3

2
3

− 2
3

2
3 − 1

3

2
3

1
3 − 2

3

⎤
⎥⎥⎥⎦ ,

and

� =
[
σ1 0 0

0 σ2 0

]
=
[

30 0 0

0 15 0

]
.

Then A = U �V T is a singular value decomposition of A.

3. We want to find the solution of the system Ax = b with
least norm, where A is the matrix in Practice Problem 1

and b =
[

5

−5

]
. Using the matrices U and V in the solu-

tion of Practice Problem 2 and �† =

⎡
⎢⎢⎢⎣

1
30 0

0 1
15

0 0

⎤
⎥⎥⎥⎦, we find

that the solution of least norm is

z = V �†U T b = − 1

90

⎡
⎢⎢⎣

29

26

16

⎤
⎥⎥⎦ .

4. Using the matrices V , U , and � in Example 7, we see
that the desired vector is

z = V �†U T b = 1

10

⎡
⎢⎢⎣

25

−83

104

⎤
⎥⎥⎦ .
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6.8∗ PRINCIPAL COMPONENT ANALYSIS
Consider a study concerned with health issues. We collect data on a large sample of
people (subjects), using variables such as age, two cholesterol readings (high-density
lipoprotein and low-density lipoprotein), two blood pressure readings (diastolic and
systolic), weight, height, exercise habits, daily fat intake, and daily salt intake. It would
be far more convenient if we could replace these ten variables with two or three new
variables. How can this be done without losing a significant amount of information?

If two variables are very closely related to each other, say, height and weight,
then we may be able to replace these two variables with one new variable. In this
section, we use linear algebra to discover a smaller set of new variables. The method
we use is called principal component analysis (PCA). It was developed by Pearson
(1901) and Hotelling (1933). (See [11] and [7].)

There are a number of practical outcomes from the use of PCA.

(a) If we were doing a least-squares analysis or other type of statistical analysis for
this or future groups, we could base it on fewer variables; this would add what
statisticians call power to our analyses.

(b) Most often, PCA shows the groupings of variables—for example, quantitative
scores versus verbal ones, or gross motor skills versus fine motor skills. This is
in itself revealing to those in the particular area of interest.

(c) If the data are plotted, PCA finds lines, planes, and hyperplanes that approximate
the data as well as possible in the least-squares sense. It also finds the “appropri-
ate” rotation of axes to plot the data. Think of using the major and minor axes
of an ellipse as the coordinate axes, if the data were elliptical.

(d) If we had a large amount of data to transmit, PCA’s reduction to fewer variables
could prove to be a useful tool, allowing us to submit a much smaller amount of
data without losing much information.

To learn more about PCA, see [12] and [10].
We begin with some basic statistical concepts. Given a set of m observations,

x1, x2, . . . , xm , a familiar measure of the center of these observations is the (sample)
mean, x (read “x-bar”), defined as

x = 1

m
(x1 + x2 + · · · + xm ).

For example, if our data consist of 3, 8, 7, then x = 1
3 (3 + 8 + 7) = 6. The mean,

however, does not help us measure the spread or variability of the data. One rea-
sonable approach to measuring variability is to average the squared deviations of the
measurements from the mean. This leads to the definition of the (sample) variance,
s2 (we sometimes write s2

x to emphasize that the observations can be expressed as the
components of the vector x), defined as

s2
x = 1

m − 1

[
(x1 − x )2 + (x2 − x )2 + · · · + (xm − x )2

]
.

In most statistics books, the formula uses a denominator of m − 1 rather than m ,
because it can be shown that using m − 1 provides a more accurate approximation
to the variance of the population from which the sample is drawn. (See [9].) For the
same set of data, we have

s2 = 1

2

[
(3 − 6)2 + (8 − 6)2 + (7 − 6)2

] = 7.

∗ This section can be omitted without loss of continuity.
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6.8 Principal Component Analysis 457

Notice that if the original measurements are heights measured in inches, then x is also
given in inches, but s2 is given in square inches. To keep the measure of spread in
the same units as in the original data, we use the positive square root of the variance,
namely, s , called the standard deviation. For the previous data, the standard deviation
is s = √

7.
It is very useful to represent the variance by matrix notation. Suppose we denote

the measurements x1, x2, . . . , xm by the vector x =




x1

x2
...

xm


 and introduce the vector

x =




x
x
...

x


. It follows easily that

s2
x = 1

m − 1
(x − x)T (x − x) = 1

m − 1
(x − x) � (x − x) = 1

m − 1
‖x − x‖2.

Earlier, we suggested that if two variables were closely related, we may be able to
replace both of them with one variable and not lose much information. One commonly
used measure of the strength of the linear relationship between two variables is called
the (sample) covariance. Specifically, let

x =




x1

x2
...

xm


 and y =




y1

y2
...

ym


 .

We define the (sample) covariance of x and y to be

cov(x, y) = 1

m − 1

[
(x1 − x )(y1 − y) + (x2 − x )(y2 − y) + · · · + (xm − x )(ym − y)

]
,

or, using matrix notation,

cov(x, y) = 1

m − 1
(x − x)T (y − y) = 1

m − 1
(x − x) �(y − y).

One problem with using covariance, however, is that its size is affected by the units
of measurement. For example, if x is measured in feet and y is measured in pounds,
then the covariance is measured in foot-pounds. But if the units were given in inches
and ounces, the covariance would be greatly increased. To avoid this problem, we use
instead the quantity

cov(x, y)

sxsy
,

where sx and sy are the respective standard deviations of x and y. This quantity is
called the (sample) correlation between x and y.18 It is easily shown that correlation
is a “unit-free” measurement; with a little more work (see Exercise 37), it can be

18 When using the correlation between two variables, we assume that neither variable has a variance
equal to zero.

521



458 CHAPTER 6 Orthogonality

proven that the correlation always lies between −1 and 1. In the extreme case that the
relationship is perfectly linear—that is, all the points (x1, y1), (x2, y2), . . . , (xm , ym ) lie
on a line—the correlation is 1 if the line has a positive slope, and the correlation is
−1 if the line has a negative slope. If there is little or no linear relationship between
x and y, the correlation is close to zero.

Practice Problem 1 � Let x =
⎡
⎣

4
−2

7

⎤
⎦ and y =

⎡
⎣

3
4
5

⎤
⎦. Compute the following quantities:

(a) The means x and y .

(b) The variances s2
x and s2

y .

(c) The covariance cov(x, y).

(d) The correlation between x and y. �

Because of the properties of dot products, it is easy to see that cov(x, y) =
cov(y, x); so the covariance of x and y is the same as the covariance of y and x.
The same symmetry holds for correlation.

In general, given n variables x1, x2, . . . , xn , each considered as an m × 1 vec-
tor, we define two n × n matrices. The covariance matrix is the n × n matrix
whose (i , j )-entry is the covariance cov(xi , xj ). Using block notation, if we write
X = [x1 x2 . . . xn

]
and X = [x1 x2 . . . xn

]
, we may represent the covari-

ance matrix as

C = 1

m − 1
(X − X )T (X − X ).

(See Exercise 32.) Note the similarity of this formula to the one for the variance s2
x

of a vector x.
Likewise, the correlation matrix is defined to be the n × n matrix whose (i , j )-

entry is the correlation between xi and xj . To see the form of a correlation matrix,
we need a little terminology. A variable z is a scaled variable if it has mean equal to
zero and standard deviation equal to one. A variable x with a nonzero variance can be
scaled or standardized by subtracting the vector x and then dividing by the standard

deviation sx. So
x − x

sx
is a scaled variable. (See Exercise 33.) Thus, given n variables

x1, x2, . . . , xn , we may scale them and produce the scaled variables z1, z2, . . . , zn . This
scaling is frequently performed in cases where the variables have widely varying units,
in order to put all variables on an “equal footing.”

Now if Z = [z1 z2 · · · zn
]
, then the correlation matrix for the original vari-

ables can be represented as

C0 = 1

m − 1
Z T Z .

(See Exercise 34.) It also follows that the correlation between xi and xj is the same as
zi and zj . Because of the symmetry mentioned earlier—and as is made clear through
the preceding equations—it follows that both the covariance and correlation matrices
are symmetric.

Example 1 The set of data in the table that follows was collected by one of the authors from an
Honors Calculus class of 14 students. The four variables are ACT (a score from a
national test, with range 1 to 36), FE (the final exam score with range 0 to 200), Qav
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6.8 Principal Component Analysis 459

(the mean of eight quiz scores, each with range 0 to 100), and Tav (the mean of three
test scores, each with range 0 to 100). The scaled variables are given in the last four
columns, with asterisks added to their names.

Student ACT FE Qav Tav ACT∗ FE∗ Qav∗ Tav∗

1 33 181 95 89 1.27 0.94 1.3 0.95

2 31 169 81 89 0.8 0.48 0.29 0.95

3 21 176 65 68 −1.58 0.75 −0.88 −0.64

4 25 181 66 90 −0.63 0.94 −0.81 1.03

5 29 169 89 81 0.32 0.48 0.87 0.35

6 24 103 61 57 −0.86 −2.05 −1.17 −1.47

7 24 150 81 76 −0.86 −0.25 0.29 −0.03

8 29 147 86 76 0.32 −0.36 0.65 −0.03

9 36 181 98 102 1.98 0.94 1.52 1.94

10 26 163 72 70 −0.39 0.25 −0.37 −0.49

11 31 163 95 81 0.8 0.25 1.3 0.35

12 29 147 65 67 0.32 −0.36 −0.88 −0.71

13 23 160 62 68 −1.1 0.14 −1.1 −0.64

14 26 100 63 56 −0.39 −2.16 −1.02 −1.55

Using MATLAB to compute
1

m − 1
Z T Z , we obtain the 4 × 4 correlation matrix C0.

The next table gives the entries of C0, rounded to four decimal places.

ACT∗ FE∗ Qav∗ Tav∗

ACT∗ 1 .3360 .8111 .7010

FE∗ .3360 1 .4999 .7958

Qav∗ .8111 .4999 1 .7487

Tav∗ .7010 .7958 .7487 1

Observations:

1. Notice that each of the diagonal entries equals 1. This is because the correlation
between any variable and itself is 1.

2. There is a very strong correlation of .8111 between the ACT score and the quiz
average.

3. The weakest correlation of .3360 is between the ACT score and the final exam
score.

Of course, this is a very small sample. If this were a much larger sample or if these
results were replicated in other samples, then we might be able to draw general con-
clusions. For example, the test average correlates very highly with all other variables,
including the variable ACT, a test given before a student enters college. So if one
variable were to be used to represent these data, perhaps it should be Tav.
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We are now ready to begin our discussion of principal component analysis. We
start with two questions:

1. How do we find the new variables to replace the existing ones?

2. How do we measure how well these new variables capture the original data?

To illustrate the method, we use our original data set, and note that what we do
is easily generalized to other data sets. We have four variables x1, x2, x3, x4, each
of which is a 14 × 1 column vector. Because our variables have different scales, it is
recommended to use the scaled variables instead. So we let Z = [

z1 z2 z3 z4
]
.

The 4 × 4 correlation matrix C0 is computed as

C0 =




1.0000 0.3360 0.8111 0.7010
0.3360 1.0000 0.4999 0.7958
0.8111 0.4999 1.0000 0.7487
0.7010 0.7958 0.7487 1.0000


 .

As we noted earlier, this matrix is necessarily symmetric. So by Theorem 6.15, there
exists an orthonormal basis of eigenvectors u1, u2, u3, u4 of C0 with corresponding
eigenvalues λ1, λ2, λ3, λ4, where we assume λ1 ≥ λ2 ≥ λ3 ≥ λ4. Using MATLAB,
we obtain the orthogonal matrix P , shown next, whose columns are the eigenvectors
u1, u2, u3, u4, and the diagonal matrix D of associated eigenvalues.19

P =




0.4856 −0.5561 0.5128 0.4381
0.4378 0.7317 −0.064 0.5185
0.5209 −0.3275 −0.7848 −0.0744
0.5489 0.2192 0.3421 −0.7305




D =




2.9654 0 0 0
0 0.7593 0 0
0 0 0.1844 0
0 0 0 0.0910




The first new variable is called the first principal component, and is defined to be
the vector y1 = Zu1, where u1 is the eigenvector of C0 with the largest eigenvalue
(2.9654); and the second principal component is y2 = Zu2 because u2 has the second
largest eigenvalue (0.7593). In our example, the first two principal components are

y1 = .4856z1 + .4378z2 + .5209z3 + .5489z4

y2 = −.5561z1 + .7317z2 − .3275z3 + .2192z4.

Or,

y1 = .4856ACT∗ + .4378FE∗ + .5209Qav∗ + .5489Tav∗
y2 = −.5561ACT∗ + .7317FE∗ − .3275Qav∗ + .2192Tav∗.

The remaining principal components are defined similarly. The coefficients used in the
definition of the principal components, given by the components of the eigenvectors,
are called loadings. The magnitude of a variable’s coefficient is related to its relative
importance to the given principal component. We say more about this later. In this

19 MATLAB often produces matrices with the columns in a different order than listed here. We follow the
standard practice of statisticians and list the eigenvalues and eigenvectors so that the eigenvalues are
in decreasing order. Also, we occasionally replace an eigenvector produced by MATLAB with a nonzero
multiple of itself, which, of course, is still an eigenvector corresponding to the same eigenvalue.
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6.8 Principal Component Analysis 461

example, it appears that the first principal component represents an average of the
four variables in the sense that it gives a weighted sum of the four variables where
the weights are approximately equal. The second principal component represents a
“contrast” between the pair, FE∗ and Tav∗, with positive loadings and the pair, ACT∗
and Qav∗, with negative loadings.

One criterion used by statisticians when replacing original variables with fewer
new variables is whether or not the new variables “explain” or “account for” a high
percentage of the variance in the original data set. Intuitively, we understand that
if variables are discarded which are highly correlated with the remaining ones, then
the variability of what is left has not changed significantly. It can be shown (see
Exercise 35) that the variance of a principal component is given by its associated
eigenvalue. So, for example, the variance of y1 is 2.9654. Also, the total variance,
defined as the sum of all the variances of the variables, is given by the sum of all
the eigenvalues (which by Exercise 89 of Section 5.3 is trace(C0)), namely, 4. So,
using the language of statistics, we say that y1 accounts for 2.9654/4 = 74.14% of
the variance, while y1 and y2 together account for (2.9654 + .7593)/4 = 93.12% of
the variance. It seems reasonable to use y1 and y2 as the new variables rather than all
four of the original variables.

In the next table, we compute the (rounded) correlations between the scaled
variables and the first two principal components. The strong correlation of 0.9452
between y1 and Tav∗ tells us that the test average contributes significantly to the first
component. Likewise, the weak correlation of 0.1911 between y2 and Tav∗ tells us
that the test average contributes very little to the second component. Notice also that
the correlation between y1 and y2 in the table is (approximately) zero; that is, y1 and
y2 are uncorrelated.

ACT∗ FE∗ Qav∗ Tav∗ y1 y2

ACT∗ 1 0.3660 0.8111 0.7010 0.8362 −0.4846

FE∗ 0.3360 1 0.4999 0.7958 0.7539 0.6376

Qav∗ 0.8111 0.4999 1 0.7487 0.8969 −0.2854

Tav∗ 0.7010 0.7958 0.7487 1 0.9452 0.1911

y1 0.8362 0.7539 0.8969 0.9452 1 0.0000

y2 −0.4846 0.6376 −0.2854 0.1911 0.0000 1

Comments:

• Principal components are used to reduce large-dimensional data sets to data sets
with a few dimensions that still retain most of the information in the original data.
For example, if we needed to transmit most of the information in these data, we
might decide to transmit only the first several principal components.

• Each principal component is a linear combination of the scaled variables.
• Any two principal components are uncorrelated. (See Exercise 36.)
• Usually, the first few principal components account for a large percentage of the

total variance, so they are all that is needed for future analyses.
• The principal components are artificial variables and are not necessarily easy to

interpret.
• We have neglected to make any assumptions about the underlying “statistical dis-

tributions” of the variables. This topic requires a much deeper background in
mathematical statistics than we are assuming here.
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Example 2 Suppose that a group of ten students takes four tests: two of the tests yield mathematics
scores, Alg (algebra) and Trig (trigonometry); and two yield English scores, Englit
(English literature) and Shakes (Shakespeare). The data are presented here in table
form; the scaled variables are given in the last four columns.

Student Alg Trig Englit Shakes Alg∗ Trig∗ Englit∗ Shakes∗

1 95 88 65 68 1.52 0.99 −1.02 −0.85

2 87 92 70 74 0.95 1.24 −0.58 −0.31

3 75 78 75 72 0.10 0.35 −0.15 −0.49

4 74 70 85 81 0.03 −0.16 0.72 0.31

5 46 51 92 95 −1.96 −1.37 1.33 1.56

6 62 55 88 90 −0.82 −1.11 0.98 1.11

7 82 91 85 90 0.60 1.18 0.72 1.11

8 68 52 55 60 −0.40 −1.30 −1.89 −1.56

9 82 78 80 75 0.60 0.35 0.29 −0.22

10 65 70 72 70 −0.61 −0.16 −0.41 −0.67

As in Example 1, we seek a smaller set of variables to describe the data. By using
MATLAB, we obtain the 4 × 4 correlation matrix C0. The next table gives the entries
of C0, rounded to four decimal places.

Alg∗ Trig∗ Englit∗ Shakes∗

Alg∗ 1 0.871 −0.435 −0.450

Trig∗ 0.871 1 −0.148 −0.160

Englit∗ −0.435 −0.148 1 0.942

Shakes∗ −0.450 −0.160 0.942 1

Observations:

1. There are very high correlations of .871 between the algebra and trigonometry
scores and .942 between the English literature and Shakespeare scores, but low
negative correlations between any mathematics score and any English score.

2. If this pattern continues in other samples, then we might conclude that skills in
trigonometry and English are unrelated.

As we noted earlier, this matrix is necessarily symmetric. So, as in Example 1,
there is an orthonormal basis of eigenvectors u1, u2, u3, u4 of C0 with corresponding
eigenvalues λ1, λ2, λ3, λ4, where we again assume that λ1 ≥ λ2 ≥ λ3 ≥ λ4. The
orthogonal matrix P , whose columns are the eigenvectors u1, u2, u3, u4, and the
diagonal matrix D of the associated eigenvalues are as follows:

P =




−0.5382 0.4112 0.7312 −0.0820
−0.4129 0.6323 −0.6525 0.0622

0.5169 0.4696 0.1936 0.6890
0.5222 0.4589 0.0459 −0.7174
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D =




2.5228 0 0 0
0 1.3404 0 0
0 0 0.0792 0
0 0 0 0.0577




Again, the first principal component is defined to be the vector y1 = Zu1, where u1 is
the eigenvector of C0 with the largest eigenvalue (2.5228); and the second principal
component is y2 = Zu2, where u2 has the second largest eigenvalue (1.3404). The
first two principal components are

y1 = −0.5382Alg∗ − 0.4129Trig∗ + 0.5169Englit∗ + 0.5222Shakes∗

y2 = 0.4112Alg∗ + 0.6323Trig∗ + 0.4696Englit∗ + 0.4589Shakes∗.

As we saw before, the total variance, 4, is given by trace(D). The first two principal
components together account for (2.5228 + 1.3404)/4 = 96.58% of the variance. It
seems reasonable to use y1 and y2 as the new variables, rather than all four of the
original variables.

Notice that y1 represents a contrast between the pair Englit∗ and Shakes∗, with
positive loadings, and the pair Alg∗ and Trig∗, with negative loadings, while y2 gives
a weighted sum of the four variables, where the weights are approximately equal.

If we compute the correlations between the scaled variables and the first two
principal components, we obtain the next table (with rounding). Notice the very small
correlation between the two principal components. Also notice that y1 has the strongest
correlation with Alg∗, which is reflected in the fact that its strongest loading is with
Alg∗. Indeed, for both principal components, observe that the signs of the loadings
agree with the signs of the corresponding correlations.

Alg∗ Trig∗ Englit∗ Shakes∗ y1 y2

Alg∗ 1 0.8708 −0.4351 −0.4491 −0.8549 0.4769

Trig∗ 0.8708 1 −0.1479 −0.1603 −0.6561 0.7322

Englit∗ −0.4351 −0.1479 1 0.9418 0.8209 0.5431

Shakes∗ −0.4491 −0.1603 0.9418 1 0.8289 0.5308

y1 −0.8549 −0.6561 0.8209 0.8209 1 −0.0011

y2 0.4769 0.7322 0.5431 0.5308 −0.0011 1

EXERCISES

In Exercises 1–8, x =



2
−3

4


 and y =




4
2
3


. Compute the fol-

lowing quantities:

1. the mean of x

2. the mean of y

3. the variance of x

4. the variance of y

5. the covariance of x and y

6. the correlation between x and y

7. the covariance matrix, using the vectors x and y

8. the correlation matrix, using the vectors x and y

In Exercises 9–20, determine whether the statements
are true or false.

9. The mean of m numbers is defined as the sum of the
numbers divided by m.
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10. The variance of m numbers is defined as the sum of the
squared deviations of each of the numbers from the mean,
divided by m.

11. The covariance is a number that is always nonnegative.

12. The correlation is a number that is always nonnegative.

13. If two variables have a linear relationship, then their cor-
relation is one.

14. If the correlation between two variables is one, then the
variables have a linear relationship.

15. The covariance is a number that always lies between −1
and 1.

16. The correlation is a number that always lies between −1
and 1.

17. A scaled variable always has mean 0 and standard devia-
tion one.

18. PCA generally produces a smaller set of variables with
little loss of information.

19. The variance of a principal component is given by an
eigenvalue of the correlation matrix.

20. Distinct principal components are always uncorrelated.

In Exercises 21–25, x, y, and z are m × 1 vectors and c is a real
number. Prove the following results:

21. cov(x, y) = cov(y, x)

22. (a) cov(cx, y) = c �cov(x, y)

(b) cov(x, cy) = c �cov(x, y)

23. (a) cov(x + y, z) = cov(x, z) + cov(y, z)

(b) cov(x, y + z) = cov(x, y) + cov(x, z)

24. cov(x, x) = s2
x

25. cov(x, x) = 0 if and only if all the components of x are
equal.

In Exercises 26 and 27, w and u are m × 1 vectors, all of whose
components are equal, and x and y are arbitrary m × 1 vectors.
Prove the following results:

26. (a) cov(w, y) = 0

(b) cov(x, u) = 0

27. (a) cov(x + w, y) = cov(x, y)

(b) cov(x, y + u) = cov(x, y)

(c) cov(x + w, y + u) = cov(x, y)

In Exercises 28–30, x and y are m × 1 vectors with means x
and y and variances s2

x and s2
y , respectively, and c and d are

real numbers. Prove the following results:

28. (a) The mean of cx is cx .

(b) The mean of cx + dy is cx + dy .

29. The variance of cx is c2s2
x .

30. The variance of x ± y is s2
x + s2

y ± 2cov(x, y).

31. Consider two variables, one measured in feet and the other
in pounds. Show that their correlation is a “unit-free” mea-
surement.

32. Using the notation developed in this section, prove that
the covariance matrix may be represented as

C = 1

m − 1
(X − X )T (X − X ).

33. Let x be an m × 1 vector such that sx �= 0. Prove that
1

sx
(x − x) is a scaled variable.

34. Suppose that x1, x2, . . . , xn are m × 1 vectors. For each
i , let zi be the vector obtained by scaling xi , and let
Z = [z1 z2 · · · zn

]
. Prove that the correlation matrix

C0 for X = [x1 x2 · · · xn
]

can be represented as

C0 = 1

m − 1
Z T Z .

35. Let Z be the m × n matrix in Exercise 34, and let w be
any n × 1 vector.

(a) Show that the mean of Z w is 0.

(b) Use (a) to show that the variance of a principal com-
ponent is given by the associated eigenvalue of C0.

36. Prove that any two principal components are uncorrelated.

37. Let x and y be m × 1 vectors, each with nonzero variance,
and let

x∗ = x − x
sx

and y∗ = y − y
sy

.

Suppose that r denotes the correlation between x and y.

(a) Prove r = cov(x∗, y∗).

(b) Use (a) to prove |r | ≤ 1.

In the following exercise, use either a calculator with matrix
capabilities or computer software such as MATLAB to solve the
problem:

38. The data in the accompanying table were collected for a
class of students enrolled in a general education math-
ematics course. The variables are PRE (the pre-final

Student PRE FE ACTE ACTM

1 96 100 24 25

2 76 90 18 16

3 79 87 24 20

4 86 90 21 24

5 80 71 18 23

6 77 54 18 18

7 72 78 19 23

8 59 71 21 13

9 64 78 22 16

10 61 67 21 13

11 57 79 16 22

12 36 50 17 20

13 42 55 22 15
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examination average, with range 0 to 100), FE (the final
examination results, with range 0 to 100), ACTE (an
English score on a national test, with range from 1 to
36), and ACTM (a mathematics score on a national test,
with range from 1 to 36). Students who withdrew from
the class are not included.

(a) Extend the table to include the scaled variables PRE∗,
FE∗, ACTE∗, and ACTM∗.

(b) Use your answer to (a) to compute the correlation
matrix C0.

(c) Which pair of variables shows the strongest correla-
tion? What is this correlation?

(d) Which pair of variables shows the weakest correla-
tion? What is this correlation?

(e) Find an orthogonal matrix P and a diagonal matrix D ,
whose diagonal entries are listed in decreasing order
of magnitude, such that C0 = PDPT .

(f) Use your answer to (e) to express the first two prin-
cipal components y1 and y2 as linear combinations of
the scaled variables.

(g) What percentage of the variance is accounted for by
y1?

(h) What percentage of the variance is accounted for by
both y1 and y2?

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) x = 1

3
(4 − 2 + 7) = 3 and y = 1

3
(3 + 4 + 5) = 4

(b) s2
x = 1

3 − 1

(
(4 − 3)2 + (−2 − 3)2 + (7 − 3)2) = 21

and

s2
y = 1

3 − 1

(
(3 − 4)2 + (4 − 4)2 + (5 − 4)2) = 1

(c) cov(x, y) = 1

3 − 1
[(4 − 3)(3 − 4)

+ (−2 − 3)(4 − 4) + (7 − 3)(2 − 4)] = −9

2
(d) The correlation between x and y is

(−9/2)√
21

√
1

= − 9

2
√

21
.

6.9∗ ROTATIONS OF R3 AND COMPUTER GRAPHICS
In this section, we study rotations of R3 about a line that contains 0. These rotations
can be described in terms of left multiplication by special 3 × 3 orthogonal matrices,
just as rotations in the plane about the origin can be represented by left multiplication
by 2 × 2 rotation matrices, which are orthogonal matrices. The most important lines
about which rotations are performed are the x -, y-, and z -axes. We describe how to
compute rotations about these axes and explain how they can be used for graphical
representations of three-dimensional objects. We then consider rotations about arbitrary
lines containing 0.

We begin with a description of rotations about the z -axis. For a given angle θ

and a vector

⎡
⎣

x
y
z

⎤
⎦ in R3, let

[
x ′
y ′

]
be the result of rotating

[
x
y

]
by θ in the xy-plane.

Then

⎡
⎣

x ′
y ′
z

⎤
⎦ is the rotation of

⎡
⎣

x
y
z

⎤
⎦ about the z -axis by θ . (See Figure 6.28.)

Hence we may use the rotation matrix Aθ introduced in Section 1.2 to obtain
[

x ′
y ′

]
= Aθ

[
x
y

]
=
[

cos θ − sin θ

sin θ cos θ

] [
x
y

]
.

It follows that
⎡
⎣

x ′
y ′
z

⎤
⎦ =

⎡
⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦
⎡
⎣

x
y
z

⎤
⎦ .

∗ This section can be omitted without loss of continuity.
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�

�

z

y

x

(x�, y�, z)

(x, y, z)
(x�, y�)

(x, y)

xy-plane

Figure 6.28 A rotation of R3 about the z-axis.

Let

Rθ =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

Then Rθ






x
y
z




 =




x ′
y ′
z


 produces a rotation of




x
y
z


 about the z -axis by the angle

θ . The matrix Rθ is an example of a 3 × 3 rotation matrix. Using arguments similar
to the previous one, we can find the rotation matrices for rotating a vector by an angle
θ about the other coordinate axes. Let Pθ and Qθ be the matrices for rotations by an
angle θ about the x -axis and the y-axis, respectively. Then

Pθ =



1 0 0
0 cos θ − sin θ

0 sin θ cos θ


 and Qθ =




cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 .

In each case, the positive direction of the rotation is counterclockwise when viewed
from a position along the positive direction of the axis of rotation. Note that all of
these rotation matrices are orthogonal matrices.

We can combine rotations by taking products of rotation matrices. For example,
if a vector v is rotated about the z -axis by an angle θ and the result is then rotated
about the y-axis by an angle φ, the final position of the rotated vector is given by
Qφ(Rθv) = (QφRθ )v. One should be careful to note the order in which the rotations
are made because QφRθ is not necessarily equal to RθQφ . For example, let v = e1,
θ = 30◦, and φ = 45◦. Then

QφRθv =




1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2







√
3

2 − 1
2 0

1
2

√
3

2 0

0 0 1







1
0
0




=




1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2







√
3

2
1
2

0




=




√
3

2
√

2
1
2

−
√

3
2
√

2


 .
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On the other hand, a similar calculation shows that

RθQφv =




√
3

2
√

2
1

2
√

2

− 1√
2


 ,

which is not equal to QφRθv.

Practice Problem 1 � Find the result of rotating the vector




1
−1

2


 by an angle of 60◦ about the y-axis

followed by a rotation of 90◦ about the x -axis. �

Rotation matrices are used in computer graphics to present various orientations
of the same three-dimensional shape. Although computers can store the information
necessary to construct three-dimensional shapes, these shapes must be displayed on
a two-dimensional surface such as the screen of a computer monitor or a sheet of
paper. From a mathematical viewpoint, such a representation is projected on a plane.
For example, the shape can be projected on the yz -plane by simply ignoring the first
coordinates of the points that constitute the shape, and by plotting only the second
and third coordinates.

To present different views, the shape can be rotated in various ways before each
projection is made. To illustrate the results of these procedures, a simple program that
creates three-dimensional shapes consisting of points connected by lines was written
for a computer. The coordinates of these points (vertices) and the information about
which of these points are connected by lines (edges) are used as data in the program.
The program plots the projection of the resulting shape on the yz -plane and represents
the results as a printout. Before making such a plot, the computer rotates the shape
about any one or a combination of the three coordinate axes by multiplying the vertices
of the shape by the appropriate rotation matrix.

In Figure 6.29, we use a crude rendering of a tower, originally oriented as shown
with the coordinate axes superimposed. What we see here is the projection of the
figure on the yz -plane without rotations. Notice that the x -axis is not visible because
it is perpendicular to the plane of this page. For each subsequent figure, the tower is
rotated about one or two axes before being projected. (See Figure 6.30.)

z

y

Figure 6.29 A front view of a tower
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(a)

A 90� rotation 
about the y-axis

A �30� rotation 
about the z-axis 
followed by
a 20� rotation
about the y-axis

A 45� rotation about
the x-axis followed by
a 30� rotation
about the y-axis

(b) (c)

Figure 6.30

PERSPECTIVE
An object appears smaller when viewed from a greater distance. This effect, called
perspective, is apparent when the object is viewed directly, as well as when it is
viewed from photographic images. In both cases, light reflected from the object con-
verges to a point, called a focal point, and then diverges along lines to a plane. This
correspondence is called a perspective projection. For example, the plane on which
the image is projected could be film in a camera. Figure 6.31 illustrates this phe-
nomenon. In this figure, the focal point L is situated on the x -axis at (a , 0, 0), and the
plane on which any image is projected is perpendicular to the x -axis at x = b. Notice
that the image of any point lies on the opposite side of the x -axis. This effect causes
the image of an object to be reversed.

x-axis

x � b

Q2

Q1

P2 � (b, y2, z2)

P1 � (x1, y1, z1)

|z2|

|z1|

focal
point

L

(a, 0, 0)

Figure 6.31 A perspective projection
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We can use similar triangles to relate the location of a point with the location of
its projected image. Consider an arbitrary point P1 with coordinates (x1, y1, z1). The
point P1 projects to the point P2 = (b, y2, z2) on the other side of the focal point. (See
Figure 6.31.) Note that triangles P1Q1L and P2Q2L are similar, the length of P1Q1 is
|z1|, and the length of P2Q2 is |z2|. It follows that

|z2| = |z1|(b − a)

a − x1
.

This equation tells us that the greater the distance P1 is from the focal point, the
smaller |z2| will be in comparison to |z1|. That is, the larger the value of a − x1 is,
the smaller the size of the projected image will be. Since the image of P1 is reversed,
the signs of z1 and z2 are opposite, and hence

z2 = −z1(b − a)

a − x1
. (17)

Similarly, we have that

y2 = −y1(b − a)

a − x1
. (18)

The problem with equations (17) and (18) is that their application to the graphic
projection of an actual object results in an image that is reversed. But if we simply
replace y2 by −y2 and z2 by −z2, we invert the reversed image to obtain an image that
is restored to its original orientation. Finally, we ignore the first coordinate, b, of the
projected point, treating the plane x = b as if it were the yz -plane. Thus we obtain
a correspondence, called a perspective projection, that takes P1, with coordinates

(x1, y1, z1), into P2, with coordinates

(
y1(b − a)

a − x1
,
z1(b − a)

a − x1

)
. This correspondence

enables us to create the illusion of perspective.
The difference between a computer graphic with perspective and one without

perspective can be seen by comparing Figure 6.32 with Figures 6.29 and 6.30. In
Figure 6.32, the graphic is drawn with the focal point located on the x -axis at x =
a = 100 and the projected plane located at x = b = 180.

ROTATION MATRICES
In addition to rotations of R3 about the coordinate axes, a rotation of R3 about
any line L that contains 0 can be produced by left multiplication by the appropriate
orthogonal matrix. Such a matrix is called a rotation matrix, and the line L is called
the axis of rotation. Notice that an axis of rotation is a 1-dimensional subspace of R3,
and conversely, any 1-dimensional subspace of R3 is the axis of rotation for some
rotation matrix.

In what follows, we discuss the problem of finding these more general rotation
matrices. Let L be a 1-dimensional subspace of R3, and let θ be an angle. We wish
to find the rotation matrix P so that left multiplication by P causes a rotation of θ

about the axis L. Before examining this problem, we must first decide what is meant
by a rotation by the angle θ . We want to adopt the convention, as is done in the
xy-plane, that the rotation is counterclockwise if θ > 0 and is clockwise if θ < 0.
However, what is clockwise and what is counterclockwise literally depends on one’s
point of view. Suppose we could physically transport ourselves to a point p on L,
where p �= 0. From this vantage point, we can view the 2-dimensional subspace L⊥,
which is the plane perpendicular to L at 0, and observe the rotation of a vector v
in L⊥ in the counterclockwise direction to a vector v′ in L⊥. On the other hand, if
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Figure 6.29
in perspective

Figure 6.30(a)
in perspective

Figure 6.30(b)
in perspective

Figure 6.30(c)
in perspective

Figure 6.32 Views in perspective

we observe this same rotation from the opposite side of L, at the point −p, then the
same rotation is now seen to be in the clockwise direction. (See Figure 6.33.) Thus
the direction of a rotation is affected by which side of 0 contains the vantage point
in L. A side is determined by the unit vector in L that points in its direction. Since
there are two sides, and these can be identified with the two unit vectors in L, the
direction of rotation can be described unambiguously by choosing one of these two
unit vectors. Such a choice is called an orientation of L.

L

L

p

v

v�

�p

counter-
clockwise
rotation

L

L

�p

v�

v

p

clockwise
rotation

A view of L from p A view of L from �p

Figure 6.33 The direction of rotation from p to −p

Choose a unit vector v3 in L, which determines an orientation of L and hence
the direction of a counterclockwise rotation on L⊥. Having chosen the axis L, the
orientation v3, and the angle θ , we are ready to find the rotation matrix P . Since L is
a 1-dimensional subspace of R3, its orthogonal complement, L⊥, is a 2-dimensional
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subspace. Select an orthonormal basis {v1, v2} for L⊥ such that v2 is the result of
rotating v1 counterclockwise in L⊥ by 90◦ with respect to the chosen orientation of L.
Let B = {v1, v2, v3}. Then B is an orthonormal basis for R3, and hence the rotation
matrix P can be obtained by finding Pv1, Pv2, and Pv3, and then applying what we
know about matrix representations. Since Pv1 makes an angle θ with v1, we may
apply Exercise 98 of Section 6.1 to obtain

Pv1 �v1 = ‖Pv1‖ ‖v1‖ cos θ = cos θ.

Because v2 is obtained by rotating v1 by 90◦ in the counterclockwise direction, it
follows that the angle between Pv1 and v2 is 90◦ − θ if θ < 90◦ and is θ − 90◦ if
θ > 90◦. (See Figure 6.34.) In either case, cos (θ − 90◦) = cos (90◦ − θ ) = sin θ , and
hence

Pv1 �v2 = ‖Pv1‖ ‖v2‖ cos(±(θ − 90◦)) = (1)(1) sin θ = sin θ.

Therefore
Pv1 = (Pv1 �v1)v1 + (Pv1 �v2)v2 = (cos θ )v1 + (sin θ )v2. (19)

v3

Pv1

v2v1

0

�
90� � �

� � 90�

Pv1

�

� � 90�

v3

v2v1

0

� � 90�

Figure 6.34 The angle between Pv1 and v2

To find Pv2, observe that −v1 can be obtained from v2 by a 90◦ counterclockwise
rotation, and so we may apply the same arguments to the set {v2, −v1, v3} to produce

Pv2 = (cos θ )v2 + (sin θ )(−v1) = −(sin θ )(v1) + (cos θ )v2. (20)

Finally, since v3 is in L and L remains unmoved by the rotation,

Pv3 = v3. (21)

We can now use equations (19), (20), and (21) to obtain the matrix representation of
the matrix transformation TP relative to B:

[TP ]B =



cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 = Rθ (22)

Let V be the 3 × 3 matrix V = [v1 v2 v3]. Then V is an orthogonal matrix because
its columns are the vectors in B, an orthonormal basis for R3. Furthermore,

V −1PV = [TP ]B (23)
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since the columns of V are the vectors of B. Combining equations (22) and (23), we
obtain

P = VRθV
−1 = VRθV

T . (24)

We summarize this fact about rotation matrices in the following box:

Any 3 × 3 rotation matrix has the form VRθV T for some orthogonal matrix V
and some angle θ .

Practice Problem 2 � Let

W = Span







1
2
3


 ,




2
3
4




 .

Suppose that R is a 3 × 3 rotation matrix such that for any vector w in W , the vector
Rw is also in W . Describe the axis of rotation. �

Example 1 Find the rotation matrix P that rotates R3 by an angle of 30◦ about the axis L

containing




1
1
1


, with the orientation determined by the unit vector v3 = 1√

3




1
1
1


.

Solution Our task is to find a pair of orthonormal vectors v1 and v2 in L⊥ such
that v2 is the 90◦ counterclockwise rotation of v1 with respect to the orientation
determined by v3. First, choose any nonzero vector w1 orthogonal to v3; for example,

w1 =



1
0

−1


. Now select a vector orthogonal to both v3 and w1. Such a vector can

be obtained by choosing a nonzero solution of the system of linear equations

√
3 v3 �x =




1
1
1


 �




x1

x2

x3


 = x1 + x2 + x3 = 0

w1 �x =



1
0

−1


 �




x1

x2

x3


 = x1 − x3 = 0.

For example, w2 =



1
−2

1


 is such a solution. Then w1 and w2 are orthogonal vectors

in L⊥. We use these vectors to find v1 and v2, but we must first consider a more
difficult situation. For the orientation of L determined by v3, we must decide whether
the 90◦ rotation from w1 to w2 is clockwise or counterclockwise. From Figure 6.35
we see that the 90◦ rotation from w1 to w2 is clockwise. There are two ways to
correct this situation. One possibility is to reverse the order of w1 and w2 since the
90◦ rotation from w2 to w1 is counterclockwise. Or we can replace w2 by −w2 since
the rotation from w1 to −w2 is also counterclockwise. Either way is acceptable. We
arbitrarily select the first way. Finally, we replace the wi ’s by unit vectors in the same
direction. Thus we let

v1 = 1

‖w2‖w2 = 1√
6




1
−2

1


 and v2 = 1

‖w1‖w1 = 1√
2




1
0

−1


 .
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z

y

x
w1

w2

v3

Figure 6.35 The 90◦ rotation from w1 to w2 with orientation determined by v3 is clockwise.

Then B = {v1, v2, v3} is the required orthonormal basis. Let

V = [v1 v2 v3] =




1√
6

1√
2

1√
3

−2√
6

0 1√
3

1√
6

−1√
2

1√
3


 .

Then, by equation (24),

P = VR30◦V T

=




1√
6

1√
2

1√
3

−2√
6

0 1√
3

1√
6

−1√
2

1√
3







cos 30◦ − sin 30◦ 0
sin 30◦ cos 30◦ 0

0 0 1







1√
6

−2√
6

1√
6

1√
2

0 −1√
6

1√
3

1√
3

1√
3




=




1√
6

1√
2

1√
3

−2√
6

0 1√
3

1√
6

−1√
2

1√
3







√
3

2
−1
2 0

1
2

√
3

2 0

0 0 1







1√
6

−2√
6

1√
6

1√
2

0 −1√
6

1√
3

1√
3

1√
3




= 1

3




1 + √
3 1 − √

3 1

1 1 + √
3 1 − √

3

1 − √
3 1 1 + √

3


 .

We now make an important observation about the eigenvectors of an arbitrary
3 × 3 rotation matrix P with axis of rotation L. For any vector v in L, Pv = v, and
hence 1 is an eigenvalue of P and L is contained in the eigenspace of P corresponding
to the eigenvalue 1. If the angle of rotation of P is θ = 0◦ (or, more generally,
θ = 360n degrees for some integer n), then the matrix transformation TP rotates
every vector in R3 to itself, and hence P = I3. In this case, the axis of rotation can be
taken to be any 1-dimensional subspace of R3. With the exception of this rotation by
0◦, P has a unique axis of rotation L. Furthermore, if P �= I3, then for any v not in L,
we have Pv �= v (see Exercise 68), and hence L is the eigenspace of P corresponding
to the eigenvalue 1. Therefore the eigenspace of P corresponding to the eigenvalue 1
is 1-dimensional, except when P = I3, in which case the eigenspace is 3-dimensional.

537



474 CHAPTER 6 Orthogonality

Next, we make an important observation about the determinant of P . By equation
(24), there is an orthogonal matrix V such that P = VRθV −1. By Exercise 69, det Rθ =
1, and hence

detP = det (VRθV
−1)

= (det V )(det Rθ )(det V −1)

= (det V )(det Rθ )(det V )−1

= det Rθ

= 1.

The converse is also true. We state the full result here, but defer the proof of the
converse, which is more substantial, to the end of this section. Thus this condition
regarding the determinant gives us a simple characterization of 3 × 3 rotation matrices.
As an application, we give a simple proof that the transpose of a rotation matrix and
the product of rotation matrices are rotation matrices.

THEOREM 6.20

Let P and Q be 3 × 3 orthogonal matrices.

(a) P is a rotation matrix if and only if det P = 1.

(b) If P is a rotation matrix, then PT is a rotation matrix.

(c) If P and Q are rotation matrices, then PQ is a rotation matrix.

PROOF The proof of (a) can be found on page 476.
(b) Suppose that P is a rotation matrix. Since P is an orthogonal matrix,

PT is an orthogonal matrix by Theorem 6.10(d) and det PT = det P = 1 by (a).
Thus PT is a rotation matrix by (a).

(c) Suppose that P and Q are rotation matrices. Then detP = detQ = 1 by
(a). Since P and Q are each orthogonal matrices, PQ is also an orthogonal matrix
by Theorem 6.10(b). Furthermore,

det (PQ) = (det P )(det Q) = 1 �1 = 1.

Therefore PQ is a rotation matrix by (a). �

There is something unsatisfactory about our solution of Example 1: We relied on
a figure to make the judgment that a certain 90◦ rotation is counterclockwise when
viewed from a certain direction. In general, there is a problem with this approach,
because accurately drawing and interpreting 3-dimensional figures depends on our
ability to visualize space, and this can fail us. However, Theorem 6.20 gives us a way
out of this predicament because it leads to a computational method for determining
whether a certain rotation is counterclockwise. The following result describes this
method:

THEOREM 6.21

Let {v1, v2, v3} be an orthonormal basis for R3. The 90◦ rotation from v1 to v2

is counterclockwise as viewed from v3 if and only if det [v1 v2 v3] = 1.
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PROOF First, suppose that det [v1 v2 v3] = 1. Since V = [v1 v2 v3] is an
orthogonal matrix, it is a rotation matrix by Theorem 6.20. Observe that the 90◦

rotation from e1 to e2 is counterclockwise as viewed from e3. Since V is a rotation,
the relative positions of e1, e2, and e3 are the same as those of V e1 = v1, V e2 =
v2, and V e3 = v3. Therefore the 90◦ rotation from v1 to v2 is counterclockwise
as viewed from v3.

Now suppose that det [v1 v2 v3] �= 1. Since [v1 v2 v3] is an orthogonal
matrix, det [v1 v2 v3] = −1 by Theorem 6.10. Therefore

det [v2 v1 v3] = − det [v1 v2 v3] = (−1)(−1) = 1.

By what was discussed previously, we can deduce that the 90◦ rotation from v2

to v1 as viewed from v3 is counterclockwise. It follows that the 90◦ rotation from
v1 to v2 as viewed from v3 is clockwise. �

Revisiting Example 1, we can apply Theorem 6.21 to verify that our choice of
orthonormal vectors v1, v2, and v3 satisfies the requirement that the 90◦ rotation from
v1 to v2 is counterclockwise as viewed from v3. In this case,

det [v1 v2 v3] = det




1√
6

1√
2

1√
3

−2√
6

0 1√
3

1√
6

−1√
2

1√
3


 = 1,

and hence the choice of orthonormal vectors v1, v2, and v3 made in Example 1 is
acceptable.

Example 2 By Theorem 6.20(c), PφRθ is a rotation matrix for any angles φ and θ . Describe the
axis of rotation for PφRθ , where φ = 45◦ and θ = 30◦.

Solution The axis of rotation for PφRθ is Span {v}, where v is an eigenvector of
PφRθ corresponding to the eigenvalue 1. So PφRθv = v, and hence Rθv = P−1

φ v =
PT

φ v. Therefore (Rθ − PT
φ )v = 0. Conversely, any nonzero solution of the equation

(Rθ − PT
φ )x = 0 is an eigenvector of PφRθ corresponding to the eigenvalue 1. There-

fore we require a nonzero solution of the equation

(Rθ − PT
φ )




x1

x2

x3


 = 1

2




√
3 − 2 −1 0

1
√

3 − 2 −√
2

0
√

2 2 − √
2






x1

x2

x3


 =




0
0
0


 .

The vector

v =




1 − √
2

(
√

3 − 2)(1 − √
2)√

3 − 2




is such a solution. Thus the axis of rotation for PφRθ is the subspace Span {v}.
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Example 3 Find the angle of rotation induced by the rotation matrix PφRθ of Example 2.

Solution Let α be the angle of rotation. Since no orientation of the axis of rotation
is given, we assume that α > 0. Choose a nonzero vector w in L⊥, where L is the
axis of rotation, and observe that α is the angle between PφRθw and w. Any nonzero
vector w orthogonal to the vector v in Example 2 suffices—for example,

w =




√
3 − 2

0√
2 − 1


 .

Since PT
φ = P−1

φ is an orthogonal matrix, and orthogonal matrices preserve dot prod-
ucts and norms, it follows that

cosα = (PφRθw) �w
‖PφRθw‖ ‖w‖ = (PT

φ PφRθw) � (PT
φ w)

‖PφRθw‖ ‖w‖ = (Rθw) � (PT
φ w)

‖w‖2
.

Thus

cosα =

1

4




3 − 2
√

3√
3 − 2

2
√

2 − 2


 �




2
√

3 − 4

2 − √
2

2 − √
2




10 − 4
√

3 − 2
√

2

= 16
√

3 − 36 − √
6 + 8

√
2

4(10 − 4
√

3 − 2
√

2)

≈ 0.59275.

Therefore
α ≈ cos−1(0.59275) ≈ 53.65◦

.

Finally, we complete the proof of Theorem 6.20, as promised earlier.

Proof of Theorem 6.20(a) Since the comments given immediately before the
statement of Theorem 6.20 prove that the determinant of every 3 × 3 rotation
matrix equals 1, only the converse needs to be proved.

Let P be a 3 × 3 orthogonal matrix such that det P = 1. We first prove that
1 is an eigenvalue of P . We recall a few facts to prepare us for the calculation
that follows. Since P is an orthogonal matrix, P−1 = PT . Furthermore, detPT =
det P , and hence

det A = det PT det A = detPT A

for any 3 × 3 matrix A. Finally, det (−A) = − detA for any 3 × 3 matrix A.
Let f (t) be the characteristic polynomial of P . Then

f (1) = det (P − I3)

= (det PT ) det (P − I3)
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= det (PT (P − I3))

= det (PT P − PT )

= det (I3 − PT )

= det (I3 − P )T

= det (I3 − P )

= det (−(P − I3))

= − det (P − I3)

= −f (1),

and hence 2f (1) = 0. Thus f (1) = 0, and it follows that 1 is an eigenvalue of P .
Let L be the eigenspace of P corresponding to the eigenvalue 1. We now

establish that, for any w in L⊥, Pw is in L⊥. To see this, consider any v in L.
Then Pv = v, and hence PT v = P−1v = v. It now follows that

(Pw) �v = (Pw)T v = (wT PT )v = wT (PT v) = wT v = w �v = 0.

Thus Pw is in L⊥.
If dim L = 3, then P = I3 is a rotation by 0◦. So, suppose that dim L < 3.

We show that dim L = 1. By way of contradiction, suppose that dim L = 2. Then
dim L⊥ = 1. Select any nonzero vector w in L⊥. Then {w} is a basis for L⊥. Since
Pw is in L⊥, there is a scalar λ such that Pw = λw. Thus w is an eigenvector of
P corresponding to the eigenvalue λ. Since L is an eigenspace of P corresponding
to the eigenvalue 1 and w is in L⊥, λ �= 1. By Exercise 49 of Section 6.5, λ = ±1,
and hence λ = −1. Let {u1, u2} be a basis for L. Then S = {u1, u2, w} is a basis
for R3. Let B be the 3 × 3 matrix [u1 u2 w]. Then

B−1PB = [TP ]S =



1 0 0
0 1 0
0 0 −1


 ,

and hence

P = B




1 0 0
0 1 0
0 0 −1


B−1.

Therefore

det P = det


B




1 0 0
0 1 0
0 0 −1


B−1




= det B � det




1 0 0
0 1 0
0 0 −1


 � det (B−1)

= (det B )(−1)(det B )−1 = −1,

contrary to the assumption that det P = 1. We conclude that dim L = 1.
Thus dim L⊥ = 2. Let {v1, v2} be an orthonormal basis for L⊥, and let v3

be a unit vector in L. Then B = {v1, v2, v3} is an orthonormal basis for R3, and
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Pv3 = v3. Furthermore, Pv1 and Pv2 are in L⊥. Thus there are scalars a , b, c,
and d such that

Pv1 = av1 + bv2 and Pv2 = cv1 + dv2.

Let V = [v1 v2 v3]. Then V is an orthogonal matrix, and

[TP ]B = V −1PV =



a c 0
b d 0
0 0 1


 .

Let A =
[
a c
b d

]
. Comparing the columns of A with the first two columns of the

orthogonal matrix V −1PV , we see that the columns of A are orthonormal, and
hence A is a 2 × 2 orthogonal matrix. Furthermore,

det A = det




a c 0
b d 0
0 0 1




= det (V −1PV )

= det (V −1) � det P � detV

= (det V )−1 det P det V

= detP

= 1,

and hence A is a rotation matrix by Theorem 6.11. Therefore there is an angle θ

such that

A =
[
cos θ − sin θ

sin θ cos θ

]
,

and thus

V −1PV =



cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 = Rθ .

Hence P = VRθV −1. It follows by equation (24) that P is a rotation matrix. �

EXERCISES

In Exercises 1–6, find the matrix M such that for each vector v
in R3, M v is the result of the given sequence of rotations.

1. Each vector v is first rotated by 90◦ about the x -axis, and
the result is then rotated 90◦ about the y-axis.

2. Each vector v is first rotated by 90◦ about the y-axis, and
the result is then rotated 90◦ about the x -axis.

3. Each vector v is first rotated by 45◦ about the z -axis, and
the result is then rotated 90◦ about the x -axis.

4. Each vector v is first rotated by 45◦ about the z -axis, and
the result is then rotated 90◦ about the y-axis.

5. Each vector v is first rotated by 30◦ about the y-axis, and
the result is then rotated 30◦ about the x -axis.

6. Each vector v is first rotated by 90◦ about the x -axis, and
the result is then rotated 45◦ about the z -axis.

In Exercises 7–14, find the rotation matrix P that rotates R3

by the angle θ about the axis containing v, with the orientation
determined by each unit vector u.

7. θ = 180◦, v =



1
0
1


, and u = 1√

2




1
0
1
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8. θ = 90◦, v =



1
−1

1


, and u = 1√

3




1
−1

1




9. θ = 45◦, v =



1
1
0


, and u = −1√

2




1
1
0




10. θ = 45◦, v =



1
1
0


, and u = 1√

2




1
1
0




11. θ = 30◦, v =



1
−1

0


, and u = 1√

2




1
−1

0




12. θ = 30◦, v =



1
−1

0


, and u = −1√

2




1
−1

0




13. θ = 60◦, v =



1
−1

1


, and u = 1√

3




1
−1

1




14. θ = 45◦, v =



1
−1

1


, and u = 1√

3




1
−1

1




In Exercises 15–22, a rotation matrix M is given. Find (a) a
vector that forms a basis for each axis of rotation, and (b) the
cosine of each angle of rotation.

15. The matrix M of Exercise 1.

16. The matrix M of Exercise 2.

17. The matrix M of Exercise 3.

18. The matrix M of Exercise 4.

19. The matrix M of Exercise 5.

20. The matrix M of Exercise 6.

21. M = PθQφ , where θ = 45◦ and φ = 60◦

22. M = RθPφ , where θ = 30◦ and φ = 45◦

In Exercises 23–30, find the standard matrix of the reflection
operator TW of R3 about each subspace W .

23. W = Span







1
2
3


 ,




1
0

−1






24. W = Span







1
1
1


 ,




1
1

−1






25. W = {(x , y , z ) : x + y + z = 0}
26. W = {(x , y , z ) : x + 2y − z = 0}
27. W = {(x , y , z ) : x + 2y − 2z = 0}
28. W = {(x , y , z ) : x + y + 2z = 0}
29. W = {(x , y , z ) : 3x − 4y + 5z = 0}
30. W = {(x , y , z ) : x + 8y − 5z = 0}

In Exercises 31–38, find the standard matrix of the reflection
operator TW on R3 such that T (v) = −v for each vector v.

31. v =



1
2

−1


 32. v =




−1
1
1




33. v =



1
0
2


 34. v =




−1
2
3




35. v =



3
4
5


 36. v =




3
0

−1




37. v =



2
−1

2


 38. v =




1
1

−2




In Exercises 39–46,

(a) determine whether each orthogonal matrix is a rotation
matrix, the standard matrix of a reflection operator, or nei-
ther of these;

(b) if the matrix is a rotation matrix, find a vector that forms
a basis for the axis of rotation. If the matrix is the stan-
dard matrix of a reflection operator, find a basis for the
2-dimensional subspace about which R3 is reflected.

39.

[
0 1 0

−1 0 0
0 0 −1

]
40.

[
0 0 1
0 1 0
1 0 0

]

41.

[
1 0 0
0 −1 0
0 0 −1

]
42.

[
0 0 −1
0 −1 0

−1 0 0

]

43.
1

45

[
35 28 4

−20 29 −28
−20 20 35

]
44.

1

9

[
1 −4 8

−4 7 4
8 4 1

]

45.




1√
2

0 1√
2

0 1 0
1√
2

0 −1√
2


 46.




1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2




In Exercises 47–67, determine whether the state-
ments are true or false.

47. Every 3 × 3 orthogonal matrix is a rotation matrix.

48. For any 3 × 3 orthogonal matrix P , if | detP | = 1, then
P is a rotation matrix.

49. Every 3 × 3 orthogonal matrix has 1 as an eigenvalue.

50. Every 3 × 3 orthogonal matrix has −1 as an eigenvalue.

51. If P is a 3 × 3 rotation matrix and P �= I3, then 1 is an
eigenvalue of P with multiplicity 1.

52. Every 3 × 3 orthogonal matrix is diagonalizable.

53. If P and Q are 3 × 3 rotation matrices, then PQT is a
rotation matrix.

54. If P and Q are 3 × 3 rotation matrices, then PQ is a
rotation matrix.

55. If P is a 3 × 3 rotation matrix, then PT is a rotation
matrix.

56. For any angles φ and θ , QφRθ = RθQφ .

57. The matrix that produces a rotation by the angle θ about
the z -axis is 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .
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58. The matrix that produces a rotation by the angle θ about
the x -axis is 


1 0 0
0 cos θ − sin θ

0 sin θ cos θ


 .

59. The matrix that produces a rotation by the angle θ about
the y-axis is 


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 .

60. A rotation about a line containing 0 can be produced by
left multiplication by some orthogonal matrix.

61. An orientation of a line through the origin of R3 is deter-
mined by a unit vector that lies on the line.

62. Any 3 × 3 rotation matrix has the form VRθV T for some
orthogonal matrix V and some angle θ .

63. If {v1, v2, v3} is an orthonormal basis for R3 and
det [v1 v2 v3] = 1, then the 90◦ rotation from v1 to v2

is clockwise.

64. If {v1, v2, v3} is an orthonormal basis for R3 and the 90◦

rotation from v1 to v2 is clockwise, then

det [v1 v2 v3] = 1.

65. If P is a 3 × 3 rotation matrix, then an eigenvector of P
corresponding to eigenvalue −1 forms a basis for the axis
of rotation for P .

66. Any nonzero solution of (Pθ − Rφ)x = 0 forms a basis for
the axis of rotation for RφPθ .

67. For any vector w perpendicular to the axis of rotation for
RφPθ , the angle of rotation for RφPθ is the angle between
RφPθw and w.

68. Let P be a 3 × 3 rotation matrix with axis of rotation L,
and suppose that P �= I3. Prove that for any vector v in
R3, if v is not in L, then Pv �= v. Hint: For v not in L, let
v = w + z, where w is in L and z is in L⊥. Now consider
Pv = P (w + z).

69. Show by a direct computation that det Pθ = detQθ =
detRθ = 1 for any angle θ .

70. Prove that if P is a 3 × 3 orthogonal matrix, then P 2 is a
rotation matrix.

71. Suppose that P is the 3 × 3 rotation matrix that rotates R3

by an angle θ about an axis L with orientation determined
by the unit vector v in L. Prove that PT rotates R3 by the
angle −θ about L with the orientation determined by v.

72. Let W be a 2-dimensional subspace of R3, and let BW be
the standard matrix of the reflection operator TW . Prove
that BW is an orthogonal matrix, and hence TW is an
orthogonal operator.

73. Let TW be the reflection of R3 about the 2-dimensional
subspace W .

(a) Prove that 1 is an eigenvalue of TW and that W is the
corresponding eigenspace.

(b) Prove that −1 is an eigenvalue of TW with corre-
sponding eigenspace W ⊥.

74. Prove the converse of Exercise 73: Let T be an orthog-
onal operator on R3 with eigenvalues 1 and −1 having
corresponding multiplicities 2 and 1, respectively. Then
T = TW is the reflection operator of R3 about W , where
W is the eigenspace of T corresponding to eigenvalue 1.

75. Let W be a 2-dimensional subspace of R3, and let TW

be the reflection operator of R3 about W with standard
matrix BW . Prove that det BW = −1.

76. Let BW be the standard matrix of a reflection operator
TW about the 2-dimensional subspace W of R3. Prove
the following statements:

(a) B2
W = I3.

(b) BW is a symmetric matrix.

77. Let B and C be standard matrices of reflection opera-
tors about 2-dimensional subspaces of R3. Prove that the
product BC is a rotation matrix.

78. Let W1 and W2 be distinct 2-dimensional subspaces of
R3, let B1 and B2 be the standard matrices of the reflec-
tion operators TW1 and TW2 , respectively, and consider the
rotation matrix B2B1. Prove the following:

(a) The axis of rotation of the rotation matrix B2B1 is the
line determined by the intersection of the planes W1

and W2.

(b) The axis of rotation of the rotation matrix B2B1 is
the solution space of the system of linear equations
(B1 − B2)x = 0.

79. Let W1, W2, B1, and B2 be as in Exercise 78, and let n1

and n2 be unit vectors orthogonal to W1 and W2, respec-
tively. Prove the following:

(a) Both n1 and n2 are orthogonal to the axis of rotation
of B2B1.

(b) The rotation matrix B2B1 rotates both n1 and n2 about
the axis of rotation by the angle θ , where

cos θ = −n1 � (B2n1) = −n2 � (B1n2).

80. Find a 3 × 3 orthogonal matrix C such that detC = −1,
but C is not the standard matrix of a reflection operator.
Hint: Multiply the standard matrix of a reflection oper-
ator by a rotation matrix whose axis of rotation is the
eigenspace of the reflection operator corresponding to the
eigenvalue 1.

81. Suppose that {v1, v2} is a basis for a 2-dimensional sub-
space W of R3. Let v3 be a nonzero vector that is orthog-
onal to both v1 and v2, and define

B = [v1 v2 v3] and C = [v1 v2 − v3].

Prove that CB−1 is the standard matrix of the reflection
of R3 about W .

In Exercises 82 and 83, use either a calculator with matrix capa-
bilities or computer software such as MATLAB to find the axis
of rotation and the angle of rotation, to the nearest degree, for
each rotation matrix.

82. P22◦Q16◦ 83. R42◦P23◦

544



Chapter 6 Review Exercises 481

SOLUTIONS TO THE PRACTICE PROBLEMS

1. For φ = 90◦, we have

Pφ =



1 0 0
0 cos 90◦ − sin 90◦

0 sin 90◦ cos 90◦




=



1 0 0
0 0 −1
0 1 0


 ,

and for θ = 60◦, we have

Qθ =



cos 60◦ 0 cos 60◦

0 1 0
− sin 60◦ 0 cos 60◦




=




1
2 0

√
3

2

0 1 0

−
√

3
2 0 1

2


 .

Thus the desired vector is

PφQθ




1
−1

2


 =




1 0 0
0 0 −1
0 1 0







1
2 0

√
3

2

0 1 0

−
√

3
2 0 1

2







1
−1

2




= 1

2




1 + 2
√

3
−2 + √

3
−2


 .

2. The axis of rotation is W ⊥, which is the solution space
of the homogeneous system of linear equations

x1 + 2x2 + 3x3 = 0
2x1 + 3x2 + 4x3 = 0.

The vector




1
−2

1


 forms a basis for this solution space,

and hence the axis of rotation is the line through the origin
containing this vector.

CHAPTER 6 REVIEW EXERCISES

In Exercises 1–19, determine whether the statements
are true or false.

1. The norm of a vector in Rn is a scalar.

2. The dot product of two vectors in Rn is a scalar.

3. The dot product of any two vectors is defined.

4. If the endpoint of a vector lies on a given line, then the
vector equals the orthogonal projection of the vector on
that line.

5. The distance between two vectors in Rn is the norm of
their difference.

6. The orthogonal complement of the row space of a matrix
equals the null space of the matrix.

7. If W is a subspace of Rn , then every vector in Rn can be
written uniquely as a sum of a vector in W and a vector
in W ⊥.

8. Every orthonormal basis of a subspace is also an orthog-
onal basis of the subspace.

9. A subspace and its orthogonal complement have the same
dimension.

10. An orthogonal projection matrix is never invertible.

11. If w is the closest vector in a subspace W of Rn to a vector
v in Rn , then w is the orthogonal projection of v on W .

12. If w is the orthogonal projection of a vector v in Rn on
a subspace W of Rn , then w is orthogonal to v.

13. For a given set of data plotted in the xy-plane, the least-
squares line is the unique line in the plane that minimizes
the sum of squared distances from the data points to the
line.

14. If the columns of an n × n matrix P are orthogonal, then
P is an orthogonal matrix.

15. If the determinant of the standard matrix of a linear opera-
tor on R2 equals one, then the linear operator is a rotation.

16. In R2, the composition of two reflections is a rotation.

17. In R2, the composition of two rotations is a rotation.

18. Every square matrix has a spectral decomposition.

19. If a matrix has a spectral decomposition, then the matrix
must be symmetric.

In Exercises 20–23, two vectors u and v are given. In each
exercise,

(a) compute the norm of each of the vectors;
(b) compute the distance d between the vectors;
(c) compute the dot product of the vectors;
(d) determine whether the vectors are orthogonal.

20. u =
[

2
−3

]
and v =

[
4
1

]

21. u =
[

3
−6

]
and v =

[
4
2

]

22. u =



2
−1

3


 and v =




0
4
2




23. u =



1
−1

2


 and v =




2
4
1
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In Exercises 24 and 25, a vector u and a line L in R2 are given.
Compute the orthogonal projection w of u on L, and use it to
compute the distance d from the endpoint of u to L.

24. u =
[

3
5

]
and y = 4x 25. u =

[
3
2

]
and y = −2x

In Exercises 26–29, suppose that u, v, and w are vectors in Rn

such that ‖u‖ = 3, ‖v‖ = 4, ‖w‖ = 2, u �v = −2, u �w = 5,
and v �w = −3.

26. Compute ‖− 2u‖. 27. Compute (2u + 3v) �w.
28. Compute ‖3u − 2w‖2. 29. Compute ‖u − v + 3w‖2.

In Exercises 30 and 31, determine whether the given linearly
independent set S is orthogonal. If the set is not orthogonal,
apply the Gram–Schmidt process to S to find an orthogonal
basis for the span of S .

30.

⎧⎨
⎩

⎡
⎣

1
1
0

⎤
⎦ ,

⎡
⎣

2
0
1

⎤
⎦ ,

⎡
⎣

2
2
1

⎤
⎦
⎫⎬
⎭ 31.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
1

−1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
2
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

In Exercises 32 and 33, find a basis for S ⊥.

32. S =
⎧⎨
⎩

⎡
⎣

2
−1

3

⎤
⎦
⎫⎬
⎭ 33. S =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
1

−1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
4
2

−2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

In Exercises 34 and 35, a vector u in Rn and an orthonormal
basis S for a subspace W of Rn are given. Use S to obtain the
unique vectors w in W and z in W ⊥ such that u = w + z. Use
your answer to find the distance from u to W .

34. u =
[

2
3

]
and S =

{
1√
5

[
2
1

]}

35. u =
⎡
⎣

1
2

−3

⎤
⎦ and S =

⎧⎨
⎩

1√
5

⎡
⎣

1
2
0

⎤
⎦ ,

1√
14

⎡
⎣

−2
1
3

⎤
⎦
⎫⎬
⎭

In Exercises 36–39, a subspace W and a vector v are given.
Find the orthogonal projection matrix PW , and find the vector
w in W that is closest to v.

36. W = Span

⎧⎨
⎩

⎡
⎣

1
−1

2

⎤
⎦ ,

⎡
⎣

1
0
1

⎤
⎦
⎫⎬
⎭ and v =

⎡
⎣

2
−1

6

⎤
⎦

37. W = Span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
2
0

−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

and v =

⎡
⎢⎢⎣

2
1
3

−8

⎤
⎥⎥⎦

38. W is the solution set of

x1 + 2x2 − x3 = 0
x1 − x2 − x3 = 0

and v =
⎡
⎣

2
1
4

⎤
⎦

39. W is the orthogonal complement of

Span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1

0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

and v =

⎡
⎢⎢⎣

2
−1

1
2

⎤
⎥⎥⎦

40. Find the equation of the least-squares line for the follow-
ing data: (1, 4), (2, 6), (3, 10), (4, 12), (5, 13).

41. An object is moving away from point P at a constant speed
v . At various times t , the distance d from the object to P
was measured. The results are listed in the following table:

Time t (in seconds) Distance d (in feet)

1 3.2

2 5.1

3 7.1

4 9.2

5 11.4

Assuming that d and t are related by the equation d =
vt + c for some constant c, use the method of least
squares to estimate the speed of the object at time t and
the distance between the object and P at time t = 0.

42. Use the method of least squares to find the best quadratic
fit for the following data:

(1, 2), (2, 3), (3, 7), (4, 14), (5, 23)

In Exercises 43–46, determine whether the given matrix is
orthogonal.

43.

[
0.7 0.3

−0.3 0.7

]
44.

1

13

[
5 −12

12 −5

]

45.
1√
2

⎡
⎣

1 0 1
0

√
2 0

1 0 −1

⎤
⎦ 46.

1√
6

⎡
⎣

√
2 −√

3 1√
2

√
3 −2√

2 0 1

⎤
⎦

In Exercises 47–50, determine whether each orthogonal matrix
is the standard matrix of a rotation or a reflection. If the opera-
tor is a rotation, determine the angle of rotation. If the operator
is a reflection, determine the equation of the line of reflection.

47.
1

2

[
1

√
3

−√
3 1

]
48.

1

2

[
1 −√

3√
3 1

]

49.
1

2

[
1

√
3√

3 −1

]
50.

1

5

[−3 4
4 3

]

51. Let T : R3 → R3 be defined by

T

⎛
⎝
⎡
⎣

x1

x2

x3

⎤
⎦
⎞
⎠ =

⎡
⎣

−x2

x3

x1

⎤
⎦ .

Prove that T is an orthogonal operator.

52. Suppose that T : R2 → R2 is an orthogonal operator. Let
U : R2 → R2 be defined by

U

([
x1

x2

])
= 1√

2
T

([
x1 + x2

−x1 + x2

])
.

(a) Prove that U is an orthogonal operator.

(b) Suppose that T is a rotation. Is TU a rotation or a
reflection?

(c) Suppose that T is a reflection. Is TU a rotation or a
reflection?
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In Exercises 53 and 54, a symmetric matrix A is given. Find an
orthonormal basis of eigenvectors of A and their corresponding
eigenvalues. Use this information to obtain a spectral decompo-
sition of each matrix A.

53. A =
[
2 3
3 2

]
54. A =




6 2 0
2 9 0
0 0 −9




In Exercises 55 and 56, the equation of a conic section is given
in xy-coordinates. Find the appropriate angle of rotation so
that each equation may be written in x ′y ′-coordinates with no

x ′y ′-term. Give the new equation and identify the type of conic
section.

55. x2 + 6xy + y2 − 16 = 0

56. 3x2 − 4xy + 3y2 − 9 = 0

57. Let W be a subspace of Rn , and let Q be an n × n
orthogonal matrix. Prove that QT PW Q = PZ , where Z =
{QT w : w is in W }.

58. Prove that rankPW = dim W for any subspace W of Rn .
Hint: Apply Exercise 68 of Section 6.3.

CHAPTER 6 MATLAB EXERCISES

For the following exercises, use MATLAB (or comparable software) or a calculator with matrix capabilities. The MATLAB
functions in Tables D.1, D.2, D.3, D.4, and D.5 of Appendix D may be useful.

1. Let

u1 =




1
2

−1
3
0
1




, u2 =




2
−1
−3
−1

2
−2




, u3 =




3
−3

2
−2

1
1




, u4 =




−6
6

−4
4

−2
−2




.

(a) Compute u1 �u2, ‖u1‖, and ‖u2‖.

(b) Compute u3 �u4, ‖u3‖, and ‖u4‖.

(c) Verify the Cauchy–Schwarz inequality for u1 and u2.

(d) Verify the Cauchy–Schwarz inequality for u3 and u4.

(e) From your results, make a conjecture about when
the Cauchy–Schwarz inequality is an equality. (See
Exercise 88 of Section 6.1.)

2. Let W be the column space of an n × k matrix A.

(a) Prove that W ⊥ is the solution set of the equation
AT x = 0.

(b) Use the MATLAB function null, described in
Table D.2 of Appendix D, to obtain a basis for the
subspace W ⊥ of R5, where W is the span of the
columns of the matrix

A =




1 2 3
−1 3 2

2 8 10
3 −1 2
0 4 4




.

3. Let

S =







1
−1

2
3
5

−4




,




0
1

−3
2

−2
1




,




2
−2

1
4
0

−1







1
0

−1
5
3

−3







and W be the span of S.

(a) Use the MATLAB function orth to find an orthonor-
mal basis B for W .

(b) Use B to compute the orthogonal projection of each
of the following vectors on W :

(i)




1
−1

2
3
1

−2




(ii)




1
−2

2
−1
−3

2




(iii)




−1
−2
−1

0
1
1




(c) Let M be the matrix whose columns are the vectors
in B, and let P = MM T . For each vector v in (b),
compute Pv and compare the result with your answer
in (b).

(d) State and prove a general result that justifies your
observation in (c).

4. Let

A =




1.1 2.4 −5.0 7.1
2.3 5.1 −3.5 1.0
3.1 1.3 −2.0 8.0
7.2 −4.3 2.8 8.3
8.0 −3.8 1.5 7.0




.

In this exercise, we compute a QR factorization of A by
the method described in Section 6.2 and use a MATLAB
function to obtain an alternative QR factorization.

(a) Apply the MATLAB function gs, described in
Table D.5 of Appendix D, to A to produce a matrix
V whose columns form an orthogonal basis for ColA.
(V is obtained by applying the Gram–Schmidt pro-
cess to the columns of A.)

(b) Let V be the matrix obtained in (a). Compute D =
V T V . Observe that D is a diagonal matrix.20 What
are the values of the diagonal entries in relation to the
orthogonal vectors obtained in (a)?

20 Due to roundoff errors, the off-diagonal entries of D may have small nonzero values. For this reason, it is advisable to replace the off-diagonal
entries of D with zeros before using D in subsequent calculations. One easy way to do this by using MATLAB is to enter the command D =
diag(diag(D)).
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(c) For a matrix M whose entries are nonnegative, let Ms

denote the matrix whose entries are the square roots
of the corresponding entries of M .21 Use the matrices
V obtained in (a) and D obtained in (b) to compute
the matrix Q = V (Ds )−1. Verify that the columns of
Q form an orthonormal set.

(d) Use the the matrix Q in (c) to compute the matrix
R = QT A. Observe that R is an upper triangular
matrix and QR = A, yielding a QR factorization of A.

(e) Use the MATLAB function [Q R] = qr(A, 0) to
obtain another QR factorization of A and compare
your results with those of (d).

(f) Prove that if a QR factorization of a matrix A is
obtained by the method outlined in (a)–(d), then the
diagonal entries of the upper triangular matrix R are
positive.

5. Use the method in Exercise 4 to compute a QR factoriza-
tion of the matrix

A =




1 3 2 2
4 2 1 1

−1 1 5 −1
2 0 −3 0
1 5 −4 4
1 1 2 −2




in which the diagonal entries of R are positive.

6. Let

S =







1
−1

2
3
5

−4




,




0
1

−3
2

−2
1







2
−2

1
4
0

−1







1
0

−1
5
3

−3







and W be the span of S.

(a) Compute an orthonormal basis B1 for W .

(b) Use Exercise 61 in Section 6.3 to compute an
orthonormal basis B2 for W ⊥.

(c) Let P be the matrix whose columns consist of the
vectors in B1 followed by the vectors in B2. Compute
PPT and PT P . Explain your results.

7. Let

S =







1
3
0

−1
2
1




,




0
1
3

−2
1
1




,




−2
−1

1
4
2
1




,




1
1
2

−1
3
0




,




−1
2
1
3
4
2







,

W be the span of S, and PW be the orthogonal projection
matrix on W .

(a) Use the formula for PW given in Section 6.4 to com-
pute PW .

(b) Use Exercise 75 of Section 6.4 to compute PW . Com-
pare your answer with the answer obtained in (a).

(c) Compute PW v for each vector v in S.

(d) Compute a basis B for W ⊥, and then compute PW v
for each vector v in B. (You can use Exercise 61 in
Section 6.3 for this purpose.)

8. Consider the data set of ordered pairs (x , y), where x is
an integral multiple of 0.1 for 1 ≤ x ≤ 4, and y = log(x ).

(a) Plot the data.

(b) Use the method of least squares to find the equation
of the least-squares line for the data, and then plot the
line.

(c) Use the method of least squares to produce the best
quadratic fit for the data, and then plot the result.

If possible, use software to display all three plots, each in
a different color, so that the plots can be distinguished.

What follows is a description of how to create these plots
with MATLAB. However, you should not use the instruc-
tions that follow unless you can give the explanation
required in Exercise 9.

To plot the graph of the logarithm function, use the
command plot(x , y), where x is the column vector con-
sisting of the values 1, 1.1, . . . , 3.9, 4 and y is the column
vector consisting of the corresponding logarithms. The
result is a plot of the logarithm function in blue.

To plot the least-squares line by using these data, com-
pute a = inv(C ′ ∗ C ) ∗ C ′ ∗ y , where C is the matrix
given on page 403. Then type the command hold on so
that the plot in (a) remains, and type plot(x ,C ∗ a, ′r ′)
for the required plot, which is in red.

To plot the best quadratic fit for the data in green, imi-
tate the process for plotting the least-squares line using
the matrix C defined on page 405 and the command
plot(x ,C ∗ a, ′g ′).

9. With respect to the explanations for plotting the least-
squares line and best quadratic fit given at the end of
Exercise 8, explain the use of C ∗ a in the second argu-
ment of the plot function.

10. According to Theorem 6.12, the composition of a rotation
and a reflection of R2 is a reflection. Let T be the rotation
of R2 that rotates every vector by the angle 35◦, and let
U be the reflection of R2 about the line y = 2.3x .

(a) Find the equation of the line about which UT reflects
R2.

(b) Find the equation of the line about which TU reflects
R2.

11. Let

A =




−2 4 2 1 0
4 −2 0 1 2
2 0 0 −3 6
1 1 −3 9 −3
0 2 6 −3 0




.

(a) Find an orthogonal matrix P and a diagonal matrix D
such that A = PDPT .

21 In MATLAB, Ms can be obtained from M with the MATLAB command sqrt(M).
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(b) Find an orthonormal basis of eigenvectors of A for
R5. Indicate the corresponding eigenvalue for each
eigenvector in your basis.

(c) Use your answer to (b) to find a spectral decomposi-
tion of A.

(d) Use the spectral decomposition obtained in (c) to form
an approximation A2 of A based on the two eigenval-
ues of largest magnitudes (absolute values).

(e) Compute the Frobenius norms of the error matrix
E2 = A − A2 and the matrix A.

(f) Give the percentage of the information lost by using
A2 to approximate A.

12. Let

A =




1 1 2 1 3 2
1 −1 4 1 1 2
1 0 3 1 2 2
0 1 −1 0 1 0


 .

(a) Use the MATLAB command [U , S , V ] = svd(A)
to obtain a singular value decomposition USV T of A.

(b) Compare the columns of V obtained in (a) with the
columns of Null A.

(c) Use the MATLAB function orth to obtain a matrix
whose columns form an orthonormal basis for ColA.
Compare the result with the columns of U .

(d) Make a conjecture relating the columns of U and V
in a singular value decomposition of a matrix A to
orthonormal bases for NullA and ColA.

(e) Prove your conjecture.

13. Use Exercise 90 of Section 6.7 to compute PW , where W
is the subspace of R6 in Exercise 7. Compare your result
with your answers in Exercise 7.

14. Find the unique solution of least norm to the system of
linear equations

x1 − 2x2 + 2x3 + x4 + 2x5 = 3
x1 + 3x2 − x3 − x4 − x5 = −1

2x1 + x2 + x3 − 2x4 + 3x5 = 0.

15. This problem applies singular value decompositions to
extend spectral approximations of symmetric matrices to
arbitrary matrices. The problem uses the results and nota-
tion of Exercise 91 of Section 6.7 and assumes that the
reader is familiar with the subsection Spectral Approxi-
mations in Section 6.6.
Let

A =




56 −33 25 78 9
28 −76 134 32 −44
17 83 −55 65 25
36 −57 39 18 −1


 .

(a) Compute σi Qi for each i , and form the sum

σ1Q1 + σ2Q2 + · · · + σkQk ,

where k is the rank of A. Then compare this sum
with A.

(b) Compute A2 = σ1Q1 + σ2Q2 and E2 = A − A2, the
corresponding error matrix.

(c) Compute the Frobenius norms of E2 and A.

(d) The ratio of the norms in (c) is the portion of infor-
mation lost by using A2 as an approximation of A.
Express this ratio as a percentage.

16. For each of the following rotations, find the axis of rota-
tion and the angle of rotation to the nearest degree using
the orientation so that the angle is positive:

(a) P32◦R21◦

(b) R21◦P32◦

17. Let W be the solution set of the equation

x + 2y − z = 0,

let TW be the reflection of R3 about W as defined in
the exercises for Section 6.9, and let AW be the standard
matrix of TW .

(a) Compute AW .

(b) Prove that AW Q23◦AW is a rotation matrix.

(c) For the rotation matrix in (b), find the axis of rotation
and the angle of rotation to the nearest degree using
the orientation that makes the angle positive.

(d) State and prove a conjecture based on your observa-
tion in (c).

Exercise 18 uses the graphics features of MATLAB. An imported
function grfig is used to create simple 3-dimensional figures
that can be rotated using the rotation matrices described in
Section 6.9. This function uses an M-file in the folder of M-files
that can be downloaded.

18. Consider a 3-dimensional figure defined by specifying
vertices v1, v2, . . . , vn in R3, and line segments, called
edges, connecting vertices. Let

V = [v1, v2, · · · , vn
] =




x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn


 ,

and let E be the k × 2 matrix such that
[
i j

]
is a row

of E if and only if vertex vi is connected to vertex vj .
Then grfig(V , E ) produces a plot of the resulting figure
as viewed from the point (1, 0, 0) on the positive side of
the x -axis. Repeated use of this command adds figures to
the same window. To eliminate the earlier figures, simply
close the figure window before creating the next figure.

Let M be a rotation matrix. The columns of the prod-
uct MV are the rotations of the columns of V by M. Thus,
if we set C = MV and apply the command grfig(C ,E ),
the result is the rotation of the original figure according
to the rotation specified by M. You should be aware that
if M and N are rotation matrices, and the figure is rotated
first by M and then by N, the product C = NMV contains
the final locations of the rotated vertices.

(a) Load c6sMe18a.dat and c6sMe18b.dat, and
let V = c6sMe18a and E = c6sMe18b. When
you type the command grfig(C ,E ), a figure win-
dow should open containing Figure 6.29. Obtain the
other graphics in Figure 6.30 in a similar manner. For
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example, to obtain Figure 6.30(b), use the following
commands:

C = Qdeg(20) ∗ Rdeg(−30) ∗ V

grfig(C , E ).

(To avoid superimposing this on the previous
Figure 6.29, close the figure window before using the
function grfig.)

To obtain, for example, Figure 6.30(b), type
the command C = Qdeg(20) ∗ Rdeg(−30) ∗ V , and

then grfig(C ,E ). To avoid superimposing this on
the previous figure, close the figure window before
applying the function grfig.

Obtain the other graphics in Figure 6.30 in a similar
manner.

(b) Use grfig to obtain the reflection of the tower in
Figure 6.29 about the plane W in Exercise 17.

(c) Design your own figures, and rotate them in various
ways by using the appropriate rotation matrices.
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APPENDICES
APPENDIX A SETS
In the study of linear algebra, we often consider a collection of similar objects, for
example, a collection of vectors or a collection of matrices. To describe such collec-
tions, the terminology and notation of set theory is useful.

For our purposes, a set may be considered to be a collection of objects for which
it is possible to determine whether or not any given object is in the collection. The
objects in a set are called its elements. For example, the collection of positive integers
less than 7 is a set whose elements are the numbers 1, 2, 3, 4, 5, and 6. One way
to specify the elements of a set is to list them between set braces {}. Thus the set
described in the previous sentence is {1, 2, 3, 4, 5, 6}.

Two sets are called equal if they contain exactly the same elements. We denote
the equality of sets by using an ordinary equals sign. Thus, if X denotes the set of
integers whose absolute value is less than 3, then

X = {−2, −1, 0, 1, 2}.

Note that because the elements of a set are not ordered, we also have

X = {0, 1, −1, 2, −2}.

If the sets S and T are not equal, then we write S �= T . For example, X �= {0, 1, 2}.
To denote that an object x is an element of S , we write x ∈ S . On the other hand,

if an object y is not an element of S , then we write y /∈ S . So, for the set X in the
preceding paragraph, we have 0 ∈ X , but 3 /∈ X .

Example 1 Let P denote the set of presidents of the United States. Then

Abraham Lincoln ∈ P , but Benjamin Franklin �∈ P .

An element is either in a set or not in the set; it cannot be an element of a set
more than once. Thus, when the elements of a set are listed between set braces, the
set is not different if an element appears more than once. For example,

{1, 2} = {1, 1, 2, 2} = {1, 2, 2, 1, 1}.

Similarly, in Example 1, a listing of the elements of P would include Franklin Roo-
sevelt once, even though he was elected President of the United States four times.

If every element of S is also an element of a set T , then we call S a subset of T
and write S ⊆ T . For example, let E denote the set of persons who were elected to
be President of the United States. Then E ⊆ P . There are elements of P that are not
in E ; so E �= P . For example, Gerald Ford became President after the resignation of
Richard Nixon, but was never elected President. Therefore

Gerald Ford ∈ P , but Gerald Ford /∈ E .

From Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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Note that two sets S and T are equal if and only if they are subsets of each other.
This fact can be used to verify that they are equal; simply prove first that S is a subset
of T , and then prove that T is a subset of S .

When a set contains a large number of elements, it may not be convenient to list
all its elements. To describe such a set, we can identify an arbitrary element of the
set in terms of one or more properties that characterize it. For example, the set of
positive integers 1, 2, . . . , 19 can be written

{x : x is an integer and 0 < x < 20}.

This notation is read “the set of all elements x such that x is an integer and 0 < x < 20.”
Likewise, the subset E of P can be defined as

E = {x ∈ P : x was elected to be President of the United States}.

This notation is read “the set of all elements x in P such that x was elected to be
President of the United States.”

Example 2 List two elements of the set

S = {(x , y) : x and y are real numbers and xy > 0}.

Solution The set S consists of the ordered pairs of real numbers for which the
product of the coordinates is positive. Hence

(3, 7) ∈ S and (−5, −2) ∈ S

because 3, 7, −5, and −2 are real numbers and 3 �7 = 21 > 0 and (−5) � (−2) = 10 > 0.
On the other hand,

(3, −2) /∈ S and (−5, 0) /∈ S

because 3 � (−2) = −6 < 0 and (−5) �0 = 0 ≤ 0.

For the set P in Example 1, the set

W = {x ∈ P : x is a woman}

is a subset of P consisting of the women who have served as President of the United
States. At the time of publication of this book, however, no women have served as
President of the United States. Thus the set W contains no elements. Such a set is
called the empty set and denoted by ∅.

In the study of mathematics, it is common to form new sets from existing sets.
We now define two of the most useful ways to do this.

Definitions If S and T are sets, the union of S and T is the set consisting of all the
elements that are in at least one of the sets S and T , and the intersection of S and
T is the set consisting of all the elements that are in both of the sets S and T . The
union and intersection of S and T are denoted by S ∪ T and S ∩ T , respectively.
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For example, if

X = {1, 3, 5, 7, 9}, Y = {5, 6, 7, 8, 9}, and Z = {2, 4, 6, 8},

then
X ∪ Y = {1, 3, 5, 6, 7, 8, 9} and X ∩ Y = {5, 7, 9},

whereas
X ∪ Z = {1, 2, 3, 4, 5, 6, 7, 8, 9} and X ∩ Z = ∅.

If the intersection of two sets equals ∅, then the sets are called disjoint. Thus, in the
preceding example, the sets X and Z are disjoint.

The definitions of union and intersection can be extended to apply to an infinite
number of sets. In this case, the union of sets is the set consisting of all the elements
that are in at least one of the sets, and the intersection of sets is the set consisting of
all the elements that are in every set. For example, for each positive integer n , define

An = {0, 1, 2, . . . , n}

so that A5 = {0, 1, 2, 3, 4, 5}. The union of the sets A1, A2, A3, . . . is the set of all
nonnegative integers (because each nonnegative integer is in some set An ), and the
intersection of the sets A1, A2, A3, . . . is the set {0, 1} (because 0 and 1 are the only
integers that are elements of each set An ).

APPENDIX B FUNCTIONS
In college algebra and calculus courses, the concept of function occurs frequently. In
most cases, however, the input and output values of functions are real numbers. In the
context of linear algebra, the functions that arise often have inputs and outputs that
are vectors, and so a more general formulation of the concept of function is required.
In this appendix, we provide a definition of a function in which the inputs and outputs
are allowed to be elements from any sets whatsoever.

Definitions Let X and Y be sets. A function (or mapping or transformation) f
from X to Y , denoted by f : X → Y , is an assignment that associates to each element
x in X a unique element f (x ) in Y . The element f (x ) is called the image of x (under
f ), X is called the domain of f , and Y is called the codomain of f .

Intuitively, we regard the elements of the domain as the inputs and the elements of
the codomain as the possible outputs of the function. The functions that are considered
in this book are those for which the outputs are related to the inputs by means of an
algebraic equation. For example, the function h : R → R defined by h(x ) = x 2 assigns
to each real number x its square, so that the image of −2 is h(−2) = (−2)2 = 4 and
the image of 3 is h(3) = 32 = 9.

The range of a function f : X → Y is the set of all images f (x ) for x in X . Thus
the range of the function h in the preceding paragraph is

{y ∈ Y : y = h(x ) for some x in R} = {x 2 : x is a real number},

which is the set of all nonnegative real numbers. Notice that the range of a function
is always a subset of its codomain.
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Two functions f and g are said to be equal if they have the same domain and
the same codomain, and for each element x of the domain, f (x ) = g(x ); that is, their
images are equal. If the functions f and g are equal, we write f = g .

If f and g are functions for which the domain of g equals the codomain of f ,
then g and f can be combined by the operation of composition to produce a new
function g ◦ f . The function that results from the composition of functions is called
the composition of g and f . Specifically, if f : X → Y and g : Y → Z are functions,
then the composition g ◦ f : X → Z is defined by

(g ◦ f )(x ) = g(f (x )) for every x in X .

As Figure B.1 suggests, we obtain the composition function g ◦ f by first applying
f to an element x in X and then applying g to the image f (x ) (which is an element
of Y ) to produce the element g(f (x )) of Z .

f (x) g( f (x))

X
f g

x

Y Z

g     f

Figure B.1 The composition of functions

Example 1 Let R be the set of real numbers, and let f : R → R and g : R → R be the functions
defined by

f (x ) = 3x − 7 and g(x ) = x 2 + 1.

Because the codomain of f equals the domain of g , the composition g ◦ f is defined.
Its domain and codomain are both R, and for every real number x ,

(g ◦ f )(x ) = g(f (x )) = (3x − 7)2 + 1 = 9x 2 − 42x + 50.

In this case, the composition f ◦ g is also defined, and for every real number x ,

(f ◦ g)(x ) = 3(x2 + 1) − 7 = 3x2 − 4.

So g ◦ f �= f ◦ g .

Example 2 Let X denote the set of positive real numbers, Y denote the set of real numbers, and
Z = {x ∈ X : x > −2}. Define f : X → Y by f (x ) = ln x , and g : Y → Z by g(x ) =
x 2 − 2. Then the composition g ◦ f is defined, and

(g ◦ f )(x ) = (ln x )2 − 2.

In this case, the composition f ◦ g is not defined because the domain of f does
not equal the codomain of g . (For instance, the expression (f ◦ g)(1) = ln(−1) is
undefined.)
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As Example 1 illustrates, even if both the compositions g ◦ f and f ◦ g are defined,
it is rarely true that g ◦ f = f ◦ g . However, there is an important property possessed
by the composition of functions: The composition of functions is associative. That
is, if f : X → Y , g : Y → Z , and h : Z → W are functions, then (f ◦ g) ◦ h and
f ◦ (g ◦ h) are defined and (f ◦ g) ◦ h = f ◦ (g ◦ h). To see why, note that both
(f ◦ g) ◦ h and f ◦ (g ◦ h) have X as their domains and W as their codomains, and
for every element x in X , we have

((f ◦ g) ◦ h)(x ) = (f ◦ g)(h(x )) = f (g(h(x )))

and
(f ◦ (g ◦ h))(x ) = f ((g ◦ h)(x )) = f (g(h(x ))).

Therefore
((f ◦ g) ◦ h)(x ) = (f ◦ (g ◦ h))(x ).

Because (f ◦ g) ◦ h and f ◦ (g ◦ h) have the same domain and codomain and are
equal for every element in their common domain, (f ◦ g) ◦ h = f ◦ (g ◦ h).

A function f : X → Y is called invertible if there exists a function g : Y → X
such that

(g ◦ f )(x ) = x for every x in X and (f ◦ g)(y) = y for every y in Y . (1)

If such a function g exists, then the preceding conditions imply that

y = f (x ) if and only if g(y) = x .

It follows that g is unique. If f is invertible, the unique function g satisfying (1) is
called the inverse of f and is denoted by f −1.

Let f : X → Y be a function. Then f is called one-to-one if every pair of distinct
elements in X has distinct images in Y . The function f is called onto if its range is
all of Y .

It is not difficult to show that (1) implies that f is one-to-one and onto. If
x1 and x2 are distinct elements in X , then x1 = (g ◦ f )(x1) = g(f (x1)) and x2 =
(g ◦ f )(x2) = g(f (x2)), and hence f (x1) �= f (x2). It follows that f is one-to-one. Fur-
thermore, (f ◦ g)(y) = f (g(y)) = y for every y in Y , and hence f is onto. Thus, if f
is invertible, then it is one-to-one and onto.

Conversely, suppose that f is one-to-one and onto. For each element y in Y ,
let g(y) be the unique element x in X such that f (x ) = y . This defines a function
g : Y → X , and it follows that f and g satisfy (1). Therefore f is invertible with
inverse g .

Thus we have the following result:

THEOREM B.1

A function is invertible if and only if it is both one-to-one and onto.

Example 3 Let R denote the set of real numbers, and let f : R → R be defined by f (x ) = x 3 − 7.
Then f is invertible, and f −1(x ) = 3

√
x + 7 because

(f −1 ◦ f )(x ) = 3
√

(x3 − 7) + 7 = 3√
x 3 = x
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and

(f ◦ f −1)(x ) =
(

3
√

x + 7
)3 − 7 = (x + 7) − 7 = x

for all x in R.

APPENDIX C COMPLEX NUMBERS
Throughout this book, the word scalar is used almost interchangeably with the term
real number. However, many of the results that are established can be reformulated
to hold when scalars are allowed to be complex numbers.

Definition A complex number z is an expression of the form

z = a + bi ,

where a and b are real numbers. The real numbers a and b are called the real part
and the imaginary part of z , respectively. We denote the set of all complex numbers
by C.

Thus z = 3 + (−2)i is a complex number, which can be written 3 − 2i . The real
part of z is 3, and the imaginary part is −2. When the imaginary part of a complex
number is 0, we identify the number with its real part. Thus 4 + 0i is identified with
the real number 4. In this way R may be regarded as a subset of C.

Two complex numbers are called equal if their real parts are equal and their
imaginary parts are equal. Thus two complex numbers a + bi and c + di , where a ,
b, c, and d are real numbers, are equal if and only if a = c and b = d .

The arithmetic operations on R can be extended to C. The sum of two complex
numbers z = a + bi and w = c + di , where a , b, c, and d are real numbers, is
defined by

z + w = (a + bi ) + (c + di ) = (a + c) + (b + d )i ,

and their product is defined by

zw = (a + bi )(c + di ) = (ac − bd ) + (bc + ad )i .

Example 1 Compute the sum and product of z = 2 + 3i and w = 4 − 5i .

Solution By definition,

z + w = (2 + 3i ) + (4 − 5i ) = (2 + 4) + [3 + (−5)]i = 6 + (−2)i = 6 − 2i ,

and

zw = (2 + 3i )(4 − 5i ) = [2(4) − 3(−5)] + [3(4) + 2(−5)]i = 23 + 2i .

Note that the complex number i = 0 + 1i has the property that

i 2 = (0 + 1i )(0 + 1i ) = [0(0) − 1(1)] + [1(0) + 0(1)]i = −1 + 0i = −1.
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This provides an easy method for multiplying complex numbers: Multiply the numbers
as though they were algebraic expressions, and then replace i 2 by −1. Thus the
computation in Example 1 can be performed as follows:

zw = (2 + 3i )(4 − 5i )

= 8 + (12 − 10)i − 15i2

= 8 + 2i − 15(−1)

= 23 + 2i

The sum and product of complex numbers share many of the same properties
as sums and products of real numbers. In particular, the following theorem can be
proved:

THEOREM C.1

For all complex numbers x , y , and z , the following statements are true:

(a) x + y = y + x and xy = yx . (commutativity of addition and multiplication)

(b) x + (y + z ) = (x + y) + z and x (yz ) = (xy)z . (associativity of addition

and multiplication)

(c) 0 + x = x . (0 is an identity element for addition)

(d) 1 ·x = x . (1 is an identity element for multiplication)

(e) x + (−1)x = 0. (existence of additive inverses)

(f) If x �= 0, there is a u in C such that xu = 1. (existence of multiplicative

inverses)

(g) x (y + z ) = xy + xz . (distributive property of multiplication over addition)

The difference of complex numbers z and w is defined by z − w = z + (−1)w .
Thus

(2 + 3i ) − (4 − 5i ) = (2 + 3i ) + (−4 + 5i ) = −2 + 8i .

Because of Theorem C.1(f), it is also possible to define division for complex num-
bers. In order to develop an efficient method for computing the quotient of complex
numbers, we need the following concept:

Definition The (complex) conjugate of the complex number z = a + bi , where a
and b are real numbers, is the complex number a − bi . It is denoted by z .

Thus the conjugate of z = 4 − 3i is z = 4 − (−3)i = 4 + 3i . The following result
lists some useful properties of conjugates:

THEOREM C.2

For all complex numbers z and w , the following statements are true:

(a) z = z

(b) z + w = z + w

(c) zw = z �w

(d) z is a real number if and only if z = z .
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Complex numbers can be visualized as vectors in a plane with two axes, which are
called the real axis and the imaginary axis. (See Figure C.1.) In this interpretation,
the sum of complex numbers z = a + bi and w = c + di , where a , b, c, and d are
real numbers, corresponds to the sum of the vectors

[
a
b

]
and

[
c
d

]

in R2. The absolute value (or modulus) of z , denoted by |z |, corresponds to the
length of a vector in R2 and is defined as the nonnegative real number

|z | =
√

a2 + b2.

imaginary
axis

real axis

z � a � bi

|z|
b

a

Figure C.1 The complex number a + bi

The following properties of absolute value are easy to verify:

THEOREM C.3

For all complex numbers z and w , the following statements are true:

(a) |z | ≥ 0, and |z | = 0 if and only if z = 0.

(b) z z = |z |2
(c) |zw | = |z ||w |
(d)

∣∣∣ z

w

∣∣∣ = |z |
|w | if w �= 0

(e) |z + w | ≤ |z | + |w |

Note that Theorem C.3(b) tells us that the product of a complex number and
its conjugate is a real number. This fact provides an easy method for evaluating the
quotient of two complex numbers. Suppose that z = a + bi and w = c + di , where
a , b, c, and d are real numbers and w �= 0. We wish to represent z/w in the form
r + si , where r and s are real numbers. Since ww = |w |2 is real, we can calculate
such a representation by multiplying the numerator and denominator of z/w by the
conjugate of the denominator as follows:

z

w
= z

w

w

w
= zw

|w |2 = (a + bi ) ·(c − di )

c2 + d2
= ac + bd

c2 + d2
+ bc − ad

c2 + d2
i
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Example 2 Compute
9 + 8i

2 − i
.

Solution Multiplying the numerator and denominator of the given expression by
the conjugate of the denominator, we obtain

9 + 8i

2 − i
= 9 + 8i

2 − i
· 2 + i

2 + i
= 10 + 25i

5
= 2 + 5i .

When z is a complex number, it is possible to define the expression ez in a
manner that reduces to the familiar case when z is real. (Here, e is the base of the
natural logarithm.) If z = a + bi , where a and b are real numbers, we define

ez = ea+ib = ea (cos b + i sin b),

where b is in radians. This definition is called Euler’s formula.1 Notice that if b = 0
so that z is real, this expression reduces to ea . Moreover, with this definition, all of
the familiar properties of exponents are preserved. For example, the equations

ez ew = ez+w and
ez

ew
= ez−w

are true for all complex numbers z and w .
Recall that there are polynomials with real coefficients that have no real roots—for

example, t2 + 1. The principal reason for the importance of the complex number
system is the following result, due to Gauss,2 which shows that such an occurrence
is impossible in C:

The Fundamental Theorem of Algebra

Any polynomial of positive degree with complex coefficients has a (complex)
root.

An important consequence of this result is that every polynomial of positive
degree with complex coefficients can be factored into a product of linear factors. For
example, the polynomial t3 − 2t2 + t − 2 can be factored as

t3 − 2t2 + t − 2 = (t − 2)(t2 + 1) = (t − 2)(t + i )(t − i ).

This fact is useful in our discussion of eigenvalues in Chapter 5.
We conclude Appendix C by proving Theorem 6.15. This requires a preliminary

result.

1 Leonhard Euler (1707–1783), a Swiss mathematician, wrote more than 500 books and papers during his
lifetime. He is responsible for much of our present-day mathematical notation, including the symbols e
(for the base of the natural logarithm) and i ( for the complex number whose square is −1).

2 The German mathematician Karl Friedrich Gauss (1777–1885) is regarded by many as the greatest
mathematician of all time. Although the fundamental theorem of algebra had been previously stated by
others, Gauss gave the first successful proof in his doctoral thesis at the University of Helmstädt.
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THEOREM C.4

Every eigenvalue of a symmetric matrix having real entries is real.

PROOF Let A be a symmetric matrix having real entries and v be an eigenvector
of A with corresponding eigenvalue λ. As mentioned on page 309, if λ is an
eigenvalue of A, then so is λ, and an eigenvector of A corresponding to λ is the
vector

w =




v1

v2
...

vn


 ,

whose components are the complex conjugates of the components of v. Thus
Av = λv and Aw = λw. Note that

vT w = [v1 v2 · · · vn ]




v1

v2
...

vn




= v1v1 + v2v2 + · · · + vnvn

= |v1|2 + |v2|2 + · · · + |vn |2 > 0

because v �= 0. We compute the scalar vT Aw in two ways:

vT Aw = vT (Aw) = vT λw = λvT w

and

vT Aw = (vT A)w = (vT AT )w = (Av)T w = (λv)T w = λvT w

Since these values are equal and vT w �= 0, it follows that λ = λ; that is, λ is a
real number. �

THEOREM 6.15

An n × n matrix A is symmetric if and only if there is an orthonormal basis for
Rn consisting of eigenvectors of A. In this case, there exists an orthogonal matrix
P and a diagonal matrix D such that PT AP = D .

PROOF It was proved on page 425 that if there is an orthonormal basis for Rn

consisting of eigenvectors of A, then A is a symmetric matrix.
To prove the converse, assume that A is a symmetric n × n matrix. By

the fundamental theorem of algebra, A has an eigenvalue λ, and λ is real by
Theorem C.4. Let v1 be an eigenvector of A corresponding to λ such that v1 is
a unit vector. Extend {v1} to a basis for Rn , and then apply the Gram–Schmidt
process to make this basis into an orthonormal basis {v1, v2, . . . , vn} for Rn . Let
Q = [v1 v2 · · · vn ]. Then Q is an orthogonal matrix, and

(QT AQ)T = QT AT (QT )T = QT AQ
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because A is symmetric. So QT AQ is symmetric. Furthermore, because Qe1 = v1,
we have e1 = Q−1v1 = QT v1 by Theorem 6.9. Thus the first column of QTAQ is

(QT AQ)e1 = (QT A)(Qe1) = (QT A)v1 = QT (Av1) = QT (λv1) = λ(QTv1) = λe1.

So QTAQ has the form [
λ O
O B

]
,

where B is a symmetric (n − 1) × (n − 1) matrix. Repeating this argument n − 1
times, we see that there is an orthogonal (n − 1) × (n − 1) matrix R and a diagonal
(n − 1) × (n − 1) matrix E such that RT BR = E . Since the n × n matrix

S =
[

1 O
O R

]

is orthogonal, P = QS is orthogonal by Theorem 6.10. Moreover,

PT AP = (QS )T A(QS ) = (S T QT )A(QS ) = S T (QT AQ)S

=
[

1 O
O RT

] [
λ O
O B

] [
1 O
O R

]
=

[
λ O
O RT BR

]
=

[
λ O
O E

]
.

Thus there exists an orthogonal matrix P such that PT AP equals the diagonal
matrix

D =
[

λ O
O E

]
,

completing the proof. �

APPENDIX D MATLAB
At the end of many of the exercise sets, as well as at the end of each chapter,
you are asked to use a calculator with matrix capabilities or computer software such
as MATLAB, to solve numerical problems. This appendix provides a rudimentary
introduction to MATLAB that is adequate for solving these problems. In addition to
describing operations and functions that are native to MATLAB, we describe useful
functions that are not native, but are available as M-files from our website.

ENTERING AND STORING DATA
To solve numerical problems, we must enter, store, and manipulate numerical data
by means of various operations and functions. Each of these activities requires typing
a statement after a prompt. After entering a statement, the enter key (for an MS
Windows operating system) or the return or enter key (for a Macintosh operating
system) is pressed to execute the statement.

Suppose we want to enter and store the scalar 5 as the variable c. The statement
c = 5

returns the following:

c =
5
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Suppose we want to enter and store the matrix

[
1 2 3
4 5 6

]
as the variable A. The

statement

A = [1 2 3; 4 5 6]

returns the following:

A =
1 2 3
4 5 6

Notice that we enclose the entries in brackets, separating the entries in a row by spaces
and the rows by a semicolon. Extra spaces are ignored. Until we quit MATLAB or
type a new matrix A, this 2 × 3 matrix is used in all future computations involving
A. For example, the statement

c ∗ A

returns the following:

ans =
5 10 15

20 25 30

The syntax for matrix arithmetic is given in Table D.1.
In addition to entering data by these methods, you can load data from special data

files that are available from our website. This saves the work required to enter large
amounts of data from the exercises in this textbook. We explain how to use these files
at the end of this appendix.

DISPLAYING DATA
The way that numerical values are displayed in MATLAB depends on the format.
Enter, for example, the statement c = 7/9. If the result is displayed as 0.7778, MAT-
LAB is in the short format. Enter the statement format long to change the format,
and then enter c. MATLAB now displays the value to 14 places after the decimal.
(Of course, neither of these formats gives the exact value of c.)

In cases where it is known that numerical values of scalars and matrix entries are
rational numbers, it is often desirable to have their precise values represented as ratios
of integers. For example, we may want rational solutions of systems of linear equations
whose coefficients and constant terms are rational numbers. For this purpose, there is
a format that requires MATLAB to represent numbers as ratios of integers. Enter the
statement format rat to change to this rational format. Now enter c. The resulting
display is 7/9. To restore the original format, type format short.

Although the various MATLAB formats display a number to different accuracies,
the actual value stored by MATLAB is not affected by the chosen format.

VARIABLES
As we have seen, variables are used as names for scalars and matrices that are stored
for subsequent use. A variable is a string of characters chosen from upper- and lower-
case letters, digits, and the underscore symbol , with the requirement that the first
character of the string is a letter. Upper- and lower-case letters are considered distinct.
For example, a and A are distinct variables. The strings cD 2 and a33 are other
examples of variables. Avoid using i , j , pi , and ans as variables because these are
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reserved for special purposes. For example, pi initially stores the value of π . So
using pi as a variable may affect the values of certain functions that use π in their
computations. Similarly, both i and j store the complex number whose square is −1.
Thus, for example, any complex number a + bi can be entered in a statement as
a + b ∗ i .

A new variable is defined by setting it equal to a scalar, a matrix, or a valid
expression using previously defined variables and arithmetic data. For example, typing
the statement B = 3 ∗ A creates a new matrix equal to the scalar product of 3 and A
(see Table D.1), which is stored in the variable B . A variable that has been assigned
a value can be reassigned a new value by setting it equal to a new expression. Note
that this new expression may use the variable that is to be redefined. For example,
typing the statement A = 2 ∗ A stores in variable A the matrix equal to 2 times the
former value of A.

OPERATIONS AND FUNCTIONS ON DATA
Operations can be performed on variables that contain data. For example, if two m × n
matrices are stored in the variables A and B , typing the statement A + B displays the
sum of these matrices. Typing C = A + B , in addition to displaying the sum, stores
it in the variable C . Scalars can be summed in a similar manner.

Tables D.1, D.2, D.3, and D.4, which are not comprehensive, list various opera-
tions and functions that can be performed on scalars and matrices. These are useful
in solving numerical problems in this text that require the use of a calculator or a
computer.

Table D.1 Scalar Matrix
Operation Operation Description

a + b A + B addition

a − b A − B subtraction

a ∗ b A ∗ B multiplication

a/b division

sqrt(a) sqrt(A) square root of a or the matrix of
square roots of the entries of A

a∧n A∧n a or A raised to the power n

A′ the matrix whose (i, j)-entry is the
complex conjugate of aji . Thus, if A
has only real entries, A′ = AT .

a ∗ A the product of a scalar and a matrix

For example, if A and B are variables denoting square matrices of the same size,
and B is invertible, then typing A∗inv(B ) causes the matrix AB−1 to be displayed.
If C = A∗inv(B ) is typed, then the matrix AB−1 is stored as variable C .

In some exercises, you are asked to experiment with random matrices. These can
be generated by the MATLAB function rand(m , n) found in Table D.2.

In Table D.3, the variables P , D , Q , R, U , S , and V are created (if they have
not yet been defined) and given the values described in the table.
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Table D.2 Function Description

det(A) the determinant of A

inv(A) the inverse of A

norm(v) the norm of the 1 × n or n × 1 vector v

null(A) a matrix whose columns form an
orthonormal basis for Null A

null(A, ′r′) a matrix whose columns form a basis for
Null A computed by the reduced row
echelon form. Therefore its entries are
rational if the entries of A are rational.

orth(A) a matrix whose columns form an
orthonormal basis for Col A

pinv(A) the pseudoinverse of A

rand(m, n) an m × n matrix with entries randomly
selected between 0 and 1

rank(A) the rank of A

rref(A) the reduced row echelon form of A

trace(A) the trace of A

Table D.3 Function Description

[P D] = eig(A) D is a diagonal matrix whose diagonal
entries are the eigenvalues of A with
repetition according to multiplicity, and
the columns of P are eigenvectors of unit
length corresponding to the eigenvalues
in the diagonal of D.
If A is diagonalizable, then PDP−1 = A.
(See Section 5.3.)
If A is symmetric, then the columns of P
are orthonormal, and hence P is an
orthogonal matrix and PDPT = A. (See
Sections 6.5 and 6.6.) (Note that MATLAB
considers any root of the characteristic
polynomial of A, real or complex, as an
eigenvalue of A. See Section 5.2,
page 307.)

[Q R] = qr(A, 0) where A = QR is a QR factorization of A.
The columns of Q form an orthonormal
basis for Col A.

[U S V] =svd(A) where A = USVT is a singular value
decomposition of A
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Table D.4 Matrix Operation Description

eye(n) the n × n identity matrix

zeros(m, n) the m × n zero matrix

ones(m, n) the m × n matrix whose entries are all 1

A(i, j) the (i, j)-entry of A (This operation can be
used to return the (i, j)-entry of A or to
change it.)

A(:, j) the jth column of A

A(i, :) the ith row of A

A(:, [c1 c2 . . . ck]) the matrix whose columns are those
with the column numbers c1, c2, . . . , ck

of A, in the same order

A([r1 r2 . . . rk], :) the matrix whose rows are those with
the row numbers r1, r2, . . . , rk of A, in the
same order

[A B] the matrix consisting of the columns of A
followed by the columns of B, provided
that A and B have the same number of
rows

[A; B] the matrix consisting of the rows of A
followed by the rows of B, provided that
A and B have the same number of
columns

diag(A) an n × n diagonal matrix whose
diagonal entries are the entries of an
n × 1 or 1 × n matrix A

[m : n] the row matrix whose entries are the
consecutive integers from m to n

SYMBOLIC VARIABLES
In many cases where numerical values of scalars are not rational numbers, exact
values are available if expressed symbolically. For example, the exact values of the
solutions of the equation x 2 = 2 are irrational numbers, and hence cannot be displayed
precisely by decimal representations or ratios of integers. However, the exact solutions,
expressed symbolically, are

√
2 and −√

2, or in the notation of MATLAB, sqrt(2)
and −sqrt(2). For this purpose, MATLAB allows for the use of symbolic variables,
which store exact values (when possible) in symbolic form with the sym function.
Rather than abstractly describing how to use this function, we illustrate its use in the
following example:

Example 1
Let A =

[
0 1
2 0

]
. Store this matrix as the variable A, and enter the statement [P D] =

eig(A), as shown earlier, to obtain a diagonal matrix D whose diagonal entries are
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the eigenvalues of A, and a matrix P whose columns are corresponding eigenvectors.
Assuming that MATLAB is in the short format, P and D are displayed as

P =
[
0.5775 −0.5774
0.8165 0.8165

]
and D =

[
1.4142 0

0 −1.4142

]
.

From experience, we could guess that the diagonal entries of D are decimal approx-
imations of ±√

2. However, it is not obvious what the entries of P approximate. To
gain more insight, we obtain symbolic representations of the entries of P and D by
entering the following statements that use the sym function:

P1 = sym(P ) and D1 = sym(D)

The values of P1 and D1 are now displayed as

P1 =
[
sqrt(1/3), −sqrt(1/3)

sqrt(2/3), sqrt(2/3)

]
and D1 =

[
sqrt(2), 0

0, −sqrt(2)

]
.

Although the columns of P1 are eigenvectors of A and the entries of P1 are given
precise symbolic values, there are other eigenvectors with simpler entries that can
replace these. For example, multiplying P1 by

√
3 would produce another matrix

whose columns are eigenvectors of A, but whose entries are less complicated:

√
3P1 =

[
1 −1

√
2

√
2

]

Now try the following experiment: Enter sqrt(3) ∗ P1 and view the result. Then
enter sym(sqrt(3) ∗ P ) and view the result. Compare the two displays. Both are
symbolic representations of

√
3P1, but the first display, which uses only symbolic

manipulations, is rather ugly. In contrast, the second display uses numerical computa-
tions followed by conversions to symbolic form. The moral here is that the algorithms
that MATLAB uses do not always produce an answer in simplest form. However, once
the answer is displayed in symbolic form, it is usually clear how to simplify it.

The next examples use operations and functions in Tables D.1, D.2, and D.4 for
computations. The first example uses material found in Section 1.2.

Example 2
Let A =

[
.85 .03
.15 .97

]
and p =

[
500
700

]
be the stochastic matrix and population vector

given in Example 3 of Section 1.2. To use MATLAB to compute the population dis-
tributions for several years, first store the matrix and population vector as variables A
and p, respectively. Now enter

p = A ∗ p

to display next year’s population distribution, storing the result as variable p. Enter
p = A ∗ p again to produce the population distribution for the following year, also
storing this result in the variable p. Each time the statement p = A ∗ p is entered, the
vector stored in p is multiplied by A, and the result is displayed and stored in the
variable p. Continuing this process, we obtain a list of population distributions for
consecutive years starting with the initial population.

To find the population distribution n years after the initial population, the state-
ment p = A ∗ p can be entered a total of n times. In Section 2.1, the operation of
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matrix multiplication is defined. This operation can also be used to compute the pop-
ulation distribution for a future year in one step, namely, by entering the statement
(A∧n) ∗ p. (See Example 6 of Section 2.1.)

The following example requires the content of Section 2.4:

Example 3 Suppose that A is the 3 × 4 matrix

A =



1 1 3 4
4 5 6 8
2 3 0 0


 .

Use MATLAB to obtain a 3 × 3 invertible matrix P such that PA is the reduced row
echelon form of A.

Solution We first form the 3 × 7 matrix [A I3].
The statement

B = [A eye(3)]

returns the following:

B =
1 1 3 4 1 0 0
4 5 6 8 0 1 0
2 3 0 0 0 0 1

Now we seek the reduced row echelon C of B . The statement

C = rref(B )

returns the following:

C =
1.0000 0 9.0000 12.0000 0 1.5000 −2.5000

0 1.0000 −6.0000 −8.0000 0 −1.0000 2.0000
0 0 0 0 1.0000 −0.5000 0.5000

Depending on the chosen format (as described on page 562), the matrix C may be
displayed differently than shown here. Notice that the first 4 columns of C constitute
the reduced row echelon form of A, and the last 3 columns of C constitute the required
matrix P . Can you justify these claims? Finally, we want to create the matrix P . The
statement

P = C (:, [5 6 7])

returns the following:

P =
0 1.5000 −2.5000
0 −1.0000 2.0000

1.0000 −0.5000 0.5000

IMPORTED FUNCTIONS
Table D.5 contains a list of functions that are not native to MATLAB. These functions
are computed by using small programs stored as text files, called M-files, that can be
downloaded from the website given at the end of the Preface. The M-files have the

567



568 Appendices

Table D.5
Imported
functions

Function Description

grfig(V , E) produces a graphic plot with vertices specified by the
columns of V and edges specified by the rows of E. For a
complete description, see Exercise 18 of the MATLAB
exercises at the end of Chapter 6.

rotdeg(t) the 2 × 2 rotation matrix of t degrees (see Aθ defined in
Section 1.2)

Pdeg(t) the 3 × 3 rotation matrix of t degrees about the x-axis (see Pθ

defined in Section 6.9)

Qdeg(t) the 3 × 3 rotation matrix of t degrees about the y-axis (see Qθ

defined in Section 6.9)

Rdeg(t) the 3 × 3 rotation matrix of t degrees about the z-axis (see Rθ

defined in Section 6.9)

pvtcol(A) the matrix whose columns are the pivot columns of A listed in
the same order

gs(A) a matrix whose columns form an orthogonal basis for the
column space of A (obtained by applying the Gram–Schmidt
process to the columns of A), provided that the columns of A
are linearly independent

[L U] = elu(A) the matrices L and U in the LU decomposition of A (see
Section 2.6)

[L U P] = elu2(A) the matrices L, U, and P, where P is a permutation matrix such
that PA has an LU decomposition with matrices L and U (see
Section 2.6)

cpoly(A) the 1 × (n + 1) matrix whose entries are the coefficients of
the characteristic polynomial of the n × n matrix A, starting
with the coefficient of the nth degree term

same names as their corresponding functions and end with .m. For instance, the file
cpoly.m contains the function cpoly. On your computer, move the downloaded
M-files to the folder containing the MATLAB application. In Table D.5, A is a matrix,
b is a column vector, c and t are scalars, and i and j are positive integers. These
letters may be any variables, or they may be actual values.

You can then use these functions as you would any other MATLAB function, such
as a function from Table D.1, D.2, D.3, or D.4. For example, entering the statement

C = pvtcol(A)

creates a matrix whose columns are the pivot columns of A and stores it in the
variable C .

There are functions native to MATLAB, namely, lu and poly, that resemble the
functions elu and cpoly in Table D.5. Although the function lu factors a square
matrix into a product of a lower and upper triangular matrix when possible, the
resulting lower triangular matrix does not necessarily have 1s as its diagonal entries
and multipliers as its subdiagonal entries. The function poly computes det(tIn − A)
for the characteristic polynomial of a matrix A, rather than det(A − tIn ) as defined in
Chapter 5.
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DATA FILES
A collection of data files is available for downloading. These files contain the data
for the exercises that require the use of MATLAB. To obtain these files, go to the
website given at the end of the Preface and choose the link that reads “Download
MATLAB datafiles.” The instructions enable you to download these files to your
computer.

A data file that is used in Chapter P, Section Q, Exercise R is named

cPsQeRa.dat

For example, the matrix used in Exercise 97 of Chapter 1, Section 4 is contained
in the file named c1s4e97a.dat. (For the MATLAB exercises in the Chapter Review,
use M for the section number. So c3sMe1a.dat is the name of the file containing
the matrix used in Exercise 1 of the Chapter 3 MATLAB Exercises.) If several data
files are needed for Chapter P, Section Q, Exercise R, they are denoted cPsQeRa.dat,
cPsQeRb.dat, cPsQeRc.dat, and so forth. For example, the data needed for Exercise 79
of Chapter 1, Section 6 is contained in two files, which are named c1s6e79a.dat and
c1s6e79b.dat.

To obtain the data in the file named filename.dat, type the command

load filename.dat

The data is then stored as a variable named filename (without the suffix .dat).
For example, the data for Exercise 91 in Chapter 1, Section 2, is contained in the

following files:

c1s2e91a.dat, c1s2e91b.dat, c1s2e91c.dat, and c1s3e91d.dat

Type the four commands

load c1s2e91a.dat
load c1s2e91b.dat
load c1s2e91c.dat
load c1s2e91d.dat

Now the variables c1s2e91a, c1s2e91b, c1s2e91c, and c1s2e91d contain the data used
in this exercise. By displaying these four variables, you will see that they contain the
matrices A and B and the vectors u and v, respectively. So the commands

A = c1s2e91a
B = c1s2e91b
u = c1s2e91c
v = c1s2e91d

store the data as the variables A, B , u , and v . Thus, to compute the matrix-vector
product Au, you can now enter the command A*u.

ADDITIONAL EXAMPLES
In conclusion, we give several examples illustrating the use of MATLAB throughout
the text.
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The following example requires familiarity with the material in Section 1.7:

Example 4 Determine whether the given set

S =







1
2

−1
1
0
1




,




2
1
0
1
1

−2




,




3
−1

1
2
1
0




,




3
2

−1
3
0
4







is linearly dependent or linearly independent.

Solution Let A be the matrix whose columns are the vectors in S in the same order.
Compute the reduced row echelon form of A by entering rref(A), which returns the
matrix




1 0 0 2
0 1 0 −1
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0




.

Because one of the columns of this matrix is not a standard vector, the columns of A
are linearly dependent by Theorem 1.8. Therefore S is linearly dependent.

The following example requires familiarity with the material in Section 2.1:

Example 5 There are three supermarkets in town, numbered 1, 2, and 3. If a person shops at
market j this week, the probability that the person will shop at market i during the
next week is aij , the (i , j )-entry of the matrix

A =



.1 .2 .4

.3 .5 .2

.6 .3 .4


 .

Suppose that the numbers of people shopping this week at markets 1, 2, and 3 are 350,
200, and 150, respectively. Determine the approximate numbers of people shopping
at the various markets next week and 10 weeks from now.

Solution Let

p =



350
200
150


 .

To answer the two questions, we must compute Ap for next week’s distribution, and
A10p for the distribution of shoppers 10 weeks from now. After storing the values
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for A and p in the variables A and p, enter the expression A ∗ p to return the 3 × 1
vector




135
235
330


 ,

which tells us that next week the numbers of people who will be shopping at stores 1,
2, and 3, are 135, 235, and 330, respectively. These numbers are based on probabilities,
and hence may not be exact. Now enter the expression A∧10 ∗ p to obtain the 3 × 1
vector 


180.6454
225.8064
293.5481


 ,

which tells us that in ten weeks, the approximate numbers of people who will be
shopping at stores 1, 2, and 3 are 181, 226, and 294, respectively.

The following example requires familiarity with the material in Section 2.3:

Example 6 Determine the pivot columns of the matrix

A =




1 1 1 1 3 2 1
2 −1 5 2 3 1 2

−1 2 −4 0 1 0 −2
3 4 2 −1 6 1 4
2 1 3 3 6 −1 5




,

and write each nonpivot column of A as a linear combination of the pivot columns
of A.

Solution After entering A, compute the reduced row echelon form of A by typing
R = rref(A), which returns the matrix

R =




1 0 2 0 1 0 0
0 1 −1 0 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




,

stored in R. Since r1, r2, r4, r6, and r7 are distinct standard vectors, they are the pivot
columns of R, and hence a1, a2, a4, a6, and a7 are the pivot columns of A. Clearly, we
have r3 = 2r1 − r2 and r5 = r1 + r2 + r4. Therefore, by the column correspondence
property,

a3 = 2a1 − a2 and a5 = a1 + a2 + a4.

Returning to Example 4, we can apply the column correspondence property to
the reduced row echelon form of the matrix A in that example to conclude that
v4 = 2v1 + (−1)v2 + v3, where v1, v2, v3, and v4 are the vectors in S.
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The following example requires familiarity with the material in Section 2.8:

Example 7 Let T : R5 → R5 be the linear transformation defined by

T (x) = T







x1

x2

x3

x4

x5







=




x1 + 2x2 + x3 + 3x5

2x1 + x2 − 5x3 + x4 + 2x5

3x1 − 2x2 + 2x3 − 5x4 + 6x5

x1 + x3 − 2x4 + x5

x2 + 3x3 − 2x4 − x5




.

Show that T is invertible and determine the rule for T−1(x).

Solution First, observe that the standard matrix of T is

A =




1 2 1 0 3

2 1 −5 1 2

3 −2 2 −5 6

1 0 1 −2 1

0 1 3 −2 −1




.

After storing A, enter the statement rank(A) to return the value 5, which indicates
that A, and hence T , is invertible. Enter the statement inv(A) to compute A−1, which
is the standard matrix of T−1. The returned matrix is




2.5000 −4.6000 −6.4000 26.9000 −13.2000

−0.5000 1.4000 1.6000 −7.1000 3.8000

1.0000 −1.8000 −2.2000 9.2000 −4.6000

1.5000 −2.6000 −3.4000 13.9000 −7.2000

−0.5000 1.2000 1.8000 −7.3000 3.4000




.

Using this matrix, we can write the rule for T−1(x) (dropping the unnecessary zeros
in the decimal expansions) as

T−1(x) = A−1




x1

x2

x3

x4

x5




=




2.5x1 − 4.6x2 − 6.4x3 + 26.9x4 − 13.2x5

−0.5x1 + 1.4x2 + 1.6x3 − 7.1x4 + 3.8x5

1.0x1 − 1.8x2 − 2.2x3 + 9.2x4 − 4.6x5

1.5x1 − 2.6x2 − 3.4x3 + 13.9x4 − 7.2x5

−0.5x1 + 1.2x2 + 1.8x3 − 7.3x4 + 3.4x5




.

The following example requires familiarity with the material in Section 3.1.

Example 8 Compute the determinant of the matrix




1.1 3.1 −4.2 3.7
5.1 2.5 −3.3 −2.4
4.0 −0.6 0.9 3.1
1.2 2.4 −2.5 3.1


 .
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Solution After storing the matrix as A, enter the statement det(A) to compute the
determinant of A. The returned value (displayed in format short) is 89.4424.

The following example requires familiarity with the material in Section 4.2:

Example 9 Find a basis for the column space and the null space of the matrix

A =




1 −1 1 3 3 4
2 1 5 −1 2 1
1 1 3 1 3 0
3 −2 4 2 3 1
0 1 1 −3 −2 2




.

Solution After storing A, use the imported function pvtcol, described in
Table D.5, to produce a matrix whose columns are the pivot columns of A. Entering
the statement pvtcol(A) returns the following matrix:




1 −1 3 4
2 1 −1 1
1 1 1 0
3 −2 2 1
0 1 −3 2




The columns of this matrix form a basis for the column space of A by Theorem 2.4.
We can use the function null, described in Table D.2, to obtain a matrix whose
columns form an orthonormal basis for the the null space of A. Entering the statement
null(A) returns the following matrix:




−0.1515 −0.8023
−0.3865 −0.3425
−0.2350 0.4598
−0.6215 0.1173

0.6215 −0.1173
−0.0000 0.0000




As an alternative, we can use the function null(A, ′r′), which also returns a matrix
whose columns form a basis for the null space of A. Although these columns are
usually not orthogonal, they tend to have simpler entries. Entering the statement
null(A, ′r′) returns the following matrix:




−2 −1
−1 −1

1 0
0 −1
0 1
0 0




In Chapter 5, you are often required to find a basis for an eigenspace of a matrix A.
Although we have seen that columns of P returned by the statement [P D] = eig(A)
can be used to produce such a basis, the components of the basis vectors found in
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this way are usually irrational numbers, and hence their decimal representations are
approximate. In order to obtain a “friendlier” basis for the eigenspace of a matrix
A with rational entries corresponding to a rational eigenvalue λ, use the function
null(A, ′r′) applied to the matrix (A − λI ). So, if A is an n × n matrix and the
eigenvalue λ is stored in the variable c, then the statement

null (A − c ∗ eye(n), ′r′)

returns a matrix whose columns form such a basis.

Example 10 Given that the matrix

A =




3 −5 10 3 −7
5 −12 19 6 −15
3 −7 10 3 −7

−2 6 −10 −2 8
−1 4 −7 −2 7




has the eigenvalue λ = 2, find a basis for the corresponding eigenspace. As explained
earlier, the MATLAB statement null(A − 2 ∗ eye(5), ′r′) yields the basis whose
columns are given by the matrix 



−3 2
−2 1
−1 1

1 0
0 1




.

The following example requires familiarity with the material in Section 5.3:

Example 11 Suppose that A is a 4 × 4 matrix and

B =







1
−1

2
4


 ,




2
1

−1
1


 ,




−2
3
1
1


 ,




0
2

−3
1







is a basis for R4 consisting of eigenvectors of A with corresponding eigenvalues (listed
in the order of the vectors in B) of 2, −1, 1, 3. Find A.

Solution Let P denote the 4 × 4 matrix whose columns are the vectors in B, in
the given order, and let D be the diagonal matrix whose diagonal entries are the
eigenvalues, listed in the same order. Then A = PDP−1.

Store the matrix P , and enter the statement D = diag(
[
2 −1 1 3

]
) to obtain

the 4 × 4 diagonal matrix D whose diagonal entries are the eigenvalues of A. Now
enter A = P ∗ D∗inv(P ) to compute A. The returned matrix is




−2.1250 −1.8750 −2.3750 1.7500
−2.2750 −0.1250 −2.4250 1.2500

2.7500 1.2500 4.2500 −1.5000
−2.1000 −1.5000 −1.7000 3.0000


 .
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The following example requires familiarity with the material in Section 6.3:

Example 12 Let

B =







1
2
1

−1
3




,




1
0
1
1

−2




,




2
1

−3
1
1







and v =




1
−3

4
2
1




.

Find the vector in W = SpanB that is closest to v, and then find the distance from v
to W .

Solution The vector in W that is closest to v is the orthogonal projection of v onto
W . Let C be the 5 × 3 matrix whose columns are the vectors in B. After storing
C and v, enter the statement rank(C ). The returned value is 3, indicating that B
is a basis for W . Therefore we can apply Theorem 6.8 of Section 6.3 to obtain the
orthogonal projection w = C (C T C )−1C T v of v onto W . Enter the statement

w = C ∗ inv(C ′ ∗ C ) ∗ C ′ ∗ v

to compute w. The returned vector (represented to 4 places after the decimal) is

w =




−0.0189
0.1321
2.9434

−0.1509
−1.1132




.

The distance from v to W equals the distance between v and w, that is, ‖v − w‖. To
compute this distance, enter the statement norm(v − w ). The returned value (repre-
sented to 4 places after the decimal) is 4.5887.

APPENDIX E THE UNIQUENESS OF THE REDUCED ROW
ECHELON FORM
In this appendix, we delve more deeply into the column correspondence property
and its consequences. In addition to a formal proof of this property, we give proofs
of Theorem 2.4 and the uniqueness part of Theorem 1.4, which asserts that a given
matrix can have only one reduced row echelon form. This last result is important
because certain properties of a matrix A, such as rank, nullity, and pivot column, are
defined in terms of the reduced row echelon form of A.

THEOREM E.1

(Column Correspondence Property) Let A be a matrix with reduced row ech-
elon form R. Then the following statements are true:

(a) If column j of A is a linear combination of other columns of A, then column
j of R is a linear combination of the corresponding columns of R with the
same coefficients.
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(b) If column j of R is a linear combination of other columns of R, then column
j of A is a linear combination of the corresponding columns of A with the
same coefficients.

PROOF (a) By Theorem 2.3, there is an invertible matrix P such that PA = R.
Hence Pai = ri for all i . Suppose that column j of A is a linear combination of
other columns of A. Then there are scalars c1, c2, . . . , ck such that

aj = c1a1 + c2a2 + · · · + ckak .

Therefore

rj = Paj = P (c1a1 + c2a2 + · · · + ckak )

= c1Pa1 + c2Pa2 + · · · + ckPak

= c1r1 + c2r2 + · · · + ckrk .

The proof of (b) is similar, applying the equations ri = P−1ai . �

Because of the column correspondence property, conditions involving linear
dependence, linear independence, and linear combinations of columns of the reduced
row echelon form R of a matrix A can be directly translated into the correspond-
ing conditions for the columns of A. Of particular importance are the relationships
between the pivot columns and non-pivot columns of a matrix.

To help us understand these relationships, consider the matrix

R = [r1 r2 · · · r7] =




0 1 2 0 3 0 2
0 0 0 1 4 0 5
0 0 0 0 0 1 3
0 0 0 0 0 0 0


 ,

which is in reduced row echelon form. Notice that r2, r4, and r6 are the pivot columns
of R. Notice also that these columns are the first three standard vectors of R4, and
hence they are linearly independent. Also, the first pivot column r2 is the first nonzero
column of R, and no pivot column is a linear combination of the columns to its left.
Except for the first column, which is the zero vector, any column of R that is not a
pivot column is a linear combination of the preceding pivot columns. For example, the
fifth column, which is not a pivot column, can be written as a linear combination of
the preceding pivot columns, of which there are two. That is, r5 = 3r2 + 4r4. Notice
that the coefficients in this linear combination, 3 and 4, are the first two entries of r5.
Furthermore, the rest of the entries of r5 are zeros. As a consequence, every column
of R is a linear combination of the pivot columns of R.

These properties are obviously true for any matrix in reduced row echelon form.
We summarize them here.

Properties of a Matrix in Reduced Row Echelon Form

Let R be an m × n matrix in reduced row echelon form. Then the following
statements are true:

(a) A column of R is a pivot column if and only if it is nonzero and not a linear
combination of the preceding columns of R.
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(b) The j th pivot column of R is ej , the j th standard vector of Rm , and hence the
pivot columns of R are linearly independent.

(c) Suppose that rj is not a pivot column of R, and there are k pivot columns
of R preceding it. Then rj is a linear combination of the k preceding pivot
columns, and the coefficients of the linear combination are the first k entries
of rj . Furthermore, the other entries of rj are zeros.

The following result lists two of these properties, translated by means of the
column correspondence property, into the corresponding property for any matrix A:

THEOREM 2.4

The following statements are true for any matrix A:

(a) The pivot columns of A are linearly independent.

(b) Each nonpivot column of A is a linear combination of the previous pivot
columns of A, where the coefficients of the linear combination are the entries
of the corresponding column of the reduced row echelon form of A.

The following result completes the proof of Theorem 1.4:

THEOREM 1.4

(Uniqueness of the Reduced Row Echelon Form) The reduced row echelon
form of a matrix is unique.

PROOF In what follows, we refer to the previous box.
Let A be a matrix, and let R be a reduced row echelon form of A. By

property (a), a column of R is a pivot column of R if and only if it is nonzero
and it is not a linear combination of the preceding pivot columns of R. These
two conditions can be combined with the column correspondence property to
produce a test for the pivot columns of A exclusively in terms of the columns
of A: A column of A is a pivot column if and only if it is nonzero and it is not a
linear combination of the previous columns of A. Thus the positions of the pivot
columns of R are uniquely determined by the columns of A. Furthermore, since
the j th pivot column of R is the j th standard vector of Rm , the pivot columns of
R are completely determined by the columns of A.

We show that the other columns of R are also determined by the columns of
A. Suppose that rj is not a pivot column of R. If rj = 0, then aj = 0 by the column
correspondence property. (See Exercise 85 of Section 2.3.) Now suppose that rj �=
0. Then by property (c), rj is a linear combination of the preceding pivot columns
of R, which are linearly independent. Furthermore, the coefficients in this linear
combination are the beginning entries of rj , one for each of the preceding pivot
columns, while the other entries of rj are zeros. By the column correspondence
property, aj is a linear combination of the preceding pivot columns of A, which
are linearly independent, with the same corresponding coefficients. Because of the
linear independence of the pivot columns of A, these coefficients are unique, and
completely determined by the columns of A. Thus rj is completely determined
by A. We conclude that R is unique. �
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ANSWERS TO SELECTED EXERCISES

Chapter 1

Section 1.1

1.

[
8 −4 20

12 16 4

]
3.

[
6 −4 24
8 10 −4

]

5.




2 4
0 6

−4 8


 7.

[
3 −1 3
5 7 5

]

9.




2 3
−1 4

5 1


 11.




−1 −2
0 −3
2 −4




13.

[−3 1 −2 −4
−1 −5 6 2

]
15.

[−6 2 −4 −8
−2 −10 12 4

]

17. not possible 19.




7 1
−3 0

3 −3
4 −4




21. not possible 23.




−7 −1
3 0

−3 3
−4 4




25. −2 27.




3
0

2π




29.

[
2

2e

]
31. [2 − 3 0.4] 33.




150
150

√
3

10


 mph

35. (a)

[
150

√
2 + 50

150
√

2

]
mph

(b) 50
√

37 + 6
√

2 ≈ 337.21 mph

37. T 38. T 39. T 40. F 41. F

42. T 43. F 44. F 45. T 46. F

47. T 48. T 49. T 50. F 51. T

52. T 53. T 54. T 55. T 56. T

71.

[
2 5
5 8

]
and




2 5 6
5 7 8
6 8 4




77. No. Consider




2 5 6
5 7 8
6 8 4


 and

[
2 6
5 8

]
.

79. They must equal 0.

Section 1.2

1.

[
12
14

]
3.




9
0

10


 5.

[
a
b

]
7.

[
22
5

]

9.




sa
tb
uc


 11.




2
−6
10


 13.

[−1
6

]
15.

[
21
13

]

17.
1

2

[√
2 −√

2√
2

√
2

]
,

1

2

[−√
2√
2

]

19.
1

2

[
1 −√

3√
3 1

]
,

1

2

[
3 − √

3
3
√

3 + 1

]

21.
1

2

[−√
3 1

−1 −√
3

]
,

1

2

[ √
3 − 3

3
√

3 + 1

]

23.

[
3
2

]
25.

1

2

[
3 − √

3
3
√

3 + 1

]

27.
1

2

[
3

−3
√

3

]
29.

[
1
1

]
= (1)

[
1
0

]
+ (1)

[
0
1

]

31. not possible 33. not possible

35.

[−1
11

]
= 3

[
1
3

]
− 2

[
2

−1

]

37.

[
3
8

]
= 7

[
1
2

]
− 2

[
2
3

]
+ 0

[−2
−5

]

39. not possible

41.




3
−2

1


 = 0




2
−1

2


 + 1




3
−2

1


 + 0




−4
1
3




43.




−4
−5
−6


 = −4




1
0
0


 − 5




0
1
0


 − 6




0
0
1




45. T 46. F 47. T 48. T 49. T

50. F 51. F 52. F 53. T 54. F

55. F 56. T 57. F 58. T 59. F

60. T 61. F 62. F 63. T 64. T

69. (a) 349,000 in the city and 351,000 in the suburbs

(b) 307,180 in the city and 392,820 in the suburbs

73. B =
[
1 0
0 −1

]

91. (a)




24.6
45.0
26.0

−41.4


 (b)




134.1
44.4
7.6

104.8
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(c)




128.4
80.6
63.5
25.8


 (d)




653.09
399.77
528.23

−394.52




Section 1.3

1. (a)

[
0 −1 2
1 3 0

]
(b)

[
0 −1 2 0
1 3 0 −1

]

3. (a)




1 2
−1 3
−3 4


 (b)




1 2 3
−1 3 2
−3 4 1




5. (a)




0 2 −3
−1 1 2

2 0 1


 (b)




0 2 −3 4
−1 1 2 −6

2 0 1 0




7.




0 2 −4 4 2
−2 6 3 −1 1

1 −1 0 2 −3




9.




1 −1 0 2 −3
0 4 3 3 −5
0 2 −4 4 2




11.




1 −1 0 2 −3
−2 6 3 −1 1

0 1 −2 2 1




13.




1 −1 0 2 −3
−2 6 3 −1 1
−8 26 8 0 6




15.




−2 4 0
−1 1 −1

2 −4 6
−3 2 1


 17.




1 −2 0
−1 1 −1

0 0 6
−3 2 1




19.




1 −2 0
2 −4 6

−1 1 −1
−3 2 1


 21.




1 −2 0
−1 1 −1

2 −4 6
−1 0 3




23. yes 25. no 27. no 29. yes
31. yes 33. yes 35. no 37. no

39.
x1 = 2 + x2

x2 free
41.

x1 = 6 + 2x2

x2 free

43. not consistent 45.
x1 = 4 + 2x2

x2 free
x3 = 3

47.

x1 = 3x4

x2 = 4x4

x3 = −5x4

x4 free

,




x1

x2

x3

x4


 = x4




3
4

−5
1




49.

x1 free
x2 = −3
x3 = −4
x4 = 5

,




x1

x2

x3

x4


 = x1




1
0
0
0


 +




0
−3
−4

5




51.

x1 = 6 − 3x2 + 2x4

x2 free
x3 = 7 − 4x4

x4 free

,




x1

x2

x3

x4


 =




6
0
7
0


 + x2




−3
1
0
0




+ x4




2
0

−4
1




53. not consistent 55. n − k

57. F 58. F 59. T 60. F 61. T

62. T 63. F 64. T 65. T 66. F

67. T 68. T 69. F 70. T 71. T

72. T 73. F 74. T 75. F 76. T

81. 7

Section 1.4

1.
x1 = −2 − 3x2

x2 free
3.

x1 = 4
x2 = 5

5. not consistent 7.
x1 = −1 + 2x2

x2 free
x3 = 2

9.

x1 = 1 + 2x3

x2 = −2 − x3

x3 free
x4 = −3

11.

x1 = −4 − 3x2 + x4

x2 free
x3 = 3 − 2x4

x4 free

13. not consistent 15.

x1 = −2 + x5

x2 free
x3 = 3 − 3x5

x4 = −1 − 2x5

x5 free

17. −12 19. r �= 0 21. no r

23. r = 3

25. no r

27. (a) r = 2, s �= 15 (b) r �= 2 (c) r = 2,
s = 15

29. (a) r = −8, s �= −2 (b) r �= −8 (c) r = −8,
s = −2

31. (a) r = 5

2
, s �= −6 (b) r �= 5

2
(c) r = 5

2
,

s = −6

33. (a) r = 3, s �= 2

3
(b) r �= 3 (c) r = 3, s = 2

3
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35. 3, 1 37. 2, 3 39. 3, 1 41. 2, 3

43. (a) 10, 20, and 25 days, respectively (b) no

45. (a) 15 units (b) no

47. 2x 2 − 5x + 7 49. 4x 2 − 7x + 2 51. It is e3.

53. T 54. F 55. T 56. T 57. T

58. T 59. F 60. F 61. T 62. T

63. T 64. F 65. F 66. T 67. T

68. F 69. T 70. T 71. F 72. T

73. the m × n zero matrix

75. 4 77. 3

79. the minimum of m and n

81. no 93. no

95.

x1 = 2.32 + 0.32x5

x2 = −6.44 + 0.56x5

x3 = 0.72 − 0.28x5

x4 = 5.92 + 0.92x5

x5 free

97. 3, 2 99. 4, 1

Section 1.5

1. T 2. T 3. F 4. F 5. T 6. T

7. $11 million 9. services 11. entertainment

13. $16.1 million of agriculture, $17.8 million of manu-
facturing, $18 million of services, and $10.1 million
of entertainment

15. $13.9 million of agriculture, $22.2 million of manu-
facturing, $12 million of services, and $9.9 million of
entertainment.

17. (a) $15.5 million of transportation, $1.5 million of
food, and $9 million of oil

(b) $128 million of transportation, $160 million of
food, and $128 million of oil

19. (a)

[
.1 .4
.3 .2

]

(b) $34 million of electricity and $22 million of oil

(c) $128 million of electricity and $138 million of oil

21. (a) $49 million of finance, $10 million of goods, and
$18 million of services

(b) $75 million of finance, $125 million of goods, and
$100 million of services

(c) $75 million of finance, $104 million of goods, and
$114 million of services

25. I1 = 9, I2 = 4, I3 = 5

27. I1 = 21, I2 = 18, I3 = 3

29. I1 = I4 = 12.5, I2 = I6 = 7.5, I3 = I5 = 5

Section 1.6

1. yes 3. no 5. yes 7. no
9. no 11. yes 13. yes 15. no

17. 3 19. −6 21. no 23. yes
25. yes 27. no 29. yes 31. no
33. no 35. yes

37.

{[
1
3

]
,

[
0
1

]}
39.







1
0

−1


 ,




0
1
0






41.







1
−2

1




 43.







−1
0
1


 ,




0
1
2






45. T 46. T 47. T 48. F 49. T

50. T 51. T 52. F 53. F 54. F

55. T 56. T 57. T 58. T 59. T

60. T 61. T 62. T 63. T 64. T

65. (a) 2 (b) infinitely many

73. no 79. yes 81. no

Section 1.7

1. yes 3. yes 5. no
7. yes 9. no 11. yes

13.







1
−2

3




 15.







−3
2
0


 ,




1
6
0






17.







2
−3

5


 ,




1
0
2




 19.

{[
4
3

]
,

[−2
5

]}

21.







−2
0
3


 ,




0
4
0






23. no 25. yes 27. yes 29. no

31. −3




−1
1
2


 =




3
−3
−6




33. 5




0
1
1


 + 4




1
0

−1


 =




4
5
1




35. 1

[
1

−1

]
+ 5

[
0
1

]
+ 0

[
3

−2

]
=

[
1
4

]

37. 5




1
2

−1


 − 3




0
1

−1


 + 3




−1
−2

0


 =




2
1

−2




39. all real numbers 41. −2
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43. every real number 45. every real number

47. r = 4 49. no r

51.




x1

x2

x3


 = x2




4
1
0


 + x3




−2
0
1




53.




x1

x2

x3

x4


 = x2




−3
1
0
0


 + x4




−2
0
6
1




55.




x1

x2

x3

x4


 = x3




−4
3
1
0


 + x4




2
−5

0
1




57.




x1

x2

x3

x4

x5

x6




= x2




0
1
0
0
0
0




+ x4




−1
0
2
1
0
0




+ x6




−3
0

−1
0
0
1




59.




x1

x2

x3

x4


 = x3




0
0
1
0


 + x4




2
−3

0
1




61.




x1

x2

x3

x4

x5

x6




= x2




−2
1
0
0
0
0




+ x3




1
0
1
0
0
0




+ x5




−2
0
0

−4
1
0




+ x6




1
0
0

−3
0
1




63. T 64. F 65. F 66. T 67. T

68. T 69. F 70. T 71. F 72. F

73. F 74. T 75. T 76. T 77. F

78. T 79. F 80. T 81. T 82. T

83. A =
[
1 0
0 1

]

101. The set is linearly dependent, and v5 = 2v1 − v3 + v4,
where vj is the j th vector in the set.

103. The set is linearly independent.

Chapter 1 Review Exercises

1. F 2. T 3. T 4. T 5. T

6. T 7. T 8. F 9. F 10. T

11. T 12. T 13. F 14. T 15. T

16. F 17. F

19. (a) There is at most one solution.

(b) There is at least one solution.

21.




3 2
−2 7

4 3




23. undefined because A has 2 columns and DT has 3 rows

25.

[
3
3

]

27. undefined because C T and D don’t have the same
number of columns

29. The components are the average values of sales for all
stores during January of last year for produce, meats,
dairy, and processed foods, respectively.

31.




0
−4

3
−2


 33.

1

2

[
2
√

3 − 1
−2 − √

3

]

35. v = (−1)




−1
5
2


 + 3




1
3
4


 + 1




1
−1

1




37. v is not in the span of S.

39.
x1 = 1 − 2x2 + x3

x2 free
x3 free

41. inconsistent

43.

x1 = 7 − 5x3 − 4x4

x2 = −5 + 3x3 + 3x4

x3 free
x4 free

45. The rank is 1, and the nullity is 4.

47. The rank is 3, and the nullity is 2.

49. 20 of the first pack, 10 of the second pack, 40 of the
third pack

51. yes 53. no 55. yes
57. yes 59. no

61. linearly independent 63. linearly dependent

65.




3
3
8


 = 2




1
2
3


 + 1




1
−1

2




67.




1
−1

1
−1


 = 2




1
0
1
0


 + (−1)




1
1
1
1




69.




x1

x2

x3


 = x3




−3
2
1


 71.




x1

x2

x3

x4


 = x4




−2
5
0
1
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Chapter 1 MATLAB Exercises

1. (a)




3.38
8.86

16.11
32.32
15.13




(b)




13.45
−4.30
−1.89

7.78
10.69




(c)




20.18
−11.79

7.71
8.52
0.28




2. (a)




−0.3 8.5 −12.3 3.9
27.5 −9.0 −22.3 −2.7

−11.6 4.9 16.2 −2.1
8.0 12.7 34.2 −24.7




(b)




−7.1 20.5 −13.3 6.9
10.5 −30.0 −22.1 −14.3
−7.0 −31.7 16.4 27.3

−14.6 19.3 −9.6 −23.9




(c)




1.30 4.1 −2.75 3.15
4.10 2.4 1.90 1.50

−2.75 1.9 3.20 4.65
3.15 1.5 4.65 −5.10




(d)




0.00 −2.00 −.55 .95
2.00 0.00 −3.20 −4.60
.55 3.20 0.00 −2.55

−.95 4.60 2.55 0.00




(e) PT = P , QT = −Q , P + Q = A

(f)




17.67
−15.87
−9.83

−44.27


 (g)




−143.166
−154.174
−191.844
−202.945




(h)




−64.634
93.927

−356.424
−240.642


 (i)




−3.30
6.94
3.50

19.70


, w =




3.5
−1.2

4.1
2.0




(j) Mu = B (Au) for every u in R4

3. (a)

[−0.0864
3.1611

]
(b)

[−1.6553
2.6944

]

(c)

[−1.6553
2.6944

]
(d)

[
1.0000
3.0000

]

4. (b)




1 0 2.0000 0 .1569 9.2140
0 1 1.0000 0 .8819 −.5997
0 0 0 1 −.2727 −3.2730
0 0 0 0 0 0




5. Answers are given correct to 4 places after the decimal
point.

(a)




x1

x2

x3

x4

x5

x6




=




−8.2142
−0.4003

0.0000
3.2727
0.0000
0.0000




+ x3




−2.0000
−1.0000

1.0000
0.0000
0.0000
0.0000




+ x5




−0.1569
−0.8819

0.0000
0.2727
1.0000
0.0000




+ x6




−9.2142
0.5997
0.0000
3.2727
0.0000
1.0000




(b) inconsistent

(c)




x1

x2

x3

x4

x5

x6




=




−9.0573
1.4815
0.0000
4.0000
0.0000
0.0000




+ x3




−2.0000
−1.0000

1.0000
0.0000
0.0000
0.0000




+ x5




−0.1569
−0.8819

0.0000
0.2727
1.0000
0.0000




+ x6




−9.2142
0.5997
0.0000
3.2727
0.0000
1.0000




(d) inconsistent

6. The gross production for each of the respective sectors
is $264.2745 billion, $265.7580 billion, $327.9525 bil-
lion, $226.1281 billion, and $260.6357 billion.

7. (a)




0
1
1
2
2
1




=




1
2

−1
3
2
1




+




1
0
1
1
0
1




−




2
1

−1
2
0
1




(b) linearly independent

8. Let v1, v2, . . . , v5 denote the vectors in S1 in the order
listed in Exercise 7(a).

(a) no

(b) yes, 2v1 − v2 + 0v3 + v4 + 0v5

(c) yes, 2v1 − v2 + 0v3 + v4 + 0v5

(d) no
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Chapter 2
Section 2.1

1. AB is defined and has size 2 × 2.

3. undefined 5. Cy =
[

22
−18

]

7. xz =
[
14 −2
21 −3

]
9. ACx is undefined.

11. AB =
[

5 0
25 20

]
13. BC =

[
29 56 23
7 8 9

]

15. CBT is undefined. 17. A3 =
[−35 −30

45 10

]

19. C 2 is undefined. 25. −2 27. 24

29.




−4
−9
−2


 31.

[
7

16

]

33. F 34. F 35. F 36. T 37. F

38. F 39. T 40. T 41. F 42. F

43. T 44. F 45. F 46. T 47. F

48. T 49. T 50. T

51. (a) B =
[
.70 .95
.30 .05

]

53. (a)
Next Hot Lunch
Day Bag Lunch

Today
Hot Bag
Lunch Lunch

A =
[
.3 .4
.7 .6

]

(b) A3

[
u1

u2

]
=

[
109.1
190.9

]
. Approximately 109 students

will buy hot lunches and 191 students will bring
bag lunches 3 school days from today.

(c) A100

[
u1

u2

]
=

[
109.0909
190.9091

]
(rounded to 4 places

after the decimal)

63. A =
[
1 0
1 0

]
, B =

[
0 0
1 1

]

69. (a), (b), and (c) have the same answer, namely,
[−1 0

0 −1

]
.

71. (b) The population of the city is 205,688. The popu-
lation of the suburbs is 994,332.

(c) The population of the city is 200,015. The popu-
lation of the suburbs is 999,985.

Section 2.2

1. F 2. F 3. F 4. T 5. T

6. F 7. T 8. F 9. F

11. (a) all of them

(b) 0 from the first and 1 from the second

(c)

[
a
b

]
in an even number of years after the current

year and

[
b
a

]
in an odd number of years after the

current year

13. (a)




0 2 1
q 0 0
0 .5 0




(b) The population grows without bound.

(c) The population approaches 0.

(d) q = .4,




400
160
80




(e) Over time, it approaches




450
180
90


 .

(f) q = .4

(g) x = x3




5
2
1


. The stable distributions have this

form.

15. (a)




0 2 b
.2 0 0
0 .5 0




(b) The population approaches 0.

(c) The population grows without bound.

(d) b = 6,




1600
320
160




(e) Over time, it approaches




1500
300
150


 .

(f) b = 6

(g) q = c




10
2
1


 where c = 1

26
(p1 + 5p2 + 6p3).

17.

[
0.644 0.628
0.356 0.372

]
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19. (a) There are no nonstop flights from any of the cities
1, 2, and 3 to the cities 4 and 5, and vice versa.

(b) A2 =
[
B2 O1

O2 C 2

]
, A3 =

[
B3 O1

O2 C 3

]
, and

Ak =
[
Bk O1

O2 C k

]
.

(c) There are no flights with any number of layovers
from any of the cities 1, 2, and 3 to the cities 4
and 5, and vice versa.

21. (a) 1 and 2, 1 and 4, 2 and 3, 3 and 4

(c)




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


, yes

23. (c) Students 1 and 2 have 1 common course prefer-
ence, and students 1 and 9 have 3 common course
preferences.

(d) For each i , the i th diagonal entry of AAT rep-
resents the number of courses preferred by stu-
dent i .

25. (a)

k Sun Noble Honored MMQ
1 100 300 500 7700
2 100 400 800 7300
3 100 500 1200 6800

(b)

k Sun Noble Honored MMQ
9 100 1100 5700 1700
10 100 1200 6800 500
11 100 1300 8000 −800

Section 2.3

1. no 3. yes 5. yes 7. no

9.




1 2 1
2 0 1
3 1 −1


 11.




3 7 2
4 4 −4
0 7 6




13.




5 7 3
−3 −4 −1
12 7 12


 15.

[
1 0

−1 1

]

17.




1 0 0
2 1 0
0 0 1


 19.




1 0 0 0
0 .25 0 0
0 0 1 0
0 0 0 1




21.




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 23.

[−1 0
0 1

]

25.

[
0 1
1 0

]
27.

[
0 1
1 0

]

29.




1 0 0
0 1 0
0 −5 1


 31.




1 0 0
0 0 1
0 1 0




33. F 34. T 35. T 36. F 37. T

38. T 39. F 40. T 41. T 42. T

43. F 44. F 45. T 46. F 47. T

48. T 49. T 50. T 51. F 52. T

67.

[
3 2 7

−1 5 9

]

69.




−1 1 1 4 13
2 −2 −1 1 3

−1 1 0 3 8




71.

[
1 2 3 13
2 4 5 23

]

73.




1 −1 1 1 1 −1
0 0 2 6 1 −7
1 −1 0 2 1 3




75. a2 = −2a1 + 0a3

77. a4 = 2a1 − 3a3

79. b3 = b1 + (−1)b2 + 0b5

81. b5 = 0b1 + 0b2 + b5

83. R =



1 2 0 −1
0 0 1 1
0 0 0 0




87. Every nonzero column is a standard vector.

95. (a) A−1 =




−7 2 3 −2
5 −1 −2 1
1 0 0 1

−3 1 1 −1




(b) B−1 =




3 2 −7 −2
−2 −1 5 1

0 0 1 1
1 1 −3 −1


 and

C −1 =




−7 −2 3 2
5 1 −2 −1
1 1 0 0

−3 −1 1 1




(c) B−1 can be obtained by interchanging columns 1
and 3 of A−1, and C −1 can be obtained by inter-
changing columns 2 and 4 of A−1.

(d) B−1 can be obtained by interchanging columns i
and j of A−1.
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97. (b) (A2)−1 = (A−1)2 =




113 −22 −10 −13
−62 13 6 6
−22 4 3 2

7 −2 −1 0




99. A−1 =




10 −2 −1 −1
−6 1 −1 2
−2 0 1 0

1 0 1 −1


 For each i , the

solution of Ax = ei is the i th column of A−1.

Section 2.4

1.

[−2 3
1 −1

]
3. not invertible

5.

[
5 −3

−3 2

]
7. not invertible

9.
1

3




−7 2 3
−6 0 3

8 −1 −3


 11. not invertible

13.




−1 −5 3
1 2 −1
1 4 −2


 15. not invertible

17.
1

3




1 1 1 −2
1 1 −2 1
1 −2 1 1

−2 1 1 1




19. A−1B =
[−1 3 −4

1 −2 3

]

21. A−1B =
[−1 −4 7 −7

2 6 −6 10

]

23. A−1B =



1.0 −0.5 1.5 1.0
6.0 12.5 −11.5 12.0

−2.0 −5.5 5.5 −5.0




25. A−1B =




−5 −1 −6
−1 1 0

4 1 3
3 1 2




27. R =
[
1 0 −1
0 1 −3

]
, P =

[−1 −1
−2 −1

]

29. R =



1 0 −2 −1
0 1 1 −1
0 0 0 0




One possibility is P =



−1 0 0
0 1 0
2 −3 1


.

31. R =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, P =




−4 −15 −8 1
1 4 2 0
1 3 2 0

−4 −13 −7 1




33. R =




1 0 0 5 2.5
0 1 0 −4 −1.5
0 0 1 −3 −1.5
0 0 0 0 0


,

P = 1

6




0 −5 4 1
0 7 −2 1
0 1 −2 1
6 4 −2 −2




35. T 36. F 37. T 38. T 39. T

40. T 41. T 42. T 43. T 44. T

45. T 46. T 47. T 48. F 49. T

50. F 51. F 52. T 53. T 54. T

57. (a)

[−1 −3
2 5

] [
x1

x2

]
=

[−6
4

]

(b) A−1 =
[

5 3
−2 −1

]

(c)

[
x1

x2

]
= A−1b =

[−18
8

]

59. (a)




−1 0 1
1 2 −2
2 −1 1






x1

x2

x3


 =




−4
3
1




(b) A−1 = 1

5




0 1 2
5 3 1
5 1 2




(c)




x1

x2

x3


 = A−1b =




1
−2
−3




61. (a)




2 3 −4
−1 −1 2

0 −1 1






x1

x2

x3


 =




−6
5
3




(b) A−1 =



1 1 2
1 2 0
1 2 1




(c)




x1

x2

x3


 = A−1b =




5
4
7




63. (a)




1 −2 −1 1
1 1 0 −1

−1 −1 1 1
−3 1 2 0







x1

x2

x3

x4


 =




4
−2

1
1
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(b) A−1 =




−1 0 1 −1
−3 −2 1 −2

0 1 1 0
−4 −3 2 −3




(c)




x1

x2

x3

x4


 = A−1b =




−2
−5
−1
−5




67. (b) A−1 = Ak−1

75. (a)
x1 = −3 + x3

x2 = 4 − 2x3

x3 free
(b) No, A is not invertible.

77. $2 million of electricity and $4.5 million of oil

79. $12.5 million of finance, $15 million of goods, and
$65 million of services

89. The reduced row echelon form of A is I4.

91. rank A = 4

Section 2.5

1. [−4 | 2] 3.

[−2
7

]

5.




−2 4 6 0
−1 8 8 2
11 8 −8 10
3 6 1 4




7.




−2 4 6 0
−1 8 8 2
11 8 −8 10
3 6 1 4




9.




3 6
9 12
2 4
6 8


 11.




1 1 2 1
1 0 1 −1
0 1 −1 1




13.
[
16 −4

]
15.

[
16 9 24

]

17.
[−2 −3 1

]
19.

[−12 −3 2
]

29. T 30. T 31. F 32. T 33. F

34. F 35. 2In

37.

[
O AC
BD O

]

39.

[
AT A + C T C AT B + C T D
BT A + DTC BT B + DT D

]

49.

[
Ak Ak−1B
O O

]

51.

[
A O
In B

]−1

=
[

A−1 O
−B−1A−1 B−1

]

53. (c) Ak =
[
Bk ∗
0 Dk

]
, where * represents some 2 × 2

matrix.

Section 2.6

1. L =



1 0 0
3 1 0

−1 1 1


, U =




2 3 4
0 −1 −2
0 0 3




3. L =



1 0 0
2 1 0

−3 1 1


, U =




1 −1 2 1
0 −1 1 2
0 0 1 1




5. L =



1 0 0
−1 1 0

2 1 1


, U =




1 −1 2 1 3
0 1 2 −1 1
0 0 1 −2 −6




7. L =




1 0 0 0
2 1 0 0

−1 −1 1 0
0 −1 0 1


,

U =




1 0 −3 −1 −2 1
0 −1 −2 1 −1 −2
0 0 0 1 1 1
0 0 0 2 2 2




9.




x1

x2

x3


 =




2
−1

0




11.




x1

x2

x3

x4


 =




−7
−4

2
0


 + x4




2
1

−1
1




13.




x1

x2

x3

x4

x5




=




−3
3
1
0
0




+ x4




−8
−3

2
1
0




+ x5




−28
−13

6
0
1




15.




x1

x2

x3

x4

x5

x6




=




3
−4

0
2
0
0




+ x3




3
−2

1
0
0
0




+ x5




1
−2

0
−1

1
0




+ x6




−2
−3

0
−1

0
1




17. P =



1 0 0
0 0 1
0 1 0


, L =




1 0 0
−1 1 0

2 0 1


, and

U =



1 −1 3
0 1 2
0 0 −1
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19. P =



1 0 0
0 0 1
0 1 0


, L =




1 0 0
−1 1 0

2 0 1


, and

U =



1 1 −2 −1
0 −1 −3 0
0 0 1 1




21. P =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


, L =




1 0 0 0
0 1 0 0

−2 0 1 0
−1 −1 −1 0


,

and U =




−1 2 −1
0 1 −2
0 0 1
0 0 0




23. P =




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


, L =




1 0 0 0
2 1 0 0
2 0 1 0
3 −4 0 1


, and

U =




1 2 1 −1
0 1 1 2
0 0 −1 3
0 0 0 9




25.




x1

x2

x3


 =




−2
1
3


 27.




x1

x2

x3

x4


 =




16
−9

3
0


 + x4




−4
3

−1
1




29.




x1

x2

x3


 =




5
2
1


 31.




x1

x2

x3

x4


 =




−3
2
1

−1




33. F 34. T 35. F 36. F 37. F

38. T 39. F 40. T 41. T

49. m(2n − 1)p

51. L =




1 0 0 0 0
−1 1 0 0 0

2 3 1 0 0
3 −3 2 1 0
2 0 1 −1 1




and

U =




2 −1 3 2 1
0 1 2 3 5
0 0 3 −1 2
0 0 0 1 8
0 0 0 0 13




53. P =




0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

L =




1.0 0 0 0 0
0.0 1 0 0 0
0.5 2 1 0 0

−0.5 −1 −3 1 0
1.5 7 9 −9 1




, and

U =




2 −2 −1.0 3.0 4
0 1 2.0 −1.0 1
0 0 −1.5 −0.5 −2
0 0 0.0 −1.0 −2
0 0 0.0 0.0 −9




Section 2.7

1. The domain is R3, and the codomain is R2.

3. The domain is R2, and the codomain is R3.

5. The domain is R3, and the codomain is R3.

7.

[
11
8

]
9.




8
−6
11


 11.




6
−7

6




13.

[
5

22

]
15.




−1
6

17


 17.




−3
−9

2




19. T(A+CT )






2
1
1




 = TA






2
1
1




+

TCT






2
1
1




 =

[
8
9

]

21. n = 3, m = 2 23. n = 2, m = 4

25.

[
0 1
1 1

]
27.

[
1 1 1
2 0 0

]

29.




1 −1
2 −3
0 0
0 1


 31.




1 −1
0 0
3 0
0 1




33.




1 0 0
0 1 0
0 0 1




35. F 36. T 37. F 38. T 39. F

40. T 41. F 42. T 43. F 44. F
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45. F 46. T 47. T 48. T 49. T

50. T 51. T 52. F 53. F 54. T

55. They are equal.

57.




4
−8
12


 and




−1
2

−3




59.




−16
12
4


 and




20
−15
−5




61.




16
2
0


 63.

[−4
3

]

65. T

([
x1

x2

])
=

[
2x1 + 4x2

3x1 + x2

]

67. T






x1

x2

x3




 =




−x1 + 3x2

−x2 − 3x3

2x1 + 2x3




69. T

([
x1

x2

])
=

[
12x1 + 5x2

3x1 + x2

]

71. T






x1

x2

x3




 =




x1 + 3x2 − x3

2x1 + 3x2 + x3

2x1 + 3x2 + 2x3




73. linear 75. not linear
77. linear 79. not linear

89. (b)

[
1 0
0 0

]

91. T = TA for A =
[−1 0

0 1

]
(b) R2

93. (b) Rn 97. Both are v.

103. The given vector is in the range of T .

Section 2.8

1.

{[
2
4

]
,

[
3
5

]}
3.







0
2
1


 ,




3
−1

1






5.







2
2
4


 ,




1
2
1


 ,




1
3
0




 7.

{[
1
0

]}

9.







1
0
0


 ,




0
1
0




 11.

{[
0
0

]}

13. {0}, one-to-one 15.







0
−1

1




, not one-to-one

17.







1
−1

1




, not one-to-one 19. {0}, one-to-one

21. {e2}, not one-to-one

23.







1
−3

1
0


 ,




3
−5

0
1







, not one-to-one

25.

[
2 3
4 5

]
, one-to-one 27.




0 3
2 −1
1 1


, one-to-one

29.




1 −1 0
0 1 −1
1 0 −1


, not one-to-one

31.




1 2 2 1 8
1 2 1 0 6
1 1 1 2 5
3 2 0 5 8


, not one-to-one

33.

[
2 3
4 5

]
, onto

35.




0 3
2 −1
1 1


, not onto

37.




0 1 −2
1 0 −1

−1 2 −3


, not one-to-one

39.




1 −2 2 −1
−1 1 3 2

1 −1 −6 −1
1 −2 5 −5


, onto

41. T 42. F 43. F 44. T 45. T

46. T 47. F 48. T 49. F 50. T

51. F 52. F 53. T 54. F 55. F

56. T 57. T 58. F 59. T 60. T

61. (a) {0} (b) yes

(c) R2 (d) yes

63. (a) Span {e1} (b) no

(c) Span {e2} (d) no

65. (a) Span {e3} (b) no

(c) Span {e1, e2} (d) no

67. (a) one-to-one (b) onto

69. The domain and codomain are R2. The rule is

UT

([
x1

x2

])
=

[
16x1 + 4x2

4x1 − 8x2

]
.
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71. A =



1 1
1 −3
4 0


 and B =

[
1 −1 4
1 3 0

]

73. The domain and codomain are R3. The rule is

TU






x1

x2

x3




 =




2x1 + 2x2 + 4x3

−2x1 − 10x2 + 4x3

4x1 − 4x2 + 16x3


 .

75.




2 2 4
−2 −10 4

4 −4 16


 77.

[−1 5
15 −5

]

79.

[−1 5
15 −5

]
81.

[
2 9
6 −8

]

83. T−1

([
x1

x2

])
=




1

3
x1 + 1

3
x2

−1

3
x1 + 2

3
x2




85. T−1






x1

x2

x3




 =




2x1 + x2 − x3

−9x1 − 2x2 + 5x3

4x1 + x2 − 2x3




87. T−1






x1

x2

x3




 =




x1 − 2x2 + x3

−x1 + x2 − x3

2x1 − 7x2 + 3x3




89. T−1







x1

x2

x3

x4





 = 1

2




x1 − 3x2 − 6x3 + 3x4

3x1 − 2x2 − 3x3 + 3x4

−3x1 + 3x2 + 4x3 − 3x4

−3x1 + 6x2 + 9x3 − 5x4




91. yes

99. (a) A =




1 3 −2 1
3 0 4 1
2 −1 0 2
0 0 1 1


 and

B =




0 1 0 −3
2 0 1 −1
1 −2 0 4
0 5 1 0




(b) AB =




4 10 4 −14
4 0 1 7

−2 12 1 −5
1 3 1 4




(c) TU







x1

x2

x3

x4





 =




4x1 + 10x2 + 4x3 − 14x4

4x1 + x3 + 7x4

−2x1 + 12x2 + x3 − 5x4

x1 + 3x2 + x3 + 4x4




Chapter 2 Review Exercises

1. T 2. F 3. F 4. T 5. F

6. F 7. T 8. T 9. T 10. F

11. T 12. F 13. T 14. F 15. T

16. T 17. F 18. T 19. F 20. F

21. T

23. (a) BA is defined if and only if q = m . (b) p × n

25.

[
64 −4
32 −2

]
27.




2
29
4




29. incompatible dimensions

31.
1

6

[
5 10
2 4

]
33.

[
30
42

]

35. incompatible dimensions

37.

[
1
3

]
+

[
7
4

]
=

[
8
7

]
39.

1

50




22 14 −2
−42 −2 11
−5 −10 5




43.

[−2
7

]
45.




3 6 2 2 2
5 10 0 −1 −11
2 4 −1 3 −4




47. The codomain is R3, and the range is the span of the
columns of B .

49.




20
−2

2


 51.

[
2 0 −1
4 0 0

]

53. The standard matrix is

[
4 1
3 2

]
.

55. linear 57. linear

59.

{[
1
0

]
,

[
2
1

]
,

[
0

−1

]}

61.







−2
1
1




 T is not one-to-one.

63.




1 1
0 0
2 −1


 The columns are linearly independent, so

T is one-to-one.

65.




3 −1
0 1
1 1


 The rank is 2, so T is not onto.

67.




5 −1 4
1 1 −1
3 1 0


 69.




5 −1 4
1 1 −1
3 1 0
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71.

[
7 −1
2 −1

]
73. T−1

([
x1

x2

])
= 1

5

[
3x1 − 2x2

x1 + x2

]

Chapter 2 MATLAB Exercises

1. (a) AD =




4 10 9
1 2 9
5 8 15
5 8 −8

−4 −8 1




(b) DB =




6 −2 5 11 9
−3 −1 10 7 −3
−3 1 2 −1 −3

2 −2 7 9 3
0 −1 10 10 2




(c) , (d) (ABT )C = A(BT C ) =



38 −22 14 38 57
10 −4 4 10 11

−12 −9 −11 −12 12
9 −5 4 9 14

28 10 20 28 −9




(e) D(B − 2C ) =




−2 10 5 3 −17
−31 −7 −8 −21 −1
−11 −5 −4 −9 7
−14 2 −1 −7 −11
−26 −1 −4 −16 −6




(f)




11
8

20
−3
−9




(g), (h) C (Av) = (CA)v =



1
−18

81




(i) A3 =




23 14 9 −7 46
2 11 6 −2 10

21 26 −8 −17 11
−6 18 53 24 −36

−33 −6 35 25 −12




2. (a) The entries of the following matrices are rounded
to four places after the decimal:

A10 =




0.2056 0.2837 0.2240 0.1380 0.0589 0
0.1375 0.2056 0.1749 0.1101 0.0471 0
0.1414 0.1767 0.1584 0.1083 0.0475 0
0.1266 0.1616 0.1149 0.0793 0.0356 0
0.0356 0.0543 0.0420 0.0208 0.0081 0
0.0027 0.0051 0.0051 0.0036 0.0016 0




A100 =




0.0045 0.0062 0.0051 0.0033 0.0014 0
0.0033 0.0045 0.0037 0.0024 0.0010 0
0.0031 0.0043 0.0035 0.0023 0.0010 0
0.0026 0.0036 0.0029 0.0019 0.0008 0
0.0008 0.0011 0.0009 0.0006 0.0003 0
0.0001 0.0001 0.0001 0.0001 0.0000 0




A500 =

1

109




0.2126 0.2912 0.2393 0.1539 0.0665 0
0.1552 0.2126 0.1747 0.1124 0.0486 0
0.1457 0.1996 0.1640 0.1055 0.0456 0
0.1216 0.1665 0.1369 0.0880 0.0381 0
0.0381 0.0521 0.0428 0.0275 0.0119 0
0.0040 0.0054 0.0045 0.0029 0.0012 0




The colony will disappear.

(b) (ii) The entries of the following vectors are
rounded to four places after the decimal:

x1 =




4.7900
3.2700
4.0800
3.4400
0.7200
0.1800




, x2 =




5.3010
4.4530
5.0430
3.2640
1.0320
0.0720




,

x3 =




6.1254
4.8107
6.1077
4.0344
0.9792
0.1032




, x4 =




7.2115
5.3878
6.4296
4.8862
1.2103
0.0979




,

and

x5 =




8.1259
6.1480
6.9490
5.1437
1.4658
0.1210




(iv) Assuming that xn+1 = xn we have that xn =
Axn + b, and hence

(I6 − A)xn = xn − Axn = b.

Therefore xn = (I6 − A)−1b.

Using the given b, we obtain (with entries
rounded to four places after the decimal)
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xn =




28.1412
20.7988
20.8189
16.6551
4.9965
0.4997




.

3. The eight airports divide up into two sets: {1, 2, 6, 8}
and {3, 4, 5, 7}.

4. (a) R =




1 2 0 −1 0 0 0
0 0 1 1 0 0 1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 0




(b) S =




−2 1 0
1 0 0
0 −1 −1
0 1 0
0 0 1
0 0 1
0 0 1




5. (b) P =




0.0 −0.8 −2.2 −1.8 1.0
0.0 −0.8 −1.2 −1.8 1.0
0.0 0.4 1.6 2.4 −1.0
0.0 1.0 2.0 2.0 −1.0
1.0 0.0 −1.0 −1.0 0.0




6. (a) M =




1 2 1 2
2 0 −1 3

−1 1 0 0
2 1 1 2
4 4 1 6




(b) S =




1 0 1 0 1 0
0 1 1 0 0 0
0 0 0 1 2 0
0 0 0 0 0 1




7. A−1B =




6 −4 3 19 5 −2 −5
−1 2 −4 −1 4 −3 −2
−2 0 2 6 −1 6 3

0 1 −3 −8 2 −3 1
−1 0 2 −6 −5 2 2




8. (a) L = 1

3




3 0 0 0
6 3 0 0
3 1 3 0
6 1 3 3


 and

U = 1

3




3 −3 6 0 −6 12
0 9 −9 −6 15 −15
0 0 −6 11 −8 −1
0 0 0 −6 21 −9




(b) x =




17
4

− 5
4

− 1
4

3
2

0
0




+ x5




− 29
12

23
4

61
12

7
2

1
0




+ x6




− 5
12

− 9
4

− 35
12

− 3
2

0
1




9. (a) A =




1 2 0 1 −3 −2
0 1 0 −1 0 0
1 0 1 0 0 3
2 4 0 3 −6 −4
3 2 2 1 −2 −4
4 4 2 2 −5 3




(b) A−1 = 1

9

×




10 −18 −54 −27 1 26
−18 9 0 9 0 0
−7 18 63 27 2 −29

−18 0 0 9 0 0
−17 0 −18 0 1 8
−1 0 0 0 −1 1




(c) T−1







x1

x2

x3

x4

x5

x6







=




10
9 x1 + −2x2 + −6x3 + −3x4 + 1

9x5 + 26
9 x6

−2x1 + x2 + x4

− 7
9x1 + 2x2 + 7x3 + 3x4 + 2

9x5 − 29
9 x6

−2x1 + x4

− 17
9 x1 − 2x3 + 1

9x5 + 8
9x6

− 1
9x1 − 1

9x5 + 1
9x6




10. (a) B =




1 0 2 0 0 1
2 −1 0 1 0 0
0 3 0 0 −1 0
2 1 −1 0 0 1




(b) The standard matrix of UT is

BA =




7 6 4 3 −8 7
4 7 0 6 −12 −8

−3 1 −2 −4 2 4
5 9 1 3 −11 −4


.
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(c) UT

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎣

7x1 + 6x2 + 4x3 + 3x4 − 8x5 + 7x6

4x1 + 7x2 + 6x4 − 12x5 − 8x6

−3x1 + x2 − 2x3 − 4x4 + 2x5 + 4x6

5x1 + 9x2 + x3 + 3x4 − 11x5 − 4x6

⎤
⎥⎥⎦

(d) The standard matrix of UT −1 is

BA−1 =

⎡
⎢⎢⎢⎢⎢⎣

− 5
9 2 8 3 4

9 − 31
9

20
9 −5 −12 −6 2

9
52
9

− 37
9 3 2 3 − 1

9 − 8
9

8
9 −5 −19 −8 − 1

9
82
9

⎤
⎥⎥⎥⎥⎥⎦

,

and hence

UT −1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎣

− 5
9 x1 + 2x2 + 8x3 + 3x4 + 4

9 x5 − 31
9 x6

20
9 x1 − 5x2 − 12x3 − 6x4 + 2

9 x5 + 52
9 x6

− 37
9 x1 + 3x2 + 2x3 + 3x4 − 1

9 x5 − 8
9 x6

8
9 x1 − 5x2 − 19x3 − 8x4 − 1

9 x5 + 82
9 x6

⎤
⎥⎥⎥⎥⎥⎦

.

Chapter 3
Section 3.1

1. 0 3. −25 5. 0 7. 2

9. 16 11. −30 13. 19 15. −2

17. 20 19. 2 21. 60 23. 180

25. −147 27. −24 29. 31 31. 0

33. 22 35. 22 37. 2 39. −9

41. ±4 43. no c

45. F 46. F 47. F 48. F 49. T

50. F 51. T 52. T 53. F 54. T

55. F 56. T 57. T 58. F 59. T

60. T 61. F 62. T 63. F 64. F

67. 2 79. 1
2 | det[u v]|

81. (c) no 83. (c) yes

Section 3.2

1. −9 3. 19 5. 12 7. −2
9. −2 11. −60 13. −15 15. 30

17. −20 19. −3 21. 18 23. −95
25. −8 27. −6 and 2 29. 5 31. −14
33. −5 and 3 35. −1 37. 1

2

39. F 40. T 41. F 42. T 43. F

44. T 45. F 46. F 47. T 48. F

49. T 50. T 51. F 52. F 53. T

54. T 55. T 56. F 57. T 58. F

59.

[
x1

x2

]
=
[−15.0

10.5

]
61.

[
x1

x2

]
=
[

11
−6

]

63.

⎡
⎣

x1

x2

x3

⎤
⎦ =

⎡
⎣

2
3

−2

⎤
⎦ 65.

⎡
⎣

x1

x2

x3

⎤
⎦ =

⎡
⎣

−0.4
1.8

−2.4

⎤
⎦

67. Take k = 2 and A = I2.

83. (a)

A −→

⎡
⎢⎢⎣

2.4 3.0 −6 −9
0.0 −3.0 −2 −5

−4.8 6.3 4 −2
9.6 1.5 5 9

⎤
⎥⎥⎦

−→

⎡
⎢⎢⎣

2.4 3.0 −6 9
0.0 −3.0 −2 −5
0.0 12.3 −8 16
0.0 −10.5 29 −27

⎤
⎥⎥⎦

−→

⎡
⎢⎢⎣

2.4 3 −6.0 9.0
0.0 −3 −2.0 −5.0
0.0 0 −16.2 −4.5
0.0 0 36.0 −9.5

⎤
⎥⎥⎦

−→

⎡
⎢⎢⎣

2.4 3 −6.0 9.0
0.0 −3 −2.0 −5.0
0.0 0 −16.2 −4.5
0.0 0 0.0 −19.5

⎤
⎥⎥⎦

(b) 2274.48

85.

⎡
⎢⎢⎣

13 −8 −3 6
−28 20 8 −12

7 −4 −1 2
−18 12 6 −8

⎤
⎥⎥⎦

Chapter 3 Review Exercises

1. F 2. F 3. T 4. F 5. T 6. F

7. F 8. T 9. F 10. F 11. F

13. 5 15. −3

17. 2(−3) + 1(−1) + 3(1) 19. 1(7) + (−1)5 + 2(−3)

21. 0 23. 3 25. −3 and 4
27. −3 29. 25 31. x1 = 2.1, x2 = 0.8
33. 5 35. 40 37. 5
39. 20 41. det B = 0 or det B = 1
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Chapter 3 MATLAB Exercises

1. Matrix A can be transformed into an upper
triangular matrix U by means of only row
addition operations. The diagonal entries of U
(rounded to 4 places after the decimal point) are
−0.8000, −30.4375, 1.7865, −0.3488, −1.0967, and
0.3749. Thus

det A = (−1)0(−0.8000)(−30.4375)(1.7865)

(−0.3488)(−1.0967)(0.3749) = 6.2400.

2. The following sequence of elementary row opera-
tions transforms A into an upper triangular matrix:
r1 ↔ r2, −2r1 + r3 → r3, −2r1 + r4 → r4, 2r1 +
r5 → r5, −r1 + r6 → r6, −r2 + r4 → r4, 4r2 +
r5 → r5, −2r2 + r6 → r6, r3 ↔ r6, 17r3 + r5 → r5,
r4 ↔ r6, r5 ↔ r6, and − 152

9 r5 + r6 → r6.

(Other sequences are possible.) This matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2 −2 1 2
0 1 2 −2 3 1
0 0 −1 1 −10 2
0 0 0 −1 4 −1
0 0 0 0 −9 0
0 0 0 0 0 46

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus

det A = (−1)4(1)(1)(−1)(−1)(−9)(46) = −414.

3. (a) det

[
v
A

]
= 2 and det

[
w
A

]
= −10.

(b) det

[
v + w

A

]
= det

[
v
A

]
+ det

[
w
A

]
= −8.

(c) det

[
3v − 2w

A

]
= 3 det

[
v
A

]
− 2 det

[
w
A

]
= 26.

(d) Any such function is a linear transformation.

(f) Any such function is a linear transformation.

(g) Any such function is a linear transformation.

Chapter 4
Section 4.1

1. {e2} 3.

{[
4

−1

]}

5.

⎧⎨
⎩

⎡
⎣

−1
2
1

⎤
⎦ ,

⎡
⎣

1
−1

3

⎤
⎦
⎫⎬
⎭ 7.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−1
0
0
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
4
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
−3

0
−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

9.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
3
1

−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
1

−4
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−5
−2

3
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

11. yes 13. no 15. yes 17. yes
19. no 21. yes 23. yes 25. yes

27.

⎧⎨
⎩

⎡
⎣

7
5
1

⎤
⎦
⎫⎬
⎭ 29.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
−1

1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
−3

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

31.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−5
3
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
−4

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

33.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

3
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
0

−2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
0

−3
0

−2
1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

35. {1, 2, −1},
⎧⎨
⎩

⎡
⎣

−2
1
0

⎤
⎦ ,

⎡
⎣

1
0
1

⎤
⎦
⎫⎬
⎭

37.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−1

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

{[
0
0

]}

39.

⎧⎨
⎩

⎡
⎣

1
0
2

⎤
⎦ ,

⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

−1
0

−1

⎤
⎦
⎫⎬
⎭,

⎧⎨
⎩

⎡
⎣

1
1
2

⎤
⎦
⎫⎬
⎭

41.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1

2
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
2

−1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−5
7

−8
4

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎨
⎩

⎡
⎣

3
−2

1

⎤
⎦
⎫⎬
⎭

43. T 44. T 45. F 46. T 47. T

48. F 49. F 50. F 51. T 52. T

53. T 54. T 55. F 56. T 57. T

58. T 59. T 60. T 61. T 62. T

63.

{[−1
1

]
,

[
1

−2

]}

65.

⎧⎨
⎩

⎡
⎣

1
3
0

⎤
⎦ ,

⎡
⎣

1
2

−1

⎤
⎦ ,

⎡
⎣

0
1
1

⎤
⎦ ,

⎡
⎣

2
6

−1

⎤
⎦
⎫⎬
⎭

67.

{[
1

−2

]
,

[−3
4

]}

69.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−2
4
5

−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
1
2
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
−4
−5

1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

71. Rn , the zero subspace of Rm , the zero subspace of Rn

73. no 75.

[
1 −1

−1 1

]
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81.

[
1
0

]
and

[
0
1

]
are in the set, but

[
1
0

]
+
[

0
1

]
is not.

83.

⎡
⎣

0
0
0

⎤
⎦ is not in the set.

85.

⎡
⎣

1
0

−1

⎤
⎦ is in the set, but (−2)

⎡
⎣

1
0

−1

⎤
⎦ is not.

87.

⎡
⎣

6
2
3

⎤
⎦ is in the set, but (−1)

⎡
⎣

6
2
3

⎤
⎦ is not.

101. (a) yes (b) no 103. (a) yes (b) no

Section 4.2

1. (a)

{[
1

−1

]}
(b)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

3
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−4
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
0
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

3. (a)

⎧⎨
⎩

⎡
⎣

1
−1
−1

⎤
⎦ ,

⎡
⎣

2
−1

0

⎤
⎦
⎫⎬
⎭ (b)

⎧⎨
⎩

⎡
⎣

2
−3

1

⎤
⎦
⎫⎬
⎭

5. (a)

⎧⎨
⎩

⎡
⎣

1
−1

2

⎤
⎦ ,

⎡
⎣

0
1
3

⎤
⎦
⎫⎬
⎭ (b)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−2
0
1
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

7. (a)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−1
2
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0

−1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
−5
−1
−2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

(b)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−4
−4
−1

1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

9. (a)

⎧⎨
⎩

⎡
⎣

1
2
1

⎤
⎦ ,

⎡
⎣

2
3
2

⎤
⎦ ,

⎡
⎣

1
3
4

⎤
⎦
⎫⎬
⎭

(b) The null space of T is {0}.

11. (a)

⎧⎨
⎩

⎡
⎣

1
2
1

⎤
⎦ ,

⎡
⎣

−2
−5
−3

⎤
⎦
⎫⎬
⎭ (b)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−3
−1

1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

13. (a)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
2
0
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

(b)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−3

1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

15. (a)

⎧⎨
⎩

⎡
⎣

1
3
7

⎤
⎦ ,

⎡
⎣

2
1
4

⎤
⎦
⎫⎬
⎭ (b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1
−2

1
0
0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

2
−3

0
0
1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

17.

{[
1

−2

]}
19.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

5
2
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
0
0

−4

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

21.

⎧⎨
⎩

⎡
⎣

3
1
0

⎤
⎦ ,

⎡
⎣

−5
0
1

⎤
⎦
⎫⎬
⎭ 23.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
0
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

25.

⎧⎨
⎩

⎡
⎣

1
2
1

⎤
⎦ ,

⎡
⎣

2
1
3

⎤
⎦
⎫⎬
⎭ 27.

⎧⎨
⎩

⎡
⎣

1
−1

3

⎤
⎦ ,

⎡
⎣

0
−1

1

⎤
⎦ ,

⎡
⎣

1
−2

0

⎤
⎦
⎫⎬
⎭

29.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0

−1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

−2
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1

−1
2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

31.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−2
4
5

−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
−4
−5

1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
5
4

−2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

33. F 34. T 35. F 36. T 37. T

38. T 39. T 40. F 41. F 42. T

43. F 44. T 45. T 46. T 47. T

48. T 49. T 50. F 51. T 52. T

53. Because dimR4 = 4, a generating set for R4 must
contain at least 4 vectors.

55. A basis for R3 must contain exactly 3 vectors.

57. A subset of R2 containing more than 2 vectors is lin-
early dependent.

67. 1 69. n − 2

79.

⎧⎨
⎩

⎡
⎣

2
3
0

⎤
⎦ ,

⎡
⎣

1
0
0

⎤
⎦ ,

⎡
⎣

0
0
1

⎤
⎦
⎫⎬
⎭ 81.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
2
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
0
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

83. (c) No, S is not a subset of V .

85. (a)

⎧⎨
⎩

⎡
⎣

0.1
0.7

−0.5

⎤
⎦ ,

⎡
⎣

0.2
0.9
0.5

⎤
⎦ ,

⎡
⎣

0.5
−0.5
−0.5

⎤
⎦
⎫⎬
⎭

(b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1.2
−2.3

1.0
0.0
0.0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

−1.4
2.9
0.0

−0.7
1.0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Section 4.3

1. (a) 2 (b) 2 (c) 2 (d) 1

3. (a) 3 (b) 2 (c) 3 (d) 0

5. (a) 1 (b) 3 (c) 1 (d) 0

7. (a) 2 (b) 1 (c) 2 (d) 0

9. (a) 2 (b) 2 (c) 2 (d) 1

11. (a) 2 (b) 1 (c) 2 (d) 2

13. 1 15. 2

17.
{[

1 0 3
]T

,
[
0 1 2

]T
}
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19.
{[

1 0 0 1
]T

,
[
0 1 1 −1

]T
}

21.
{[

1 0 0 −3 1 3
]T

,
[
0 1 0 2 −1 −2

]T
,

[
0 0 1 0 0 −1

]T
}

23.
{[

1 0 0 1 0
]T

,
[
0 1 0 −1 0

]T
,

[
0 0 1 0 0

]T
,
[
0 0 0 0 1

]T
}

25.
{[

1 −1 1
]T

,
[
0 1 2

]T
}

27.
{[−1 1 1 −2

]T
,
[
2 −1 −1 3

]T
}

29.
{[

1 0 −1 −3 1 4
]T

,
[
2 −1 −1 −8 3 9

]T
,

[
0 1 1 2 −1 −3

]T
}

31.
{[

1 0 −1 1 3
]T

,
[
2 −1 −1 3 −8

]T
,

[
0 1 −1 −1 2

]T
,
[−1 1 1 −2 5

]T
}

33. (a) 2 (b) 0 one-to-one and onto

35. (a) 1 (b) 2 neither one-to-one nor onto

37. (a) 2 (b) 0 one-to-one, not onto

39. (a) 2 (b) 1 onto, not one-to-one

41. F 42. T 43. T 44. F 45. F

46. T 47. T 48. F 49. T 50. F

51. F 52. F 53. T 54. T 55. F

56. F 57. T 58. T 59. T 60. T

69. (a)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
6
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1

−4
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−6
4
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
−1

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

79. Take V = Span {e1, e2} and W = Span {e4, e5}.

85. (a)

⎡
⎢⎢⎣

1 2 0 0
−1 1 0 0

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

87. (a) No, the first vector in A1 is not in W.

(b) yes

(c) [e1 e2 e3], [e1 e2 e3], [e1 e2 e3],⎡
⎣

1 0 0 −.4 −.2
0 1 0 .8 .4
0 0 1 −.2 −.6

⎤
⎦,

⎡
⎣

1 0 0 −.4 −.2
0 1 0 .8 .4
0 0 1 −.2 −.5

⎤
⎦,

⎡
⎣

1 0 0 −.4 −.2
0 1 0 .8 .4
0 0 1 −.2 −.6

⎤
⎦

Section 4.4

1.

[
1
2

]
3.

[−5
11

]
5.

[−3
8

]
7.

⎡
⎣

4
5
4

⎤
⎦

9.

⎡
⎣

−7
−3

2

⎤
⎦ 11. (b)

[
5

−3

]
13. (b)

⎡
⎣

3
0

−1

⎤
⎦

15.

[−5
−1

]
17.

[
7
2

]
19.

⎡
⎣

0
−1

3

⎤
⎦ 21.

⎡
⎣

−5
1
2

⎤
⎦

23. (a + 2b)b1 + (a + 3b)b2 = u

25. (−5a − 3b)b1 + (−3a − 2b)b2 = u

27. (−4a − 3b + 2c)b1 + (−2a − b + c)b2

+ (3a + 2b − c)b3 = u

29. (−a − b + 2c)b1 + bb2 + (−a − b + c)b3 = u

31. F 32. T 33. T 34. T 35. T

36. T 37. T 38. T 39. T 40. T

41. T 42. T 43. T 44. F 45. T

46. T 47. T 48. F 49. T 50. T

51. (b)

[−3 2
2 −1

]
(c) A = B−1

53. (b)

⎡
⎣

1 0 1
1 1 3
0 −1 −1

⎤
⎦ (c) A = B−1

55.
x ′ =

√
3

2
x + 1

2
y

y ′ = −1

2
x +

√
3

2
y

57.
x ′ = −

√
2

2
x +

√
2

2
y

y ′ = −
√

2

2
x −

√
2

2
y

59.
x ′ = −5x − 3y
y ′ = −2x − y

61.
x ′ = −x − y
y ′ = −2x − y

63.
x ′ = −x + y + 2z
y ′ = 2x − y − 2z
z ′ = x − y − z

65.
x ′ = x − y + z
y ′ = −3x + 4y − 2z
z ′ = x − 2y + z

67.
x = 1

2
x ′ −

√
3

2
y ′

y =
√

3

2
x ′ + 1

2
y ′

69.
x = −

√
2

2
x ′ −

√
2

2
y ′

y =
√

2

2
x ′ −

√
2

2
y ′

71.
x = x ′ + 3y ′
y = 2x ′ + 4y ′ 73.

x = −x ′ + 3y ′
y = 3x ′ + 5y ′

75.
x = x ′ − y ′
y = 3x ′ + y ′ − z ′
z = y ′ + z ′

77.
x = x ′ − y ′ − z ′
y = −x ′ + 3y ′ + z ′
z = x ′ + 2y ′ + z ′

79. 73x 2 + 18
√

3xy + 91y2 = 1600

81. 8x 2 − 34xy + 8y2 = 225

83. −23x 2 − 26
√

3xy + 3y2 = 144

85. −11x 2 + 50
√

3xy + 39y2 = 576
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87. 2(x ′)2 − 5(y ′)2 = 10

89. 4(x ′)2 + 3(y ′)2 = 12

91. 4(x ′)2 − 3(y ′)2 = 60

93. 5(x ′)2 + 2(y ′)2 = 10

95.




a1

c1a2

c2
...

an

cn




97.




a1

a2 − a1

...

an − a1


 99. no

109. (b)




29
44

−52
33
39




111.




0
2

−2
2
1




Section 4.5

1.

[
1 1
3 0

]
3.

[
1 2
1 1

]

5.




10 19 16
−5 −8 −8

2 2 3


 7.




0 −19 28
3 34 −47
3 23 −31




9.




−10 −12 −9 1
20 26 20 −7

−10 −15 −12 7
7 7 5 1




11.

[
10 −19
3 −4

]
13.

[
45 25

−79 −44

]

15.




2 5 10
−6 1 −7

2 −2 0


 17.




−1 −1 0
1 3 −1

−1 0 1




19. F 20. T 21. T 22. F 23. T

24. F 25. F 26. T 27. F 28. F

29. F 30. T 31. F 32. F 33. T

34. T 35. T 36. T 37. F 38. T

39.

[
1 −3
4 0

]
41.

[
3 2

−5 4

]

43.




0 2 3
−5 0 0

4 −7 1


 45.




1 0 −3 0
−1 2 0 4

1 0 5 −1
−1 −1 0 3




47. (a)

[
0 3
1 0

]
(b)

[−1 2
1 1

]

(c) T

([
x1

x2

])
=

[−x1 + 2x2

x1 + x2

]

49. (a)

[
3 2

−1 0

]
(b)

[−8 −6
15 11

]

(c)

[−8x1 − 6x2

15x1 + 11x2

]

51. (a)




0 0 1
−1 0 2

0 2 0


 (b)




−1 2 1
0 2 −1
1 0 −1




(c) T






x1

x2

x3




 =




−x1 + 2x2 + x3

2x2 − x3

x1 − x3




53. (a)




0 −1 2
3 0 5

−2 4 0


 (b)




2 −7 −1
−8 −8 11
−4 −9 6




(b)




2x1 − 7x2 − x3

−8x1 − 8x2 + 11x3

−4x1 − 9x2 + 6x3




55. 9b1 + 12b2 57. −3b1 − 17b2

59. −2b1 − 10b2 + 15b3 61. 8b1 + 5b2 − 16b3 − b4

63. In 65. T

([
x1

x2

])
=

[
.8x1 + .6x2

.6x1 − .8x2

]

67. T

([
x1

x2

])
=

[−.6x1 − .8x2

−.8x1 + .6x2

]

69. U

([
x1

x2

])
=

[
.5x1 + .5x2

.5x1 + .5x2

]

71. U

([
x1

x2

])
=

[
.1x1 − .3x2

−.3x1 + .9x2

]

73. (a) TW






−2
1
0




 =




−2
1
0


,

TW






3
0
1




 =




3
0
1


, and

TW






1
2

−3




 =




−1
−2

3




(c)




1 0 0
0 1 0
0 0 −1




(d)
1

7




6 −2 3
−2 3 6

3 6 −2
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(e) T







x1

x2

x3





 = 1

7




6x1 − 2x2 + 3x3

−2x1 + 3x2 + 6x3

3x1 + 6x2 − 2x3




75. T







x1

x2

x3





 = 1

13




12x1 + 4x2 − 3x3

4x1 − 3x2 + 12x3

−3x1 + 12x2 + 4x3




77. T







x1

x2

x3





 = 1

41




39x1 − 12x2 + 4x3

−12x1 − 31x2 + 24x3

4x1 + 24x2 + 33x3




79. T







x1

x2

x3





 = 1

21




19x1 + 4x2 + 8x3

4x1 + 13x2 − 16x3

8x1 − 16x2 − 11x3




81. (a) UW






−2
1
0




 =




−2
1
0


,

UW






3
0
1




 =




3
0
1


, and

UW






1
2

−3




 =




0
0
0




(b)




1 0 0
0 1 0
0 0 0




(c)
1

14




13 −2 3
−2 10 6

3 6 5




(d) U






x1

x2

x3




 = 1

14




13x1 − 2x2 + 3x3

−2x1 + 10x2 + 6x3

3x1 + 6x2 + 5x3




83. U






x1

x2

x3




 = 1

30




29x1 + 2x2 − 5x3

2x1 + 26x2 + 10x3

−5x1 + 10x2 + 5x3




85. U






x1

x2

x3




 = 1

35




34x1 + 3x2 + 5x3

3x1 + 26x2 − 15x3

5x1 − 15x2 + 10x3




87. U






x1

x2

x3




 = 1

75




74x1 + 5x2 − 7x3

5x1 + 50x2 + 35x3

−7x1 + 35x2 + 26x3




101. (b)

[−2 14 −16
2 −8 10

]

103. (a)




11 5 13 1
−2 0 −5 −3
−8 −3 −9 0

6 1 8 1


,




−5 10 −38 −31
2 −3 9 6
6 −10 27 17

−4 7 −25 −19


,




43 58 −21 −66
−8 −11 8 17

−28 −34 21 53
28 36 −14 −44




105. (a)




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


,

T







x1

x2

x3

x4





 =




8x1 − 4x2 + 3x3 + x4

−11x1 + 7x2 − 4x3 − 2x4

−35x1 + 20x2 − 13x3 − 5x4

−9x1 + 4x2 − 3x3 − 2x4




107. [T−1]B = ([T ]B)−1

Chapter 4 Review Exercises

1. T 2. T 3. F 4. F 5. F

6. T 7. T 8. F 9. F 10. F

11. T 12. T 13. T 14. T 15. T

16. T 17. F 18. T 19. F 20. F

21. T 22. T 23. F 24. T 25. T

27. (a) There are at most k vectors in a linearly indepen-
dent subset of V .

(c) There are at least k vectors in a generating set
for V .

29. No,




−1
0
1
0


 and




1
0
1
0


 are in the set, but their sum

is not.

31. (a)







−3
2
1




 (b)







1
−1

2
1


 ,




2
−1

1
4







(c)







1
0
3


 ,




0
1

−2






33. (a)







0
−1

1
2


 ,




1
3

−4
−1


 ,




−2
1
1
3







(b) The null space of T is {0}.
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35. The given set is a linearly independent subset of the
null space that contains 2 vectors.

37. (b)




−1
−2

5


 (c)




1
−8
−6




39. (a)

[−17 1
−10 1

]

(b)

[ −7 −5
−14 −9

]

(c) T

([
x1

x2

])
=

[
−7x1 − 5x2

−14x1 − 9x2

]

41. T







x1

x2

x3





 =




x1 + 6x2 − 5x3

−4x1 + 4x2 + 5x3

−x1 + 3x2 + x3




43. 21x 2 − 10
√

3xy + 31y2 = 144

45. 50(x ′)2 + 8(y ′)2 = 200

47. T

([
x1

x2

])
= 1

13

[
−5x1 − 12x2

−12x1 + 5x2

]

53.







1
−1

2


 ,




−2
−1

1






Chapter 4 MATLAB Exercises

1. (a) yes (b) no (c) no (d) yes

2. (a) yes (b) yes (c) no (d) yes

3. (a)







1.2
−1.1

2.3
−1.2

1.1
0.1




,




2.3
3.2
1.1
1.4

−4.1
−2.1




,




1.2
−3.1

2.1
−1.4

5.1
1.2







(b)







1.2
−1.1

2.3
−1.2

1.1
0.1




,




2.3
3.2
1.1
1.4

−4.1
−2.1




,




1.2
−3.1

2.1
−1.4

5.1
1.2




,




1
0
0
0
0
0




, e1, e2, e3




(c)







−1
−1
−1

1
0




,




0
2
1
0
1







(d)







1.2
2.3
1.2
4.7

−5.8




,




−1.1
3.2

−3.1
−1.0
−3.3




,




2.3
1.1
2.1
5.5

−4.3







4. (a)







1.3
2.2

−1.2
4.0
1.7

−3.1




,




2.1
−1.4

1.3
2.7
4.1
1.0




,




2.9
−3.0

3.8
1.4
6.5
5.1







(b)







1.3
2.2

−1.2
4.0
1.7

−3.1




,




2.1
−1.4

1.3
2.7
4.1
1.0




,




2.9
−3.0

3.8
1.4
6.5
5.1




, e1, e3, e4




(c)







−2
1
1
0







(d)







1
0
2
0


 ,




0
1

−1
0


 ,




0
0
0
1







5. For simplicity, let bi , 1 ≤ i ≤ 6, denote the vectors
in B.

(a) B is a linearly independent set of 6 vectors from
R6.

(b) (i) 2b1 − b2 − 3b3 + 2b5 − b6

(ii) b1 − b2 + b3 + 2b4 − 3b5 + b6

(iii) −3b2 + b3 + 2b4 − 4b5

(c) (i)




2
−1
−3

0
2

−1




(ii)




1
−1

1
2

−3
1




(iii)




0
−3

1
2

−4
0




6.




−47.6 0.6 3.4 −44.6 23.5
−30.9 1.4 2.1 −28.9 12.5

22.2 −0.2 −1.8 21.2 −10.5
0.7 −1.2 1.7 −0.3 0.0

−38.5 −1.0 4.5 −38.5 21.5




7.




−1 2 1 0 −1 −2
−8 −4 −9 3 4 −10

6 1 6 0 −1 7
1 1 −1 −1 −2 2
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9. A =




1.00 0.00 0.00 0.75 −0.50
0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 −0.75 0.50
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00




10. (b)







−3
6
2
0


 ,




0
1
0
1







Chapter 5
Section 5.1

1. 6 3. 3 5. −2 7. −3

9. −4 11. 2 13.

{[−1
1

]}
15.

{[−3
1

]}

17.







−1
1
0




 19.







−2
−1

1






21.







−1
3
0


 ,




2
0
3




 23.







1
1
0


 ,




1
0
1






25. 6 27. 4 29. −3 31. 5

33.

{[
2
3

]}
35.

{[−2
3

]}

37.







−1
1
0


 ,




−3
0
1




 39.







1
−2

2






41. F 42. F 43. T 44. T 45. T

46. F 47. T 48. T 49. F 50. T

51. F 52. T 53. T 54. T 55. F

56. T 57. F 58. T 59. F 60. T

61. The only eigenvalue is 1; its eigenspace is Rn .

65. Null A

71. Either v = 0 or v is an eigenvector of A.

77. no

81. yes,




−1
1

−2
1


,




2
0
3
3


,




1
−1

2
0


,




0
−1

0
1




Section 5.2

1. 5,

{[−3
2

]}
, 6,

{[−1
1

]}

3. 0,

{[
3
5

]}
, −1,

{[
2
3

]}

5. −3,







1
1
1




, 2,







1
0
1






7. 6,







1
−1

1




, −2,







1
2
0


 ,




1
0
2






9. −3,







−1
1
1




, −2,







−1
1
0




, 1,







1
0
1






11. 3,







1
1
0
0







, 4,







0
1
0
1







, −1,







0
1
1
0


 ,




−1
1
0
1







13. −4,

{[−3
5

]}
, 1,

{[
1
0

]}

15. 3,

{[−2
3

]}
, 5,

{[−1
2

]}

17. −3,







1
0
1




, 1,







1
0
2






19. −1,







0
0
1




, 5,







0
−3

1






21. −6,







−1
1
1




, −2,







1
1
1




, 4,







0
1
0






23. −1,







1
0
0
0







, 1,







−1
1
0
0







, −2,







−1
−2

3
0







,

2,







7
−2
−1

4







25. 5,

{[
1
1

]}
, 7,

{[
3
4

]}

27. 2,

{[−2
1

]}
, 6,

{[−3
2

]}

29. −2,







1
1
0




, 4,







1
0
1






31. 1,







1
2
3




, 2,







−2
1
0


 ,




2
0
1
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33. −3,

{[
1
1

]}
, −2,

{[
1
2

]}

35. 5,

{[
2
5

]}
, 4,

{[
1
2

]}

37. −3,







1
1
0




, 2,







0
0
1






39. −3,







1
2
3




, 1,







0
1
0


 ,




0
0
1






45. 1 − 2i ,

{[
1

−2

]}
, 1 + 2i ,

{[−1
3

]}

47. 8 − 12i ,

{[
1 + 4i

1

]}
, 8 + 12i ,

{[
1 − 4i

1

]}

49. 2i ,







1
0
0




, 4,







i
2
0




, 1,







2
1
i






51. i ,







1
0
0




, 1,







0
1
0




, 2,







1
1
2






53. F 54. T 55. T 56. F 57. F

58. F 59. F 60. T 61. F 62. T

63. F 64. F 65. T 66. F 67. T

68. F 69. T 70. T 71. F 72. T

73. c is not an eigenvalue of A.

77. (a) (t − 5)3(t + 9)

(b) (t − 5)3(t + 9), (t − 5)2(t + 9)2, (t − 5)(t + 9)3

(c) (t − 5)2(t + 9)2, (t − 5)3(t + 9)

81. (a)

{[−1
1

]}
,

{[−2
1

]}
,

(b)

{[−1
1

]}
,

{[−2
1

]}

(c)

{[−1
1

]}
,

{[−2
1

]}

(d) v is an eigenvector of B if and only if v is an
eigenvector of cB .

(e) λ is an eigenvalue of B if and only if cλ is an
eigenvalue of cB .

83. (a) (t − 6)(t − 7)

(b) The characteristic polynomials of B and BT are
equal.

(c) The eigenvalues of B and BT are the same.

(d) no

87. −t3 + 23

15
t2 − 127

720
t + 1

2160

89.




0 0 0 5
1 0 0 −7
0 1 0 −23
0 0 1 11




91. (a) 3,

[
1
1

]
, −0.5,

[
1
2

]

(b)
1

3
,

[
1
1

]
, −2,

[
1
2

]

Section 5.3

1. P =
[−2 −3

1 1

]
, D =

[
4 0
0 5

]

3. The eigenspace corresponding to 2 is 1-dimensional.

5. P =



0 −2 −1
1 3 1
1 2 1


, D =




−5 0 0
0 2 0
0 0 3




7. There is only one real eigenvalue, and its multiplicity
is one.

9. P =



−1 −1 1
4 1 0
2 0 1


, D =




5 0 0
0 3 0
0 0 3




11. P =




0 −1 −1 1
0 1 0 0
1 0 1 0
0 0 0 1


, D =




4 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




13. The eigenspace corresponding to 1 is 1-dimensional.

15. P =
[−2 −3

1 2

]
, D =

[
3 0
0 2

]

17. P =



1 −1 −1
0 1 1
0 0 5


, D =




−1 0 0
0 −3 0
0 0 2




19. The eigenspace corresponding to 0 is 1-dimensional.

21. P =
[−i i

1 1

]
, D =

[
2 − i 0

0 2 + i

]

23. P =
[−2i 2i

1 1

]
, D =

[
1 − 3i 0

0 1 + i

]

25. P =



−1 −1 1
2 + i 2 − i −1

1 1 1


, D =




1 + i 0 0
0 1 − i 0
0 0 2




27. P =



1 0 0
0 1 i
0 0 1


, D =




2i 0 0
0 1 0
0 0 0




29. F 30. T 31. T 32. T 33. F
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34. F 35. F 36. T 37. F 38. F

39. T 40. F 41. F 42. T 43. T

44. F 45. F 46. T 47. F 48. F

51. (a) the eigenspace corresponding to −1 is
2-dimensional

(b) the eigenspace corresponding to −1 is
1-dimensional

53. (a) the eigenspace corresponding to −3 is
4-dimensional

(b) the eigenspace corresponding to −3 is not
4-dimensional

55. (a) −(t − 4)2(t − 5)(t − 8)2

(b) There is insufficient information because the
dimensions of W1 and W3 are not given. There-
fore the multiplicities of the eigenvalues 4 and 8
are not determined.

(c) −(t − 4)(t − 5)2(t − 8)2

57.

[−4k + 2 �3k 2 �4k − 2 �3k

−4k + 3k 2 �4k − 3k

]

59.

[−2 �2k + 3 �3k −6 �2k + 6 �3k

2k − 3k 3 �2k − 2 �3k

]

61.




−5k + 2 −2 �5k + 2 0
5k − 1 2 �5k − 1 0

0 0 5k




63. 3 65. all c 67. no c

69. −2 and −1 71. 2

73.

[ −7 4
−12 9

]
75.




−1 5 −4
0 −2 0
2 −5 5




77.

[
0 0
0 1

]
and

[
0 −1
0 −1

]
89. (c) λ1λ2 · · ·λn

91. P =




−3 −1 −8 −1
−1 −1 −1 −2

2 0 3 0
0 2 0 3


,

D =




−1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 −2




93. The eigenspace corresponding to 1 has dimension 2.

Section 5.4

1.




0 0 2
0 3 0
4 0 0


, no 3.




2 1 0
0 2 0
0 0 1


, no

5.




0 0 3
0 −2 0

−4 0 0


, no 7.




2 0 0
0 −1 0
0 0 −3


, yes

9. There are no real eigenvalues.

11.

{[
1
2

]
,

[
1
1

]}
13.







1
−1

1


 ,




0
−1

1


 ,




0
0
1






15. The eigenspace corresponding to −1 is 1-dimensional.

17.







1
1
0


 ,




0
1
1


 ,




1
0
0






19.







1
0
1
0


 ,




−1
2
0
0


 ,




1
0
2
0


 ,




−1
0
0
2







21. T has no real eigenvalues.

23.

{[
1
1

]
,

[−3
4

]}
25.







0
1
0


 ,




−1
0
1


 ,




0
1
1






27. The eigenspace corresponding to 1 is 2-dimensional.

29. F 30. F 31. T 32. F 33. F

34. T 35. T 36. T 37. T 38. F

39. T 40. F 41. F 42. F 43. T

44. F 45. T 46. T 47. T 48. F

49. c = 7 51. all scalars c 53. −3 and −1

55. all scalars c 57. no scalars c

59. TW






x1

x2

x3




 = 1

3




x1 − 2x2 − 2x3

−2x1 + x2 − 2x3

−2x1 − 2x2 + x3




61. TW






x1

x2

x3




 = 1

3




2x1 − 2x2 + x3

−2x1 − x2 + 2x3

x1 + 2x2 + 2x3




63. TW






x1

x2

x3




 = 1

90




88x1 − 16x2 + 10x3

−16x1 − 38x2 + 80x3

10x1 + 80x2 + 40x3




65. 2x + 2y + z = 0

67. UW






x1

x2

x3




 = 1

3




2x2 − x2 − x3

−x1 + 2x2 − x3

−x1 − x2 + 2x3




69. UW






x1

x2

x3




 = 1

6




5x1 − 2x2 + x3

−2x1 + 2x2 + 2x3

x1 + 2x2 + 5x3
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71. UW






x1

x2

x3




 = 1

90




89x1 − 8x2 + 5x3

−8x1 + 26x2 + 40x3

5x1 + 40x2 + 65x3




73. UW






x1

x2

x3




 = 1

9




5x1 − 4x2 − 2x3

−4x1 + 5x2 − 2x3

−2x1 − 2x2 + 8x3




85.







2
−2
−4

3
0




,




−1
1
2
0
3




,




−1
1

−3
2
0




,




1
1
3
0
2




,




1
0
1
0
0







Section 5.5

1. F 2. F 3. T 4. F 5. T

6. T 7. T 8. F 9. F 10. T

11. F 12. T

13. no 15. yes 17. no 19. yes

21.

[
.75
.25

]
23.




.25

.25

.50


 25.

1

6




1
3
2




27.
1

29




3
4

10
12




29. (a)

[
.25 .5
.75 .5

]

(b) .375

(c) .6

31. (a)




.7 .1 .1

.1 .6 .1

.2 .3 .8




(b) .6

(c) .33

(d) .25 buy brand A, .20 buy brand B, and .55 buy
brand C.

35. (a)

[
117
195

16
123

78
195

107
123

]

(b)
107

123
(c) about .809

(d) about .676

(e) about .245

37. (a) .05 (b) .1 (c) .3 (d)




.6

.3

.1




39. (a) u
(b) 1 is an eigenvalue of AT .

(d) 1 is an eigenvalue of A.

45.
y1 = −ae−3t + 2be4t

y2 = 3ae−3t + be4t

47.
y1 = −2ae−4t − be−2t

y2 = 3ae−4t + be−2t

49.
y1 = −ce2t

y2 = −ae−t + be2t

y3 = ae−t + ce2t

51.
y1 = ae−2t + be−t

y2 = −ae−2t − ce2t

y3 = 2ae−2t + 2be−t + ce2t

53.
y1 = 10ae−t + 5e3t

y2 = −20e−t + 10e3t

55.
y1 = −3e4t + 5e6t

y2 = 6e4t − 5e6t

57.
y1 = 4e−t + 5et − 9e2t

y2 = 5et − 3e2t

y3 = 4e−t − 3e2t

59.
y1 = 6e−t − 4et − 6e−2t

y2 = 6e−t − 8et − 3e−2t

y3 = −6e−t + 12et − 3e−2t

61. y = ae3t + be−t

63. y = 3e−t − 2et + e2t

65. y = e−t (c cos
√

3t + d sin
√

3t)

67. (a) y1 = 100e−2t + 800et , y2 = 100e−2t + 200et

(b) 2188 and 557 at time 1, 5913 and 1480 at time 2,
and 16069 and 4017 at time 3

(c) .25, no

71. rn = 8(−3)n

73. rn = .6(−1)n + .4(4)n , r6 = 1639

75. rn = 3(−3)n + 5(2n ), r6 = 2507

77. rn = 6(−1)n + 3(2n ), r6 = 198

79. (a) r0 = 1, r1 = 2, r2 = 7, r3 = 20

(b) rn = 2rn−1 + 3rn−2

(c) rn = ( 3
4

)
3n + ( 1

4

)
(−1)n

81.




rn

rn+1

rn+2


 =




0 1 0
0 0 1
5 −2 4






rn−1

rn

rn+1
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89.

y1 = −6e−0.8t − 2e−0.1t + e0.3t + 8et

y2 = −2e−0.1t + 2e0.3t − 4et

y3 = 6e−0.8t − 4et

y4 = −6e−0.8t + 4e−0.1t − 3e0.3t + 8et .

91. (a)


0.0150 0.0150 0.1850 0.1 0.0150 0.0150 0.2275 0.0150 0.0150 0.1
0.2275 0.0150 0.0150 0.1 0.4400 0.0150 0.0150 0.0150 0.0150 0.1
0.0150 0.0150 0.0150 0.1 0.0150 0.0150 0.0150 0.0150 0.0150 0.1
0.0150 0.4400 0.1850 0.1 0.0150 0.0150 0.0150 0.4400 0.0150 0.1
0.0150 0.0150 0.1850 0.1 0.0150 0.4400 0.2275 0.0150 0.4400 0.1
0.2275 0.0150 0.0150 0.1 0.0150 0.0150 0.2275 0.0150 0.0150 0.1
0.0150 0.4400 0.0150 0.1 0.0150 0.0150 0.0150 0.0150 0.0150 0.1
0.2275 0.0150 0.1850 0.1 0.0150 0.0150 0.0150 0.4400 0.0150 0.1
0.2275 0.0150 0.0150 0.1 0.0150 0.4400 0.2275 0.0150 0.0150 0.1
0.0150 0.0150 0.1850 0.1 0.4400 0.0150 0.0150 0.0150 0.4400 0.1




(b) vT = [
0.0643 0.1114 0.0392 0.1372 0.1377

0.0712 0.0865 0.1035 0.1015 0.1475
]T

,
which results in the rankings 10, 5, 4, 2, 8, 9,
7, 6, 1, 3.

Chapter 5 Review Exercises

1. T 2. F 3. T 4. T 5. T

6. T 7. F 8. F 9. F 10. F

11. T 12. T 13. F 14. T 15. T

16. T 17. T

19.

{[−3
2

]}
for 1 and

{[−2
1

]}
for 2

21.







−1
1
0




 for −2 and







0
1
0




 for −1

23. P =
[
2 1
1 3

]
and D =

[
2 0
0 7

]

25. The eigenspace corresponding to −1 has dimension 1.

27.

{[−2
1

]
,

[−1
4

]}

29.







0
0
1


 ,




1
1
0


 ,




−1
0
1


 ,




31. none

33. −2 and 2

35.

[
(−1)k+1 + 2k+1 2(−1)k − 2k+1

(−1)k+1 + 2k 2(−1)k − 2k

]

37.







−1
0
2


 ,




−1
1
0


 ,




−1
0
1


 ,




Chapter 5 MATLAB Exercises

1. (a) P =




1.00 0.80 0.75 1.00 1.00
−0.50 −0.40 −0.50 1.00 −1.00

0.00 −0.20 −0.25 0.00 −0.50
0.50 0.40 0.50 0.00 0.00
1.00 1.00 1.00 1.00 1.00




D =




3 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 2




(b) rank (A − 1
2 I4) = 3, but eigenvalue 1

2 has multi-
plicity 2

(c) P =




−1.25 −1.00 −0.50 −1.00
−0.25 −0.50 0.50 0.00

0.75 0.50 1.00 0.00
1.00 1.00 0.00 1.00




D =




−1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1




(d) rank (A − 0I5) = 4, but eigenvalue 0 has multi-
plicity 2

2. The eigenvalues of B and C are the same. Let J be the
matrix obtained from In by interchanging columns i
and j . If v is an eigenvector of B with correspond-
ing eigenvalue λ, then J v is an eigenvector of C
with corresponding eigenvalue λ. Similarly, if w is
an eigenvector of C with corresponding eigenvalue λ,
then J −1w is an eigenvector of B with corresponding
eigenvalue λ.

3.




−9 20 −5 −8 2
−5 11 −2 −4 1

0 0 2 0 0
−10 16 −4 −5 2
−27 60 −15 −24 6




4. (a)


0.0150 0.2983 0.0150 0.0150 0.2275 0.0150 0.2275 0.1 0.0150 0.4400
0.2275 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.1 0.4400 0.0150
0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.2275 0.1 0.0150 0.4400
0.0150 0.0150 0.0150 0.0150 0.2275 0.2983 0.0150 0.1 0.0150 0.0150
0.2275 0.0150 0.0150 0.4400 0.0150 0.0150 0.2275 0.1 0.4400 0.0150
0.0150 0.0150 0.0150 0.4400 0.0150 0.0150 0.2275 0.1 0.0150 0.0150
0.2275 0.0150 0.4400 0.0150 0.2275 0.2983 0.0150 0.1 0.0150 0.0150
0.0150 0.2983 0.0150 0.0150 0.0150 0.2983 0.0150 0.1 0.0150 0.0150
0.0150 0.2983 0.0150 0.0150 0.2275 0.0150 0.0150 0.1 0.0150 0.0150
0.2275 0.0150 0.4400 0.0150 0.0150 0.0150 0.0150 0.1 0.0150 0.0150




(b)




0.1442
0.0835
0.0895
0.0756
0.1463
0.0835
0.1442
0.0681
0.0756
0.0895




, which results in the rankings 5, 1, 7, 3,

10, 2, 6, 4, 9, 8.
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5. (a) A basis does not exist because the sum of the mul-
tiplicities of the eigenvalues of the standard matrix
of T is not 4.

(b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

−1
−1

0
1
0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0
−1
−1

0
1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

11
10
−3

−13
3

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

15
8

−4
−15

1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

5
10

0
−7

1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

6. (b) T

⎛
⎜⎜⎝

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

1.5x1 − 3.5x2 + 1.0x3 + 0.5x4

−3.0x1 + 3.6x2 − 0.2x3 + 1.0x4

−16.5x1 + 22.3x2 − 3.6x3 + 5.5x4

4.5x1 − 8.3x2 + 1.6x3 + 1.5x4

⎤
⎥⎥⎦.

(c) T is not diagonalizable.

7. (a) T

⎛
⎜⎜⎝

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

11.5x1 − 13.7x2 + 3.4x3 − 4.5x4

5.5x1 − 5.9x2 + 1.8x3 − 2.5x4

−6.0x1 + 10.8x2 − 1.6x3

5.0x1 − 5.6x2 + 1.2x3 − 3.0x4

⎤
⎥⎥⎦

(b) Answers are given correct to 4 places after the
decimal point.⎧⎪⎨
⎪⎩

⎡
⎢⎣

0.7746

0.5164

0.2582

0.2582

⎤
⎥⎦ ,

⎡
⎢⎣

0.0922

0.3147

0.9440

−0.0382

⎤
⎥⎦ ,

⎡
⎢⎣

0.6325

0.3162

−0.6325

0.3162

⎤
⎥⎦ ,

⎡
⎢⎣

0.3122

0.1829

0.5486

0.7537

⎤
⎥⎦

⎫⎪⎬
⎪⎭

8. Answers are given correct to 4 places after the decimal
point.

(b)

⎡
⎢⎢⎢⎢⎣

.2344

.1934

.1732

.2325

.1665

⎤
⎥⎥⎥⎥⎦

,

(c)

⎡
⎢⎢⎢⎢⎣

5.3
5.2
5.1
6.1
3.3

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

5.8611
4.8351
4.3299
5.8114
4.1626

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

5.8610
4.8351
4.3299
5.8114
4.1625

⎤
⎥⎥⎥⎥⎦

(d) A100p ≈ 25v

9. rn = (0.2)3n − 2n − (0.2)(−2)n + 4 + 2(−1)n

Chapter 6
Section 6.1

1. ‖u‖ = √
34, ‖v‖ = √

20, and d = √
58

3. ‖u‖ = √
2, ‖v‖ = √

5, and d = √
5

5. ‖u‖ = √
11, ‖v‖ = √

5, and d = √
14

7. ‖u‖ = √
7, ‖v‖ = √

15, and d = √
26

9. 0, yes 11. 1, no 13. 0, yes 15. −2, no

17. ‖u‖2 = 20, ‖v‖2 = 45, ‖u + v‖2 = 65

19. ‖u‖2 = 13, ‖v‖2 = 0, ‖u + v‖2 = 13

21. ‖u‖2 = 14, ‖v‖2 = 3, ‖u + v‖2 = 17

23. ‖u‖2 = 14, ‖v‖2 = 138, ‖u + v‖2 = 152

25. ‖u‖ = √
13, ‖v‖ = √

52, ‖u + v‖ = √
13

27. ‖u‖ = √
20, ‖v‖ = √

10, ‖u + v‖ = √
50

29. ‖u‖ = √
21, ‖v‖ = √

11, ‖u + v‖ = √
34

31. ‖u‖ = √
14, ‖v‖ = √

17, ‖u + v‖ = √
53

33. ‖u‖ = √
13, ‖v‖ = √

34, u �v = −1

35. ‖u‖ = √
17, ‖v‖ = 2, u �v = −2

37. ‖u‖ = √
41, ‖v‖ = √

18, u �v = 0

39. ‖u‖ = √
21, ‖v‖ = √

6, u �v = 5

41. w =
[

5
0

]
and d = 0

43. w = 1

2

[−1
1

]
and d = 7

√
2

2

45. w =
[

0.7
2.1

]
and d = 1.1

√
10

49. −3 51. 11 53. 441 55. 21

57. 7 59. 49

61. T 62. F 63. F 64. F 65. F

66. T 67. T 68. T 69. T 70. F

71. F 72. T 73. T 74. T 75. T

76. F 77. T 78. F 79. T 80. T

99. 135◦ 101. 180◦ 103. 60◦ 105. 150◦

121. v = 26

3
≈ 8.6667 and v∗ = 244

26
≈ 9.3846

123. v = v∗ = 22

Section 6.2

1. no 3. no 5. no 7. yes

9. (a)

⎧⎨
⎩

⎡
⎣

1
1
1

⎤
⎦ ,

⎡
⎣

3
−3

0

⎤
⎦
⎫⎬
⎭

(b)

⎧⎨
⎩

1√
3

⎡
⎣

1
1
1

⎤
⎦ ,

1√
2

⎡
⎣

1
−1

0

⎤
⎦
⎫⎬
⎭

11. (a)

⎧⎨
⎩

⎡
⎣

1
−2
−1

⎤
⎦ ,

⎡
⎣

9
3
3

⎤
⎦
⎫⎬
⎭

(b)

⎧⎨
⎩

1√
6

⎡
⎣

1
−2
−1

⎤
⎦ ,

1√
11

⎡
⎣

3
1
1

⎤
⎦
⎫⎬
⎭
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13. (a)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦ ,

1

3

⎡
⎢⎢⎣

3
−2

1
1

⎤
⎥⎥⎦ ,

1

5

⎡
⎢⎢⎣

3
3

−4
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

(b)

⎧⎪⎪⎨
⎪⎪⎩

1√
3

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦ ,

1√
15

⎡
⎢⎢⎣

3
−2

1
1

⎤
⎥⎥⎦ ,

1√
35

⎡
⎢⎢⎣

3
3

−4
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

15. (a)

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0

−1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0

−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
−1

3
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

(b)

⎧⎪⎪⎨
⎪⎪⎩

1√
3

⎡
⎢⎢⎣

1
0

−1
1

⎤
⎥⎥⎦ ,

1√
3

⎡
⎢⎢⎣

1
1
0

−1

⎤
⎥⎥⎦ ,

1√
15

⎡
⎢⎢⎣

2
−1

3
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

17. u = 2

[
2
1

]
+ 3

[−1
2

]

19. u = (−1)

⎡
⎣

−1
3

−2

⎤
⎦ + (−2)

⎡
⎣

−1
1
2

⎤
⎦ + 4

⎡
⎣

4
2
1

⎤
⎦

21. u = 5

2

⎡
⎢⎣

1

0

1

⎤
⎥⎦ + 3

6

⎡
⎢⎣

1

2

−1

⎤
⎥⎦ + 0

⎡
⎢⎣

1

−1

−1

⎤
⎥⎦

23. u = (−4)

⎡
⎢⎢⎣

1
−1
−1

1

⎤
⎥⎥⎦ + 2

⎡
⎢⎢⎣

2
1
1
0

⎤
⎥⎥⎦ + (−1)

⎡
⎢⎢⎣

−1
1
1
3

⎤
⎥⎥⎦

25. Q =

⎡
⎢⎢⎢⎣

1√
3

1√
2

1√
3

− 1√
2

1√
3

0

⎤
⎥⎥⎥⎦ and R =

[√
3 2

√
3

0 3
√

2

]

27. Q =

⎡
⎢⎢⎢⎣

1√
6

3√
11

− 2√
6

1√
11

− 1√
6

1√
11

⎤
⎥⎥⎥⎦ and R =

[√
6 −2

√
6

0 3
√

11

]

29. Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3√
15

3√
35

1√
3

− 2√
15

3√
35

1√
3

1√
15

− 4√
35

1√
3

1√
15

1√
35

⎤
⎥⎥⎥⎥⎥⎥⎦

and

R =

⎡
⎢⎢⎢⎣

√
3 2√

3
2√
3

0
√

15
3

2√
15

0 0 7√
35

⎤
⎥⎥⎥⎦

31. Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
3

1√
3

2√
15

0 1√
3

− 1√
15

− 1√
3

0 3√
15

1√
3

− 1√
3

1√
15

⎤
⎥⎥⎥⎥⎥⎥⎦

and

R =

⎡
⎢⎢⎢⎣

√
3

√
3 2

√
3

0
√

3 − 2√
3

0 0 5√
15

⎤
⎥⎥⎥⎦

33.

[
2

−1

]
35.

[
3

−2

]
37.

⎡
⎣

−2
1
3

⎤
⎦ 39.

⎡
⎣

2
−4

3

⎤
⎦

41. F 42. T 43. T 44. T 45. T

46. T 47. T 48. T 49. F 50. F

51. T 52. F

67. (a) rank A = 3

(b) Q =

⎡
⎢⎢⎢⎢⎢⎣

−0.3172 −0.4413 −0.5587

0.2633 −0.4490 −0.2951

0.7182 −0.4040 −0.0570

−0.5386 −0.5875 0.3130

−0.1556 0.3087 −0.7068

⎤
⎥⎥⎥⎥⎥⎦

and

R =

⎡
⎢⎣

−16.7096 6.4460 6.3700

0.0000 −20.7198 −3.7958

0.0000 0.0000 −15.6523

⎤
⎥⎦

Section 6.3

1.

⎧⎨
⎩

⎡
⎣

1
1
0

⎤
⎦ ,

⎡
⎣

−2
0
1

⎤
⎦
⎫⎬
⎭ 3.

⎧⎨
⎩

⎡
⎣

1
1

−1

⎤
⎦
⎫⎬
⎭

5.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−5
−2

1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
−1

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

7.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−2

1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

9. (a) w =
[−1

1

]
and z =

[
2
2

]

(b)

[−1
1

]
(c)

√
8
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11. (a) w = u and z = 0

(b)




1
4

−1


 (c) 0

13. (a) w =




2
2
3
1


 and z =




0
2

−2
2




(b)




2
2
3
1


 (c)

√
12

15. (a) w =




3
4

−2
3


 and z =




−3
1

−1
1




(b)




3
4

−2
3


 (c)

√
12

17. (a) PW = 1

25

[
9 −12

−12 16

]

(b) w =
[−6

8

]
, z =

[−4
−3

]
, (c) 5

19. (a) PW = 1

6




1 −2 −1
−2 4 2
−1 2 1




(b) w = 1

3




−1
2
1


, z = 4

3




1
1

−1


 (c)

4√
3

21. (a) PW = 1

33




22 11 0 11
11 19 9 −8
0 9 6 −9

11 −8 −9 19




(b) w =




3
0

−1
3


, z =




−2
1
3
3


 (c)

√
23

23. (a) PW = 1

12




11 1 −3 1
1 11 3 −1

−3 3 3 3
1 −1 3 11




(b) w =




3
−1

0
4


, z =




−1
1

−3
1


 (c)

√
12

25. (a) PW = 1

6




5 −2 1
−2 2 2

1 2 5




(b) w =



2
−1

0


, z =




1
2

−1


 (c)

√
6

27. (a) PW = 1

42




25 −20 5
−20 16 −4

5 −4 1




(b) w =



5
−4

1


, z =




3
4
1


 (c)

√
26

29. (a) PW = 1

11




6 −2 −1 −5
−2 8 4 −2
−1 4 2 −1
−5 −2 −1 6




(b) w =




0
4
2

−2


, z =




1
1

−1
1


 (c) 2

31. (a) PW =
[
1 0
0 1

]

(b) w =
[
2
3

]
, z =

[
0
0

]
(c) 0

33. F 34. F 35. T 36. F 37. T

38. T 39. T 40. T 41. T 42. F

43. F 44. T 45. T 46. F 47. T

48. F 49. F 50. T 51. F 52. T

53. T 54. F 55. T 56. T

79. (b)
1

6




4 2 0 −2
2 3 2 1
0 2 2 2

−2 1 2 3




81.
1

3




2 −1 0 1
−1 1 −1 0

0 −1 2 −1
1 0 −1 1




85. (a) There is no unique answer. Using Q in the MAT-
LAB command [Q R] = qr(A, 0) (see Table D.3
in Appendix D), where A is the matrix whose
columns are the vectors in S, we obtain





0

0.2914

−0.8742

0

0.3885


,




0.7808

−0.5828

−0.1059

0

0.1989


,




−0.0994

−0.3243

−0.4677

0.1082

−0.8090


,




−0.1017

−0.1360

−0.0589

−0.9832

−0.0304







.
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(b) w =

⎡
⎢⎢⎢⎣

−6.3817

6.8925

7.2135

1.3687

2.3111

⎤
⎥⎥⎥⎦

(c) ‖u − w‖ = 4.3033

87. PW =⎡
⎢⎢⎢⎢⎣

0.6298 −0.4090 −0.0302 0.0893 0.2388
−0.4090 0.5482 −0.0334 0.0986 0.2638
−0.0302 −0.0334 0.9975 0.0073 0.0195

0.0893 0.0986 0.0073 0.9785 −0.0576
0.2388 0.2638 0.0195 −0.0576 0.8460

⎤
⎥⎥⎥⎥⎦

Section 6.4

1. y = 13.5 + x 3. y = 3.2 + 1.6x

5. y = 44 − 3x 7. y = 9.6 + 2.6x

9. y = −6.35 + 2.1x , the estimates of k and L are 2.1
and 3.02, respectively.

11. 3 − x + x 2 13. 2 + 0.5x + 0.5x 2

15. −1 + x 2 + x 3

17.
1

3

⎡
⎣

4
−2

0

⎤
⎦ + x3

⎡
⎣

−1
1
1

⎤
⎦

19.
1

19

⎡
⎢⎢⎣

−35
−50

31
0

⎤
⎥⎥⎦ + x4

⎡
⎢⎢⎣

0
1

−1
1

⎤
⎥⎥⎦

21.
1

3

⎡
⎣

7
−1

8

⎤
⎦ 23.

⎡
⎢⎢⎣

1
−1

1
0

⎤
⎥⎥⎦

25.
1

3

⎡
⎣

2
0
2

⎤
⎦ 27.

1

19

⎡
⎢⎢⎣

−35
−23

4
27

⎤
⎥⎥⎦

28. F 29. T 30. F 31. F 32. T

39. y = 1.42 + 0.49x + 0.38x 2 + 0.73x 3

41. a = 3.0 and b = −2.0

Section 6.5

1. no 3. no 5. yes 7. no

9. a reflection, y = (
√

2 − 1)x

11. a rotation, θ = 30◦

13. a reflection, y = 2
3 x

15. a rotation, θ = 270◦

17. T 18. F 19. F 20. T 21. T

22. T 23. F 24. F 25. T 26. F

27. F 28. T 29. T 30. T 31. F

32. F 33. F 34. T 35. T 36. T

37. One possibility is to let T = TA for

A = 1

91

⎡
⎣

14
√

13 21
√

13 0
−18

√
13 12

√
13 13

√
13

39 −26 78

⎤
⎦.

39. (b) The only eigenvalue is λ = 1, and the correspond-
ing eigenspace is Span {e3}.

41. One possibility is to let T = TA for

A = 1

21

⎡
⎣

20 4 −5
−5 20 −4

4 5 20

⎤
⎦.

61. Q =
[

1 0
0 −1

]
and b =

[
1
4

]

63. Q =
[
.8 −.6
.6 .8

]
and b =

[
0
3

]

67. (a) A2 =
[

0 −1
−1 0

]
, A3 = 1

3

⎡
⎣

1 −2 −2
−2 1 −2
−2 −2 1

⎤
⎦,

and A6 is the 6 × 6 matrix whose diagonal entries
are 2

3 and whose off diagonal entries are − 1
3 .

71.

[
0.7833 0.6217
0.6217 −0.7833

]
(rounded to 4 places after the

decimal)

73. 231◦

Section 6.6

1. (a)

[
2 −7

−7 50

]

(b) about 8.1◦

(c)

x = 7√
50

x ′ − 1√
50

y ′

y = 1√
50

x ′ + 7√
50

y ′

(d) (x ′)2 + 51(y ′)2 = 255

(e) an ellipse

3. (a)

[
1 −6

−6 −4

]

(b) about 56.3◦

(c)

x = 2√
13

x ′ − 3√
13

y ′

y = 3√
13

x ′ + 2√
13

y ′

(d) −8(x ′)2 + 5(y ′)2 = 40

(e) a hyperbola
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5. (a)

[
5 2
2 5

]

(b) 45◦

(c)

x = 1√
2
x ′ − 1√

2
y ′

y = 1√
2
x ′ + 1√

2
y ′

(d) 7(x ′)2 + 3(y ′)2 = 9

(e) an ellipse

7. (a)

[
1 2
2 1

]

(b) 45◦

(c)

x = 1√
2
x ′ − 1√

2
y ′

y = 1√
2
x ′ + 1√

2
y ′

(d) 3(x ′)2 − (y ′)2 = 7

(e) a hyperbola

9. (a)

[
2 −6

−6 −7

]

(b) about 63.4◦

(c)

x = 1√
5
x ′ − 2√

5
y ′

y = 2√
5
x ′ + 1√

5
y ′

(d) −10(x ′)2 + 5(y ′)2 = 200

(e) a hyperbola

11. (a)

[
1 1
1 1

]

(b) 45◦

(c)

x = 1√
2
x ′ − 1√

2
y ′

y = 1√
2
x ′ + 1√

2
y ′

(d) 2
√

2(x ′)2 + 9x ′ − 7y ′ = 0

(e) a parabola

13.

{
1√
2

[
1

−1

]
,

1√
2

[
1
1

]}
, 2 and 4,

A = 2

[
0.5 −0.5

−0.5 0.5

]
+ 4

[
0.5 0.5
0.5 0.5

]

15.

{
1√
2

[
1
1

]
,

1√
2

[
1

−1

]}
, 3 and −1,

A = 3

[
0.5 0.5
0.5 0.5

]
+ (−1)

[
0.5 −0.5

−0.5 0.5

]

17.




1

3




−1
−2

2


 ,

1

3




2
1
2


 ,

1

3




−2
2
1




, 3, 6, and 0,

A = 3




1
9

2
9 − 2

9
2
9

4
9 − 4

9

− 2
9 − 4

9
2
9


 + 6




4
9

2
9

4
9

2
9

1
9

2
9

4
9

2
9

4
9


+

0




4
9 − 4

9 − 2
9

− 4
9

4
9

2
9

− 2
9

2
9

1
9




19.







1
0
0


 ,

1√
5




0
−2

1


 ,

1√
5




0
1
2




 −1, −1, and 4,

A = (−1)




1 0 0
0 0 0
0 0 0


 + (−1)




0 0 0
0 .8 −.4
0 −.4 .2




+ 4




0 0 0
0 .2 .4
0 .4 .8




21. T 22. F 23. T 24. F 25. F

26. T 27. T 28. F 29. T 30. T

31. T 32. F 33. T 34. F 35. F

36. F 37. T 38. T 39. F 40. F

41. 2

[
1 0
0 0

]
+ 2

[
0 0
0 1

]
and

2

[
.5 .5
.5 .5

]
+ 2

[
.5 −.5

−.5 .5

]

Section 6.7

1.




1√
2

− 1√
2

1√
2

1√
2



[√

2 0
0 0

] [
1 0
0 1

]T

3.




1
3

2√
5

2
3
√

5

2
3

−1√
5

4
3
√

5

2
3 0 −5

3
√

5







3
0
0


 [1]T

5.




3√
35

1√
10

−3√
14

−1√
35

3√
10

1√
14

5√
35

0 2√
14







√
7 0

0
√

2
0 0






1√
5

2√
5

2√
5

−1√
5




T
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7.




1√
2

1√
2

−1√
2

1√
2



[
2 0 0
0

√
2 0

]



0 1 0

1√
2

0 1√
2

1√
2

0 −1√
2




T

9.




1√
6

5√
30

0

2√
6

−2√
30

1√
5

1√
6

−1√
30

−2√
5







√
6 0 0

0
√

6 0
0 0 1







1 0 0

0 1√
5

2√
5

0 2√
5

−1√
5




T

11.




1√
5

2√
5

−2√
5

1√
5



[√

30 0 0
0 0 0

]



1√
6

1√
3

1√
2

−1√
6

−1√
3

1√
2

2√
6

−1√
3

0




T

13.




1√
5

2√
5

−2√
5

1√
5



[√

7 0 0
0

√
2 0

]



3√
35

1√
10

3√
14

−5√
35

0 2√
14

−1√
35

3√
10

−1√
14




T

15. The singular value decomposition is U�V T , where

U =




2√
5

1√
5

0

1√
5

−2√
5

0

0 0 1


 , � =




√
60 0 0 0
0

√
15 0 0

0 0 0 0


 ,

and V =




1√
3

−1√
3

1√
6

1√
6

1√
3

1√
3

1√
6

−1√
6

1√
3

0 −2√
6

0

0 1√
3

0 2√
6




.

17. The singular value decomposition is U�V T , where

U =




1√
3

2√
6

0

1√
3

−1√
6

1√
2

−1√
3

1√
6

1√
2


 , � =




√
21 0 0 0
0

√
18 0 0

0 0 0 0


 ,

and V =




1√
7

1√
3

1√
11

1√
2

2√
7

−1√
3

1√
11

0

1√
7

0 −3√
11

0

1√
7

1√
3

0 −1√
2




.

19. In the accompanying figure, u1 = 1√
2

[
1

−1

]
,

u2 = 1√
2

[
1
1

]
, OP = 2

√
2, and OQ = √

2.

x

Q

O

u2

u1

P

y

Figure for Exercise 19

21.

[
1
1

]
23.




3
−4

1


 25. 1

35




20
−37

11




27.




3
1
1


 29.

[
0.04
0.08

]
31.

1

7

[
12
3

]

33.
5

6




3
3
2


 35.

1

154




−11
30
27


 37.

1

9
[1 2 2]

39.
1

3




2 1
−1 −2
−1 1


 41.

1

14

[
4 8 2
1 −5 4

]

43.
1

4




2 2
1 −1
1 −1


 45.

1

14




4 −1
−2 4

8 5




47.
1

9




1 2 2
2 4 4
2 4 4


 49.

1

3




2 1 1
1 2 −1
1 −1 2




51.
1

75




74 7 5
7 26 −35
5 −35 50


 53.

1

14




5 3 6
3 13 −2
6 −2 10




55. F 56. T 57. F 58. T 59. F

60. F 61. T 62. T 63. F 64. T

65. T 66. F 67. F 68. T 69. F

70. T 71. T 72. F 73. T 74. F

75. T

93. (rounded to 4 places after the decimal)

U =



0.5836 0.7289 −0.3579
0.7531 −0.6507 −0.0970
0.3036 0.2129 0.9287


,
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� =
⎡
⎣

5.9073 0 0 0
0 2.2688 0 0
0 0 1.7194 0

⎤
⎦,

V =

⎡
⎢⎢⎣

0.3024 −0.3462 −0.8612 −0.2170
0.0701 0.9293 −0.3599 0.0434
0.2777 0.1283 0.2755 −0.9113
0.9091 0.0043 0.2300 0.3472

⎤
⎥⎥⎦,

and

A† =

⎡
⎢⎢⎣

0.0979 0.1864 −0.4821
0.3804 −0.2373 −0.1036
0.0113 −0.0169 0.1751
0.0433 0.1017 0.1714

⎤
⎥⎥⎦

Section 6.8

1. x = 1 3. s2
x = 13

5. cov(x, y) = 5

2
7.

[
13 5

2
5
2 1

]

9. T 10. F 11. F 12. F 13. F

14. T 15. F 16. T 17. T 18. T

14. T 20. T

Section 6.9

1.

⎡
⎣

0 1 0
0 0 −1

−1 0 0

⎤
⎦ 3.

1√
2

⎡
⎣

1 −1 0
0 0 −√

2
1 1 0

⎤
⎦

5.
1

4

⎡
⎣

2
√

3 0 2
1 2

√
3 −√

3
−√

3 2 3

⎤
⎦

7.

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

9.
1

2
√

2

⎡
⎣

√
2 + 1

√
2 − 1 −√

2√
2 − 1

√
2 + 1

√
2√

2 −√
2 2

⎤
⎦

11.
1

4

⎡
⎣

√
3 + 2

√
3 − 2 −√

2√
3 − 2

√
3 + 2 −√

2√
2

√
2 2

√
3

⎤
⎦

13.
1

3

⎡
⎣

2 −2 −1
1 2 −2
2 1 2

⎤
⎦

15. (a)

⎡
⎣

−1
−1

1

⎤
⎦ (b) −1

2

17. (a)

⎡
⎣

√
2 + 1
−1
1

⎤
⎦ (b)

1 − √
2

2
√

2

19. (a)

⎡
⎣

1
1

2 − √
3

⎤
⎦ (b)

4
√

3 − 1

8

21. (a)

⎡
⎣

√
3√

2 + 1
1

⎤
⎦ (b)

3
√

2 − 2

8

23.
1

3

⎡
⎣

2 2 −1
2 −1 2

−1 2 2

⎤
⎦ 25.

1

3

⎡
⎣

1 −2 −2
−2 1 −2
−2 −2 1

⎤
⎦

27.
1

9

⎡
⎣

7 −4 4
−4 1 8

4 8 1

⎤
⎦ 29.

1

25

⎡
⎣

16 12 −15
12 9 20

−15 20 0

⎤
⎦

31.
1

3

⎡
⎣

2 −2 1
−2 −1 2

1 2 2

⎤
⎦ 33.

1

5

⎡
⎣

3 0 −4
0 5 0

−4 0 3

⎤
⎦

35.
1

25

⎡
⎣

16 −12 −15
−12 9 −20
−15 −20 0

⎤
⎦ 37.

1

9

⎡
⎣

1 4 −8
4 7 4

−8 4 1

⎤
⎦

39. (a) neither

41. (a) a rotation (b) e1

43. (a) a rotation (b)

⎡
⎣

2
1

−2

⎤
⎦

45. (a) a reflection (b)

⎧⎨
⎩

⎡
⎣

1
0√

2 − 1

⎤
⎦ ,

⎡
⎣

0
1
0

⎤
⎦
⎫⎬
⎭

47. F 48. F 49. F 50. F 51. T

52. F 53. T 54. T 55. T 56. F

57. T 58. T 59. F 60. T 61. T

62. T 63. F 64. F 65. F 66. F

67. T

79.

⎡
⎣

0 −1 0
1 0 0
0 0 −1

⎤
⎦

83. (rounded to 4 places after the decimal)

Span

⎧⎨
⎩

⎡
⎣

.4609

.1769

.8696

⎤
⎦
⎫⎬
⎭, 48◦

Chapter 6 Review Exercises

1. T 2. T 3. F 4. T 5. T

6. T 7. T 8. T 9. F 10. F
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11. T 12. F 13. F 14. F 15. F

16. T 17. T 18. F 19. T

21. (a) ‖u‖ = √
45, ‖v‖ = √

20

(b) d = √
65

(c) u �v = 0

(d) u and v are orthogonal.

23. (a) ‖u‖ = √
6, ‖v‖ = √

21

(b) d = √
27

(c) u �v = 0

(d) u and v are orthogonal.

25. w = 1

5

[−1
2

]
, d = 3.5777

27. 1 29. 113

31.







1
1

−1
0


 ,

1

3




1
1
2
3


 ,

1

5




−2
3
1

−1







33.







6
−7

5
0


 ,




−2
4
0
5







35. w = 1

14




32
19

−27


 and z = 1

14




−18
9

−15




37. PW = 1

6




1 2 0 −1
2 4 0 −2
0 0 0 0

−1 −2 0 1


 and

w =




2
4
0

−2




39. PW = 1

3




1 1 −1 0
1 1 −1 0

−1 −1 1 0
0 0 0 3


 and w =




0
0
0
2




41. v ≈ 2.05 and c ≈ 1.05

43. no 45. yes

47. a rotation, θ = −60◦

49. a reflection, y = 1√
3
x

53.

{
1√
2

[−1
1

]
,

1√
2

[
1
1

]}
, −1 and 5,

A = (−1)

[
0.5 −0.5

−0.5 0.5

]
+ 5

[
0.5 0.5
0.5 0.5

]

55. 45◦,
(x ′)2

4
− (y ′)2

8
= 1, a hyperbola

Chapter 6 MATLAB Exercises

1. (a) u1 �u2 = −2, ‖u1‖ = 4,

‖u2‖ = √
23 ≈ 4.7958

(b) u3 �u4 = −56, ‖u3‖ = √
28 ≈ 5.2915,

‖u4‖ = √
112

(c) |u1 �u2| = 2 ≤ 4
√

23 = ‖u1‖ �‖u2‖
(d) |u3 �u4| = 56 = √

28 �

√
112 = ‖u3‖ �‖u4‖

2. (b)







−2.8
−0.8

1.0
0.0
0.0




,




−1.6
1.4
0.0
1.0
0.0




,




−0.8
−0.8

0.0
0.0
1.0







3. Answers are given correct to 4 places after the decimal
point.

(a)







−0.1994
0.1481

−0.1361
−0.6282
−0.5316

0.4924




,




0.1153
0.0919

−0.5766
0.6366

−0.4565
0.1790




,




0.3639
−0.5693

0.5469
0.1493

−0.4271
0.1992







(b) (i)




1.3980
−1.5378

1.4692
2.7504
1.4490

−1.6574




(ii)




1
−2

2
−1
−3

2




(iii)




0
0
0
0
0




(c) They are the same.

(d) If M is a matrix whose columns form an orthonor-
mal basis for a subspace W of Rn , then Pw =
MM T ; that is, MM T is the orthogonal projection
matrix for W .

4. Answers are given correct to 4 places after the decimal
point.

(a) V =




1.1000 2.7581 −2.6745 −0.3438
2.3000 5.8488 1.4345 −1.0069
3.1000 2.3093 −0.2578 3.1109
7.2000 −1.9558 0.4004 1.5733
8.0000 −1.1954 −0.3051 −2.2847




(b) D =




131.9500 0.0000 0.0000 0.0000
0.0000 52.4032 0.0000 0.0000
0.0000 0.0000 9.5306 0.0000
0.0000 0.0000 0.0000 18.5046
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(c) Q =




0.0958 0.3810 −0.8663 −0.0799
0.2002 0.8080 0.4647 −0.2341
0.2699 0.3190 −0.0835 0.7232
0.6268 −0.2702 0.1297 0.3657
0.6964 −0.1651 −0.0988 −0.5311




(d) R =




11.4869 −3.7399 1.0804 13.1166
0.0000 7.2390 −6.3751 2.6668
0.0000 0.0000 3.0872 −5.9697
0.0000 0.0000 0.0000 4.3017




(e) In this case, we have

Q =




−0.0958 −0.3810 0.8663 −0.0799
−0.2002 −0.8080 −0.4647 −0.2341
−0.2699 −0.3190 0.0835 0.7232
−0.6268 0.2702 −0.1297 0.3657
−0.6964 0.1651 0.0988 −0.5311




R =




−11.4869 3.7399 −1.0804 −13.1166
0.0000 −7.2390 6.3751 −2.6668
0.0000 0.0000 −3.0872 5.9697
0.0000 0.0000 0.0000 4.3017




5. Answers are given correct to 4 places after the decimal
point.

Q =




0.2041 0.4308 0.3072 0.3579
0.8165 −0.1231 0.2861 0.2566

−0.2041 0.3077 0.6264 −0.1235
0.4082 −0.2462 −0.3222 −0.2728
0.2041 0.8001 −0.4849 −0.1253
0.2041 0.0615 0.3042 −0.8371




R =




4.8990 3.2660 −1.4289 1.8371
0.0000 5.4160 −0.0615 3.5081
0.0000 0.0000 7.5468 −2.2737
0.0000 0.0000 0.0000 2.2690




6. Answers are given correct to 4 places after the decimal
point.

(a) B1 =







−0.1194
0.1481

−0.1361
−0.6282
−0.5316

0.4924




,




0.1153
0.0919

−0.5766
0.6366

−0.4565
0.1790




,




0.3639
−0.5693

0.5469
0.1493

−0.4271
0.1992







(b) B2 =







0.8986
0.3169

−0.1250
−0.2518

0.1096
0.0311




,




−0.0808
0.6205
0.5183
0.3372
0.1022
0.4644




,




0.0214
−0.4000
−0.2562

0.0246
0.5514
0.6850







(c) PPT = PT P = I6
7. Answers are given correct to 4 places after the decimal

point.

(a) PW =


0.3913 0.0730 −0.1763 −0.2716 0.2056 −0.2929

0.0730 0.7180 −0.1688 −0.1481 0.1328 0.3593

−0.1763 −0.1688 0.8170 −0.2042 0.1690 0.1405

−0.2716 −0.1481 −0.2042 0.7594 0.1958 0.0836

0.2056 0.1328 0.1690 0.1958 0.8398 −0.0879

−0.2929 0.3593 0.1405 0.0836 −0.0879 0.4744




(b) same as (a)

(c) PW v = v for all v in S.

(d)







−1.75
−0.50
−1.00
−1.25

1.00
0.00




,




0.85
−0.60
−0.10

0.05
0.00
1.00







In each case, PW v = 0.

8. Answers are given correct to 4 places after the decimal
point.

(b) y = 0.5404 + 0.4091x

(c) y = 0.2981 + 0.7279x − 0.0797x 2

9. In the case of the least squares line, the i th entry of
C ∗ a is a0 + a1xi , where xi is the second entry of the
i th row of C . Similarly, for the best quadratic fit, the
i th entry of C ∗ a is a0 + a1xi + a2x 2

i .

10. Answers are given correct to 4 places after the decimal
point.

(a) y = 1.1504x

(b) y = 9.5167x

11. Answers are given correct to 4 places after the decimal
point.

(a) P =


−0.5000 −0.5477 −0.5000 −0.4472 0.0000
0.5000 −0.5477 0.5000 −0.4472 0.0000

−0.5000 0.3651 0.5000 −0.4472 0.4082
0.0000 0.3651 0.0000 −0.4472 −0.8165
0.5000 0.3651 −0.5000 −0.4472 0.4082




D =




−4 0 0 0 0
0 0 0 0 0
0 0 −8 0 0
0 0 0 5 0
0 0 0 0 12




(b) The columns of P form an orthonormal basis, and
the diagonal entries of D (in the same order) are
the corresponding eigenvalues.

(c) A = −4




0.25 −0.25 0.25 0.00 −0.25

−0.25 0.25 −0.25 0.00 0.25

0.25 −0.25 0.25 0.00 −0.25

0.00 0.00 0.00 0.00 0.00

−0.25 0.25 −0.25 0.00 0.25
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+ 0




0.3000 0.3000 −0.2000 −0.2000 −0.2000

0.3000 0.3000 −0.2000 −0.2000 −0.2000

−0.2000 −0.2000 0.1333 0.1333 0.1333

−0.2000 −0.2000 0.1333 0.1333 0.1333

−0.2000 −0.2000 0.1333 0.1333 0.1333




− 8




0.25 −0.25 −0.25 0.00 0.25

−0.2500 0.2500 0.2500 0.00 −0.25

−0.2500 0.2500 0.2500 0.00 −0.25

0.00 0.00 0.00 0.00 0.00

0.2500 −0.2500 −0.2500 0.00 0.25




+ 5




0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2




+ 12




0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.1667 −0.3333 0.1667

0.0000 0.0000 −0.3333 0.6667 −0.3333

0.0000 0.0000 0.1667 −0.3333 0.1667




(d) A2 =




−2 2 2 0 −2
2 −2 −2 0 2
2 −2 0 −4 4
0 0 −4 8 −4

−2 2 4 −4 0




(e) ‖E2‖ = 6.4031 ‖A‖ = 15.7797

(f) 40.58%

12. Answers are given correct to 4 places after the decimal
point.

(a) U =




−0.5404 0.6121 0.2941 0.4968

−0.6121 −0.5404 −0.4968 0.2941

−0.5762 0.0359 0.2028 −0.7909

0.0359 0.5762 −0.7909 −0.2028




S =




7.5622 0 0 0 0 0

0 2.9687 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




V =


−0.2286 0.0363 −0.8821 −0.4036 0.0507 −0.0528

0.0142 0.5823 0.3581 −0.7024 0.1371 −0.1429

−0.7000 −0.4735 0.2658 −0.1473 0.3045 −0.3172

−0.2286 0.0363 0.0538 −0.0529 −0.9050 −0.3488

−0.4430 0.6548 −0.0922 0.5550 0.1674 −0.1744

−0.4572 0.0725 0.1076 −0.1058 −0.1970 0.8510




(b) The last 4 columns of V are the columns of
Null A.

(c) the first 2 columns of U are the columns of
orth(A).

(d) Let A = USV T is a singular value decomposition
of an m × n matrix A with k (not necessarily dis-
tinct) singular values. Then the first k columns

of U form an orthonormal basis for Col A, and
the last n − k columns of V form an orthonormal
basis for Null A.

13. Answers are given correct to 4 places after the decimal
point.

Pw =


0.3913 0.0730 −0.1763 −0.2716 0.2056 −0.2929

0.0730 0.7180 −0.1688 −0.1481 0.1328 0.3593

−0.1763 −0.1688 0.8170 −0.2042 0.1690 0.1405

−0.2716 −0.1481 −0.2042 0.7594 0.1958 0.0836

0.2056 0.1328 0.1690 0.1958 0.8398 −0.0879

−0.2929 0.3593 0.1405 0.0836 −0.0879 0.4744




14. Answers are given correct to 4 places after the decimal
point.


0.7550
−0.0861

0.6556
0.9205

−0.0795




15. Answers are given correct to 4 places after the decimal
point.

(a) A =

σ1




0.0618 −0.1724 0.2088 0.0391 −0.0597

0.1709 −0.4769 0.5774 0.1082 −0.1651

−0.0867 0.2420 −0.2930 −0.0549 0.0838

0.0767 −0.2141 0.2592 0.0486 −0.0741




+σ2




0.3163 0.1374 −0.0541 0.5775 0.1199

0.0239 0.0104 −0.0041 0.0436 0.0090

0.3291 0.1429 −0.0563 0.6008 0.1247

0.0640 0.0278 −0.0109 0.1168 0.0243




+σ3




0.1316 −0.2635 −0.2041 −0.0587 0.1452

−0.2036 0.4076 0.3157 0.0908 −0.2246

−0.1470 0.2943 0.2280 0.0656 −0.1622

0.1813 −0.3630 −0.2811 −0.0808 0.2000




+σ4




−0.3747 −0.2063 −0.1482 0.2684 −0.1345

0.0334 0.0184 0.0132 −0.0239 0.0120

0.2571 0.1415 0.1016 −0.1841 0.0922

0.5180 0.2852 0.2048 −0.3710 0.1859




where σ1 = 205.2916, σ2 = 123.3731,
σ3 = 50.3040, and σ4 = 6.2391

(b) A2 =


51.7157 −18.4559 36.1913 79.2783 2.5334

38.0344 −96.6198 118.0373 27.5824 −32.7751

22.7926 67.3103 −67.1013 62.8508 32.5841

23.6467 −40.5194 51.8636 24.3814 −12.2222




E2 =


4.2843 −14.5441 −11.1913 −1.2783 6.4666

−10.0344 20.6198 15.9627 4.4176 −11.2249

−5.7926 15.6897 12.1013 2.1492 −7.5841

12.3533 −16.4806 −12.8636 −6.3814 11.2222
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(c) ‖E2‖ = 50.6894 ‖A‖ = 244.8163

(d)
‖E2‖
‖A‖ = 0.2071

16. Vector entries are given correct to 4 places after the
decimal point.

(a)




0.8298
−0.1538

0.5364


, θ = 38◦ (b)




0.8298
0.1538
0.5364


, θ = 38◦

17. (a) We use the rational format in MATLAB to obtain

AW =



2/3 −2/3 1/3
−2/3 −1/3 2/3

1/3 2/3 2/3


.

(c) v =



−2
−1

2


 is a vector that lies on the axis of

rotation, and the angle of rotation is 23◦.
18. (b) Let C = AW V , where AW is the matrix in 17(a)

and V is obtained in (a). Then apply the MATLAB
command grfig(C , E ), where E is obtained
in (a).

Chapter 7
Section 7.1

1. no 3. yes 5. no 7. no

9. yes 11. no 13. yes 15. yes

17. yes 19. no 21. yes 23. yes

25. yes 27. no

29. The coefficients are 3 and 5.

33. T 34. F 35. F 36. T 37. F

38. F 39. T 40. T 41. T 42. T

43. T 44. F 45. T 46. T 47. T

48. T 49. T 50. T 51. T 52. T

53. T 54. T

61. no 63. yes 65. yes 67. no

69. yes 71. yes

Section 7.2

1. yes 3. no 5. no 7. yes

9. yes 11. yes 13. no 15. no

25. a + 3b + 2c + 4d

27.

[
a + 2b + 3c

b + 4c

]
29.

[
s t
t u

]

31. linear, not an isomorphism

33. not linear

35. linear, an isomorphism

37. linear, not an isomorphism

39. T 40. F 41. T 42. T 43. T

44. F 45. T 46. F 47. T 48. F

55. (d) the zero transformation T0

Section 7.3

1. linearly dependent 3. linearly dependent

5. linearly independent 7. linearly independent

9. linearly dependent 11. linearly independent

13. linearly independent 15. linearly independent

17. linearly independent 19. linearly dependent

21. linearly independent 23. linearly independent

25. 2x 2 − 3x + 1 27. −2x 2 + 6x − 3

29. x 3 − 4x + 2

31. F 32. F 33. F 34. F 35. F

36. T 37. T 38. T 39. F 40. T

41. T 42. F 43. T 44. T 45. F

46. T 47. T 48. F

49. linearly dependent

51.







1 0 0
0 0 0
0 0 0


 ,




0 0 0
0 1 0
0 0 0


 ,




0 0 0
0 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 0


 ,




0 0 1
0 0 0
1 0 0


 ,




0 0 0
0 0 1
0 1 0






53.

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

55. {1 − xn , x − xn , . . . , xn−1 − xn} 57. {1, x}
79. The set is linearly independent.

81. The set is linearly dependent, and M3 = (−3)M1 +
2M2, where Mj is the j th matrix in the set.

83. (rounded to 4 places after the decimal) c0 =
0.3486, c1 = 0.8972, c2 = −0.3667, c3 = 0.1472,
c4 = −0.0264

Section 7.4

1. [A]B =




1
3
4
2




3. [sin 2t − cos 2t]B = [2 sin t cos t − cos2 t + sin2 t]B

=



−1
1
2




5.




−3
2
1


 7.




−3
−2

1


 9.




1 0 0
0 2 0
0 0 3
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11.




1 0 0
3 3 3
1 2 4


 13.




0 1 −2 0
0 0 2 −6
0 0 0 3
0 0 0 0




15.




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




17. (a) −8x

(b) 3 + 10x

(c) 3x2

19. (a) −et + tet

(b) 2et − 2tet + t2et

(c) 11et − 8tet + 2t2et

21. 1, 2, 3, {et }, {e2t }, {e3t }
23. 1, 6, {3x − 2x 2}, {x + x 2} 25. 0, {1}

27. 1, −1,

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
,

{[
0 1

−1 0

]}

28. F 29. F 30. T 31. T 32. T

33. T 34. F 35. F 36. F 37. F

38. T 39. T

41. (a) λ = 0 (b) {1}

45. (b)




1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4




51. (b)

[
1 3 0 0
0 0 1 3

]

(c)

[
2 6 −1 −3

−1 −3 1 3

]

53. (b)

[
1 1 1
1 2 4

]

(c) [T (f (x ))]C = [T ]CB[f (x )]B =
[

a + b + c
a + 2b + 4c

]

55. (rounded to 4 places after the decimal)

(a) −1.6533, 2.6277, 6.6533, 8.3723

(b)

{[−0.1827 −0.7905
0.5164 0.2740

]
,

[
0.6799 −0.4655

−0.4655 0.3201

]
,

[
0.4454 0.0772
0.5909 −0.6681

]
,

[
0.1730 0.3783
0.3783 0.8270

]}

(c)

[
0.2438a − 0.1736b −0.2603a − 0.2893b
0.0124a + 0.3471b −0.1116a + 0.1240b

]

+
[
0.0083c + 0.0496d 0.3471c + 0.0826d
0.0165c − 0.0992d −0.1488c + 0.1074d

]

Section 7.5

1. 15
4 3. 21

4 5. 21
2 7. e2

9. 25 11. 0 13. −3 15. −3

17. 12 19. − 50
3 21. 0 23. − 8

3

25. F 26. T 27. F 28. F 29. T

30. F 31. T 32. T 33. T 34. T

35. F 36. T 37. T 38. F 39. F

40. F 41. T 42. T 43. F 44. F

51. yes 53. no 55. yes 57. yes

61.

{
1, et − e + 1, e−t + e2 − 2e − 1

e(e − 3)

− 2(e2 − 3e + 1)

e(e − 3)(e − 1)
et
}

75. (a)

{[
1 0
0 0

]
,

1√
2

[
0 1
1 0

]
,

[
0 0
0 1

]}
(b)

[
1 3
3 8

]

Chapter 7 Review Exercises

1. F 2. T 3. F 4. F 5. T

6. F 7. T

9. no 11. yes 13. no 15. no

17. no 19. yes

21. c = 5

23. {−1 + x , −2 + x 2, x 3}, dim W = 3

25. not linear

27. linear, an isomorphism

29.

[
a b

−b a

]
31.




3 0 0 0
0 2 1 0
0 1 2 0
0 0 0 3




33.
1

a2 + b2
(ac1 − bc2)eat cos bt

+ 1

a2 + b2
(bc1 + ac2)eat sin bt

35.
1

3

[
a 2b − c

−b + 2c d

]

37. T has no (real) eigenvalues.

39. 3 and 1, with corresponding bases{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
and

{[
0 1

−1 0

]}
,

respectively

41.

{[−3 1
0 0

]
,

[−4 0
1 0

]
,

[−2 0
0 1

]}

43.

[
2 −2
2 −3

]

45.
{
1,

√
3(2x − 1),

√
5(6x2 − 6x + 1)

}

47.
6

35
+ 48

35
x − 4

7
x 2
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Chapter 7 MATLAB Exercises

1. The set is linearly independent.

2. The set is linearly dependent.
[
1 −3
4 1

]
= 2

[
1 −1
3 1

]
+ (−1)

[
1 2
1 2

]

+ (1)

[
0 1

−1 1

]

3. (b) c0 = 20, c1 = −50, c2 = 55, c3 = −29, c4 = 6

4. (b) T−1(t2 sin t) = 0.324 cos t − 0.532 sin t

+ 0.680t cos t − 0.240t sin t

+ 0.300t2 cos t + 0.100t s sin t .

5. (a) 8, 4, −4, −8

(b)

{[−3 3 3
−1 1 1

]
,

[
3 0 3
0 1 0

]
,

[
2 1 2
1 0 1

]
,

[−3 2 −3
0 1 0

]
,

[
0 −1 0
1 0 1

]
,

[
1 −1 −1

−1 1 1

]}

Note that the first matrix in the basis has corre-
sponding eigenvalue 8, the second and third have
corresponding eigenvalue 4, the fourth and fifth
have corresponding eigenvalue −4, and the sixth
has corresponding eigenvalue −8.

6. P = 1

18




5 −1 2 −1 2 5 2 5 −1
−1 8 −1 2 2 2 5 −4 5

2 −1 5 5 2 −1 −1 5 2
−1 2 5 8 2 −4 −1 2 5

2 2 2 2 2 2 2 2 2
5 2 −1 −4 2 8 5 2 −1
2 5 −1 −1 2 5 5 −1 2
5 −4 5 2 2 2 −1 8 −1

−1 5 2 5 2 −1 2 −1 5
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u �v page 363
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F(S ) page 490
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equation of, 272
Parallel lines, 16

vectors, 16
Parallelogram law, 9, 11, 230, 437
Paths, 61, 225, 491

length of, 225
networks, 61

Percentages, 111, 349
Periodic function, 412
Periods, 334-335
Pixels, 1-2, 94, 424
Plane, 2, 8, 14-16, 28, 68, 74, 95, 122, 169, 177-178,

190, 217, 225, 227, 229, 259, 284, 293,
328-329, 332-333, 452-454, 456, 474,
478-480, 491, 529-533, 545, 550, 558

Plots, 531, 548
Plotting, 531, 548
Point, 8, 10, 15, 22, 28-29, 61, 91, 93, 117, 163, 223,

226, 275, 283-284, 328, 343, 361, 430, 487,
492, 532-534, 546, 549, 585, 596, 607,
614-617

Points, 9-10, 53-54, 93, 95, 119, 197, 208, 217, 221,
390, 469, 474, 522, 531, 534, 545, 579

Polynomial, 53-54, 163, 302-313, 316, 318-319,
321-327, 330-331, 333, 344, 347, 351,
354-356, 364-365, 368-369, 371-373,
377-378, 380-381, 383-384, 387-392, 396,
399-401, 404, 410-411, 415-416, 419-420,
469-471, 473, 475, 481, 489, 491, 500-501,
516, 540, 559, 564, 568

Polynomial functions, 420
Polynomials, 311-312, 320-321, 361, 363-364,

368-372, 375, 382, 385, 387-391, 401,
403-404, 408-412, 415-416, 419, 474, 559,
603

addition of, 372
defined, 361, 363-364, 368, 370-372, 375, 382,

385, 387-388, 390-391, 401, 403, 408,
415-416, 419

degree of, 364
multiplying, 559
quadratic, 410, 474

Population, 21, 95, 102, 105-109, 117-119, 121, 195,
293, 313-314, 316, 334, 349, 520, 566-567,
586

Positive integers, 27, 346, 364, 388, 391, 401, 408,
551-552, 568

Pounds, 18, 20, 53, 96, 344, 351, 468-469, 473, 521,
528

Power, 6, 134, 144, 163, 291, 334, 520, 563
defined, 6, 520, 563

Powers, 113, 314, 346, 489
Prediction, 350

probability, 350
Principal, 199, 201, 215, 390, 423-424, 503, 520-521,

523-525, 527-529, 559, 579
Probabilities, 334-336, 350, 571
Probability, 12, 334-338, 348-350, 353-354, 570
Product, 6, 13, 19-24, 26-27, 50, 58, 62-63, 77, 87-88,

90, 95-97, 99-102, 104, 106, 114, 125-127,
131-133, 138-139, 143, 148-153, 165, 167,
191-194, 196, 201, 205, 211-212, 220-223,
294, 313, 322, 331, 372, 395-396, 404-411,
413, 415-420, 425, 427-428, 431, 435-437,
439, 445, 450-451, 459, 466, 477, 486, 488,
496, 502, 505-506, 509, 515, 518, 538,
544-545, 549, 552, 556-559, 563, 568-569

Proportionality, 339
constant of, 339

Proportions, 95, 337

Pythagorean theorem, 10, 425-427, 429, 435, 461,
512

defined, 429

Q
Quadratic, 308, 410, 469-470, 474, 489, 491-495, 499,

501, 546, 548, 615
Quadratic formula, 308
Quaternions, 8, 323
Quotient, 557-558

real numbers, 557-558

R
Range, 102, 115, 167, 169, 171, 176, 178-182,

184-185, 188, 190, 192-194, 236-241,
251-253, 258, 260-262, 284, 286-287, 291,
376-378, 382, 423, 522-523, 529, 553, 555,
591-592

defined, 102, 115, 167, 169, 171, 176, 178-181,
184-185, 188, 190, 192-194, 236-237,
284, 287, 376-378, 382, 522, 553, 555,
592

determining, 115, 180
Rankings, 339, 606
Rates, 96, 106-108, 111-112, 119, 121
Ratio, 351, 549
Rational numbers, 562, 565
Ratios, 562, 565
Rays, 1
Real axis, 558
Real numbers, 4, 27, 101, 294, 298, 308-309, 311,

323, 362-364, 372, 381, 388-389, 391, 402,
416, 419, 432, 453, 528, 552-559, 583

absolute value, 558
algebraic expressions, 557
complex, 294, 308-309, 311, 323, 556-559
defined, 4, 294, 298, 362-364, 372, 381, 388, 391,

402, 416, 419, 528, 552-558
imaginary, 556, 558
integers, 27, 364, 381, 388, 391, 416, 552-553
properties of, 388, 557-559
real, 4, 27, 101, 294, 298, 308-309, 311, 323,

362-364, 372, 381, 388-389, 391, 402,
416, 419, 432, 453, 528, 552-559, 583

Real part, 556
Rectangles, 208

similar, 208
Reduced row echelon form, 33-34, 36-42, 44-52,

54-55, 69-71, 73-74, 77-80, 83, 85-87,
89-90, 106, 127-130, 132-133, 135-140,
142-145, 163, 181, 183, 185, 192-193,
195-196, 215, 221, 234-235, 237, 239,
241-244, 249-250, 252, 254, 256-257,
259-261, 263, 267, 272, 275, 286, 296-298,
303, 305-306, 308-309, 311, 313, 316, 320,
324-326, 333, 336, 354, 455, 464, 472, 564,
567, 570-571, 575-577, 589

Reflection, 26, 175, 178, 180, 186-187, 190-191,
275-277, 280, 282-284, 286, 288, 293-294,
328-329, 331-332, 465, 480-483, 485-488,
543-544, 546, 548-550, 610, 613-614

defined, 175, 178, 180, 186, 190-191, 275, 277,
283-284, 294, 328, 332, 483, 486, 546,
548-549

ellipse, 610
hyperbola, 610, 614

Relations, 6, 112-113, 120
defined, 6, 112, 120

Remainder, 50, 139, 206, 217, 247, 307, 431, 445,
471, 480

Rhombus, 431
Ridge, 93-94
Rigid motions, 483, 485, 487

reflections, 483, 487
rotations, 483

Roots, 302-304, 308, 312, 344, 351, 432-433, 489,
548, 559, 563

Rotations, 24, 26, 95, 169, 226, 269, 478, 480, 483,
529-531, 533, 535, 537, 539, 541-543, 545,
549

Rounding, 108, 527
Row matrix, 565
Row operations, 29, 32-33, 37, 39-40, 42, 54, 71, 87,

90, 122, 126-127, 131, 133, 136, 139-140,
153-155, 159-160, 163, 201, 211-213, 218,
220, 222-224, 257, 303, 596

Run, 336, 349-350, 354
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S
Sample, 467-468, 520-521, 523
Savings, 352
Scalar multiplication, 5-8, 10, 171, 176-177, 227-231,

233, 361-363, 365-366, 368, 371, 373-375,
379-380, 419, 425, 428, 454, 458, 475, 484,
487

matrices, 5-8, 10, 171, 176-177, 362-363, 368, 371,
373, 419, 425, 475, 487

parallelogram law, 230
vectors, 5-8, 10, 171, 176-177, 227-231, 233,

361-363, 368, 374, 379-380, 419, 425,
428, 454, 458, 475, 487

Scalars, 4, 6, 8, 12, 14, 16, 24-25, 27, 66-67, 71,
73-76, 81, 86, 120, 147-148, 151, 171, 178,
200-201, 208, 229, 231-232, 238-239, 248,
251, 253, 259-261, 265-267, 272-274,
293-294, 301, 308, 312, 317-318, 332,
346-348, 352, 354-355, 361-362, 368-370,
372-374, 376, 382-385, 389, 392, 403,
419-420, 437, 439, 446, 450, 499-500,
503-504, 507, 542, 556, 562-563, 565, 568,
576, 604, 621

Scheduling, 113-114, 120
Scores, 14, 520, 523, 526
Second derivatives, 384
Seconds, 205, 411-412, 469-470, 474, 546
Sequences, 293, 402, 419, 596

defined, 402, 419
finite, 402

Series, 195, 360, 390, 415
defined, 390, 415
geometric, 195

Sets, 3, 74, 76, 81-84, 91, 193, 227, 232-233,
237-238, 241-242, 359, 368, 370, 383-384,
407, 439, 518, 524-525, 551-553, 561, 594

empty, 552
intersection, 552-553
solution, 76, 82-83, 227, 232-233, 237, 241, 370,

384, 407, 552
union, 552-553

Sides, 9, 11, 17, 30, 116, 123-124, 139, 162, 171, 197,
206-208, 301, 317-318, 384, 398, 401, 407,
425, 428, 431, 433-434, 437-438, 509, 534

Signal, 359-360
Significant digits, 51
Signs, 527, 533
Simplification, 29, 315
Simplify, 25, 33, 42, 115, 147, 412-413, 566

defined, 115, 147, 413
Sine, 359
Sines, 361, 475
Slope, 223, 280, 487, 522
Solution of equation, 339, 341, 347, 352
Solution set, 28-29, 31, 33, 80, 192, 227, 232-233,

235-237, 241, 247, 255, 296, 306, 381, 398,
462-463, 546-547, 549

Solutions, 3, 13, 15-16, 27-29, 33-35, 37, 39-40,
47-50, 52, 54-56, 65, 74, 77-80, 83, 86-88,
106, 110, 121, 127-128, 134, 140, 145, 166,
179-180, 183-184, 188, 192, 199, 211, 222,
227, 233, 240-241, 246, 254, 263, 275, 286,
291, 296-297, 301-302, 311-312, 324, 333,
336, 346-347, 353-354, 373, 382, 392, 398,
403, 418, 425, 438, 451, 455, 465, 471-472,
475, 488, 501, 519, 529, 545, 562, 565

checking, 79
Speed, 9-12, 88, 199, 474, 546
Spirals, 347

Fibonacci, 347
Square, 4, 12, 27, 48, 103-105, 117, 123, 131-132,

139, 143, 157, 165, 192-193, 199, 201, 210,
214, 220-223, 279, 286, 293-294, 298,
300-302, 311-312, 317, 319, 324, 332, 360,
367, 391, 398, 428, 432-433, 492, 502, 517,
521, 545, 548, 553, 559, 563, 568

matrix, 4, 12, 48, 103-105, 117, 123, 131-132, 139,
143, 157, 165, 192-193, 199, 201, 210,
214, 220-223, 279, 286, 293-294,
300-302, 311-312, 317, 319, 324, 332,
367, 391, 398, 428, 502, 517, 521, 545,
548, 563, 568

of a sum, 12
Square roots, 432-433, 548, 563

defined, 548, 563
functions, 432, 563

Squared deviations, 520, 528
Squares, 94, 391, 406, 410-412, 414-416, 421, 425,

466-469, 471-475, 489, 511, 520, 546, 548,
615

area of, 415, 520
Squaring, 407
Standard deviation, 521-522, 528
Standard deviations, 521

sample, 521
Statements, 12, 25, 39, 50, 54, 57, 62, 70-71, 73, 78,

85, 87, 100, 104, 117, 129, 131, 138-139,
143-144, 151, 165, 170-171, 176, 183-184,
189, 192, 209, 214, 220, 222, 239, 251, 261,
272, 282, 286, 300, 307, 310, 322, 331, 348,
355, 365, 371, 376, 381, 390, 392, 401-402,
415, 417, 419, 436, 450, 463-464, 474, 478,
485, 499, 512, 515, 517-518, 527, 543-545,
557-558, 566, 575-577

defined, 12, 104, 151, 170-171, 176, 183-184, 189,
192, 222, 355, 365, 371, 376, 381, 390,
401-402, 415, 417, 419, 436, 518, 527,
545, 557-558, 575

Statistics, 56, 410, 520, 525, 579
population, 520

Subset, 70, 72-74, 76, 78-79, 81, 83-84, 86-88, 128,
132, 144, 179, 191, 195, 221, 227, 229, 231,
239, 244-246, 248-250, 252-254, 258, 264,
274, 276, 286-287, 366-370, 372-374,
381-387, 389-392, 395, 407-408, 415, 417,
419-420, 437-439, 441, 450, 453-454,
463-464, 474, 503, 551-553, 556, 597,
600-601

Substitution, 157-158, 162, 165-166
Subtraction, 5, 563
Sum, 5-7, 9, 12-13, 16, 20-21, 24-26, 35, 49, 54, 57,

60-62, 65, 100, 104, 149-151, 170, 192, 195,
198, 202, 208, 210, 217, 227-228, 258, 262,
288, 301, 311, 320, 322, 324-325, 331, 335,
337-338, 347-349, 362-364, 367-368, 372,
391, 406, 419, 424, 431, 434, 436, 438,
456-457, 467, 469, 474-475, 489, 495-496,
499-500, 525, 527-528, 545, 549, 556-558,
563, 600, 607

derivative of, 391
Sums, 5-6, 141, 334, 348, 557
Survey, 113-114, 336, 353
Symbols, 100, 559, 621
Symmetry, 112, 263, 493, 495, 522

T
Tables, 3, 90, 195, 224, 288, 356, 420, 547, 563, 566
Taylor series, 390
Temperature, 348
Terminal, 60
Test scores, 523
Third quadrant, 482
Threshold value, 2
Tons, 53, 64
Transformations, 24, 95-96, 98, 100, 102, 104, 106,

108, 110, 112, 114, 116, 118, 120, 122, 124,
126, 128, 130, 132, 134, 136, 138, 140, 142,
144, 146, 148, 150, 152, 154, 156, 158, 160,
162, 164, 166-194, 196, 232, 258, 275, 361,
363-364, 373-382, 388, 393, 425, 621

defined, 102, 104, 106, 112, 120, 148, 166-171,
173-176, 178-181, 183-186, 188-194,
196, 275, 361, 363-364, 373-382, 388

graphing, 425
horizontal, 146
multiple, 152, 170, 364
reflection, 175, 178, 180, 186-187, 190-191, 275
vertical, 102, 146

Triangles, 533
Trigonometric functions, 408
Trigonometry, 9, 526

vectors, 9

U
Union of sets, 553
Unit circle, 507-508, 516

defined, 508
Unit vectors, 426, 438, 480, 534, 536, 544

V
Variability, 520, 525
Variables, 2, 19, 27-29, 31, 35-40, 48-49, 54, 56, 61,

71, 78-80, 87, 157, 159, 163, 165, 208, 221,
233, 246, 255, 392, 466, 494, 520-529,
562-563, 565-566, 568-569, 571, 579

functions, 563, 566, 568

Variance, 520-522, 525, 527-529
Variances, 522, 525, 528
Variation, 3, 424, 498
Variations, 292, 390
Vectors, 2-28, 30, 32, 34-36, 38, 40, 42, 44, 46, 48,

50, 52, 54-56, 58, 60, 62, 64, 66-91, 95, 102,
117, 128, 132-134, 141, 144, 148-149,
151-152, 170-171, 173-174, 176-177, 180,
182-183, 190, 195, 197, 206-208, 210-211,
221, 223, 226-233, 235, 239-250, 252, 254,
258-259, 262-270, 272, 274-280, 282,
284-287, 289, 293-294, 296, 298, 308-309,
317-318, 322, 324, 327-328, 333, 335-336,
341, 348, 361-363, 368-370, 372, 374,
376-380, 383, 385-388, 391-393, 397, 404,
406-412, 415-419, 424-445, 447, 449-462,
464, 467, 469, 471-472, 474-477, 479-480,
483, 485-487, 490-491, 501-504, 506-507,
509-511, 514, 518, 527-528, 534-536, 539,
544-548, 551, 553, 558, 569-571, 573-576,
585, 593, 597, 600-601, 609, 621

addition, 5-9, 11-12, 32, 40, 171, 177, 221,
227-231, 233, 239, 328, 333, 361-363,
368, 372, 374, 379-380, 419, 425, 428,
440, 454, 456, 458, 475, 575

defined, 4-6, 12, 66, 88, 90-91, 102, 148, 151,
170-171, 173-174, 176, 180, 183, 190,
230, 246-247, 254, 268, 274-275, 277,
284-285, 287, 289, 294, 296, 298, 328,
333, 361-363, 368, 370, 372, 374,
376-380, 385-388, 391, 406-408,
415-419, 429, 436, 457-458, 479, 483,
486, 502-503, 511, 518, 527-528,
545-546, 548, 553, 558, 575

direction of, 9, 60, 275, 294, 534
dot product, 404, 406, 416, 425, 427-428, 431,

435-436, 439, 451, 459, 477, 486, 545
equality, 429, 432-433, 436-438, 450, 547, 551
linear combination of, 14-19, 24-27, 35, 50, 54,

66-72, 74-76, 78-82, 84-89, 91, 128,
132-134, 180, 232-233, 241, 245, 248,
264-266, 272, 274-275, 285-287, 289,
317, 328, 368-369, 372, 383, 385,
387-388, 392, 410-411, 419, 436,
440-441, 443-445, 449, 457, 571,
575-576

orthogonal, 221, 284, 333, 361, 407-412, 416-419,
427, 429-431, 435-445, 447, 449-462,
464, 467, 469, 471-472, 475-477,
479-480, 483, 485-487, 490-491, 501,
504, 506, 509-511, 518, 534-536, 539,
544-548, 573, 575

parallel, 10, 12, 16, 19, 26, 28, 66, 88, 437, 486,
507

perpendicular, 226, 241, 247-248, 275, 280, 284,
294, 328, 333, 425-427, 452, 454, 457,
502, 544

scalar multiplication, 5-8, 10, 171, 176-177,
227-231, 233, 361-363, 368, 374,
379-380, 419, 425, 428, 454, 458, 475,
487

unit, 56, 62, 141, 195, 407, 411, 425-426, 429, 438,
450, 480, 502, 506-507, 528, 534, 536,
544

zero, 2, 5, 8, 12, 24, 26, 34, 40, 42, 54, 70-71, 73,
76, 78-82, 87, 132, 144, 152, 171, 176,
182-183, 190, 208, 210, 221, 227-230,
239, 246, 258, 282, 286, 296, 335-336,
348, 362, 368-370, 372, 376-378, 383,
385-386, 391, 397, 419, 427, 431-432,
439, 490, 503, 576

Velocity, 9-12, 88, 343-344, 469-470
linear, 10, 12, 88, 469

Vertex, 225, 549
Vertical, 2, 102, 146-147, 467, 474
Vertical line, 102
Vertical lines, 146-147
Viewing, 125, 337
Volume, 207-208, 223

W
Weight, 53, 96, 343, 351, 466, 468-469, 520
Whole numbers, 108

rounding, 108

X
x-axis, 9, 22, 26, 105, 175, 178, 180, 186, 190-191,

270, 273, 275-276, 288, 487, 492, 530-533,
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542, 544, 549, 568
xy-plane, 8, 28, 68, 74, 169, 177-178, 190, 225, 453,

456, 474, 529-530, 533, 545

Y
y-axis, 9, 26, 170, 178, 186-187, 190-191, 270, 273,

288, 492, 530-532, 542, 544, 568
Years, 22, 26-27, 95, 102, 106-109, 117-119, 121, 195,

199, 205, 213, 313-314, 336, 344, 349,
352-354, 467, 566, 586

Z
z-axis, 68, 190, 226, 453, 529-530, 532, 542-543, 568
Zero, 2, 5, 8, 12, 24, 26, 33-34, 40, 42, 54, 70-71, 73,

76, 78-82, 87, 100-101, 103-105, 113,
120-121, 123, 132, 138, 143-144, 152, 161,
171, 176, 178, 182-184, 190, 192-193, 196,
200, 205, 208-210, 216, 221, 227-230, 239,
246, 258, 282-283, 286, 292, 296, 301,
311-312, 323, 334-336, 344, 347-348, 350,
362, 364-373, 376-378, 381-386, 389, 391,
397, 402, 419, 427, 431-432, 439, 490, 492,
500, 503, 521-522, 525, 565, 576, 583, 596,
617

exponent, 364
matrix, 5, 8, 12, 24, 26, 33-34, 40, 42, 54, 70-71,

73, 78, 80, 82, 87, 100-101, 103-105,
113, 120-121, 123, 132, 138, 143-144,
152, 161, 171, 176, 178, 183-184, 190,
192-193, 196, 200, 205, 208-210, 216,
221, 227, 239, 258, 282-283, 286, 296,
301, 311-312, 323, 334-336, 344, 348,
350, 364, 367, 370-373, 376, 382-383,
391, 397, 402, 419, 490, 500, 503,
521-522, 565, 576, 583, 596, 617
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