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Preface 

Mathematical modelling is now widely adopted in physiology and medicine 
to support the life scientist and clinical worker. However, good modelling 
practice must be based upon sound methodology. This is the focus of this 
book. It builds upon the basic idea of an integrated methodology for the 
development and testing of mathematical models. It covers many specific 
areas of methodology where important advances have taken place over recent 
years and illustrates the application of good methodological practice in key 
areas of physiology and medicine. 

Over the past few decades, several books have been written on mathematical 
modelling in physiology and medicine. Some have focused on methodology, 
while others have centred around a specific area of physiology and medicine. 
Over the past 20 years, we ourselves have contributed extensively to this field, 
including our volume from the early 1980s entitled Mathematical Modelling 
of Metabolic and Endocrine Systems: Model Formulation, Identification and 
Validation, which combined methodological detail with a demonstration of its 
applicability in relation to metabolics and endocrinology. 

This present volume follows suit by combining advances in methodology 
with demonstrations of its applicability. It is one of two volumes on the theme 
of modelling included in this Biomedical Engineering series. The other one, 
which is currently in production, provides an introduction to modelling in 
physiology. The essence of our other volume is summarized in the first chapter 
of this book. This book serves as both a stand-alone volume and a comple- 
mentary work. For the reader who has some experience in modelling, this 
volume will provide an accessible account of recent advances in the field. For 
the reader who has absorbed the messages of the introductory volume, the 
chapters herein build logically upon those insights. 

This book has been designed to appeal to all those who wish to advance 
their knowledge of good modelling practice. It will be useful to postgraduate 
students and those in the final year of study who have chosen modelling 

xii i  



xiv Preface 

specialties as part of biomedical engineering or medical or health informatics 
courses. It is equally designed to meet the needs of advanced practitioners and 
researchers in the field of modelling as it applies to physiology and medicine. 

Although formally an edited text, this volume is the collaborative work 
of two teams in London and Padova who together have extensive experience 
in communicating these ideas and concepts to a wide range of audiences, 
including undergraduate and postgraduate students, and researchers and profes- 
sionals across a spectrum of disciplines from engineering and informatics to 
medicine and related clinical professions. Hence, this book has been produced 
as an integrated work, meant as tutorial in style and containing reference listing 
at the end of the volume. 

In writing this volume, we thank those of our colleagues in our teams 
who have chosen to work with us in this project. Their support and encour- 
agement has been greatly appreciated, and without their efforts, this volume 
would not exist. We also wish to thank our friends and colleagues who, over 
many years, have encouraged us to develop our modelling ideas, whether from 
their perspective as fellow engineers and computer scientists or from their 
invaluable viewpoint as physiologists and clinicians. There are many that 
we would wish to recognize including Riccardo Bonadonna, Derek Cramp, 
Ludwik Finkelstein, Antonio Lepschy, and Peter Srnksen. 

Finally, we thank Joseph Bronzino, Editor-In-Chief of this Biomedical Engi- 
neering Series, and Joel Claypool, Jane Phelan, and colleagues at Academic 
Press for their encouragement, support, and tolerance in working with us to see 
our ideas come to fruition. 

Ewart Carson 
Claudio Cobelli 
London, England and Padova, Italy 
July 2000 



Chapter I 

An Introduction to Modelling 
Methodology 

Claudio Cobelli  and Ewart Carson 

1.1. I N T R O D U C T I O N  

The aim of this book is to describe more recent developments in modelling 
theory and practice in relation to physiology and medicine. The chapters that 
follow offer detailed accounts of several facets of modelling methodology 
(Chapters 2-6)  as well as demonstration of how such methodological devel- 
opment can be applied in areas of physiology and medicine. This application 
material, contained in Chapters 7-13, is not intended to be comprehensive. 
Rather, topics have been chosen that span study in the circulatory and respira- 
tory systems (Chapters 8-10) and key areas of metabolism and endocrinology 
(Chapters 7 and 11-13). The authors of the respective chapters have very 
considerable expertise in these areas of physiology and medicine. 

Before moving into the more advanced areas of methodology, it is appro- 
priate to review the fundamentals of the modelling process, which put simply 
can be viewed as a mapping or transforming of a physiological system into 
a model as shown in Figure 1.1. The process has now reached substantial 
maturity, and the basic ingredients are well established. This overall modelling 
framework is described in detail in the accompanying volume (Cobelli and 
Carson, 2001). In this chapter, we provide a distillation of that framework 
and revisit the fundamentals upon which the later, more detailed chapters are 
built. 
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Figure 1.1. 

System 

Modelling methodology 

Model 

Modelling methodology: Transforming a system into a model. 

1.2. THE NEED FOR MODELS 

1.2.1. PHYSIOLOGICAL COMPLEXITY 

Complexity is what characterises much of physiology, and we must have 
a method to address this. Complexity manifests itself through elements that 
comprise any physiological system through the nature of their connectivity, 
in terms of hierarchy, and through the existence of nonlinear, stochastic, and 
time-varying effects. Complexity is exhibited at each level of the hierarchy 
and across levels within the physiological system. 

What do we mean by some of these concepts? First, the physiological hier- 
archy will include the levels of molecule, cell, organ, and organism. Complex 
processes of regulation and control are evident at each level. Feedback is 
another key feature that occurs in many forms. It is inherent in chemical reac- 
tions within the organism. There are explicit hormonal control mechanisms 
superimposed upon metabolic processes. The physiological organ systems 
exhibit explicit control mechanisms. In many instances, there is negative 
feedback, although examples of positive feedback also exist. Feedback offers 
examples of control action being taken not only in relation to changes in the 
value of a physiological variable per  se, but also in response either to its rate 
of change or to the integral of its value over a period of time. Some of these 
concepts of feedback and control are examined in more detail in Chapter 2. 
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As a result of this physiological complexity, it is not often possible to 
measure directly (in vivo) the quantities of interest. Only indirect measures 
may be feasible, implying the need for some model to be able to infer the 
value of the quantity of real interest. Measurement constraints usually mean 
that it is only possible to obtain readings of blood values of a metabolite when 
the real interest lies in its value in body tissue. Equally, it is not generally 
possible to measure the secretions of the endocrine glands. 

Overall, this complexi ty--coupled with the limitations that are imposed 
upon the measurement processes in physiology and med ic ine - -means  that 
models must be adopted to aid our understanding. 

1.2.2. MODELS AND THEIR PURPOSES 

What do we mean by the term model? In essence, it is a representation 
of reality involving some degree of approximation. Models can take many 
forms. They can be conceptual, mental, verbal, physical, statistical, mathe- 
matical, logical, or graphical in form. For the most part, this volume focuses 
on mathematical modelling. 

Given that a model provides an approximate representation of reality, what 
is the purpose of modelling activity? As is shown in Figure 1.2, the purpose 
is a key driver of good modelling methodology. In classic scientific terms, 
modelling can be used to describe, interpret, predict, or explain. A mathemat- 
ical expression, for example, a single exponential decay, can provide a compact 
description of data that approximate to a first-order process. A mathematical 
model can be used to interpret data collected as part of a lung function test. 
A model of renal function, which includes representations of the dynamics 
of urea and creatinine, can be used to predict the time at which a patient 

System 

Modelling methodology 

Model 

[_,. Modelling 
r purpose 

Figure 1.2. The purpose of modelling: A key driver of modelling methodology. 
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with end-stage renal disease should next undergo haemodialysis. A model of 
glucose and insulin can be used to gain additional insight into, and explanation 
of, the complex endocrine dynamics in the diabetic patient. 

Rather, more specific purposes for modelling can be identified in the 
physiological context. These include aiding understanding, testing hypotheses, 
measuring inferences, teaching, simulating, and examining experimental 
design. For example, competing models, constituting alternative hypotheses, 
can be examined to determine which are compatible with physiological or 
clinical observation. Equally, a model of the relevant metabolic processes, 
when taken together with measurements of a metabolite made in the 
bloodstream, can be used to infer the value of that metabolite in the liver. 
Models also are increasingly used as a medium in teaching and learning 
processes, where, by means of simulation, the student can be exposed to a 
richer range of physiological and pathophysiological situations than would be 
possible in the conventional physiological laboratory setting. Models also can 
play a powerful role in experimental design. For instance, if the number of 
blood samples that can be withdrawn from a patient is limited in a given 
period of time, models can be used to determine the times at which blood 
samples should be withdrawn to obtain the maximum information from the 
experiment, for example, in relation to pharmacokinetic or pharmacodynamic 
effects. 

Considering what is meant by a model and its purposes, we now focus 
on the nature of the process itself. As already indicated, this is the process of 
mapping from the physiological or pathophysiological system of interest to the 
completed model, as shown in Figure 1.1. The essential ingredients are model 
formulation, including determination of the degree to which the model is an 
approximation of reality; model identification, including parameter estimation; 
and model validation. These are discussed in the following sections. 

1.3. A P P R O A C H E S  T O  M O D E L L I N G  

In developing a mathematical model, two fundamental approaches are 
possible. The first is based on experimental data and is essentially a data- 
driven approach. The other is based on a fundamental understanding of the 
physical and chemical processes that give rise to the resultant experimental 
data. This can be referred to as modelling the system. 

1.3.1.  MODELLING THE DATA 

Models that are based on experimental data are generally known as data- 
driven or black box models. Fundamentally, this means seeking quantitative 
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descriptions of physiological systems based on input-output (I/O) descriptions 
derived from experimental data collected on the system. Simply put, these are 
mathematical descriptions of data, with only implicit correspondence to the 
underlying physiology. 

Why should we use such data models? First, they are particularly appro- 
priate where there is a lack of knowledge of the underlying physiology, 
whether a priori knowledge or knowledge acquired directly through measure- 
ment. Equally, they are appropriate when an overall I/O representation of the 
system's dynamics is needed, without knowing specifically how the physio- 
logical mechanisms gave rise to such I/O behaviour. 

The methodological framework for modelling data is depicted in Figure 1.3. 
Several specific methods are available for formulating such data models, 
including time series methods, transfer function analysis, convolution- 
deconvolution techniques that are restricted to linear systems (discussed in 
Chapter 3), and impulse response methods. 

1.3.2. MODELLING THE SYSTEM 

In contrast to data modelling, when modelling the system there is an attempt 
to explicitly represent the underlying physiology, albeit at an appropriate level 
of approximation and resolution. The degree of approximation will be largely 
determined by the availability of a priori knowledge and the nature of the 
assumptions that can be made. The basic framework in this case is shown in 
Figure 1.4. 

Models of the system, that is, models that are physiologically based, may be 
categorised in a number of ways according to the included attributes. This clas- 
sification, corresponding to the approaches that can be adopted, includes static 

Physiological 
system I 

/ 
input-output representation 

Modelling ~ / 
methodology ~ / 

Data 

Parameter 
estimation 

I 
I 
I 
t Modelling 
I purpose 
I 
I 
I 

Figure 1.3. Modelling the data: A methodological framework. 
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F i g u r e  1.4. Modelling the system: A methodological framework. 

v. dynamic models, deterministic v. stochastic, time-invariant v. time-varying, 
lumped v. distributed, linear v. nonlinear and continuous v. discrete models. 
All combinations are possible so one could envisage a dynamic, deterministic, 
time-invariant, lumped, linear, continuous model in one case or a dynamic, 
stochastic, time-varying, distributed, nonlinear, discrete model at the other end 
of the spectrum. 

A first classification is into static models and dynamic models. Clearly, 
static models are restricted to steady-state conditions and do not attempt 
to capture the richness of a system's dynamics. However, in the circula- 
tory or respiratory context, for example, static models can provide useful 
relationships between mean pressure, flow, and impedance (or resistance in 
the linear case). Simple dynamic models have been employed in fields such 
as cellular dynamics and metabolic compartmental descriptions (e.g., one 
compartment elimination), and as simple descriptions of circulatory and respi- 
ratory dynamics. 

In more complex formulations, distributed modelling enables spatial effects 
to be incorporated as well as the basic system dynamics. For example, a 
distributed model of the arterial system enables the blood pressure patterns 
along the length of any blood vessel to be analysed as well as variations of 
blood pressure over time. 

Nonlinear modelling reflects the fact that almost all physiological phenomena 
are truly nonlinear. In some situations, however, it might be appropriate to 
assume that linearity applies, for example, if one is simply interested in the 
dynamics resultant from a small perturbation of the system from some steady- 
state operating condition. However, if it is the response to a large perturbation 
that is required (e.g., blood glucose dynamics following a large meal), a full 
nonlinear model of the relevant portions of the carbohydrate metabolism is 
needed. 
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Many physiological systems can be treated as if they were time-invariant; 
this means that system parameters are assumed not to vary with time. However, 
there are some circumstances in which this assumption would not hold. One 
example might be the change in the elastic properties of the blood vessels 
that occurs over a long period of time. A model that was intended for use 
over such an extended period would incorporate elastic parameters of the 
relevant blood vessels that did vary over time. At the other end of the time 
scale, a model designed to explore the rapid dynamics of the cardiovascular 
system that occur during the pumping cycle of the heart would incorporate 
time-varying representations of those parameters corresponding to the elastic 
properties of the heart chambers. 

A further degree of approximation applies whenever it is assumed that a 
physiological system can be treated as deterministic. In reality there is usually 
some stochastic component present. If this component is small, it may be 
acceptable to treat the system as if it were deterministic. Where the stochastic 
effects are more dominant, as is the case when examining cellular dynamics, 
then stochasticity must be incorporated into the model, either as stochastic 
variation of key variables or as stochastic variation in the parameters. 

A number of issues relating to model validation (validation is considered 
in more detail later in tile chapter) must be considered at this stage. These 
include verification of the compatibility of the proposed model with the rele- 
vant physiology, regarding the validity of the assumptions, and the degree to 
which the complexity of the physiology has been reduced for the particular 
modelling purpose in question. The model also should be checked to ensure 
it is logically complete and consistent. 

1.4. S I M U L A T I O N  

Simulation is the process of solving the model (i.e., the equations that are 
the realisation of the model) to examine its output behaviour. Typically, this 
process involves examining the time course of one or more of the variables; 
in other words, performing computer experiments on the model. 

When is simulation required? It can be used either during the process 
of model building or once the model is completed. During model building, 
simulation can be performed to clarify aspects of system behaviour to deter- 
mine whether a proposed model representation is appropriate. This is done 
by comparison of the model response with experimental data from the same 
situation. When carried out on a complete, validated model, simulation yields 
output responses that provide information on system behaviour. Depending 
on the modelling purpose, this information assists in describing the system, 
predicting behaviour, or yielding additional insights (i.e., explanations). 
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Why use simulation? Simulation offers a way forward in situations in which 
it might not be appropriate, convenient, or desirable to perform particular 
experiments on the system. Such situations could include those in which 
experiments cannot be done at all, are too difficult, are too dangerous, are 
not ethical, or would take too long to obtain results. Therefore, we need 
an alternative way to experiment. Simulation offers an alternative that can 
overcome the preceding limitations. Such experimenting can provide informa- 
tion that, depending on the modelling purpose, aids description, prediction, or 
explanation. 

How do we perform simulation? First, we need a mathematical model that 
is complete; that is, all its parameters are specified and initial conditions are 
defined for all the variables. If the model is not complete (i.e., has unspecified 
parameter values), parameter estimation techniques must be employed. Once a 
complete model is available, it is implemented on the computer. This assumes 
that the model equations cannot be, or are not being, solved analytically and 
that a numerical solution of the system is needed. The model is solved on the 
computer, this process of simulation yielding the time course of the system 
variables. In technical terms, the computer implementation is done using a 
standard programming language (e.g., FORTRAN, C) or a specialist simulation 
package (e.g., MATLAB). 

1.5.  M O D E L  I D E N T I F I C A T I O N  

1.5.1. A FRAMEWORK FOR IDENTIFICATION 

To complete the transformation from system to model as depicted in 
Figure 1.1, we must have both a model structure and fully determined 
parameters corresponding to that structure. In other words, we need a complete 
model. However, we may not have such a model. We should by this stage have 
at least one candidate model, and we may have more than one to choose from. 
If a single model is incomplete, it will be due to some unknown parameter 
values. This is true whether the modelling approach adopted has been driven by 
the data or by the physiology of the system. We may be dealing with the whole 
model or just part of it. In either case, an integrated identification framework 
is needed. A schematic representation of this process is given in Figure 1.5. 

The solution of this problem requires data. Data sometimes occur from 
the intrinsic dynamics of the system (e.g., spontaneous oscillations or noise). 
Electrophysiological signals would be instances of such output dynamics as 
they relate to brain, muscle, or cardiac function. Usually, however, we must 
design experiments. The question is then what experiments must be designed to 
yield appropriate data. Clearly, the I/O data from the experiment must contain 
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Figure 1.5. Model identification. 

that part of the model with the unknown parameter values. Tracer methods, 
as discussed in Chapter 6, offer one approach to data generation convenient 
for the identification process. 

In the identification process, data are mapped into parameter values by the 
model, where errors can occur in both the data and the model. The first arises 
as a consequence of measurement errors. The second involves errors in model 
structure, which arise as a consequence of more than one competing model. 
There are other types of errors, including noise on test signals and disturbances. 
However, one cannot address more than one type of noise at a time. In fact, 
rigorously we can only address measurement errors. Errors in model structure 
cannot be dealt with explicitly. They can only be solved by considering each 
competing model structure in turn. Therefore, it is customary to focus on a single 
model and concentrate on the impact of measurement errors that are assumed to 
be additive. The available approaches can be divided into two groups: situations 
with parametric models and those with nonparametric models. 

1 .5.2.  IDENTIFICATION OF PARAMETRIC MODELS 

The first issue to be addressed is that of identifiability. In essence, this is 
asking whether it would theoretically be possible to make unique estimates of 



10 Claudio Cobelli and Ewart Carson 

all the unknown parameters assuming that the experimental data were complete 
and noise-free. In other words, the experimental data must be rich enough to 
estimate all the unknown parameters. Problems of identifiability arise where 
there is a mismatch between the complexity of the model and the richness of 
the data. That is, the model is too complex (too many unknown parameters) 
for the available data, or the data are not sufficient for the model provided. In 
such cases, one must explore whether the model might, in a manner that retains 
validity, be reduced or whether the experimental design might be enriched: 
for example, by making measurements of an additional variable. Issues of 
identifiability are considered in Chapter 4. 

If the model is uniquely identifiable, assuming perfect data, it is possible 
to proceed directly to estimating the parameters. In some situations, multiple 
solutions (finite, greater than one) may be theoretically possible for some 
parameters. In such cases, it might at the stage of validating the complete 
model be possible to select between these alternatives, such as on the basis of 
physiolegical plausibility. Where an infinite number of values is theoretically 
possible for one or more parameters, remedy must be sought to the mismatch 
between model and data outlined previously. 

A range of techniques exists for parameter estimation once the model has 
passed the identifiability test. Those that are most widely adopted use an 
approach based on linear or nonlinear least squares. These are least demanding 
in terms of their requirements for a priori  knowledge. In contrast, maximum 
likelihood and Bayesian estimation, which are discussed in detail in Chapter 5, 
require a priori knowledge (or assumptions) regarding the statistics of the 
situation being modelled. 

Some effort has also been directed to the problem of "optimal experimental 
design." This has largely focused on the interaction between the features of 
an experiment in which data are obtained as a set of discrete values over 
the experimental period following the application of an input test signal and 
the information content of the experiment in relation to the quality of the 
parameter values obtained by the estimating process. 

1.5.3.  IDENTIFICATION OF NONPARAMETRIC MODELS 

Nonparametric models arise from some of the situations described earlier in 
which a data modelling approach has been adopted. In other words, an overall 
I/O model description has been obtained, such that it is specified as an integral 
equation. Such a description has essentially three ingredients: the input, the 
output, and the impulse response that provides the connection between them. 
Two of these are known, and the third is to be determined. The most usual 
situation is when the output is specified. Techniques available for solving this 
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problem can basically be classified as raw deconvolution and deterministic 
regularisation. 

1.6. M O D E L  V A L I D A T I O N  

Validating a model is essentially examining whether it is good enough in 
relation to its intended purpose. This assumes that, in a Popperian sense, it 
can be tested. Clearly, no model can have absolute unbounded validity given 
that, by definition, a model is an approximation of reality. If one is working 
with a set of competing candidate models, the validation process involves 
determining which of them is best in relation to its intended purpose. A valid 
model is one that has successfully passed through the validation process. 

Validation is integral to the overall modelling process. It is an activity that 
should take place both during model building and upon model completion. The 
issue of validity testing during the process of model formulation was addressed 
in section 1.3.2. At this stage, we shall assume that the model is complete; 
that is, it has no unspecified parameters. The essence of the validation process 
at this stage is shown in Figure 1.6. 

It cannot be stressed too strongly that in examining the validity of the 
complete model, the process is dependent upon model purpose; that is, it is 
problem-specific. The implication is that we are testing whether appropriate 
components are contained in the model. For example, we would be testing the 
appropriateness of model structure in relation to any intended use for hypoth- 
esis testing parameters that would be meaningful in the context of a specific 
disease (i.e., change in parameter values could correspond to the change from 
a healthy state to a diseased state). Dependent upon the purpose, usually some 
features of the model and system output (i.e., experimental output data) must 
correspond sufficiently for the same input (an acceptably small difference be- 
tween them). In other words, within the necessary domain of validity, we are 
testing whether the model is credible. The model performance also may be 
tested out with its nominal specified domain of validity to define the effective 
boundary of the actual domain within which it may be considered valid. 

The basic approach in validating a single model is to compare the model 
and system behaviour, based on appropriate output features of response. Any 
mismatch between system and model output should be analysed for plausibility 
of behaviour. 

For cases in which formal parameter estimation procedures have been 
employed for the model, additional quantitative tools are available in the 
validation process. These include examining the residuals of the mismatch 
and the plausibility of the parameter estimates where the parameters have a 
clear physiological counterpart. In the case of competing models, choice can 
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be aided by examining the parsimony of the models (by using the Akaike 
criterion in the case of linear models) and the features of response yielded by 
the model, again testing the plausibility. 

In conclusion, one should always remain critical of a model and not love 
it too much! All models are approximations; hence, one should always be 
prepared to include new facts and observations. A good model (in a Poppe- 
rian sense) is one that is clearly falsifiable and thus is readily capable of 
bringing about its own downfall. One also should remember that in situations 
of complexity, it may be appropriate to think of a set of models, where each 
would have its own (distinct) domain of validity. It then becomes a case of 
choosing the most appropriate in relation to, for instance, the level in the 
physiological hierarchy that is being represented and the time scale of interest 
in relation to dynamic response (e.g., short-term or long-term). A successful 
outcome to the modelling process is critically dependent on both the quality 
of the model and the quality of experimental data (see Figure 1.7). 
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Figure 1.7. The garbage paradigm. 

Following this brief tour through basic ingredients of good modelling 
methodology, subsequent chapters elaborate on methodological issues of 
current importance and demonstrate their applicability in selected domains 
of physiology and medicine. 
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Chapter 2 

Control in Physiology and 
Medicine 

Ewart Carson, Tom Hennessy, and Abdul Roudsari 

2.1. I N T R O D U C T I O N  

This chapter examines ways in which concepts of control relate to the study 
of physiological and medical systems, both in the insight that can be gained 
and in therapy planning as part of the patient management processes. 

The chapter introduces the conceptually simple, but powerful, framework 
of the four-element cybernetic model that provides a basis for examining 
the dynamics that occur in physiology and medicine. This basic model can 
be further developed at various levels of resolution. This is followed by an 
exploration of the basic control concepts, demonstrating, through examples, 
their relevance in describing and interpreting the processes and regulation of 
physiological dynamics. 

The chapter focuses on the basic feedback model, developing this frame- 
work so as to encompass both the diagnostic and the therapeutic processes. It 
is then shown how this framework can be employed to specify the require- 
ments for health care delivery systems, with an example from chronic disease 
management. Finally, the planning of drug therapy is viewed as a control 
problem, demonstrating the relevance of a feedback modelling framework, 
illustrating this view of drug administration with diabetes. 

2.2. A SYSTEMS A N D  CONTROL APPROACH 

The analysis of complex dynamic systems in physiology and medicine 
requires the use of modelling methods and techniques. A general methodology 
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for mathematical modelling of well-structured dynamic systems has already 
been presented in Chapter 1. Modelling provides a bridge between the real 
system and the resultant model. 

The dynamic processes that take place in a system may represent the natural 
or involuntary operation or a series of changes in a situation. Such situational 
behaviour may appear to be goal-seeking, a special case of which is adaptive 
behaviour. Such adaptation is the result of environmental change. Changes 
in the environment (e.g., disturbances) may be acute. These will require 
short-term adaptive behaviour via regulation and control. If the changes are 
chronic, longer-term regulation and control mechanisms must maintain system 
integrity. Thus, a system requires a variety of control mechanisms designed to 
cope with environmental variables (Deutsch et al., 1994). These mechanisms 
have evolved effectively across a range of physiological systems and are put 
in place in acute and chronic disease management. 

One special interaction between the elements of a system is the feedback 
relationship. In general, feedback is a mutual causality in which variable x 
affects variable y, and in turn y affects x. If an increase in y effects a change 
in x that tends to decrease y, feedback is considered negative. Obvious phys- 
iological examples include body temperature regulation and the interaction of 
glucose and insulin in the case of a healthy subject. In contrast, positive feed- 
back (e.g., the classic wage-price spiral) is a situation in which an increase in 
y causes a change in x, which then tends to increase y. 

Feedback processes can be represented diagrammatically in the classic 
cybernetic loop with its four interlinked components, as shown in Figure 2.1. 
The control unit (controller) compares the measured state of the controlled 
process, via the information system, and acts upon any discrepancy, or error, 
between this and the desired state of the controlled process. This desired state 
may be regarded as a reference or set-point value. The output from the control 
unit is the control (or controlling) signal. The level of the regulated variable 
is measured by a sensor that forms part of the information system in the feed- 
back loop. The function of the controller is to help maintain a given value of 

Desired 
patient 
state ~[ 

"1 
Control 

unit 

Measured 
patient 
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Activating 
unit 

Controlled 
process 

Information L 
system I" 

Figure 2.1. The classic four-element cybernetic feedback loop. 
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the controlled variable. The control signal (which can be considered the deci- 
sion made by the decision-maker) is applied to the controlled process via the 
actuating or activating unit that effects the control action upon the controlled 
process. 

ff the controlling signal is fed directly to the controlled unit, the situa- 
tion is termed closed-loop feedback control. In contrast, if a human agent is 
interposed, such that the control action is not automatic but is effected via that 
human agent, the situation is referred to as open-loop feedback control. 

Any physiological system, which typically includes feedback control loops, 
functions within its environment. Environmental variables, or variables that 
have an effect on the system but are not affected by it, may control the 
regulating system or may simply disturb the level of the regulated variable. 
For example, the temperature of the human body is precisely regulated to 
within 0.1~ with the centre for temperature regulation found within the 
brain. This centre receives information regarding temperature sensed in the 
skin. If the temperature is too low, messages are transmitted from that centre 
to the muscles to increase oxidation and the heat supply to the body. The 
reverse applies if the body temperature is too high. These are not the only 
heat-regulatory mechanisms. A high temperature produces dilatation of skin 
capillaries and increased heat loss by radiation. Other mechanisms include the 
excretion of sweat and loss of heat by evaporation (Deutsch et al., 1994). 

2.3. C O N T R O L  M E C H A N I S M S  I N  P H Y S I O L O G Y  

The example of thermoregulation illustrates a rich variety of control mech- 
anisms found in functioning physiological systems. There are mechanisms 
whose impairment gives rise to the majority of disease states. 

Feedback regulatory mechanisms as means of effecting control are to be 
found in a variety of forms and locations within the human organism, both 
within chemical reactions occurring in the body and through the combination 
of individual effects. Some of this complexity can be seen in Figure 2.2, which 
shows the hierarchy of chemical reactions within the cell. It also shows how 
the totality of cellular effects, combined with the effects of explicit hormonal 
control, integrate to yield the physiological behaviour of the overall system. 

2.3.1. INHERENT FEEDBACK REGULATION 

At each level of the hierarchy of chemical reactions in the cell, feedback 
control mechanisms can be seen. However, in addition to a variety of explicit 
feedback control mechanisms, some of which are illustrated in the following 
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paragraph, regulation of a feedback nature can be found whenever chemical 
dynamics are in operation. 

Consider the case of a simple chemical reaction taking place within the 
organism, in which it may be assumed that the rate of decrease (loss) of 
concentration of the metabolite M taking part in that reaction is directly 
proportional to its concentration. Mathematically, this can be expressed in 
the form: 

dCM /dt  = -kCM (2.1) 

where CM is the concentration of metabolite M, and k is the rate constant for 
the reaction. Expressing (2.1) in the form of a signal flow diagram (Figure 2.3), 
it can be seen that there is effectively a negative feedback connection. That 
is, an increase in concentration results in an increase in the negative rate 
of change of concentration, leading, via the process of integrating that rate 
of concentration change, to a reduction in the concentration itself. In other 
words, there is a process that regulates the concentration of that metabolite. 
This is an example of an inherent regulatory effect exhibited in this chemical 
reaction, despite no physical feedback link. 
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Figure 2.3. The signal flow diagram of a simple, first-order chemical reaction. 

The phenomenon of inherent feedback that has been revealed is contained 
in any dynamic process that can be described mathematically in this way, 
represented in the next section in differential equation form. 

2.3.2. ENZYME CONTROL 

This concept of feedback control can next be seen at the level of enzymic 
activity. Consider the simplest enzyme reaction in which free-enzyme E and 
chemical substrate S react, reversibly, to yield an intermediate complex X 
that proceeds further to yield the product of the chemical reaction P and free- 
enzyme E. In essence the action of the enzyme as a chemical catalyst promotes 
the conversion of substrate S into product P. 

Assuming that these chemical reactions can be approximated as first order, 
the following rate equations can be written: 

d[S]/dt = -kl[S][E] + k2[X] 

d[X]/dt = kl [S][E] - (k2 + k3)[X] 

d[E]/dt - (k2 + k3)[X] - kl [S][E] 

d[P]/dt -- k3[X] 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where [S], [X], [E], and [P] are the concentrations of S, X, E, and P, respec- 
tively. The rate constant of the respective reactions are denoted by k l -  
k4. Figure 2.4 depicts the signal flow diagram for this simplest of enzymic 
reactions. The reversible reaction, whereby E and S combine to yield the 
intermediate complex X, gives rise to two negative feedback loops tending 
to regulate E and S. On the other hand, the regenerative cycle E --+ X ~ E 
leads to a positive feedback loop with a potentially destabilising effect. 
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Figure 2.4. Signal flow diagram for a simple enzymic reaction. 

What has been considered in this example is the simplest possible config- 
uration of feedback control mechanisms to be found in an enzymic reaction. 
In practice, most enzyme-controlled reactions are much more complex in 
variety and number of feedback loops. For example, phosphofructokinase, 
which catalyses one of the reactions of glucose metabolism, exhibits regu- 
latory mechanisms that are complicated by the presence of activators and 
inhibitors such that more than a dozen feedback pathways can be identified, 
resulting in highly complex patterns of control action. 

2.3.3. NEGATIVE FEEDBACK 

As already indicated, negative feedback is characterised by an increase in 
variable y that causes a change in variable x that, in turn, tends to decrease y. 
In other words, the signal output induces a response that feeds back to the 
signal generator to decrease its output. A classic example is the interaction of 
glucose and insulin, acting as its principal regulating hormone, as depicted in 
Figure 2.5. An increase in glucose concentration triggers the beta cells of the 
pancreas into producing more insulin, which, via a variety of enzyme-mediated 
chemical reactions, results in a lowering of the elevated blood glucose. 

More complex patterns of feedback control action can be found among the 
hormonal control systems. Figure 2.6 shows the case of thyroid hormone regu- 
lation, demonstrating the existence of multiple feedback loops. Thyrotropin- 
releasing hormone (TRH), secreted by the hypothalamus, triggers the anterior 
pituitary into the production of thyrotropin (TSH). This, in turn, triggers the 
target gland, the thyroid, into producing the two hormones tri-iodothyronine 
(T3) and thyroxine (T4). The complexity of control within this system is such 
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Figure 2.6. Feedback control structure associated with the regulation of the thyroid hormones 
(adapted from Cramp and Carson, 2000). 

that it includes both direct and indirect feedback of T3 and T4, as outlined in 
Figure 2.6, with TSH feedback on to the hypothalamus. 

2.3.4. POSITIVE FEEDBACK 

If an increase in variable y causes a change in x that tends to increase y, the 
feedback is positive. In other words, a further signal output is evoked by the 
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response that it induces or provokes. This is intrinsically an unstable system, 
but there are a number of physiological situations in which such control is 
found and performs a valuable function. In such a positive feedback situation, 
the signal output will continue until no further response is required. Suckling 
provides an example. Stimulation of nipple receptors by the suckling child 
provokes an increased release of the hormone oxytocin from the posterior 
pituitary gland, with a corresponding increase in the flow of milk. Removal of 
the stimulus causes cessation of oxytocin release (Cramp and Carson, 2000). 

2 .3.5.  DERIVATIVE AND INTEGRAL CONTROL 

Recalling the example of glucose regulation, evidence shows that insulin is 
produced in response not only to elevated glucose concentration, but also to a 
positive rate of change of glucose. This examples implies that this physiolog- 
ical system evidences not only proportional, but also derivative, control action 
(Cramp and Carson, 1981). A simplified diagrammatic representation showing 
the basis of these proportional and derivative effects is given in Figure 2.7, 
whereby excess glucose is laid down as glycogen in the liver as a result of 
the insulin action in the relevant enzyme-controlled chemical reactions. The 
presence of this derivative component improves the dynamic response of this 
physiological control system. 
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Figure 2.7. Diagrammatic representation of a portion of the glucose regulatory system indi- 
cating the action of insulin on enzyme-controlled reactions of the glucose metabolic pathway and 
the response of the pancreas to signals corresponding to glucose and its positive rate of change. 
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Classic control action typically involves some combination of proportional, 
derivative, and integral effects. In contrast to the previous example, which has 
been considered in terms of proportional and derivative action, this example 
incorporates integral feedback. From a control theoretic perspective, the addi- 
tion of derivative control generally enhances dynamic response characteristics 
mentioned previously. However, such feedback systems can exhibit error in 
the steady-state condition between the desired value of a controlled variable 
and the value actually achieved by the control action. The incorporation of a 
term in the control action that is proportional to the integral of the difference 
between desired and actual state can help to eliminate such error. 

An example of such integral action has been proposed by Saratchandran 
et al. (1976) to describe clinical data relating to the thyroid hormones. A 
simplified representation is shown in Figure 2.8. The two thyroid hormones, 
T3 and T4, are assumed to bind reversibly to the plasma proteins albumin, 
thyroxine binding prealbumin and thyroid hormone globulin. One or both of 
the free thyroid hormones in the plasma (FT3P and FTnP) exert an inhibitory 
effect on the secretion of TSH and, in turn, TSH exerts a stimulatory action 
on thyroid hormone secretion. 

One of the experimental test situations used in the validation of this model 
was the inhibition of TSH secretion by the thyroid hormones; that is, small 
quantities of T3 and T4 given orally to normal subjects considerably blunt the 
TSH response to an intravenous injection of TRH. When feedback to the pitu- 
itary was assumed to involve only a T3 proportional signal, the blunting of the 
TSH response obtained was much less than that observed experimentally. It 
was then necessary to postulate the existence of both a delayed proportional 
feedback and an integral feedback effect, whereby the pituitary integrated the 
past excess plasma level of thyroid hormone T3 (compared with the steady-state 
level) over the previous 48 hours in adjusting its TSH output. The successful 
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Figure 2.8. A portion of the thyroid hormone regulatory system, indicating a postulated compo- 
nent of integral feedback (adapted from Saratchandran et al., 1976). 
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fitting of this modified model to the data indicated that this physiological system 
was behaving as if it incorporated an integral control component. 

2.4. C O N T R O L  S Y S T E M  R E P R E S E N T A T I O N S  O F  T H E  

C L I N I C A L  P R O C E S S  

The basic ideas of systems and control modelling described earlier can 
form a framework for representing the diagnostic and therapeutic processes of 
clinical medicine. This framework is developed in this section. This section 
also shows how such a modelling framework can be used to specify the 
requirements for novel forms of clinical activity, such as are being developed 
and realised in telemedicine and telecare. 

The functioning of the human organism, and its constituent physiological 
systems, in the normal healthy state is readily describable in systems concepts. 
For example, we can talk of a cardiovascular system made up of elements, 
including the chambers of the heart, combined with subsystems, such as the 
systemic and pulmonary arterial and venous trees, the behavioural pattems of 
which are influenced by an array of control mechanisms, both local and within 
the central nervous system. 

In a similar manner, we discuss the glucose-insulin regulatory system in 
which the dynamics of blood glucose and related metabolites are controlled 
by the actions of insulin, and an array of other enzyme and hormonal effects, 
some of which have been considered in Section 2.3. This situation is depicted 
in simple form in Figure 2.5 as a controlled process, glucose metabolism, and 
a controller, the pancreas (the four-component feedback model condensed into 
two major components). In response to an elevation or positive rate of change 
of glucose, insulin is secreted by the pancreas. This insulin has its effect on a 
number of chemical reactions associated with the production and utilisation of 
glucose. The result is a lowered plasma glucose concentration, and a classic 
example of feedback control. 

Many disease states can be analysed in terms of complete or partial failure 
of one or more feedback loops of the type depicted in Figure 2.9. For instance, 
diabetes results from a partial or complete failure of the pancreas to produce 
insulin in response to elevated blood glucose levels or to a reduction in the 
efficiency in producing the desired metabolic effect (in essence, a change in 
one or more parameters in the actuating or effectors component of the loop 
rather than the structural change--break in the loop-- implied by a total 
failure to secrete insulin. Deviations from normality, or disease conditions, 
are frequently not deviations of controlled variables, but rather deviations in 
relations between variables. In other words, the deviations are observable only 
as a pattern of relations between variables. 
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Figure 2.9. An external feedback control loop (clinical control) superimposed upon the impaired 
intrinsic glucose-insulin regulatory processes. 

In the disease state, the impaired or broken internal control loop must be 
augmented by, or replaced with, an external loop corresponding to the clinical 
intervention. The situation in the case of diabetes is depicted in Figure 2.9. 
While the controller will usually be the physician or a member of another 
clinical profession, in the case of a chronic disease such as diabetes it is 
frequently the patient who makes the decision concerning the adjustment of 
insulin therapy, particularly on a day-to-day basis. 

2.4 .1 .  THE FEEDBACK 
CLINICAL PROCESS 

MODEL AS A FRAMEWORK FOR THE 

The classic feedback model thus constitutes a framework that can be adop- 
ted to gain insights into not only the dynamics of physiological regulation 
and control, but also the nature of the clinical domain with its diagnostic 
and therapeutic processes. In this context the feedback model can be repre- 
sented as shown in Figure 2.10. In essence, the physician, nurse, or other 
clinician, acting as controller or decision-maker, makes decisions, based on 
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Figure 2.10. Information processing and control decision-making in health care delivery. 

the best available information, that result in some particular clinical activity. 
The decision might relate to the diagnostic process, performing a laboratory 
test or carrying out an imaging examination, to increase the available informa- 
tion on the state of the patient. Equally, it might relate to the administration of 
drug or other therapy (or a decision to change the existing therapy) to improve 
the patient's state of health. 

The information system in the feedback loop is then used either to provide 
increased knowledge concerning the state of the patient from a diagnostic 
perspective or to enable an assessment of the extent to which the chosen 
therapy has produced the desired change in the patient's condition. By increas- 
ing the availability of information to the clinical decision-maker, their uncer- 
tainty is lessened. Of course, this means that the data collected regarding 
patient state should have been processed and interpreted in the clinical context 
of that individual patient. In the early stages of clinical activity, decisions will 
be largely diagnostic in nature. They will focus on assessing patient state and, 
where appropriate, determining the need for investigations or tests to yield 
additional diagnostic information. 

2.4.2. DIAGNOSIS, DECISION-MAKING, AND TREATMENT 

Although in some senses the processes of diagnosis and treatment are 
distinct, within this model-based control paradigm, diagnosis is essentially 
a component of the clinical management process, rather than being an end in 
itself. Diagnosis should be regarded operationally as the provisional assignment 
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of a patient to a treatment class rather than labelling of a disease state. Diag- 
nosis can only be confirmed in this operational framework once the response to 
therapy is known. Moreover, diagnostic classification that does not distinguish 
between different management options does not generally improve health care. 

The setting of diagnosis and treatment within a broader medical and social 
environment is depicted in Figure 2.11. In this representation, data from "medi- 
cal sensors," describing the patient and environment, are fed into the diagnostic 
subsystem. Here, adopting appropriate model-based processing and interpre- 
tation, the data can be mapped into a particular disease class or a set of 
statements that provide an assessment of the patient's state. These diagnostic 
statements, with both raw and processed patient data, can then be used in 
the subsequent stages of decision-making to determine the best course of 
action. 

One must decide whether treatment should be administered and, if so, 
which one. On the other hand, further investigations or tests may need to 
be performed to gain additional patient information (e.g., the current degree 
of uncertainty is too great to justify specific therapeutic action). Moreover, 
if therapy is administered, one should specify, in the light of the expected 
patient response, which variables should be observed and at what times the 
patient should be monitored. Again, clinical data are used as in diagnosis, but 
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Figure 2.11. The processes of diagnosis and treatment viewed from a control perspective 
(adapted from Edwards et al., 1978). 
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local treatment objectives are employed (Deutsch et al., 1994; Edwards et al., 
1978). 

As the decision-making process progresses, there is a change in the local 
objectives of the diagnostic and treatment processes. In diagnosis, the change 
is a refinement from the initial attempt at general diagnosis toward making 
efficient, therapy-related diagnostic statements from the relevant set of patient 
observations. For treatment, the transition moves from determining when 
therapy should be administered to monitoring the success of ongoing therapy. 
The selected treatment is then given to the patient or appropriate changes are 
made to his or her environment. 

These processes are highly iterative, so there is a cycling around this control 
loop a number of times, rather than it being a one-off sequence of procedures. 
Ongoing data collection via the monitoring process enables the effectiveness 
of earlier decisions to be assessed and any necessary modifications or revisions 
to be made. 

As seen from Figure 2.11, the performance evaluation carried out by the 
clinician is over and above the operational system. The clinician considers the 
sequence of observations, including all available clinical data and treatment 
information, to reflect his or her overall objectives. This may lead to modifi- 
cation of specific diagnostic or treatment objectives or to a reconsideration of 
the decision-making processes (Edwards et al., 1978). 

2.4.3. FEEDBACK AND FEEDFORWARD 

The purely feedback schema as depicted in Figure 2.10 assumes that suffi- 
cient time is available for the operation of the information system in the 
feedback loop to take effect before a further clinical decision is required. 
Obviously, this assumption may not be valid in the initial stages of decision- 
making for a newly admitted patient, particularly when acute illness or trauma 
requires action before all relevant test results and clinical investigations are 
made available. This difficulty also may apply in the case of chronic disease 
management with its lengthy time scales for complete operation of the feed- 
back loop. These are situations in which the dynamics of patient change are 
slow and clinic visits are comparatively infrequent. 

In such cases, a model based solely on feedback cannot provide a comple- 
tely adequate representation of the clinical control action. It must be comple- 
mented by a feedforward model. In fact, the actions of the clinician regarding 
patient management provide a good example of feedforward control. This 
involves taking quick action to produce a desired patient state or to prevent an 
undesired state that could be a possible consequence of a disease progression 
or future disturbance (Deutsch et al., 1994). 
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Figure 2.12. Feedforward action as an ingredient of clinical control. 
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The scheme of this anticipatory or feedforward control action is based on a 
model of the controlled process, or the patient. Such a model can be used in two 
ways. First, it can be used to infer the state of the patient. Second, it can be used 
as a basis for developing an adaptive control strategy for patient management. 
Figure 2.12 shows a model describing the effect of disturbances and control 
actions on the system output to be regulated. In response to a measurable 
disturbance, the clinician will try to eliminate the effects of that disturbance 
on the particular physiological process that has been deranged. In so doing, the 
clinician uses a conceptual model to choose an appropriate treatment. Looking 
to the future, such mental, conceptual models will increasingly be supported 
by a computer model. In this manner, the controlled output of the assumed 
model would tend to cancel out the effect of the measurable disturbance on the 
corresponding output of the real physiological system (Deutsch et al., 1994). 

This control action taken by the clinician is, in essence, anticipatory. It is 
carried out either when feedback is not available from the information system 
in the loop or when a rapid clinical decision is required before there is time to 
put the full cybernetic process into action. A general model of clinical control 
can be seen as one in which feedforward action is embedded within an overall 
feedback loop. 

2.4.4. THE OVERALL FEEDBACK MODEL OF HEALTH CARE 
DELIVERY 

While the clinical feedback loop, based on its four elements, is at the 
centre of health care delivery, a wider perspective is necessary to encompass 
the overall processes of health care delivery. Figure 2.13 depicts a model 
comprising a set of interacting feedback loops. A number of points should be 
noted. First, the model is genetic in its ability to be applied across a spectrum 
of diseases. Second, it is relevant whether in the clinical management of the 
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patient, or in the selection of a policy as to what forms of clinical management 
should be made available to a given patient population. 

The model provides for health care delivery directed toward a wider view of 
health outcome, in addition to the direct output in readily measurable clinical 
variables. It accounts for patient preference, as well as resource availability, 
cost-effectiveness, and clinical effectiveness. In summary, it demonstrates that 
a control system model, in the form of interacting feedback loops to which 
a feedforward component can be added (as discussed previously), provides a 
useful aid both to the clinical decision-maker and to the health care planner. 

2.4.5. A MODELLING FRAMEWORK FOR SYSTEM REQUIREMENT 
SPECIFICATIONS 

The modelling framework presented as a representation of the processes of 
health care delivery can play an important role in systems specification and 
design. This applies not only in centralised modes of health care delivery, but 
also in distributed modes as exemplified by developments in telemedicine and 
telecare. 

An illustration of this is given in relation to the development of a telem- 
atic home haemodialysis system that is being designed to support treatment 
of patients suffering from end-stage renal disease (ESRD). The approach of 
Cramp and Carson described previously can aid system specification, with the 
modelling activity carried out at successively fine levels of resolution. In this 
way, a conceptual model of the required telemedicine information and control 
architecture can be determined. In turn, the system hardware and software 
needed for realisation can be specified (Carson et al., 1998a). 

The management of ESRD represents a major clinical challenge. Home 
haemodialysis offers the patient with chronic kidney failure the convenience 
of home treatment, enhanced rehabilitation, and decreased treatment cost over 
time. Currently, its adoption across Europe is limited (not available in some 
countries) and is decreasing. Among the problems are a lack of support for 
the patient in the home setting and difficulty concerning the provision of treat- 
ment resources in the home. Telemedicine offers one way of overcoming such 
difficulties. This involves complementing conventional home dialysis with a 
telematic link (video, voice, data, and text) between the patient's home and 
the hospital control centre, typically a specialist renal unit with clinical exper- 
tise (Carson et al., 1998a). The modelling approach described in the following 
paragraph has been carried out as part of the European-funded Health Telem- 
atics HOMER-D project (Carson et al., 1997). 

Figure 2.14 offers an overview of the control system modelling framework 
in the context of the specific example of developing and evaluating a telematic 
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telematic home haemodialysis system (adapted from Carson e t  a l . ,  1998a). 

home haemodialysis system. This indicates that the genetic decision-making, 
as depicted in Figure 2.1, is applied to each of the processes associated with 
managing ESRD. These are shown within the dotted circle at the tight-hand 
side of the figure. In essence, the treatment cycle can be divided into those 
periods spent receiving haemodialysis therapy, typically 3 to 4 times per week, 
and the periods between those sessions. It is in relation to the haemodialysis 
sessions that the telemedicine is being designed. For simplicity, longer term 
concerns, such as those relating to rehabilitation of the patient, are omitted 
since they do not immediately impact upon the design of the telematic home 
haemodialysis system. 

The essence of the telematic system features is that the state of the patient 
and his or her haemodialysis machine are monitored and these data are trans- 
mitted back to a central hospital station, typically located in a specialist renal 
unit. The patient receiving treatment would be either in his or her normal home 
setting or in a satellite dialysis centre, which could be located in a primary 
health care centre. From the specialist centre, where the data are monitored 
and interpreted, appropriate advice can be fed back to the patient via an appro- 
priate telematic link. In this way, the patient benefits from receiving treatment 
in his or her home or local environment, while simultaneously benefiting from 
the expert care offered by the specialist renal unit. 

The genetic feedback decision-making model of Figure 2.1 is applied to 
each of these treatment cycle components of clinical management in turn 
representing these components in feedback terms. Figure 2.15 shows the result 
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of carrying out this operation to the period of the haemodialysis treatment 
session. This model-based analysis can be applied with increasingly fine gran- 
ularity until a representation of the telematic treatment session is produced, as 
depicted in Figure 2.16. 

In progressing from these conceptual models, the information-gathering 
stage commences by taking a patient profile from the patient's medical record. 
Instructions are then given to the patient via the telematic link. Once done, a 
number of monitoring actions are carried out by the patient, such as measure- 
ment of blood pressure and body weight. These data are then fed back to the 
specialist hospital centre. Unless there is contraindication of the monitoring 
actions, the haemodialysis treatment is started. From this point, information 
generated by the haemodialysis machine (e.g., relating to the rate of blood 
flow through the machine) is monitored and fed back to the central control 
station. Normally, the information that has been monitored will only be acted 
upon when an alarm condition occurs. Where appropriate, any such alarm 
state detected during the monitoring process can be recorded in the patient's 
medical record. At the end of the treatment session, further monitoring actions 
are performed and the corresponding data are recorded in the patient' s medical 
record (Carson et al., 1998a). 

By progressing through increasingly fine levels of resolution in the applica- 
tion of this modelling approach, a conceptual model of the required telemedicine 
information and control architecture is obtained, as shown in Figure 2.16. This 
conceptual representation of the architecture leads directly to the hardware 
and software required for adoption in the telemedicine system. The prototype 
system developed in the HOMER-D project has been tested as part of an overall 
programme of evaluation in three European countries. Again, this evaluation 
process, the methodology for which is described in Carson et al. (1998a), forms 
part of the overall feedback control system model depicted in Figure 2.14. 

2.5. C O N T R O L  S Y S T E M  A P P R O A C H E S  T O  D R U G  

T H E R A P Y  P L A N N I N G  A N D  A D M I N I S T R A T I O N  

Therapy as a component of the clinical management of the patient is essen- 
tially the implementation of control action. In the context of drug therapy, for 
example, observing the patient and administering drugs constitutes an opera- 
tional feedback loop that consists of three main parts. These are the controlled 
process (the patient); a sensor of the patient' s response to therapy (the measure- 
ment system that constitutes part of the feedback loop); and the controller, as 
depicted in Figure 2.17. 
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2.5.1.  THE PLANNING OF DRUG THERAPY 

In taking such control action, the objective is to achieve a desired level 
of drug-elicited effect. The appropriate therapeutic action is attained without 
exceeding predetermined safety limits in relation to any possible adverse 
action. Problems arise as a consequence of drug response variability from one 
patient to the next, or over time in a single patient. Adjustment of the drug 
regimen attributes (route of administration, dosage, time schedule of delivery) 
can alter the effects of a drug. Completely different therapeutic and toxic 
responses may occur following the administration of the same drug quantity, 
depending on the manner and timing of the dose delivery. The individualisa- 
tion of dosage adjustment is particularly critical for drugs with a rapid onset 
of action and a narrow therapeutic range. From a control perspective, addi- 
tional complications arise when more than a single drug is administered. The 
possible impact of drug-drug interaction is such that only rarely will the total 
control action be simply the sum of the individual control effects. 

The choice between alternative control actions (e.g., alternative drugs or 
dosage of a single drug) can be aided by the use of formal decision anal- 
ysis using decision trees. In this way, the drug treatment of any illness can 
be modelled as having four potential outcomes. These are the four possible 
combinations of efficacy or no efficacy with toxicity or no toxicity. The form 
of the decision tree model is shown in Figure 2.18. Changes in the dosing 
with a single drug, for instance, will change the distribution of the probabili- 
ties for the four outcomes and the overall value of expected utility of the two 
branches of the tree. The information gained from such analysis can inform 
the planning process prior to the taking of the control action. 

2.5.2.  CONTROL APPROACHES IN DRUG THERAPY 

When administering drug therapy as control action, the drug-elicited effect 
must be measured. In some cases, this can be readily carded out, such as 
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Figure 2.18. Decision tree representation of the outcomes of alternative drug therapy regimens. 
Changes in dosage alter p, the probability of efficacy, and q, the probability of toxicity (adapted 
from Lenert et al., 1993). 

where the effect is measured as a change in blood pressure. However, if the 
effect is depth of anaesthesia, the value of which is inferred from on-line 
measurement of the EEG, sophisticated signal processing will be needed for 
its assessment, as indicated in Figure 2.17. 

In the operation of the feedback loop, the levels of drug effect actually 
observed in the patient are compared with the level of response being sought, 
and the difference (error signal) is fed into the controller that adjusts the drug 
dosage as required. The drug dosage as the control signal can be administered 
either as a continuous signal (e.g., intravenous infusion or inspiration of anaes- 
thetic agent) or in discrete form (e.g., bolus injection or taking a tablet orally). 

The controller can be the clinician (or patient) or machine. For relatively 
safe drugs, the control action can be taken by the human agent (e.g., clinician 
in the hospital). However, in the case of rapidly acting drugs, a computerised 
drug delivery system may be more appropriate. 

Depending on whether the clinician (or patient acting in the role of control- 
ler) is included in the feedback loop, it is possible to distinguish between so- 
called "fight" and "loose" control methods. These are illustrated in Figure 2.19. 
In tight or fully closed-loop systems, drug administration does not require 
human intervention. For example, computerised devices can automatically 
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Figure 2.19. Types of feedback control that can be adopted in drug therapy. A and C, nonadap- 
tive control; B and D, adaptive control (adapted from Vozeh and Steimer, 1985). 

infuse antihypertensive agents on the basis of monitored blood pressure data 
(Deutsch et  al., 1994). In loose- or open-loop control, the clinician (or patient, 
in relation to day-by-day insulin dosage adjustment) is part of the loop, making 
final decisions about dosage and future monitoring patterns. 

2 .5 .3 .  CONTROL SYSTEM APPROACHES IN THE M A N A G E M E N T  OF 

DIABETES 

In the context of diabetes, it is open-loop control that is the norm in 
regulating the glucose-insulin loop. Occasionally, an unstable diabetic subject 
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spending a short period of time as an inpatient may receive insulin therapy as 
a closed-loop feedback operation in order to stabilise the blood glucose level. 
Equally, looking to the future, once continuous monitoring of blood glucose 
becomes practicable on a safe, reliable, and robust basis, an imbedded control 
system operating mode could become a reality. 

However, open-loop control is the norm. Hence, in the context of this 
chapter, one is considering the development of model-based schemes that 
can offer advice to the decision-maker. Focusing on advice relating to the 
adjustment of insulin dosage, three distinct decision-making problems can be 
identified. These can be classified in terms of the frequency of occurrence 
(Carson, 1998). The lowest frequency corresponds to strategic adjustment of 
the basic insulin regimen, such adjustment being made when the patient visits 
the clinic, typically at intervals of once every several weeks or months. Next, 
there is the fine-tuning of this strategic regimen, which the patient may make 
on a day-by-day basis. Finally, there is the one-off adjustment that might be 
required in anticipation of some sporting activity or celebratory meal. Each 
of these decisions has its own control characteristics that must be considered 
when devising the relevant decision support technology. 

A wide range of model-based approaches has been proposed to provide 
decision support for these problems. Some make use of models that are explic- 
itly based on the underlying dynamics of glucose-insulin interaction (process 
models). Others are based on interpreting clinical data, in essence data-driven 
models. Details of many of these approaches can be found in thematic issues 
of journals such as Computer Methods and Programs in Biomedicine and 
Medical Informatics, focusing on modelling and decision support in diabetes 
(e.g., Carson et al., 1998b, 2000; Lehmann, 1996, 1997). 

One approach that has been developed for the strategic, visit-by-visit prob- 
lem of insulin adjustment is the UTOPIA system (Utilities for Optimising 
Insulin Adjustment) (Deutsch et al., 1996). This is a system that includes 
components of both data-driven and process modelling. This system seeks to 
provide advice based on the processing and interpretation of extended series of 
home-monitored blood glucose measurements. Such measurements are typi- 
cally made by the patient up to four times a day, before each main meal and 
at bedtime. 

Two principles are at the centre of this system. The first is that blood 
glucose data collected by the patient over time are assumed to be capable 
of yielding characteristic statistical patterns for that patient when following 
a particular regimen of insulin therapy. The extent of such a series of data 
might typically be a period of 2 to 3 months between successive visits to 
the clinic. The second principle is that successive clinic visits will produce 
a series of such patterns for the patient. Relationships between the particular 
insulin regimen and its response pattern may then be learned, providing a 
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patient-specific model that can be used as a basis for predicting the results, in 
terms of the change produced in the blood glucose profile, or a change to the 
regimen of insulin therapy. 

The architecture of the UTOPIA system incorporates the four interrelated 
modules of Data Viewer, Data Interpreter, Patient-Specific Modeller, and 
Advisor, as depicted in Figure 2.20. Data Viewer permits the extended home- 
monitored data to be displayed with simple statistical analyses of the data and 
comparisons with clinical measures. 

The Data Interpreter module extracts patterns from the blood glucose data, 
including the modal day, using methods of time series analysis or, in essence, 
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Figure 2.20. A schematic representation of the Utilities for Optimising Insulin Adjustment 
(UTOPIA) system, showing the four interrelated modules of this model-based decision support 
system (adapted from Deutsch et al., 1996). 
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data-driven modelling (Harvey, 1989). The blood glucose data, BGt, form a 
natural time series at time points t, comprising a level, Lt, a trend, Tt, a daily 
cycle, DCt, and with a random disturbance, E,, which leads to a simple model: 

BG, = Lt + Tt + DCt + E, (2.6) 

Level represents a mean evolving over time, while the trend allows for system- 
atic growth or decline in the data. Inclusion of a daily cycle estimates devi- 
ations from the trend across the day (Deutsch et al., 1996). An example of 
such data decomposition using this data-driven modelling approach is shown 
in Figure 2.21. The components have different clinical interpretations. Thus, 
for example, the daily cycle offers some detail of the control achieved at 
different stages of the day and shows whether the two or more daily insulin 
doses are properly distributed over a 24-hour period. 

The Patient Specific Modeller enables a simple process-based model to 
be derived that characterises the patient's pharmacodynamic response to a 
change in insulin therapy. A linear model is used to express relationships 
between dose and response variables. This assumes that the dose adjustments 
are small on the occasion of each visit to the clinic, and they can be treated 
as local linearisations about the particular operating point. 
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Figure 2.21. An example of an extended series of home-monitored blood glucose data, decom- 
posed into clinically relevant components (adapted from Deutsch et al., 1994). 
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The updating of the model parameters on the occasion of each visit to 
the clinic is carried out as a two-stage process. First, the old and the new 
insulin regimens are converted into circulating insulin levels using models of 
subcutaneous insulin absorption and disposition (Berger and Rodbard, 1991). 
The model relating glucose and insulin can then be written as (Deutsch et al., 
1996): 

dGrel(t)/dt = -KGrel( t )  - Sr(t)Iarel, Grel(0) = 0 (2.7) 

where: 

Grel = change in modal day blood glucose profiles 
Iarel = change in active insulin profiles 

K -- parameter that reflects the impact of glucose on its own metabolism 
r(t) = representation of the diurnal rhythm of insulin sensitivity on a scale 

{0-1 } to cater for the elevated glucose resistance at some periods of 
the day 

S = parameter providing a measure of patient-specific insulin sensitivity. 

Solving (2.7) at the four daily times of glucose measurement (before the three 
main meals and at bedtime), ti, yields: 

fti ti G(ti, R2) = - S  {[1 - r(t)]Iarel(t)[exp(-K(ti - t))]} dt + G(ti, R1) 
- 2 4  

(2.8) 
with R1 and R2 denoting two insulin regimens prescribed at two consecutive 
clinic visits. Using this model, the parameters K and S can be updated so as 
to fit the current change in modal day blood glucose response that has resulted 
from the most recent change in insulin therapy. 

Given that the Patient Specific Modeller has enabled a current model to 
be provided for the particular patient, this model can then be used in the 
Advisor module to make predictions of changes in the patient's modal day 
blood glucose response in response to specific changes in the regimen of 
insulin therapy. The change that brings about the most desirable result can 
be adopted for that patient. The exploration of alternative candidate insulin 
regimens can be carried out either manually or automatically using a choice of 
exhaustive or linear programming algorithms. Full details of these procedures 
are given in Deutsch et al. (1996). 

2.6.  C O N C L U S I O N S  

This chapter has demonstrated the ways in which control concepts, set 
within a clear modelling framework, are relevant in the study of physiological 
and medical systems. Benefits have been demonstrated both in insight and in 
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support of therapy planning as an ingredient of the overall patient management 
process. 

A simple feedback model has provided a basis for examining the dynamics 
of physiological processes; a model capable of expansion and extension to 
yield insights into the complexities associated with the overall processes of 
health care delivery. Such models can play an important role in system design, 
as illustrated in the development of a telematic system for the provision of 
home hemodialysis. Finally, the role of model-based approaches in supporting 
the prescription of a therapeutic regimen (as a control problem) has been 
demonstrated in the context of managing diabetes. 
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Chapter 3 

Deconvolution 

Giovanni Sparacino, Giuseppe De Nicolao, and Claudio Cobelli 

3.1. I N T R O D U C T I O N  

Many signals of interest for the quantitative understanding of physiological 
systems are not directly measurable in vivo. Some examples include the secre- 
tion rate of a gland, the production rate of a substrate, or the appearance rate 
of a drug in plasma after oral administration. Very often, it is only possible to 
measure the causally related effects of these signals in the circulation (e.g., the 
time course of plasma concentrations). Thus, there must be reconstruction of 
the unknown causes (e.g., hormone secretion rate) from the measured effects 
(e.g., hormone plasma concentration). In the mathematics/physics/engineering 
literature, this is referred to as an inverse problem; that is, instead of following 
the cause-effect chain (direct problem), one follows the reversal of this chain. 
If the unknown signal is the input of the system, the inverse problem is 
an input estimation problem (Figure 3.1), which, in the linear case, is called 
deconvolution. 

Deconvolution is known to be ill-conditioned, which means a small percent 
error in the measured effect (e.g., the measured hormone concentration in 
plasma) can produce a much greater percent error in the estimated cause (e.g., 
the secretion rate reconstructed by deconvolution). Moreover, dealing with 
physiological signals adds to the complexity of the problem, since they are 
often nonnegative and sampled at a nonuniform and/or infrequent rate. 

In this chapter, we introduce the deconvolution problem for physiological 
systems (Section 3.2) and its inherent difficulties (Section 3.3) in a formal 
manner. Then, we present a detailed description of the regularisation 
method (Section 3.4), a classic nonparametric approach that has some 
significant advantages over other techniques, especially if it is embedded in 
a stochastic setting. Finally, other deconvolution methods, both parametric 
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Figure 3.1. The input estimation problem. 

and nonparametric, are briefly reviewed (Section 3.5). In discussing the 
deconvolution algorithms, computational as well as theoretical aspects are 
addressed. Real and simulated case studies are also provided to illustrate the 
challenges posed by the deconvolution of physiological signals. 

3.2. P R O B L E M  S T A T E M E N T  

The deconvolution problem can be formalised as follows. Consider a linear 
time-invariant (LTI) single-input single-output dynamic system in which input 
is of interest but not directly measurable. Assuming that the system output is 
measurable, the input estimation problem illustrated in Figure 3.1 requires to 
solve the following integral equation: 

f0 t c(t) = g(t - r)u(r)dr (3.1) 

where u(t) is the (unknown) input and c(t) is the (measurable) output of the 
system. The function g(t) describes the input-output behaviour of the system 
and is called the impulse response of the system. In fact, g(t) is the time 
course of the output when the system is forced by a unitary pulse input 8(0, 
the Dirac impulse, occurring at time zero. In (3.1) c(t) is the convolution of 
u(t) with g(t): hence, the problem of obtaining u(t) from (3.1) given g(t) and 
c(t) is called deconvolution problem. 

In real-world problems, only a finite number of output samples can be 
measured and the impulse response g(t) is a model (often a sum of exponen- 
tials), either identified through a specific input-output experiment or obtained 
from population studies. 

A physiological example will help to better grasp the ingredients of the 
problem. Suppose we want to reconstruct insulin secretion rate from C-peptide 
concentration data (C-peptide, instead of insulin, is used because they are 
secreted equimolarly by the pancreas but C-peptide does not, at variance 
of insulin, undergo any liver extraction). In normal conditions, the pancreas 
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releases C-peptide (and insulin) in an oscillatory fashion with at least two 
detectable modes: rapid pulses, with period between 8 and 15 minutes, are 
superimposed to slower and larger oscillations, named ultradian oscillations 
(UO), whose period ranges between 90 and 150 minutes. If glucose concen- 
tration increases, for instance as an effect of a glucose stimulus, the sponta- 
neous oscillations are obscured by the biphasic response of the pancreas. A 
sudden and large secretory peak (first phase) is followed by a smooth release 
(second phase). The pancreatic secretion is not directly measurable and the 
only available information is the plasma concentration of C-peptide. Panel A 
of Figure 3.2 shows the C-peptide plasma concentration measured every 20 
minutes for 12 hours in a normal subject (Stuffs et al., 1991). The ultradian 
oscillatory pattern of the secretion (i.e., the cause) is evident from the measured 
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Figure 3.2. Estimation of insulin secretion rate (ISR) from C-peptide plasma concentration time 
series. Panel A, Spontaneous ultradian oscillations (UO) (n = 36). Panel B, Intravenous glucose 
tolerance test (IVGTT) (n = 22). 
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concentration (i.e., effect). The sampling rate is, however, insufficient to reveal 
the rapid pulses. Panel B of Figure 3.2 depicts the C-peptide plasma concen- 
trations nonuniformly sampled for 4 hours in a normal subject during an 
intravenous glucose tolerance test (IVGTT) (Shapiro et al., 1988). The time 
series clearly reflects the biphasic response of the pancreas to the glucose 
stimulus. For both cases, since C-peptide kinetics are linear, the problem of 
reconstructing the C-peptide secretion rate (i.e., the input of Figure 3.1) from 
the C-peptide plasma concentrations (i.e., the output of Figure 3.1) is a decon- 
volution problem. To solve it, the impulse response of the system is required. 
In the C-peptide case, an ad hoc experiment can be performed in the same 
individual of the "deconvolution experiment" on a separate occasion. After 
suppressing the spontaneous pancreatic secretion by means of a somatostatin 
infusion, an intravenous bolus of (biosynthetic) C-peptide is administered and 
plasma concentration samples are frequently collected. The impulse response 
g(t)  is obtained by fitting a sum of two or three exponentials to the data by 
nonlinear least squares. A representative data set (Shapiro et al., 1988) with 
the model fit is reported in Figure 3.3. 

Biomedical applications of deconvolution include hormone secre- 
tion/substrate production (Pilo et al., 1977; Polonsky et al., 1986; Veldhuis 
et al., 1987; Caumo and Cobelli, 1993; De Nicolao and Liberati, 1993; De 
Nicolao et al., 1995; Sparacino and Cobelli, 1996; Sartorio et al., 1997); phar- 
macokinetics (Cutler, 1978; Dix et al., 1986; Gillespie and Veng-Pedersen, 
1986; Iga et al., 1986; Cobelli et al., 1987; Charter and Gull, 1991; Tett et al., 
1992; Verotta, 1996; Hovorka et al., 1998); radiography (Hunt, 1971); tracer 
data processing (Commenges and Brendel, 1982; Bates, 1991); and trans- 
port through organ studies (Bassingthwaighte et al., 1966; Knopp et al., 1976; 

C-peptide impulse response: Decay curve and model fit 
15 t I I I I I I I I 

lO 

5 
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Figure 3.3. Determination of the C-peptide impulse response by fitting a sum of three expo- 
nentials against the C-peptide concentrations following a bolus. 
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Nakai, 1980; Bronikowsky et al., 1983; Clough et al., 1993; Sparacino et al., 
1998). However, the application of deconvolution is not restricted to the anal- 
ysis of physiological systems. Other fields in which deconvolution problems 
arise include spectroscopy (Jansson, 1984); image restoration (Andrews and 
Hunt, 1977; Wernecke and D' Addario, 1977; Demoment, 1989; Donoho et al., 
1992); geophysics (Crump, 1974; Mendel, 1977); equalisation (Lawrence and 
Kaufman, 1971; Demoment et al., 1979); and acoustics (Miyoshi and Kaneda, 
1988). 

If the system is linear time-varying (LTV), the input estimation problem 
becomes that of solving a Fredholm integral equation of the first kind: 

c(t) = g(t, r)u(r)dr (3.2) 

The function g(t, r) is called the kernel of the system and depends on both t and 
r and not on their difference as in (3.1). The function g(t, r0) describes the time 
course of the output when the system is forced by a unitary pulse input ~(r0) 
given at time r0. For instance, the reconstruction of hepatic glucose production 
after a glucose perturbation can be stated as a Fredholm integral equation of 
the first kind, where the kernel g(t, r) is described by a linear two-compartment 
model of glucose kinetics with time-varying parameters (Caumo and Cobelli, 
1993). In the literature, the solution of the Fredholm integral equation of the 
first kind is usually also called (albeit improperly) deconvolution. 

Remark 1. In (3.1) and (3.2), it is implicitly assumed that u ( t ) =  0 for 
t < 0. In several cases, this is not true, as when a basal spontaneous hormone 
secretion also occurs for t < 0. There are several ways to approach this 
problem. A possible solution is proposed in Remark 6 of Section 3.4.1. 

Remark 2. Due to the symmetry of (3.1) regarding g(t) and u(t), a decon- 
volution problem also arises whenever one wants to estimate the impulse 
response g(t) of the system given the input u(t) and the output c(t). For 
instance, the transport function of a substance through an organ can be esti- 
mated by deconvolution of the inlet and outlet concentrations (Knopp et al., 
1976; Sparacino et al., 1998). Hereafter, we address only input estimation 
problems. 

3.3. D I F F I C U L T Y  O F  T H E  D E C O N V O L U T I O N  

PROBLEM 

In the mathematics/physics/engineering literature, deconvolution is known 
to be difficult because of its ill-posedness and ill-conditioning. Here, we 
discuss these "analytical" difficulties by using a classic example of the 
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literature (Hunt, 1971; Commenges, 1984; De Nicolao et al., 1997), hereafter 
referred to as the Hunt  s imulated problem.  Consider the input given by: 

u(t) = e -[( t -400) /7512 + e -[(t-600)/7512, 0 _< t _< 1025 (3.3) 

and the impulse response of the system given by: 

1, t < 250 
g(t)  = 0, t > 250 (3.4) 

These functions must not necessarily have a physiological counterpart. 
Knowing u(t)  and g(t) ,  c(t)  can be obtained from (3.1). Assume that n samples 
of c(t),  {Ck} where Ck = C(tk), are measured without error on the uniform 
sampling grid f2s = {kT}, k = 1 . . .  n, with T = 25 and n -- 41. The impulse 
response g(t),  the input u(t),  and the output c(t)  together with the samples 
{Ck} are shown in Panels A, B, and C of Figure 3.4, respectively. 

The problem of reconstructing the continuous-time function u(t)  from the 
time series {Ck} does not admit a unique solution (Bertero, 1989). There is an 
infinite number of continuous-time functions that, once convoluted with the 
impulse response, perfectly describe the sampled data. Therefore, the decon- 
volution problem is an i l l-posed problem. 

To tackle ill-posedness, any deconvolution approach must in some way 
restrict the field of the functions among which the solution of the problem is 
sought. For instance, in the so-called discrete deconvolu t ion  the signal u(t)  
is assumed to be a piecewise constant within each interval of the sampling 
grid f2s = {tl, t2 . . . . .  tn }, i.e., u(t)  = u i for ti-1 < t < ti, i = 1, 2 . . . .  n,  where 
to = 0. From (3.2), which includes (3.1) as a particular case, it follows that: 

fO tk ~ -~~ t l  ti C(tk) = g(tk, r ) u ( r ) d r -  ui g(tk,  r )d r  (3.5) 
i = 1  -1 

One may also think of ui as the mean level of u(t)  during the i-th sampling 
interval. By letting: 

O~ti ti gk, i -- g(tk, r )d r  (3.6) 
-1 

it follows: 
k 

Ck = C(tk) = Z uigk, i (3.7) 
i = 1  

Adopting a matrix notation: 
c = Gu (3.8) 

where c = [cl, c2 . . . . .  c,,] r is the n-dimensional vector of the sampled output, 
u = [Ul, U2 . . . . .  u,,] r, and G is a n x n lower-triangular matrix, whose 
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Figure 3.4. The Hunt simulated deconvolution problem. Panel A, Impulse response. Panel B, 
True input. Panel C, True continuous output with noise-free samples (n = 41). Panel D, 
Ill-posedness of the deconvolution problem. The staircase function is a solution of the 
deconvolution problem with error-free data that perfectly describes the samples of Panel C 
just as the true input. Panel E, True continuous output and noisy samples (SD = 3). Panel F, 
Ill-conditioning of the deconvolution problem. Solution provided by the least squares approach 
(staircase line) and true input (thin line) from the noisy output samples of Panel E. 

entries are: 
G(k, i ) =  r,~,,~ 6k, i k >__ i (3.9) 

tO k < i  

In the LTI case with uni form sampling G(k, i ) =  G ( k -  i), so that G is a 
Toeplitz matr ix  and (3.7) represents  a discrete-t ime convolution. If  sampl ing  
is nonuni fo rm or the sys tem is t ime-varying,  the Toeplitz structure of  G is lost. 

Provided  that G is invertible, (3.8) admits a unique solution: ~ = (~ - l c .  
For  the Hunt  s imulated problem,  this solution is displayed in Panel  D of  
Figure 3.4. It should be noted that, given il l-posedness,  this profile is only one 
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possible solution of the deconvolution problem with noise-free data. Once 
convoluted with g(t) ,  the staircase function perfectly describes the output 
samples just as the true input, providing an accurate approximation, apart 
from the staircase approximation. 

The previous equation addresses the noise-free situation. However, output 
samples are usually affected by a measurement error, and this dramatically 
enhances the difficulty of the deconvolution problem. Let Yk denote the k-th 
measurement: 

Yk = Ck + vk k = 1, 2 . . . .  n (3.10) 

where Vk is the error. Thus, in vector notation: 

y = Gu + v (3.11) 

where y = [yl, ya . . . . .  yn] r, and v = [Vl, v2, . . . ,  Vn] r. Vector v is hereafter 
assumed a zero-mean random vector with covariance matrix Ev given by: 

~--~v = 0.2B (3.12) 

where B is a n x n positive definite matrix and 0 .2 is a scale factor, possibly 
an unknown. Usually, measurement errors are independent so that B is diag- 
onal. For example, assuming a constant coefficient of variation (CV) for the 
measurement error, B -- diag(y 2, y2 . . . . .  y~) and 0. = C V  (here CV is a real 
number), with 0. possibly unknown. If the variance of the measurement error 
is constant and equal to 0.2, with 0.2 possibly unknown, B = I,,. 
The simplest estimate of u obtainable from (3.11) is: 

^ G-1 uLS = Y (3.13) 

The superscript LS stands for "least squares." In fact, (3.13) is the solution of 
the LS problem: 

mi'n(y - Gfi)TB -1 (y  - Gfi) (3.14) 
U 

The presence of noise in the measurement vector y of (3.13) has a dramatic 
effect on the quality of the estimate. In Panel E of Figure 3.4, Gaussian noise 
(standard deviation SD = 3) was added to the data of the Hunt simulated 
problem and LS deconvolution was performed (Panel F). Note that wide, 
spurious, and unrealistic oscillations contaminate the estimated input, which 
also takes on negative values. The reason for this deterioration is that decon- 
volution is not only an ill-posed but also an i l l -condi t ioned problem. Small 
errors in the observed data can be amplified, thus yielding much larger errors 
in the estimate (Wilkinson, 1967). 
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It could be hypothesised that increasing the number of samples is beneficial 
to the solution of the problem. On the contrary, both theory and practice show 
that increasing the sampling rate worsens ill-conditioning. In addition, the 
"smoother" the system kernel, the worse the ill-conditioning of the deconvo- 
lution problem. For example, the longer the hormone half-life and the higher 
the sampling rate, the more difficult the reconstructing of the hormone secre- 
tion rate by deconvolution (De Nicolao and Liberati, 1993). Analyses that 
explain the degree of ill-conditioning of a deconvolution problem as a func- 
tion of sampling rate and kernel smoothness are available in the literature 
(Hunt, 1972; Ekstroem, 1973). 

3.3.1. ADDRESSING PHYSIOLOGICAL SYSTEMS 

The conceptual difficulties described previously made the deconvolution 
problem a classic of engineering/mathematics/physics literature. Unfortunately, 
addressing physiological signals adds to the complexity of the problem. For 
instance, parsimonious sampling schemes are needed to cope with technical 
and budget limitations as well as the patient's comfort. Consequently, the 
data are often collected with infrequent and nonuniform sampling sched- 
ules (see Figure 3.2). Among other things, nonuniform sampling hinders the 
possible use of frequency domain techniques such as Wiener filtering. Further- 
more, physiological inputs are often intrinsically non-negative (e.g., a hormone 
secretion or a substrate production rate. Thus, negative input estimates due 
to ill-conditioning (see Figure 3.4, Panel F) are physiologically unplausible. 
Finally, physiological systems are sometimes time-varying (e.g., the glucose- 
insulin system during a glucose perturbation). 

3.3.2. A CLASSIFICATION OF THE DECONVOLUTION APPROACHES 

Least squares deconvolution is appealingly simple but weak because it is 
too sensitive to ill-conditioning. In the literature many methods have been 
developed to circumvent ill-conditioning. Broadly speaking, these methods 
can be divided into two categories. The first, named parametric deconvolu- 
tion, assumes the analytical expression of the input to be known except for 
a small number of parameters, so that the deconvolution problem becomes a 
parameter estimation problem. A second, often referred to as nonparametric 
deconvolution, does not require the postulation of an analytic form of the input. 
The most known nonparametric approach is the regularisation method that is 
described in detail in Section 3.4. Some other deconvolution approaches, both 
parametric and nonparametric, are briefly reviewed in Section 3.5. 
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3.4. T H E  R E G U L A R I S A T I O N  M E T H O D  

3.4.1.  DETERMINISTIC VIEWPOINT 

The regularisation method (sometimes also referred to as damped or 
penalised least squares) is a nonparametric approach that has been extensively 
exploited since the 1960s (Phillips, 1962; Tikhonov, 1963; Twomey, 1965; 
Morozov, 1966). The idea of the method is to identify a solution that provides 
a good data fit and simultaneously enjoys a certain degree of "smoothness." 
This is done by solving the optimisation problem: 

mi'n(y - G f i ) r B - ~ ( y  - Gfi)  + yf i rFrFf i  
U 

(3.15) 

where B is an n x n matrix as in (3.12), F is an n x n penalty matrix (see 
below) and y is a real non-negative parameter (see below). Problem (3.15) is 
quadratic and its solution: 

fi = (GTB-1G + yFTF) - IG TB- l y  (3.16) 

linearly depends on the data vector y. Note that, if g = 0, (3.16) coincides 
with (3.14) and the LS solution is obtained. When y > 0, the cost func- 
tion of (3.16) is made up of two terms. The first one penalises the distance, 
weighted by the inverse of B, between the model predictions Gfi (the recon- 
volution vector) and the data. The second contribution, fir FrF~, is a term 
that penalises the "roughness" of the solution. The standard choice is to 
penalise the energy of the m-th order time derivatives, with m an integer 
parameter. For example, in Phillips (1962) the second derivative was consid- 
ered, whereas in Commenges (1984) the energy of the first derivative was 
penalised. For uniform sampling, these choices correspond to selecting F 
as a square lower-triangular Toeplitz matrix (size n) whose first column is 
F = [ 1, - 2 ,  1, 0 . . . . .  0] r or F = [ 1 , -  1, 0 . . . . .  0] r, respectively. In general, 
one can penalise the energy of the m-th time derivatives by letting: 

F = A m (3.17) 

A being a square lower-triangular Toeplitz matrix (size n) whose first column 
is [ 1, - 1 ,  0 . . . . .  0] r. The parameter m is usually adjusted by trials. Its choice 
is usually not considered a major issue, and m = 1 or m = 2 are normally 
used. 

The relative weight given to data fit and solution regularity is governed by 
the so-called regularisation parameter y. By raising y, the cost of roughness 
increases and the data match becomes relatively less important. Conversely, 
by decreasing the value of F the cost of roughness is lowered, and the fidelity 
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to the data becomes relatively more important. The choice of the regularisation 
parameter is a crucial problem: too large values of y will lead to very smooth 
estimates of fi that may be not able to explain the data (oversmoothing), while 
too small values of y will lead to ill-conditioned solutions of ~ that accurately 
fit the data but exhibit spurious oscillations due to their sensitivity to noise 
(for), ~ 0 the LS solution is approached). The importance of the choice of y 
is demonstrated by the profiles reported in Panels A and C of Figure 3.5 for 
the Hunt simulated problem (Panels B and D display how well the estimated 
input, once convoluted with the impulse response, matches the data). 

In the literature, several criteria have been proposed for the choice 
of the regularisation parameter, such as discrepancy (Twomey, 1965); 
cross-validation and generalised cross-validation (GCV) (Wahba, 1977; 
Golub et al., 1979); unbiased risk (O'Sullivan, 1986); minimum risk (Hall 
and Titterington, 1989); and L-curve (Hansen and O'Leary, 1993). For 
an asymptotic/analytical comparison between some of these criteria, see 
O'Sullivan (1986), Rice (1986), Kay (1992), and Hansen (1992b). Two of 
the most popular criteria are described in the following section. 
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Figure 3.5. The Hunt simulated problem. Panel A, Regularised deconvolution obtained with a 

too small value of the regularisation parameter (y  = 0.5). Panel B, Reconvolution obtained from 
the input of Panel A and data. Panel C, Regularised deconvolution obtained with a too large 
value of the regularisation parameter (Y = 400).  Panel D, Reconvolution obtained from the input 
of Panel C and data. 
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3.4.1.1 The Choice of the Regularisation Parameter 

A popular criterion that goes under the name of the discrepancy (Twomey, 
1965) suggests to compute the residuals vector: 

r = y - G~ (3.18) 

and then adjust y until the residual sum of squares equals the sum of the 
measurement error variances. In mathematical terms, the condition to be satis- 
fied can be expressed as: 

WRSS = (y - G~)TB -1 (y - G~) = no  2 (3.19) 

Since the residuals vector can be interpreted as an estimate of the measurement 
error vector v, the discrepancy criterion has a very intuitive motivation. For 
instance, in the case of B = In it is "logical" to expect that: 

rl  

rTr ~-- E[vrv] = ~ Var(Vk) = nor 2 
i=1 

(3.2O) 

Unfortunately, this intuitive rationale has no solid theoretical foundation. 
In particular, as it will be discussed in the following, the discrepancy criterion 
is at risk of oversmoothing (Hall and Titterington, 1987; De Nicolao et al., 
1997). 

Another popular regularisation criterion is GCV, a technique that has a 
wide application domain (Wahba, 1990). The regularisation parameter ), is 
selected as the minimiser of the cost function: 

WRSS 
GCV(y) = (3.22) 

trace[In - ~]2 

where qJ is the so-called hat matrix: 

-- G(GTB-1G q- yFTF)-IGTB-1 (3.21) 

and WRSS is the weighted residuals sum of squares defined as in (3.19). 

Remark  3. While cross-validation (and thus GCV) aims at minimising 
the predictive mean square error (relative to the observations), a much more 
sensible objective to minimise in a deconvolution context is the error relative 
to the signal to be estimated. In fact, examples have been provided where GCV 
yields good predictive performances on the observations but fails to optimise 
the estimation error (Rice, 1986). 

3.4.1.2 The Virtual Grid 

Physiological signals are often sampled at a low and often nonuniform 
rate. The regularisation method is based on the discrete model (3.7), which 
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F i g u r e  3 .6 .  Estimation of ISR. Panel A, U O  reconstructed by the regularisation method 
( g  = 0 . 0 0 1 2 ,  q ( v ) =  19.29,  discrepancy criterion). Panel B, Reconvolution obtained from the 
input of Panel A and data. Panel C, I S R  dur ing  I V G T I "  reconstructed by the regularisation 
method ( g  = 0, q(y)= 22).  Panel D, Reconvolution obtained from the input of Panel C and 
data. 

was derived assuming that the unknown input is constant during each sampling 
interval, no matter how long. In the infrequent sampling case, this results in 
a poor approximation of the signal. For instance, consider the problem of 
estimating insulin secretion rate. Panel A and Panel C of Figure 3.6 show the 
C-peptide secretory profiles obtained by deconvoluting the data of Panel A 
and Panel B of Figure 3.2, respectively. Due to the infrequent sampling rate, 
the staircase approximation is hardly acceptable. Panels B and D show the 
data and how well the estimated input ~(t) predicts them once reconvoluted, 
with the impulse response. The roughness of the staircase approximation can 
also be appreciated by examining the deconvoluted profiles obtained for the 
Hunt simulated problem, in both the ideal (Figure 3.4, Panel D) and noisy 
(Figure 3.4, Panel F; Figure 3.5, Panels A and C) case. 

Such an unsatisfactory performance is due to the fact that the number of 
components of the unknown vector u is assumed to be equal to the number n of 
measurements. To remove this assumption, a different discretisation grid can 
be used for the input and the output (De Nicolao et al., 1997). Let fls be the 
(experimental) sampling grid and f2v = {T1, T2 . . . . .  Tk . . . . .  TN} a finer (N _> 
n) grid (possibly uniform) over which the unknown input u(t) is described as 



58 Giovanni Sparacino, Giuseppe De Nicolao, and Claudio Cobelli 

a piecewise constant function, f2~ must contain f2s but, apart from this, it is 
arbitrary and has no experimental counterpart. For this reason, f2v is called the 
virtual grid. Let c~(Tk) denote the (noise-free) output at the virtual sampling 
times Tk. Assuming that u(t) is piecewise constant within each time interval 
of the virtual grid, it follows that: 

fO Tk ~ fT Ti cv(Tk) = g(Tk, r)u(r)dr  = u i g(Tk, r )dr  (3.23) 
�9 __ Ti 1 

where To = 0. Adopting the usual matrix notation, one has c~ = G~u, where 
c~ and u are N-dimensional vectors obtained by sampling c(t) and u(t) on the 
virtual grid, and G~ is a N x N lower-triangular matrix. Times belonging to 
the virtual grid f2~ but not present in the sampling grid f2s have no counterpart 
in the sampled output data. We can regard them as (virtually) missing data. 
Denote by G the n • N matrix obtained by removing from G~ those rows that 
do not correspond to sampled output data. The measurement vector is thus: 

y = Gu + v (3.24) 

where v is the n-dimensional vector of the measurement error, u is the 
N-dimensional vector of the input discretised over the virtual grid, and G 
is the n x N matrix obtained by removing suitable rows of Gv. If the system 
is LTI and f2~ is uniform (note that a uniform f2~ can always be chosen), G 
has a near-to-Toeplitz structure, meaning that it misses some of the rows of 
the Toeplitz matrix Gv. 

The estimate ~ is obtained by solving (3.15), where G and u are those of 
(3.24) and F has size N x N. Provided that f2v has a fine time detail, this 
method yields a stepwise estimate that is virtually indistinguishable from a 
continuous profile. 

Panel A of Figure 3.7 shows the results obtained with a 1-min virtual grid 
and employing the discrepancy criterion for the Hunt simulated problem of 
Panel E in Figure 3.4 (noisy data). The estimate is able to describe the true 
continuous-time input much better than the staircase functions of Figure 3.5. 
Panel B displays the reconvolution fit to the data. Other examples of the use 
of the virtual grid are reported in the following text. 

Remark 4. Consider a virtual grid f2v = {kr}, k = 1, 2 . . . . .  N, with N r  = 
tn. By letting r ~ 0 and N ~ c~, one can obtain an input profile that tends to 
a continuous-time function. In De Nicolao et al. (1997), it was shown that this 
limit estimate is continuous up to the ( 2 m -  2 + p)-th time derivative, where 
p is the relative degree of the system, or the difference between the degree of 
the denominator and that of the numerator of the Laplace transform of g(t). 
This result offers a guideline for choosing the order of the time derivatives 
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Figure 3.7. The Hunt simulated problem (virtual grid). Panel A, Regularised deconvolution 
using the discrepancy criterion ( y =  1.24e06, q(y)= 13.84) and true input. Panel B, 
Reconvolution obtained from the input of Panel A and data. Panel C, Regularised deconvolution 
using the maximum likelihood criterion ML1 (y = 6.18e05, q(y)= 15.55) and true input. 
Panel D, Reconvolution obtained from the input of Panel C and data. Panel E, Non-negative 
deconvolution, obtained with the same y of Panel C, and true input. Panel F, Reconvolution 
obtained from the input of Panel E and data. 

to penalise. For instance, for a LTI system with p = 1, it will be sufficient to 
let m --- 1 to have an asymptotically continuous estimate together with its first 
time derivative. Of note is that if m -  0, (i.e., the energy of  the signal itself 
is penalised), no continuity properties of the signal u(t) are ensured and the 
limit as r --+ 0 of  the estimated input can degenerate in a sequence of  pulses. 

Remark  5. The  problem of  noncausal  inputs (Remark 1, Sect ion 3.2) can 
be easily addressed by est imating the input on a virtual grid starting at a 
negat ive  t ime sufficiently far f rom 0, for example - 1 0 0 r  (the input est imate 
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in the negative portion of the time axis is then discarded) (De Nicolao et al., 
1997). 

3.4.1.3 Assessment  of  Confidence Limits 

Since deconvolution provides an indirect way of measuring a nonaccessible 
variable, it is important to assess the reliability of such a measurement. In 
physiological systems analysis, confidence limits are particularly useful when 
one has to make inferences, such as choosing a threshold for detecting the 
number of pulses present in a hormone secretory pulsatile profile or deciding 
if a secretory profile is a pathological one. 

For the estimation error f i =  u -  ~, the following expression is easily 
derived: 

fi = - F v  + [IN - FG]u (3.25) 

where 1" = (GTB-1G + t ,FTF)-IGTB -1. Given the variance of v, it is possible 
to obtain the variance of the first term in the fight-hand side of (3.25). 
However, the second term, which is a bias term (its statistical expectation is 
nonzero if t' > 0), cannot be computed since it depends on the true (unknown) 
vector u. Unless a probabilistic description of u is provided, confidence inter- 
vals accounting for the bias error cannot be obtained. This suggests to state 
the deconvolution problem within a stochastic embedding. As described in 
the following section, this also will allow the derivation of statistically based 
regularisation criteria. 

3 .4 .2 .  STOCHASTIC VIEWPOINT 

Consider the model (3.24), possib!yderived by discretising (3.2) on a virtual 
grid, and assume that u and v are zero-meanrandom vectors whose covariance 
matrices Eu and Ev are known. It is assumed that Ev = cr2B, see (4.12), and 
Eu (size N x N) is factorised as: 

Eu = ~2(FTF)- I  (3.26) 

In this stochastic setting, the deconvolution problem--es t imat ing  u from y 
through model (3.24) - -  can be stated as a linear minimum variance estimation 
problem: find the estimate fi, linearly depending on the data vector y, such 
,that E[llu - fill 2] is minimised; that is, minimise the expectation of the squared 
Euclidean norm of the estimation error. Let y0 = tr2/~.2. If u and v in (3.24) 
are uncorrelated, the estimate fi coincides with the solution of the optimisation 
problem (3.15), provided that y = y0 (Beck and Arnold, 1977). When u and 
v are jointly Gaussian, the estimator (3.16) with y = y0 has minimum error 
variance among all estimators, either linear or nonlinear, of u given y. 
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To solve deconvolution as a linear minimum variance estimation problem, 
the a priori covariance matrix of the input vector u, Eu = X2(FTF) -1, is 
required. However, we only know that the input u is a smooth function of 
time. A simple a priori probabilisfic model of a smooth signal on a uniformly 
spaced grid is to describe it as the realisation ,of a stochastic process obtained 
by the cascade of m integrators driven by a zero-mean white noise process 
{Wk} with variance ~2 (De Nicolao et al., 1997). For instance, for m = 1 this 
corresponds to a random-walk model (Commenges, 1984): 

U k = U k - l + W k  k = l , 2  . . . . .  N; u 0 = 0  (3.27) 

In a Gaussian setting, (3.27) tells us that, given Uk, Uk+l will be in the range 
Uk 4- 3), with probability of 99.7%. 

It is easily demonstrated that the covariance matrix of the random vector u 
whose components are obtained from m integrations of a white noise process 
of variance X2 is given by (3.26) with F as in (3.17). 

Both regularisation and minimum variance estimation determine the esti- 
mate by solving (3.16). This allows the establishment of an insightful analogy 
between the two approaches. In particular, penalising the m th time derivatives 
energy in the regularisation method equals to model the unknown input by 
a ( m -  1)-fold integrated random-walk process in the stochastic approach. In 
view of this analogy, y0 = tr2/Z2 represents, in some sense, the "optimal" 
value of the regularisation parameter. Such a value is, however, unknown 
since ),2 and, possibly, tr 2 are unknown. Obviously, the lower the ~2, the 
smoother the {Uk }. Some statistical criteria for estimating ?,0 are introduced in 
section 3.4.2.2. 

3.4.2.1 Confidence Limits 

In the stochastic embedding, one can copo with the problem of giving 
a statistical characterisation of the bias term affecting the solution (see 
Section 3.4.1). In view of (3.25), solving (3.15) for a generic y in place 
of the unknown y0 = cr2/X2 yields: 

?~ = u - F(Gu + v) = - F v  + [Is - FG]u (3.28) 

Equation (3.28) is apparently identical to (3.25) but now all the vectors 
involved are stochastic. Since v and u have zero expectation, one has E[~] = 0. 
For the variance, one has: 

var[~] = cr2FBF T + )~2[IN -- FG](FT F)- I[ IN - FG] T (3.29) 

By means of the matrix inversion lemma, it follows that: 

var[u] = o'2I"BI "T + yX2(GTB-1G + y F T F ) - I F T F ( G T B - 1 G  + y F T F )  -1 
(3.30) 
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It is easily verified that the contribution of noise to the error variance, or the 
first term in the right-hand side of (3.30), is a monotonically decreasing func- 
tion (in the matrix sense) of V, whereas the contribution of bias, or the second 
term of (3.30), is monotonically increasing. Not surprisingly, the minimum 
value of var[fi] is obtained for the optimal value of V that is ?, = ?,0 = 0.2/~,2; 

Var[fi] = cI2(GTB-1G + v~ F) -1 (3.31) 

If reliable estimates of y0 and cr 2 are available, this covariance matrix can be 
used to compute the confidence intervals for the entries of ft. 

3.4.2.2 Statistically Based Choice of the Regularisation Parameter 

Let WRSS = ( y - G ~ ) T B - I ( y  - GEt) and W E S S - - ~ T F T F ~  denote the 
weighted residuals sum of squares and the weighted estimates sum of squares, 
respectively. Both quantities depend on the regularised estimate fi and thus on 
the value of y. In the stochastic setting, WRSS and WESS are random vari- 
ables. For the linear minimum variance estimate, the following two properties 
hold (Sparacino and Cobelli, 1996): 

where: 

E[WESS] -- X2q(v ~ 

E[WRSS] -- cr2{n - q(v~ 

q(yO) = trace(G(GrB-1G + vOFrF)-IGTB-1) 

(3.32) 

(3.33) 

Observe the analogy of (3.33) with a well-known property of linear regres- 
sion models, where the averaged sum of squared residuals is a biased estimator 
of the error variance, with the bias depending on the (integer) number of 
degrees of freedom of the model. For this reason, q(v) defined by (3.34) is 
named equivalent degrees of freedom associated with V. The quantity q(y) 
is a real number varying from 0 to n" if ?, ~ 0 then q(v) ~ n, whereas if 
t' --+ c~ then q(v) -+ 0. The fact that q(v) is a real number is in agreement 
with the nature of the regularisation method, where the flexibility of the model 
(its degree of freedom) can be changed with continuity through the tuning of 
the regularisation parameter. 

By dropping the expectations in (3.32) and (3.33) and recalling that V ~ = 
cr2/X 2, two "consistency" criteria can be intuitively derived that allow the 
choice of y when either ),2 or both X 2 and cr 2 are unknown. The same criteria 
can be obtained on a firmer statistical ground under Gaussian assumptions by 
determining necessary conditions for X 2 and cr 2 to maximise the likelihood of 
the data vector y (De Nicolao et al., 1997). The two criteria are formulated 
as follows: 

(3.34) 
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Criterion ML1. 
y until 

w i t h  ~,20-2/y. 

Criterion ML2. 

When ~2 is unknown (0-2 is assumed to be known), tune 

WESS = 12q(y) (3.35) 

When both 0-2 and ~2 are unknown, tune ~, until: 

WRSS WESS 

n - q(y) q(y) 

and then estimate 0 -2 as :  

according to (3.33). 

(3.36) 

&2 = WRSS 
n - q(y) (3.37) 

Panel C of Figure 3.7 shows the input profile of the Hunt simulated problem 
estimated with the virtual grid and using the ML1 regularisation criterion. By 
comparing this profile with that of Panel A obtained using the discrepancy 
criterion, the latter is noticeably oversmoothed. In fact, by comparing (3.18) 
with (3.33), it is easily seen that the discrepancy criterion leads, on average, 
to oversmoothing. 

Panel A of Figure 3.8 displays the reconstruction of ultradian oscillations 
from the time series of the Panel A of Figure 3.2 obtained by the stochastic 
approach employing criterion ML1. The 95% confidence intervals obtained 
from (3.31) also are reported. Panel C shows the reconstruction of insulin 
secretion rate during IVGTT obtained by the stochastic approach using crite- 
rion ML2. In this case, E ,  was partitioned in two blocks to express the prior 
information concerning the biphasic response of the pancreatic beta cells to 
the glucose stimulus, (see Sparacino and Cobelli [1996] for details). In both 
cases, the use of the virtual grid renders these profiles more plausible than 
those of Figure 3.6. 

Remark 6. Some regularisation criteria, such as discrepancy and minimum 
risk, are restricted to the case in which 0-2 is known. In contrast, some others, 
such as L-curve and (generalised) cross-validation, do not require the knowl- 
edge of 0-2 but do not use it when it is available. For instance, for a given data 
set, generalised cross-validation always selects the same y (hence yielding 
to the same degree of regularisation) no matter whether the variance of the 
measurement error is known to be 1 or 100. The two ML criteria (ML1 and 
ML2) presented previously deal with cases of both known and unknown 0-2. 

Remark 7. The examples show that the absolute value of y is meaning- 
less. In fact, this value depends on a number of ingredients of the problem, 
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Figure 3.8. Estimation of ISR (virtual grid). Panel A, UO with 95% confidence limits 
(F = 0.25, q(y) = 21.07, maximum likelihood criterion ML1). Panel B, Reconvolution obtained 
from the input of Panel A and data. Panel C, ISR during IVGTT (y = 2.2e - 05, q(y) = 9.16, 
maximum likelihood criterion ML2). Panel D, Reconvolution obtained from the input of Panel C 
and data. 

such as the sampling rate, the virtual grid, the noise variance, the impulse 
response, and even the units adopted for the signals under study. As a result, 
the comparison of the value F used in different problems does not allow the 
comparison of the amount of regularisation employed. For instance, in the 
Hunt simulated problem without virtual grid, y = 400 leads to oversmoothing 
in Panel E of Figure 3.5, but y = 6.18e05 (fixed in agreement with criterion 
ML1 in presence of the virtual grid) leads to suitable regularisation in Panel C 
of Figure 3.7. A better indicator of the regularisation amount is the degrees 
of freedom q(y), since it is a real number varying from 0 to n. For instance, 
the degrees of freedom in the two cases were q(y) = 11.31 and q(F) = 15.55, 
respectively, suggesting that less regularisation (in spite of a higher value of 
y) was used in the determination of the latter input estimate. 

3 . 4 . 3 .  NUMERICAL ASPECTS 

In the regularisation approach, the computation of the solution via (3.15) 
or (3.16) would require O(N 3) memory occupation and O(N 3) operations to 
accomplish matrix inversion (the notation O(f(N)) means "of the same order of 
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magnitude as f(N)"). This computational burden can be reduced by applying 
the matrix inversion lemma to (3.16), thus obtaining: 

fl = F - 1 F - r G T ( G F - 1 F - r G T  + y B ) - l y  (3.38) 

In this way an n x n matrix must be inverted, at the price of O(n 3) operations. 
Note that if F is as in (3.17), its inverse admits an easy-to-derive analytic 
expression. 

In the LTI system case with uniform sampling, matrices G and F in 
(3.15) exhibit a Toeplitz structure so that only their first columns must be 
stored. Then, an efficient numerical technique to compute the regularised esti- 
mate is available, first presented by Hunt (1971) and subsequently refined by 
Commenges (1984) and De Nicolao et al. (1997). In particular, (3.15) can be 
solved by the iterative conjugate gradient (CG) method, whose basic iteration 
can be performed in O(NlogN) operations through the Fast Fourier Transform 
(Commenges, 1984) or in O(N) operations by the use of recursive difference 
equations (De Nicolao et al., 1997). The Toeplitz structure of the matrices also 
can be exploited to devise suitable "preconditioners" that improve the rate of 
convergence of the algorithm (Commenges, 1984). Since theory guarantees 
the convergence of the CG algorithm in N iterations at most, the overall 
complexity of the algorithm is O(N21ogN) or O(N2). Of note is that in the 
presence of time-varying systems, these numerically efficient methods do not 
apply equally well because matrix G does not have a Toeplitz structure. 

However, the bottleneck of numerical algorithms for deconvolution is given 
by computing several trial solutions of (3.15). In fact, the tuning of the regu- 
larisation parameter y (according to any criterion) requires a trial-and-error 
procedure. Here, we illustrate a possible way to reduce the computational 
burden (De Nicolao et al., 1997). First, define: 

H = B-1/ZGF-1 (3.39) 

where H is an n x N matrix (if the virtual grid is not used, then N = n) 
Consider the singular value decomposition (SVD) of H" 

u T H v  = D (3.40) 

where U and V are unitary matrices of size n x n and N x N, respectively, 
and D is an n x N "diagonal" matrix, whose diagonal elements Dii are denoted 
by di, i = 1, 2 . . . . .  n. Let us change the coordinates in the output space by 
letting ~ = U r B - 1 / 2 y  and e = UrB-1/2v  and in the input space by letting 
0 = V T F u .  In the new coordinates, (3.11) becomes: 

= DO + e (3.41) 

It is easily demonstrated that cov(e) = tr21n and cov(r/) = ~.21N. 
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Since D is diagonal, the set of  n equations given by (3.41) is equivalent  to 
the fol lowing set of  n independent equations: 

~i = dioi '[- ei, i = 1 . . . . .  n (3.42) 

Note that {~i}, i = 1, 2 . . . . .  n, do not provide (a posteriori) information on 
{Oi} for i = n + 1, n + 2 . . . . .  N. In the new basis, the regularised input esti- 
mate  obtained from (3.41) is: 

~7- ( DTD -1- YIN)-IDT~ (3.43) 

The diagonal structure of D allows the computat ion of  each single component  
of  the input estimate vector as: 

di 
-- ~ ~ i ,  i = 1 . . . . .  n (3.44) 

+ • 

~ i - - 0 ,  i - -  n + 1 . . . . .  N (3.45) 

In the new coordinates, the reconvolution vector is ~ = D~, the components  
of  which are computable as: 

d2 ~i, i = 1 . . . .  n (3.46) 
. ~i "-- d2 .~_ }/ 

Moreover ,  the residuals p - ~ - ~ can be computed  as" 

Y 
= ~ ~ i ,  i -- 1, 2 . . . . .  n (3.47) Pi d2 + F 

The quantities WRSS = ( y - G f i ) T B - I ( y -  Gfi) and WESS = ~TFTF[t can 
now be easily computed: 

~ - ~ (  di~i ) 
WESS -- fiTF rFfi -- f iTFTvV  TFfi -- ~T 0 -" d2 i + Y 

i=1 

WRSS = r r B - l r  -- rrB-1/2B-1/2r  -- rTB-1/2UUTB-1/2r  )2 
_ pTp __ d 2 + ~' 

i=1 

(3.48) 

(3.49) 

Finally, it is easily demonstrated that the degrees of  f reedom associated with 
~, are: 

n d2 (3 .50)  
q ( y ) -  ~ d/2 + Y 

i--1 
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In the transformed coordinates, input estimate, reconvolution, residuals, 
degrees of freedom, WESS, and WRSS can be computed via scalar operations 
and for a certain trial value of y require only O(n) operations. The main 
computational burden of the overall deconvolution procedure lies in the 
SVD (3.40), which amounts to O(n 3) operations. However, since SVD is 
independent on y, it is performed only once. Of particular note is that the 
complexity of the SVD is not affected by the dimension N of the virtual grid. 

Once the "optimal" value of the regularisation parameter is achieved, the 
input estimate in the original coordinates is determined as: 

~, = F - I v ; 7  (3.51) 

which is computable in O(nN 2) operations (note that multiplying an 
N-dimension vector by F -1 is equivalent to m-fold integration and requires 
only O(N) operations). 

The above diagonalisation strategy also can be extended to the compu- 
tation of the confidence intervals of the estimate which, in view of (3.31), 
depend on the diagonal elements of the N x N matrix (GTB-1G + y~  
Using a standard matrix inversion procedure would require O(N 3) operations, 
a heavy computational burden. However, in the transformed coordinates, the 
confidence intervals can be derived in O(N 2) operations (De Nicolao et al., 
1997). 

Since the complexity of the SVD-based algorithm is O(n3), irrespective of 
the size N of the virtual grid, this strategy is more convenient (at least when 
n is small compared to N) than the methods based on the CG (De Nicolao 
et al., 1997). In addition, since the efficiency of the diagonalisation procedure 
does not depend on the Toeplitz structure of G, the SVD-based algorithm can 
also be successfully employed in the time-varying case (Fredholm integral 
equation). 

As an alternative to the use of SVD, another method that accounts for the 
solution of (3.15) for various trial values of the regularisation parameter is 
based on the use of the QR factorisation (Hanke and Hansen, 1993). 

3.4.4. CONSTRAINED DECONVOLUTION 

In a number of physiological cases, the input u(t) is known to be 
intrinsically nonnegative (e.g., hormone secretion rates, drug absorption 
rates). Nevertheless, due to measurement errors and impulse response model 
mismatch, the solution provided by (3.16) may take on negative values 
(see Figure 3.7, Panels A and C). To obtain nonnegative estimates, the 
regularisation method can be reformulated as a constrained optimisation 
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problem (Commenges, 1984; De Nicolao et al., 1997): 

min(y - G f i ) r B  -~ (y  - Gf i )  + yfirF r Ffi  
fi>_o 

(3.52) 

where fi > 0 stands for fik > 0, Yk. This problem does not admit a closed-form 
solution and must be solved by an iterative method such as the constrained 
CG algorithm (Hestenes, 1980). 

Remarkably, the incorporation of nonnegativity constraints as in (3.52) 
makes the estimator nonlinear. This impairs the use of some regularisation 
criteria, such as GCV or ML. In addition, nonnegativity contradicts Gaus- 
sianity so that the computation of confidence intervals by exploiting analytic 
approaches is not possible. A possible empirical strategy is as follows: 

1. Find the (linear) solution (3.16) with y' chosen according to some 
regularisation criterion. 

2. Having zeroed the negative components of the solution, use it as an 
initial guess for the constrained CG algorithm that is launched to solve 
(3.52) with the same y obtained in the unconstrained case. 

As far as the confidence limits are concerned, a Monte Carlo approach 
can be adopted (De Nicolao et al., 1997). Alternatively, since this approach is 
computationally demanding, an approximation of the confidence intervals can 
be obtained by attaching the intervals of the unconstrained estimate computed 
according to (3.31) to the solution of (3.52). 

Panel E of Figure 3.7 shows, for the simulated problem, the input profile 
estimated with the nonnegativity constraint. The value of the regularisation 
parameter is the same adopted for the unconstrained estimate displayed in 
Panel C. 

3.5. OTHER D E C O N V O L U T I O N  M E T H O D S  

A number of deconvolution techniques, often referred to as parametric 
deconvolution methods, circumvent ill-posedness and ill-conditioning by 
making functional assumptions on the input. The analytic expression of the 
input is assumed to be known except for a small number of parameters, so 
that the deconvolution problem becomes a parameter estimation problem with 
more data than unknowns. This guarantees the uniqueness (at least locally) 
and regularity of the solution. In Cutler (1978), for example, the unknown 
input is described as an M-th order polynomial and one has only to estimate 
its M + 1 coefficients. In Veng-Pedersen (1980a), a linear combination of 
M exponentials is used, so that deconvolution turns into the problem of 
determining the amplitudes and the rates (2M parameters). Similar methods 
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are discussed in other studies (Veng-Pedersen, 1980b; Gillespie and Veng 
Pedersen, 1986; Vajda et al., 1988 and Verotta, 1990). Parametric approaches 
also were developed for more specific problems. For instance, in Veldhuis 
and Johnson (1992), episodic hormone release is described by assuming 
secretory spikes to be Gaussian shaped with each pulse characterised by three 
parameters: location, amplitude, and width. Lagged-normals models have been 
used in Knopp et al. (1976) and Pollastri et al. (1977) to approximate the 
transport function of an indicator into an organ and in Norwich (1977) to 
remove catheter distortion on indicator dilution curves. 

The required heavy assumptions on the shape of the unknown input gener- 
ally constitute a major drawback. Moreover, when a class of functional forms 
for the unknown input is considered, model order selection problems must 
be addressed, such as selecting the degree M of the polynomial in Curler 
(1978), the number M of exponentials in Veng-Pedersen (1980), the number 
of addenda in the lagged-normals sum in Knopp et al. (1976), or the number 
of pulses that form the secretory profile in Veldhuis and Johnson (1992). In 
fact, increasing the model order leads to a better data fit but at the price 
of an increased noise sensitivity of the input estimate. Remarkably, model 
order selection resembles the problem of tuning the smoothing parameter in 
the regularisation method. When the regularisation parame~r is too small, the 
estimate is overly sensitive to noise as if the model were overparameterised; 
conversely, for excessively large values of the regularisation parameter, the 
estimate does not explain the data as if the model were underparameterised. 
In parametric deconvolution, model order selection criteria must be used to 
avoid subjectivity in governing the fit versus smoothness trade-off, and some 
of the criteria defined for the regularisation method, such as cross-validation, 
discrepancy, and L-curve, can be extended to this purpose. In some parametric 
methods, it is difficult to impose nonnegativity constraints (Verotta, 1990) and 
to handle time-varying systems. Finally, the intrinsic nonlinearity of parametric 
deconvolution methods exposes them to the problem of correctly selecting the 
initial guess of the parameters to avoid local minima in parameter estimation 
(Verotta, 1990). 

A parametric approach that allows a larger flexibility is based on regression 
splines (Verotta, 1993; 1996). In this approach, the input u(t) is a spline 
given by: 

M 

u(t) = E Id, iBi, r(t) (3.53) 
i=1 

where {/.s a r e  scalars and Bi, r represents the i-th normalised component of 
the (cubic) B-spline basis, r being the knot position vector. Having fixed 
number and location of the spline knots, which means having chosen M and 
3, the reconvolution vector linearly depends on vector/x = [/z l, #2, . . . ,/xM] r, 
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which can thus be estimated by least squares: 

min IIY - ~/zJ 12 (3.54) 
/z 

where �9 is a n • M matrix. The major problems connected with the use of 
regression splines in deconvolution are related to the choice of the model order 
M and the knot location vector r. The problem of selecting M involves the 
usual fit versus smoothness trade-off. The problem of locating the spline knots 
is more complex. Intuitively, the density of knots should be higher where fast 
changes in the input are expected; see Verotta (1993) for empirical strate- 
gies. An appealing feature of the regression splines method is the possibility 
of incorporating monotonicity and nonnegativity constraints on the input by 
adding suitable inequality constraints on vector/z. However, these constraints 
introduce nonlinearities, and empirical modifications of the Akaike and GCV 
criteria are needed to solve the model order selection problem (Verotta, 1993). 

Turning back to nonparametric methods, it should be noted that, in addition 
to regularisation, there are other approaches to deconvolution. These include 
truncated singular values decomposition (TSVD), conjugate gradient regular- 
isation (CGR), and maximum entropy (ME). 

TSVD methods (Hanson, 1971; Varah, 1973; Hansen, 1987) first perform 
a singular value expansion of the algebraic system (3.11) and then determine 
an (unconstrained) estimate by truncating such an expansion before the small 
singular values start to dominate. The (integer) number k of the eigenvectors 
that are left in the expansion determines the regularity of the estimate, similarly 
to the regularisation parameter (Hansen, 1992a). 

CGR is based on the fact that, when the CG algorithm is used to solve 
the system y -  Gu, the low-frequency components of the solution tend to 
converge faster than the high-frequency components. Hence, the CG has some 
inherent regularisation effect where the number of CG iterations tunes the 
regularity of the solution (Van der Sluis and Van der Vorst, 1990). 

Finally, ME methods (Wernecke and D'Addario, 1977; Charter and Gull, 
1991; Donoho et al., 1992) can be considered variants of the regularisation 
method where the term u r log u replaces the quadratic term u rF  rFu  in (3.15). 
In this way, for a fixed y, the ME estimator provides (strictly) positive signals 
but it is no more linear in the parameters, so that a closed form solution does 
not exist and an iterative method is required to compute the estimate. The 
structure of the cost function makes ME methods particularly suitable to solve 
problems where the unknown input is essentially zero in the vast majority of 
its domain, for example with a nearly black image, (Donoho et al., 1992). 

In all the deconvolution approaches mentioned in this section, the compu- 
tation of the confidence intervals is difficult either because the estimator is 
nonlinear or because of the deterministic setting in which they are stated. 
Finally, similarly to the regularisation method, all these approaches require 
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a trial-and-error procedure to adjust the fit versus smoothness trade-off. For 
instance, in parametric deconvolution, candidate solutions must be computed 
for several trial values of the model order M. 

3.6. C O N C L U S I O N S  

In this chapter, we have introduced the deconvolution problem critically 
reviewing the available methods against the real-world challenges arising in 
the analysis of physiological systems, including ill-conditioning, treatment 
of infrequently sampled data sets, computation of confidence intervals, 
nonnegativity constraints, and efficiency of the numerical algorithms. In 
this respect, the regularisation method makes only mild assumptions of 
the unknown input and has some important advantages over the other 
deconvolution approaches, especially in its stochastic formulation. In fact, the 
stochastic viewpoint offers a statistically sound solution to the problems of 
determining the smoothness versus data trade-off and estimating confidence 
intervals of the reconstructed input. By means of the virtual grid concept, 
the regularisation method also can handle effectively infrequent/nonuniform 
sampling schedules. Moreover, an SVD-based computational scheme allows 
the solution of the complete input estimation problem, including trial-and- 
error estimation of the regularisation parameter, in O(n 3) operations, where n 
denotes the number of observations, even when the number N of unknowns 
is much larger. 

At the time of this writing, work on the regularisation approach focused 
on the development of enhanced numerical algorithms and the computation 
of confidence intervals of the input estimate also accounting for uncertainty 
of the parameters of the impulse response. A spectral factorisation approach 
can be exploited in the LTI case with uniform sampling to derive explicit 
formulae of the degrees of freedom q(y) that speed up calculations (De Nicolao 
et al., 2000). In the unconstrained case, using state-space methods, it has been 
shown that the regularised estimate is a weighted sum of N basis functions, 
with weights computable in O(n) operations by Kalman filtering (De Nicolao 
et al., 1998). As far as confidence intervals are concerned, stochastic regulari- 
sation (Section 3.4.2) allows the estimation of confidence intervals that do not 
account for model uncertainty. However, in real-world problems, the impulse 
response is uncertain since its parameters are obtained from population studies 
or estimated from experimental data affected by error (see Figure 3.3). Reli- 
able confidence limits of the input profile should therefore account for the 
impulse response model uncertainty. Analytical expressions similar to (3.31) 
are difficult to carry out. The simplest method to assess the joint effect of data 
and model uncertainty is based on a Monte Carlo strategy. First, the output 
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data and the nominal values of the impulse response parameters, with their 
precision, are used to artificially generate perturbed deconvolution problems, 
and then confidence intervals are worked out from the sample distribution 
of a sufficiently large number (some hundreds, typically) of perturbed solu- 
tions (Sparacino and Cobelli, 1996). A theoretically more sound approach 
is to determine the input estimate and its confidence intervals by employing 
Bayesian networks and Markov Chain Monte Carlo integration (Magni et al., 
1998). 
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Chapter 4 

A Priori Identifiability of 
Physiological Parametric 
Models 

Maria Pia Saccomani, Leontina D'Angio', Stefania Audoly, and 
Claudio Cobelli 

4.1. I N T R O D U C T I O N  

A fundamental question in parametric model identification is a priori global 
identifiability: whether or not, under ideal conditions of noise-free observa- 
tions and error-free model structure, the unknown parameters of the postulated 
model can be estimated from the designed multi-input/multi-output exper- 
iment (Bellman and Astr6m, 1970; Cobelli and DiStefano, 1980; Walter, 
1982; Carson et al., 1983; Godfrey, 1983; Godfrey and DiStefano, 1987; 
Jacquez, 1996). The answer to this question is a necessary prerequisite for 
well-posedness of parameter estimation. Although necessary, a priori idenfifi- 
ability is obviously not sufficient to guarantee successful parameter estimation 
from real data (a posteriori or numerical identifiability) or, even more, model 
validity. In fact, an a priori identifiable model can be rejected for several 
reasons, such as it cannot explain the data or the precision with which its 
parameters can be estimated is poor due to a structure too complex for the 
data or the paucity of the data. However, these aspects should not detract from 
satisfying the a priori identifiability requirement for any model used to obtain 
parameter values of interest. 

One also must emphasise the necessary testing of a priori identifiability 
per se; it cannot be tested when estimating the parameters from the data, 
such as by nonlinear least squares with software like SAAM II or ADAPT. 
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In fact, these software packages can only assess identifiability numerically 
and cannot distinguish nonidentifiability arising from a priori or a posteriori  
reasons (structure too complex or paucity of data), thus possibly interpreting 
as globally identifiable models that are only locally identifiable (Cobelli and 
Saccomani, 1990). This last issue is particularly critical when addressing phys- 
iological systems in which a different numerical estimate can characterise a 
pathological state from a normal state. 

A priori  global identifiability also is crucial in qualitative experiment design 
(Saccomani et al., 1992; Saccomani et al., 1993), which studies the input- 
output configuration necessary to ensure unique estimation of the unknown 
parameters. In fact, it allows distinction between those experiments that cannot 
succeed and those that might. Among these latter ones, it determines the 
minimal input-output configuration to ensure estimation of the unknown para- 
meters. This is particularly relevant for physiological systems in which number 
and sites of inputs and outputs are severely constrained for ethical and technical 
reasons. 

However, global identifiability of linear and nonlinear models is difficult to 
test. Whatever method used (e.g., transfer function, normal mode, exhaustive 
modelling, power series expansion, differential algebra) (Bellman and Astrrm, 
1970; Cobelli and DiStefano, 1980; Walter and Lecourtier, 1981; Norton 
1982; Walter and Lecourtier, 1982; Walter, 1982; Audoly and D'Angio', 1983; 
Carson et al., 1983; Godfrey, 1983; Godfrey and DiStefano, 1987; Ljung and 
Glad, 1994; Jacquez, 1996), it requires the solution of a system of nonlinear 
algebraic equations that results in an increase in number of unknowns, number 
of terms, and nonlinearity degree with the model order. For nonlinear models, 
they also are infinite in number. Thus, the solution of the a priori  identi- 
fiability problem is severely limited by computational bounds; this is why 
it is difficult to develop an algorithm to automate the identifiability testing, 
although it is most desirable for both linear and nonlinear models. In fact, the 
problem has been solved only for some specific linear and nonlinear structures 
and specific input-output experiments (Pohjanpalo, 1978; Cobelli et al., 1979; 
Norton 1982; Carson et al., 1983; Godfrey, 1983; Ollivier, 1990; Chappel and 
Godfrey, 1992; Ljung and Glad, 1994; D'Angio' et al., 1994; Jacquez, 1996), 
but no solution exists in the general case. In addition, the available algorithms 
used with a priori identifiability either have only addressed some of its aspects 
(Walter and Lecourtier, 1982; Walter et al., 1985; Jacquez and Perry, 1990) 
or are severely limited by computability bounds that make study of models 
difficult, even for order two or three (Ljung and Glad, 1994). 

Recently, a new differential algebra method (Saccomani et al., 1997) has 
been proposed that allows the testing of a priori identifiability of sufficiently 
general nonlinear model structures from multi-input/multi-output identifica- 
tion experiments. In addition, a computer algebra tool (GLOBI for GLOBal 
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Identifiability) has become available that tests a priori  global identifiability 
of linear compartmental models from a general output configuration (Audoly 
et al., 1998). This is a very powerful tool to test linear models, because a general 
model structure of relatively large dimension (i.e., up to some 12 compartments) 
can be used. 

In this chapter, after briefly reviewing some fundamentals, we discuss and 
present examples of the most recent theoretical and algorithmic developments 
in identifiability of linear and nonlinear models. 

4.2.  T H E  S Y S T E M - E X P E R I M E N T  M O D E L  

4.2 .1 .  NONLINEAR MODELS 

Nonlinear dynamic models of physiological systems, together with the 
input-output experiment designed for their identification, can be described 
in general form as (Cobelli and DiStefano, 1980; Carson et al., 1983): 

~(p, t) = f[x(p, t), u(p, t), p] x(O) = i(p) (4.1) 

y(p, t) -- g[x(p, t), u(p, t), p] (4.2) 

where x is the n-dimension state variable vector, (e.g., masses), with initial 
conditions x0; u is the r-dimension input vector; y is the m-dimension output 
vector; p is the P-dimension parameter vector; and f, g, and i are vectors of 
polynomial functions. 

Some equality constraints on parameters are usually available: 

h(p) = 0 (4.3) 

where h is a vector of polynomial functions describing all the algebraic 
equality constraints (linear and nonlinear) among the components of p. 

4 .2 .2 .  LINEAR MODELS 

A linear model with its input-output experiment can be written as (Cobelli 
and DiStefano, 1980; Carson et al., 1983): 

~(t) = K(p)x(t) + B(p)u(t) x(0) = x0 (4.4) 

y(t, p) = C(p)x(t, p) (4.5) 

where K is the n x n state matrix; B is the n x r input matrix; C is the m x n 
output matrix; and p is the P-dimension vector containing the K, B, and C 
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parameters, or the kij, bij, and r belonging to the space P (a subspace of the 
complex space C). 

A class of linear dynamic models widely used for describing biological 
and physiological systems, such as the study of kinetics of endogenous and 
exogenous (drugs, tracers) substances (Carson et al., 1983; Godfrey, 1983; 
Jacquez, 1996), is that of compartmental models. These models, based on 
mass conservation principles, are still described by (4.4) and (4.5), but the 
elements of K, the transfer rate cons tan t s  kij, satisfy the following conditions: 

n 

kij >_ 0 i ~ j, kii : - Z  kji j =/= i (4.6) 
j=O 

where koi is the transfer rate constant from compartment i to the external 
environment. In this case, p belongs to the compartmental space, which is a 
real and positive subspace of C characterised by constraints (4.6). 

4 .3 .  A P R I O R I  I D E N T I F I A B I L I T Y  

4.3.1.  THE PROBLEM 

Given the model structure and the input-output configuration of 
equations (4.1) through (4.3) or (4.3) through (4.5), a priori identifiability 
deals with the uniqueness of the solution for the unknown parameters pi, 
i = 1 . . . . .  P, in the whole complex space under the ideal conditions of error- 
free model structure and noise-free data. To state the identifiability problem, 
it is convenient to consider the output y in (4.2) or (4.5) as a function of time 
and of the observational parameter vector, t~ = [ ~ 1 ~ 2 . . .  ~R] (Jacquez and 
Greif, 1985): 

y = G(t, ~ )  (4.7) 

By definition, the components of t~, (I)i, i = 1 . . . . .  R, are identifiable since 
they can be evaluated from the designed experiment. Thus, each input-output 

^ 

experiment will provide a particular value �9 of t~. The observational param- 
eters ~i, i = 1 . . . . .  R, are algebraic functions of the basic parameters Pi, 
i -- 1 . . . .  , P, which may or may not be identifiable: 

= ~ ( p )  (4.8) 

In particular: 

= ~ ( ~ )  (4.9) 
^ 

where ~ is that particular value of p providing �9 . 
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Thus, to prove a priori identifiability of a parameter pi it is equivalent to 
prove if, and only if, equal values of the output y, now as a function of ~ :  

y(@(p), t) -- y(t~, t) (4.10) 

imply only one, a finite or an infinite number of solutions in C for the corre- 
sponding parameter vector p for any p ~ P except for a set of zero measure, 
meaning for almost any p ~ P. 

4.3.2. DEFINITIONS 

Identifiability analysis was put on a formal basis in the 1970s (Bellman 
and Astr6m, 1970). The definitions we adopt are general and holding for both 
linear and nonlinear dynamic models: (4.1) through (4.3) or (4.3) through 
(4.5). 

Consider the system-experiment model described by (4.1) through (4.3) or 
(4.3) through (4.5). For the input class U and p ~ C (the complex space), the 
single parameter pi is a priori globally (uniquely) identifiable if, and only if, 
for almost any ~ ~ P, the system of equations (4.10) has the one and only 
solution Pi = Pi; locally (nonuniquely) identifiable if, and only if, for almost 
any ~ ~ P, the system of equations (4.10) has for Pi more than one, but a finite 
number of solutions; nonidentifiable if, and only if, for almost any ~ ~ P, the 
system of equations (4.10) has for Pi an infinite number of solutions. 

The model is a priori: globally (uniquely) identifiable if all its parameters 
are globally (uniquely) identifiable; locally (nonuniquely) identifiable if all 
its parameters are identifiable, either uniquely or nonuniquely, with at least 
one parameter nonuniquely identifiable; nonidentifiable if at least one of its 
parameters is nonidentifiable. 

4.3.3. THE EXHAUSTIVE SUMMARY 

In practice, to investigate a priori identifiability of the model parameters 
pi, the system of nonlinear algebraic equations must be solved in the unknown 
pi with known coefficients given by the observational parameters ~i" 

�9 (p) = ~ (4.11) 

We will refer to (4.11) as the exhaustive summary of the model (Walter and 
Lecourtier, 1982). If some equality constraints (4.3) are present, these must 
be added to the algebraic equations of the exhaustive summary. The solution 
of (4.11) (and (4.3) if present) will give the number of parameter solutions 
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in the whole complex space C. However, we are only interested in solutions 
belonging to the compartmental space P. Thus, when dealing with compart- 
mental models, one should verify that the restflts in C can be extended to its 
real and positive subspace P. 

4.4. AVAILABLE M E T H O D S  

Since the definition of the identifiability problem in the 1970s, a growing 
body of literature has become available, showing both its importance and its 
difficulty. 

4.4.1.  NONLINEAR MODELS 

To analyse a priori global identifiability of nonlinear models, very few 
results are available. A method that provides a necessary and sufficient condi- 
tion for global identifiability of a large class of nonlinear models is proposed 
by Pohjanpalo (1978). It is based on the analysis of the power series expan- 
sion of the output function, (4.2) or (4.5), evaluated at time 0, denoted here 
to. More precisely, the exhaustive summary is given by: 

dky(x(to,  P), P) 
dt  k 

-- Otk(tO) k = 0, 1, 2 . . . .  (4.12) 

where ak are the observational parameters given by the coefficients of the 
power series of the output function. The exhaustive summary is thus consti- 
tuted by an infinite number of equations. This makes the identifiability analysis 
difficult to solve in general, especially when the model is nonidentifiable. 

The only way to solve the problem is to find a finite set of equations 
that contains all the information present in the infinite exhaustive summary. 
Chappel and Godfrey (1992) have proposed a method based on the state 
isomorphism theorem, which has been successfully applied to some specific 
nonlinear structures. However, this method does not seem suitable for 
constructing an automatic procedure, and it can easily fail when the dimension 
of the nonlinear algebraic system gets high. Ollivier (1990) and Ljung and 
Glad (1994) have resorted to differential algebra, or the characteristic set of 
a differential ideal (Ritt, 1950). Although differential algebra methods greatly 
enhance identifiability analysis of nonlinear models, the construction of an 
efficient algorithm is difficult. An algorithm that integrates both the Ollivier 
(1990) and Ljung and Glad (1994) strategies and employs computer algebra 
methods u i n  particular the Buehberger algorithm (Buehberger, 1988)--was 
proposed in D'Angio' et al. (1994), but its domain of applicability was 
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still significantly limited by computational complexity. More recently, a new 
differential algebra algorithm has been developed (Saccomani et al., 1997), 
which improves the previous one by handling more general system-experiment 
model structures. This algorithm is described in Section 4.5. 

4.4.2. LINEAR MODELS 

Various methods have been proposed to test a priori identifiability of linear 
models. Here, we present the salient features of the most used strategies. 

The transfer function method (Bellman and Astr6m, 1970; Cobelli and 
DiStefano, 1980; Carson et al., 1983; Godfrey and DiStefano, 1987) leads to 
an exhaustive summary characterised by high degree of nonlinearity (equal 
to the number of compartments) and high number of terms, which is usually 
solvable only for models with a maximum of five compartments (unpublished 
results). 

The similarity transformation method (Walter and Lecourtier, 1981; Walter 
and Lecourtier, 1982; Godfrey and DiStefano, 1987) defines the exhaustive 
summary by generating, with a similarity transformation, all the output- 
indistinguishable models compatible with the given model structure. The 
transformation leads to a high number of bilinear equations, irrespective 
of the connectivity level of the model, with a high number of unknowns. 
Unfortunately, when dealing with multi-input/multi-output experiments, this 
method only works for specific configurations. 

The modal matrix method (Norton, 1982; Godfrey and DiStefano, 1987) 
defines the exhaustive summary by the elements of the matrix having as 
columns the eigenvectors of the compartmental matrix and of its inverse: 
the unknowns are the components of these eigenvectors. These equations can 
have complex coefficients, generally making their solution difficult. 

The transfer function topological method (Audoly and D'Angio', 1983) 
defines the exhaustive summary using as unknowns some topological func- 
tions of the transfer rate constants kij defined on the compartmental graph. 
This reduces the exhaustive summary complexity as compared with the classic 
transfer function method. The idea is to solve for these topological macropa- 
rameters and obtain the unknown kij from them. Two methods are available. In 
the first, the unknowns are the cycles and paths of the compartmental graph, 
which considerably reduce the number of terms and, even if the nonlinearity 
degree remains that of the transfer function method, also decrease the number 
of the high degree terms. In the second method, the unknowns are the forms 
and reduced forms, which are particular functions of cycles and paths. This 
last method allows a further reduction of the number of the equation's terms 
and of the nonlinearity degree since it combines the kij in more aggregated 
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parameters than cycles and paths. However, it is difficult to automate in the 
general case since it requires an "intelligent" decomposition of the model. In 
fact, only those forms and reduced forms necessary for the analysis of the given 
system-experiment model must be generated, and not of all the possible ones, 
which can often render the system of equations unsolvable (Saccomani et al., 
1992; Saccomani et al., 1994). While this intelligent strategy can be employed 
by an experienced user, its explicit definition is not simple and hampers the 
automation of the method. However, the method works successfully for a 
certain class of compartmental models (Saccomani et al., 1992). 

All these methods work well for models of relatively low dimension, such as 
two or three compartments, and for special classes of compartmental models. 
However, the methods usually fail when applied to relatively large general 
structure models because the corresponding system of nonlinear algebraic 
equations becomes too difficult to solve. Symbolic computer languages (e.g., 
REDUCE, MAPLE) are helpful but have only been used to analyse specific 
structures, such as some four-compartment models (Walter, 1985). 

The novel differential algebra approach originally proposed for nonlinear 
models (Ljung and Glad, 1994) could also be applied for studying a priori 
global identifiability of linear models. However, the computability bounds of 
the algorithm (implemented in MAPLE) only allow the handling of models 
characterised by "number of parameters plus number of states (compartments) 
< 10" (Ljung and Glad, 1994). This is a severe limitation when applied to 
linear compartmental models since only three-compartment models and some 
four-compartment models (but with not all the connections between compart- 
ments present) can be tested. 

Very recently, a new algorithm has been proposed (Audoly et al., 1998) 
to automatically test global identifiability of general structure linear compart- 
mental models from multi-input/multi-output experiments. Given the impor- 
tance of compartmental models in the study of physiological systems, the 
algorithm was originally proposed for linear compartmental models, but it also 
can be applied to general linear dynamic models. The algorithm is a two-stage 
one. First, the transfer function topological method (Audoly and D'Angio', 
1983) is used to decrease the complexity of the problem by mapping the para- 
meter space into that of the cycles and paths of the graph. Then, this new set 
of equations is solved by the Buchberger algorithm (Buchberger, 1988). The 
algorithm is described in Section 4.6.2, and it determines if there is one, more 
than one (and how many), or an infinite number of solutions for each model 
parameter. A software tool, the most recent version of which is GLOBI2, also 
has been developed and is described in Section 4.6.3. 

Remark. It is worth emphasising that difficulties arise because we are 
interested in a priori global identifiability of dynamic models; that is, checking 
if there is a unique solution for the unknown parameters. A simpler, but less 
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informative, test is to check only a priori structural local identifiability of the 
models, that is, to distinguish between a nonidentifiable and an identifiable 
(globally or locally) model. In this case, there is no need to solve the system 
of nonlinear equations, and a software tool, IDENT (Jacquez and Perry, 1990), 
is available. However, IDENT cannot be used to study a priori unique iden- 
tifiability of a model, which often is the crucial question. Also, in case of 
nonunique identifiability, IDENT does not provide the number of solutions. 

4.5. A N  I D E N T I F I A B I L I T Y  A L G O R I T H M  F O R  

N O N L I N E A R  M O D E L S  

4.5.1.  FUNDAMENTALS 

Here, a brief description is given of the recently proposed differential 
algebra algorithm (Saccomani et al., 1997) for studying a priori global iden- 
tifiability of nonlinear models. The basic concept is the characteristic set of a 
differential ideal introduced by Ritt (1950), who also proposed an algorithm 
to construct it. The formal definition is given in Appendix A. Here, the char- 
acteristic set of a differential ideal is a finite set of differential polynomials 
that summarises all the information contained in the infinite differential ideal. 
Thus, a characteristic set of the differential ideal defined by the polynomials of 
the dynamic model, (4.1) and (4.2), is a finite set of nonlinear equations that 
contains the exhaustive summary of the nonlinear model itself. This overcomes 
the difficulties of handling an infinite number of equations. 

Given the state-space description of the dynamic model, (4.1) and (4.2), 
the set of differential polynomials is: 

~(p, t) - f[x(p, t), u(p, t), p] (4.13) 

y(p, t) - g[x(p, t), u(p, t), p] (4.14) 

where f and g are Lipscitz functions in p and t. Equations (4.13) and (4.14) 
are the generators of a differential ideal in a differential ring. The state-space 
description ensures the uniqueness of the characteristic set (Ljung and Glad, 
1994). 

The problems now are first to construct, in an algorithmic way, the char- 
acteristic set by starting from the model equations, and second to solve the 
algebraic nonlinear equations forming the exhaustive model summary. 

Let us tackle the second problem first. It can be solved by the Buch- 
berger algorithm. This algorithm calculates the Gr6bner basis, which is a 
set of polynomials with specific properties that make it a powerful tool for 
solving systems of nonlinear equations, like those of the exhaustive summary 
(see Appendix B). 
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To solve the first problem, we have observed (see Appendix A) that the 
computability complexity is strongly influenced by the choice of the differ- 
ential ring K[Z] and ranking of the variables of the differential polynomials. 
This suggests developing the algorithm with focus on structure of the dynamic 
model equations and defining a suitable order relation; that is, not using 
an a priori one. Furthermore, since our interest is in physiological system 
models, general structures and input-output configurations must be consid- 
ered, allowing for time-varying parameters, for constraints among parameters 
arising from physical realizability, for unknown parameters in the inputs, for 
multi-input/multi-output experiments, and for zero (i.e., nongeneric) initial 
conditions. Finally, it would be desirable to experience different input-output 
configurations on the same model without recalculating a new characteristic 
set. This is particularly useful when studying qualitative experiment design 
(Saccomani and Cobelli, 1992), specifically the minimal input-output configu- 
ration for a priori global identifiability. These issues are separately addressed 
in the following sections. 

4.5.2.  CHOICE OF THE DIFFERENTIAL RING 

The differential ideal can be considered in various rings depending on 
which elements are considered coefficients and which are variables of their 
differential polynomials. This is a crucial step for the construction of the char- 
acteristic set and has strong consequences on the number and complexity of 
the reductions required to calculate it. For example, Ljung and Glad (1994) 
choose a differential ring R[x,y,u,p] in which all the states, inputs, outputs, and 
unknown parameters are the variables. Thus, a characteristic set is achieved 
that is triangular in p and immediately provides the identifiability results. In 
contrast, Ollivier (1990) chooses the characteristic set of polynomials (4.13 
and 4.14) in the ring R(p)[x,y,u], in which the only variables are the states, 
inputs, and outputs. In this way, once the characteristic set is obtained, their 
coefficients are polynomials in p. With this choice, there are as many polyno- 
mials as outputs only in the y and u variables (i.e., belonging to R(p)[y,u]), 
and thus known. These polynomials allow the calculation of the exhaustive 
summary of the model. This strategy provides a very simplified reduction 
procedure, since the number of variables is significantly decreased. For this 
reason, the Ollivier ring was chosen. 

4.5.3. RANKING OF VARIABLES 

Two criteria dictate the choice of the ranking, decrease the computability 
complexity, and extract the maximum information from the characteristic set. 
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It has been noted (Saccomani et  al., 1997) that computability complexity, 
and thus computer time, depends not only on state vector dimension and 
nonlinearity degree, but also on the ranking of the polynomial variables. 
In particular, the choice of the rank strongly affects the strategy of reduc- 
tions and, thus, the efficiency of the algorithm. However, the rank chosen to 
decrease computability complexity may not immediately provide the informa- 
tion content of the characteristic set. The two principal ranks are: 

(k) U)),(h y~k) < , < Aj u < y < x, i < j =:~ U i < y~h) x~k) . (h) Vh, k 
(4.15) 

and 

(k) . (h) .(k) . (h) X~ k) < X~ h) Vi ,  j U < y < X, k < h =~ u i < u j  , yj  < y j  , 

(4.16) 
Both ranking (4.15) and (4.16) define the inputs as the smallest components, 

followed by the outputs and the state variables, with (4.15) ranking the high 
class of variables first while (4.16) ranks the high order of derivatives first. 

With the ranking of (4.15), the characteristic set is in triangular form. 
This form is particularly useful in physiological modelling. In fact, it reveals 
the identifiable parameterisation corresponding to different output equations 
without recalculation of the characteristic set, which helps the study of optimal 
experiment design. This form also allows easy information extraction on para- 
meter identifiability from initial conditions. 

If the system is of high dimension (i.e., high number of both states and 
parameters) and of high nonlinearity degree, the calculation of the character- 
istic set can become too complex. In this case, the ranking of (4.16) can be 
adopted to decrease the computational complexity. 

4.5.4. TIME-VARYING PARAMETERS 

Handling time-varying parameters is often important in physiological 
modelling. Usually the functional form is assumed with one or more unknown 
parameters. If Pi, 1 < i < p ,  is a time-varying parameter, a rather general 
description is: 

p i ( t )  = ag[p i ( t ) ]  + b (4.17) 

were g is a rational function and a, b are known or unknown constant param- 
eters. Equation (4.17) handles classic time-varying situations, such as: 

g ( t )  = ae  -bt ,  g ( t )  = at  + b, g ( t )  = a t g ( b t )  (4.18) 

The strategy is to consider p i ( t )  as a new minimum rank state variable and to 
introduce (4.17) as a new state equation in the model. 
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If the functional form of pi(t) is known but (4.17) does not hold, a general 
method is not available. However, it is often possible to resort to some auxil- 
iary variables satisfying the relation of (4.17) and express the derivatives of the 
time-varying parameter in state equation form. If this is possible, the deriva- 
tives are considered as new state variables to be ordered (see Example 2 in 
Section 4.5.7). 

If the functional form of pi(t) is unknown, the problem is more difficult. 
Strategies for this case are currently under study. 

4 .5 .5 .  KNOWN INITIAL CONDITIONS AND INPUT PARAMETERS 

The characteristic set construction ignores the initial conditions, which are 
assumed to be generic. If they are known, this information can be used to 
complete the exhaustive summary by applying the following strategy. Once the 
characteristic set has been calculated, known coefficients are extracted by its 
polynomials, which do not include neither unknown states nor their derivatives. 
The remaining polynomials are calculated at the initial time, thus obtaining 
new polynomials in the unknown variables of the model. These polynomials 
are added to the previously extracted ones to form ~ ( p )  of (4.11). 

The above strategy is also helpful in handling the input parameter problem. 
If the inputs are known derivable functions with unknown parameters, the 
strategy outlined in Section 4.5.4 for the time-varying parameters can be 
adopted. If the inputs are nonderivable functions with known parameters, such 
as in the frequent case of an impulse (Dirac function) input of known dose, 
they can be considered known initial conditions of a zero-input system; hence, 
the initial conditions strategy outlined previously applies. 

Remark. If initial conditions are zero, it is possible that information on 
some parameters is lost in the characteristic set. In fact, the calculation of the 
characteristic set assumes generic initial conditions, and one of its elements 
could have a differential polynomial as coefficient that, with zero initial condi- 
tions, vanishes in the solution. Hence useful information for the identifiability 
of that parameter is lost. The present version of the algorithm does not include a 
procedure to preserve the information provided by the experiment on a system 
with zero initial conditions. Possible strategies are currently under study. 

4.5.6. THE ALGORITHM 

The principal steps of the algorithm are: 

1). The starting point are the model equations that provide the differential 
polynomials. These are considered in the differential ring R(p)[x]; 
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2). The standard ranking of (4.15) is introduced first. Subsequently, it is 
possible to select the most suitable ranking by a careful analysis of the system 
characteristics (see Section 4.5.3); 

3). The leaders of each polynomial are found; 
4). The polynomials are ordered following the increasing leaders. Each 

polynomial is compared with the previous ones and, if it is of higher rank, is 
reduced with respect to them. This step is repeated until the chain of minimum 
rank is reached. This set of polynomials is the characteristic set in the differ- 
ential polynomial ring R(p)[x]. In particular, it contains as many polynomials 
free of x with coefficients in R(p) as the model outputs are; 

5). The common coefficients, if any, not containing variables are eliminated 
from each polynomial; 

6). If some polynomials do not contain a monic monomial, this is generated 
by dividing all the polynomial terms for a suitable coefficient; 

7). The coefficients belonging to the polynomial ring R(p) are extracted. 
These are the observational parameters of the model, ~ ( p )  (see Section 4.3.3); 

8). If unknown initial conditions are present, the remaining polynomials of 
the characteristic set are calculated for t = to and the obtained polynomials in 
R(p) are added to those calculated in Step 5; 

9). A random numerical point ~ from the parameter space is calculated and 

equations t~ = ~ (~) are constructed, which form the exhaustive summary of 
the model; 

10). The Buchberger algorithm is applied to solve the equations and the 
number of solutions for each parameter is provided. 

If the algorithm does not successfully terminate because the characteristic 
set is too complex (i.e., the procedure of extraction of coefficients or the 
Buchberger algorithm fails), the algorithm can be reapplied by using a different 
ranking between the variables. The algorithm has been implemented in the 
Reduce 3.5 program and runs on any PC, from a 486 upwards. 

4.5.7.  EXAMPLES 

EXAMPLE 1. Consider the nonlinear model discussed in Walter et al. (1985) 
and shown in Figure 4.1. It is a two-compartment model that describes the 
kinetics of a drug in the human body. The drug is injected into the blood (com- 
partment 1), where it exchanges linearly with the tissues (compartment 2); the 
drug can be irreversibly removed with a nonlinear saturative characteristic 
from compartment 1 and with a linear one from compartment 2. The input- 
output experiment takes place in compartment 1. 
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u(t) = DS(t ) y(t ) p, 

7~ ~ ~  P l 

P2 

Figure 4.1. A nonlinear model of drug kinetics in the body. The input-output experiment config- 
uration is also shown. The large arrow denotes the input into compartment 1 and the dashed line 
ending with a bullet denotes the output from compartment 1. The same notation is used in 
following figures. 

The system-experiment model is: 

/ jCl(t)  = -  ( p l  q_ P3 ) Xl (t) d- p2xE(t) -!- p7u(t)  Xl (0) = 0 
P4 -~- Xl 

/JCz(t) = plXl (t) -- (P2 -+" pS)XZ(t) X2(0) -- 0 (4.19) 

k y(t)  = p6xl (t) 

where Xl, x2 are drug massess in compar tment  1 and 2, respectively, u is the 
drug input, y the measured drug output, and p l ,  P2 . . . .  p7 are the unknown 
parameters.  

The question is: are pl ,  p2 . . . .  P7 globally identifiable from the designed 
input-output experiment? The algorithm starts from the polynomials:  

/JCld-(Plk - P3 )Xl--p2x2--p7u 
P4 -k- Xl (4.20) 

Jr -- plXl q- (Pz -k- p5)x2 

Y -- p6Xl 
and its major steps are: 

1). Choice of the ranking for ordering the polynomials:  u < y < Xl < x2. 
2). At this stage, the reduction procedure starts and the characteristic set is 

calculated. For sake of space, we report only the differential polynomial  that 
contains the information on the model  identifiability; the polynomial  that does 
not contain x or its derivatives as variables: 

~.y2 _~_ Pl Ps Y 3 -  (Pz P6 Pv ff- Ps P6 P7 ) yZu + ( P l + PZ + PS)YY 2 -  P6 Pv y2 il 

d- (2plPaPsP6 q- P2P3P6)Y 2 -- 2(P2PaP7P~ d- paPsP7p2)uy  
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-+- 2p4P6YY -!- 2(PlP4P6 -k- P2P3P6 -k- P4P5P6)Yj: - 2p4P7p2ity 

+ p 4 p 2 ( P l P 5  "Jr- P2P3 -Jr" P 3 P s ) Y -  (P2pEp7p36 + pEp36PsP7)U 
2 2.. 2 2 "q- P4P6Y "k" (P4P6Pl  "k- p2p2p2  "1- p2p4P3 + p2p5p2)j~ -- P4p36P7 it 

(4.21) 
3). The coefficients are extracted and evaluated at a numerical point 

randomly chosen in the parameter space P, ~ -- [1, 17, 11, 13, 3, 4, 7]. Each 
coefficient in its polynomial form is then set equal to its corresponding numer- 
ical value. The obtained equations are the exhaustive summary of the model. 

4). The Buchberger algorithm is applied, and the Grtibner basis is: 

13p3 - 1 1 P4 

P l - -  1 

P2--  17 

-- 13p7 + 4p4 + 39 

P5 - 3 

(4.22) 

P4 P6 -- 52 

It is easy to see that the system has an infinite number of solutions, thus the 
model is a priori nonidentifiable. If the input is assumed to be known (i.e., 
P7 = 1), the model becomes a priori globally identifiable. 

EXAMPLE 2. The model is shown in Figure 4.2 and has been proposed to 
assess glucose metabolism in the brain from positron emission tomography 
(PET) [18F]-fluorodeoxyglucose([18F]FDG) data (Schmidt et al., 1991). It is 
a two-compartment model with two time-varying parameters that account for 
brain tissue heterogeneity. 

The system-experiment model is: 

JCl(t)  = p l u ( t ) -  [ p 2 ( t ) d -  p3(t)]Xl(t) 
Jc2(t)  - -  p3(t)Xl (t) 
y(t) - -  Xl ( t )  + XE(t) 

Xl(0) = 0  

X2(0 ) = 0 (4.23) 

where Xl ,  X 2 are [18F]FDG and [18F]-fluorodeoxyglucose-6-phosphate con- 
centrations in the brain tissue, u is [18F]FDG plasma concentration, which 
acts as known input of the model, y is the measured output, and Pl, P2, P3, 
p4 are the unknown parameters with the time-varying ones described by: 

p2(t) = p2(1 -k-p4e -pSt) 

p3(t) "- p3(1 q-p4 e-pSt) 
(4.24) 
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y(t) 
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u(t) 

/ N 

P3 ~.. 

P2 

Figure 4.2. A time-varying parameter model of glucose metabolism in the brain. 

The question is: are Pl, P2, P3, P4, P5 globally identifiable from the designed 
experiment? By following the algorithmic steps outlined in Example 1, it is 
easy to prove that the model is a priori globally identifiable. 

EXAMPLE 3. This example deals with a model describing the control of 
insulin on glucose utilisation (Caumo and Cobelli, 1993). The model is shown 
in Figure 4.3. The experiment consists of an impulse input of glucose labelled 
with a tracer and of the measurement in plasma of glucose, labelled glucose 
and insulin concentrations. The measured insulin concentration acts as model 
input u, while the model output y is the measured tracer glucose concentration. 
The control by insulin on the glucose system is exerted by insulin in a remote 
compartment (x 1). The glucose system is described by two compartments that 
represent, respectively, glucose in rapidly (x2) and slowly equilibrating tissues 
(x3), which include muscles. Insulin control is exerted on glucose utilisa- 
tion in compartment 2 (insulin-dependent tissues); only glucose utilisation of 
compartment 1 refers to insulin-independent tissues. 

The system-experiment model is given by: 

21(t) = - p l X l  (t) + p2u(t) 

( P4P5 ) 
JCz(t) -- -- P3 + g(t) + P6 x2(t)+ pvx3(t) 

23(0 = --(P8 + Xl (t) + pv)x3(t) + p6xz(t) 

x~ (o) = o 

x2(O) = o 

x3(O ) = 0 

(4.25) 

y(t) = psx2(t) 

where X1, X2, X 3 are, respectively, concentration of insulin in a remote com- 
partment and glucose mass in compartments 2 and 3, u is plasma insulin 
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Figure 4.3. A nonlinear model of glucose utilisation in the body and its control by insulin. 

concentration, g is plasma glucose concentration, y is the plasma tracer glucose 
concentration, and pl, p2, P3 . . . . .  P8 are the unknown parameters. 

The question is: are Pl ,  P2, P3 . . . . .  P8 a priori  globally identifiable from 
the designed experiment? In Caumo and Cobelli (1993), the following physi- 
ological constraint was used to identify the model: 

p4p5 3p6P8 
P3 q- -- (4.26) 

gb P7 + P8 

where gb is the known pretest glucose concentration. 
The algorithm shows that the model with the constraint of (4.26) is a pr ior i  

globally identifiable. The same result was obtained in Caumo and Cobelli 
(1993), but the very laborious power series expansion method (Pohjanpalo, 
1978) was employed. 

4.6. A N  IDENTIFIABILITY ALGORITHM FOR LINEAR 
C O M P A R T M E N T A L  M O D E L S  

Here, an algorithm for checking a priori  global identifiability of linear 
compartmental models of general structure is described (Audoly et al., 1998). 
This algorithm takes advantage of computer algebra, particularly the GrObner 
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basis. In principle, all the available methods discussed in Section 4.4.2 can be 
used to generate the exhaustive summary. However, the transfer function topo- 
logical method (Audoly and D'Angio', 1983) has been chosen, since it makes 
the algorithm to calculate the Gr6bner basis most successful for the largest 
class of models. It allows a reduction of the complexity of the exhaustive 
summary in terms of number of unknowns, number of terms, and nonlinearity 
degree. 

4.6.1.  THE TRANSFER FUNCTION TOPOLOGICAL METHOD 

The transfer function topological method (Audoly and D'Angio', 1983) is 
based on the properties of the graph associated with the model. It defines the 
exhaustive summary using as unknowns some topological functions of the 
transfer rate constants kij. This considerably reduces the complexity of the 
exhaustive summary as compared with the classic transfer function method. 

Briefly, it exploits the fact that the transfer function numerator and denomi- 
nator coefficients are the sum of minors of suitable order of the compartmental 
matrix K and, thus, can be written in terms of cycles and paths connecting 
the input to the output compartments in the compartmental graph. The idea is 
to write the transfer function coefficients, and thus the exhaustive summary, 
having cycles and paths as unknowns instead of the transfer rate constants. 

Let us denote by Gn the graph associated to the n x n K matrix by assigning 
the value kij to each arc (ji).  The cycles and paths of Gn are defined for 
i j = 1 . . . . .  n where j = 1 . . . . .  m, as: 

C i l i l  - -  k i l i l  

C i l i2 . . . im  = k i 2 i l  k i3 i2  �9 �9 �9 k i l i m  

P i l i E . . . i m  --" k i 2 i l  k ia i2  �9 �9 �9 k i m i m _ l  

m = 2 . . . . .  n 

m =  2 , . . . , n  

(4.27) 

(4.28) 

(4.29) 

The algorithm generates all the cycles and paths present in the exhaustive 
summary coefficients by using concepts from graph theory--particularly 
the adjacency and reachability matrices m and calculates all the products of 
cycles and paths appearing in these coefficients. Thus, one moves from the 
transfer function exhaustive summary, where the known coefficients are the 
observational parameters and the unknowns are the kij parameters, to a set of 
simpler equations, regarding number of terms and nonlinearity degree, with 
cycles and paths as unknowns. 

Remark 1. By definition, the transfer function deals only with systems 
with zero initial conditions. However, it is possible to study systems with 
nonzero initial conditions, known or unknown, simply by considering an 
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equivalent system with zero initial conditions and impulse inputs of the same 
value of the initial conditions. 

Remark 2. Although the focus here is on compartmental models, the 
method also can be applied to linear models of general structure: 

~(t) = Ax(t) + Bu(t) x(0) = x0 (4.30) 

y(t) -- Cx(t) (4.31) 

where A is now a genetic state matrix. To analyse a priori identifiability of 
the (4.30) and (4.31) model, a corresponding compartmental matrix K must 
be defined with the same structure of A and with koi ~ 0 Vi "-- 1 . . . . .  n. 

4.6.2. THE ALGORITHM 

The salient steps of the global identifiability algorithm are: 

1). The algorithm calculates the observational parameters as functions of 
cycles and paths and writes the equations with these functions on the left side 
and the known observational parameters on the fight side. 

2). To solve these equations, a numerical right-hand side term, not a 
symbolic one, is needed. The algorithm assumes a numerical value for the 
components of the vector p, which is a parameter solution ~ satisfying the 
compartmental (4.6) and the equality constraints (4.3), these last if present. 
From these, it calculates the numerical values of the observational parameters. 

3). The Buchberger algorithm, as implemented in REDUCE (Mueller, 1991), 
is used to solve the equations where the variables are the cycles and paths. We use 
the default order relations of the algorithm: the inverse of the alphabetical order 
with the natural one for the indices among the variables and the lexicographical 
order among the monomials. This step can be unsuccessful for computational 
limits. In this case, the problem cannot be solved. If this step is successful, the 
algorithm returns a new basis expressed in terms of the same unknowns (cycles 
and paths), but now showing a significantly simplified form. 

4). The algorithm substitutes to the cycles and paths of the basis their 
expressions in terms of the kij simply by applying their definition, (4.27) 
through (4.29). Also, this set of equations presents a reduction in the number 
of terms and nonlinearity degree in comparison with the corresponding one in 
the kij obtainable with the transfer function approach. 

5). A second application of the Buchberger algorithm, if successful, pro- 
vides a new basis of polynomials in the kij. This basis is characterised by 
specific properties that provide the answer to the global identifiability problem. 
In particular, when the model is identifiable, the basis is in triangular form 
and gives the number of solutions for each parameter. 
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The Buchberger algorithm can be unsuccessful since the choice of the 
order relation among the variables can affect the computational complexity 
of the Grrbner basis. In this case, the user should reapply the algorithm by 
choosing a different order relation among the variables. This can be done by 
using the switch GROEBOPT, present in the REDUCE implementation of the 
Buchberger algorithm, which allows the optimisation of the variable order in 
relation to the form of the equations to solve. 

Two observations are in order: 

1). The algorithm uses a numerical point since a symbolic point would 
dramatically affect the complexity of the Grrbner basis calculation. Thus, the 
answer of the algorithm is true with probability one. Note that the numerical 
point strategy is a sound alternative to the symbolic one (required to test a 
structural property, holding in the whole parameter space except for a zero 
measure set) since, while retaining mathematical rigour (Vajda, 1987), it allows 
to significantly enlarge the class of testable models. 

2). The algorithm checks the uniqueness of parameter solutions in the 
whole complex space C. When the result is global identifiability, meaning all 
the model parameters are uniquely identifiable, we are sure that this solution, 
belonging to C, must coincide with the point ~ of the parameter space that has 

provided the particular value of the observational parameter vector t~ at the 
start of the algorithm. However, if some model parameters are locally identi- 
fiable or nonidentifiable, the user should know how many solutions belong to 
the real and positive subspace P (4.6). This issue is of a fundamental nature 
and has nothing to do with algorithm implementation problems or with the 
chosen method. Briefly, to extend the global identifiability results obtained in 
C to the compartmental subspace P, we must distinguish between two situ- 
ations: 1) If some model parameters are not uniquely identifiable, while the 
algorithm provides the exact number of solutions in C, one cannot know how 
many of these solutions will be complex, how many will be real but negative, 
and how many will be real and positive when the one provided by the exper- 
iment will be available as an initial point. Thus, under these circumstances, 
the number of solutions provided by the algorithm is an upper bound of the 
number of solutions in P. 2) If some model parameters are nonidentifiable in 
C, this also holds in all the subspaces of C (Ollivier, 1990); thus, the model 
also is nonidentifiable in P. 

4.6.3. THE SOFTWARE 

The major features of the software GLOBI, which implements the algorithm 
described previously, are: 
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1). A graphical interface that permits the user to enter the model structure 
and the input-output experiment configuration in a very quick and easy way, 
also for very complex models. 

2). An algorithm to test three necessary topological conditions for identi- 
fiability (Cobelli and Romanin Jacur, 1976; Cobelli et al., 1979b; D 'Angio ' ,  
1985) that allows the rejection of some nonidentifiable models before applying 
the global identifiability algorithm. 

3). The global identifiability algorithm, which combines the cycle and path 
transfer function topological method and the Buchberger algorithm (described 
in Section 4.6.2). 

4). An interface that permits the user to visualise and save the identifia- 
bility results together with the model structure and input-output configuration. 
This allows the construction of a library of case studies. 

The original version of GLOBI was written in PASCAL 6.0, REDUCE 3.6; 
DELPHI 2 was used for the user graphical interface. Now, an upgrade of the 
program, GLOBI2, is available written in Visual C ++ and REDUCE 3.6. In 
particular, the topological conditions algorithm and the graphical interface are 
in Visual C ++, while the global identifiability algorithm is in REDUCE 3.6, 
which has a Grrbner basis package implementing the Buchberger algorithm. 
GLOBI2 runs on any IBM-compatible PC with at least 8 MB of RAM. 

4 .6 .4 .  EXAMPLES 

GLOBI2 is used here to analyse a priori identifiability of some complex 
compartmental models of the biomedical literature. Other examples are in- 
cluded in the GLOBI2 library. The aim is to give an idea of the validity of 
GLOBI2, which is difficult to establish rigorously, in terms of model structure. 
In fact, this would require defining the limits of applicability of the Buch- 
berger algorithm in solving the exhaustive summary of the model. However, 
the complexity of the exhaustive summary does depend not only on the model 
structure, but also on the input-output experimental configuration. 

EXAMPLE 1. Consider the four-compartment model shown in Figure 4.4 
together with a two-input/four-output experiment (Walter et al., 1982). 

The model has as unknowns the 12 kij. GLOBI2 final result is: 

59k43 + 97k01 - 784 = 0 k41 + k01 - 4 = 0 531k34 - 154k01 - 7 5 4 = 0  

59k32 - 22k01 - 310 = 0 531k24 - 539k01 - 2639 = 0 k23 - 3 = 0 

k21 - 5 - 0 k13 - 9 = 0 k12 - 4  = 0 59k03 - 97k01 - 396 = 0 

59k02 + 99k01 - 257 = 0 77k21 - 426k01 + 544 = 0 
(4.32) 
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Figure 4.4. A four-compartment model. 

This shows that all the parameters have two solutions, except for kE1, kl2, k23 
and k13, which have one. Thus, the model is locally identifiable. 

EXAMPLE 2. A model of zinc metabolism in humans (Foster et al., 1979; 
Godfrey, 1983) is shown in Figure 4.5. It has seven compartments, and the 
experiment is characterised by outputs taken from more than one compartment 
with all input-output parameters assumed to be known. 

The model has thus as unknowns the 11 kij (one of the kij, k83, is used 
to characterise the delay element, which is realised with a chain of compart- 
ments with equal rate constants). GLOBI2 shows that the model is globally 
identifiable. 

s 

0"'4 ] 

Figure 4.5. A model of zinc metabolism. 
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Figure 4.6. Models of bilirubin metabolism. 

EXAMPLE 3. Two different models describing bilirubin metabolism 
(Cobelli and Romanin Jacur, 1976) are shown in Figure 4.6. Figure 4.6 (top) 
shows a six-compartment model with a single-input/two-output experiment. 

The input parameters are assumed known, whereas both the output para- 
meters are assumed to be equal to plasma volume, V. The model has 12 
parameters as unknowns, the kij and V. The GLOBI2 result is k04, k05, k54, and 
k64 are nonidentifiable, whereas the remaining parameters are globally identifi- 
able. Thus, the model, with this experimental configuration, is nonidentifiable. 
A third output, from compartments 2 and 5, has then been added (Figure 4.6, 
bottom). With this richer experimental configuration, the model is globally 
identifiable. 

EXAMPLE 4. A model of lipoprotein metabolism is shown in Figure 4.7. 
It is a seven-compartment model with, as unknowns, the 12 kij. The input- 
output parameters are assumed to be known. Of note here is that GLOBI2 
successfully tests a priori identifiability of the model with the alternative order 
relation (GROEBOPT), but not with the default one. A possible explanation 
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Figure 4.7. A model of lipoprotein metabolism. 

lies in the difficulty of the default order relation to deal with unidirectional 
models, which are characterised by a high number of paths and a small number 
of cycles. GLOBI2 shows that the model is locally identifiable, in particular 
all the parameters have two solutions except for k06, ko4, k65, k54, and k43, 
which have one. 

EXAMPLE 5. Let us consider now a general linear dynamic model example, 
(4.30) and (4.31), not a compartmental one. It is described by: 

ia 0 0 llx.  ,l 1 I01 JC2 (t) 0 a22 a23 0 x2(t)  _{_ 0 Ix2  (0) 0 
x3(t)  = 0 a32 a33 a34 x 3(t) 0 u / X3(0) = 0 
JC4 (t) a41 a42 0 a44 X4(t) 0 [x4 (0) 0 

(4.33) 
where: 

a12 -- a33, a41 = a42 a34a23 = 2 (4.34) 

The output equations are given by: 

[c 0 0 0]iix  y2(t) = 0 c2 0 0 : 
y3(t) 0 0 c3 0 

where: 

~t~ 1 (t) 
(t) 
(t) 

(4.35) 

Cl = C2 --" 6"3 (4.36) 

GLOBI2 shows that all the unknown parameters have one solution, thus the 
model is a priori globally identifiable. 
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4 .7 .  C O N C L U S I O N S  

A pr ior i  identifiability is a necessary prerequisite for parameter estimation of 
physiological system models. In this chapter, the a priori  global identifiability 
problem was first introduced, and the formal definition of identifiability was 
given. Checking global identifiability, or the uniqueness of the solution, is 
difficult in both nonlinear and linear models since it requires solving a system 
of nonlinear algebraic equations that increase in both number of terms and 
nonlinearity degree with increasing model order. After a brief overview of 
the available methods to test a priori  global identifiability of both linear and 
nonlinear models, the two most recently proposed algorithms for attacking 
a pr ior i  identifiability of nonlinear and linear models were presented. The 
first algorithm tests automatically identifiability of general structure nonlinear 
models with a general multi-input/multi-output experimental configuration. 
It resorts to differential algebra concepts; in particular, it is based on the 
characteristic set of the ideal generated by the polynomials defining the model 
and on computer algebra methods, in particular the Buchberger algorithm. 
Examples of the use of this method have been reported. The second algorithm 
was developed for linear compartmental models. Its software implementation, 
GLOBI2, is the first computer algebra tool able to check global identifiability 
of general structure and high dimension linear compartmental models, up to 
some 12 compartment structures, with the most general multi-input/multi- 
output experimental configuration. This method is based on the transfer 
function topological method and uses the Buchberger algorithm. Examples 
of this method also have been presented. 
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A p p e n d i x  A.  T H E  C H A R A C T E R I S T I C  S E T  

For a formal description of the fundamentals of differential algebra, see Ritt 
(1950). Definitions are briefly recalled here. Let Z be a vector of variables 
and K the set of their coefficients. The totality of polynomials in the variables 
z and their derivatives with coefficients on K is a differential polynomial ring 
and will be denoted K[Z], where K can be a ring itself. 

Consider a set I of differential polynomials belonging to K[Z]. The totality 
of polynomials that can be formed by elements in I by addition, multiplication 
by elements in K[Z] and differentiation, is a differential ideal having the 
elements of I as generators. To handle differentials ideals, the variables must 
be ranked; hence, the derivatives are ranked according to a system that satisfies 
the following relations: 

Zi ~ dzi; Zi < Zj =:~ dzi < dz j  (A.1) 

where zi and zj are variables and d is an arbitrary derivation. 
The "leader" of a polynomial A is the highest ranking derivative of that 

polynomial. In particular, it can be a derivative of order zero. The leader of 
a polynomial A will be denoted by uA. If uA < uB and deg(uA) < deg(uB), 
then the polynomial A is said to be of lower rank than B. The "class" of a 
polynomial A is the greather p such that Zp is present in a term of A. If Ai 
is of class p > 0, Aj will be "reduced" with respect to Ai if Aj is of lower 
rank than Ai in Zp. If a polynomial is not reduced, it can be reduced by a 
"pseudodivision," meaning the polynomial of higher rank is substituted by the 
rest of the division between the two polynomials with respect to the leader of 
the first one. 
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The set of differential polynomials A1, A2 . . . . .  Ar will be called a "chain" 
if either r = 1 and A1 is different from zero, or r > 1 and for i > j ,  A j is of 
higher class than Ai and reduced with respect to Ai. The chain A1, A2 . . . . .  Ar 
will be said to be of higher rank than the chain B1, B2, . . . ,  Bs if either there 
is a j exceeding neither r nor s, such that Ai and Bi are of the same rank for 
i < j and Aj  is higher than Bj, or if s > r, Ai and Bi are of the same rank for 
i < r .  

Let E be a finite or an infinite set of differential polynomials. Chains can 
be formed with different polynomials in E, and among all these chains, one 
or more have lower rank. Each chain will be called "characteristic set." The 
peculiarity of the characteristic set is that it summarises all the information 
contained in the differential ideal into a finite number of polynomials. 

With these definitions in hand, we return to the system-experiment model 
of (4.1) and (4.2). Let us assume that f and g are polynomial functions. Ljung 
and Glad (1994) have shown that the state-space description of the dynamic 
model ensures the uniqueness of the characteristic set of the differential ideal 
generated by the polynomials of (4.13) and (4.14). Thus, this characteristic set, 
which is a finite set of equations, contains the infinite exhaustive summary of 
the nonlinear model itself and, thus, can provide the identifiability properties 
of the model. The problem is now to construct, in an algorithmic way, the 
characteristic set by starting from the equations of the model. To do this, 
a sequence of chains is constructed of decreasing rank until the chain of 
minimum rank is reached. 

o o  

Appendix B. THE GROBNER BASIS 

The exhaustive summary can be efficiently solved by resorting to the 
Gr6bner basis, which is, in some sense, the analogue of gaussian elimination 
for systems of polynomial equations. To do so, we need a numerical value of 
the observational parameters. This can be derived from a parameter solution 
that satisfies the compartmental equation (4.6) and the equality constraints 
(4.3), these last if present. The consequences of this assumption have been 
examined in Audoly et al. (1998). Here, we briefly summarise the main 
properties of the Gr6bner basis to explain why they are the instrument of 
choice for solving our problem. For more details, see Buchberger (1988) and 
Becker et al. (1993). 

Consider the system of polynomial equations with real coefficients Pl -- 
O, P2 = 0 . . . . .  Pm = 0. Loosely speaking, the polynomial ideal generated 
by pl = 0, p 2 - - 0  . . . .  , Pm = 0 is the set of all the polynomials that can 
be formed by multiplying them with arbitrary polynomials having real 
coefficients. The ideal is denoted by I (Pl, p2 . . . . .  Pm), and Pl, P 2 , . . . ,  Pm 
are called the generators of I. Set I can have more than one set of generators. 
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The Grtbner basis of an ideal is a set of generators of I with particular 
properties that make it an invaluable tool for solving systems of nonlinear 
algebraic equations. The monomials of each equation must be ordered, thus a 
total order relation must be introduced among the variables of the system. In 
particular, since our goal is to know the number of solutions of the system, it 
is convenient to adopt the lexicographic order relation for the monomials. In 
fact, this allows the results to be obtained in the following format, which is 
easy to interpret: 

1). The system has a finite, n > 1, number of solutions if the Grtbner 
basis has a triangular form. The basis provides tl~ number of solutions for 
each variable since: a) if the system has a unique solution, the basis contains 
only linear equations; b) if the system has a finite (> 1) number of solutions, 
the last polynomial of the basis provides the number of solutions for the lowest 
(according to order relation) variable, which is equal to the highest nonlinear 
degree of variable itself; by iteratively reordering the variables, one can have 
the number of solutions for each of them. 

2). If the system has an infinite number of solutions, the Grtbner basis 
exl~bits a nontriangular form. Our problem is now to move from the 
polynomial equations Pl = 0, p2 = 0 . . . . .  P m =  0 to the Grtbner basis. 
Buchberger (1988) proposed an algorithm for the computation of the basis, 
which is available in computer algebra software packages, such as REDUCE 
and MAPLE. However, the implementation of the Buchberger algorithm 
can fail because of the computational complexity that arises when high 
nonlinear degrees and/or high number of unknowns and terms are present. This 
particularly happens with nonrational coefficients. Also, the choice of the order 
relation of variables can significantly affect the computational complexity of 
the Grtbner basis. 
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Chapter 5 

Parameter Estimation 

Roman Hovorka and Paolo Vicini 

5.1. I N T R O D U C T I O N  

This chapter describes principles and methods applicable to the parameter 
estimation problem. In particular, it describes the least squares (LS) estimator, 
the maximum likelihood (ML) estimator, the Bayesian estimator, and methods 
related to population models. 

Parameter estimation is a traditional modelling task. Generally, a model 
contains input variable(s), parameter(s), and output variable(s). It also 
describes, in a mathematical form for our purposes, how the output is related 
to the input and the parameters. A model can be viewed as a template of the 
modelled system. The parameter specification makes the template applicable 
to a particular experiment. 

Experimental data have certain similar characteristics. First, measurement 
noise (error) is present. Second, the measurements are made at discrete time 
instances. These are the limitations of virtually all data sources and must be 
considered by all parameter estimation methods. 

The task of the parameter estimation is to recover "true" parameter values 
from these imperfect measurements. Often, the true parameter values are not 
measurable by other (more direct) means or represent a theoretical concept 
without a physical counterpart. In any case, the presence of the measurement 
error always means that the exact parameter values cannot be determined with 
absolute confidence. These can be determined only within a certain confidence, 
and the parameter estimation problem includes the subproblem of assessing 
the accuracy and precision of parameter estimates. The accuracy and precision 
are crucial for the interpretation of results. 

Throughout the chapter, we will assume that a model has already been 
developed and validated. That is, we will assume that somebody has already 
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decided that the model is correct for a given experimental scenario. Although 
the model development and the model validation greatly benefit from informa- 
tion obtained during parameter estimation, these aspects need special consid- 
eration and are outside the scope of this chapter. 

A model is usually described by a set of differential equations in the appli- 
cation areas of physiological, metabolic, pharmacokinetic/pharmacodynamic, 
and organ modelling. The principles described in this chapter are applicable 
to other mathematical forms, such as difference equations or time series. The 
common aspect is the dependence on time. Invariably, models in these fields 
describe time evolution of a substrate/hormone/drug. 

The next section describes the LS estimator, which is the traditional param- 
eter estimation method. It has the widest application domain due to its simple 
principles and relatively easy computation. The ML estimator is also described 
because the two approaches share similar properties. 

The principles of the Bayesian estimator are not new, but with the recent 
advances in the area of Markov chain Monte Carlo methods and Bayesian 
networks, the applications of stochastic parameter estimation are likely to 
benefit a wider range of problems. 

Population modelling is a relatively novel application domain that demands 
special parameter estimation procedures. These problems are described in the 
final section of the chapter. 

5.2. L E A S T  S Q U A R E S  A N D  M A X I M U M  L I K E L I H O O D  

E S T I M A T O R S  

The LS method is the standard method for estimating parameters of 
compartment models. Its appeal is due to historical reasons and, to a significant 
extent, to its relation to the ML parameter estimator. The two methods are 
identical under reasonable assumptions and, as the latter is based on statistical 
considerations, the LS method has indirectly gained support for its simple 
but rather intuitive concept, the minimisation of square differences between 
measurements and model predictions. 

We will examine the principles of the two methods, comment on aspects 
relevant to the modeller, such as the effect of the measurement error, and 
describe in greater detail the Marquardt algorithm, the most widely used 
approach to estimate parameters of nonlinear models. 

We will also address the issue of parameter accuracy. Here, we are forced 
to incorporate the knowledge about the measurement error because the uncer- 
tainty in the measurements determines the uncertainty in the parameter esti- 
mates. 
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5 .2 .1 .  LEAST SQUARES ESTIMATOR 

Suppose that each data point Yi measured at time ti has its own standard 
deviation ai. The standard deviation quantifies the measurement error, and we 
assume that ai is known to the modeller. The model prediction is denoted 
y(ti, p l . . .  PM), where Pi represent model parameters. We omit the model 
input from y(ti, P l . . .  PM) to simplify the notation. 

The "chi-square" quantity measuring the quality of model fit is obtained as: 

N 
X2 =~ Z [ Yi-- y(ti 

i=1 

' o'iPl'''PM)] 2 (5.1) 

The quantities Yi - y(ti, P l . . .  PM) and (Y i -  y(ti, P l . . .  pM))/cri are known 
as residuals and normalised residuals, respectively. The values 1/tr 2 are occa- 
sionally referred to as weights. Figure 5.1 shows an example of a model fit. 
The residuals can be both negative and positive, indicating model underesti- 
mation or overestimation. In some computer packages and literature, the signs 
can be reversed; X 2 is often denoted as "sum of squares of residuals" (SSR), 
or more precisely as "sum of squares of weighted residuals" (SSWR). 

Model predictions would normally differ from the measurements reflecting 
the presence of the measurement error. Intuitively, the predictions should differ 
by an amount similar to the "average" value of the measurement error. A too 
good fit characterised by a too low value of X 2 normally suggests "overfitting" 

Time 

Figure 5.1. Differences between measured data (open circles) and model fit (solid line) are 
known as residuals (arrows). The residuals can be both positive and negative and are measured 
along a line parallel with the y-axis, not as the shortest distance between the measurements and 
the model fit. 
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caused by a large number of parameters. A too poor fit (a high value of X 2) 
normally indicates the inability to fit data (model inadequacy). 

So what is the expected value of X2? If the errors are normally distributed 
and the model is linear in parameters, it can be shown that at its minimum, 
X 2 is distributed as the chi-square probability distribution with v = N -  M 
degrees of freedom. The expected value of X 2 is v and therefore a "good" 
model fit should have X 2 close to v. Statistical testing on X 2 can confirm 
model adequacy and the extent of the measurement error. 

Nonlinear models do not have X 2 distributed exactly as the chi-square distri- 
bution. However, as the models are often linearized around the X 2 minimum 
during the parameter optimisation process and this approximation is adequate, 
it is often reasonable to assume the same properties for the nonlinear and 
linear models. 

The parameter estimates obtained by the method of LS are those that 
minimise X 2. Linear models have a unique solution guaranteed, but nonlinear 
models can have a number of parameter combinations, which result in local 
and global minima. The process for solving the linear and nonlinear models 
is also very different. 

The necessary condition for a parameter combination to achieve (local) 
minima is that the partial derivatives of X 2 with respect to the parameters Pi 
are equal to zero: 

OX2 = - 2  f Yi -- y(ti,. _Pl"" PM) 0 
Opk i=1 0"2 

( 8y(ti, p,  . . . pM ) ) 
x ~-p~ k = 1 . . . M  (5.2) 

Equation (5.2) defines a set of M, in general, nonlinear equations with M 
unknown parameters. The principles and procedures used to solve the set of 
equations are described in the following section. Note that this is a classic 
problem of function minimisation in an M-dimensional space. 

5.2.1.1 Models  Linear in Parameters 

Most biomedical models display nonlinearity in parameters. Therefore, 
linear models, i.e., those with model output dependent linearly on parameters, 
will be only briefly discussed. The benefit of linear models is a guaranteed 
unique solution of (5.2) under a reasonable condition, meaning that the number 
of measurements N is greater than the number of parameters M. We also can 
obtain exact confidence intervals of parameter estimates under the assumption 
of normal distribution of measurement errors. 
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The general form of a model linear in parameters is: 

M 

y(t) : ~ PkZk(t), 
k=l 

where Zk(t) are generally nonlinear functions of time and model input (omitted 
from the description to simplify the notation). 

The condition of zero partial derivatives given by (5.2) is written for linear 
models as" 

M 

N Y i -  ~ p j z j ( t i )  

i=1 0"/2 
Zk(ti) k = 1 . . .  M (5.3) 

Equation (5.3) can be rearranged into the form: 

M 

~ akj pj -- bk, 
j = l  

(5.4) 

where: 

N Zk(ti)zj(ti) 
a k j -- i~l. : -~i 

(5.5) 

N 
bk - -  ~ YiZk(ti) 

i=1 o'? 

The set of equation given by (5.3) is known as normal equations of the LS 
problem and in the matrix form are written as Ap = b, where A is a M x M 
matrix and b is a vector of length M. The solution is obtained by standard 
methods to solve a set of linear equations such as LU decomposition, Gauss- 
Jordan elimination, or Cholesky decomposition (Press et al., 1992). 

The inverse matrix A -1 with elements a~ 1 determines the accuracy of 
parameter estimates pj. From (5.4), it follows that: 

pj : ~ a~k 1 bk : ~ dj-k 1 YiZk (ti) 
k=l k=l i=1 a/2 ( 5 . 6 /  

from which we can derive that parameters pj are obtained as a linear combi- 
nation of measurements: 

N 

pj = ~ ciYi (5.7) 
i=1 
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where: 
M a~lzk(ti) 

c ,  = 

k=l 
(5.8) 

Parameters pj, therefore, follow the multivariate normal distribution as they 
result from a linear combination of normally distributed independent random 
variables Yi (Anderson, 1958) (assuming that measurement errors are normally 
distributed). Note that ci is independent of Yi and that yi is the only source of 
uncertainty. The variance a2(pj)  of a parameter pj is obtained by definition 
due to the linear form of (5.6): 

N 

= Z 
i=1 

(5.9) 

Substituting for r from (5.8), we obtain: 

] 0"2(pj) --" Z Z ajklafl 1 Zk(ti)Zl(ti) 
k=l /=1 i=1 ~ 

(5.10) 

The final term in the brackets is the element ark and (5.10) collapses to: 

0 .2 (pj) -- aj-) 1 (5.11 ) 

The diagonal elements of the matrix A -1 represent the variances of parameter 
estimates. The matrix A -1 is actually the covariance matrix associated with 
the multivariate normal distribution of parameters pj and can be employed to 
calculate correlation coefficients between components of the parameter vector. 
Finally, if we do not make the assumption about normality of measurement 
errors, (5.11) will still hold. This is because (5.9) follows from (5.6) for any 
type of distribution of the measurement error. 

5.2.1.2 Models  Nonlinear in Parameters 

Models nonlinear in parameters (nonlinear models further in the text) do 
not enjoy the same simple properties as linear models. We are not guaranteed a 
single solution of (5.2), the solution cannot be obtained from a closed formula, 
and the accuracy of parameter estimates cannot be calculated exactly. The 
problem is much harder. 

As before, the LS method seeks a solution of a set of M, in this case 
nonlinear, equations with M unknowns (see [5.2]). X a function represents a 
plane in an M + 1 dimensional space, and the aim is to find a nadir on the 
plane surface. 
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Principles of most algorithms are very similar. One starts by selecting one 
point on the surface (i.e., a combination of parameter values) and calculates 
an associated value of X 2. The next step is to search, usually in the "neigh- 
bourhood" of the given parameter estimate, for another parameter combination 
with a smaller value of X 2. This iterative process of improving the X 2 func- 
tion is complete and a solution is found once X 2 cannot be improved or the 
improvement is too small. It should be stressed that 1) the solution is always 
an approximation due to inherent numerical errors in finding the minimum; 
and 2) finding a global minimum is not guaranteed. The former point means 
that there will be models that will give gross differences in parameter esti- 
mates even if the initial estimate changes slightly. This is usually when the 
nadir is poorly defined, meaning the surface is "shallow" around the nadir and 
the iteration can finish in a wide area with a similar value of X 2. This also 
means that the parameters are estimated with reduced accuracy. As for the 
latter point, the X 2 plane, which is determined by the model and the measure- 
ments, will be different for each data set, and can have, in general, an irregular 
shape with a number of nadirs (local minima). Figure 5.2 demonstrates this 
situation, employing an easily understandable plot with a single parameter. 

The initial point can be identified by a grid search. A suitable grid is 
created over the range of feasible parameter values and X 2 is calculated for 
all parameter combinations on the grid. This will usually require hundreds to 
thousands of X 2 evaluations. The initial point is the one with the lowest value 
of X 2. 

r  

Figure 5.2. Plot of the objective function (X 2) against a parameter value for a one-parameter 
optimisation problem. The objective function has one global minimum and one local minimum. 
Depending on the initial parameter estimate (open circles), gradient (descent) algorithms are able 
to find either the local or the global minimum (solid circles). 
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5 .2 .2 .  MAXIMUM LIKELIHOOD ESTIMATOR 

The LS method minimises a sum of squares of residuals. The functional 
form to be minimised (squares) might seem somewhat arbitrary. Other func- 
tional forms, such as absolute values of residuals, could also be considered. In 
most cases, different functional forms will define different performance planes 
with different positions of local and global minima and thus will give different 
parameter estimates. 

The benefit of the LS method is that it can be shown identical to the ML 
method. The latter method formulates the parameter estimation problem within 
a probabilistic framework. This greatly clarifies the interpretation of parameter 
estimates provided by both methods. 

Suppose that we chose a parameter vector and employed it to make model 
predictions. As before, the residuals are defined as differences between predic- 
tions and measurements. We may now be interested in the probability of the 
occurrence of these residuals, which means we can evaluate the conditional 
probability of residuals given the parameter vector. This probability is called 
likelihood. It is natural to aim for a parameter vector maximising likelihood, 
and the ML estimator does exactly this. 

The likelihood L is calculated: [  yiy,t  
L - -  ~.= ~riV~-~ exp - ~  or/ (5.12) 

Equation 5.12 assumes that the measurement errors (residuals) are uncorre- 
lated and normally distributed with zero means and variances cr/2. Maximising 
L is identical to minimising a negative logarithm of L, namely, after removing 
some constant factors and multiplying by two: 

N N 

minimise i~l (Y i - - y ( t i 'P l ' ' 'PM))  a �9 - -  + 2 In(a/) (5.13) 
�9 = f f i  i = 1  

Equation 5.13 is identical to the definition of X a (5.1) except for the addition 
of the sum on the right-hand side. Assuming cri to be independent from the 
predictions y(ti, Pl . . .  PM) (this is the usual case), the sum on the fight is 
constant and can be removed. However, the sum is shown in (5.13), as it is 
important when considering model-based errors (see Section 5.2.3). 

5 .2 .3 .  ERROR MODELS 

The knowledge about the distribution of the measurement error is a prereq- 
uisite for parameter estimation. Often the modeller can obtain the qualitative 



Parameter Estimation 115 

and quantitative properties of the measurement error from the knowledge of 
the measurement process. The error associated with a particular device/assay 
can be provided by the manufacturer or can be assessed independently by 
replicate measurements over a range of expected levels. It is also traditional 
(although somewhat arbitrary) to increase this estimate of the measurement 
error to reflect uncertainties associated with sampling times and other factors, 
such as pipetting errors. 

Occasionally, the error is unknown or is known subject to a proportionality 
constant. In the former case, it became traditional to use "unit weighting," 
i.e., tr~ --- 1. In the latter case, it is possible to use values proportional to tr~ to 
minimise (5.1). Note that the specification of tri subject to a proportionality 
constant does not affect minimisation of (5.1) and (5.13). However, it affects 
the calculation of parameter estimate accuracy. The proportionality constant 
can be calculated after the parameters are estimated from the expected value 
of X 2 (the expected value equals the degrees of freedom v of X2). 

Two types of a normally distributed measurement error are generally recog- 
nised, the multiplicative error and the additive error (a combination of the two 
is also feasible). The multiplicative error assumes that the coefficient of varia- 
tion (CV) of the measurement error is constant: tri = CVyi. The additive error 
assumes that tr~ is identical for all measurements: tr~ = tr. 

From this, it is apparent that tri is calculated from the measurements y~ in 
case of the multiplicative error model. The question arises whether it would 
be more appropriate to use model predictions y(ti, P l . . .  PM) tO calculate cri. 
The model predictions, at "true" parameter values, are noise-free assuming 
that the model is correct, whereas the measurement errors are attached to the 
actual measurements. Some implementations are able to deal with this situ- 
ation, meaning the error is calculated from the model rather than from the 
data. Note that this implies iterative reevaluation of tr~ as model predictions 
change during the iterative minimisation. This approach is called the extended 
LS method (Peck et al., 1984). It also should be noted that (5.13) should be 
used instead of (5.1) if one aims for the ML estimation, as tri depends on 
model predictions. 

There is one important class of measurement errors that does not follow the 
normal distribution. The error associated with the measurement of radioactivity 
(counts/disintegrations per minute) is known to follow the Poisson distribu- 
tion. The variance of the Poisson distribution is equal to its expected value. 
In modelling terms, it means that tri should be made identical (or propor- 
tional) to ~ /~  (or ~/y(ti, P l . . .  PM)). It should be noted that the assumption of 
the Poisson distribution of the measurement error results in the LS estimator 
and the ML estimator providing, in general, different parameter estimates. 
For the sake of convenience, the LS estimator is often preferable to the ML 
estimator. 
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5.2.4. PARAMETER CONSTRAINTS 

Physiological models usually adopt some simple parameter constraints; for 
example, parameters might be required to be non-negative to attain physi- 
ological interpretation. In addition, it is often appropriate to limit values of 
parameters during iterations to avoid divergence to nonfeasible (e.g., too low 
or too high) parameter values. 

The simplest constraint is in the form of a finite range (a minimum and 
a maximum value). This constraint is usually easily implemented in iterative 
parameter estimation procedures. The simplest implementation is to reset a 
parameter value to its boundary whenever there is a tendency to surpass the 
limit. 

More complicated linear and nonlinear constraints (Gill et al., 1987) 
between parameters can be defined, although this is rarely required for 
physiological compartment models. 

5 .2 .5 .  MULTI-OUTPUT EXPERIMENTS 

Occasionally, one is confronted with a model and an experimental situation 
involving more than one output. For example, the experiment might involve 
measuring a number of substances and the model is expected to fit all these 
measurements given a single parameter vector. In general, the parameters affect 
all outputs and are estimated from a simultaneous analysis of all measurements. 

In such situations, the knowledge of the measurement error is essential. 
The X 2 definition remains virtually unchanged: 

Q Nj 
X2-- Z~- '~  ( Y j i -  yj(tji, Pl ... PM)) 

j=l i=1 O'Ji 
(5.14) 

where j indicates the index of the model output, and the standard LS estimator 
or the ML estimator can be employed. 

Without the exact knowledge of the measurement errors aji, the minimi- 
sation of (5.14) is meaningless. For example, changing the measurement unit 
of one output variable will affect undesirably the parameter estimates. The 
knowledge of the measurement error subject to a proportionality constant is 
sufficient, and a separate proportionality constant can be estimated from each 
measurement set during parameter estimation (Bell et al., 1996). 

5.2.6. CALCULATION PROCEDURES OF NONLINEAR MODELS 

Parameter estimation of nonlinear models is more difficult than that of 
linear models. The search for optimal parameters can be formulated as a 
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minimisation problem, making a variety of function minimisation techniques 
available. 

Many algorithms have been developed and differ in a number of features. 
First, the algorithm can search for a local minimum, as is the usual case, or for 
a global minimum. The search for a global minimum is much more difficult. 
The most widely used algorithms search for the local minimum. 

The algorithms may or may not use the first derivatives of the objective 
function (X 2, 5.1) with respect to the parameters. The first derivatives provide 
information about the gradient at the position of parameters and about the 
direction with the greatest (and most likely) reduction in the objective function 
during the iterative parameter estimation process. The first derivatives can be 
calculated numerically using the finite difference method (model prediction 
is evaluated after an element in the parameter vector is incremented by a 
small amount) or from the sensitivity equations. The sensitivity equations are 
obtained by formal treatment of the differential equations specifying the model. 
However, the sensitivity equations are difficult to derive, even for modesty 
complicated models. 

The most widely used algorithm in the biomedical sciences is the Marquardt 
method, which searches for a local minimum and requires the first derivatives 
to be evaluated. 

5.2.6.1 Marquardt Algorithm 
The Marquardt algorithm (Marquardt, 1963), also known as the Levenberg- 

Marquardt algorithm, exploits earlier insights by Levenberg (Levenberg, 1944). 
The algorithm minimises X 2 (5.1) as a function of the parameter vector 
P = (Pl . . .  PM) and combines in an efficient way two other iterative methods, 
the quadratic approximation method and the steepest descent method. 

The quadratic approximation method (the so-called inverse-Hessian method) 
approximates X 2 in the neighbourhood 3p of a given parameter position p by 
a quadratic form taking the first three elements of the Taylor series expansion: 

X 2(p + 3p) ~ c - 2. b .  6p + 6p. A.  6p (5.15) 

where c represents X 2 evaluated at the given parameter position p, b is an 
M-vector, and A is an M x M matrix. 

The b vector is related to the gradient 3X2/3p, the latter evaluated at the 
given parameter position: 

bk "-" 
1 OX 2 

2 0 p k  

N 
-- Z Yi - y(ti, Pl . . .  PM) 3y(ti, Pl . . .  PM) 

i--1 0 .2 Opk 

and the matrix A with elements au is related to the Hessian matrix (the matrix 
of second partial derivatives 32Xa/3p 2) again evaluated at the given parameter 
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position: 

1 02X 2 
akl "- -~ OpkOPl 

N 1 [Oy(ti, P l . . .  PM) Oy(ti, P l . . .  PM) 
- - .=  tr 2 Opk Opl 

O2y(ti, Pl . . .  PM)] 
--[Yi - y(ti, Pl . . .  PM)] -Opk'OPl 

The second derivatives in the definition of akl are usually ignored by the 
minimisation algorithms. The main reason is that their inclusion might desta- 
bilise the minimisation process. This simplifies the calculation of akl: 

N 10y(t i ,  P l . . .  PM) Oy(ti, P l . . .  PM) 
akl --" E "~i -OPk OP; 

i=1 
(5.16) 

making it similar to the definition of elements akl for the linear models (5.5). 
If the approximation by (5.15) is accurate, it is possible to go straight to 

the minimum pmin from a given parameter position p J: 

pmin __ pj + A - l b  (5.17) 

where b and A are evaluated at pJ. This is, in principle, identical to the 
approach used in linear models (5.7). Even if the minimum is not reached, an 
iterative step can be made by replacing pmin by pj+l in (5.17). 

The steepest descent method also employs the first derivatives when calcu- 
lating a new parameter position. The vector b, which is proportional to negative 
values of the gradient, .indicates the direction in which X 2 is being reduced by 
the greatest extent. A new parameter position pj+l is found as: 

p j+ l  __ p j  + cb  

where c is a suitable constant. 
The changes in the parameter position gp = pj+l _ pj defined by the two 

methods are written as: 

8p = A - t b  (5.18) 

8p = cb (5.19) 

The steepest descent method is usually efficient at parameter positions far from 
the minimum. The inverse-Hessian method is efficient close to the minimum. 
The Marquardt method smoothly mixes the two methods. When moving to a 
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new position, both (5.18) and (5.19) are utilised and the contribution of the 
two methods changes as the parameter position gets closer to the minimum. 

The first important feature of the Marquardt algorithm is the derivation of 
the step of the steepest descent method. Marquardt suggested that the elements 
of the Hessian matrix can indicate the size of the step or, in other words, the 
constant c in (5.19). In fact, he suggested that a different value of the constant 
c be used for elements bl, virtually modifying the gradient. 

The diagonal elements of the Hessian matrix represent the curvature of 
X 2 with respect to the parameter. The idea is that a dimension with a high 
curvature (large akk) should be interpreted as unfavourable for a large move, 
whereas a move in a dimension with a small curvature is favourable. We still 
would like to retain scaling ability, and this is achieved by the introduction of 
a scaling factor Z in the equation: 

1 
~Pk = Xakkbk (5.20) 

Notice that large values of X reduce the step size. 
The next important feature of the Marquardt algorithm is the mixing of 

the two methods: the inverse-Hessian method and that defined by (5.20). The 
inverse-Hessian method given by (5.18) can be rewritten as: 

M 

y ~  akl 8pk = bk (5.21) 
l = l  

and (5.20) can be rewritten as: 

XakkSPk = bk (5.22) 

Combining (5.21) and (5.22) is achieved by creating a new matrix A' with 
elements dkl such that: 

! 

akk -- akk(1 + ~,) (5.23) 
! 

akl -- akl if k ~ l 

We then specify: 
M 

~-~a~lSPk = bk 
/=1 

(5.24) 

It is interesting to consider the effect of ~. A very large value of )~ will give 
matrix A' a dominant diagonal, converting the Marquardt method virtually to 
the (steepest) descent method. However, the size of the step will be very small 
(5.20). A very small value of X will make A' ~ A and the inverse-Hessian 
method will be used. 
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The Marquardt algorithm employs the following steps: 
Initialisation. Select an initial estimate pO. Evaluate X 2 (pO). Select an initial 

value for X (usually)~ ,~ 0.001). Set j = 0. 
Solution. Solve (5.24) for 3p. Evaluate X2(p j + 8p). 
Incrementing )~. If X2(p j q-8p) >__ X2(pj), increase X by a factor of 10. Go 

back to Solution. 
Decrementing X. If X2(p j + 8 p ) <  X2(pj), decrease X by a factor of 10. 

Assign pj+l _ pj + 8p and j - j + 1. Go to Solution. 
The procedure terminates when X 2 cannot be improved or the improve- 

ment is too small. The exact stopping criteria vary from implementation to 
implementation. In general, based on statistical criteria, it is not necessary to 
continue the iterations if the improvement in X 2 is much smaller than unity. 
The stopping criteria sometimes also monitor the size of the parameter move 
18Pl. The small value of the move is taken as an indicator of the algorithm 
converging to the minimum parameter value. 

5.2.6.2 Other Algorithms 

The Marquardt algorithm belongs to the family of gradient methods. These 
are approaches that use information about the local gradient (the first deriva- 
tives) to reduce the value of the objective function during the iterative minimi- 
sation process. Some methods store and employ information about previous 
iterative steps to minimise the number of iterations, such as the conjugate 
gradient (CG) method (Press et al., 1992). 

The gradient methods assume that the first derivative of the objective 
function with respect to the parameters can be calculated at any point. The 
derivatives can be obtained from the sensitivity equations or, when these 
are too difficult to be derived, can be calculated numerically. The numer- 
ical derivation can be affected by approximation errors, especially since the 
calculations often involve numerical solutions of differential equations. The 
effect of the approximation error is pronounced when the X 2 plane is flat. The 
partial derivatives are small, which means that the increment (decrement) for 
the objective function for a fixed change in an element of the parameter vector 
is also small, and the errors due to numerical approximations of differential 
equations contribute significantly to the calculation of the first derivative. 

For this reason, methods that avoid the use of the first derivatives have 
received considerable attention. The downhill simplex method (Nelder and 
Mead, 1965) has found application in the Adapt II package (D'Argenio and 
Schumitzky, 1997). In general, these methods are more robust, but the payoff 
has reduced efficiency, resulting in an increased number of iterations. 

The simulated annealing method is one that seeks a global minimum, 
compared with the local minimum sought by methods mentioned earlier 
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(Kirkpatrick et  al., 1983). This method draws a parallel with the position of 
molecules during annealing (cooling of metals). During cooling, the molecules 
position themselves to minimise overall energy, although periodically the 
overall energy can be increased by random disturbances. The energy increase 
is more likely to occur at high temperatures. 

The simulated annealing is an iterative algorithm and includes the following 
steps. The objective function (overall energy) is calculated for a parameter 
vector. Randomly, a new parameter vector is generated and the energy asso- 
ciated with it is evaluated. If the new energy is smaller, the new parameter 
vector is accepted. Otherwise, the new vector is accepted with probability 
depending on the "temperature." The temperature controls the acceptance of 
unfavourable new parameter vectors; at high temperature levels, there is a high 
probability of new position acceptance. The temperature is reduced during the 
iterations, which means the algorithm is more likely to have the objective 
function increased in early stages than in late stages. The ability to "climb" 
the X 2 plane enables local minima to be avoided or, more precisely, a local 
minimum close to the global minimum to be sought. The algorithm certainly 
has a poor performance in terms of efficiency, but it can be used to explore the 
X 2 plane and to find a suitable initial estimate for a more efficient algorithm. 

5.2.7.  ACCURACY OF PARAMETERS 

The determination of accuracy is an essential component of the parameter 
estimation process. The accuracy represents the quantitative assessment of the 
confidence the modeller has in the estimated parameters. 

The uncertainty in parameter estimates has its origin in the presence of 
the measurement error. Suppose that the model is correct and that there 
exists a "true" parameter vector. Performing an experiment on the modelled 
system will enable measurements to be taken. The important factor is that 
the measurements include the measurement error. The parameter estimation 
employs these noisy measurements. However, the extent of the individual 
measurement errors is purely random. Repeating the experiment will most 
likely produce a different set of measurements and, in consequence, a different 
parameter estimate. Ideally, we want information on the relationship between 
the "true" parameters and the estimated parameters. However, this informa- 
tion is almost never accessible. The difference between parameter estimates 
and the "true" parameter vector cannot be computed because we do not know 
the "true" parameter vector. Thus, we must be satisfied with the accuracy of 
the estimates. The accuracy quantifies the variability in parameter estimates 
due to the presence of the measurement error. It relates the variability of the 
estimates to the expected variability of the measurements. 
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Figure 5.3. The shape of the objective function (X 2) around the nadir (open circles) deter- 
mines the accuracy of the parameter estimate. A well-defined nadir (solid line) signifies high 
accuracy, a shallow shape around the nadir (dotted line) signifies low accuracy. The curvature at 
the nadir is quantified by the second partial derivatives of the objective function with respect to 
the parameters. 

Informally, the shape of the X 2 plane determines the accuracy of the param- 
eter estimates. A well-defined nadir means a better accuracy (a lower variance) 
of the parameter estimate (see Figure 5.3). This can be intuitively seen from 
the fact that one is more certain that a minimum was reached for a well-defined 
rather than a badly defined ("shallow") nadir. It is also possible that a "valley" 
is present on the X 2 surface. Suppose that as values of one parameter change, 
values of another parameter can be adjusted to give a very similar value of X e. 
This results in the estimates of the two parameters to be correlated (positively 
or negatively depending on the adjustments). Highly correlated parameters, 
such as Irl > 0.95, usually signify high uncertainty in parameter estimates 
and should be carefully assessed by the modeller. 

5.2.7.1 Analytical Approach 
From the previous discussion, it can be intuitively seen that the accuracy of 

parameter estimates is related to the curvature around a nadir. The curvature 
is given by the second derivatives of X 2 with respect to parameters, these 
evaluated at the parameter estimates. 

The analytical estimation of the accuracy relies on a Rao-Cramer inequality 
(Rao, 1952) valid for the LS and the ML estimators: 

S(p) _> A -1 (5.25) 

where S(p) is the covariance matrix associated with the minimum parameter 
estimate p, and A is the Fisher information matrix derived as an expected 
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value of a function of the likelihood L: 

with elements akl: 
0 lnL 0 l n L )  

akl -- E Opk Op; 

It follows from the definition of likelihood (5.12) that: 

N 
0 lnL ._ Z Yi - y(ti,. Pl... PM) Oy(ti, P l . . .  PM) 
Opk i=1 0"2 ~'A 

The elements akl are thus calculated: 

a,l y,t   ,Oy,t 

iv 1 Oy(ti, Pl . . .  PM ) Oy(ti, Pl . . .  PM ) 
--.= 0.r Opk Opl 

N 1 0 y ( t i ,  P l . . .  PM) igy(ti, P l . . .  PM) 
--.= 0 .2 Opk Opl 

(5.26) 

The Fisher information matrix A is therefore identical to the matrix employed 
by the Marquardt method, (5.16) and is calculated by the Marquardt method 
as the matrix A' by setting ~. = 0, (5.23) after the optimum parameter vector 
was found. 

Equation 5.26 relies on the assumptions that the errors (residuals) are uncor- 
related and normally distributed. For different types of the measurement error, 
the Fisher information matrix has a different form in principle, but this is 
ignored by most implementations. 

The inequality given by (5.25) states that we are able to obtain a lower 
limit of the "true" covariances of the parameter estimates. Thus, the diagonal 
elements of A -1 representing the variances associated with p are only lower  
bounds of the true variances! The equality is achieved for linear models under 
the assumption of a normal distribution of the measurement error (5.11). 
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Sometimes confidence intervals for parameters are quoted. The calculations 
are based on the assumption of normal distribution of parameters. This is, 
however, incorrect, as parameters are not guaranteed to be normally distributed. 
The normal distribution is ensured for linear models (see Section 5.2.1.1). 

It is often convenient to express the variance as a fractional standard devi- 
ation (or the coefficient of variation): 

FSD(pk) Pk = x 100% (5.27) 
v/o  l 

Values FSD(pk)>> 100% indicate a poor accuracy of the k-component of 
the parameter vector; values < 10% indicate an excellent accuracy. The poor 
accuracy implies that the model is not a poster ior i  identifiable (Carson et al., 
1983) for the given experimental data. 

The analytical approach relies on statistical treatment of X 2. It exploits 
statistical properties, which apply to a large number of data points. However, 
little is known about the practical scenario with the limited size of the data set. 
The implementation details, such as the calculation of first derivatives, also 
greatly affect the quantification of accuracy and might result in considerable 
differences between implementations for some models (Heatherington et al., 
1998). 

5.2.7.2 Monte Carlo Approaches 

The enormous increase in computing power has enabled a wide use of 
methods based on Monte Carlo approaches. Whereas the analytical approach 
exploits statistical (asymptotic) properties with relatively undemanding calcu- 
lations, the Monte Carlo approaches are usually simple in principle but compu- 
tationally expensive. 

There are two Monte Carlo approaches discussed here: one based on 
synthetic data sets and the other based on data resampling (i.e., the bootstrap 
method). 

The method based on synthetic data sets is straightforward. The parameter 
estimator, or the LS method, estimates parameters pmin from the experimental 
data. Then, the model in connection with the parameters pmin is used to 
generate a large number (hundreds to thousands) of synthetic, noisy data sets. 
The parameter estimator calculates parameters pi from each synthetic data set. 
Finally, simple descriptive statistics, such as the variance of the differences 
p~ _ p~n, quantify parameter accuracy. 

The generation of synthetic data sets is usually done in two steps. In the 
first, the parameter vector pmin is used by the model to calculate noise-free 
predictions. The number and timing of data points should be identical to those 
of the original data set. 
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The second step includes the "addition" of synthetic measurement errors 
to model predictions. Quantifies representing measurement errors are generated 
and added to model predictions to create "noisy" synthetic measurements. There 
are algorithms able to generate errors from various probabilistic distributions 
(Press et al., 1992). The critical decision steps are, however, which distribution 
and what parameters of the distribution should be used! We are again asked to 
provide statistically relevant information about the measurement error. This is 
a common feature of virtually all methods assessing parameter accuracy. 

The bootstrap method (Efron, 1982) is the only method that does not 
explicitly require this information. It assumes that this information is included 
implicitly in the data. 

The bootstrap method is identical to the method based on synthetic data 
sets, except for the data generation step. The data sets are not synthetically 
generated but obtained from the original data set by removing some data points 
in a random fashion (e.g., 20-30% of all data points) and randomly replacing 
each with a replicate from the remaining data points. The replacement is 
carried out to maintain the total number of samples identical to that of the 
original set. 

It is apparent that the bootstrap method will analyse data sets with repli- 
cate data points. However, not all samples from the original data set will be 
present in the generated data sets. Clusters of replicates will occur according 
to their relative occurrence in the original data set. This, at least informally, 
indicates how the information about the measurement error is extracted from 
the original set. 

Both Monte Carlo methods have gained credibility after years of neglect 
by a comprehensive statistical analysis of their properties. 

5.2.8. INTERVAL IDENTIFIABILITY FOR NONIDENTIFIABLE 
MODELS 

In the case where the model is a priori unidentifiable (Carson et al., 1983), 
a possible strategy is to bound the feasible parameter space, if the particular 
model structure allows. Parameter bounding has been explored for linear and 
time-invariant multicompartmental models. The notions of interval identifi- 
ability (providing finite ranges for rate constants of unidentifiable compart- 
mental models) and quasi-identifiability (the occurrence of very "narrow" such 
ranges) were first introduced by DiStefano (DiStefano III, 1983), who derived 
closed-form expressions for finite bounds on the rate constants of mammillary 
models of any order (with both input and output in the central compartment). 
Subsequent work allowed computation of the identifiable parameter combi- 
nations of mammillary models (Landaw et al., 1984). Catenary models with 
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input and output in the same compartment were studied (Chen et al., 1985; 
DiStefano III et al., 1988), and such results were extended to the noisy data 
case for both mammillary and catenary models (Lindell et al., 1988). Bounds 
for rate constants in certain mammillary models with input and output in 
the first compartment can be derived in terms of the parameters of the sum 
of the corresponding sum of exponentials (Godfrey, 1983). General methods 
are presented elsewhere for bounding the parameters of linear compartmental 
models (Vajda et al., 1989). A computationally attractive approach, based on 
estimating the parameters of identifiable submodels of an unidentifiable model, 
has been described with application to a mathematical model of tracer glucose 
kinetics (Cobelli and Toffolo, 1987). Yet another alternative approach, based 
on Lyapunov functions, has been proposed (Eisenfeld, 1996). 

5.2.9. IMPLEMENTATION PACKAGES AND HISTORICAL REMARKS 

Apart from commercial software packages, such as the NAG library, the 
SAAM II program (Barrett et al., 1998), and the PC/WinNonlin program, 
there are public domain packages, such as ADAPT II (D'Argenio and Schu- 
mitzky, 1997), which implement parameter estimation algorithms. The graph- 
ical user interface is part of the newer programs, WinNonlin or SAAM II, 
for example, and greatly simplifies model specification. Even spreadsheet 
programs, such as Microsoft Excel, include parameter optimisation tools that 
can be used for quick parameter estimation. A good source of information 
on modelling packages is the Internet; visit "www.boomer.org/pkinf' or the 
PharmPK discussion list, for example. Considerable interest has been gener- 
ated by the pharmacokinetic/pharmacodynamic research community and the 
pharmaceutical industry, and most (commercial) applications target these user 
groups. 

On the historical note, the LS method was invented by A. M. Legendre 
at the end of the 18 th century and used by K. F. Gauss in the beginning of 
the 19 th century to trace the newly discovered asteroid Ceres, which was lost 
after initial sighting. The ML method was devised by the eminent statistician 
R. A. Fisher more than a century later in the early 1920s. 

5.3. B A Y E S I A N  E S T I M A T O R  

The ML estimator is justified on the grounds of a certain probabilistic 
concept. It considers the likelihood function, which is the conditional proba- 
bility of data given parameters, and aims to maximise it. 

The Bayesian estimator expands this concept. It considers not only the 
likelihood function, but also the a prior i  probability of the parameters. The 
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a priori probability represents our prior beliefs expressed in the form of a 
probability distribution and normally reflects our knowledge of, for instance, 
the population mean and variation of the parameters. It is also possible to 
specify a noninformative prior, for example, a uniform ("flat") distribution for 
a mean value, expressing the lack of prior knowledge. 

The Bayesian estimator updates the prior probability of parameters using 
measured data. The updated probability, the a posteriori probability zr(p), is 
obtained according to the Bayes' theorem: 

P(YlP)P(P) 
Jr(p) = P(PlY)= (5.28) 

P(Y) 

where y = Yl . . .  YN is the vector of measurements, p(p) is the (generally 
multivariate) prior probability of parameters, p(y) is the prior probability 
of measurements, and P(YlP) is the conditional probability of measurements 
given data (similar to the likelihood given by [5.12]). The  denominator in 
(5.28) is called the normalisation factor because it is independent of the 
parameters. It therefore follows that: 

zr(p) cx P(YlP)P(P) (5.29) 

There is one important difference between the Bayesian estimator on the one 
hand and the LS estimator on the other hand. The LS estimator returns a param- 
eter vector, or a point estimate; the Bayesian estimator returns a probability 
distribution (Figure 5.4). Thus, the parameter estimation problem as defined 
by the Bayesian estimator is much more demanding. Instead of returning a 
parameter vector, the Bayesian estimator returns a value (probability) for all 
parameter vectors! 
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Figure 5.4. The nonlinear LS estimator seeks to find a parameter vector, or a point estimate, 
from an initial parameter vector. The Bayesian estimator calculates the posterior distribution by 
updating the prior distribution. The Bayesian estimator has a much more demanding task as 
posterior probability has to be returned for each feasible value of the parameter vector. 
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The benefits of the Bayesian estimator are that the parameter estimate can 
be summarised in a statistically coherent way. For instance, the confidence 
interval, the median, and the mode can be calculated for elements pi from the 
marginal distributions of the posterior probability zr(p). The parameter estima- 
tion problem with multiple minima does not make any special demands on the 
Bayesian estimator. In such a case, the posterior probability rr(p) will demon- 
strate multimodality. The lack of a posteriori identifiability of the LS method 
as demonstrated by high FSD (5.27) will result in the Bayesian estimator 
providing a wide confidence interval. 

Parameters in the deterministic models represent deterministic quantities, 
but those in stochastic models represent stochastic quantities. This is also true 
for other model quantifies, such as masses and fluxes. Even the uncertain- 
ties associated with the model input can be represented using the stochastic 
paradigm! These are additional benefits of stochastic models. 

So why are stochastic models not used more widely in practice? The 
formula given (5.29) shows the simplicity of the formulation of the parameter 
estimation problem (i.e., the calculation of zr[p]). This is, however, deceptive 
because the calculation of rr(p) is in most cases a very difficult task. 

Rarely, it is possible to find an analytical (closed-form) solution to (5.29). 
The specification of the model in the form of differential equations is hidden in 
the definition of the likelihood P(YlP). The analytical specification of the like- 
lihood function is often not available and is obtained by a numerical solution 
of the differential equations. 

These problems have hindered the practical use of the Bayesian estimator. 
However, recent advances in two techniques, the Markov chain Monte Carlo 
(MCMC) methods and Bayesian networks, facilitate a wider use of the 
Bayesian estimator. Thorough theoretical understanding of MCMC methods 
has facilitated wider use of the Bayesian models in research fields (Smith, 
1991). 

The MCMC methods are able to handle a variety of models. Bayesian 
networks are suitable for discrete-state and discrete-time models. Before going 
into further detail, it is beneficial to discuss differences between continuous- 
state and discrete-state stochastic models and their impact on the calculation 
procedures. 

5 .3.1.  CONTINUOUS-STATE MODELS 

Probabilistic continuous-state models are a natural extension of (determin- 
istic) differential equations models. Model quantities, such as state variables, 
parameters, and input variables, can be represented as continuous stochastic 
variables with associated prior and posterior distributions. 
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For the majority of models, a closed form of the posterior distributions (and 
often prior distributions for model output) does not exist and the parameter 
estimation of continuous-state models is invariably obtained by numerical 
approximation: numerical integration of probability integrals, Monte Carlo 
integration, or sampling methods. 

5.3.2.  DISCRETE-STATE MODELS 

The discrete-state models differ in many aspects. The finite number of states 
and the use of efficient algorithms allow exact calculations of prior and poste- 
rior distributions to be carried out. Thus, errors arise not from the calculation 
process but from another route. The discrete specification of random variables 
(parameters, masses, inputs) results in a reduced resolution of these quantities. 

Despite the reduced resolution, discrete-state models found a place in the 
parameter estimation of, for instance, carbohydrate metabolism (Tudor et al., 
1998). The additional benefit of discrete-state models is that they can operate 
with low-quality measurement data (e.g., limited number of samples), although 
this is a general feature of all Bayesian parameter estimation procedures. 

5.3.2.1 Bayesian Networks 

Bayesian networks (also called causal probabilistic networks) were orig- 
inally developed to facilitate intelligent reasoning in probabilistic systems 
(Pearl, 1988). 

From the perspective of a modeller, Bayesian networks can be seen as a 
parallel technology to the specification of a system by differential equations. 
The difference is that Bayesian networks can usually handle only discrete 
time instances and therefore the differential equation specification must be 
transformed to the difference equation specification. 

A Bayesian network consists of a set of nodes and a set of directed links 
forming a directed acyclic graph. Each node represents a random variable 
and has a finite number of mutually exclusive states. The number of states 
is usually on the order of units to tens of units. The directed links represent 
the causal relationships and are quantified by (discrete) conditional probability 
tables. 

A simple Bayesian network is shown in Figure 5.5. The example includes 
two parameters pl and P2, which represent the control of production and the 
control of removal of a substrate (e.g., plasma glucose). One time slice of a 
difference equation model is shown, but it is easy to imagine an extension of 
the model for additional time slices with parameters pl and p2 entering each 
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Figure 5.5. An example Bayesian network showing causal relationships between the amount 
of substrate at time tl, the amount of substrate at time t2, and the amount produced and removed 
during the time interval t2-tl. Parameters Pl and P2 influence production and removal rates. 

time slice. These types of Bayesian networks are known as dynamic Bayesian 
networks. 

The conditional probability tables specify the functional relationships 
between variables and implement the difference equations (Hejlesen et al., 
1997). Continuous variables also can be handled by Bayesian networks, but 
the relationships between such variables are restricted to a small family of 
conditional, usually multivariate normal distributions (Lauritzen, 1992). 

5 .3 .3 .  CALCULATION PROCEDURES 

We divide calculation techniques into two categories. One category esti- 
mates posterior distributions in continuous-state models. The other category 
calculates posteriors in discrete-state models (Bayesian networks). 

The two categories are fundamentally different. Sampling-based methods 
are used for continuous-state models. Exact calculations are made to compute 
(discrete) posteriors associated with Bayesian networks. 
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Markov chain Monte Carlo (MCMC) denotes a category of sampling 
methods. These methods generate a Markov chain of (in our context) samples 
from the posterior distribution of parameters. Two prominent algorithms, the 
Metropolis-Hastings algorithm and Gibbs sampling, will be described, as they 
have achieved the widest application spectrum. 

We will briefly comment on the method used to calculate posteriors in 
Bayesian networks. This method exploits insights into topographical structures 
of networks to limit the computational burden. 

5.3.3.1 Metropolis-Hastings Algorithm 
The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) 

is an interesting algorithm to generate Markov chains representing samples 
from a probabilistic distribution. Despite its simplicity, however, it took about 
20 years to establish its statistical properties, its convergence property in 
particular. 

In the context of parameter estimation, the algorithm generates a chain 
pl, p2 . . .  p j . . .  pQ, which represents a sample from the posterior distribution 
~r(p). The (j + 1)-th element p(j+l) is obtained from the j-th element pJ and 
is independent from other elements of the chain (the Markov property). 

The generation of an element of the chain employs two steps. First, a 
candidate p' is generated from pJ using a random number generator. Second, 
a decision is made whether the candidate is "suitable." Upon suitability, the 
candidate is accepted and p(j+l) __ p, otherwise the j-th element is retained 
p(j+l) = pj. It means that the chain may contain repeated elements. 

The algorithm starts with an arbitrary parameter vector p0. It generates 
a candidate using the so-called transition kernel q(p, p'), which is (for the 
moment) an arbitrary probability function with two arguments: p and p'. The 
generation is done by fixing one argument of the kernel to pJ and drawing a 
candidate using a probability density q(pJ, .). 

The candidate is accepted according to a probabilistic criterion. A random 
number is generated from a uniform distribution on the (0, 1) interval, and 
acceptance is declared if the random number is smaller than the acceptance 
probability ct(pJ, p'), 

:r(p')q(p', pJ) } 
ct(PJ, P') = m i n  1, ~ l~~- f f ] ,  ~-7~ (5.30) 

Note that evaluation of (5.30) requires evaluations of both the kernel q(-, .) and 
the posterior probability 0r(.). Therefore, these should be relatively inexpensive 
to compute. Evaluation of the posterior probability Jr(.) usually includes, in the 
context of compartment models, numerical solutions of differential equation 
for a particular parameter vector, and this is usually the most expensive step. 
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The other steps are the evaluation of the likelihood from residuals and the 
calculation of prior probability (see 5.29). It is worthwhile to stress that the 
posterior probability can be specified subject to a proportionality constant due 
to the ratio zr(p')/zr(pJ) in (5.30). 

The Markov chain is guaranteed to converge eventually to the posterior 
distribution from any starting position. The initial portion of the chain repre- 
senting the nonconvergent section is therefore disregarded. Furthermore, it 
is also possible to analyse only every k-th element of the chain to reduce 
correlation between successive elements. The size of the disregarded chain, 
the number of skipped elements, and indeed the size of the chain depends on 
how quickly the chain converges to the posterior distribution zr(p). In prin- 
ciple, it is not possible to make the decision on successful convergence on a 
purely theoretical basis, but indicative diagnostic criteria have been developed 
to demonstrate the opposite, such as the lack of convergence (Gilks et al., 
1996; Gamerman, 1997). It is also possible to run a number of chains with 
different starting parameter vectors and obtain information about convergence 
from multiple independent runs. 

Different choices of the kernel q(., .) clearly influence the acceptance rate 
and result in different algorithms. There is no "best" form of the kernel, and 
its selection is likely to be influenced by the parameter estimation problem. 
A convenient option is the random walk process, q(p, p ' ) =  q ( p -  p') with 
a multivariate normal distribution. If the kernel is symmetrical q(p, p ' ) =  
q(p', p), it follows that ct(p, p') = mini 1, zr(p')/zr(p)]. 

The success rate, or the selection of the kemel in relation to the poste- 
rior distribution, greatly influences the success of the method, which is fast 
convergence to the posterior distribution. The key aspect is not to have the 
success rate appear too low or too high. Naively, one would be tempted to 
make small steps or penalise great deviations in the parameter vector during 
the generation step to make sure that the success rate is high (a very small 
step will result in the acceptance probability being close to unity). This leads, 
however, to the chain remaining in a small region and moving very slowly to 
other regions. On the other hand, changes too large in parameters are likely to 
result in a very low acceptance rate with many repetitions in the chain. Some 
authors suggest an acceptance rate between 20% and 50% (Bennett et al., 
1996). 

The previous discussion assumed that during the generation step, all compo- 
nents of the parameter vector change simultaneously. This is not required, and 
the generation step can be simplified to generate from univariate rather than 
from multivariate distributions. This is carried out by generating and accepting 
or rejecting changes on a component-by-component basis. For example, the 
first component p~ is generated using a special kernel ql (',-), and its accep- 
tance is evaluated using (5.30). A new proposal for the second component p~ 
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is generated using another kernel q2 (-, ') from the original parameter vector or 
a parameter vector with a modified first component depending on its accep- 
tance. This systematically continues until all components have been exhausted 
and the newly formed vector represents a new element on the chain. 

The components also can be blocked. This situation is suitable when param- 
eters demonstrate high correlation, because generating on a component-by- 
component basis has a high rejection rate for highly correlated components. 

An illustrative and more detailed description of the Metropolis-Hastings 
algorithm can be found elsewhere (Chib and Greenberg, 1995). 

5.3.3.2 Gibbs Sampling 

The Gibbs sampler (Hastings, 1970) is a special case from the Metropolis- 
Hastings family of algorithms and borrowed its name from its application to 
image reconstruction (Geman and Geman, 1984). 

It has a wider application spectrum than other derivatives of the Metropolis- 
Hastings algorithm and has been used in the modelling domain, for example, 
in pharmacokinetics (Wakefield et al., 1994). 

The Gibbs sampler corresponds to the component-by-component updating 
structure of the Metropolis-Hastings algorithm. We denote Jr(PilP-i) the condi- 
tional density of the i-th parameter component given all other components 
P-i -- (pj; j 7/: i). During the generation step, the algorithm successively draws 
random samples from the full conditional distributions zr(PilP-i), namely: 

p{+l from 
pjs from 
pj+l 

3 from 

pJM +l from 

Jr(PllPJl) 
Jr(P21 p{ +1 J , P3"'" P~/) 
Jr(P3 I P{ +l , p j + l . . .  PJM) 

7r(pM I P{ +1 , P~+ 1. . .  pjM+ll ) 

All samples are accepted, meaning the acceptance probability as defined by 
(5.30) does not play a role in the Gibbs algorithm. The component kernels are 
qi(P, p~)=  Jr(P~IP-i), and for these types of kernels, the acceptance proba- 
bility is guaranteed to be unity. 

The essential feature of the Gibbs sampler is that one has to sample from 
the full conditional distribution Jr(pi [P-i). This means that the full conditional 
should be known analytically or that some sort of numerical approach such 
as the acceptance-rejection sampling is adopted (Chib and Greenberg, 1995). 
In general, the full conditional densities change during each generation step 
and therefore must be reevaluated. For any modestly complicated compart- 
ment model, the full conditionals cannot be derived analytically; a numerical 
solution or a more general approach from the family of Metropolis-Hastings 
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algorithms should be adopted. Note that the Markov chain generated by the 
Gibbs sampler does not include repeated elements, but the price is paid by 
having to obtain the (potentially expensive) full conditionals zr(pilP-i). 

5.3.3.3 Updating Procedures for Bayesian Networks 
The task of the Bayesian estimator in the context of parameter estimation 

is to update the probabilities in the network on the arrival of new evidence 
and, in particular, to calculate the posteriors (marginals) of the parameters 
(see Figure 5.6). The topological structure of the network has a pronounced 
effect on the complexity and approach to the calculations. Heavily connected 
networks are usually more computationally expensive to update. 

Tree or multitree structures are the simplest forms of Bayesian networks. 
The (multi-)tree is defined in the normal way, which means there exists only 
one path between any nodes. Unlike trees, multitrees have more than one 
root node. 

It turns out that updating of tree and multitree structures can be implemented 
by passing messages between nodes (Pearl, 1988). This is quite convenient 
and lent itself to an efficient object-oriented approach. A node has two func- 
tions: to collect and to distribute information. Updating is implementing by 
two synchronised passes through all nodes. Starting from root node(s), the 
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Figure 5.6. Bayesian networks normally deal with discrete random variables and therefore 
discrete prior and posterior distributions. Two sample distributions of plasma glucose are shown 
before (prior distribution, dotted line) and after (posterior distribution, solid line) arrival of 
measurement data. The resolution step of plasma glucose is 1 mmol/L. 
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information is distributed along all branches. Once the information has been 
distributed throughout the network, all leaf nodes begin sending messages 
back. The information is collected by "parent" nodes, which continue sending 
the information to their parent nodes, and the process terminates once root 
nodes are reached. 

A much more complicated situation arises in structures with loops. A loop 
is present in a network when a nonunique path exists between two nodes. The 
network shown in Figure 5.5 has two loops. 

The updating of networks with loops is a computationally hard task (Cooper, 
1990). The problem is that using the same approach as for trees, a single piece 
of information could be "counted" more than once. The information can orig- 
inate in one node but can get to another node via two or more different routes. 
If this is not recognised, the information can be given higher credibility than 
it actually carries. 

The calculations in networks with loops can exploit a number of techniques 
including conditioning and clustering (Pearl, 1988) to avoid or limit the expo- 
nential growth in computational and space complexity for highly connected 
networks. However, the difficulties associated with an efficient updating of 
Bayesian networks still limit their use. 

We will outline principles of one method (Lauritzen and Spiegelhalter, 
1988). The basic idea is to alter the topological structure by aggregating and 
replicating nodes to create a super-tree structure. 

A node in this super-tree represents a set of nodes (a clique) from the 
original network and holds a joint distribution of the clique. The main trick 
of the algorithm is the creation of the super-tree. This is done through several 
steps, which include identification of the loops, adding extra links between 
nodes (triangulation), identification of cliques, and creation of the super-tree. 

The triangulation step can be carried out in a number of ways that greatly 
affect the complexity of the calculations. Clique sizes (the number of nodes in 
cliques) are determined by the triangulation step; as the joint probabilities of 
the cliques are maintained, large cliques will result in large joint probability 
tables. For example, a clique consisting of seven nodes, each node having 
10 states, will require a joint probability table with 107 entries. The growth 
of these tables is exponential in both number of nodes and number of states! 

Updating of super-trees is similar to updating trees as previously described. 
Again, information is passed between cliques in two coordinated passes: the 
distribute step and the collect step. 

5.3.4. IMPLEMENTATION PACKAGES AND HISTORICAL REMARKS 

Unlike the traditional LS estimator, the Bayesian parameter estimator is 
implemented in a limited number of packages. The USC*PACK programs 
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(which can be found at www.usc.edu/hsc/lab_apk/software.html) include 
modules for Bayesian forecasting and parameter estimation. The SAAM II 
package (Barrett et al., 1998) implements a simple approach to include 
prior information about parameters within the context of the LS parameter 
estimation method. 

Certain modelling packages designed for the pharmacokinetic/pharmaco- 
dynamic population studies implement fully some form of the MCMC 
approach such as the POPKAN program (Bennett and Wakefield, 1996). 
The BUGS program (Gilks et al., 1994) is an example of an efficient and 
comprehensive public domain package. 

The HUGIN commercial package (Andersen et al., 1989) can be used to 
design and update Bayesian networks with loops and includes a graphical user 
interface. Several extensions of the program have been developed, such as the 
program dealing with dynamic Bayesian networks, dHugin (Kjaerulff, 1992). 

Rev. T. Bayes' work on the inverse probability dates to 1763. Thanks to 
A. M. Legendre, the Bayes' theorem was rescued from oblivion about half a 
century later. The Gibbs sampler was proposed by W. K. Hastings in 1970, 
further elaborating work by N. Metropolis et al. in 1953. The graphical repre- 
sentation of knowledge by Bayesian networks is even more recent and benefits 
from contributions by J. Pearl, S. Lauritzen, and D. Spiegelhalter, to name but 
a few. 

5.4. P O P U L A T I O N  K I N E T I C  A N A L Y S I S  

So far, we have been concerned with parameter estimation techniques in a 
single individual study. In modelling analysis at the individual level, the focus 
of interest is the mathematical form describing the relationship between a 
given experimental protocol and the resulting measurements. Such relationship 
usually differs markedly between individual subjects. This is the basic rationale 
for focusing on a population of individuals, where each individual can have 
a unique set of model parameter values (here "individual" encompasses any 
experimental subject). Such parameter differences are due to interindividual 
(intersubject) variability. An example is the clearance of a given drug or 
compound, or its rate of elimination, which can show considerable differences 
among different subjects, possibly due to variables such as diet, age, weight, 
or a combination of these factors. Given a specific population of individuals, 
an experiment repeated on each individual with similar modalities and an 
appropriate system model, population kinetic analysis can be defined as the 
study of the intersubject variability of the parameters of a kinetic model. In the 
statistics literature, population kinetic analysis is sometimes called "analysis 
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of repeated measurement data" or "analysis of longitudinal data" (Davidian 
and Giltinan, 1995). 

To perform population analysis, each individual's cause-effect relationship 
must be defined in terms of a model, which in turn depends on certain known 
quantifies, such as the dosage regimen, sampling schedule design, and inde- 
pendently measured variates (e.g., body weight, height, age), which are often 
called covariates, and on certain unknown quantities, such as model parame- 
ters. These unknown parameters are assumed to be random variables with a 
common but unknown distribution (the population distribution). The problem 
tackled by population kinetic analysis is the estimation of this population 
distribution based on a collection of individual data (the population data). 

Depending on the nature of prior knowledge available on the population 
distribution, two approaches can be used to facilitate its estimation. In the para- 
metric approach, the population distribution is assumed to be known except 
for a certain number of unknown parameters. For example, the distribution 
can be assumed to be multivariate normal with unknown mean and covari- 
ance; the population analysis problem is the estimation of both the mean and 
the covariance. On the other hand, in the nonparametric approach, no func- 
tional form is assumed for the underlying population distribution, and the 
entire distribution is then estimated from the population data. The nonpara- 
metric method allows for non-normal and multimodal distributions such as 
would occur, for example, in a population of lean and obese, or young and 
ageing individuals. An approach that is "in-between" has also been proposed, 
the so-called seminonparametric approach (Davidian and Gallant, 1993). This 
approach does not entail specific assumptions about the form of the underlying 
population distribution, but the class of allowable estimates is required to have 
certain smoothness properties. For this reason, this method is also termed the 
smoothed nonparametric approach. 

All the methods that we will see for population modelling will fall in one 
of these classes. Lastly, there are two basic classes of methods for obtaining 
estimates and their variability, maximum likelihood and Bayesian methods. 
Maximum likelihood methods are based on the maximisation of the likeli- 
hood function (or approximations thereof) for the population problem, while 
Bayesian methods use Bayesian inference approaches to estimate the full 
conditional population distribution. 

5.4.1.  DEFINITION OF THE POPULATION ANALYSIS PROBLEM 

To improve readability, we will index vectors on integers. For example, 
Yi denotes the vector of the observations for individual i. To denote a scalar 
element of a vector, we will use the following notation: Yi(j) denotes the 
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scalar element j of the measurement vector of subject i. In addition, for ease 
of notation, we will denote with ~ an estimate of the parameter vector p. 

Consider now a sequence of experiments, performed on a set of M different 
individuals. Each experiment can have its own experimental protocol and can 
comprise more than one measurement site (e.g., serum and urine concentra- 
tions). Mathematically, each experiment is then represented by a collection of 
finite dimensional vectors: 

ti ,  Yi, i = 1 . . . . .  M ( 5 . 3 1 )  

The vectors ti (size N1 . . . . .  NM) are the vectors of sampling times and are 
assumed known. The random vectors Yi (size N1 . . . . .  NM) are the observable 
quantities. The components of Yi contain all the measurements for individual 
i (e.g., plasma concentrations, urine amounts, etc.). Without loss of generality, 
we will assume from now on that there is only one site of measurement. 

Let us now consider the general nonlinear regression model of the obser- 
vations. The model has the form: 

Yi -" fi(Pi) + Ri(Pi)l/2ei, i = 1 . . . . .  M (5.32) 

where fi(Pi) is a known, continuous vector-valued function and Ri(Pi) is 
a known, continuous matrix-valued function that is assumed to be positive 
definite (we have dropped the time dependence for ease of notation). The 
function fi(Pi) is a model for the mean of  the data since: 

E[yilPi] -- fi(Pi), i - 1 . . . . .  M (5.33) 

The functions fi(Pi) and Ri(Pi) depend (through indexing on i) on all the 
conditions of experiment i (e.g., dose amounts, dose and sampling times, 
forcing functions, and other individual-specific covariates). The vectors ei are 
independent multivariate normal random (noise) vectors, each with zero mean 
and covariance given by Ri(Pi). The ei and Pi are mutually independent. The 
vectors Pi are the parameters of the model for individual i, often called the 
regression parameters for  subject i. An example is clearance of a drug. 

We have made the assumption of independent, identically distributed 
measurement errors since this is the most commonly assumption made and is 
verified in a number of experimental situations. There is no loss of generality 
since for our purposes the matrix R/(pi) might not be diagonal. Also, let 
us note that the covariance of the error Ri(p/) (and therefore the weighting 
function for parameter estimation) is a function of the model parameters, and 
conversely of the model function fi(Pi). Often, the sample values Yi are used 
to compute Ri(Pi), instead of fi(Pi). However, this practice is avoided in the 
literature (although the approximation is often good for observations affected 
by low noise) since it is well known that this could influence the results by 
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introducing vma on to the sampling process into the estimate of ,the 
measurement error varianee. The function Ri(pi) is therefore a mode l Jot:the 
variance of the data measurement error: 

At this point~ the additional hypo,_hesis is made that pi are independent and 
idemioall~ distributed, with eonmum, bat anknawn, prolmbility dis :txihution. 
Thus, the popdation atmlysis problem can be defined as determini~ the 
unknown distribution of the tmrameters p ia ~ ~9opulafian. 

5A.2.  TWO~.STAGE METHODS 

,:class of two-sta~. ~ methods fan be ~ when ~ size ,of the :data 
~ t ~  y/ is such that the.. i n ~ y k t ~  p a ~ ~  ~ ~ k a ~ a  ihas a 
~ ~ o t ~ .  The paramet~ V~t~!r mint be e s ~ . a t  m ~ ~ ~ k t u a t  ~y~ for 
~ ,  ~,weig~e6 LS 0!': ML~ ~ ,  and ~ brings to a r of 
e s ~  ~or,each "m~v~ual, namely ~t ...... ~u. Eaeh es "tim~ is a ~ ,  , ~ -  

~y ~ esamatO c o v e r t  e, which we w ~  call ~ .  Note that S~ gi~es 
a~ estimam ,~ mtr~ubject vaxiabi~ty; that is~ the patametex accuracy as, so- 
eiated: m ~ f,~t ~tlaat the pararnetexs for a given subject cannot be exa~y  
determined. 

5.4.2.1 Standard Two-Stag e Analysis 

The most common way of determining the distribution of ~e parameters p 
within a population of sabjects is to perform what is usually called a standard 
two-stage (STS) analysis. From the individual estimates described previously, 
it is possible to c~culate the empirical sample mean as: 

M 

a = ~  pi 
�9 . _ . . ,  

(5.35) 

and the empirical sample covariance as: 

1 ~ ( ~ -  a) (O-  a) r (5.36) D = M _  1 
i = t  

The m a r x  D gives an estimate of "mterindividual variability, that is, how 
and how much the parameters vary among ~e different subjects within the 
population. 
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We will see further that the STS estimator can be envisioned as a nonpara- 
metric estimator with mass equal to 1/M at each point estimate. This estimator 
is easy to calculate and can be very useful. However, its shortcomings are 
rather substantial. First, no information is gained in the analysis from the 
knowledge that the subjects belong to the same population. Second, the intrain- 
dividual variability given by the subject-specific covariance matrix Si is not 
taken into account, and this can bring to an overestimation of D, as shown 
in Davidian and Giltinan (1995). Third, no measure of the precision of the 
estimates of a and D is available. Since the STS does not make any assump- 
tion on the distribution of the parameters among the population, it is usually 
treated as belonging to the class of nonparametric methods. 

5.4.2.2 Iterative Two-Stage Method 

The iterative two-stage (ITS) method is a parametric iterative method, 
belonging to the family of expectation-maximisation (EM) algorithms (Schu- 
mitzky, 1995), based in particular on the m a x ~ u m  a poster ior i  probability 
(MAP) empirical Bayes estimator. It was proposed as a possible computation- 
ally attractive alternative to the nonlinear mixed-effects modelling approach 
(Steimer et al., 1984). The steps of the ITS method are as follows (k, k > 0, 
is the iteration index): 

�9 Initialisation Step: assign a (~ = a sTs, D (~ = D srs 
�9 Expectation Step: obtain an estimate of the parameter vector in subject i 

~(k) i = arg min{ [ y i -  fi(pi )]Ri (pi)[Yi - f i  (Pi)]T + [pi _ a(k)]D(k)[p i _ a(k)]T} 
(5.37) 

where, with respect to standard LS, also the distance of the current 
parameter estimate from the population mean (the prior) is penalised. 
The estimates (individual estimates) obtained by minimising this objec- 
tive function are called empirical  Bayes  estimates. It is worth noting 
that the values ~k) calculated in the EM version of the global two-stage 
(GTS) method can also be interpreted as empirical Bayes estimates. It is 
again possible to calculate the precision of the estimate, or the matrix Si. 

�9 Maximisation Step: calculate the new population mean: 

f l ( k + l ) _  1 M -- ~ ~-" (.L.,pk) 
(5.38) 

i=1 

and the new covariance: 

o(k+l) 1 M --  ~-"~/ ( [_(k)lji _ a (k+l) ]  a (k+l) ]T} ~. . r  "~ - [ p / -  (5.39) 
M 

i= l  
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Check for convergence of the population mean a(k+l) and variance D(k+’) 
estimates, and of the individual parameter estimates pjk’, and repeat the 
EM steps as needed. 

The iterative nature of the algorithm is apparent; it is also apparent that the 
objective function in (5.37) takes into account the information on the popu- 
lation mean explicitly and that the computation of the population covariance 
matrix in (5.39) includes the information on the precision of each estimate. 
This is at variance with the STS, which can be thought of as the initiali- 
sation step of the ITS. The ITS method has been extensively used in the 
pharmacokinetic literature to estimate population parameter mean and vari- 
ances from reduced data sets (Drusano et ul., 1988). Another widely used 
two-stage method is the so-called GTS method (Steimer et al., 1984). The 
GTS method can be “indirectly” recast as an iterative EM algorithm similar to 
the ITS (Davidian and Giltinan, 1995; Schumitzky, 1991; Schumitzky, 1995) 
or, alternatively, can be “directly” applied through ML methods. 

5.4.3. MIXED-EFFECTS MODELS 

The family of two-stage methods that we have considered are applicable 
only if each individual has enough data to enable both estimation of p i  and 
calculation of Si .  However, this is often not the case, especially in clinical situ- 
ations. It is not unusual to have only a handful of data points per subject. At the 
extreme, in the case of destructive sampling, such as in toxicokinetic studies 
in rats, only one data point per subject is available (corresponding to the time 
when the animal was sacrificed). The estimate p i  is therefore not available. 

The simplest estimator that comes to mind entails pooling together all 
the available data as if they were coming from one animal (the super-rut) 
and performing an ordinary LS estimation to recover one set of parameter 
estimates p: 

M 

= arg m i n x  [ ~ i  -fi(pi>] ~i(pi> [yi - f i (p i ) IT (5.40) 

This estimate (often called the naive pooled estimate) is unsatisfactory since 
it does not rest on any statistical grounds, does not take into account intra- 
individual noise, and does not permit quantification of parameter accuracy. 

To escape from this apparent standstill, one might consider that the regres- 
sion model parameters p are not completely individual-specific but are charac- 
terised by some attributes that do not change across the population of subjects 
(i.e., are common to all individuals), and some others that do (i.e., are typical of 
a particular individual or, better, are different from individual to individual). In 

i=l 
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other words, the variability intrinsic to the parameter vector can be dissected 
as a combination of parameters that change across the population (random 
population parameters, or random effects) and parameters that do not (fixed 
population parameters, or fixed effects). Simple but intuitive examples of fixed 
effects are the mean and the covariance of the population distribution of the 
random effects. Another example might be the parameter(s) describing the 
absorption phase of a drug or compound given orally, when this is thought 
not to change appreciably from subject to subject. The model for the obser- 
vations thus stems from a combination of fixed and random parameters, or 
effects, hence, the jargon mixed-effects modelling. Mixed-effects modelling 
requires to postulate at least some characteristics of the population probability 
distribution for the random effects (e.g., Gaussian or log-normal). The methods 
we will now describe belong to the class of parametric methods, where the 
structure of the population distribution is assumed known and the population 
analysis problem becomes determining its parameters. 

If we consider that the individual parameter vector can also be time-varying, 
and therefore we write the value of the vector Pi at time j as Pij, in all 
generality we can write the following vector-valued function: 

Pij -" dij(a, bi) (5.41) 

that is, Pi can be a linear or nonlinear function of the fixed effects (a) and 
the random effects (bi). Other functional dependencies, such as time-varying 
covariates, are hidden in the function d. While the fixed effects do not change 
across the population, random effects do. Their distribution must be specified 
as part of the modelling assumption. They are often assumed Gaussian, with 
zero mean and covariance defined by a positive definite matrix, a function of 
the fixed effects: 

Cov[bi] -- I)(a) (5.42) 

The vector a, on the other hand, groups the parameters common to the whole 
population of subjects. Note that a is not a random vector. Possible parame- 
terisations include the linear form: 

Pi --" a(1 + bi) (5.43) 

This entails that, under the normality assumption for bi, the vectors Pi are also 
normal and the vectors bi have the interpretation of coefficient of variation, 
or percent variability. Another often-used parameterisation is the exponen- 
tial form: 

Pi : ae b' (5.44) 

Under the assumption of normality of the random effects, the vectors Pi 
defined in (5.44) belong to a log-normal distribution. The advantage of such 
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an assumption is that the vectors Pi are always constrained to be positive. Not 
so for (5.43); if interindividual variability is large, it might happen that some 
Pi become negative. 

The choice of one or the other parameterisation should be dictated by 
independent physiological knowledge of the actual system and the experience 
of the investigator. 

5.4.4. MAXIMUM LIKELIHOOD METHODS 

We will now define in a general way the ML estimate of the population 
distribution. Given the data Yi, i = 1 . . . . .  M, and a population distribution F, 
the density of Yi given F is: 

pi(YilF) = / pi(Yilp)dF(p) (5.45) 

By the independence assumptions on ei and Pi, the vectors Yi are independent, 
and the log-likelihood of the data is" 

M 

L(F) -- E In pi(YilF) (5.46) 
i=l  

Now let F be a set of probability distributions. A probability distribution 
F ML ~ F is an ML estimate of the true distribution F,  if: 

F ML = arg max{L(F) �9 F ~ F} (5.47) 

In the parametric case, F is assumed to belong to a family of distributions 
defined by a finite number of parameters. In the most important example, this 
family F is the class of all multivariate normal distributions with unknown 
mean vectors and unknown covariance matrices (which then become the 
unknowns of the problem). In the nonparametric case, F is assumed to belong 
to the family of all distributions defined on F. There are two computational 
problems in determining the ML estimate F ML" the integration in (5.45) and 
the optimisation in (5.47). Of these two problems, the integration is the more 
serious one since the dimensionality of typical kinetic problems grows very 
rapidly. For a four-parameter model, assuming a multivariate normal popu- 
lation distribution, there are four means and 10 covariances, which equals 
14 parameters to be determined. The direct integration in (5.45) poses an 
overwhelming numerical problem. There have been only a few algorithms 
proposing to attack this problem directly. More commonly, to lessen the 
~omputational burden, most of the proposed methods focus on different analyt- 
ical approximations to (5.45). 
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5.4.4.1 The First-Order Method 

The first approach to population kinetic analysis method was the first- 
order (FO) linearisation of the model function. This approach was the original 
basis for the population analysis software NONMEM (acronym for NONlinear 
Mixed-Effects Model), which since then has accommodated several other 
different methods. The FO method (Beal and Sheiner, 1982) approximates the 
model function for individual i around zero random effects and thus results in 
the following approximate equation for subject i: 

Ofi I Odi (bi - a) + Ri(a)(1/2)ei (5.48) 
Yi ~ f i ( a ) +  ~ bi=a ~ b/=0 

It follows that pi[Yila, D(a)] .~ .A/'(ri, U/), where: 

ri : Yi -- fi(a) (5.49) 

and: 

[ I F ] Ofi Odi D 
Ui -- ~P/ pi=a Obi bi--O L Opi 

Odi 
pi=a Obi b/--O] -~- Ri(a) (5.50) 

In this case, maximising the corresponding approximate likelihood function is 
equivalent to minimising the function: 

M 
J1 (a) = ~-~[ln det U i -~- riUi-lr[] 

i=l 
The FO estimate of the fixed effects then minimises (5.51). 

(5.51) 

5.4.4.2 The First-Order Conditional Estimation Method 

Especially for models that are nonlinear in the parameters, the approxima- 
tion about the expectation of the random effects bi = 0 to the likelihood given 
by the FO method might be rather poor, thus resulting in inconsistent esti- 
mates of the fixed effects (Spieler and Schumitzky, 1993). To overcome these 
problems, a more accurate algorithm, the first-order conditional estimation 
(FOCE), was developed by Beal and Sheiner (1992) and later discussed by 
Vonesh (1996). The Lindstrom-Bates algorithm (Lindstrom and Bates, 1990) 
is also related to the basic idea of FOCE. The FOCE method is based on 
considering linearization in the random effects about some value other than 
zero. In particular, the mode of the posterior distribution for bi (the MAP 
estimate) obtainable from individual i, given the fixed effects a (the "condi- 
tional estimation" part arises because the estimates for bi are conditional on 
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the fixed effects). The approximation for the model function is then: 

Yi ~ fi(Pi) -~ 
Of/ adi 
0pi Obi hi :f~i 

(bi - hi) Jr- Ri(Pi )(1/2)ei (5.52) 

and the objective function can be formulated via the Laplace approximation 
to the integral (Bennett and Wakefield, 1996; Beal and Sheiner, 1992). 

5.4.4.3 Other Parametric Methods 

The FOCE method is in a similar spirit to the method of Lindstrom and 
Bates (1990) when the data are modelled with heterogeneous intraindividual 
error. The principal difference is that the FOCE method minimises an objec- 
tive function, while the Lindstrom-Bates method is iterative. Another method 
belonging to the same family is the Laplace method (Beal and Sheiner, 1992), 
based on the Laplace approximation to the integral: 

E I (5.53) oo e- f(X)dx ~ det 2~r dx 2 e-f(x) x=yc 

where $ is a minimise of f ( x ) .  If this approximation is applied to the ML 
integral, where f (x) is the negative of the logarithm of the likelihood function, 
it results in a more accurate approximation when compared with FOCE, at 
the expense of an increased computational burden (second derivatives of the 
likelihood, or a good approximation, are now required). FO, FOCE, and the 
Laplace-based methods can be thought of as providing increasingly accurate 
approximations to the likelihood function. 

5.4.5. NONPARAMETRIC AND SEMINONPARAMETRIC METHODS 

Nonparametric methods are used when no assumptions can be safely made 
on the distribution of the random effects from which the individual parame- 
ters are drawn. The individual parameters are then drawn from a completely 
unknown distribution: 

Pi E F (5.54) 

A fundamental result by Mallet (1986) states that the ML estimate of the 
unknown distribution is a discrete distribution, with support points on at most 
M points (as many as the individuals): 

M 
F = ~ WiS(Pi) (5.55) 

i=l 
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where 8 is the Dirac impulse. The problem of nonparametric estimation then 
reduces to the estimation of the parameters and the weights wi, i = 1 . . . . .  M .  
Despite this result, direct methods for the estimation of the distribution are 
quite challenging since the dimensionality of the problem grows very quickly 
with the number of individuals (Davidian and Giltinan, 1995). However, 
through duality theory, a connection can be made between nonparametric 
methods and D-optimality. Algorithms already developed for D-optimal 
designs can therefore be applied to nonparametric population analysis. Such 
methods have been proposed (Fedorov, 1972; Mallet, 1986; Schumitzky, 1991; 
Schumitzky, 1993), and a comprehensive review has been published (Davidian 
and Giltinan, 1995). A drawback of nonparametric methods is that they do 
not readily provide the accuracy of the estimated distribution. Features of the 
distribution, such as multimodality, cannot then be readily attributed to real 
features of the system or inaccuracies of the method. 

The smooth nonparametric (SNP) approach (Davidian and Gallant, 1992) 
is based on the notion that the population distribution, although unknown, 
belongs to a class of distributions that is smooth: 

Pi E F, F ~ .T" (5.56) 

The most important restriction on the class ~ is differentiability up to a certain 
order ( k / 2 ,  where k is the dimensionality of the problem). This implies that 
distributions in ~" are "regular," but still can exhibit multimodality and/or 
various degrees of skewness. This class of densities appeared first in econo- 
metrics. An important result is that these densities are well approximated by an 
appropriately truncated series expansion of multivariate normal densities. The 
number of elements in the series, which acts as a controller of the degree of 
smoothness of the distribution (Davidian and Giltinan, 1995), is accomplished 
via parsimony criteria (Davidian and Gallant, 1993). The problem then reduces 
to the estimation of the coefficients of the series expansion. This method has 
elements from both the parametric and the nonparametric approaches (for this 
reason, it has been termed the "seminonparametric" approach). 

5.4.6. BAYESIAN METHODS FOR POPULATION KINETIC ANALYSIS 

Bayesian methods have enjoye~ much interest recently, especially thanks 
to: the progress made in computational speed. Comprehensive reviews have 
been~ published (Smith anti Roberts, 1993; Davidian and Giltinan, 1995). The 
concept of Bayesian population analysis exploits the insight that nonlinear 
mi~:, ed-effects models axe eqmvalent to the "nonlinear hierarchical models" 
of statistics. The hierarchy here has three levels, which we describe in the 
f011owing ~t .  
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�9 A probabilistic model for the response of the individual subject, described 
as in (5.32), where the structure of intraindividual variability (e.g., due 
to measurement error) is given. Most often the model is that of Gaussian 
measurement error, with zero mean and unknown variance. 

�9 A probabilistic model for the variability among different individuals in 
the population, described as in (5.41) and (5.42), where the structure 
of interindividual variability (e.g., due to heterogeneity of covariates) is 
given. The usual model is that of a normal or log-normal distribution for 
the individual parameters. 

�9 A probabilistic model for the expected probability distribution of the 
fixed population parameters, such as the mean and the covariance of the 
parameter population. The presence of this third level differentiates the 
Bayesian approaches from all the other approaches that we have seen, in 
that the fixed population parameters are treate~ as random variables, and 
an informative or noninformative prior (depending on available knowl- 
edge) can be specified. Usually, the population means have a Gaussian 
prior distribution, the population covariances (or rather their inverses) 
belong to Wishart distributions, and the measurement error variances are 
thought of as belonging to a gamma distribution. 

The most striki'ng feature of Bayesian-based methods is that everything in the 
tm~lem is treated as a random variable. Given all this information as input, the 
Omlmt of such methods is the full conditionfl distribution of the parameters. 
Evea -without entering in the details of such methods, one can easily realise 
that evaluating the conditional distribution integrals is a daunting task, and 
t~s  expt~ns why these methods have become popular with the advent of 
t~ge-scale computing. 

Different techniques can be used to generate the posterior distribution, The 
MCMC (Smith and Ro~rts, 19.93) was first used in the context of the popula- 
tion p hann~okinefic anflysis (Wakefield et al., 1994), where Gibbs sampling 
was used. A MeUc~polis-Hastings step (Me~opolis et al., 1953; Hastings, 1970) 
has fls.a be~n used. A moo,. detailed introduction to the Bayesian approach is 
available from StatLib (Dopanmem of Statistics at Carnegie-Mellon Univer- 
sity) on the World Wide We~ (Wakefield et at., ! 9 ~ .  

5.4.7, COMPUTER PACKAGES 

Sevcr~ computer programx ha~e beta written ~. ~ tl~ t ~ k  of 
populatior~ mix" ed~effects mode!liag. The emph~is ~ bee~ moat~ on popula- 
tion pharmacokinetics. The av.ailab!e software rang~ f~oml/~-lWuae p r o ~  
to commercially distributed software. 
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Parametric methods are implemented in EMSA (Lyne et al., 1992), IT2S 
(Forrest et al., 1993), MIXLIN (Vonesh and Carter, 1992), NLME (Pinheiro 
et  al.,  1993), P-PHARM (Gomeni et al.,  1994), WINNONMIX (Pharsight 
Corp. and Scientific Consulting Inc.), and finally the most frequently used, 
NONMEM (Beal and Sheiner, 1992), which implements a variety of para- 
metric algorithms for population analysis. 

Nonparametric programs are considerably less widespread. Available 
programs are NLMIX (Davidian and Gallant, 1993), which implements 
the smooth nonparametric method, NPEM (Schumitzky et  al.,  1994), which 
accommodates both nonparametric and continuous EM algorithms, and NPML 
(Mallet, 1986), which includes a nonparametric and optimal design algorithm. 

A new generation of programs uses full Bayesian inference; to this category 
belong BUGS and the newer WINBUGS (Spiegelhalter et  al., 1993), which 
use Bayesian estimation in a Gibbs sampling framework and are available as 
a public domain package from the web site www.mrc-bsu.cam.ac.uk/bugs/. 
POPKAN (Bennett and Wakefield, 1996) uses Gibbs sampling for analysing 
simple compartmental models. 
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Chapter 6 

Tracer Experiment Design for 
Metabolic Fluxes Estimation 
in Steady and Nonsteady State 

Andrea Caumo and Claudio Cobell i  

6.1. I N T R O D U C T I O N  

Understanding the functioning of a metabolic system requires the quantita- 
tion of processes that are not directly measurable because they take place in the 
nonaccessible portion of the system. Among these processes, production and 
utilisation of substrates and secretion of hormones are of utmost importance 
for the investigator. The aim of this chapter is to describe tracer techniques for 
the quantitation of such fluxes under steady- and nonsteady-state conditions. 
Although the treatment is fairly general, we will use the glucose system as a 
prototype. 

6.2. F U N D A M E N T A L S  

The fundamental concepts underlying the use of tracers to measure produc- 
tion and utilisation fluxes of a substrate or a hormone can be better grasped 
by providing a formal description of the metabolic system under study. 

We assume that the metabolic system can be described by a model having 
an accessible compartment (usually blood) where the concentration of the 
substance can be measured (the accessible compartment is denoted by the 
presence of the dashed line with the bullet) and other nonaccessible compart- 
ments variously interconnected. In the example shown in Figure 6.1, we can 
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Figure 6.1. A multicompartmental model of a metabolic system. The accessible pool exchanges 
with the nonaccessible portion of the system. Continuous lines represent fluxes of material and 
dashed lines represent control actions. 

see a compartmental model in which the nonaccessible portion is modelled by 
a five-pool structure. Continuous lines represent fluxes of material from one 
compartment to another, while dashed lines represent control signals. 

Let Figure 6.2 represent the i th compartment of the model, with Qi(t) 
denoting the mass of the compartment. The arrows represent fluxes into and 
out of the compartment; the input flux into the compartment from outside the 
system, which is the de novo synthesis of material, is represented by ~i0(t); 
the flux out of the system (excretion/degradation) by ~0i(t); the flux from 
compartment i to compartment j by ~ji(t); finally, exogenous input by Ei(t). 
By applying the mass balance principle to each of the n compartments of the 
system and assuming that compartment #1 represents the accessible pool, we 
can write: 

Q.i(t) = - ~ dpji(t) + ~ dpij(t) + El(t) 
j =0 j =0 
j~i j~i 

( i , j =  1 . . . . .  n) 

(6.1) 

C(t)  = Q1 (t)/V1 
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Ei(t) 

r i o( t ) 

Qi (t) 

Ci(t) = Qi(t)lVi 
/ 

/ 
/ 

~Pji(t) 
v 

~u(t) 

r t ) 

Figure  &2. The i th compartment of a n-compartment model showing fluxes into and out of the 
compartment, exogenous inputs, and measurement. 

where C(t) is the concentration of compound measured in the accessible pool 
(subscript "1" indicating compartment 1 is omitted) and V1 is the volume of the 
accessible pool. Of note is that, usually, the only input to the system is the one 
applied'to the accessible pool, El.  In general, the flux of material dPji(t ) from 
compartment i to compartment j is dependent on the mass of the compound not 
only in the source compartment~ i but also in other compartments of the system: 

~ j i ( t )  = dPji(Q1 (t), 0 2 ( t )  . . . . .  Qn(t)) 

( j - O ,  1 . . . . .  n; i  - 1,2 . . . . .  n ; j  # i) (6.2) 

The nature of this functional dependence may be linear or nonlinear and may 
include threshold/saturation relationships (e.g., Michaelis-Menten kinetics) and 
comr, ol actions (e.g., the control exerted by a hormone on the fluxes of a 
substrate). 

It is often more usefut~ 1:o express(6.1:) in terms of the masses of the  
compound~ in the compartments. T~ d~ so; we render explicit the relationship 
b e ~ e e n  the gem~ric flux t~ji,~t'): alld~ the mass in the source compartment, Qi(t):: 

do~ii(t)~ = kji(Qt(.t), Q~(t), ...... Q,~(t)) . Qi(t) = kji(t) . Qi(t) (6.3) 

where k~i(> O ) i s  the f ra~ ioa~  ~ coefficient from compartment i, t~ 
c o ~  ) ,  I f  ~ s y ~ ~  ~ ~ and time-invariant, kji(t) is always 
constant, meaning kji(r))= k~, I f  ttke system is linear and time-varying~: ( n o r  
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that a nonlinear system can be considered a linear system with time-varying 
parameters), we must distinguish between steady- and nonsteady-state condi- 
tions. If the system is in steady state, all the fluxes and masses are constant 
and thus kji is constant. If the system is in nonsteady state, kji may vary since 
saturation and control signals come into play. Using (6.3), (6.1) can be written 
as follows: 

n 

Oi(t) -- - kji(t)Qi(t) -+- Z kij(t)Qj(t) 
j = 0  j = l  
j ~ i  j # i  

+ dPio(t) -+- Ei(t) (i, j = 1 . . . . .  n) 
(6.4) 

C(t) = Q1 (t)/V1 

6.3. A C C E S S I B L E  P O O L  A N D  S Y S T E M  F L U X E S  

To put the assessment of production and utilisation fluxes on a firm basis, it 
is useful to make a clear distinction between fluxes pertaining to the accessible 
pool and fluxes pertaining to the whole system. Let us begin with the fluxes 
that refer to the accessible pool. Ra(t) (rate of appearance) denotes the rate of 
entry of the compound into the accessible pool (de novo entry + exogenous 
input). Making reference to (6.1), Ra(t) can be expressed as follows: 

Ra(t) -- ~10(t) + E1 (t) (.6.5) 

Rd(t) (rate of disappearance) is the net outflux of the compound from the 
accessible pool (resulting from the exchange of material between the pools). 
Rd(t) can be expressed in terms of compartmental fluxes as follows: 

n n 

Rd(t) = ~ ~il ( t ) -  ~ ~li(t) 
i = 0  i = 2  
i r  

(6.6) 

Ra(t) and Rd(t) are related by the mass balance equation of the accessible 
pool: 

dab(t) 
- Ra(t) - Rd(t) (6.7) 

dt 

As far as the whole system is concerned, P(t) will denote endogenous 
production and U(t) will denote whole-body uptake. P(t) equals the sum of 
all the de novo fluxes of the compound entering the system: 

n 

P(t) = Z dPi~ 
i=1 

(6.8) 
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U(t) equals the sum of all the fluxes irreversibly leaving the system: 

U(t) = ~ koi(t)Qi(t) 
i=1 

(6.9) 

P(t) and U(t) are related by the mass-balance equation of the whole system: 

dQT(t) 
dt 

= P ( t ) -  U(t) (6.10) 

where QT = ~-'~in=l Qi(t) is the total mass of the compound in the system. In 
general, P(t) and U(t) are different from Ra(t) and Rd(t), respectively. If we 
assume, for the sake of simplicity, that the accessible pool is the only site of de 
novo entry of the compound, P(t) coincides with Ra(t) (minus any exogenous 
input of the compound, when present). In contrast, since the compound is 
usually utilised by tissues in both the accessible and the nonaccessible pools, 
U(t) is different from Rd(t) in general. In summary, while Ra(t) and Rd(t) 
refer only to the accessible pool, P(t) and U(t) refer to the whole system 
(accessible pool + nonaccessible pools). 

When the focus of the investigation is the assessment of Ra(t), the deve- 
lopment of a compartmental model of the system may be simply not necessary. 
For instance, it may happen that one is interested in measuring endogenous 
glucose production or insulin secretion after a meal but is not interested in a 
detailed structural description of glucose or insulin kinetics. The assessment 
of Ra(t) can be posed as an input-estimation problem, in the sense that one 
must derive the unknown input to the system from its causally related effect 
on the concentration of the compound in the accessible pool (this issue is 
discussed in detail in Chapter 3). If the system is linear and time-varying (note, 
incidentally, that a nonlinear system can be thought of as a linear system with 
time-varying parameters), the input-estimation problem can be formalised by 
describing the input-output relationship between the unknown input, Ra(t), 
and the measurable output, C(t), with a Fredholm integral equation of the 
first kind: 

C(t) = h(t, r)Ra(r)dr (6.11) 
oo 

where h(t, r) describes the input-output behaviour of the system and is called 
the kernel of the system. The function h(t, r0) represents the time course of the 
output when the system is forced by a unitary impulse given at time r0. When 
the system is linear and time-invariant, h(t, r) depends only on the difference 
t -  3, the right-hand side of (6.11) becomes a convolution integral, and the 
problem of determining Ra(t) given h(t) and C(t) is called deconvolution. In 
any case, the assessment of Ra(t) consists in solving backward (6.11), and 
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this requires the preliminary knowledge of the impulse response. How can the 
impulse response be described? We will distinguish two cases, depending on 
whether the system is linear and time-invariant or linear and time-varying. If 
the system is linear and time-invariant, its impulse response can be described 
by a model of data (no structural, i.e., compartmental, model) is needed. 
Usually, a good candidate of h(t) is: 

n 

h(t) = Z Aie-U't 
i=1 

(6.12) 

where O~ i > 0. If the system is linear and time-varying (e.g., the glucose 
system), the kernel h(t, r) cannot be assessed unless a structural model is 
formulated that is capable of describing the time dependency of its 
parameters. 

In summary, to quantitate fluxes of appearance/production and disappear- 
ance/utilisation, one may need to identify a structural model of the system or 
at least determine its impulse response (the two requirements coincide when 
the system is linear and time-varying). To accomplish these tasks, the ideal 
probe is a tracer experiment, as we will see in the following section. 

6.4. THE TRACER PROBE 

It is easy to realise that the availability of the compound concentration in 
the accessible pool is not sufficient to quantitate the production and removal 
processes. For instance, an increased compound plasma concentration might 
be the consequence of increased production, decreased removal from the circu- 
lation, or a combination of both processes. To quantitate these fluxes, we must 
perform an input-output (I/O) experiment in which an adequate database of 
dynamic data is generated. The tool of choice is the tracer probe, which is 
usually a radioactive or stable isotope. The two tracers differ in some aspects. 
Radiotracers can be given in negligible amounts (which do not perturb the 
system) and produce satisfactory signal-to-noise ratios but can be harmful. 
Stable-labelled tracers are safe but are naturally present in the body (natural 
abundance); in addition, the amount that is given to produce a satisfactory 
signal-to-noise ratio does not have negligible mass and may perturb the system. 
This makes the analysis of a stable isotope tracer experiment more complex 
than that of a radioactive tracer experiment. However, a kinetic formalism 
for the analysis of stable isotope tracer data has been recently developed, and 
its link with the radioactive kinetic formalism has been elucidated (Cobelli 
et al., 1992). 
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An ideal tracer has the following characteristics: 

1). It has the same metabolic behaviour as the substance being traced 
(denoted as tracee). This is known as tracer-tracee indistinguishability 
principle; 

2). It is distinguishable from the tracee by the investigator; 
3). It does not perturb the system. 

Real tracers satisfy such conditions to different extents. Hereafter we will 
assume, for the sake of simplicity, that the tracer is ideal. 

Why do tracers help in enhancing the information that can be gained from 
an I/O experiment? The reason is that the tracer travels in the system like the 
tracee, and thus tracer data measured in the accessible pool contain information 
about the tracee system. By applying the mass conservation law for the tracer 
to all the compartments of the model used to describe the behaviour of the 
tracee (6.1), one obtains a system of differential equations: 

n n 

iti(t) = - ~ kji(t)qi(t) + ~ kij(t)qj(t) 
j--O j--1 
j~i j~i 

-I- ei(t) 

c(t) = ql (t)/V1 

(i,j----- 1 . . . . .  n) 
(6.13) 

Note that we use lowercase letters to denote tracer-related variables: qi(t) is 
the mass of the tracer in the i th compartment; el(t) is the tracer input into the 
i th compartment (usually the only tracer input to the system is the one applied 
to the accessible pool, el); c(t) is tracer concentration in the accessible pool 
(subscript "1" indicating compartment 1 is omitted). Of note is that, thanks to 
the tracer-tracee indistinguishability principle, the fractional transfer rates of 
the tracer model are the same as those of the tracee model. 

By comparing (6.4) and (6.13), one can see that the tracer model has a 
definite advantage with respect to the tracee model: whereas the endogenous 
tracee input to the system is unknown (and is often what the investigator 
wants to determine), the tracer input is known. As a result, a suitably designed 
tracer experiment allows the investigator to identify the tracer model (using. the 
appropriate parameter estimation techniques). Subsequently, the tracer model 
can be used, in conjunction with the tracee measurements, to quantitate the 
tracee model. Analogous considerations apply to the tracer impulse response. 
In fact, thanks to the tracer-tracee indistinguishability principle, the impulse 
response of the tracer is the same (apart from the units) as that of the tracee. 
The tracer impulse response can be determined from tracer I/O data and then 
used to estimate Ra(t) by solving backward (6.11). 

It is useful to point out that, if the tracee is in a constant steady state, all 
the tracee fluxes (~ji) and m a s s e s  (Qi) are constant. As a result, all of the 
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fractional transfer coefficients kji  are constant as well (see [6.3]). If the kji 
are constant, the tracer model described by (6.13) is linear, irrespective of 
whether the tracee system is linear or nonlinear. This greatly simplifies tracer 
data analysis. In particular, the tracer impulse response can be described by a 
model of the data, such as a multiexponential function. The price to be paid is 
that the tracer-derived parameters yield a picture of the steady-state operating 
point but cannot describe the dynamics of the system in its full nonlinear 
operation arising, for instance, from saturation kinetics and control signals. 

Now that we have a good appreciation of the fundamentals of tracer method- 
ology, we can turn our attention to the issue of tracer experiment design. In the 
following, we will discuss the most appropriate tracer administration strategies 
to measure production and utilisation fluxes under steady and nonsteady-state 
conditions. 

6.5.  E S T I M A T I O N  O F  T R A C E E  F L U X E S  I N  

S T E A D Y  S T A T E  

We begin by considering a system that is in steady state with respect to the 
tracee. In steady state, masses and fluxes in the system are constant. Assuming 
that there is no exogenous administration of tracee, the mass balance principle 
applied to the accessible pool and to the whole system states that: 

R a  = R d  (6.14) 

P - -  U (6.15) 

Thus, in steady state the rate of entry into and exit from the accessible pool (as 
well as the whole system) is constant. These fluxes are collectively referred 
to as the turnover rate. 

To estimate R a  (and thus the turnover rate), we can exploit the fact that, 
under steady-state conditions, (6.11) becomes an algebraic equation (time t in 
the integral sign goes to infinity) that can be easily solved for the unknown Ra:  

C 
R a  --  o0 (6.16) 

o h ( r ) d r  

where C is the steady-state tracee concentration. 
In principle, the integral of the impulse response can be estimated from the 

tracer data generated by any realisable tracer input. In the following, we will 
examine the three most common formats of tracer administration: the single 
injection, the constant infusion, and the primed constant infusion, which is a 
combination of the first two. 
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6.5.1.  SINGLE INJECTION 

The single-injection technique consists of a tracer bolus rapidly injected 
in vein followed by plasma sampling for measurement of tracer and tracee 
concentration. This input, at least ideally, is an impulse making reference 
to (6.13): e l ( t ) =  d3(t), where d is the tracer dose, and thus the tracer dis- 
appearance curve following the tracer bolus can be interpreted as the impulse 
response of the system (Figure 6.3, upper panel). 

Since the system is in steady state, the impulse response of the tracer is 
that of a linear and time-invariant system and can be described by a sum of 
decaying exponentials. Thus, the time course of tracer concentration following 
the tracer injection is given by: 

n 

c(t) = d . h(t) = d Z Aie-a't (6.17) 
i=1 

where c is tracer concentration in plasma and (Ai) and (ai) are the coefficients 
and eigenvalues, respectively, of the multiexponential impulse response. One 
uses a parameter estimation technique to identify the sum of exponentials 
model and employs parsimony criteria, such as the Akaike information (Carson 
et al., 1983), to select the appropriate number, n, of exponential terms. Once 
h(t) is known, Ra can be calculated by deconvolution: 

d . C  C 
R a - -  oo -- ,, (6.18) 

f0 c(r)dr Z ai 
i=1 cti 

The single injection is the most simple and economical format of tracer 
administration because it does not requires an infusion pump. However, the 
estimation of turnover from the tracer disappearance curve is not straightfor- 
ward because it requires a frequent sampling, especially in the initial portion 
of the study, and a data analysis entailing the use of parameter estimation tech- 
niques. In addition, the experiment duration may be rather long since sampling 
must be continued for at least two to three times the slowest time constant in 
the system. 

6.5.2.  CONSTANT INFUSION 

With the constant-infusion technique, the tracer is administered intrave- 
nously at a constant rate until the tracer achieves a steady-state level 
(Figure 6.3, middle panel). This input, at least ideally, is a step centred at 
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time 0, making reference to (6,13): el(~) = ra3_i(t) ,  where ra is the constant 
tracer infusion rate. Since the step is the integral of the impulse, the response 
to a unit constant infusion will coincide with the integral of the response to 
a unit dose injection. Thus, by integrating (6.17), one obtains that the time 
course of tracer concentration during the constant tracer irifusion is given by: 

n Ai 
c( t )  = ra ~ --(1 - e -air) (6.19) 

~'~. Ol i 

Under such conditions of steady state for both the tracer and the tracee, 
the tracer and tracee concentrations in plasma will be proportional to their 
respective rates of entry. Calculation of turnover is straightforward since it 
only requires the measurement of plasma tracer and tracee concentrations at 
tracer steady state: 

C m 
Ra = ra--  = - -  (6.20) 

c z 

where z is the constant tracer-to-tracee ratio (Cobelii et al., 1992) (this ratio 
coincides with the specific activity when a radiotracer is used). 

Evaluation of tracee turnover is thus simpler with the constant-infusion 
technique than with the single-injection technique. Another advantage of the 
constant infusion with respect to the single-injection protocol is that one 
circumvents the need of determining the system order and of using a parameter 
estimation technique. 

Achievement of a true tracer steady state is important for a correct calcu- 
lation of turnover when the constant-infusion technique is adopted. The time 
needed to achieve the steady state depends on the size of the slowest time 
constant of the system: the smaller its value, the longer the time required to 
reach the steady state. Thus, it may take a very long time to reach tracer 
steady state with the constant infusion alone, especially for substances and 
in subjects having a low turnover. To cope with this problem, the primed 
continuous-infusion strategy has been devised. 

6.5.3. PRIMED CONTINUOUS INFUSION 

When a rapid achievement of the tracer steady state is of primary impor- 
tance (this happens, for instance, when the experimental protocol is long 

Figure 6.3. Assessment of turnover in steady state: tracer concentration profiles during a bolus 
injection (upper panel), a constant infusion (middle panel), and a primed continuous infusion 
(lower panel). 
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because the steady state is followed by a nonsteady-state period), the tracer 
administration format of choice is the so-called primed continuous infusion, 
which is an impulse followed by a step input. The reason why this format is 
preferable to the constant infusion is because the priming dose, when appro- 
priately chosen, considerably speeds up the attainment of the tracer steady 
state (see Figure 6.3, lower panel). To appreciate intuitively why this occurs, 
we must think that the tracer curve following the primed continuous infusion 
is, thanks to the linearity of the tracer system in steady state, the superposition 
of the individual responses to a single injection and to a constant infusion. 
The final decaying portion of the tracer disappearance curve due to the single 
injection and the final raising portion of tracer appearance curve are both 
governed by the slow time constant of the system. Therefore, the time needed 
to achieve the tracer steady state can be reduced if the amplitudes associated 
to the slow component in the impulse and in the step responses are identical 
and, being of opposite sign, cancel each other. This can be accomplished by 
selecting the appropriate size of the priming dose with respect to the constant 
infusion rate. To understand how one can optimally select the priming dose, 
it is useful to resort to the analytical expression of the system response to 
a primed continuous infusion, which coincides with the sum of individual 
responses to an impulse (6.17) and to a step (6.19): 

~ A i [  ( d  )]  c(t) = ra ~ 1 + e -ait O l  i - -  1 
i--1 cti 

(6.21) 

From (6.21), one can see that if the ratio d/ra equals the inverse of the slowest 
exponential time constant (1/Otn), the contribution of the slowest exponential 
component, e -a"t, is cancelled out and the tracer steady state is achieved 
more quickly. In particular, if the impulse response contains only a single 
exponential term, the selection of a priming ratio equal to 1/ctl will result 
in an instantaneous tracer steady state. If the system has a multiexponential 
impulse response, the achievement of the tracer steady state will requ~e a 
transient period whose duration will be dictated by the less rapid among the 
remaining exponential components. For instance, if the system is second order, 
then the transient period (above the final steady state) will be monoexponenfi~. 
Thus, the investigator can design the priming ratio provided he or she knows 
in advance the impulse response of the system. However, in practice, this does 
not happen, and assumptions about the slowest time constant must be made 
on the basis of available physiological knowledge. 

When tracer steady state has been obtained, turnover can be calculated as 
with the constant-infusion technique (6.20). It must be emphasised that the 
calculation is accurate only if a true steady steady for the tracer is achieved at 
the end of the test. However, it may happen (especially with compounds and 
subjects having a low turnover) that the final portion of the tracer equilibration 
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curve varies so slowly that a false impression of the tracer steady state is 
given at times when the true plateau level has not been reached (this situation 
has been extensively investigated for the glucose system (Hother-Nielsen and 
Beck-Nielsen, 1990; Hovorka et al., 1997). In this case, the use of (6.20) would 
lead to a biased estimate of tracee turnover. If we suspect that the tracer steady 
state has not been achieved yet at the end of the test, we can still estimate 
accurately turnover provided we have sampled the tracer curve throughout 
the experiment, particularly when tracer concentration rapidly decays after 
the prime. In this case, we will fit all the available tracer data (i.e., the final 
quasi-steady state, as well as the initial dynamic data) to (6.21) and we will 
estimate the impulse response parameters (Ai) and (cti). These parameters will 
then be used to calculate the area of the impulse response, which, substituted 
in (6.16), will yield turnover. What warrants emphasis is that one can resort 
to this approach to circumvent the lack of a reliable tracer steady only if an 
adequately frequent sampling schedule has been adopted in the initial part of 
the test when the fastest components of the system play an important role. 

In the study of the glucose system in normal subjects, a priming ratio equal 
to 100 (corresponding to a slowest exponential component of 0.01 min -1) 
is commonly used. However, in groups in which the slowest component 
is altered, the ratio must be changed to match the slowest time constant. 
For instance, the priming modality plays a crucial role in the assessment of 
basal glucose turnover in non-insulin-dependent diabetes mellitus (NIDDM) 
because, if appropriate adjustment of the priming ratio is not accomplished, the 
observation period can be insufficient to achieve the tracer steady state and, as 
a consequence, glucose turnover is overestimated. Fortunately, in recent years, 
guidelines have been developed to individualise the priming ratio in NIDDM 
patients as a function of their fasting glucose concentration (Hother-Nielsen 
and Beck-Nielsen, 1990). 

6.6.  E S T I M A T I O N  O F  N O N S T E A D Y - S T A T E  F L U X E S  

Let us suppose that the experimental protocol comprises two phases: a 
first phase with tracee in steady state and tracer brought to a steady state 
via a tracer administration m typically a primed continuous in fus ion- -and  a 
second phase in which the investigator imposes a perturbation that pushes the 
system out of steady state. Such a nonsteady-state transition ends up with a 
steady state that may be either the initial or a new. In nonsteady state, Ra, 
Rd, P, and U are all functions of time, and their estimation is much more 
complex than in steady state. At variance with steady state (see [6.14] and 
[6.15]), in nonsteady state Ra(t) (which equals the sum of the endogenous 
and exogenous tracee appearance rates) is different from Rd(t), which is, in 
turn, different from U(t). We will devote the next sections of this chapter to 
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outline tracer infusion strategies to obtain an accurate estimation of Ra(t) and 
then an accurate estimation of Rd(t) and U(t). 

In nonsteady state, the estimation of Ra(t) on the basis of the convolu- 
tion integral (6.11) is more complex than in steady state. In principle, Ra(t) 
estimation is performed in two steps. First, the impulse response h(t, r) is 
identified from tracer data, and then Ra(t) is reconstructed from the impulse 
response and tracee data by deconvolution. How can h(t, r) be assessed? If the 
system under investigation is linear and time-invariant, the impulse response 
does not change when the system is pushed out of steady state and can be 
described by a multiexponential function. The parameters of the multiexpo- 
nential function can be estimated from the tracer I/O experiment performed in 
steady state provided that the tracer time course has been adequately sampled 
(e.g., the rapid decay of tracer concentration immediately following a tracer 
bolus). In this case, no further tracer administration is required during the 
nonsteady state. On the other hand, if the system is linear but time-varying 
(e.g., the glucose system), the impulse cannot be assessed unless hypotheses 
are made on the structure of the system. In other words, to determine h(t, r) 
it is necessary to formulate and identify from nonsteady-state tracer data a 
structural model, such as the one depicted by (6.13), capable of describing 
the system functioning during the nonsteady state. In particular, one must 
specify which are the time-varying parameters of the model and how they 
change during the nonsteady state. Different models will yield different esti- 
mates of Ra(t). Due to the complexity of metabolic systems, it is difficult to 
work out a general-purpose model and, usually, models aimed to describe the 
behaviour of the system in each specific experimental situation are developed. 
In any case, striving for model accuracy must be balanced against the need 
of practical identification. It is possible to render the estimation of Ra(t) less 
dependent on the chosen model if one carefully designs the tracer infusion 
during the nonsteady state in the most appropriate way. In the next section, 
we will examine how to do it. 

6.6.1. ASSESSMENT OF Ra:  THE TRACER-TO-TRACEE CLAMP 

Nonsteady-state theory (Norwich, 1973; Cobelli et al., 1987) suggests that 
the accuracy of the estimation of Ra(t) can be enhanced if the tracer is 
infused during the nonsteady state in such a way as to reduce the changes 
in the tracer-to-tracee ratio, z(t), during the experiment (since this procedure 
has been originally devised for radiotracers, it is known as specific activity 
clamp). Ideally, if z(t) is maintained perfectly constant during the experi- 
ment, an accurate estimate of Ra(t) can be obtained irrespective of the model 
used to interpret the nonsteady state. To understand how this happens, k t  us 



Tracer Experiment Design for Metabolic Fluxes Estimation 167 

suppose that the tracee system is in steady state and a tracer experiment is 
carded out m typically a primed continuous infusion---until the tracer reaches 
a steady state throughout the system. In the basal steady state, the tracer-to- 
tracee ratio, Zb, (subscript "b" denotes "basal") coincides with the ratio between 
basal tracer infusion and basal production. Let us now suppose that a pertur- 
bation, for instance, an exogenous administration of tracee, pushes the system 
out of the steady state. If Ra(t) changes in time with respect to basal P and 
the tracer is still infused at a constant rate during the nonsteady state, the 
tracer-to-tracee ratio will change as well. Theory suggests that this change in 
the tracer-to-tracee ratio should be prevented by infusing the tracer in such 
a way as to follow the changes of Ra(t). If the tracer infusion rate, ra(t), 
is adjusted so that ra(t) = Ra(t).Zb, Z(t) remains equal to Zb throughout the 
experiment and Ra(t) is given by: 

ra(t) Ra(t) = (6.22) 
Zb 

In other words, ra(t) must have the same shape of Ra(t), with the propor- 
tionality factor between the two being the desired target value Zb. Of note is 
that (6.22) is similar to (6.20), which is the one used to calculate steady-state 
Ra, but here both ra(t) and Ra(t) change in time. A theoretical proof that 
the rate of appearance is predicted correctly in nonsteady state by (6.22) if 
z(t) remains constant has been given by Norwich (1973, 1977) for a distri- 
buted system characterised by the assumption of convective diffusion. For a 
generic compartmental model describing tracee and tracer dynamics by (6.4) 
and (6.13), respectively, it can be shown (Cobelli et al., 1987) that: 

Ra(t) = ra(t) Ql(t) ~l(t) _ ~ (1 zi(t) )kliQi(t) (6.23) 
Zl(t) Zl(t) i=2 Zl(t) 

where zi is the tracer-to-tracee ratio in the i th compartment (Zl is the tracer-to- 
tracee ratio measured in the accessible pool and thus coincides with z). The 
relevance of this equation lies in the fact that, if the tracer administation is 
adjusted so as to induce no changes in z(t) over time, the time derivative of 
z(t) in the accessible pool is zero and the contributions of the second and third 
term in (6.23) become null. As a result, Ra(t) coincides with the expression 
given in (6.22) and becomes model-independent because it only hinges on 
what can be measured in the accessible pool. 

In practice, it is impossible to maintain plasma z(t) at an absolutely constant 
level. Nevertheless, it is useful for the investigator to try to clamp z(t) at a 
constant level by changing the tracer infusion rate in a suitable way because a 
reduction in the rate of change of z(t) will provide an estimate of Ra(t) much 
less dependent on the validity of the model used with respect to a "blind" 
constant tracer infusion. 
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What are the possible approaches to clamp z(t)? The development of a 
closed-loop tracer administration scheme requires the availability of measure- 
ment methods of tracer and tracee plasma concentration that are rapid enough. 
Usually, however, the tracer concentration cannot be measured rapidly enough 
and an open-loop approach to clamp z(t) has to be adopted. Therefore, guide- 
lines are needed to design the most appropriate open-loop scheme of tracer 
infusion. We have seen previously that, to keep z(t) constant, ra(t) should 
have the same shape of the unknown Ra(t). In general, there are two sources 
of tracee contributing to Ra(t) (see Figure 6.4, left panels): one is the endo- 
genous production, while the other, when present, is the rate of appearance of 
the tracee that the investigator administers exogenously in relation with the 
purpose of the study. For instance, during a euglycaemic hyperinsulinaemic 
clamp (DeFronzo et al., 1979), glucose is infused intravenously at a known 
rate in such a way to maintain glucose concentration constant throughout the 
study. Thus, we can write: 

Ra(t) = P(t) + Raexg(t) (6.24) 

where Raexg(t) is the rate of appearance of the exogenous tracee. Also, the 
measured tracee concentration can be thought of as the sum of two components 
(see Figure 6.4, fight panels): endogenous, Cend(t), and exogenous concentra- 
tion, Cexg (/): 

C(t) = Cend(t) -+- Cexg(t) (6.25) 

The distinction between the endogenous and exogenous tracee sources and 
concentrations leads naturally to a tracer infusion strategy that has general 
applicability. In fact, one viable approach to minimise the changes in z(t) 
consists in using two distinct tracer infusions, one proportional to the exoge- 
nous tracee infusion (Figure 6.5, upper panel) and the other proportional to 
the endogenous tracee production (Figure 6.5, lower panel). Implementing the 
first tracer infusion scheme is simple: one has to add some tracer to the exo- 
genous tracee so that the tracer-to-tracee ratio of the labelled infusate, Zinf, is 
equal to Zb. The realisation of the second tracer infusion scheme is more diffi- 
cult because it is necessary to change the basal rate of tracer infusion in such 
a way as to mimic the expected time course of P(t) during the experiment. 
This may sound like circular reasoning because adjusting the tracer infusion 
rate requires the knowledge of P(t), which is exactly what one is trying to 
determine. However, usually some information about the behaviour of P(t) 
during the nonsteady state is available. This a priori knowledge can be used 
to design a tentative format of tracer administration for the first trial (educated 
guess). This guess can be later verified by measuring z(t) and, if z(t) is not 
constant, one learns from the error and refines the format of tracer administra- 
tion in the subsequent experiment. This procedure can be repeated a few times 
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Figure 6.4. Tracee appearance fluxes (left panels) and concentrations (right panels) during the 
nonsteady state. The rate of appearance of a compound (left, upper panel) can be thought of 
as the sum of two components: endogenous production (right, middle panel) and exogenous 
appearance rate. Dually, the measured plasma concentration of the compound (left, upper panel) 
can be thought of as the sum of an endogenous (left, middle panel) and an exogenous (left, lower 
panel) component. 

until a satisfactory format is obtained. In our experience, a few iterations are 
sufficient to achieve acceptable results. 

Usually, the task of changing the tracer infusion in such a way as to mimic 
the expected time course of P(t) can be automatized using a preprogrammable 
pump. This allows the investigator to change the infusion rate as frequently 
as he or she wishes without adding complexity to the experiment. On the 
other hand, it is of no value to frequently change the tracer infusion rate if 
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blood samples are not collected ffequemly enough. It is sufficiem to change 
the staircase tracer i~usion rate ~rnediately after each sample and keep the 
tracer infusion constant between two consecutive samples (the Racer infusion, 
will be proportional to the average of P(t) in that interval). An important 
caveat is that the frequency of blooti sampling (and thus the number of steps 
in the tracer irffusion rate) should be increased whenever P(t) is expected to 
change most rapid/y and variability among subjects is elevated. 

Using the glucose system as a prototype, we will provide examples of 
the use of this techni'que to clamp z(t) under experimental conditions ~at  



Tracer Experiment Design for Metabolic Fluxes Estimation 171 

commonly arise in clinical investigation. Specifically, we shall deal with three 
distinct situations: first, when the exogenous source of the tracee is absent; 
second, when the exogenous source of the tracee is present and known; and 
third, when the exogenous source of the tracee is present but unknown. 

6.6.1.1 No Exogenous Source of Tracee 

There are studies in which the only tracee source is endogenous. As a 
result, the measured tracee concentration coincides with Cend. An example 
of this situation is the study of glucose turnover during physical exercise. 
During physical exercise, glucose production increases to compensate for the 
increased glucose utilisation by muscles. To clamp z(t) in this situation, one has 
simply to administer the tracer in such a way as to mimic the expected pattern 
of increase of P(t). In Coggan et al. (1995), the authors approximated the 
increase of P(t) during exercise by an increasing mono-exponential function 
and achieved an excellent tracer-to-tracee clamp. 

6.6.1.2 Known Exogenous Source of Tracee 

In many circumstances, the tracee is administered exogenously and its rate 
of delivery into the systemic circulation is known. Two examples of this situ- 
ation are the meal-like study and the euglycaemic hyperinsulinaemic clamp. 

The meal-like study consists in an experimental protocol in which glucose 
and insulin are infused so as to reproduce the plasma glucose and insulin 
concentration profiles that are typically observed after carbohydrate ingestion 
in healthy subjects (Alzaid et al., 1994). To clamp z(t), a single tracer can be 
used to clamp the exogenous and endogenous tracee sources: some tracer is 
added to the glucose infusate, while the basal tracer infusion is changed with 
a pattern mimicking the expected time course of P(t). 

The euglycaemic hyperinsulinaemic clamp is the most widely used approach 
to investigate the effects of insulin on glucose metabolism (DeFronzo et al., 
1979). Insulin is infused at a constant rate throughout the study, while glucose 
is infused at a variable rate so as to maintain constant its level in plasma. Thus, 
at any time the exogenous glucose infusion rate, Raexg(t), equals the differ- 
ence R d ( t ) -  P(t), and when a new steady state is attained one can measure 
the dose-response effect of insulin on both glucose uptake and production. To 
clamp z(t) during the euglycaemic hyperinsulinaemic clamp, one can use the 
approach described previously for the meal-like study, which is to add some 
tracer to the glucose infusate in such a way that zinf = z4,, and to change the 
basal tracer infusion mimicking the expected time course of P(t). 

This strategy is the ideal one because it allows, at least in theory, to achieve 
a perfect tracer-to-tracee ratio clamp, However, it may turn out to be too 
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complex and labour-intensive, especially if the glucose clamp is to be used 
in population studies. Finegood et al. (1987) devised a simpler approach, in 
which one adds some label to the exogenous glucose infusate and maintains 
the basal tracer infusion unchanged throughout the study. If one interprets 
Finegood et al.'s approach in the light of the general approach outlined before- 
hand, it is evident that keeping constant the rate of tracer infusion--instead 
of mimicking the time course of P ( t ) - -w i l l  produce an excess of tracer in 
the system. The idea devised by the authors to compensate for this tracer 
excess consists in underlabelling the exogenous infusate, that is, preparing an 
exogenous infusate having Zinf < Zb. To correctly choose Zinf, some a priori 
information about the likely behaviour of the glucose system at the end of the 
clamp is needed. Specifically, assuming that at the end of the clamp both P 
and Rd have reached a new steady state, the expression for Zinf is given by: 

Zinf = Zb 1 -- Rdss --P~s (6.26) 

where Pb, P~s, Rd~ are, respectively, basal and final steady-state values of P 
and Rd. 

The advantage of Finegood et al.'s approach with respect to the general 
approach is that it keeps the experimental effort to a minimum and does not 
require to guess the whole time course of P(t)  but only the steady-state values 
of P and Rd at the end of the study. The disadvantage is that such a technique 
cannot be refined as more information about the nonsteady-state behaviour 
of P(t) becomes available. In addition, it only ensures that the value of z(t) 
measured at the end of the clamp is equal to Zb, but does not guarantee that 
it remains constant throughout the study. We have previously shown (Butler 
et al., 1993) that z(t) will remain constant only if the inhibition of production 
is proportional to the stimulation of glucose disappearance. Since P(t) and 
Rd(t)  may exhibit different time courses or differences between disease states, 
systematic deviations may arise. Despite these limitations, this approach works 
reasonably well and, because of its simplicity, is widely used to clamp the 
tracer-to-tracee ratio during the euglycaemic hyperinsulinaemic clamp. 

In principle, Finegood et al.'s approach is applicable to the hyperglycaemic 
and hypoglycaemic clamp. The ingredients that allow one to choose Zinf under 
such experimental conditions are always the same of (6.26), which means 
Pb and the expected values of P and Rd at the end of the experiment. Since 
during a hyperglycaemic and a hypoglycaemic clamp, glucose does not remain 
to the baseline but is purposely brought to a new level, systematic deviations 
of z(t) from constancy are likely to occur in the initial part of the test. For 
instance, in the initial part of the hyperglycaemic clamp, the need of rapidly 
elevating glucose concentration by means of an exogenous glucose infusion 
will increase glucose concentration more than tracer concentration, so that z(t) 
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may exhibit a transient undershoot. To prevent this undershoot, one has to add 
some more tracer in the initial part of the test. This can be done by using, 
only in the initial part of the test, a labelled infusion having a Zinf value higher 
than the one dictated by (6.26). Alternatively, one can increase temporarily 
and then restore the basal tracer infusion. During the hypoglycaemic clamp, 
the exogenous glucose infusion rate initiates when glucose reaches the desired 
hypoglycaemic level. If basal tracer infusion rate remains unchanged in the 
initial part of the test when exogenous glucose is not administered, z(t) may 
exhibit a transient overshoot. To prevent this overshoot, one can temporarily 
reduce the basal tracer infusion and restore it in concomitance with the initi- 
ation of the exogenous glucose infusion. 

6.6.1.3 Unknown Exogenous Source of Tracee 

In some experimental situations, the rate of appearance of the exogenously 
administered tracee is not known. For instance, when glucose is given orally 
(e.g., during a meal or an oral glucose tolerance test), exogenous glucose is 
absorbed through the gastrointestinal tract and is delivered into the systemic 
circulation with a pattern that is unknown and highly variable among subjects. 
It is intuitive that adding to the orally administered glucose the same tracer 
that is infused intravenously would prevent the estimation of P(t) because 
the contribution of ingested glucose to total Ra(t) could not be determined. 
Thus, to single out the contribution of glucose production, it is necessary to 
label the ingested glucose with a tracer that is different from the one infused 
intravenously (Taylor et al., 1997). Whereas the tracer given orally is aimed 
to trace the exogenous glucose source, the tracer infused intravenously at a 
variable rate mimics the time course of P(t). Since we measure two different 
tracer concentrations in plasma, c'(t) and c'(t), we will also have to deal with 
two different z profiles, one referred to the tracer infused intravenously and 
the other to the tracer given orally. How does one recognise if the tracer-to- 
tracce clamp is successful? One convenient strategy is to calculate z(t) not with 
respect to the measured glucose concentration, but with respect to endogenous 
glucose concentration, that is the component of total glucose concentration 
that is due exclusively to P(t). Endogenous glucose concentration cannot be 
measured directly but can be derived in a model-independent way (Cobelli and 
Toffolo, 1990) by subtracting from the measured total glucose concentration 
the exogenous component, where the latter is proportional--thanks to the 
tracer-tracee indistinguishability principle m to the concentration profile of the 
tracer mixed to orally administered glucose: 

Cend(t) = C ( t ) -  Cexg(t) -- C ( t ) -  C"(t)/Zoral (6.27) 
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where c'(t)  is plasma concentration of the tracer mixed to oral glucose and Zoral 
is the tracer-to-tracee ratio of the oral glucose administration. The endogenous 
glucose profile, which looks roughly like a delayed version of P(t), can then be 
compared with the concentration of the tracer infused intravenously, c'(t). If 
the tracer has been infused in a successful way, so as to match satisfactorily the 
profile of P(t), the plasma profiles of c'(t) and Cend(t) will change in parallel 
and their tracer-to-tracee ratio, Zend(t), will be constant. In other words, instead 
of calculating P(t) as the difference between the estimates of Ra(t) and of the 
appearance rate of orally administered glucose, one first calculates Cena(t) and 
uses it, in conjunction with Zena(t), to estimate P(t). Figure 6.6 shows the 
results of a study (Taylor et al., 1997) in which glucose production during a 
meal was estimated with the approach just described. 

Two tracers were employed: a stable tracer, [2-2H]glucose, and a radioactive 
tracer, [3-3H]glucose. The former was added to the meal, while the latter was 
infused in such a way as to mimic the expected time course of P(t). The 
format of [3-3H]glucose administration was refined on the basis of the results 
obtained in the first three subjects who underwent the study and was then kept 
fixed in the other subjects participating in the study. [3-3H]glucose plasma 
concentration well matched endogenous glucose concentration derived from 
the [2-2H]glucose data (Figure 6.6, upper panel). This provided a relatively 
stable endogenous tracer-to-tracee ratio, or [3-3H]glucose over endogenous 
glucose concentration (Figure 6.6, middle panel), thus allowing a presumably 
accurate estimate of P(t) (Figure 6.6, lower panel). It is interesting to observe 
that in the period when P(t) was inhibited (0-200 min), the clamp of endoge- 
nous glucose concentration was reasonably good. Clamping Zend(t) between 
200 and 320 min was more difficult because the time when P(t) began its 
resumption to the basal level varied markedly among subjects. In that period, 
both tracer and endogenous glucose concentration were very low so that their 
ratio was extremely sensitive to changes in either tracer or endogenous glucose 
concentration. Thus, even a small increase in tracer concentration not accom- 
panied by a concomitant increase in endogenous glucose concentration induced 
a noticeable increase in Zend(t). 

It is worth noting that such a dual-tracer protocol allows minimisation 
of the nonsteady-state error associated with the estimate of P(t), but not of 
the error associated with the estimate of Ra(t). In fact, whereas the estimate 
of P(t) relies on the tracer-to-tracee ratio of the plasma concentrations of 
the intravenous tracer and endogenous glucose, the estimate of Ra(t) relies 
on the tracer-to-tracee ratio of the plasma concentrations of the same tracer 
and total glucose. If the former z(t) is almost constant, the latter will change 
considerably, thus making it difficult to accurately estimate Ra(t). In particular, 
one can expect an underestimation of Ra(t) in the initial part of the test (when 
z(t) increases) and a subsequent overestimation (when z(t) decreases). Of 
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Figure 6.6. The tracer-to-tracee-ratio clamp technique for estimating glucose production during 
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course, the same trend can be expected for the estimate of the appearance rate 
of the glucose administered orally, which can be derived by subtracting P(t) 
from Ra(t). To accurately estimate Ra(t), one must resort to a third tracer 
that will be administered intravenously as a primed continuous infusion in the 
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premeal steady state and as a variable infusion during the meal in such a way 
as to mimic the expected time course of Ra(t). 

6.6.2. ASSESSMENT OF Rd AND U 

In nonsteady state, Rd(t) and U(t) are no longer equal, and, in general, both 
of them require a model of system to be estimated (Mari et al., 1994; Caumo 
et al., 1995). Nevertheless, it is easy to recognise that the assessment of Rd(t) 
is less problematic than that of U(t) because of the different relationship that 
these two fluxes have with Ra(t): 

dQl(t) 
Rd(t) = Ra(t) (6.28) 

dt 
dQT(t) 

U(t) = Ra(t) - (6.29) 
dt 

Both Rd(t) and U(t) can be derived from Ra(t), which, as shown previously, 
can be accurately calculated, even with an approximate model, by resorting 
to the tracer-to-tracee ratio clamp. However, whereas the estimation of Rd(t) 
requires only measurement of the rate of change of the substance mass in 
the accessible pool, estimation of U(t) requires the knowledge of the rate of 
change of the substance mass in the nonaccessible compartments as well. Esti- 
mation of Rd(t) is thus relatively easier than that of U(t). In fact, if the volume 
of the accessible pool is available, Rd(t) can be accurately measured ~ without 
the need of postulating a model of the s y s t e m ~ b y  keeping z(t) constant. In 
contrast, the estimation of U(t) always requires a model of the system (acces- 
sible and nonaccessible pools). Despite the fact that Rd(t) pertains only to 
the accessible pool, its estimation is important because its knowledge allows 
inferences concerning U(t). In fact, for a system that starts in steady state, 
goes into a nonsteady-state period, and then returns to the former steady state, 
the following relationship between Rd(t) and U(t) holds (Caumo et al., 1995): 

AUC[Rd(t)] -- AUC[U(t)] (6.30) 

where A UC denotes the area under the curve. A more specific relationship 
between the time courses of Rd(t) and U(t) during the nonsteady state can be 
derived if one assumes that the only time-varying parameter is the irreversible 
loss of the accessible pool (Caumo et al., 1995). Particularly, for a system that 
goes into a nonsteady-state period in which substance concentration increases, 
one has: 

Rd(t) > U(t) (6.31) 
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Conversely, for a system that goes into a period in which substance concen- 
tration decreases, one has: 

Rd(t) < U(t) (6.32) 

6.7. C O N C L U S I O N S  

In this chapter, focus has been placed on tracer experiment design strate- 
gies needed to quantitate production and utilisation fluxes of a substance 
under both steady- and nonsteady-state conditions. The steady-state problem is 
easy to tackle, and it has been emphasised that, under steady-state conditions, 
approaches to a rapid attainment of the tracer steady state require attention in 
selecting the ratio between the priming dose and the constant infusion. The 
nonsteady-state situation is far more complex, and the adoption of "intelli- 
gent" infusion strategies becomes a must. In particular, it has been shown 
that, under nonsteady-state conditions, the tracer infusion should be varied in 
such a way that the tracer-to-tracee ratio remains as constant as possible to 
reduce the impact of model error. In this context, the partitioning of the tracee 
source and concentration into two components, endogenous and exogenous, 
provides a general framework that helps the investigator to achieve this goal 
under various experimental conditions. 
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Chapter 7 

Physiological Modelling 
of Positron Emission 
Tomography Images 

Alessandra Bertoldo and Claudio Cobelli 

7.1. INTRODUCTION 

Positron emission tomography (PET) has made it possible to detect accu- 
rately and noninvasively at the regional level (i.e., organ and tissue), the 
in vivo concentration of radiopharmaceuticals tagged with positron emitters. 
Image analysis can be made both qualitatively and quantitatively. For some 
clinical PET studies, a qualitative analysis is appropriate to answer biolog- 
ical questions, such as when the localisation of metabolic defects is the 
principal purpose of the study. However, quantitative information often is 
necessary, and this requires interpretation of the PET tracer measurement 
with a mathematical model of the underlying physiological process. PET 
kinetic modelling allows, for example, the estimation of the glucose metabolic 
rate and blood flow in the brain (Phelps et al., 1979; Iida et al., 1986), in 
skeletal muscle (Kelley et al., 1999a; Kelley et al., 1996; Ruotsalainen et al., 
1997), and in myocardium (Gambhir et al., 1989; Bergman et al., 1984), as 
well as estimation of receptor affinity in specific cerebral structures (Wong 
et al., 1986). After presenting fundamentals on modelling strategies and on 
measurement error, this chapter gives the quantitation of three physiolog- 
ical processes, namely, glucose metabolism, blood flow, and ligand-receptor 
interaction. 
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7.2. M O D E L L I N G  S T R A T E G I E S  

Various models have been proposed in the past 20 years to convert the 
radioactive tracer concentrations detected by a PET tomograph in an organ or 
tissue (more precisely, in a region of interest [ROI] or in a unit of image [pixel 
or voxel]) into measures of physiological parameters. The most frequently 
used belong to three model classes: compartmental models, input-output (I/O) 
models, and graphical methods. While I/O models and graphical methods are 
essentially linear modelling techniques used for quantitation of physiological 
systems in steady state, compartmental models can be linear or nonlinear and 
also can describe their nonsteady-state behaviour. In addition, the quantitative 
physiological portrait provided by compartmental models is richer than the 
one of I/O models and graphical methods. Clearly, all this is at the expense 
of an increased modelling effort. 

Compartmental  models are widely employed for describing regional tra- 
cer kinetics since the landmark contribution of Sokoloff et al. (1977). One 
must postulate a linear or nonlinear structure in number of compartments and 
interconnections and resolve it from the data (Carson et al., 1983; Jacquez, 
1996; Cobelli et al., 2000). The structure must have firm and sound grounds in 
biochemistry and physiology since one usually describes the intimate function 
of the system in terms of diffusion, transport, metabolism, or receptor-ligand 
binding. In the following paragraph, we will see several examples of linear 
and nonlinear compartmental models discussing glucose metabolism, blood 
flow, and receptor-ligand interaction. More details are given on the theory of 
compartmental models and their identification from the data in several other 
studies (Carson et al., 1983; Jacquez, 1996; Cobelli et al., 2000). 

Input -output  models give, at variance with compartmental models, only 
a black-box representation of the physiological system. The most widely 
employed I/O model is the so-called spectral analysis (SA) method introduced 
by Cunnigham et al. (1993) and generalised by Bertoldo et al. (1999). If the 
system is linear, the impulse response can be written as: 

M 

h(t) = Z ~ e-~jt (7.1) 
j = l  

with/~j > 0, for every j, and the tissue tracer concentration Ci(t) is simply 
the convolution of h(t) with the plasma tracer concentration C p(t): 

M t 

Ci(t) : Z Olj fo CP('c)e-~J(t-r)dz (7.2) 
j = l  
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The estimation of c~j and /Sj from the data provides useful insight into the 
system behaviour. For the sake of reasoning, let's make a distinction between 
low, intermediate, and high eigenvalues /~j (also referred to as frequency 
components, thus the term spectral analysis). 

The amplitude ct corresponding to the highest eigenvalue (/~ ~ oo) gives 
a measure of the vasculature within the ROI since fo C p (r)e-~(t-~)dr 
(1/~)Cp(t). The number of amplitudes O~ i corresponding to the intermediate/~i 
gives the number of reversible compartments that can be discriminated in the 
tissue. However, nothing can be said in terms of compartment connectivity; 
for example, two amplitudes at the intermediate frequencies do not establish 
whether the corresponding reversible tissue compartments are parallel (hetero- 
geneous tissue) or in cascade (homogeneous tissue) since these two structures 
are kinetically indistinguishable. Finally, the amplitude ct corresponding to 
the lowest eigenvalue (/~ ~ 0) reveals the presence of an irreversible process 
within the region since fo C p (r)e-~(t-r)dr ~ fo C p(r)dv. 

Thus, the intermediate- and low-frequency components of the spectrum 
reflect the extravascular behaviour of the tracer or the activity of the tracer 
within the tissue. 

These models, by definition, cannot provide a physiological interpretation 
of the system but are of tremendous help in the model selection process. In 
fact, if used in conjunction with sound parameter-estimation techniques and 
parsimony criteria (Bertoldo et al., 1999), they provide a statistically sound, 
model-independent guide to characterise the reversible and irreversible system 
components and estimate the minimum number of system compartments. 
Sometimes SA also is used to obtain kinetic parameters of the system (Meikle 
et al., 1998a; Meikle et al., 1998b; Richardson et al., 1996; Turkheimer et al., 
1994). However, in this case it is associated with a specific compartmental 
or noncompartmental system structure and thus gives the same answer of the 
underlying model. 

Graphical methods  are appealingly easy to use and for this reason are 
very popular in the quantitation of PET images. Generally, they estimate the 
physiological parameters by performing simple calculations on the plasma 
and tissue time activity curves. Even if these methods are easily implemented, 
one has to keep in mind the hypotheses on which they are based. Graph- 
ical methods emerge from simplifying a more complex system model, often 
compartmental, so violation of these simplifying assumptions can lead to an 
unreliable or an under- or overestimate of the physiological parameter. Finally, 
these models allow only the estimation of some macroscopic parameters and do 
not portray the microscopic nature of the physiological process. For example, 
in a study with a PET glucose analogue, a graphical method can provide 
the metabolic rate of glucose but not the rate constants of transport into and 
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out of the tissue. In sections 7.4 and 7.6, we shall discuss two widely used 
graphical methods for quantifying glucose metabolism and ligand-receptor 
interaction. 

7.3. P O S I T R O N  E M I S S I O N  T O M O G R A P H Y  
MEASUREMENT ERROR 

A reliable description of PET measurement error is crucial for sound model 
identification and for estimation of the physiological parameter of interest. An 
important practical limitation of radionuclide imaging and of PET in particular 
is the small number of counts and the resulting large statistical uncertainty 
(noise). In digital scintigraphic images, each picture element (pixel or voxel in 
three-dimensional [3-D] reconstruction method) is characterised by a number 
of counts. From radioactive tracer theory, the random error of the number 
of counts in a given pixel is characterised by Poisson statistics, which are 
variance equal to the counts, if the pixel count is independent of that in 
the other image pixels. This is not true in PET. Specifically, in tomographic 
image reconstruction by filtered back-projection, the counts in a given bin of 
the projection image data are distributed among the pixels along the sampling 
line and subsequently removed from the inappropriate pixels by mathematical 
filtering. Thus, the arithmetic operations composing back-projection propagate 
the random error in the projection image data among all the pixels along the 
sampling line. 

Although it is difficult to generally characterise the statistical uncertainty in 
tomographic images, there has been significant work in describing the noise in 
two-dimensional (2-D) PET images (Alpert et al., 1982; Budinger et al., 1978; 
Budinger et al., 1977; Carson et al., 1993; Huesman et al., 1984; Huesman 
et al., 1977), while less is available for the 3-D images (Defrise et al., 1990; 
Pajevic et al., 1998). One of the first contributions was that of Budinger et al. 
(1977), where the percent standard deviation (%SD) in a single uniform object 
in a tomographic image reconstructed by using a ramp filter was derived as" 

(number of resolution cells in the object) 3/4 
%SD = 1.2 x 100 (7.3) 

(total number of events)l/2 

where the factor 1.2 is related to the particular form of the filter function 
(a ramp here) and a resolution cell is a square area within the object whose 
sides are equal to the linear sampling distance. The formula also shows the 
relationship between the total number of counts required to achieve a speci- 
fied %SD and the number of resolution cells in an object in a reconstructed 
tomographic image. For example, to achieve a 20% uncertainty in an image of 
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3 �9 10 3 resolution cells, the formula predicts that 6 .10  6 total events are neces- 
sary; however, if one increases to 104 the resolution cell number, 36.106 total 
events are required. 

This simple equation has been widely used to describe ROI noise, but it 
does not explicitly account for the many factors that contribute to noise in both 
2-D and 3-D PET images, such as attenuation, correction for random coin- 
cidences, correction for scattered radiation, and change in statistical quality 
due to radioactive decay during measurement with short-lived radionuclides. 
Alpert et al. (1982), observed that in 2-D PET the measured coincidence can 
be considered the sum of three factors" the true coincidence, the random 
coincidence, and the scatter measured values. Thus, the recovery of the true 
coincidence rate can be obtained at the expense of an increase in the statistical 
noise due to the subtraction of two "not true" values. However, prompt scatter 
is not easily measurable and usually is minimised by appropriate shielding 
of the tomograph, whereas random coincidence rates can be routinely esti- 
mated during each experiment. Neglecting the prompt scatter contribution, 
the true coincidence values can be estimated by subtracting the random coin- 
cidences from the measured ones. Moreover, photon attenuation decreases 
the signal, thereby increasing the relative noise level. A variance formula 
has been derived that explicitly includes all these effects. In particular, if the 
filtered back-projection algorithm is employed, the reconstructed concentration 
of radioactivity, C, and its variance, 82, are given by: 

C(x , y )  ('n')2~ i "-- - -  [ p p ( t ~ j ,  U) -- b r ( ~ j ,  u)]AM(t~j, u)S(u)h(x' - u)du 
m j=l  

(7.4) 

~ 2 ( x ,  y ) " -  - -  [ b p ( t ~ j ,  U) -- b r ( ~ j ,  u)]a2M(q~j, u)S2(u)h2( x' -- u ) d u  
m j=l  

(7.5) 
where 4~ is the projection angle, p the projection measurement, h the recon- 
struction filter, m the number of projections, A the attenuation correction, S the 
correction factor for detector nonuniformity (assumed to be noiseless), with 
subscripts p and r denoting measured and random coincidences, respectively. 

Huesman et al. (1977, 1984) derived a formula to calculate 2-D ROI 
variance directly from the projection data without image reconstruction, but 
usually ROIs are drawn on images long after data acquisition. To permit a 
more practical approach, Carson et al. (1993) developed an approximation 
formula that determines the variance of ROI values without using the raw 
data projection data like in the formula of Huesman et al. This formula was 
derived by applying a series of approximations to the filtered back-projection 
reconstruction algorithm and gives an approximation of the variance of an 
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arbitrary ROI and not an exact value like the one derived in Alpert et al. 
(1982). In particular, it requires the filtered back-projection algorithm and 
accounts for radioactivity distribution, attenuation, randoms, scatter, deadtime, 
detector normalisation, scan length, decay, and reconstruction filter. If F is the 
mean value of the n pixels in the ROI: 

F - - -  f i  
n 

i=1 
(7.6) 

where f i is the individual pixel value, the variance of the ROI value is 
given by: 

1 n ~-~ I~/r ~ ~-~ 
f f 2 ( F )  --  n-2 Z C o v ( f i ,  f j )  ~ - ~  p (d i , j )  

i=1 j = l  i=1 j = l  
(7.7) 

where cr 2 is the variance of the ROI, I71 the average pixel variance within the 
ROI, n number of pixels in the ROI, Cov the covariance matrix, and p ( d )  is 
the predicted correlation as a function of interpixel distance. It is possible to 
show that: 

o-2(F) = ~-~ 

i=1 j=l 

rl0 rir 

Z Z h C i ) t , ( J ) a 2  . 2  tra2 
r,O"r,O'Xr, O"" r,O "" r P r ,  O 

0=1 r=l 

it,,(i) ~2A2 M2 2 2 2 2 2 ~,t'r,O) Zar, O'" r, oWr Pr, O (h(r,J0)) Ar, oNr, oWr Pr, O 
r=l r=l 

(7.8) 

where /a ( i )  is the reconstruction matrix value for the pixel i, Ar, o the attenuation 
correction factor, Nr, o the normalisation correction factor, Wr, o the wobble 
correction factor, and Pr, o the total counts for angle 0 and ray r. 

All these formulae require some knowledge of the tomographic device and 
reconstruction method. To overcome potential difficulties in using (7.5) or (7.8) 
to estimate the variance, Mazoyer et al. (1986)  presented a simple formula for 
the variance of measurement error: 

tr 2 C( tk )  _ _ C( tk )  (7.9) 
c(tk) = t k -  t k -1  Atk  

where C(tk)  represents the mean value of the activity, a(t), over the time 
interval Atk = tk -- tk-1, meaning a(tk)  = C( tk )  . Atk .  Note that if a(tk)  has a 
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Poisson distribution, this m e a n s  0"2 - -  a(tk),  C(tk)  has a variance: a(tk) 

0"2 a ( t k )  C ( t k )  0"2 a(tk ) __ 
C(tk) = A t  E A t  2 -- Atk 

(7.10) 

This approach was used by Delforge et al. (1990, 1995, 1999) in studies on 
receptor-ligand system and recently by ourselves in brain and myocardium 
glucose metabolism human studies (Bertoldo et al., 1998). This formula is 
appealing because it is independent from the particular PET scanner and recon- 
struction algorithm. The formula assumes that the noise of C (tk) is independent 
of the activities in the neighbouring ROI or pixel area. 

Three-dimensional PET offers higher sensitivity than 2-D PET because of 
the increased number of lines of response (LOR) detected in 3-D PET when 
the septa are removed. However, this increase in sensitivity is not uniform 
throughout the whole image volume. In the region near both ends of the 
scanner, the sensitivity is lower than in the central regions because fewer 
oblique LORs are detected. Therefore, the noise also becomes a function of the 
spatial location of the concerned region. Pajevic et al. (1998) have analysed 
the noise characteristic of 2-D and 3-D images obtained from the General 
Electric Advance PET scanner. The results of this study show that 3-D noise 
decreases by 9, 15, and 18% with respect to 2-D for ROIs that cover 2, 4, 
and 10 slices, respectively, in the central regions of the scanner, and the ROI 
noise ratio between 3-D and 2-D is independent of the transaxial dimension 
of the ROI. 

7.4. M O D E L S  O F  R E G I O N A L  G L U C O S E  M E T A B O L I S M  

The ideal tracer to quantitate regional glucose metabolism is [llC]-glucose. 
However, the interpretative model of its tissue activity must describe the 
complexity of [11C]_glucose kinetics, which means it has to explicitly account 
for its metabolic products along the glycolysis and glycogenosynthesis path- 
ways. A rich compartmental model is probably the model of choice, but there is 
a necessarily limited information content of PET data. A parsimonious model 
has been proposed by Blomqvist et al. (1985, 1990) and used by Powers et al. 
(1995) and Fanelli et al. (1998). 

The difficulties in handling the complexity of 11 C-glucose kinetics has favoured 
an alternative strategy inspired by the landmark model of 2-[14C]Deoxiglucose 
kinetics developed by Sokoloff et al. (1977) in the brain. The elected tracer was 
[18F]fluorodeoxyglucose ([18F]FDG). [18F]FDG is a glucose analogue, which 
competes with glucose for facilitated transport sites and with hexokinase for 
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phosphorylation to [laF]FDG-6-phosphate ([18F]FDG-6-P). The advantage of 
this analogue is that [18F]FDG-6-P is trapped in the tissue and released very 
slowly. In other words, [18F]FDG-6-P cannot be metabolised further, while 
glucose-6-P does so along the glycolysis and glycogenosynthesis pathways. The 
major disadvantage of [18F]FDG is the necessity to correct for the differences 
in transport and phosphorylation between the analogue [18F]FDG and glucose. 
A correction factor called lumped constant (LC) can be employed to convert 
[lSF]FDG fractional uptake (but not the microscopic [18F]FDG transport rate 
parameters) to that of glucose. The value of LC is dependent upon the type of 
tissue (brain, skeletal muscle, myocardium) and may also be dependent upon 
specific study conditions, such as insulin and competing substrate concentra- 
tions or oxygen availability. Several studies are available on LC in the human 
brain (Hasselbalch et  al. ,  1996; Spence et  al., 1998) and myocardium (Botker 
et  al.,  1999; Krivokapich et  al., 1987) tissue, but few in human skeletal muscle 
(Utriainen et  al., 1998; Kelley et al., 1999b). 

In Section 7.4.1, we discuss first the [llC]glucose model and then the 
various [18F]FDG models that have been proposed for regional studies of 
glucose metabolism. Glucose metabolism is assumed in steady state, and tracer 
theory predicts that [llC]glucose and [18F]FDG kinetics are described by linear 
time-invariant differential equations. 

7.4.1. [11C]GLUCOSE MODELS 

[llC]glucose is the ideal tracer to study regional glucose metabolism with 
PET since a rich parametric portrait can be obtained that includes the glucose 
transport and phosphorylation fluxes. However, [l~C]glucose modelling must 
account for the regional loss of all [llC]-metabolites, mainly [11C]CO2. in 
1985, B lomqvist et al. proposed a three-compartment model (Figure 7.1) to 
describe [llC]glucose kinetics in which the loss of tracer was explicitly consid- 
ered. The model is described by the following equations: 

Ce( t )  --  kl C p ( t )  -- (k2 + k3)Ce 

Cm( t )  "- kaCe( t )  - C c ( t )  

Ce(O ) .~- 0 

Cm(O) -~. 0 
(7.11) 

k2 

Figure 7.1. The [llC]glucose model of Blomqvist et al. (1985). 
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where Cp(t) is the arterial concentration of nonmetabolised [llC]glucose in 
plasma, Ce(t) the concentration of [llC]-glucose in tissue, Cm(t) the concen- 
tration of the various [11C]-labelled metabolic products, Cc(t) denotes the 
loss of [llC]glucose metabolites, kl and k2 the rate constants of [llC]glucose 
forward and reverse transcapillary membrane transport, and k3 the rate constant 
of [llC]glucose metabolism. The dephosphorylation process was neglected in 
the model (this parameter is usually denoted k4 in the literature, thus k4 = 0), 
and it also is assumed that there are no recirculating labelled metabolites in 
arterial blood. 

By considering that loss of labelled metabolites besides [llC]CO2 can, to a 
good approximation, be neglected, the average cumulated loss of [11C]glucose 
at different times can be described as: 

Cc(t) = f A Cc(r)dr (7.12) 

where AAv Co(t) is the arteriovenous difference of [ l lc]co2 and f is the tissue 
perfusion (blood flow per unit mass of tissue). For model identification, Cp(t) 
is used as the known noise-free input. The PET measurement is: 

C~(t) = (1 - Vb)(Ce(t) + Cm(t)) + VbCb(t) (7.13) 

where Ci is the total [llc] activity in the tissue, Cb, is the [llC] activity 
in blood, and Vb (unitless) accounts for the vascular volume present in the 
tissue. All the four-model parameters kl, k2, k3, Vb are a priori uniquely iden- 
tifiable (Carson et al., 1983; Cobelli et al., 2000). The model parameters can 
be estimated, as described in Bertoldo et al. (1998), by weighted nonlinear 
least squares minimising the cost function: 

N 
WRSS(p) = ~ wj[C~ -- Ci(p, tj)] 2 (7.14) 

j=l 

where C ~ is the measured PET datum, p the vector of unknown model 
parameters of dimension P, Ci(p, t) the model prediction, and wj the weight 
of the j-th datum chosen optimally (Carson et al., 1983) as" 

Atj (7.15) 
W j = cobs ( t j ) 

c~ where At j is the length of the scanning interval relative to i j). Precision 
of the parameter estimates can be evaluated from the inverse of the Fisher 
information matrix M by: 

COV(~) - yM -1 (7.16) 
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where y is an unknown proportionality constant estimated a posteriori  (Carson 
et al., 1983; Cobelli et al., 2000) as: 

WRSS(fi) 
y = (7.17) 

N - P  

where WRSS(O) is the value of the cost function evaluated at the minimum. 
The model allows the calculation of the fractional uptake of [llC]glucose: 

klk3 
K = (7.18) 

~2+k3 

and the regional metabolic rate of glucose as" 

klk3 
- -  ~ C p _ g  (7.19) rGl k2 -5 k3 

where Cp_g is the arterial plasma concentration of glucose. 
Starting from Blomqvist et al. (1990) demonstration that the rate of loss of 

[11C]CO2 is a constant fraction of the available amount of labelled metabolites, 
Powers et al. (1995) introduced into the model of Figure 7.1 a fourth rate 
constant to describe the loss of all labelled metabolites. This model is shown 
in Figure 7.2. 

The model equations are: 

Ce(t) - k lCp( t )  - (k2 -5 k3)Ce(t)  Ce(O) = 0 

Cm(t) -- k3Ce(t) - ksCm(t)  Cm(O) = 0 

Cvb(t) ---- ksCm(t)  - k6Cvb(t) Cvb(O) = 0 (7.20) 

where Cp, Ce, Cm, kl, k2, and k3 have the same meanings as before, Cvb(t) 
represents the vascular concentration of the metabolites normalised to tissue 
volume, k5 the rate constant describing [llC]glucose metabolites leaving the 
tissue, and k6 the rate constant of [llC]glucose metabolites washout. In partic- 
ular, k6 is defined as f / V b ,  or the reciprocal of the vascular mean transit 
time. 

The PET measurement is described by: 

Ci(t)  = (1 - Vb)(Ce(t)  -5 Cm(t) + Cvb(t)) + VbCb(t ) )  (7.21) 

k 6  
v 

Figure 7.2. The 11 C-glucose model of Powers et al. (1995). 
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where Ci is total [llc] activity in the tissue and Cb is [llC]glucose activity 
in blood. The model is a priori nonuniquely identifiable (Carson et al., 1983; 
Cobelli et al., 2000). It becomes a priori uniquely identifiable if k6 is assumed 
to be known. Since k6 = f / V b ,  one can use values for Vb and f previously 
obtained by quantitative analysis of PET images employing, respectively, the 
[150]CO and [150]H20 tracers. The fractional uptake of [llC]glucose, K, and 
the regional metabolic rate of glucose, rG1, can be estimated by using (7.18) 
and (7.19). This model does not require venous sampling for [11C]glucose 
metabolites and does not assume that the loss of labelled metabolites is propor- 
tional to regional blood flow. This model has been used by Fanelli et al. (1998) 
to measure brain glucose metabolic rate in poorly controlled insulin-dependent 
diabetes. 

7.4.2. [18FlFDG MODELS 

The 3K Model  

The two-tissue three-compartment rate constants model, 3K, proposed by 
Sokoloff et al. (1977) was originally developed for autoradiographic studies 
in the brain with 2-[lnC]deoxyglucose as tracer and subsequently used for 
PET [18F]FDG studies in the brain and other tissues organs. The 3K model 
of [18F]FDG kinetics of Sokoloff et al. is shown in Figure 7.3, where C~ is 
[18F]FDG plasma arterial concentration, Ce* the [18F]FDG tissue concentration, 
C* [18F]FDG-6-P concentration in tissue, k~' and k~, respectively, the rate 
constants of [18F]FDG forward and reverse transcapillary membrane transport, 
and kJ the rate constant of [18F]FDG phosphorylation. The asterisk indicates 
a tracer analogue and not an ideal tracer; for example, the k* of Figure 7.3. 
are different from the ki of Figure 7.2. 

The kinetics of [18F]FDG in the tissue is described by: 

= * ( t ) - ( k ~ +  * * �9 k 3 )C e ( t )  Ce(t ) k~Cp 

d~*~ (t) = k~ C; (t) 

Ce*(O) = 0 

C*m(O) = 0 
(7.22) 

v , k3 

Figure 7.3. The 3K model. 
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At any time following the introduction of [18F]FDG into the blood, the total 
concentration of radioactivity in the tissue, C~', is equal to the sum of the 
concentrations of [18F]FDG and [18F]FDG-6-P: 

C* (t) = Ce* (t) + C,~ (t) (7.23) 

With the limited spatial resolution of the PET scanner, however, measurement 
of radioactivity in a ROI includes the radioactivity in the blood volume present 
within the tissue, so the measured tracer activity is the sum of the tissue 
activities and a certain fraction, V~,, of the blood 18F concentration, C~," 

C*(t) = (1 - V~)(C*(t) + C*(t)) + V~C~(t) (7.24) 

In particular, in brain and skeletal muscle, V~ accounts for the vascular volume 
present in the tissue ROI, while, for example, in the heart it mainly accounts 
for the spillover effects from blood to tissue (negligible in brain and skeletal 
muscle). All the four-model parameters k~, k~, k~, V~, are a priori uniquely 
identifiable (Carson et al., 1983; Cobelli et al., 2000). 

The model allows calculation of the fractional uptake of [18F]FDG: 

K * =  k~k~ (7.25) 
+ 

Once K* is known, the regional metabolic rate of glucose can be calculated 
as (Phelps et al., 1979): 

rGl-- k~k~ C p_g (7.26) 
+ k; LC 

where Cp_g is the arterial plasma glucose concentration and LC is the lumped 
constant, or the factor that describes the relation between the glucose analogue 
[18F]FDG and glucose itself. LC is given by: 

EFDG 
LC = (7.27) EGLU 

where E FDG and E GLU are, respectively, tile extraction of [lSF]FDG and 
glucose. For the 3K model, LC becomes: 

k~k~ / klk3 
LC = k~. + k~' k2 q- k3 (7.28) 

The 4K Model  

In 1979, Phelps et al. proposed a modification of the 3K model by observing 
that after 120 minutes, following a pulse of [ISF]FDG, total tissue activity was 
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k; 

Figure 7.4. The 4K model. 
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declining, thus indicating a loss of product. The authors allowed dephosphor- 
ylation of [18F]FDG-6-P, thus an additional rate constant was incorporated 
into the 3K model, which becomes a four-rate constants model (4K). The 4K 
model is shown in Figure 7.4. The meaning of Cp, C e, C m and of the rate 
constants is the same as for the 3K model, while k,~ is the dephosphorylation 
rate constant. 

The model equations of tissue activity are: 

C*(t) = k~Cp( t )  - (k~ + kJ)C*(t)  + k~C*( t )  
C*  (t) -- kJ C* (t) - k~ C*  (t) 

c*(o )  = o 
(7.29) 

c ; , ( o )  = o 

The PET measurement equation is the same as that of the 3K model (7.24). All 
model parameters (k~{, k~z, k~, k~, V~ ) are a priori uniquely identifiable (Carson 
et al., 1983; Cobelli et al., 2000). Also, for the 4K model, a measure can be 
obtained of the fractional uptake of [18F]FDG and of regional metabolic rate of 
glucose: they are given by (7.25) and (7.26), respectively (Phelps et al., 1979). 

T h e  H e t e r o g e n e o u s  M o d e l  

Schmidt et al. (1991, 1992) proposed a model that accounts for the hetero- 
geneous composure of a tissue. In fact, the regions represented in the PET 
images often are kinetically heterogeneous with respect to structure, blood flow, 
tracer transport, and metabolism, above all for the brain tissue where white 
matter and gray matter are difficult to separate in a single ROI. In addition, 
the limited spatial resolution of the current generation of PET scanners some- 
times does not permit an accurate delimitation of a homogeneous region. The 
model is an extension of the 3K model to a heterogeneous tissue and is shown in 
Figure 7.5. The heterogeneous tissue is assumed to consist of smaller homoge- 
neous subregions. C* 1 , Ce* 2 . . . . .  Ce* ~ represent [lSF]FDG concentration in each 

* * [18F]FDG-6-P concentration in these homogeneous region, C'm1, Cm2 . . . . .  Cmn 
same subregions, k'{i, k~i, kJi the corresponding rate constants for transport and 
phosphorylation of [18F]FDG, and Cp (t) arterial plasma concentration. 

The model assumptions are the same as those of the 3K model, only the 
tissue is now considered heterogeneous. The differential equations describing 
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Figure 7.5. The TH model. 

the rate of change of [18F]FDG in each subregion are: 

dC*l(t) 
dt = k ~ l  * �9 �9 �9 C p ( t )  - (k21 if- k31)Cel (t) C*l (o) - o 

dC*2 (t) 
dt = kl* 2 C*p ( t ) -  (k2* 2 + k32" )C:2 (t) Ce*2(O ) - -  0 

(7.30) 

d C * n ( t )  
dt = kl* C*p (t) - (k~n + k3* )C* n (t) c Z  (o) = o 

Consequently, the rate of change of [18F]FDG in the heterogeneous tissue 
can be found by summing up the concentration in each subregion weighted 
by its relative tissue mass, Wl, w 2 , . . . ,  Wn with ~-']in=l wi - 1" 

(7.31) 
where Ce* (t) gives the [18F]FDG concentration in the heterogeneous tissue. By 
defining: 

N 

k 1 = Wikli (7.32) 
i=1 
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after a simple manipulation one has: 

Defining: 

d-C*e (t ) 
dt  

- - *  * ( t )  - -  "-k lC p 

wi(kzi -Jr k3i )C ei(t) 
i=1 ~ *  ---g-- . . . . . .  Ce (t ) 

[ Z  Wife* (t )] 
ki=l d 

~-~ wik2* C*i(t ) 
k~ ( t ) - - / = 1  

n 

Z * WiCei(t) 
i=1 

(7.33) 

(7.34) 

as the parameter describing the efflux of [18F]FDG from the heterogeneous 
tissue to plasma, and 

n 

* , wik3iCei(t) 
k~'(t) = i=1 (7.35) 

~-~ wiC*i(t ) 
i=l 

as the parameter describing phosphorylation of [18F]FDG to [18F]FDG-6-P, 
then [18F]FDG concentration in the tissue becomes: 

d-C* (t) 
dt  

- - *  , * * 

- -  kl Cp(t)  - (k2 (t) d- k3 (t))-C* (t) 

The rate of change of [18F]FDG-6-P in each subregion is given by: 

dC * l ( t )  
dt  = k~lC* l(t) C* 1 (0) = 0 

dC*2(t )  
dt  -- ka2Ce2(t) Cm2(0 ) --  0 

(7.36) 

(7.37) 

dC*n( t )  
dt  = k3* Ce*n (t) C* n (0) = 0 

and thus the rate of change of [18F]FDG-6-P in the heterogeneous tissue, C*, 
becomes: 

d-C* (t) , _ ,  
dt  - k3 (t)Ce (t) (7.38) 
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Figure 7.6. The time-variant TH model. 

Thus, the resulting model becomes time-variant (Figure 7.6): 
"..-5-* - - ,  * 

C, = k~ Cp (t) - [k 2 (t) + k; (t)]C e (t) Ce (0) = 0 
_ ,  (7.39) 
Cm(t ) = k;(t)-C*e (t ) -C* (O) = 0 

The time-varying parameters for efflux and phosphorylation have been descri- 
bed by an exponential function as: 

k~(t) = k2(1 + ae  - s ' )  
(7.40) 

k~(t) = k3(1 + ae  -m)  

The PET measurement is described by: 

C~,(t) = (1 - V;)(Ce*(t) + C--*m(t)) + V;C; ( t )  (7.41) 

All model parameters, k 1 , k 2, k 3, A, B, V~, are a priori uniquely identifiable 
(Carson et al., 1983; Cobelli et al., 2000). [18F]FDG fractional uptake K* can 
be calculated as (Bertoldo et al., 1998): 

N N �9 �9 
�9 Z kljkaj+ K* - ~ wjKj  = Wj k* k*. 

j=l  j= l  2j "":~J 

_ _ ,  m ,  

klk3 
k 2 + k 3 

(7.42) 

Finally, the regional metabolic rate of glucose is given by: 

klk 3 Cp_g 
rGl = _. _. 

k 2 + k 3 LC 
(7.43) 

The Patlak Graphical Method 

Patlak et al. (1983) have developed a graphical method to estimate the 
regional metabolic glucose rate starting from a general compartmental model 
of blood-tissue exchange, which means no particular arrangement or number of 
compartments is assumed, We have to refer the reader to the original reference 
for the mathematical details and will focus here on the essential ingredients 
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of the method. By using the tracer tissue and plasma measurements, one plots 
the points on a Cartesian plane: 

f0 t (r)d r C p* C* (t) 
x = , y = (7.44) 

C;(t) C;(t) 

If there is a time t* such that for all t > t* the amount in the exchangeable 
compartments is in equilibrium with the plasma tracer concentration, then, if 
the resultant curve for t > t* is a straight line, there is a completely irreversible 
region where a tracer can enter but cannot move back into blood or into the 
exchangeable tissue compartments. If, on the contrary, the resultant curve for 
t > t* is a straight line parallel to the abscissa (with slope equal to 0), there is 
no irreversible region, only reversible regions. Finally, if the resultant curve 
for t > t* is concave, there is a noncompletely irreversible compartment so 
that there is a slow loss of the tracer from this compartment to blood. 

This graphical method applies equally well to heterogeneous and homoge- 
neous tissues (Patlak et al., 1985). In particular, when the Patlak plot is used 
with [18F]FDG data, if one has a straight line with slope equal to m, then 
k,~ = 0, thus 3K and TH models are correct and rGl can be calculated as: 

Cp 
rGl = m (7.45) 

LC 

If, on the contrary, the curve is concave, k,~ # 0 and the quantitation of the 
glucose metabolic rate is more complex. 

However, the apparent simplicity of this method is limited by the difficulty 
to objectively determine the time t* after which all the tissue pools can be 
considered in equilibrium with the blood pool. An incorrect t* value can, 
for example, lead to the conclusion of a product loss from the irreversible 
compartment, meaning a concave curve for t > t*, while this is only due 
to the lack of equilibration between tissue and plasma compartments. The t* 
value changes with different tracers and different tissue regions. In some cases, 
t* may exceed the time over which a particular experiment can be run, and 
this makes the method unusable. Finally, the Patlak method permits neither to 
understand if the tissue is homogeneous nor to estimate other physiological 
parameters of interest such as the blood-tissue exchange parameters. 

7.5. MODELS OF [150]H20 KINETICS TO ASSESS 
BLOOD FLOW 

In the past, various techniques and models for in vivo measurement of 
blood flow in humans have been developed using as PET tracers [150]H20 
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and [13N]NH3. The basis is the Kety and Schmidt method (Kety and Schmidt, 
1948), which utilises low concentrations of a freely diffusible, chemically inert 
gas (N20) and is based on the Fick principle. If a chemically inert substance, 
which is one that is neither consumed nor produced by the organ or tissue, 
is introduced into the blood, the amount of the tracer in the organ depends 
on the difference in rates at which the tracer is brought to the organ by the 
arterial blood and removed from it by the venous blood: 

dQ( t ) / d t  -- FACA (t) -- F v C v ( t )  (7.46) 

where Q(t) is the tracer amount in the organ or tissue; FA and F v  are the 
steady-state rates of arterial inflow and venous outflow, respectively; CA (t) and 
Cv( t )  are the concentrations of the tracer in the arterial and venous blood. 

In steady state, FA -- Fv  = F and the equation becomes: 

dQ( t ) / d t  = F[CA (t) -- Cv(t)]  (7.47) 

For tissues that are homogeneous with respect to the rate of perfusion and 
solubility of tracer, the following equation holds: 

d a i ( t ) / d t  = Fi[Ca(t)  -- Cvi(t)] (7.48) 

where Qi(t) is the quantity of tracer in the homogeneous tissue i; Fi [ml/min] 
is the steady-state rate of blood flow through tissue i; Cvi is the venous tracer 
concentration in the homogenous tissue i. The difference between homoge- 
neous and heterogeneous tissue is important if one considers, for example, 
brain studies. The brain is a heterogeneous organ with many component struc- 
tures functioning more or less autonomously (Sokoloff, 1996). Consequently, 
blood flow differs in these different structures accordingly with the variety of 
regulated local functions and the metabolic needs of the structural units. 

For a chemically inert tracer, the difference between arterial and venous 
concentrations can be expressed as (Kety et al., 1951): 

[CA (t) - C v i  (t)] -- miCA (t) - -  C i ( t ) / Z i ]  (7.49) 

where Ci is the tracer concentration in tissue i, ~.i [ml/ml] is the tissue/blood 
partition coefficient for the tracer in tissue i defined as: 

Cti~su~(t) 
~,i : lim (7.50) 

t ~ o o  Cblood ( t )  

and m is a constant between 0 and 1 that represents the effect of actors such as 
arteriovenous shunts presence and capillary impermeability that limit the equi- 
libration of the tissue with the blood. In the absence of arteriovenous shunts 
and diffusion limitations of the tracer, m = 1. Dividing (7.48) by the mass of 
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tissue i, Wi [gr], and using (7.49), one has: 

_ mFi  mFi  d C i ( t )  _ mFi  [~iCA(t) -- Ci(t)] = CA(t)  -- Ci ( t )  (7.51) 
dt  ~.iWi Wi 1.iWi 

where Fi/Wi [ml/g/min] is the rate of blood flow per unit mass of tissue, and 
it is more properly denoted as perfusion, f i: 

d C i ( t )  m 
= m f i C a ( t )  -- T - - f iC i ( t )  (7.52) 

dt  hi  

Even if Kety and Schmidt have developed their method by using N20, the 
equations also can be applied when the tracer is not a gas. However, it is 
essential that the tracer be physiologically inert in the concentrations employed 
and capable of diffusing rapidly. 

[150]H20 is the most frequently used positron-emitting tracer for the 
measurement of blood perfusion by PET. By using [150]H20, it was possible 
to develop a simple, reliable, and noninvasive method to quantitate cerebral 
blood flow (Iida et al., 1986) and skeletal muscle blood flow (Ruotsalainen 
et al., 1997) in humans. The method does not require the use of local 
anaesthesia, and, consequently, it minimises the possibility of functional 
alterations in the tissue or organ. However, [150]H20 tracer is not the only 
one used to measure blood flow with PET. Often, for myocardial blood 
flow, [13N]-labelled ammonia is preferred even if the compartmental model 
needed to describe the [13N]-ammonia ([13N]NH3) is more complex than the 
[150]H20 one. The advantage is that [13N]NH3 gives high-contrast, cross- 
sectional images of the myocardium since the tracer moves from the vascular 
space to tissue by both active transport (sodium-potassium pump) and passive 
diffusion. Once inside cells, this tracer is metabolised on the contrary of 
labelled water. These properties together with the high tissue retention fraction 
permit to obtain high-contrast, cross-sectional images of the myocardium. 

[150]H20 tracer has the important property that once introduced into the 
tissue or organ, it is not involved in any biochemical reaction (i.e., inert tracer). 
Moreover, [150]H20 is nearly completely diffusible (even if Eichling et al., 
1974, showed that there is some limitation in the [150]H20 diffusion) so that 
the m ~ 1 approximation is reasonable. 

The transport of [150]H20 across the capillary wall is quite fast. 
Furthermore, the cell membrane usually is not a large barrier for water 
transport. Therefore, the vascular, interstitial, and cellular spaces can be 
merged into a single compartment. At this point, it is simple to develop the 
compartmental model (Figure 7.7) to describe the [150]H20 tracer kinetics 
under the hypotheses that the tissue is homogeneous and that the tracer is 
physiologically inert at the concentrations employed and is capable of diffusing 
rapidly across the capillary wall. 
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Figure 7.7. 

kl 

k2 

The compartmental model for the blood flow estimation with [150]H20. 

By defining kl = f i  [ml/gr/min], k2 -- f i /~. i  [1/min] one has" 

dCi(t)  
= klCa(t)  - k2Ci(t) Ci(O) -- 0 (7.53) 

dt 

where Ci(t) is the tissue concentration of [150]H20 and CA(t) is its arterial 
plasma concentration. The knowledge of the two tracer concentration curves 
allows the estimation of the two-model parameters and thus of kl/k2 -" )~i. 

The two parameters of physiological interest are f i  (reported as rBF or 
regional blood flow) representing the blood flow value per unit of mass of 
tissue i (perfusion) and the value of the tissue or blood partition coefficient ~.i. 

The use of 150 labelled water has the advantage that it allows a series of 
repeated studies to be carded out in a short experimental time and to follow 
rapid changes in tissue activity after experimental maneuvres like, in the case 
of cerebral tissue, visual or sound stimuli. In dynamic studies with [150]H20 
the PET procedure requires the injection at zero time of a tracer bolus and to 
simultaneously start with the PET scans and arterial blood sampling (usually 
from a radial artery). Since 150 has a half-life of 122.1 s, the total scan 
time is usually less than 3 min; as a result, PET scans and plasma samples 
must be frequent enough to allow, respectively, the correct detection of tracer 
kinetics and an accurate description of the input function. It is, however, 
difficult to obtain exactly the true input function in a human study because 
the measured plasma arterial curve is affected both by external dispersion due 
to the sampling system (blood withdrawal speed and catheter length) and by 
internal dispersion in the arm artery. Another practical problem that might 
degrade the quality of the measured input function is the time shift between 
the measured and the true plasma curve, such as the blood tracer concentration 
in the tissue ROI (Iida et al., 1986). Summarising, the peripherally sampled 
arterial curve, Cc(t), is related to the true input function, CA(t), as: 

Cc(t + At)  = CA (t) (~ d(t)  (7.54) 

where At is the time delay of the peripheral arterial curve relative to the true 
input function and d(t) is the effective dispersion function usually described 
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by using a single exponential function: 

d ( t ) = - r l e x p (  __~t) (7.55) 

Consequently, the true input function that will be the forcing function of the 
model can be obtained from the peripheral arterial curve by using decon- 
volution technique. Even if this technique is widely used to correct the input 
function for delay and dispersion, it is affected by some approximations. First, 
the external dispersion in the sampling system (catheter) depends not only on 
the withdrawal speed and catheter length but also on other factors such as 
the haematocrit value. In addition, both internal and external dispersions are 
described by a simple single exponential, which is probably a rough approxi- 
mation of reality. Starting from these observations and avoiding the invasive 
arterial blood sampling, Watabe et al. (1993) have proposed a new method for 
the calculation of the rBF that involves the elimination of the arterial input 
function term during cerebral studies. The model is based on the assumption 
of two distinct cerebral regions, ROll and ROI2, both described by using the 
compartmental model showed in Figure 7.7: 

dCi l ( t )  
-" k l lCa( t )  -- k21Cil(t) C i l ( 0 )  = 0 (7.56) 

dt 
dCi2(t) 

-- kl2Ca(t) -- k22Ci2(t) Ci2(0) = 0 (7.57) 
dt 

where it is assumed that the input function, Ca(t), is the same for the two 
regions. By integrating (7.56) and (7.57) twice from time 0 to T, one has: 

/0 /0 /0 ' /0 /0 ' Cil( t )d t  -- kll dt Ca(s)ds -- k21 dt Cil(s)ds (7.58) 

fo T foTfo  t fooTfo t Ci2(t)dt -- k12 dt  Ca(s)ds -- k22 dt Ci2(s)ds (7.59) 

From (7.58) and (7.59), the arterial input function can be eliminated to give: 

/0  ll/0  /0 /0 ' Cil (t)dt = ~ Ci2(t)dt + k22 dt Ci2(s)ds 

- k21 dt Cil (s)ds (7.60) 

The method provides regional cerebral blood flow values from the knowledge 
of the two tissue curves of ROI 1 and ROI2 and does not require arterial blood 
sampling. 
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7.6. M O D E L S  OF THE L I G A N D - R E C E P T O R  SYSTEM 

Positron emission tomography allows the study of receptor density and 
radioligand affinity in the brain and myocardium. Quantification of the ligand- 
receptor system is of fundamental importance not only in understanding how 
the brain works (e.g., how it performs the various commands and reacts to 
stimuli) but also in investigating the pathogenesis of important diseases like 
Alzheimer's and Parkinson' s. In recent years, PET has become an increasingly 
used tool to quantitate important parameters, such as the receptor density and 
the binding affinity of radioligands, and several models have been proposed of 
specific ligand-receptor interactions including dopaminergic (Ito et al., 1999; 
Backman et al., 1997; Farde et al., 1989) and benzodiazepimergic (Malizia 
et al., 1998; Sihver et al., 1997; Delforge et al., 1997; Delforge et al., 1995) 
receptors in the brain, and muscarinic binding sites in the myocardium (Le 
Guludec e ta l . ,  1997; Delforge e ta l . ,  1993). In Sections 7.6.1-7.6.4, we 
discuss some of the most representative models. 

7.6.1. THE THREE-AND Two-TISSUE COMPARTMENT MODELS 

The ligand-receptor interactions can be schematised as in Figure 7.8. A 
compartmental model reflecting the major kinetic events is shown in Figure 7.9, 
where C p is the arterial plasma concentration corrected for metabolites, Cf the 
concentration of free ligand, Cns the concentration of nonspecifically bound 
ligand, and C s the concentration of specifically bound ligand. 

Metabolites 

Plasma 

Cp . 

Red blood 
cells 

U 

Tissue 

Nonaccessible receptors 

Cl 

T 1 
Nonspecific sites 

Cns 

Specific 
sites 

Cs 

Figure 7.8. The ligand-receptor system. 
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Figure 7.9. The three-tissue compartment model of the ligand-receptor system. 
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The model equations are: 

C f ( t )  -- k l C p ( t )  - (k2 -k- k3 -k- ks)C f ( t )  + k4Cs(t) + k6Cns(t)C f (O)  = 0 

Cs(t)  -- k3C f ( t )  - k4Cs(t)  Cs(0) = 0 (7.61) 

Cns(t) = k5C f (t) -- k6Cns(t) Cns(O) -- 0 

where kl [ml/ml/min] is the rate constant of transfer from plasma to free 
ligand tissue compartment and k2, k3, k4, ks, k6 are the rate constants of ligand 
transfer from tissue to plasma and inside the tissue. 

To better understand the physiological meaning of parameters k3 and k4, 
let's assume that the binding of the ligand to the receptor site is describable 
as a bimolecular reaction: 

kon 
L + R ~  ) L R  

kon 

where L represents the ligand, R the receptor site, LR the binding product, 
kon is the association rate of the ligand with the receptor sites, and koff the 
dissociation rate of the specifically bound reaction product. In Figure 7.9, one 
has that Cf and Cs represent, L and LR, respectively, thus: 

dC~(t) 
dt  = konC f ( t ) C r ( t )  - koffCs(t) (7.62) 

where Cr denotes the concentration of receptors. If Bmax is the total number 
of available reactions sites, then: 

nmax "- C s -I-Cr (7 .63)  

and, if the ligand is present in tracer concentration, the concentration C s is 
negligible, and thus: 

Bmax ~ Cr (7.64) 
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Equation (7.62) becomes: 

dCs(t) 
dt 

-- konBmaxC f ( t )  - koffCs(t) = k3C f ( t )  - k4Cs(t) (7.65) 

with k3 = konBmax and k4 =/Coil. 
An important parameter is also the equilibrium-binding constant Kd, which 

is defined with the ligand-receptor reaction in steady state as: 

Cs kon 
Kd = CrC f = koff (7.66) 

The PET measurement is the result of the tracer present in the tissue and of that 
present in the blood of the ROI. Consequently, the measurement equation is: 

Ci(t) = (1 --- Vb)(C f (t ) + Cns(t) + Cs(t)) + VbCb(t) (7.67) 

where Cb is whole blood tracer concentration and Vb is the vascular volume. 
The model is a priori only locally (nonuniquely) identifiable; in particular, 

it admits two solutions for each parameter. To ensure unique identifiability, it is 
usually assumed that the exchange rates between the free tissue and nonspecific 
binding pools are sufficiently rapid (compared with the other rates of the 
model) so that the three-tissue compartment model of Figure 7.10 reduces to 
the two-tissue model of Figure 7.7, where Cf+ns( t )=  C f ( t ) +  Cns(t) is the 
free and nonspecific binding tracer concentration. 

The model equations are: 

C f +ns(t) = klCp(t) - (k2 + k3 )C f +ns(t) + k4Cs(t) 
(Ts(t) = k3C f +ns(t) - k4Cs(t) 

with: 

CI+,,~(O) = 0 
(7.68) 

c~(o) = o  

k3 = konBmaxf (7.69) 

where f is given by: 

f = C f  = Cf  = C f  _- 1 (7.70) 

l + - -  Cf+ns Cf  -~- Cns C f  1 + C f  J k6 

Figure 7.10. The two-tissue compartment model of the ligand-receptor system. 
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The measurement equation becomes: 

Ci(t)  = (1 - Vb)(C f +,~(t) + G ( t ) )  + VbCb(t)  (7.71) 

where Cb is whole blood tracer concentration. 
The model of Figure 7.10 is a priori  uniquely identifiable and, in addition 

to kl, k2, k3, k4, Vb, it is also possible to estimate the binding potential (BP): 

Bmax k3 
BP -- = - -  (7.72) 

Kd k4 

7.6.2. THE REFERENCE TISSUE MODELS 

The ligand-receptor models described previously require the knowledge of 
the plasma-labelled ligand concentration, which is the forcing function of the 
models for their identification. A method has been described by Lammertsma 
et al. (1996a, 1996b) that allows the quantification of receptor kinetics without 
measuring the arterial input function. This method relies on the presence of 
a region without specific binding of the ligand that can be considered as 
reference for all the other regions. 

The model is shown in Figure 7.11, where Cr is the concentration in the 
reference tissue and Cp, the plasma concentration corrected for metabolites 
and assumed to be the same for both regions. 

The model equations are: 

Cr(t)  -- k~ C p(t) - k~Cr(t)  Cr(O) - -  0 

Cf+ns( t )  -- k lCp( t )  - (k2 + k3)Cf+ns(t)  + k4Cs(t) Cf+ns(O) -- 0 (7.73) 
Cs(t)  -- k3C f +ns(t) - k4Cs(t)  Cs(O) -- 0 

with 

k3 - konnmax f  (7.74)  

k4 -- koff (7 .75)  

where f has the expression of (7.70). 

k" 1 

k" 2 

kl 

k2 

Cr 
J 

ID 

k4 

Figure 7.11. The reference ligand-receptor model. 
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The model is a priori uniquely identifiable if one defines R1 as: 

kl 
R1 = k~ (7.76) 

and assumes that volume of distribution of the not specifically bound tracer 
in both tissues is the same, meaning: 

C f +ns Cr Vd = = (7.77) 
Cp Cp 

and thus" 
k A = k~ (7.78) 
k2 k~ 

with these assumptions, the model output can be written as" 

/o t /o C f+ns(t) + Cs(t) = R1Cr(t) + a Cr(v)e-C(t-r)dv + b Cr(r)e-d(t-r)dr 

(7.79) 
where Cr is the model input and a, b, c, d are combinations of parameters 
Rl,  k2, k3, k4. 

The measurement equation is: 

Ci(t) -" C f+ns(t) q- Cs(t) (7.80) 

The four-model parameters R1, k2, k3, k4 can be estimated together with their 
precision by using nonlinear least squares as previously described. The model 
also provides the BP as: 

BP = k3 (7.81) 
k4 

If the tracer kinetics in the target region are such that it is difficult to distinguish 
between free and specifically bound compartments, the reference tissue model 
can be simplified as in Figure 7.12. 

The equations are: 

Cr(t) -- kPlCp(t) - k~Cr(t) 

Ct(t) -" k lCp( t )  - k2aCt(t) 

c~ (o )  = o 

Ct(O) = 0 
(7.82) 

where Ct(t) = Cf+ns(t) + Cr(t) is the total tracer concentration in the tissue 
and k2a the apparent rate constant of transfer from the specifically bound 
compartment to plasma related to the parameters k2, k3, k4 of the model of 
Figure 7.11 as: 

k2 k2 
k2a = = (7.83) 

1 + BP 1 -t- k3/k4 
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Figure 7.12. The simplified reference ligand-receptor model. 
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Assuming that (7.76) and (7.78) still hold, the equation corresponding to (7.79) 
becomes: 

[ 1/0 t Ct( t )  = R1Cr( t )  + k2 - 1 + BP Cr('C)e-(kE/l+BP)(t-r)dr (7.84) 

The measurement equation is: 

Ci( t )  - Ct( t )  (7.85) 

By using nonlinear least squares, the three-model parameters R1, k2, B P  can 
be estimated together with their precision. 

7.6.3. A NONLINEAR MODEL OF THE LIGAND-RECEPTOR SYSTEM 

All the linear compartmental models discussed earlier do not permit an esti- 
mation of the individual values of Bmax, kon, and Kd. To do so, it is necessary 
to move from a single-labelled ligand experiment to a protocol including an 
injection of unlabelled ligand. Under these circumstances, most receptor sites 
become occupied, C s in (7.62) is not negligible, and thus k3 is no longer a 
constant. Equation (7.62) becomes: 

d C s ( t )  
d t  

-" kon(Bmax - C s ( t ) ) C  f (t) -- koffCs(t) -- k3(t)C f (t) -- koffCs(t)  
(7.86) 
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with: 

k3( t )  --- kon(Bmax - Cs(t)) 

k4 = k o ,  
(7.87) 

There is thus the need to describe the unlabelled ligand kinetics. The model 
is shown in Figure 7.13. 

It is nonlinear and its equations are: 

C f +ns(t) = k lCp( t )  - (k2 q- k3(t ) )C f +ns(t) q- k4Cs(t) 
Cs(t )  = k3(t)C f +ns(t) - kof f C s ( t )  

C~f +ns(t) -- k l C p ( t )  - (k2 -+- k3(t))C~f +ns(t) -+- k4Cts(t) 
Cts(t) = k3(t)C~f +ns(t) - kof fC~s(t) 

C f +ns(O) -- 0 
G(0) = 0  

Ctf +ns(O) -- 0 
c ' ~ o )  = o 

(7.88) 

! ! 
where C p, C f+ns, and C s have the same meaning as before and C p, C f+ns , 
and C' s are, respectively, the unlabelled ligand plasma concentration (corrected 
for metabolites), free plus nonspecifically bound unlabelled ligand concentra- 
tion, and specifically bound unlabelled ligand concentration. The measurement 
equation is still given by (7.71). 

The model is a priori uniquely identifiable from the measurements Ci, C p, 
f and Cp of a labelled plus unlabelled ligand injection experiment (Cb can be 

calculated from C p by using well-known formulae involving haematocrit). 
In particular, one can estimate kl, k2, kon, Bmax, koff, Vb parameters and thus 
the ligand affinity Kd. Often, to improve a posteriori (numerical) identifia- 
bility of the model, the experimental protocol involves several injections of 
labelled or unlabelled ligand, such as (Delforge et al., 1993) a tracer dose of 
[llc]flumazenil, a specific ligand of benzodiazepine receptors, followed by 
two cold injections of fiumazenil and a subsequent coinjection of labelled and 
unlabelled flumazenil. 

Labelled 
ligand 

. )  kl k3 t, 
Unlabelledligand (\ C~ 

~ _  k2 k4 

Figure 7.13. The labelled and unlabelled ligand two-tissue compartment model of the ligand- 
receptor system. 
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7.6.4. THE LOGAN GRAPHICAL METHOD 

All the ligand~receptor models presented previously require numerical iden- 
tification such as by nonlinear least squares, from the data to quantitate the 
receptor system. Simpler approaches based on graphical methods have been 
developed, and because of their simplicity they are frequently employed for 
system quantification. A popular graphical method for BP quantification has 
been proposed by Logan et al. (1990). Assuming that the two-tissue compart- 
ment model of Figure 7.10. accurately describes tracer kinetics in the tissue, 
the method uses the plasma and tissue tracer concentration curves and proposes 
(see Logan et al., 1990) to plot the points of coordinates on the Cartesian plane: 

f0 t f0' C p ('c)d r C i ('c)d z 
x = , y = (7.89) 

Ci(t) Ci(t) 

If there exists a time t* such that the tissue regions are in equilibrium with 
plasma, the plot yields, after time t*, a straight line with slope m equal to: 

k l k ~ k 3  (Bmax) 
m = ~ + ~2k4 + Vb - -  V d  1 + ~ + V b = Vd(1 + B P ) +  V b (7.90) 

Assuming Vd known and V b known or negligible (i.e., for the brain tissue 
Vb ~ 3 --4%), it is possible to estimate BP from the m value. 

In 1996, Logan et al. also proposed another graphical method for deter- 
mining the distribution volume ratio (DVR) (a linear function of receptor 
availability) that does not require blood sampling. Like in the model of 
Lammertsma et al. (1996a, 1996b), one uses data from a region not containing 
specific receptors. An additional assumption is needed on the tissue to plasma 
efflux constant, which is fixed to a population value. 

7.7. C O N C L U S I O N S  

Positron emission tomography images interpreted with physiological models 
allow the noninvasive quantification of important physiological processes at 
the organ level, such as glucose metabolism, blood flow and receptor density 
and affinity. To arrive at a reliable quantification of these processes and 
parameters, several ingredients must concur, including the quality of PET 
scanner, radiotracer, image-processing method, and physiological model. In 
this chapter, we have concentrated on available modelling and identifica- 
tion strategies for interpreting PET images. We have focused on linear and 
nonlinear compartmental models to quantitate glucose metabolism, blood flow, 
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and ligand-receptor interaction. The importance of I/O modelling as an aid 
and guide in model structure selection also has been stressed. Finally, popular 
graphical methods have been reviewed in light of their underlying assumptions. 
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Chapter 8 

Identification and 
Physiological Interpretation 
of Aortic Impedance 
in Modelling 

Roberto Burattini 

8.1. I N T R O D U C T I O N  

The systemic arterial system is a branching network of tubes that accepts 
flow from the left ventricle of the heart and passes it on to bodily organs 
and tissues. Because the action of the heart is intermittent, aortic pressure and 
flow are oscillatory. Due to cushioning function of large compliant arteries, 
however, flow pulsations are smoothed so that blood is directed through the 
organs and tissues in an almost steady stream. Wave shapes of pulsatile pres- 
sure and flow are determined by the complex interaction of the heart and 
the arterial system. Optimal ventriculovascular coupling should minimise left 
ventricular load and energy requirements while achieving perfusion to the 
tissues and organs of the body according to need. Disease states that primarily 
affect overall left ventricular performance, such as dilated cardiomyopathy and 
ischaemic heart disease, may result in secondary alterations of the peripheral 
vasculature that help maintain adequate tissue perfusion. Conversely, primary 
alterations in arterial properties such as those that occur with aging, atheroscle- 
rosis, arteriosclerosis, diabetes, and systemic hypertension lead to changes in 
hydraulic load that must be accommodated by the ventricle for the mainte- 
nance of adequate cardiac output (Milnor, 1982; Nichols and O'Rourke, 1990; 
Noordergraaf, 1978; O'Rourke, 1982). 
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Quantitative evaluation of the physical properties of the arterial system is 
important to understand the dynamics of pressure-flow relationships and impli- 
cations of alterations in these properties with respect to vascular-ventricular 
interaction, pressure monitoring, and logical approach to therapy (O'Rourke, 
1990, 1995). Because the overall arterial system's properties are presently 
impossible or impractical to measure directly, they must be estimated indi- 
rectly from continuous pressure and flow measurements using various models 
of the circulation. The concept of vascular input impedance has been generally 
recognised as an important haemodynamic approach to formulate and verify 
models of physical aspects of the dynamics of pressure-flow relationships 
in the ascending aorta and, in general, in a site of an artery feeding a parti- 
cular vascular bed. Since its earliest applications, the concept of vascular input 
impedance has been immensely valuable for the understanding of arterial prop- 
erties and arterial function and has made it possible to model the arterial tree in 
a variety of forms of very different complexity (Burattini, 1989; Kenner, 1979; 
Milnor, 1982; Nichols and O'Rourke, 1990; Noordergraaf, 1978; Westerhof 
et al., 1979; Wetterer and Kenner, 1968). 

Traditionally, clinicians have modelled the arterial system according to 
Poiseuille's equation as a simple hydraulic circuit in which pressure is a 
function of flow and resistance only. Although this simple resistance model 
may fulfill the goal of describing the relations between mean aortic pres- 
sure and cardiac output, it does not explain how the pulsatile flow wave 
generated by left ventricular contraction is converted into the sustained aortic 
pressure wave that is essential for normal organ perfusion. To describe these 
pressure-flow relationships in the pulsatile (dynamic) regimen, models are 
needed that take into account not only peripheral resistance but also arterial 
compliance, inertial properties of blood motion, and effect of both pressure 
and flow wave reflections within the arterial tree (Marcus et al., 1994; Milnor, 
1982; Nichols and O'Rourke, 1990; Noordergraaf, 1978; Poiseuille, 1840; 
Westerhof, 1993). 

Arterial compliance, defined as the change in the arterial blood volume 
due to a given change in distending pressure, participates in arterial function 
by damping the fluctuations in pressure and flow arising from intermittent 
ventricular ejection, by uncoupling the left ventricle from high-resistance 
terminal arterioles and by playing a major role in arterial wave transmis- 
sion phenomena. These functions are affected by acute changes in compliance 
in response to changes in arterial pressure and sympathetic nervous activity 
and by long-term changes in compliance due to processes associated with 
disease and aging (Elzinga and Westerhof, 1973; Gross, 1989; Milnor, 1982; 
Nichols and O'Rourke, 1990; Noordergraaf, 1978; O'Rourke, 1982; Sunagawa 
et al., 1984; Yin and Liu, 1989). It is logical that the estimation in vivo of 
arterial compliance and the assessment of its role in arterial function with 
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acute and chronic changes has long interested clinicians and researchers of 
cardiovascular physiology. 

Most attempts to quantify arterial compliance have been based on the Wind- 
kessel theory (Stergiopulos et al., 1995; Yin and Liu, 1989). This approach 
assumes that the Windkessel compliance represents the sum of all compli- 
ances throughout the arterial system, so that evaluation of the distributed 
and heterogeneous changes that may occur in compliance are not possible. 
Also, Windkessel-type models can make no claims whatsoever to handle wave 
propagation. To retain simplicity, while still representing major distributed 
characteristics of the arterial system proximal to the heart and involving certain 
features of wave travel and reflection, several partially distributed arterial 
models have been proposed (Burattini, 1989; Burattini and Campbell 1993; 
Liu et al., 1989; Wetterer and Kenner, 1968; Nichols and O'Rourke, 1990, 
Sipkema and Westerhof, 1975). 

None of these models, however, yielded methods to quantify overall arte- 
rial elastic properties and to account for wave propagation phenomena that are 
universally accepted. Indeed, vascular impedance properties, such as viscoelas- 
ticity and wave travel and reflection, are not incorporated in the current concep- 
tual framework for evaluation of cardiovascular pathophysiology. Presumable 
causes of failure of models to gain clinical eminence has been seen in paucity 
of invasive data in humans and difficulty in the assessment of noninvasive 
methodology for the acquisition of continuous pressure and flow measure- 
ments and also in a genetic communication gap between those who develop 
arterial models and those who must apply them in clinical setting. Especially, 
it has been observed that model makers have focused their attention on model 
accuracy (associated to mathematical complexity) rather than on providing 
clinically accessible, functional models that can be easily applied at the bedside 
(Marcus et al., 1994). To the experience of this author, however, communica- 
tion gap in respect to those who should apply these models in clinical setting 
is not in model complexity but in that physiologists and clinicians hardly 
accept the concept that the modelling process is essentially iterative. Model 
formulation (even the simplest) is closely interrelated with experimental design 
and identifiability problems in computer-based estimation of model parameters 
and their physiological interpretation. Especially, the selection of the form of 
a model most appropriate for a given application cannot be separated from the 
choice of an identification method. Theoretical understanding of the problems 
associated with the interrelationships between the structural form of a model, 
the parameters to be estimated, and the design of experiments to be used in 
the identification process cannot be distinct from physiological interpretation. 

Based on these considerations, vascular impedance modelling is discussed 
here within a general framework of systems identification (Cobelli and Di 
Stefano III, 1980). The aim is to show how identification and identifiability 
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issues fit in the process of validating lumped and distributed parameter models 
through appropriate experimental design, data fit, and settlement of physiolog- 
ical interpretation. With this aim in mind, a brief summary is given of essential 
concepts in modelling and identification issues (an exhaustive discussion of 
these issues is given in Chapters 4 and 5). Principles of vascular impedance 
identification are revisited in light of the general frequency response tech- 
nique (Graupe, 1976). This is followed by a discussion of ascending aortic 
impedance patterns in respect to their approximation by simple frequency 
response functions and to their physiological interpretation by different Wind- 
kessel models. Contradictions in Windkessel-based methods for estimation of 
total arterial compliance are addressed. Eventually, interpretation of aspects 
of wave propagation in the arterial system based on use of tube models is 
discussed. Special emphasis is placed on the resolution of a long-standing 
problem of identifiability for this class of models. 

8.2. T H E  M O D E L L I N G  P R O C E S S  A N D  R E L A T E D  

P R O B L E M S  O F  I D E N T I F I A B I L I T Y  

A N D  D E T E R M I N A C Y  

Whatever we perceive and are able to express in words, equations, or any 
other form of information transmission is a model of the observed system or 
event. Thus, models are simplified abstractions of reality that we can compre- 
hend and communicate to others in easy-to-understand forms. Fundamentally, 
a model serves to put a hypothesis into concise quantitative form that should 
make the ideas free of ambiguities, such that comparison about physiological 
system behaviour is brought to a less vague comparison. In biology and phys- 
iology, the terms model and modelling are often used in a somewhat extended 
meaning for the description of certain experimental procedures. On this basis, 
the circulation of any animal may be seen as a model of the human circu- 
lation. This explains why, in the need of invasive procedures for detection 
of data, most of the experimental studies have been originally conducted in 
animals and some of the results have been extrapolated to humans (Kenner, 
1979; Gross, 1979). 

In the present dissertation, the term modelling will refer to the process of 
assessing simplified abstractions of reality, notably the arterial system, that 
are simultaneously data models and system models. Namely, these models are 
required to give an overall input-output (I/O) description derived from pressure 
and flow data (or, equivalently, impedance data) collected from the system 
(data models) and, at the same time, represent the underlying physiology at 
an appropriate level of approximation and resolution (system models). The 
degree of approximation will be largely determined by the model's purpose, 
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the availability of a priori knowledge, and the nature of the assumptions to 
be made. 

Models of the arterial system can serve several purposes. They can assist in 
the understanding of the system's function as it relates to measurable physical 
properties. They may help to identify and define specific future experiments 
that are required to more realistically describe a system's function. Making use 
of accessible measurements, they may serve as a means to estimate parameters 
that are presently impossible or impractical to measure directly. This purpose 
is of particular interest for clinical applications. It requires the formalisation 
of suitable models that are simple and are characterised by a limited number 
of parameters that are representative of physiological attributes characteristic 
of the studied function. 

The selection of the model form that is most appropriate for a given appli- 
cation cannot be separated from the choice of an identification method, such 
as parameter selection and criterion formulation, as well as algorithm minimi- 
sation and computer programming. Once a model is formulated, the notion 
of identifiability addresses the question as to whether it is possible to obtain 
a set of solutions for the unknown parameters of the model from fitting to 
experimental data. Typically, a fitting procedure consists of the minimisation 
of a cost function defined as the square of the differences between the model 
output and the real system's output (that is, the least squares output error). 
Usual questions to be answered in identifiability problems are mathematical 
and physical. The mathematical issue is which parameters, or combination 
of parameters, of the model are uniquely identifiable and which are not. The 
physical issue is to what extent the parameters estimated from I/O measure- 
ments give insight into the physical properties of the modelled physiological 
system. The question of parameter uniqueness for a general class of both linear 
and nonlinear models of dynamic systems evolved in the late 1960s and early 
1970s into the identifiability concept in the systems theory and applications. 
These concepts have found extensive applications in compartmental modelling 
of metabolic and endocrine systems (Bellman and/~str6m, 1970; Carson et al., 
1983; Cobelli and Di Stefano III, 1980). The advantages of these applications 
clearly emerge in later chapters. Rather, identifiability has received much less 
attention in cardiovascular system modelling. 

A special problem in identifiability is encountered when a fitting proce- 
dure yields more than one set of solutions for the unknown parameters. In 
this circumstance, the questions arise as to whether there exists one solution 
with clear physiological meaning. If this solution exists, the problem is to 
find a way to select it. This and broader questions associated with poor exper- 
imental design, noise measurements, and practical difficulties that influence the 
uniqueness and reliability of parameter estimates have been grouped together 
in terms of what has been called determinacy problem (Brown and Godfrey, 
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1978). A typical problem of determinacy affecting tube models of the arterial 
system is discussed in Section 8.9. 

8.3. VASCULAR IMPEDANCE 

The impedance concept was borrowed from electrical engineering concepts, 
where it is used to describe the relationship between alternating electric currents 
and voltages. By analogy with electrical systems, vascular impedance expresses 
the relationship between sinusoidal components of blood pressure and flow. 
Several types of impedance have been defined, such as longitudinal impedance, 
transverse impedance, input impedance, and characteristic impedance. When 
the general term impedance is applied to the vascular system, it is usually 
in reference to input impedance, this being the relationship between pulsatile 
pressure and pulsatile flow in a site of an artery feeding a particular vascular bed 
(for a review see Nichols and O'Rourke, 1990; Westerhof et al. 1979; Wetterer 
and Kenner, 1968). 

The experimental procedure generally used to determine input impedance 
at a selected point in the circulation is to measure the instantaneous pressure, 
p(t), and flow, q(t), simultaneously. The resulting data are subjected to Fourier 
analysis, which translates the observed pressure and flow data into the sum 
of their mean value and a series of sinusoidal waves at specified frequencies 
(Milnor, 1982; Nichols and O'Rourke, 1990): 

N 

p(t) = Po + Z en cos(nwt + (I) n )  (8.1 ) 
n = l  

N 

q(t) = Qo + Z Qm cos(mogt + tOm) (8.2) 
m=l  

In these equations, P0 and Q0 are mean pressure and mean flow, respectively; 
the subscripts n and m indicate the nth pressure term and mth flow term, 
respectively, in the Fourier series; N is the total number of terms included in 
the series; Pn and Qm are the amplitudes of the nth term of pressure and the 
mth term of flow, respectively, and (I) n and tOm a r e  the related phase angles; 
w is the fundamental frequency of heart pulsation in rad/s. This is related to 
the heart period, T, by the equation o9 = 27r/T. 

To obtain a Fourier series of signals, they must be repetitive and must not 
contain an infinite number of discontinuities (Dirichlet conditions). Within an 
acceptable degree of approximation, haemodynamic signals like pressure and 
flow, in steady state, are repetitive at a constant heart rate and held respiration 
and do not contain discontinuities. Therefore, the Dirichlet conditions are 
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satisfied. Theoretically, an infinite number of harmonics should be considered 
in the Fourier series (N = c~). In practice, it has been observed that a limited 
number of harmonics gives information about the actual pressure and flow 
waves. Depending on the site of interest, this number is usually less than 20 
(see Figure 4 in Westerhof et al., 1979). This choice implies that the range 
of frequencies of physiological interest is from the mean term at 0 Hz to the 
term at 20 times the heart rate expressed in Hz. 

Each harmonic, P(jno9) and Q(jmo9), obtained from Fourier analysis is 
complex in the mathematical sense and is expressed by its modulus, P~ and 
Qm, phase angle, ~n and | that is, timing with respect to other harmonics, 
and angular frequency, o9: 

P(jnog) = Pn[exp j(nwt + (I)n) ] (8.3) 

Q(jmog) -- Qm[exp j(mogt + On)] (8.4) 

The ratio of pressure harmonic to flow harmonic at the same frequency is 
called the impedance, Z(jno9), at that frequency: 

Pn exp[j(nwt + ~.)] Pn 
Z( jnw)  = = ~ exp[j(~n - On)] (8.5) 

Q. exp[j(nwt + | Qn 

Equation (8.5) refers to the genetic nth frequency. If Zn is the ratio of P,, to 
Qn, and kit  n is the difference between ~ and | the impedance, Z(jno9), is 
expressed, frequency by frequency, by its modulus, Z~, and its phase angle ~n" 

Z(jnog) - Z n exp(j~n) (8.6) 

Implicit in the derivation of impedance is that the system analysed is linear 
and time-invariant. Over the range of frequencies of physiological interest, 
impedance is expressed graphically as a spectrum of moduli and a spectrum 
of phase angles versus frequency (Figure 8.1). The resolution of the Fourier 
method is limited since only information at multiples of heart rate are obtained. 
To improve resolution, one can pace the heart at several fixed rates and perform 
Fourier analysis for every heart rate in the steady state (O'Rourke and Taylor, 
1966). 

The vascular input impedance in the ascending aorta is of particular signi- 
ficance. Not only does this characterise the properties of the whole systemic 
circulation, but also it can be taken to represent the hydraulic load presented 
by the systemic circulation to the left ventricle of the heart. The original 
experimental study of the input impedance of systemic and pulmonary arte- 
rial circulation has been performed on dogs (Patel et al., 1963a). Data from 
other experimental animals and humans were reported soon afterward (Nichols 
and O'Rourke, 1990; Westerhof et al., 1979). These impedance patterns are 
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Figure 8.1. Full circles are experimental impedance modulus (above) and phase angle (below) 
in the ascending aorta of a dog in basal state. Dotted lines and dashed lines pertain to the 
best approximating impedance patterns obtained from a one-pole frequency response (8.7) and a 
one-zero over one-pole frequency response (8.8), respectively. 

qualitatively similar to the data f rom a dog displayed in Figure 8.1. At zero 
frequency,  the impedance modulus is equal to peripheral  resistance (ratio 
of  mean pressure to mean flow), whereas  the phase angle is zero. Phase is 
negative (i.e., flow leads pressure) at low frequencies,  crosses zero in the neigh- 
bourhood of  the minimum impedance modulus,  and becomes  posit ive (i.e., 
flow lags pressure) at higher frequencies.  In some circumstances,  impedance  
modulus  falls steeply from the value at zero frequency (total peripheral  resis- 
tance) to a minimal value (which usually occurs be tween 2 and 4 Hz in 
the dog); this minimum is fol lowed by a max imum and a second min imum 
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(between 5 and 10 Hz in the dog). In other circumstances (e.g., Figure 8.1), 
the impedance modulus shows a single minimum in the range from 0 to 10 Hz. 
High-frequency fluctuation of impedance moduli settle about a value that is 
5 to 15% of total peripheral resistance. The minima of the input impedance 
moduli and the zero crossing of the phase angle are attributed to the pres- 
ence of reflection phenomena in the arterial system. Extensive discussions of 
this issue are found in Burattini et al. (1991), Nichols and O'Rourke (1990), 
O'Rourke (1982), and O'Rourke and Taylor (1967). 

8.4. D A T A - D R I V E N  M O D E L S  O F  V A S C U L A R  

I M P E D A N C E  ( F R E Q U E N C Y  R E S P O N S E  T E C H N I Q U E )  

It is commonly understood that measurements of ascending aortic input 
impedance provide information about the physical state of left ventricular 
load as it relates to peripheral resistance, overall arterial compliance and iner- 
tial properties of blood motion, and effects of both pressure and flow wave 
travel and reflections. However, quantitative evaluations of changes in these 
properties from changes in impedance patterns require making reference to 
a formal model. This model must be able to closely approximate experi- 
mental impedance and be characterised by parameters that have physiological 
relevance. 

The frequency response technique (Graupe, 1976) is here discussed as 
a proper general framework for identifying models of vascular impedance. 
In accordance with the guidelines in modelling methodology discussed in 
Chapter 1, these models may be developed in two steps. The first step is 
to look for data-driven, or black box, models where all that is required is 
an overall representation of pressure-flow dynamics in a site of a vascular 
system, without needing to know specifically how the physiological system 
gives rise to such an I/O behaviour. This goal is achieved after finding a 
model the frequency response of which gives a satisfactory approximation of 
the considered vascular impedance data. This frequency response can be given 
the generalised form of a gain multiplied by the ratio between zeros and poles 
where the characteristic parameters (time constants, damping factors, natural 
pulsations) are purely phenomenological. The subsequent step in the modelling 
process is to find structures that are compatible with the identified frequency 
responses and to address how these model structures help in interpreting the 
physical processes that give rise to experimental observations (Burattini et al., 
1994a). 
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8.4.1. SIMPLE DATA-DRIVEN MODELS OF ASCENDING 
AORTIC IMPEDANCE 

Our analysis is limited here to a one-pole function: 

Zp( jnw)  = 
P ( j nw )  G 
Q(jnog) 1 + jn~or 

(8.7) 

and a one-zero over one-pole function: 

P( j nw )  1 + jnogrn 
Zzp( jnw) = = G (8.8) 

Q(jnog) 1 + jnwvd 

since these are of particular interest for subsequent discussion of Windkessel- 
type models of the ascending aortic impedance and related physiological 
interpretation. No hypothesis on a model structure associated with the gener- 
alised frequency responses of (8.7) and (8.8) is requested. The time constants, 
r, r,, and rd, are purely phenomenological parameters and do not imply that 
a specific physical property may be associated with them. They allow any 
number of physical processes to be responsible for the apparent low-pass 
filter behaviour of the considered vascular beds. The gain G is the value of 
the frequency response at zero frequency, that is, the ratio of mean pres- 
sure to mean flow. If venous pressure is so small with respect to arterial 
pressure that it may be disregarded (as it is currently done), G represents 
total peripheral resistance as seen from the impedance measurement site. 
The two parameters, r and G, of (8.7) and the three parameters, G, "C n 

and ra, of (8.8) can be estimated by fitting these equations (models) to 
the data collected during a steady state. Optimised model parameters can be 
obtained in the frequency domain by minimising the difference between exper- 
imental and model predicted impedance spectra (Canty et al., 1985; Yoshigi 
and Keller, 1997). A time domain approach also can be used. This consists 
of minimising the difference between experimental pressure (flow) and pres- 
sure (flow) predicted by the model using flow (pressure) as input (Burattini 
and Gnudi, 1982, 1983; Burattini et al., 1987; Toorop et al., 1987). Because 
transformation between the time and frequency domains is easily applied 
for linear models, these alternative parameter estimation procedures must be 
regarded as complementary. Figure 8.1 shows the approximation of ascending 
aortic impedance data (solid circles) in a dog by the frequency responses of 
(8.7) and (8.8). Figure 8.2 shows the corresponding fits to pressure data. This 
example is representative of what is found, in general, in humans and different 
species of animals. It clearly shows that the one-pole frequency response of 
(8.7) is inadequate to describe the dynamics of ascending aortic pressure-flow 
relationships. 
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Figure 8.2. Upper panel, Flow measured in the ascending aorta of a dog under basal state. 
Lower panel, Fits between experimental ascending aortic pressure wave (solid line) and pressure 
waves obtained from a model described by the (8.7) (dotted line) and a model described by the 
(8.8) (dashed line). 

The  a s s u m p t i o n  o f  a m o d e l  s t ruc ture  b e c o m e s  essent ial  if  we  w a n t  a specif ic  

in te rp re ta t ion  o f  the phys i ca l  and  phys io log ica l  proper t ies  that  g ive  r ise  to 

o b s e r v e d  input  i m p e d a n c e  spec t ra  and  the l imita t ions  in m o d e l - b a s e d  app rox -  

ima t ion  o f  i m p e d a n c e  data.  

P h y s i o l o g i c a l  in te rp re ta t ion  is the issue where  the m o d e m  s y s t e m ' s  ident i -  

f icat ion app roach  mee t s  the unde r s t and ing  of  phys io log ica l  func t ions  as it has  

b e e n  h i s to r i ca l ly  a s se s sed  f r o m  expe r imen ta l  observat ions .  
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8.5. HISTORICAL DEVELOPMENT 
OF WINDKESSEL MODELS 

8 .5 .1 .  ELASTIC WINDKESSEL M O D E L S  

Quantitative studies of the circulation may have commenced with the work 
of Hales (1733). He discussed arterial and venous elasticity, measured blood 
pressure and pressure flow relations of vascular beds, estimated cardiac output, 
and emphasised the importance of arterial elasticity aiding in acceptance of 
pulsatile flow from the ventricle of the heart, and converting this into steady 
flow through the smallest high-resistance vessels. Frank (1899) and his school 
pioneered in putting Hales' idea into mathematical form, giving rise to what 
became known as the W i n d k e s s e l  model. In this lumped model, all pressure 
Changes within the arterial tree are considered simultaneous (i.e., infinite wave 
velocity). 

With reference to Figure 8.3, the mathematical formulation of Frank's 
Windkessel is obtained as follows. Input flow to the arterial system, Qin(t), is 
equal to the sum of the outflow, Qout(t), of blood from the arterial system into 

) c 

Peripheral 
Le.ft /t resistance 

c R~ 

Figure 8.3. Schematic representation of the classic Windkessel concept. The arterial tree oper- 
ates as an elastic reservoir that accepts pulsatile flow from the left ventricle of the heart and 
converts this into an almost steady flow through the smallest high-resistance vessels. The elec- 
trical analogue of the classic Windkessel (W2) consists of a capacitor, C, representing total 
systemic arterial compliance, connected in parallel to a resistor, R p, representing total peripheral 
resistance. 
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the venous system, and the rate (dV/dt) of storage (continuity equation): 

dV(t) 
Qin(t) -- 4- Qout(t) (8.9) dt 

Under the hypothesis of linear pressure-volume relationship, the total arterial 
compliance, C, is constant throughout a heartbeat. Its value is: 

dV(t) 
C -- (8.10) 

.dP(t) 

The outflow, Qout(t), is assumed proportional to the aortic pressure P(t), 
that is: 

P(t) 
aout (t) - (8.11) Rp 

where Rp is total peripheral resistance. Substitution of (8.10) and (8.11) into 
(8.9) yields: 

de(t) P(t) 
ain(t) -- C dt + Rp (8.12) 

Since there is flow into the arterial system only during ventricular systole, Qin 
is zero in diastole. If t* is the time of end of ventricular ejection (in principle it 
can be the time at an arbitrarily chosen reference point in the diastolic phase) 
and T is total duration of the cardiac cycle, the governing equation for the 
system in diastole is: 

dP(t) P(t) _ 0; t* < t < T (8.13) C dt 4- Rp 

The solution of this equation is: 

P( t )=P*exp[  t - t * ]  - ; t* < t < T ( 8 . 1 4 )  

where P* is pressure at the time t* and the time constant ~ equals the product 
RpC. Thus, under the assumption that ascending aortic flow is zero during dias- 
tole, the Windkessel model describes the diastolic aortic pressure decay as a 
monoexponential function with a time constant, r, equal to arterial compliance 
times peripheral resistance. 

If we state a correspondence between voltage and pressure and between 
current and volume flow, the equations that describe the Windkessel model 
are formally identical to the equations that describe the dynamics of voltage- 
current relationships in a circuit that consists of an electrical capacitor, C, and 
a resistor, R p, connected in parallel. Thus, the two-element circuit depicted in 
Figure 8.3 is the electrical analogue of the classic Windkessel (W2). 
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Lauded by pragmatists desiring a quick noninvasive technique for the 
determination of cardiac output, and despised by theoreticians without such 
requirements, the Windkessel concept continues to provide a fertile breeding 
ground for new variations on a classic theme (Noordergraaf, 1978). 

Historical applications and improvements of the W2 have been elegantly 
reviewed elsewhere (Kenner, 1979; Nichols and O'Rourke, 1990; Noorder- 
graaf, 1978; Wetterer and Kenner, 1968). Especially, it has been reported by 
Kenner (1979) that, in an early experimental setup (Broemser and Ranke, 1930) 
of an air chamber model supplied by a pressure pump with negligibly small 
internal resistance, aortic flow pulses were observed that were unlike natural 
aortic flow pulses. Thus, an additional resistance was introduced at the inlet 
to improve the Windkessel. This model was called an improved Windkessel 
(Wetterer and Kenner, 1968). The main issue with this improvement was the 
physiological interpretation of the additional series resistance. In subsequent 
works, this resistance was given the meaning of internal resistance of the left 
ventricle, aortic valvular resistance, and, eventually, characteristic impedance 
of the central aorta (Kenner, 1979). These three different interpretations of the 
series resistance formalise three different conceptual models. In the first and 
second model, the series resistance pertains to the source and should be located 
before or outside the classic Windkessel. Only the third model can be called 
an improved Windkessel in the sense of a model with the purpose of repre- 
senting the gross behaviour of the arterial system (Westerhof et al., 1971). 
The Windkessel with the series resistance representing aortic characteristic 
impedance (Figure 8.4) is currently referred to as the three-element Windkessel 

�9 

Cw3 

g c 

R 

W3 

�9 

Figure 8.4. Electrical analogue of the three-element Windkessel model (W3). The capacitor, 
Cw3, represents total arterial compliance. The resistor, Rc, represents aortic characteristic impe- 
dance, and the resistor R is taken equal to the difference between total peripheral resistance, R p, 
and Rc to keep the total resistance value equal to Rp. 
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(W3) and has been widely used to describe and interpret the hydraulic load 
faced by the left ventricle of the heart (Burkhoff et al., 1988; Burattini and 
Campbell, 1999, Burattini et al., 1987; Fogliardi et al., 1996; Gnudi, 1998a, b; 
Hettrick et al., 1995; Sunagawa et al., 1982; Stergiopulos et al., 1995; Toorop 
et al., 1987). 

8 .5.2.  VISCOELASTIC ~I/VINDKESSEL MODEL 

It is generally accepted that the deformation suffered by the arterial wall 
depends on both the magnitude of the stress and the rate at which it is applied 
(Apter et al., 1966; Bergel, 1972; Dobrin, 1983; Learoyd and Taylor, 1966; 
Milnor, 1982; Nichols and O'Rourke, 1990; Westerhof and Noordergraaf, 1970). 
As a consequence, the arteries are more likely to be conceived as a viscoelastic 
reservoir where fluid storage capacity is associated with viscous losses of 
wall motion. The hypothesis that arterial viscoelasticity, rather than pure elas- 
ticity, might affect aortic pressure-flow relationships yielded a modified Wind- 
kessel configuration, called viscoelastic Windkessel (VW) (Figure 8.5). This 
model configuration was first interpreted in terms of viscoelasticity by Canty 
et al. (1985) for the coronary circulation. It was later discussed by Burattini 
and Campbell (1993) and Burattini et al. (1992, 1994a, 1997) in experimental 
applications to distal circulatory districts, involving even more sophisticated 
descriptions of viscoelasticity than the Voigt cell. Marcus et al. (1994) attempted 
an application of the VW to the ascending aortic pressure-flow relationships. 
This study, however, was limited to the evaluation of static compliance since the 

Rp 

. - -  ~ . . . . . .  ~ 4 

i IR i 
4. . . . . . . .  "" 

Cc(J~ ~[J 

VW 

Figure 8.5. Electrical analogue of the viscoelastic Windkessel model (VW). This model consists 
of total peripheral resistance, R p, parallel with a complex and frequency-dependent compliance, 
Cc(flo), expressed by (8.24). This complex compliance is described by a Voigt cell. The electrical 
analogue of this cell consists of a resistor, Rd, accounting for viscous losses of wall motion, 
in series with a capacitor, Cvw, representing static compliance. Adapted from Burattini and 
Natalucci (1998, Figure 2, p. 504 with permission from Elsevier Science). 
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noninvasive experimental setup did not allow a satisfactory characterisation of 
the viscous parameter. Eventually, a more complete identification and validation 
of the VW model was carried out by Burattini and Natalucci (1998), making use 
of invasive pressure and flow measurements in dogs. An intriguing finding in the 
process of VW model validation was that the complex and frequency-dependent 
compliance of this model resolves contradictions in the estimates of total arte- 
rial compliance based on the elastic Windkessel theory. To understand these 
contradictions and how to address them, physiological interpretation of aortic 
impedance by the Windkessel models is reviewed in the following sections in 
light of the more general identification approach discussed in Section 8.4. 

8.6. WHERE WINDKESSEL MODELS'  IDENTIFICATION 
MEETS PHYSIOLOGICAL INTERPRETATION 

The aortic input impedance as described by the W2 model is: 

Zw2(jn~)  -- Re (8.15) 
1 + jnt_oReCw2 

This is equivalent to the one-pole frequency response of (8.7) under the 
following conditions: 

r = RpCw2 (8.16) 

G - - R p  (8.17) 

Equations (8.16) and (8.17) yield a unique solution for the physical para- 
meters Rp and Cw2. Thus, in accordance with concepts of identifiability of 
parametric models (Bellman and Astr6m, 1970; Cobelli and Di Stefano III, 
1980) the W2 model is uniquely identifiable from an I/O experiment; that is, 
from pressure and flow measurements. 

W3 and the VW are two candidate model structures that are compatible 
with the frequency response of (8.8). The equivalence between the aortic input 
impedance as described by the W3 model and (8.8) requires that the following 
conditions be satisfied: 

R. R~ 
"Cn = C w 3  (8.18) 

R + R r  

ra = R. Cw3 

G = R + R c  

(8.19) 

(8.20) 
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If the VW model is assumed to describe the aortic input impedance, the 
following relationships hold: 

r~ = RdCvw (8.21) 

rd = (Rp + Rd) " Cvw (8.22) 

G = Rp (8.23) 

The W3 model is uniquely identifiable from pressure and flow measurements 
because the parameters Cw3, R, and Rc can be evaluated uniquely from (8.18) 
to (8.20). Likewise, the VW model is uniquely identifiable because the param- 
eters Cvw, Rp, and Rd can be evaluated uniquely from (8.21) to (8.23). 

Of course, if the W3 or the VW model structures are assumed to be a 
priori, as done in most of the reported experimental studies, the resistive and 
capacitive parameters of these models can be directly estimated from fitting to 
data. Then, phenomenological parameters G, rn and rd, of model's frequency 
response can be determined from (8.18) to (8.20) in case the W3 model is 
assumed and from (8.21) to (8.23) in case the VW model is assumed. It has 
been verified on experimental basis that both the W3 and the VW model, 
when applied to the same pressure-flow data, yield the same G, Zn, and rd 
values as expected on theoretical basis (Burattini and Natalucci, 1998). 

In conclusion, there is no question that the competing W3 and VW models 
constitute alternative hypotheses for a gross description of the dynamics of the 
left ventricular load that are equivalent in terms of data fit (Burattini, 1989; 
Burattini and Natalucci, 1998; Westerhof and Krams, 1986). These models, 
however, are different in terms of physiological interpretation of the mech- 
anisms that give rise to the observed data. There is a need to examine the 
hypotheses underlying the W3 and VW structures to determine which are 
compatible with physiological and clinical observations and, on this basis, to 
make a choice between these competing structures. 

In the W3 model, the gain G of the generalised frequency response of 
(8.8) has the meaning of total peripheral resistance. However, this resistance 
is dissected into two components: R and Rc (8.20). This assumption implies 
that the arterial system stores blood during systole with the left ventricle 
facing total peripheral resistance, whereas, during diastole, the stored blood 
flows through a lower resistor, R, and the decay of pressure is exponential 
with a time constant, rd, equal to the product of R and Cw3 (8.19). The 
series resistor, Rc, is assumed to represent the characteristic impedance of 
the proximal aorta (Westerhof et al., 1971). This implies the further assump- 
tion that the characteristic impedance is approximately a real number and, 
therefore, dimensionally comparable to a resistor. These assumptions find 
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contradictions in that the characteristic impedance does not exist for mean 
pressure and flow and does not dissipate energy. Recently, a test of the W3 
model behaviour versus a complex simulator of the arterial system showed 
that, over the frequency range of physiological interest, the Rc parameter is 
inconsistent with the meaning of aortic characteristic impedance originally 
assigned to it (Stergiopulos et al., 1995). A further limitation of placing Rc 
in series to the W2 model is that the behaviour of compliance is affected. 
During diastole, the resistor Rc causes the pressure applied to capacitor Cw3 
(that is, to the wall of the elastic reservoir) to drop lower than the pressure 
generated by the heart. It has been observed in dogs that this pressure drop 
was as low as (2.3 4-0.4)% of mean pressure, in the pressure range over 
110 mmHg, and increased up to (14.3 4- 1.7)% in the pressure range below 
70 mmHg (Burattini and Natalucci, 1998). 

In conclusion, the resistance Rc introduces a zero factor in the frequency 
response of the Windkessel that improves the approximation of pressure-flow 
data observed in the frequency domain and, equivalently, in the time domain. 
The interpretation of Rc in terms of wave propagation phenomena, however, 
shows significant drawbacks, as discussed previously. These drawbacks fit in 
the conceptual framework that interpretation in terms of wave propagation 
reads too much into the nature of the lumped Windkessel theory. 

In the VW model, the gain G in (8.8) correctly represents total periph- 
eral resistance Rp (8.23) and the model configuration does not change from 
systole to diastole. Physiological meaning of Cvw and Rd is inferred from the 
assumption that the whole arterial system behaves as a viscoelastic, rather than 
purely elastic, reservoir. In accordance with the Voigt model for viscoelasticity 
(Westerhof and Noordergraaf, 1970), the resistor, Rd, accounts for viscous 
losses of wall motion, and the capacitor, Cvw, represents static compliance. 
These two elements give rise to a complex compliance, Cc(jnog), that changes 
in frequency according to the following equation (Burattini and Natalucci, 
1998): 

1 1 
Cr = Cvw = Cvw (8.24) 

1 + jnogRdCvw 1 + jnogrn 

The time constant, rn -- RdCvw, is related to creep (Westerhof and Noorder- 
graaf, 1970) and characterises the zero factor of the VW model's frequency 
response (8.8) and (8.21). The presence of this zero factor yields the improve- 
ment in the approximation of pressure-flow data by the VW model with respect 
to the purely elastic W2 model (Figure 8.2). This improvement can be read as 
follows. The viscous element Rd introduces a phase lag between pressure and 



Identification and Physiological Interpretation of Aortic Impedance in Modelling 231 

flOW that tends to compensate the phase lead of flow with respect to pressure 
that is caused by the purely elastic element. 

The W2 is a special case of the VW model that results from neglecting the 
viscous losses. Indeed, when Rd is zero, the frequency response of (8.8), 
associated with (8.21) to (8.23), reduces to (8.15) associated with (8.16) 
to (8.17). These equalities imply that Cvw equals Cw2. This was demon- 
strated by Burattini and Natalucci (1998). These authors compared the W2 
and VW models using measurements of ascending aortic pressure and flow 
taken from four dogs under a variety of haemodynamic states that produced 
a broad mean-pressure range of 40 to 165 mmHg. Total peripheral resistance 
was computed as the ratio of mean pressure to mean flow. The other model 
parameters (i.e., Cw2 in the W2 model and Rd and Cvw in the VW model) 
were estimated by fitting to the entire cycle of experimental pressure (full 
pressure method, FPM). An almost perfect correlation (p = 0.999) between 
Cw2 and Cvw estimates (Figure 8.6) indicated that the static (zero-frequency) 
compliance of the VW model is consistent with the compliance of the W2 
model. 

In the study by Burattini and Natalucci (1998), the FPM was also applied 
to the W3 model and the parameters R, Rc, and Cw3 were estimated. The 

1200 - 

1000 

800 

7 
600 

~ 400 & 

200 

s 
s 

J 

s 
s 

o 

..A 

0 ' I ' I ' I ' I ' I ' I 

0 200 400 600 800 1000 1200 

Cvw, (10-6 g-1 cm 4 S 2) 

Figure 8.6. Scattergram of estimates of compliance, CW2, obtained from application of the full 
pressure fit method (FPM) to the classic Windkessel model, versus the corresponding estimates 
of static compliance, Cvw, provided by the viscoelastic Windkessel model. Linear regression 
yielded the dashed line: Cw2 = 0.94Cvw + 11.9; p -  0.999. From Burattini and Natalucci 
(1998, Figure 9, p. 511 with permission from Elsevier Science). 
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(open squares) models. Dashed lines are first-order exponential fitting curves. Full triangles are 
estimates of total arterial compliance obtained from the W2-based pulse pressure method (PPM). 
Dotted line is linear. 

estimates of Cw3 were practically coincident with those of Cvw and Cw2 in 
the higher pressure range but diverged toward higher values with decreasing 
pressure (Figure 8.7) owing to an increasing effect of the resistance Rc. 

8.7. CONTRADICTIONS IN CLINICALLY ORIENTED 
COMPLIANCE ESTIMATION METHODS (HOW THE 
VISCOELASTIC WINDKESSEL RESOLVES THEM) 

The comparative analysis of the most common structures of Windkessel 
models as discussed previously is based on frequency-response identification 
method. This means that the information contained in the full pressure and 
flow wave is used for model identification. For linear systems, it does not 
matter whether model identification is performed by fitting to impedance data 
or to the full-time course of pressure (or flow) over a cardiac cycle in steady 
state because frequency-domain and time-domain analyses are complementary 
(Graupe, 1976). 

Paucity of invasive data in humans and the absence (or difficulty in the 
assessment) of noninvasive methodology for continuous data acquisition, not- 
ably the flow pulse, have limited the application of the frequency-response 
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technique, thus leading pragmatists to the development of simplified exper- 
imental protocols easy to apply in clinical settings. The tendency has been 
to measure pressure pulse and cardiac output and to use the W2 model to 
estimate total arterial compliance. Among these W2-based methods, the decay 
time method (DTM), the area method (AM), and the pulse pressure method 
(PPM) are reviewed in the following paragraphs. The aim is to discuss the 
limitations of these methods and address the contradictions arising from the 
finding that the PPM yields significantly different estimates of total arterial 
compliance with respect to the DTM, the AM, and even the FPM applied to 
the W2. 

8.7.1. DECAY TIME METHOD AND AREA METHOD 

In accordance with (8.14), the DTM estimates total arterial compliance 
by fitting an exponential function to the diastolic decay of aortic pressure 
(Liu et al., 1986; Stergiopulos et al., 1995; Yin and Liu, 1989). For practical 
applications, (8.14) assumes the form: 

P ( t ) = P o e x p [  t - t o ]  - r ; to < t < tl (8.25) 

Where the starting time to and final time t l, arbitrarily chosen, mark the part of 
diastole from which compliance is estimated. This method has the advantage 
that a measurement of cardiac output (relatively easy to do) is needed to 
estimate peripheral resistance, R p, from mean pressure. The time constant ~ is 
estimated from diastolic pressure fit, such that an estimate, Cat, of compliance 
is obtained from the ratio between r and R p. Drawbacks of this method are 
that there is no golden rule as to the best choice of to and t l and that the 
pressure decay may not be an exact exponential or is distorted from a true 
exponential by reflections or other causes (Yin and Liu, 1989). 

The AM essentially represents an integral variation of the exponential 
decay method. According to the originators of this method (Randall et al., 
1976) and the researchers who used it (Liu et al., 1986), the advantage is 
that it does not require a strictly exponential aortic pressure decay. Compli- 
ance, Cam, is estimated from knowledge of the area, A, under the diastolic 
portion of the pressure curve marked by the values P0 and P1 at times to < tl, 
respectively: 

A 
Cam - Rp(Po - P1) (8.26) 
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where: 

f/0 tl A = P ( t ) d t  (8.27) 

Comparative analyses based on experimental and simulated data have shown 
that the DTM and the AM, when applicable, yield essentially similar estimates 
of total arterial compliance (Burattini and Natalucci, 1998; Stergiopulos et al., 
1995). This similarity is consistent with the concept that the underlying model 
(i.e., the W2 model) is the same for the two competing estimation methods. 
Some scatter of parameter estimates is caused by noise on test signals and 
distortions. Indeed, it has been reported that both the DTM and the AM are very 
sensitive to diastolic pressure wave distortion due to wave reflection and other 
causes, and to the starting and final instants that mark the part of diastole from 
which compliance is estimated (Burattini and Natalucci, 1998; Stergiopulos 
et al., 1995; Yin and Liu, 1989). 

8.7.2. PULSE PRESSURE METHOD 

The PPM is a further simplified method for estimating arterial compliance 
that is based on the W2 model (Stergiopulos et al., 1994, 1995). Pulsatile flow 
measured in the ascending aorta is used as model input, and the pulse pressure, 
A~ b, defined as systolic minus diastolic aortic pressure, is predicted by the W2 
model filled with total peripheral resistance (determined as the ratio of mean 
pressure to mean flow) and an assumed compliance value, C pp. An iterative 

procedure looks for the value of the best estimate of Cpp by fitting A/3 to the 
experimental pulse pressure, AP. 

Compared with the DTM and the AM, the PPM makes use of the information 
contained in the systolic, rather than diastolic, portion of pressure. A measure- 
ment of the flow pulse, however, is needed to predict pulse pressure. Because 
all these methods are based on the W2 model, where compliance is assumed 
to be constant throughout the heart cycle, the compliance estimates obtained 
from information contained in the PPM, as part of the systolic portion of pres- 
sure, and those obtained from information contained in the diastolic portions 
of pressure (either AM or DTM) should be similar. In contrast to this logical 
deduction from systems identification theory, reported experimental studies 
showed significant differences between estimates of total arterial compliance 
provided by the PPM with respect to those provided by both the AM and the 
DTM (Burattini and Natalucci, 1998; Carlier et al., 1998). Another contradic- 
tion is in the reported assumption (not demonstrated experimentally, however) 
that an estimation procedure that fits the pressure predicted by the W2 model 
to the full-pressure wave (W2-FPM) would not yield estimates of total arterial 
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compliance as satisfactory as those obtained from the PPM (Stergiopulos et al., 
1994). Common sense of modellers and logical deduction from systems iden- 
tification theory would suggest that the W2-FPM should work better because 
the full-pressure wave should contain more information than the pulse pres- 
sure alone. Experimental tests performed by Burattini and Natalucci (1998) 
showed that the PPM and the W2-FPM yielded significantly different esti- 
mates of total arterial compliance. Over a broad mean pressure range, the 
W2-FPM-based estimates of Cw2 as a function of mean pressure showed 
an exponential decrease with increasing pressure. By contrast, the PPM-based 
estimates showed a relatively non-pressure-dependent trend (Figure 8.7). The 
difference in the estimates of Cwa and C pp was low at higher mean pres- 
sure values and increased exponentially with decreasing pressure. Although in 
experimental studies there is no gold standard to test model-based estimates 
of compliance, it is generally agreed that no significant pressure dependence of 
compliance estimates is in disagreement with well-documented experimental 
observations (Bergel, 1972; Cox, 1975; Dobrin, 1983; Hallock and Benson, 
1937; Langewouters et al., 1984; Liu and Yin, 1986; Milnor, 1982; Nichols 
and O'Rourke, 1990; Weizsacker, 2000; Weizs~icker et al., 1983). 

8.7.3. RECONCILIATION WITH THE VISCOELASTIC WINDKESSEL 

Models are psychologically most appealing when they succeed but logi- 
cally strongest when they fail (Yates, 1978). Indeed, the apparent failure of 
the PPM can stimulate a modeller (and it did) to answer the question as to 
why the information contained in the systolic portion of pressure yields an 
underestimation of W2 model compliance. The VW model concept helps to 
address this question in light of the underlying assumption that, under dynamic 
conditions, total arterial compliance is expressed by a complex number (8.24) 
whose modulus decreases with increasing frequency. Because the PPM, by 
definition, uses the information contained in the moduli of the first harmonics 
of pressure and flow, it might yield a value of dynamic, rather than static, 
compliance related to the heart pulsation, O) h - -  2zr/T. Following this line of 
thought, Burattini and Natalucci (1998) found that the modulus of dynamic 
compliance, ICc(Wh)l, provided by the VW model (8.24) showed a correla- 
tion with compliance estimates, C p p ,  provided by the PPM, as good as it is 
displayed in Figure 8.8, the correlation coefficient equalling 0.975. In light 
of the VW model, the estimates of compliance obtained from the DTM and 
the AM, which take advantage of the information contained in the diastolic 
decay of pressure, are logically close to the estimates of the static Windkessel 
compliance (either Cwa or Cvw) because of the slow dynamics of pressure 
decay (Burattini and Natalucci, 1998). 
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Natalucci (1998, Figure 10, p. 511 with permission from Elsevier Science). 

8.8. D I S T R I B U T E D  D E S C R I P T I O N  O F  L I N E A R  
A R T E R I A L  S Y S T E M S  T O  I N F E R  A O R T I C  W A V E  

R E F L E C T I O N  

There is overwhelming evidence for the existence of reflected waves in the 
systemic arterial circulation and their importance in influencing the pressure 
and flow pulse contour from the ejecting ventricle (Latham, 1989; Nichols 
and O'Rourke, 1990; O'Rourke, 1982; Sipkema et al., 1980; Westerhof et al., 
1972). However, there is still dispute as to the quantitative description of 
reflected waves and location of reflecting sites as seen from the heart (Burat- 
tini and Di Carlo, 1988; Burattini, 1989; Burattini and Campbell, 1999b; 
Burattini et al., 1991, 1994b; Campbell et al., 1989; Papageorgiou and Jones, 
1988; Sipkema et al., 1975). Models with distributed, rather than lumped, 
parameters are needed for quantitative analysis of wave propagation and reflec- 
tion. Taylor conducted the first quantitative studies on the impact of wave 
reflection on arterial pulse waves and impedance patterns making use of 
simple, uniform and nonuniform elastic tubes (transmission lines, in the elec- 
trical analogy) terminating in a real impedance (Taylor, 1957a, b, 1965). This 
terminal impedance may be regarded, in the steady-state solution, as the resul- 
tant of all impedances lying beyond the tube termination. In other words, it 
lumps together all the more distal ramifications and terminations of the arterial 
systems, such that a functionally discrete reflection site is seen (Taylor, 1957a, 
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1966). Subsequent refinements of Taylor's approach yielded tube models that 
assumed the form of a single uniform elastic tube terminating in a complex and 
frequency-dependent load (Burattini and Di Carlo, 1988; Burattini and Gnudi, 
1982, 1983; Sipkema and Westerhof, 1975), two tubes in series (Wetterer 
and Kenner, 1968), and two tubes in parallel (Burattini and Campbell, 1989, 
1993; Campbell et al., 1990; Chang et al., 1995; Liu et al., 1989; Nichols and 
O'Rourke, 1990; O'Rourke, 1982). Models consisting of two elastic tubes 
connected in parallel have been referred to as T-tube models. These models, 
better than others, have aided the interpretation of aortic pressure-flow rela- 
tionships in terms of wave travel and reflection. 

8.8.1. THE ORIGINAL T-TUBE MODEL 

The T-tube model was suggested as a conceptual framework to interpret 
the morphology of ascending aortic pressure waves and impedance patterns 
in terms of two uniform elastic wave-transmission tubes of different lengths, 
connected in parallel and terminating in a purely resistive load (McDonald, 
1968; Nichols and O'Rourke, 1990; O'Rourke, 1982). These two transmis- 
sion paths represent the two separate vascular beds perfused by the ascending 
aorta. These are the upper part of the body, with the summation of arterial 
terminations relatively close, and the lower part of the body, with the summed 
arterial terminations much farther away. This model was extensively used by 
O'Rourke and coworkers (O'Rourke and Taylor, 1967; Nichols and O'Rourke, 
1990; Nichols et al., 1986; O'Rourke, 1982), although it never lent itself to a 
clear mathematical and physiological assessment. 

The first zero crossing of the input impedance phase angle observed in the 
head-end and the body-end circulations was assumed to occur at a quarter 
wavelength in analogy with what happens in a loss-free elastic tube loaded 
with a purely resistive load. The quarter wavelength formula: 

I) 
d = ( 8 . 2 8 )  

4f0 

where f0  is the frequency at the first zero crossing of the impedance phase 
angle and v is the pulse wave velocity along the considered transmission 
tube, was used to estimate the tube length (Nichols and O'Rourke, 1990). 
This length has become a parameter of great physiological interest since it 
represents the distance to an effective reflection site from which it appears to 
the heart that the pulse wave is reflected back. It is generally referred to as 
the effective length of the considered portion of the circulation represented by 
a tube model (Burattini and Di Carlo, 1988; Burattini and Campbell, 1993; 
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Burattini et al., 1994b; Campbell et al., 1989; Nichols and O'Rourke, 1990; 
Sipkema and Westerhof, 1975). 

Two effective lengths, dh and db, characterise the T-tube model. These 
lengths quantify the distances to two effective reflecting sites as seen in the 
head-end and body-end portions of the circulation, respectively. Average esti- 
mates for dh and db, pursued from the literature and reported by Nichols and 
O'Rourke (1990, their Figure 11.27) are, respectively, 3.2 and 9.5 cm, in the 
guinea pig; 8.4 and 25 cm in the rabbit, 20 and 38 cm in the dog; 23 and 
65 cm in the sheep; 29 and 41 cm in the human. Nichols et al. (1986) assumed 
12 and 48 cm for dh and db, respectively, in the kangaroo. 

If the reliability of all these estimates of effective lengths is evaluated in 
light of the hypotheses underlying the original T-tube model, several contra- 
dictions emerge. In this model, the assumption of a purely resistive terminal 
load, equal to total peripheral resistance, formalises the hypothesis that wave 
reflection, as seen from the heart, originates at level of arterioles and capil- 
laries. The estimated values for dh and db, however, are inconsistent with this 
assumption. For instance, the 38-cm length of the body-end arm of the T-tube 
estimated for the dog locates the effective reflection site in the terminal aortic 
circulation (compare with the dimensions of the dog's average aortic tree 
constructed by Patel et al., 1963b). The tube-loading system as seen down- 
stream of this location, however, cannot be represented by a pure resistance 
(Burattini et al., 1994a). A further criticism is that the terminal resistance 
of both the head-end and body-end transmission tubes is much higher than 
the related tube's characteristic impedance, such that the input impedance 
of each transmission path oscillates very strongly and shows little resem- 
blance to input impedance data (Sipkema and Westerhof, 1975; Westerhof 
et al., 1979). To reduce these impedance oscillations and improve the approx- 
imation to reality, longitudinal losses were introduced in the transmission 
tubes (Nichols et al., 1986). This assumption is, however, contradictory with 
the experimental evidence of negligible losses in the vessels proximal to the 
heart that these transmission paths supposedly represent. In a recent study 
on three dogs, Burattini and Campbell (2000) found that fitting a frictional 
tube model with resistive terminal load to pressure-flow data measured in 
the high descending aorta yielded an average (+SE) distance to the body- 
end effective reflecting site of 53.4 4- 3.7 cm. Relatively high frictional losses 
enabled this tube model to fit the data, such that a mean pressure drop of 
7.1 4-2.3 mmHg was predicted across the descending aorta. This mean pres- 
sure drop is contradictory with the common knowledge in physiology that, in 
experimental animals and healthy young humans, the conduit and cushioning 
functions are discharged with great efficiency by the large arteries, such that 
the mean pressure drop between the ascending aorta and a large peripheral 
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artery in the forearm or leg is minute, perhaps only 2 to 3 mmHg when the 
body is supine (O'Rourke, 1995). 

8.8.2. THE MODIFIED T-TUBE MODEL 

To resolve limitations in the original T-tube model, the systemic arterial 
circulation was characterised in terms of a modified T-tube model (Figure 8.9) 
consisting of two loss-free transmission tubes connected in parallel and termi- 
nating in first-order low-pass filter loads, rather than simply resistive loads 
(Burattini and Campbell, 1989, 1993; Burattini et al., 1991; Campbell et al., 
1990). The complex terminal loads are described, in a generalised form, 
by a frequency response function formally identical to (8.8) (see (8.32) in 
Section 8.9), (Burattini and Campbell, 1993). 

This T-tube model formulation is characterised by five body-end parameters 
(subscript b) plus five head-end parameters (subscript h). These are Zcb and 
Zch, body-end and head-end tube characteristic impedances, respectively; rb 
and rh, body-end and head-end one-way wave transit times; Rpb and Rph, 
body-end and head-end peripheral resistances; "tSnb , "lZdb , "Cnh , Tdh time constants 
of body-end and head-end terminal load impedances. 

Head and 
upper limbs 

ZLh 

Aorta 

db 

Th 

Vb, Zcb 

Internal organs ~ ~  ~ Z / . b  

Lower limbs 

Figure 8.9. Modified asymmetric T-tube model of the systemic arterial circulation consisting 
of body-end and head-end circulations that represent, respectively, the upper part of the body, 
with the summation of arterial terminations relatively close, and the descending aortic circulation, 
with the summed arterial terminations much further away. See text for details. 
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The minimum set of measurements required to estimate these model param- 
eters was assessed after analysis of data fit and accuracy of model parameter 
estimates. It consists of simultaneous measurements of ascending aortic pres- 
sure and ascending and upper descending aortic flows (Campbell et al., 1990). 
Six parameters (Zcb, Zch, Tb, "Ch, 75nb, and rnh) are estimated from fitting to 
ascending aortic and descending aortic flows. The peripheral resistances Rpb 
and Rph are calculated directly from the measured data. The remaining time 
constants, rdb and rdh, of terminal loads are derived from the assumption 
that, with increasing frequency, the load impedance approximates the tube 
characteristic impedance (see (8.33) in Section 8.9). 

To quantify the overall resistive and capacitive properties of the terminal 
load impedances from the estimates of body-end parameters, Rpb, rnb, and 
rdb, and head-end parameters Rph, Znh and Zdh, the model structure of either 
the W3 (8.18) to (8.20) or the VW (8.21) to (8.23) can be assumed. The VW 
model has been the preferred structural representation of these terminal loads 
(Burattini and Campbell, 1993; Shroff et al., 1995). 

The modified T-tube model of Figure 8.9 has proven successful in explaining 
changes in features of ascending aortic pressure and flow waves under several 
physiological conditions in relation to wave-reflection events as they appear to 
arise from two effective reflecting sites (Burattini and Campbell, 1989, 1993; 
Burattini et al., 1991; Campbell et al., 1990; Shroff et al., 1995). This model 
also explained how, in some circumstances, the two reflecting sites may appear 
as one to the heart (Burattini et al., 1991). 

Due to the assumption of complex terminal loads, the effective reflecting 
sites are complex, such that the load reflection coefficient is complex and 
frequency-dependent. In this circumstance, the effective length can be esti- 
mated according to the following equation: 

1)i 1 + �9 i = h or b (8.29) 
d i -  4f0~ Jr ' 

where vi is the pulse wave velocity along the head-end (i = h) or body-end 
( i -  b) transmission tube, f0~ is the frequency at the first zero crossing of 
the (head-end or body-end) impedance phase angle, and tgi(foi) is the related 
phase of the load reflection coefficient at f oi. This phase affects the timing 
of reflected aortic waves. Equation (8.29) reduces to the quarter wavelength 
formula when ~i(foi)  is zero. This happens when an elastic and frictionless 
tube is loaded with a resistor (Burattini and Di Carlo, 1988; Burattini and 
Campbell, 1993). 

Physiological interpretation inferred from the head-end arm of the modified 
T-tube model is limited because the head-end transmission path supposedly 
represents the net effects of several equivalent sized head-end vessels directed 
to the forelimbs and the head, not just one vessel. Thus, it is not possible to 
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identify a correlation between model structure and anatomy. This observation 
also holds for the original T-tube model. On the other hand, the descending 
aorta is the dominant vessel in the body-end section. Here, discrete land- 
marks can be identified, such as location of abdominal branching and terminal 
aortic bifurcation (or trifurcation). Based on this consideration, Burattini and 
Campbell (1993) investigated the correlation between structure of the body- 
end transmission model and anatomy by comparing estimates of tube length 
and tube compliance with independent assessments of these properties from 
the descending aorta. The study was made in five anaesthetised dogs under 
normal conditions. Pressure and flow in the ascending aorta and flow in the 
upper descending aorta were measured and used to estimate the parameters of 
modified T-tube model. An extra measurement of pressure in the abdominal 
aorta near the origin of renal arteries was made and used to estimate aortic 
pulse wave velocity. Together with estimated model parameters, pulse wave 
velocity allowed calculation of length and compliance of the body-end trans- 
mission tube. Calculated length averaged 30.3 4-2.8 cm and approximated 
the measured length (30.6 4- 3.0 cm) of the aorta from the arch to the region 
of the origin of renal arteries. Additionally, the comparison between model- 
predicted pressure waveform at the termination of the body-end tube and 
the experimentally measured pressure waveform near the site of renal artery 
origin showed a remarkably good agreement Thus, the junction between the 
body-end tube and its terminal load (body-end effective reflecting site) was 
apparently located in this region. Compliance of the body-end transmission 
tube averaged (123 4-20) 10 -6 g-lcm4 s 2 and was interpreted as the aortic 
compliance from the arch to the renal arteries (descending thoracic aortic 
compliance). The ratio of this compliance to the tube length estimated the 
effective distributed compliance, meaning the descending aortic compliance 
per unit length that would be observed in the absence of tapering. This ratio 
averaged (4.10 4-0.86) 10-6g-lcm 3 s 2 and fell between the values of local 
aortic compliance, from the arch to the abdominal aorta, independently esti- 
mated from measurements of pressure and diameter. Thus, the compliance 
of the body-end transmission path of modified T-tube model resulted in a 
physically identifiable property (Burattini and Campbell, 1993). 

In a subsequent work, Shroff et al. (1995) tested the ability of the body- 
end arm of modified T-tube model to correctly discriminate between prox- 
imal and distal physical properties of descending aortic circulation. They 
placed a balloon in the external iliac artery to induce changes in the arte- 
rial system that would be limited to the portion of body-end arm of the 
T-tube distal to the abdominal aortic region where the effective reflecting site 
should be located. They found that the balloon inflation solely affected the 
body-end terminal-load parameters, whereas tube parameters remained prac- 
tically unchanged with respect to control condition. They concluded that the 
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terminal-load parameters correspond to the distal arterial system properties 
as seen from the left ventricle. Proximal arterial mechanical properties, corre- 
sponding to tube characteristic impedance and transit time (or tube compliance 
and inertance), are independent of distal properties, such as load compliances 
and resistances. Shroff et al. (1995) also tested the ability of the model to 
track the expected changes in proximal and distal mechanical arterial proper- 
ties after administration of vasoactive drugs. Model behaviour under various 
vasoactive conditions conformed to the expected patterns and further vali- 
dated the capability of the model to discriminate between proximal and distal 
changes in the arterial system properties. 

In the original and modified T-tube model formulations, arterial tapering 
is disregarded. Because the descending aorta is the portion of the arterial 
system where tapering is more evident, Fogliardi et al. (1997) evaluated the 
effects of incorporating an exponential tapering in the body-end arm of modi- 
fied T-tube model. The conclusion of their study was that the complexity 
added to the uniform tube model by introducing an exponential aortic tapering 
gives rise only to a better curve fitting but does not show identifiable benefits 
regarding physiological interpretation of descending aortic impedance. Again, 
the uniform body-end transmission path yielded estimates of parameters well 
correlated with the mechanical properties of the descending thoracic aorta. 
The average of estimated tube lengths of three dogs under normal conditions 
approximated 29 cm and was close to the measured distance of approximately 
28 cm to the abdominal aorta, at level of renal artery origin. Further, a satis- 
factory resemblance was found between measured terminal aortic pressure and 
pressure predicted by the model at the junction between transmission tube and 
its complex terminal load. 

8.9. I D E N T I F I A B I L I T Y :  A K E Y  I S S U E  I N  T H E  

A S S E S S M E N T  O F  P H Y S I O L O G I C A L  R E L E V A N C E  

O F  T - T U B E  M O D E L  

The reported ability of the body-end arm of the modified T-tube model of 
Figure 8.9 to provide a suitable description of wave travel and reflection along 
the aorta and to discriminate between proximal and distal mechanical prop- 
erties of the descending aortic circulation seems to conflict with the reported 
finding by Campbell et al. (1989) that the interpretation of arterial impedance 
by uniform tube models leaves room for an infinite number of exact solutions 
for tube-length and terminal-load impedance. 

There is no question that this problem in uniqueness of tube model 
parameter solutions must be resolved in the process of model validation. The 
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aim of the following discussion is to demonstrate that this problem can be 
resolved for the body-end portion of the systemic arterial bed by means of 
theoretical identifiability analysis and the concept of determinacy that relates 
to the selection of suitable parameter values, from a multiplicity of solutions 
(see Section 8.2). 

Let us consider the following expression to describe the input impedance, 
Zb(jno)), of the body-end arm of modified T-tube model displayed in 
Figure 8.9: 

1 + Fi..b(jnw). exp(--j2no)rb) 
Zb(jn(.o) = Zcb (8.30) 

1 -- FLo(jnw).  exp(--j2na)ro) 
In accordance with Fourier analysis of pressure and flow waves, n is an 
integer that varies in practice from 0 to 15-20, ~o = 2zr/T is the fundamental 
frequency of heart pulsation in rad/s, j is ~ 1 ,  ro is the wave transit time 
from the entrance to the end of the transmission tube, and Zco is the tube 
characteristic impedance. FLb(jno)) is the reflection coefficient at the junction 
between tube and terminal load. This reflection coefficient is a function of Zco 
and of the load impedance, ZLb(jnco): 

Z i~( jnw)  - Zcb (8.31) 
I'Lb(jn09) -- ZLb(jn09) + Zcb 

The load impedance is given the following first-order low-pass filter form: 

1 + jn(.O'rnb (8.32) 
ZLb(jnaO = Rpb 1 + jno)rdb 

The assumption that, with increasing frequency, the load impedance app- 
roximates the tube characteristic impedance yields the following additional 
constraint: 

75nb (8.33) 
"Cdb - -  R p b  Z c b  

In (8.30), the wave transit time, rb, appears in the exponential, exp(--j2ncorb). 
Because this is a periodic function, all values "gbi of T b that are contained in the 
series: 

T 
Tbi - -  72b o Jr- i-~; i -- 0, 1, 2 . . . . .  N (8.34) 

with N large at will yield the same value for the exponential. This theoretical 
consideration suggests that it is not possible to determine a suitable estimate of 
rb uniquely, from measurements of I/O data. When multiplied by an estimate 
of pulse wave velocity, Vb, each "gbi value yields a value for tube length, dbi, 
which is, for the effective length of descending aortic circulation. The presence 
of multiple solutions for the wave transit time and, as a consequence, for the 
effective length enhances a problem of determinacy (Brown and Godfrey, 
1978) that is related to the selection of the only one solution among "~bi and 
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dbi, values that has clear physiological meaning. If this solution exists, the 
problem of its selection can be resolved on heuristic basis by fitting the model 
and data to obtain numerical values for all sets of solutions and, eventually, 
by contrasting these solutions to the information available on the physical 
properties of descending aortic circulation, select the solution compatible with 
the real system. 

8.9.1. EXPERIMENTAL RESOLUTION OF THE DETERMINACY 
PROBLEM 

There are three free parameters of the body-end arm of modified T-tube 
model to be estimated from pressure and flow measurements at the inlet of 
descending aortic circulation: 1) the tube characteristic impedance, Zcb; 2) the 
wave transit time, rb, from the input to the termination of the transmission 
tube; and 3) the time constant, r,,b, of the terminal load. Reb is calculated from 
the ratio of mean pressure to mean flow, whereas tab is calculated from rnb, 
Zcb, and Rpb making use of (8.33). 

Model parameter estimation was accomplished in five anaesthetised, open- 
chest dogs. Pulsatile pressures were measured from the termination of the 
ascending aorta near the arch and from the abdominal aorta, close to the 
origin of the renal arteries. Flow was measured from the ascending aorta and 
the upper descending thoracic aorta. The distance between the two pressure 
transducers and the distance between the upper transducer and the origins of 
the two renal arteries also were measured. These distances were determined 
at the end of the experiment after the animal had been sacrificed but while 
the aorta remained longitudinally tethered to the position it held during life. 
More details are given elsewhere (Burattini and Campbell, 1993). 

The parameters "rb, Zcb, and rnb were estimated by minimising (with 
a modified Levenberg-Marquardt algorithm, Minpack, Argonne National 
Laboratory, Argonne, IL) a cost function, Fo, defined as the sum of squared 
differences between the sampled values of measured and model predicted 
descending aortic flow. To test the convergence of this procedure to equivalent 
minima of the cost function associated with different estimates of rbi, repeated 
runs of the parameter estimation procedure were performed. The first run 
(i = 0) was performed assuming 50 ms as starting value for the wave transit 
time. This value is commensurate with the physical dimensions, in the dog, 
of the descending thoracic aorta and expected wave transmission velocity. In 
accordance with (8.34), the starting values for subsequent runs were assumed 
equal to 50 + iT~2 ms, i = 1, 2 . . . . .  N. The starting values for r~b and Zcb 
were kept equal to 100 ms and 500 g cm -4 s -1 , respectively. Analysis of three 
runs (N -- 2) gave sufficient evidence of the existence and the magnitude of 
multiple solutions for rbi. 
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In all five experimental cases, the first run (i = 0) of the parameter 
estimation procedure converged to the minimal value, rb0, among all possible 
solutions of rbi. The average of rb0 over these five cases was 66 4-10 ms. 
Estimates of the other free parameters, Zcb and rnb, averaged 572 4- 
102 g cm -4s-  1 and 110 4- 46 ms, respectively. Average parameter estimation 
errors, as a percentage of the related parameter estimates, were (3.8 4- 1.3)% 
for rbo, (4.6 4- 3.0)% for Zcb, and (12 4- 11)% for 15rib (Burattini et al., 1994b). 

The second (i -- 1) and the third (i = 2) runs of the fitting procedure yielded 
~bi estimates that were in good agreement with predictions of (8.34), whereas 
the parameters Zcb and "~nb were practically the same as those provided by the 
first run. 

A graphical view of some of the minima of the cost function, Fo, observed 
in one experimental case is displayed in Figures 8.10 and 8.11. Figure 8.10 
displays the three-dimensional (3-D) plot (upper panel) and contour plot (lower 
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Figure 8.10. Three-dimensional plot (upper panel) and contour plot (lower panel) of the cost 
function, F, 1, (defined as the sum of squared differences between experimental and model 
predicted descending aortic flow) in one dog, as a function of the body-end wave transit time, 
rb, and tube characteristic impedance, Zcb. The other free model parameter, rnb (i.e., one of the 
two time constants of the terminal load impedance), is fixed at the optimal value obtained from 
the fitting procedure described in the text. Broken line crossings that are visible in the contour 
plot locate the minima of F~. 
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Figure 8.11. Three-dimensional plot (upper panel) and contour plot (lower panel) of the cost 
function, F, 7, (defined as the sum of squared differences between experimental and model 
predicted descending aortic flow) as a function of the body-end wave transit time, rb, and 
terminal load time constant, rnb. The other free model parameter, Zcb (i.e., the tube characteristic 
impedance), is fixed at the optimal value obtained from the fitting procedure. Broken line 
crossings that are visible in the contour plot locate the minima of F o. 

panel) of  F0 as a function of rb and Zcb , with Tnb fixed at the optimal value 
obtained from the best fitting procedure described earlier. The presence of  
multiple equivalent minima associated with different Tbi values and a unique 
(optimal) value of  Zcb is evident. Likewise,  the 3-D and contour plots of  
Figure 8.11 show that, after giving Zcb its optimal value, the cost function F0, 
as a function of rb and rnb, is characterised by multiple equivalent minima 
associated with different ~bi values and a unique (optimal) value of  rnb. These 
figures are representative of all considered experimental  cases. 

To calculate pulse wave velocity, Vb, the distance between ascending aortic 
and abdominal  aortic pressure transducers was divided by the foot-to-foot t ime 
delay between the measured pressure waves.  Average Vb over all five dogs was 
452 4- 81 cm/s. 

The product between Vb and rbi, with i = 0, 1, and 2 yielded the fol lowing 
average values for the effective length of  the descending aortic circulation. The 
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minimum value, associated with rb0, was dbo = 29.2 4- 2.8 cm. The subsequent 
lengths, dbl and db2, respectively, associated with rbl and ~:b2, averaged 
147 4- 23 cm and 265 4- 44 cm. The estimated value of dbo approximated the 
measured distance, 30.6 4- 3.0 cm, from the aortic site where the input pressure 
transducer was located to the abdominal aortic region nearby the origin of renal 
arteries. The lengths dbl and db2 (and the higher values of db3, db4, and so 
forth) would locate the effective reflection site out of the body. 

Based on these results, the problem in uniqueness of estimates for the wave 
transit time, rb, finds a solution in that only the selection of rbo, among the 
infinite "Cbi solutions, is compatible with the physical and topological properties 
of descending aortic circulation. In other words, the selection of rbo yields a 
distance, dbo, to the effective reflecting site that meets the requirement that 
this length be no longer than the dimensions of the body. This result supports 
the reported findings (Burattini and Campbell, 1993; Fogliardi et al., 1997; 
Shroff et al., 1995) that the body-end ann of modified T-tube model provides 
a suitable description of wave travel and reflection along the aorta and is 
able to discriminate between proximal and distal mechanical properties of the 
descending aortic circulation. 

8.10. C O N C L U S I O N S  

Complexity is what characterises the vascular system as well as much 
of physiology. As a result of this physiological complexity, it is not often 
possible to measure directly (in vivo) the quantities of interest such as, for 
instance, total arterial compliance and peripheral resistance. Only indirect 
measures of such quantifies may be feasible, implying the need for some 
model in order to be able to draw inference as to the value of the quantity of 
real interest. Vascular impedance data derived from measurements of pulsatile 
pressure and flow and vascular impedance models of various complexity have 
been extensively used in the process of raising our understanding of arterial 
haemodynamics in health and disease. Models of reduced complexity are 
appealing in that they can be easily communicable and understandable and are 
characterised by a low number of parameters that may be assumed as markers 
of some physical properties of the actual system. The need of simplification 
in the process of model formulation conflicts with the complexity of the 
biological system on the one hand and the risk of oversimplification on the 
other. Hopefully, the issues of aortic impedance modelling discussed in this 
chapter can contribute to bring the reader around the point that the purpose 
of modelling is a key driver of good modelling methodology in the search 
of a compromise between complexity and oversimplification. The concept of 
goodness or badness of modelling, however, cannot be based on taste. Once the 
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purpose of a model is defined, the process of modelling cannot merely be one 
that takes arbitrary assumptions, shakes them up, and comes out with arbitrary 
conclusions that have the ring of science. Rather, an integrated identification 
framework (as discussed in Chapter 1) is needed for dealing with models that 
are physiologically based. This implies that the hypotheses taken in the process 
of transformation from system to model are put into a mathematical form and 
a model structure and the corresponding parameters are determined. Problems 
of identifiability, as, for instance, those discussed in Section 8.9, need to be 
resolved for reliable physiological interpretation. Data fit, parameter estimation 
errors, and physiological relevance of parameter estimates need to be tested in 
the process of model validation, which is essentially that of examining whether 
the model is good enough in relation to its intended purpose. Eventually, it 
should not be forgotten that the formulas deduced from a model are the result 
of mathematical formalisation of the hypotheses underlying the model itself. 
Thus, their use should always be sound with these hypotheses. For instance, 
the assumption of an arterial model that cOnsists of a loss-free elastic tube 
terminating in a resistor yields the quarter wavelength formula (8.28) for 
calculation of the effective length of the considered arterial system. As soon 
as it is recognised that the introduction of longitudinal frictional losses or the 
assumption of a complex and frequency-dependent terminal load improves 
the behaviour of the model, it should also be recognised that the quarter 
wavelength formula falls short because it is not sound with the new hypothesis. 
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Chapter 9 

Mathematical Modelling of 
Pulmonary Gas Exchange 

Stephen E. Rees, Saren Kja~rgaard, and Steen Andreassen 

This chapter describes mathematical models used to quantify abnormalities 
of pulmonary gas exchange (i.e., abnormalities of diffusion, ventilation, and 
perfusion). It begins by deriving the standard equations of pulmonary gas 
exchange, showing how these equations can be used to obtain more complex 
models of ventilation/diffusion/perfusion mismatch in the lung. The appli- 
cation of these models is then reviewed in both experimental and clinical 
environments. 

9.1. S T A N D A R D  EQUATIONS USED TO DESCRIBE 
GAS TRANSPORT IN THE LUNGS 

Figure 9.1 illustrates a conceptual model of the lung including three compart- 
ments representing alveolar dead space, which are alveoli ventilated but not 
perfused; pulmonary shunt, which are alveoli perfused but not ventilated; and 
effective alveoli, which are those involved in gas exchange and are both venti- 
lated and perfused. For alveoli involved in gas exchange, Figure 9.1 includes a 
resistance to gas diffusion across the alveoli/lung capillary membrane. 

The conceptual model illustrated in Figure 9.1 is simple and does not 
include a large number of compartments describing heterogeneity of venti- 
lation, diffusion, or perfusion within the lung. As such, the mathematical 
formulation of this model includes equations that are well recognised within 
the field of respiratory physiology, equations that can be seen as the building 
blocks of more complex models of gas exchange. These equations are the 
alveolar air equation, the venous admixture equation, Fick's law of diffusion, 
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Figure 9.1. A three-compartment model of the lung including alveolar dead space, pulmonary 
shunt, and resistance to gas diffusion across the alveoli/lung capillary membrane. 

the Fick principle of blood flow, and the Bohr equation for the estimation of 
dead space. The derivation and description of these equations now follows; 
all relevant nomenclature is included in the glossary (Appendix A) 

9.1.1.  THE ALVEOLAR AIR EQUATION 

The alveolar air equation can be derived by considering the volume of 
gas flowing in and out of the effective alveoli. The volume of gas flowing 
into the effective alveoli (i.e., across line 1, Figure 9.1) is the product of 
the fraction of gas in the inspired air (FI) warmed and humidified (FI,BTPS) 
and the ventilation of the effective alveoli (IYA,BTPS). Similarly the volume of 
gas flowing out of the effective alveoli is the fraction of gas in the effective 
alveoli on expiration (FA,BPTS) multiplied by f'A,BTPS, plus the gas diffusing 
into blood during gas exchange (f'). Assuming all gases are expressed at body 
temperature and pressure and saturated with water, this gives: 

FAVA -+- f/--" Flf /a (9.1) 

Converting alveolar fraction to pressure (PA = FAPB), (9.1) can be written as: 

PAVA -i- fr "-- FIVA (9.2) 
PB 



Mathematical Modelling of Pulmonary Gas Exchange 255 

Rearranging (9.2) gives the most general form of the alveolar air equation: 

r PB (9.3) PA = FI PB ~r A 

For oxygen and carbon dioxide, this equation may be written as: 

I)'02 PB 
PA02 --~ FI02 P n -  VA (9.4) 

PACO2 -- FICO2 PB + 
~"CO2 Po 

r (9.5) 

where VO2 is the oxygen consumption and VCO2 is the carbon dioxide 
production. I?A is calculated as the respiratory frequency ( f )  multiplied by 
the effective tidal volume (Vr,BTPS -- [Voana + VOalv]), which is: 

~rA = f (VT,BTPS- (VDana + VDalv)) (9.6) 

In (9.1) to (9.6), ventilation of effective alveoli (f'a), the fraction of gas 
flowing into the alveoli (Ft), and the tidal volume (VT) are described at body 
temperature and pressure and fully saturated with water, or BTPS. Inspired 
gas is usually dry and at ambient temperature and pressure (ATPD), being 
warmed and humidified during inspiration. Inspired volumes and fractions are 
usually measured at ATPD but may be converted into the equivalent values at 
BTPS, as described in Appendix B. 

Equations (9.4) to (9.6), and the corrections for humidification and warming 
of the inspiration ([B.1] to [B.10], Appendix B), are often used to estimate 
alveolar oxygen partial pressure (PAO2) which cannot be directly measured. 
Where measurements of mixed venous blood (C~-O2) and cardiac output (Q) 
are possible, I)'O2 can be calculated from the Fick principle of blood flow (see 
Section 9.1.4) and used with measurements of ventilation (FIO2, f ,  Vr) and 
estimates of dead space (VDana, VDalv) to calculate "Y'a from (9.6), and hence 
PA02 from (9.4). In the absence of pulmonary artery catheter measurements 
of C~-O2 or 0, an indirect estimate of PA02 is possible using information from 
the carbon dioxide (CO2) system. First, (9.5) is solved to obtain an estimate for 
VCO 2. This is done by making two assumptions: that the alveolar and arterial 
PCO2 are equivalent (PACOz --~ PaCO2), where PaCOz is measured from an 
arterial blood sample; and that the inspired CO2 concentration is negligible 
(FIFO2 -- 0). Calculated f'CO2 can then be used to estimate f'Oz, assuming a 
value of the respiratory quotient (R, normal value 0.8) and using the equation: 

VCO2 -- R ~rO 2 (9.7) 
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which links oxygen consumption (VO2) and carbon dioxide production 
(VCO2) under steady-state conditions of both O2 and CO2. The estimated 
value of VO2 can then be inserted into (9.4) and PAO2 calculated. The alveolar 
air equation can be written in many forms, with the appropriate form chosen 
based on the available measurements. A common form of this equation, used 
when mixed expired gases can be measured, is given below: 

PA02 "- P I 0 2  - PaC02 
FI02  - FE-02 

FE-CO2 
(9.8) 

9.1.2. VENOUS ADMIXTURE 

The venous admixture or "shunt fraction (shunt)" is the fraction of total 
cardiac output (Q) that is not involved in gas exchange. As illustrated in 
Figure 9.1, total blood flow (Q) is the sum of that flowing through lung capil- 
laries (Q(1-shunt)) and that which is not involved in gas exchange (Q shunt): 

Q = Q shunt + Q(1-shunt) (9.9) 

In the same way, the flow of oxygen into the arteries (Q CaO2) can be 
described as the sum of that coming from blood leaving the lung capillaries 
(Q(1-shunt) CCO2) and that coming from shunted mixed venous blood (Q 
shunt C~-O2): 

Q Ca02  -- a shunt Cv-O 2 + Q(1-shunt)Cr (9.10) 

By rearranging (9.10), we obtain the shunt equation: 

C c 0 2  - C a 0 2  
shunt = (9.11) 

C c 0 2  - Cv-02 

The oxygen content of blood leaving the lung capillaries (CCO2) cannot be 
measured. To calculate shunt, it is usually assumed that alveoli and blood 
leaving the lung capillaries are at equilibrium for PO2, or Pc02 = PA02 PA02, 
estimated from the alveolar air equation, can then be used calculate Cr 

9.1.3. FICK'S FIRST LAW OF DIFFUSION 

This law states that the rate of diffusion (f') of gas across a tissue barrier 
is proportional to the partial pressure difference across that barrier: 

r162 = DL (PA -- Pc) (9.12) 
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where Pc is the partial pressure of gas in the lung capillary gas, and DL is the 
diffusion capacity of the gas. 

9.1.4.  THE FICK PRINCIPLE OF BLOOD FLOW 

The Fick principle describes the oxygen consumption (~rO2) as a function 
of the arteriovenous oxygen concentration difference and the cardiac output 
(Q), and can be used to calculate either Q or VO2. The equation is written as: 

VO2 -- a ( f aO2  - Cv-O2) (9.13) 

9.1.5. ESTIMATION OF RESPIRATORY DEAD SPACE 

Respiratory dead space is that part of the tidal volume (VT) which does not 
take part in gas exchange. This includes all nonalveolar ventilation (anatomical 
dead space VDana), and ventilation of alveoli that are not perfused (alveolar 
dead space VOA). The sum of VDana and VOA is known as physiological dead 
space (Vop). 

The Bohr equation, which is used to describe dead space, can be derived 
by describing CO2 expiration in three ways. At the mouth, the total CO2 
expired can be described either as the product of mixed expired CO2 frac- 
tion (FE-COE,BTPS) and tidal volume (VT,BTPS) or as the product of end tidal 
CO2 fraction (FE, CO2) and the volume of end tidal gases (Vr,B~s - Voana), 
where end tidal gases are those expired after anatomical dead space has 
been washed out. Equating these and converting fractions to pressure (i.e., 
PE--CO2 = FE--CO2 PB, PE, CO2 -- FE, CO2 PB) gives: 

PE'CO2(VT,  BTPS -- VDana) = PE-CO2 VT,BTPS (9.14) 

Equation (9.14) can be rearranged to give the Bohr equation for the estimation 
of anatomical dead space: 

VDana -- VT (Pe'CO2 - PE-CO2) (9.15) 
PE, CO2 

where all gases are represented at BTPS. 
Total CO2 expiration also can be described at the effective alveoli as the 

product of alveolar CO2 fraction (FACO2,BTPS) and the volume of effec- 
tive alveolar ventilation (VT,arPS- [VDana-~" VDA]). Converting fraction to 
pressure (PACO2 = FACO2 PB) and equating CO2 expiration at the effective 
alveoli and the mouth gives: 

PACOE, BTPS(VT, BTPS -- (VDana "~" VDA)) -- PE-CO2 VT,BTPS (9.16) 
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which can be rearranged to give the Bohr equation for the estimation of 
physiological dead space: 

VDp "- VDana "[- VDA = VT 
(PA CO2 - PE---CO2) 

PACO2 
(9.17) 

where all gases are expressed in BTPS. 

9 .2.  M O D E L S  O F  D I F F U S I O N  L I M I T A T I O N  

Figure 9.2 illustrates the diffusion of oxygen from alveoli to lung capillary 
blood. During the transport of blood through the lung capillaries, the partial 
pressure of oxygen in the blood equilibrates with the partial pressure of oxygen 
in the alveoli, with equilibrium usually reached during the blood transport 
through the capillaries (Nunn, 1993). When diffusion is impaired, equilibrium 
may not be reached and an alveolar-arterial oxygen pressure difference may 
occur. Figure 9.2 illustrates some of the possible causes of this difference due 
to "diffusion" limitation. These are a short transit time of the blood through the 
lung capillary, and a reduced diffusion capacity from alveoli to lung capillaries 
(DLOe), which can be due to either reduced diffusion capacity across the 
lung capillary membrane (DmO2) or slow binding of oxygen to Hb in the 
erythrocyte. 

Much of the theory of mathematical models constructed to explain diffusion 
abnormalities within the lung can be understood by the application of Fick's 

Alveoli 

0.5 l.tm 
200 ~tm 

V 7~tm Lung - 
capillary 

Transit time 

Figure 9.2. Diffusion of oxygen from alveoli to lung capillary blood. DLO2 is the total diffusion 
capacity of 02 from alveoli to the blood, DMO2 is the diffusion capacity of the lung capillary 
membrane, and 0 is rate of oxygen binding in the blood. 
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First Law of Diffusion. This law was first applied to study the diffusion prop- 
erties of oxygen by Bohr (1909) and states that for blood transversing the lung 
capillary, the total oxygen transport (I)'O2) is proportional to the alveolar-lung 
capillary PO2 difference: 

~tO2 "-" DLO2(PA02 -- PcO2) (9.18) 

An expression for the change in Pr as blood flows through the lung capil- 
laries can be derived by considering the flow of oxygen into a single "slice" 
of blood flowing through the capillary. Assuming that blood flow through the 
lungs can be represented as a single capillary length X and cross-sectional 
area A, then for a single slice of blood, width dx, total f'O2 is the sum of 
I702 values as the slice flows through the capillary: 

1202 - VOz(x) dx (9.19) 

If the slice of blood flows through the capillary from time t to time t + dt, 
oxygen transport into the slice (VOz(x) dx dt) is equal to the change in O2 
mass in the slice ([Cc02(t + dt) - Cr Vs) during this time" 

VOz(x) dx dt - [C~O2(t + d t )  - CcO2(t)]Vs (9.20) 

where V~ is the volume of the slice of blood and [CcO2(t + dt) - CcO2(t)] is 
the change in oxygen concentration (dCcOz(t)). Vs is the product of the cross- 
sectional area of the capillary (A) and dx. Substituting for Vs and dCcOz( t )  
in (9.20) gives" 

gO2(x)  = A dCcO2(t) (9.21) 
dt 

The flow of oxygen from the alveoli into the slice of blood (f'Oz(x)dx) also 
can be described using Fick's First Law of Diffusion, which means as the 
product of the diffusion capacity over the slice (DLO2 dx /X)  and the partial 
pressure difference at time t (PAO2- Pc02 (t)): 

VOz(x)dx  = DLOzdx/X(PAO2 -- PcOz(t)) (9.22) 

Eliminating f'Oz(x) from (9.21) and (9.22) gives: 

dCcOz(t)  
A -- DLOz/X(PAO2 -- PcOz(t)) (9.23) 

dt 

The volume of lung capillary blood Vc equals the product of the cross-sectional 
area (A) and the capillary length (X), replacing for A and X in (9.23) gives" 

dCcOz(t)  
= DLOz/Vc(PAOz -- PcO2(t)) (9.24) 

dt 
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which can be rearranged to give: 

f l / ( P a 0 2 -  PcO2(t))dCr -- f DLO2/Vc dt (9.25) 

This equation cannot be solved algebraically to obtain an expression describing 
the change in Pc02 as blood passes through the lung capillary because of 
the complicated relationship between oxygen partial pressure (PcO2) and 
concentration (CCO2). Binding of 02 to haemoglobin is described by the 
oxygen dissociation curve (ODC), a nonlinear function relating PO2 to the 
oxygen saturation of haemoglobin in the blood (SCO2), which means Sc02 = 
ODC(PcO2). Total 02 concentration is therefore: 

Cc02 -- PcO2oto2 -~- Hb  ODC(PcO2) (9.26) 

where ct02 is the solubility of oxygen in the blood, normal value 
0.01 (mmol/(1 kPa), 0.0014 mmol/(1 mmHg) (Siggaard-Andersen, 1974). 

With knowledge of the concentration and pressure of oxygen in the venous 
blood and in blood coming from the lung capillaries, assuming a constant alve- 
olar oxygen partial pressure (PAO2) and pulmonary capillary blood volume 
(V~), and using the oxygen dissociation curve, Bohr was able to use graph- 
ical/numerical methods, known as Bohr integration, to solve (9.25) and esti- 
mate the diffusing capacity for oxygen (DLO2). 

For an inert gas, Henry's law applies such that the partial pressure is propor- 
tional to concentration: 

C =/3P (9.27) 

where/5 is the solubility of the gas in blood. As shown by Wagner (1977), for 
inert gases it is possible to obtain an expression for the partial pressure of gas 
in blood as it passes through the lung capillary that is algebraically solvable, 
as follows. Equation (9.25) can be written for an inert gas as: 

DL 
Pc(t) = V-c~c~ (Pa -- Pc(t)) (9.28) 

by integrating (9.28) an algebraic expression can be obtained for the partial 
of the gas in blood as it passes through the lung capillary- 

Pc(t) = PA -- (PA -- P~) e-(DL/(vc~))t (9.29) 

The change in partial pressure of the gas in the lung capillary can therefore 
be described by a single exponential. For oxygen, (9.29) can be written as: 

PcO2(t) -" PA02 -- (PAO2 - -  Pv-O2)e -(DLO2/(Vc~))t (9.30) 

and can be used to simulate the change in PO2 in the lung capillary blood, 
accounting for the fact that Henry's law is not obeyed, meaning that the 
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relationship between concentration and pressure is the nonlinear ODC, such 
that /~ varies with POE, Figure 9.3(A) illustrates the change in PO2 in the 
lung capillary blood (PcO2) as it equilibrates with PAO2, for both: varying 
values of fl (solid curve) according to the relationship between oxygen content 
and pressure illustrated in Figure 9.3(B); and for a constant value of / ~ -  
0.8 mmol/1/kPa (dotted curve), a value of/~ that occurs at the lower end of 
the pressure content curve seen in Figure 9.3(B). It can be clearly seen that 
/~ decreases with increasing POE, causing more rapid equilibration between 
PcO2 and PA02. Under normal circumstances, equilibrium is reached within 
0.25 s, one third of the normal capillary transit time (0.75 s) (Wagner, 1977). 

A modification of the original Bohr method was made by Riley et al. 
(1951a, 1951b). Their approach eliminated Bohr's assumption that arterial 
blood and blood leaving the lung capillaries were at the same POE, making 
it possible to investigate the situation where both a diffusion abnormality 
and a pulmonary shunt are present. Riley et al. (1951a, 1951b) performed 
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Figure 9.3. A, Model predicted simulations (iterative solution of equation 9.30) illustrating the 
change in PO2 in lung capillary blood (PcO2) when equilibrated with alveolar PAO2, using 
values of DLO2 = 12.5 mmol/(min kPa) (40 ml/(min mmHg)), Vc = 0.075 1, PAO2 = 13.3 kPa 
(100 mmHg) and Pv--O2 = 5.3 kPa (40 mmHg). Solid line, solution of (9.30) varying values of 
/~ according to Figure 9.3(B); dotted line, solution of (9.30) with constant/~ = 0.8 mmol/l/kPa. 
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Figure 9.3. (Continued) B, Oxygen pressure (PO2), concentration (CO2) curve for blood. Plotted 
using (9.26) with Hb = 9.3 mmol/1, ot02 = 0.01 mmol/(1 kPa). In (9.26), the ODC is the oxygen 
dissociation curve for blood implemented as described by Siggaard-Andersen et al., 1984 (i.e., 
that included in the oxygen status algorithm [Version 3, Siggaard-Andersen, 1995]). fl, the slope 
of the CO2, POE curve decreases with increasing values of POE. 

an experiment where patients were studied at two inspired oxygen fractions 
to achieve arterial oxygen saturations of 82 and 95%. At each FIOe, 
estimates of PAOe were obtained from the alveolar air equation (9.8). The 
resultant P A 0 2 -  Pa02 differences were then partitioned into P A O 2 -  Pc02 
and P c O e -  Pa02 differences using Bohr integration. In effect, the overall 
PA02 -- Pa02 disorder was partitioned into that due to a diffusion abnormality 
and that due to pulmonary shunt. 

As illustrated in Figure 9.2, the oxygen diffusion capacity DLO2 is a 
composite measure of the ability of oxygen to travel from the alveoli 
to the lung capillary plasma and then to bind with haemoglobin in the 
erythrocyte. Estimation of a constant DLO2 is therefore a mean across 
the whole capillary, which assumes that the speed of oxygen binding to 
haemoglobin is constant. This assumption is invalidated by two physiolog- 
ical mechanisms that work in opposite directions. First, as the haemoglobin 
is saturated with oxygen, its ability to bind further oxygen is reduced. 
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Second, each molecule of haemoglobin binds four molecules of oxygen 
with the rate constants of these reactions varying such that binding of the 
fourth molecule is significantly quicker than the other three (Staub et al., 
1961). Staub et al. (1962) proposed a model, previously derived for carbon 
monoxide (Roughton et al., 1957), that accounted for these two effects. In 
doing so, the total oxygen diffusion capacity DLOe was divided into terms 
describing the diffusion capacity across the blood gas barrier (DMO2) and 
the diffusion capacity associated with oxygen binding to haemoglobin (Vco). 
0 is the rate of oxygen binding in the blood per unit time, for a given pres- 
sure of oxygen in the blood and for the number of litres of blood. The 
equation proposed by Staub et al. (1962) was: 

1 1 1 
= + (9.31) 

DLO2 D M 0 2  VcO 

Staub et al. (1962) described the relationship between 0 and the oxygen 
saturation (SO2). 0 was found to decrease with increasing oxygenation when 
the blood was more than 75% saturated with oxygen, decreasing from 
810 (mmol O2/[min kPa 1]), (2.6/[ml O2/(min mmHg ml)])) at 75% oxygen 
saturation to 160 (mmol O2/[min kPa 1]), (0.5 [ml O2/(min mmHg ml)]) at 
98% oxygen saturation. 

An overall measure of DLO2 is therefore more appropriately explained as 
a higher value of DLO2 (increased oxygen diffusion capacity) during the early 
stages of gas exchange and smaller value of DLO2 during the latter stages. 
This effect is illustrated in Figure 9.4, which shows the change in PcOz for 
a constant DLO2 (dashed line) and for varying values of DLO2 (solid line) 
given by the relationship between 0 and SO2 described by Staub (1962). By 
substituting for DLO2 in (9.30) using (9.31), an expression can be obtained 
describing oxygenation of the lung capillary blood: 

PcO2( t )  = P A 0 2  -- (PAO2 --P~O2) e -(1/DuO2+l/(v~ o))(1/(Vc ~x))t (9.32) 

Where oxygen diffusion abnormalities exist, high values of 0 imply that 
these abnormalities are present in the alveolar capillary membrane, while low 
values imply that the abnormality occurs in the blood, most likely due to 
oxygen binding to haemoglobin. The original study of Staub (1962) reported 
rather low initial values of 0 of 2.6 ml O2/(min mmHg ml blood), but more 
recent studies (Yamaguchi, 1985) have reported values of 0 as high as 3.9 ml 
O2/(min mmHg ml blood), implying a greater diffusion abnormality in the 
lung capillary membrane than previously believed. 
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Figure 9.4. Model predicted simulations illustrating the change in Pc02 when equilibrated 
with PAO2 = 13.3 kPa (100 mmHg). Dashed line, solution of (9.30) using a constant value of 
DLO2 = 9.0 mmol/(min kPa) (29 ml/[min mmHg]), varying r according to Figure 9.3(B); solid 
line, solution of (9.32) varying values of 0 according .to Staub et al. (1962) while assuming a 
constant value of DMO2 = 12.5 mmol/(min kPa) (40 ml/[min mmHg]), and varying r according 
to Figure 9.3b. For both lines, Vc = 0.075 1 and Pv--O2 = 5.3 kPa (40 mmHg). 

9.2.1. GAS EXCHANGE ABNORMALITIES DESCRIBED BY 
HETEROGENEITY OF DIFFUSION/PERFUSION D / 0 .  

Figure 9.1 illustrates a lung with a single compartment involved in gas 
exchange. This model is that applied by Riley et al. (1951 a, 1951 b) and assumes 
that all nonshunted blood passes through this single lung compartment. Piiper 
et al. (1960), when using a similar approach to Riley in estimating the shunt and 
diffusion abnormalities in anaethetised dogs, found that the model with a single 
gas exchange compartment was inadequate to describe alveolar-arterial oxygen 
differences. To account for these differences, Piiper et al. (1960) proposed the 
concept of a diffusion/perfusion ( D / Q )  mismatch in a heterogeneous lung, 
which is a lung with a number of compartments involved in gas exchange, each 
with varying diffusion properties (DL102, D L 2 0 2 )  and with varying fractions of 
the total nonshunted blood (Q1, Q2) flowing through these compartments. This 
picture is illustrated for two compartments in Figure 9.5. 
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Figure 9.5. A conceptual model of the lung, including two compartments involved in gas 
exchange. These compartments have different diffusion capacities (DL1 O2, DL202) and perfusion 
properties (Q1, Q2), resulting in varying partial pressures of oxygen flowing from the lung 
capillaries (PclO2, PclO2) for each compartment. 

For oxygen transport, the diffusion/perfusion mismatch (DLO2/Q) can be 
represented mathematically by modifying (9.30), substituting for transit time 
(t). For blood leaving the lung capillaries, t can be expressed as: 

t = 
Volume of pulmonary capillary blood 

Rate of blood flow through the capillary 

VC 

substituting for t in (9.30) gives: 

Pc02 " -  P A 0 2  - -  (PAO2 -- P~O2) e -(1/#)(DLO2/O') (9.33) 

which describes Pc02 as an exponential function of the solubility (/~) and the 
D/Q ratio. For a model with two compartments involved in gas exchange 
(Figure 9.5), (9.33) can be written to describe the partial pressure of oxygen 
in blood from each of the compartments (PclO2, Pc202). 

Piiper et al. (1981, 1992) have used the term equilibration index to describe 
the ratio D/(Q/~), using this index to quantify the extent to which gas exchange 
abnormalities can be partitioned into a diffusion or perfusion problem. This 
index is particularly applicable where/~ is constant, meaning for inert gases or 
for oxygen during hypoxia where the slope of the oxygen dissociation curve 
is almost constant. 
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This section has given a mathematical description of oxygen diffusion. In 
the pulmonary physiology laboratory, the diffusion properties of the lung are 
more frequently estimated using carbon monoxide (DLCO). Unlike oxygen, the 
partial pressure of CO in lung capillary plasma can be assumed to be negligible 
so that diffusion into the blood depends solely on the driving pressure in the 
alveoli. 

Numerous methods exist for estimating DLCO. These include methods 
where a steady-state PCO is obtained in the alveoli, a single breath is taken, 
or experiments involving rebreathing. Whilst the details of these techniques 
are beyond the scope of this chapter, they are all based on applying Fick's 
First Law of Diffusion, which for carbon monoxide can be written as: 

DLCO -- 
f'co 

PACO - PcCO 

where the lung capillary partial pressure of carbon monoxide (PcCO) is 
assumed to be zero. Estimates of DLO2 are then made by multiplying DLCO 
by 1.23 to account for the different density and solubility of the two gases. 

9.3. M O D E L S  O F  V E N T I L A T I O N  P E R F U S I O N  

M I S M A T C H  

Figure 9.1 illustrates a lung with a single compartment involved in gas 
exchange. This model is a simplification of the true situation in which different 
regions of the lung have varying ventilation (I/') and perfusion (Q). Figure 9.6 
illustrates a conceptual model of the lung with two compartments involved in 
gas exchange, each with a different ventilation/perfusion I?/Q ratio. 

The two-compartment model illustrated in Figure 9.6 has four parameters 
(~rA1, ~rA2, al, a2), the unique identification of which is not possible from 
routine clinical measurements of 02 and CO2 in expired air and blood. Estima- 
tion of parameters describing multicompartment V/Q heterogeneity has been 
made possible by development of the multiple inert gas elimination technique 
(MIGET) (Wagner et al., 1974). The MIGET has been widely applied in clin- 
ical and experimental research and includes both a mathematical model of 
f ' /Q heterogeneity and an experimental technique using multiple inert gases 
as tracers. 

A detailed description of the experimental technique is beyond the scope 
of this chapter. The mathematical model included in the MIGET illustrates 
how the effects of f ' /Q heterogeneity can be mathematically formulated and 
is described in the following section. 
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~A 

Figure 9.6. A conceptual model of the lung, including two compartments involved in gas 
exchange, These compartments have different ventilation (l?A1, I?A2) and perfusion (Q1, Q2) 
properties resulting in varying end capillary partial pressures (Pcl, Pc2). 

9.3.1. THE MULTIPLE INERT GAS ELIMINATION TECHNIQUE 
(MIGET), 

In the MIGET, multiple inert gases are simultaneously infused into a 
vein. Inert gases are used as tracers and, as such, eliminate the need for 
perturbing the underlying oxygen system, which may change the nature of 
the gas exchange abnormality. The MIGET assumes no diffusion limitation 
exist for inert gases, such that end lung capillary blood is at equilibrium with 
the alveoli. The key to the MIGET is that gases with a higher solubility are 
retained more readily in blood during its transport through lung capillaries. By 
choosing tracer gases with a wide range of solubilities and by measuring their 
concentration in both expired air and venous/arterial blood, a more complete 
description of the f ' /Q  characteristics of the lung can be obtained. 

The mathematical formulation used in the MIGET analysis can be derived 
from a mass balance equation similar to the Fick principle of blood flow 
(9.13) and the alveolar air equation, which is for a single tracer gas in a single 
alveolar gas exchange compartment: 

r162 = Q ( C c -  Cv) (9.34) 

f'PB 
PA = FI P a -  �9 (9.35) 

VA 
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For inert gases, inspired fraction (FI )  is zero. Eliminating I/ in (9.34) and 
(9.35) and replacing concentrations with pressures using Henry's law (9.27) 
gives: 

~/a PA/PB = fl Q ( P - ~ -  Pc) (9.36) 

Assuming no diffusion limitation PA = Pc so that: 

f /APc/PB = fl Q ( P ~ -  Pc) (9.37) 

This equation can be rearranged to describe the retention (R) of the gas as 
blood passes through the lung capillary, which means the P c / P ~  ratio: 

Pc fl PB 
R = P~ = ~rA/0 -'1-([~ PS)  (9.38) 

which is the equation originally described by Wagner et al. (1974), modified 
to include barometric pressure (PB). 

High-solubility gases are retained more readily in the blood such that as 
fl ----> oo the retention (R) --+ f l / f l  = 1. For low-solubility gases, the retention 
depends more on the f ' /Q ratio of the lung unit. Excretion (E) is defined in 
a similar way to retention as the ratio of alveolar to venous gas pressures, 
PA/Pv. 

The retention of inert gas in a multicompartmental lung can be described by 
considering the mass of gas in blood leaving each of the perfusion compart- 
ments. For the two-compartment model illustrated in Figure 9.6, this can be 
described as: 

Q. fl Pa = O1 flPcl + 02 flPc2 (9.38) 

Dividing through by P-~ and cancelling fl in each of the terms gives: 

giving: 

�9 Pa Pcl Pc2 
Q~v = O1 -~-~- -I- 02 - ~  (9.39) 

OR -- 01R 1 + 02R2 (9.40) 

For multiple compartments (i = 1 : n), the overall retention (R), which is the 
ratio of pressure in arterial to venous blood, can be described as: 

1~-~ 1 / ~  1 fl (9.41) R = _ Qi Ri = -:- Qi ~rAi/O i + fl 
Q i--1 Q = 

Excretion is described in a similar way: 

1~-~ 1~-~  fl (9.42) 
E = _ fr i Ri  = _ fe'Ai ~r / Qi + fl 

V i--1 V i=1 
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Measurements of retention (Pa /P~)  and excretion (PA/Pv) are obtained for 
each inert gas (usually 6) by sampling blood and expired gas. By dividing the 
lung into a number of compartments, usually 50, each with a fixed f ' / Q  ratio, 
(9.41) and (9.42) are fitted to measured values of R and E by varying the 
perfusion (Qi) and ventilation (r162 of each of the compartments. Results of 
these analyses are then reported as distributions of blood flow and ventilation 
across the range of possible f ' /Q regions in the lung. 

9.4. A P P L I C A T I O N  O F  M A T H E M A T I C A L  M O D E L S  O F  
V E N T I L A T I O N ,  P E R F U S I O N ,  A N D  D I F F U S I O N  

9.4.1. APPLICATION OF MODELS IN PHYSIOLOGICAL AND 
CLINICAL EXPERIMENTATION 

Despite the research into diffusion abnormalities, the standard method of 
describing pulmonary gas exchange in experimental studies is the MIGET, 
which is considered to be a reliable technique for quantifying shunt, 
physiological dead space, and the distribution of f ' /Q ratios in the lung. 
Indeed, in studies using the MIGET, the concept of diffusion impairment 
is seldom required to describe abnormalities in gas exchange, except in cases 
of pulmonary fibrosis (Agusti et al., 1991), exercise, or mild exercise during 
hypoxia (Torre-Bueno et al., 1985; Wagner et al., 1986). A brief summary of 
the application of the a MIGET in anaesthesia, intensive care medicine, and 
pulmonary medicine now follows, with emphasis on major improvements in 
understanding enabled by the application of this technique. 

In anaesthesiological research, the MIGET has been used to describe gas 
exchange abnormalities following different types of anaesthesia: inhalation 
(Tokics et al., 1996; Bindslev et al., 1981; Lundh et al., 1984; Gunnarsson 
et al., 1989), intravenous (Anjou Lindskog et al., 1985), and epidural (Lundh 
et al., 1983; Hachenberg et al., 1997), and after numerous interventions during 
anaesthesia such as surgery (Hedenstierna et al., 1983; Lundh et al., 1983b; 
Hachenberg et al., 1994), variation in positive end-expiratory pressure (PEEP) 
(Bindslev et al., 1981; Tokics et al., 1987), or infusion of inotropic agents 
(Hachenberg et al., 1998). The findings of these studies consistently show an 
increased shunt and f ' /Q mismatch following anaesthesia, with increases in 
PEEP reducing the shunt fraction. 

Investigations using the MIGET in intensive care have provided under- 
standing of the pathophysiology of disorders such as acute respiratory distress 
syndrome (ARDS) and pneumonia, and the effects of therapeutic interven- 
tions in patients with these severe disorders. The application of the MIGET 
in studying ARDS and pneumonia has been reviewed by Melot (1994), the 
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main finding being an increased shunt and increased perfusion of low f ' /Q 
areas to explain severe hypoxaemia seen in these patients. The use of MIGET 
to study therapeutic intervention in these patients has shown that PEEP impro- 
ves oxygenation via a reduction in shunt fraction (Dantzker et al., 1979; 
Matamis et al., 1984); turning patients from supine to prone position reduces 
shunt (Pappert et al., 1994; Bein et al., 1998); and inhalation of prostacy- 
clin or nitric oxide causes a redistribution of blood flow to regions with 
normal lk/Q (Rossaint et al., 1993; Walmrath et al., 1993; Bender et al., 
1997). 

The MIGET has been used extensively in pulmonary laboratories to 
describe gas exchange in patients with chronic pulmonary disease. The major 
finding of these studies has been an increased number of low f ' /Q regions 
of the lung (Agusti et al., 1994; Sandek et al., 1995; Rossi et al., 1994), 
although the results are less consistent than those obtained from research 
in anaesthesiology and intensive care medicine. In studies of patients with 
pulmonary fibrosis, f ' /Q mismatch accounts for 80% of the hypoxaemia at 
rest and only 60% during exercise (Agusti et al., 1991), indicating severe 
diffusion abnormalities in these patients. 

While the MIGET has found widespread application as an experimental 
tool, its use as a routine clinical tool has been somewhat limited (Wagner et al., 
1987). This is largely the result of the cost and complexity of the technique. 
The MIGET requires a very systematic and detailed technical procedure that 
involves preparation of an infusate containing six inert gases, sampling bood 
and gas after 30 minutes of infusion, and analysing these using gas chromatog- 
raphy. The complexity and invasive nature of the original technique has led 
to development of less invasive experimental techniques intended to introduce 
the MIGET into clinical practice (Roca et al., 1993). 

9.4.2.  APPLICATION OF MODELS IN ROUTINE CLINICAL PRACTICE 

Estimation of the parameters of multicompartmental models, including 
D / Q  or f ' /Q heterogeneity, is seldom routinely performed outside the pulmon- 
ary laboratory. In the surgical theatre, intensive care unit, recovery room, or 
more general wards, the clinician usually relies upon other measurements 
to assess the patients oxygenation problems and prevent hypoxaemia. These 
measurements include single measurements of arterial oxygen tensions, calcu- 
lations of alveolar-arterial oxygen difference (A-aO2), or, as the clinical state 
of the art, estimation of the shunt fraction using information obtained from 
mixed venous blood sampling through a pulmonary artery catheter (Wandrup, 
1992). These measurements are an attempt to describe the clinical oxygena- 
tion problem and have insufficient detail to interpret problems in physiological 
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Figure 9.7. The shunt fraction estimated for one patient at varying values of F~O2. 

terms. However, even the estimation of shunt cannot adequately describe the 
clinical picture seen in patients when the inspired oxygen fraction is varied. 
This situation is illustrated in Figure 9.7, where the variation in oxygen satu- 
ration of arterial blood is plotted against expired oxygen fraction for one 
postoperative patient, and the shunt equation, (9.11), is solved for each data 
point. No single value of shunt adequately describes this patient, the estimated 
shunt increasing at lower values of end tidal oxygen fraction (F~O2). 

The realisation that a shunt only model cannot fit data where F I02 is varied 
was recognised by Riley et al. (1951a, 1951b) and later by King et al. (1974). 
To solve this problem, these authors divided the oxygenation problem into that 
due to an alveolar-lung capillary drop in the partial pressure of oxygen and that 
due to pulmonary shunt. To estimate two parameters describing the oxygena- 
tion problem then required no more than obtaining routine measurements of 
blood gases and ventilation at varying inspired oxygen fractions. These two- 
parameter models, although a relatively poor description of the physiology, are 
a substantial improvement over a shunt only model. They describe the effects 
of varying El02,  which is a routine therapeutic intervention in mechanically 
ventilated patients. 
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Recently, Andreassen et al. (1993, 1996), Sapsford et al. (1995), Gray et al. 
(1997), and Roe et al. (1997) have presented the use of two-parameter math- 
ematical models of oxygen transport, the oxygenation problem described as 
shunt combined with either a resistance to oxygen diffusion (labelled Rdiff) 
(Andreassen et al. 1993, 1996) or a PIO2-Pc02 difference due to l)'/t) mis- 
match (Sapsford et al., 1995; de Gray et al., 1997; Roe et al., 1997). These 
model representations have been shown to provide identical fits to routine 
blood gas and ventilatory data obtained by varying F I 0 2  (Rees et al., 1997). 
The clinical relevance of these two parameter models has been illustrated by 
both these groups of authors and is illustrated in Figure 9.8 for the model of 
Andreassen et al. (1993, 1996). 

As illustrated in Figure 9.8, increases in the pulmonary shunt parameter 
results in a vertical depression of the plateau of the FEOz/SaO2 curve, while 
abnormalities in the second parameter (ventilation perfusion f / / Q  mismatch, 
or oxygen diffusion resistance [Rdiff]) cause a lateral displacement of the 
FEO2/Sa02 c u r v e .  The lateral displacement of the FEOz/Sa02 c u r v e  can be 
seen as a more clinically significant problem, as it describes a situation where 
large changes in oxygen saturation can occur for only small changes in FI02. 

1 _ - d  �9 ~ ' - - ' p  . . . .  . p .  _ . ,  _----- 

, . , , , " - " - " - -  / f - ' - - ' -  - ,  
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End tidal fractional oxygen concentration 

F igu re  9.8. Model predicted arterial oxygen saturations for 1) a normal subject with shunt = 5% 
and no diffusion abnormality Rdiff = 0 kPa/(1/min); 2) a hypothetical patient with a diffusion 
abnormality; and 3) a hypothetical patient with a shunt disorder. 
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Figure 9.9. FEO2/Sa02 data (crosses) and model fits, to data from A, a normal subject; B, a 
postoperative cardiac patient; C; a postoperative hysterectomy patient; D, a poorly compensated 
cardiac patient; and E, a patient residing in the intensive care unit. 

The two-parameter model of Sapsford et al. (1995) has been shown to fit 
data from normal subjects; patients before and after thoracotomy (Sapsford 
et al., 1995; de Gray et al., 1997) and patients during (Sapsford et al., 1995; 
Roe et al., 1997) and after (Roe et al., 1997) abdominal surgery. Similarly, 
the two-parameter model described by Andreassen et al. (1993, 1996) has 
been shown to fit data from normal subject and postoperative cardiac patients 
(Andreassen et al., 1998) and a wide range of as yet unpublished results. Some 
of the results of this latter group are illustrated in Figure 9.9, including one 
patient from each of the study populations. 

These two-parameter models have yet to be used in clinical practice, 
but with pulse oximetry technology enabling noninvasive estimation of the 
FEO2/Sa02 curve, the estimation of the parameters of such models is a 
relatively simple task that might be performed as a routine part of clinical 
practice. 
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APPENDIX A. GLOSSARY 

Each symbol  is constructed from three parts: the quantity,  the location, and 
the substance. These three parts can take the fol lowing values: 

Q u a n t i t y  pressure (P), concentrat ion ( c ) ,  saturation (s),  vo lume  (v ) ,  frac- 
t ion (F) ,  and diffusion capacity (D). F lows are denoted  by a point  over  the 

quanti ty term. 

Loca t ion  arterial blood (a), venous  b lood (v), lung capillary blood (c), 
alveoli  (A), inspired gas (I), expired gas (E), a lveolar- lung capillary m e m b r a n e  
(M). An overbar is used to represent  a mixed  pool, a '"" is used to represent  

an end tidal expired gas. 

Subs tance  oxygen (02), carbon dioxide (CO2), water  (H20) ,  haemoglob in  

(Hb). 
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Examples of this nomenclature are arterial oxygen pressure PaO2, inspired 
carbon dioxide fraction FICO2, flow of oxygen (oxygen consumption) I~'O2, 
flow of blood (cardiac output) Q, mixed venous oxygen concentration C~--O2, 
end tidal oxygen fraction F~O2. 

Gases are expressed at three temperatures and pressures: standard 
(STP--0~ 101 kPa), ambient (ATP), and body (BTP). Gases are also 
expressed as either dry (D) or saturated with water (S). Wet and dry gases at 
ambient or body temperature and pressure are represented using the subscripts 
ATPS, ATPD, BTPS, and BTPD, respectively. 

Exceptions to these rules are listed here: 
Tidal volume VT 
Dead space VD 
Anatomical dead space VDana 
Alveolar dead space VDA 
Physiological dead space Vop 
Barometric pressure PB 
Respiratory frequency f 
Alveolar oxygen diffusion resistance Rdiff 
Arteriovenous shunt shunt 
Respiratory quotient R 
Diffusion capacity alveoli to blood DL 
Rate of oxygen binding to blood 0 
Solubility coefficient of gas in blood fl 
Oxygen dissociation curve ODC 

A P P E N D I X  B. C A L C U L A T I O N S  N E C E S S A R Y  T O  

C O N V E R T  I N S P I R E D  G A S  A T  A T P D  T O  B T P S  

Addition of water 
On addition of water to dry inspired gas volume is increased such that: 

VT, ATPS = VT, ATPD + VH20,added (B. 1) 

Where VHaO,added is the volume of water added during inspiration. The fraction 
of H20 in fully saturated inspired gasses (FH20,ATPS) is approximately 6%, so 
that VH20,aaded can be calculated as follows: 

VH20,added -- FHEO,ATPS VT,ATPS (B.2) 

substituting for VUEO, added in equation B.1 gives: 

VT,ATPS = VT,ATPD + FHEO, ATPS VT,ATPS (B.3) 
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which can be rearranged to give an expression describing the tidal volume of 
wet gases in terms of the dry inspired gases: 

VT'ATPD (B.4) 
VT,ATPS -- 1 - FHEO,ATPS 

Addition of water to the inspired gas lowers the fraction of all other gases in 
the inspiration. An equation describing the relationship between the fraction 
of oxygen (O2) in inspired gases before and after addition of water can be 
derived by considering the volume of 02 in the dry (FIOE,ATPDVT,ATPD) and 
humidified (FIOE, ATPSVT, ATPS) gas. This volume remains constant such that: 

FIO2,ATPD VT,ATPD --" FIO2,ATPS VT,ATPS (B.5) 

substituting for VT,ATPS in (B.4) gives: 

VT,ATPD 
FIO2,ATPD VT, ATPD -- FIOE,ATPS 1 - FHEO,ATPS 

which rearranged gives an expression describing the fraction of oxygen in wet 
gas in terms of the dry inspired gases: 

FIOE,ATPS = FIOE,ATPD(1 -- FHEO, ATPS) (B.6) 

Warming of  inspired gases 

Warming of the inspiration causes the gases to expand but does not change 
the fraction of each gas in the inspiration, which means F I,BTPS -- F I,ATPS for 
all gases. The increase in volume can be described by considering the gas 
laws, such as Charles' law and Boyle's law, which together state that for a 
fixed mass of gas the pressure multiplied by the volume is proportional to the 
temperature: 

PV -- RT (B.7) 

where R is the universal gas constant. Equation (B.7) can be written for humid- 
ified inspired gas at both ambient (AT) and body (BT) temperature: 

PB VT,ATPS --" R AT  (B.8) 

PB VT,BTPS --- R B T  (B.9) 

Dividing (B.8) and (B.9) gives an expression for the tidal volume of the 
inspired gases at body temperature in terms of the tidal volume at ambient 
temperature: 

B T  
VT,BTPS --~ VT,ATPS AT (B. 10) 
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Respiratory Mechanics 

Gianluca Nucci and Claudio Cobelli 

10.1. I N T R O D U C T I O N  

This chapter is dedicated to the description and interpretation of techniques 
for the simulation and quantification of breathing mechanics, with particular 
attention to those methods that are suitable for adoption in intensive care 
units. As a matter of fact, estimation of parameters of respiratory mechanics, 
revealing the overall lung function, is crucially important in mechanically 
ventilated patients since it enables monitoring of patient status and disease 
as well as the effectiveness of therapy and treatment. The assessment of 
respiratory mechanics is a process invariably involving modelling and esti- 
mation issues. The proposal of simple models based on physiological and 
anatomical considerations, suitable to be represented in terms of electrical or 
mechanical analogues, eased their interpretation and helped their adoption. 
This led to a number of distinct approaches that have useful clinical appli- 
cations. However, our understanding of pulmonary mechanics is inseparable 
from the mathematical (and theoretical) representation of the system we are 
interested in. Moreover, the model selection and the kind of physiopatho- 
logical insight that can be obtained strictly depends on the type of applied 
input (frequency content, amplitude) and output (sampling site and frequency) 
that can be designed for the specific application. After a brief introduction 
of the basic definitions of breathing mechanics and some signal measurement 
issues, the rest of this chapter is dedicated to a review of the different methods 
(and hence models) to quantify the breathing mechanics. The last section is 
dedicated to simulation models of breathing mechanics. Emphasis is posed 
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on an anatomically consistent model that has found extensive application for 
the investigation of various facets of constrictive diseases. In this chapter, the 
schematic representation of models of lung mechanics will take advantage, 
when possible, of an electrical analogue. 

10.2.  B R E A T H I N G  M E C H A N I C S :  B A S I C  C O N C E P T S  

The mechanical properties of the respiratory system can be schematised in 
term of resistance, compliance, and inertance. The latter is generally consid- 
ered less important in determining the overall mechanical behaviour at the 
breathing frequencies. Before entering the details of modelling and simulation 
of breathing mechanics, the basic definition of each property is given. 

Resistance is defined as the pressure difference required to cause a unit of 
gas flow: 

Apressure 
resistance = 

flow rate 

In the study of respiratory mechanics, it is frequently expressed in cmn20 
s/1. When pressure is measured in mmHg, Pa, Bar and/or the flow in ml/s, 
the units for resistance are accordingly modified. As air passes through the 
different airway generations, the cross-sectional area of airways increases. Air 
flow can be considered essentially laminar in the small airways, while it is 
both laminar and turbulent in the upper airways. Energy dissipated in resistive 
elements is irreversibly lost to heat. The total flow resistance is determined 
by the friction of gas flowing into the airways and the friction due to move- 
ment of tissues of the lung and of the chest wall. Since pressure applied 
to the airways is first transmitted to the lung and then to the chest wall, 
these elements are considered in series and thus additive, even if the chest 
wall contribution to total respiratory system resistance is considered relatively 
modest. An abnormal airway resistance, due to a decreased airway calibre, is 
always found in patients with obstructive disease, oedema, or inflammation of 
the bronchial mucosa. Tissue resistance is more volume-dependent and has its 
greatest contribution at low frequencies (Loring, 1998). 

Compliance is defined as the volume variation per unit pressure change: 

compliance = 
Avolume 

Apressure 

and is usually expressed in 1]cmH20 or in ml/cmH20. Compliance is a measure 
of respiratory system distensibility. In this chapter, we will frequently use the 
reciprocal of compliance, elastance, as measure of respiratory system rigidity. 
Being the lung and the chest in series, the elastance of respiratory system is 
the sum of lung and chest wall elastance. Several diseases can alter respiratory 
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system elastance. An increase in chest wall stiffness invariably results in an 
augmented respiratory system elastance. Overall lung elastance is indirectly 
increased by inhomogeneous constriction of airways that limits the number 
of alveoli participating in ventilation. In acute respiratory distress syndrome 
(ARDS), elastance is increased because of the inflammatory fluids that fill the 
alveolar spaces subtracting space to gas volume. 

Inertance is a measure of the tendency of the respiratory system to resist 
changes in flow and can be defined as: 

inertance = 
Apressure 

Aflow rate 

and is expressed in cmH20 $2/1 or cmH20 s2/ml. From the definition, it appears 
that during steady (or slowly changing) flow the inertial pressure change is 
zero (or negligible). The inertial pressure is in counterphase with respect to 
elastic recoil pressure. Thus, it compensates the stiffness of respiratory system 
and becomes dominant over elastance at frequencies greater than 5 to 10 Hz 
in normal human adults (Peslin et al., 1986). 

The principal measurement sites in a mechanically ventilated patient are 
shown in Figure 10.1 together with the relations between pressures and equip- 
ment/anatomical counterparts. By convention, all the pressure measured are 
taken with respect to body surface pressure, which is considered equal to 
atmospheric pressure. In a nonintubated subject, special care must be posed in 
avoiding the confounding influence of upper airways and cheeks compliance. 

The most important measurement site is the entrance of the endotracheal 
tube (ETT) where the airway opening pressure (Pao) and mouth flow (I?) 
are accessible through appropriate transducers. Although easily accessible, 

Ventilator 

Ventilator ]~ 

Lung 

I P~ 

Chest wall 

Figure 10.1. Schematic depiction of signal measurement sites and the corresponding pressure 
block diagram in an artificially ventilated patient. 
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the pressure measured in this way is influenced by the high resistive pressure 
drop along the ETT and therefore is an overestimation of the true airway pres- 
sure (tracheal pressure Ptr). Different approaches are used to account for this 
pressure difference: in vitro calculations of ETT impedance and subsequent 
compensation (Peslin et al., 1993) or insertion of a thin catheter equipped with 
a pressure transducer in the ETT. 

Pao (or Ptr) and f' characterise the respiratory system mechanics (including 
the chest wall) in the passive patient (without respiratory muscles activity). 
During spontaneous breathing, an estimate of pleural pressure (Pet) is needed. 
In fact, with epl equal to the total pressure drop given by the chest wall plus 
the respiratory muscles, the difference between Ptr and Ppt yields the trans- 
pulmonary pressure (Ptp), which is the driving pressure for lung mechanics 
alone. Fortunately, oesophageal pressure (Pes) displays a good agreement with 
epl and can be acquired using the oesophageal balloon with a minimally inva- 
sive technique. Even if not necessary for the assessment of respiratory system 
mechanics in a passive patient, Pes is needed to partition between lung and 
chest wall characteristics. 

1 0 . 3 .  F I R S T - O R D E R  M O D E L S  

The simplest and probably the most commonly used model of the respira- 
tory system mechanics is the first-order linear model depicted in Figure 10.2, 
which is governed by the equation: 

PA (t) = PR(t) + PE(t) + Pl(t) = RrsV(t) + ErsV(t)  + Lrsir (10.1) 

where, at any time t, PA is the total pressure applied, either by the subject 
or by the ventilator, to inflate the respiratory system. This model is based on 

I)' R L 

ea 

E = 1/C 

Figure 10.2. Electrical analogue of the first-order viscoelastic model of breathing mechanics. 
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the consideration that the pressure drop across the whole system is the sum of 
a resistive pressure difference (PR), an elastic pressure difference (Pe), and, 
possibly, an accelerative (inertial) pressure term (Pt). Thus, in Figure 10.2, 
each of these pressure components is linked to a single, lumped parameter of 
the total respiratory system: respiratory system resistance (Rrs), elastance (Ers, 
or its equivalent inverse, compliance Cry), and inertance (L~). 

These characteristics can be estimated using Neergard and Wirz technique 
(von Neergard and Wirz, 1927), elastic subtraction method (Mead and Whit- 
temberger, 1953), or multiple linear regression (Wald et al., 1969) both in time 
(Uhl et al., 1974) or in the frequency domain (Jackson et al., 1987). Most of 
the methods commonly used for the assessment of breathing mechanics in 
mechanically ventilated patients have adopted this model even if it offers an 
unspecific picture of respiratory system, by lumping together airway and tissue 
properties, and lacks explanation for the volume and frequency dependence 
of breathing mechanics. 

Inertive forces are considered to have negligible effects in (10.1) within 
the physiological breathing frequencies (<2.5 Hz). This leads to simplify the 
first-order model of breathing mechanics: 

PA (t) = Rrs(Z(t) + ErsV(t) + Po (10.2) 

where P0 is the pressure value at end expiration, when both flow and volume 
are zero. 

Historically, the first methods for the assessment of respiratory mechanics 
are based on the assumption of (10.2), which enable to calculate the so-called 
dynamic-elastance of respiratory system as the ratio between the change in 
pressure at the instants of zero flow and the corresponding change in volume 
in the same breath. Using the same hypothesis, the average pulmonary flow 
resistance can be calculated as the ratio of the change in pressure between 
two points at identical lung volume and the corresponding change in flow. 
Depending on the site of PA measurement, the estimated parameters represent 
airway, pulmonary, or chest wall characteristics. For example, by estimating 
the mean alveolar pressure using the body plethismography (Dubois et al., 
1956a), airway resistance can be calculated as the difference between airway 
opening pressure and alveolar pressure divided by the air flow. 

Although important and still utilised in the clinical practice, these methods 
have been gradually replaced by the multiple linear regression method, mean- 
ing the linear least square fit of (10.2) to pressure and flow data acquired from 
the subject (volume changes are generally obtained by numerical integration 
of the flow signal). The fit provided by the model (Figure 10.3) is generally 
good, especially if the flow signal is quasi-sinusoidal (hence with a poor 
spectral content) and the subject has normal respiratory mechanics (see Bates, 
1998). 
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Figure 10.3. Fit of the linear first-order model of breathing mechanics (dotted line) to data 
acquired from a mechanically ventilated patient: flow (upper panel) and tracheal pressure (lower 
panel). 

Least square estimation of the parameters of the first-order model has 
proved to be successful in tracking the main characteristic of respiratory system 
in real time (Avanzolini et al., 1990). This argument will be treated extensively 
in the next section. 

However, it is well known that airway resistance, at least for the large 
airways, has a nonlinear behaviour due to turbulent flow effects, which can 
be described empirically with the Rohrer equation: 

Raw = K1 + K2lf'(t)[ (10.3) 

The volume dependence of total elastance is often described by a term directly 
proportional to changes in lung volume. Thus, (10.2) becomes: 

Pa(t) = (K1 + K2[V(t)l)CC'(t) + (K3 + K4V( t ) )V( t )  + Po (10.4) 

Equation (10.4) has been applied in different versions to respiratory data from 
intensive care patients (Peslin et al., 1992; Bersten, 1998) and has shown to 
provide a better fit than (10.2). 
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10.3.1. ON-LINE MONITORING OF RESPIRATORY MECHANICS 

Most of the methods for the assessment of respiratory mechanics are based 
on static measures following flow interruption or on the frequency/time domain, 
off-line identification of lumped parameter models (see next sections) of the 
respiratory system. However, these methods are only suitable for periodic moni- 
toring of patient condition since the flow interruption technique requires an 
occlusion maneuver that interferes with the ventilator setting, while off-line 
estimates need the methodologies of batch identification. In this paragraph, 
emphasis is posed on the continuous monitoring of lung mechanics. This, in 
fact, enables a prompt detection of changes in patient status as well as moni- 
toring of the progress of the disease and allows the estimation of the time course 
of the therapeutic response of the patient. Real-time tracking of parameters of 
lung mechanics is based on the recursive identification of the classic single- 
compartment linear model from the respiratory data commonly available in 
the intensive care unit. Continuous measurement of Pao (or Ptr) and f' is thus 
needed to characterise the mechanical properties of the respiratory system in 
the passive patient (if the respiratory muscles are active, assessment of lung 
mechanics is still possible by measuring Pes). 

10.3.2. RECURSIVE ESTIMATION ALGORITHM 

The recursive least squares (RLS) algorithm (see Ljung and Soderstrom, 
1983, for a detailed presentation of the recursive estimation techniques, with 
an exponential weighting factor) X has been used to track changes in the 
mechanical properties of the respiratory system in real time (Avanzolini et al., 
1990; Lauzon et al., 1991). To do so, one can express the measured samples 
of the airway pressure in discrete time form: 

P(kT) -- O'(kT) . go(kT) + E(kT) (10.5) 

where T is the sampling time, O(kT) the parameter vector, go(kT) the data 
vector and e(kT) the error term representing both noise measurements and 
model prediction errors. The RLS algorithm provides an updated parameter 
estimate at each new sampling time as: 

b(kT) = b ( ( k -  1)T) + r ( k T ) ,  eo(kT) (10.6) 

^ 

where the current parameter estimate, ~(kT), is derived by correcting the 
previous estimate, O((k - 1)T), with a term proportional to the a priori model 
prediction error, eo(kT), times the gain of the algorithm F(kT). These quantifies 
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are adjusted recursively as: 

eo (kT )  = P ( k T ) -  b ( ( k -  1 ) T )  . tp(kT) .  (10.7) 

1-I((k - 1)T)-  tp(kT) 
r ( k r )  = (10.8) 

Z + r H((k - 1)T) .  ~o(kT) 

(10.9) 
1 

H ( k T )  = 7 "  [I - r ( k T ) .  ~o'(kT)] �9 H ((k - 1)T) 
A 

where I-I(kT) is a matrix proportional to the covariance matrix of parameter 
estimates: 

~2(kT) = C o v [ O ( k T ) ]  - 8 ( k T ) .  H(kT) (10.10) 

with 8(kT), the estimated noise variance, given by: 

8 ( k T )  -- Z. 8((k - 1)T) + (1 - Z).  e 2 ( k T )  �9 [1 - qg ' (kT) .  H(kT) .  tp(kT)] 
(10.11) 

Parameter Z is the forgetting factor of the algorithm that determines the 
memory of the estimation procedure, which means the effective length and 
weight of past data used to fit the model at each time point. In fact, the time 
constant, r, of the exponential memory of the estimator is given by: 

T T 
r = --~ (10.12) 

In(X) 1 - Z 

The selection of an appropriate value for Z(0 < Z < 1), or equivalently of 
r(T < r < oo), is crucial: a value close to 1 reduces the sensitivity of para- 
meter estimation to noise but produces a less prompt algorithm. Thus a suitable 
value of the forgetting factor depends in principle on some specific aspect of 
the study, like levels of noise and/or expected parameter variation rate. 

10.3.3. ALGORITHM TUNING 

A key feature of the RLS algorithm is the incorporation of the exponential 
weighting of past data, governed by the forgetting factor. Thus, the algorithm 
tuning reduces to a suitable choice of this important design variable. In Avan- 
zolini et  al. (1990), the authors take advantage of a simulation approach to 
overcome the lack of knowledge about noise levels and parameter variation 
rate. In this way, the time course of the parameters of the simulation model is 
known and the optimal selection of Z is carded out under different plausible 
noise levels so as to obtain a good compromise between tracking ability and 
noise sensitivity. However, this tuning strategy is not optimal if the system 
has parameter variation rates that are a p r io r i  unpredictable, as may be the 
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case in respiratory mechanics. In this case, the approach adopted in Lauzon 
et al. (1991) may give better results. In fact, the authors used a variable forget- 
ring factor, meaning that the k value changes in response to variations in the 
goodness of model fit to the experimental data. In this way, they achieved 
stable estimates when the parameters of the system were constant, while main- 
taining an alert algorithm when parameters varied, k was recursively adjusted 
according to the formula: 

k (kT )  = 1 - [ 1  - ~o'(kT)I'((k - 1 )T)]e2(kT) /MRSS(k)  ( 1 0 . 1 3 )  

where MRSS(k) is the exponentially weighted mean of the residual sum of 
squares that also can be calculated in a recursive fashion. 

However, Lauzon and Bates have observed large breath-by-breath para- 
meter fluctuations in model estimates. These deterministic variations are due 
to higher order and nonlinear behaviour of respiratory mechanics, not explic- 
itly taken into account by the model (see Figure 10.4). Thus the parameters of 
the model reflect average values of many different components of the respi- 
ratory system. Also, the increase in parameter oscillation observed in some 
pathological states is probably due to undermodelling of the system, namely, 
the simple model used cannot represent an inhomogeneous lung. 
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Figure 10.4. Time course of estimated resistance and elastance with a memory time constant of 
10 s (thick line) and 0.5 s (thin line). In the lower panel, the corresponding residuals are shown. 
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Moreover, since the model employed in real-time identification is too simple, 
the residuals between the measured and the model predicted pressure are highly 
patterned, and this may lead to biased parameter and confidence interval esti- 
mates. There are two different approaches to overcome this limitation. The first 
is to use a more complex model of breathing mechanics. However, this solution 
has to face the issue of instability of recursive identification schemes when the 
new data samples add little information. This is rapidly amplified as the number 
of parameters, and thus model complexity, increases. The result is an uncon- 
trolled growth of the covariance matrix and hence of the gain of the algorithm 
that makes the effect of noise on the estimator stability very critical (Kaczka 
et al., 1995). An alternate approach first proposed in Bates and Lauzon (1992), 
which is well suited for the RLS tuning when the model used is an oversimpli- 
fied representation of the real system, is based on the whiteness of the residuals 
of the fit. These can be easily calculated recursively: 

r(kT)  = Pao(kT) - t~' (kT)~o(kT) (10.14) 

As the time constant of algorithm decreases, the residuals become more uncor- 
related while deterministic time variations of parameter estimates become more 
pronounced (Figure 10.4). Comparative analysis of the residuals time course 
enables the tuning of the algorithm by selecting the maximum value of X so 
as to obtain almost white residuals. 

The deterministic variations in the estimates can be usefully summarised by 
an information-weighted histogram within the respiratory cycle. This strategy 
was modified to allow cycle-by-cycle comparison (Avanzolini et al., 1995). 
On-line monitoring of breathing mechanics is possible by recursively updating 
the histograms on a cycle base at each time a new sample is collected. An 
alternative and less time-consuming way to provide an easy-to-get and prompt 
picture of patient status in real time was then proposed (Avanzolini et al., 
1997). The mean and the standard deviation of the information histograms are 
computed and updated at each new sample without constructing the histogram. 
To do so, a weighting function for each parameter estimate can be defined: 

~i(kT) ~i(kT) 
= ( 1 0 . 1 5 )  wi(kT)-- ffi(kT) ~/~ii(kT) 

^ 

and the mean ( lzi(kT)) and parameter variability ( A i ( k T ) )  in a respiratory 
cycle can be constructed, relative to a breathing period, using: 

kT 
Z ~i(j)" Wi(j) 

f t i (kT)-  j=(k-nW1)T (10.16) 
kT 

wi(j) 
j=(k-n+l)r 
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Figure 10.5. Time course of resistance (top panels) and elastance (bottom panels) estimates 
(thick lines) together with 4-1 SD interval (thin lines). Results are from two postoperative patients: 
#1 has normal respiratory functionality (left panels), while #2 has pulmonary oedema (right 
panels). 

~ki(kT ) : 

kT 
[ f t i ( k T ) -  Oi(j)] 2" w i ( j )  

j=(k-n+l)T 
kT 

wi ( j )  
j=(k-n+l)T 

(10.17) 

and then recursively updated adopting a "First In-First Out" buffer of length 
equal to the number of samples in the respiratory cycle. This approach has 
been successfully adopted in tracking resistive and elastic characteristics in 
postoperative acute respiratory failure (ARF) patients (Avanzolini et al., 1997; 
Nucci et al., 1997) and has provided realistic and stable parameter estimates 
with a reliable quantification of parameter variability during the respiratory 
cycle (see Figure 10.5). 

10.4.  S E C O N D - O R D E R  M O D E L S  

Even if not successful in the real-time estimation context, two-compartment 
models are able to explain frequency dependence of respiratory mechanics 
due to gas redistribution (Otis et al., 1956), stress-adaptation of lung tissue 
(Mount, 1955; Bates et al., 1988a), and effect of the shunt compliance of the 
airways and of the chest wall (Mead, 1969). Figure 10.6 shows four elec- 
tric analogues of second-order models of low-frequency breathing mechanics. 
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Figure 10.6. A, Linear series two-compartment model. B, Linear parallel two-compartment 
model. C, Linear viscoelastic two-compartment model. D, Simplified version of A used in 
(Barbini et al. 1994). 

The model of panel A, known as the Mead model, represents the alveoli as a 
single-compartment model (series R2-E2) connected to the airways (R1) via a 
proximal elastance (El). The model of panel B, the Otis model, is composed 
of a parallel arrangement of tissue units (El, E2), each served by separate 
airways (R1, R2). This model has been improved by connecting the two resis- 
tive pathways to the trachea (Re). In this formulation, the model, even if more 
realistic, is not structurally identifiable (Avanzolini et al., 1982) and thus it 
has been generally used with Rc fixed to zero. 

An alternative structure is the model of panel C, which incorporates the 
viscoelastic properties of the tissue (parallel R2-E2) in series with airway 
resistance, plus a Newtonian component of tissue resistance (R1) and the static 
elastance of respiratory system (El). 

Despite the different arrangements of components, the three models of 
Figure 10.6(A), (B), and (C) all have the same transfer function. In fact, the 
equivalent input impedance Z(s) is given in all cases by: 

Z(s) - P(S)v(s)" -- A [  l + as + bsz I s  1 + cs (10.18) 

where the values of the coefficients of a, b, and c are given by different combi- 
nations of the parameters R1, R2, El, and E2 (Similowski and Bates, 1991). 
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Thus, is not possible to decide which model is more adequate to describe 
the respiratory system on the basis of the goodness of fit. In normal dogs, 
with the use of the alveolar capsule technique, it has been shown (Bates et al., 
1988b) that the stress recovery of the lung tissue is the main determinant of the 
frequency dependence of respiratory system impedance. Therefore, the model 
of Figure 10.6(C) has been, in recent years, the most frequently utilised tool 
to assess respiratory mechanics, both on the basis of multiple linear regression 
(Sato et al., 1991; Jonson et al., 1993) and with the flow interrupter technique 
(see the following section). 

Another model recently applied to mechanically ventilated patients is 
that depicted in Figure 10.6(D) (Barbini et al., 1994); the authors found 
it an optimal trade-off, both in time and in frequency domain, between 
model complexity and ability to account for the maximal variance in the 
data. However, the attempts of identifying complex models of respiratory 
mechanics using the flow and pressure signals commonly available in the 
intensive care units is a difficult task because of the poor spectral content 
of conventional ventilator waveform (Lutchen et al., 1993a). Therefore, to 
overcome this problem, one must resort to alternative ways of perturbing the 
system under study. Most of the methods and models developed are based 
on the forced oscillation technique and to the frequency domain analysis (see 
Section 10.5). Nevertheless, in clinical practice, the time domain analysis of 
pressure acquired after an end-inspiratory/expiratory rapid airway occlusion, 
has gained, increasing popularity in recent years. 

10.4.1. THE INTERRUPTER TECHNIQUE 

The flow interrupter technique, even if introduced at the beginning of the 
20th century (von Neergard and Wirz, 1927), has gained much popularity in 
the past 10 to 15 years, following a series of studies that have elucidated the 
theoretical aspects of the technique as well as its physiological basis (Bates 
et al., 1988a, 1988b; Bates and Milic-Emili, 1991). 

As shown in Figure 10.7, the method requires a rapid occlusion of the 
flow circuit, while measuring the pressure behind the occluding valve. The 
procedure leads to a first rapid change in pressure (from Ppeak tO P1) reflecting 
the ohmic component of flow resistance (R1), some rapidly damped oscilla- 
tions, and a subsequent slow change (from P1 to Pplat) to an apparent plateau 
reflecting the stress-relaxation characteristics of lung tissue. This behaviour 
is usually interpreted by means of the model of Figure 10.6(C), even if the 
difference P1-Pplat is known to include a significant contribution from parallel 
inhomogeneities in pathological conditions. 
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Figure 10.7. Tracings of flow and airway opening pressure acquired in a mechanically venti- 
lated patient in whom the end inspiratory occlusion maneuver was performed. 

The interrupter technique necessitates a rapidly occluding valve: the speed 
of the valve is the main determinant of the sharpness, and then of the frequency 
content, of the resulting broadband pressure signal. A theoretical study (Sly 
et al., 1988) has shown that this method requires particular attention to the 
effects of compliance of the upper airways (usually bypassed by the endotra- 
cheal tube in mechanically ventilated patients). Thus, the forced oscillation 
technique probably suffers less limitations and is better suited for the assess- 
ment of respiratory mechanics also in nonintubated subjects. 

10.5. R E S P I R A T O R Y  O S C I L L A T I O N  M E C H A N I C S  

The forced oscillation technique (FOT) provides a mean for investigating 
the multicompartmental behaviour of breathing mechanics in the frequency 
domain (Peslin et al., 1986, Lutchen et al., 1996a). From the first studies 
involving the use of forced sinusoidal or pseudorandom flow (or pressure) 
signals (Dubois et al., 1956b, Michaelson e ta l . ,  1975), the advance in 
modelling and signal processing techniques have brought FOT to become, in 
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the past few years, the reference technique for the assessment of the frequency 
dependence of resistive and elastic properties of the respiratory system. The 
main assumption underlying FOT is that the respiratory system behaves 
linearly. This is usually achieved by using small amplitude input signals and 
minimising the cross-talk and harmonic distortion with an ad hoc selection of 
frequency components (Suki et al., 1992). The external source used to impose 
the input to the respiratory system consists of loudspeakers or reciprocating 
pumps. When the input is applied to the chest wall, the pressure generator is 
attached to the box including the subject. 

The mechanical impedance of the respiratory system is calculated as the 
complex ratio of the Fourier transform of the pressure and flow signals: 

P ( f )  
Z r s ( f )  -- �9 -" Real (Zrs( f ) )  + j Imag(Zrs( f ) )  (10.19) 

V ( f )  

where f is frequency (Hz). A simple way of characterising the system is to 
look at the equivalent resistance and elastance of (10.19), which are given by: 

REq( f  ) = Real (Zrs( f  )); EEq( f  ) = --2zr f . Imag(Zrs( f  )) (10.20) 

Although still representing the breathing mechanics as an equivalent first-order 
model, in this case the parameters depend explicitly on frequency. However, 
to give a specific insight into the physiological and pathological properties of 
the respiratory system, Zrs data must to be analysed using a more detailed 
model than that described by (10.20). 

The respiratory system impedance data arise from two different input 
protocols: 

�9 input forcing at the mouth and measurement of Z i n ( f )  -- P a o ( f ) /  
Vao ( f  ) (input impedance) 

�9 input forcing at the chest and measurement of Z t r ( f )  -- P c w ( f ) / f ' a o ( f )  
(transfer impedance) 

Transfer impedance data in humans have been demonstrated to be more 
reliable than Zin data for the assessment of respiratory mechanics in the range 
of 4 to 64 Hz (Lutchen et al., 1992), enabling separation of airway and tissue 
properties by the means of the six-element model shown in Figure 10.8 and 
presented first in Dubois et al. (1956b). 

In fact, the six-element model has a transfer impedance given by: 

ZawZt 
Ztr = Zaw 4-Zt + ~ (10.21) 

Zg 

while the input impedance is given by: 

ZgZt 
Zi~ = Zaw + Zg + Zt (10.22) 
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Figure 10.8. T-network model representing airway and tissue impedances separated by gas 
compressibility. 

where Zaw = Raw -1- j2zr fLaw,  Z t = Rt "k- j 2 r r f L t  - j E t / ( 2 r c f )  and Zg = 
- j E g / ( 2 J r f ) .  Thus, Ztr is more influenced by Zg than Zin is, and it is 
more specific in distinguishing between Zaw and Zt.  Moreover, the transfer 
impedance is less sensitive to upper (extrathoracic) airway shunting. 

The Ztr spectral features and the six-element model estimates have been 
shown to be highly sensitive to lung disease and have been proposed as a 
means to clinically evaluate the lung function (Lutchen et al., 1998). However, 
Ztr measurements are impractical in mechanically ventilated patients. Further- 
more, the tissue estimates are mainly influenced in the usual frequency range 
of the experiments by the chest wall resistive and elastic properties. 

Input impedance determinations are highly informative in two frequency 
ranges: at high frequencies (> 100 Hz) where they reflect airway and airway 
wall mechanics (Suki et al., 1993; Jackson et al., 1996) and at low frequencies 
(<2 Hz) where the input impedance reflects the respiratory system mechanics 
in the normal breathing range. 

The importance of partitioning airway and tissue contributions at physio- 
logical frequencies is evident. However, when the applied input has significant 
energy in the range of respiratory efforts, the FOT has to face the problem of 
interference from the subject or the ventilator. Thus, the low-frequency FOT 
is frequently used under apnoeic conditions (Navajas et al., 1990, Sly et al., 
1996; Petak et al., 1997). When treating mechanically ventilated patients, 
particular attention must be paid to eliminate the influence of the markedly 
nonlinear characteristics of the endotracheal tube (Peslin et al., 1993). 

In the past few years, the so-called constant-phase model (Figure 10.9) has 
gained considerable popularity in fitting Zi ,  impedance data in the low-frequency 
range (Hantos et al., 1992; Petak et al., 1997) since it has been proved superior 
to the resistance-capacitance representation (see Figure 10.6 C) of the stress- 
relaxation characteristics of lung tissue (Suki et al., 1994). 

This model provides the means to separate Zin into airway and 
tissue components: airway resistance is frequency-independent, while tissue 
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Figure 10.9. Model of respiratory system with airways represented by the series Raw-Law and 
the constant-phase model of tissue impedance. 

resistance decreases monotonically to zero as frequency increases (Rt = 
G/[2zrf]a). Equivalent elastance ( E t -  H/[2zrf] ~-1) is slightly increasing 
with frequency. The frequency dependency of tissue impedance is governed 
by a = (2/70 tan- l (H/G).  

Lutchen and coworkers (1993b) have solved the problem of providing 
ventilation to patients maintaining a rich spectral waveform that enables to 
assess reliably low-frequency impedance. This signal, called optimal ventilator 
waveforms (OVW), was designed to minimise the effect of distortion, due to 
nonlinearities, still providing sufficient energy at the desired frequencies. The 
application of the OVW concept was successful in estimating low-frequency 
respiratory mechanics by means of the constant-phase model, providing a 
clinically acceptable flow waveform (Lutchen et al., 1994). The model was 
subsequently modified to account for airway wall shunting during substantial 
induced bronchoconstriction (Kaczka et al., 1997) and to analyse the effects 
of airway inhomogeneities and tissue nonlinearities (Suki et al., 1997). This 
latter work, with the use of combined time and frequency domain estimation 
techniques, seems more promising in explaining the effects of different lung 
pathologies on the apparent increase in tissue nonlinearties. 

10.6. S I M U L A T I O N  M O D E L S  O F  B R E A T H I N G  
M E C H A N I C S  

The use of simulation models has found extensive application in the inter- 
pretation of breathing mechanics (Fredberg et al., 1978; Lutchen et al., 1990; 
Bates, 1993; Schuessler et al., 1997; Hickling, 1998). The most complex simu- 
lation models of breathing mechanics are probably the anatomically consistent 
models based on the morphometric measures of Horsfield and coworkers 
(1971, 1982). These analytic descriptions of the length and path of each airway 
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generation, from the trachea to the alveolar ducts, can be interpreted mathe- 
matically using the laws of propagation of sound waves (Benade, 1968). In 
this section, we review the frequency domain analysis of respiratory system 
impedance based on the Horsfield model. 

10.6.1. THE HORSFIELD MODEL 

The morphometric airway models, developed in the works of Horsfield and 
colleagues, are based on data obtained from measurement of resin casts of 
the bronchial tree (Figure 10.10 A). The physical arrangement of the airway 
network is that of a dichotomous branching tree which has the trachea as 
the trunk and leads through bronchi and bronchioles into the acinar airways, 
respiratory bronchioles and alveolar ducts, ending into the alveolar sacs. The 
branches were ordered considering the airways as confluent tubes by beginning 
from the periphery. Measures of diameters were taken at the midpoint of a 
branch between two bifurcation; lengths were measured from the bases of two 
consecutive branches. The models developed from these data are based on 
the simplifying assumption that the difference between two daughter branches 
is the same for all parent branches of a given order. For this purpose, for 
each order, diameters lengths and degree of asymmetry were averaged. The 
airway tree is classified by a dichotomously dividing system: each order has a 
specific length, diameter, and recursion index a .  For order k, A(k) identifies 
the order of the two descending daughters at each bifurcation (Figure 10.10 B) 

35 

(A) 

33 

27 / 32 
\ 31 

3~ 3329 29 

(B) 

Figure 10.10. A, Resin cast of a human lung, showing the branching pattern of the bronchial 
tree. B, Patterns of asymmetrical airway branching for the last generations of Horsfield's model. 
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by following the relation: order of the left daughter = k - 1; order of the fight 
daughter = k -  1 - A(k). 

10 .6 .2 .  A MATHEMATICAL MODEL OF THE HUMAN AIRWAYS 

Considering each airway as a rigid tube, it is possible to model a single 
structure of Horsfield's bronchial tree with the laws of propagation of sound 
waves in a cylindrical pipe (Benade, 1968), by using a lumped parameter 
description and the simplifications for the low frequencies (< 10 Hz) reported 
in Thorpe (1997). Thus, each segment of the airway tree can be arranged as 
the acoustic transmission line represented in Figure 10.11, in which: 

0" 1 (k) 
R(k) = 8 ~  (10.23) 

yr. r4(k) 

l(k) 
L(k) -- , o ~  (10.24) 

yr-rZ(k) 

V(k) yr. r E (k). l (k) 
Cg(k)--  Po Po (10.25) 

where r(k) is the tube radius, l(k) the tube length, r/is gas viscosity and p 
is gas density. V(k) is the airway segment volume at the fixing pressure P0. 
Thus, R(k) and L(k) characterise the resistance and inertance of the rigid tube 
while Cg(k) is gas compressibility. 

To incorporate in the airway model more anatomical details, one can 
include the influence of the wall mechanics as done, for example, in Lutchen 
et al. (1996b). To do so, both the soft and cartilaginous airway walls can be 
idealised as a series of resistance-inertance-compliance, in parallel with the 
gas compressibility. Being the soft-tissue fraction for each airway segment 

R( k)/2 L( k)12 L( k)/2 R( k )/2 

CCk) Zw(k) 

�9 �9 

Figure 10.11. The acoustic transmission line model for the nonrigid airway segment of order k. 
The influence of the wall mechanics is taken into account by the equivalent impedance Zw. 
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(so[k]) equal to one minus the cartilaginous fraction (ca[k]) we have: 

Z i ( k  ) = R i ( k  ) + j . (coLiw(k) _ 1 ) i =  so, ca (10.26) 
C w(k) ' 

where co the angular frequency (radians/s) and the values for Rw, Lw, and Cw 
can be computed, according to Suki et al. (1993). Thus, the equivalent wall 
impedance given by the weighted combination of the soft and cartilaginous 
impedance is: 

so ca 
Zw(k)  = Z w (k) . Z w (k) (10.27) 

c ( k )  " ZSw~ -~- ( 1  - -  c ( k ) )  . Z~va(k)  

The peripheral airways, which are small airways of less than 2 mm in 
diameter, are well recognised as the main sites of airway narrowing and 
obstruction in asthma and other obstructive diseases. This pathological condi- 
tions can be described mathematically in Horsfield's model by reducing, of a 
certain percentage c~, the radius of the airway segments. Equations (10.23) to 
(10.27) are consequently modified, substituting the narrowed radius for r(k). 
This enables the impact of airway constriction on the overall response of 
respiratory system to be assessed. 

10.6.3. MATHEMATICAL MODELS OF THE ALVEOLAR 
COMPARTMENTS 

There are essentially three models used as alveolar tissue elements of 
Horsfield's structure: the simple first-order model as adopted in Jackson 
et al. (1987), Habib et al. (1994) (Figure 10.2); the constant phase model 
(Figure 10.9) used in Lutchen et al. (1996b, 1997); and the linear viscoelastic 
model applied in Lutchen et al. (1990, 1993b) (Figure 10.6 C). Each model 
is considered in parallel with the alveolar gas compressibility, C g. Dealing 
with the frequencies in the range of breathing rates, the stress-adaptation 
phenomenon, not taken into account by the first-order model, is the major 
determinant for the frequency dependent drop in the real part of respiratory 
system impedance, at least in normal subjects. Thus, the first-order model can 
only be used as terminal element of the most peripheral airway segments for 
analysing the lung impedance at relatively high frequency (> 16 Hz). 

10.6.4. EQUIVALENT INPUT IMPEDANCE OF THE 
HORSFIELD MODEL 

Once all the airways and tissues parameters have been specified, the respi- 
ratory system input impedance can be computed, in the frequency domain, 
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in a recursive fashion by applying the combinations of series and parallel in 
Horsfield's model. By posing Zeq(O) as the alveolar impedance, the equivalent 
impedance of the k-th generation can be calculated from: 

ZEq(k) -- 
R(k) + jaiL(k) 

+ 

R(k)+ jo~t,(k) 1 + 
2 1 1 + 

ZEq(k- 1) f ZEq(k - 1~ 
) 

(10.28) 
In fact, for homogeneous conditions (both in control and during broncho- 
constriction) the model is self-consistent, which means ZEq(k) is identical 
regardless of where it occurs in the branching pattern. In case of lumped inho- 
mogeneities, as when a particular topological fraction of airways is uniformly 
constricted, the input impedance (ZEq[35]) can be calculated once more by 
invoking the self-similarity on the networks and by combining the impedance 
of each branch. However, when airway constriction heterogeneity and/or the 
morphometrical arrangement are obtained with a stochastic description of 
diameter distribution, as in Thorpe et al. (1997) and Lutchen et al. (1997), 
the complete branching tree must be crossed for impedance calculation. This 
requires an exponential increase in the computational cost for obtaining a 
numerical solution. 

Figure 10.12 shows the results obtained in terms of equivalent model 
resistance (Re.q) and elastance (EEq), calculated according to (10.20), with 
different constriction patterns and the same alveolar parameters. The normal 
case shows a frequency-dependent drop in REq due to the stress adaptation of 
the alveolar compartments, followed by a constant plateau; EEq has an initial 
frequency-dependent increase and then a decrease due to the inertive effects. 
With a homogeneous airway constriction, we have a considerable increase in 
gEq spectrum, while E Eq has a significant increase and a positive frequency 
dependence, only for elevated constriction levels (>40%): this is due to 
airway wall shunting when an high resistive path leads to the alveoli. The 
nonhomogeneous constriction has a remarkable impact both on the maximum 
value and on the frequency-dependent decrease of REq. This amplifying effect 
of inhomogeneities is even more marked on the E Eq spectrum that results 
nearly doubled, even at low frequencies. 

In conclusion, the frequency domain analysis of the input impedance of 
Horsfield's morphometric model, enables the effect of changes in the value 
and distribution of lung physical properties on the global response of the 
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Figure 10.12. Comparison of the frequency behaviour of lung resistance and elastance as 
predicted from the Horsfield simulation model in the normal situation (solid line), a 20% 
homogeneous constriction (dotted line), a 50% homogeneous constriction (dashed  line) and a 
nonhomogeneou s constriction obtained with a uniform 60% reduction in the diameter of the 40% 
of peripheral airways (dash-dot  line). 

respiratory system to be assessed. In particular, it makes it possible to appre- 
ciate the different spectral features of homogeneous vs. inhomogeneous airway 
constrictions and the effect of airway wall shunting. 

10.7. CONCLUSIONS 

A review of the most used techniques for the simulation and quantification 
of lung mechanics has been presented. Particular attention was focused on the 
assessment and the modelling aspects and the nature of the applied input that 
are always strictly linked. With broad-band inputs, as the case of the interrupter 
technique or the FOT, it is possible to identify detailed lumped parameter 
models that can give specific measures of airway vs. tissue accounting for 
heterogeneous pathologies. However, when dealing with the need of contin- 
uous monitoring of respiratory mechanics in ventilator-dependent patients, 
one is forced to use simpler models, such as the first-order one, which can 
be easily implemented in a recursive fashion to track changes of parameters 
in time. The optimal ventilator waveform (OVW) approach, and especially its 
enhanced version (Kaczka et al., 1999), have much to offer in this field, by 
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providing means for ventilating the patient while allowing the identification 
of detailed models. 

In the last section of this chapter, we have presented an anatomically consis- 
tent simulation model of lung mechanics that has been frequently advocated 
to explain various aspects of constrictive pathologies and has provided useful 
information for the description, prediction, and explanation of the mechanical 
behaviour of the respiratory system. 
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Chapter 11 

Insulin Modelling 

Gianna Maria Toffolo and Claudio Cobelli  

11.1. I N T R O D U C T I O N  

Insulin is the primary regulator of glucose homeostasis. It is secreted by 
pancreatic/~-cells into the portal vein in response to a rise in glucose concen- 
tration. Before reaching the systemic circulation, it passes through the liver, 
where a consistent fraction, approximately 50%, is degraded. The residual 
insulin reaches the target organ or tissues, such as liver, muscle, and adipose 
tissue, where it exerts its hypoglycaemic action m it promotes glucose uptake 
and inhibits hepatic glucose production m before being eliminated by the liver 
and by other organs, such as the kidney. Insulin action depends on insulin 
concentration in proximity of the insulin-sensitive cells. This is the result of 
three processes: pancreatic secretion, hepatic extraction, and insulin kinetics 
(Figure 11.1). 

Unfortunately, a quantitative description of these processes in an individual 
cannot be easily accomplished since insulin processes are not directly measur- 
able unless very invasive and complex experimental protocols are performed. 
Therefore, indirect measurement approaches based on mathematical models 
become essential to infer from the accessible variables, usually plasma insulin 
and glucose concentration, on the nonaccessible fluxes and parameters of 
interest. 

In this chapter, a number of models are reviewed among the various types 
proposed in the literature (linear and nonlinear, lumped and distributed param- 
eters) to describe the insulin system at different levels (single cell, population 
of cells, single organ or tissue, whole body) with different purposes, such as 
qualitative and quantitative description, understanding, simulation, and esti- 
mation of relevant fluxes or parameters. 
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Figure 11.1. The insulin system: secretion, hepatic extraction, and kinetics. 

The noncompartmental model and some simple linear and nonlinear com- 
partmental models that allow the assessment of insulin kinetics at whole body 
level are discussed first. This is followed by the presentation of a comprehen- 
sive model of insulin secretion, based on secretion data obtained in perfused 
rat pancreas. This model, a landmark, is a crucial contribution to the inti- 
mate understanding of/3-cell function in response to a glucose stimulus, but, 
due to its complexity, it has been essentially used for simulation purposes. 
Input-output (I/O) modelling and deconvolution are then introduced to esti- 
mate insulin secretion profile in an individual during a perturbation. Then, the 
so-called minimal model approach, of minimal complexity, is presented as 
an alternative to the deconvolution approach since, in addition to the insulin 
secretion profile, it provides quantitative indices of the control of glucose on 
insulin secretion. Finally, the use of deconvolution and the minimal model 
approach to assess hepatic insulin extraction are discussed. 

11.2 .  M O D E L S  O F  W H O L E - B O D Y  I N S U L I N  K I N E T I C S  

Insulin kinetic studies require an exogenous input to generate dynamic data. 
The input can be an insulin tracer, usually insulin labelled with a radioactive 
isotope of iodine or hydrogen, or cold insulin. The advantage generally offered 
by the use of a tracer is that it can be administered in negligible amounts so that 
the endogenous steady state is not perturbed by the experiment, thus allowing 
the use of linear time-invariant models, such as the noncompartmental model 
or linear compartmental models, to interpret the data. With iodoinsulin of high 
specific activity the negligible perturbation condition is well approximated, 
but one of the ideal tracer prerequisites, tracer-tracee indistinguishability, is 
only partially met due to nonnegligible isotopic effects. With tritiated insulin, 
isotopic effects are less critical, but the administered dose is usually nonneg- 
ligible due to the lower specific activity of this tracer. 

The use of cold insulin as test input is a valid alternative to tracer insulin, 
at least in the physiological concentration range (up to 100-150 ~tU/ml) where 
insulin kinetics are approximately linear so that linear methods can be used 
to interpret the data. However, the administration of a nontrace amount of 
insulin has two undesired effects" first, it induces hypoglycaemia, which in turn 
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triggers the counterregulatory response that may affect insulin kinetics; second, 
it inhibits insulin secretion, thus the measured insulin concentration contains a 
time-varying endogenous component. These confounding effects can be avoided 
by designing a rather complex experiment, where hypoglycaemia is prevented 
by a variable glucose infusion (glucose clamp technique) and endogenous insulin 
secretion is suppressed by a somatostatin infusion. 

In experimental situations where insulin kinetics are no more linear, such 
as in the supraphysiological concentration range, nonlinear or linear time- 
varying compartmental models are required to interpret the data. An additional 
drawback of cold insulin is that its levels in plasma are usually measured with 
lower precision than tracer levels, resulting in less precise estimates of kinetic 
parameters. 

11.2.1.  THE NONCOMPARTMENTAL MODEL 

The noncompartmental model (Rescigno and Gurpide, 1973) shown in 
Figure 11.2 is a candidate for studying insulin kinetics when its underlying 
assumptions, linear kinetics, and endogenous steady state are well approxi- 
mated. The test input is usually a bolus injection of tracer or cold insulin, and 
the measured time course of tracer or cold insulin concentration is described 
by a sum of exponential functions, with a number of exponentials ranging 
from 1 to 3 (Ferrannini and Cobelli, 1987a). The noncompartmental formulae 
are then applied to estimate accessible pool parameters, such as distribu- 
tion volume, mass, rate of appearance and disappearance, clearance rate, and 

s 

Recycling / 
exchange 

4@ 
S 

Figure 11.2. The noncompartmental model. Q and V are the mass and distribution volume of 
the accessible pool; Ra and Rd are rate of appearance and disappearance into the accessible pool; 
u is the test input; the dashed line with the bullet denotes the measurement. 
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Table II.I.  
Noncompartmental Parameters of Insulin Kinetics for the Model of Figure 11.2. 

V Q PCR Ra = Rd Vtot Qtot M R T  Nc 
(ml/kg) (pmol/kg) (ml/min/kg) (pmol/min kg) (ml /kg)  (pmol/kg) (min) 

56 2.5 15.6 0.7 107 4.8 6.9 

CR = clearance rate; Vtot, Qtot -- total distribution volume and mass in the system; M R T  lvc = 
mean residence time in the system. 

system parameters, like total volume of distribution, total mass, and mean 
residence time in the system. Values obtained in normal subjects (Cobelli and 
Caumo, 1990) by describing insulin concentration data with a sum of two 
decaying exponentials are shown in Table 11.1. 

1 1 . 2 . 2 .  LINEAR COMPARTMENTAL M O D E L S  

Various linear compartmental  models (see Ferrannini and Cobelli, 1987a) 
have been proposed to describe insulin kinetics, with the number  of compart- 
ments ranging from 1 to 4. Two of them are shown in Figure 11.3(A) and (B) 

.. I SR p~ u ( t ) ~ .  

(A) ~ k~ 

u(t)~ [SR p~ .o 

/ . , ~ , , , s  S ~ - ~  

(B) [ k~ 

SR post 
u(t)<~ ,, 

(c 

Figure 11.3. Compartmental models of insulin kinetics. Q1, Q2 are insulin mass in compartment 
1 and 2; k21, k12 are transfer rates between compartments; k01, k02 are irreversible losses from 
compartment 1 and 2; SR p~ is the posthepatic insulin secretion; u is the test input; the dashed 
line with the bullet denotes the measurement. 
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Table 11.2. 
Compartmental Parameters of Insulin Kinetics for the Models of 

Figure ll.3(A) and (B) 

SRPOSt 
ko1 k02 k21 k12 Q1 Q2 (pmol/ VD M R T  

(min -1) (min -1) (min -1) (min -1) (pmol/kg) (pmol/kg) minkg) (pmol/kg) (min) 

A 0.276 m 0.295 0.321 2.5 2.3 0.7 107 6.9 
B m 0.155 0.571 0.166 2.5 4.5 0.7 156 10 

Vo -- total distribution volume in the system; MRT = mean residence time in the system. 

where compartment 1 represents the accessible pool (plasma and tissues rapidly 
exchanging with plasma) where tracer input and measurements take place and 
compartment 2 represents peripheral tissues. SR p~ is the posthepatic insulin 
secretion rate, that is, the flux of newly secreted insulin that reaches plasma 
after the first passage through the liver. The two models differ in the site of 
irreversible loss, taking place, respectively, in plasma (Figure 11.3(A)) or in 
the peripheral tissue compartment (Figure 11.3(B)). Both models are a p r io r i  
uniquely identifiable (Cobelli and DiStefano, 1980; see Chapter 4). Numerical 
values estimated via nonlinear least squares (Carson et al., 1983) in a group of 
normal subjects are shown in Table 11.2 (Cobelli and Caumo, 1990). 

In situations where a two-compartment model cannot be resolved from 
the data, the single-compartment model of Figure 11.3(C) has been used to 
describe insulin kinetics. 

A comparison between compartmental (Table 11.2) and noncompartmental 
parameters (Table 11.1) confirms what is expected from the theory (DiStefano, 
1982): the noncompartmental model correctly recovers the accessible pool 
parameters, while the system parameters are correct only if the insulin system 
satisfies the "equivalent source/equivalent sink" constraint, which means if 
de novo synthesis and irreversible loss take place in the accessible compart- 
ment, otherwise they are underestimated. The system of Figure 11.3(A) but 
not that of Figure 11.3(B) satisfies the constraint, thus in the latter case the 
noncompartmental system parameters underestimate the true values. 

1 1 . 2 . 3 .  NONLINEAR AND LINEAR TIME-VARYING 

COMPARTMENTAL MODELS 

The nonlinear insulin kinetics in the supraphysiological concentration range 
require either nonlinear or linear time-varying models. A relatively simple 
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nonlinear two-compartment model similar to that of Figure 11.3(A) has been 
proposed (Frost et al., 1973) with linear transfer rates k21, k12, but a nonlinear 
irreversible loss k01 described by a Michaelis-Menten relation. However, the 
elevated number of model parameters (six) poses some problems in deriving 
precise estimates for all of them. A nonlinear five-compartment model has been 
recently proposed, which also incorporates a description of insulin kinetics at 
the receptor level (Hovorka et al., 1993). 

An alternative approach to describe insulin kinetics in a rather large concen- 
tration range (up to 700 ~tU/ml) is based on a linear model similar to that of 
Figure 11.3(A), with constant transfer rates k21, k12 and a time-varying irre- 
versible loss, k01(t) (Morishima et al., 1992). Parameters k21, k12, and the 
initial value of k01 can be estimated by a bolus injection of an insulin tracer 
in basal condition, but the estimation of the time course kol(t) requires a 
constant infusion of tracer throughout the experiment. This model also has 
been subject to a validation, which means a study has been designed for this 
model consisting of a known and variable insulin infusion able to induce 
a gross perturbation on the system. The insulin rate of appearance was then 
reconstructed, based on the model, and compared with the known insulin infu- 
sion profile. The results show that the linear time-varying model, but not the 
linear time-invariant model, provides a reliable estimate of the known profile, 
indicating that the assumption of linear time-invariant kinetics is not tenable 
when insulin concentration varies in a wide supraphysiological range. 

11.3.  A N  O R G A N  M O D E L  O F  I N S U L I N  S E C R E T I O N  

Mechanisms of glucose control on 3-cell secretion are complex and involve 
a number of events at the molecular level. Many aspects have been studied 
by mathematical models, aiming to describe the bursting electrical activity at 
the cellular level (Sherman, 1996) or to describe and assess 3-cell function at 
the organ level. 

In this section, a model of insulin secretion based on the theory of the 
threshold secretory mechanism (Licko, 1973) is presented. Two assumptions 
underlie this theory: 1)a  threshold control of glucose on insulin secretion, 
meaning that glucose concentration is able to stimulate insulin secretion only 
if it exceeds a given threshold; and 2)the existence of populations of 3- 
cells (packets) having different sensitivity to the glucose stimulus, or different 
glucose thresholds. This theory has emerged from the analysis of experimental 
data obtained in the isolated perfused rat pancreas, in absence of any feed- 
back effect of insulin on glucose (open-loop condition). In these experiments, 
glucose concentration was varied at the inflow to reproduce specific glucose 
patterns like a step, a staircase, and a ramp. Insulin, which was not present 
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at the inflow, was present at the outflow because of the pancreatic secretion 
stimulated by glucose. Pancreatic secretion was then measured by multiplying 
insulin concentration at the outflow by the flow across the organ. The distinc- 
tive features of insulin secretion can be summarised as follows (Figure 11.4): 

1). A step increase of glucose elicits a spike of insulin release, afterward, 
secretion decreases independently of the glucose stimulus or insulin 
secretion. A second secretion phase subsequently occurs, slower and 
delayed with respect to the first phase. Secretion ceases immediately 
after the end of the stimulus. 

2). A prolonged and elevated glucose stimulus renders fl-cells 
hypersensitive to a subsequent stimulation. 

3). A rapid rise of glucose concentration stimulates an early secretion 
peak, which is reduced if glucose rises slowly. 

4). The amount of insulin secreted during the first phase is additive, 
meaning it is the same whether glucose increases from 0 to G in a 
single step or a number of steps. 

On the basis of feature 1 the two-compartment model of Figure 11.5(A) 
was initially proposed (Grodsky et al., 1970) where compartment 1 represents 
stored insulin (98%) and compartment 2 promptly releasable, or labile, insulin 
(2%). Transfer rates between compartments are slow, with time constant equal 
to approximately 100 min for k12 and 1000 min for k21. Glucose has a poten- 
tiation effect on the amount of labile insulin since it promotes the provision 
of new insulin and the transfer from the storage to the labile form. 

The model was simplified into a one-compartment model (Figure 11.5(B)) 
by neglecting insulin conversion to the stable form (k12). Then, mass balance 
equation gives: 

X(G,  t) -- - S R ( G ,  t) + P(G, t) X(O) -- Xo (11.1) 

where X is the amount of labile insulin in the fl-cells, X0 its initial condition, 
SR and P are insulin secretion rate and insulin provision controlled by glucose 
concentration G. 

Assuming that SR depends linearly on X and that P increases slowly with 
time, the model described by (11.1) is able to reproduce, at least qualitatively, 
the biphasic secretion profile after a step increase of glucose concentration 
(Figure l l.4(A)): the initial condition X0 is responsible for the first phase 
and provision P for the second phase secretion. However, (11.1) is inad- 
equate to describe the secretion profile after a staircase glucose stimulation 
(Figure 11.4(B) and (C)): the initial glucose step promotes a first phase secre- 
tion that exhausts the labile insulin reserve so that the second glucose step 
is only able to influence second phase secretion but not to promote the 
second peak observed in the secretion data. These findings suggested that, 



312 Gianna Maria Toffolo and Claudio Cobelli 

0.8 - Period of glucose infusion 

0.7 - 50 mg/lO0 ml 

n = 7  0 .6 -  

0.5-  

0.4- 

0.3-  

0.2- 
_ 

0.1- 

0 "-I I I I I I I l l a 

0.8- 

- 1 0 0  mg/100 ml 

n = l l  
m 

m 

0 . 2 -  T 
0.1 , , ~  

0 I I I I i i i ~  i 

~" 0.7 

0.6 

~" 0.5 
~5 

0.4 
O 

- ~ ,  0.3 

. 3  

.= 

Period of glucose infusion 

200 mg/1 O0 ml 

n = 9  

I I ! I I ! ! I I I ! 

350 mg/lO0 ml 

n=13 

| , , . , , .  

i 

! t ss 

0.8 

0.7 

0.6 

0.5 

150 mg/lO0 ml 

n = 6  

(A) 

0 . 4 -  / 

0.3 

0.2 
m , 

0.1 ~ . . . .  - 

0 
0 10 20 30 40 50 60 0 

Time (min) 

500 mg/lO0 ml 

n = 3  

sS LP 
S S 

10 20 30 40 50 60 

Figure 11.4. Insulin secretion during various glucose stimulations. A, prolonged step; B, two 
short steps; C, staircase infusion; D, fast ramp; E, slow ramp. Continuous line shows experimental 
data and dashed line the model prediction (adapted from Grodsky et al., 1972). 
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for a given glucose step, only a fraction of labile insulin is mobilised for 
first-phase secretion and that more insulin is rapidly released in response to a 
subsequent, more elevated glucose step. To account for this feature, the model 
of Figure l l.5(B) was successively modified (Grodsky, 1972) by incorpo- 
rating the assumption that labile insulin is distributed into packets, having a 
different threshold sensitivity to glucose. At each packet a threshold value 
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Figure 11.4. (Continued) 
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0 is associated such that: 

if G > O, the packet is "open" and releases insulin 

if G < O, the packet is "closed" and does not release insulin 

The threshold density function ~(0, t) describes how insulin distributes in the 
various packets. ~(O, t)dO thus represents the amount of insulin in packets 
having a threshold level ranging from 0 and 0 + dO, which can be released 
when the glucose stimulus increases from 0 to 0 + dO. The threshold density 
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Figure 11.5. Two-compartment model of insulin secretion (A) and its simplification in a single 
compartment model (B). k21, k12 are transfer rates; P and SR are insulin provision and secretion, 
controlled by glucose G. In model A, glucose also controls the conversion of insulin from the 
stable to the labile form. 

function also depends on time since the amount of insulin in packets varies 
in time due to secretion, exchange between packets, and so forth. 

Glucose promotes insulin secretion from "open" packets, which are packets 
having a threshold level lower than the value, so that the total amount of 
releasable insulin for a given value of glucose stimulus, G, is: 

f G(t) 
X(G, t) = ~(t~, t)dt 

JO 
(11.2) 

Insulin secretion is assumed to be proportional to this quantity: 

f 
G(t) 

SR(G, t) = m(G)X(G,  t) -- re(G) ~(0, t)dt 
JO 

(11.3) 

where m, in principle, depends on G. 
Before presenting the model state equations associated with (11.3), let us 

evidence an important property of the threshold theory. By taking the deriva- 
tive with respect to time of both sides of (11.2) one has: 

f G(t) 
X(G, t) = ~(0, t)dt~ + ~(G(t), t ) ~  

JO 

dG(t)  
dt 

(11.4) 
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Equation (11.4) indicates that the theory brings to a control of both glucose G 
and its derivative dG(t)/dt on X and thus on SR. This is interesting because it 
provides a physiological rationale for a proportional plus derivative control of 
glucose on insulin secretion, a relationship often acritically assumed in models 
of secretory processes to describe the data. 

The state equation for ~(0, t) associated with (11.3) is: 

~(O, t) = -m(G)~(O, t) + y(O)P(G, t) - I ~ ( O ,  t) 

+ g'(O) ~(0', t)dO' for 0 < G 

(11.5) 
~-(o, t) = •  t) - r ~ ( o ,  t) 

+ y'(O) ~(0', t)dO' for 0 > G 

where: 

a) the initial condition ~(0, 0) is the threshold density function at time 
zero, or when there is no glucose stimulus; 

b) -m(G)~(O, t) is the contribution to secretion of the packets having 
threshold O, with 0 < G; 

c) y(O)P(G, t) is the fraction of provision refilling the packets having 
threshold O, with provision modelled as a first-order process, with time 
constant c~(G) and steady-state value P(G, e~) depending on G: 

P(G, t) = -a(G)[P(G, t) - P(G, c~)] (11.6) 

Provision distributes among packets according to a function ),(0), 
proportional to the initial threshold density function: y(O) = f~(O, 0); 

d) F ~ ( O ,  t) + y'(O) f ~  ~(O', t)dt~ describes insulin exchange among 
packets. The assumption is made that the flux of insulin between two 
packets having threshold, respectively, O and O' is proportional to the 
amount of insulin in the source packet ~(O, t) and to the initial 
threshold density function evaluated for the destination packet ~(0', 0). 
The total flux out of the packet 0 is then: 

-- ~(0, t)y'(O')dO' = t) (11.7) 

The total flux into packet ~ is: 

/0 /0 ~(0', t)y'(O)dO' = y'(O) ~(0', t)dO' (11.8) 

with ) / (0)  = f'~(O, 0) and F~o = f o  y'(O)dO 
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In summary, the model consists of three equations: 1 )a  first-order 
differential equation (11.5) to describe the kinetics of insulin in the packets, 
with ~(O,t) as state variable (this means an infinite set of ordinary 
differential equations, one for each threshold value); 2) a first-order differential 
equation (11.6) to describe the control of glucose on insulin provision; and 
3) an integral equation (11.3) to link the state variable to the measurement. 

To complete the model specification, one has to provide a description for 
~(0, 0) and define how parameters m(G), c~(G), P(G, cx~) depend on G. To 
this purpose, model predictions were compared to the data of the glucose step 
infusion protocol (Figure 11.4(A)). Since G = const, the equation describing 
first phase secretion: 

~(0, t) = -m(G)~(t~, t) (11.9) 

can be solved: 
~(0, t) = ~(0, O)e -m(G)t (11.1 O) 

and secretion expressed as follows: 

/0 ~ SR(G, t) = m(G)X(G, t) = re(G) ~(0, O)dO . e -m(clt 

= m(G)X(G, O)e -m(alt (11.11) 

By comparing (11.11) with the early data of Figure 11.4(A), which reflect 
first-phase secretion, it was concluded that m does not depend on G, and a 
constant value for re(G) was estimated: 

re(G) = m = 0.622 min -1 (11.12) 

From the data of Figure l l.4(A), values of X(G, 0) were also estimated for 
different values of G and approximated by an analytical function. Differenti- 
ating this expression with respect to G, an analytical expression for the initial 
density function was obtained: 

kC t? k-1 
~(v~, 0) = XMAX con XMA,X = 1.65 pgr, (C + 0 k)2 

C = 1.51 x 107, k = 3.3 (11.13) 

If G- -cons t ,  also the model equations for second-phase secretion can be 
simplified. Let us define first: 

/0 ~ X~ (G, t) = ~(0, t)dO X2(G, t) = ~(0, t)dO 

r ( a )  = • r '  (a) = • (o)ao 
(11.14) 
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Then, by integrating (11.5), one has: 

21 (G, t) = - m X l  (G, t) + F(G)P(G, t) + F' (G)[X1 (G, t) 

+ X2(G, t)] - I '~X1 (G, t) 

~(2(G, t) = [Foo - F(G)]P(G, t) + [I'~ - I"(G)][X1 (G, t) 

-t- X2(G, t ) ]  - r~X2(G, t) 

(11.15) 

In steady state, (11.15) yields: 

mXl (G, oo) -- looP(G, e~) (11.16) 

FooP(G, ~ )  is unknown, but the steady-state secretion mXI(G, c~) can be 
estimated from the data of Figure 11.4(A) for different G values. Thus, one 
obtains: 

0.5G 10 
looP(G, oo) = 8.75.1021 + 2.25. 1015G 3 -t- 3.5. 106G 7 + G 1~ (11.17) 

Finally, ct(G) was derived by considering the case of a constant and elevated 
glucose stimulus (>300 mg/100 ml), so that I"(G) ~ Foo, 1-"(G) ~ 1"~ and 
(11.15) becomes: 

~21 (G, t) --" -reX1 (G, t) -t- FOOP(G, t) -t- I"~ [Xl (G, t) 

+ X2(G, t)] - I "~Xl  (G, t) 

J(2(G, t) = -F~X2(G,  t) 

(11.18) 

From (11.18), X2(G, t) is negligible since it decreases exponentially starting 
from a negligible initial condition (only a few packets have a threshold higher 
than G). The model equations simplify as: 

X(G, t) = -mX1 (G, t) + FooP(G, t) fo G X1 (G, t) = ~(tg, O)dO 

P(G, t) = -a(G)[P(G,  t) - P(G, oo)] P(G, O) = 0 (11.19) 

SR(G, t) = mX1 (G, t) 

By fitting these equations to the data of Figure 11.4(A), a constant value for 
ct(G) was estimated: 

ct(G) -- oe = 0.0337 min -1 (11.20) 
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The model (11.3, 11.6, 11.15) has been successfully employed to simulate 
all the insulin secretion data of Figure 11.4. The results, which are shown as 
dashed lines in the same figure, show a good agreement between data and 
model predictions, indicating that the model formulated by Grodsky is able to 
describe the pancreatic secretory response to a variety of glucose stimulation 
patterns. However, due to its complexity, the use of this model has been 
confined to simulation. 

11.4. E S T I M A T I O N  O F  I N S U L I N  S E C R E T I O N  
BY D E C O N V O L U T I O N  

Let us now consider the problem of estimating the insulin secretion profile 
in vivo during a perturbation from measurements taken in the accessible plasma 
pool. This is an input estimation problem, for which the deconvolution tech- 
niques discussed in Chapter 3 offer the classic solution. However, from plasma 
insulin concentration data, it is not possible to infer on pancreatic secretion, 
but only on its component appearing in plasma, or the posthepatic insulin 
secretion, which is approximately equal to 50% of pancreatic secretion. This 
problem can be bypassed if C-peptide concentration is measured during the 
perturbation and used to estimate insulin secretion since C-peptide is secreted 
equimolarly with insulin, but it is extracted by the liver to a negligible extent 
(Figure 11.6). In other words, plasma C-peptide concentration well reflects, 
apart from the rapid liver dynamics, C-peptide pancreatic secretion, which in 
turn coincides with insulin secretion. 

Since there is solid evidence that C-peptide kinetics are linear in a wide 
range of concentration, the relationship between pancreatic secretion (SR, 
the input) and C-peptide concentration measurements (CP, the output) is the 

/3 -cells SR 

SR post ~1 L i v e r ~  ~ 
Plasma 

+ 
Tissues 

~ ]  Plasma 
+ 

I Tissues 

Insulin 

C-peptide 

Figure 11.6. Rationale for assessing insulin secretion from C-peptide data. Insulin and C-peptide 
are equimolarly secreted from the fl-cells and pass through the liver, where insulin, but not 
C-peptide, undergoes hepatic extraction (E). Plasma C-peptide thus reflects pancreatic secretion 
(SR), while plasma insulin only reflects posthepatic secretion (SRP~ 



Insulin Modelling 321 

convolution integral: 

f C P ( t )  = h(t  - r) .  S R ( r ) d r  (11.21) 
o o  

where h is the impulse response function, or the response in concentra- 
tion to the injection of a unit dose bolus of C-peptide. SR profile during 
a perturbation can be reconstructed by solving the inverse problem, which 
is deriving SR by deconvolution, given C P  and h. The knowledge of the 
impulse response function h is a prerequisite. This requires an additional 
experiment on the same subject, consisting of a bolus of C-peptide and a 
concomitant infusion of somatostatin to inhibit endogenous C-peptide secre- 
tion. C-peptide concentration data are then approximated by a sum of expo- 
nential model that, after normalisation to the C-peptide dose, provides the 
impulse response function. While one assumes that the impulse function in 
a given individual does not vary between the two experiments, no assump- 
tions are needed about the mechanisms of insulin secretion. However, some 
smoothness in the reconstructed insulin secretion profile will result from regu- 
larisation, which is a necessity given the well-known ill-conditioning of the 
deconvolution problem. 

Deconvolution methods have been applied to estimate the secretion profile 
in various physiopathological states (Polonsky et al., 1986, 1988) and during 
both intravenous and oral glucose tolerance tests (Shapiro et al., 1988; Spara- 
cino and Cobelli, 1997; Tillil et al., 1988). 

To eliminate the need for a separate experiment to evaluate the impulse 
response function, a method has been proposed (Van Cauter et al., 1992) to 
derive C-peptide kinetic parameters in an individual based on data about his 
or her age, weight, height, and gender. The secretion profiles reconstructed by 
deconvolution, with the impulsive function evaluated from either the C-peptide 
bolus experiment or the population parameters, are similar (Hovorka et al., 
1998), indicating that the population values allow a good prediction of indi- 
vidual kinetic parameters. 

11.5. A S T R U C T U R A L  M O D E L  T O  E S T I M A T E  I N S U L I N  

S E C R E T I O N  A N D  S E C R E T O R Y  I N D I C E S  

11.5.1.  RATIONALE 

As discussed previously, deconvolution allows one to reconstruct the insulin 
secretion profile during a perturbation. However, it is crucial to complement this 
information with a quantitative assessment of insulin secretion, by arriving at 
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indices of t-cell sensitivity to glucose from a structural model of insulin secre- 
tion. These indices, when considered in conjunction with the indices describing 
insulin action on glucose production and uptake, will allow one to quantify the 
relative role of t-cells as well as liver and peripheral tissues in determining the 
metabolic state of an individual. However, the feedback nature of the glucose- 
insulin system poses major difficulties; a closed-loop model must be postulated, 
thus possible inaccuracies in modelling insulin action will influence the relia- 
bility of insulin secretion assessment and vice versa. 

To simplify the analysis, several techniques have been proposed that "open" 
experimentally the feedback loop, such as the glucose clamp technique where 
glucose concentration is elevated at 70 to 100 mg/dl above basal level and 
maintained during a period of time by means of a variable glucose infusion. 
Insulin (or C-peptide) concentration, monitored during the experiment, shows 
an early peak followed by a slow second phase. Two indices are then calcu- 
lated, related to first- and second-phase secretion, as the ratio between plasma 
insulin (or C-peptide) concentration and plasma glucose concentration in the 
two phases. However, the interpretation of these indices is not straightforward 
since they reflect not only pancreatic secretion but also insulin (or C-peptide) 
kinetics and, in the case of insulin, its hepatic extraction. 

An alternative technique has been developed based on a graded glucose 
infusion protocol (Byrne et al., 1995). Insulin secretion is reconstructed by 
deconvolution of C-peptide data at various (quasi) steady states characterised 
by different glucose levels. The dose-response relationships between glucose 
concentration and insulin secretion are then explored. However, the use of a 
steady-state method of data analysis to interpret quasi-steady-state data affects 
the reliability of the results. 

A third approach is based on the use of structural models of insulin secre- 
tion during a test perturbation. The glucose-insulin feedback mechanisms are 
active during the perturbation, but the loop is opened mentally by parti- 
tioning the whole system into two subsystems (Figure 11.7) linked by the 

Insulin system 

G(t) l(t) 

Glucose system 1~ 

Figure 11.7. Decomposition of the glucose-insulin system. G and I are plasma glucose and 
insulin concentration. 
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measured variables, insulin and glucose concentration. The two subsystems 
are then modelled separately. For the insulin secretion model, glucose is the 
(known) input and insulin the output, while for the model of insulin action on 
glucose production and utilisation, insulin is the (known) input and glucose 
the output. Since the two models are intended for clinical use, they must be 
of optimal complexity, or parsimonious; simple, so that all the parameters can 
be estimated with acceptable precision from the data of an individual, but not 
simplistic, or able to give a reliable description of the physiological processes. 
It is in this context that the term minimal model was coined (Bergman et al., 
1979). 

The minimal model of insulin secretion based on C-peptide data (Toffolo 
et al., 1995) is presented in this section, while the minimal model of glucose 
production and utilisation is presented in Chapter 12. In both cases, the test 
perturbation is a routine test. The intravenous glucose tolerance test (IVGTT) 
consists of a rapid (usually within 1 min) administration of a standard glucose 
dose (300 mg kg -1) and frequent blood sampling of plasma glucose, insulin, 
and C-peptide concentration in the 3-h interval following the injection. 

11.5.2.  THE MODEL OF C-PEPTIDE KINETICS 

Since the secretion model is identified on C-peptide measurements taken in 
plasma, it must be integrated into a model of whole-body C-peptide kinetics. 
The kinetic model is the one proposed by (Eaton et al., 1980) and shown 
in Figure 11.8. Compartment 1, accessible to measurement, represents plasma 
and rapidly equilibrating tissues, whereas compartment 2 represents tissues in 

~o 
S 

~ J  k21 
,sR Cpl } 

~ _ _ ~ "  k12 ~ kol 

Figure 11.8. The two-compartment model of C-peptide kinetics. CP1 and CP 2 are C-peptide 
concentration in compartments 1 and 2; k21 and k12 are transfer rate parameters; k01 is the 
irreversible loss from compartment 1; SR is the pancreatic secretion; the dashed line with the 
bullet denotes the C-peptide measurement. 
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slow exchange with plasma. The model equations are: 

CP1 (t) = -[kol q- k21]CP1 (t) -k kl2CP2(t) q- SR( t ) /Vc  CP1 (0) -- CPlb 

C'P2(t) -- k21CP1(t) - k12CP2(t) CP2(0) = CP2b (11.22) 

where CP1 (pmol/l) is C-peptide concentration in compartment 1, CP2 (pmol/1) 
is the equivalent concentration in compartment 2, which is C-peptide mass 
in this compartment divided by the volume of the accessible compartment, 
k12 e k21 (min -1) are transfer rate parameters between the two compartments, 
k01 (min -1) is the irreversible loss from compartment 1, SR (pmol/min) is 
pancreatic secretion entering the accessible compartment, Vc(l)  is the distri- 
bution volume of the accessible compartment. 

11.5.3. THE MODEL OF PANCREATIC SECRETION 

The minimal model of pancreatic secretion was derived from the Grodsky 
model via a number of simplifications dictated by the IVGTT protocol. Secre- 
tion is still described by (11.3): 

f G(t) 
SR(t) -- m ~(0, t)dO -- reX(G, t) (11.23) 

Jo 

but the following assumptions hold: 

1). ~(G, t) is described as in (11.5), but exchanges between packets are 
neglected: 

~(0, t) = -rn~(O, t) + y(O)P(G, t) 0 < G (11.24) 

X(G, t) can thus be derived by integrating (11.24) with respect to O, 
from 0 to G: 

fg(G, t) = - m X ( G ,  t) + F(G)P(G, t) + ~(G, t) dG(t)  dt (11.25) 

2). the term F(G)P(G, t) in (11.25), which represents the fraction of 
insulin provision that distributes in those packets able to release 
insulin, is denoted as Y(G, t) and described as a first-order process, 
characterised by a time constant, c~, independent on G and by a 
steady-state value, Y(G, c~), depending on G: 

}'(G, t) = -t~[Y(G, t) - Y(G, oo)] (11.26) 

3). the derivative term in (11.25) is neglected for time t > 0 since it is far 
lower in magnitude than the mX(G, t) term (Licko and Silvers, 1975). 
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Equation (11.25) becomes: 

X(G,  t) -- - m X ( G ,  t) + Y(G, t) (11.27) 

4). It is assumed that Y(G, c~) in (11.26) is linearly dependent upon G in 
the 100-300 mg/dl range: 

Y(G, e~) = f f ( G  - h) + Y~ h < G < 300 

= Y~ G < h (11.28) 

where the term Y~ accounts for the nonzero insulin provision in the 
basal state, ff represents the pancreatic sensitivity to glucose since it 
measures the control exerted by glucose concentration on the 
steady-state secretion, and h represents the threshold glucose level, 
usually similar to the basal glucose, able to stimulate insulin secretion. 

The secretion equations can thus be summarised as follows" 

SR(t)  = mX(G,  t) 

~((G, t) -- - m X ( G ,  t) + Y(G, t) X(O) -- Xo (11.29) 

}'(G, t) = - t~ [ r (G ,  t) - Y~  - f f  (G - h)] Y(0) = Y0 = Y~ 

The initial condition for X, X0, is the sum of the amount of releasable insulin 
in the basal state and of the amount of insulin in the packets that "open" up 
at time zero, when the glucose bolus causes an almost instantaneous increase 
of glucose concentration from the basal level up to its maximum level" 

f 
Gb+G max 

X0 = Xoo + ~(0, O)dO (11.30) 
JGb 

X0 is responsible for first-phase secretion, while the slower second-phase derives 
from provision Y. 

Model equations--kinetics (11.22) and secretion (11.29)--are  linear and 
can be conveniently reformulated by first expressing the state variables as devi- 
ations from basal and then normalising X and Y to the distribution volume Vc" 

C p l  ( t )  = U P 1  ( t )  - C P l b  

c p E ( t )  - -  C P 2 ( t )  - C P 2 b  

x(t) = (X(G, t) - Xoo)/Vc (11.31) 

y(t) = (Y(G, t ) -  Y ~ ) / V c  

From (11.31) and the following steady-state relation: 

Yoo - -  k 0 1 V c C P l b  - -  mXoo (11.32) 
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the minimal model of C-peptide secretion and kinetics can be expressed in its 
final form: 

C]O 1 (t) = - [k01  -~" k21]cp l  (t) + kl2cp2(t)  + rex(t) 

c]02(t) = k21cpl (t) - kl2Cp2(t) cp2(0) = 0 

Jc(t) = - rex( t )  + y(t)  x(O) = xo 

~,(t) = -ct{y(t) - ]~[G - h]} y(0) = 0 

cpl(0) = 0  

(11.33) 

The model has eight unknown parameters, three related to C-peptide kinetics, 
kol, k21, k12, and five to pancreatic secretion, ct,/~ = f f / V c ,  m, h and xo. 

11.5.4. MODEL IDENTIFICATION 

The minimal model (11.33) is a priori identifiable but not uniquely since 
parameters x0, m, k01, k21, and ~ have two solutions in the parameter space 
(Cobelli and DiStefano, 1980; see also Chapter 4). Moreover, kinetic and 
secretion parameters cannot be estimated simultaneously with acceptable preci- 
sion, and compensations between their point estimates also arise (Toffolo et al., 
1995). To render the model uniquely identifiable, kinetic parameters have been 
fixed to values derived either from a separate C-peptide bolus injection experi- 
ment performed in that individual or from population data as discussed in the 
previous section. In Table 11.3, C-peptide kinetic parameters are shown, both 
individually estimated or fixed from population data, with the corresponding 
secretion parameter estimates and their precision. Secretion parameters are 
similar in the two cases, indicating that the population approach is a valid 
strategy to assess C-peptide kinetics in an individual. 

Figure 11.9 shows the ability of the minimal model to fit experimental 
data an.d Figure 11.10 the model-reconstructed secretion profile based on the 
following equation: 

SR(t)  -'- [kolCPlb + mx( t )]Vc (11.34) 

In addition to the secretion profile, the model also allows one to estimate 
three functional indices of the sensitivity to glucose of first-phase, second- 
phase, and basal secretion. The first-phase sensitivity to glucose, (~1 (dimen- 
sionless), is given by the ratio between the incremental amount of C-peptide 
secreted during the first-phase and the maximum increment of plasma glucose 
concentration AG (mmol/1): 

(Y~I = x o / A G  (11.35) 



Table 11.3. 

Minimal Model Secretion Parameters (Mean f SD) When Kinetic Parameters Are Fixed to Individually Estimated 
Values (A) or to Population Values (B) 

A 0.064f0.004 0.054f0.003 0.056f0.002 0.57f0.10 0.065f0.009 11.32f1.13 4.94f0.17 1806f356 

B 0.060f0.0003 0.052f0.0003 0.050f0.0001 0.66f0.11 0.076f0.015 10.67f0.79 5.00f0.17 1682f300 
(5%) (12%) (6%) (31%) (33%) (28%) (29%) (6%) 

(39%) (32%) (26%) (27%) (6%) - - - 

w 
N v 
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Figure 11.9. Plasma C-peptide concentration during an intravenous glucose tolerance test in 
a normal subject. The minimal model prediction is shown as a continuous line (Toffolo et al., 
1995). 
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Figure 11.10. Minimal model prediction of pancreatic secretion during an intravenous glucose 
tolerance test in a normal subject (Toffolo et al., 1995). 
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The second-phase sensitivity to glucose, CI~2 (min -1), is given by parameter fl, 
which describes the stimulatory effect of glucose concentration on provision: 

(I:)2 = /~ ( 1 1 . 3 6 )  

Finally, the basal sensitivity to glucose, (I) b (min-1), is given by: 

di)b = S R b / G b  -" k o l C P l b / G b  (11.37) 

where Gb is the end test of glucose concentration. Mean (I)l, (I)2, (~b in normal 
subjects are: 

(I) 1 = 91.5 4- 14.6 (I) 2 = 11.3 4- 1.1 (I) b = 4.11 4- 0.45 (11.38) 

These indices quantify the glucose control on insulin secretion during an 
IVGTT, but similar information can be derived from other tests as well. 
However, since the model postulates a specific functional relation between 
insulin secretion and plasma glucose, its applicability in situations other than 
the IVGTT must be explicitly tested. Results have shown that the minimal 
model is able to describe C-peptide data of an insulin-modified IVGTT (Toffolo 
et al., 1999) and, after some modifications, C-peptide data measured during 
more gentle tests, such as graded-glucose infusion (Toffolo et al., 1998). 

11.6. E S T I M A T I O N  O F  H E P A T I C  

I N S U L I N  E X T R A C T I O N  

As for pancreatic insulin secretion, an indirect measurement approach is 
essential to quantify hepatic insulin extraction in humans since the direct 
measurement requires invasive protocols, with catheters placed in an artery and 
hepatic vein (Ferrannini and Cobelli, 1987b). Deconvolution offers a possible 
solution since by comparing pancreatic secretion rate (SR) obtained from C- 
peptide data and posthepatic secretion SR p~ obtained from insulin data, one 
can estimate hepatic extraction E as: 

SR(t) - SRp~ 
E(t) = (11.39) 

SR(t) 

The estimation of SR by deconvolution of C-peptide data is rather straightfor- 
ward, as already discussed in Section 11.4. The estimation of SR p~ is more 
problematic. If insulin varies within the physiological range so that its kinetics 
can be safely assumed linear and time-invariant, and if they are known (for 
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example) from a tracer insulin bolus protocol, SR p~ can be reconstructed 
by deconvolution of insulin data. However, if insulin varies in a wide range 
during the study so that its kinetics are likely to become time-varying, the link 
between SR  p~ and insulin concentration data (I) becomes: 

l ( t )  = g(t, r) . SRp~ (11.40) 

where g(t,  r) represents the impulsive response of the linear time-varying 
insulin kinetic system. However, at variance with the linear time-invariant 
case, the solution of (11.40) now requires one to postulate a specific structural 
model of insulin kinetics since the solution of a deconvolution problem can 
be tackled with an I/O model, such as a sum of exponential model, only if 
the kinetics are time-invariant. One possibility is to adopt the linear time- 
varying, two-compartment model of insulin kinetics presented in Section 11.2 
(Morishima et al., 1992), but, as already discussed, its identification requires 
a more complex experiment, such as an insulin tracer infusion during basal 
and the perturbation period. 

Minimal models offer an alternative approach to assess hepatic extrac- 
tion. As discussed in Section 11.5, SR can be assessed from the model of 
C-peptide kinetics and secretion identified from C-peptide and glucose data 
measured during an IVGTT. By following a similar approach, SR p~ can be 
assessed from insulin and glucose data. To this purpose, the insulin-modified 
IVGTT experiment, that is, an IVGTT associated with a short insulin infusion 
given between 20 and 25 min after the glucose bolus, offers definitive advan- 
tages with respect to the standard IVGTT since the insulin infusion (originally 
proposed [Yang et al., 1987] to improve the assessment of insulin sensitivity) 
generates an additional insulin disappearance curve that greatly facilitates the 
simultaneous estimation of insulin kinetic and secretion parameters. 

The C-peptide minimal model proposed to describe insulin secretion also 
can be used to describe posthepatic insulin secretion and, by using the single- 
compartment model of Figure 11.3(C) for insulin kinetics, one has: 

i'(t) = - n i ( t )  + mp~176 + u /V!  i(O) = 0 

.~p~ -- -mp~176 -q- yp~176 -- x~ ~~ (11.41 ) 

yp~ -- -ap~176 - ]3p~ - h]} yp~ -- 0 

The first equation accounts for insulin kinetics: i (pmol/l) is above basal 
insulin, n (min -1) the rate constant of insulin disappearance, 1t"i(1) the insulin 
distribution volume, mP~ p~ posthepatic insulin secretion, and u the exoge- 
nous insulin input (different from zero in the 20 to 25 min interval). The 
remaining two equations describe posthepatic secretion: a p~ ,6 p~ m p~ x0 p~ 
are posthepatic secretion parameters, and G the glucose stimulus. 
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The model provides the posthepatic secretion profile, as: 

SRp~ -- [nlb + mP~176 (11.42) 

where Ib is the end test of basal insulin, and three posthepatic sensitivity 
indices, related to the control exerted by glucose during first phase, second 
phase, and basal secretion, respectively: 

l)post .post ,  d~post __ flpost r = S R P O S t / G  b n l b / G b  (11.43) 1 m ~o / A G  "t"2 "~'b - -  

T h e  profile of hepatic extraction E can be estimated by using (11.39), with 
posthepatic secretion SR p~ and pancreatic secretion SR estimated from the 
insulin minimal model (11.42) and the C-peptide minimal model (11.34), 
respectively. In addition, the modelling approach also provides two indices 
of hepatic extraction during IVGTT and in the basal state, from pancreatic 
and posthepatic indices: 

chpost ,.r,p~ ~ z  ,~post ~;, 
E i v c ~  = 1 -  ('~b + ~p~ +'~'2 ,~2)vz Eb = 1-- `% Vl (11.44) 

(~b + ~IA1 + ~2Az)Vc ~bVc 

with 

f0  T AG [G(t) - h]dt 
A1 = A2 --  

T .  Gb T .  Gb 

where T is the time at which glucose, insulin, and C-peptide concentration are 
back to steady state after the IVGTT perturbation. 

The C-peptide (11.33) and the insulin (11.41) minimal models have been 
identified from the insulin-modified IVGTT data of normal subjects shown 
in Figure 11.11 (Toffolo et al., 1997). In particular, reliable estimates of 
insulin kinetic parameters were obtained; plasma insulin clearance rate was 
11.3 ml/min/kg on average. The two hepatic extraction indices of (11.44) have 
been calculated. The values were similar, approximately 60%, suggesting that 
the IVGTT experiment does not significantly alter hepatic insulin extraction. 

11.7.  C O N C L U S I O N S  

Mathematical models offer an important tool to quantitatively assess the 
three insulin processes of kinetics, pancreatic secretion, and hepatic extrac- 
tion. Compartmental and noncompartmental models of insulin kinetics have 
revealed that insulin is cleared very rapidly from plasma, at a rate representing 
about one third of cardiac output. As a consequence, variations of the secre- 
tion rate are rapidly reflected in variations of insulin levels in plasma and 
tissues where insulin exerts its action. Moreover, insulin kinetics are linear in 



2500 

2000 

~ 1500 

& 

N looo 

500 

Gianna Maria Toffolo and Claudio Cobelli 332 

0 - , , ' ,  ' |  , | . | 

(A) 0 60 120 180 240 

3000 

2000 

4 -=~ 

r~ 1000 

o 

0 60 120 180 

(B) Time, (min) 

240 

Figure 11.11. Plasma insulin and C-peptide concentration during an insulin-modified intra- 
venous glucose tolerance test. The predictions of the two insulin and C-peptide minimal models 
are shown as continuous lines (Toffolo e t  al., 1997). 

the physiological range, thus suggesting a minor role of insulin kinetics in the 
regulation of its own concentration, and thus of insulin action. 

The major role of pancreatic secretion in determining insulin concentra- 
tion, and thus insulin action, is undisputed. Since pancreatic secretion is not 
accessible to direct measurement, the availability of models to mechanistically 
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describe this process is crucial. The model formulated by Grodsky accom- 
plishes the first goal since it is a descriptive model that formulates assump- 
tions on insulin secretion and glucose regulation mechanisms at organ level. 
However, due to its complexity,, the model has been of limited use in practice. 

Input-output modelling and deconvolution offer the classic solution to the 
problem of estimating from C-peptide concentration insulin secretion in an 
individual during a perturbation. This approach is attractive because it does 
not require to postulate a structural description of insulin secretion and has 
been widely used to reconstruct/3-cell secretion in response to a variety of 
glucose stimulatory patterns (e.g., IVGTT, OGTT, graded glucose infusion, 
oscillatory glucose infusion) in both healthy and disease states. 

An alternative approach to estimate /3-cell secretion requires a structural 
model of insulin secretion, such as the minimal model of C-peptide secre- 
tion and kinetics. Model parameters can be estimated from C-peptide and 
glucose concentration data measured during a routine clinical test such as the 
IVGTT. The advantage of the minimal model approach is that it provides 
not only insulin but also indices of glucose control on/5-cell secretion during 
the basal state and first- and second-phase secretion. Since the IVGTT is 
frequently used to measure insulin sensitivity by using the minimal model 
of glucose kinetics, these model-derived indices of/5-cell function enrich the 
parametric picture of the glucose-insulin regulatory system obtainable with 
this test. 

Hepatic extraction plays an important role in insulin metabolism since 
approximately 50% of the newly synthesised hormone is degraded in the liver 
before reaching the peripheral circulation, as well as organs and tissues. I/O 
modelling and deconvolution again offer an appealing noninvasive approach 
to its quantification. However, some underlying assumption of the approach, 
in particular those related to the description of insulin impulse response, must 
be carefully evaluated. As an alternative, the minimal modelling approach can 
be applied. By identifying two models, the one of C-peptide secretion and 
kinetics and that of posthepatic insulin secretion and kinetics from plasma C- 
peptide, insulin and glucose concentration measured from an insulin-modified 
IVGTI', hepatic extraction of insulin during this test can be quantified. 
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Chapter 12 

Glucose Modelling 

Andrea Caumo, Monica Simeoni, and Claudio CobeUi 

12.1. I N T R O D U C T I O N  

In this chapter we present a survey, deliberately synthetic and not intended 
to be exhaustive, of models that describe the glucose system and the control 
exerted by insulin on glucose production and utilisation. This chapter is 
complementary to Chapter 11 which discusses models developed to study the 
insulin system and the control exerted by glucose on insulin secretion. 

A scheme of the glucose subsystem is shown in Figure 12.1. The glucose 
production and utilisation fluxes, with the control signals exerted by insulin and 
glucose on these fluxes, are represented. Our aim is to present the main features 
of the models that are used to quantitate glucose kinetics both at the whole- 
body and regional (organ/tissue) level and under steady- and nonsteady state 
conditions. We also provide some examples of models allowing the estimation 
of indexes of clinical relevance. Finally, we discuss the use of simulation 
models both to gain insight into the functioning of the glucose system and to 
aid in the optimisation of diabetes therapy. 

12.2. M O D E L S  OF WHOLE-BODY KINETICS IN 
STEADY STATE 

Understanding the glucose system at the whole-body level requires the 
quantitation of processes that are not directly measurable because they occur 
in the nonaccessible portion of the system. (Cobelli and Caumo, 1998). What 
can be detected is the effect in the accessible pool, usually plasma, where 
glucose and insulin concentrations can be measured. To relate the accessible 
pool measurements with events occurring in the nonaccessible portion of the 
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Figure 12.1. A schematic representation of the glucose subsystem. Continuous lines represent 
fluxes of material, and dashed lines represent control signals. 

system, we need a model. In this section, we present models developed to 
study the glucose system in the steady state, which means when the glucose 
masses and fluxes are constant in time. 

In the steady state, the only available measurement of glucose concentra- 
tion in the blood (glycaemia) is of limited use. In fact, since glycaemia is the 
result of the dynamic equilibrium between glucose production and utilisation 
(turnover), two subjects may have the same glycaemia, but different turnover. 
To measure glucose turnover and other system parameters, it is necessary 
to generate dynamic data with the help of a tracer. As already discussed 
in Chapter 6, an ideal tracer behaves like the mother substance (tracee), is 
detectable by the investigator, and does not perturb the system. The use of a 
tracer is advantageous because its kinetics can be interpreted by a model that 
is simpler than that of the tracee. In fact, while the plasma tracee concentra- 
tion reflects both production and kinetics (i.e., distribution and metabolism), 
the plasma concentration of the tracer, which is not produced endogenously, 
reflects only kinetics. Let us now imagine that an input-output (I/O) experi- 
ment has been performed by administering a certain tracer quantity, such as 
a rapid intravenous injection. This input (which can be schematised as an 
impulse) generates a tracer washout curve in plasma that can be interpreted as 
the system impulse response. What are the features of this impulse response? 
In the steady state, the tracer impulse response is that of a linear time-invariant 
system, even if the system is intrinsically nonlinear. It can be described as the 
sum of a number of decaying exponentials. For the glucose system, the tracer 
impulse response, h, is well described by the sum of three exponentials: 

h(t) -- g ( t ) /d  = A1 e-~lt + A2e -~2t + A3 e-xat (12.1) 

where g(t) is the plasma tracer concentration and d is the injected tracer dose. 
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The mean values of parameters Ai and /~i in humans in the basal steady 
state (Cobelli et al., 1984) are A1 = 0.015, A2 = 0.0026, A3 = 0.0034 kg/ml; 
)~1 = 1.64, ;~2 = 0.090, X3 --0.0093 min -1. The most rapid exponential, ;~1, 
can be detected only if the tracer concentration is measured frequently in the 
first minutes of the experiment. In the following sections, we shall show how 
to analyse these data to obtain both the accessible pool and system parameters. 
We shall see that whereas the accessible pool parameters can be derived from 
tracer data in a model-independent way, modelling strategies (such as the 
noncompartmental and compartmental approaches) are needed to derive the 
system parameters. 

12.2.1.  ACCESSIBLE POOL PARAMETERS 

This approach does not require hypotheses on the nonaccessible portion 
of the system. The accessible pool parameters are obtained by applying the 
mass balance equation to the accessible pool and by exploiting the tracer- 
tracee indistinguishability principle. These parameters include the accessible 
pool volume (V1), the clearance rate (CR), the rate of appearance in the 
accessible pool (Ra), and the rate of disappearance from the accessible pool 
(Rd). In steady state, one has Ra = Rd. The mean values of these parameters 
for the glucose system in the basal steady state (Cobelli et al., 1984) are V1 = 
46.5 ml kg- 1, CR = 2.5 ml kg-1 rain-l, Ra = 2.15 mg kg-1 rain- 1. Which 
is the relationship between the accessible pool fluxes Ra and Rd and those of 
glucose production and utilisation at the whole-body level? By applying the 
mass balance equation to the whole glucose system one has that, in steady state, 
the glucose production, EGP, equals utilisation, U. Since glucose produced 
de novo enters into the blood circulation through the hepatic and renal veins, 
EGP coincides with Ra (plus any other exogenous glucose input, if present). 
Finally, in the absence of exogenous inputs, U coincides with Rd. 

12.2.2.  NONCOMPARTMENTAL MODEL 

With the noncompartmental model, we begin formulating hypotheses on the 
nonaccessible portion of the system. This allows us to obtain parameters that 
pertain to the system and not only to the accessible pool. The noncompart- 
mental model assumes that glucose can leave the accessible pool irreversibly 
or recirculate through other regions of the system. From the tracer washout 
curve we can obtain, in addition to the accessible pool parameters, important 
system parameters such as the mean total residence time in the system, MRT,  the 
total distribution volume, Vo, and the total mass in the system, Qo. The values 
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Table 12.1. 
Parameter Values of the Noncompartmental and Compartmental 

Model in the Basal and in the Basal Glucose-Elevated Insulin 
Steady States 

Basal State 
Parameter Noncompartmental Model Compartmental Model 

V1 (ml/kg) 46.5 46.5 
CR (ml/kg min) 2.5 2.5 
Ra (mg/kg min) 2.15 2.15 
MRT (min) 99.1 105.8 
Vo (ml/kg) 244 261 
ao (mg/kg) 222 227 

Parameter 
Basal Glucose and Elevated Insulin State 

Noncompartmental Model Compartmental Model 

v1 (ml/kg) 46.5 46.5 
CR (ml/kg min) 9.1 9.1 
Ra (mg/kg min) 0 0 
MRT (min) 22.5 36.6 
Vo (ml/kg) 200 333 
Qo (mg/kg) 175 291 

of these parameters in the basal steady state (Cobelli et al., 1984) are reported 
in the upper portion of Table 12.1. 

It is worth emphasising that the system parameters obtained with the non- 
compartmental model are not model-independent like those of the accessible 
pool. In fact, albeit the ingredients of the noncompartmental model are simply 
the accessible pool and the rates of appearance, disappearance, and recircula- 
tion, one must bear in mind that the noncompartmental model hinges on the 
assumption that the fluxes of production and irreversible removal occur solely 
in the accessible pool. If this hypothesis is not satisfied, the system parameters 
are underestimated. Is this hypothesis tenable for the glucose system? Whereas 
in all likelihood Ra coincides with glucose production, it is unlikely that the 
irreversible losses of the system, such as the insulin-dependent glucose uptake 
of the muscles, are all solely attributable to the accessible pool. This limitation 
of the noncompartmental model will be further highlighted in the following 
section discussing compartmental modelling. 

12 .2 .3 .  COMPARTMENTAL MODEL 

The compartmental model describes the nonaccessible portion of the system 
with a number of interconnected compartments. Its formulation requires the 
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specification of the number of compartments, their connections, the sites of 
input and of irreversible removal, and the mathematical description of all the 
functional dependencies and controls. In general, the compartmental model is 
described by a set of nonlinear differential equations. In the steady state, the 
model becomes simpler because the masses in the compartments and the fluxes 
between the compartments are constant over time. As a result, the fractional 
transfer parameters of the model, kij, are also constant and estimable from the 
tracer data. 

Many models have been proposed to describe glucose kinetics in steady- 
state conditions in humans. These models differ in terms of number of compart- 
ments (2 or 3) and in terms of number and location of the irreversible losses. 
Instead of presenting a complete review of the available models, we focus on 
the model developed in Cobelli et al. (1984) because it exemplifies how physi- 
ology can guide the development of a compartmental model. Let us go back to 
the tracer experiment described previously. The presence of three exponentials 
in the tracer impulse response suggests the adoption of a three-compartment 
model. Among the possible structures, the one chosen in Cobelli et al. (1984) 
is shown in Figure 12.2. It is a mamillary model with the central compart- 
ment the accessible pool, which is where the tracer input and tracer and tracee 
measurements take place. The mass balance and measurement equations of 
the tracer and tracee systems are: 

itl(t) = -(k21 + k31)ql(t) + kl2q2(t) + kl3q3(t) + d3(t) ql(0) = 0 

q2(t) = k21ql (t) - (k12 + koz)q2(t) q2(0) = 0 

q3(t) = k31ql (t) - (k13 + ko3)q3(t) q3(0) = 0 

g(t) = ql (t)/V1 

a l  (t) = -(k21 + k31)Q1 + k12Q2 + k13Q3 + E G P  = 0 

Qz(t) -- k21Q1 - (k12 + koz)Q2 = 0 

a3 (t) = k31 Q1 - (k13 -~- k03)Q3 = 0 

G = Q1/V1 
(12.2) 

where qi and Qi are, respectively, the tracer and tracee mass in compartment 
i, d is the administered tracer dose, g and G are the tracer and tracee concen- 
tration measured in plasma, V1 is the accessible compartment volume, and kij  
are the transfer rate parameters. We note that the tracer kinetics is described 
by a system of differential equations, while the tracee kinetics is described by 
a system of algebraic equations. 

Let us briefly examine the rationale behind the choice of the sites, number, 
and location of irreversible removals. For further details on the physiological 



342 Andrea Caumo, Monica Simeoni, and Claudio Cobelli 

( 

Insulin-independent 
tissues 

(rapidly equilibrating) 

Figure 12.2. 

Glucose production 

I Measurement 
Input ~ o 

k21 """" k31 

kl 2 "~ ~ ~ / /  k13 

l k03 

Insulin-dependent 
tissues 

(slowly equilibrating) 

The compartmental model of glucose kinetics developed in Cobelli et al. (1984). 

foundations of the model, see Ferrannini et al. (1985) and Jacquez (1992). 
Since the volume of the accessible pool (46.5 ml kg -1) resembles plasma 
volume and glucose is not utilised in plasma, no irreversible loss takes place 
in the accessible pool. Compartments 2 and 3 represent peripheral compart- 
ments, respectively, in rapid and slow equilibrium with the accessible pool. 
Compartment 2 has been associated with tissues such as red blood cells, liver, 
kidneys, and central nervous system, which are in rapid equilibrium with 
plasma. Because these tissues consume glucose independently of insulin, the 
irreversible loss of compartment 2 accounts for insulin-independent glucose 
utilisation. Compartment 3 has been associated with tissues such as muscle 
and adipose tissue, which equilibrate slowly with plasma. Because the glucose 
utilisation in these tissues is stimulated by insulin, the irreversible loss of 
compartment 3 accounts for insulin-dependent glucose utilisation. The model 
of Figure 12.2 is a priori nonidentifiable but the physiological interpretation 
of the compartments discussed previously allows one to exploit some avail- 
able physiological knowledge that guarantees its a priori unique identifiability. 
The following notion has been embodied into the model: in the basal state, 
the glucose utilisation by insulin-independent tissues is threefold the one by 
insulin-dependent tissues. This imposes the following constraint among the 
model parameters: 

k21ko2 = 3 (  k31k03 ) (12.3) 
k12 + k02 k13 + k03 

By using the parameter estimation techniques described in Chapter 5 one can 
estimate, (e.g., by nonlinear least squares), the parameters kij and V1 from the 
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Figure 12.3. The compartmental model of Figure 12.2 identified in the basal state (upper panel) 
and in the steady state attained at the end of an euglycaemic hyperinsulinaemic clamp (bottom 
panel). 

tracer data. Their basal values are shown in the upper panel of Figure 12.3. 
By substituting these parameters into the tracee algebraic equations, one can 
calculate glucose production, glucose utilisation, glucose fluxes between com- 
partments, and glucose masses in compartments. It is worth noting that the 
model also provides all the parameters yielded by the accessible pool approach 
and by the noncompartmental model. The values of some of them are shown 
in the upper portion of Table 12.1. 

The fact that the impulse response of the system (12.1) is characterised by 
a very fast exponential term (time constant of about 0.6 min) translates into 
high values of the rate constants k21 and k12, whose values are, respectively, 
1.1 and 0.5 min -1. This means that compartment 1 (the accessible pool) and 
compartment 2 exchange so rapidly that it is quite reasonable to formulate a 
reduced version of the model having these two compartments aggregated into 
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a single compartment. In fact, if we neglect the early tracer data, say those 
collected in the first 2 to 3 minutes after the injection, it is not possible to 
resolve from the data the rapidly exchanging compartment 2, and one identifies 
a two-compartment model in which the accessible pool now has a volume 
greater than plasma (158 ml/kg -1) and an irreversible loss that accounts for 
insulin-independent glucose utilisation. We discuss this model again when 
dealing with the models used to analyse the nonsteady state. 

There is no doubt that the analysis of tracer data by a compartmental 
model provides a detailed description of glucose kinetics in the steady state. 
However, one must bear in mind that this description refers to a specific 
condition of the glucose system (e.g., the basal state following an overnight 
fast). This description is exhaustive only if the system is intrinsically linear, 
such as the C-peptide system discussed in Chapter 11. On the contrary, if the 
model is intrinsically nonlinear, like the glucose system, a basal study will 
tell us nothing about the system functioning away from this operating point. 
It is therefore necessary to move from the basal state to characterise glucose 
nonlinearities and controls; but how? One possibility is to perturb the system, 
for instance, with exogenous glucose, and interpret the data following the 
perturbation with a nonsteady state model explicitly accounting for the system 
nonlinearities and controls that we intend to quantify. We discuss this strategy 
later when dealing with nonsteady state and control system models. 

An alternative approach that allows characterisation of glucose nonlineari- 
ties and controls, and simultaneously presenting relative simplicity of steady- 
state modelling, consists of repeating the tracer experiment after bringing the 
system to a new steady state by a suitable experimental protocol. An example 
is given of how such a strategy can be profitably used to investigate the effects 
of insulin on glucose kinetics. Using the euglycaemic hyperinsulinaemic clamp 
technique, we can bring the glucose system to a new steady state characterised 
by basal glycaemia and elevated insulin. By identifying the model from tracer 
data in both steady states, one obtains two parametric pictures that provide 
insight into the effects of insulin on glucose metabolism. In Figure 12.3, the 
two model parameterisations obtained in the basal state and in the elevated 
insulin state are shown. If one compares the parameter values in the two 
steady states, an insulin effect on the rate constants into and out of compart- 
ment 3 (which accounts for insulin-dependent tissues) is detected. In fact, not 
only parameter k03, which describes insulin-dependent irreversible removal, 
increases, but also the exchange parameters with the accessible pool, k31 and 
k13, increase and decrease, respectively. 

One may wonder what the relationship is between the parameters obtained 
with the noncompartmental and the compartmental model in the two steady 
states. Table 12.1 contains the most significant parameters, which can be calcu- 
lated with both the approaches. One realises that the accessible pool parameters 
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are exactly the same, while the system parameters, such as MRT, Vo, and QD, 
are lower when calculated with the noncompartmental model. This discrep- 
ancy is due to the fact that when the irreversible losses are not all located in 
the accessible pool, the noncompartmental model underestimates these param- 
eters (Di Stefano, 1982). Of note is that the difference between the MRT, Vo, 
and Qo estimates obtained with the two approaches increases in the hyper- 
insulinaemic study. This occurs because as insulin concentration increases, 
the relative weight of the insulin-dependent irreversible loss (located in the 
nonaccessible pool) vs. the insulin-independent one increases. 

The model discussed previously can provide only an aggregated description 
of detailed events such as glucose distribution in the interstitial fluid, glucose 
transport into and out of the cell, and intracellular glucose phosphorylation. It is 
possible to selectively study insulin action on glucose distribution into intersti- 
tial fluids by administering an analogue glucose tracer, L-[14C]glucose, which 
distributes in the interstitial fluid similar to glucose but does not enter into the 
cell. By interpreting the L-[14C]glucose washout curve with a compartmental 
model in the basal and in the hyperinsulinaemic steady state, it is possible to 
quantify the insulin effect on extracellular glucose distribution. This technique 
has shown in rat (Youn et al., 1995) and dog (Steil et al., 1996) studies that 
the intercompartmental rate constants are not affected by insulin. This suggests 
that insulin, at least in these animal species, does not significantly influence 
glucose distribution in the interstitial fluid and only enhances glucose transport 
into the cell. 

The understanding of insulin effect on glucose kinetics can be deepened if 
additional nonplasma measurements become available. For instance, the lymph 
compartment is accessible in animals. Since the lymph system consists of 
vessels draining the interstitial fluid, the measurement of tracer concentration 
in the lymph provides information on the modalities of glucose distribution 
in the interstitial fluid. This allows the investigator to put on a more solid 
basis the identification of physiological correlates of the compartments of the 
whole-body model. For example, in the dog study (Steil et al., 1996), the 
L-[14C]glucose washout curve has been interpreted with a mamillary model 
in which the central plasma compartment exchanges with three compart- 
ments, respectively, rapid, intermediate, and slow (it is worth noting that 
glucose kinetics in dogs is faster than in humans and that the dog inter- 
mediate compartment is comparable to the human slow compartment). The 
L-[14C]glucose dynamics, predicted by the model in the remote compart- 
ments, has been compared with the tracer concentration measured in the 
lymph draining the interstitial fluid of leg muscles. The results indicate that 
the tracer lymph pattern is in accordance with that predicted by the model 
intermediate compartment, which has thus been identified with the muscle 
tissue. 
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A similar strategy has been adopted in a study undertaken in sheep (Gastal- 
delli et al., 1997) to test the hypothesis that the interstitial fluid, assumed to be 
well reflected by the thoracic duct lymph of the animal, is representative of one 
or more compartments of a whole-body model. A stable isotope tracer exper- 
iment in the basal state has allowed the identification of a three-compartment 
model of glucose kinetics in both its mamillary and catenary versions. The 
predictions of the tracer dynamics in the rapid and slow peripheral compart- 
ments have been correlated with the tracer-to-tracee ratio measured in the 
lymph. The results indicate that the tracer-to-tracee ratio profile in the lymph 
is in accordance with that predicted by the model in the rapidly exchanging 
compartment, independently of the mamillary or catenary structure. Because 
the thoracic duct lymph reflects the lymph of both hepatic and gastrointestinal 
tissues, which are tissues more highly perfused than muscle and adipose 
tissues, it is reasonable to assume that the rapid compartment of the model is 
representative of highly perfused tissues, a notion consistent with the model 
structure postulated in humans. 

12.3. M O D E L S  OF R E G I O N A L  KINETICS IN 
S T E A D Y  STATE 

Whole-body measurements cannot provide a reliable description of glucose 
processes at the regional level. To quantify kinetic events at an organ or 
tissue level, it is necessary to perform kinetic studies at the regional level. 
These studies meet with obvious difficulties in humans but are feasible in 
the animal. Another possibility is to work in vitro or with isolated perfused 
organs. To estimate production and utilisation of a substance at the regional 
level in steady state, one can infuse a tracer and apply Fick's principle. Let 
us consider, for instance, the problem of quantitating glucose metabolism in 
the splanchnic region (Figure 12.4). By inserting a catheter in the artery and 
another in the hepatic vein, one can measure the arterial and venous glucose, 
Ga and Ghv, and tracer glucose, ga and ghv, concentrations following a constant 
tracer infusion. If hepatic blood flow, ~,  is also measured, one can calculate 
glucose utilisation, U, and production, P, in the splanchnic area as: 

G 
U -- dP(ga -- g h v ) ~  

ga (12.4) 

P = U + dP(Ga - Ghv) 

This method has been employed in various districts and has allowed a 
detailed description of glucose fluxes in the organism (Figure 12.5). What 
warrants emphasis is that this method does not require the postulation of a 
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Figure 12.4. A schematic representation of the splanchnic region: circulation and glucose 
fluxes. 
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Figure 12.5. Glucose fluxes in a normal human in the basal state (hv - -hepa t i c  vein, 
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vein, rv = right ventricle). 

regional model but requires that the assumptions behind Fick's principle and 
tracer-tracee indistinguishability hold. 

To move to a more refined level of detail and quantify, for instance, 
glucose transport into and out of the cell and the intracellular biochemical 
steps, it is necessary to postulate a regional model of glucose kinetics and 
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to design experiments providing dynamic data that selectively reflect these 
processes. The approaches that are more frequently used to study regional 
glucose metabolism are the residue function technique and the tracer arterio- 
venous balance technique. Positron emission tomography (PET) and nuclear 
magnetic resonance (NMR) belong to the first category, while the multiple 
tracer dilution technique belongs to the second. In Chapter 7 various compart- 
mental models are discussed that allow the quantitation of regional glucose 
kinetics, such as in the brain, heart, and muscle, while Chapter 3 provides 
a detailed analysis of the multiple tracer dilution technique. In the following 
paragraph, we focus on the use of the multiple tracer dilution technique for the 
in vivo measurement of glucose transport and phosphorylation in the skeletal 
muscle. 

The multiple tracer dilution technique consists of the simultaneous injec- 
tion of tracers with different molecular characteristics at the organ inlet (artery) 
and on the measurement of their washout curves at one of the organ outlets 
(vein). The key idea is that different tracers help to distinguish the individual 
contribution of the unit processes of regional glucose kinetics, or vascular 
distribution, diffusion in the extracellular space, transport into and out of the 
cell, and intracellular phosphorylation (Figure 12.6). This technique has been 
employed by Saccomani et al. (1996) to study transport and metabolism of 
glucose in the forearm muscle tissue. The forearm muscle tissue is chosen 
for various reasons: the forearm muscle well represents the skeletal muscle, 
arteries and, vein are easily accessible to measurement, and blood flow is less 
than 1% of cardiac outputs thus making tracer recirculation negligible. The 
experimental protocol consists of the simultaneous injection in the brachial 

Input 

Artery 

Muscular tissue 

Measurement 
0 ! 

I 
I 

! 
! 

Veins 

Figure 12.6. The multiple tracer dilution technique to quantify glucose transport and phospho- 
rylation in the muscle tissue. Three tracers are simultaneously injected at the arterial inlet of the 
organ and their washout curves are measured at the venous outlet (see Figure 12.7). 
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Washout curves of the three tracers used for measuring glucose transport and 
phosphorylation in the human skeletal muscle in the basal (left panel) and in the hyperinsulinaemic 
(right panel) state. 

artery of the subject of three tracers: 1) an extracellular tracer that cannot be 
transported into the cell (D-[12C]mannitol); 2) a tracer that is transported into 
and out of the cell but is not metabolised (3-o-[laC]methyl-D-glucose); and 
3) a tracer that enters into the cell and is metabolised (D-[3-3H]glucose). The 
washout curves of the three tracers are shown in Figure 12.7. It is easy to 
realise that the "difference" between the concentrations of the first two tracers 
contains information on glucose transport into the cell, and only on that. In 
fact, mannitol diffuses in the extracellular space but does not enter into the 
cell, whereas methyl-D-glucose enters into the cell but is not phosphorylated. 
Similarly, the "difference" between the concentrations of methyl-D-glucose 
and tritiated glucose contains information on intracellular phosphorylation. 

The washout curves of the three tracers are analysed with the compartmental 
model shown in Figure 12.8, which describes the blood flow heterogeneity in 
the forearm, glucose transport into the cell, and phosphorylation. Compart- 
ments 1 and 8 represent, respectively, the sites of injection (brachial artery) 
and of measurement (deep vein), while compartment 15 represents red blood 
cells. Blood flow heterogeneity in the forearm is described by means of three 
compartmental chains (2-3,  4 -5 ,  and 6-7),  each of which is characterised 
by a different transit time, low, intermediate, and high. Compartments 9 
through 14 represent the intracellular space, and each of them is attached 
to an extracellular compartment, so that the transport rate constants, kin and 
kout, represent, respectively, the transport into and out of the cell. The tracer 
irreversible losses occur in the input and output compartments, in the erythro- 
cyte pool, and in the cellular compartments. Compartments 1 and 8 losses 
account for the fact that, for each tracer, only a fraction of the injected 
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Figure 12.8. The compartmental model proposed in Saccomani et  al. (1996) to measure glucose 
transport and metabolism in the human skeletal muscle. The model is used to interpret the washout 
curves of Figure 12.7. 

dose reaches the measurement compartment. The intracellular compartment 
losses, krnet, apply only to D-[3-3H]glucose and describe glucose phospho- 
rylation. Once the tracer model has been identified, the tracee model also 
can be quantified if blood flow is simultaneously measured. The metabolic 
portrait provided by the model is particularly rich; one can calculate the 
extracellular and intracellular glucose masses, the inward and outward trans- 
membrane glucose fluxes, and the extracellular and intracellular volumes and 
concentrations. 

This regional model has been employed to assess insulin action on glucose 
transport and phosphorylation in muscle in various physiopathological studies, 
particularly in non-insulin-dependent diabetic subjects (Bonadonna et al., 
1996). The results obtained in the basal and in the hyperinsulinaemic state 
indicate that the mechanisms by which insulin stimulates glucose transport is 
asymmetric, which means the inward flux increases more than the outward 
flux, and that, in diabetic patients, the insulin effects on both transmembrane 
transport and phosphorylation are impaired. 
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12.4. M O D E L S  O F  W H O L E - B O D Y  K I N E T I C S  I N  

N O N S T E A D Y  S T A T E  

In nonsteady state, glucose production and utilisation (and thus plasma 
glucose concentration) vary in time. This is a condition that occurs many 
times during a day, such as during a meal or exercise. The quantitative 
study of the glucose system in nonsteady state is important because it sheds 
light on the control mechanisms that guarantee homeostasis. However, it is 
also more challenging than the steady state. For example, even the acces- 
sible pool fluxes Ra and Rd, which are model-independent in steady state, 
become model-dependent in nonsteady state. Hereafter, we discuss the most 
common models employed for estimating glucose production and utilisation 
in nonsteady state. 

12.4.1.  GLUCOSE PRODUCTION 

In the nonsteady state, the glucose system can be interpreted as a linear 
time-varying system, thus characterised by an impulse response h(t, r). The 
relation that links the unknown input in accessible pool, Ra, to glycaemia, 
G(t), is given by the convolution integral: 

G(t) -- h(t, r)Ra(r)dr (12.5) 
o o  

The estimation of glucose production in the nonsteady state can thus be consid- 
ered as an input estimation problem and is usually solved in two steps. First, 
the glucose time-varying impulse response is identified. Second, the integral 
equation (12.5) is solved by resorting to deconvolution techniques. Such tech- 
niques are discussed in Chapter 3. How can h(t, r) be assessed? Since h(t, r) 
is time-varying, it is not possible to describe it by using a multiexponential 
model (as is the case, for instance, for the C-peptide system, which exhibits 
linear and time-invariant kinetics discussed in Chapters 3 and 11). For the 
glucose system, it is necessary to formulate a structural model capable of 
describing the system functioning in the nonsteady state. In particular, it is 
necessary to specify which are the time-varying parameters of the model and 
how they change during the nonsteady state. The model is identified from the 
tracer data generated by administering a tracer during the nonsteady state. It 
is easy to realise that different models will produce different estimates for Ra. 

The models that are most frequently used to describe the glucose system 
in the nonsteady state are those proposed by Steele (1956) and Radziuk et al. 
(1978). Steele's model (1956) is monocompartmental (Figure 12.9) and has a 
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Figure 12.9. The monocompartmental model proposed by Steele (1956) for describing glucose 
kinetics in the nonsteady state. 

time-varying irreversible loss, k01 (t), whose time course can be derived from 
tracer data. The unknown Ra can be easily obtained as follows: 

IR dZ(t) ] 
a*(t ) -  pVDG(t) dt 

Ra(t) = z(t) (12.6) 

The ingredients of Steele's model estimate of Ra are thus the tracer infusion 
rate Ra*, the measured plasma tracer-to-tracee ratio Z = g/G, where G and 
g are, respectively, the glucose and the tracer glucose concentration (for a 
radioactive tracer Z coincides with specific activity) and the whole-body mass 
of glucose, which is obtained by multiplying the plasma glucose concentration 
G times the volume of Steele's model, Vs, a fraction p (usually referred to 
as pool fraction) of the total glucose distribution volume, Vo. The rationale 
for this choice is to use a volume being halfway between the plasma and 
the total volume so as to allow Steele's model to surrogate a more complex 
system. For glucose, the generally chosen value of p is 0.65 and since Vo 
is about 260 ml/kg -1, one has that Vs is approximately 170 ml/kg -1. It is of 
interest to note that Vs is close to the volume (158 ml/kg -1) that is obtained 
by aggregating in the model of Figure 12.2 the plasma pool in compartment 1, 
and the rapidly equilibrating tissues in compartment 2. 

The simplicity of Steele's model and its ease of use account for its diffu- 
sion and popularity. However, several results are available in the literature that 
question its reliability. For instance, in euglycaemic hyperinsulinaemic clamp 
studies Steele's model provides negative, and thus physiologically absurd, 
values of glucose production in the final part of the experiment. During the 
intravenous glucose tolerance test (IVGTT), Steele's model predicts an initial 
stimulation of glucose production instead of a marked inhibition, as physio- 
logical knowledge would suggest. The inadequacy of Steele's model has been 
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subjected to theoretical analysis (Cobelli et al., 1987), which has shown that 
Steele's model error can be split into two components: a volume compo- 
nent depending on Vs and a structure component due the monocompartmental 
approximation. Both these errors are functions of time and depend on the tracer- 
to-tracee ratio during the experiment. The more rapidly the tracer-to-tracee ratio 
changes, the bigger the error introduced by the model in estimating glucose 
production. 

The model introduced by Radziuk et al. (1978) has a bicompartmental struc- 
ture. It has been proposed in two versions (Figure 12.10). The first one has 
a single irreversible loss in the accessible pool, k01(t), and the second one 
has two equal losses in both compartments (k01(t)= k02(t)). The use of this 
model requires the preliminary estimation of V1, k21 and k21, and of the steady- 
state value of k01 (k01 = k02 in the second model version). These parameter 
estimates can be obtained from a tracer experiment performed in the steady 
state that precedes the nonsteady state perturbation. The time course of k01 (t) 

g = qllV1 Ul /C) 
/ /  
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~l(t) ~ 

k21 
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Figure 12.10. The two-compartment models proposed by Radziuk et al. (1978) for describing 
glucose kinetics in the nonsteady state. 
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is estimated from the tracer data measured during the nonsteady state. It has 
been shown that the model of Radziuk et al. is more accurate than Steele's 
model, and evidence has been provided that the two model versions give 
substantially equivalent results. However, the performance of the Radziuk 
et al. model is not always satisfactory, and margins for improvement exist. 

The formulation of a more accurate model is possible only in specific situa- 
tions because system complexity and the experimental limitations prevent the 
development of a model of general validity. One of these favourable situations 
is the euglycaemic hyperinsulinaemic clamp. We have previously seen that a 
physiological model of glucose kinetics can be identified in the basal steady 
state and at the end of the clamp when a new steady state, characterised by 
basal glucose and elevated insulin, is achieved. Once the system has been 
quantified in its initial and final conditions, one can describe the transition 
between the two steady states by allowing the model parameters to change 
gradually from their initial value to their final value. Figure 12.11 shows 
the two-compartment model obtained from the three-compartment model in 
Figure 12.2 by aggregating plasma (compartment 1) with rapidly equilibrating 
tissues (compartment 2). The irreversible loss in the accessible pool accounts 
for insulin-independent utilisation, while that in the second compartment is 
responsible for insulin-dependent utilisation. The time-varying parameters are 
k02, k21, and k21. The time course in the transition phase is described by 
sigmoidal functions, whose parameters are estimated from the tracer data. The 
time course of glucose production provided by this model is more physiolog- 
ical than that provided by Steele's and Radziuk et al . 's  models. In particular, it 
never assumes negative values and declines slowly and progressively, reaching 
a value close to zero only toward the end of the test (Cobelli et al., 1987). 

The presence of three time-varying parameters makes this model difficult to 
apply to experimental situations different from the euglycaemic hyperinsulinae- 
mic clamp. Also, in clamp studies, one must ensure that the tracer is admin- 
istered to allow the estimation of the basal and final model configurations. A 
simplified version of this model has been proposed to interpret glucose kinetics 
during an IVGTT. This test consists of a rapid injection into a vein of a stan- 
dard glucose dose (330 mg kg -1) and of the measurement of plasma glucose 
and insulin concentrations in the following 3 hours. The IVGTT can also be 
labelled by administering a tracer dose together with the glucose dose (Cobelli 
et al., 1997). In Figure 12.12, plasma glucose, insulin, and tracer glucose 
concentrations measured during a stable isotope labelled IVGTT are shown 
(Avogaro et al., 1989). Once the glucose impulse response (time-varying) is 
estimated from the tracer washout curve, one can estimate glucose production 
from glucose concentration by deconvolution. The two-compartment model in 
Figure 12.13 has been used to interpret the tracer disappearance curve during 
a labelled IVGTT (Caumo and Cobelli, 1993). 
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Figure 12.11. The two-compartment model obtained from the three-compartment model of 
Figure 12.2 by aggregating the plasma and the rapidly equilibrating tissues. The model describes 
the transition between the basal state and the final state of an euglycaemic-hyperinsulinaemic 
clamp with three time-varying parameters, k02, k12, k21, which change gradually from their initial 
value to their final value .  

To guarantee a priori  model identifiability, we assume there is only 
one insulin-dependent parameter, or irreversible loss from the nonaccessible 
compartment, k02. The time course of k02 during the IVGTT is controlled by 
insulin in the remote compartment, x. For this reason, the model also is able 
to quantify tissue insulin sensitivity, as is shown later when discussing the 
so-called minimal models. The glucose production profile obtained with this 
model by deconvolution (Caumo and Cobelli, 1993) is much more reliable than 
the one obtained with Steele's model. Instead of the paradoxical stimulation 
of glucose production after the glucose bolus, one has a marked inhibition 
in keeping with physiology. It is worth emphasising that this model-based 
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F i g u r e  12.12. The labelled intravenous glucose tolerance test (IVGTT). Insulin, glucose, and 
tracer glucose concentrations measured in plasma during the test are shown. 

approach for the estimation of hepatic glucose production during the IVGTT 
has been validated (Vicini et al., 1999) against a model-independent approach 
based on the tracer-to-tracee ratio clamp (discussed in Chapter 6) as shown in 
Figure 12.14. 

We hope these examples have clarified that there are limits to the accu- 
racy with which a model can describe the glucose system in nonsteady state. 
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Figure 12.13. The two-compartment model proposed in Caumo and Cobelli (1993) and Vicini 
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Figure 12.14. Glucose production during an IVGTT. The continuous-line profile is the one esti- 
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However, it is always possible to improve the accuracy of Ra estimation by 
suitably choosing the tracer administration format during the nonsteady state. 
In fact, the nonsteady state error associated to an approximate description of 
the system impulse response can be minimised by infusing the tracer in such 
a way so as to reduce the changes in the tracer-to-tracee ratio (or specific 
activity if a radioactive tracer is employed). Ideally, if the tracer infusion is 
such as to maintain the tracer-to-tracee ratio perfectly constant, the Ra esti- 
mation becomes model-independent, as in steady state. Even if this will not 
usually be the case, an "intelligent" tracer infusion capable of avoiding abrupt 
variations of the tracer-to-tracee ratio will allow an estimation of Ra that is 
more accurate and less dependent on the validity of the chosen model. This 
issue is discussed in detail in Chapter 6. 

12.4.2.  GLUCOSE UTILIZATION 

Glucose utilisation is the sum of all glucose fluxes leaving irreversibly the 
system. In the nonsteady state, it is given by: 

U(t) - ~ koi(t)Qi(t) 
i = 1  

(12.7) 

where n is the number of compartments of the model describing the system, 
and koi and Oi are, respectively, the fractional elimination rate and glucose 
mass in compartment i. It is worth noting that, whereas in the steady state 
the estimation of U is model-independent, in the nonsteady state it becomes 
model-dependent. For example, during an euglycaemic hyperinsulinaemic 
clamp in which the glucose mass is maintained constant in the accessible 
pool, the models of Radziuk et al. shown in Figure 12.10 and the two- 
compartment model of Figure 12.11 will yield different predictions of U 
during the transition from the basal state to the elevated insulin state. This 
happens because each model predicts a different profile of glucose mass in 
the second compartment (Mari et al., 1994). 

What is the relationship between U and glucose disappearance rate from 
the accessible pool, Rd, in the nonsteady state? First of all, it is important to 
realise that in the nonsteady state, Rd does not coincide with Ra: 

dQl(t) 
Rd(t) = Ra(t) (12.8) 

dt 
One can show (Caumo et al., 1995) that the following relationship between 
U and Rd holds: 

n 

U(t) = Rd(t) - ~ dai( t )  dt (12.9) 
i = 2  
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Equations (12.8) and (12.9) tell us that the estimation of Rd is much less 
problematic than that of U. In fact, while the estimation of U requires the 
knowledge of the derivatives of glucose mass in all the compartments, the 
estimation of Rd requires only knowledge of the derivative of glucose mass 
in the accessible pool. Assuming that Ra has been estimated accurately, such 
as by resorting to the tracer-to-tracee ratio clamp, Rd can also be estimated 
accurately if an estimate of the accessible pool volume is available. Accurate 
knowledge of Rd is useful because it allows one to make inferences on the 
behaviour of U without the need to postulate a model of the nonaccessible 
portion of the system. For example, if the glucose system is pushed out of its 
steady state by a perturbation but returns to the previous steady state, the area 
under Rd coincides with that under U (Caumo et al., 1995). 

12.5.  M O D E L S  O F  G L U C O S E  A N D  I N S U L I N  C O N T R O L  

O N  G L U C O S E  M E T A B O L I S M  

In physiopathology, it is of the utmost interest to measure indexes char- 
acterising the control that glucose and insulin exert on glucose metabolism. 
These interactions are usually denoted as glucose effectiveness and insulin 
sensitivity. Hereafter, we will give the formal definitions of these indexes and 
discuss how they can be measured from experimental data in both steady and 
nonsteady state. 

12.5.1.  GLUCOSE EFFECTIVENESS 

Glucose effectiveness measures the effect that glucose exerts on Rd and 
EGP (Best et al., 1996). Ideally, glucose effectiveness should be measured in 
the absence of insulin. However, due to the difficulty in creating this exper- 
imental condition, glucose effectiveness is usually measured at basal insulin 
concentration. It is of interest to note that glucose effectiveness becomes of 
crucial importance in those diabetic subjects who, due to a severely impaired 
pancreatic function, have circulating insulin levels not too different from basal 
levels, even after a glucose stimulus. Glucose effectiveness, GE, is defined 
as the derivative of the difference between Rd and glucose production, EGP, 
with respect to glucose concentration, G, calculated in steady state (ss): 

GE -- ,~[Rd(t) - EGP(t)] [ 
8G(t) ss (12.10) 

where the minus sign preceding EGP stems from the fact that glucose has an 
inhibitory effect on EGP. The component of glucose effectiveness measuring 
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the glucose effect on Rd only, GE*, is defined as follows" 

8Rd(t) I GE*-- aG(t) ss (12.11) 

It is worth mentioning that the measurement of GE*, at variance with that of 
GE, requires the administration of a tracer to estimate Rd. 

12.5.2.  INSULIN SENSITIVITY 

Insulin sensitivity, IS, measures the action that insulin exerts on Rd and 
EGP (Bergman et al., 1985). It is defined as the ability of insulin to increase 
glucose effectiveness: 

I S =  
82[Rd(t) - EGP(t)] 

8G(t)~I(t) 
(12.12) 

where I denotes insulinaemia. 
The component of insulin sensitivity that measures the insulin effect on Rd 

only, IS*, is defined as follows: 

IS* -" 
82Rd(t) 

6G(t)8I(t) 
(12.13) 

Like with GE*, the calculation of IS* requires the administration of a tracer to 
estimate Rd. Now, we discuss how glucose effectiveness and insulin sensitivity 
can be measured in steady and nonsteady states. 

12.5.3. STEADY-STATE MODELS 

The measurement of glucose effectiveness and insulin sensitivity can be 
performed in the steady state by using the glucose clamp technique. Let us first 
focus on glucose effectiveness. Glycaemia is elevated by a stepwise increasing 
glucose infusion, whilst insulin is kept at its basal level. In this way, the dose- 
response effect of increasing glucose levels on Rd and EGP can be studied. 
To maintain insulin constant at its basal level, despite the increasing glucose 
levels, it is necessary to open the glucose-insulin feedback loop. This can 
be accomplished by suppressing insulin secretion with the pharmacological 
agent somatostatin and by replacing the basal insulin level with an exogenous 
intravenous insulin infusion. Each time the glucose infusion increases, one 
must wait for the system to reach a new steady state. In each steady state, the 
glucose infusion rate, GIR, compensates for the Rd increment and EGP decre- 
ment. By making reference to (12.10), the clamp-based glucose effectiveness 
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can be measured by calculating the slope of the straight line that describes the 
dose-response curve between GIR and glucose concentration: 

GE(clamp) -" 
A[Rd - EGP] 

AG l=Ib 
---- ~AGIR I (12.14) 

AG l=Ib 

If a tracer is concomitantly infused with glucose, one also can measure Rd in 
a model-independent way (Rd in steady state is an accessible pool parameter) 
and thus assess glucose effectiveness on glucose utilisation only, GE(*clamp). 
It is worth noting that the relationship between Rd and G is nonlinear, 
which means it saturates with increasing glucose concentrations following 
a Michaelis-Menten relationship. This occurs because, at each insulin level, 
the transporters allowing glucose to enter into the cell are finite in number. In 
the glycaemic range explored by the glucose clamp, this nonlinear relationship 
can be approximated by a straight line and the slope of this line, according to 
the definition given in (12.11), is exactly GE(*lamp ~" 

Rd = GE(clamp)G "k- Rdo (12.15) 

One must be aware that this approximation is inadequate at both very high and 
very low glucose levels and that the nonzero intercept Rdo has no physiological 
meaning (when glucose concentration is zero, also Rd is zero) but is simply 
one of the two parameters of the straight line used to approximate the nonlinear 
Michaelis-Menten characteristic in the physiological glucose range. Finally, it 
is important to note that the saturation of glucose utilisation with increasing 
glucose levels implies that the glucose plasma clearance rate is not constant but 
decreases as glycaemia increases. In fact, by remembering that the clearance 
rate, CR, is given by the ratio Rd/G, and by using (12.15) to express Rd as 
a function of G, one obtains a hyperbolic relationship between CR and G: 

Rd Rdo 
C R  m - - ~  m Gg(*clarap ) -.]- - - ~  (12.16) 

Let us now turn our attention to insulin sensitivity and its steady-state measure- 
ment by the euglycaemic hyperinsulinaemic clamp. Insulinaemia is elevated by 
increasing steps of insulin infusions in a dose-response fashion, while glucose 
is maintained at its basal level by a variable glucose infusion. Each time the 
insulin infusion increases, one must wait for the system to reach a new steady 
state. In this way, the effect of increasing insulin levels on R d  and EGP, at 
basal glycaemia, can be studied. In each steady state, the glucose infusion 
necessary to maintain glycaemia at its basal level is a measure of insulin 
action on Rd and EGP. By making reference to (12.12), insulin sensitivity 
can be calculated as the slope of the straight line that describes the dose- 
response relationship between GIR and insulin concentration, normalised to 
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the clamped glucose level: 

I S ( c l a m p )  " -  
A[Rd - EGP] 

G A I  G=Gb 

A G I R  
G A I  G=Gb 

(12.17) 

The effect of insulin on Rd only can be measured by infusing a glucose tracer 
during the clamp. This component of insulin sensitivity is given by: 

A R d  
IS(*lamp)- G A I  

G=Gb 
(12.18) 

In summary, if we want to measure glucose effectiveness and insulin sensi- 
tivity with the clamp technique, we must perform two separate dose-response 
studies, each requiring the administration of both insulin and glucose, to 
frequently measure glycaemia and, for glucose effectiveness, employ a phar- 
macological agent to suppress insulin secretion. A natural question arises: is it 
possible to measure these control indexes with a less labour-intensive exper- 
imental approach? This possibility exists, but it requires the development of 
suitable models of the glucose-insulin system, as we discuss in the following 
section. 

12.5.4. DYNAMIC MODELS: THE MINIMAL MODELS 

It would be highly desirable to measure glucose effectiveness and insulin 
sensitivity from plasma glucose and insulin concentrations measured during 
a meal. In fact, there is nothing more physiological than a meal, and it is 
intuitive that meal glycaemia and insulinaemia profiles reflect all the control 
mechanisms we are interested in. However, the modalities with which the 
ingested glucose is absorbed by the gut vary considerably among subjects and 
are very difficult to model. This implies that, unless some tracer is added to 
the ingested glucose, the exogenous glucose appearance rate in blood remains 
unknown. It is possible to obviate these difficulties by administering glucose 
intravenously. A glucose administration format particularly appealing for its 
simplicity is the IVGTT, which consists of a rapid glucose bolus injection 
into a vein. This test, which has been briefly mentioned in section 12.4, 
Models of Whole-Body Kinetics in Nonsteady State, is also discussed in 
Chapter 11, where the so-called insulin minimal models are presented which 
allow the estimation of indexes of glucose control on insulin secretion. Here 
we discuss the minimal models of glucose disappearance that allow the estima- 
tion of glucose effectiveness and insulin sensitivity from glucose and insulin 
IVGTT data (Bergman, 1989; Cobelli et al., 1997). These models are called 
minimal because they are simple enough to be identified with precision from 
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IVGTT data but complex enough to provide an adequate description of the 
system. 

A model aiming to measure glucose effectiveness and insulin sensitivity 
from IVGTT data must include a description of glucose kinetics and insulin 
action on glucose utilisation as well as a functional description of glucose and 
insulin control upon glucose production. An approach that allows avoidance of 
the difficulty of describing both the glucose kinetics and production processes 
consists of administering a tracer with the glucose bolus and measuring the 
tracer disappearance curve in addition to glucose and insulin concentrations 
(labelled IVGTT, Figure 12.12). As previously indicated, the tracer adminis- 
tration allows one to separate the processes of kinetics and production. The 
idea is to use the tracer data to develop a minimal model of glucose kinetics 
only. In the literature, two minimal models of glucose kinetics during a labelled 
IVGTT have been proposed: one is monocompartmental (Avogaro et al., 1989; 
Avogaro et al., 1996; Caumo et al., 1991; Cobelli et al., 1986), and the other 
is bicompartmental (Caumo and Cobelli, 1993; Vicini et al., 1997). Let us 
focus on the latter. This model, which has been previously introduced in the 
section on Models of Whole-Body Kinetics in Nonsteady State, has been 
shown to well describe the time-varying glucose impulse response during the 
IVGTT and to allow an accurate estimate of E G P  by deconvolution. Now, we 
show that this model also is able to measure glucose effectiveness and insulin 
sensitivity. 

The model is shown in Figure 12.13. It is assumed that insulin-independent 
glucose utilisation takes place in the accessible compartment while insulin- 
dependent glucose utilisation is in the nonaccessible one. Insulin-independent 
glucose utilisation consists of two components, one constant, Rdo, and the 
other proportional to glycaemia. In this way the model is able to account for 
the inhibitory effect of glucose on its own clearance (12.16). Insulin-dependent 
glucose utilisation is parametrically controlled by insulin in a compartment 
remote from plasma. This accounts for experimental evidence that there is a 
delay between insulin appearance in plasma and its effect on glucose utilisa- 
tion. The model is a priori  uniquely identifiable if one imposes the constraint 
that, in the basal steady state, the glucose utilisation by insulin-independent 
tissues is threefold compared with the one by insulin-dependent tissues. The 
model equations are: 

[ ] ql (t) = - kp 4- Q1 (t) + k21 ql (t) 4- kl2q2(t) d- dS(t)  ql (O) = 0 

q2(t) = k21ql (t) - [k02 -1- x( t )  d- klE]q2(t) 

k ( t )  -- --kbx(t)  + ka[I(t)  - Ib] 

q2(O) = 0  

x(O) = 0 

(12.19) 

g(t)  = ql ( t ) /V1 
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where ql and q2 are the tracer masses, respectively, in the accessible and 
nonaccessible compartments; Q1 is glucose mass in the accessible pool; d is 
the administered tracer dose; kp is the proportionality constant of the compo- 
nent of insulin-independent utilisation that is proportional to glucose; x is 
insulin action exerted from a compartment remote from plasma.; ka and kb 
are parameters governing insulin action; Ib is basal insulinaemia. From the 
model parameters, one can calculate glucose effectiveness and insulin sensi- 
tivity on glucose utilisation (Vicini et al., 1997). These indexes, denoted, 
respectively, as S 2. and S/2. (apex "2" denotes that they are calculated with a 
two-compartment model), are: 

k21 k02 ) 
5 2* -" V1 kp-+- ko2q--kl2 

1 S 2 * - - V l - k b  b (k02 + k12)2 

(12.20) 

The labelled IVGTT, interpreted with the tracer minimal model is a powerful 
tool for characterising glucose metabolism. In particular, its stable isotope 
implementation (Avogaro et al., 1989) can be safely applied also to children 
and fertile women. However, the additional tracer costs make the labelled 
IVGTT unsuitable for large-scale studies, such as epidemiological investiga- 
tions. It would be desirable to obtain indexes of glucose effectiveness and 
insulin sensitivity relying solely on unlabelled IVGTT data. To do so, a model 
describing both glucose kinetics and production is needed. 

Of course, the description of glucose kinetics and production must be rela- 
tively simple to meet with a priori identifiability requirements. In Figure 12.15, 
the minimal model of glucose disappearance during an IVGTT is shown 

Plasma k2 k3 

.~. . G - Q  

Insulin . . . . . . . . . . . . . . . . . . . . . . . .  

k6 ~ 

D @ V : k4 

~ ks ~ 
Li i , ery 

j _ kl 

Figure 12.15. The single-compartment minimal model proposed in Bergman et al. (1979). 
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(Bergman, 1979; Bergman et al., 1989). The key features of this model are 
1) glucose kinetics are described by a single-compartment model; 2) glucose 
inhibition of production and stimulation of utilisation is proportional to glucose 
plasma concentration; and 3) insulin inhibition of glucose production and stim- 
ulation of glucose utilisation is proportional to insulin concentration in a 
compartment remote from plasma. The model thus assumes that during an 
IVGTT the inhibition of glucose production and the stimulation of glucose 
utilisation have similar functional descriptions. This allows one to combine 
the controls exerted by insulin and glucose on glucose production and utili- 
sation and make the model uniquely identifiable. The model, in its uniquely 
identifiable parameterisation, is described by: 

Q(t) -- [pl - -  X(t )]Q( t )  + pl  V1Gb + DS(t) Q(O) = V1Gb 

-- - p z X ( t )  + p3[l( t)  - lb] X(0) = 0 (12.21) 

G(t)  -- Q ( t ) / V ,  

where D is the glucose dose; X is insulin action; and V, Pl, p2, P3 are 
the model parameters. The relationship between this uniquely identifiable 
parameterisation and the original parameters of the model (Figure 12.15) is 
pl = kl -+- k5; P2 = k3; P3 -- k2(k4 -k- k6); x(t)  = kz(k4 d- k6)I'(t).  The model 
yields indexes of glucose effectiveness, SG, and insulin sensitivity, SI, that 
reflect the effect of glucose and insulin, respectively, on both utilisation and 
production: 

SG = Vpl 
S l - -g (  p---~3 )P2 (12.22) 

The question arises whether the adoption of a single-compartment descrip- 
tion of glucose kinetics can affect the reliability of the SG and St estimates. 
Both theoretical analyses (Caumo et al., 1991; Caumo et al., 1996; Caumo 
et al., 1999; Cobelli et al., 1998a; Mari, 1997) and experimental studies (Fine- 
good and Tzur, 1996; Quon et al., 1994; Saad et al., 1994) where $6 and 
SI have been compared with the analogous glucose clamp-based indexes, 
GE(clamp) and IS(clamp), suggest that $6 is overestimated and St is under- 
estimated. How can we overcome this drawback? Two different approaches 
are available. A first possibility is to append a second compartment to the 
accessible one and use a Bayesian approach to incorporate a priori available 
knowledge (from population studies) on the exchange rate parameters between 
the accessible and nonaccessible compartments, k21 and k12. Results in normal 
humans (Cobelli et al., 1999) show that this approach provides estimates of 
glucose effectiveness and insulin sensitivity that are, respectively, 60% lower 
and 35% higher than the corresponding single-compartment minimal model 
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indexes. These values are in better agreement than the single-compartment 
indexes with recently published values of GE(clamp) and IS(damp) and support 
an improved accuracy of glucose effectiveness and insulin sensitivity when 
estimated by the Bayesian two-compartment minimal model. 

A second possibility consists in modifying the glucose administration format 
to generate a glucose profile in plasma smoother than that produced by IVGTT 
and therefore more reliably interpretable by the single-compartment model. 
We must bear in mind that the IVGTT produces rapid changes in glycaemia 
that, particularly in the initial portion of the test, are hardly describable by 
the monocompartmental minimal model. By using a glucose administration 
format similar to the rate of glucose appearance into the systemic circulation 
during a meal, we generate a slowly changing glycaemic profile where the 
fast component of glucose kinetics is less important than during the IVGTT. 
In fact, results obtained with this meal-like protocol show that the indexes SG 
and SI are more accurately estimated than those of the IVGTT (Basu et al., 
1997; Bettini et al., 1996). 

12.6. S I M U L A T I O N  M O D E L S  

Simulation is an essential tool for understanding endocrine-metabolic sys- 
tems in both healthy and pathological states, such as in diabetes. In fact, 
it is frequently not possible, appropriate, convenient, or desirable to carry 
out a particular experiment on the physiological system. For example, it 
can be too difficult, too expensive, too dangerous, nonethical, or simply too 
labour-intensive. Simulation offers an alternative way of experimenting on the 
system and can be useful not only in interpretation but also in prediction and 
control. Hereafter, two examples of glucose simulation models are presented. 
The first addresses the interpretation of the ultradian oscillations observed in 
glycaemia and insulinaemia during a meal or constant glucose infusion; the 
second example concerns a simulation model that can be useful in planning 
the insulin therapy in insulin-dependent diabetes. 

The simulation model proposed by Stuffs et al. (1991) has been able to 
offer a plausible explanation of the wide ultradian oscillations (period of 
approximately 120 min in humans) that are observed in insulin and glucose 
profiles in various physiological conditions, such as ingestion of a meal, 
glucose parenteral nutrition, and glucose intravenous administration. The 
model describes the glucose and insulin subsystems and their interactions 
with a parsimonious representation. Glucose kinetics are described by a single- 
compartment model, which, as discussed previously, is sufficiently adequate 
when glycaemia does not change too rapidly. Glucose utilisation has two 
components, one insulin-independent and the other insulin-dependent. The 



Glucose Modelling 367 

latter is controlled by insulin in a compartment remote from plasma. Also, 
insulin action on glucose production occurs with a delay (modelled with a 
three-compartment chain). The model also allows a direct effect of glucose on 
its own production, although this control can be omitted without significantly 
modifying the simulation results. The model assumes that pancreatic secretion 
is a sigmoidal function of glycaemia. Although this description is unable to 
account for the biphasic pattern of insulin secretion when glycaemia increases 
rapidly, it provides a reasonable approximation when glyceamia changes 
slowly. 

The simulation results of a meal and different intravenous glucose infusion 
give results that are in good accordance with experimental data. In particular, 
during glucose infusion, spontaneous oscillations of glycaemia and insuli- 
naemia are generated that exhibit, in keeping with experimental observations, 
a distinctive feature: when glucose infusion is doubled, the amplitude of insulin 
oscillations also doubles, but frequency remains the same (Figure 12.1 6). It is 
worth noting that the oscillations predicted by the model are perfectly regular, 
whereas those observed experimentally show irregularities in both frequency 
and amplitude. Possible explanations for this discrepancy are the physiological 
fluctuations in the parameters of the glucose control system, the contribution 
of hormonal or nervous factors not accounted for by the model, and the super- 
position of pancreatic micropulsatility (amplitude of 1-2 ~tU/ml and period of 
8-15 min, likely generated by a/~-cell pacemaker). Despite these minor differ- 
ences, the substantial accordance between the simulation and the experimental 
results suggests that the slow oscillations of insulin secretion and of glycaemia 
can originate from the interaction between the glucose and insulin subsystems 
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Figure 12.16. Insulin and glucose plasma concentration profiles predicted by the simulation 
model proposed in Studs et al. (1991) in response to a constant glucose infusion of 108 (left 
panel) and 216 mg/min (right panel). 
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without the need to invoke the presence of a pancreatic pacemaker operating 
at these frequencies. It is of interest to note that the modalities of insulin action 
on glucose metabolism play a key role in the generation of these oscillations. 
In fact, a sensitivity analysis has shown that the generation of oscillations is 
critically dependent on the existence of a delay between plasma insulin and its 
action on glucose production and utilisation: oscillations smooth out consid- 
erably if the delay is less than 25 min or larger than 50 min, and they vanish 
if the delay is omitted. 

The second example illustrates how a simulation model can help the 
development of a decision support system for diabetes therapy. Various 
simulation models have been proposed (Cobelli and Rugged, 1983; Lehman 
and Deutsch, 1992; Salzsieder et al., 1985) that have tackled particular aspects 
of diabetes control. For instance, the model proposed in Cobelli and Ruggeri 
(1983) has been developed for comparing different intravenous insulin- 
infusion algorithms and different insulinAnfusion sites (portal vs. peripheral 
administration) for an artificial pancreas. Recently, new physiological 
knowledge of the glucose system has been gained (e.g., the EGP profile during 
a meal, the modalities of insulin and glucose control on glucose utilisation, the 
kinetics of regular and slowly acting insulin after a subcutaneous injection), 
which has allowed the development of a new and more accurate simulation 
model (Cobelli et al., 1998b). The model, which has been first developed 
in the normal subject, describes glucose and insulin kinetics with a single- 
compartment that is sufficiently accurate for describing glucose and insulin 
concentration time patterns during a meal. In accordance with experimental 
evidence, glucose and insulin controls on glucose production and utilisation 
emanate not only from plasma but also from a compartment remote from 
plasma. Finally, insulin secretion has been modelled by extending a model 
previously developed for the IVGTT (discussed in Chapter 11 ) by adding a 
derivative control by glycaemia. 

The model has been subsequently modified to describe an insulin-dependent 
diabetic patient under a conventional subcutaneous insulin therapeutic regimen. 
The model of the diabetic patient assumes that there is no insulin secretion 
and that the exogenous insulin therapy consists of four subcutaneous insulin 
injections during the day (8, 15, and 12 U of regular insulin, respectively, 
before breakfast, lunch, dinner and 10 U of slowly acting insulin before sleep). 
The description of insulin kinetics after a subcutaneous injection hinges on 
a classic model of the literature (Berger and Rodbard, 1989) that has been 
subsequently refined by taking into account more recent studies (Torlone et al., 
1996). Figure 12.17 shows the predictions of glucose and insulin concentra- 
tion and of glucose utilisation and rate of appearance of the model during a 
day. The model is currently used to assess insulin-administration strategies 
and to better define indexes of glycaemic control in view of the development 
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Figure 12.17. Insulin and glucose concentration, glucose utilisation, and meal rate of appear- 
ance in a diabetic subject predicted by the simulation model proposed in Cobelli et al. (1998b). 
The insulin subcutaneous injections (doses and timing) are also shown. 

of a telemedicine decision support system for conventional diabetes therapy 
(Bellazzi et al., 1995). 

12.7. C O N C L U S I O N S  

The study of the glucose system offers an interesting example of the ability 
of mathematical models to provide a quantitative description of an endocrine- 
metabolic system in terms of production and utilisation fluxes, masses in 
different body pools, and control signals. We have provided examples of 
models for the analysis of the steady and nonsteady state and for the investi- 
gation of both the whole-body and the regional levels. We also have presented 
models more oriented toward clinical use that yield metabolic indexes char- 
acterising the control of the glucose-insulin feedback loop in an individual. 
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Finally, we have shown that simulation models can, for instance, help the phys- 
iologist test hypotheses on system functioning and help the clinician improve 
the therapeutic regimen of a diabetic patient. We hope that we have conveyed 
the notion that the development of a plausible model for any particular phys- 
iological system must be based on available knowledge, requires a suitable 
experimental protocol, and must be tailored to the specific quantitative question 
asked. 
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Chapter 13 

Blood-Tissue Exchange 
Modelling 

Paolo Vicini 

13.1. I N T R O D U C T I O N  

The noninvasive measure of the elementary processes of transport and 
metabolism of a substance at the organ level is a problem of enormous impor- 
tance but remarkable difficulty. Every organ in vivo is perfused by its own 
vascular tree; its most important elements are the capillaries, in which the 
exchange of substrates between blood and tissue takes place. The density of 
the capillaries in the tissue is tremendous, structured in such a way that no 
cell is found to be farther than 100 ttm from a capillary. Skeletal muscle, for 
example, has a density of 300 million capillary per kg tissue, and their length 
ranges from 100 ~tm to some millimeters (Lilloja et al., 1987). Every capil- 
lary, in turn, exchanges substrates and hormones with a microscopical tissue 
fragment through passive or active transport. The capillary-tissue unit is there- 
fore the elementary functional unit, and thus the quantitative description of 
the organ-level transport and metabolism of a substance must appropriately 
describe this system. The substance amount that reaches the capillary is propor- 
tional to the flow that perfuses it, which is extremely variable according to the 
interested region (King et al., 1996). In particular, the inflow to the system is 
partitioned in all the branchings of the capillary network; these partitions then 
come together again in the outlet vein. The division in subflows is not uniform, 
and this defines what is called heterogeneity offlow. An immediate corollary 
of heterogeneity of flow is the heterogeneity of metabolism in every capillary- 
tissue unit. A schematic outline of the arrangement of the capillary-tissue units 
is shown in Figure 13.1. 
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BTEXunit  
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Figure 13.1. Vascular tree of a dishomogeneous organ where a substance can be subject to 
transport and metabolism. Both transport and metabolism take place at the capillary level. 
BTEX -- blood-tissue exchange. 

Every capillary-tissue unit is posed between an arteriole and a venule, 
vessels that have a smaller diameter than arteries and veins. The circulating 
blood therefore reaches the capillaries passing through an arteriole and leaves 
them through a venule. In particular, from an arteriole, blood can be distributed 
to numerous meta-arterioles before reaching the capillary. One should note 
that, despite their remarkable density, the blood volume circulating in the 
capillaries represents only 5% of the total blood volume. 

Capillaries in different organs have different structure, but we can describe 
a typical capillary as constituted by a thin wall tube (capillary membrane), 
formed by endothelial cells "embedded" in one another. The transport modality 
through the capillary membrane is twofold. Some substances are subject exclu- 
sively to passage through the small spaces between endothelial cells and 
endothelial gaps; this is especially true for smaller molecules (e.g., proteins). 
Other substances can also flow through the endothelial cells by means of 
facilitated diffusion or active transport. Fundamentally, blood-tissue exchange 
consists in the passage of molecules from the plasma, through the capil- 
lary membrane, to the interstitial fluid and, from there, through the cellular 
membrane or sarcolemma, to the parenchymal cell where metabolism takes 
place. The combination of plasma and interstitial fluid is called extracellular 
space. A description of the elementary processes of blood-tissue exchange is 
outlined in Figure 13.2. 

Except for convection, which can be directly quantified in terms of average 
blood flow, the measurement in vivo of all the other elementary processes, 
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Figure 13.2. The elementary steps of blood-tissue exchange in the case of glucose. The sub- 
stance is transported via convection by plasma flow, diffuses in interstitial volume, from there is 
transported through the cell membrane, and is there irreversibly metabolised. 

such as the diffusion or active transport through the capillary membrane, trans- 
port through the sarcolemma (a reversible process), and metabolism (an irre- 
versible process), must resort to indirect approaches. There are various such 
approaches, practically all based on the use of tracers, every one characterised 
by advantages and disadvantages. In this chapter, we describe the more common 
approaches and, in particular, concentrate on the technique of the multiple dilu- 
tion of tracers, the method most used to quantify blood-tissue exchange. 

13.2.  E X P E R I M E N T A L  A P P R O A C H E S  

As noted previously, the available experimental techniques for the study of 
blood-tissue exchange are usually based on the employment of tracers. The 
tracer is a molecule in which one or more atoms have been replaced with the 
respective isotopes, stable or radioactive. The tracer therefore has the same 
chemical characteristics but different physical characteristics with respect to 
the original substance. An ideal tracer is indistinguishable to the system from 
the endogenous substance (the tracee), and it does not disturb the kinetics 
of the tracee. The dynamics of an ideal tracer are often described by linear 
dynamic models and, since the tracee system is assumed to be in steady state, 
the model is also time-invariant (Carson et al., 1983; Norwich, 1977). 

A first approach to the quantitation of blood-tissue exchange is based on 
the Fick principle (Fick, 1870) and allows the measure of the metabolism flux 
and the eventual endogenous production flux of the substance. We can write 
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the mass balance equations for the endogenous substance and tracer in terms 
of arterial and venous concentrations (mass/volume) of substrate, Ca and Cv,  
respectively, and tracer, C~ and C*: 

P - G = (Ca - Cv )FB  

G = (C* - C * ) F B ( C a / C * ) ,  (13.1) 

where P is production, G is metabolism, and FB is blood flow (volume/time). The 
Fick equation has the advantage of simplicity, but it does not succeed in describ- 
ing the elementary processes of the capillary-tissue units, and it exclusively 
gives one composite measure. In practice, it estimates the irreversible process 
of metabolism, but it does not allow one to say anything about the reversible 
process of transport, which can occur within and outside the cell (Figure 13.2). 
However, a measure of transport can be of enormous practical importance, such 
as, for example, to localise possible defects of pathological states. 

Other more refined approaches have recently been proposed for measuring the 
elementary processes of blood-tissue exchange. Positron emission tomography 
(PET) and nuclear magnetic resonance spectroscopy (NMR) are noninvasive 
techniques that allow one to carry out, by means of appropriate detectors, a 
cumulative measure of the tracer amount (residue function) that, at a certain 
time, resides in the organ or the region of interest. The residue function must then 
be analysed with a model of the system. The idea is that the parameters of such a 
model supply one indirect measure of the metabolic processes occurring within 
the organ. However, these methods, in spite of their enormous possibilities, 
suffer from some limitations. In the case of PET, for example, the main limitation 
is that it is possible to use only one tracer at a time, and this once again does not 
allow the reliable measure of the single elementary processes, with the exception 
of metabolism. 

The most flexible and important experimental approach is based on the 
multiple tracer dilution, introduced for the first time by Chinard et  al. (1955). 
This method consists of the simultaneous injection, upstream of the organ, 
of more than one tracer, each with different molecular characteristics. The 
simultaneous use of several differing tracers allows the separate monitoring of 
the elementary processes of blood-tissue exchange. For example, in the case 
when the objective of the experiment is the measure of all the elementary 
processes (convection, diffusion, transport, and metabolism), usually one can 
simultaneously inject upstream of the organ (in an artery that transports blood 
flow entering the organ) and measure downstream (from a vein that collects 
the flow leaving the organ) a first tracer that is distributed only in the capil- 
lary bed (intravascular tracer), a second that is subject to the bidirectional 
exchange through the capillary membrane (extracellular tracer), a third that, 
once subjected to the two previous steps, also permeates the cell through the 
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Figure  13.3. Multiple indicator dilution data in human myocardium. They were obtained via 
impulsive injection of an intravascular tracer (indocyanine green) and an extracellular tracer 
([3H]mannitol) in the left coronary artery. Tracers were measured in the main cardiac vein. 

sarcolemma (permeating not metabolisable tracer), and, finally, a fourth that is 
also metabolised (permeating metabolisable tracer). These tracers must obvi- 
ously be distinguishable one from the other once they reach the organ outflow. 
The venous outflow curves (Figure 13.3) must then be analysed by means of 
plausible and physiologically reasonable mathematical models of the organ. 
In practice, once again, the parameters of such models indirectly measure the 
elementary processes of interest. It is particularly important that all tracers 
used at the same time have the same molecular weight and similar molecular 
structure, meaning they should be subject to the same convection and cross the 
capillary membrane with the same modalities. As an example, mannitol is an 
ideal interstitial reference for methylglucose, which permeates cells through an 
active transport mechanism (Cobelli et al., 1989). A last note should be made 
regarding the accuracy of the measurements. Apart from the obvious reason 
of precision, it also is necessary to be able to, for example, eliminate with 
the maximum exactitude the distortions introduced from sampling instruments 
(e.g., a catheter) that can affect the result of parameter estimation (Goresky 
and Silverman, 1964; Sparacino et al., 1997). 

13.3.  M O D E L S  O F  B L O O D - T I S S U E  E X C H A N G E  

13.3.1.  INPUT-OUTPUT MODELS 

A simple but powerful description of blood-tissue exchange is an input- 
output (I/O), or "black box" model (Lassen and Perl, 1979; Norwich, 1977). 
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Figure 13.4. Organ-level experiment. See text for details. 

We indicate (Figure 13.4) with cv(t) (a function of time ) the concentration in 
vein that follows the impulsive injection of an amount q0 of tracer at the organ 
inlet (in the remander of this text, we will be limited, mostly for simplicity, to 
the case of impulsive inputs, even if various protocols of infusion are obviously 
possible). Let us now define the function: 

F8 h(t) = cv(t) (13.2) 
(1 - Gf )qo 

where Gf is the fraction of substance irreversibly metabolised. The function 
h(t) is often called transport function. Since the integral from 0 to infinity of 
h(t) is equal to 1 (Norwich, 1977), it is possible to determine Gf from the 
measures of the injected amount q0, of the outflow concentration (measured 
for long enough so that it is possible to accurately determine the area under 
the curve) and of average organ flow FB. Let us note that the first moment 
of h(t) is the transit time of the tracer: for this reason, h(t) is also sometimes 
called "distribution function of transit times." 

We have already mentioned the approaches (PET and NMR) based on the 
possibility of measuring the amount of tracer present in a tissue region of 
interest. The function that describes the fate of the amount of tracer is called 
residue function, R(t). It is related to h(t) through the following formula: 

[ /0' R(t) = G:qo + (1 - Gf) 1 - h( r )dr  q0 (13.3) 

Also, from the residue function one can obtain an estimate of Gf. It is rather 
easy to see that the I/O approach applied to a single tracer has the same 
limitations of the Fick principle. Also, in this case, the obtainable information 
is essentially limited to the metabolism, that is, the fraction of substance 
that does not reach the outflow because it is irreversibly trapped inside or 
transformed within the organ. However, while the Gf parameter is exclusively 
related to the metabolism, the shape of h(t) is potentially very informative on 
all the elementary processes that take place in the organ, such as convection in 
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the capillary bed, transcapillary exchange, and transport into and out of the cell. 
However, the quantification of such processes demands both a model of the 
system that aids in the interpretation of h(t) data and, for the sake of robustness, 
the adoption of a more informative experiment, such as the multiple tracer 
dilution technique. The classes of system models more commonly employed 
are two: the compartmental and distributed parameter models. 

13.3.2.  DISTRIBUTED PARAMETER MODELS OF THE SINGLE 
CAPILLARY 

In a distributed parameter model, the organ concentration of tracer is a 
function of both space and time. In the following section, we derive the 
fundamental equations of distributed parameter models and describe their 
domain of validity. Historically, the first distributed parameter model was the 
Krogh model (Krogh, 1919; Krogh, 1936), which described the capillary like 
a cylinder with uniform flow, characterised by radial symmetry and dipped in 
a uniform medium (the tissue). While Bohr was the first to describe the effects 
of one barrier on the gaseous exchange at the pulmonary level (Bohr, 1909), 
Krogh was the first to use a distributed parameter formalism for the measure 
of physiological variables. His model, which is based on the steady-state solu- 
tion of the diffusion equation, and which he obtained in collaboration with 
the mathematician Erlang, is to this day called the Krogh cylinder. It resulted 
in Krogh's winning the Nobel Prize for physiology in 1920. Many of the 
ideas that we discuss here found their first description in the works by Krogh, 
who, however, did not take into account some fundamental characteristics of 
blood-tissue exchange, such as regional heterogeneity of flow. 

13.3.2.1 The Single-Capillary Model 

Let us consider a generic single tracer confined within the capillary. In the 
hypothesis of negligible radial diffusion (the radius of the capillary is small, 
r = 4 gm), the concentration of tracer (expressed, e.g., in mmol m1-1) will 
be defined by the surface c(x, t) (where x is the space coordinate and t the 
temporal coordinate). The fundamental equation of the distributed parameter 
model for the single capillary (Figure 13.5) is given by the classic equation 
describing convection and axial diffusion: 

Oc(x, t) - v (x )  Oc(x, t) 02c(x, t) (13.4) 
Ot = Ox + D Ox--------T-- 

where v is the velocity of convection (cm S -1) and D the diffusion coefficient 
(cm 2 s-l). At this point, we can introduce some simplifications. First, we 
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Vp 

Figure 13.5. The one-region single-capillary blood-tissue exchange model. See text for details. 

suppose the system is in steady state. Moreover, it is known that the presence 
of red blood cells creates, in the capillaries, inner spaces of purely convective 
transport (this is the so-called plug flow or piston flow): a limited error is then 
introduced if we neglect, for our calculations, the effect of axial diffusion 
(however, there are cases in which this becomes important, such as in oxygen 
transport; see Bassingthwaighte and Goresky, 1984). Transport in the single 
capillary therefore remains defined by convection alone: 

Oc(x, t) Oc(x, t) = - v ( x ) ~  (13.5) 
0t ax 

If, at this point, we establish that the capillary diameter is everywhere uniform, 
we can write v(x) = v. We will refer from now on to the plasma tracer concen- 
tration in the capillary, Cp(X, t). Let us denote with Vp (ml g- l )  the volume of 
the capillary (independent from the axial coordinate since the diameter of the 
capillary is constant with good approximation), the flow of plasma with Fp 
(ml min -1 g-l) ,  and the length of the capillary with L (cm). We can write: 

FpL 
v = (13.6) 

and therefore: 
aCp(X, t) FpL acp(x, t) 

= (13.7) at Vp ax 
This is a first-order partial differential equation with boundary condition: 
cp(O, t )= u(t), where u(t) is the concentration profile (mmol m1-1) at the 
capillary inlet. Its solution is" 

cp(L, t) = 8 (t - ~pp ) | u(t) = u (t - ~pp ) (13.8) 

where | is the convolution operator. Briefly, given the previously outlined 
hypotheses, which should be verified on a case-by-case basis but are generally 
valid with good approximation for the microcirculatory system, the response 
of a single capillary to the generic input u(t) is the input itself, shifted forward 
in time by an amount equal to the transit time of the capillary. It is useful to 
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observe that the length of the capillary L, since axial diffusion is negligible, 
does not influence the profile of outflow concentration. In agreement with the 
fact that the capillaries do not have contractile ability, the profile at the inlet 
is not deformed by the passage through the capillary. 

13.3.2.2 The Two-Region Capillary-Interstitial Fluid Model 
Let us suppose now that the capillary is dipped in a homogeneous and 

stagnant medium (convection happens only in the capillary), the so-called 
interstitial fluid, which in the microcirculatory system separates the capillary 
membrane from the cellular membrane. As we have already indicated, the 
capillary membrane is characterised by the presence of endothelial gaps, that 
is, of "fissures" between the endothelial cells. The possibility that a generic 
substance will pass from one side of the membrane to the other will depend 
on many factors, among which the width of the gaps and their distribution on 
the membrane. We now define the permeability of a membrane (Crone and 
Lassen, 1970) as: 

P 
flow through the membrane 

membrane surface x concentration gradient through the membrane 
(13.9) 

Let us now consider the concentration gradient through the capillary membrane. 
The concentration in the capillary is Cp(X, t), that in the interstitial fluid (referred 
to the interstitial volume, Visf) is Cisf(X, t). The dynamics of the concentration 
through the capillary membrane therefore can be described, as a function of 
the discontinuity of the concentration across the membrane, with the equation 
( first-order process): 

OCp(X, t) S g ( x )  
-- - ~ [ P _ ( x ) C p ( X ,  t) - P+(x)Cisf(X,  t)] (13.10) 

0t 

where Sg(x) is the capillary membrane surface interested to the exchange (g 
indicates the endothelial pores, or endothelial gaps), P_(x) is the permeability 
in the direction leaving from the membrane (centrifuge permeability), P+(x) 
is the permeability in the direction entering the capillary (centripetal perme- 
ability) (Bassingthwaighte and Goresky, 1994). At this point, we make the 
following hypotheses: 

�9 the dimensions of capillary and tissue are uniform with respect to the 
axial direction; therefore, the surface interested to the exchange is inde- 
pendent from the axial dimension: Sg(x) = Sg; 

�9 the permeability is uniform in both the axial, P(x) = P, and the radial 
direction, P+ = P_ = P; the product permeability-surface PSg (ml rrdn -1 
g-l)  is therefore a constant; 
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�9 the radial diffusion in the interstitial fluid is fast; if the capillary is situated 
in a well-perfused organ (e.g., the cardiac tissue), the distance between 
the capillaries is usually small, so that the equilibrium time in the lateral 
direction of the concentration of the substance subject to diffusion is a 
negligible fraction of the transit time of the capillary; 

�9 the concentration in the plasma is the basis for the calculation of the 
extravascular concentrations; if Cp(X, t) is the plasma concentration and 
Vp the plasma space where the substance can diffuse freely, the concen- 
tration C~sf(X, t) in the interstitial virtual volume Vitsf (ml g-l ) ,  when 
equilibrium is reached, is equal to Cp(X, t). More generally, the virtual 
volume V;s f is different from the "true" volume (in water equivalents), 
Vise. For example, in the presence of accumulation at the membrane level, 
which can be accounted for by asymmetry in the transport or differ- 
ences in the substance solubility in plasma and interstitial fluid, the ratio 
between virtual volume and true volume can vary from 1 and is generally 
given by F = V[sf/Visf, where y is the fraction of Vise accessible to the 
substance. The virtual volume therefore represents a composite measure 
of various phenomena such as the presence of excluded volume, different 
solubilities, presence of binding sites on the capillary wall, and, eventu- 
ally, asymmetric transport. The definition of virtual volume can be easily 
extended to all the extravascular regions. 

We can now derive a simple two-region model that describes transcapillary 
transfer (Figure 13.6). The explicit solution of this model was derived by Rose 
and Goresky (1976) and Sangren and Sheppard (1953; Sheppard, 1962), while 
Bassingthwaighte et al. (1992) proposed efficient numerical algorithms. 

The plasma region equation is the following: 

OCp(X, t) FpL Ocp(X, Ox PSg Cisf(X' t) 1 
- -  7-;-, C p ( X ,  t )  - -  (13.11) 

Y 

and we can write it in terms of virtual concentrations: 

OCp(X, t) _ FpL OCp(X, t) PSg 
Ot - Vp Ox Vp [r t) - r t)] (13.12) 

and analogously for the interstitial fluid equation: 

Or t) PSg -- ~ [ C p ( X ,  t) - C~sf(X, t)] (13.13) Vi'sf 
The system of two equations such defined describes transport through the 
endothelial gaps of the capillary membrane for a single capillary. 
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Figure 13.6. The two-region single-capillary blood-tissue exchange model. See text for details. 

One can show that the solution to this system is given, again for the 
boundary condition cp(O, t) -- u(t),  by this function: 

cp(L, t) = e -eS~/r~  t - Fp 

(WpPSgeSg)n ( ~pp)n-1 
+~ Fp Wp Witsf t -  e-PSdVi'se(t-Vp/FP)-PSdFp l (t -- r) 

-k- Z n!(n  - 1)] 
n=l  

(13.14) 
where 1 ( t -  r) is the step function (zero before r and one at and after r). 
Equation (13.14) can be written more conveniently if we define the auxiliary 
constants v - Vp/Fp, ka -- PSg/Vp, kb -- PSg/V(sf: 

+oo (rkakb)n (t - "c) n-1  e - k b ( t - r ) - r k a  1 (t - r) 
cp(L, t) = e-rka6 (t -- r) + Z 

n l (n  1)! 
n=l  

i 

(13.15) 
The first addendum ( throughput  fract ion)  represents the molecules of substance 
that flow directly through the capillary without ever leaving it and is there- 
fore equal to the intravascular response of the single capillary, scaled by the 
factor e -rka, while the second addendum (tail function) describes the return 
(backdiffusion, or backflux) of the substance from the interstitial fluid to the 
capillary (Bassingthwaighte and Goresky, 1984). 

This result is useful in recalling and placing in the fight context a traditional 
equation for the determination of the permeability-surface product. Let us 
consider an experiment with two tracers, the first one intravascular and the 
second permeating the interstitial fluid. Indicating by subscripts R and D their 
respective plasma concentrations, measured at the outflow, we can define the 
extraction function: 

cR(t) - co( t )  co( t )  
E ( t )  = = 1 (13.16) 

cR(t) cR(t) 
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In the restrictive hypothesis of absence of backflux, we have that cR(t) and 
co(t)  are described by: 

c R ( t ) = 8  ( t -  ~pp) (13.17) 

CD(t) = e-PSg/FP8 t - -  -~p (13.18) 

and therefore: 
E(t) = 1 - e -Pss/Fp (13.19) 

This is the classic Crone-Renkin equation for estimating the permeability- 
surface product of the capillary membrane (Crone, 1963; Crone and Lassen, 
1970; Renkin, 1959). The most critical aspect of this equation is the hypothesis 
of absence of backdiffusion. Although it is widely used, its domain of validity 
is therefore quite restricted (Bassingthwaighte and Goresky, 1984). Another 
problem that makes (13.19) difficult to use in practice is the presence of local 
flow heterogeneity (Bassingthwaighte and Goresky, 1984; King et al., 1996), 
although attempts have been made to extend it to nonuniform flow (Bass and 
Aisbett, 1985; Bass and Robinson, 1982). 

13.3.2.3 The Three-Region Capillary-Interstitial Fluid-Cell Model 
At this point, we can model the kinetics of a substance leaving interstitial 

fluid and entering the cell membrane through the parenchymal cell. The model 
(Figure 13.7), a rather straightforward extension of the two-region model, is 
described by: 

OCp(X, t) FpL OCp(X, t) e sg  
= -- ~ [ C p ( X ,  t) - -  C~sf(X , t)] at v,, v,, 

OC~sf(X, t )  __ P S g  , 
Ot - -  V:sf [Cisf(X , t )  - Cp(X ,  t ) ]  

eSpc , 
V:sf [Cisf(X, t) - Cpc(X, t)] (13.20) 

OC' c(X, t) P S ,  c , , O,c  , 
= - V' [Cpc(X' t) - Cisf(X, t)] - --/---Cpc(X, t) Ot pc "pc 

where PSpc (ml min -1 g-l)  is the permeability-surface product of the cell 
membrane, Vpc(ml g-l) is the virtual volume of the parenchymal cell, and Gpc 
(ml min -1 g-l) is irreversible metabolism. The explicit solution is again due 
to Rose and Goresky (1976); an efficient numerical solution, also including the 
contribution from diffusion, is reported in Bassingthwaighte et al. (1992). It is 
possible to include in this model the processes of axial diffusion in all regions 
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Figure 13.7. The three-region single-capillary blood-tissue exchange model. ISF is interstitial 
fluid, PC is parenchymal cell. See text for further details. 

(Bassingthwaighte et al., 1992), endothelial cell transport (Bassingthwaighte 
et al., 1989), and red blood cell kinetics for the substances for which this is 
kinetically relevant (Li et al., 1995). 

13.3.3.  WHOLE-ORGAN MODELS 

13.3.3.1 Importance of Flow Heterogeneity 

Until now, we have limited our analysis to the single capillary. In a more 
generalised setting, and as noted at the beginning of this chapter, an organ is 
characterised by a network of interconnected capillaries (King et al., 1996). 
The total flow into the organ becomes divided between the capillaries in 
unequal and not uniform way. This is the so-called spatial heterogeneity of 
flow (Bassingthwaighte and Goresky, 1984). Heterogeneity of flow has been 
extensively studied in the animal. Such studies have shown that blood flow 
in perfused tissue is highly heterogeneous under a number of experimental 
conditions, including large variations in bulk flow. This is not typical of a 
single species; heterogeneity has been detected in the dog, the rabbit, the cat, 
and the sheep (Iversen and Nicolaysen, 1989). Lastly, heterogeneity has been 
observed in heart tissue, muscle, and lung (Glenny and Robertson, 1991). 
However, comparatively little progress has been made toward understanding 
the evolutionary advan~ge and significance of such a heterogeneous flow 
distribution, usually attributed to the spatial organisation of vascular branching. 
As highlighted by several investigators (Caldwell et al., 1994), flow hetero- 
geneity causes heterogeneity of the local capillary permeability, thus limiting 
the amount of substances that can be exchanged between blood and tissue. 
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Knowledge of such a prominent phenomenon is very important for modelling 
blood-tissue exchange of substrates. In fact, neglecting flow heterogeneity can 
result in biased estimation of extravascular parameters (King et  al.,  1996; 
Kuikka et al., 1986). Thus, the availability of a description of flow hetero- 
geneity (even an approximate one) in the organ of interest is a prerequisite 
for physiologically sound kinetic modelling (Vicini et al., 1998). 

The most common approaches to assess flow heterogeneity in the animal, or 
in isolated and perfused tissue, are microsphere deposition (Bassingthwaighte 
and Goresky, 1984) and autoradiography (Stapleton et al., 1995), both very 
invasive techniques that require sectioning of the organ under study. In contrast 
to the animal, there is little knowledge about flow heterogeneity in man. PET 
provides a potentially valuable tool for the assessment of regional flow hetero- 
geneity (Vicini et al., 1997; Utrainen et al.,  1997). The PET image of a given 
organ, in fact, when obtained with an appropriate marker such as [150] water, 
provides information not only of average flow in a region of interest but also 
of its spatial distribution (Figure 13.8). 
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Figure 13.8. Frequency histograms in four normal subjects of basal relative flow in human 
muscle (see Vicini et al. for more details). Flow measurement was made with [150]-labelled 
water and position emisson tomography. Abscissa, local relative flow (normalised to the mean 
ROI flow); ordinate, frequency with which a given range of relative flows is present in the ROI. 
Mean flow (Fp, ml min -1 g- l )  and relative dispersion (expressed in %) of the distribution are 
shown. 
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13.3.3.2 The Rose-Goresky-Bach Organ Model 
We have seen the importance of flow heterogeneity in affecting the kinetics 

of tracers at organ level. Such influence must be accounted for when modelling 
outflow curves obtained with a multiple tracer dilution protocol. A particular 
aspect of heterogeneity is related to the "physical distribution" of the capil- 
lary network (which entails transit time heterogeneity throughout the organ). 
Another aspect of heterogeneity is related to the different local processes of 
transport through the capillary membrane (capillaries characterised by different 
flows will exhibit different kinetics of the elementary processes of blood-tissue 
exchange). Let us now examine a possible approach to model heterogeneity of 
flow in distributed parameter organ models devised (Goresky, 1963; Goresky 
et al., 1970; Rose and Goresky, 1976). 

These models analyse the transport function h(t)  (measured at the organ 
outlet) of multiple tracers injected at time t = 0 with a pulse input 8(0 .  These 
models are based on the "partition" of the tracer appearance times at the 
outflow in a constituent due exclusively to transit through the large vessels 
(where the input waveform is subject to axial dispersion only) and another due 
to transit through the capillary network (where blood-tissue exchange takes 
place). In the case of a reference tracer, which would not pass through the 
capillary membrane, a tracer molecule visible at x = L is representative of a 
path within the organ characterised by a transit time t, which can be partitioned 
in a time fly, spent in the large vessels, and a time rc, spent in the capillaries. 
Clearly, only during rc can the tracer be subject to transport and metabolism. 

Assuming that both rLv and rc are functions of t, there is only one physi- 
ologically plausible partition for an appearance time at the outflow t: 

t = rLv( t )+  rc ( t )  (13.21) 

The next assumption is that fLy(t) and rc(t)  are linear or constant  functions 
of t, from the reference tracer appearance time tapp onward. We can then write: 

rc( t)  = rc(tapp) + b(t - tapp) 

f L y ( t )  = r L V ( t a p p )  -Jr- d ( t  - tapp) (13.22) 

where b and d are appropriate constants. With the further assumption that 
rc( t )  and fLy( t )  are nondecreasing functions of t, which then achieve their 
minima r~ in and vermin at tapp, summing (13.22) we obtain: 

min ~c( t )  = ~c + b(t  - tapp) 

7:LV(t ) _min = ~LV + (1 -- b)( t  - tapp) (13.23) 

At this point, according to the possible values of b, we have three possibilities 
and thus three different heterogeneous organ models: 
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I. b = 0 (all the capillaries have the same transit time, the transit time 
of the large vessels is variable); 

II. b - 1 (all the large vessels have the same transit time, the transit time 
of the capillaries is variable), 

III. 0 < b < 1 (both capillaries and large vessels have variable transit 
times). 

Model III is the most physiologically likely (Rose and Goresky, 1976; Rose 
et al., 1977) and is the most frequently used. We now describe it in greater 
detail. Let us note that the responses of both large vessels and capillaries are 
described by the simple convection equation and therefore do not account for 
axial dispersion: 

ac(x, t) Oc(x, t) 
= - v ~  (13.24) 

Ot Ox 

with boundary conditions c(0, t) = 8(t) and c(L, t) = hR(t), where v represents 
the convection velocity. While the hypothesis of absence of axial diffusion 
can be accepted for the capillaries (given the characteristics of plug flow), it 
cannot be for the large vessels, where normally one sees dispersions close to 
approximately 15 to 20% of the input waveform (King et al., 1993). 

In the situation of constant flow in all pathways, total input dose D, total 
input flow Fp, and pulse input of a reference tracer, the model response is 
given, in all generality, by: 

h(t) = u[L, t - rLv(s)]w(s)ds (13.25) 

where s = fLy ( s )+  rc(S). The term u[L, t -  fLy(s)] is the response of the 
single capillary evaluated at fLy(s), and the function w(s) is an appropriate 
weighting function. Let us note that w(s) accounts for the presence of transit 
time heterogeneity. Given that the response of a large vessel will resemble 
that of a capillary, since axial dispersion is absent, the impulse response of 
the reference tracer describes heterogeneity of transit times through the organ: 

hR(t) -- w(t) (13.26) 

This is true if the measured function hR(t) actually reflects the output of the 
reference tracer. Any distorsive element, a catheter or other sampling device, 
should be eliminated, such as via deconvolution (Goresky and Silverman, 
1984; Sparacino et al., 1997). It is worthwhile to remark that, according to 
this method, while the capillary equations are the same, dispersion in the 
large vessels is not allowed and therefore the dispersion of the outflow of an 
intravascular tracer is entirely described by flow heterogeneity. This approach 
simplifies the parameter estimation problem. However, it causes a potential 
overestimation of the dispersive effects of flow heterogeneity. 
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The response of the extracellular diffusible tracer is more complex. Let 
us hypothesise that the local capillary extraction, given by the ratio of the 
permeability-surface product and the extravascular volume of distribution, is 
constant in all capillaries. This implies the constancy Of both the permeability- 
surface product and the extravascular volume of distribution. If the organ is 
adequately perfused, this hypothesis is usually satisfied with good approxima- 
tion. However, this does not imply functional identity of the capillaries since 
the perfusate flow will be different. Keeping in mind the response of the single 
capillary for the diffusible tracer (13.15): 

+oo (zkakb)n (t - "t') n-1  e -ko(t-r)-rka l ( t -  r) 
hD(L, t) -- e-rka8 (t -- r) + Z nV(n -- 1)V 

n = l  " " 
(13.27) 

where r = rc(t)  is the capillary transit time and ka and kb are, respectively, 
the fractional permeability in and out of plasma, we can write the whole-organ 
response for a diffusible tracer (Rose and Goresky, 1976): 

hD(L, t) -- e-rkaw(t) 

ft~p +~ [r(s)kako] n ( t -  S) n-1 1 (t -- S) ds _+_ e-k~(t-s)-r(s)kaw(s) 
P ~n=l n ! ( n -  1)! 

(13.28) 

It is possible to demonstrate that the uniquely identifiable model parameters 
are the products ka't'~ in a n d  kab, with kb (which gives the return fractional flux 
from the extravascular region). 

The description given by this model is very parsimonious and attempts to 
couple blood-tissue exchange and heterogeneous blood flow. Let us note also 
that, due to the assumption of volume constancy and flow in all pathways, 
flow heterogeneity reflects exactly transit time heterogeneity. This could be 
untrue, for example, when volumes show great local variability. Studies on 
isolated and perfused animal hearts (Gonzalez and Bassingthwaighte, 1990) 
have shown that vascular volumes are characterised by a local dispersion 
around 26%. Extracellular volumes show a similar dispersion (15%), while 
total water volume (Vw) shows much less dispersion, around 3%. 

13.3.3.3 The Bassingthwaighte et al. Organ Model 
Another modelling approach to describe the heterogeneity of flow is the 

parallel capillary model, also called the parallel network model (King et al., 
1996). Such an approach stems directly from the fact that, especially in muscle, 
capillaries are arranged in a more or less parallel fashion. However, the method 
assumes that the capillaries all end at the same point (x = L), and this can be 
a more difficult condition to satisfy (Jacquez, 1985). It is important to notice 
that any parallel capillary heterogeneity model does not allow the description 
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of phenomena, such as the shunting between capillaries, that may have a 
crucial importance on a correct description of the problem. 

We suppose that the organ is describable with a number N of parallel 
pathways (Figure 13.9), along which the blood-tissue exchange occurs (King 
et al., 1996). Every pathway represents a region of the organ characterised 
by a fraction Fi of the total input flow F and a fractional mass wi. Based 
on this definition, a "pathway" is a compact description of subregions within 
the organ, each one characterised by the same flow for unit of tissue mass. 
It is useful to point out that these regions also can be not adjacent. Every 
pathway therefore is characterised from a regional relative flow, f i  = Fi /Fp,  
i = 1 . . . .  N, where Fp is the total input flow, and a fractional mass wi, i = 
1 . . . .  N (which we define as the percentage of the mass of the organ interested 
from the regional relative flow f i ) .  The  output of the model is therefore given 
by the total outflow, which is the weighted (with f i  and wi) sum of the single 
capillaries responses. 

Let us formally define the width of the i-th flow class A f i, i = 1 . . . . .  N 
for a generic flow distribution as: 

A f l  = f2 -- f l  

f i-1 "[- f i+l A f i  -- , i = 2 , . . . , N -  1 (13.29) 
2 

A f N - -  f N - -  f N - 1  

The distribution of relative flows has unitary area: 

N 

w i A f i  --" 1 
i=l 

(13.30) 

Pathway N 
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Figure 13.9. Structure of the discrete distributed parameter model by Bassingthwaighte et al. 
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and unitary mean: 
N 

fiwiAfi = 1 (13.31) 
i= l  

Historically (Bassingthwaighte and Goresky, 1984), the model for a genetic 
tracer was defined as the convolution of a large vessel response, the same for 
all pathways, accounting for input waveform axial dispersion, and a capil- 
lary impulse response that was different for every pathway and accounted for 
heterogeneity of flow: 

N 

h(t) - hLv(t) | E wif iA f ihc,i(t) (13.32) 
i--1 

Capillaries still do not show any axial dispersion, and the response of a genetic 
capillary with flow Fi is given by: 

hc,i(t) -- ~(t-  r / ) -  ~ t -  Fi  (13.33) 

where Vp (volume per unit tissue) is capillary volume (constant within the 
organ). Since hLv(t) is the same for every pathway, this model can be consid- 
ered a discrete counterpart of Goresky's Model II, which we defined previ- 
ously (constant large vessel transit time, variable capillary transit time). Succes- 
sive changes in the model have allowed a more general formulation, where the 
large vessel response in every pathway changes according to the pathway's 
particular local flow, and the large vessels present transit time heterogeneity. 
The large vessel impulse response is often modelled with a second-order differ- 
ential operator based on the work by Paynter (1952). The response of such a 
model to a pulse input u(t) = 8(t) is then: 

h(t) = hA(t) | E wif iA f iha,i(t) | hc, i(t) | h~,i(t) | hv(t) (13.34) 
i=1 

where | is the convolution operator, hA(t) is the artery impulse response 
(situated at the inlet, does not take part in blood-tissue exchange), hv(t) is the 
vein impulse response (situated at the outlet, does not take part in blood-tissue 
exchange), ha,i(t) is the impulse response of the arterioles in the i-th path, 
hv, i(t) is the impulse response of the venules in the i-th path, and hc, i(t) is the 
impulse response of the capillaries in the i-th path. Thanks to the associative 
and commutative property of convolution, we can simplify such a model: 

h(t)=hAv(t)@ [~wifiAfihav, i(t)| i ( t ) ] i = l  (13.35) 
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where hay ( t )  = hA(t) | h v ( t )  and hav, i(t) = ha, i(t) ~ hv, i ( t ) ,  i = 1 . . . . .  N .  
This formulation is more general with respect to Model III, but such parameter 
richness means that, for achieving identifiability of the physiologically relevant 
parameters, it is necessary to assume some characteristics of the model, such 
as flow heterogeneity and large vessel volumes, according to prior information 
(e.g., using labelled microspheres allows to measure flow heterogeneity). When 
this kind of information is indeed available (e.g., the case of the isolated and 
perfused animal heart, where the model has been initially developed), the 
model is indeed identifiable. However, care should be exercised to investigate 
the consequences of such assumptions on the parameters of physiological 
interest, such as the permeability-surface product and the extravascular 
volumes of distribution (Vicini and Cobelli, 1997). 

13.3.4. PARAMETER ESTIMATION 

The numerical or a pos ter ior i  identification of distributed parameter models 
is most often performed via nonlinear weighted least squares (LS) algorithms 
(Chan et al., 1993). We assume that the observations (data) yi, i = 1 . . . . .  m 
are described by the following equation (in vector notation): 

Y -- F( |  T) + R (13.36) 

where F( |  T) is the vector of the model predictions (dimension m), (9 is the 
parameter vector (dimension p), T is the independent variable, time (dimen- 
sion m), and R is the measurement error vector, usually assumed independent 
and Gaussian, with zero mean and variance or/2, i = 1, . . . ,  m. 

Let us define a weighting matrix m x m: 

W = diag(wl, W 2  . . . . .  Wm) (13.37) 

(where the optimal choice of weights, in the LS sense, is W i - -  0"/--2), and the 
vector m x 1 of the weighted residuals: 

Rw ( |  = [Y - F( |  T)]W 1/2 (13.38) 

We define: 
SSR(| = R ( | 1 7 4  (13.39) 

the sum of the squares of the weighted residuals. The parameter estimation 
algorithm minimises SSR(| using a Levenberg-Marquardt-type technique 
(Chanet  al., 1993; Levenberg, 1944; Marquardt, 1963). 
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It is possible to calculate an approximation of the covariance matrix of the 
parameter estimates: 

Cov( |  [S(|174 -1 (13.40) 

where S(|174 is the Fisher Information Matrix and S(| is the matrix 
of the sensitivity functions of the model response with respect to the parame- 
ters: its generic element is" 

OF(| 
S~,(t) = (13.41) 

While the Goresky et al. model has a very parsimonious and simplified para- 
meter set, the Bassingthwaighte et al. model has a rather rich parameterisation 
(flows, volumes, and permeability-surface products), and it is often necessary 
to assume a priori values for the unidentifiable parameters. Cov(| therefore 
underestimates the precision (Grove et al., 1980). One might be forced to 
assume some parameter values (in the case of a priori unidentifiability) or can 
do it based on numerical analysis consideration (in the case of a posteriori 
unidentifiability when the data do not allow to resolve all parameters). It is 
then necessary to calculate a correct value for the precision of the estimates, 
and recently an approach was proposed (Vicini and Cobelli, 1997) based on 
Monte Carlo simulations (Mosteller and Tukey, 1977). 

13.3.5.  APPLICATIONS 

The complexity of the distributed parameter model of blood-tissue exchange 
was the primary motivation for the design of a software program, developed 
at the National Simulation Resource, at the Department of Bioengineering 
of the University of Washington (Seattle, WA), SIMCON (an acronym for 
SIMulation CONtrol). SIMCON implements the simulation and identification 
of this class of models (National Simulation Resource, 1995). The algo- 
rithm used for the solution is not transparent to the user, who can only 
change the parameters influencing the model (e.g., flows, permeability-surface 
products, volumes) and the system (e.g., input function, integration step, 
start and end time). For a detailed description of how to use SIMCON and 
its more recent user-friendly version, XSIM, the appropriate user manuals 
can be consulted (National Simulation Resource, 1994, 1995). The software 
can be downloaded from the website of the National Simulation Resource 
(http://nsr.bioeng.washington.edu/). 

The structure of the distributed parameter model discussed is rather general 
and allows one to describe the kinetics of a large number of substances. Its 
domain of applicability is therefore, in principle, very large. In particular, 
these types of models, both in the formulation due to Bassingthwaighte and 
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to Goresky, is used for the measure of permeability-surface products and 
volumes of distribution of substances, both exogenous and endogenous, from 
multiple tracer dilution experiments. The most frequent applications have been 
in the transcapillary transport, both in vivo and in vitro (Cousineau et al., 
1994; Cousineau et al., 1995). A classic application to glucose transport in the 
isolated and perfused heart is given in Kuikka et al. (1986).  Less frequently, 
the model also has been applied to cardiac receptors (Cousineau et al., 1991; 
Rose et al., 1994). Various results exist on the cardiac and pulmonary kinetics 
of sodium (Guller et al., 1975), serotonin (Dupuis et al., 1996), and adenosine 
(Wangler et al., 1989). The in vivo kinetics of fatty acids (Goresky et al., 
1994) and uric acid (Kroll et al., 1992) have been modelled. The model has 
been successfully applied to magnetic resonance data (Wilke et al., 1995). 
Other applications have been in pharmacokinetics (Pang et al., 1990, 1994, 
1995). A fair amount of attention was given to the study of the kinetics of 
various substrates in the liver (Goresky, 1963; Kassissia et al., 1992; Pang 
et al., 1990, 1994, 1995). 

13.3.6. COMPARTMENTAL MODELS 

Compartmental models constitute the most frequently employed class of 
models in the study of the kinetics of endogenous and exogenous substances. 
Compartmental modelling results from the requirement to simplify the structure 
of the system as much as possible. This is particularly useful when analysing 
complex systems such as those encountered in biology and medicine. Compart- 
mental modelling also has a solid theoretical foundation since compartmental 
models are based on conservation of mass. The system to describe with the 
compartmental approach is subdivided into a finite number of states (compart- 
ments), interconnected among themselves. The interconnections can represent 
transport fluxes or chemical transformations. Compartmental models can be 
linear and nonlinear, and an extensive literature exists on methodological aspects 
connected with their formulation, identification, and validation (Carson et al., 
1983; Cobelli and DiStefano, 1980; Jacquez, 1985). Several software tools, 
such as SAAM II (SAAM Institute, Seattle, WA, http://www.saam.com) (Barrett 
et  al., 1998) and ADAPT II (University of Southern California, Los Angeles, CA, 
http://www.usc.edu/dept/biomed/BMSR) (D'Argenio and Schumitzky, 1997), 
allow the fast and user-friendly implementation of compartmental models. In 
the following paragraphs, we discuss the use of compartmental models to inter- 
pret multiple tracer dilution experiments. We therefore limit the discussion to 
linear, time-invariant compartmental models. 

Despite its rather short history, the compartmental approach to multiple 
tracer dilution data has produced satisfactory results. Zierler (1981) warned 
the community against misapplication of compartmental models. An example 
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of such misuse, quoted by Zicrler, was using the compartmental approach 
to model multiple dilution trac'cr expedn~nts and diffusive phenomena, A 
compartmental model has been protmsed (CobcUi et al., 1989) describing 
the transmembrane transport_ of glucose, Tl~ model has been deve!opcd 
from multiple h ~ x  dilution data obtained in human skeletal muscle in vivo 
using two tracers, one �9 (L-[~H]-glucosr and the other pcnncant, 
nonmctabolisable ([14C]-3-O-mcthyl-D-glucosc), It allows one, to estimate 
with very good precision the rate constants of glucose t r a n s ~  into and out 
of the cell, This model allowed us to stud~ t ~  enhancing effect of insulin on 
muscle glucose transport paramctr in normal subjects (CobeUi et aL, 1989, 
Bonadonna et al., 1996) and identified the presence of a localised defect in 
insulin control in non-insulin-dependent diabetic (NIDD) patients (Bonadonna 
et aL, 1993). This compartmental model has been extended (S~comani et al., 
1996) to describe the kinetics of a third tracer, penncant nonn~mbolisable 
([3H]-glucosc), The gain obtained by adding to the experimental protocol 
a third tracer is immense, This ultimately allows us to quantify a model 
of the tracee and therefore, study not only the rate constants of transport 
and phosphorylation but also. the bidirectional glucose flux through the cell 
membrane, the phosphotylation flux, and the intracellular concentration, in 
normal and diabetic subjects (Bonadonna et aL, 1996; Saccomani et at., 1996), 

The tracer model is shown in Figure 13.10 and is described by the following 
system of differential equations: 

q(t) = Kq(t) + Bu(t) 
(!3,42) 

y(t) = Ca(t) 

where q(t) is the vector of the tracer masses in the compartments,/f is the 
compartmental matrix, and B and C are constant matrices that relate the 
system input u(t) and the output y(t) to the compartmental tracer masses q(t), 
The model describes flow heterogeneity using three p~aUel chains, each one 
made of two compartments (P + ISF). The permeant tracer model ([~4C]-3- 
O-methyl-D-glucose) is obtained "appending" the cdlular (C) and red blood 
cells (RBC) compartments to the L-[3H]-glucose model, Lastly, the Jail]- 
glucose model is obtained adding irreversible losses (describing intraceUular 
phosphorylation) to the cellular compartments. This model allows the estima- 
tion of the [mxameters describing t r a n s ~  both into and out of the cell and 
metabolism, based on L-[3H]-glucose, [t4C]-3-O-methyl.D-glucose and [3HI- 
glucose data, via a LS algorithm that also provides their precision (from the 
Fisher Information Matrix), From steady-state measures of glucose concentra- 
tion and blood flow, one can use the model of the traeee to estimate the glucose 
fluxes into and out of the cell and the phosphorylation flux, apart from other 
variables of physiological interest, such as the intracellular concentration of 
glucose. The cellular transport parameters estimated by the model have been 
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Figure 13.1t). Compartmental model of transport and metabolism of glucose in skeletal muscle. 
Parameters relative to the compartments (in gray) labelled with P (plasma) and P,ISF (plasma 
and interstitial fluid) are estimated from extracellular tracer data, while those (in white) relative 
to the cell (C) are estimated from permeant tracer data. The compartment labelled with RBC 
represents red blood cell kinetics. 

independently validated (Saccomani et al., 1996). This has allowed important 
physiological results to be obtained. Among these, it was possible to show 
that the insulin control on both transmembrane transport and phosphorylation 
flux in subjects affected by NIDDM is much less efficient with respect to 
normal subjects (Bonadonna et al., 1996). Therefore, the model allowed to 
demonstrate that cellular transport plays a very important role in the insulin 
resistance associated with NIDDM. 

It is interesting to note that the experimental protocol used to identify 
the compartmental model is not immediately usable to identify the distributed 
parameter model, which also requires intravascular tracer data. We should also 
point out that the compartmental model does not allow one to conclude much 
on extracellular kinetics (mean transit time and residence time). In fact, the 
extracellular tracer model does not have a physiological counterpart since it is 
basically equivalent to a parsimonious description of the transit times through 
the system made of plasma and interstitial fluid. These transit times are the 
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final result of capillary and large vessel convective kinetics, of transcapil- 
lary transfer and flow heterogeneity, and the model is a lumped description 
of all these processes. However, the purpose of the model was to measure 
transmembrane transport, and from this point of view, it provides a parsimo- 
nious and sufficiently accurate description of the system. A consequence of all 
this is that such a compartmental structure is not easily transportable to other 
physiological systems. In contrast, the distributed parameter model has some 
general characteristics that make it applicable to many different systems, but 
this entails some rigidity both in the model structure and in the experimental 
protocol required for its identification. 

13.4 .  C O N C L U S I O N S  

A quantitative evaluation of the elementary kinetic steps at organ level, such 
as transcapillary exchange, transport through the cell membrane, and intracel- 
lular metabolism, is crucial for the proper understanding of the role of each 
one of them in the general picture of blood-tissue exchange. These processes, 
however, are difficult to measure noninvasively in vivo. Among the various 
techniques that can be used to indirectly measure the parameters characterising 
these processes, the most suitable is the multiple indicator dilution technique, 
based on the analysis of multiple tracer outflow curves via a mathematical 
model of blood-tissue exchange. The model parameters are expected to provide 
a measure of the elementary steps described previously. The most impor- 
tant blood-tissue exchange models used to model outflow dilution curves are 
distributed parameter models, in which concentration is a function of both time 
and space, and lumped parameter (compartmental) models. Historically, the 
distributed parameter approach to blood-tissue exchange modelling preceded 
the lumped parameter model. In fact, generally, the more correct approach to 
simulate or model a physiological system is to account for both its temporal 
and its spatial dynamics. In this sense, distributed parameter models are more 
similar to the real system, and this makes them particularly attractive from 
the conceptual point of view and facilitates their application in many practical 
cases. However, some identifiability issues, partially investigated in Vicini 
and Cobelli (1999), and a somewhat rigid structure and experimental protocol 
limit their applicability to sectors where, on the other hand, the compartmental, 
lumped parameter approach has given promising results. 
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transport/transfer, transcapillary, 378, 

382-384, 383, 394 
two-region capillary-interstitial fluid 

distributed model for, 381-384, 383 
whole-organ models for, 385-392 

Bohr equation/Bohr integration, pulmonary 
gas exchange model, 254, 257-258, 
260-262 

Boyle's law, pulmonary gas exchange model, 
278 

B-splines, deconvolution and, 69-70 
Buchberger algorithm, 82-85, 89, 91, 95-97, 

101 
BUGS software, 136, 148 
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C 
Causal probabilistic networks (See Bayesian 

networks) 
Cells and cellular processes, 2, 7 
C-glucose (See Glucose metabolism model 

using PET) 
Characteristic set, nonlinear models, 82, 

103-104 
Charlefs law, pulmonary gas exchange model, 

278 
Chemical processes, 2, 17-19, 18, 19 
Cholesky decomposition, 111 
Clinical process control, 24-35 

decision making in, 25-28, 26, 27, 32-33 
diagnosis in, 26-28, 27 
feedback model for, 25-26, 26, 28-29, 29 ' 
feedforward in, 28-29, 29, 31 
health-care delivery model for, feedback in, 

29-31, 30 
system requirement specification 

modelling, 31-35, 32, 33, 34 
telemedicine, 31-35 
treatment planning in, 26-28, 27 

Closed-loop feedback, 17, 37, 38-42 
Coefficient of variance (CV) error, 61-62, 

115, 124, 138, 142-143, 183-184 
Compartmental models 

a priori identifiability in, 80, 84, 95, 101 
in blood-tissue exchange modelling, 

394-397, 396 
in glucose modelling, 340-346, 342, 343, 

349-353, 350, 352, 364-366, 364 
in insulin modelling, 308-311, 308, 309, 

316, 330-331 
in ligand-receptor system models using 

PET, 200-203, 200-202 
parameter estimation and, 108 
in positron emission tomography (PET) 

models, 180 
in tracers of metabolic flux, 153-156, 154, 

155 
Compatibility of model, 7 
Complete vs. Incomplete mathematical 

models, 8 
Complexity of models, 7, 10 
Complexity of physiological systems, 2-3, 2 
Compliance, respiratory mechanics, 280 
Computers, 8 
Conceptual models, 3, 29 

in telemedicine system requirements 
models, 31-35, 32, 33, 34 

Conditional likelihood, 114 
Confidence intervals, 60-62, 68, 71, 72, 124 
Conjugate gradient (CG) method of parameter 

estimation, 120 
Conjugate gradient regularisation (CGR), 70 
Constant infusion tracers, metabolic flux, 

161-163, 162 
Constant-phase model of respiratory 

mechanics, 294-295, 295 
Constrained deconvolution, 67-68 
Constraints, in parameter measurement, 116 
Continuous models, 6 
Control processes, 2-3, 15-44 

anticipatory control, 29 (See Feedforward) 
chemical reactions, using feedback, 17-19, 

18, 19 
clinical processes and, 24-35 
closed-loop feedback in, 17, 37 
cybernetic loop of feedback in, 15, 16- i7, 

16 
data-driven models in, 41 
derivative control in, 22-24, 22 
in diabetes management, 38-42 
drug therapies and, 35-42 
dynamic processes and, 15-16 
environmental variables in, 16-17 
enzyme processes and, 19-20, 20 
feedback in, 15, 16, 17-19, 24-26, 2,5, 26, 

28-29, 29 
feedforward in, 28-29, 29, 31 
glucose-insulin, 24, 25, 359-366 
inherent feedback in, 17-19, 18 
integral control in, 22-24, 23 
in linear models, 41 
loose control systems (See Open-loop 

feedback) 
negative feedback in, 19, 20-21, 21 
open-loop feedback in, 17, 38 
physiological mechanisms of, 17-24, 18 
positive feedback in, 19-22 
proportional control in, 22-24, 22 
fight control systems (See Closed-loop 

feedback) 
tracers in metabolic flux, 155 

Convolution-deconvolution, 5, 46 
Covariates, in population modelling, 137 
C-peptide kinetics 

deconvolution solution for, 46-49, 47-48, 
47, 48, 320-321,320 

in insulin modelling, 323-324, 323 
Creep, in aortic impedance modelling, 230 
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Crone-Renkin equation of permeability, in 
blood-tissue exchange modelling, 384 

Cross-validation, deeonvolution and 
regularisation, 55, 56, 63, 69 

Cybernetic loop of feedback, 16-17, 16 
Cybernetic model, 15 
Cycles and paths method, 83, 94, 95-96 

D 
Damped least squares (See Regularisation 

[deconvolution]) 
Data, 8 
Data-driven models, 4-5, 5, 41 

aortic impedance, 221-223 
Decay time method (DTM), aortic impedance 

modelling, 233-234 
Decision-making, 26-29, 27 

drug therapies and, 36, 37 
feedback in, 25-29, 26, 29, 32-33 
feedforward in, 28-29, 29, 31 
health-care delivery model for, feedback in, 

29-31, 30 
Decomposition, 111 
Deconvolution, 5, 45-75 

Bayesian networks and, 72 
biomedical and scientific applications of, 

48-49 
confidence limits in, 60-62, 68, 71, 72 
conjugate gradient regularisation (CGR) in, 

70 
constrained, 67-68, 67 
convolution in, 46 
C-peptidelinsulin secretion rate example of, 

46-49, 47, 48,320-321,320 
cross-validation in, 55, 56, 63, 69 
degrees of freedom in, 62-64, 66-67 
discrepancy in, 55, 56, 63-64, 64, 69 
discrete, 50, 56-60 
Fast Fourier Transform (FFT) in, 65 
Fredholm integral equations in, 49, 67 
generalised cross-validation (GCV) in, 55, 

56, 63, 69 
hat matrix in, 56 
hepatic glucose production example of, 49 
hormone processes and, 48-49, 53, 69 
Hunt simulated problem and, 50-64, 51, 

55,60,64 
ill.conditioning in, 45, 49-53, 68, 71 
ill-posedness in, 49-53, 68, 71 
impulse response in, 46, 64, 71, 72 

infrequent sampling rate (ISR) in, 56-60, 
59 

insulin modelling, 306, 320-321, 320, 
329-330 

Kalman filtering in, 71 
kernel of system in, 49 
lagged-normal models and, 69 
L-curve in, 69 
least squares, 52, 53 
linear minimum variance estimation 

problem in, 60-61 
linear time-invariant (LTI) systems and, 

46-49, 46 
linear time-varying (LTV) systems and, 49 
Markov Chain Monte Carlo integration in, 

72 
matrix inversion lermna for, 61-62, 65 
maximum entropy (ME) in, 70 
maximum likelihood (ML) in, 62-63 
minimum risk in, 55, 63 
monotonicity and, 70 
Monte Carlo simulation in, 68, 71-72 
M-th order polynomials and, 68-69 
noise and errors in, 52-63, 61, 62, 64 
noncausal inputs and, 59-60 
non-negativity constraints in, 68, 69, 71 
nonparametric, 46, 53 
over- and underparametrisation in, 69 
parametric, 45-46, 53, 68 
piecewise constant function in, 58 
polynomial ordering in, 68-69 
probabilistic models and, 61 
problem statement in, 46-49, 47, 48 
QR factorisation in, 67 
random-walk models and, 61 
regression splines in, 69-70 
regularisation in (See Regularisation 

methods) 
regularisation parameters in, 54-56, 

62-64, 69, 71 
roughness vs. smoothness in, 54-60 
sampling, sampling rate, 53, 56-60, 59, 64, 

65, 71 
singular value decomposition (SVD) in, 65, 

67, 71 
spectral factorisation in, 71 
staircase approximation in, 57 
state-space methods in, 71 
stochastic systems and, 60-64, 71 
time-varying systems and, 53, 65, 69 
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Deconvolution (Contd.) 
Toeplitz matrix/structure in, 51, 54, 58, 65, 

67 
tracers in metabolic flux, 157-158 
truncated singular values decomposition 

(TSVD) in, 70 
ultradian oscillations and, 63-64, 64 
unbiased risk in, 55 
variance in, 61-62 
virtual grid in, 56-60, 59, 71 
weighted estimates sum of squares (WESS) 

in, 62-64, 66-67 
weighted residual sum of squares (WRSS) 

in, 56, 62-64, 66-67 
Wiener filtering and, 53 

Degrees of freedom, deconvolution and 
regularisation, 62-64, 66-67 

Derivative control, 22-24, 22 
Determinancy, aortic impedance modelling, 

216-218, 243-247 
Deterministic models, 6, 7, 128 
Dhugin software, 136 
Diabetes management, 38-42 (See also 

Glucose metabolism; Insulin metabolism) 
C-peptide/insulin secretion, deconvolution 

solution for, 46-49, 47, 48, 320-321, 
320 

data-driven models in, 41 
euglycaemic hyperinsulinaemic clamping 

in, 171-173 
FDG tracer for glucose metabolism model, 

185-195 
feedback loops and control in, 38-42, 40 
glucose metabolism modelling, 91-92, 92, 

185-195, 337-372, 337 
hepatic glucose production, deconvolution 

solution for, 49 
insulin modelling, 92-93, 93, 305-335 
linear models in, 41 
meal-like study and clamping in, 171 
tracer experiment (See Tracer experiment 

design for metabolic flux) 
Utilities for Optimising Insulin Adjustment 

(UTOPIA), 38-42, 40 
Diagnosis, 26-28, 27 
Difference equations, parameter estimation, 

108 
Differential algebra, a priori identifiability, 

82-93 
Differential ring selection, 86, 88 

Diffusion limitation models, pulmonary gas 
exchange model, 258-263, 258, 269-273 

Diffusion/perfusion (D/Q) mismatch, 
pulmonary gas exchange model, 264-266, 
265, 270 

Dirac function, 88 
Discontinuities (Dirichlet conditions), aortic 

impedance modelling, 218-219 
Discrepancy, deconvolution and 

regularisation, 55, 56, 69, 63-64, 64 
Discrete deconvolution, 50, 56-60 
Discrete models, 6 
Distributed models, 6 

blood-tissue exchange modelling, 379-385 
insulin modelling, 305 

D-optimality, parameter estimation, 146 
Downhill simplex method, 120 
Drug therapies, 15, 35-42 

a priori identifiability in nonlinear model 
of, 89-91, 90 

closed- vs. open-loop feedback control in, 
37-38 

control approaches in, 36-38, 38 
decision-making tree in, 36, 37 
deconvolution problems in, 48-49 
diabetes management in, 38-42 
dosage planning, 36 
feedback and, 35, 36, 36-38, 38 

Dynamic models, 6-7, 362-366 
Dynamic processes, 15-16 
Dynamic-elastance of respiratory system, 283 

E 
Elastance of respiratory system, 280-281, 

280 
Elastic (W2) Windkessel model, 224-232, 

226 
Elastic subtraction method, respiratory 

mechanics, 283 
Electrophysiological signals, 8 
Empirical Bayes estimates, population 

modelling, 140 
EMSA software, 148 
End-stage renal disease (ESRD), telemedicine 

system modelling, 31-35, 32, 33, 34 
Endocrine system model, 4 
Endotracheal tube (Eq'F) site, respiratory 

mechanics, 281-282, 281 
Environmental variables, control processes, 

16-17 
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Enzymatic processes, control of, 19-20, 
22-24, b 

Equality constraints, a priori identifiability 
and, 79 

Equilibration index, pulmonary gas exchange 
model, 265 

Error/noise in measurements, 9, 45 
deconvolution, 52-53, 61, 62, 64 
parameter estimation and, 107, 108, 

114-115, 121-125 
positron emission tomography (PET) 

models, 182-185 
Euglycaemic hyperinsulinaemic clamping, 

171-173, 344, 354 
Exhaustive summary, a priori identifiability, 

81-83 
Expectation-maximisation (EM) algorithms, 

population modelling, 140 
Experimental data, 8-9 (See also Data-driven 

models) 
Extracellular fluid/space, blood-tissue 

exchange modelling, 374 

F 
Fast Fourier Transform (FFT), deconvolution 

and regularisation, 65 
FDG models for glucose metabolism, 

189-195, 189, 191, 192, 194 
[18F]FDG models, 189-195, 189, 191, 192, 

194 
Feedback, 2-  3, 15-19 

anticipatory control (See Feedforward), 29 
in chemical reaction and control, 17-19, 

18, 19 
clinical processes and, 25-29, 26, 29 
closed-loop, 17, 37 
in control systems, 24-26, 25, 26 
cybernetic loop of, 16 
decision making based on, 25-26, 26, 

28-29, 29, 32-33 
in diabetes management, 38-42 
in disease states and control of, 24-25, 25 
in drug therapy planning, 35, 36-38, 36, 38 
enzyme processes and control using, 

19-20, b 
and feedforward, 28-29, 29, 31 
in glucose modelling, 369 
in health-care delivery modelling, 29-31, 

30 
inherent, 17-19, 18 
in insulin modelling, 322 

negative, 19, 20-21, 21 
open-loop, 17, 38 
positive, 19, 21- 22 
in telemedicine system requirements 

models, 31-35, 32, 33, 34 
Feedforward, 28-29, 29, 31 
Fick principle of blood flow, 
Fickis First Law of Diffusion, 

in glucose modelling, 346-347 
in pulmonary gas exchange model, 253, 

256-260, 266 
Fickis principle of blood flow, 196 

blood-tissue exchange modelling, 375-376, 
378-379 

pulmonary gas exchange model, 254, 255, 
257, 267 

15OH20 tracer for PET blood flow analysis, 
195-199, 198 

First derivatives calculation, nonlinear 
models, 117, 120 

First in first out (FIFO) buffer, 289 
First-order (FO) method, ML estimator, 144 
First-order conditional estimation (FOCE), 

ML estimator, 144-145 
First-order model s, 3, 282-289, 282, 284 
First-order processes, 3 
Fisher information matrix 

in blood-tissue exchange modelling, 393, 
395 

in glucose metabolism PET, 187 
in parameter estimation, 122-123 

Flow interrupter, respiratory mechanics, 
291-292, 292 

Forced oscillation technique (FOT), 
respiratory mechanics, 292-295 

Forgetting factor, variables, 287 
Forms and reduced forms method, 83-84 
FORTRAN, 8 
Fourier series analysis, in aortic impedance 

modelling, 218-219, 243 
Fredholm integral equation 

in deconvolution, 49, 67 
in tracers of metabolic flux, 157 

Free thyroid hormones (F'TP), 23 
Frequency-response technique, 221-223 
Full pressure method (FPM), aortic 

impedance modelling, 231-232, 231, 232 

G 
Garbage-in/garbage-out paradigm, 13, 13 
Gauss-Jordan elimination, 111 
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Generalised cross-validation (GCV), 
deconvoiution and regularisation, 55, 56, 
63, 69 

Generators, Grobner basis, 104-105 
Gibbs sampling, 131, 133-134, 136, 147 
Global identifiability, 81, 84-85, 90, 93, 

95-97, 101 
Global two-stage method, population 

modelling, 140 
GLOBI/GLOBI2 software, 78-79, 84, 

96-97, 101 
Glucose metabolism modelling, 4, 6, 16 

a priori identifiability in, 342, 355-356, 
363, 364 

accessible pool parameters in, 339, 
343-344, 351,358-359 

blood-tissue exchange modelling, 395-396 
clamping in, 362 
compartmental models for, 340-346, 342, 

343, 349-350, 350, 351-353, 352, 
364-366, 364 

control systems for, 24, 25 
derivative control in, 22-24, 22 
in diabetes management in, 38-42 
drawbacks to compartmental models of, 

365-366 
dynamic (minimal) models of, 362-366 
effectiveness of glucose (GE) in, 359-364, 

364 
EGP in, 360-361 
extracellular glucose distribution in, 

345-346 
FDG tracer for glucose metabolism model, 

185-195 
feedback loops in, 369 
Fick's First Principle of Diffusion in, 

346-347 
flux in, 346-347, 347 
glucose infusion rate (GIR) in, 360-362 
glucose production in, 351-358, 365 
glucose utilisation in, 358-359, 365 
glucose/insulin control on glucose 

metabolism in, 359-366, 359 
glycaemia in, 338 
impulse response in, 338-339, 343-344 
insulin effect in, 345-346 
insulin modelling, 305-335 
insulin sensitivity (IS) in, 360, 361-364, 

364 

intraven~as glucose tolerance test 
(IVGTT), 352, 354-356, ~ 357, 
362-366, 368 

L-[14121glucose dynamics in, 345-346, 345 
meal-like study and clamping in, 171 
mean total resistance time (MRT) in, 

339-3,40, 340, 345 
measurement of, 338 
Michaelis-Menten relationship in, 361 
minimal models of, 355, 362- 366, 364 
noncompartmental models for, 339-340, 

344-345 
nonlinearity of glucose kinetics and, 344 
nuclear magnetic resonance (NRM) in, 348 
parameter estimation in, 342-343 
positron emission tomography (PET) and, 

185-195, 348 
Ra calculation in, 352, 358 
Radziuk two-compartment model for, 

353-354, 353 
Rd calculation in, 358 
regional kinetics, steady-state, 346-350, 

369 
simulation models for, 366-369, 367, 369, 

370 
splanchnic area in, 346-347; 347 
steady-state models for, 360-362 
Steelers monocompartmental model for, 

351-353, 352, 354, 355 
structural models in, 351 
time-varying models for, 351,354, 363 
tracer/tracee system in, 338-339, 346, 

348-350, 348, 359, 341-346, 
356-358, 357, 363, 364 (See also 
Tracer design for metabolic flux) 

turnover rates in, 338 
washout curves in, 345, 349-350, 349 
whole body kinetics, non-steady state, 

351-359, 369 
whole-body kinetics of, steady-state, 

337-339, 338; 369 
l lC-Glucose (See Glucose metabolism model 

using PET) 
Gradient methods, parameter estimation, 120 
Graphical modelling, 3, 181-182 
Grobner basis, 85, 91, 93-94, 96, 97, 

104-105 

H 
Hat matrix, deconvolution and 

regularisation, 56 
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Health-ca~ delivery systems, feedback .and 
modelling of, .29-31, 30 

Hemodya!ysis, modelling telemedicine system 
requirements for, 31-35, 32, 33, 34 

Henryis law, 260-261,261, 268 
Hepatic glucose production, deconvolution 

solution for, 49 
Hepatic insulin extraction, 329-331, 333 
Heterogeneity of flow, blood-tissue exchange 

modelling, 373, 374, 385-386, 391 
Hierarchy of physiological systems, 2-3 
HOMER-D telemedicine project, 35 
Hormonal processes 

control in, 20-21, 21, 23-24, 23 
deeonvolution and, 48-49, 53, 69 

HUGIN software, 136 
Hunt simulated problem, deconvolution and 

regularisation, 50-53, 51, 55, 57-64, 60, 
60,64 

Hypoxia, pulmonary gas exchange model, 269 

I 
IDENT software, 85 
identifiability, a priori (See A priori 

identifiability), 
Identification of models, 8 - l  l, 9 

Bayesian estimation in, 10 
complexity and, 10 
data in, 8 
errors in, 9 
experimental data in, 8-9 
linear least squares estimation in, 10 
maximum likelihood estimation in, 10 
nonlinear least squares estimation in, 10 
nonparametric models and, 10-l 1 
optimal design in, l0 
parameters in, 8, 9-10 

ill-conditioning, 45, 49-53, 68., 71 
Ill-posedness, 49-53, 68, 71 
impedance, vascular, 218-221~, 220 
Improved Windkessel model, 226 
Impulse response, 5, 46 

deconvolution and regularisation, 64, 71, 72 
glucose modelling, 338-339, 343-344 

Inertance, respiratory mechanics, 280 
Infrequent sampling rate (ISR), deeonvolution 

and regularisation, 56-60, 59 
Inherent feedback, 17-19, 18 
Input estimation problems, 45, 46 

lnpuffoutput models 
~rtir i m l ~ ~ ' e  modelling, 216 
blood:fissue exchange modelling, 377-379, 

378 
insulin modelling, 306, 333 
positron emission tomography (PET) 

models, 180-181 
insulin metabolism modelling, 4, 16, 2 i, 

305-335 (See also Diabetes management; 
Glucose metabolism modelling) 
a priori identifiability in, 326-329 
basal glucose sensitivity in, 329 
blood-tissue exchange modelling, 395-396, 

396 
compm~mental models for, 308-3 i 1,308, 

309, 316, 330-331 
control systems for, 24, 25 
C-peptide kinetics in, 323-324, 323, 326, 

327 
decomposition of glucose-insulin system 

for, 322-323, 322 
deconvolution in, 306, 320-321, 320, 

329-330, 333 
distributed parameter models for, 305 
feedback loop in, 322 
first-phase secretion in, 318, 326 
glucose clamping in, 322 
glucose modelling and, 359-366, 337-372 
graded glucose infusion ~ 1  in, 322 
hepatic insulin extraction in, 329-331, 333 
in diabetes management, 38-42 
input/output modelling in, 306, 333 
intravenous gltreose tolerance test (IVGTT) 

in, 323, 329, 330, 333 
levels of, 305 
linear models for, 305, 306, 308-310, 308, 

309, 330-332 
lumped models for, 305 
Michaelis-Menten relations in, 310 
minimal model of, 323, 326, 328, 330, 

33i 
noncompartmental models for, 306, 

307- 308, 307, 308, 331 
nonlinear models for, 305, 306, 309-310 
organ models of secretion in, 310-320, 

312-315, 316 
packetising ofinsulin in, 314- 318 
pancreatic secretion in, 324- 326, 332- 333 
second-phase secretion in, 318-319, 329 
secretion data in, 306, 331, 321 - 3 23 
steady-state secretion in, 319 
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Insulin metabolism modelling (Contd.) 
structural models of secretion in, 321-329, 

333 
systemic action of, 305, 3116 
threshold density function in, 315- 316 
threshold secretory mechanism in, 312-313 
time-invariant models for, 330 
time-varying models for, 309-310, 330 
tracer insulin in, 306-307 
two-compartment model of, 311,316 
whole-body kinetics of, 306- 310 

Integral control, 22-24, 23 
Intelligent decomposition, 84 
Intravenous glucose tolerance test (IVGTT), 

352-356, 356, 357, 362-366, 368 
Inverse problems, 45 
Inverse-Hessian method, parameter 

estimation, 117-120 
IT2S software, 148 
Iterative two-stage (ITS) method, population 

modelling, 140-141 

K 
Kalman filtering, deconvolution, 71 
Kernel of system, 49 
Kinetic model in positron emission 

tomography (PET) models, 179 
Krogh cylinder model, blood-tissue exchange 

modelling, 379 

L 
Lagged-normal models, deconvolution, 69 
Laplace-based methods, parameter estimation, 

145 
L-curve, deconvolution and regularisation, 69 
Least squares (LS) estimation, 10, 107-113, 

126 
Bayesian estimator vs., 127 
blood-tissue exchange modelling, 392-393, 

395 
damped least squares (See Regularisation) 
decomposition in, 111 
deconvolution and, 52, 53 
Fisher information matrix for, 122-123 
glucose metabolism using PET, 187 
linear models and, 110-112 
model fit in, 109-110, 109 
multi-output experiments and, 116 
nonlinear models and, 110, 112-113, 113 
objective function plotting for, 113, 113 
penalised least squares (See Regularisation) 

positron emission tomography (PET) 
models, 187 

Rao-Cramer inequality in, 122 
recursive least squares (RLS), 285-286 
in respiratory mechanics, 284, 285-286 

Levenberg-Marquardt algorithm (See 
Marquardt algorithm) 

Ligand-receptor system models using PET, 
200-207, 200 
a priori identifiability in, 202, 204, 206 
binding potential (BP) in, 203, 207 
distribution volume ratio (DVR) in, 207 
equilibrium binding constant in, 202 
Logan graphical method in, 207 
nonlinear model of, 205-206, 206 
reference tissue models for, 203-205, 203, 

205 
tracer concentration in, 201,204 
two- and three-tissue compartment models 

for, 200-203, 200-202 
Likelihood, defined, 114 
Lindstrom-Bates algorithm, population 

modelling, 144-145 
Linear minimum variance estimation problem, 

deconvolution and regularisation, 60-61 
Linear models, 6, 41 

a priori identifiability and, 78-80, 83-85, 
93-100 

Akaike criterion of, 12, 70 
aortic impedance modelling, 219 
in bilirubin metabolism, 99, 99 
Buchberger algorithm in, 84, 95-97 
compartmental models and, 84, 95 
cycles and paths method for, 83, 94-96 
differential algebra in, 84 
exhaustive summary in, 83 
first-order (FO) method, ML estimator, 144 
forms and reduced forms method in, 83-84 
four-compartment model example of, 

97-98, 98 
global identifiability in, 84-85, 95-97 
GLOBI software for, 84, 96-97 
in glucose modelling, 344 
Grobner basis in, 93-94, 96, 97 
IDENT software for, 85 
initial conditions in, 94-95 
in insulin modelling, 305, 306, 308-310, 

308, 309, 330-332 
intelligent decomposition in, 84 
in lipoprotein metabolism, 99-100, 100 
local identifiability in, 85 
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MAPLE software for, 84 
modal matrix method in, 83 
mult-input/mulfi-output problems and, 83, 

84 
observational parameters in, 96 
parameter estimation and, 110-112 
polynomial ordering in, 95-96 
in population modelling, 144 
REDUCE software for, 84, 95-97 
in respiratory mechanics, 282-284, 282 
similarity transformation method in, 83 
in tracers of metabolic flux, 155, 158 
transfer function topological method for, 

83-84, 94-95, 97 
in zinc metabolism, 98, 98 

Linear time-invariant (LTI) systems, 46-49, 
46, 49 

Lines of response (LOR), positron emission 
tomography (PET) models, 185 

Lipcitz functions, 85 
Lipoprotein metabolism, linear model, a priori 

identifiability in, 99-100, 100 
Local identifiability, 81, 85 
Logan graphical method, ligand-receptor 

system models using PET, 207 
Logical models, 3 
LU decomposition, 111 
Lumped constant (LC), glucose metabolism 

using PET, 186 
Lumped models, 6, 305 
Lyapunov functions, 126 

M 
MAPLE software, 84, 105 
Markov Chain Monte Carlo (MCMC) 

method, 108 
deconvolution, 72 
parameter estimation and, 128, 131-132, 

134, 136, 147 
Marquardt algorithm, 108, 117-120 

aortic impedance modelling, 244 
blood-tissue exchange modelling, 392 

Mathematical modelling, 3 
MATLAB simulation package, 8 
Matrix inversion lemma, deconvolution and 

regularisation, 61-62, 65 
Maximum a posteriori probability (MAP), 

population modelling, 140 
Maximum entropy (ME), 70 
Maximum likelihood (ML) estimation, 10, 

107, 108, 114, 116, 122, 126 

in deconvolution and regularisation, 62-63 
first-order (FO) method, 144 
first-order conditional estimation (FOCE), 

144-145 
in population modelling, 137, 143-145 

Mead model of respiratory mechanics, 290, 
29O 

Meal-like study and clamping, 171 
Mean total resistance time (MRT), glucose 

modelling, 339-340, 340, 345 
Measurements, 3, 10 
Mental models, 3 
Metabolic processes, 2 
Metropolis-Hastings algorithm, 131-133, 147 
Michaelis-Menten relationship 

glucose modelling, 361 
insulin modelling, 310 

Microsphere deposition, blood-tissue 
exchange modelling, 386 

Minimal model of 
glucose metabolism, 355, 362-366, 364 
insulin metabolism, 323, 326, 328, 330, 331 

Minimum risk, deconvolution and 
regularisation, 55, 63 

Minpack software, 244 
MIXLIN software, 148 
Modal matrix method, 83 
Model fit, 109-110, 109, 217-218 
Modelling methodology illustrated, 2 
Models and modelling defined, 3-4, 3 
Modified T-tube for aortic impedance 

modelling, 239-242, 239 
Monotonicity, deconvolution and, 70 
Monte Carlo simulation 

in blood-tissue exchange modelling, 393 
deconvolution and regularisation, 68, 

71-72 
Markov Chain Monte Carlo integration in, 72 

parameter estimation and, 124-125 
M-th order polynomials, deconvolution, 

68 -69 
Multiple inert gas elimination technique 

(MIGET), 266-270 
Multiple linear regression, respiratory 

mechanics, 283-284, 284 
Multiplicative errors, 115 

N 
Nadir, parameter accuracy and, 122, 122 
NAG library, parameter estimation and, 126 
Naive pooled estimates, 141 
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National Simulation Resource, 393 
Neergard and Wirz technique, respiratory 

mechanics, 283, 291-292, 292 
Negative feedback, 2-3, 19, 20-21, 21 
NLME software, 148 
NLMIX software, 148 
Noise (See Errors/noise in measurement) 
Noncausal inputs, deconvolution and 

regularisation, 59-60 
Noncompartmental models 

in glucose modelling, 339-340, 344-345 
in insulin modelling, 306, 331 

Nonlinear least squares estimation, 10, 77-78 
Nonlinear models, 6 

a priori identifiability and, 78, 79, 82-83, 
85-93 

Adapt II software for, 120 
Buchberger algorithm for, 82-83, 85, 89, 

91 
characteristic set in, 82, 103-104 
coefficient identification in, 89, 90 
conjugate gradient (CG) method for, 120 
differential algebra for, 82-83, 85-93 
differential ring selection in,, 86, 88 
downhill simplex method for, 120 
drug kinetic example of a priori 

identifiability in, 89-91, 90 
exhaustive summary in, 82 
first derivatives calculation in, 117, 120 
first-order conditional estimation (FOCE), 

ML estimator, 144-145 
global identifiability in, 85, 90, 93 
in glucose modelling, 91-92, 92, 344 
gradient methods, for, 120 
Grobner basis in, 85, 91 
initial, conditions in, 88, 89 
in insulin modelling, 92-93, 93, 305, 306, 

309-310 
inverse-Hessian method for, 117-120 
Laplace-based methods for; 145 
in ligand-receptor system models using 

PET, 205-206~ 2.06 
Lindstrom-Bates algorithm for, 144-145 
Lipcitz functions in, 85 
Marquardt algorithm for, 117-120 
in multi-input/multi-output problems, 86 
observational parameters in, 82 
parameter estimation and,, 108, 110, 

112-113, 113, 1!6-121 
polynomial ordering in, 89, 90, 103-104 
in population modelling~ !44 

ranking of variables in, 86-87, 89, 
103-!04 

simulated annealing method for, 120-121 
state isomorphism theorem in, 82 
time-varying systems and, 86-88, 91 
in tracers of metabolic flux, 155 

NONMEM software, 144, 148 
Non-negativity constraints, deconvolution and 

regularisation, 68, 69, 71 
Nonparametric deconvolution, 46, 53 
Nonparametric models, 10-11 
Nonunique identifiability, 81 
Normalisation, 127 
NPEM software, 148 
NPML software, 148 
Nuclear magnetic resonance (NMR), 348, 376 

O 
Observational parameters, 80, 81, 82, 96 
Open-loop feedback, 17, 38-42 
Optimal design, 10 
Optimal ventilator waveforms (OVW), 

respiratory mechanics, 295 
Otis model of respiratory mechanics, 290, 290 

P 
Pancreatic secretion and insulin modelling, 

324-326, 332-333 
Parallel network model of blood-tissue 

exchange, 389 
Parameter estimation, 107-151 

a priori identifiability and, 125-126 
accuracy of parameters in, 108, 121-125 
Adapt II software for, 120, 126 
applications for, 108 
Bayesian estimator in, 107, 108, 126-136 
Bayesian networks and, 108, 128, 

129-130, 130 
in blood-tissue exchange modelling, 

392-393, 395 
coefficient of variance (CV) error in, 115, 

124, 138, 142-143 
in compartmental models, 108 
confidence intervals in, 124 
conjugate gradient (CG) method for, 120 
constraints in, 116 
in continuous-state models, 128-129 
decomposition in, 111 
in deterministic vs, stochastic models, 128 
difference equations and, 108 
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in discrete-state models, 129-130, 130 
D-optimality in, 146 
downhill simplex method for, 120 
errors/noise in measurement of, 107, 108, 

114-115, 121-125 
first derivatives calculation in, 117, 120 
Fisher information matrix for, 122-123 
Gibbs sampling in, 131, 133-134, 136, 147 
in glucose modelling, 342-343 
gradient methods for, 120 
input/output variables in, 107 
interval identifiability, a priori models and, 

125-126 
inverse-Hessian method for, 117-120 
Laplace-based methods for, 145 
least squares (LS) estimator in, 107-113, 

116, 126, 392-393, 395 
Lindstrom-Bates algorithm for, 144-145 
linear models and, 110-112 
Lyapunov functions and, 126 
Markov Chain Monte Carlo (MCMC) 

method for, 108, 128, 131-132, 134, 
136, 147 

Marquardt algorithm for, 108, 117-120 
maximum likelihood (ML) estimator for, 

107, 108, 114, 116, 122, 126, 
143-145 

Metropolis-Hastings algorithm in, 
131-133, 147 

model fit in, 109-110, 109 
Monte Carlo approaches to, 124-125 
in multi-output experiments, 116 
multiplicative and additive errors in, 115 
nadir, and accuracy of, 122, 122 
naive pooled estimates in, 141 
in nonlinear models, 108-113, 113, 

116-121 
normalisation in, 127 
objective function plotting for, 113, 113 
point vs. probability distribution in, 127, 

127 
Poisson distributions and, 115 
in population models, 107-108 (See also 

Population modelling) 
probabilistic models for, 147 
random vs. fixed effects in, 142 
Rao-Cramer inequality in, 122 
regression parameters in, 138 
resampling (bootstrap method) in, 124-125 
simulated annealing method for, 120-121 
software packages for, 126, 135-136 

in stochastic systems, 108 
synthetic data sets and, 124-125 
templates in, 107 
time series and, 108 
in time-varying/fime-invarying systems 

and, 107 
true values of, 107, 121 
weighting in, 115 

Parameters, model identification, 8-12 
Parametric deconvolution, 45-46, 53, 68 
Parametric models, 9-12 
Parkinsonfs disease, ligand-receptor system 

models using PET, 200 
PC/WinNonlin software, 126 
Penalised least squares (See Regularisation) 
Perfusion models, pulmonary gas exchange 

model, 269-273 
Permeability of a membrane, calculation for, 

381-384 
Pharmacokinetic/pharmacodynamic effects 

(See Drug therapies) 
Physical models, 3 
Physiological control mechanisms, 17-24, 18 

(See also Control processes) 
for chemical reactions, using feedback, 

17-19, 18, 19 
derivative control in, 22-24, 22 
for enzyme processes, 19-20, 20 
inherent feedback in, 17-19, 18 
integral control in, 22-24, 23 
negative vs. positive feedback in, 19-22, 

21 
proportional control in, 22-24, 22 

Piecewise constant function deconvolution 
and reguladsation, 58 

Pixels, PET, 180 
Plethismography, respiratory mechanics, 283 
Plug or piston flow, blood-tissue exchange 

modelling, 380 
Poiseuillefs equation, aortic impedance 

modelling, 214 
Poisson distributions, 115 
Polynomial ordering, deconvolution, 68-69 
POPKAN software, 136, 148 
Population modelling, 107, 136-148 

Bayesian estimator and, 137, 140, 146-147 
coefficient of variance (CV) in, 138, 

142-143 
covariates in, 137 
D-optimality in, 146 
empirical Bayes estimates in, 140 
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Population modelling (Contd.) 
expectation-maximisation (EM) algorithms 

for, 140 
first-order (FO) method, ML estimator, 144 
first-order conditional estimation (FOCE), 

ML estimator, 144-145 
Gibbs sampling in, 147 
global two-stage method in, 140 
iterative two-stage (ITS) method in, 

140-141 
Laplace-based methods for, 145 
Lindstrom-Bates algorithm for, 144-145 
linear models in, 144 
Markov Chain Monte Carlo (MCMC) 

method for, 147 
maximum a posteriori probability (MAP) 

in, 140 
maximum likelihood (ML) estimator for, 

137, 143-145 
Metropolis-Hastings algorithm in, 147 
mixed effects models in, 141-143 
naive pooled estimates in, 141 
nonlinear models in, 144-145 
parameter estimation and, 108 
parametric vs. nonparametric approach to, 

137, 145-146 
probabilistic models for, 147 
problem definition for, 137-139 
random vs. fixed effects in, 142 
regression parameters in, 138 
semiparametric approach to, 137, 145-146 
smoothed nonparametric approach to, 137, 

146 
software packages for, 147-148 
standard two-stage (STS) analysis in, 

139-140 
two-stage methods for, 139 
vectors in, 137-139 

Positive feedback, 2-3, 19-22 
Positron emission tomography (PET) 

modelling, 179-211 
a priori identifiability in, 189 
applications for, 200 
attenuation in, 183 
blood flow analysis using, 195-199, 198 
blood-tissue exchange modelling, 376, 386 
coefficient of variance (CV) in, 183-184 
compartmental models using, 180 
error/noise in measurements of, 182-185 
FDG tracer for glucose metabolism model, 

185-195 

15OH20 tracer for PET blood flow 
analysis, 195-199, 198 

Fisher information matrix in, 187 
in glucose metabolism model, 185-195, 

348 
graphical modelling using, 181-182 
input/output models using, 180-181 
kinetic modelling using, 179 
least squares (LS) estimation for, 187 
ligand-receptor system models using, 

200-207, 200 
lines of response (LOR) in, 185 
lumped constant (LC) in, 186 
modelling strategies using, 180-182 
qualitative vs. quantitative analysis in, 179 
region of interest (ROI) in, 180, 183-184 
spectral analysis (SA) in, 180-181 
standard deviation (SD) and, 182 
two- vs. three-dimensional, 185 
weighting in, 187 

P-PHARM software, 148 
Pressure and flow calculations, aortic 

impedance modelling, 218-219 
Primed continuous infusion, tracers, 162, 

163-165 
Probabilistic models 

deconvolution and regularisation, 61 
population modelling, 147 

Problem-specificity in modelling, 11 
Proportional control, 22-24, 22 
Pulmonary fibrosis, pulmonary gas exchange 

model, 269 
Pulmonary gas exchange models, 253-278, 

254 
acute respirator distress syndrome (ARDS) 

and, 269-270 
alveolar air equation in, 253, 254-256 
alveolar-arterial oxygen difference (A-aO2) 

in, 270 
anesthesiological research and, 269 
Bohr equation/integration in, 254, 

257-258, 260-262 
Boyle's law in, 278 
Charlefs law in, 278 
clinical practice models for, 270-273 
concentration of oxygen (CCO2) in, 260 
diffusion capacity in, 263, 264 
diffusion limitation models for, 258-263, 

258, 269-273 
diffusion/perfusion (D/Q) mismatch in, 

264-266, 265, 270 
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equilibration index in, 265 
Fick's First Law of Diffusion in, 253, 

256-257, 258-260, 266 
Fickis principle of blood flow in, 254, 255, 

257, 267 
gas exchange abnormalies, heterogeneity of 

diffusion/perfusion (D/Q), 264-266, 
265 

Henry's law in, 260-261, 261,268 
humidification of inspired air in, 255, 

277-278 
hypoxia and, 269 
location of blood sampling in, 276 
multiple inert gas elimination technique 

(MIGET), 266-270 
oxygen binding in, 262-263 
oxygen partial pressure (PO2) in, 260 
perfusion models in, 269-273 
physiological and clinical experimentation 

models for, 269-270 
pressure standards for, 277 
pulmonary fibrosis and, 269 
quantity of sample in, 276 
resistance to oxygen diffusion (Rdiff) in, 

272-273, 272 
respiratory dead space estimation, 257-258 
Riley's modified Bohr method, 261-263 
shunt fraction in, 256, 270-271,271 (See 

also Venous admixture equation) 
standard equations of gas transport in lungs 

for, 253-258 
Staub's equation for diffusion capacity, 

263, 264 
substance sampled in, 276 
temperature standards for, 277 
two-parameter models for, 271-273, 272 
venous admixture equation in, 253, 256 
ventilation models in, 269-273 
ventilation/perfusion (V/Q) mismatch in, 

266-270, 267 
warming of inspired air in, 255, 277-278 

Pulsatile (dynamic) models of aortic 
impedance, 214 

Pulse pressure method (PPM) of aortic 
impedance, 233, 234-235 

Q 
QR factorisation, deconvolution and 

regularisation, 67 

R 
Radioactivity, measurement errors in, 115 
Radiotracers, 158-160 
Radziuk two-compartment model for glucose 

modelling, 353-354, 353 
Random vs. Fixed effects, 142 
Random-walk models, deconvolution and 

regularisation, 61 
Ranking of variables, a priori identifiability, 

86-87, 89, 103-104 
Rao-Cramer inequality, parameter estimation 

and, 122 
Recursive least squares (RLS) estimation, 

285-286 
REDUCE software, 84, 95-97, 105 
Reflected wave measurement, aortic 

impedance, 236-242 
Region of interest (ROI), PET, 180, 183-184 
Regression parameters, 138 
Regression splines, deconvolution and, 69-70 
Regularisation method for deconvolution, 45, 

54-68 
confidence limits in, 60-62, 68, 71, 72 
conjugate gradient regularisation (CGR) in, 

70 
constrained deconvolution in, 67-68 
cross-validation in, 55, 56, 63, 69 
degrees of freedom in, 62-64, 66-67 
discrepancy in, 55, 56, 63-64, 64, 69 
discrete, 56-60, 56 
Fast Fourier Transform (FFT) in, 65 
Fredholm integral equations in, 67 
generalised cross-validation (GCV) in, 55, 

56, 63, 69 
hat matrix in, 56 
in Hunt simulated problem, 57-64, 55, 60, 

64 
impulse response in, 64, 71, 72 
infrequent sampling rate (ISR) in, 56-60, 

59 
L-curve in, 69 
linear minimum variance estimation 

problem in, 60-61 
matrix inversion lemma for, 61-62, 65 
maximum likelihood (ML) in, 62-63 
minimum risk in, 55, 63 
Monte Carlo simulation in, 68, 71-72 
noise and errors in, 61, 62, 64 
noncausal inputs and, 59-60 
non-negativity constraints in, 68, 69, 71 
numerical aspects of, 64-67, 71 
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Regularisation method for 
deconvolution (C~td.) 
over- and u n d e ~ t r i s a t i o n  in, 69 
piecewise constant function in, 58 " 
probabilistic models and, 61 
QR factorisation in, 67 
random.walk models and, 61 
regularisation parameters in, 54-56, 

62-64, 69, 71 
roughness vs, smoothness in, 54-60 
sampling, sampling rate, 56-60, 59, 64, 65, 

71 
singular value d ~ o m ~ t i o n  (SVD) in, 65, 

67,71 
spectral faetorisation in, 7 ! 
staircase approximation in, 57 
stochastic systems and, 60-64, 71 
time-,~ar/ing sltstems and, 65, 69 
Tooplitz matflx/stmcture in, 54~ 58, 65, 67 
ultradian oscillations and, 63-64., 64 
unbiased risk in, 55 
variance in, 6!-62 
virtual grid in, 56-60, 59, 71 
weighted estimates sum of squares (WESS) 

in, 62-64, 66-6? 
weighted residual sum of squares (WRSS) 

in, 56, 62-64, 66-67 
Regularisation parameters, 54-56, 62-64, 69, 

71 
Regulation processes, 2 
Renal function model, 3-4 
Resampling (bootstrap method), parameter 

estimation and, 124- !25 
Residue function, bloocbtissue exchange 

modelling, 3"18 
Resistance, respiratory mechanics, 280 
Resistance to oxygen diffusion (Rdiff), 

pulmonary gas exchange ngxtel, 272.-273, 
272 

Resolution, aortic impedance modelling, 216 
Respiratory dead space estimation, 257-258 
Respiratory mechanics modelling, 279-304 

acute respiratory distress syndrome 
(ARDS) and, 28! 

algorithm tuning for, 286-289 
body plethismography in, 283 
.breathing mec-h~cs in, basic concepts of, 

280-2.82 
compliance in, 280 
constant-phase model in, 294-295, 295 
cycl~by-cycle weighting function in, 288 

dynamic-elastanee of respiratory system in, 
283 

etastancr of respirato~ system in, 280-28! 
elastic suMraetion method in, 283 
endocacheal tube (ETT) site and, 

2gl-292, 2gl 
errorsfnoisr in~ 296,-289 
first in first out (HFO) buffer in, 289 
first-order models for, 282-289, 282, 284 
flow and pressure in, 291 
flow interrupter (Nee~ard and Wirz) 

technique in, 283, 291--292, 292 
forced oscillation technique (FOT) in, 

292-295 
inertance in, 280 
inputtouq~t design in, 279 
least squares (LS) estimation in, 284 
linear models of~ first-order, 282-284, 282 
Mead model for, 290, 290 
measurement rites for, 281-282, 281 
in mechanically ventilated patients, 279, 

291, 2 ~  
multiple linear regression in, 283-284, 284 
oesophageal pressure (Pes) in, 282 
online monitoring of, 285 
optimal ventilator waveforms (OVW) in, 

295 
oscillation mechanics in, 292-295 
Otis model for, 290, 290 
pleural pressure (Ppl) in, 282 
recursive least squares (RLS) estimation in, 

285-286 
resistance in, 280 
Rohrer equation in, 284 
second-order models for, 289-292, 290 
shunt compliance, in, 289 
simulation models of breath mechanics 

and, 295-301 
stress-adaptation of lung tissue in, 289 
time course of parameter variation in, 

287-289, 287, 289 
tracheal pressure (Ptr) in, 282 
transpulmonary pressure (Ptp) in, 282 
turbulent flow effect in, 284 
variable forgetting factor, 287 
viscoelastic model for, 290, 290 
volume dependence of total e!astance in, 

284 
Rohrer equation, respiratory mechanics, 284 
Roughness vs. smoothness deconvolution and 

regularisation, 54-60 
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S 
SAAM ii software, 77-78, 126, 136, 394 
Sampling, sampling rate deconvolution and 

tegularisation, 53, 56-60, $9, 64, 65, 71 
Second-order models, respiratory mechanics, 

289-292, 290 
Secretory indices, insulin modelling, 321-323 
Semiparametric appnaach, population 

modelling, 137, 145-1,46 
Shunt compliance/shunt fraction, 256, 

270-271, 271,289 
SIMCON software, 393 
Similarity transformation method, 83 
Simple hydraulic circuit model, aortic 

impedance modelling, 214 
Simple resistance model, aortic impedance 

modelling, 214 
Simulated annealing method, 120-121 
Simulation models, 7-8 

for blood-tissue exchange, 393-394 
for breathing mechanics, 295- 301 
for glucose modelling, 366-369, 367, 369, 

370 
Single injection tracers, metabolic flux, 16i, 

162 
Single-capillary distributed model of 

blood-tissue exchange, 379-381,380 
Singular value decomposition (SVD), 

deconvolution and regularisation, 65, 67, 71 
Smoothed nonparametric approach, 

population modelling, 137, 146 
Spectral analysis (SA), positron emission 

tomography (PET) models, 180-181 
Spectral factorisation, deconvolution and 

regularisation, 71 
Splanchnic area, glucose modelling, 346-347, 

347 
Staircase approximation, deconvolution and 

regularisation, 57 
Standard deviation (SD), 182 
Standard two-stage (STS) analysis, population 

modelling, 139-140 
State isomorphism theorem, nonlinear 

models, 82 
State-space methods, 

a priori identifiability and, 104 
deconvolution and, 71 

Static models, 6-7 
Statistical models, 3 
StatLib software, 147 

Steady~state models of glucose metabolism, 
360-362 

Steele's monocompartmental model for 
glucose modelling, 351-353, 352, 354, 355 

Stochastic models, 6, 7 
deconvolution and regularisation, 60-64, 

71 
parameter estimation and, 108, 128 

Structural model s 
glucose metabolism, 351 
insulin metabolism, 321-329, 333 

Synthetic data sets, parameter estimation,, 
124-i25 

System modelling, 5-7, 6 

T 
Telemedicine, 31 - 35 
Temperature regulation of body, 16, i7 
Templates, 107 
Three-element (W3) Windkessel model, 

226-227, 226, 228-232 
Three-region capillary-interstitial fluid-cell 

distributed model of blood-tissue exchange, 
38,4-385, 385 

Threshold density function, insulin modelling, 
315-316 

Threshold secretory mechanism, insulin 
modelling, 312- 313 

Thyroid hormones, 20, 23-24, 23 
Tight control systems (See Closed-loop 

feedback), 37 
Time series, 5, i08 
Time-invariant models, 6, 7 

in aortic impedance, 219 
deconvolution and, 46-49, 46 
in insulin modelling, 330 
parameter estimation and, 107 
in tracers of metabolic flux, 155-156, 158 

Time-varying models, 6, 7 
a priori identifiability and, 86, 87-88, 91 
deconvolution and, 49, 53, 65, 69 
in glucose modelling, 351,354, 363 
in insulin modelling, 309- 310, 330 
parameter estimation and, 107 
in tracers of metabolic flux, 155-156, 158 

Toeplitz matrix/structure, deconvolution, 51, 
54, 58, 65, 67 

Tracer experiment design for metabolic flux, 
153-i78 
accessible pool flux in, 156-158 
Akaike criterion in, 161 
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Tracer experiment design for metabolic 
flux (Contd.) 
compartmentalisation in, 153-156, 154, 

155 
constant infusion, steady-state tracee flux, 

161-163, 162 
control processes in, 155 
deconvolution in, 157-158 
dual- and multi-tracer protocols for, 

173-176, 175 
euglycaemic hyperinsulinaemic clamping 

in, 171-173 
Fredholm integral equation in, 157 
fundamental concepts in, 153-156 
known exogenous source of tracee, 

clamping, 171 - 173 
linear vs. nonlinear response in, 155, 158 
meal-like study and clamping in, 171 
no exogenous source of tracee, clamping, 

171 
nonsteady-state flux in, 156, 165-177 
primed continuous infusion, steady-state 

tracee flux, 162, 163-165 
priming dose/priming ratio in, 164 
Ra in, 160-171, 169, 1711 
radiotracers in, 158-160 
Rd in, 165-166, 176-177 
sampling rate in, 169-170 
single injection, steady-state tracee flux, 

161, 162 
steady-state systems in, 156 
system flux in, 156-158 
threshold/saturation in, 155 
time-invariant systems and, 155-156, 158 
time-varying systems and, 155-156, 158 
tracee flux, steady-state, 160-165 
tracer probe in, 158-160 
tracer-to-tracee clamp, 166-171, 169, 170 
tracer-tracee indistinguishability principle 

in, 159 
turnover calculation in, 164-165 
U in, 176-177 
unknown exogenous source of tracee, 

clamping, 173-176, 175 
variables, tracer-related, 159 

Transfer function topological method, 5, 
83-84, 84-85, 97 

Transport function, blood-tissue exchange 
modelling, 378 

Truncated singular values decomposition 
(TSVD), 70 

T-tube model 
aortic impedance modelling, 237-239 
arterial tapering in, 242 
ascending aorta, pressure and flow in, 

240 
determinancy in, 243-247 
effective length of, 237, 240 
Fourier series analysis in, 243 
identifiability in, 242-247 
modified T-tube in, 239-242, 239 
quarter wavelength formula for, 237 
three-dimensional and contour plot of cost 

function in, 245-247, 245, 246 
Tube models of aortic impedance, 216, 

236-242 
Turnover rates in glucose modelling, 338 
Two-region capillary-interstitial fluid 

distributed model of blood-tissue exchange, 
381-384, 383 

U 

Ultradian oscillations, deconvolution and 
regularisation, 63-64, 64 

Unbiased risk, deconvolution and 
regularisation, 55 

Unique and nonunique identifiability, 81 
USC*PACK, 135-136 
Utilities for Optimising Insulin Adjustment 

(UTOPIA), 38-42, 40 

V 

Validity of models, 7, 11-13, 12, 77 
Variance (See Coefficient of variance) 
Vascular impedance, aortic impedance 

modelling, 218- 221,220 
Venous admixture equation, pulmonary gas 

exchange model, 253, 256 
Ventilation models, pulmonary gas exchange 

model, 269-273 
Ventilation/perfusion (V/Q) mismatch, 

pulmonary gas exchange model, 266-270, 
267 

Verbal models, 3 
Virtual grid deconvolution and regularisation, 

56-60, 59, 71 
Viscoelastic (VW) Windkessel model, 

227-233, 228, 235, 236, 290, 290 
Voight cells, 227, 227, 230 
Voxels, PET, 180 
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W 
Washout curves in glucose modelling, 345, 

349-350, 349 
Weighted estimates sum of squares (WESS), 

deconvolution and regularisation, 62-64, 
66-67 

Weighted residual sum of squares (WRSS), 
deconvolution and 

regularisation, 56, 62-64, 66-67 
Weighting, in parameter measurement, 115 
Wiener filtering, 53 
WINBUGS software, 148 
Windkessel models 

for aortic impedance modelling, 215, 216, 
224-235, 224 

area method (AM) in, 233-234 
contradictions in compliance estimation vs., 

232 
creep in, 230 
decay time method (DTM) in, 233-234 
elastic (W2), 224-227, 226, 228-232 

frequency- and time-domain analysis in, 
232 

full pressure method (FPM) in, 231-232, 
231, 232 

improved, 226 
physiological interpretation of, 228-232 
pulse pressure method (PPM) in, 233, 

234-235 
three-element (W3), 226-227, 226, 

228-232 
viscoelastic (VW), 227-233, 228, 235, 

236 
Voight cells in, 227, 227, 230 

WINNONMIX software, 148 

X 
XSIM software, 393 

Z 
Zinc metabolism, linear model, a priori 

identifiability in, 98, 98 
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