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Preface

This edited volume contains a selection of chapters that are an outgrowth of the Eu-
ropean Conference on Mathematical and Theoretical Biology (ECMTB05, Dresden,
Germany, July 2005). The peer-reviewed contributions show that mathematical and
computational approaches are absolutely essential to solving central problems in the
life sciences, ranging from the organizational level of individual cells to the dynamics
of whole populations.

The contributions indicate that theoretical and mathematical biology is a diverse
and interdisciplinary field, ranging from experimental research linked to mathemati-
cal modelling to the development of more abstract mathematical frameworks in which
observations about the real world can be interpreted and with which new hypotheses
for testing can be generated. Today, much attention is also paid to the development of
efficient algorithms for complex computations and visualization, notably in molecular
biology and genetics. The field of theoretical and mathematical biology and medicine
has profound connections to many current problems of great relevance to society. The
medical, industrial, and social interests in its development are in fact undisputable.
Insights and predictions from mathematical modelling are used increasingly in deci-
sion support in medicine (e.g., immunology and spread of infectious diseases, cancer
research, cardiovascular research, neurological research, optimization of medical treat-
ments, imaging), environmental and nature management, climate problems, agriculture
and management of natural resources. Fast developments in areas such as biotechnol-
ogy (e.g., genome projects, genetic modification, tissue engineering) continue to add
new focal points of activity to the field. The contributions of this volume capture some
of these developments.

The volume contains five parts: epidemiology, evolution and ecology, immunol-
ogy, neural systems and the brain, and, finally, innovative mathematical methods and
education.

Part I deals with epidemiology and contains three chapters.
Smith discusses implications of new malaria vaccines. Recent breakthroughs in

malaria vaccines have given new hope that a safe, effective malaria vaccine may be
found. In particular, the following epidemiological questions are addressed: 1. What



vi Preface

level of vaccination coverage is required to offset the limitations of an imperfect
disease-modifying vaccine? 2. Could the introduction of a low-efficacy malaria vac-
cine lead to an increase in the number of secondary infections? 3. What characteristics
of such a vaccine will have the greatest effect on the outcome? A mathematical model
is developed for a disease-modifying malaria vaccine that is given once prior to infec-
tion, and the minimum coverage level for disease eradication is established. It is shown
that there is a threshold depending on the relative rate of infection, the efficacy of the
vaccine, and the duration of infection. Vaccines which reduce the rate and duration of
infection will always result in a decrease in secondary infections. More surprisingly,
there is a duration “shoulder,” such that vaccines that increase the duration of infection
slightly will still lead to a decrease in secondary infections, even if the rate of infection
is unchanged. Beyond this, the number of secondary infections will increase unless the
rate of infection is sufficiently lowered. This is critical for low-efficacy vaccines.

Burie, et al. introduce a model for the invasion of a fungal disease over a vineyard.
In particular, the spatiotemporal spreading of a fungal disease over a vineyard is in-
vestigated using a SEIR-type model coupled with a set of partial differential equations
describing the dispersal of the spores. The model takes into account both short and
long range dispersal of spores and growth of the foliar surface. Results of numerical
simulations are presented, and a mathematical result for the asymptotic behavior of the
solutions is given.

Stollenwerk and Mikolajczyk present an algorithm for parameter estimation in
nosocomial infections. Parameter estimation in nosocomial infections poses specific
problems for estimation techniques. The mathematical description of the spread of
nosocomial infections incorporates transmission as the dynamic part; the outcome is
discrete, and the amount of available information is usually small. The authors trans-
fer an estimation technique developed previously for plant epidemics to nosocomial
infections and demonstrate its application to a data set related to methicillin-resistant
Staphyloccocus aureus (MRSA).

Part II focuses on evolution and ecology and consists of eight chapters.
Broom, et al. discuss evolutionarily stable investment in anti-predatory defenses

and aposematic signalling. Many species possess defenses (such as toxins) against
predator attack which cannot be observed by the predator prior to attack, but which
might be beneficial for the predator to avoid. Often, such animals are brightly col-
ored or have some other way of signalling that they are defended (aposematism). In an
earlier paper the authors examined the evolution and maintenance of defense and con-
spicuousness, the brightness of the defense signal, in such prey species using a game
theoretic model. Here, they develop the model further, and, in particular, expand on
the more theoretical results with examples demonstrating the type of solutions which
can occur. The authors categorize eight possible configurations of solution states for
simple solutions. Finally, it is shown that there is another class of solutions possible
where there is strong between-individual variation in appearance between conspicu-
ous, poorly defended prey, and one example of this complex solution is demonstrated.

Laird, et al. introduce an overview of the Tangled Nature model of evolutionary
ecology. The model focuses on the effect of evolution and multiple interactions on
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ecological and evolutionary observables. Furthermore, the model is individual based,
and ecological structures, such as species, are emergent quantities. The dynamics con-
sists of a simplistic mutation-prone multiplication in which the probability of produc-
ing an offspring is determined by the occupancy in genotype space. The macroscopic
long-time dynamics is intermittent and exhibits a slow decrease in the macroscopic
extinction rate. Ecological quantities such as the species-abundance distribution and
the species-area relationship compare qualitatively well with observations, as does the
relation between interaction and diversity. The effect of correlations between parents
and mutants has been studied, as well as the effect of a conserved resource.

Garay discusses the relative advantage and fundamental theorems of natural selec-
tion. According to the tenet of Darwinian selection, a phenotype will spread only if
its fitness is greater than the mean fitness of the entire population. It is therefore nat-
ural to introduce the notion of relative advantage of a replicator, which is defined as
the expected fitness of this replicator minus the average fitness of the entire replicator
population. For general replicator dynamics, it is shown that the relative advantage of
an offspring population over its parent population is proportional to the variance in
fitness. The relationship between the proposed and earlier versions of the fundamental
theorem of natural selection is also discussed.

Kon considers competitive exclusion between year-classes in a semelparous bien-
nial population. In particular, competitive exclusion between two reproductively iso-
lated year-classes in the Leslie matrix model for a semelparous biennial population is
investigated. The results show that competitive exclusion occurs if competition is more
severe between than within year-classes. A criterion is suggested which is applicable
even if the model exhibits complex behavior.

Nedorezov, et al. study the impact of winter conditions on the dynamics of an iso-
lated population. In particular, this chapter is devoted to the analysis of single-species
population dynamics models with overlapping and nonoverlapping generations. It is
assumed that there are no activities of individuals during the winter time (as, for exam-
ple, is the case for forest insect populations in the boreal zone), and changes in popula-
tion size at these moments are described with a broken trajectory (“jump down”). Fur-
thermore, it is assumed that the fecundity of individuals is constant and that the quota
of individuals surviving winter depends on the within-year population dynamics. The
dynamics of the models, which are determined by the influence of winter conditions
on the survival of individuals and by the influence of intra-population self-regulative
mechanisms, are analyzed. For some particular cases the conditions for population ex-
tinction and for stabilization at a nonzero level are determined; it is shown numerically
that chaotic regimes exist in some models. In addition, the conditions for the reduction
of the models to some well-known discrete models are obtained.

Fuller, et al. consider the topic of planning for biodiversity conservation using
stochastic programming. Rapid species extinctions and the loss of other biodiversity
features worldwide have prompted the development of a systematic planning frame-
work for the conservation of biodiversity. Limited resources (∼ 40 million USD annu-
ally) are available for conservation, particularly in the developing countries that con-
tain many of the world’s hotspots of species diversity. Thus, conservation planning
problems are often represented as mathematical programs in which the objective is to
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select sites to serve as conservation areas so that the cost of the plan is as small as
possible and adequate habitat is protected for each species. Here, the authors gener-
alize this approach to allow for uncertainty in the planning process. In particular, it is
assumed that the species to be protected disperse after the conservation areas are estab-
lished and that planners cannot anticipate with certainty the species’ future locations
when selecting the conservation areas. This uncertainty is modeled by including ran-
dom variables in the mathematical program. The approach is illustrated by designing
a network of conservation areas for birds in southern Quebec.

Eberl and Schraft present a diffusion-reaction model of a mixed culture biofilm
arising in food safety studies. Bacterial biofilms are communities of microorganisms
that develop on interfaces in aqueous environments. The authors formulate a density-
dependent diffusion-reaction model for the growth of a dual-species biofilm. Both bac-
teria respond differently to their environment and develop different types of biofilms:
one is a classical aerobic biofilm former that produces the characteristic cluster-and-
channel biofilm morphology; the other one also develops under anaerobic conditions
and tends to form flat, creeping biofilms. A previously developed nonstandard finite-
difference scheme is adapted for computer simulation. In a numerical experiment it is
shown how variations of a single parameter (growth rate) can trigger different spatial
patterns and organization of the biofilm community.

Iwata, et al. discuss the periodical population dynamics of lottery models with
undeveloped seeds. The mechanism that promotes coexistence of species has not been
completely clarified yet. The authors propose that the amount of nutrient can be one of
the factors that promotes coexistence of species. Plant species have to reproduce seeds
to produce descendants. Even if plant species do reproduce seeds, it is not ensured that
every seed will bud. The amount of seeds that can bud successfully depends on the
amount of nutrient: if the nutrient is scarce, then not every seed can bud, but if the
nutrient is rich, then every seed can bud. It is also assumed that the amount of seeds
reproduced by one plant individual depends on the amount of nutrient. It is shown that
in this situation the population dynamics of plants exhibits a complex behavior, which
promotes coexistence of species.

Part III deals with the immune system and has four chapters.
Zanlungo, et al. present an automata-based microscopic model for the clonal ex-

pansion process. The model is based on a repertoire of antigens and T lymphocytes
interacting via the APC cells which present the antigen peptides. Each cell is repre-
sented by an automaton moving randomly on a two-dimensional lattice. This simplified
model is used in order to introduce local and spatial considerations in the mathematical
models of clonal expansion based on differential equations, and at the same time to at-
tempt an analytical interpretation of the results of computer simulations. Furthermore,
a mean field theory is derived, whose results are in good agreement with the solutions
of the microscopic model, at least for situations that are not too far from equilibrium.
This model may be used as the basis of a more realistic one that could follow the clonal
expansion process on a simplified version of the lymphatic network.

Vogel and Behn focus on Th1–Th2 regulation and allergy and present a bifurcation
analysis of the nonautonomous system. A previously proposed mathematical model



Preface ix

based on a simplified scheme of Th1–Th2 regulation mediated by the cytokine net-
work which describes the population dynamics of allergen-specific naive T cells, Th1
and Th2 cells, autocrine and cross-suppressive cytokines, and allergen is further in-
vestigated. The model provides a theoretical explanation of the switch from a Th2-
dominated response to a Th1-dominated response to allergen in allergic individuals as
a result of a hyposensitization therapy. The authors focus here on the bifurcation anal-
ysis of the nonautonomous dynamical system driven by periodic allergen injections.
The stability of the fixed points of a stroboscopic map is investigated. The set of unsta-
ble fixed points forms the dynamical separatrix between the regions of Th2-dominated
response and Th1-dominated response which is crossed during a successful therapy.
The maintenance phase of the therapy holds the system near the stable fixed point of
the stroboscobic map.

Schmidtchen and Behn discuss the architecture of randomly evolving idiotypic net-
works. B lymphocytes express on their surface receptors (antibodies) of a given speci-
ficity (idiotype). Crosslinking these receptors by complementary structures, antigens
or antibodies, stimulates the lymphocyte. Thus, a large functional network of inter-
acting lymphocytes, the idiotypic network, emerges. Idiotypic networks, conceived by
Niels Jerne 30 years ago, experience a renewed interest, e.g., in the context of autoim-
mune diseases. In a previously proposed minimalistic model, idiotypes are represented
by bit strings. The population dynamics of the idiotype clones is reduced to a zero-one
scheme. An idiotype survives only if it meets enough but not too many complemen-
tary structures. The authors investigate the random evolution of the network towards
a highly organized functional architecture which is driven by the influx of new idio-
types, randomly generated in bone marrow. The vertices can be classified into different
groups, which are clearly distinguished, e.g., by the mean lifetime of the occupied ver-
tices. They include densely connected core groups and peripheral groups of isolated
vertices, resembling the central and peripheral parts of the biological network. The au-
thors have determined the construction principles of the observed patterns and propose
a description of their architecture, which is easily transferable to other patterns and
applicable to different system sizes.

Sannikova presents an analysis of infectious mortality by means of the individu-
alized risk model. The goal of the work is to describe the mechanism underlying the
age-specific increase in death risk related to immunosenescence and to determine the
cause-specific hazard rate as a function of immune system characteristics. Therefore,
a mathematical model that allows for the estimation of the age-specific risk of death
caused by infectious diseases has been developed. The model consists of three parts:
(1) a model of immunosenescence, (2) a model of infectious disease, and (3) a model
giving the relationship between disease severity and the risk of death. The proposed
model makes it possible to analyze age-specific mortality from infectious diseases and
to predict future changes in mortality due to public health activity. At the same time it
can be used for individualized risk assessment.

Part IV deals with neural systems and the brain and includes nine chapters.
Schierwagen, et al. focus on neuromorphological phenotyping in transgenic mice.

3D morphological data have been used to quantitatively characterize the morpholog-
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ical phenotype of pyramidal neurons in transgenic mice. The authors calculated the
multiscale fractal dimension (MFD) of reconstructed neuronal cells. Changes in the
complexity of neuronal morphology due to permanent activation of p21Ras in the pri-
mary somatosensory cortex of transgenic mice correlate with changes in the MFD of
dendrites of pyramidal neurons. Transgenic neurons seem slightly less complex (i.e.,
have lower peak fractal dimension) if compared with the wild type. On the other hand,
it is shown that the enhanced p21Ras activity in transgenic mice may lead to greater
variety in the cell morphological phenotype.

Gibson, et al. introduce a quantitative model of ATP-mediated calcium wave prop-
agation in astrocyte networks. In the past, attention has mainly been focused on neu-
rons and the role they play, both individually and as parts of networks, in the func-
tioning of the brain and nervous system. However, glial cells outnumber neurons in
the brain, and it is now becoming apparent that, far from just performing support-
ive and housekeeping tasks, they are also actively engaged in information processing
and possibly even learning. Communication in glial cells is manifested by waves of
calcium ions (Ca2+) that are released from internal stores, and these waves are ob-
served experimentally using fluorescent markers attached to the ions. The waves can
be initiated by stimulation of a single cell, and initially it was assumed that the trans-
mission mechanism involved the passage of an intercellular signalling agent through
gap junctions connecting the cells. However, a surprising feature is that in many cases
the calcium waves can cross cell-free zones, thus indicating the presence of an extra-
cellular messenger. The authors have constructed a mathematical model of calcium
wave propagation in networks of model astrocytes, these being a subclass of glial
cells. The extracellular signalling agent is ATP (adenosine triphosphate), and it acts
on metabotropic purinergic receptors on the astrocytes, initiating a G-protein cascade
leading to the production of inositol trisphosphate (IP3) and the subsequent release of
Ca2+ from intracellular stores via IP3-sensitive channels. Stimulation of one cell (by a
pulse of ATP or by raising the IP3 level) leads to the regenerative release of ATP both
from this cell and from neighboring cells, and hence a Ca2+ wave. Results are given
for the propagation of Ca2+ waves in two-dimensional arrays of model astrocytes and
also in lanes with cell-free zones in between. These theoretical considerations support
the concept of extracellular purinergic transmission in astrocyte networks.

Atay and Hutt analyze the dynamics of neural fields with distributed transmission
speeds. In particular, the continuous field model of neural populations is considered
with the addition of a distribution of transmission speeds. The speed distribution arises
as a result of the natural variability of the properties of axons, such as their degree
of myelination. The authors analyze the stability and bifurcations of equilibrium solu-
tions for the resulting field dynamics. Using a perturbation approach, it is shown that
the speed distribution affects the frequency of bifurcating periodic solutions and the
phase speed of traveling waves. The theoretical findings are illustrated by numerical
calculations.

Hampel focuses on the estimation of differential entropy for positive random vari-
ables and its application in computational neuroscience. This chapter takes essentials
steps toward the goal of a differential entropy concept and provides a set of methods
related to differential entropy estimation. At the beginning, the author defines the basic
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terms: entropy, differential entropy, Kullback–Leibler distance, and refractory periods.
Relations between differential entropy and the Kullback–Leibler distance are demon-
strated. Hereafter a detailed description of the used methods is provided. These meth-
ods can be divided into three groups: parametric methods of entropy estimation, “plug-
in” entropy estimators based on nonparametric density estimation, and direct entropy
estimators. The formulas for direct entropy estimation based on the first four sample
moments are introduced. The results are illustrated by comparison of the methods of
entropy estimation, combined with two refractory period estimates. In particular, the
author compares the estimates based on the histogram, the kernel density estimator,
the sample spacing method, Vasicek’s method, the nearest neighbor distance method,
and the methods based on sample moments.

Tyrcha discusses the dynamics of integrate-and-fire models. In particular, a model
for the generation of action potentials by a neuron is presented. This model is based on
standard and commonly accepted properties of excitable cells (neurons). The novelty is
that under quite natural assumptions the generation of action potentials is described as
a special case of a general model for systems generating recurrent biological events. A
formula for a density function of the membrane potential distribution in the firing times
of the neuron is derived. An analysis of time intervals between spikes is of special in-
terest. Three different interspike interval distributions are found, where one of them is
close to the stable distribution. This is consistent with the known literature hypothesis
that stable interspike intervals form part of the neural chain in which information is
being preserved.

Kotti and Rigas present a Monte Carlo method for the identification of the muscle
spindle. In particular, the behavior of the muscle spindle is described by using a logis-
tic regression model. The system receives input from a motoneuron and fires through
the Ia sensory axon that transfers the information to the spinal cord and from there to
the brain. Three functions, which are of special interest, are included in the model: the
threshold, the recovery, and the summation functions. The most favorable method of
estimating the parameters of the muscle spindle is the maximum likelihood approach.
However, there are cases when this approach fails to converge because some of the
model’s parameters are considered to be perfect predictors. In this case, the exact like-
lihood can be used, which succeeds in finding the estimates and the exact confidence
intervals for the unknown parameters. This method has the main drawback that it is
computationally very demanding, especially with large data sets. A good alternative in
this case is a specific application of the Monte Carlo technique.

Marsalek and Drapal discuss mechanisms of coincidence detection in the auditory
brainstem. The auditory brainstem in mammals contains a neural circuit for sound lo-
calization. The exact functioning of this circuit is still under controversy. Two spike
generation mechanisms studied previously, excitatory coincidence detection and in-
hibitory coincidence detection, are studied here regarding the input-output relationship
of the spike time densities. The authors propose that synchronous binary multiplica-
tion operation on spikes is the underlying process of these two variants of coincidence
detection. A derivation of time to the spike is shown, which allows us to estimate the
contribution of the neural circuit in the auditory brainstem to the overall reaction time
of sound localization. The brainstem contribution is minute compared to the conduc-
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tion delays in the mammalian neocortex. Finally, the skewness of the resulting output
spike time densities is discussed in both the excitatory and inhibitory cases, and the in-
hibitory case is shown to be close to the normal density with a standard goodness-of-fit
test for the normal probability density function.

Hübsch and Tittgemeyer present a multi-scale analysis of brain surface data. The
human brain is characterized by complex convolution patterns. Analyzing the variabil-
ity of these patterns among human subjects can reveal information for the detection
of diseases that affect the human brain. This chapter presents a novel method to vi-
sualize the brain surface and its folding pattern at different scales. The analysis steps
involve the transformation of the cortical surface from high resolution MRT images to
an initial representation as a triangulated mesh, and finally to a representation as a se-
ries of spherical harmonic basis functions. The spherical harmonic parameterization of
the surface is translation, rotation, and scaling invariant. The parametric representation
gives a multidimensional coefficient vector for each cortical surface. The technique
allows easier recognition of convolutional patterns. The method is a first step toward a
statistical multi-scale analysis of the brain surface.

Scheper focuses on spike generation processes. Over the last years, the focus of
the computational aspects of neurons has moved from synaptic weight and firing rate
encoding to temporal firing encoding. On the other hand, several elements of these
models have been based on some conceptual assumptions that imply relatively simple
dynamic behavior of neuronal membrane activity in an active-passive process. In line
with recent advances that yielded a better understanding of the biochemical processes
that occur within cells, it is proposed that the processes that are involved in a mem-
brane depolarization cascade are less static than has been assumed so far. In particular,
the possibilities of low-level computation at the membrane level need to be explored
more extensively. In this chapter some computational properties of the spike generation
processes are explored using phenomenological models.

Part V focuses on innovative mathematical methods and education and consists of
eight chapters.

Claussen introduces Offdiagonal Complexity (OdC) as a computationally quick
network complexity measure and applies it to protein networks and cell division. Many
complex biological, social, and economic networks show topologies drastically differ-
ing from random graphs. But what is a complex network, i.e., how can one quantify the
complexity of a graph? Here the OdC, a new, and computationally cheap, measure of
complexity is defined, based on the node-node link cross-distribution, whose nondiag-
onal elements characterize the graph structure beyond link distribution, cluster coeffi-
cient, and average path length. The OdC approach is applied to the Helicobacter pylori
protein interaction network and randomly rewired surrogates thereof. In addition, OdC
is used to characterize the spatial complexity of cell aggregates. The author investigates
the earliest embryo development states of Caenorhabditis elegans. The development
states of the premorphogenetic phase are represented by symmetric binary-valued cell
connection matrices with dimension growing from 4 to 385. These matrices can be in-
terpreted as adjacency matrices of an undirected graph or network. The OdC approach
allows us to describe quantitatively the complexity of the cell aggregate geometry.
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Simitev and Biktashev present an analytically solvable asymptotic model of atrial
excitability. In particular, a three-variable simplified model of excitation fronts in hu-
man atrial tissue is introduced. The model is derived by novel asymptotic techniques
from a previously introduced biophysically realistic model. An iterative analytical so-
lution of the model is presented, which is in excellent quantitative agreement with
the realistic model. This opens new possibilities for analytical studies as well as for
efficient numerical simulation of this and other cardiac models of similar structure.

Lalam and Jacob introduce a Bayesian approach to the quantitative polymerase
chain reaction. This reaction aims at determining the initial amount of a specific por-
tion of DNA molecules from the observation of the amplification process of the DNA
molecules’ quantity. This amplification process is achieved through successive replica-
tion cycles and depends on the efficiency of the replication of the molecules. Modelling
the amplification process by a branching process, the authors estimate the unknown pa-
rameter using Markov chain Monte Carlo methods under a Bayesian framework.

Buck-Sorlin, et al. present a model of poplar (Populus sp.) physiology and mor-
phology based on relational growth grammars. Functional-structural plant models
(FSPMs), combining the physiological function of a plant with its architecture, re-
quire precise and transparent specifications. This can be viewed as a new challenge
to the design of programming languages. Here the authors introduce, exemplarily, a
model of young poplar trees, based on the new formalism of relational growth gram-
mars (RGGs), which extend the well-known Lindenmayer (L-)systems to a specific
type of node- and edge-labelled graph grammars. The model has been written in the
programming language XL, which extends standard Java by rule-based programming
with RGGs and overcomes many of the disadvantages of L-systems. RGGs can bridge
different scales: In the presented model, morphogenetic rules in L-system style are
combined with rules describing a regulatory network of hormone biosynthesis and
rules updating photosynthate concentrations of shoot modules, all in one and the same
formalism.

Calvez and Dolak-Struß analyze the asymptotic behavior of a two-dimensional
Keller–Segel model with and without density control. In particular, the authors study
the Keller–Segel model for chemotaxis, consisting of a drift-diffusion equation de-
scribing the evolution of the cell density coupled to an equation for the chemoattrac-
tant. It is known that in the classical Keller–Segel model, solutions can become un-
bounded in finite time. The authors present recent analytical results for this model, and
compare its behavior in two space dimensions numerically to the behavior of a model
accounting for the finite volume of cells. This modified Keller–Segel model relies on
the assumption that cells stop aggregating when their density is too high, and thus al-
lows for the global existence of solutions. The authors characterize the slow movement
of a certain class of plateau-shaped solutions and perform numerical experiments for
both models, showing that solutions of the classical (before blow-up) and of the den-
sity control model share common features: regions of high cell density are attracted by
each other and, under suitable boundary conditions, by the domain boundaries.

Jacob discusses saturation effects in population dynamics. The chapter deals with
the behavior of a branching population undergoing saturation effects when it becomes
too large. The author studies, in particular, the limits of the prediction given in the
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setting of the deterministic dynamical system related to the stochastic branching pro-
cess modelling the evolution of the population. Furthermore, Jacob also generalizes
the usual Markovian branching processes of order one to size-dependent branching
processes that may have a longer memory and gives conditions leading to an almost
sure extinction of the process while the dynamical system is persistent. The notion of
reproductive rate is explained and generalized. Finally, some examples are given, in
particular, the amplification process in the PCR (polymerase chain reaction).

Klauß and Voß-Böhme consider modelling and simulation by stochastic interact-
ing particle systems. Stochastic interacting particle systems (IPSs) are individual-based
models, which include stochastic local interactions on a spatial lattice. In this respect
an IPS works similarly to a cellular automaton. However, IPSs are continuous-time
Markov processes, hence there is a large background of analytical methods. Further-
more, one has the possibility to simulate the system on a finite lattice. The authors
explain the modelling steps and describe the core of a simulation algorithm. The idea
is to convince the reader that IPSs can be used to set up and simulate sophisticated and
applicable models, but allow an analytical approach as well.

De Vries and Hillen present mathematical biology teaching experiences from a
summer school for undergraduates. For the past four years, the University of Alberta
has hosted a summer school on mathematical biology, aimed at undergraduate stu-
dents who have completed 2–3 years of study in mathematics or a similar quantitative
science. The aim of this summer school is to introduce the students to mathematical
modelling and analysis applied to real biological systems. In the span of 10 days, stu-
dents attend lectures and exercise sessions, learn how to set up mathematical models,
and use analytical and computational tools to relate them to biological data. Further-
more, they experience the modelling process by working on a research project. In this
chapter, the authors explain their teaching philosophy, share some unique features of
the summer school, and exemplify the key course components.

Finally, the volume owes its existence to the support of many colleagues. First of
all, thanks go to the authors of the various contributions. We would also like to express
our gratitude to the members of the ECMTB05 scientific committee and to a signif-
icant number of other colleagues for providing reviews and suggestions. ECMTB05
and these peer-reviewed proceedings have only become possible thanks to the strong
institutional support provided by the Centre for Information Services and High Per-
formance Computing (Technical University of Dresden). Particular thanks go to Pro-
fessor Wolfgang E. Nagel, the head of this Centre and many colleagues at the Centre,
particularly Niloy Ganguly, Christian Hoffmann, Samatha Kottha, Claudia Schmidt,
Jörn Starruß, and Sabine Vollheim. Finally, we would like to thank Tom Grasso of
Birkhäuser for making this project possible.

Dresden, January 2007
Andreas Deutsch (for the editors)
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Could Low-Efficacy Malaria Vaccines Increase
Secondary Infections in Endemic Areas?

Robert J. Smith?

Department of Mathematics and Faculty of Medicine, The University of Ottawa,
585 King Edward Ave, Ottawa, Ontario, K1N 6N5, Canada; rsmith43@uottawa.ca

Summary. Recent breakthroughs in malaria vaccines have given new hope that a safe, effec-
tive malaria vaccine may be found. The following epidemiological questions are addressed: 1.
What level of vaccination coverage is required to offset the limitations of an imperfect disease-
modifying vaccine? 2. Could the introduction of a low-efficacy malaria vaccine lead to an in-
crease in the number of secondary infections? 3. What characteristics of such a vaccine will have
the greatest effect on the outcome? A mathematical model is developed for a disease-modifying
malaria vaccine that is given once prior to infection, and the minimum coverage level for disease
eradication is established. There is a threshold depending on the relative rate of infection, the
efficacy of the vaccine and the duration of infection. Vaccines which reduce the rate and duration
of infection will always result in a decrease in secondary infections. More surprisingly, there is
a duration “shoulder,” such that vaccines that increase the duration of infection slightly will still
lead to a decrease in secondary infections, even if the rate of infection is unchanged. Beyond
this, the number of secondary infections will increase unless the rate of infection is sufficiently
lowered. This is critical for low-efficacy vaccines.

Key words: Malaria, vaccines, coverage, rate of infection, duration of infection, efficacy.

1.1 Introduction

Malaria remains one of the most important human diseases throughout the tropical and
subtropical regions of the world and causes more than 300 million acute illnesses and
at least one million deaths annually [18]. 90% of deaths due to malaria occur in sub-
Saharan Africa, mostly among young children [17]. The search for a malaria vaccine
is now over seventy years old [6], and a great deal of effort and funding has been put
into the task [11]. Recent vaccine findings [1] have renewed the interest in the potential
role of vaccines within malaria-control programs by focusing on the possibility of an
anti-malarial vaccine delivered to infants prior to infection.

In this chapter, a model of malaria infection is developed which combines the clas-
sic Aron models [2,3] with those of vaccine models [8], but includes disease-modifying
effects based on theoretical HIV vaccine models [4, 15]. The following epidemiologi-
cal questions are addressed: 1. What level of vaccination coverage is required to offset
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the limitations of an imperfect disease-modifying vaccine? 2. Could the introduction
of a low-efficacy malaria vaccine lead to an increase in the number of secondary in-
fections? 3. What characteristics of such a vaccine will have the greatest effect on the
outcome?

1.2 The Model

A malaria vaccine could have different potential effects, including (a) reducing mor-
tality due to malaria, (b) increasing the recovery rate, (c) increasing the acquired im-
munity rate or d) reducing the rate of infection. Possible limitations of a vaccination
program include (i) the vaccine may only be delivered to a proportion p of the popu-
lation, (ii) the vaccine may only “take” in a proportion ε of people vaccinated, (iii) the
vaccine may wane over time (ω is the rate of waning of immunity) and (iv) the vac-
cine may have a suboptimal efficacy ψ . It is assumed that all vaccinated individuals
are vaccinated before infection, reflecting the situation in [1]. Furthermore, unlike in
HIV models (but in common with other models of vaccination; eg pertussis [16]), the
vaccine may wane before, during or after infection.

It follows that “successfully vaccinated” individuals consist of those who received
the vaccine, for whom the vaccine “took” and for whom the vaccine did not wane
prior to infection. All other individuals shall be referred to as unprotected individuals,
regardless of whether they received the vaccine or not, since the net effect prior to
infection is identical. (See [4] and [15] for more detailed discussions.) Note that “suc-
cessfully vaccinated” individuals have the potential to become infected (if the vaccine
efficacy ψ is less than 100%, or if vaccine-induced immunity wanes subsequently) and
cause secondary infections. These individuals may have a reduced rate of infection, but
will have an increased life expectancy. They may recover faster from the disease and
their disease-induced mortality will be lower. Consequently, their total duration of in-
fection may either decrease (due to higher recovery rates) or increase (due to fewer
deaths from infection).

It can be assumed that mosquitos are either susceptible (M) or infected (N ), have
birth rate � and that their death rate (µM ) does not vary significantly if they are in-
fected. Individuals who have experienced infection may recover (without substantial
gain in immunity) at recovery rate hk (k = U, V ; U = unvaccinated, V = vacci-
nated) or may become temporarily immune at acquired immunity rate αk (k = U, V ).
See [5,9,10,12] for further details. Temporarily immune individuals will become sus-
ceptible again at rate δk (k = U, V ). The rate of infection of an infected individual in
class Xk is βk (k = U, V ) and the rate of infecting a mosquito is βM (assumed identi-
cal from either class of individual, since mosquitos are not vaccinated). The birth rate
is π , the background death rate is µ and γk is the death rate due to malaria (k = U, V ).
Thus, the model is

dM
dt

= � − βM YU M − βM YV M − µM M

dN
dt

= βM YU M + βM YV M − µM N
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Fig. 1.1. Schematic representation of the model, representing both unprotected and “successfully
vaccinated” individuals, as well as mosquitos. The background mortalities for humans µ (in all
compartments) and mosquitos µM (in both compartments), as well as disease-induced mortality
for humans γU , γV (in the infected compartments) are not drawn in, for conciseness.

dXU

dt
= (1 − εp)π − µXU − βU N XU + ωXV + hU YU + δU QU

dXV

dt
= εpπ − µXV − (1 − ψ)βV N XV − ωXV + hV YV + δV QV

dYU

dt
= βU N XU − (µ + γU + αU + hU )YU + ωYV

dYV

dt
= (1 − ψ)βV XV − (µ + γV + αV + hV )YV − ωYV

dQU

dt
= αU YU − (µ + δU )QU + ωQV

dQV

dt
= αV YV − (µ + δV )QV − ωQV .

The model is illustrated in Fig. 1.1.
With the notation ξk = µ + γk + αk + hk (k = U, V ), 1/ξK is the total duration

of the infectious period for unprotected and “successfully vaccinated” individuals, re-
spectively. It is expected that the recovery rates αV , hV will increase due to the vaccine,
but that the disease-induced death rate γV will decrease. It follows that the total dura-
tion of the infectious period for vaccinated individuals may either increase or decrease.
It is also expected that the rate of infection βV will not increase.

1.3 Analysis

The disease-free equilibrium satisfies M̄ = �/µM , X̄U = [π(µ(1 − εp) + ω)]/
[µ(µ + ω)], X̄V = εpπ/(µ + ω) and N̄ = ȲU = ȲV = Q̄U = Q̄V = 0.



6 R.J. Smith?

Thus, the proportion of the population that is successfully vaccinated, S, satisfies
S = X̄V /(X̄U + X̄V ) = εpµ/(µ + ω). In particular, X̄U = (π/µ)(1 − S) and
X̄V = (π/µ)S.

At the disease-free equilibrium, the Jacobian matrix is J =

µM 0 0 0 −βM M̄ −βM M̄ 0 0
0 −µM 0 0 βM M̄ βM M̄ 0 0
0 −βU X̄U −µ ω hU 0 δU 0
0 −(1 − ψ)βV X̄V 0 −µ − ω 0 hV 0 δV
0 βU X̄U 0 0 −ξU ω 0 0
0 (1 − ψ)βU X̄V 0 0 0 −ξV − ω 0 0
0 0 0 0 αU 0 −µ − δU ω

0 0 0 0 0 αV 0 −µ − δV − ω


.

Thus, det(J − �I ) = −(µM + �)(µ + �)(µ + ω + �)(µ + δU + �)(µ + δV +
ω + �) det M , where

M =
 −µM − � βM M̄ βM M̄

βU X̄U −ξU − � ω

(1 − ψ)βV X̄V 0 −ξV − ω − �

 .

Thus, the largest eigenvalue for J will be the largest eigenvalue for M . The vanish-
ing determinant condition gives −µMξU (ξV + ω) + (1 − ψ)βV βMω X̄V M̄ + (1 −
ψ)ξU βV βM X̄V M̄ + (ξV + ω)βU βM X̄U M̄ = 0. Hence,

(1 − ψ)βV βM M̄(ξU + ω)

µMξU (ξV + ω)
X̄V + βU βM M̄

µMξU
X̄U = 1 .

Individuals who are vaccinated with disease-modifying vaccines have the poten-
tial to become infected and cause secondary infections. Such individuals may have a
reduced rate of infection, but will have an increased survival time. The reproduction
number in a population with vaccination is RV , in contrast to R0, the basic reproduc-
tion number in an unvaccinated population.

If there is no vaccine, S = 0, so X̄V = 0, X̄U = π/µ and hence the vanish-
ing determinant condition gives R0 = π�βU βM/µµ2

MξU . If the entire population is
successfully vaccinated, S = 1 and ω = 0, so X̄V = π/µ, X̄U = 0 and hence the
vanishing determinant condition gives RV = (1 − ψ)(π�βV βM/µµ2

MξV ). Thus, the
population reproduction number is RP = (1 − S)R0 + S RV . See [4, 7, 13–15].

To estimate the minimum coverage levels pc for an imperfect disease-modifying
vaccine, when RP = 1, this last equation can be rearranged to produce

S = εpcµ

µ + ω
= 1 − R0

RV − R0
.

Thus, the threshold disease-modifying vaccine coverage level is

pc = (µ + ω)(µ + γV + αV + hV )[µµ2
M (µ + γU + αU + hU ) − βU βM�π ]

εµβM�π [(1 − ψ)βV (µ + γU + αU + hU ) − βU (µ + γV + αV + hV )]
. (1.1)
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Fig. 1.2. The relationship between the relative rate of infection, the relative duration of infection
and the vaccine efficacy. A disease-modifying vaccine which reduces the duration of infection
will always lead to a decrease in secondary infections, regardless of the efficacy of the vaccine.
More surprisingly, a vaccine which increases the duration of infection can still result in an over-
all decrease in secondary infections, but the outcome depends on the rate of infection and the
efficacy of the vaccine. There is a duration “shoulder,” such that vaccines that increase the dura-
tion of infection slightly will still result in a net decrease in secondary infections. However, as
the duration of infection increases, the number of secondary infections will increase, unless the
rate of infection is lowered accordingly. This is critical for low-efficacy vaccines.

Vaccination programs whose coverage levels exceed this proportion of the population
are likely to eradicate the disease.

Once a vaccine is introduced, the number of secondary infections will increase
if RP > R0 (i.e., if the population reproduction number after the introduction of a
vaccine is greater than the reproduction number currently). This occurs when

(1 − S)R0 + S RV > R0
βV

βU
>

ξV

(1 − ψ)2ξU
.

This is illustrated in Fig. 1.2.
Clearly, if the rate of infection and the duration of infection both decrease, then

there will always be a decrease in the number of secondary infections. More surpris-
ingly, for a given efficacy of the vaccine, there is a duration “shoulder,” such that a
small increase in the duration of infection will still decrease the number of secondary
infections, even if the rate of infection is unchanged. However, if the duration of in-
fection is increased beyond this shoulder, then it is crucial that the rate of infection be
decreased accordingly. This is critical for low-efficacy vaccines.

The “shoulder” occurs when the relative duration of infection satisfies

1/ξV

1/ξU
= 1

(1 − ψ)2

for a given vaccine efficacy ψ . For example, a 20% efficacious vaccine could accomo-
date an increase in the duration of infection by as much as 1.5625 times the current
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duration of infection, with no reduction in the rate of infection and still result in a de-
crease in secondary infections. However, a 20% efficacious vaccine that increased the
duration of infection by a factor of 4 would lead to an increase in secondary infections
unless the rate of infection for the vaccinated population were reduced to 40% of the
current rate of infection.

1.4 Discussion

A vaccination program implementing a disease-modifying malaria vaccine in an en-
demic area should have a minimum coverage level pc, as estimated by (1.1). If the
proportion of the population that can be vaccinated exceeds pc, then such a vaccina-
tion program is likely to result in the eradication of the disease.

Furthermore, reducing the transmission probability of such a disease-modifying
vaccine is crucial, for vaccines whose duration of infection increases significantly.
While it is expected that a disease-modifying vaccine would increase the recovery
rates, it would also decrease the rate of disease-induced mortality, so the total duration
of the infectious period for a vaccinated individual may either increase or decrease. If
this duration decreases, then the number of secondary infections will always decrease,
regardless of the vaccine efficacy, so long as the rate of infection does not increase.

There is a duration “shoulder,” such that the number of secondary infections will
always decrease if the duration increases within this shoulder. However, an increase
beyond the “shoulder” will lead to an increase in secondary infections, unless the rate
of infection of the vaccine is lowered accordingly. This is critical for low-efficacy
vaccines.

It should be noted that these results primarily apply to areas in which malaria is
endemic. A disease-modifying malaria vaccine with a high duration of infection (for
example, one which drastically reduced disease-induced mortality, but which had neg-
ligible effect on the recovery rates) might be quite desirable for a temporary outbreak
of malaria in the developed world, if the prospect of reinfection is negligible. In en-
demic areas however, such a vaccine would likely make the situation worse. It follows
that low-efficacy vaccines which result in high durations of infection but which do not
significantly lower the rate of infection should not be used in endemic areas.
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Modeling of the Invasion of a Fungal Disease over a
Vineyard
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d’Ornon, France; calonnec@bordeaux.inra.fr

Summary. The spatiotemporal spreading of a fungal disease over a vineyard is investigated
using a susceptible-exposed-infected-removed (SEIR)-type model coupled with a set of partial
differential equations describing the dispersal of the spores. The model takes into account both
short and long range dispersal of spores and growth of the foliar surface. Results of numerical
simulations are presented. A mathematical result for the asymptotic behavior of the solutions is
given as well.

Key words: SEIR model, dispersal, diffusion, large time behavior.

2.1 Introduction

Integrated pest management offers an attractive alternative to routine chemical appli-
cation by treating only in response to disease risk indicators. Powdery mildew, caused
by the fungus Uncinula necator, is the most economically important and widespread
disease of grapevines. For this disease, the main factor of risk is a timing of the attack
early in the season combined with the phenological stage of the host. The leaves are
the first to be infected, and there is a spatial relationship between maps of frequency
of leaves diseased early in the season with maps of frequency of bunches with high
severity [4,8]. A better knowledge of the mechanisms of the disease propagation could
help to improve its control at the plot scale by tailoring treatments to local specific
needs, or at the estate scale by treating only specific plots.

We aim at building a mathematical model of this fungal epidemic with a particular
stress on the dispersal mechanism of the spores produced by the colonies of fungus.
Already much work has been done on the subject of dispersal for various kinds of dis-
persers such as animals, seeds and spores (see, e.g., [6,10,11] and references therein).

In particular, we want to investigate the role of a dual dispersal mechanism in which
the spores produced may either disperse inside the vine stock and germinate near the
colony (short range dispersal) or may be lifted up above the vine rows and fall far from
the colony (long range dispersal).
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Our goal is to build a model which is a simpler version, and consequently easier
to analyse, of a much more elaborate one [5]. This latter model couples a mechanistic
model for the growth of each vine stock in the vineyard with a dispersal model using
ray-tracing-like techniques at the vine stock scale and a distribution law at the vineyard
scale for the spores escaping the vine stock.

In [13], the authors considered a two-dimensional (2D) spatial model based upon
such a dual dispersal mechanism using diffusion theory coupled with a Vanderplank
equation [12]. Using this Vanderplank equation leads to delay equations that com-
plexify the mathematical analysis of the model. Instead, in this chapter, we will use
a susceptible, exposed, infectious, removed (SEIR) compartmental model as used in
classical epidemiology (see, e.g., [1, 3]) to take into account the local extension of the
disease. In the nonspatial case, a comparison between these two approaches can be
found in [9].

During an epidemic lasting a whole season from bud break until grape matura-
tion, the growth of the host cannot be neglected. We include a description of the host
growth in our model. We also take into consideration the specific spatial organisation
of vineyards that are made of several separate rows.

This chapter is organised as follows. After having described the model, we perform
a mathematical analysis and present numerical simulations.

2.2 The Model

The vectors of a fungal disease are the spores produced by the colonies of fungus
that lie on the vegetal tissue, which may be leaves, buds, fruits, etc. We assume for
simplicity that the time variation of the surface of a colony can be neglected. Then as
in [9] we consider the unit of disease to be a colony and the host to be a site, that is the
surface occupied by a colony.

The cycle of the epidemic is as follows: when spores fall upon the vegetal tissue,
they may create a new colony which will produce spores after some latency period and
during some sporulating period.

Let � be a regular 2D spatial domain. Let t be the time and let x denote the position
of some point in �. We will use the following notation for the state variables.

As in the case of a SEIR model, the total density N of sites susceptible to host a
colony of fungus at (x, t) is subdivided into healthy H , latent L , sporulating I and
removed (postinfectious) R.

We want to devise a model that takes into account multiple ranges of dispersal for
the spores in order to investigate their different roles for the spreading of the epidemic.
Spores may disperse separately or as infection units (packages of spores). For simplic-
ity, we only take into account two ranges for dispersal: a short range (spores disperse
inside the vine stock where they come from), and a longer range (spores disperse at
the vineyard scale). Let S(x, t) denote the density of spores produced by the colonies.
The spores’ total density S is subdivided acccording to the range of dispersal; the short
range dispersal spore density S1 and the longer range one S2. They are produced by a
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sporulating colony with rate rp > 0 and may disperse at short range with a constant
probability F ∈ [0, 1] and at longer range with probability (1 − F).

We assume that the spores disperse according to a diffusion process with Fickian
diffusion coefficient D1 > 0 (short range) or D2 > D1 > 0 (longer range) as in [13].
Using Fickian diffusion for long range dispersal may seem unrealistic at first. But the
spores are not necessarily taken away along dominating wind directions. The dispersal
is also due to turbulence that provides the energy to tear off the spores from the leaves.

Spores fall upon the vineyard with some deposition rate δ1 > 0 or δ2 > 0; we will
set δ1 = δ2 in the numerical simulations. We thus find the first set of equations of our
model that describes the production of spores by the colonies and their dispersal:

∂S1
∂t (x, t) = ∇. (D1∇S1(x, t)) − δ1S1(x, t) + rp F I (x, t)

∂S2
∂t (x, t) = ∇. (D2∇S2(x, t)) − δ2S2(x, t) + rp(1 − F)I (x, t)

(2.1)

for x ∈ � and t > 0.
Moreover, we assume that no spores come from outside the vineyard. The spores

produced by the fungus colonies should freely escape from the vineyard. To simulate
this, we choose a computing domain � with vine rows located at the center and sur-
rounded by a region with no vines. Then, if � is large enough with respect to diffusion
coefficients, spores do not reach the boundary and their densities at these points should
be equal to 0. Thus, we impose Dirichlet conditions on the boundary

S1(x, t) = S2(x, t) = 0 for x ∈ ∂� and t > 0. (2.2)

We also set nonnegative initial conditions

S1(x, 0) = S0
1(x) ≥ 0, S2(x, 0) = S0

2(x) ≥ 0 for x ∈ �. (2.3)

Let �r ⊂ � denote the area covered by the vine rows. We devise our model in
such a way that for all t > 0 and x ∈ �, N (x, t) equals 0 if x �∈ �r .

The powdery mildew epidemic has no impact upon the growth of the host. This
growth brings new sites available for colonization. We study the epidemic during one
single season; then we assume that the time variation of the total number of colony
sites inside the rows obeys a logistic law

∂ N
∂t

(x, t) = r N (x, t)
(

1 − N (x, t)
K

)
, for x ∈ �r , (2.4)

where r > 0 is the growth rate and K > 0 the carrying capacity. Although r and K are
constant for simplicity, we could introduce spatial heterogeneities for the host growth
assuming r and K depend on x . Provided r, K are bounded, our results can be easily
extended to handle this.

Next, the local evolution of the disease at some point x ∈ �r (inside a row) obeys
the classical SEIR model, whereas we set N (x, t) = L(x, t) = I (x, t) = R(x, t) = 0
for t ≥ 0 if x �∈ �r . Let p and i denote the mean duration of the latency and infectious
period respectively. Let E be the inoculum effectiveness (probability for the spores to
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succeed in creating a new colony upon a site). Taking into account (2.4), this yields the
second set of equations of our model for x ∈ �r :

∂ H
∂t (x, t) = −E(δ1S1(x, t) + δ2S2(x, t)) H(x,t)

N (x,t) + r N (x, t)
(

1 − N (x,t)
K

)
∂L
∂t (x, t) = +E(δ1S1(x, t) + δ2S2(x, t)) H(x,t)

N (x,t) − 1
p L(x, t)

∂ I
∂t (x, t) = + 1

p L(x, t) − 1
i I (x, t)

∂ R
∂t (x, t) = + 1

i I (x, t)

(2.5)

supplemented with nonnegative initial conditions

H(x, 0) = H0(x) ≥ 0, L(x, 0) = L0(x) ≥ 0,

I (x, 0) = I 0(x) ≥ 0, R(x, 0) = R0(x) ≥ 0 for x ∈ �r (2.6)

The contact term in (2.5) is based upon a proportionate mixing assumption. Though
our model includes host growth, this assumption is in agreement with the under-
lying hypothesis of classical epidemiologic models in phytopathology (see Vander-
plank [12]) that states that the rate of increase of diseased tissue is proportional to the
amount of spores multiplied by the probability that these spores fall upon healthy tis-
sues. A similar approach for including host growth in a model of phytopathology but
with nonspatial delay equations can be found in [2].

2.3 Theoretical Results

We have the following existence result for our model.

Theorem 1 The system (2.1),(2.5) is well posed: let H0, L0, I 0, R0 be in L∞(�) and
S0

1 , S0
2 be in L2(�); the system posseses a unique componentwise nonnegative solution

that exists globally in time.

The proof of this theorem follows standard arguments (see, e.g., [7]) and will not
be detailed here.

The large time behavior of the solutions can be described as follows.

Theorem 2 If the hypothesis of the previous existence theorem is satisfied, then as t
goes to infinity, S1(x, t) and S2(x, t) converge to 0 in the L2(�) and H1

0 (�) norms.
And there are nonnegative functions H∞ and R∞ such that for all x ∈ �r , H∞(x) +
R∞(x) = K and

lim
t→+∞ H(x, t) = H∞(x)

lim
t→+∞ L(x, t) = lim

t→+∞ I (x, t) = 0

lim
t→+∞ R(x, t) = R∞(x).



2 Modeling of the Invasion of a Fungal Disease over a Vineyard 15

This result must be carefully interpreted since our model is valid for only one single
season. It means that the epidemic finally dies out at the end of the season when the
growth of the host is achieved.

Proof It is easy to show that for all x, t , N , H, L , I, R are nonnegative and bounded
by K .

As ∂ N/∂t = r N (1 − N/K ) we have limt→+∞ N (x, t) = K .
From (2.5) we have ∂ R/∂t = (1/ i)I ≥ 0, hence for all x , R(x, t) converges to

some limit R∞(x) as t goes to infinity. Moreover, I (x, t) ∈ L1(0, +∞) for all x .
Next, as ∂ I/∂t = +(1/p)L − (1/ i)I , we also have ∂ I (x, t)/∂t ∈ L∞(0, +∞)

for all x . This classically proves that for all x , limt→+∞ I (x, t) = 0.
By integrating over � the last two equations in (2.5), we similarly prove that

limt→+∞
∫
�

I (x, t) = 0. And as I (t, x) is bounded by K uniformly in x, t , for any
integer p ≥ 1, we also have limt→+∞

∫
�

I p(x, t) = 0.
Let |.|2 denote the L2(�) norm. Multiplying the first equation in system (2.1) by

S1, integrating over � and using Young’s inequality, we find

d|S1|22
dt

+ D1|∇S1|22 + 1
2
δ1|S1|22 ≤ c|I |2,

where c is some constant.
Since limt→+∞

∫
�

I 2(x, t) = 0 and δ1 > 0, it can be proven easily that
limt→+∞ |S1|2(t) = 0. Similarly, by multiplying the first equation in system (2.1)
by ∇2S1, we have limt→+∞ |∇S1|2(t) = 0 and the same results hold true for S2.

Adding the last three equations of (2.5), since S1 and S2 are nonnegative, D =
L + I + R is increasing with respect to t and converges to some limit. We thus find that
L(x, t) converges to some limit L∞(x) as t goes to infinity. And as N = H +L+ I +R
converges to K , H(x, t) converges to some limit H∞(x) as well.

It remains to prove that L∞(x) = 0. Since r N (1 − N/K ) = N ′, adding the first
two equations of (2.5) and integrating with respect to t yields

H(x, t) + L(x, t) + 1
p

∫ t

0
L(x, s) ds + N (x, 0) = H(x, 0) + L(x, 0) + N (x, t).

Hence, L(x, t) ∈ L1(0, +∞) for all x , hence for all x , L∞(x) = 0. ��
We also give a threshold condition for successful establishment of the disease but

only in the nonspatial case. We thus investigate the linear stability of the nontrivial
equilibrium point (S1, S2, H, L , I, R) = (0, 0, K , 0, 0, 0) of the set of differential
equations (2.1) (with ∇. (Di∇Si (x, t)) = 0) coupled with equations (2.5).

From the Routh–Hurwitz criterion, we find the following basic reproductive rate
of the disease: R0 = Erpi , and the threshold condition is R0 > 1.

The biological interpretation is straightforward. R0 equals the number of spores rp
produced by a single colony during the duration of the infectious period i multiplied
by the probability that these spores succeed in creating a new colony.
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2.4 Numerical Experiments

An example of field data is available (Calonnec et al., personal communication) of a
powdery mildew epidemic over a 5-row vineyard. It shows that without fungicide treat-
ment the disease invades the entire vineyard within 3 months. We make a simulation
of this particular vineyard. Each row is 66 m long and 0.5 m wide, and the distance
between two rows is 1.5 m.

We choose a rectangular computing domain � such that the 5 rows are located
at the center of the domain and � is 3 times larger than the vineyard. As mentioned
before, by doing so, the Dirichlet conditions at the boundary of � describe the fact that
the spores may freely disperse out of �.

The parameters of the model as well as roughly realistic values are listed in Table
2.1. With these parameters, the basic reproductive rate of the disease in the homoge-
neous case is R0 = 10. We now explain how the values of the dispersal parameters
δa = δ2 and Di were estimated.

All spores lifted up in the atmosphere fall within half an hour so the deposition
rates δ are more or less equal to 50 day−1.

To estimate the diffusion coefficients D1 and D2, we focus on the spore dispersal
mechanism alone. Let D be a diffusion coefficient and δ a deposition rate; the density
S of spores dispersed in the atmosphere and produced by a single source obeys the
following equation:{

∂S
∂t (x, t) = ∇. (D∇S(x, t)) − δS(x, t), ∀(x, t) ∈ R

2 × R
+

S(x, 0) = Dirac(x), ∀x ∈ R
2 ,

where Dirac(x) is the Dirac function. Then the total amount of fallen spores upon the
vineyard at some point x ∈ R

2 is

d(x) =
∫ +∞

0
δS(x, t) dt,

where d(x) is the the probability density of fallen spores. It can be explicitly computed
and its variance is σ = √

D/δ. The values of D1 and D2 in Table 2.1 have been chosen
so that σ = 1 m for the short range dispersal, and σ = 20 m for the long range
dispersal.

We start the infection at t = 0 with one latent colony at the center of the vineyard
over one vine stock. For simplicity, we take an initial uniform site density for all the
vine stocks. Hence, the initial conditions are H0(x) = 4 m−2 colony sites and L0(x) =
I 0(x) = R0(x) = 0 for x in the rows except for x ∈ [−1/4; 1/4]2 where H0(x) =
I 0(x) = R0(x) = 0 and L0(x) = 4 m−2 colony site density. We also set S0

1(x) =
S0

2(x) = 0 for all x .
The duration of the simulation is 90 days.
Results of the simulation for these parameters are displayed on Fig. 2.1–2.5.

They show the proportion of diseased colony sites with respect to spatial location
P(x) = D(x)/N (x) = (L(x) + I (x) + R(x))/N (x)) 30, 60 and 90 days after the
beginning of the infection (Fig. 2.1–2.3). The epidemic first invades the central row of
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Table 2.1. Model parameters.

Parameter Description Value

δ1 short range deposition rate 50 day−1

δ2 long range deposition rate 50 day−1

D1 short range diffusion coefficient 50 m2 day−1

D2 long range diffusion coefficient 20,000 m2 day−1

r p spore production 104 spores day−1 colony site−1

F short range vs. long range dispersion 0.8

E inoculum effectiveness 0.1%

p latency period duration 10 days

i infectious period duration 10 days

K carrying capacity of the colony sites 40 m−2 colony sites

r growth rate of the colony sites 0.1 day−1

the vineyard (day 30) then it reaches the other rows until almost all the vineyard has
been contaminated at day 90.

We also display the short and long range spore density with respect to the spatial
location at day 90 in Fig. 2.4 and 2.5. Short range spores mostly stay over the row
where they are produced whereas the distribution of long range spores is more uniform.
The lower spore density in the central row is due to the fact that the corresponding
colonies have attained the postsporulating phase.

Fig. 2.1. Proportion of diseased colony sites in the vineyard at day 30.
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Fig. 2.2. Proportion of diseased colony sites in the vineyard at day 60.

Finally, we investigate the influence of the parameter F over the intensity of the
epidemic, keeping other parameters of the simulation at the same values as above. If
F = 0 only long range dispersion takes place. The proportion of diseased colony sites
is displayed in Fig. 2.6 at day 90. Compared with Fig. 2.3, the disease intensity is very
low in each row. If F = 1 only short range dispersion takes place. As shown in Fig.
2.7, the epidemic has attained its maximum intensity but only in the main part of the
central row whereas the other rows have not been contaminated.

Fig. 2.3. Proportion of diseased colony sites in the vineyard at day 90.
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Fig. 2.4. Density S1 of short range dispersal spores over the vineyard at day 90.

As pointed out in [11, 13], the rate of expansion of the epidemic needs both short
and long range dispersal of its vectors to reach an optimal value. This is even more
evident in the case of separate rows of vine: without long distance dispersal, the dis-
ease hardly reaches the rows where the initial contamination did not take place, while
without short distance dispersal, local extension of the disease is not strong enough to
ensure a high level of contamination.

Fig. 2.5. Density S2 of long range dispersal spores over the vineyard at day 90.
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Fig. 2.6. Proportion of diseased colony sites at day 90—long range dispersal only.

2.5 Conclusion

We have designed a mathematical model for a fungal disease of the vine. It takes into
account the host growth occurring during the epidemic and a dual dispersal mechanism
of the spores together with the spatial organization in rows of vine of the vineyards.

Fig. 2.7. Proportion of diseased colony sites at day 90—short range dispersal only.
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We were able to give an existence result for the solutions of the model, a description
of the long time behavior of the solutions and a threshold theorem in the homogeneous
case.

Numerical simulations show how short and long range dispersal interact with the
row structure of the vineyard to allow the epidemic to reach an optimal rate of infec-
tion.

In future work, we plan to investigate the existence of traveling waves for this kind
of model and, if they exist, to find how the different parameters of the model influence
the speed of these waves. We also plan to design a more mechanistic and biologically
realistic description of the dispersal mechanism which would allow us to compare our
results with the field data available and perform a parameter identification
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9. Segarra, J., Seger, M. J., van den Bosch, F.: Epidemic dynamics and patterns of plant dis-
eases. Phytopathology, 91, 1001–1010 (2001).

10. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice. Oxford Series on
Ecology and Evolution. Oxford University Press, Oxford (1997).

11. Shigesada, N., Kawasaki, K.: Invasion and the range expansion of species: effects of long-
distance dispersal. In: Bullock, J., Kenward, R., Hails, R. (eds) Dispersal Ecology, 350–373,
Blackwell Science, Malden, MA (2002).

12. Vanderplank, J. E.: Plant Diseases: Epidemics and Control. Academic Press, New York
(1963).

13. Zawolek, M. W., Zadoks, J. C.: Studies in focus development: an optimum for the dual
dispersal of plant pathogens. Phytopathology, 82, 1288–1297 (1992).



3

An Algorithm for Parameter Estimation in Nosocomial
Infections

Nico Stollenwerk1 and Rafael Mikolajczyk2
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Summary. Parameter estimation in nosocomial infections poses specific problems for estima-
tion techniques. The mathematical description of the spread of nosocomial infections incor-
porates transmission as a dynamic part; the outcome is discrete and the amount of available
information is usually small. We transfer an estimation technique developed previously for
plant epidemics to nosocomial infections and demonstrate its application to a data set related
to methicillin-resistant Staphyloccocus aureus.

Key words: Nosocomial infections, parameter estimation, eta-ball (η-ball) method.

3.1 Introduction

Estimation of parameters with dynamic dependency between variables in stochastic
processes is lacking standard established techniques. In many cases analytic expres-
sions for the likelihood can only be obtained under crude simplifying and hence un-
realistic assumptions. In other cases analytic expressions cannot be obtained at all.
A technique based on minimizing the Euclidian distances between observations and
multiple simulations was described for plant epidemics and animal infections [1, 2].
The transmission processes of infections within hospitals is another field for a possible
application of this methodology.

There is an increasing interest in the epidemiology of pathogens that are resistant
against antibiotics and their spread in hospitals [3–7]. Mathematical modelling was
used for the estimation of the importance of different transmission routes relative to
each other and for the estimation of the impact of different interventions on the spread
of the infection [8–10].

We obtained clinical data on methicillin-resistant Staphylococcus aureus (MRSA),
which is one of the most important multiresistant pathogens [11, 12]. We use the data
for a demonstration of the application of the estimation algorithm to nosocomial trans-
mission data and seek to estimate the prevalence of MRSA in the patient population at
admission and the transmission probability within the hospital.
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In an intensive care unit the number of patients with MRSA per week was recorded
over a period of 40 weeks. During this period at most seven patients with MRSA were
observed at a time. We develop a master equation for a stochastic transmission model
for MRSA within this intensive care unit. We use this equation for the generation
of random realizations of the transmission model. The fit between simulations and
observations is measured with the η-ball method described in the next section. The log
likelihood function is used to identify best fit values and their confidence intervals.

We seek to estimate two parameters of the transmission model: the baseline preva-
lence of MRSA in patients at admission fraction ρ and the transmission rate β. In
separate estimations of each parameter with the other being fixed, clear log likelihood
maxima within the considered parameter interval could be seen, but in a joint esti-
mation the transmission parameter approached the low boundary of zero. Given this
result, the observed aggregation of MRSA cases in the intensive care unit could be
explained by a random fluctuation in the admission process solely. This counterintu-
itive result may be easily explained by the omission of previous periods of observation
where no outbreaks were recorded, but these data were not available. We use the data
solely for the presentation of the potential usability of the η-ball method and we do not
claim any substantial interpretation of the results.

3.2 Parameter Estimation with the ηηη-Ball Method

In a previously considered epidemiological problem several data sets were given (Fig.
3.1 a) which were compared to simulations from a suitable model with three model
parameters (Fig. 3.1 b) [1].

A likelihood function estimator was evaluated numerically (Fig. 3.2) by comparing
how many simulation trajectories fall into an η-neighborhood (of Euclidian distance,
hence η-ball) of the data when varying model parameters, here fixing two parameters
and varying one. The curve shows the results for various η-values. The results compare
well with analytic results obtained from that model for the likelihood based on the
evaluation of a matrix exponential function [1].

a)

 

     

b)

 

     

Fig. 3.1. a) Data for a previously considered system with three parameters. b) Simulations for a
previously considered system with three parameters.
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Fig. 3.2. Empirical likelihood curves for the parameter r for various values of η-neighborhoods.
The maximum does not change much with varying η, showing that the estimate for the parameter
is rather robust.

Varying two parameters simultaneously (Fig. 3.3) shows typical features of a non-
linear parameter estimation problem: The maximum does not have just an ellipsoid
shape as in typical multivariate Gaussian estimations, but around the maximum there
is a curved region with a rather shallow decline.

In similar data sets from the above-mentioned plant scientific experiments we
sometimes found a maximum for either unrealistically large values of one parame-
ter or an unrealistically high value of the other parameter, when adding or subtracting
a single data point to/from the estimation.

We will now apply the η-ball method to observations regarding records of colo-
nization with a methicillin-resistant Staphylococcus aureus in an intensive care unit
(ICU), using a suitable stochastic model.

 

 

 

 

Fig. 3.3. Parameter estimation for two parameters in a previously considered model.
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3.3 Methicillin-Resistant Staphylococcus aureus

MRSA is a common name for several strains of Staphyloccocus aureus, which devel-
oped a resistance against methicillin and usually some other antibiotics [13]. Several
phenotypes and, among them, genotypes with several clones exist [14], but new MRSA
cases are unlikely to result from the development of the resistance de novo [15]. Al-
though an increased incidence of community acquired MRSA has been observed in
some places [16,17], at present MRSA is mainly a hospital transmitted infection [18].
In patients with compromised immunity the colonization can be fairly persistent and
therefore MRSA can be reintroduced to hospitals by these patients. Within hospitals,
because of the selection advantage in comparison with nonresistant strains and several
medical interventions which increase the risk of MRSA acquisition, transmission can
occur, depending on the level of precautions taken.

The number of MRSA cases detected with screening of all patients in an ICU with
14 beds during a period of 40 weeks was recorded [12]. There was no screening at
admission to this ward and therefore the prevalence at admission has to be estimated
from the data. During the stationary stay, no treatment for MRSA was offered and
standard hygienic procedures were used. Although transmissions in the ICU most often
occur indirectly via the hands of the medical staff instead of a direct patient-to-patient
transmission, we use a single parameter for the description of the transmission process.
The data are shown in Fig. 3.4. The formal model is described in the following sections.

3.4 Parameter Estimation for MRSA Using the SIB-Model

To describe the spreading of MRSA in a hospital we model the epidemiology by what
we call an SIB-model, explained in the next subsection. Running many simulations
with the stochastic version of the SIB-model we are able to perform parameter estima-
tion with the η-ball method as previously described. Finally, we can perform a joint
estimation of both parameters.

 

 

 

 

 

  

Fig. 3.4. Data from an intensive care unit in a hospital in Bielefeld over 40 weeks. Note that
these data are recorded weekly whereas the simulation data are on a continuous scale due to the
Gillespie algorithm. The time unit is one week.
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3.4.1 Epidemic Model: SIB

With N denoting the total number of beds in a hospital station, of which S denotes beds
with susceptible patients, I those infected with MRSA, and B the number of empty
beds, such that S + I + B = N at all times, the dynamic variables are S, I, B. An
ordinary differential equation (ODE) model for the system would be

d S
dt

= −β
I
N

S + µ(1 − ρ)B − νS

d I
dt

= β
I
N

S + µρB − ν I (3.1)

d B
dt

= −µB + ν(S + I ),

where the transitions are explicitly given as follows: β(I/N )S is the infection of sus-
ceptible patients with MRSA through contact with infected patients. νS are the sus-
ceptible patients who are discharged from hospital, and ν I the MRSA-infected patients
who are released from hospital, such that ν(S + I ) beds become free again. Free beds
can be filled with µB, from which a proportion of ρ patients already have the MRSA,
hence µρB new infected patients come from the outside of the hospital into the hos-
pital station under investigation, whereas µ(1 − ρ)B new patients coming into the
hospital are uninfected with MRSA.

The reaction scheme for transitions is given by

S + I
β−→ I + I

S ν−→ B
I ν−→ B
B

µρ−→ I

B
µ(1−ρ)−→ S

and can be translated into a stochastic model as shown below.

3.4.2 Stochastic Modelling

We include demographic stochasticity into the description of the epidemic. For the ba-
sic SIB-model we consider the dynamics of the probability p(S, I, B, t) of the system
to have S susceptibles, I infected, and B empty beds at time t , which is governed by a
master equation [19, 20].

For state vectors n, here for the SIB-model we have n = (S, I, B), and the master
equation reads

dp(n)

dt
=

∑
ñ �=n

wn,ñ p(ñ) −
∑
ñ �=n

wñ,n p(n) (3.2)
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with transition probabilities corresponding to the ones described above for the ODE
system. Here the rates wñ,n are

w(S−1,I+1,B),(S,I,B) = β
I
N

S

w(S−1,I,B+1),(S,I,B) = νS
w(S,I−1,B+1),(S,I,B) = ν I (3.3)
w(S,I+1,B−1),(S,I,B) = µρB
w(S+1,I,B−1),(S,I,B) = µ(1 − ρ)B

from which the rates wn,ñ follow immediately as

w(S,I,B),(S+1,I−1,B) = β
I − 1

N
(S + 1)

w(S,I,B),(S+1,I,B−1) = ν(S + 1)

w(S,I,B),(S,I+1,B−1) = ν(I + 1) (3.4)
w(S,I,B),(S,I−1,B+1) = µρ(B + 1)

w(S,I,B),(S−1,I,B+1) = µ(1 − ρ)(B + 1) .

This formulation defines the stochastic process completely.
Initial parameter values (as rough guesses given by experienced medical person-

nel) for the simulations are as follows. ν := (1/1.5) per week, since patients stay on
average 10 days in the station. µ := (1/0.2), since beds stay empty on average for
one-fifth of a week, between one and two days. ρ := 0.02, since 2% of the incoming
patients are already infected with MRSA. β := 0.5 can only be guessed to obtain a
realistic number of infected during the simulation period of 52 weeks. In the simula-
tions a transient of several weeks was discarded before data were sampled, to obtain
stationary values for S and B. This was achieved to a great extent, as can be seen in
Fig. 3.5.

Simulations were performed with the Gillespie algorithm [21–23], essentially us-
ing exponential waiting times between events, where events are transitions into other
states.

a)

 

 

 

 

 

 

b)
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Fig. 3.5. a) Weekly number of MRSA-infected in a simulation of length one year, b) weekly
number of susceptibles, and c) weekly number of free beds on the hospital station under simu-
lation.
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Fig. 3.6. Data for 40 weeks of observation.

3.4.3 Comparing Data and Simulations

We now apply the η-ball method to the MRSA data set described above. As a first
step we compare the data (Fig. 3.6) with many simulations (Fig. 3.7) for one set of
parameters.

Looking at time steps, e.g., t1 = 35, the 35th week, and t2 = 36, with I (t1) = 3
and I (t2) = 5, shows the data set a = s (the full dot) surrounded by the cloud of
simulations (Fig. 3.8). The simulation cloud is essentially an estimation of the joint
probability at the two consecutive time steps.

For a full parameter estimation we have to obtain the joint probability estimate
for all 40 time steps, and compare it with the data set, and then vary the parameters
under investigation. As a measure of proximity we use the Euclidian distance between
the data point and simulation points in the 40 dimensional space defined by 40 time
steps for the data. The number of simulation points in a neighborhood with radius η is
counted. This is the basis for the term “η-ball method.”

 

 

 

 

 

  

Fig. 3.7. 10 simulations, sampled at the same time points as the observed data.
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Fig. 3.8. Data (full dot) compared with 200 simulations (crosses). The simulations with the ini-
tial parameters can describe the data well at these two time slices, since the data dot is surrounded
by some simulation crosses.

3.4.4 Measuring ηηη-Ball Distances

The number of simulation points in an η-ball around the data set in a high-dimensional
space gives an estimation of the quality of the parameter set used. An appropriate η size
has to be chosen from first inspection. In Fig. 3.9 the number of points in the ball of
size η around the data set is counted for various values of η, for one set of parameters,
here the parameter set of first guess. From this curve we choose a value of η = 15 for
the variation of parameters that now follows.

3.4.5 Variation of βββ and Joint Parameter Estimation

In Fig. 3.10 we present results for parameter estimation where one parameter was fixed
at a specified value and the other one was estimated using the η-ball method. In the first
case β was estimated using the starting value of 0.02 for the prevalence at admission.
In the second case the result from the first estimation for β (0.8) was used as a fixed

 

 

Fig. 3.9. Ratio of points inside the η-ball as function of η. 200 simulations are used.



3 An Algorithm for Parameter Estimation in Nosocomial Infections 31

a)

 

   

b)

 

 

Fig. 3.10. a) Variation of β with fixed ρ = 0.02, η = 15. 200 simulations for each β-value were
used. The maximum is reached at β = 0.8. b) Variation of ρ with fixed β = 0.8, η = 15. 200
simulations for each ρ-value were used.

parameter value. The location of the maximum at about 0.03 was slightly higher than
the starting parameter of 0.02. Both estimations lead to a clear maximum for a middle
range value of the estimated parameter.

In Fig. 3.11 we show the joint estimation of β and ρ. Very small values of β have
a high likelihood of describing the data. We suspect that this result is a consequence of
fitting the model to a relatively short chain of data. The noise on the estimates is quite
high due to the relatively small number of simulations used for comparison with the
sparse data.

The contour plot Fig. 3.11 shows the typical features of nonlinear parameter es-
timation: There is a curved maximal region, which has a high likelihood for small
ρ-values combined with large β-values as well as a high likelihood for large η-values
combined with small ρ-values (see also Fig. 3.3 from the previous study with a pro-

 

 

 

 

 

 

Fig. 3.11. Parameter estimation for the MRSA model for two parameters from data obtained at
an intensive care station in Bielefeld hospital.
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nounced curved maximum area). The experience with the previous plant-scientific
problem tells us that the maximum of the likelihood might be very sensitive to as
little additional information as a single data point. Confidence intervals around one or
the other parameter do not capture this feature well, since the high values of likelihood
around the maximum are located on a nonlinear curve in parameter space (see Fig.
3.3). For a rigorous model selection (as, e.g., performed by Stollenwerk, Drepper and
Siegel [24]) more data points are definitely needed. Such data sets could be obtained
through a longer period of observation.

3.5 Summary and Discussion

We have presented a model for the spreading of MRSA in an ICU of a hospital and have
estimated the crucial transmission parameters via a numerical simulation method using
our model. The maximum of the likelihood was obtained from our present data at zero
transmission parameter and a finite import ratio. However, the present data set is very
limited and the likelihood sensitive to minor changes, as demonstrated in a previous
work. Hence, any substantial findings have to be obtained in future applications of this
method to larger data sets.

Recently, evolutionary aspects of pathogen strains have been studied (for MRSA
for example see [15]) and can lead to new stochastic effects [25]. In such situations
parameter estimation can be performed along the lines described by Jansen et al. [26].
Future research may combine stochastic strain dynamic models with the parameter
estimation demonstrated in this paper.
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Summary. Many species possess defences (such as toxins) against predator attack which can-
not be observed by the predator prior to attack, but which it might be beneficial for the predator to
avoid. Often, such animals are brightly coloured or have some other way of signalling that they
are defended (aposematism). In one of our papers we examined the evolution and maintenance
of defence and conspicuousness, the brightness of the defence signal, in such prey species using
a game theoretic model. In this chapter we develop the model further and in particular expand
on the more theoretical results with examples demonstrating the type of solutions which can oc-
cur. We categorise eight possible configurations of solution states for simple solutions. Finally
there is another class of solutions possible where there is strong between-individual variation
in appearance between conspicuous, poorly defended prey, and we demonstrate one example of
this complex solution.

Key words: ESS, secondary defence, conspicuousness, aversiveness, coevolution.

4.1 Introduction

Prey species possess various types of defence against predators. Some of these de-
fences are highly visible, such as sharp spines or strong legs, indicating fast running
speed. Other defences are non-visible, the most prominent example being the posses-
sion of dangerous or unpalatable toxins. Some potential prey with non-visible defences
seek not to hide from their predators, but rather advertise their anti-predatory defences
by bright signals: gaining by deterring attacks, rather than avoiding them through
adopting a cryptic appearance; a cryptic individual is one that adopts a colouration
or patterning which makes it hard to see. The existence of bright signals of defence
(so-called aposematic signals) was seen by Darwin and Wallace as an interesting chal-
lenge to evolutionary theory, and remains so to this day (Chapter 8, Ruxton et al. [1]).
For algebraic or computational simplicity, most theories on the evolution of such sig-
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nals assume that the defence itself is a fixed trait throughout the evolutionary process.
This approach is difficult to justify biologically, and so an approach that considers
the coevolution of both investment in defences and external appearance of individuals
to potential predators is required. Furthermore, the theoretical literature on aposema-
tism has been strongly focussed on how aposematic display could evolve in the first
instance, ignoring the broader questions about how conspicuous a display should be-
come, and how much should be invested in costly secondary defences. We shall use
the term conspicuousness to mean the brightness of the signal given to the predator.
The minimum possible level of conspicuousness will be referred to as crypsis.

In [2] we examined the evolution and maintenance of defence and conspicuous-
ness in prey species using a game theoretic model (see also [3]). An important earlier
model [4] considers a group of naive predators who initially attack all individuals, but
learn to avoid unpalatable types over time. Our model considers a group of preda-
tors in equilibrium (i.e., having fixed proportions of the predatory population at all
levels of learning), where individuals can both raise and lower their aversiveness to
given appearances (see [5]). We investigated the interaction between defence and con-
spicuousness in a theoretical way, with general functions, which resulted in a number
of predictions and conjectures, but which required some assumptions. In this chapter
we adapt the model to make the analysis more tractable and examine some example
functions in detail, showing that for these functional forms our predictions hold and
providing a much clearer picture of the relationship between solutions and specific pa-
rameters. In [2] and in the following sections, we shall use the term toxin to represent
non-visible defences, although the results are more widely applicable.

4.2 The Original Model

In [2] we considered a single population of prey individuals, where each prey indi-
vidual i is described by three parameters (ti , ri , θi ). The parameter ti is the toxicity of
individual i , with increasing values indicating increasing toxicity, and ti = 0 indicating
minimal investment in toxicity. The parameter ri describes the conspicuousness of in-
dividual i , increasing values of ri indicate increasing conspicuousness, with ri = 0 in-
dicating maximum crypsis. The final parameter θi also describes the appearance of the
individual, but such that changes in θ affect the appearance of the individual without
affecting its conspicuousness. Thus two prey types can be equal in conspicuousness
against the background (have identical r values) but be very different in appearance
from each other (have different θ values). We were interested in finding the evolution-
arily stable values of ti , ri , θi . The parameters and functions used in the model are
summarised in Table 4.1.

We assumed that F is a decreasing function of t , as is K (high toxicity individuals
may be released unharmed by a predator which finds them distasteful). There is an-
other way that toxicity can affect survivorship, namely by influencing the probability
Q(I ). Q(I ) declines with the aversiveness of the experiences that the predator has pre-
viously had (and subsequently remembered) on attacking similar-looking prey items,
I . Positive values of H indicate an aversive experience; the higher the toxicity, the
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Table 4.1. The parameters and functions of the model.

Parameter Meaning

t the toxicity of an individual
r the level of conspicuousness of an individual
θ the patterning parameter of an individual
N the size of the prey population
n the size of the predator population
F(t) the fecundity of an individual of toxicity t
K (t) the probability that an individual of toxicity t dies in an attack
H(t) the aversiveness of an individual of toxicity t
tc the toxicity for which H(tc) = 0
D(r) the rate at which individuals of conspicuousness r are detected
L(r) the rate at which r -individuals are detected and recalled
S(x) the similarity function of individuals differing in appearance by x
I the level of aversive information of an individual
Q(I ) the probability that a predator will attack an I -individual
a the average relatedness of individuals in the population
λ the rate of death of individuals not due to predation

more positive H and so the more aversive the experience. If an individual’s investment
in toxins is low then the experience of attacking it may not be aversive at all, indeed
the predator may treat it as a beneficial experience. We described such situations by a
negative value of H .

D (the rate at which an individual is encountered by a predator multiplied by the
probability that it is detected when it encounters it) is an increasing function of r . Note
that even maximally cryptic prey have some chance of being detected (i.e., D(0) > 0).
L too is an increasing function of r . If the predator has perfect recollection of all
encounters then L = D, which is what we shall assume here.

The function S(ri , θi , r j , θ j ) is a measure of the visual similarity between indi-
viduals i and j . S increases as the points (ri , θi ) and (r j , θ j ) get closer together; in
particular in [2] and this chapter we treat S as a univariate function of the Euclidian
distance between the two species. S(0) is thus the similarity between two identical
individuals and is given the maximum value 1. On encountering individual i , the avail-
able information to the predators (scaled by the total number of predators n) on the
aversiveness of that prey item (denoted Ii ) was calculated as follows:

Ii = 1
n

N∑
i �= j

L(r j )H(t j )S(ri , θi , r j , θ j ).

We assume that any changes in the prey population are mirrored in the predator
population, so that the ratio N/n remains constant. It should be noted that as the pop-



40 M. Broom, G.D. Ruxton, and M.P. Speed

ulations increase, it could be the case that the functions D and L increase, so that
changing population size may well complicate our analysis. We, rather, envisage a sit-
uation where the population has reached an equilibrium size so that such changes do
not occur. Ii is thus the sum over all individuals of the rate at which any given individ-
ual is encountered and remembered multiplied by the aversiveness of that individual
and a measure of the similarity of that individual to our focal individual. Ii is larger
the more aversive similar-looking individuals to our focal individual are. The payoff to
such an individual is

P(ti , ri , θi ) = F(ti )
λ + D(ri )K (ti )Q(Ii )

.

Q(I ) is a decreasing function of I , so that if I is large and positive there is little
chance of the individual being attacked, and if it is large and negative it is almost
certain to be attacked. The parameter a affects the model through the information
function Ii (see below).

We compared the fitness of a small mutant group with values (t, r, θ) against that
of the majority of the population with values (t1, r1, θ1). The payoff function for such
a small group will be written P(t, r, θ; t1, r1, θ1). The mutant group made up a signif-
icant proportion of individuals in their own locality a, but a negligible proportion of
the total population. This gave the information function of the mutant group

I = (aL(r)H(t) + (1 − a)L(r1)H(t1)S(r, r1, θ, θ1))N/n

and that of the majority as L(r1)H(t1)N/n. The conditions for evolutionarily stable
strategies (ESSs), where no such mutant group could invade, were as follows. The
population described by (t1, r1, θ1) is in equilibrium in the direction of t , for t1 > 0, if

∂ P(t, r, θ; t1, r1, θ1)

∂t t=t1,r=r1,θ=θ1
= 0. (4.1)

(If t1 = 0 then it is in stable equilibrium if the above expression is negative.) This
value t1 > 0 was stable if the following condition was satisfied:

∂2 P(t, r, θ; t1, r1, θ1)

∂t2 t=t1,r=r1,θ=θ1
< 0. (4.2)

It was shown under certain assumptions that this value of t, t (r), was unique and
increased with r . Thus we had a unique value of t which was stable given a particular
value of r .

The derivative of the payoff function with respect to r was shown to be discontin-
uous at r = r1. This meant that any given value of r1 was in equilibrium if and only
if it was stable. Thus for a stable pair, we needed conditions (4.1) and (4.2) met at the
same time as the stability condition for r . For r = 0 the condition was that the right-
hand side derivative of P(t, r, θ; t1, 0, θ1) with respect to r at r = 0 is negative. For
r > 0 the condition became that the left-hand side derivative of P(t, r, θ; t1, r1, θ1)
with respect to r at r = r1 is positive (we also needed the right-hand side derivative to
be negative, but this was a weaker condition).
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Conditions (4.1),(4.2) and the appropriate condition for the stability in the r -
direction being satisfied was necessary and sufficient for any (t, r) in the vicinity of
(t1, r1) to be unable to invade. It was shown that there was generally an infinite number
of such ESSs, and we hypothesised that these would often be in the range r > R, for
some constant R.

We refer to the above solutions as point solutions, because we have a monomorphic
solution with all individuals in the population having identical parameter values. We
do not specify a value for the parameter θ as any value of θ will give an ESS; it does
not matter which θ is chosen, as long as all individuals choose the same value (any
that choose a different value will do worse). It was also hypothesised that there could
be non-point solutions, defined by individuals with different values of r and θ , where
C(r) is the density of the population of conspicuousness r , the density is uniform
over θ and the solution satisfies the following conditions. Such solutions needed to
satisfy C(r) = 0 r ≥ rm for some value of rm and the two following equations.
The first equation is the condition for the population to be in equilibrium (where all
have identical payoffs), and the second gives an expression for the information function
I (w) needed in the first. We have as yet not been able to prove stability for this solution.

D(w)Q(I (w)) = D(0)Q(I (0)) w ∈ (0, rm), (4.3)

I (w) = 1
n

H(t1)
∫ rm

0
L(r)C(r)

∫ 2π

0

1
2π

S
(
(w2 + r2 − 2wr cos(θ))0.5)dθdr (4.4)

4.3 The Adapted Model and ESS Conditions

In this chapter we use the same model as in [2] but make two simplifying assumptions,
which may well hold in many cases. We allow perfect recollection of encounters, so
that L(r) = D(r) and we disregard the possibility of mortality not due to predation,
λ = 0. This leads to the payoff function

F(t)
D(r)K (t)Q(I1)

, (4.5)

where the information term I1 = N H(t1)D(r1)/n. The key ESS conditions from
above can now be rearranged as follows.

The equilibrium value of t is given by

F ′(t1)
F(t1)

− K ′(t1)
K (t1)

− a
I1 Q′(I1)

Q(I1)

H ′(t1)
H(t1)

= 0 (4.6)

if the root of the equation t1 is positive (otherwise t1 = 0), which is stable if

− F ′′(t1)
F(t1)

+ K ′′(t1)
K (t1)

+ 2a
K ′(t1)
K (t1)

I1 Q′(I1)

Q(I1)

H ′(t1)
H(t1)
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+ a2 Q′′(I1)

Q(I1)

(
I1

H ′(t1)
H(t1)

)2
+ a

I1 Q′(I1)

Q(I1)

H ′′(t1)
H(t1)

> 0. (4.7)

Maximum crypsis (r = 0) is stable if

D′(0)

D(0)
+

(
a

D′(0)

D(0)
+ S′(0)(1 − a)

)
I1 Q′(I1)

Q(I1)
> 0 (4.8)

and r > 0 is stable if

D′(r1)

D(r1)
+

(
a

D′(r1)

D(r1)
− S′(0)(1 − a)

)
I1 Q′(I1)

Q(I1)
< 0. (4.9)

4.4 Results

We shall use the following example functions in the above conditions to find the ESSs
for our model. These have been chosen to represent plausible real situations and main-
tain mathematical tractability.

F(t) = f0e− f t , K (t) = k0/(1 + kt), H(t) = t − tc,

S(x) = max(1 − vx, 0), Q(i) = min(1, q0e−qi ).

We will keep the detection function D(r) in general form. In the analysis that
follows, we assume that I1 > log(q0)/q, i.e., the level of information of toxicity is not
sufficiently large and negative to make Q(I1) = 1, so that the predators have some
reluctance to attack prey.

To find the equilibrium t we substitute into (4.6)

− f + k
1 + kt

+ aiq
t − tc

= 0 ⇒ k
1 + kt

+ aq N D(r)

n
= f

⇒ t (r) = 1
f − aq N D(r)/n

− 1
k

(4.10)

(if this is negative, then t (r) = 0). Since D(r) increases with r , this means that there
is a unique value of t (r) for every r , which increases as r does, provided that a > 0.
This increase is very slight if the level of relatedness in the population is small.

To check stability we substitute into (4.7)

− f 2 + 2k2

(1 + kt)2 + 2ak
1 + kt

q D(r)N
n

+ a2q2
(

N D(r)

n

)2
+ 0 > 0.

Using equation (4.10) above this gives k2/(1 + kt)2 > 0 so that the solution is always
stable.
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The stability condition for r = 0 is found by substituting into (4.8), giving

1 − q N
n

(t − tc)D(0)

(
a − (1 − a)v

D(0)

D′(0)

)
> 0. (4.11)

The stability condition for r > 0 is found by substituting into (4.9), giving

1 − q N
n

(t − tc)D(r)

(
a + (1 − a)v

D(r)

D′(r)

)
< 0. (4.12)

If t (r) < tc for all values of r , then inequality (4.12) is never satisfied, so that there
can be no solution with r > 0. That is, if prey are perceived by the predators as being
beneficial to them, then the prey should be maximally cryptic. If t (r) > tc for some r ,
then this is true for all r larger than this value. Such a solution occurs if

dm = lim
r→∞ D(r) >

n
aq N

(
f − k

1 + ktc

)
, (4.13)

where we assume that D(r) is bounded above by dm , so that there is an upper limit to
the encounter rate for individuals, irrespective of how conspicuous they are. Provided
that D(r)/D′(r) does not decrease with r (and for any sensible function this is likely to
be true) then if stability in r is satisfied at some value of r , it is for all larger values, so
that solutions are of the form r > R. If there is a maximum value of r allowable there
may be no such solution, otherwise if (4.13) is satisfied such a solution is guaranteed.

There are eight conceivable configurations of point solutions (collections of all
solutions for a given set of parameters; this includes the case where there are no such
solutions). There can either be a set of aposematic solutions r > R or not, combined
with each of four possibilities for r = 0, namely a) t (0) = 0 and so there is no
investment in defence, b) 0 < t (0) < tc and so there is some investment in defence but
insufficient to make the prey aversive, c) tc < t (0) and so there is sufficient investment
in defence to make the prey aversive, and d) no solution. From (4.10) the conditions
for (a)–(c) are

(a)
1

f − aq N D(0)/n
− 1

k
< 0 ⇒ t (0) = 0

(b) 0 <
1

f − aq N D(0)/n
− 1

k
< tc ⇒ 0 < t (0) < tc

(c) tc <
1

f − aq N D(0)/n
− 1

k
⇒ tc < t (0).

For each of the above cases, for the point solution to be stable (in the r direction)
we also need equation (4.11) to be satisfied. No solution at r = 0 occurs if equation
(4.11) is not satisfied for whichever of the above would be the evolutionarily stable
value.

Supposing that r is not bounded above, then there is a stable set of r > R solutions
if (4.13) is satisfied, i.e.,
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Fig. 4.1. ESS configurations using our example functions with A1 = A2 = k = d0 = tc =
1, dm = 1 + v. Which of the four types of solution occurs at r = 0 is indicated by one of a–d,
and the presence (absence) of aposematic solutions is indicated by A (N).

1
f − aq Ndm/n

− 1
k

− tc > 0.

We shall now demonstrate that all eight combinations are possible.
If a is sufficiently small, the stability condition reduces to

1 + A1v(t − tc) > 0

for A1 = q N (1 − a)D(0)2/nD′(0). Thus depending on the size of v, if the evolution-
arily stable value is less than tc stability may or may not occur, but if it is larger than
tc stability occurs.

The evolutionarily stable values depend on the relative size of the expression
1/( f − A2d0) − 1/k compared to 0 and tc, where d0 = D(0) and A2 = aq N/n,
from above. There is a stable set of r > R solutions if 1/( f − A2dm) − 1/k > tc.

Consider an example where A1 = A2 = k = d0 = tc = 1. Using the above
expressions means that condition (a) occurs if v < 1, 2 < f ; (b) occurs if v < ( f −1)/

(2 f − 3), 1.5 < f < 2; (c) occurs if f < 1.5; (d) occurs if v > 1, 2 < f or
v > ( f − 1)/(2 f − 3), 1.5 < f < 2.

There is a stable set of aposematic solutions if dm > f − 0.5 (we know that
dm > d0 = 1). In Fig. 4.1, where we set dm = 1 + v and vary the two remaining free
variables f and v, we can see seven of the eight possible combinations.

For case c, we automatically have a stable set. However, if r has a maximum value
rmax then such a set need not occur. Such a maximum rmax will yield no such stable
set if inequality (4.11) holds and inequality (4.12) does not hold at r = 0, so that we
have the following inequality:

1 − q N
n

(t − tc)D(0)

(
a + (1 − a)v

D(0)

D′(0)

)
> 0.

This will hold for values of v below a critical value provided t > tc. We can thus
have all eight possibilities.
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4.5 Non-Point Solutions

Suppose that there is no point solution at maximum crypsis (r = 0). We look for a
solution where the population is dispersed over a range of appearances, as conjectured
in [2]. In particular, we seek one where density is uniform over θ , has density in the r
direction of C(r), with C(rm) = 0 at some critical value and∫ rm

0
C(r)dr = N . (4.14)

Substituting into (4.4) we obtain the following expression for I (w):

I (w) = H(t1)
1
n

∫ rm

0
D(r)C(r)Y (r, w)dr, (4.15)

where

Y (r, w) =
∫ 2π

0

1
2π

(
1 − v(w2 + r2 − 2wr cos(θ))0.5

)
dθ. (4.16)

We shall first try to obtain an expression for Y (r, w), and then consider an approxima-
tion. Choosing v = 1 we get

Y (r, w)

= 1 −
∫ π

0

1
2π

(
(w2 + r2 − 2wr cos(θ))0.5 + (w2 + r2 − 2wr cos(θ + π))0.5)dθ

= 1 − 1
2π

(w2 + r2)0.5
∫ π

0

(
1 − 2wr cos(θ)

w2 + r2

)0.5
+

(
1 + 2wr cos(θ)

w2 + r2

)0.5
dθ

= 1 − (w2 + r2)0.5

×
(

1 − (w/r)2

4(1 + w2/r2)2 − 15(w/r)4

64(1 + w2/r2)4 − 105(w/r)6

256(1 + w2/r2)6 . . .

)
. (4.17)

We shall consider the simplest non-trivial approximation to Y (r, w) namely,

Y (r, w) ≈ 1 − (w2 + r2)0.5.

We thus have the equation

I (w) ≈ 1
n

H(t1)
∫ rm

0
D(r)C(r)(1 − (w2 + r2)0.5)dr. (4.18)

We need to satisfy the condition (4.3) that

D(w)Q(I (w)) = D(w) exp(−q I (w)) = k
⇒ D′(w) exp(−q I (w)) − D(w)q I ′(w) exp(−q I (w)) = 0

⇒ d
dw

(I (w)) = D′(w)

q D(w)
= (−H(t1))

1
n

∫ rm

0
wD(r)C(r)(w2 + r2)−0.5dr.

(4.19)



46 M. Broom, G.D. Ruxton, and M.P. Speed

Note that since the right-hand term is positive and so is the integral, then there can
only be a solution if H(t1) < 0 so that the equilibrium toxin level is insufficient to be
aversive.

To find a solution that satisfies (4.19) above, we need

d
dw

log(D(w)) ∝ w

∫ rm

0
D(r)C(r)(w2 + r2)−0.5dr.

We first look for a solution where rm = 1 and D(r)C(r) = 1 − r :∫ rm

0
D(r)C(r)(w2 + r2)−0.5dr =

∫ 1

0

1
(w2 + r2)0.5 − r

(w2 + r2)0.5 dr

⇒ d
dw

log(D(w)) = B1w(log(1 + (1 + w2)0.5) − log(w) − (1 + w2)0.5 + w)

⇒ log(D(w))

=
∫

B1w(log(1 + (1 + w2)0.5) − log(w) − (1 + w2)0.5 + w)dw

= B1

(
B2 + w3

3
− (1 + w2)1.5

3
+ w2

2
log

(
1
w

+
√

1 + 1
w2

)
+ 1

2
(1 + w2)0.5

)
.

Thus

D(w) = exp
[

B1

(
B2 + w3

3
− (1 + w2)1.5

3

+w2

2
log

(
1
w

+
√

1 + 1
w2

)
+ 1

2
(1 + w2)0.5

)]
(4.20)

and so

C(w) = (1 − w)/ exp
[

B1

(
B2 + w3

3
− (1 + w2)1.5

3

+ w2

2
log

(
1
w

+
√

1 + 1
w2

)
+ 1

2
(1 + w2)0.5

)]
.

(4.21)

We can see that D(w) is increasing in the range (0,1), and so C(w) is decreasing
in that range, with C(1) = 0. The constant B1 is a specific number which satisfies
equation (4.18), and B2 is a constant which attains its value when the integral of C(w)

from 0 to 1 is N . Thus for the given values of the example functions, including the
complicated function D(w), we have a non-point solution of the envisaged type.
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4.6 Discussion

In this chapter we have developed the model of [2] to try to clarify and elaborate on
some important results from that paper. In particular we have shown for our chosen
functions that there is an equilibrium level of toxicity t (r) for any given appearance
r , that this level increases with r (as predicted by [6]; the strength of this relationship
depends upon the relatedness of individuals amongst other factors) and that stability
in the direction of t always occurs. The set of point ESSs thus falls into one of eight
categories, each of which is possible. In particular it is possible for heavily defended
prey to be cryptic in our model. We have also demonstrated a case where the com-
plex non-point equilibrium hypothesised in [2] occurs, and have shown the form of the
solution. In summary we have shown that all of the solutions from [2] occur for rea-
sonable parameter values and confirmed that the hypothesised results do indeed occur.
We believe that such results are likely to generalise to most reasonable forms.

The theoretical literature concerning secondary defences is divided on the extent to
which we can expect cryptic prey to be defended. Both [4] and [7] suggest that when
predation pressure is low, cryptic prey should not invest in secondary defences. Others
(e.g., [8], [9], [10], [11], [12]) contend that cryptic prey can be highly defended. One
important consequence is that aposematic coloration is not necessarily optimal for prey
that possess substantial defences.

From a practical point of view, the most important development of this chapter
is the ability to quantify the relationship between parameter values and the range of
possible solutions, as exemplified by Fig. 4.1. This should allow effective testing of
the theory by studying gradients of appropriate parameter values, either in compara-
tive analyses such as [6] or by means of manipulative laboratory experiments utilising
species with short generation times. Fig. 4.1 also makes clear that alternative strategies
can exist, with the ESS selected by a given system depending not simply on current
parameter values, but also on the evolutionary history of the population. There is a
challenge to empiricists here to explore whether there is any evidence for such alter-
nate steady states in nature.

At present expectation in many theoretical models is that pro-apostatic selection
favours diversity in edible, undefended prey populations but that as soon as there is
any level of defence selection becomes anti-apostatic, favouring uniformity ([13]).
However we indicate here that one class of stable evolutionary result is a combination
of some moderate investment in secondary defence with high levels of diversity in
the prey appearance. Evidence for such non-point solutions in the natural world is
currently lacking, however this may be due to a lack of focussed study. The type of
exploration typified by Fig. 4.1 can allow clear predictions to be made about necessary
circumstances for the maintenance of non-point solutions and so allow more focussed
exploration of the natural world for empirical support for this predicted outcome of
evolution.

We have not explored the dynamics of our model, but they could be complex. It
is likely that when there is a unique cryptic ESS then this will be globally stable,
but when there are aposematic ESSs, there are an infinite number of them, and the
situation will be more complicated. It is not clear that all ESSs will be reachable by
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repeated localised mutations. Perhaps starting from crypsis, the lower bound R will
always be attained. It is also possible that there will be a non-point solution as well as
the aposematic point solutions, so that none of these aposematic ESSs can be reached
from crypsis. It is unclear what dynamic behaviour will occur from a starting point
where r > 0. Note that close to any point solution evolution in the direction of r is
stronger than that in the direction of t because of the discontinuity in the derivative in
this direction so that analysis may effectively reduce to one dimension.
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Summary. We present a review of the Tangled Nature model. The model is developed to focus
on the effect of evolution and multiple interactions on ecological and evolutionary observables.
The model is individual based and ecological structures, such as species, are emergent quantities.
The dynamics consists of a simplistic mutation-prone multiplication in which the probability of
producing an offspring is determined by the occupancy in genotype space. The macroscopic
long time dynamics is intermittent and exhibits a slow decrease in the macroscopic extinction
rate. Ecological quantities such as the species abundance distribution and the species-area rela-
tionship compare qualitatively well with observations, as does the relation between interaction
and diversity. The effect of correlations between parents and mutants has been studied, as has
the effect of a conserved resource.

Key words: Evolution, ecology, network of interactions, species-area relationship (SAR),
species abundance distribution (SAD).

5.1 Introduction

Can we establish a general framework for the description of ecosystems consisting of
many interacting and evolving organisms? We seek a description which will enable us
to bridge the span from microscopic to macroscopic time. The model is to be defined at
the level of individuals so that ecological and taxonomic structures emerge as a result
of the dynamics. The description should be logically simple and cover broad classes
of observed facts.

Much work is done on the regime of strongly separated time scales, using, e.g.,
“adaptive dynamics” [1] or game theory [2, 3]. One can incorporate evolution by con-
sidering that evolutionary dynamics occurs much more slowly than ecological dynam-
ics, so that at all times the system is in an equilibria (e.g., the Webworld model, [4,5]).
However, the time scales may overlap when long-lived species interact with short-
lived ones, and additionally there is evidence [6] that the evolutionary dynamics can
affect ecological stability, and vice versa. These are not insurmountable problems,
e.g., the “Streetcar theory of evolution” [7] addresses this problem, but assumes that
the system equilibrates between mutations. Such models are essential to understand



50 S. Laird, D. Lawson, and H.J. Jensen

individual cases but we wish to also address the broad picture. Individual-based mod-
els [8] are an appropriate tool to combine fast and usually predictable ecological pro-
cesses with the highly stochastic evolutionary behaviour in a controlled and realistic
manner. Our model falls into the category (e) in DeAngelis and Mooij’s classification
system [9]: “Genetic Variability and Evolution,” although arguably the most important
feature gained from an individual-based approach at such a simple level is “demo-
graphic stochasticity,” that is, representing the inherent noise in the population in an
accurate way. Our approach is inspired by statistical mechanics and complex systems
theory, looking for overall general structures instead of specific details of the organ-
isms comprising the system.

Our model consists of asexually reproducing individuals all subject to the same
killing probability (per time unit). The multitude of interactions between coexisting
organisms is included through a weight function which determines the reproduction
rate of individuals. Our philosophy is that a simple statistical model may help to iden-
tify the important mechanisms behind macroscopic observed ecological measures. the
same,

5.2 A Simple Introductory Model

The Tangled Nature model is an individual based model of evolutionary ecology. We
give a brief outline of the model here, with more details available in [10–13]. This
version of the model is an attempt to address systems with many interactions between
species in the simplest possible way, with detail and realism added in stages. We start
with the bare model, to which we will add spatial effects and consider more realistic
forms of the fitness.

5.2.1 Uncorrelated Non-Spatial Model

An individual is represented by a vector Sα = (Sα
1 , Sα

2 , . . . , Sα
L) in the genotype space

S, where the “genes” Sα
i may take the values ±1, i.e., Sα denotes a corner of the L-

dimensional hypercube. Here we take L = 20, giving a reasonable sized space (over
a million genotypes) whilst not being computationally prohibitive. We think of the
genotype space S as containing all possible ways of combining the genes into genome
sequences. Many sequences may not correspond to viable organisms. The viability of
a genotype is determined by the evolutionary dynamics. All possible sequences are
available for evolution to select from. We will see that a natural species concept arises
from the dynamics, in which each species is separated in genotype space.

The system consists of N (t) individuals, and a time step consists of one annihila-
tion attempt followed by one reproduction attempt. A reproduction event is successful
with varying probability poff, defined below, and an annihilation attempt is success-
ful with constant probability pkill.1 One generation consists of N (t)/pkill time steps,

1 The restriction of constant killing probability can be shown to be qualitatively irrelevant in
this model, as we do not include individual aging.
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which is the time taken (on average) to kill all currently living individuals. The dynam-
ics lead to an (approximately) constant population size, on short time scales.

The ability of an individual to reproduce, poff, is ultimately controlled by a weight
function H(Sα, t):

H(Sα, t) = c
N (t)

(∑
S∈S

J(Sα, S)n(S, t)

)
− µN (t), (5.1)

where c controls the strength of interaction (large c means large interaction), N (t) is
the total number of individuals at time t , the sum is over the 2L locations in S and
n(S, t) is the number of individuals (or occupancy) at position S. Two positions Sa

and Sb in genome space are coupled with fixed but random strength J(Sa, Sb) (= J ab

in matrix notation) which can be positive, negative or zero. This link exists (in both
directions) with probability θ (= 0.2 in Sect. 5.2.1), i.e., θ is simply the probability
that any two sites are interacting. If the link exists, then J(Sa, Sb) and J(Sb, Sa) are
both generated random and independent ∈ (−1, 1). To study the effects of interactions
between species, we exclude self-interaction so that J(Sa, Sa) = 0.

The conditions of the physical environment are simplistically described by the term
µN (t) in Eq. (5.1), where µ determines the average sustainable total population size,
i.e., the carrying capacity of the environment. An increase in µ corresponds to harsher
physical conditions. We use asexual reproduction consisting of one individual being
replaced by two copies mimicking the process of binary fission seen in bacteria. Suc-
cessful reproduction occurs with a probability per unit time given by

poff(Sα, t) = exp[H(Sα, t)]
1 + exp[H(Sα, t)]

∈ [0, 1]. (5.2)

This function is chosen for convenience, the specific functional form having no effect
on the dynamics of the model—any smoothly varying function that maps H(Sα, t) to
the interval [0, 1] will do. We allow for mutations in the following way: with probabil-
ity pmut per gene we perform a change of sign Sα

i → −Sα
i during reproduction.

Eq. (5.1) can be understood as the average interaction for an individual with all
others, with a normalisation condition given by the µN term, which determines the to-
tal population and controls fluctuations. The interaction strength c gives the magnitude
of the total interactions, regardless of density; i.e., we choose to represent systems in
which the population size has saturated.2 We can tune the effective “resource” density
(and hence population density) with the parameters c and µ. The total population re-
mains approximately constant over ecological time scales (and actually increases over
evolutionary time scales). Setting self-interaction to zero is equivalent to considering
that all types interact equally with their own species (one can rescale pkill and µ to
accommodate this); we relax this constraint in Sect. 5.2.3.

Initially, we place N (0) = 500 individuals with randomly chosen genotype. Their
initial location in genotype space does not affect the nature of the dynamics. A two-
phase switching dynamic is seen, consisting of long periods of relatively stable con-
figurations (quasi-evolutionarily stable strategies or q-ESSs) (Fig. 5.1) interrupted by

2 One could easily consider the case of density dependent interactions by allowing c = c(N ).
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Fig. 5.1. q-ESS in a single run, both graphs have the same time axis. Top: Occupancy of wild
type species vs. time. Horizontal lines constitute q-ESS and the changes between q-ESS are
transitions, too fast to see on this time scale. Labels are placed only on species that survive q-
ESS transitions. Bottom: A sample plot of species existence vs. time. The Genotype Label axis
is not meaningfully ordered, and is included for comparison to the correlated phenotype space
model in Sect. 5.3 (Fig. 5.4).

brief spells of reorganisation of occupancy called transitions. Transition periods are ter-
minated when a new q-ESS is found, as discussed in [10]. A “species” can be well de-
fined as the highly occupied genotype points called “wild types,” which are separated
in genotype space. Each wild type is surrounded by a “cloud” of mutant genotypes
with low occupancy. Thus we can take a natural definition of diversity: the number of
wild types in the system.

The q-ESSs themselves consist of a number of wild type species, which are eco-
logically stable and stable to mutations from the neighbouring genotype space. The
absolute stability of a q-ESS depends on both the stability against invasion by mutants,
and against ecological “accidents” such as the extinction of a keystone species. The
two cannot be separated in our model, as, for example, the probability of an accident
eliminating a wild type will depend on the interaction properties of all individuals in
the system.

The observed species abundance distribution (SAD) is log-normal like [10] with
a log-series like tail, consistent with many observations and similar to that found in
neutral theory [14]. The log-normal portion is made up of wild type species only.
These have evolved so that the number of births in a given species exactly cancels
the number of deaths (and mutations). The log-series section is made up of “mutant”
sub-species, that is, species who have experienced deleterious mutations from a wild
type. They are less successful and short lived, as their population is only supported by
a constant influx of mutants from the neighbouring wild type.

The long term dynamics of this model are essentially the same as the extension
in Sect. 5.2.3. The stability of the q-ESS found increases slowly with time, as does
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the mean total population 〈N (t)〉. The waiting time for extinction events (occurring
at transitions) decreases with time (close to 1/t), and the species lifetime distribution
compares well with much fossil data [10]. Results which support these conclusions are
presented in [15, 16] for a very similar model but with simplified dynamics.

5.2.2 Uncorrelated Spatial Model

To add spatial extension to the Tangled Nature model, we consider a number of sites on
a spatial lattice, with a number of individuals in each. We now consider that individuals
interact only with other individuals at the same site, and hence compete only locally
for space via the µ term. Migration moves an individual to a randomly chosen neigh-
bouring lattice point and occurs with constant probability pmove. Spatial boundaries
are periodic to prevent the complication of edge effects.

Each site on the spatial lattice behaves similarly to the non-spatial model, spending
most time in a q-ESS. However, in the spatial case a small number of migrants are
present in each site. This acts as an additional pressure to enter a transition phase,
unless the site is in the same type of q-ESS as its neighbours. This gives rise to spatial
patches of q-ESS types. These patches grow and shrink on a very slow time scale,
except when the migration probability pmove is high.

Patches form in sizes that appear to be power-law distributed, and species-area
curves close to a power law are observed (Fig. 5.2). The species-area curve has a
slight s-shape produced by the periodic boundary. This same shape was found in a
“neutral” (non-interacting) model [17] of Durrett and Levin. In their neutral model the
z-value (the slope in the log-log plot of diversity vs. area) decreases with decreasing
speciation rate. However, their speciation rate can be thought of as a migration rate
from an external pool as there is no genotype space. In our model with interactions and
explicit genotype space, we find that the z-value decreases with increasing migration

Fig. 5.2. Sample species-area relationship (from a single run), which is very close to a power
law, with a slight S shape due to the periodic boundaries.
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rate inside the system. This is because mutation occurs at constant speed, therefore
increasing migration rate increases the competition faced by a new species.

In general it is logical that immigration (from outside the system) and migration
(within the system) are correlated. However, increased internal migration rate reduces
the chances of mutations surviving, and so produces the inverse effect of the immigra-
tion rate (i.e., mutation rate in models without genotype space) of new species from
outside the system. High mobility (i.e., migration and immigration rates) for a fam-
ily of species may mean better mixing and so less chance for spatial segregation of
species within a single family—the standard explanation for why bird families gen-
erally have lower z-values than land-dwelling families. Conversely, e.g., on islands, it
allows species from elsewhere to arrive, thus possibly increasing diversity (as argued
in [17]). Which effect dominates will depend on the geography in question, i.e., the
size of the local groups of individuals, and the separation between them.

Magurran and Henderson [18] noted that permanent fish species have a log-normal
SAD whilst transient species have a log-series distribution. Our local q-ESS has the
same distribution, with a log-normal like distribution for the wild types and a log-series
like distribution for mutants and migrants. For low mutation rates and high migration
rates, clearly migrants will outnumber local mutants and we will observe the exact
same distribution near the q-ESS patch borders. In our spatial model, the distinction
between the two types is of fitness. The wild types with a log-normal like SAD are all
equally fit in that they have a reproduction rate exactly balancing the death rate; the
migrants with a log-series like SAD are all less fit and rely on repopulation from an
external pool (and, hence, are transient).

Full details for the spatial model are available in [19].

5.2.3 Diversity and Fitness in the Non-Spatial Model

The restriction that all species are uniform with respect to their own members is ap-
proximately valid for many circumstances but is in general unrealistic. We therefore
introduce different values of “intrinsic fitness” to each genotype, which can be formed
in many ways. The cases are considered separately for clarity, but are easily combined.

A fitness landscape can be uncorrelated or correlated. The correlation we choose
is a type of Fujiyama landscape (because it has a single, large peak) [2] defined as
follows. One type α has a fitness of 1, and with each mutational step away from this
type we subtract � (= 0.1 in simulations), down to a minimum of 0. An uncorrelated
landscape is generated with each type having a fitness drawn uniformly from (0, 1).
This results in the following modified weight functions:

1. Density dependent fitness, which is the varying interaction of an individual with
its own type, defined by

Hd(Sα, t) = H(Sα, t) + ε

N (t)
n(Sα, t)E(Sα). (5.3)

Here, ε is the magnitude of the density dependent part of the “intrinsic fitness
strength” and εE(Sα) is the intrinsic fitness of individual α. E(Sα) is determined
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according to the case studied. 1(a): Uncorrelated, density dependent intrinsic fit-
ness landscape, 1(b): Correlated, density dependent intrinsic fitness using a Fu-
jiyama landscape.

2. Density independent fitness, defined by

Hi (Sα, t) = H(Sα, t) + εI E(Sα). (5.4)

Here, εI is the magnitude of the density independent part of the intrinsic fitness
strength. Ei is again determined by the case studied. 2(a): Uncorrelated, density
dependent intrinsic fitness landscape, 2(b): Correlated, density dependent intrinsic
fitness using a Fujiyama landscape.

Fig. 5.3 shows the behaviour of the wild type diversity. Cases 1(a), 1(b) and 2(b)
are qualitatively the same, with a rise in density above some characteristic interaction
strength c. The density independent case produces diverse states at much smaller val-
ues of c because only the difference in fitness needs to be overcome; in the density
dependent case, it is the absolute fitness that provides a barrier to diversification. In the
uncorrelated density independent case, there are many species with (approximately)
the same high fitness within a couple of mutation steps. This means that, for low c,
neutral drift can occur between the numerous fit types, and for larger c interaction is
the dominant form of selection; in each case, multiple species can be supported (al-
though not in q-ESS for the case of drift).

Interestingly, case 1(b) allows the fittest species to be replaced at a lower interaction
than that for which a diverse state can be supported. However, case 2(b) allows diverse
states at a lower interaction than that for which replacement of a fittest type is possible.
These claims can all be shown with a simple mean field approximation of our model;
see [20] for details.

Fig. 5.3. Left: c dependence of the average wild type diversity of an evolved system, taken for
40000–50000 generations and 500 runs per data point for the separate cases of density depen-
dent (case 1) and density independent (case 2) fitness, both on a rugged random fitness landscape
(cases (a)) and a Fujiyama landscape (cases (b)). Right: A closer look at the low-c region, show-
ing the qualitative similarity in D vs. c for all cases except case 2(a).
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5.3 Correlated Non-Spatial Model

In the original model, mutated offspring acquired interaction properties that were un-
correlated with those of the parent. This was unrepresentative of a real biological sys-
tem where correlations are vital to the evolutionary process. Efforts have since been
made to rectify the issue [21] but the limited size and hypercubic geometry of the
genotype space have proven to be very restrictive. The problems were finally resolved
by disregarding the hypercubic geometry entirely. Correlations were then successfully
incorporated so that mutated offspring had interactions comparable with those of the
parent [22]. To achieve this goal we use a phenotype description of L = 16 traits,
Ta = (Ta

1 , Ta
2 , . . . , Ta

L), with each trait taking a value from the periodically bounded
range, [0, 99999]. A proportion, θ , of the entries of the greatly enlarged interaction
matrix, J(Ta, Tb) are assigned normally distributed values that are locally correlated
within the J-matrix. All other values of the remaining proportion of the matrix, 1 − θ ,
are assigned zeroes which are treated as a lack of interaction between the two relevant
phenotypes. As well as being locally correlated in value, the non-zero entries, as a set,
are also distributed with a local correlation. By this we mean the J-matrix exhibits a
clustering of non-zero entries so correlated phenotypes will interact with similar sets
of other phenotypes. The result is that given a mutation of one trait value we have
an exponential decay in the correlation between parent and offspring interaction set
values that is dependent upon the distance mutated in the trait value, �(Tα, Tβ),

c(J(Tα, Tγ ), J(Tβ, Tγ )) = exp[−�(Tα, Tβ)/ξ ] ∈ (0, 1]. (5.5)

Here, ξ is the correlation length and α, β and γ are indices used to represent individu-
als as opposed to a and b, which would indicate points in phenotype space—multiple
individuals may exist with the same phenotype vector. As phenotypes are essentially
defined by their interaction sets we shall herein refer to the correlation measure be-
tween two phenotypes as C(Tα, Tβ), i.e., as an entry in the correlation matrix, C. The
clustering of non-zero J-matrix entries also exhibits a short range correlation length
similar to (5.5). The probability of a random phenotype α having an interaction with
another phenotype γ is θ , but if α has a vector similar to another β that has an in-
teraction with γ , then this probability is elevated by virtue of the correlation (and
therefore we have clustering). Importantly, interacting uncorrelated phenotypes take
values J(Ta, Tb) and J(Tb, Ta) that are uncorrelated thus permitting any interaction
type (predator-prey, mutualistic, etc.) to exist in principle. The process with which we
achieve these quantifiable correlations is quite involved, so we have elected to give
an overview here whilst referring the reader to the original paper for a fuller explana-
tion [22].

In order to more truly represent evolution in a real ecosystem several changes were
made to the original model. These changes can best be described via the modifications
made to the weight function shown previously in (5.1),

H(Tα, t) = a1

∑
T∈T J(Tα, T)n(T, t)∑
T∈T C(Tα, T)n(T, t)

− a2
∑
T∈T

C(Tα, T)n(T, t) − a3
N(t)
R(t)

. (5.6)
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The sums are made over the points in phenotype space, T , and the occupancies (popu-
lation associated with each phenotype), n(T, t) are used to account for the multiplicity
of individuals with the same phenotype vector. We consider here a well mixed system
of constant spatial size, although spatial extent is not explicitly considered. For clarity
we reiterate at this point that the phenotype space is a pre-defined, complete set of all
possible phenotypes and it is evolution and contingency that select the actualised phe-
notypes in the evolved system. The J-matrix is similarly a pre-defined complete set of
all possible interactions for all possible phenotypes that may exist in potentia.

The correlation measure is used in the first term of the weight function to restrict
the impact of the interaction sum. It represents the fact that interactions are shared
amongst members of the same species. For example, a tree may provide a volume of
fruit to a solo member of a species but the provision must be shared with reduced
efficacy if there are many members. So the overall effect of this denominator on an
individual is to dampen its interaction sum as a whole, thus representing the effect
of distributing all interaction effects amongst the individual’s own species members.
Another example could be a wildebeest in proximity to a lion. The negative predatory
effect (or predation probability) of the single lion on that specific wildebeest is de-
creased if there are many wildebeest about to select from. The interaction is damped
by the presence of other members of the individuals own species. This aspect is not
ubiquitous in species interactions but does feature in many cases. It is less applicable
at low population densities but our system generally maintains significant species pop-
ulations even at low resource levels. Lowering the resource tends to reduce diversity
rather than distinct species populations so this limitation was deemed to be acceptable.
In recognition of the phenotypic variation inherent in a species, the sum over the cor-
relation values, C(Ta, Tb), accounts for the fact that species members have different
but similar phenotypes. This can be seen as a species description in itself.

When referring to diversity we specifically mean the wild type diversity but all
interaction effects from all extant phenotypes, mutants included, are accounted for in
every interaction sum. The mutant cloud itself is in fact very sparse as we have elected
to use a low mutation rate, Pmut = 0.0002. As a consequence, the phenotype distri-
bution is essentially a set of delta points of high occupancy with infrequent mutants
existing with low occupancy. This makes the recognition of the wild type diversity
very simple as each species is massively dominated by the population of the wild type.

The second term of the weight function represents intra-specific competition and
uses the same correlation measure as before. Similar but distinct phenotypes are likely
to be in competition for resources, space, etc. that are specific to their niche. The corre-
lation measure accounts for this similarity. The original model operated without such
a term, but it was deemed essential here to allow sufficient wild type diversity to de-
velop. Otherwise, mutualistic pairs of phenotypes dominate the system, competitively
excluding all others.

The third term represents competition for a conserved vital resource that all phe-
notypes require for survival. Any successful reproduction event produces an offspring
that assumes a unit of resource from the bath, R(t). The conservation requirement,
R(t) + N (t) = constant means we have a carrying capacity for the system as a whole.
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Fig. 5.4. The upper plot represents the time evolution of the extant phenotype distribution pro-
jected onto one of the 16 trait variables. The lower plot represents the mean age of the extant
phenotypes weighted according to population. Stable periods can be seen where the mean age
increases nearly linearly until a collapse occurs and new species are introduced.

Its functional form represents the number of system members competing per unit of
available resource.

The parameters, a1 = 0.5, a2 = 0.01, a3 = 0.2 are the selection, conspecific
competition and resource competition parameters respectively. These are subjectively
chosen to allow interaction controlled dynamics and a sufficient wild type diversity to
develop. A value of θ = 0.05 is used throughout the simulations.

5.3.1 Lifetimes and Extinctions

The macroscopic dynamics of the system have similarities with the original model as
intermittency occurs, but the phases of stability are not so disjoint. Fig. 5.4 shows the
evolution of the occupancy in phenotype space where phenotypes can be seen to drift,
speciate and often go extinct. The transitions are there to some degree as demonstrated
in the accompanying plot of the mean age of the system wild type phenotypes. There
are regular collapses of the system where long term phenotypes go extinct and the
extant set becomes partially reset. Many phenotypes survive these transitions, however.

The lifetime distribution associated with these extinctions has a near power-law
form, P(s) ∼ s−γ as can be seen in Fig. 5.5. It has often been suggested that such
real system distributions are power laws with proposed exponents around γ � 2, but
this is still an open debate. Our data implies a near power law form that is exhibited
both in other models and the original Tangled Nature model itself [10, 23–25] (and
also [26] in reference to [27]). By increasing the resource in our system we can shift
the mean lifetime to lower values which is a consequence of an increase in the mean
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Fig. 5.5. An example of a lifetime distribution for a low resource system. The form is nearly a
power law with a distinct deviation. Dotted line represents a functional power law, P(s) ∼ s−γ

with exponent, γ=2.

population density. This phenomenon arises as a population density increase leads to
an elevation in the rate of mutant offspring per generational time step, resulting in the
system destabilising more frequently. It has recently been discovered that species di-
versity may negatively correlate with average species duration, thus implying a greater
species turnover rate [28]. The population density and wild type diversity are positively
correlated in our model due to the presence of the intra-specific competition term in
(5.6). As this aspect is an arguably realistic portrayal of niches within an ecosystem
we can provide agreement that wild type diversity does incur a greater species turnover
rate.

5.3.2 Species Interaction Network

The species interaction network is defined by the realised adjacency matrix of the wild
type diversity, D. The structural formation of the network arises from evolutionary
processes occurring at the level of individuals but it has dynamic global properties as
a result of this. The evolutionary pressure to achieve positive interactions leads to a
global increase in the mean degree 〈k〉 of the extant species set. Here the mean degree
〈k〉 is the number of interactions of any type a species has with other species, averaged
over all species. We can compare the evolved system to a “null” one consisting of a
random species set. For this set, the connectance values will conform on average to the
value of θ , the proportion of non-zero interactions in the J-matrix. Fig. 5.6 shows the
mean degree versus wild type diversity taken at the highest resource level, R = 30000
(all other resource levels exhibit similar behaviour). In comparison to the null system
mean degree, 〈k〉θ = θ(D − 1) = 0.05(D − 1), it is obvious that the network achieves
a status that far exceeds this value. It is generally unclear whether greater stability
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Fig. 5.6. Plot of mean degree, 〈k〉, against wild type diversity, D. Each point is an ensemble av-
erage of data taken at each instance of each diversity achieved at the resource level, R = 30000,
with error bars representing the standard error. Fifty simulation runs of a million generations
each were made, so given the fluctuations involved, a large range of diversities were repeatedly
encountered. The lower line is the mean degree of the null system 〈k〉 = θ(D−1) = 0.05(D−1).

is achieved through mean degrees that are either lower than the network percolation
threshold or higher [29–32], but here the system naturally evolves towards the latter.
The mean interaction strength also increases to a positive value that is diversity de-
pendent, but around one standard deviation of the normal distribution values of the
null system. Our system therefore has a global response whereby it evolves to assume
networks involving greater numbers of positive interactions. This process is strongly
enhanced by mutualistic interaction types, and whilst the interactions are generally
asymmetric their strengths are more positively biased in the evolved systems.

The correlations in inheritance have an unusual effect on the degree distributions
of the assumed networks. They all conform closely to exponential, P(k)∼e−k/〈k〉, as
opposed to the null system binomial distributions. We attribute this degree form to the
inheritance process which directs the evolution of the network. Simulations performed
with zero correlations lead to networks that display enhanced mean degrees but without
any deviation from the binomial degree distribution. The correlation appears to be a
necessary requirement for these longer tailed distributions to appear.

5.4 Discussion

Our focus has been on emergence and large numbers of interdependent organisms. We
have described a set of minimalistic models in which reproduction probability is the
only explicit phenotypical property of individuals, and is not defined as an intrinsic
property but rather determined for each type of organism through its interaction with
other extant types. Basic properties, such as the existence and formation of separate
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species, and the existence of quasi-stable states separated by periods of mutation, are
emergent from the dynamics.

In the simple model in Sect. 5.2.1, transitions between q-ESS are rare events, even
though mutations are common. On transition, all species perform an evolutionary ran-
dom walk with an effective selection gradient due to interactions, meaning the distance
covered is much larger than predicted by a standard random walk of equal time (i.e.,
the jumps resemble Lévy flights [33]).

The Tangled Nature model, and similar approaches, should be considered as com-
plementary to more detailed models such as those in adaptive dynamics, in which
ecosystems are established with many shared features with observations on real bi-
ological systems. The sort of questions which can be asked of our model are very
different. In particular, we do not intend to model a specific situation, but to capture
features common to a great many evolving systems, such as the effect of interaction on
the stability of an ecosystem, and the time dependence of properties such as stability,
average population, the form of interactions, etc.

By allowing evolution to select the network of interacting species from a potential
configuration space we are able to study issues concerning functionality and stability.
Our approach allow us to consider the network properties of the ecosystem as collec-
tively selected quantities.
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Summary. According to the tenet of Darwinian selection, a phenotype will spread only if its
fitness is greater than the mean fitness of the entire population. It is, therefore, natural to intro-
duce the notion of relative advantage of a replicator, which is defined as the expected fitness of
this replicator minus the average fitness of the entire replicator population. For the general repli-
cator dynamics, it is shown that the relative advantage of an offspring population over its parent
population is proportional to the variance in fitness. The relationship between the proposed and
earlier versions of the fundamental theorem of natural selection is also discussed.

Key words: Fitness variance, fundamental theorem of natural selection, relative advantage,
replicator dynamics.

6.1 Introduction

In this chapter, we consider a sufficiently large population in which the individual
phenotypes are uniquely determined genetically. We consider only the frequency-
dependent selection process.

This chapter is centered around the following question: what function is optimized
during natural selection such that its rate of increase equals the variance of the fit-
nesses?

Fisher’s fundamental theorem of natural selection states that “the rate of increase in
the average fitness of a population is equal to the genetic variance of that population”
[5]. This theorem has been the subject of controversy and exegesis.1 For instance,
this theorem does not hold in evolutionary game theory where genotypic fitness is
frequency dependent. For example, infanticide is a successful evolutionary strategy
among lions and langurs [9]. This kind of phenotype, obviously, decreases the mean
fitness of the population.

Ewens [3] redrafted the fundamental theorem of natural selection in the following
way: the partial change in mean fitness is equal to the additive genetic variance in

1 The historical details of this controversy can be traced from the references in [2, 4, 13, 14].
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fitness divided by the mean fitness (see also [13]). Ewens has substituted the average
fitness by the partial change in the mean fitness.

The aim of this chapter is to reveal the relationship between selection and variance
in a replicator population. We will see the simplest version of a fundamental theorem
of natural selection which can be given in terms of the relative advantage. Moreover,
in special cases we also see the connection between one version of Fisher’s theorem
and the proposed theorem, and that the notion of the partial change in mean fitness
contains the notion of the relative advantage.

For this purpose, we have to recall the dynamics of the selection of proper repli-
cators. Let us consider n different types of a given proper replicator. A replicator is
proper if the principle of “i-type from an i-type” is valid. In other words, for the pro-
duction of an i-type replicator the contribution of a parent i-type replicator is a must.
Here we can think about an asexual population without mutation or a sexual diploid
population where two alleles at a single locus determine the individual fitness and there
is no mutation, either. In both cases replication is proper. Consider, for example, the
first situation. Now the gamete distributions are the same as the allele distributions,
and the gamete dynamics is nothing else than the replicator dynamics of the alleles.
This is no surprise, because now each individual only reproduces its parental gametes.

Denote by Fi (x) the frequency-dependent fitness of an i-replicator and by F(x) :=
(F1(x), F2(x), . . . , Fn(x)) the fitness vector of the population in state x ∈ Sn .2 Using
this notation, the average fitness of the population is x F(x) = ∑n

i=1 xi Fi (x), where
xi is the frequency of the i-replicator.

In the course of selection, the frequencies of the replicators will change. This
change can be given by the replicator dynamics [10] formulated in discrete time as

xi (t + 1) = xi
Fi (x)

x F(x)
, (6.1)

and in continuous time as

ẋi = xi (Fi (x) − x F(x)) . (6.2)

We have to emphasise that these dynamics are strictly based on proper replicators. This
explains that the right-hand side of dynamics (6.1) and (6.2) are linearly proportional
to the relative frequency of the replicator.

Now let us recall the definition of the relative advantage function [11]. According
to the classical Darwinian theory, a phenotype will spread if it has greater fitness than
the others. Based on this, the definition of relative advantage function for a proper
replicator population is the following:

A : Sn × Sn → R, A(y, z) := yF(z) − zF(z). (6.3)

This function describes the relative advantage of state y over state z, since it is positive
only if the average fitness of a subpopulation, yF(z), in which the distribution of repli-
cators is y, is greater than the average fitness of the whole population with distribution

2 Sn denotes the standard simplex of the n-dimensional space.
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z, zF(z). This implies that the frequency of subpopulation y increases.3 Finally, ob-
serve that the right-hand side of the replicator dynamics (6.2) is the frequency of the
i-replicator multiplied by their relative advantage.

6.2 The Fundamental Theorem of Natural Selection Based on
Relative Advantage

We are in a position to formulate a new and the simplest possible fundamental theorem
of natural selection. First, let us consider proper replicators.

6.2.1 Discrete Case

Assume that we have a discrete time scale. In this case, we have the following state-
ment: the relative advantage of the offspring generation over its parent generation is
always positive and is proportional to the variance of the fitness of its parent popula-
tion. Indeed, according to the discrete replicator dynamics (6.1), after the operation of
selection, in the offspring generation the distribution of the replicator can be given by

x(t + 1) =
(

x1(t)F1(x(t))
x(t)F(x(t))

,
x2(t)F2(x(t))
x(t)F(x(t))

, . . . ,
xn(t)Fn(x(t))
x(t)F(x(t))

)
.

We have to assume that the number of offspring of an i-replicator, i.e., Fi (x(t)) is pos-
itive to avoid division by zero. Now the relative advantage of the offspring generation
over its parental one can be calculated as

(x(t + 1) − x(t))F(x(t)) =
n∑

i=1

xi (t)Fi (x(t))
x(t)F(x(t))

Fi (x(t)) −
n∑

i=1
xi (t)Fi (x(t))

= 1
x(t)F(x(t))

[ n∑
i=1

xi (t) (Fi (xt (t)))2 − (x(t)F(x(t)))2

]

= Var(F(x(t)))
x(t)F(x(t))

. (6.4)

In particular, in an asexual population offspring are fitter than their parents when
competing against the parents’ state.

6.2.2 Continuous Case

The above statement is true for the continuous-time version of the replicator dynamics
as well. More specifically, we claim an analogue of the fundamental theorem for the

3 The relative advantage can be used in evolutionary game theory to define an evolutionarily
stable state (ESS): an x∗ ∈ Sn is an ESS if and only if A(x∗, x) = x∗F(x) − x F(x) > 0 for
all x∗ ∈ Sn, x∗ �= x near x∗ [16]. Let us observe that the relative advantage of an ESS as a
function of its second variable attains a local minimum at x∗, the ESS.
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continuous-time version of the replicator dynamics (6.2): the instantaneous rate of
increase in the population’s relative advantage over its current state is equal to the
variance of the replicators’ fitnesses.4 Indeed, for a fixed z and time-dependent x ,

d
dt

A (x, z) = ẋ F(z).

Putting z = x

ẋ F(z)|z=x =
n∑

i=1
xi [Fi (x) − x F(x)]Fi (x)

=
n∑

i=1
xi [Fi (x) − x F(x)]2 = Var(F(x)). (6.5)

The above two arguments are obviously true for the evolutionary matrix game, the
classical Fisher’s selection model and the single autosomal locus model when the in-
dividual’s fitness can be given by an evolutionary game-theoretical model. In the third
model, the fitness of Ai allele Fi (x) := ∑

j p j
∑

k,l ai j,kl pk pl , where pi is the fre-
quency of allele Ai and ai j,kl is the Ai A j zygote’s pay-off when it interacts with Ak
Al zygote [7]. We emphasise that in all models it is supposed that there is no muta-
tion during the selection process, and this is why the replicators are proper in these
examples.

6.2.3 General Replicators with Panmixis

To see that the above reasoning can be extended beyond proper replicator, let us con-
sider n different types of a given general replicator. A replicator is general if the prin-
ciple of i-type from an i-type does not hold. Let us consider a sufficiently large, pan-
mictic diploid sexual population where the phenotypes are genetically determined by
multiple loci with recombination and/or mutation between existing alleles. Recom-
bination produces chromosomes different from those in parental zygotes. Moreover,
mutation injures the principle of i-types gamete from i-types gamete.

Now we introduce some notation. Let xi be the relative frequency of the Gi gamete
types. Let wi j (x) be an arbitrary frequency-dependent fitness (viability) function of
zygote Gi G j (i, j = 1, 2, . . . , n), mi,kl be the probability that zygotes Gk Gl produce
gamete Gi . Of course,

∑
i mi,kl = 1 for all zygotes Gk Gl . Since we assume that the

population is panmictic, the relative frequency of the ordered genotype Gi G j is xi x j .
Thus, we get the following discrete gamete dynamics:

xi (t + 1) =
∑

k,l mi,klwkl(x(t))xk(t)xl(t)∑
i
∑

k,l mi,klwkl (x(t)) xk(t)xl(t)

4 This statement is a generalization of an earlier result [8]: the relative advantage of an ESS
decreases in the course of replicator selection and the rate of decrease is proportional to the
variance of the fitnesses of the replicators.
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=
∑

k,l mi,klwkl(x(t))xk(t)xl(t)∑
k,l wkl(x(t))xk(t)xl(t)

. (6.6)

For continuous time we have the following dynamics:

ẋi = xi
∑
k,l

mi,klwkl(x)xk xl − xi
∑
k,l

wkl(x)xk xl . (6.7)

In general, such an equation describes a multiplication process in which a replicator
may also be produced by a replicator of a different type [1, 12, 17].

For the generalization of the concept of fitness, it is suitable to introduce the no-
tation of production rate of a gamete type present in the parental population. Let the
production rate of an i-gamete be the number of i-gametes in the offspring generation
divided by the number of i-gametes in the parental generation. Formally, for all x ∈ Sn
and i = 1, 2, . . . , n with xi > 0, we define the production rate of the i-gamete as

fi (x(t)) =
∑

k,l mi,klwkl(x(t))xk(t)xl(t)
xi (t)

. (6.8)

Observe in the definition of production rate that the assumption of a large enough
population is important. If we have a small population and a huge number of different
gamete types then all possible gamete types cannot exist at any point of time, thus
xi (t) = 0 may occur. Moreover, if the population is small then genetic drift can mask
the effect of selection.

Using the production rate, we rewrite the dynamics (6.6) and (6.7) as follows:

xi (t + 1) = xi (t)
fi (x(t))∑

k xk(t) fk(x(t))
. (6.9)

For the continuous-time scale, we have the following dynamics:

ẋi = xi

(
fi (x) −

∑
k

xk fk(x)

)
. (6.10)

Based on the notion of production rate, the relative advantage function for a gamete
population can be defined as

A : Sn × Sn → R, A(y, z) := y f (z) − z f (z). (6.11)

Using the notion of production rate, the fundamental theorems of natural selection
proposed in (6.4) and (6.5) are valid without any change for general replicators, as
well.

6.3 Connection to Fisher’s Theorem

In order to see the connection between Fisher’s fundamental theorem of natural selec-
tion and the one proposed here (6.5), we have to recall the well-known proof of the
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continuous version of Fisher’s theorem (see, e.g., [10]). Let us consider the classical
Fisher’s selection model, which considers a diploid, panmictic sexual population, in
which abiotic selection takes place at the zygotic level. The marginal fitness of alleles
is given by Fi (x) := (Ax)i , where the viability matrix A is symmetric (i.e., ai j = a ji
for all i, j) and (Ax)i denotes the i th coordinates of vector Ax . Using these notions,
the average fitness of the allele population is given by x Ax and the replicator dynamics
(6.2) is rewritten as

ẋi = xi ((Ax)i − x Ax). (6.12)

In this case, the average fitness is a Lyapunov function with respect to Fisher’s selec-
tion model, and its derivative with respect to Fisher’s selection equation (6.12) is the
variance of the marginal fitness of alleles. Indeed, since the viability matrix A is sym-
metric, the gradient of the average fitness is grad x Ax = 2((Ax)1, (Ax)2, . . . , (Ax)n).
Thus, its derivative with respect to dynamics (6.12) is

(grad x Ax)ẋ = 2
∑

i
xi ((Ax)i − x Ax)(Ax)i = 2

∑
i

xi ((Ax)i − x Ax)2

= 2Var(Ax). (6.13)

If the viability matrix A is not symmetric then this proof does not work.
Now, let us compare (6.5) and the above proof of Fisher’s fundamental theorem

(6.13). We recognize first that the proposed version of the fundamental theorem is
based strictly on Fisher’s theorem, since the proof of the proposed version is part of
the proof of Fisher’s theorem. Second, observe that

∑
i xi ((Ax)i − x Ax)(Ax)i is, in

essence, the relative advantage of the offspring generation over its parents. Indeed,
according to the dynamics (6.3), xi (t + �t) − xi (t) ≈ �t xi ((Ax)i − x Ax), thus
the relative advantage in �t is

∑
i (xi (t + �t) − xi (t))(Ax)i ≈ �t

∑
i xi ((Ax)i −

x Ax)(Ax)i .

6.4 Relative Advantage Versus Partial Change in Mean Fitness

Here the connection between the proposed fundamental theorem (6.4) and Ewens’s
theorems will be investigated. We will do this in three steps. First, we recall the concept
of partial change in mean fitness. Second, we will study the residual of average effects.
Third, we will see that the notion of partial change of mean fitness “contains” the
concepts of relative advantage.

6.4.1 Ewens’s Concept

To get insight into the connection between the partial change in mean fitness and the
relative advantage we have to recall the notion of partial change in mean fitness. We
will follow the derivation of Ewens’s version of the fundamental theorem for one locus
[3] and briefly recall all points of [3] used here. Let pi denote the frequency of allele
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Ai , and Pi j denote the frequency and wi j the fitness (viability) of zygote Ai A j (i, j =
1, 2, . . . , n). Ewens [3] considered Mendelian systems, thus wi j = w j i . The current
frequency of allele Ai is

pi =
∑

j
Pi j (6.14)

and, in the next generation, this frequency

p′
i =

∑
j Pi jwi j

w(p)
, (6.15)

where w̄(P) = ∑
i, j Pi jwi j is the mean fitness of the population. Using this notation,

Ewens [3] introduced the following notions, based on [6, 15]. The average excess of
allele Ai is defined by

ai (p) =
∑

j Pi j (wi j − w̄(P))

pi
. (6.16)

In Ewens’s version of the fundamental theorem, even more important is the notion
of the average effect of allele Ai which is defined by a least squares procedure. Let
αi denote the average effect of allele Ai . Then α1, α2, . . . , αn are chosen so as to
minimize ∑

i, j
Pi j (wi j − w̄(P) − αi − α j )

2, (6.17)

subject to ∑
j

piαi = 0. (6.18)

Of course, the average effect depends on the parental allele distribution. Moreover,
Ewens [3] noted that if Pi j = pi p j then the average effect and the average excess are
equal.

Now we are at the basic concept of the Ewens version, namely the concept of the
partial change in mean fitness which is defined as follows:∑

i, j
Pi j (w̄(P) + αi + α j ). (6.19)

The additive genetic variance is given by Ewens as

σ 2 = 2
∑

i
pi aiαi = 2w̄(P)

∑
i

(�pi )αi ,

where �pi = pi (t + 1) − pi (t). Ewens’ version of the fundamental theorem reads
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i, j

(P ′
i j − Pi j )(w̄(P) − αi − α j ) = 2

∑
i

αi
∑

j
(P ′

i j − Pi j )

= 2
∑

i
(�pi )αi = σ 2

w(p)
. (6.20)

This says that the partial change in mean fitness is proportional to the fitness variance
of the alleles.

In what follows we make a few remarks on the average effect and partial change in
the mean fitness.

6.4.2 Residual of Average Effect

To demonstrate the background of the average effect let us see a case where the min-
imization problem defined by (6.17), (6.18) is without residual for all allele distribu-
tions. Function (6.17) is equal to zero if and only if wi j = w̄(P) + αi + α j for all i, j .
This equality means that the fitness components of the alleles are additive.5 The widely
used fitness additivity condition is rather restrictive since it reduces the degree of free-
dom of the symmetric fitness matrix and excludes, for instance, the case of overdom-
inance. Moreover, in this additive case the fitness of an allele is wi (p) = w̄(P) + αi ,
so the relative advantage of an allele (i.e., wi (p) − w̄(P) = αi ) does not depend on
the allele distribution, which is a very special frequency dependence. Thus, the mini-
mization problem defined by (6.17), (6.18) is with residual in general.

Let us consider a panmictic but non-additive case, where the residual of (6.17) is
given in the following.

Remark 1 When Pi j = pi p j using the previous notation and observation (recall Pi j =
pi p j implies αi = ai (p) = wi (p) − w̄(P) for all i = 1, 2, . . . , n) it is not hard to see
that (6.17) becomes∑

i, j
Pi j (wi j − w̄(P) − αi − α j )

2

=
∑
i, j

Pi j (wi j − w̄(P))2 − 2
∑
i, j

pi (wi (p) − w̄(P))2. (6.21)

This means that the residual of (6.17) for the minimizing values of αi under the
constraint (6.18) can be given as a difference of the fitness variance at the zygote level
and two times the fitness variance at the allelic level. To my knowledge, the residual
of the minimalization problem of (6.17), (6.18) is not given in the literature.

Observe that optimization model (6.17), (6.18) is an additive estimation of the
effects of alleles, which is surprising, since it is unusual to base a theoretical setup
on a statistical approach. In my view, the intuitive strength of the optimization model
(6.17), (6.18) is that it provides a fundamental theorem in a general genetic situation.
Then the question is what the theoretical interpretation of constraint (6.18) is in the
case of non-additive fitness.

5 An easy calculation shows that the constraint (6.18) must hold in this case.
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6.5 Connection Between Partial Change and Relative Advantage

In this subsection, we will see a possible interpretation of partial change in mean fit-
ness. For this purpose, we will see first, in Remarks 2 and 3, two important connections
between the notions of relative advantage and of partial change in mean fitness.

Remark 2 Let us assume that wi j = αi + α j for all i, j = 1, 2, . . . , n. Then we have∑
i, j

(P ′
i j − Pi j )(w̄(P) + αi + α j ) =

∑
i, j

(P ′
i j − Pi j )(αi + α j ) =

∑
i, j

(P ′
i j − Pi j )wi j ,

(6.22)

so the partial change in the mean fitness is equal to the relative advantage of the off-
spring zygote population over the parent zygote population.

Remark 3 Let us assume Pi j = pi p j . Then the average excess of allele Ai is, apart
from the multiplication by 2, equal to the relative advantage of allele Ai over the
population p. Formally, Ai is identified with the i-replicator and Fi (p) = wi (p) =∑

j wi j p j denotes the fitness of allele Ai . Using Pi j = pi p j and w̄(p) = ∑
i, j wi j p j

we get the definition of average excess rewritten as follows:

ai (p) =
∑

j

pi p j
(
wi j − ∑

k,l wkl pk pl
)

pi
=

∑
j

p j

wi j −
∑
k,l

wkl pk pl


= wi (p) − w̄(p). (6.23)

Moreover, under the condition that Pi j = pi p j , we already know that the average
effect and the average excess are equal; thus, the average effect and the relative advan-
tage are equal as well. Therefore, for the partial change in mean fitness we obtain∑

i, j
(P ′

i j − Pi j )(w̄(p) + αi + α j )

=
∑
i, j

(p′
i p′

j − pi p j )(w̄(p) + wi (p) − w̄(p) + w j (p) − w̄(p))

=
∑
i, j

(p′
i p′

j − pi p j )(wi (p) + w j (p)) = 2
∑
i, j

(p′
i − pi )wi (p). (6.24)

Thus, apart from the multiplication by 2, the partial change in mean fitness is equal to
the relative advantage of the offspring generation of alleles over its parental allele pop-
ulation. Thus, Ewens’s version and the proposed version of the fundamental theorem
are essentially the same under random mating.

Based on Remarks 2 and 3 it is intuitively clear that there is a deep connection
between the partial change in mean fitness and the relative advantage. Now, from the
viewpoint of the notion of relative advantage, a possible interpretation of partial change
in the mean fitness is given. In the definition of Ewens’s partial change in the mean
fitness, there are two points.
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1. What is the connection between the average fitness of the whole population and
the average effects of alleles? We have the following:

w̄(P) =
∑
i, j

Pi jwi j =
∑
i, j

Pi j (w̄(P) + αi + α j ) = w̄(P) + 2
∑

i
piαi . (6.25)

Thus, equality (6.25) strictly depends on constraint (6.18). It seems that this is the
only biological relevance of constraint (6.18).

2. The second point concerns the relative advantage of the offspring zygote gener-
ation over its parents,

∑
i, j (P ′

i j − Pi j )wi j . Similarly to (6.25), if wi j is replaced
by w̄(P) + αi + α j , then we get the concept of Ewens’s formula (6.19). In other
words, if we take the relative advantage of zygotes but we approximate fitness with
the average effects, then we obtain the partial change in mean fitness. In this sense,
the notion of partial change in mean fitness includes that of relative advantage. In
general, however, we have∑

i, j
Pi j (w̄(P) + αi + α j ) �=

∑
i, j

(P ′
i j − Pi j )wi j , (6.26)

due to the residual of the average effect (see Remark 1).

Let us observe that Ewens’s approach is “zygote centered,” as was the original
concepts of Fisher, in the sense that the definition of partial change in the mean fitness
is based on the relative frequencies of the zygotes.

There is, however, another possibility. Let us consider Fisher’s selection equation
(6.12), which is “allele centered,” in the sense that the state of the population is de-
scribed in terms of the allele distribution. If we try to follow Ewens’s setup but at the
level of alleles we need neither the average excess nor the average effect of alleles,
since in Fisher’s selection equation (6.12) the allelic fitness determines the whole pro-
cess of selection. Following Ewens’s setup, the partial change in mean fitness at the
allelic level could be defined as

∑
i, j (p′

i − pi )wi (p) which is nothing else than the
relative advantage of the offspring allele generation over its parental population (cf.
second point above).

Summing up, the notion of partial change of the zygote mean fitness contains the
notion of relative advantage of the offspring allele population over its parent one. Fur-
thermore, Ewens’s version is “zygote centered” while the proposed version is “allele
centered.”

6.6 Summary

In this chapter, the simplest fundamental theorem of natural selection is given: the rel-
ative advantage of the offspring generation over its parent generation is always positive
and is proportional or equal to the variance of fitness in the parent population in the
discrete- or continuous-time model, respectively.

Now a game-theoretical interpretation of this statement is given. During Darwinian
selection, a phenotype will spread only if its fitness is greater than the mean fitness of
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the whole population. Thus, it is natural to ask: What kind of improvement can happen
during natural selection? Now let us consider a frequency-dependent individual fitness.
In this chapter, we see that from generation to generation, the offspring generation is
better against its parental population than the parental population against itself. In this
sense, natural selection improves competition ability from generation to generation.
Moreover, we also see that this improvement is proportional to the variance of the
marginal fitness of replicators.

Moreover, we have shown that the relative advantage plays an important rule
in Fisher’s (see Section 6.3) and Ewens’s version (see Section 6.4) of the fundamental
theorems of natural selection, as well.

Acknowledgments
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Summary. We investigate competitive exclusion between two reproductively isolated year-
classes in the Leslie matrix model for a semelparous biennial population. Our results show that
competitive exclusion occurs if competition is more severe between than within year-classes.
Our criterion is applicable even if the model exhibits complex behavior.

Key words: Leslie matrix, permanence, average Lyapunov function.

7.1 Introduction
A species is said to be semelparous if it reproduces only once during its lifetime. There
are numerous examples of semelparous species. Pacific salmon and many insects such
as cicadas are typical examples of semelparous species.

If, in addition to semelparity, the individuals reproduce at the same chronologi-
cal age, then the population can be divided into reproductively isolated year-classes
according to the year of birth. For example, consider the 17-year periodical cicada,
inhabiting the Eastern United States. The life cycle of this cicada has a fixed length of
17 years and the adults reproduce at the end of their life [18, 19] (see also [20, 22]).
Therefore, the 17-year periodical cicada can be divided into 17 reproductively isolated
year-classes according to the year of birth. None of the year-classes contributes to the
reproduction of the others. We can find many other examples of semelparous species
with several reproductively isolated year-classes.

It is known that the existence of reproductively isolated year-classes plays a key
role in the synchronous behavior of insect emergence. For example, consider again the
17-year periodical cicada. In a given region, the adults emerge synchronously from the
ground every seventeenth year. Thus, in intervening years, we cannot see any adults
above the ground. Such synchronous emergence results from elimination of all but
one year-class because once a reproductively isolated year-class is eliminated, it can-
not reappear spontaneously. On the other hand, if year-classes are not reproductively
isolated, then temporally eliminated year-classes can reappear due to the reproduction
of the others. There are many other examples of insects whose adults emerge syn-
chronously (see [1, 10]).
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We have to note that existence of reproductively isolated year-classes is a necessary
but not a sufficient condition for synchronous emergence. Competition between year-
classes is regarded as one of the important factors leading to synchronous emergence.
Bulmer [1] studied the Leslie matrix model with n year-classes and found a stable
solution corresponding to synchronous emergence when competition is more severe
between than within year-classes. Davydova et al. [8] concentrated on the case n =
2, i.e., the case of biennials, and obtained a mathematical condition for stability of
periodic solutions corresponding to synchronous emergence. There are several studies
addressing the stability of such interesting solutions (e.g., see [6, 7, 23]). However, we
have few criteria that can properly evaluate the possibility of synchronization even if
the model has a complex solution (but see [21]). In this chapter, we concentrate on
the biennial case and obtain a criterion for synchronous emergence that is applicable
irrespective of the dynamical complexity of the model.

This chapter is organized as follows. In the next section, we introduce the Leslie
matrix model for a semelparous population with n reproductively isolated year-classes.
Furthermore, by addressing the biennial case, we show some important properties of
the Leslie matrix model for a semelparous population. In Section 7.4, we obtain the
main results of this paper. Our main results give sufficient conditions both for coexis-
tence and for competitive exclusion between two reproductively isolated year-classes.
The final section includes concluding remarks. Some mathematical results that are
necessary for proving our main results are given in the Appendix.

7.2 Leslie Matrix Model for a Semelparous Population

Let us consider the following Leslie matrix model for a semelparous population (see
[2, 3] for the Leslie matrix model):

x(t + 1) = A(x(t))x(t), t ∈ Z+ := {0, 1, 2, . . . }, (7.1)

where x = (x0, x1, . . . , xn−1)
# and

A(x) =


0 0 · · · 0 φsn−1σn−1(x)

s0σ0(x) 0 · · · 0 0
0 s1σ1(x) · · · 0 0
...

...
. . .

...
...

0 0 · · · sn−2σn−2(x) 0

 .

In this model, the population is divided into n age-classes according to the chronologi-
cal age. The density (or number) of each age-class i is denoted by xi . The parameter si
denotes the probability of surviving the i th age-class in the absence of density depen-
dence. The function σi (x) represents the intensity of density dependence on si . The
parameter φ denotes the number of offspring produced by one individual of the last
age-class n − 1. It is assumed that these parameters and functions satisfy

si ∈ (0, 1], φ > 0, σi : R
n
+ → (0, 1],
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where R
n+ is the non-negative cone, i.e., R

n+ = {x ∈ R
n : x0 ≥ 0, x1 ≥ 0, . . . , xn−1 ≥

0}. The above assumption for the function σi implies that the population density always
reduces the survival probability. Note that the function σn−1 can also be regarded as
the density dependence function for the fertility φ or for both sn−1 and φ. It is clear
that this model assumes that the individuals can reproduce only once at the end of their
life.

For mathematical reasons, we focus on the case where the functions σi are defined
by

σi (x) = exp

−
n−1∑
j=0

ai j x j

 .

Then the survival probability decreases as the population density increases. This im-
plies that there exists competition between year-classes. The intensity of competition
is determined by the positive constants ai j > 0, i, j ∈ {0, 1, . . . , n − 1}. As ai j
increases, the survival probability of the year-class i is strongly reduced by the year-
class j . Under this assumption on σi , our model is identical to the model studied by
Bulmer [1].

If n = 2, the Leslie matrix model is reduced to{
x0(t + 1) = φs1x1(t) exp[−a10x0(t) − a11x1(t)]
x1(t + 1) = s0x0(t) exp[−a00x0(t) − a01x1(t)]

. (7.2)

If a10 = αa11 and a00 = αa01 for some α > 0, then this model is reduced to the model
studied by Davydova et al. [8]. Let f : R

2+ → R
2+ be the right-hand side of (7.2).

Define S0 and S1 as follows:

S0 = {x ∈ R
2
+ : x0 = 0}, S1 = {x ∈ R

2
+ : x1 = 0}.

The sets S0 and S1 correspond to the x1- and x0-axes, respectively. We can recognize
from (7.2) that if x ∈ S0 (resp. x ∈ S1), then f (x) ∈ S1 (resp. f (x) ∈ S0). Moreover,
if x ∈ R

2+\(S0 ∪ S1), then f (x) ∈ R
2+\(S0 ∪ S1). Therefore, both R

2+\(S0 ∪ S1) and
S0 ∪ S1 are forward invariant. The interesting feature of (7.2) is that f (S0) ⊂ S1 and
f (S1) ⊂ S0. This implies that every orbit {x(t)}t∈Z+ with x(0) ∈ S0 ∪ S1 visits S0
and S1 alternately. This kind of orbit is called a synchronous orbit (e.g., see [4, 15]).
A synchronous orbit corresponds to the periodical emergence of insects since along a
synchronous orbit we observe the adults only every other year.

By the linearization of (7.2) at the trivial fixed point 0, we have{
x0(t + 1) = φs1x1(t)
x1(t + 1) = s0x0(t)

.

This linear system is stable if every eigenvalue λ of the non-negative matrix(
0 φs1
s0 0

)
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satisfies |λ| < 1 and unstable if |λ| > 1. Define R0 := φs0s1. We can show that |λ| > 1
if R0 > 1 and |λ| < 1 if R0 < 1. Hence, the trivial fixed point (7.2) is locally stable if
R0 < 1 and unstable if R0 > 1. The number R0 is called the basic reproduction ratio
and it is identical to the number of offspring per individual per lifetime.

7.3 Preliminary Results

In this section, we list some preliminary results. These results are necessary to show
our main results, which appear in Section 7.4.

First, we consider the boundedness of solutions. The following lemma shows that
all solutions of (7.2) are attracted by some bounded set.

Proposition 1 (Lemma 4.1 [16]) Let C = [0,R0/(a00e)] × [0,R0/(a11e)]. Then the
compact set B = C ∪ f (C) is an absorbing set for R

2+, i.e., f (B) ⊂ B and for every
x ∈ R

2+ there exists a T > 0 such that f T (x) ∈ B holds.

The following lemma shows that if the basic reproduction ratio R0 is less than one
or equal to one, then the population goes extinct irrespective of the initial population
densities.

Proposition 2 (Lemma 4.2 [16]) If R0 ≤ 1 holds, then

lim
t→∞(x0(t), x1(t)) = (0, 0)

holds for all (x0(0), x1(0)) ∈ R
2+.

If R0 > 1, then we can show that the population can survive in the sense of
permanence, which is defined as follows.

Definition 1 System (7.2) is said to be permanent if there exist positive constants δ > 0
and D > 0 such that

δ ≤ lim inf
t→∞ (x0(t) + x1(t)) ≤ lim sup

t→∞
(x0(t) + x1(t)) ≤ D

holds for all (x0(0), x1(0)) ∈ R
2+ with x0(0) + x1(0) > 0.

In fact, by using the above two propositions with Theorem 3 [17], we can obtain
the following proposition.

Proposition 3 (Theorem 4.4 [16]) System (7.2) is permanent if and only if R0 > 1
holds.
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7.4 Main Results

Since the population cannot persist under the assumption R0 ≤ 1 (see Proposition 2),
we concentrate on the case R0 > 1.

Let γ+(x) = {x, f (x), f 2(x), . . . }. Proposition 3 ensures that if R0 > 1, then there
exists a compact set M ⊂ R

2+ such that M ∩ {0} = ∅ and γ+(x) ∩ M �= ∅ for every
x ∈ R

2+\{0}. In this case, by using Lemma 2.1 of [13], we can construct a forward
invariant compact set X ⊂ R

2+ such that X ∩ {0} �= ∅ and γ+(x) ∩ X �= ∅ for every
x ∈ R

2+\{0}. Therefore, for understanding the ultimate behavior of γ+(x), it is enough
to investigate γ+(x) with x ∈ X . So, in this section, we investigate the dynamics in X .
In particular, we investigate the attractivity of S defined by S = {x ∈ X : x0x1 = 0},
i.e., S = (S0 ∪ S1)∩ X . Since the compact set X does not contain the trivial fixed point,
the attractivity of S does not imply extinction of the population, but extinction of one
of the two year-classes. If S is attractive, then all orbits starting in a neighborhood of
S converge to S visiting the neighborhoods of S0 and S1 alternately. It is clear that if S
is a repellor, then two year-classes coexist.

The following lemma will be used below to consider the attractivity of S.
Lemma 1 Suppose that R0 > 1 holds. Then for every (0, x1(0)) ∈ S0 with x1(0) > 0
there exists a sequence t j → ∞ such that

lnR0 = a00 lim
j→∞

1
t j

t j −1∑
i=0

x̃0(2i) + a11 lim
j→∞

1
t j

t j −1∑
i=0

x1(2i), (7.3)

and for every (x0(0), 0) ∈ S1 with x0(0) > 0 there exists a sequence t j → ∞ such
that

lnR0 = a00 lim
j→∞

1
t j

t j −1∑
i=0

x0(2i) + a11 lim
j→∞

1
t j

t j −1∑
i=0

x̃1(2i),

where x̃0(t) = φs1x1(t)e−a11x1(t) and x̃1(t) = s0x0(t)e−a00x0(t).

Proof Let (0, x1(0)) ∈ S0 with x1(0) > 0. Then it follows from (7.2) that
x1(t + 2)

x1(t)
= R0 exp[−a00 x̃0(t) − a11x1(t)]

holds for every even number t ≥ 0. Note that x0(t) = 0 for all even numbers t ≥ 0.
Consequently, we have

1
t

t−1∑
i=0

ln
x1(2i + 2)

x1(2i)
= 1

t

t−1∑
i=0

(lnR0 − a00 x̃0(2i) − a11x1(2i)).

The sum on the left-hand side tends to 0 as t → ∞ since (7.2) is permanent (i.e.,
x1(2i) is bounded away from 0 and ∞). We choose a subsequence t j → ∞ such that
both lim j→∞

∑t j −1
i=0 x̃0(2i)/t j and lim j→∞

∑t j −1
i=0 x1(2i)/t j converge (this is possible

since they are bounded). Then we obtain (7.3). The case (x0(0), 0) ∈ S1 with x0(0) > 0
can be proved similarly. ��
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By using this lemma, we can prove the following two theorems.

Theorem 1 Suppose that R0 > 1 holds. If a00 < a10 and a11 < a01 hold, then S is an
attractor of the system f : X → X, i.e., there exists a neighborhood U of S such that
ω(x) ⊂ S for every x ∈ U.

Proof We shall prove this theorem by using the average Lyapunov function P : X →
R+ defined by P(x) = x1x2. This continuous function satisfies P(x) = 0 if and only
if x ∈ S. The theory of average Lyapunov functions ensures that S is an attractor if for
all x ∈ S, inft≥0

∏t−1
i=0 ψ( f i (x)) < 1, where ψ : X → R+ is a continuous function

with P( f (x)) ≤ ψ(x)P(x) (see Appendix).
Define ψ : X → R+ by ψ(x) = R0 exp[−(a00 + a10)x0 − (a01 + a11)x1]. Then

P( f (x))/P(x) = ψ(x) holds. Let �(x, t) = ∑2t−1
i=0 ln ψ( f i (x))/2t . Then we have

�(x(0), t) = lnR0 − (a00 + a10)
1
2t

2t−1∑
i=0

x0(i) − (a01 + a11)
1
2t

2t−1∑
i=0

x1(i),

where (x0(t), x1(t)) = f t (x(0)). Let x(0) ∈ S0 ∩ S. Then x0(2t) = x1(2t + 1) = 0
for all t ∈ Z+. Hence, we have

�(x(0), t) = lnR0 − a00 + a10

2
1
t

t−1∑
i=0

x̃0(2i) − a01 + a11

2
1
t

t−1∑
i=0

x1(2i).

Note that x0(2i + 1) = φs1x1(2i)e−a11x1(2i) = x̃0(2i). Since X is compact and X ∩
{0} �= ∅, there exists a positive � > 0 such that

lnR0 − a00 + a10

2
x0 − a01 + a11

2
x1 ≤ lnR0 − a00x0 − a11x1 − �

for all x ∈ X . Therefore, by using Lemma 1, we can show that there exists a subse-
quence t j → ∞ such that

lim
j→∞

�(x(0), t j ) < 0.

This implies that inft≥1
∏2t−1

i=0 ψ( f i (x)) < 1 for all x ∈ S0 ∩ S. The case x(0) ∈ S1 ∩ S
can be checked similarly. ��
Theorem 2 Suppose that R0 > 1 holds. If a00 > a10 and a11 > a01 hold, then S is a
repellor of the system f : X → X, i.e., there exists a neighborhood U of S such that
for all x /∈ S there exists T = T (x) > 0 satisfying f T (x) /∈ U for all t ≥ T .

Proof We again use P(x) = x0x1 as an average Lyapunov function. The theory of
average Lyapunov functions ensures that S is a repellor if for all x ∈ S,

sup
t≥0

t−1∏
i=0

ψ( f i (x)) > 1,
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where ψ : X → R+ is a continuous function with P( f (x)) ≥ ψ(x)P(x) (see [12] and
Appendix). We again use the function ψ defined in Theorem 1 since P( f (x))/P(x) =
ψ(x) holds. Let x(0) ∈ S0 ∩ S. Then by a similar argument as that above, we obtain

�(x(0), t) = lnR0 − a00 + a10

2
1
t

t−1∑
i=0

x̃0(2i) − a01 + a11

2
1
t

t−1∑
i=0

x1(2i),

where (x0(t), x1(0)) = f t (x(0)). Note that x0(2i + 1) = φs1x1(2i)e−a11x1(2i) =
x̃0(2i). By using Lemma 1, we can show that there exists a subsequence t j → ∞ such
that

lim
j→∞

�(x(0), t j ) > 0.

This implies that supt≥1
∏2t−1

i=0 ψ( f i (x)) > 1 for all x ∈ S0∩S. The case x(0) ∈ S1∩S
can be checked similarly. ��

Fig. 7.1 and 7.2 illustrate the above two theorems. In these figures, x1(t) is plotted
against t and the solid and dotted lines connect (x1(t), t) to (x1(t + 2), t + 2) with
even t and odd t , respectively. These lines represent the population dynamics of two
different year-classes. In Fig. 7.1, the condition of Theorem 1 holds. Hence, two year-
classes do not coexist and one of the two year-classes goes extinct. The orbits in Fig.
7.1 (a), (b) and (c) converge to the 2-periodic, 4-periodic and chaotic orbits on S0 ∪ S1,
respectively. In Fig. 7.2, the condition of Theorem 2 holds. Hence, two year-classes
coexist. In Fig. 7.2 (a), two year-classes coexist at a stable fixed point. In Fig. 7.2 (b),
two year-classes coexist with chaotic oscillation. Although the population densities
oscillate with large amplitude, Theorem 2 ensures that any orbits do not approach the
boundary of R

2+.

7.5 Concluding Remarks

In this paper, we have investigated competitive exclusion between two year-classes.
This investigation gave a sufficient condition for competitive exclusion. More pre-
cisely, we have showed that competitive exclusion occurs in system (7.2) if the in-
equalities a00 < a10 and a11 < a01 hold. This condition implies that competition is
more severe between than within year-classes. Furthermore, we have shown that two-
year classes coexist if competition is more severe within than between year-classes,
i.e., a00 > a10 and a11 > a01. The numerical investigations show that our results prop-
erly evaluate the possibility of competitive exclusion even if the system composed of
a single year-class exhibits complex behavior (see Fig. 7.1 (b)). However, note that
our results do not cover the following two cases: (i) a00 ≥ a10 and a11 ≤ a01 and (ii)
a00 ≤ a10 and a11 ≥ a01. It is known that in these cases the competitive exclusion
depends also on the remaining parameters φ, s0 and s1 (see [5, 8, 16]).

There are a few studies of the higher dimensional case. For example, Mjølhus et al.
[21] studied system (7.1) with σi (x) ≡ 1, i = 0, 1, . . . , n − 2 and σn−1(x) = F(x0 +
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(c)

(b)

(a)

x1(t)

x1(t)

x1(t)

t

t

t

Fig. 7.1. The dynamics of system (7.2) with the initial condition x0(0) = 1, x1(0) = 0.1. The
solid (resp. dotted) line represents x1(t) at even (resp. odd) years t (i.e., the population densities
of two different year-classes). The parameters are a00 = a11 = 1, a12 = a21 = 2, s0 = 1,
s1 = 0.5, (a) φ = 20 (R0 = 10), (b) φ = 40 (R0 = 20) and (c) φ = 60 (R0 = 30).

x1 +· · ·+xn−1), where F is a continuous function of the total population density. That
is, they assumed that the survival probabilities are constant and the fecundity decreases
with the total population density. It is a future problem to relax these assumptions. As
reported by Bulmer [1], system (7.1) can have a heteroclinic orbit connecting periodic
points on the coordinates if n ≥ 3 (see [4] for a mathematical proof concerning the
existence of heteroclinic orbits in the Leslie matrix model). Hence, it is expected that
the higher dimensional Leslie matrix model exhibits various dynamical behavior. It is
interesting to challenge the higher dimensional case (see [9]).
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(b)

(a)

x1(t)

x1(t)

t

t

Fig. 7.2. The dynamics of system (7.2) with the initial condition x0(0) = 1, x1(0) = 0.1. The
solid (resp. dotted) line represents x1(t) at even (resp. odd) years t (i.e., the population densities
of two different year-classes). The parameters are a00 = a11 = 2, a12 = a21 = 1, s0 = 1,
s1 = 0.5, (a) φ = 60 (R0 = 30) and (b) φ = 80 (R0 = 40).
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Appendix

In this appendix, we consider the semi-dynamical system generated by the continuous
map f : X → X , where X is a compact metric space.

Let M ⊂ X be a compact forward invariant set, i.e., f (M) ⊂ M . The set M is
said to be a repellor if there exists a neighborhood U of M such that for all x /∈ M
there exists T = T (x) > 0 satisfying f t (x) /∈ U for all t ≥ T . M is said to be an
attractor if there exists a neighborhood U of M such that ω(x) ⊂ M for all x ∈ U ,
where ω(x) is the omega-limit set of x defined by ω(x) := {y ∈ X : lim j→∞ f t j (x) =
y for some sequence t j → ∞}.

The following theorem of average Lyapunov functions is utilized to show that the
compact forward invariant set M is a repellor (see also Theorem 2.2 [13] and Theorem
2.17 [14]).
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Theorem 3 (Corollary 2.3 [12])Let X\M be forward invariant. Then M is a repellor
if there exists a continuous function P : X → R+ such that (i) P(x) = 0 if and only
if x ∈ M, (ii) for all x ∈ M, supt≥1

∏t−1
i=0 ψ( f i (x)) > 1, where ψ : X → R+ is a

continuous function with P( f (x)) ≥ ψ(x)P(x).

By using the same technique, we can prove the following theorem, which is used
to show that the compact forward invariant set M is an attractor (see also Theorem
2.7 [11] and Theorem 2.18 [14])

Theorem 4 Let X\M be forward invariant. Then M is an attractor if there exists a
continuous function P : X → R+ such that (i) P(x) = 0 if and only if x ∈ M, (ii) for
all x ∈ M, inft≥1

∏t−1
i=0 ψ( f i (x)) < 1, where ψ : X → R+ is a continuous function

with P( f (x)) ≤ ψ(x)P(x).

Proof For p ∈ (0, 1) and t ≥ 1, define

U (p, t) =
{

x ∈ X :
t−1∏
i=0

ψ( f i (x)) < p

}
.

Then U (p, t) is open. Since inft≥1
∏t−1

i=0 ψ( f i (x)) < 1 for all x ∈ M ,

M ⊂
⋃

p∈(0,1), t≥1
U (p, t)

holds. Since M is compact, there exist p ∈ (0, 1) and t1, . . . , tm ≥ 1 such that M ⊂⋃m
i=1 U (p, ti ) =: W . Let t = max{t1, . . . , tm}.

Let Wp = {x ∈ X : P(x) < p}. Choose p ∈ (0, 1) such that W p ⊂ W , where
W p is the closure of Wp . Let x ∈ Wp ⊂ W . Then there exists T ∈ [1, t] such that
x ∈ U (p, T ). Furthermore, P( f T (x)) < pP(x) holds. This implies that f T (x) ∈ Wp.
Therefore, by iteration we obtain a sequence Tj → ∞ with Tj+1 − Tj ≤ t such that
f Tj (x) ∈ Wp and P( f Tj (x)) → 0 as j → ∞. Since P( f t (x)) ≤ αP( f Tj (x)) holds
for all t with Tj ≤ t ≤ Tj+1, where α = max{∏t−1

i=0 ψ( f i (x)) : 1 ≤ t ≤ t, x ∈ X},
we conclude that P( f t (x)) → 0 as t → ∞. This completes the proof. ��
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On the Impact of Winter Conditions on the Dynamics
of an Isolated Population
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Summary. This chapter is devoted to the analysis of single-species population dynamics mod-
els with overlapping and non-overlapping generations. Within the framework of all models it is
assumed that there are no activities of individuals during the wintertime (as, for example, is the
case for forest insect populations in the boreal zone), and changes in population size at these
moments are described with a broken trajectory (“jump down”). Also, it is assumed that the
fecundity of individuals is constant and that the quota of individuals surviving winter depends
on the within-year population dynamics. The dynamics of the models, which are determined by
the influence of winter conditions on the survival of individuals and by the influence of intra-
population self-regulative mechanisms, are analyzed. For some particular cases the conditions
for population extinction and for stabilization at a non-zero level are determined; it is shown
numerically that chaotic regimes can also be realized in some models. The conditions for the
reduction of the models under consideration to some well-known discrete models are obtained.

Key words: Population dynamics, ordinary differential equations with impulses, discrete mod-
els.

8.1 Introduction

In insect populations in the boreal zone there are no activities of individuals during
winter. This makes it possible not to use special equations for the description of the
population decrease during this time, but to describe this decrease with a trajectory of
a differential equation ([39], [1], [34], [10], [15], [16], [17]) interspersed with jumps
at selected time moments. Similar situations are typical for populations under periodic
harvesting and periodic use of chemical poisons against pests if the latter are realized
without any after-effect influencing the population dynamics ([18], [19]).

It is possible to find in the modern literature (see, for example, [47], [22], [23], [25],
[38], [3], [4], [35], [42]) an opinion that winter conditions play a very important role
in the beginning and development of forest insect outbreaks. An analysis of the real
role of winter conditions in insect population dynamics cannot take place within the
framework of traditional ecological models (recurrence equations or ordinary differ-
ential equations). It requires the use of another mathematical apparatus where we can
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separate the influence of winter conditions from the influences of all other population
mechanisms.

For these reasons it is better to use ordinary differential equations with impulses
([26], [39], [1], [32], [34], [16], [17], [10] and others). First, the use of models of
that type allows us to separate the influences of all mechanisms on the population
dynamics and, hence, to find the real dependence of the birth rate on the parameters
that characterize the impacts of winter conditions on the changes in population size.
For some species of forest insects (for example, for Dendrolimus sibiricus superans
Tschetv., Ips subelongatus Mosch., Monogamus urussovi Fisch. and some others) it
was assumed that the influence of weather conditions on population birth rates can be
presented in a linear multiplicative form ([11], [49], [24], [21], [20]). Using discrete-
continuous models allows us to determine the conditions when this assumption (linear
dependence of birth rate on weather parameters) is truthful, and provides a faithful
limiting description of such assumptions.

Second, as pointed out by several authors ([36], [10], [14], [15], [16], [44]) the
construction and analysis of models of this type (ordinary differential equations with
impulses) can allow us to determine the domains over which discrete time models
can be applied to establish the relation between within-year population dynamics and
long-term population fluctuations. Consequently, sometimes it gives us more adequate
biological interpretations of model parameters. Third, using this approach to the mod-
eling of population dynamics allows us to obtain new discrete models which are based
on various assumptions about the functioning of intra-population mechanisms during
within-year periods ([10], [32]).

This chapter considers mathematical models of single-species population dynam-
ics which can be considered modifications and generalizations of the well-known [48]
model. Within the framework of the considered models it is assumed that trajectories
are “broken” periodically in a manner that corresponds to the decrease of population
size during wintertime and the increase of population size at the appearance of new
generations. It is also assumed that the quota of surviving individuals in a population
depends on the “food conditions” during the time period under consideration. This
dependence is taken into account as a dependence of the respective coefficient on the
average population size during this time interval.

8.2 Model with Discrete Birth Process

Let us consider the situation when there are no activities in the population during
wintertime and let tk , k = 0, 1, 2, . . . , tk+1 − tk = h = const > 0, be the moments of
the beginning of winter periods (respectively, the moments of the beginning of the next
“vegetative periods”). Denote as x(t) the population size at moment t , as x(tk − 0) the
number of individuals surviving to moment tk , as xk = x(tk) the population size at the
beginning of the next vegetative period, and as Q, 0 < Q < 1, the quota of individuals
surviving the winter. The amount p = 1− Q is equal to the probability of dying during
this period. Thus, at moments tk we have the following relation:

x(tk) = Qx(tk − 0). (8.1)
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Fig. 8.1. Change of population size with time. xk is population size of kth generation (after
winter period). x(τk − 0) is number of individuals surviving up to moment τk . x(τk) is initial
size of the k+1-th generation. Y is productivity, Y = const > 1. Q is winter survival, Q = 1−p.

Within the framework of the model we shall assume that the appearance of new
individuals is realized at fixed time moments τk , τk ∈ (tk, tk+1), thus allowing us to
describe the changes in population size with a broken trajectory (Fig. 8.1). Denote as
x(τk −0) the number of individuals surviving up to moment τk . Let Y = const, Y > 1,
be the coefficient of productivity: Y is equal to the average number of new individuals
that can be produced by one surviving individual. Thus, at moments τk the following
relation holds:

x(τk) = Y x(τk − 0). (8.2)

We shall describe the population dynamics during time intervals [tk, τk) and
[τk, tk+1) with the following equation:

dx
dt

= −x R(x), (8.3)

where the per capita death rate R(x) satisfies the following conditions, which are com-
mon for various models ([45], [46], [23], [37]):

R(0) > 0,
d R
dx

> 0, R(∞) = ∞. (8.4)

R(0) is an intensity of natural deaths, and increases of values of R(x) are a result of
the strengthening of the influence of intra-population self-regulative mechanisms with
increasing population size.

In the model we shall assume that the coefficient Q depends on the average popu-
lation size during the period [tk, tk+1), Q = Q(u), where

u = 1
h

∫ tk+1

tk
x(s)ds.



90 L.V. Nedorezov, E.V. Volkova, and A.M. Sadykov

The interpretation of the coefficient Q(u) lets us assume that Q is a monotonically
decreasing function (increase of population size leads to an increase of intra-population
competition for food):

Q(u) ∈ [0, 1],
d Q
du

< 0. (8.5)

Relations (8.1)–(8.5) give us a model of population dynamics with a discrete time
birth process and continuous-discrete time death process. Note that if the coefficient
of productivity Y < 1, then the time series {x(tk)}, k = 0, 1, 2, . . . , in model (8.1)–
(8.5) is a monotone decreasing sequence for all initial values of the population size
(the population goes extinct for all initial values).

8.2.1 Reduction of Model (8.1)–(8.5) to a Recurrence Equation

Let ψ(x) be the following function:

ψ(x) =
∫

dx
x R(x)

+ C,

where C is a constant of integration for equation (8.3). From conditions (8.4) we have

ψ ′(x) > 0, ψ ′′(x) < 0.

It means that there exists an inverse monotonically increasing function ψ−1. Solution
of the Cauchy problem on the interval [tk, τk) with x(tk) = xk gives the following
relation:

x(t) = ψ−1(−t + c1), (8.6)

where c1 = tk + ψ(xk). Hence, equation (8.6) can be presented in the form

x(t) = ψ−1(tk − t + ψ(xk)) ∀ t ∈ [tk, τk).

Using relation (8.2) gives the balance relation

x(τk) = Y x(τk − 0) = Y!−1(!(xk) − h1), (8.7)

where h1 = τk − tk . Equation (8.7) gives the initial condition for the Cauchy problem
for (8.3) on the interval [τk, tk+1). Finally we have

xk+1 = x(tk+1) = Q

 1
h

tk+1∫
tk

x(s)ds

 ψ−1(c2 − tk+1), (8.8)

where

c2 = τk + ψ(x(τk)).
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Denote as F(xk) the function on the right-hand side of equation (8.7). If

0 ≤ xk < ψ−1

(
ψ

(
ψ−1(h2)

Y

)
+ h1

)
,

where h2 = tk+1 −τk , the F(x) is a monotonically increasing function on this interval.
For all non-negative initial values the solutions of equation (8.8) are non-negative.
From conditions (8.4) it follows that solutions of model (8.8) are bounded.

8.2.2 Particular Cases

1. If R(x) = b = const > 0 (this means that self-regulating mechanisms do not
work during the vegetative period; not all the conditions (8.4) are realized for this
assumption) and Q(u) = e−pu , p = const > 0, model (8.8) has the following form:

xk+1 = αxke−βxk , (8.9)

where the positive constants α and β depend on b, Y , h1, h2, and p. The parameter p
describes the influence of winter conditions on the population dynamics: an increase
of the value of this parameter leads to a decreasing quota of individuals surviving the
winter for the same within-year population dynamics.

Equation (8.9) is the well-known Moran–Ricker model ([30], [40]). Analysis of
this model is presented in diverse publications (see, for example, [9], [41], [50], [27],
[28], [29], [42], [6]). Thus, the Moran–Ricker model (8.9) can be deduced from model
(8.1)–(8.5) but under the assumption that there are no self-regulative mechanisms (R =
const) during the vegetative period and productivity is constant.

Population size is regulated by winter conditions only. But it is very important to
note that changing the value of the parameter p leads only to a change of the population
stationary level; it cannot lead to changing the character of any population fluctuations
(in other words, it cannot lead to a bifurcation of a dynamical regime). This means
that in the situation under consideration we have reasons for assuming that winter
conditions play the role of stabilizing factor in the population dynamics.

2. If R(x) ≡ b = const > 0, Q(u) = 1/(1+ pu), equation (8.8) is the well-known
Beverton–Holt model ([5]):

xk+1 = αxk

βxk + γ
, (8.10)

where α, β, γ are positive parameters. Thus, the Beverton–Holt model (8.10) can also
(like the Moran–Ricker model (8.9)) be deduced within the framework of model (8.1)–
(8.5). Model (8.10) can also be obtained in (8.1)–(8.5) under the condition that the
action of the self-regulative mechanisms correspond to a Verhulst law ([48]), and the
productivity, Y , and the coefficient of surviving, Q, are constant ([34]).

In the case under consideration the influence of winter conditions leads to a de-
crease of the population stationary state only. This means that, as in the previous situ-
ation, these conditions play the role of stabilizing factor.
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3. If R(x) = ax + b, a, b = const > 0, Q(u) = e−pu , model (8.8) has the
following form:

xk+1 = K1xk

K2xk + K3

(
K4xk + K5

K6x2
k + K7xk + K5

)p/ha

, (8.11)

where the “macrocoefficients” Ki = const ≥ 0, i = 1, . . . , 7, are determined by the
following formulas:

K1 = bY,

K2 = a(Y ebh2 + (ebh1 − 1)ebh2 − Y ),

K3 = bebh,

K4 = ab(ebh1 − 1),

K5 = b2ebh1 ,

K6 = a2(Y (1 − e−bh1)(1 − e−bh2) + (1 − e−bh1)(ebh1 − 1)),

K7 = ab(2(ebh1 − 1) + Y (1 − e−bh2)).

It is very important to note that equation (8.11) was obtained under the assumption
that the action of the intra-population self-regulative mechanisms follow the Verhulst
law ([48]) when R is a linear function.

The stationary states of model (8.11) can be found from the equation

x = K1x
K2x + K3

(
K4x + K5

K6x2 + K7x + K5

)p/ha
. (8.12)

Obviously, x0 = 0 is a root of this equation. If K3/K1 < 1, equation (8.12) has positive
solutions. If K3 > K1, which is equivalent to ebh > Y , the origin is a globally stable
equilibrium for model (8.11). Under this condition the population goes extinct for all
initial values of the population size.

Analysis of the bifurcation diagram (Fig. 8.2) shows that various cyclic regimes
can be realized for model (8.11). Numerical analysis of Diamond’s conditions ([8]) at
Y = 224 shows that in the (a, b)-plane there is a domain (Fig. 8.3) that corresponds to
dynamic regimes with chaotic trajectories ([43]).

8.3 Model with Continuous Birth Process

Let us consider the situation where the population has overlapping generations. We
shall assume that the population dynamics on the intervals [tk, tk+1) is described by
the equation

dx
dt

= x R(x), (8.13)
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Fig. 8.2. Bifurcation diagram for model (8.11). a = 0.2, b = 0.4.

where the function R(x) describes the death process of individuals, the birth process,
and the influence of intra-population self-regulative mechanisms on the population
dynamics. The following assumptions are typically made for the function R(x) ([2],
[45], [46], [12], [13], [7], [31] and others):

R(0) > 0,
d R
dx

< 0, R(∞) = −∞. (8.14)

The quantity R(0) is the Malthusian parameter for population.

Fig. 8.3. Domain in a space of parameters where conditions of Diamond’s theorem are realized.
Y = 224.
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As previously, we shall assume that the quota Q of individuals that survive the
winter is determined by the food supply of the individuals during a certain time inter-
val:

Q = Q

 1
h

tk+1∫
tk

x(s)ds

 . (8.15)

Additionally, it is natural to assume that an increase in the average population size
leads to a decrease in the food supply for the individuals. Hence, it leads to an increase
in the death rate during wintertime, and the derivative of the function (8.15) must be
negative.

8.3.1 Properties of Model (8.13)–(8.15) for Q ≡ const

1. Let K be a solution of the equation R(x) = 0. If x0 = x(0) > K , it is obvious that
the trajectory {xk = x(tk)} of model (8.13)–(8.15) will belong to the domain x ≤ K
after a finite number of time steps. If x0 = x(0) < K , the sequence {xk} cannot
intersect the boundaries of interval [0, K ]. This means that for every time moment the
population size is bounded and non-negative.

Further we will assume that the inequality x0 = x(0) < K is always realized.
2. When

QeR(0)h < 1, (8.16)

the origin is globally attracting. In other words, if (8.16) holds true the population goes
extinct for all initial values of the population size. Further we shall assume that the
inverse inequality in (8.16) is always satisfied.

3. Let ψ(x) be the following function:

ψ(x) =
∫

dx
x R(x)

.

If 0 < x < K then ψ(x) is a monotonically increasing function, ψ ′(x) > 0. When x
changes from 0 to K the value of ψ(x) changes from −∞ to +∞. Thus, there exists
an inverse function ψ−1, which is defined on the interval (−∞, +∞) and bounded,
0 ≤ ψ−1 ≤ K .

Formally, it is possible to present the solution of model (8.13)–(8.15) in the fol-
lowing form (with initial condition xk = x(tk)):

xk+1 = Qψ−1(ψ(xk) + h). (8.17)

The function on the right-hand side of equation (8.17) is monotonically increasing.
Thus, in model (8.13)–(8.15) there are only the regimes of monotone population
change.

The number of non-trivial stationary states in (8.17) is determined by the number
of positive solutions of the functional equation
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ψ

(
x
Q

)
= ψ(x) + h,

which is defined on the interval 0 < x < QK . Taking into account that the second
derivative of ψ(x) can change the sign, in general the last equation has several non-
zero solutions.

8.3.2 Particular Cases

1. Let us consider the case when R takes a linear form, R(x) = α̃ − β̃x , where all
parameters are positive, α̃, β̃ ≡ const > 0. The coefficient α̃ is a Malthusian param-
eter of the population and β̃ is a parameter of the self-regulatory mechanism. After
integrating we get model (8.10) with parameters

α = Qeα̃h, β = β̃

α̃
(eα̃h − 1), γ = 1.

In the deduction of this model from a continuous-discrete model (8.13)–(8.15), we as-
sumed that the sequence {xk} contains the values of the population size at moments
tk (population sizes at the beginning of vegetative periods). For various insect pop-
ulations in the boreal zone the most suitable moments for population measurements
are at the end of vegetative periods. Consequently, there exists the important question
about the relation between the type of discrete time model (which we use for fitting of
experimental time series) and the moments at which the population is sampled.

Let τ , τ ≤ h, be the time after the beginning of the vegetative period and, respec-
tively, let tk +τ be the time moment at which the population is sampled, xk = x(tk +τ).
Taking into account all the assumptions we made above, in the end we get the follow-
ing discrete model:

xk+1 = αxk

1 + Cxk
, (8.18)

where

C = β

α

(
eα(h−τ) − 1 + Q(eατ − 1)eα(h−τ)

)
. (8.19)

Finally, in the situation under consideration there is no relation between the kinds
of model (in all situations we have model (8.10)) and the moments of population size
measurement. However, it is very important to note that if τ = 0, the parameter C does
not depend on the value of parameter Q (it does not depend on survival of individuals
over the winter periods).

2. Let us consider the situation when

Q = exp

−b

tk+1∫
tk

x(s)ds

 . (8.20)
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The coefficient b is a positive parameter corresponding to the “sensitivity” of the indi-
viduals to the food conditions. After some calculations formula (8.20) can be presented
in the form

Q = 1(
1 − β

α
xk + β

α
eαh xk

)b/β
.

In the end, we get the following discrete model of population dynamics

xk+1 = Axk

(1 + Bxk)(b/β)+1 , (8.21)

where

A = eαh, B = β

α
(eαh − 1).

Equation (8.21) is the well-known Hassell model ([12], [13]). Model (8.21) was ob-
tained under the assumption that the population size can be measured at the beginning
of the vegetative period. If the population size can be estimated at the beginning of
wintertime we have

xk+1 = (q + 1) · xk
β
α

qxk + (
β
α

qxk + 1)b/β
, (8.22)

where xk = x(tk − 0) and q = eαh − 1. Thus, we can conclude that the type of
discrete time model depends on the time of the population size measurement. It means
that if we have a dataset on population dynamics with the measurements taken just
before wintertime, there are no reasons to use model (8.21) for an approximation of
the experimental trajectories.

Formally, models (8.21) and (8.22) are different. However, it is obvious that for the
same values of the parameters these models have the same dynamic regimes. Hence,
these models have similar structures of their parameter spaces.

Let τ , τ ≤ h, be the time after the beginning of the vegetative period and, respec-
tively, let tk + τ be the moments at which the population is sampled, xk = x(tk + τ).
If Q is determined by (8.20) we have

Q =
(

αeατ − βxk(eατ − 1)

αeατ + βxk(eαh − eατ )

)b/β

.

This expression gives us a one-parameter (τ) family of discrete time models that are
“produced” by model (8.13)–(8.15) under the assumptions considered above.

8.4 Conclusion

Analysis of single-species population dynamics under periodic impacts that lead to
decreases in population size shows that, at a constant value of the coefficient of sur-
viving after the impacts, only regimes of monotone stabilization of population size can
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be realized. In the general case regimes with several stationary states can be realized
within the framework of the analyzed model. This result can be considered as addi-
tional support for the hypothesis that winter conditions play a very important role in
the beginning and development of population outbreaks.

For some particular cases of populations with non-overlapping generations we
found that winter conditions can play the role of stabilizing regulator. Also, we found
that even in the simplest cases when there is no self-regulation in population and the
impacts of winter conditions are described by an exponential or fractional-linear func-
tion, we have a non-linear dependence of the birth rate on the parameter describing the
influence of winter conditions on the population dynamics. Consequently, all models
([11], [49], [24], [21], [20]) of population dynamics that were constructed under the
assumption of linear dependence of the birth rate on weather parameters need serious
modifications.

Analysis of two other particular cases (for populations with overlapping genera-
tions) where the within-year population dynamics is described by the Verhulst model
showed that there are no trigger regimes in the phase space of the system if the quota
of surviving individuals during the wintertime is constant or an exponentially decreas-
ing function of the average population size. Also, analysis of these particular cases
allowed us to obtain one-parametric sets of discrete time models which can be “pro-
duced” by one continuous-discrete model, and to show that the type of discrete model
of population dynamics can depend on the time moments of the population size mea-
surements. It is very important to take the latter into account when choosing a discrete
time dynamic model for the fitting of experimental time series.
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Summary. Rapid species extinctions and the loss of other biodiversity features worldwide have
prompted the development of a systematic planning framework for the conservation of biodiver-
sity. Limited resources (∼ 40 million USD annually) are available for conservation, particularly
in the developing countries that contain many of the world’s hotspots of species diversity. Thus,
conservation planning problems are often represented as mathematical programs in which the
objective is to select sites to serve as conservation areas so that the cost of the plan is as small as
possible and adequate habitat is protected for each species. Here, we generalize this approach to
allow for uncertainty in the planning process. In particular, we assume that the species to be pro-
tected disperse after the conservation areas are established and that planners cannot anticipate
with certainty the species’ future locations when selecting the conservation areas. This uncer-
tainty is modeled by including random variables in the mathematical program. We illustrate the
approach by designing a network of conservation areas for birds in southern Quebec.

Key words: Conservation areas, reserve selection, stochastic programming, conservation biol-
ogy, biodiversity.

9.1 Introduction

Conservation areas are broadly defined as sites administered for the protection of
threatened species and other features of biodiversity. However, many conservation ar-
eas throughout the world were created not because of their biodiversity content but
because they had little economic value when established [9]. As a consequence, there
is growing evidence at the global scale that existing conservation areas do not represent
threatened species adequately [11]. Thus, tools are needed for selecting and refining
conservation areas worldwide. Globally, approximately 40 million USD is spent annu-
ally to protect biodiversity hotspots [10]. To make the best use of this limited funding,
conservation areas must be selected in such a way that the cost of acquiring and man-
aging the land and the foregone opportunity cost to local human communities are as
small as possible.
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An effective way to formulate this planning problem is to represent it as a linear
integer mathematical program. In general, a mathematical program is an optimization
model that takes as input data parameters. Solving the mathematical program amounts
to selecting values for decision variables that optimize an objective function while
obeying one or more constraints. In our setting, the objective is to minimize the cost
of the selected sites. Alternatively, the objective may be to maximize the number of
species (or other biodiversity surrogates) protected subject to a budgetary constraint.
Typically, the program includes constraints to ensure that the selected sites contain
sufficient habitat for each species. Though this approach has proven useful in many
planning contexts [15], it makes two unrealistic assumptions: that there is no uncer-
tainty in the data parameters of the mathematical program and that the conservation
areas are selected all at once.

Here, we relax these assumptions by modeling conservation planning problems us-
ing stochastic programming, which is a branch of operations research concerned with
optimization under uncertainty [1]. The uncertainty is represented by having some of
the data parameters in the mathematical program be random variables whose values
are determined by a random experiment. Formally, each random variable is a mapping
from the sample space � to R and the outcomes of the random experiment constitute
a σ -algebra F on � in the probability space (�,F ,P), where P is a probability mea-
sure on F [7]. In a two-stage stochastic program, the first-stage decision must be taken
before the specific values of the random variables are known. Then a random experi-
ment is conducted and the values of the random variables are disclosed. In the second
stage, a recourse decision is taken to respond to, or compensate for, the results of the
random experiment. The objective of the stochastic program is to minimize the cost of
the first-stage decision plus the expected value of some function of the first-stage deci-
sion and the random variables. This two-stage framework has been used profitably in
many areas of environmental planning, including acid rain control [14], water supply
reliability modeling [8], and biodiversity conservation [6, 13].

In our two-stage stochastic integer program, sites are selected, based on their
species composition, to be included in a network of conservation areas in stage one
(Appendix, Fig. 9.1). There is no uncertainty about the locations of the species in
stage one. However, the stochastic program includes random variables that represent
the locations of the species after the first stage. After the stage-one decision, a random
experiment is conducted and the species’ new locations are disclosed. This models the
relocation of species due, e.g., to anthropogenic habitat disturbance. The sample space
� of the stochastic program consists of all possible scenarios of species dispersal. F
is a collection of subsets of � and the function P : F → [0, 1] assigns probabilities to
the dispersal scenarios. In the second stage, we determine whether the sites selected in
the first stage still cover each species adequately. If the species are no longer covered,
the stage-one decision incurs a penalty based on the “site shortage” for each species.
The site shortage is the targeted number of sites for the species less the number of se-
lected sites that contain the species. The objective is to minimize the expected value of
this penalty. The stochastic program requires a particular decision-making sequence—
stage-one decision, random experiment, recourse decision—but places no restrictions
on the duration of the stage-one activities or the elapsed time between the first and
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Fig. 9.1. Flowchart of conservation planning with species relocation.

second stages. This is particularly useful in conservation planning because it may take
several years to establish the conservation areas (the stage-one decision) and to assess
their performance (the stage-two decision).

This chapter makes two contributions. First, our stochastic program allows general
targets of representation. The target of representation for a species is the number of
populations of the species that should be included in the conservation areas. Previous
models for conservation planning under uncertainty assume that a target of one rep-
resentation is adequate [3, 6, 13]. However, if only one population of a species is pro-
tected and some conservation areas are destroyed or subject to poaching, the species
may go extinct. For this reason, targets of 20 to 50 representations may be suitable for
at-risk species [12]. Our stochastic program permits planners to select a suitable target
for each species from one population up to all populations of the species. Second, we
find the optimal solution for a substantially larger conservation planning problem that
involves uncertainty than has been reported in the literature. In the context of deter-
ministic conservation planning, decision problems with up to 1,906 sites have been
solved optimally [5]. In the context of conservation planning under uncertainty, opti-
mal solutions have been found only for much smaller problems (up to 146 sites, 116
species, and 100 scenarios of species relocation [13]). We report results for a stochastic
programs that is substantially larger with respect to the number of sites, species, and
species relocation scenarios.
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Fig. 9.2. Conservation areas for birds in southern Quebec selected using linear integer program-
ming (white squares) and stochastic programming (black squares).

9.2 Case Study: Bird Conservation in Quebec

As part of an effort to expand the network of conservation areas of the Canadian
province of Quebec, breeding bird nesting data was collected in southern Quebec be-
tween 1984 and 1994 [12]. At the 0.02◦ × 0.02◦ scale of longitude and latitude, the
data set contains 2,049 sites and 242 bird species. First, we solved the integer linear
program with deterministic input parameters to find the minimum set of sites required
to represent 10% of the habitat of each bird species. The optimal set of conservation
areas contained 156 sites (Fig. 9.2, white squares). Next, we simulated 500 scenarios
of bird dispersal after stage one and solved the resulting stochastic program with a
stage-one budget of 156 sites (Appendix). The solution to the stochastic program con-
tains more sites in southwestern Quebec (Fig. 9.2, black squares) than the solution to
the deterministic planning problem. However, both solutions contain many sites adja-
cent to roads in western Quebec. This may be due to a bias toward roads in the bird
data set because sites adjacent to roads are easier to survey. We solved the stochastic
program both (i) by converting it into a mixed-integer program and solving it using
a branch-and-bound algorithm and (ii) using the L-shaped method [1]. The L-shaped
method decomposes the two-stage program into a master program and several sub-
programs, each of which corresponds to a different scenario of relocation for the bird
species. At each iteration of the algorithm, the solution of the subproblems is used to
construct a piecewise linear approximation of the stage-one objective function. The
mixed-integer program had 121,242 constraints and 123,049 decision variables but the
L-shaped method required solving a master program with 2,049 binary decision vari-
ables and 242 initial constraints. One new constraint was added to the master program
at each iteration and the algorithm converged after 7 iterations. Both methods obtained
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the same optimal solution but the L-shaped method was 1.77 times faster (running
time: 4,325 seconds on a 1.7GHz Dell Xeon computer with 1 GB of RAM). The math-
ematical program was coded in the GAMS modeling language and solved with the
CPLEX 9.0 solver.

9.3 Conclusion

Unlike our two-stage program, previous models for conservation planning under un-
certainty [3, 6, 13] contain integer decision variables in the second (and subsequent)
stages and therefore cannot be solved with the L-shaped method. In some previous
optimization models [3,13], the objective was to maximize the number of species cov-
ered, whereas our objective is to minimize the shortage of each species from its target.
Whether the min or max formulation is more suitable depends on the planning context.

Here, we represent conservation area selection problems that include uncertainty
as stochastic programs. Alternatively, such conservation planning problems can be for-
mulated as stochastic dynamic programs [3]. However, the decision-making structure
encountered in conservation planning may be more amenable to solution by stochas-
tic programming than by stochastic dynamic programming. In conservation planning,
decisions are made infrequently because the establishment of a new conservation area
requires years of effort, and stochastic dynamic programming is often better suited for
problems with many time stages in which decisions are made in each stage. We re-
fer the reader to [2, 4] for further discussion comparing stochastic programming and
approaches in stochastic dynamic programming and optimal control.

Appendix

Sets
i ∈ I species
j ∈ J sites
ω ∈ � species dispersal scenarios
Data Parameters
c j cost of site j in stage 1. c ∈ R

|J |
+

ti target for species i . ti ∈ [0, 1, 2, . . . , |J |]
b1 stage 1 budget.
Random Data
pω probability of scenario ω. pω ∈ [0, 1],

∑
ω∈� pω = 1

bω
i j 1 if species i is in site j in scenario ω. 0 otherwise

bω ∈ {0, 1}|I |×|J |
Decision Variables
x j 1 if site j is selected in stage one. 0 otherwise. x ∈ {0, 1}|J |
yω

i tally the site shortage for species i in scenario ω. yω
i ∈ [0, ti ]

Formulation



106 T. Fuller, D.P. Morton, and S. Sarkar

min
x

∑
ω∈�

pω Q(x, bω) (9.1)

s.t.
∑
j∈J

c j x j ≤ b1 (9.2)

x j ∈ {0, 1} , j ∈ J, (9.3)

where

Q(x, bω) = min
yω

∑
i∈I

yω
i (9.4)

s.t. yω
i ≥ ti −

∑
j∈J

bω
i j x j , i ∈ I (9.5)

yω
i ≥ 0, i ∈ I. (9.6)

The stochastic program (9.1)–(9.3) is expressed in terms of the stage-one decision
variables, which select sites to be protected. Constraint (9.2) ensures that the cost of the
sites selected in stage one does not exceed the budget. Constraint (9.3) states that each
site must be selected or not selected in stage one. The objective function in (9.4) sums
the tallies of site shortages for each species, i.e., the (positive) amount by which the
species’ target exceeds the number of sites selected in stage one that contain the species
under scenario ω. The overall objective function in (9.1) then takes the expected value
of the number of species-site shortages over all bω scenarios. Together, constraints
(9.5) and (9.6) capture max{ti −∑

j∈J bω
i j x j , 0}. This is the total number of sites short

species i is relative to its target. For the Quebec data set, we generated scenarios of
species dispersal by having each bird species randomly select one of the sites adjacent
to its location in stage one and relocate to the selected site in stage two.
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Summary. Bacterial biofilms are communities of microorganisms that develop on interfaces
in aqueous environments. We formulate a density-dependent diffusion-reaction model for the
growth of a dual-species biofilm. Both bacteria respond differently to their environment and
develop different types of biofilms: One is a classical aerobic biofilm former that produces the
characteristic cluster-and-channel biofilm morphology, the other one also develops under anaer-
obic conditions and tends to form flat, creeping biofilms. A previously developed nonstandard
finite-difference scheme is adapted for the computer simulation. In a numerical experiment it is
shown how variations of a single parameter (growth rate) can trigger different spatial structure
and organisation of the biofilm community.

Key words: Biofilm, mathematical model, nonlinear diffusion, computer simulation.

10.1 Introduction

The vast majority of bacteria live in microbial biofilm communities, adhered to sur-
faces in aqueous environments. Biofilm formation has been described as a complex
dynamic process. Planktonic cells attach to the surface and excrete a glue-like sub-
stance of exopolysaccharides (EPS). In this layer of EPS the bacteria live a protected
life. The growth of the biofilm depends on environmental conditions such as nutri-
ent and oxygen availability, hydrodynamic stress, or pH value. While these factors are
largely determined by the environmental conditions, they are affected in return by the
biofilm bacteria themselves. For example, sufficient availability of nutrients leads to
growth of the population and a growing population diminishes the nutrient resources.
This leads to a complicated nonlinear interaction between the microbial community
and its environment. Biofilms can be formed by a single bacterial species or they can
develop as mixed-culture communities. Not all species show the same ability to form
biofilms and neither do all species respond in the same way to the external stimuli.
∗ Supported by the Advanced Foods and Materials Network (NCE).
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Fig. 10.1. SEM images of early stage (1 day) biofilm colonies of P. putida (left) and L. mono-
cytogenes (right).

Biofilm communities can develop highly complex behavior and properties. For exam-
ple, oxygen-consuming aerobic bacteria can create oxygen-free niches for anaerobic
bacteria.

Although the term biofilm indicates a homogeneous flat structure, many biofilms
grow in highly complex spatial architectures. Of fame are mushroom shaped, com-
plicated cluster-and-channel arrangements. The spatial organisation is an important
property of many biofilm systems; in the example above, the aerobes will form a pro-
tecting rim around the anaerobes. Therefore, the function and dynamics of biofilms
cannot be studied without also studying the spatial structure.

Biofilm research has been traditionally motivated by environmental engineering
and medical applications. Only recently has it been understood that biofilms also play
a detrimental role in food safety and food processing (e.g., [2], [11], [12]). Our at-
tention will be on the biofilms formed by Listeria monocytogenes, a hardy, harmful
food-borne pathogen that causes the often-fatal infection listeriosis [3]. L. monocyto-
genes biofilms develop in thin layers of cells across the substratum, without extensive
EPS production [9]; see Fig. 10.1. This is quite different from classical, EPS-prolific
biofilm formers such as Pseudomonas putida, which develop in colonies that even-
tually form the characteristic cluster-and-channel morphologies. While L. monocyto-
genes in pure cultures is intensively studied, in many instances it appears together with
other, biofilm-producing bacteria; see Fig. 10.2. These mixed-culture systems are far
less understood (e.g., [9]). In this theoretical modeling and simulation study we will
investigate the coexistence of the facultative anaerobic L. monocytogenes with a clas-
sical aerobic biofilm former like P. putida, in a system that is controlled by oxygen
availability.

Different mathematical models have been proposed for spatio-temporal biofilm
formation in recent years, ranging from stochastic cellular automata and individual-
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Fig. 10.2. Confocal laser scanning microscopy (CLSM) images of an early stage (1 day) mixed-
culture biofilm, taken in the entry region of a flow cell. The original green-red images were
modified to a greyscale presentation. L. monocytogenes is represented by darker cells, P. putida
by lighter cells.

based models to deterministic continuum formulations. Only the latter has been acces-
sible to mathematical analysis so far, while the first two mentioned groups are solely
used as computer simulation tools. Since they are complex stochastic processes, they
require many simulation runs per scenario, which makes them computationally quite
expensive.

We will present here the extension of a continuous prototype biofilm, originally
developed for mono-culture systems, to a binary biofilm system. This model takes the
dynamic systems approach of classical mathematical biology. We will adapt a numer-
ical method for the mono-species model to solve the dual-species model. The model
consists of a system of highly nonlinear partial differential equations. The numerical
scheme is based on finite difference discretisation in space and nonlocal treatment of
time derivatives.

10.2 Mathematical Model

We follow the modeling approach proposed in [7] for a prototype mono-species
biofilm, a density-dependent diffusion-reaction model, formulated in terms of the con-
centration of a limiting dissolved substrate C and the density of biomass M . The latter
is normalised with respect to the maximum possible cell density, i.e., it is equivalent to
the unit volume fraction occupied by the biofilm. The model is formulated in an open
and bounded domain � ⊂ R

d . Later on we will carry out two-dimensional simulations,
i.e., d = 2. The biofilm itself is the region �2(t) = {x ∈ � : M(t, x) > 0}, while the
surrounding aqueous environment is denoted by �1(t) = {x ∈ � : M(t, x) = 0}, cf.
also Fig. 10.3. {

∂t M = ∇(DM (M)∇M) + g(C, M)

∂t C = ∇(DC (M)∇C) − f (C, M)
. (10.1)
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Fig. 10.3. Schematic representation of the biofilm system: The actual biofilm is the region where
M > 0; the surrounding aqueous environment is defined by M = 0. Both regions change
according to the evolution equation (10.1).

The reaction terms in (10.1) describe the growth of new biomass and the decay of
substrate due to bacterial growth. In the simplest case this is modeled by a Monod reac-
tion, stating that for low substrate concentrations the growth rate is proportional to the
available substrate but that saturation occurs if the substrate is available in abundance.
In addition to this substrate-dependent growth we include a natural constant decay rate
describing bacterial deactivation. This is expressed by

f (C, M) = k1C M
k2 + C

, g(C, M) = k3C M
k2 + C

− k4 M, (10.2)

where all constants ki are nonnegative and k3/(k2 + 1) − k4 > 0 (otherwise decay
would outweigh growth for all levels of substrate supply). Since the growth function
g(C, M) in (10.2) implies that new biomass is produced as long as there is substrate
available, the upper bound on the biomass M < 1 must be guaranteed by the spa-
tial spreading mechanism and, hence, by the density-dependent diffusion coefficient
DM (M) in (10.1). It reads

DM (M) = δ
Mβ

(1 − M)α
, α, β ≥ 1, δ > 0. (10.3)

The power law nonlinearity Mβ leads to a sharp biofilm/water interface that spreads
with finite speed of propagation, as in the porous medium equation. Notable spatial
spreading only occurs for M + 0. The nonlinearity (1 − M)α guarantees the upper
bound M ≤ 1 (squeezing property). The interplay of both nonlinear effects in (10.3)
is required to describe biofilm formation. In case β = 0 the biomass would be instan-
taneously distributed evenly over the domain, while α = 0 could lead to M > 1.

For small molecules, like oxygen, many authors assume that the difference in the
diffusion coefficient of a solute in water and in the polymeric biofilm matrix is negli-
gible. We follow this argument for the sake of simplicity and, hence, we have

DC (M) = DC = const, DC > 0.

Model (10.1) is to be completed by appropriate initial and boundary conditions: We
prescribe mixed Dirichlet–Neumann conditions at the boundary of �. More specifi-
cally, let ∂� = ∂1� ∪ ∂2�; then we have
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C(t, x) = Cbulk, x ∈ ∂1�, t > 0
∂nC(t, x) = 0, x ∈ ∂2�, t > 0

.

At t = 0 we have the initial data for C , C(0, x) = C0(x) with C0 ∈ C0(�).
Similarly we will allow for homogeneous Neumann or Dirichlet or mixed boundary

conditions to be imposed on M . In our simulations later on we will always choose

∂n M = 0, x ∈ ∂�.

For the initial data we have to require that they obey the maximum cell density. We
have therefore

M(0, x) = M0(x), x ∈ �

with ‖M0‖∞ < 1. Since continuity is not required for the initial data, we only ask for
M0 ∈ L2(�). Since we are interested in describing a developing biofilm, M0(x) = 0
will hold for most x and M0(x) > 0 will hold only in very small subdomains (not con-
nected with each other) close to the substratum. These subdomains are the inoculum
�2(0).

The mono-species model (10.1) was studied in a series of papers, both analytically
and numerically. Existence and uniqueness results were proved in [8]. In particular,
it could be shown that the model solution indeed obeys the threshold imposed by the
maximum cell density, i.e., that M ≤ 1. It was shown that the long-time behavior
depends on the boundary condition imposed on the biomass component M . If (homo-
geneous) Dirichlet conditions are prescribed somewhere on the boundary of �, the
solution M < 1 (almost everywhere) exists for all t > 0. On the other hand, if ho-
mogeneous Neumann conditions are imposed everywhere on the boundary of � (i.e.,
no biomass leaves the system), there exist initial data and model parameters such that
M = 1 (almost everywhere) in finite time. This describes the situation of a biofilm
growing in a closed pot with a steady supply of nutrients. In this case the vessel will
eventually be filled with biomass. A further result of [8] is the existence of a global
attractor. If the substrate C is nowhere limited, i.e., C + k2, one obtains the simpli-
fication g(C, M) = g(M) = k M . For this model, which still captures the essential
features of spatio-temporal spreading of biomass, a Lyapunov functional was found
in [4]. Fully three-dimensional computer simulations in [7] showed that the model is
able to predict cluster-and-channel and mushroom-type biofilm structures that can be
observed in laboratory experiments of fully developed biofilms. An improved numeri-
cal scheme, based on a nonlocal (in time) representation of the nonlinear diffusion op-
erator in the biomass spreading equation of (10.1) was proposed and discussed in [5].
It could be shown that the numerical solution renders important properties of the so-
lution of the continuous model (10.1) such as positivity, boundedness, and speed of
interface propagation.

The model (10.1) describes classical biofilm formers such as P. putida. For the
second species in our system (e.g., L. monocytogenes) the model must be adapted to
the specific properties as described above. First, one has to account for the possibility
of both aerobic and anaerobic growth. To this end, the growth rate is modified as
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g̃(C, M) = k̃3
C M

k̃2 + C
+ k5

k6 M
k6 + C

− k4 M (10.4)

The additional inhibition term k5/(k6 + C) has the property that it is biggest if C - k6
and vanishes as C + k6. Hence, it acts in exactly the opposite way as the Monod term
describing aerobic growth. Note that one obtains the simplified model g̃(C, M) = k M
discussed above if the saturation constants of aerobic and anaerobic growth are equal,
i.e., k̃2 = k6, and if the maximum specific growth rates of aerobic and anaerobic
growth are the same, i.e., k5 = k̃3. In this special case, the production of biomass is
independent of the available oxygen. However, the aerobic production of biomass still
affects the oxygen balance.

The second model modification is due to the preferred biomass spreading direction
across the substratum. This is expressed by a biased density-dependent diffusive flux
with direction

j =
(

1 0
0 δ̃

)
· ∇M, 0 < δ̃ ≤ 1, (10.5)

where the first component indicates the direction parallel to the substratum. Combining
(10.4) and (10.5) one obtains the model for L. monocytogenes biofilms,{

∂t M = ∂x
(

D(M)∂x M
) + ∂y

(
δ̃D(M)∂y M

) + g̃(C, M)

∂t C = DC (∂xx C + ∂yyC) − f (C, M)
. (10.6)

Since we are primarily interested in a mixed-culture biofilm system, the models of
both species must be combined into one model and the simulation techniques must be
adapted.

10.2.1 The Mixed-Culture Biofilm Model Formulation

If two different types of biofilm formers are present in one biofilm, they compete for
space. The total unit volume is locally available to both species. We denote the volume
fractions occupied by the species by X (say, P. putida) and by Y (say, L. monocyto-
genes). In order to incorporate the space competition and the boundedness of available
volume in the framework set by the nonlinear diffusion model, the squeezing term is
modified to (1− X −Y )−α , i.e., spatial spreading intensifies as X +Y → 1. This leads
to the following mixed-culture variant of the mono-species biofilm model:

∂t X = ∂x
(

DX (X, Y )∂x X
) + ∂y

(
DX (X, Y )∂y X

) + g(C, M)

∂t Y = ∂x
(

DY (X, Y )∂x Y
) + ∂y

(
δ̃DY (X, Y )∂yY

) + g̃(C, M)

∂t C = DC (∂xx C + ∂yyC) − fX (C, X) − fY (C, Y )

, (10.7)

where

DX (X, Y ) = δX
Xβ

(1 − X − Y )α
, DY (X, Y ) = δY

Y β

(1 − X − Y )α
(10.8)
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with reaction terms

fX (C, X) = k1
C X

k2 + C
, fY (C, Y ) = k̃1

CY
k̃2 + C

.

This model is to be completed by appropriate initial and boundary conditions as
discussed above. Note that in the absence of one species, i.e., either X ≡ 0 or
Y ≡ 0, the model (10.7) reduces to the single-species model of the previous sec-
tion. If both species are present but in disjoint subdomains, i.e., �X ∩ �Y = ∅ with
�X (t) := {x ∈ � : X (t, x) > 0}, �Y (t) := {x ∈ � : Y (t, x) > 0}, then each individ-
ual population behaves like a mono-species population and they influence each other
only indirectly through the effect they have on the availability of C . Thus, the model
develops distinct multi-species features only if in one colony both species are present.

10.2.2 Numerical Method

The method that we adapt for the numerical solution of (10.7) is a nonstandard finite
difference scheme that was originally developed and analysed for the simpler mono-
species problem (10.1) in [4]. According to the definition given in [1], a finite differ-
ence scheme is nonstandard if (i) either the difference approximation is nonlinear or (ii)
nonlinear terms are evaluated nonlocally, i.e., at neighboring grid points. Our scheme
falls under this latter definition (ii). Nonstandard schemes aim at numerical solutions
that show the same qualitative behavior as the solutions of the underlying continuous
problem. In the context of (10.7) these are in particular solutions with a finite speed
of interface propagation. The discretisation method is derived following two rules for
the construction of nonstandard finite difference schemes, as given in [10]: The order
of approximation of a derivative is of the same order as the derivative; the nonlinear
diffusion operator is evaluated nonlocally in time. To introduce the numerical scheme
we rewrite (10.7) as an ordinary differential equation on an appropriate function space
V,

∂t u = A(u)u, (10.9)

where u is the vector valued dependent variable u = (X, Y, C)T . The diffusion-
reaction operator A(u) : V → V is derived from (10.7) such that it is linear for a
given u. The nonlocal time discretisation of (10.9) is then

u(tn+1) = u(tn) + �t A(u(tn))u(tn+1). (10.10)

The spatial discretisation of u is carried out using standard second-order finite dif-
ferences on a rectangular grid. Thus, in every time step of a simulation three linear
systems must be solved consecutively, one for each component X , Y , and C of u. The
system matrices in (10.10) are sparse and banded but not symmetric, albeit structurally
symmetric. It was proved in [5] that this numerical scheme applied to the mono-species
model (10.1) (a) is positivity preserving and free of spurious oscillations, (b) renders a
finite speed of interface propagation where the discrete interface satisfies a discretised
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version of the continuous interface condition, (c) is able to describe the merging of
biofilm colonies, and (d) results in a small diffusive interface smearing. Furthermore,
it was shown in simulations that the computed interface quickly converges as the grid
is refined. In fact, the interface location is accurate within �x .

As pointed out above, the model for mono-species biofilms is a special case of the
mixed-culture model (10.7). Accordingly the properties of the numerical scheme also
naturally hold for mono-species colonies in a mixed-culture biofilm system. Moreover,
the proofs of properties (a), (b), (c), and (d) directly carry over to the mixed-culture
biofilm.

10.3 Simulation Results and Discussion

We use numerical simulations to show that the spatial organisation of both popula-
tions in a biofilm depends on the model parameters. It is known from single-species
biofilm simulations of (10.1) that under given environmental conditions and, hence,
given conditions of nutrient supply, the maximum specific growth rate µ determines
the morphology of the biofilm ([7]). This physiological parameter enters our model
(10.4) as k1 = µ and k3 = µ/ϒ , where ϒ = const is a yield factor. In the binary
biofilm model (10.7) the situation is more complex since we have different maximum
specific growth rates for both species. In our experiment we investigate how the biofilm
morphology and the spatial organisation of the bacteria in the biofilm depend on these
growth rates. To this end we carry out a number of simulations in which k1 (and ac-
cordingly k3) is varied and all other parameters are kept unchanged.

The computer simulations were carried out on a rectangular grid of 200 × 60 cells.
The initial distribution of biomass on the substratum (i.e., in the first layer of grid cells
in the y direction), X (0, ·), Y (0, ·), is chosen randomly, where the total amount as well
as the number of initial colonies are specified as input data. The same initial data were
used for all simulations in order to allow a better comparison. The model parameters
were chosen in the range of typical values reported in the literature. As a reference
data set we chose the same maximum specific growth rate for both populations, i.e.,
k1 = k̃1. In the numerical experiment the parameter k1 was chosen to vary over one
order of magnitude, 0.5k̃1 ≤ k1 ≤ 5k̃1 (where k̃1 = 10 in dimensionless units). In
order to allow a better comparison we also imposed k2 = k̃2 = k6 and k5 = k̃3 to
make the actual growth of Y independent of C as noted above.

Some lumped simulation results are shown in Fig. 10.4. As expected, higher max-
imum growth rates k1 imply that the total biomass of X in the system grows faster. In
all cases the X growth curves lie clearly below the corresponding exponential growth
curve (straight line), due to oxygen limitation. As can be seen from the graph of
minx∈� C(t, x), higher aerobic maximum growth rates imply an earlier depletion of
oxygen. Accordingly the observed growth rates slow down more quickly, the higher k1
is (albeit on a higher level). Since the production of Y does not depend on oxygen, the
same (exponential) growth curves of Y are obtained for all simulations. It is observed
that higher maximum specific growth rates k1 also lead to a faster compression of the
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Fig. 10.4. Lumped simulation results for varying values of parameter k1 (keeping k̃3 = 10
fixed). Shown are the total amount of X and of Y , as well as the minimum concentration value
of C in the reactor and the maximum volume fraction occupied by biomass.

biomass, as shown by the graph of maxx∈�[X (t, x) + Y (t, x)]. While for low values
of k1 a population lag phase is observed initially, this is not the case for high values.

The impact of variations in k1 on the spatial morphology of the biofilm and on
the spatial organisation of the populations in the biofilm is shown in Fig. 10.5 for the
choices k1 = 0.5k̃3, k1 = k̃3, and k1 = 5k̃3. In the case of lowest k1 the biofilm is
dominated by species Y . Despite not necessarily depending on oxygen, Y consumes it
faster than the strictly aerobic X . Hence, X is hindered in its development. The result-
ing biofilm is a homogeneous layer of Y , in which isolated niches of X are captured. A
qualitatively similar, albeit less drastic, picture is obtained for the case k1 = k̃3. In this
situation the oxygen consumption by the facultative anaerobic species also dominates
the growth of the aerobes by controlling the oxygen in the system. Only if k1 is clearly
higher than k̃3 (e.g., k1 = 5k̃3), can the aerobes develop unhindered. One obtains a two-
layered biofilm morphology, with a mixed flat base layer containing X and Y and a top
layer of fast-growing aerobic X . The latter develops in the well-known mushroom-type
cluster-and-channel architecture, which is characteristic for strong aerobic biofilm for-
mers in substrate limited regimes (i.e., in the case of high growth number G, cf. [7], as
it is the case for high maximum specific growth rates). This is in good agreement with
the CLSM figures in Fig. 10.2. These were taken in the entrance region of a flow chan-
nel in which the growth conditions are best for the aerobic bacteria. In all cases it is
observed that the species Y forms a creeping biofilm, i.e., preferably spreads flat across
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Fig. 10.5. Simulation snapshots of developed biofilms (sufficiently large t) for model parameter
k1 : k̃3 = 0.5 (top), k1 : k̃3 = 1 (middle), k1 : k̃3 = 5 (bottom) that evolve from the same
inocculum. Shown are the spatial biomass distributions of X (left) and Y (right), normalised to
the maximum biomass density. The biofilm is the superposition of both figures.
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the substratum, in both experiments and simulations. The classical aerobic biofilm for-
mer X tends to develop colonies that are initially almost spherical (see also Fig. 10.1
and 10.2).

10.4 Conclusion

This qualitative modeling and simulation study is a first attempt to understand spatio-
temporal formation and population dynamics of biofilms formed by L. monocytogenes
and P. putida, based on diffusion-reaction principles. It was shown that both the struc-
ture of the biofilm and the spatial distribution of the bacteria in the colony are deter-
mined by local growth conditions. In favorable conditions, P. putida biofilms form a
layer of characteristic mushroom-shaped cell clusters on top of a mixed flat layer of
both bacteria. The implications for disinfection with sanitizers or antimicrobial agents
is that P. putida in the top clusters will take the largest hit, while the harmful L. monocy-
togenes at the substratum remains protected and difficult to remove. A closer analysis
of this shall be the subject of a further study.
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Summary. The mechanism that promotes coexistence of species has not been completely clar-
ified yet. We propose that the amount of nutrient can be one of the factors that promote coex-
istence of species. Plant species have to reproduce seeds to produce descendants. Even if plant
species do reproduce seeds, it is not ensured that every seed will bud. The amount of seeds that
can bud successfully depends on the amount of nutrient: if the nutrient is scarce, then every seed
cannot bud, but if the nutrient is rich, then every seed can bud. We also assume that the amount
of seeds reproduced by one plant individual depends on the amount of nutrient. We show that, in
this situation, the population dynamics of plants exhibits a complex behavior, which promotes
coexistence of species.

Key words: Space, nutrient, reproduction function, effective availability, undeveloped seed.

11.1 Introduction

Based on the lottery model proposed by Chesson and Warner [1, 2], we consider the
effect of undeveloped seeds on the population dynamics. Most plant species are influ-
enced by an abiotic or biotic environment in the reproduction phase (Lambers [8]). The
amount of nutrient may be insufficient for plants to grow their sprouts or seedlings. We
consider the situation where plants reproduce both undeveloped and developed seeds
depending on the amount of nutrient.

The standard lottery model (Chesson and Warner [1],Chesson [2]) is given by the
following nonautonomous difference equation:

Pi (t + 1) = (1 − δi (t))Pi (t)

+ S(P1(t), . . . , Pn(t))
βi (t)Pi (t)∑n

j=1 β j (t)Pj (t)
, i = 1, . . . , n, (11.1)

where S(P1(t), . . . , Pn(t)) = 1 − ∑n
j=1(1 − δ j (t))Pj (t). The vital coefficients βi (t)

and δi (t) depend on time t , so the equation (11.1) is a nonautonomous system. The
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initial condition satisfies Pi (0) ≥ 0, i = 1, . . . , n, and
∑n

j=1 Pj (0) = 1. The variable
Pi (t) denotes the occupation rate of space by plant species i at year t . There are n
plant species in a single habitat. Every year, each plant species i reproduces the de-
veloped seeds, the amount of which is given by βi (t)Pi (t). Additionally, every year
adult plants are removed at the rate δi (t), and this removal creates the vacant space
S(P1(t), . . . , Pn(t)) = 1 − ∑n

j=1(1 − δ j (t))Pj (t), which is immediately occupied
by the individuals randomly chosen from the pool of the developed seeds. In model
(11.1), it is implicitly assumed that nutrients are always sufficiently available for all
plant species. The studies of Chesson and Warner [1] and Chesson [2] show that the
temporal fluctuation of the natality rates βi (t) promotes coexistence of species, but
the temporal fluctuation of the mortality rates δi (t) does not. Furthermore, coexistence
cannot be achieved for almost every pair of the parameters βi and δi as long as they
are constant. Therefore, we see that the temporal heterogeneity promotes coexistence
in the lottery model.

Following these seminal papers, the effects of temporal fluctuations in the recruit-
ment process have been analyzed intensively (e.g., see Hatfield and Scheibling [6],
Chesson and Huntly [3]). The lottery model also provides a basis for understanding the
coexistence of multiple species in terrestrial systems (Laurie et al. [9]). Additionally,
Dewi and Chesson [5] studied a lottery model with a stage structure and Comins and
Noble [4] studied a lottery model with different patches. The recent works of Muko and
Iwasa [10, 11] considered the other mechanism which promotes coexistence. They in-
corporated the spatial heterogeneity into the standard lottery model (11.1). Their model
includes multiple habitats, each of which has different mortality and natality rates of
the species. Their study shows that the heterogeneity of mortality rates promotes co-
existence of species, but natality rates does not (Muko and Iwasa [10]). By these two
studies, we see that the spatial heterogeneity promotes coexistence in a lottery model.

Besides a lottery model, Neuhauser and Pacala [12] studied a Lotka–Volterra equa-
tion with explicit spatial factors. By using a chemostat model, Huisman and Weiss-
ing [7] showed that nine species can coexist under three kinds of resources.

This paper is organized as follows. In Section 11.2, we derive a new lottery model,
which incorporates the effect of undeveloped seeds, and show some basic properties of
the model. In Section 11.3, we show the results of simulations for two or three species
cases. The final section includes our discussion.

11.2 Model

Our model is the following autonomous difference equation:

Pi (t + 1) = (1 − δi )Pi (t)

+S(P1(t), . . . , Pn(t))
βi (x(t))Pi (t)∑n

j=1 β j (x(t))Pj (t)
i = 1, . . . , n,

x(t + 1) = (x(t) −
n∑

j=1
α j (x(t))Pj (t))q + s,

(11.2)
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where S(P1, . . . , Pn) = 1−∑n
j=1(1− δ j )Pj . The parameters δi (0 ≤ δi ≤ 1) and the

variables Pi (t) have the same meaning as those in model (11.1). Let us first consider
the second equation in (11.2). The function αi (x) is the amount of nutrient consumed
through the space occupied by plant species i :

αi (x) = mi x
ai + x

, (11.3)

where x is the amount of a limiting nutrient contained in a unit area of the habitat, mi
is the maximum number of seeds reproduced from the space occupied by an individual
of plant species i , and ai is the Michaelis–Menten (or half-saturation) constant. Since
plant species can uptake only the nutrient in soil, x(t)−∑n

j=1 α j (x(t)) > 0 must hold
for t > 0. This is ensured if mi/ai ≤ 1. The parameter s(s > 0) denotes a constant
inflow and q (0 < q < 1) denotes washout rate. The total amount of the nutrient
consumed through the space occupied by the plants is given as follows:

n∑
j=1

α j (x)Pj .

The function βi (x) is the number of the developed seeds reproduced from the space
occupied by plant species i . In this chapter, we assume

βi (x) =
{

ciρiαi (x) (li ≤ x)

0 (0 < x < li ),

where ci > 0 denotes the conversion rate from nutrient to the number of seeds of
species i . ρi > 0 denotes the rate of nutrient used to produce seeds of plant species i .
li ≥ 0 is a positive constant. We assume ln = 0. This assumption shows that species n
does not reproduce any undeveloped seeds. Under the condition 0 < x < li any seeds
of species i �= n cannot bud. This means that if the nutrient is scarce (i.e., 0 < x < li ),
then any seeds are not able to bud. Therefore, if the nutrient in the soil is scarce, species
i �= n reproduces only undeveloped seeds. All parameters (δi , mi , ai , ci , ρi , li , q, s) in
(11.2) are constant. Therefore, (11.2) is an autonomous system.

11.2.1 The Basic Properties of Model (11.2)

We define � := {(P1, . . . , Pn, x) ∈ Rn+1 | P1 ≥ 0, . . . , Pn ≥ 0,
∑n

j=1 Pj = 1,

x > 0}. Then we can show that � is forward invariant.

Proposition 1 If (P1(0), . . . , Pn(0), x(0)) ∈ �, then (P1(t), . . . , Pn(t), x(t)) ∈ �

for all t ≥ 0.

Proof Let (P1(t), . . . , Pn(t), x(t)) ∈ �. Then it follows from (11.2) that

n∑
j=1

Pj (t + 1) = 1.
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Since βi (x) and S(P1, P2, . . . , Pn) are nonnegative, Pi (t + 1) ≥ 0 holds for all i =
1, 2, . . . , n. Finally, we prove x(t + 1) ≥ 0. In fact, maxx≥0 (mi/(ai + x)) = mi/ai ,
and we have the following inequalities:

x(t + 1) = (x(t) −
n∑

j=1
α j (x(t))Pj (t))q + s

≥ (x(t) −
n∑

j=1

m j

a j
x(t)Pj (t))q + s

≥ x(t)(1 −
n∑

j=1
Pj (t))q + s

= s.

This completes the proof. ��
From the second equation of (11.2), x(t + 1) ≤ x(t)q + s is satisfied for all t ≥ 0.

This implies that x(t) ≤ 2s/(1 − q) for sufficiently large t > 0. Hence by combining
with Proposition 1, we have the following proposition.

Proposition 2 Every solution of system (11.2) with the initial condition (P1(0), . . . ,

Pn(0), x(0)) ∈ � is bounded.

Proof From Proposition 1, if (P1(0), . . . , Pn(0), x(0)) ∈ �, then (P1(t), . . . , Pn(t),
x(t)) ∈ � for all t ≥ 0. So, we consider the boundedness of x . If (P1(t), . . . , Pn(t),
x(t)) ∈ �, then (x(t) − ∑n

j=1 α j (x(t))Pj (t))q + s < qx(t) + s holds. Therefore, we
have

x(t + 1) ≤ qx(t) + s.

If we reduce both sides of the inequality by s/(1 − q), we obtain

x(t + 1) − s
1 − q

≤ qx(t) + s − s
1 − q

= q
(

x(t) − s
1 − q

)
≤ qt+1

(
x(0) − s

1 − q

)
.

This implies the boundedness of x . This completes the proof. ��
These propositions imply that the occupation rate Pi always satisfies 0 ≤ Pi ≤ 1

and the amount of nutrient is always positive and is bounded above.

11.3 Simulations

In this section, we show the simulation results for the cases with two and three species.
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11.3.1 The Case with Two Species (n = 2)

Fig. 11.1 is the result of the numerical simulations of system (11.2) with two species
(n = 2). In Fig. 11.1, there are two types of area: in AREA I and AREA III, one
species survives; in AREA II and AREA IV, two species coexist.

In AREA I (resp. AREA III), species 2 (resp. species 1) survives and species 1
(resp. species 2) is excluded (see Fig. 11.2 (a) and (c)). In AREA I and III, one of the
boundary fixed points E2(P1, P2, x) = (0, 1, x2) and E1(P1, P2, x) = (1, 0, x1) is
stable, respectively.

In AREA II, species can coexist (see Fig. 11.2 (b)) and there exists one positive
fixed point to which all solutions of system (11.2) tend. In this situation, two boundary
fixed points are unstable.

In AREA IV, species can coexist with sustained oscillations (see Fig. 11.2 (d)). In
this area of parameters, x oscillates between the intervals 0 < x < l1 and l1 ≤ x .
The solution tends to the boundary fixed point E2 when x is located in the interval
0 < x < l1. The solution tends to E1 when x is located in the interval x ≥ l1.

11.3.2 The Case with Three Species (n = 3)

In Fig. 11.3, we can find three types of area: in AREA I, II and IV, two species sur-
vive with sustained oscillations; in AREA III, one species survives; in AREA V, three
species coexist with sustained oscillations.

In AREA I, species 2 and 3 can survive with sustained oscillations (see Fig. 11.4
(a)). In this region, species 1 cannot invade the P2 − P3 subsystem, since species 1
cannot reproduce a sufficient amount of developed seeds. Note that m1 is small or l1 is
large in AREA I.

Fig. 11.1. The (m1, l1) parameter plane. In AREA I, only species 2 survives. In AREA II, two
species coexist without oscillation. In AREA III, only species 1 survives. In AREA IV, species
1 and 2 coexist with a sustained oscillation. The parameters are m1 ∈ [0, 5], l1 ∈ [0, 4.7],
δ1 = δ2 = 0.12, m2 = 0.3, a1 = 4.7, a2 = 1, l2 = 0, q = 0.8, s = 1, ρ1 = ρ2 = 0.8,
c1 = c2 = 2.5. The initial condition is (P1(0), P2(0), x(0)) = (0.3, 0.6, 0.9).
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Fig. 11.2. The temporal sequence of P1, P2 and x with the initial condition (P1(0), P2(0),
x(0)) = (0.3, 0.6, 0.9). The parameters are δ1 = δ2 = 0.12, m2 = 0.3, a1 = 4.7, a2 = 1,
l1 = 1.5, l2 = 0, q = 0.8, s = 1, ρ1 = ρ2 = 0.8, c1 = c2 = 2.5, (a) m1 = 0.3 (AREA I in
Fig. 11.1), (b) m1 = 0.52 (AREA II in Fig. 11.1), (c) m1 = 1.7 (AREA III in Fig. 11.1), (d)
m1 = 3.7 (AREA IV in Fig. 11.1).

In AREA II, species 1 and 2 can survive (see Fig. 11.4 (b)). In this region, species
1 invades the P2 − P3 subsystem and eliminates species 3.

In AREA III, only species 1 survives (see Fig. 11.4 (c)). In this region, species 1
can reproduce a sufficient number of developed seeds. Note that m1 is large and l1 is
small in AREA III and species 1 is the strongest there.

In AREA IV, species 1 and 3 can survive with sustained oscillations (see Fig. 11.4
(d)). In this region, species 1 can invade the P2 − P3 subsystem. After the invasion
of species 1, species 2 is eliminated and species 3 survives. Note that l2 > l3 and
m3 < m2 in AREA IV.

Finally, in AREA V, three species can survive with sustained oscillations (see Fig.
11.4 (e)). Although we need future investigations, we think that the temporal fluctua-
tion of x plays a crucial role for the coexistence.
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Fig. 11.3. The (m1, l1) parameter plane. In AREA I, species 2 and 3 coexist with sustained
oscillations. In AREA II, species 1 and 2 coexist with sustained oscillations. In AREA III, only
species 1 survives. In AREA IV, species 1 and 3 coexist with sustained oscillations. In AREA
V, three species coexist with sustained oscillations. The parameters are m1 ∈ [0, 5], l1 ∈ [0, 2],
m2 = 3.2, m3 = 0.3, a1 = 5, a2 = 4.7, a3 = 1, l2 = 1.6, l3 = 0, δ1 = δ2 = δ3 = 0.12,
ρ1 = ρ2 = ρ3 = 0.8, c1 = c2 = c3 = 2.5, q = 0.8, s = 1. The initial condition is
(P1(0), P2(0), P3(0), x(0)) = (0.2, 0.4, 0.3, 0.9).

11.4 Discussion

In this chapter, we have considered the effect of undeveloped seeds. In Section 11.2,
we proposed model (11.2), which is based on the lottery model (11.1). We investigated
model (11.2) to understand the effect of undeveloped seeds on population dynamics.

From the result of numerical simulations, we see that three species coexist in a
wide range of the parameter space (see Fig. 11.3). For (11.2) with two species, in
AREA II of Fig. 11.1, two species can coexist at an interior fixed point. On the other
hand, in system (11.2) with three species, an interior fixed point does not exist. That
is, even if three species coexist, there are no interior fixed points. For this case, it
is shown that three species can coexist with a sustained oscillation (see AREA V of
Fig. 11.3 and Fig. 11.4 (e)). It is known that the sustained oscillations do not exist in
the lottery model (11.1) if all coefficients are constants. Furthermore, it is known that
in the original lottery model, species coexist under the temporal fluctuation of vital
coefficients. Our results show that the incorporation of undeveloped seeds leads to the
temporal fluctuation of populations and ensures the coexistence of three species with
a sustained oscillation.
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Fig. 11.4. The temporal sequence of P1, P2, P3 and x with the initial condition (P1(0), P2(0),
P3(0), x(0)) = (0.2, 0.4, 0.3, 0.9). The parameters are δ1 = δ2 = δ3 = 0.12, m2 = 3.2,
m3 = 0.3, a1 = 5, a2 = 4.7, a3 = 1, l1 = 1.2, l2 = 1.6, l3 = 0, q = 0.8, s = 1,
ρ1 = ρ2 = ρ3 = 0.8, c1 = c2 = c3 = 2.5, (a) m1 = 0.7 (AREA I in Fig. 11.3), (b) m1 = 0.8
(AREA II in Fig. 11.3), (c) m1 = 3.6 (AREA III in Fig. 11.3), (d) m1 = 5 (AREA IV in Fig.
11.3), (e-1) and (e-2) m1 = 0.76 (AREA V in Fig. 11.3). (e-2) gives the expanded temporal
sequence of P1, P2, P3.
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Summary. We present a simple model based on microscopic automata to describe the clonal
expansion process. The model is based on a repertoire of antigens and T lymphocytes interacting
via antigen-presenting cells which present the antigens peptides. Each cell is represented by an
automaton moving randomly on a two-dimensional lattice. We use this simplified model in order
to introduce local and spatial considerations in the mathematical models of clonal expansion
based on differential equations, and at the same time to attempt an analytical interpretation of
the results of computer simulations. For this reason we also derive a mean field theory, whose
results are in good agreement with the solutions of the microscopic model, at least for situations
that are not too far from equilibrium. This model may be used as the basis of a more realistic one
that could follow the clonal expansion process on a simplified version of the lymphatic network.

Key words: Clonal expansion, automata, agent model, differential equations, competitive ex-
clusion.

12.1 Introduction

In this chapter we try to create a bridge between two different ways to study the clonal
expansion in the immune system (IS). One kind of approach consists in studying the
concentrations of the different species of cells, whose behaviour and interaction is
modelled through a system of differential equations (DEs), the other one in studying
the microscopic interactions between the single cells, which are usually modelled as
cellular automata (CA).

It is our opinion that in immunology as in other fields of research the languages
of microscopic (CA or agent) and macroscopic (DE) models could be integrated, in
order to use the analytical result to explain and partially predict the behaviour of the
simulated models, and also to utilise the simulations to enrich the assumptions of the
the macroscopic models with microscopic details.

In this chapter we present a simplified model of the clonal expansion, in which
we stress the spatial interaction between T cells and antigen-presenting cells (APCs),
while omitting the details of the T cell-antigen and APC-antigen interactions, and ig-
noring many other important agents of the IS. The aim here is thus not to present a new
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model for the clonal expansion, but to start a project of work in which two different
ways to model it could be combined.

12.2 Description of the Model

12.2.1 Differential Equations Model

One of the major open questions in immunology is the problem of understanding clonal
expansion, i.e., how the T cells, which belong to a very large repertoire, are selected in
response to a specific threat (the presence of an antigen) and proliferate to form a large
clone, and how this proliferation is regulated.

De Boer and Perelson presented a model that justifies the maintenance of diversity
in the periphery through the concept of competitive exclusion ([1]). This competition
between T cells (between the different clones and inside the same clone) arose as
competition for the peptides presented on the surface of an APC. In fact, these peptides
can be freely available on the surface of an APC, or be captured in the receptor of a T
cell bound to an APC; in the second occurrence they are no longer available to other T
cells.

De Boer and Perelson imposed a quasi-steady-state condition for the number of
complexes given the number of peptides, and obtained a system of differential equa-
tions for the different clone sizes, which corresponded to the well-known principle of
competitive exclusion in biology (two different species cannot co-exist in equilibrium
if they use just the same resource) and also introduced a capacity (equilibrium size for
a single clone).

In this model the number of peptides is considered to be proportional to the antigen
concentration, which is assumed as fixed. This assumption is well justified in the case
of self antigens, while for pathogens they assumed this fixed concentration to be the
equilibrium value of a prey equation for the antigens, in which T cells had the role of
predators. Using this assumption, immune memory is attained through the persistence
of antigen at a controlled concentration. (See [2] and the Appendix for a treatment of
prey-predator equations, and [3] for an application to the immune system.)

This is one of the many models that describe the clonal expansion using a sys-
tem of differential equations (see for example [4]) and it has been further studied and
improved by the authors ( [5]). Our interest in this version of the model is due to its
simplicity and to the fact that its basic assumptions concern the microscopic spatial
interactions between T cells and APC, averaged in the quasi-steady-state condition.

Since there are many experimental results concerning how these interactions hap-
pen [6–9], we think that this model is well suited to a microscopic formulation, in
which the different individual cells are represented as automata in a computer simula-
tion. (We use the term automaton referring to the original definition by Von Neumann,
and not just to cellular automata; i.e., we do not necessarily identify a biological cell
with a site of a discrete grid, even if it is the case of the model that we are going to
present.)
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These are the differential equations that describe our version of the De Boer–
Perelson model:

Ȧi = a Ai − bAi
2 −

∑
j

ci j Ai Tj (12.1)

Ṗi = d Ai − r Pi (12.2)

ṄAPC = 0 (12.3)

Ṫ N
i = 2gTi

A − hTi
N −

∑
j

ki j Ti
N Tj − l f

∑
j

mi j Pj

 FTi
N + oCi + s (12.4)

Ṫ A
i = qCi − gTi

A (12.5)

Ċ A
i = −qCi − oCi + l f

∑
j

mi j Pj

 FTi
N (12.6)

Ḟ +
∑

i
Ċi = 0. (12.7)

Equation 12.1 tells us that the n A species of antigens Ai follow a logistic prey equation
in which the nT T cell clones Ti have the role of predators. Equation 12.2 gives the
average number of peptides of species i , Pi , (we assume for simplicity a one-to-one
correspondence between peptides and antigens) presented on a site of an APC cell.
This number grows with the number of antigens and follows a decay rule (peptides
remain on the APC’s surface for a finite average time). With equation 12.3 we fix the
number of APC cells.

Equations 12.4 and 12.5 concern the number of non-activated Ti
N and activated

Ti
A T cells (Ti ≡ Ti

N + Ti
A). Non-activated T cells are produced by duplication of

activated ones with a rate g and die by apoptosis with rate h. The probability rate
s represents an external source (thymus). F is the total number of free sites on the
APC’s surface, to which T cells can bind with a probability rate that depends on a
function f of the probability to find a given species of peptides multiplied by its affinity
mi j to it (l is the probability of binding in case of maximum affinity). We call Ci a
complex formed by a T cell Ti and a site of an APC. These complexes can unbind
with probability rate q in the case of successful activation (equation 12.5) and with
probability rate o in the case of unsuccessful activation (equation 12.4). The terms ki j
in equation 12.4 rule the fratricide competition between the T cells (see for example
[10]).

The number of complexes and free sites is governed by equations 12.6, 12.7 coher-
ently with the assumptions of equations 12.4, 12.5 and with the request that their sum
has to be fixed as the total number of sites (ns NAPC if ns is the number of sites on a
single cell).
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12.2.2 Microscopic Model

In the differential equations based model we tried to write explicitly an equation for
each agent of the process, and we defined a probability rate for each interaction be-
tween these agents, since we want these equations to be the mean field version of a
microscopic model. Given the high number of equations and parameters we won’t try
an analytical treatment and we will rely on numerical integration for their solution.
Our microscopic model is realized on two superposed two-dimensional (2D) squared
grids, one on which antigens move and one for APC and T cells. The physical region
corresponding to each layer will be the same (creating a correspondence between sites
“located in the same physical space”) while the step of the grids and thus the number
of sites could be different.

All the cells move by random walk obeying an exclusion principle (no more than
a single cell on a given site of a layer), and the interaction between cells can occur
by superposition when they are located on different layers, or by contact (i.e., if they
are located on first neighbour sites) if they are on the same layer. We call these events
that allow an interaction between the cells “encounters.” An encounter between an
antigen Ai and a T cell Tj leads to the elimination of the antigen with probability
pc

i j , while an encounter between an antigen and an APC leads with probability pd

to the presentation of a peptide on the “surface” (i.e., on one of the four sides) of
the APC (in our convention we associate to the probabilistic rate x in the continuous
macroscopic model the probability px in the discrete microscopic one). Encounters
between a T cell Ti and an APC can form a complex, with a probability pl multiplied
by the affinity to the site f (

∑
j mi j# j ) (a function of the averaged affinity to the

peptides # j presented on the site, where # j is the number of peptides in species j
present on the site). Encounters between the antigens lead to an overpopulation due to
“logistic” elimination of the antigen with probability pb, while those between T cells
in clones i and j lead to fratricide apoptosis with probability pk

i j . These fratricide
terms are in a certain sense “ad hoc” in our model (they are not present in the original
formulation by De Boer and Perelson, even if they are present in other models, as
in [10]), since we need them to avoid a filling of the grid. They should be chosen in
such a way that they are not relevant under normal conditions (i.e., when the number of
occupied sites is low with respect to the total number of sites). All the other processes
are encounter independent and can occur with given probabilities at each time step.

It is quite clear that this model is too simple to describe all the complex processes
that concern the clonal expansion in the immune system. A more complete formulation
should use at least two different 2D grids to describe the site of infection and the lymph
nodes (connected in some way to allow the displacement of T and dendritic cells),
while for a realistic description of immunological memory a differentiation between
naive and memory T cells is necessary.

12.2.3 Mean Field Equations

All the probability rates in a macroscopic model have to be chosen on the base of
macroscopic observations, in such a way that the behaviour of the solutions will cor-
respond to the behaviour of the biological species under some given assumptions.
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According to the ideas of this work, the probabilities of the microscopic model
should be given on the basis of microscopic observations, as reported for example
in [6–9]. The time step should be chosen smaller than the shorter characteristic time of
the processes involved, and all these characteristic times should be expressed as prob-
abilities. An average process would be necessary to describe three-dimensional (3D)
cells with a complex shape as 2D squared objects, and probably also minor changes in
the geometry (allowing for example APC and T cells to have different sizes) could be
necessary.

Given the preliminary stage of this work and its general purposes, and considering
also our limits in the interpretation of experimental data given our scientific formation,
we are just making simple considerations that allow us to have some qualitative result,
without any claim to quantitative or predictive results.

We can obtain the mean field equations for the microscopic model in the following
way. Let us assume for example that the average time for antigen duplication is one
day. If we choose a time step of 15 minutes, the probability for antigen duplication
is fixed to pa = 0.01. Defining NA as the number of sites of the antigen’s grid and
assuming random distribution for all the cells, the probability for an antigen to have
an encounter with another antigen on one of its 4 sides is A/NA, and thus the time
evolution of the number of antigens in the absence of T cells is given by

A(t + �t) = A(t) + pa A(t) − pb A(t)2/NA. (12.8)

The value of pb can be fixed given the wanted maximum density of antigens (the
capacity),

Amax/NA = pa/pb (12.9)

and in the continuous limit we obtain equation 12.1 through the identifications a =
pa/�t , b = pb/(NA�t).

The discrete version of equation 12.2 is, referring to #i as the number of peptides
of species i on a single side of an APC,∑

APC
#i (t + �t) =

∑
APC

#i (t) + pd Ai (t)NAPC/NT − pr
∑
APC

#i (t) (12.10)

or, averaging over all the sides,

Pi (t + �t) = Pi (t) + pd Ai (t)/(4NT ) − pr Pi (t), (12.11)

where NT is the number of sites of the APC-T cell grid. The continuous version of
12.11 is equation 12.2, through the identification d = pd/(4�t NT ), r = pr/�t .
Equation 12.2 has the solution

Pi (t) = e−r t
[∫

Ai (t ′)ert ′d + const
]

(12.12)

that reduces to
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Fig. 12.1. Comparison between the free growth of the antigen number A(t) as obtained from the
microscopic model (continuous line) and the mean field equations. The time unit is one day, as
in all the figures to follow.

Pi (t) = Ai d
r

+
[

Pi (0) − Ai d
r

]
ert (12.13)

in the case of constant Ai concentration. We use pd = 1 (the APC always recognises
the antigen) and pr = 0.02, corresponding to a permanence of the peptide on the
antigen surface for an average time of 12 hours.

In Fig. 12.1, we compare the numerical integration of equation 12.1 (for a single
species) with the corresponding results given by the microscopic model, and in Fig.
12.2 we present the same comparison for the analytical result of equation 12.13. (We

Fig. 12.2. Average number of peptides as obtained by the microscopic model (continuous line
in grey) and the mean field equations. The two lines are almost indistinguishable.
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have used for these simulations NT = 9 × 104, NA = 3.6 × 105 and pb = 0.05 which
corresponds, according to equation 12.9, to a capacity of an antigen every 5 sites.)

While there is an almost perfect correspondence between the curves in Fig. 12.2,
there is a slight difference between those in Fig. 12.1. This effect is due to the fact that
while the behaviour described by equation 12.10 depends on the interaction between
cells located on different layers, and thus is not actually based on microscopic spatial
interactions, the behaviour described by equation 12.8 relies on and influences the spa-
tial distribution of antigens. For this reason the mean field equation describes well the
microscopic model in the initial configuration, when a uniform distribution is imposed,
and at the equilibrium, while the discrepancy is stronger during the expansion.

The local effects are obviously stronger when we consider the spatial T-APC in-
teraction. Let us fix NAPC = 2 × 103 on the NT = 9 × 104 grid, use the sigmoid
function

f

∑
j

mi j Pj

 = 1 − e
∑

j mi j Pj

1 + e
∑

j mi j Pj
(12.14)

to obtain the affinity of a T cell to a site on the APC surface, and let pg = 0.05
(an activated T cell needs 5 hours to split referring to the time step of 15 minutes),
ph = 0.001 (a life span of 10 days for the T cells), pl = 0.25 (an hour to form a
complex in case of maximum affinity), pq = 0.2, and po = 0.04. (These last two
parameters are the probabilities to unbind with and without activation in the case of
maximum affinity. The dependence of these microscopic probabilities on the affinity
has been chosen “ad hoc” in such a way that the first one grows and the second one
decreases with affinity.)

If now we consider a single clone T with maximum affinity to a single species
of antigen A (m ≡ m11 = 1) and fix A to its maximum capacity (c ≡ c11 = 0, i.e.,
antigens are not removed), we can obtain in the usual way the discrete mean field equa-
tions for T , F and C whose continuous limit leads to equations 12.4–12.6, redefining
the parameters on the basis of the microscopic probabilities.

Fig. 12.3 refers to the growth of the clone, and compares the integration of the
mean field equation with the results given by the microscopic model (the fratricide
term value is fixed to pk = 0.1). In this case the discrepancy is stronger, and is also
qualitative. The growth in the microscopic model is lower at the beginning, while the
equilibrium value is higher. Two different effects are present, both due to the presence
of zones around the APC in which T cells reproduce: the fratricide effect is enforced
because of the higher density in these zones, but also the probability to meet an APC
and thus to be activated is enhanced. Since these effects depend strongly on the density
of cells, it is possible to obtain the parameters of equations 12.1–12.7 by a process of
best-fitting only on regions in which the values of A and T are almost constant (this
means that those equations can describe properly the behaviour of the microscopic
system only if we introduce a dependence of the parameters on A and T ).
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Fig. 12.3. T clone expansion in response to a fixed number of antigens in the microscopic (con-
tinuous line) and mean field models.

12.3 Results of the Simulations

12.3.1 Acute Antigenic Impulse

In order to complete the model we have to fix the value of the parameters ci j ≡ c mi j
(we are assuming that the ability of a T cell to remove an antigen is proportional to
its affinity to it). We have used c = 0.2 in order to obtain a realistic time scale for the
response of the immune system to the infection.

In Fig. 12.4 we plot the evolution of the clone size T and antigen A populations,
comparing the results of the microscopic model with the solutions of the mean field
equations. In agreement with the previous discussion the results are very similar at
equilibrium values, while the agreement is only qualitative during the transient part.
Damped oscillations are present in both models, and both the period and the height of

Fig. 12.4. Evolution of the system under an acute antigenic stimulus. The evolution of the anti-
gen number in the microscopic (continuous line) and mean field models is shown at left, while
the size of the T cell clone is reported on the figure at right (the continuous line corresponds to
the microscopic model).
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Fig. 12.5. Left: evolution of the antigen population after a secondary impulse occurring 50 days
after the primary; microscopic model. Right: corresponding evolution of the T cells clone.

peaks and valleys are of the same order of magnitude (the damping rate and the period
of oscillations are higher in the microscopic model).

This behaviour corresponds to that of a prey-predator system (see the Appendix
and [2]). To an equilibrium value with A �= 0, B �= 0 corresponds a “memory” effect
due to the permanence of the antigen. In this situation the response to a secondary
stimulus is obviously quicker (Fig. 12.5).

12.3.2 The Clonal Repertoire Model

We finally consider the effects of both fratricide and spatial competition terms be-
tween different clones in the presence of a differentiated antigen repertoire. By using
a fratricide term in which the decrease is proportional to the overall size of the clones,
�−Ti = −kTi

∑
j Tj , we obtain a mutual exclusion principle. In fact, if we summarise

the growth terms with �+Ti , the relative variation of the clone size is

Ṫi

Ti
= �+Ti

Ti
− �−Ti

Ti
.

Since �−Ti/Ti is the same for all the clones, supposing that there is a unique anti-
gen with the highest affinity to the clone Tj (namely �+Tj/Tj > �+Ti/Ti ∀i �= j),
if the clone j reaches an equilibrium �+Tj = �−Tj then any other clone extinguishes
since �+Ti − �−Ti < 0. (These are the basics of competitive exclusion, see [2].)

To show that in our model there is competition for peptides presented at the APC
surface (the mechanism investigated in [1]), we can use a “pure fratricide” term −kTi

2.
This is actually a “non-competitive” one since it favours the small clones. In fact,
studying the expansion of three clones under the stimulus of a single antigen, using an
affinity matrix mi,1 such that mi,1 - m1,1 = 1 if i �= 1 we have an equilibrium with
T2 �= 0 (Fig. 12.6).

Nevertheless, even in this situation the competition for the peptides on the APC
surface leads to a control in the overall number of T cells, at least when the number of
clones is large. To study this effect we introduce an antigen with constant concentra-
tion, to which 10 clones have maximal affinity. Once these clones have reached their
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Fig. 12.6. Time evolution of the size of three clones one of which (continuous line) has higher
affinity to a given antigen.

equilibrium size, we introduce three different additional antigens at which three new
clones are highly affine. The results of Fig. 12.7 show that the size of the “old” clones
shrinks as a reaction to the growth of the new ones.

12.4 Conclusions

Analytical models and simulations are usually treated as completely distinct fields
of research, even when they approach the same problem. We have presented a mi-
croscopic dynamical model inspired by the clonal expansion in the immune system,
together with a system of differential equations that could be interpreted as its mean
field theory. We have shown how the mean field equation can be used to interpret the

Fig. 12.7. Time evolution of the size of 10 clones (continuous curves) stimulated by a single
antigen and shrinkage due to the expansion of three new clones (dashed curves).
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results of simulations, while the microscopic model can be used to add a local and
spatial character to a macroscopic system based on differential equations.

We do not claim that the results of our model are biologically relevant, but we
present it as a starting point for a more complex model and as a solution for a compro-
mise between pure analytical and pure simulated models that could be used in different
fields of research.

Appendix

The dynamics of the model can be described by a simplified system of differential
equations for A and T . We assume that the antigen-APC-T average interaction consists
of a growth term for the T clone proportional to A. The equations become

Ȧ = A(a(1 − cA) − bT ) Ṫ = T (−d + eA − f T ). (12.15)

These Lotka–Volterra equations with a logistic term have been extensively investigated
and if e > cd they exhibit a critical stable point:

Tc = a(e − cd)

eb + ca f
Ac = a f + db

eb + ca f
. (12.16)

Every solution in the positive sector T > 0 A > 0 is attracted by this point which is
topologically a focus. Convergence rate to equilibrium and the oscillations period are
determined by the eigenvalues of the Jacobian matrix.

From its trace and determinant,

Tr J = −a
ac f + bcd + e f − cd f

eb + ac f
< 0 det J = a(e − cd)(bd + a f )

eb + ac f
> 0,

(12.17)

we obtain the eigenvalues λ± = (1/2)[ Tr J ± √
Tr J 2 − 4det J ] which are real nega-

tives or complex with a negative real part. We have oscillations if � = Tr J 2−4det J =
−ω2 < 0 and their period is 2π/ω.
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Summary. A previously proposed mathematical model based on a simplified scheme of Th1–
Th2 regulation mediated by the cytokine network which describes the population dynamics of
allergen-specific naive T cells, Th1 and Th2 cells, autocrine and cross-suppressive cytokines, and
allergen is more closely investigated. The model provides a theoretical explanation of the switch
from a Th2-dominated response to a Th1-dominated response to allergen in allergic individuals
as a result of a hyposensitization therapy. We focus here on the bifurcation analysis of the non-
autonomous dynamical system driven by periodic allergen injections. The stability of the fixed
points of a stroboscopic map is investigated. The set of unstable fixed points forms the dynamical
separatrix between the regions of Th2-dominated response and Th1-dominated response which
is crossed during a successful therapy. The maintenance phase of the therapy holds the system
near the stable fixed point of the stroboscobic map.

Key words: Th1–Th2 regulation, allergy, venom immunotherapy, hyposensitization, non-
autonomous dynamical systems, bifurcation analysis.

13.1 Th1–Th2 Regulation, Allergy, and Hyposensitization

In the last two decades it became clear that for T-helper cells subsets can be defined,
which differ in the spectrum of cytokines they secrete [1]. Th1 cells producing cy-
tokines such as IL-2 and IFN-γ are involved in the response against intracellular
pathogens, whereas Th2 cells producing mainly IL-3, IL-4, IL-5, and IL-13 play a
role in combatting extracellular pathogens. The cytokines secreted by one subset have
an autocrine effect on their own population and a suppressive effect on the popula-
tion of the other subset, thus providing a balance between Th1 and Th2 cells, see Fig.
13.1 for a simplified scheme. Several diseases are connected with a perturbation of this
balance [2]. For example, an allergy of type I is a typical Th2-dominated response.

A widespread and successful therapy of allergy, hyposensitization, e.g., against bee
venom, pollen, or house dust mites, consists in the initial phase in subcutaneous injec-
tions of increasing doses of allergen in varying intervals following empirical protocols.
In the maintenance phase high doses of antigen are injected every 4 weeks for a period
of several years [3]. During a venom immunotherapy a shift from a Th2-dominated
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Fig. 13.1. Simplified scheme of Th1–Th2 regulation reduced to processes described in the
model. Antigen is taken up by antigen-presenting cells (APCs) and presented with a concen-
tration Ap to naive cells N , which differentiate into either Th1 or Th2 cells of concentration
T1 and T2, respectively. Cytokines produced by Th2 cells (I L) stimulate proliferation of Th2
cells and suppress IFN-γ production in Th1 cells. Th1 cytokines (I F) on the other hand have
an autocrine effect on production of Th1 cells and suppress proliferation of Th2 cells.

to a Th1-dominated profile and an increase of the specific IgG4/IgE ratio has been
observed [4–7].

Hyposensitization was first introduced in 1911 by Noon, who treated patients suf-
fering from hay fever by injecting them with pollen extracts [8]. Since then this method
has been adopted as the treatment of choice for allergic hypersensitivity.

A mathematical model describing the regulation of Th1–Th2 balance was proposed
by Behn et al. [9] and supplemented in [10] by a model describing the desensitization
of mast cells and basophils, cf. also [11].

The original equations describe the dynamics of six variables, the concentrations
of naive cells, of Th1 and Th2 cells, of cytokines I F and I L produced by Th1 and
Th2 cells respectively, and of allergen. They take into account the asymmetry in the
cross-suppression sketched in Fig. 13.1. The proliferation of Th2 cells is stimulated
by I L and suppressed by I F , which is reflected by a production term proportional to
N Ap I L/(1 + const I F) in the equation for T2. The production of I F by Th1 cells
is suppressed by I L , which leads to a term proportional to T1/(1 + const I L) in the
equation for I F .

Since cytokines evolve on a shorter time scale than lymphocytes they can be adi-
abatically eliminated, which results in I F ∝ T1/(1 + const I L) and I L ∝ T2. For a
detailed derivation see [10].

Taking into account a small cytokine background c originating from other im-
munological processes assumed to be constant in time amounts to I F → I F + c
and I L → I L + c. Up to first order in c one arrives after a rescaling to suitable units
at
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dT1
dt

= −T1 + υN Ap

(
T1

1+ μ2T2
+ c

)
, (13.1)

dT2
dt

= −T2 + υφN Ap
T2 + c

1+ μ1
T1

1+μ2T2

, (13.2)

dN

dt
= −N + α − N Ap

(
T1

1+ μ2T2
+ c

)
− φN Ap (T2 + c) , (13.3)

dAp
dt

= ξp(t) − Ap (T1 + T2) . (13.4)

Here T1/2, N , and Ap denote the concentrations of Th1 and Th2 cells, naive cells, and
allergen presented by antigen-presenting cells (APCs), respectively.

The parameter α is the production rate of the naive T cells, v is the proliferation rate
of the T cells, and ξp(t) is the rate at which allergen peptide is presented by APCs after
an allergen injection. The parameters μ1 and μ2 control the cross-suppression of Th1
and Th2 cells mediated by their cytokines and become important at high concentra-
tions. The parameter φ regulating the balance of the autocrine effects of the Th1–Th2
system is relevant at low concentrations. For φ � 1 the response to small doses of
antigen is Th2-dominated, cf. [9], whereas for φ � 1 it is Th1-dominated, cf. [10].
The latter choice is appropriate considering more recent experimental findings [12].
A small cytokine background c originating from other immunological processes is as-
sumed to be constant in time. All parameters are dimensionless, as well as the time,
which is measured in units of the half-life of lymphocytes. In numerical simulations
we use α = 10, υ = 8, c = 10−5 · · · 10−4, φ = 1.02, μ1 = 0.2, and μ2 = 0.1.

The analysis of the non-linear dynamics of the model has shown that the system is
driven by the injection of antigens from a region in the state space where the response
to allergen is Th2-dominated to a region where it is Th1-dominated [10]. These regions
are separated by a dynamical separatrix. The dynamical separatrix was determined as
follows. The trajectories of the system (13.1)–(13.4) starting with an injection of an
allergen dose Dp = 1 have been tracked for initial conditions of N = α and different
points in the T1–T2 plane. Some points in the T1–T2 plane are distinguished because
the trajectory returns to the initial point after a certain time τ . If τ is not too small
compared with the half-life of the T cells the allergen is almost eliminated and the
naive cells have almost returned to their initial value. Periodic injections of the same
dose of antigen Dp with the period τ will therefore induce a periodic trajectory ever
returning to the initial point, which clearly is a fixed point of a stroboscopic map.

In the paper [9] we have numerically compared the present model with an extended
version which includes long-lived Th1- and Th2-memory cells. Since no essential dif-
ferences in the qualitative behaviour were found, here we restrict the mathematical
analysis to the simpler model.

In this chapter we investigate more closely the dynamical separatrix mentioned
above by analyzing the fixed points of a stroboscopic map for the case of periodic in-
jections of allergen. The dynamical separatrix is just the line of unstable fixed points.
We first present results for a simplified two-dimensional (2D) stroboscopic map in the
T1–T2 plane where periodically the values for Ap and N are reset to 0 and α, respec-
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Fig. 13.2. Schematic illustration of the concept of dynamical separatrix. The response to the
injection of a given dose of allergen is shown in the T1–T2 plane for different initial conditions.
The trajectories starting from points on the separatrix return to their starting point. The T1–T2
plane is divided in regions in which an injection of Dp will either improve the ratio T1/T2
(white) or impair it (grey).

tively. The stability of the fixed points and the bifurcations of the manifold of fixed
points are determined. We then show that the 4D stroboscopic map corresponding to
the complete dynamics of (13.1)–(13.4) leads to practically the same results provided
the period of injections is not too small. Finally, we look at the influence of changes of
the background cytokines c and the dose of allergen injections Dp.

13.2 Dynamical Separatrix and Stroboscopic Maps

In numerical investigations of the response to the injection of a given dose of allergen
for different initial conditions it was found [9, 10] that there exist points in the T1–
T2 plane which are reached again by the trajectory after a certain time τ . Repeating
injections of the same dose with a period τ produces a process of periodic returns to
the initial point, which is naturally a fixed point of the stroboscopic map of just this
period τ . The manifold of those fixed points is a line in the T1–T2 plane parametrized
by τ . The fixed points may be stable or unstable. The manifold of unstable fixed points
is a dynamical separatrix: For initial points left or right of the separatrix the response
to a certain dose of allergen leads into regions of different Th1–Th2 balance. See Fig.
13.2.

We consider the case of periodic injections of a certain allergen dose Dp, ξp(t) =∑
n Dpδ(t − tn). We first analyze the stroboscopic map for a simplified dynamics

describing the projection on the T1–T2 subspace with the idealization that the allergen
has completely disappeared after τ , and that the population of naive cells has returned
to the fixed point N∗ = α of the situation without allergen. This proves an excellent
approximation for a not too small τ , see below.
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Introducing the abbreviations T = (T1, T2)T and A = (N , Ap)T we denote by
θ(T0, A0; t) the solution of the autonomous system (13.1)–(13.4) at time t for ξp = 0
with initial conditions T0 = (T 01 , T 02 )T and A0 = (α, Dp)

T . θT denotes the projection
of θ on the T1–T2 subspace. Note that starting with the initial condition Ap(0) = Dp

corresponds to ξp(t) = Dpδ(t).
The stroboscopic map Sτ (n) : N × R

2+ → R
2+ with period τ looking just before

the nth periodic injection of the dose Dp at the systems projection on the T1–T2 plane
is defined by

Sτ (n + 1) = θT (Sτ (n), A0; τ − 0) , n = 0, 1, 2, . . . (13.5)

with initial condition Sτ (0) = T0. The fixed points S(τ ) of the stroboscopic map (13.5)
obey S(τ ) = θT (S(τ ), A0; τ − 0) . Differentiation with respect to τ yields

dS

dτ
=

(
1− ∂θT

∂S

)−1
∂θT

∂τ
, (13.6)

provided the matrix (1− ∂θT /∂S) can be inverted. If this is not the case, i.e., for
det (1− ∂θT /∂S) = 0, by the implicit function theorem a bifurcation occurs at a criti-
cal value of τ . For the numerical evaluation we observe that

∂θT

∂S
= ∂θT

∂T0

∣∣∣∣
T0=S(τ )

and
∂θT

∂τ
= dT

dt

∣∣∣∣
T=S(τ ),A=(α,0)

= −S(τ ). (13.7)

Fig. 13.3 shows the manifolds of stable and unstable fixed points parametrized by the
period of injections τ numerically obtained from (13.6). Furthermore, det (1− ∂θT /∂S)
is shown as a function of τ evaluated along the stable and unstable manifolds, and the
ratio T1/T2 which undergoes a perturbed backward pitchfork (saddle-node) bifurcation
with increasing τ .

The preceding analysis of the simplified 2D stroboscopic map corresponds to the
numerical determination of the dynamical separatrix directly applied to the system
(13.1)–(13.4) in [10]. To clarify whether these simplifications making the system ef-
fectively two dimensional and the bifurcation analysis are justified, we now investi-
gate the complete stroboscopic map for the 4D non-autonomous dynamical system for
(T1, T2, N , Ap)T .

We denote by θ(T0, A0; t) the solution of the autonomous system (13.1)–(13.4) at
time t for ξp = 0 with initial conditions T0 = (T 01 , T 02 )T and A0 = (N 0, A0p)

T . The

4D stroboscopic map Sτ (n) : N × R
4+ → R

4+ with period τ is defined as

Sτ (n + 1) = θ(Sτ (n) + (0, 0, 0, Dp)
T ; τ − 0), n = 0, 1, 2, . . . (13.8)

with initial condition Sτ (0) = (T0, A0)T . Analogously to the 2D case we denote the
fixed points by S(τ ) and obtain

dS

dτ
=

(
1− ∂θ

∂S

)−1
∂θ

∂τ
, (13.9)
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Fig. 13.3. The manifolds of stable and unstable fixed points of the stroboscopic maps for the
simplified case (2D model, dotted lines) and the complete 4D model (solid and dashed lines)
are shown in (a). The curves are parametrized by the period of injections τ . Values of τ in the
range from 0.2 to 15 are indicated in the figure. It can be seen that only for small periods τ < 1
differences between the simplified and the complete model exist, Dp = 1, c = 10−4. In (b) a
plot of det(1 − ∂θT /∂S) which equals the product of eigenvalues is shown as a function of τ .
The bifurcation is associated with the occurrence of a zero eigenvalue. Near the bifurcation there
are no differences between the 2D and the 4D mapping. In (c) the corresponding bifurcation
diagram of the ratio T1/T2 with control parameter τ is depicted. Stable and unstable cases are
distinguished by solid and dashed lines, respectively.

provided the matrix (1− ∂θ/∂S) can be inverted. If this is not the case, a bifurcation
occurs at a critical value of τ . Again, for numerical evaluation we exploit

∂θ

∂S
= ∂θ

∂(T0, A0)T

∣∣∣∣
S(τ )

and
∂θ

∂τ
= d(T, A)T

dt

∣∣∣∣
S(τ )

. (13.10)

For sufficiently large τ (for our parameter setting it is τ � 2) the manifolds of fixed
points agree with those of the simplified map; in particular, the bifurcation analysis
gives the same results for both cases, see Fig. 13.3. This is easily understood: If the
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Fig. 13.4. Manifold of fixed points of the stroboscopic map (13.8) parametrized by the period
of injections τ and the corresponding bifurcation diagram of T1/T2 for Dp = 1 and different
concentrations of background cytokines. Values of τ in the range from 3 to 15.1 are indicated
in (a) and (b). Again, stable and unstable cases are distinguished by solid and dashed lines,
respectively. c = 10−5 in (a) and (b), and c = 6× 10−5 in (c) and (d).

period between the injections of allergen is long enough, allergen is eliminated and the
naive cells recover to their baseline value α while the T-helper cells reach their initial
value (since we consider fixed points of the stroboscopic map). Of course, without
further injections of allergen T-helper cells would return to their zero baseline. For
smaller τ (τ < 2), allergen is not completely eliminated before the next injection and
the naive cells have not yet recovered; thus the assumptions of the 2D model are not
fulfilled and the differences between the 2D and 4D models become visible.

For smaller values of α and υ, the production of T-helper cells is smaller and the
elimination of allergen less efficient, and differences between the 2D and 4D models
occur for larger values of τ .

We also investigated the dependence on the small cytokine background c and the
dose of the periodic allergen injections Dp. Fig. 13.4 shows the manifold of fixed
points and the corresponding bifurcation diagram for two different values of c. It can
be seen that for c ≈ 6× 10−5 there is a perfect backward pitchfork bifurcation. Even
small deviations from this critical value (cf. for c = 10−5 Fig. 13.4b, and for c = 10−4
Fig. 13.3c) lead to a perturbation of the perfect bifurcation. Note however that the
bifurcations occur for very small concentrations of T1 and T2 on the order of 10−5 to
10−4. For larger concentrations the line of unstable fixed points, i.e., the dynamical
separatrix, that determines the qualitative behaviour of the system is not affected.
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Fig. 13.5. Manifold of fixed points of the stroboscopic map (13.8) for c = 10−4 and different
doses Dp parametrized by the period of injections τ . Values of τ in the range from 3 to 11
are indicated. Solid line Dp = 0.1, dashed line Dp = 0.5, and dotted line Dp = 10. The
qualitative behaviour of the fixed point manifolds depends on Dp . For small (Dp = 0.1) and
large (Dp = 10) values they appear similar to those in Fig. 13.4a, for intermediate values
(Dp = 5) similar to Fig. 13.3a. Correspondingly, the character of bifurcations occurring for
small T cell concentrations is different. However, for T cell concentrations that are not too small
the unstable manifold is practically the same for all Dp .

The manifolds of fixed points for different values of the dose Dp of periodic in-
jections are shown in Fig. 13.5. Similarly, we see changes in the location of the stable
manifolds and in the character of the bifurcation, whereas the location of the dynami-
cal separatrix for T cell concentrations larger than 10−3 is practically the same for all
values of Dp.

13.3 Concluding Remarks

Venom immunotherapy consists in the initial phase in injections of increasing doses
of allergen administered in increasing intervals following empirical protocols. As de-
scribed in detail in [10] the gradual increasing doses of allergen desensitize the effector
cells, mast cells, and basophils of the early phase reactions. Having reached this de-
sensitized state it is possible to apply high doses of allergen to perform a Th2–Th1
switch. In the maintenance phase of the therapy, carried out for 3 to 5 years or even
longer, periodic injections of high doses hold the system in a state of Th1-dominated
response to the allergen.

In this chapter we investigated the second phase of the therapy by analyzing a
stroboscopic map of the period of the injections driving a non-linear dynamical sys-
tem describing Th1–Th2 regulation. Using the tool of stroboscopic maps reduces the
complexity of the non-autonomous system, allowing a thorough analysis, and puts the
notion of dynamical separatrix on a firm mathematical ground.
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We determined the manifolds of stable and unstable fixed points parametrized by
the period τ between successive injections. The manifold of unstable fixed points is
the dynamical separatrix which has to be crossed during a successful Th2–Th1 switch.
The periodic injections of the maintenance phase hold the system near the stable fixed
point of the stroboscopic map where T1/T2 � 1.

The bifurcation analysis of the manifolds of fixed points of the stroboscopic map
of a simplified system, corresponding to the numerical study in [10], and of the com-
plete non-autonomous system leads to the same results provided the period of allergen
injections is not too small.

As shown in [10] the present model describes the Th1–Th2 switch not only for the
conventional protocol, where the maintenance dose is reached in about 50 days, but
also for rush- and ultra-rush protocols, cf. [3], where the dose must be reached in only
a few days.

Assuming that for an allergic individual initially T2/T1 > 1, three regions in the
T1–T2 plane can be distinguished. Region 1, located to the right of the separatrix, is
the region where successive injections of Dp = 1 will continuously improve the ratio
T1/T2 independent of the time interval between injections. Region 2, located left of
the separatrix, is where the trajectory after injection of Dp = 1 transiently crosses the
separatrix, cf. Fig. 13.2. If a next dose of allergen is injected while the system is beyond
the separatrix, it is possible to further improve the ratio T1/T2. Success or failure of
the Th2–Th1 switch depends on the schedule of injections. The further the initial state
is from the separatrix the shorter the trajectory is on the other side of the separatrix.
In this phase, shorter intervals between injections will increase the chance of success.
Empirical protocols already follow this strategy by increasing the intervals between
injections of Dp = 1 from initially one week to eventually four weeks. Finally, in
Region 3, left of Region 2, the Th2 dominance is so pronounced that every injection of
allergen will only impair T1/T2.

A more detailed discussion of the timing of subsequent injections can be found
in [10]. For example, the Th2–Th1 switch may fail if the intervals between injections
are too long. Furthermore, a few injections of allergen corresponding to lower dose
wasp stings may induce a switch from Th1 to Th2 prevalence—a possible scenario for
sensitization.

The location of the dynamical separatrix is not influenced by changes of the aller-
gen dose Dp or by small changes in the cytokine background c, provided the T cell
concentrations are larger than 10−3. The bifurcations occurring for smaller values of
the T cell concentrations may change however varying c or Dp. We do not exclude
that this property could be relevant during the process of sensitization.

We also considered periodic injections of small doses of allergen Dp for which
τ also becomes small. The fixed points then converge to the fixed point of the au-
tonomous system with a constant supply (infusion) of allergen at a rate ξ = Dp/τ as
expected. To minimize the inconvenience for the patients, it seems feasible to main-
tain a large ratio T1/T2 by an infusion of allergen at minute rates applied, e.g., by an
implantable nanopump.

On the other hand, in the maintenance phase of the therapy when the trajectory
is not able to cross the separatrix, it is also possible to extend the intervals between
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injections. Fig. 13.5 shows that the same ratio T1/T2 can be achieved for different
pairs of maintenance dose and injection period. A recent clinical study reported that
the conventional interval of 4 to 6 weeks can be safely extended to 3 months [13].

The present model describing Th1–Th2 regulation is, of course, a crude simplifica-
tion of a very complex system. Nevertheless, it exhibits essential features of venom im-
munotherapy. Future investigations aim at proceeding with the mathematical analysis,
for example generalizing the bifurcation analysis for non-periodic, or stochastic, injec-
tions of allergen adopting the concept of pull-back attractors [14]. A second necessary
line is to make the model more realistic, including, e.g., T cell memory, the recently
rediscovered regulatory T cells, see, e.g., [15, 16], or the interaction with the B-cell
system, where very recently internal images of allergen have been identified [17].
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Summary. B lymphocytes express on their surface receptors (antibodies) of a given specificity
(idiotype). Crosslinking these receptors by complementary structures, antigens or antibodies,
stimulates the lymphocyte. Thus a large functional network of interacting lymphocytes, the id-
iotypic network, emerges. Idiotypic networks, conceived by Niels Jerne 30 years ago, experience
a renewed interest, e.g., in the context of autoimmune diseases.

In a previously proposed minimalistic model idiotypes are represented by bit strings. The
population dynamics of the idiotype clones is reduced to a zero-one scheme. An idiotype sur-
vives only if it meets enough but not too many complementary structures. We investigate the
random evolution of the network towards a highly organized functional architecture which is
driven by the influx of new idiotypes, randomly generated in the bone marrow. The vertices can
be classified into different groups, which are clearly distinguished, e.g., by the mean life time
of the occupied vertices. They include densely connected core groups and peripheral groups of
isolated vertices, resembling the central and peripheral parts of the biological network.

We determine the building principles of the observed patterns and propose a description of
their architecture, which is easily transferable to other patterns and applicable to different system
sizes.

Key words: Immune system, B lymphocytes, antibodies, idiotypic interactions, randomly
evolving networks.

14.1 The Idiotypic Network

The immune system defends the body against threats to its health caused by anti-
gens, e.g., pathogenic cells or substances. A key feature of the immune response is the
recognition of foreign invaders. In the humoral immunity, which is considered here,
this is achieved by antibodies. Antibodies are proteins with highly specific binding
sites, which enable them to bind to complementary sites of an antigen, which are thus
marked for further processing, e.g., for eating by macrophages.

Antibodies are produced by B lymphocytes. Each of these cells is capable of pro-
ducing exactly one specific type (the idiotype) of antibody. On their surface B cells
express copies of their antibodies as receptors. When stimulated, i.e., crosslinked by
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complementary structures, they proliferate and, after a few cell cycles, differentiate
into plasma cells and memory cells, the former secreting large amounts of the useful
antibodies. Thus, useful clones survive, while others, lacking stimulation, die. This
process is therefore called clonal selection [1].

In 1974 Niels K. Jerne presented his concept of idiotypic network [2]. B lympho-
cytes with receptors of a given idiotype are capable of mutual interaction if their recep-
tors have complementary specificity. Hence, the entirety of the B lymphocyte system
forms a functional network, with nodes representing the idiotypes and links between
complementary idiotypes. Jerne’s concept of idiotypic network got an immediate en-
thusiastic resonance and earned him the Nobel Prize in 1984. In the following years, B
lymphocytes of a given idiotype and their anti-idiotypic counterparts were experimen-
tally identified, but the search for deeper network structures was not really success-
ful. Thus, the initial enthusiasm of experimentally working immunologists decayed,
parallel with the rapid success of molecular immunobiology. Nevertheless, idiotypic
networks stayed attractive for theoretical biologists interested in the systems’ behav-
ior and also attracted the interest of theoretical physicists. An excellent review and a
thorough discussion of the historical development of immunological paradigms can
be found in [3]; for a more personal view cf. also [4]. A review of different modeling
approaches written especially for physicists is given in [5].

Today, a new interest in idiotypic interactions has emerged, especially in the con-
text of autoimmune diseases [6, 7], and the progress in experimental methods makes
a new generation of experiments feasible. Independently, statistical physicists discov-
ered their interest in the description of networks, especially random and randomly
growing networks, with applications in a plethora of different, multidisciplinary fields
[8–10].

The estimated size of the potential idiotypic repertoire of humans is of the truly
macroscopic order 1012, that of the expressed repertoire is of order 108 [5,11]. The in-
teractions between B cells of complementary idiotype are genuinely nonlinear. Thus,
modeling idiotypic networks is an inviting playground for physicists dealing with sta-
tistical physics, nonlinear dynamics, and complex systems.

In a minimalistic model proposed in [12] idiotypes are represented by bit strings
as in [13] which can interact with (up to a certain number of mismatches) complemen-
tary bit strings. In the model, an idiotype population may be either present or absent.
For survival it needs stimulation by sufficiently many complementary idiotypes, but
it becomes extinct if too many complementary idiotypes are present. The dynamics is
driven by the random influx of new idiotypes from the bone marrow. The model has a
minimal number of parameters, namely the length of the bit string, the allowed number
of mismatches, upper and lower thresholds for stimulation, and the influx of new idio-
types. Hence, it is possible to study the model with special emphasis on the network
properties and dynamics. In [12] a first study for one and two allowed mismatches was
presented. Interestingly, for certain parameter settings, a random evolution towards a
highly nontrivial complex functional architecture of the emerging network was ob-
served. The nodes in this network representing idiotypes can be classified into differ-
ent groups, which can be clearly distinguished. They include densely connected core
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groups and peripheral groups of isolated nodes, resembling the notion of central and
peripheral parts of the biological network [14, 15].

In this chapter we aim at investigating the building principles of this architecture
and identifying the building blocks, which we shall call pattern modules.

The potential idiotypic network is modeled as in [12, 17] by an undirected base
graph G = (V, E). The set of vertices (nodes) V represents the potential repertoire of
idiotypes a given individual can express. Each idiotype v ∈ V in the network is char-
acterized by a bit string of length d.: bdbd−1 · · · b1 with bi ∈ {0, 1} ∀ i = 1, 2, . . . , d.
The links l ∈ E connect complementary and almost complementary idiotypes. That is,
for every pair of vertices the degree of complementarity is evaluated: If the Hamming
distance dH between the bit strings of two vertices v, w ∈ V equals the length of the
bit string d , there is a link l = {v, w} representing a perfect match, if dH (v, w) = d−1,
we call it a one-mismatch link, etc. We allow m mismatches, for which an interaction
of the idiotypes is still possible. In terms of an adjacency matrix we can write the
mismatch rule as

mvw =
{

1 if d − dH (v, w) ≤ m
0 otherwise

. (14.1)

G(m)
d then denotes a base graph of vertices with bit strings of length d, and links be-

tween vertices which are complementary except for up to m bit positions.
At a given moment of time an individual will express only a fraction of the poten-

tial repertoire of idiotypes; the corresponding vertices are occupied, and the others are
empty. The evolution of the system is driven entirely by the random influx and the in-
ternal population dynamics. The update algorithm [12] for the evolution of the system
is:

(i) Choose I unoccupied sites (holes) randomly and set them occupied. They repre-
sent the influx of new idiotypes from the bone marrow.

(ii) Count the number of occupied vertices n(∂v) in the neighborhood of every vertex
v ∈ G. If n(∂v) is outside the window of lower and upper threshold (tl , tu), the
vertex v will be set empty.

Both updates are parallel, and they are iterated.
In the following section we describe one simple pattern in detail and show that its

architecture is based on very few principles. In this context we introduce the notion
of pattern modules, which are congruently occupied repeating building blocks of the
pattern. In Sect. 14.3 we apply this new concept to more complex patterns and show
that it correctly predicts the observed properties of the patterns.

14.2 Periodic 2-Cluster Pattern

We performed simulations, in which we measured the behavior of the whole system,
as well as the time averaged behavior of every single vertex. We are describing the
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Table 14.1. Characterization of groups by local quantities for the case I = 10.

S1 S2 S3

occupied neighbors 〈n(∂v)〉Si 1.16 10.96 53.26

mean life time 〈τ(v)〉Si 4699 3 0

mean occupation 〈n(v)〉Si 0.95 0.01 0.00

latter by characteristic local quantities, finding groups of vertices with equal behavior,
and analyzing the network relations between the groups.

The measurements, which will be referred to in the following, were obtained in
simulations on base graph G(2)

12 , with lower threshold tl = 1, upper threshold tu = 10.
The influx I was varied in the range of 10 to 800. The system was given a relaxation
time of 5000 time steps to reach a steady state. The observation time itself was another
5000 time steps long.

A 2-cluster pattern evolved for I = 10 and I = 60. It bears great resemblance
to the 2-clustered patterns in one-mismatch graphs, which had been investigated be-
fore [12]. For both matching rules, i.e., the cases m = 1 and m = 2, the subgraph of
occupied vertices % exhibits the characteristic 2-clustered picture for a certain param-
eter range, which gives both types of configurations their name.

According to the quantitative behavior of the vertices, we can separate them into
three groups: S1, S2, S3 ⊂ V . Table 14.1 gives characteristic values of some local
quantities, i.e., quantities related to single vertices. We measured the time average for
every vertex x(v) and subsequently averaged these mean values over all elements of
the respective groups 〈x(v)〉Si .

As in the one-mismatch case there is a group of frequently occupied vertices (S1)
and a group of stable holes (S3). Additionally, we now find a group of potential hubs
(S2). They are seldom occupied. However, if they are, they function as hubs by linking
together up to tu 2-clusters. For a visualization of the network of occupied vertices %,
see Fig. 14.1. The sizes of the groups obey |S1| = |S2|/2 = |S3|.

We made a surprising observation when looking at the vertex indices iv . They are
given by the decimal number coded in the bit string bdbd−1 · · · b1: iv = ∑d

j=1 b j 2 j−1.
We found that the sum of the two indices in a 2-cluster is constant in the graph %.
Then a look at the bit strings of the vertices involved in the 2-clusters revealed that
they are identical in exactly two bits, say at positions k and l. The remaining d − 2 bit
positions assume all 2d−2 possible values. Inside a cluster both vertices’ bit strings are
complementary in these positions. Thus, the 2-clusters have a two-mismatch link. We
can write

· · · bk · · · bl · · · connects to · · ·bk · · ·bl · · ·, (14.2)

where the overbar denotes the bit inversion.
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Fig. 14.1. A typical pattern found for I = 10, and one for I = 60. The occupied vertices form
2-clusters, some of which are interlinked via hubs. The vertices are labeled with the decimal
expression of their bit string. The sum of the indices within a 2-cluster is always 6207 in this
2-cluster configuration. The determinant bit positions are 7 and 12. Figure produced using yEd
[16].

The other groups, S2 and S3, have similar structural properties. The bit strings of
stable holes are also mutually equal in the same two bit positions k and l. However, they
are inverse to bk and bl of the occupied vertices. Potential hubs, finally, with respect to
the other groups have exactly one deviating and one equal bit in these positions. This
can be summarized by

occupied vertices S1 · · · bk · · · bl · · ·

potential hubs S2
· · · bk · · · bl · · ·
· · · bk · · · bl · · ·

stable holes S3 · · · bk · · · bl · · ·

. (14.3)

As only these two bits play the crucial role of determining the pattern, they shall be
called determinant bits.

These very few principles suffice to explain all observations made in the simula-
tions, and we are able to construct a perfect 2-cluster pattern, i.e., a configuration in
which all vertices of group S1 are occupied and the others remain empty. It is perfect
in the sense that there are no defects but also no hubs.

For such a configuration we can calculate the degeneracy,

degeneracy = 22 ×
(

d
2

)
, (14.4)
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where the first factor represents the choice of the two determinant bits, and the second
factor gives the number of possible positions of these bits in the bit string of length d.

Furthermore, we can compute the generic number of occupied neighbors n(∂v) of
a vertex v of any group. As we assume all S1 to be occupied, n(∂v) is given by the
number of links between v and elements of S1. In order to establish a link between two
vertices, their bit strings need to be complementary except for up to two mismatches.
If v ∈ S1, it already has two bits in common with all vertices in S1, namely bk and bl .
Thus, all remaining bits must be exactly complementary. Hence, there is exactly one
vertex w ∈ S1, w �= v, which obeys the constraints. If v ∈ S2 or v ∈ S3, there is
one predetermined mismatch or none, respectively. The remaining mismatches can be
distributed among the d − 2 nondeterminant bits. We get

n(∂v) =
1∑

j=0

(
d − 2

j

)
∀ v ∈ S2 and n(∂v) = 11 for d = 12 , (14.5)

n(∂v) =
2∑

j=0

(
d − 2

j

)
∀ v ∈ S3 and n(∂v) = 56 for d = 12 , (14.6)

which is in good agreement with the statistical observation, cf. Table 14.1.
Also, the value of the index sum only depends on the determinant bits. If (v, w),

with v, w ∈ S1, is a pair of vertices forming a 2-cluster as in (14.2), the sum is given
by

iv + iw =
∑
j �=k,l

2 j−1 + 2bk2k−1 + 2bl2l−1 ∀ (v, w), v, w ∈ S1 . (14.7)

The regularity of the principle underlying this pattern inspired a new description of
the structure of the evolving patterns. If we consider the two determinant bits as coor-
dinates of a two-dimensional space, they will define the corners of a two-dimensional
hypercube, i.e., a square. In this picture, the corner with coordinates (bk, bl) represents
an occupied vertex, the opposite corner (bk, bl) is a stable hole, and the neighboring
corners of (bk, bl) are potential hubs. The two-dimensional hypercube shall be called a
pattern module, since it is the smallest, ever-repeating building block of the entire reg-
ular configuration. In other words, we can speak of 2d−2 congruently occupied parallel
worlds.

Fig. 14.2 illustrates the new concept of pattern modules in the smallest possible
two-mismatch graph G(2)

3 .
Many results for 2-clustered patterns on the G(2)

12 base graph can be generalized
to other choices of d and m. For instance, the 2-cluster pattern found in [12] can be
explained in a similar way. We proved for base graphs G(m)

d : We can construct 2-
cluster patterns by means of pattern modules with exactly one occupied corner. The
dimension of the pattern module dM equals the number of allowed mismatches m, the
number of qualitatively distinguishable groups is dM +1, and the size of group Si is
2d−dM

( dM
i−1

)
. For a 2-cluster pattern to be able to emerge, the lower threshold has to be

chosen tl = 1, and the upper threshold must obey 1 ≤ tu ≤ d − dM .
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Fig. 14.2. The complete graph G(2)
3 with a 2-cluster configuration. On G(2)

3 every vertex is con-
nected to any other. We find two congruently occupied two-dimensional modules (solid links),
each consisting of one occupied vertex (black, · 10), two potential hubs (gray, · 00 and · 11), and
one stable hole (white, · 01). The upper threshold has to be adjusted to tu = 1.

14.3 Patterns of Higher Complexity

Besides the 2-cluster pattern described above, a number of different patterns were
found in the simulation on G(2)

12 . They all appear more complex with respect to the
number of qualitatively distinguishable groups and the clustering of their occupied
graphs %. An elucidating insight into the diversity and some characteristics of the
groups is given by Fig. 14.3 showing the average number of occupied neighbors of
each vertex. We find distinct regions in dependence of the influx I . By taking other
observable quantities into account, we can describe them as static (I < 90), dynamic
(90 ≤ I < 260), dynamic and transient (260 ≤ I ), and random (350 - I ) pat-
terns. Static patterns have groups of occupied vertices, which have a high mean life

 

 
 

Fig. 14.3. We measured the time averages of the number of occupied neighbors of each vertex.
The graph shows a top view on histograms giving the frequencies of the average number of
occupied neighbors for different values of the main parameter I .
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time τ(v). The other groups often are stable holes or sparsely occupied vertices, cf.
Table 14.1. In dynamic patterns there still are some stable hole groups; however, we
do not find any groups of permanently occupied vertices. The mean life time generally
is small, and the graph of occupied vertices % changes permanently. While in static
and dynamic patterns all vertices remain in their groups, but for high I the patterns
become transient, i.e., groups dissolve and rearrange themselves on the base graph in
a different configuration. For very high influxes the dynamics is entirely random.

In the static pattern regime there exists a dominating 8-cluster pattern, in which the
clusters of occupied vertices appear as cubes, as well as a 24- and a 30-cluster pattern.

We found that all of these patterns can be explained considering the regular struc-
tures which emerge for more than two determinant bits. As explained above, the di-
mension dM of the corresponding pattern module is just the number of determinant
bits. Many predictions made for the 2-cluster pattern also hold for the patterns of
higher complexity: The number of groups is dM +1, the sizes of the groups are given
by |Si | = 2d−dM

( dM
i−1

)
. We can arrange these general results as in Table 14.2.

This is, of course, Pascal’s triangle. The bold numbers shall indicate groups which
are occupied in the static patterns on G(2)

12 . This choice, however, is not unambiguous
due to the symmetry of the hypercubic structure of the pattern module, which reflects
that vertices with determinant bits (bk, . . . , bl) as well as (bk, . . . , bl) arbitrarily may
be labeled as group S1.

We also can translate the mismatch rule into the framework of pattern modules: The
original rule says that two vertices are connected if their bit strings are complementary
except for a maximum of m mismatches. In terms of the pattern modules, we can
formulate that some vertices of group Si can connect to some vertices of group S j , if
the indices obey

|i + j − 2 − dM | ≤ m . (14.8)

If such links exist, they will have at least |i + j − 2 − dM | mismatches.
For example, in Table 14.2 we find that for dM = 2, 4, and 6 the respective occu-

pied groups S1, S2, and S3 have vertices which connect to vertices in the same group

Table 14.2. Pattern modules in G(2)
12 .

dM 2dM −d |Si | with i = 1, 2, . . . , dM +1 observed clusters in G(2)
12

0 1
1 1 1
2 1 2 1 2-cluster
3 1 3 3 1 24-cluster
4 1 4 6 4 1 8-cluster
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1 30-cluster
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Table 14.3. Characterization of the six empirical groups. Data from [12].

S̃1 S̃2 S̃3 S̃4 S̃5 S̃6

group size |S̃i | 1124 924 924 134 330 660

life time 〈τ(v)〉Si 0.0 3.8 5.4 10.0 18.1 35.6

via two-mismatch links. In these cases, the connected vertices form the characteristic
2-, 8-, and 30-clusters found in the simulations.

A remarkable pattern found on G(2)
12 for I = 90 is the dynamic pattern of a six-

group structure. The six groups had been found empirically in [12], cf. Table 14.3.
We now denote the empirically found groups by S̃i to distinguish them from the

groups Si defined by analyzing the pattern modules. S̃1 is the group of stable holes,
and S̃2 and S̃3 are central groups, which have connections with each other, as well as
to the peripheral group S̃5. S̃2 additionally has links to the other peripheral group S̃6.
The group S̃4 is somewhat special, because it is entirely surrounded by stable holes.
Occupied vertices of this group are sustained solely by the random influx. Fig. 14.4
shows a snapshot of the occupied graph at some time step. We clearly see the central
and the peripheral part of the idiotypic network.

Fig. 14.4. Snapshot of the occupied graph % of a six-group configuration. The five different
shades of gray indicate the mean life time of the different groups S̃i from low (white) to high
(black) mean life time. Figure produced using yEd [16].
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Table 14.4. The pattern module of the six groups structure.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

empirical group S̃4 S̃4 S̃4 S̃5 S̃6 S̃3 S̃2 S̃1 S̃1 S̃1 S̃1 S̃1

group size 2 22 110 330 660 924 924 660 330 110 22 2

We were able to explain this sophisticated structure by means of an 11-dimensional
pattern module. From this we can derive the correct group sizes and, by applying con-
dition (14.8), the observed links between the groups. Also, the observation that S̃1
and S̃4 further decay into subgroups [18] can be fully understood now. Table 14.4
gives the mapping {Si } → {S̃ j } and the derived group sizes |Si |. For example, groups
S8, S9, S10, S11, and S12 are the subgroups of the empirical group S̃1. Their calculated
size adds to 1124, the statistically measured size of group S̃1.

14.4 Perspectives

We achieved a detailed microscopic understanding of the building principles of the
very complex structures emerging during the random evolution of a model idiotypic
network. For instance, we can calculate the size and the connectivity of the idiotype
groups, which were found empirically by statistical methods in a previous paper [12].
It is worthwhile to note that for a suitable choice of parameters the network comprises
a central and a peripheral part, as proposed in [15]. An ad hoc architecture similar to
the one described here was used in [19] to model the role of the idiotypic network in
autoimmunity.

The microscopic understanding now opens the possibility to consider networks of
more realistic size. Future steps will include checking whether a similar understanding
can be reached for more realistic models. For example, we think of more sophisticated
matching rules allowing for bit strings of different lengths, of weighted links for vary-
ing binding affinities, of several degrees of population for each idiotype, and of a delay
of takeout modeling memory. Furthermore, we are interested in the evolution of an
inserted antigen population.
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Summary. The goal of this chapter is to describe the mechanism underlying the age-specific
increase in death risk related to immunosenescence, to determine the cause-specific hazard rate
as a function of immune system characteristics. A mathematical model that allows for the esti-
mation of the age-specific risk of death caused by infectious diseases has been developed. The
model consists of three compartments: (1) a model of immunosenescence, (2) a model of infec-
tious disease, and (3) a model giving the relationship between disease severity and the risk of
death. The proposed model makes it possible to analyze age-specific mortality from infectious
diseases and to predict future changes in mortality due to public health activity. At the same time
it can be used for individualized risk assessment.

Key words: Immune aging, pneumonia, mortality, antigenic load, infection rate, telomere.

15.1 Introduction

The age pattern of mortality from all causes has common traits for different human
populations. These traits are relatively high during infancy and early childhood, very
low during the reproductive period, increase exponentially from age 35 to 85, and
decelerate at very old ages [11, 25].

However, the detailed analysis of cause-specific mortality in countries with well-
developed health care systems reveals that death rates from major causes do not follow
this pattern [11, 12]. For instance, death rates from malignant neoplasms rise at ages
30–54 years and decline afterwards. Mortality from parasitic infections is highest at
ages 30–35 years [11]. It has been found that mortality from some cancers levels off
around 85–90 years of age, followed by a plateau, or a decline in the last decades of
life [4]. Steeply increasing after age 65 years are death rates from respiratory infections
and cardiovascular diseases.

All this implies that different systems of the organism become vulnerable in differ-
ent periods of life. One can suppose that excessive susceptibility to certain diseases or
disorders occurs at a period of age-associated remodeling of the system [24].

We propose a new approach to estimate cause-specific risk of death. This approach
is based on the modeling of physiological aging of the system responsible for the
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lethal disease or disorders. There is some evidence that replicative senescence of T
cells results in a growth of mortality caused by respiratory infections [1, 8]. Here we
consider age-associated changes in the immune system and the way they influence the
course and the outcome of respiratory infection. We develop a model of age-related
risk of death from respiratory infections and make an attempt to fit data on pneumonia
mortality in some countries.

15.2 Model of Age-Related Risk of Death from Respiratory
Infections

The principal processes associated with immunosenescence are replacement of naive
lymphocytes by memory cells and replicative senescence of lymphocytes. A decrease
in the number of naive lymphocytes results in a weak and delayed immune response
to new pathogens. Low replicative capacity of lymphocytes leads to a slowed immune
response to any challenge as well. The slowed, inadequate immune responses accom-
panied by widespread damage of target tissues caused by pathogens. Damage of more
than a third of vitally important organs (e.g., lung tissue in the case of pneumonia) is
related with a high risk of death.

The relationship between immunosenescence and related mortality is represented
by the model of age-related risk of death from respiratory infections (see Fig. 15.1).
The model consists of three components: a model of immunosenescence [20], a model
of infectious disease [13] and a relationship between disease severity and risk of death.

The first model, the mathematical model of immunosenescence, describes the age
trend of immune system characteristics such as the concentration of naive and memory
T cells and their replicative capacity. The model is represented by a system of ordinary
differential equations (ODEs). Numerical solution of the system of ODEs yields the
sets of immune characteristics for each age. These characteristics are used in the sec-
ond model, the model of infectious disease, to determine the value of the lymphocyte
concentration at the beginning of disease and the rate of immune response. This model
makes it possible to simulate the course of unified infectious disease for each set of
immune characteristics or, in other words, for each age. Disease severity is defined as
a maximum of target tissue damage in the course of the disease.

The third model is a function of the distribution of resistance in the population,
describing population heterogeneity in this characteristic. Infection resistance is de-
fined as a probability of recovery at a certain value of target tissue damage (disease
severity). As an output of the model we have risk assessment of lethal outcome in the
course of the disease. To estimate the probability of death from certain diseases during
a time interval (e.g., during one year) we multiply the risk of lethal outcome in the
course of the disease by the probability of becoming infected during the interval under
consideration.
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Fig. 15.1. The relationship between age-related changes in immune system and increasing risk
of death from infectious disease. Proliferative capacity of T cells decreases with age, which
results in deceleration of lymphocyte proliferation during immune response. So, the severity
of the disease increases with increasing age. The higher the disease severity, the higher risk of
lethal outcome.

15.2.1 Mathematical Model of Immunosenescence (M1)

The immune system undergoes significant changes in the course of life. According
to the environmental challenges and mode of living, subsystems and organs of the
immune system are either activated or suppressed. Obviously, the adaptive immune
system undergoes more changes than the innate system. There is evidence that some
components of the system of innate defense become even more active at older than at
young ages. Changes in the population of B cells occur later and to a lesser extent. For
simplicity, we consider age-related changes in the population of T cells.

The T cells can be broadly categorized as naive and memory. The specific immune
system in the course of self-learning generates memory cells from naive cells. Mem-
ory cells are capable of providing a more rapid and effective immune response upon
reencounter with antigens than their progenitors. With increasing age the number of
memory cells increases, but the rate of naive lymphocyte production declines. So the
immune system loses its ability to protect against new pathogens.

At the same time the proliferation potential of all immune cells is decreasing. In
older individuals, 30–45% of lymphocytes cannot proliferate in response to antigenic
stimuli [7]. Thus, the following processes determine age-related remodeling of the
specific immune system: the replacement of naive cells by memory cells, replicative
senescence of T cells, and a decrease in volume of lymphoid tissue.
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The mathematical model of age-related changes in the immune system is repre-
sented by a system of ODEs. The choice of functional forms is based on the law of
mass action. Variables of the model are

N (τ ), the concentration of naive T cells in lymphoid tissue at age τ ;
M(τ ), the concentration of memory T cells in lymphoid tissue at age τ ;
PN (τ ), the average length of telomere repeats in naive T cell at age τ ;
PM (τ ), the average length of telomere repeats in memory T cell at age τ .

d N
dτ

= N∗

V
− α1

L
V

N − µN N − dV
dτ

N
V

, (15.1)

d M
dτ

= ρ1α1
L
V

N + ρ2α2
L
V

M + µM (M∗ − N − M) − dV
dτ

M
V

, (15.2)

d PN

dτ
= (P∗ − PN )

N∗

N V
, (15.3)

d PM

dτ
= ρ1α1(PN − PM − λN )

L
V

N
M

− (ρ2 + 1)α2λM
L
V

. (15.4)

The first term in the first equation describes the influx of new naive T cells from
the thymus. The rate of influx exponentially decreases with age,

N∗(τ ) = N∗
0 e−kT τ . (15.5)

There is evidence that a T cell progenitor loses its proliferative capacity with age
[17]. We assume that proliferative capacity is determined by the length of telomeric
DNA. Here P∗ is the telomere length in the cells which have recently left the thymus.
It decreases with age as

P∗(τ ) = (P∗
0 − Pmin)e−kP τ + Pmin. (15.6)

Lymphoid tissue diminishes with age in both primary (thymus) and in peripheral
immune organs (lymph nodes, spleen, and lymphoid tissues draining mucosal sur-
faces). The volume of the peripheral lymphoid tissue decreases with age as follows:

V (τ ) = (V0 − Vmin)e−kV τ + Vmin (15.7)

and compensates for the decline of the total number of T cells.
Initial conditions for system (15.1–15.7) are as follows:

N (τ0) = N 0; M(τ0) = M0; PN (τ0) = P0
N ; PM (τ0) = P0

M . (15.8)

The physical meaning of model parameters and their estimates were discussed in
detail in [20]. Initial conditions and estimates of parameters that allow simulating the
normal aging of the immune system are givin in Table 15.1. Fig. 15.2 shows age tra-
jectories of the model variables after 18 years. Regimes of normal, slowed, and ac-
celerated immune aging were investigated in [20, 22]. The results of the simulations
agree with the clinical observations and with the results of other models of immune
processes [1, 2, 6, 16].
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Table 15.1. Initial conditions and model parameters for simulation of the normal aging of the
immune system.

Parameter Physical meaning and dimension Estimate

α1 Coefficient of sensitivity of naive T cells to antigen load (ml g−1) 1.5 · 104

α2 Coefficient of sensitivity of memory T cells to antigen load (ml g−1) 1.5 · 104

µN Death rate of naive T cells in the absence of antigen load (day−1) 1.8 · 10−4

µM Death rate of memory T cells (day−1) 0.05
ρ1 Number of memory T cells produced by one naive cell 100
ρ2 Number of memory T cells produced by one memory cell 1.1
λN Length of telomere repeats lost during transformation of naive cells

to memory cell (bp cell−1)
1400

λM Length of telomere repeats lost during self-replication of memory
cells (bp cell−1)

500

M∗ Low limit for normal concentration of memory T cells in lymphoid
tissue (cell ml−1)

2.5 · 109

kT Rate of diminishing of naive T cell production with age (day−1) 1.1 · 10−4

kV Relative rate of reduction of lymphoid tissue volume with age
(day−1)

2.7 · 10−5

kP Relative rate of the telomere repeats reduction in the progenitor of
naive T cells (bp day−1)

1 · 10−5

L Antigen load (g day−1)1

N∗
0 The rate of T cell production by the thymus at the age of 18

(cell day−1)
4 · 108

V0 Volume of lymphoid tissue at the age of 18 (ml) 1500
Vmin Minimal volume of lymphoid tissue (ml) 100
P∗

0 Length of telomere repeats in naive T cells produced at the age of
18 (bp cell−1)

8.3 · 103

Pmin Minimal length of telomere repeats in the progenitor of naive T cells 100
N0 The concentration of naive T cells at the age of 18 (cell ml−1) 1.9 · 109

M0 The concentration of memory T cells at the age of 18 (cell ml−1) 6.45 · 108

PN0 Length of telomere repeats in naive T cells at the age of 18 8.8 · 103

PM0 Length of telomere repeats in memory T cells at the age of 18 7.4 · 103

1 The value of antigenic load characterizes the influence of environmental and behavioral
factors on immune system aging and can vary greatly in different individuals. For European
populations it was estimated from 106 g day−1 to 2 · · · 106 g day−1.
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Fig. 15.2. Mathematical modeling of age-related changes in peripheral T cell population. (A) the
dynamics of concentrations of naive (N (τ )) and memory (M(τ )) T cells in lymphoid tissue; (B)
the dynamics of the telomere length in the naive (PN (τ )) and memory (PM (τ )) T cells. Wide
grey strips depict variance of T cell concentrations and telomere lengths according to clinical
observations [10, 21]. Horizontal dark grey strip corresponds to the value of critical length for
replicative senescence (known as the Hayflick’s limit).

15.2.2 Model of Infectious Disease (M2)

A model of infectious disease is used to obtain the estimate of disease severity for age
τ . The impact of different mechanisms on immune response in the course of pneumo-
nia was studied [19], and it was shown that a decrease in T cell functioning is crucial
for respiratory infections usually caused by an ubiquitous pathogen.

This mathematical model describes [13] the processes which determine the begin-
ning, course, and outcome of all infections: invasion and propagation of the pathogen,
infection-induced damage of tissues, immune response, elimination of the pathogen
and tissue regeneration. The variables of the model are

K (t), the concentration of the pathogen in target tissue;
C(t), the concentration of specific lymphocytes in draining lymph nodes;
F(t), the concentration of specific antibodies in blood;
m(t), the fraction of target cells destroyed by pathogen.
The dynamics of the immune response is described by the system of four differen-

tial equations,

d K
dt

= βK − γ F K , (15.9)

dC
dt

= α(1 − m)F K − µc(C − C∗), (15.10)

d F
dt

= ρC − ηγ F K − µ f F, (15.11)

dm
dt

= σ(1 − m)K − µmm. (15.12)

with the following initial conditions:
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Table 15.2. Initial conditions and model parameters for simulation of infectious disease.

Parameter Physical meaning and dimension Estimate

β Rate of pathogen propagation (day−1) 0.35
γ Rate of pathogen neutralization by antibodies (ml pt−1 day−1) 8.5 · 10−14

α Rate of specific lymphocyte proliferation (ml pt−1 day−1) 5 · 10−11

µC Death rate of specific lymphocytes (day−1) 0.5
ρ Rate of antibody production by lymphocytes (day−1) 7 · 103

η Number of antibodies required to neutralize one pathogen particle 20
µ f Death rate of specific antibodies (day−1) 0.05
σ Rate of target organ damage by the pathogen (ml pt−1 day−1) 9 · 10−9

µm Rate of target organ regeneration (day−1) 0.4
K0 Infecting dose (pt ml−1) 103

C∗ The concentration of specific naive lymphocytes (cell ml−1) —
Cm The concentration of specific memory cells (cell ml−1) —
k1 The fraction of naive T cells involved in immune response 1.5 · 10−6

k2 The fraction of memory T cells involved in immune response 4.3 · 10−4

K (t0) = K0; C(t0) = Cm + C∗; F(t0) = ρ(Cm + C∗)
µ f

; m(t0) = 0. (15.13)

To simulate the course of acute pneumonia we use initial conditions and parameter
estimates given in Table 15.2 [19]. Note that the expression for initial value of spe-
cific lymphocytes contains the concentrations of naive lymphocytes C∗ and memory
cells Cm that are specific to the pathogen under consideration. We assume that the
level of specific naive lymphocytes is homeostatic and in the case of natural death of
lymphocytes only the excess (cloned) lymphocytes die (see the last term in equation
15.10).

The particular feature of the model of infectious disease is an equation for the
dynamics of target tissue damage. Wide tissue damage causes loss of homeostasis and
reduces lymphocyte proliferation (the first term in equation 15.10). This distinguishes
this model from the models of immune-pathogen dynamics [18, 26].

In clinical practice [15] a maximum of tissue damage is interpreted as disease
severity S. In the case of pneumonia, damage to less than 15% of the cells of the
three lower segments of the lung corresponds to mild disease with a low risk of death,
damage to 35% of the cells of the three lower segments of the lung corresponds to
medium severity with a death risk of 0.5, and disease with greater than 45% destroyed
target tissue is defined as severe with a very high probability of death (≥ 0.77).

Varying the rate of immune response and initial concentration of specific lympho-
cytes according to the age trend we can simulate the course of infectious disease for
different ages. It is assumed that the concentration of specific lymphocytes at the be-
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Fig. 15.3. The fraction of target cells destroyed by the pathogen in the course of disease for
different ages (on the left vertical axis). Disease severity (on the right vertical axis). Disease
severity is defined as a maximum of tissue damage.

ginning of the infection depends on the current concentrations of naive and memory T
cells as follows:

C(t0, τ ) = C∗(τ ) + Cm(τ ) = k1 N (τ ) + k2 M(τ ), (15.14)

where t0 denotes the time of the beginning of disease, τ denotes the age.
There is much evidence that the rate of lymphocyte proliferation decreases with

age. Denote by α0 the rate of specific lymphocyte proliferation at age 18 and by α(τ)

the rate at age τ . We assume that the ratio α(τ)/α0 is equal to the ratio of replicative
capacity of T cells involved in the immune response at age τ to the one at age 18.
The proliferative capacity of naive T cells involved in the immune response at age τ is
defined by the concentration and the mean length of their telomeres k1 N (τ )(PN (τ ) −
H). Here H is the Hayflick limit—the cell stops division when the telomere becomes
shorter than H . The proliferative capacity of memory T cells can be represented in a
similar manner. Then, the expression for α(τ) is as follows:

α(τ) = α0 k1 N (τ )(PN (τ ) − H) + k2 M(τ )(PM (τ ) − H)

k1 N 0(P0
N − H) + k2 M0(P0

M − H)
, (15.15)

where P0
N , P0

M , N 0, M0 are values of the respective variables for the age of 18.
Note that the immune processes described in model (15.1)–(15.8) and in equation

(15.10) are located in the lymph nodes, equation (15.9) represents changes of pathogen
concentration in the target tissue, and equation (15.11) deals with antibody concentra-
tion in the blood. We consider variables located in different spatial compartments in
order to use reasonable physical constants for modeling cell interaction. All transfer
rates are included in the estimates for the rates of interactions (for details see [14]).

In Fig. 15.3 the trajectory of the disease severity is presented for three different
ages. It is easy to see that in the interval from 60 to 80 years the severity of simulated
disease increases approximately twofold. The higher the disease severity, the higher
the risk of lethal outcome.
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15.2.3 Relationship Between Disease Severity and the Risk of Death (M3)

In our context we define the infection resistance Res as a probability of recovery at
value S of disease severity. Then, the probability of the lethal outcome is pL = 1−Res.
Further, we assume that this characteristic is normally distributed in the population.
Hence, the probability of the lethal outcome pL at the severity value S could be repre-
sented as the corresponding distribution function

pL(S) = &(S) =
∫ S

0

1
σ
√

2π
e(t−a)2

dt. (15.16)

The values of the parameter were estimated based on the clinical observations [15].
Thus, by means of the model of infectious disease and expression (15.16), a re-

lationship between immunosenescence and the risk of death could be established. A
constructed model of age-related risk of death from respiratory infections is repre-
sented by the flowchart in Fig. 15.4. It has two input parameters—antigenic load and
the probability of becoming infected. As output it yields the probability of death from
respiratory infections per year.

In the next section we attempt to apply this model to explain differences in pneu-
monia mortality observed in some developed countries.

15.3 Analysis of Pneumonia Mortality

The age patterns of mortality from respiratory infections share common traits in coun-
tries with well-developed health care systems. Generally, between ages 20 and 30 the
probability of death from respiratory infections is minimal; sometimes it equals zero.
The growth of the death rate begins after age 35. The death rates grow exponentially
or almost exponentially after the age of 55 years.

WHO data on pneumonia mortality in Austria, Italy, Portugal, the United King-
dom, the USA, and Japan in 1999 are represented by symbols in Fig. 15.5. These

Fig. 15.4. Flowchart of the model of age-related risk of death from respiratory infections. M1,
M2, and M3 denote the model of immunosenescence, the model of infectious disease, and the re-
lationship between disease severity and the risk of death, respectively. The model of age-related
risk of death provides as an output mortality curve µ(τ). The input parameters are antigenic load
L and the probability of becoming infected pinf.
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Fig. 15.5. Pneumonia mortality (probability of death from pneumonia per year) in Austria, Italy,
Portugal, United Kingdom, USA, and Japan in 1999. WHO data are represented by symbols,
results of simulation by lines.

countries were chosen because they use the same or coincident categories from the
International Classification of Diseases (B-321, ICD-9; or J13, J14, J150–J159, ICD-
10). Despite this, the probability of death from pneumonia in the age group 80–84 in
the UK is 27 times higher than in Japan and 10 times higher than in Italy.

It could be suggested that higher mortality is associated with total health expen-
diture but this is not the case (Fig. 15.6). Moreover, life expectancy at birth does not
reflect level of pneumonia mortality.

We assume that these populations experience different antigenic load throughout
adult life. This can be related to differences in climatic and ecological conditions,
modes of living, and national cuisines. We fit the model of age-related risk of death
from respiratory infections to the data. The results of the simulations are represented
by solid and dashed lines in Fig. 15.5. There is good agreement between the model

Fig. 15.6. (A) Life expectancy at birth (black bars correspond to males, white bars to females)
and (B) total health expenditure in the countries under consideration [2000, WHO].
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Fig. 15.7. Parameter estimates of environmental conditions which influenced immunosenes-
cence in the populations under consideration. (A) Frequency of pneumonia and (B) antigenic
load. Black bars correspond to males, white bars to females.

and the data sets for medium and large values of the death rate. For small values (age
group 35–39), the estimated risk of death is higher than observed.

To provide a good fit, two parameters of the model were estimated for every pop-
ulation: antigenic load and the frequency of pneumonia (Fig. 15.7). Differences in
age-specific mortality between countries are mainly described by variations in the pa-
rameter of frequency of pneumonia. Males in Japan and United States experienced
a higher antigenic load than males in other countries under consideration. Probably,
the higher rate of immunosenescence in the male populations of these countries was
related to the dynamic and stressful mode of living [9, 23].

15.4 Conclusions

The proposed model describes the relation between physiological and demographic
aging. According to the proposed model, disease severity is determined by the con-
centrations of T cells and by the length of their DNA telomeres. After age 60, the
course and outcome of infectious disease are highly influenced by the length of T cell
telomeres. The existence of an association between higher risk of death from infec-
tious disease and shorter telomere length has been shown [5]. This work describes
the influence of heritable and environmental factors on immunosenescence and related
mortality.

The values of immune system characteristics are assumed to be population av-
erage. In the case of availability of the clinical measurements, the proposed model
is transformed into the individualized risk model, which makes it possible to predict
consequences of some interventions. There is growing evidence that modification of
the immune state by means of vaccination, antiviral and hormonal therapies, stem cell
transplantation—and possibly by regulation of telomerase activity [3]—could slow
down processes associated with immunosenescence.

In this chapter we demonstrate how this model can be used for analyzing pneu-
monia mortality. It also allows us to predict future changes in mortality due to public
health activity.
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Summary. 3D morphological data have been used to quantitatively characterize the morpho-
logical phenotype of pyramidal neurons in transgenic mice. We calculated the multiscale fractal
dimension (MFD) of reconstructed neuronal cells. Changes in the complexity of neuronal mor-
phology due to permanent activation of p21Ras in the primary somatosensory cortex of trans-
genic mice correlate with changes in the MFD of dendrites of pyramidal neurons. Transgenic
neurons seem slightly less complex (i.e., have lower peak fractal dimension) if compared with
the wild type. On the other hand, the enhanced p21Ras activity in transgenic mice may lead to
greater variety in the cell morphological phenotype.

Key words: Local fractal dimension, multiscale fractal analysis, pyramidal neurons, dendritic
morphology, somatosensory cortex, mouse, phenotyping.

16.1 Introduction

Transgenic mice mutations provide important means for understanding gene function,
as well as for developing therapies for genetic diseases. In these mutants, the gene
overexpression may affect several organs and tissues, including the brain. In a specific
mouse mutant introduced by [8] a permanently active Ras protein (p21 H-rasVal12). in
post-mitotic neurons is expressed. Enhanced p21Ras activity results in a dramatically
enlarged dendritic tree. In both cortical layers II/III and V, the total surface area and the
total volume of dendritic trees is greatly increased. This is mainly caused by increased
dendritic diameter and tree degree [1].

The aim of this chapter is to provide further evidence for these findings. For this,
quantitative aspects of dendritic tree shape have been analyzed. There are several meth-
ods for describing trees by quantitative measures. Neurons are three-dimensional (3D)
objects, and the location of their somata within the nervous tissue, as well as the num-
ber, spatial dimensioning, branching complexity and 3D embedding of their axonal
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and dendritic trees are salient shape characteristics that may significantly distinguish
between different cell types.

The branching complexity of neuronal arborizations is determined both by topo-
logical and metrical properties (cf. [9]). For topological characterization, a neuronal
tree is reduced to a skeleton structure of points (branching or terminal points) and seg-
ments between these points. Such a skeleton forms a typical rooted tree out of a finite
set of possible different tree types. Dendritic segments can be labeled by centrifugal
order (number of segments on the path to the root). Metrical aspects include length
and diameter of the segments, path lengths (total length of the path from the dendritic
root to a branch point or terminal tip), radial distances of terminal tips from the center
of the cell and branching angles. Further details include measures for the irregularity,
spatial orientation and curvature of the branches.

Another class of measures is related to the spatial embedding in 3D space, as char-
acterized by the spatial dimensioning, spatial density, spatial orientation and space
filling of the structure. In this study, the focus is on space filling or fractal aspects of
dendritic tree shape. There are several methods for describing trees by fractal dimen-
sions (see [10, 11] for early fractal analyses of neuronal dendritic trees, and, e.g., [6]
for a review).

Multiscale (or local) fractal analysis [3, 4, 7] has been demonstrated to be an ef-
fective means for characterization of neuronal complexity. This type of analysis seems
to be particularly suitable in the present case because the multiscale fractal dimension
is independent of size-related parameters like surface area and volume. The aim of
this study is to show that observed changes in the complexity of neuronal morphology
due to transgenic activation of p21Ras in the primary somatosensory cortex of mice
correlate with changes in the multiscale fractal dimensions of dendrites of pyramidal
neurons.

16.2 Materials and Methods

Two sets of pyramidal neurons (17 cells from wild type and 26 cells from transgenic
mice) were reconstructed and digitized using Neurolucida (MicroBrightField, Inc.)
as described elsewhere [1]. The morphology files created with Neurolucida were pro-
cessed with CVAPP [2], a freely available program for cell viewing, editing and format
converting (Fig. 16.1). Images were thresholded resulting in binary images with 1- and
0-voxels representing the neuron shape and background regions, respectively. There-
fore, in digitized 3D binary images, the shape of a neuron is represented by the set of
1-voxels.

The binary images of the neuron shape patterns were used for calculating the mul-
tiscale fractal dimension (MFD), a measure related to the image complexity [4, 7]. It
is computed through the Minkowski sausage approach, which can be described as fol-
lows: Let the neuron shape under study be represented by the set S of the Cartesian
coordinates of each of its 1-voxels. Its exact dilation by a radius r is defined as the
union of all spheres of radius r centered at each of the elements of S. A series of dila-
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Fig. 16.1. Pyramidal cells rendered with CVAPP. Displayed are one example each of transgenic
(cell SE15, left) and wild type neurons (cell WT17, right).

tions on the image is made, with radii ri equivalent to the intrinsic lattice distances, the
so-called exact distances. At each dilation, the volume V (ri ) of the image is computed.

The volume V (r) of the shape S is therefore defined by

V (r) =
M∑

i=1
V (ri ) δ (r − ri ), (16.1)

where δ(.) is the Dirac delta function and M is the index of the largest exact dis-
tance being considered. As V (r) is a discontinuous function on r , which is a conse-
quence of the discrete nature of ri , it is necessary to interpolate between the Dirac
deltas, which is here accomplished by convolving V (r) with the Gaussian gσ (r) =
1/σ/

√
2π exp(−0.5(r/σ)2), yielding the following interpolated volume:

vσ (r) =
M∑

i=1
V (ri )gσ (r − ri ). (16.2)

It is important to choose a suitable value of the standard deviation parameter, σ ,
that is large enough just to interpolate between the largest gaps between the exact radii,
which occur for small values of r . The cumulative volume is defined as

C(s) =
s∫

−∞
vσ (r) dr. (16.3)

The Euclidean distance is now represented in terms of its logarithm, leading to the
spatial scale parameter s = log(r), so that the exact radii are expressed as si = log(ri ).
The MFD f (s) of the set S of voxel elements can be defined then by
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f (s) = 3 − d
ds

log(C(s)) = 3 − C ′(s)
C(s)

. (16.4)

While the traditional fractal dimension corresponds to a single scalar value, the
MFD becomes a function of the spatial scale parameter s, providing additional infor-
mation about the analyzed shapes. Among others, the following measurements quan-
tify meaningful features of the MFD curve: peak fractality, fM (the maximum value
along the MFD curve), characteristic scale, sM (the value of the spatial scale for which
fM is obtained) and average fractality, 〈 f 〉. For the computational implementation of
this method, see [4].

16.3 Results

In Fig. 16.2, an example calculation of the MFD curve for the transgenic cell SE8 is
shown. Following the scheme defined in Equations 16.1–16.4, the MFD depending on
s eventually was obtained. As shown there, the fractal dimension decreases at both
micro and macro scales, and the peak fractal dimension value, fM , is observed at
an intermediate scale value, sM . This behavior is caused by the finite size of neuron
images (see Section 16.4).

The sample histograms of the three parameters utilized, fM , sM and 〈 f 〉, are pre-
sented in Fig. 16.3. For fM , a bimodal distribution for the transgenic cases results,
while wild type cells produced a single mode (Fig. 16.3, top). The distribution of the
characteristic scales sM observed suggests that the two types of cells are characterized
by similar values of this parameter (Fig. 16.3, middle). Finally, the distributions of 〈 f 〉
are bimodal in the case of transgenic cells, and unimodal for wild type cells (Fig. 16.3,
bottom).

The scatterplots in Fig. 16.4 depict the mutual relationships between fM , sM and

Fig. 16.2. Example calculation of MFD for transgenic cell SE8. Shown is the MFD in terms of
s. See text for details.
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Fig. 16.3. Histograms of the three parameters calculated. Presented are numbers of occurrence
(ordinate) of peak fractal dimension, fM , characteristic scale, sM , and average fractal dimen-
sion, 〈 f 〉. Wild type and transgenic cases are identified by diamonds and crosses, respectively.

〈 f 〉. The strong correlation between peak fractal dimension, fM , and maximum frac-
tality scale, sM , is obvious.

Fig. 16.5 presents Gaussian densities after principal component analysis for the
feature combinations ( fM , sM ) and ( fM , 〈 f 〉), after normal statistical transformation
(leading to null mean and unit variance in both cases). By the strong correlation be-
tween fM and sM (Fig. 16.4) the first principal component explains most of the vari-
ance and is usable as the measure of complexity. Thus, the feature combination ( fM ,
sM ) enables the separation of the two cell types. As indicated in Fig. 16.5, transgenic
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Fig. 16.4. Scatterplots of fM versus sM (top) and fM versus 〈 f 〉 (bottom). The meaning of
symbols is as in Fig. 16.3.

tend to be less complex as they have a lower fractality, expressing at the same time
greater variance.

16.4 Discussion

In this chapter 3D data on neuronal morphology has been used to quantitatively char-
acterize the phenotype of transgenic neurons. We calculated the local/multiscale fractal
dimension (MFD) of neuronal cells reconstructed in 3D. It is known that the fractality
of objects in nature is limited and varies along the spatial scales. On one hand, this
is due to the finite size of any real object, leading to behavior close to that of a point
for spatial scales much larger than the object diameter. On the other hand, structural
properties are usually different at smaller spatial scales. For instance, a cauliflower or
a fern has fractal properties only over two or three hierarchical levels, with a smoother
characteristic at smaller scales. Moreover, the limited resolution of the image acquisi-
tion devices imposes further constraints on the fractal behavior at small spatial scales.
The MFD approach explicitly points to this fact.

The advantages of the MFD (a function of the spatial scale) over the traditional
fractal dimension (a single scalar value) reside in providing additional information
about the analyzed shapes. Thus, we computed complementary features such as the
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Fig. 16.5. Gaussian densities after principal component analysis for ( fM , sM ) (top) and
( fM , 〈 f 〉) (bottom). The meaning of symbols is as in Fig. 16.3.

peak fractality, the characteristic scale where it occurs and the average fractality, for
quantifying and characterizing the cell types. Two sets of neurons, i.e., pyramidal cells
from wild type and p21 H-rasVal12 transgenic mice, have been analyzed. The results
obtained after principal component analysis show that transgenic neurons are slightly
less complex, as measured by the peak fractal dimension, fM , if compared to their wild
type counterpart, while the other two features considered (maximum fractality scale,
sM , and average fractal dimension, 〈 f 〉) did not reveal differences between the two
types. Transgenic pyramidal neurons are characterized by increased dispersion if com-
pared to the wild type pyramidal neurons, suggesting that the enhanced p21Ras activity
in transgenic mice may lead to greater variety of the cell morphological phenotype.
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These findings have recently been substantiated by a percolation analysis accom-
plished with the same data set. The percolation transform [5] is particularly useful for
the characterization of spatial density of distributed points, and it represents an alterna-
tive to the multiscale fractal analysis reported here. As the latter, the percolation analy-
sis is independent of size-related parameters like area and volume of the neuronal cells.
We were able to verify that changes in the global character of the percolation transform
curves derived from the reference points (i.e., dendritic tips and branch points) of the
dendrites of pyramidal neurons correlate with changes in the complexity of neuronal
morphology due to the activation of p21Ras in the primary somatosensory cortex of
transgenic mice.
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Summary. In the past attention has mainly been focused on neurons and the role they play,
both individually and as parts of networks, in the functioning of the brain and nervous system.
However, glial cells outnumber neurons in the brain, and it is now becoming apparent that, far
from just performing supportive and housekeeping tasks, they are also actively engaged in in-
formation processing and possibly even learning. Communication in glial cells is manifested by
waves of calcium ions (Ca2+) that are released from internal stores, and these waves are ob-
served experimentally using fluorescent markers attached to the ions. The waves can be initiated
by stimulation of a single cell, and initially it was assumed that the transmission mechanism
involved the passage of an intercellular signalling agent passing through gap junctions connect-
ing the cells. However, a surprising feature is that in many cases the calcium waves can cross
cell-free zones, thus indicating the presence of an extracellular messenger.

We have constructed a mathematical model of calcium wave propagation in networks of
model astrocytes, these being a subclass of glial cells. The extracellular signalling agent is ATP
(adenosine triphosphate) and it acts on metabotropic purinergic receptors on the astrocytes, ini-
tiating a G-protein cascade leading to the production of inositol trisphosphate (IP3) and the
subsequent release of Ca2+ from intracellular stores via IP3-sensitive channels. Stimulation of
one cell (by a pulse of ATP or by raising the IP3 level) leads to the regenerative release of ATP
both from this cell and from neighbouring cells, and hence a Ca2+ wave. Results are given
for the propagation of Ca2+ waves in two-dimensional arrays of model astrocytes and also in
lanes with cell-free zones in between. These theoretical considerations support the concept of
extracellular purinergic transmission in astrocyte networks.

Key words: Astrocyte, calcium, inositol trisphosphate, ATP, G-protein cascade, extracellular
signalling.

17.1 Introduction

Since the time of Galvani and Volta in the 18th century neuroscience has been dom-
inated by the paradigm of electrical activity in neurons and other excitable cells,
whether it takes the form of action potentials, synaptic potentials, or extracellular cur-
rents, etc. However, it has been known for a very long time that many other types of
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cells populate the brain and nervous system. Principal among these are the glia: gener-
ally classified as Schwann cells, astrocytes, ogliodendrocytes, or microglia. Astrocytes,
in particular, have many processes that form close contacts with the synaptic connec-
tions between neurons and also with the vasculature. However, not too much attention
was paid to these cells, as it was thought that they performed mainly a housekeeping
role, transporting nutrients and recycling neurotransmitters, etc. Two major discover-
ies have caused a radical rethink about glia and, in particular, astrocytes. The first is
that they have receptors for a wide variety of neurotransmitters and can also release
neurotransmitters themselves in response to stimuli (for reviews see [3, 19]). The sec-
ond is that they display a form of excitability manifested by increases in intracellular
Ca2+ concentration ([Ca2+]). Stimuli that evoke [Ca2+] elevation in a single astrocyte
pass to adjacent astrocytes, leading to a Ca2+ wave that can propagate for hundreds of
micrometers [4, 6].

The Ca2+ involved in extracellular communication is thought to come mainly from
intracellular stores, principally the endoplasmic reticulum (ER). It is released by the
action of IP3 upon IP3 receptors (IP3Rs) on the ER [4]. The Ca2+ wave can then prop-
agate through neighbouring cells by passive diffusion of IP3 through connecting gap
junctions. The Ca2+ itself plays only a minor role in the propagation, as it does not
readily pass through gap junctions and also is quickly bound to endogenous buffers
in the cell cytosol. An elevated concentration of IP3 in a single cell acts on IP3Rs in
the ER causing the release of Ca2+ into the cytosol which then acts on phospholipase
C (PLC) to produce more IP3. The IP3 diffuses to neighbouring cells where the re-
generative process is repeated. This method of communication in astrocytes has been
modelled mathematically [14].

However, this cannot be the only mode of Ca2+ communication in astrocytes. This
is very clear from the work of Hassinger et al. [12] in which Ca2+ waves were observed
to cross cell-free zones up to 120 µm wide in two-dimensional cultures of astrocytes.
The inescapable conclusion is that some extracellular agent is diffusing across this
zone and initiating the Ca2+ wave on the other side. Evidence that this is adenosine
triphosphate (ATP) comes from simultaneous imaging of ATP and Ca2+ waves in two-
dimensional cortical astrocyte cultures [21]. Also, Ca2+ wave propagation is blocked
by antagonists of ATP-activated metabotropic purinergic receptors (P2YRs) [7, 11].
These considerations lead to a model of Ca2+ wave propagation in astrocyte networks
that involves an initial stimulus releasing ATP from an astrocyte, and this ATP diffusing
in the extracellular space and activating P2YRs on neighbouring astrocytes, which then
release further ATP. Thus the mechanism is regenerative, and ATP can act in both an
autocrine and a paracrine manner; that is, the released ATP can act both on the cell
releasing it and also on neighbouring cells.

It is well established that astrocytes release ATP during Ca2+ wave propagation
[7] and that applying ATP evokes Ca2+ responses in astrocytes [1, 11]. However, the
mechanism by which ATP is released is not known. It appears that Ca2+ itself is not the
activating agent [21], and, in particular, the ATP intercellular wave actually precedes
the Ca2+ wave [17]. Instead, it is likely that IP3 is the essential agent, especially as it is
generated intracellularly in response to mechanical stimulation, which also induces an
intercellular Ca2+ wave [18]. The model we present below assumes that this IP3 then
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acts, in an as yet undetermined manner, to release ATP into the extracellular space.
This ATP binds to P2YRs on the astrocytes, thereby initiating a G-protein cascade
leading to the generation of IP3 and the liberation of Ca2+ from the ER.

17.2 ATP Diffusion Model

17.2.1 Introduction

The single-cell model follows that of [15] with some changes. Simplifications have
been made: some processes included in that model are not relevant to astrocytes; others
are second-order effects and can be omitted with little change to the final results. The
main additions that must be made concern the release of ATP into the extracellular
space and the diffusion of IP3 inside the cell and ATP outside the cell. Fig. 17.1 is a
schematic diagram showing the main processes that will be used in our model of a
single cell.

17.2.2 Receptors

A basic model is used in which receptors do not desensitize:

Fig. 17.1. Schematic diagram of the pathways used in the model of a single astrocyte. Extracel-
lular ATP binds to P2YRs which then interact with G protein, leading to a subunit Gα · GT P
binding to a site on phospholipase C-β (PLCβ). This then interacts with membrane-bound phos-
phatidylinositol 4,5-bisphosphate (PIP2) leading to the hydrolysis of PIP2 and the production of
IP3. The latter diffuses into the cytosol where it both binds to IP3Rs on the ER, thus liberating
Ca2+ into the cytosol, and also interacts with ATP stores leading to the release of ATP from the
astrocyte. This released ATP then diffuses in the extracellular space and can bind to P2YRs both
on the original cell and on neighbouring cells.



196 W.G. Gibson, L. Farnell, and M.R. Bennett

L + R
k+

1
−→←−
k−

1

L R, (17.1)

where L is ligand and R is receptor.
The quantity we want is the ratio of bound to total receptors, ρ = [L R]/[RT ],

where [RT ] = [R] + [L R] is the total number of receptors. Under the assumption of
fast binding kinetics Eq. (17.1) can be assumed to be in equilibrium, leading to

ρ = [AT P]
K R + [AT P]

, (17.2)

where [L] = [AT P] is the extracellular ATP concentration and K R = k−
1 /k+

1 is the
dissociation constant.

17.2.3 G-Protein Cascade

The equation describing G-protein activation is ([15], Eq. (16))

d[G]
dt

= ka(δ + ρ)([GT ] − [G]) − kd [G], (17.3)

where [G] is the amount of activated G-protein, [GT ] is the total G-protein, ρ is the
fraction of bound receptors as given by Eq. (17.2), δ is the ratio of the activities of
the unbound and bound receptors (and thus allows for background activity even in the
absence of ligand binding, that is, unbound receptors can activate a small amount of
G-protein), and ka and kd are the G-protein activation and deactivation rate parameters,
respectively. Again assuming fast kinetics, we obtain

G∗ = ρ + δ

KG + δ + ρ
, (17.4)

where G∗ = [G]/[GT ] and KG = kd/ka .

17.2.4 IP3 Production and Diffusion

IP3 production, diffusion, and degradation are governed by (cf. [15], Eq. (19))

∂[IP3]
∂t

= DIP∇2[IP3] + r∗
h G∗ − kdeg[IP3], (17.5)

where DIP is the diffusion coefficient for IP3 and r∗
h and kdeg are constants; the term

r∗
h G∗ is applied only at the cell wall.
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17.2.5 ATP Production and Diffusion

As stated in Sect. 17.1, the mechanism by which ATP is released by astrocytes has not
been established, although there is evidence that IP3 is probably involved. We have
chosen to use IP3 as the agent triggering release, but this is not crucial to the model.
ATP production and diffusion are governed by

∂[AT P]
∂t

= DATP∇2[AT P] + VATP χ(t)
[IP3] − [IP3]min

Krel + [IP3]
, (17.6)

where DATP is the diffusion coefficient for ATP. The second term describes the release
of ATP into the extracellular space and is applied only if [IP3] is greater than [IP3]min.
VATP and Krel are constants and χ(t) is a parameter that accounts for depletion of ATP
stores inside the cell; it has initial value 1 and decreases according to

dχ

dt
= −kloss χ(t)

[IP3] − [IP3]min

Krel + [IP3]
, (17.7)

where kloss is a constant.

17.2.6 Ca2+ Release from Internal Stores

The steps leading from IP3 production to Ca2+ release from the ER are based on the
theories of [8, 16], as modified by Fink et al. [10]. The Ca2+ dynamics are governed
by

d[Ca2+]
dt

= β(JIP3 − Jpump + Jleak), (17.8)

where [Ca2+] is the cytosolic Ca2+ concentration, JIP3, Jpump, and Jleak are the rates
of Ca2+ concentration change due to release through IP3R channels, pump uptake into
the ER, and leak from the ER, respectively, and β is a factor describing Ca2+ buffering.
The IP3-induced current is

JIP3 = Jmax

[(
[IP3]

[IP3] + K I

) (
[Ca2+]

[Ca2+] + Kact

)
h

]3 [
1 − [Ca2+]

[Ca2+]ER

]
, (17.9)

where Jmax is the maximum rate, K I is the dissociation constant for IP3 binding to
an IP3R, Kact is the dissociation constant for Ca2+ binding to an activation site on
an IP3R, [Ca2+]ER is the Ca2+ concentration in the ER (taken to be constant), and h
satisfies

dh
dt

= kon[Kinh − ([Ca2+] + Kinh)h]. (17.10)

Here kon is the rate of Ca2+ binding to the inhibitory site on the IP3R and Kinh is the
corresponding dissociation constant. The ATPase Ca2+ pump is described by Jpump =
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Vmax[Ca2+]2
/([Ca2+]2 + K 2

p), where Vmax is the maximum pumping rate and K p is
the dissociation constant. The leak is described by Jleak = PL(1 − [Ca2+]/[Ca2+]ER),

where the constant PL is determined by the steady-state flux balance (see Sect.
17.5.2 below). The buffering is described by the steady-state approximation β =
(1 + [B]end/Kend)

−1, where [B]end and Kend are the concentration and dissociation
constant of the endogenous buffer.

17.3 Results

The ATP wave in a network of astrocytes is initiated by the application of a pulse of
ATP to a single astrocyte. This releases further ATP, which then diffuses in the extra-
cellular space and binds to P2YRs on neighbouring astrocytes, thus causing the release
of further ATP. This process can be seen in Fig. 17.2 which shows the ATP concentra-
tion profile in a cross section of a two-dimensional array of astrocytes. The solid line
shows the wave travelling outwards with “bumps” indicating sites where regenerative
release is occurring. This is to be compared with the case where no regeneration oc-
curs, that is, propagation of ATP is by pure diffusion, and this is shown by the broken
lines in Fig. 17.2.

The Ca2+ profiles corresponding to this situation are shown in Fig. 17.3B, where
now the positions of all the cells are shown on the horizontal plane and the height of
the bars gives the Ca2+ concentration in each cell at the given times. The Ca2+ wave
is similar in shape to the ATP wave, but lags slightly behind.

Fig. 17.3A shows the propagation of a Ca2+ wave in a network containing cell-free
zones; specifically, the astrocytes are in parallel lanes 3 cells wide, separated by cell-
free lanes 1 cell wide. This means that there is a gap of 75 µm between the surfaces of
cells on opposite sides of a cell-free lane, compared to a gap of 25 µm for cells within
a lane. The Ca2+ wave initially moves along the lane of the stimulated cell, but soon
ATP diffusing across the cell-free zone initiates Ca2+ waves in the adjoining lanes, and
this process is repeated. Further calculations show that for the same initial conditions
the wave will cross cell-free lanes 125 µm wide, but not 175 µm wide.

A comparison between experimental and theoretical Ca2+ wave amplitude in a lane
of astrocytes is shown in Fig. 17.4. In the experimental case, the wave is initiated by
mechanical stimulation, but this has been found to be equivalent to exogenous applica-
tion of ATP. Both the experimental amplitudes (Fig. 17.4B and D) and the theoretical
amplitudes (Fig. 17.4E and F) show similar fluctuations, with an initial decline and
then a relatively flat tail.

17.4 Discussion

As pointed out in Sect. 17.1, there is considerable experimental evidence that extracel-
lular signalling by diffusion of ATP is an important mechanism whereby Ca2+ waves
are produced in astrocyte networks. Our model calculations show that ATP acting on
metabotropic purinergic receptors can indeed lead to a propagating Ca2+ wave. The
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Fig. 17.2. ATP profiles in a two-dimensional network of model astrocytes. The network consists
of a regular array of cells in a plane, the distance apart of the centres of the astrocytes being
50 µm (see also Fig. 17.3B). The ATP wave is initiated by a pulse of ATP of duration 5 s and
amplitude 80 µM applied at the central astrocyte starting at time zero; other parameters are as
given in Sect. 17.5.4. Shown is the ATP concentration as a function of distance along a straight
line through the central astrocyte at the times indicated. The horizontal axis gives distance in
µm and the vertical axis gives ATP concentration in µM. The solid line is calculated using the
full model with ATP regeneration included; the broken line gives the corresponding result for
pure diffusion with no regeneration.

speed of this wave is about 17 µm s−1 for our parameter values and is within the
experimental range [11].

The other mechanism whereby Ca2+ waves can be generated in glial networks
involves the diffusion of IP3 through gap junctions; for example, in the retina it is
thought that astrocytes communicate with each other mainly through gap junctions, but
signalling from astrocytes to Müller cells, or between Müller cells, is by extracellular
diffusion of ATP [17]. Other systems may use a combination of both methods and the
current model could be extended to include gap junction communication, following
existing models [14, 20].

In the calculations reported above, the Ca2+ wave extended to the limits of the
computational domain, and in fact would continue indefinitely if the domain were ex-
tended. This is a consequence of parameter choice; in particular, choosing a larger
value of the dissociation constant K R causes the wave to have a finite range. Compu-
tations can also be made more realistic by using a range of values of K R randomly
assigned to individual astrocytes, as in the calculation shown in Fig. 17.4, to simulate
the random nature of real systems.
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Fig. 17.3. Ca2+ profiles in two-dimensional arrays of astrocytes. In column A the cells are
arranged in parallel lanes 3 cells wide separated by cell-free lanes one cell wide; in column B
the cells are arranged as for Fig. 17.2. Spacing between cell centres is 50 µm and the Ca2+
wave is initiated by the application of an 80 µM pulse of ATP for 5 s to the central cell; the full
regenerative model is used and other parameters are as given in Sect. 17.5.4. Distances are in
µm and the vertical scale gives [Ca2+] in µM.

While it is abundantly evident that astrocytes release ATP in response to various
stimuli, the detailed mechanism underlying this release is not known [2,5]. As pointed
out in Sect. 17.1, Ca2+ itself does not seem to be directly involved so we have cho-
sen instead to use IP3 as the activating agent and linked it in an ad hoc manner to
ATP release (Eq. 17.6). Other pathways could have been used, including linking ATP
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Fig. 17.4. Comparison between theoretical and experimental Ca2+ waves in a lane of astrocytes.
A shows a lane of spinal-cord astrocytes plated onto a two-dimensional substrate and mechan-
ically stimulated by a micropipette at the point indicated by the arrow. Only those astrocytes
circled in white gave a significant response, as measured by the change in fluorescence of the
Ca2+-bound dye fluo-3 AM. B shows the corresponding peak fluorescence changes for astro-
cytes at different distances from the point of stimulation (scale in µm). C and D repeat A and
B for a different preparation, showing the sort of stochastic variation that can be expected. E
shows the result of a theoretical calculation using a lane of astrocytes 5 cells wide and 600 µm
long, with a 25 µm spacing between each cell and K R values ranging from 25 µM to 125 µM
across the lane. The wave was initiated by application of ATP of concentration 80 µM for 5 s to
an astrocyte at one end of the lane. F repeats the calculation for a different set of K R values.

release to active G-protein concentration. Clearly, this is an area where further input
from experiment is needed.

We have so far only modelled interactions between astrocytes. However, an ex-
citing area of current research involves interactions between glia and neurons and, in
particular, the tripartite synapse, which proposes glial cells as active participants in
synaptic transmission between neurons [3]; this has implications for information pro-
cessing in the brain [9]. This will be a fruitful area for further modelling.
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17.5 Methods

17.5.1 Geometry

Each astrocyte is represented by a cube of side 25 µm and these cubes are arranged in
two-dimensional arrays, on the xy-plane, the minimum spacing between cubes being
25 µm. With this simplified geometry we are not attempting to model the spatial com-
plexity of a real astrocyte; rather this is an “effective” astrocyte in which the processes
emanating from a real astrocyte are lumped into a compact space, taken to be cubical
for reasons of computational simplicity.

17.5.2 Initialization

In the absence of ATP there is still background IP3 and Ca2+ resulting from the ac-
tivation of a small amount of G-protein by unbound receptors (see Eq. (17.4); in this
case, ρ = 0 but δ �= 0). If diffusion of IP3 is neglected, then initial homogeneous
concentrations of IP3 and Ca2+, [IP3]0 and [Ca2+]0 respectively, can be set and the
activity ratio δ (using Eqs. (17.4) and (17.5)) is given by

δ = KG kdeg[IP3]0

r∗
h − kdeg[IP3]0

. (17.11)

The Ca2+ leak rate, PL , is determined by setting JIP3 − Jpump − Jleak = 0. Then the
IP3 equation, Eq. (17.5) is run, as described in the following section, until a steady-
state solution is obtained that is close to the homogeneous one. The Ca2+ equation,
Eq. (17.8), is now solved to find the corresponding equilibrium Ca2+ concentration,
which will also be inhomogeneous (even though Ca2+ does not diffuse) because of the
inhomogeneous distribution of IP3.

17.5.3 Method of Solution

Each cell is represented by a rectangular Cartesian grid with spacing 5 µm, and thus
contains 27 interior grid points and 98 surface grid points. The space between the
cells is similarly represented by a rectangular grid with the same spacing of 5 µm.
The grid extends to ±49 points in the z-direction. The boundary conditions are ATP
sinks at all boundaries. The ER is present at all 125 grid points of each cell and Ca2+
production and IP3 degradation also occur at each of these points. On the other hand,
IP3 production occurs only at the 98 surface points, as does ATP binding to P2YRs
and the production of ATP.

The equations for the diffusion of IP3, Eq. (17.5), and of ATP, Eq. (17.6), are solved
using a “leap-frog” method (see the Appendix in [13]). The other differential equations
for ATP store depletion, Eq. (17.7), Ca2+, Eq. (17.8), and h, Eq. (17.10), are solved
using a standard Runge–Kutta method.
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17.5.4 Parameter Values

Unless otherwise stated, the parameter values used in the calculations reported here
are: K R = 25 µm, kdeg = 1.25 s−1, ka = 0.017 s−1, kd = 0.15 s−1, r∗

h = 2 ×
10−14µmol µm−2s−1, DIP = 280 µm2s−1, VATP = 2 × 10−11µmol µm−2s−1, Krel =
10 µM, [IP3]min = 0.012 µM, kloss = 30 s−1, DATP = 300 µm2s−1, Jmax = 2880
µM s−1, K I = 0.03 µM, Kact = 0.17 µM, kon = 8.0 µM s−1, Kinh = 0.1 µM,
[Ca2+

ER] = 400 µM, Vmax = 5.85 µM s−1, K p = 0.24 µM, β = 0.0244, [IP3]0 =
0.01 µM, [Ca2+]0 = 0.05 µM.
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Summary. We consider the continuous field model of neural populations with the addition of a
distribution of transmission speeds. The speed distribution arises as a result of the natural vari-
ability of the properties of axons, such as their degree of myelination. We analyze the stability
and bifurcations of equilibrium solutions for the resulting field dynamics. Using a perturbation
approach, we show that the speed distribution affects the frequency of bifurcating periodic solu-
tions and the phase speed of traveling waves. The theoretical findings are illustrated by numerical
calculations.

Key words: Neural field, delay, bifurcations, pattern formation, traveling waves.

18.1 Introduction

In recent years, several models of coupled neurons have attracted much attention, in-
cluding networks involving spatial structures, describing a continuous, synaptically
coupled neural field extended in space [1–5]. The dynamics of these fields are governed
by integro-differential equations. Since the signal transmission along the axons occurs
at a finite speed, the neural field shows retarded interaction due to distance-dependent
delays between two spatial locations [6]. However, such delays have not always been
included in field models. Some recent works have taken delays into account by using a
fixed value v for axonal transmission speed [3,7,8], or two different values of v for ex-
citatory and inhibitory connections [9]. On the other hand, the propagation speed along
the axon depends on a number of factors, such as its myelination. The myelin is a fatty
material, composed mainly of lipids and lipoproteins, that encloses certain axons and
nerve fibers and affects their electrical conductance. The natural diversity in the degree
of myelination of the axons leads to a diversity in the propagation speeds. Experimental
studies reveal statistically distributed speeds in cortico-cortical connections in rats [6]
and in intracortical connections in the visual cortex of cats and monkeys [10, 11]. Fig.
18.1 shows the distribution of speeds obtained in these studies. The maximum speed
is between 5 m/s and 12 m/s in rats and at about 0.2 m/s in the cat and monkey brain;
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Fig. 18.1. Experimentally obtained neural transmission speed values, fitted by a gamma dis-
tribution (after Nunez [6], printed with permission of the author and Oxford University Press,
Inc.).

however, a marked variance of speeds is observed about the peak values, and the his-
togram of speed values seems to follow a gamma distribution [6]. Distributed speeds
have been considered in simple neural models; for instance, Nunez [6] studied an inte-
gral equation model, similar to (18.1) but without the temporal differentiation operator
(see also [5]). In this chapter, we introduce a distribution of signal transmission speeds
into the classical field model of neural dynamics [1]. Our emphasis is on an analytical
investigation of the effects of distributed speeds on the dynamics through the stability
of equilibria and the bifurcations leading to spatial patterns and oscillations.

We first give a brief introduction to the neural field models, which are based on the
fact that neurons have a large spatial density (∼ 104 neurons/mm3) and are derived
by considering ensemble activity at a larger spatial scale. A detailed review of the
derivation can be found in, e.g., [9]. The basic activity can be formulated in terms of
the input-output behavior of synapses, which convert incoming pulses to postsynaptic
potentials. In the coarse-grained population model, at time t and some point x in the
field, ensembles of excitatory and inhibitory chemical synapses respond to incoming
pulse activity and yield an effective postsynaptic potential V (x, t). In classical models
of a homogeneous field, the dynamics of V can be described by [3]

∂

∂t
V (x, t) + V (x, t) = ᾱ

∫
�

K (|x − y|)S(V (y, t − |x − y|/v)) dy + I (x, t).

Here � is a spatial domain, which is taken to be the one-dimensional line here. The ker-
nel K gives the spatial distribution for excitatory and inhibitory synaptic connections.
The nonlinear transfer function S represents the ensemble pulse activity generated by
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the effective membrane potential [12] and is monotone increasing. For unimodally dis-
tributed firing thresholds of the neurons in the population, S is typically taken to have a
sigmoidal shape [9]. Furthermore, I is the external stimulus, ᾱ represents the synaptic
efficacy, and v is the transmission speed along axons between the population neurons.
In this chapter, we extend previous studies of neural populations by considering a dis-
tribution of axonal transmission speeds, and thus introducing a speed distribution g(v)

into the above model to obtain

∂

∂t
V (x, t) + V (x, t) = ᾱ

∫
g(v)

∫ ∞

−∞
K (|x − y|)S(V (y, t − |z|/v)) dy dv + I (x, t).

(18.1)

We take g to be an arbitrary probability density function, that is, g(v) ≥ 0 and∫
g(v) dv = 1. Typically, physical considerations impose positive lower and upper

bounds, vl and vh , to biologically possible transmission speeds. In this case, the den-
sity g will be zero outside of the interval [vl , vh].

18.2 Equilibrium Solutions and Bifurcations

We begin the analysis of the model (18.1) by studying its equilibrium solutions and
their stability. For the case of a constant input I (x, t) ≡ E∗, a spatially uniform equi-
librium solution V (x, t) ≡ V ∗ of (18.1) satisfies the equation

V ∗ = ᾱκS(V ∗) + E∗, (18.2)

where κ = ∫ ∞
−∞ K (z) dz. There may be one or more solutions V ∗ satisfying (18.2),

depending on the shape of S. For small variations u(x, t) = V (x, t) − V ∗ about any
such equilibrium solution, the dynamics are governed by the linear equation

∂

∂t
u(x, t) + u(x, t) = α

∫
g(v)

∫ ∞

−∞
K (z)u(x + z, t − |z|/v) dz dv, (18.3)

where

α = ᾱS′(V ∗) ≥ 0. (18.4)

Note that by (18.4), the parameter α contains information about the particular equilib-
rium solution under study, as well as the value of the external input E∗, since the latter
affects α through the value of V ∗ from (18.2).

Substituting u(x, t) = eλt eikx into (18.3), where λ ∈ C and k ∈ R, a dispersion
relation is obtained between the temporal and spatial modes:

λ + 1 = α

∫
g(v)

∫ ∞

−∞
K (z)e−λ|z|/ve−ikz dz dv. (18.5)

Note that the solution λ has a negative real part for α = 0, which implies that V ∗
is asymptotically stable for α = 0, and thus also for small α. If α increases further,
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the stability of the equilibrium solution can be lost as an eigenvalue λ crosses the
imaginary axis. At the critical transition, there is an eigenvalue λ = iω, with ω ∈ R.
The bifurcating solutions can be qualitatively classified as stationary or oscillatory
depending on whether ω = 0 or ω �= 0, respectively, and as spatially homogeneous or
inhomogeneous depending on whether k = 0 or k �= 0, respectively.

It is easy to see that stationary bifurcations are independent of the delays introduced
by finite propagation speeds. Indeed, letting λ = 0 in (18.5) gives

1 = α

∫
g(v) dv

∫ ∞

−∞
K (z)e−ikz dz

= α K̂ (k), (18.6)

where K̂ denotes the Fourier transform of K . Hence, conditions for stationary bifurca-
tions depend solely on the value of α and the properties of the kernel K . In particular,
one obtains Turing modes when (18.6) holds for some k �= 0. On the other hand, the
delays turn out to be important in oscillatory bifurcations [8, 9]. Because of the im-
portance of oscillatory activity in neural processing, the oscillatory bifurcations and
their relation to delays is particularly relevant for the present study. Oscillatory bifur-
cations can be spatially homogeneous (ω �= 0 and k = 0), corresponding to spatially
uniform, or synchronous, oscillations, or spatially inhomogeneous (ω �= 0 and k �= 0),
corresponding to traveling waves. In the latter case, ω/k gives the corresponding wave
speed.

18.3 Reduced-Order Models

The analysis of the bifurcations by solving (18.5) is difficult in general. In order to
obtain results applicable for arbitrary connectivity and speed disributions, we use a
perturbation approach. To this end, we introduce the power series expansion

u(x + z, t − |z|/v) =
∞∑

m=0

(−|z|/v)m

m!
∂m

∂tm u(x + z, t)

into (18.3). The infinite series can be truncated to yield an approximation for the dy-
namics, and the error committed is small when the transmission speeds are sufficiently
large and the connection kernel K decays sufficiently fast [8]. The advantage gained is
that, for the reduced equation obtained by neglecting terms of order N + 1 and higher,
the relation (18.5) has the form of a polynomial in λ. Namely, one obtains

λ + 1 = α

N∑
m=0

(−1)m

m!
λm E[v−m]K̂m(k),

where E[v−m] = ∫
v−m g(v) dv is the expected value of v−m , and

K̂m(k) =
∫ ∞

−∞
|z|m K (z)e−ikz dz
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denotes the Fourier transforms of the moments of K . The zeroth moment K̂0 is simply
the Fourier transform of K , for which we continue using the more conventional nota-
tion K̂ . Taking N = 0 is equivalent to neglecting all propagation delays in the field,
while N = 1 gives an equation that depends only on the mean value of propagation
speeds and not their distribution. The lowest-order approximation that retains the ef-
fects of distributed speeds is obtained by taking N = 2. For this case, the dispersion
relation (18.5) reduces to a quadratic equation in λ:

pk(λ) = c2(k)λ2 + c1(k)λ + c0(k) = 0 (18.7)

with coefficients

c0(k) = 1 − α K̂ (k)

c1(k) = 1 + αE[v−1]K̂1(k)

c2(k) = −1
2
αE[v−2]K̂2(k).

The analysis of (18.7) gives qualitative information about the behavior of the full dis-
persion relation (18.5) at nearby parameter values.

The bifurcation conditions are easy to determine for the case N = 2. Hence, for
stationary bifurcations, we see that the pair (λ, k) with λ = 0 satisfies (18.7) if and
only if

α K̂ (k) = 1, (18.8)

which is the same as (18.6), and is independent of propagation delays. For oscillatory
bifurcations, the pair (λ, k) with λ = iω, ω > 0, satisfies (18.7) if and only if

αE[v−1]K̂1(k) = −1 (18.9)

and

ω2 = 2
α K̂0(k) − 1

αE[v−2]K̂2(k)
> 0. (18.10)

As noted above, the equilibrium solution is stable for small α, since the bifurcation
conditions (18.8) and (18.9) do not hold. As α is further increased, stability can be
lost through a stationary or oscillatory bifurcation, characterized by the conditions
(18.8), (18.9), and (18.10), respectively. Note that in the case of instantaneous signal
propagation (v = ∞), one has E[v−1] = 0, and by (18.9) oscillatory bifurcations
cannot occur. Thus, stability can be lost through an oscillatory bifurcation only in the
case of delayed signal propagation.

18.4 Effects of Speed Distributions

In order to study the effects of distributed transmission speeds on the dynamics, we
keep the mean value E[v−1] fixed and change the variance Var[v−1]. We consider the
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case N = 2, that is, the simplest reduced model which exhibits the effect of speed
distributions. It follows from the conditions (18.8) and (18.9) that the stability of the
equilibrium solution is unaffected by the variances, and the bifurcations occur at (ap-
proximately) the same parameter values. In particular, the wave number k∗ at bifur-
cation does not depend on the variance of speed distribution. The main effect of the
variances is on the frequency ω of oscillatory bifurcations, as given by (18.10). Since
E[v−2] = Var[v−1] + E2[v−1], we see that the frequency ω∗ at bifurcation will de-
crease with increasing variance Var[v−1]. In the case of bifurcating traveling waves,
an increase in ω∗ corresponds to an increase in the speed ω∗/k∗ of the waves since k∗
is unaffected by the variance of speeds. We conclude that the spread of the speed dis-
tribution affects the frequency of bifurcating oscillatory solutions and the phase speed
of traveling waves.

For numerical calculations, we take the spatial domain � to be the circle with cir-
cumference C (or equivalently the interval [0, C] with periodic boundary conditions).
We choose the connectivity kernel as

K (z) = ae

2
e−|z| − ai

2
re−r |z|,

where r denotes the relation of excitatory and inhibitory spatial ranges, and ae and ai
represent excitatory and inhibitory synaptic weights. For instance, when r > ae/ai , the
neural field exhibits local inhibition and lateral excitation and thus facilitates traveling
waves in the case of a single propagation speed [13]. The transfer function has been
chosen as the logistic function S(V ) = 10/(1+exp(−1.8(V −3.0))). The distribution
of propagation speeds is described by the truncated gamma density

g(v) = Np,q

q p%(p)
v p−1 exp(−v/q), p > 2, q > 0

in the speed range 0 < vl ≤ v ≤ vh , where Np,q is the normalization factor arising
from the truncation. This choice of g(v) reflects experimental findings [6, 10, 11]. Fig.
18.2 shows gamma distributions for various p. It is easy to show that g(v) has its
maximum at vm = q(p − 1), E[v−1] = Np,q/(Np−1,qvm), and Var[v−1] = Np,q(p −
1)/

(
Np−2,q(p − 2)v2

m
) − E2[v−1].

We fix q as q = vm/(p − 1) and thus parametrize the transmission speed distri-
bution by p and vm . We determine the phase speed ω/k of bifurcating waves from
(18.10). In Fig. 18.3, the resulting phase speed is plotted with respect to vm and
Var[v−1]. It can be seen that the phase speed is lower than vm for all speed dis-
tribution widths, and it grows roughly linearly with vm . This relation of the wave
speed and the transmission speed is similar to previous findings for single transmis-
sion speeds [8, 13, 14]. In addition, we see here that increasing Var[v − 1] decreases
the phase speed of the waves; that is, the broader the speed distribution, the lower the
resulting phase speed for bifurcating waves.
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Fig. 18.2. Gamma-distributed transmission speeds.

18.5 Conclusion

We have introduced transmission speed distributions to the standard neural population
model and studied their effects on the stability and bifurcations of equilibrium solu-
tions. An important feature of the analysis is the relation between the connectivities
and delays. We have presented an approximation method to gain some insight into this
relationship and study the bifurcation structure. The method is applicable to general
field connectivities and speed distributions with sufficiently high mean value. As an
application, we have shown that the shape of the speed distribution affects the speed of
traveling waves and the frequency of synchronous oscillations. For the second-order
approximate model derived here, we explicitly calculate the effects of the distribution
and show that a larger variance of propagation speeds yields a smaller wave speed for

Fig. 18.3. The propagation speed of bifurcating traveling waves. The bottom horizontal plane
depicts the contour lines for the speed. Parameter values are r = 3, ae = 100, ai = 99, vl =
4, vh = 100.
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traveling waves. Higher-order approximations and global behavior may reveal richer
effects. For instance, in the second-order approximation, the stability of the equilib-
rium is unaffected by the variance of the speed distribution. However, the variance of
delays is known to affect stability in several other systems [15, 16], so the possibility
is not ruled out that higher-order terms in the approximation may introduce stability
changes. We have also neglected some details of the model, such as long-range feed-
back loops and the corresponding delay distributions; the reader is referred to [17] for
a detailed account. At any rate, the result that distributed speeds affect oscillatory dy-
namics clearly shows the importance of including speed distributions in neural models.
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Summary. We use the differential entropy concept and methods related to differential entropy
estimation in this chapter. In the beginning, we define the basic terms: entropy, differential en-
tropy, the Kullback–Leibler distance and the refractory periods. We show relations between
differential entropy and the Kullback–Leibler distance as well.

Hereafter a detailed description of the methods used is given. These methods can be divided
into three groups: parametric methods of entropy estimation, “plug-in” entropy estimators based
on nonparametric density estimation and direct entropy estimators. The formulas for direct en-
tropy estimation based on the first four sample moments are introduced.

The results are illustrated by comparing the methods of the entropy estimation, combined
with two refractory period estimates. We compare the estimates based on the histogram, the
kernel density estimator, the sample spacing method, Vasicek’s method, the nearest neighbor
distance method and the methods based on sample moments.

Key words: Interspike intervals, refractoriness, differential entropy estimation, Kullback–Leibler
distance.

19.1 Introduction

With the differential entropy concept we can identify (as with frequency characteris-
tics) changes in neuron behavior or compare the behavior of two and more neurons
under different experimental situations. For this purpose it is necessary to have a good
estimate of the differential entropy. It follows from the definition of the differential
entropy that the task is closely related to the problem of how to identify a probability
density function from sampled realizations of a random variable. The estimates of the
differential entropy can be used for calculating the Kullback–Leibler distance, which
finally reflects the changes in the neuronal behavior.

When the neuronal activity is recorded, the interspike intervals (ISIs) are regis-
tered. These can be considered as realizations of an independent positive random vari-
able x1, . . . , xn , for which the entropy has to be estimated. Taking into account re-
fractoriness in neuronal firing, this positive random variable is shifted for an unknown
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constant. Thus, this shift has to be estimated as well. Primarily, we are interested in
how the refractoriness affects the estimate of the differential entropy.

19.2 The Theory

We first define the basic terms of this chapter. We define the entropy of a random
variable X with a probability mass function p(x) = P(X = x), x ∈ X by

H(X) = −
∑
x∈X

p(x) log2 p(x). (19.1)

The entropy is measured in bits (see [2]). The entropy H(X) measures the “random-
ness” of the distribution. For example, if we have a Bernoulli distribution with param-
eter p = 0.5, we have the biggest uncertainty as to what can happen. The entropy is
maximized in this situation. If we set parameter p to 0 or 1, we have sureness as to
what can happen and the entropy is minimized in this situation (it is equal to 0).

An extension for a continuous distribution can be proposed; in addition the usage
of the natural logarithm is common. Thus, what we call the differential entropy is given
as

H( f ) = −
∫

S
f (x) ln f (x)dx, (19.2)

where S is a support of the density f (x) (see [2]). The differential entropy can be
expressed by using the distribution function F(x) = P(X ≤ x) (see [6]) as

H( f ) =
∫ 1

0
ln

{
d

dp
F−1(p)

}
dp. (19.3)

Later in the chapter we will use the term “entropy” in the sense of “differential en-
tropy.”

An exponential distribution maximizes the differential entropy among all densi-
ties with the same support and the same mean value. We can say that exponentially
distributed ISIs are generated in “the most stochastic” manner. This situation can be
interpreted as a “state of idle communication” between neurons; only a minimum of
information is transported and the receiving neuron is kept in “maximal attention.”

Although the equation (19.2) seems like an analogy of (19.1), the interpretation and
the properties of the differential entropy are a little different (for example, differential
entropy can be negative). To avoid difficulties connected with differential entropy in-
terpretation the Kullback–Leibler (K–L) information distance between densities f and
g is defined as

K L( f, g) =
∫ ∞

0
f (t) ln

f (t)
g(t)

dt. (19.4)

The K–L distance is a “measure” of similarity between two densities. It is nonnegative.
When support g contains support f , the K–L distance is finite (see [2], [4]).
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The distance between the densities defined on the positive half line and the ex-
ponential density plays a significant role in the K–L distance interpretation. The K–L
distance between exponential density fe with parameter λ and density f can be ex-
pressed from (19.4) as

K L( f, fe) = λE(X) − ln λ − H( f ), (19.5)

where E(X) is the mean value of the distribution with density function f (x). This
expression can be interpreted as a “measure of randomness reduction” or a “measure
of information gain” in comparison with idle communication.

If the means of densities f and fe are the same (E(X) = E(Xe) = 1
λ

), we get
from (19.5)

K L( f, fe) = 1 − ln λ − H( f ) = H( fe) − H( f ). (19.6)

This means that the problem of how to determine the K–L distance is reduced to dif-
ferential entropy determination in this case (due to [4]).

According to physiological models we cannot suppose that a neuron can fire for
a short time after the spike. This property is called “refractoriness.” An absolute re-
fractory period begins after the spike generation, when it is impossible to emit a spike
under even a strong stimulus. Then begins a relative refractory period, when the spike
can be emitted for an extremely strong stimulus only.

So, ISIs cannot be arbitrarily small, but they should have a minimal duration � >

0. From a statistical point of view we can say that the density describing ISIs will be
positive on the interval (�, ∞), not (0, ∞).

19.3 The Methods

It is possible to benefit from the relations between (19.1) and (19.2). We can use ap-
proximate techniques for differential entropy estimation based on sampling (see Panin-
sky, L. 2003, Estimation of entropy and mutual information. Neural Comput. 15, 6, pp.
1191–1253). We don’t use such techniques for our differential entropy estimation prob-
lem; we are interested in the following groups of methods, which are directly intended
for differential entropy estimation.

19.3.1 Parametric Methods

Under the assumption about the distribution of ISIs we estimate its parameters θ1, . . . ,
θk (most often by the maximum likelihood method). By using them and the equation
(19.2) we can calculate the entropy estimation analytically or numerically from the
expression

Ĥ( f ) = −
∫

S
f̂ (x) ln f̂ (x)dx, (19.7)

where f̂ (x) is a density estimator f (x, θ̂1, . . . , θ̂k). The parametric estimate will be
good in the case when the assumption about the distribution is correct.
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19.3.2 Plug-In Estimators

If we cannot say anything about the ISI distribution, we can use one of the nonparamet-
ric methods. Instead of using parameters of distribution, we will estimate the density
directly. The entropy estimation will be obtained from (19.7) again. For this purpose
we can use the histograms

f̂hist(x) =
m∑

j=2

1
nd j−1

I[t j−1,t j )(x)

[ n∑
i=1

I[t j−1,t j )(xi )

]

+ 1
ndm

I[tm ,tm+1](x)

[ n∑
i=1

I[tm ,tm+1](xi )

]
, x ∈ R (19.8)

with m equidistant or nonequidistant dividing subintervals of length d j , j = 1, . . . , m,
with borders t1 < t2 < · · · < tm < tm+1. The index function I[a,b)(x) is defined as

I[a,b)(x) =
{

1 for x ∈ [a, b),

0 for x /∈ [a, b).
(19.9)

The histogram construction requires the setting of at least three constants: two borders
and the number of dividing subintervals. According to previous simulation studies1 we
can say that the best results for the plug-in histogram estimator were reached with the
histogram with nonequidistant dividing subintervals. The number of these subintervals
is equal to the biggest m for which the following holds:

2[n/m] > n − [n/m](m − 1), (19.10)

where n is the number of observations and [c] denotes the whole part of the real number
c (for 50 observations m = 8, for 250 m = 18, for 1250 m = 42). The number of the
observations in particular subintervals is the same, except in the last subinterval. The
histogram is constructed on the interval [min(X), max(X)] or a similar interval.

More sophisticated are the kernel estimators,

f̂kern(x) = 1
nh

n∑
i=1

K
(

x − xi

h

)
x ∈ R, (19.11)

where the function K is the kernel. The kernel function K : R → (0, ∞) is symmetric
and bounded and ∫ ∞

−∞
K (x)dx = 1 and lim

x→±∞ |x |K (x) = 0. (19.12)

1 We explored the dependence of particular methods of entropy estimation on selected pa-
rameters (histogram: number of dividing intervals, latitude of dividing intervals, borders of
histogram; kernel estimates: smoothing parameter, type of kernel).
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We have to choose the proper kernel as well as the most suitable constant h. This con-
stant essentially affects the quality (accuracy) of the kernel estimate of the density. In
practice, we can solve this problem using the cross-validation method. We are looking
for the constant h, which maximizes likelihood L(h) = ∏n

i=1 fi (xi ), where

fi (x) = 1
nh

n∑
( j=1),( j �=i)

K
(

x − x j

h

)
x ∈ R (19.13)

and we get h as the optimal kernel width.
A further possibility is to use the moment-based density estimators. We use the

notation from [3] for their introduction. Let f (x) be a density function with mean value
µ, dispersion σ 2, skewness γ1, kurtosis γ2 and cumulants κ1, κ2, . . . . Then function

c(x) = exp

 ∞∑
j=1

e j (−D) j

j!

 f (x), (19.14)

where e j are constants depending on a particular f (x), D is a differential operator and
D j f (x) = ∂ j f (x)/∂x j , will have cumulants κ1 + e1, κ2 + e2, . . . .

When using (19.14) the exponential must be expanded in a series as

exp

 ∞∑
j=1

e j (−D) j

j!

 ≈
∞∑

i=0

[∑∞
j=1

e j (−D) j

j!

]i

i!
. (19.15)

Using the standardized quantity y = (x − µ)/σ and the normal density as f (x) we
get e1 = 0, e2 = 0, e3 = γ1 and e4 = γ2.

Finally, when we make the summation for j = 1, 2, 3, 4 and i = 0, 1, using the
standardized quantity y and the density of normal distribution as f (x) in the right side
of equation (19.15), we get the Gram–Charlier density estimate

f̂GC (y) = (2π)−
1
2 e− 1

2 y2
[
1 + γ1

6
(y3 − 3y) + γ2

24
(y4 − 6y2 + 3)

]
. (19.16)

Further, the Edgeworth density estimate will be obtained by summation over j =
1, 2, 3, 4, i = 0, 1, 2, using the standardized quantity y and the density of normal
distribution as f (x). In addition, we leave out members of order less than 1/n in the
expansion series. We express the Edgeworth estimate as

f̂Edg(y)

= (2π)−
1
2 e− 1

2 y2

×
[

1 + γ1

6
(y3 − 3y) + γ2

24
(y4 − 6y2 + 3) + γ 2

1
72

(y6 − 15y4 + 45y2 − 15)

]
.

(19.17)

In general, the Edgeworth density estimate is not better than the Gram–Charlier density
estimate. With a knowledge of µ, σ , γ1 and γ2, we can approximate f (x) as
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f (x) ≈ 1
σ

f̂
(

x − µ

σ

)
, (19.18)

where for f̂ we use (19.16) or (19.17).
It is possible to construct estimates based on distributions different from normal.

For an ISI distribution, we have supposed the gamma distribution will be a good base
for moment estimates of the ISI’s density, because it is defined on (0, ∞) as well
as the distributions we are interested in. In addition, in [5] it is stated that we can
approximate many models of ISIs very well by the gamma distribution. Unfortunately,
these estimates are very sensitive to the estimates of the moments, so we cannot use
them because of the relatively small number of observations.

19.3.3 Direct Entropy Estimators

As the first estimator of this sort, we have the “sample-spacing” estimator. Suppose
x[1], . . . , x[n] are a realization of order statistics (x[1] < · · · < x[n]) corresponding
to x1, . . . , xn . Then x[i+m] − x[i] is called a spacing of order m or m-spacing (1 ≤
i < i + m ≤ n). Depending on these spacings we can construct an m-spacing entropy
estimator for m fixed as

Hs = 1
n

n−m∑
i=1

ln
( n

m
(x[i+m] − x[i])

)
− ψ(m) + ln m, (19.19)

where ψ(m) = −(ln %(m))′ is the digamma function. This entropy estimator is con-
sistent under some conditions (see [1]).

Next from the group of direct estimate methods we have Vasicek’s entropy esti-
mators. The estimator of (19.3) can be constructed by substituting empirical distribu-
tion function Fn instead of distribution function F and using the difference operator
in place of the differential operator. The derivative of F−1(p) is then estimated by
(x[i+m] −x[i−m])n/(2m) for (i −1)/n < p ≤ i/n, i = m+1, m+2, . . . , n−m, where
m is a positive integer smaller than n/2. One-sided differences of type x[i+m] − x[1]
or x[n] − x[i−m] are used in place of x[i+m] − x[i−m] when p ≤ m/n respectively
p > (n − m)/n. This produces estimate HV of entropy H( f ),

HV = n−1
n∑

i=1
ln

{
(x[i+m] − x[i−m])n/(2m)

}
, (19.20)

where x[i] = x[1], i < 1 and x[i] = x[n], i > n. Vasicek in [6] transcribes this sum into
three components, shows their properties and due to bias elimination recommends the
modified estimator

H ′
V = HV −

(
ln n − ln 2m +

(
1 − 2m

n

)
ψ(2m) − ψ(n + 1) + 2

n

m∑
i=1

ψ(i + m − 1)

)
,

(19.21)
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where m is small, maximally equal to n/2.
The next of the direct estimators is the nearest neighbor distance estimator. Let ρn,i

be the distance from xi to its nearest neighbor, ρn,i = min j �=i, j≤n |xi − x j |. Entropy
estimation depending on the nearest neighbor distance is defined as

Hn = 1
n

n∑
i=1

ln(nρn,i ) + ln 2 + CE , (19.22)

where CE is the Euler constant CE = − ∫ ∞
0 e−t ln tdt (≈ 0.577215). A similar es-

timator is described in the paper: Kozachenko, L. F., Leonenko, L., Sample estimate
of the entropy of a random vector, Problems of Information Transmission, 23, 95–101
(1987).

As the last method of the group of direct entropy estimation methods we introduce
exact formulas derived from the Gram–Charlier and the Edgeworth concept (19.16)
and (19.17). The expression based on the Gram–Charlier expansion is denoted below.
At first we identify

A1 = 1
4
(1 + ln(2πσ 2))

(
1 + erf

(
µ√
2σ

))
,

A2 = −γ1(8σ 5 + 4µ4σ + 4µ2σ 3) + γ2(µ
5 − µ3σ 2) + 24µσ 4

σ 5

+ ln(2πσ 2)(γ14(σ 3 − µ2σ) + γ2(µ
3 − 3µσ 2))

σ 3 ,

A3 = γ1

12
µ2 − σ 2

σ 2 − γ 2
1 µ

72
µ4 − 10µ2σ 2 + 15σ 4

σ 5 − γ2µ

48
−3σ 2 + µ2

σ 3

+ γ1γ2

144
45σ 4µ2 + µ6 − 15σ 2µ4 − 15σ 6

σ 6

− γ 2
2 µ

1152
105σ 4µ2 − 105σ 6 + µ6 − 21σ 2µ4

σ 7 ,

A4 = exp

(
− µ2

2σ 2

)√
2
π

,

where

erf(x) = 2√
π

∫ x

0
e−t2

dt. (19.23)

Now the estimator based on the Gram–Charlier expansion can be expressed as

EGC = A1 − A4

(
A2

96
+ A3

)
. (19.24)

The expression based on the Edgeworth expansion is identified by
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A1 = 1
4
(1 + ln(2πσ 2))

(
1 + erf

(
µ√
2σ

))
,

A2 = γ1

12
µ2 − σ 2

σ 2 − γ 2
1 µ

72
µ4 − 10µ2σ 2 + 15σ 4

σ 5

− γ2µ

48
−3σ 2 + µ2

σ 3 + γ1γ2

144
45σ 4µ2 + µ6 − 15σ 2µ4 − 15σ 6

σ 6

− γ 2
2 µ

1152
105σ 4µ2 − 105σ 6 + µ6 − 21σ 2µ4

σ 7

+ γ 3
1

864
105σ 8 − 28µ6σ 2 + 210µ4σ 4 − 420µ2σ 6

σ 8

− γ 2
1 γ2

3456
−36µ6σ 2 + 378µ4σ 4 − 1260µ2σ 6 + 945σ 8 + µ8

σ 9 ,

A3 = ln(2πσ 2)(γ 2
1 (10µ3σ 2 − µ5 − 15µσ 4)

σ 5

+ γ2(−3µ3σ 2 + 9µσ 4) + 12γ1(µ
2σ 3 − σ 5))

σ 5 ,

A4 = 72σ 6µ + γ 2
1 (5µ3σ 4 − 8µ5σ 2 + µ7) + 3γ2(µ

5σ 2 − µ3σ 4)

σ 7

− 12γ1(µ
2σ 5 + 2σ 7 + µ4σ 3)

σ 7 ,

A5 = exp

(
− µ2

2σ 2

)√
2
π

,

and finally

EEdg = A1 + A5

(
1

288
(A3 − A4) − A2

)
. (19.25)

The formulas are long but computationally fast. Both are assignated for the densities
on positive half line. They are not unbiased, but the error is negligible. We tested these
formulas on a wide range of distributions. We got very good results for distributions
with the coefficient of variation CV < 0.8 except for the inverse Gaussian distribution.
The results for this distribution are not very good in the ranges CV < 0.05 and 0.55 <

CV < 0.8, but for 0.05 < CV < 0.55 we get very good results.

19.4 Analysis of Simulated Data

Now we compare 12 methods of entropy estimation combined with two refractory
period estimates

�̃ = min(X) (19.26)
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Table 19.1. Distributions used for generating simulations: exponential, gamma, inverse Gauss
and Weibull distributions.

Distribution Exp(1) Gam.(0.6,2) Gam.(5,20) Inv.Gauss(2,4) Weib.(0.5,10)

Graph

of

density 1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

CV 1 0.7071 0.2236 0.7071 0.1203

Entropy 1 2.0880 1.2905 1.4556 −0.7138

and

�̂ = max

{
min(X) −

√
v̂ar(X)

n
, 0

}
. (19.27)

The density estimation based methods use the density renormalized on the desired
interval. We use shift 0.3 × mean value. We have 10 repetitions with 50 or 250 ob-
servations. As a comparative criterion we use the mean square error. The simulations
were generated from the distributions in Table 19.1.

The following entropy estimation methods are used:

1. Parametric. Using maximum likelihood method, we calculate distribution param-
eters and then entropy estimation by (19.7). We suppose the distribution type is
known.

2. Plug-in: Histogram. We use histogram (19.8) constructed according to the rule
(19.10) on the interval [min(X), max(X)].

3. Plug-in: Histogram. Like the method above, but on the interval [max{min(X) −
(ŝtd(X)/

√
n), 0}, max(X) + (ŝtd(X)/

√
n)].

4. Plug-in kernel estimate based on (19.11). We use often-used Epanechnikov kernel
((3/4)(1 − x2) for x ∈ [−1, 1] and 0 elsewhere), smoothing parameter is deter-
mined via cross-validation method.

5. Plug-in estimate based on the Edgeworth density estimation (19.17).
6. Plug-in estimate based on the Gram–Charlier density estimation (19.16).
7. Direct estimate based on “sample-spacings” (19.19). We use m = 1.
8. Direct: The Vasicek estimate (19.20). We use m = 6 for 50 observations and

m = 13 for 250 observations.
9. Direct: The improved Vasicek estimate (19.21). We use m = 4.

10. Direct estimate based on nearest neighbor distance (19.22).
11. Direct moment estimate based on the Gram–Charlier concept (19.24).
12. Direct moment estimate based on the Edgeworth concept (19.25).
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Fig. 19.1. The comparison of mean squared error for entropy estimation methods. We use 50
valued simulations from Table 19.1. Black columns are used for exponential distribution, dark
gray for gamma(0.6,2), gray for gamma(5,20), light gray for the inverse Gaussian and white for
the Weibull distribution. The numbers under the bars denote methods described above.
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Fig. 19.2. The comparison of mean squared error for entropy estimation methods. We use 250
valued simulations from Table 19.1. Black columns are used for exponential distribution, dark
gray for gamma(0.6,2), gray for gamma(5,20), light gray for the inverse Gaussian and white for
the Weibull distribution. The numbers under the bars denote methods described above.
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In our work, we can differentiate among six situations: We have no shift and we
don’t estimate it or estimate it by �̃ or by the �̂ estimator; we have shifted data and
again we don’t estimate it or estimate it by �̃ or by the �̂ estimator. Of course, there
is the group of methods which are shift independent.

19.5 Results

In Fig. 19.1 and 19.2 there are results depicted for 50 valued simulations and 250
valued simulations. From these figures, we can state the following conclusions:

• The direct moment estimate based on the Gram–Charlier concept gives results as
good as those of the parametric estimate and other good estimates, but for distri-
butions with CV ranges given in Section 19.3.3 only. We obtain good estimates for
the 50-valued sample as well. This estimate is strongly shift-affected. Analogously,
the estimate based on Edgeworth’s concept is a bit worse in general.

• The histogram constructed according to rule (19.10) gives asymptotically good
results. There is not a significant difference between the methods marked 2 and 3.

• The improved Vasicek estimate seems to be the best estimate of entropy of all the
mentioned methods.

• Shift estimator min(X) is too rough (the real shift is overestimated) and may cause
marked degradation of the entropy estimation. The estimator (19.27) reduces this
overestimation and can improve mainly density-based entropy estimation methods
except for the cases of exponential distribution and some parameter combinations
of the inverse Gaussian distribution.
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Dynamics of Integrate-and-Fire Models
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Summary. A model for the generation of action potentials by a neuron is presented. This model
is based on standard and commonly accepted properties of excitable cells (neurons). The novelty
is that under quite natural assumptions the generation of action potentials is described as a
special case of a general model for systems generating recurrent biological events. A formula
for a density function of the membrane potential distribution in the firing times of the neuron
is derived. An analysis of time intervals between spikes is of special interest. Three different
interspike interval distributions are found, where one of them is close to the stable distribution.
It is consistent with the well-known hypothesis that stable interspike intervals form part of the
neural chain in which information is being preserved.

Key words: Neuron, action potential, interspike intervals, integrate-and-fire model.

20.1 Introduction
Integrate-and-fire models have enjoyed great popularity in the modelling of many types
of biological processes where there is evidence that some state variable must reach a
threshold before an event is initiated. One of the many research domains where these
models have been highly utilized is a brain and nerve system, particularly ion channel
dynamics.

Ion channels are found in all cell membranes. They are believed to be the molecu-
lar basis, at the cellular level, for excitability in many tissues, especially nerve and
muscle. The theoretical foundations for our present understanding of nerve mem-
brane ion currents were laid down by Hodgkin and Huxley [5]. Their ideas deter-
mined experimental approaches before the development of the patch-clamp technique
of Neher and Sakmann [12], which permitted the possibility of measuring ion cur-
rents through individual ion channels. From this time on, many detailed conductance
neuron models, sometimes termed Hodgkin–Huxley models, were developed. Unfor-
tunately, because of their intrinsic complexity, these models are usually difficult to
analyse and are computationally expensive in numerical implementations. For this rea-
son, simple phenomenological spiking neuron models such as integrate-and-fire mod-
els [2,4,7,8,15,16] are in high use. In formal spiking neuron models, action potentials
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are generated by a threshold process. The neuron fires whenever the membrane poten-
tial of the neuron reaches a threshold.

We present a model for the generation of action potentials by a neuron which is not
based on the classical integrate and fire models [2,4,7,8,15,16] but is some special case
of a general model for systems generating recurrent biological events [9]. We derive a
formula for a density function of the membrane potential distribution in the firing times
of the neuron. We are especially interested in an analysis of the time intervals between
spikes (interspike intervals). Depending on different assumptions in our model, we
consider different distribution functions of interspike intervals.

The chapter is organized as follows. In Section 20.2 we present a general model for
systems generating recurrent biological events [9]. In Section 20.3 we define a model
for the generation of action potentials by a neuron and show how it is related to the
general model described in Section 20.2. Section 20.4 contains an analysis of inter-
spike intervals in the action potentials model. Depending on specific assumptions in
the action potentials model, we find three different interspike interval distributions and
show that one of them is close to a stable distribution. The idea of a stable interspike
intervals distribution was first proposed by Holden [6]. He suggested that neurons with
stable interspike intervals form part of the neural chain in which information is being
preserved. We present his ideas in Section 20.5.

20.2 A Model for Systems Generating Recurrent Biological Events

We consider a biological system that produces events. We assume that, in addition to
the usual laboratory (clock) time t, the system also has an internal physiological time
that resets from the value τ . When an event appears, the physiological time resets from
the value τ = τmax to τ = 0. The rate of maturation dτ/dt depends on the amount of
an activator a, i.e.,

dτ

dt
= φ(a), φ ≥ 0. (20.1)

We further assume that the activator is produced by a dynamics described by the solu-
tion to the differential equation

da
dt

= g(a), g ≥ 0. (20.2)

The solution of (20.2) satisfying the initial condition a(0) = r is denoted by a(t) =
#(t, r), and we assume that it is defined for all t ≥ 0.

When an event is produced at a time τ = τmax and an activator level amax, then
a portion δ(amax) of amax is consumed in the production of the event. Thus after the
event the activator resets to the level

a = amax − ε(amax). (20.3)

We assume that this function is invertible and denote its inversion by λ. We also assume
that the survival function of τmax is independent of the initial value of the activator.
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With these assumptions, we can derive a recurrence relation for the values of the
activator at times when events occur [9], namely

an+1 = λ−1(Q−1(Q(an) + τn)) n = 0, 1, . . . , (20.4)

where
Q(z) =

∫ z

0
q(y)dy, q(y) = φ(y)

g(y)
.

By assumption, an and τn are independent and thus we may consider (20.4) as a dis-
crete time dynamical system with stochastic perturbations by τn . The behaviour of this
system from a statistical point of view may be described by the sequence of distribu-
tions

Fn(x) = Prob(an < x)

for n = 0, 1, . . . and their densities. The recurrence formula for the densities fn =
d Fn/dx appears as follows:

fn+1(x) = λ′(x)q(λ(x))

∫ λ(x)

0
h(Q(λ(x)) − Q(y)) fn(y)dy,

where h is the density function of the distribution of τn . Introducing the operator P
defined by

P f (x) =
∫ λ(x)

0

(
− ∂

∂x
H(Q(λ(x)) − Q(y))

)
f (y)dy, (20.5)

we may write these relations in the more abbreviated forms fn+1 = P fn and fn =
Pn f0 (H is the survival function of the distribution of τn). Under some simple regu-
larity conditions concerning λ, Q and H , equation (20.5) defines a Markov operator
on the space L1(R+) of all integrable functions defined on the half line R+ = [0, ∞).
These assumptions are formulated in the paper [9] where we also examined the con-
vergence properties of the fn densities.

In the next section we will show how the presented model could be used for mod-
elling of action potential generation by a neuron.

20.3 A Model for Action Potential Generation

We consider a single cell subject to a time invariant depolarizing current I , derived
either from an external source or internally if the cell is a pacemaker cell. In the ab-
sence of any depolarizing input, the membrane potential V will spontaneously return
to the resting potential if perturbed from that point. In the presence of the current I, the
membrane potential is assumed to have dynamics described by

dV
dt

= V − G(V ), (20.6)
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where V is the constant depolarizing potential induced by the current I , and G(V )

is directly related to the nonlinear voltage-dependent ionic currents through the mem-
brane [9].

With some other natural assumptions, the generation of action potentials can be
described as a special case of equation (20.4) with τn exponentially distributed. The
activator of our general model is identified now with the membrane potential a(t) =
V (t). Thus, equation (20.6) can be written in the form

dV
dt

= g(V )

with g(V ) = V − G(V ). If we assume a linear approximation, then it would be

dV
dt

= V − kV .

Because of the nature of G(V ), there is a unique positive value of V = VM , such that
g(VM ) = 0 (in the linear case VM = V /k). We assume that during an action potential
there is a sequence of channel openings and closings so the membrane potential resets
by a constant amount VR , i.e.,

λ−1(x) = x − VR, VR > 0.

The form of the function φ is φ(x) = 0 for x < VT , φ(x) > 0 for x ≥ VT where VT
is a constant threshold such that VT > VR .

Using these assumptions, it was shown that [9]:

• there is a minimum period of time between action potentials (known as a refractory
period);

• the correlation coefficient between successive interspike intervals (�tn) is negative;
• the correlation coefficient becomes small when the mean of �tn becomes large;
• the recurrence relation becomes

Vn+1 = Q−1(τn) − VR, n = 0, 1, . . . , (20.7)

where

Q(x) =


0 0 ≤ x < VT∫ x

VT

q(y)dy VT ≤ x ≤ VM ,

q(y) = φ(y)/g(y) and the internal times τn are distributed with the exponential
density e−x .

20.4 Distributions of Interspike Intervals

If the densities fn in our general model are given, then it is easy to find the density
function of the distribution of the interevent intervals, i.e., the time intervals �tn =
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tn+1 − tn between the nth and (n + 1)st events [9]. Namely, the density of interevent
intervals is

αn(x) =
∫ ∞

0
h

(∫ x

0
φ(#(s, r))ds

)
φ(#(x, r)) fn(r)dr. (20.8)

A spike train can be represented by the sequence of intervals between spikes; this is
characterized by the interval statistics (in the time domain by probability distributions
and in the frequency domain by spectral densities). In the literature [1] we can find two
schemes of spike generation. The first produces a renewal process that has no mem-
ory of the excitation because the system resets itself each time a spike is generated.
Here, there is no correlation between successive spike intervals. The second scheme
generates a nonrenewal spike train, with correlations between adjacent intervals. We
consider the distribution of time intervals between spikes as a special case of equation
(20.8).

20.4.1 Exponential Distribution

Let us come back to the model for action potential generation. The variables τn in equa-
tion (20.7) are distributed with the exponential density e−x , so the variables Q−1(τn)

are distributed with the density

s(x) = d Q(x)

dx
e−Q(x) =

{
0 0 ≤ x < VT

q(x)e−Q(x) VT ≤ x < VM
.

If we assume that the function φ(x) is constant, i.e.,

φ(x) =
{

0 x < VT

p x ≥ VT
,

then

Q(x) =
∫ x

VT

φ(y)

g(y)
dy =

∫ x

VT

p
V − ky

dy = − p
k

ln
(

VM − x
VM − VT

)
. (20.9)

The density function for Vn is then

fVn (x) = − p
k

· 1
(x − VM + VR)

·
(

x − VM + VR

VT − VM

)p/k
.

Now we can easily calculate the interspike interval distribution using formula (20.8).
First, we have ∫ x

0
φ
(
#(s, r)

)
ds =

∫ x

VT

pds = p(x − VT ),

and putting this into equation (20.8) gives
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αn(x) =
∫ VM −VR

VT −VR

e−p(x−VT ) · p ·
(
− p

k

)
·
(

1
VT − VM

)p/k
(r − VM + VR)p/k−1dr

= pe−p(x−VT ). (20.10)

As we see, this is the density function of the exponential distribution with a parameter
p, p > 0, x > VT .

This distribution is one of a few interspike interval distributions considered in the
literature [17].

20.4.2 Rayleigh Distribution

If we assume that the function φ(x) is a linear function, i.e.,

φ(x) =
{

0 x < VT

px x ≥ VT
,

then

Q(x) =
∫ x

VT

φ(y)

g(y)
dy =

∫ x

VT

py
V − ky

dy = p
(

VT − x
k

)
+ ln

(
VM − VT

VM − x

) pVM
k

and ∫ x

0
φ
(
#(s, r)

)
ds =

∫ x

VT

psds = px2 − pVT
2

2
.

After some calculations, we get the density function for Vn ,

fVn (x) =
(

1
VM − VT

) pVM
k p(x − VR)

k
(VM − x + VR)

pVM
k −1 e−p(VT −x+VR)

and the density function of the time intervals between spikes,

αn(x) =
∫ ∞

0
h

(∫ x

0
φ(#(s, r))ds

)
φ(#(x, r)) fVn (r)dr

=
∫ VM −VR

VT −VR

e− p
2 (x2−VT

2) · px · fVn (r)dr = pxe
−p
2 (x2−VT

2). (20.11)

The obtained density function is the density function of the distribution known in the
literature as a Rayleigh distribution.

The Rayleigh distribution is a continuous probability distribution with the density
function defined in general as [18]

f (x | σ) =
x · exp

(
−x2

2σ 2

)
σ 2 for x ≥ 0,

where σ > 0 is a parameter. The expected value is equal to σ
√

π/2, and the variance is
[(4 − π)/2]σ 2. In equation (20.11) the parameter p = 1/σ 2 and the density function
is defined for x ≥ VT .

We reiterate some useful properties of the Rayleigh distribution:
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• If a random variable X has an exponential distribution with a parameter λ, then
Y = √

2Xσλ has a Rayleigh distribution with a parameter σ ;
• If X and Y are independent random variables normally distributed, X ∈ N (0, σ 2)

and Y ∈ N (0, σ 2), then R = √
X2 + Y 2 is a Rayleigh distributed random variable

with a parameter σ 2;
• The Rayleigh distribution with σ = 1 is a χ2 distribution with two degrees of

freedom;
• The Weibull distribution is a generalization of the Rayleigh distribution. The

Weibull distribution is often used to model the time until a given technical device
fails or in general to model lifetimes of objects.

So, the Rayleigh distribution as a special case of the Weibull distribution seems to be
a quite natural candidate for modelling of the time intervals between spikes.

20.4.3 Pareto Distribution

Let us now consider the function φ(x) having the following form:

φ(x) =
0 x < VT

p
x

x ≥ VT
.

So, we can calculate

Q(x) =
∫ x

VT

φ(y)

g(y)
dy =

∫ x

VT

p
y(V − ky)

dy = ln
(

x(VM − VT )

VT (VM − x)

) p
kVM

and ∫ x

0
φ(#(s, r))ds =

∫ x

VT

p
s

ds = ln
(

x
VT

)p
.

In a similar way as before we can now get the density function of the membrane po-
tential distribution,

fVn (x) =
(

VT

VM − VT

) p
kVM p

k
· 1

x − VR
(VM − x + VR)

p
kVM

−1
,

and using formula (20.8) the density function of the time intervals between spikes,
namely

αn(x) =
∫ VM −VR

VT −VR

e− ln
(

x
VT

) p

· p
x

· fVn (r)dr = p(VT )p

x p+1 . (20.12)

The last function is the density function in the Pareto distribution with parameters VT
and p (VT > 0, p > 0, x ≥ VT ).

The Pareto distribution is found in a large number of real-world situations. This
continuous distribution is also known as the Bradford distribution. If X is a random
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variable with a Pareto distribution, then the probability distribution of X is character-
ized by the statement [18]

P(X > x) =
(

x
xm

)−k
,

where x is any number greater than xm , which is the (necessarily positive) minimum
possible value of X , and k is a positive parameter. The family of Pareto distributions is
parametrized by two quantities, xm and k. The probability density is then

f (x | k, xm) = k · xm
k

xk+1 for x ≥ xm . (20.13)

The expected value of a random variable following a Pareto distribution is xm · k/(k − 1)

(if k ≤ 1, the expected value is infinite) and the variance is xm
2k/[(k − 1)2(k − 2)].

In equation (20.12) the parameter p = k and VT = xm .

20.4.4 Stable Distributions

Stable distributions are a rich class of probability distributions that allow skewness
and heavy tails, and they have many intriguing mathematical properties. The class was
characterized by Paul Lévy in his study of sums of independent identically distributed
random variables [10]. A stable distribution is a distribution where sums of random
variables have the same distribution as the original. We now define it more formally

Definition 1 A random continuous X is said to have a stable distribution if, for any
n ≥ 2, there is a positive number Cn and a real number Dn such that

X1 + X2 + · · · + Xn
d= Cn X + Dn,

where X1, X2, . . . , Xn are independent realizations of X, and d= means that the vari-
ables have the same distribution.

Different authors have provided different definitions of stable distributions that often
lead to confusion. We introduce only one more definition that specifies a stable distri-
bution more formally.

Definition 2 A stable probability distribution is defined by the Fourier transform of its
characteristic function ψ(t):

f (x | α, β, c, µ) = 1
2π

∫ ∞

−∞
ψ(t)e−i t x dt,

where ψ(t) is given by

ψ(t) = exp[i tµ − |ct |α(1 − iβ sign(t)!)]

and ! = tan(πα/2) for all α except α = 1 in which case ! = −(2/π) ln |t |.
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This definition shows that a general stable distribution requires four parameters:

• an index of stability or characteristic exponent α ∈ (0, 2],
• a skewness parameter β ∈ [−1, 1],
• a scale parameter c > 0, and
• a location parameter µ ∈ R.

For α = 2 the distribution reduces to a Gaussian distribution with variance 2c2 and
mean µ and the skewness parameter β has no effect. For α = 1, β = 0 the distribution
reduces to a Cauchy distribution with scale parameter c and location parameter µ.

Only one of the stable maximally skewed distributions, i.e., the distribution with
α = 1/2, can be expressed through elementary functions. This distribution has density

f1/2 = 1
x
√

2πx
exp

(−1
2x

)
.

Two more maximally skewed distributions, for α = 2/3 and α = 3/2, can be expressed
through special functions called Whittaker functions [21].

The probability density function for the stable distribution with α = 2/3,

β = 1 is

f2/3(x) =
√

3
x
√

π
exp

( −16
27x2

)
W1/2,1/6

(
32

27x2

)
, x > 0,

where W1/2,1/6 is a Whittaker function [3].
The Whittaker function Wk,µ can be calculated using the confluent hypergeometric

function U (a, b, z) [19]:

Wk,µ = z0.5+µU (0.5 − k + µ, 1 + 2µ, z)
e0.5z ,

where
U (a, b, z) = 1

%(a)

∫ ∞

0
e−zt ta−1(1 + t)b−a−1dt.

A similar expression for f3/2(x) can be found in [21].
Though stable distributions usually cannot be summarized via elementary func-

tions, their tails often allow fairly simple approximations [20]. Also, there are now
reliable computer programs to compute stable densities, distribution functions and
quantiles [11, 13, 20]. With these programs, it is possible to use stable models in a
variety of practical problems.

Stable distributions have been proposed as a model for many types of biological,
physical and economic systems. There are several reasons for using a stable distri-
bution to describe a system. The first is the presence of solid theoretical reasons for
expecting non-Gaussian stable behaviour. The second reason is the generalized cen-
tral limit theorem, which states that the only possible nontrivial limit of normalized
sums of continuous random variables is a stable law [14]. A third argument for the use
of stable distributions in modelling systems is empirical: many large data sets exhibit
heavy tails and skewness.
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There is yet another property of a stable distribution that is particularly important
in modelling of action potential generation. The asymptotic behaviour is described by

lim
|x |→∞

f (x) = αCα

|x |α+1 , (20.14)

where f is the density function of a stable distribution and C is proportional to c of
Definition 2. We see that the above equation is very close to equations (20.12) and
(20.13), so this means that the form of the asymptotic density function of a stable
distribution is very similar to that of the density function of a Pareto distribution. We
must remember that if we assume that in the model of action potential generation the
function φ(x) is inversely proportional to the membrane potential, then the interspike
interval distribution is a Pareto distribution. The fact that the distribution of the time
intervals between spikes is close to the stable distribution is very interesting and was
considered previously in the literature [6]. The theoretical ground for the stable inter-
spike interval is presented in the next section.

20.5 Stable Distributions in the Nervous System

Transmission of information in the nervous system is made by a series of action poten-
tials. Since all the action potentials are identical, except in their times of occurrence,
the information content of the signal is dependent only on the patterns of times of
occurrence of the action potentials. If adjacent interspike intervals are independent,
the interspike interval probability density function α(x) completely characterizes the
process and contains the same amount of information as the spike train.

In any sensory pathway in the nervous system information will be transmitted
through a cascade of neurons . . . , j − 1, j, j + 1, . . . . If each neuron is treated as
a perfect integrator with instantaneous reset, the probability density function of the
output from the jth neuron f j (x) will be the convolution of the probability density
function of its input, f j−1(x). Since the information content of the spike train is equiv-
alent to the information content of its probability density function, this information will
only be preserved as the signal passes up the neural cascade if f j (x) has a form which
is invariant under convolution with itself. But as we mentioned in Section 20.4.4, a
probability density function which has a form which is invariant under convolution
with itself is said to have a stable distribution function.

It is important to remark that the preservation of information does not mean error-
free transmission, but that the signals of subsequent neurons are coding the same qual-
itative aspect of the stimulus, e.g., its intensity. Holden [6] stated the following hypoth-
esis:

If action potential trains on a cascade of sensory neurons have stable distributions,
the sensory system is preserving information,
and its converse:

If action potential trains in a cascade of sensory neurons do not have stable distri-
butions, the sensory system is not preserving information, but is extracting features of
interest from the stimulus pattern, or processing information.
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20.6 Conclusion

We have proposed a model for the generation of action potentials by a neuron, which
is a special case of a model for systems generating recurrent events. Depending on
the form of the rate of maturation, we get three possible distributions of time inter-
vals between spikes. One of them is a Pareto distribution which is simultaneously an
asymptotic distribution of a stable distribution. This is consistent with a hypothesis
known before in the literature that the information in a spike train is preserved when
the probability density function is stable under convolution with itself. This hypothe-
sis means that stable interspike interval distributions characterize a simple information
transmission pathway, and nonstable interval distributions suggest more complex in-
formation processing functions.
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A Monte Carlo Method Used for the Identification of
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Summary. In this chapter we describe the behavior of the muscle spindle by using a logistic
regression model. The system receives input from a motoneuron and fires through the Ia sensory
axon that transfers the information to the spinal cord and from there to the brain. Three functions
which are of special interest are included in the model: the threshold, the recovery and the
summation functions. The most favorable method of estimating the parameters of the muscle
spindle is the maximum likelihood approach. However, there are cases when this approach fails
to converge because some of the model’s parameters are considered to be perfect predictors.
In this case, the exact likelihood can be used, which succeeds in finding the estimates and the
exact confidence intervals for the unknown parameters. This method has a main drawback: it is
computationally very demanding, especially with large data sets. A good alternative in this case
is a specific application of the Monte Carlo technique.

Key words: Exact logistic regression, likelihood function, Monte Carlo technique, muscle spin-
dle.

21.1 The Biological System

The system we examine is a complex biological system called the muscle spindle,
which is part of the skeletal muscles and is responsible for the initiation of move-
ment and the maintenance of muscle posture. The effects of the imposed stimuli on
the muscle spindle’s fibers are transmitted to the spinal cord by the axons of sensory
nerves closely associated with the muscle spindle. The discharge of the sensory axons
is also modified by action potentials carried by the axons of a group of cells called
motoneurons. The action potential is a localized voltage change that occurs across the
membrane surrounding the nerve cell and axon, with amplitude approximately 100
mV and duration 1 ms. In this chapter we are interested in the discharge that occurs in
the presence of an alpha motoneuron.

Let Yt describe the firing process of the system. By choosing the sampling interval
h, the observations of the output can be written as follows:
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yt =
{

1, when a spike occurs in (t, t + h]
0, otherwise,

where t = h, . . . , Nh and T = Nh is the time interval in which the process is ob-
served. We usually choose h = 1 ms. The input Xt imposed by the alpha motoneuron
on the system consists of the observations xt defined similarly.

21.2 System Modeling

In this section we present the logistic regression model that can be used for the identi-
fication of the system under the influence of an alpha motoneuron. This model extends
the work of [2] and [3] used for the identification of neuronal firing systems. The firing
of the system we study occurs when the potential of the membrane that surrounds the
sensory axon exceeds a critical level called the threshold. The membrane’s potential at
the trigger zone is influenced both by internal and external processes.

The internal processes are responsible for the spontaneous firing of the system.
This is an ability of the system to produce a series of nerve pulses on its own, by in-
creasing the resting potential to the level of the threshold. Let φt denote the threshold
potential level at the trigger zone at time t by φt = θ0 + εt , where εt is the unknown
noise process that includes contributions of unmeasured terms that influence the fir-
ing of the system and θ0 represents an unknown constant threshold. Other forms of
threshold can also be considered that allow the threshold to vary with time [7]. Let Vt
represent the recovery function which is described by a polynomial function of order
k given by

Vt =
k∑

i=1
θiγ

i
t ,

where γt is the time elapsed since the system last fired and θi are the unknown coeffi-
cients.

External processes are responsible for the firing of the system when it is affected by
external parameters such as the presence of a motoneuron. The function representing
the effect of an alpha motoneuron on the muscle spindle at any given time t is based on
a summation described by a set of coefficients {au}. The summation function is defined
by

SFt =
∑
u≤t

au xt−u,

where xt−u is the observation of the input at time t − u.
The logistic regression model that describes the effect of the covariates incorpo-

rated in the recovery and the summation function at any given time t is expressed as

log
( πt

1 − πt

)
=

∑
u≤t

au xt−u +
k∑

i=1
θiγ

i
t − θ0, (21.1)
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where πt denotes the probability of an output spike to occur. The unknown parameters
that have to be estimated are the coefficients {au}, the recovery function parameters θi
and the constant threshold θ0. More details about the logistic model given by (21.1)
and the covariates included are given in [6].

21.3 Methods

21.3.1 The Maximum Likelihood Approach

The likelihood function is defined as the joint probability of the random variables
whose realizations constitute the sample. For a sample of size n with observations
(y1, . . . , yn), the corresponding random variables are (Y1, . . . , Yn). The probability
density function of Yt describes the contribution to the likelihood function of every
single observation and is given by P{Yt = yt } = π

yt
t (1 − πt )

1−yt , yt = 0, 1. Since
the observations are assumed to be independent, the likelihood function is the joint
probability

L0 = P(Y1 = y1, Y2 = y2, . . . , Yn = yn) =
n∏

t=1
π

yt
t (1 − πt )

1−yt , (21.2)

where πt = π(x1t , x2t , . . . , x pt ) is the conditional probability that Yt equals 1, given
xt , where p is the number of covariates included in the model. It is however more
convenient to use the log of the likelihood function and therefore we have

l(yt , πt ) = log L0 =
n∑

t=1

[
yt log

(
πt

1 − πt

)
+ log(1 − πt )

]
. (21.3)

The probability πt is related with the unknown parameters of the model through (21.1)
and thus the likelihood function is considered as a function of the unknown parameters.

21.3.2 Drawbacks of the Maximum Likelihood Approach

The maximum likelihood approach is the most favorable method of estimation, but
unfortunately it can fail completely or produce poor results in terms of the unknown
parameters and their standard errors. These problems are caused by certain structures
in the data, which occur when we deal with data sets that are small, or data sets that are
large, but sparse. The most common numerical problem occurs when a collection of
covariates separates the outcome, so that there is no overlap in the distribution of the
covariates between the two possible outcome values. This phenomenon is called com-
plete or quasi-complete separation and in these cases the maximum likelihood estima-
tors do not exist as was demonstrated in [1] and [11]. The separation can be identified
by the existence of one or more empty cells in the corresponding contingency tables.
(An example of quasi-complete separation is described in Table 21.2. The empty cell
where Xt−13 = 1 and Y = 1 indicates quasi-complete separation.)
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21.3.3 The Exact Logistic Regression

An alternative solution is to obtain the exact estimates of the unknown parameters.
The idea of exact logistic regression (ELR) is to estimate some of the parameters of
the model by replacing the remaining parameters in the likelihood function by their
sufficient statistics. The likelihood function given by (21.2) can be written in the fol-
lowing form:

P(Y1 = y1, Y2 = y2, . . . , Yn = yn) = exp(
∑p

s=0 βsws)∏n
t=1(1 + exp(xtβ))

, (21.4)

where ws = ∑n
t=1 xts yt are the sufficient statistics, β is a vector of the unknown pa-

rameters and βT = (β0, β1, . . . , βp). In our case the vector β includes the coefficients
{au}, θi (i = 1, 2, . . . , k) and θ0. Suppose that we are interested in one of the regres-
sion parameters, regarding the remainder as a nuisance. Without loss of generality, we
choose the parameter of interest to be βp. It can be proved (see [8]) that the conditional
likelihood is given by

f (wp|βp) = c(w0, w1, . . . , wp) exp(βpwp)∑
u c(w0, w1, . . . , wp−1, u) exp(βpu)

, (21.5)

where the summation in the denominator is over all the values of u for which
c(w0, w1, . . . , wp−1, u) ≥ 1. The initial theory about ELR proposed by Cox in 1970
(see [4]) was considered computationally infeasible for many years and, despite the
availability of fast numerical algorithms developed later (see [5] and [12]), there are
cases where the data set is too large and the exact estimates cannot be obtained easily.
This case corresponds to our example presented later, where we shall see that the re-
quirements in computing time and memory are restrictive, because the data set is too
large (15870 observations). A good alternative in this case is to obtain estimates of the
exact results by using Monte Carlo techniques.

21.3.4 The Monte Carlo Approach

When it is not possible to store the exact permutational distribution, we could obtain
Monte Carlo samples from this distribution. One naive approach would be to follow
conventional Monte Carlo methods that lead to massive rejection of the samples that
do not satisfy the constraints of the conditional distribution. This approach is easy
to implement and does not require computer memory. However, it becomes inefficient
very quickly even for relatively small samples. In this case one can use a network-based
direct Monte Carlo sampling approach discussed in [10] which stores a network of
vectors that satisfy the constraints of the conditional distribution given by (21.5). The
samples are then drawn from this network and therefore this method is more efficient
than the conventional Monte Carlo sampling. There is however a disadvantage as far
as the memory is required for the construction and the storage of the network. The
memory required depends on the specifics of the problem such as the sample size, the
number of covariates in the model, the number of covariate groups and the proportion
of responses. This technique is available on LogXact (see [9]).
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Table 21.1. Table of the results.

Estimates 95% Confidence Interval

Asymptotic(s.e.) Exact Monte Carlo Exact Monte Carlo

θ0 −3.4186 (0.1317) −3.4493 −3.4475 (−3.9435, −2.9905) (−3.9551, −2.9655)

θ1 0.0967 (0.0105) 0.0986 0.1002 ( 0.0629, 0.1351) ( 0.0632, 0.1364)

a1 0.2168 (0.2447) 0.2134 0.2142 (−0.7897, 1.0618) (−0.7827, 1.1123)

a7 1.7565 (0.1722) 1.7414 1.7534 ( 1.0975, 2.3617) ( 1.1006, 2.4187)

a13 −7.7503 (6.6326) −2.2142 −2.2736 (−∞ , −0.4818) (−∞ , −0.4877)

a19 −7.8191 (6.7208) −2.2480 −2.4730 (−∞ , −0.5272) (−∞ , −0.4757)

a25 −8.1085 (6.6810) −2.5503 −2.3280 (−∞ , −0.8199) (−∞ , −0.6439)

a31 −8.1542 (6.7425) −2.5838 −2.5827 (−∞ , −0.8594) (−∞ , −0.8981)

a37 −8.2998 (6.6745) −2.7224 −2.7851 (−∞ , −0.9879) (−∞ , −0.7965)

a43 −2.7278 (0.7167) −2.4404 −2.4465 (−∞ , −0.6608) (−∞ , −0.6909)

a49 −0.3193 (0.2464) −0.3413 −0.3395 (−1.3670, 0.5291) (−1.3919, 0.5245)

21.4 Results

In this section we provide a neurophysiological example which causes a breakdown
in the maximum likelihood estimation. The data set includes two time series which
consist of 259 input and 356 output spikes, recorded in a time interval of 15870 ms.
The input is imposed to the muscle spindle by an alpha motoneuron and the output
contains the discharge of the muscle spindle’s sensory axon.

The attempt to fit the logistic regression model given by (21.1) using the maxi-
mum likelihood approach results in misleading conclusions, which are shown in Ta-
ble 21.1. It is obvious that the estimates and the standard errors of the coefficients
a13, a19, a25, a31, and a37 are very large compared with the other estimates, denot-
ing a problematic area on the summation function. This occurs because of the quasi-
complete separation, as illustrated in Table 21.2. This situation causes problems to the
maximum likelihood estimation, which considers that the covariate Xt−13 is a perfect
predictor. The same situation applies for all the covariates of the problematic area
and it causes the maximum likelihood method to diverge. A solution in this case is
to perform exact estimation. The exact results and the confidence intervals are also
shown in Table 21.1. The lower confidence bound for the estimates of the problematic

Table 21.2. 2 × 2 contingency table between Y and Xt−13.

Y = 0 Y = 1

Xt−13 = 0 4677 356

Xt−13 = 1 257 0
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Fig. 21.1. (a) Monte Carlo estimates of the threshold and the recovery function. The dotted lines
correspond to 95% confidence intervals. The recovery function does not cross the threshold,
but the increase may be indicative of possible spontaneous firing. (b) Monte Carlo estimates
of the summation function. The vertical bars represent the 95% confidence intervals of the au
coefficients. The summation function accelerates for a very short period during the first 10 ms,
and afterwards decelerates. This inhibitory behavior blocks the response of the system for about
40 ms.

area is −∞, indicating that the data set contains observations at the extreme points of
the sample space for these coefficients. An alternative solution is to perform Monte
Carlo estimation by sampling 10,000 times from the appropriate conditional distribu-
tion. The estimates and their confidence intervals obtained by performing Monte Carlo
estimation are shown in Table 21.1 and a graphical presentation is given in Fig. 21.1.
All computations were performed on a Pentium, 1000 MHz PC. For consistency all
the results are displayed to four decimal digits. The maximum likelihood estimates are
compared with those of the ELR and the Monte Carlo respectively. The Monte Carlo
estimation required 1/4 of the exact estimation computing time and 1/10 of the exact
estimation memory requirements.

21.5 Discussion

In this chapter we have used a logistic regression model in order to describe the behav-
ior of the muscle spindle when it is affected by an alpha motoneuron. The estimated
coefficients of the summation function are positive for a very short period in the begin-
ning, indicating an acceleration of the system’s firing. However in the interval between
11–50 ms the system is blocked by the presence of the alpha motoneuron and its be-
havior is inhibitory. This becomes obvious from the negative values of the estimated
coefficients. The recovery function is modelled by a first-order polynomial. The graph-
ical presentation of the recovery function shows an increase, which tends to cross the
threshold level. This fact indicates a tendency for possible activity of the system.
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Summary. The auditory brainstem in mammals contains a neural circuit for sound localization.
The exact functioning of this circuit is still under controversy. Two spike generation mechanisms
studied previously, excitatory coincidence detection and inhibitory coincidence detection, are
studied here regarding the input-output relationship of the spike time densities. We propose that
synchronous binary multiplication operation on spikes is the underlying process of these two
variants of coincidence detection. A derivation of time to the spike is shown, which enables us
to estimate the contribution of the neural circuit in the auditory brainstem to the overall reaction
time of sound localization. The brainstem contribution is minute compared to the conduction
delays in the mammalian neocortex. Finally, the skewness of the resulting output spike time
densities is discussed in both the excitatory and inhibitory cases and the inhibitory case is shown
to be close to the normal density with a standard goodness-of-fit test for the normal probability
density function.

Key words: Coincidence detection, directional hearing, interaural time delay, stochastic neu-
ronal model.

22.1 Introduction

The auditory brainstem in mammals contains a neural circuit for sound localization.
When the direction of incoming sound changes, so do the differences of some of its pa-
rameters between the two ears (interaural parameters). Sound localization is based on
these sound parameters: interaural spectral difference, interaural intensity difference
and interaural time difference (ITD). In this chapter we deal only with the ITD. The
ITD changes when there is a change of the angle of the line from the sound source to
the center of the head with the left-right symmetry plane. The discrimination threshold
of this angle change in humans corresponds to a time difference in the range of 10
microseconds. Alternatively, such a short time difference can be described as a sound
phase difference. Of course, such short time differences are not perceived subjectively.
They are only employed in the sound localization circuit in the brainstem.
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In the brainstem of birds the ITD is processed by a delay line [16], as it was sug-
gested more than half a century ago in a visionary work of Jeffress [5]. However, such
a delay line has not been found in mammals and recent experiments [1,4,12] and [15]
indicate that the mechanism of the ITD processing in mammals does not work as the
delay line. Yet in both birds and mammals the microsecond ITD has to be somehow
detected by a unit (by a neuron, or by a neural circuit) acting as a coincidence detec-
tor. Without the coincidence detection none of the circuits in both birds and mammals
would work.

This chapter presents a stochastic model of the coincidence detection (CD) in the
auditory brainstem neural circuits. We have studied the feed-forward processing in the
brainstem previously [8, 10, 11]. Here we present a not yet published example of CD
using the beta density as a probability density of input spike occurrences in time. We
stated previously that in the brainstem circuitry two types of CD take place, based on
the polarity of the synaptic transmission. We call these two types of CD the excitatory
CD and the inhibitory CD [10].

In [14] the CD was proposed as a mechanism for multiplication of firing rates
within a limited spiking frequency range of asynchronous spike trains in a compound
eye of a crab. Since in our synchronous cases the frequency is a sub-harmonic of sound,
in our versions of spike operations only binary and not continuous multiplication with
spikes is implemented.

22.2 Results

22.2.1 Conditions of Coincidence Detection

Following [14], we denote input from one side A, and from the other side B. The CD is
realized when input spikes from both sides are closer in time than the fixed value of �,
which is a constant of the neural circuit. During neuronal relaying, spikes are subject to
a delay with a random component. We assume that the random delays on sides A and
B are mutually independent and identically distributed non-negative random variables
D with a maximum value of δ:

0 ≤ D ≤ δ. (22.1)

For relevant sound frequencies and delays the length of the window for CD � is not
longer than the maximum delay δ and the delay δ is not longer than the sound period
T :

0 ≤ � ≤ δ ≤ T . (22.2)

In the excitatory CD the spike is generated only when the two spikes from sides A
and B meet in a time interval shorter than �, in other words when the two spike delays
DA and DB are closer in time than �:

|DA − DB| ≤ �. (22.3)
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Fig. 22.1. Generation of the output spike trains of the CD mechanisms. Trace A: Sound with
the frequency 500 Hz. Trace B: Series of spike time densities f (x) phase locked to the sound
rising phase. Traces C and D: The windows of length � (thin rectangles) are triggered by the
leading edges (thick horizontal bars) of the spikes. These spikes (thin smooth functions with cut
off tails) are postsynaptic potentials of the two inputs. The D trace is flipped vertically to show
the overlaps of the coincidence detection windows. Trace E: The spike train of the excitatory
CD is generated by placing the output spike aligned with the later of the two spikes of C and D,
if the two windows of length � overlap in time. Trace F: For the output spike in the spike train
of the inhibitory CD, all the conditions for the excitatory CD are necessary and furthermore the
(inhibitory) spike from the contra-lateral side (trace D) must arrive sooner in time than the spike
from the ipsi-lateral side (trace C). The F trace is also flipped vertically.

In the inhibitory CD the condition expressed in equation (22.3) is modified. Spikes
must arrive in the right succession. The excitatory spike from side A must come after
the inhibitory spike from side B. This is formulated as

0 ≤ DA − DB ≤ �. (22.4)

Mechanisms showing how these excitatory CD and inhibitory CD are generated are
shown in Fig. 22.1. The example sound frequency is 500 Hz in the figure. The post-
synaptic potentials of the two inputs from cochlear nuclei are the series of alpha func-
tions, x exp(−x/τ), with τ = 1 ms. The window duration is � = 0.66 ms, mean de-
lays are E(DA) = E(DB) = 0.33 ms and their standard deviation is 0.18 ms. Note the
longer duration of these alpha functions, compared to the CD windows, even though
their time constant τ is shorter than typical biological time constants of postsynaptic
potentials. Durations of all the events depicted in Fig. 22.1 are only loosely to scale.
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Further, we denote the probability of events described by inequalities (22.3) and
(22.4) as P(�). For � = 0 it holds that P(�) = 0. In the case of � = δ, P(�) =
1, and since P(�) monotonically increases with �, P(�) as a function of � is a
cumulative distribution function. Random variables D are distributed in accordance
with a given probability density function f (x). Then for the excitatory CD, P(�) =
Prob(|DA − DB| ≤ �) can be calculated. Analogously for the inhibitory CD, P(�) =
Prob(0 ≤ DA − DB ≤ �). The output spike is emitted at the moment of the latter
input spike. The output time density for specific examples of D and f (x) and the
rationale behind these examples are given in Section 22.2.3. In Fig. 22.1, beta density
B24 discussed in Section 22.2.3 is shown as the example of the density f (x).

22.2.2 Further Sources of Probabilistic Spiking

Under conditions (22.3) or (22.4), respectively, when � < δ, the spike generation
probability is lower than 1. In [11] we showed that lowered spiking probability is also
due to the process of sub-harmonic spike generation, which progressively lowers the
spiking probability towards higher frequencies. We also gave a formula for dependence
of this probability on the main sound frequency in that paper. Let us denote the net
spiking probability set by the processes mentioned above as p. Further, one could ask:
How many sound cycles and how much time does it take before the output spike is
generated with desired reliability? Let us study the 50% and the 95% reliability. The
processing time will determine the processing speed and therefore the reaction time
for the sound localization circuit as a whole.

The procedure to calculate the processing time is shown in Fig. 22.2 for the two
example values of p = 0.4 and 0.8. N is the number of sound cycles from 1 up to the
cycle in which spikes at both neurons A and B are generated together at some time.
Let P(n) denote the probability that N ≤ n. P(n) is a discrete cumulative distribution
function of n. Using the spike delivery probability p we calculate a probability of how
many cycles it will take for the mechanisms of the excitatory CD and of the inhibitory
CD to generate their output. From this we will characterize the processing time by the
two example values of N : by the number of cycles at which there is a 50% reliability
of generating the output spike and by the number of cycles needed to reach a 95%
reliability that the output spike is generated. The processing times to the first spike of
the 50% and 95% reliabilities are N T , for the sound period T and for the two example
values of N . The larger of the last two delays D in the last sound cycle is not included
in these formulas, see [11] for details. In calculating these processing times we also
set the coincidence detection probability in (22.3) to P(�) = 1. Other cases, with
P(�) < 1, would be calculated analogously.

The N is the minimal n such that the probability P of spike generation in cycle n
is P(n) ≥ R (where reliability R is 0.5 or 0.95). This N is found as the occurrence of
a success in a partial trial of a set of Bernoulli trials. This scheme does not exclude the
occurrence of a success in some other partial trial. Consequently, the probability of the
event that a success occurs in at least one partial trial of n trials does not equal np2, as
one might naively expect, but the probability equals to 1 − (1 − p2)n . Therefore we
seek the minimal natural number N satisfying inequality
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Fig. 22.2. Determining processing time counted in sound cycles from P(n). P(n) is discrete
and is discretized by the sound period steps. The values of P(n) are the following: during the
first cycle P(1) = p2, during the second cycle P(2) = p2 + (1 − p2)p2, in the nth cycle
P(n) = ∑n−1

0 (1 − p2)i p2 and this sum gives the left side in inequality (22.5). P(n) = 1 for
n → ∞. Intersection of these staircases with horizontals at R = 0.5 and R = 0.95, respectively,
gives the values of natural number N . Examples with p = 0.4, light line, and p = 0.8, bold
line, are shown, the latter in order to demonstrate that N can even be equal to 1 for the value of
p >

√
2/2 and the reliability value of R = 0.5.

1 − (1 − p2)N ≥ R (22.5)

for unknown N and for the values of R equal to 0.5 and to 0.95. Solving this inequality
for N we obtain N as

N =
⌈

log(1 − R)

log(1 − p2)

⌉
, (22.6)

where 1.2 denotes rounding towards the nearest larger natural number. The base of the
logarithm in both the numerator and the denominator can be arbitrary. Some numerical
examples are shown in Fig. 22.2 and some others are used as parameters in a table
in [11].

22.2.3 Examples of Input and Output Density Functions

For the input spike time probability density function we will use the beta density. We
will write the beta density in a standard form, as

Bab =
{

xa−1(1 − x)b−1 B(a, b)−1, for x ∈ [0, 1]
0 otherwise,

(22.7)
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where the parameters a, b > 0 and B(a, b) is the beta function. The beta density with
a, b ≥ 1, a < b, which means nonzero skewness, fits well to experimental data. This is
also because its nonzero value is confined to the range of [0, 1] and this guarantees the
assumption (22.2), namely that the spike fits into one sound cycle, after the cycle length
[0, T ] is normalized to [0, 1]. We substitute the beta density Bab with parameters a, b
for the probability density function f (x) of DA and DB in equation (22.3). For a = 1,
b = 1, the probability density function becomes the uniform density. The uniform
density was used as a choice for f (x) in [10]. Next we will use parameters a = 2 and
b = 4 as the example:

B24(x) =
{

20x(1 − x)3, for x ∈ [0, 1]
0 otherwise.

(22.8)

To calculate the probability of the CD the condition (22.3) has to be fulfilled. Therefore
for the excitatory CD we seek a density u of the random variable W = |DA − DA|,
where DA and DB are distributed in accordance with equation (22.8). As the interme-
diary step giving out the density for the inhibitory CD we set

Z = DA − DB, (22.9)

with its density denoted q(z).
We substitute f (x) = B24(x) and g(x) = B24(x) into the standard convolution

formula for the sum of two random variables, q(z) = ∫ ∞
−∞ f (x)g(x − z)dx . The

piecewise evaluated integral q(z) is

q(z) =
∫ min(z,1)

max(z−1,0)

f (x)g(z − x)dx

=
∫

z∈[−1,0]
f (x)g(z − x)dx +

∫
z∈[0,1]

f (x)g(z − x)dx

=
∫ z

0
f (x)g(z − x)dx +

∫ 1

z−1
f (x)g(z − x)dx .

Obviously, q(z) is an even function. We substitute into these integrals for f and g
from (22.8) and we obtain the sum of two ninth-degree polynomials in two variables x
and z when starting with a fourth-degree polynomial B24. This would require tedious
calculation without the use of a symbolic manipulator software package (we used the
Symbolic Math Toolbox of the Matlab package).

In summary, using (22.3) and assuming that DA and DB are distributed with den-
sity (22.8), then Z = DA − DB for the inhibitory CD has the following density:

q24(z) =



−0.6349z9 + 2.8571z7 − 20z4 + 33.33z3

−17.1429z2 + 1.5873, for x ∈ [0, 1],
0.6349z9 − 2.8571z7 − 20z4 − 33.33z3

−17.1429z2 + 1.5873, for x ∈ [−1, 0]
0 otherwise.

(22.10)
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Fig. 22.3. Densities of input and output time in one sound cycle. B24, broken line, is the input
beta density with parameters of a = 2, b = 4. The intermediate result of calculations, q24, is
the solid line, in fact consisting of the two separate but aligned polynomials for x in [−1, 0]
and in [0, 1], respectively, of (22.10). Dots, superimposed on the left branch, denoted N (0, σ24),
belong to the normal density with the respective mean and standard deviation and are close to
the solid lines of q24. Solid line marked with squares is the output density u24, which is zero
outside the range of [0, 1].

The variable calculated as the absolute value of W = |DA − DB| for the excitatory
CD then has the resulting density u24(w), u24(w) = 2q24(w) for w ∈ [0, 1] and
u24(w) = 0 otherwise.

Starting from B24, for enough sample data points, the numerically calculated den-
sity of q24(z) is close to the normal density. Testing 500 data points of the density
q24(z) for the samples of normal density gives the positive answer with a significance
level of 10−15. This was in the Jarque–Bera test [2] for goodness of fit to, or departure
from, the normal density, based on the sample kurtosis and skewness.

Therefore the normal density N (µ, σ ) with zero mean and adjusted standard de-
viation of σ24 = 0.2518 can replace the density q24. For maximal delay δ the range
of x is x ∈ [0, δ], in other words we should substitute x/δ for x . This renormal-
ization will match to the B24 with nonzero values from [0, 1] and the standard de-
viation of N (µ, σ24) will be equal to σ24 = 0.2518/δ. The nonzero but close to
zero values of N (µ, σ24) outside the range of [−1, 1] are negligible, as shown by the
above-mentioned significance level. Densities B24, q24, u24 and N (µ, σ24) are shown
in Fig. 22.3. In the next section we comment on the prospective use of the normal
density in the description of output density. Even though the input beta density is used
specifically because the input spike trains are generated by a sound stimulus, the output
density q24 for the inhibitory CD is close to the normal density. The signs in the gener-
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ation of the excitatory CD do not cancel, the algorithm is not symmetric in this sense.
Therefore its output density u24 is also not symmetric and has a nonzero skewness.

22.3 Discussion

The wiring of the brainstem circuits for the CD is described in detail in previous works
[11] and reviews [5]. We will discuss only the differences between the excitatory and
inhibitory CD below. Of all the experimental literature which calls for an alternative to
a delay line theory in mammals we list just the representative papers [1, 4, 12].

Concerning the difference in the summation sign between the excitatory and in-
hibitory CDs, we should note that the polarity change is possible in a neural circuit
only by chaining the excitatory and inhibitory synapse in series. In addition, negative
and positive amplitudes which are summed at a postsynaptic neuron have exactly two
origins: (1) the excitatory and inhibitory synapses at the same postsynaptic neuron and
(2) depolarization and hyperpolarization currents at the same neuron [3, 4] and [15].

All spike generation is discussed with respect to one sound cycle. Spikes are gen-
erated synchronously with a sub-harmonic oscillation and a limit frequency is imposed
to the output frequency. This frequency limit, also mentioned at the beginning of Sec-
tion 22.2.2, was used in [6] before. The processing time discussed in this section as
a contribution to the reaction time would be just a minute contribution to the cortical
processing in humans. However, the smaller the experimental animal is, the faster is its
cortical processing and then the processing time may be more important. These reac-
tion and processing times may also be of interest for an experimenter, who could devise
further experiments elucidating the functioning of the brainstem neural circuitry.

The prediction of the output density type is useful in the description of propagation
of the spike timing jitter into higher-order neurons within the auditory pathway. Most
authors choose normal density, sometimes because there is no prior knowledge about
the density. In the examples of output excitatory and inhibitory densities we show how
such knowledge can be derived. Other examples of densities can be found in [7, 9]
and [13].
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Summary. The human brain is characterized by complex convolution patterns. Analyzing the
variability of these patterns among human subjects can reveal information for the detection of
diseases that affect the human brain. This chapter presents a novel method to visualize the brain
surface and its folding pattern at different scales. The analysis steps involved are the transforma-
tion of the cortical surface from high resolution magnetic resonance tomography images (MRI)
to an initial representation as a triangulated mesh and finally to a representation as a series of
spherical harmonic basis functions. The spherical harmonic parameterization of the surface is
translation, rotation and scaling invariant. The parametric representation gives a multidimen-
sional coefficient vector for each cortical surface. The technique allows easier recognition of
convolutional patterns. The method is a first step toward a statistical multi-scale analysis of the
brain surface.

Key words: Brain surface visualization, shape analysis, spherical harmonic.

23.1 Introduction

The brain surface (specifically the cortical surface) is highly convoluted. Human sub-
jects show great inter-individual variability in their convolutional patterns [1, 2]. We
propose a method to simplify and visualize these convolutional patterns. Surfaces are
usually simplified by smoothing techniques. This removes unnecessary details while
keeping the coarse structure of the surface. Besides smoothing, our method transforms
the surface from the three-dimensional (3D) spatial domain to the frequency domain.
This will reveal important information on the convolutional patterns at different scales
[3, 4]. These scales represent the brain development [5] during fetal and embryonic
stages [6] up to the fully convoluted brain [7, 8]. With the advent of neuroimaging
procedures, the cortex can be visualized using noninvasive techniques like magnetic
resonance imaging (MRI). Through an image processing tool chain (see Materials and
Methods) the raw MRI data is converted to a 3D volume dataset. From this dataset, the
cortical surface is extracted [9] to a triangulated mesh consisting of several hundred
thousand vertices. This mesh structure describes the visible shape of the cortex and so
its convolutional pattern. However, to assess the different scales in the cortical surface
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the mesh has to be transformed to a new domain. A transformation to the spherical
domain has been done in [10] with smoothing based on linear diffusion. The surfaces
are restricted to being star shaped but this restriction had been eliminated in [11]. Flat
maps are commonly used to transform a 3D cortical surface into the 2D Euclidean
domain [12]. Transforming the cortical surface to the structural domain [13] repre-
sents the convolutions as a graph structure revealing quantitative properties previously
not visible in the original 3D object domain. Our method is based on the transforma-
tion to the spherical and frequency domains using spherical harmonic basis functions.
Spherical harmonics are commonly used for the decomposition of shapes equal to a
deformed sphere. Any object that is topologically equivalent to a sphere (no holes) can
be represented as a series of spherical harmonics basis functions. This transformation
will allow us to keep almost every detail in the fine cortical structure but also generate
a multi-scale description from coarse to fine convolutional patterns.

23.2 Materials and Methods

23.2.1 Surface Reconstruction

To reconstruct a cortical surface we follow a multistep approach: First 3D T1-weighted
MR volumes (192x250x250) at 1 mm resolution were acquired from 160 healthy sub-
jects (80 male, 80 female, age 20–30 years). Then the MR volumes were reoriented
to the plane of anterior and posterior commissure and transformed to the standard
Talairach stereotactic coordinate system [23]. Upon reorientation, the images were
processed for gray-scale normalization and removal of intensity inhomogeneities. A
fuzzy C-means algorithm was used to segment the tissue types [14]. The cortical sur-
faces are generated as smooth triangular meshes [15, 22], where brain substructures
such as brain stem and cerebellum have been removed [16].

23.2.2 Parameterization

The parameterization step fits a surface S: R2 → R3 to a set of data points Pi,i=1,... ,N .
The cortical surface can be described after a topological correction as a closed genus
zero surface [17], i.e., a deformed sphere. This makes the sphere the most natural
parameterization domain for the cortical surface [18, 19]. Choosing the sphere has
advantages, as no boundaries for a surface are defined on the sphere as in flat maps
[20] and an ideal basis set exists, the spherical harmonics. The mapping of the vertices
from the cortical surface to the sphere can be challenging since the cortical surface is
usually not star shaped. There have been different approaches for the spherical map-
ping algorithm. Quicken [24] maps a triangulated mesh by a constrained optimization
procedure. The constraints include area preservation and distortion minimization of
the mapped triangles. A hierarchical optimization is used, taking multiresolution ver-
sions from coarse- to fine-grained of the initial mesh as an input to the optimization
procedure. Fischl [15] establishes a surface-based coordinate system by transforming
each hemisphere of the cortical surface to a parameterized surface on the sphere. The
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mapped surface on the sphere is optimal with respect to metric distortions and degree
of folding. The spherical coordinate system (longitude, colatitudes) is used to describe
a point (x, y, z) on the original surface with its coordinates on the sphere. We use
the algorithm from Fischl implemented in FreeSurfer [15] which is computationally
feasible even for mesh resolutions up to 250,000 vertices and large subject sets.

23.2.3 Decomposition

Spherical harmonics form a complete orthonormal basis over the surface of the unit
sphere. Any radial function f can be expanded in terms of complex spherical harmon-
ics [11]:

f (θ, φ) =
∞∑

l=0

l∑
m=−l

Cm
l Y m

l (θ, φ), (23.1)

where l, m integers, l ≥ m ≥ 0, θ ∈ [0, π ], φ ∈ [0, 2π ]. The spherical harmonics Y
are defined as

Y m
l (θ, φ) ≡

√
2l + l(l − m)!

4π(l + m)!
Pm

l (cos θ)eimφ. (23.2)

Pm
l are the associated Legendre polynomials of order m and degree l and can be ex-

pressed in terms of the unassociated Legendre polynomials:

Pm
l (x) = (−1)m(1 − x2)m/2 dm

dxm Pl(x). (23.3)

A surface can be expressed in terms of spherical harmonics with the decomposition
into the three coordinate functions:

(X (θ, φ), Y (θ, φ), Z(θ, φ)) =
∞∑

l=0

l∑
m=−l

Cm
l Y m

l (θ, φ). (23.4)

The coefficients Cm
l are three-dimensional vectors for the three coordinate functions

X , Y , Z and can be computed by [21]

Cm
l = 〈

f (θ, φ), Y m
l (θ, φ)

〉 =
∫ π

0

∫ 2π

0
f (θ, φ)Y m

l (θ, φ)dφ sin θdθ. (23.5)

For a surface mesh, the function f (θ, φ) is only defined at the N mesh vertices. There-
fore, the method adopted by Brechbühler [21] is chosen where all the values needed
for the basis function are arranged in matrix B, bi j (l,m) = Y m

l (θi , φi ), the surface
data points (x, y, z) are arranged in a matrix X and the coefficients in a matrix C ,
ci j (l,m) = (Cm

l x, Cm
l y, Cm

l z). This results in the linear equation system B · C = X ,
with the coefficients matrix C as the solution. After the parameterization the surface is
now represented in the coefficient space within the spherical harmonic basis function
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Fig. 23.1. Cortical surface of right hemisphere and first 36 coefficients.

coordinate system completely scaling, rotation and translation invariant. It allows the
visualization and analysis at multiple scales. Fig. 23.1 shows the coarse-scale visual-
ization of the right hemisphere from an individual subject and the associated spherical
harmonic coefficients. The convolutional patterns are hidden, only the cortical outline
shape is visible. For statistical analysis a feature vector v is extracted for each cortical
surface m from the spherical harmonics coefficients:

vm =
K⋃

k=1
cm,k, (23.6)

where K is the number of coefficients, and cm,k is the coefficient k in subject m. Group-
ing the coefficients of all surfaces together results in the feature matrix F :

F =


c1,1 c1,2 c1,3 . . .

c2,1 c2,2 c2,3 . . .

. . . . . . . . . . . .

cm,1 cm,2 cm,3 . . .

c1,k
c2,k
. . .

cm,k

 , (23.7)

where cm,k is the coefficient k in subject m.
The feature vector vm and the feature matrix F will be used in subsequent analysis

steps.

23.3 Results

23.3.1 Surface Visualization

Comparing subjects according to their convolutional pattern is much easier at the
coarse scale. Fig. 23.2 shows one subject’s right hemisphere at different scales from
coarse (upper left) to fine convolutional patterns (lower right). The surface is visual-
ized as a series of spherical harmonic coefficients instead of the original triangulated
mesh. This new representation requires 1/10 of the original storage for the mesh, since
only the coefficients for each surface have to be stored. Fig. 23.3 depicts three subjects
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Fig. 23.2. Subject’s right hemisphere at eight different scales.

at three different scales. The left column reveals their difference in the inferior frontal
cortex (white arrow). In the middle column additional differences in the sylvian fis-
sure (white arrow) become visible. At the full scale (right column) the differences are
numerous, taking into account all convolutions in their final complexity. In a first step
toward a statistical multi-scale analysis, each surface is described by its feature vector
and the mean shape in the coefficient representation is computed.

23.3.2 Pattern Analysis

In order to compare cortical surfaces from different subjects the feature matrix F con-
taining the feature vectors is statistically analyzed. A shape characterized by its feature
vector v can be interpreted as a point in a high dimensional vector space. A distance
measure can now be applied to all of these points. The L P distance between two points

Fig. 23.3. Three male subjects visualized at three different scales.
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x, y ∈ RK is used (K is the number of coefficients):

L P (x, y) =
( N∑

i=0
|xi − yi |P

)1/P

(23.8)

with P = 1 the L1 distance,

L1(x, y) =
( N∑

i=0
|xi − yi |

)
(23.9)

between two feature vectors used as a similarity measure. As seen in the Fig. 24.1 the
coefficients are decreasing in amplitude from low to high frequencies. Low frequen-
cies have high impact in the distance between feature vectors. Low frequencies encode
overall shape and extend the cortical surface; therefore, the similarity measure is sensi-
tive to match these properties first when comparing two cortical surfaces. To overcome
this limitation a Spearman rank correlation matrix between all subjects is established:

R =


r1,1 r1,2 . . .

r2,1 r2,2 . . .
...

ri,1 ri,2 ...

r1, j
r2, j
...

ri, j

 , ri j = 1 − 6
∑K

k=1 (dk,i − dk, j )
2

K (K 2 − 1)
, (23.10)

where dk,i is the statistical rank of coefficient k in subject i .
The nonparametric Spearman rank correlation is used in favor of the Pearson cor-

relation, because the coefficients in feature vector v are already ordered from low to
high frequencies. The overestimation of low frequencies can be avoided since the sta-
tistical rank differences between coefficients and not their absolute value are used in
the measure.

Combining statistical measures. Both statistical measure L1 distance and Spearman
rank correlation are combined to define a similarity measure for the feature vectors:

rli, j = (1 − ri, j ) li, j , (23.11)

where ri, j is the Spearman rank correlation between feature vector of subjects i and j ,
and li, j is the distance between feature vector of subjects i and j .

Through a cluster analysis the cortical shapes are organized into groups accord-
ing to their shape properties. This could potentially lead together with neuronal and
cellular properties of the cortex to a taxonomy of brain surfaces. Since there is no a
priori hypothesis about cluster groups of cortical surfaces, a hierarchical cluster anal-
ysis is employed. The joining tree clustering joins together feature vectors of cortical
surfaces into successively larger groups. The joining operation requires some similar-
ity or distance measure. The combined L1 distance and Spearman rank correlation is
used as the measure. Each step in the clustering algorithm joins together two objects.
The value of rli, j chooses the two closest objects. As more objects are grouped to-
gether the cluster becomes larger and contains more dissimilar elements according to
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Fig. 23.4. Cluster groups for 80 male subjects for 3 and 10 harmonies.

the measure rli, j . The algorithm operates as follows. In the first step each object re-
sides in its own cluster, the distance between two objects is rli, j . In subsequent steps
two clusters with more than one element have to be compared. The linkage rule which
decides if two clusters are similar is determined by the matrix R, the subjects being
the union of the two clusters’ subjects. The two objects with the maximal correlation
are computed as well as their L1 norm. If the value rli, j is below the threshold then
the minimum correlation and maximum L1 norm between all subjects in the newly
formed cluster are computed. If these are also below the threshold the new cluster is
formed. This prevents the cluster from becoming too heterogeneous according to the
similarity measure rli, j .

At three harmonies only 16 coefficients from the spherical harmonic series are
used; therefore, only the coarse shape is reconstructed and clustered. Fig. 23.4 shows
that three cluster groups have emerged at three harmonies. At 10 harmonies primary
folding patterns are visible, the cluster groups have been spread out and the dissimilar-
ity among the cortical surfaces is much higher—therefore smaller clusters have been
formed. Fig. 23.5 shows subjects at 3 and 5 harmonies from the same cluster group as
well as the same subjects at 10 harmonies in different clusters.

Fig. 23.5. Individual subjects at 3, 5 and 10 harmonies. At 3 and 5 harmonies all subjects belong
to the same cluster. At 10 harmonies the subjects fall into different clusters.
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23.4 Conclusion

The method allows variable scale analysis and visualization of the cortical surface de-
spite differences in size and shape of the convolutional patterns. Each surface is trans-
formed from the common spatial domain representing the cortex in three-dimensional
coordinates, to the frequency domain representing the cortex as spherical harmonic
coefficients. In the frequency domain cortical folds are expressed through low fre-
quencies forming the coarse shape and high frequencies adding finer folding details.
The spherical harmonic transformation reduces the complexity of the cortical surface.
Simplified cortical surfaces allow easier comparisons of cortical convolutions. Corti-
cal surfaces expressed as an ordered series of spherical harmonic coefficients make
statistical analysis in large group studies possible. The statistical analysis can group
surfaces into clusters according to their shape properties and folding patterns.
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Summary. Over the last couple of years, it can be said that the focus of the computational
aspects of neurons has moved from synaptic weight and firing rate encoding to temporal firing
encoding. On the other hand, several elements of these models have been based on some concep-
tual assumptions that imply relative simple dynamic behaviour of neuronal membrane activity
in an active-passive process. In line with recent advances that have produced a better under-
standing of the biochemical processes that occur within cells, it is proposed that the processes
that are involved in a membrane depolarisation cascade are less static than have been assumed
so far. In particular, the possibilities of low level computation at the membrane level need to be
explored more extensively. In this chapter some computational properties of the spike generation
processes are explored using phenomenological models.

Key words: Neuronal membrane, computation, Hindmarsh–Rose model, chaotic control, syn-
chronisation.

24.1 Introduction

The limited dynamic behaviour that exists within models currently studied for spike
generation is partly due to the fact that little is known about the low level interaction
of the components that generate the depolarisation cascade. Even though it has been
known for a long time that the ionic channel dynamics is voltage gated as well as gated
by other mechanisms, the interaction between different transmembrane components
and intracellular processes is less well known [1, 7]. This may, in part, be attributed
to the difficulty of measuring accurately the exact state of individual channels and the
difficulty of acquiring information about the subcellular processes that are involved in
the spike generation cascade of living cells. The construction of theoretical models of
these channels has already produced a large body of knowledge about the conductance
behaviour of ionic channels. This knowledge is, however, limited by the underlying
assumptions of the models. The stable state of most conductance models, such as the
well-known Hodgkin–Huxley system, does not include further dynamical aspects be-
yond mere responses to global changes in voltage. By developing abstract models of
more complex systems with the specific aim to produce systems that are capable of



266 T. olde Scheper

some level of computation and comparing the performances with biological systems,
a much more detailed understanding of the possible processes may be reached.

24.2 Membrane Elements as Computational Units

To achieve a better understanding of the processes involved in the possible computa-
tions performed at the molecular level in the neuronal membrane, a membrane com-
putational unit can be defined. A membrane computational unit (MCU) is formed by
a collection of ionic channels and other transmembrane proteins that contribute to the
formation of a single depolarising spike in a neuronal membrane at that point. The
composite elements are not evenly distributed nor is it assumed that they are all in a
similar state. Indeed, these states may be responsible for a localised mechanism that
may be capable of some types of computation. The advantages of such mechanisms
are extensive. A combination of localised membrane-specific computation and global
computational activity of the entire neuron will allow a staggering amount of process-
ing elements. Furthermore, each MCU does not have to be specifically defined but can
be organised in response to local dynamic behaviour.

Local state changes of the complex interactions of membrane depolarising units
have not been considered to be very relevant in the overall theory of neuronal com-
putation. Indeed, an emphasis appears to exist to reduce the membrane components
of an electrically active cell to mere conductive elements with the computation solely
provided by intercellular communication [1]. This model of cellular activity is based
on single and population channel dynamics in an enforced fixed state. However, if one
considers that the interaction of all the channel proteins are of an extremely complex
nature, as can be derived from the rest of the biochemical pathways [2], it appears to
be more likely that localised states and state-induced processing are not only possible
but functional.

The biophysical structure of the membrane may be described as a mosaic of ionic
channels and other membrane-bound proteins. The biophysical organisation of the
neuronal membrane mosaic determines the properties of the membrane, such as con-
ductance [3]. This is depicted schematically in Fig. 24.1 where the octagons represent
an ionic channel organisation and the circles molecules that are capable of inducing
adaptation. In a static model environment, the adaptation may cause the global neu-
ronal behaviour to change in response to a depolarisation input current. In a temporal
and spatially dynamic model the localised adaptation may cause the local environment
to change in response to local and global effect. This includes both local adaptation as
activity-induced adaptation of the membrane mosaic (Fig. 24.2 and 24.3).

The conductance models, as currently used in systems of computational neurons,
are generally based on the original models (or variations of it) as defined according
to the Hodgkin–Huxley dynamics [6, 15]. This describes each ionic channel as a con-
tinuous state variable whose dynamic behaviour in time is described by first-order
kinetics. Each channel equation has an increasing term and a decreasing term of the
conductance dependent state variable n, e.g., dn/dt = αn(V ) × (1 − n) − βn(V ) × n.
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Fig. 24.1. The biophysical
mosaic.

Fig. 24.2. Local response
of conductive elements in
presence of adaptation.

Fig. 24.3. Activity-induced
adaptation in nearby con-
ductive elements in a bio-
physical mosaic.

The activation and inactivation rate functions αn(V ) and βn(V ) were then experimen-
tally determined by varying the voltage. The resulting equations were subsequently
derived from the experimental data set by fitting elementary arithmetical operations as
functions of the voltage. There are several assumptions made within this model that
may now be considered to be too unassuming.

The possible states of the ionic channels can be primarily determined by the con-
ductance but the existence of additional states is not impossible. It could be considered
that other states, such as a blocked state, are part of the normal state transitions that oc-
cur. The kinetic dynamics of the molecular interactions are rarely of first order within
other biochemical reactions and this may be recognised by considering the subdo-
mains and co-proteins of the ionic channel as part of the kinetic equation. The rate
of opening and closing as described by the α(V ) and β(V ) functions only describes
the channel dynamics but does not explain the mechanisms by which these dynamics
have emerged. Furthermore, the functions, as currently used to describe the spike gen-
eration process, are incapable of exhibiting other dynamics than fixed state dynamics
(by external periodic forcing and similar mechanisms, some more complex dynamic
behaviour of the voltage may be produced but these do not change the stable state of
the Hodgkin–Huxley system itself).

It can be argued that the localised dynamics exist by virtue of the biochemical
processes involved. In other words, the enzymatically controlled chemical reactions
and the membrane processes controlled by secondary and tertiary molecular structural
changes do allow more complex dynamics to occur. The observation of noisy oscilla-
tions is not precluded by this assumption. It may also be considered that if the highly
controlled processes that can be found in the biochemical pathways were not present in
the proteins involved in the formation of the depolarisation cascade, they would form
a complete separate part of the entire biochemical system. An uncontrolled and noisy
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process, such as the depolarisation cascade, is simply not energetically favourable if
by controlling the process, energy can be saved. The next step in process control, in
the sense of allowing some depolarising currents to result in a spike or of blocking
such currents locally, seems to be a mere optimisation of the complete controlled pro-
cess. True localised computation may then follow readily and it can then be possible
to define a spatially and dynamically bound unit which forms the minimally required
computational element or MCU.

Ideally, one would like to describe all processes and molecules involved at the bio-
physical level and study the system using the physical properties of those processes.
The complexity of such a modelling system is of very high order and, by assuming
that the underlying computational process is not dependent on unique physical cir-
cumstances, the use of more phenomenological models is justified with the aim of
understanding what is required to achieve some particular computational process.

24.3 Membrane Computational Unit Model

With the aim of simulating computational processes within an MCU, several bio-
logically relevant phenomenological models are combined. Each model of an MCU
has at least two different components that act together to produce a system which is
capable of complex emergent behaviour. One is a spike generation component and
the other a controlled chaotic drive component. The spike formation component has
been derived from the Hindmarsh–Rose (HR) model [5] but includes a fourth slow
recurrent equation which represents the slow calcium exchange between intracellu-
lar stores and the cytoplasm [10]. This makes the modified HR model more like a
chaotic Hodgkin–Huxley (HH) model of stomatogastric ganglion neurons [10]. The
four-dimensional HR can therefore be accurately interpreted as a phenomenologi-
cal model of the conductance-based HH model. The parameter values for the four-
dimensional Hindmarsh–Rose (HR4) model are a = 1, b = 3, c = 1, d = 1, e = 1,
f = 5, g = 0.0275, u = 0.00215, s = 4, v = 0.001, k = 0.9573, r = 3.0, m = 1,
n = 1 and rest potential x0 = 1.605. The variable I represents the input to the unit
which can be external square input pulses or input from other units. With these param-
eter values the model is stable in the resting potential but shows low dimensional chaos
in the bursting patterns [10].

d x
d t

= a y + b x2 − c x3 − d z + I (24.1)

d y
d t

= e − f x2 − m y − g w (24.2)

d z
d t

= u (s (x + x0) − n z) (24.3)

d w

d t
= v (r(y + l) − k w) (24.4)

It is also possible to add another inactivation current which competes with the
third current to return the system to the equilibrium state. The third equation of the
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HR4 model (24.3) is then complemented with a fifth equation resulting in the five-
dimensional Hindmarsh–Rose model HR5. The effect of the faster inactivation current
z f (24.8), compared to the slower inactivation current as used in HR4, is that the sys-
tem tends to burst less. The faster current makes the system return faster towards the
equilibrium where only a larger (re)activation current can cause the system to burst. In
the MCU model, the HR5 system allows the temporal separation of spikes by increas-
ing the refractory period. Parameter values for (24.8) are s f1 = 8, s f2 = 1, n f = 4 and
the parameter d f = 0.5 in (24.5). The parameters ss = 4 and ns = 1 have the same
value as the equivalent parameters in (24.3).

d x
d t

= a y + b x2 − c x3 − ds zs − d f z f + I (24.5)

d y
d t

= e − f x2 − m y − g w (24.6)

d zs

d t
= u (ss (x + x0) − ns zs) (24.7)

d z f

d t
= u ((s f1 (x + x0) − s f2 x2) − n f z f ) (24.8)

d w

d t
= v (r(y + l) − k w) (24.9)

Connecting these HR models will result in different types of behaviour, such as
stable periodic and chaotic synchronised and unsynchronised behaviour [10]. These
depend on continuous, relatively large, inputs to the model. It is possible to make
continuous connections of HR4 models that change the chaotic spike bursting into slow
oscillations [12]. However, the system need not be purely chaotic to make use of some
of the properties of chaotic systems, such as control and synchronisation. A controlled
chaotic system is a system which is inherently chaotic but is limited to a controlled state
such that the resulting dynamic behaviour is indistinguishable from periodic behaviour
[14]. For some types of control, such as rate control and Ott–Grebogi–Yorke (OGY)
control [8, 14], the chaotic system is only perturbed into the unstable periodic orbit
during very small periods of its evolution. Outside the control period, the controlled
system is still capable of synchronisation [9]. This feature allows the use of a stable
controlled period generated by a controlled chaotic system to synchronise to another
system even if they have different periods.

To introduce the required controlled chaotic behaviour in either of the HR models,
a scaled and inverted Rössler system has been used [13]. This is necessary because the
normal Rössler model has a different time scale from the HR4 model. As can be seen
in Table 24.1, the scaled variables are proportional to the normal Rössler parameter
values. It is possible to map the time scale of the modified Rössler (R3) model to fit
the time scale of the HR4 model and use the R3 system to generate patterns. In addition
to the scaling, the ur variable has been inverted to enable the convenient use of this
variable as the drive for the HR4 model.

d xr

d t
= −br yr − dr ur (24.10)
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Table 24.1. Scaled parameter values compared to normal Rössler model values.

Parameter Normal value Scaled value

ar
1
5

1
75

br 1 1
15

cr 1 1
15

dr 1 1
50

kr 5.7 −0.57

wr
1
5 − 1

75
pr 1 −1

d yr

d t
= cr xr + ar yr (24.11)

d ur

d t
= pr ur xr + kr ur + wr (24.12)

The R3 system is controlled into an unstable periodic orbit using a chaotic rate
control mechanism [8]. This mechanism allows the system to exhibit different periodic
orbits by limiting the rate of change of equation (24.12). The rate control variable σ

is only different from 1 if the variables x and u are diverging rapidly, i.e., when the
chaotic manifold is stretching or folding. Equation (24.12) is modified to (24.14) as
shown below. The rate control parameter µ determines the strength of the rate limiting
function and the parameter ξ can have different values but is usually −2 ≤ ξ < 0. This
chaotic control mechanism is very effective at stabilising different unstable periodic
orbits, but not for any given value of µ and ξ . Typically used values are µ = 6 and
ξ = −1 or ξ = −2.

σ(x, u) = e

ξ(xu)

(u + x + µ) (24.13)
d ur

d t
= σ(xr , ur ) pr ur xr + kr ur + wr . (24.14)

The controlled chaotic system is now connected to the four-dimensional Hindmarsh–
Rose system via the HR4 z variable. Equation (24.3) is subsequently modified to be-
come

d z
d t

= u (s (x + x0) − q ur z). (24.15)

Because the ur variable of the scaled Rössler R3 system is always negative, the
parameter q in equation (24.15) is negative: q = −12.

Finally, different HR-type systems may be connected electrically by summation of
the two main currents. It is possible to extend this to all currents but this does not seem
to have a significant effect on the qualitative behaviour of the two connected systems.
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By adding the total differences in activity of the HR models’ x and y variables as
follows, depending on the choice of α, different dynamic behaviour will result:

Ii (x) = αi (x)
∑

j
(x j − xi ) (24.16)

Ii (y) = αi (y)
∑

j
(y j − yi ). (24.17)

For example, for α(x), α(y) > 0 the resulting HR system will act as a logical AND
of the input spikes. With α(x) = 0 and α(y) > 0, the resulting HR system acts as an
AND-NOT gate, i.e., it is only active if one of the inputs has produced a spike but not
if both spike together and not if only the other input has a spike. This may be used to
detect both coincidental spikes as well as single spikes from one source only.

24.4 SyncMCU

The different computational elements described may be combined to construct an en-
semble of computational elements capable of solving computational problems. For
example, consider Fig. 24.4 where five computational units are linked. Here, units
HR4R3-1 and 2 are made from four-dimensional HR systems, driven by a controlled
scaled Rössler system R3. Unit HR5-AND consists of a single HR5 system, with-
out a controlled chaotic drive, but electrically connected to units HR4R3-1 and 2
using (24.16) and (24.17) with α(x), α(y) > 0. Unit HR4-ANDNOT consists of a
four-dimensional HR4 system but with a scaled R3 drive. It receives input from units
HR4R3-1 and 2 but with α(x) = 0 and α(y) > 0. Lastly, unit HR4 is a normal HR4
system without an R3 drive, that only receives input from unit HR5-AND. All the R3
drive systems are controlled in the same unstable periodic orbit but the driving scalar

Fig. 24.4. Schematic representation of the SyncMCU model.
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is small such that by itself it does not cause the system to fire. The R3 systems may
therefore act as a localised subcellular clock that can be in or out of sync with other
units.

The configuration shown in Fig. 24.4 may act as a detector of desynchronisation
of two input signals. Given an additional external input to the units HR4R3-1 and 2,
which are combined in unit HR5-AND and then passed on to unit HR4, the unit HR4-
ANDNOT will detect if unit HR4R3-2 fires but HR4R3-1 does not. Note that if they
both fire, HR4-ANDNOT does not fire unless it has fired recently. We can now use
this to attempt to synchronise unit HR4R3-2 with unit HR4R3-1 even if they have
completely different periods.

To enable unit HR4-ANDNOT to synchronise the units HR4R3-1 and 2, a syn-
chronisation function is defined as

d S
d t

= κ1(x1
r − x2

r )θ(x) − κ2S, (24.18)

where κ1 and κ2 are the growth and decay parameters, and xn
r are the xr variables of

the controlled chaotic scaled Rössler systems of the units that are synchronised. The
function θ(x) is a threshold function on the x variable of the HR4 system of the unit
HR4-ANDNOT. Parameters for (24.18) are κ1 = −0.75, κ2 = 0.5 with the threshold
set at −0.5.

24.5 Results

In Fig. 24.5 and 24.6 can be found the results of the SyncMCU model. The model is
integrated using different time steps and verified with several numerical integrators,
such as the fifth-order Runge–Kutta and Prince–Dormand Runge–Kutta integrators,
which all produced qualitatively similar results. Because the model cannot start from
an a priori established initial stable state, the model is run for 5000 time steps without
chaotic control to allow the Rössler model to reach the domain of its strange attractor.
At time step 5000, the chaotic control is enabled, resulting in subthreshold activity
which ensures that the model is in a stable periodic orbit before external input is pre-
sented. At time step 10000, the external input is enabled which generates pulses of
width 10 with period 290 for HR4R3-1 and period 400 for HR4R3-2.

In both Fig. 24.5 and 24.6, the x variables of HR4R3-1 and 2 are shown for the
first 25000 time steps only. This enables the period, due to the combined effect of the
controlled chaotic drive and the external input, to become visible. They are verified to
continue in the same multiorbit for very long runs. As can be seen in Fig. 24.5(c) and
(d), in the unsynchronised case, units HR5-AND and HR4-ANDNOT show spiking
patterns at the combined harmonic input periods. Because the system is responding to
the effects of the external input combined with its internal controlled chaotic drive, the
emerging patterns appear fairly noisy.

In the synchronised case, as shown in Fig. 24.6(c) and (d), the emerging patterns are
corrected by the synchronisation pulses shown in 24.7(b) on the internal unit controlled
chaotic drive, and the patterns are much less noisy than in the unsynchronised case.
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(a) Evolution of x variable of HR4R3-1. (b) Evolution of x variable of HR4R3-2.

(c) Evolution of x variable of HR5-AND. (d) Evolution of x of HR4-ANDNOT.

Fig. 24.5. SyncMCU model without synchronisation.

By superimposing the synchronised and unsynchronised unit HR4-ANDNOT in Fig.
24.7(a) the extent of synchronisation correction becomes more clear, indicating that the
correction made by the synchronisation function is effective even though the periods
of the external input patterns are very much different.

24.6 Conclusion

Using a combination of phenomenological models, it may become possible to study
computational aspects of neuronal membrane functions. The computational aspects
that can be modelled using the MCU paradigm can give indications of biophysical
features that may be hidden from the experimentalist at this moment. It can also ex-
tend the computational ability of neural and neuronal networks by more distributed
computation and the use of simple computational steps to perform important signal
processing functions.
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(a) Evolution of x variable of HR4R3-1. (b) Evolution of x variable of HR4R3-2.

(c) Evolution of x variable of HR5-AND. (d) Evolution of x of HR4-ANDNOT.

Fig. 24.6. Response of Membrane Computational Units to different input frequencies to units
HR4R3 in the SyncMCU model.

The synchronisation model is based on the synchronisation capabilities of the con-
trolled chaotic internal drive. Even though the underlying internal drive is based on a
scaled chaotic Rössler model, the resulting system is stable periodic due to the control.
The emergent behaviour of the model is due to the interaction of the different periodic
external inputs to HR4R3-1 and HR4R3-2 with the stable periodic controlled drive
which is summed in HR5-AND and filtered through HR4-ANDNOT, resulting in a
synchronisation pulse to HR4R3-2. This, finally, causes the internal controlled drive to
synchronise to the difference between the inputs to HR4R3-1 and HR4R3-2. Introduc-
ing white Gaussian noise in the external input frequencies does not prevent the system
from synchronising although more correcting synchronisation pulses are needed (not
shown).

Results from conceptual models as presented may provide indications to identify
localised computation in the neuron. Recent experimental results in the subunits of thin
dendrites [11] indicate the possible important role of spatial compartmentalisation. Ad-
ditionally, experimental results, obtained by looking at learning by geometrical shape
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(a) Evolution of x variables of HR4-ANDNOT,
solid line synchronised, dotted line unsynchro-
nised.

(b) Synchronisation pulses of the synchro-
nisation function S when synchronising unit
HR4R3-2.

Fig. 24.7. Effect of Synchronization pulses which synchronises unit HR4R3-2 with HR4R3-1.

changes of dendritic spikes, have shown that a single spike event is capable of modula-
tion of the signal transmission [4]. The MCU paradigm may provide a computational
framework from which the computational abilities of dendritic structures can be stud-
ied.
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Summary. Many complex biological, social, and economical networks show topologies drasti-
cally differing from random graphs. But what is a complex network, i.e., how can one quantify
the complexity of a graph? Here the Offdiagonal Complexity (OdC), a new, and computationally
cheap, measure of complexity is defined, based on the node-node link cross-distribution, whose
nondiagonal elements characterize the graph structure beyond link distribution, cluster coeffi-
cient, and average path length. The OdC approach is applied to the Helicobacter pylori protein
interaction network and randomly rewired surrogates thereof. In addition, OdC is used to char-
acterize the spatial complexity of cell aggregates. We investigate the earliest embryo develop-
ment states of Caenorhabditis elegans. The development states of the premorphogenetic phase
are represented by symmetric binary-valued cell connection matrices with dimension growing
from 4 to 385. These matrices can be interpreted as adjacency matrices of an undirected graph,
or network. The OdC approach allows us to describe quantitatively the complexity of the cell
aggregate geometry.

Key words: Complexity, graphs, networks, development, metabolic networks, degree correla-
tions, computational complexity.

25.1 Complex Metworks

From a series of seminal papers (Watts and Strogatz [1], Barabasi and Albert [2–4],
Dorogovtsev and Mendes [5], Newman [6], see also [7] for an overview), since 1999,
small-world and scale-free networks have been a hot topic of investigation in a broad
range of systems and disciplines.

Metabolic and other biological networks, collaboration networks, www, internet,
etc., have in common that the distribution of link degrees follows a power law, and thus
has no inherent scale. Such networks are termed “scale-free networks.” Compared to
random graphs, which have a Poisson link distribution and thus a characteristic scale,
they share a lot of different properties, especially a high clustering coefficient, and a
short average path length. However, the question of complexity of a graph is still in its



280 J.C. Claussen

infancy. A “blind” application of other complexity measures (as for binary sequences
or computer programs) does not account for the special properties shared by graphs
and especially scale-free graphs as they appear in biological and social networks.

Mathematically, a graph (or synonymously in this context, a network) is defined by
a (nonempty) set of nodes, a set of edges (or links), and a map that assigns two nodes
(the “end nodes” of a link) to each link. In a computer, a graph may be represented
either by a list of links, represented by the pairs of nodes, or equivalently, by its ad-
jacency matrix ai j whose entries are 1 (0) if nodes i, j are connected (disconnected).
Useful generalizations are weighted graphs, where the restriction of ai j is relaxed from
binary values to (usually nonnegative) integer or real values (e.g., resistor values, travel
distances, interaction coupling), and directed graphs, where ai j no longer needs to be
symmetric, and the link from i to j and the link from j to i can exist independently
(e.g., links between webpages, or scientific citations). In this chapter the discussion
will be kept limited to binary undirected graphs.

25.2 Complexity Measures in Biology

In biological sciences, the evolution of life is studied in detail and at large, and it is
observed qualitatively that evolution creates, on average, organisms of increasing com-
plexity. If one wants to quantify an increase of complexity, one has to define suitable
complexity measures. In some sense, the number of cells may be an indicator, but it
quantifies body size rather than complexity. Instead one may observe the number of
organelles, the size of the metabolic network, the behavioural complexity of social or-
ganisms, or similar properties. To have a time series of the complexity distribution of
all organisms during evolution on earth would be highly interesting for the test of mod-
els of evolution, speciation, and extinctions. But apart from such academic questions,
there are many areas of practical use of complexity measures in biology and medicine,
such as the complexity of morphological structures, cell aggregates, metabolic or ge-
netic networks, or neural connectivities.

25.3 Other Complexity Measures

For text strings (as in computer programs, or DNA) there are common complexity mea-
sures in theoretical computer science, such as Kolmogorov complexity (and the related
Lempel–Ziv complexity and algorithmic information content AIC) [8]. For example,
AIC is defined by the length of the shortest program generating the string. For random
structures, thus also for random graphs, these measures indicate high complexity. A
distinction of complex structured (but still partly random) structures from completely
random ones usually is prohibitive for this class of measures. For this reason, measures
of effective complexity [9] have been discussed; usually these are defined as an entropy
(or description length) of “a concise description of a set of the entity’s regularities” [9].
Here we are mainly interested in this second class, and straightforwardly one would try
to apply existing measures, e.g., to the link list or to the adjacency matrix. However,
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mathematically it is not straightforward to apply these text string based measures to
graphs, as there is no unique way to map a graph onto a text string.

Thus one desires to use complexity measures that are defined directly for graphs.
Two classical measures are known from graph theory; graph thickness and coloring
number have a low “resolution” and their relevance for real networks is not clear.
Two new complexity measures recently have been proposed for graphs, Medium Ar-
ticulation [10] for weighted graphs (as they appear in foodwebs) and a measure for
directed graphs by Meyer-Ortmanns [11] based on the network motif concept [12]).
Unfortunately, the latter two complexity measures are computationally quite costly. A
computational complexity approach has been defined by Machta and Machta [13] as
computational depth of an ensemble of graphs (e.g., small-world, scale-free, lattice).
It is defined as the number of processing time steps a large parallel computer (with
an unlimited number of processors) would need to generate a representative member
of that graph ensemble. Unlike other approaches, it does not assign single complexity
values to each graph, and again is nontrivial to compute.

Table 25.1 gives a qualitative assessment of the behaviour of some of the men-
tioned complexity measures for lattices in two- and three-dimensional complex and
random structures. Note that especially the ability to distinguish nonrandom complex
structures from pure randomness differs between the approaches. Hence, a simpler es-
timator of graph complexity is desired, and one possible approach, the Offdiagonal
Complexity (OdC), is proposed here. A striking observation of the node-node link cor-
relation matrices of complex networks [14, 15] is that entries are more evenly spread
among the offdiagonals, compared to both regular lattices and random graphs. This
can now be used to define a complexity measure for undirected graphs [14, 15].

This chapter is organized as follows. In Section 25.4 OdC is defined and illus-
trated with an example. Sections 25.5 and 25.6 investigate the application of OdC to
two quite different biological problems: a protein interaction network, compared with
randomized surrogates, and a temporal sequence of spatial cell adjacency during early
Caenorhabditis elegans development, quantifying the temporal increase of complex-
ity.

Table 25.1. Qualitative Assessment of Various Complexity Measures.

2D, 3D complex structures random structures

AIC, Kolmogorov o(1) large maximal

effective complexity o(1) large o(1)

coloring number 2, 2 � 3 − 4 � 3 − 4

graph thickness 2, N 1/3 � 2 − 5 � 3 − 4

motif count o(1) large large

Machta o(1) large o(1)

OdC 0 large low
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25.4 Definition of the Offdiagonal Complexity (OdC)

Definition (Offdiagonal Complexity). Let gi j be the adjacency matrix of a graph with
N nodes, i.e., gi j = 1 if nodes i and j are connected, else gi j = 0.

(i) For each node i of the graph, let l(i) be the node degree, i.e., the number of edges
(links),

l(i) :=
N−1∑
j=0

gi j . (25.1)

(ii) Let cmn be the number of edges between all pairs of nodes i and j , with node
degrees m = l(i), n = l( j) with l( j) ≥ l(i) (ordered pairs), i.e.,

cmn :=
N−1∑
j=0

N−1∑
j=0

gi jδm,l(i)δn,l( j) H(l(i) − l( j)). (25.2)

Here δ is the Kronecker symbol and H(x) = 1 for x ≤ 0 and H(x) = 0 for
x > 0. Due to the pair ordering, the matrix cmn has entries only on the main
diagonal and above. Thus, cmn is a (not normalized) node-node link correlation
matrix.

(iii) Summation over the minor diagonals, or offdiagonals, i.e., all pairs with the same
ki − k j up to kmax = mini {l(i)}, and normalization, gives us

ãk =
kmax−k∑

i=0
ci,k+i , A : =

kmax∑
k0

ãk, ∀ k ak : = ãk/A. (25.3)

(iv) Then OdC is defined as an entropy measure on this normalized distributions (here
it is understood that 0 ln(0) = 0),

OdC = −
kmax∑
k=0

ak ln ak . (25.4)

Examples. For a d-dimensional orthogonal lattice, all nodes have degree 2d, and the
node-node link correlation matrix has only one nonzero entry at row 2d and column
2d . For a fully connected graph, the single entry is at row N and column N . Obviously,
for regular graphs (where all nodes have a fixed degree k) OdC = 0 holds in general.

OdC is an approximative complexity estimator that takes as values zero for a regu-
lar lattice, zero for a fully connected graph, low values for a random graph, and higher
values for “apparently complex” structures. One main advantage is that it does not
involve costly (high-order or NP-complete) computations.
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(a) Self-organized
structure by Sakaguchi
k 1 2 3 4 5 6 7 8
#k 10 8 6 4 1 0 1 1
Link correlation matrix:
0 0 1 2 0 0 2 5

3 2 2 2 0 3 1
. . .

3 8 0 0 0 1
. . . 5

1 1 0 1 0
. . . 3

0 0 1 2
. . . 4

0 0 0
. . . 0

0 0
. . . 7

0
. . . 4
. . . 11

7
The vector of diagonal sums is
(7,11,4,7,0,4,3,5).
Resulting entropy: OdC = 1.858622

(b) Same network, links partly
randomized (1 move/node)
k 1 2 3 4 5 6 7 8
#k 8 7 8 5 2 1 0 0
Link correlation matrix:
0 1 4 0 2 1 0 0

0 7 5 1 0 0 0
. . .

2 4 4 1 0 0
. . . 0

3 2 3 0 0
. . . 0

0 1 0 0
. . . 1

0 0 0
. . . 2

0 0
. . . 2

0
. . . 16
. . . 15

5
The vector of diagonal sums is
(5,15,16,2,2,1,0,0).
Resulting entropy: OdC = 1.376939

The random reshuffling lowers the OdC entropy away from
OdCmax = 2.550838.

Fig. 25.1. (a) Self-organized structure by Sakaguchi. (b) Randomly rewired network.

25.4.1 Illustration with a Spatial Network

A spatial hierarchical network emerging from a self-organizing process has recently
been introduced by Sakaguchi [16], as shown in Fig. 25.1a. This snapshot example is
now taken to illustrate how the node-node link correlation matrix and the OdC entropy
are modified under a random reshuffling of links.
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Fig. 25.2. OdC for random reshufflings of the Helicobacter pylori network (left, p = 0) up to
a rewiring probability of p = 1 (right). The bold line shows the average; five OdC trajectories
along a rewiring path are shown for illustration (thin lines).

25.5 Application to the Helicobacter pylori Protein Interaction
Graph and Reshuffling to a Random Graph

To demonstrate that OdC can distinguish between random graphs and complex net-
works, the Helicobacter pylori protein interaction graph [17] has been chosen. For
different rewiring probabilities p and 102 realizations each, the links have been reshuf-
fled, ending up with a random graph for p = 1. As can be seen in Fig. 25.2, rewiring
in any case lowers the OdC.

25.6 Application to Spatial Cell Division Networks

The tiny (1 mm) nematode worm C. elegans looks like a quite primitive organism, but it
nevertheless has a nervous system and muscles, and thus shares functional organs with
higher-developed animals. More importantly, it shows a morphogenetic process from
a single-cell egg through morphogenesis to an adult worm. Towards an understanding
of the genetic mechanisms of the cell division cycle in general, C. elegans has become
one of the genetically best-studied animals. Despite that, little is known (in the sense
of a dynamical model) about how the cell divison and spatial reorganization take place.
Not even the spatial organization of cells during morphogenesis is well described.

25.6.1 Early Development of C. elegans

The earliest embryo development states of Caenorhabditis elegans have recently been
recorded experimentally and described quantitatively [18]. The cell division devel-
opment has been described in simplicial spaces, and the cell division operations are
described by operators in finite linear spaces [19].
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25.6.2 Topological Structure During Premorphogenesis

The premorphogenetic phase of development runs until the embryo reaches a state of
about 385 cells. The detailed division times and spatial cell movement trajectories fol-
low with high precision a mechanism prescribed in the genetic program. While many
of the genetic mechanisms are known especially for C. elegans, we are a long way from
a mathematical modelling of the cell divison and spatial organization directly from the
genome. Thus it is still desired to develop mathematical models for this spatiotemporal
process, and to compare it with quantitative experimental data.

With good reliability, the cell adjacency is known experimentally [18,19] in a num-
ber of intermediate steps, which in the remainder we call cell states. Here we focus on
the adjacency matrices of the cells describing each intermediate state between cell di-
visions and cell migrations and investigate the complexity of neighborhood relations.

25.6.3 Increasing Complexity of C. elegans States

The results for 28 state matrices are shown in Fig. 25.3. The dashed line shows the
supremum value (− ln N ) a graph of the same size could reach, despite the fact that,
due to combinatorical reasons, this supremum is not necessarily always reached.

The moderate decay in the last two states may be due to the fact that (at least
for Poisson-like link distributions) the summation implies some self-averaging if one
wants to compare networks of different size. One way to avoid this problem is to define
the complexity measure from all kmax · (kmax − 1) entries,

FOdC := −
kmax∑
i=0

kmax∑
j=i

ci j ln(ci j ). (25.5)

This can be called the Full Offdiagonal Complexity (FOdC), as the full set of matrix
entries is taken into account. The result for FOdC is shown in Fig. 25.3.

Fig. 25.3. Left: Offdiagonal Complexity of the network states. The dashed line shows the max-
imal complexity a graph of the same number of nodes could reach. Right: Full Offdiagonal
Complexity. Here all possible pairs of nodes contribute to the complexity.
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Fig. 25.4. Intuitive explanation of saturation for large homogeneous spatial networks. From left
to right: Bulk-bulk, bulk-surface, and surface-surface are the typical pairs of node degrees. For
large cell aggregates, surface and bulk cells are more homogeneous, i.e., the variation of the
neighborhood degree decreases.

25.6.4 Saturation for Large Network Size

As expected, the complexity of the spatial cell structure increases along the first
premorphogenetic phase. Compared to the maximal possible complexity that could
be reached by a graph of the same number of node degrees (but not for a three-
dimensional cell complex), the complexity, as measured by OdC, saturates. This has
a straightforward explanation. The limiting case of a large homogeneous cell agglom-
erate would end up with roughly two classes of cells (at surface and within bulk) and
thus three classes of neighborhood pairs: bulk-bulk, bulk-surface and surface-surface
(see Fig. 25.4). As the coordination numbers within bulk and surface fluctuate, this
effectively delimits the growth of possible different neighborhood geometries. After
initial growth, FOdC resolves fluctuations corresponding to the effect of alternating
cell division and spatial reorganization.

25.7 Conclusions and Outlook

A new complexity measure for graphs and networks has been proposed. Contrary to
other approaches, it can be applied to undirected binary graphs. The motivation of
its definition is twofold: One observation is that the binning of link distributions is
problematic for small networks. The second observation is that if one uses instead of
the (plain) entropy of link distribution, which is insignificant for scale-free networks, a
“biased link entropy,” it has an extremum where the exponent of the power law is met.

The central idea of OdC is to apply an entropy measure to the link correlation
matrix, after summation over the offdiagonals. This allows for a quantitative, yet still
approximative, measure of complexity. OdC is roughly “hierarchy sensitive” and has
the main advantage of being computationally not costly.
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Summary. We report a three-variable simplified model of excitation fronts in human atrial tis-
sue. The model is derived by novel asymptotic techniques from the biophysically realistic model
of Courtemanche et al. [11] in an extension of our previous similar models. An iterative analyt-
ical solution of the model is presented which is in excellent quantitative agreement with the
realistic model. It opens new possibilities for analytical studies as well as for efficient numerical
simulation of this and other cardiac models of similar structure.

Key words: Cardiac modelling, asymptotics, excitation, wave front.

26.1 Introduction

The mechanical activity of the heart is controlled by electrical impulses propagating
regularly through it during one’s entire lifespan [22]. A disturbance in the regular prop-
agation may lead to life-threatening cardiac arrhythmias [31]. Sudden cardiac death,
for instance, accounts for 300,000 to 400,000 deaths annually in the United States
alone [14,23], i.e., more than for AIDS, and breast and lung cancer. This entails inten-
sive research into the mechanisms of heart functioning and failure. The accumulated
information reveals an overwhelming complexity of the patterns of electrical cardiac
activity.

A true understanding of the experimental data requires the development of qual-
itative cardiac models [10, 19, 20]. One approach to cardiac modelling is to take into
account the various levels of membrane, cellular and myocardial structure and their
interactions and to model the action potential (AP) on the basis of experimental mea-
surements of ion fluxes in as much detail as possible. The resulting models are known
as realistic or detailed ionic models. The first example of this type of models was devel-
oped by Noble [25,26] and now such models exist for various cardiac cells in different
species, e.g., [3,12,21,27,35] and many others. However, since these models are very
complex and highly nonlinear, it is difficult to assess the contribution of specific model
components to different patterns of activity. Furthermore, their computation is arduous
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because it contains a large number of equations and small parameters. They become
very expensive and time consuming especially when large volumes of tissue are sim-
ulated. One possible alternative is to search for simplified models which could mimic
the most important AP properties, allow analytical studies and reduce the computing
requirements. Many simplified models have been suggested, either phenomenologi-
cally, or based on the structure of the realistic models, [1, 4, 13, 15, 18], etc. However,
all of these models contain arbitrary elements in the sense that they are not derived
from any of the realistic biophysical cell models and lack explicit correspondence with
the biophysical structure of the cardiac tissues. For example, van der Pol and van der
Mark modelled heartbeat as an electronic relaxation oscillator [28].

Our recent studies [7, 8, 32, 33] have demonstrated a serious disadvantage of the
most popular and successful simplified generic model of cardiac excitability: the
FitzHugh–Nagumo (FHN) equations [17, 24]. It cannot describe adequately the one
feature of excitation propagation which is most important for medical applications,
namely the way regular propagation fails and arrhythmias occur. An excitation wave
in real cardiac tissue, or in a realistic model, may fail to propagate if the temporal gra-
dient of the transmembrane voltage at the front becomes too small to excite the tissue
ahead of it, e.g., if the wave fails to propagate fast enough [8]. Then the wave front
loses its sharp spatial gradient and its further spread is purely diffusive, i.e., the front
dissipates. This happens long before the back of the excitation impulse catches up with
the front. This type of propagation failure does not exist in a FHN-type model [6] since
it is known that the propagation of a wave front in this system may be slowed down,
halted or even reversed [16]. This phenomenon is illustrated in Fig. 26.1: a temporary
block of excitability halts the FHN wave only temporarily, but completely disrupts
propagation in the realistic model, even though it lasts a much shorter time than the
AP.

Earlier we proposed novel asymptotic methods of reduction of cardiac equations
[9]. In this chapter we use these methods to derive a three-component description of
the propagating excitation fronts and their dissipation. The virtue of our model is that
it reproduces propagation failure unlike the FHN models because it is derived in a re-
liable way from the realistic ionic model. We also report an analytical solution for this
three-component model. The analytical solution is constructed as an iterative proce-
dure and it may be seen as a generalisation in which the caricature solutions presented
in our earlier papers [5,6,30] appear as first approximations. This is, to our knowledge,
the first analytical solution, albeit in quadratures, which gives a numerically accurate
prediction of the front propagation velocity (within 16%) and its profile (within 0.7
mV) in human atrial tissue.

26.2 Mathematical Formulation of the Problem

26.2.1 Atrial Tissue Model

In our study atrial tissue is a one-dimensional, homogeneous and isotropic medium
satisfying a system of reaction-diffusion equations
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Fig. 26.1. Propagation of excitation in the models of Courtemanche et al. [11] (first column),
FitzHugh–Nagumo (second column) and equations (26.3) (third column), through a temporary
block of excitability, introduced by artificially reducing the value of a parameter representing
the main excitatory ionic current responsible for the initiation of the front. For example, in the
three-variable model (26.3) this parameter is j which was decreased from the normal value of
0.9775 to 0.28 during the block. In FHN, propagation resumes after the block is removed; in
CRN and (26.3) it does not.

∂T u = D̂ · ∂2
X u + F(u), (26.1)

where F(u) is a vector defined according to the atrial single-cell realistic CRN model
[11], u = (V, m, h, j, . . . )T ∈ R

21 is the vector of all dynamic variables of the model
and D̂ = diag(D, 0, 0, . . . ) is the tensor of diffusion in which only the coefficient of
the voltage V is nonzero. This simplified description focuses on the excitation and
propagation of impulses, while ignoring the effects due to geometry, anisotropy and
heterogeneity of a real atrium.

26.2.2 Asymptotic Reduction

In order to reduce the dimension and complexity of the problem, we perform a formal
analysis of the time scales of dynamic variables. For the system (26.1) we define char-
acteristic time scale functions, τi (u1, . . . , u21) ≡ |(∂ Fi/∂ui )

−1| and compare their
magnitudes obtained numerically for a space-clamped version of the system as shown
in Fig. 26.2. The variables, whose time scales τi are relatively small, are fast variables
since they change significantly during the upstroke of a typical AP, while all other vari-
ables, whose time scales τi are relatively large, are slow variables because they change
only slightly during this period. Fig. 26.2(a) demonstrates that the variables V , m, h,
ua , w, oa , d are fast variables comparable with the time scale of the AP upstroke.

A specific feature of system (26.1) is that of the various ionic currents in the sys-
tem only the sodium current INa is significantly large during the AP upstroke, whereas
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Fig. 26.2. Asymptotic properties of the atrial CRN model [11]. (a) Time scale functions of
dynamical variables vs. time. (b) Quasi-stationary values of the gating variables m and h. (c)
Transmembrane voltage V as a function of time. (d) Main ionic currents: INa is the fast sodium
current (shown scaled by a factor 0.1), Iin = Ib,Na + INaK + ICa,L + Ib,Ca + INaCa is the
sum of all other inward currents and Iout = Ip,Ca + IK1 + Ito + IKur + IKr + IKs + Ib,K is
the sum of all outward currents; the individual currents are described in [11]. The results are
obtained for a space-clamped version of the model at values of the parameters as given in [11].
A typical AP was triggered by initialising the transmembrane voltage to nonequilibrium value
of V = −20 mV.

other currents are small at this stage as can be seen in Fig. 26.2(d). Secondly, the fast
sodium current INa is only large during the AP upstroke, and almost vanishes other-
wise, because either gate m or gate h or both are nearly closed outside the upstroke
since their quasi-stationary values m(V ) and h(V ) are small there as illustrated in Fig.
26.2(b).

To formalise the distinction between fast and slow terms we perform an asymptotic
embedding of system (26.1). We introduce an artificial parameter ε into the system so
that for ε = 1 the original system is recovered, while in the limit ε → 0 only the terms
comparable with the time scale of the AP upstroke are retained,

∂T V = D∂2
X V −

(
ε−1 INa(V, m, h, j) + )′

I (V, . . . )
)

CM
,

∂T m =
(
m(V ; ε) − m

)
ε τm(V )

, m(V ; ε) =
{

m(V ), ε = 1,

θ(V − Vm), ε = 0,
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∂T h =
(
h(V ; ε) − h

)
ε τh(V )

, h(V ; ε) =
{

h(V ), ε = 1,

θ(Vh − V ), ε = 0,

∂T y =
(

y(V ) − y
)

ε τy(V )
, y = ua, w, oa, d,

∂T U = W(V, . . . ), (26.2)

where θ( ) is the Heaviside function, )′
I ( ) is the sum of all currents except the fast

sodium current INa, the dynamic variables V , m, h, ua , oa and d are defined in [11],
U = ( j, oi , . . . , Nai , Ki , . . . )

T is the vector of all other, slower variables, and W
is the vector of the corresponding right-hand sides. Novel features of the asymptotic
embedding (26.2), nonstandard in comparison with the theory of fast-slow systems
[2,29,34], are (a) the introduction of the asymptotic factor ε−1 only at one term INa on
the right-hand side of the equation for V whereas the standard factor ε at the derivative
would be equivalent to factor ε−1 at the whole right-hand side, and (b) that in the limit
ε → 0, functions m(V ) and h(V ) have to be considered zero in certain overlapping
intervals V ∈ (−∞, Vm] and V ∈ [Vh, +∞), and Vh ≤ Vm , hence the representations
m(V ; 0) = θ(V − Vm) and h(V ; 0) = θ(Vh − V ). These aspects, as applied to the
fast sodium current, have been shown to be crucial for the correct description of the
propagation block [5]. A more detailed discussion of the parameterisation (26.2) can
be found in reference [9].

The exact value of D is not essential for the theoretical analysis, as its change is
equivalent to rescaling of the spatial coordinate. To operate with dimensional velocity,
we assume the values D = 0.03125, as in [8, 9], and CM = 1 µF cm−1. We perform
the scaling t = ε−1T , x = (εD)−1/2 X , take the limit ε → 0 and notice that the
equations for the variables denoted by y in (26.2) decouple from the voltage equation.
Thus, we arrive at the conclusion that only the following three-variable system needs
to be considered for a description of the propagation of an AP front or its failure:

∂t V = ∂2
x V + INa(V ) j h m3, (26.3a)

∂t h = (
θ(Vh − V ) − h

)
/τh(V ), (26.3b)

∂t m = (
θ(V − Vm) − m

)
/τm(V ). (26.3c)

In other words, we consider the fast time scale on which the upstroke of the AP occurs,
neglect the variations of slow variables during this period as well as all transmembrane
currents except INa, as they do not make a significant contribution during this period,
and replace m and h with zero when they are small. The parameters and functions in
(26.3) are defined as in [11], namely

INa(V ) = gNa(VNa − V ), (26.4a)

τk(V ) = (
αk(V ) + βk(V )

)−1
, k = h, m, (26.4b)

k(V ) = αk(V )/
(
αk(V ) + βk(V )

)
, k = h, m,

αh(V ) = 0.135 e−(V +80)/6.8 θ(−V − 40),

βh(V ) =
(

3.56 e0.079V + 3.1 × 105 e0.35V
)

θ(−V − 40)



294 R.D. Simitev and V.N. Biktashev

+ θ(V + 40)
(
0.13(1 + e−(V +10.66)/11.1)

)−1
,

αm(V ) = 0.32(V + 47.13)

1 − e−0.1(V +47.13)
,

βm(V ) = 0.08e−V/11,

gNa = 7.8, VNa = 67.53, Vh = −66.66, Vm = −32.7.

Two new “gate threshold” parameters Vh and Vm appear in the system and are chosen
from the conditions h(Vh) = 1/2 and m3(Vm) = 1/2. As follows from the derivation,
variable j , the slow inactivation gate of the fast sodium current, acts as a parameter
of the model. It is the only one of all the slow variables included in the vector U that
affects our fast subsystem. We say that it describes the excitability of the tissue.

26.2.3 Travelling Waves and Reduction to ODE

We look for solutions in the form of a front propagating with a constant speed and
shape. So we use the ansatz F(z) = F(x + ct) for F = V, h, m where c is the
dimensionless wave speed of the front, related to the dimensional speed C by c =
(ε/D)1/2C . Then equations (26.3) reduce to

V ′′ = cV ′ − INa(V ) j h m3, (26.5a)

h′ = (
c τh(V )

)−1(
θ(Vh − V ) − h

)
, (26.5b)

m′ = (
c τm(V )

)−1(
θ(V − Vm) − m

)
, (26.5c)

where the boundary conditions are given by

V (−∞) = Vα, h(−∞) = 1, m(−∞) = 0, (26.6a)
V (+∞) = Vω, h(+∞) = 0, m(+∞) = 1. (26.6b)

Here Vα and Vω are the pre- and post-front voltages, and Vα < Vh < Vm < Vω.
Equations (26.5) represent a system of fourth order so its general solution depends

on four arbitrary constants. Together with constants Vα , Vω and c this makes seven
constants to be determined from the six boundary conditions in (26.6). Thus, we should
have a one-parameter family of solutions, i.e., one of the parameters (Vα, Vω, c) can
be chosen arbitrary from a certain range.

26.2.4 Comparison of the Three-Variable Model (27.5) with the Realistic CRN
Model [11]

The simplified three-variable model (26.3) and its ODE version (26.5) provide an ex-
cellent approximation to the fronts of the action potential in human atrial tissue as
demonstrated in Fig 26.3 where a comparison with the solution of the realistic CRN
model [11] is presented. As must be expected, the voltage in the simplified model re-
mains constant after reaching its post-front value Vω while the voltage in the CRN
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Fig. 26.3. (a) The AP potential and (b) the gating variables h and m as functions of the travelling
wave coordinate Z = z

√
D. The solution of the CRN model [11] is given by broken lines and

that of the three-variable model of (26.5) by solid lines. The pre-front voltage and the excitation
parameter in (26.5) are chosen as Vα = −81.18 mV and j = 0.956, respectively, and correspond
to the equilibrium values in the realistic model. The gates h and m are indicated in the plot. The
iterative analytical solution (26.14) is indistinguishable from the numerical solution of (26.5)
after 30 iterations.

model assumes a shape typical for an action potential. To quantify further the compar-
ison between the two models below we list the values of the wave speed, the post-front
voltage and the maximum rate of AP rise. For the realistic model [11] these values are
C = 0.2824 mm/ms, Vω = 3.60 mV and ( dV/ dt)max = 173.83 V/s. The respec-
tive values for the simplified model (26.5) are C = 0.2372 mm/ms, Vω = 2.89 mV
and ( dV/ dt)max = 193.66 V/s. The relative errors made by the simplified model in
estimating the wave speed and the the maximum rate of AP rise are 16% and 11%,
respectively, and the absolute error in estimating the post-front voltage is −0.7 mV.

We recall that our main motivation for the derivation of the three-variable simpli-
fied model was to reproduce the realistic front dissipation behaviour of atrial tissue as
it appears for example in the CRN model [11]. The third column of Fig. 26.1 illustrates
the dissipation of a propagating front in equations (26.3) in response to a temporary
block of excitability. It is observed that the dissipation behaviour of the simplified sys-
tem resembles the one of the realistic CRN model. In this aspect of the behaviour our
model is superior to the simplified models of FHN type.

26.3 Iterative Analytical Solution

26.3.1 Exact Solution for V ≤ VmV ≤ VmV ≤ Vm

For V ≤ Vm the reduced model (26.5), (26.6) has a two-parameter family of exact
solutions, with parameters Vα and c. Since the boundary condition m(−∞) = 0 is an
equilibrium point of (26.5c), m(z) = 0 remains a solution for all z ≤ ξ . It follows that
(26.5a) is a constant-coefficient linear homogeneous equation in this interval, and its
solution

V (z) = Vα + (Vh − Vα) ec z, (26.7)
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satisfies boundary conditions V (−∞) = Vα , V (0) = Vh and V (ξ) = Vm , provided
that the internal boundary point ξ is located at

ξ = 1
c

ln
(

Vm − Vα

Vh − Vα

)
. (26.8)

Finally, h(V ) = 1 is a solution of (26.5b) with boundary condition h(Vα) = 1 in the
interval V ≤ Vh , because it belongs to its equilibrium set. In the interval V ≥ Vh ,
(26.5b) can be rewritten in the form

d
dV

(ln h) = − 1
c2 (V − Vα) τh(V )

, (26.9)

and its solution can be immediately obtained,

h(V ) = exp
(

− 1
c2

∫ V

Vh

dV
(V − Vα) τh(V )

)
. (26.10)

26.3.2 Approximate Solutions for V ≥ VmV ≥ VmV ≥ Vm

For V ≥ Vm , we rewrite (26.5) as

d
dz

(
dV
dz

e−cz
)

= f (z) e−cz, (26.11a)

d
dz

(ln h) = − 1
c τh(z)

, (26.11b)

d
dz

(
ln(1 − m)

) = − 1
c τm(z)

, (26.11c)

where

f (z) = −INa
(
V (z)

)
j h(z) m3(z). (26.12)

The boundary conditions are

V (ξ) = Vm, (26.13a)
V ′(ξ) = c (Vm − Vα), (26.13b)

h(ξ) = h0 = exp
(

− 1
c2

∫ Vm

Vh

dV
(V − Vα) τh(V )

)
, (26.13c)

m(ξ) = 0, (26.13d)
V ′(∞) = 0. (26.13e)

This problem is equivalent to the following system of integral equations:

m(z) = 1 − exp
(

−1
c

∫ z

ξ

dσ

τm(V (σ ))

)
, (26.14a)
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h(z) = h0 exp
(

−1
c

∫ z

ξ

dσ

τh(V (σ ))

)
, (26.14b)

V (z) = Vm − 1
c

 z∫
ξ

f (σ )
(

1 − ec(ξ−σ)
)

dσ − (
ecz − ecξ) +∞∫

z

f (σ )e−cσ dσ


(26.14c)

c = 1
Vh − Vα

∫ +∞

ξ

f (σ ) e−cσ dσ. (26.14d)

The last equation (26.14d) imposes an additional relationship between parameters Vα

and c, so the ultimate solution depends only on one arbitrary parameter, say Vα , which
in reality may be determined by the pre-history of the medium through which the
excitation front propagates.

The system (26.14) can be solved by iterations, starting from a suitable initial ap-
proximation. The iterations converge for a number of various initial approximations,
see Fig. 26.4. In Section 26.4 we discuss two selected initial approximations. The first
of them, A1, is favourable from a numerical point of view. The second one, A2, is
important in the context of our recent work [30] since it leads to an even further formal
simplification of problem (26.5) to a system which allows exact solution and extensive
analytical study.

26.4 Selected Initial Approximations

26.4.1 A1: The Small-Diffusion Initial Approximation

A simple initial approximation may be obtained by considering a space-clamped ver-
sion of (26.5) corresponding to the limit D → 0 of a very small constant of diffusion in
equations (26.2) (note that this is applied only to the solution in the interval V ≥ Vm)
and replacing the gating variable m with its quasi-stationary value m which in our
asymptotic limit and for V ≥ Vm equals 1. Hence, an initial approximation may be
chosen to satisfy

dE
dt

= INa(V ) j h, (26.15a)

dh
dt

= −h/
(
τh(V )

)
. (26.15b)

This system can be solved in quadratures,

h(V ) = h0 −
∫ V

V0

dV
INa(V ) j τh(V )

, (26.16a)

t =
∫ V

V0

dV
INa(V ) j h(V )

, (26.16b)

where the initial conditions V0 and h0 are given by equations (27.13a) and (27.13c).
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Fig. 26.4. Convergence of the iterative solution (26.14), starting from initial approximation A1
(triangles), same as A1 but with the equation for m gate retained (squares) and A2 with V {0} =
Vm (circles). The excitation parameter and the pre-front voltage are j = 0.9775 and Vα =
−81.18 mV. The values on the right-hand side y-axis represent the numerical solution of the
boundary-value problem (26.5).

26.4.2 A2: The “Caricature” Initial Approximation

An even simpler initial approximation is

V = V {0} = const. (26.17)

In this case functions of voltage INa(V ), τh(V ) and τm(V ) take constant values
INa(V {0}), τh(V {0}) and τm(V {0}), respectively. Then quadratures (26.14) for the re-
sults of the first iteration are obtained in explicit formulae; moreover, (26.14d) is re-
solved explicitly. These explicit formulae have been reported in our recent work [30]
(see formulae (10) of that paper). There this piecewise-linear simplification was con-
sidered only as an arbitrary “caricature” with the purpose of merely analysing quali-
tative features of the solution set. Here we note that it actually appears naturally as a
step of the iterative procedure leading to a numerically accurate solution.

The iterative analytical solution (26.14) obtained from these initial approximations
is indistinguishable from the numerical solution of (26.5) after some 30 iterations and
has the shape of a travelling front as shown in Fig. 26.3.

26.4.3 Convergence and Uniqueness of the Iterative Solution (27.14)

The iteration procedure produced by (26.14) is nonlinear and nonmonotonic, and we
do not have a rigorous proof of its convergence from any given initial approximation.
Likewise, we do not have a rigorous proof that the solution of the boundary-value
problem (26.13) is unique. However, it is straightforward to see that if the iterations
converge, the result is a solution of the boundary-value problem, due to the above-
mentioned equivalence of (26.13) and the system of integral equations (26.14). Fig.
26.4 illustrates that the first several iterations obtained from different initial approxi-
mations oscillate about the correct numerical solution of the problem and ultimately
converge to it. The “small diffusion” initial approximation A1 is particularly inter-
esting because the results of the second iteration are already very close to the accurate
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numerical values for the wave speed and the post-front voltage. Indeed, if the excitabil-
ity parameter and the pre-front voltage are chosen at their physiological resting values
j = 0.9775 and Vα = −81.18 mV, respectively [11], at the second step of the itera-
tions the value of the dimensional wave speed is C = 0.2255 mm/ms, which has only
20% relative error compared to the value 0.2824 mm/ms of the realistic ionic model
26.2 and 5% relative error compared to the value 0.2372 mm/ms obtained numerically
from equations (26.5). Similarly, the post-front voltage Vω = −7.22 mV compares
well with the value 3.36 mV of the CRN model 26.2. Clearly, the second iteration ob-
tained from initial approximation A1 introduces certain errors. Numerically, however,
it is immensely superior to any other numerical scheme because it involves only a sin-
gle evaluation of formulae (26.16) and a twofold evaluation of formulae (26.14). In
addition, the dangers of numerical divergence associated with many of the alternative
numerical schemes for solving problems (26.2) or (26.5) are avoided since the above
expressions are mathematically well behaved.

The two initial approximations discussed above are essentially different. In the
small-diffusion approximation the initial guess for the voltage V (z) is a function
V 0 = v(z) while in the “caricature” approximation it is a constant V 0 = const. The
fact that two essentially different initial approximations give the same limits is a strong
indication that the iterative procedure leads to a unique solution. To support this claim
further we have performed calculations starting from initial approximation A2 with
initial values V {0} = −28, −30, −32, −34, −36, −38. In all cases the iterations con-
verged to the same solution, in a similar manner to those shown on Fig. 26.4. The
small-diffusion initial approximation is not discussed here because its initial guess
V 0 = v(z) is the unique solution (26.16) of equations (26.15) and thus it does not
depend on any arbitrary parameters.

So, although we cannot exclude the possibility that the iteration procedure may not
converge from some “bad” initial guess, the examples considered provide evidence that
a reasonable initial approximation always gives converging iterations, and the solution
is unique.

26.5 Discussion

We have presented an analytical approach to the description of the speed and the struc-
ture of an excitation front in a model of human atrial tissue [11]. We have identified
small parameters in the realistic model and used asymptotic arguments to obtain a sim-
plified three-variable model of the excitation front. Although we have explicitly used
certain quantitative features of atrial tissue [11], the main properties used are generic
for cardiac excitation models so the approach should be applicable, possibly with suit-
able modifications, to other cardiac equations models too. Our model takes the form
of a nonlinear eigenvalue problem with a piecewise right-hand side defined over three
voltage intervals. This model is solved explicitly in the first two intervals, and in the
last interval we have suggested an analytical iterative procedure capable of producing
a solution with a good accuracy already after the first iteration. The iterative procedure
can be started from reasonably chosen simple initial approximations and converges
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to a unique solution which differs only within a few percent from the solution of the
realistic ionic atrial model.

An important feature of our approach is that it is capable of correctly describing the
excitation propagation at reduced excitabilities, up to a complete block of propagation
via a “front dissipation” mechanism, which is completely unachievable by traditional
analytical approaches based on FHN type equations. This aspect has been analysed
in our earlier publications [5, 6, 9, 30]. In particular, our recent study [30] is devoted
to a discussion of one practical application of our approach. There we have used a
numerical solution of the simplified three-variable model (26.5) to propose a simple
criterion for break-up and self-termination of spiralling waves and have confirmed our
predictions by numerical simulations of the realistic model of Courtemanche et al.
However, the important question of finding an analytical solution of our simplified
model (26.5) has now been solved here.

The possibility of obtaining numerically reasonable analytical approximations to
front solutions in realistic cardiac equations, demonstrated here, opens the way for an-
alytical description and, possibly, a better understanding of more complicated regimes
in excitable media, such as wave break-ups and spiral waves.
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Summary. The quantitative polymerase chain reaction aims at determining the initial amount
X0 of a specific portion of DNA molecules from the observation of the amplification process of
the DNA molecules’ quantity. This amplification process is achieved through successive repli-
cation cycles. It depends on the efficiency {pn}n of the replication of the molecules, pn being
the probability that a molecule will duplicate at replication cycle n. Modelling the amplifica-
tion process by a branching process and assuming pn = p for all n, we estimate the unknown
parameter θ = (p, X0) using Markov chain Monte Carlo methods under a Bayesian framework.

Key words: Branching process, Bayesian inference, quantitative polymerase chain reaction.

27.1 Introduction

The polymerase chain reaction (PCR) first described by Saiki et al. [16] is an in vitro
enzymatic reaction of molecular biology capable of amplifying the number of copies
of a specific DNA fragment called the target. The PCR is widely used since it allows
one to detect a very low abundance of DNA. Protocols that not only detect rare nu-
cleic acids but quantitate them as well are increasingly used. The monitoring of DNA
molecules as they replicate during the PCR is known as a real-time or kinetic PCR.
The quantitative PCR (Q-PCR) aims at determining the initial amount of specific DNA
present in a sample. This presents many applications spanning from gene expression
studies to forensic medicine [2].

The PCR consists in the succession of typically 30 to 50 replication cycles. The
number of copies of the target DNA is doubled at most at each replication cycle, but in
practice, the probability that a molecule will be successfully duplicated after one repli-
cation cycle, known as the efficiency of the reaction, is less than one. Early replication
cycles of the PCR are characterized by an exponential increase in target amplification.
Then, possibly because of a depletion of reaction components or because of a decline
in the polymerase enzyme activity (Liu and Saint [9]), the reaction efficiency slows
down and eventually ceases, leading to a saturation phase decomposed into a linear
phase and a plateau phase.



304 N. Lalam and C. Jacob

In the literature, under the assumption of constant reaction efficiency, the theory
of Bienaymé–Galton–Watson branching processes in discrete time, the time step be-
ing a replication cycle, has been introduced to model the PCR exponential phase for
estimating replication errors of the DNA polymerase (Krawczak et al. [7], Piau [15],
Sun [19]). A simulation analysis using the coalescence theory has been performed
by Weiss and von Haeseler [20] providing the maximum likelihood estimator of the
replication error rate. There also exists an extensive literature involving branching pro-
cesses and ignoring the replication errors (mutations in a site of the target for instance),
that is, assuming that all the duplicated molecules are identical to the target template.
In this setting that we will consider henceforth, Stolovitzky and Cecchi [18] studied
the number of cycles during which the amplification process undergoes an exponential
phase and may therefore be modelled by a single-type supercritical Bienaymé–Galton–
Watson branching process for which the reaction efficiency at replication cycle n, de-
noted by pn , satisfies pn = p for all n. They proposed a method for inferring the initial
number of DNA molecules X0 when considering two sets of samples S1 and S2, each
with a given number of d identical preparations. They considered observations of the
molecule numbers at replication cycle n1 (resp. n2) belonging to the exponential phase
in all the d preparations of sample S1 (resp. S2) which they denoted by Xn1,i in the sam-
ple preparation i (resp. Xn2,i ). Computing the average ν1 = (1/d)

∑d
i=1 Xn1,i (resp.

ν2), they proposed to estimate the initial DNA molecules number X0 by the quan-
tity ν

−n2/(n1−n2)
1 ν

n1/(n1−n2)
2 and the reaction efficiency p by ν

1/(n1−n2)
1 ν

−1/(n1−n2)
2 −1.

Here and in what follows, let us denote by Xk the number of DNA molecules present at
replication cycle k. Relying on a single trajectory of the PCR amplification process in
its exponential phase modelled by a Bienaymé–Galton–Watson branching process, Ja-
cob and Peccoud [5] built conditional least squares estimators (CLSEs) of the reaction
efficiency p based on n − h + 1 successive observations of Xh, . . . , Xn with either h
or n − h fixed as n tends to infinity. They also built the moment estimator of the initial
DNA molecules number X0 and constructed its asymptotic confidence interval. Olofs-
son [11] gave maximum likelihood estimators of the quantities p and X0 using a cen-
sored Bienaymé–Galton–Watson process. Based on the PCR enzymological approach
of Schnell and Mendoza [17], Jagers and Klebaner [6] modelled the amplification pro-
cess using a near-critical population-size-dependent branching process with efficiency
pn = p(Xn−1) = K/(K + Xn−1), where K is a Michaelis–Menten type constant of
the reaction. The authors then explained theoretically the existence of the linear part
of the saturation phase observed by experimentalists on real-time PCR data. Lalam et
al. [8] studied the CLSE of {pn}n in the framework of a population-size-dependent
branching process with a reaction efficiency model generalizing the one proposed by
Jagers and Klebaner [6].

The previous statistical analyses of the Q-PCR were made in a frequentist setting.
The aim of this chapter is to perform a Bayesian analysis in order to estimate the
reaction efficiency of the exponential phase p and the initial DNA molecules num-
ber X0 from a single amplification trajectory. We will use some prior information on
the parameter θ = (p, X0) and we will rely on a stochastic modelling of the PCR
amplification process during the exponential phase. The model will be a supercritical
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Bienaymé–Galton–Watson branching process for which the reaction efficiency and the
initial number of DNA molecules are random variables. We construct Bayesian estima-
tors and sets of credibility of the parameter θ by Markov chain Monte Carlo (MCMC)
methods. MCMC techniques enable one to carry out simulations from a distribution
by embedding it as a limiting distribution of a Markov chain and simulating from the
Markov chain until it approaches equilibrium (Gamerman [3]).

Recall that we will not take into account replication errors during the amplification
process and assume therefore that, when the duplication of a target DNA molecule
is successful, this creates two DNA molecules identical to the target. We will also
consider that the DNA molecule numbers which are accounted for in the inference
analysis are observed without measurement errors.

We introduce our Bayesian approach for real-time Q-PCR in Section 27.2 and we
specify it in Section 27.3. Simulation results are given in Section 27.4. Section 27.5
contains further perspectives.

27.2 Bayesian Approach

Recall that Xk represents the number of DNA molecules present at replication cycle
k, and pk the replication probability of a molecule at cycle k. During the exponential
phase, the reaction efficiency is assumed to satisfy pk = p, for all k. With probability
p, if the duplication has been successful, a DNA molecule gives rise to two DNA
molecules at the end of a replication cycle. Otherwise, with probability 1 − p, a DNA
molecule remains unchanged. This may be modelled by a branching process

Xk =
Xk−1∑
i=1

Yk,i ,

where Yk,i is the number of descendants in cycle k of the ith molecule from cycle k−1.
The random variable Yk,i takes values in {1, 2}: Yk,i = 1 if the replication of molecule
i fails and Yk,i = 2 if the replication of molecule i is successful. We assume that
{Yk,i }k,i are independent and identically distributed (i.i.d.) with P(Yk,i = 2) = p =
1 − P(Yk,i = 1), where 0 < p < 1. The cases p = 0 (the molecules never replicate)
and p = 1 (all the molecules always replicate) are excluded from the analysis since
they never occur in real-time PCR experiments. We therefore consider a supercritical
Bienaymé–Galton–Watson branching process {Xk}k modelling the exponential phase
of the PCR amplification process defined by{

X0

Xk = Xk−1 + Bin(Xk−1, p), k ≥ 1

with unknown parameter θ = (p, X0), where p is the reaction efficiency of the expo-
nential phase and X0 is the initial number of DNA molecules. The notation Bin(N , p)

stands for a random variable following a binomial distribution with parameters N and
p.
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We consider a Bayesian framework: we use both some prior information about the
model parameter θ and the observation of {Xk}k in the inference process. Bayesian in-
ference is drawn by constructing the probability distribution of the parameter θ , based
on all that is known about it, given the data. The probability distribution of θ given
the data is called the posterior distribution of the parameter θ . In the following study,
we aim at determining the posterior distribution of θ . Let * be the parameter set in
which θ takes its values and denote by xk the realization of the random variable Xk .
Let π(θ) be the prior distribution of the parameter θ and let π(xh, . . . , xn | θ) be the
likelihood conditionally to θ based on the observations (xh, . . . , xn). The choice of
the cycle h will be explained in Subsection 27.3.2. According to the Bayes rule, the
posterior distribution of θ is

π(θ | xh, . . . , xn) = π(θ)π(xh, . . . , xn | θ)∫
θ ′∈*

π(θ ′)π(xh, . . . , xn | θ ′)
. (27.1)

The Bayesian estimator of θ that we consider is the posterior mean. We also construct
the credibility set of θ which is the confidence interval of the posterior distribution of
θ .

27.3 Model Specification

We compute the posterior distribution of θ defined by (27.1) after the introduction of
the prior distributions and the likelihood of the observations given below.

27.3.1 Prior Distributions

During the exponential phase, the reaction efficiency p is assumed to be independent of
X0. This entails that the prior distribution of θ = (p, X0) satisfies π(θ) = π(p)π(X0),
where π(p) (resp. π(X0)) is the prior distribution of p (resp. X0).

Prior for p. In view of the definition of the branching process {Xk}k in Section 27.2,
we have Xk −Xk−1 = Bin(Xk−1, p): the reaction efficiency p of the exponential phase
is a parameter of a binomial distribution. Relying on the fact that, in the setting of i.i.d.
Bin(N , p) random variables with N known, a usual non-informative prior for p is the
beta distribution with parameters 0.5 and 0.5, we propose to use here this distribution
as a prior for p although we are not in the simple i.i.d. Bin(N , p) case. We will denote
this distribution, whose density is 1/(π

√
p(1 − p)), by Beta(0.5, 0.5).

Prior for X0. The initial DNA molecules number X0 is obtained by extraction of
DNA from a biological sample. This can be accounted for by a Poisson distribution
(Nedelman et al. [10]). We therefore propose a Poisson distribution with parameter λ,
denoted by Poisson(λ), for the prior distribution π(X0). We assume that λ is a random
variable with uniform distribution of fixed support [a, b]. The prior distribution π(X0)
thus defined is called a two-stage or hierarchical prior; that is, a prior for λ, known as a
hyper-prior, is put on the parameter of the prior Poisson(λ). The choice of the support
[a, b], where a and b are constants, will be specified by the experimenter.
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27.3.2 Likelihood

We will consider successive observations from the exponential phase ranging from
replication cycles h to n, with h ≥ 1. The starting replication cycle h is chosen such
that, from this cycle on, the measurement error is relatively negligible when consider-
ing real-time PCR data. It is well known that the early observations of real-time PCR
trajectories are extremely noisy and that the relative error starts to decrease as the re-
action proceeds (Peccoud and Jacob [12], Peirson et al. [14]). As already indicated, we
assume that {Xk}h≤k≤n is observed with no measurement error.

Let us recall that Xk = Xk−1 + Bin(Xk−1, p). Then, for k ≥ 2,

P(Xk = xk | Xk−1 = xk−1, θ) = P(Xk = xk | Xk−1 = xk−1, p)

= P(Xk−1 + Bin(Xk−1, p) = xk | Xk−1 = xk−1, p)

= P(Bin(Xk−1, p) = xk − Xk−1 | Xk−1 = xk−1, p)

= Cxk−xk−1
xk−1 pxk−xk−1(1 − p)2xk−1−xk .

Hence the density of Xh , . . . , Xn given θ is equal to

π(xh, . . . , xn | θ) =
[ n∏

k=h+1
Cxk−xk−1

xk−1 pxk−xk−1(1 − p)2xk−1−xk

]
× π(xh | θ),

where π(xh | θ) = ∑
x1,... ,xh−1

∏h
k=2 P(Xk = xk | Xk−1 = xk−1, θ) if h ≥ 2, and if

h = 1, π(x1 | θ) = π(X0 + Bin(X0, p) = x1 | θ) = Cx1−X0
X0

px1−X0(1 − p)2X0−x1 .

27.3.3 Posterior Distribution of θθθ

We deduce from Subsections 27.3.1 and 27.3.2 the expression of the posterior distri-
bution of θ denoted by π(θ | xh, . . . , xn). This quantity combines information from
the priors and the sample. In view of (27.1),

π(θ | xh, . . . , xn) ∝ π(θ)π(xh, . . . , xn | θ)

= π(p)π(X0)π(xh, . . . , xn | θ)

∝
∫

1a≤λ≤b
λX0

X0!
e−λdλ

1√
p(1 − p)

·
[ n∏

k=h+1
Cxk−xk−1

xk−1 pxk−xk−1(1 − p)2xk−1−xk

]
· π(xh | θ)

= 1
X0!

∫ b

a
λX0e−λdλ

1√
p(1 − p)

·
[ n∏

k=h+1
Cxk−xk−1

xk−1

] [
p

1 − p

]xn−xh

(1 − p)
∑n−1

k=h xk · π(xh | θ).
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Let J (X0) = ∫ b
a λX0 e−λdλ. Integration by parts yields the relationship J (X0) =

F(X0) + X0 J (X0 − 1), where F(X0) = aX0 e−a − bX0 e−b. By iteration, we deduce
that

J (X0) = F(X0) + X0 F(X0 − 1) + X0(X0 − 1)F(X0 − 2) + · · ·
+ X0!F(1) + X0!F(0).

Therefore, the posterior distribution of θ satisfies

π(θ | xh, . . . , xn) ∝ J (X0)

X0!
1√

p(1 − p)
(27.2)

·
[ n∏

k=h+1
Cxk−xk−1

xk−1

] [
p

1 − p

]xn−xh

(1 − p)
∑n−1

k=h xk · π(xh | θ).

This posterior distribution does not have a form belonging to some known distributions
family. Due to the analytical intractability of the posterior distribution, a simulation
study is necessary (Chen et al. [1]). This will allow one to sample θ from its poste-
rior distribution and to determine the corresponding Bayesian estimator based on the
posterior distribution together with credibility intervals. We will use the software Win-
BUGS3 in order to implement our simulations. WinBUGS approximates the posterior
distribution of θ by MCMC techniques. The MCMC numerical integration technique
is widely used for implementation of the Bayes procedure (Gilks et al. [4]). This al-
lows one to simulate a Markov chain whose stationary distribution is the joint posterior
probability distribution of the parameters of the model. The software WinBUGS uses
the Gibbs sampling method as a means for stochastic simulation using Markov chains.
The parameters are first assigned arbitrary initial values, and the chain is simulated
until it converges to the stationary distribution. Observations from the chain at station-
arity are subsequently used to estimate the joint posterior probability of the parameters.
This allows one to compute credibility intervals of θ .

27.4 Simulation Results

We run 10,000 MCMC cycles after a burn-in period of 10,000 cycles, the burn-in
cycles being discarded from the analysis. We consider a PCR trajectory consisting of
30 replication cycles for which the true values of the parameters are p = 0.7 and
X0 = 50.

Recall that the Bayesian estimator of θ that we consider is the mean of the posterior
distribution. The estimation summary of the posterior distribution that will be provided
consists of the marginal posterior means and 95% credibility intervals of p and X0
based on the observations from cycles h to n and based on the priors

π(p) ∼ Beta(0.5, 0.5)

3 The software WinBUGS is publicly available at http://www.mrc-bsu.cam.ac.uk/bugs.
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Table 27.1. Summary of the results for the parameter p according to [h, n].

h n Mean Standard deviation MC error 2.5% 97.5%

1 30 0.7 1.836 10−5 2.173 10−7 0.6999 0.7

10 15 0.6994 1.005 10−3 1.135 10−5 0.6974 0.7014

10 20 0.7002 2.613 10−4 3.002 10−6 0.6996 0.7007

10 25 0.7001 6.922 10−5 8.158 10−7 0.7 0.7002

15 20 0.7002 2.664 10−4 3.051 10−6 0.6997 0.7007

15 25 0.7001 6.932 10−5 8.169 10−7 0.7 0.7002

π(X0) ∼ Poisson(λ) with λ ∼ Uniform(30, 70).

For different values of h and n, we present the marginal posterior means, standard de-
viations, MC errors, and 95% credibility intervals for p (resp. X0) in Table 27.1 (resp.
Table 27.2). The MC error is the computational accuracy of the mean and standard
deviation. This means that the reported values of the mean and standard deviation are
computationally accurate to about ± the value of the MC error.

The more observations we consider, that is the wider [h, n], the better the Bayesian
estimate of p since its standard deviation decreases and its 95% credibility interval
becomes narrower around the true value of p. For a given amplitude of [h, n], the es-
timator of p is more accurate when n is larger: for example, for [h, n] = [10, 15], the
standard deviation is of the order of 10−3, whereas for [h, n] = [15, 20], the standard
deviation is of the order of 10−4. This suggests a consistency property of the Bayesian
estimator of p as n increases analogous to the strong consistency of the CLSE of p
proved in the frequentist setting in [5]. But [h, n] has hardly any influence on the esti-
mate of X0, as can be viewed from formula (27.2) in which the marginal posterior den-
sity of X0 does not depend on the observations from cycles [h, n]. Indeed, the only term
of (27.2) in which [h, n] is used, namely

∏n
k=h+1 Cxk−xk−1

xk−1 pxk−xk−1(1 − p)2xk−1−xk ,
does not depend on X0 and therefore disappears when computing the marginal poste-
rior distribution of X0. This remark is in accordance with the fact indicated by Jacob

Table 27.2. Summary of the results for the parameter X0 according to [h, n].

h n Mean Standard deviation MC error 2.5% 97.5%

1 30 56.74 9.292 0.1678 44 77

10 15 56.71 9.286 0.1583 44 77

10 20 56.78 9.3 0.1629 44 77

10 25 56.74 9.929 0.1654 44 77

15 20 56.77 9.301 0.1625 44 77

15 25 56.74 9.295 0.1654 44 77
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Table 27.3. Summary of the results for the parameters p and X0 according to [a, b].

Parameter a b Mean Standard deviation MC error 2.5% 97.5%

p 20 60 0.7001 6.923 10−5 7.202 10−7 0.7 0.7002

X0 20 60 52.79 6.873 0.09281 44 69

p 1 100 0.7001 6.841 10−5 7.077 10−7 0.7 0.7002

X0 1 100 63.46 12.71 0.3341 44 87

and Peccoud [5] that there is no consistent estimator of X0 as the number of obser-
vations n − h + 1 tends to infinity when considering the frequentist setting. This can
also be noticed from the study of Olofsson [11], who indicated that the maximum like-
lihood estimator of X0 based on a censored process (Xc, . . . , Xn) is of the order of
Xc/(1 + p)c. This entails that increasing n does not have an impact on the behavior of
this estimator.

Let h = 10 and n = 25. If we take another support [a, b] for the hyper-parameter
λ of the Poisson(λ) prior distribution of X0, then we get the results indicated in Table
27.3.

The interval [a, b] has an impact on the estimation of X0 but not on p as can be
deduced from (27.2) giving the posterior density of θ . The information for estimating
p is brought by the amplification process, that is, by the observations of {Xk}h≤k≤n .

27.5 Concluding Remarks

We used the classical modelling of the evolution in time of DNA molecule numbers
undergoing the PCR exponential phase by a supercritical Bienaymé–Galton–Watson
branching process {Xk}0≤k≤n . Relying on this modelling, we performed a Bayesian
statistical analysis providing the construction of Bayesian estimators and credibility
sets for the parameter θ = (p, X0). Our study suggests that the Bayesian estimator of
p is consistent. This asymptotic behavior would be similar to the strong consistency of
the frequentist CLSE of p proved by Jacob and Peccoud [5]. Another remark coming
from the study of Table 1.2 is that the Bayesian estimator of X0 is not consistent since
the credibility set does not improve as n increases. This is also analogous to the remark
from [5] made in the frequentist approach that there is no consistent estimator of X0.

It would be interesting to carry out a similar Bayesian statistical analysis when
considering another non-informative prior for p, namely Jeffrey’s prior, which is based
on the Fisher information matrix and which presents the advantage of being invariant
under reparameterization.

The aim of the Q-PCR is to determine the initial DNA molecules’ quantity. In a
frequentist framework, Jacob and Peccoud [5] constructed an asymptotic confidence
interval of X0, as the replication cycle n tends to infinity. It would be of interest to
compare this asymptotic confidence interval, when estimating X0 by the frequentist
moment estimator, with the credibility intervals built in our Bayesian approach.
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The Bayesian estimators of p and X0 constructed here were based on {Xk}h≤k≤n ,
where h is a replication cycle such that the observations are above the background
noise level. The initial real-time PCR data are very noisy, so the statistical analysis
of the process should not include the first observations which are not reliable. In our
study, we made the strong assumption that the process {Xk}k was observed without
measurement errors. For real-time PCR data whose noisy observations are expressed
in fluorescence units, the observed fluorescence Fk at replication cycle k may be mod-
elled by

Fk = αXk + εk (27.3)

with unknown proportionality constant α and disturbance εk , as proposed by Peccoud
and Jacob [13] assuming normality of the noise {εk}k . Future work consists in using a
Bayesian approach to deal with real-time PCR data {Fk}h≤k≤n using the model defined
by (27.3).
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Summary. Functional-structural plant models (FSPMs), combining the physiological function
of a plant with its architecture, require precise and transparent specifications. This can be seen as
a new challenge to the design of programming languages. Here we introduce, exemplarily for a
model of young poplar trees, our new formalism of relational growth grammars (RGGs), which
extend the well-known Lindenmayer (L-)systems to a specific sort of node- and edge-labelled
graph grammars. The model has been written in the programming language XL, which extends
standard Java by rule-based programming with RGGs and overcomes many of the disadvantages
of L-systems. RGGs can bridge different scales: In our model, morphogenetic rules in L-system
style are combined with rules describing a regulatory network of hormone biosynthesis and rules
updating photosynthate concentrations of shoot modules, all in one and the same formalism.

Key words: Formal language, graph grammar, physiological model, functional-structural plant
model (FSPM), poplar, Populus sp.

28.1 Introduction

Typical models in plant physiology so far have often been limited to simple statisti-
cal approaches (not necessarily based on causal relationships), or to process-oriented
models of reaction or transport (usually simplifying spatial structures strongly), or to
structural models imitating a fixed arrangement of plants, organs or cells. The epis-
temiological value of such isolated models is often small, and they tend to miss the
systemic character of the organism to be modelled.

Recently, functional-structural plant models (FSPMs) [1] have provided a promi-
sing perspective to overcome these restrictions. However, in order to master the com-
plexity of the resulting models, a tailor-made model specification language is an es-
sential prerequisite. It is a decisive disadvantage of the majority of present FSPMs that
their model specification is comprehensible only to programmers and computer sci-
entists. This slows down the key processes of modelling (conception and structuring
in programme modules, parameterisation, calibration and validation) and discourages
potential users of the model.
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Currently, the most widespread formalism for specifying the architectural devel-
opment of plants are L-systems. Introduced by the biologist Aristid Lindenmayer in
1968 to model the growth of filamentous organisms, they became popular first among
theoretical researchers in the field of automata and formal languages. Later, they were
combined with a graphical 3D interpretation of strings and used for structural mod-
els of higher plants (e.g., [5]). From the perspective of a programmer, an L-system is
essentially a rule-based system similar to those long used in the field of “artificial intel-
ligence.” However, L-systems lack some of the features which are nowadays expected
from a model specification language—particularly the support of object-oriented con-
cepts, a high degree of interactivity, and the possibility of writing multiscaled models.
Furthermore, the topology of the structures resulting from the standard graphical inter-
pretation of L-systems is restricted to locally 1D, tree-like branching, which does not
suffice to produce more complex structures like, e.g., networks.

We have therefore developed a new modelling formalism, “relational growth gram-
mars” (RGGs) [4]. These are graph grammars which generalise L-systems and rewrite
node-labelled graphs with an arbitrary number of edge types (relations). The embed-
ding of the programming language Java additionally provides procedural and object-
oriented constructs for modelling with RGG (programming language “XL”: [4]). A
similar approach—yet based on C++ instead of Java and based on conventional L-
systems instead of graph grammars—is being pursued by [2] in the form of the lan-
guage “L+C”.

RGGs have been shown to be suitable for the modelling of cereal crops (barley,
[3]). In this model, the external shape and its temporal dynamics (morphology), the
effect of single major genes and the dynamics of metabolic regulatory networks that
control morphogenesis (i.e., the development of shape) could all be represented within
one and the same formal frame.

We will first define the notion of RGGs somewhat more precisely. To demonstrate
their capacities, we will then briefly describe an RGG-based FSPM of poplar (Populus
sp.), a fast-growing, commercially valuable temperate tree that has become the model
species of forest genetics and physiology.

28.2 Relational Growth Grammars

An RGG rule is formally a quintuple (L , C , E , R, P) with L ∪ C �= ∅. L , the left-
hand side proper of the rule, is a set of graphs with node labels and edge labels. It
represents the part of the structure which is to be transformed. A derivation step of
an RGG involves the removal of a copy (“match”) of one rule’s L from a (usually)
larger graph and the insertion of the corresponding R, the right-hand side proper of
the rule, which is also a set of graphs (with the underlying node sets not necessarily
disjoint from those of L). R is the result of the transformation of the substructure L .
C is again a set of graphs (with the node set possibly but not necessarily overlapping
with that of L) and is called the context of the rule. For a rule, in order to be applicable
the set C must match with a set of subgraphs of the given graph in a way which is
consistent with the match of L , but in the derivation step the context is not removed
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(except for the parts that are also in L). This notion of context generalises the “left”
and “right contexts” of context-sensitive L-systems [5] and enables a flexible control
of subgraph replacement: L can only be transformed if it is embedded in the necessary
context. E is a set of logical expressions in Java syntax which usually contain some
parameters referring to node labels from L ∪C and are interpreted as conditions which
must be met before the rule can be applied. Finally, P is a (possibly empty) list of Java
commands, possibly involving parameters referring to node labels from L ∪ C ∪ R
and parameters from E . P specifies an imperative piece of code which is executed
after rule application. We write RGG rules in the form (* C *), L , (E) ==> R {P};
the order of the C , L and E parts being indeterminate. An edge with label a between
nodes x and y is written x − a−> y.

An RGG is a set of RGG rules. In the language XL, RGG rules can be put together
in blocks, thus enabling an additional hierarchy of rules and an explicit control of their
order of application, like in table L-systems. An RGG-based derivation is a sequence
of discrete, successive derivation steps, starting from a given initial graph (axiom). In
each step, one or all matching rules are applied, depending on the chosen mode of rule
application. Sequential and parallel modes of application are well known from Chom-
sky grammars and L-systems, respectively. In most biological applications, the parallel
mode is more appropriate. However, parallelism requires the specification of a conflict
resolution strategy for overlapping matches of left-hand sides. Future extensions of the
RGG formalism will provide explicit support for the most common conflict resolution
schemes. So far, we have considered only a special case: the multiple matching of L
with one and the same copy of L itself in the graph (occurring when L has internal
symmetries). The standard mode of rule application realised in XL, which is basically
the well-known single-pushout approach from graph grammar theory, tries to apply
the rule to every match.

Our mechanism for embedding the right-hand side into the surrounding graph sim-
ply transfers incoming (resp. outgoing) edges of the textually leftmost (resp. rightmost)
nodes of L to the textually leftmost (resp. rightmost) nodes of R. Future versions of XL
will allow other embedding strategies (e.g., by specifying anchor nodes in R without
using the somewhat arbitrary textual arrangement of nodes).

We have shown in [6] that it is straightforward to represent typical standard data
structures like sets, multisets, lists or multiple-scaled trees (cf. [7]) as labelled graphs.
The RGG formalism provides standard types of edges (i.e., special edge labels) to rep-
resent common relations occurring in these data structures, like the successor relation
in lists or the membership in sets. Particularly, strings are special graphs where all
nodes are connected in linear order by successor edges (hence, L-systems are a special
case of RGG). Because the successor relation is used so frequently, it is denoted by a
blank in our notation, i.e., a b is equivalent to a −successor− > b. Additionally, the
user can define new relations using, e.g., algebraic operators like the transitive hull,
which can be employed in RGG rules in the same way as edges.

RGGs were partly inspired by the PROGRES system [8]. Furthermore, features
from parametric L-systems were included in the RGG formalism, particularly com-
mands from turtle geometry (cf. [5]), which are allowed as nodes and can be used to
interpret the derived graphs in 3D space.
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The inclusion of an imperative part (P in our definition) allows the execution of
code from a conventional object-oriented language. Additionally, in XL such a lan-
guage (Java) serves as a framework for the whole RGG and allows the user to define
constants, variables, classes and methods. Furthermore, graph nodes in XL are Java
objects and can carry arbitrary additional information and functionalities, e.g., con-
cerning geometry, visual appearance or animated behaviour.

28.3 The Modelling Platform GroIMP

To facilitate model development, simulation and visualisation, we have developed the
software GroIMP (growth grammar-related interactive modelling platform); see also
[9]. GroIMP was designed with special emphasis on user-friendliness and interactivity
in order to achieve a maximum of acceptance in the community of biological and
agronomical users who are interested in FSPMs. The language XL constitutes the main
modelling machinery of GroIMP. It is entirely embedded; particularly, the source code
can be written using the integrated text editor jEdit, and automatically compiled. An
error message panel as well as hypertext links to error sites in the source code facilitate
debugging.

Concerning graphical output, GroIMP is equipped with a full range of 3D geo-
metric classes for modelling and visualisation, including turtle commands, a set of
graphical primitives (spheres, cones, cylinders, boxes, light sources) and spline sur-
faces (NURBS). The latter can be created using several techniques like sweeping sur-
faces or rotating lines. Furthermore, realistic-looking materials can be designed using
texture files or procedural textures, as normal for current 3D graphics software. The
visual output of a model can be displayed within GroIMP itself (real-time graphical
rendering based on OpenGL), or outsourced to the free raytracer POV-Ray. At every
stage of a simulation, the user can interact with the model to, e.g., select, modify or
delete elements or to change parameters. An example for user interaction in a running
growth simulation is shown in Fig. 28.1.

GroIMP is an open-source software, licensed under the terms of the GNU General
Public License and available at www.grogra.de. A collection of simple example models
can also be found there.

28.4 The Poplar Model

We can only give an incomplete description of the model here. A commented source
code of the model and further information may be obtained from the authors. The RGG
model presented here is based in part on ECOPHYS [10], a process model that sim-
ulates the development of one-year-old unbranched poplar saplings during the estab-
lishment year. Similar, young unbranched poplar seedlings (Populus canescens) were
cultivated in a greenhouse and destructively measured on one occasion for biometric
parameters used in the model described below: leaf blade area, leaf stalk and internode
length. Local temperature and light (photosynthetic photon flux density) measurements
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Fig. 28.1. Screenshot of the GroIMP graphical user interface, showing the 3D view, the material
panel and the attribute editor. All components are fully interactive.

were used as input variables. Characteristic photosynthetic parameters related to leaf
maturity (see below) were determined using the same plant material two weeks before
the destructive harvest.

The RGG model runs with hourly time steps, and the environmental input vari-
ables are the daily courses of light intensity (photosynthetically active radiation) and
temperature. Taking these input variables, plus the current area of each simulated leaf,
the hourly production of photosynthates (PS; in terms of primary carbohydrates) is
computed at every other time step. These PS are the building blocks for the growth
and extension of all simulated organs.

In our RGG implementation, the simulated poplar grows from seed (the seed con-
tains a certain amount of storage PS to kick off growth). Transport of PS along the
simulated structures (internodes (= stem sections), leaf blades and petioles (= leaf
stalks)) takes place at alternate steps at which growth pauses. This artificial alternation
of growth and transport steps avoids conflicts in parameter updating and thus ensures
a smooth operation of the model.

Growth consists in the production of new leaves and internodes at certain time
intervals (plastochrons) from a growing tip (meristem), plus the extension/unfolding
of existing organs according to the amount of PS available locally or imported
from neighbouring organ modules. The model has furthermore been equipped with
a metabolic regulatory network describing the biosynthesis of the plant hormone gib-
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berellic acid (G A1) and two of its metabolic precursors as used in [3], where also the
rules specifying the network topology and dynamics are described at length. The vari-
ables needed to parameterise the network have been taken over from [3] or derived
from [11]. The following set of two RGG rules determines the behaviour of a meris-
tem during and after a plastochron (i.e., the time, in hours, between the formation of
two successive leaves):

Meristem(r, p), (p>0) ==> if (r <= 55) ( Meristem(r, p-1) );
x:Meristem(r, p), (p==0) ==> if (r <= 55) (
Internode(0,0,r+1,0) [ GA19(0.01) ][ GA20(0.01) ][ GA1(0.001) ]
[ ap(apmax[r]) Petiole(0.001, 0.01, 0) RH(la)
Leaf(1, 2880, 3.0, 5.0, 0.1, 0.01, r) ab(abmax[r]) RL(1)
blade { numLeaves++; ori = irandom(0, 5);} ]
RH(azi[x.r]) RU(ori) Meristem(r+1,plast) );

The symbol Meristem occurring on the left-hand side of both rules refers to a pre-
viously defined class. Biologically, it represents a growing tip (or meristem). The x
in front of Meristem (in the second rule) signifies a concrete instance of the class
Meristem, whose parameter r (rank) is accessed in a turtle command (RH) on the
right-hand side, with the azimuth angle azi[x.r] depending on leaf rank and taken
from a table. In the first rule, the internal parameter p is counted down with a step size
of one. This variable is initiated with the declared variable plast (length of the plas-
tochron in hours; see last code line). Thus, the first rule ensures that a new metamer
(i.e., internode, leaf blade and petiole) is only produced after one plastochron (on av-
erage 15 hours in our data set) has passed. The condition (r <= 55) limits the total
number of metamers to 55. When a plastochron has passed (p==0, rule 2), a Meris-
tem is transformed into an Internode, a Petiole, a Leaf (with a blade as
the graphically visible part in the image), and finally a further terminal growing tip
Meristem, initiated with a new parameter p = plast and an incremented leaf
rank, r. The parameterised nodes RL, RU and RH are turtle graphics commands for
the relative orientation of the newly initiated organs in space. ab and ap are auxiliary
symbols determining the dynamics (zero to maximum value) of the angle between peti-
ole and blade, respectively internode and petiole—each symbol being initiated with
its own leaf rank (r)-specific maximum value, abmax[r] and apmax[r]. Note,
in braces, procedural Java code that can be interspersed anywhere on the right-hand
side of an XL-rule. In this case it serves to define a new parameter needed for a turtle
command and to increment a leaf counter.

Each new instance of Internode is provided with three further objects sym-
bolising the three substance classes (GA19, GA20, GA1) that are considered in the
GA-biosynthesis network (see also Results and Discussion below) [3], with the num-
bers in parentheses indicating the initial concentrations of these substances. Using a
further rule, an internode extends as a direct function of the local concentration of
G A1; likewise, the G A19 pool is locally replenished using the time-dependent func-
tion ga19Prod:

y:Internode [ga19:GA19][ga20:GA20][ga1:GA1] ::>
{
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ga19[concentration] :+= ga19Prod (time) * DELTA_T;
y[length] :+= (float) ga1[concentration];
}

The above rule is called an execution rule, as signified by the special transformation
symbol ::> between the left- and the right-hand side of the rule: such a rule is used to
update certain parameters of nodes within the graph, without replacing them (as would
be done in traditional L-systems).

In accordance with [10], each newly formed leaf undergoes four developmental
stages or maturity classes (undeveloped, recently formed, mature, overmature) with
different photosynthetic characteristics, the latter also being input variables to the func-
tions in the form of coefficients. The maturity classes are a function of the rate of leaf
production.

A simple shading function allows the distinction between unshaded and shaded
leaves:

boolean isShaded (Node s)
{

return exist ((* f:Leaf,
((f != s) && isInsideCone (f, s, 40*DEG))*));

}

The function is declared largely within the source code of the model itself, thus convey-
ing maximal transparency to the user. A node s (usually a leaf) of the graph produced
so far is taken as an input. Using this, a query is then conducted into the neighbourhood
of s, by traversing the graph according to a search pattern specified within the context
brackets, (* and *): First of all, nodes (named f) of type Leaf are searched for. A
further restriction is that f be not equal to s itself, i.e., the “looking” node cannot cast
shade upon itself. Also, as an additional condition, the shading leaf f must be located
within a cone with an opening angle of 40◦ emerging with a vertical central axis from
s. The function isShaded is typically invoked in the conditional part of a rule:

b:Leaf ::> if ((numLeaves - b.r - 1 < 5) && (!isShaded(b)))
{ /* conduct photosynthesis at normal rate and grow */}
else
{ /* conduct photosynthesis at lowered rate and grow less */}

The first alternative of this execution rule is applied to the five uppermost leaves b,
provided they are unshaded; numLeaves is a global leaf counter, whereas b.r is the
rank of leaf b. The PS pools and sizes (areas) of these leaves are updated (code not
shown).

As mentioned above, we have implemented rules for the acropetal (upwards) and
basipetal (downwards) transport of PS and combined these to a method trans-
port(), which runs in alternation with a further method combining the growth rules.
Several techniques for the modelling of substance transport along a forming struc-
ture could be envisaged. We implemented a method by which pairs of neighbouring
nodes in our graph data structure are identified using a general context query and then
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the concentration parameters are modified accordingly, by incrementing/decrementing
them with the amount to be transported:

b:Leaf -ancestor-> c:Internode ::>
{
float r;
r = (b.ps - c.ps) * 0.1;
b[ps] :+= -r;
c[ps] :+= r;
}

The execution rule ensures the basipetal transport of a certain amount r of PS from
the PS-pool of a leaf b to the internode c it is attached to. This relation is symbolised
with the relation edge -ancestor->. The last two statements of the rule update
the PS-pools of the leaf and the internode. As a specialty of XL, we encounter here
the quasi-parallel assignment operator :+=. It ensures that the two statements are
executed in parallel, i.e., the changes they cause are not visible until all rules of the
currently active rule set have been applied.

28.5 Results and Discussion

In order to demonstrate the capability of RGGs to represent different hierarchical and
procedural scales within one formalism, the poplar model was designed to contain
both morphogenetic rules and a “plugged-in” metabolic regulatory network. The idea
was that, by modifying certain parameters of the network, a new metabolic equilib-
rium should arise, which in turn should have an effect on certain morphogenetic rules,
thereby ultimately changing the resulting visible morphology of the plant.

For our purposes, we chose an example provided by [11]: This study describes
a transgenic hybrid poplar mutant, in which the gene encoding the enzyme GA 2-
oxidase is overactivated by a transcriptional enhancer. GA 2-oxidase is a catabolising
enzyme that degrades the bioactive form of gibberellic acid (G A1) into its inactive
form, G A8. The extension of internodes after their formation by the meristem depends
upon the concentration of G A1. Some graphical output of the poplar model is shown
in Fig. 28.2. As can be seen on the right-hand side of the picture, the simulated mutant
reproduces the phenotypic effect of the real mutant: due to a low concentration of G A1,
the internodes hardly extend, leading to a stunted (or “stumpy,” name of the mutant)
appearance, while the number of leaves produced remains unaffected.

The current stage of the model presented here has not been designed to solve spe-
cific scientific questions regarding poplar physiology and genetics, though a later ver-
sion might well be developed to be apt for this purpose. We rather intended to show
here that our new formalism is in principle suitable to represent a wide range of biolog-
ical processes at different scales while at the same time strictly keeping to a clear and
concise format. We have already identified circumstances that require the extension
of our formalism, especially at the cellular level where the processes involved in cell
division and extension cannot be tackled using traditional node replacement rules, but
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Fig. 28.2. Two simulation results of the RGG poplar model (240 steps, about 10 days). The wild
type (left) exhibits normally extended internodes, the “stumpy” mutant (right) stunted inter-
nodes.

where we have to deal with a set of rather complicated edge or cell wall replacement
rules (cf. [5]). However, as the data structure of RGGs are true graphs (and not a 1D
string as in conventional L-systems), the dynamic representation of a cellular tissue as
a 3D graph would be much easier in our formalism. Furthermore, the transport of sub-
stances along the simulated structure currently takes place in a discretised fashion and
at a fixed meso-scale (i.e., from one botanical module to the next): the simulation of a
continuous transport and of scaleable concentration gradients necessitates an extension
of RGGs towards the optimised solution of ordinary and partial differential equations.
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Summary. We study the Keller–Segel model for chemotaxis, consisting of a drift-diffusion
equation describing the evolution of the cell density coupled to an equation for the chemoat-
tractant. It is known that in the classical Keller–Segel model solutions can become unbounded
in finite time. We present recent analytical results for this model, and compare its behavior in
two space dimensions numerically to the behavior of a model accounting for the finite volume
of cells. This modified Keller–Segel model relies on the assumption that cells stop aggregating
when their density is too high, and thus allows for the global existence of solutions. We charac-
terize the slow movement of a certain class of plateau-shaped solutions and perform numerical
experiments for both models, showing that solutions of the classical (before blow-up) and of the
density control model share common features: regions of high cell density are attracted by each
other and, under suitable boundary conditions, by the domain boundaries.

Key words: Chemotaxis, Keller–Segel model, blow-up, volume filling.

29.1 Introduction

The survival of most living organisms depends on their ability to detect and react to
external signals. In particular, numerous creatures, ranging from bacteria and protozoa
to tissue cells or multicellular organisms, respond to variations in chemical concentra-
tions in order to find food, mates, or new habitats. Chemotaxis, the oriented movement
towards or away from chemical gradients, has become an intense field of experimental
studies as well as of mathematical modelling. One of the earliest and most successful
attempts to describe chemotaxis mathematically has become known as the Keller–
Segel (KS) model for chemotaxis. Whereas the first equation was already derived in
1953 by Patlak [23] from a random walk problem, the full system was introduced
by E. Keller and L.A. Segel to describe aggregation of the slime mold amoeba Dic-
tyostelium discoideum [18, 19]. The resulting model exhibits an extremely interesting
and diverse behavior. It has not only become the basis for the mathematical descrip-
tion of phenomena like tumor growth or embryonic development, but its mathematical
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analysis has also become a field of interest on its own. In this chapter, we will dis-
cuss two different versions of the model and compare their asymptotic behavior. More
precisely, for x ∈ � ⊂ R

2 and t > 0, we will analyze the system

∂tρ + ∇x · (χ(ρ)ρ∇x S) = ε�ρ (29.1)
−�S = ρ − S, (29.2)

subject to the initial condition

ρ(x, 0) = ρI (x) (29.3)

and boundary conditions

∂ρ

∂n
− χρ

∂S
∂n

= 0,
∂S
∂n

= 0 or S = 0 on ∂� (29.4)

for two different choices of the function χ(ρ) ≥ 0. Here, equation (29.1) describes the
temporal evolution of the cell density ρ(x, t), which is governed by migration in direc-
tion of the gradient of the chemical concentration S(x, t) and random movement of the
cells. The chemical S is subject to diffusion as well as degradation and production by
the cells themselves. The system presented here is actually a special case of the original
model. First of all, the evolution of the chemical is classically described by a parabolic
instead of an elliptic equation. By using the elliptic equation (29.2), we assume im-
plicitly that the evolution of the chemoattractant is fast compared to the evolution of
the cell density. Additionally, the equations are already given in their nondimension-
alized form, such that there remains only one dimensionless parameter ε representing
the ratio between the diffusivity of the cells and the typical length and time scales of
the problem. In the following, we will confine ourselves to the case ε - 1, i.e., we
will assume that the influence of cell diffusion is small compared to the chemotactic
flux. The chemotactic sensitivity χ describes how strongly cells react to the chemical
gradient.

In this chapter, we will investigate two important cases: χ = 1, and χ = 1 − ρ.
Models featuring a constant chemotactic sensitivity have been studied by a large num-
ber of authors, and we will discuss this case in Section 29.2. We will give a summary
on recent analytical results and present conditions for the global existence of solutions.
The second choice of χ , where χ is a monotonically decreasing function of the cell
density, will be studied in Section 29.3. In particular, we will discuss the asymptotic
behavior of solutions. Numerical experiments for both systems will show that concern-
ing certain aspects, the two models behave qualitatively in a similar way. Finally, we
will compare and discuss our results in Section 29.4.

29.2 The Classical Model: χχχ = 1

This section is devoted to the classical model, where the diffusion coefficient and the
chemotactic sensitivity are chosen to be constant, i.e.,
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∂tρ + ∇x · (ρ∇S) = ε�ρ, (29.5)
−�S = ρ − S. (29.6)

As mentioned above, the KS model was introduced to model the aggregation of a pop-
ulation of cells. It is therefore of interest to answer the question whether solutions
can become unbounded in finite time (blow-up) or not. This phenomenon is now well
understood, and we start with a brief survey of the main results in this area (not in
chronological order). For the sake of simplicity in the theoretical overview we will
slightly modify the equation for the chemoattractant. This does not affect the qualita-
tive behavior of the whole system. However, we will keep (29.5), (29.6) for numerical
simulations (Fig. 29.1, 29.2, 29.3).

29.2.1 Global Existence or Blow-Up: A Threshold

We replace the equation for the chemical (29.6) by the Poisson equation, that is, we
consider{

∂tρ + ∇x · (ρ∇S) = ε�ρ,

−�S = ρ − 〈ρ〉, x ∈ � ⊂ R
2, t > 0,

∂S
∂n

= 0 on ∂�, (29.7)

with 〈·〉 denoting the mean value over the bounded domain �. This reduction does not
change the general behavior of the system, but it facilitates the presentation of some
short computations and basic ideas [17]. We also define the total mass of cells M ,
which is conserved.

The KS system (29.7) comes with an energy structure [3, 11], namely

E(t) = ε

∫
ρ log ρ − 1

2

∫
ρS,

dE
dt

≤ 0. (29.8)

Because of the balance between the diffusion and the chemotactic processes—resp.
the positive and the negative terms in (29.8)—it is not possible to deduce, e.g., any
estimate on the cell density. It is therefore necessary to compare the opposite terms
using refined inequalities [3, 10, 11, 27].

Although we will not consider the case � = R
2 in the numerics, it provides a

good understanding of the KS model. Intuitively, the diffusion counterbalances the
phenomenon of blow-up. Indeed, there exists a threshold: if 8πε > M , solutions ex-
ist for all time, otherwise if 8πε < M , solutions blow up in finite time [4, 10]. The
proof of this theorem is divided into two parts: first the existence and the precise value
of the threshold from below are derived from the logarithmic version of the Hardy–
Littlewood–Sobolev inequality [8]. In a second step, it is shown that the second mo-
ment of ρ vanishes in finite time if 8πε < M . Consequently, the solution does not
exist further in the classical sense.

On a bounded domain � the situation is similar, but there are several thresholds
due to boundary effects (we refer to [15] for a complete and precise review of this
case). If � is smooth (typically C2), the global existence of solutions is ensured if
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4πε > M [3, 11]. If the diffusion coefficient ε is below this threshold, 4πε < M ,
blow-up may occur, either on the boundary or inside the domain [13, 21].

If � is piecewise C2 and * denotes the smallest angle, solutions are global if
4*ε > M [11]. Below this threshold solutions may blow-up.

29.2.2 Interaction Between Several Peaks

What happens after blow-up? Assuming that there is a natural way to define solutions
after the time of blow-up, how do several peaks interact? A first answer to these ques-
tions is provided by the work of Velázquez [28]. He considers the following equation
for the cell density:

∂tρ + ∇x ·
(

Gδ(ρ)∇S
)

= �ρ , x ∈ R
2, (29.9)

where typically Gδ(u) = u/(1 + δu). This approximation eventually leads to concen-
tration regions of high density, but solutions are global in time for any δ > 0 (see next
paragraph). Using matched asymptotic expansion methods, he derives the following
vortex-like equations for the movement of peaks:

ẋi (t) = −%
(

Mi (t)
) N∑

j=1
j �=i

M j (t)
2π

· xi (t) − x j (t)
|xi (t) − x j (t)|2 + regular part. (29.10)

Here xi denotes the trajectory of the i th peak and Mi is the mass contained in this
peak. The function % depends on the particular nonlinearity G opted for in (29.9).
This approach can be considered as a way of continuing the solutions of (29.9) for
δ = 0 beyond the blow-up time. Note that this would imply that even after blow-up,
peaks of cell density are attracting each other.

29.2.3 Volume Effects and Global Existence

Blow-up of the cell density in finite time partially answers the question of aggregation,
but it restricts the modelling. Therefore, nonlinearities have been introduced into the
KS model [12, 14, 16, 20, 22], particularly into the chemosensitivity χ (see the next
section for a saturating effect in the chemotactic response). This naturally raises the
following question: how can such nonlinearities preventing blow-up be characterized?
Adapting the energy methods to the nonlinear case,

∂tρ + ∇x ·
(
χ(ρ)ρ∇S − ∇d(ρ)

)
= 0 t ≥ 0, (29.11)

there is a naturally emerging quantity which plays the role of a reduced diffusion D [7],
given by

D′(u) = d ′(u)

χ(u)
, D(0) = 0.
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In addition, let us define the reduced pressure function H: D′(u) = uH′(u), H(1) =
0. In accordance with the linear case (where H(u) = ε log(u)) there is a threshold
condition, namely

∃ δ > 0 ∃ U ≥ 0 ∀ u ≥ U 4πH(u) ≥ (M + δ) log u,

which guarantees global existence of solutions.

29.2.4 Numerical Experiments

To solve system (29.5), (29.6) numerically, we use a classical finite difference scheme
on a square regular grid. Inspired by the method of Scharfetter and Gummel [25] de-
rived for the numerical solution of semiconductor models, we write the evolution equa-
tion as

∂tρ = ε∇x · (eS/ε∇ρe−S/ε), (29.12)

and discretize the flux accordingly. We proceed successively: for each time step we first
solve the equation for S using a finite difference scheme; then we solve the advection-
diffusion equation associated with zero-flux boundary conditions.

As we have seen, different thresholds for blow-up depending on the shape of the
domain have been derived analytically. Concordantly, our numerical simulations show
that if the diffusion is large enough, but still sufficiently small for solutions to blow-up,
aggregation occurs on the boundary. Furthermore, vertices with smaller interior angles
(basically the corners of a square) are more attractive for peaks in the cell density. An
example is shown in Fig. 29.1, where we plot several isolines ρ = αρmax of the so-
lution, for successive times and a given value of α ∈ [0, 1] (see the figure caption).
On the same figure we also plot the trajectory of the peak of the cell density. Sim-
ulations featuring homogeneous Dirichlet boundary conditions for S (see Fig. 29.2)
show that the shifting of the cell density towards the boundary is closely related to the
Neumann boundary conditions for the chemical. Indeed, this is also indicated by ana-
lytical results for system (29.7): in the case of Dirichlet boundary conditions together
with −�S = ρ, there is a unique threshold for blow-up (8πε ≷ M) [3]. This can be
understood intuitively: bundles of cells are pushed away from the boundary due to the
orientation of the gradient of the chemical.

Finally, the phenomenon of attracting aggregates is illustrated in Fig. 29.3. Note
that if a peak lies initially too close to the boundary, it feels its attractive effect and the
phenomenon is biased.

29.3 The Volume Filling Model: χχχ = 1 – ρρρ

If the aggregation behavior of cells is to be described in more detail, models allowing
for the global existence of solutions are of special interest. The finite volume of cells
implies that there is a maximal value for the cell density in an aggregate, where cells
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Fig. 29.1. The classical KS model (29.5), (29.6) with Neumann boundary conditions for S. (left)
The cell density for times t = 0 and t = 60. (right) Successive isolines of the cell density ρ

between t = 0 and t = 144, with a cut-off coefficient α = 5/6. The trajectory of the peak is
plotted in a dashed line. Initial condition is a Gaussian centered on (x0, y0) = (2.1, 3.6), with
total mass M = 2. The diffusion coefficient is ε = 0.05, such that 4π × ε ≈ 0.63 < M . The
blow-up time is approximately Tbu = 160.

Fig. 29.2. The classical KS model (29.5), (29.6) with Dirichlet boundary conditions for S. Suc-
cessive isolines between times t = 0 and t = 20 are displayed, with a cut-off coefficient
α = 1/2. Initial condition is a Gaussian centered on the boundary. Total mass is M = 1.6,
and ε = 0.05, such that 8π × ε ≈ 1.26 < M . The blow-up time is approximately Tbu = 25.
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Fig. 29.3. Interaction between several peaks in the classical KS model (29.5), (29.6) with Neu-
mann boundary conditions for S. Successive isolines are displayed between times (left) t = 0
and t = 16, (right) t = 16 and t = 44, with a cut-off coefficient α = 0.4. Initial conditions are
three Gaussian-like peaks with total mass M = 3.6, the diffusion coefficient is ε = 0.05. Time
of blow-up is approximatively Tbu = 50.

are tightly packed. Assuming that cells stop to react chemotactically when the density
becomes too large leads to a model where χ = 1 − ρ in (29.1), i.e.,{

∂tρ + ∇x · (ρ(1 − ρ)∇x S) = ε�ρ

�S = S − ρ.
(29.13)

First introduced in [14] and later derived from a microscopic approach in [22], the
model has since been studied in several papers with both an elliptic [5,9] or a parabolic
[24] equation for the chemical concentration. Mathematically, the specific choice of χ

leads to the global existence of solutions. In particular, if the initial conditions are
chosen such that 0 ≤ ρI (x) ≤ 1, then also 0 ≤ ρ(x, t), S(x, t) ≤ 1, ∀ t > 0. For a
more detailed discussion of results, see for instance [5].

29.3.1 Asymptotic Behavior

Stability analysis and numerical simulations show that if ε is small enough, a noncon-
stant initial condition leads to the formation of distinct patterns. In particular, plateau-
like structures are formed (see Fig. 29.4), where regions of high cell density (ρ ≈ 1)
alternate with regions where it is almost zero. In [9], the asymptotic behavior of these
solutions was studied in one space dimension by the method of exponential asymp-
totics. Two distinct time scales can be observed: plateaus move towards each other
exponentially slowly, i.e., their velocity is of order O(e−c/ε). If two plateaus approach
each other too closely, the smaller one loses its shape and merges with the larger one
on an O(1)-time scale. This metastable behavior can also be found in phase-separation
models like the Cahn–Hillard or the Allen–Cahn equation (see references in [29]). The
merging process continues until only one single plateau, typically situated at one of
the domain boundaries, is left. In [6], the same model is treated for multiple space di-
mensions d > 1. As it turns out, the time scale of movement is no longer exponentially
large but of order O(ε−1).
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Fig. 29.4. The KS model with density control with homogeneous Neumann boundary conditions
for S. (left) Side view and contour plot of the cell density ρ as a solution of the KS model with
density control at t = 25; isolines are shown at ρ = 0.2, 0.5, and 0.8. (right) Contour plot of
the level set ρ = 0.5 for successive times (t = 0 to t = 3500). Initial conditions as described in
the text, with r0 = 0.8, (x0, y0) = (3.6, 2.1), with total mass M = 2. The diffusion coefficient
is ε = 0.01.

Before we present numerical simulations for the system in two space dimensions,
we will briefly study its long-time behavior. For an asymptotic analysis of the present
system in multiple space dimensions we refer to [6].

We rescale (29.13) onto the slow time scale τ = εt to obtain the equations

ε∂τ ρ = ∇x · (ε∇xρ − ρ(1 − ρ)∇x S) (29.14)
�S = S − ρ, (29.15)

where the rescaled quantities ρ and S are now functions of (x, τ ). In the following
analysis, we describe the motion of the interface between a region of high density of ρ

and the surrounding low-density region, i.e., the level set %(τ) = {x | ρ(x, τ ) = 1/2},
where we will assume that %(τ) is smooth.

We introduce a new, local coordinate system (see for instance [1]): let z be the
signed distance to the interface %(τ) oriented along the unit outer normal n, and let σ

be a curvilinear coordinate oriented according to the tangent unit vector to the inter-
face, where we choose σ to be the arc length of %(τ). Due to the fact that the interface
is not stationary, these new coordinates depend explicitly on time, i.e., σ = σ(τ) and
z = z(τ ).

Denoting points on the interface by %(τ) = {X (σ (τ ), τ )}, any point in space with
Cartesian coordinates x ∈ R

2 that is sufficiently close to the interface can be uniquely
expressed in terms of the new coordinates by x = X (σ (τ ), τ ) + z(τ )n(σ (τ ), τ ) such
that this change of coordinates is well defined in a neighborhood of %(τ). From this
relation it follows that
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∂x
∂z

= n and
∂x
∂σ

= ∂σ X + z∂σ n = (1 + z(∂σ n · ∂σ X))∂σ X, (29.16)

where the rightmost equality is due to the fact that ∂σ n has no component in the nor-
mal direction and |∂σ X | = 1. Equation (29.16) defines the unit vectors of the new
coordinate system, i.e., n and ∂σ X , respectively.

On the other hand, considering the new coordinates as functions of the old ones,
we can determine the vectors ∇xσ(x, τ ), ∇x z(x, τ ) by applying the chain rule

∂x
∂qi

· ∇xq j =
2∑

k=1

∂xk

∂qi

∂q j

∂xk
= ∂q j

∂qi
= δi j , q = (σ, z), i = 1, 2. (29.17)

This implies

∇x z = n, ∇xσ = ∂σ X
∣∣∣∣ ∂x
∂σ

∣∣∣∣−1
. (29.18)

As a next step, we express the density as a function of the new variables ρ(σ, z, τ ),
thus transforming equation (29.14) into

ε(∂τ ρ + ∂σ ρ ∂τ σ + ∂zρ∂τ z) + (∇xσ∂σ + ∇x z∂z) (29.19)

·
[
ρ(1 − ρ)(∇xσ∂σ S + ∇x z∂z S) − ε(∇xσ∂σ ρ + ∇x z∂zρ)

]
= 0.

To capture the dynamics in the thin region around the interface, we introduce the
boundary layer variable ζ = z/ε and make the two-scale ansatz ρ(σ, z, τ ) =
ρ̄(σ, z, τ ) + ρ̃(σ, ζ, τ ) − limε→0[ρ̃(σ, η/

√
ε, τ ) + ρ̃(σ, −η/

√
ε, τ )], where the last

term represents the common limit of the outer solution ρ̄ and the inner solution ρ̃ (the
intermediate variable η is O(1) in the region between the boundary layer and the outer
regions). Both ρ̄ and ρ̃ solve (29.19). We expand both contributions asymptotically,

ρ̄(σ, z, τ ) = ρ̄0(σ, z, τ ) + ερ̄1(σ, z, τ ) + O(ε2),

ρ̃(σ, ζ, τ ) = ρ̃0(σ, ζ, τ ) + ερ̃1(σ, ζ, τ ) + O(ε2).

In the following, we impose an important restriction on the outer solution ρ̄: we will
only be interested in solutions satisfying

ρ̄0 =
{

1 for z < 0
0 for z > 0,

ρ̄i ≡ 0 for i ≥ 1. (29.20)

Away from the boundary layer, this choice solves equation (29.19) to all orders of ε,
and is motivated by the fact that only this type of solution can be observed in numerical
simulations.

Analogously to the ansatz for ρ, we can also consider the chemical S as the sum
of an outer and an inner contribution, where S̄(σ, z, τ ) and S̃(σ, ζ, τ ) solve equation
(29.15) with ρ̄ and ρ̃ as source terms, respectively. However, inserting S̃ into (29.15)
and writing the Laplacian in the new variables σ and ζ yields
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∂2
ζ S̃ + ε(∂σ X · ∂σ n)∂ζ S̃ + ε2∂2

σ S̃ = ε2(S̃ − ρ̃) + O(ε3),

which implies that the influence of the boundary layer terms ρ̃ on S is only of order
O(ε2). Since the O(ε) contributions of the outer solution S̄ are also zero due to the
special choice of ρ̄ given in (29.20), we have

S(σ, z, τ ) = S̄0(σ, z, τ ) + O(ε2) = S̄0(σ, εζ, τ ) + O(ε2) (29.21)
= S̄0(σ, 0, τ ) + εζ∂z S̄0(σ, 0, τ ) + O(ε2).

Before we proceed by solving the inner equations, we must first calculate ∇xσ as
a function of ζ and compute the dot products between ∇xσ , ∇x z and their derivatives
with respect to σ and ζ . From (29.16) and (29.18), it follows that

∇xσ = ∂σ X (1 + εζ(∂σ n · ∂σ X))−1

= ∂σ X (1 − εζ(∂σ n · ∂σ X) + ε2ζ 2(∂σ n · ∂σ X)2 + O(ε3)).

Thus, we can calculate

∇xσ · ∂σ ∇xσ = ∂σ |∇xσ |2 = O(ε), ∇xσ · ∂σ ∇x z = ∂σ n · ∂σ X + O(ε),

∇x z · ∂ζ ∇xσ = 0, ∇x z · ∂ζ ∇x z = 0.

Inserting the expansion of the inner solution into (29.19), we obtain a hierarchy of
equations of ascending order of ε. To the lowest order,

O(ε−1) : ∂ζ (ρ̃0(1 − ρ̃0)∂z S̄0 − ∂ζ ρ̃0) = 0,

where ∂z S̄0 is evaluated at (σ, 0, t). Since the outer and inner solution need to be
matched, ∂ζ ρ̃0 → 0 as ζ → ±∞, and integration with respect to ζ yields

∂ζ ρ̃0 = ρ̃0(1 − ρ̃0)∂z S̄0. (29.22)

From (29.22) we can see that the asymptotic approximation is only valid as long as the
condition ∂z S̄0 > 0 holds true.

To the next order, we have

O(1) : ∂ζ ρ̃0∂τ z + ∂σ (ρ̃0(1 − ρ̃0)∂σ S̄0) + (∂σ n · ∂σ X)(ρ̃0(1 − ρ̃0)∂z S̄0 − ∂ζ ρ̃0)

+ ∂ζ (ρ̃0(1 − ρ̃0)ζ ∂2
z S̄0 + ρ̃1(1 − 2ρ̃0)∂z S̄0 − ∂ζ ρ̃1) = 0. (29.23)

From (29.22), the third term vanishes.
We integrate (29.23) with respect to ζ from −∞ to +∞. Since ρ̃ and ρ̄ have to be

matched as ζ → ±∞, it follows from the particular choice of ρ̄ (29.20) and (29.22)
that ρ̃0(∞) = 0, ρ̃0(−∞) = 1, ρ̃1(±∞) = ∂ζ ρ̃1(±∞) = 0, and the integral of the
fourth term in (29.23) vanishes. Concerning the second term in the integral, we can
deduce from (29.22) that∫ ∞

−∞
ρ̃0(1 − ρ̃0)dζ =

∫ ∞

−∞
∂ζ ρ̃0

∂z S̄0
dζ = − 1

∂z S̄0
.
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Hence, we obtain a condition on the remaining terms, i.e., the equation

∂τ z + ∂σ

(
∂σ S̄0

∂z S̄0

)
= 0. (29.24)

Since the quantity ∂τ z is the negative value of the interface velocity in normal direction
Vn , this is the sought-for equation describing the dynamics of the curve %(τ). Coupled
to the evolution equation for S̄0, the motion of the interface is hence given by

Vn = ∂σ

(
∂σ S̄0

∂z S̄0

)
on %(τ) × (0, T )

−�S̄0 = ρ̄0 − S̄0 in � × (0, T ).

(29.25)

The gradient flow structure of this system as well as the stability of stationary solutions
of (29.25) are discussed detail in [6].

29.3.2 Numerical Experiments

The above derived system (29.25) falls into the class of surface diffusion models, and
although numerical methods for this type of model have been developed recently (see
for instance [26, 2]), the numerical solution of (29.25) is—due to the coupling to the
chemical S̄0—absolutely nonstandard. Hence, we confine ourselves to solving the full
system (29.13) numerically. Again, for each time step, S is first computed using a finite
difference discretization of the elliptic equation, then the cell density ρ is calculated
using the updated value for S. Due to the nonlinearity in ρ, the Scharfetter–Gummel
algorithm described above cannot be generalized in a straightforward way, and we use
an upwind scheme for the cell density equation instead.

Our numerical experiments are analogous to those in Section 29.2, where we now
choose the initial conditions

ρI (x, y) =
{

1 for (x − x0)
2 + (y − y0)

2 ≤ r0,

0 else.

Fig. 29.4 shows successive contour plots of a solution ρ for parameter values as given
in the caption. Just as in the case where χ = 1, we see that the aggregation moves first
towards and then along the nearest boundary until it has reached the nearest corner.
Fig. 29.5 shows the solution of (29.13) under the same conditions as in Fig. 29.4, but
with homogeneous Dirichlet boundary conditions for S. Just as in the classical model,
the peak moves away from the boundary, to the middle of the domain. Finally, in
Fig. 29.6, the merging of two maxima under Neumann boundary conditions is shown.
Since the plateaus are approximately of the same size, both deform until they join as
one single, large peak. This peak eventually behaves like the plateau in Fig. 29.4 and
travels towards the boundary (data not shown).
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Fig. 29.5. The KS model with density control with homogeneous Dirichlet boundary conditions
for S. Contour plot of the cell density ρ for t = 0 to t = 12500. Parameter values are the same
as in Fig. 29.4.

29.4 Conclusion

In the last decades, a large number of articles has been dedicated to the mathematical
analysis of the Keller–Segel model for chemotaxis. In particular, the phenomenon of
blow-up of solutions has been a focus of interest in the mathematical community, and
precise conditions for its occurrence have been derived. On the other hand, several

Fig. 29.6. The KS model with density control with homogeneous Neumann boundary conditions
for S. Contour plot of two merging peaks for successive times (isolines shown for t = 0 to
t = 500). Initial conditions are r0 = 0.4, (x0, y0) = (3.6, 2.2) for the first, r0 = 0.5, (x0, y0) =
(2.6, 3.8) for the second peak. Total mass M = 2, ε = 0.005.
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modifications of the classical KS model have been proposed to prevent overcrowding
and thus to guarantee the global existence of solutions. The aim of this work was
to review recent rigorous and formal results on the asymptotic behavior of both the
classical KS model and a related model featuring a density control mechanism, leading
to a nonlinear flux term in the equation for the cell density.

The dominating qualitative effect in the classical KS model is the blow-up in finite
time. In contrast to this, the solutions of the nonlinear KS model form plateau-shaped
regions of high cell density that move on a slow time scale inversely proportional to ε,
as was shown above for space dimension d = 2.

We also presented numerical simulations of both models, showing that, despite the
differences, solutions of the classical and the volume filling model also share common
features. If we focus on regions corresponding to high cell density (respectively mov-
ing areas where blow-up occurs and plateaus) we observe that they are attracted by
each other (compare Fig. 29.3 and 29.6). Our numerical approach is restricted to the
time before blow-up, but studies of Velazquez [28] indicate that even after blow-up,
peaks are attracted by each other. Another phenomenon to be observed in the numerical
simulations is that in both models, peaks are attracted by the domain boundaries (com-
pare Fig. 29.1 and 29.4): for a variety of initial conditions tested, peaks or plateaus
of high cell density first move towards the nearest boundary to then approach a re-
gion where the curvature of the boundary is high, for instance the corners of a rect-
angle. This is an interesting phenomenon that is not completely understood so far, but
is apparently closely connected to homogeneous Neumann boundary conditions for
the chemical. If homogeneous Dirichlet conditions are chosen instead, the peaks or
plateaus move away from the boundary. Intuitively, this can be explained by the fact
that the Neumann boundary conditions act like a mirror, “reflecting” variations in the
cell density; hence, the phenomena of two peaks merging and one peak being attracted
by the boundary are indeed a result of the same mechanism.
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Summary. This chapter deals with the behavior of a branching population undergoing satura-
tion effects when it becomes too large. We study in particular the limits of the prediction given
in the setting of the deterministic dynamical system related to the stochastic branching process
modeling the evolution of the population. We also generalize the usual Markovian branching
processes of order one to size-dependent branching processes that may have a longer memory
and give conditions leading to an almost sure extinction of the process while the dynamical sys-
tem is persistent. The notion of reproductive rate is explained and generalized. We give some
examples, in particular the amplification process in the polymerase chain reaction (PCR).

Key words: Branching process, dynamical system, reproductive rate, saturation, PCR, logistic.

30.1 Introduction

Every biological population needs some suitable resources for surviving both from
the quality point of view and from the quantity point of view. When the available
resources are not appropriate, the population dies out or, when possible, it migrates
towards a more favorable environment or undergoes mutations allowing its survival.
The persistence of a population depends on some balance between the renewing rate of
the populations sharing the same resources and the regeneration rate of the resources.
When this balance occurs with some delay, it generally creates random cycles. The
classical lynx-hare population dynamics is such a generic example ([20]). Epidemics
are other examples.

The prediction of the behavior of the population dynamics and in particular the
question of persistence or extinction requires a modeling approach. Branching pro-
cesses and, more specifically, size- (or density-, or more generally, state-) dependent
branching processes and derived models are the appropriate models for population dy-
namics. Our main goal here is to study the limits of the prediction given in the setting
of the deterministic dynamical system related to a stochastic process modeling the
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evolution of a population undergoing saturation effects. We show that when the popu-
lation is very large and its dynamic is density dependent relative to some normalization
that depends on the initial size of the population or on the time, or on both quantities,
that the normalized process may behave asymptotically before extinction as the related
(deterministic) dynamical system. But this result is neither valid for the nonnormalized
process, nor in general for the concentration process when the process itself increases
to ∞, as n → ∞, and increasing bias between the two models may be observed.
Moreover in all the cases, when the initial conditions are favourable to the growth of
the population, but the saturation effects concern both births and deaths, then, while
the dynamical system persists as time tends to infinity, the stochastic process dies out
with probability 1. It is therefore crucial to study not only the behavior of the process
conditioned on nonextinction but also the law of its extinction time since the extinction
of a population may support the implementation of immigrant populations.

We also generalize the current Markovian processes of order one to state-dependent
branching processes that may have a longer memory and give conditions leading to an
a.s. (almost sure) extinction of the process while the dynamical system is persistent.
The notion of reproductive rate is explained and generalized in this frame.

We finally give some examples. The first example, which is the most detailed, con-
cerns the amplification process in the polymerase chain reaction (PCR). In this case,
the saturation effects are assumed to concern only the “births” since the molecules ob-
tained by replication are assumed indestructible during the experiment time. The other
examples concern the evolution of bacteria populations in a more or less limited (i.e.,
closed) environment. Details of the proofs and additional simulations may be found in
([6]).

30.2 Markovian Branching Processes of Order One

First consider a single type population, the size evolution of which, {Nn}n , is modeled
by a Markovian branching process of order one. If Fn denotes the σ -algebra generated
by the process until time n, N0 being given, then {Nn}n≥1 is essentially defined by

Nn =
Nn−1∑
i=1

Yn,i ; {Yn,i }i i.i.d. given Fn−1, (30.1)

E(Yn,1 | Fn−1) = m(Nn−1), Var(Yn,1 | Fn−1) = σ 2(Nn−1), (30.2)

where Yn,i is the offspring size of the individual i .
In the multitype case with d types, (30.1) becomes

N k
n =

d∑
h=1

N h
n−1∑

i=1
Y h,k

n,i ; k = 1, . . . , d, (30.3)

where Y h,k
n,i is the size of offspring with the type k whose “parent” is i with type h.

We denote M(Nn−1) the matrix of expectations {E(Y h,k
n,i | Fn−1)}h,k . In what follows,

M(·) (resp. m(·)) are continuous functions.



30 Saturation and Branching Processes 341

The simplest and most ancient model is the well-known BGW ([1]) (Bienaymé–
Galton–Watson) process which is not size dependent and therefore cannot model sat-
uration effects. Another well-known size-dependent Markovian class is the class of
ABGW (asymptotically BGW with limN M(N ) = M). Let Nt

n = (N 1
n , . . . , N d

n )

and ξh(Nn−1) = (ξh,1(Nn−1), . . . , ξh,d(Nn−1)), where ξh,k(Nn−1) = ∑N h
n−1

i=1 (Y h,k
n,i −

M(Nn−1)[h, k]), then (30.1) or more generally (30.3) may also be written in an au-
toregressive way,

Nt
n = Nt

n−1 M(Nn−1) +
d∑

h=1
ξh(Nn−1). (30.4)

Since ξh(Nn−1) is a martingale difference, that is E(ξh(Nn−1) | Fn−1) = 0, (30.3)
leads to the natural dynamical system

Xt
n = Xt

n−1 M(Xn−1), X0 = N0. (30.5)

30.2.1 Large Initial Population

When the initial population is very large and the offspring at time n depends on the
density Nµ

n−1 = Nn−1µ
−1
n−1,N0

, where µn,N0 → ∞ as N0 → ∞, we may compare the
behavior of {Nµ

n }n to that of {Xµ
n }n defined by Xµ t

n = Xµ t
n−1 M(Xµ

n−1), n ≥ 1, where
Xµ

0 = Nµ
0 = constant , for all N0. In a natural way, µn,N0 = V0 (initial volume),

or equivalently N0, when assuming a constant initial density d0 = N0/V0, or in the
multitype case, Nn (total size of the population at time n). But other normalizations
are possible. For example, in the single type BGW case, a natural normalizing quan-
tity is µn,N0 = N0mn since limN0 limn Nn[N0mn]−1 a.s.= limN0 W a.s.= 1, for m > 1
([1]), which leads to limN0 limn(Nµ

n − Xµ
n )

a.s.= 0, where Xµ
n = Xµ

0 = Nµ
0 = 1, for

all n. Denoting [Nn] = Nn V −1
0 (or equivalently Nn N−1

0 ), and assuming an initial con-
stant density d0 = N0V −1

0 , and since when [Nn] = Nn N−1
0 , E[Nn] = [Xn] = mn

with Var([Nn] − [Xn]) = m2n O(N−1
0 ), we get limN0([Nn] − [Xn]) a.s.= 0, but

limN0 limn |[Nn] − [Xn]| is in general infinite. In the size-dependent case such that
the deterministic model is persistent while the stochastic one dies a.s. to 0, Kle-
baner ([12]) studied the model with a threshold K such that m(Nn−1/K ) = 0 when
Nn−1 > K . The normalized process is N K

n = Nn K −1 = dnd−1
max where dn = Nn V −1

0
(or Nn N−1

0 ), dmax = K V −1
0 (or K N−1

0 ). Assuming d0 and dmax constant, for any N0,
then X K

0 = N K
0 = d0d−1

max is constant for all K (or equivalently all N0). The author
proved that the quasi-stationary distribution limn L(N K

n | N K
n �= 0) exists and concen-

trates as K → ∞ around the stable limit points of {X K
n }n ([12]). This result allows

us to use the asymptotic behavior of {X K
n }n as an approximation of the asymptotic

behavior of the process {N K
n }n until extinction. It would not be the case if the results

concerned limn limK L(N K
n | N K

n �= 0) instead of limK limn L(N K
n | N K

n �= 0).
In 1997, Högnäs ([4]) defined a stochastic Ricker model with m(Nn−1) = exp(r −

γ Nn−1). Its deterministic counterpart is Xn = Xn−1 exp(r−γ Xn−1), n ≥ 1, X0 = N0,
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equivalent, for γ �= 0, to dn = dn−1 exp(r − dn−1), where dn = γ Xn . Defining
γ = V −1

0 (or N−1
0 ), where d0 is constant, for any γ , then dn is the population density

at time n. The author proved that for any given γ , the process of densities {γ Nn}n has
a unique quasi-stationary distribution #γ and, for d0 fixed, limγ #γ exists and is a
uniform law on the unique (weakly) stable cycle of {dn}n .

In the multitype case, assuming that M(·) only depends on the empirical prob-
ability vector P̂n−1 = (Nn−1/Nn−1)1{Nn−1 �=0}, where Nn−1 = ∑

h N h
n−1 is the

size of the population, and using the autoregressive approach, Jacob and Viet ([8])
proved limN0 P̂n

a.s.= Pn , where {Pn}n is solution of a dynamical system. Therefore
limn limN0 P̂n

a.s.= limn Pn . They also showed that in a closed population, the limit
in n and in N0 cannot be exchanged. However we have the following property in a
supercritical population.

Proposition 1 Assume that {Nn}n is a supercritical BGW process with E(Y h,0
n,1 ) =

m > 1, Var(Y h,0
n,1 ) = σ 2,

∑
k Var(Y h,k

n,i | Fn−1) < σ̃ 2, for all h, where Y h,0
n,i =∑

k Y h,k
n,i , and that ‖F(x) − F(y)‖L1 ≤ ‖x − y‖L1 , where F(x) = xt M(x)m−1. Then

limN0 ‖P̂n−Pn‖L1
P= 0 and limN0 limn ‖P̂n−Pn‖L1

P= 0, where the probabilities {Pn}n
are solutions of Pt

n = F(Pn−1), n ≥ 1, P0 = P̂0 being assumed fixed as N0 → ∞.

30.2.2 Small Initial Population

We study here the behavior of the nonnormalized process {Nn}n . Since the study of the
asymptotic behavior of a state-dependent (not size-dependent ABGW) branching pro-
cess is an open problem, we consider the single type model (30.1) and its deterministic
counterpart Xn = m(Xn−1)Xn−1, X0 = N0. Since a population starting with a small
size is by definition not yet well implemented, it is crucial to determine the conditions
which lead either to the persistence or to the extinction of the branching process and
to compare these conditions to those related to the dynamical system.

Assume m(X) > 0, for all X > 0, and recall that m(X) is a continuous function of
X . Then {Xn}n persists as n → ∞ if 0 is unstable, and its asymptotic extinction is pos-
sible if 0 is asymptotically stable (attracting from some neighborhood)([2]). Moreover
the extinction is guaranteed if 0 is globally asymptotically stable (attracting from all
the space). Defining the current reproductive rate R(Xn−1) = Xn X−1

n−1 = m(Xn−1),
the bifurcation parameter for {Xn}n is R0 = limX→0 R(X), since, for R0 > 1, 0 is un-
stable and for R0 < 1, 0 is (locally) asymptotically stable ([2]). Considering then pro-
cess (30.1), (30.2), we may define the current reproductive rate Rs(Nn−1) = E(Nn |
Nn−1)N−1

n−1 = m(Nn−1)1{Nn−1 �=0}. Since {Nn}n is a homogeneous Markov chain on
N, it satisfies the classical behavior P(limn Nn = 0 ∪ limn Nn = ∞) = 1 (see Section
30.3). This implies that the long-term persistence is possible if P(limn Nn = ∞) > 0,
which depends on the value of Rs∞ = limN→∞ Rs(N ). In the particular case m(·) =
m, which is the case of the BGW process, we have Rs∞ = R0 = m. For an ABGW
process, Rs∞ = m �= R0. This is still true in a more general case.

Compare first {Nn}n with {Xn}n on {limn Nn = ∞}. The optimal known results,
in the meaning that the asymptotic behavior of trajectories of the process is the most
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similar to the deterministic trajectory, are obtained in the near-critical size-dependence
case ([10]) when limn Nn X−1

n
a.s.= 1, equivalent to limn(Nn − Xn)X−1

n
a.s.= 0. But this

does not imply limn(Nn − Xn) = 0 (see Section 30.2.3 for an example). In the BGW
case, the results are even weaker since limn Nn X−1

n
a.s.= W (which leads to limn |Nn −

Xn| = ∞ on the nonextinction set, for m > 1).
Compare now the behavior of the two models on {limn Nn = 0}. This question may

be studied using the distribution of the process conditioned on nonextinction L(Nn |
Nn �= 0). The existence of limn L(Nn | Nn �= 0), called a quasi-stationary distribution,
is more particularly studied in the literature. First results were given by Kolmogorov
and Yaglom in the BGW case ([14,21]): for m < 1, limn P(Nn = K | Nn �= 0) = αK ,∑

K αK = 1; for m = 1, limn P(Nn[0.5σ 2n]−1 ≤ x | Nn �= 0) = 1 − exp −x .
Moreover for m = 1, the extinction time T satisfies 0 < limt→∞ t P(T > t) < ∞
([5]), and for m < 1, P(T > n) � Cmn ([19]) (for more details and results, see
[3]). These results show that the asymptotic behavior of the BGW process conditioned
on nonextinction may be larger than its deterministic counterpart since Xn = N0mn

with limn Xn = 0, in the subcritical case m < 1, and Xn = N0 in the critical case
m = 1. The behavior of {Nn}n conditioned on nonextinction and the extinction time
distribution are particularly crucial quantities for processes that die out a.s. and for
which the related deterministic model is persistent. The critical BGW case is a well-
known trivial example of such processes since the process dies out a.s. while Xn = N0.
But there exists a class of nontrivial size-dependent processes that also satisfy these
properties. These processes check Rs∞ < 1 while R0 > 1 (see Section 30.3). In Section
30.2.1 we saw such examples of saturation models that die out a.s.: the model with a
threshold introduced by Klebaner ([13]) and the stochastic Ricker model introduced by
Högnäs ([4]).

30.2.3 A Particular Example of Partial Saturation: The Polymerase Chain
Reaction (Saiki, R.K., Scharf, S., Faloona, F.A., Mullis, K.B., Horn, G.T.,
Erlich, H.A., and Arnheim, N. Enzymatic amplification of beta-globulin
genomic sequences and restriction site analysis for diagnosis of sickle cell
anemia. Science, 230(4732), 1350–1354 (1985). Mullis, K.B. and Faloona,
F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain
reaction. Methods Enzymol., 155, 335–350 (1987).)

The PCR technology is based on an amplification in vitro of a given DNA (or RNA)
fragments population, called the target, through successive replication cycles. At cy-
cle n, the number of DNA fragments similar to the target is such that Nn = 2Nn−1,
if all the replications succeed. But in practice, Nn < 2Nn−1, since some replications
may fail. The goal of a PCR experiment is the estimation of the unobservable initial
population size N0 from observable amplified populations {Nh, Nh+1, . . . , Nn}. This
technology has many applications, e.g., in gene expression, virus detection and quan-
tification, and GMO detection and quantification.

Modeling the Amplification Process by a Size-Dependent Branching Process. The
modeled period corresponds to the experiment period. For simplification, we assume
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that each new molecule never disappears and consequently that Nn ≥ Nn−1. Then
the amplification process may be modeled by Nn = Nn−1 + ∑Nn−1

i=1 δn,i , where
δn,i = 1 with probability p(Nn−1) if replication of i succeeds, and limN p(N ) = 0.
This implies m(Nn−1) = E(1 + δn,1 | Fn−1) = 1 + p(Nn−1), and σ 2(Nn−1) =
p(Nn−1)(1− p(Nn−1)). The assumptions limN p(N ) = 0 with Nn ≥ Nn−1 imply that
{Nn}n is a near-critical process with P(limn Nn = ∞) = 1. Jagers and Klebaner ([9])
used Schnell–Mendoza’s model for the efficiency ([18]): p(Nn−1) = K (K + Nn−1)

−1,
where K = V0 KM , KM being the Michaelis–Menten constant of the reaction,
that is, the concentration of substrate leading to a rate of reaction equal to half the
maximum rate. The authors proved limn Nnn−1 a.s.= K ; limn Nn X−1

n
a.s.= 1, where

Xn = m(Xn−1)Xn−1, X0 = 1 or X0 = N0. In this model, the saturation begins the-
oretically at the first cycle but is really taken into account in simulations when Nn−1
becomes nonnegligible with respect to K . This model may be generalized in a sta-
tistical way in order to introduce a saturation threshold greater than N0, leading to a
theoretical exponential phase with efficiency p < 1. For example ([15]):

p(Nn) =
[

K
K + S(Nn)

][
1 + exp (−C(S(Nn)S−1 − 1))

2

]
S(N ) = S1{N<S} + N1{N≥S}, S : threshold of saturation.

The particular case C = 0, S = N0 corresponds to Schnell and Mendoza’s model. The
asymptotic behavior of the generalized process is

lim
n→∞ Nnn−1 a.s.= KC ; lim

n
Nn X−1

n
a.s.= 1, (30.6)

where KC = K δC , δC = (1/2)1{C �=0} + 1{C=0}, X0 = N0 or X0 = 1. In this model,
the exponential phase ends abruptly when the saturation threshold S is reached. Result
(30.6) shows that limn(Nµ

n − Xµ
n )

a.s.= 0, for µn,N0 = nKC . Since KC = V0 δC KM ,
then Nµ

n = [Nn](nδC KM )−1 and Xµ
n = [Xn](nδC KM )−1, where [N ] and [X ] are con-

centrations. Therefore limn[Nn]n−1−[Xn]n−1 a.s.= 0, but [Nn]−[Xn] seems to increase
indefinitely with n according to Fig. 30.1, which forbids in Schnell–Mendoza’s model
under a fixed d0, limV0 limn([Nn] − [Xn]) = 0. In Fig. 30.2 relative to the generalized
Schnell–Mendoza model, the exponential phase ends abruptly, which is visible on the
growth rate graphic. On the last line, the bias between the process and the determinis-
tic model is now centered. This comes from E(Nn − Xn)/Xn) = 0 in the exponential
phase, where Xn = mn N0.

Fig. 30.3 is similar to Fig. 30.1 except that now X0 = 1 and only a single trajectory
of the branching process is taken into account in all the graphics. We see especially on
the growth rate curve, the time needed for forgetting the initial conditions N0 �= X0.

Statistical Problem in QPCR: Estimation of N0. Due to limn Nn X−1
n

a.s.= 1 with
X0 = 1 which implies that the information on N0 disappears in the plateau phase
(defined by m(·) � 1), and since the accuracy of observation of the amplification pro-
cess increases as n → ∞, a “good” estimator of N0 will be based on observations
from the end of the exponential phase to the end of the linear phase (phase between the
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Fig. 30.1. Simulations from Schnell–Mendoza’s stochastic and deterministic models; N0 =
X0 = 1000, K = 4.1010. In the last line, 100 trajectories of {Nn}n are represented.

 

 

 

 

 

 

 

Fig. 30.2. Simulations from the generalized stochastic and deterministic models with N0 =
X0 = 1000, K = 4.1010, S = 109, C = 0.6.
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Fig. 30.3. Simulations from Schnell–Mendoza’s stochastic and deterministic model; N0 =
1000, X0 = 1, K = 4.1010.

exponential phase and the plateau phase). The simplest estimator is N̂0,n = Nnm−n

which satisfies E(N̂0,n | N0) = N0. The asymptotic law of this estimator allows the
construction of a confidence interval of N0 ([17], [7]). In ([16]) the censored max-
imum likelihood estimator based on observations from cycle n is shown to be very
closed to this estimator, which forbids any consistency property. Since N̂0,n depends
on mn , the unknown parameter m = 1 + p needs to be accurately estimated. We use
the CLSE (conditional least squares estimator) based either on the exponential phase
([7], [16]) or better on both the exponential phase and the linear phase. We have ([15])
the asymptotic properties of the CLSE of K as n → ∞ while this parameter disappears
as n → ∞. In Fig. 30.4, the estimation is done on a real PCR trajectory.

30.3 A Size-Dependent Branching Process for Saturation
Phenomena with a Long Memory

Assume now that the resources consumed by the population may need a long time to be
regenerated. Then the evolution of the population size may be modeled by (30.1) with
E(Yn,1 | Fn−1) = m(Fn−1), Var(Yn,1 | Fn−1)=σ 2(Fn−1), Fn−1 = (Nn−1, . . . , N0).

Proposition 2 Assume A1: P(Yn,i = 0 | Nn−1 = N ,Fn−1) ≥ f (N ) > 0, for all N .
Then P(limn Nn = 0 ∪ limn Nn = ∞) = 1.
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Proposition 3 Define Rs∞ = limn→∞lim‖Fn−1→∞‖m(Fn−1). Assume A1 and A2:
Rs∞ < 1. Then P(limn Nn = ∞) = 0.

Moreover if there exists c < 1 such that limN f (N ) > 1 − cm−1∗ , where m∗ =
limn→∞lim‖Fn−1‖→∞E(Yn,1 | Yn,1 > 0,Fn−1), then Rs∞ ≤ c < 1.

30.3.1 Example: Logistic Saturation Model for Bacteria Division

Assume first a single population of bacteria (or cells) {Nn}n satisfying the previous
model with a long memory, where P(Yn,i = 2 | Fn−1) = p(Fn−1) (efficiency of
the division) and P(Yn,i = 0 | Fn−1) = 1 − p(Fn−1). We assume here a gener-
alized form of Schnell–Mendoza’s model: p(Fn−1) = pK (K + ∑dn

l=1 µl Nn−l)
−1,

0 ≤ µ ≤ 1, where p is the division efficiency when there is no saturation ef-
fect, K is related to the saturation threshold, and dn represents the memory size.
The related deterministic model defined by Xn = m(Xn−1)Xn−1 satisfies Xn =
2pK Xn−1(K + ∑dn

l=1 µl Xn−l)
−1.

Assume first dn = 1. This model is called the Pielou logistic equation ([2]).
Moreover if n corresponds to a real time n�t , then it corresponds to the continu-
ous time Verhulst–Pearl model ([2]): X ′

t = Xt (a − bXt ), a�t = ln 2p, b�t =
(ln 2p)µK −1(2p − 1)−1. Xn has an explicit form when dn = 1 ([2]). Moreover for
2p �= 1, limn Xn = X∗ = (2p − 1)Kµ−1, and for 2p = 1, limn Xn = X∗ = 0,
implying that X∗ is globally asymptotically stable.

Now, assume dn = d . Then Xn = M(Xn−1)Xn−1, where the first line of M(Xn−1)
is (m(Xn−1), 0, . . . , 0) and the kth line, for k > 1, contains 1 in the k − 1th position
and 0 elsewhere; R(Xn−1) is the first eigenvalue of M(Xn−1), that is, R(Xn−1) =
m(Xn−1), implying R0 = limXn−1→0 R(Xn−1) = 2p. When 2p > 1, 0 is unstable,
implying the persistence of {Xn}n , as n → ∞. Moreover there is an equilibrium point
X∗ = Kµ−1(2p−1)(1−µ)(1−µd)−1, if µ �= 1, and X∗ = K (2p−1)d−1, if µ = 1.
When 2p < 1, {Xn}n is decreasing until it reaches the only nonnegative fixed point 0,
and 0 is globally stable.

Fig. 30.4. Estimation in the generalized model: h = 21, n = 25, n̂s = 23, K̂h,n = 0.38055,
Ŝh,n = 0.070553, Ĉh,n = 0.6, p̂h,n = 0.843599. Dashed line, the empirical efficiency, contin-
uous line, the CLSE.
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Fig. 30.5. N0 = 1, K = 104, p = 1, µ = 1, dn = 20.

Finally, when dn = n with µ = 1, then limn Xn = 0 with Xn decreasing.
Consider now the branching process. According to Proposition 2 we have

P(limn Nn = 0 ∪ limn Nn = ∞) = 1 since A1 is checked with f (N ) = (Kµ−1(1 −
p) + N )(Kµ−1 + N )−1. Moreover according to Proposition 3, since limN f (N ) = 1,
we have P(limn Nn = ∞) = 0. The conditional probability of extinction q(Fn−1) =
P(Nn = 0 | Fn−1, Nn−1 �= 0) satisfies q(Fn−1) ≥ exp(−pKµ−1), for Nn−1 large
enough, q(F0) = (Kµ−1(1 − p) + 1)(Kµ−1 + 1), F0 = (1, 0, 0, . . . ). Consequently
Kµ−1 plays a key role both in the rate of extinction of the stochastic process and in
X∗. The behavior of {Nn}n before extinction will be studied here by simulations.

On the first line of Fig. 30.5, the graph on the left shows the oscillations of {Xn}n
in dashed lines and a trajectory of {Nn}n in continuous lines. This one dies out after a
single oscillation. The difference between Fig. 30.5 and Fig. 30.6 concerns the value
of K . The extinction time is much larger for K = 106 than for K = 104, since after
2000 simulation times, the trajectory of the stochastic process is not yet extinct. The
relative difference now exhibits important oscillations as the time increases (left graph,
bottom line).

Assume now two populations a, b, sharing the same resources with {N h
n }n , h ∈

{a, b}, defined by N h
n = ∑N h

n−1
i=1 Y h

n,i , {Y h
n,i }i i.i.d. given Fn−1 with ph(Fn−1) =

P(Yh,n,i = 2 | Fn−1) = ph Kh(Kh +∑dn
l=1 µl [N a

n−l + N b
n−l ])

−1. As in the single pop-
ulation case, we have P(limn Nn = 0) = 1, where Nn = N a

n + N b
n . We simulate this

model with N a
0 = N b

0 and identical parameters for the two populations. See Fig. 30.7.
The graphs of the left column concern population a while those of the right column
concern population b. The variability of the random oscillations are much larger than
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Fig. 30.6. N0 = 1, K = 106, p = 1, µ = 1, dn = 20.

 

 
  

 

 

 

 

Fig. 30.7. N0 = 1, Ka = Kb = 106, pa = pb = 1, µ = 1, dn = 20.
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in the single population case. The deterministic models persist as n → ∞, whereas the
extinction occurs around time 1800 for population a and after time 2000 for population
b. The extinction of population a here allows the growth of population b. It could also
allow the invasion by some exogenous populations. It is therefore crucial to work in
the stochastic frame rather than in the deterministic one when the question concerns
biodiversity.
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Summary. Stochastic interacting particle systems (IPSs) are individual-based models, which
include stochastic local interactions on a spatial lattice. In this respect an IPS works similarly
to a cellular automaton. However, IPSs are continuous-time Markov processes, hence there is a
large background of analytical methods. Further, one has the possibility to simulate the system
on a finite lattice, which is what we focus on in this work. We explain the modelling steps
broadly and by means of examples. Finally, we state the core of a simulation algorithm. The
ideas is to convince the reader that IPSs can be used to set up and simulate sophisticated and
applicable models but allow an analytical approach as well.

Key words: Simulation, modelling, interacting particle systems, local stochastic interaction,
individual-based model, spatially extended system.

31.1 Introduction

In the mathematical modelling of biological problems, individual-based models be-
come increasingly important, since new experimental techniques allow one to follow
up and quantitatively describe the behavior of individual molecules, genes, cells or
whole organisms. By now, there are huge amounts of data describing the behavior of
single components of a system and the interaction between these components. In gen-
eral, the single components of a system are spatially distributed and interact with each
other. Often this interaction is local, which means that each single component only
interacts with other components of its direct neighborhood. Nevertheless, the system
as a whole shows very complex behavior or patterns in a certain way. Mathematical
modelling aims at explaining this complex outcome on the basis of the local behavior.

A first insight into the model behavior can be obtained by computer simulations.
Discretizing space and time, one can use cellular automata (CA) or lattice gas cellular
automata (LGCA) to describe the phenomena at hand on a computer and to study the
expected outcome for given parameter specifications. However, it is often difficult to
analyze these models since there are only few rigorous studies of CA and LGCA. In
the frame of Markov chain theory the discreteness of time causes additional problems.



354 T. Klauß and A. Voß-Böhme

Other important models that are widely used are partial differential equations
(PDEs) which are time- and space-continuous models. They are well studied and al-
low analytical results as well as numerical solutions, but they can only be used when
one abstracts from the individual nature of the interaction. Moreover, the equations are
often set up rather ad hoc, and it is often not clear how the PDE system relates to the
behavior of the single components.

We would like to draw attention to interacting particle systems (IPSs), which model
individual interaction between the components of a system. Here space is discretized
but time is kept continuous. IPSs are analytically tractable but can nevertheless be quite
easily simulated on a computer, as this chapter shows. In some cases, they allow the
rigorous derivation of a PDE description of the system. In those cases, the form of
the differential equations and the values of the parameters are directly related to the
individual interaction of the components.

The main goal of this chapter is to guide the reader from an intuitive understanding
of the individual behavior of spatially distributed systems to setting up a well-defined
IPS that models this behavior. In addition, we will detail how this system can be effec-
tively run on a computer to simulate the model behavior. The reader can then turn to
the vast literature on IPSs for analytical results. There are some well-studied simplified
models which can suggest the expected qualitative behavior, as well as general meth-
ods for the analysis of particle systems. Of course the analysis of more complicated
systems is often of a delicate nature.

To illustrate the course of reasoning we have chosen two biological examples: the
spread of epidemics and predator-prey competition. We do not claim new modelling
ideas here, but we hope that most readers’ familiarity with these examples will help
them to understand our special approach: IPSs are individual models that are easy to
establish and comprehend, which can be well simulated on a computer and which allow
rigorous analysis. We hope that the reader will notice that much more complicated
models can be set up and simulated without problems.

Example A 1 (Spread of Epidemics) We consider individuals that can be either
healthy or infected. Healthy individuals become infected at a rate which is propor-
tional to the number of infected neighbors. Infected individuals recover at a constant
rate.

Example B 1 (Predator-Prey Competition, see [4]) We consider two interacting pop-
ulations: predator and prey.

We assume that all individuals migrate with a certain constant rate, that is they
move to a randomly chosen neighboring location if this location is empty.

Individuals of each species are born or die at rates that depend on the number of
predator and prey individuals in the direct neighborhood. This dependence is given by
the following matrix:

predator prey

predator a b
prey k l
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The parameters in this table give the net birth rates (or death rates, if negative) of an
individual of a certain type when surrounded mainly by neighbors of another type. For
instance, a is the net birth rate of a predator individual in an environment dominated
by predator and b is the net birth rate of a predator individual in an environment
dominated by prey. Hence, in classical models a is assumed to be smaller than b.

31.2 Set Up the IPS Model

31.2.1 State Space

We want to model the temporal evolution of a population of spatially distributed indi-
viduals that interact with each other. We assume that those components are located on
the nodes of some regular d-dimensional lattice S ⊂ Z

d . This means that we have dis-
cretized the space. In the case where only one individual is allowed per node, we speak
of volume exclusion. Each individual is in a certain state or has a certain type (orien-
tation, mass, color, sensitivity, etc.). We assume that the set W of possible states is a
finite set. We describe the state of the whole system by configurations η ∈ X = W S .
This means that η = (η(x))x∈S , where η(x) describes the state of the individual at
node x . Sometimes the value 0 is assigned to a given node, if this node is not occupied
by any individual.

Comment. In general, the set W of possible states can even be infinite. In this case,
we require W to be a compact metric space. Note that any finite W equipped with the
discrete metric is compact. The product space X = W S with the product topology is
compact. Convergence in the product topology is equivalent to pointwise convergence,
i.e., ηn → η if and only if ηn(x) → η(x) for any x ∈ S.

Example A 2 (Spread of Epidemics) We assume that each site of the lattice S is oc-
cupied by exactly one individual which can be either healthy or infected. Thus we set
W := {0, 1} with the interpretation that η(x) = 1 if the individual at site x is infected
and η(x) = 0 if the individual at x is healthy. Note that a system with state space
{0, 1}S and in which only one coordinate changes in each transition is often referred
to as a spin system.

Example B 2 (Predator-Prey Competition) Each site of the lattice S can be empty,
occupied by a predator individual or occupied by a prey individual. Therefore, we set
W := {0, 1, 2} with 0 for an empty site, 1 for predator individuals and 2 for prey
individuals.

31.2.2 Transitions

The evolution of our system shall consist of transitions
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η → τT (η, v),

where
T ⊂ S, η ∈ X = W S, v ∈ W T

and

τT : W S × W T → W S : τT (η, v)(x) :=
{

v(x), x ∈ T
η(x), x �∈ T .

The interpretation is as follows: The transition only affects nodes in the spatial area
T . The actual configuration in T , that is η|T = (η(x))x∈T , is replaced by a new local
configuration v ∈ W T .

We assume that T is always a finite set. Often one poses further restrictions on the
set of possible T . For instance, one requires T to consist only of one single element or
to consist only of pairs of neighboring nodes. The set of all finite T ⊂ S is denoted by
T , whereas the set of all finite T ⊂ S which are allowed as transition areas is denoted
by T0.

Example A 3 (Spread of Epidemics) A given configuration of healthy and infected
individuals changes when a healthy individual becomes infected or an infected indi-
vidual recovers. This means that transitions take place on single nodes, i.e., T0 :=
{{x}; x ∈ S}. The transitions are described by

τx (η)(s) =
{

η(s) : s �= x
1 − η(x) : s = x , η ∈ X , x ∈ T0. (31.1)

Note that such transitions are called spin-flip transitions.

Example B 3 (Predator-Prey Competition) A given configuration may change by
birth and death of individuals or by migration of already existing individuals. Birth
and death affect only one coordinate, whereas migration to a neighboring site changes
the configuration at two adjacent sites at once. Therefore, we have T0 := {{x}; x ∈
S}∪ {{x, y}; x ∈ S, y ∈ U(x)}. Here, for given x ∈ S, U(x) := {s ∈ S : ‖x − z‖ = 1}
denotes the set of neighboring sites for x in the Euclidian distance.

1. Population development—consisting of birth and death of individuals—is de-
scribed by transitions τx (η, i). They describe the transition from the given configura-
tion η ∈ X into a new configuration τx (η, i) which is obtained by substituting into η

the value i at site x. In detail,

τx (η, i)(s) =
{

η(s) : s �= x
i : s = x .

(31.2)

2. The possible transitions for the migration processes are the same as for an
exclusion process. See [1] or [2]. We consider only transitions where an individual at
x moves to a neighboring y if y is vacant. If y is occupied, it shall remain at x. So

τxy(η)(s) =
η(y) : s = x

η(x) : s = y
η(s) : s �∈ {x, y}

, η ∈ X , x, y ∈ S, ‖x − y‖ = 1. (31.3)
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Comment. Note that the definition of possible transitions is one of the important in-
gredients next to the choice of the configuration space. Here the restriction is that
the transitions change the given configuration only within finite subsets of the lattice.
However, one can model possible transitions with a large freedom.

31.2.3 Transition Rates

The next step to define the IPS is to give the rates of the possible transitions. This
adds the probabilistic part to the model. We suppose that the system’s dynamic is
Markovian, which means that the rate for a transition from the actual configuration η

to a new configuration ζ does not depend on the temporal history of the system but on
the present configuration η and the future configuration ζ . In particular, we denote the
rate for a transition from η to ζ = τT (η, v) by cT (η, v). One can think of the rates as
a weighting of the possible transitions. So the dynamics of our system is completely
described by the family T0 of possible transition areas and a family (cT (η, ·))T ∈T 0 of
transition rates. Note that

cT : X × W T → [0, ∞), T ∈ T .

Comment. The transition rates can often be derived from direct observation of the com-
ponent’s interaction.

Example A 4 (Spread of Epidemics) For current η ∈ X , the state in the node x is
flipped from “healthy” to “infected” with a rate that is proportional to the number
of infected individuals in the direct neighborhood, and it is flipped from “infected” to
“healthy” with constant rate. This is modelled by

cx (η, 1 − η(x))(s) =
{

λ
∑

y∈U(x) η(y) : η(x) = 0
1 : η(x) = 1,

(31.4)

where λ is a real non-negative parameter.

Example B 4 (Predator-Prey Competition)

1. We first define the transition rates for the birth and death transitions. Therefore,
put for η ∈ X η1(x) := ∑

z∈U(x) 1{1}(η(z)) and η2(x) := ∑
z∈U(x) 1{2}(η(z)). Obvi-

ously, η1(x) is the number of predators in U(x) and η2(x) is the number of prey in
U(x) for given configuration η and node x. For simplicity, we assume that the param-
eters a, b, k, l that were introduced in Example B 1 are non-negative. Note that the
model can be easily adjusted if some of the parameters are negative. So the transition
rates for the birth processes as defined in (31.2) are given by

cx (η, i) =
 aη1(x) + bη2(x) : η(x) = 0, i = 1

kη1(x) + lη2(x) : η(x) = 0, i = 2
0 : otherwise,

(31.5)
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for any η ∈ X , i ∈ W and x ∈ S.
2. We define the rates for the migration transitions that were defined in (31.3).

An individual at x—supposing there is one—chooses with equal probability one of its
neighboring sites and jumps to this place, if it is empty. Thus, for x, y ∈ S, we set
p(x, y) = |U(x)|−1 = 1/(2d) and define

cxy(η, v) =
{

p(x, y) : η(x) ∈ {1, 2}, η(y) = 0, v = τxy(η)|{x,y}
0 : otherwise. (31.6)

Note that the migration rates are the same rates as for the exclusion process in [1]
with stochastic matrix p(x, y).

31.2.4 Finite Range Condition

In the case that the spatial lattice S is finite, the above transition rates supplemented
with boundary conditions lead to a well-defined IPS. However, many analytical prop-
erties of such a particle system only reveal if the corresponding system on the infinite
lattice Z

d is studied. Since the state space WZ
d

is not countable even for finite W ,
special care has to be taken that the rates lead to a well-defined Markov process for an
infinite lattice. A sufficient condition for this is the finite range condition which we will
state now. In applications with local interactions, this condition is fulfilled naturally.
Note that this condition can be considerably relaxed. See [1] for details.

Let a family (cT (η, ·))T ∈T 0 of transition rates be given. We define

cT

(
η, W T

)
=

∑
v∈W T

cT (η, v).

One can interpret this value as the total rate at which a transition takes place that
changes the actual configuration η by alteration of the coordinates in T . Let

cT = sup
η∈X

cT

(
η, W T

)
. (31.7)

The value cT plays quite an important role in the context of IPS in general but also for
our goal to set up a simulation method. In addition, we define a value c by maximizing
over the set T0 in which transitions can take place,

c := max
T ∈T0

(cT ). (31.8)

This value is particularly important if transitions can take place in differently shaped
T ’s. The quantity

cT (z) := sup
v∈W T

sup
η,ζ∈X

{|cT (η, v) − cT (ζ, v)| : η(x) = ζ(x) for all x �= z}

measures the degree to which the transition rate cT (·, ·), T ∈ T depends on the coor-
dinate z ∈ S.
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Definition 1 The family (cT (η, ·))T ∈T 0 of transition rates satisfies the finite range con-
dition, if there exists an N > 0 such that

(a) cT = 0, if T contains two points x, y with |x − y| > N and
(b) cT (z) = 0, if minx∈T |x − z| > N.

In fact, the finite range condition is often very easily verified. Part a) says that the tran-
sition areas are bounded, that is, only the coordinates in a region of diameter at most
N are changed at once. Part b) says that the rate cT (η, ·) for a transition (involving the
coordinates in T ) depends on η only through the values η(x) with x from the distance-
N -neighborhood of T and not from the values of η at more distant coordinates. One
can easily see that this condition holds for our examples.

31.2.5 Generator

This paragraph is devoted to the mathematical background of an IPS. We just state
one important existence theorem and omit the framework. The reader who is mainly
interested in simulating a stochastic IPS can skip this part. An explicit description of
the theory is given in [1].

Formally, one can write the expression for an operator A which acts on the set D
of all functions f : X → R that depend on only finitely many coordinates. Often D is
also referred to as the set of cylinder or tame functions [1]. In particular,

A f (η) =
∑
T ∈T0

∫
v∈W T

cT (η, dv)[ f (τT (η, v)) − f (η)]. (31.9)

Theorem 1 If the family of transition rates (cT (η, ·))T ∈T 0 satisfies the finite range
condition, then A is a Markov pregenerator. The closure A of A is a Markov generator,
see [1].

Comment. It follows directly from the theorem that any IPS with finite range transition
rates is a well-defined Markov process.

31.3 The Dynamics of the Finite IPS

We understand a finite IPS to be an IPS on a finite lattice. Hence, we assume that
|S| < ∞. As before, we suppose that |W | < ∞. Thus, the state space X = W S
is finite. Let a family (cT (η, ·))T ∈T 0 together with T0 be given. Due to the finiteness
of X, the finite range condition holds trivially and the corresponding Markov process
generated by A is a (continuous-time) Markov chain. Further, the space of (continuous)
functions f : X → R is a finite dimensional vector space. Since the generator A is
a linear operator it has a matrix representation, which we will determine within this
paragraph. In the sequel, we will identify A with its matrix representation. Now, the
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problem is that we have a continuous-time model but want to establish a simulation
method. This means we need to understand the dynamics in a sequential or algorithmic
way. In order to do so we interpret the Markov chain dynamics in two different ways
by applying standard methods to the Markov process generated by A.

31.3.1 Representation of the Generator A

Before we present the results of our calculation we need to fix some notation. As
above, we write η|U for {η(x); x ∈ U }, the restriction of some configuration η to the
coordinates of U ⊆ S. Further, put

NT0 := |T0|,
the number of elements of T0. We define

AT f (η) :=
∑

v∈W T

cT (η, v)[ f (τT (η, v)) − f (η)]. (31.10)

Then A decomposes into

A f (η) =
∑

T ∈T0

AT f (η). (31.11)

As mentioned, A and AT are linear maps and hence possess a matrix representation
denoted by (aηξ ), (aT

ηξ ), respectively.

Lemma 1 Let η ∈ X , T ∈ T0. Then the matrix representation of AT satisfies condi-
tion (Q) in the next section, and

aT
ηη = −cT (η, W T ) + cT (η, η|T )

aT
ηξ =

{
cT (η, ξ |T ) if η|S\T = ξ |S\T
0 if η|S\T �= ξ |S\T .

(η �= ξ)

The proof of this lemma can be found in the Appendix. The key idea is to insert the
indicator functions 1η, η ∈ X into (31.10).

Note that

aT
ηη = −

∑
v∈W T
v �=η|T

cT (η, v). (31.12)

With (31.11) we obtain the following.

Corollary 1 The matrix representation of A satisfies condition (Q), where

aηη = −
∑
T ∈T0

cT (η, W T ) (31.13)

and

aηξ =
∑
T ∈T0

cT (η, ξ |T )1(ξ |S\T )(η|S\T ) (η, ξ ∈ X , η �= ξ). (31.14)
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31.3.2 Two Concepts for Continuous-Time Markov Chains

Let Q = (qi j )i, j∈X be the generator of some continuous-time Markov chain with
countable state space X . The following condition holds:

qi j ≥ 0 for i �= j; qii ≤ 0 and − qii =
∑
j �=i

qi j . (Q)

For the analysis of the dynamics of an IPS we mention two results that can be found
in many relevant text books.

1. The compound Poisson process. Let I be the identity mapping X → X . Sup-
pose that (Nt )t∈[0,∞) is a Poisson process with parameter α ∈ (0, ∞) and (Xn)n∈N0
is some discrete-time Markov chain independent of (Nt )t∈[0,∞) and with the one-step
transition probabilities p. By

(X N
t )t∈[0,∞) (31.15)

we denote the process with event times according to (Nt )t∈[0,∞) and which performs
transitions according to p at the event times. Then the stochastic process (X N

t )t∈[0,∞)

is a Markov process with generator equal to α(p − I ).
2. The embedded chain. Since the complete presentation is quite extensive we

refer to [3]. The idea is that a continuous-time Markov chain can be decomposed into
exponentially distributed holding times, where no transition takes place, and a discrete-
time Markov chain. The parameter of the holding times as well as the transition prob-
ability matrix of the discrete-time chain can be concluded from the generator Q.

31.3.3 Interpretations of IPS Dynamics

Let (ηt )t∈[0,∞) be some finite IPS generated by A as given in (31.11). The follow-
ing algorithmic understanding of this process is derived by considering the embedded
chain and by interpreting (ηt )t∈[0,∞) as a compound Poisson process.

1. We use the embedded chain arguments. Let η be the current configuration
of the IPS, and let T ∈ T0. One could imagine an alarm clock at T ∈ T0. The holding
time until η changes involving the coordinates in T is exponentially distributed with
parameter −aT

ηη, see (31.12). Let v ∈ W T . The probability of a transition from η to
τT (η, v) is given by

cT (η, v)

−aT
ηη

.

After the transition has taken place, the alarm will be reset. The global behavior of the
process can be interpreted as the superposition of transitions taking place locally in all
possible T ∈ T0 as described above, since A f (η) = ∑

T ∈T0
AT f (η).

2. We use the statement of the compound Poisson process. In the following, we
construct a compound Poisson process with generator A. Let η ∈ X . We define

(pT
ηξ )η,ξ∈X = pT (31.16)
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by

pT
ηη := 1 + 1

c
aT
ηη

= 1 − 1
c

cT (η, W T ) with Lemma 1, and further

pT
ηξ := 1

c
aT
ηξ ξ ∈ X , η �= ξ

= 1
c

cT (η, ξ |T )1(ξ |S\T )(η|S\T ), likewise with Lemma 1.

One easily verifies that pT is a stochastic matrix with Lemma 1. Moreover, the defini-
tion of pT is such that the equation

AT = c(pT − I ) (31.17)

is valid. From (31.17) we conclude

A =
∑
T ∈T0

AT = c

 ∑
T ∈T0

pT −
∑
T ∈T0

I

 ,

= c

 ∑
T ∈T0

pT − NT0 · I

 ,

= c · NT0

 1
NT0

∑
T ∈T0

pT − I


= α

(
1

NT0

p − I
)

, where p :=
∑
T ∈T0

pT and α := c · NT0 . (31.18)

Note that (1/NT0)p is also a stochastic matrix. Let (Yn)n∈N0 be a discrete Markov
chain on X with transition probability matrix (1/NT0)p. Let α be the parameter of iid1

exponentially distributed holding times (hn)n∈N0 and let (Nt )t∈[0,∞) be the Poisson
process corresponding to the holding times (hn)n∈N0 . Then, (Nt )t∈[0,∞) is a Poisson
process with parameter α. We obtain that (X N

t )t∈[0,∞), see (31.15), has a generator
equal to A. This allows the following interpretation of the IPS generated by A.

Let η be the current configuration of (ηt )t∈T. After an exponentially distributed
waiting time with parameter α the IPS performs a transition according to (1/NT0)p,
i.e.,

1
NT0

pηξ = 1
NT0

∑
T ∈T0

pT
ηξ (ξ ∈ X ) (31.19)

1 Identically independently distributed.
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is the probability for such a transition from η to ξ . This can be interpreted as follows.
A uniformly distributed random variable with probability density equal to (1/NT0)

picks out the region T ∈ T0 where a transition from η shall take place, and the “local”
transition in this T is then performed according to pT .

We want to point out a difference in the interpretations of (ηt )t∈T given in 1 and 2.
In 1, the holding times are not identically distributed. The stochastic matrix which con-
trols the transitions at the event times has only diagonal elements equal to 0. Hence,
there are no transitions of a current configuration η in itself. On the other hand, the
construction in 2 allows fake events, i.e., transitions of the form τT (η, η|T ) for a cur-
rent configuration η and T ∈ T0, with positive probability. But the holding times are
distributed iid.

31.4 Simulating the Finite IPS

31.4.1 Preparations

We take the general assumptions of Section 31.3. In this section we present an al-
gorithm that can be used to implement an IPS given that all the modelling steps as
described in the previous sections are performed. In other words, we assume that the
possible transitions τT (η, v) from η ∈ X are defined, where T ∈ T0 and v ∈ W T , and
that these transitions occur with a rate cT (η, v). Recall that the set T0 holds the subsets
of the lattice in which transitions can take place. We define

W T
+ := {v ∈ W T ; v �= η|T and cT (η, v) > 0} η ∈ X .

In words, this is all v ∈ W T such that the transition τT (η, v) is no fake event and has a
strictly positive rate for given η. We say that a transition is possible if W T+ is not empty
for given T . Since W and T are finite we denote W T+ = {v1, . . . , vn}. The algorithm
corresponds to one local transition (update) of the system. In other words it explains
the transition from one η to a certain η̃. We do not take care of any graphical output or
terminating condition of the algorithm. Such details are usually strongly connected to
the particular model. The algorithm is related almost one-to-one to the interpretation
in the sense of 2 of Section 31.3. Recall (31.19). It starts with any given configuration
η, which is called the initial condition for now. We formulate two random experiments
that are part of the flowchart presented in the next section. The reader may translate
these experiments into program code as desired. Further, we explain the decision Dec
that is part of the flowchart.

1. Exp1: Choose some T ∈ T0 with uniform distribution on T0.
2. Dec: Decide whether transition is possible in the chosen T . Transition is possi-

ble, if W T+ is not empty for given T . In other words, the system updates with a strictly
positive rate.

3. Exp2: The second random experiment is modelled as follows. The random
variable maps into W T+ ∪ {η|T } = {v1, . . . , vn, η|T }. So, the state space of this exper-
iment is the set W T+ enlarged with the element η|T of W T . Recall (31.8) and (31.16).
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If v = η|T ∈ W T , the transition τT (η, v) is a fake event and its probability is given by
the diagonal element pT

ηη of (31.16). Thus, the density of the distribution (single point
probabilities) of the random experiment is given according to (31.16) by

P =
(

cT (η, v1)

c
,

cT (η, v2)

c
, . . . ,

cT (η, vn)

c
, 1 −

n∑
i=1

cT (η, vi )

c

)
.

The probability on the right-hand side in the above parentheses is the probability of
the mentioned fake event.

31.4.2 Flowchart for One Transition

✛
✚

✘
✙start: η ✲ perform Exp1

⇒ obtain T ∈ T0

✟✟✟
❍❍❍

❍❍❍
✟✟✟ ✲yes✲

✛ no

Dec calculate P

❄

✛
perform Exp2

⇒ obtain v- ∈ W T+ ∪ {η|T }

perform transition

to τT (η, v-) = η̃

✻

Fig. 32.1. Vizualization of the simulation scheme.

Example B 5 (Predator-Prey Competition) We illustrate the local update procedure
for the Predator-Prey Example.

Exp1: Choose the transition area T from T0, that is in our case, choose either a
single node {x} ⊂ S or a pair of neighboring sites {x, y} ⊂ S. The probability to
select a certain transition area shall be 1/|T0|, i.e., each area has the same chance to
be chosen. Note that the number |T0| of possible transition areas depends only on the
structure and size of S.

Dec: In the case that a single node has been chosen for T , transition is possible if
the node x is empty, see (31.5). Then a new individual—either predator or prey—can
be born at this node. In the case that a pair of neighboring sites has been chosen for
T , then transition is possible if one site is occupied by predator or prey and the other
one is empty. Then the individual can migrate from the first site to the other one.

Exp2: Remember that the system is in the actual configuration η. Note that the
value c depends on the parameters a, b, k, l and the lattice dimensionality d and that
c can be calculated by the formulas (31.8) and (31.7).

In the case that T = {x, y} was chosen, a migration is performed with chance
1/(2dc) and the configuration is left unchanged (fake event) with probability 1 −
[1/(2dc)]. Any other transition corresponding to the transition area T has chance
zero. This means that the vector P has only two non-zero entries: 1/2dc for the local
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configuration v with v(x) = η(y) and v(y) = η(x) and 1 − [1/(2dc)] for the local
configuration v0 with v(x) = η(x) and v(y) = η(y) (fake event).

In the case that T = {x} was chosen, calculate η1(x) and η2(x), the number
of predator and prey individuals in the neighborhood of x, as defined in Example B
4. The birth of a predator individual at x is described by replacement of v(x) = 1
instead of η(x) = 0 and it occurs with probability (aη1(x) + bη2(x))/c. Analo-
gously, the transition to the local configuration v(x) = 2 (birth of prey) has chance
(kη1(x) + lη2(x))/c. The only other possibility is v(x) = 0, the fake event, with
chance 1 − (aη1(x) + bη2(x))/c − (kη1(x) + lη2(x))/c.

31.4.3 The Simulation Clock

The fact that IPSs are time-continuous models allows us to explicitly relate the number
of simulation updates to real time. To illustrate this we go back to the interpretation
2 of Section 31.3, and formula (31.18). There it is stated that the clock pulse for the
transitions is given by a Poisson process (Nt )t∈[0,∞) with parameter α := c · NT0 . This
means that the waiting times in between such transitions are iid distributed with an
exponential distribution with parameter α and the number # of simulation updates up
to time t equals Nt . We conclude from the law of large numbers that Nt ≈ αt for large
t . Therefore, we can estimate the real time t from the number # of simulation updates
by

t ≈ 1
α

· #. (31.20)

This estimate is more precise the larger the number of updates is.
There are two interesting facts which we point out. First, the parameter α = c · NT0

depends on the lattice size. This reflects the connection between the local nature of
the single transitions and the global simulation clock pulse. Note that a certain fixed
transition area is expected to be chosen once during NT0 simulation updates. Second,
two systems, where the dynamics is essentially the same but the rates of the second
system are increased by a constant factor compared to the first system, are simulated
exactly the same way. Only the clock pulse for the second system is increased by the
mentioned factor in comparison with the first system. In fact, one would implement
both systems identically and account for the relation to real time by formula (31.20).

31.5 Discussion

IPSs are continuous-time Markov processes. They allow us to model the local interac-
tion of spatially distributed individuals. Therefore, they are particularly suited for the
modelling of many biological systems. We have stated the main modelling steps that
are necessary to establish an IPS model for a given biological problem.

There is a long history of IPS-modelling in the physical sciences which is accompa-
nied by a large interest in IPSs from the mathematical side. Therefore, there exist many
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well-studied IPSs that can be used for reference, as well as a variety of mathematical
methods that can be used to analytically study new IPSs. However, the analytical prop-
erties of an IPS are often not revealed until one studies the corresponding system on
an infinite lattice. If the finite range condition is satisfied for the transition rates, then
even the infinite IPS is a well-defined Markov process.

Many studies start with a computer simulation of the model. Therefore, it is neces-
sary to translate the dynamics of the particle system into a sequential algorithm that can
be implemented on a computer. We have developed the core of a simulation algorithm
for any finite IPS.

Proportionally increased transition rates result in a speedup of the system dynam-
ics. The simulation algorithm remains essentially unchanged. We have worked out the
relation of the number of simulation steps to real time.

We want to point out that the simulation algorithm is closely related to (asyn-
chronous) cellular automata. An advantage of an IPS model is that it falls into a class
of mathematically well-studied systems, so that the model can be analyzed rigorously
in many cases. For instance, sometimes it is possible to derive a PDE from the IPS
model by sending the lattice spacing to zero in a suitable way. Then the parameters of
the resulting PDE are directly related to the parameters of the individual interaction.

Appendix

A.1 The Proof of Lemma 1

Proof Let T ∈ T0 and η ∈ X . Then

aT
ηη = AT 1η(η) =

∑
v∈W T

cT (η, v)[1η(τT (η, v)) − 1η(η)]

= −
∑

v∈W T

cT (η, v) +
∑

v∈W T

cT (η, v)1η(τT (η, v))

= −
∑

v∈W T

cT (η, v) + cT (η, η|T ).

Further, we have
∑

ξ,ξ �=η aT
ηξ = ∑

ξ,ξ �=η AT 1ξ (η), where for η �= ξ

AT 1ξ (η) =
∑

v∈W T

cT (η, v)[1ξ (τT (η, v)) − 1ξ (η)]

=
∑

v∈W T

cT (η, vk)1ξ (τT (η, v))

=
{

cT (η, v) if τT (η, v) = ξ

0 if τT (η, v) �= ξ

=
{

cT (η, ξ |T ) if η|S\T = ξ |S\T
0 if η|S\T �= ξ |S\T .
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We conclude ∑
{ξ∈X ; ξ �=η}

aT
ηξ =

∑
{ξ∈X ; ξ �=η, η|S\T =ξ |S\T }

cT (η, ξ |T )

=
∑

v∈W T , v �=η|T
cT (η, v)

= cT (η, W T ) − cT (η, η|T ).

Since cT (η, v) ≥ 0 (η ∈ X , v ∈ W T ) the first assertion is proved. ��
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Summary. For the past four years, the University of Alberta has hosted a summer school on
mathematical biology, aimed at undergraduate students who have completed 2–3 years of study
in mathematics or a similar quantitative science. The aim of this summer school is to introduce
the students to mathematical modelling and analysis applied to real biological systems. In the
span of 10 days, students attend lectures and exercise sessions, learn how to set up mathemat-
ical models, and use analytical and computational tools to relate them to biological data. They
experience the modelling process by working on a research project. In this chapter, we explain
our teaching philosophy, share some unique features of our summer school, and exemplify key
course components.

Key words: Education, undergraduate, modelling.

32.1 Introduction

Mathematical modelling of biological systems requires a wide variety of methods and
skills from multiple disciplines. Traditionally, these skills are taught separately in stan-
dard courses in mathematics, biology, and computer science, but rarely are they inte-
grated into a single undergraduate-level course that focusses on the modelling process.

At the Centre for Mathematical Biology at the University of Alberta, inspired by
a similar summer school at the University of Tübingen, we have developed a 10-day
summer school for motivated undergraduate students that integrates the methods of
applied mathematics in the context of mathematical biology.

The summer school addresses questions of utmost importance to the mathematical
biologist, namely what type of model to use, how to develop a mathematical model,
how to relate a model to experimental data, and how to validate and/or evaluate the
model.

Our primary goal then is to teach the development of models based on biological
observations and experimental data, and the interpretation of model results in order
to make predictions, suggestions for further experiments, and suggestions for control
measures or treatments. We include qualitative model analysis, model simulation, and
model validation.
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In this chapter, we describe how we accomplish all of the above in the short time of
10 days. In Section 32.2, we provide an overview of the summer school, describing the
schedule, typical participants, and prerequisites for the course. The bulk of the chapter
is devoted to describing the course content, in Section 32.3. We conclude with our
perspectives on the benefits and impact of the summer school in Section 32.4, and a
brief discussion in Section 32.5.

32.2 Overview of the Summer School

We aim to introduce undergraduate students to mathematical modelling and analysis
in the context of real biological systems and to provide them with a simulated research
experience. To that end, our summer school consists of three integrated components:

1. Through lectures and exercises, focussing on four main topics (difference equa-
tions, ODEs, PDEs, and stochastic models and parameter estimation), students are
introduced to various techniques of mathematical modelling.

2. Through a self-guided tutorial, students learn how to use Maple to simulate math-
ematical models and relate them to biological data.

3. Through projects, students experience the modelling process.

The summer school consists of 10 instructional days. The schedule we use is shown
in Table 32.1. During the first 5 days, students attend lectures, work through exercises,
and complete the self-guided computer tutorial. The last 5 days are devoted to the
research projects.

The summer school is attended by 15–25 students each year. In addition to lectur-
ing, our summer school involves a significant amount of one-on-one mentoring and
interaction with students. For that reason, we cap enrollment at approximately 25.

Typical students have completed 2–3 years of undergraduate study in mathematics
or a similar quantitative science. While the majority of attendees major in mathematics,
some already are enrolled in a degree program combining mathematics or computer
science and biology. Undergraduates in their third year are especially encouraged to
attend. Beginning graduate students in the biological and medical sciences interested
in mathematical modelling are welcome as well, and in fact serve as an excellent com-
plement to the group composition.

The prerequisites for attending our summer school are a basic knowledge of calcu-
lus, linear algebra, and differential equations. Although not necessary, we have found
that some knowledge of computer programming is extremely helpful.

We typically run the summer school with four core instructors, one high-profile
guest instructor, secretarial support staff, and approximately 20 volunteers (graduate
students and postdoctoral fellows). The core instructors give the lectures and guide
the exercise sessions during the first half of the summer school, and serve as primary
project consultants for 2-3 student teams during the second half. The guest instructor
attends the summer school for the last few days only, delivers a keynote address, and
serves as roaming project consultant, interacting with each student team. The graduate
students and postdoctoral fellows help with all aspects of the summer school.
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Table 32.1. Schedule for the mathematical biology summer school.

9:00–10:30 11:00-12:30 1:30–3:00 3:30–5:00 Evening

Day 1 Introduction Discrete I Maple Lab Discrete II Homework

Day 2 Exercises ODE I Maple Lab ODE II Homework

Day 3 Exercises PDE I Maple Lab PDE II Homework

Day 4 Exercises Stochastic I Maple Lab Stochastic II Homework

Day 5 Exercises Maple Lab Maple Lab Maple Lab Project Intro

Day 6 DAY OFF

Days 7–10 Projects Projects Research
Lecture

Projects

Day 11 Presentations Presentations Presentations Presentations Graduation

32.3 Course Content

In this section, we elaborate on the three course components, namely lectures and
homework, the computer tutorial, and research projects.

32.3.1 Part I: Lectures and Homework

We integrate theory and modelling in the lectures and homework component of the
summer school. We begin with a brief presentation on the history of mathematical bi-
ology. The modelling lectures begin with a review of the importance of distinguishing
between dependent and independent variables, and probabilities and rates, as well as
an overview of the most common model classes.

We elaborate on four of the model classes (difference equations, ODEs, PDEs, and
stochastic models and parameter estimation) in four units of lectures and homework
sessions. Each unit consists of 3 hours of lecturing and 1.5 hours of tutorial sessions
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during which homework problems (assigned during the lectures) are discussed. Stu-
dents receive extensive course notes that fill in details not covered in the lectures. The
course notes have been edited and published [2].

The unit on difference equations covers scalar and two-dimensional systems, both
linear and nonlinear. Students are introduced to the concept of a fixed point, as well
as the notions of stability and instability. For scalar equations, we teach both graphical
stability analysis (cobwebbing) and linear stability analysis. The latter is extended to
two-dimensional systems. We give a full treatment of the discrete logistic equation,
including period-doubling and the Feigenbaum diagram, thereby introducing students
to the concept of a bifurcation.

The unit on ordinary differential equations builds on the previous unit, and covers
direction fields, nullclines, and phase plane analysis. Applications include the investi-
gation of 2-species interaction models such as predator-prey or competition models, as
well as standard susceptible-infected-removed (SIR) epidemiological models.

The unit on partial differential equations covers an age-structured population
model and reaction-diffusion equations. In particular, we focus on the critical domain
size problem and travelling waves.

The last unit covers stochastic modelling and parameter estimation. The section on
stochastic models covers random walk models and birth-death processes. The section
on parameter estimation includes the log-likelihood method, the Akaike information
criterion (AIC), and the likelihood ratio test.

The following exercise, drawn from the lectures on difference equations, illustrates
our approach to integrating theory and modelling:

Consider the following model for drug prescription:

an+1 = an − kan + b,

where an is the amount (in mg) of a drug in the bloodstream after administra-
tion of n dosages at regular hourly intervals.
(a) Discuss the meaning of the model parameters k and b. What can you say

about their size and sign?
(b) Perform cobwebbing analysis for this model. What happens to the amount

of drug in the bloodstream in the long run? How does the result depend
on the model parameters?

(c) Sketch a graph of an versus n. How should b be chosen to ensure that the
drug is effective, but not toxic?

In this exercise, students are given the equation of the model, but they are asked to
figure out the structure of the model themselves, by determining the meaning of each
of the model parameters. In other exercises, students are asked to construct their own
model, based on explicitly stated assumptions. The experience gained from working
through exercises such as these prepare students for the project work later during the
summer school.
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32.3.2 Part II: Self-Guided Maple Tutorial

The structure of the Maple tutorial [2] follows the lectures. The tutorial supports the
material discussed in the lecture and provides a different perspective on biological
problems, but also covers topics not discussed in the lectures. In particular, we use the
tutorial to introduce students to data analysis, covering linear regression and dealing
with data sets, as well as numerical solutions of differential equations.

The computational software of our choice is Maple. The point is not to learn Maple
per se, but to extend the range of interesting problems within the grasp of students
through computation. Other software, such as Mathematica, Matlab, or even C++,
could be used instead.

Each student has access to a computer and works through the tutorial document
at his/her own pace. We typically schedule about 12 hours of lab time for the Maple
tutorial. An instructor and several teaching assistants are present during the Maple lab
sessions to provide help when needed.

The tutorial is extensive and contains many examples and exercises, ranging from
trivial to challenging in difficulty. We do not expect every student to complete the
entire tutorial, although each year there are a few who do (primarily advanced students
with some computer programming background). Occasionally, a student already has
some background with Maple. Those students are free to skip sections of the tutorial
with material that is familiar to them. We have found that the tutorial is sufficiently
wide ranging and challenging to keep the interest of those students.

Following is a sample exercise from the Maple tutorial illustrating the use of data
analysis in the modelling process:

Consider the Ricker model, written in the following form:

xn+1 = ae−bxn xn .

(a) Fit the Ricker model to Barlow’s data on the number of nests per hectare
for a population of the common wasp Vespula vulgaris [1], shown below.

1988 1989 1990 1991 1992

8.6 31.1 7.0 11.7 10.2

That is, find the values of the parameters a and b that best fit the data.
(b) Check the fit for the data two ways: (1) in a plot of ln(xn+1/xn) versus

xn, and (2) in a plot of xn+1 versus xn.
(c) What behaviour is predicted for the wasp population, based on the results

of your earlier bifurcation analysis of the Ricker model?

This exercise is one in which we expect students to integrate knowledge obtained
in preceding exercises. In particular, students learned linear regression in an ear-
lier set of exercises. Here, students are expected to recognize the linear relationship
ln(xn+1/xn) = ln(a) − bxn , and then use linear regression to obtain the best-fit values
for ln(a) and b. In another set of preceding exercises, students were asked to systemati-
cally investigate the behaviour of the Ricker model written in the form yn+1 = ryne−yn
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over a range of the parameter value r , and summarize the behaviour in a bifurcation
diagram. Here, they are asked indirectly to determine the relationship between the two
forms of the Ricker model, and use the results of the bifurcation analysis to predict the
behaviour of the model obtained for the wasp population.

32.3.3 Part III: Research Projects

Students choose a modelling problem from a set of approximately 25 project descrip-
tions, loosely grouped in four topic areas (epidemic models, population dynamics,
models for spatial spread, and physiology) [2].

Students work in teams of 2–3, under the guidance of one of the instructors. Stu-
dents are expected to develop a model, analyze and/or simulate their model, and pre-
pare a presentation.

Many of the problems have not been studied previously with a mathematical
model, and are open ended, with no “right solution” per se. Because of the open-ended
nature of the research projects, instructors are flexible. Very often, students take the
project in different, sometimes better, directions than the instructor might have.

In many cases, students will need to simplify their problem and build a hierar-
chy of models, each model incorporating additional realism from the original problem
at hand. We emphasize to students that success is not measured in terms of the end
product, but in terms of the amount of learning that is taking place during the model
development and analysis. It is not uncommon that the team apparently making the
slowest progress actually is learning the most.

For some of the projects, we provide some supplementary reference materials. For
others, students easily can obtain additional information from the internet. We do not
require students to study the biological topic at length (we believe that initial efforts
in mathematical modelling require only the identification of basic mechanisms). The
point of the project work is not to produce publishable results, but rather for students
to experience the modelling process.

Sample project topics include the spread of HIV in Cuba, cholera in South Africa,
the extinction of a wolf population in Sweden, the pupil control system, and radiation
treatment of cancer. The complete set of project descriptions can be found in [2].

Following is a sample project description, dealing with the outbreak of yellow fever
in Senegal:

Yellow fever (YF) is a viral disease transmitted to primates (including humans)
by infected mosquitoes. The disease is endemic in populations of monkeys
living in the jungle. The disease is spread into the human population in three
stages:
1. Sylvatic transmission occurs when mosquitoes which have fed on infected

monkeys next bite a human working in the jungle.
2. Intermediate transmission occurs when mosquitoes pass the virus among

humans living in rural areas.
3. Urban transmission occurs when mosquitoes pass the virus among hu-

mans living in urban areas.
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Below is a data set of YF cases reported during an outbreak in the city of
Touba in Senegal in 2002 [4]. As soon as the virus was identified (October
11), a vaccination program was started. YF vaccine is safe and effective, and
provides immunity within one week in 95% of those vaccinated.

Date Jan 18 Oct 4 Oct 11 Oct 17 Oct 24 Oct 31 Nov 20 Nov 28

Cases (total) 18 12 15 18 41 45 57 60

Deaths (total) 0 0 2 2 4 4 10 11

Develop a model for the three stages of YF as outlined above, including vac-
cination in urban areas, and fit your model to the data. Would you expect that
the disease dies out or that it becomes persistent? What would have happened
without vaccination?

The student team that tackled this problem in one of our recent summer schools de-
cided to simplify the problem significantly, and focussed on the outbreak of YF within
urban areas only. They constructed a model describing the transmission of the virus
within the population of mosquitoes and from mosquitoes to humans. The mosquito
population was divided into two classes (susceptible and infective), and the human
population was divided into five classes (susceptible, exposed, infective, recovered,
and vaccinated). Parameterizing a model of this size is a daunting task, even for ex-
perienced researchers. The students were able to obtain estimates for a number of
parameters (such as the biting rate of mosquitoes) from the internet and journal ar-
ticles, and adjusted the value of remaining parameters with a “fit-by-eye” procedure.
They obtained a reasonable fit of the model to the data supplied, and then investigated
the predictive power of the model in terms of suggesting strategies for controlling the
outbreak of the disease.

Projects such as this one allow students to experience the entire modelling process,
from model development to simulation/analysis to the interpretion of results.

32.4 Benefits and Impact of the Summer School

Students are very enthusiastic about the summer school. They are grateful for the chal-
lenging extracurricular experience and appreciative of the opportunity to interact with
other bright and motivated students from varied educational backgrounds. Following
are examples of typical comments received from students upon the completion of the
summer school:

I think the biggest thing I got out of the workshop was an appreciation of the
wide variety of modeling applications (especially through the projects)—and
also the immense power of a relatively limited set of techniques.

This workshop not only helped me to gain experience in Mathematical Biol-
ogy, but also to decide my direction in my academic career.
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It gave me a good overall look at math modeling . . . I now know what a
“mathematical model” is. It’s a phrase I hear a lot, but wasn’t exactly sure
what that meant. I also now have a clearer vision of a direction that I’d like
to take in graduate studies.

The comments quoted above illustrate that the summer school is highly useful
to these students in guiding them towards future studies or careers in mathematical
biology. Indeed, a significant number of past participants have continued their graduate
studies in mathematical biology. To our knowledge, at least 12 out of 64 participants
have found a place at different Canadian or US institutions.

The immediate benefits of the summer school for both the core and guest instruc-
tors are infectious enthusiasm and exposure to potential graduate students committed
to the field of mathematical biology. But there are additional benefits. In particular, the
instructional materials developed for the summer school have grown over the years,
and now are published as an undergraduate textbook [2]. Also, we are starting to use
modules developed for the summer school in our regular classes, and have plans to of-
fer an undergraduate course on mathematical biology in the near future using the same
philosophy that we use in the summer school.

Last, but not least, the summer school contributes significantly to the career devel-
opment of the many graduate students and postdoctoral fellows who help run it. Both
graduate students and postdoctoral fellows participate as teaching assistants for the ex-
ercise sessions and Maple labs during the first half of the summer school. In addition,
the postdoctoral fellows serve as project consultants during the second half.

32.5 Discussion

Our summer school is an academically stimulating program that teaches the following
applied math skills in the context of mathematical biology: theory, modelling, analysis,
computation, data fitting, and prediction. Through lectures and exercises, the Maple tu-
torial, and project work, participants not only gain a wide knowledge of mathematical
biology, but also are introduced to research.

Although our formal instructional time with the students is very limited, we cover
enough aspects of modelling that students can find and learn required advanced tech-
niques while working on their projects. In fact, students relish the challenge provided in
the projects, and it is during this part of the summer school that we observe a phenom-
enal increase in knowledge and skill development. Participants are highly motivated
and often achieve much more than expected.

For more information about the summer school, and to view student work, we
invite readers to visit our website [3].
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T lymphocyte, 133
Th1–Th2 regulation, 145
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control, 265, 269
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correlated inheritance, 53
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prey, 47
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degree distribution, see distribution
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interaural time, 245
demographic stochasticity, 50
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tree, 186

density function, 227
Gaussian, 189
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Rayleigh, 230
stable, 233
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Diamond’s theorem, 93
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nonlinear, see nonlinear
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infectious, 169
malaria, see malaria
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mortality, 170, 177
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Kullback–Leibler distance, see distance, 196

L-system, 314, 315, 319, 321
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parametric, 315
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Laplacian, 331
lattice model, see model
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Leslie matrix, 76
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lipid, 205
lipoprotein, 205
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lowest-order approximation, 209
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magnetic resonance imaging (MRI), 255
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duration of infection, 3
rate of infection, 3
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Markov
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process, 340, 359

master equation, see equation
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mean field

equation, see equation
model, see model
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metabolic regulatory network, see network
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Gibbs sampling, 308
Gillespie algorithm, 26, 28
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logistic regression, 239
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Runge–Kutta, 272
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continuous-time Markov process, 354, 365
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epidemic, 374
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for recurrent biological events, 225, 235
game theory, 37
FSPM, see functional-structural plant
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Hindmarsh–Rose, 265, 268
HIV, 4
Hodgkin–Huxley, 225, 265
individual-based, 50, 111
integrate-and-fire, 225, 226
interacting particle system (IPS), 353
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Keller–Segel, 323
lattice, 355, 358
lattice gas cellular automaton (LGCA), 353
Leslie matrix, 75
logistic, 347
logistic regression, 238
lottery, 121
Markov chain Monte Carlo (MCMC), 305
mean field, 136
microscopic, 133
minimalistic, 57, 60, 289
network, 194
neuron, 225
of replicator dynamics, 63
phase-separation, 329
physiological, 313
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Monte Carlo method, see method
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mortality, 41, 169
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naive T cell, see cell
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neoplasm, 169
nervous system, 193
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degree distribution, 57
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idiotypic, 157
mean degree, 56
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metabolic regulatory, 314
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random, 279
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social, 280
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neural circuit, 245
neural field, 205
neuron, 185, 225, 235
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axon, 205
motoneuron, 237
muscle spindle, 237
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pyramidal, 185, 186, 191, 192
synaptic efficacy, 207
transgenic, 190, 191

neuronal morphology, 190
neurotransmitter, 194
non-autonomous system, 121, 145
non-Gaussian stable behaviour, 233
nonlinear, 112

diffusion, 109, 113
eigenvalue problem, 311

nosocomial infection, 23
numerical simulation, 109, 111, 327, 353

Markov chain Monte Carlo, 308
of interacting particle systems, 363

Offdiagonal Complexity, 279, 282
optimization model, 105
ordinary differential equation (ODE), see

equation
oscillation

bifurcation, 208
population dynamics, 348
relaxation, 290

pacemaker cell, 227
parameter estimation, 23, 369, 371

η-ball method, 24
joint, 30

parameter identification, 21
partial differential equation (PDE), see

equation
Pascal’s triangle, 164
patch-clamp technique, 225
pathogen, 23, 173
pattern formation, spatio-temporal, 205

front dissipation, 295, 300
spiral wave, 300
traveling wave, 21, 205, 208, 211, 294
Turing, 208
wave break-up, 300
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perturbation approach, 205
pest management, 11
phenotype, 56, 63
phenotyping, 185
phosphatidylinositol 4,5-bisphosphate (PIP2),

195
photosynthesis, 317
physiological model, see model
physiology, 374
plankton, 109
plant epidemics, 23
polymerase chain reaction (PCR), 339, 343

exponential phase, 344
linear phase, 344
plateau phase, 344
quantitative (Q-PCR), 303, 310

population
basic reproductive index, 14
dynamics, 87, 121, 339, 350, 374
lynx-hare dynamics, 339
oscillation, 348
predator-prey, 354, 372
prey equation, 134
reproductive rate, 339
winter conditions, 87

Populus sp., 313
postsynaptic potential, 206, 247
power law, 56, 58
probabilistic spiking, 248
probability density function, see density

function
problem solving, 261
procaryote, 109
process

birth-death, see birth-death
branching, see branching
continuous birth, 92

proliferative capacity, 172
protein interaction graph, 284
pupil control, 374
pyramidal neuron, see neuron

quasi-steady-state condition, 134

random graph, 280, 284
reaction-diffusion equation, see equation
refractoriness, 213
refractory period, 213, 215
regeneration, 198
relational growth grammars, 313–318, 320,

321
graph data structure, 321
interactive modelling platform (GroIMP),

316
morphogenetic rules, 313, 320
regulatory network, 320

relaxation oscillator, see oscillation
replicator dynamics, 63
reserve selection, 101
Ricker model, see model
Rössler model, see model
Routh–Hurwitz criterion, 15

saturation, 339, 343
scale-free graphs, 280
secondary defence, 38, 47
semelparity, 75
semelparous population, 76
sensitization, 153
sensory axon, 237
separation, quasi-complete, 239
separatrix, 147
shape analysis, 255
sigmoidal function, 139
signaling

aposematic, 37
extracellular, 193

simulation, see numerical simulation
SIR epidemiological model see model
skewness, 232
soma, 185
somatosensory cortex, 185
space, 121
spatial

heterogeneity, 122
network, 283, 286

spatio-temporal pattern, see pattern formation
species abundance distribution (SAD), 49
species interaction network, 59
species-area relation (SAR)

z-value of, 52
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species-area relationship (SAR), 49
speed distribution, 205
speed of traveling wave, 211
spherical harmonic, 255

basis functions, 256
spike

generation, 265
time intervals, 225
train, 246

spinal cord, 237
stability condition, 40
stable manifold, 152
stochastic model, see model
stochastic perturbation, 227
stochastic programming, 101

L-shaped method, 104
scenario generation, 106

stroboscopic map, 146, 148
survival, 323
synchronization, 208, 266

T lymphocite, see cell
telomere, 169
theorem of natural selection, 63
therapy

hyposensitization, 145
immunotherapy, 145
radiation treatment, 374

thinking process, 255
time

asymptotic behavior, 14, 341
discrete time dynamical system, 227
physiological, 226

toxicity, 47
toxin, 38

trait variable, 58
transgenic, 188

activation, 186
cell, 186, 188
mice, 185

transmembrane currents, 293
transmission speed, 205
traveling wave, see pattern formation
Turing, see pattern formation

Uncinula necator, 11
undergraduate education, 369
universal computer, 265
traveling wave, see pattern formation
Turing, see pattern formation

vaccination program, 7
Vanderplank equation, see equation
Vasicek’s method, see method
venom immunotherapy, 145, 152
vine, 11, 20
visual cortex, 205
visualization, 258
volume filling, 323

model, see model

wave amplitude, 198
Webworld model, see model
Weibull distribution, see distribution
weight function, 51
Whittaker function, 233
wolf population, 374

yellow fever, see disease
Young’s inequality, 15


