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Preface

Our gut is colonized by numerous bacteria throughout our life, and the gut epitheli-

um is constantly exposed to foreign microbes and antigens derived from digested

foods. Thus, the gut epithelium acts as a physical barrier against microbial invaders

and is equipped with various elements of the innate defense system. Resident

commensal and foreign invading bacteria interact intimately with the gut epitheli-

um and can impact host cellular and innate immune responses. From the perspec-

tive of many pathogenic bacteria, the gut epithelium serves as an infectious

foothold and port of entry for dissemination into deeper tissues. In some instances,

when the intestinal defense activity and host immune system become compromised,

even commensal and opportunistic pathogenic bacteria can cross the barrier and

initiate local and systematic infectious diseases. Conversely, some highly patho-

genic bacteria, such as those highlighted in this book, are able to colonize or invade

the intestinal epithelium despite the gut barrier function being intact. These patho-

genic bacteria are capable of circumventing the gut defense barriers, leading to

colonization within and beyond the gut. Some pathogenic bacteria can disseminate

to distal tissues and cause severe enteric and systemic diseases. Therefore, the

relationship between the defensive activity of the intestinal epithelium against

microbes and the pathogenesis of infective microbes becomes the basis for main-

taining a healthy life.

This book in the series Current Topics of Microbiology and Immunology entitled
‘The Molecular Mechanism of Bacterial Infection of the Gut’, begins with an

overview of the structure and function of the gut epithelium, following which we

highlight a series of current topics on major gastric and enteric pathogenic bacteria,

includingHelicobacter pylori, Vibrio cholerae, Yersinia enterocolitica, Salmonella,
Shigella, and Campyrobacter jejuni. In the context of the title of this book, we

originally wished to include an important chapter on enteropathogenic and enter-

ohemorragic Escherichia coli, but unfortunately we were unable to do so due to its

retraction by an author. Nevertheless, we are very satisfied with the state-of-the art

reviews on each of the pathogens covered in this book, which I believe will offer

readers an overview of the current topics related to major gastric and enteric

pathogens, while highlighting their highly evolved host (human)-adapted infectious

v



processes. Clearly, an in-depth study of bacterial infectious strategies, as well as the

host cellular and immune responses, presented in each chapter of this book will

provide further insight into the critical roles of the host innate and adaptive immune

systems and their importance in determining the severity of or completely prevent-

ing infectious diseases. Furthermore, under the continuous threat of emerging and

re-emerging infectious diseases, the topic of gut-bacteria molecular interactions

will provide various clues and ideas for the development of new therapeutic

strategies.

Finally, I sincerely thank Prof. Tasuku Honjo at Kyoto University Graduate

School of Medicine for inviting me to edit this book, all of the authors for providing

current topics, and Anne Clauss for her help as the house editor of this book.

C. Sasakawa
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Abstract The primary function of the gastrointestinal tract is water, electrolyte,

and nutrient transport. To perform this function, the epithelium lining the gastroin-

testinal tract is in close contact with the gastrointestinal lumen. Because the lumen
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is connected to the external environment and, depending on the site, has a high

bacterial and antigen load, the epithelium must also prevent pathogenic agents

within the gastrointestinal lumen from gaining access to internal tissues. This

creates a unique challenge for the gastrointestinal tract to balance the requirements

of forming a barrier to separate the intestinal lumen from underlying tissue while

simultaneously setting up a system for moving water, electrolytes, and nutrients

across the barrier. In the face of this, the epithelial cells of the gastrointestinal tract

form a selectively permeable barrier that is tightly regulated. In addition, the

intestinal mucosa actively participates in host defense by engaging the mucosal

immune system. Complex tissue organization and diverse cellular composition

are necessary to achieve such a broad range of functions. In this chapter, the

structure and function of the gastrointestinal tract and their relevance to infectious

diseases are discussed.

Abbreviations

MLC Myosin regulatory light chain

MLCK myosin light chain kinase

CVB Coxsackie virus B

M cells microfold cells

ZO zonula occludens

1 Introduction

The primary function of the gastrointestinal tract is water, electrolyte, and nutrient

transport. To perform this function, the epithelium lining the gastrointestinal tract

is in close contact with the gastrointestinal lumen. Because the lumen is connected

to the external environment and, depending on the site, has a high bacterial

and antigen load, the epithelium must also prevent pathogenic agents within the

gastrointestinal lumen from gaining access to internal tissues. This creates a unique

challenge for the gastrointestinal tract to balance the requirements of forming a

barrier to separate the intestinal lumen from underlying tissue while simultaneously

setting up a system for moving water, electrolytes, and nutrients across the barrier.

In the face of this, the epithelial cells of the gastrointestinal tract form a selectively

permeable barrier that is tightly regulated. In addition, the intestinal mucosa

actively participates in host defense by engaging the mucosal immune system.

Complex tissue organization and diverse cellular composition are necessary to

achieve such a broad range of functions. In this chapter, the structure and function

of the gastrointestinal tract and their relevance to infectious diseases are discussed.

2 L. Shen



Subsequent chapters will address how specific pathogens exploit or evade normal

cellular processes to promote disease development.

2 Organization of the Gastrointestinal Tract Wall

The gastrointestinal tract is composed of four layers: the mucosa is the innermost

layer; the submucosa is a layer of connective tissue that supports the mucosa; the

muscularis externa is the muscle wall surrounding the submucosa; and the adventi-

tia or serosa is the outmost layer of the gastrointestinal tube (Fig. 1).

The mucosa is composed of an innermost layer of epithelial cells, a layer of

supporting loose connective tissue directly beneath the epithelium, termed the

lamina propria, and a thin layer of smooth muscle cells, the muscularis mucosae,

that forms the boundary between the mucosa and the submucosa (Fig. 2).

To increase the surface area for absorption, the mucosal and submucosal layers of

the small intestine and colon are organized into regular ridges, known as plicae

circulares, which increase the absorptive surface area by approximately three-fold.

In addition, the villi, small finger-like projections of the mucosa that extend into

the lumen, increase the absorptive surface area by another ten-fold (Fig. 2a). Within

the core of each villus, arterioles rise to the tip without branching, and once at the tip,

the arteriole splits to form a network of capillaries that subsequently course down

along the sides of the villus in a fountain-like pattern in close apposition to the

basement membrane and epithelial cells. The intimate association between ascending

central arterioles and descending capillaries allows for countercurrent exchange of

solutes, comparable to that occurring in the renal medulla. Such exchange results in

the hypertonic lamina propria in the villus tip during active nutrient absorption.

MP

SM

M
Fig. 1 Human jejunum. The

mucosa (M) and submucosa

(SM) are organized into series

of ridges, or plica circularis,

to increase the surface area

for digestion and absorption.

The small intestinal mucosa is

organized into crypts and villi

to further increase the surface

area. The inner circular layer

of the muscularis propria

(MP) is shown at the bottom

of the image
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Under ischemic conditions, countercurrent oxygen exchange can also occur, resulting

in lower oxygen tension in the villus and greater damage to the villus epithelium, with

relative preservation of the crypt epithelium. The protection of the crypt zone at the

expense of the villus preserves intestinal stem cells located in the crypt and allows

future mucosal repair after the acute damage has resolved.

In addition to vasculature, lymphatic drainage is also critical for villus function.

The villus lymphatic duct, called a lacteal, is responsible for chylomicron absorp-

tion and reabsorption of plasma proteins that have leaked into the lamina propria

C

S

LP

MM

SM

LP

C

V

MM

SM

a

b

Fig. 2 Human intestinal

mucosa. (a) The small

intestinal mucosa is organized

into crypts (C) and villi (V).
Epithelial cell proliferation is

limited to crypts. Enterocytes

migrate to the top of the villi,

becoming more differentiated

with higher levels of brush

border digestive enzyme and

transporter expression. The

lamina propria (LP) is
composed of connective

tissue, blood vessels, and

immune cells. The muscularis

mucosae (MM) separates the

mucosa from the submucosa

(SM). (b) The colonic

epithelium invaginates to

form crypts (C) along with

flat surface epithelium (S)
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from the microvasculature. The importance of lymphatic drainage is demonstrated

in Whipple’s disease. During Tropheryma whipplei infection, bacterial laden

macrophages within the lamina propria compress and obstruct the lacteal, leading

to malabsorption, malnutrition, and vitamin deficiencies.

In contrast to the small intestine, the colonic mucosa contains a flat layer of

surface epithelium with invaginating crypts, without the presence of villi (Fig. 2b).

Within the colon, submucosal arterioles branch after penetrating the muscularis

mucosae and form a chain of capillaries. These capillaries ascend along the colonic

crypts and form a network around the crypt openings just beneath the surface

epithelium, which allows countercurrent exchange. In addition, the lacteals are

not present in the colonic mucosa, which may contribute to limited metastatic

potential of colon cancers limited to the mucosa.

3 Regional Specification of the Gastrointestinal Tract

To facilitate nutrient absorption, the mucosa of the gastrointestinal tract is highly

specialized. The gastric mucosa supports digestion by secreting hydrochloric acid

and digestive enzymes, the microvilli present in the small intestine increase surface

area and support massive transcellular transport, while the colon is specialized for

maintaining ion and water balances. Although structurally similar, the small intes-

tine can be anatomically divided into three functionally distinct regions: the duode-

num, the jejunum, and the ileum. Brush border digestive enzymes are highly

expressed in duodenal and jejunal epithelium, and 90% of absorption occurs within

the first 1 m of the small intestine. The jejunum is the major site for monosaccharide,

amino acid, and free fatty acid absorption. The duodenum and jejunum are also the

primary sites for absorption of water-soluble vitamins, iron, and calcium. In contrast,

the ileum is the primary site for bile salt and vitamin B12 absorption, and the colon

is primarily responsible for Naþ, Cl�, H2O absorption and HCO3
� and Kþ secretion.

In addition to functional specification, distribution of differentiated cell types

also differs in distinct parts of the gastrointestinal tract. For example, Paneth cells

are abundant in the small intestine but are absent in the distal colon, resulting in

a higher bacterial load in the latter region. Such regional specialization within the

intestines is developmentally determined, as embryonic mouse small intestinal

grafts implanted into subcutaneous tissue ultimately express features specific to

the region from which they originated (Rubin et al. 1992).

Along with distinctive functions, there is a gradient of endogenous bacterial flora

throughout the intestines. The luminal contents of the stomach, the duodenum and

the jejunum contain about 100 bacterial organisms per milliliter of luminal content.

The numbers of bacteria present in the lumen increase progressively, from about

100 microorganisms per ml in the proximal ileum, to 1012 organisms per ml in the

colon. Such different bacterial loads present distinct challenges for local mucosal

immune cells.
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4 Specialization Along the Vertical Axis: From Crypt to Villus

In addition to regional compartmentalization, functional specification also exists

along the crypt to the villus, or vertical, axis. In the small intestine, the crypt

primarily contains stem cells, undifferentiated secretory cells, enteroendocrine

cells, and Paneth cells (Fig. 4), while the villus is populated with absorptive

enterocytes and goblet cells (Fig. 3). This distribution of distinct cell types creates

functionally distinct compartments: the crypt is critical for cell renewal, ion and

water secretion, endocrine/paracrine secretions to the lamina propria and

IEL

LPL

G

BB

E
BV

Fig. 3 Human jejunal villus

tip. The villus tip is covered

by the epithelium containing

absorptive enterocytes (E)
and goblet cells (G). The
brush border (BB) locates at
the free (apical) surface of the

epithelial cells and has a

fuzzy appearance.

Intraepithelial lymphocytes

(IEL) intersperse within the

epithelium and lamina propria

lymphocytes (LPL) are
located in the lamina propria,

below the epithelium. Blood

vessels (BV) present within
the lamina propria

P

G

TA

S

Fig. 4 Human jejunal crypt.

Paneth cells (P) populate the
bottom of the crypts, with

prominent eosinophilic

granules in the apical

cytoplasm. Above the Paneth

cells is the stem cell zone (S).
The proliferating

undifferentiated crypt

enterocytes are located within

the transit-amplifying zone

(TA). Goblet cells (G) also
present in the crypts
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capillaries, and exocrine secretion of macromolecules, such as defensins, into the

crypt lumen. The villus is responsible for nutrient absorption and mucin secretion to

the epithelial surface.

Regardless of their ultimate fate, crypt and villus cells are all derived from

intestinal stem cells. The stem cells first give rise to transit-amplifying undifferenti-

ated secretory cells, which then differentiate into other cell types of the epithelium.

While Paneth cells move downward to the crypt base, the other cell types move

upward toward the villus tip. As enterocytes migrate up the crypt–villus axis, they

progressively differentiate and produce increasing amounts of brush border diges-

tive enzymes and nutrient transporters (Hwang et al. 1991; Mariadason et al.

2005). After epithelial cells reach the villus, they are eventually ejected from the

epithelium. However, it is not clear if apoptosis or programmed cell death is the

trigger or consequence of cell extrusion (Gavrieli et al. 1992; Hall et al. 1994;

Watson et al. 2005). The extrusion process has been characterized morphologically

as an orderly shedding of cells with maintenance of cell-cell junctions and barrier

function (Madara 1990). Recent in vitro and in vivo studies suggest that during

cell extrusion, actomyosin contraction occurs in cells surrounding the extruded cell,

allowing these cells to form a contractile purse string to push shed cells out of

the epithelium without significant loss of barrier integrity (Bullen et al. 2006;

Rosenblatt et al. 2001). Interestingly, it has been suggested that cell shedding does

not always lead to sealing of the epithelium. In some cases, epithelial cell shedding

leads to gap formation in the villus without compromising the epithelial barrier

(Kiesslich et al. 2007; Watson et al. 2005). The physiological significance of these

gaps remains to be determined.

5 Stem Cells, Intestinal Proliferation, and Differentiation

In the small intestine, actively dividing cells are located only in the crypt. It has

long been known that pluripotent stem cells, localized several cells above the base

of the crypt, are the source of such proliferation (Bjerknes and Cheng 2006;

Marshman et al. 2002). Approximately six independent stem cells reside within

each crypt, only some of which are actively dividing (Nicolas et al. 2007; Taylor

et al. 2003). In most cases, each cycling stem cell gives rise to one new stem cell

and one transit-amplifying cell that is destined for differentiation. However, rare

events can occur where a stem cell gives rise to two transit-amplifying cells or stem

cells (Yatabe et al. 2001). Studies using cell lineage tracing techniques have

shown that crypts are initially polyclonal but become monoclonal over time,

while each villus receives epithelial cells from multiple crypts, and is, therefore,

oligoclonal (Fuller et al. 1990; Hermiston et al. 1993; Novelli et al. 1996, 2003;

Schmidt et al. 1988).

The balance of stem cell self-renewal and differentiation is likely maintained by

a microenvironment that is in close contact with stem cells, called the stem cell

niche. Intestinal stem cells have a free apical surface and a basolateral surface,

allowing them to receive signals from adjacent epithelial cells, basement
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membrane, and underlying mesenchymal cells, including subepithelial myofibro-

blasts (Mills and Gordon 2001). Within the stem cell niche, the Wnt signaling

pathway is one of the major driving forces for stem cell proliferation (Pinto et al.

2003; van de Wetering et al. 2002). Upon Wnt dependent activation of the b-
catenin/Tcf transcription pathway (Bienz and Clevers 2000; Korinek et al. 1998),

multiple genes, including c-myc, are activated to promote cell cycle progression

(He et al. 1998; Kosinski et al. 2007; Muncan et al. 2006; Stappenbeck et al. 2003).

In addition to proliferation signals, various mesenchyme-derived factors also limit

crypt proliferation, as genetic deletion of forkhead homolog 6, homeodomain

transcription factor Nkx2-3, and bone morphogenetic factor all lead to increased

crypt cell proliferation (Kaestner et al. 1997; Pabst et al. 1999; Haramis et al. 2004;

He et al. 2004). The niche function can be regulated, as a recent report has shown

that lack of MyD88, a gene critical to the innate immune response to bacterial

products, leads to abnormal positioning of stromal cells in the colon and decreased

crypt proliferation during epithelial injury (Brown et al. 2007).

Once stem cells divide, they give rise to a much larger number of transit-amplify-

ing cells. Morphologically, the transit-amplifying cells present as undifferentiated

crypt enterocytes and differentiation of these cells gives rise to all the mature

epithelial cell types discussed above. The Notch pathway plays a central role in

cell fate determination in the intestine. Mouse studies show inhibition of Notch

signaling lead to loss of all absorptive cells and conversion of all epithelial cells to

goblet cells (van Es et al. 2005b; Wong et al. 2004). Conversely, activation of Notch

signaling results in loss of all secretory cell types (Fre et al. 2005; Stanger et al. 2005).

Once Notch signaling is activated, it induces the expression of a transcription

repressor, Hes1. Lack of Hes1 results in increased goblet, Paneth, and enteroendo-

crine cells and decreased absorptive enterocytes, suggesting that Hes1 prevents

development of secretory lineages (Jensen et al. 2000; Suzuki et al. 2005). As Hes1

can directly inhibit the transcription factor Math1, which is critical in differentiation

of secretory cells (Jensen et al. 2000; Yang et al. 2001), the development of

absorptive versus secretory lineages of intestinal epithelial cells is mutually exclu-

sive. Within the secretory lineage, a transcription activator–repressor network further

ensures the separation of goblet, Paneth, and enteroendocrine cells (Jenny et al.

2002; Shroyer et al. 2005). This tightly-controlled transcriptional network ensures

normal epithelial cell differentiation and maintenance of intestinal functions.

6 Specialized Epithelial Cells of the Gastrointestinal Tract

6.1 Absorptive Enterocytes

Villus enterocytes, the major cell type in the villus epithelium, are tall columnar

cells whose primary function is nutrient absorption. The importance of this cell

type is demonstrated by diseases that result in villus atrophy or blunting, such as

celiac disease. In these diseases, intestinal epithelial cells do not differentiate fully
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into absorptive enterocytes, resulting in decreased microvillus membrane enzyme

activity, malabsorption, and diarrhea.

To accomplish their functions, absorptive enterocytes are structurally specialized,

with their plasma membrane divided into distinct apical and basolateral domains. At

the apical surface, villus enterocytes are covered by a dense brush border composed

of microvilli, microscopic extrusions with a length of ~1 mm (Fig. 5). The structural

integrity of microvilli is maintained by a cytoskeletal core composed of bundled

actin filaments and associated proteins such as myosin I, villin, and fimbrin. As

the cytoskeletal cores enter the cell body, they intersect with a dense network of

microfilaments, termed the terminal web, that anchors the microvilli. The microvilli

increase the membrane surface area as much as 20-fold, thereby greatly increasing

the amount of brush border digestive enzymes, such as disaccharidases and pepti-

dases, and transmembrane transporter proteins present on the apical membrane.

Studies have shown that microvillus membranes are enriched in intramembranous

protein particles and have a very high protein to lipid ratio, suggesting high levels of

digestive enzyme and transporter expression. Congenital defects in microvillus

membrane trafficking caused by mutations in myosin 5B or Rab8 GTPase result in

accumulation of microvillus membrane inside the cell, and those affected suffer

from chronic malabsorption (Muller et al. 2008; Sato et al. 2007), underscoring the

functional significance of microvilli in nutrient absorption.

In contrast to the microvillus membrane, the basolateral plasma membrane of

absorptive enterocytes is contoured and shaped by its close contact with the

basolateral membranes of adjacent enterocytes. As a result, lateral intercellular

space dimensions are plastic and can increase markedly during active nutrient

absorption. The lipid and protein composition of the basolateral membrane domain

also differs significantly from that of the apical membrane. Digestive enzymes

and Na+-coupled nutrient transporters that are highly expressed in the microvillus

Mv

AJC

terminal web

Fig. 5 Enterocyte brush

border. This intermediate-

magnification electron

micrograph shows the apical

portion of absorptive

enterocytes. Well-developed

microvilli (Mv) exist on the

apical surface. The

microvillus actin bundles

extend downward to intersect

with electron-dense terminal

web. The apical junctional

complex (AJC) is specialized
to mediate adhesion between

adjacent enterocytes
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membrane are absent from the basolateral membrane. However, the Na+-K+

ATPase, the facilitated glucose transporter GLUT2, and Na+-independent amino

acid transporters are highly enriched in the basolateral membrane.

The structurally and functionally distinct apical and basolateral membranes set

up an efficient system for nutrient transport through the transcellular pathway. For

example, using the extracellular to intracellular Na+ gradient as energy source,

brush border dissacharidase-released free glucose and galactose are transported by

the apically located intestinal Na+-glucose transporter, SGLT-1 (Ikeda et al. 1989).

Intracellular Na+ is pumped out at the basolateral membrane by the Na+-K+

ATPase, and glucose exits the cell through the glucose transporter GLUT2 on the

basolateral surface of absorptive enterocytes along its concentration gradient. This

process moves glucose from the intestinal lumen to the lamina propria. Analogous

transport systems also exist for various classes of amino acids.

Such transcellular transport systems require polarized distribution of apical

and basolateral membrane proteins. Without proper membrane partitioning, vectorial

transport, both absorptive and secretory, would be impossible. A complex vesicular

trafficking system exists to ensure correct post-synthetic delivery of transport proteins

to their appropriate membrane domains, and additional mechanisms exist to remove

mistargeted proteins selectively from the plasma membrane and redeliver these

proteins to their correct membrane domains. Once delivered to the plasmamembrane,

mixing of apical and basolateral proteins is prevented by the tight junction at the

interface between apical and basolateral membrane domains. As the tight junction

forms an intramembranous fence, it is critical in maintaining proper epithelial

polarization. In addition, the tight junction obstructs the space between adjacent

cells, limiting the free passage of water, ions, and uncharged molecules across the

epithelium through the paracellular pathway.

6.2 Undifferentiated Crypt Enterocytes

Undifferentiated crypt epithelial cells derived from the epithelial stem cells contin-

ue to divide within the crypt region. In contrast to villus absorptive enterocytes,

undifferentiated crypt cells have shorter and sparser microvilli on their apical

membranes with very low expression of digestive enzymes and nutrient transpor-

ters, and thus are inefficient at nutrient absorption. However, these cells have well-

developed mechanisms for Cl� secretion. The polarized distribution of different

transporters and channels on apical and basolateral membranes is required for this

to occur. Cl� from the lamina propria enters the epithelial cell across the basolateral

membrane via NKCC1, the Na+-K+-2Cl� transporter, by using the transmembrane

Na+ gradient generated by the basolateral Na+-K+ ATPase. Cl� exits the cell

apically, predominantly via the apical CFTR Cl� channel. Excess K+ leaves the

cell through basolateral K+ channels. Water and Na+ follow secreted Cl� passively

through the paracellular route that exists between adjacent epithelial cells, resulting

in secretory diarrhea.
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The paracellular pathway is very different in villus and crypt enterocytes.

Because undifferentiated crypt enterocytes have a smaller apical membrane area

than absorptive enterocytes, the tight junction density is greater and the surface area

for paracellular transport is increased in the crypt. Proteins that control paracellular

permeability are also differentially expressed in villus absorptive and undifferenti-

ated crypt enterocytes (Holmes et al. 2006). These have significant functional

effects, as mathematic modeling suggests that the majority of epithelial conduc-

tance is determined by intestinal crypts, and studies using size-selective probes

show the absorptive portion of the villus contains small pores with radii of less than

6Å, while pores in the crypts have radii of 50–60Å (Fihn et al. 2000; Marcial et al.

1984). The more porous paracellular pathway within the crypt epithelium may

facilitate paracellular movement of Na+ and water in response to transcellular Cl�

secretion, thus augmenting secretory responses.

6.3 Goblet Cells

Goblet cells are mucin-producing cells that present throughout the small intes-

tine and colon; their numbers increase along the proximal–distal axis (Karam 1999).

In contrast, although foveolar mucus cells are present in the gastric epithelium, goblet

cells are normally absent in the stomach. In fact, the presence of goblet cells is a risk

factor for gastric adenocarcinoma development (Morson et al. 1980).

The apical portion of the goblet cell cytoplasm is rounded and filled with

secretory granules densely packed with dehydrated mucins. The cytoplasmic orga-

nelles are located beneath the mucous granules and the cell appears to narrow in this

area. The nucleus is located below the Golgi complex, adjacent to the basal

membrane, where the cell body is narrower. Under light microscopy, the wide

apical portion containing secretory granules with a progressively constricted basal

portion of the cell containing heavily stained nucleus enhance the wine goblet-like

appearance of these cells. Unlike absorptive and undifferentiated enterocytes,

goblet cells possess irregular microvilli that preferentially localize to the periphery

of the apical membrane which express only small amounts of digestive enzymes

and transporters.

The major function of goblet cells is mucin production. Multiple mucin genes

exist in the human genome; some are secreted while others are membrane bound.

Once synthesized, mucin proteins are heavily glycosylated in the endoplasmic

reticulum and the Golgi then secreted to form a mucous layer on the apical surface

of the epithelium. Constitutive mucin secretion occurs at a low rate through

exocytosis of small vesicles, while stimulated secretion can occur through exocy-

tosis of large vesicles containing densely packed mucin. Several secretagogous,

such as acetylcholine, vasoactive intestinal pepetide, interleukin-1, and extracel-

lular ATP are capable of inducing massive mucin release (Specian and Neutra

1980). Bacterial products, such as toxins secreted by Escherichia coli and Vibrio
cholerae, can also induce mucin secretion (Leitch 1988; Moon et al. 1971). In fact,
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mucin depletion in goblet cells is considered a histological feature of both

infectious and idiopathic inflammatory diseases of the intestine. Based on these

findings, it has been suggested that one of the major functions of mucin is to form

a semipermeable gel-like layer on the apical surface of epithelial cells to prevent

damage by abrasion and toxic agents. This idea is supported by studies showing

that ablation of the Muc2 gene in mice causes spontaneous development of

intestinal inflammation and gastrointestinal tumors (Heazlewood et al. 2008; Van

der Sluis et al. 2006; Velcich et al. 2002), indicating protective role for mucins.

Mucins, which are rich in carbohydrates, can serve as binding sites for commen-

sal bacteria and can be used by resident bacteria as energy sources. The normal

microbiota compete with pathogenic bacteria for binding sites and promote mucin

secretion, which may be one possible mechanism for beneficial effects of probio-

tics. The tight binding of microorganisms to mucin may lead to their eventual

removal through mucous shedding, but pathogenic bacteria may overcome the

presence of mucous layer by mechanisms that degrade mucus or decrease mucin

expression. Alternatively, pathogenic bacteria can use mucin molecules as recep-

tors to facilitate adhesion and promote pathogenesis.

6.4 Enteroendocrine Cells

Enteroendocrine, or neuroendocrine, cells secrete peptide hormones to coordinate

gastrointestinal functions. Enteroendocrine cells are typically narrow at the apical

side, and wide at the base, with relatively few microvilli at the apical surface.

One of the prominent features of this cell type is the concentration of secretory

granules in the basal end of the cytoplasm, below the nucleus. Based on the

ultrastructure of these vesicles, their specific intestinal hormone, and unique marker

gene expression, more than 10 subtypes of enteroendocrine cells have been defined

(Schonhoff et al. 2004). The number and subtypes of enterendocrine cells vary along

the proximal–distal axis, with gastrin-, secretin-, and cholecystokinin-expressing

cells enriched in the gastric and duodenal regions, while peptide YY-, GLP-1-, and

neurotensin-expressing cells are preferentially present in the ileum and colon. In

contrast, somatostatin-, serotonin-, and substance P-producing cells are distributed

throughout the gastrointestinal tract. A complex transcriptional network directs

enteroendocrine cell differentiation, which controls development of enteroendo-

crine cell subtypes to specifically produce one or more peptide hormones. As the

localization of secretory vesicles suggests, the contents of granules are secreted from

the basolateral surface of enteroendocrine cells. The released hormones may func-

tion locally as paracrine signals or enter the blood stream to exert systematic effects.

Although specific functions for each enteroendocrine cell type are not clear, they

seem to be critical in intestinal function, as genetic mutation of neurogenin-3, a

critical transcriptional factor for all subtypes of enteroendocrine cell development,

leads to complete loss of enteroendocrine cells in human causing congenital

malabsorptive diarrhea (Wang et al. 2006).
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6.5 Paneth Cells

Paneth cells are long-lived secretory cells that normally reside at the crypt base of

the small intestine, cecum, and ascending colon. Their normal distribution

requires surface expression of EphB receptor tyrosine kinases and their ephrin

B ligands, as genetic deletion of these genes in mice causes Paneth cells to lose

their normal localization in the crypt base (Batlle et al. 2002; Cortina et al. 2007;

van Es et al. 2005a). Paneth cells are pyramid-shaped columnar cells with basally

localized nuclei; the apical cytoplasm is filled with eosinophilic and electron

dense secretory granules. The exocytic granules contain a number of antimicro-

bial molecules including lysozyme, phospholipase A, a1-antitrypsin, and antimi-

crobial peptides such as defensins. With the ability to secrete such a wide array

of antibacterial proteins, Paneth cells are thought to be important in innate

immunity. When Paneth cells are depleted by specific toxins or genetic manipu-

lation, animals are more susceptible to bacterial infection (Sherman et al. 2005;

Wilson et al. 1999), while overexpression of antimicrobial peptides can help to

limit intestinal infection (Salzman et al. 2003), underscoring the significance of

this cell type. Although the molecular mechanisms for antimicrobial protein secre-

tion are not well described, bacterial components can promote antimicrobial peptide

secretion (Ayabe et al. 2000; Tanabe et al. 2005), at least partially though activation

of membrane bound and intracellular pattern recognition receptors such as TLR9

and NOD2 (Kobayashi et al. 2005; Rumio et al. 2004; Voss et al. 2006; Wehkamp

et al. 2004).

7 Basement Membrane and the Intestinal Epithelial Cells

The intestinal epithelial cells are anchored on the basement membrane, a thin

layer of specialized extracellular matrix, which separates the epithelium from the

lamina propria. The basement membrane is barely visible in H&E stained tissues

and is more readily visualized by Periodic acid-Schiff and silver stains. The

basement membrane is composed of a distinct array of extracellular matrix

proteins, including the type IV collagen, laminins, heparan sulfate proteoglycans,

nidogen/entactin, and fibronectin. The basement membrane components are se-

creted by both epithelial and mesenchymal cells: the type IV collagen is produced

by mesenchymal cells, heparan sulfate proteoglycan is exclusively secreted by

epithelial cells, while laminin is synthesized by both epithelial and mesenchymal

cells. Epithelial cells are anchored on the basement membrane by b1 integrin-

containing focal adhesions and b4 integrin-containing hemidesmosomes. In both

focal adhesions and hemidesmosomes, the extracellular domains of transmem-

brane integrin molecules bind to basement membrane components including

laminin, fibronectin, and collagen IV. At the cytoplasmic side, focal adhesions

are stabilized by large protein complexes that are linked to the actin cytoskeleton,

while hemidesmosomes are protein complexes anchored by intermediate
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filaments. The focal adhesion contains multiple adaptor molecules and signaling

molecules, which can transduce signals from the basement membrane to the

inside of epithelial cells. In addition, intracellular signaling events can modulate

integrin binding to the basement membrane components in an inside-out fash-

ion, affecting the strength of epithelial–basement membrane interactions. It is

well established that basement membrane components dictate epithelial prolif-

eration, migration, and differentiation. Recent studies also show heparan sulfate

and syndecan-1 knockout mice have increased protein leakage across the epi-

thelium, suggesting critical roles of the basement membrane in maintaining the

epithelial barrier (Bode et al. 2008). The basement membrane also functions

as a physical barrier to prevent cell migration. However, this barrier can be

breached under pathophysiological conditions by immune cell- and cancer cell-

secreted proteases. In damaged epithelium, exposed basement membrane may

also provide binding sites for bacterial attachment. Microbial pathogens may also

secrete proteases to degrade basement components, facilitating their invasion and

dissemination.

8 Maintenance and Regulation of the Epithelial Barrier

As discussed above, successful vectorial transcellular transport requires polarized

distribution of transport proteins. Thus, it is important to separate apical and

basolateral membranes. In addition, efficient transepithelial transport requires

maintenance of ionic gradients across the epithelium. Free diffusion of ions be-

tween the cells would disrupt these gradients. Furthermore, the intercellular space

between epithelial cells needs to be sealed to prevent luminal bacteria and antigens

from accessing the lamina propria. All these requirements are met by a single

structure, the tight junction.

The tight junction is located at the most apical site of epithelial cell contact and

is a component of the apical junction complex (Fig. 6). It is a continuous structure

that circumscribes the apical portion of the cell with a depth of 100–600 nm. The

two major functions for this structure are to provide a gate between the cells to

limit free passage of charged and uncharged molecules and to provide a fence to

prevent diffusive mixing of apical and basolateral plasma membrane components.

Transmission electron microscopy shows the tight junction to be a site where

plasma membranes of adjacent epithelial cells are closely apposed. Freeze-fracture

electron microscopy shows that the tight junction is composed of multiple continu-

ous, anastomosing strands which consist of intramembranous particles. Such

strands are thought to be responsible for limiting the free diffusion of molecules

across the tight junction. Two models have been proposed to explain the molecular

composition of the tight junction. The lipid model suggests that the outer leaflet of

plasma membranes of adjacent cells fuse to form the strands observed by freeze-

fracture microscopy. The protein model postulates that the tight junction strands are

composed of protein particles which mediate adhesion between adjacent cells. With
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the identification of multiple tight junction proteins that can direct tight junction-

like strand formation, the protein model has been widely accepted. However,

specialized lipids such as cholesterol and sphingolipids are enriched within the

tight junction (Francis et al. 1999; Nusrat et al. 2000b), suggesting that although

they may not able to form tight junction strands by themselves, lipids also play a

critical role in tight junction organization and function.

8.1 Molecular Organization of the Tight Junction

An expanding family of tight junction-associated proteins is being recognized.

These proteins can be divided into integral membrane proteins and cytoplasmic

plaque proteins. The integral membrane proteins may have one, three, or four

transmembrane domains and are thought to define paracellular permeability,

while tight junction plaque proteins localize at the cytoplasmic face of the tight

junction, contain multiple domains for protein–protein interactions, and may cross-

link and stabilize transmembrane proteins at the tight junction.

Occludin was the first transmembrane protein at the tight junction described

(Furuse et al. 1993). It has four transmembrane domains, two extracellular loops,

and N- and C- terminal cytoplasmic tails. It can interact with multiple proteins,

including occludin itself, as well as plaque proteins ZO-1, -2, -3, and cingulin. It has

also been shown to interact with a variety of signaling molecules such as PKCZ,
protein phosphotase 2A, and PI3 kinase (Cordenonsi et al. 1999; Furuse et al. 1994;

Nusrat et al. 2000a; Seth et al. 2007; Suzuki et al. 2009), suggesting occludin plays

a role in signal transduction. In addition, occludin can interact with the actin

cytoskeleton both directly and indirectly (Fanning et al. 1998; Wittchen et al.

1999). In vitro studies have shown that when occludin is expressed in fibroblasts,

TJ
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Fig. 6 The apical junctional

complex. This high

magnification electron

micrograph shows the apical

junctional complex between

two adjacent enterocytes. The

tight junction (TJ) is the most

apical component within the

complex, where plasma

membranes of two cells are

closely apposed. The

adherens junction (AJ) and
desmosome (DES) are located
subapical to the tight junction
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it can form tight junction-like strands (Furuse et al. 1996; Van Itallie and Anderson

1997). Furthermore, application of a synthetic peptide that corresponds to the

sequence of second extracellular loop of occludin disrupts the tight junction, and

siRNA knockdown of occludin leads to decreased epithelial barrier function,

suggesting a role for occludin in maintaining the epithelial barrier (Furuse et al.

1996; Wong and Gumbiner 1997; Yu et al. 2005). However, occludin knockout

mice are viable with normal tight junction organization and epithelial barrier

function, demonstrating that occludin is not absolutely required for structural

integrity of the tight junction (Saitou et al. 1998, 2000).

The lack of in vivo significance for occludin in tight junction formation

prompted a search for additional transmembrane tight junction proteins. This search

resulted in the identification of the claudin family of tight junction proteins (Furuse

et al. 1998a). Over 20 claudin family members have been discovered in humans.

Similar to occludin, they are tetraspanning transmembrane proteins with two

extracellular loops and N- and C- terminal cytoplasmic tails; however, there is no

sequence homology between occludin and the claudins. One common feature of the

claudin proteins is that they have PDZ domain binding motifs at the very end of

their C-termini, which can bind to the plaque proteins ZO-1, -2, and -3, and are

important in targeting claudin to the tight junction (Itoh et al. 1999). When

expressed in fibroblasts, claudins induce tight junction-like strand formation be-

tween adjacent cells (Furuse et al. 1998b). Claudins are the major determinants of

tight junction charge selectivity. For example, claudin-16 forms pores that allow

Mg2+ to cross the tight junction. Mutations in claudin-16 interrupt normal para-

cellular Mg2+ reabsorption in the renal tubule, resulting in a Mg2+-wasting disease

in humans (Simon et al. 1999). In vitro claudin-4 overexpression in renal epithelial

cells causes decreased Na+ permeability without affecting Cl� and uncharged

molecule permeability across the tight junction (Van Itallie et al. 2001). When a

negatively charged amino acid residue in claudin-4 is switched to a positively

charged amino acid residue at position 65 within the first extracellular loop, Na+

permeability is increased. Similarly, when a claudin-2 mutant containing the first

extracellular loop of claudin-4 is expressed in epithelial cells, charge selectivity is

more similar to claudin-4 than native claudin-2 (Colegio et al. 2002, 2003).

Therefore, the first extracellular loops of the claudins, which vary widely in number

and position of charged amino acid residues, plays a critical role in determining

tight junction charge selectivity. As multiple claudin proteins can be expressed

by the same cell and they can interact heterogeneously, modulation of patterns of

claudin protein expression can alter permeability properties to meet special func-

tional requirements (Furuse et al. 1999; Holmes et al. 2006).

Zonula occludens (ZO)-1 is a representative plaque protein at the tight junction.

Beginning at the N-terminus, it has three PDZ domains, an SH3 domain, a kinase-

dead guanylate kinase domain, and an actin binding region. Additional domains in

the C-terminal region of ZO-1 are poorly defined. The first PDZ domain for ZO-1

mediates its interaction with the C-terminal end of the claudins (Itoh et al. 1999), the

second PDZ domain mediates its homotypic and heterotypic association with ZO-1

and its close relatives, ZO-2 and ZO-3 (Wittchen et al. 1999), the fragment
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containing SH3 and guanylate kinase domains mediate ZO-1’s association with

occludin (Schmidt et al. 2004), and the actin binding region directly interacts with

actin filaments (Fanning et al. 2002). Through these interactions, ZO-1 is thought to

function as a cross-linker to stabilize trasmembrane proteins at the tight junction.

Cell culture studies have shown that lack of ZO-1 expression, alone or in combina-

tion with loss of ZO-2, leads to defects in transmembrane protein targeting the tight

junction (McNeil et al. 2006; Umeda et al. 2006), suggesting critical roles of ZO

proteins in tight junction organization and function. In vivo genetic deletion studies

have further shown that lack of ZO-1 or ZO-2 expression leads to embryonic

lethality with aberrant tight junction organization, underscoring the functional

importance of these proteins (Katsuno et al. 2008; Xu et al. 2008).

Based on the abundant interactions among tight junction proteins, it has been

suggested that these proteins form a stable protein complex which maintains tight

junction structure and function. However, a stable structure is incompatible with

rapid and reversible regulation of the tight junction as discussed below. Indeed, a

recent study demonstrated that the tight junction is a highly dynamic structure

(Shen et al. 2008). In this study, the protein dynamics of occludin, claudin-1, and

ZO-1 at the tight junction were determined by fluorescent recovery after photo-

bleaching experiments (Fig. 7). These experiments showed that most of the occludin

and ZO-1 molecules are highly dynamic at the tight junction. However, they

do not exchange as a single complex, since occludin exchange is achieved

through diffusion within the plasma membrane, while ZO-1 does not diffuse

within the plasma membrane. Instead, tight junction-associated ZO-1 exchanges

with a cytoplasmic pool. Unlike occludin and ZO-1, claudin-1 molecules are

static and show only limited fluorescent recovery after photobleaching. This

study demonstrates that each of the tight junction proteins studied has a unique

a b

Fig. 7 Distinct tight junction proteins show unique dynamic behaviors. An epithelial monolayer

expressing both green fluorescent protein-tagged claudin-1 and red fluorescent protein-tagged

occludin was subjected to live-cell fluorescent recovery after photobleaching. Before photobleach-

ing (a), the claudin-1 fluorescence (green) and occludin fluorescence (red) colocalize within the

tight junction (shown in yellow). When indicated areas (arrows) were photobleached and allowed

to fluorescent recover for 15 min (b), significant fluorescent recovery occurred for occludin,

but not claudin-1, leading to red appearance of the bleached regions due to lack of claudin-1

fluorescence. Nuclei were stained with Hoescht 33342 (blue)
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dynamic behavior, indicating that they do not reside in a single protein complex.

These studies also show occludin and ZO-1 dynamics can be differentially

regulated upon distinct stimuli that modify tight junction permeability, such as

metabolic inhibition, cholesterol chelation, or reduced temperature, indicating

that alteration of tight junction protein dynamics may provide a mechanism for

rapid regulation of tight junction function.

8.2 Physiological Regulation of the Tight Junction Through
Cytoskeletal Contraction

As mentioned above, the intestinal epithelial tight junction is functionally dynamic.

One of the best examples is the increase in paracellular permeability that follows

activation of Na+-nutrient transporters, such as the Na+-glucose co-transporter

SGLT-1. The Na+-glucose co-transporter induces a selective increase in the number

of small pores in the villus, which results in increased permeability to ions and

small non-charged molecules (Fihn et al. 2000; Madara and Pappenheimer 1987;

Pappenheimer 1987). Such an increase in paracellular permeability has been sug-

gested to complement transcellular glucose transport to maximize nutrient and

water absorption (Meddings and Westergaard 1989; Pappenheimer 1993; Sadowski

and Meddings 1993; Turner et al. 2000).

The pathways for tight junction regulation are under extensive investigation.

One possible mechanism for such regulation is through transcriptional control of

distinct claudin family members; however, such a mechanism cannot account for

the rapid and reversible modulation of tight junction permeability by SGLT-1

activation. Another possibility is highlighted by electron microscopy studies

showing that SGLT-1 activation induces perijunctional actomyosin ring condensa-

tion (Atisook et al. 1990; Madara and Pappenheimer 1987), suggesting actomyosin

contraction maybe a mechanism for acute tight junction regulation under physiolog-

ical conditions. Indeed, SGLT-1-dependent increases in tight junction permeability

are characterized by local myosin regulatory light chain (MLC) phosphorylation

(Berglund et al. 2001; Turner and Madara 1995; Turner et al. 1997), a marker for

actomyosin contraction.

8.3 Myosin Light Chain Kinase Regulates Actomyosin
Contraction at the Tight Junction

Although multiple signaling pathways such as activation of Rho kinase or inactiva-

tion of myosin light chain phosphatase MYPT can result in increased MLC phos-

phorylation, subsequent studies have shown that SGLT-1 activation-induced MLC

phosphorylation is directly through the activity of MLC kinase (MLCK).
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Pharmacological inhibition of MLCK blocks both SGLT-1-induced MLC phos-

phorylation and increased tight junction permeability, indicating that MLCK activ-

ity is necessary for acute tight junction regulation by SGLT-1 (Turner and Madara

1995; Turner et al. 1997). MLCK activity is also important in pathophysiological

regulation of the tight junction. For example, proinflammatory cytokines such

as TNFa and LIGHT (lymphotoxin-like inducible protein that competes with

glycoprotein D for herpes virus entry on T cells) induce tight junction dysfunction

in an MLCK-dependent manner in both cultured cells and mice (Clayburgh et al.

2005, 2006; Schwarz et al. 2007; Wang et al. 2005). Studies further show MLCK

activity alone is sufficient to regulate the tight junction (Shen et al. 2006). When a

constitutively-active form of MLCK is expressed in Caco-2 intestinal epithelial cell

monolayers, it causes decreased epithelial barrier function and altered tight junc-

tion organization (Shen et al. 2006). Pathophysiological activation of MLCK

activation also participates in human disease, as studies using patient samples

show MLC phosphorylation and MLCK expression are highly upregulated during

active inflammatory bowel diseases (Blair et al. 2006), suggesting MLCK-mediated

epithelial barrier loss may participate in inflammatory diseases of the intestine

(Clayburgh et al. 2004). This notion is supported by a mouse model of epithelial

barrier dysfunction by tissue-specific expression of the constitutively-active MLCK

in small intestinal and colonic epithelial cells. Similar to the tissue culture model,

the constitutively-active MLCK increased small intestinal and colonic permeability

(Su et al. 2009). Although these mice do not have histologically apparent disease,

they show increased intestinal cytokine expression and increased susceptibility to

immune cell-mediated experimental inflammatory bowel disease, suggesting a role

for MLCK and tight junction dysfunction in contributing to intestinal inflammation

(Su et al. 2009).

8.4 Endocytic Pathways and Tight Junction Regulation

It is clear that MLCK-mediated MLC phosphorylation is a major pathway for tight

junction regulation; however, the mechanism through which perijunctional acto-

myosin ring contraction regulates tight junction structure and function is poorly

defined. Because an intact actin cytoskeleton is critical in maintaining tight junction

organization and function (Bentzel et al. 1976), it is conceivable that actomyosin

contraction leads to tight junction reorganization.

A prominent feature of cytoskeletal-dependent tight junction disruption is tight

junction protein internalization. Live cell microscopy coupled with simultaneous

electrophysiological analysis of tight junction barrier function showed that the first

morphological change induced by actin depolymerization is internalization of

occludin. No significant change in ZO-1 and claudin-1 distribution occurs until

well after barrier function is lost (Shen and Turner 2005). Morphological and

functional studies show such internalization is through a caveolin-mediated path-

way, and inhibition of caveolae-mediated endocytosis blocks actin depolymerization-
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induced tight junction dysfunction, suggesting caveolae-mediated endocytosis is

a critical pathway for tight junction regulation. Such occludin internalization

also takes place during cytokine-induced barrier dysfunction (Fig. 8), as both

cell culture and whole animal studies have shown that upon TNFa and LIGHT

treatment epithelial occludin staining decreases at the tight junction and appears in

intracellular vesicles, with limited changes of other tight junction proteins (Schwarz

et al. 2007; Wang et al. 2005). Both pharmacological and genetic inhibition of

MLCK activity results in decreased occludin internalization, suggesting that disrup-

tion of the tight junction, as represented by occludin internalization, is a downstream

event following actomyosin contraction (Clayburgh et al. 2005, 2006; Schwarz et al.

2007; Wang et al. 2005). Although occludin internalization correlates with tight

junction dysfunction, the role of occludin itself in tight junction regulation is not

clear and is complicated by the absence of an obvious tight junction phenotype in

occludin knockout mice (Saitou et al. 1998,, 2000). Nevertheless, occludin endocy-

tosis is an excellent morphological marker for tight junction dysfunction (Fig. 9).

8.5 Infectious Agents and Tight Junction Dysfunction

Because the tight junction is critical in maintaining the epithelial barrier, it is

targeted by multiple infectious agents. Some viral pathogens, such as reovirus,

Coxsackie virus B (CVB), and hepatitis virus C, use tight junction proteins as

receptors to enter eukaryotic cells (Barton et al. 2001; Coyne and Bergelson 2006;

Evans et al. 2007). Of these, the mechanism for CVB entry through the tight

junction is the best characterized. CVB first binds to an apical surface receptor,

a

b

Fig. 8 TNFa induces

occludin internalization.

Frozen sections of jejunum

taken from control (a) and

TNFa-injected (b) mice were

stained for occludin (red) and
F-actin (green). Under control
condition, occludin

concentrates at the tight

junction and colocalizes with

the perijunctional actomyosin

ring. In TNFa-treated mice,

occludin is removed from the

tight junction and exists in

intracellular vesicles

(arrows). Nuclei were stained
with Hoescht 33342 (blue)
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the decay accelerating factor, which direct CVB to the tight junction and binding to

the second receptor, the coxsackie and adenovirus receptor (CAR), within the tight

junction. Once at the tight junction, CVB disrupts the tight junction and enters the

epithelial cells through a macropinocytosis-like pathway which depends on occlu-

din expression (Coyne and Bergelson 2006; Coyne et al. 2007). In addition to viral

pathogens, the Clostridium perfringens enterotoxin exert its cytotoxic effect

through binding to a selective number of claudins, including claudin-3 and -4,

and formation of large protein complexes which contains occludin, thereby causing

tight junction disruption (Katahira et al. 1997; Singh et al. 2000; Sonoda et al. 1999).

Intestinal pathogens also disrupt tight junctions through regulating the actin

cytoskeleton. The Clostridium difficile toxins inactivate Rho, a small GTPase that

regulates the actin cytoskeleton, by glucosylation, ultimately causing gross disrup-

tion of the tight junction and inducing occludin internalization through a caveolae-

mediated pathway (Hecht et al. 1988; Nusrat et al. 2001). In contrast, the E. coli
toxin cytotoxic necrotizing factor-1 activates Rho via deamidation, leading to

tight junction disruption. Instead of regulating small GTPase activities, both en-

teropathogenic E. coli and Helicobacter pylori increase MLC phosphorylation
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Fig. 9 Schematic presentation of MLCK-mediated tight junction disruption. Under resting con-

ditions (a), only a small fraction of cellular MLC is phosphorylated causing low levels of

perijunctional actomyosin contraction. When MLCK is activated through extracellular and intra-

cellular stimuli (b), a large fraction of MLC is phosphorylated, leading to perijunctional actomyo-

sin contraction. Such contraction leads to endocytic removal of occludin from the tight junction (c)

and disruption of the epithelial barrier
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through an MLCK-mediated pathway to induce occludin intenalization (Fedwick

et al. 2005; Shifflett et al. 2005; Simonovic et al. 2000; Wroblewski et al. 2009;

Yuhan et al. 1997; Zolotarevsky et al. 2002), suggesting that the pathway for

physiologically relevant MLC phosphorylation and occludin internalization can

be hijacked by bacterial pathogens to induce barrier dysfunction. Such tight junc-

tion disruption and increased paracellular permeability contribute to bacteria-

induced diarrhea and may facilitate bacterial invasion into deeper tissues.

9 Gastrointestinal Immune System

The interface between the intestinal mucosa and the lumen is a challenging

environment. The inner surface of the intestine covers about 100 m2. Along this

surface, the intestinal epithelial cells are continuously exposed to commensal

bacteria that reside in the intestinal lumen, as well as dietary and environmental

antigens. Such interactions provide constant immunological stimulation. Indeed,

a large number of immune cells, distribute throughout the gastrointestinal tract.

Despite the harsh environment, under normal conditions the mucosal immune

system in the gut is maintained to be hyporesponsive to environmental stimuli.

However, the intestinal immune system is capable of rapidly mounting an im-

mune response against pathogens. The balance between immune tolerance and

immune activation at the mucosa is maintained by a complex network of immune

cells and intestinal epithelial cells, and breakdown of this balance will lead to

intestinal disease.

9.1 Intestinal Lymphoid Tissues

Lymphoid aggregates are frequently found in the intestines. They can be well

differentiated and developmentally determined, or they can form following stimu-

lation. The best recognized intestinal lymphoid tissue is the Peyer’s patch, a

secondary lymphoid tissue located in the ileum. The Peyer’s patch has distinct

T cell and B cell zones, with prominent B cell follicles containing germinal centers

(Fig. 10). One unique feature of Peyer’s patches is that they do not contain afferent

lymphatics, instead they receive antigenic signals from follicle-associated epithelia,

which contains antigen-sampling M (microfold) cells, and is a major route for

bacterial invasion. Another type of intestinal lymphoid tissue is the isolated lym-

phoid follicles found in the small intestine (Hamada et al. 2002; Moghaddami et al.

1998). Similar to the Peyer’s patches, fully developed isolated lymphoid follicles

have B cell follicles with overlying follicle-associated epithelia and M cells.

However, isolated lymphoid follicles do not have T cell zones, their formation is

not developmentally controlled, and their number can be altered in response to

changed intestinal microflora (Hamada et al. 2002; Lorenz et al. 2003; Pabst et al.
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2006). Furthermore, upon stimulation, tertiary lymphoid tissues can form at random

sites by lymphoid neogenesis (Kratz et al. 1996). These lymphoid tissues can be

well organized, containing germinal centers, lymphatics, and high epithelial

venules, or can be less organized with no apparent structure. Although the mechan-

isms for development of these lymphoid structures are distinct, lymphotoxin

expressed by hematopoitic cells and lymphotoxin b receptors on stromal cells

seems to play a critical role. Indeed, lack of lymphotoxin and lymphotoxin b
receptor results in decreased intestinal lymphoid tissues (Honda et al. 2001; Lorenz

et al. 2003; Rennert et al. 1996), while overexpression of lymphotoxin induces

tertiary lymphoid tissue formation (Drayton et al. 2003; Kratz et al. 1996).

Like other lymphoid tissues, intestinal lymphoid tissue is important for mount-

ing immune responses. Peyer’s patches are major sites of antigen sampling through

their interaction with M cells and unique antigen-presenting dendritic cells. Such

interactions promote lymphocyte homing to the gut and mounting of immune

responses (Lugering et al. 2005; Mora et al. 2003; Salazar-Gonzalez et al. 2006;

Shikina et al. 2004; Yamamoto et al. 2004), indicating that intestinal lymphoid

tissue plays unique and critical roles in intestinal immune responses.

9.2 Intraepithelial Lymphocytes and Lamina Propria
Lymphocytes

Once lymphocytes receive antigen stimulation in lymphoid tissues, they can mi-

grate to effector sites within the intestine. Based on their location, they can be

divided into intraepithelial lymphocytes, which localize within the epithelium, and

lamina propria lymphocytes, which are found below the basement membrane.

The frequencies for intraepithelial lymphocytes vary, ranging from one intrae-

pithelial lymphocyte for every 4–10 epithelial cells in the small intestine, to one for

PP

FAE

Fig. 10 Human Peyer’s

patch. Peyer’s patches (PP)
are located within ileal

mucosa and are covered by

follicle associated epithelium

(FAE). M cells reside within

the follicle-associated

epithelium and are

specialized for antigen

transport
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every 30–50 epithelial cells in the colon (Beagley et al. 1995). Almost all intrae-

pithelial lymphocytes are T cells with memory characteristics, which may contain

some unique surface makers, such as homodimeric form of CD8a and gd form of T

cell receptors. Based on their surface makers, intraepithelial lymphocytes can be

divided to two different groups. Type a intraepithelial lymphocytes possess

abTCRs with CD4 or CD8ab, which recognize non-self-antigens in classical

MHC restricted manner, similar to conventional T cells. In contrast, type b intrae-

pithelial cells are non-conventional, and are abTCR CD8aa, gdTCR CD8aa, or
double negative gdTCR lymphocytes. The activation of type b cells is less MHC

dependent; rather, they may recognize nonpolymorphic surface molecules such as

CD1 and MICA/B. The development of these cells is also different, as some type b

cells still arise in athymic conditions, may recognize self-antigens, and are posi-

tively selected in the periphery. The number of type a and type b cells varies along

the proximal–distal axis: type b cells make up ~50% of all intraepithelial lympho-

cytes in the human small intestine; however, this type is very rare in the colon. The

specific function for intraepithelial lymphocytes is not clear, but it has been

suggested they may play a variety of roles, such as immunoregulation and promot-

ing epithelial damage repair (Boismenu and Havran 1994; Komano et al. 1995;

Poussier et al. 2002).

Unlike intraepithelial lymphocytes, a large number of B cells reside in the

lamina propria. These B cells are derived from naı̈ve cells in the intesti-

nal lymphoid tissue or the lamina propria, with most of them will differentiate

into IgA-secreting plasma cells after activation. After secretion, IgA binds to

the polymeric IgA receptor on the basolateral surface of the intestinal epithe-

lial cells, translocates across epithelial cells, and forms secretory IgA com-

plexes. The secreted IgA generates immune protection in a noninflammatory

manner: it can promote immune exclusion by trapping bacteria and dietary

antigens in the mucus layer, thereby downregulating proinflammatory epitopes

on commensal bacteria, blocking bacterial binding to the epithelial surface,

mediating intraepithelial neutralization of pathogens, and facilitating antigen

sampling. Lamina propria T cells express abTCR with CD4 to CD8 ratios

similar to blood lymphocytes, and express memory markers. These cells may

exert regulatory functions by producing a variety of cytokines, such as inter-

feron-g, IL-4, IL-10, and TGF-b, to maintain immune homeostasis in the

lamina propria.

9.3 Antigen Sampling at the Intestinal Mucosa: M Cells
and Dendritic Cells

To sample luminal antigens and to condition the immune system, specialized cells

are present in the intestinal mucosa. These cells include M cells and mucosa-

associated dendritic cells.
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M (microfold) cells are specialized epithelial cells for endocytic sampling of

luminal contents. As briefly mentioned above, M cells are located within the

follicle-associated epithelium that lies immediately above Peyer’s patches in the

ileum and with isolated lymphoid follicles throughout the gastrointestinal tract.

In addition, isolated M cells are also present in the intestinal villus (Jang et al.

2004). At the apical surface, M cells have short and irregular microvilli which are

relatively sparse, with very low digestive and nutrient transport protein expres-

sion. The mucous layer is very thin on the M cell surface, facilitating endocytosis

of luminal bacteria and antigens. At the basal surface, the plasma membrane of M

cells detaches from the basement membrane to form intraepithelial invaginations,

creating clefts between the M cell plasma membrane and the basement mem-

brane. As their location and structure suggest, the major function of M cells is

transepithelial antigen transport. Bacteria, bacterial products, and other antigens

are endocytosed at the apical membrane, transported to the endosomal com-

partment, sorted, and finally exocytosed at the basal membrane. Within the

space between the M cell basal plasma membrane and the basement membrane,

dendritic cells and macrophages receive antigens released from M cell exocytic

vesicles to activate downstream immune responses. Experiments have shown a

complete endocytosis–exocytosis sequence can take only 10 min (Neutra and

Kraehenbuhl 1992), suggesting that M cell-mediated transcytosis can be very

rapid and efficient. During bacterial infection, such transcytosis pathways can be

utilized by intestinal pathogens to cross the epithelium and promote bacterial

infection.

Intestinal dendritic cells are critical within the intestinal mucosa to present

antigens to lymphocytes and secret various cytokines to direct lymphocyte devel-

opment. Under normal conditions, these cells generate regulatory signals for

lymphocytes to maintain a low level of immune response to normal microbiota.

In the presence of intestinal pathogens, they can stimulate lymphocytes to mount

immune responses. As dendritic cells distribute throughout the gut, they can bind

to antigens transported across the epithelium through various routes. Within

lymphoid tissue, dendritic cells can receive antigens transcytosed by M cells,

and at the lamina propria, they can bind to antigens transported across epithelium

through an Fcg receptor dependent mechanism, or bind to antigens leaked into the

lamina propria through the paracellular pathway (Jang et al. 2004; Yoshida et al.

2004). Lamina propria dendritic cells can also extend dendrites between intestinal

epithelial cells and across tight junctions, thus directly sensing luminal bacteria.

The dendritic extensions do not disrupt the epithelial barrier, as these dendritic

cells express tight junction proteins, and form tight junction-like structures with

adjacent epithelial cells. Formation of these dendrites depends on Toll-like recep-

tor signaling and CX3CR1 expression, and the presence of invasive bacteria

increases the number of such extensions (Chieppa et al. 2006; Niess et al. 2005;

Rescigno et al. 2001).

The dendritic cells in the intestine are not a homogenous population: they can

be located in both secondary lymphoid tissues and the lamina propria; and they can
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be either migratory, moving from lamina propria to mesenteric lymph nodes to

present antigens, or lymphoid resident, presenting antigens at the site of antigen

binding within intestinal lymphoid tissues. Furthermore, these dendritic cells can be

divided into multiple subsets based on their surface marker expression. The differ-

ent subsets of dendritic cells at distinct locations have unique functions. For

example, activated Peyer’s patch dendritic cells produce higher levels of IL-10,

which promotes naı̈ve CD4 cells differentiation into IL-4 and IL-10 producers

(Iwasaki and Kelsall 1999), while the CD11b+ dendritic cells within the Peyer’s

patch produce IL-10 and promote Th2 responses. CD8a+ and CD11b-CD8a-

dendritic cells produce IL-12 and drive T cell production of interferon-g (Iwasaki

and Kelsall 2001).

9.4 Immune Functions of Intestinal Epithelial Cells

In addition to absorptive and secretory functions, intestinal epithelial cells are also

critical in controlling immune responses in the gut. They form a physical barrier to

prevent bacterial invasion of deep tissue, and, by interacting with luminal bacteria

and antigens, they regulate immune cell function. Intestinal epithelial cells express

a variety of pattern recognition receptors, such as plasma membrane-bound Toll-

like receptors and cytoplasmic NOD family receptors. Upon binding to bacterial

products, these receptors activate the NFkB signaling pathway, resulting in cyto-

kine and chemokine production. Under nondiseased conditions, NFkB activation

appears to play a key regulatory role, as intestinal epithelial specific deletion of

upstream activators of the NFkB pathway leads to aberrant inflammation in the gut

(Chen et al. 2003; Greten et al. 2004; Nenci et al. 2007; Zaph et al. 2007). Intestinal

epithelial cells can secrete various factors, such as CXC chemokines, IP-10, thymic

stromal lymphopoietin, and retinoic acid, to regulate dendritic cell and lymphocyte

functions. In addition, intestinal epithelial cells express classical and nonclassical

MHC molecules, such as MHC class I and II, CD1d, MICA/MICB, and machinery

necessary for antigen processing; thus, they can directly present antigens to T cells.

As intestinal epithelial cell normally do not express some of the co-stimulatory

molecules, they are unable to activate naı̈ve T cells, and most of them direct

memory T cells to induce immunoregulatory responses. However, under inflamed

conditions, intestinal epithelial cells can be induced to express co-stimulatory

molecules, thus promoting T cell activation and tissue inflammation (Nakazawa

et al. 1999, 2004).
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Abstract Vibrio cholerae is a curved Gram-negative rod that causes the diarrheal

disease cholera. One hundred and twenty five years of study of V. cholerae
microbiology have made this lethal pathogen arguably the most well-understood

non-invasive mucosal pathogen. Over the past 25 years, modern molecular techni-

ques have permitted the identification of many genes and cellular processes that are

critical for V. cholerae colonization of the gastrointestinal tract. Review of the

literature reveals that there are two classes of genes that influence V. cholerae
colonization of the suckling mouse intestine, the most commonly used animal

model to study V. cholerae pathogenesis. Inactivation of one class of genes results
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in profound attenuation of V. cholerae intestinal colonization, whereas inactivation
of the other class of genes results in only moderate colonization defects. The latter

class of genes suggests that V. cholerae may colonize several intestinal niches that

impose distinct requirements and biological challenges, thus raising the possibility

that there is physiologic heterogeneity among the infecting population. Efficient

V. cholerae intestinal colonization and subsequent dissemination to the environ-

ment appears to require temporally ordered expression of sets of genes during the

course of infection. Key challenges for future investigations of V. cholerae patho-
genicity will be to assess the degree of heterogeneity in the infecting population,

whether such heterogeneity has functional significance, and if stochastic processes

contribute to generation of heterogeneity in vivo.

1 Introduction

Cholera is a severe and sometimes lethal diarrheal disease that is caused by the

curved Gram-negative rod V. cholerae. Cholera patients can become rapidly dehy-

drated from the severe watery diarrhea (known as ‘rice-water stool’) that is charac-

teristic of this illness. Without adequate re-hydration, patients can die less than a

day after infection. This disease has likely afflicted humans on the Indian subconti-

nent since ancient times (Pollitzer 1959). During the past two centuries, cholera has

spread beyond the Indian subcontinent and given rise to seven pandemics. Cholera

also sometimes appears in explosive epidemics and, over the years, millions have

lost their lives to this disease (Pollitzer 1959). Studies of cholera have influenced

many scientific fields (Greenough 2004; Kavic et al. 1999). Most prominently, John

Snow’s observations linking the spread of cholera in London in 1854 to the water

supply are usually cited as the beginning of modern epidemiology. Robert Koch

is generally credited with isolating V. cholerae (“comma bacilli”) as the cause

of cholera in 1883. However, scientists before Koch, including the Italian

anatomist Filippo Pacini in 1854, appear to have detected the comma-shaped

V. cholerae bacillus in autopsy specimens from the intestines of cholera victims

(see Howard-Jones 1984).

2 V. cholerae Classification, Genomics and Evolution

V. cholerae can be classified into more than 200 different serogroups based on a

scheme developed by Shimada and colleagues (Yamai et al. 1997). Variability in

the composition of the O side chains of lipopolysaccharide (LPS) molecules

accounts for the distinct antigenicity associated with each serogroup. Only

V. cholerae O1 serogroup strains were associated with epidemic cholera up until

1992, when V. cholerae serogroup O139 emerged as a cause of epidemic disease in

India and Bangladesh (Cholera working group 1993). V. cholerae O1 are divided
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into two biotypes, classical and El Tor, based on several phenotypic assays (Kaper

et al. 1995). The classical biotype of V. cholerae is thought to have caused the first

six cholera pandemics, whereas the ongoing seventh pandemic, which began in

1961, is caused by the El Tor biotype of V. cholerae O1.
Phylogenetic analyses place V. cholerae within the g-proteobacteria, and there is

significant similarity in the gene content of V. cholerae and other g-proteobacteria
such as Escherichia coli. However, unlike most g-proteobacteria, the V. cholerae
genome does not consist of a single circular chromosome; instead, the V. cholerae
genome is divided unequally between two circular chromosomes (Trucksis et al.
1998). In fact, the presence of two circular chromosomes is a defining feature of all

Vibrio species (Okada et al. 2005; Tagomori et al. 2002; Yamaichi et al. 1999). The
smaller second V. cholerae chromosome has many fewer essential genes than

chromosome I (Heidelberg et al. 2000). It seems plausible that the second

V. cholerae chromosome was originally acquired by an ancestral proto-Vibrio
species as a megaplasmid; subsequently, the second chromosome must have

acquired essential genes and become indispensable.

Horizontal gene transfer has been instrumental in the evolution of pathogenic

V. cholerae. The two most critical V. cholerae virulence factors, TCP, a type IV

pilus that is an essential V. cholerae intestinal colonization factor (Herrington et al.
1988; Taylor et al. 1987), and cholera toxin (CT), an A-B type exotoxin that

accounts for much of the secretory diarrhea characteristic of cholera (see Sanchez

and Holmgren 2008 for a recent review of CT action), were both likely acquired via

lateral gene transfer. TCP is encoded by a pathogenicity island (Karaolis et al. 1999;
Kovach et al. 1996) and the mechanism of its acquisition by V. cholerae has yet to
be determined. CT is encoded within the CTX prophage (Waldor and Mekalanos

1996). CTXj is a filamentous phage that utilizes TCP as a receptor to infect

V. cholerae. Thus, it seems likely that there were two key sequential steps in the

evolution of pathogenic V. cholerae. First, a precursor strain acquired the TCP

pathogenicity island and thereby became capable of colonizing the human small

bowel and being infected by CTXj. Second, the TCP+ CT� V. cholerae strain was

infected by CTXj and thereby became able to produce CT and to cause prodigious

diarrhea. Production of cholera stool, which is laden with up to 108 V. cholerae cells
per ml, provides a potent means for the pathogen to disseminate into the environ-

ment and reach new hosts.

The primary aim of this chapter is to review the knowledge of V. cholerae
pathogenicity that has been garnered from experimental animal models of

V. cholerae infection. The reader is directed elsewhere for recent reviews of

V. cholerae microbiology and evolution (Sawabe et al. 2007; Faruque and

Mekalanos 2003; Kaper et al. 1995), virulence gene regulation (Matson et al.
2007; Butler and Camilli 2005; Peterson 2002), lifecycle (Pruzzo et al. 2008; Schild
et al. 2008; Faruque et al. 2004), and vaccine development (Lopez et al. 2008).
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3 Observations from Studies of Cholera Patients

Epidemiological studies suggest that disease caused by the V. cholerae El Tor

biotype tends to be less severe than that caused by the classical biotype (e.g., see

Woodward and Mosley 1972). However, the pathologic findings from patients with

severe cholera (cholera gravis) caused by either biotype appear similar. These are

described below to enable comparison of the attributes of infected humans and

animals, which are crucial for assessing the validity of animal models of infection.

Biopsy studies from cholera patients have demonstrated that V. cholerae is a

noninvasive pathogen and that disease pathology is largely limited to the small

intestine (Fresh et al. 1964; Gangarosa et al. 1960); although bacteria pass through

the remainder of the intestinal tract, they have a relatively limited effect upon it.

Within the small bowel, there is marked congestion and dilation of blood vessels,

degranulation of mucosal mast cells, and edema and accumulation of an amorphous

proteinaceous precipitate in the lamina propria (Koshi et al. 2003; Chen et al. 1971;
Gangarosa et al. 1960). Furthermore, goblet cells appeared to be either actively

secreting mucus or empty, an observation that likely explains the abundant mucus

particles (the ‘rice’ of rice-water stool) often present in cholera stool. Recently,

detailed electron microscopy studies of the small intestine have found some ultra-

structural abnormalities in the villi and in a subset of enterocytes. For example, a

marked widening of the lateral intercellular space and distortion of apical junction

complexes were observed in the upper portion of villi in the small intestine (Mathan

et al. 1995). In addition, irregular blebbing of the microvillus border was observed

in about 5–8% of enterocytes in the upper regions of the villi and in about 50% of

enterocytes present in the crypts. The inflammatory response to V. cholerae is

considered relatively mild and consists predominantly of mononuclear cells and

lymphocytes (Sprinz et al. 1962; Gangarosa et al. 1960). However, infiltrations of
neutrophils into the epithelium and lamina propria have been observed in some

infected individuals (Qadri et al. 2004; Mathan et al. 1995). Consistent with the

latter findings, neutrophils and lactoferrin have been detected in the stools of some

cholera patients (Silva et al. 1996; Stoll et al. 1983).
Human volunteer studies have provided definitive proof that CT causes the

secretory diarrhea that is characteristic of cholera. Levine and colleagues found

that human volunteers administered as little as 5 ug of purified CT developed severe

cholera-like diarrhea (Levine et al. 1983). Furthermore, ingestion by human volun-

teers of a V. cholerae mutant that lacks the toxin genes did not result in secretory

diarrhea (Herrington et al. 1988). However, these strains still elicited mild diarrhea

and abdominal cramps (referred to as ‘reactogenicity’), suggesting that factors

other than CT also contribute to pathogenicity. The factor(s) responsible for

reactogenicity have not been identified.
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4 Historical Perspective on Animal Models of V. cholerae
Pathogenicity

Ultimately, studies of bacterial virulence in animal models should enable mecha-

nistic explanations of the signs, symptoms and pathology of human infection.

Investigations of cholera pathogenesis date back at least to Koch’s studies in the

late 1800s (e.g., see Howard-Jones 1984). Nicati and Rietsch were the first scien-

tists to produce a cholera-like illness in experimental animals in 1884 (cited in

Pollitzer 1959). They found that direct inoculation of V. cholerae into the duode-

nums of guinea pigs yielded a cholera-like illness, though these animals were

relatively resistant to disease following oral inoculation of V. cholerae.
Ilya Metchnikoff postulated that the relative resistance of experimental animals

to oral infection with V. cholerae was “in large part due to the influence of other

microbes in the digestive tract” (Metchnikoff 1894, translation by L. Slamti).

He proposed that the absence of significant intestinal flora in newborn animals, in

particular in infant rabbits, would facilitate V. cholerae colonization. Indeed,

he found that 1- to 4-day-old infant rabbits were susceptible to lethal diarrhea

following oral infection of V. cholerae, though he observed significant variability

in the disease course and mortality in these animals. Intriguingly, when he adminis-

tered “3 favorizing microbes” (isolated from the human stomach) prior to

V. cholerae inoculation, disease became more uniform. He found that the “ingested

vibrios go through the stomach . . . and establish in the small intestine and cecum,

where . . .they wait for a favorable condition to manifest their pathogenic action”

(Metchnikoff 1894, translation by L. Slamti). He observed that the large quantities of

serous mucus-laden liquid in the ceca of infected animals appeared identical to that

of the ‘rice-water’ diarrheal fluid that is characteristic of severe cholera in humans,

and found that the small intestines of the infected rabbits were filled with mucoid

liquid that upon culture in a variety of media yielded only V. cholerae. Metchnikoff

concluded from his studies that “we should consider the intestinal cholera process in

young rabbits as intoxication by vibrios that grow in the intestinal content. . .[as] the
vibrios do not generalize [beyond the intestine]. It is then a poisoning due to the

infection of the digestive tract by the vibrio of Koch” (Metchnikoff 1894, translation

by L. Slamti). Thus, Metchnikoff deduced the essence of our current thinking about

the pathogenesis of cholera from his work with infant rabbits in 1894.

Both adult and infant rabbits have been used to elucidate key aspects of

V. cholerae pathogenicity. In a classic study published in Nature in 1959, S.N.

De demonstrated that an activity in a cell-free supernatant could account for

V. cholerae enterotoxicity (De 1959). After inoculating cell-free supernatants into

the lumen of ligated loops of the adult rabbit small intestine, he observed large

accumulations of fluid that resembled rice-water stool in appearance and chemistry.

Thus, De’s work established that a factor (now known to be CT) released by

V. cholerae in the intestine could cause a secretory response in the intestine.

Subsequently, fluid accumulation in ligated ileal loops has been used as an indicator
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of the enterotoxicity of several additional V. cholerae-derived factors (Trucksis

et al. 1993; Ichinose et al. 1987).
Elegant scanning and transmission electron microscopy studies using ligated

rabbit ileal loops or infant rabbits revealed that V. cholerae attached to a large

fraction of the villous surface, where they were often observed piled several layers

thick (Nelson et al. 1976). The distribution of organisms from the tops to the bases

of the villi did not differ although there was a relative paucity of V. cholerae present
at the villus tips. Nelson et al. also noted changes in the appearance of the microvilli

during infection; the villi became elongated and gave off blebs, as has been

observed in human biopsies, often with attached V. cholerae. To date, the activity

of a specific V. cholerae factor(s) has not been linked to this phenotype. By 12 h

after inoculation into ligated loops, Nelson and colleagues observed far fewer

V. cholerae attached to the villi. They hypothesized that clearance of bacteria

from the villous surface could be accounted for either by host mechanisms, such

as mucus secretion, or by the actions of bacterial products (Nelson et al. 1976). It is
not clear whether such detachment also occurs within infected humans.

During the past two decades, infant mice have become the predominant model

host used to elucidate bacterial factors that enable V. cholerae to colonize and grow
in the small intestine. Murine intestinal colonization has been shown to be depen-

dent upon genes such as tcpA, which encodes the major subunit of TCP, and toxR,
which encodes a key regulator of tcpA and other V. cholerae virulence genes

(Taylor et al. 1987). These genes are critical for V. cholerae colonization of the

human intestine as well (Herrington et al. 1988), suggesting that results from

suckling mice are relevant for understanding human disease. Nonetheless, it should

be noted that infant mice do not develop profuse watery diarrhea, and are of limited

utility for understanding factors that promote this and other manifestations of

disease induced by V. cholerae. Infant mice are typically 3–5 days old upon

inoculation with V. cholerae; as mice age, they became resistant to oral infection

(Ujiiye et al. 1968). Adult mice, like rabbits, are naturally resistant to gastroin-

testinal (GI) infection with V. cholerae. Adult mice raised in a germ-free environ-

ment or treated with streptomycin can be colonized with V. cholerae (Butterton

et al. 1996); however, survival and growth of V. cholerae in their intestines does not
require TCP (Olivier et al. 2007), and consequently the significance of observations
garnered from such studies of colonization of adult mice is not clear.

5 V. cholerae Genes Important for Intestinal Colonization

Before the advent of modern genetic techniques, investigators (e.g., Freter and

O’Brien 1981b; Baselski et al. 1979; Guentzel and Berry 1975) used undefined

V. cholerae mutants to identify V. cholerae phenotypes that were associated with

intestinal colonization. They found that strains that were either rough (defective

LPS), purine auxotrophs, or deficient in toxin production or motility, had reductions

in their recovery from intestinal homogenates. About 20 years ago, investigators
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Table 1 Genes important for Vibrio cholerae colonization of the suckling mouse intestine

Gene (locus)a Function C.I. Reference

I. Cell surface structures

TCP biogenesis
tcpA (VC0828) Major pilin subunit < 0.001 Taylor et al. (1987) and many

others.

tcpB (VC0829) Pilin subunit < 0.02 Peterson and Mekalanos

(1988)

tcpQ (VC0830) Pilin biogenesis <0.001 Kirn et al. (2003)

tcpC (VC0831) Pilin biogenesis <0.001 Kirn et al. (2003)

tcpR (VC0832) Pilin biogenesis <0.001 Kirn et al. (2003)

tcpD (VC0833) Pilin biogenesis <0.001 Kirn et al. (2003)

tcpS (VC0834) Pilin biogenesis <0.001 Kirn et al. (2003)

tcpT (VC0835) Membrane associated ATPase < 0.001 Chiang and Mekalanos

(1998)

tcpE (VC0836) Pilin biogenesis < 0.11 Chiang and Mekalanos

(1998)

tcpF (VC0837) Secreted colonization factor < 0.001 Kirn and Taylor (2005); Kirn

et al. (2003); Chiang and

Mekalanos (1998)

tcpH (VC0827) Pilin biogenesis 0.05 Carroll et al. (1997)

LPS/capsule biogenesis
rfbB (wbfB/

manB)
(VC0242)

O-antigen biosynthesis < 0.001 Chiang and Mekalanos (1998,

1999); Iredell et al. (1998)

rfbA (VC0241) O-antigen biosynthesis 0.003 Iredell et al. (1998)

rfbL (wbeL)
(VC0249)

O-antigen biosynthesis < 0.001b Chiang and Mekalanos

(1998)

waaL (VC0237) O-antigen ligase 0.03 Nesper et al. (2002)

wbeW (VC0263) Capsule biosynthesis 0.024 Nesper et al. (2001)

galEK
(VCA0774/

VC1595)

O-antigen and capsule

biosynthesis

<0.001 Nesper et al. (2002)

galU (VC0395) LPS core oligosaccharide

synthesis

0.03 Nesper et al. (2001)

wavB (VC0224) LPS core oligosaccharide

synthesis

0.003 Nesper et al. (2002)

wbfF (otnA)c O139 capsule biosynthesis 0.03 Nesper et al. (2002)

gmd (VC0243) O139 capsule biosynthesis <0.1 Waldor et al. (1994)

Other
ompW

(VCA0867)

Outer membrane protein 0.1 Nandi et al. (2005)

VCA1008 Outer membrane protein 0.025 Osorio et al. (2004)

yabN
(VCA0578)

Putative transport protein < 0.01 Chiang and Mekalanos

(1998)

pilD (vcpD)
(VC2426)

Type IV prepilin peptidase ~ 0.01 Fullner and Mekalanos

(1999), Marsh and Taylor

(1998)

Mfrha

(VCA0447)

Mannose-fucose-resistant

hemagglutinin

0.003 Franzon et al. (1993)

(continued)
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Table 1 (continued)

Gene (locus)a Function C.I. Reference

II. Transport

tolC (VC2436) Efflux < 0.001 Bina and Mekalanos (2001)

vexBDK
(VC0164,

VC1757 and

VC1673)

Efflux 0.02 Bina et al. (2008)

VC2705 Sodium/solute symporter 0.07 Osorio et al. (2005)

fhuC (VC0201) Ferrichrome ABC transporter 0.05 Lombardo et al. (2007),

Schild et al. (2007)

mgtE-1
(VC1655)

Magnesium transport < 0.002b Chiang and Mekalanos

(1998)

III. Motility

flaA (VC2188) Flagellar subunit 0.07 Lauriano et al. (2004), Lee

et al. (2001), Watnick

et al. (2001)

motX (VC2601) Flagellar motor 0.05 Lauriano et al. (2004)

motY (VC1008) Flagella motor 0.09 Silva et al. (2006), Lee et al.

(2001)

motAB (VC0892

/ VC0893)

Flagellar motor 0.03 Lee et al. (2001)

flgP (VC2206) OM lipoprotein 0.05 Morris et al. (2008)

IV. Metabolism

purD (VC0275) Phosphoribosylglycinamide

synthetase

< 0.001 Chiang and Mekalanos

(1998)

purH (VC0276) Phosphoribosylaminoimidazole-

carboxamide

formyltransferase, IMP

cyclohydralase

< 0.006 Chiang and Mekalanos

(1998)

purK (VC0051) Phosphoribosylaminoimidazole

carboxylase

0.08 Chiang and Mekalanos

(1998)

bioB (VC1112) Biotin synthetase 0.06 Chiang and Mekalanos

(1998)

ptfA (VCA0518) Phosphotransferase < 0.001 Chiang and Mekalanos

(1998)

pta (VC1097) Phosphotransacetylase 0.01b Chiang and Mekalanos

(1998)

als (VC1590) Acetolactate synthase 0.09 Yoon and Mekalanos (2006)

glnA (VC2746) Glutamine synthetase 0.02 Klose and Mekalanos (1998)

mrsA (VC0639) Phosphoglucomutase <0.01 Merrell et al. (2002a)

nqrA (VC2295) NADH:ubiquinone subunit 0.01 Merrell et al. (2002a)

pnp (VC0647) Polyribonucleotide

nucleotidyltransferase

< 0.01 Merrell et al. (2002a)

cpdA (VC2433) cAMP phosphodiesterase ~ 0.1 Merrell et al. (2002a)

V. Gene regulation

toxR (VC0984) Virulence gene activator < 0.002 Waldor and Mekalanos

(1994b), Taylor et al.

(1987)

(continued)
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started to engineer defined V. choleraemutants to study the importance of particular

gene products in V. cholerae colonization of the suckling mouse intestine.

A list of genes that have been shown to promote V. cholerae colonization of the

suckling mouse intestine is shown in Table 1. To be included in this table, a mutant

must have had at least a 10-fold defect in small bowel colonization in competition

assays with the appropriate wild-type strain. In competition assays, equal numbers

of wild-type and mutant cells are co-inoculated into the suckling mouse stomach.

After ~24 h, the ratio of the two strains in intestinal homogenates is determined and

the results are expressed as a competitive index (CI), the ratio of mutant/wild-type

colony forming units (CFU) in intestinal homogenates divided by the ratio of

mutant/wild-type CFU in the inoculum. One advantage of this assay format is

that the wild-type strain serves as an internal control for each assay, thereby

lowering the inter-assay variability. A potential caveat with competition assays is

Table 1 (continued)

Gene (locus)a Function C.I. Reference

toxT/tcpN
(VC0838)

Virulence gene activator < 0.003 Chiang and Mekalanos

(1998)

luxO (VC1201) Quorum sensing regulator < 0.001 Zhu et al. (2002)

rpoN (VC2529) Alternative sigma factor 0.03 Klose and Mekalanos (1998)

fliA (VC2066) Sigma 28 0.04 Liu et al. (2008)

hfq (VC0347) sRNA chaperone < 0.001b Ding et al. (2004)

hepA (VC2506) Transcription regulation < 0.001 Merrell et al. (2002a)

rpoE (VC2467) Sigma E 0.03 Kovacikova and Skorupski

(2002)

fur (VC2106) Ferric uptake regulator protein ~ 0.1 Mey et al. (2005)

rpoH (VC0150) Alternative sigma factor ~ 0.001b Slamti et al. (2007)

VI. Miscellaneous/Hypothetical

gshB (VC0468) Glutathione synthetase < 0.001 Merrell et al. (2002a)

recO (VC2459) DNA repair < 0.001 Merrell et al. (2002a)

recA (VC0543) Homologous recombination 0.07 Kumar et al. (1994)

acfA (VC0844) 0.06 Peterson and Mekalanos

(1988)

acfB (VC0840) Putative methyl-accepting

chemotaxis protein

0.04 Peterson and Mekalanos

(1988)

acfC (VC0841) 0.07 Peterson and Mekalanos

(1988)

acfD (VC0845) Lipoprotein 0.02 Peterson and Mekalanos

(1988)

rtxL1
(VC1619.1)

RTX family 0.001 Chatterjee et al. (2008)

rtxL2
(VC1619.1.1)

RTX family < 0.001 Chatterjee et al. (2008)

VC2487 Hypothetical ORF 0.05 Osorio et al. (2005)

VC0874 Hypothetical ORF 0.04 Osorio et al. (2005)

mop (VC0823) 0.011 Zhang et al. (2003)
a TIGR designation from sequenced V. cholerae N16961
b Mutant has in vitro growth defect in a competition assay of <0.2
c Gene not found in sequenced V. cholerae N16961
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the possibility of complementation in trans whereby the wild-type strain produces

some factor within the intestine that masks a mutant’s true attenuation. Setting the

limit at a 10-fold reduction in CI for inclusion in this table is somewhat arbitrary;

however, given the variability inherent in animal studies, setting the CI cut-off at

this level provides confidence that the identified genes and pathways are truly

important for intestinal colonization. In most cases, mutations in the genes listed

in this table did not significantly compromise growth of the mutant strains in

rich media, suggesting that the function of the gene in question is especially

relevant for V. cholerae survival and growth in the intestine. Genes identified

using signature-tagged mutagenesis (STM) screens were only included in this

table if mutants identified in the original pools were subsequently confirmed

using 1:1 competition assays with the wild-type strain. The genes listed in Table 1

were placed into six broadly defined functional categories, including one group of

genes which includes hypothetical open reading frames of unclear function. The

means by which some genes contribute to colonization are discussed briefly below.

5.1 Cell Surface Structures

The V. cholerae cell surface is the site where the organism directly confronts the

host intestine, thus it is not surprising that surface exposed V. cholerae structures,
including TCP, the LPS O-antigen, and an outer membrane protein, are important

colonization factors. The mechanism(s) by which TCP promotes colonization are

not clear. These pili likely promote the formation of V. cholerae microcolonies

in vivo as they do in vitro (Kirn et al. 2000; Taylor et al. 1987), and they may also

confer resistance to host bactericidal activities (Chiang et al. 1995; Parsot et al.
1991). It is also possible that TCP promotes V. cholerae adhesion to the intestinal

epithelium. Besides encoding proteins required for TCP biogenesis, the TCP

operon encodes TcpF, a soluble secreted protein that is essential for V. cholerae
colonization of the mouse intestine (Kirn and Taylor 2005; Kirn et al. 2003). This
discovery suggests that TCP acts as a secretion apparatus and uncovers yet another

important role for TCP in V. cholerae pathogenesis.
The O-side chain and core oligosaccharide of the LPS of V. choleraeO1 is critical

for this organism’s growth in the intestine (Nesper et al. 2001; Angelichio et al. 1999;
Chiang and Mekalanos 1998). Mutants lacking an O-antigen and/or a core oligosac-

charide are sensitive to bactericidal activities present in the gut such as cationic

antimicrobial peptides (Nesper et al. 2001). It would be interesting to engineer a

V. cholerae O1 strain to express an O-antigen and/or core oligosaccharide derived

from a serogroup not associated with cholera to explore whether there are specific

properties of O1 LPS that promote colonization or whether any O-antigen could

promote colonization. In part, this experiment has been carried out in nature as

V. cholerae O139 arose via exchange of the genes coding for O1 O-antigen biosyn-

thesis for the genes coding for O139 O-antigen biosynthesis (Stroeher et al. 1998; Bik
et al. 1995; Waldor and Mekalanos 1994a). The V. cholerae O139 O-antigen forms a
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capsular polysaccharide that is also important for the intestinal colonization of this

epidemic causing serogroup (Nesper et al. 2002; Waldor et al. 1994).

5.2 Transport

Several types of membrane transport systems have been shown to promote

V. cholerae intestinal colonization. Efflux systems can, like LPS, engender resis-

tance to gut-derived antimicrobial agents such as bile and cationic peptides.

V. cholerae encodes six RND family efflux pumps, for which TolC is thought to

function as the outer member component. The V. cholerae RND efflux pumps

appear to have some redundant functions, as single deletions of any of the six RND

efflux pumps did not significantly attenuate V. cholerae intestinal colonization

(Bina et al. 2008). However, a strain bearing deletions in three RND efflux systems

had more than a 40-fold colonization defect while a strain deleted for all six RND

efflux pumps was not recovered from the infant mouse intestine (Bina et al. 2008).
Furthermore, a tolC mutant had more than a 1,000-fold colonization defect in the

mouse intestine (Bina and Mekalanos 2001). At least part of the dramatic coloniza-

tion defect of the RND-null strain can likely be attributed to its reduced production

of TCP (Bina et al. 2008).

5.3 Motility

All V. cholerae are highly motile and bear a single sheathed polar flagellum, and

motility was proposed to be important for V. cholerae intestinal colonization years

before the generation of defined mutants (Richardson 1991; Freter and O’Brien

1981a; Freter et al. 1981; Baselski et al. 1979; Yancey et al. 1978; Guentzel and
Berry 1975). Freter proposed that motility was important for V. cholerae to swim

from the lumen of the intestine through the mucus gel overlying the intestinal

epithelium, enabling the pathogen to contact and adhere to the epithelial surface

(Freter and O’Brien 1981a). Since then, conflicting observations regarding the

importance of motility in intestinal colonization have been reported (e.g., Lee

et al. 2001; Klose and Mekalanos 1998; Gardel and Mekalanos 1996). Altered

patterns of virulence gene expression in different types of motility mutants may

help to explain these results. The inverse correlation between motility and viru-

lence gene expression (Hase and Mekalanos 1999; Gardel and Mekalanos 1996)

has led to the view that motility is required to localize V. cholerae to the crypts of
the small intestine after which motility is reduced and virulence factor production

increased. Deletions of genes important for the movement of the flagellum (such

as motY) result in a similar reduction in intestinal colonization as deletion of flaA,
the gene encoding the major subunit of the flagellum (Lee et al. 2001). These
observations suggest that motility and not the flagellum per se promotes intestinal

colonization.
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5.4 Metabolism

Perhaps unexpectedly, relatively few metabolic pathways for the biosynthesis of

cellular building blocks like amino acids, and for energy metabolism, have been

confirmed to be critical for V. cholerae intestinal colonization. The STM screen

carried out by Chiang and Mekalanos revealed that genes required for biotin

and purine biosynthesis were important for intestinal colonization (Chiang and

Mekalanos 1998). In this study, most of the auxotrophs identified in the mutant

pools were not found to be attenuated for growth in vivo, suggesting that

V. cholerae may be able to scavenge nutrients required for growth from the

intestine, even though it is generally thought that the intestine is a nutrient-limited

environment (Xu et al. 2003; Merrell et al. 2002a,b). The most comprehensive STM

screen for genes important for intestinal colonization yielded many genes involved

in the biosynthesis of amino acids, fatty acids, purines and co-factors as well as

many genes involved in energy metabolism (Merrell et al. 2002a). However, these

genes have not been included in Table 1 as these mutants were not re-tested in

single strain competition assays versus the wild-type.

5.5 Regulation

Expression of TCP and other bonafide V. cholerae virulence factors is indirectly

governed by several regulatory factors and by a variety of cellular processes, such

as quorum sensing, that collectively determine the amount and activity of ToxT.

This AraC family transcription factor controls expression of the genes required for

TCP biogenesis (reviewed in Matson et al. 2007). Studies of strains bearing muta-

tions in genes that result in decreased toxT expression, such as toxR, toxT, luxO,
tcpH, nqrA, aph, tcpP, and toxS, lead to reductions in TCP expression and, where

tested, dramatic reductions in intestinal colonization (see Table 1). Regulators that

influence expression of genes that are not controlled by ToxT have also been

implicated in V. cholerae intestinal colonization. For example, deletion of rpoN,
which encodes an alternative sigma factor governing transcription of genes for

V. cholerae flagellum and glutamine synthesis, also attenuates V. cholerae intesti-
nal colonization (Klose and Mekalanos 1998).

Hfq is required for the activity of many small non-coding RNAs (sRNAs)

(Brennan and Link 2007; Majdalani et al. 2005), and a V. cholerae hfq mutant is

highly attenuated in intestinal colonization, suggesting that sRNAs govern expres-

sion of genes critical for growth and survival of V. cholerae in vivo (Ding et al.

2004). In part, Hfq is required for the activity of the qrr sRNAs, which indirectly

block the repression of toxT expression that can occur as a consequence of quorum

sensing (see Sect. 5.9) (Lenz et al. 2004). However, hfq mutants in which this

repression does not occur (hapR mutants) still colonize poorly (Ding et al. 2004),
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suggesting that sRNAs in addition to the qrr family are required for colonization by

V. cholerae.

5.6 Miscellaneous/Hypothetical

A key challenge for future studies will be to decipher how genes of unknown

function influence V. cholerae intestinal colonization. The two STM screens for

V. cholerae genes involved in intestinal colonization yielded 17 hypothetical genes
(Merrell et al. 2002a; Chiang and Mekalanos 1998), and other studies have impli-

cated additional genes of unknown function in V. cholerae growth in vivo (Osorio

et al. 2005). Furthermore, the mechanisms of many ‘colonization’ genes that have

homologues in the database, for example acfC, remain obscure.

Without a doubt, the list of V. cholerae genes that promote intestinal coloni-

zation in Table 1 is incomplete. Future studies will show that many additional

genes promote V. cholerae intestinal colonization. Also, it is important to keep

in mind that Table 1 lists only those genes whose inactivation results in

attenuated colonization. Efficient V. cholerae intestinal colonization not only

requires the actions of many gene products but also the repression of the

expression of certain genes. For example, Zhu and colleagues demonstrated

that the V. cholerae mannose-sensitive hemagglutinin pilus is repressed during

V. cholerae growth in the suckling mouse intestine; constitutive expression of

this type IV pilus in the intestine resulted in a >10-fold colonization defect

(Hsiao et al. 2006).

6 Classes of V. cholerae colonization mutants

It is interesting to note that there are two classes of colonization defective mutants

listed in Table 1. One class of mutants has moderate reductions in intestinal

colonization with CIs ranging from 0.1 to 0.01. The other class of mutants is

severely attenuated in intestinal colonization with CIs <0.003. The latter set of

‘severe’ genes, such as the TCP biosynthesis cluster, encode functions that appear

to be essential for colonization, whereas the former set of ‘moderate’ genes,

such as motX or glnA, appear to promote high-level colonization but are clearly

not essential for V. cholerae survival and growth in the intestine. Deletion of

‘moderate’ genes may simply result in uniformly slowed growth of the mutant

strains in vivo; however, these results are also consistent with the possibility

that there is more than one niche that V. cholerae can occupy in the intestine.

For example, the observation that non-motile mutants have ~10- to 30-fold reduc-

tions in colonization may suggest that motility is important for V. cholerae to

occupy a preferred intestinal niche but that the organism can survive and multiple
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in alternative niches. Similarly, the finding that glnA mutants, which are glutamine

auxotrophs, are ~50-fold reduced in colonization (Klose and Mekalanos 1998) may

suggest that there are intestinal niches where some glutamine is available and others

where it is not. The profound reduction in colonization observed in strains with

mutations in severe genes may suggest that all intestinal niches require the func-

tions of these genes; alternatively, the activities of the severe genes may be essential

only in certain locations at specific times during V. cholerae survival and growth

in the GI tract, such as during passage through high concentrations of bile in

the duodenum.

7 Dynamics of V. cholerae Gene Expression

within the Intestine

The competition assays described above are a useful tool for identification of genes

that contribute to colonization; however, they provide little information concerning

the role or expression of the required genes. To address temporal aspects of gene

expression, Camilli and colleagues have used recombinase-based in vivo expres-

sion technology (RIVET), which uses recombinase expression as a reporter, to

assess transcription activation in vivo (Lee et al. 1999). They found that expression

of ctxA (which encodes the catalytic subunit of CT) occurred after and was

dependent on tcpA expression in vivo, but not in vitro. Consequently, they proposed
that ctxA expression is delayed during infection until a TCP-dependent signal is

received, and that there is a requisite temporal order of V. cholerae virulence

factor expression during infection. Presumably TCP production enables infecting

V. cholerae to occupy a niche that provides the optimal inducing environment,

potentially including host-derived signals, for induction of the ctx genes. However,
the significance of the finding that ctxA expression is reduced in a tcpA mutant is

difficult to assess since tcpA mutants are highly defect for colonization.

RIVET-based investigations of gene expression provide an elegant way to

explore gene expression in vivo, but there are several technical limitations to the

RIVET method that make interpreting these intriguing observations somewhat

difficult. First, the RIVET reporter system does not have gradations; gene expres-

sion is scored as either on or off. Yet it is possible that there is significant cell-to-cell

variation in the levels of gene expression during infection within the population.

Second, the RIVET reporter system (described by Lee et al. 1999) was purposely

designed to ignore the low-level expression of ctxA and tcpA that occur in vitro. It is

possible that there is for example, low-level expression of ctxA in vivo which occurs

with or even before expression of tcpA. Finally, RIVET cannot be used to monitor

increased transcription of genes that show significant transcription in vitro.

Camilli and colleagues recently modified the RIVET protocol to enable detec-

tion of V. cholerae genes that are expressed relatively late after inoculation into

suckling mice (Schild et al. 2007). Inactivation of many of the ‘late’ genes that were
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identified in this study did not result in intestinal colonization defects (Schild et al.

2007). Instead, Schild et al. found that in vivo induction of late genes promoted

V. cholerae survival in stool and pond water. Overall, the work of Camilli and

colleagues suggests that there is a temporal program of V. cholerae gene expression
during infection, perhaps akin to the programmed temporal patterns of gene

expression observed during development in higher eukaryotes. Induction of early

genes, such as the tcp operon, promotes the initial stages of survival and multipli-

cation in vivo. Then, later in infection, induction of late genes prepares the

organism for survival and growth outside the host, presumably in low osmolar,

nutrient-poor freshwater ponds. It will be interesting to explore if V. cholerae gene
products expressed relatively early in infection, such as CT, influence late gene

induction. That is, does the pathogen elicit changes in the host, such as secretion of

diarrheal fluid, that in turn trigger alterations in its pattern of gene expression that

enhance its fitness to grow outside the host?

8 Importance of V. cholerae Chemotaxis for Intestinal

Colonization

Using an in vivo RIVET-based screen, Lee et al. found that chemotaxis genes

regulate the kinetics of V. cholerae virulence factor expression within the intestine

(Lee et al. 2001). Strains bearing mutations in several key chemotaxis genes

exhibited delayed induction in toxT and ctxA during infection. The authors pro-

posed that V. cholerae uses chemotaxis to occupy an intestinal niche which is

optimal for the induction of virulence factor production. However, subsequent

observations from this group may argue against this hypothesis; epistasis analysis

indicated that chemotaxis and TCP act independently in V. cholerae intestinal

colonization (Butler and Camilli 2004). Perhaps unexpectedly, nonchemotactic

mutants exhibited elevated intestinal colonization (Butler and Camilli 2004; Lee

et al. 2001). The hyper-colonization phenotype of these mutants can partially be

accounted for by aberrant distributions of the mutant within the small intestine (Lee

et al. 2001). Currently, there is no clear explanation why V. cholerae chemotaxis

would act to limit its capability to proliferate in the intestine.

There is some controversy regarding the importance of chemotaxis in

V. cholerae’s exit from the host intestine. Although V. cholerae in rice-water stool

are often highly motile, work from Camilli and colleagues suggest that rice-water

stoolV. cholerae have reduced expression of chemotaxis genes (Merrell et al. 2002b)

and that these organisms are phenotypically nonchemotactic (Butler et al. 2006;

Butler and Camilli 2004). These authors argue that the nonchemotactic physiologic

state promotes the infectivity of V. cholerae (Butler et al. 2006). Contrasting results
were obtained by Nielsen et al. who investigated V. cholerae physiology during

the late phases of the infectious process using the rabbit ileal loop model (Nielsen

et al. 2006). These authors present evidence that by 12 h after inoculation of ligated

ileal loops, V. cholerae initiates an RpoS-dependent genetic program in which
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chemotaxis and motility are activated to promote V. cholerae escape from the host

mucosa, thus preparing the organism for survival in the environment. It is not clear

how the results of this elegant study are influenced by the closed ileal loop system

that these investigators used to explore V. cholerae intraintestinal physiology.

9 Is Quorum Sensing Regulation Important for Intestinal

Colonization?

Much progress has been made deciphering the genetic pathways that mediate

V. cholerae quorum sensing (Svenningsen et al. 2008; Higgins et al. 2007; Lenz

et al. 2004; Miller et al. 2002). Unlike the case for several other pathogens, high

population densities inhibit V. cholerae virulence factor production. At high cell

densities, LuxO’s repression of hapR is relieved, and elevated HapR levels then

indirectly represses the transcription of toxT. Consistent with this model, Zhu et al.

found that a luxO deletion mutant is highly defective in colonization of infant mice,

presumably because HapR repression of toxT is constitutive in this background

(Zhu et al. 2002). High cell densities could promote V. cholerae detachment from

the intestinal mucosa, because HapR promotes production of HapA, a protease that

is thought to aide V. cholerae detachment from the epithelium (Finkelstein et al.

1992). However, Nielsen and colleagues found that V. cholerae escape from the

host mucosa in ligated ileal loops did not require HapA (Nielsen et al. 2006), and

consequently the significance of high cell density inhibition of V. cholerae patho-

genicity is not clear. A hapR mutant exhibits no colonization defect in the infant

mouse (Zhu et al. 2002), and many clinical isolates have inactivating mutations in

hapR or in other genes in the quorum sensing pathway (Joelsson et al. 2006),

casting doubt on the contribution of quorum sensing to V. cholerae virulence.

However, the true frequency of inactivating mutations in hapR should be explored

in fresh clinical isolates, since our knowledge of the intactness of V. cholerae
quorum sensing systems is largely based on strains that have been maintained in

the laboratory for many years.

10 Concluding Remarks

How uniform and environmentally determined is the physiology of V. cholerae
during growth in vivo?

Two unstated and interrelated concepts underpin much of the thinking regarding

V. cholerae survival and growth in vivo. One idea is that there is a high degree of

uniformity in the physiology of organisms growing within the intestine. The second

idea is that V. cholerae physiology in vivo is largely determined by environmental

signals. Both of these concepts – uniformity and determinism – inform the idea of

quorum sensing regulation of virulence and also permeate much of the thinking
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about host–pathogen interactions in general. It is possible that the intraintestinal

V. cholerae population does not ‘behave’ in a uniform fashion. There may be

distinct subpopulations of organisms and such subpopulations could have

distinct functional roles. For example, perhaps only a subset of cells, e.g., those

that are in close apposition to the epithelium, produce significant amounts of CT

and therefore trigger the host secretory response. How cells in the population

‘decide’ to enter one niche or another may be strictly determined by environmental

signals; alternatively, such cell fate decisions may be made randomly. It is becom-

ing increasingly clear that diverse cell fate choices are made stochastically

(Losick and Desplan 2008). It is tempting to speculate that stochastic processes

may at least in part explain some of the differences in the reports of the in vivo

V. cholerae transciptome (Larocque et al. 2005; Bina et al. 2003; Merrell et al.

2002b) or in the variability of V. cholerae genes induced in human volunteers

(Lombardo et al. 2007). In a recent RIVET-based study of V. cholerae gene

expression in human volunteers, less than one-third of V. cholerae transcriptional

units were induced in three or more volunteers (Lombardo et al. 2007). A formida-

ble challenge for future studies of V. cholerae pathogenicity will be to quantitative-
ly measure gene expression on the single cell level at different sites during

infection. Some other important questions for future study are listed in Table 2.
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Abstract Yersinia entercolitica and Yersinia pseudotuberculosis are human food-

borne pathogens that interact extensively with tissues of the gut and the host’s

immune system to cause disease. As part of their pathogenic strategies, the Yersinia
have evolved numerous ways to invade host tissues, gain essential nutrients, and
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evade host immunity. Technological advances over the last 10 years have revolu-

tionized our understanding of host–pathogen interactions. The application of these

new technologies has also shown that even well-understood pathogens such as the

Yersinia have many surprises waiting to be revealed. The complex interaction with

the host has made Yersinia a paradigm for understanding bacterial pathogenesis and

the host response to invasive bacterial infections. This review examines the

mechanisms of immune evasion employed by the Yersinia and highlights recent

advances in understanding the host–pathogen interaction.

1 Introduction

The genus Yersinia contains three species that are human pathogens, the two

enteropathogenic Yersinia (Y. enterocolitica and Y. pseudotuberculosis), as well as
Yersinia pestis, the causative agent of plague (Bottone 1997; Perry and Fetherston

1997). Y. enterocolitica and Y. pseudotuberculosis have served as paradigms of

bacterial pathogenesis due to the ease with which these pathogens can be genetically

manipulated and the ability of some serogroups to cause disease in mice that mimics

human disease (Carter 1975a,b). Enteropathogenic Yersinia are well-suited human

pathogens containing all of the machinery required to invade human tissues and

modulate their environment to promote survival. The pathogenic strategies

employed by the Yersinia center around modulating the host immune response to

their advantage (Viboud and Bliska 2005). Recently, we have gained great insight

into the intricate interactions of these remarkable pathogens with their hosts, and this

chapter will focus on the interaction of Yersinia with the gut, virulence strategies,

and specifically the interaction of these pathogens with the innate and adaptive

immune systems.

1.1 Clinical Disease

Y. enterocolitica and Y. pseudotuberculosis are foodborne pathogens present in

contaminated meat products, milk, and water (Bottone 1997). Y. enterocolitica
strains are classified into biogroups based on biochemical properties and serogroups

based on O-antigen immune reactivity (Brenner et al. 1976). Many serogroups of

Y. enterocolitica can cause disease in humans, including biogroup 1B serogroups

O:8, O:4, O:13a,13b, O:18, O:20, O:21, biogroup 2, O:9, O:5,27 biogroup 3,

O:1,2,3, O:5,27 biogroup 4, O:3, and biogroup 5, O:2,3, with the most severe

disease caused by biogroup 1B serogroup O:8 strains. Y. pseudotuberculosis can
be classified into 21 serogroups, with most human disease being caused by strains in

serogroups O:1 and O:3. The major reservoir for Yersinia leading to human disease

is swine, but chocolate milk, tofu, and water have been recently reported as sources

of contamination (Lynch et al. 2006). Outside of foodborne disease, there is
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evidence that Y. enterocolitica can be transmitted via transfusion with contaminated

blood products (Richards et al. 1992).

Infection of the gastrointestinal tract can lead to enterocolitis, terminal ileitis,

mesenteric lymphadenitis, pseudoappendicitis, and in some cases, bacteremia.

Clinically, children and young adults present more often than older individuals

and, like many gastrointestinal infections, Yersinia infection is characterized by an

acute inflammatory response that can include fever, bloody or watery diarrhea, and

abdominal pain. These symptoms can be severe, but in otherwise healthy indivi-

duals GI manifestations of disease are usually self-limiting and resolve without

medical intervention (Abdel-Haq et al. 2000).

Systemic infection with Y. enterocolitica or Y. pseudotuberculosis is a rare but

serious manifestation of disease that may result from iron overload, immunodefi-

ciency, or secondary to a transfusion with contaminated blood products (Richards

et al. 1992). Septicemia due to Yersinia infection can have mortality rates as high as

50% due to the ability of the bacteria to infect most organ systems. Infections of the

spleen, liver, kidney, heart, lung, eyes, bone, and central nervous system have been

reported (reviewed in Bottone 1997).

Individuals may also develop chronic sequelae or autoimmune disease after

Yersinia infection. Erythema nodosum and reactive arthritis are the most common

chronic secondary sequelae. Reactive arthritis due to Yersinia infection is linked to

a person’s HLA type, with a strong correlation between HLA-B27 and Yersinia-
induced reactive arthritis (Laitinen et al. 1977). Further, secondary sequelae may be

dependent on the serogroup of the infecting strains with the majority of reported

reactive arthritis being due to Y. enterocolitica O:3 infection (Laitenen et al. 1972).
There are also strong correlations between Y. enterocolitica O:3 infection and

autoimmune diseases of the thyroid such as Grave’s disease (McIver and Morris

1998). Mechanistically, how Y. enterocolitica contributes to the pathogenesis of

reactive arthritis and Grave’s disease remains to be determined.

Although there is a correlation between infection with serogroup O:3 strains and

chronic/auto-immune disease, multiple serogroups of Y. enterocolitica are capable

of causing human disease. Some have speculated that chronic manifestations of

disease may be related to nature of the Yersinia strain, with strains in the O:3

serogroup initially causing a milder disease that develops into chronic sequelae,

whereas O:8 strains initially cause a more acute disease that does not develop into

chronic disease (Lamps et al. 2006). This is an intriguing hypothesis but it needs to

be formally tested. The contribution of Y. enterocolitica or Y. pseudotuberculosis
infection to other chronic inflammatory diseases has been suggested in the literature.

For example, recently, a number of clinical studies and individual case reports

suggest a causal link between infection with enteropathogenic Yersinia and devel-

opment of Crohn’s disease or the exacerbation of Crohn’s disease (Lamps

2003; Lamps et al. 2003). As we learn more about the pathogenesis of infection

and detection methodologies improve, it is likely that Y. enterocolitica and

Y. pseudotuberculosis will be linked to more chronic inflammatory human diseases.

Altogether, the enteropathogenic Yersinia are responsible for a wide spectrum of

human diseases ranging for acute enterocolitis and life-threatening septicemia to
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chronic sequelae and autoimmune disease. The full spectrum of human diseases

influenced by the Yersinia are likely to increase as we become more aware of the

role of infectious agents and pathogen-induced inflammation in chronic disease.

Indeed, the overarching theme associated with diseases caused by the enteropatho-

genic Yersinia is inflammation.

2 Pathogenic Strategies

In order to cause disease, bacterial pathogens must be able to rapidly adapt to the

mammalian host, attach to and invade host tissues, avoid host immune defenses,

replicate, and gain access to the environment for further rounds of infection.

Y. enterocolitica and Y. pseudotuberculosis both take similar strategies towards

pathogenesis that will be discussed in detail below. As a brief synopsis, the bacteria

are delivered to the body in contaminated food or water, and the subsequent

changes in temperature and pH encountered in the host lead to changes in the

expression of virulence genes (Pepe et al. 1994). Initially, urease genes are

expressed to aid survival in the harsh environment of the stomach (Young et al.

1996). Once in the small intestine, the bacteria attach to and invade the specialized

micro-fold epithelium, M cells, overlaying the Peyer’s patches (Isberg and Barnes

2001). Y. enterocolitica and Y. pseudotuberculosis express a number of adhesins

including Invasin, Ail, and YadA that mediate attachment and invasion of intestinal

tissues (Miller and Pepe 1994). Once inside the Peyer’s patches, the bacteria replicate,

mainly extracellularly, and induce a robust inflammatory response (Autenrieth and

Firsching 1996; Autenrieth et al. 1993a; Dube et al. 2001; Logsdon andMecsas 2006).

From the Peyer’s patches, the Yersinia may disseminate to the mesenteric lymph

nodes or other extra-intestinal tissues such as the spleen, liver, and/or lungs depending

on the underlying health of the infected individual. Concurrently, the bacteria utilize a

large array of virulence factors to protect themselves from the host’s innate and

adaptive immune responses (Cornelis and Wolf-Watz 1997; Revell and Miller

2001). The potent inflammatory response to infection leads to erosion of the lamina

propria proximal to an infected Peyer’s patch giving Yersinia access to the lumen of

the small intestine for shedding into the environment (Dube et al. 2001). In an

otherwise normal individual, CD4+ T-helper-1 (Th-1) type T cell immunity leads to

the ultimate clearance of the infection (Autenrieth et al. 1993b).

3 Host Adaptation, Sensing, and Virulence Gene Expression

The pathogenic Yersinia all have multiple virulence genes located both on the chro-

mosome and on a 70-kb virulence plasmid called pYV (Portnoy and Falkow 1982;

Revell and Miller 2001). The last decade has seen a number of genetic approaches

employed to further refine our understanding of virulence gene expression both in vivo

64 P. Dube



and in vitro (Darwin 2005). Transposon-based genetic screening and selections using

in vivo expression technology (IVET) and signature-tagged mutagenesis (STM)

allowed the identification of genes preferentially required for in vivo growth (Darwin

and Miller 1999; Gort and Miller 2000; Young and Miller 1997). Recently, the

genomes of Y. enterocolitica strain 8081 and Y. pseudotuberculosis strain PB-1

(unpublished, Genebank CP001048) have been sequenced and annotated, further

facilitating the use of genetics to investigate host–pathogen interactions (Thomson

et al. 2006). High throughput genetic screens have revolutionized how we genetically

dissect the host-pathogen interaction and have led to the discovery of multiple new

virulence genes and associated pathways some of which will be discussed below.

A remarkable aspect of the pathogenesis of the enteropathogenic Yersinia is the

dynamic ability of these pathogens to rapidly change patterns of gene expression in

response to a changing environment. The results of IVET and STM screens further

validated this observation by identifying many transcriptional regulators as important

virulence genes (Darwin and Miller 1999; Gort and Miller 2000; Young and Miller

1997). In addition, virulence gene products regulated by these regulators interact

directly with the immune system and are key factors in the host–pathogen interaction

as well as immune evasion (Dube et al. 2001, 2003; Revell andMiller 2000). Many of

the conditions that trigger changes in gene expression are related to stresses encoun-

tered in the host, including changes in pH, calcium, magnesium, iron, salinity,

temperature, and stress, which all induce differential gene expression that aids in

bacterial survival (Pepe et al. 1994). Several of the better understood examples of

environmental sensing and the corresponding virulence gene expression will be

presented below, but it is important to note that many of the other regulatory networks

involved in virulence gene regulation remain poorly understood.

3.1 Virulence Gene Regulation for Nutrient Acquisition

Iron is a key nutrient required for the growth of many bacterial species, and iron

limitation is often one of the host’s key innate immune strategies designed to limit

bacterial replication (Finkelstein et al. 1983). In the mammalian body, there is not a

sufficient concentration of free iron to support bacterial replication, and thus many

bacterial species have developed high affinity iron scavengers called siderophores

(Finkelstein et al. 1983). Strains of Y. enterocolitica and Y. pseudotuberculosis that
cause severe disease in humans and rodents (high-pathogenicity strains) all contain the

high-pathogenicity island (HPI) (Carniel 2001). The HPI is a 36–43-kb pathogenicity

island containing the genes encoding for the iron acquisition system (yersiniabactin

system) (Carniel et al. 1996). This system is positively regulated by the AraC-like

regulator YbtA and negatively regulated by the iron-responsive negative regulator Fur

(Carniel 2001). It is proposed that, upon entering the mammalian host, iron becomes

limiting and Fur-mediated repression of the yersiniabactin system is relieved allowing

for YbtA-mediated gene transcription. YbtA induces the expression of the sidero-

phores and the structural genes required for iron uptake. The high affinity of the
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siderophores for iron allows them to scavenge iron from the host. The ability to acquire

iron in this fashion is required to cause disease, and the importance of this level of

innate immune restriction is illustrated by the severe systemic Yersinia infections

often observed in iron-overloaded individuals (Caplan et al. 1978; Chiu et al. 1986).

3.2 Virulence Gene Regulation for Adherence and Invasion

In addition to having to gain essential nutrients, Yersinia must be able to attach to

and invade intestinal tissues. The major adhesin of the enteropathogenic Yersinia is
called invasin (Inv), and its expression is regulated in vitro by temperature, pH, and

growth phase (Isberg and Falkow 1985; Miller and Falkow 1988; Pepe et al. 1994).

Optimal in vitro expression of Inv is observed at neutral pH and 26�C and under

slightly acidic conditions (pH 5.5) at 37�C (Pepe et al. 1994). Inv expression is

regulated at several levels including being positively regulated by the regulator of

virulence A (RovA) and at the level of the promoter by Yersinia-modulating protein

(YmoA) and histone-like nucleoid structuring protein (H-NS) (Ellison et al. 2003,

2004; Ellison and Miller 2006a,b; Nagel et al. 2001; Revell and Miller 2000). RovA

is highly homologous to AraC-type regulators and specifically to the Salmonella
SlyA protein involved the regulation of a variety of stress responses (Buchmeier

et al. 1997). RovA is capable of modulating Inv expression both in vitro and in vivo

and presumably directly enhances transcription through its interaction with RNA

polymerase (Ellison et al. 2004; Revell and Miller 2000).

Interestingly, in addition to inv regulation, RovA plays a much more complex

role in both virulence and immune modulation. rovA mutants are significantly

attenuated via an oral route of infection whereas inv mutants show a delayed

colonization phenotype but are as virulent as wild-type using LD-50 analysis

(Ellison et al. 2004; Pepe and Miller 1993; Revell and Miller 2000). This suggests

that RovA regulates genes in addition to inv that are required for virulence. When

the entire RovA regulon was examined by micro-array analysis, 40 genes were

activated and RovA repressed 23 genes. Included in the genes under the control of

RovA were several other regulators, suggesting that RovA might be a master

regulator of virulence gene expression (Cathelyn et al. 2007). In fact, we showed

that RovA regulates a still unknown factor that is important for the induction of

IL-1a in the gut and that the early induction of IL-1a is important for Y. entero-
colitica-associated gut inflammation (Dube et al. 2001). The ability of RovA to

induce gut-specific pathogenic mechanisms was illustrated by a study that com-

pared the host response to oral and intraperitoneal (IP) routes of infection (Dube

et al. 2003). The rovAmutant has a significant defect in virulence and inflammatory

pathologies via the oral route of infection, but is nearly as virulent as the wild-type

strain via intraperitoneal (IP) infection (Dube et al. 2003). Further, the rovA mutant

causes significant inflammatory pathologies during IP infection but not during an

oral infection. These data suggest that the RovA regulon includes the regulation of

tissue specific virulence factor expression. This concept was bolstered by recent
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studies that showed that the Y. pestis RovA regulon was significantly different from

the Y. enterocolitica regulon, and that, in a mouse model, Y. pestis RovA was

required for bubonic plague but not pneumonic plague (Cathelyn et al. 2006).

It is not completely understood how RovA is regulated or what are the in vivo

signals leading RovA-dependent gene transcription, but a significant step forward

was made with a recent study demonstrating a role for carbon storage regulator (Csr)

non-coding small RNA in regulating RovA through RovM in Y. pseudotuberculosis
(Heroven et al. 2008; Heroven and Dersch 2006). This same study implicated a two-

component regulatory system in this regulation suggesting a possible sensory

mechanism in the direct/indirect regulation of RovA. It remains unclear if similar

regulatory networks regulate Y. enterocolitica RovA but it is likely. RovA’s role in

inv regulation suggest that temperature and pH are likely RovA-activating signals,

but the intermediate proteins or additional regulatory RNAs involved in the process

remain to be identified. Altogether, these studies nicely illustrate the ability of

Yersinia to rapidly respond to specific host environments and the complexity of

virulence-associated gene expression.

4 Adherence, Tissue Invasion, and Associated Aspects

of Innate Immune Evasion

As a primary portal of entry into intestinal tissue, Y. enterocolitica and

Y. pseudotuberculosis invade the intestinal epithelium to gain access to the lym-

phoid follicles of the small intestine. To facilitate this process, the enteropathogenic

Yersinia utilize three adhesins/invasins: (1) invasin (Inv), the major invasin men-

tioned previously (Isberg and Falkow 1985; Miller and Falkow 1988); (2) the

chromosomally-encoded attachment and invasion locus (Ail) (Miller and Falkow

1988); and (3) the virulence plasmid-encoded Yersinia Adhesin A (YadA) (Bliska

et al. 1993). Once inside the Peyer’s patches, Yersinia is predominantly an extra-

cellular pathogen, and therefore vulnerable to opsonization and complement-

mediated killing. Yersinia exploits both YadA and Ail to protect itself from

complement and complement-mediated killing, effectively eliminating one of the

first lines of innate immune defense (discussed in more detail below).

4.1 Invasin

Invasin is the major tissue invasion protein of the enteropathogenic Yersinia. In
fact, inv is sufficient to confer an invasive phenotype on non-invasive bacteria

(Isberg and Falkow 1985; Miller and Falkow 1988). The crystal structure of the

extracellular domain of Y. pseudotuberculosis Inv was solved, revealing that Inva-

sin is a 101.5-kDa integral outer membrane protein that consists of five distinct
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extracellular domains that include 4 immunoglobulin super-family type folds and a

distal C-type lectin-like domain (Dersch and Isberg 2000; Hamburger et al. 1999).

The overall topology of Inv and substrate specificity is similar to fibronectin,

suggesting that Y. enterocolitica and Y. pseudotuberculosis evolved a mechanism

to compete for fibronectin binding in the host. Inv binds to b1-integrins expressed
on the surface of M cells and has a preference for a3b1, a4b1, a5b1, a6b1, and avb1
integrins (Isberg and Leong 1990). Further, the affinity of Inv for b1 integrins is

significantly higher than that of fibronectin suggesting a mechanism for pathogen

mediated receptor competition and binding in vivo (Hamburger et al. 1999).

As briefly mentioned above, Y. enterocolitica inv mutants are not attenuated

for virulence when analyzed by LD-50. However, if the kinetics of organ coloni-

zation and bacterial burdens are examined then there are marked delays in organ

colonization following infection with the inv mutant (Pepe and Miller 1993; Pepe

et al. 1995). There are differences in the distribution of bacterial abscesses of the

animals infected with the inv mutant compared to the wild type control as

evidenced by essentially no abscess formation in the mesenteric lymph nodes

(Pepe and Miller 1993; Pepe et al. 1995). The significance of this observation

needs to be investigated further but it may reveal a role for Inv in tissue tropisms

and is consistent with newer data that suggests that Inv is critical for dissemina-

tion from the lumen of the small intestine in animals that lack Peyer’s patches

(discussed below) (Barnes et al. 2006; Handley et al. 2005). The lack of a

difference in LD-50 is probably due to the fact that later in infection bacterial

burdens in the inv mutant infected animals are similar to those observed in the

animals infected with the WT control suggesting the presence of additional

mechanisms for tissue invasion (Miller and Falkow 1988).

4.2 Ail

In addition to Inv, Yersinia encode two other major adhesins; YadA and Ail. Ail is a

17 kDa outer membrane protein expressed by both Y. enterocolitica and
Y. pseudotuberculosis that is sufficient to promote the attachment and invasion of

non-invasive bacteria into tissue culture cells (Miller et al. 1990; Wachtel and

Miller 1995). Like many Yersinia virulence proteins, Ail is optimally expressed

at 37�C and under aerobic conditions suggesting that ail is expressed in vivo. This

was confirmed in virulence studies where Ail protein could be detected by immuno-

blot in the Peyer’s patches of mice 48 h post-infection (Wachtel and Miller 1995).

These studies also demonstrated that an ail mutant had no appreciable defect in

virulence when evaluated in the mouse. Presumably, this lack of a virulence pheno-

type is due to redundant functions shared between Ail, Inv, and YadA. Redundancy

in function is indicative of a crucial role in the disease process, and mutations in ail
or yadA on the invmutant background showed more significant defects in virulence

than either single mutation supporting this notion (Pepe et al. 1995).
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4.3 YadA

YadA is a surface-exposed 45-kDa homotrimeric protein encoded on the pYV

virulence plasmid that serves as a multi-functional virulence factor conferring

the ability to adhere to the extracellular matrix proteins (Balligand et al. 1985;

Heise and Dersch 2006; Martinez 1989). Unlike Inv and Ail, YadA is posi-

tively regulated under conditions that promote the expression of the Yersinia

outer proteins (Yops) (Cornelis and Wolf-Watz 1997; Skurnik and Toivanen

1992). YadA impacts virulence in a species-dependent manner with Y. enter-
ocolitica yadA mutants having a strong virulence defect and Y. pseudotuberculosis
yadA mutants have a minor defect (Bolin and Wolf-Watz 1984; Han and Miller

1997; Pepe et al. 1995; Rosqvist et al. 1988). YadA confers an adhesive

phenotype and, in the case of Y. pseudotuberculosis, it also promotes invasion of

mammalian cells through a unique domain in its N-terminus (amino acids 53–83) that

is absent in Y. enterocolitica YadA (Heise and Dersch 2006). To promote uptake

of Y. pseudotuberculosis into epithelial cells, the N-terminal uptake region of

YadA binds to fibronectin that is bound to a5b1 integrin initiating internalization

in a manner similar to Inv-mediated uptake (Heise and Dersch 2006). The ability

of YadA to adhere to cells, and in the case of Y. pseudotuberculosis invade cells,

is probably a property of its ability to bind to extracellular matrix proteins (Heise

and Dersch 2006; Nummelin et al. 2004; Schulze-Koops et al. 1993; Tertti et al.

1992).

YadA binds to fibronectin, collagen I, II, and IV, and laminin in a species-

dependent manner with Y.enterocolitica YadA binding collagen and laminin with

higher affinity than Y. pseudotuberculosis YadA (Heise and Dersch 2006). In

contrast, Y. pseudotuberculosis YadA binds fibronectin with higher affinity than

Y. enterocolitica YadA. Species-specific differences in YadA substrate binding

could explain the differences between the virulence phenotypes of the two proteins

(Heise and Dersch 2006). The interaction of Y. pseudotuberculosis YadA with

fibronectin bound to b1 integrins suggests that YadA may also be able to induce

inflammatory responses from epithelial cells. In fact, both Y. enterocolitica and
Y. pseudotuberculosisYadA proteins are capable of inducing the expression of IL-8

from epithelial cells suggesting that, in addition to promoting binding and invasion

of host cells, YadA contributes to the inflammation associated with infection (Eitel

et al. 2005; Schmid et al. 2004).

The ability of YadA to interact with collagen may also contribute to chronic

inflammatory sequelae associated with Yersinia infection. In particular, there is

evidence that infection with Y. enterocolitica is a pre-disposing risk factor for

development of reactive arthritis in humans (Eitel et al. 2005; Laitenen et al.

1972, 1977; Schmid et al. 2004). This hypothesis is supported by studies that

demonstrated that, in a rat model of reactive arthritis, YadA is required to induce

disease and, specifically, the ability of YadA to bind collagen is critical for disease

development (Lahesmaa et al. 1992, 1993; Skurnik 1995). Although definitive

evidence for a causal role of YadA in human reactive arthritis is limited,
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experimental studies in model animals strongly support this link and suggest that

YadA may impact both acute and chronic inflammatory responses.

5 Role of Ail and YadA in Complement Resistance

and Immune Evasion

In addition to conferring an adhesive/invasive phenotype, Ail and YadA also

provide complement resistance by protecting the bacteria from complement-

mediated lysis and phagocytosis (Bliska and Falkow 1992; Pierson and Falkow

1993). The complement system is composed of 20 serum complement proteins that

function through a complex series of protein–protein interactions and proteolytic

cleavage events ultimately leading to pathogen opsonization/phagocytosis, lysis

and the induction of inflammation (Haeney 1998). The complement system is

divided into pathways based on activation mechanisms, including the alternative

pathway, classical pathway, and lectin pathway, all of which are important aspects

of the host’s immune response to extracellular pathogens. The ability to evade,

complement and/or to be resistant to all three complement pathways is an important

factor in protecting Yersinia from the immune system. Ail and YadA subvert the

alternative complement pathway through the binding of the regulator factor H

(Biedzka-Sarek et al. 2005, 2008a,b; Kirjavainen et al. 2008). YadA and Ail also

bind to the C4b-binding protein to subvert the classical and lectin pathways

(Kirjavainen et al. 2008). Altogether, YadA and Ail effectively block all comple-

ment pathways and allow Yersinia to effectively avoid this important innate

immune mechanism (Kirjavainen et al. 2008).

Similar to the ability to promote adherence to and invasion of mammalian cells,

the ability to resist complement is a redundant feature shared between Ail and

YadA. The Ail protein is predicted to contain eight transmembrane beta sheets and

four surface-exposed loops (Miller et al. 2001). Mutational and biochemical analy-

sis of the surface-exposed loops of the Ail protein suggest that the invasion and

serum resistance phenotypes can be separated, and that both of these properties are

linked to loops 2 and 3 with loops 1 and 4 not being directly involved in these

phenotypes (Miller et al. 2001). The topology of the Ail protein indicates that the

loops of the protein will be close to the cell membrane creating the potential for

masking by other proteins and lipids on the cell surface. Recently, in support of this

concept, Skurnik and colleagues demonstrated that the O-antigen and the outer

core of Y. enterocolitica serogroup O:3 might partially mask Ail (Biedzka-Sarek

et al. 2005).

YadA, on the other hand, is a homotrimeric “lollipop-shaped” protein that is

predicted to form a capsule-like coat that extends from the surface of the bacteria

such that it is not effectively masked by other proteins or lipids (El Tahir and

Skurnik 2001; Hoiczyk et al. 2000; Roggenkamp et al. 2003). This suggests that
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YadA is the major complement avoidance mechanism, and that under conditions

where Ail is capable of binding factor H or C4b-binding protein it provides

significant protection from complement.

In summary, tissue adherence and invasion is a critical step in the pathogenesis

of a Yersinia infection. Yersinia’s ability to exploit the Inv-b1 integrin interaction

facilitates the targeting and invasion of Peyer’s patches and M cells by Yersinia and
in the absence of Inv:Ail and YadA can mediate interaction with the host epithelium

and promote invasion. Species-specific differences in the N-terminus of YadA

determine the ability of this protein to mediate invasion of epithelial cells with

Y. pseudotuberculosis YadA conferring a much stronger invasive phenotype than

theY. enterocoliticaYadA. Enteropathogenic Yersinia are predominantly extracellular

pathogens that are constantly challenged by complement and other aspects of

innate and humoral immunity. To counteract this serious challenge, Yersinia has

evolved mechanisms to evade complement that involves both the YadA and Ail

proteins and their ability to bind regulators of the three complement pathways.

Altogether, these two virulence proteins not only play a central role in host

invasion but also in immune evasion.

6 Type Three Secretion

Yersinia uses specialized secretion systems called type three secretion systems

(TTSS) to deliver virulence factors into the cytoplasm of target host cells (Cornelis

2002; Cornelis and Wolf-Watz 1997; Viboud and Bliska 2005). All pathogenic

strains of Yersinia harbor an approximately 70-kDa plasmid (pYV) that encodes the

structural, regulatory, and virulence-associated effector proteins required for type

three protein secretion (Cornelis 2002; Cornelis and Wolf-Watz 1997; Portnoy and

Falkow 1982; Viboud and Bliska 2005). The pYV-encoded TTSS is also known as

the Ysc system to distinguish it from the other two TTSS encoded by Y. enterco-
litica, including a flagellar TTSS and a chromosomally-encoded TTSS known as

the Ysa system (Haller et al. 2000; Young et al. 1999). The Ysa and Ysc systems are

contact-dependent TTSS whereas the flagellar system is part of the apparatus

involved in flagellum assembly. The Ysc TTSS is one of the best-studied bacterial

virulence machineries currently known, and Yersinia has served as a paradigm for

understanding TTSS-mediated manipulation of host immune responses. A compre-

hensive review of the interactions between the Ysc TTSS and the host is well

beyond the scope of this review, but a number of excellent reviews have been

published in the last couple of years and readers are referred to these for a more in-

depth analysis (Cornelis 2002; Pujol and Bliska 2005; Viboud and Bliska 2005).

However, a brief introduction to the Ysc TTSS and its effector proteins is required

to discuss the Ysa and flagellar TTSS as well as subsequent discussions of immune

evasion.
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6.1 Ysc TTSS

The Ysc TTSS is absolutely required for the virulence of all three species of

pathogenic Yersinia. Like many virulence-associated properties of Yersinia, the
TTSS and the associated effector proteins are regulated by temperature and ion

concentration. A variety of effector proteins called Yersinia outer proteins (Yops)

are secreted from the cytosol of the bacteria through the TTSS directly into the

cytoplasm of the host cell (Viboud and Bliska 2005). The Yops are exotoxins that

mimic the action of host cell enzymes such as phosphatases, proteases, GEFs,

GAPs, kinases, and acetylases to modulate the cytoskeleton and immune signaling

pathways (Cornelis 2002; Viboud and Bliska 2005). This ultimately leads to

inhibition of phagocytosis, proinflammatory cytokine production, and in the case

of macrophages, the induction of apoptosis and pyroptosis (Table 1). Although the

pYV is required for the virulence of Yersinia, only some of the Yops are absolutely

required to cause disease in mice suggesting that some of the Yops are redundant

(Trulzsch et al. 2004).

6.2 Ysa TTSS

In addition to the Ysc TTSS, the flagellar and Ysa TTSS have been implicated in the

virulence of Y. enterocolitica infection and other processes such as the formation of

bio-films (Haller et al. 2000; Kim et al. 2008; Young et al. 1999). The regulation

and role of these TTSS are not as well described as the Ysc system but recently

more information has emerged.

The chromosomally-encoded Ysa TTSS was identified through homology to the

Ysc system (Haller et al. 2000). In vitro, the Ysa TTSS is optimally expressed under

high salt concentrations, 26�C, and at stationary growth phase (Haller et al. 2000;

Mildiner-Earley et al. 2007; Walker and Miller 2004). An AraC-like regulator

known as YsaE and the SycB chaperone that regulates the expression of the

sycByspBCDA operon mediates salt responsiveness of the Ysa TTSS (Walker

andMiller 2004). This operon is further regulated by the YsrS/YsrR two-component

regulatory system and the RscC-YojN-RcsB phospho-relay system (Venecia and

Young 2005; Walker and Miller 2004). In support of a role in virulence, a

mutant in the Ysa TTSS displayed a ten-fold difference in LD-50 relative to the

wild-type strain (Haller et al. 2000). Subsequently, it was demonstrated that the Ysa

TTSS is important for colonization of the small intestine (Venecia and Young 2005).

The Ysa TTSS secretes 15 proteins known as Ysa proteins (Ysps) (Matsumoto and

Young 2006) (Table 1). The role of many of the Ysps remains unknown at this time

but, interestingly, it was recently shown that that some Ysps were actually Yops

including YopE, YopN, and YopP suggesting that the Ysa TTSS, like the Ysc

TTSS, might be involved in the modulation of host immune responses in vivo

(Matsumoto and Young 2006). Other Ysps proteins are unrelated to the Yops,
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Table 1 Yersinia secreted effector proteins involved in immune evasiona

Protein Type three

secretion system

Function Immune evasion/

Pathogenesis

Referencec

Ysc Ysa Flagellarb

YopE X X Rho-GAP Yes Viboud and Bliska

(2005)

Yop H X Tyrosine

Phosphatase

Yes Viboud and Bliska

(2005)

Yop K X X Unknown Yes Viboud and Bliska

(2005)

YopJ/P X X Protein

Acetylase/

Protease

Yes Mukherjee et al. (2006)

YopO X Ser/Thr Kinase Yes Viboud and Bliska

(2005)

YopT X Cysteine

Protease

Yes Viboud and Bliska

(2005)

YplA X X X Phospholipase Yes Young and Young

(2002)

YspA X Unknown ? Foultier et al. (2002)

YspB X Structurald ? Foultier et al. (2002)

YspC X Structural ? Foultier et al. (2002)

YspD X Structural ? Foultier et al. (2002)

YspE X Unknown Yes Matsumoto and Young

(2006)

YspF X Unknown Yes Matsumoto and Young

(2006)

YspI X Unknown No Matsumoto and Young

(2006)

YspK X Ser/Thr Kinase Yes Matsumoto and Young

(2006)

YspL X Unknown Yes Matsumoto and Young

(2006)

YspP X Tyrosine

Phosphatase

Yes Matsumoto and Young

(2006)

YspM X Lipase ?e Witowski et al. (2008)

YspN X Structural Yes Matsumoto and Young

(2006)

YspY X Unknown Yes Matsumoto and Young

(2006)
aEffector proteins not discussed in the main text weren’t included in the table i.e. (LcrV, YopM,

various FOPs)
bOther FOPs have been detected but they are poorly described
cIn the cases of the well known Yops the original description isn’t cited but to put these proteins in

the wider context of Yersinia infection recent reviews are cited. In the case of newly described

proteins or major changes in the understanding of the protein, the original reference is provided.
dproteins that are homologous to translocons and other structural features of TTSS are identified as

structural proteins
eYspM is cytotoxic when expressed in yeast cells but it is yet to be tested in animal cells or in the

mouse model
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for example, in some strains of Y. enterocolitica serogroup O:8, the Ysa TTSS

secretes YspM a bacterial lipase that is secreted directly into host cells where it

exerts a cyto-toxic effect (Witowski et al. 2008). In addition to the YspM lipase,

the Ysa TTSS is capable of secreting the YplA phospholipase (Schmiel et al. 1998).

YplA was originally identified as a Y. enterocolitica virulence factor and has

subsequently been shown to be secreted by the Ysa, Ysc, and the flagellar TTSS

(Schmiel et al. 1998; Young and Young 2002; Young et al. 1999). The specific role

of lipases and phospholipases in the pathogenesis of Y. enterocolitica infection

remains unknown, but the Ysa secretion system is capable of secreting several

of these virulence factors suggesting membranes and lipids as potential targets of

the Ysa TTSS.

Even though the evidence in support of the Ysa TTSS as an important virulence-

associated apparatus is increasing, how the Ysa TTSS and its effector proteins

interact with the host’s immune system remains to be determined. It is not unusual

for enteric pathogens to encode for multiple TTSS; Salmonella sp. utilizes several

TTSS at different stages of the infectious process setting precedence for the

specialization of TTSS during infection (Hansen-Wester and Hensel 2001).

6.3 Flagellar TTSS

In addition to the two contact dependent TTSS (Ysc and Ysa), Y. enterocolitica also
encodes for a flagellar TTSS (Young et al. 1999). The flagellar TTSS is important

for the secretion of flagellin during the biogenesis of flagella. Significantly, it was

recently observed that the flagellar TTSS secreted a number of proteins not asso-

ciated with the biogenesis of the flagella; these proteins were called Flagellar outer

proteins (Fops) (Young et al. 1999) (Table 1). As discussed above, one of the Fops,

YplA (Yersinia phospholipase A), had been recently identified as a virulence factor
required for the colonization of the Peyer’s Patches and mesenteric lymph nodes

and for the inflammatory responses to infection in these tissues. Interestingly, when

the expression and regulation of YplA was examined, reduced YplA expression was

observed in flhDC and fliA mutants suggesting that YplA is part of the flagellar

regulon but that Y. enterocolitica is non-motile at 37�C and does not express a

functional flagellum under in vivo conditions (Schmiel et al. 2000).

To summarize, the enteropathogenic Yersinia encode for multiple TTSS that are

important for virulence. The plasmid-encoded Ysc TTSS has been extensively

studied for its role in virulence and modulation of host immune responses with

many of the Ysc effectors important in dissemination of the Yersinia within the

host. The recently described, chromosomally-encoded, Ysa TTSS and its effector

proteins are important for the colonization of gastrointestinal tissues. The fact that

several of the Ysc effectors can be secreted through the Ysa TTSS and the growing

evidence that some of the Ysp proteins (YspM) can be directly cytotoxic suggests

that the Ysa TTSS may be directly involved in modulation of the host immune

response in a manner analogous to the Ysc TTSS. The flagellar TTSS is not as well
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described in terms of its direct role in virulence and may play important roles in

environmental persistence or other aspects of the Yersinia life cycle. All of the

TTSS secrete a variety of effector proteins that impact the host in numerous ways,

but subversion of host immunity to promote infection is a common theme. Many of

the effectors can be secreted by several of the TTSS implying either promiscuous

secretion or importance at various times during infection. The Ysc TTSS and its

effectors are well described, but there remains much to learn about the Ysa and

flagellar TTSS, their effectors, and the role these secretion systems play during

human disease.

7 Interaction with the Innate Immune System

A major target of the type three secretion systems of Yersinia is the innate immune

system. The last 15 years has seen an explosion in our understanding of the innate

immune system and a renewed awareness of the importance of innate immunity in

the host-pathogen interaction (Karin et al. 2006). Innate immunity provides the first

line of defense to infection and is a major target of Yersinia’s immune evasion

mechanisms. The change in our mechanistic understanding of innate immunity

occurred with the recognition that microbial pathogens released danger signals that

could be recognized by the innate immune system based on the presence of

pathogen associated molecular patterns (PAMPs) produced by that pathogen

(Akira and Takeda 2004). For example, Gram-negative bacterial pathogens such

as Yersinia generally produce lipopolysaccharide (LPS) that the innate immune

system recognizes as a danger signal and responds by initiating an immune re-

sponse. The PAMPs are recognized by a variety of pathogen recognition receptors

(PRR) such as toll-like receptors and nod-like receptors that generate the initial

immune signal (Akira and Takeda 2004). Subsequently, cells activated by PRR

produce cytokines and chemokines to recruit and activate more effector cells of the

innate immune system including neutrophils, natural killer cells, macrophages, and

mast cells. These cells may clear the infection or in most cases they act to control

infection until adaptive immune responses can be generated.

As a Y. enterocolitica or Y. pseudotuberculosis infection progresses, the

bacteria are predominantly extracellular and Yersinia is challenged by innate

aspects of the humoral response and the cellular innate immune response in the

form of complement, other opsonins, neutrophils, and macrophages. As dis-

cussed previously, Yersinia utilizes the Ail and YadA surface proteins to

avoid complement and the Ysc TTSS to avoid phagocytosis. A number of the

Yops (YopE, YopH, YopT, and YopO) impact signal transduction pathways

leading to cytoskeleton rearrangements important for phagocytosis (Cornelis

2002; Viboud and Bliska 2005). After ligation of the b1-integrin receptor with

Inv, signaling is inhibited by YopH; YopH is a protein tyrosine phosphatase that

inhibits integrin signaling by targeting FAK, p130-CAS, and paxillin in epithe-

lial cells and SKAP-HOM, Fyb, and the Fak-homolog Pyk in macrophages
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(Black and Bliska 1997; Bliska et al. 1991). YopE also targets the cytoskeleton

by inhibiting the small G-proteins RhoA, Rac1, and Cdc42 through its GAP

activity (Aepfelbacher 2004; Black and Bliska 2000; Schotte et al. 2004).

Likewise, YopT and YopO also target small G-proteins with YopT acting as a

cysteine protease that cleaves the isoprenyl group from RhoA, thus inactivating

it by removing it from the membrane (Shao and Dixon 2003). YopO is a serine/

threonine kinase that inactivates RhoA and Rac1 by an unknown mechanism,

but recent studies show that kinase activity requires the 1:1 complex of YopO

with G actin. Further, the YopO/G actin interaction appears to be required to

promote the YopO mediated cytotoxicity (Trasak et al. 2007). Altogether,

Yersinia injects a minimum of four effector proteins through the TTSS that

act to effectively prevent phagocytosis by inhibiting cytoskeletal rearrangements

and associated signaling pathways. This then partially protects Yersinia from

activated macrophages and neutrophils.

Y. enterocolitica and Y. pseudotuberculosis interact extensively with many

aspects of the innate immune system to ensure their own survival and to promote

disease in the host. It is likely that virulence factors are expressed temporally

to modulate the host immune response at different stages of infection. Temporal

and tissue-specific expression of virulence factors may help to explain some of

the discrepancies observed when different aspects of innate immune modulation

are observed in vitro compared to in vivo. The majority of the data available on

the innate immune responses to Yersinia infection have to do with the cytokine

response to infection and how Yersinia modulates this response. In vitro studies

suggest that Yersinia is capable of inducing a proinflammatory response at the

earliest stages of infection. Ligation of b1 integrins by E. coli expressing either Inv

or YadA in vitro leads to the induction of IL-1, MCP-1, and IL-8 suggesting that the

initial interaction with the gastric epithelium can be proinflammatory (Kampik et al.

2000). Numerous other studies have suggested that the Ysc TTSS and the Yops are

potent inhibitors of proinflammatory signaling with the main effectors responsible

for this phenotype being Yops J/P, E, and H (Cornelis 2002; Viboud and Bliska

2005). The enzymatic activities of all three of these effector proteins are known and

several of the cellular target proteins involved in inhibiting proinflammatory sig-

naling are known as well.

Yop J/P is a protein acetylase that acetylates serines and threonines present in the

activation loops of mitogen-activated kinases (Map kinase) and IkB kinase b
(IKKb) (Mukherjee et al. 2006). There is also some evidence that YopJ is capable

of inhibiting signaling through MAPK, NF-kB, and IRF-3 by blocking the ubiqui-

tination of upstreammolecules TRAF3 and TRAF6, supporting an earlier claim that

YopJ/P is a de-ubiquitinating protease (Orth et al. 1999; Sweet et al. 2007). These

data are based on overexpression studies in a reconstituted system and need to be re-

examined under infection conditions where physiologically relevant levels of YopJ

are present. Currently, the precise mechanisms of YopJ/P mediated inhibition of

signal transduction are controversial, but ultimately, YopJ/P activity leads to the

inhibition of NF-kB, p38, and ERK-dependent proinflammatory cytokine signaling

(Palmer et al. 1999).
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YopH, a protein tyrosine phosphatase, is also involved in the inhibition of

proinflammatory cytokine signaling by inhibiting the release of MCP-1 through a

wortmanin-sensitive PI3 kinase/Akt-dependent mechanism (Sauvonnet et al. 2002).

The molecular basis of this observation remains to be determined but it is likely that

YopH has a much more involved role in the modulation of inflammatory signaling

than previously appreciated (Dube, unpublished data).

YopE, a Rho-GAP, has also been shown to impact the production of proinflam-

matory cytokines by a poorly understood mechanism (Schotte et al. 2004). YopJ/P

appears to be the major effector involved in blocking proinflammatory responses,

but unlike YopE and YopH, YopJ/P is dispensable for causing disease in mice

(Trulzsch et al. 2004). Inhibition of proinflammatory responses by the Yops may be

a critical initial step in the pathogenesis of disease happening in the first few hours

post-infection, because in the mouse model, by 48 h post-infection, there is a robust

increase in proinflammatory cytokines and noticeable changes in the histopathology

of the Peyer’s patches (Dube et al. 2003, 2004; Handley et al. 2004, 2006).

During infection of the mouse, a number of cytokines are critical to the

disease process, including cytokines that are required to induce pathology and

cytokines that are needed to establish an appropriate series of immune responses.

A number of IL-1 family members play a central role in the pathogenesis of a

Yersinia infection, including IL-1a, IL-1b, and IL-18 (Beuscher et al. 1992;

Bohn et al. 1998; Dube et al. 2001). IL-1a and IL-1b are potent endogenous

pyrogens that are rapidly induced in response to activation of PRR and during a

Y. enterocolitica infection (Dinarello 1997, 1998; Patarca and Fletcher 1997).

More recent data showed that IL-1a expressed in response to a RovA-regulated

gene product was critical for inducing inflammatory responses in the gut (Dube

et al. 2001, 2003).

IL-1b and IL-18 are both cytokines produced and secreted by macrophages and

other cells when there is activation of the inflammasome. The inflammasome is

a multiprotein complex that is formed after activation of PRR or other stimuli that

ultimately leads to increased levels of IL-1b and IL-18 being secreted from the cell

(Gurcel et al. 2006; Martinon et al. 2002). IL-1b and IL-18 are both substrates for

the inflammasome associated protease caspase-1. Caspase-1 is critical for the

maturation of IL-1b and IL-18 but not IL-1a, which is processed by calpain;

however, new evidence suggests that caspase-1 may be important for the secretion

of IL-1a from the cell (Dinarello 1998; Keller et al. 2008). IL-18 is known to be

important for controlling a Y. enterocolitica infection as studies with IL-18-deficient
mice demonstrated that these mice were more sensitive to infection than control

mice (Bohn et al. 1998; Hein et al. 2001). Although not formally proven, the IL-18

deficient mice are probably more sensitive to infection due to the important role

of IL-18 in inducing IFN-g. Activation of the inflammasome in resting macro-

phages during Y. enterocolitica or Y. pseudotuberculosis infection is linked to

YopJ/P-dependent macrophage apoptosis and in activated macrophages pyroptosis

due to decreased NF-kB-dependent pro-survival signals (BCL-2) (Bergsbaken and

Cookson 2007; Zhang et al. 2005). The ability of Yersinia to induce cell death

in macrophages requires TLR-4, suggesting that cells can recognize the presence
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of the bacteria (Zhang and Bliska 2003). This is a significant finding since

reports suggest that Y. pseudotuberculosis and Y. pestis modify their lipid A

moieties to be less immuno-stimulatory at 37�C as an immune evasion strategy

(Rebeil et al. 2004). In contrast, the lipid A of Y. enterocolitica remains immuno-

stimulatory at 37�C (Rebeil et al. 2004). Altogether, IL-1 family members play a

central role in the pathogenesis of a Yersinia infection and may be central mediators

of the host response to infection. As such, Yersinia has targeted IL-1 responses and

the inflammasome as a point of immune evasion. Induced cell death is a potent

inflammasome-dependent immune evasion strategy employed by the Yersinia that

allows the bacteria to escape cell-mediated innate immune responses.

In addition to the IL-1 family members, a number of other cytokines have been

shown to be important for the control of the infection. Most notably, TNF-a, IL-12,
IL-6, and IFN-g are critical for the control of a Yersinia infection (Autenrieth and

Heesemann 1992; Autenrieth et al. 1996; Dube et al. 2004). IL-18 and IL-12 are

potent inducers of IFN-g and probably play an indirect role in macrophage activa-

tion and a direct role in Th-1 CD4 T cell polarization during Yersinia infection. The
ability of activated macrophages to control a Yersinia infection is best demonstrated

with Y. pestis infection; in early studies, it was shown that mice primed with

recombinant TNF-a or IFN-g were resistant to infection (Nakajima and Brubaker

1993). More recently, elegant studies on mice latently infected with herpes virus

demonstrated that these mice had higher levels of circulating activated macro-

phages and were resistant to both Listeria monocytogenes and Y. pestis infection,
suggesting a central role for activated macrophages in control of these infections

(Barton et al. 2007). Considerable data suggest that Y. enterocolitica infection is

ultimately cleared by a IFN-g-dependent Th-1 T cell response.

TNF-a and IL-6 are both pleiotropic cytokines that can act as endogenous

pyrogens, and can activate the endothelium to facilitate the influx of immune

cells to the site of infection (Kishimoto 1987; Koj 1985). TNF-a is also an important

cytokine inmacrophage activation and dendritic cell maturation (Hundsberger et al.

2008). In vitro TNF-a levels are decreased in response to YopJ/P, but in vivo TNF-a
is readily detected in the Peyer’s patches of mice 24–48 h post-infection, suggesting

that if there is any suppression of TNF-a responses in vivo it likely happens early

during infection or that the suppressed level is still readily detectable (Dube et al.

2001; Handley et al. 2004; Sauvonnet et al. 2002). IL-6 is a cytokine that is

upregulated in response to IL-1 and has a multitude of roles in the host response

from inducing fever and acute phase responses to acting as a B cell growth factor

(Koj 1985; Van-Snick 1989).We recently reported that mice deficient in IL-6 have a

hyperinflammatory response to Y. enterocolitica infection, and profound defects in

the expression of other cytokines such as IL-10, TGF-b, and IFN-g during infection
(Dube et al. 2004). These defects could be reversed by the administration of

recombinant IL-6 to the IL-6-deficient mice linking the defects to the IL-6 deficiency

and not to a non-specific response or some other defect in these animals (Dube et al.

2004). The other interesting aspect of this study was that the data suggested that IL-6

might be acting to temper the inflammatory response to infection. This is consistent

with a rapidly expanding body of literature indicating that IL-6 can serve as an
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anti-inflammatory cytokine as well as a proinflammatory cytokine (Diehl et al.

2000). As we learn more about IL-6 during infection, we are likely to gain greater

insights into the control of the inflammatory response by Y. enterocolitica during

infection. For example, the aberrantly low levels of TGF-b in the IL-6-deficient mice

indicate that TGF-b may be important for regulating inflammatory responses to

infection. This finding is consistent with older data that demonstrated that mice

treated with recombinant TGF-b were protected from infection (Autenrieth et al.

1996). In agreement with these studies, we recently demonstrated that mice

immuno-depleted of TGF-b were sensitive to Y. enterocolitica infection succumb-

ing to infection more rapidly than control animals (Y. Zhong and Dube, in prepara-

tion). TGF-b is a very potent anti-inflammatory cytokine that has many roles in the

regulation of immune responses. The fact that both IL-6 and TGF-b appear to

function in the negative regulation of proinflammatory responses during Yersinia
infection illustrates that immune evasion by Yersinia can target host responses that

activate host immunity and those that temper inflammatory responses.

An important role of cytokines during infection is to appropriately polarize the

adaptive immune response to infection. Delaying or inappropriately polarizing an

adaptive immune response to an infectious agent is a way of targeting innate

immunity for immune evasion that ultimately impacts the adaptive response. As

we become more aware of the growing subsets of T cells and the roles cytokines

play in their differentiation, it is likely that Yersinia is capable of directly modulat-

ing T cell differentiation through manipulation of the cytokine environment. For

example, it is well established that Th-1-type responses are important for the

control of a Yersinia infection but IL-6, IL-12p40, TGF-b, and IL-10 are important

for the development of two newly described subsets of CD4 T-cells: Th-17 and

T-regulatory cells (Awasthi et al. 2008). The role of these T cell subsets during

infection remains to be investigated.

8 Interaction with the Adaptive Immune System

Most infections of humans with Y. enterocolitica or Y. pseudotuberculosis are self-
limiting indicating that adaptive immunity adequately controls infection. After

infection, Yersinia reactive serum antibodies are present and antigen-specific T

cells can be cloned from infected mice (Autenrieth et al. 1992, 1993b, 1994; Bottone

1997). In mice, a number of investigations have demonstrated that both CD4þ T

cells of the Th-1 phenotype and CD8þ T cells are critical for the control of infection

and potential targets for immune evasion (Autenrieth et al. 1992, 1993b, 1994).

YopH targets lymphocytes in vitro for immune modulation by disrupting T cell

and B cell receptor activation by dephosphorylating downstream signaling mole-

cules. This ultimately leads to decreased expression of the co-stimulatory mole-

cules B7.2 and CD69 as well as lower levels of IL-2 (Alonso et al. 2004; Yao et al.

1999). Presumably this is a potential mechanism Yersinia could use to prevent or
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delay clonal expansion during the adaptive response, but this needs to be tested

in vivo. The role of the newer subsets of T cells (Th-17 and T-reg) in the

pathogenesis of infection remains to be determined.

There is growing evidence that Yersiniamay modulate adaptive immune response

at the level of antigen presentation by dendritic cells. However, much of this work has

been done with Y. pestis infection or the presentation of Y. pestis antigens. It is likely
that many aspects of the modulation of dendritic cells by Y. pestis will be similar to

the mechanisms employed by the enteropathogenic Yersinia. However, there are

also clear indications that the Yop effectors can have species-dependent effects.

This is especially true of YopJ/P and its impact on the apoptosis of dendritic cells.

A number of studies have suggested that YopJ-dependent apoptosis of dendritic cells

is an important virulencemechanism, but that YopP of Y. enterocolitica is significant-
ly more effective at inducing apoptosis in dendritic cells than the Y. pestis or

Y. pseudotuberculosis YopJ (Adkins et al. 2008; Brodsky and Medzhitov 2008;

Lindner et al. 2007; Velan et al. 2006). The interaction of Yersinia with dendritic

cells is currently being investigated with much of the current data suggesting that

Yersinia can induce apoptosis in dendritic cells thereby reducing the efficiency of the
adaptive immune response. It is likely that the interaction of Yersinia with dendritic

cells is muchmore complex andmay encompass other aspects of pathogenesis such as

dissemination.

9 New Insights on Old Paradigms

The application of new technologies to the analysis of the Yersinia host–pathogen

interaction in the gut has forced a re-evaluation of several paradigms and illustrated

numerous unexplored aspects of the pathogenesis of disease. The proliferation of

genetically modified mice that are deficient in specific molecules and tissues has

allowed for the re-examination of some of the most basic tenets of Yersinia
pathogenesis. For example, as described in detail above, Yersinia utilizes the Inv

protein to bind to b1- integrins expressed on M cells promoting both targeting and

invasion of the Peyer’s patches. Subsequently, Yersinia is capable of disseminating

to the mesenteric lymph nodes and in some cases the spleen and liver. However, a

number of genetically modified mice are lacking Peyer’s patches and other lymph

organs allowing for the investigation of the absolute requirement for Peyer’s

patches in the dissemination of Yersinia.
Mice deficient in lymphotoxin-a or the lymphotoxin-b receptor are deficient in

organized intestinal lymphoid tissues such as Peyer’s patches, isolated lymphoid

follicles, and mesenteric lymph nodes (Matsumoto et al. 1996, 1997a,b). These

mice do have M cells and villous M cells as well as a normal overall immune cell

composition (Jang et al. 2004). When lymphotoxin-a deficient or lymphotoxin-b
receptor-deficient mice were infected with wild-type Y. enterocolitica, there was

normal dissemination of the bacteria from the intestine to the spleen suggesting that
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the Peyer’s patches are dispensable for dissemination (Handley et al. 2005). Inter-

estingly, dissemination from the intestine to the spleen in lymphotoxin-a-deficient
mice is Inv dependent suggesting a role for Inv/M cell interactions in the absence of

Peyer’s patches (Handley et al. 2005). Isberg and co-workers significantly furthered

this concept with a series of elegant genetic experiments that demonstrated coloni-

zation of the spleen and liver after Y. pseudotuberculosis infection required dis-

semination from the lumen of the small intestine (Barnes et al. 2006). More

significantly, these studies demonstrated that the bacteria colonizing the spleen

and liver of wild-type mice were derived from a distinct pool of bacteria separate

from those in the mesenteric lymph nodes. Taken together, these studies demon-

strate that the ordered progression of Yersinia from the lumen of the gut through the

Peyer’s patches and lymph nodes on route to the spleen and liver is not an accurate

reflection of the actual pathogenesis of infection. In reality, neither Peyer’s patches

nor mesenteric lymph nodes are required for dissemination to the spleen and liver.

Actually, colonization of the spleen and liver can result from a distinct pool of

bacteria replicating in the intestinal lumen and is dependent on the Inv protein

suggesting a more significant role for M cells or villous M cells in this process.

These data suggest that dissemination of the bacteria is much more complex than

previously appreciated and should be re-examined in the context of this newer data.

9.1 Global Analysis of Host Gene Expression
in Response to Infection

The cellular immune response to Yersinia infection may also be significantly

different from what is currently accepted. The influx of neutrophils, macrophages,

and lymphocytes to the site of infection is well established and supported by many

studies, but a recent analysis of global gene expression in infected Peyer’s patches

and mesenteric lymph nodes by Miller and co-workers suggests roles for a number

of cells not previously implicated in the response to Yersinia infection (Handley

et al. 2006). In this study, a micro-array analysis was done on infected Peyer’s

patches and mesenteric lymph nodes at several times post-infection to monitor

changes in host gene expression over time. In many respects this analysis was very

informative: (1) it confirmed many previous studies looking at the expression of

cytokines and chemokines, (2) it identified multiple unrecognized cytokines and

chemokines involved in the host response including IL-17 and IL-11, (3) it identi-

fied non-protein immune signaling molecules important in the response to Yersinia,
and (4) it provided strong evidence for the involvement of histamine receptor

signaling in the pathogenesis of disease. Due to limitations in the experimental

design, it was impossible to determine if changes in transcript levels were due to

increased/decreased gene expression, influx or egress of cells from the tissues, or

death of cells in the tissues, but the changes in transcript levels did reveal many

targets that would have been missed with a different approach.
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One of the genes most highly “upregulated” after infection was histidine

decarboxylase, the sole enzyme responsible for making the biogenic amine

histamine. Histamine is a potent signaling molecule responsible for many aspects

of homeostasis, and in the context of the immune system, histamine is potent

effector molecule during allergy and the response to infection. After a Y. enter-
ocolitica infection, histidine decarboxylase is rapidly upregulated in the Peyer’s

patches and histamine is detectable by immunohistochemistry at sites of active

infection. Histamine exerts its biological effects through four histamine receptors,

H1–H4, present on multiple cell types (Jutel et al. 2005). Using a variety of

pharmacological agents, it was determined that histamine signaling through the

H2 receptor was critical for the host response to Yersinia infection, as treatment

with the H2 antagonist cimetidine decreased mouse survival and increased

bacterial burdens in the Peyer’s patches and mesenteric lymph nodes. Corre-

spondingly, if mice were treated with the H2 agonist dimaprit, survival was

increased and bacterial burdens were decreased. One of the effects of H2 antago-

nism is to decrease gastric acid secretion in the stomach resulting in an increased

stomach pH, but when mice were treated with omeprazole, a proton pump

inhibitor, and then infected with Y. enterocolitica, omeprazole had no impact

on survival or bacterial burdens suggesting that the protective effect of histamine-

H2 signaling in response to Y. enterocolitica infection is independent of effects

on stomach pH.

Unfortunately this study was unable to determine the cellular source of the

histamine or the responding cells. Because many cells express the histamine

receptors, it may be difficult to determine the responding cells, but the cells

producing histamine should be readily identified. It is intriguing to speculate that

mast cells or basophils may have a role in the host response to infection. There is a

significant concentration of both cell types in the gut and they have preformed

stores of histamine allowing for a rapid response to infection. Mast cells have been

implicated in the host response to other Gram-negative pathogens and it would not

be surprising if they were also important for controlling a Yersinia infection, but

this needs to be formally tested (Abraham andMalaviya 2000; Malaviya et al. 1994,

1996; McLachlan and Abraham 2001).

Altogether, a number of recent studies have cast some doubt on widely

accepted aspects of Yersinia pathogenesis requiring a re-evaluation of how we

think about the infectious process. Under normal situations, the Peyer’s patches

are significant targets for colonization but other intestinal tissues may be signifi-

cant contributors to colonization of the spleen and liver. The significant increase

in IL-17 in infected tissues could be reflective of a Th-17 T cell response or a

neutrophil based IL-17 response; more analysis is required to determine the role

of this important cytokine in the pathogenesis of infection. With the identification

of histamine and signaling through the H2 receptor, we must now incorporate

non-protein immune signaling into our understanding of the pathogenesis of

disease and the possibility that mast cells, basophils, or other immune cells not

previously implicated in the infectious process may have a significant impact on

the pathogenesis of disease.
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10 Unresolved Aspects of Pathogenesis

Y. enterocolitica and Y. pseudotuberculosis are two of the best-understood human

enteric pathogens. We have made significant progress in understanding tissue

invasion, regulation of virulence factors, and host responses to infection, yet there

are still many unresolved aspects of disease to be investigated. The kinetics of

virulence factor expression in vivo and the reconciliation of phenotypes observed

in vitro with the actual in vivo manifestations of disease still remain unresolved.

The roles of many virulence factors identified in genetic screens remain to be tested

in animal models of disease and included in the integration of host responses with

the actions of the various virulence factors.

On the host side, there are numerous areas where continued investigation will

shed light on the pathogenesis of infectious gastro-intestinal disease. The role of

newly described T cell subsets such as Th-17 cells and T-reg cells in a Yersinia
infection needs to be investigated as well as the recruitment of specific cells to the

site of infection. In particular, the role of chemokines and chemokine receptors in

the dynamic response to infection is unexplored. The work of Handley et al

suggests multiple chemokines and receptors not previously identified are playing

a role in disease including some with tissue-specific expression (Handley et al.

2006). The recruitment of immune cells to the site of infection is a well-known

target for Yersinia immune evasion and these molecules represent possible targets

for virulence factors. The same study also illustrated the role of non-protein

immune signaling molecules in Yersinia infections. Undoubtedly, further analysis

of the signaling mediated by histamine, leukotrienes, and other small molecules

during a Yersinia infection will shed light on the gut’s response to infection.

11 Summary

Disease in humans as a result of Yersinia infection can range from acute

enteritis to chronic manifestations such as reactive arthritis and Grave’s disease.

Y. enterocolitica and Y. pseudotuberculosis are two well-studied human enteric

pathogens that have been instrumental in our understanding of invasive intestinal

pathogens and the resulting immune response to this type of infection. Yersinia
rapidly senses and responds to the host environment by changing gene expression

and elaborating the virulence factors required to survive in the host. These virulence

factors include several TTSS and a large variety of chromosomally encoded genes

as well as the pYV plasmid-encoded genes. Salmonella established a precedence of
enteric pathogens utilizing several distinct TTSS at different stages of pathogenesis

and it is now clear that Yersinia utilize multiple specialized secretion systems to

help deliver virulence factors into host cells. Like Salmonella, it now appears that

each TTSS may be important at a specific stage of infection. There is growing
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evidence that tissue-specific virulence factor expression is important for disease,

with some mutants being attenuated by natural routes of infection but nearly as

virulent as the wild-type bacteria by other routes of infection.

The host detects infection and responds by initially inducing a potent proin-

flammatory response as part of innate immunity and then a humoral and cellular

response to clear the infection. Yersinia’s virulence factors effectively neutralize

several important aspects of innate immunity, such as the complement attack,

giving the bacteria a chance to establish infection. Recent technological advances

have allowed us to explore the pathogenesis of infection in greater detail revealing

unexpected routes of dissemination and unexplored host responses. These studies

have also opened and re-opened many avenues of research ensuring that Yersinia
will remain an ideal model for exploring the pathogenesis of invasive human

bacterial infections.
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Abstract Salmonella species can cause typhoid fever and gastroenteritis in humans

and pose a global threat to human health. In order to establish a successful infection,

Salmonella utilize a large number of genes encoding a variety of virulence factors.

Different animal models of infection have been used to better understand the

mechanisms underlying each disease including cattle, rodents, and nematodes. To

date, a number of different bacterial virulence factors have been identified using

such animal models, most of which are secreted by two type three secretion systems

(T3SS) encoded within Salmonella pathogenicity islands (SPI) 1 and 2. These

proteins alter various host cell pathways, facilitating the invasion of epithelial

cells during infection, as well as the survival and replication of Salmonella inside

phagocytic cells. On the other hand, host genetics and resistance also play a role in
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the susceptibility to Salmonella infection. The natural resistance-associated macro-

phage protein 1 (Nramp1), for example, is critical for host defense, since mice

lacking Nramp1 fail to control bacterial replication and succumb to low doses of S.
Typhimurium. In this chapter, we analyze the different pathogen and host factors

that play a role in the dynamic interaction between Salmonella and its host and their
impact on disease.

Abbreviations

APC Antigen presenting cell

CD Cluster of differentiation

DC Dendritic cell

GALT Gut-associated lymphoid tissue

IFN-g Interferon-g
IL (e.g. IL-1) Interleukin

iNOS Inducible nitric oxide synthase

IkBa Inhibitory protein k-B a
Lamp1 Lysosome-associated membrane protein

LM Lamina propria

LPS Lipopolysaccharide

M Cell Microfold cell

M6PR Mannose-6-phosphate receptor

MAPK MAP kinase

MHC-II Major histocompatibility complex II

MLN Mesenteric lymph node

NF-kB Nuclear factor kB
Nramp1 Natural resistance-associated macrophage protein 1

PAMP Pathogen associated molecular pattern

phox Phagocyte oxidase

PMN Polymorphonuclear leukocyte

PP Peyer’s patches

PRR Pattern recognition receptor

RES Reticuloendothelial system

RNS Reactive nitrogen species

ROS Reactive oxygen species

S. Enterica Salmonella enterica
S. Paratyphi Salmonella enterica serovar Paratyphi

S. Typhi Salmonella enterica serovar Typhi

S. Dublin Salmonella enterica serovar Dublin

S. Enteritidis Salmonella enterica serovar Enteritidis

S. Typhimurium Salmonella enterica serovar Typhimurium

SCL11A1 Solute carrier family of multimembrane spanning protein 11

SCV Salmonella-containing vacuole
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SPI Salmonella pathogenicity island

T3SS Type three (III) secretion system

TLR Toll-like receptor

TNFa Tumor necrosis factor-a
WT Wild-type

1 Salmonelloses

Salmonelloses are diseases caused by Salmonella species. Salmonella are Gram-

negative, facultative, intracellular bacteria. The genus Salmonella is divided into

two species: Salmonella bongori and Salmonella enterica. S. bongori resides

primarily in reptiles and infrequently causes disease in warm-blooded animals.

The species S. Enterica contains over 2,000 serovars (Fierer and Guiney 2001), a

few of which are etiological agents of two major human diseases causing significant

morbidity and mortality worldwide, particularly in the developing world.

Salmonella enterica serovar Typhi (S. typhi) and Paratyphi (S. Paratyphi), cause
typhoid fever, a systemic disease characterized by fever, intestinal perforation and

hemorrhage, enlargement of the mesenteric lymph nodes (MLN), spleen and liver

(Parry et al. 2002). S. typhi is a highly adapted human pathogen and does not cause

disease in other animals. Humans are the major reservoir for S. typhi, which is

spread through the fecal–oral route, usually by ingestion of food or drinking water

contaminated with the bacteria. In the absence of complications, the disease usually

is resolved after 4 months, although asymptomatic maintenance and shedding of the

bacteria can continue in a minority of individuals (1–6%) for up to a year or longer

(Monack et al. 2004b). The disease is endemic in Asia, Africa and South America

with an estimated incidence of 17–21 million cases worldwide each year, leading to

600,000 deaths (2003).

Salmonella enterica serovars Enteritidis (S. Enteritidis) and Typhimurium
(S. Typhimurium) cause gastroenteritis or “food poisoning”, a self-limiting disease

characterized by diarrhea, abdominal pain, nausea, vomiting, and fever. The acute

enteritis is characterized by mucosal edema and inflammation mostly in the large

intestine with recruitment of polymorphonuclear leukocytes (PMN) (Santos et al.

2001b). Symptoms occur between 6 and 72 h after consumption of contaminated

animal products such as chicken or eggs, last for up to a week, and resolve

spontaneously. S. enteritis represents a major economic problem worldwide for

both humans and animals and is one of the most frequent causes of bacterial

foodborne disease in North America. An estimate of 1.3 billion cases of intestinal

disease, including 3 million deaths, has been reported worldwide. (Zhang et al.

2003b). Immunocompromised and young children are particularly vulnerable to

severe forms of enteritis, and in isolated cases the infection can spread to systemic

sites resulting in death (Wallis and Galyov 2000). Unlike S. typhi, which is host
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specific. S. typhimurim and S. Enteritidis have a broad host range, causing acute

enteritis in humans and other animals.

2 Animal Models and Overview of the Disease

Animal models are frequently used to develop an improved understanding of the

complex mechanisms that lead to salmonellosis in humans (Santos et al. 2001b;

Zhang et al. 2003b). These models have been invaluable in defining both the key

bacterial virulence factors and the host’s responses, thereby clarifying the process

and outcome of these diseases. Many models are used to study the two major human

diseases, typhoid fever and gastroenteritis, and they encompass human volunteers,

monkeys, calf, cow ileal loops, rabbits, rodents, and the nematode Caenorhabditis
elegans (Alegado and Tan 2008; Paulander et al. 2007; Santos et al. 2001b). The

most widely used animal model is the mouse model, since it offers genetic homo-

geneity, along with well-defined genetic mutants that permit the study of specific

genes, cell types, and pathways in host-pathogen interactions (Grassl and Finlay

2008). Below, description of the mouse models for the study of both typhoid fever

and gastroenteritis are presented.

2.1 The Typhoid Model

To study the pathogenesis of human typhoid fever, a surrogate host (genetically

susceptible inbred mice) and bacterium (S. Typhimurium) are used, providing a

useful model for this disease (reviewed in Santos et al. 2001b). S. typhi does not
infect rodents whereas S. Typhimurium is a natural mouse pathogen. Importantly,

the pathology associated with S. Typhimurium infection of mice closely resem-

bles that of S. typhi in humans. Hallmarks include enlarged Peyer’s patches and

thickening of ileal mucosa. Other areas of the small intestine show a diffuse

enteritis characterized by mononuclear cell infiltration, with no signs of intestinal

epithelium destruction (reviewed in Parry et al. 2002). As in humans infected

with S. typhi, mice infected with S. Typhimurium display disseminated infection

and multiplication of bacteria in the liver and spleen, where large granulomatous

lesions develop around infected macrophages. The S. Typhimurium murine model

has become the accepted model for human infections with S. typhi. However, it is
important to note a key shortcoming of this model. S. Typhimurium will infect

humans but leads to enteritis rather than the typhoid fever-like symptoms de-

scribed above. This suggests that, in the context of different hosts (mouse and

human), the same pathogen (S. Typhimurium) can cause very different diseases

(typhoid fever vs infectious colitis). Also, it is known that some of the bacterial

pathogenicity genes are not shared between S. typhi and S. Typhimurium.
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For example, S. Typhimurium lacks a capsule, yet the Vi antigen is an important

virulence factor in S. typhi. Therefore, although S. Typhimurium can be used to

model the pathology associated with S. typhi infections in humans, it is not an

ideal model to study the role of specific bacterial virulence factors and extrapolate

their role to human disease. With this important caveat in mind, the S. Typhi-
murium model is still useful in studying general host responses to typhoid fever-

type infections.

With regards to the specific effects of infection in the murine typhoid model,

orally-ingested S. Typhimurium cross the intestinal barrier by three mechanisms:

(1) invasion of specialized epithelial cells, termed M-cells, that are situated in the

Peyer’s patches (PP) and are known to sample antigens from the intestinal lumen,

(2) active invasion of enterocytes, and (3) uptake by intestinal dendritic cells (DCs)

that express tight junction proteins and extend dendrites between epithelial cells for

direct bacterial uptake (Niess et al. 2005; Rescigno et al. 2001; Sansonetti 2004;

Vazquez-Torres et al. 1999).

Once the bacteria cross the mucosal epithelia, they encounter cells of the gut-

associated lymphoid tissue (GALT) that include DCs, macrophages, B, and T cells

(Rumbo et al. 2004). Contact of S. Typhimurium with these cells initiates a series of

interactions between the bacteria and the host cells that initiates the disease

(Rydstrom and Wick 2007). Salmonella gain access to the host circulation within

CD18+ cells (Vazquez-Torres et al. 1999). Whether these represent macrophages,

DCs, or other myelomonocytic cells remains to be clarified. The bacteria then reach

MLN, spleen and liver, and replicate within phagocytic cells in these organs to

levels that induce sepsis in susceptible mice.

S. Typhimurium can survive within phagocytic and nonphagocytic cells. During

late stages of infection in vivo, Salmonella can be found within macrophages

(Monack et al. 2004a; Salcedo et al. 2001), DCs (Yrlid et al. 2001), neutrophils

(Cheminay et al. 2004; Geddes et al. 2007), B cells, T cells, and hepatocytes

(Conlan and North 1992; Geddes et al. 2007). In the spleen and liver, S.Typhimurium

resides in granulomatous foci predominantly within phagocytes.

The dynamics of S. Typhimurium spread in the body at the level of individual

infected cells is poorly understood. It has been suggested that, in the initial stages of

the infection, each focus of infection consists of an individual phagocyte containing

only one bacterium and that Salmonella growth in the tissues results in the

continued passage of the bacteria to uninfected cells. Thus, S. Typhimurium growth

in the tissues appears to result in an increased number of infected foci with only a

small increase in the number of bacteria per cell (Sheppard et al. 2003). The

increase in the number of infected foci triggers inflammatory responses, responsible

for the recruitment and priming of phagocytes, cytokine release, hepatosplenome-

galy, and sepsis, and ultimately leads to the death of susceptible animals (Mastroeni

2002; Mastroeni and Sheppard 2004). Chronic carriers have been reported in

S. typhimurium infections of resistant mice (nramp+/+, see below) (Monack et al.

2004a, b). Although this model is just beginning to be explored, it has enormous

potential since it may more accurately reflect the naturally occurring S. typhi carrier
state in humans (Monack et al. 2004b).
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2.2 The Enterocolitis Model

S. typhimurium infection of calves and of cow ileal loops can induce gastroenteritis

with clinical manifestations similar to those found in humans. Although the infor-

mation obtained from these infections is valuable, the use of these animals presents

serious challenges for extensive experimentation. Cattle are outbred, thus creating

an inherent variability between subjects. In addition, large animal models are

expensive, making the use of these animals costly and less than ideal. This issue

was overcome with the development of a mouse model for enterocolitis (Barthel

et al. 2003). This model relies on the premise that oral infection of mice with

S. typhimurium results in modest colonization of the intestine and with little or no

inflammation. This was referred to as “colonization resistance.” However, this

barrier can be overcome by treatment of mice with antibiotics prior to infection

with S. Typhimurium, resulting in a major increase in bacterial colonization.

Although the molecular mechanisms responsible for colonization resistance are

still under debate, it is believed that the antibiotics transiently alter the resident gut

microbiota, allowing the colonization of the cecum and colon by the incoming

pathogen. This colonization is accompanied by significant inflammation that is

characterized by the infiltration of PMNs (Barthel et al. 2003) and intestinal patho-

logy and pathophysiology that culminates in watery stools (Woo et al. 2008). These

changes closely resemble the features of enterocolitis in humans (Hapfelmeier and

Hardt 2005). This model is now being used extensively to examine the course of

the disease in a large number of genetically uniform inbred mice. This enables

the study of specific cell signaling pathways and the contribution of specific cells

of the immune system in the development of colitis. It also provides a means of

assessing S. Typhimurium mutant strains for their ability to induce colitis or modify

the disease course (Coburn et al. 2005; Hapfelmeier et al. 2005, 2008). However,

one caveat of this model is the development of “typhoid–like” disease that occurs in

parallel to colitis, rendering mice susceptible to systemic infection and death.

Thus, this model generates a mixed symptomatology of both typhoid fever and

colitis. More recently, the use of genetically-resistant mice has provided valuable

information about the dynamics of S. Typhimurium and host interactions at later

time points, thereby providing information on the resolution of the “colitis-like”

component of the disease (Grassl et al. 2008; Stecher et al. 2006; Valdez et al. 2009;

Woo et al. 2008).

3 S. Typhimurium Virulence Determinants

S. typhimurium has acquired an arsenal of genes that are required to establish a

successful infection within the host. Many of the virulence traits of Salmonella
are directly linked to genes encoded within large regions of the bacterial chromo-

some called Salmonella pathogenicity islands (SPIs). Pathogenicity islands are
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discrete chromosomal regions harboring virulence genes. These are common

attributes of Gram-negative bacterial pathogens and encode virulence factors,

together with the machinery for their regulation and secretion. Such pathogenicity

islands are absent from related, nonpathogenic species (Gal-Mor et al. 2006).

Pathogenicity islands have DNA G+C contents that are noticeably different from

the rest of the bacterial genome, indicating horizontal transmission from other

bacteria at some point during evolution. S. Typhimurium contains numerous

identified SPI, termed SPI-1, SPI-2, etc. SPI-1 and SPI-2 are of particular rele-

vance for pathogenesis, since mutations in these genes impair the bacteria’s

ability to induce infection in their host by encoding specialized secretion systems

(Hansen-Wester and Hensel 2001)

The pathogenicity of S. Typhimurium is contingent on specialized machinery

called a type III secretion system (T3SS). Effectively, these are molecular syringes

used to deliver virulence proteins, called effectors, directly into the host cells where

they ultimately manipulate the cellular functions and facilitate the progression of

the infection (Galan 2001; Galan and Wolf-Watz 2006). S. Typhimurium possesses

two distinct virulence-associated T3SS encoded within SPI-1 and SPI-2. Each of

the T3SS is used to translocate a unique set of effectors during different phases of

the infection in order to manipulate various host pathways (reviewed in Hansen-

Wester and Hensel 2001; Hensel 2004). Both T3SS are essential for bacterial

virulence, each at different stages of the infection process (Lucas and Lee 2000;

Marcus et al. 2000).

3.1 Salmonella Pathogenicity Island 1 (SPI-1)

SPI-1 is present in all serovars of both S. Enterica and S. bongori (Ochman and

Groisman 1995) and has been shown to be important for the intestinal phase of

Salmonella infections, whether they progress to a systemic disease or inflammatory

diarrhea (Darwin and Miller 1999; Wallis and Galyov 2000). It has been hypothe-

sized that acquisition of SPI-1 allowed Salmonella to become an enteric pathogen

(Hensel 2004). SPI-1 mutants are attenuated for oral but not intraperitoneal

(systemic) infections in the murine typhoid model (Galan and Curtiss 1989), and

display attenuated enteropathogenicity in bovine ileal loops (Zhang et al. 2003a).

SPI-1 appears to be important mostly for the initial steps of active Salmonella
invasion of epithelial cells following oral infection, as well as the consequent

inflammatory cascade characteristic of intestinal salmonellosis.

The SPI-1 consists of a 40-kb DNA region encoding T3SS structural, effector,

and regulatory proteins (Hansen-Wester and Hensel 2001). The T3SS encoded

by SPI-1 is regulated in a particularly complex fashion, and responds to several

environmental and physiological signals, which are integrated to control the secre-

tion of the effector proteins, both within the SPI-1-encoded region and outside

this region (Altier 2005; Ellermeier and Slauch 2007; Jones 2005). The majority of

SPI-1 genes are expressed under conditions that resemble the intestinal environment
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and are repressed once Salmonella colonizes an intracellular compartment. These

genes are controlled by five regulators encoded within the SPI-1 region, called

HilA, HilC, HilD, InvF, and SprB (Darwin and Miller 1999; Eichelberg and Galan

1999; Rakeman et al. 1999; Schechter et al. 1999). Of these regulators, HilA plays a

central role, and a deletion of hilA was shown to be phenotypically similar to a

deletion of the entire SPI-1 locus (Ellermeier et al. 2005). SPI-1 regulators can also

regulate SPI-2 genes. For example, HilA binds and represses the promoter of ssaH
(Thijs et al. 2007), a SPI-2 encoded gene, and HilD binds and activates the promoter

of the ssrAB operon (Bustamante et al. 2008), the main regulator of SPI-2 genes.

The two-component system PhoP/Q also plays a major role in SPI-1 and also SPI-2

regulation. PhoPQ regulates genes in response to extracellular cation levels (Garcia

Vescovi et al. 1996). When the cation concentration is low, PhoQ activates the

regulator PhoP by phosphorylation. A low cation environment exists in macro-

phages, where PhoP activates genes required for survival in macrophages, such as

SPI-2-encoded genes (Alpuche Aranda et al. 1992). On the other hand, PhoP has

also been shown to repress invasion genes encoded by SPI-1, playing a dual role in

Salmonella virulence (Bajaj et al. 1996; Behlau and Miller 1993; Pegues et al. 1995).

SPI-1 effectors influence a variety of host cell functions such as cytoskeletal

rearrangements (e.g., ruffling) that mediate bacterial uptake by epithelial cells

(Hansen-Wester and Hensel 2001), tight-junction disruption macrophage apoptosis

(Boyle et al. 2006; Monack et al. 2000; Monack et al. 1996), and neutrophil

recruitment (McCormick et al. 1993; Wall et al. 2007) (Table 1). Many SPI-1

effectors appear to promote PMNs migration or fluid accumulation in the bovine

gastroenteritis model, possibly by inducing cytokine secretion themselves or by

attracting host cells that increase cytokine production (Wallis and Galyov 2000).

Their role after bacterial invasion has been a focus of study (Brawn et al. 2007;

Giacomodonato et al. 2007). Some SPI-1 secreted effectors like SopB, SopD

and SopE2 are present in a wide variety of Salmonella serotypes, indicating a

major role of these proteins in SPI-1-dependent virulence (Mirold et al. 2001).

Recently, SopB, SopD, SopE2, and SipA have also been shown to be synthesized

by the bacteria during the final phase of murine infection, arguing that these

effectors might have additional roles in the post-invasion stages of the disease

(Giacomodonato et al. 2007). The expression of these proteins was detected in the

MLNs and spleens of infected mice several days after inoculation; however, their

function at late stages of infection remains to be determined.

3.2 Salmonella Pathogenicity Island 2 (SPI-2)

SPI-2 is present in S. enterica but absent in S. bongori, and its acquisition is thought
to be a key step in the evolution of Salmonella as a systemic and intracellular

pathogen (Hensel 2004). SPI-2 mutants are severely attenuated for virulence in the

mouse typhoid model and fail to proliferate in internal organs (Hensel 2000). Thus,

SPI-2 is essential for intracellular replication, which is necessary for systemic
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Table 1 Salmonella secreted effectors

Protein Gene

localization

Proposed function Model of

infection

References

AvrA SPI-1 Inhibition of NF-kB
activation; stabilization

of cell permeability and

tight junctions

Murine colitis

model

Collier-Hyams et al.

(2002), Jones et al.

(2008), Liao et al. (2008),

Zhang et al. (2002b)

SipA SPI-1 Invasion; actin

polymeralization;

prevention of filament

disassembly; induction of

membrane ruffles;

induction of late

endosomes redistribution;

SCV localization;

neutrophil recruitment

across the intestinal

epithelium

Bovine and

murine colitis

models

Brawn et al. (2007),

Hapfelmeier et al. (2004),

McGhie et al. (2001),

Perrett and Jepson

(2009), Zhou et al. (1999)

SipB SPI-1 Translocon component;

interaction with caspase-

1; macrophages and DC

apoptosis

Bovine colitis

model

Collazo and Galan (1997),

Hayward et al. (2000),

Hersh et al. (1999), Santos

et al. (2001a), van der

Velden et al. (2003),

Zhang et al. (2002b)

SipC SPI-1 Translocon component;

actin bundling and

nucleation

Murine colitis

model

Chang et al. (2007),

Collazo and Galan

(1997), Hayward and

Koronakis (1999)

SlrP Chromosome

(SPI-1/SPI-

2 effector)

Peyer’s patch

colonization; inhibition

of antigen presentation

Murine typhoid

model and

Bovine colitis

model

Halici et al. (2008), Tsolis

et al. (1999), Zhang et al.

(2002b)

SopA Chromosome

(SPI-1

effector)

Invasion; fluid

accumulation; leukocytes

migration

Bovine colitis

model

Raffatellu et al. (2005b),

Wood et al. (2000), Zhang

et al. (2002a, 2006)

SopB SPI-5 (SPI-1

effector)

Invasion; increase host

inflammatory response;

fluid secretion;

upregulation of iNOS

production; actin

regulation; disruption of

tight junctions; lysosome

trafficking; SCV

positioning; anti-

apopototic activity

Bovine colitis

model

Drecktrah et al. (2005,

2006), Halici et al.

(2008), Hayward and

Koronakis (2002), Jones

et al. (1998), Knodler

et al. (2005), Raffatellu

et al. (2005b), Zhang

et al. (2002b)

SopD Chromosome

(SPI-1

effector)

Invasion; host cell

membrane manipulation;

virulence in systemic

infections

Bovine colitis

model and

murine typhoid

model

Bakowski et al. (2007),

Jiang et al. (2004),

Raffatellu et al. (2005a),

Zhang et al. (2002b)

SopE Phage (SPI-1

effector)

Invasion; actin

regulation, nuclear

Murine colitis

model

Boyle et al. (2006),

Hapfelmeier et al. (2004),

Hardt et al. (1998),

(continued)
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Table 1 (continued)

Protein Gene

localization

Proposed function Model of

infection

References

responses; disruption of

tight-junctions

Hayward and Koronakis

(2002), Patel and Galan

(2006), Raffatellu et al.

(2005b)

SopE2 Phage

remnant (SPI-

1 effector)

Invasion; colitis;

pathogenesis of diarrhea;

regulation of IL-

8 production;

upregulation of

macrophages iNOS; actin

regulation; disruption of

tight-junctions

Bovine and

murine colitis

models

Boyle et al. (2006),

Cherayil et al. (2000),

Hapfelmeier et al. (2004),

Hayward and Koronakis

(2002), Huang et al.

(2004), Raffatellu et al.

2005b, Wallis and

Galyov (2000), Zhang

et al. (2002a)

SptP SPI-1 Disruption of actin

cytoskeleton; inhibition

of MAP kinase trough

Raf-1

Macrophage cell

line

Fu and Galan (1999), Lin

et al. (2003), Murli et al.

(2001), Zhang et al.

(2002b)

SspH1 Gifsy-3

prophage

(SPI-1/ SPI-

2 effector)

Downregulation of NF-k
B-dependent gene

expression

Bovine colitis

model

Miao et al. (1999), Zhang

et al. (2002b)

SteA Chromosome

(SPI-1

effector)

Virulence Murine typhoid

model

Geddes et al. (2005)

SifA Chromosome

(SPI-

2 effector)

Sif formation; SCV

integrity and positioning;

Salmonella replication;

mimic host Rab GTPases;

host membrane

tubulation; LAMP-

2 recruitment to SCV and

Sifs; inhibition of antigen

presentation

Murine typhoid

model

Alto et al. (2006), Beuzon

et al. (2000), Boucrot

et al. (2003, 2005), Brawn

et al. (2007), Halici et al.

(2008), Ohlson et al.

(2008), Roark and Haldar

(2008), Stein et al. (1996)

SifB Chromosome

(SPI-

2 effector)

Localize to Sifs and SCV Epithelial and

macrophage cell

lines

Freeman et al. (2003)

SseF SPI-2 Sif formation; SCV

positioning; protection

against macrophage

oxidation

Murine typhoid

model

Abrahams et al. (2006),

Deiwick et al. (2006),

Hensel et al. (1998),

Kuhle and Hensel (2002),

Suvarnapunya and Stein

(2005)

SseG SPI-2 Sif formation; SCV

positioning; protection

against macrophage

oxidation

Murine typhoid

model

Hensel et al. (1998),

Kuhle and Hensel (2002),

Salcedo and Holden

(2003), Suvarnapunya

and Stein (2005)

SseJ Phage (SPI-

2 effector)

Cholesterol esterification;

intracellular bacterial

Murine typhoid

model

Lawley et al. (2006),

Lossi et al. (2008),

(continued)
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Table 1 (continued)

Protein Gene

localization

Proposed function Model of

infection

References

survival; membrane

dynamics

Nawabi et al. (2008),

Ohlson et al. (2005),

Ruiz-Albert et al. (2002)

SseI Gifsy-

2 prophage

(SPI-

2 effector)

Phagocyte motility Murine typhoid

model

Lawley et al. (2006),

Worley et al. (2006)

SseK1 Chromosome

(SPI-

2 effector)

No virulence effect Murine typhoid

model

Kujat Choy et al. (2004)

SseK2 Chromosome

(SPI-

2 effector)

Virulence in long-term

systemic infections

Murine typhoid

model

Kujat Choy et al. (2004),

Lawley et al. (2006)

SseL Chromosome

(SPI-

2 effector)

Suppression of NF-kB
activation; delayed

cytotoxic effect on

macrophages; virulence

Murine typhoid

model

Coombes et al. (2007),

Le Negrate et al. (2008),

Rytkonen et al. (2007)

SopD2 Chromosome

(SPI-

2 effector)

Sif formation; virulence;

inhibition of antigen

presentation

Murine typhoid

model

Brumell et al. (2003),

Halici et al. (2008), Jiang

et al. (2004), Lawley et al.

(2006)

SpiC SPI-2 Translocation; vesicular

trafficking; flagellar

regulation; activation of

MAPK pathway in

macrophages;

suppression of cytokine

signaling 3 in

macrophages

Murine typhoid

model

Freeman et al. (2002),

Knodler and Steele-

Mortimer (2005),

Uchiya and Nikai (2005,

2008)

PipB SPI-5 Targeted to Sifs; cecal

colonization in chicks;

fluid secretion and

inflammation

Chicks and

bovine colitis

model

Knodler and Steele-

Mortimer (2005),

Knodler et al. (2003),

Morgan et al. (2004),

Wood et al. (1998)

PipB2 Chromosome

(SPI-

2 effector)

Sif formation; inhibition

of antigen presentation;

virulence; kinesin-1

recruitment to SCV

Murine typhoid

model

Halici et al. (2008),

Henry et al. (2006),

Knodler and Steele-

Mortimer (2005),

Knodler et al. (2003)

SspH2 Phage (SPI-

2 effector)

Virulence, actin

polymeralization;

inhibition of antigen

presentation

Bovine colitis

model

Halici et al. (2008),

Miao et al. (1999, 2003)

GogB Gifsy-1

prophage

(SPI-1 / SPI-

2 effector)

Unknown ND Coombes et al. (2005b)

ND Not determined
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disease (Hensel et al. 1995, 1998; Shea et al. 1996). Specific defects attributed to

SPI-2 mutants are a reduced ability to survive in macrophages (Hensel et al. 1998)

perhaps due to a failure to form the Salmonella-containing vacuole (SCV). This

vacuole is thought to be a unique intracellular niche in which Salmonella survives

and replicates (Holden 2002). SPI-2-mediated secretion impairs trafficking of the

oxidase-containing vesicles (Vazquez-Torres and Fang 2001b; Vazquez-Torres et al.

2000b, 2001) and iNOS to the SCV (Chakravortty et al. 2002). These are important

mediators of the oxidative and nitrosative burst, thereby enhancing the survival of

Salmonella within macrophages. SPI-2 also inhibits antigen presentation and T cell

activation by DCs (Bueno et al. 2005; Cheminay et al. 2005; Tobar et al. 2006).

Thus, SPI-2 allows Salmonella to avoid intracellular killing by both the innate and

the adaptive immune system.

More recently, it has been shown that SPI-2 also plays an important role in the

intestinal phase of Salmonella infection in mice and in colitis in the streptomycin-

pretreated mouse model (Coburn et al. 2005; Coombes et al. 2005a; Hapfelmeier

et al. 2004; Kuhle and Hensel 2004), indicating that it is involved in both typhoid

and gastroenteritis.

SPI-2 is a 40-kb locus composed of two distinct regions which are though to have

been acquired as independent events (Hensel et al. 1999). The larger region encodes

for the major virulent factors including genes for the T3SS apparatus, regulation,

chaperones, and effectors. The two-component regulatory system SsrAB is respon-

sible for the regulation of SPI-2 genes and is the only transcriptional regulator

encoded within SPI-2 that activates the expression of SPI-2 genes and other genes

encoding T3SS effectors located outside SPI-2 (Shea et al. 1996; reviewed in Kuhle

and Hensel 2004). Nutritional limitation seems to be sensed by the ssrAB system

based on the composition of the minimal media that turns on SPI-2 expression

in vitro, and should be encountered when the bacteria is intracellular. As mentioned

before, PhoP/Q and also OmpR/Z (another global regulatory system) play a role in

the regulation of SPI-2 genes (Deiwick et al. 1999; Lee et al. 2000).

Proteins that are transported by the SPI-2 T3SS apparatus can be divided into

translocon and effector proteins. SseBCD are involved in translocation of SPI-

2 effector proteins into the host cells (Kuhle and Hensel 2002; Nikolaus et al. 2001).

Evidence suggests that SseA acts as a chaperone for SseB and SseD (Coombes et al.

2003; Zurawski and Stein 2003).

To date, several effector proteins that are secreted through the SPI-2 T3SS have

been identified (Table 1); most of them are encoded outside the SPI-2 region. Some

of these proteins contain a conserved N-terminal secretion domain that it is unique

to SPI-2 effector proteins (Brumell et al. 2003; Miao and Miller 2000; Miao et al.

1999). The function and host cell target of the majority of these effectors remain to

be discovered.

One of the best-characterized SPI-2 effectors is SifA, which is required for

Salmonella-induced filaments (Sifs) formation (Stein et al. 1996). These filaments

are specialized LAMP1-rich tubulovesicular structures of unknown function that

extend along microtubules from the SCV. SifA is also essential for SCV integrity

and Salmonella replication (Beuzon 2000). Bacteria lacking SifA have detrimental
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motoraccumulation, which triggers abnormal SCV migration toward the cell pe-

riphery (Boucrot et al. 2005). SifA might also have the ability to mimic host Rab

GTPases, by acquiring a similar eukaryotic membrane-targeting motif (Alto et al.

2006; Boucrot et al. 2003).

Recently, another SPI-2 effector, SseL, was shown to modulate host inflamma-

tory response in vivo. Its expression was shown to suppress NF-kB activation of

downstream IkBa kinases and to impair IkBa ubiquitination and degradation. Mice

infected with an sseL mutant showed a stronger inflammatory response, associated

with increased production of NF-kB-dependent cytokines (Le Negrate et al. 2008).
Another recent study demonstrated that SseJ has serine-dependent phospholipase A

and cholesterol acyltransferase activities that seem to be increased in the presence

of unknown eukaryotic factors (Lossi et al. 2008). SseJ was recently demonstrated

to esterify cholesterol, which is present in high levels in SCV (Nawabi et al. 2008).

An sseJmutant is attenuated for virulence, suggesting that SseJ activity is important

for intracellular bacteria survival.

Little is known about other SPIs. For example, SPI-3 encodes a high affinity

Mg2+ uptake system that is thought to be important for Salmonella survival in the

SCV (Blanc-Potard and Groisman 1997). SPI-4 encodes a nonfimbrial adhesin

important for bacterial adherence to the apical surface of polarized cells (Gerlach

et al. 2007; Wong et al. 1998). SPI-5 encodes effector proteins that are secreted by

SPI-1 and SPI-2 T3SS (Hong and Miller 1998; Knodler et al. 2002; Wood et al.

1998), SPI-6 encodes fimbrial operons (Folkesson et al. 2002) and SPI-9 encodes a

type I secretion system (Hensel 2004). Another island called SGI-1 (Salmonella
genomic island I), found in multidrug-resistant S. Typhimurium strains, encodes for

antibiotic resistance genes, such as tetracycline, ampicillin, chloramphenicol, strep-

tomycin, and sulfonamides (Boyd et al. 2001), indicating a wide ability to acquire

resistance genes.

4 Host Response to Salmonella Infection: Resistance/

Susceptibility Genes

Susceptibility to S. Typhimurium in mice is determined by virulence factors

expressed by bacteria as well as by the host genetics (Roy and Malo 2002).

Additional experimental factors can influence the severity of the disease. These

include route of infection, dose, immunological status, and stress of the host.

The host response to systemic S. Typhimurium infection is complex and under

the influence of many genes. Several of the genes conferring susceptibility have

been identified, and some of the most informative examples of mouse susceptibility

are presented in Table 2. These are grouped according to “phases” that correspond

to immunological events described by Mastroeni (2002). Compiling studies using

sublethal infections, Mastroeni divided the course of the Salmonella infection in the
mouse typhoid model into four distinct phases (Fig. 1). The first phase involves

rapid clearance of the bacteria from the bloodstream (within 2 h after oral
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Table 2 Key host genes conferring susceptibility in the murine typhoid model

Phases of

Salmonella
infection

Gene targeted mice Deficiency function/mechanism

of action

References

Phase 2 gp91phox�/� mice

(NADPH oxidase)

Dramatic exacerbation of

Salmonella infection in the early

phase of infection by inability to

produce ROS

Mastroeni et al. (2000)

Natural mutation in

Nramp1 mice: BALB/

c, C57BL/6, DBA/1

Nramp1�/� mice

Fail in control of bacterial growth

in the exponential phase, although

controversial, it is believed that

Nramp1 alters the intravacuolar

environment of the SCV

Govoni et al. (1996),

Roy and Malo (2002),

Vidal et al. (1995b)

Phase 3 Natural mutation in

TLR4 mice: C3H/HeJ

Deficiency in induction of a rapid

inflammatory response, decreased

expression of TNF-a and IL-6

Bernheiden et al.

(2001), Lembo et al.

(2003)lbp�/� mice (LPS

protein binding)

Cd14�/� mice

Tlr4�/� mice

Nos�/� mice

(inducible nitric oxide

synthase)

Mice can control early Salmonella
replication, but are unable to

suppress bacterial growth later and

die earlier than control mice,

deficient in generation of RNS

Mastroeni et al. (2000,

2002), Vazquez-Torres

et al. (2000a)

Tnfr55�/� (TNF

deficient mice)

Fail to localize NADPH oxidase-

containing vesicles to SCV leading

to a impaired bacterial killing

Vazquez-Torres et al.

(2001)

Ifngr�/� (IFNg
deficient mice)

Fail in the formation of focal

granulomas during Salmonella
infection. Inability to activate

phagocytes and to influence

antibody class switching.

Bao et al. (2000)

Il-12a�/� and Il12b�/

� (IL-12 deficient

mice)

Deficiency in the production of

IFNg and increase production of

IL-10 and IL-4

Eckmann and Kagnoff

(2001)

Neutralizing

antibodies to IL-12

IL-6
�/�

mice Lower levels of IgA against

Salmonella LPS

Dunstan et al. (1996)

Phase 4 cd28�/� mice and Impaired T cells activation and

reduced T-B cells activation,

higher bacterial load and deficient

in Salmonella clearance

tcr-b�/� mice (lacking

mature T a/b T cells)

xid mice (impaired B

cell activation and

function) and

Defect in antibody production and

deficiency in establishment of

protective long-lasting Th1 type T

cell immunity to SalmonellaIgh-6�/� (B cell

deficient mice)
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infection). After clearance from the circulation, Salmonella reach intracellular

locations within macrophages, polymorphonuclear cells, and DCs in the spleen

and liver. Although phagocytes kill some of the bacteria in the next few hours, the

surviving bacteria undergo exponential replication, initiating the second phase. The

growth rate in this phase is determined by the size of the innoculum and the innate

resistance of the host. The natural resistance-associated macrophage protein 1

(Nramp1), plays a critical role in controlling Salmonella replication in this phase

(Benjamin et al. 1990). Other mediators such as reactive oxygen species (ROS) are

also crucial for Salmonella killing in this phase. The third phase is initiated by the
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2hr 1-2 weeks2hr-1 week >2 weeks –

clearance

chronic
   carrier**

Innate Inflamatory Response
(cytokines, PRR)

Innate Immunity

Adaptive Immunity
(antigen specific)

High levels of bacterial proliferation and death of the host

Infection

0

0

2 3

41

relapse*

HOST
GENES

Nramp1
ROS

TNF-α, IFN-γ, IL-12 etc.
RNS
TLR4

T cells (CD4, CD8)
APCs (CD28, MCH-II)
B cells (antibodies)

Complement
ROS

SALMONELLA
GENES

SPI-1
(InvA, SipB, SipA)

SPI-2
(SifA, SseF SseG)

SPI-2
(SseK2, SifA, PipB2, SlrP)

SPI-2 
( SseL, SpiC)

Fig. 1 The four phases of Salmonella infection. Blue lines show the course of sublethal infection

with S. typhimurium in WT immunocompetent mice. Red lines show the course of the infection

when the immunological mechanisms required to control bacterial replication at points 0–4 are

absent. The Nramp1 gene and reactive oxygen species (ROS) influence the growth rate from 1 to 2.

Their absence causes a shift of the curve and uncontrolled bacterial replication and death of the

host occur. Point 2 corresponds to the initiation of cytokine response. Deficiency of innate immune

responses in the points 2 and 3 determines failure to suppress bacterial growth. The infection

progresses with fatal consequences for the host. Point 4 is the initiation of the adaptive immune

responses. This response is required to clear the infection and prevent relapse (*) or the establish-

ment of a chronic carrier state (**). Examples of important host genes known to be involved in the

different phases of Salmonella infection are shown (green box). Examples of Salmonella effectors
thought to be involved in the different phases of Salmonella infection are shown in red box.

Reactive nitrogen species (RNS), toll-like receptors (TLR) and antigen-presenting cells (APC).

Modified from Mastroeni (2002)
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activation of the innate immune system, and is characterized by the production of

several proinflammatory cytokines such as tumor necrosis factor-a (TNF-a), inter-
feron-g (IFN-g), and interleukin-12 (IL-12). These arise as a consequence of

signaling by pattern recognition receptors (PRR) on the immune cells that recog-

nize pathogen-associated molecular patterns (PAMPS) such as LPS. The action of

these cytokines is essential for activation of immune cells, which in turn produce

antimicrobial mediators such as reactive nitrogen species (RNS), which suppress

bacterial growth (plateau phase). This phase is also important for activation of the

adaptive immune response. The fourth phase, or resolution of the infection, is a

function of the adaptive immune system. The key players in this phase are antigen-

presenting cells (APC), B, and T cells and the activation of the antigen-specific

humoral immune response (antibody production), as well as T-helper and cytotoxic

T-lymphocyte responses. If these responses are not efficient, a relapse or carrier

state can develop in the host (Mastroeni 2002).

5 Contribution of Host Phagocytic Cells and Their Role

in S. typhimurium Infection

Identifying the function of different cell populations involved in Salmonella infec-

tion is of critical importance to understanding both innate and adaptive immunity

induced in response to infection. Unfortunately, deciphering the role of distinct cell

populations in vivo is complicated. This is particularly true for phagocytes, since

they share expression of many of the same surface molecules and play overlapping

roles in directing immune responses (Wick 2007). Neutrophils, macrophages, and

DCs are recruited early after Salmonella infection (Rydstrom and Wick 2007). In

addition, it has been demonstrated that these cell populations undergo a rapid

expansion/recruitment to the PP and spleens of orally-infected mice (Wick 2004).

5.1 Macrophages and Their Role in S. Typhimurium Infection

A key event in Salmonella pathogenesis is its ability to survive inside macrophages

(Garcia-del Portillo 2001; Monack et al. 2004a). As described earlier, Salmonella
uses SPI-2 T3SS-secreted virulence proteins to perturb intracellular trafficking

of the SCV. SPI-2 mutants are unable to replicate within macrophages and are

attenuated in mice. Paradoxically, macrophages are professional phagocytes,

recognized as sentinels and first line of defense against bacterial infections

(Rosenberger and Finlay 2003). Their importance in resistance to Salmonella is

evidenced by the fact that depletion of macrophages with silica results in an

increase in bacterial load and a substantial decrease in the LD50 (O’Brien et al.

1979). The delicate interplay between Salmonella and macrophages has been, and
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still is, a fruitful area of research and has broadened our current knowledge of

Salmonella molecular pathogenesis and served as a model to understand intra-

cellular parasitism (Linehan and Holden 2003).

Most of the studies of the interaction between Salmonella and macrophages

have relied on immortalized cell lines or primary macrophages cultured ex vivo.

Excellent reviews have detailed the macrophage microbicidal activity against

Salmonella (Vazquez-Torres et al. 2008) and, in particular, the bactericidal activity
of phagocyte oxidase (phox) and iNOS (reviewed in (Vazquez-Torres and Fang

2001a)). These enzymes catalyze the synthesis of highly reactive compounds,

commonly known as oxidative burst (ROS and RNS), that are crucial to mount

an efficient innate immune response to Salmonella. Macrophages deficient in either

of these enzymes have an impaired ability to control Salmonella replication,

and phox and iNOS-deficient mice are unable to control bacterial replication

and succumb to Salmonella infection (Mastroeni et al. 2000; Shiloh et al. 1999;

Vazquez-Torres et al. 2000a). Interestingly, Salmonella is able to withstand the

damaging effects of the above described compounds by inhibiting the localization

of ROS and RNS to the SCV; this is contingent to the expression of SPI-2 genes by

Salmonella (Vazquez-Torres and Fang 2001b).

Salmonella induce macrophage apoptosis, and this process is dependent on

expression of the SPI-1 effector, SipB, by Salmonella and caspase1/interleukin

1-converting enzyme by macrophages (Monack et al. 1996). The interaction results

in rapid macrophage death and release of proinflammatory cytokine IL-1b. Due to
its proinflammatory nature, this process has been termed “pyroptosis” (Fink and

Cookson 2007). The physiological relevance of this pathway is unclear and contro-

versial. In vivo studies using caspase 1�/� mice suggest that Salmonella activation
of caspase 1 and IL-1b release is beneficial for the pathogen, since it facilitates

Salmonella colonization of the PP and translocation across the intestinal barrier to

systemic sites. Caspase 1�/� mice require 1,000-fold higher bacterial doses than

wild-type (WT) to induce systemic disease (Monack et al. 2000). In contrast, recent

in vivo studies contradict the previous results demonstrating that caspase 1�/� mice

are more susceptible to Salmonella infection and suggesting that activation of

caspase 1 and IL-1b release is protective to the host (Lara-Tejero et al. 2006). In

these later studies, the expression of Nramp1 (the main genetic determinant of

susceptibility/resistance to S. Typhimurium in mice, see below) was carefully

assessed. Caspase 1�/� mice showed higher bacterial numbers in internal organs

and died earlier thanWTmice, independent of the Nramp1 status (Lara-Tejero et al.

2006). Thus, more studies are needed to clarify and define the specific role of

caspase 1 and their contribution during Salmonella infection.

5.2 Neutrophils and Their Role in S. Typhimurium Infection

The protective role of neutrophils during Salmonella infection is controversial.

While some studies suggest that these cells type are important in defense against
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Salmonella (Conlan 1996, 1997), others propose that Salmonella uses this cell

type for survival and replication (Geddes et al. 2007). To investigate the role of

neutrophils in systemic salmonellosis, Conlan et al. (1997) infected WT mice or

mice depleted of neutrophils (neutropenic) with S. Typhimurium. They found that

neutrophils are critical components of the murine host defense against systemic

infection. Neutropenic mice have an exacerbated bacterial replication in the spleen

and liver, and dissemination of the bacteria to lung and kidney (Conlan 1997). It has

been suggested that the actions of neutrophils against Salmonella in the liver is

primarily by containment of the bacteria within infectious foci, since high num-

bers of extracellular bacteria were detected in the liver sinusoids of neutropenic

mice, whereas no free-growing microcolonies of Salmonella were found in livers of

control mice (Conlan 1996). Later, another group reported that neutrophils have a

supportive, but not essential, function in controlling systemic murine salmonellosis.

This group found that neutropenic mice showed increased bacterial burden at day

1 postinfection (Cheminay et al. 2004). However, despite a high infiltration of

neutrophils to the sites of infection, a complete clearance of the bacteria was not

observed. In contrast to the above reports, a recent study suggests that Salmonella
specifically targets splenic neutrophils for intracellular survival and replication with

viable bacteria recovered from these cells (Geddes et al. 2007). More extensive

research is needed in order to clarify the role of neutrophils and its role in

salmonellosis.

It has been proposed that neutrophils have distinct roles during the two different

diseases caused by Salmonella: typhoid fever and gastroenteritis. Rapid neutrophil

recruitment to the gut is observed during gastroenteritis. Hence, it has been sug-

gested that the microbicidal action of neutrophils may restrict Salmonella to the gut
and prevent dissemination of the bacteria to internal organs. In contrast, mild

neutrophil recruitment to the gut is observed in the murine typhoid model, and

without the protective functions of neutrophils, the bacteria are able to spread

rapidly to internal organs causing systemic disease (Cheminay et al. 2004). Now,

with the development of a mouse model to study enterocolitis, it will be important

to analyze the contribution of neutrophils and their function in gastroenteritis using

this model.

5.3 Dendritic Cells and Their Role in S. Typhimurium Infection

DCs are professional antigen-presenting cells that play a crucial role in linking

innate and adaptive immunity. Immature DCs are situated in peripheral and

lymphoid tissues where they are highly phagocytic and able to recognize microbes

via PRR on their surface. Following phagocytosis, DCs mature and migrate to the

lymph nodes and spleen where they present antigenic peptides to other cells of the

immune system (Banchereau and Steinman 1998; Wick 2004). These properties of

DCs are important in orchestrating an efficient immune response.
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Recent in vivo studies have shown that DCs are among the first cells that

Salmonella encounter when infecting their murine hosts through the oral route

(Niess et al. 2005). DCs were shown to sample Salmonella in the gut by sending

processes between intestinal epithelial cells. These processes maintain the integrity

of the epithelial tight junctions and require the expression of the chemokine receptor

CX3CR1. Mice lacking CX3CR1 display enhanced susceptibility to S. typhimurium

compared to their WT counterparts, most likely as a consequence of impaired

bacterial sampling by DCs. This highlights the importance of DCs in bacterial

sampling in the lamina propria and their antibacterial defense during infections

(Niess et al. 2005).

In vivo DCs harbor Salmonella after oral, intraperitoneal, or intravenous infec-

tions (Wick 2003). Furthermore, all three of the major splenic DCs subsets, as

well as DCs from Peyer’s patches, can take up Salmonella. These in vivo studies

reported an increase in the absolute number of splenic DCs after Salmonella
infection. In addition, these cells have the capacity to produce TNF-a, IL-12, and
IL-6 after Salmonella infection (Valdez et al. 2008), and this likely results in the

activation of resident immune cells and/or the recruitment of other inflammatory

cells to the site of infection, thus facilitating host defense against S. Typhimurium

(Lalmanach and Lantier 1999).

In addition to their role in innate immunity to microbes and their products,

DCs are the most potent antigen-presenting cells (Steinman and Banchereau 2007).

This, together with the observation that DCs internalize Salmonella, has prompted

researchers to study the role of DCs as antigen-presenting cells during Salmonella
infection. Indeed, it has been demonstrated that DCs can process and present

Salmonella antigens to specific CD4+ and CD8+ T cells in vitro (Svensson et al.

1997; Yrlid and Wick 2002). In vivo, DCs expressing CCR6+ in the Peyer’s patches
are rapidly recruited and activate Salmonella specific T cells following oral infec-

tion. These data suggest that DCs likely initiate the adaptive immune response by

stimulating Salmonella-specific T cells during infection. At the same time, these

properties of DCs make them attractive targets for intracellular pathogens like

Salmonella, since successful colonization of their hosts may require inhibition of

DC function. In fact, recent reports have suggested that Salmonella inhibits antigen
presentation and expression of MHCII by DCs (Mitchell et al. 2004; Tobar et al.

2004). This effect was dependent on the induction of inducible NO synthase (iNOS)

by DCs and on the function of SPI-2 by Salmonella (Cheminay et al. 2005).

However, the molecular mechanisms by which intracellular Salmonella interfere

with DC functions remain to be elucidated.

6 Nramp1 and its Role in Salmonellosis

Many host-resistance factors against S. Typhimurium have been identified (see

Table 2) (Roy and Malo 2002). Arguably, the most important innate resistance

protein in mouse is Nramp1, later renamed Slc11A1 (Vidal et al. 1995a). The
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susceptibility of several common inbred mouse strains to S. Typhimurium is the

result of a single mutation of amino acid 169 of the Nramp1 protein from Gly to Asp

(G169D), leading to impaired folding and loss of the mature protein in these mice

(Vidal et al. 1993). Susceptible mouse strains succumb to a low dose of S.
Typhimurium due to uncontrolled bacterial replication, whereas resistant mice

control the infection and are thus able to survive. Interestingly, even resistant

mouse strains are often unable to completely clear Salmonella, and these mice,

like some human patients, become chronic carriers of Salmonella (Monack et al.

2004b).

Nramp1 is a highly hydrophobic protein and possesses 12 transmembrane

domains with divalent cation transporter functions (Jabado et al. 2000). Nramp1

is expressed in the spleen and liver, particularly in the membrane fraction of cells of

monocyte/macrophage and granulocyte lineages (Govoni et al. 1997). In addition,

we recently characterized the expression of Nramp1 in the lamina propria of the

small and large intestine and found that Nramp1 is expressed in a subset of DCs

(Valdez et al. 2008). The subcellular localization of Nramp1 was analyzed by

double immunofluorescence studies (Gruenheid et al. 1997), which showed that it

is recruited to the late endocytic compartment after phagocytosis of latex beads in

macrophages. Confocal microscopy in DCs revealed colocalization with Lamp1+

compartments (Stober et al. 2007). Granule fractionation experiments showed that

Nramp1 is present in the membrane of gelatinase-positive tertiary granules in

neutrophils (Canonne-Hergaux et al. 2002). Together, these experiments suggest

that Nramp1 is recruited to endocytic compartments placing it in close proximity to

intracellular pathogens.

The mechanisms by which Nramp1 controls the replication of intracellular

pathogens at the subcellular level remains controversial (Wyllie et al. 2002). It

was proposed that Nramp1 affects the intra-phagosomal microbial replication by

modulating the divalent cation content of this organelle, either by depriving the

intra-phagosomal bacteria of the availability of Fe2+, Mn2+ and Zn2+, which are

critical for intra-phagosomal bacterium to grow and mount an effective antioxidant

defense, or by increasing the intra-phagosomal Fe2+ to generate highly reactive and

extremely damaging hydroxyl radicals that kill the bacteria (Forbes and Gros 2001).

However, the direction of transport of substrate cations remains controversial.

Nramp1 also appears to have an impact on SCV maturation. In Nramp1-deficient

macrophages, SCVs fail to acquire M6PR (mannose 6 phosphate receptor), a

protein known to regulate the delivery of a subset of lysosomal enzymes for the

trans-Golgi network to the prelysosomal compartment, thereby facilitating bacterial

killing (Cuellar-Mata et al. 2002). Thus, Nramp1 appears to alter the trafficking

patterns of bacteria-containing vacuoles and, as a result, the vacuoles are no longer

sequestered from lysosomal trafficking and subject to the full battery of bactericidal

agents present in these vacuoles.

In addition to the direct role proposed for Nramp1 in restricting intracellular

microbial replication, an indirect function for Nramp1 in priming the immune

system has been suggested. Many studies have shown that Nramp1 facilitates innate

host defense mechanisms in macrophages such as the production of reactive oxygen
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and nitrogen species as well as proinflammatory cytokines (Blackwell et al. 2000).

Unfortunately, the influence of Nramp1 on cytokine production in response to

Salmonella is poorly documented, and many of the studies performed are contra-

dictory. For example, analysis of cytokine secretion in an in vivo study suggested

that the kinetics and magnitude of the Salmonella-induced cytokine response are

similar between nramp1+/+ and nramp1�/�mice following infection with S.Dublin
(Eckmann et al. 1996). In contrast, other studies have suggested that Nramp1 has a

potent effect on cytokine responses. For instance, macrophages from nramp1�/�

mice have a diminished capacity to induce the secretion of IFN-g by NK cells in

response to infection with S. Typhimurium. Lower and slower expression of IFN-g
was observed in nramp1�/� mice compared to congenic nramp1+/+ counterparts

after S. abortusovis infection (Lalmanach et al. 2001). In summary, there are

conflicting data on the role of Nramp1 in guiding cytokine-dependent immune

responses. This may be due, in part, to the failure of the previous studies to be

consistent in the use of a model of infection, bacterial doses, and strains of bacteria.

Therefore, the exact role of Nramp1 in cytokine-mediated responses to Salmonella
pathogenesis and disease resistance remains unknown.

Historically, the study of murine typhoid fever has relied on the systemic

administration of bacteria either by intraperitoneal or intravenous injection in

naturally susceptible mice such like C57BL/6 and BalbC (Nramp1 deficient)

(Vidal et al. 2008). This was likely due to the fact that most studies were measuring

the outcome of the use of different bacterial mutants or were focused on under-

standing the pathogenic events in systemic organs where Salmonella replicate, such
as in the spleen and the liver (Kaufmann et al. 2001; Richter-Dahlfors et al. 1997;

Salcedo et al. 2001). Additionally, factors like the synchronicity of the infections

were also important for comparing host parameters between mice in these studies,

and this is much more easily achieved via systemic injection rather than via the

natural oral route of infection. An unintended shortcoming of these studies was the

lack of attention to oral infection, which most faithfully recreates the naturally

occurring infections in humans. This has limited our knowledge of the initial stages

of Salmonella infection and their interactions with the host. Consequently, very

little attention has been paid to the dynamics of oral Salmonella infection in the

context of host resistance factors such as Nramp1. A previous publication has

shown that Nramp1 is not expressed in the gastrointestinal tract (Vidal et al.

1993). However, in these earlier studies, the expression was analyzed only at the

mRNA level using Northern blot assays. Recently, it has been demonstrated that

Nramp1 is expressed in the lamina propria of the small and large intestine and this

expression modulates the host immune response with important consequences for

Salmonella replication (Valdez et al. 2008, 2009).

The role of Nramp1 following oral infection with S. Typhimurium was recently

analyzed in the two mouse models previously described. Using the typhoid model,

it has been shown that Nramp1 is differentially expressed in distinct subsets of DCs

in the lamina propria of the small intestine. Interestingly, Nramp1 expression is

higher in a subset of DCs known as “inflammatory” DCs (CD103- DCs), whereas

very low expression was detected as “tolerogenic” DCs (CD103+ DCs)
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(Valdez et al. 2008). Nramp1-positive DCs showed elevated expression of proin-

flammatory cytokines in response to S. Typhimurium infection compared to the

Nramp1-negative DCs. These findings suggest that Nramp1 affects the inflamma-

tory status of the host, and it has been proposed that much of the impact of Nramp1

on the severity and outcome of S. Typhimurium infection is determined by its

influence on the speed and intensity of the host inflammatory response.

The above hypothesis was tested using the Salmonella colitis model (Valdez

et al. 2009), since pretreatment with streptomycin prior to Salmonella infection

facilitates bacterial colonization of the lower bowel and induces severe inflamma-

tion in these organs (Barthel et al. 2003). Indeed, it has been shown that Nramp1

acts rapidly by inducing an accelerated inflammatory response in the gut mucosa

creating an antibacterial environment and limiting spread of S. Typhimurium to

systemic sites. Nramp1-accelerated inflammatory responses were characterized by:

(1) a higher induction of proinflammatory cytokines and chemokines, (2) greater

recruitment of PMN cells, and (3) containment of Salmonella to the mucosal sites

early after the infection. As with the typhoid model described above, most of the

previous studies on inflammatory responses to Salmonella in the murine colitis

model have relied on the use of Nramp1-deficient mouse strains (Coburn et al.

2005; Hapfelmeier et al. 2005, 2008; Stecher et al. 2005). It is important to note that

inflammation is an extremely complex and intricate process involving the coordi-

nated interactions of a wide variety of specialized cell types and soluble mediators.

Given that (1) Nramp1 plays a key role in generating a more effective immune

response in colitis, and (2) the fact that there is no evidence of widespread

deficiency of Nramp1 in humans, we would argue that evaluation of colitis in

nramp1+/+ mouse strains is more likely to give insights into human gastroenteritis

and associated diarrhea than the use of Nramp1-deficient mouse models.

Figure 2 represents a schematic model of how Nramp1-dependent cytokine

secretion leads to protection against Salmonella in the gut. In Nramp1-expressing

mice, following Salmonella infection, chemokines and cytokines are rapidly re-

leased, but accumulate only after a substantial lag in Nramp1-negative mice. The

Nramp1-mediated accelerated cytokine response results in a more rapid phagocyte:

neutrophil, macrophage, and DCs activation and influx into the lamina propria and

lumen of the gut. Nramp1-deficient mice fail to induce this rapid response thus

providing the pathogen with sufficient time to replicate and breach the epithelial

layer and compromise the ability to contain the infection.

7 Conclusions and Perspectives

It is apparent that the interactions between Salmonella and its host are complex, and

that the outcome of disease is mediated by these interactions. Salmonella encode

two T3SS that provide an arsenal of effectors to manipulate various components of

host cell biology. Although we have identified many of these effectors, the bio-

logical function for most of them remain undefined. Cognate host binding partners
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have been found for only a few of these effectors. Moreover, their effects are

presumably host cell type-specific, and will probably vary in epithelial cells,

macrophages, neutrophils, DCs, etc.

nramp1+/+ nramp1-/-

Uninfected

progression of
the infection

No Inflammation

Low Inflammation
Low cyto/chemokines

Uncontrolloled Inflammation

High Inflammation
High cyto/chemokines

 No Inflammation

High Inflammation

IFNγ
TNFα
MIP1α

Dendritic cells MacrophagesNeutrophils S. Typhimurium

Early after
S. Typhimurium 
infection

Mice control the infection Mice cannot control the infection
 and succumb

IFNγ
TNFα
MIP1α

Fig. 2 A model of temporal response by nramp1 +/+ and nramp1 �/� mice following S. typhi-
murium infection in the gut. In nramp1+/+mice, within hours following S. typhimurium infection,

resident cells respond by secreting higher levels of cytokines and chemokines thus activating and

attracting new phagocytic cells to the site of infection and creating an antimicrobial environment.

In contrast, Nramp1-deficient cells exhibit a delayed response, allowing bacterial replication and

penetration to internal layers of the gut. As the infection progresses, both nramp1 +/+ and nramp1
�/� mice have responded to the bacteria eliminating them from the deeper layers of the mucosa

and sequestered them in the lumen of the gut (although the bacteria have now colonized peripheral

tissues). In Nramp1+/+ mice, bacterial numbers are substantially lower in both the lumen of the gut

and in peripheral sites, likely due to the more rapid, nramp1-mediated cytokine response. Nramp1

deficient mice develop an uncontrolled inflammation. This is independent of Nramp1 and likely a

compensatory mechanism subsequent to the high proliferation of S. typhimurium.
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The development of the gastroenteritis murine model has been a major advance

for studying infectious colitis. It has also emphasized the key and underappreciated

role that microbiota play in determining the outcome of an infection. Previously,

most host “resistance” was attributed directly to host genes like the Nramp1 system

in mice. However, it now appears that the microbiota also contribute to this

resistance, either directly or indirectly. By studying Nramp1, it is now appreciated

that host-resistance factors can prevent the infection process by a variety of mech-

anisms at a variety of stages of infection.

Ultimately, the goal of researchers studying these pathogens is to fully under-

stand the mechanisms they use to cause disease, and to use that information to

design effective ways of preventing and/or treating infections. Because of the

complexity of disease, studying any particular virulence factor or host defense

mechanism in isolation can provide some information, but is probably lacking in

establishing the full picture. Instead, a more “systems biology” approach needs to

be applied to these studies. This includes studying many effectors at once or in

concert in several host cell types in relevant in vivo settings. It also includes

studying many host cell types in concert as they interface with the disease process.

To complicate these studies even further, the role of the resident microbiota also

needs to be incorporated into them. Although a difficult task, scientific tools are

rapidly being developed for such studies, and their application will provide a much

more sophisticated understanding of how Salmonella cause disease.
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Abstract The human gastric pathogen Helicobacter pylori is able to establish an

infection in a hostile environment with virtually no competitors. For this purpose, it

has elaborated a set of colonization factors which facilitate both survival under acid

exposure, motility and orientation in a highly viscous mucus layer, and adherence to

epithelial surfaces. A more intimate interaction with gastric epithelia provides the

basis to influence gene expression profiles as well as morphological transitions via

signaling cascades or via direct activities of virulence factors. H. pylori is also one

of the most genetically diverse of organisms, and variations are not only found in
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outer membrane adhesins, but also in two major virulence factors, the VacA

cytotoxin and the cag pathogenicity island. Both factors are able to target different

cell types and different interaction partners to induce a wide range of possible

cellular effects. Despite the fact that H. pylori elicits a strong inflammatory re-

sponse, the immune system fails to clear the infection, suggesting that immune eva-

sion strategies are used. The mechanisms for immune evasion include the induction

of a strongly polarized immune response, a modulation of phagocytosis and neu-

trophil function, and an inhibition of lymphocyte proliferation. Prolonged inflam-

mation and direct action of bacterial factors may lead to impairment of gland

function and eventually to carcinogenesis.

Abbreviations

DC-SIGN Dendritic cell-specific ICAM-3-grabbing nonintegrin

EGFR Epidermal growth factor receptor

FAK Focal adhesion kinase

GSK Glycogen synthase kinase

IL Interleukin

iNOS Inducible nitric oxide synthase

JNK Jun N-terminal kinase

Leb Lewis b

LPS Lipopolysaccharide

MALT Mucosa-associated lymphoid tissue

MMP Matrix metalloproteinase

NFAT Nuclear factor of activated T cells

PAI Pathogenicity island

PI3K Phosphatidylinositol-3-kinase

PKC Protein kinase C

PMA Phorbol-myristate-acetate

PMN Polymorphonuclear cell

ROS Reactive oxygen species

sLex Sialyl-Lewis x

T4SS Type IV secretion system

TLR Toll-like receptor

1 Introduction

Since its discovery 25 years ago (Warren and Marshall 1983),H. pylori has gained
much attention as one of the most widespread pathogenic bacteria, although its

prevalence is decreasing in Western countries and the disappearance of the
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organism may be imminent (Genta 2002). A hallmark of H. pylori infection of the
human stomach is the presence of a chronic active gastritis, generally character-

ized by both chronic (infiltration of lymphocytes) and active (infiltration of

neutrophils) forms of inflammation. It is now well established that H. pylori is
not only associated with gastritis, but also with peptic ulcer disease, gastric

adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma.

H. pylori is not only of major importance as a bacterial inducer of gastric car-

cinogenesis, but it also represents a paradigmatic system to study the chronicity of

bacterial infections and the associated immune modulation capabilities (Monack

et al. 2004). Despite the enormous number of studies addressing H. pylori infec-
tions, the transmission process and the molecular mechanisms of pathogenesis are

still poorly understood.

One further aspect of H. pylori biology is its unusually high genetic variability

(Suerbaum and Josenhans 2007), which, together with its restriction to the human

host, has made it possible to trace human migrations and differences in ethnic

groups by the sequence diversity found in their H. pylori strains (Linz et al. 2007).
This review describes the molecular mechanisms that endow H. pylori with the

ability to colonize its unusual niche in the human body and to build up a delicate

balance between the induction of an immune response which is favorable for the

bacteria, and an immune suppression or immune modulation required for persis-

tence. Furthermore, the current view on the molecular principles that govern

disease development and progression will be summarized. For more comprehensive

reviews onH. pylorimicrobiology, immune evasion, and pathogenesis, the reader is

referred to several recent reviews (Amieva and El-Omar 2008; Atherton 2006;

Kusters et al. 2006; Wilson and Crabtree 2007).

2 Colonization of the Gastric Mucosa

2.1 Acid resistance and Urease as an Essential
Colonization Factor

Because of its acidic lumen with considerable concentrations of proteases, the

human stomach is a rather hostile environment. Acid resistance is therefore a

major colonization requirement. The most important factor of H. pylori involved
in acid resistance is its highly active and abundant urease (Stingl and De Reuse

2005). Consequently, early studies using gnotobiotic piglets have shown the

strict requirement of urease as a colonization factor (Eaton et al. 1991). H. pylori
urease is a heterooligomer of six UreA and six UreB subunits (Ha et al. 2001),

which needs to be activated by incorporation of Ni2+ ions (catalyzed by the

accessory proteins UreEFGH). Another nickel-containing protein, the hydroge-

nase HydABC, is required for utilization of hydrogen as an energy source and

also seems to play a role in full colonization competence in mice (Olson and
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Maier 2002). These two protein complexes are connected, since the hydrogenase

accessory proteins HypA and HypB are also necessary for urease activity (Benoit

and Maier 2008), and urease and its accessory proteins are part of an interaction

network with the Ni/Fe hydrogenase HydABC (Stingl et al. 2008). Accordingly,

the uptake of nickel ions as well as their storage and possibly excretion are also

important for H. pylori. Nickel uptake across the outer membrane is achieved by a

TonB/ExbB/ExbD system with FrpB4 as a surface receptor (Schauer et al. 2007),

whereas transport across the inner membrane involves the nickel permease NixA

and possibly other transporters (reviewed in Belzer et al. 2007). One further

accessory protein, UreI, was shown to act as a pH-regulated urea channel, allow-

ing more rapid influx of urea under acidic conditions (Weeks et al. 2000).

Interestingly, urease and the UreI channel are also required for persistent coloni-

zation, suggesting that urease fulfills additional functions apart from survival in

the gastric lumen. One possibility is that urease is required for survival during

occasional acid shocks, but it may also mediate different functions at the epithe-

lial surface, such as binding to receptors (Beswick et al. 2006a; Fan et al. 2000)

or a disruption of epithelial tight junctions (Lytton et al. 2005; Wroblewski

et al. 2008).

2.2 Motility and Chemotaxis

Although urease is the most abundant protein in H. pylori, the bacteria survive for
only short time periods in the gastric lumen due to a loss of motility (Schreiber

et al. 2005). Therefore, successful colonization depends on a rapid orientation and

motility of H. pylori towards the mucus layer covering the gastric epithelium,

where pH values are more neutral (Fig. 1a). In a Mongolian gerbil model of

gastric colonization (Schreiber et al. 2004), H. pylori cells are mostly found

swimming freely in the mucus layer in a narrow range up to about 25mm away

from the epithelial surface, with only a minor percentage adherent to the epithelial

surface. Due to the short survival time in the gastric lumen and the highly viscous

mucus, flagellar motility is essential for initial colonization (Eaton et al. 1996;

Kavermann et al. 2003; Ottemann and Löwenthal 2002). H. pylori flagella are

composed of two distinct flagellins, FlaA and FlaB, and are enveloped by a

membranous sheath containing the lipoprotein HpaA, which is thought to protect

the flagella from disassembly (reviewed in Rust et al. 2008). The flagellins

are posttranslationally modified by glycosylation involving pseudaminic acid

(Schirm et al. 2003).

To reside in the mucus layer, a constant sensing of pH gradients and a

corresponding chemotactic behavior is required. Although H. pylori has been

shown to display positive chemotaxis to urea and bicarbonate in vitro, the major

chemotactic signal in the mucus layer seems to be a pH gradient (Schreiber et al.

2004). A defect in the chemotaxis response regulator CheY and in a methyl-

accepting chemotaxis receptor that is involved in pH taxis (TlpB) leads to a loss
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of colonization and/or proinflammatory ability in Mongolian gerbils and in mice

(Croxen et al. 2006; Foynes et al. 2000; McGee et al. 2005; Williams et al.

2007). Exposure of H. pylori to acidic conditions results in upregulation of a

number of genes, including those required for acid resistance (reviewed in Pflock

et al. 2006).

Fig. 1 Colonization of the gastric mucosa byH. pylori and induction of inflammation. (a) Overview

of the colonization processs. In the gastric lumen, where H. pylori is attacked by proteases and acid,
the bacteria escape into the protective mucus layer, interact with gastric epithelial cells and upon

opening of cellular junctions may penetrate into the submucosa. (b, c) Contact of H. pylori with
cellular receptors (Leb, sLex) using bacterial adhesins (BabA, SabA, OipA), or the Cag type IV

secretion system (Cag-T4SS) induces IL-8 release. Cellular junctions are opened due to the action of

urease, secreted VacA and injected CagA. Granulocytes, monocytes, dendritic cells and T cells are

recruited and secrete a number of cytokines and chemokines, resulting in the typical gastritis.

H. pylori is also able to invade gastric epithelial cells or to move into deeper tissues
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Further factors that are essential for gastric colonization have been identified

using a signature tag mutagenesis approach in the Mongolian gerbil model (Kaver-

mann et al. 2003) and a transposon mutagenesis approach with microarray-based

mutant tracking in a mouse model (Baldwin et al. 2007). The results of these two

screens showed a considerable overlap and identified, among others, amino acid

transporters, a collagenase, and components of type IV secretion systems as essen-

tial factors in vivo. Moreover, genes that are transcribed in vivo have been deter-

mined by bacterial RNA isolation from human gastric tissue (Graham et al. 2002) or

from Mongolian gerbils (Scott et al. 2007), and a recombination-based in vivo

expression technology approach has been applied in a mouse model (Castillo et al.

2008). Although a large number of in vivo-induced genes were identified in these

screens, there is only little overlap between them. Induced genes included outer

membrane proteins, a vacA paralogue, mob genes, cag pathogenicity island genes,

and genes that may be involved in horizontal gene transfer. Interestingly, the

mobilization gene cluster mobABD was found to be essential for mouse coloniza-

tion (Castillo et al. 2008).

2.3 Adherence to Epithelial Cells and Associated Signal
Transduction Events

Although most H. pylori cells are found in the mucus layer covering the gastric

epithelium (Schreiber et al. 2004), a fraction always adheres to the epithelial

surface, and some bacteria are even found in deeper tissues or in intracellular

locations (Necchi et al. 2007; Dubois and Borén 2007) (Fig. 1a). Adherence is

mediated by outer membrane proteins of the Hop family (Yamaoka and Alm 2008).

One important adhesin is the blood group antigen-binding adhesin BabA (also

called HopS), which mediates binding to the Lewis B (Leb) receptor, a difucosy-

lated derivative of the H1 antigen defining blood group 0; however, binding to H1 is

also possible (Ilver et al. 1998) (Fig. 1c). Leb antigens are not only present at the

epithelial cell surface, but also on mucus glycoproteins such as MUC5AC, which

means that BabA may also mediate binding inside the mucus layer (Lindén et al.

2002), with pH-dependent binding patterns (Lindén et al. 2004). Apart from Leb

and H1, BabA proteins from many, but not all, strains are also able to bind to the

blood group antigens A and B and their difucosylated derivatives A-Leb and B-Leb.

These strains have been termed generalists, whereas strains with BabA proteins that

bind to H1 and Leb only, were termed specialists (Aspholm-Hurtig et al. 2004).

Specialist strains may have evolved as an adaptation to human populations with a

predominance of blood group 0, such as South American Indians. A second outer

membrane protein involved in adhesion is the sialyl-Lewis x (sLex)-binding adhe-

sin SabA (also called HopP), which may also bind to sLea and other sialylated

glycans (Aspholm et al. 2006; Mahdavi et al. 2002) (Fig. 1b). Since prolonged

gastric inflammation results in replacement of non-sialylated with sialylated

Lewis antigens, a phenomenon which depends on upregulation of the b3GnT5
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glycosyltransferase by H. pylori in a cag pathogenicity island-dependent manner

(Marcos et al. 2008), adhesion via SabA probably replaces adhesion via BabA in

inflamed tissues (Mahdavi et al. 2002). Dependent on the presence or absence of

fucosylated blood group antigens on mucosal surfaces (determined by the so-called

secretor status), H. pylori infection density and sialylation upon inflammation are

higher or lower, respectively (Lindén et al. 2008). Although the functions of BabA

and SabA are well understood, it should be noted that not all H. pylori strains
produce functional BabA and SabA proteins. Moreover, BabA may be subject to

antigenic variation by recombination between the babA and babB or babC gene loci

(Solnick et al. 2004), or to phase variation due to slipped-strand mispairing up-

stream of the babA gene (Bäckström et al. 2004). Likewise, expression of the sabA
gene can be switched on or off by phase variation at CT dinucleotide repeats in the

5’ region of the gene (Mahdavi et al. 2002; Sheu et al. 2006).

Further outer membrane proteins that were shown to be involved in adhesion

are AlpA (HopC), AlpB (HopB), and HopZ (Odenbreit 2005; Odenbreit et al.

1999; Peck et al. 1999), although their cellular receptors are unknown. In contrast

to BabA and SabA, AlpA and AlpB are not variable and are expressed in all

H. pylori strains, whereas HopZ is subject to phase variation as well. The outer

inflammatory protein OipA may also be involved in adherence (Yamaoka et al.

2002), but is not considered as a major adhesin (Fig. 1c). Instead, binding of

H. pylori to epithelial cells via OipA results in activation of signaling cascades,

such as a STAT1-IRF1 pathway, leading to an interferon-stimulated responsive

element-like binding site in the interleukin-8 (IL-8) promoter (Yamaoka et al.

2004), and a p38/AP-1/CRE pathway leading to IL-6 induction (Lu et al. 2005).

Although the oipA gene is also predicted to be regulated by slipped-strand

mispairing, the on/off status of oipA expression seems to be more stable than

that of babA or sabA (Yamaoka et al. 2006). Infection with OipA-positive strains

is correlated with duodenal ulcer and gastric cancer (Yamaoka et al. 2006). For a

more detailed discussion of the association of H. pylori outer membrane proteins

and development of gastric diseases, the reader is referred to a recent review

(Yamaoka and Alm 2008).

Apart from outer membrane proteins, adhesion may also be mediated by LPS.

Dependent on the phase-variable expression of different fucosyltransferases,

H. pylori LPS may contain Lex or Ley epitopes (reviewed in Moran 2008), and

populations with different Lewis antigen patterns can be found in the same host

(Nilsson et al. 2006). The presence of Lex epitopes was not only reported to

modulate the Th1/Th2 balance by interaction with the dendritic cell receptor

DC-SIGN (Bergman et al. 2004) (see below), but also to mediate binding at

epithelial cell surfaces to galectin-3, a b-galactoside-binding lectin upregulated

by H. pylori in a CagA-dependent manner (Edwards et al. 2000; Fowler et al.

2006). However, the impact of these interactions for H. pylori infections is unclear
(Mahdavi et al. 2003). Furthermore, LPS has also been shown to be involved in

binding of H. pylori cells to the trefoil factor protein TFF1 present in the mucus

layer (Clyne et al. 2004; Reeves et al. 2008). In addition to Lewis antigens, other

host cell receptors may play a role in pathogenesis. It has been shown that the
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complement regulator decay-accelerating factor acts as a receptor for H. pylori,
and that it is upregulated in epithelial cells by the Cag type IV secretion system in a

p38-dependent manner (O’Brien et al. 2006, 2008).

2.4 Genetic Variation and Horizontal Gene Transfer

A striking feature of H. pylori is its enormous genetic diversity (Suerbaum and

Josenhans 2007). The associated genetic drift during coevolution with its human

host has not only allowed to trace human migrations (Falush et al. 2003; Linz et al.

2007), but genetic and phenotypic variation is understood as an important factor

driving host adaptation. For example, it has been shown that a family of cysteine-

rich, Sel1-like repeat-containing proteins has undergone positive selection to adapt

to distinct human populations (Ogura et al. 2007). Genetic variability is caused both

by elevated mutation rates and by high recombination frequencies (Falush et al.

2001; Suerbaum et al. 1998). Elevated mutation rates may be due to the lack of

some DNA repair systems, such as the mismatch repair and base excision repair

systems, but also to phase-variable generation of mutator phenotypes (Kang and

Blaser 2006).

Horizontal gene transfer between H. pylori cells is mainly mediated by natural

transformation competence, but may also involve conjugative transfer events

(reviewed in Fischer et al. 2008). In contrast to other naturally competent bacteria,

H. pylori accomplishes DNA uptake from the extracellular space by a specialized

type IV secretion apparatus, the ComB apparatus (Hofreuter et al. 2001).

Incorporation of newly acquired DNA further requires an effective recombination

system. Interestingly, colonization defects have been found for mutants in compe-

tence, recombination, DNA repair, and mobilization genes, even at early stages

(Baldwin et al. 2007; Castillo et al. 2008). Although recombination seems to play

an important role for H. pylori colonization and for maintenance of its genetic

diversity, analysis of the published genome sequences indicated that merely parts of

the RecBCD and RecFOR complexes, which are typically required for producing

single-stranded DNA at sites of damage and for loading RecA onto these sites, are

encoded in the genome (Fischer et al. 2001b). However, recent studies have shown

that an AddAB-like helicase-nuclease pair fulfills the role of RecBCD (Amundsen

et al. 2008), and that H. pylori produces a distant orthologue of RecO, which may

take part in a RecOR-like complex (Marsin et al. 2008).

It is not clear at present what the role of genetic variability in the infection

process might be. It has been shown that intragenomic recombination is used for

antigenic variation of outer membrane proteins (Israel et al. 2001; Solnick et al.

2004). Phase variation of genes involved in LPS glycosylation has also been

observed during persistent colonization (Nilsson et al. 2006). Such variations

have been proposed to allow the bacteria to colonize different niches in the

stomach, which may even change in chronic infections (Kang and Blaser 2006;

Suerbaum and Josenhans 2007).
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3 Pathogenicity Factors Associated with Disease

3.1 Virulent H. pylori Strains and Disruption of Gastric
Epithelial Layers

Although the majority of colonized patients develop only a mild and mostly

asymptomatic gastritis, H. pylori clearly is not a commensal organism. This is

partly due to host factors such as polymorphisms in interleukin-1 gene clusters, but

also to bacterial pathogenicity factors (reviewed in Amieva and El-Omar 2008).

Major bacterial factors that are associated with the development of diseases,

including ulcers or gastric adenocarcinoma, are certain genotypes of the vacA
gene encoding the vacuolating cytotoxin (vacA s1/m1 or vacA i1), and the presence

of the cytotoxin-associated gene pathogenicity island (cag-PAI; see below).

However, these genotypes are not independent and they are furthermore associated

with the presence of an active babA gene, the “on” state of the inflammatory outer

membrane protein gene oipA and certain alleles of the hopQ outer membrane

protein gene (Cao and Cover 2002; Gerhard et al. 1999; Yamaoka et al. 2002).

Thus, it is difficult to estimate the individual contributions of these virulence factors

from epidemiological studies. In the Mongolian gerbil animal model, cagA and

oipA are clearly associated with development of gastric atrophy and therefore

gastric cancer (Franco et al. 2008; Ogura et al. 2000; Rieder et al. 2005), and in

mouse models, active VacA is associated with development of ulcers (Fujikawa

et al. 2003; Telford et al. 1994). Interestingly, both VacA and the cag-PAI seem to

be restricted to H. pylori and are absent even in the very close relative

H. acinonychis (Eppinger et al. 2006), suggesting that they provide a selective

advantage only in humans. Furthermore, the cag-PAI is unstable in H. pylorimouse

infection models, and VacA does not interact with murine T lymphocytes to induce

immunomodulation (see below).

Once colonization of the gastric mucus layer including adherence to gastric

epithelia has been established, a subset of infections will progress towards disease

manifestations. One event that may be considered as a pathogenic process is the

disruption of the epithelial barrier (Wessler and Backert 2008), with urease being a

possible virulence determinant. It has been shown that production of ammonium by

urease mediates processing of occludin, a tight junction complex protein, and

disruption of tight junctions in polarized Caco-2 cell monolayers (Lytton et al.

2005). This effect was also observed for gastric epithelial cells and in mice and

could be linked to a urease-dependent activation of myosin light-chain kinase

(Fedwick et al. 2005; Wroblewski et al. 2008). Furthermore, it has been reported

that surface-associated or secreted VacA may cause the loosening of cellular tight

junctions (Papini et al. 1998). Finally, translocation of CagA into epithelial cells has

also been implicated in disruption of the epithelial barrier and epithelial cell

polarity (see below) (Amieva et al. 2003; Saadat et al. 2007). The process of

opening tight or adherens junctions might further be supported by recruitment of
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inflammatory cells, such as neutrophils or dendritic cells, to the submucosa, as has

been described in the Shigella infection model (Sansonetti et al. 1999). These

changes in barrier function might not only be a means to transport essential

nutrients and ions such as Fe3+, or Ni2+ to the nutrient-poor habitat in the gastric

mucin layer, but they might also enable the transport of bacterial virulence factors,

such as VacA, or even whole bacteria into intracellular locations or the gastric

submucosa (Dubois and Borén 2007; Necchi et al. 2007).

3.2 The Vacuolating Cytotoxin VacA and its Activities
on Epithelial Cells

3.2.1 Structural Organization of VacA

The vacuolating cytotoxin VacA was one of the first H. pylori virulence factors to
be described (Cover and Blaser 1992; Leunk et al. 1988). It was initially reported to

induce formation of characteristic vacuoles in epithelial cell lines, but today, VacA

is considered as a multifunctional toxin, displaying numerous activities on different

cell types (reviewed in Cover and Blanke 2005). It is produced as a protoxin,

secreted by an autotransporter mechanism (Fischer et al. 2001a), and processed to

yield a mature 88 kDa protein, which is released to the extracellular environment

(Cover and Blaser 1992) or may stay associated with the bacterial surface (Ilver

et al. 2004) (Fig. 1c). Secreted VacA can be further processed into N-terminal and

C-terminal fragments (termed p33 and p55, respectively). The p33 fragment con-

tains a hydrophobic region close to the N-terminus, which is required for a channel-

forming activity in cell membranes, and also for vacuole formation. The p55

domain is involved in oligomerization and binding to target cells (Reyrat et al.

1999). In contrast to typical bacterial AB toxins, the p33 and p55 domains are not

independent of each other.

Although the vacA gene seems to be present in all H. pylori strains, different
sequence types have evolved that correspond to VacA proteins with different

activity and target cell specificity. These sequence variations include the 5’ region

encoding the N-terminal signal sequence (s1 and s2 alleles), a mid-region in the

p55 domain (m1 and m2 alleles), and an intermediate region (i1 and i2 alleles)

(Atherton et al. 1995; Rhead et al. 2007). Similar to the situation with the cag
pathogenicity island, there is a correlation between vacA genotypes and the risk of

developing disease, such that s1 and i1 vacA alleles are associated with the de-

velopment of peptic ulcers (Basso et al. 2008). In mouse models, VacA is not

strictly required for colonization, but contributes to a selective advantage in

co-infection experiments (Salama et al. 2001). Oral administration of VacA results

in gastric mucosal injury and inflammation in mice, although high amounts of toxin

are required (Fujikawa et al. 2003; Telford et al. 1994). In Mongolian gerbils, vacA
mutants showed only a weak phenotype with respect to the development of ulcers

(Ogura et al. 2000).
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3.2.2 Binding to target cells and effects of VacA intoxication

Purified VacA forms flower-shaped oligomeric structures that have to be disas-

sembled by acid or alkaline treatment for full activity. Integration into cell mem-

branes and channel formation involves a renewed hexamerization (Czajkowsky

et al. 1999). The recent determination of the crystal structure of the p55 domain and

docking into a cryo-electron microscopy map of the oligomer provided a structural

model for oligomerization and defined differences between m1- and m2-type VacA

molecules at the protein surface (Gangwer et al. 2007). These variants are thought

to confer binding specificity to different host cells, but receptors that are responsible

for these differences have not been defined. Although VacA is able to insert into

artificial membranes, specific interactions with protein receptors are considered

as important (Sewald et al. 2008a). It has been demonstrated in vitro that VacA

binds to glycosphingolipids (Roche et al. 2007), and particularly sphingomyelin

was shown to be involved in binding of VacA to cell membranes (Gupta et al.

2008). As protein receptors, the receptor protein tyrosine phosphatases RPTPa and

RPTPb are used on epithelial cells (Yahiro et al. 1999, 2003), and the b2 integrin

subunit CD18 on T lymphocytes (Sewald et al. 2008b; see below). VacA binding

induces signal transduction cascades, including the p38/ATF-2 signaling pathway,

leading to enhanced expression of cyclooxygenase-2 in epithelial cells, and of

IL-8 in monocytes (Hisatsune et al. 2008; Nakayama et al. 2004), and a tyrosine

phosphorylation of the G-protein-coupled receptor interactor Git-1 (Fujikawa et al.

2003). Furthermore, PI3K-dependent phosphorylation of Akt and glycogen

synthase kinase-3b leads to b-catenin translocation to the nucleus (Nakayama

et al. 2008). For these effects, the channel-forming activity and uptake of VacA

are not required.

VacA oligomerization at the cell surface leads to receptor clustering in lipid rafts

and subsequent internalization. Although the p55 domain is able to bind to the cell

surface, it is not internalized due to its inability to oligomerize (McClain et al.

2000). Uptake of VacA is clathrin-independent, but dependent on Cdc42 and

the actin cytoskeleton, and is routed to late endosomal compartments (Gauthier

et al. 2007; Gauthier et al. 2005). It is not clear whether VacA remains associated

with late endosomes, or whether a part of the molecule enters the target cell

cytoplasm. Since intracellularly-produced VacA exerts most effects similar to

exogenously added VacA, a cytoplasmic activity might be considered. The

vacuolation that was originally described as the main VacA activity results

presumably from the anion-selective channel activity of VacA in late endocytic

compartments (Genisset et al. 2007). At lower doses, VacA also leads to traffick-

ing defects associated with late endocytic compartments, such as inhibition of

vesicle trafficking to lysosomes (Satin et al. 1997) or an inhibition of antigen

presentation in B cells (Molinari et al. 1998). VacA has also been reported to

target mitochondria and to induce apoptosis by cytochrome c release, but these

effects require rather high concentrations of VacA (Galmiche et al. 2000; Will-

hite and Blanke 2004). In addition to the intracellular effects of VacA, transe-

pithelial electric resistance of polarized cell monolayers is reduced by VacA
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(Papini et al. 1998). Furthermore, treatment of isolated gastric glands or cultured

parietal cells with purified VacA led to an inhibition of acid secretion by channel

formation, calcium influx, and calpain-mediated proteolysis of ezrin (Wang

et al. 2008). However, a contribution of VacA to a calcium influx into gastric

epithelial cells after H. pylori infection could not be found in another study

(Marlink et al. 2003).

3.3 The Cag Type IV Secretion System as a Mediator of Actin
Rearrangements and a Proinflammatory Response

3.3.1 The cag Pathogenicity Island and Induction of Disease

The designation cag (cytotoxin-associated gene) is derived from the cagA gene

that has been known for many years to be correlated with the development of

more severe disease and also with the presence of an active (genotype s1/m1)

VacA cytotoxin (Akopyants et al. 1998; Censini et al. 1996). The cag pathoge-

nicity island contains roughly 30 genes that encode the CagA protein and a type

IV secretion system (T4SS), which is able to translocate CagA from the bacteria

to several host cells (Asahi et al. 2000; Backert et al. 2000; Odenbreit et al. 2000,

2001; Stein et al. 2000). The percentage of cag-PAI-positive strains varies con-

siderably between different ethnic groups, ranging from complete absence

in certain South African strains to ubiquitous presence in East Asian strains

(Gressmann et al. 2005).

For the cagA gene, variations exist in the 5’ (van Doorn et al. 1999) and the

3’ parts (Yamaoka et al. 1998, 1999), with the latter regions being different

between Western and East Asian strains. The 3’ variable region encodes the

CagA tyrosine phosphorylation motifs (EPIYA motifs), which can be classified

as EPIYA-A, B, C, and D motifs, according to differences in the flanking amino

acids (Hatakeyama 2003). Motif ABC-type CagA molecules occur in Western

and ABD-type CagA molecules in East Asian strains (Higashi et al. 2002a;

Naito et al. 2006) (Fig. 2a). Variations in the 3’ repeat region are associated

with the severity of disease (Argent et al. 2004; Azuma et al. 2004; Yamaoka

et al. 1999). In Western strains, the number of EPIYA-C motifs (mostly ranging

from 1 to 3) is correlated with the risk of intestinal metaplasia and of gastric

cancer (Basso et al. 2008). East Asian strains with more than one EPIYA-D

motif are rare (Argent et al. 2008a), but East Asian-type CagA molecules are

more active (see below).

It is currently unknown what triggers expression of cag-PAI genes in vivo, but

several genes are induced during infection in Rhesus macaques or Mongolian

gerbils (Boonjakuakul et al. 2005; Scott et al. 2007), suggesting that the type IV

secretion system is used by the bacteria not only under conditions of severe damage

in the gastric epithelium.
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Fig. 2 Molecular events elicited by the Cag-T4SS. (a) Schematic representation of the CagA protein

and depiction of functional domains. (b) Model of the Cag type IV secretion apparatus showing the

effector protein CagA, its translocation factors CagF and CagZ, the hexameric ATPases Caga and

Cagb, and some structural components. HP1451 is encoded outside of the cag PAI and interacts

with Caga. A further subassembly of the Cag T4SS is located at the outer membrane consisting of

CagX, CagT and CagM. The extracellular pilus consists of CagC and may be covered by the CagY

and CagL proteins. CagL is interacting with b1 integrin on the host cell surface. (c)H. pylori interacts
with the b1 integrin receptor to inject the CagA protein and peptidoglycan fragments (PG). Secreted

VacA and urease are involved in opening of tight junctions, allowing H. pylori to reach the

basolateral side of the cells to interact with basolaterally located b1 integrins for more efficient

CagA translocation. Injected CagA modulates various signaling cascades and induces actin cyto-

skeletal rearrangements, disruption of tight junctions and loss of cell polarity. In addition, peptido-

glycan, which is translocated in a T4SS-dependent manner, appears to activate the intracellular

receptor Nod1, which activates NF-kB. For more details, see text



3.3.2 Components of the Cag Type IV Secretion Apparatus

and Translocation Mechanism

The Cag T4SS is mostly compared to well-characterized T4SSs, such as the VirB

system of the plant pathogen Agrobacterium tumefaciens, and considered as a

typical T4SS. Nevertheless, many of its essential components are considerably

divergent from their functional homologs in these prototypical systems, or do not

have corresponding counterparts at all (Fischer et al. 2008). A comprehensive

screen identified 14 cag-encoded gene products that are necessary for translocation
of the CagA protein into epithelial cells and for induction of IL-8 secretion, and

three further gene products that have a supportive role, suggesting that they are

components of the secretion apparatus (Fischer et al. 2001c). Four gene products

were found to be essential for CagA translocation only, and therefore considered as

substrate recognition or translocation factors. Despite the lack of pronounced

sequence similarities among most of these gene products, the Cag system seems

to contain functional analogs of all typical T4SS components (Fischer et al. 2008;

Kutter et al. 2008). Notably, CagL has been considered as a pilus adhesin in analogy

to the VirB5 protein of A. tumefaciens, and it has been reported to interact with

integrins as host cell receptors (Backert et al. 2008; Kwok et al. 2007). Additionally,

the Cag T4SS contains essential components without functional counterparts in

other T4SSs. Among these, the CagM protein was shown to assemble, together with

CagX and CagT, in an outer membrane-associated subcomplex with a putative

secretin-like function (Kutter et al. 2008). One further additional factor encoded

outside the cag pathogenicity island, HP1451, is not necessary for the function of

the T4SS, but may modulate the activity of the VirB11-like ATPase Caga (Hare

et al. 2007) (Fig. 2b).

At the bacterial surface, the Cag T4SS system forms unusual sheathed pilus-

like appendages that are likely composed of the major pilus component CagC

(Andrzejewska et al. 2006). One of the sheath components was identified by

immunoelectron microscopy as the secretion apparatus protein CagY (Rohde

et al. 2003). Remarkably, the middle region of CagY consists of a regular array

of up to 74 sequence repeats composed of six different consensus segments. This

region, which is probably the surface-exposed part (Rohde et al. 2003; Tanaka et al.

2003), is rich in cysteine residues and adopts a stable a-helical structure (Delahay
et al. 2008) that is probably subject to antigenic variation (Aras et al. 2003). Further

surface-associated proteins of the Cag type IV secretion apparatus include parts of

the CagT lipoprotein and the CagX protein, which are localized at the base of Cag

surface needles (Rohde et al. 2003; Tanaka et al. 2003), and the CagL protein,

which has been found at the tip of the needles and was reported to interact with

b1 integrins as cellular receptors (Kwok et al. 2007).

Similar to effector proteins of most other T4SSs, CagA has a C-terminal

secretion signal (Fig. 2a); however, its N-terminal region is also required for

translocation (Hohlfeld et al. 2006). Generally, recognition of type IV secretion

substrates is thought to be accomplished by the coupling proteins, cytoplasmic

membrane proteins with ATP-binding capacity that are not required for secretion
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apparatus assembly (Gomis-Rüth et al. 2004). Consistent with this notion, the

coupling protein homologue Cagb is dispensable for IL-8 induction, but required

for CagA translocation (Fischer et al. 2001c). The exact function of Cagb in

the CagA signal sequence recognition process remains unclear. Another cag-
encoded protein, CagF, has been shown to act as a secretion chaperone-like

protein with a recruitment function for CagA to the secretion apparatus (Couturier

et al. 2006; Pattis et al. 2007). The structure of CagZ, another CagA translocation

factor, has been determined (Cendron et al. 2004), but its function is still unclear

(Fig. 2b).

3.3.3 CagA Translocation and Induction of a Proinflammatory Response

The first step of CagA translocation into target cells is interaction of the secretion

apparatus with the host cell surface. The Cag apparatus binds to b1 integrins as

receptors, and CagL has been postulated as a bacterial ligand (Kwok et al. 2007)

(Fig. 2b). Binding of CagL to integrins was reported to result in a fast activation of

Src kinase and tyrosine phosphorylation of focal adhesion kinase (FAK Y397)

(Kwok et al. 2007); however, FAK Y397 phosphorylation and Src activation

seemed to be independent of the cag pathogenicity island, but rather dependent

on OipA in another study (Tabassam et al. 2008b). Binding of the secretion

apparatus to b1 integrins may also induce other signaling cascades, for example

leading to JNK activation (Snider et al. 2008). Initial Src and FAK activation results

in Erk1/2 signaling and is dependent on epidermal growth factor receptor (EGFR)

activation (Tabassam et al. 2008b). EGFR signaling and Erk1/2 activation have also

been reported to be induced by transactivation via different mechanisms (Basu et al.

2008; Beswick and Reyes 2008; Keates et al. 2001). It is presently unclear how

H. pylori, which targets gastric epithelial cells from the apical side, is able to

interact with integrin receptors, which are supposed to be exposed at the basolateral

side of polarized cells. One possibility is that gastric epithelial cells may contain

small amounts of b1 integrins on their apical surfaces (Zuk and Matlin 1996), and

that larger amounts of CagA might be translocated only after opening of cell-cell

junctions and bacterial access to basolateral membranes. The mechanism of CagA

uptake into the host cell is not understood, but it seems to involve detergent-

resistant membrane microdomains (Lai et al. 2008).

CagA is the only effector protein that has been found to be translocated by the

Cag T4SS. However, bacterial peptidoglycan fragments may also be transferred by

the type IV secretion apparatus and subsequently stimulate the intracellular pattern

recognition receptor Nod1, resulting in NF-kB activation and induction of chemo-

kines such as IL-8 (Viala et al. 2004) (Figs. 1b and 2c). Since IL-8 induction and the

proinflammatory response elicited by H. pylori do not only require NF-kB activa-

tion but also involve other signaling pathways (reviewed in Naumann 2005), it is

likely that Nod1 activation is not the only cag-dependent stimulation mechanism.

Translocated CagA proteins of some H. pylori strains are able to enhance IL-8

expression (Brandt et al. 2005), and transfection of epithelial cells with cagA
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expression constructs results in IL-8 induction as well (Kim et al. 2006), but the

induction of IL-8 secretion is basically independent of CagA translocation (Fischer

et al. 2001c). It should also be noted that other bacterial factors, such as the

inflammatory outer membrane protein OipA (Lu et al. 2005; Yamaoka et al.

2004) or the adhesins AlpA and AlpB (Lu et al. 2007), may act synergistically

with the Cag T4SS to stimulate a proinflammatory response. Furthermore, the

gastritis that results from H. pylori infection is not only caused by chemokine

secretion from epithelial cells, but requires chemokine secretion from other cells,

such as T cells (reviewed in Wilson and Crabtree 2007). In mice, the development

of gastritis in response to H. pylori infection is not possible without prior T cell

priming in Peyer’s patches (Nagai et al. 2007).

3.3.4 CagA Interference with Host Cell Functions

Multiple cellular consequences of Cag type IV secretion have been reported and

numerous interaction partners of translocated CagA have been identified (reviewed

in: Backert and Selbach 2008; Bourzac and Guillemin 2005; Hatakeyama 2008).

Some of the phenotypes related to Cag type IV secretion have been observed after

infection of different cancer cell lines with H. pylori strains, and others only after

transfection with cagA-expressing constructs. CagA-independent effects caused by

modulation of different signaling pathways may depend on the cell type used, and

CagA-dependent effects may also be indirect due to the massive impact of translo-

cated CagA on gene expression profiles (El Etr et al. 2004). Thus, the relevance of

the molecular interactions and cellular consequences under in vivo conditions

remains to be determined.

The hallmark of CagA translocation into eucaryotic cells is its tyrosine phos-

phorylation by kinases of the Src family (Selbach et al. 2002; Stein et al. 2002), and,

at later time points, c-Abl kinase (Poppe et al. 2007; Tammer et al. 2007) (Fig. 2c).

Tyrosine phosphorylation of CagA results in dephosphorylation of several cellular

proteins including cortactin, ezrin, and vinculin (Moese et al. 2007; Selbach et al.

2003, 2004), which is probably due to a feedback inactivation of Src kinase

(Selbach et al. 2003; Tsutsumi et al. 2003) (Fig. 2b). Apart from Src and Abl

kinases, CagA has been reported to interact in eucaryotic cells with a number of

other target molecules, with some interactions being dependent on, and others

independent of, CagA tyrosine phosphorylation. As a major interaction partner of

phosphorylated CagA, the tyrosine phosphatase SHP-2 has been identified (Higashi

et al. 2002b). Binding of CagA to SHP-2 requires tyrosine phosphorylation of

EPIYA-D motifs (present in East-Asian strains) or EPIYA-C motifs (with lower

affinity) and their interaction with SH2 domains of SHP-2 (Naito et al. 2006),

leading to an activation of SHP-2 phosphatase activity (Fig. 2c). Activated SHP-2

in cagA-transfected cells induces subsequent dephosphorylation and inactivation of
focal adhesion kinase (Tsutsumi et al. 2006), which contributes to a characteristic

cell elongation of some epithelial cell lines known as the “hummingbird” pheno-

type (Segal et al. 1999). The hummingbird phenotype is thought to represent a lack
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of focal contact disassembly during Cag-induced cell motility (Bourzac et al. 2007).

It requires CagA-dependent activation of Erk1/2 (Higashi et al. 2004) and phos-

phorylation of the vasodilator-stimulated phosphoprotein VASP (Knauer et al.

2008), as well as other signaling pathway modulations, such as activation of Rac1

via adaptor proteins of the Crk family (Suzuki et al. 2005). Crk family proteins have

also been shown to be interaction partners of phosphorylated CagA, and their

deregulation leads to adherens junction protein redistribution and thus contributes

to epithelial cell motility (Suzuki et al. 2005). However, disruption of adherens

junctions upon H. pylori infection may also occur in a CagA-independent way

and involve shedding of E-cadherin (Weydig et al. 2007). Dephosphorylation of

cortactin and vinculin and the concomitant loss of cell-matrix adhesion and redis-

tribution of focal contacts may also contribute to the observed changes in cell

morphology (Moese et al. 2007).

Cellular interaction partners of CagA that do not require its tyrosine phosphory-

lation include the receptor tyrosine kinase c-Met (Churin et al. 2003), the adaptor

molecule Grb2 (Mimuro et al. 2002), the adherens junction protein E-cadherin

(Murata-Kamiya et al. 2007), and the serine/threonine kinase PAR1b/MARK2

(Saadat et al. 2007; Zeaiter et al. 2007). The interactions with c-Met, Grb2, Crk

proteins, and SHP-2 have led to the speculation that CagA may mimic Gab adaptor

proteins (Hatakeyama 2003), and in a transgenic Drosophila model, CagA was

indeed able to partially substitute the Gab homologue Daughter of Sevenless

(Botham et al. 2008). Translocated CagA leads to disruption of epithelial tight-

junctions, which is accompanied by colocalization of CagA with the junction

proteins ZO-1 and JAM, a loss of cell polarity and induction of cell migration

(Amieva et al. 2003; Bagnoli et al. 2005). This was explained by interaction of

CagA with the polarity-associated kinase PAR1b/MARK2 (Saadat et al. 2007;

Zeaiter et al. 2007). This interaction involves a dimerization of CagA via a short

C-terminal sequence motif (Lu et al. 2008; Ren et al. 2006) and inhibits the kinase

activity of PAR1b/MARK2, resulting in its dissociation from the cell membrane

(Saadat et al. 2007). The CagA-PAR1b/MARK2 interaction is also required for

efficient interaction with SHP-2 and for induction of the hummingbird phenotype.

In the Mongolian gerbil model, H. pylori infection was reported to suppress

apoptosis of superficial pit cells via CagA-dependent induction of the antiapoptotic

factor MCL1, thereby contributing to the pit region hyperplasia that is observed in

H. pylori infections. This hyperplasia, in turn, may lead to enhanced bacterial

colonization (Mimuro et al. 2007).

4 Mechanisms of Immune Evasion

Despite the pronounced immune response,H. pylori remains in the stomach mucosa

at high densities for years and decades if not treated by antibiotics, indicating that

the immune response is ineffective. The chronic infection process can be best

explained by the achievement of a delicate balance between stimulation of the

Virulence Mechanisms and Persistence Strategies 145



immune system and survival of the bacteria in a milieu of inflammation. To induce

a certain degree of inflammation seems to be a more general strategy for pathogenic

bacteria in the gut to overcome colonization resistance, as demonstrated for

Salmonella typhimurium and Citrobacter rodentium in the murine model (Stecher

and Hardt 2008). For H. pylori, inflammation and local damage of the epithelial

layer may be a means to get access to nutrients. The orchestrated and coordinated

function ofH. pylori virulence factors might be involved in maintaining the balance

between bacterial survival and minimal damage of the host. However, when this

balance is disturbed, gastric disease may be the consequence, as found in a subset of

infected patients. In the following sections, we will focus on the specific mechani-

sms of immune interference and control by H. pylori virulence factors, allowing

H. pylori to persist for decades in the human stomach.

4.1 The Innate Immune Response and its Subversion
by H. pylori

The probably most important antibacterial property of the stomach is its acidic pH,

so that reaching the gastric mucus layer is essential for survival, as described above.

There, however, H. pylori is confronted with a number of further antibacterial

factors, such as the antimicrobial peptides b-defensin 1 and 2 or the cathelicidin

LL-37 (Frye et al. 2000; Hase et al. 2003) (Fig. 1b). Interestingly, expression of a

set of antimicrobial peptides is actively upregulated in the gastric mucosa, depen-

dent on the presence of the cag-PAI, indicating that a so far unrecognized function

of the cag-PAI might be to induce an antimicrobial host response to increase the

competitive advantage ofH. pylori in the gastric niche (Hornsby et al. 2008). Other,
more general, antibacterial factors include the presence of lactoferrin in the stomach

mucosa, which restricts the availability of extracellular iron (Luqmani et al. 1991),

and surfactant protein D, which is strongly produced on the gastric mucosal surface

and binds selectively to microorganisms to induce aggregation and phagocytosis

(Murray et al. 2002). Furthermore, certain O-glycans present in the mucus over-

laying deeper regions of the human gastric mucosa exhibit antimicrobial activity

against H. pylori, inhibiting biosynthesis of cholesteryl glucosides, which are

required for bacterial growth (Kawakubo et al. 2004). Considering the high preva-

lence of H. pylori in the human stomach, the bacteria seem to be well prepared to

overcome these innate defense mechanisms of the host.

4.1.1 Interaction of H. pylori with Pattern Recognition Receptors

Toll-like receptors (TLRs) represent a group of innate immune system receptors

that recognize microbial- or pathogen-associated molecular patterns (MAMPs/

PAMPs), and in general play an important role in initiating an innate immune
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response against viral or bacterial pathogens. Stimulation of TLRs results in proin-

flammatory signaling, mostly through NF-kB activation (Takeda et al. 2003).

Immunohistochemistry and confocal laser scanning microscopy revealed that epi-

thelial cells in the antrum and the corpus of the human stomach produce TLR4,

TLR5, and TLR9 (Schmausser et al. 2004), whereas cultured primary human

gastric cells produce TLR2 and TLR5, but not TLR4 mRNA (Bäckhed et al.

2003). H. pylori LPS contains a lipid A domain that shows up to 1,000 times lower

immunological activity than lipid A of the Enterobacteriaceae family (Muotiala

et al. 1992). The reduced endotoxicity of H. pylori lipid A is thought to arise

from its unique chemical structure, lacking the usual 4´-phosphate, as well as the

3´-ester-linked fatty acyl chains. Instead, it is derivatized with a phosphoethanola-

mine residue at the C-1 position of the proximal glucosamine (Moran et al. 1997).

Due to this unique lipid A structure, H. pylori is also highly resistant to the

antimicrobial peptide polymyxin (Tran et al. 2006). Furthermore, H. pylori LPS
is unusual in that it contains Lewis blood group antigens, giving rise to a form of

molecular mimicry proposed to camouflage the bacterium, which may aid in

persistence of the infection (Appelmelk et al. 2000). Thus, H. pylori LPS is not

well recognized by TLR4 (Fig. 3a), but H. pylori LPS induced NF-kB activation in

HEK293 cells that expressed TLR2, which indicates that H. pylori LPS might be

recognized by TLR2 instead of TLR4 (Smith et al. 2003; Yokota et al. 2007).

H. pylori flagellin is also a poor stimulator of TLR5 (Lee et al. 2003). TLR5

recognizes a region of bacterial flagellin that is involved in subunit-subunit assem-

bly in Salmonella and several other pathogenic bacteria, but this short region has

diverged in H. pylori and Campylobacter jejuni flagellin, neither of which are

recognized by TLR5 (Galkin et al. 2008) (Fig. 3b). In addition to TLRs, the

intracellular pathogen recognition molecules Nod1 and Nod2, which respond to

different motifs in bacterial peptidoglycan, have been implicated in recognition of

H. pylori. Nod1 activation in epithelial cells by H. pylori occurred upon intracellu-

lar peptidoglycan detection, which was dependent on the function of the cag-T4SS.
Furthermore, a missense mutation in the leucine-rich region of Nod2 (R702W)

is associated with gastric lymphoma in H. pylori-infected patients (Rosenstiel

et al. 2006).

The C-type lectins represent another class of receptors that recognize specific

carbohydrate structures present on the cell wall of pathogens. One of these lectins,

which is expressed on dendritic cells, is DC-SIGN (dendritic cell-specific intercel-

lular adhesion molecule grabbing non-integrin). DC-SIGN has been identified as a

receptor for viruses, parasites, fungi, and bacteria (Koppel et al. 2005), including

H. pylori (Bergman et al. 2004), and is involved in cell adhesion as well as

antigen presentation to T cells. Binding to the carbohydrate recognition domain

of DC-SIGN is dependent on high mannoses or Le sugars. Lewis antigen expression

in H. pylori is phase variable by translational frame shifts in glycosyltransferase

genes that occur during replication. Thus, H. pylori Le+ phase variants can bind to

DC-SIGN on DCs in gastric mucosa and induce a shift towards a Th2 polarization

(Bergman et al. 2004), whereas Le- variants escape binding to DCs and induce a

strong Th1 cell response (Fig. 3a).
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Fig. 3 Innate immune evasion mechanisms. (a) H. pylori modulates LPS by phase variable expres-

sion of fucosyl transferases to generate Lewis antigens, epitopes also found on human epithelial cells.

Lewis expression patterns result from the on/off status of three fucosyltransferases (e.g., FutB),

which are regulated via slipped-strand mispairing in intragenic poly-A or poly-C tracts. Le+H. pylori
variants are able to bind to the C-type lectin DC-SIGN present on gastric dendritic cells, thereby

inducing a Th2 response, whereas Le- variants escape binding and promote a strong Th1 cell

response. H. pylori LPS does not interact with TLR4. (b) H. pylori flagellin is posttranslationally

modified by glycosylation involving pseudaminic acid (Pse5Ac7Ac) and is not recognized by TLR5

due to a divergent sequence in the TLR5 recognition region. (c) HP-NAP acts as a bacterial

chemoattractant, recruits phagocytes to the lamina propria, binds via TLR2 to neutrophils and

monocytes and induces secretion of cytokines and chemokines, which finally prime Th0 cells to

differentiate into Th1 cells. (d) H. pylori avoids killing by delayed phagocytosis, dependent on the

Cag T4SS and VacA-dependent inhibition of phagosome acidification and formation of megasomes.

NADPH oxidase is directed to the plasma membrane to avoid bacterial killing in the phagosome. (E)

H. pylori induces iNOS expression by phagocytes through urease, but avoids NO damage by

producing L-arginase (RocF), which depletes the iNOS substrate L-arginine. L-arginine depletion

also blocks translation of iNOS mRNA. (F) H. pylori extracts cholesterol from host cell plasma

membranes and glucosylates it by the bacterial cholesterol-a-glucosyltransferase (HP0421), a process
that abrogates phagocytosis of H. pylori and subsequent T cell activation



4.1.2 Resistance to Reactive Oxygen or Nitrogen Species

Phagocytosis is an essential mechanism of the innate immune system involved in

destruction of invading microorganisms. Tight binding of Cag T4SS-positive

H. pylori to the epithelium results in delivery of the effector protein CagA in the

cell, but also triggers the synthesis and secretion of the potent neutrophil chemoat-

tractant interleukin-8 (IL-8). Besides IL-8, H. pylori urease and HP-NAP are also

involved to recruit phagocytes to the lamina propria (Allen 2000). HP-NAP is a

150-kDa dodecameric iron-binding protein that promotes adhesion of PMNs to

endothelial cells and stimulates phagocyte chemotaxis, NADPH oxidase assembly,

and production of reactive oxygen species (ROS) (Polenghi et al. 2007; Satin et al.

2000). Moreover, HP-NAP acts as a TLR2 agonist and induces the secretion

of IL-12 and IL-23 from monocytes and neutrophils, which may result in a

Th1-polarized immune response (Amedei et al. 2006) (Fig. 3c). To avoid the

antimicrobial activity of ROS, H. pylori, like many other bacterial pathogens,

produces catalase (Odenbreit et al. 1996) and superoxide dismutase (Spiegelhalder

et al. 1993), enzymes involved in detoxification of ROS. In addition to these general

mechanisms, H. pylori has developed a strategy to disrupt NADPH oxidase target-

ing and thus directs ROS production to irrelevant compartments. Generally, soluble

agonists (e.g., fMLP) direct oxidase assembly to the plasma membrane to release

superoxide into the extracellular milieu to kill extracellular bacteria. However,

larger phagocytosed particles, such as bacteria or yeast, direct NADPH oxidase to

the phagosome membrane, to deliver superoxide inside the phagosome (Dahlgren

and Karlsson 1999). Interestingly, during phagocytosis of H. pylori by PMNs,

strong NADPH oxidase activity is found at the cytoplasmic membrane, but not

on H. pylori phagosomes. Thus, superoxide is generated at the extracellular envi-

ronment to promote tissue damage, whereas the ingested bacteria are not harmed by

ROS in the phagosome (Allen et al. 2005b) (Fig. 3d).

In addition to NADPH oxidase, H. pylori also activates inducible nitric oxide

synthase (iNOS) in the human gastric mucosa, which has been associated with an

increased risk to develop gastric carcinoma of the intestinal type (Rieder et al.

2003). In the search for bacterial factors involved, the H. pylori urease has been

implicated in iNOS activation in macrophages (Gobert et al. 2002b). H. pylori
produces an arginase, RocF, which converts L-arginine to urea and L-ornithine

(McGee et al. 1999), and the bacteria make use of urea as a substrate for urease to

produce NH3, which is used to buffer acidity and as an important bacterial nitrogen

source (Fig. 3e). Macrophages infected with wild-type H. pylori produce signifi-

cantly less NO than macrophages infected with rocF-negative isogenic mutants,

and the arginase-defective bacteria are more sensitive to NO-dependent killing by

macrophages (Gobert et al. 2001).To further counteract NO production, H. pylori
also induces eukaryotic arginase II expression in macrophages to induce macro-

phage apoptosis (Gobert et al. 2002a). L-arginine is limiting at the surface of the

gastric epithelium, and L-arginine availability regulates NO production by an effect

on iNOS protein translation (Chaturvedi et al. 2007). Thus, H. pylori arginase
efficiently inhibits iNOS protein expression, and this mechanism might have an

Virulence Mechanisms and Persistence Strategies 149



important role for H. pylori to evade the macrophage attack. Furthermore, H. pylori
also encodes AhpC, a member of the bacterial peroxiredoxin family that protects

against oxidation of DNA and other molecules by peroxynitrite, a product of

NO and O2
� (McGee et al. 1999).

4.1.3 Modulation of Phagocytosis

A further characteristic of H. pylori is its ability to actively retard its own entry into

phagocytes (Allen et al. 2000). This delayed phagocytosis is a feature of live, meta-

bolically active, type IH. pylori strains and is prevented by opsonisation with specific
IgG, or by blockade of bacterial protein synthesis. The pathogenic factor(s) responsi-

ble for this effect have not been determined. The process of delayed phagocytosis is

different fromFcg-mediated phagocytosis of opsonized bacteria. It is characterized by

a novel signaling cascade, defined by activation of the atypical protein kinase PKCz,
and is PI3K-dependent (Allen and Allgood 2002; Allen et al. 2005a).

Delayed phagocytosis in macrophages results in homotypic phagosome fusion.

H. pylori persists inside large ‘megasomes’ due to inhibition of phagosome matu-

ration, mainly induced by H. pylori urease and VacA (Schwartz and Allen 2006;

Zheng and Jones 2003). Megasomes accumulate coronin, an actin-binding protein,

which is recruited to phagosomes in a PI3K-dependent manner, and early endosome

antigen 1 (EEA1), a tethering molecule required for endosome clustering and

homotypic fusion (Schwartz and Allen 2006; Zheng and Jones 2003). Megasomes

are not strongly acidified and acquire only limited amounts of the late endosome

membrane protein Lamp-1.H. pylori uses a similar strategy to survive inside gastric

epithelial cells (Terebiznik et al. 2006) (Fig. 1c).

A further important issue related to bacterial phagocytosis is an unusual lipid

composition of H. pylori membranes, which are characterized by high concentra-

tions of lysophospholipids and cholesteryl glucosides, a composition probably

unique for bacterial membranes (Hirai et al. 1995, 1996). Since H. pylori cannot
synthesize cholesterol by its own, the bacteria are able to extract the lipid from

the plasma membrane of epithelial cells for glycosylation (Wunder et al. 2006)

(Fig. 3f). Interestingly, either preloading of bacteria with cholesterol or inactivation

of an H. pylori glycosyltransferase gene (hp0421) markedly enhanced H. pylori
uptake by serum-starved J774 cells (Wunder et al. 2006). At the moment, it is

unclear by which mechanism cholesterol in the bacterial membrane can impact host

cell responses or phagocytosis.

Although H. pylori is considered primarily a mucosal pathogen, the bacteria can

be found in deeper tissues of the lamina propria (Dubois and Borén 2007; Necchi

et al. 2007) and even in the associated lymph nodes (Ito et al. 2008). Furthermore,

H. pylori can invade epithelial cells in vivo and in vitro (Oh et al. 2005; Terebiznik
et al. 2006), although the primary niche is the gastric mucous layer. Transient

cellular invasion by a subpopulation of H. pylori might therefore be a strategy for

persistence in the face of unfavorable conditions, such as gastric acid, antibiotics, or

the host inflammatory response, similar to uropathogenic E. coli invading bladder
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epithelial cells in a FimH-dependent manner, followed by organization of coccoid

bacteria into a tightly packed cytoplasmic matrix (Anderson et al. 2003). Thus,

invasion of host epithelial cells to promote chronic infection may in fact be a

common strategy for mucosal pathogens previously thought to have a uniformly

extracellular lifestyle.

4.2 Mechanisms of Evasion of the Adaptive Immune Response

H. pylori has not only to deal with innate immune responses but also with a con-

tinuous attack of the adaptive immune response. After successful eradication of

H. pylori, there is little memory or protection against reinfection (Parsonnet 2003).

H. pylori has evolved complex mechanisms to interfere with many different levels of

the adaptive immune response, ranging from antigen presentation to modulation of

T cell cytokine signaling. Important bacterial virulence factors involved in modula-

tion of the adaptive immune system, especially the T lymphocytes, are the vacuolat-

ing cytotoxin, the g-glutamyltranspeptidase (gGT), and arginase (RocF).

Several reports, mainly based on in vitro experiments, indicate that live H. pylori
cells or certain virulence factors are able to interfere with multiple functions in both

B and T lymphocytes (Fig. 4). VacA has been initially reported to interfere with

antigen processing in B cells and thereby block subsequent presentation of the

resulting peptides to T cells (Molinari et al. 1998). VacA inhibited the Ii-dependent

pathway of antigen presentation, which is mediated by newly synthesized MHC

class II molecules, but did not interfere with the pathway dependent on recycling

MHC class II. The inhibition of antigen presentation in B cells is likely the result of

a restricted vesicle transport of late endosomal vesicles to the apical surface and

thus might be related to the impaired vesicle trafficking effects seen in epithelial

cells. VacA was shown to inhibit PMA-induced as well as T cell-induced prolifera-

tion of B cells (Torres et al. 2007). Furthermore, ectopic expression of CagA in B

cells was reported to inhibit interleukin-3-dependent B-cell proliferation by inhibit-

ing JAK-STAT signaling, which may result in inefficient antibody production and

reduced cytokine expression (Umehara et al. 2003). CagA may also play a role in

the development of MALT lymphoma by impairing p53-dependent apoptosis in

B cells. Although H. pylorimight come into contact with B cells when invading the

gastric submucosa, translocation of CagA into these cells has not been shown under

infection conditions.

The effects of H. pylori on T cells may also be mediated by different bacterial

factors, but the best-characterized modulating factor is VacA. Recently, the b2 sub-
unit of the leukocyte-specific integrin heterodimer LFA-1 (CD18) has been identi-

fied as a receptor for VacA on the surface of T cells. Purified VacA interacts with

CD18, resulting in VacA internalization into T cells (Sewald et al. 2008b). Uptake

of VacA results in a marked inhibition of proliferation of T cell lines upon

stimulation (polyclonal or T cell receptor-mediated) as well as a diminished

expression of IL-2 and IL-2 receptor (CD25). This effect is due to an interference
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with the activity of nuclear factor of activated T cells (NFAT), a transcription factor

that regulates a number of important immune response genes (Boncristiano et al.

2003; Gebert et al. 2003; Sundrud et al. 2004). In contrast, resting primary CD4+ T

cells did not show a VacA-mediated IL-2 inhibition (Sundrud et al. 2004); however,

activated primary T cells restored this phenotype (Sewald et al. 2008b). The effect

of VacA may be mediated by blocking calcium influx, thereby interfering with the

activity of the calcium-dependent phosphatase calcineurin, which is required for

NFAT activation (Fig. 4). In CD4+ T cells, but not in B cells, a reduction in the

mitochondrial membrane potential was suggested as an additional factor involved

in blocking T cell proliferation (Torres et al. 2007). Finally, a third effect of VacA

involves binding of an unknown receptor on T cells, leading to Rac/p38 activation,

actin rearrangement, and inhibition of T cell proliferation (Boncristiano et al.

2003). Since H. pylori can disrupt epithelial cell tight junctions, VacA might act

Fig. 4 VacA interactions with T lymphocytes and modulation of adaptive immunity. VacA binds

the leukocyte–specific b2 integrin subunit CD18 and exploits b2 integrin recycling of migrating T

lymphocytes for uptake and internalization. Due to its channel-forming activity, VacA induces a

depolymerization of the plasma membrane. VacA blocks T cell proliferation by interference with

the cell cycle (G1 arrest) and induces a decreased mitochondrial membrane potential in T cells.

Translocation of the transcription factor NFAT into the nucleus is blocked, resulting in specific

abrogation of transcription of a set of cytokine and chemokine genes, including the IL-2 gene. The

p58 subunit of VacA is able to bind T cells and to induce a signaling cascade resulting in actin

rearrangement
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as a distant effector that can reach the lamina propria and block proliferation of

T cells in the local gastric environment (Gebert et al. 2004). Inhibition of T cell

proliferation and cell cycle arrest has also been attributed to the H. pylori secreted
factors g-glutamyltranspeptidase and arginase (Schmees et al. 2007; Zabaleta et al.

2004). The inherent glutamine-hydrolysing activity of g-glutamyltranspeptidase

was also shown to result in deprivation of glutamine, which may be required for

activity of lymphocytes and macrophages, and thus could also explain the observed

proliferation inhibition (Shibayama et al. 2007).

5 H. pylori and the Development of Gastric Cancer

Development of gastric cancer involves several histopathologically characterized

steps, including multifocal gastric atrophy, intestinal metaplasia, dysplasia, and,

finally, invasive carcinoma (Correa and Houghton 2007). Mouse models indicate

that the cancer cells may originate from bone-marrow-derived mesenchymal stem

cells, which migrate into stomach epithelia after prolonged inflammation and tissue

destruction (Houghton et al. 2004), or from other sources such as gastric progenitor

cells (reviewed in Karam 2008). Many conclusions about cancer development were

derived from transgenic mouse models, in which H. pylori infection enhances the

cancer development rates (e.g., Fox et al. 2003; Syder et al. 2004), but it should be

noted that it is probably not possible in these models to arrive at conclusions

regarding the involvement of pathogenicity determinants, such as the cag-PAI,
due to their inherent instability. The link between H. pylori infection and gastric

cancer might simply be induction of gastric atrophy by bacteria-induced long-term

inflammation (Atherton 2006), which is associated with oxidative stress, inducing

mutations in the gastric mucosa (Touati et al. 2003). This is supported by the fact

that defects in DNA repair predispose to development of precancerous lesions in

mice (Meira et al. 2008). However, despite the fact that gastric cancer may develop

from atrophic gastritis in the absence of H. pylori, there is also evidence that

bacterial factors may have direct oncogenic effects. For example, H. pylori infec-
tion of gastric epithelial cells in vitro was shown to induce mutations in the TP53
tumor suppressor gene, due to increased expression of activation-induced cytidine

deaminase (Matsumoto et al. 2007); this effect was dependent on the cag pathoge-

nicity island and on NF-kB activation. Since H. pylori can be found intracellularly

in gastric pit stem cells (Oh et al. 2005), and strain adaptation from atrophic gastritis

to gastric cancer has been shown to influence invasion into gastric epithelial

progenitor cells (Giannakis et al. 2008), it has also been speculated that the

interaction of H. pylori with gastric progenitor cells may result in malignant

transformation. The Cag T4SS and particularly the CagA protein have been directly

associated with development of cancer in animal models (Peek and Blaser 2002).

In Mongolian gerbils, a corpus-predominant infection with H. pylori, which is

considered as a precursor of atrophic gastritis, and also H. pylori adaptation to a

high carcinogenic potential, are dependent on CagA (Franco et al. 2005; Rieder
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et al. 2005). In epithelial cells that were sensitized to carcinogenic agents, transfec-

tion of CagA leads to an abnormal activation of MAP kinase pathways, which

results in cell transformation (Zhu et al. 2005). Moreover, in a transgenic mouse

model, expression of CagA in stomach tissue occasionally resulted in the develop-

ment of gastric or intestinal cancers, which was not the case upon expression of

phosphorylation-deficient CagA (Ohnishi et al. 2008), indicating that CagA alone

may function as an oncoprotein. However, during H. pylori infections, CagA does

not act in isolation, and its activity may be influenced by other virulence factors, as

has been found in vitro (Argent et al. 2008b; Yokoyama et al. 2005).

The molecular mechanisms which lead to carcinogenesis are not understood. It

is well known that the activity of the Cag T4SS, and particularly CagA translocation

and phosphorylation, results in massive changes in gene expression profiles of

infected cells, which may play a role in carcinogenesis (Cox et al. 2001; El Etr

et al. 2004; Guillemin et al. 2002; Mueller et al. 2003). Upregulation of proin-

flammatory cytokines may lead to stimulation of secondary signaling pathways, as

reported for macrophage migration inhibitory factor, which binds to CD74 and

induces a proliferative response (Beswick et al. 2006b). Phosphorylation-dependent

inhibition of glycogen synthase kinase (GSK)-3b via Akt signaling, which has been

reported to be induced by the cag-PAI, OipA, or also VacA (Nakayama et al. 2008;

Sokolova et al. 2008; Tabassam et al. 2008a), may lead to nuclear translocation of

b-catenin and subsequent induction of gene expression. Indeed, infection of gastric

epithelial cells with an adapted H. pylori strain that displayed a high carcinogenic

potential was characterized by activation of gene transcription via b-catenin in a

CagA-dependent manner (Franco et al. 2005), and activation of b-catenin was

found to involve a tyrosine phosphorylation-independent interaction between

CagA and E-cadherin and to result in upregulation of genes involved in intestinal

differentiation (Murata-Kamiya et al. 2007).

Many studies have also addressed the upregulation of matrix metalloproteinases,

which might be involved in extracellular matrix degradation in the gastric mucosa.

Matrix metalloproteinase-7 (MMP-7) is induced in AGS cells, depending on a

functional Cag secretion system, but not on CagA (Bebb et al. 2003; Crawford

et al. 2003; Wroblewski et al. 2003). MMP-7 upregulation involves Erk activation

as well as nuclear translocation of p120-catenin, which in turn is released during

disruption of adherens junction complexes (Ogden et al. 2008). Elevated levels of

MMP-7 secreted by epithelial cells results in increased epithelial cell proliferation,

due to enhanced release of insulin-like growth factor (McCaig et al. 2006). MMP-1

upregulation in AGS cells upon infection is also Erk- and JNK-dependent and relies

partly on a functional T4SS and on translocated and phosphorylated CagA (Krueger

et al. 2006; Pillinger et al. 2007). Furthermore, increased MMP-2 and MMP-9

activity can be stimulated in AGS cells in a CagA-dependent manner and leads

to an invasive phenotype (Oliveira et al. 2006). In mice, however, MMP-2 and

MMP-9 are also upregulated by Cag- strains (Kundu et al. 2006), possibly reflecting

the dispensability of the Cag system for mouse infections.

In conclusion, although several molecular events with a possible impact for the

development of gastric cancer have been characterized, it is premature to reach
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definite conclusions with respect to the oncogenic mechanisms of the Cag T4SS or

other H. pylori virulence factors.

6 Conclusions

During its long association with humans, lasting back 60,000 years or more

(Linz et al. 2007), H. pylori has established a balance between generating a

comfortable niche and avoiding the immune consequences of its colonization. For

this purpose, the bacteria have acquired a set of unique virulence functions, such as

a potent urease and a highly efficient motility and chemotaxis system, a set of outer

membrane adhesins, the multifunctional toxin VacA, and the Cag T4SS. Effective

immune evasion mechanisms concerning the innate as well as the adaptive im-

munity are of major importance. As a result, the infected human host mounts a

vigorous innate and adaptive immune response, which ideally should clear the

infection, but in the majority of infected people fails to prevent chronic coloniza-

tion. The immunosuppressive functions of the bacterial virulence factors counteract

the activity of the immune response at several stages. Inducing a mild inflammation

seems to be beneficial for H. pylori to obtain nutrients and to spread into deeper

tissues. However, genetic differences between hosts and external factors (e.g., diet)

can tip this balance in either direction. If host responses are no longer able to control

the bacterium, virulence factors, such as VacA, HP-NAP, and the Cag T4SS, can

result in gastric epithelial damage, which may lead to peptic ulceration or even

neoplastic transformation. At least in animal models, vaccination with H. pylori
antigens and a suitable adjuvant can drive an immune response that confers

protection against infection. Understanding the nature of this protective response

will be a major challenge. Future studies, directed toward understanding inter-

actions between H. pylori and immune cells in vivo, are expected to result in

important new insights into the mechanisms of H. pylori persistence and also

may lead to the development of novel therapeutic approaches.
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Bäckström A, Lundberg C, Kersulyte D, Berg DE, Borén T, Arnqvist A (2004) Metastability of

Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc Natl

Acad Sci USA 101:16923–16928

Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR (2005)Helicobacter pylori CagA induces

a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci USA

102:16339–16344

Baldwin DN, Shepherd B, Kraemer P, Hall MK, Sycuro LK, Pinto-Santini DM, Salama NR (2007)

Identification of Helicobacter pylori genes that contribute to stomach colonization. Infect

Immun 75:1005–1016

Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, Schiavon S, Guariso G,

Ceroti M, Nitti D, Rugge M, Plebani M, Atherton JC (2008) Clinical relevance ofHelicobacter
pylori cagA and vacA gene polymorphisms. Gastroenterol 135:91–99

Basu S, Pathak SK, Chatterjee G, Pathak S, Basu J, Kundu M (2008) Helicobacter pylori protein
HP0175 transactivates epidermal growth factor receptor through TLR4 in gastric epithelial

cells. J Biol Chem 283:32369–32376

Bebb JR, Letley DP, Thomas RJ, Aviles F, Collins HM, Watson SA, Hand NM, Zaitoun A,

Atherton JC (2003) Helicobacter pylori upregulates matrilysin (MMP-7) in epithelial cells

in vivo and in vitro in a Cag dependent manner. Gut 52:1408–1413

Belzer C, Stoof J, van Vliet AH (2007) Metal-responsive gene regulation and metal transport in

Helicobacter species. Biometals 20:417–429

Benoit SL, Maier RJ (2008) Hydrogen and nickel metabolism in Helicobacter species. Ann NY

Acad Sci 1125:242–251

Bergman MP, Engering A, Smits HH, van Vliet SJ, van Bodegraven AA, Wirth HP, Kapsenberg

ML, Vandenbroucke-Grauls CM, van Kooyk Y, Appelmelk BJ (2004) Helicobacter pylori
modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction

between lipopolysaccharide and DC-SIGN. J Exp Med 200:979–990

Beswick EJ, Pinchuk IV, Minch K, Suarez G, Sierra JC, Yamaoka Y, Reyes VE (2006a) The

Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces

NF-kB activation and interleukin-8 production. Infect Immun 74:1148–1155

Beswick EJ, Pinchuk IV, Suarez G, Sierra JC, Reyes VE (2006b) Helicobacter pylori CagA-
dependent macrophage migration inhibitory factor produced by gastric epithelial cells binds to

CD74 and stimulates procarcinogenic events. J Immunol 176:6794–6801

Virulence Mechanisms and Persistence Strategies 157



Beswick EJ, Reyes VE (2008) Macrophage migration inhibitory factor and interleukin-8 produced

by gastric epithelial cells duringHelicobacter pylori exposure induce expression and activation
of the epidermal growth factor receptor. Infect Immun 76:3233–3240

Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, Amedei A, D’Elios MM,

Telford JL, Baldari CT (2003) The Helicobacter pylori vacuolating toxin inhibits T cell

activation by two independent mechanisms. J Exp Med 198:1887–1897

Boonjakuakul JK, Canfield DR, Solnick JV (2005) Comparison of Helicobacter pylori virulence
gene expression in vitro and in the Rhesus macaque. Infect Immun 73:4895–4904

Botham CM, Wandler AM, Guillemin K (2008) A transgenic Drosophilamodel demonstrates that

the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathog 4:

e1000064

Bourzac KM, Botham CM, Guillemin K (2007) Helicobacter pylori CagA induces AGS cell

elongation through a cell retraction defect that is independent of Cdc42, Rac1, and Arp2/3.

Infect Immun 75:1203–1213

Bourzac KM, Guillemin K (2005) Helicobacter pylori-host cell interactions mediated by type IV

secretion. Cell Microbiol 7:911–919

Brandt S, Kwok T, Hartig R, König W, Backert S (2005) NF-kB activation and potentiation of

proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci USA

102:9300–9305

Cao P, Cover TL (2002) Two different families of hopQ alleles in Helicobacter pylori. J Clin
Microbiol 40:4504–4511

Castillo AR, Woodruff AJ, Connolly LE, Sause WE, Ottemann KM (2008) Recombination-based

in vivo expression technology identifies Helicobacter pylori genes important for host coloni-

zation. Infect Immun 76:5632–5644

Cendron L, Seydel A, Angelini A, Battistutta R, Zanotti G (2004) Crystal structure of CagZ, a

protein from the Helicobacter pylori pathogenicity island that encodes for a type IV secretion

system. J Mol Biol 340:881–889

Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A

(1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-

associated virulence factors. Proc Natl Acad Sci USA 93:14648–14653

Chaturvedi R, AsimM, Lewis ND, Algood HM, Cover TL, Kim PY,Wilson KT (2007) L-arginine

availability regulates inducible nitric oxide synthase-dependent host defense against Helico-
bacter pylori. Infect Immun 75:4305–4315

Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M (2003) Helicobacter
pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell

Biol 161:249–255

Clyne M, Dillon P, Daly S, O’Kennedy R, May FE, Westley BR, Drumm B (2004) Helicobacter
pylori interacts with the human single-domain trefoil protein TFF1. Proc Natl Acad Sci USA

101:7409–7414

Correa P, Houghton J (2007) Carcinogenesis of Helicobacter pylori. Gastroenterol 133:659–672
Couturier MR, Tasca E, Montecucco C, Stein M (2006) Interaction with CagF is required for

translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect

Immun 74:273–281

Cover TL, Blanke SR (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality.

Nat Rev Microbiol 3:320–332

Cover TL, Blaser MJ (1992) Purification and characterization of the vacuolating toxin from

Helicobacter pylori. J Biol Chem 267:10570–10575

Cox JM, Clayton CL, Tomita T, Wallace DM, Robinson PA, Crabtree JE (2001) cDNA array

analysis of cag pathogenicity island-associated Helicobacter pylori epithelial cell response
genes. Infect Immun 69:6970–6980

Crawford HC, Krishna US, Israel DA, Matrisian LM, Washington MK, Peek RM Jr (2003)

Helicobacter pylori strain-selective induction of matrix metalloproteinase-7 in vitro and within
gastric mucosa. Gastroenterol 125:1125–1136

158 W. Fischer et al.



Croxen MA, Sisson G, Melano R, Hoffman PS (2006) The Helicobacter pylori chemotaxis

receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa.

J Bacteriol 188:2656–2665

Czajkowsky DM, Iwamoto H, Cover TL, Shao Z (1999) The vacuolating toxin from Helicobacter
pylori forms hexameric pores in lipid bilayers at low pH. Proc Natl Acad Sci USA

96:2001–2006

Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods

232:3–14

Delahay RM, Balkwill GD, Bunting KA, Edwards W, Atherton JC, Searle MS (2008) The

highly repetitive region of the Helicobacter pylori CagY protein comprises tandem arrays of

an a-helical repeat module. J Mol Biol 377:956–971

Dubois A, Borén T (2007) Helicobacter pylori is invasive and it may be a facultative intracellular

organism. Cell Microbiol 9:1108–1116

Eaton KA, Brooks CL, Morgan DR, Krakowka S (1991) Essential role of urease in patho-

genesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun

59:2470–2475

Eaton KA, Suerbaum S, Josenhans C, Krakowka S (1996) Colonization of gnotobiotic piglets by

Helicobacter pylori deficient in 2 flagellin genes. Infect Immun 64:2445–2448

Edwards NJ, Monteiro MA, Faller G, Walsh EJ, Moran AP, Roberts IS, High NJ (2000) Lewis X

structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric

epithelium. Mol Microbiol 35:1530–1539

El Etr SH, Mueller A, Tompkins LS, Falkow S, Merrell DS (2004) Phosphorylation-independent

effects of CagA during interaction betweenHelicobacter pylori and T84 polarized monolayers.

J Infect Dis 190:1516–1523

Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, Keller H, Morelli G, Gressmann H, Achtman M,

Schuster SC (2006) Who ate whom? Adaptive Helicobacter genomic changes that accompa-

nied a host jump from early humans to large felines. PLoS Genet 2:e120

Falush D, Kraft C, Taylor NS, Correa P, Fox JG, Achtman M, Suerbaum S (2001) Recombination

and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock

rates, recombination size, and minimal age. Proc Natl Acad Sci USA 98:15056–15061

Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S,

Perez-Perez GI, Yamaoka Y, Mégraud F, Otto K, Reichard U, Katzowitsch E, Wang X,

Achtman M, Suerbaum S (2003) Traces of human migrations in Helicobacter pylori popula-
tions. Science 299:1582–1585

Fan X, Gunasena H, Cheng Z, Espejo R, Crowe SE, Ernst PB, Reyes VE (2000) Helicobacter
pylori urease binds to class II MHC on gastric epithelial cells and induces their apoptosis.

J Immunol 165:1918–1924

Fedwick JP, Lapointe TK, Meddings JB, Sherman PM, Buret AG (2005) Helicobacter pylori
activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial

permeability. Infect Immun 73:7844–7852

Fischer W, Buhrdorf R, Gerland E, Haas R (2001a) Outer membrane targeting of passenger

proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori. Infect Immun

69:6769–6775

Fischer W, Hofreuter D, Haas R (2001b) Natural transformation, recombination and repair. In:

Mobley HL, Mendz GL, Hazell SL (eds) Helicobacter pylori: physiology and genetics. ASM

Press, Washington, DC, pp 249–257
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Abstract The bacterium Listeria monocytogenes is the causative agent of listerio-
sis, a highly fatal opportunistic foodborne infection. Listeria spp. are isolated from

a diversity of environmental sources, including soil, water, effluents, a large variety

of foods, and the feces of humans and animals. Recent outbreaks demonstrated that

L. monocytogenes can cause gastroenteritis in otherwise healthy individuals and

more severe invasive disease in immunocompromised patients. Common symp-

toms include fever, watery diarrhea, nausea, headache, and pains in joints and

muscles. The intestinal tract is the major portal of entry for L. monocytogenes,
whereby strains penetrate the mucosal tissue either directly, via invasion of enter-

ocytes, or indirectly, via active penetration of the Peyer’s patches. Studies have
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revealed the strategy taken by the bacteria to overcome changes in oxygen tension,

osmolarity, acidity, and the sterilizing effects of bile or antimicrobial peptides to

adapt to conditions in the gut. In addition, L. monocytogenes has evolved species-

specific strategies for intestinal entry by exploiting the interaction between the

internalin protein and its receptor E-cadherin, or inducing diarrhea and an inflam-

matory response via the activity of its hemolytic toxin, listeriolysin. The ability of

these bacteria to survive in bile-rich environments, and to induce depletion of

sentinel cells such as Paneth cells that monitor the luminal burden of commensal

bacteria, suggest strategies that have evolved to promote intestinal survival. Pre-

existing gastrointestinal disease may be a risk factor for infection of the gastroin-

testinal tract with L. monocytogenes. Currently, there is enough evidence to warrant
consideration of L. monocytogenes as a possible etiology in outbreaks of febrile

gastroenteritis, and for further studies to examine the genetic structure of Listeria
strains that have a propensity to cause gastrointestinal versus systemic infections.

1 Introduction

The human gut contains a large number of diverse microbiota comprising several

hundred different types of bacteria. A balanced relationship between these com-

mensal bacteria and the intestinal immune system and the high species diversity is

important in maintaining homeostasis and structural stability. Loss of bacterial

diversity as a result of aging and antibiotic treatment impedes the ecosystem’s

ability to resist the ingress of pathogenic microorganisms. Additionally, accidental

introduction of pathogenic bacteria by ingestion of contaminated food or water

causes inflammatory changes at the mucosal surface leading to disease. Diseases

caused by foodborne pathogens such as the gram-positive bacterium Listeria
monocytogenes are on the rise and threaten increasing numbers of susceptible

individuals, from the unborn to the elderly, worldwide.

The genus Listeria consists of a group of Gram-positive bacteria of low G+C

content closely related to Bacillus, Clostridium, Enterococcus, Streptococcus, and
Staphylococcus. Listeria spp. are facultative anaerobic rods that do not form spores,

have no capsule, and are motile at 10–25�C. The bacterium L. monocytogenes is the
causative agent of listeriosis, a highly fatal opportunistic foodborne infection. L.
monocytogenes causes serious localized and generalized infections in humans and a

variety of other vertebrates, including domesticated and wild birds and mammals.

Pregnant women, neonates, the elderly, and debilitated or immunocompromised

patients in general are predominantly affected, although the disease can also

develop in normal individuals. Clinical manifestations of invasive listeriosis are

usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis

can also manifest as a febrile gastroenteritis syndrome. Listeria ivanovii, a second
pathogenic species of the genus, is specific for ruminants.

Listeria spp. are isolated from a diversity of environmental sources, including

soil, water, effluents, a large variety of foods, and the feces of humans and animals.
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The natural habitat of these bacteria is thought to be decomposing plant matter, in

which they live as saprophytes. Domesticated ruminants probably play a key role in

the maintenance of Listeria spp. in the rural environment via a continuous fecal–

oral enrichment cycle.

Recent outbreaks demonstrated that L. monocytogenes can cause gastroen-

teritis in otherwise healthy individuals and more severe invasive disease in

immunocompromised patients. Epidemiological studies of outbreaks of human

disease now demonstrate that the pathogen can cause gastroenteritis in the

absence of invasive disease and associated mortality. Furthermore, pathogenic

Listeria have the ability to colonize and persist in the gallbladder suggesting

that there may be long-term and chronic infections caused by these bacteria.

The ability of the pathogen to survive within the various microenvironments of

the gastrointestinal (GI) tract is essential for its ability to cause foodborne

infection.

2 Listeria as an Enteroinvasive Gastrointestinal Pathogen

Although ingestion of food contaminated with L. monocytogenes is the usual mode

of transmission, multiple factors likely play a role in the spectrum of presentations,

from asymptomatic presentation to mild gastroenteritis to life-threatening invasive

listeriosis. These variables include bacterial virulence factors, size of ingested

inoculum, and underlying host defenses.

The clinical signs of L. monocytogenes infection are very similar in all suscepti-

ble hosts. Two basic forms of presentation can be distinguished: perinatal listeriosis

and listeriosis in the adult patient. Listeriosis is usually a very severe disease – in

fact, one of the most deadly bacterial infections currently known – with a mean

mortality rate in humans of 20–30% or higher despite early antibiotic treatment. In

each of the outbreaks, listeriosis caused invasive disease with mortality rates that

averaged ~30%. These outbreaks illustrate the severe nature of listeriosis, particu-

larly in immunocompromised patients, and highlight the differences between infec-

tions caused by L. monocytogenes and those caused by other common foodborne

pathogens (e.g., Salmonella species, Campylobacter jejuni, Vibrio species, and

Shigella species). It has been known for a long time that many patients experience

diarrhea antecedent to the development of bacteremia or meningoencephalitis due

to L. monocytogenes, but it was only recently that convincing evidence was

obtained that this organism can cause acute, self-limited, febrile gastroenteritis in

healthy persons (Ooi and Lorber 2005). At least seven outbreaks of foodborne

gastroenteritis due to L. monocytogenes have been reported. Illness typically occurs
24 h after ingestion of a large inoculum of bacteria and usually lasts 2 days.

Common symptoms include fever, watery diarrhea, nausea, headache, and pains

in joints and muscles. L. monocytogenes should be considered to be a possible

etiology in outbreaks of febrile gastroenteritis when routine cultures fail to yield a

pathogen (Ooi and Lorber 2005).
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Convincing evidence that L. monocytogenes could cause gastrointestinal illness

came from an outbreak of febrile gastroenteritis that was associated with the

consumption of contaminated chocolate milk (Dalton et al. 1997). Symptoms

developed in 75% of persons (45 of 60) who drank chocolate milk that had been

served at a picnic. Indistinguishable strains of L. monocytogenes were isolated from
unopened cartons of chocolate milk, from environmental specimens from the dairy

that supplied the milk, and from the stool samples of 14 symptomatic persons. The

largest documented outbreak (Aureli et al. 2000) occurred in 1997, when 1,566

students and staff members from two primary schools in northern Italy developed

febrile gastrointestinal illness after eating cafeteria food that had been prepared by

the same caterer. A total of 292 persons were hospitalized. Cultures of one blood

sample and 123 stool samples from hospitalized patients yielded L. monocytogenes
strains that were identical to strains isolated from food and environmental speci-

mens at the catering plant. In several subsequent outbreaks (Miettinen et al. 1999;

Sim et al. 2002; Frye et al. 2002; Carrique-Mas et al. 2003), investigators have

shown identity between strains of L. monocytogenes isolated from stool samples of

individuals with febrile gastroenteritis and strains cultured from the epidemiological-

ly implicated food. The outbreaks of gastrointestinal listeriosis are listed in Table 1.

In general, epidemiological data of foodborne outbreaks of gastroenteritis sup-

port the notion of Listeria being a diarrheic agent. In animals, an absence of clinical

signs except mild diarrhea and staggering gait have been reported in calves and

buffaloes after experimental oral infection (Barbuddhe et al. 2000; Chaudhari et al.

2001). Studies on healthy nonhuman primates dosed with various concentrations of

L. monocytogenes suspended in sterile whole milk revealed symptoms of septice-

mia, irritability, loss of appetite, and occasional diarrhea (Farber et al. 1991).

3 Entry and Invasion of Listeria

Bacteria are generally retained at a distance from the mucus layer, where they

generally form biofilm-like structures. Many bacteria produce mucinases to enable

contact with the underlying epithelium. L. monocytogenes is not known to produce

any mucinases; however, intriguingly, a number of surface proteins InlB, InlC, and

Table 1 Outbreaks of gastroenteritis due to Listeria monocytogenes

Outbreak

year

Number of cases Serotype Implicated source Reference

1993 18 1/2b Rice salad Salamina et al. (1996)

1994 45 1/2b Chocolate milk Dalton et al. (1997)

1997 1,566 4b Cold corn-and-tuna

salad

Aureli et al. (2000)

1998 5 1/2a Cold smoked trout Miettinen et al. (1999)

2000 32 1/2 Corned beef and ham Sim et al. (2002)

2001 16 1/2a Delicatessen meat Frye et al. (2002)

2001 48 1/2a Cheese Carrique-Mas et al. (2003)
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InlJ, all of which are members of the internalin family, all bound to MUC2 isoform.

Adherence to the mucus layer could provide a beachhead from which secreted

virulence factors of the bacterium may engage in modifying and destroying cells of

the epithelial lining.

Flagellar structures contribute to the virulence of multiple gastrointestinal

pathogens either as the effectors of motility, as adhesins, or as a secretion apparatus

for virulence factors. L. monocytogenes uses flagella to increase the efficiency of

epithelial cell invasion (Bigot et al. 2005). It has also been reported that L. mono-
cytogenes flagella are used for motility, not as adhesins, to increase host cell

invasion (O’Neil and Marquis 2006).

3.1 Features of Gastrointestinal Interactions

The pathophysiology of Listeria infection in humans and animals is still poorly

understood. Most of the available information is derived from interpretation of

epidemiological, clinical, and histopathological findings and from observations

made in experimental infections in animals, particularly in the murine model. The

gastrointestinal tract is thought to be the primary site of entry of pathogenic Listeria
organisms into the host, as contaminated food is the major source of infection in

both epidemic and sporadic cases (Farber and Peterkin 1991; Pinner et al. 1992).

The clinical course of infection usually begins about 20 h after the ingestion of

heavily contaminated food in cases of gastroenteritis (Dalton et al. 1997), whereas

the incubation period for the invasive illness is generally much longer, around

20–30 days. Similar incubation periods have been reported in animals for both

gastroenteric and invasive disease (Vazquez-Boland et al. 2001a).

Before reaching the intestine, the ingested Listeria organisms must withstand the

adverse environment of the stomach. The point of entry and the mechanism of

intestinal translocation used by L. monocytogenes remain controversial. However,

in an early study by Racz et al. with guinea pigs infected intragastrically with 1010

L. monocytogenes, detailed histological analyses revealed that all the animals

developed enteritis (Racz et al. 1972). In the initial stages, bacteria were detected

mostly in the absorptive epithelial cells of the apical area of the villi, whereas in

later phases most were inside macrophages of the stroma of the villi, suggesting that

L. monocytogenes penetrates the host by invading the intestinal epithelium (Racz

et al. 1972). Oral infective doses are lower for cimetidine-treated experimental

animals than for untreated animals (Schlech et al. 1983), and the use of antacids and

H2-blocking agents has been reported to be a risk factor for listeriosis (Schuchat

et al. 1992; Ho et al. 1986). This indicates that gastric acidity may destroy a

significant number of the Listeria organisms ingested with contaminated food.

Direct evidence that L. monocytogenes may indeed penetrate the host via the M

cells overlying the Peyer’s patches has been provided by a study using a murine

ligated-loop model and scanning electron microscopy (Jensen et al. 1998).

Salmonella typhimurium possesses a highly efficient mechanism for M cell entry

that targets and destroys these cells, while L. monocytogenes and Shigella flexneri
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appear to be internalized into M cells in a less disruptive fashion (Jensen et al.

1998). Listeriae have been shown to be capable of infecting the host by translocat-

ing from the intestinal lumen through Peyer’s Patches (PP); however, results of

experiments now indicate that these facultative intracellular parasites may also

translocate through PP-independent routes. Listeriae were found to be absent

from the PP of mice inoculated intragastrically with L. monocytogenes, but were
present in the mesenteric lymph nodes of these same mice (Havell et al. 1999).

It is known that following the intragastric inoculation of L. monocytogenes, listeriae
rapidly transit the length of the gastrointestinal tract and reside in the colonic

lumen for up to a week. Inoculation of listeriae into the rectum of mice resulted

in the infection of the caudal lymph node which indicated that PP was not

required for listerial translocation. Shortly after the intragastric inoculation of

L. monocytogenes into germfree SCID mice, listeriae were found in the mesen-

teries, livers and spleens indicating that PP are not required for listerial transloca-

tion from the intestinal lumen. One possible route of translocation from the

intestinal lumen might occur by listeriae entering enterocytes. listeriae have been

found to be capable of entering cultured mouse small intestine enterocytes (Havell

et al. 1999). Internalized Listeriae were observed to multiply and spread intracellu-

larly between enterocytes.

Intestinal translocation of pathogenic listeriae occurs without the formation of

gross macroscopic or histological lesions in the gut of mice (Marco et al. 1992),

suggesting that an epithelial phase involving bacterial multiplication in the intesti-

nal mucosa is not required by L. monocytogenes for systemic infection. Indeed, a

study using a rat ileal loop model of intestinal infection (Pron et al. 1998) has shown

that Listeria organisms are translocated to deep organs very rapidly, demonstrating

that crossing of the intestinal barrier occurs in the absence of prior intraepithelial

replication. Translocation was dose dependent, and the presence of Peyer’s patches

in ligated loops did not affect the rate of translocation, levels of uptake being

similarly low for Peyer’s patches and villous intestine (50–250 bacteria per cm2

of tissue after inoculation of the loop with 109 bacteria) (Pron et al. 1998). The

preferential site for bacterial replication was the Peyer’s patches, and the essential

listerial virulence factor Hly (hemolysin) was indispensable for this process,

showing that L. monocytogenes establishes an active local infection in these

lymphoid structures of the intestine. The sequence of cellular events leading to

the dissemination of L. monocytogenes from the gut to draining mesenteric lymph

nodes (MLNs) by confocal microscopy of immunostained tissue sections from a rat

ligated ileal loop system was studied (Pron et al. 2001). OX-62-positive cells

beneath the epithelial lining of Peyer’s patches (PPs) were the first Listeria targets

identified after intestinal inoculation. Listeriae were detected by microscopy in

draining MLNs as early as 6 h after inoculation. Listeria were transported by DCs

from PPs to the deep paracortical regions of draining MLNs and are then transmit-

ted to other cell populations by mechanisms independent of ActA. Another pathway

of dissemination to MLNs was identified, probably involving free Listeria and

leading to the infection of ED3-positive mononuclear phagocytes in the subcapsular

sinus and adjacent paracortical areas. The study provided evidence that DCs are
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major cellular targets of L. monocytogenes in PPs and that DCs may be involved in

the early dissemination of this pathogen. DCs were not sites of active bacterial

replication, making these cells ideal vectors of infection (Pron et al. 2001).

Experimental observations made with the mouse and rat models of intestinal

translocation do not, however, explain how L. monocytogenes causes enteritis. The
association of gastroenteric symptoms with fever is consistent with invasive intes-

tinal disease, as observed by Racz in the guinea pig model (Racz et al. 1972).

Pathogenic Listeria organisms pass directly from cell to cell by a mechanism

involving host cell actin polymerization. Therefore, regardless of the mechanism

of entry used, the bacteria that penetrate the intestinal wall might then invade

neighboring enterocytes by basolateral spread, leading to enteritis. This is consis-

tent with in vitro experimental data showing that L. monocytogenes enters polarized
Caco-2 cells predominantly via the basolateral surface (Gaillard and Finlay 1996).

Gross intestinal lesions develop in experimental animals only if large oral doses of

L. monocytogenes are given (Pron et al. 1998; MacDonald and Carter 1980).

Similarly, episodes of listeriae gastroenteritis in humans occur in the form of

outbreaks with very short incubation periods and high attack rates among immuno-

competent adults (Dalton et al. 1997; Salamina et al. 1996), consistent with the

ingestion of a very high dose of bacteria (as high as 2.9� 1011, as estimated for one

of these outbreaks, caused by the consumption of heavily contaminated chocolate

milk; Dalton et al. 1997). Thus, intestinal invasion and the ensuing febrile gas-

troenteritis syndrome probably result from extensive exposure of the intestine to

pathogenic Listeria organisms.

3.2 Crossing the Intestinal Barrier

The cellular basis of intracellular parasitism by this bacterium has been to a large

extent elucidated. The infection cycle begins with adhesion to the surface of

the eukaryote cell and subsequent penetration of the bacterium into the host cell.

The invasion of non-phagocytic cells involves a zipper-type mechanism, in

which the bacterium gradually sinks into tightly cupped structures of the host cell

surface until it is finally engulfed. The target cell membrane closely surrounds the

bacterial cell during the process and does not form the spectacular local processes

or membrane ruffles characteristic of invasion by Salmonella and Shigella spp.

(Dramsi and Cossart 1998; Karunasagar et al. 1994).

The virulence factors, including the internalins (InlA and InlB), listeriolysin

(Hly), phospholipases (PlcA and PlcB), a metalloprotease (Mpl) and a bacterial

surface protein that engages the host cell actin machinery, ActA, are encoded by

chromosomal genes organized in operons. Six of the virulence factors responsible

for key steps of L. monocytogenes intracellular parasitism (prfA, plcA, hly, mpl,
actA, and plcB) are physically linked in a 9-kb chromosomal island referred to as

LIPI-1 (for Listeria pathogenicity island 1) (Vazquez-Boland et al. 2001b). This

locus also harbors the PrfA transcriptional regulator, the master regulator of
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virulence gene expression in L. monocytogenes. The inlA and inlB genes are

located on a chromosomal region distinct from the LIPI-1 locus by are commonly

regulated by the transcriptional regulator PrfA. In addition, the expression of both

of these genes are independently regulated by the alternative sigma factor sB via a

sB-dependent promoter located upstream of inlA (Kazmierczak et al 2003; Kim

et al. 2005; Hain et al. 2008).

L. monocytogenes uses the two surface proteins, the internalins InlA and inlB, to

engage, in a species-specific manner, the adhesion molecule E-cadherin and the

hepatocyte growth factor receptor Met, respectively, to induce internalization

(Mengaud et al. 1996; Shen et al. 2000). Internalins A and B are members of a

large family of 25 proteins that are either located on the bacterial surface or are

proteins secreted by the bacteria. These proteins have common structures, compris-

ing of a signal peptide, a N-terminal region comprising of a repeat of 22 amino acid

rich in the amino acid leucine, hence leucine-rich-repeats (LRR), as well as a

immunoglobulin-like fold juxtaposed to these repeats (Schubert et al. 2001). The

800 amino acid-InlA protein harbors 15 LRR repeats and it is the inter-repeat

regions that are now known to engage its receptor E- cadherin (Lecuit et al. 1997;

Schubert et al. 2002). The InlA protein is tethered to the bacterial cell wall by a

LPXTG amino acid motif present at the C-terminal end of this polypeptide.

The receptor E-cadherin engaged by InlA is a member of a large family of

transmembrane proteins involved in maintaining the integrity of cell-cell junctions.

E-cadherin is a 882 amino acid single pass transmembrane protein of which the

N-terminal 555 amino acids are extracellular, possessing a short transmembrane

domain followed by a relatively short cytoplasmic tail of 152 amino acids. The

extracellular domain which comprises of five 110 amino acid-containing immuno-

globulin-like domains (EC1-EC5) is involved in Ca2+-dependent homotypic inter-

actions. It is to the most distal of these repeats that the InlA protein binds.

The InlA-E-cadherin interaction plays a key role in the crossing of the intestinal

barrier in humans and is also exploited by L. monocytogenes to target and cross the
placental barrier. E-cadherin is only expressed by a limited number of cell types,

mostly of epithelial origin. It has been reported that InlA (Lecuit et al. 2001), but

not InlB (Khelef et al. 2006), plays a critical role in the crossing of the intestinal

barrier after infection. However, when animals are infected intravenously with a

inlA mutant, no defects in the colonization properties of spleens and livers were

detected, indicating that InlA plays no role during systemic spread but is clearly a

key virulence factor during early oral infections (Lecuit et al. 2001). Following

internalization into host cells, the bacteria escape from the phagosomal compart-

ment and enter the cytoplasm. They then spread from cell to cell by a process

involving actin polymerisation. In infected hosts, the bacteria cross the intestinal

wall at Peyer’s patches to invade the mesenteric lymph nodes and the blood. The

main target organ is the liver, where the bacteria multiply inside hepatocytes

(Vazquez-Boland et al. 2001a).

A number of laboratory strains currently in use, e.g., the LO28 strain, harbor a

mutation in the InlA gene leading to the production of a secreted truncated InlA

polypeptide. Evidence from epidemiological studies has revealed that about 35% of
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strains isolated from food carry an identical mutation in the inlA gene. However,

from clinical isolates, 96% of all strains encoded a full length InlA polypeptide

suggesting that the expression of functional InlA is a prerequisite for translocating

from the gut to internal organs during infection.

3.3 Species-Specific Invasion of the Epithelial Barrier

Many pathogenicity tests for studying L. monocytogenes have been developed

using laboratory animals. A number of small animal species can be experimentally

infected with Listeria. Mice and guinea pigs can be infected either intragastrically

or intravenously. The intravenous route is the most relevant to the human foodborne

listeriosis. Not all L. monocytogenes strains are equally virulent (Roche et al. 2005).
Zachar and Savage (1979) demonstrated that L. monocytogenes colonizes the

gastrointestinal tract (GIT) of germ-free mice. Generally, L. monocytogenes was
displaced from the mucosal layer and failed to colonize mice that were not germ

free. The rate of peristalsis is slower in germ-free mice so L. monocytogenes would
be propelled faster through the bowels of normal mice (Abrams and Bishop 1967).

Abrams and Bishop (1967) also hypothesized that L. monocytogenes may colonize

the GIT during an imbalance within the microbial ecosystem of the GIT.

Imbalances could be caused by a number of factors including starvation, antibiotics,

and other antimicrobials. The role of virulence factors and other mechanisms is

outlined in Fig. 1.
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Fig. 1 The host barriers and mechanism of interactions of Listeria inside the gut. The various cell
types and processes are involved in gastrointestinal listeriosis. InlA plays a central role in crossing

the intestinal barrier
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The internalin-E-cadherin interaction is species-specific, and relies on the nature

of a single amino-acid in the E-cadherin molecule, which is proline in permissive

species such as humans, and glutamic acid in non-permissive species such as

the mouse (Lecuit 2005). Although there was 85% similarity between mouse

E-cadherin and human E-cadherin, no interactions were observed between mouse

E-cadherin and InlA. Lecuit et al. (1999) found that substituting a single amino acid

in human E-cadherin (proline to glutamic acid) resulted in inefficient interaction

between L. monocytogenes and E-cadherin. Lecuit et al. (2001) later demonstrated

the interaction between internalin and E-cadherin in vivo in a transgenic mouse that

expressed human E-cadherin. Recently Wollert et al. (2007) designed a versatile

murine model for human listeriosis by substituting two amino acids in InlA (Glu16-

Pro and Gln64-Glu) in mice. These mutations adapted the bacterium to infection of

the gut epithelium in mouse by modifying InlA to recognize the previously incom-

patible receptor of mouse E-cadherin. The host specificity of Listeria invasion is

given in Table 2.

In a more recent study, Lecuit et al. (2001) reported infecting guinea pig cells of

epithelial origin with L. monocytogenes. In addition, they also sequenced the guinea
pig Ecadherin EC1-coding region and found that the guinea pig E-cadherin, like

human E-cadherin, harbors a proline at position 16. Even though previous studies

had implicated InlA in fetoplacental listeriosis, there was no requirement of InlA in

pregnant guinea pigs (Bakardjiev et al. 2005). Additional studies have helped to

characterize the role of the bacterial invasion proteins InlA and InlB in these

animals. InlB is unable to engage the Met receptor of guinea pigs, thus InlA-

dependent fetoplacental crossing is diminished. However, oral infection with two

novel and complementary animal models for human listeriosis, the gerbil, a natural

host for L. monocytogenes, and a knockin mouse line ubiquitously expressing

humanized E-cadherin, have been described (Disson et al. 2008). Using these two

models, where both receptors for InlA and InlB are functionally expressed at both

the gut epithelia and the fetotransplacental barrier, allowed conclusive demonstra-

tion of the essential and interdependent roles of InlA and InlB in fetoplacental

listeriosis (Disson et al. 2008).

Active translocation of L. monocytogenes across the gut epithelial barrier is

mediated by interaction of bacterial internalin (InlA) and its species-specific host

receptor, E-cadherin, whereas translocation across Peyer’s patches through M-cells

is InlA-independent. Germ-free transgenic mice expressing the human enterocyte-

associated E-cadherin receptor with wild-type (WT) or mutant L. monocytogenes

Table 2 Host specificity of Listeria invasion

Animal Intestine Placenta

Mouse � �
Rat � þ
Guinea pig þ �
Rabbit þ þ
Gerbil þ þ
Human þ þ
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strains, or its nonpathogenic noninvasive relative Listeria innocua, or with

Bacteroides thetaiotaomicron, a prominent gut symbiont, were colonized to define

microbial determinants and molecular correlates of the host response to trans-

location. An analysis of signaling pathways, following infection with wild-type

L. monocytogenes or isogenic mutant strains lacking listeriolysin (hly) or InlA

(inlA), revealed that the host response was found to be markedly attenuated in a

listeriolysin-deficient (Dhly) mutant despite its ability to be translocated to the

lamina propria. The mucosal response to the inlA mutant was, however, virtually

identical to that seen with the wild-type strain. Therefore, hly, rather than bacterial

invasion of the lamina propria mediated by InlA, is a dominant determinant of

the intensity of the host response to L. monocytogenes infection via the oral

route (Lecuit 2007). Recently, it was demonstrated that listeriolysin can induce

diarrheagenic effects by inducing active chloride secretion, and at higher concen-

trations, affect barrier function. These effects are Ca2+-dependent and can be

reproduced by the use of purified toxin, suggesting that this is a remote effect not

requiring the presence of the bacterium (J. Richter and J.D. Schulzke, personal

communication)

4 Factors Supporting Gastrointestinal Persistence and Survival

Following ingestion into the stomach by a human host, L. monocytogenes encoun-
ters low pH and low oxygen conditions. Growth, survival, proliferation, and

pathogenesis of L. monocytogenes under low oxygen or anaerobic conditions

have been reviewed by Lungu et al. (2009). Recent studies (Cotter et al. 2001;

Ferreira et al. 2003) have shown that L. monocytogenes possesses acid resistance

systems that enable it to combat low pH conditions occurring in foods as well as in

the stomach. Conte et al. (2000) showed that acid-adapted L. monocytogenes cells
were more capable of infecting and proliferating in Caco-2 cells than their non-

acid-stressed counterparts. The alternative sigma factor, sB, has been shown to be
necessary for survival of L. monocytogenes following exposure to low pH condi-

tions. Ferreira et al. (2001) reported that stationary phase cells of a DsigB mutant

strain were 10,000-fold more susceptible to lethal acid stress (pH 2.5) than the

wild-type. L. monocytogenes 4b has been linked to most large outbreaks of

listeriosis. Czuprynski et al. (2002) suggest that L. monocytogenes serotype 4b

may possess one or more virulence factors that improve its ability to cause

systemic infection following inoculation via the intragastric route. Glutamate

enhances the survival of L. monocytogenes in gastric fluid and other low pH

environments, and this is directly linked to the activity of the glutamate decar-

boxylase system (GAD). L. monocytogenes LO28 possesses two glutamate decar-

boxylate homologues gadA and gadB that are differentially expressed. The

sensitivity of a DgadAB mutant to ex vivo porcine and synthetic gastric fluid

demonstrated that the GAD system facilitates survival in the stomach following
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ingestion as well as in other low pH environments. In addition, L. monocytogenes
strains that are known to be sensitive to gastric juice exhibit low levels of GAD

activity (Cotter et al. 2001).

Survival of the pathogen within gastric acid requires the glutamate decarboxyl-

ase (GAD) system. In addition, the carnitine uptake system, OpuC, is essential for

adaptation within the murine GI tract and subsequent invasive disease. Survival of

bile salts both in vitro and in vivo requires a number of mechanisms including bile

salt hydrolase (Bsh) and the recently described bile exclusion system, BilE (previ-

ously OpuB). Finally, a number of these systems (including Bsh, OpuC, and BilE)

are regulated by both the alternative stress sigma factor, Sigma B, and by the

regulator of virulence gene expression, PrfA (Gahan and Hill 2005).

The ability of L. monocytogenes to survive the various external environments

including low O2 conditions prior to infection as well as in the various microenvir-

onments of the gastrointestinal tract are essential for this pathogen to cause disease.

L. monocytogenes encounters various external stresses such as acid stress, anaero-

biosis, oxidative stress, and nutrient starvation in the environment; stresses that may

also be present during the course of invasion and growth within host cells (Lou and

Yousef 1997; Hanawa et al. 1995; Christiansen et al. 2004). For effective coloniza-

tion or invasion of various environmental niches such as the gastrointestinal tract,

soil, silage, and sludges, L. monocytogenes has to be able to overcome a number of

barriers including anaerobiosis, pH shifts, and high osmolarity. L. monocytogenes
has also had to develop successful strategies to be able to compete for substrate with

other organisms found in these environments. In addition, L. monocytogenes must

also assimilate nutrient substrates as well as survive under the harsh conditions

presented to it in the gastrointestinal tract and the macrophages.

Many of the classical studies of listerial pathogenesis examined the role of

bacterial virulence factors on systemic infection in mice following intravenous

inoculation. More recent research is beginning to focus upon the GI phase of

listeriosis. For instance, recent experiments have established that L. monocytogenes
colonizes the gall bladder of infected mice (Hardy et al. 2004), that bile salt

hydolase activity is essential for pathogenesis (Dussurget et al. 2002), and that

carnitine uptake by the pathogen is essential for survival within the small intestine

and transient colonization of the murine GI tract (Sleator et al. 2001; Wemekamp-

Kamphuis et al. 2002). It is evident that this exciting research is required in order to

determine the specific pathogen and host factors that contribute to natural disease

following consumption of contaminated foods.

During foodborne infection, L. monocytogenes encounters a number of subopti-

mal microenvironments that constitute elements of the host physico-chemical

defense system. In order to transiently colonize the host GI tract prior to invasion

the pathogen must survive acid conditions within the stomach as well as elevated

osmolarity and the presence of bile salts within the small intestine. Whilst Listeria
spp. can be isolated from feces, it is not yet clear whether this represents a

colonization or carriage state or is due to transient passage through this environment

(Hof 2001). The recent finding that L. monocytogenes colonizes the gallbladder of
infected mice raises the intriguing possibility that the gallbladder may function as a
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source of chronic shedding of the organism (Hardy et al. 2004). Examination of the

Listerial response to stresses normally encountered in the upper small intestine

revealed osmotic stress to be at the top of the hierarchy of stress responses during

gastrointestinal residence. Furthermore, the increased osmolarity of the gastroin-

testinal lumen may be interpreted as an environmental cue signaling gut entry and

that the underlying genetic element governing this response is the alternative stress

sigma factor, sigma B (Sleator et al. 2007).

There is evidence that treatment of individuals with antacids or cimetidine may

reduce resistance to L. monocytogenes infection (Donnelly 2001) or increase fecal

carriage rates of L. monocytogenes (Cobb et al. 1996). This suggests that, under

normal conditions, the low pH of the stomach provides a significant and effective

barrier to Listeria infection.

L. monocytogenes has the capacity to undergo an adaptive response to moder-

ately acidic pH (pH 5–5.5) that enhances survival under conditions of lethal pH

(pH 3.5) (Davis et al. 1996; O’Driscoll et al. 1996). The stress hardening

response is most likely essential for infection, and it is likely that bacterial

gene expression during passage through the stomach will influence subsequent

survival in the GI tract. The L. monocytogenes GAD system significantly con-

tributes to survival at low pH (Cotter et al. 2001). L. monocytogenes encodes two
antiporters capable of transporting glutamate into the cell and three GAD

enzymes that potentially carry out decarboxylation of glutamate (Glaser et al.

2001). Analysis of the L. monocytogenes EGDe genome sequence reveals that the

pathogen contains the genes required for operation of the arginine deiminase

system (Glaser et al. 2001).

The lumen of the GI tract is a region of relatively high salinity (0.3 M NaCl)

(Chowdhury et al. 1996). Passage of bacteria from the stomach into the small

intestine therefore represents an osmotic upshift that, in many foodborne pathogens,

serves to trigger the expression of genes that are necessary for survival and coloni-

zation (Nikaido et al. 1983; Foster and Spector 1995). Functional genetic analysis

has determined that the membrane transporters BetL (Sleator et al. 1999) and

Gbu (Ko and Smith 1999) are principally responsible for uptake of glycine betaine,

an osmolyte predominately associated with plant material. The product of the

L. monocytogenes gene oppA has been demonstrated to function as a peptide

transport system and is required for effective systemic infection of mice (Borezee

et al. 2000).

In order to cause systemic illness, L. monocytogenes needs to overcome

various intestinal barriers including bile stress, volatile fatty acids, osmotic stress,

nutrient variability, and intestinal microflora as well as the intestinal wall. To

survive in the human intestinal tract during pathogenesis, L. monocytogenes must

be able to survive bile that is secreted from the gall bladder into the upper small

intestine. Begley et al. (2002) demonstrated that, during anaerobic incubation,

L. monocytogenes LO28 was capable of growth in physiological concentrations

of 0.3% human bile, and that further addition of up to 10% human bile did not

inhibit growth. This study showed that L. monocytogenes LO28 was tolerant to

individually conjugated bile acids at 5 mM concentrations.
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L. monocytogenes isolates are generally relatively bile resistant; however, bile

resistance varies significantly between strains (Begley et al. 2002). Using a trans-

poson mutagenesis approach, a total of 12 genes were identified which play a role in

bile tolerance in L. monocytogenes (Begley et al. 2002). The majority of these genes

are predicted to encode proteins that play a role in stress resistance (including

gadA), maintenance of cell envelope integrity, and transcriptional regulators (Dalet

et al. 1999). Interestingly, the majority of these genes can be found within a discrete

50-kb region of the L. monocytogenes genome that also includes opuC and bilE/
opuB. This region may therefore represent a cluster of genes involved in resistance

to conditions encountered within the GI tract (Gahan and Hill 2005).

The gene encoding bile salt hydrolase activity (bsh) in L. monocytogenes is

required for infection of guinea pigs by the oral route and for systemic infection in

mice (Dussurget et al. 2002). Furthermore, as Bsh is absent from nonpathogenic

Listeria species and is regulated by PrfA, the gene product represents a bonafide

virulence factor that is indispensable for colonization of the GI tract by pathogenic

Listeria species prior to invasion (Dussurget et al. 2002). Furthermore, another gene

with homology to bile acid dehydratase was demonstrated and hence designated

bile tolerance locus B (btlB); this is also necessary for colonization of the GI tract in
mice (Begley et al. 2005). A two-gene system (lmo1421 and lmo1422, renamed as

bilE) plays a role as a potential bile exclusion system, and a mutation in this gene

results in significantly reduced resistance to human bile in vitro. BilE is required for

full virulence potential in L. monocytogenes (Sleator et al. 2005).
A number of reports have documented L. monocytogenes cholecystitis in

humans (Allerberger et al. 1989; Briones et al. 1992). Whole-animal biolumines-

cence imaging to track the fate of L. monocytogenes cells expressing Lux biolumi-

nescence was used to examine replication of the pathogen in the murine gallbladder

(Hardy et al. 2004). The study determined that the gallbladder is a major focus of

infection in mice inoculated by the intravenous or oral routes of infection, and that

bacteria replicate extracellularly within the lumen of the gallbladder indicating that

L. monocytogenes must be able to resist high concentrations of bile, and that genes

involved in bile resistance may be of paramount importance for survival within the

small intestine, and for systemic infection. It was shown that L. monocytogenes
strains are resistant to high concentrations of bovine bile at neutral pH, the pH of

bile within the gallbladder (Begley et al. 2005). However, with a drop in pH, as may

be encountered within the intestine, bile becomes much more toxic to the bacterial

cell (Begley et al. 2002). Bile may therefore present more of a challenge to Listerial

growth in the lumen of the small intestine than in the lumen of the gallbladder.

In addition to competition with resident microflora, L. monocytogenes encoun-
ters high osmotic conditions (0.3 M) in the small intestine (Chowdhury et al. 1996).

Osmotic upshifts trigger the expression of genes necessary for survival under

osmotic stress. Three osmolyte transporters have been identified in L. monocyto-
genes, and include glycine betaine porter I (BetL), glycine betaine porter II (Gbu),

and a carnitine transporter (OpuC) (Fraser et al. 2000; Ko and Smith 1999; Mendum

and Smith 2002 ). Sleator et al. (2001) linked OpuC to carnitine and glycine betaine

uptake and showed that altering OpuC resulted in significant reduction in the ability
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of L. monocytogenes to colonize the upper small intestine and cause subsequent

systemic infection following peroral inoculation.

HtrA is necessary for the survival of L. monocytogenes in elevated sodium

chloride concentrations, high temperature growth, oxidative stress caused by

hydrogen peroxide, and acid sensitivity (Stack et al. 2005; Wonderling et al.

2004). Most of these conditions can be found in the various microenvironments

encountered during pathogenesis.

Intracellular gene expression profiling of bacteria from infected macrophages

(Chatterjee et al. 2006) revealed upregulation of the opuBA gene (lmo1421 and

lmo0903, encoding a glycine betaine uptake system) and a gene similar to the osmC
gene during the intracellular growth. Both genes are also known to be induced under

osmotic stress situations (Gutierrez and Devedjian 1991; Wemekamp-Kamphuis

et al. 2004). Three genes of the universal stress protein (Usp) family (lmo0515,
lmo2673, and lmo2748) and genes for cholate, sodium, and pH homeostasis

(lmo2378, lmo2381, and lmo2382) were upregulated intracellularly. Additionally,

the upregulation of lmo0754 (btlB) needed to combat bile stress was detected

(Chatterjee et al. 2006).

Apart from the hemolytic toxin listeriolysin a second haemolysin, HlyS,

which is present in a subset of strains of lineage I, the evolutionary lineage of

L. monocytogenes that contributes to the majority of spontaneous and epidemic

outbreaks of listeriosis, has been identified (Cotter et al. 2008). This second

haemolysin is only induced under oxidative stress conditions and contributes to

murine virulence and survival in polymorphonuclear neutrophils. Its role in gastro-

intestinal infections remain to be explored.

5 Cellular Processes Affecting Listeria Survival in the

Gastrointestinal Tract

L. monocytogenes was used long before its importance as a risk to public health and

food safety was recognized by immunologists, because an infection highly remi-

niscent of human listeriosis was easily reproducible in laboratory rodents and

protection could be transferred in syngeneic mice through spleen cells. The pio-

neering work of Mackaness in the early 1960s demonstrated that L. monocytogenes
is able to survive and multiply in macrophages, and this bacterium has been used in

immunological research as a prototype intracellular parasite (Machesky 1997).

L. monocytogenes and L. ivanovii are facultative intracellular parasites able to

survive in macrophages and to invade a variety of normally nonphagocytic cells,

such as epithelial cells, hepatocytes, and endothelial cells.

Bacterial flora and microbial density in the lumen of the intestine are controlled

by the Paneth cells, a small intestinal lineage that resides at the base of the crypts

of Lieberkühn. These cells contribute to innate immunity by secreting antimicrobial

products such as lysozymes, a-defensins, and secretary phospholipase A2.
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(Yano and Kurata 2009). Recently, defects in the gene Atg16L1, that is required for

autophagosome formation, and the transcription factor XBP1, a key regulator of

endoplasmic reticulum (ER) stress response, have led to Paneth cell dysfunction

(Saitoh et al. 2008; Cadwell et al. 2008). Mice with an Xbp1 deletion in intestinal

epithelial cells were unable to control and clear an oral infection with L. mono-
cytogenes (Kaser et al. 2008). Escape from autophagy following entry into the host

cell cytoplasm is also a strategy used by L. monocytogenes even though the

molecular mechanisms involved have not been described (Ogawa et al. 2009).

Protective immunity towards intracellular pathogens such as L. monocytogenes
requires the presence of a cytosolic surveillance pathway via cytosolic nuclear

oligodimerization domain (NOD)- like receptors (NLR). Nod2, which recognizes

muramyl dipeptide in peptidoglycan, is a critical regulator of bacterial immunity

within the intestine and has been found to recognize L. monocytogenes following its

entry into the host cell cytosol. Recognition by Nod2 induces the expression of a

subgroup of intestinal antimicrobial peptides, known as cryptdins. Nod2-deficient

mice are susceptible to an infection with L. monocytogenes via the oral route but not
through intravenous or peritoneal delivery (Kobayashi et al. 2005). Recently, it was

discovered that CD147 (also known as BSG and EMMPRIN), a membrane-bound

regulator of cellular migration, differentiation, and inflammatory processes, is a

protein interaction partner of NOD2. A complex influence of the CD147-NOD2

interaction on NOD2-dependent signaling responses has been observed. The CD147

itself acts as an enhancer of the invasion ofL.monocytogenes, an intracellular bacterial
pathogen, and it is thought that the CD147-NOD2 interaction serves as a molecular

guide to regulate NOD2 function at sites of pathogen invasion (Till et al. 2008).

The recognition of lipoproteins on L. monocytogeneswas shown to be dependent
on the presence of the bacterial pro-lipoprotein diacylglyceryl transferase gene lgt,
which modifies the thiol group of cysteine in the signal peptide during the matura-

tion of lipoproteins (Machata et al. 2008). Mice lacking the TLR2 receptor are also

susceptible to infection with L. monocytogenes (Janot et al. 2008).

6 Gastrointestinal Listeriosis and Involvement

of Other Diseases

Host susceptibility plays a major role in the presentation of clinical disease upon

exposure to L. monocytogenes. Listeriosis in nonpregnant adults is associated in

most cases (> 75%) with at least one of the following conditions: malignancies

(leukemia, lymphoma, or sarcoma) and antineoplastic chemotherapy, immunosup-

presant therapy (organ transplantation or corticosteroid use), chronic liver disease

(cirrhosis or alcoholism), kidney disease, diabetes, and collagen disease (lupus)

(Farber and Peterkin 1991; McLauchlin 1990). Many listeriosis patients have a

physiological or pathological defect that affects T cell-mediated immunity. Preex-

isting gastrointestinal disease may be a risk factor for infection of the gastrointesti-

nal tract with L. monocytogenes (Schlech et al. 2005).
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Inflammatory bowel disease (IBD) has been attributed to aberrant mucosal

immunity to the intestinal microbiota. The transcription factor XBP1, a key com-

ponent of the endoplasmic reticulum (ER) stress response, is required for develop-

ment and maintenance of secretory cells and linked to JNK activation (Kaser et al.

2008). A stressful environmental milieu in a rapidly proliferating tissue might

instigate a proinflammatory response. Xbp1 deletion in intestinal epithelial cells

(IECs) results in spontaneous enteritis and increased susceptibility to induced

colitis secondary to both Paneth cell dysfunction and an epithelium that is overly

reactive to inducers of IBD such as bacterial products (flagellin) and TNFalpha.

An association of XBP1 variants with both forms of human IBD (Crohn’s disease

and ulcerative colitis) was identified and replicated with novel, private hypo-

morphic variants identified as susceptibility factors. Hence, intestinal inflammation

can originate solely from XBP1 abnormalities in IECs, thus linking cell-specific

ER stress to the induction of organ-specific inflammation (Kaser et al. 2008).

As detailed above, apart from defects in the endocytoplasmic reticulum stress,

mice harboring mutations in the NOD2 receptor, in genes involved in autophagy,

i.e., ATG16L1. or defective for TLR2 signaling have all been implicated in the

susceptibility to inflammatory bowel diseases. The ability of L. monocytogenes to
target all of these cellular processes makes it a prime suspect among the bacterial

pathogens thought to be causative or associated with the onset of disease. The cold

chain hypothesis suggests that psychrotrophic bacteria such as Listeria spp. con-

tribute to Crohn’s disease (Hugot et al. 2003).

7 Persistence in Chronic Listeriosis

Bone marrow has recently been shown to harbor L. monocytogenes, which spreads

from this location to the central nervous system. Variant strains producing low levels

of listeriolysin and which are defective intracellular replication have been found to be

capable of prolonged focal infection of the bone marrow for periods of up to several

weeks. Bone could, therefore, be an important chronic reservoir (Hardy et al. 2009).

Prosthetic hip joints have also been found to harbor Listeria (Tabib et al. 2002; Cone
et al. 2001), and in addition to previous studies demonstrating persistence of

L. monocytogenes in the gall bladders of infected mice (see above), suggest the

emergence (or realization) of chronic forms of listerial infection.

8 Outlook and Perspective

There is now ample epidemiological, clinical, and biological evidence to implicate

L. monocytogenes as an important source of diarrhea in infected individuals.

Because it is also capable of systemic infection, gastroenteritis due to L. mono-
cytogenes should be considered in outbreaks of febrile gastroenteritis when routine
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stool cultures fail to yield a pathogen. The role of metabolism and metabolic

substrates in the growth and survival of L. monocytogenes under anaerobic condi-
tions could yield insights into the causes or triggers of virulence in this pathogen

during the gastrointestinal phase. Studies have revealed the strategy taken by

the bacteria to overcome changes in oxygen tension, osmolarity, acidity, and the

sterilizing effects of bile or antimicrobial peptides to adapt to conditions in the gut.

L. monocytogenes have evolved species-specific strategies for intestinal entry by

exploiting the interaction between the internalin protein and its receptor E-cadherin,

or inducing diarrhea and an inflammatory response via the activity of its hemolytic

toxin, listeriolysin. The creation of a humanized mouse model and the generation of

mouse-adapted InlA are exciting developments that will forge a better understand-

ing of the gastrointestinal phase of listerial infection. The ability of these bacteria to

induce ER stress, escape from autophagy, and to induce depletion of sentinel cells,

such as Paneth cells that monitor the luminal burden of commensal bacteria,

suggest strategies that have evolved to promote intestinal survival. The diarrhea-

genic effects of listeriolysin have pathophysiological implications, because induc-

tion of intestinal secretion allows bacteria to spread to new hosts. Further studies to

examine the genetic structure of Listeria strains that have a propensity to cause

gastrointestinal versus systemic infections is now warranted.
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Abstract Campylobacter jejuni is the principal bacterial foodborne pathogen. A

major challenge still is to identify the virulence strategies exploited by C. jejuni.
Recent genomics, proteomics, and metabolomics approaches indicate that C. jejuni
displays extensive inter- and intrastrain variation. The diverse behavior enables

bacterial adaptation to different environmental conditions and directs interactions

with the gut mucosa. Here, we report recent progress in understanding the molecu-

lar mechanisms and functional consequences of the phenotype diversity. The results

suggest that C. jejuni actively penetrates the intestinal mucus layer, secretes

proteins mainly via its flagellar apparatus, is engulfed by intestinal cells, and can

disrupt the integrity of the epithelial lining. C. jejuni stimulates the proinflamma-

tory pathway and the production of a large repertoire of cytokines, chemokines,

and innate effector molecules. Novel experimental infection models suggest that

the activation of the innate immune response is important for the development

of intestinal pathology.

1 Introduction

Campylobacter jejuni is estimated to cause approximately 400 million cases of

human enterocolitis per year. In developing countries, Campylobacter is the most

commonly isolated bacterial pathogen from young children with diarrhea (Coker

et al. 2002). At older ages, most infections are usually mild or asymptomatic,

probably because of immunity that may follow frequent exposure to contaminated

food or water (Allos and Blaser 1995; Havelaar et al. 2009). In industrialized

nations, C. jejuni is the leading bacterial foodborne pathogen and one of the most

important causative agents of traveler’s diarrhea. Ingestion of as few as 500 bacteria

is sufficient to develop symptomatic disease (Black et al. 1988). The bacteria

colonize the distal small intestine and the colon, and induce mucosal edema,

cellular infiltrates, small abscesses, and focal ulcerations (Colgan et al. 1980).

Clinical manifestations are fever, abdominal cramps, and bloody or watery diarrhea

(Allos and Blaser 1995). Although the symptoms generally resolve within 5–7 days,

the economical burden caused by C. jejuni is estimated to be up to 8 billion dollars

per year in the US alone (Buzby and Roberts 1997). This is partly attributed to

severe complications that can follow C. jejuni infection, such as reactive arthritis

and the paralyzing autoimmune neuropathies, Guillain-Barré syndrome and Miller

Fisher syndrome (Yuki et al. 2004). The association between C. jejuni infection and
the occurrence of irritable bowel syndrome (Spiller 2007) and immunoproliferative

intestinal lymphomas (IPSID) (Lecuit et al. 2004) is still under investigation.

In comparison to other intestinal pathogens of global importance, C. jejuni
pathogenesis is still poorly understood. Recent genomics, proteomics, and advanced

infection biology approaches, however, have led to the discovery of important

bacterial traits including the presence of a polysaccharide capsule and sophisticated

protein glycosylation machineries. Furthermore, metabolic adaptation in response to

changing environments, flagella-driven motility, chemotaxis, protein secretion,
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colonization of mucus, bacterial infection of mucosal cells, and toxin production

appear key steps in the establishment of infection. Here, we will discuss the state-of-

the-art of the molecular pathogenesis of C. jejuni infection of the gut.

2 C. jejuni Genetics and Diversity

2.1 Genome Variation

C. jejuni is a Gram-negative spiral-shaped bacterium that needs a microaerophilic

growth environment of 30–44�C under laboratory conditions. The bacterium is

highly motile due to the presence of a single flagellum at each pole. The C. jejuni
genome is relatively small (1.6–1.7 Mb) (Parkhill et al. 2000), but shows consider-

able genetic diversity among individual C. jejuni isolates. Horizontal gene ex-

change and natural competence for DNA uptake likely contribute to the largely

nonclonal nature of the species. Genome-wide analysis of multiple C. jejuni isolates
suggests that about 20% of the C. jejuni genome varies between strains with the

presence of unique sets of genes in different isolates (Pearson et al. 2003; Poly et al.

2005; Hofreuter et al. 2006). Approximately 50% of the variable gene pool is

located in hypervariable loci involved in the biosynthesis and posttranslational

modification of flagellin, in capsule and lipo-oligosaccharide (LOS) production,

and in DNA restriction/modification. A relatively large number of C. jejuni genes
within the variable DNA regions contain tracts of repetitive nucleotide repeats

(Wassenaar et al. 2002; Parkhill et al. 2000). These homopolymeric tracts are prone

to undergo high rate slipped-strand mispairing resulting in high frequency on-off

switching of gene function.

The C. jejuni genome does not contain typical pathogenicity islands. However,

individual strains may contain one or more C. jejuni-integrated elements (CJIEs)

with phage characteristics (Fouts et al. 2005; Parker et al. 2006; Clark and Ng 2008)

and/or different types of cryptic plasmids (Miller et al. 2007). Conjugative plasmids

are frequently found, but generally poorly characterized. A small subset of isolates

carries the pVir plasmid (Bacon et al. 2002; Tracz et al. 2005). This plasmid

contains elements of a putative type IV secretion system that in other bacterial

species is involved in DNA export, conjugation, and protein secretion. In C. jejuni,
the pVir plasmid is not required to establish an infection and does not appear to be

associated with the development of bloody diarrhea (Louwen et al. 2006) in

contrast to earlier suggestions (Tracz et al. 2005).

2.2 Phenotype Diversity in C. jejuni

The variable gene content in C. jejuni isolates generates differences in bacterial

phenotype and adaptation potential. At the metabolic level, this is nicely
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exemplified by the variable ability of strains to utilize glutamine and asparagine as

nutrients due to variable presence or allelic variation in the genes encoding gamma-

glutamyltranspeptidase (GGT) and a periplasmic asparaginase, respectively

(Hofreuter et al. 2008). This may influence bacterial colonization (Barnes et al.

2007). Similarly, strains may secrete isoforms of the FspA protein that differ in

their ability to induce host cell apoptosis (Poly et al. 2007), while variable presence

of CJIEs contributes to the difference in natural transformability between C. jejuni
strains due to encoded DNase activity (Gaasbeek et al 2009). Strain variations in the

composition of the flagellar locus can lead to both differences in the flagellin

protein backbone and in variable post-translational modifications of flagellin.

This variation influences antigenicity and flagella function, i.e., autoagglutination

behavior. Even more marked strain diversity originates from the variable composi-

tion of the capsular and LOS biosynthesis loci. This results in the presence of many

capsule types (Karlyshev et al. 2005) and a huge repertoire of produced surface

lipo-oligosaccharides (Karlyshev et al. 2005; Parker et al. 2008). The capsule

surface variation is often accompanied by a change in different antigenic properties

(Karlyshev et al. 2005) and may contribute to the variable susceptibility of C. jejuni
to bacteriophages (Coward et al. 2006). The clinical importance of the LOS

diversity is illustrated through the association between the distinct LOS glycoforms

that mimic host cell gangliosides and the development of Guillain–Barré syndrome

(Yuki et al. 2004). The LOS structures may also differentially interact with host

lectin receptors and thus influence the pathogen–host interaction. Thus far, pheno-

type diversity of C. jejuni is rarely taken into account in molecular pathogenesis

studies, most of which are performed with a limited set of strains (e.g., strains

11168, 81–176, and 81116).

2.3 Intrastrain Phenotype Variation

In addition to differences in gene content that may explain diversity in behavior

between C. jejuni isolates, individual strains display extensive phenotype variation.
Two major mechanisms contribute to the intrastrain phenotype diversity, genetic

variation and gene regulation. The genetic variation is largely based on the large

number of homopolymeric DNA repeats in the genome. This often leads to uncon-

trolled variation in promoter activity or a shift in open reading frames. The

seemingly random on-and-off switching of genes in the population yields a bacte-

rial progeny that is heterogeneous in the production and/or structure of major

surface components including the capsular polysaccharide, LOS and flagellin

(Bacon et al. 2001; Linton et al. 2000; Guerry et al. 2002; van Alphen et al.

2008b). This diversity can be highly beneficial to the C. jejuni isolate as a hetero-
geneous set of bacterial phenotypes can prepare the bacterial population to survive

changing environmental conditions.

Apart from via (random) genetic variation, the C. jejuni can switch phenotype by
controlled regulation of gene expression. This type of regulation usually acts at the
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level of the entire population rather than of individual bacteria and typically occurs

in response to distinct environmental cues. Illustrative examples are the availability

of iron and phosphate, which regulate the biosynthesis of iron and phosphate

acquisition systems (Palyada et al. 2004; Wösten et al. 2006). Other traits of

C. jejuni that appear to be subject to gene regulation are capsule production, flagella
synthesis, flagella-mediated protein secretion, and biofilm formation. The molecu-

lar mechanisms that drive these events and their importance for C. jejuni coloniza-
tion and virulence largely remain to be determined.

2.4 Metabolic Adaptation

C. jejuni encounters a variety of environmental niches ranging from surface water

to the gut of animals and humans. Survival under these conditions requires intricate

adaptation machineries that enable C. jejuni to switch between, e.g., different

nutrient sources, and to respond to alterations in oxygen availability and tempera-

ture such as exist in the intestine of different hosts. Microarray analysis of C. jejuni
cultured under different environmental conditions demonstrates major differences

in gene expression after growth at 37 and 42�C, simulating the body temperatures of

human and chicken, respectively (Stintzi 2003). Similarly, in a limited oxygen

environment, C. jejuni can switch to alternative electron acceptors including fuma-

rate and nitrite (Sellars et al. 2002), and utilize alternative amino acids as preferred

carbon source (Guccione et al. 2008; Wright et al. 2009). The change in metabolic

state in different environmental niches may alter C. jejuni virulence properties. In

chickens, which are a major reservoir of C. jejuni, colonization of the cecum occurs

without apparent intestinal pathology. The bacteria preferentially reside in the

mucus in close proximity to the epithelial cells but apparently do not adhere to or

invade the intestinal tissue (Beery et al. 1988; Meinersmann et al. 1991). The

altered body temperature and the much more abundant presence in the chicken

cecum of the amino acids serine, proline, aspartate, and glutamate, that are prefer-

entially metabolized by C. jejuni, may influence C. jejuni behavior such as bacterial
growth and chemotaxis and thereby alter bacterial virulence.

The environmental changes in C. jejuni behavior appear mainly driven via

sophisticated two-component signal transduction systems that control the expres-

sion of distinct metabolic regulons (reviewed in Wösten et al. 2008) and posttran-

scriptional regulatory mechanisms (Yun et al. 2008; Fields and Thompson 2008).

Infection experiments in chickens with C. jejuni with genetically defined defects in
different two-component signal transduction systems demonstrate that they are

essential for bacterial colonization and/or persistence in the intestine (Brás and

Ketley 1999; Svensson et al. 2009; MacKichan et al. 2004; Wösten et al. 2004).

Future expression profiling of human C. jejuni intestinal isolates may reveal which

adaptation machineries are activated in the human intestine and whether these

systems affect C. jejuni virulence traits.
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3 C. jejuni Virulence Repertoire

3.1 Campylobacter Infection in Humans

Human volunteer studies using clinical isolates confirm that C. jejuni causes

dysenteric symptoms with high numbers of leukocytes in the feces (Black et al.

1988). Pathology on intestinal biopsies and experimental animal models show

damage to columnar epithelial cells, increased exfoliation, necrosis, diffuse neutro-

phil infiltration of the lamina propria with superficial crypt abscesses, and histo-

pathological features similar to Salmonella- and Shigella-induced colitis (Black

et al. 1988; Russell et al. 1989). C. jejuni is also found inside colonic mucosal cells

(van Spreeuwel et al. 1985), indicating that Campylobacter is able to invade human

epithelial cells in vivo. The molecular basis of C. jejuni intestinal pathology is not

completely understood. The major bacterial traits that are thought to contribute to

C. jejuni colonization and pathogenesis are outlined below.

3.2 Flagella and Flagella-Mediated Motility

Flagella-mediated motility is highly important for the successful C. jejuni coloni-
zation of the gastrointestinal tract of experimental animals and human volunteers

(Morooka et al. 1985; Walker et al. 1986). Bacterial motility is conferred through a

single unsheathed flagellum that is present at each pole. Over 40 genes are involved

in C. jejuni flagella biogenesis and assembly (Wösten et al. 2004, 2008). C. jejuni
produces two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB,

that are both incorporated into the flagellum although not in equal amounts. The

expression of FlaA and FlaB is controlled by different transcription factors, namely

the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors (Wösten

et al. 2004; Hendrixson and DiRita 2003). The biological advantage of the differ-

ential regulation of the expression of the two flagellins is unknown. Both types of

flagellin can be assembled into a filament structure and differ in only 9–10 amino

acids in their otherwise conserved domains that form the backbone of the flagella

fiber. It cannot be excluded that the amino acid differences influence the properties

and/or structure of the hollow fiber or perhaps the protein secretion through the

filament, but this awaits further study.

Flagella assembly in C. jejuni is unusual as the filament consists of 7 rather than

11 protofilaments (Galkin et al. 2008) and because flagella formation requires

glycosylation of the flagellin monomers (Linton et al. 2000; Karlyshev et al.

2002; Goon et al. 2003) (Fig. 1). The molecular basis for the altered architecture

of the flagellum and the need for glycosylation are unknown. The altered packaging

of the flagellum may have co-evolved with the inability of C. jejuni flagellins to
activate the innate Toll-like receptor TLR5 (Galkin et al. 2008). The glycosylation

of the flagellins may enforce structural requirements important in the export and/or

202 J.P.M. van Putten et al.



polymerization of flagellins, although this would not explain the existing variation

in glycans used to decorate the flagellins. Alternatively, the sugar coat on the

flagellum may provide strength, rigidity, and charge that facilitate the C. jejuni to
access more viscous environment.

The composition in the surface-exposed regions of both FlaA and FlaB is

highly variable among isolates due to horizontal exchange and recombinatorial

events (Wassenaar et al. 1995) and heterogeneity of the attached glycan moieties.

The glyco-modifications are encoded by the O-glycosylation locus (Guerry et al.

2006). This locus varies in gene composition between strains and contains several

contingency genes that contribute to intrastrain carbohydrate heterogeneity

(Guerry et al. 2006). State-of-the-art chemical analysis indicate that the attached

carbohydrates predominantly consist of pseudaminic acid or legionaminic acid

derivatives that are attached to distinct serine and threonine residues in the

variable domain (Thibault et al. 2001; Logan et al. 2002, 2009; McNally et al.

2006; Guerry and Szymanski 2008). Variable substitution of the acetamido group

of pseudaminic acid with acetaminido or hydroxyproprionyl groups causes further

Fig. 1 Schematic structure of the flagellar secretion apparatus and the different types of carbohy-

drates structures of C. jejuni. The flagellum is composed of a basal body embedded in the

membrane and an extracellular fiber consisting of thousands of flagellin polymers. The C. jejuni
flagellins are decorated with variable O-linked carbohydrates. Other variable carbohydrate surface
structures are the outer membrane lipooligosaccharide (LOS) and the polysaccharide capsule

(CPS). The largely conserved N-linked glycans are attached mainly to proteins in the periplasm.

In the absence of a type III secretion system, the flagellar secretion apparatus appears to secrete

several putative virulence proteins including FspA, FlaC and up to eight Cia proteins
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microheterogeneity in the carbohydrates moieties (Thibault et al. 2001). While

the variation in amino acid sequence of the variable domain does not seem to

influence flagella-mediated motility, the attached glycans do influence flagella-

mediated auto-agglutination and microcolony formation (Guerry 2007; Guerry

et al. 2006; van Alphen et al. 2008b) and thus are functionally relevant. The

diversity in the surface-exposed region of C. jejuni flagellins may also serve to

escape attack from the immune system (Andersen-Nissen et al. 2005) and bacter-

iophages (Coward et al. 2006).

3.3 Chemotaxis

With their flagella, C. jejuni can specifically swim towards a variety of substances

or away from harmful environments. The directed motility appears to be driven by

at least two types of taxis systems, namely chemotaxis that responds to environ-

mental stimuli, and energy-taxis that drives motility towards environments promot-

ing optimal electron transport. Major chemoattractants include mucin and the

amino acids serine, proline, aspartate, glutamate (Hugdahl et al. 1988). Identified

activators of the C. jejuni energy taxis system are fumarate and pyruvate, which

yield high levels of electron transport and ATP (Hendrixson et al. 2001). In silico

analysis of the C. jejuni genome sequence predicts the presence of at least nine

putative chemotaxis sensing receptors (methyl accepting receptors, MCPs), the

energy-taxis proteins CetA and CetB, one chemotaxis protein with potential histi-

dine kinase activity (CheA), and multiple proteins with a CheY-like response

regulator domains (CheY, CheA and CheV), as well as CheZ, CheV, CheB and

CheR orthologs that may be involved in signal amplification and/or adaptation to

chemotactic stimuli (Marchant et al 2002).

At the functional level, C. jejuni CheA and CheY are required for directional

motility in soft agar (Golden and Acheson 2002; Hendrixson et al. 2001; Yao

et al. 1997) as noted for other bacterial species. A C. jejuni CheY mutant is

hyperinvasive in cultured cells (Golden and Acheson 2002; Hickey et al. 1999)

possibly because this mutant is still capable of flagella-based movement but is no

longer directional (Yao et al. 1997). Both CheY and CheA mutants are deficient in

colonization of the mouse or chicken gastrointestinal tract (Takata et al. 1992; Yao

et al. 1997; Hendrixson and DiRita 2004), indicating that chemotaxis is essential

for colonization.

The energy-taxis system of C. jejuni involves the sensory protein complex CetB

and CetA (Hendrixson et al. 2001). The complex shares features with the energy-

taxis receptor Aer of E. coli including the presence of domains of Aer (divided

between CetA and CetB), a sensory PAS domain in CetB, and a predicted trans-

membrane region, HAMP domain and HCD domain in CetA. Interestingly, CetA

and CetB are co-transcribed independently of the flagellar regulon (Elliott and

DiRita 2008). While CetA and CetB mutants display normal colonization of the

chicken intestine (Hendrixson and DiRita 2004), inactivation of CetA but not CetB
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causes a moderate (five-fold) reduction in invasion of cultured human epithelial

cells (Elliott et al. 2009). Thus, the energy-taxis system may be important for

virulence rather than colonization and/or may display host-specific activation.

The signals that activate the C. jejuni CetA/CetB energy-taxis complex in vivo

and the molecular basis of the altered invasive properties are still unresolved.

3.4 C. jejuni Capsule and LOS

Like most Gram-negative bacterial species, C. jejuni produces surface glycolipids
including capsular polysaccharide (CPS) and lipo-oligosaccharide (LOS) (Fig. 1).

The polysaccharide capsule was first discovered after analysis of the C. jejuni
genome sequence (Parkhill et al. 2000) and confirmed by electron microscopy

(Karlyshev et al. 2001). The capsule consists of repeating oligosaccharide units

attached to a dipalmitoyl-glycerophosphate lipid anchor (St Michael et al. 2002;

Corcoran et al. 2006). The CPS is extensively substituted with variable O-methyl

phosphoramidate, methyl, ethanolamine, and N-glycerol groups (McNally et al.

2007). The structural variation in CPS is consistent with the noted genetic diversity

in the cps gene cluster and is the basis of the Penner serotyping used to distinguish

C. jejuni isolates (Karlyshev et al. 2005). Environmental regulation of capsule

biosynthesis as present in many other bacterial pathogens has not been investigated

in great detail. However, capsular biosynthesis undergoes frequent phase variation,

suggesting that the C. jejuni capsular phenotype is variable (Bacon et al. 2001).

Capsule-deficient C. jejuni show increased surface hydrophobicity and serum

sensitivity, and reduced invasion of INT-407 cells and virulence, in ferrets

(Bacon et al. 2001).

The majority of the C. jejuni cell wall consists of oligosaccharides attached to a

lipid A anchor (LOS). The structure of C. jejuni lipid A follows the same architec-

tural principle as in most other Gram-negative species, although the lipid A

backbone of C. jejuni is composed of a phosphorylated disaccharide containing

diaminoglucose and glucosamine as the major molecular species with slightly

longer N- and O-linked acyl chains (Moran 1995). The disaccharide is variably

substituted with phosphate or phosphoethanolamine (Moran 1997). The biological

significance of the different core structure is unknown. C. jejuni lipid A seems to

have a lower fluidity at 37�C than Salmonella LPS, possibly because of the different
acyl chain characteristics. C. jejuni LOS activates the proinflammatory TLR4/MD2

pathway (de Zoete and van Putten, unpublished results), but is less biologically

active than Salmonella LPS with regard to toxicity, pyrogenicity, and the induction

of TNFa (Moran 1995).

The LOS inner core region consists of two heptose residues attached to one KDO

molecule. The distal heptose can contain O-linked glycine (Dzieciatkowska et al.

2007). The outer core of C. jejuni LOS is highly variable in structure. Frequent

horizontal gene exchange and rearrangements of LOS genes has resulted in mosaic-like
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organization of the LOS gene cluster with different strains each have their own LOS

gene repertoire (Parker et al. 2008; Gilbert et al. 2002). Additional intrastrain LOS

heterogeneity stems from the variable expression of genes with homopolymeric

nucleotide tracts that are prone to slipped-strand mispairing (Parkhill et al. 2000).

Other mechanisms contributing to the LOS diversity are mutations leading to gene

inactivation or different acceptor specificities of glycosyltransferases (Gilbert et al.

2002). Of particular biological importance is the ability of most C. jejuni strains to
variably incorporate sialic acids into its LOS (Godschalk et al. 2007; Guerry et al.

2002; St Michael et al. 2002). This can result in the formation of ganglioside-like

structures as reported for Helicobacter pylori, Haemophilus influenzae, Haemophi-
lus ducreyi, and the pathogenic Neisseria species. The ganglioside mimics may

elicit pathogenic antibodies that cross-react with host cell glycolipids and contrib-

ute to the development of the autoimmunity-based Guillain-Barré syndrome (Yuki

et al. 2004). C. jejuni LOS may promote adhesion to and invasion of host cells (Fry

et al. 2000; Guerry et al. 2002) and may target host cell glycan receptors with

immunomodulatory functions (Louwen et al. 2008; Avril et al. 2006). The variable

oligosaccharide structure may thus aid C. jejuni to colonize different hosts or

intestinal niches.

In addition to capsule and LOS, C. jejuni may produce another type of polysac-

charide that may be involved in biofilm formation (Kalmokoff et al. 2006; Joshua

et al. 2006). The nature of this surface polysaccharide is unknown but its biosyn-

thesis may require carbamoylphosphate synthase (McLennan et al. 2008). Biofilm

formation is upregulated under anaerobic conditions and in a C. jejuni SpoTmutant.

This mutant is defective for the stringent response that is important for survival of

environmental stress (McLennan et al. 2008). The formation of C. jejuni biofilms

may contribute to survival in aquatic environments. Its role in C. jejuni virulence
remains to be determined.

3.5 Surface Proteins and Protein Glycosylation

The number of identified surface-exposed membrane proteins in C. jejuni is limited.

One principal protein is the major outer membrane porin, MOMP (Moser et al.

1997; Dé et al. 2000). C. jejuni MOMP is a b-barrel protein with surface exposed

loops that are hypervariable in amino acid composition between isolates (Clark

et al. 2007), suggestive of selective pressure by the immune system. A second porin

protein, Omp50, is upregulated during in vivo growth of C. jejuni (Stintzi et al.
2005). Other C. jejuni surface proteins include the fibronectin binding protein CadF
(Konkel et al. 1997) and the lipoproteins Omp18 (Burnens et al. 1995; Konkel et al.

1996) and JlpA (Jin et al. 2001). A separate class of proteins are the PEB proteins

implicated in amino acid and phosphate transport as well as bacterial adherence to

eukaryotic cells (Pei et al. 1998; Leon-Kempis Mdel et al. 2006). How these

proteins exert this dual function remains to be established.
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C. jejuni produces two putative autotransporters, CapA and CapB (Ashgar et al.

2007). In other pathogens, autotransporters represent an extensive and rapidly

growing family of secreted virulence-associated proteins. The identified C. jejuni
autotransporters each contain a homopolymeric tract and are therefore predicted to

undergo phase variation. Insertional inactivation of CapA results in reduced adhe-

sion and invasion of Caco-2 cells and loss of the ability to colonize chickens,

suggesting that the protein may play a role in C. jejuni colonization and virulence

(Ashgar et al. 2007).

In addition to the O-glycosylated flagellins, C. jejuni contains at least 35

different N-linked glycoproteins (Young et al. 2002). Genes involved in the

N-linked protein glycosylation pathway are encoded by the protein glycosylation

(pgl) locus (Szymanski et al. 1999). In contrast to the O-glycosylation locus, this

locus is conserved among C. jejuni strains which explains why all N-glycoproteins
appear to carry the same heptasaccharide moiety, GalNAc-a1,4-GalNAc-a
1,4-(Glcb1,3)-GalNAc-a1,4-GalNAc-a1,4-GalNAc-a1,3-Bac, where Bac is bacil-

losamine (Young et al. 2002). The oligosaccharide is attached to asparagine

residues that are part of the specific glycosylation consensus sequence, Asp/Glu-

Y-Asn-X-Ser/Thr, where Y and X is any amino acid except proline (Kowarik et al.

2006). Important here is that virtually all N-glycosylated proteins appear to be

located in the periplasm (Fig. 1). Their limited (if at all) surface exposure in the

intact bacterium may explain the conserved nature of the oligosaccharide.

The function of the N-linked protein glycosylation is still an enigma. Disruption

of the glycosylation pathway reduces C. jejuni adherence and invasion in INT-407

cells and the colonization of the intestinal tracts of animals (Szymanksi et al. 2002;

Karlyshev et al. 2004). The molecular basis of the attenuated C. jejuni behavior
remains to be defined, but may reflect a general dysfunction of the C. jejuni
membrane.

3.6 Secreted Factors

C. jejuni secretes several putative virulence factors into its environment. Most

identified factors are secreted through the flagellar secretion apparatus (Fig. 1).

Apart from flagellar components, this machinery secretes the FlaC, FspA, and at

least eight C. jejuni invasion antigens (Cia). The 26-kDa FlaC protein is predicted

to resemble FlaA and FlaB except that it lacks the variable central domain of the

flagellins (Song et al. 2004). Structurally, the protein FlaC is not required for

flagellum formation or motility, but was shown to bind to HEp-2 cells, both when

secreted by the bacteria during in vitro infection of HEp-2 cells and as purified

recombinant protein (Song et al. 2004).

The approximately 18-kDa FspA protein is present in C. jejuni in either of two

variant forms, FspA1 or FspA2. The FspA proteins display considerable heteroge-

neity between strains. FspA2, but not FspA1, binds eukaryotic cells and induces

apoptosis in epithelial cells (Poly et al. 2007).
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In contrast to FlaC and FspA, secretion of the Cia proteins requires contact with

host cells or the presence of mucin or serum (Rivera-Amill et al. 2001). Deoxycho-

late induces the transcription of the ciaB gene, and C. jejuni harvested from Muller-

Hinton agar plates supplemented with deoxycholate also secrete Cia proteins

(Malik-Kale et al. 2008). The apparent diversity in signals that drive Cia secretion

suggests that the secretion event may be related to environmental changes rather

than a distinct environmental cue. In some C. jejuni strains (but not strain 129108),
inactivation of ciaB prevents secretion of other Cia proteins and blocks bacterial

invasion of cultured epithelial cells (Konkel et al. 1999).

Like several other enteropathogens, C. jejuni secretes a cytolethal-distending

toxin (CDT) (Smith and Bayles 2006). This toxin is comprised of three subunits,

CdtA, CdtB, and CdtC, all of which are essential for toxin activity (Lara-Tejero and

Galán 2001). CdtA and CdtC are essential for binding to host cells (Lee et al. 2003),

while CdtB internalization by the eukaryotic cells is essential for toxicity (Lara-

Tejero and Galán 2001). CdtB, which has DNase I-like activity, is translocated to

the nucleus and induces eukaryotic cell cycle arrest in the G2 phase (Whitehouse

et al. 1998). Cytotoxicity or cell cycle arrest can be achieved by adding a combina-

tion of the three purified toxin proteins to cultured epithelial cells (Lee et al. 2003;

Lara-Tejero and Galán 2001). In addition to its cytotoxic effect, CDT also appears

to stimulate the proinflammatory NF-kappaB pathway and elicits IL-8 secretion

(Hickey et al. 2000; Zheng et al. 2008).

C. jejuni also secretes several nonproteinaceous molecules. One important factor

may be the auto-inducer AI-2. This compound influences C. jejuni swarming

motility, autoagglutination, biofilm formation, sensitivity to hydrogen peroxide,

and the transcription of the cytolethal-distending toxin genes (He et al. 2008).

C. jejuni AI-2 production, which is dependent upon luxS, is maximal during mid-

to late-exponential growth, but rapidly decreases at high cell concentrations during

entry into the stationary growth phase (Quinones et al. 2009).

4 Mucosal Infection by C. jejuni

4.1 Penetration of the Mucus Layer

The first barrier C. jejuni encounters in the gut is the mucus layer (Fig. 2). C. jejuni
can effectively penetrate this barrier. Pathology studies frequently identify large

numbers of bacteria in the mucus layer and in intestinal crypts without apparent

attachment to the microvillus (Beery et al. 1988; Lee et al. 1986). Mucin is a strong

chemoattractant for C. jejuni (Hugdahl et al. 1988) and, instead of being trapped

and transported out of the intestinal tract, the bacterium freely moves in parallel

streams along the mucus strands (Lee et al. 1986; McSweegan et al. 1987). This

efficient mobility in mucus may be due to its spiral-shaped morphology and the

presence of putative mucin-degrading enzymes. In addition, C. jejuni swims at

higher speeds in environments of high rather than low viscosity and under
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conditions that immobilize conventional rod-shaped bacteria (Ferrero and Lee

1988). In media with high viscosity, C. jejuni shows longer periods of straight

swimming with increased velocity followed by pauses, resembling the swimming

pattern of spirochetes rather than of other monotrichous bacteria (Shigematsu et al.

1998). Whether the change in swimming mode is related to the observed down-

regulation of the flagellin (flaA) promoter in viscous conditions (Allen and Griffiths

2001) awaits further study.

The use of mucus or high-viscosity medium during in vitro infection tends to

increase C. jejuni adherence and invasion of epithelial cells. On other hand, mucus

of rabbits previously colonized with C. jejuni impede the bacterial adherence to

INT-407 cells due to the presence of Campylobacter-specific IgA, which causes

aggregation of C. jejuni within the mucus layer (McSweegan et al. 1987). This

observation may at least partially explain why frequent C. jejuni exposure protects
against intestinal pathology.

4.2 Cellular Infection

After mucus penetration, C. jejuni can come in close contact with the intestinal

epithelial cells. Despite excellent work, the molecular interaction of C. jejuni with

Fig. 2 Colonization and invasion strategies of C. jejuni. The pathogen can actively swim into the

mucus layer and survive in intestinal crypts. Uptake and transport across M cells may enable C.
jejuni to migrate into the subcellular environment and to invade epithelial cells at the cell basis.

Transient disruption of tight junctions between intestinal cells may enable penetration of the

epithelial lining via the paracellular route. Bacteria-directed uptake into epithelial cells may lead

to transcellular transport and exocytosis at the cell basis, as well as to trafficking to a unique

intracellular compartment in proximity of the Golgi complex. The contribution of the various

invasion strategies of C. jejuni to the establishment of a natural infection is unknown
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eukaryotic cells is still poorly understood. Diverse behavior of the various C. jejuni
phenotypes and/or the different strategies that C. jejuni exploits to adhere, invade,

and survive in different cell types may explain, but also complicate, comparison

and interpretation of reported results. Methodological issues may further blur

scientific progress. A typical example is the gentamicin survival assay often used

to estimate bacterial invasion into eukaryotic cells. Results obtained with this assay

do not accurately measure the number of intracellular bacteria at a given time.

Instead, they in fact reflect the outcome of a series of events including bacterial

internalization, the resistance against the hostile intracellular milieu, and the adap-

tive capabilities of C. jejuni that are needed to survive the transition from the

intracellular environment to growth on nutrient-rich agar plates in a different gas

atmosphere. Recently, discovery of novel C. jejuni invasion and intracellular

trafficking pathways was successful because these issues were taken into account

(Watson and Galán 2008; van Alphen et al. 2008a). Despite these technicalities,

several key steps in the C. jejuni infection of eukaryotic cells have been identified

and are outlined below.

4.3 Adherence of C. jejuni to Mucosal Cells

Once close to the epithelial cells, C. jejuni can adhere to the cell surface through a

number of adhesins (de Melo and Pechere 1990; Konkel et al. 1997; McSweegan

and Walker 1986; Kervella et al. 1993). One identified adhesion is the 42-kDa

protein JlpA. which mediates adherence to HEp-2 cells. This event can be inhibited

with JlpA-specific antibodies or preincubation of the eukaryotic cells with purified

JlpA protein (Jin et al. 2001). JlpA interacts with surface-exposed heat shock

protein Hsp90a and is blocked by the Hsp90 inhibitor geldamycin (Jin et al.

2003). A JlpA-GST fusion protein triggers nuclear translocation of the transcription

factor NF-kappaB and phosphorylation of p38 MAP kinase. This suggests that JlpA

not only confers C. jejuni adherence but also elicits a proinflammatory response in

the infected host cell (Jin et al. 2003).

A second protein with adhesive properties is CadF (Konkel et al. 1997). This

protein, which may belong to the OmpA-like protein family, confers bacterial adhe-

sion via binding of host cell fibronectin (Fn). The Fn binding domain ofC. jejuniCadF
has been identified as a single exposed amino acid domain of four residues (Konkel

et al. 2005). Apart for CadF, Fn binding has also been proposed for C. jejuni flagellin,
the major membrane protein MOMP, and LOS (Moser and Schroder 1997). The

significance of this Fn binding for C. jejuni adherence is unknown.
Other putative C. jejuni adhesins are PEB1 (Pei et al. 1998) and certain LOS

glycoforms (McSweegan and Walker 1986; Avril et al. 2006). A PEB1 mutant

shows a 50- to 100-fold reduction in bacterial adherence to epithelial cells and a

reduced colonization of mice (Pei et al. 1998). The protein binds to HeLa cell

membranes (Kervella et al. 1993). More recently, PEB1 has been shown to be a

conserved asparate/glutamate-binding protein that belongs to the family of cluster
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three binding proteins of bacterial ATP transporters (Leon-Kempis Mdel et al.

2006). Indeed, purified recombinant PEB1 binds L-aspartate and L-glutamate

which may indicate that the protein is important in the utilization of in vivo carbon

sources. Biochemical studies demonstrate that the majority of PEB1 protein resides

in the periplasmic space and only a small portion is transported across the outer

membrane (Leon-Kempis Mdel et al. 2006). The crystal structure of the protein

further strengthened its role as periplasmic amino acid binding protein by demon-

strating a ligand binding cleft, which could explain the high binding affinity for

L-aspartate and L-glutamate (Muller et al. 2007). Whether the adherence-promot-

ing properties of PEB1 relate to its importance in the uptake of amino acids

necessary for bacterial growth is unknown. The function of C. jejuni LOS

(McSweegan and Walker 1986) and capsule polysaccharide (Bachtiar et al. 2007)

in bacterial adherence has not been systematically investigated, partly because their

extensive intra- and interstrain structural heterogeneity.

At this time, the relative contribution of the various C. jejuni adhesins to the

infection of mucosal cells is difficult to discern. In many studies, inactivation of

each of the putative adhesins strongly reduces the association of C. jejuni with
eukaryotic cells, indicating that they all are dominant adhesins. This suggests that

either they act in a complex or display cell-type specificity. To our knowledge,

tissue- or host-specific C. jejuni adhesins have thus far not been identified, but

receptor identification for each of the adhesins may resolve this issue.

4.4 Mechanisms of C. jejuni Entry into Eukaryotic Cells

Analysis of intestinal biopsies of infected patients and primates (van Spreeuwel

et al. 1985; Russell et al. 1993; Babakhani et al. 1993) as well as results from

numerous in vitro studies (Newell and Pearson 1984; de Melo et al. 1989; Konkel

et al. 1992a,b; Wassenaar et al. 1991; Babakhani et al. 1993; Oelschlaeger et al.

1993) indicate that C. jejuni is internalized by eukaryotic cells. Reported C. jejuni
invasion levels, as mostly determined by the gentamycin assay, display huge

variation between laboratories and are strongly dependent on multiplicity of infec-

tion used as an inoculum. The often-used C. jejuni strain 81–176 typically enters

young semiconfluent INT-407 and Caco-2 cells in 2 h with an invasion efficiency of

1–2%, but efficiencies range from 0.001 to 4% (Hu and Kopecko 1999). In most

studies, even with the most invasive strains, only one to three bacteria are inter-

nalized per cell (Biswas et al. 2000), much less than reported for other enteropatho-

gens. However, when selected for the appropriate phenotype and dependent on the

environmental conditions, uptake levels of 70–80% of the inoculum can be

obtained within 2–4 h of infection (van Alphen et al. 2008a), suggesting that

C. jejuni has the intrinsic ability to efficiently enter eukaryotic cells.

A key factor in virtually all C. jejuni uptake studies is the presence of functional
flagella (Grant et al. 1993; Wassenaar et al. 1991; Yao et al. 1994; Szymanski et al.

1995; van Alphen et al. 2008a). C. jejuni that lack flagella, or carry a short flagellum
consisting of only FlaB, show reduced invasion of epithelial cells (Wassenaar et al.
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1991; Szymanski et al. 1995; Yao et al. 1994). Furthermore, C. jejuni with paral-

yzed flagella adhere but do not enter eukaryotic cells, suggesting that motility is a

prerequisite for bacterial internalization (Yao et al. 1994). The hyperinvasiveness of

CheY mutants, that display enhanced directional motility (Yao et al. 1997), also

points in this direction.

The signals that drive the actual internalization process are still poorly defined.

Upon contact with the cell surface, C. jejuni triggers membrane ruffling and

invaginations, and is taken up with its polar tip first (Krause-Gruszczynska et al.

2007; Hu et al. 2008). The uptake process may require de novo protein synthesis

(Oelschlaeger et al. 1993) and the flagellar secretion of the aforementioned FlaC,

FspA, and Cia as the proteins. Inactivation of FlaC causes reduced invasion of

C. jejuni into cultured epithelial cells but does not affect bacterial adherence (Song
et al. 2004). The production and secretion of the Cia proteins is triggered by contact

with host cells. However, the role of these proteins in the internalization event

remains to be elucidated, as CiaB is obligatory for C. jejuni invasion in certain

strains only (van Alphen et al. 2008a; Goon et al. 2006) and delivery of the secreted

molecules to the host cells has not been demonstrated. Thus far, no function has

been assigned to any of these proteins.

Recently, a novel highly efficient C. jejuni invasion mechanism has been

identified that acts independently of CiaB or FlaC (van Alphen et al. 2008a)

(Fig. 2). The highly invasive C. jejuni phenotype displays a remarkable route of

invasion that yields on average 10–15 intracellular bacteria per epithelial cell. The

C. jejuni first swims towards the subcellular space of cultured epithelial cells

(a process termed “subvasion”) and then accesses the cell at the basal cell side.

The subvasion process requires functional flagella. Molecular analysis of the

selected highly subvasive bacteria indicated a change in the bacterial taxis system.

This led to the discovery that C. jejuni subvasion can be directly controlled by the

availability of nutrients (van Alphen and van Putten, unpublished results). The

precise mechanism via which subcellular C. jejuni enters the eukaryotic cells, is

still under investigation. One possible regulatory factor is the post-transcriptional

regulator carbon starvation regulator CsrA. Inactivation of the protein, which is

required for resistance of C. jejuni to oxidative stress, causes a strong increase in

C. jejuni invasion despite reduced motility (Fields et al. 2008).

Other molecules uniquely involved in C. jejuni invasion are gamma-glutamyl-

transpeptidase (GGT) (Barnes et al. 2007), polysaccharide capsule (Karlyshev et al.

2000; Kanipes et al. 2004; Bacon et al. 2001), and sialylated LOS (Louwen et al.

2008). The underlying mechanisms, however, remain to be explored. The presence

of the virulence plasmid pVir can enhance but is not required to trigger C. jejuni
invasion (Bacon et al. 2002).

4.5 Cellular events Accompanying C. jejuni Internalization

Most studies are consistent with the scenario that C. jejuni-directed entry

into epithelial cells proceeds via the local depolymerization of cortical actin
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filaments and the formation of microtubuli-based membrane projections (Krause-

Gruszczynska et al. 2007; Watson and Galán 2008; Konkel et al. 1992a, b;

Monteville et al. 2003; Oelschlaeger et al. 1993; Hu and Kopecko 1999).

Microtubule depolymerizing agents, such as nocodazole, block C. jejuni invasion
(Hu and Kopecko 1999; Oelschlaeger et al. 1993). The involvement of the actin

cytoskeleton in C. jejuni uptake is not always found. Whether this relates to the

presence of cortical cytochalasin D-insensitive actin filaments in certain cell types

(Godman et al. 1980; Horvath and Kellie 1990) is unknown. Efficient C. jejuni
internalization also requires caveolin-1 (Krause-Gruszczynska et al. 2007;

Wooldridge et al. 1996; Hu et al. 2006a, b). However, as the entry process was

shown to be dynamin-independent (Watson and Galán 2008), C. jejuni internaliza-
tion is unlikely to occur via caveolea-mediated endocytosis. Instead, the caveolin-1

containing lipid membrane domains may be important for proper C. jejuni activa-
tion of tyrosine kinases (Watson and Galán 2008; Hu et al. 2006b) and of the small

Rho GTPases Rac 1 and Cdc42 (but not RhoA) that could drive the cytoskeletal

rearrangements (Krause-Gruszczynska et al. 2007, Wooldridge et al. 1996; Hu et al.

2006a, b). Both the activation of the GTPases and C. jejuni uptake is blocked by the
kinase inhibitors genistein, tyrphostin-46, wortmannin, and staurosporin. At least

nine proteins become phosphorylated in C. jejuni-infected cells, including phos-

phoinositol 3-kinase and heterotrimeric G proteins (Wooldridge et al. 1996; Biswas

et al. 2004). Their exact role in the uptake process, as well as the requirement of the

release of Ca2+ from intracellular stores for C. jejuni entry (Hu et al. 2005), remain

to be defined. Cell signaling studies with different mutants indicate that CadF and

PEB1 are not essential for activation of the Rho GTPases (Krause-Gruszczynska

et al. 2007). CadF does increase tyrosine phosphorylation of paxillin in focal

adhesions and thus may contribute to cytoskeletal rearrangements during the

Fn-mediated uptake at the basolateral cell surface (Monteville and Konkel 2002).

4.6 Intracellular Trafficking of C. jejuni

Once ingested by eukaryotic cells, C. jejuni resides in a membrane-bound cellular

compartment and co-localizes with microtubules and the microtubule motor protein

dynein during the entire invasion process (Hu and Kopecko 1999; Konkel et al.

1992b; Oelschlaeger et al. 1993; Russell and Blake 1994). In INT-407 cells,

C. jejuni is able to replicate after an initial decline in the number of intracellular

bacteria. Replication ultimately results in the deterioration of the epithelial mono-

layer. Bacterial iron acquisition is essential for intracellular survival in this cell line

(Naikare et al. 2006). In HEp-2 epithelial cells, C. jejuni ultimately localize in

vacuoles that show signs of phago-lysosome fusion and change from spiral to

coccoid forms with a concomitant decrease in viability (de Melo et al. 1989).

A novel trafficking pathway was recently identified in semiconfluent T84 intes-

tinal epithelial cells. In these cells, C. jejuni appears to traffick into a unique

intracellular compartment and avoid delivery to lysosomes (Watson and
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Galán 2008) (Fig. 2). Once formed, the C. jejuni-containing vesicle is transported

along microtubules to close proximity of the Golgi apparatus in the perinuclear

region. Recovery of intracellular bacteria from this compartment requires oxygen-

limiting conditions, a finding that could change conclusions from previously de-

scribed invasion studies. The trafficking of C. jejuni to the non-lysosomal compart-

ment is related to its entry mechanism as infection of Fc receptor-transfected cells

with antibody-opsonized C. jejuni results in delivery of the bacteria to endosomes

rather than the unique intracellular compartment (Watson and Galán 2008).

In polarized epithelial cells, C. jejuni is able to translocate to the basolateral

surface to be released in the subcellular space (Fig. 2). During transit, C. jejuni
remains with a membrane-bound compartment and there is only very limited

replication intracellularly (Hu et al. 2008). The signals that drive this transcellular

route are unknown.

4.7 Translocation of the Intestinal Mucosa

As well as through cellular invasion and the transcellular pathway, C. jejuni is also
able to (transiently) disrupt tight junctions between polarized cells and thereby gain

access to the subepithelial tissue via the paracellular route (Brás and Ketley 1999;

Grant et al. 1993; Konkel et al. 1992b; MacCallum et al. 2005a) (Fig. 2). Infection

of polarized T84 cells with C. jejuni decreases transepithelial electric resistance and
causes a redistribution of the tight junction transmembrane protein occludin from

an intercellular to an intracellular location, indicating alterations in the tight junc-

tions (Chen et al. 2006). This event is enhanced in the presence of IFNg (Rees et al.
2008). Once the tight junctions have been passed, C. jejuni can enter the eukaryotic
cells at the basolateral surface as shown in EGTA-treated polarized cells (Monte-

ville and Konkel 2002). The molecules that drive the transcellular migration and

subsequent internalization process are largely undefined, although it can be imag-

ined that the binding of Fn by CadF promotes basolateral uptake of C. jejuni
through interaction with integrin receptors.

Several observations suggest that in vivo C. jejuni may exploit M cells to

penetrate the intestinal barrier (Fig. 2). M cells are an important port of entry for

a variety of pathogens including Salmonella (Siebers and Finlay 1996). In rabbit

intestinal loop models, C. jejuni selectively associates with M cells (Everest et al.

1993; Walker et al. 1988). In differentiated polarized Caco-2 cells, the bacteria

efficiently invade only approximately 5% of the cells that may represent M-like

cells (Hu and Kopecko 1999; van Alphen and van Putten, unpublished results). The

observed active penetration of the subcellular space by C. jejuni (van Alphen et al.

2008a) may reflect the spread of the pathogen from infected M cells into the

subepithelial layer. These bacteria can subsequently invade the epithelial cells at

cell basis. It has been speculated that, at low inocula (500–800 bacteria), M cells are

primarily exploited by C. jejuni to traverse the epithelium, while at high inocula, the
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pathogen may invade villus epithelial cells, perhaps as a secondary event after loss

of tight junction integrity (Everest 2005; Chen et al. 2006).

4.8 Interaction of C. jejuni with Professional Phagocytes

Whether C. jejuni can survive within professional phagocytes is still under debate.

Both survival and replication inside monocytes and macrophages, but also induced

CDT-dependent apoptosis, has been reported (Hickey et al. 2005; Kiehlbauch et al.

1985; Siegesmund et al. 2004). Clinical isolates of C. jejuni survive for several days
in murine macrophages, whereby catalase plays an important role in providing

resistance to hydrogen peroxide (Day et al. 2000). Others report that C. jejuni
survival in human monocyte-derived macrophages is donor-dependent: in cells

from most donors, C. jejuni is killed within 24–48 h inside the cells, while 10%

of the donors carry monocytes that are unable to kill C. jejuni (Wassenaar et al.

1997). Intriguingly, C. jejuni DNA fragments can be detected in circulating human

blood cells of distinct individuals for a period of up to 12 months, although no

viable bacteria could be detected (van Rhijn et al. 2002). This may indicate the

presence of either viable, non-culturable C. jejuni within these cells, or that the

bacterium resides in a thus far unidentified niche within the body that serves as a

reservoir for continuous C. jejuni infection of monocytes. In murine bone marrow-

derived macrophages, C. jejuni is delivered to a lysosomal compartment and killed

within 24 h of infection (Watson and Galán 2008). C. jejuni is also readily inter-

nalized by human dendritic cells and induces maturation and cytokine production in

these cells (Hu et al. 2006a, b). In mice, this results in a Th1-effector response

against C. jejuni (Rathinam et al. 2008).

5 Cellular Response to Infection

Despite its global relevance, the molecular basis of the C. jejuni intestinal patholo-
gy is still an enigma. One candidate bacterial factor contributing to the inflamma-

tory pathology is CDT. The toxin not only induces cell cycle arrest but also

activates the NF-kappaB inflammatory pathway (Whitehouse et al. 1998;

Lara-Tejero and Galán 2001; Zheng et al. 2008). It can be imagined that the

CDT-induced growth arrest affects the constant renewal of the epithelial cell lining

and thereby disrupts the integrity of the intestinal barrier. This may allow bacterial

tissue penetration and the induction of an inflammatory response (Whitehouse et al.

1998). Transcription profiling on Caco-2 cells infected with C. jejuni for 6 h

indicated upregulation of genes involved in cell growth, gene transcription, steroid

biosynthesis, and inflammation, but also in cell polarity, water movement, and

solute transport (Rinella et al. 2006). The C. jejuni -specific altered gene expression
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was not observed in murine intestinal CT-62 cells, suggesting that the response may

be species-specific. On the other hand, C. jejuni stimulates Na+ and Cl� secretion in

infected rat ileum in a calcium-dependent and possibly protein kinase C-dependent

fashion (Kanwar et al. 1995). Whether this effect is related to observed transcrip-

tional alterations and/or the development of diarrhea awaits more knowledge of the

bacterial factors that contribute to these responses

Analysis of the cellular signaling pathways indicates that C. jejuni induces a

potent innate immune response that may contribute to the inflammatory pathology.

C. jejuni infection of intestinal cells activates the transcription factors NF-kappaB

and AP-1, causes phosphorylation of ERK and p38 mitogen-activated protein

kinases and of JUN N-terminal protein kinase, and induces the basolateral secretion

of proinflammatory mediators (Mellits et al. 2002; Jones et al. 2003; MacCallum

et al. 2005b; Chen et al. 2006). Activation of the ERK and p38 mitogen-activated

protein kinases requires de novo protein synthesis of C. jejuni factors that are

produced upon contact with the host cells (Watson and Galán 2005). However,

CDT (Zheng et al. 2008) and boiled extracts of C. jejuni also induce a proinflam-

matory transcriptional response in intestinal cells (Mellits et al. 2009). Other factors

implicated in induction of the inflammatory response are C. jejuni lipoproteins
and LOS, which activate the innate TLR2 and TLR4/MD2 signaling pathways,

respectively (Zheng et al. 2008; Hu et al. 2006a, b). These effects appear particu-

larly profound with damaged bacteria or isolated compounds (Hu et al. 2006a, b;

de Zoete and van Putten, unpublished results). Maximal induction of the innate

response with live C. jejuni appears to involve the intracellular Nod1, but not Nod2
innate immune receptor (Zilbauer et al. 2007). C. jejuni flagellin is a poor activator
of TLR5 (Watson and Galán 2005; Andersen-Nissen et al. 2005; Johanesen and

Dwinell 2006). Reconstitution of a recombinant C. jejuni flagellin that is able to

activate TLR5, identified three small conserved regions in the flagellin backbone as

the basis of the C. jejuni evasion of the TLR5 response (de Zoete and van Putten,

unpublished results).

The activation of the innate immune response by C. jejuni results in the produc-
tion of an array of proinflammatory cytokines and chemokines including IL-1a,
IL-1b, IL-6, IL-6, and TNFa, but also of the neutrophil chemoattractant IL-8

(Hickey et al. 1999, 2000; Jones et al. 2003; Hu and Hickey 2005; Bakhiet et al.

2004; Johanesen and Dwinell 2006). These factors likely promote tissue damage

and the recruitment of neutrophils and monocytes. The influx of these cell types at

the site of infection is confirmed by immunohistochemistry on biopsies of infected

patients. Produced innate effector molecules such as beta-defensins have potent

antibacterial activity against C. jejuni (Zilbauer et al. 2005).
As chickens do not develop intestinal inflammation during C. jejuni coloniza-

tion, a comparison of the avian and human innate immune system might shed light

on molecular basis of inflammation. Analysis of the functional TLR repertoire of

chickens indicates that this species has functional TLR4 and TLR5 receptors but

lacks a TLR9 orthologue (Keestra and van Putten 2008; Keestra et al. 2008). The

TLR2 complex differs from the mammalian species as it consists of a heterodimer
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of TLR2 and TLR16. TLR16 combines the specificity for di- and triacylpeptides of

mammalian TLR1 and TLR6 in a single molecule (Keestra et al. 2007). Remark-

ably, the avian species appear to lack a functional MyD88-independent pathway

needed for b-interferon production in response to LOS. This feature may explain

the resistance of chickens to endotoxin shock (Keestra and van Putten 2008).

Preliminary analysis of the response of individual chicken TLR receptors to

C. jejuni provides, except for the different LOS response, no obvious basis for the

lack of inflammation in C. jejuni infected chickens (de Zoete and van Putten,

unpublished results).

6 Experimental Campylobacter Infection Models

Despite the identification of a number of putative virulence factors, their biological

significance for C. jejuni pathology remains largely unknown. Understanding the

pathogenesis of C. jejuni infections in vivo has long been hampered by the lack of

suitable infection models. In its natural habitat of the avian species and other warm-

blooded animals, C. jejuni colonizes the intestine but rarely causes disease (Beery

et al. 1988). Thus, these species are suitable to investigate C. jejuni colonization
rather than virulence. Similarly, murine infection models generally yield variable

C. jejuni colonization but virtually no intestinal pathology unless the gut flora is

limited or the immune system is compromised (Jesudason et al. 1989; Hodgson

et al. 1998). In C3H SCID mice with limited gut flora, C. jejuni causes severe

inflammation of the colon and cecum, but not diarrhea (Chang and Miller 2006).

Intestinal colonization and pathology are observed only for motile, chemotaxis-

proficient C. jejuni. NF-kappaB-deficient C57BL/29 mice display moderate intes-

tinal inflammation, but only after infection with CDT-positive C. jejuni strains (Fox
et al. 2004). Experimental infection of congenic C57BL/6 IL-10-deficient mice

produces pathological lesions similar to those seen in humans, with C. jejuni
present at paracellular junctions and at the basolateral surface of the epithelium

(Mansfield et al. 2007). Mice deficient in the Toll-like receptor adaptor protein

MyD88 can be persistently colonized by C. jejuni but do not develop pathology

(Watson et al. 2007). In these mice, colonization requires N-glycosylation of

proteins and capsule production (Watson et al. 2007), indicating these traits are

required for colonization even when the innate immune response is attenuated.

The C. jejuni animal model closest resembling human infection is the oral

infection of nonhuman primates. In experimentally infected macaques, C. jejuni
causes an acute enterocolitis with bacteria invading the mucosa before the devel-

opment of inflammation (Russell et al. 1989, 1993). Microscopy showed bacteria

located in intestinal crypts, within surface epithelial cells and in the subepithelial

tissue, indicative of mucosal penetration (Russell et al. 1989, 1993). These animals

also display several clinical symptoms as observed during human infection, includ-

ing bloody diarrhea. However, the nonhuman primate animal model is rarely used,
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mainly on ethical grounds. A promising alternative model involves the use of

gnotobiotic piglets. Infection of colostrum-deprived newborn piglets with C. jejuni
results in clinical symptoms and histopathology similar to those observed in

humans infected with C. jejuni. The bacteria cause gross lesions in the large

intestine with edema, neutrophil infiltration, and sloughing of epithelial cells, and

hemorrhage or increased mucus production. At the cellular level, bacteria are found

inside intestinal epithelial cells as well as in the underlying tissue (Babakhani et al.

1993; Boosinger and Powe 1988).

Overall, the in vivo infection models suggest that in most animals the indigenous

gut flora and/or a well-developed host immune system may limit C. jejuni intestinal
pathology. The use of animals with limited gut flora and/or immune deficiencies as

C. jejuni infection models may shed light on the molecular basis and species-

specificity of the C. jejuni-induced pathology, and provide information on the

bacterial phenotype and metabolic status of the bacteria compared with those

isolated from the human intestine.

7 Conclusions and Outlook

A primary challenge in C. jejuni research remains the discovery of the molecular

basis of the pathogenic behavior of C. jejuni in humans compared to the

commensal behavior in most other species, in particular poultry. Dissection of

the virulence strategies of C. jejuni is seriously hampered by the huge phenotype

diversity. Extensive surface variation and the broad adaptation potential appear to

provide the pathogen with an array of seemingly redundant tools to exploit host

cell biology. Strain differences further complicate functional analysis of C. jejuni
pathogenicity. Yet, current knowledge indicates flagella-mediated motility, che-

motaxis, and penetration of mucus as key determinants of bacterial colonization

in all species. The induction of pathology appears to require damage of the

integrity of the epithelium lining the mucosa, either via toxin production, inva-

sion of epithelial cells, weakening of cellular tight junctions, and/or traversal of

intestinal M cells. Bacterial products as well as cellular damage may elicit an

inflammatory response that contributes to the development of pathology. One key

determinant of the course of an infection may be the local microenvironment at

the site of infection. C. jejuni appears to be able to quickly adapt its phenotype to

changing microenvironments like the availability of oxygen and nutrient sources.

Recent progress in the understanding of the C. jejuni genome diversity,

gene regulation, and its dynamic behavior in different environments has paved

the way to finally understand and attack the virulence strategies of this important

pathogen.
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Dé E, Jullien M, Labesse G, Pagès JM, Molle G, Bolla JM (2000) MOMP (major outer

membrane protein) of Campylobacter jejuni; a versatile pore-forming protein. FEBS Lett

469:93–97

De Melo MA, Gabbiani G, Pechere JC (1989) Cellular events and intracellular survival of

Campylobacter jejuni during infection of HEp-2 cells. Infect Immun 57:2214–2222

de Melo MA, Pechere JC (1990) Identification of Campylobacter jejuni surface proteins that bind
to eucaryotic cells in vitro. Infect Immun 58:1749–1756

Dzieciatkowska M, Brochu D, van Belkum A, Heikema AP, Yuki N, Houliston RS, Richards JC,

Gilbert M, Li J (2007) Mass spectrometric analysis of intact lipooligosaccharide: direct

evidence for O-acetylated sialic acids and discovery of O-linked glycine expressed by

Campylobacter jejuni. Biochemistry 46:14704–14714

Elliott KT, Zhulin IB, Stuckey JA, DiRita VJ (2009) Conserved residues in the HAMP domain

define a new family of proposed bipartite energy taxis receptors. J Bacteriol 191:375–387

Elliott KT, DiRita VJ (2008) Characterization of CetA and CetB, a bipartite energy taxis system in

Campylobacter jejuni. Mol Microbiol 69:1091–103

Everest PH, Cole AT, Hawkey CJ, Knutton S, Goossens H, Butzler JP, Ketley JM, Williams PH

(1993) Roles of leukotriene B4, prostaglandin E2, and cyclic AMP in Campylobacter jejuni-
induced intestinal fluid secretion. Infect Immun 61:4885–4887

Everest P (2005) Campylobacter spp. and the ability to elicit intestinal inflammatory responses. In:

Ketley JM, Konkel ME (eds) Campylobacter: molecular and cellular biology. Horizon Biosci-

ence, Norfolk, pp 421–434

Ferrero RL, Lee A (1988) Motility of Campylobacter jejuni in a viscous environment: comparison

with conventional rod-shaped bacteria. J Gen Microbiol 134:53–59

Fields JA, Thompson SA (2008) Campylobacter jejuni CsrA mediates oxidative stress responses,

biofilm formation, and host cell invasion. J Bacteriol 190:3411–3416

Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT,

Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji

MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE (2005) Major structural

differences and novel potential virulence mechanisms from the genomes of multiple Campylo-
bacter species. PLoS Biol 3:e15

Fox JG, Rogers AB, Whary MT, Ge Z, Taylor NS, Xu S, Horwitz BH, Erdman SE (2004)

Gastroenteritis in NF-kappaB-deficient mice is produced with wild-type Camplyobacter jejuni
but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with

both strains. Infect Immun 72:1116–1125

Fry BN, Feng S, Chen YY, Newell DG, Coloe PJ, Korolik V (2000) The galE gene of Campylo-
bacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect Immun

68:2594–2601
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intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by

exploiting epithelial-cell functions and circumventing the host innate immune

response. During Shigella infection, they deliver many numbers of effectors

through the type III secretion system into the surrounding space and directly into

the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial

infection through to the establishment of the colonization of the intestinal epitheli-

um, such as bacterial invasion, intracellular survival, subversion of the host immune

defense response, and maintenance of the infectious foothold. These examples

suggest that Shigella have evolved highly sophisticated infectious and intracellular

strategies to establish replicative niches in the intestinal epithelium.

1 Introduction

Shigella is a genus of highly adapted human pathogens that cause bacillary dysen-

tery (shigellosis), a disease that provokes severe bloody and mucous diarrhea. In

tropical areas of developing countries, shigellosis is endemic and a major killer of

children under 5 years of age. Shigellosis occurs following the ingestion of a very

small number (100–1,000) of bacteria, thus permitting the easy spread of the

disease under conditions of poverty, crowding and poor sanitation through person-

to-person contact as well as by drinking contaminated water (Kotloff et al. 1999;

Jennison and Verma 2004).

Shigella, a Gram-negative bacillus, comprises four species: S. dysenteriae,
S. flexneri, S. boydii, and S. sonnei. Shigella is closely related to Escherichia
coli based on DNA-DNA homology; however, the group of bacteria causing

shigellosis is idiomatically called Shigella. Shigellosis is also caused by enter-

oinvasive E. coli (EIEC), a pathogenic E. coli, albeit the resulting symptoms are

not as severe as those caused by Shigella. Indeed, Shigella and EIEC both possess

a large 220-kb plasmid on which the major virulence-associated proteins (effec-

tors and some other virulence factors) and the type III secretion system (TTSS)

required for the delivery of the effectors are encoded. In addition, they also

possess a 3-kb ColE1-type cryptic plasmid (known as pHS-2 in S. flexneri); the
presence of this plasmid is associated with Reiter’s syndrome, which causes

reactive arthritis and occasionally occurs in shigellosis patients possessing a

special human leukocyte antigen (HLA) background, such as HLA-B27 (Stieglitz

et al. 1988; Stieglitz and Lipsky 1993).

Shigella have neither adhesins for attaching to the upper intestinal epithelium

nor flagella required for directly accessing the intestinal epithelial surface.

Therefore, upon infection by means of the fecal–oral route, Shigella move down

to the colon and rectum directly, where they translocate through the epithelial

barrier via M cells, which overlie solitary lymphoid nodules and sample foreign

antigens in the intestinal lumen, presenting the antigens to the immune system

(Wassef et al. 1989; Cossart and Sansonetti 2004). When they reach the under-

lying M cells, Shigella infect the resident macrophages and dendritic cells that
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reside within the M cell pocket. Within the phagosomal membrane, Shigella
secrete effectors, such as IpaB and IpaC, that are translocated via the TTSS; the

secreted proteins then break the phagosomal membrane, thus allowing the bacte-

ria to escape into the cytoplasm. In the macrophage-cell cytoplasm, the bacteria

multiply and induce rapid cell death by activating caspase-1-dependent and

caspase-1-independent cell death pathways (Zychlinsky et al. 1992, 1994; Hilbi

et al. 1998; Suzuki et al. 2005).

Meanwhile, Shigella released from the dead macrophages enter into the sur-

rounding enterocytes (polarized epithelial cells) from the basolateral surface by

inducing membrane ruffling, which finally leads to macropinocytosis. Once a

bacterium is surrounded by a membrane vacuole within an epithelial cell, it

immediately disrupts the membrane vacuole and escapes into the cytoplasm.

Within the cytoplasm, Shigella can multiply and move both intra- and intercellu-

larly by inducing actin polymerization at one pole of the bacterium (Suzuki and

Sasakawa 2001). Multiplying Shigella release large amounts of lipopolysaccharide

(LPS) and peptideglycan (PGN); PGN in turn is sensitized by the Nod1/CARD-

family, eventually leading to the activation of NF-kB (Girardin et al. 2001, 2003).

In response to the activation of NF-kB, the colonic epithelium expresses a large

array of proinflammatory cytokines and chemokines, especially IL-8, thus further

promoting local inflammation and attracting more PMNs (Perdomo et al. 1994;

Pédron et al. 2003). Consequently, bacterial infection leads to the inflammatory

destruction of the intestinal epithelium, which causes mucopurulent bloody diar-

rhea. Figure 1 shows the whole infectious process of Shigella in the intestinal

epithelium.

2 Invasion of Intestinal Epithelium

2.1 Shigella Entry into Polarized Enterocytes via M Cells

Shigella have neither adherence factors nor flagella; nevertheless, they are capable

of efficiently entering the intestinal epithelium. Shigella invasion of epithelial cells
occurs not from the apical surface of polarized enterocytes but rather from the

basolateral surface. Indeed, when polarized MDCK (Madin Darby Canine Kidney)

or Caco-2 cells were infected with Shigella, the bacteria were unable to enter from

the apical surface of the cells. If, however, the cell-to-cell junctions were opened by

treating the cells with EGTA, which disrupts the Ca2+-chelating E-cadherin-

E-cadherin homophilic interaction, Shigella was able to enter the cells efficiently

(Mounier et al. 1992; Watarai et al. 1995). In agreement with this manner of

bacterial entry, when Shigella was used to infect rabbit ligated ileal loops, the

bacteria moved to the basolateral surface via entry through the M cells

(Wassef et al. 1989; Perdomo et al. 1994). Thus, Shigella possess a highly evolved

system to promote bacterial entry into epithelial cells by inducing membrane ruffles
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around the bacterial entry site. Consequently, the ability of Shigella to recognize the
M cell surface and the basolateral surface of enterocytes must be important for

determining the route of bacterial invasion in intestinal epithelium.

2.2 Regulation of Shigella Invasion of Epithelial Cells

The invasiveness of Shigella requires a subset of effectors secreted via the TTSS;

these effectors are encoded by the ipaA, ipaB, ipaC, ipaD, ipgB1, ipgB2, ipgD, and
virA genes located on a large 220-kb plasmid (Buchrieser et al. 2000; Venkatesan

et al. 2001). The large plasmid is highly conserved among Shigella species and is

thought to contain 50–60 virulence-associated genes, including genes that encode

effectors, chaperons, components of the TTSS, and regulatory proteins (Buchrieser

et al. 2000; Venkatesan et al. 2001). The activity of the TTSS and the production/

secretion of the effectors are tightly regulated by two major modulator genes, virF
and mxiE. At 37�C, the local DNA supercoil structure around the virF promoter

allows an increase in virF transcription, which in turn activates the virB promoter

(Sakai et al. 1988; Adler et al. 1989; Tobe et al. 1993; Dorman and Porter 1998).

Since VirB directly controls the transcription of a subset of genes that includes

ipaA, ipaB, ipaC, ipaD, ipgB1, ipgD, icsB, ospB, ospC1, ospC2, ospC3, ospC4,
ospD1, ospD2, ospF, and virA, the activation of virB transcription via VirF results

in an increase in the production/secretion of the effectors (Le Gall et al. 2005).

Fig. 1 A schematic model showing the infection of colonic epithelial cells by Shigella. Please
refer to the text for details
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Although the roles of these proteins as effectors have not yet been completely

elucidated, some of them, such as IpaA, IpaB, IpaC, IpaD, IpgB1, IpgD, and VirA,

have been characterized as effectors involved in the bacterial invasion of epithelial

cells. The genes encoding the TTSS are also, if not fully, expressed at 37�C and

become further activated upon the contact of Shigella with the host cells. Upon

activation of the TTSS in Shigella or in TTSS-deregulated mutants, the transcrip-

tion of nearly a dozen genes encoding effectors, such as ospB, ospC1, ospD3,
ospE1, ospE2, ospF, ospG, ipaH4.5, ipaH7.8, ipaH9.8, and virA, are induced

(Demers et al. 1998; Mavris et al. 2002a; Kane et al. 2002). The transcription of

effector-encoding genes requires MixE, a cis-acting transcriptional activator of

the AraC family; MixE is encoded by the mixE gene, which exists among the

TTSS genes on the large plasmid. The cis-acting sites are known as “MixE-boxes”;

these 17-bp sequences are located between �49 and �33 bp upstream of each

transcription start site (Mavris et al. 2002b). Although the roles of each effector

regulated byMixE remain partly unknown, the production/secretion of the effectors

is believed to be required for intracellular bacterial survival, intracellular multipli-

cation, evasion from the host innate defenses, and the prolonged survival of the

infected host cells (Le Gall et al. 2005).

2.3 Role of Effectors in Bacterial Invasion of Host Cells

The effectors secreted from extracellular Shigella via the TTSS during the initial

stage of infection interact with various host target proteins and stimulate host cell

signal pathways to direct local actin polymerization, which is required to change

the cell surface architecture and to entrap the bacteria. IpaB and IpaC, which are

secreted in the surrounding bacterial space via the TTSS of extracellular Shigella,
interact with host surface molecules such as b1 integrin and CD44, which act as

receptors (Watarai et al. 1996; Skoudy et al. 2000; Lafont et al. 2002). IpaB

interacts with CD44 and cholesterol, which occurs within lipid-rich rafts, to stimu-

late cell signaling involved in the promotion of local actin polymerization (Skoudy

et al. 2000; Lafont et al. 2002). IpaC, which is integrated into the host plasma

membrane, can stimulate actin polymerization. Actin foci at the site of bacterial

entry into the epithelial cells have been shown to accumulate c-Src (Duménil et al.

1998, 2000; Bougnères et al. 2004; Tran Van Nhieu et al. 2005). A recent study has

revealed that the IpaC carboxy-terminal domain induces the recruitment of Src and

actin polymerization, resulting in ruffling formation during Shigella invasion

(Mounier et al. 2009). The invasion of Shigella into the epithelial cells also elicits

the phosphorylation of cortactin (Dehio et al. 1995), which activates the Arp2/3

complex and induces actin polymerization, in a Src-dependent manner (Bougnères

et al. 2004). Crk is also phosphorylated by Abl kinase to activate Rac1 upon the

invasion of Shigella into epithelial cells (Burton et al. 2003). Thus, IpaC is assumed

to play a pivotal role in the induction of actin polymerization. IpgD exhibits

phosphatidylinositol (4,5) biphosphate phosphatase activity, which catalyzes the
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hydrolysis of PI(4,5)P2 to PI(5)P (phosphatidyl-inositol 5-monophosphate), there-

by contributing to local actin polymerization (Niebuhr et al. 2002; Pendaries et al.

2006). IpaA binds to the vinculin head, which stimulates actin depolymerization,

and also interacts with b1-integrin to stimulate RhoA activity, thus facilitating the

recycling of the free actin pool through the destruction of stress fibers and con-

tributing to the production of membrane ruffles (Bourdet-Sicard et al. 1999;

Hamiaux et al. 2006; Izard et al. 2006; Demali et al. 2006). IpgB1 plays a major

role in the invasion of Shigella into the epithelial cells, since IpgB1 activity mimics

RhoG in the host cell, which is required for the activation of the ELMO and

Dock180 complex, thus leading to the activation of Rac1 and ruffle formation

(Ohya et al. 2005; Handa et al. 2007). Indeed, upon the ectopic expression of IpgB1

in HeLa cells, for example, large membrane ruffles are produced. Under in vitro
conditions, recombinant IpgB1 protein competitively binds to the N-terminal

portion of ELMO with its binding by RhoG protein, suggesting that IpgB1

mimics the function of RhoG in the host. Although its biological role in

bacterial entry remains unknown, IpgB2, an IpgB1 homolog, binds to mDia1

(facilitating actin nucleation) and ROCK (Rho-kinase) via a GBD (GTPase

binding domain) region, thereby mimicking RhoA activity in the induction of

stress fiber formation (Alto et al. 2006). VirA, which belongs to the EspG/VirA

family and is found in enteropathogenic E. coli (EPEC), enterohemorrhagic

E. coli, and Shigella, is delivered to the vicinity of the bacterial entry site

(VirA can also be secreted from intracellular Shigella) (Elliott et al. 2001;

Yoshida et al. 2002). VirA (and EspG) can induce the degradation of local

microtubule networks (MTs) under both in vitro and in vivo conditions. Since

the degradation of MTs by EspG results in the release of various MT-associated

proteins, including GEF (GTP exchange factor)-H1 (which activates RhoA;

Yoshida et al. 2002; Matuzawa et al. 2004), VirA activity is thought to

contribute to ruffle formation during Shigella invasion via cross-talk between

RhoA and Rac1. Together, these studies strongly indicate that synergistic activ-

ities arising from the interplay between bacterial effectors and target host

proteins orchestrated by Rho-GTPases and tyrosine kinases are the key factors

responsible for promoting bacterial invasion in epithelial cells.

3 Dissemination of Shigella Among epithelial cells

3.1 Actin-Based Intracellular Motility

Some cytoplasmic invading bacterial pathogens, including Shigella, Listeria
monocytogenes, Rickettsia, Mycobacterium marinum, and Burkholderia
pseudomallei, are capable of inducing local actin polymerization at one pole of

the bacterium, enabling them to gain a propulsive force that they can use to move

within the cytoplasm and into adjacent host cells; this mechanism is an important

bacterial system for renewing replicative niches and serves as a portal of entry into
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deeper tissues (Gouin et al. 2005; Stevens et al. 2006). In the case of Shigella, the
activity is crucial for the expansion of the replicative foothold in the colonic

epithelium. The means by which the pathogens mediate actin polymerization are

distinct for each pathogen in terms of bacterial factors; however, they share the

ability to recruit and activate the Arp2/3 complex (actin-related protein 2 and 3) in

the vicinity of the bacterial surface, inducing local actin polymerization (Gouin

et al. 2005; Stevens et al. 2006). The actin-based movement of Shigella depends on
a special interplay between VirG (IcsA) and N-WASP (neural Wiskott-Aldrich

syndrome protein) (Suzuki and Sasakawa 2001). VirG is a 1102-amino acid outer

membrane protein encoded by the virG gene on the large plasmid (Makino et al.

1986; Bernardini et al. 1989; Lett et al. 1989). Inside the host cells, the multiplica-

tion of Shigella ultimately results in the accumulation of VirG at one pole of the

bacterium. The N-terminal domain of VirG, which is composed of 706 amino acids

(a-domain), is exposed on the bacterial surface, while the 344 amino acid

C-terminal domain (b-core) is embedded in the outer membrane through the

formation of a membrane pore, which acts as an auto-transporter to expose the

a-domain (Lett et al. 1989; Goldberg et al. 1993; Suzuki et al. 1995).

The N-terminal VirG region specifically binds to N-WASP, one of the WASP

family proteins (Suzuki et al. 1998). VirG interacts simultaneously with vinculin

and, as described later, also interacts with its own bacterial secreted IcsB effector

via the TTSS as well as with Atg5, an autophagic protein required for autophago-

some formation (Suzuki et al. 1996; Ogawa et al. 2005). N-WASP acts as an adapter

for interactions with the Arp2/3 complex. The binding of VirG and Cdc42 to

N-WASP activates N-WASP, which in turn leads to the recruitment of the Arp2/3

complex (Suzuki et al. 1998, 2000; Egile et al. 1999). To initiate and sustain the

active conformation of N-WASP, Toca-1, which mediates Cdc42-dependent

N-WASP activation, must be recruited in the vicinity of the motile bacterial surface

through an interaction with N-WASP (Leung et al. 2008). Once N-WASP that has

been recruited in the vicinity of the bacterial surface becomes activated, it can then

interact with and activate Arp2/3, together with monomeric actin, and profilin, thus

enabling the bacterium to gain a propulsive force in the host cytoplasm (Mimuro

et al. 2000) (Fig. 2). During bacterial movement, some motile bacteria impinge on

the host plasma membrane and cause membrane protrusion. The tips of these

bacteria-containing protrusions are then engulfed by neighboring uninfected cells,

leaving the bacteria transiently contained within double host plasma membrane-

bound vacuoles. The bacteria then disrupt the protrusion vacuoles, thereby releas-

ing Shigella into the cytoplasm of the neighboring epithelial cells. Shigella is

disseminated from one cell to another in this manner.

The motile behavior of bacteria in the cytoplasm is highly variable and depends

on the cellular location; some bacteria can rapidly move along the surface of the

nuclear membrane or beneath the plasma membrane, while others suddenly change

direction, spin around, or stop moving. The motile behavior of the bacteria also

depends on the subcellular location, since bacterial movement within the cytoplasm

is severely hindered by MTs. However, motile bacteria can destroy the surrounding

MTs by secreting VirA via the TTSS (Yoshida et al. 2006). Smooth bacterial
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movements thus depend on the ability of VirA to degrade the MTs (Yoshida et al.

2006). Consistent with this mechanism, virA-deleted mutants cannot move as

smoothly within the host cytoplasm as wild-type bacteria. Consequently, virA
mutants are incapable of intercellular spreading and become attenuated when

inoculated into mice via the nasal route. Thus, as described above, VirA has dual

roles in both bacterial invasion and intracellular spreading via MT degradation, in

which VirA’s ability to collapse local MT structures is a key factor in promoting

bacterial infection (Yoshida et al. 2002, 2006).

3.2 Bacterial Cell-Cell Spreading

The cell-cell spreading of Shigella is a sequential process that resembles the

intercellular transport of a large double-membrane vesicle. This process is thought

to require many bacterial and host factors, though the molecular basis of the process

is still poorly understood. The whole process of bacterial movement from one cell

to another consists of at least three distinctive stages; first, the bacterium attaches to

VirGShigella

Profilin G–actin

F–actin

 

a

Capping
protein

Cdc42
Toca–
1

N–WASP Arp2/3
complex

b

Fig. 2 Shigella movement within the host cell cytoplasm requires actin polymerization. (a) The

asymmetric distribution of VirG (also known as IcsA) on the bacterial surface is essential for the

polar movement of Shigella in epithelial cells. VirG at one pole of the bacterium recruits N-WASP

(neural Wiskott-Aldrich syndrome protein), which is activated by the attachment of Cdc42 and

Toca-1, resulting in the activation of the Arp2/3 complex. (b) A confocal image of the actin comet

tail from one pole of Shigella in the cytoplasm
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the plasma membrane and impinges upon the membrane so that it protrudes as a

filopodium; second, the protruding filopodium penetrates a neighboring cell; and

third, the double plasma membranes are lysed (Fig. 1). Several bacterial effectors

secreted via the TTSS, such as IpaB and IpaC, as well as VacJ, a chromosome-

encoded lipoprotein, are reportedly involved in bacterial dissemination (Suzuki

et al. 1994; Page et al. 1999). Intriguingly, a motile bacterium wrapped at the tip of

a filopodium that is not entrapped by a neighboring cell membrane cannot be

released into the extracellular medium. Thus, motile bacteria may have a sensitiz-

ing system that recognizes a wrapped environment. IpaB possesses an RTX motif

that is required for membrane disruption, while IpaC that has been integrated into

the host cell plasma membranes can trigger cell signals in the initial cell that induce

the actin polymerization required for the invasion of Shigella into epithelial cells

(High et al. 1992; Page et al. 1999; Tran Van Nhieu et al. 1999, 2005). These

activities are thus thought to participate in the lysis of the double-membranes

containing the motile bacteria and the plasma membrane engulfed by the adjacent,

uninfected cell. Although the mechanism responsible for this is still unclear, a

lipoprotein-encoding chromosomal Tn5-insertion mutant of S. flexneri, called vacJ,
reportedly results in the inability of the mutant to move to adjacent epithelial cells

(Suzuki et al. 1994). Shigella lacking the vacJ gene can extend filopodium; however,

the mutant bacteria within the protrusion cannot escape into the new host. Instead,

the bacteria continue to multiply within the trapped vacuole until the filopodium

begins to resemble a large balloon filled with bacteria. This mutant phenotype

suggests that the VacJ protein participates either directly or indirectly in the lysis of

the protrusion membrane after the filopodium has been entrapped by the adjacent

cell membrane.

In bacterial cell-cell spreading, cell-cell junctions such as tight junctions and

adherence junctions play structurally and functionally important roles. An early

study indicated that E-cadherin, the major connector at adherence junctions, is

involved in the mediation of Shigella intercellular spreading. However, as epithelial
cells lacking E-cadherin still allow Shigella cell-cell movement, the exact role of

E-cadherin in bacterial spreading remains to be elucidated (Vasselon et al. 1992;

Sansonetti et al. 1994). Recently, connexin (Cx) proteins, such as Cx26, have been

shown to play an important role in promoting the invasion and subsequent dissemi-

nation of Shigella into epithelial cells (Tran Van Nhieu et al. 2003). S. flexneri
infection can induce transient peaks in the intracellular calcium concentration,

triggering the opening of Cx26 hemichannels and allowing the release of ATP

into the medium (Tran Van Nhieu et al. 2003). The ATP promotes calcium

signaling, which in turn somehow promotes bacterial invasion and dissemination.

The hemichannel activity of Cx26 and the ATP released during Shigella infection

are functionally important for promoting bacterial dissemination. For example,

when an anti-Cx26 antibody was used to block the extracellular loop of Cx26,

which is involved in the transmission of hemichannel signaling, Shigella dissemi-

nation was hindered, while the addition of ATP to the medium significantly

increased bacterial cell-cell spreading (Tran Van Nhieu et al. 2003). Cx26 is

predominantly expressed from the basolateral side of polarized epithelial cells
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and interacts with ZO-1 at tight junctions. S. flexneri dissemination can also be

inhibited by treating the host cells with suramin, an antagonist of purinergic

receptors (Tran Van Nhieu et al. 2003). Thus, these results together suggest that

both hemichannel and extracellular ATP mediate some unknown signaling mecha-

nism involved in the promotion of bacterial spreading.

4 Intestinal Inflammation Caused by Shigella Infection

The ability of Shigella to invade the resident macrophages and intestinal epithelium

and the resulting inflammation are the major pathogenic features of Shigella.
Bacterial activity resulting in the induction of an inflammatory response has been

demonstrated using various in vivo and in vitro infection models; for example, the

inoculation of Shigella into rabbit ileal loops caused acute inflammation and

subsequent destruction of the intestinal villi (Perdomo et al. 1994). The inoculation

of Shigella onto guinea pigs eyes, known as the “Sereney test,” caused ulcerative

keratoconjunctivitis (Serény 1957). Similarly, the inoculation of Shigella into the

rectums of guinea pigs caused diarrhea (Shim et al. 2007). In mice pulmonary

model (since mice intestine is naturally resistant to Shigella infection), intranasal

infection with Shigella caused an acute broncho-pneumonia accompanied by a

massive neutrophil infiltration, resulting in the production and secretion of MIP-2

(a murine IL-8), IL-1b, and IL-6 (Voino-Yasenetsky and Voino-Yasenetskaya

1961; Phalipon et al. 1995). The ability of Shigella to induce inflammatory

responses in these animal models depends on the invasiveness of the bacteria and

intracellular multiplication, suggesting that bacterial components released and

secreted from intracellular Shigella stimulate the inflammatory signal pathways

(Phalipon and Sansonetti 2007).

4.1 Macrophage Killing and Inflammatory Response

Shigella invade the resident macrophages (and the dendritic cells) residing in the

M cell pocket, where they burst out of phagocytic vacuoles and multiply within the

cytoplasm. The bacterial multiplication induces a strong inflammatory response via

the recognition of bacterial components by the host innate immune system, which

activates caspase-1 and induces macrophage cell death (Franchi et al. 2008).

An early study reported that macrophages infected by Shigella undergo apoptosis

via the interaction of IpaB, secreted via the TTSS, with caspase-1 (Zychlinsky

et al. 1992; Chen et al. 1996; Hilbi et al. 1998). However, the cell death of

macrophages induced by Shigella has recently been characterized and identified

as a new type of programmed cell death associated with an inflammatory response,

which is accompanied by plasma membrane permeability and nuclear condensa-

tion; this type of programmed cell death is termed pyroptosis (Fink and Cookson
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2005; Suzuki et al. 2007; Bergsbaken et al. 2009). Interestingly, Ipaf and the

adaptor protein ASC (apoptosis-associated speck-like protein containing a C-ter-

minal caspase recruitment domain), which are nucleotide-binding oligomerization

domain (NOD)-like receptors (NLRs) that can sense the presence of microbial

components in the cell cytoplasm, appear to be required for caspase-1 activation

and macrophage cell death, and Ipaf and ASC-mediated caspase-1 activation seem

to occur as a result of sensing through some unknown bacterial factor(s) indepen-

dently on flagellin (Suzuki et al. 2007). Recently, Ipaf has also been reported to

mediate caspase-1 activation, IL-1b processing, and caspase-1-dependent cell death

through the detection of bacterial flagellin in macrophages infected with Salmonella
typhimurium or Legionella pneumophilla (Mariathasan et al. 2004; Franchi et al.

2006, 2009; Miao et al. 2006; Amer et al. 2006). Finally, at later time points,

NLRP3 (also known as Cryopyrin) seems to mediate an additional cell death in

Shigella-infected macrophages. Interestingly, this NLRP3-mediated cell death,

termed pyronecrosis, is caspase-1-independent, thus meaning it is inflammasome-

independent (Willingham et al. 2007). Consequently, proinflammatory chemokines

and cytokines are produced in macrophages after infection with Shigella and

become a major cause of strong inflammation.

4.2 Epithelial Invasion and Inflammatory Response

During the multiplication of Shigella within epithelial cells, the bacteria release

LPS and PGN as well as nucleic acids (Sansonetti 2004; Phalipon and Sansonetti

2007; Ogawa et al. 2008). These bacterial components are recognized by the host

innate immune system through a process mediated by Toll-like receptors (TLRs)

and Nod-like receptors (NLRs). As a result, these components stimulate the inflam-

matory signal cascade, activating the host innate defense systems and leading to

cellular and humoral immune responses and the production of antimicrobial pep-

tides, such as LL-37 and b-defensins (Lehrer and Ganz 2002; Selsted and Ouellette
2005). Therefore, bacterial multiplication within the intestinal epithelium (as well

as within macrophages) becomes a major cause of strong inflammation in the

intestine (Fig. 3). The intestinal epithelium expresses a wide range of pattern-

recognition receptors (PRRs) that recognize pathogen-associated molecular pat-

terns (PAMPs) released from intracellular bacteria (Fritz et al. 2006). When

Shigella multiply within the epithelial cells, the Nod1-RICK-dependent NF-kB
pathway is stimulated through the recognition of PGN by Nod1, a NLR family

protein, that activates inflammatory signal cascades, such as mitogen-activated

protein kinases (MAPKs) and NF-kB (Girardin et al. 2001, 2003; Inohara and

Núñez 2003). Intriguingly, Nod1 is recruited to the bacterial entry site by moving

from the cytoplasm to the plasma membrane, raising the possibility that efficient

PGN sensing may occur around the site of bacterial entry (Kufer et al. 2007).

Furthermore, a recent study indicated that NLRX1 (a newly identified cytoplasmic

NLR protein) is localized in the mitochondria via its N-terminal mitochondrial
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targeting sequence and promotes reactive oxygen species (ROS) production when

epithelial cells are infected with Shigella, although the PAMPs sensitized by

NLRX1 and the mechanism of ROS production induced by Shigella infection

remain unclear (Tattoli et al. 2008). In contrast to macrophages as described

above, the cell death mechanisms in Shigella-infected epithelial cells remain

unknown. However, a recent study has revealed that Shigella induce mitochondrial

dysfunction, resulting in caspase-independent necrotic cell death through a pathway

dependent on Bnip3 and cyclophilin D, two key regulators of mitochondrial

permeability transition and cell death during oxidative cell stress, in epithelial

cells (Carneiro et al. 2009). This mitochondrial dysfunction-mediated cell death

mechanism is tightly counterbalanced by a Nod1-dependent NF-kB activity by

maintaining the Bnip3/Bcl-2 expression ratio, demonstrating the existence of

Fig. 3 Shigella downregulates the host inflammatory response induced by PAMPs (pathogen-

associated molecular patterns). During the multiplication of Shigella in epithelial cells, the

bacteria shed PAMPs, such as peptidoglycan (PGN), into the cytoplasm. The recognition of

PGN by Nod1 activates the nuclear factor (NF)-kB and mitogen-activated protein kinase

(MAPK)-dependent inflammatory signals. Shigella delivers a set of effectors, including IpaHs,

OspF and OspG, into the host cytosol through the type III secretion system (TTSS), enabling these

effectors to circumvent the host inflammatory response and inactivate the innate immune system.

See the main text for details
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specific checkpoints that convert at mitochondria to determine prodeath and pro-

survival signaling. Nevertheless, as will be described later, Shigella (and many

other bacterial pathogens) that have infected the intestinal mucosa are capable of

circumventing the host innate immune response, allowing them to survive and

multiply within the epithelium; this ability implies that Shigella possess some

activities that dampen the host inflammatory signals.

5 Modulation of Host Inflammatory Response

5.1 Bacterial Strategy for Modulating the Host
Inflammatory Response

The modulation of the host inflammatory responses and the circumvention of the

host immune system are key factors in the survival of bacterial pathogens during the

infection of the intestinal epithelium (Sansonetti and Di Santo 2007; Mattoo et al.

2007). To modulate the host inflammatory response, Shigella release more than a

dozen different effector proteins while multiplying within epithelial cells. These

effectors include the IpaH family proteins, OspG, and OspF (Fig. 3) (Ashida et al.

2007; Ogawa et al. 2008).

One member of the IpaH family, IpaH9.8, is secreted from intracellular Shigella
via the TTSS and is translocated into the nucleus (Venkatesan et al. 1991;

Toyotome et al. 2001). The nuclear translocated IpaH9.8 protein interacts with

U2AF35, a mRNA splicing factor, and interferes with the U2AF35-dependent

splicing reaction. Upon the expression of the ipaH9.8 gene in epithelial cells or

during the knockdown of U2AF35 production using siRNA, the levels of proin-

flammatory cytokines decrease considerably (Okukda et al. 2005). In mice lung

infection model, infection with the ipaH9.8 mutant caused a more severe inflam-

matory response and a greater production of proinflammatory cytokine than

infection with wild-type Shigella. Of importance, the colonization rate of the

ipaH9.8 mutant in the lung tissue was greatly reduced to less than one-thirtieth of

the wild-type level (Okukda et al. 2005). IpaH9.8 and IpaH homologs produced by

Salmonella and Pseudomonas species can act as E3 ubiquitin ligases, an activity

that is encoded by the highly conserved C-terminal region of these molecules

(Rohde et al. 2007). A recent crystal structural analysis of IpaH proteins revealed

that IpaHs represent a new class of E3 ligase that differs from the typical RING- and

HECT-types of E3 ligases. Furthermore, the IpaH C-terminal region also confers a

catalytic E3 ligase activity, while the N-terminal leucine-rich repeat domain is

responsible for substrate recognition (Singer et al. 2008; Zhu et al. 2008). E3 ligase

activity of IpaH9.8, as examined in a yeast system, is required for interference with

the pheromone response signal cascade through the ubiquitination of MAPKK Ste7,

which undergoes proteasome degradation (Rohde et al. 2007).
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OspG interacts with ubiquitinated E2s (Ub conjugating enzymes), such as

UbcH5b, that are required for phospho-IkBa ubiquitination and subsequent protea-

some degradation (Kim et al. 2005). OspG activity can thus inhibit IkBa degrada-

tion, which is required for NF-kB activation, leading to the suppression of NF-kB
activation. Consistent with the activity of OspG, in vivo and in vitro infection

models with an ospG mutant have indicated that OspG plays a role in downregulat-

ing the inflammatory response to bacterial infection (Kim et al. 2005).

OspF secreted from intracellular Shigella is translocated into the epithelial cell

nucleus. OspF possesses a phosphatase activity that allows it to dephosphorylate

and inactivate MAPKs, such as ERK1/2, JNK, and p38; this, in turn, leads to the

inhibition of phosphorylation at the Ser10 residue of histone H3, which is involved

in activating the transcription of a group of genes regulated by NF-kB (Arbibe et al.

2007). Furthermore, Shigella OspF, Salmonella SpvC and Pseudomonas syringae
HopAl1 are all capable of dephosphorylating MAPKs through their phosphothreo-

nine activities, enabling them to interfere with MAPK activity (Li et al. 2007).

In vivo and in vitro infection models with an ospF mutant revealed that OspF also

downregulates the inflammatory response to bacterial infection required for the

promotion of bacterial colonization (Arbibe et al. 2007; Kramer et al. 2007).

Antimicrobial peptides are also important bactericidal components of the host

innate defense system (Zasloff 2002; Selsted and Ouellette 2005). Recent studies

have indicated that Shigella can suppress the transcription of several genes encod-

ing antimicrobial peptides and chemoattractants, such as human b-defensin, LL-37,
and CCL20, in a Shigella TTSS-dependent manner (Sperandio et al. 2008).

Although the exact number of effectors involved in the modulation of inflammatory

responses to Shigella infection in the intestine remains uncertain, the numerous host

molecules and signal pathways that are engaged in the induction of an inflammatory

response likely mean that Shigella require many effectors to modulate various

inflammatory signal pathways at different time points and cascade levels during

bacterial infection. These findings also strongly suggest that the inability to control

cytokine production during bacterial infection would be detrimental to bacterial

colonization.

6 Intracellular Survival Strategies

6.1 Escape from Autophagic Recognition

Autophagy is a ubiquitous degradation system in eukaryotic cells that is a crucial

cellular response to starvation and stress as well as the removal of damaged or

surplus organelles (Mizushima 2007; Levine and Deretic 2007; Deretic and Levine

2009). Autophagy is a highly conserved pathway during which a double-layered

isolation membrane wraps around undesirable cytoplasmic contents. The enclosed

material is delivered to an autophagosome and degraded after the autophagosome
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fuses with a lysosome. Autophagy is also a pivotal component of the host innate

defense system for eliminating invading cytoplasmic microbes. For example,

Group A Streptococcus (GAS) can invade epithelial cells but is usually targeted

and eventually destroyed by autophagy (Nakagawa et al. 2004). Mycobacterium
tuberculosis, an intracellular parasitic pathogen that survives in vacuolar compart-

ments within the macrophages, can also be targeted by autophagy at an early stage

of infection as long as the host innate immune response is intact (Gutierrez et al.

2004). Rickettsia is also sequestered in autophagosome-like double-membranes,

in which bacterial replication is limited and the bacteria eventually undergo degra-

dation (Rikihisa 1984). Although a number of controversial reports exist, some

intracellular pathogens, such as Legionella pneumophila, Coxiella burnetti,
and Porphyromonas gingivalis, are enclosed by vacuoles that they then modify to

resist fusion with lysosomes, allowing the pathogens to survive and multiply

unless autophagy is stimulated (Kirkegaard et al. 2004; Amer and Swanson 2005;

Gutierrez et al 2005; Bélanger et al. 2006).

Listeria monocytogenes and Shigella are able to multiply and move within the

host cell cytoplasm via the activities of their respective surface-expressed proteins

ActA and VirG/IcsA; this process is called actin-based bacterial motility. They are

also capable of escaping autophagic recognition though distinct means. In the case

of Shigella, IcsB, one of the effectors secreted via the TTSS by intracellular

Shigella, plays a pivotal role in disguising the bacterium against autophagic recog-

nition (Ogawa et al. 2005; Ogawa and Sasakawa, 2005). An icsB mutant is still

capable of invading epithelial cells, but it cannot, multiply within the host cells;

although the mutant multiplies and moves normally for the first 3 h after the

infection of BHK cells, intracellular multiplication eventually plateaus at 4 h

after infection. At this stage, approximately 40% of the intracellular icsB mutant

(and approximately 8% of the intracellular wild-type) are colocalized with acidic

lysosomes (Lysotracker) and autophagosomes (monodancyl-cadaverin and LC3).

When MDCK cells are infected with the icsB mutant (or wild-type Shigella) under
an amino acid-starved condition (which stimulates autophagy), the number of LC3-

positive bacteria significantly increases in the MDCK cells in response to amino

acid deprivation. Conversely, when MDCK cells are treated with a known autop-

hagy inhibitor, such as 3-methyladenine, the LC3-positive icsB population is

greatly reduced. Electron microscopic examination reveals that 3–4 h after infec-

tion, the icsB mutant is frequently enclosed by lamellar membranous structures,

though the wild-type Shigella have long actin tails; these observations suggest that,
unless Shigella produce IcsB, they readily succumb to autophagy. Intriguingly, the

VirG protein required for bacterial intracellular motility is targeted for autophagic

recognition by binding to Atg5. In in vitro binding assays, both IcsB and Atg5

exhibited some ability to interact with VirG, and IcsB and Atg5 share the same

interacting region on VirG. Importantly, the affinity of IcsB for VirG is relatively

strong, compared with that of Atg5, suggesting that IcsB plays a pivotal role as an

anti-Atg5 binding protein, thereby camouflaging the target VirG protein from

autophagic recognition (Ogawa et al. 2005).
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6.2 Control of Replicative Foothold

The intestinal epithelium self-renews every several days, and the exfoliation of

infected cells from the basal membrane provides an important intrinsic defense

system that limits bacterial colonization (Stevens and Leblond 1953; Sansonetti

2004; Oswald et al. 2005). The rapid turnover of intestinal epithelial cells

forms a crucial physical as well as a functional barrier, and renewal is sustained

by the vigorous proliferation of epithelial progenitors that migrate upwards

from the bottom of the intestinal crypts. Nevertheless, many pathogenic bacteria,

including Shigella, are capable of colonizing the intestinal epithelium. Recent

studies have indicated that a growing family of bacterial toxins, effectors, and

small compounds known as “cyclomodulins” are capable of modulating the host

cell cycle (Nougayrède et al. 2005). For example, Cif is secreted via the TTSS of

EPEC and inhibits host cell mitosis. Cells transformed by Cif accumulate 4n DNA

and re-initiate DNA synthesis without dividing, resulting in cells that contain 8-16n

DNA (Marchès et al. 2003; Taieb et al. 2006; Samba-Louaka et al. 2008). CDTs are

cytolethal distending toxins produced by Shigella dysenteriae, Campylobacter
jejuni, E. coli and Salmonella typhi, and one of the CDTs produced by C. jejuni
possesses a deoxyribonuclease I-like activity that causes limited DNA damage

when delivered into a host cell nucleus, leading to the activation of ATM (PI3

kinase protein) and eventually resulting in cell-cycle arrest (Lara-Tejero and Galán

2000; Nougayrède et al. 2005; Ge et al. 2008). Although the biological significance

of each cyclomodulin and its target host cells in bacterial infection remain to be

elucidated, some of the cyclomodulins are assumed to prolong the pathogen’s

presence by interfering with the rapid turnover of epithelial cells. A recent study

indicated that IpaB secreted from intracellular Shigella via the TTSS into the

epithelial progenitor cytoplasm causes cell cycle arrest by targeting Mad2L2, an

anaphase-promoting complex/cyclosome (APC) inhibitor (Iwai et al. 2007).

Indeed, a rabbit ileal loop infection model showed that, during an intermediate

stage of Shigella infection, the bacteria can directly access the intestinal crypts and

infect the cryptic epithelial progenitor cells. At this stage, while few progenitor

cells are detected in the crypts after wild-type Shigella infection, abundant progeni-
tor cells are detected after infection with the ipaB mutant. Cell cycle progression is

stringently controlled by cell cycle-specific proteolysis; this process involves the

ubiquitination of target proteins by two major types of E3 ligase complexes,

namely, the APC complex and the Skp1-culin-F-box protein (SCF) complex. The

APC complex is a multi-subunit complex that targets substrates for degradation

only during mitosis and the G1 phase; it also targets mitotic Cyclin A and Cyclin

B1, allowing mitotic progression. Cyclin B1 ubiquitination assays have shown that

APC undergoes unscheduled activation in response to IpaB interaction with

Mad2L2. Synchronized HeLa cells infected with Shigella fail to accumulate APC

substrates, such as Cyclin B1, Cdc20, and Plk1, causing cell cycle arrest at the

G2/M phase in an IpaB/Mad2L2-dependent manner. IpaB/Mad2L2-dependent cell

cycle arrest by Shigella infection can be visualized in the intestinal crypt
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progenitors of rabbit ileal loops, and the IpaB-mediated arrest contributes to the

efficient colonization of the host cells. Thus, bacterial activity resulting in the

retardation of intestinal epithelial renewal is assumed to be pivotal for prolonging

the infectious foothold and promoting the bacterial colonization of the intestinal

epithelium (Iwai et al. 2007).

The rapid exfoliation of infected intestinal epithelial cells and the rapid sealing

of neighboring cells are important for maintaining the epithelial integrity, which also

serves as an innate defense system against bacterial colonization. Nevertheless, many

pathogenic bacteria, including Shigella, are capable of efficiently colonizing

the epithelium. Recent studies have shown that OspE, delivered into epithelial cells

via the TTSS of Shigella, accumulates at the focal adhesion (FA), reinforcing the host

cell’s adherence to the basement membrane by interacting with integrin-linked kinase

(ILK) (Miura et al. 2006; Kim et al., 2009). Interestingly, OspE is highly conserved

among enteropathogenic Escherichia coli, enterohemorrhagic E. coli, Citrobacter
rodentium and Salmonella strains (Tobe et al. 2006). The formation of focal adhesion

(FA) and the level of cell surface b1-integrin are augmented byOspE-ILK interaction-

dependent manner. The interaction between OspE and ILK suppresses the phosphor-

ylation of FAK and paxillin, which are required for the rapid turnover of FA in cell

motility, then OspE promotes targeting of the membrane-associated ILK. Thus, the

disassembly of FA from thematrix such as fibronectin during Shigella infection can be
repressed through the interaction of OspEwith ILK (Kim et al. 2009). The infection of

polarized epithelial cell monolayers by an ospE mutant caused more rapid cell

exfoliation than infection by wild-type Shigella, indicating the importance of the

OspE-mediatedmaintenance of Shigella-infected cell architectures. Infection of guin-
ea pig colon with wild-type Shigella corroborates the pivotal role of the interaction of
OspE with ILK in repressing epithelial detachment, resulting in increased bacterial

cell-to-cell spreading and the promotion of bacterial colonization (Kim et al. 2009).

7 Conclusion

Shigella possess highly evolved invasive as well as intracellular survival systems.

Furthermore, they are equipped with various offensive systems against the host

innate defense and immune systems. These bacterial infectious activities are

mostly exerted through effectors, of which more than 50 may exist, delivered via

the TTSS into host cells. These effectors play pivotal roles from the onset of

bacterial infection through to the establishment of the colonization of the intestinal

epithelium. According to characterization studies of these effectors, their roles in

infection can be categorized into at least four classes: (1) bacterial entry into host

cells, such as macrophages and epithelial cells; (2) intracellular survive and multi-

plication; (3) modulation of the inflammatory response; and (4) maintenance of the

infectious foothold. Since many effectors have yet to be characterized, some of

these uncharacterized effectors may play roles in other infectious aspects that are

not yet known. Nevertheless, the biological roles of individual effectors are exerted
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in at least two ways: some possess distinctive enzymatic activities that are capable

of directly modulating cellular function in the host, while others exert their activity

via targeting (binding to) host proteins. Some effectors utilize both of these (Galán

and Wolf-Watz 2006; Galán 2007). More complicatedly, some effectors possess

two or three intracellular activities. For example, IpaB secreted at the tip of a TTSS

needle not only acts as the translocater required for the delivery of other effectors

(Blocker et al. 1999), but also acts as a Shigella invasive protein for promoting the

bacterial invasion of epithelial cells by interacting with CD44 (Skoudy et al. 2000;

Lafont et al. 2002). Furthermore, IpaB is secreted from intracellular Shigella after

the pathogen has invaded intestinal epithelial progenitors, where it then interacts

with Mad2L2 and downregulates cell cycle progression (Iwai et al. 2007). IpaH9.8,

which is secreted from intracellular Shigella, interacts with U2AF35 and dampens

the expression of numerous genes, including genes that encode inflammatory

chemokines and cytokines, while also downregulating NF-kB activity in a

U2AF35-independent pathway (Haraga and Miller 2003; Okuda et al. 2005).

Thus, these examples suggest that bacterial effectors are highly adaptive proteins

capable of interacting with the host cellular system to promote bacterial infection

and modulate the host immune response in a manner that benefits the pathogen.

Clearly, further studies of the biological activities of bacterial effectors will

provide us with not only the opportunity to uncover novel bacterial infectious

strategies, but also the tools needed to further understand host cellular and immune

systems. Such knowledge would serve as a strong basis for the development of an

attenuated Shigella vaccine, drugs to control infection, and new animal models for

studying shigellosis.
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