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CLASSICAL MEASUREMENTS IN CURVED
SPACE-TIMES

The theory of relativity describes the laws of physics in a given space-time.
However, a physical theory must provide observational predictions expressed in
terms of measurements, which are the outcome of practical experiments and
observations.

Ideal for researchers with a mathematical background and a basic knowledge
of relativity, this book will help in the understanding of the physics behind the
mathematical formalism of the theory of relativity. It explores the informative
power of the theory of relativity, and shows how it can be used in space physics,
astrophysics, and cosmology. Readers are given the tools to pick out from the
mathematical formalism the quantities which have physical meaning, which can
therefore be the result of a measurement. The book considers the complications
that arise through the interpretation of a measurement which is dependent on
the observer who performs it. Specific examples of this are given to highlight the
awkwardness of the problem.
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Preface

A physical measurement is meaningful only if one identifies in a non-ambiguous
way who is the observer and what is being observed. The same observable can be
the target of more than one observer so we need a suitable algorithm to compare
their measurements. This is the task of the theory of measurement which we
develop here in the framework of general relativity.

Before tackling the formal aspects of the theory, we shall define what we mean
by observer and measurement and illustrate in more detail the concept which
most affected, at the beginning of the twentieth century, our common way of
thinking, namely the relativity of time.

We then continue on our task with a review of the entire mathematical machin-
ery of the theory of relativity. Indeed, the richness and complexity of that machin-
ery are essential to define a measurement consistently with the geometrical and
physical environment of the system under consideration.

Most of the material contained in this book is spread throughout the litera-
ture and the topic is so vast that we had to consider only a minor part of it,
concentrating on the general method rather than single applications. These have
been extensively analyzed in Clifford Will’s book (Will, 1981), which remains an
essential milestone in the field of experimental gravity. Nevertheless we apologize
for all the references that would have been pertinent but were overlooked.

We acknowledge financial support by the Istituto Nazionale di Fisica Nucle-
are, the International Center for Relativistic Astrophysics Network, the Gruppo
Nazionale per la Fisica Matematica of Istituto Nazionale di Alta Matematica,
and the Ministero della Pubblica Istruzione of Italy.

Thanks are due to Christian Cherubini, Andrea Geralico, Giovanni Preti, and
Oldrich Semerák for helpful discussions. Particular thanks go to Robert Jantzen
for promoting interest in this field. All the blame for any inconsistencies and
errors contained in the book should be addressed to us only.

Fernando de Felice
Physics Department, University of Padova, Italy

Donato Bini
Istituto per le Applicazioni del Calcolo “M. Picone,”

CNR, Rome, Italy



Notation

�: The real line.

�4: The space of the quadruplets of real numbers.

{xα}|α=0,1,2,3: A quadruplet of local coordinates.

{eα}: A field of bases (frames) for the tangent space.

{ωα}: A field of dual bases (dual frames) ωα(eβ) = δα
β .

g = gαβω
α ⊗ ωβ : The metric tensor.

g−1: Inverse metric.

g: Determinant of the metric.

X#: A tangent vector field (with contravariant components).

X�: The 1-form (with covariant components) g-isomorphic to X.

(left contraction): Contraction of the rightmost contravariant index of the
first tensor with the leftmost covariant index of the second tensor, that is
[S T ]······ = S···αTα···.

(right contraction): Contraction of the rightmost covariant index of the first
tensor with the leftmost contravariant index of the second tensor, that is
[S T ]······ = S···αT

α···.

p (left p-contraction): Contraction of the rightmost p contravariant indices of
the first tensor with the leftmost p covariant indices of the second tensor, i.e.
S p T ≡ Sα...β1...βpTβ1...βp....

p (right p-contraction): Contraction of the rightmost p covariant indices of the
first tensor with the leftmost p contravariant indices of the second tensor, i.e.
S p T ≡ Sα...

β1...βpT
β1...βp....(

r
s

)
-tensor: A tensor r-times contravariant and s-times covariant.

[α1 . . . αp]: Antisymmetrization of the p indices.

(α1 . . . αp): Symmetrization of the p indices.



Notation xiii

[ALTS]α1...αp = S[α1...αp].

[SYMS]α1...αp = S(α1...αp).

eγ(·): γ-component of a frame derivative.

∇: Covariant derivative.

∇eα : α-component of the covariant derivative relative to the frame {eσ}.

εα1...α4 = ε[α1...α4]: Levi-Civita alternating symbol.

ηα1...α4 = g1/2εα1...α4 ; η
α1...α4 = −g−1/2εα1...α4 : The unit volume 4-form.

δα1...α4
β1...β4

= εα1...α4εβ1...β4 = −ηα1...α4ηβ1...β4 : Generalized Kronecker delta.

[∗S]αp+1...α4 = 1
p! Sα1...αp

ηα1...αp
αp+1...α4 : Hodge dual of Sα1...αp

.

“·”: Scalar g-product, i.e. u ·v = g(u, v) = gαβu
αvβ for any pair of vectors (u, v).

∧: The exterior or wedge product, i.e. u ∧ v = u ⊗ v − v ⊗ u for any pair (u, v)
of vectors or 1-forms.

{eα̂}: An orthonormal frame (tetrad).

D
ds : Absolute derivative along a curve γ with parameter s, i.e. D/ds = ∇γ̇ .

a(u): Acceleration vector of the world line with tangent vector field u,
i.e. a(u) = ∇uu.

D(fw,u)

ds : The Fermi-Walker derivative along the curve with parameter s. For any
vector field X: D(fw,u) X

ds = DX
ds ± [a(u)(u ·X) − u(a(u) ·X)].

CX : The congruence of curves with tangent field X.

ω(X): The vorticity tensor of the congruence CX (the same symbol also denotes
the vorticity vector).

θ(X): The expansion tensor of the congruence CX .

Θ(X) = Tr θ(X): The trace of the expansion tensor of the congruence CX .

£X : Lie derivative along the congruence CX .

Cγ
αβ : Structure functions of a given frame.

ωα1...αp = p!ω[α1 ⊗ · · · ⊗ ωαp]: The dual basis tensor of a space of p-forms.

δT = ∗d[∗T ]: Divergence of a p-form T .

Δ(dR) = δd+ dδ: de Rham operator.

LRSu: Local rest space of u.

P (u): u-spatial projector operator which generates LRSu.



xiv Notation

T (u): u-temporal projector operator which generates the time axis of u.

[P (u)S] ≡ S(u): Total u-spatial projection of a tensor S such that

[S(u)]α1...
β1... = P (u)α1

σ1 · · ·P (u)ρ1
β1 · · ·Sσ1...

ρ1....

[£(u)X ]: u-spatially projected Lie derivative. For any tensor T it is

[£(u)XT ]α...
β... = P (u)α

σ · · ·P (u)ρ
β · · · [£XT ]σ . . . ρ....

∇(u)lie = £(u)u: u-spatial Lie temporal derivative.

∇(u) = P (u)∇: u-spatially projected covariant derivative.

P (u)D(fw,X)

ds : u-spatially projected Fermi-Walker derivative along a curve with
unit tangent vector X.

d(u) = P (u)d: u-spatially projected exterior derivative.

“·u”: u-spatial inner product, i.e. X ·u Y = P (u)αβX
αY β .

“×u” : u-spatial cross product, i.e. [X ×u Y ]α = η(u)α
ρσX

ρY σ.

η(u)α
ρσ = uβη

βα
ρσ: u-spatial 4-volume.

gradu = ∇(u): u-spatial gradient.

curlu = ∇(u)×u: u-spatial curl.

divu = ∇(u)·u: u-spatial divergence.

Scurlu: Symmetrized curlu, i.e. [ScurluA]αβ = η(u)γδ(α∇(u)γA
β)

δ.

C(fw)ab: Fermi-Walker rotation coefficients, i.e. C(fw)ab = eb · ∇uea.

C(lie)
b
a: Lie rotation coefficients, i.e. C(lie)

b
a = ωb(£(u)uea).

∇(u)(fw) = P (u)∇u: u-spatial Fermi-Walker temporal derivative.

∇(u)(tem). ≡ ∇(u)(fw) or ∇(u)(lie)

ν(U, u): Relative spatial velocity of U with respect to u.

ν(u,U): Relative spatial velocity of u with respect to U .

γ(U, u) = γ(u,U) = γ: Lorentz factor of the two observers u and U .

ν̂(u,U): Unitary relative velocity vector of u with respect to U .

ζ: Angular velocity.

ω(k, u): Frequency of the light ray k with respect to the observer u.

||ν(U, u)|| = ||ν(u,U)|| = ν: Magnitude of the relative velocity of the two
observers u and U .



Notation xv

B(U, u): Relative boost from u to U .

P (U, u) = P (U)P (u): Mixed projector operator from LRSu into LRSU .

B(lrs)(U, u) = P (U)B(U, u)P (u): Boost from LRSu into LRSU .

B(lrs)(U, u)−1 = B(lrs)(u,U): Inverse boost from LRSU to LRSu.

B(lrs)u
(U, u) = P (U, u)−1 B(lrs)(U, u).

D(lie,U)X

dτU
= [U, X]: Lie derivative of X along CU .

τ(U, u): Relative standard time parameter, i.e. dτ(U, u) = γ(U, u)dτU .

�(U, u): Relative standard length parameter, i.e. d�(U, u) = γ(U, u)||ν(U, u)||dτU .

D(fw,U,u)

dτ(U, u)
= P (u) D

dτ(U, u)
: Projected absolute covariant derivative along U .

a(fw,U,u) = P (u)Dν(U,u)
dτ(U,u)

: Relative acceleration of U with respect to u.

(∇X)αβ ≡ ∇βXα.

Physical dimensions

We are using geometrized units with G = 1 = c, G and c being Newton’s gravi-
tational constant and the speed of light in vacuum, respectively. Symbols are as
they appear in the text; the reader is advised that more than one symbol may
be used for the same item and conversely the same symbol may refer to different
items. Reference is made to the observers (U, u).

Time t → [L]1

Space r, x, y, z → [L]1

Mass M,m, μ0 → [L]1

Angular velocity ζ → [L]−1

Energy E → [L]1

Specific energy
(in units of mc2) E, γ → [L]0

Specific angular momentum
(in units of mc) L, λ,Λ, � → [L]1

of a rotating source (Kerr) a → [L]1

Spin S → [L]2

Specific spin S/m → [L]1

4-velocity U, u → [L]0

Relative velocity ν(U, u) → [L]0

Force F → [L]0

Acceleration a(U) → [L]−1

Expansion Θ(U) → [L]−1



xvi Notation

Vorticity (ω(U)αβ ω(U)αβ)1/2 → [L]−1

Electric charge Q, e → [L]1

Space-time curvature (RαβγδRαβγδ)1/2 → [L]−2

Electric field E(U) → [L]−1

Magnetic field B(U) → [L]−1

Frequency ω(k, u) → [L]−1

Gravitational wave amplitude h+,× → [L]0

Strain S(U) → [L]−2 .

Conversion factors

We list here conversion factors from conventional CGS to geometrized units. For
convenience we denote the quantities in CGS units with a tilde (∼).

Name CGS units Geometrized units

Mass M̃ M = GM̃
c2

Electric charge Q̃ Q = Q̃
√

G
4πε0c4

Velocity ṽ ν = ṽ
c

Acceleration ã a = ã
c2

Force F̃ F = GF̃
c4

Electric field Ẽ E = Ẽ
√

4πε0G
c4

Magnetic field H̃ H = H̃
√

4πε0G
c2

Energy Ẽ E = GẼ
c4

Specific energy Ẽ
M̃c2

E
M ≡ γ = Ẽ

M̃c2

Angular momentum L̃ L = GL̃
c3

Angular momentum in units of M̃c L̃

M̃c
λ = L

M = L̃

M̃c



1

Introduction

A physical measurement requires a collection of devices such as a clock, a
theodolite, a counter, a light gun, and so on. The operational control of this
instrumentation is exercised by the observer, who decides what to measure, how
to perform a measurement, and how to interpret the results. The observer’s labo-
ratory covers a finite spatial volume and the measurements last for a finite interval
of time so we can define as the measurement’s domain the space-time region in
which a process of measurement takes place. If the background curvature can be
neglected, then the measurements will not suffer from curvature effects and will
then be termed local. On the contrary, if the curvature is strong enough that it
cannot be neglected over the measurement’s domain, the response of the instru-
ments will depend on the position therein and therefore they require a careful
calibration to correct for curvature perturbations. In this case the measurements
carrying a signature of the curvature will be termed non-local.

1.1 Observers and physical measurements
A laboratory is mathematically modeled by a family of non-intersecting time-like
curves having u as tangent vector field and denoted by Cu; this family is also
termed the congruence. Each curve of the congruence represents the history of
a point in the laboratory. We choose the parameter τ on the curves of Cu so
as to make the tangent vector field u unitary; this choice is always possible for
non-null curves. Let Σ be a space-like three-dimensional section of Cu spanned
by the curves which cross a selected curve γ∗ of the congruence orthogonally. The
concepts of unitarity and orthogonality are relative to the assumed background
metric. The curve γ∗ will be termed the fiducial curve of the congruence and
referred to as the world line of the observer. Let the point of intersection of Σ
with γ∗ be γ∗(τ); as τ varies continuously over γ∗, the section Σ spans a four-
dimensional volume which represents the space-time history of the observer’s
laboratory. Whenever we limit the extension of Σ to a range much smaller than
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the average radius of its induced curvature, we can identify Cu with the single
curve γ∗ and Σ with the point γ∗(τ). Any time-like curve γ with tangent vector
u can then be identified as the world line of an observer, which will be referred to
as “the observer u.” If the parameter τ on γ is such as to make the tangent vector
unitary, then its physical meaning is that of the proper time of the observer u,
i.e. the time read on his clock in units of the speed of light in vacuum.

This concept of observer, however, needs to be specialized further, defining a
reference frame adapted to him. A reference frame is defined by a clock which
marks the time as a parameter on γ, as already noted, and by a spatial frame
made of three space-like directions identified at each point on γ by space-like
curves stemming orthogonally from it. While the time direction is uniquely fixed
by the vector field u, the spatial directions are defined up to spatial rotations,
i.e. transformations which do not change u; obviously there are infinitely many
such spatial perspectives.

The result of a physical measurement is mathematically described by a scalar,
a quantity which is invariant under general coordinate transformations. A scalar
quantity, however, is not necessarily a physical measurement. The latter, in fact,
needs to be defined with respect to an observer and in particular to one of the
infinitely many spatial frames adapted to him. The aim of the relativistic theory
of measurement is to enable one to devise, out of the tensorial representation of
a physical system and with respect to a given frame, those scalars which describe
specific properties of the system.

The measurements are in general observer-dependent so, as stated, a criterion
should also be given for comparing measurements made by different observers.
A basic role in this procedure of comparison is played by the Lorentz group of
transformations. A measurement which is observer-independent is termed Lorentz
invariant. Lorentz invariant measurements are of key importance in physics.

1.2 Interpretation of physical measurements
The description of a physical system depends both on the observer and on the
chosen frame of reference. In most cases the result of a measurement is affected
by contributions from the background curvature and from the peculiarity of the
reference frame. As long as it is not possible to discriminate among them, a
measurement remains plagued by an intrinsic ambiguity. We shall present a few
examples where this situation arises and discuss possible ways out. The most
important among the observer-dependent measurements is that of time intervals.
Basic to Einstein’s theory of relativity is the relativity of time. Hence we shall
illustrate this concept first, dealing with inertial frames for the sake of clarity.

1.3 Clock synchronization and relativity of time
The theory of special relativity, formally issued in 1905 (Einstein, 1905), presup-
poses that inertial observers are fully equivalent in describing physical laws. This
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requirement, known as the principle of relativity, implies that one has to aban-
don the concepts of absolute space and absolute time. This step is essential in
order to envisage a model of reality which is consistent with observations and in
particular with the behavior of light. As is well known, the speed of light c, whose
value in vacuum is 2.997 924 58× 105 km s−1, is independent of the observer who
measures it, and therefore is an absolute quantity.

Since time plays the role of a coordinate with the same prerogatives as the
spatial ones, one needs a criterion for assigning a value of that coordinate, let
us say t, to each space-time point. The criterion of time labeling, also termed
clock synchronization, should be the same in all frames if we want the principle
of relativity to make sense, and this is assured by the universality of the velocity
of light. In fact, one uses a light ray stemming from a fiducial point with spatial
coordinates x0, for example, and time coordinate equal to zero, then assigns
to each point of spatial coordinates x0 + Δx crossed by the light ray the time
t = Δx/c. In this way, assuming the connectivity of space-time, we can label each
of its points with a value of t. Clearly one must be able to fix for each of them
the spatial separation Δx from the given fiducial point, but that is a non-trivial
procedure which will be discussed later in the book.

The relativity of time is usually stated by saying that if an observer u compares
the time t read on his own clock with that read on the clock of an observer u′

moving uniformly with respect to u and instantaneously coincident with it, then
u finds that t′ differs from t by some factor K, as t′ = Kt.1 On the other hand,
if the comparison is made by the observer u′, because of the equivalence of the
inertial observers he will find that the time t marked by the clock of u differs
from the time t′ read on his own clock when they instantaneously coincide, by
the same factor, as t = Kt′. The factor K, which we denote as the relativity
factor, is at this stage unknown except for the obvious facts that it should be
positive, it should depend only on the magnitude of the relative velocity for
consistency with the principle of relativity, and finally that it should reduce to
one when the relative velocity is equal to zero. Our aim is to find the factor K
and explain why it differs in general from one. A similar analysis can be found
in Bondi’s K-calculus (Bondi, 1980; see also de Felice, 2006). In what follows we
shall not require knowledge of the Lorentz transformations nor of any concept of
relativity.

Let us consider an inertial frame S with coordinates (x, y, z) and time t. The
time axes in S form a congruence of curves each representing the history of
a static observer at the corresponding spatial point. Denote by u the fiducial
observer of this family, located at the spatial origin of S. At each point of S there
exists a clock which marks the time t of that particular event and which would
be read by the static observer spatially fixed at that point. All static observers

1 The choice of a linear relation is justified a posteriori since it leads to the correct theory of
relativity.
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in S are equivalent to each other since we require that their time runs with
the same rate. A clock which is attached to each point of S will be termed an
S-clock.

Let S′ be another inertial frame with spatial coordinates (x′, y′, z′) and time t′.
We require that S′ moves uniformly along the x-axis of S with velocity ν. The
x-axis of S will be considered spatially coincident with the x′-axis of S′, with the
further requirement that the origins of x and x′ coincide at the time t = t′ = 0.
In this case the relative motion is that of a recession. In the frame S′ the totality
of time axes forms a congruence of curves each representing the history of a static
observer. At each point of S′ there is a clock, termed an S′-clock, which marks
the time of that particular event and is read by the static observer fixed at the
corresponding spatial position. The S′-clocks mark the time t′ with the same
rate; hence the static observers in S′ are equivalent to each other. Finally we
denote by u′ the fiducial observer of the above congruence of time axes, fixed at
the spatial origin of S′.

Let the systems S and S′ be represented by the 2-planes (ct, x) and (ct′, x′)
respectively;2 we then assume that from the spatial origin of S and at time
tu, a light signal is emitted along the x-axis and towards the observer u′. The
light signal reaches the observer u′ at the time marked by the local S-clock,
given by

tu′ =
tu

1 − ν/c
. (1.1)

At this event, the observer u′ can read two clocks which are momentarily coinci-
dent, namely the S-clock which marks the time tu′ as in (1.1) and his own clock
which marks a time t′u′ . In general the time beating on a given clock is driven
by a sequence of events; in our case the time read on the clock of the observer
u, at the spatial origin of S, follows the emission of the light signals. If these are
emitted with continuity3 then the time marked by the clock of the observer u
will be a continuous function on S which we still denote by tu. The time read
on the S-clocks which are crossed by the observer u′ along his path marks the
instants of recording by u′ of the light signals emitted by u. The events of recep-
tion by u′, however, do not belong to the history of one observer only, but each
of them, having a different spatial position in S, belongs to the history of the
static observer located at the corresponding spatial point.

Let us now consider the same process as seen in the frame S′. The space-time of
S′ is carpeted by S′-clocks each marking the time t′ read by the static observers
fixed at each spatial point of S′. The observer u′, at the spatial origin of S′,
receives at time t′u′ the light signal emitted by the observer u who is seen receding
along the negative direction of the x′-axis. The emission of the light signals by

2 This is possible without loss of generality because of the homogeneity and isotropy of space.
3 By continuity here we mean that the time interval between any two events of emission (or

of reception) goes to zero.
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the observer u occurs at times t′u read on the S′-clocks crossed by u along his
path and given by

t′u =
t′u′

1 + ν/c
. (1.2)

The time on the clock of the observer u′, denoted by t′u′ , runs continuously with
the recording of the light signals emitted by u. Meanwhile the observer u can
read two clocks, momentarily coincident, namely his own clock which marks a
time tu and the S′-clock which is crossed by u during his motion which marks a
time t′u. Also in this case we have to remember that t′u is not the time read
on the clock of one single observer but is the time read at each instant on
an S′-clock belonging to the static observer fixed at the corresponding spatial
position in S′.

To summarize, the time read on the S-clocks set along the path of u′ in S is tu′

while the time marked by the clock carried by u′ is t′u′ . Analogously the time read
on the S′-clocks set along the path of u in S′ is t′u while the time read by u on
his own clock is given by tu. Our aim is to find the relation between t′u′ and tu′

in the frame S and that between tu and t′u in the frame S′. In both cases we are
comparing times read on clocks which are in relative motion but instantaneously
coincident.

The observers u and u′ located at the spatial origins of S and S′ respectively
cannot read each other’s clocks because they will be far apart after the initial
time t = t′ = 0 when they are assumed to coincide. In order to find the relation
between tu and t′u′ one has to go through the intermediate steps where

(i) the observer u at the spatial origin of S correlates the time tu, read on his
own clock at the emission of the light signals, to the time tu′ , marked by
the S-clocks when they are reached by the light signals and simultaneously
crossed by the observer u′ along his path in S;

(ii) the observer u′ at the spatial origin of S′ correlates the time t′u′ , read on his
own clock, to the time t′u marked by the S′-clocks when a light signal was
emitted and simultaneously crossed by u along his path in S′.

The two points of view are not symmetric; in fact, the light signals are emitted by
u and received by u′ in both cases. These intermediate steps allow us to establish
the relativity of time.

The principle of relativity ensures the complete equivalence of the inertial
observers in the sense that they will always draw the same conclusions from
an equal set of observations. In our case, comparing the points of view of the two
observers, we deduce that the ratio between the time tu′ that u′ reads on each
S-clock when he crosses it, and the time t′u′ that he reads on his own clock at
the same instant, is the same as the ratio between the time t′u that u reads on
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each S′-clock which he crosses during his motion in S′, and the time tu that he
reads on his own clock at the same instant, namely:

tu′

t′u′
=
t′u
tu
. (1.3)

Taking into account (1.1), relation (1.3) becomes

t′u′ = tu′
tu
t′u

=
t2u′

t′u

(
1 − ν

c

)
. (1.4)

Then, from (1.2),

t′u′ =
t2u′

t′u′

(
1 − ν2

c2

)
. (1.5)

Along the path of u′ in S, we have

t′u′ =

√
1 − ν2

c2
tu′ . (1.6)

Similarly, from (1.3) and (1.2) we have

tu = t′u′
t′u
tu′

=
t′2u
tu′

(
1 +

ν

c

)
. (1.7)

Hence, from (1.1),

tu =
t′2u
tu

(
1 − ν2

c2

)
. (1.8)

Along the path of u in S′ we finally have

tu =

√
1 − ν2

c2
t′u. (1.9)

Thus the factor K turns out to be equal to
√

1 − (ν/c)2.
The above considerations have been made under the assumption that the

observers u and u′ are receding from each other. However the above result should
still hold if the observers u and u′ are approaching instead. We shall prove that
this is actually the case.

Indeed the time rates of their clocks depend on the sense of the relative motion.
In fact, if the two observers move away from each other the light signals emitted
by one of them will be seen by the other with a delay, hence at a slower rate,
because each signal has to cover a longer path than the previous one. If the
observers instead approach each other then the signal emitted by one will be
seen by the other with an anticipation due to the relative approaching motion,
and so at a faster rate. This is what actually occurs to the time rates of the
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clocks carried by the observers u and u′, namely tu and t′u′ . In fact, from (1.6)
and (1.1) we deduce, from the point of view of the observer u, that

t′u′ =

√
1 + ν/c

1 − ν/c
tu. (1.10)

Hence, if ν > 0 (u′ recedes from u) then t′u′ > tu, i.e. u judges the clock of u′ to
be ticking at a slower rate with respect to his own; if ν < 0 (u′ approaching u)
then t′u′ < tu, that is u now judges the clock of u′ to be ticking at a faster rate
with respect to his own. Despite this, the difference marked by the clocks of the
two frames when they are instantaneously coincident must be independent of the
sense of the relative motion. This will be shown in what follows.

Let us consider two frames S and S′ approaching each other with velocity ν

along the respective coordinate axes x and x′. Let u be the observer at rest at
the spatial origin of S and u′ the one at rest at the spatial origin of S′. From the
point of view of S, the observer u′ approaches u along a straight line of equation:

x = −νt+ x0 (1.11)

where x0 is the spatial position of u′ at the initial time t = 0. The observer u
emits light signals along the x-axis at times tu. These signals move towards the
observer u′ and meet him at the events of observation at times tu′ read by u′ on
the S-clocks that he crosses along his path. The equation of motion of the light
signals will be in general

x = c(t− tu) (1.12)

and so the instant of observation by u′ is given by the intersection of the line
(1.12), which describes the motion of the light ray, and the line (1.11) which
describes that of the observer u′, namely

c (tu′ − tu) = −νtu′ + x0 (1.13)

which leads to

tu′ =
tu + x0/c

1 + ν/c
. (1.14)

Let us stress what was said before: while times tu are read on the clock of u
at rest in the spatial origin of S, the instants tu′ are marked by the S-clocks
spatially coincident with the position of the observer u′ when he detects the light
signals.

Let us now illustrate how the same process is seen in the frame S′. In this
case the observer u approaches u′ along the axis x′ with relative velocity ν and
therefore along a straight line of equation

x′ = νt′ − x′0. (1.15)
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The position of u at the initial time t′ = 0 is given by some value of the coor-
dinate x′ which we set equal to −x′0, with x′0 positive. This value is related to
x0, which appears in (1.11), by an explicit relation that we here ignore.4 The
observer u sends light signals at times t′u. These reach the observer u′ set in the
spatial origin of S′ at the instants t′u′ read on his own clock. The motion of these
signals is described by a straight line whose equation is given in general by

x′ = c (t′ − t′u′). (1.16)

The time of emission by the observer u is fixed by the intersection of the line
(1.16) which describes the motion of the light signal with the line (1.15) which
describes the motion of u, namely

t′u =
t′u′ − x′0/c

1 − ν/c
. (1.17)

Let us recall again here that while t′u′ is the time read by u′ on his own clock set
stably at the spatial origin of S′, the time t′u is marked by the S′-clocks which
are instantaneously coincident with the moving observer u. Here we exploit the
equivalence between inertial frames regarding the reading of the clocks which
lead to (1.3). After some elementary mathematical steps we obtain

(t′u′)2 =
(

1 − ν2

c2

)
(tu′)2 −

(
1 − ν

c

) x0

c
tu′ +

x′0
c
t′u′ . (1.18)

This relation, deduced in the case of approaching observers, does not coincide
with the analogous relation (1.6) deduced in the case of observers receding from
each other. Although we do not know what the relation between x0 and x′0 is,
we can prove the symmetry between this case and the previously discussed one.

Let us consider the extension of the light trajectories stemming from u to u′

in the frames S and S′, until they intersect the world line of static observers
located at x0 and x′0 respectively. Let us denote these observers as u0 and u′0.
In the frame S, the light signals intercept the observer u0 at times, read on the
clock of u0, given by

tu0 = tu + x0/c. (1.19)

Then Eq. (1.14) can also be written as

tu′ =
tu0

1 + ν/c
. (1.20)

The time marked by the clock of u0 at the arrival of the light signals runs with
the same rate as that of the time marked by the clock of u at the emission of the

4 The quantities x0 and x′
0 are related by a Lorentz transformation but here we cannot

introduce it because the latter presupposes that one knows the relation between the time
rates of the spatially coincident clocks of the frames S and S′, which instead we want to
deduce.
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same signals, since u and u0 have zero relative velocity and therefore are to be
considered as the same observer located at different spatial positions. Then we
can still denote tu0 as tu and write relation (1.20) as

tu′ =
tu

1 + ν/c
. (1.21)

A similar argument can be repeated in the frame S′. The time read on the clock
of u′0, at the intersections of the light rays with the history of the observer u′0, is
equal to

t′u′
0

= t′u′ − x′0/c. (1.22)

Relation (1.17) can be written as

t′u =
t′u′

0

1 − ν/c
. (1.23)

The time read on the clock of u′0 runs at the same rate as that of u′ since u′0
and u′ are to be considered as the same observer but located at different spatial
positions. From this it follows that (1.23) can also be written as

t′u =
t′u′

1 − ν/c
. (1.24)

We clearly see that the relative motion of approach of u to u′ is equivalent to a
relative motion of recession between the observers u′ and u0 in S and between
u and u′0 in S′. The result of this comparison is the same as that shown in
the relations (1.6) and (1.9), which are then independent of the sense of the
relative motion, as expected. Moreover, this conclusion implies for consistency
that, setting in (1.18)

t′u′ =

√
1 − ν2

c2
tu′ , (1.25)

it follows that

−
(
1 − ν

c

) x0

c
tu′ +

x′0
c
t′u′ = 0. (1.26)

From this and (1.25) we further deduce that

x′0 =
x0√

1 − ν2/c2
(1 − ν/c). (1.27)

One should notice here that (1.26) must be solved with respect to x′0 and not
with respect x0 because the corresponding relation (1.25) between times, which
implies (1.26), is relative to the situation where the observer u is the one who
observes the moving frame S′; hence we have to express all quantities of S′ in
terms of the coordinates of S. Equations (1.6) and (1.9) are the starting point for
the arguments which lead to the Lorentz transformations. From the latter, one
deduces a posteriori that Eq. (1.27) is just the Lorentz transform of the spatial
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coordinate of the point of S with coordinates (x0, tu = x0/c); the corresponding
point of S′ will have coordinates (x′0, t

′
u′ =

√
1 − ν2/c2 tu′).

The above analysis shows the important fact that the relativity of time is
the result of the conspiracy of three basic facts, namely the finite velocity of
light, the equivalence of the inertial observers, and the uniqueness of the clock
synchronization procedure.



2

The theory of relativity: a mathematical overview

In the theory of relativity space and time loose their individuality and become
indistinguishable in a continuous network termed space-time. The latter pro-
vides the unique environment where all phenomena occur and all observers and
observables live undisclosed until they are forced to be distinguished according
to their role. Unlike other interactions, gravity is not generated by a field of
force but is just the manifestation of a varied background geometry. A varia-
tion of the background geometry may be induced by a choice of coordinates
or by the presence of matter and energy distributions. In the former case the
geometry variations give rise to inertial forces which act in a way similar but
not fully equivalent to gravity; in the latter case they generate gravity, whose
effects however are never completely disentangled from those generated by inertial
forces.

2.1 The space-time
A space-time is described by a four-dimensional differentiable manifold M

endowed with a pseudo-Riemannian metric g. Any open set U ∈ M is home-
omorphic to �4 meaning that it can be described in terms of local coordinates
xα, for example, with α = 0, 1, 2, 3. These coordinates induce a coordinate basis
{∂/∂xα ≡ ∂α} for the tangent space TM over U with dual {dxα}. It is often
convenient to work with non-coordinate bases {eα} with dual {ωα} satisfying
the duality condition

ωα(eβ) = δα
β . (2.1)

If one expresses these vector fields in terms of coordinate components they are
given by

eα = eβ
α ∂β , ωα = ωα

β dx
β , (2.2)
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where identical indices set diagonal to one another indicate that sums are to be
taken only over the range of identical values. In (2.2) the matrices {eβ

α} and
{ωα

β} are inverse to each other, i.e.

eα
β ω

β
μ = δα

μ, eα
β ω

μ
α = δμ

β . (2.3)

From the above relations it follows

∂α = ωβ
α eβ , dxα = eα

β ω
β . (2.4)

A field of bases {eα} is said to form a frame. The structure functions of {eα} are
the Lie brackets of the basis vectors

[eα, eβ ] = Cγ
αβ eγ , (2.5)

and are defined from (2.2) as

Cγ
αβ = −2e[α

(
ωγ

|σ|
)
eσ

β] (2.6)

where eγ( · ) denotes a frame derivative. Here square brackets mean antisym-
metrization (to be defined shortly) of the enclosed indices, and indices between
vertical bars are ignored by this operation. A general tensor field can be expressed
in terms of frame components as

S = Sα...
β...eα ⊗ · · · ⊗ ωβ ⊗ · · · , Sα...

β... = S(ωα, . . . , eβ , . . .). (2.7)

It is convenient to adopt the notation

ωα1...αp = p!ω[α1 ⊗ · · · ⊗ ωαp]. (2.8)

Hence a p-form K – a totally antisymmetric p-times covariant tensor field, also
referred to as a

(
0
p

)
-tensor – can be written as

K =
1
p!
Kα1...αp

ωα1...αp . (2.9)

A similar notation eα1...αp can be used to express p-vector fields, namely the
totally antisymmetric p-times contravariant

(
p
0

)
-tensor fields.

A tensor field whose components are antisymmetric in a subset of p covariant
indices is termed a tensor-valued p-form

S = Sα...
β...[γ1...γp]eα ⊗ · · · ⊗ ωβ ⊗ · · · ⊗ ωγ1 ⊗ · · · ⊗ ωγp

=
1
p!
Sα...

β...γ1...γp
eα ⊗ · · · ⊗ ωβ ⊗ · · · ⊗ ωγ1...γp . (2.10)

Right and left contractions

Tensor products are defined by a suitable contraction of the tensorial indices.
Contraction of one index of each tensor is represented by the symbol (right
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contraction) or (left contraction). If S and T are two arbitrary tensor fields, the
left contraction S T denotes a contraction between the rightmost contravariant
index of S and the leftmost covariant index of T (i.e. S...α

... T
...
α...), and the right

contraction S T denotes a contraction between the rightmost covariant index
of S and the leftmost contravariant index of T (i.e. S...

...αT
α...
... ), assuming in each

case that such indices exist. If B is a
(
1
1

)
-tensor field, namely

B = Bα
β eα ⊗ ωβ , (2.11)

and it acts on a vector field X by right contraction, we have

B X = [B X]αeα = Bα
βX

βeα. (2.12)

Similarly, if A and B are two
(
1
1

)
-tensor fields, their right contraction is given by

A B = [A B]αβ eα ⊗ ωβ = [Aα
γB

γ
β ] eα ⊗ ωβ . (2.13)

The identity transformation is represented by the unit tensor or Kronecker
delta tensor δ:

δ = δα
β eα ⊗ ωβ . (2.14)

The trace of a
(
1
1

)
-tensor is defined as

TrA = Aα
α. (2.15)

Any
(
1
1

)
-tensor can be decomposed into a pure-trace and a trace-free (TF) part

A = A(TF) +
1
4
[TrA]δ. (2.16)

Contraction over p indices of two general tensors is symbolically described as
(right p-contraction)

S p T ≡ Sα...
β1...βp

T β1...βp... (2.17)

or (left p-contraction)

S p T ≡ Sα... β1...βpTβ1...βp.... (2.18)

Change of frame

Given a non-degenerate
(
1
1

)
-tensor field A, i.e. such that the determinant

det(Aα
β) is everywhere non-vanishing, one can prove that the elements of the

inverse matrix are the components of a tensor A−1 which is termed the inverse
tensor of A:

A−1 A = δ,
(
A−1

)α
γ A

γ
β = δα

β . (2.19)
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Non-degenerate
(
1
1

)
-tensor fields induce frame transformations as

ēα = A−1 eα =
(
A−1

)β
α eβ , ω̄α = ωα A = Aα

β ω
β . (2.20)

The space-time metric

Let (gαβ) be a symmetric non-degenerate matrix of signature +2 and denote by
(gαβ) its inverse. Then

g = gαβ ω
α ⊗ ωβ , g−1 = gαβeα ⊗ eβ (2.21)

locally define a pseudo-Riemannian metric tensor (g) and its inverse (g−1) satis-
fying

g−1 g = δ, gαγgγβ = δα
β . (2.22)

Using the notation g = |det(gαβ)| one finds det(gαβ) = −g and

d ln g = gαβdgαβ = Tr [g−1 dg]. (2.23)

Let us choose an orientation on M , namely an everywhere non-zero 4-form Õ;
a frame {eα} is termed oriented if Õ(e0, e1, e2, e3) > 0.

Since the metric is non-degenerate, it determines an isomorphism between the
tangent and cotangent spaces at each point of the manifold which in index-
notation corresponds to “raising” and “lowering” indices. For a vector field X

and a 1-form θ one has

X� = g X, Xα = gαβX
β ,

θ� = g−1 θ, θα = gαβθβ ,
(2.24)

where, as is customary, we use the sharp (�) and flat (�) notation for an arbitrary
tensor to mean the tensor obtained by raising or lowering, respectively, all of the
indices which are not already of the appropriate type.

Unit volume 4-form

The Levi-Civita permutation symbols εα1...α4 and εα1...α4 are totally antisym-
metric with

ε0123 = 1 = ε0123, (2.25)

so that they vanish unless α1 . . . α4 is a permutation of 0 . . . 3, in which case their
value is the sign of the permutation. The components of the unit volume 4-form
are related to the Levi-Civita symbols by

ηα1α2α3α4 = g1/2εα1α2α3α4 , ηα1α2α3α4 = −g−1/2εα1α2α3α4 . (2.26)
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Generalized Kronecker deltas

The following identities define the generalized Kronecker deltas and relate them
to the Levi-Civita alternating symbols and to the unit volume 4-form η:

δα1...α4
β1...β4

= εα1...α4εβ1...β4 = −ηα1...α4ηβ1...β4 ,

δ
α1...αp

β1...βp
=

1
(4 − p)!

δ
α1...αpγp+1...γ4

β1...βpγp+1...γ4

= − 1
(4 − p)!

ηα1...αpγp+1...γ4ηβ1...βpγp+1...γ4 . (2.27)

A familiar alternative definition is given by

δ
α1...αp

β1...βp
= det

⎛
⎜⎝
δα1

β1 · · · δα1
βp

...
...

δαp
β1 · · · δαp

βp

⎞
⎟⎠= p!δα1

[β1 · · · δαp
βp]. (2.28)

Note that the second of the relations (2.27) holds in a four-dimensional Rieman-
nian manifold with signature +2; in a three-dimensional Euclidean manifold one
has instead

δ
α1...αp

β1...βp
=

1
(3 − p)!

ηα1...αpγp+1...γ3ηβ1...βpγp+1...γ3 . (2.29)

Symmetrization and antisymmetrization

Given an object with only covariant or contravariant indices, or a subset of only
covariant or contravariant indices from those of a mixed object, one can always
project out the purely symmetric and purely antisymmetric parts. For example
for a

(
0
p

)
-tensor field one has

[ALTS]α1...αp = S[α1...αp] =
1
p!
δβ1...βp

α1...αp
Sβ1...βp ,

[SYMS]α1...αp = S(α1...αp) =
1
p!

∑
σ

Sσ(α1...αp), (2.30)

where the sum is over all the permutations σ of {α1 . . . αp}.
If T is a

(
0
2

)
-tensor, its symmetric and antisymmetric parts are given by

T(μν) =
1
2

(Tμν + Tνμ) (2.31)

T[μν] =
1
2

(Tμν − Tνμ) . (2.32)
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Exterior product

The exterior or wedge product of p 1-forms ωαi (i = 1, . . . p) is defined as

ωα1 ∧ · · · ∧ ωαp ≡ p!ω[α1 ⊗ · · · ⊗ ωαp]

= δ
α1...αp

β1...βp
ωβ1 ⊗ · · · ⊗ ωβp

= ωα1...αp , (2.33)

where notation (2.8) has been used.
From Eq. (2.33), the wedge product of a p-form S with a q-form T has the

following expression

[S ∧ T ]α1...αp+q =
(p+ q)!
p!q!

S[α1...αp
Tαp+1...αp+q], (2.34)

so that the relation

S ∧ T = (−1)pq T ∧ S (2.35)

holds identically.

Hodge duality operation

The Hodge duality operation associates with a p-form S the (4−p)-form ∗S with
components

[∗S]αp+1...α4 =
1
p!
Sα1...αp η

α1...αp
αp+1...α4 , (2.36)

i.e. with η at the right-hand side of the p-form S and with a proper contraction
of the first indices of η (right duality convention). From the above definition one
finds that a p-form S satisfies the identity

∗∗S ≡ (−1)p−1S. (2.37)

The duality operation applied to the wedge product of a p-form S and a q-form
T (with q ≥ p) implies the following identity:

∗(S ∧ ∗T ) = (−1)1+(4−q)(q−p) 1
p!
S� p T. (2.38)

With p = 0 and q = 1 this reduces to (2.37), while when p = q one has

∗(S ∧ ∗T ) = (−1)
1
p!
S� p T = ∗η

1
p!
S� p T, (2.39)

since ∗η = (−1). Removing the duality operation from each side leads to

S ∧ ∗T =
1
p!

(S� p T ) η. (2.40)
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2.2 Derivatives on a manifold
Differentiation on a manifold is essential to derive physical laws and define phys-
ical measurements. It stems from appropriate criteria for comparison between
the algebraic structures at any two points of the manifold. Clearly differentiation
allows one to define new quantities, as we shall see next.

Covariant derivative and connection

The covariant derivative ∇eγ
S of an arbitrary

(
p
q

)
-tensor S along the eγ frame

direction is a
(

p
q+1

)
-tensor with components

[∇eγ
S]α1...αp

β1...βq
≡ ∇γS

α1...αp

β1...βq
(2.41)

= eγ

(
S

α1...αp

β1...βq

)
+ Γα1

δγ S
δ...

β1... + · · · − Γδ
β1γ S

α1...
δ... − · · ·.

Here the coefficients Γα
γδ are the components of a linear connection on M

defined as

∇eαeβ = Γγ
βα eγ ↔ ∇eα ω

β = −Γβ
γα ω

γ . (2.42)

The covariant derivative satisfies the following rules. For any pair of vector fields
X and Y and of real functions f and h, we have

∇fX+hY = f∇X + h∇Y . (2.43)

From this it follows that

∇XS = Xα∇eαS ≡ Xα∇αS. (2.44)

A connection is said to be compatible with the metric if the latter is constant
under covariant differentiation, that is

0 = ∇γgαβ = eγ(gαβ) − gδβΓδ
αγ − gαδΓδ

βγ

= eγ(gαβ) − Γβαγ − Γαβγ , (2.45)

where we set

Γαβγ ≡ gασΓσ
βγ . (2.46)

Given two vector fields X and Y , consider the covariant derivative of Y in the
direction of X as

∇XY =
[
Xαeα(Y δ) + Γδ

βαX
αY β

]
eδ. (2.47)

From (2.47) and (2.5) we deduce the following relation

∇XY −∇Y X = [X, Y ] − [2Γδ
[βα] − Cδ

αβ ]XαY βeδ. (2.48)

The quantity

T (X, Y ) = ∇XY −∇Y X − [X, Y ] (2.49)
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is a
(
1
3

)
-tensor termed torsion. In the theory of relativity the torsion is assumed

to be identically zero. Hence, X and Y being arbitrary, the following relation
holds

Γδ
[βα] =

1
2
Cδ

αβ . (2.50)

From this, Eq. (2.45) can be inverted, yielding

Γα
βγ =

1
2
gαδ [eβ(gδγ) + eγ(gβδ) − eδ(gγβ) + Cδγβ + Cβδγ − Cγβδ] , (2.51)

where we set Cαβγ = gασC
σ

βγ . In the event that the structure functions Cαβγ

are all zero – in which case the bases eα are termed holonomous – the components
of the linear connection are known as Christoffel symbols.

Curvature

The curvature or Riemann tensor is defined as

R(eγ , eδ)eβ =
(
[∇eγ ,∇eδ

] −∇[eγ ,eδ]

)
eβ = Rα

βγδ eα. (2.52)

Hence the components in a given frame are

Rα
βγδ = eγ (Γα

βδ) − eδ (Γα
βγ) − Cε

γδΓα
βε + Γα

εγΓε
βδ − Γα

εδΓε
βγ . (2.53)

This tensor is explicitly antisymmetric in its last pair of indices and so defines a(
1
1

)
-tensor-valued 2-form Ω:

Ω = eα ⊗ ωβ ⊗ Ωα
β = eα ⊗ ωβ ⊗ 1

2
Rα

βγδ ω
γδ. (2.54)

Covariant derivative and curvature

A remarkable property of the covariant derivative is that it does not commute
with itself. In fact, given a vectorX and using coordinate components (Cγ

αβ = 0)
we have

∇[α∇β]X
γ =

1
2
Rγ

σαβX
σ, (2.55)

while given a 1-form ω we have

∇[α∇β]ωγ =
1
2
ωσR

σ
γβα. (2.56)

Relations (2.55) and (2.56) can be generalized to arbitrary tensors; for a
(
1
1

)
-

tensor Tρ
σ we have

∇[α∇β]Tρ
σ =

1
2
Tμ

σRμ
ρβα +

1
2
Rσ

μαβTρ
μ. (2.57)
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Applying the above relation to the metric tensor we have

∇[α∇β]gρσ =
1
2
gμσR

μ
ρβα +

1
2
gρμR

μ
σβα ≡ 0. (2.58)

Hence

Rσρβα +Rρσβα = 0, (2.59)

implying that the totally covariant (or contravariant) Riemann tensor is antisym-
metric with respect to the first pair of indices as well.

Ricci and Bianchi identities

The Ricci identities are given by

3Rα
[βγδ] = Rα

βγδ +Rα
γδβ +Rα

δβγ = 0, (2.60)

whereas the Bianchi identities are given by

3∇[εRγδ]β
α = ∇εRγδβ

α + ∇δRεγβ
α + ∇γRδεβ

α = 0. (2.61)

Finally, if we make the algebraic sum of the Ricci identities (2.60) for each per-
mutation of the indices of a totally covariant Riemann tensor,

Rα[βγδ] +Rδ[αβγ] −Rγ[δαβ] −Rβ[γδα] = 0 , (2.62)

it follows that

Rαβγδ = Rγδαβ , (2.63)

i.e. the Riemann tensor is symmetric under exchange of the two pairs of indices.

Ricci tensor and curvature scalar

From the symmetries of the curvature tensor its first contraction generates the
Ricci curvature tensor

Rαβ = Rγ
αγβ , (2.64)

which is symmetric due to the Ricci identities. Its trace defines the curvature
scalar

R ≡ Rα
α = Rγα

γα. (2.65)
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Weyl and Einstein tensors

The Weyl tensor is a suitable combination of the curvature tensor, the Ricci
tensor, and the curvature scalar, as follows:

Cαβ
γδ = Rαβ

γδ − 2R[α
[γδ

β]
δ] +

R

6
δαβ
γδ

= Rαβ
γδ − 2δ[α[γS

β]
δ], (2.66)

where

Sβ
α = Rβ

α − 1
6
Rδβ

α. (2.67)

The Weyl tensor is trace-free, i.e. Cα
βαδ = 0, and is invariant under conformal

transformations of the metric.
The one-fold contraction of the Bianchi identities (using the trace-free property

of the Weyl tensor (2.66)) reduces to

0 = ∇[εRγδ]
αβδγ

α

= ∇αRδε
αβ + 2∇[εRδ]

β

= ∇αCδε
αβ + ∇[ε

(
Rβ

δ] −
R

6
δβ

δ]

)
. (2.68)

The two-fold contraction of the Bianchi identities leads to

0 = ∇[εR
αβ

γδ]δ
γ

αδ
δ
β . (2.69)

Defining the Einstein tensor as

Gδ
ε ≡ Rδ

ε −
1
2
δδ

εR, (2.70)

relation (2.69) implies identically that

∇δG
δ
ε = 0. (2.71)

Cotton tensor

The Cotton tensor (Cotton, 1899; Eisenhart, 1997) is defined as

Rβ
δε ≡ 2∇[ε

(
Rβ

δ] −
R

6
δβ

δ]

)
= 2∇[εS

β
δ]. (2.72)

Hence the divergence of the Weyl tensor can be written in a more compact
form as

∇αCδε
αβ = −1

2
Rβ

δε. (2.73)
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The property of the Einstein tensor of being divergence-free leads to the trace-free
property of the Cotton tensor:

Rβ
αβ = ∇βG

β
α = 0. (2.74)

The totally antisymmetric part of the fully covariant (or contravariant) Cotton
tensor is zero due to the symmetry of the Ricci and metric tensors, that is

3R[αβγ] = Rαβγ +Rβγα +Rγαβ = 0. (2.75)

Finally from (2.71) it follows that the divergence of the Cotton tensor is also
zero:

∇βR
β

δε = 0. (2.76)

Absolute derivative along a world line

Given a curve γ parameterized by λ and denoting by γ̇ the corresponding tangent
vector field, the absolute derivative of any tensor field S(λ) defined along the
curve is

DS

dλ
= ∇γ̇S. (2.77)

Given a local coordinate system {xα}, the curve is described by the functions
γα(λ) = xα (γ(λ)) ≡ xα(λ), so that

[γ̇(λ)]α =
dxα

dλ
(λ).

For a vector field X defined on γ, its absolute derivative takes the form

DX

dλ
=
(
dXα(λ)
dλ

+ Γα
γβ(λ)γ̇β(λ)Xγ(λ)

)
eα. (2.78)

Parallel transport and geodesics

A tensor field S defined on a curve γ with parameter λ is said to be parallel
transported along the curve if its absolute derivative along γ is zero:

DS

dλ
= 0. (2.79)

A curve γ whose tangent vector γ̇ satisfies the equation

Dγ̇

dλ
(λ) = f(λ)γ̇(λ), (2.80)
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where f(λ) is a function defined on γ, is termed geodesic. It is always possible to
re-parameterize the curve with σ(λ) such that Eq. (2.80) becomes

Dγ̇′

dσ
(σ) = 0, (2.81)

where

γ̇′
α

=
dxα

dσ
.

In this case the parameter σ is said to be affine and it is defined up to linear
transformations. From Eq. (2.81) we see that a characteristic feature of an affine
geodesic is that the tangent vector is parallel transported along it.

Fermi-Walker derivative and transport

Let us introduce a new parameter s along a non-null curve γ such that the tangent
vector of the curve uα = dxα/ds is unitary, that is, u · u = ±1. If the curve is
time-like then u · u = −1 and the parameter s is termed proper time, as already
noted. The curvature vector (or acceleration) of the curve is defined as

a(u) =
Du

ds
. (2.82)

Consider a vector field X(s) on γ. We define the Fermi-Walker derivative of X
along γ as the vector field D(fw,u)X/ds having components

(
D(fw,u)

ds
X

)α

≡
(
DX

ds

)α

± [a(u)α(u ·X) − uα(a(u) ·X)]

=
(
DX

ds

)α

± [a(u) ∧ u]αγX
γ , (2.83)

where the signs ± should be chosen according to the causal character of the curve:
+ for a time-like curve and − for a space-like one.

The generalization to a tensor field T ∈
(
1
1

)
, for example, is the following:

(
D(fw,u)

ds
T

)α

β

≡
(
DT

ds

)α

β

± ([a(u) ∧ u]αγT
γβ

− [a(u) ∧ u]γβT
α

γ) . (2.84)

The tensor field T is said to be Fermi-Walker transported along the curve if
its Fermi-Walker derivative is identically zero.
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Lie derivative

The Lie derivative along a congruence CX of curves with tangent vector field X

is denoted £X and defined as follows:

(i) For a scalar field f ,
£Xf = X(f). (2.85)

(ii) For a vector field Y ,
£XY = [X,Y ]. (2.86)

(iii) For a 1-form ω,
[£Xω]β = Xγeγ(ωβ) + ωαeβ(Xα). (2.87)

(iv) For a general tensor Sα...
β...,

[£XS]α...
β... = Xγeγ(Sα...

β...) − Sμ...
β...eμ(Xα) + . . .

+Sα...
μ...eβ(Xμ) + . . . . (2.88)

From (2.86), the Lie operator applied to the vectors of a frame leads to (2.5),
that is

£eα
eβ = [eα, eβ ] = Cγ

αβ eγ . (2.89)

A general tensor field S is said to be Lie transported along a congruence CX if
its Lie derivative with respect to X is identically zero.

Exterior derivative

The exterior derivative is a differential operator d which associates a p-form to a
(p+ 1)-form according to the following properties:

(i) d is additive, i.e. d(S + T ) = dS + dT for arbitrary forms S, T .
(ii) If f is a 0-form (i.e. a scalar function), df is the ordinary differential of the

function f . If {xα} denotes a local coordinate system then df = ∂αfdx
α. In

a non-coordinate frame {eα} with dual {ωα} one has instead df = eα(f)ωα.
(iii) If S is a p-form and T a q-form then the following relation holds:

d(S ∧ T ) = dS ∧ T + (−1)pS ∧ dT. (2.90)

(iv) d2S = d(dS) = 0 for all forms S.

As a first application let us consider the exterior derivatives of the dual frame
1-forms ωα. We have, recalling (2.6),

dωα = d(ωα
β dx

β) = ∂μ(ωα
β)dxμ ∧ dxβ

= ∂μ(ωα
β)eμ

σ e
β

ρ ω
σ ∧ ωρ

= e[σ(ωα
|β|)eβ

ρ] ω
σ ∧ ωρ

= −1
2
Cα

σρ ω
σ ∧ ωρ. (2.91)
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One can use this result to evaluate the exterior derivative of ωαβ = ωα ∧ ωβ ;
from (2.90) and (2.33) we have

dωαβ = dωα ∧ ωβ − ωα ∧ dωβ

= −1
2
[
Cα

μν ω
μ ∧ ων ∧ ωβ + (−1)Cβ

μν ω
α ∧ ωμ ∧ ων

]
= −1

2
[
Cα

μν ω
μνβ + (−1)Cβ

μν ω
αμν
]
. (2.92)

From this it follows that the exterior derivative of a 2-form S,

S =
1
2
Sαβ ω

α ∧ ωβ ≡ 1
2
Sαβ ω

αβ , (2.93)

is given by

dS =
1
3!

[dS]βμν ω
βμν

= d

(
1
2
Sαβ ω

α ∧ ωβ

)

=
1
2
eγ(Sαβ)ωγαβ +

1
2
Sαβ

(
−1

2
Cα

μν ω
μν

)
∧ ωβ

− 1
2
Sαβ ω

α ∧
(
−1

2
Cβ

μν ω
μν

)
=

1
2
eγ(Sαβ)ωγαβ − 1

4
SαβC

α
μν ω

μνβ

+
1
4
SαβC

β
μν ω

αμν

=
1
2
e[β(Sμν])ωβμν − 1

2
SαβC

α
μν ω

βμν

=
1
2

(
e[β(Sμν]) −

1
2
SαβC

α
μν

)
ωβμν ; (2.94)

hence

[dS]βμν = 3
(
e[β(Sμν]) −

1
2
SαβC

α
μν

)
. (2.95)

From the above analysis a general formula for the exterior derivative of the basis
p-forms ωα1...αp follows as

dωα1...αp = −1
2
Cα1

ρσ ω
ρσα2...αp + · · · − 1

2
(−1)p−1Cαp

ρσ ω
α1...αp−1ρσ

= −1
2

p∑
i=1

(−1)i−1Cαi
βγ ω

α1...αi−1βγαi+1...αp . (2.96)

As a consequence, the exterior derivative of a p-form S,

S =
1
p!
Sα1...αp

ωα1...αp , (2.97)



2.2 Derivatives on a manifold 25

is a (p+ 1)-form defined as

dS =
1

(p+ 1)!
[dS]α1...αp+1ω

α1...αp+1 , (2.98)

where the components [dS]α1...αp+1 are given by

[dS]α1...αp+1 = (p+ 1)(e[α1(Sα2...αp+1])

− 1
2
pCβ

[α1α2S|β|α3...αi−1αi+1...αp+1]). (2.99)

In a coordinate frame the second term of (2.99) vanishes. Furthermore, this result
may be re-expressed in terms of a covariant derivative as

[dS]α1...αp+1 = (p+ 1)∇[α1Sα2...αp+1]. (2.100)

In fact, applying condition (2.90) to (2.98) we obtain

dS =
1
p!
dSα1...αp ∧ ωα1...αp +

1
p!
Sα1...αpdω

α1...αp . (2.101)

By combining this relation with (2.96) we finally obtain (2.100).

The divergence operator

The divergence operator δ of a p-form is defined as

δT = ∗[d∗T ]. (2.102)

If T = Tαω
α is a 1-form we have

[∗T ]αβγ = ηδ
αβγTδ (2.103)

and

[d∗T ]μαβγ = 4∇[μ(ηδ
αβγ]Tδ), (2.104)

so that

δT = ∗[d∗T ] =
1
4!
ημαβγ [d∗T ]μαβγ

=
1
3!
ημαβγηδ

αβγ∇μTδ

= − 1
3!
δμαβγ
δαβγ ∇μT

δ

= −δμ
δ ∇μT

δ = −∇δT
δ. (2.105)

If T =
1
2
Tαβω

α ∧ ωβ is a 2-form we have

[∗T ]μν =
1
2
ημν

αβ Tαβ (2.106)
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and

[d∗T ]λμν =
3
2
∇[λ(ημν]

αβ Tαβ), (2.107)

so that

[δT ]σ = [∗[d∗T ]]σ =
1
3
ηλμνσ∇λ

(
3
2
ημν

αβ Tαβ

)
=

1
4
2!δσλ

αβ∇λT
αβ = −∇βT

βσ. (2.108)

Finally, if T is a p-form we have

[δT ]α2...αp = −∇αTαα2...αp . (2.109)

We introduce also the notation

div T = −δT (2.110)

and extend this operation to any tensor field T = Tα1...αneα1 ⊗ · · · ⊗ eαn as

div T = [∇αT
αα2...αn ] eα2 ⊗ · · · ⊗ eαn . (2.111)

De Rham Laplacian

The de Rham Laplacian operator for p-forms is defined by

Δ(dR) = δd+ dδ. (2.112)

It differs from the Laplacian Δ, namely

[ΔS]α1...αp
= −∇α∇αSα1...αp

, (2.113)

by curvature terms

[Δ(dR)S]α1...αp
= [ΔS]α1...αp

+
p∑

i=1

Rβ
αi
Sα1...αi−1β αi+1...αp

−
p∑

i�=j=1

Rβ
αi

γ
αj
Sα1...αi−1β αi+1...αj−1γ αj+1...αp

.

As an example let us consider the electromagnetic 1-form A with F = dA, and
dF = 0, δF = −4πJ . Then one finds

Δ(dR)A− d(δA) = −4πJ, Δ(dR)F = −4π(dJ), (2.114)

showing that [Δ(dR), d] = 0.
Let us write explicitly the de Rham Laplacian of the Faraday 2-form F . We have

[Δ(dR)F ]αβ = [ΔF ]αβ −Rμ
αFμβ +Rμ

βFμα

−Rμ
α

γ
βFμγ +Rμ

β
γ

αFμγ . (2.115)
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One can re-derive the de Rham Laplacian of F in the form (2.114) starting from
the homogeous Maxwell’s equations dF = 0 written in coordinate components:

∇γFαβ + ∇αFβγ + ∇βFγα = 0. (2.116)

Covariant differentiation ∇γ of both sides gives

− ΔFαβ + 2∇γ∇[αFβ]γ = 0. (2.117)

Recalling the non-commutativity of the covariant derivatives acting in this case
on Fμν , namely

[∇γ ,∇α]Fβ
γ = Rβ

μγ
αFμγ +Rγ

μγ
αFβμ, (2.118)

replace the second term of Eq. (2.117) and use the non-homogeous Maxwell’s
equations ∇γFβγ = 4πJβ . Finally we obtain the relation Δ(dR)F = −4π(dJ).

For a 3-form S we have instead

[Δ(dR)S]α1α2α3 = [ΔS]α1α2αp +Rβ
α1Sβα2α3 +Rβ

α2Sα1βα3 +Rβ
α3Sα1α2β

− 2Rβ
[α2

γ
α3]Sβγα1 − 2Rβ

[α1
γ

α2]Sβγα3 + 2Rβ
[α1

γ
α3]Sβγα2 ,

which can also be written as

[Δ(dR)S]α1α2α3 = [ΔS]α1α2αp + 3Rβ
[α1S|β|α2α3] − 6Rβ

[α1
γ

α2S|βγ|α3].

2.3 Killing symmetries
The Lie derivative of a general tensor field along a congruence of curves describes
the “intrinsic” behavior of this field along the congruence. If the field is the
metric tensor then the vanishing of its Lie derivative implies that the vector field
ξ, tangent to the congruence, is an isometry for the metric, and this field is called
a Killing vector field. From the definitions of the covariant and Lie derivatives, a
Killing vector field satisfies the equations

∇(αξβ) = 0. (2.119)

In a remarkable paper, Papapetrou (1966) pointed out that a Killing vector
field ξ can be considered as the vector potential generating an electromagnetic
field

Fαβ = ∇αξβ , (2.120)

with current Jα = Rα
βξ

β (which vanishes in vacuum space-times) satisfying
the Lorentz gauge ∇αξ

α = 0. Fayos and Sopuerta (1999) introduced the term
Papapetrou field for such an electromagnetic field. Their result is that Papapetrou
fields constitute a link between the Killing symmetries and the algebraic structure
of a space-time established by the alignment of the principal null directions (see
the following subsection) of the Papapetrou field with those of the Riemann
tensor.
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A symmetric 2-tensor Kμν is termed a Killing tensor if it satisfies the relation

∇λKμν + ∇νKλμ + ∇μKνλ = 3∇(λKμν) = 0. (2.121)

2.4 Petrov classification
The algebraic properties of the space-time curvature and in particular of the
Weyl tensor play a central role in Einstein’s theory. In the most general space-
time there exist four distinct null eigenvectors l of the Weyl tensor, known as
principal null directions (PNDs), which satisfy the Penrose-Debever equation,

l[αCβ]μν[γ lδ]l
μlν = 0. (2.122)

When some of them coincide we have algebraically special cases. The multiplicity
of the principal null directions leads to the canonical Petrov classification:

• Type I (four distinct PNDs)
• Type II (one pair of PNDs coincides)
• Type D (two pairs of PNDs coincide)
• Type III (three PNDs coincide)
• Type N (all four PNDs coincide)
• Type 0 (no PNDs).

2.5 Einstein’s equations
A physical measurement crucially depends on the space-time which supports it.
A space-time is a solution of Einstein’s equations, which in the presence of a
cosmological constant and for any source term are given by

Gαβ + Λgαβ = 8πTαβ . (2.123)

Here Λ is the cosmological constant; Tαβ is the energy-momentum tensor of the
source of the gravitational field, and satisfies the local causality conditions and
the energy conditions (Hawking and Ellis, 1973). The most relevant Tαβ are:

(i) Tαβ = 0, empty space-time.
(ii) Tαβ = 1

4π [∇αφ∇βφ− 1
2gαβ [∇μφ∇μφ+m2φ2]], massive (m) scalar field.

(iii) Tαβ = (μ + p)uαuβ + pgαβ , perfect fluid, where μ is the energy density of
the fluid, p is its hydrostatic (isotropic) pressure, and uα is the 4-velocity of
the fluid element.

(iv) Tαβ = 1
4π [FαμFβ

μ − 1
4gαβFμνF

μν ], electromagnetic field. In this case Ein-
stein’s equations are coupled to Maxwell’s equations through the Faraday
2-form field F , which can be written as

dF = 0, −δF = 4πJ. (2.124)
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The first of these equations implies the existence of a 4-potential A such
that F = dA, while the second one leads to the conservation of the electro-
magnetic current δJ = 0 (or ∇αJ

α = 0). Equivalently, Eqs. (2.124) can be
written in terms of covariant derivatives as

∇β
∗Fαβ = 0, ∇βF

αβ = 4πJα. (2.125)

In what follows we shall consider exact solutions of Einstein’s equations which
are of physical interest.

2.6 Exact solutions
We shall list the main exact solutions of Einstein’s equations which provide nat-
ural support for most of the physical measurements considered here.

Constant space-time curvature solutions

Let us consider a maximally symmetric space-time which satisfies the relation

Rαβ
γδ =

1
12
Rδαβ

γδ , → Rαβ =
1
4
Rgαβ , (2.126)

where the space-time Ricci scalar R is constant. Relation (2.126) is equivalent to
the vanishing of the trace-free components of the Ricci tensor, that is,

[RTF]αβ ≡ Rαβ − 1
4
Rgαβ = 0. (2.127)

In this case it follows that:

(i) if Tαβ = 0 and Λ �= 0 (empty space-time), Einstein’s equations (2.123) are
satisfied with

Λ =
1
4
R ; (2.128)

(ii) if Tαβ �= 0 describes a perfect fluid and either Λ = 0 or Λ �= 0, Einstein’s
equations are satisfied with

μ =
1

32π
R = −p, → Tαβ = pgαβ , (2.129)

a condition which physically describes the vacuum state.
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Among this family of constant space-time curvature solutions we distinguish three
relevant cases (Stephani et al., 2003):

(i) R > 0, de Sitter (dS):

ds2 = −dt2 + α2 cosh2

(
t

α

)
[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)], (2.130)

where t ∈ (−∞,+∞), χ ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π].
(ii) R = 0, Minkowski (M).
(iii) R < 0, Anti-de Sitter (AdS):

ds2 = −dt2 + α2 cos2
(
t

α

)
[dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)], (2.131)

where t ∈ (−∞,+∞), χ ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π].

Constant spatial curvature solutions

Space-time solutions of Einstein’s equations having spatial sections t = constant,
with constant curvature are the Friedmann-Robertson-Walker solutions, with
metric

ds2 = −dt2 + a(t)2[dχ2 + f(χ)2(dθ2 + sin2 θdφ2)]. (2.132)

Of course dS, AdS, and also M are special cases.

Gödel solution

The Gödel solution (Gödel, 1949) describes a rotating universe with metric

ds2 = −dt2 + dx2 − 1
2
U2dy2 − 2Udtdy + dz2, (2.133)

where U = e
√

2ωx and ω is a constant. Metric (2.133) describes an empty non-
expanding but rotating universe and ω has the meaning of the angular velocity
of a test particle with respect to a nearby fiducial particle.

This is a type D solution with a pressureless perfect fluid as a source. The
4-velocity u of the fluid is a Killing vector, which is not hypersurface-forming.

Kasner solution

This is an empty space-time solution (Kasner, 1925) whose metric is given by

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, t > 0, (2.134)
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where p1, p2, p3 are constant parameters satisfying the conditions p2
1 + p2

2 + p2
3 = 1

and p1 +p2 +p3 = 1. It describes a space-time while approaching a curvature sin-
gularity at t = 0, the latter being either of cosmological nature or emerging from
gravitational collapse. It is of Petrov type I, except for the case p2 = p3 = 2/3,
p1 = −1/3, which corresponds to type D, and the case p1 = p2 = p3 = 0, which
is Minkowski.

Schwarzschild solution

This solution was obtained in 1915 by Schwarzschild (1916a; 1916b) and inde-
pendently by Droste, a student of Lorentz, in 1916. In asymptotically spherical
coordinates the space-time metric is given by

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (2.135)

with t ∈ (−∞,+∞), r ∈ (2M,∞), θ ∈ [0, π], φ ∈ [0, 2π], and M being the total
mass of the source. It describes the space-time outside a spherically symmetric,
electrically neutral fluid source. r = 0 is a space-like curvature singularity which
is hidden by an event horizon at r = 2M.

Reissner-Nordström solution

This is a generalization of the Schwarzschild solution to an electrically charged
sphere (Reissner, 1916; Nordström, 1918). In asymptotically spherical coordinates
the space-time metric is given by

ds2 = −
(

1 − 2M
r

+
Q2

r2

)
dt2 +

(
1 − 2M

r
+
Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2), (2.136)

where Q and M are the electric charge and the total mass of the source, respec-
tively. The electromagnetic field F and the 4-vector potential A are given by

F = −Q

r2
dt ∧ dr, A = −Q

r
dt. (2.137)

Here r = 0 is a time-like curvature singularity which may be hidden by an
event horizon at r = r+ = M +

√
M2 −Q2 if M > Q.1 When M < Q we have

no horizons and the singularity at r = 0 is termed naked .

1 The solution admits also an inner horizon at r = r− = M−
√

M2 − Q2.
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Kerr solution

Written in Boyer-Lindquist coordinates, Kerr space-time (Kerr, 1963; Kerr and
Shild, 1967) is given by

ds2 = −dt2 +
2Mr

Σ
(a sin2 θdφ− dt)2 + (r2 + a2) sin2 θdφ2

+
Σ
Δ
dr2 + Σdθ2, (2.138)

where Σ = r2 + a2 cos2 θ and Δ = r2 + a2 − 2Mr. Here M and a are respec-
tively the total mass and the specific angular momentum of the source. This
reduces to the Schwarzschild solution when a = 0. It admits an event horizon2

at r = r+ = M +
√
M2 − a2, if a ≤ M and a curvature ring-singularity in the

above coordinates is found at r = 0 and θ = π/2. This singularity is time-like
and allows the curvature invariant RαβγδRαβγδ to be directional depending on
how it is approached.

The Kerr solution is most popular in the astrophysical community because,
under suitable conditions, it describes the space-time generated by a rotating
black hole (Bardeen, 1970; Ruffini, 1973; Rees, Ruffini and Wheeler, 1974; Ruffini,
1978).

Kerr-Newman solution

This solution is a generalization of Kerr’s to electrically charged sources (Newman
et al., 1965). In Boyer and Lindquist coordinates the space-time metric is given by

ds2 = −
(

1 − 2Mr −Q2

Σ

)
dt2 − 2a sin θ(2Mr −Q2)

Σ
dtdφ

+ sin2 θ

(
r2 + a2 +

a2 sin2 θ(2Mr −Q2)
Σ

)
dφ2

+
Σ
Δ
dr2 + Σdθ2, (2.139)

where Σ = r2 + a2 cos2 θ and Δ = r2 + a2 − 2Mr + Q2. Here M, a, and Q are
respectively the total mass, the specific angular momentum, and the charge of
the source. The horizon and the curvature singularity have the same properties
as in the Kerr metric.

2 As in the Reissner-Nordström solution, the Kerr solution also admits an inner event horizon
at r = r− = M−√M2 − a2.
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Single gravitational plane-wave solution

A plane gravitational wave (Bondi, Pirani, and Robinson, 1959) is a non-trivial
solution of the vacuum Einstein equations with a five-parameter group of motion.
The space-time metric is given by

ds2 = −dt2 + dz2 + L2(e2βdx2 + e−2βdy2), (2.140)

with L, β depending only on the parameter u = (−t + z)/
√

2 and such that
d2L/du2 +β2L = 0. This solution is of Petrov type N. It has the same symmetry
properties as an electromagnetic plane wave in Minkowski space-time; hence we
deduce the associated Killing vectors considering the electromagnetic case. In
this case the Faraday 2-form is given by

Fμν = A(u) ([k ∧ r]μν cos θ(u) + [k ∧ s]μν sin θ(u)) , (2.141)

where kμ is the null wave vector, rμ and sμ are unitary space-like vectors which
are mutually orthogonal and also orthogonal to k:

k · r = k · s = s · r = 0, s · s = 1 = r · r. (2.142)

The wave amplitude A(u) and its polarization θ(u) are both functions of
u = kμx

μ. The following properties hold: ∂νF
μν = 0 and ∂[ρFμν] = 0. With-

out loss of generality one can choose the coordinate system so that

k =
1√
2
(∂t + ∂z), r = ∂x, s = ∂y, (2.143)

and

u = kμx
μ =

−t+ z√
2

, (2.144)

as already defined. It is easy to verify that Fμν is invariant under the action of
a five-parameter subgroup of the Lorentz group, with generators

(i) ξ1 = k, generating translation on the plane −t+ z =constant
(ii) ξ2 = r, generating translation along x
(iii) ξ3 = s, generating translation along y
(iv) ξ4 = xρ[sρk

μ + kρs
μ], generating null rotations about s

(v) ξ5 = xρ[rρkμ + kρr
μ], generating null rotations about r.

The only non-vanishing structure functions are

C1
24 = C1

35 = 1. (2.145)
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Space-time splitting

The concept of space-time brings into a unified scenario quantities which, in
the pre-relativistic era, carried distinct notions like time and space, energy and
momentum, mechanical power and force, electric and magnetic fields, and so
on. In everyday experience, however, our intuition is still compatible with the
perception of a three-dimensional space and a one-dimensional time; hence a
physical measurement requires a local recovery of the pre-relativistic type of
separation between space and time, yet consistent with the principle of relativity.
To this end we need a specific algorithm which allows us to perform the required
splitting, identifying a “space” and a “time” relative to any given observer. This
is accomplished locally by means of a congruence of time-like world lines with
a future-pointing unit tangent vector field u, which may be interpreted as the
4-velocity of a family of observers. These world lines are naturally parameterized
by the proper time τu defined on each of them from some initial value. The
splitting of the tangent space at each point of the congruence into a local time
direction spanned by vectors parallel to u, and a local rest space spanned by
vectors orthogonal to u (hereafter LRSu), allows one to decompose all space-time
tensors and tensor equations into spatial and temporal components. (Choquet-
Bruhat, Dillard-Bleick and DeWitt-Morette 1977).

3.1 Orthogonal decompositions
Let g be the four-dimensional space-time metric with signature +2 and compo-
nents gαβ (α, β = 0, 1, 2, 3), ∇ its associated covariant derivative operator, and η
the unit volume 4-form which assures space-time orientation (see (2.26)). Assume
that the space-time is time-oriented and let u be a future-pointing unit time-like
(uαuα = −1) vector field which identifies an observer. The local splitting of the
tangent space into orthogonal subspaces uniquely related to the given observer u
is accomplished by a temporal projection operator T (u) which generates vectors
parallel to u and a spatial projection operator P (u) which generates LRSu. These
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operators, in mixed form, are defined as follows:

T (u) = −u� ⊗ u�

P (u) = I + u� ⊗ u�, (3.1)

where I ≡ δα
β is the identity on the tangent spaces of the manifold M . The

definitions (3.1) imply that

P (u) u = 0, T (u) u = u , (3.2)

and

P (u) P (u) = P (u), T (u) T (u) = T (u), T (u) P (u) = 0 . (3.3)

In terms of components the above relations can be written

T (u)α
β = −uαuβ ,

P (u)α
β = δα

β + uαuβ ,

P (u)α
μu

μ = 0,

T (u)α
μu

μ = uα,

P (u)α
μP (u)μ

β = P (u)α
β ,

T (u)α
μT (u)μ

β = T (u)α
β ,

T (u)α
μP (u)μ

β ≡ 0. (3.4)

Given a
(
r
s

)
-tensor S, let us denote by [P (u)S] and [T (u)S] its fully spatial

and temporal projections, obtained by acting with the corresponding operators
on all of its indices. In terms of components these are given by

[P (u)S]α...
β... = P (u)α

γ · · ·P (u)δ
β · · ·Sγ...

δ... (3.5)

[T (u)S]α...
β... = T (u)α

γ · · ·T (u)δ
β · · ·Sγ...

δ.... (3.6)

The splitting of S relative to a given observer is the set of tensors which arise
from the spatial and temporal projection of each of its indices, as we shall now
illustrate.

Splitting of a vector

If S is a vector field, its splitting gives rise to a scalar field and a spatial vector
field:

S ↔ {u · S, [P (u)S]} . (3.7)

In terms of components these are given by

Sα ↔ {uγS
γ , P (u)α

γS
γ}. (3.8)
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With respect to the observer u, the vector S then admits the following represen-
tation:

Sα = [T (u)S]α + [P (u)S]α

= −(uγS
γ)uα + P (u)α

γ S
γ , (3.9)

also termed 1 + 3-splitting.

Splitting of a
(1
1

)
-tensor

If S is a mixed
(
1
1

)
-tensor field, then its splitting consists of a scalar field, a spatial

vector field, a spatial 1-form, and a spatial
(
1
1

)
-tensor field, namely

Sα
β ↔ {uδuγS

γ
δ, P (u)α

γu
δSγ

δ, P (u)δ
αuγS

γ
δ, P (u)α

γP (u)δ
βS

γ
δ}.

In terms of these fields, the tensor S admits the following representation:

Sα
β = [T (u)α

γ + P (u)α
γ ][T (u)δ

β + P (u)δ
β ]Sγ

δ

= (uδuγS
γ

δ)uαuβ − uαuγP (u)δ
βS

γ
δ

−uδuβP (u)α
γS

γ
δ + [P (u)S]αβ , (3.10)

for any chosen observer u.
The local spatial and temporal projections of a

(
p
q

)
-tensor are easily generalized.

Let us consider the metric tensor gαβ . From (3.2) and (3.3) one finds that

gαβ = P (u)αβ + T (u)αβ ;

hence, the spatial metric [P (u)g]αβ = P (u)αβ is the only non-trivial spatial field
which arises from the splitting of the space-time metric.

Splitting of p-forms

Given a p-form

S = S[α1...αp]ω
α1 ⊗ · · · ⊗ ωαp ≡ 1

p!
Sα1...αpω

α1 ∧ . . . ∧ ωαp , (3.11)

we define the electric part of S relative to the observer u by the quantity[
S(E)(u)

]
α1...αp−1

= −uσSσα1...αp−1 (3.12)

or, in a more compact form, S(E)(u) = −u S . Similarly we define the magnetic
part of S by the quantity[

S(M)(u)
]

α1...αp

= P (u)β1
α1 . . . P (u)βp

αp
Sβ1...βp

(3.13)
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or, in a more compact form, S(M)(u) = P (u)S. From the above defini-
tions we deduce the representation of S in terms of its spatial and temporal
decompositions:

S = u� ∧ S(E)(u) + S(M)(u), (3.14)

or, in components,

Sα1...αp = p!u[α1 [S
(E)(u)]α2...αp] + [S(M)(u)]α1...αp . (3.15)

Notice that the contraction u S is automatically spatial due to the antisymme-
try of S (since u (u S) = 0 or equivalently uαuβSβαγ3...γp = 0).

Consider the splitting of the unit volume 4-form η. From its properties and
having in mind that [P (u)η] ≡ 0, one deduces the following representation:

η = −u� ∧ η(u). (3.16)

To express this in terms of components, let us recall (2.34) and the antisym-
metrization rule for four indices. From (2.30), this is given by

R[αβγδ] =
1
4
(
Rα[βγδ] −Rβ[αγδ] + Rγ[αβδ] −Rδ[αβγ]

)
(3.17)

for any tensor R. Hence we have

[u� ∧ η(u)]αβγδ = 4u[αη(u)βγδ]

=
[
2u[αη(u)β]γδ + 2u[γη(u)δ]αβ

]
, (3.18)

where the spatial unit volume 3-form

η(u)αβγ = uδηδαβγ (3.19)

is the only non-trivial spatial field which arises from the splitting of the volume
4-form. From the above it then follows that

ηαβγδ = −2u[αη(u)β]γδ − 2u[γη(u)δ]αβ . (3.20)

In (2.36) and (2.37) we saw that, using the space-time (Hodge) duality oper-
ation (∗), one can associate with any p-form S (with 0 ≤ p ≤ 4) a (4 − p)-
form. Similarly a spatial duality operation (∗(u)) is defined for a spatial p-form S

(u S = 0) replacing η with η(u), namely

∗(u)Sα1...α3−p =
1
p!
Sβ1...βpη(u)

β1...βp
α1...α3−p . (3.21)

As an example, given a spatial 2-form S, its spatial dual is a vector given by

[∗(u)S]α =
1
2
η(u)αβγSβγ . (3.22)

This operation satisfies the property

∗(u)∗(u)S = S. (3.23)
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Let us now consider the splitting of ∗S where S is given by (3.14). We have

∗S = u� ∧ [∗S](E)(u) + [∗S](M)(u)

= ∗[u� ∧ S(E)(u) + S(M)(u)]

= ∗[u� ∧ S(E)(u)] + ∗[S(M)(u)]

= ∗(u)S(E)(u) + ∗[∗(u) [∗(u) [S(M)(u)]]]

= ∗(u)S(E)(u) + (−1)p−1u� ∧ ∗(u) [S(M)(u)], (3.24)

where, in the third line, we have used (3.23). Comparing the first and the last
line we have

[∗S](E)(u) = (−1)p−1∗(u) [S(M)(u)], [∗S](M)(u) = ∗(u)S(E)(u). (3.25)

Splitting of differential operators

We saw in Chapter 2 that in general relativity one encounters several space-time
tensorial differential operators which act on tensor fields. Let us recall them: if
T is a tensor field of any rank, we have:

(i) the Lie derivative of T along the direction of a given vector field X: [£XT ]
(ii) the covariant derivative of T : ∇T
(iii) the absolute derivative of T along a curve with unit tangent vector X and

parameterized by s: ∇XT ≡ DT/ds

(iv) the Fermi-Walker derivative of T along a non-null curve with unit tangent
vector X and parameterized by s: D(fw,X)T/ds, defined in (2.83).

Finally if S is a p-form, one has

(v) the exterior derivative of S: dS.

Application of the spatial projection into the LRSu of a family of observers u
to the space-time derivatives (i) to (v) yields new operators which can be more
easily compared with those defined in a three-dimensional Euclidean space. Given
a tensor field T of components Tα...

β... we have in fact

(i) the spatially projected Lie derivative along a vector field X

[£(u)XT ]α...
β... ≡ P (u)α

σ . . . P (u)ρ
β . . . [£XT ]σ...

ρ...; (3.26)

when X = u we also use the notation

∇(u)(lie)T ≡ £(u)uT, (3.27)

and this operation will be termed the spatial-Lie temporal derivative
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(ii) the spatially projected covariant derivative along any eγ frame direction

∇(u)γT ≡ P (u)∇γT, (3.28)

namely

[∇(u)γT ]α...
β... = P (u)α

α1 . . . P (u)β1
β . . . P (u)σ

γ∇σT
α1...

β1... (3.29)

(iii) the spatially projected absolute derivative along a curve with unit tangent
vector X

[P (u)∇XT ]α...
β... = P (u)α

α1 . . . P (u)β1
β . . . [∇XT ]α1...

β1... (3.30)

(iv) the spatially projected Fermi-Walker derivative along a curve with unit tan-
gent vector X and parameterized by s[

P (u)
D(fw,X)T

ds

]α...

β...

= P (u)α
σ . . . P (u)ρ

β...

[
D(fw,X)T

ds

]σ...

ρ...

(3.31)

(v) the spatially projected exterior derivative of a p-form S

d(u)S ≡ P (u)dS, (3.32)

namely

[d(u)S]α1...αpβ = P (u)β1
α1 . . . P (u)σ

β [dS]β1...σ. (3.33)

Note that all these spatial differential operators are well defined since they arise
from the spatial projection of space-time differential operators. Moreover, there
are relations among them which we shall analyze below. From their definitions
it is clear that both the Fermi-Walker and the Lie derivatives of the vector field
u along itself vanish identically (and so do the projections orthogonal to u of
these derivatives). The only derivative of u along itself which is meaningful, i.e.
different than zero, is the covariant derivative

P (u)∇uu = ∇uu = a(u). (3.34)

3.2 Three-dimensional notation
Given a family of observers u, a vector X is termed spatial with respect to u when
it lives in the local rest space of u, i.e. it satisfies the condition Xαu

α = 0. It is
then convenient to introduce 3-dimensional vector notation for the spatial inner
product and the spatial cross product of two spatial vector fields X and Y . The
spatial inner product is defined as

X ·u Y = P (u)αβX
αY β (3.35)

while the spatial cross product is

[X ×u Y ]α = η(u)α
βγX

βY γ , (3.36)

where η(u)α
βγ = uση

σα
βγ as stated.
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In terms of the above definitions we can define spatial gradient, curl, and
divergence operators of functions f and spatial vector fields X as

gradu f=∇(u)f,

curluX=∇(u) ×u X,

divuX =∇(u) ·u X. (3.37)

In terms of components these relations are given by

[gradu f ]α = ∇(u)αf = P (u)αβeβ(f),

[curluX]α = η(u)αβγ∇(u)βXγ = uσησ
αβγ∇βXγ ,

[divuX] = ∇(u)αX
α = P (u)αβ∇αXβ . (3.38)

It is useful to extend the above definitions to

(i) the spatial cross product of a vector X by a symmetric tensor A
(ii) the spatial cross product of two symmetric spatial tensors A and B
(iii) the spatial inner product of two symmetric spatial tensors A and B
(iv) the trace of the above tensor product

as shown below:

[X ×u A]αβ= η(u) γδ(αXγA
β)

δ,

[A×u B]α = η(u)αβγA
β

δ B
δγ ,

[A ·u B]α
β =AαγB

γβ ,

Tr[A ·u B] =AαβB
αβ . (3.39)

One may also introduce a symmetric curl operation or Scurl . For a spatial and
symmetric

(
2
0

)
-tensor A this is defined by

[ScurluA]αβ = η(u)γδ(α∇(u)γ A
β)

δ. (3.40)

The Scurl operation can be extended to a spatial antisymmetric
(
2
0

)
-tensor Ω, as

follows:

[Scurlu Ω]αβ = η(u)γδ(α∇(u)γ Ωβ)
δ

= ∇(u)γ η(u)γδ(αη(u)β)
δσ[∗(u)Ω]σ

= −divu [∗(u)Ω]P (u)αβ + ∇(u)(α[∗(u)Ω]β). (3.41)

Similarly, a spatial divergence of spatial tensors can be defined as in (3.38)3,
that is

[divuX]α...β = ∇(u)σX
σα...β , X = P (u)X. (3.42)

Finally, the above operations performed on spatial fields may be extended to
non-spatial ones. For example, if

X = X‖u+X⊥

is a non-spatial field we define
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[curlX]α ≡ η(u)αβγ∇(u)βXγ = 2X‖ω(u)α + [curluX]α.

Analogous definitions hold for the other spatial operations considered above.

3.3 Kinematics of the observer’s congruence
Let us now consider the splitting of the covariant derivative ∇βu

α. This operation
generates two spatial fields, namely the acceleration vector field a(u) and the
kinematical tensor field k(u), defined as

a(u) = P (u)∇uu,

k(u) = −∇(u)u = ω(u) − θ(u), (3.43)

where

ω(u)αβ = P (u)μ
αP (u)ν

β∇[μuν],

θ(u)αβ = P (u)μ
αP (u)ν

β∇(μuν)

=
1
2
[£(u)uP (u)]αβ , (3.44)

are the components of tensor fields ω(u) and θ(u) having the meaning respectively
of vorticity and expansion. From the above definitions, the tensor field ∇βu

α can
be written as

∇βu
α = −a(u)αuβ − k(u)α

β . (3.45)

The expansion tensor field θ(u) may itself be decomposed into its trace-free and
pure-trace parts:

θ(u) = σ(u) +
1
3
Θ(u)P (u), (3.46)

where the trace-free tensor field σ(u) (σ(u)α
α = 0) is termed shear and the scalar

Θ(u) = ∇αu
α (3.47)

is termed the volumetric (or isotropic) scalar expansion.
We can also define the vorticity vector field ω(u) = 1/2 curlu u as the spatial

dual of the spatial rotation tensor:

ω(u)α =
1
2
η(u)αβγω(u)βγ =

1
2
ησαβγuσ∇βuγ . (3.48)

Although we use the same symbol for the vorticity tensor and the associated
vector they can be easily distinguished by the context.

3.4 Adapted frames
Given a field of observers u, a frame {eα} with α = 0, 1, 2, 3 (with dual ωα) is
termed adapted to u if e0 = u and ea with a = 1, 2, 3 are orthogonal to u, that
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is u · ea = 0. From this it follows that ω0 = −u�. Obviously the components of u
relative to the frame are simply uα = δα

0 and the metric tensor is given by

g� = −u� ⊗ u� + P (u)abω
a ⊗ ωb. (3.49)

In this section all indices denote components relative to the frame {eα}. The
evolution of the frame vectors along the world lines of u is governed by the
relations ∇ueα = eσ Γσ

α0. Let us consider separately the cases α = 0 and α = a:

(i) When α = 0 it follows that

∇ue0 = ∇uu = a(u) = eσ Γσ
00. (3.50)

Recalling that u · a(u) = 0, one finds that Γ0
00 = 0 and therefore that

Γb
00 = a(u)b. (3.51)

(ii) When α = a we have

∇uea = Γσ
a0eσ = Γ0

a0e0 + Γc
a0ec. (3.52)

The dot product of these terms with −u gives

− u · ∇uea = Γ0
a0 = a(u)a. (3.53)

We then have two expressions for the acceleration, namely

a(u)a = Γ0
a0, and a(u)a = Γa

00. (3.54)

Before proceeding, let us define

Γαβγ ≡ eα · eσΓσ
βγ ; (3.55)

expanding the sum we have

Γαβγ = (eα · e0)Γ0
βγ + (eα · eb)Γb

βγ

= δ0αg00Γ
0
βγ + δc

αP (u)cbΓb
βγ . (3.56)

Hence it follows that

Γ0βγ = −Γ0
βγ , Γcβγ = P (u)cbΓb

βγ . (3.57)

From the latter, lowering the up-indices in (3.54) we obtain

Γ0a0 + Γa00 = 2Γ(0a)0 = 0 ; (3.58)

moreover the transport law for the inner product (ea · u) along u itself yields

∇u(ea · u) = −Γ0
a0 + Γa00 = 0 (3.59)

from (3.58). Therefore the antisymmetry of the first pair of indices (0a) ensures
that the spatial vectors of the frame remain orthogonal to u while moving along
the world line of u itself. From (3.52) and (3.55) we have also

Γba0 = eb · ∇uea = eb · [P (u)∇uea] ≡ C(fw)ba, (3.60)
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where C(fw)ba are termed Fermi-Walker structure functions.1 From (3.60) relation
(3.52) can be written as

∇uea = a(u)ae0 + C(fw)
b
aeb, (3.61)

implying that

P (u)∇uea = C(fw)
b
aeb. (3.62)

Let us now prove that C(fw)
b
a can also we written as

C(fw)
b
a = C(lie)

b
a − k(u)b

a, (3.63)

where

C(lie)
b
a ≡ ωb(£(u)uea), (3.64)

recalling that ωb is the dual basis; Eq. (3.64) implies that

P (u)£uea = £(u)uea = C(lie)
b
aeb. (3.65)

In terms of the structure functions of the frame, we have by definition

£(u)uea ≡ P (u)£uea = P (u)[u, ea] = P (u)Cα
0aeα

= Cb
0aeb, (3.66)

where we have used the relations P (u)e0 = 0 and P (u)eb = eb; therefore

C(lie)
b
a = Cb

0a. (3.67)

Using (3.45) we obtain

£uea = ∇uea −∇eau = ∇uea + k(u)c
aec, (3.68)

so, projecting both sides orthogonally to u yields

£(u)uea = P (u)∇uea + k(u)c
aec, (3.69)

which leads to (3.63).
Using (3.45), one obtains

∇eae0 = Γγ
0aeγ = −k(u)b

aeb,

∇eaeb = Γγ
baeγ = −k(u)bae0 + Γc

baec. (3.70)

Summarizing, we have

Γa
00 = a(u)a, Γ0

a0 = a(u)a, Γb
a0 = C(fw)

b
a,

Γb
0a = −k(u)b

a, Γ0
ba = −k(u)ba.

(3.71)

1 A more correct notation for the Fermi-Walker structure functions should be C(fw,u,ec)ba,
i.e. a symbol which includes explicit dependence on the frame. Clearly when the frame
is fixed the simplified notation proves useful.
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We can also express the structure functions in terms of kinematical quantities.
In fact, from the definition

eαC
α

βγ = [eβ , eγ ] = ∇eβ
eγ −∇eγeβ (3.72)

we have

eαC
α

0b = ∇ueb −∇eb
u

= a(u)bu+ [C(fw)
c
b + k(u)c

b]ec

= a(u)bu+ C(lie)
c
bec, (3.73)

so that

C0
0b = a(u)b, Cc

0b = C(lie)
c
b. (3.74)

Similarly

eαC
α

bc = ∇eb
ec −∇eceb

= 2ω(u)bcu+ 2Γd
[cb]ed, (3.75)

so that

C0
bc = 2ω(u)bc, Cd

bc = 2Γd
[cb]. (3.76)

We recall that the structure functions satisfy the Jacobi identities

[[eα, eβ ], eρ] + [[eβ , eρ], eα] + [[eρ, eα], eβ ] = 0, (3.77)

which implies the following differential relations:

e[ρ(Cσ
αβ]) − Cσ

ν[ρC
ν

αβ] = 0. (3.78)

Splitting such relations using an observer-adapted frame gives

0 = −∇(u)(lie)ω(u)ab + ∇(u)[aa(u)b],

0 = −∇(u)(lie)Cd
ab + 2e[a

(
C(lie)

f
b]

)
+ 2a(u)[aC(lie)

f
b],

0 = −∇(u)[rω(u)ba] + a(u)[rω(u)ba],

0 = −e [rC
c
ab] + Cc

s[rC
s
ab] + 2C(lie)

c
[rω(u)ab]. (3.79)

The first of these relations can also be written as

[∇(u)(lie) + Θ(u)]ω(u)s − 1
2
[curlu a(u)]s = 0, (3.80)

where we have used the property

∇(u)(lie)η(u)abc = Θ(u)η(u)abc. (3.81)
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The third equation becomes

− divu ω(u) + a(u) · ω(u) = 0 (3.82)

after contraction of both sides with η(u)rba.

Spatial-Fermi-Walker and spatial-Lie temporal derivatives

In the previous subsection we introduced the Fermi-Walker structure functions
C(fw)

b
a, as follows:

P (u)∇uea = C(fw)
b
aeb. (3.83)

A similar relation was defined for the Lie derivative projected along u, which we
also termed a spatial-Lie temporal derivative (see (3.27)):

£(u)uea = P (u)£uea = C(lie)
b
aeb = Cb

0aeb. (3.84)

It is useful to handle both these operations with a unified notation2

∇(u)(tem)ea = C(tem)
b
aeb, (3.85)

where “tem” refers either to “fw” or to “lie”, with the following definitions:

∇(u)(fw)ea ≡ P (u)∇uea, ∇(u)(lie)ea ≡ P (u)£uea = £(u)uea. (3.86)

Therefore if X is a vector field orthogonal to u, i.e. X · u = 0, we have

∇(u)(tem)X = ∇(u)(tem)(Xaea) =
dXa

dτu
ea +XaC(tem)

b
aeb

=
(
dXb

dτu
+XaC(tem)

b
a

)
eb

= (∇(u)(tem)X
b)eb. (3.87)

The operation ∇(u)(fw) = P (u)∇u is termed a spatial-Fermi-Walker temporal
derivative. It can be extended to non-spatial fields. If we apply this operation to
the vector field u itself we have

∇(u)(fw)u = P (u)∇uu = a(u), (3.88)

and if X = fu we have

∇(u)(fw)X = ∇(u)(fw)(fu) = fa(u),

∇(u)(lie)X = ∇(u)(lie)(fu) = 0. (3.89)

2 This notation has been introduced by R. T. Jantzen, who also considered two more spatial
temporal derivatives, corotating Fermi-Walker and Lie�. Details can be found in Jantzen,
Carini, and Bini (1992).



46 Space-time splitting

Hence the temporal derivatives so defined through their action on purely spatial
and purely temporal fields can now act on any space-time field.

Frame components of the Riemann tensor

From the definition

eαR
α

βγδ = [∇eγ ,∇eδ
]eβ − Cσ

γδ∇eσeβ , (3.90)

we have

eαR
α

0b0 = [∇eb
,∇u]u− Cσ

b0∇eσu (3.91)

= ∇eb
(a(u)cec) −∇u(∇eb

u) − C0
b0a(u)cec − Cc

b0∇ecu

=
{
[∇(u)b + a(u)b]a(u)c + ∇(u)(fw)k(u)c

b − [k(u)2]cb

}
ec,

where

[k(u)2]cb ≡ k(u)c
sk(u)

s
b,

so that

Rc
0b0 = [∇(u)b + a(u)b]a(u)c + ∇(u)(fw)k(u)c

b − [k(u)2]cb, (3.92)

where

∇(u)(fw)k(u)c
b = ∇uk(u)c

b + C(fw)
c
fk(u)f

b − C(fw)
f

bk(u)c
f . (3.93)

Similarly

eαR
α

bcd = [∇ec
,∇ed

]eb − C0
cd∇ueb − Cf

cd∇ef
eb (3.94)

= ∇ec
(∇ed

eb) −∇ed
(∇ec

eb) + 2ω(u)cd∇ueb

−Cf
cd∇ef

eb

= ∇ec(−k(u)bdu+ Γf
bdef ) −∇ed

(−k(u)bcu+ Γf
bcef )

+ 2ω(u)cd(a(u)bu+ C(fw)
f

bef )

−Cf
cd(−k(u)bfu+ Γr

bfer), (3.95)

that is,

eαR
α

bcd = [−ec(k(u)bd) − Γs
bdk(u)sc + ed(k(u)bc) + Γs

bck(u)sd

− 2ω(u)cda(u)b + Cs
cdk(u)bs]u

+ [2e[c(Γf
|b|d]) + 2Γf

s[cΓs
|b|d] − 2k(u)b[ck(u)f

d]

− 2ωcdC(fw)
f

b − Cs
cdΓf

bs]ef . (3.96)

Analyzing the time and space components of the Riemann tensor relative to the
basis, we have

R0
bcd = −2[∇(u)[ck(u)|b|d] + ω(u)cda(u)b] (3.97)
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and

Rf
bcd = R(fw)

f
bcd − 2k(u)b[ck(u)f

d]

= R(fw)
f

bcd + 2k(u)f
[ck(u)|b|d], (3.98)

where

R(fw)
f

bcd = 2e[c
(
Γf

|b|d]

)
+ 2Γs

b[cΓf
|s|d] − Cs

cdΓf
bs

− 2ω(u)cdC(fw)
f

b. (3.99)

This tensor is termed a Fermi-Walker spatial Riemann tensor;3 it can be written
in invariant form as follows

R(fw)(u)(X,Y )Z = {[∇(u)X ,∇(u)Y ]Z −∇(u)[X,Y ]}Z
− 2ω(u)(X,Y )∇(u)(fw)Z, (3.100)

where X, Y , and Z are spatial fields with respect to u and we note that

[X,Y ] = P (u)[X,Y ] − 2ω�(X,Y )u. (3.101)

The Fermi-Walker spatial Riemann tensor does not have all the symmetries of
a three-dimensional Riemann tensor. For instance it does not satisfy the Ricci
identities. In fact we have

0 = Rf
[bcd] = R(fw)

f
[bcd] − 2k(u)[bck(u)f

d]. (3.102)

Recalling that the antisymmetric part of a
(
0
3

)
-tensor Xbcd can be written as

X[bcd] =
1
3
(
X[bc]d +X[cd]b +X[db]c

)
=

1
3
(
Xb[cd] +Xc[db] +Xd[bc]

)
, (3.103)

it follows that (3.102) can be written more conveniently as

R(fw)
f
[bcd] = 2k(u)f

[bω(u)cd]. (3.104)

From the latter one can construct a new Riemann tensor with all the necessary
symmetries. Ferrarese (1965) has shown that the symmetry-obeying Riemann
tensor, denoted by R(sym)

ab
cd, is related to the Fermi-Walker Riemann tensor

(3.100) by

R(sym)
ab

cd = R(fw)
ab

cd − 2ω(u)abω(u)cd − 4θ(u)[a[cω(u)b]
d]

= Rab
cd + 2k(u)b

[ck(u)a
d] − 2ω(u)abω(u)cd

− 4θ(u)[a[cω(u)b]
d], (3.105)

3 A Lie spatial Riemann tensor can be defined similarly, replacing the Fermi-Walker structure
functions C(fw)

f
b with the corresponding Lie structure functions C(lie)

f
b according to (3.63).
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or

Rab
cd = R(sym)

ab
cd + 2θ(u)a

[cθ(u)b
d] + 2ωabωcd

+ 2ω(u)a
[cω(u)b

d], (3.106)

where (3.98) has been used.
In the special case of a Born-rigid congruence of observers u, i.e. θ(u) = 0, we

find that (3.105) can be written as

R(sym)
ab

cd = R(fw)
ab

cd − 2ω(u)abω(u)cd

= Rab
cd + 2ω(u)b

[cω(u)a
d] − 2ω(u)abω(u)cd, (3.107)

whereas in the special case of a vorticity-free congruence, i.e. ω(u) = 0, we have

R(sym)
ab

cd = R(fw)
ab

cd

= Rab
cd + 2θ(u)b

[cθ(u)a
d]. (3.108)

Together with the spatial symmetric Riemann tensor R(sym)
ab

cd we also intro-
duce the spatial symmetric Ricci tensor, R(sym)

a
b = R(sym)

ca
cb, as well as the

associated scalar R(sym) = R(sym)
a

a.

3.5 Comparing families of observers
Let u and U be two unitary time-like vector fields. Define the relative spatial
velocity of U with respect to u as

ν(U, u)α = −(uσUσ)−1P (u)α
βU

β

= −(uσUσ)−1 [Uα + (uρUρ)uα] . (3.109)

The space-like vector field ν(U, u)α, orthogonal to u, can also be written as

ν(U, u)α = ||ν(U, u)||ν̂(U, u)α, (3.110)

where ν̂(U, u) is the unitary vector giving the direction of ν(U, u) in the rest
frame of u. Similar formulas hold for the relative velocity of u with respect to U ;
hence the 4-velocities of the two observers admit the following decomposition:

U = γ(U, u)[u+ ν(U, u)]

= γ(U, u)[u+ ||ν(U, u)||ν̂(U, u)], (3.111)

and

u = γ(u,U)[U + ν(u,U)]

= γ(u,U)[U + ||ν(u,U)||ν̂(u,U)]. (3.112)

Both the spatial relative velocity vectors have the same magnitude,

||ν(U, u)|| = [ν(U, u)αν(U, u)α]1/2 = [ν(u,U)αν(u,U)α]1/2.
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The common gamma factor is related to that magnitude by

γ(U, u) = γ(u,U) = [1 − ||ν(U, u)||2]−1/2 = −Uαu
α ; (3.113)

hence we recognize it as the relative Lorentz factor. It is convenient to abbreviate
γ(U, u) by γ and ||ν(U, u)|| by ν when their meaning is clear from the context
and there are no more than two observers involved.

Let us notice here that by substituting (3.111) into (3.112) we obtain the
following relation:

− ν̂(u,U) = γ[ν̂(U, u) + νu], (3.114)

which together with

U = γ[u+ νν̂(U, u)] (3.115)

yields a unique relative boost B(U, u) from u to U , namely

B(U, u)u = U

= γ[u+ νν̂(U, u)]

B(U, u)ν̂(U, u) = −ν̂(u,U)

= γ[ν̂(U, u) + νu]. (3.116)

The inverse relations hold by interchanging U with u. The boost acts as the
identity on the intersection of their local rest spaces LRSu ∩ LRSU .

Maps between LRSs

The spatial measurements of two observers in relative motion can be compared
by relating their respective LRSs. Let U and u be two such observers and LRSU

and LRSu their LRSs. There exist several maps between these LRSs, as we now
demonstrate.

Combining the projection operators P (U) and P (u) one can form the following
“mixed projection” maps:

(i) P (U, u) from LRSu into LRSU , defined as

P (U, u) = P (U)P (u) : LRSu → LRSU , (3.117)

with its inverse:

P (U, u)−1 : LRSU → LRSu (3.118)

(ii) P (u,U) from LRSU into LRSu, defined as

P (u,U) = P (u)P (U) : LRSU → LRSu, (3.119)

with its inverse:

P (u,U)−1 : LRSu → LRSU . (3.120)



50 Space-time splitting

Note that P (U, u) �= P (u,U)−1 shown as, from their representations,

P (U, u) = P (u) + γνU ⊗ ν̂(U, u),

P (U, u)−1 = P (U) + νU ⊗ ν̂(u,U),

P (u,U) = P (U) + γνu⊗ ν̂(u,U),

P (u,U)−1 = P (u) + νu⊗ ν̂(U, u). (3.121)

Let us deduce each of the above relations.

(a) Relation (3.121)1 is easily verified. Consider a vector X ∈ LRSu; then, by
definition,

P (U, u)X = P (U)P (u)X = P (U)X = X + U(U ·X) ; (3.122)

but
U ·X = γ(u ·X + νν̂(U, u) ·X) = γνν̂(U, u) ·X.

Hence

P (U, u)X = X + γνUν̂(U, u) ·X = [P (u) + γνU ⊗ ν̂(U, u)] X, (3.123)

which completes the proof.

(b) Let us now verify (3.121)2. Consider a vector X = P (U, u)Y ∈ LRSU , with
Y ∈ LRSu; then, by using the relation u = γ(U +νν̂(u,U)) and the property
Y · u = 0, we have

Y · U = −νY · ν̂(u,U).

Hence

Y = P (U)Y − U(U · Y ) = P (U, u)Y + νU [Y · ν̂(u,U)]

= P (U, u)Y + νU [P (U, u)Y · ν̂(u,U)]. (3.124)

Substituting Y = P (U, u)−1X gives

P (U, u)−1X = P (U)X + νU [X · ν̂(u,U)]

= [P (U) + νU ⊗ ν̂(u,U)] X, (3.125)

which completes the proof.

(c) Relations (3.121)3 and (3.121)4 are straightforwardly verified by exchanging
U with u in (3.121)1 and (3.121)2 respectively.

One can then show that

P (U, u)ν̂(U, u) = −γν̂(u,U),

P (u,U)−1ν̂(U, u) = − 1
γ
ν̂(u,U). (3.126)

Note that, from the property (3.3) of the projection operator P (U), we have

P (U, u) = P (U) P (u) = P (U) P (U, u) = P (U, u) P (u). (3.127)
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This is a mixed tensor which is spatial with respect to u in its covariant index and
with respect to U in its contravariant index.4 Moreover the following relations
hold:

P (U) = P (U, u) P (U, u)−1,

P (u) = P (U, u)−1 P (U, u). (3.128)

Boost maps

Similarly to what we have done in combining projection maps, the boost B(U, u)
induces an invertible map between the local rest spaces of the given observers
defined as

B(lrs)(U, u) ≡ P (U)B(U, u)P (u) : LRSu → LRSU . (3.129)

It also acts as the identity on the intersection of their subspaces LRSU ∩ LRSu.
Because the boost is an isometry, exchanging the role of U and u in (3.129) leads
to the inverse boost:

B(lrs)(U, u)−1 ≡ B(lrs)(u,U) : LRSU → LRSu. (3.130)

Before giving explicit representations of B(lrs)(U, u) and its inverse B(lrs)(U, u)−1

we note that any map between the local rest spaces of two observers may be
expressed only in terms of quantities which are spatial with respect to those
observers.

The representations of the boost and its inverse can be given in terms of the
associated tensors

B(lrs)u(U, u), B(lrs)U (U, u), B(lrs)u(u,U), B(lrs)U (u,U), (3.131)

defined by

B(lrs)u(U, u) = P (U, u)−1 B(lrs)(U, u),

B(lrs)U (U, u) = B(lrs)(U, u) P (U, u)−1, (3.132)

with the corresponding expressions for the inverse boost obtained simply by
exchanging the roles of U and u, and with

B(lrs)(U, u) = B(lrs)U (U, u) P (U, u) = P (U, u) B(lrs)u(U, u). (3.133)

The explicit expression for B(lrs)u(U, u), for example, is given by

B(lrs)u(U, u) = P (u) +
1 − γ

γ
ν̂(U, u) ⊗ ν̂(U, u). (3.134)

4 This is a kind of two-point tensor that Schouten (1954) termed a connecting tensor.
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This can be shown as follows. Let X ∈ LRSu; then

B(lrs)u(U, u)X = P (U, u)−1[B(lrs)(U, u)X]

= P (U, u)−1[B(lrs)(U, u)X ||ν̂(U, u) +X⊥], (3.135)

where X || = X · ν̂(U, u) and X⊥ = X −X ||ν̂(U, u), that is

X = X ||ν̂(U, u) +X⊥. (3.136)

We have also used the fact that the boost reduces to the identity for vectors not
belonging to the boost plane, as X⊥. In this case the boost plane is spanned by
the vectors u and ν̂(U, u). Taking into account (3.116), that is,

B(lrs)(U, u)ν̂(U, u) = −ν̂(u,U), (3.137)

as well as the linearity of the boost map, we have

B(lrs)u(U, u)X = P (U, u)−1[X −X ||ν̂(u,U) −X ||ν̂(U, u)]

= P (U, u)−1X −X ||P (U, u)−1[ν̂(u,U) + ν̂(U, u)]

= X +
1 − γ

γ
X ||ν̂(U, u), (3.138)

where P (U, u)−1X = X because X ∈ LRSu:

P (U, u)−1X = P (U, u)−1P (u)X = P (U, u)−1P (U)P (u)X

= P (U, u)−1P (U, u)X = P (u)X = X. (3.139)

Hence P (U, u)−1ν̂(U, u) = ν̂(U, u), because ν(U, u) belongs to LRSu. Moreover,
from (3.126), by exchanging the roles of U and u, we find

P (U, u)−1ν̂(u,U) = − 1
γ
ν̂(U, u) =

1
γ
B(u,U)ν̂(u,U)

=
1
γ
B(U, u)−1ν̂(u,U). (3.140)

Therefore

B(lrs)u(U, u)X = X −X ||
(
− 1
γ

+ 1
)
ν̂(U, u)

= X − (X · ν̂(U, u))
(
− 1
γ

+ 1
)
ν̂(U, u)

=
[
P (u) − γ − 1

γ
ν̂(U, u) ⊗ ν̂(U, u)�

]
X, (3.141)

which is equivalent to (3.134).
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Similarly, for the inverse boost B(lrs)(u,U), one has

B(lrs)u(u,U) = P (u) − γ

γ + 1
ν(U, u) ⊗ ν(U, u)�

= P (u) − γ − 1
γ

ν̂(U, u) ⊗ ν̂(U, u)�,

B(lrs)U (u,U) = P (U) − γ

γ + 1
ν(u,U) ⊗ ν(u,U)�

= P (U) − γ − 1
γ

ν̂(u,U) ⊗ ν̂(u,U)�. (3.142)

Thus, if S is a vector field such that S ∈ LRSU , then its inverse boost is the
vector belonging to LRSu:

B(lrs)(u,U)S = [P (u) − γ(γ + 1)−1ν(U, u) ⊗ ν(U, u)�] P (u,U)S.

(3.143)

In components, the latter relation becomes

B(lrs)(u,U)α
βS

β = [P (u)α
μ − γ(γ + 1)−1ν(U, u)αν(U, u)μ]P (u,U)μ

βS
β .

(3.144)

3.6 Splitting of derivatives along a time-like curve
Consider a congruence of curves CU with tangent vector field U and proper time
τU as parameter. We know, at this stage, that the evolution along CU of any
tensor field can be specified by one of the following space-time derivatives:

(i) the absolute derivative along CU : D/dτU = ∇U

(ii) the Fermi-Walker derivative along CU : D(fw,U)/dτU
(iii) the space-time Lie derivative along CU : £U , for which we use also the nota-

tion D(lie,U)/dτU = £U .

The actions of the Fermi-Walker and Lie derivatives on a vector field X are
related to the absolute derivative as follows:

D(fw,U)X

dτU
= ∇UX + a(U)(U ·X) − U(a(U) ·X)

= P (U)∇UX − U∇U (X · U) + a(U)(X · U),
D(lie,U)X

dτU
= [U,X] = ∇UX + a(U)(U ·X) + k(U) X, (3.145)

where k(U) = ω(U)−θ(U) is the kinematical tensor of the congruence CU , defined
in (3.43). For X = U we have

D(fw,U)U

dτU
= 0,

D(lie,U)U

dτU
= 0, (3.146)
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whereas

DU

dτU
= a(U). (3.147)

If X is spatial with respect to U , i.e. X · U = 0, we have instead

D(fw,U)X

dτU
= P (U)∇UX,

D(lie,U)X

dτU
= ∇UX − k(U) X

= P (U)∇UX + U(a(U) ·X) + k(U) X. (3.148)

The projection of D(lie,U)X/dτU orthogonal to U gives, as in (3.148),

P (U)
D(lie,U)X

dτU
= P (U)∇UX + k(U) X

=
D(fw,U)

dτU
X + k(U) X. (3.149)

Let u be another family of observers whose world lines have as parameter the
proper time τu. One can introduce, on the congruence CU whose unit tangent
vector field can be written as

U = γ(U, u)[u+ ν(U, u)], (3.150)

two new parameterizations τ(U,u) and �(U,u) as follows:

dτ(U,u)

dτU
= γ(U, u),

d�(U,u)

dτU
= γ(U, u)||ν(U, u)||, (3.151)

where τ(U,u) corresponds to the proper times of the observers u when their curves
are crossed by a given curve of CU , and �(U,u) corresponds to the proper length
on CU .

The projection orthogonal to u of the absolute derivative along U is expre-
ssed as

P (u)
D

dτU
= P (u)∇U = γ[P (u)∇u + P (u)∇ν(U,u)]

= γ[P (u)∇u + ∇(u)ν(U,u)]. (3.152)

We note that in the above equation the derivative operation P (u)∇u is just what
we have termed the spatial-Fermi-Walker temporal derivative, i.e. ∇(u)(fw), in
(3.86). For a vector field X we can then write
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P (u)
D(fw,U)X

dτU
≡
D(fw,U,u)X

dτU

= P (u)
DX

dτU
+ [P (u,U)a(U)](U ·X)

− γν(U, u)(a(U) ·X), (3.153)

P (u)
D(lie,U)X

dτU
≡
D(lie,U,u)X

dτU

= P (u)
DX

dτU
+ P (u,U)a(U)(U ·X)

+P (u)[k(U) X]. (3.154)

We shall now examine these three projected absolute derivatives in detail.

Projected absolute derivative

Consider the absolute derivative of u along U , namely ∇Uu. Since u is uni-
tary, then

u · Du
dτU

= 0

and we can write, from (3.43),

Du

dτU
= P (u)

Du

dτU
= γ[P (u)∇uu+ P (u)∇ν(U,u)u]

= γ[∇(u)(fw)u+ P (u)∇ν(U,u)u]

= γ[a(u) − k(u) ν(U, u)]

= γ[a(u) + ω(u) ×u ν(U, u) + θ(u) ν(U, u)]. (3.155)

Let us denote the above quantity as a (minus) Fermi-Walker gravitational force,
that is

F
(G)
(fw,U,u) = −Du

dτU
= −γ[a(u) + ω(u) ×u ν(U, u) + θ(u) ν(U, u)]. (3.156)

It should be stressed here that, although F (G)
(fw,U,u) is referred to as a gravitational

force, it contains contributions by true gravity and by inertial forces.
Consider now the case of X orthogonal to u, i.e. X ·u = 0. The projection onto

LRSu of the absolute derivative of X along U gives

P (u)
DX

dτU
= γ[P (u)∇uX + ∇(u)ν(U,u)X]

≡
D(fw,U,u)X

dτU
. (3.157)

This differential operator plays an important role since both Fermi-Walker and
Lie derivatives along U can be expressed in terms of it. It is therefore worthwhile
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to write down the above expression in terms of (adapted) frame components:

P (u)
DX

dτU
=
dXa

dτU
ea + γ

[
XaP (u)∇uea + ν(U, u)bXa∇(u)bea

]
=
{
dXb

dτU
+ γ

[
Xa
(
C(fw)

b
a + ν(U, u)c Γb

ac

)]}
eb, (3.158)

where we set X = Xaea. Introducing the relative standard time parameterization
τ(U, u) defined in (3.151), we have

P (u)
DX

dτ(U,u)
=
D(fw,U,u)X

dτ(U,u)
=
(
D(fw,U,u)X

dτ(U,u)

)a

ea (3.159)

or, in components,(
D(fw,U,u)X

dτ(U,u)

)b

=
dXb

dτ(U,u)
+Xa

(
C(fw)

b
a + ν(U, u)c Γb

ac

)
. (3.160)

A particular vector field which is orthogonal to u and is defined all along CU is
the field of relative velocities, ν(U, u). We introduce the acceleration of U relative
to u as

a(fw,U,u) =
D(fw,U,u)

dτ(U,u)
ν(U, u) = γ−1P (u)

D

dτU
ν(U, u). (3.161)

Considering instead the unit vector ν̂(U, u), this quantity can be written as

a(fw,U,u) = P (u)
D

dτ(U,u)
[νν̂(U, u)], (3.162)

where ν = ||ν(U, u)||. Finally we have

a(fw,U,u) = ν̂(U, u)
dν

dτ(U,u)
+ νP (u)

D

dτ(U,u)
ν̂(U, u). (3.163)

It is therefore quite natural to denote the first term as a tangential Fermi-Walker
acceleration a

(T )
(fw,U,u) of U relative to u, and the second as a centripetal Fermi-

Walker acceleration a(C)
(fw,U,u) of U relative to u:

a(fw,U,u) = a
(T )
(fw,U,u) + a

(C)
(fw,U,u), (3.164)

where

a
(T )
(fw,U,u) = ν̂(U, u)

dν

dτ(U,u)
,

a
(C)
(fw,U,u) = ν P (u)

D

dτ(U,u)
ν̂(U, u)

= ν
D(fw,U,u)

dτ(U,u)
ν̂(U, u). (3.165)
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To generalize the classical mechanics notion of centripetal acceleration we need
to convert the relative standard time parameterization into an analogous relative
standard length parameterization:5

d�(U,u) = νdτ(U,u). (3.166)

With this parameterization we have

a
(C)
(fw,U,u) = ν2P (u)

D

d�(U,u)
ν̂(U, u)

= ν
D(fw,U,u)

dτ(U,u)
ν̂(U, u)

=
ν2

R(fw,U,u)
η̂(fw,U,u)

= ν2k(fw,U,u)η̂(fw,U,u), (3.167)

where η̂(fw,U,u) is a unit space-like vector orthogonal to ν̂(U, u), k(fw,U,u) is the
Fermi-Walker relative curvature, and R(fw,U,u) is the curvature radius of the curve
such that

k(fw,U,u)η̂(fw,U,u) =
η̂(fw,U,u)

R(fw,U,u)
= P (u)

D

d�(U,u)
ν̂(U, u). (3.168)

Clearly, whether geometrically or physically motivated, one can replace the
spatial-Fermi-Walker temporal derivative with the spatial-Lie temporal deriva-
tive defining the corresponding quantities. Doing this, one really understands the
power of the notation used. For example (and for later use) one can define the
Lie relative curvature of a curve and the associated curvature radius:

k(lie,U,u)η̂(lie,U,u) =
η̂(lie,U,u)

R(lie,U,u)
=
D(lie,U,u)

d�(U,u)
ν̂(U, u). (3.169)

Projected Fermi-Walker derivative

The projected Fermi-Walker derivative for a general vector field X is given by
(3.153). In the case X · u = 0, and using the standard decomposition of U =
γ(u+ ν(U, u)), we have

P (u)
D(fw,U)X

dτU
≡
D(fw,U,u)X

dτU

= P (u)
DX

dτU
+ γP (u,U)a(U)(ν(U, u) ·X)

− γν(U, u)(P (u,U)a(U) ·X). (3.170)

5 In fact the Euclidean space definition involves spatial orbits parameterized by the (spatial)
curvilinear abscissa.
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Setting

P (u,U)a(U) = γF (U, u), (3.171)

we find that

P (u)
D(fw,U)X

dτU
= P (u)

DX

dτU
+ γ2F (U, u)(ν(U, u) ·X)

− γ2ν(U, u)(F (U, u) ·X)

= P (u)
DX

dτU

+ γ2X ×u (F (U, u) ×u ν(U, u)). (3.172)

Projected Lie derivative

Finally, for the projected Lie derivative we have, from (3.154),

P (u)
D(lie,U)X

dτU
≡
D(lie,U,u)X

dτU

= P (u)
DX

dτU
+ γ2F (U, u)(ν(U, u) ·X)

+P (u)[k(U) X]. (3.173)
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Special frames

The definition and interpretation of a physical measurement are better achieved
if reference is made to a system of Cartesian axes which matches an instantaneous
inertial frame. With respect to such a frame, a measurement is expressed in terms
of the projection on its axes of the tensors or tensor equations characterizing the
phenomenon under investigation. Two different Cartesian frames are connected
by a general Lorentz transformation; hence the properties of the Lorentz group
play a key role in the theory of measurements. In Newtonian mechanics the local
rest spaces of all observers coincide as a result of the absoluteness of time but in
relativistic mechanics the local rest spaces do not coincide, because of relativity of
time; hence a comparison between any two quantities which belong to the local
rest spaces of different observers requires a non-trivial mapping among them.
This is what we are going to discuss now.

4.1 Orthonormal frames
Let u be the 4-velocity of an observer; at any point of his world line let us choose
in LRSu three mutually orthogonal unit space-like vectors e(u)â with â = 1, 2, 3.
In what follows these vectors will be simply denoted by eâ whenever it is not
necessary to specify the time-like vector u which is orthogonal to them. They
satisfy the relation

eâ · eb̂ = δâb̂. (4.1)

It is clear that the triad {eâ}â=1, 2, 3 is an orthonormal basis for LRSu.
If we write u ≡ e0̂, then the set {eα̂} with α̂ = 0, 1, 2, 3 itself forms an orthonor-

mal basis for the local tangent space and is termed a tetrad (Pirani, 1956b). The
vectors eα̂ satisfy the condition

eα̂ · eβ̂ = ηα̂β̂ ≡ diag [−1, 1, 1, 1], (4.2)
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which ensures that {eα̂} is an instantaneous inertial frame, as stated. Here-
after the orthonormal frame vectors as well as all tetrad components will be
denoted by hatted indices. From (4.2), hatted indices are raised and lowered by
the Minkowski metric ηα̂β̂ .

Let eα̂, ēα̂ be two orthonormal frames defined at a certain point of the space-
time manifold. Then

eα̂ · eβ̂ = ēα̂ · ēβ̂ = ηα̂β̂ , (4.3)

where dot defines the inner product induced by the background metric, that is
eα̂ · eβ̂ ≡ gμνeα̂

μeβ̂
ν . If L is a matrix which generates a change of frame, we have

ēα̂ = eβ̂L
β̂

α̂. (4.4)

The orthonormality of both frames places restrictions on the components of the
matrix L, i.e.

ηα̂β̂ = Lγ̂
α̂L

δ̂
β̂ηγ̂δ̂. (4.5)

The set of matrices L which satisfy (4.5) forms a group known as the Lorentz
group of transformations. We shall impose the conditions

L0̂
0̂ > 0, det(L) = 1, (4.6)

which imply that future-pointing time-like vectors remain future-pointing.
Lorentz transformations which satisfy conditions (4.6) are termed orthochronous
and proper.

If u is a vector field whose integral curves form a congruence Cu, and {eα̂} is
a field of orthonormal bases over the above congruence, then the transport law
for any vector of the tetrad along any direction of the frame itself is given by

∇eα̂
eβ̂ = Γγ̂

β̂α̂eγ̂ . (4.7)

Here Γγ̂
β̂α̂ are the frame components of the connection coefficients, also termed

Ricci rotation coefficients. The requirement that the frame remains orthonormal
over the congruence is fulfilled by the condition

Γ(γ̂β̂)α̂ = 0, (4.8)

where we set

Γγ̂β̂α̂ ≡ ηγ̂σ̂Γσ̂β̂α̂ . (4.9)

Since the frame components of the metric are constant, from (2.51) it follows
that the connection coefficients have the form

Γα̂
β̂γ̂ =

1
2
ηα̂δ̂

[
Cδ̂γ̂β̂ + Cβ̂δ̂γ̂ − Cγ̂β̂δ̂

]
, (4.10)
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where C γ̂
β̂δ̂ are the structure functions of the given frame. Using (3.45) and

(3.60), and following the reasoning of Section 3.2, we have

∇e0̂
e0̂ = Γâ

0̂0̂eâ = a(u)âeâ,

∇e0̂
eâ = Γγ̂

â0̂eγ̂ = a(u)âe0̂ + C(fw)
b̂
âeb̂,

∇eâ
e0̂ = Γγ̂

0̂âeγ̂ = −k(u)b̂
âeb̂,

∇eâ
eb̂ = Γγ̂

b̂âeγ̂ = −k(u)b̂âe0̂ + Γĉ
b̂âeĉ, (4.11)

where C(fw)
b̂
â are related to C(lie)

b̂
â by (3.63) with hatted indices. Summarizing,

we have

Γâ
0̂0̂ = a(u)â, Γ0̂

â0̂ = a(u)â, Γb̂
â0̂ = C(fw)

b̂
â,

Γb̂
0̂â = −k(u)b̂

â, Γ0̂
b̂â = −k(u)b̂â,

(4.12)

where each component has a precise physical meaning.
Let U be the unit time-like vector tangent to the world line γ of a particle

and let it be analyzed by a family of observers u represented by a congruence of
curves Cu. Let {eα̂} be a field of tetrads which are adapted to u throughout the
congruence Cu. Clearly γ intersects at each of its points a curve of the congruence
Cu. We denote by u|γ and {eâ}γ the restrictions on γ of the vector fields u = e0̂
and {eâ}.

With respect to the observer u, the vector field U admits the following repre-
sentation:

U = γ(U, u)[u+ ν(U, u)âeâ] ≡ γ[u+ νν̂(U, u)âeâ]. (4.13)

It is physically relevant to calculate the transport law for the vectors of {eα̂}γ

along γ as judged by the observer u himself. From Eqs. (4.13) and (4.11) we have

∇Ueâ = γ∇ueâ + γν ĉ∇eĉ
eâ

= γ
[
a(u)â − k(u)âĉν

ĉ
]
u+ γ

[
C(fw)

d̂
â + ν ĉΓd̂

âĉ

]
ed̂,

∇Uu = γ∇uu+ γν ĉ∇eĉ
u

= γ
[
a(u)b̂ − k(u)b̂

ĉν
ĉ
]
eb̂, (4.14)

where we have set ν(U, u)â = νâ to simplify notation. Projecting onto LRSu and
recalling (3.156), we obtain

P (u)∇Ueâ ≡
D(fw,U,u)

dτU
eâ = γ

[
C(fw)

d̂
â + ν ĉΓd̂

âĉ

]
ed̂,

P (u)∇Uu = ∇Uu = −F (G)
(fw,U,u)

b̂eb̂. (4.15)

By using as a parameter the relative standard time τ(U,u), the first line of (4.15)
becomes

D(fw,U,u)

dτ(U,u)
eâ =

[
C(fw)

d̂
â + ν ĉΓd̂

âĉ

]
ed̂. (4.16)
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This equation represents the transport law along γ of the vectors of the triad
{eâ}γ as judged by u. Clearly the vectors {eâ}γ undergo a rotation described by
the tensor

Rd̂
â = C(fw)

d̂
â + ν ĉΓd̂

âĉ. (4.17)

The antisymmetry of the Fermi-Walker structure functions C(fw)d̂â allows us to
define a Fermi-Walker angular velocity vector ζ(fw) by

C(fw)d̂â = −εd̂âf̂ζ
f̂
(fw), (4.18)

which depends entirely on the properties of the tetrad {eα̂}. Here we set εd̂âf̂ =
η(u)d̂âf̂ from (3.19). It is easy to verify that

C(fw)
d̂
âed̂ = ζ(fw) ×u eâ. (4.19)

In addition, from the antisymmetry of the first two indices of the Ricci rotation
coefficients, the second term on the right-hand side of (4.16) can be written as

ν ĉΓd̂
âĉ = −εd̂âf̂ζ

f̂
(sc), (4.20)

where ζ(sc) is an instantaneous angular velocity vector, termed the spatial curva-
ture angular velocity, which illustrates the behavior of the vector field eâ|γ along
ν(U, u) in LRSu. It is easy to verify that

ν ĉΓd̂
âĉed̂ = ζ(sc) ×u eâ. (4.21)

In terms of (4.18) and (4.20), Eq. (4.16) can be written as

D(fw,U,u)

dτ(U,u)
eâ = [ζ(fw) + ζ(sc)] ×u eâ. (4.22)

Clearly, (4.22) allows us to describe the behavior along γ of any tensor defined in
LRSu. Consider as an example the unitary relative velocity direction ν̂(U, u) =
ν̂(U, u)âeâ ≡ ν̂. From (4.16) it follows that

D(fw,U,u)ν̂

dτ(U,u)
=
(
D(fw,U,u)ν̂

dτ(U,u)

)d̂

ed̂

=

[
d ν̂ d̂

dτ(U,u)
+ ν̂â

(
C(fw)

d̂
â + ν ĉΓd̂

âĉ

)]
ed̂. (4.23)

Recalling the definition of the centripetal part of the Fermi-Walker acceleration
of the particle U relative to u given in (3.165), namely

ν
D(fw,U,u)ν̂

dτ(U,u)
= a

(C)
(fw,U,u), (4.24)
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we have

a
(C)
(fw,U,u) = ν

(
d ν̂ d̂

dτ(U,u)

)
ed̂ +

(
ζ(fw) + ζ(sc)

)
×u ν. (4.25)

Tetrads {u = e0̂, eâ} may be further specified by particular transport laws for
the triad {eâ} along the world line of u itself, as we will show next.

Fermi-Walker frames

A vector field X is said to be Fermi-Walker transported along the congruence Cu

when its Fermi-Walker derivative along Cu is equal to zero, i.e., from (2.83)

D(fw,u)X

dτu
= ∇uX + [a(u) ∧ u] X = 0. (4.26)

If X = u, then the above relation holds identically. If X = eâ we have instead

D(fw,u)eâ

dτu
= ∇ueâ − a(u)âu

= a(u)âu+ C(fw)
b̂
âeb̂ − a(u)âu

= C(fw)
b̂
âeb̂ = 0. (4.27)

Since {eb̂} is a basis in LRSu, then C(fw)
b̂
â = 0. In this case the tetrad frame is

termed Fermi-Walker.

Absolute Frenet-Serret frames

A Frenet-Serret frame {Eα̂} (α = 0, 1, 2, 3) along a time-like curve with unit
tangent vector U is defined as a solution of the following equations:

DE0̂

dτU
= κE1̂,

DE1̂

dτU
= κE0̂ + τ1E2̂,

DE2̂

dτU
= −τ1E1̂ + τ2E3̂,

DE3̂

dτU
= −τ2E2̂,

(4.28)

where E0̂ = U and

κ = Γ1̂
0̂0̂, τ1 = C(fw)

2̂
1̂, τ2 = C(fw)

3̂
2̂ (4.29)

are respectively the magnitude of the acceleration and the first and second tor-
sions of the world line. τ1 and τ2 are the components of the Frenet-Serret angular
velocity ω(FS) = τ1E3̂ + τ2E1̂ of the spatial triad {Eâ} with respect to a Fermi-
Walker frame defined along U . The frame {Eα̂} (with dual W α̂) is termed an
absolute Frenet-Serret frame.
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In compact form we have

DEα̂

dτU
= Eβ̂C

β̂
α̂, (4.30)

with

C = CK + CT . (4.31)

Here

CK = κ(E1̂ ⊗W 0̂ + E0̂ ⊗W 1̂), (4.32)

and

CT = τ1̂(E1̂ ⊗W 2̂ + E2̂ ⊗W 1̂) + τ2(E2̂ ⊗W 3̂ − E3̂ ⊗W 2̂), (4.33)

W α̂ being the dual frame of Eα̂. Therefore

C�
K = −κ[W 0̂ ∧W 1̂] = −[a(U) ∧ U ]�, (4.34)

and we have the following relation for the Fermi-Walker derivative along U of a
generic vector X:

D(fw,U )X
dτU

=
DX

dτU
− CK X. (4.35)

This form of the Fermi-Walker derivative along a time-like world line will be used
to generalize to the case of a null world line (see, for instance, Bini et al., 2006).

Relative Frenet-Serret frames

Let us consider again a curve γ with tangent vector field U and a family of
observers u represented by the congruence Cu of its integral curves. These cross
the world line of U and at each of its points one defines a vector representing
the (unique) 3-velocity of the particle U , as measured locally by the observer u,
namely

ν(U, u) = νν̂(U, u), (4.36)

recalling that U = γ[u + νν̂(U, u)]; clearly ν(U, u) ∈ LRSu. We shall now con-
struct, along the world line of U , a frame in LRSu following a Frenet-Serret
procedure.

The first vector of this frame is chosen as the unit space-like direction ν̂(U, u).
The remaining two vectors are the relative normal η̂(fw,U,u) which, apart from the
sign, is defined as the normalized P (u)-projected covariant derivative of ν̂(U, u)
along U and its cross product with ν̂(U, u), namely the relative binormal
β̂(fw,U,u) = ν̂(U, u) ×u η̂(fw,U,u). Let {E(fw,U,u)â} = {ν̂(U, u), η̂(fw,U,u), β̂(fw,U,u)}
be this frame.
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Projecting the covariant derivatives along U of these vectors onto LRSu and
re-parameterizing the derivatives with respect to the spatial arc length

d�(U,u) = γ(U, u)ν(U, u)dτU , (4.37)

namely
D(fw,U,u)

dτU
E(fw,U,u)â = γν

D(fw,U,u)

d�(U,u)
E(fw,U,u)â, (4.38)

leads to the relative Frenet-Serret equations:

D(fw,U,u)

d�(U,u)
ν̂(U, u) = k(fw,U,u)η̂(fw,U,u), (4.39)

D(fw,U,u)

d�(U,u)
η̂(fw,U,u) = −k(fw,U,u)ν̂(U, u) + τ(fw,U,u)β̂(fw,U,u), (4.40)

D(fw,U,u)

d�(U,u)
β̂(fw,U,u) = −τ(fw,U,u)η̂(fw,U,u). (4.41)

Here the coefficients k(fw,U,u) and τ(fw,U,u) are respectively the relative Fermi-
Walker curvature and torsion of the world line of U as measured by u. The frame
E(fw,U,u)â is termed a relative Frenet-Serret frame.

Equation (4.39) does not allow one to fix the signs of the curvature k(fw,U,u)

and of the frame vector η̂(fw,U,u) individually. Once these signs are fixed, although
arbitrarily, the third vector β̂(fw,U,u) = ν̂(U,u) ×u η̂(fw,U,u) is chosen so as to make
the frame right-handed, and this fixes the sign of the torsion.

The relative Frenet-Serret equations can be written in a more compact form as

D(fw,U,u)

d�(U,u)
E(fw,U,u)â = ω(fw,U,u) ×u E(fw,U,u)â, (4.42)

where

ω(fw,U,u) = τ(fw,U,u)ν̂(U, u) + k(fw,U,u)β̂(fw,U,u) (4.43)

defines the relative Frenet-Serret angular velocity of the spatial frame.
The world line with 4-velocity U is said to be u-relatively straight if the Fermi-

Walker relative curvature vanishes, k(fw,U,u) = 0; and u-relatively flat if the
Fermi-Walker relative torsion vanishes, τ(fw,U,u) = 0. When the relative curva-
ture vanishes identically the relative Frenet-Serret frame can still be defined by
adopting an appropriate limiting procedure. On the other hand, when it vanishes
only at an isolated point, one must allow it to have either sign when it is non-zero
in order to extend the relative normal continuously through this point.

Comoving relative Frenet-Serret frame

Consider again a test particle with 4-velocity U being the target of an observer u.
The centripetal acceleration of the particle is measured by the observer u in
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his own LRSu, while the centrifugal acceleration is an “inertial acceleration”
measured by the particle U in its own LRSU . In Newtonian mechanics these rest
frames coincide, the time being absolute; therefore one can simply consider the
centripetal acceleration as opposite to the centrifugal one.

In general relativity the observer and the test particle in relative motion have
different rest frames, so a comparison between the two accelerations is only pos-
sible with a suitable geometrical representation of the centrifugal acceleration of
the test particle in the rest frame of the observer.

If u is a vector field and Cu is the congruence of its integrable curves, at each
point where the particle U crosses a curve of Cu the vectors u and U define a boost
of (u, ν(U, u)) into (U,−ν(u,U)) and leaves the orthogonal 2-space LRSu∩LRSU

invariant, as discussed in Section 3.3. Let

V̂(u,U) = −ν̂(u,U) = γ(νu+ ν̂(U, u)) (4.44)

be the negative of the relative velocity of u with respect to U as in (3.114).
The projection into the rest space of U of the covariant derivative of any

vector field X defined on the world line of U and lying in LRSU leads to the
usual Fermi-Walker derivative along U :

D(fw,U)X

dτU
= P (U)

DX

dτU
= γν

D(fw,U)X

d�(U,u)
, X ∈ LRSU . (4.45)

One can construct a Frenet-Serret-like frame starting from V̂(u,U) by adding
two new vectors, both lying in LRSU , N̂(fw,u,U) being the normal and B̂(fw,u,U)

the binormal of the world line of U . They are solutions of the Frenet-Serret
relations

D(fw,U)

d�(U,u)
V̂(u,U) = K(fw,u,U)N̂(fw,u,U),

D(fw,U)

d�(U,u)
N̂(fw,u,U) = −K(fw,u,U)V̂(u,U) + T(fw,u,U)B̂(fw,u,U),

D(fw,U)

d�(U,u)
B̂(fw,u,U) = −T(fw,u,U)N̂(fw,u,U). (4.46)

Let us now prove that the following relation holds:

K(fw,u,U)N̂(fw,u,U) = γk(fw,U,u)η̂(fw,U,u)

+ ν̂(U, u) ×u [ν̂(U, u) ×u F
(G)
(fw,U,u)]. (4.47)

First recall that the Fermi-Walker derivative along U of a vector orthogonal to
U reduces to the projection on LRSU of its covariant derivative along U itself.
Hence, differentiating (4.44) with respect to the parameter �(U, u), we obtain
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D(fw,U)V̂(u,U)
d�(U,u)

=
1
γν
P (U)

D

dτU
[γ(νu+ ν̂(U, u))]

=
1
γν
P (U)

[
d(γν)
dτU

u+ γν
Du

dτU
+ ν̂(U, u)

dγ

dτU
+ γ

Dν̂(U, u)
dτU

]

=
1
γν
P (U)

[
dγ

νdτU
u− γνF

(G)
(fw,U,u) + ν̂(U, u)

dγ

dτU
+ γ

Dν̂(U, u)
dτU

]

=
1
γν
P (U)

[
dγ

dτU

(u
ν

+ ν̂(U, u)
)
− γνF

(G)
(fw,U,u) + γ

Dν̂(U, u)
dτU

]
,

(4.48)

where we have used (3.156) and the relation

dγ

dτU
= γ3ν

dν

dτU
. (4.49)

The first term in square brackets in the last line of (4.48) is along U and therefore
vanishes after contraction with P (U); hence we have

D(fw,U)V̂(u,U)
d�(U,u)

=
1
γν
P (U)

[
−γνF (G)

(fw,U,u) + γ
Dν̂(U, u)
dτU

]
. (4.50)

The last term on the right-hand side of (4.48) can be written as

Dν̂(U, u)
dτU

= P (u)
Dν̂(U, u)
dτU

− uu · Dν̂(U, u)
dτU

= P (u)
Dν̂(U, u)
dτU

+ uν̂(U, u) · Du
dτU

= P (u)
Dν̂(U, u)
dτU

− uν̂(U, u) · F (G)
(fw,U,u)

= γνk(fw,U,u)η̂(fw,U,u) − uν̂(U, u) · F (G)
(fw,U,u). (4.51)

The projection orthogonal to U of this quantity is

P (U)
Dν̂(U, u)
dτU

= γνk(fw,U,u)η̂(fw,U,u) − ν̂(U, u) · F (G)
(fw,U,u)[P (U)u], (4.52)

noting that

P (U)η̂(fw,U,u) = η̂(fw,U,u) + U
(
U · η̂(fw,U,u)

)
= η̂(fw,U,u), (4.53)
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since U = γ[u + νν̂(U, u)] and ν̂(U, u) · η̂(fw,U,u) = 0. From the above it then
follows that

D(fw,U)V̂(u,U)
d�(U,u)

= −P (U)F (G)
(fw,U,u) + γk(fw,U,u)η̂(fw,U,u)

−
ν̂(U, u) · F (G)

(fw,U,u)

ν
(u− γU)

= γk(fw,U,u)η̂(fw,U,u) − F
(G)
(fw,U,u) − Uγνν̂(U, u) · F (G)

(fw,U,u)

−
ν̂(U, u) · F (G)

(fw,U,u)

ν
(u− γU)

= γk(fw,U,u)η̂(fw,U,u) − F
(G)
(fw,U,u)

− ν̂(U, u) · F (G)
(fw,U,u)

(
γνU +

u− γU

ν

)
= γk(fw,U,u)η̂(fw,U,u) − F

(G)
(fw,U,u) + ν̂(U, u) · F (G)

(fw,U,u)ν̂(U, u).

Finally,

D(fw,U)V̂(u,U)
d�(U,u)

= γk(fw,U,u)η̂(fw,U,u)

+ ν̂(U, u) ×u

[
ν̂(U, u) ×u F

(G)
(fw,U,u)

]
, (4.54)

which completes the proof.
The cross product of (4.47) with V̂(u,U) yields

K(fw,u,U)V̂(u,U) ×U N̂(fw,u,U) = γk(fw,U,u)V̂(u,U) ×U η̂(fw,U,u)

+ (ν̂(U, u) · F (G)
(fw,U,u))V̂(u,U) ×U ν̂(U, u)

− V̂(u,U) ×U F
(G)
(fw,U,u), (4.55)

that is

K(fw,u,U)B̂(fw,u,U) = γk(fw,U,u)V̂(u,U) ×U η̂(fw,U,u)

+ (ν̂(U, u) · F (G)
(fw,U,u))V̂(u,U) ×U ν̂(U, u)

− V̂(u,U) ×U F
(G)
(fw,U,u). (4.56)

To proceed further it is necessary to evaluate the cross product in LRSU of
a vector X(U), for example, which belongs to LRSU , with a vector Y (u), for
example, which belongs to LRSu. The result is the following:

X(U) ×U Y (u) = γ {[P (u,U)X(U) ×u Y (u)]

− (ν · P (u,U)X(U))(ν ×u Y )

−u[P (u,U)X(U) · (ν ×u Y (u))]} . (4.57)
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In our case X(U) = V̂(u,U) and

P (u,U)V̂(u,U) = γν̂(U, u) ; (4.58)

therefore we have

V̂(u,U) ×U Y (u) = γ2[ν̂(U, u) ×u Y (u)] − γ2ν2[ν̂(U, u) ×u Y (u)]

= ν̂(U, u) ×u Y (u). (4.59)

From (4.56) it then follows that

K(fw,u,U)B̂(fw,u,U) = γk(fw,U,u)ν̂(U, u) ×u η̂(fw,U,u)

− ν̂(U, u) ×u F
(G)
(fw,U,u)

= γk(fw,U,u)β̂(fw,U,u) − ν̂(U, u) ×u F
(G)
(fw,U,u). (4.60)

The spatial triad

{E(fw,u,U)â} = {V̂(u,U), N̂(fw,u,U), B̂(fw,u,U) = V̂(u,U) ×U N̂(fw,u,U)} (4.61)

is termed a comoving relative Frenet-Serret frame.
In compact form the comoving relative Frenet-Serret relations become

D(fw,U)

d�(U,u)
E(fw,u,U)â = Ω(fw,u,U) ×U E(fw,u,U)â, (4.62)

where Ω(fw,u,U) = T(fw,u,U)V̂(u,U) + K(fw,u,U)B̂(fw,u,U) defines the comoving rel-
ative angular velocity of this new frame with respect to a Fermi-Walker spatial
frame. Again no assumption is made about the choice of signs for the curvature
and torsion in this general discussion.

4.2 Null frames
Null frames include null vectors, and are particularly convenient for treating null
fields such as electromagnetic and gravitational radiation. These frames can be
complex or real.

Complex (Newman-Penrose) null frames

A (complex, null) Newman-Penrose frame {l, n,m, m̄} (Newman and Penrose,
1962) can be associated with an orthonormal frame {eα̂} in the following way:

l =
1√
2
[e0̂ + e1̂], n =

1√
2
[e0̂ − e1̂],

m =
1√
2
[e2̂ + ie3̂], m̄ =

1√
2
[e2̂ − ie3̂], (4.63)

with l ·n = −1 and m ·m̄ = 1. The four vectors l, n,m, m̄ are null vectors (l · l = 0,
n · n = 0, m ·m = 0, m̄ · m̄ = 0); two of them are real (l, n) and the other two
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are complex conjugate (m, m̄). The frame components of the metric are then
equal to

(gab) = (gab) =

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (4.64)

Real null frames

Instead of a complex null frame it is useful to introduce a real null frame made up
of two null vectors and two space-like vectors. Choosing the spatial vectors orthog-
onal to each other and normalized to unity, one constructs a quasi-orthogonal real
null frame. Denoting such a frame as {Eα} (α = 1, 2, 3, 4), the standard relation
with an orthonormal frame {eα̂} is the following:

E1 =
1√
2
(e0̂ + e2̂),

E2 = e1̂,

E3 =
1√
2
(e0̂ − e2̂),

E4 = e3̂. (4.65)

The frame components of the metric are given by

(gab) = (Ea · Eb) =

⎛
⎜⎜⎝

0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ = (gab). (4.66)

Let us denote by Π and Π′ the vector spaces generated by (E1, E3) and (E2, E4),
respectively. The null vectors E1 and E3 are defined up to a multiplicative
factor, while the spatial vectors E2 and E4 can be arbitrarily rotated in the
2-plane Π′. Therefore there arises a set of equivalent frames, each being a suit-
able Frenet-Serret frame along a null curve.

This frame satisfies the following set of Frenet-Serret evolution equations:

DE1

dλ
= −KE2,

DE2

dλ
= T1E1 −KE3,

DE3

dλ
= T1E2 + T2E4,

DE4

dλ
= T2E1, (4.67)

where λ is an arbitrary parameter along E1 and the quantities K, T1, and T2 play
roles analogous to the Frenet-Serret curvature and torsions in the time-like case.
The connection matrix

DEa

dλ
= EbC

b
a (4.68)
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has components

(Ca
b) =

⎛
⎜⎜⎝

0 T1 0 T2

−K 0 T1 0
0 −K 0 0
0 0 T2 0

⎞
⎟⎟⎠ , (Cab) =

⎛
⎜⎜⎝

0 T1 0 T2

−T1 0 K 0
0 −K 0 0

−T2 0 0 0

⎞
⎟⎟⎠ . (4.69)

The invariants of the matrix are given by

I1 =
1
2
CabC

ab = 2KT1, I2 =
1
2
Cab

∗Cab = 2KT2, (4.70)

where

(∗Cab) =
(

1
2
ηabcdCcd

)
=

⎛
⎜⎜⎝

0 T2 0 −T1

−T2 0 0 0
0 0 0 −K
T1 0 K 0

⎞
⎟⎟⎠ . (4.71)

Finally, one can evaluate the four complex eigenvalues of the matrix (Ca
b),

λ1,2 = ±ω ≡ [−KT1 + K(T 2
1 + T 2

2 )1/2]1/2,

λ3,4 = ±iχ ≡ i[KT1 + K(T 2
1 + T 2

2 )1/2]1/2, (4.72)

which in turn define two non-negative quantities ω and χ.
Let us consider the decompositions

C = CK + CT ,

C� = C�
K + C�

T (4.73)

with

CK = −K(E2 ⊗W 1 + E3 ⊗W 2),

C�
K = K(E2 ∧ E3), (4.74)

and

CT = [T1(E1 ⊗W 2 + E2 ⊗W 3) + T2(E1 ⊗W 4 + E4 ⊗W 3)],

C�
T =

√
T 2

1 + T 2
2

(
E1 ∧

T1E2 + T2E4√
T 2

1 + T 2
2

)
, (4.75)

W a being the dual frame of Ea. The curvature part CK of the connection matrix
generates a null rotation by an angle |K| in the time-like hyperplane of E1, E2,
E3, which leaves the null vector E3 fixed (CK E3 = 0). The torsion part CT
of the connection matrix generates a null rotation by an angle

√
T 2

1 + T 2
2 in the

time-like hyperplane of E1, E3, (T 2
1 + T 2

2 )−1/2(T1E2 + T2E4), which leaves the
null vector E1 fixed (CT E1 = 0).
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Along a Killing trajectory the Frenet-Serret scalars are all constant, leading to
considerable simplification of the above formulas. This is the situation for null
circular orbits in stationary axisymmetric space-times, for example.

There still remains the problem that the whole Frenet-Serret frame machinery
is still subject to re-parameterization, under which only the relative ratios of the
curvature and torsions are invariant. The curvature is just the norm of the second
derivative,

K =
(
D2x

dλ2
· D

2x

dλ2

)1/2

≥ 0, (4.76)

and it transforms as the square of the related rate of change of the parameters
λ→ λ̂, that is

K = K̂
(
dλ̂

dλ

)2

. (4.77)

Thus dΛ = K1/2dλ = K̂1/2dλ̂ is invariant (when non-zero), like the arc length
in the non-null case, and can be used to introduce a preferred unit curvature
parameterization when the curvature is everywhere non-vanishing, defined up
to an additive constant like the arc length in the null case. This was already
introduced by Vessiot for the Riemannian case in 1905 (Vessiot, 1905), who called
Λ the pseudo-arc length.

The full transformation of all the Frenet-Serret quantities is easily calculated.
Letting Λ′ = dΛ/dλ and using a hatted notation for the new quantities, one finds
that the frame vectors undergo a boost and a null rotation, with the invariance
of the last vector confirming the invariant nature of the osculating hyperplane
for which it is the unit normal:

Ê1 = (Λ′)−1E1, Ê2 = E2 + ζE1,

Ê3 = Λ′
[
E3 + ζ

(
ζ

2
E1 + E2

)]
, Ê4 = E4, (4.78)

where ζ = Λ′′/(KΛ′), and the new Frenet-Serret quantities are given by

K̂ = (Λ′)−2K, T̂1 = T1 + ζ ′ +
K
2
ζ2, T̂2 = T2. (4.79)

The pseudo-arc length parameterization is obtained by setting Λ′ = K1/2 (so that
ζ = K′/(2K2)), and the new form of the Frenet-Serret equations, once hats are
dropped, can be obtained from (4.67) simply by making the substitutions K → 1
and λ → Λ. Note that, in the case of constant curvature, Λ′′ = 0 (and ζ = 0);
this is just a simple affine parameter transformation and both torsions remain
unchanged, while the frame undergoes a simple boost constant rescaling.
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Fermi-Walker transport along the null world line

Exactly as in the case of a time-like curve, one may retain only the torsion part of
the connection matrix while absorbing the curvature part into the derivative to
define a corresponding generalized Fermi-Walker transport along the null world
line, as follows:

D(fw)X
α

dλ
=
DXα

dλ
− CK

α
βX

β = 0. (4.80)



5

The world function

Spatial and temporal intervals between any two points in space-time are
physically meaningful only if their measurement is made along a curve which
joins them. A curve is a natural bridge which allows one to connect the algebraic
structures at different points; therefore it is an essential tool to any measure-
ment procedure. The mathematical quantities which glue together the concepts of
points and curves are the two-point functions.1 The most important of these is the
world function, first introduced by Ruse (1931) and then used by Synge (1960).
As Synge himself realized, the world function is well defined only locally; how-
ever, a global generalization has recently been found by Cardin and Marigonda
(2004), opening the way to a better understanding of its potential in the theory
of relativity. In de Felice and Clarke (1990) the world function was exploited to
define spatial and temporal separations between points, and to find curvature
effects in the measurement of angles and of relative velocities. Following their
work we shall recall the main properties and applications of a world function,
starting from its very definition.

Consider a smooth curve γ, parameterized by s ∈ �. Let γ̇ be the field of
vectors tangent to γ. The quantity

L =
∫

γ

|γ̇ · γ̇| 12 ds (5.1)

does not depend on the parameter s and therefore it provides the seed for a
measurement of length on the curve. Given two points P0 and P1 in the manifold,
there exist an infinite number of smooth curves γ joining them. Hence, setting
P0 = γ(s0) and P1 = γ(s1), the quantity

L(s0, s1; γ) =
∫ s1

s0

|γ̇ · γ̇|
1
2 ds (5.2)

1 One should say many-point functions in general but we shall only consider two- and
three-point functions.
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is a path-dependent function of the two points; clearly it vanishes if the curve is
null. We use the term world function for the quantity

Ω(s0, s1; γ) =
1
2
L2, (5.3)

which is a real two-point function.
The world function is not a map between tensor fields at different points;

therefore meaningful applications require a transport law along any given curve.

5.1 The connector
Transport laws underlie the differential operations on the manifold; examples of
these are the Lie and absolute derivatives. For the purpose of our analysis we need
to discuss in some detail the transport law which leads to the absolute derivative.

Given a curve γ with parameter s and two points on it, P0 = γ(s0) and P1 =
γ(s1), we use the term connector on γ for a map

Γ(s0, s1; γ) : TP0(M) → TP1(M) (5.4)

which carries vectors from P0 to P1. The effect of this map is described as

Γ(s0, s1; γ)u(0) = ǔ(1) (5.5)

for any u0 ∈ TP0(M) and with ǔ1 ∈ TP1(M). Following de Felice and Clarke
(1990), we summarize the main properties of this map. The connector is subject
to the following conditions:

(i) Linearity. We require Γ to be a linear map, i.e. for any set of real numbers
cA and vectors u(A) at P0, we have

Γ(s0, s1; γ)(cAu(A)) = cAΓ(s0, s1; γ)u(A). (5.6)

(ii) Consistency. If γ joins P0 = γ(s0) to P1 = γ(s1) and γ′ joins P1 = γ′(s1) to
P2 = γ′(s2) then

Γ(s1, s2 ; γ
′)Γ(s0, s1; γ) = Γ(s0, s2 ; γ ◦ γ′), (5.7)

where the symbol ◦ means the concatenation of the curves. Hence the effect
of carrying a vector from P0 to P1 along γ and then from P1 to P2 along γ′

is equivalent to carrying that vector from P0 to P2 along the curve γ ◦ γ′.
(iii) Parameterization independence. The result of the action of Γ along a given

curve does not depend on its parameterization.
(iv) Differentiability. We require that the result of the application of Γ(s0, s1; γ)

varies smoothly if we vary the points P0 and P1 and deform the whole path
between them.

The consequences of the above conditions allow one to describe the connector as
a tensor-like two-point function. Let {eα} be a field of bases on some open set of
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the manifold containing the pair of points and the curve connecting them. From
linearity we have

Γ(s0, s1; γ)u(0) = uα0Γ(s0, s1; γ)eα0 = uα0Γ(s0, s1; γ)α0
β1 eβ1

= ǔβ1eβ1 , (5.8)

where the indices with subscripts 0 and 1 refer to quantities defined at the points
P0 and P1 respectively. From the property of a basis we have

ǔβ1 = uα0Γ(s0, s1; γ)α0
β1 , (5.9)

where the coefficients Γ(s0, s1; γ)α0
β1 are the components of the connector. We

shall adopt the convention that the first index refers to the tangent basis at the
first end-point of Γ and the second index to the tangent basis at the second
end-point. From the above relation it follows that

Γ(s0, s0; γ)α0
β0 = δβ0

α0
. (5.10)

The requirement of consistency by concatenation implies that

Γ(s0, s1; γ)σ0
μ1Γ(s1, s2 ; γ)μ1

ν2 = Γ(s0, s2 ; γ)σ0
ν2 . (5.11)

Finally the requirement of differentiability, coupled with all the other properties
of the connector, leads to the following law of differentiation (see de Felice and
Clarke, 1990, for details):

d

ds
Γ(s0, s; γ)α0

ρ

∣∣∣∣
s

= −Γ(s0, s; γ)α0
μΓρ

μν(s)γ̇ν(s), (5.12)

with the initial condition given by (5.10). Here Γρ
μν are the connection coeffi-

cients on the manifold; they only depend on the point and not on the curves
crossing it. It is well established that the connection coefficients are not the com-
ponents of a

(
1
2

)
-tensor; nevertheless they behave as the components of such a

tensor under linear coordinate transformations. This follows from the transfor-
mation properties of the components of the connector Γ(s0, s1; γ)α0

β1 ; the latter
behave as a co-vector at P0 and as a vector at P1. From (5.9) and with respect
to a general coordinate transformation x′(x) we have

Γ′(s0, s1; γ)α0
β1 =

∂xμ0

∂x′α0
Γ(s0, s1; γ)μ0

ν1
∂x′β1

∂xν1
. (5.13)

Hence from (5.12) it follows that

Γ′λ
μν(x′) =

∂x′λ

∂xα

∂xβ

∂x′μ
∂xγ

∂x′ν
Γα

βγ(x) − ∂x′λ

∂xρ

∂2xρ

∂x′μ∂x′ν
. (5.14)

A basic property of space-time geometry is the compatibility of the connection
with the metric, expressed by the identity

∇αgμν ≡ 0. (5.15)
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This relation stems from the requirement that the connector preserves the scalar
product. Along any curve connecting points P0 and P1 we have

(u · v)0 = (ǔ · v̌)1, (5.16)

with u, v ∈ TP0(M) and ǔ, v̌ ∈ TP1(M).
Let us conclude this brief summary by recalling the concept of geodesic on the

manifold. A curve γ connecting P0 to P1 is geodesic if

Γ(s0, s1; γ)γ̇(0) = f(s1)γ̇(1), (5.17)

where f(s) is a differentiable function on γ. As stated, a geodesic can always be
reparameterized with s′(s) so that f(s′(s)) = 1; in this case the parameter s′ is
termed affine. An affine parameter is defined up to linear transformations.

5.2 Mathematical properties of the world function
The world function behaves as a scalar at each of its end-points and can be
differentiated at each of them separately; in this case it generates new functions
which may behave as a scalar at one point and a vector or 1-form at the other,
or as a 1-form at the first point and as a vector at the other, and so on. To
define the derivatives of a world function we shall consider only those whose end-
points are connected by a geodesic. If we further restrict our analysis to normal
neighborhoods then the geodesic connecting any two points is unique. The world
function can be written as

Ω(s0, s1; Υ) =
1
2
(s1 − s0)2X ·X, (5.18)

whereX = Υ̇ denotes the tangent vector to the unique geodesic Υ joining P0 to P1

and parameterized by s. We shall now deduce the derivatives of Ω with respect to
variations of its two end-points. Let P0 and P1 belong to smooth curves γ̃0 and γ̃1,
parameterized by t, and let Υt ≡ Υγ̃0(t)→γ̃1(t) be the geodesic connecting points
of γ̃0 to points of γ̃1. We then require that the curve connecting the points P0

and P1 as they vary independently on the curves γ̃0 and γ̃1 is the unique geodesic
ΥP0→P1 . In this case the points we are considering belong also to the geodesic
Υt so they can be referred to as P0 = Υt(s0) and P1 = Υt(s1). This situation
is depicted in Fig. (5.1). We then have a one-parameter family of geodesics CX

with connecting vector Y = ˙̃γ, namely £XY = 0. By definition we have

DX

ds
= 0,

DX

dt
=
DY

ds
. (5.19)

To pursue our task let us write

d

dt
Ω(Υt(s0),Υt(s1);Υt) =

∂Ω
∂xα0

Y α0 +
∂Ω
∂xα1

Y α1

= (s1 − s0)2
(
DX

dt
·X
)
, (5.20)
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P1 = γ1 (t + δt)′ ∼

ϒt + δt

ϒt

γ0 (t)

P0 = γ0 (t + δt)′ ∼

P1 = γ1 (t)∼P0 = γ0 (t)∼

∼ γ1 (t)
∼

X

Y

Fig. 5.1. The points P0 = γ̃0(t) and P1 = γ̃1(t) vary on the curves γ̃0 and γ̃1

and remain connected by the unique geodesic Υγ̃0(t)→γ̃1(t). The parameter on
the geodesic Υt is s with tangent vector X while that on the curves γ̃0 and γ̃1

is t with tangent vector Y .

where {xα0 = xα(s0)} and {xα1 = xα(s1)} are the local coordinates for Υt(s0)
and Υt(s1) respectively. From the equation for geodesic deviation,

D2Y

ds2
= R(X,Y )X, (5.21)

we deduce identically that

D2Y

ds2
·X ≡ 0. (5.22)

From (5.19)1 we then have

D

ds

(
X · DY

ds

)
=

d

ds

(
d

ds
(X · Y )

)
= 0, (5.23)

which implies that

d

ds
(X · Y ) = κ, (5.24)

where κ is a constant along Υt(s). Integration along Υt(s) from s0 to s1 yields

κ(s1 − s0) = [X · Y ]s1
s0

; (5.25)

hence we can write (5.24) more conveniently as

d

ds
(X · Y ) = (s1 − s0)−1 [X · Y ]s1

s0
. (5.26)

Setting

Ωα0 =
∂Ω
∂xα0

, Ωα1 =
∂Ω
∂xα1

, (5.27)
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and recalling (5.19)2, Eq. (5.20) becomes

dΩ
dt

= Ωα0Y
α0 + Ωα1Y

α1 = (s1 − s0)2
(
DY

ds
·X
)

= (s1 − s0) [Xα1Y
α1 −Xα0Y

α0 ] ; (5.28)

thus

Ωα0 = −(s1 − s0)Xα0 , Ωα1 = (s1 − s0)Xα1 . (5.29)

From the latter we have

Ωα0Ω
α0 = Ωα1Ω

α1 = (s1 − s0)2X ·X = 2Ω, (5.30)

or equivalently

gα0β0Ωα0Ωβ0 = gα1β1Ωα1Ωβ1 = 2Ω. (5.31)

The quantities in (5.29) are the components of 1-forms defined respectively at
Υt(s0) and Υt(s1). Hence differentiating one of them, say Ω�(s0), with respect to
t, we obtain(

DΩ�(0)
dt

)
α0

= Ωα0β0Y
β0 + Ωα0β1Y

β1 = −(s1 − s0)
(
DX

dt

)
α0

, (5.32)

where Ωα0β0 = ∇βΩα|(s0) etc.

From (5.19)2 we have (
DX

dt

)
s0

=
(
DY

ds

)
s0

, (5.33)

but now we need to know the derivative of the connecting vector field Y . This
can be obtained from the general solution of the equation for geodesic deviation
(de Felice and Clarke, 1990); we shall omit here the detailed derivation, which
can be found in the cited literature, and provide only the results. To first order
in the curvature,(

DY

ds

)α0

= −αY α0 + αΓβ1
α0Y β1

−α2Y ρ0

∫ s1

s0

(s1 − s)2Kβ
τΓρ0

τΓβ
α0ds

−α2Y ρ1

∫ s1

s0

(s1 − s)(s− s0)Kσ
τΓρ1

τΓσ
α0ds

+O(|Riem|2), (5.34)

where O(|Riem|2) means terms of order 2 or larger in the curvature, α ≡
(s1 − s0)−1, and

Kα
ρ = Rα

μνρX
μXν . (5.35)
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To simplify notation, we also set Γα0
β ≡ Γ(s0, s; Υt)α0

β , these being the compo-
nents of the connector defined on the curve Υt with parameter s. From (5.19)1
and (5.32) we finally have

Ωα0β0 = gα0β0 + α gα0γ0

∫ s1

s0

(s1 − s)2Kρ
τΓρ

γ0Γβ0
τds

+O(|Riem|2), (5.36)

Ωα0β1 = −gα0γ0Γβ1
γ0 + α gα0γ0

∫ s1

s0

(s1 − s)(s− s0)Kρ
τΓβ1

τΓρ
γ0ds

+O(|Riem|2). (5.37)

The values of the world function and its derivatives in the limit of coincident
end-points are easily obtained as

lim
s1→s0

Ω = lim
s1→s0

Ωα = 0

lim
s1→s0

Ωαβ = gαβ(s0). (5.38)

It is worth pointing out here that these limiting values do not depend on the
path along which the end-points have been made to coincide.

When the space-time admits a set of n Killing vectors, say ξ(a) with a = 1 . . . n,
a world function connecting points on a geodesic satisfies the following property:

ξα0
(a)Ωα0 + ξα1

(a)Ωα1 = 0. (5.39)

Using (5.39) and (5.31), one obtains the explicit form of the world function in
special situations.

The simplest example is found in Minkowski space-time. Since in this case the
geodesics are straight lines, the world function is just

Ωflat(x0, x1) =
1
2
ηαβ(xα

0 − xα
1 )(xβ

0 − xβ
1 ), (5.40)

whatever geodesic connects P0 to P1.
Recent applications of the world function to detect the time delay and fre-

quency shift of light signals are due to Teyssandier, Le Poncin-Lafitte, and Linet
(2008). Because of the potential of the world function approach to measurements,
we judge it useful to derive its analytical form in various types of space-time
metrics.

5.3 The world function in Fermi coordinates
Consider a general space-time metric and introduce a Fermi coordinate system
(T,X, Y, Z) in some neighborhood of an accelerated world line γ with (constant)
acceleration A; the spatial coordinates X,Y,Z span the axes of a triad which is
Fermi-Walker transported along γ while T measures proper time at the origin
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of the spatial coordinates. Up to terms linear in the spatial coordinates, one has
(see (6.18) of Misner, Thorne, and Wheeler, 1973)

ds2 = (ηαβ + 2AXδ0αδ0β)dXαdXβ

= −(1 − 2AX)dT 2 + dX2 + dY 2 + dZ2 +O(2), (5.41)

a form which is valid within a world tube of radius 1/A so that |AX|� 1 is
the condition for this approximation to be correct. In what follows we shall give
general expressions for both time-like and null geodesics of the Fermi metric
(5.41), as well as the expression for the world function (Bini et al., 2008).

To first order in the acceleration parameter A, the time-like geodesics can be
written explicitly in terms of an affine parameter λ as

T (λ) = T (0) + Cλ+ ACλ(CXλ+X(0)),

X(λ) = X(0) + CXλ+
1
2
AC2λ2,

Y (λ) = Y (0) + CY λ,

Z(λ) = Z(0) + CZλ, (5.42)

where C, CX , CY , CZ are integration constants.
Let Xα

A and Xα
B be the Fermi coordinates of two general space-time points A

and B connected by a geodesic. By using the explicit expressions (5.42) of the
geodesics, and from the definition of the world function, we have

Ω(XA,XB) =
1
2
[−C2 + (CX)2 + (CY )2 + (CZ)2], (5.43)

where the orbital parameters have to be replaced by the coordinates of the ini-
tial and final points. Choosing the affine parameter in such a way that λ = 0
corresponds to XA and λ = 1 to XB we get the conditions

X0
A = T (0), X1

A = X(0), X2
A = Y (0), X3

A = Z(0), (5.44)

and

X0
B = X0

A + C + AC(CX +X1
A),

X1
B = X1

A + CX +
1
2
AC2,

X2
B = X2

A + CY ,

X3
B = X3

A + CZ . (5.45)

Next, solving the latter equations for C, CX , CY , CZ yields

C � (X0
B −X0

A)(1 −AX1
B),

CX � (X1
B −X1

A) − 1
2
A(X0

B −X0
A)2,

CY = X2
B −X2

A,

CZ = X3
B −X3

A (5.46)
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to first order in A. Substituting then in Eq. (5.43) gives the following final expres-
sion for the world function:

Ω(XA,XB) � 1
2
[
ηαβ + A(X1

A +X1
B)δ0αδ

0
β

]
(Xα

A −Xα
B)(Xβ

A −Xβ
B)

= Ωflat(XA,XB) +
1
2
A(X1

A +X1
B)(X0

A −X0
B)2, (5.47)

to first order in the acceleration parameter A.

5.4 The world function in de Sitter space-time
In isotropic and homogeneous coordinates, the de Sitter metric is given by
(Stephani et al., 2003):

ds2 = −dt2 + e2H0t(dx2 + dy2 + dz2), (5.48)

where H0 is the Hubble constant. Metric (5.48) satisfies Einstein’s vacuum field
equations with non-vanishing cosmological constant Λ = 3H2

0 and Weyl flat spa-
tial sections. It describes an empty expanding and non-rotating universe. Let us
denote by {t, xi} ({xi} = {x, y, z}, i = 1, 2, 3) the coordinates of an arbitrary
event P of this space-time. A first integration of the geodesic equations is easily
obtained using the Killing symmetries of the space-time. In terms of an affine
parameter s, it gives

dxi

ds
= Cie−2H0t,

(
dt

ds

)2

= −ε+ C2e−2H0t, (5.49)

where ε = 0, −1, +1 correspond to null, time-like, and space-like geodesics res-
pectively, and {Ci} are constants with C2 = δijC

iCj . Introduce a family of
fiducial observers

n� = −dt, n = ∂t, (5.50)

with the adapted orthonormal frame

et̂ = ∂t, eî = e−H0t∂i. (5.51)

The frame components uα̂
(ε) of the vector tangent to the geodesics are given by

u(ε) = uα̂
(ε)eα̂ =

√
−ε+ C2e−2H0t

[
n+

Cie−H0t

√
−ε+ C2e−2H0t

eî

]
. (5.52)

Equations (5.49) can be easily integrated for the different values of ε (i.e. for any
causal character) and the results can be summarized as follows:

eH0t =
C√
ε

sin[
√
ε(σH0s+ α0)],

xi − xi
0 = − Ci

C2σH0

√
ε cot[

√
ε(σH0s+ α0)], (5.53)
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where xi
0 are integration constants and σ is a sign indicator, corresponding to

future-pointing (σ = 1) or past-pointing (σ = −1) geodesics, and the null case
ε = 0 is intended in the sense of the limit.

Let us require now that s = 0 corresponds to the space-time point A and s = 1
to B. This implies

eH0tA =
C√
ε

sin[
√
εα0], eH0tB =

C√
ε

sin[
√
ε(σH0 + α0)],

xi
A − xi

0 = − Ci

C2σH0

√
ε cot[

√
εα0],

xi
B − xi

0 = − Ci

C2σH0

√
ε cot[

√
ε(σH0 + α0)]. (5.54)

Moreover, from (5.2)

L =
∫ 1

0

√
|ε|ds =

√
|ε| (5.55)

and, from (5.3),

Ω(XA,XB) =
1
2
|ε|. (5.56)

Using relations (5.54) one can then obtain ε as a function of the coordinates of
A and B, and hence Ω. To this end it is convenient to write down an equivalent
set of equations in place of (5.54) namely

√
εα0 = arcsin

(√
ε

C
eH0tA

)
,

√
εσH0 = arcsin

(√
ε

C
eH0tB

)
− arcsin

(√
ε

C
eH0tA

)
,

ξ2 ≡ δij(xi
B − xi

A)(xj
B − xj

A)

=
ε

C2H2
0

[cot[
√
ε(σH0 + α0)] − cot[

√
εα0]]2, (5.57)

in the three unknowns α0, C
2, and ε. Using the the first two of these equations

in the third one gives

H2
0 ξ

2 =
ε

C2

{
cot
[
arcsin

(√
ε

C
eH0tB

)]
− cot

[
arcsin

(√
ε

C
eH0tA

)]}2

, (5.58)

which can be formally inverted to obtain the quantity
√
ε/C in terms of

tA, tB , x
i
A, x

i
B . To see this in detail let us use the notation

w =
√
ε/C, a = eH0tA , b = eH0tB ; (5.59)

we then have

H2
0 ξ

2 = w2

[√
1

b2w2
− 1 −

√
1

a2w2
− 1

]2

, (5.60)
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from which

w2 =
[(a+ b)2 −H2

0 ξ
2a2b2][H2

0 ξ
2a2b2 − (a− b)2]

4ξ2a4b4H2
0

. (5.61)

Back-substituting this expression for w =
√
ε/C in the second of Eqs. (5.57) then

gives ε,
√
ε =

1
σH0

[arcsin(bw) − arcsin(aw)], (5.62)

and hence Ω, from (5.56).

5.5 The world function in Gödel space-time
In Cartesian-like coordinates xα = (t, x, y, z), Gödel’s metric takes the form
(2.133) that we recall here (Gödel, 1949):

ds2 = −dt2 + dx2 − 1
2
U2dy2 − 2Udtdy + dz2, (5.63)

where U = e
√

2ωx and ω is a constant. The symmetries of this metric are sum-
marized by five Killing vector fields,

ξμ
t = ∂t, ξμ

y = ∂y, ξμ
z = ∂z, ξμ

4 = ∂x −
√

2ωy∂y,

ξμ
5 = −2e−

√
2ωx∂t +

√
2ωy∂x + (e−2

√
2ωx − ω2y2)∂y. (5.64)

Let us consider a geodesic Υ parameterized by an affine parameter λ with tan-
gent vector Pμ = (ṫ, ẋ, ẏ, ż), where dot means differentiation with respect to λ.
The geodesic equations are

ẗ+ 2
√

2ωṫẋ+
√

2ωUẋẏ = 0,

ẍ+
√

2ωUṫẏ +
1
2
U2

√
2ωẏ2 = 0,

ÿ − 2
√

2ωU−1ṫẋ = 0,

z̈ = 0. (5.65)

Using the Killing symmetries, this system of equations can be fully integrated.
First we recall that

pt = gtα
dxα

dλ
≡ −E = constant,

py = gyα
dxα

dλ
≡ py = constant, (5.66)

pz =
dz

dλ
≡ pz = constant
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are conserved quantities. Then, from the above and the metric form (5.63), it
follows that

ṫ = −E − 2py

U
, ẏ =

2E
U

+
2py

U2
, (5.67)

and

z(λ) = z0 + pzλ. (5.68)

Using these relations in (5.65) we obtain

ẍ− 2
√

2ωEpy

U
−

2
√

2ωp2
y

U2
= 0. (5.69)

Multiplying both sides of (5.69) by 2ẋ we can write it as

d

dλ

(
ẋ2 + 4Epye

−
√

2ωx + 2p2
ye

−2
√

2ωx
)

= 0, (5.70)

which implies that

ẋ2 + 4Epye
−
√

2ωx + 2p2
ye

−2
√

2ωx = C1, (5.71)

where C1 is a constant. The normalization condition p·p = −ε, with ε = (1, 0,−1)
for time-like, null, and space-like orbits respectively, allows one to fix the constant
C1 as

C1 = −ε2 − E2 − p2
z ; (5.72)

then Eq. (5.71) can be integrated by standard methods. Use of this solution in
both Eqs. (5.67) leads us to the full integration of the geodesic equations. Clearly
this allows us to write the exact world function along any non-null geodesic.

In a remarkable paper, Warner and Buchdahl (1980) were able to derive the
exact form of the world function for Gödel’s space-time, following an alternative
approach. Their aim was to find the world function as a solution of a set of
differential equations. Following their arguments, let us first recall from (5.39)
that, given a set of Killing vectors ξ(a) and a pair of events with coordinates {xμ′}
and {xμ}, the world function satisfies the relation

ξμ′

(a)∂μ′Ω + ξμ
(a)∂μΩ = 0. (5.73)

We then have

∂t′Ω + ∂tΩ = 0,

∂y′Ω + ∂yΩ = 0,

∂z′Ω + ∂zΩ = 0, (5.74)

which imply for Ω a dependence of the type

Ω(t′ − t, x, x′, y′ − y, z′ − z; Υ) = Ω1(τ, x, x′, ξ; Υ) +
1
2
(z′ − z)2, (5.75)
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where Ω1 is a new function to be determined and

τ = t′ − t, ξ = y′ − y. (5.76)

Using the remaining Killing vectors ξ(4) and ξ(5) we have from (5.64) the addi-
tional equations

0 = ∂xΩ −
√

2ωy∂yΩ + ∂x′Ω −
√

2ωy′∂y′Ω, (5.77)

0 =
√

2ωy∂xΩ + (e−2
√

2ωx − ω2y2)∂yΩ − 2e−
√

2ωx∂tΩ

+
√

2ωy′∂x′Ω + (e−2
√

2ωx′ − ω2y′2)∂y′Ω

− 2e−
√

2ωx′
∂′tΩ. (5.78)

Introducing the new variables

v = e−
√

2ωx, v′ = e−
√

2ωx′
, (5.79)

and recalling (5.75), Eq. (5.77) gives

v∂vΩ1 + v′∂v′Ω1 + ξ∂ξΩ1 = 0, (5.80)

whose solution is

Ω1 = Ω1

(
τ,
v

ξ
,
v′

ξ

)
. (5.81)

Using this form of Ω1 in (5.78) and denoting

α =
v

ξ
, β =

v′

ξ
, (5.82)

we obtain

α(ω2 − β2 + α2)∂αΩ1 − β(ω2 − α2 − β2)∂βΩ1 + 2 (α− β)∂τΩ1 = 0. (5.83)

This equation can be considerably simplified with the further change of variables

s+ r =
α

ω
, s− r =

β

ω
, τ1 = ωτ, (5.84)

leading to

s(4r2 + 1)∂rΩ1 + r(4s2 + 1)∂sΩ1 + 4r∂τ1Ω1 = 0. (5.85)

This equation can be solved with the method of separation of variables. Setting
Ω1 = Ω1(r) + Ω1(s) + Ω1(τ1), we obtain

Ω1 =
1
8
K ln

(
4r2 + 1
4s2 + 1

)
+ K̄

(
1
2

tan−1(2s) − τ1

)
, (5.86)

where K and K̄ are separation constants. Hence the full world function (5.75)
follows.
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5.6 The world function of a weak gravitational wave
Consider the metric of a weak gravitational plane wave propagating along the x
direction of a coordinate frame with “+,×” polarization states, written in the
form

ds2 = −dt2 + dx2 + (1 − h+)dy2 + (1 + h+)dz2 − 2h×dxdz, (5.87)

where the wave amplitudes h+/× = h+/×(t−x) are functions of (t−x). Let them
be given by

h+ = A+ sinω(t− x), h× = A× cosω(t− x), (5.88)

where linear polarization is characterized by A+ = 0 or A× = 0, whereas circular
polarization is assured by the condition A+ = ±A×. It is also useful to introduce
the polarization angle, ψ = tan−1(A×/A+).

The geodesics of this metric are given by (de Felice, 1979)

U(geo) =
1

2E
[(ε2 + f + E2)∂t + (ε2 + f − E2)∂x]

+ [α(1 + h+) + βh×]∂y + [β(1 − h+) + αh×]∂z, (5.89)

where α, β, and E are conserved Killing quantities, ε2 = 1, 0,−1 correspond to
time-like, null, and space-like geodesics respectively, and to first order in the wave
amplitudes

f � α2(1 + h+) + β2(1 − h+) + 2αβh×. (5.90)

The parametric equations of the geodesics are then easily obtained:

t(λ) = Eλ+ t0 + x(λ) − x0,

x(λ) = (ε2 + α2 + β2 − E2)
λ

2E
− 1

2ωE2
[(α2 − β2)A+ cosω(Eλ+ t0 − x0)

− 2αβA× sinω(Eλ+ t0 − x0)] + x0,

y(λ) = αλ+ y0

− 1
ωE

[αA+ cosω(Eλ+ t0 − x0) − βA× sinω(Eλ+ t0 − x0)],

z(λ) = βλ+ z0

+
1
ωE

[βA+ cosω(Eλ+ t0 − x0) + αA× sinω(Eλ+ t0 − x0)] , (5.91)

where λ is an affine parameter and x0, y0, z0 are integration constants.
We can then evaluate the world function for two general points P0 and P1

connected by a geodesic Υ. A direct calculation gives

Ω(s0, s1; Υ) = Ω(s0, s1)flat

+
A+

2ω
[(y1 − y0)2 − (z1 − z0)2]

cosω(t1 − x1) − cosω(t0 − x0)
t1 − x1 − (t0 − x0)

− A×
ω

(y1 − y0)(z1 − z0)
sinω(t1 − x1) − sinω(t0 − x0)

t1 − x1 − (t0 − x0)
, (5.92)
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where

Ω(s0, s1)flat =
1
2
ηαβ(x0 − x1)α(x0 − x1)β (5.93)

is the world function in Minkowski space-time (see Bini et al., 2009).

5.7 Applications of the world function: GPS or emission
coordinates

Let us briefly review the standard construction of GPS coordinates in a flat
space-time (Rovelli, 2002). Consider Minkowski space-time in standard Cartesian
coordinates (t, x, y, z),

ds2 = ηαβdx
αdxβ = −dt2 + dx2 + dy2 + dz2, (5.94)

and four satellites, represented by test particles in geodesic motion. With the
above choice of coordinates, time-like geodesics are straight lines:

xα
A(τA) = Uα

Aτ
A + xα

A(0), A = 1, . . . , 4, (5.95)

where

UA = γA[∂t + νAn
i
A∂i] = coshαA∂t + sinhαAn

i
A∂i (5.96)

are their (constant) 4-velocities and τA is the proper time parameterization along
each world line. In (5.96), γA is the Lorentz factor and the linear velocities νA are
relative to any of the four particles chosen as a fiducial observer; they are related
to the rapidity parameters αA by νA = tanhαA; nA denotes the space-like unit
vectors along the spatial directions of motion. Without any loss of generality,
we assume that the satellites all start moving from the origin of the coordinate
system O, so hereafter we set xα

A(0) = 0, and hence

xα
A(τ) = Uα

Aτ
A. (5.97)

Let us now consider a general space-time point P̄ with coordinates W̄α and a
point PA with coordinates xα

A on the world line of the Ath satellite corresponding
to an elapsed amount of proper time τA. A photon emitted at PA follows a null
geodesic, i.e. the straight line

xα(λ) = Kαλ+ xα
A, (5.98)

where λ is an affine parameter. Such a photon will reach P̄ at a certain value λ̄
of the parameter according to

W̄α = Kαλ̄+ xα
A, (5.99)

implying that

Uα
Aτ

A − W̄α = −Kαλ̄. (5.100)
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Taking the norm of both sides, we obtain

− (τA)2 + ||W̄ ||2 − 2τA(UA · W̄ ) = 0, (5.101)

since K is a null vector. Solving for τA and selecting the solution corresponding
to the past light cone leads to

τA = −(UA · W̄ ) −
√

(UA · W̄ )2 + ||W̄ ||2. (5.102)

These equations give the four proper times τA (i.e. the GPS or emission coordi-
nates) associated with each satellite in terms of the Cartesian coordinates of the
general point P̄ in the space-time, i.e. τA = τA(W̄ 0, . . . , W̄ 3).

Using Eq. (5.102), one can evaluate the inverse of the transformed metric

gAB = ηαβ ∂τA

∂W̄α

∂τB

∂W̄ β
≡ ηαβ(dτA)α(dτB)β = dτA · dτB, (5.103)

where the dual frame (dτA)α = ∂τA/∂W̄α also satisfies the properties

(dτA)αW̄
α = τA, (dτA)αU

α
A = 1. (5.104)

Similarly one can introduce the frame vectors(
∂

∂τA

)α

=
∂W̄α

∂τA
, (dτA)α

(
∂

∂τB

)α

= δAB . (5.105)

It is then easy to show that the condition gAA = dτA · dτA = 0 is fulfilled. In
fact, by differentiating both sides of Eq. (5.101) with respect to W̄α one obtains

(dτA)α =
W̄α − τAUAα

τA + (UA · W̄ )
, (5.106)

which implies that

gAA = (dτA)α(dτA)α =
−(τA)2 + ||W̄ ||2 − 2τA(UA · W̄ )

[τA + (UA · W̄ )]2
= 0. (5.107)

The metric coefficients gAB = (∂/∂τA) · (∂/∂τB) = ηαβ(∂/∂τA)α(∂/∂τB)β can
be easily obtained as well by expressing the Cartesian coordinates of P̄ in terms
of the emission coordinates τA, i.e. W̄α = W̄α(τ1, . . . , τ4).

To accomplish this, it is enough to invert the transformation (5.102). However,
in order to outline a general procedure, we start by considering the equation for
the past light cone of the general space-time point P̄ with coordinates W̄α given in
terms of the world function, which in the case of flat space-time is simply given by

Ωflat(xA, xB) =
1
2
ηαβ(xα

A − xα
B)(xβ

A − xβ
B). (5.108)

The condition ensuring that the past light cone of P̄ cuts the emitter world lines
is given by

Ωflat(xA, W̄ ) = 0, x0
A < W̄ 0, (5.109)
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for each satellite labeled by the index A. This gives rise to a system of four
quadratic equations in the four unknown coordinates W̄α of the event P̄ of the
form (5.101) for each A = 1, . . . , 4. To solve this system, start for example by sub-
tracting the last equation from the first three equations to obtain the following
system:

Ωflat(xi, W̄ ) − Ωflat(x4, W̄ ) = 0 = −2W̄ · (xi − x4) − (τ i)2 + (τ4)2,

Ωflat(x4, W̄ ) = 0 = ||W̄ ||2 − 2W̄ · x4 − (τ4)2, (5.110)

with i = 1, 2, 3, consisting of three linear equations and only one quadratic equa-
tion. Thus we can first solve the linear equations for the coordinates W̄ 1, W̄ 2, W̄ 3

in terms of W̄ 0, which then can be determined from the last quadratic equation.
As a result, the coordinates of the event P̄ are fully determined in terms of the
satellite proper times τA and the known parameters characterizing their world
lines.

An explicit result can easily be obtained for a fixed kinematical configuration
of satellites. As an example one can take one of the satellites at rest at the origin
O and the other three in motion along each of the three spatial directions:

U1 = coshα1∂t + sinhα1∂x,

U2 = coshα2∂t + sinhα2∂y,

U3 = coshα3∂t + sinhα3∂z,

U4 = ∂t, (5.111)

where αi, i = 1, 2, 3, are the rapidities.
This choice is the one adopted in Bini et al. (2008) to construct emission coordi-

nates in curved space-time (but for the metric associated with Fermi coordinates
around the world line of an accelerated observer) covering a space-time region
around the Earth.
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Local measurements

The mathematical tools introduced in the previous chapters are essential for
dealing with measurements in curved space-times. Here we shall confine our atten-
tion to local measurements only, i.e. to those whose measurement domain does
not involve space-time curvature explicitly. Given an observer u, the tensorial
projection operators P (u) and T (u) allow one to define the observer’s rest-space
and time dimension in neighborhoods of any of his points which are sufficiently
small to allow one to approximate the measurement domain as a point. The
above operators, in fact, arise naturally as the infinitesimal limit of the non-local
procedure for the measurements of space distances and time intervals, as we will
show.

6.1 Measurements of time intervals and space distances
Let γ be the world line of a physical observer; the parameter s on it is taken to
be the proper time, so the tangent vector field γ̇ is normalized as

γ̇ · γ̇ = −1. (6.1)

Here we shall analyze the concepts of spatial and temporal distances between two
events relative to a given observer, referring closely to the analog in Euclidean
geometry.

Consider an event P not belonging to γ but sufficiently close to it that a normal
neighborhood exists which contains the intersections A1 and A2 of γ with the
generators of the light cone in P. Referring to Fig. 6.1 we see that all points on γ
between A1 and A2 can be connected to P by a unique non-time-like geodesic which
we shall denote by ζs, with parameter σ. Let A1 = γ(sA1) and A2 = γ(sA2). Then
from (5.18) the world function Ω(σA, σP; ζs) along the geodesic ζs connecting a
general point A = γ(s) with P is given by

Ω(σA, σP; ζs) =
1
2
(σP−σA)2

(
ζ̇s · ζ̇s

)
A

; (6.2)
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A2

A1

P

ζs

γ

A(s)

Fig. 6.1. A curve γ is connected to the point P by a light ray emitted at A1

towards P and recorded at A2 after being reflected at P. The entire process
takes place in a normal neighborhood UN of the space-time.

the geodesics ζs are assumed affine parameterized so (ζ̇s · ζ̇s) is constant on them.
Because P is kept fixed and A is any point on γ : sA1 ≤ s ≤ sA2 , the world function
in (6.2) is only a function of s; hence we write it in general as

Ω(σ(s), σP; ζs) ≡ Ω(s), (6.3)

with the constraints

Ω(sA1) = Ω(sA2) = 0. (6.4)

Since γ is a smooth curve, there exists a value sA0 : sA1<sA0<sA2 at which Ω(s)
has an extreme value, namely at A0 = γ(sA0):

dΩ
ds

∣∣∣∣
A0

= 0. (6.5)

If P is sufficiently close to γ then the point A0 is unique. At A0, (6.5) is equiva-
lent to

Ωα0
γ̇α0 = 0, (6.6)

where γ̇α0 ≡ γ̇α(sA0) and Ωα0
is the derivative at A0 of the world function along

the geodesic ζs|A0 joining A0 to P and given from (5.29) as

Ωα0
= −(σP − σA0)ξα0

, ξ ≡ ζ̇s|A0 , (6.7)

where ξα0
= ξα(σA0). From (6.4) and (6.6) we deduce that

γ̇α0
ξα0 = 0. (6.8)
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We define as a measurement of the spatial distance between the observer on γ

and the event P the length of the space-like geodesic segment on ζs|A0 which
strikes γ orthogonally at A0; that is (Synge, 1960),

L(σA0 , σP; ζs|A0) ≡ L(P, γ) =
(
2Ω(sA0)

) 1
2 = |σP − σA0 | (ξ · ξ)

1/2
A0
. (6.9)

The event A0 on γ is termed simultaneous to P with respect to the observer on γ.
We now need to express L in terms of directly measurable quantities. Let sA1

and sA2 be the parameters of the events A1 and A2 on γ in which a light signal is
emitted towards P and received after reflection at P, respectively. The quantity

δTγ ≡ (sA2 − sA1) (6.10)

is a physical time directly readable on the observer’s clock. The world function
Ω(s) can be expanded in a power series about sA0 as

Ω(s) = Ω(sA0) +
∞∑

n=1

1
n!
dnΩ
dsn

∣∣∣∣∣
sA0

(s− sA0)
n. (6.11)

If we require that the observer’s world line be a geodesic (γ̈α ≡ a(γ̇)α = 0) then
the derivatives of the world function can be written in general as

dnΩ
dsn

= Ωα1...αn
γ̇α1 . . . γ̇αn . (6.12)

Limiting ourselves to second derivatives only, we have that the coefficients Ωα0β0

are given by (5.36). Assuming that the points A0 and P are close enough, we can
consider the above coefficients to first order in the curvature only. Therefore

Ωα0β0
≈ gα0β0

+
1
2
[
Sαβγδ ξ

γξδ
]
A0

(σP − σA0)
2, (6.13)

where

Sαβγδ = −2
3
Rα(γ|β|δ). (6.14)

Noticing that along γ we have

dΩ
ds

∣∣∣∣
A0

= 0, (6.15)

Eq. (6.11) can be written as

Ω(s) = Ω(sA0) −
1
2
(s− sA0)

2

×
[
1 + (σP − σA0)ξαa

α − 1
2
Sαβγδ γ̇

αγ̇βξγξδ(σP − σA0)
2

]
A0

+O(|Riem|2). (6.16)
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Imposing conditions (6.4) and requiring a(γ̇) = 0, we can deduce from (6.16) the
values sA1 and sA2 corresponding to the events A1 and A2. We then obtain

(sA1/A2 − sA0)
2

[
1 − 1

2
Sαβγδ u

αuβξγξδ(σP − σA0)
2

]
≈ 2Ω(sA0), (6.17)

where we set u ≡ γ̇ to stress the role of the observer who makes the measurements
played by the vector field tangent to γ. Equations (6.17) admit the solutions

sA1 ≈ sA0 − [2Ω(sA0)]
1
2

[
1 +

1
4
Sαβγδ u

αuβξγξδ(σP − σA0)
2

]
A0

,

(6.18)

sA2 ≈ sA0 + [2Ω(sA0)]
1
2

[
1 +

1
4
Sαβγδ u

αuβξγξδ(σP − σA0)
2

]
A0

.

From the above formulas and definitions we finally have

δTγ ≈ 2L(P, γ) +
1
2
(
Sαβγδ u

αuβξγξδ
)
A0
L3(P, γ), (6.19)

where we have re-parameterized ζsA0
so that ξ · ξ = 1. Equation (6.19) gives

the first-order curvature contribution to the relationship between the round trip
time of a bouncing signal and the geometrical distance between γ and P. Formal
solutions of (6.19) are given by

L(P, γ)1 =
1
6
χ1/3A−1 − 4χ−1/3, (6.20)

L(P, γ)2,3 = −1
2
L(P, γ)1 ± i

√
3
[

1
12
χ1/3A−1 + 2χ−1/3

]
, (6.21)

where

A = −1
3
[
Rαγβδ u

αuβξγξδ
]
A0
, (6.22)

χ = 12A2

[
9(δTγ) +

√
3

√
32
A + 27(δTγ)2

]
. (6.23)

Clearly, δTγ can be read directly on the observer’s clock and the quantities A
and χ can be deduced by a suitable space-time modeling once the observer u is
fixed. Solutions (6.20), with (6.22) and (6.23), may find application to the Global
Positioning System (GPS), with general relativistic corrections to first order in
the curvature.

Let us now uncover the role that the projection operators P (u) and T (u) have in
defining the measurements of a time interval and a spatial distance, respectively,
between two infinitesimally close events and relative to a given observer. Working
in the infinitesimal domain we can neglect the curvature in (6.16) and limit
ourselves to terms of the second order in Δσ and Δs. Choose a point A on γ very
close to A0 (here γ is again a general time-like curve); Eq. (6.16) gives

2Ω(sA0) = 2Ω(sA) + (sA0 − sA)2 +O(|Δσ + Δs|3). (6.24)
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From (6.2) we have

2Ω(sA) = (σP − σA)2(ξαξα)A, (6.25)

so Eqs. (6.1) and (6.5) imply that

− (σP − σA)(uαξα)A =
dΩ
ds

∣∣∣∣
A

=
(
d2Ω
ds2

)
A0

(sA − sA0) +O(Δs2)

= −(sA − sA0) +O(|Δσ + Δs|2). (6.26)

Hence (6.24) becomes

2Ω(sA0) = (σP − σA)2gαβ(sA)ξα(σA)ξβ(σA)

+ (σP − σA)2(uαξα)2A +O(|Δσ + Δs|3)
= (σP − σA)2

[
(gαβ + uαuβ)ξαξβ

]
A

+O(|Δσ + Δs|3). (6.27)

Recalling that

ξα = lim
δσ→0

δxα

δσ
,

we deduce, at a point P sufficiently close to γ, and from (6.9), that

δL(P, γ) =
[
P (u)αβδx

αδxβ
] 1

2 +O(δx2), (6.28)

where P (u)αβ = gαβ + uαuβ and δxα denotes the coordinate difference between
A and P.

From (6.26) we interpret the time interval between the event A and the event
A0 on γ which is simultaneous to P as the temporal separation between the events
A and P relative to the observer on γ; it is given by

δT (A0,A) = −(uαδx
α)A +O(δx2). (6.29)

Comparing (6.28) and (6.29) with the definition of the projection operators P (u)
and T (u) one justifies their interpretation.

Relations (6.28) and (6.29) are very useful since they allow one to express the
invariant measurements of the spatial distance and the time interval between any
two events sufficiently close in terms of coordinates and vector components.

6.2 Measurements of angles
Angles can be measured with great accuracy; therefore their measurements enter
in many problems as observables in terms of which one can fix boundary con-
ditions. Clearly an angle is a spatial quantity; hence its measurement must be
carried out in the rest space of the observer. Let the observer be represented by
his world line γ and denote this by u ≡ γ̇. Let us evaluate the angle between any
two null directions stemming from a given point on γ.
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At the space-time point where the measurement takes place, a null vector k
admits the following decomposition:

k = −(k · u)u+ k⊥ = −(k · u)[u+ ν̂(k, u)], ν̂(k, u) · ν̂(k, u) = 1, (6.30)

where k⊥ = P (u)k = ||k⊥||ν̂(k, u) and ν̂(k, u) is the unitary spatial vector tangent
to the local line of sight towards P. If a signal is sent from A to another point, say
Q, and with a photon gun similar to the previous one, we identify this direction
with a vector at A: k′⊥ = P (u)k′, where k′ is the vector tangent to the null ray
from A to Q. We then define the angle Θ(k,k′) between these two directions at A by

cos Θ(k,k′) =
k′⊥ · k⊥

||k⊥|| ||k′⊥||
= ν̂(k′, u) · ν̂(k, u). (6.31)

Of course the above formula can be applied to time-like and space-like directions
as well.

6.3 Measurements of spatial velocities
The instantaneous spatial velocity of a test particle with 4-velocity U relative
to a given observer u has been introduced in (3.109) as the magnitude of the
space-like 4-vector,

ν(U, u)α = −(Uσuσ)−1Uα − uα. (6.32)

Let us now show why this is interpreted as the instantaneous spatial velocity of
the particle U with respect to the observer u. Since we are confining our attention
to the infinitesimal domain, we shall deal with local measurements only. Let γ′

be the world line of the particle with tangent field U ≡ γ̇′ and assume that the
curve γ′ strikes the world line γ of u at a point A

′. At this point the particle
and the observer coincide so we can fix their proper times to coincide as well.
Consider then a later moment when the particle is at a point P on its world line,
still very close to A

′. Once the particle has reached the point P, the observer u
on γ will judge that it has covered a spatial distance

δL(P, γ) =
(
P (u)αβδx

αδxβ
)1/2

(6.33)

equal to the length of the (unique) space-like geodesic segment connecting P to
the point A0 on γ which is simultaneous with P with respect to u.

A correct way to measure the instantaneous velocity of recession (or approach)
of the particle U with respect to the observer u is to track the particle with a
light ray (see de Felice and Clarke, 1990, for details). Let A1 be the point of γ
which could be connected to P by a light ray; clearly sA′<sA1<sA0 . From the
previous discussion it follows that the quantities δxα in (6.33) are the coordinate
differences between P and any point A on γ between A1 and A0. Clearly the
4-vector δxα is defined at the point A on γ. The approximation of confining
ourselves to the infinitesimal domain allows one to identify A and A1 with A

′.
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Hence, once the particle has reached the point P, the observer u will judge that
the particle traveling from A

′ to P took a time, as read on his own clock, equal to

δT (A0,A
′) ≈ −(uαδx

α). (6.34)

This interval of time actually measures the time interval on γ between A
′, con-

sidered as a point of γ, and A0. By definition, the instantaneous spatial velocity
of U relative to u is the quantity

||ν(U, u)|| ≡ lim
δx→0

δL(P, γ)
δT (A0,A′)

= − (P (u)αβdx
αdxβ)1/2

(dxρuρ)
. (6.35)

The spatial instantaneous velocity 4-vector can be written as

ν(U, u) = [ν(U, u)αν(U, u)α]1/2ν̂(U, u) ≡ ||ν(U, u)||ν̂(U, u), (6.36)

with ν(U, u)α given by (6.32) and ν̂(U, u) being the unitary vector introduced in
(3.110). Clearly the 4-vector ν(U, u) belongs to LRSu at the point A

′ of γ. Owing
to the symmetry of the projection operators, we have

||ν(U, u)|| = ||ν(u,U)|| ≡ ν ; (6.37)

however, vector ν(u,U) belongs to LRSU still at the point A
′ but considered as

a point of γ′. From (6.37) it follows as an obvious consequence that the Lorentz
factor is

γ(U, u) = γ(u,U) = −(Uαuα). (6.38)

6.4 Composition of velocities
In the theory of relativity velocities add up according to a law which prevents
them from becoming larger than the velocity of light, whatever observer one
refers to.

Let U denote the 4-velocity of a test particle and u and ū those of two different
observers in relative motion. Confining our attention to the infinitesimal domain,
we have

U = γ(U, u)[u+ ν(U, u)]

= γ(U, ū)[ū+ ν(U, ū)] (6.39)

and

ū = γ(ū, u)[u+ ν(ū, u)]. (6.40)

From (6.39) it follows that

γ(U, ū)
γ(U, u)

[ū+ ν(U, ū)] = [u+ ν(U, u)]. (6.41)
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Hence, contracting with ū and recalling that

ū · ū = −1 = u · u, ν(U, ū) · ū = 0, ν(ū, u) · u = 0,

we obtain identically

γ(ū, u)[1 − ν(U, u) · ν(ū, u)] =
γ(U, ū)
γ(U, u)

. (6.42)

Moreover from (6.40) and the first relation in (6.39) we obtain

U

γ(U, u)
− u = ν(U, u),

ū

γ(ū, u)
− u = ν(ū, u). (6.43)

Subtracting Eqs. (6.43) from one another we find

U

γ(U, u)
− ū

γ(ū, u)
= ν(U, u) − ν(ū, u), (6.44)

and projecting orthogonally to ū,

P (ū)
U

γ(U, u)
=
γ(U, ū)
γ(U, u)

ν(U, ū) = P (ū)[ν(U, u) − ν(ū, u)]. (6.45)

Using the identity (6.42), we can now write

γ(ū, u)ν(U, ū) = P (ū)
[
ν(U, u) − ν(ū, u)

1 − ν(U, u) · ν(ū, u)

]
. (6.46)

The quantity in the square brackets lives in LRSu; hence it can also be written as

P (u)
[
ν(U, u) − ν(ū, u)

1 − ν(U, u) · ν(ū, u)

]
. (6.47)

Therefore relation (6.46) can be written as

γ(ū, u)ν(U, ū) = P (ū, u)
[
ν(U, u) − ν(ū, u)

1 − ν(U, u) · ν(ū, u)

]
, (6.48)

where P (ū, u) = P (ū)P (u) : LRSu → LRSū, or as

P (ū, u)−1γ(ū, u)ν(U, ū) =
ν(U, u) − ν(ū, u)

1 − ν(U, u) · ν(ū, u) , (6.49)

where P (ū, u)−1 : LRSū → LRSu; this is the velocity composition law.
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6.5 Measurements of energy and momentum
Consider the 4-momentum P = μ0U of a point-like test particle with mass μ0;
let us see what information an observer u reads out of its spatial and temporal
splittings. In terms of these, the 4-momentum can be written as

Pα = P (u)α
βPβ + T (u)α

βPβ = p(U, u)α + uαE(U, u), (6.50)

where p(U, u) is the spatial 4-momentum and E(U, u) its total energy,1 both
relative to u. Let us now justify this interpretation. From (6.39) we have, using
a coordinate-free notation,

p(U, u) = P (u)P = P + u(u · P ) = μ0[U + (u · U)u]. (6.51)

Recalling that u · U = −γ(U, u) and using (6.39), we have

p(U, u) = −μ0ν(U, u) (u · U) = μ0γν(U, u) = μ0γνν̂(U, u). (6.52)

From (6.36), the magnitude of p(U, u) is given by

||p(U, u)|| = μ0γν. (6.53)

Similarly we have

E(U, u) = −(u · P ) = −μ0 (u · U) = γμ0 ; (6.54)

hence, the last two relations justify the physical interpretation of p(U, u) and
E(U, u).

6.6 Measurements of frequencies
Consider a photon with 4-momentum k. With respect to an observer u, the
4-vector k admits the decomposition

k = T (u)k + P (u)k

= ω(k, u)u+ k⊥

= ω(k, u)[u+ ν̂(k, u)], (6.55)

where ω(k, u) = −u · k represents the frequency of the photon as measured by
the observer u; k⊥ = P (u)k is the relative (spatial) momentum and ν̂(k, u) =
ω(k, u)−1 k⊥ is a unitary space-like vector which identifies the local line of sight
of the observer u. Whenever an observer absorbs a light signal, he measures
its frequency and polarization. This operation takes place within a sufficiently
small measurement’s domain that we can limit our considerations to the local

1 Here E(U, u) is in units of the velocity of light c to ensure the dimensions of a momentum.
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inertial frame where special relativity holds. The surface of discontinuity of an
electromagnetic field is described in general by an equation

Φ(x) = 0, (6.56)

where Φ= Φ(x) is a differentiable function of the coordinates known as the eikonal
of the wave; it satisfies the equation

gαβkαkβ = 0 (6.57)

(the eikonal equation), where kα = ∂αΦ. In the observer’s rest frame, reinter-
preting Φ as the phase function in the geometrical optics approximation, the
instantaneous frequency of the wave is given by

ω(k, u) = − dΦ
dτu

, (6.58)

where τu is the proper time of the observer u. From the properties of Φ, (6.58)
is more conveniently written as

ω(k, u) = −(∂αΦ)
dxα

dτu
= −kαu

α. (6.59)

This is the invariant characterization of the frequency of a light signal as measured
by the observer u.

Let us now consider two observers with 4-velocities u and u′, tangent to the
curves γ and γ′ respectively. Let the observers be far apart from each other and
exchange a light signal. At the event of emission “e” on γ, the observer umeasures
a frequency ω(k, u)e = −(uαk

α)e; the same signal will be detected at the event
“o” on γ′, with frequency ω′(k, u′)o = −(u′βk

β)o. The frequency ω(k, u)e at the
point of emission should be evaluated at the point of observation on γ′. This
evaluation is made possible by the properties of the parallel transport along a
null geodesic. Along the null geodesic Υ joining “e” to “o” and having tangent
vector k, the following relations hold:

(uαkα)e = (ǔαǩα)o = (ǔαkα)o, (6.60)

where ǔ and ǩ are the parallel propagated vectors along Υ with the further
property kα = ǩα. The ratio between the emitted and observed frequencies at
the point of observation is called the frequency shift and is denoted by

(1 + z)o =
(
ω(ǩ, ǔ)
ω′(k, u′)

)
o

=
(ǔαk

α)o
(u′αkα)o

. (6.61)

When (1 + z)o < 1, we have a blue-shift, while when (1 + z)o > 1 we have a
red-shift, both referred to u′.

If the frequency shift of the exchanged signal is due to relative motion, then
the shift is known as a Doppler shift. This allows an indirect measurement of
the relative velocity, termed the Doppler velocity. The variation of the frequency
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is directly observable and is given, in the observer’s rest frame at any event on
γ′, by(

ω(ǩ, ǔ)
ω′(k, u′)

)
o

=
(
1 − ||ν(ǔ, u′)||2

)−1/2 [
1 − ||ν(ǔ, u′)|| cos Θ(k,ǔ)

]
. (6.62)

Here ||ν(ǔ, u′)|| is the magnitude of the instantaneous velocity of ǔ with respect
to u′ at the point of observation. Similarly, Θ(k,ǔ) is the angle between the spatial
direction of the light signal and that of the observer who emits it, but referred to
the rest frame of the observer u′ at o. Obviously the spatial direction of motion
of the emitter evaluated in the rest frame of the observer u′ is provided by the
parallel transported vector ǔ at the point of observation on γ′. Recalling (6.60),
Eq. (6.61) becomes, at “o” on γ′,(

ω(ǩ, ǔ)
ω′(k, u′)

)
o

=
(
kαǔ

α

kβu
′β

)
o

=
P (u′)αβk

αǔβ − (u′αk
α)(u′βǔ

β)
(u′ρkρ)

= − (P (u′)αβk
αǔβ)(P (u′)ρσǔ

ρǔσ)1/2

(P (u′)μνkμkν)1/2(P (u′)πτ ǔπǔτ )1/2
− (u′β ǔ

β), (6.63)

recalling that (u′βk
β)γ(s) < 0. From (6.31), however, this becomes(

ω(ǩ, ǔ)
ω′(k, u′)

)
o

= − cos Θ(k,ǔ) (P (u′)ρσǔ
ρǔσ)1/2 − (u′β ǔβ)

= −(u′β ǔβ)
[
1 + cos Θ(k,ǔ)

(P (u′)ρσǔ
ρǔσ)1/2

(u′β ǔβ)

]
. (6.64)

If we define the spatial velocity of u with respect to u′ at “o” as the quantity

||ν(ǔ, u′)|| = − (P (u′)ρσǔ
ρǔσ)1/2

(u′β ǔβ)

∣∣∣∣
o

, (6.65)

we obtain (
1 − ||ν(ǔ, u′)||2

)−1/2
= −(u′βǔβ), (6.66)

so (6.62) is recovered.
Let us now better specify the measurement of frequencies and their compar-

ison. In order to characterize the photon’s frequency as the frequency-at-the-
emission, one has to consider the atom as an observer with 4-velocity u who
reads the frequency as ωe = −(uαkα)e. In this expression the effect of the back-
ground geometry enters through the definition of the observer, the null geodesic k,
and the scalar product itself. Let the emitted photon be observed by a distant
observer with the 4-velocity u′. The frequency-at-the-observation is defined as
ω′ ≡ −(u′αkα)o, where k is the same null geodesic which describes the emitted
photon. At the point of observation one has in general a different space-time
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geometry, and the proper time of the atoms will run differently than that of the
atoms at the point of emission. In order to make a comparison between the emit-
ted and the observed frequencies, how does the observer at the observation point
know about the frequency-at-the-emission? This information is carried by the
emitted photon and deposited in a spectral line of the electromagnetic spectrum
once it reaches the observer u′ at the observation point. In this way the emitted
frequency is directly observed at the observation point. Formally this information
transfer is assured by parallel transport of the frequency-at-the-emission along
the null geodesic, giving rise to the quantity (ω̌e)o = −(ǔαǩα)o. Clearly, being
the scalar product invariant under parallel transport, we have (ω̌e)o = ωe. This
frequency may be compared with the frequency the photon would have had if
the same atomic transition which occurred at the emission point did occur at the
observation point with the local background geometry and with respect to the
observer u′. The latter frequency is given by ω′

o.

6.7 Measurements of acceleration
Consider the world line of a test particle with tangent vector field U , and
let a(U)=∇UU be its 4-acceleration due to the presence of an external non-
gravitational force per unit of mass f(U), so that

a(U) = f(U). (6.67)

If a family of observers u is defined all along the world line of the particle then
both its 4-acceleration and the external force can be expressed in terms of mea-
surements made by u.

The local space and time splitting of a(U) relative to u is given by2

a(U) = P (u)a(U) + T (u)a(U)

= P (u)a(U) − u(u · a(U)). (6.68)

From the property a(U) · U = 0 we deduce that a(U) = P (U)a(U); hence (6.68)
can be written as

a(U) = P (u)P (U)a(U) − u(u · a(U))

= P (u,U)a(U) − u(u · a(U)). (6.69)

Using again the orthogonality between a(U) and U and the splitting U = γ(u+
ν(U, u)), we have u · a(U) = −ν(U, u) · a(U); hence

a(U) = P (u,U)a(U) − u(ν(U, u) · P (u,U)a(U)). (6.70)

2 To simplify notation we often use juxtaposition of tensors to mean inner product. For
example we write P (u, U)a(U) instead of P (u, U) a(U).
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Therefore

P (u,U)a(U) = P (u)∇UU

= P (u) {γ∇U [u+ ν(U, u)] + [u+ ν(U, u)]∇Uγ}
= γP (u)∇U [u+ ν(U, u)] + ν(U, u)∇Uγ, (6.71)

that is

P (u,U)a(U) = γP (u)
Du

dτU
+ P (u)

D(γν(U, u))
dτU

= γ
D(fw,U,u)u

dτU
+
D(fw,U,u)p(U, u)

dτU
, (6.72)

where p(U, u) = γν(U, u) is the relative linear momentum of the particle per unit
mass, with respect to u. We have already defined in (3.156) the gravitational
force (per unit mass) as

P (u)
Du

dτU
= −F (G)

(fw,U,u); (6.73)

hence we have in the local rest frame of u:

P (u,U)a(U) = −γF (G)
(fw,U,u) +

D(fw,U,u)p(U, u)
dτU

. (6.74)

Let us define

P (u,U)f(U) ≡ γF (U, u), (6.75)

then recalling (6.67) we have

− γF
(G)
(fw,U,u) +

D(fw,U,u)p(U, u)
dτU

= γF (U, u), (6.76)

so that, from (3.151), we obtain

D(fw,U,u)p(U, u)
dτ(U,u)

= F (U, u) + F
(G)
(fw,U,u). (6.77)

This is the force equation in a Newtonian-like form. Finally, scalar multiplication
of both sides of (6.77) by ν(U, u) gives

ν(U, u) ·
D(fw,U,u)p(U, u)

dτ(U,u)
= ν(U, u) · [F (U, u) + F

(G)
(fw,U,u)]. (6.78)

Recalling that p(U, u) = γν(U, u), we have

ν(U, u) ·
D(fw,U,u)(γν(U, u))

dτ(U,u)

=
dγ

dτ(U,u)
ν2 + γ

(
ν(U, u) ·

D(fw,U,u)ν(U, u)
dτ(U,u)

)

=
dγ

dτ(U,u)

(
ν2 +

1
γ2

)
=

dγ

dτ(U,u)
, (6.79)
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where we have used the relation

dγ

dτ(U,u)
= γ3

(
ν(U, u) ·

D(fw,U,u)ν(U, u)
dτ(U,u)

)
. (6.80)

Therefore, we have

dE(U, u)
dτ(U,u)

= ν(U, u) · [F (U, u) + F
(G)
(fw,U,u)], (6.81)

where E(U, u) = γ(U, u) ≡ γ is the energy of the particle per unit of mass.
Equation (6.81) is the power equation in a Newtonian-like form.

Longitudinal-tranverse splitting of the force equation

The measurement of the acceleration of a test particle in the presence of an exter-
nal force permitted a Newtonian-like representation of the equations of motion,
as shown by (6.77) and (6.81). One can complete this analysis by considering a
further splitting of these equations along directions parallel (longitudinal) and
orthogonal (transverse) to that of the velocity of the particle relative to the
observer u. A key tool for this study is the use of the relative Frenet-Serret
frames introduced in Chapter 4.

The transverse splitting of the relative acceleration defines the relative cen-
tripetal acceleration. This splitting is accomplished by projecting (6.77) onto
the relative Frenet-Serret frame {ν̂(U, u), η̂(fw,U,u), β̂(fw,U,u)}, as discussed in
Eqs. (4.39), (4.40), and (4.41).

Let ||p(U, u)|| = γ||ν(U, u)|| be the magnitude of the specific (i.e. per unit mass)
spatial momentum of U as seen by u, so that

p(U, u) = ||p(U, u)||ν̂(U, u), (6.82)

while the gamma factor is the corresponding specific energy E(U, u) = γ. They
satisfy the identity

E(U, u)2 − ||p(U, u)||2 = 1. (6.83)

Then (6.77) takes the form

F (U, u) + F
(G)
(fw,U,u) =

d||p(U, u)||
dτ(U,u)

ν̂(U, u) + ||p(U, u)||
D(fw,U,u)ν̂(U, u)

τ(U,u)

=
d||p(U, u)||
dτ(U,u)

ν̂(U, u)

+ γν(U, u)2k(fw,U,u)η̂(fw,U,u), (6.84)

where (4.39) has been used.
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The relative Frenet-Serret components of this equation, i.e. the projections on
the axes of the triad {ν̂(U, u), η̂(fw,U,u), β̂(fw,U,u)}, are given by

dE(U, u)
d�(U,u)

= [F (U, u) + F
(G)
(fw,U,u)] · ν̂(U, u),

γν(U, u)2k(fw,U,u) = [F (U, u) + F
(G)
(fw,U,u)] · η̂(fw,U,u),

0 = [F (U, u) + F
(G)
(fw,U,u)] · β̂(fw,U,u), (6.85)

where d�(U,u) = ντ(U,u) and

d||p(U, u)||
dτ(U,u)

=
E(U, u)
||p(U, u)||

dE(U, u)
dτ(U,u)

=
1
ν

dE(U, u)
dτ(U,u)

=
dE(U, u)
d�(U,u)

. (6.86)

This equality follows from the identity (6.83), and has been used to express the
longitudinal acceleration term in (6.84) as shown by (6.85)1.

Note that if U is tangent to a geodesic, F (U, u) = 0 and Eqs. (6.85) imply

dE(U, u)
d�(U,u)

= F
(G)
(fw,U,u) · ν̂(U, u),

γν(U, u)2k(fw,U,u) = F
(G)
(fw,U,u) · η̂(fw,U,u),

0 = F
(G)
(fw,U,u) · β̂(fw,U,u). (6.87)

On the other hand, the force equation may also be considered from the point
of view of the comoving Frenet-Serret frame {V̂(u,U), N̂(fw,u,U), B̂(fw,u,U)} intro-
duced in Chapter 4, Eqs. (4.46).

By applying the derivative D/dτU to the representation of u,

u = γ(U + ν(u,U)) = γ(U − νV̂(u,U)) (6.88)

and solving for a(U) = f(U), one obtains

a(U) =
DU

dτU
= P (U)

DU

dτU

= P (U)
D

dτU

(
γ−1u− ν(u,U)

)
= P (U)

D(γ−1u)
dτU

+ P (U)
D

dτU

(
νV̂(u,U)

)
= −γ−2 Dγ

dτU
P (U)u+ γ−1P (U)

Du

dτU

+
Dν

dτU
V̂(u,U) + νP (U)

DV̂(u,U)
dτU

. (6.89)

Using (6.88), we now find that

P (U)u = −γνV̂(u,U), (6.90)
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so that, recalling (3.156) for the definition of the gravitational force, we have for
the previous relation

f(U) = −γν dν
dτU

(−γνV̂(u,U)) − γ−1P (U, u)F (G)
(fw,U,u)

+
dν

dτU
V̂(u,U) + νP (U)

DV̂(u,U)
dτU

= (1 + γ2ν2)
dν

dτU
V̂(u,U) − γ−1P (U, u)F (G)

(fw,U,u) + νP (U)
DV̂(u,U)
dτU

= γ2 dν

dτU
V̂(u,U) − γ−1P (U, u)F (G)

(fw,U,u) + νP (U)
DV̂(u,U)
dτU

= γ−1 d(γν)
dτU

V̂(u,U) − γ−1P (U, u)F (G)
(fw,U,u) + νP (U)

DV̂(u,U)
dτU

= γ−1 d||p(u,U)||
dτU

V̂(u,U) + γν2K(fw,u,U)N̂(fw,u,U)

− γ−1P (U, u)F (G)
(fw,U,u). (6.91)

Rearranging terms in this equation leads to the suggestive form

d||p(u,U)||
dτ(U,u)

V̂(u,U) = f(U) + F (G)
(fw,u,U)

− γν2K(fw,u,U)N̂(fw,u,U), (6.92)

where

F (G)
(fw,u,U) = γ−1P (U, u)F (G)

(fw,U,u) = −γ−1P (U)
Du

dτU
= −P (U)

Du

dτ(U,u)
. (6.93)

The last term on the right-hand side of (6.92), being proportional to the derivative
of the unit spatial velocity V̂(u,U) of u with respect to U , is called the generalized
centrifugal force; it is measured by the particle U itself. Its non-relativistic limit
in flat space-time leads to the familiar centrifugal force relative to the usual
family of inertial observers. The comoving relative Frenet-Serret decomposition
of (6.92) is

dE(U, u)
d�(U,u)

= [f(U) + F (G)
(fw,u,U)] · V̂(u,U),

γν2K(fw,u,U) = [f(U) + F (G)
(fw,u,U)] · N̂(fw,u,U),

0 = [f(U) + F (G)
(fw,u,U)] · B̂(fw,u,U). (6.94)

These equations are valid as long as ν belongs to the open interval (0, 1) and with
a slight modification when ν = 1. When ν = 0, the spatial arc length parameter-
ization d�(U,u) = γνdτU is singular because the particle path in LRSU collapses
to a point. However, since Eqs. (6.94) are just projections along the comoving
Frenet-Serret triad of the space-time force equation, they continue to hold in
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the limit ν → 0. One may use the terminology comoving relatively straight and
comoving relatively flat for those world lines for which the comoving relative cur-
vature and torsion respectively vanish. By solving Eq. (6.84) for the gravitational
force

F
(G)
(fw,U,u) = γν2η̂(fw,U,u) − F (U, u) +

d||p(U, u)||
dτ(U,u)

ν̂(U, u) (6.95)

and inserting the result into Eq. (4.47), that is

K(fw,u,U)N̂(fw,u,U) = γk(fw,U,u)η̂(fw,U,u)

+ ν̂(U, u) ×u [ν̂(U, u) ×u F
(G)
(fw,U,u)], (6.96)

one finds the relation

K(fw,u,U)N̂(fw,u,U) = γ−1k(fw,U,u)η̂(fw,U,u)

− ν̂(U,u) ×u [ν̂(U,u) ×u F (U, u)]. (6.97)

When the curve is a geodesic, that is when F (U, u) = 0, the two curvatures
K(fw,u,U) and k(fw,U,u) only differ by a gamma factor and the two directions
N̂(fw,u,U) and η̂(fw,U,u) coincide. In fact, from (6.97) we find

K(fw,u,U)N̂(fw,u,U) = γ−1k(fw,U,u)η̂(fw,U,u), (6.98)

so that

K(fw,u,U) = γ−1k(fw,U,u). (6.99)

Thus, for a geodesic, the notions of relative Fermi-Walker straight (as stated
following (4.42)) and comoving relatively straight world lines agree with each
other.

A relationship between the relative and comoving torsion may be established
by differentiating Eq. (4.47) along U and using the last comoving relative Frenet-
Serret relation (4.46). After some algebra one finds

γνK2
(fw,u,U)T(fw,u,U) = γ2νk(fw,U,u)τ(fw,U,u)[k(fw,U,u) − F

(G)
(fw,U,u) · η̂(fw,U,u)]

+
d(γk(fw,U,u))

dτU
[F (G)

(fw,U,u) · β̂(fw,U,u)]

+K(fw,u,U)N̂(fw,u,U) · ∇U [ν̂(U, u) ×u F
(G)
(fw,U,u)]. (6.100)

In the special case of geodesics, this reduces to

T(fw,u,U) = τ(fw,U,u), (6.101)

so the notions of relative Fermi-Walker flatness and comoving relative Fermi-
Walker flatness also agree.
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6.8 Acceleration change under observer transformations
Consider two accelerated time-like world lines with unit tangent vectors U and u.
We shall express the acceleration of U in terms of that of u. By definition we have

a(U) = P (U)∇UU = γP (U)[∇Uu+ ∇Uν(U, u)]

= γP (U)[∇Uu+ P (u)∇Uν(U, u) − u(u · ∇Uν(U, u))]

= γP (U)[∇Uu+ P (u)∇Uν(U, u) + u(ν(U, u) · ∇Uu)]. (6.102)

Recalling (3.156) and (3.161), namely

Du

dτU
= −F (G)

(fw,U,u), P (u)
D

dτU
ν(U, u) = γa(fw,U,u), (6.103)

relation (6.102) becomes

a(U) = γP (U)
[
−F (G)

(fw,U,u) + γa(fw,U,u) − u(ν(U, u) · F (G)
(fw,U,u))

]
= −γP (U)[P (u) + u⊗ ν(U, u)]F (G)

(fw,U,u) + γ2P (U, u)a(fw,U,u). (6.104)

But, from (3.121)4 it follows that

P (u) + u⊗ ν(U, u) = P (u,U)−1, (6.105)

and hence the final result from (3.156) is given by

a(U) = −γP (u,U)−1F
(G)
(fw,U,u) + γ2P (U, u)a(fw,U,u)

= γ2
{
P (u,U)−1[a(u) + ω(u) ×u ν(U, u) + θ(u) ν(U, u)]

+P (U, u)a(fw,U,u)

}
. (6.106)

6.9 Kinematical tensor change under observer
transformations

We now consider two time-like congruences of curves, CU and Cu; our aim is to
express the kinematical tensor of one congruence in terms of the other. From the
definition, the kinematical tensor of CU , k(U) = −[P (U)∇U ], can be written as

k(U)α
β = −P (U)α

σP (U)δ
β [∇U ]σδ

= −P (U)α
σP (U)δ

β∇δU
σ

= −γP (U)α
σP (U)δ

β∇δu
σ

− γ[∇(U)ν(U, u)]αβ . (6.107)
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We evaluate the term P (U)∇u as follows:

[P (U)∇u]αβ = P (U)α
σP (U)δ

β∇δu
σ

= P (U)α
σP (U)δ

β [−a(u)σuδ − k(u)σ
δ]. (6.108)

Taking into account that

0 = P (U)α
βU

β = γP (U)α
β [uβ + ν(U, u)β ], (6.109)

we have

P (U)α
βu

β = −P (U)α
βν(U, u)β . (6.110)

Therefore

[P (U)∇u]αβ = P (U)α
σP (U)δ

β [a(u)σν(U, u)δ − k(u)σ
δ]

= P (U, u)α
σP (U, u)δ

β [a(u)σν(U, u)δ − k(u)σ
δ] , (6.111)

or in index-free notation

P (U)∇u = −P (U, u)[k(u) − a(u) ⊗ ν(U, u)]. (6.112)

We can then complete our task, obtaining

k(U) = γP (U, u)[k(u) − a(u) ⊗ ν(U, u)]

− γ∇(U)ν(U, u). (6.113)

Since ω(U)� = ALT [k(U)�], we have the transformation law for the vorticity
2-form,

ω(U)� = γALT
{
P (U, u)[k(u)� − a(u)� ⊗ ν(U, u)�]

}
+

1
2
γd(U)ν(U, u)�

= γP (U, u)[ω(u)� − 1
2
a(u) ∧ ν(U, u)]

+
1
2
γd(U)ν(U, u)�. (6.114)

We shall now derive the analogous expression for the vorticity vector, namely

ω(U) = γ2P (u,U)−1[ω(u) +
1
2
ν(U, u) ×u a(u)]

+
1
2
γ curlUν(U, u). (6.115)

Let us write (6.114) in the form

ω(U)� − 1
2
γd(U)ν(U, u)� ≡ P (U, u)X, (6.116)

where

X� = γ

[
ω(u) − 1

2
a(u) ∧ ν(U, u)

]�

. (6.117)
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Next, contract both sides of (6.116) with (1/2)η(U). The left-hand side becomes

1
2
η(U)αβγ

[
ω(U)αβ − γ

2
2∇(U)[αν(U, u)β]

]
, (6.118)

that is

ω(U)γ − γ

2
[curlUν(U, u)]γ . (6.119)

To deduce the effect of contracting the right-hand side of (6.116) by (1/2)η(U),
namely

1
2
η(U)P (U, u)X,

let us first recall, from (3.20), that

η(U)βγδ = Uαηαβγδ = −2Uα
(
u[αη(u)β]γδ + u[γη(u)δ]αβ

)
= γ [η(u)βγδ + να(uβη(u)αγδ

+uγη(u)αδβ − uδη(u)αγβ)] . (6.120)

Then let us recall that

P (U, u)α
μ = P (u)α

μ + γUαν
μ (6.121)

implies, for any antisymmetric 2-tensorX ∈LRSu ⊗LRSu, the following relation:

[P (U, u)X]αβ = P (U, u)α
μP (U, u)β

νXμν

= Xαβ + γUβXασν
σ − γUαXβσν

σ

= [X + γU ∧ (X ν)]αβ . (6.122)

From the latter equation we deduce that

η(U)γαβ [P (U, u)X]αβ = η(U)γαβXαβ , (6.123)

because terms along U vanish after contraction with η(U). Using (6.120) we now
find that

η(U)γαβ [P (U, u)X]αβ = γ[η(u)γαβ − νμu
γη(u)μβα]Xαβ , (6.124)

that is

∗(U) [P (U, u)X] = γ[ ∗(u)X + u⊗ (ν ∗(u)X)]

= γ[P (u) + u⊗ ν] ∗(u)X

= γP (u,U)−1 ∗(u)X. (6.125)

Since we have

∗(u)X = γ

[
ω(u) − 1

2
a(u) ×u ν(U, u)

]
, (6.126)

Eq. (6.115) follows.
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Similarly one can obtain the expansion tensor of CU in terms of the kinematical
properties of Cu. Since θ(U)� = −SYM [k(U)�] we have

− θ(U)� = γSYM
{
P (U, u)[k(u)� − a(u)� ⊗ ν(U, u)�]

}
− γSYM[∇(U)ν(U, u)�]

= −γP (U, u)
[
θ(u)� +

1
2
[a(u) ⊗ ν(U, u) + ν(U, u) ⊗ a(u)]

]
− γSYM[∇(U)ν(U, u)�]. (6.127)

6.10 Measurements of electric and magnetic fields
Assume that an observer u moves through an electromagnetic field described
by the Faraday 2-form Fαβ . The observer learns of this electromagnetic field
by studying the behavior of a charged particle. Let U be the 4-velocity of the
particle; its trajectory is not a geodesic because of the Lorentz force, hence it has
a 4-acceleration

a(U)α =
e

μ0
Fα

βU
β , (6.128)

where e is the particle’s electric charge and μ0 its mass. Our aim is to show how
the measured force on the charge is defined in terms of the charge and the four-
dimensional quantities which characterize the observer and the electromagnetic
field. Because Fαβ is a 2-form, we can apply the general splitting formula (3.14),
valid for a p-form. The result is:

Fαβ = 2u[αE(u)β] + [∗(u)B(u)]αβ , (6.129)

where we have introduced the electric part of F ,

E(u)β ≡ F β
ρu

ρ, (6.130)

and the magnetic part,

B(u)α ≡ ∗Fρ
αuρ =

1
2
ηραμνFμνuρ. (6.131)

In coordinate-free notation the definition of such fields is

E(u) = F u, B(u) ≡ ∗(u) [P (u)F ]. (6.132)

Let us decompose the force term f(U) = (e/μ0)F U into a transverse and a
parallel component relative to u, namely

f(U) = P (u) f(U) + T (u) f(U). (6.133)
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The transverse force can be written in coordinate components as

P (u)α
βf(U)β =

e

μ0
P (u)αβFβμU

μ

=
e

μ0
P (u)αβ [uβE(u)μ − uμE(u)β

+ η(u)βμ
σB(u)σ] γ(uμ + ν(U, u)μ)

= − e

μ0

[
ησπλ

αuσUλB(u)π + E(u)α(uρU
ρ)
]
. (6.134)

As a result the transverse force term becomes

P (u)f(U) =
e

μ0
γ [E(u) + ν(U, u) ×u B(u)] . (6.135)

The parallel force component T (u)f(U) can be written more conveniently as

T (u)α
βf(U)β = −uα

[
uβf(U)β

]
= − e

μ0
uαuβF

β
σU

σ. (6.136)

Recalling that

Uσ = γ[uσ + ν(U, u)σ], (6.137)

we can write (6.136) as

T (u)α
βf(U)β = uαν(U, u)βE(U)β . (6.138)

The magnitude of this quantity measures the power of the electromagnetic action
on the particle as seen by u. From the representation of F we have, relative to
both the observers u and U ,

Fαβ = 2u[αE(u)β] + [∗(u)B(u)]αβ

= 2U[αE(U)β] + [∗(U)B(U)]αβ ; (6.139)

hence, contracting with U and using the definitions so far introduced, we obtain

E(U) = γP (u,U)−1 [E(u) + ν(U, u) ×u B(u)] ,

B(U) = γP (u,U)−1 [B(u) − ν(U, u) ×u E(u)] . (6.140)

If we split the fields along directions parallel and transverse to that of the
relative velocity ν̂(U, u) we obtain

E(u) = E‖(u)ν̂(U, u) + E⊥(u), (6.141)

and similarly for B(u). Hence (6.140) take the more familiar form

[B(lrs)(u,U)E(U)]‖ = E‖(u),

[B(lrs)(u,U)E(U)]⊥ = γ[E⊥(u) + ν(U, u) ×u B
⊥(u)], (6.142)

and

[B(lrs)(u,U)B(U)]‖ = B‖(u),

[B(lrs)(u,U)B(U)]⊥ = γ[B⊥(u) − ν(U, u) ×u E
⊥(u)]. (6.143)
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Recalling that the physical meaning of a 4-vector is encoded in its magnitude,
we can deduce that the magnitude of P (u)f(U) is just the magnitude of the
Lorentz force, and so the moduli of the electric and the magnetic parts describe
the electric field intensity and the magnetic induction.

By introducing the complex vector field Z(u) = E(u) − iB(u) (Landau and
Lifshitz, 1975), Eqs. (6.142) and (6.143) can be written together as

[B(lrs)(u,U)Z(U)]‖ = Z‖(u),

[B(lrs)(u,U)Z(U)]⊥ = coshαZ⊥(u)

+ i sinhα [ν̂(U, u) ×u Z
⊥(u)], (6.144)

where ||ν(U, u)|| = tanhα. In terms of components with respect to an observer-
adapted frame {eα} (e0 = u, with e3 along ν̂(U, u)), this complex vector repre-
sentation reflects the isomorphism between the group of proper orthochronous
Lorentz transformations and SO(3, C), the group of proper orthogonal transfor-
mations. In the 2-plane orthogonal to e3 within LRSu one has[

[B(lrs)(u,U)Z(U)]⊥1

[B(lrs)(u,U)Z(U)]⊥2

]
=
[

coshα −i sinhα
i sinhα coshα

] [
Z⊥(u)1
Z⊥(u)2

]
. (6.145)

6.11 Local properties of an electromagnetic field
An interesting application is the splitting of the energy-momentum tensor of an
electromagnetic field. We have

Tαβ =
1
4π

(
FαρFβ

ρ − 1
4
gαβFρσF

ρσ

)
=

1
4π

[F 2]TF
αβ . (6.146)

An arbitrary observer u will measure:

(i) an energy density

E(u) = Tαβu
αuβ =

1
8π

(E(u)2 +B(u)2); (6.147)

(ii) a momentum density (Poynting vector)

P(u)α = −P (u)α
βT

β
ρu

ρ =
1
4π

[E(u) ×u B(u)]α ; (6.148)

(iii) a uniform pressure

p(u) =
1
3
TrT (u) =

1
3
E(u). (6.149)
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Observers U(em) who measure a vanishing Poynting vector

Given an electromagnetic field and a general observer u, the Poynting vector and
the energy density are given by

4πP(u) = E(u) ×u B(u) =
i

2
[Z̄(u) ×u Z(u)], (6.150)

4πE(u) =
1
2
[E(u)2 +B(u)2] =

1
2
|Z(u)|2. (6.151)

It is well known (see exercise 20.6 of Misner, Thorne, and Wheeler, 1973) that
observers exist who see a vanishing Poynting vector or, equivalently, electric and
magnetic fields parallel to each other. Let U be an observer in relative motion
with respect to u with

U = γ[u+ νν̂(U, u)] = u coshα+ ν̂(U, u) sinhα . (6.152)

With respect to U , the magnitude of the Poynting vector is given by

4π||P(U)|| = E(U) ×U B(U)

=
i

2

∣∣[(ν̂(U, u) · (Z̄(u) ×u Z(u))
)
cosh 2α+ i |Z(u)|2 sinh 2α

]∣∣
=

1
2
|Z(u)|2| cosh 2α tanh 2α(em) − sinh 2α|

= 4πE(u)
| sinh 2(α− α(em))|

cosh 2α(em)
, (6.153)

where we have defined

tanh 2α(em) = i
ν̂(U, u) · (Z̄(u) × Z(u))

|Z(u)|2

= 2
ν̂(U, u) · (E(u) ×u B(u))

E(u)2 +B(u)2
. (6.154)

When α = α(em), i.e. selecting U as a particular observer U(em), we have
||P(U(em))|| = 0. With respect to U(em), the electromagnetic energy density takes
a minimum value. In fact, the electromagnetic energy density measured by U is
in general

4πE(U) =
1
2
|Z(u)|2[cosh 2α− sinh 2α tanh 2α(em)]

= 4πE(u)
cosh 2(α− α(em))

cosh 2α(em)
. (6.155)

Therefore, when α = α(em), E(U(em)) takes a minimum value equal to

E(U(em)) =
E(u)

cosh 2α(em)
. (6.156)
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6.12 Time-plus-space (1 + 3) form of Maxwell’s equations
The electromagnetic or Faraday 2-form F is the exterior derivative of a 4-potential
1-form

F � = dA = u� ∧ E(u)� + ∗(u)B(u)�. (6.157)

The splitting of Maxwell’s equations

d2A� = 0, ∗d∗F = 4πJ (6.158)

leads to

divuB(u) + 2ω(u) ·u E(u) = 0, (6.159)

curluE(u) + a(u) ×u E(u) = −[£(u)u + Θ(u)]B(u), (6.160)

divuE(u) − 2ω(u) ·u B(u) = 4πρ(u), (6.161)

curluB(u) + a(u) ×u B(u) − [£(u)u + Θ(u)]E(u) = 4πJ(u), (6.162)

where J = ρ(u)u+J(u) is the splitting of the 4-current. This shows that Maxwell’s
equations in their traditional form hold only in an inertial frame where ω(u), a(u),
and θ(u) vanish.

6.13 Gravitoelectromagnetism
Consider a unit mass charged particle in motion in a given space-time. The
equation of motion (6.77),

D(fw,U,u)p(U, u)
dτ(U,u)

= F (U, u) + F
(G)
(fw,U,u), (6.163)

becomes

D(fw,U,u)p(U, u)
dτ(U,u)

= e[E(u) + ν(U, u) ×u B(u)] +

− γ[a(u) + ω(u) ×u ν(U, u)

+ θ(u) ν(U, u)], (6.164)

where F (U, u) has been replaced by the Lorentz force (6.135) (rescaled by a γ

factor because on the left-hand side the temporal derivative involves the relative
standard time and not the proper time as a parameter along the particle’s world
line), and the gravitational force F (G)

(fw,U,u) is given by (3.156), namely

F
(G)
(fw,U,u) = −γ[a(u) + ω(u) ×u ν(U, u) + θ(u) ν(U, u)]. (6.165)

Comparing these two forces leads to the identification of a gravitoelectric field

Eg(u) = −a(u) (6.166)
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and a gravitomagnetic field

Bg(u) = ω(u), (6.167)

so that

F
(G)
(fw,U,u) = γ[Eg(u) + ν(U, u) ×u Bg(u) + θ(u) ν(U, u)]. (6.168)

Therefore, apart from the gamma factor in the gravitational force and the con-
tribution of the expansion tensor θ(u), the Lorentz force is closely similar to the
gravitational force. This analogy is what we call gravitoelectromagnetism, even
though the gravitational and electromagnetic interactions remain distinct.

It is worth noting that (1) no linear approximation of the gravitational field
has been made here in order to introduce gravitoelectromagnetism (Jantzen,
Carini, and Bini, 1992); (2) the analogy between gravity and electromagnetism,
developed here starting from the analysis of test particle motion, could be pursued
similarly studying fluid or field motions.

6.14 Physical properties of fluids
A physical observer who studies the behavior of a relativistic fluid which is in
general away from thermodynamic equilibrium must specify in his own rest frame
the parameters which invariantly characterize the fluid and determine its evolu-
tion. For this purpose one would need a full thermodynamic treatment (Israel,
1963), which is well beyond the scope of this book. We shall instead outline some
of the results in the case of a simple fluid, i.e. when the deviations from local
equilibrium are small and the self-gravity of the fluid is neglected.

If T is the energy-momentum tensor of the fluid and u is the vector field
tangent to a congruence of observers, the following decomposition holds for each
fluid element (Ellis, 1971; Ellis and van Elst, 1998):

T = T (u) + u⊗ q(u) + q(u) ⊗ u+ ρ(u)u⊗ u, (6.169)

where

T (u)αβ ≡ P (u)α
ρP (u)β

σTρσ, (6.170)

q(u)α ≡ −P (u)α
ρTρσu

σ, (6.171)

ρ(u) ≡ Tρσu
ρuσ. (6.172)

An insight into the physical interpretation of these quantities arises from the def-
inition of the 4-momentum of an extended body. If we choose a space-like hyper-
space Σ in such a way that its unit normal is parallel to u, then the quantities

P̂α = −Tα
βu

β (6.173)
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turn out to be the components of the 4-momentum density of the fluid. With
respect to the observer u this 4-vector can then be decomposed as

P̂α = P (u)α
βP̂

β + T (u)α
βP̂

β

= −P (u)α
βT

β
μu

μ + uαuβT
β

μu
μ

= q(u)α + ρ(u)uα. (6.174)

The first term q(u)α represents the three-dimensional energy flux density and
describes not only the linear momentum of the fluid elements but thermo-
conduction processes such as convection, radiation and heat transfer (Landau and
Lifshitz, 1959; Novikov and Thorne, 1973). The second term ρ(u)uα describes an
energy density current, so its magnitude ρ(u) is just the energy density of the
fluid relative to u. The remaining transverse quantity T (u) in (6.170), being a
symmetric tensor in the three-dimensional LRSu, can be written as the sum of
a trace-free tensor and a trace, as follows:

T (u)αβ = [T (u)]TF
αβ +

1
3

[Tr T (u)]P (u)αβ , (6.175)

where [T (u)]TF is the trace-free part of T (u) and Tr T (u) is its trace. The quan-
tity [T (u)]TF is termed the viscous stress tensor and describes non-isotropic dis-
sipative processes; to the assumed accuracy (namely small deviations from local
equilibrium) the viscous stresses enter the energy-momentum tensor as linear
perturbations to the equilibrium configuration and are given in terms of the fluid
shear, with a coefficient called the shear viscosity. The trace Tr T (u) is only
related to the uniform properties of the fluid; it can be written as

Tr T (u) = 3
[
p(u) + φ̃(u)

]
, (6.176)

where p(u) is the hydrostatic pressure and φ̃(u) is a contribution to the pressure
arising from the appearance of a volume (or bulk) viscosity. Finally, we define
as comoving with the fluid that observer U with respect to whom the quantities
q(U)α describe only processes of thermo-conduction, the fluid elements having
zero momentum (Landau and Lifshitz, 1959). This observer’s four-velocity will
be hereafter be identified as the 4-velocity of the fluid; the other physical quanti-
ties, density ρ(U), pressure p(U), and internal mechanical stresses T (U), will be
denoted by ρ0, p0, and T0, respectively.

In the case of a perfect fluid, namely when

[T (U)]TF = 0, φ̃ = 0, q(U) = 0,

the energy-momentum tensor becomes

Tαβ = [p(U) + ρ(U)]UαUβ + gαβ p(U). (6.177)
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A perfect fluid is termed dust if, in the comoving frame, p(U) = 0; hence it is
described by the energy-momentum tensor

Tαβ = ρ(U)UαUβ . (6.178)

In what follows we will discuss separately the cases of ordinary fluids (i.e. those
without thermal stresses) and fluids with thermal stress, discussing both absolute
and relative dynamics with respect to a general observer.

Ordinary fluids: absolute dynamics

A fluid is termed ordinary when its stresses in the comoving frame, hereafter
referred to as proper stresses, are purely mechanical. In this case its energy-
momentum tensor can be written as

T = ρ0U ⊗ U + T0, T0 U = 0, ρ0 = μ0ε̂0, (6.179)

where U is the 4-velocity field of the fluid elements, ρ0 includes the matter energy
(μ0) and internal energy (ε̂0), and T0 ≡ T (U) is the proper mechanical stress
tensor. In the presence of matter and eventually other external fields the evolution
equations of the fluid are

div T = μ0f, (6.180)

where the space-time divergence operation div is defined in (2.111) and f repre-
sents the action of any external field. Let us consider the splitting of (6.180) in
the comoving frame of the fluid. First of all we have

∇αT
αβ = ∇α(ρ0U

β)Uα + ρ0U
β∇αU

α + [div T0]β = μ0f
β , (6.181)

that is

∇U (ρ0U) + ρ0UΘ(U) = μ0fm, (6.182)

where Θ(U) = ∇αU
α and

fm ≡ f − 1
μ0

div T0 (6.183)

is the total mechanical force, including both internal and external actions given
respectively by (1/μ0)div T0 and f .

Equation (6.182) can then be written in the form

ρ0a(U) + U div (ρ0U) = μ0fm. (6.184)

Projecting (6.184) orthogonally to U then gives

ρ0a(U) = μ0P (U)fm ≡ μ0(f
(e)
0 + f

(i)
0 ), (6.185)
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where the contributions from external and internal forces have been made explicit
according to the following definitions:

f
(e)
0 = P (U)f (6.186)

and

f
(i)
0 ≡ − 1

μ0
P (U)[div T0]

= − 1
μ0

[divU T0 + a(U) T0] , (6.187)

where we have introduced the spatial divergence operator (see (3.37))

[divU T0]α = ∇(U)μT μα
0 . (6.188)

The following notation will prove useful:

w0 = −f · U Proper power of external forces
per unit of mass;

w
(i)
0 = −U · div T0 = Tr[T0 θ(U)] Power of internal forces

per unit proper volume;

W0 = μ0w0 − w
(i)
0 = −μ0(fm · U) Total power per unit

of proper volume. (6.189)

Multiplying Eq. (6.184) by U , one finds the energy equation

div (ρ0U) = W0. (6.190)

Excluding processes of matter creation or annihilation, one must add to this
equation the conservation of the proper mass of the fluid,

0 = div (μ0U) = ∇Uμ0 + μ0Θ(U). (6.191)

In this case, using the relation ρ0 = μ0ε̂0, the energy equation (6.190) becomes

∇U ε̂0 =
1
μ0
W0 ; (6.192)

therefore, recalling (6.189), we find

Dε̂0
dτU

= w0 −
1
μ0
w

(i)
0 , (6.193)

which represents the First Law of Thermodynamics in the rest frame of the fluid.
Summarizing, the fundamental equations in the rest frame of the fluid are given by

ρ0a(U) = μ0(f
(i)
0 + f

(e)
0 ) Equation of motion;

Dε̂0
dτU

= w0 −
1
μ0
w

(i)
0 Energy equation. (6.194)
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The equation of motion can also be cast in the following form. According to
(6.185),

μ0f
(i)
0 = −divU T0 − a(U) T0, (6.195)

that is, f (i)
0 contains the fluid acceleration a(U). One can collect terms involving

acceleration, rewriting the equation of motion in the form

[ρ0P (U) − T0] a(U) = μ0f
(e)
0 − divU T0, (6.196)

similar to the second law of test particle dynamics.

Ordinary fluids: relative dynamics

We now study fluid dynamics as seen by an observer u not comoving with the
fluid. Splitting the 4-velocity field of the fluid in the standard way,

U = γ(U, u)[u+ ν(U, u)], (6.197)

the evolution equations with respect to u are obtained by the spatial and temporal
projections of (6.194) with respect to u. Projecting (6.185) first orthogonally to
U and then orthogonally to u gives

ρ0P (u,U)a(U) = μ0P (u,U)fm. (6.198)

Using relation (6.106), namely

P (u,U)a(U) = −γF (G)
(fw,U,u) + γ2P (u,U, u)a(fw,U,u), (6.199)

with

P (u,U, u) ≡ P (u,U) P (U, u), (6.200)

one finds

ρ0γ
2P (u,U, u)a(fw,U,u) = ρ0γF

(G)
(fw,U,u) + μ0P (u,U)fm. (6.201)

Let us now define, following Ferrarese and Bini (2007), the relative energy and
mass densities

μ̂ = ρ0γ
2, μ = μ0γ

2, (6.202)

where the presence of the square of the gamma factor has a simple explanation in
terms of the Lorentz transformation from the comoving frame U to the observer’s
frame u: one γ comes from the energy transformation and the other from the
volume transformation. Equation (6.201) then becomes

μ̂a(fw,U,u) = P (u,U, u)−1[ρ0γF
(G)
(fw,U,u) + μ0P (u,U)fm]

= P (u,U, u)−1[ρ0γF
(G)
(fw,U,u) + μ0P (u)fm − γνW0]. (6.203)
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Let us now introduce the total relative force

μF (tot)
(fw,U,u) = μ0P (u)fm + ρ0γF

(G)
(fw,U,u), (6.204)

which contains the contributions of external, internal, and gravitational forces.
The equation of motion becomes

μ̂a(fw,U,u) = μP (u,U, u)−1F (tot)
(fw,U,u) −

W0

γ
ν

= μP (u,U, u)−1F (tot)
(fw,U,u) −Wν, (6.205)

where W0/γ ≡W represents the total relative power, namely

W =
μ0w0 − w

(i)
0

γ
= μw̃ − w(i),

where we have introduced, from (6.202), the quantities

w̃ ≡ w0

γ3
, w(i) ≡ w

(i)
0

γ
, (6.206)

which represent the relative power of the external forces per unit of mass (w̃)
and of the internal forces (w(i)), respectively. Therefore

ε̂0a(fw,U,u) =
[
F (tot)

(fw,U,u) − ν(ν · F (tot)
(fw,U,u))

]
− ν

W

μ
, (6.207)

dε̂

dτ(U,u)
= γ2W

μ
. (6.208)

Here dτ(U,u) = γdτU is the relative standard time, ε̂ = ε̂0, μ̂ = ε̂μ, and we have
used the relation

P (u,U, u)−1 = P (U, u)−1P (u,U)−1 = P (u) − ν(U, u) ⊗ ν(U, u). (6.209)

Transformation law for proper mechanical stresses

The transformation of the spatial (with respect to U) and symmetric tensor
T0 = T (U) along u and onto LRSu proceeds in a standard way. Let us denote

T (u,U) = P (u,U)T (U), (6.210)

where the projection is understood to be on each index. Acting on (6.210) with
the operator P (u,U)−1 and recalling that

P (u,U)−1P (u,U) = P (U), (6.211)

we obtain

T (U) = P (u,U)−1T (u,U). (6.212)
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If u′ denotes another family of observers, then

T (u′, U) = P (u′, U)T (U); (6.213)

hence the transformation law for mechanical stresses follows:

T (u′, U) = [P (u′, U)P (u,U)−1]T (u,U). (6.214)

As an example let us evaluate the relative power of internal forces w(i). From its
definition (see (6.189)) we have

w(i) =
w

(i)
0

γ
=

1
γ

[T (U)αβ∇βUα]. (6.215)

Recalling that Uα = γ [uα + ν(U, u)α], it follows that

w(i) = T (U)αβ∇β(uα + να). (6.216)

Using the transformation law for mechanical stresses (6.214) one then finds

w(i) = T (U)αβ∇β(uα + να)

= T (u,U)μν [P (u,U)−1]αμ[P (u,U)−1]βν [−uβa(u)α − k(u)αβ + ∇βνα]

= T (u,U)μσ[∇σνμ + νσ∇uνμ] + Tr [T (u,U) θ(u)]

+ [ν T (U, u)] · [−γ−1F
(G)
(fw,U,u) − 2ν θ(u) − ν(ν · a(u))], (6.217)

where the representation

P (u,U)−1 = P (u) + u⊗ ν(U, u) (6.218)

of the mixed projector has been used.

Example: the perfect fluid

In this case T0 = p0P (U), where P (U) is the projection operator orthogonal to
U . Using mass conservation we have

w
(i)
0 = p0Θ(U). (6.219)

According to the notation previously introduced (see Eqs. (6.189)), we also have

div T0 = ∇(U)p0 + p0UΘ(U) + p0a(U), (6.220)

μ0fm = μ0f −∇(U)p0 − p0UΘ(U) − p0a(U), (6.221)

μ0P (U)fm = μ0[f − Uw0] − [∇(U)p0 + p0a(U)], (6.222)

and the evolution equations reduce to

(ρ0 + p0)a(U) = −∇(U)p0 + μ0[f − Uw0],

dρ0

dτU
= −(ρ0 + p0)Θ(U) + μ0w0. (6.223)
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In terms of the internal energy, the First Law of Thermodynamics becomes

Dε̂0
dτU

= w0 −
p0

μ0
Θ(U).

One may also introduce the proper entropy s0 per unit of proper mass,

TK
ds0
dτU

= μ0w0 , (6.224)

where TK is the temperature.
In the absence of external forces (f= 0 and hence w0= 0) one has the conser-

vation of the entropy density s0 along the flow lines of U ,

Ds0
dτU

= 0,

and the acceleration of the fluid lines reduces to

a(U) = − 1
ρ0 + p0

∇(U)p0.

The relative point of view can be obtained directly from (6.205):

a(fw,U,u) = − 1
ρ0 + p0

[P (U, u)∇p0 − ν(ν · P (U, u)∇p0)]

+ γ−1[F (G)
(fw,U,u) − ν(ν · F (G)

(fw,U,u))]. (6.225)

Hydrodynamics with thermal flux: absolute formulation

We can generalize our previous results to the case of a fluid with thermal flux.
We shall here illustrate only the general procedure, omitting unnecessary detail.
The energy-momentum tensor can be written as in (6.179) but having in addition
thermal stresses Q0 ≡ Q(U):

T = ρ0U ⊗ U + S0,

S0 = T0︸︷︷︸
mechanical

+ Q0︸︷︷︸
thermal

,

where

Q0 = U ⊗ q0 + q0 ⊗ U,

with q0 = q0(U) and

ALTS0 = 0, ALTX0 = 0, X0 U = 0, q0 U = 0.
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Let us first consider the splitting of the equations of motion div T = μ0f in the
comoving frame of the fluid. Projection along U and onto LRSU gives

ρ0a(U) = μ0P (U)(fm + fth) = μ0P (U)(f (i)
0 + f

(e)
0 + f

(th)
0 ),

dε̂0
dτU

=
W0

μ0
+ (qc)0 ≡ Q0

μ0
, (6.226)

where (qc)0 is the thermal conduction power in the comoving frame. We now
have a thermal force and a thermal power,

μ0P (U)fth = −P (U)divQ, (6.227)

and

Q0 = −[μ0f − divS] · U = (μ0q
tot
0 − w

(i)
0 ) = W0 + μ0(qc)0, (6.228)

with

qtot0 = w0 + (qc)0,

μ0(qc)0 = U · divQ ≡ −[∇ · q0 + a(U) · q0],
w

(i)
0 = −U · div T . (6.229)

Hydrodynamics with thermal flux: relative formulation

Let us project the evolution equations of the proper frame along and orthogonally
to u. We find

μ̂a(fw,U,u) = μP (u,U, u)−1F tot
(fw,U,u) − ν

Q0

γ
, (6.230)

where

μF tot
(fw,U,u) = μ0P (u)[fm + fth]. (6.231)

From the energy theorem we find instead

dε̂

dτ(U,u)
= γ2Q

μ
, (6.232)

where Q = Q0/γ.

Example: the viscous fluid of Landau-Lifshitz

The viscous fluid of Landau-Lifshitz (see Misner, Thorne, and Wheeler, 1973,
p. 567) is characterized by the following mechanical stress tensor:

T0 = [p0 − ζΘ(U)]P (U) − 2ησ(U), (6.233)
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where σ(U) = θ(U) − 1
3Θ(U)P (U) is the trace-free part of the expansion field.

We have

μ0(qc)0 = −[divU q0 + 2a(U) · q0], (6.234)

w
(i)
0 = p0Θ(U) − [ζΘ(U)2 + 2ηTr(σ(U)2)]. (6.235)

Also in this case one introduces the scalar entropy s, related to the temperature
by the First Law of Thermodynamics (generalized to include the effects of the
thermal action),

TK
Ds

dτU
= qtot0 +

p0Θ(U) − w
(i)
0

μ0
≡ w0+(qc)0+[ζΘ(U)2+2ηTr(σ(U)2)], (6.236)

and the entropy 4-vector (see Exercise 22.7 of Misner, Thorne, and Wheeler,
1973)

S = μ0sU +
q0
TK

. (6.237)

Taking into account the mass conservation law, ∇U (μ0U) = 0, one finds

TK∇ · S = μ0w0 + [ζΘ(U)2 + 2ηTr(σ(U)2)] − q0 · [∇ lnTK + a(U)]. (6.238)

In the absence of external forces we have f = 0 and w0 = 0; therefore the above
expressions are considerably simplified.
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Non-local measurements

The Principle of Equivalence states that gravitational and inertial accelerations
cannot be distinguished from each other if one neglects the curvature of the
background geometry. But even if curvature is taken into account, the choice of
the observer together with a frame adapted to him/her pollutes the measurements
with inertial contributions which are entangled with the curvature in a non-
separable way. The curvature is responsible for a relative acceleration among
freely falling particles. This acceleration induces a field of strains which can be
measured with a suitable experimental device; however, a relative acceleration
also arises from orbital constraints if the bodies are not in free fall. In this case a
relativistically complete and correct description of the relative strains must also
take into account the properties of the observer and of his frame. A measurement
which carries the signature of the space-time curvature within its measurement
domain is termed non-local.

Here we shall first identify the components of the space-time curvature relative
to a given frame and then discuss various ways to measure them.

7.1 Measurement of the space-time curvature
Let u be a vector field whose integral curves form a congruence Cu which we
assume to be representative of a family of observers. With respect to the latter,
then, the spatial and temporal splitting of the Riemann tensor identifies the
following three spatial fields:

E(u)αβ = Rαμβνu
μuν ,

H(u)αβ = −R ∗
αμβνu

μuν ,

F(u)αβ = [∗R∗]αμβνu
μuν , (7.1)

where E(u)[αβ] = 0 = F(u)[αβ] and H(u)α
α = 0. The first two quantities are

termed, respectively, the electric and magnetic parts of the Riemann tensor. The
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20 independent components of the Riemann tensor are then summarized by the
6 independent components of the electric part (spatial and symmetric tensor), the
8 independent components of the magnetic part (spatial and trace-free tensor),
and the 6 independent components of the mixed part (spatial and symmetric
tensor).

Consider a frame {eα} (not necessarily orthonormal) adapted to the observer
u so that u = e0 with ea a basis in LRSu. Then all the above spatial quantities
can be written as

E(u)ab = Ra0b0,

H(u)ab = −R ∗
a0b0 =

1
2
η(u)cd

bRa0cd,

F(u)ab = [∗R∗]a0b0 =
1
4
η(u)a

cdη(u)b
efRcdef , (7.2)

and can be inverted to give

Ra0
cd = H(u)abη(u)bcd,

Rabcd = η(u)abrη(u)cdsF(u)rs. (7.3)

Using these relations one has also the frame components of the Ricci tensor
Rα

β = Rμα
μβ ,

R0
0 = −E(u)c

c,

R0
a = η(u)abcH(u)bc,

Ra
b = −E(u)a

b −F(u)a
b + δa

bF(u)c
c, (7.4)

so that

R = R0
0 +Ra

a = −2(E(u)c
c −F(u)c

c). (7.5)

As shown in (2.66), the Riemann tensor can be written in terms of the Weyl
tensor, the Ricci tensor, and the scalar curvature; in four dimensions we have

Rαβ
γδ = Cαβ

γδ +
(
δα

[γSδ]
β − δβ

[γSδ]
α
)

= Cαβ
γδ + 2δ[α[γSδ]

β], (7.6)

where

Sαβ = Rαβ − 1
6
Rgαβ . (7.7)

Clearly, in vacuum (Rαβ = 0, R = 0), the Weyl and Riemann tensors coincide.
Similarly to the Riemann tensor, the splitting of the Weyl tensor identifies the

following two spatial fields, because of the identity ∗C∗ = −C (or ∗C = C∗):

E(u)αβ = Cαμβνu
μuν , H(u)αβ = −C∗

αμβνu
μuν . (7.8)

Tensors E(u) and H(u) are termed, respectively, the electric and magnetic parts
of the Weyl tensor and are related to E(u), H(u), and F(u) by the following
relations:
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E(u) =
1
2
[E(u) −F(u)](TF),

H(u) = SYMH(u), (7.9)

from (7.6). Written in terms of components with respect to a frame adapted to
u, we have

E(u)a
b =

1
2

[
E(u)a

b −F(u)a
b −

1
3
δa

b(E(u)c
c −F(u)c

c)
]
,

H(u)ab = H(u)(ab) . (7.10)

In Chapter 3 we evaluated the components of the Riemann tensor in an adapted
frame; in fact expressions (3.92), (3.97), and (3.98) are equivalent to

E(u)a
b = [∇(u)b + a(u)b]a(u)a + ∇(u)(fw)k(u)a

b − [k(u)2]ab,

H(u)ab = −
[
∇(u)[ck(u)a

d]η(u)bcd + 2a(u)aω(u)b
]
,

F(u)a
b = [θ(u)2 − Θ(u)θ(u)]ab −

1
2
δa

b[Trθ(u)2 − Θ(u)2]

+ 3ω(u)aω(u)b −G(sym)
a

b, (7.11)

where

G(sym)
a

b = R(sym)
a

b −
1
2
δa

bR(sym), (7.12)

with R(sym)
a

b = R(sym)
ca

cb and R(sym) = R(sym)
a

a from (3.105). Furthermore,

E(u)c
c = [∇(u)c + a(u)c]a(u)c −∇(u)(fw)Θ(u) + 2ω(u)cω(u)c − Tr θ(u)2,

H(u)c
c = 2[∇(u)c − a(u)c]ω(u)c ≡ 0,

F(u)c
c = −1

2
[Tr θ(u)2 − Θ(u)2] + 3ω(u)cω(u)c +

1
2
R(sym), (7.13)

where the trace of H(u) vanishes identically from (3.82). From (7.11) and recalling
the definition of the symmetric curl (see Eqs. (3.40) and (3.41)), we have

H(u)ab = H(u)(ab) = −[Scurlu k(u)]ab − 2a(u)(aω(u)b)

= −[Scurlu ω(u)]ab + [Scurlu θ(u)]ab − 2a(u)(aω(u)b)

=
{

[Scurlu θ(u)]ab − 2a(u)(aω(u)b) −∇(u)(aω(u)b)
}TF

(7.14)

and

E(u)ab =
1
2

[∇(u)(aa(u)b) + a(u)aa(u)b −∇(u)(fw)θ(u)ab

+ 2ω(u)aω(u)b − 2[θ(u)2]ab + Θ(u)θ(u)ab −R(sym)ab]TF (7.15)
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If u is expansion-free, the electric and magnetic parts of the Weyl tensor
reduce to

E(u)ab =
1
2

[∇(u)(aa(u)b) + a(u)aa(u)b + 2ω(u)aω(u)b −R(sym)ab]TF

H(u)ab = −[2a(u)(aω(u)b) + ∇(u)(aω(u)b)]TF (7.16)

7.2 Vacuum Einstein’s equations in 1+3 form
Einstein’s equations without the cosmological constant are given by

Rαβ − 1
2
Rgαβ = 8πTαβ . (7.17)

In the absence of matter energy sources (Tαβ = 0) they become Rαβ = 0. Using
(7.4) we can write these equations in terms of the kinematical parameters of the
observer congruence Cu and their derivatives. From (7.2)1 and with respect to a
frame adapted to u, we have

E(u)c
c = 0 (R0

0 = 0),
H(u)[ab] = 0 (R0

a = 0),
E(u)a

b + F(u)a
b = δa

bF(u)c
c (Ra

b = 0).
(7.18)

Using the trace-free property of E(u) in the last equation we find F(u)c
c = 0 so

that from the above equations we deduce that

E(u)a
b = −F(u)a

b. (7.19)

Moreover, from (7.13)1, the condition R0
0 = 0 gives

[∇(u)c + a(u)c]a(u)c −∇(u)(fw)Θ(u) + 2ω(u)cω(u)c − Trθ(u)2 = 0. (7.20)

From (7.4)2, the components R0
a = 0 can be written in the form

ηcabH(u)ab = 0, (7.21)

which is equivalent to

−∇(u)a[θ(u)a
c − Θ(u)δa

c] − [curlu ω(u)]c − 2[a(u) ×u ω(u)]c = 0. (7.22)

Finally, Ra
b = 0 gives

− [∇(u)(lie) +Θ(u)]θ(u)a
b − [∇(u)(b + a(u)(b]a(u)a) +R(sym)

a
b

− 2[ω(u)aω(u)b − δa
bω(u)cω(u)c] = 0. (7.23)
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This set of equations takes a simplified form when the observer congruence is
Born-rigid, i.e. θ(u) = 0. In this case we have

[∇(u)c+ a(u)c]a(u)c + 2ω(u)cω(u)c = 0, (7.24)

[curlu ω(u)]c + 2[a(u) ×u ω(u)]c = 0, (7.25)

R(sym)ab − [∇(u)(b + a(u)(b]a(u)a) − 2[ω(u)aω(u)b

−P (u)abω(u)cω(u)c] = 0. (7.26)

Contracting the indices in (7.26) yields

R(sym) −∇(u)ba(u)b − a(u)aa(u)a + 4ω(u)aω(u)a = 0 (7.27)

which, using (7.24), leads to

R(sym) + 6ω(u)aω(u)a = 0. (7.28)

7.3 Divergence of the Weyl tensor in 1+3 form
The divergence of the Weyl tensor ∇δ C

δ
αβγ in an adapted frame (1 + 3 form) is

represented by the following independent fields:

∇δ C
δ
0a0, ∇δ C

δ
(ab)0, ∇δ

∗Cδ
0a0, ∇δ

∗Cδ
(ab)0. (7.29)

Other components give non-independent relations due to the trace-free property
of the Weyl tensor and the Ricci identity. It is sufficient to deduce the 1+3 form
of the first pair of the above relations because the remaining two are obtained by
the substitution E(u) → H(u) and H(u) → −E(u), similar to what is done for
the electromagnetic field. We have

∇δ C
δ
0a0 = eδ

(
Cδ

0a0

)
+ Γδ

μδC
μ
0a0 − Γσ

0δC
δ
σa0

−Γσ
aδC

δ
0σ0 − Γσ

0δC
δ
0aσ. (7.30)

Substituting the values (3.71) of the connection coefficients of an adapted frame
and using definitions (7.8), this equation can be cast in the form

∇δ C
δ
0a0 =

{
divuE(u) − 2∗(u)[θ(u) H(u)] − 2H(u) ω(u)

}
a
. (7.31)

Similarly we have

∇δ C
δ
(ab)0 = ∇(u)(fw)E(u)ab − [ScurluH(u)]ab + 2Θ(u)E(u)ab

− 2[a(u) ×u H(u)]ab − [ω(u) ×u E(u)]ab

− 3[SYM(θ(u) E(u))]TF
ab . (7.32)

Summarizing, the set of equations representing the divergence of the Weyl tensor
is the following

∇δ C
δ
0a0 = {divuE(u) − 2∗(u) [θ(u) H(u)] − 2H(u) ω(u)}a ,

∇δ
∗ Cδ

0a0 = {divuH(u) + 2∗(u) [θ(u) E(u)] + 2E(u) ω(u)}a ,
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∇δ C
δ
(ab)0 = ∇(u)(fw)E(u)ab − [ScurluH(u)]ab + 2Θ(u)E(u)ab

− 2[a(u) ×u H(u)]ab − [ω(u) ×u E(u)]ab

− 3[SYM(θ(u) E(u))]TF
ab ,

∇δ
∗ Cδ

(ab)0 = ∇(u)(fw)H(u)ab + [ScurluE(u)]ab + 2Θ(u)H(u)ab

+ 2[a(u) ×u E(u)]ab − [ω(u) ×u H(u)]ab

− 3[SYM(θ(u) H(u))]TF
ab . (7.33)

In vacuum (Tα
β=0) and with respect to an observer u described by an expansion-

free (θ(u)= 0) congruence of integral curves, and from (7.8), we can write
Einstein’s equations in Maxwell-like form (compare with (6.159)–(6.162)):

0 = divuE(u) − 2H(u) ω(u),

0 = divuH(u) + 2E(u) ω(u),

0 = ∇(u)(fw)E(u) − [ScurluH(u)] − 2[a(u) ×u H(u)] − [ω(u) ×u E(u)],

0 = ∇(u)(fw)H(u) + [ScurluE(u)] + 2[a(u) ×u E(u)] − [ω(u) ×u H(u)]. (7.34)

7.4 Electric and magnetic parts of the Weyl tensor
Let U and u be two different families of observers related by a boost

U = γ(U, u)[u+ ν(U, u)]. (7.35)

Both of these observers can be used to split the Weyl tensor (and similarly the
Riemann tensor) in terms of associated electric and magnetic parts,

E(u)αβ = Cαμβνu
μuν , H(u)αβ = −C∗

αμβνu
μuν ,

E(U)αβ = CαμβνU
μUν , H(U)αβ = −C∗

αμβνU
μUν . (7.36)

Using (7.35) we have, for example,

E(U)αβ = γ(U, u)2Cαμβν [uμ + ν(U, u)μ][uν + ν(U, u)ν ], (7.37)

that is, abbreviating γ(U, u) = γ and ν(U, u) = ν,

E(U)αβ = γ2[E(u)αβ + Cαμβνu
μνν + Cαμβνν

μuν + Cαμβνν
μνν ]. (7.38)

Let eα denote a frame adapted to u (namely u = e0 and ea with a = 1, 2, 3
spanning the local rest space of u). We then have

E(U)ab = γ2[E(u)ab + Ca0bcν
c + Cacb0ν

c + Cacbdν
cνd]

= γ2[E(u)ab +H(u)afη(u)f
bcν

c +H(u)bfη(u)f
acν

c

−E(u)fgη(u)f
acη(u)g

bdν
cνd],

E(U)00 = γ2[C0b0cν
bνc] = γ2[E(u)bcν

bνc],

E(U)0b = γ2[C0cb0ν
c + C0cbdν

cνd]

= γ2[−E(u)cbν
c −H(u)cfη(u)f

bdν
cνd]. (7.39)
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Therefore, in compact form, we have

[P (u,U)E(U)]αβ = γ2[E(u)αβ + 2H(u)(α|f |η(u)f
β)cν

c

−E(u)fgη(u)f
αcη(u)g

βdν
cνd] (7.40)

and similarly

[P (u,U)H(U)]αβ = γ2[H(u)αβ − 2E(u)(α|f |η(u)f
β)cν

c

−H(u)fgη(u)f
αcη(u)g

βdν
cνd]. (7.41)

7.5 The Bel-Robinson tensor
In the theory of general relativity, gravitation is described as the curvature of the
background geometry; hence any manifestation of pure gravity is presented in
terms of the Riemann tensor. Neglecting the contribution to gravity by the local
distribution of matter-energy (that is, setting Rαβ = 0), a possible generalization
of the energy-momentum tensor to the gravitational field is the Bel-Robinson
tensor (Bel, 1958), defined by

Tαβ
γδ =

1
2
(CαρβσC

γρδσ + ∗Cαρβσ
∗Cγρδσ). (7.42)

In standard terminology, we use super-energy density and super-Poynting vector
(Maartens and Bassett, 1998) in reference to the analogous contractions in the
electromagnetic case relative to a general observer u, namely

E(g)(u) = Tαβγδu
αuβuγuδ

=
1
2
[E(u)2 +H(u)2],

P (g)(u)α = Tαβγδu
βuγuδ

= [E(u) ×u H(u)]α, (7.43)

where the notation (3.39) has been used. Similarly to what was done for the elec-
tromagnetic field in Sections 6.11 and 6.12 with the electric and magnetic parts
of the Weyl tensor, we can introduce the complex (symmetric trace-free) spatial
tensor field Z(g)(u) = E(u) − iH(u), abbreviated to Z(u) in this section, and
evaluate the effect of a boost in a general direction U , different from u, in terms
of the orthogonal decompositions with respect to the relative spatial velocity of
the observers u and U . Z(u) can be decomposed into a scalar Z‖ ‖(u), a vector
Z‖⊥(u), and a tensor Z⊥⊥(u), the latter two being orthogonal to ν̂(U, u), i.e.

Z(u) = Z‖ ‖(u)ν̂(U, u) ⊗ ν̂(U, u) + Z‖⊥(u) ⊗ ν̂(U, u)

+ ν̂(U, u) ⊗ Z‖⊥(u) + Z⊥⊥(u), (7.44)

where Z⊥⊥(u) can then be further decomposed into its pure-trace part involving
TrZ⊥⊥(u) = −Z‖ ‖(u) and its trace-free part Z⊥⊥(TF)(u).



7.5 The Bel-Robinson tensor 133

Let U be a family of observers; by definition we have

Z(U) = E(U) − iH(U). (7.45)

Moreover, Eqs. (7.40) and (7.41) imply that

[P (u,U)Z(U)]αβ = γ2[Z(u)αβ + 2iZ(u)(α|f |η(u)f
β)cν

c

−Z(u)fgη(u)f
αcη(u)g

βdν
cνd]. (7.46)

Alternatively, one can boost Z(U) onto the local rest space of u; in this case
we have

B(lrs)(u,U)Z(U) = B(lrs)u(u,U)P (u,U)Z(U), (7.47)

where the map B(lrs)u(u,U) has been introduced in (3.134), conveniently
rewritten here as[

B(lrs) u(u,U)
]

α
β = P (u)α

β −
(

1 − 1
γ

)
ν̂αν̂β

= [P (u) − ν̂ ⊗ ν̂]αβ +
1
γ

[ν̂ ⊗ ν̂]αβ , (7.48)

with the first term in the square brackets projecting orthogonal to ν̂ in the local
rest space of u.

In terms of components, (7.47) can be written as

[B(lrs)(u,U)Z(U)]αβ

= B(lrs)u(u,U)α
μB(lrs)u(u,U)β

ν [P (u,U)Z(U)]μν . (7.49)

To complete the analogy with the corresponding transformation laws for electro-
magnetic fields in (6.144), we need to replace the magnitude of ν with the rapidity
parameter ν = tanhα. Considering components parallel and perpendicular to the
direction of the velocity, one then finds

[B(lrs)(u,U)Z(U)]‖ ‖ = Z‖ ‖(u),

[B(lrs)(u,U)Z(U)]‖⊥ = coshαZ‖⊥(u)

+ i sinhαν̂(U, u) ×u Z
‖⊥(u), (7.50)

[B(lrs)(u,U)Z(U)]⊥⊥(TF) = cosh 2αZ⊥⊥(TF)(u)

− i sinh 2α ν̂(U, u) ×u Z
⊥⊥(TF)(u).

Note that the transformation law for the vector Z‖⊥(u) is exactly the same as in
(6.144)2 for the corresponding electromagnetic vector Z(em)⊥(u), while the one
for the tensor Z(U)⊥⊥ is formally the same apart from a sign change and having
2α in place of α. The condition that the transformed value of Z‖⊥(U) is zero
requires the impossible condition tanhα = ±1, which means that either Z‖⊥(U)
is initially zero or no observer U can be found for which it becomes zero.
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In terms of Z, the super-energy density and the super-Poynting vector are
obtained from the Bel-Robinson tensor as

E(g)(u) =
1
2
Tr [E(u) · E(u) +H(u) ·H(u)] =

1
2
Tr [Z̄(u) · Z(u)],

P(g)(u)α = [E(u) ×u H(u)]α =
i

2
[Z̄(u) ×u Z(u)]α, (7.51)

and their decomposition is

E(g)(u) =
1
2
Tr
[
Z̄⊥⊥(TF)(u) · Z⊥⊥(TF)(u)

]
+ Z̄‖⊥(u) · Z‖⊥(u) +

3
4
|Z‖ ‖(u)|2,

P(g)(u) =
i

2

[
Z̄⊥⊥(TF)(u) ×u Z

⊥⊥(TF)(u) + Z̄‖⊥(u) ×u Z
‖⊥(u)

]
− ν̂(u,U) ×u �m

[
Z̄‖ ‖(u)Z‖⊥(u)

+ Z̄⊥⊥(TF)(u) Z‖⊥(u)
]
. (7.52)

There are two complementary cases in which the effective transformation
reduces to a single electromagnetic-like transformation which one can use to
transform the super-Poynting vector to zero: either (i) Z‖⊥(u) = 0 or (ii) Z‖⊥(u)
is the only non-vanishing part of Z(u). If one starts from a Weyl principal frame
(Stephani et al., 2003) in which Z(u) takes its canonical Petrov-type form, and
considers boosts along one of the spatial frame vectors, condition (i) is equivalent
to requiring that Z(u) have block diagonal form with respect to the chosen frame,
which is possible for all Petrov types except III, while condition (ii) describes
exactly type III. In that case, however, Z‖⊥(u) corresponds to a null electromag-
netic field and so one cannot transform the super-Poynting vector to zero.

In the first case, the super-quantities simplify to

E(g)(u) =
1
2
Tr
[
Z̄⊥⊥(TF)(u) · Z⊥⊥(TF)(u)

]
+

3
4
|Z‖ ‖(u)|2,

P(g)(u) =
i

2

[
Z̄⊥⊥(TF)(u) ×u Z

⊥⊥(TF)(u)
]
. (7.53)

Evaluating the magnitude of the transformed super-momentum tensor leads to

||P (g)(U)|| =
∣∣∣∣− i

2

(
cosh 4α ν̂(U, u) ·

[
Z̄⊥⊥(TF)(u) ×u Z

⊥⊥(TF)(u)
]

+ i sinh 4αTr
[
Z̄⊥⊥(TF)(u) · Z⊥⊥(TF)(u)

])∣∣∣ . (7.54)

As long as Z⊥⊥(TF)(u) �= 0, one can define

tanh 4α(g) = i
ν̂(U, u) ·

[
Z̄⊥⊥(TF)(u) ×u Z

⊥⊥(TF)(u)
]

Tr
[
Z̄⊥⊥(TF)(u) · Z⊥⊥(TF)(u)

] , (7.55)
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but for α to be real and finite, independent of the particular value of ν̂(U, u), the
inequality

||Z̄⊥⊥(TF)(u) ×u Z
⊥⊥(TF)(u)||

Tr
[
Z̄⊥⊥(TF)(u) · Z⊥⊥(TF)(u)

] < 1 (7.56)

must hold. If it does, then one finds

||P (g)(U)|| = E(g)⊥⊥(TF)(u)
| sinh 4(α− α(g))|

cosh 4α(g)
, (7.57)

and similarly

E(g)⊥⊥(TF)(U) = E(g)⊥⊥(TF)(u)
cosh 4(α− α(g))

cosh 4α(g)
, (7.58)

where E(g)⊥⊥(TF)(u) is the first term in the expression (7.53) for E(g)(u), con-
tributed to the super-energy by Z⊥⊥(TF)(u), while the remaining contribution to
the super-energy from Z‖ ‖(u) does not change since Z‖ ‖(u) is invariant under
this family of boosts. Thus the test observer with rapidity α = α(g) sees a vanish-
ing super-Poynting vector and a minimum value of the total super-energy among
this family of boosts. The analogy with the electromagnetic case is then complete.
A detailed analysis is contained in Bini, Jantzen, and Miniutti (2002).

7.6 Measurement of the electric part of the Riemann tensor
In a series of papers de Felice and coworkers (de Felice and Usseglio-Tomasset,
1991; 1992; 1993; 1996; Semerák and de Felice, 1997) have defined and studied in
an observer-dependent way the relative strains among a set of comoving test par-
ticles in black hole space-times. Starting from that analysis, we consider here, in
full generality, how the definition of relative accelerations and strains is affected,
neglecting the background curvature, by the geometric properties of the frame
adapted to the fiducial observer.

Old ideas and modern approaches

Our analysis moves from the concept of gravitational compass introduced
by Szekeres (1965) (see also Audretsch and Lämmerzahl, 1983; Ciufolini and
Demianski, 1986; 1987; Pirani, 1956a; 1956b) and the related discussion about the
problem of setting up a preferred frame within which to study the gravitational
field. According to Szekeres, a gravitational compass consists of an arrangement
of three test particles connected to each other by springs and also to a fidu-
cial observer who is in general accelerated. The behavior of the particles with
respect to the observer is then investigated using the geodesic deviation equa-
tion, which enables one to deduce the physical significance of the curvature tensor
components. When the measurement begins, the apparatus is set free so one can
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monitor the strains on the springs. The relative acceleration between two nearby
particles is completely determined by the electric part of the Riemann tensor,
which can be thought of as a symmetric force distribution whose six indepen-
dent components are the strains on the six springs. When the off-diagonal terms
(i.e. the transverse strains) vanish, the springs connecting the test particles to
the observer lie along the principal axes of the tidal force matrix, so that the
apparatus maps out the local gravitational field, acting just as a compass. In
the case of a vacuum space-time, the electric part of the Weyl tensor represents
the only curvature contribution to the deviation between any two neighboring
trajectories introducing shearing forces, due to its property of being symmetric
and trace-free. Actually Szekeres’ gravitational compass only describes an ideal-
ized situation. For any practical use, in fact, it should be replaced by a “gravity
gradiometer,” i.e. a device to perform measurements of the local gradient of the
tidal gravitational force. The theory of a relativistic gravity gradiometer has been
developed by many authors (Mashhoon and Theiss, 1982; Mashhoon, Paik, and
Will, 1989) in view of satellite experiments around the Earth in the framework
of the post-Newtonian approximation. It should also be noted that a modern
observational trend is to use atomic interferometry to build a future generation
of highly precise gravity gradiometers (see Matsko, Yu, and Maleki, 2003, and
references therein).

More recently Chicone and Mashhoon (2002) have obtained a generalized
geodesic deviation equation in Fermi coordinates as well as in arbitrary coor-
dinates as a Taylor expansion in powers of the components of the deviation
vector, retaining terms up to first order, but without any restriction on the rela-
tive spatial velocities. They then investigated in a number of papers (Chicone
and Mashhoon, 2005a; 2005b) the motion of a swarm of free particles (in
both non-relativistic and relativistic regimes) relative to a free reference par-
ticle which is on a radial escape trajectory away from a collapsed object (a
Schwarzschild as well as a Kerr black hole), discussing the astrophysical implica-
tions of the related (observer-dependent) tidal acceleration mechanism. The fur-
ther dependence of the deviation equation on the 4-acceleration of the observer
as well as his 3-velocity has been accounted for very recently by Mullari and
Tammelo (2006).

In what follows we shall develop the general theory of relativistic strains, gener-
alizing Szekeres’ picture as well as the one associated with the relativistic gravity
gradiometry in the case when the acceleration strains are present. We also iden-
tify which frame is the most convenient for measuring either tidal or inertial
forces experienced by an extended body.

The relative acceleration equation

Let us consider a collection of test particles, i.e. a congruence CU of time-like world
lines, with unit tangent vector U (U ·U = −1) parameterized by the proper time
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τU . Let γ∗ ∈ CU be the world line of the “fiducial observer.” In general, the lines
of the congruence CU as well as of the observer are accelerated, at a(U) = ∇UU .

The separation between the line γ∗ and a generic line of the congruence is
represented by a connecting vector Y which satisfies Lie transport along U , that is

£UY = 0, (7.59)

which implies that

∇UY = ∇Y U. (7.60)

The covariant derivative of U which appears in ∇Y U can be written in terms of
the kinematical fields of the congruence as in (3.45), that is

∇αU
β = −a(U)βUα − k(U)β

α, (7.61)

where k(U)β
α = ω(U)β

α − θ(U)β
α is the kinematical tensor which describes

the vorticity of the congruence ω(U)αβ = k(U)[αβ] and its expansion θ(U)αβ =
−k(U)(αβ) relative to the observer U . Thus (7.59) becomes

DY

dτU
= ∇Y U = −(Y · U)a(U) − k(U) Y. (7.62)

The covariant derivative along U of both sides of (7.60) gives rise to the relative
acceleration equation,

D2Y

dτ2
U

= −R(U, Y )U + ∇Y a(U), (7.63)

or, in components,

D2Y α

dτ2
U

= −Rα
βγδU

βY γU δ + Y σ∇σa(U)α. (7.64)

Clearly R(U, Y )U ≡ Rα
βγδU

βY γUδ = E(U)α
γY

γ and ∇Y a(U) are respectively
the gravitational and the inertial contributions to the relative acceleration. Equa-
tion (7.63) can then be conveniently rewritten as follows:

D2Y

dτ2
U

= −[E(U) −∇a(U)] Y. (7.65)

Let us now set up an orthonormal frame {Eα̂} = {E0̂ ≡ U,Eâ} adapted to the
congruence U , and write both the Lie transport equation (7.59) and the relative
acceleration equation (7.63) with respect to this frame. As before, hatted indices
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refer to tetrad components. The spatial triad is generic in the sense that it rotates
with a certain angular velocity ζ(fw) with respect to gyro-fixed axes along U :

P (U)∇UEâ ≡ ∇(U)(fw)Eâ = ζ(fw) ×U Eâ ≡ C(fw)
b̂
âEb̂, (7.66)

where, as already defined, C(fw)âb̂ = −η(U)âb̂ĉ ζ
ĉ
(fw).

Introduce the frame components of Y , i.e. the decomposition Y = Y 0̂ U+Y âEâ

(and the notation �Y ≡ P (U)Y = Y âEâ). The Lie transport equation (7.59) then
becomes

∇UY ≡ Ẏ 0̂ U + Y 0̂a(U) + Ẏ âEâ + [�Y · a(U)]U + ζ(fw) ×U
�Y

= Y 0̂a(U) − k(U) �Y , (7.67)

where the relation Y0̂ = −Y 0̂ has been used and the overdot denotes differen-
tiation with respect to the proper time τU (ḟ = df/dτU ). Combining terms we
obtain [

Ẏ 0̂ + �Y · a(U)
]
U + Ẏ âEâ + ζ(fw) × �Y = −k(U) �Y , (7.68)

yielding

Ẏ 0̂ = −�Y · a(U), (7.69)

Ẏ â + [ζ(fw) × �Y ]â + k(U)â
b̂Y

b̂ = 0. (7.70)

From the definition of k(U) the relative velocity equation (7.70) can be written as

Ẏ â + [(ζ(fw) − ω(U)) × �Y ]â − θ(U)â
b̂Y

b̂ = 0, (7.71)

implying that Ẏ â = 0 when the vector ζ(fw) = ω(U) and θ(U) = 0. The latter
condition is satisfied by a Frenet-Serret frame along a Born-rigid congruence of
world lines.

Let us turn now to the relative acceleration equation (7.63). Substituting (7.69)
into the first line of (7.67) leads to

∇UY = Y 0̂a(U) + Ẏ âEâ + ζ(fw) × �Y . (7.72)

Taking the covariant derivative along U of both sides of Eq. (7.72), we obtain
the left-hand side of the relative acceleration equation (7.63):

∇UUY = [Y 0̂a(U)2 − a(U) · (k(U) �Y )]U − [�Y · a(U)]a(U)

+Y 0̂
[
ȧ(U)âEâ + ζ(fw) × a(U)

]
+ Ÿ âEâ

− 2ζ(fw) × [k(U) �Y ] − ζ(fw) × [ζ(fw) × �Y ]

+ ζ̇(fw) × �Y , (7.73)



7.6 Measurement of the electric part of the Riemann tensor 139

where (7.69) has been taken into account. Let us now evaluate the term ∇Y a(U)
on the right-hand side of (7.63); a direct calculation shows that

∇Y a(U) = Y 0̂[a(U)2U + ȧ(U)âEâ + ζ(fw) × a(U)]

+Y b̂∇(U)b̂a(U) − a(U) · (k(U) �Y )U, (7.74)

where ∇(U)a(U) = P (U)∇a(U) ≡ P (U)μ
αP (U)ν

β∇νa(U)μ. As a result, from
Eqs. (7.73) and (7.74) we obtain

∇UUY −∇Y a(U) ≡ Ÿ âEâ − Y b̂∇(U)b̂a(U) − [�Y · a(U)]a(U)

− ζ(fw) × [ζ(fw) × �Y ]

− 2ζ(fw) × [k(U) �Y ] + ζ̇(fw) × �Y

= −E(U) �Y . (7.75)

In their work, de Felice and coworkers introduced the relative strains as com-
ponents of the following tensor:

S(U) = ∇(U)a(U) + a(U) ⊗ a(U), (7.76)

namely S(U)âb̂ = ∇(U)b̂a(U)â + a(U)âa(U)b̂. The tensor S will be termed the
Fermi-Walker strain tensor; it depends on the congruence CU and the chosen
spatial triad Eâ. To make our formulas more compact we also introduce the
quantity

T(fw, U, E)
â

b̂ = Ċ(fw)
â

b̂ − [C2
(fw)]

â
b̂ − 2C(fw)

â
ĉ k(U)ĉ

b̂

= δâ
b̂
ζ2
(fw) − ζ â

(fw)ζ(fw)b̂ − εâbf ζ̇
f̂
(fw)

− 2εâf̂ ĉζ
f̂
(fw)k(U)ĉ

b̂, (7.77)

where [C2
(fw)]

â
b̂ = C(fw)

â
ĉ C(fw)

ĉ
b̂. Clearly T(fw, U, E)

â
b̂ are the components of a

spatial tensor, first derived in Bini, de Felice, and Geralico (2006), which describes
how far the chosen frame is from being Fermi-Walker itself; in this case it would
vanish. We term this the twist tensor. The relative acceleration equation (7.63)
(or equivalently (7.65)) then becomes

Ÿ â + K(U, E)
â

b̂Y
b̂ = 0, (7.78)

where

K(U, E)
â

b̂ = [T(fw, U, E) − S(U) + E(U)]âb̂. (7.79)
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Equations (7.78) are the basic equations that we shall apply to concrete cases
(see Chapter 9). Interesting special cases are listed below:

• Flat space-time: Rαβγδ = 0 so that E(U) ≡ 0. In this case we have K(U, E) =
T(fw, U, E) − S(U).

• Ea spatial triad Fermi-Walker dragged along U : ω(fw, U, E) = 0. This implies
T(fw, U, E) = 0, so that K(U, E) = E(U) − S(U).

• U geodesic: a(U) ≡ 0. In this case S(U) = 0 and hence K(U, E) = T(fw, U, E) +
E(U).

• U irrotational: ω(U) ≡ 0, so that k(U) = −θ(U).
• U Born-rigid: θ(U) ≡ 0, so that k(U) = ω(U).

Clearly we can also consider combinations of the above special cases, for example
a congruence of geodesic and irrotational orbits:

• U geodesic and irrotational: a(U) ≡ 0 and ω(U) ≡ 0 (k(U) = −θ(U)). In this
case S(U) = 0, so that K(U, E) = T(fw, U, E) + E(U).

Finally, the case K(U, E) = 0 corresponds to Ÿ a = 0, i.e. the absence of relative
accelerations among the particles of the congruence.

Geometrical meaning of the twist tensor

Using the formalism developed in the previous sections we can understand the
geometrical meaning of the twist tensor. In fact, for the spatial vector �Y = Y âEâ

the Lie transport equation (7.70) can be written as

∇(lie)Y = 0, (7.80)

that is

Ẏ b̂ + C b̂
(lie)âY

â = 0. (7.81)

Let us evaluate ∇2
(fw)Y . We have

∇(fw)Y = (Ẏ b̂ + C b̂
(fw)âY

â)Eb̂, (7.82)

and then

∇2
(fw)Y =

[
Ÿ b̂ + (Ċ b̂

(fw)d̂ + [C2
(fw)]

b̂
d̂)Y

d̂ + 2C b̂
(fw)d̂Ẏ

d̂
]
Eb̂. (7.83)

Replacing Ẏ b̂ by (7.81) and using (3.63) yields

∇2
(fw)Y =

[
Ÿ b̂ + T b̂

(fw, U, E)d̂Y
d̂
]
Eb̂, (7.84)

which clarifies the meaning of the twist tensor. Furthermore, Eq. (7.78) becomes

∇2
(fw)Y

â + [E(u) − S(u)]âb̂Y
b̂ = 0, (7.85)
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explaining also the name Fermi-Walker strain tensor for S(U): a (tem) derivative
on the left-hand side would have led instead to a (tem)-strain tensor; as noted
after Eq. (3.85), the term “tem” stands for “fw” or “lie”.

7.7 Measurement of the magnetic part of the Riemann tensor
The equation for geodesic deviation provides a measurement only of the electric
part of the Riemann tensor. Moreover its validity is restricted to the case of
infinitesimal variation among neighboring geodesics. Consider two of them, say
Υ1 and Υ2, with tangent vectors U1 and U2 such that

∇U1U1 = 0 = ∇U2U2, (7.86)

where in general Uα = dxα/ds, s being the proper time on the corresponding
curve. Clearly we require that x2(s) = x1(s)+δx(s) along a curve connecting the
two geodesics. The validity of (7.63) with a(U) = 0 requires that the curvature
varies slightly over neighboring curves. Denoting by R the magnitude of any
curvature component, we have that its variation over nearby curves is small, i.e.∣∣∣∣δRR

∣∣∣∣ ≡
∣∣∣∣ (∂αR)δxα

R

∣∣∣∣� 1. (7.87)

Moreover (7.63) is only valid if the tangent vectors of nearby curves vary along
a connecting curve by an infinitesimal amount, that is

|δU |
|U | ≡ |U2(s) − U1(s)|

|U1(s)|
� 1 . (7.88)

If this condition is not satisfied, i.e. if

|δU |
|U | ≈ 1, (7.89)

then the equation for geodesic deviation takes a different form, termed the gener-
alized geodesic deviation equation (Ciufolini, 1986; Ciufolini and Demianski, 1986;
1987). If (7.89) is satisfied, then one has to consider the geodesic equations as

DUμ
1

ds
=
dUμ

1

ds
+ Γμ

νρ(x1)Uν
1 U

ρ
1 = 0, (7.90)

DUμ
2

ds
=
dUμ

2

ds
+ Γμ

νρ(x1 + δx)Uν
2 U

ρ
2

=
d2

ds2
(xμ

1 + δxμ) + Γμ
νρ(x1 + δx)

d

ds
(xν

1 + δxν)
d

ds
(xρ

1 + δxρ)

= 0. (7.91)

With a Taylor expansion to first order in δx, the latter equation can be written as

d2

ds2
(xμ

1 )+
d2

ds2
(δxμ)+

[
Γμ

νρ + (∂λΓμ
νρ) δxλ

]
(Uν

1 +δUν)(Uρ
1 +δUρ) = 0, (7.92)
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where we put δUμ ≡ Uμ
2 (s) − Uμ

1 (s) with condition (7.89). If we now subtract
Eq. (7.90) from (7.92) we obtain

d2

ds2
(δxμ) + (∂λΓμ

νρ) δxλUν
1 U

ρ
1 + 2Γμ

νρU
ν
1 δU

ρ + (∂λΓμ
νρ) δxλδUνδUρ

+ 2∂λΓμ
νρδx

λUν
1 δU

ρ + Γμ
νρδU

νδUρ = 0. (7.93)

An equivalent expression of this equation, using the convenient notation

d2(δxμ)
ds2

= δẍμ,

is

δẍμ = −Rμ
νρσU

ν
1 U

σ
1 δx

ρ − (∂λΓμ
νρ) δxλδUνδUρ

− 2 (∂λΓμ
νρ) δxλUν

1 δU
ρ − Γμ

νρδU
νδUρ, (7.94)

which to first order in the variation δ reduces to (7.63) with a(U) = 0. Let us
now express (7.94) in terms of Fermi normal coordinates adapted to the fiducial
curve having tangent vector field U1; in this coordinate system the connection
coefficients along the curve vanish but not their derivatives. Therefore we have

δẍα̂ + ∂σ̂Γα̂
β̂γ̂δx

σ̂(U β̂
1 U

γ̂
1 + 2U β̂

1 δU
γ̂ + δU β̂δU γ̂) = 0. (7.95)

Let us recall that U1 is the observer and δẍα̂ are the measured quantities (observ-
ables). The target of the measurement is the components of the Riemann tensor
directly related to the derivatives of the connections (see Ciufolini, 1986).

Moreover let us select three particles in such a way that their positions relative
to U1 form an orthonormal Fermi-Walker basis. In this case it would be U α̂

1 =
(1, 0, 0, 0). Let the other particles be identified by the following choices:

δxα̂
2 = (0, 0, 1, 0), δU α̂

2 = (0, 1, 0, 0),

δxα̂
3 = (0, 0, 0, 1), δU α̂

3 = (0, 0, 1, 0),

δxα̂
4 = (0, 1, 0, 0), δU α̂

4 = (0, 0, 0, 1),

where we set

δxα̂
i = xα̂

i − xα̂
1 , δU α̂

i = U α̂
i − U α̂

1 (i = 2, 3, 4). (7.96)

Keeping the dot notation for the derivative with respect to s, we can write
Eq. (7.95) for each particle as

δẍα̂
2 = Rα̂

0̂0̂2̂ + 2Rα̂
1̂0̂2̂ +

2
3
Rα̂

1̂1̂2̂,

δẍα̂
3 = Rα̂

0̂0̂3̂ + 2Rα̂
2̂0̂3̂ +

2
3
Rα̂

2̂2̂3̂, (7.97)

δẍα̂
4 = Rα̂

0̂0̂1̂ + 2Rα̂
3̂0̂1̂ +

2
3
Rα̂

3̂3̂1̂.
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Assuming that we are in vacuum (Rαβ = 0) and rewriting the frame components
of the Riemann tensor in terms of electric and magnetic parts, the above system
can be written as

δẍα̂
a = Aα̂

aβ̂γ̂E
β̂γ̂ +Bα̂

aβ̂γ̂H
β̂γ̂ , (7.98)

with a = 2, 3, 4 and Aα̂
aβ̂γ̂ and Bα̂

aβ̂γ̂ being constant matrices. Inverting this
system gives

Eα̂β̂ = Āα̂β̂γ̂
dδẍγ̂

d , Hα̂β̂ = B̄α̂β̂γ̂
dδẍγ̂

d , (7.99)

where again Āα̂
aβ̂γ̂ and B̄α̂

aβ̂γ̂ are constant matrices, the explicit form of which
can be found in Ciufolini (1986) and Ciufolini and Demianski (1986; 1987).

7.8 Curvature contributions to spatial velocity
An observer moving on a curve γ with tangent vector u and proper time s as
parameter can only deduce the spatial velocity of a distant particle relative to
his own local rest frame by exchanging light signals. At the event A on γ the
observer sends a light signal to the particle, which receives it at the event P

on γ′. At P the light signal is reflected back to the observer who receives it at the
event B on γ. Denote as Υ and Υ′ the null geodesics connecting A to P and P to B

respectively. Let A0 be the event on γ, subsequent to A and antecedent to B, which
is simultaneous with P with respect to the observer u and such that the space-like
geodesic ζP→A0 joining P to A0 is extremal with respect to γ.1 Repeated reading
of the time of emission of light signals at A and of the time of recording of the
reflected echo at B allows one to determine the length of the space-like geodesic
segment connecting P to A0, which represents, by definition, the instantaneous
spatial distance of the particle at P from the observer on γ; see Fig. 7.1. The
relative velocity of the particle with respect to the observer u is then deduced,
differentiating the above spatial distance with respect to the observer’s proper
time.2 The measurement process involving the events A, P, and B is patently non-
local insofar as the measurement domain is finite. Let us recall, however, that a
standard determination of the particle velocity is based on the measurement of a
frequency shift of the exchanged photons through the application of the Doppler
formula. The velocity so determined, however, is an equivalent velocity because
the frequency shift can also be caused by geometry perturbations which may not
be related to the particle’s motion at all. As already stated, curvature effects are
in general entangled with inertial terms resulting from the choice of the reference
frame, so we shall just term as curvature any possible combination of them. Our

1 We assume that the curve γ′ lies in a normal neighborhood of γ, so the geodesic ζP→A0
is

unique.
2 The relative velocity so determined is along the observer’s local line of sight, so it is a

radial velocity, i.e. a velocity either of recession or of approach.
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B

A

P

Υ′

γ ′
Υ

γ

L(P, A0)

A0

Fig. 7.1. Exchanging light signals with a distant particle, an observer can
deduce from time readings on his own clock the spatial distance L(P, A0) cov-
ered by the particle. The relative spatial velocity then follows by standard
definition.

aim here is to single out the curvature contributions to the frequency shift and,
as a consequence, to the relative velocity as well.

The measurement of a relative velocity is the result of a local measurement,
which does not contain curvature terms, and a non-local one, which depends
explicitly on the curvature. The local (or flat) velocity ν, defined in (6.65), is the
magnitude (with sign) of the 4-vector

ν(�̌ ′, u)α ≡ −(uρ�̌
′ρ)−1(P (u)α

σ �̌
′σ) = −(uρ�̌

′ρ)−1
[
�̌ ′α + uα(uσ �̌

′σ)
]
, (7.100)

where � is tangent to the particle’s world line γ′ with parameter s′, for example,
and �̌ ′ is the result of parallel propagating � along the null geodesic Υ′ connecting
P to B. Clearly relation (7.100) holds at the event of observation B on γ where
it is v(�̌ ′, u)αuα = 0. As already noted, the local velocity is only a part of the
relative velocity ν̃, which includes both local and non-local contributions. We
shall then revisit the general definition of relative velocity (de Felice and Clarke,
1990), making wide use of the connector two-point function. The instantaneous
spatial distance L between the particle at P on γ′ and the observer as measured
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by the latter is the length of the space-like segment of ζP→A0 connecting P to A0.
The relative velocity ν̃ is, from (5.3), given by

ν̃ =
dL

ds
=

d

ds
(2Ω)1/2 =

1
L

(
dΩ
ds

)
. (7.101)

Here the differentiation with respect to s is performed varying A0 on γ and
simultaneously varying P on γ′ in such a way that the corresponding geodesic
segment joining the varied points is kept extremal with respect to γ. It then
follows that

ν̃ =
1
L

(
Ωα0u

α0 +
ds′

ds
Ωαp�

αp

)
=

1
L

ds′

ds
Ωαp�

αp , (7.102)

with Ωα0u
α0 = 0. Indices αp and α0 refer to quantities calculated at P and A0

respectively. From (5.29) we have, on the space-like geodesic ζP→A0 ,

Ωαp�
αp = −Ωα0 �̌

α0 , (7.103)

where

�̌α0 = Γ(P,A0; ζP→A0)βp

α0�βp ,

Γ(P,A0; ζP→A0)βp
α0 being the components of the connector relating the points P

and A0 on the geodesic ζ (see de Felice and Clarke, 1990). Hence the quantity
(7.102) can be written as

ν̃ = − 1
L

(
ds′

ds

)
Ωα0 �̌

α0 . (7.104)

Hereafter we shall omit the subscript P→A0 .
In order to express ν̃ as the magnitude of a 4-vector defined at A0, let us exploit

the property (5.30) of the world function, namely

2Ω = Ωα0Ω
α0 = ΩαpΩαp . (7.105)

Defining

ν̃α0 =
1

2Ω

(
ds′

ds

)
Ωα0Ωβ0 �̌

β0 , (7.106)

Eq. (7.104) can be written as

ν̃ = −(ν̃α0 ν̃
α0)1/2

. (7.107)

Let us now calculate the ratio ds′/ds. From the properties of the world function,
and recalling (5.32) and (5.36), we obtain

DΩα0

ds
= Ωα0β0u

β0 +
ds′

ds
Ωα0βp�

βp

= uα0 −
ds′

ds
�̌α0 + χα0β0u

β0 +
ds′

ds
ζα0βp

�βp , (7.108)
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where χα0β0 and ζα0βp depend explicitly on the curvature and, to first order in
the Riemann tensor, are given by

χα0β0 = (σp − σ0)−1gα0γ0

∫ σp

σ0

(σp − σ)2Rρ
μνσξ

μξνΓρ
γ0Γβ0

σ dσ

+O(|Riem|2), (7.109)

ζα0βp
= (σp − σ0)−1gα0σ0

∫ σp

σ0

(σp − σ)(σ − σ0)Rρ
μνγξ

μξνΓβp

γΓρ
σ0 dσ

+O(|Riem|2). (7.110)

Here σ is the parameter on the geodesics ζ whose tangent vector field is ξ.
Contracting (7.108) with uα0 and recalling that

DΩα0

ds
uα0 = −Ωα0 u̇

α0 , (7.111)

u̇ being the 4-acceleration of γ, leads to

− Ωα0 u̇
α0 = −1 − ds′

ds

(
uα0 �̌

α0
)

+ χα0β0u
α0uβ0 +

ds′

ds
ζα0βp

uα0�βp . (7.112)

To first order in the curvature and relative to the observer on γ, we then have

ds′

ds
= −

(
uα0 �̌

α0
)−1

(1 − Ωα0 u̇
α0)
(

1 − χα0β0u
α0uβ0

1 − Ωα0 u̇
α0

+
ζα0βpu

α0�βp

uγ0 �̌
γ0

)
+O(|Riem|2). (7.113)

In the limit of negligible distance between the curves (Ωα0 ≈ 0), the above relation
reduces to

ds′

ds
= −

(
uα0 �̌

α0
)−1 ≡ γ̄−1, (7.114)

from (6.66). Let us use (7.113) in (7.106) to obtain

ν̃α0 = −Ωα0

Ωβ0 �̌
β0

2Ω
(
uγ0 �̌

γ0
) (1 − Ωα0 u̇

α0 + R′
0 +O(Riem|2)

)
= −ξα0

ξβ0 �̌
β0

uγ0 �̌
γ0

(
1 − Ωα0 u̇

α0 + R′
0 +O(|Riem|2)

)
, (7.115)

from (5.30) with ξ · ξ = 1, and

R′
0 =

(
uα0 �̌

α0
)−1

ζα0βpu
α0�βp (1 − Ωα0 u̇

α0) − χα0β0u
α0uβ0 . (7.116)

Since ξα0u
α0 = 0, Eq. (7.115) can also be written to first order in the curvature:

ν̃α0 ≈ −ξα0ξβ0

[
uβ0 + �̌β0

(
uγ0 �̌γ0

)−1
] (

1 − Ωβ0 u̇
β0 + R′

0

)
. (7.117)
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The quantities

ν′
α0 = −

[
uα0 + �̌α0

(
uγ0 �̌

γ0
)−1
]

(7.118)

closely resemble (7.100), but they differ from those components since these are
written in terms of a vector �̌ at A0 parallel propagated along a space-like geodesic
(from P to A0) and not along a null ray (as in the definition (7.100)). A general
component of the vector �̌ at A0 propagated along the curve ζ from P to A0 can
be written as

�̌α0 = Γ(P,A0; ζ)βp
α0�βp . (7.119)

For later convenience let us write (7.119) as follows:

�̌α0 = Γ(P,A0; ζ)σp
α0Γ(B, P; Υ′)ρb

σpΓ(P,B; Υ′)βp
ρ

b
�βp

= Γ(P,A0; ζ)σp
α0Γ(B, P; Υ′)ρb

σp �̌
′
ρb
, (7.120)

where �̌ ′ρb
are the components of the vector �̌ ′ which is parallel propagated from

P to B along a null geodesic Υ′, and the index αb refers to quantities calculated
in B. Let us now parallel propagate �̌ ′ρb

from B to A0 along the curve γ, obtaining

�̌ ′′α0 = Γ(B,A0; γ)γb
α0 �̌

′
γb
. (7.121)

The difference is

Δ�̌α0 = �̌α0 − �̌ ′′α0= Γ(P,A0; ζ)σp
α0Γ(B, P; Υ′)ρb

σp �̌
′
ρb

−Γ(B,A0; γ)γb
α0 �̌

′
γb
. (7.122)

We can, however, write

�̌α0 = �̌ ′′α0 + Δ�̌α0

= Γ(B,A0; γ)ρb
α0 �̌

′
ρb

+ Γ(P,A0; ζ)σp
α0Γ(B, P; Υ′)ρb

σp �̌
′
ρb

−Γ(B,A0; γ)γb
α0 �̌

′
γb

= Γ(B,A0; γ)ρb
α0 �̌

′
ρb

+ Sρb
α0 �̌

′
ρb
, (7.123)

where �̌ ′ρb
is, at the point B on γ, the parallel to the vector � in P as the result of

a parallel transport along the null geodesic Υ′ joining P to B, and Sρb
α0 is a new

quantity which depends on three points and can be expressed as

Sγb
α0 = Γ(P,A0; ζ)σp

α0Γ(B, P; Υ′)γb
σp

− Γ(B,A0; γ)γb
α0 . (7.124)

This is a three-point tensor which has the property of being zero if any two
points coincide or when the curvature is zero (Synge, 1960). Thus, from (7.124),
Eq. (7.123) can be written as

�̌α0 = Γ(B,A0; γ)γb
α0 �̌

′
γb

+ L̃α0 , (7.125)
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where L̃α0 is the result (at A0) of acting on �̌ ′γb
(at B) with S̃γb

α0 . The quantity
L̃α0 is the result of a comparison at A0 of the images there of the vector � at
P under parallel transport along two different paths, one along the space-like
geodesic ζ from P to A0 and the other along the null geodesic Υ′ from P to B and
then from B back to A0 along γ. Hence, since the connection is not integrable,
L̃α0 is a measure of the integrated curvature over the enclosed area. If we assume,
for simplicity, that γ is a geodesic (u̇ = 0), then

uα0 = ǔα0 = Γ(B,A0; γ)γb
α0uγb

. (7.126)

Inserting this and (7.125) into ν′α0
, we obtain

ν′α0
= −

{
ǔα0 +

(
Γ(B,A0; γ)γb

α0 �̌
′
γb

+ L̃α0

)
×
[
ǔβ0

(
Γ(B,A0; γ)γb

β0 �̌
′
γb

+ L̃β0

)]−1
}
. (7.127)

Now since ǔβ0Γ(B,A0; γ)γb
β0 �̌

′
γb

= uγb �̌ ′γb
= −γ̄b is the Lorentz factor of the

particle � relative to the observer u at B, we can write (7.127) as

ν′α0
= −

[
ǔα0 +

(
Γ(B,A0; γ)γb

α0 �̌
′
γb

+ L̃α0

)(
−γ̄b + L̃β0 ǔ

β0

)−1
]
. (7.128)

Thus to first order in the curvature we have

ν′α0
= ν̌α0 + γ̄−1

b L̃α0 + γ̄−2
b L̃β0 ǔ

β0Γ(B,A0; γ)γb
α0 �̌

′
γb

+O(|Riem|2), (7.129)

where

ν̌α0 = −
[
ǔα0− γ̄−1Γ(B,A0; Υ)γb

α0 �̌
′
γb

]
(7.130)

is the parallel at A0 of the flat velocity 4-vector defined at B according to (7.100).
Then inserting (7.129) in (7.117), with the assumption that u̇ = 0, we have

ν̃α0 = ξα0ξ
β0

[
ν̌β0 + L̃γ0

(
δγ0
β0
γ̄−1

b + γ̄−2
b uγ0Γ(B,A0; γ)ρb

β0 �̌
′
ρb

)]
+ ξα0ξ

β0 ν̌β0R′
0 +O(|Riem|2). (7.131)

Since all curvature terms are contained in L̃β0 (Lathrop, 1973), in R′
0 and in the

neglected terms, we can express the relative velocity in terms of a flat component
ν̌ξ̂ = ν̌β0ξ

β0 and a non-local one ν̃ξ̂ as follows:

ν̃ξ̂ = ν̌ξ̂(1 + R′
0) + γ̄−1

b L̃ξ̂ + γ̄−2
b L̃0̂Γ(B,A0; γ)γb

ξ̂ �̌
′
γb

+ O(|Riem|2). (7.132)

Here we have selected a tetrad frame adapted to u on γ so that ξ = ζ̇ coincides at
A0 with one space-like tetrad direction, since ξα0uα0 = 0 there. Relation (7.132)
shows explicitly how the space-time curvature contributes to the measurement of
a relative velocity.
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7.9 Curvature contributions to the measurements of angles
Modern technology allows one to measure angles with the accuracy needed to
detect the curvature of Earth space-time. The aim of this section is to show how
one can relate the measurement of angles to the measurement of the background
curvature.

Let an observer be moving along a geodesic γ with parameter s and tangent
vector field u; moreover he carries a Fermi tetrad {Eα̂}. At the event A he emits a
light signal towards a target at P along a spatial direction in his local rest frame,
at an angle Θ̂

a
|A with respect to a given tetrad leg Eâ; the angle is given by

cos Θ̂
a

1|A =
Eâ · k

(k⊥ · k⊥)
1
2

∣∣∣∣
A

, (7.133)

from (6.31); here k is the null vector tangent to the light trajectory. After being
reflected at P the signal is recorded by the same observer at the event A1 some
time later on γ. In the local rest frame of u at A1, the spatial direction of the
reflected signal forms a different angle with respect to the same tetrad leg Eâ,
given by

cos Θ̂
a 2|A1

=
Eâ · k

(k⊥ · k⊥)
1
2

∣∣∣∣
A1

. (7.134)

We shall see that the difference between these two angles gives a direct measure
of the space-time curvature. At a general point γ(s) of γ, we have, from (5.29),

Ωβ = −(σP − σγ(s))kβ , (7.135)

where σ is a parameter on the null geodesics from A to P and from P to A1, so
Eqs. (7.133) and (7.134) can be written respectively as

cos Θ̂
a
|A =

(ΩβE
β
â )

(Ωb̂Ω
b̂)

1
2

∣∣∣∣∣
A

, (7.136)

cos Θ̂
a 2|A1

=
ΩβE

β
â

(Ωb̂Ω
b̂)

1
2

∣∣∣∣∣
A1

. (7.137)

The vector k is null; hence we have

(ΩâΩâ)1/2
A/A1

= |Ω0̂|A/A1
=
∣∣Ωβu

β
∣∣
A/A1

, (7.138)

so the cosines of the angles can be written as

cos Θ̂
a A/A1

= ∓ ΩβE
β
â

Ωβuβ

∣∣∣∣∣
A/A1

, (7.139)

where the upper sign refers to A and the lower one to A1. In what follows we
shall consider the quantities ΩβE

β
â ≡ Ωâ and Ωβu

β ≡ Ω0̂ as smooth functions
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on γ. Let us then expand Ωâ about the point A0 = γ(s0), which is the event on
γ simultaneous to P:

Ωâ(s) = Ωâ(s0) +
∞∑

n=1

1
n!

(
dn

dsn
Ωâ

)
A0

(s− s0)n. (7.140)

From (6.11) and (6.12) and assuming that {Eα̂} is a Fermi tetrad and the curve
γ is a geodesic, we obtain, to first order in the curvature,

Ωâ(s) = Ωâ(s0) + (s− s0)Ωαβu
βEα

â

+
1
2
(s− s0)2(Ωαβγu

βuγEα
â)

+
1
6
(s− s0)3(Ωαβγδu

βuγuδEα
â) +O(|Riem|2), (7.141)

where

Ωαβγ ≈ −
(
Sαβγδξ

δ
)
A0

(σP − σA0),

Ωαβγδ ≈ (Sαβγδ)A0
, (7.142)

with

Sαβγδ = −2
3
Rα(γ|β|δ), (7.143)

as in (6.14). Thus from (6.13) we have

Ωâ(s) = Ωâ(s0) +
1
2
(s− s0)(σP − σA0)

2[Sαβγδξ
γξδuβEα

â]A0

− 1
2
(s− s0)2(σP − σA0)[Sαβγδξ

δuβuγEα
â]A0

+O(|Riem|2); (7.144)

here ξα are the components of the tangent vector to the geodesic ζ from A0 to P.
The values of the parameter s at the points A and A1 on γ are given by (6.18);
substituting those values in (7.144) for s1 at A and s2 at A1, we have

Ωâ(s1/s2) = Ωâ(s0)

∓ 1
2
[2Ω(s0)]

1
2 (σP − σA0)

2[Sαβγδξ
γξδuβEα

â]A0 (7.145)

− Ω(s0)(σP − σA0)[Sαβγδξ
δuβuγEα

â]A0 +O(|Riem|2).

With the same argument we deduce that

Ω0̂(s) = (s− s0)
[
−1 +

1
2
(σP − σA0)

2(Sαβγδu
αuβξγξδ)A0

]
+O(|Riem|2).

(7.146)

Hence from (6.18) we again have

Ω0̂(s1/s2) = ∓[2Ω(s0)]
1
2

[
−1 +

1
6
RA0(σP − σA0)

2

]
+O(|Riem|2), (7.147)
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where we set

R = −Rαβγδu
αξβuγξδ. (7.148)

To first order in the curvature, Eq. (7.139) leads to

cos Θ̂
a A ≈ − 1

[2Ω(s0)]
1
2

{
Ωâ(s0)

[
1 +

1
6
RA0(σP − σA0)

2

]

− 1
2
[2Ω(s0)]

1
2 (σP − σA0)

2(Sαβγδξ
γξδuβEα

â)A0

−Ω(s0)(σP − σA0)(Sαβγδξ
δuβuγEα

â)A0

}
(7.149)

and

cos Θ̂
a A1

≈ − 1
[2Ω(s0)]

1
2

{
Ωâ(s0)

[
1 +

1
6
RA0(σP − σA0)

2

]

+
1
2
[2Ω(s0)]

1
2 (σP − σA0)

2(Sαβγδξ
γξδuβEα

â)A0

−Ω(s0)(σP − σA0)(Sαβγδξ
δuβuγEα

â)A0

}
. (7.150)

The variation of the direction cosine in passing from A to A1 is given by

Δ(cos Θ̂
a
) = −(Sαβγδξ

γξδuβEα
â)A0(σP − σA0)

2. (7.151)

This equation gives a measure of how the light gun must be turned relative to a
Fermi transported tetrad in order to detect the reflected light signal at A1.

From (5.1), (6.2), and the definition of Sαβγδ, Eq. (7.144) can also be written as

Δ(cos Θ̂
a
) = −2

3
(RαβγδE

α
âξ

βuγξδ)A0L
2
u(A0, P). (7.152)

Here the quantity Δ(cos Θ̂
a
) is in principle directly measurable; hence, coupling

(7.152) with (6.19), one can deduce information about the space-time curvature.



8

Observers in physically relevant space-times

A physical measurement necessarily requires the choice of an observer who makes
it. An observer is well defined not only when his state of motion is fixed in the
background geometry but also when a frame, adapted to his world line, is chosen
as a necessary complement. The most natural observers in a given space-time are
the stationary ones whenever this attribute is physically applicable. Of course
the significance of a measurement also depends on how realistic the space-time
which provides the geometrical environment is.

Schwarzschild and Kerr solutions are widely considered in space physics and
high-energy astrophysics, since they support models of measurements ready to be
compared with observations. Gravitational wave space-time solutions also play a
central role. In fact the direct detection of gravitational waves is still a challenge
for experimental relativity, so measurements which highlight their properties are
of primary importance.

In this chapter we shall analyze the geometrical properties of those space-times
and the trajectories that host physically realistic observers.

8.1 Schwarzschild space-time
As outlined in Section 2.6, the Schwarzschild solution describes the vacuum space-
time outside a spherical, electrically neutral, and non-rotating source of mass M.
As stated in (2.135) its metric is given by

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (8.1)

where t ∈ (−∞,+∞), r ∈ (2M,∞), θ ∈ [0, π], φ ∈ [0, 2π] are asymptotically
spherical coordinates known as Schwarzschild coordinates. Metric (8.1) admits
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four Killing vector fields, namely

ξ0 = ∂t,

ξ1 = cosφ∂θ − cot θ sinφ∂φ,

ξ2 = −sinφ∂θ − cot θ cosφ∂φ,

ξ3 = ∂φ, (8.2)

such that

[ξ0, ξa] = 0, [ξa, ξb] = εab
cξc, a, b, c = 1, 2, 3, (8.3)

where εab
c is the Euclidean alternating symbol.

The null surface having a space-like section at r = 2M is both an event horizon
and an apparent horizon (Hawking and Ellis, 1973) but it is also a Killing horizon
since the time-like Killing vector ξ0 = ∂t, which manifests the stationarity of the
metric, becomes null on it and space-like at r < 2M.

Various coordinate patches

Schwarzschild coordinates best adapt themselves to the spherical symmetry of
the solution but they fail to be regular on the horizon at r = 2M, which appears
as a coordinate singularity for both ingoing and outgoing trajectories. In order
to have analytical extensions which enable one to avoid the above coordinate
inadequacy and eventually provide a global representation of the Schwarzschild
solution, new coordinates are used at the expense of being adapted to the space-
time symmetries. Coordinates of this type are the following:

(i) Eddington-Finkelstein coordinates
These are {u, r, θ, φ} or {v, r, θ, φ}, given by

u = t− r∗, v = t+ r∗, (8.4)

where

r∗ = r + 2M ln
∣∣∣ r

2M − 1
∣∣∣ , dr∗

dr
=
(

1 − 2M
r

)−1

. (8.5)

The coordinates u and v are termed outgoing and ingoing, respectively; the
former allows outgoing trajectories to smoothly cross the horizon at r = 2M
while the latter does the same for ingoing trajectories. The forms of the
metric in the {u, r, θ, φ} and {v, r, θ, φ} coordinate patches are respectively

ds2 = −
(

1 − 2M
r

)
du2 − 2dudr + r2(dθ2 + sin2 θdφ2) (8.6)

and

ds2 = −
(

1 − 2M
r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2). (8.7)
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Since they allow an observer to cross the event horizon smoothly, the
Eddington-Finkelstein coordinates seem to imply that, by just performing a
coordinate transformation, one can obtain two opposite physical situations,
namely only ingoing or only outgoing on the horizon. Clearly this is not the
case. Both situations are allowed by the Schwarzschild solution, and this can
be made explicit by using the following set of coordinates.

(ii) Kruskal coordinates
In this coordinate system both outgoing and ingoing coordinates are intro-

duced as follows:

U(ε,ε′) = ε

√
ε′
( r

2M − 1
)
e

r
4M cosh

(
t

4M

)
,

V(ε,ε′) = ε

√
ε′
( r

2M − 1
)
e

r
4M sinh

(
t

4M

)
, (8.8)

where ε and ε′ are sign indicators; according to their values (±1) we build a
different coordinate representation of Schwarzschild space-time.

In Kruskal coordinates, the metric becomes

ds2 =
32M3

r
e−r/(2M)(−dV 2 + dU2) + r2(dθ2 + sin2 θdφ2) (8.9)

and it is well defined everywhere r > 0. In this case the horizon at r = 2M
can be smoothly crossed in both senses according to the initial conditions.
Metric (8.9) is geodesic complete, that is, every geodesic either reaches the
singularity at r = 0 or can be extended to infinity.

(iii) Painlevé-Gullstrand coordinates
The time transformation

T = t+
∫ r (

1 − 2M
r

)−1
√

2M
r
dr (8.10)

leads to the following form of the Schwarzschild metric:

ds2 = −
(

1 − 2M
r

)
dT 2 + 2

√
2M
r
dTdr

+ dr2 + r2(dθ2 + sin2 θdφ2), (8.11)

due to Painlevé and Gullstrand (Painlevé, 1921; Gullstrand, 1922). The pecu-
liarity of these coordinates is that the 3-metric induced on the T = constant
hypersurfaces, namely

ds2|T=const. = dr2 + r2(dθ2 + sin2 θdφ2), (8.12)
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is intrinsically flat (i.e. the intrinsic curvature tensor vanishes identically)
but not extrinsically flat (the extrinsic curvature is non-zero). In fact, the
intrinsic curvature is represented by the Riemann tensor associated with the
3-metric (8.12) and this vanishes identically, while the extrinsic curvature is
represented by the tensor

Kαβ = −1
2

[P (N )£N g]αβ , (8.13)

where N � = −dT is the unit normal to the T = constant hypersurfaces and
P (N ) projects orthogonally to N .

Curvature invariants

Let us consider the form (8.1) of the Schwarzschild solution. The simplest
quadratic curvature invariant is Kretschmann’s (Kretschmann 1915a; 1915b):

K1 = RαβγδRαβγδ =
48M2

r6
. (8.14)

Let us recall here that in this metric the Riemann and Weyl tensors coincide;
hence no non-trivial first-order invariants exist. This scalar quantity is regular
on the horizon at r = 2M but diverges at r = 0, which persists as the only
unavoidable curvature singularity.

Principal null directions, Petrov type and the principal

complex null frame

The Schwarzschild solution admits two independent principal null directions,
given by

k± = ∂t ±
(

1 − 2M
r

)
∂r; (8.15)

therefore it is of Petrov type D. A principal complex null frame has the two real
null vectors aligned with the principal null directions (8.15), that is l ∝ k+ and
n ∝ k−. A possible choice is then the following:

l =
(

1 − 2M
r

)−1

∂t + ∂r,

n =
1
2

(
1 − 2M

r

)[(
1 − 2M

r

)−1

∂t − ∂r

]
,

m =
1√
2r

[
∂θ + i

1
sin θ

∂φ

]
, (8.16)

which makes l geodesic and such that l · n = −1, m · m = 0, m̄ · m̄ = 0, and
m · m̄ = 1.
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8.2 Special observers in Schwarzschild space-time
The coordinate representations of Schwarzschild space-time help us to identify
the observers who best describe the physical situations we might be interested
in. We shall consider families of special observers, illustrating their geometrical
properties.

Static observers

Static observers are defined to be at rest with respect to the chosen spatial
coordinate grid. In Schwarzschild coordinates their 4-velocity is given by

m =
1√−gtt

∂t =
(

1 − 2M
r

)−1/2

∂t. (8.17)

Consider the following orthonormal frame adapted to m:

e0̂ = m, er̂ =
(

1 − 2M
r

)1/2

∂r, eθ̂ =
1
r
∂θ, eφ̂ =

1
r sin θ

∂φ. (8.18)

The dual of this frame is

ω0̂ = −m� =
(

1 − 2M
r

)1/2

dt, ωr̂ =
(

1 − 2M
r

)−1/2

dr,

ωθ̂ = rdθ, ωφ̂ = r sin θdφ, (8.19)

with ωα̂(eβ̂) = δα̂
β̂ .

Static observers form a three-parameter congruence Cm (the parameters being
the spatial coordinates r, θ, and φ of these observers) of radially outward accel-
erated world lines with acceleration described by the 4-vector

a(m) ≡ ∇mm =
(

1 − 2M
r

)−1/2 M
r2
er̂. (8.20)

In addition Cm has vanishing vorticity (ω(m) = 0) and expansion (θ(m) = 0).
The identical vanishing of the expansion implies that Cm is a rigid congruence
according to the Born rigidity condition. For later use, we introduce the notation

||a(m)|| ≡ κ(m) =
(

1 − 2M
r

)−1/2 M
r2

(8.21)

for the magnitude of a(m).
The only non-vanishing frame components of the Riemann tensor with respect

to the orthonormal frame {eα̂} of (8.18) are

R0̂θ̂0̂θ̂ = R0̂φ̂0̂φ̂ = −Rr̂θ̂r̂θ̂ = −Rr̂φ̂r̂φ̂ = −1
2
R0̂r̂0̂r̂ =

1
2
Rθ̂φ̂θ̂φ̂ =

M
r3
. (8.22)
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Therefore, with respect to static observers and to the frame (8.18), the Riemann
tensor can be expressed in terms of its electric part only:

E(m) =
M
r3

(
−2er̂ ⊗ er̂ + eθ̂ ⊗ eθ̂ + eφ̂ ⊗ eφ̂

)
. (8.23)

The transport properties of the frame (8.18) along the world lines of the congru-
ence Cm are given by

∇mer̂ = κ(m)m, ∇meθ̂ = 0 = ∇meφ̂, (8.24)

with κ(m) given by Eq. (8.21) and, hence, from (3.60), P (m)∇meâ = 0 =
eb̂C(fw)

b̂
â. It follows that the Fermi-Walker structure functions of the frame van-

ish identically, i.e. C(fw)
â

b̂ = 0, so that each of the spatial directions er̂, eθ̂, and eφ̂

can be aligned with the axis of a gyroscope. Moreover, since the congruence Cm

in this case is vorticity-free and expansion-free, from (3.63) also the Lie structure
functions vanish identically, i.e. C(lie)

â
b̂ = 0. Finally, from the definition (4.28),

we recognize the frame {eα̂} in (8.18) as being also a Frenet-Serret frame with
curvature and torsions given by

κ(m) =
(

1 − 2M
r

)−1/2 M
r2
, τ1(m) = 0 = τ2(m). (8.25)

Observers on spatially circular orbits

Spatially circular orbits are characterized by a unit tangent vector Uα ≡ dxα/dτU
given by

U = Γ(∂t + ζ∂φ), (8.26)

with

Γ ≡ dt

dτU
=
(

1 − 2M
r

− ζ2r2 sin2 θ

)−1/2

, (8.27)

where ζ = dφ/dt is the angular velocity of revolution as it would be measured
by a static observer at infinity, where space-time is flat. Indeed the physical
interpretation of ζ is only possible if we exploit the asymptotic flatness of the
Schwarzschild solution. ζ here is assumed to be constant along the orbit, i.e.
satisfying the condition £Uζ = 0. These orbits form a three-parameter (r, θ, ζ)
congruence which has a non-zero acceleration vector

a(U) = Γ2

[(
1 − 2M

r

)1/2 M− r3ζ2 sin2 θ

r2
er̂ − rζ2 sin θ cos θ eθ̂

]
, (8.28)
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a non-zero expansion, whose non-vanishing components are

θ(U)r̂φ̂ =
1
2

[sgn(ζ)] Γ2r sin θ
(

1 − 2M
r

)
∂rζ,

θ(U)θ̂φ̂ =
1
2

[sgn(ζ)] Γ2 sin θ

√
1 − 2M

r
∂θζ, (8.29)

where φ̂ refers to the unit space-like direction Eφ̂, orthogonal to U and defined
in the 2-plane (t, φ), as

Eφ̂ = Γ̄(∂t + ζ̄∂φ), ζ̄ = − gtt

ζgφφ
, Γ̄ = Γ|ζ|

√
gφφ

−gtt

and a non-zero vorticity vector

ω(U) = ω(U)r̂er̂ + ω(U)θ̂eθ̂, (8.30)

where the components can be conveniently written as

ω(U)r̂ = ω̃r̂ + θ(U)θ̂φ̂,

ω(U)θ̂ = ω̃θ̂ − θ(U)r̂φ̂, (8.31)

with

ω̃ = Γ2|ζ|
[(

1 − 2M
r

)1/2

cos θ er̂ − sin θ
(

1 − 3M
r

)
eθ̂

]
. (8.32)

Let us note here that if ζ is constant over the entire congruence, then θ(U) = 0,
i.e. the congruence is Born-rigid and ω(U) = ω̃. From (8.28) it follows that
circular geodesics exist only on the equatorial plane θ = π/2 and are associated
with the Keplerian angular velocity

ζ = ±ζK = ±
√

M
r3
, (8.33)

that is

UK± = ΓK(∂t ± ζK∂φ). (8.34)

With respect to a local static observer m, the 4-velocity U of (8.26) can be
written as

U = γ[m+ ν(U,m)φ̂eφ̂], (8.35)

where

ν(U,m)φ̂ =
(

1 − 2M
r

)−1/2

rζ sin θ (8.36)

and

γ = (1 − ν2)−1/2 = Γ
(

1 − 2M
r

)1/2

. (8.37)
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Here γ is the Lorentz factor and

ν = ||ν(U,m)|| =
(

1 − 2M
r

)−1/2

r|ζ| sin θ (8.38)

is the magnitude of the spatial velocity of U relative to m. It can be useful to
introduce an effective radius R(U,m) (abbreviated by R) of the orbit such that
the classical relation

ν(U,m)φ̂ = Rζ (8.39)

still holds. This implies that

R = r sin θ
(

1 − 2M
r

)−1/2

. (8.40)

For instance, in terms of R, we have

Γ−2 =
(

1 − 2M
r

)
(1 − ζ2R2), (8.41)

which immediately gives (8.37). At r and θ fixed, this family of spatially circular
orbits forms a one-parameter congruence whose parameter is the angular veloc-
ity ζ, or equivalently the spatial velocity ν with respect to the static observers
(or any other family of observers), or equivalently the rapidity α = α(U,m)
defined by

ν = tanhα. (8.42)

Let us specialize to the Schwarzschild case the expression (6.74) of the pro-
jection of the acceleration a(U) into the rest space of the observers m. Setting
u = m in that formula and recalling that γ and ν are constant along the orbit of
U , we have

P (m,U)a(U) = −γF (G)
(fw,U,m) +

D(fw,U,m)p(U,m)
dτU

. (8.43)

From the definition of p(U,m) = γν(U,m), the above expression develops through
the following steps:

P (m,U)a(U) = −γF (G)
(fw,U,m) +

D(fw,U,m)

dτU
[γν(U,m)]

= −γF (G)
(fw,U,m) + γ

D(fw,U,m)

dτU
[ν(U,m)]

= −γF (G)
(fw,U,m) +

D(fw,U,m)

dτ(U,m)
[ν(U,m)]

= −γF (G)
(fw,U,m) + a(fw,U,m), (8.44)
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where a(fw,U,m) is the relative acceleration of U with respect to m, as in (3.162).
We now deduce the explicit expression of a(fw,U,m) for the case under considera-
tion. A direct calculation gives

∇Um =
ΓM
r2

er̂ ≡ −F (G)
(fw,U,m),

∇Uer̂ = Γ

[
M
r2
m+

(
1 − 2M

r

)1/2

ζ sin θ eφ̂

]
,

∇Ueθ̂ = Γζ cos θ eφ̂,

∇Ueφ̂ = −Γζ

[(
1 − 2M

r

)1/2

sin θ er̂ + cos θ eθ̂

]
. (8.45)

Projecting orthogonally to m, the derivatives (8.45) of the vectors of the spatial
frame give

P (m)∇Uer̂ ≡
D(fw,U,m)

dτU
er̂ = Γ

(
1 − 2M

r

)1/2

ζ sin θ eφ̂,

P (m)∇Ueθ̂ ≡
D(fw,U,m)

dτU
eθ̂ = Γζ cos θ eφ̂,

P (m)∇Ueφ̂ ≡
D(fw,U,m)

dτU
eφ̂ = −Γζ

[(
1 − 2M

r

)1/2

sin θ er̂ + cos θ eθ̂

]
.

(8.46)

Let us now recall the definition of Fermi-Walker angular velocity ζ(fw) and the
spatial curvature angular velocity ζ(sc):

D(fw,U,m)

dτU
eâ = γ

[
ζ(fw) + ζ(sc)

]
×m eâ. (8.47)

From (8.24) we see that ζ(fw) = 0. Therefore (8.46) allows us to determine
ζ(sc) as

ζ(sc) = ζ

[(
1 − 2M

r

)−1/2

cos θ er̂ − eθ̂

]
, (8.48)

whose limiting values at infinity and on the equatorial plane are respectively

lim
r→∞

ζ(sc) = ζ(cos θ er̂ − eθ̂), lim
θ→π/2

ζ(sc) = −ζeθ̂. (8.49)

Moreover

∇Uν(U,m) = ∇U (ν(U,m)φ̂eφ̂) = ν(U,m)φ̂∇Ueφ̂

= −Γζν(U,m)φ̂

[(
1 − 2M

r

)1/2

sin θ er̂ + cos θ eθ̂

]
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and the relation

∇U (ν(U,m)φ̂eφ̂) = γ−1a(fw,U,m) (8.50)

lead to the following expression of a(fw,U,m):

a(fw,U,m) = −Γ2ζν(U,m)φ̂

(
1 − 2M

r

)1/2
[(

1 − 2M
r

)1/2

sin θ er̂

+ cos θ eθ̂

]
. (8.51)

Here, the projection orthogonal tom is unnecessary since ∇U [ν(U,m)φ̂eφ̂] belongs
to the 2-plane (er̂, eθ̂). Hence we have as a final result, from (8.37), (8.45)1, and
(8.51),

P (m,U)a(U) = Γ2

(
1 − 2M

r

)1/2

×
{
M
r2

er̂ − ζν(U,m)φ̂

[(
1 − 2M

r

)1/2

sin θ er̂ + cos θ eθ̂

]}
,

(8.52)

as expected from (8.28).
Let us briefly discuss the meaning of the above analysis. The observers who

make the measurements are m, while the target of the observation is the particle
moving on a spatially circular orbit with 4-velocity U . Because the observers m
are static, the particle U crosses one of these observers at each point of his orbit.

The total acceleration of the particle as measured by m, namely P (m,U)a(U),
appears to consist of two terms. The first, −γF (G)

(fw,U,m), is a term of gravitational
type which measures the variation of the 4-velocity m of the observers who cross
the particle’s orbit U ; the second, a(fw,U,m), is a term which measures the variation
of the relative velocity vector of U with respect to m, i.e. ν(U,m), along U itself;
all projected into LRSm; see Fig. 8.1.

It can be useful to identify an orthonormal frame adapted to U , namely {E0̂ ≡
U,Eâ}. Since U is obtained by boosting m in the eφ̂ direction, we obtain the
required frame by also boosting eφ̂ in the local rest space of U :

E0̂ = γ[m+ νeφ̂], Eφ̂ = γ[νm+ eφ̂],

Er̂ = er̂, Eθ̂ = eθ̂. (8.53)

Note also the following complementary representations for E0̂ and Eφ̂ in terms
of angular velocities:

E0̂ = Γ(∂t + ζ∂φ), Eφ̂ = Γ̄(∂t + ζ̄∂φ), (8.54)
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m

U

light cone

 –ν(m, U) = U
–∧

ν (U, m)
∧

Fig. 8.1. Splitting of the 4-velocity U of a test particle in terms of m (the
4-velocity of a family of test observers) and ν(U, m) (the associated relative
velocity). The transport along U of these terms gives rise to the gravitational
force and the 3-acceleration as felt by the observers.

where

Γ̄ = Γ |ζ| r sin θ
(

1 − 2M
r

)−1/2

= ΓR ζ,

ζ̄ =
1

r2ζ sin2 θ

(
1 − 2M

r

)
=

1
R2ζ

. (8.55)

Introducing the rapidity parameter (8.42), we also have

E0̂ = coshαm+ sinhαeφ̂, Eφ̂ = sinhαm+ coshαeφ̂. (8.56)

The frame (8.53) has been termed phase-locked (de Felice, 1991; de Felice and
Usseglio-Tomasset, 1991) and plays a special role in exploring the geometrical
properties of circular orbits.

Finally let us identify a Frenet-Serret frame along U . Following Iyer and
Vishveshwara (1993), we have
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E0̂ = U,

E1̂ = cosχer̂ + sinχeθ̂,

E2̂ = Eφ̂,

E3̂ = sinχer̂ − cosχeθ̂, (8.57)

with

tanχ = − ζ2 sin θ cos θ(
M
r3

− ζ2 sin2 θ

)(
1 − 2M

r

)1/2
= −R

r

ζ2 cos θ
(ζ2

K − ζ2 sin2 θ)
. (8.58)

The Frenet-Serret curvature and torsions are then given by

κ(U)2 = Γ4r2
[(

1 − 2M
r

)(
ζ2
K − ζ2 sin2 θ

)2
+ ζ4 sin2 θ cos2 θ

]
,

implying also that

τ1(U)2 =
Γ4ζ2 sin2 θ

(
1 − 2M

r

) [(
ζ2
K − ζ2 sin2 θ

) (
1 − 3M

r

)
− ζ2 cos2 θ

]2[(
1 − 2M

r

)
(ζ2

K − ζ2 sin2 θ)2 + ζ4 sin2 θ cos2 θ
] ,

τ2(U)2 =
ζ2M2 cos2 θ

r6
[(

1 − 2M
r

)
(ζ2

K − ζ2 sin2 θ)2 + ζ4 sin2 θ cos2 θ
] . (8.59)

Observers on equatorial spatially circular orbits

Let us now require that the plane of the orbits in Schwarzschild space-time is
fixed at θ = π/2, referred to as the equatorial plane; we shall still confine our
attention to spatially circular orbits. For these orbits the acceleration is only
radial, as follows from (8.28), that is

a(U) =
(

1 − 2M
r

− ζ2r2
)−1 (

1 − 2M
r

)1/2

r(ζ2
K − ζ2) er̂

= −|ζc|
ζ2 − ζ2

K

ζ2
c − ζ2

er̂, (8.60)

where

|ζc| =
1
r

(
1 − 2M

r

)1/2

=
1
R . (8.61)

This family of orbits is expansion-free and has a vorticity vector given by

ω(U) = −Γ2ζr

(
1 − 3M

r

)
eθ̂. (8.62)



164 Observers in physically relevant space-times

In Chapter 4 we discussed relative Frenet-Serret frames and introduced in
(4.39) the quantity k(fw,U,m) as the Fermi-Walker curvature of the orbit, that is

D(fw,U,m)

d�(U,m)
ν̂(U,m) = k(fw,U,m)η̂(fw,U,m). (8.63)

Similarly, when the Lie-spatial (instead of Fermi-Walker) temporal derivative is
involved, one has the Lie-relative curvature k(lie,U,m)

D(lie,U,m)

d�(U,m)
ν̂(U,m) = k(lie,U,m)η̂(lie,U,m). (8.64)

In this case, Cm being vorticity-free and expansion-free, we have, from (3.63),

k(fw,U,m) = k(lie,U,m). (8.65)

A direct calculation gives

k(lie,U,m) = −1
r

(
1 − 2M

r

)1/2

= − 1
R , (8.66)

clarifying the geometrical meaning of the effective radius introduced in (8.39);
hereafter k(lie,U,m) will be abbreviated simply as k(lie). We then have, from (8.36)
and (8.60),

a(U) = k(lie)
ζ2 − ζ2

K

ζ2
c − ζ2

er̂ = k(lie)γ
2
(
ν2 − ν2

K

)
er̂, (8.67)

where νK = ν(UK±,m) is the Keplerian relative velocity,

νK =
(

M
r − 2M

)1/2

. (8.68)

The Frenet-Serret frame (8.53) in this case implies a second torsion identically
zero, namely τ2(U) = 0, and

κ(U) = Γ2

(
1 − 2M

r

)1/2 M− r3ζ2

r2
= Γ

(
1 − 2M

r

)
R(ζ2

K − ζ2),

τ1(U) = ζΓ2

(
1 − 3M

r

)
, (8.69)

with

tanχ = 0, (8.70)
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and hence E1̂ = er̂. We see that, like U , a(U) forms a one-parameter family of
vectors, the parameter being the angular velocity ζ (or equivalently the spatial
velocity or the rapidity with respect to any family of observers). Expressing κ(U)
and τ1(U) in terms of the rapidity α with respect to the family of static observers
gives

κ(U) =
k(lie)

cosh2 αK

sinh(α− αK) sinh(α+ αK),

τ1(U) = −1
2
∂ακ(U), (8.71)

where αK = α(UK ,m) and tanhαK = νK .
One can then consider the extremely accelerated orbits as those equatorial

spatially circular orbits satisfying the condition

∂ζ ||a(U)|| = 0. (8.72)

A direct calculation shows that these orbits coincide here with those of the static
observers, i.e. with ζ = 0.

8.3 Kerr space-time
The Kerr metric is described by the line element

ds2 = −dt2 +
2Mr

Σ
(a sin2 θdφ− dt)2 + (r2 + a2) sin2 θdφ2

+
Σ
Δ
dr2 + Σdθ2, (8.73)

where

Σ = r2 + a2 cos2 θ, Δ = r2 + a2 − 2Mr. (8.74)

It is useful to introduce the quantity

A = (r2 + a2)2 − Δa2 sin2 θ (8.75)

such that gφφ = A sin2 θ/Σ . The parameters M and a describe the total mass and
specific angular momentum of the source, respectively. The Kerr metric describes
the space-time of a rotating black hole when a <M. In this case the coordinates
in (8.73) run as t ∈ (−∞,+∞), r ∈ (r+,∞), θ ∈ [0, π], φ ∈ [0, 2π], with

r+ = M +
√

M2 − a2. (8.76)
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These are spherical-like coordinates known as Boyer-Lindquist coordinates. The
inverse Kerr metric is given by(

∂

∂s

)2

=
1
Σ

{
−A

Δ

(
∂

∂t

)2

− 4Mra

Δ
∂

∂t

∂

∂φ
+

Δ − a2 sin2 θ

Δsin2 θ

(
∂

∂φ

)2

+ Δ
(
∂

∂r

)2

+
(
∂

∂θ

)2
}
. (8.77)

Kerr space-time admits two Killing vectors, which in Boyer-Lindquist coordinates
are given by

ξ0 = ∂t, ξ3 = ∂φ. (8.78)

They express the properties of stationarity and axial symmetry of the solution.

Various coordinate patches

The metric form (8.73) reduces to the Schwarzschild metric if we set a = 0. The
surface r = r+, where Δ = 0, is a coordinate singularity representing the space-
like boundary of an event horizon.1 It can be removed with a suitable change of
coordinates. The same type of coordinates introduced in the Schwarzschild case
have been extensively investigated in the literature (see de Felice and Clarke,
1990) and we shall not repeat them here. We shall instead analyze in more detail
the following coordinate system, named after Painlevé and Gullstrand.

The Painlevé-Gullstrand coordinates Xα ≡ (T,R,Θ,Φ) are related to the
Boyer-Lindquist coordinates by the transformation

T = t−
∫ r

f(r)dr , Φ = φ−
∫ r a

r2 + a2
f(r)dr ,

R = r, Θ = θ, (8.79)

where

f(r) = −
√

2Mr(r2 + a2)
Δ

. (8.80)

The Kerr metric in Painlevé-Gullstrand coordinates takes the form

ds2 = −
(

1 − 2Mr

Σ

)
dT 2 + 2

√
2Mr

r2 + a2
dT dr

− 4aMr

Σ
sin2 θ dT dΦ + sin2 θ

[
(r2 + a2) +

2a2Mr

Σ
sin2 θ

]
dΦ2

− 2a sin2 θ

√
2Mr

r2 + a2
dr dΦ +

Σ
(r2 + a2)

dr2 + Σdθ2, (8.81)

1 The surface r = r+ is an outer boundary since Δ = 0 admits also the solution

r− = M−√M2 − a2, which is the inner boundary of the event horizon. The inner
structure of the Kerr black hole will not be considered here.
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which is clearly regular on r = r+. The a = 0 limit of (8.81) is (8.11), as expected.
The induced metric on T= constant slices is non-diagonal and has the form

ds2|T= const. = sin2 θ

[
(r2 + a2) +

2Mra2

Σ
sin2 θ

]
dΦ2

− 2a sin2 θ

√
2Mr

r2 + a2
dr dΦ

+
Σ

(r2 + a2)
dr2 + Σdθ2. (8.82)

The most interesting observers in the Painlevé-Gullstrand coordinate represen-
tation are those with world lines orthogonal to the T = constant hypersurfaces.
They have 4-velocity

N � = −dT, N = ∂T −
√

2Mr(r2 + a2)
Σ

∂r, (8.83)

and form a geodesic (a(N ) = 0) and vorticity-free (ω(N ) = 0) congruence but
have a non-vanishing expansion.

Curvature invariants

There are two quadratic curvature Weyl invariants,2

K1 = RαβγδRαβγδ, K2 = Rαβγδ ∗Rαβγδ ; (8.84)

in Boyer-Lindquist coordinates they are given by

K1 =
48M2

Σ6
(r2 − a2 cos2 θ)(Σ2 − r2a2 cos2 θ),

K2 = −96M2ra cos θ
Σ6

(3r2 − a2 cos2 θ)(r2 − 3a2 cos2 θ) . (8.85)

The invariant K2 is a rotationally induced quantity and its measurement, if oper-
ationally feasible, would unambiguously ascertain that we are in a rotating space-
time (Ciufolini and Wheeler, 1995). An unavoidable curvature singularity is found
where Σ = 0, i.e. where r = 0 and θ = π/2.

The forms (8.85) of the curvature invariants show that these quantities change
their signs several times if one moves along θ = constant hypersurfaces; see
Fig. 8.2. These invariants can be calculated down to the ring singularity, and
one can deduce that they tend to the singularity with different asymptotic values
according to how they approach it. This shows that the Kerr singularity has
directional properties.

2 Since the Kerr metric is a vacuum solution, the Weyl and Riemann tensors coincide.
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2

Fig. 8.2. Curvature invariants K1 and K2 in Kerr space-time, evaluated for
a/M = 0.5 and M = 1. The curves represent the points where the invariants
vanish. The closest curve to the horizon (circle in gray) is that of K2.

Principal null directions,

Petrov type and principal complex null frame

The Kerr metric admits two independent principal null directions whose tangent
vectors are given by

k± = ∂t ±
Δ

(r2 + a2)
∂r +

a

(r2 + a2)
∂φ. (8.86)

The Kerr metric is of Petrov type D. Associated with the above principal null
directions is a complex null frame which can be fixed, leaving the two real null
vectors to be aligned with the vectors (8.86) and the two complex conjugate
vectors m and m̄ as follows (Wald, 1984):

l ≡ r2 + a2

Δ
k+ =

1
Δ
[
(r2 + a2)∂t + Δ∂r + a∂φ

]
,

n ≡ r2 + a2

2Σ
k− =

1
2Σ
[
(r2 + a2)∂t − Δ∂r + a∂φ

]
,

m =
1√

2(r + ia cos θ)

(
ia sin θ ∂t + ∂θ +

i

sin θ
∂φ

)
. (8.87)
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We have l ·n = −1, m ·m = 0, m̄ · m̄ = 0, and m · m̄ = 1. Note that l and k+ are
aligned; the proportionality factor (r2 + a2)/Δ makes l geodesic.

8.4 Special observers in Kerr space-time
The Kerr solution is particularly important in astrophysics since it describes the
geometrical environment of a rotating black hole or, in the weak-field limit, that
of a rotating spherical source. Because of its prominent role it is essential to
describe the orbits which can host physically realistic observers.

Static observers

The 4-velocity of a static observer is given by

m =
1
M
∂t, m� = −M(dt−Mφdφ), (8.88)

where M and Mφ are respectively the lapse and shift functions defined by

M ≡
√
−gtt =

√
Δ − a2 sin2 θ

Σ
, Mφ = −gtφ

gtt
= − 2Mra sin2 θ

Δ − a2 sin2 θ
. (8.89)

In terms of the lapse and shift functions we have

g = −M2(dt−Mφdφ) ⊗ (dt−Mφdφ) + γabdx
a ⊗ dxb, (8.90)

where γab = gab +M2M2
φδ

φ
a δ

φ
b .

Static observers only exist outside the ergosphere, defined by the equation
gtt = 0, that is

r = M±
√

M2 − a2 cos2 θ. (8.91)

A frame adapted to a static observer is the following

e(m)t̂ = m,

e(m)r̂ =
1

√
grr

∂r =

√
Δ
Σ
∂r,

e(m)θ̂ =
1

√
gθθ

∂θ =

√
1
Σ
∂θ, (8.92)

e(m)φ̂ =
1

√
γφφ

[ ∂φ +Mφ ∂t]

=
1

sin θ

√
Δ − a2 sin2 θ

ΔΣ

[
∂φ − 2aMr sin2 θ

Δ − a2 sin2 θ
∂t

]
. (8.93)
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The static observers form a congruence of accelerated world lines with accel-
eration vector

a(m) =
M

Σ3/2(Δ − a2 sin2 θ)

[√
Δ(r2 − a2 cos2 θ) e(m)r̂

− 2a2r sin θ cos θ e(m)θ̂

]
, (8.94)

and vorticity vector

ω(m) =
M

Σ3/2(Δ − a2 sin2 θ)

[
2
√

Δra cos θ e(m)r̂

+ a sin θ(r2 − a2 cos2 θ) e(m)θ̂

]
, (8.95)

while the expansion vanishes identically.
One can now evaluate the transport law for the spatial triad e(m)â along the

world line of m. We have

P (m)∇me(m)r̂ = −ζ(fw)
θ̂e(m)φ̂,

P (m)∇me(m)θ̂ = ζ(fw)
r̂e(m)φ̂,

P (m)∇me(m)φ̂ = ζ(fw)
θ̂e(m)r̂ − ζ(fw)

r̂e(m)θ̂, (8.96)

where

ζ(fw)
r̂ = − 2aMr

√
Δ cos θ

Σ3/2(Σ − 2Mr)
,

ζ(fw)
θ̂ = −aM sin θ(r2 − a2 cos2 θ)

Σ3/2(Σ − 2Mr)
, (8.97)

are the components of the Fermi-Walker angular velocity vector. On the equato-
rial plane we have ζ(fw)

r̂ = 0 and

ζ(fw)
θ̂ = − aM

r3(1 − 2M/r)
. (8.98)

Note that here, with an abuse of notation, we have denoted ζ(fw,m,e(m)â) simply
by ζ(fw).

Zero-angular-momentum observers

Observers who have no angular momentum with respect to the flat infinity are
termed ZAMOs, and move on world lines which are orthogonal to the hypersur-
faces t =constant in Boyer-Lindquist coordinates. Their 4-velocity is given by

n� = −Ndt, n =
1
N

(∂t −Nφ∂φ), (8.99)
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where N and Nφ are the corresponding lapse and shift functions

N =

√
ΔΣ
A
, Nφ = −2aMr

A
. (8.100)

In terms of these functions, the space-time metric can be written in the following
form:

g = −N2dt⊗ dt+ gab(dxa +Nadt) ⊗ (dxb +N bdt), (8.101)

where Na = Nφδa
φ. ZAMOs exist everywhere outside the outer horizon r+.

A tetrad frame adapted to ZAMOs is the following:

e(n)t̂ = n, e(n)r̂ =

√
Δ
Σ
∂r,

e(n)θ̂ =

√
1
Σ
∂θ, e(n)φ̂ =

1
sin θ

√
Σ
A
∂φ. (8.102)

The world lines of the ZAMO congruence have an acceleration vector

a(n) = a(n)r̂er̂ + a(n)θ̂eθ̂, (8.103)

where

a(n)r̂ = − M√
ΔΣ3/2A

{
a2 cos2 θ[(r2 + a2)2 − 4Mr3]

− r2[(r2 + a2)2 − 4a2Mr]
}
,

a(n)θ̂ = −2 sin θ cos θMra2(r2 + a2)
Σ3/2A

; (8.104)

they have a non-zero expansion with expansion tensor

θ(n) = θ(n)r̂φ̂[e(n)r̂ ⊗ e(n)φ̂ + e(n)φ̂ ⊗ e(n)r̂]

+ θ(n)θ̂φ̂[e(n)θ̂ ⊗ e(n)φ̂ + e(n)φ̂ ⊗ e(n)θ̂], (8.105)

where

θ(n)r̂φ̂ =
aM sin θ
Σ3/2A

(a4 cos2 θ − r2a2 cos2 θ − r2a2 − 3r4),

θ(n)θ̂φ̂ =
2ra3M sin2 θ cos θ

√
Δ

Σ3/2A
, (8.106)

while the vorticity vanishes identically.
One can now evaluate the transport law for the spatial triad e(n)â along the

world line of n. We have

P (n)∇ne(n)r̂ = −ζ(fw)
θ̂e(n)φ̂,

P (n)∇ne(n)θ̂ = ζ(fw)
r̂e(n)φ̂,

P (n)∇ne(n)φ̂ = ζ(fw)
θ̂e(n)r̂ − ζ(fw)

r̂e(n)θ̂, (8.107)
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where

ζ(fw)
r̂ = −2a3Mr

√
Δ sin2 θ cos θ

Σ3/2A
= −θ(n)θ̂φ̂, (8.108)

ζ(fw)
θ̂ =

aM sin θ[a2 cos2 θ(a2 − r2) − r2(a2 + 3r2)])
Σ3/2A

= θ(n)r̂φ̂.

On the equatorial plane we have ζ(fw)
r̂ = 0 and

ζ(fw)
θ̂ = − aM(3r2 + a2)

r2(r3 + a2r + 2a2M)
. (8.109)

Moreover, the only non-vanishing components of ZAMO kinematical quantities
are a(n)r̂ and θ(n)r̂φ̂. Note that here, with an abuse of notation, we have denoted
ζ(fw,n,e(n)â) simply by ζ(fw).

Observers on general spatially circular orbits

Consider now a family of spatially circular orbits with unit tangent vector field

U = Γ(∂t + ζ∂φ), (8.110)

where Γ > 0 is defined as

Γ =
[
1 − ζ2 sin2 θ(r2 + a2) − 2Mr

Σ
(1 − aζ sin2 θ)2

]−1/2

(8.111)

and ζ is constant along U , i.e. £Uζ = 0. This class includes static observers with

ζ(static) = 0 (8.112)

as well as ZAMOs with

ζ(ZAMO) = −Nφ. (8.113)

One may decompose the vector field U with respect to ZAMOs, obtaining a re-
parameterization of the given family of orbits in terms of the relative velocity or
the rapidity instead of the angular velocity, that is

U = γ[n+ ν(U, n)] = γ
[
n+ ||ν(U, n)||e(n)φ̂

]
= coshα(U, n)n+ sinhα(U, n)e(n)φ̂, (8.114)

where γ ≡ γ(U, n) = coshα(U, n) is the Lorentz factor and ν(U, n) = ν(U, n)φ̂eφ̂.

A useful relation between ζ and ν(U, n)φ̂ is given by

ν(U, n)φ̂ =
√
gφφ

N
(ζ +Nφ), (8.115)

yielding the following expression for the Lorentz factor:

γ = ΓN. (8.116)
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A tetrad adapted to the observers U is given by

e(U)t̂ = U,

e(U)r̂ =

√
Δ
Σ
∂r,

e(U)θ̂ =

√
1
Σ
∂θ,

e(U)φ̂ = Γ̄[∂t + ζ̄∂φ], (8.117)

with

ζ̄ = − gtt + ζgtφ

gtφ + ζgφφ
,

Γ̄ = (gtt + 2ζ̄gtφ + ζ̄2gφφ)−1/2 = Γ
|gtφ + ζgφφ|√
g2

tφ − gttgφφ

. (8.118)

Explicitly, we have

ζ̄ =
Σ − 2Mr(1 − aζ sin2 θ)

sin2 θ[ζ(r2 + a2)Σ − 2aMr(1 − aζ sin2 θ)]
. (8.119)

Note that, like U in (8.114), e(U)φ̂ can be written as

e(U)φ̂ = γ[ ||ν(U, n)||n+ e(n)φ̂ ]

= sinhα(U, n)n+ cosα(U, n)e(n)φ̂, (8.120)

so that, abbreviating α(U, n) = α, one has

e(U)φ̂ =
dU

dα
. (8.121)

The world lines with tangent vectors (8.110) have an acceleration vector

a(U) = a(U)r̂e(U)r̂ + a(U)θ̂e(U)θ̂, (8.122)

where

a(U)r̂ =
Γ2

√
Δ√

Σ

[
M(r2 − a2 cos2 θ)

Σ2
(1 − aζ sin2 θ)2 − rζ2 sin2 θ

]
,

a(U)θ̂ = −Γ2 sin θ cos θ√
Σ

[
2Mr

Σ2
[(r2 + a2)ζ − a]2 + Δζ2

]
. (8.123)

Moreover, orbits (8.110) in the special case ζ =constant over the entire congru-
ence (a more restrictive condition than the above mentioned £Uζ = 0) form a
Born-rigid congruence of world lines (parameterized by r and θ) with vanishing
expansion tensor

θ(U) = 0, (8.124)
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but with non-zero vorticity vector

ω(U) = ω(U)r̂e(U)r̂ + ω(U)θ̂e(U)θ̂, (8.125)

where

ω̃(U)r̂ =
1
2

ΓΓ̄
√
gθθ

[
∂θ gtt + (ζ + ζ̄ )∂θ gtφ + ζζ̄∂θ gφφ

]
,

ω̃(U)θ̂ = −1
2

ΓΓ̄
√
grr

[
∂r gtt + (ζ + ζ̄ )∂r gtφ + ζζ̄∂r gφφ

]
. (8.126)

In the general case (ζ = ζ(r, θ) varies over the congruence) the above relations
are modified: the congruence is no longer rigid and has

θ(U)r̂φ̂ =
1
2

[sgn(gtφ + ζgφφ)] Γ2 sin θ
Δ√
Σ
∂rζ,

θ(U)θ̂φ̂ =
1
2

[sgn(gtφ + ζgφφ)] Γ2 sin θ

√
Δ
Σ
∂θζ, (8.127)

where φ̂ refers to the unit space-like direction e(U)φ̂ orthogonal to U .
Moreover, the components of the vorticity tensor change and one finds

ω(U)r̂ = ω̃r̂ + θ(U)θ̂φ̂,

ω(U)θ̂ = ω̃θ̂ − θ(U)r̂φ̂, (8.128)

where we have denoted with a tilde the components (8.126) of the vorticity vector
corresponding to the case ζ = constant.

For a general circular orbit U , the Fermi-Walker gravitational force as measured
by a static observer m is given by

F
(G)
(fw,U,m) = −Dm

dτU
= −γ(U,m)[a(m) + ω(m) ×m ν(U,m)]

= −γ(U,m)[a(m)r̂ + ω(m)θ̂ν(U,m)φ̂]e(m)r̂

− γ(U,m)[a(m)θ̂ − ω(m)r̂ν(U,m)φ̂]e(m)θ̂, (8.129)

while that measured by a ZAMO observer n is given by

F
(G)
(fw,U,n) = −Dn

dτU
= −γ(U, n)[a(n) + θ(n) ν(U, n)]

= −γ(U, n)[a(n)r̂ + θ(n)r̂φ̂ν(U, n)φ̂]e(n)r̂

− γ(U, n)[a(n)θ̂ + θ(n)θ̂φ̂ν(U, n)φ̂]e(n)θ̂. (8.130)
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Finally we identify a Frenet-Serret frame along U as the following:

E0̂ = U,

E1̂ = cosχer̂ + sinχeθ̂,

E2̂ = e(U)φ̂ =
dU

dα
,

E3̂ = sinχer̂ − cosχeθ̂ = −dE1

dχ
, (8.131)

with

tanχ =
a(U)θ̂

a(U)r̂
, κ(U)2 = [a(U)r̂]2 + [a(U)θ̂]2, (8.132)

where a(U)r̂ and a(U)θ̂ are given by (8.123). The general expressions for τ(U)1
and τ(U)2 are rather complicated (Iyer and Vishveshwara, 1993). In order to
write these relations down explicitly let us introduce the following notation:

A = gtt + 2ζgtφ + ζ2gφφ,

B = gtφ + ζgφφ, (8.133)

and

A(â) = ∂âgtt + 2ζ∂âgtφ + ζ2∂âgφφ,

B(â) = ∂âgtφ + ζ∂âgφφ, (8.134)

where a = r, θ and ∂â = (gaa)−1/2∂a. Note that, according to our previous
notation,

A = −Γ−2, (sinχ, cosχ) =
1

2κ(U)A
(
A(r̂),A(θ̂)

)
. (8.135)

It follows that

B =
1
2
∂ζA, B(â) =

1
2
∂ζA(â). (8.136)

We then have the following compact expressions:

κ(U)2 =
1
4

(
A2

(r̂) + A2
(θ̂)

)
A2

,

τ1(U)2 =
B2

16A2N2gφφκ(U)2

[
A(r̂)B(r̂) + A(θ̂)B(θ̂)

B −
A2

(r̂) + A2
(θ̂)

A

]2

,

τ2(U)2 =
1

16N2gφφκ(U)2

[A(r̂)B(θ̂) −A(θ̂)B(r̂)

A

]2
. (8.137)

These relations can be further simplified. Using (8.136) in the expression of τ1(U)2

yields

τ1(U)2 =
A2

4N2gφφ
[∂ζκ(U)]2 (8.138)
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or, from (8.135),

τ1(U)2 =
1

4Γ4N2gφφ
[∂ζκ(U)]2 . (8.139)

Using relations (8.36) between ζ and ν(U, n)φ̂ and (8.116) for the Lorentz factor,
one can replace the derivative with respect to ζ with that with respect to ν,
obtaining

τ1(U)2 =
1

4γ4
[∂νκ(U)]2 . (8.140)

Finally, replacing ν with the rapidity parameter α, the above relation becomes

τ1(U)2 =
1
4

[∂ακ(U)]2 . (8.141)

A similar procedure, also using (8.135) for sinχ and cosχ, leads to the following
expression for τ2(U):

τ2(U)2 =
1
4
κ(U)2[∂αχ]2. (8.142)

Using relations (8.137) and their simplifications (8.141) and (8.142), all the intrin-
sic geometrical properties of time-like spatially circular orbits can be easily stud-
ied. It is worth noting that the general expressions for curvature and torsions
given here are valid for any stationary and axisymmetric space-time.

Carter’s observers

A family of spatially circular orbits with particular properties was found by Carter
(1968). Their tangent vector fields are given by

u(car) =
r2 + a2

√
ΔΣ

[
∂t +

a

r2 + a2
∂φ

]
,

u�
(car) = −

√
Δ
Σ
[
dt− a sin2 θdφ

]
. (8.143)

These belong to the class of spatial circular orbits with

ζ(car) =
a

r2 + a2
. (8.144)

The main property of these trajectories is that of being the unique time-like world
lines belonging to the intersection of the Killing 2-plane (t, φ) with the 2-plane
spanned by Kerr principal null directions.

The direction orthogonal to u(car) in the (t, φ)-plane is given by

ū(car) =
a sin θ√

Σ

[
∂t +

1
a sin2 θ

∂φ

]
,

ū�
(car) = −a sin θ√

Σ

[
dt− r2 + a2

a
dφ

]
. (8.145)
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An orthonormal frame adapted to the Carter family of observers is the same as
the one in (8.117), with ζ replaced by ζ(car):

E(u(car))t̂ = u(car), E(u(car))r̂ = er̂,

E(u(car))θ̂ = eθ̂, E(u(car))φ̂ = ū(car). (8.146)

With respect to this frame, the principal null directions (8.86) of Kerr space-time
take the form

k± =
√

ΔΣ
r2 + a2

(
u(car) ± er̂

)
; (8.147)

this implies that photons moving along the above directions will appear spatially
radial with respect to Carter’s observers. If we analyze the vector field u(car)

with respect to the static observers in Kerr space-time, we find, for the relative
velocity,

ν(u(car),m)φ̂ =
√
γφφ

ζ(car)

M(1 −Mφζ(car))
=
a sin θ√

Δ
, (8.148)

where M , Mφ, and γφφ are defined by (8.89) and (8.90).
Furthermore, Carter’s observers measure the electric and magnetic parts of the

Weyl tensor as parallel to each other:

E(u(car)) =
Mr(r2 − 3a2 cos2 θ)

Σ3
[−2er̂ ⊗ er̂ + eθ̂ ⊗ eθ̂

+ ū(car) ⊗ ū(car)],

(8.149)

H(u(car)) =
Ma cos θ(3r2 − a2 cos2 θ)

Σ3
[−2er̂ ⊗ er̂ + eθ̂ ⊗ eθ̂

+ ū(car) ⊗ ū(car)].

Null spatially circular orbits

Null spatially circular orbits cannot be associated with a physical observer;
nonetheless they play an important role as critical conditions for time-like tra-
jectories. Their tangent vector field is given by

� = Γ(null)(∂t ± ζ
(null)
± ∂φ), (8.150)

with

ζ
(null)
± =

2aMr

A
± Σ

√
Δ

sin θA

= ζ(ZAMO) ±
Σ
√

Δ
sin θA

, (8.151)

where A is given by (8.75) and Γ(null) is an arbitrary factor; ζ(ZAMO) is given by
(8.113).
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Observers on equatorial circular orbits

There exists a whole collection of special circular orbits in the equatorial plane.
They are the corotating (+) and counter-rotating (−) time-like circular geodesics
whose angular and linear velocities (with respect to ZAMOs) are respectively3

ζK± ≡ ζ± =
[
a± (r3/M)1/2

]−1

, (8.152)

νK± ≡ ν± =
a2 ∓ 2a

√
Mr + r2√

Δ(a± r
√
r/M)

. (8.153)

These become null when |ν±| = 1, which occurs at

r
(null)
K± = 2M

{
1 + cos

[
2
3

arccos
(
∓ a

M
)]}

. (8.154)

Obviously co- and counter-rotating time-like circular geodesics exist at r > r
(null)
K+

and r > r
(null)
K− respectively.

Closely related to these are the geodesic meeting point (gmp) orbits defined by
the intersection points of the time-like geodesics, with velocity

ν(gmp) =
ν+ + ν−

2
= − aM(3r2 + a2)√

Δ(r3 − a2M)
. (8.155)

Similarly one may consider special orbits having spatial 3-velocity (with respect
to ZAMOs) given by

ν(pt) =
2

ν−1
+ + ν−1

−
=

(r2 + a2)2 − 4a2Mr

a
√

Δ(3r2 + a2)
. (8.156)

Both the above families of orbits play a role in the study of parallel transport
(pt) of vectors along circular orbits (Bini, Jantzen, and Mashhoon, 2002).

The linear velocities of the circular geodesics and gmp orbits are related to the
ZAMO kinematical quantities

a(n)r̂ =
MΔ−1/2

[
(r2 + a2)2 − 4a2Mr

]
r2(r3 + a2r + 2Ma2)

,

θ(n)r̂φ̂ =
Ma(3r2 + a2)

r2(r3 + a2r + 2Ma2)
,

k(lie)(n)r̂ = − (r3 − a2M)
√

Δ
r2(r3 + a2r + 2a2M)

, (8.157)

by

a(n)r̂ = k(lie)(n)r̂ ν+ν−, θ(n)φ̂r̂ = −k(lie)(n)r̂ ν(gmp), (8.158)

where k(lie)(n)r̂ = −∂r̂ ln√
gφφ, as follows from the definition (3.169).

3 To simplify notation in this section we use U± to denote the 4-velocity of corotating and
counter-rotating geodesics as well as ν± and ζ± for their relative and angular velocities,
dropping the symbol K.
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On the equatorial plane, the expressions of the gravitational force given in
(8.129) and (8.130) on general spatially circular orbits reduce to

F
(G)
(fw,U,m) = −γ(U,m)[a(m)r̂ + ω(m)θ̂ν(U,m)φ̂]e(m)r̂ (8.159)

as measured by the static observer m, and

F
(G)
(fw,U,n) = −γ(U, n)[a(n)r̂ + θ(n)r̂φ̂ν(U, n)φ̂]e(n)r̂ (8.160)

as measured by a ZAMO observer n.
We now have expressions for all the geometrical and kinematical quantities

which are needed to specify the Frenet-Serret, Fermi-Walker, and parallel prop-
agated frames.

The Frenet-Serret frame is given by (8.131) with χ = 0, that is

E0 = coshαn+ sinhα eφ̂, E1 = er̂,

E2 = sinhαn+ coshα eφ̂, E3 = −eθ̂, (8.161)

recalling that ν = tanhα, γ = coshα. The second torsion τ2 vanishes, while the
geodesic curvature κ and the first torsion τ1 are given by

κ =
√

ΔM
r3

Γ2ζ2

[(
a− 1

ζ

)2

− r3

M

]
,

τ1 =
Γ2

r

{
Ma

r2
− ζ

[
M(r2 + 2a2)

r2
− r

(
1 − 2M

r

)]

+ ζ2Ma(3r2 + a2)
r2

}
. (8.162)

Equivalently, we have

κ = k(lie)(n)r̂γ
2(ν − ν+)(ν − ν−),

τ1 = k(lie)(n)r̂ ν(gmp)γ
2(ν − ν(crit)+)(ν − ν(crit)−), (8.163)

where

ν(crit)± =
γ−ν− ∓ γ+ν+
γ− ∓ γ+

= − 1
2Ma(3r2 + a2)

√
Δ

[
−2a2M(a2 − 3Mr)

+ r2(r2 + a2)(r − 3M)

± (r3 + a2r + 2a2M)
√
r
√
r(r − 3M)2 − 4a2M

]
, (8.164)

or equivalently

ζ(crit)± =
Γ−ζ− ∓ Γ+ζ+

Γ− ∓ Γ+
, (8.165)
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identify those orbits on which the first torsion vanishes. The notation “crit” for
the observers moving along equatorial circular orbits comes from the relation

τ1 = − 1
2γ2

dκ

dν
, (8.166)

which can be easily verified; critical observers have vanishing first torsion and
hence extreme acceleration (in magnitude) and are termed extremely accelerated
observers.

The time-like condition |ν(crit)+| < 1 is satisfied when r+ < r < r
(null)
K+ while

|ν(crit)−| < 1 when r > r
(null)
K− .

We can now specify the geometrical properties of extremely accelerated
observers. Consider for example the U(crit)− orbits (analogous considerations hold
for the U(crit)+ orbits). From Eq. (8.164) it follows that

ν+ − ν(crit)− =
γ−

γ− − γ+
(ν+ − ν−),

ν− − ν(crit)− =
γ+

γ− − γ+
(ν+ − ν−), (8.167)

and therefore

ν+ − ν(crit)−
ν− − ν(crit)−

=
γ−
γ+

. (8.168)

Similarly we find

1 − ν+ν(crit)− =
γ+γ−(1 − ν+ν−) − 1

γ+(γ− − γ+)
,

1 − ν−ν(crit)− = −γ+γ−(1 − ν+ν−) − 1
γ−(γ− − γ+)

, (8.169)

so that

1 − ν+ν(crit)−
1 − ν−ν(crit)−

= −γ−
γ+

. (8.170)

Combining (8.168) and (8.170) one has

ν+ − ν(crit)−
1 − ν+ν(crit)−

= −
ν− − ν(crit)−
1 − ν−ν(crit)−

. (8.171)

Recalling the relativistic formula for the addition of velocities, the above relation
implies

ν(U+, U(crit)−) = −ν(U−, U(crit)−), (8.172)
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that is, the U(crit)− observers are so special that with respect to them the
spatial geodesic velocities differ only by a sign. Therefore, splitting of co- and
counter-rotating geodesics by U(crit)− observers gives

U+ = γ(U+, U(crit)−)[U(crit)− + ν(U+, U(crit)−)Ū(crit)−],

U− = γ(U+, U(crit)−)[U(crit)− − ν(U+, U(crit)−)Ū(crit)−], (8.173)

where Ū(crit)− is the unit spatial vector orthogonal to U(crit)− in the Killing
2-plane (∂t, ∂φ). By adding these equations one gets

U+ + U− = 2γ(U+, U(crit)−)U(crit)− (8.174)

or, equivalently,

U(crit)− =
U+ + U−

||U+ + U−||
, (8.175)

which is the most significant characterization of these observers. Since a similar
result is obtained by the observers U(crit)+ when measuring the spatial velocities
of the circular geodesics U+ and U−, we deduce that, as a sort of compensation,
the gravitational drag does not affect the measurements themselves. Repeating
the above derivation for the U(crit)+ observers, we can write the more general
relation

U(crit)± =
U+ ∓ U−

||U+ ∓ U−||
. (8.176)

Extremely accelerated observers on the equatorial plane are also special
because the vanishing of the first torsion of their orbits together with the identi-
cal vanishing of the second torsion makes the whole Frenet-Serret angular veloc-
ity vanish. In other words the natural Frenet-Serret frame adapted to U(crit)±
observers is also a Fermi-Walker frame, i.e. with spatial axes aligned with the
axes of a gyroscope. In particular the unit vector of the φ direction is such that

D(fw,U(crit)±)

dτU(crit)±
Ū(crit)± = 0, (8.177)

or, equivalently,

∇U(crit)±Ū(crit)± = 0, (8.178)

because Ū(crit)± · U(crit)± = 0 and a(U(crit)±) · Ū(crit)± = 0, since the acceleration
has only a radial component.

Another interesting geometrical property of the extremely accelerated
observers – a consequence of the above result – concerns their relationship with
any other equatorial circular orbit u. One can prove the following statement:
“As seen by extremely accelerated observers, any equatorial circular orbit u is
relatively straight,” that is, its relative Fermi-Walker curvature is zero. In fact,
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we have V̂(u,U(crit)±) = −ν̂(u,U(crit)±) = Ū(crit)±. Therefore, from (4.46) for the
comoving relative Frenet-Serret frames and taking into account (8.177), we have

D(fw,U(crit)±)

d�U(crit)±
Ū(crit)± = K(fw,u,U(crit)±)N(fw,u,U(crit)±)

= 0, (8.179)

where the factor γ(u,U(crit)±)ν(u,U(crit)±) has been re-absorbed in the parameter
�U(crit)± ; hence, K(fw,u,U(crit)±) = 0.

Observer-dependent embedding diagrams in Kerr space-time

Two-dimensional embedding diagrams have proven to be very valuable in visu-
alizing certain aspects of space-time geometry in stationary axially symmetric
space-times. However, an embedding diagram, as well as the associated space-
time image, is observer-dependent. In what follows we shall consider families
of observers in motion along spatially circular orbits on the equatorial plane
of Kerr space-time and study how they would see the black hole space-time
geometry. Some of these, including static, ZAMO, geodesic, Carter, geodesic
meeting point, Lie/Fermi-Walker relatively and comoving relatively straight, and
extremely accelerated, have already been extensively studied. In the analysis we
are going to perform, certain “new” special families of observers arise.

Let us consider spatially circular orbits in the equatorial plane of Kerr space-
time, with tangent vector fields written with respect to ZAMO observers as

U = γ(U, n)[n+ ||ν(U, n)||ν̂(U, n)], (8.180)

with

ν̂(U, n) =
1

√
gφφ

∂φ, ν̂(U, n)� =
√
gφφ(dφ+Nφdt),

||ν(U, n)|| =
√
−gttgφφ

[
ζ +

gtφ

gφφ

]
. (8.181)

Let Ū be (minus) the unit vector of the relative velocity of n with respect to U ,

Ū � = −ν̂(n,U)� = γ(U, n)[||ν(U, n)||n� + ν̂(U, n)�], (8.182)

and ωr̂ =
√
grrdr a unit 1-form in the radial direction. Then the set {U �, ωr̂, Ū �}

forms a U -adapted tetrad in the equatorial plane. With respect to the above
frame the metric element can be written as

ds2 = −(U �)2 + (Ū �)2 + (ωr̂)2. (8.183)

Since n� = −Ndt, on a t = constant and θ = constant slice of LRSU , (Ū �)2

reduces to

(Ū �)2|t,θ=const. = [γ(U,n)
√
gφφdφ]2, (8.184)
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so that the induced metric becomes

(2)ds2t,θ=const. = (Ū �)2 + (ωr̂)2|t,θ=const.

= γ(U, n)2gφφdφ
2 + grrdr

2. (8.185)

This in turn can be interpreted as the metric of a 2-surface corresponding to the
“image” of the space-time the observers U will construct once the embedding
of this surface in a flat Euclidean or Minkowskian three-dimensional space is
considered.

Notice that the effect of the relative velocity on the spatial geometry is to
increase the circumferences of circles by a gamma factor while keeping radial
distances fixed.

To embed the 2-metric (8.185) in a flat 3-metric, let us consider the flat spatial
line element written in polar-like coordinates as

(3)ds2 = ±dZ2 + dR2 +R2dφ2, (8.186)

where the plus sign refers to the Euclidean case and the minus sign to the
Minkowskian one. Let the embedding 2-surface be of the form Z = Z(R) so
that the corresponding induced metric becomes

(2)ds2 = hRRdR
2 +R2dφ2, (8.187)

where

hRR = ±
(
dZ

dR

)2

+ 1, (8.188)

where the + sign refers to the Euclidean embedding and the − sign to the
Minkowskian one. Comparing (8.187) with (8.185), we deduce that

R(r) = γ(U, n)
√
gφφ,

hRR = grr

(
dR

dr

)−2

. (8.189)

Integrating over the embedding surface Z = Z(R) and using as integration vari-
able the radial Boyer-Lindquist coordinate r, requiring R = R(r), we have

Z±(r) ≡
∫ r

r(ss)

√
±(hRR − 1)

dR

dr
dr, (8.190)

where r(ss) is a solution of the equation hRR = 1 and therefore marks the
signature-switch point. Clearly Z±(r(ss)) = 0. A general solution of (8.190) is

Z(r) = H(r − r(ss))Z+(r) +H(r(ss) − r)Z−(r), (8.191)

where H is the Heaviside step function. Numerical integration easily gives the
form of the embedding diagram. This is shown in Fig. 8.3 for ZAMOs, static, and
Carter observers.
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Fig. 8.3. Relative embedding for selected families of observers on the equatorial
plane of Kerr space-time.

In the case of Kerr, the (ss) condition hRR = 1, namely

grr

(
dR

dr

)−2

= 1, (8.192)

can be analytically integrated to get the following expression for R:

R(ss)(r) = F (r;M, a, b) ≡
√

Δ + M log

[
r −M +

√
Δ

r+ −M

]
+ b, (8.193)

where r+ is the outer horizon and b is an arbitrary integration constant. From
(8.189)1 and (8.193) we can define a new class of observers U(ss) characterized by

ν(U(ss), n) = ±
√

1 − gφφ

F (r;M, a, b)2
. (8.194)

Assuming we have a maximally extended family of U(ss) observers (from the
horizon to spatial infinity), the integration constant b is fixed at b = 2M since
ν(U(ss),n)|r=r+ = 0. For a non-maximally extended family (i.e. from some observer
horizon radius r∗ > r+ to infinity) b would depend trivially on r∗.

8.5 Gravitational plane-wave space-time
The metric of a plane monocromatic gravitational wave, elliptically polarized and
propagating along a direction which we fix as the x coordinate direction, can be
written in transverse-traceless (TT) gauge as

ds2 = −dt2 + dx2 + (1 − h+)dy2 + (1 + h+)dz2 − 2h×dydz , (8.195)
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where h+/× are functions only of (t − x). A physically reasonable observer who
could make a measurement is a geodesic one. The time-like geodesics of this
metric have been deduced in de Felice (1979); their 4-velocity has the form

U(g) =
1

2E
[(1 + f + E2)∂t + (1 + f − E2)∂x]

+
1

1 − h2
+ − h2

×
{[α(1 + h+) + βh×]∂y

+ [β(1 − h+) + αh×]∂z}, (8.196)

where α, β, and E are conserved Killing quantities and f = gABU
A
(g)U

B
(g) with

A,B = (2, 3), is equal to

f = (1 − h+)
(
Uy

(g)

)2

+ (1 + h+)
(
Uz

(g)

)2

− 2h×U
y
(g)U

z
(g)

� α2(1 + h+) + β2(1 − h+) + 2αβh× , (8.197)

where � denotes the corresponding weak-field limit, i.e. up to first order in h+

and h×.
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Measurements in physically relevant space-times

The aim of modern astronomy is to uncover the properties of cosmic sources
by measuring their key parameters and deducing their dynamics. Black holes
are targets of particular interest for the role they have in understanding the
cosmic puzzles and probing the correctness of current theories. Black holes can be
considered simply as deep gravitational potential wells; therefore their existence
can only be inferred by observing the behavior of the surrounding medium. The
latter can be made of gas, dust, star fields, and obviously light, but all suffer
tidal strains and deformations which herald, out of the observer’s perspective,
the black hole’s existence and type. Essential tools for the acquisition of this
knowledge are the equations of relative acceleration which stand as basic seeds
for any physical measurement. We shall revisit them for specific applications, but
will always neglect electric charge in our discussion.

9.1 Measurements in Schwarzschild space-time
Consider a collection of particles undergoing tidal deformations; we shall deduce
how these would be measured by any particle of the collection, taken as a fidu-
cial observer. Let us assume that the test particles of the collection move in
spatially circular orbits in Schwarzschild space-time whose metric is given by
(8.1). Indeed, the physical measurements which can be made in the rest frame
of the fiducial observer in the collection are the most natural to be performed in
satellite experiments.

Strain-induced rigidity

If U is a unitary time-like vector field whose integral curves form a congruence
CU parameterized by the proper time τU , then a connecting vector field Y over
CU satisfies the condition

£UY = 0, (9.1)
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and is a solution of Eq. (7.64), which we recall here:

D2Y α

dτ2
U

= −Rα
βγδU

βY γU δ + Y σ∇σa(U)α. (9.2)

Given a field of orthonormal frames {Eα̂}, (9.2) can be written in tetrad compo-
nents as (see (7.78))

Ÿ â + K(U, E)
â

b̂Y
b̂ = 0, (9.3)

where the deviation matrix K(U, E)
â

b̂ is given by

K(U, E)
â

b̂ = [T(fw, U, E) − S(U) + E(U)]âb̂. (9.4)

All quantities in (9.4) bear a physical meaning as we have already discussed in
Chapter 7: T(fw, U, E) is the twist tensor (defined in (7.77)), S(U) is the Fermi-
Walker strain tensor (defined in (7.76)), and E(U) is the electric part of the
Riemann tensor.

Here we specify the vector field U as being tangent to a family of equatorial
spatially circular orbits as in (8.110), that is

U = Γ(∂t + ζ∂φ), (9.5)

with Γ given by (8.27), with θ = π/2 and ζ = constant over CU .
Let us choose as a tetrad field adapted to U the following (see (8.53)):

Et̂ = U = Γ(∂t + ζ∂φ),

Er̂ =
(

1 − 2M
r

)1/2

∂r,

Eθ̂ =
1
r
∂θ,

Eφ̂ = Γ̄(∂t + ζ̄∂φ), (9.6)

where

Γ̄ =
Γζr

[1 − (2M/r)]1/2
, ζ̄ =

1
ζr2

(
1 − 2M

r

)
. (9.7)

The various quantities involved are listed below.

(i) The physical components of the acceleration:

a(U)â = Γ2

(
1 − 2M

r

)1/2(M
r2

− ζ2r

)
δâr̂ . (9.8)

(ii) The expansion tensor:

θ(U)âb̂ ≡ 0, (9.9)

showing that the above congruence is Born-rigid.
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(iii) The vorticity vector, whose only non-vanishing component is

ω(U)θ̂ = −Γ2ζ

(
1 − 3M

r

)
, (9.10)

and is coincident with the Fermi rotation vector ζ(fw)â.
(iv) The Fermi-Walker strain tensor S(U), which, from (7.76), is given by

S(U)âb̂ = ∇(U)b̂a(U)â + a(U)âa(U)b̂

= diag[S(U)r̂r̂, S(U)θ̂θ̂, S(U)φ̂φ̂], (9.11)

where

S(U)r̂r̂ = Γ4

{
(ζ2

K − ζ2)2Mr + (ζ2
K − ζ2)

[(
1 − 3M

r

)(
1 − M

r

)

−3ζ2
Kr

2

(
1 − 2M

r

)]
− 3ζ2

K

(
1 − 2M

r

)(
1 − 3M

r

)}
,

S(U)θ̂θ̂ = Γ2

[
ζ2
K − 2M

r
(ζ2

K − ζ2)
]
,

S(U)φ̂φ̂ = −MrΓ4(ζ2 − ζ̃2)(ζ2
K − ζ2), (9.12)

with

ζ2
K =

M
r3
, ζ̃2 =

1
Mr

(
1 − 2M

r

)2

. (9.13)

(v) The twist tensor T(fw, U, E) which in our case, from (7.77), is given by

T(fw, U, E)
â

b̂ = δâ
b̂
ζ2
(fw) − ζ â

(fw)ζ(fw)b̂ − 2εâf̂ ĉζ
f̂
(fw)ω(U)ĉ

b̂

= diag[C, 0, C], (9.14)

where

C = ζ2Γ4

(
1 − 3M

r

)2

= ||ζ(fw)||2. (9.15)

(vi) The electric part of the Riemann tensor E(U)â
b̂ (restricted to the equatorial

plane) which has only the following non-vanishing components:

E(U)r̂r̂ = −M
r3

Γ2

[
2
(

1 − 2M
r

)
+ ζ2r2

]
,

E(U)θ̂θ̂ =
M
r3

Γ2

[(
1 − 2M

r

)
+ 2ζ2r2

]
,

E(U)φ̂φ̂ =
M
r3
. (9.16)
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After some algebra, we obtain

d2Y r̂

dτ2
U

=
{
M
r3

Γ2

[
2
(

1 − 2M
r

)
+ ζ2r2

]
+ S(U)r̂r̂ + C

}
Yr̂ ≡ 0,

d2Y θ̂

dτ2
U

=
{
−M
r3

Γ2

[
2ζ2r2 +

(
1 − 2M

r

)]
+ S(U)θ̂θ̂

}
Yθ̂ ≡ 0,

d2Y φ̂

dτ2
U

=
[
−M
r3

+ S(U)φ̂φ̂ + C

]
Yφ̂ ≡ 0, (9.17)

consistent with the rigidity condition (9.9). The terms which ensure this rigidity
are the components of the Fermi-Walker strain tensor S(U)î̂i(̂i = r, θ, φ) which
balance the effects of both the curvature and the centrifugal effects generated
by the Fermi rotation of the tetrad (term C in (9.15) and (9.17)). Crucial to
this compensation is the requirement that the physical frame carried by the
observer (the fiducial particle of the system) is exactly the frame (9.6) all along
the orbit. The operational fulfillment of this requirement can only be achieved
if the observer is able to identify in his rest frame and without ambiguity the
radial, azimuthal, and latitudinal directions. A tetrad whose spatial axes remain
parallel to the above directions is termed phase-locked , as stated in (8.53) (de
Felice, 1991; de Felice and Usseglio-Tomasset, 1991). The relative strains S(U)î̂i

can be balanced by springs, for example, connecting discrete particles, or by the
internal structure of a configuration like a star in the case of a fluid. Let us now
see what information arises from a measurement of strains.

The radial direction is identified by the direction of the thrust when the orbit
is not a geodesic. In the case of a geodesic motion the thrust is zero; hence the
identification of the frame (9.6) would require an approach different from what we
shall pursue here. If the observer moves along a general spatially circular orbit, the
thrust is constant and, as stated, fixes locally the radial direction with respect to
the center of the gravitational potential. Along this direction, the relative strain
S(U)r̂r̂ in (9.12) is always negative, meaning that the spring – or whatever other
mechanism one considers to ensure rigidity – exerts a compression (see Fig. 9.1).

This behavior is expected since in our case both the curvature and the Fermi
rotation cause a stretch at all values of r. However, the measurement of the
radial strain alone does not allow the observer to decide whether he is actually
moving in a circular orbit or is at rest with respect to the coordinate grid. This
uncertainty can be overcome with other types of measurements.

The azimuthal strain S(U)φ̂φ̂ can be written from (9.12) as

S(U)φ̂φ̂ = −ζ2
K

(ζ2 − ζ̃2)(ζ2
K − ζ2)

[(1 − 3M/r)/r2 + (ζ2
K − ζ2)]2

, (9.18)

and its plot is shown in Fig. 9.1. It vanishes when ζ2 = ζ2
K and ζ2 = ζ̃2, this being

the manifestation of an exact balancing of the curvature (tidal) compression with
the centrifugal stretch induced by the Fermi rotation. It is negative (meaning a
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compression) when the centrifugal stretch overcomes the tidal compression, and
this occurs when ζ̃2 > ζ2 > ζ2

K and ζ̃2 < ζ2 < ζ2
K ; it is positive (meaning

a stretch) when the tidal compression overcomes the centrifugal stretch, and
this occurs when ζ2 < ζ2

K < ζ̃2 for r > 3M and ζ2 < ζ̃2 < ζ2
K for r < 3M

(Fig. 9.2).



9.1 Measurements in Schwarzschild space-time 191

At r = 3M we have ζK = ζ̃; hence S(U)φ̂φ̂|3M = ζ2
K |3M, independent of ζ.

Since the Fermi rotation of the frame is zero at r = 3M, the azimuthal strain
only needs to balance a tidal compression; hence the φ̂-component of the tidal
curvature tensor is itself independent of ζ. The above result is consistent with the
independence of the thrust from ζ, as first noticed by Abramowicz and Lasota
(1974). If the observer is at rest with respect to infinity, i.e. if ζ = 0, then
S(U)φ̂φ̂ = ζ2

K > 0, meaning a stretch, so the measurement of this strain would
not help us understand whether the observer is at rest or not.

The relative strain in the latitudinal direction is, from (9.12), given by

S(U)θ̂θ̂ =
ζ2
K − 2M

r (ζ2
K − ζ2)

r2(ζ2
c − ζ2)

. (9.19)

As can be seen from Fig. 9.1, S(U)θ̂θ̂ is always positive, meaning that in the
θ direction a stretch is needed to ensure rigidity. If the observer is at rest,
then from (9.12) we would have S(U)θ̂θ̂ = ζ2

K = S(U)φ̂φ̂ > 0. In this case,
if one knows the local radial direction, the measurement of the strains in any
two directions orthogonal to each other and to the radial one would unambigu-
ously indicate that the observer is at rest, if these two strains are positive and
equal to each other, independent of rotation in the plane orthogonal to the radial
direction.

From the above analysis it follows that a direct measurement of the radial
S(U)r̂r̂, latitudinal S(U)θ̂θ̂, and azimuthal S(U)φ̂φ̂ strains allows one to deduce
in general that the observer is orbiting around a gravitational source (a black
hole, say), but they are not sufficient to let the observer recognize where in the
(ζ2, r)-plane of Fig. 9.2 he is actually orbiting. In fact, a measurement of the
azimuthal strain S(U)φ̂φ̂ would not allow the observer to distinguish between
orbiting with ζ in the range ζ2

c > ζ2 > ζ2
K and in the range ζ2

c > ζ2 > ζ̃2. In
both cases, in fact, S(U)φ̂φ̂ is negative (meaning a compression). Clearly, if he
can vary ζ and r then he would recognize that he was crossing the line ζ2 = ζ̃2

in the (ζ2, r)-plane if S(U)φ̂φ̂ vanishes but not the thrust, implying that the
corresponding circular orbit is not a geodesic.

Partially constrained circular motion

Let us now relax the rigidity condition imposed on the collection of particles and
allow free motion in the θ̂ direction only. This condition is ensured by requiring
that a(U)θ̂ = 0 and ∂θ̂a(U)θ̂ = 0 for any θ. This particular state of motion is
operationally set up by forcing the monitored particle to move inside a frictionless
narrow pipe fixed in the θ direction. Calculating the above constraints from (8.28)
and imposing the resulting condition in (9.17)2, the relative acceleration in the
θ̂ direction becomes (de Felice and Usseglio-Tomasset, 1992)
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d2Y θ̂

dτ2
U

=
{
−M
r3

Γ2

[
2ζ2r2 +

(
1 − 2M

r

)]

+ Γ2

(
1 − 2M

r

)
(ζ2

K − ζ2)
}
Y θ̂ = −ζ2Γ2Y θ̂. (9.20)

The particle appears to be acted on by an elastic type of force which pulls it
towards the equatorial plane if it was initially out of it. Then, a particle con-
strained to move inside a pipe without friction, aligned in an r = constant line
and perpendicular to the plane θ = π/2, will undergo harmonic oscillations with
a frequency equal to the proper frequency of the orbital revolution,

|
p

ζ| ≡
∣∣∣∣ dφdτU

∣∣∣∣ = |ζ|Γ. (9.21)

Let us see what type of trajectory is described by the particle constrained in the
pipe.

In Schwarzschild space-time a geodesic, not confined to the equatorial plane,
will lie on a plane which has some inclination with respect to the equatorial one.
The orbital plane is fixed by the initial conditions. These can be expressed in
terms of:

(a) the conserved Killing quantities, namely γ̃, the total energy in units of
μ0c

2 (μ0 being the particle mass and c the speed of light in vacuum), and λ, the
azimuthal angular momentum in units of μ0c;

(b) the separation constant of the Hamilton-Jacobi equation Λ, which is the
total angular momentum in units of μ0c.
These enter the geodesic equations, giving (de Felice and Clarke, 1990)

ṫ = γ̃

(
1 − 2M

r

)−1

,

ṙ = ±
[
γ̃2 − 1 +

2M
r

− Λ2

r2

(
1 − 2M

r

)]1/2

,

θ̇ = ± 1
r2

[
Λ2 − λ2

sin2 θ

]1/2

,

φ̇ =
λ

r2 sin2 θ
, (9.22)

dot meaning derivative with respect to the proper time on the geodesics. The
requirement that the observer (the fiducial particle of the collection) moves on
a spatially circular geodesic confined to the equatorial plane and with radius r0,
say, is summarized by the following conditions:

r = r0, ṙ = 0, θ =
π

2
, θ̇ = 0,

γ̃2
0 =

(
1 − 2M

r0

)2

(
1 − 3M

r0

) , Λ2
0 =

Mr0(
1 − 3M

r0

) , λ0 = Λ0. (9.23)
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Let the monitored particle of the collection move on a spatially circular geodesic
with r′ = r0, γ̃

′ = γ̃0, Λ′ = Λ0 but on a plane inclined with respect to the
equatorial one by an angle θ′ = sin−1(λ′/Λ0), for any chosen λ′ < Λ0. In this
case we would have, from (9.22) and recalling that ζ = dφ/dt = φ̇/ṫ,

ζ0 =
(

1 − 2M
r0

)
λ0

r20 γ̃0
,

ζ ′ =
(

1 − 2M
r0

)
Λ0 sin θ′

r20 γ̃0 sin2 θ
= ζ0

sin θ′

sin2 θ
; (9.24)

hence ζ ′ varies with θ as the particle moves in its orbit. We require, however,
that the particle move rigidly with the observer in the r and φ directions, that
is, r = r0, ṙ = 0, and ζ ′ ≡ ζ ′(rig) = ζ0. Hereafter in this section ζ0 ≡ ζφ unless
otherwise specified. It follows from ζ ′ = ζ0 that λ′ = Λ0 sin2 θ ≡ λ′(rig), which
breaks the geodesic character of the particle’s orbit. The physical properties of
the constrained particle are then given by

γ′(rig)
2 = γ̃2

0 =

(
1 − 2M

r0

)2

(
1 − 3M

r0

) ,
Λ′2

(rig) = Λ2
0 =

Mr0(
1 − 3M

r0

) ,
λ′2(rig) = Λ2

0 sin4 θ =
Mr0 sin4 θ(
1 − 3M

r0

) . (9.25)

Using these quantities in (9.22) yields the non-geodesic trajectory which is fol-
lowed by the particle inside the pipe:

ṫ ′ =
(

1 − 3M
r0

)−1/2

,

θ̇ ′ = ±
(
M
r30

)1/2(
1 − 3M

r0

)−1/2

cos θ,

φ̇ ′ =
(
M
r30

)1/2(
1 − 3M

r0

)−1/2

= constant,

ṙ ′ = 0. (9.26)

These are the components of a unitary 4-velocity

uα = Γ′ (δα
t + ζ ′θ δ

α
θ + ζφ δ

α
φ

)
=

(√
1 − 3M

r0

)−1 [
δα
t ±

√
M
r30

cos θ δα
θ +

√
M
r30

δα
φ

]
. (9.27)

Here we recognize the latitudinal frequency ζ ′θ = ζφ cos θ, which justifies the
harmonic oscillations seen inside the pipe.
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9.2 The problem of space navigation
The oscillations of the particle in the pipe allow us to know the magnitude of

the proper angular velocity of the orbital revolution, |
p

ζ| = Γ|ζ|. We shall now

solve the problem of determining the sign of
p

ζ. The first obvious consideration is

that a measurement of |
p

ζ| will directly tell whether the observer is moving or at

rest with respect to infinity, but a direct measurement of |
p

ζ| is not sufficient to
determine ζ, unless one knows the factor Γ. Suppose that a photon strikes the
orbiting frame along the radial direction with a measurable frequency shift 1+z;
then by definition we have

Γ =
1

1 + z
(9.28)

and so, from (9.21),

|ζ| = |
p

ζ|(1 + z). (9.29)

Expression (9.29) provides a relation between a quantity which can only be mea-
sured at infinity, namely ζ, and quantities which can be measured in the vicinity

of a black hole, namely
p

ζ and z; the first of these can be measured by reading
the clock of the orbiting observer, and the second by means of a spectrograph.
Indeed, relations of this type are of crucial importance in astrophysics.

Relation (9.29) provides only the magnitude of ζ, but it would be more useful to
know the angular velocity of revolution with its sign relative to a local clockwise
direction, for example. The operational acquisition of this information will now
be discussed.

Let us assume that the collection of particles considered in the previous section
represents a space-ship and that the fiducial particle which moves along a circular
orbit on the plane θ = π/2 is the ship commander, our observer. When this
observer is unable to interact with anything outside the space-ship, then his
orientation in the space-time relies entirely on the measurements which can be
performed within the space-ship itself.

We then pose the question: what is the minimum amount of a-priori informa-
tion about the global space-time structure which is necessary to avoid getting
lost? In de Felice (1991) the problem of recognizing from within the space-ship
the direction in which the black hole lies was solved by making the concept of
inward operationally well defined. The generalization to an arbitrary stationary
space-time is conceptually very similar to the present discussion.

As a starting point one realizes that at least two pieces of a-priori information
are needed, namely the background metric and the type of orbits in which the
observer is moving; the former will be the Schwarzschild metric and the orbits
will be the spatially circular ones. It is possible to perform a set of measurements
which enable the observer to deduce the above information; we shall not analyze
them here but will assume for simplicity that they are given a priori. In what
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follows we shall describe the measurements which can be performed within an
orbiting space-ship on the basis of the above-mentioned information. The first
step is to fix a frame adapted to the given observer.

Setting the frame

A suitable frame of reference which can be adapted to an observer described by
the 4-velocity (9.5) and moving around a Schwarzschild black hole, for example,
is a phase-locked one given by (9.6). We shall now show how the observer can fix
this frame at any point of his orbit in the plane θ = π/2.

As stated, the observer can directly measure the thrust needed to remain in a
circular orbit; hence the direction of the thrust identifies the local radial direction,
namely that of the Er̂-leg of the frame. In order to fix the Eθ̂-leg one needs
to monitor the behavior of a particle free to move in a pipe with negligible
internal friction and perpendicular to the local radial direction, being otherwise
constrained to move rigidly with the rest of the ship. The Eθ̂-leg of the frame is
identified as the direction of the pipe, on the equatorial plane, when the particle
inside is seen to perform harmonic oscillations. In this case one also identifies the
plane of the orbit as the plane which is perpendicular to the local θ direction
and contains the radial direction. The direction of the remaining Eφ̂-leg of the
frame is unambiguously fixed orthogonally to the others. Of course the complete
setting of the frame requires that one fix a positive sense on the axes, for example
on each of the spatial legs.

Determining where the black hole is

Let the space-ship be a box with an engine applied to each of the sides perpen-
dicular to the orbital plane. Since the orbit is not in general a geodesic, one of the
engines on a side perpendicular to the radial direction will be on. If the space-time
is given by the Schwarzschild solution exterior to a black hole, then the circular
orbit will be in one of the following regions of the permitted (ζ2, r)-plane (area
below the curve ζ2

c in Fig. 9.2):

• Region I: ζ2
K < ζ2 < ζ2

c ;
• Region II: ζ2 < ζ2

K < ζ2
c ;

• Region III: ζ2 < ζ2
c < ζ2

K .

Let us now remember that in a Schwarzschild background the frequency of the
harmonic oscillations inside the pipe is equal to the proper frequency of revolution

|
p

ζ|, as shown in (9.20). The a-priori knowledge of being in Schwarzschild space-
time allows one to interpret the following behavior of the thrust: if the radius of
the orbit is kept constant, an increase in the magnitude of the proper angular

velocity of revolution |
p

ζ| – equivalently an increase in |ζ| – will cause
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• an increase in the thrust if the observer is in region I; then the thrust points
to the center of symmetry;

• a decrease in the thrust if the observer is in region II; then the thrust points
away from the center of symmetry;

• an increase in the thrust if the observer is in region III; then the thrust points
away from the center of symmetry.

We see clearly that monitoring the thrust alone would not permit the observer
to distinguish between regions I and III, although he could recognize at once
that he was in region II and in that case deduce the local inward direction.
One must have an independent way to recognize which of the above regions the
space-ship occupies. As implied by the previous discussion, the observer must be
able to change the angular velocity of revolution without changing the radius of
the orbit, at least not in an appreciable way. To this end we shall describe the
following experimental device. The main thrust fixes the radial direction from
within the space-ship while the direction of the harmonic oscillations inside the
pipe fixes the plane of the orbit as the one orthogonal to it. Then let a set of
rails go across the space-ship orthogonal to the radial direction and parallel to the
orbital plane. The rails will be approximately parallel to the orbit, at least within
the space-ship. Let us have a small box, of negligible mass, which slides freely on
these rails. Inside the box we have a test mass μ0 linked by a spring to one side
of the box which is perpendicular to the direction of the main thrust. The spring
is rigidly fastened to that side of the box, so it can stretch or compress but not
bend transversely. The acceleration produced by the main thrust is transferred
to the mass μ0 by the spring, which is then stretched or compressed by a given
amount and is regulated so that the test mass remains at the center of the box.
We assume that this position of the test mass corresponds to the average radius
of the orbit, although its actual coordinate value is not known. The whole set

orbits rigidly with proper angular velocity |
p

ζ|. Let us now give an impulse to
the small box parallel to the rails; the small box will then slide on the rails and
consequently the mass μ0 will acquire a new angular velocity ζ with respect to
infinity or, equivalently, will be acted upon by a Coriolis force with respect to the
orbiting frame. In this case the initial acceleration exerted by the spring on the
mass will no longer be sufficient to keep it in equilibrium at the center of the box.
The spring, in fact, will either stretch or compress with respect to its initial state.
If it is stretched, then it means that in order to remain at the center of the box the
particle needs a bigger acceleration if it was initially stretched or a smaller one
if it was initially compressed. If on the contrary the spring is compressed, then
it means that the mass needs either a bigger or a smaller acceleration according
to whether it was initially compressed or stretched, respectively.

In all cases, by readjusting the elastic properties of the spring, one can measure
the extra acceleration needed to keep the mass μ0 at the center of the box. This
test case can be exploited to vary the angular velocity of revolution of the entire
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space-ship, keeping the radius of the orbit unchanged. To do this, let us give
the space-ship an impulse transverse to the main thrust and in the same sense of
the one given to the box, but with a magnitude corrected by the ratio between the
mass of the space-ship and that of the test mass, to ensure the same acceleration.
Then, simultaneously vary the main thrust in the same sense along which we
accelerated the spring to keep the mass μ0 at rest at the center of the box, but
again corrected by the same mass ratio. With this procedure one can modify
the angular velocity of revolution, keeping the radius of the orbit unchanged.
Once stabilized in the new regime which follows the application of the transverse
impulse and the correction of the main thrust, one can measure the new angular
velocity of revolution, monitoring the harmonic oscillation of the particle in the

pipe, and determine whether |
p

ζ| has increased or decreased. The knowledge of

the thrust as function of |
p

ζ| at a fixed orbital radius allows the observer to decide,
with no ambiguity, in which of the regions I, II, or III the orbit is. In fact, the
orbit will be in

• Region I, if a decrease in |
p

ζ| corresponds a decrease in the thrust, which can

be reduced to zero (the orbit reduces to a geodesic) before |
p

ζ| vanishes.

• Region II, if a decrease in |
p

ζ| corresponds an increase in the thrust.

• Region III, if a decrease in |
p

ζ| corresponds a decrease in the main thrust, which

nonetheless remains non-zero when |
p

ζ| → 0.

From the above experimental results, we can give the following definition: the
inward direction to the center of symmetry is

(i) concordant with the sense of the thrust if the observer is in region I;
(ii) opposite to the sense of the thrust if the observer is in regions II or III.

This local definition of inwards to the center of symmetry is consistent with
the global definition of inwards as it would be decided upon by an observer at
infinity.

The unambiguous identification of the inward direction allows the observer to
fix the sense of the orbital revolution with respect to a local clockwise direction.

The sign of
p

ζ is uniquely defined by the simultaneous knowledge of the direction

along which |
p

ζ| increases and the direction to the center of symmetry. One can
then set up a dial parallel to the orbital plane and comoving with the space-ship;

moreover a pointer can be set to rotate on the dial with the angular velocity |
p

ζ|
in the sense opposite to that of the space-ship as experimentally established. In
the rest frame of the observer a 2π turn of the pointer on the dial will correspond
to a complete orbital revolution of the space-ship. Indeed, this apparatus permits
the local determination of the gyroscopic precession.
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Probing the strength of the gravitational field

The thrust needed to keep the orbit circular is the result of a lack of balance
between a gravitational attraction and a centrifugal repulsion with respect to the
center of symmetry. The observer, however, cannot distinguish between these two
components; hence he would find it difficult to decide how strong the gravitational
field is at the given orbital radius as compared to the centrifugal one. However,
a signature of the gravitational strength is provided by the behavior of the axis
of a gyroscope (de Felice, 1991).

Postponing to Chapter 10 a detailed analysis of gyroscopic precession, we con-
sider here the implications of knowing it a priori. From (10.66) we can write the
angular velocity of gyroscopic precession as (Rindler and Perlick, 1990)

g

ζ =
p

ζΓ
(

3M
r

− 1
)
. (9.30)

We see that, while in a flat space-time the special relativistic Thomas precession
of a gyroscope moving in a spatially circular orbit is backward with respect to the
angular velocity of revolution (Eq. (9.30) with M = 0), the contribution to the
precession from a gravitational source of mass M is such as to make it increase
from backward to forward.

From (9.30) we see that in regions I and II where r > 3M the ratio
g

ζ/
p

ζ

is negative, so the axis of the gyroscope rotates in a sense opposite to that of
the orbital revolution, and the precession is said to be backward. In region III

where r < 3M the ratio
g

ζ/
p

ζ is positive, so the axis of the gyroscope rotates in

the same sense as
p

ζ, and the precession is said to be forward. Moreover, since
the gyroscopic precession increases from backward to forward as we approach the
source (r decreases), while it does the opposite when we move away from it, we can
establish a correspondence between the precession of a gyroscope and the strength
of the gravitational field, namely: an increase in the gyroscopic precession from
backward to forward with respect to the proper frequency of revolution implies an
increase in the gravitational strength.

Since (time-like) circular geodesics are allowed only at r > 3M but such that
ζ2
K → ζ2

c as r → 3M, we can then establish a correspondence between this and

the gyroscopic precession becoming less and less backward (
g

ζ → 0) as r → 3M.
As a consequence, no centrifugal compensation to the gravitational component

of the thrust, to allow for geodesics, is possible with any
p

ζ. Hence the behavior
of the gyroscope seems to suggest that when its precession becomes forward, i.e.

in the region III with r < 3M, the angular velocity of revolution
p

ζ contributes
to the gravitational component of the thrust more than it does to the centrifugal
one. The opposite holds elsewhere (see de Felice, 1991; de Felice and Usseglio-
Tomasset, 1992; Semerák, 1996). The above considerations show how important
it is to measure the gyroscopic precession and decide whether it is backward
or forward with respect to the sense of the orbital revolution. Since the latter
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can be determined, then the following experimental device permits a direct

measurement of
g

ζ.

Consider again the pointer rotating with frequency −
p

ζ. If there was no grav-
itational source (M = 0) then the axis of the gyroscope, which was taken to
coincide with the pointer at some instant, would be seen to rotate with respect

to the dial with the same angular frequency −
p

ζ as the pointer; hence it would be
at rest with respect to the pointer itself. This is the case of maximum backward
precession. In the presence of gravity (M �= 0) the axis of the gyroscope will be
seen to delay with respect to the pointer; in particular,

(a) the value of |
g

ζ| can be read directly, comparing the rate of rotation of the
axis of the gyroscope with respect to the dial;

(b) the sign of
g

ζ, i.e. the type of precession, will be: backwards with respect to the
orbital sense of revolution if the axis of the gyroscope rotates with respect to
the dial in the same sense as that of the pointer (remember that the latter

is kept rotating with frequency −
p

ζ); forward if the axis of the gyroscope is
seen to rotate in the opposite sense to that of the pointer on the dial.

Equation (9.30) establishes a relation among the proper angular velocity of revo-
lution, the normalization factor of the observer 4-velocity, and the angular veloc-
ity of the gyroscopic precession. This implies that the simultaneous knowledge of
g

ζ,
p

ζ, and Γ allows an observer orbiting a Schwarzschild black hole to deduce the
ratio

2M
r

=
2
3

[
1 +

g

ζ(1 + z)
p

ζ

]
. (9.31)

A measurement of this ratio, from the point of view of an observer at infinity, is
very important in astrophysics.

9.3 Measurements in Kerr space-time
Let the background metric be given by the Kerr solution. In Boyer-Lindquist
coordinates it is given by

ds2 = −
(

1 − 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ+

A

Σ
sin2 θdφ2

+
Σ
Δ
dr2 +Σdθ2, (9.32)

where M and a are the total mass and specific angular momentum of the met-
ric source, respectively, and Σ, Δ, and A have been introduced in (8.74) and
(8.75), i.e.
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Σ = r2 + a2 cos2 θ,

A = (r2 + a2)2 − a2Δsin2 θ,

Δ = r2 + a2 − 2Mr. (9.33)

A black hole solution is characterized by M > a.
We consider the same situation as described in the previous section for

Schwarzschild space-time, namely a set of particles orbiting in spatially circu-
lar trajectories, all moving with the same angular velocity ζ. The associated
4-velocity field is given by

U = Γ(∂t + ζ∂φ) , (9.34)

where the normalization factor is now given by

Γ =
[
1 − 2Mr

Σ
(1 − aζ sin2 θ)2 − (r2 + a2)ζ2 sin2 θ

]−1/2

. (9.35)

The integral curves of U form a congruence CU , with ζ assumed to be constant
over CU . Let us consider the tetrad frame (8.117), i.e.

Et̂ = U = Γ(∂t + ζ∂φ),

Er̂ = (Δ/Σ)1/2∂r,

Eθ̂ = Σ−1/2∂θ,

Eφ̂ = Γ̄(∂t + ζ̄∂φ), (9.36)

with Γ̄ and ζ̄ defined by (8.118). This is phase-locked to the coordinate directions
and reduces to (9.6) when a = 0. As in the Schwarzschild case, the assumption ζ =
constant over CU guarantees that Ÿ â ≡ 0 identically for all ζ and all indices â; Y â

are the tetrad components of the connecting vectors over the given congruence.
Moreover, consistently with the above assumptions, we deduce from (9.36) that
θ(U)âb̂ ≡ 0, i.e. the Born rigidity condition holds and ζ(fw) = ω(U). After some
algebra, Eqs. (9.3) in the equatorial plane (θ = π/2) become

d2Y r̂

dτ2
=
{
−E(U)r̂r̂ + ∂r̂a(U)r̂ + (a(U)r̂)2 + (ζ(fw)θ̂

)2
}
Y r̂,

d2Y θ̂

dτ2
=
{
−E(U)θ̂θ̂ + ∂θ̂a(U)θ̂ +

1
2
(Eθ

θ̂
)2(∂r̂gθθ)a(U)r̂

}
Y θ̂,

d2Y φ̂

dτ2
=
{
−E(U)φ̂φ̂ − Γr̂φ̂φ̂a(U)r̂ + (ζ(fw)θ̂

)2
}
Y φ̂, (9.37)
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where the components of the spatial acceleration are given by (8.123); we recall
them here for convenience:

a(U)r̂ =
Γ2

√
Δ√

Σ

[
M(r2 − a2 cos2 θ)

Σ2
(1 − aζ sin2 θ)2 − rζ2 sin2 θ

]
,

a(U)θ̂ = −Γ2 sin θ cos θ√
Σ

[
2Mr

Σ2
[(r2 + a2)ζ − a]2 + Δζ2

]
. (9.38)

The components of the Riemann tensor and those of the Fermi rotation coeffi-
cients which enter Eqs. (9.37) can be evaluated; see Exercise 41.

Response of the internal structure

If we require that the collection of particles moves rigidly then the tidal strains
induced by the curvature (E(U)-terms) and the Fermi rotation of the tetrad
(ζ(fw)-terms) are to be balanced by the internal structure of the orbiting system.
The latter responds by generating the Fermi-Walker strain tensor S(U) defined
in (7.76). Collecting all terms different than the E(U)-terms and the ζ(fw)-terms
in (9.37) and introducing the reduced frequency

y =
ζ

1 − aζ
, (9.39)

we obtain, from (9.37) and (9.11),

S(U)r̂r̂ = Γ4(1 + ay)−4

{
(y2

K − y2)2(Mr − a2)

+ (y2
K − y2)

[(
1 − M

r

)(
1 − 3M

r
+ 2ay

)
− 3MΔ

r3

]

− 3MΔ
r5

(
1 − 3M

r
+ 2ay

)}
,

S(U)θ̂θ̂ =
Γ2M
r5

(1 + ay)−2[r2 + 3a2 − 2r4(y2
K − y2) − 4ar2y],

S(U)φ̂φ̂ = Γ4(1 + ay)−4(y2
K − y2)(a2 −Mr)(y − ȳ+)(y − ȳ−), (9.40)

where

yK± ≡ ±
√

M
r3
, ȳ± =

−a(1 −M/r) ±
(
M/r3

)1/2 Δ
a2 −Mr

. (9.41)

Their plots are shown in Fig. 9.3. Knowledge of the internal strains in a collection
of spatially circular non-geodesic orbits relative to an equatorial one is useful. This
orbit, in fact, approximates a general equatorial geodesic at its turning points.
At these points (r = r(tp), ṙ = 0) the azimuthal angular momentum λ (in units
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Fig. 9.3. Behavior of the relative strains S(U)r̂r̂ (lower curve), S(U)θ̂θ̂ (upper

curve), and S(U)φ̂φ̂ (middle curve) as functions of ζ for fixed values of r = 4M,
with a = 0.5M and M = 1.

of μ0c, μ0 being the mass of the particle), written as a function of the particle’s
total energy γ̃ (in units of μ0c

2), is equal to

λ± =
−2Maγ̃ ∓ Δ1/2r(γ̃2 − 1 + 2M/r)1/2

r − 2M . (9.42)

Then, at r = r(tp), a general geodesic approximates a non-geodesic spatially
circular orbit (the local osculating circle) having orbital frequency of revolution

ζ ′± =
r(γ̃2 − 1 + 2M/r)1/2

[
2Ma(γ̃2 − 1 + 2M/r)1/2 ∓ γ̃rΔ1/2

]
γ̃2A+ 4M2a2

(9.43)

and normalization factor

Γ′ =
(

1 − 2M
r

)−1
[
γ̃ ∓ 2Ma

rΔ1/2

(
γ̃2 − 1 +

2M
r

)1/2
]
. (9.44)

This analysis has a clear astrophysical relevance. A star approaching a rotating
black hole will suffer the maximum tidal perturbation at the point of maximum
approach to the black hole. If we want the star to survive after a close encounter
with a black hole it must balance the tidal strains, relying entirely on its internal
structure. The induced strains can be given by (9.40) if we approximate the orbit
by its osculating circle at the periastron.

Measurements and ambiguities

Let us consider the collection of particles as being a space-ship. This has to sup-
port the strains (9.40) in order to support its structure. The question is whether
the measurements which were possible in the case of a Schwarzschild background
could also be made in a Kerr background and still help the observer (the ship
commander) to orient himself in the vicinity of a rotating black hole. We assume,
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as is known a priori, that the background geometry is that of the Kerr solution
and that the orbit of the fiducial particle is equatorial and spatially circular and
the frame of reference is the one described in (9.36).

As in the Schwarzschild case, consider a particle which can only move in the
θ̂ direction in a frictionless pipe, perpendicular to the orbital plane. In order
to know what kind of motion a test particle undergoes in that direction, being
otherwise constrained to rotate rigidly with the space-ship, we impose in the
second equation of (9.37) the conditions a(U)θ̂ = 0 and ∂θ̂a(U)θ̂ = 0 for all
values of θ. As a consequence, recalling that the observer moves in the equatorial
plane, we obtain the equation of motion

d2Y θ̂

dτ2
= −G2(r; ζ, a,M)Y θ̂, (9.45)

where

G2 =
2M[ζr2 − a(1 − aζ)]2 + ζ2r3Δ

r5[1 − 2M
r (1 − aζ)2 − ζ2(r2 + a2)]

, (9.46)

from (9.37).
Function G2 is positive in the region of physical interest, namely for ζ ∈

(ζc−, ζc+), where ζc,± are the zeroes of the denominator of (9.46). This justi-
fies the choice of a square, as G2, in (9.46); see Fig. 9.4. Clearly equation (9.45)
describes a harmonic motion in the θ̂ direction with frequency |G|, and when that
happens the direction of the oscillations fixes the θ̂ direction of the frame and,
at the same time, the equatorial plane.

In the Schwarzschild case the frequency of the harmonic oscillations was just
the proper angular velocity of the orbital revolution, a value which |G| reduces
to when a = 0. Contrary to that case, however, the quantity |G| does not give
direct information about the angular velocity of the orbital revolution. Following
de Felice and Usseglio-Tomasset (1996) we write (9.46) in terms of the reduced
frequency y and obtain

0.1

–0.1 0.1

G2

ζ

Fig. 9.4. Behavior of G2 as a function of ζ for fixed values of r = 4M, with
a = 0.5M and M = 1. Note that when ζ = 0, with the choice of parameters
used, one has G2 = 2−10 �= 0, invisible on this scale.
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Fig. 9.5. The map of the permitted equatorial circular orbits in the Kerr metric.
ζc+ and ζc− are the limits of permitted angular velocities. ζK+ and ζK− are
the corotating and counter-rotating circular geodesics. ζ(crit)− and ζ(crit)+ are
the counter-rotating and corotating extremely accelerated circular orbits.

G2 =
2M(yr2 − a)2 + y2r3Δ
r7(yc+ − y)(y − yc−)

. (9.47)

Here yc± are solutions of the equation Γ−1 = 0 with θ = π/2; from (9.35)
these are

yc± = (a±
√

Δ)/r2. (9.48)

Spatially circular equatorial motion is then allowed in the range yc− < y < yc+

(de Felice, 1994). An intriguing implication of (9.47) is that an observer at rest
with respect to infinity (ζ = 0 = y) would still see a harmonic oscillation in the
θ̂ direction, with a proper frequency square

G2
∣∣
y=0

=
2Ma2

r4(r − 2M)
. (9.49)

The value (9.49), however, is not the minimum which can be attained by |G|.
Differentiating (9.47) with respect to y, we obtain

∂G2

∂y
=

2Δ
r9

ay2r3 + r3y − 2Ma

(yc+ − y)2(y − yc−)2
. (9.50)
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This vanishes at

y± =
1
2a

(
−1 ±

√
1 +

8Ma2

r3

)
≡ ∗
y±. (9.51)

It is easily proven (de Felice and Usseglio-Tomasset, 1996; see Exercise 43) that

(i) ∗
y− < yc−; this is disregarded, being outside the range of the permitted angu-
lar velocities for circular motion;

(ii) yc− ≤ ∗
y+ ≤ yc+, the equality sign holding only on the event horizons (i.e. at

r = r± solutions of Δ = 0) and for r → ∞.

From (ii) one is sure that the orbiting observer can always measure the minimum
frequency of the harmonic oscillation by varying y in the permitted range of its
values. Because ∗

y+ > 0, the minimum of G2 only occurs at a positive value of ζ;
hence the observer who brings the angular frequency of the harmonic oscillations
to a minimum would deduce that its trajectory is corotating with the black
hole. However the property of ∗

y+ of being always positive has an intriguing
consequence. In the range 0 < y <

∗
y+, an increase of y causes a decrease in

|G|; hence the orbiting observer who sees |G| decrease as a consequence of a
variation of y from within his space-ship is unable to decide whether he was
decelerating the space-ship – a decrease of |y| – in which case the angular velocity
of revolution would have been in the ranges yc− < y < 0 or ∗

y+ < y < yc+,
or was accelerating it – an increase of |y| – meaning that y was in the range
0 < y <

∗
y+. Even assuming a priori a certain amount of information, e.g. being

in the Kerr metric in a spatially equatorial circular orbit and with a phase-locked
frame, a measurement of |G| leads to ambiguous information. This ambiguity
could probably be eliminated with the help of a larger set of measurements, but
this will not be considered here.

Finally, let us now compare ∗
y+ with y(ZAMO) , the reduced angular velocity

corresponding to ζ(ZAMO) = 2Mra/A (de Felice, 1994):

y(ZAMO) =
2Ma

r(r2 + a2)
.

Simple algebra shows that ∗
y+ ≥ y(ZAMO) for Δ ≥ 0, the equality sign hold-

ing also at the limit r → ∞. In particular we deduce that as r → ∞,
∗
y+ ≈ 2Ma/r3 − 4M2a3/r6 + · · · while y(ZAMO) ≈ 2Ma/r3 − 2Ma3/r5 + · · · ,
showing that to the lowest order in a the two functions asymptotically coincide.
In slow rotation, then, an orbiting observer would detect the minimum frequency
of the harmonic oscillation about the orbital plane when the angular velocity of
the orbital revolution was equal to the gravitational drag (ζ(ZAMO)).

A behavior which appears to be induced by gravitational drag without being
completely justified by it is encountered in the effect we discuss next.
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9.4 Relativistic thrust anomaly
In Schwarzschild space-time, a collection of particles moving in spatially circular
orbits have an acceleration relative to the phase-locked frame (9.6) given by

a(U)â = δâr̂
1
r

(
1 − 2M

r

)1/2 (ζ2
K − ζ2)

(ζ2
c − ζ2 sin2 θ)

. (9.52)

This quantity is the specific thrust which acts on each particle to keep its orbit
spatially circular. It is directly measurable and, by convention, acts outwardly
if it is positive and inwardly if it is negative. In the plane θ = π/2 the thrust
becomes independent of ζ at r = 3M, where ζ2

K = ζ2
c . The behavior of the

thrust as a function of ζ is shown in Fig. 9.6; clearly at any radius r �= 3M the
thrust takes its extreme value at ζ = 0, as is easily inferred from

∂

∂ζ
a(U)â =

2
r
δâr̂

(
1 − 2M

r

)1/2

ζ
ζ2
K − ζ2

c

(ζ2
c − ζ2)2

, (9.53)

while at r = 3M it vanishes identically for any ζ. Moreover, at that radius all
derivatives of the thrust with respect to ζ vanish; hence the thrust is constant
and equal to 1/(3

√
3M). At r < 3M the thrust is always positive, meaning

that it acts outwardly for all ζ and, most peculiarly, increases with |ζ| in the
outward direction (Abramowicz and Lasota, 1974). This behavior suggests, as
already pointed out, that an increase in the angular velocity contributes to the
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Fig. 9.6. The behavior of the thrust as a function of the angular velocity of
revolution ζ at a fixed radius r in Schwarzschild space-time.
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gravitational component of the thrust more than it does to the centrifugal one
(de Felice, 1991; Semerák, 1994; 1995).

As already established, there is a surprising analogy between the behavior of
the gradient of the thrust with respect to ζ and that of a gyroscopic precession.
Recalling its expression in the Schwarzschild metric (9.30), we find that the gyro-
scopic precession is forward at r < 3M, while it is backward at r > 3M, being
zero at r = 3M. This behavior is consistent with an increasing gravitational
strength as one approaches the horizon at r = 2M; however, a more careful
analysis shows that the phenomenon is related to a form of gravitational drag
which is not induced by the rotation of the metric source. We shall refer to it as
a gravitational grip. Clearly in Schwarzschild space-time we have only gravita-
tional grip, while both types of effect exist in Kerr space-time. Since the axis of
a gyroscope is Fermi-Walker transported along its own trajectory (the spatially

circular orbits in our case), the absence of precession at r = 3M, that is
g

ζ = 0,
implies that the gravitational grip forces the phase-locked frame to become a
Fermi frame at that radius.

Let us now see how the situation changes if we consider the Kerr background.
If the metric source is a rotating black hole then the above effect manifests itself
not only at small coordinate distances from the outer event-horizon on corotating
equatorial circular orbits, but also arbitrarily far away from the source on counter-
rotating circular orbits with a finite range of angular velocities which vanish at
infinity.

This behavior has no Newtonian analog and its occurrence at asymptotic dis-
tances from a rotating source is a combination of grip and drag, giving rise to a
measurable new test of general relativity.

The specific thrust associated with a general non-geodesic equatorial spatially
circular orbit in the Kerr metric is given, from de Felice and Usseglio-Tomasset
(1991) and de Felice (1994), by

a(U) =
Δ1/2

r2
(y − yK+)(y − yK−)
(y − yc+)(y − yc−)

, θ = π/2, (9.54)

where y is the reduced frequency (9.39), while yK± and yc± are given by Eqs.
(9.41) and (9.48) respectively. The response of the thrust to a change in the
reduced angular velocity y at a fixed r (and a) is illustrated by the function

∂a(U)
∂y

∣∣∣∣
r

= −2aΔ1/2

r4
(y − y(crit)+)(y − y(crit)−)

(y − yc+)2(y − yc−)2
, (9.55)

where

y(crit)± = − 1
2a

⎡
⎣1 − 3M

r
∓

√(
1 − 3M

r

)2

− 4Ma2

r3

⎤
⎦ (9.56)

identify the orbits with extreme acceleration. Clearly y(crit)− is always negative
and vanishes at infinity as ∼ r−3, remaining larger than yK−, which vanishes



208 Measurements in physically relevant space-times

0.2

0.1

–0.1

–0.2

–0.2 –0.1 0.1 0.20

ζζK– ζK+

a (U )r̂

ζ(crit)–

Fig. 9.7. The behavior of the thrust as a function of the angular velocity of
revolution ζ in equatorial spatially circular orbits at r = 4M in the Kerr metric
with a = 0.5M.

asymptotically as ∼ r−3/2. In Fig. 9.5 we show the behavior of ζc±, ζK±, and
ζ(crit)± (equivalently, of yc±, yK±, y(crit)±) as functions of r. From (9.54), (9.55),
and (9.56) we deduce how the specific thrust a(U) behaves with y at a fixed r.
This is shown in Fig. 9.7. Setting y = y(crit)−, the maximum of a(U) takes the
value

a(U(crit)−) =
Δ1/2

r2

√
1 − 4Ma2

r3

(
1 − 3M

r

)−2 − 1√
1 − 4Ma2

r3

(
1 − 3M

r

)−2 − 2a2

r2

(
1 − 3M

r

)−1 − 1
. (9.57)

As we see, when the metric source is rotating, the maximum of the thrust at
asymptotic distances is displaced to negative values of y; hence its anomalous
behavior occurs in the small interval (y(crit)−, 0). In fact, an increase of |y| from
0 to |y(crit)−| implies, contrary to intuition, an increase of the thrust outwardly
(being a(U) > 0). It appears that an increase of |y| in the above range causes a
loss of energy, which would let the orbit plunge into the source unless a larger
radial thrust were applied outwardly. The behavior of the thrust appears to
be a response to both gravitational drag and grip, since the same behavior is
met in corotating circular orbits in the Kerr metric (de Felice, 1994) and in the
Schwarzschild metric, where no drag exists at all.

In both the rotating and the non-rotating cases the condition of extreme accel-
eration corresponds to the vanishing of the precession of a gyroscope. From de
Felice (1994) we deduce the angular velocity of precession of a gyroscopic when
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the latter moves in equatorial spatially circular orbits. In the Kerr metric this is
given by

g

ζ =
a(y − y(crit)+)(y − y(crit)−)
r2(y − yc+)(y − yc−)

. (9.58)

At each value of the radius r, then, a Fermi frame counter-rotating with the
metric source and with angular velocity of revolution equal to |y(crit)−| is made
to coincide to a phase-locked frame. This effect can in principle be tested, as we
shall see.

Let us suppose that the rotating source is the Earth. Neglecting deviations
from sphericity, its space-time is described by the Lense-Thirring metric (Lense
and Thirring, 1918; de Felice, 1968). The latter coincides with the Kerr metric
in the weak field limit M/r � 1 and a/r � 1. At the Earth’s surface we have

M⊕
R⊕

≈ 6.9 × 10−10,
a⊕
R⊕

≈ 5.4 × 10−7, (9.59)

where R⊕ ≈ 6.37103 × 108cm, M⊕ ≡ GM⊕/c
2 = 0.443 cm, M⊕ ≈ (5.977 ±

0.004)×1027g, a⊕ ≡ J⊕/(cM⊕) ≈ 3.4×102 cm, taking J⊕ ≈ 5.9×1040g cm2 s−1.
In conventional units (cm s−2), the specific thrust is given by f̃ ≡ c2a(U); its

extreme values are, from (9.57),

f̃(crit)− ≈ GM⊕
r2⊕

(
1 +

M⊕
r⊕

+
1
2
a2
⊕
r2⊕

+ · · ·
)
, (9.60)

where r⊕ = αR⊕, with α > 1, is the radius of the orbit of the space-ship. Let
this orbit be a counter-rotating equatorial spatially circular geodesic with radius
r⊕. We then consider the device described in Section 8.2, namely a rigid box free
to slide with negligible friction on rails which run across the ship tangentially
to the orbit. We require that the center of the box follows the trajectory of the
baricenter of the ship, moving therefore on a geodesic. A test point-like mass
is held at the center of the box by sensors which trigger small thrusters. As
stated, the test mass moves initially on a geodesic; therefore the sensors exert
no net acceleration on the mass. Now let the box be set in motion within the
space-ship, along the rails in the direction opposite to the ship’s motion. The
latter being counter-rotating, the test mass will acquire with respect to infinity
an angular velocity ζ̌ in magnitude smaller than that allowed for a geodesic. As
a consequence, the test mass will be acted upon by a thrust which keeps it to the
center of the box on the same orbital radius. If we decrease the value of |ζ̌| of the
test mass by increasing the velocity of the box within the space-ship, the thrust
will ultimately reach a maximum value at ζ̌ = ζ(crit)−. In the non-rotating case
(a = 0) the maximum occurs when ζ̌ = 0, i.e. when the velocity of the test mass,
as seen from infinity, is equal in magnitude but opposite to that of the ship. If
rotational effects are taken into account (a �= 0), then the maximum occurs when
the moving test mass has an angular velocity with respect to infinity equal to
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cζ(crit)− ≈ −ca⊕M⊕
r3⊕

≈ 1.75 × 10−14α−3 s−1, (9.61)

from (9.56) and to the lowest order in the relativistic corrections.
While the observer comoving with the ship is able to recognize when the thrust

acting on the test mass reaches a maximum, he cannot distinguish whether that
occurs when ζ̌ = 0 or when ζ̌ = ζ(crit)−. The latter case would signal a new
relativistic effect. To detect the anomalous behavior of the thrust with |ζ|, one
has to measure, at the maximum of the thrust, the (linear) velocity of the test
mass relative to the space-ship.

Consider an observer who is comoving with the space-ship. If the thrust acting
on the test mass in the box is zero, then he knows that the angular velocity of
the ship with respect to infinity is, from (9.54) and (9.39),

ζK− ≈ −
(
M⊕
r3⊕

) 1
2
[
1 +

a⊕
r⊕

(
M⊕
r⊕

) 1
2
]
. (9.62)

If the test mass moves within the ship as indicated above, then it acquires an
angular velocity ζ̌ with respect to infinity, which is smaller in magnitude than
the ship’s ζK− . Therefore it will have, relative to the latter, a velocity ν and a
Lorentz factor

γ ≡ γ(U−, u) = (1 − ν(U−, u)2)−1/2 = −gαβu
αUβ

−, (9.63)

where

Uα
− = Γ(ζK−)(δα

0 + ζK−δ
α
φ ), uβ = Γ(ζ̌)(δβ

0 + ζ̌δβ
φ) (9.64)

are the 4-velocities of the ship and test mass, respectively, with their normaliza-
tion factors given in general by

Γ(ζ) =
[
1 − 2M

r
(1 − aζ)2 − ζ2(r2 + a2)

]−1/2

. (9.65)

To lowest order in the parameters a and M and in the equatorial plane, the
weak-field limit of the Kerr metric is given by

ds2 ≈ −
(

1 − 2M
r

)
dt2 − 4Ma

r
dφdt+ r2

(
1 +

a2

r2
+

2Ma2

r3

)
dφ2

+
(

1 +
2M
r

− a2

r2

)
dr2. (9.66)

From (9.62), (9.64), and (9.66), the Lorentz factor is, to the lowest order in a/r,

γ ≈ Γ(ζK−)Γ(ζ̌)
[
1 − 2M

r
− r2

(
1 +

a2

r2
+

2Ma2

r3

)
ζK−ζ̌

+
2Ma

r
(ζK− + ζ̌)

]
. (9.67)
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On the Earth we have 2(M/r)(a2/r2) ∼ 10−23 and therefore we shall neglect
that term. From (9.62) and (9.65) we have

Γ(ζK−) ≈ 1 +
3M
2r

+
3M2

2r2
+ 3

a

r

(
M
r

)3/2

. (9.68)

If the test mass were at rest with respect to infinity then ζ̌ = 0 and therefore

Γ(0) ≈ 1 +
M
r

+
3M2

2r2
; (9.69)

hence, from (9.67) and to the lowest order in a/r,

γ|ζ̌=0 ≈ 1 +
M
2r

− M2

2r2
+
a

r

(
M
r

)3/2

− 8a
r

(
M
r

)5/2

. (9.70)

From the latter, and recalling the definition of the Lorentz factor, we deduce the
velocity of the test mass relative to the space-ship when it is at rest with respect
to infinity:

ν0 ≈ c

√
M
r

(
1 − M

2r
+
a

r

√
M
r

)
. (9.71)

This differs from the Keplerian velocity by a fractional change

1
2
M⊕
r⊕

≈ α−1 3.45 × 10−9, (9.72)

which is independent of rotation, and a rotationally induced correction given by

a⊕
r⊕

(
M⊕
r⊕

)1/2

≈ 1
α3/2

1.41 × 10−11. (9.73)

The maximum thrust, however, occurs when the test mass has angular velocity
(9.61). In this case it would be

Γ(ζ(crit)−) ≈ 1 +
M
r

+
3M2

2r2
+

5M2a2

2r4
. (9.74)

Hence we neglect the contribution from rotation and set Γ(ζ(crit)−) ≈ Γ(0). From
Eqs. (9.61), (9.62), and (9.67) we deduce

γ|ζ(crit)− ≈ 1 +
M
2r

− M2

2r2
− 21a

2r

(
M
r

)5/2

. (9.75)

As expected, the relative linear velocity of the test mass within the ship is now
lower and is given by

ν(crit)− ≈ c

√
M
r

(
1 − M

2r
− 21

2
a

r

(
M
r

)3/2
)
. (9.76)
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In this case the correction due to the Earth’s rotation is of the order of 1.02 ×
10−19, so it can be neglected. In order to detect the general relativistic anomaly in
the behavior of the thrust, the observer in the ship needs to identify the maximum
thrust acting on the test mass when the velocity of the latter is ν(crit)− (i.e. when
ζ̌ = ζ(crit)−) and not ν0 (i.e. when ζ̌ = 0) as would be natural in the field of a
non-rotating source. This requires measuring linear velocities within the ship to
better than ∼ 10−11. As we can see, in fact, the fractional change of the velocity
ν(crit)− relative to ν0 is given by the factor (a/r)

√
M/r. Clearly, at this level of

precision the deviation from spherical symmetry of the Earth’s potential must
be known with an accuracy better than ∼ 10−11.

The obvious conclusion is that the proposed experiment is hardly feasible at
present. Summarizing, one would have to measure the velocity of the test mass
relative to the space-ship to 1 part in 1011, and measure the radial force on the
test mass with an accuracy of 1 part in 1013, in the short interval of time that
the mass could be kept in motion within the ship. Moreover, one has to be sure
that the mass moves within the ship at a constant radius relative to the Earth
and control with high precision the gravity gradients along the path of the test
mass resulting from the mass distribution of the space-ship itself.

9.5 Measurements of black-hole parameters
An important correspondence can be established between measurements per-
formed within a space-ship, as discussed above, and data which can be gathered
with observations “at infinity” (de Felice and Usseglio-Tomasset, 1996; Semerák
and de Felice, 1997).

There is considerable observational evidence that most active galactic nuclei
(AGN) and X-ray binaries host black holes (Rees, 1988; 1998). Essential to a
relativistic modeling of these sources is knowledge of the properties of black holes
and of the matter distribution around them. An estimate of their mass has mainly
been based on the energy emission and on the time-scale of their variability
(Begelman, Blandford, and Rees, 1984). In Semerák, Karas, and de Felice (1999) a
method was presented for determining, from a set of observations, the parameters
of a system made of a rotating black hole and an accretion disk interacting in
such a way as to power sources with a periodic modulation of variability. In the
case of AGNs or stellar-size X-ray sources, a star orbiting freely around such
a system on a spherical and almost equatorial circular geodesic will play the
role of the test particle which was free to move in a frictionless pipe oriented
in the θ̂ direction but constrained to rotate rigidly around the compact source.
Such a particle was found to perform in the pipe harmonic oscillations about the
equatorial plane with “proper” frequency |G|. In the astrophysical situation, the
star in a spherical orbit will cross the disk with a frequency which is just twice
|G|. Moreover, from photometric observations one can deduce the frequency of
the orbital revolution; what is observed at infinity, however, would not be the
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proper frequencies |G| and |
p

ζ|, but rather their values measured at infinity given

by the general relations |G∞| = Γ−1|G| and |ζ| = |Γ−1
p

ζ|.
For a spherical geodesic in Kerr space-time, the frequencies of the azimuthal

and latitudinal motion are given by rather complicated formulas involving elliptic
integrals (Wilkins, 1972; Karas and Vokrouhlický, 1994). However, those formulas
simplify considerably in the case of a nearly equatorial geodesic. The azimuthal
angular velocity ζ = dφ/dt with respect to an observer at rest at infinity can
be approximated by that of an equatorial circular geodesic (Bardeen, Press, and
Teukolsky, 1972):

ζK± = (a+ 1/yK±)−1, (9.77)

where yK± = ±
√
M/r3 are the corresponding values of the reduced frequency,

and the upper/lower sign corresponds to a corotating/counter-rotating orbit.1

The “proper” angular frequency |G| of (small) harmonic latitudinal oscillations
about the equatorial plane of a spherical orbit with general and steady radial
component of the acceleration is given by2

G2 =
(

Γ
r

)2 {
Δζ2 + 2y2

K±
[
a− (r2 + a2) ζ

]2}
, (9.78)

where ζ is a constant and Γ is the normalization factor (9.35) which, written in
terms of the reduced frequency y and setting θ = π/2, is given by

1
Γ2

=
1

(1 + ay)2

(
1 − 2M

r
+ 2ay − y2r2

)
. (9.79)

As stated, at infinity we observe |G∞| which, in the case of geodesic motion,
satisfies the equation

G2
∞ = ζ2

K±(1 − 4ayK± + 3a2/r2). (9.80)

We have then identified two “observables,” |ζK±| and |G∞|, which are both
expressed in terms of the black-hole mass M, its specific angular momentum
a, and the radius r of the most active part of the disk, through Eqs. (9.77) and
(9.78). They provide two equations, namely (9.77) and (9.80); hence they are
not sufficient to determine the above three parameters. In order to obtain them
in an unambiguous way we need at least one more observable. This comes from
the analysis made by Fanton et al. (1997) relating those parameters to quantities
which are observable in the integrated spectrum of an accretion disk. A station-
ary disk produces a double-horn line profile which is presumably modulated by

1 We allow for both (±) cases for completeness, but only the corotating trajectory can be
considered; the accretion disk, in fact, is more likely to be corotating with the central black
hole, and it has been shown that the interaction with the disk also makes the star corotate
eventually.

2 A simpler derivation, based on the perturbation of an equatorial circular orbit, can be
found in Semerák and de Felice (1997).
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the star–disk interaction at a radius r (see Semerák, Karas, and de Felice 1999;
see Appendix of astro-ph/9802025 for details). Treating the star as if it were a
point-like emitting source moving on a circular equatorial geodesic, the observed
frequency shift h = (1 + z)0 of each emitted photon can be written in terms
of its direction cosine eφ̂, the azimuthal component of the unit vector along the
direction of emission of a given photon, measured in the emitter’s local rest frame:

h =

[
1 − 2M/r + yK±

(
a+

√
Δ eφ̂

)]
(1 − 3M/r + 2ayK±)1/2

. (9.81)

One of the most important attributes of a spectral line is its width; this arises
from the different frequency shifts h carried by the photons which reach the
observer at infinity. Since h depends on the direction cosine eφ̂ at emission, the
spectral line would appear broadened, the maximum extent of which, as a result
of integration over one entire orbit, is a measure of the variation δh corresponding
to the largest possible variation of eφ̂ compatible with detection at infinity. If we
call the latter δeφ̂, we have, from (9.81),

(δh) = (δeφ̂)

√
ΔyK±

(1 − 3M/r + 2ayK±)1/2
, (9.82)

and thus

δ2 ≡ (δh)2

(δeφ̂)2
= y2

K±r
2 1 − 2M/r + a2/r2

1 − 3M/r + 2ayK±
. (9.83)

It is clear that δeφ̂ can be at most 2 but, in realistic situations, it varies
significantly with the inclination angle θo of the black-hole–disk system with
respect to the line of sight. It also depends, though only weakly, on the rotational
parameter a and the radius of emission r. From a numerical ray-tracing analysis it
is found that δeφ̂ ranges from (δeφ̂)min � 0.4 to (δeφ̂)max � 2 as θo goes from � 0◦

to � 90◦; hence one can fix as observables the extreme values of δ, δmax = 2.5 δh
and δmin = 0.5 δh, corresponding to a line of sight nearly polar in the former case
and nearly equatorial in the latter one. If the line width δh is measured, then
formulas (9.77), (9.78), and (9.83) provide a closed system of ordinary equations
which yield the parameters M, a, and r in terms of the observable quantities
ζK±, |G∞|, and δ.

These equations can be solved for a, r2, and yK±:

a = ζ−1
K± − y−1

K±, (9.84)

r2 =
3 (1 − ζK±/yK±)2

4ζK±yK± + G2
∞ − 5ζ2

K±
, (9.85)

where yK± is determined by the quartic equation from (9.83)–(9.85) and assum-
ing geodesic motion, i.e.

34y4
K± −By3

K± + Cy2
K± −DyK± + E = 0, (9.86)
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with

B =
4

ζK±
(δ2ζ2

K± + 23ζ2
K± − 2G2

∞),

C = 21δ2ζ2
K± + 76ζ2

K± + 7δ2G2
∞ + 3G2

∞ + G4
∞/ζ

2
K±,

D =
2

ζK±

[
18δ2ζ4

K± + 12ζ4
K± + 5δ2ζ2

K±G2
∞ + 11ζ2

K±G2
∞ − (δ2 + 1)G4

∞
]
,

E = 5ζ4
K±(4δ2 + 3) + (ζ2

K± − G2
∞)(δ2G2

∞ − 7ζ2
K±) − G4

∞. (9.87)

Clearly a numerical solution of Eq. (9.86) always exists for each given set of data
ζK±, |G∞|, and |δ|.

Let us note that in the Schwarzschild case, a = 0, Eq. (9.77) reduces to

ζK± = yK± = ±|G∞| = ±
√
M/r3, (9.88)

and (9.83) becomes

δ2 = r2ζ2
K±

1 − 2r2ζ2
K±

1 − 3r2ζ2
K±

. (9.89)

The physical solution of this equation is

r2 = (4ζ2
K±)−1

[
3δ2 + 1 −

√
(3δ2 + 1)2 − 8δ2

]
; (9.90)

hence M follows from (9.88) as M = r3ζ2
K±.

The analysis in this section is a clear example of how one can link measurements

which could have been made in the vicinity of a black hole, such as ζ̃ and
p

ζ, to
observations made at infinity.

9.6 Gravitationally induced time delay
Measurements of time made by two different observers depend on their relative
motion but also on their geometrical environment. We shall see in a simple situ-
ation how this time rate difference arises.

The Sagnac effect and its time-like analog measure the difference between the
revolution time of a pair of particles orbiting in the opposite sense in time-like or
null spatially circular orbits, as seen by an observer orbiting on a similar type of
trajectory. If (ζ1, ζ2) are the coordinate angular velocities of such a pair (either
(ζ−, ζ+) for photons or (ζK−, ζK+) for massive particles), and ζ is the angular
velocity of the given observer with 4-velocity U = Γ(∂t + ζ∂φ) distinct from
the pair, one finds that the difference in the coordinate orbital times after one
complete revolution with respect to the observer is

Δt = t2 − t1 = 2π [1/(ζ2 − ζ) − 1/(ζ − ζ1)]

= −4π[ζ − (ζ1 + ζ2)/2]/[(ζ − ζ1)(ζ − ζ2)]. (9.91)

For the pair of oppositely rotating time-like geodesics one has

ΔtK(U) = −4π[ζ − ζ(gmp)]/[(ζ − ζK−)(ζ − ζK+)], (9.92)
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while for the pair of oppositely rotating null orbits one has

Δt(null)(U) = −4π[ζ − ζ(nmp)]/[(ζ − ζ−)(ζ − ζ+)], (9.93)

where

ζ(gmp) =
ζK− + ζK+

2
(9.94)

is the angular velocity associated with the geodesic meeting point (gmp) orbits,
defined in (8.155) as the orbits which contain the meeting points of co- and
counter-rotating circular geodesics. Analogously,

ζ(nmp) =
ζ− + ζ+

2
(9.95)

is the angular velocity associated with the null meeting point (nmp) orbits, which
contain the meeting points of co- and counter-rotating photons.

When the observer is static, i.e. has 4-velocity m = (−gtt)−1/2∂t and vanishing
angular velocity ζ = 0, then the Sagnac time difference and its time-like geodesic
analog are given by

Δt(null)(m) = 4π(ζ−−1 + ζ+
−1)/2,

ΔtK(m) = 4π(ζK−
−1 + ζK+

−1)/2. (9.96)

Let us now specify the above general relations to the case of spatially circular
orbits in Kerr space-time.

Consider three families of observers in Kerr space-time, the first made up of
static observers and the others made up of those moving on equatorial spatially
circular geodesics corotating and counter-rotating with the metric source. The
latters are described by the 4-velocities

Uα
± = Γ±(δα

t + ζK±δ
α
φ ), (9.97)

where

ζK± = ±
√

M/r3
(
1 ± a

√
M/r3

)−1

,

Γ± =
[
1 − ζ2

K±(r2 + a2) − 2M
r

(1 − aζK±)2
]−1/2

. (9.98)

From the above relations the Lorentz factor is given by

γ± = −Uα
±mα = Γ±

(
1 − 2M

r

)1/2
[
1 +

2Ma

r

(
1 − 2M

r

)−1

ζK±

]
. (9.99)

The static observers are spatially fixed at each point of space-time; hence the
orbiting particles U± meet one static observer at each point of their orbit. Then,
at each point, the local m-observer will judge a small interval of the proper time
of U± as corresponding to an interval of his own proper time equal to

dτm± = γ±dτU± = (Uφ
±)−1γ±dφ. (9.100)
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Each m-observer will make the same measurement between any pair of events
along the trajectories of U±. Therefore, the radius r of the orbit being constant,
we can evaluate the proper time elapsed on the clock of the static observer at
some initial event after U± has made one revolution around the metric source
until they cross the same initial m-observer. As stated, the particle U+ makes
a round trip along a corotating geodesic and the other one, U−, makes a round
trip along a counter-rotating geodesic. Let us then recall that

1
ζK±

= a±
√
r3/M. (9.101)

Hence, from (9.100) and after a ±2π turn of the azimuthal angle (+ for corotat-
ing, – for counter-rotating), we have the following relations (Cohen and Mash-
hoon, 1993; Lichtenegger, Gronwald, and Mashhoon, 2000):

Δτm+ =+2π
(

1 − 2M
r

)1/2
[

2Ma

r

(
1 − 2M

r

)−1

+ a+

√
r3

M

]
,

Δτm− =−2π
(

1 − 2M
r

)1/2
[

2Ma

r

(
1 − 2M

r

)−1

+ a−
√
r3

M

]
,

so that

δτm ≡ Δτm+ − Δτm− = 4πa
(

1 − 2M
r

)−1/2

. (9.102)

The above relation implies

Δτm+ > Δτm− . (9.103)

Like a viscous fluid, the gravitational drag helps the corotating particles to go
faster than the counter-rotating ones; hence the former suffer a larger time dila-
tion than the latter, justifying (9.103).

In the gravitational field of the Earth we have

2M⊕
r⊕

≈ 10−9, a⊕ ≈ 3.4 × 102 cm ; (9.104)

hence

δτm ≈ 4π
c
a⊕ ≈ 4.2 × 10−8 s, (9.105)

a value easy to measure with modern technology.
Clearly a direct measurement of this time delay would unambiguously show

that the metric source is rotating with a well-defined value of the rotational
parameter a = cδτm/(4π). This is entirely due to gravitational drag; in fact
it vanishes when a = 0. In this case there would be no difference between the
revolution time of orbits covered in the opposite sense, although the gravitational
grip still acts as a result of the dependence of the revolution time on the source
mass M, as expected.
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9.7 Ray-tracing in Kerr space-time
Most of our knowledge of the universe comes from what we see; hence deducing the
optical appearance of cosmic sources is of paramount importance. What we see,
however, depends on how a light ray reaches us after being emitted by the source;
therefore it may happen that the real universe hides itself behind a curtain of illu-
sions. To be free of uncertainties and ambiguities one needs to recognize the actual
light trajectory, taking into account the geometrical environment it propagates
through. This type of analysis is known as ray-tracing. Among the extensive liter-
ature on this topic it is worth mentioning the earliest works by Polnarev (1972),
Cunningham and Bardeen (1973), and de Felice, Nobili, and Calvani (1974), in
which the Kerr metric was assumed as the background geometry.

Here we shall deduce the shape of a luminous ring surrounding a rotating black
hole as it would appear to a distant observer (Li et al., 2005).

Null geodesics

Let us briefly recall the equations for null geodesics in Kerr space-time; the coor-
dinate components of the tangent vector are

dt

dλ
=

1
Σ

[
−a(aE sin2 θ − L) +

(r2 + a2)
Δ

P

]
,

dr

dλ
= εr

1
Σ

√
R,

dθ

dλ
= εθ

1
Σ

√
Θ,

dφ

dλ
= − 1

Σ

[(
aE − L

sin2 θ

)
+
a

Δ
P

]
, (9.106)

where εr and εθ are sign indicators, and

P = E(r2 + a2) − aL,

R = P 2 − Δ[K + (L− aE)2],

Θ = K − cos2 θ
[
−a2E2 +

L2

sin2 θ

]
. (9.107)

Here the quantities E, L, and K are constants of the motion representing respec-
tively the total energy, the azimuthal angular momentum, and the separation con-
stant of the Hamilton-Jacobi equation. It is convenient to introduce the notation

b =
L

E
, q2 =

K
E2

, (9.108)

so that

R = (r2 + a2 − ab)2 − Δ[q2 + (b− a)2],

Θ = q2 − cos2 θ
(
−a2 +

b2

sin2 θ

)
, (9.109)
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and

dt

dλ
=
E

Σ

[
a(b− a sin2 θ) +

(r2 + a2)
Δ

(r2 + a2 − ab)
]
,

dr

dλ
= εr

E

Σ

√
R,

dθ

dλ
= εθ

E

Σ

√
Θ,

dφ

dλ
= −E

Σ

[(
a− b

sin2 θ

)
+
a

Δ
(r2 + a2 − ab)

]
. (9.110)

Note that q2 can be positive, negative, or eventually zero.
The geodesic equations can be formally integrated by eliminating the affine

parameter as follows:

εr

∫ r dr√
R(r)

= εθ

∫ θ dθ√
Θ(θ)

,

t = εr

∫ r r2(r2 + a2) + 2aMr(a− b)
Δ
√
R(r)

dr + εθ

∫ θ a2 cos2 θ√
Θ(θ)

dθ,

φ = εr

∫ r r2b+ 2Mr(a− b)
Δ
√
R(r)

dr + εθ

∫ θ b cot2 θ√
Θ(θ)

dθ. (9.111)

The integrals are along the photon path.
Consider now a typical ray-tracing problem, i.e. a photon emitted at the point

rem, θem, and φem at the coordinate time tem, which reaches an observer located
at robs, θobs, and φobs at the coordinate time tobs. From (9.111)1 we see that the
photon trajectories, originating at the emitter, must satisfy the integral equation

εr

∫ r

rem

dr√
R(r)

= εθ

∫ θ

θem

dθ√
Θ(θ)

. (9.112)

The signs εr and εθ change when a turning point is reached. Turning points in
r and θ are solutions of the equations R = 0 and Θ = 0 respectively. To find
out which photons actually reach the observer one should find all pairs (b, q2)
satisfying (9.112). We shall consider the case of an emitting source moving along
spatially circular orbits confined to the equatorial plane (i.e. θem = π/2) and a
distant observer located far away from the black hole (i.e. robs → ∞). Since in
this case the system is stationary and axisymmetric, only motions in the r and
θ directions are required in the calculation of the radiation spectrum from the
emitting source.

Both integrals (9.112) can be expressed in terms of standard elliptic functions
of the first kind, and classified in terms of different values of the parameters b
and q2 corresponding to different kinds of orbits. This was first done by Rauch
and Blandford (1994), who presented tables of reductions of these integrals by
using the new variables u = 1/r and μ = cos θ.
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We will proceed by retaining instead the variable r, so that (9.112) becomes

εr

∫ r

rem

dr√
R(r)

= εμ

∫ μ

μem

dμ√
Θμ(μ)

, (9.113)

where

Θμ = q2 + (a2 − q2 − b2)μ2 − a2μ4 ≡ a2(μ2
− + μ2)(μ2

+ − μ2), (9.114)

with

μ2
± =

1
2a2

{[
(b2 + q2 − a2)2 + 4a2q2

]1/2 ∓ (b2 + q2 − a2)
}
. (9.115)

In the case of a photon crossing the equatorial plane, we have q2 > 0; hence both
μ2

+ and μ2
− are non-negative. Note that μ2

+μ
2
− = q2/a2.

For a photon emitted by the orbiting source, we have μem = 0, so μ2 can never
exceed μ2

+. The integral over μ can thus be worked out with the inverse Jacobian
elliptic integral ∫ μ+

μ

dμ√
Θμ

=
1√

a2(μ2
+ + μ2

−)
cn−1

(
μ

μ+

∣∣∣∣mμ

)
, (9.116)

where 0 ≤ μ < μ+ and

mμ =
μ2

+

μ2
+ + μ2

−
. (9.117)

The integral over r can also be solved in terms of inverse Jacobian elliptic
integrals. Let us denote the four roots of R(r) = 0 by r1, r2, r3, and r4. There
are two relevant cases to be considered.

Case A: R(r) = 0 has four real roots.
Let the roots be ordered so that r1 ≥ r2 ≥ r3 ≥ r4, with r4 ≤ 0.
Physically allowed regions for photons are given by R ≥ 0, i.e. r ≥ r1
(region I) and r3 ≥ r ≥ r2 (region II). In region I the integral over r has
the solution∫ r

r1

dr√
R(r)

=
2√

(r1 − r3)(r2 − r4)
sn−1

[√
(r2 − r4)(r − r1)
(r1 − r4)(r − r2)

∣∣∣∣∣m4

]
,

(9.118)
where

m4 =
(r1 − r4)(r2 − r3)
(r1 − r3)(r2 − r4)

, 0 ≤ m4 ≤ 1, (9.119)

when r1 �= r2. The case of two equal roots r1 = r2 should be treated
separately, but it is of no practical interest here, since it corresponds to
unstable circular orbits.
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In region II the integral over r has the solution∫ r2

r

dr√
R(r)

=
2√

(r1 − r3)(r2 − r4)
sn−1

[√
(r1 − r3)(r2 − r)
(r2 − r3)(r1 − r)

∣∣∣∣∣m4

]
,

(9.120)
when r1 �= r2.

Case B: R(r) = 0 has two complex roots and two real ones.
Let us assume that r1 and r2 are complex, r3 and r4 are real, and r3 > r4.
Then, we must have r1 = r̄2, whereas r3 ≥ 0 and r4 ≤ 0. The physically
allowed region for photons is given by r ≥ r3. The integral over r has
the solution∫ r

r3

dr√
R(r)

=
1√
AB

cn−1

[√
(A−B)r + r3B − r4A

(A+B)r − r3B − r4A

∣∣∣∣∣m2

]
, (9.121)

where

A2 = (r3 − u)2 + v2, B2 = (r4 − u)2 + v2, (9.122)

with u = Re(r1) and v = Im(r1), and

m2 =
(A+B)2 − (r3 − r4)2

4AB
, 0 ≤ m2 ≤ 1. (9.123)

Images

The apparent position of the image of the emitting source on the celestial sphere
is represented by two impact parameters, α and β, measured on a plane centered
about the observer location and perpendicular to the direction θobs. The impact
parameter α is the apparent displacement of the image perpendicular to the pro-
jected axis of symmetry of the black hole, while β is the apparent displacement of
the image parallel to the axis of symmetry in the sense of the angular momentum
of the black hole. They are defined by

α = lim
robs→∞

−robs
kφ̂

kt̂
= − b

sin θobs
= − b√

1 − μ2
obs

,

β = lim
robs→∞

robs
kθ̂

kt̂
= εθobs

√
q2 + a2 cos2 θobs − b2 cot2 θobs

= −εμobs

√
q2 − μ2

obs[b2/(1 − μ2
obs) − a2], (9.124)

where the kα̂ are the frame components of k with respect to ZAMOs. The line
of sight to the black hole’s center marks the origin of the coordinates, where
α = 0 = β. Now imagine a source of illumination behind the black hole whose
angular size is large compared with the angular size of the black hole. As seen by
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the distant observer the black hole will appear as a black region in the middle of
the larger bright source. No photons with impact parameters in a certain range
about α = 0 = β reach the observer. The rim of the black hole corresponds to
photon trajectories which are marginally trapped by the black hole; they spiral
around many times before they reach the observer. The calculation of the precise
apparent shape of the black–hole has been done by Cunningham and Bardeen
(1973) and by Chandrasekhar (1983).

The shape of the image is thus obtained by determining all pairs (b, q2) sat-
isfying (9.112) (or equivalently (9.113)), then substituting back into (9.124) to
get the corresponding coordinates on the observer’s photographic plate. Alterna-
tively, one can solve (9.124) for b and q2, i.e.

b = −α sin θobs, q2 = β2 + (α2 − a2) cos2 θobs, (9.125)

then substitute back into (9.113) and solve for all allowed pairs of impact param-
eters (α, β).

The images of the source so obtained can be classified according to the number
of times the photon trajectory crosses the equatorial plane between the emitting
source and the observer. The trajectory of the “direct” image does not cross
the equatorial plane; that of a “first-order” image crosses once; and so on. The
shapes of direct and first-order images are shown in Fig. 9.8 for rem = 10M and
θobs = 85◦ as an example.
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Fig. 9.8. Apparent positions of direct (solid line) and first-order (dashed line)
images are shown for the emitting orbital radius rem = 10M and an observer
at the polar angle θobs = 85◦. The small circle is the locus α2 + β2 = 1 and
gives the scale of the plot. The cross at the origin marks the position of the
black hole, whose spin parameter has been chosen to be a/M = 0.5.
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Direct image

As the photon reaches the observer, on the photon orbit we have dθ/dr > 0 (i.e.
dμ/dr < 0) if β > 0, and dθ/dr < 0 (i.e. dμ/dr > 0) if β < 0. Therefore, when
β > 0 the photon must encounter a turning point at μ = μ+: μ starts from 0,
goes up to μ+, then goes down to μobs (which is ≤μ+). When β < 0, the photon
must not encounter a turning point at μ = μ+: μ starts from 0 and monotonically
increases to μobs.

The total integration over μ along the path of the photon from the emitting
source to the observer is thus given by

Iμ =

⎧⎪⎪⎨
⎪⎪⎩
[∫ μ+

0
+
∫ μ+

μobs

]
dμ√
Θμ(μ)

(β > 0),

∫ μobs

0
dμ√
Θμ(μ)

=
[∫ μ+

0
+
∫ μ+

μobs

]
dμ√
Θμ(μ)

(β < 0).

(9.126)

By using (9.116) we get

Iμ =
1√

a2(μ2
+ + μ2

−)

[
K(mμ) + εβcn−1

(
μobs

μ+

∣∣∣∣mμ

)]
, (9.127)

where εβ = 1 if β > 0, 0 if β = 0, and −1 if β < 0, and K(m) is the complete
elliptic integral of the first kind.

Now let us consider the integration over r. Since the observer is at infinity, the
photon reaching him must have been moving in the allowed region defined by
r ≥ r1 when R(r) = 0 has four real roots (case A), or the allowed region defined
by r ≥ r3 when R(r) = 0 has two complex roots and two real roots (case B).
There are then two possibilities for the photon during its trip: it has encountered
a turning point at r = rt (rt = r1 in case A, rt = r3 in case B), or it has not
encountered any turning point in r. Define

I∞ ≡
∫ ∞

rt

dr√
R(r)

, Irem ≡
∫ rem

rt

dr√
R(r)

. (9.128)

Obviously, according to (9.113), a necessary and sufficient condition for the occur-
rence of a turning point in r on the path of the photon is that I∞ < Iμ. Therefore,
the total integration over r along the path of the photon from the emitting source
to the observer is

Ir =

⎧⎪⎨
⎪⎩

I∞ + Irem (I∞ < Iμ),

∫∞
rem

dr√
R(r)

(I∞ ≥ Iμ).
(9.129)

By definition, I∞, Irem , and Ir are all positive. According to (9.113), we must
have Ir = Iμ for the orbit of a photon. The relevant cases to be considered are
the following.
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Case A: R(r) = 0 has four real roots.
When r1 �= r2, by using Eq. (9.118) to evaluate integrals in (9.128) with
rt = r1, we get

I∞ =
2√

(r1 − r3)(r2 − r4)
sn−1

[√
r2 − r4
r1 − r4

∣∣∣∣∣m4

]
,

Irem =
2√

(r1 − r3)(r2 − r4)

× sn−1

[√
(r2 − r4)(rem − r1)
(r1 − r4)(rem − r2)

∣∣∣∣∣m4

]
. (9.130)

Substitute these expressions into (9.129), then let Ir = Iμ, and finally
solve for rem:

rem =
r1(r2 − r4) − r2(r1 − r4)sn2(ξ4|m4)

(r2 − r4) − (r1 − r4)sn2(ξ4|m4)
, (9.131)

where

ξ4 =
1
2
(Iμ − I∞)

√
(r1 − r3)(r2 − r4). (9.132)

Since sn2(−ξ4|m4) = sn2(ξ4|m4), the solution given by (9.131) applies
whether Iμ − I∞ is positive or negative, i.e. whether or not there is a
turning point in r along the path of the photon.

Case B: R(r) = 0 has two complex roots and two real roots.
By using (9.121) to evaluate integrals in (9.128) with rt = r3, we get

Irem =
1√
AB

cn−1

[√
(A−B)rem + r3B − r4A

(A+B)rem − r3B − r4A

∣∣∣∣∣m2

]
,

I∞=
1√
AB

cn−1

[√
A−B

A+B

∣∣∣∣∣m2

]
, (9.133)

where A and B are given by (9.122). Substitute these expressions into
(9.129), then let Ir = Iμ, and finally solve for rem:

rem =
r4A− r3B − (r4A+ r3B)cn(ξ2|m2)

(A−B) − (A+B)cn(ξ2|m2)
, (9.134)

where

ξ2 = (Iμ − I∞)
√
AB. (9.135)

Since cn(−ξ2|m2) = cn(ξ2|m2), the solution given by Eq. (9.134) applies
whether Iμ − I∞ is positive or negative, i.e. whether or not there is a
turning point in r along the path of the photon.
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First-order image

In this case the photon trajectory crosses the equatorial plane once.
The integration over μ along the path of the photon from the emitting source

to the observer is given by

Iμ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−
∫ −μ+

0
+
∫ μ+

−μ+
−
∫ μobs

μ+

]
dμ√
Θμ(μ)

=
[
−
∫ μ+

0
+ 2

∫ μ+

−μ+
+
∫ μ+

μobs

]
dμ√
Θμ(μ)

(β > 0),

[
−
∫ −μ+

0
+
∫ μobs

−μ+

]
dμ√
Θμ(μ)

=
[
−
∫ μ+

0
+ 2

∫ μ+

−μ+
−
∫ μ+

μobs

]
dμ√
Θμ(μ)

(β < 0).

(9.136)

By using (9.116) we get

Iμ =
1√

a2(μ2
+ + μ2

−)

[
3K(mμ) + εβcn−1

(
μobs

μ+

∣∣∣∣mμ

)]
. (9.137)

Now let us consider the integration over r. The discussion holding for the case of
the direct image applies also in this case. The solution is thus given by (9.131)
and (9.134), with Iμ given by (9.137).

9.8 High-precision astrometry
Modern space technology allows one to measure with high accuracy the gen-
eral relativistic corrections to light trajectories due to the background curvature.
Astrometric satellites like GAIA and SIM, for example, are expected to provide
measurements of the position and motion of a star in our galaxy with an accuracy
of the order of O(3), recalling that we set O(n) ≡ O(1/cn). With such accuracy,
we must model and interpret the satellite observations in a general relativistic
context. In particular the measurement conditions as well as the determination
of the satellite rest frame must be modeled with equal accuracy. This frame con-
sists of a clock and a triad of orthonormal axes which is adapted to the satellite
attitude. We shall give here two examples of frames which best describe the
satellite’s measuring conditions. First we construct a Fermi frame which can be
operationally fixed by a set of three mutually orthogonal gyroscopes; then we
find a frame which mathematically models a given satellite attitude.

Since we have in mind applications to satellite missions, we fix the background
geometry as that of the Solar System, assuming that it is the only source of
gravity. Moreover we assume that it generates a weak gravitational field, so we
shall retain only terms of first order in the gravitational constant G and consider
these terms only up to order O(3).
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The rest frame of a satellite consists of a clock which measures the satellite
proper time and a triad of orthonormal axes. The latter are described by 4-vectors
whose components are referred to a coordinate system which in general is not
connected to the satellite itself. Moreover, they are defined up to spatial rotations;
there are infinitely many possible orientations of the spatial triad which can be
fixed to a satellite, so our task is to identify those which correspond to actual
attitudes.

The space-time metric is given by

ds2 ≡ gαβdx
αdxβ = [ηαβ + hαβ +O(h2)]dxαdxβ , (9.138)

where O(h2) denotes non-linear terms in h, the coordinates are x0 = t, x1 = x,

x2 = y, x3 = z, the origin being fixed at the center of mass of the Solar System,
and ηαβ is the Minkowski metric, so that the metric components are

g00 = −1+h
2
00 +O(4), g0a = h

3
0a +O(5), gab = 1+h

2
00δab +O(4). (9.139)

Here h
2
00 = 2U , where U is the gravitational potential generated by the bodies of

the Solar System, and the subscripts indicate the order of 1/c (e.g. h
3
0a ∼ O(3)).

Following Bini and de Felice (2003) and Bini, Crosta, and de Felice (2003), we
shall not specify the metric coefficients, in order to ensure generality.

Let us fix the satellite’s trajectory by the time-like, unitary 4-vector u′

(u′αu′α = −1), given by

u′ = Ts(∂t + β1∂x + β2∂y + β3∂z), (9.140)

where the ∂α are the coordinate basis vectors relative to the coordinate system,
and βi are the coordinate components of the satellite 3-velocity with respect to a
local static observer, recalling that we use subscripts here to refer to contravariant
components, so as not to confuse them with power indices. Finally we define
Ts = 1 + (U + 1

2β
2) and β2 = β2

1 + β2
2 + β2

3 .

Fermi frame

A Fermi frame adapted to a given observer can be obtained from any frame
adapted to that observer, provided we know its Fermi coefficients. The latter tell
how much the spatial axes of the given triad must rotate in order to be reduced
to a Fermi frame.

We shall apply this procedure to a tetrad adapted to u′. Although we use the
simplest possible frame, we find that an algebraic solution for a Fermi frame is
possible only if we confine ourselves to terms of the order O(2) and set β3 = 0.
To this order a tetrad solution is given by Bini and de Felice (2003) as
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λ0̂ =
[
1 + U +

1
2
β2

]
∂t + β[cos ζ(t)∂x + sin ζ(t)∂y],

λ1̂ = (1 − U)[sin ζ(t)∂x − cos ζ(t)∂y], (9.141)

λ2̂ = β∂t +
[
1
2
β2 − U + 1

]
(cos ζ(t)∂x + sin ζ(t)∂y),

λ3̂ = (1 − U)∂z,

where we have set β1 = β cos ζ(t), β2 = β sin ζ(t), and β3 = 0, ζ being the
angular velocity of orbital revolution of the given observer. This tetrad is not a
Fermi tetrad because one Fermi coefficient is different from zero, namely

C(fw)2̂1̂ = −ζ̇, (9.142)

a dot meaning derivative with respect to the coordinate time. Subtracting the
Fermi rotation at each time, the triad {λâ} reduces to a Fermi triad:

R1̂ = −β sin ζ(t)∂t −
1
4
β2 sin 2ζ(t)∂x

−
[
β2

2
sin2 ζ(t) − U + 1

]
∂y,

R2̂ = β cos ζ(t)∂t +
[
1 − U +

β2

2
cos2 ζ(t)

]
∂x (9.143)

+
1
4

sin 2ζ(t)β2∂y,

R3̂ = (1 − U)∂z.

It is easy to verify that all the Fermi coefficients of the triad (9.143) vanish
identically. The operational setting of a Fermi triad by means of three mutually
orthogonal gyroscopes has a degree of arbitrariness which arises from the freedom
one has in fixing a spatial triad; a Fermi triad, in fact, is defined up to a constant
rotation. In most cases it is more convenient to define a frame which is fixed
to the satellite and is constrained according to criteria of best efficiency for the
mission goal.

Attitude frame

Let us find now a frame adapted to the satellite’s attitude, keeping the approxima-
tion to the order O(3). We first fix a coordinate system centered at the baricenter
of the Solar System, with the spatial axes pointing to distant sources; the latter
identify a global Cartesian-like spatial coordinate representation (x, y, z) with
respect to which the space-time metric takes the form (9.138). The world line of
an observer at rest with respect to the chosen coordinate grid is given by the unit
4-vector

u = (gtt)−1/2∂t ≈ (1 + U)∂t, (9.144)
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where t is a coordinate time. The observer u, together with the spatial axes as
specified, is a static observer, termed baricentric, and the parameter on its world
line is the baricentric proper time. Obviously, at each point in space-time there
exists a static observer u who carries a triad of spatial and mutually orthogonal
unitary vectors which point to the same distant sources as for the baricentric
frame.

As shown in Bini, Crosta, and de Felice (2003), the spatial triad of a static
observer at each space-time point is given to O(3) by the following vectors:

λ1̂ = h01∂t + (1 − U)∂x,

λ2̂ = h02∂t + (1 − U)∂y, (9.145)

λ3̂ = h03∂t + (1 − U)∂z.

We need to identify the spatial direction to the geometrical center of the Sun as
seen from within the satellite. To this end we first identify this direction with
respect to the local static observer which is defined at each point of the satellite’s
trajectory, then we boost the corresponding triad to adapt it to the motion of
the satellite.

Let x0(t), y0(t), z0(t) be the coordinates of the satellite’s center of mass with
respect to the baricenter of the Solar System, and x�(t), y�(t), z�(t) those of
the Sun at the same coordinate time t. Here the time dependence is assumed to
be known. The relative spatial position of the Sun with respect to the satellite
at the time t is then

x′� = x� − x0,

y′� = y� − y0, (9.146)

z′� = z� − z0.

With respect to a local static observer, the Sun direction is fixed, rotating the
triad (9.145) by an angle φs around λ3̂ and then by an angle θs around the vector
image of λ2̂ under the above φs-rotation, where

φs = tan−1 y
′
�
x′�

, θs = tan−1 z′�√
x′2� + y′2�

. (9.147)

Thus we have the new triad adapted to the observer u,

λ
s â = R2(θs)R3(φs)λâ, (9.148)

where

R2(θs) =

⎛
⎝ cos θs 0 sin θs

0 1 0
−sin θs 0 cos θs

⎞
⎠ (9.149)
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and

R3(φs) =

⎛
⎝ cosφs sinφs 0
−sinφs cosφs 0

0 0 1

⎞
⎠ . (9.150)

It should be noted here that, since the Sun is an extended body, its geometrical
center may be difficult to determine with great precision. The uncertainty in this
measurement may affect the precision in fixing the angles φs and θs from on
board the satellite, contributing to the determination of the error box.

From Eqs. (9.148)–(9.150), the explicit expressions for the coordinate compo-
nents of the vectors of the new triad are

λ
s 1̂ = [cos θs(cosφsh01 + sinφsh02) + sin θsh03]∂t

+ cosφs cos θs(1 − U)∂x

+ sinφs cos θs(1 − U)∂y

+ sin θs(1 − U)∂z, (9.151)

λ
s 2̂ = −(sinφsh01 + cosφsh02)∂t

− sinφs(1 − U)∂x

− cosφs(1 − U)∂y, (9.152)

λ
s 3̂ = −[sin θs(cosφsh01 + sinφsh02) − cos θsh03]∂t

− cos θs sin θs(1 − U)∂x

− sinφs sin θs(1 − U)∂y

+ cos θs(1 − U)∂z. (9.153)

It is easy to verify that the set {u, λ
s â} forms an orthonormal tetrad; moreover,

it is equally straightforward to see that

cos θs λs 2̂ =
d

dφs
λ
s 1̂, λ

s 3̂ =
d

dθs
λ
s 1̂. (9.154)

All quantities in equations (9.151)–(9.153) are defined at the position (x0, y0, z0)
of the satellite at time t.

Let us remember that our aim here is to identify a tetrad frame which is
adapted to the satellite and whose spatial triad mirrors its attitude. Recalling
that the satellite 4-velocity is given by u′ as in (9.140), we boost the vectors of the
triad {λ

s â} along the satellite’s relative motion to obtain the following boosted
triad (see (3.143)):

λ
bs

α
â = P (u′)α

σ

[
λ
s

σ
â − γ

γ + 1
νσ (νρλ

s ρâ)
]

â=1,2,3

, (9.155)

where

P (u′)α
σ = δα

σ + u′αu′σ (9.156)
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is the operator which projects onto the rest-space of u′, να ≡ ν(u′, u)α is the
relative spatial velocity of u′ with respect to the local static observer u, defined as

να =
1
γ

(u′α − γuα), (9.157)

and γ ≡ γ(u′, u) = −u′αuα is the relative Lorentz factor. The vector λ
bs1̂

identifies
the direction to the Sun as seen from within the satellite. The other vectors of
the boosted triad are related to λ

bs1̂
by the simple relations

λ
bs2̂

=
d

dφs
λ
bs1̂
, λ

bs3̂
=

d

dθs
λ
bs1̂
. (9.158)

The tetrad {λ
bs0̂

≡ u′, λ
bs

â} will be referred to as the Sun-locked frame. The relation
between the components ν(u′, u)α of the spatial velocity ν(u′, u) and the compo-
nents βi appearing in (9.140) is easily established from (9.140) itself and (9.157),
and is given by

ν(u′, u)α =
1
γ

[
Ts

(
βiδ

iα + δ0α
)
− uαγ

]
. (9.159)

The explicit expressions for the components of the vectors λ
bs

â can be found in
the cited literature (Bini, Crosta, and de Felice, 2003; de Felice and Preti, 2008).
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Measurements of spinning bodies

A test gyroscope is a point-like massive particle having an additional “structure”
termed spin. A spinning body is not, strictly speaking, point-like because its
average size cannot be less than the ratio between its spin and its mass, in
geometrized units. This guarantees that no point of the spinning body moves
with respect to any observer at a velocity larger than c.

Rotation is a common feature in the universe so knowing the dynamics of
rotating bodies is almost essential in modern physics. Although in most cases
the assumption of no rotation is necessary to make the equations tractable, the
existence of a strictly non-rotating system should be considered a rare event, and
a measurement which revealed one would be of great interest. This is the case
for the massive black holes which appear to exist in the nuclei of most galaxies.
Detailed measurements are aimed at detecting their intrinsic angular momentum
from the behavior of the surrounding medium. A black hole, however, could also
be seen directly if we were able to detect the gravitational radiation it would emit
after being perturbed by an external field. A direct measurement of gravitational
waves is still out of reach for earthbound detectors; nevertheless they are still
extensively searched for since they are the ultimate resource to investigate the
nature of space-time. Because of the vast literature available on this topic, in
what follows we shall limit ourselves to the interaction of gravitational waves
with a spinning body, with the aim of searching for new ways to detect them.

10.1 Behavior of spin in general space-times
As already stated, we shall distinguish between a point-like gyroscope and an
extended spinning body. In the first case, let us consider the world line γ of an
observer U who carries the gyroscope. We denote the spin of the gyroscope by
a vector S defined along γ, everywhere orthogonal to its tangent vector U and
undergoing Fermi-Walker transport:
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D(fw,U)S

dτU
= ∇US − (a(U) · S)U = 0, S · U = 0. (10.1)

In the second case, the behavior of an extended spinning body is described by
the Mathisson-Papapetrou equations (Mathisson, 1937; Papapetrou, 1951), later
generalized by Dixon (1970a; 1970b; 1979):

D

dτU
Pμ = −1

2
Rμ

αβγU
αSβγ ≡ F (spin)μ , (10.2)

D

dτU
Sμν = 2P [μUν], (10.3)

where U is the unit time-like vector tangent to the line representative of the body
(hereafter, the center of mass line), and Pμ and Sμν are its momentum 4-vector
and antisymmetric spin tensor, satisfying the additional conditions

SμνPν = 0. (10.4)

Because of the spin–curvature coupling appearing in (10.2), U is in general accel-
erated, with a(U) = f(U); therefore, following the notation of Section 6.7 (see
(6.75)), we set

P (u,U)f(U) = γF (U, u). (10.5)

In the limit of small spin relative to the length scale of the background curvature,
Eqs. (10.2)–(10.4) imply (10.1), so the two descriptions agree.

In what follows we shall consider first the motion of a test gyroscope.

Test gyroscope: the projected spin vector

Let u be a vector field tangent to a congruence Cu of curves which cross the world
line of U . With respect to Cu the spin vector S admits the representation

S = Σ(U, u) + [ν(U, u) · Σ(U, u)]u, Σ(U, u) = P (u,U)S. (10.6)

Since S is Fermi-Walker transported along U , its magnitude is constant, whereas
the projected vector

Σ(U, u) = ||Σ(U, u)||Σ̂(U, u) (10.7)

varies. The evolution of Σ(U, u) along U , as measured by the observer u, can be
obtained as follows. Starting from (10.1) and using (10.6), we find

DS

dτU
=

D

dτU
Σ(U, u) + (ν(U, u) · Σ(U, u))

Du

dτU

+u

[
D

dτU
ν(U, u) · Σ(U, u) + ν(U, u) · D

dτU
Σ(U, u)

]
, (10.8)
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so that, acting on both sides with P (u), we find, from (10.1),

(a(U) · S)γν =
D(fw,U,u)

dτU
Σ(U, u) − (ν(U, u) · Σ(U, u))F (G)

(fw,U,u), (10.9)

recalling the definition (3.156) of the Fermi-Walker gravitational force

Du

dτU
= −F (G)

(fw,U,u). (10.10)

Let us evaluate the term (a(U) · S). We have

a(U) · S = a(U) · Σ(U, u) + (ν(U, u) · Σ(U, u))u · a(U)

= γF (U, u) · Σ(U, u)

+ (ν(U, u) · Σ(U, u))u · ∇UU. (10.11)

But

u · ∇UU = − dγ

dτU
+ γν · F (G)

(fw,U,u) = −γF (U, u) · ν, (10.12)

where we have used Eq. (6.85), that is,

dγ

dτU
= γ[F (U, u) + F

(G)
(fw,U,u)] · ν(U, u). (10.13)

Hence

a(U) · S = γ [F (U, u) · Σ(U, u) − (ν(U, u) · Σ(U, u))F (U, u) · ν] . (10.14)

Using this in (10.9) and setting ν(U, u) = ν and F (U, u) = F to simplify notation,
we obtain

D(fw,U,u)

dτU
Σ(U, u) = (ν · Σ(U, u))F (G)

(fw,U,u) + (a(U) · S)γν

= (ν · Σ(U, u))F (G)
(fw,U,u)

+ (F · Σ(U, u) − (ν · Σ(U, u))F · ν)γ2ν. (10.15)

Let us now consider the evolution of the magnitude of Σ(U, u), that is ||Σ(U, u)||,
and of its unit direction Σ̂(U, u) ≡ Σ̂ separately. Using (10.7) we find

d

dτU
ln ||Σ(U, u)|| = (ν · Σ̂)

[
γ2χ+ F

(G)
(fw,U,u) · Σ̂

]
, (10.16)

where

χ = F · Σ̂ − (ν · Σ̂)(F · ν). (10.17)

Using the relative standard time parameterization, we deduce

D(fw,U,u)

dτ(U,u)
Σ̂ = γχ

[
Σ̂ ×u (ν ×u Σ̂)

]
+

1
γ

(Σ̂ · ν)
[
Σ̂ ×u (F (G)

(fw,U,u) ×u Σ̂)
]
. (10.18)
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We can also cast (10.18) in the form

D(fw,U,u)

dτ(U,u)
Σ̂ = ζ

(project)
(fw) ×u Σ̂, (10.19)

where

ζ
(project)
(fw) = γχ(Σ̂ ×u ν) +

1
γ

(ν · Σ̂)
(
Σ̂ ×u F

(G)
(fw,U,u)

)
= Σ̂ ×u

[
γχν +

1
γ

(ν · Σ̂)F (G)
(fw,U,u)

]
(10.20)

is the precession rate of the gyroscope as it would be locally measured by u.

Boosted spin vector

Let us examine now the complementary problem of describing the precession of
a gyroscope as it would be measured by the observer U who carries it, relative to
a frame, say {e(u)a}, adapted to the observers of the congruence Cu. According
to U , the axes e(u)a are moving axes; hence their orientation in LRSU is defined
by boosting them onto LRSU itself, that is

E(U)a = B(lrs)(U, u)e(u)a. (10.21)

Our aim here is to study the precession rate of the spin vector S with respect to
the axes E(U)a. However, since the boost is an isometry, the precession of S with
respect to the axes E(U)a is the same as the precession of the boosted vector

S(U, u) = B(lrs)(u,U)S, (10.22)

momentarily at rest with respect to u, as measured with respect to the axes
e(u)a. Using the representation (3.143) of the boost, we have

S(U, u) = Σ(U, u) − γ

1 + γ
(ν(U, u) · Σ(U, u))ν(U, u). (10.23)

The evolution of S(U, u) along U is a consequence of the similar result for Σ(U, u)
and can be cast in the form

D(fw,U,u)

dτ(U,u)
S(U, u) = ζ

(boost)
(fw) ×u S(U, u), (10.24)

where ζ(boost)
(fw) is made up of two terms:

ζ
(boost)
(fw) = ζ(Thomas) + ζ(geo), (10.25)

where

ζ(Thomas) = − γ

1 + γ
ν(U, u) ×u F (U, u), (10.26)
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and

ζ(geo) =
1

1 + γ
ν(U, u) ×u F

(G)
(fw,U,u). (10.27)

The Thomas precession arises from the acceleration of the world line of the
observer who carries the gyroscope and is due to the non-gravitational force
F (U, u) defined in (6.75). The geodesic precession is due to the gravitational
force F (G)

(fw,U,u) only.
Let us derive (10.24). Start from (10.23) and replace Σ(U, u) using (10.6) to

obtain

S(U, u) = S − [ν(U, u) · Σ(U, u)]
1 + γ

(U + u)

= S − γ[ν(U, u) · S(U, u)]
1 + γ

(U + u), (10.28)

because

ν(U, u) · Σ(U, u) = γ[ν(U, u) · S(U, u)]. (10.29)

Let f denote the quantity

f =
γ[ν(U, u) · S(U, u)]

1 + γ
. (10.30)

Differentiate both sides of (10.28) along U :

D

dτU
S(U, u) =

DS

dτU
− (u+ U)

df

dτU
−
(
a(U) +

D

dτU
u

)
f

= (a(U) · S)U − (u+ U)
df

dτU

−
(
a(U) − F

(G)
(fw,U,u)

)
f, (10.31)

where we have used the properties of S of being orthogonal to U and of being
Fermi-Walker transported along it, that is

D(fw,U)

dτU
S =

D

dτU
S − (a(U) · S)U = 0. (10.32)

From (10.28) we have

a(U) · S = a(U) · S(U, u) + (u · a(U))f. (10.33)

But

u · a(U) = u · ∇UU = − dγ

dτU
+ γν(U, u) · F (G)

(fw,U,u), (10.34)

so that Eq. (10.13) gives

u · a(U) = −γν(U, u) · F (U, u). (10.35)
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Therefore
D

dτU
S(U, u) = [a(U) · S(U, u) − fγν(U, u) · F (U, u)]U

− df

dτU
(u+ U) −

(
a(U) − F

(G)
(fw,U,u)

)
f

= γ [F (U, u) · S(U, u) − fν(U, u) · F (U, u)]U

− (u+ U)
df

dτU
−
(
a(U) − F

(G)
(fw,U,u)

)
f. (10.36)

First project both sides of (10.36) orthogonally to u, obtaining

D(fw,U,u)

dτU
S(U, u) = γ2 [F (U, u) · S(U, u)

− fν(U, u) · F (U, u)] ν(U, u)

− γν
df

dτU
+
(
−γF + F

(G)
(fw,U,u)

)
f. (10.37)

Then take the scalar product of both sides of (10.36) with u, to give

u · D

dτU
S(U, u) = −γ2(F (U, u) · S(U, u) − fν(U, u) · F (U, u))

+
df

dτU
(γ + 1) − (u · a(U)) f, (10.38)

that is, since u · S(U, u) = 0,

F
(G)
(fw,U,u) · S(U, u) = −γ2(F (U, u) · S(U, u)

− fν(U, u) · F (U, u))

+
df

dτU
(γ + 1)

+ fγν(U, u) · F (U, u)

= −γ2F (U, u) · S(U, u)

+ γ(fν(U, u) · F (U, u))(1 + γ)

+
df

dτU
(γ + 1). (10.39)

From this it follows that
df

dτU
= (1 + γ)−1

(
F

(G)
(fw,U,u) + γ2F (U, u)

)
· S(U, u)

− γfν(U, u) · F (U, u). (10.40)

Substituting this expression into (10.37), we obtain the final result,

D(fw,U,u)

dτU
S(U, u) =

γ

1 + γ
[ν(U, u) ⊗ S(U, u) − ν(U, u) · S(U, u)P (u)](

γF (U, u) − F
(G)
(fw,U,u)

)
, (10.41)

which is equivalent to (10.24).
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If the frame {e(u)a} is orthonormal, then we can further manipulate (10.24).
In this case we have

D(fw,U,u)

dτ(U,u)
S(U, u)â =

dS(U, u)â

dτ(U,u)

+
(
C(fw)

â
ĉ + Γâ

ĉb̂ ν(U, u)
b̂
)
S(U, u)ĉ. (10.42)

Introducing the quantities

ζ â
(fw) = −1

2
η(u)âb̂ĉC(fw)b̂ĉ (10.43)

and the spatial curvature angular velocity

ζ â
(sc) = −1

2
η(u)âb̂ĉΓ[ĉ|d̂|b̂] ν(U, u)

d̂, (10.44)

already defined in (4.18) and (4.20) respectively, we have

D(fw,U,u)

dτ(U,u)
S(U, u)â =

dS(U, u)a

dτ(U,u)
+ [(ζ(fw) + ζ(sc)) ×u S(U, u)]â, (10.45)

and hence

dS(U, u)â

dτ(U,u)
=
[(
ζ
(boost)
(fw) − ζ(fw) − ζ(sc)

)
×u S(U, u)

]â
≡
[
ζ(tot) ×u S(U, u)

]â
, (10.46)

or equivalently

dS(U, u)â

dτ(U,u)
= η(u)â

b̂ĉζ
(tot)b̂S(U, u)ĉ. (10.47)

Note that a change of parameter along U implies a rescaling of the precession
angular velocity. For instance, the above formula can also be written as

dS(U, u)â

dτU
= η(u)â

b̂ĉ[γζ
(tot)]b̂S(U, u)ĉ, (10.48)

when the world line U is parameterized by the proper time τU . In this case the
effective total angular velocity is

ζ
(tot)
U = γζ(tot). (10.49)

10.2 Motion of a test gyroscope in a weak gravitational field
Let us consider the post-Newtonian (PN) treatment of a weak gravitational field
within general relativity and evaluate the orders of magnitude of the quantities we
shall meet in our treatment in terms of powers of 1/c, c being the velocity of light
in vacuum. In a PN coordinate system, say (t, xa) (a = 1, 2, 3), the space-time
metric can be written as
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ds2 = −(1 − 2Φ)dt2 + 2Φidtdx
i + (1 + 2Φ)δijdxidxj +O(4), (10.50)

where Φ = O(2) and Φi = O(3). We use the three-dimensional notation

�Φ = Φ1∂x + Φ2∂y + Φ3∂z (10.51)

and the ordinary Euclidean space operations for grad, curl, div, and vector prod-
uct, unless otherwise specified. Let u be the family of observers at rest with
respect to the coordinate grid

u =
1√−gtt

∂t = (1 + Φ)∂t +O(4), (10.52)

so that

u� = (−1 + Φ)dt+ Φadx
a +O(4). (10.53)

Let us fix an orthonormal frame adapted to u as follows:

eâ = Φa∂t + (1 − Φ)∂a, ωâ = (1 + Φ)δâ
b dx

b. (10.54)

The observers u have acceleration

a(u) = −gradu Φ +O(4) ; (10.55)

they also have vorticity

ω(u) =
1
2
curlu �Φ +O(4) (10.56)

and expansion1

θ(u)ab = ∂tΦ δab +O(4). (10.57)

A direct calculation shows that

∇ueâ = −∂aΦu+ ω(u) ×u eâ +O(4)

= a(u)a u+ ω(u) ×u eâ +O(4), (10.58)

and hence

C(fw)
b̂
âeb̂ = ω(u) ×u eâ, (10.59)

which implies

ω(u) = ζ(fw). (10.60)

Similarly, the non-vanishing spatial Ricci rotation coefficients

ωĉ
(
∇eb̂

eâ

)
= Γĉ

âb̂ (10.61)

1 We note that for these three fields, that is acceleration, vorticity, and expansion, the
coordinate and frame components coincide.
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are as follows:

Γx̂
ŷŷ = Γx̂

ẑẑ = −Γŷ
x̂ŷ = −Γẑ

x̂ẑ = −∂xΦ,

Γŷ
x̂x̂ = Γŷ

ẑẑ = −Γx̂
ŷx̂ = −Γẑ

ŷẑ = −∂yΦ,

Γẑ
x̂x̂ = Γẑ

ŷŷ = −Γx̂
ẑx̂ = −Γŷ

ẑŷ = −∂zΦ. (10.62)

If U = γ[u+ ν(U, u)âeâ] is the 4-velocity of the observer carrying the gyroscope
and we assume that it satisfies the slow motion condition ||ν(U, u)|| � 1, then
we can evaluate the spatial curvature angular velocity

ν ĉΓd̂
âĉ = −εd̂âf̂ζ

f̂
(sc), (10.63)

and find that

ζ(sc) = −ν ×u gradu Φ. (10.64)

Finally, we have

ζ
(boost)
(fw) = −1

2
ν ×u F − 1

2
ν ×u a(u) = −1

2
ν ×u F +

1
2
ν ×u gradu Φ, (10.65)

so that the precession angular velocity of (10.46) becomes

ζ(tot) = −1
2
ν ×u F +

1
2
ν ×u gradu Φ

+ ν ×u gradu Φ − 1
2
curlu �Φ

= −1
2
ν ×u F +

3
2
ν ×u gradu Φ

− 1
2
curlu �Φ. (10.66)

When a gyroscope moves along a geodesic (F = 0), Eq. (10.66) is known as the
Schiff formula; that is,

ζ(tot) =
3
2
ν ×u gradu Φ − 1

2
curlu �Φ. (10.67)

The part of ζ(tot) which is contributed by the intrinsic spin of the gravity source
is responsible for a relativistic effect implied by the Lense-Thirring metric, and
known as the Lense-Thirring effect.

10.3 Motion of a test gyroscope in Schwarzschild space-time
We shall now study the motion of a test gyroscope in Schwarzschild space-time.
Our aim here is to deduce the precession of a gyroscope carried by an observer U ,
but with respect to a frame e(m)a given by (8.18), adapted to the static observers.
In this way we can specialize the general formulas given above.

The evolution of the boosted spin vector S(U,m) along U can be cast in the
form

D(fw,U,m)

dτ(U,m)
S(U,m) = ζ

(boost)
(fw) (U,m) ×m S(U,m), (10.68)
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where

ζ
(boost)
(fw) = ζ(Thomas) + ζ(geo)

=
γ

1 + γ
ν(U,m) ×m

[
−F (U,m) + γ−1F

(G)
(fw,U,m)

]
=

γ

1 + γ
ν(U,m) ×m [−F (U,m) − a(m)] . (10.69)

ζ
(boost)
(fw) has a component only along the latitudinal frame direction θ̂,

ζ
(boost)
(fw)

θ̂ =
γ

1 + γ
ν(U,m)φ̂

[
−F (U,m)r̂ − a(m)r̂

]
, (10.70)

with

F (U,m)r̂ = Γ
(
M
r2

− rζ2

)
=

γ

N

(
M
r2

− rζ2

)
,

a(m)r̂ =
(

1 − 2M
r

)−1/2 M
r2

=
M
Nr2

, (10.71)

with

N =
(

1 − 2M
r

)1/2

=
r

R . (10.72)

We then have

ζ
(boost)
(fw)

θ̂ =
γ

1 + γ
ν(U,m)φ̂

[
− γ

N

(
M
r2

− rζ2

)
− M
Nr2

]

= −γ ν(U,m)φ̂

N

M
r2

+
rγ2ζ2

1 + γ

ν(U,m)φ̂

N
. (10.73)

Recalling that

ν(U,m)φ̂ =
rζ

N
, (10.74)

we have

ζ
(boost)
(fw)

θ̂ = −γMζ

rN2
+
r2γ2ζ2

1 + γ

ζ

N2
. (10.75)

Moreover,

r2γ2ζ2

1 + γ

1
N2

=
γ2||ν(U,m)||2

1 + γ
=
γ2 − 1
1 + γ

= γ − 1. (10.76)

Therefore

ζ
(boost)
(fw)

θ̂ = −γMζ

rN2
+ ζ(γ − 1) = ζγ

[
− M
rN2

+ 1
]
− ζ

=
ζγ

N2

(
1 − 3M

r

)
− ζ. (10.77)
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Taking into account now that ζ(fw) = 0 and that, from (8.48) with θ = π/2,

ζ(sc) = −ζeθ̂, (10.78)

we have the Shiff formula in Schwarzschild space-time,

ζ(tot)θ̂ = ζ
(boost)
(fw)

θ̂ − ζ θ̂
(sc) =

ζγ

N2

(
1 − 3M

r

)
. (10.79)

Finally, from (8.69), we see that

ζ(tot)θ̂ =
τ1(U)
γ

. (10.80)

As a convention the physical (orthonormal) component along −∂θ, perpendicular
to the equatorial plane, is taken to be along the positive z-axis, denoted by ẑ.
Therefore,

ζ(tot)ẑ = −τ1(U)
γ

. (10.81)

This result agrees with the expression for
g

ζ given in Section 9.2. In fact, assuming
U is a geodesic parameterized by the proper time and taking into account the
discussion at the end of Section 10.1 we have

g

ζ ≡ ζ
(tot)
U

ẑ = −τ1(U) = Γ2ζ

(
3M
r

− 1
)
, (10.82)

where the expression (8.69) for τ1(U) has been used. Finally, introducing the

proper frequency
p

ζ = Γζ yields

g

ζ = Γ
p

ζ

(
3M
r

− 1
)
. (10.83)

10.4 Motion of a spinning body in Schwarzschild space-time
The equations of motion are given by (10.2) and (10.3) coupled to the supple-
mentary condition (10.4), where, as stated, Pμ is the total 4-momentum of the
particle and Sμν is its (antisymmetric) spin tensor. In those equations, U is the
time-like unit tangent vector of the center-of-mass line used to make the multipole
reduction. Equation (10.2) is also referred to as the Riemann force equation.

Let the Schwarzschild metric be written in spherical-type coordinates (8.1),
and introduce an orthonormal frame adapted to the static observers:

et̂ = (1 − 2M/r)−1/2 ∂t, er̂ = (1 − 2M/r)1/2 ∂r,

eθ̂ =
1
r
∂θ, eφ̂ =

1
r sin θ

∂φ, (10.84)
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with dual

ωt̂ = (1 − 2M/r)1/2 dt, ωr̂ = (1 − 2M/r)−1/2dr,

ωθ̂ = r dθ, ωφ̂ = r sin θ dφ. (10.85)

Let us assume that U is tangent to a (time-like) spatially circular orbit, which
we here denote as a U -orbit, with

U = Γ[∂t + ζ∂φ] = γ[et̂ + νeφ̂], γ = (1 − ν2)−1/2. (10.86)

ζ is the angular velocity of the orbital revolution as it would be measured at
infinity, ν is the magnitude of the local proper linear velocity measured in the
frame (10.84), and Γ is a normalization factor given by

Γ =
(
−gtt − ζ2gφφ

)−1/2
(10.87)

in order to ensure that U · U = −1. The angular velocity ζ is related to ν by

ζ =
√
− gtt

gφφ
ν. (10.88)

Here ζ and therefore also ν are assumed to be constant along the U -orbit. We
limit our analysis to the equatorial plane (θ = π/2) of the Schwarzschild solution;
again, as a convention, the physical (orthonormal) component along −∂θ, per-
pendicular to the equatorial plane, will be taken to be along the positive z-axis
and will be indicated by ẑ, as necessary.

Among the circular orbits analyzed in detail in Section 8.2, particular attention
is devoted to the time-like spatially circular geodesics which corotate (ζ+) and
counter-rotate (ζ−) relative to a pre-assigned positive sense of variation of the
azimuthal coordinate φ. They have respective angular velocities ζ± ≡ ±ζK =
±(M/r3)1/2, so that

U± = Γ±[∂t + ζ±∂φ] = γK [et̂ ± νKeφ̂], (10.89)

where

νK =
[

M
r − 2M

]1/2

, γK =
[
r − 2M
r − 3M

]1/2

, (10.90)

and with the time-like condition νK < 1 satisfied if r > 3M. Here γK is the local
(geodesic) Lorentz factor relative to the frame (10.84).

Let us now introduce the Lie relative curvature (8.66) of each U -orbit,

k(lie) ≡ k(lie)r̂ = −∂r̂ ln
√
gφφ = −1

r

(
1 − 2M

r

)1/2

= − ζK
νK

, (10.91)

as well as a Frenet-Serret intrinsic frame along U , defined by

Et̂ = U, Er̂ = er̂, Eẑ = eẑ, Eφ̂ = γ[νet̂ + eφ̂], (10.92)
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satisfying the following system of evolution equations:

DU

dτU
≡ a(U) = κEr̂,

DEr̂

dτU
= κU + τ1Eφ̂,

DEφ̂

dτU
= −τ1Er̂,

DEẑ

dτU
= 0, (10.93)

where

κ = k(lie)γ
2[ν2 − ν2

K ], τ1 = − 1
2γ2

dκ

dν
= −k(lie)

γ2

γ2
K

ν ; (10.94)

in this case the second torsion τ2 is identically zero. The dual of (10.92) is given by

Ωt̂ = −U, Ωr̂ = ωr̂, Ωẑ = ωẑ, Ωφ̂ = γ[−νωt̂ + ωφ̂]. (10.95)

To study the motion of spinning test particles in circular orbits let us consider
first the evolution equation for the spin tensor (10.3). For simplicity, we search
for solutions of the Riemann force equation (10.2) describing frame components
of the spin tensor which are constant along the orbit. By contracting both sides
of (10.3) with Uν , one obtains the following expression for the total 4-momentum:

Pμ = −(U · P )Uμ − Uν
DSμν

dτU
≡ mUμ + Pμ

s , (10.96)

where m is the particle’s bare mass, i.e. the mass it would have were it not
spinning, and Ps = U DS/dτU is a 4-vector orthogonal to U . As a consequence
of (10.96), Eq. (10.3) is equivalent to

P (U)μ
αP (U)ν

β

DSαβ

dτU
= 0, (10.97)

where P (U)μ
α = δμ

α + UμUα projects into the local rest space of U ; this implies

St̂φ̂ = 0, Sr̂θ̂ = 0, St̂θ̂ + Sφ̂θ̂

ν

ν2
K

= 0. (10.98)

From (10.92)–(10.95) it follows that

DS

dτU
= ms[Ωφ̂ ∧ U ] ; (10.99)

hence Ps can be written as

Ps = msΩφ̂, (10.100)

where

ms ≡ ||Ps|| = γ
ζK
νK

[
−ν2

KSr̂φ̂ + νSt̂r̂

]
. (10.101)
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From (10.96) and (10.100), and provided m + νms �= 0, the total 4-momentum
P can be written in the form P = μUp, with

Up = γp [et̂ + νpeφ̂], νp =
ν +ms/m

1 + νms/m
, μ =

γ

γp
(m+ νms), (10.102)

where γp = (1 − ν2
p)−1/2. Up is a time-like unit vector; hence μ has the property

of a physical mass. The first part of (10.102) tells us that, as the particle’s center
of mass moves along the U -orbit, the momentum P is instantaneously (i.e. at
each point of the U -orbit) parallel to a unit vector which is tangent to a spatially
circular orbit, hereafter denoted as a Up-orbit, which intersects the U -orbit at
each of its points. Although U - and Up-orbits have the same spatial projections
into the U -quotient space, there exists in the space-time one Up-orbit for each
point of the U -orbit where the two intersect.

Let us now consider the equation of motion (10.2). The spin-force is equal to

F (spin) = γ ζ2
K

[
2St̂r̂ + νSr̂φ̂

]
er̂ − γ

ν

r2
Sθ̂φ̂eθ̂, (10.103)

while the term on the left-hand side of Eq. (10.2) can be written, from (10.96)
and (10.100), as

DP

dτU
= ma(U) +ms

DEφ̂

dτU
,

= (mκ−msτ1)er̂, (10.104)

where κ and τ1 are given in (10.94) and the quantities μ,m, and ms are constant
along the world line of U . The acceleration κ of the U -orbit vanishes if the latter
is a geodesic (ν = νK); the term −msτ1er̂ instead is a spin–rotation coupling
force that was predicted by Mashhoon (1988; 1995; 1999), a sort of centrifugal
force which of course vanishes when the particle is at rest (ν = 0), as can be seen
in (10.94)2.

Since DP/dτU is directed radially, as (10.104) shows, Eq. (10.2) requires that
Sθ̂φ̂ = 0 (and therefore also St̂θ̂ = 0 from (10.98)); hence (10.2) can be written as

mκ−msτ1 − F
(spin)
r̂ = 0, (10.105)

or, more explicitly,

0 = mγ[ν2 − ν2
K ] +ms

γν

γ2
K

+ νKζK

[
2St̂r̂ + νSr̂φ̂

]
. (10.106)

Summarizing, from the equations of motions (10.2) and (10.3) and before
imposing (10.4), the spin tensor turns out to be completely determined by only
two components, namely St̂r̂ and Sr̂φ̂, related by (10.106). The spin tensor then
takes the form

S = ωr̂ ∧ [Sr̂t̂ω
t̂ + Sr̂φ̂ω

φ̂]. (10.107)
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It is useful to introduce, together with the quadratic invariant

s2 =
1
2
SμνS

μν = −S2
r̂t̂

+ S2
r̂φ̂
, (10.108)

a frame adapted to Up, given by

Ep
0 = Up, Ep

1 = er̂, Ep
2 = γp(νpet̂ + eφ̂), Ep

3 = eẑ, (10.109)

whose dual frame is denoted by Ωpâ. Imposing (10.4), one now gets Sr̂t̂+Sr̂φ̂νp =
0, or

S = s ωr̂ ∧ Ωpφ̂, Ωpφ̂ = γp[−νp ω
t̂ + ωφ̂], (10.110)

so that (Sr̂t̂, Sr̂φ̂) = (−sγpνp, sγp) and (10.106) reduces to

0 = γ(ν2 − ν2
K) + γp

ζK
νK

Mŝ

[
γ2

γ2
K

ν(ννp − ν2
K) + ν2

K(2νp + ν)
]
. (10.111)

Solving with respect to ŝ, we obtain

ŝ = − νK

MγpγζK

ν2 − ν2
K

[(1 − 3ν2
K)ν2 + 2ν2

K ]νp − νν2
K(ν2 − ν2

K)
. (10.112)

Recalling the definition (10.101), ms becomes

ms

m
= γγp

ζK
νK

Mŝ[ννp − ν2
K ], (10.113)

and using (10.102) for νp, we obtain

ŝ = − νK

MγpγζK

ν − νp

(1 − ννp)(ννp − ν2
K)

; (10.114)

this condition must be considered together with (10.112). Relations (10.112) and
(10.114) imply that the spinless case (ŝ = 0) is compatible only with ν = νp =
±νK . Eliminating ŝ from Eqs. (10.114) and (10.112) and solving with respect to
νp, we have

ν(±)
p =

1
2

νK

ν2 + 2ν2
K

{3ννK ± [ν2(13ν2
K + 4ν2) − 8ν4

K ]1/2}. (10.115)

Since the case ŝ � 1 is the only physically relevant one, of the two branches of
the solution (10.115) we shall consider only the branch ν

(+)
p when ν > 0, and

ν
(−)
p when ν < 0. By substituting νp = ν

(±)
p into (10.112), for instance, we obtain

a relation between ν and ŝ. The reality condition (10.115) requires that ν take
values outside the interval (ν̄−, ν̄+), with

ν̄± = ±νK

√
2
√
−13 + 3

√
33/4 � ±0.727νK ;
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moreover, the time-like condition for |νp| < 1 is satisfied for all values of ν outside
the same interval. A linear relation between ν and ŝ can be obtained in the limit
of small ŝ:

ν = ±νK − 3
2
ζKνKMŝ+O(ŝ2). (10.116)

From this approximate solution for ν we also have that

ν(±)
p = ±νK − 3

2
ζKνKMŝ+O(ŝ2), (10.117)

and the total 4-momentum P is given by (10.102), with

νp = ν +O(ŝ2). (10.118)

The reciprocals of the angular velocities ζ, ζp also coincide to first order in ŝ, and
are then given by

1
ζ
≡ 1
ζ(±,±)

= ± 1
ζK

± 3
2
M|ŝ| , (10.119)

where the signs in front of 1/ζK correspond to co-/counter-rotating orbits, while
the signs in front of ŝ refer to a positive or negative spin direction along the z-axis;
for instance, the quantity ζ(+,−) denotes the angular velocity of U corresponding
to a corotating orbit (+) with spin-down (−) alignment, etc.

Clock effect for spinning bodies

One can measure the difference in the arrival times, after one complete revolution,
with respect to a static observer, of two oppositely rotating spinning test particles
(to first order in the spin parameter ŝ) with either spin orientation. From (10.119)
we have that the coordinate time difference is given by

Δt(+,+;−,+) = 2π
(

1
ζ(+,+)

+
1

ζ(−,+)

)
= 6πM |ŝ|, (10.120)

and analogously for Δt(+,−;−,−). A similar result can be obtained, referring to
any observer moving in spatially circular orbits, with a slight modification of the
discussion. This effect creates an interesting parallelism with the clock effect in
Kerr space-time, as we shall discuss next. In the present case, in fact, it is the
spin of the particle which creates a non-zero clock effect, while in the Kerr metric
this effect is induced by the rotation of the space-time even to geodesic spinless
test particles. The latter have angular velocities

1
ζ(Kerr)±

= ± 1
ζK

+ a, (10.121)
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where a is the angular momentum per unit mass of the Kerr black hole; hence
Kerr’s clock effect is given by

Δt(+,−) = 2π
(

1
ζ(Kerr) +

+
1

ζ(Kerr)−

)
= 4πa. (10.122)

This complementarity suggests a sort of equivalence principle: to first order in
the spin, a static observer cannot decide whether he measures a time delay of
spinning clocks in a non-rotating space-time or a time delay of non-spinning
clocks moving on geodesics in a rotating space-time.

10.5 Motion of a test gyroscope in Kerr space-time
Consider the gyroscope moving along a spatially circular orbit U on the equatorial
plane and a static observer m, at rest with respect to the spatial coordinates,
with an adapted frame given by (8.18). We have

ζ
(boost)
(fw) = ζ(Thomas) + ζ(geo)

=
γ

1 + γ
ν(U,m) ×m

[
−F (U,m) + γ−1F

(G)
(fw,U,m)

]
. (10.123)

Repeating all the calculations done for the Schwarzschild case in Section 10.3,
one gets

ζ(tot)θ̂ = ζ
(boost)
(fw)

θ̂ − ζ θ̂
(sc) =

τ1(U)
γ

, (10.124)

where τ1(U) is now given by Eq. (8.163). It is quite natural on the equatorial
plane to have a vector eẑ = −eθ̂. This simply changes the sign of ζ(tot)θ̂,

ζ(tot)ẑ = −τ1(U)
γ

. (10.125)

This result agrees with the expression for
g

ζ given in Section 9.4.
Assuming U = UK± to be a geodesic parameterized by the proper time, and

taking into account the discussion at the end of Section 10.1, we have

g

ζ ≡ ζ
(tot)
U

ẑ = −τ1(UK±) = ∓
√

M/r3. (10.126)

This result gives the precession angle Δφ after a full revolution as

Δφ = ∓2π
[
τ1(UK±)
ΓK±ζK±

− 1
]

= ∓2π

⎡
⎣(1 − 3M

r
± 2a

√
M
r3

)1/2

− 1

⎤
⎦ , (10.127)
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where τ1(UK±) is the first torsion for geodesics,

τ1(UK±) = ±
√

M
r3
, (10.128)

and ΓK± is the normalization factor (see (8.111) with θ = π/2 and ζ = ζK±).
Equation (10.127) in the linear approximation in a reduces to the well-known
Schiff precession formula.

10.6 Motion of a spinning body in Kerr space-time
Consider the Kerr metric written in standard Boyer-Lindquist coordinates (8.73)
and introduce the ZAMO family of fiducial observers, with 4-velocity

n = N−1(∂t −Nφ∂φ), n� = −Ndt ; (10.129)

here N = (−gtt)−1/2 and Nφ = gtφ/gφφ are the lapse and shift functions,
respectively, explicitly given in (8.100). A suitable orthonormal frame adapted to
ZAMOs is given by

et̂ = n, er̂ =
1

√
grr

∂r, eθ̂ =
1

√
gθθ

∂θ, eφ̂ =
1

√
gφφ

∂φ, (10.130)

with dual

ωt̂ = Ndt, ωr̂ =
√
grrdr,

ωθ̂ =
√
gθθdθ, ωφ̂ =

√
gφφ(dφ+Nφdt). (10.131)

As for Schwarzschild space-time, the physical (orthonormal) component along
−∂θ, perpendicular to the equatorial plane, will be taken to be along the positive
z-axis and will be indicated by ẑ. The space-time trajectory described by (10.86)
will be termed a U -orbit. In terms of (10.129) the line element can be expressed
in the form

ds2 = −N2dt2 + gφφ(dφ+Nφdt)2 + grrdr
2 + gθθdθ

2. (10.132)

We require here that the center of mass of the spinning body moves on a world
line whose spatial projection on the equatorial plane of the Kerr metric is geo-
metrically circular; we shall term this world line the U -orbit. Therefore we recall
the following:

(i) The 4-velocity U of uniformly rotating spatially circular orbits can be
parameterized either by ζ, the (constant) angular velocity with respect to
infinity, or equivalently by ν, the (constant) linear velocity with respect to
ZAMOs:

U = Γ[∂t + ζ∂φ] = γ[et̂ + νeφ̂], γ = (1 − ν2)−1/2. (10.133)
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Here Γ is a normalization factor which ensures that UαU
α = −1 and is

given by

Γ =
[
N2 − gφφ(ζ +Nφ)2

]−1/2
=

γ

N
, (10.134)

and

ζ = −Nφ +
N

√
gφφ

ν. (10.135)

(ii) On the equatorial plane of the Kerr solution there exists a large variety of
special circular orbits, already examined in Chapter 8. Particular interest
is devoted to the corotating (+) and counter-rotating (−) time-like spa-
tially circular geodesics whose angular and linear velocities (with respect to
ZAMOs) are respectively

ζK± ≡ ζ± =
[
a± (r3/M)1/2

]−1

,

νK± ≡ ν± =
a2 ∓ 2a

√
Mr + r2√

Δ(a± r
√
r/M)

. (10.136)

Other special orbits include geodesic meeting point orbits, with

ν(gmp) =
ν+ + ν−

2
= − aM(3r2 + a2)√

Δ(r3 − a2M)
, (10.137)

as already stated in (8.155), and those characterized by

ν(pt) =
2

ν−1
+ + ν−1

−
=

(r2 + a2)2 − 4a2Mr

a
√

Δ(3r2 + a2)
, (10.138)

both of these playing a role in the study of parallel transport of vectors along
circular orbits.

(iii) It is convenient to introduce the Lie relative curvature of each orbit,

k(lie) ≡ k(lie)r̂ = −∂r̂ ln
√
gφφ = − (r3 − a2M)

√
Δ

r2(r3 + a2r + 2a2M)
, (10.139)

as well as a Frenet-Serret intrinsic frame along U , both well established in
the literature.

(iv) It is well known that any circular orbit on the equatorial plane of Kerr space-
time has zero second torsion τ2, while the geodesic curvature κ and the first
torsion τ1 are simply related by

τ1 = − 1
2γ2

dκ

dν
, (10.140)

so that

κ = k(lie)γ
2(ν − ν+)(ν − ν−),

τ1 = k(lie)ν(gmp)γ
2(ν − ν(crit)+)(ν − ν(crit)−), (10.141)
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where ν(crit)± are the spatial 3-velocities associated with extremely acceler-
ated observers. The Frenet-Serret frame along U is then given by

E0 ≡ U = γ[et̂ + νeφ̂], E1 = er̂,

E2 ≡ Eφ̂ = γ[νn+ eφ̂], E3 = eẑ, (10.142)

satisfying the following system of evolution equations:

DE0

dτU
= κE1,

DE1

dτU
= κE0 + τ1E2,

DE2

dτU
= −τ1E1,

DE3

dτU
= 0. (10.143)

To study the behavior of spinning test particles in spatially circular orbits,
let us consider first the evolution equation for the spin tensor (10.3), assuming
that the frame components of the spin tensor are constant along the orbit. Fol-
lowing the analysis for Schwarzschild space-time, the total 4-momentum can be
written as

Pμ = −(U · P )Uμ − Uν
DSμν

dτU
≡ mUμ + Pμ

s , (10.144)

where Ps = U DS/dτU and m is the bare mass of the particle, i.e. the mass it
would have in the rest space of U if it were not spinning. From (10.144), Eq. (10.3)
implies

St̂φ̂ = 0, Sr̂θ̂ = 0, St̂θ̂ + Sφ̂θ̂

ν − ν(gmp)

ν(gmp)(ν − ν(pt))
= 0. (10.145)

It is clear from (10.144) that Ps is orthogonal to U ; moreover, it turns out to be
aligned also with Eφ̂:

Ps = msEφ̂, (10.146)

where ms ≡ ||Ps|| is given by

ms = −γk(lie)

[
St̂r̂(ν − ν(gmp)) + Sr̂φ̂ν(gmp)(ν − ν(pt))

]
. (10.147)

From (10.144) and (10.146) the total 4-momentum P can be written in the form
P = μUp, with

Up = γp [et̂ + νpeφ̂], νp =
ν +ms/m

1 + νms/m
, μ =

γ

γp
(m+ νms) , (10.148)

and γp = (1 − ν2
p)−1/2.

The same arguments apply here as in the Schwarzschild case. Since Up is a unit
vector, the quantity μ can be interpreted as the total mass of the particle in the
rest frame of Up. We see from (10.148) that the total 4-momentum P is parallel
to the unit tangent of a spatially circular orbit, which we shall denote as a Up-
orbit. The latter intersects the U -orbit at only one point, where it makes sense
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to compare the vectors U and Up and the physical quantities related to them.
It is clear that there exists one Up-orbit for each point of the U -orbit where the
two intersect. Hence, along the U -orbit, we can only compare at the point of
intersection the quantities defined in a frame adapted to U with those defined in
a frame adapted to Up.

Let us now consider the equation of motion (10.2). Direct calculation shows
that the spin-force is equal to

F (spin) = F (spin)r̂er̂ + F (spin)θ̂eθ̂, (10.149)

with

F (spin)r̂ =
γ

r4
M

r(r2 + a2) + 2a2M
{

[r2(2r2 + 5a2) + a2(3a2 − 2Mr)

− 3a(r2 + a2)
√

Δν]St̂r̂ + {[r2(r2 + 4a2) + a2(3a2 − 4Mr)]ν

− 3a(r2 + a2)
√

Δ}Sr̂φ̂}
}
,

F (spin)θ̂ =
γ

r3

Sθ̂φ̂

(r2 + a2)2 − 4a2Mr − a(3r2 + a2)
√

Δν

{
− ν[3a2r(a2 − 2Mr) + r3(r2 + 4a2) − 2Ma4]

+ a
√

Δ{−4Ma2 + ν2[3r(r2 + a2) + 2a2M]}
}
, (10.150)

while the term on the left-hand side of (10.2) can be written as

DP

dτU
= ma(U) +ms

DEφ̂

dτU
, (10.151)

where

a(U) = κer̂,
DEφ̂

dτU
= −τ1er̂ =

1
2γ2

dκ

dν
er̂, (10.152)

μ,m, and ms being constant along the U -orbit.
Since DP/dτU is directed radially, Eq. (10.149) requires that Sθ̂φ̂ = 0 (and

therefore, from (10.145), that St̂θ̂ = 0); Eqn. (10.2) then reduces to

mκ−msτ1 − F
(spin)
r̂ = 0. (10.153)

Summarizing, from the equations of motion (10.2) and (10.3) we deduce that
the spin tensor is completely determined by two components, namely St̂r̂ and
St̂φ̂, such that

S = ωr̂ ∧ [Sr̂t̂ω
t̂ + Sr̂φ̂ω

φ̂]. (10.154)

From the relations

ωt̂ = γ[−U � + νΩφ̂],

ωφ̂ = γ[−νU � + Ωφ̂], Ωφ̂ = [Eφ̂]�, (10.155)
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one obtains the useful relation

S = γ
[
(Sr̂t̂ + νSr̂φ̂)U � ∧ ωr̂ + (νSr̂t̂ + Sr̂φ̂)ωr̂ ∧ Ωφ̂

]
. (10.156)

Since the components of S are constant along U , then from the Frenet-Serret
formalism one finds

DS

dτU
= γ[(τ1 + κν)Sr̂t̂ + (ντ1 + κ)Sr̂φ̂]U � ∧ Ωφ̂, (10.157)

or, from (10.3),

Ps = −γ[(τ1 + κν)Sr̂t̂ + (ντ1 + κ)Sr̂φ̂]Ωφ̂ ≡ msΩφ̂. (10.158)

Let us introduce the quadratic invariant

s2 =
1
2
SμνS

μν = −S2
r̂t̂

+ S2
r̂φ̂
. (10.159)

Equation (10.3) is identically satisfied if the only non-zero components of S are
Sr̂t̂ and Sr̂φ̂. To discuss the physical properties of the particle motion one needs to
supplement (10.153) with the algebraic conditions SμνPν = 0, which are equiva-
lent to

(Sr̂t̂, Sr̂φ̂) = s(−γpνp, γp). (10.160)

Let us summarize the results. The quantity ms in general is given by

ms = −sγpγ[−νp(τ1 + κν) + (ντ1 + κ)], (10.161)

and, once inserted in the equation of motion, it gives

mκ+ sγpγ[−νp(τ1 + κν) + (ντ1 + κ)]τ1 − F
(spin)
r̂ = 0, (10.162)

where

F
(spin)
r̂ = sγγp[Aννp +Bν + Cνp +A], (10.163)

with

A = − 3Ma(r2 + a2)
√

Δ
r4(r3 + a2r + 2a2M)

,

B =
M
r4

r4 + 3a4 + 4a2r(r −M)
r3 + a2r + 2a2M ,

C = B +
M
r3
. (10.164)

Thus one can solve Eq. (10.162) for the quantity ŝ = ±|ŝ| = ±|s|/(mM), which
denotes the signed magnitude of the spin per unit (bare) mass m of the test
particle and M of the black hole, obtaining

ŝ = − κ

MγγpD
, (10.165)
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Table 10.1. The limiting values of ν are
listed for particular values of the
black-hole rotational parameter a and for
a fixed radial distance r/M = 8, with
black-hole mass M = 1.

a ν̄1 ν̄2

0 −0.2970 0.2970
0.2 −0.2955 0.2979
0.4 −0.2933 0.2984
0.6 −0.2902 0.2986
0.8 −0.2861 0.2984
1 −0.2808 0.2981

with

D = {[−νp(τ1 + κν) + (ντ1 + κ)]τ1 − (Aννp +Bν + Cνp +A)} , (10.166)

and with κ and τ1 given by (10.141). Recalling its definition (10.161), ms becomes

ms

m
= −Mŝγγp[−νp(τ1 + κν) + (ντ1 + κ)]. (10.167)

Using (10.148) for νp, we obtain

ŝ =
1

Mγγp

ν − νp

(1 − ννp)[−νp(τ1 + κν) + (ντ1 + κ)]
, (10.168)

which must be considered together with (10.165); of course, the case ŝ = 0
(absence of spin) is only compatible with geodesic motion: ν ≡ νp = ν±. By
eliminating ŝ from (10.165) and (10.168) and solving with respect to νp, we
obtain

ν(±)
p =

1
2

(2κτ1 +A)ν2 + [2(κ2 + τ2
1 ) + M/r3]ν + 2κτ1 −A±

√
Ψ

κ2ν2 + (2κτ1 +A)ν + τ2
1 + C

Ψ = [A2 + 4κ(κB + τ1A)]ν4 + [8Aκ2 + 2(B + C)(2κτ1 +A)]ν3

+ [4κ2M/r3 + (B + C)2 + 2A2]ν2 − [8Aκ2

+ 2(B + C)(2κτ1 −A)]ν −A(4κτ1 −A) − 4Cκ2 . (10.169)

Now, by substituting νp = ν
(±)
p for instance into (10.168), we obtain the main

relation between ŝ and ν.
The reality condition (10.169) requires that ν take values outside the interval

(ν̄1, ν̄2), with ν̄1 and ν̄2 listed in Table 10.1 for particular values of a (r,M fixed);
the time-like condition for |νp| < 1 is satisfied for all values of ν outside the same
interval.
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To first order in ŝ we have

ν = ν± + N ŝ+O(ŝ2),

N =
3
2
M(r3 + a2r + 2a2M){ar(r − 5M) ±

√
Mr[2a2 − r(r − 3M)]}2

r2
√

Δ
√
Mr(a± r

√
r/M)2

×{
√
Mr[4a2(r − 4M) − r(r − 3M)2]

± a[4a2M + r(r − 3M)(r − 7M)]}−1. (10.170)

Therefore, from the preceding approximate solution for ν we have that

ν(±)
p = ν +O(ŝ2), (10.171)

and the total 4-momentum P is given by (10.148) with νp = ν
(±)
p . The corre-

sponding angular velocity ζp and its reciprocal are then given by (Abramowicz
and Calvani, 1979)

ζp = ζ +
N r

√
Δ

r3 + a2r + 2a2M ŝ+O(ŝ2),

1
ζp

=
1
ζ
− N
ζ2
±

r
√

Δ
r3 + a2r + 2a2M ŝ+O(ŝ2) . (10.172)

Clock effect for spinning bodies

Circularly rotating spinning bodies, to first order in the spin parameter ŝ and
the metric parameter a, and therefore neglecting terms containing ŝa, have orbits
close to being geodesics (as expected), with

1
ζ(±,±)

=
1
ζ±

±M|ŝ|J , (10.173)

with J = 3/2. Equation (10.173) defines such orbits with the various signs cor-
responding to co-/counter-rotating orbits with positive/negative spin direction
along the z axis. For instance, ζ(+,−) indicates the angular velocity of U corre-
sponding to a corotating orbit (+) with spin-down (−) alignment. Therefore one
can study the differences in the arrival times after one complete revolution with
respect to a local static observer:

Δt(+,+;−,+) = 2π
(

1
ζ(+,+)

+
1

ζ(−,+)

)
= 4π (a+ M|ŝ|J ) ,

Δt(+,+;−,−) = Δt(+,−;−,+) = 4πa,

Δt(+,−;−,−) = 4π (a−M|ŝ|J ) . (10.174)

In the latter case, it is easy to see that if a = 3
2M|ŝ| the clock effect can be

made vanishing; this feature can be directly measured (Faruque, 2004). More
interesting is the case of corotating spin-up against counter-rotating spin-down
or, alternatively, corotating spin-down against counter-rotating spin-up. Now the
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compensating effect makes the spin contribution to the clock effect equal to zero;
this case therefore appears indistinguishable from that of spinless particles.

10.7 Gravitational waves and the compass of inertia
The existence of gravitational waves as predicted by general relativity has been
indirectly ascertained by observation of the binary pulsar PSR 1913+16 (Taylor
and Weisberg, 1989). A large body of literature is now available on the properties
of gravitational waves, and ways to detect them. Hence we shall confine our
attention to a particular aspect of this problem which has been considered only
recently, namely the dragging of inertial frames by a gravitational wave (Bini and
de Felice, 2000; Sorge, Bini, and de Felice, 2001; Bičak, Katz, and Lynden-Bell,
2008). We then ask the question: what observable effects might be produced by
a plane gravitational wave acting on a test gyroscope? It is well known that
in the absence of significant coupling between the background curvature and the
multipole moments of the energy-momentum tensor of an extended body, its spin
vector is Fermi-Walker transported along its own trajectory (see de Felice and
Clarke, 1990, and references therein); for measurable effects in a gravitational
wave background, see also (Cerdonio, Prodi, and Vitale, 1988; Mashhoon, Paik,
and Will, 1989; Krori, Chaudhury, and Mahanta, 1990; Fortini and Ortolan, 1992;
Herrera, Paiva, and Santos, 2000).

The effects of a plane gravitational wave on a frame which is not Fermi-Walker
transported are best appreciated by studying the precession of a gyroscope at
rest in that frame (de Felice, 1991). The task, then, is to find a frame which
is not Fermi-Walker transported and is also operationally well-defined so that,
monitoring the precession of a gyroscope with respect to that frame, we can study
the dragging induced on it by a plane gravitational wave. Our main purposes are:

(i) to establish the existence of a relativistic effect which is measurable, namely
the gyroscopic precession induced by a plane gravitational wave;

(ii) to show that a frame can be selected with respect to which the precession is
due to one polarization state only.
In the latter case we will have constructed a gravitational polarimeter.

The metric of a plane monochromatic gravitational wave, elliptically polarized
and propagating along a direction which we fix as the x coordinate direction,
can be written in transverse-traceless (TT) gauge, as in Chapter 8, Eq. (8.195).
The time-like geodesics of this metric, deduced in de Felice (1979), are described
by (8.196).

Test gyroscopes in motion along a geodesic

We consider a test gyroscope moving along a geodesic described by a tangent
vector field U = U(g) given by (8.196). The spin vector S(U) satisfies the equation
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D(fw,U)

dτU
S(U) = 0. (10.175)

This property implies that S(U) does not precess with respect to spatial axes
which are Fermi-Walker transported along the world line of U .

If the observer U is comoving with the gyroscope and refers to a gen-
eral orthonormal spatial frame {e(U)â}|a=1,2,3 adapted to his world line, then
Eq. (10.175) becomes[

dS(U)â

dτU
+ εâb̂ĉζ

b̂
(fw, U, e(U))S(U)ĉ

]
e(U)â = 0, (10.176)

where ζ(fw, U, e(U)) is the observed rate of spin precession, defined by

ζ â
(fw, U, e(U)) = −1

2
εâb̂ĉe(U)b̂ · ∇(U)(fw)e(U)ĉ ≡ −∗(U)C â

(fw, U, e(U)). (10.177)

Test gyroscopes at rest in the TT-grid of a gravitational wave

Let us now consider the case of gyroscopes carried by observers at rest in the
TT-grid of a gravitational wave. These observers move along world lines which
form a vorticity-free congruence of geodesics and whose tangent field is given by

u� = −dt, u = ∂t. (10.178)

One can adapt to this field an infinite number of spatial frames by rotating
any given one arbitrarily. For example, consider the following adapted frame
{eα̂} = {e0̂ = u, eâ = e(u)â} with its dual {ωα̂} = {ω0̂ = −u�, ωâ = ω(u)â}:

u = ∂t ,

e(u)1̂ = ∂x ,

e(u)2̂ = (1 − h+)−1/2∂y �
(

1 +
1
2
h+

)
∂y ,

e(u)3̂ = (1 − h2
+ − h2

×)−1/2[(1 − h+)−1/2h×∂y + (1 − h+)1/2∂z]

� h×∂y +
(

1 − 1
2
h+

)
∂z , (10.179)

−u� = dt ,

ω(u)1̂ = dx ,

ω(u)2̂ = (1 − h+)1/2

[
dy − h×

1 − h+
dz

]
�
(

1 − 1
2
h+

)
dy − h×dz ,

ω(u)3̂ =
(

1 − h2
+ − h2

×
1 − h+

)1/2

dz �
(

1 +
1
2
h+

)
dz. (10.180)

This is not a Fermi-Walker frame; the Fermi rotation coefficients are given by

C(fw, u, e(u))b̂â = e(u)b̂ ·u ∇(u)(fw)e(u)â, (10.181)
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and therefore, to first order in the metric perturbations h, one finds that the only
independent non-zero component is2

− ζ 1̂
(fw, u, e(u)d̂) = C(fw, u, e(u)d̂)3̂2̂ = − [ḣ×(1 − h+) + ḣ+h×]

2(1 − h+)
√

1 − h2
+ − h2

×

� −1
2
ḣ×.

(10.182)

Clearly Eq. (10.182) shows that the Fermi nature of the frame only depends on
the h× component of the wave amplitude.

In fact, if we set h× = 0 and consider the weak-field limit, the spatial triad
becomes

e(u)1̂ = ∂x, e(u)2̂ �
(

1 +
1
2
h+

)
∂y, e(u)3̂ �

(
1 − 1

2
h+

)
∂z , (10.183)

showing that these axes do not rotate with respect to the coordinate directions.
In this case (h× = 0) the axes e(u)â are Fermi-Walker transported along u, as
expected. In the complementary case (h+ = 0) we have

e(u)1̂ = ∂x, e(u)2̂ � ∂y, e(u)3̂ � h×∂y + ∂z; (10.184)

hence the wave rotates the e(u)3̂ axis and therefore a gyroscope must be seen to
precess with respect to it. However, the frame e(u)â, although special in selecting
only one state of polarization, cannot be operationally defined in a simple way.

Of course there exist infinitely many spatial frames {ẽ(u)â} which are adapted
to the observers (10.178) and can be obtained from the one in (10.179) by a
spatial rotation R:

ẽ(u)â = e(u)b̂R
b̂
â . (10.185)

Two of these are quite natural: a Fermi-Walker frame and a Frenet-Serret one.
In the first case (Fermi-Walker) the spatial directions are easily fixed by three
mutually orthogonal axes of comoving gyroscopes. Obviously this frame is not
suitable for measuring the Fermi rotation itself, as already noted.

The second case (Frenet-Serret) does not correspond to a uniquely defined
frame along u, since its world line is a geodesic. Properly speaking, in this degen-
erate situation (u geodesic and the 4-acceleration ||a(u)|| = κ = 0) the first vector
e1 of a Frenet-Serret frame can be chosen orthogonally to u in an arbitrary way
(i.e. according to ∞2 different possibilities) and then the standard procedure for
fixing a frame gives

2 We use a dot notation for the derivative with respect to t.
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De1
dτu

= τ1e2,

De2
dτu

= −τ1e1 + τ2e3,

De3
dτu

= −τ2e2 , (10.186)

corresponding to a Frenet-Serret rotation angular velocity

ω(FS) = τ1e3 + τ2e1. (10.187)

We recall here that ω(FS) is the negative of the angular velocity of precession of a
gyroscope. This arbitrariness can be eliminated by choosing e1 to be aligned with
the spin of a gyroscope. Then, τ1 vanishes and the previous relations reduce to

De1
dτu

= 0,

De2
dτu

= τ2e3,

De3
dτu

= −τ2e2 , (10.188)

where now

ω(FS) = τ2e1. (10.189)

This corresponds to a second degenerate condition for the Frenet-Serret approach;
in fact, as τ1 = 0, the Frenet-Serret procedure starts with e2, which in turn can
be any direction in the subspace orthogonal to u and e1.

The form of the metric suggests the choice

e1 = ∂x , (10.190)

which corresponds to a gyroscope pointing along the direction of propagation of
the wave. Thus a parametric form for e2 (and consequently for e3) can be given
in terms of the frame (10.179) by introducing an angle φ which is an arbitrary
function along the world line

e2 = cosφ e(u)2̂ + sinφ e(u)3̂,

e3 = −sinφ e(u)2̂ + cosφ e(u)3̂ , (10.191)

so that τ2 becomes a function of φ. Obviously, particular choices for φ allow τ2
(and ω(FS)) to depend only on h+ or h× or even to vanish (τ2 = 0), leading back
to the Fermi-Walker case. In general, a straightforward calculation shows that,
in the weak-field limit and for arbitrary φ,

ω(FS) =
(
φ̇− 1

2
ḣ×

)
e1 . (10.192)



10.7 Gravitational waves and the compass of inertia 259

Assuming that φ depends only on h+ and h× along the world line, and expanding
this for weak fields, one has

φ = φ0 + φ+h+ + φ×h× , (10.193)

so

ω(FS) =
[
φ+ḣ+ +

(
φ× − 1

2

)
ḣ×

]
e1. (10.194)

Special cases are the following:

φ+ = 1, φ× = 1/2, ω(FS) = ḣ+ e1,

φ+ = 0, φ× = 3/2, ω(FS) = ḣ× e1,

φ+ = 0, φ× = 1/2, ω(FS) = 0 .

It is then clear that according to the way in which one selects the spatial axis e2,
the angular velocity of precession ω(FS) (i.e. the gyro dragged along u) becomes
a “filter” for the gravitational wave polarization.

Test gyroscopes in general geodesic motion

Let us now consider the case of a gyroscope in motion along a general geodesic
with 4-velocity U = U(g), and assume that u = ∂t is a family of observers defined
all along the world line of U . As discussed in detail in Chapter 3, when dealing
with different families of observers (u and U in this case) the two local rest spaces
LRSu and LRSU are naturally connected by two maps: the mixed projection
map P (U, u) = P (U)P (u) : LRSu → LRSU and the local rest space boost
map B(lrs)(U, u) = P (U)B(U, u)P (u) : LRSu → LRSU , where B(U, u) is defined
so that

U = γ[u+ νν̂(U,u)] = B(U, u)u ,

where ν ≡ ||ν(U, u)|| = ||ν(u,U)|| is the magnitude of the relative spatial
velocity, ν̂(U, u) is the unit spatial direction of the velocity of u relative to U ,
γ = γ(U, u) = γ(u,U) is the relative Lorentz factor, and the corresponding
expression for B(lrs)(U, u) is given by (3.143). In this case we have, from (8.196)
and (10.178),

γ =
1 + f + E2

2E
,

ν = [(1 + f + E2)2 − 4E2]1/2(1 + f + E2)−1,

ν̂ = [(1 + f + E2)2 − 4E2]−1/2[(1 + f − E2) e(u)1̂
+ 2Eα(1 − h+)−1/2 e(u)2̂

+
2E[β(1 − h+) + αh×]

(1 − h+)1/2(1 − h2
+ − h2

×)1/2
e(u)3̂]. (10.195)



260 Measurements of spinning bodies

In order to study the spin precession as seen by an observer U comoving with
the gyro, we must first choose axes with respect to which the precession will be
measured. We then proceed to find a spatial frame which is suitable for actual
measurements. It is clear that the observers with 4-velocity u can unambiguously
determine in their rest frame a spatial direction given by that of the relative
velocity ν of the gyroscope, ν̂. Let the direction of propagation of the gravita-
tional wave be the x-axis with unit vector e(u)1̂. Then from these two directions,
namely the (instantaneous) relative velocity of the gyro and the wave propagation
direction, it is possible to construct the following spatial triad:

λ(u)1 = e(u)1̂ = ∂x ,

λ(u)2 = [(ν̂(U, u)2̂)2 + (ν̂(U, u)3̂)2]−1/2[ν̂(U,u) ×u e(u)1̂] ,

λ(u)3 = λ(u)1 ×u λ(u)2. (10.196)

This is a Frenet-Serret triad, which can be cast into the form (10.191) if

tanφ = − ν̂(U, u)
2̂

ν̂(U, u)3̂
= −

α
√

1 − h2
+ − h2

×

β(1 − h+) + αh×
. (10.197)

In the weak-field limit (see eq. (10.193)) we obtain

φ0 = −arctan
α

β
, φ+ = − αβ

α2 + β2
, φ× =

α2

α2 + β2
. (10.198)

Since the family of observers u is defined along the world line of the observer
U carrying the gyro, the latter can identify spatial directions in his own local
rest space simply by boosting the directions of the Frenet-Serret generated frame
{λ(u)a}.

At each event along his world line, the observer U will see the axes λ(u)a

defined by (10.196) to be in relative motion, whereas the boost of these axes,

λ(U)â = B(lrs)(U, u)λ(u)a

= λ(u)a +
γ

γ + 1
[ν(U,u) · λ(u)a](u+ U), (10.199)

will be identified as the corresponding axes with the same orientation which
are “momentarily at rest” with respect to U . The precession of the spin then
corresponds to the spatial dual of the Fermi-Walker structure functions of λ(U)â,
namely C(fw,U,λ(U))b̂â, according to (10.177). To first order in h, let us consider the
precession angular velocity of the triad e(U)â which is the boosted Frenet-Serret
ea given by (10.191). We then have
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− ζ(fw, U, e(U)â)
1̂ � −E

2

[
ḣ×

(
−1 + 2φ× − 2α2

(E + 1)2 + α2 + β2

)
+ 2φ+ḣ+

]
,

−ζ(fw, U, e(U)â)
2̂ � − E(E + 1)

(E + 1)2 + α2 + β2
[ḣ+(β cosφ0 + α sinφ0)

+ ḣ×(β sinφ0 − α cosφ0)] ,

−ζ(fw, U, e(U)â)
3̂ � E(E + 1)

(E + 1)2 + α2 + β2
[ḣ+(β cosφ0 + α sinφ0)

+ ḣ×(β sinφ0 − α cosφ0)] . (10.200)

Next we specialize these results to the operationally defined triad λ(U)a, corre-
sponding to the values of φ0, φ+, and φ× given in (10.198); in this special case,
we finally have

− ζ(fw, U, λ(U)â)
1̂ � −E

2

[
ḣ×

(
−1 +

2α2(E + 1)2

(α2 + β2)[(E + 1)2 + α2 + β2]

)

+ 2
αβ

α2 + β2
ḣ+

]
,

−ζ(fw, U, λ(U)â)
2̂ � −E(E + 1)

√
α2 + β2

(E + 1)2 + α2 + β2

[
ḣ+

α2 − β2

α2 + β2
+ ḣ×

]
,

−ζ(fw, U, λ(U)â)
3̂ � E(E + 1)

√
α2 + β2

(E + 1)2 + α2 + β2

[
ḣ+

α2 − β2

α2 + β2
+ ḣ×

]
. (10.201)

Moreover, by rescaling the precession angular velocity ζ(fw, U, λ(U)â) by a γ-factor,
i.e. γ−1 ζ(fw, U, λ(U)â), one refers the same angular velocity to the proper time of
the observer u, obtaining a sort of reconstruction made by u of the precession seen
by the observer U carrying the gyroscope. From these relations it is clear that
the essential features we have found for a gyroscope at rest in the background of
the wave are still valid when the gyro itself is moving.

Equations (10.200) represent the components of the precession angular velocity
as functions of the parameters E, α, β, φ0, φ+, and φ×. Special choices of these
parameters can simplify the components or specialize them to particular physical
conditions.

10.8 Motion of an extended body in a gravitational
wave space-time

Consider an extended body as described by the Dixon model, Eqs. (10.2)–(10.4).
Introduce the unit tangent vector Up aligned with the 4-momentum P , i.e.

Pμ = mUμ
p (with Up · Up = −1), as well as the spin vector

Sβ = 1
2ηα

βγδUα
p Sγδ. (10.202)
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Let the body move in the space-time (8.195) of a weak gravitational plane wave,
propagating along the x direction, with metric functions given by

h+ = A+ sinω(t− x), h× = A× cosω(t− x). (10.203)

The geodesics of this metric have already been presented in Eq. (8.196). For a
weak gravitational wave they reduce to the following form:

t(λ) = Eλ+ t0 + x(λ) − x0,

x(λ) = (μ2 + α2 + β2 − E2)
λ

2E

− 1
2ωE2

[(α2 − β2)A+ cosω(Eλ+ t0 − x0)

− 2αβA× sinω(Eλ+ t0 − x0)] + x0,

y(λ) = αλ+ y0

− 1
ωE

[αA+ cosω(Eλ+ t0 − x0) − βA× sinω(Eλ+ t0 − x0)],

z(λ) = βλ+ z0 +
1
ωE

[βA+ cosω(Eλ+ t0 − x0)

+αA× sinω(Eλ+ t0 − x0)], (10.204)

where λ is an affine parameter, xα
0 are integration constants, and α, β, and E

are conserved Killing quantities; μ2 = 1, 0,−1 correspond to time-like, null, and
space-like geodesics, respectively.

It is in general a hard task to solve the whole set of equations (10.2)–(10.4) in
complete generality. However, looking for weak-field solutions, it is sufficient to
search for changes in the mass parameter m of the body, its velocity and total
4-momentum, as well as the spin tensor, which are of the same order as the metric
functions h+,×, i.e.

m = m0 + m̃, U = U0 + Ũ ,

P = P0 + P̃ , Sμν = Sμν
0 + S̃μν . (10.205)

The quantities with subscript “0” are the flat background ones, i.e. those corre-
sponding to the initial values, before the passage of the wave. Let U and Up be
written in the form

U = γ(∂t + ν̃a∂a), γ = (1 − ν̃2)−1/2,

Up = γp(∂t + ν̃a
p∂a), γp = (1 − ν̃2

p)−1/2. (10.206)

The zeroth-order set of equations turns out to be

DPμ
0

dτU0

= 0,
DSμν

0

dτU0

= 2P [μ
0 U

ν]
0 . (10.207)
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Consider the body initially at rest at the origin of the coordinates, i.e.

t = τU0 , x(τU0) = 0, y(τU0) = 0, z(τU0) = 0, (10.208)

where τU0 denotes the proper time parameter. In this case the unit tangent vec-
tor reduces to U0 = ∂t. The set of equations (10.207) is fulfilled, for instance,
by taking P0 = m0U0, implying that the components of the background spin
tensor Sμν

0 remain constant along the path. The conditions (10.4) simply give
S0a

0 = 0. The remaining components are related to the background spin vector
components by

S12
0 = S3

0 , S13
0 = −S2

0 , S23
0 = S1

0 . (10.209)

The first-order system of equations can also be solved straightforwardly. Setting
σα ≡ (Sα/m0)ω and splitting σα = σα

0 + σ̃α, according to (10.205) we have (Bini
et al., 2009)

m̃ = 0,

ν̃1
p = −A×σ

2
0σ

3
0 ,

ν̃2
p = −1

2
[
σ2

0A× sinωτU + σ3
0A+(cosωτU − 1)

]
+

1
2
A×σ

1
0σ

3
0 ,

ν̃3
p =

1
2
[
σ3

0A× sinωτU − σ2
0A+(cosωτU − 1)

]
+

1
2
A×σ

1
0σ

2
0 , (10.210)

ν̃1 =
1
2
[(σ2

0)2 − (σ3
0)2]A+ sinωτU + σ2

0σ
3
0A×(cosωτU − 1),

ν̃2 = −1
2
[
A+σ

1
0σ

2
0 +A×σ

2
0

]
sinωτU

− 1
2
[
A×σ

1
0σ

3
0 +A+σ

3
0

]
(cosωτU − 1),

ν̃3 =
1
2
[
A+σ

1
0σ

3
0 +A×σ

3
0

]
sinωτU

− 1
2
[
A×σ

1
0σ

2
0 +A+σ

2
0

]
(cosωτU − 1), (10.211)

and

σ̃1 = 0,

σ̃2 =
1
2
A×σ

3
0(cosωτU − 1) − 1

2
A+σ

2
0 sinωτU ,

σ̃3 =
1
2
A×σ

2
0(cosωτU − 1) − 1

2
A+σ

3
0 sinωτU , (10.212)
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so that the spatial orbit is

ω x = −1
2
[(σ2

0)2 − (σ3
0)2]A+(cosωτU − 1)

+σ2
0σ

3
0A×(sinωτU − ωτU ),

ω y =
σ2

0

2
(A+σ

1
0 +A×)(cosωτU − 1)

− σ3
0

2
(A×σ

1
0 +A+)(sinωτU − ωτU ),

ω z = −σ
3
0

2
(A+σ

1
0 +A×)(cosωτU − 1)

− σ2
0

2
(A×σ

1
0 +A+)(sinωτU − ωτU ), (10.213)

in agreement with the results of Mohseni and Sepangi (2000).
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The mathematical structure of general relativity makes its equations quite remote
from a direct understanding of their content. Indeed, the combination of a covari-
ant four-dimensional description of the physical laws and the need to cope with
the relativity of the observations makes a physical measurement an elaborate
procedure. The latter consists of a few basic steps:

(i) Identify the covariant equations which describe the phenomenon under
investigation.

(ii) Identify the observer who makes the measurements.
(iii) Choose a frame adapted to that observer, allowing the space-time to be split

into the observer’s space and time.
(iv) Decide whether the intended measurement is local or non-local with respect

to the background curvature.
(v) Identify the frame components of those quantities that are the observational

targets.
(vi) Find a physical interpretation of the above components, following a suitable

criterion such as a comparison with what is known from special relativity
or from non-relativistic theories.

(vii) Verify the degree of residual ambiguity in the interpretation of the measure-
ments and decide on a strategy to eliminate it.

Clearly, each step of the above procedure relies on the previous one, and the
very first step provides the seed of a measurement despite the mathematical
complexity.

• Fixing the observer is independent of the coordinate representation; we can
have many observers with a given choice of the coordinate grid, but we can
also deal with a given observer within many coordinate systems.

• Whatever the choice of the coordinate system, one may adapt to a given
observer many spatial frames, each providing a different perspective.

• A measurement requires a mathematical modeling of the target, but also of the
measuring conditions which account for the dynamical state of the observer
and the level of accuracy of his measuring devices.

• The physical interpretation of a measurement requires some previous knowledge
of the object of investigation, so that it can be identified as a generalization from
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a restricted case as from special to general relativity, from empty to non-empty
states, or from static to non-static cases, just to mention a few.

• Without a comparison cornerstone, the result of a measurement may reveal
itself as a new general relativistic effect.

• General relativity stems from the Principle of Equivalence, which states a fun-
damental ambiguity, namely the impossibility of distinguishing true gravity
from inertial accelerations. Like a kind of original sin, this ambiguity surfaces
in many measuring operations, forcing the observer to envisage sets of inde-
pendent measurements to cure this inadequacy and reach the required degree
of certainty.

In this book we have illustrated all of the above steps, with the intention of
highlighting the method rather than of considering all possible measurements,
most of which are widely discussed in the literature. The notation used is meant
to help the reader to recognize at each step who the observer is and what is being
observed; clearly this distinction leads easily to confusion when more than two
observers are involved.

Although we conclude here our bird’s-eye view of the theory of measurements
in general relativity, we hardly consider this subject closed. Indeed much remains
to be done to understand how classical measurements in relativity theory would
match with quantum measurements in the search for a unified theory.



Exercises

1. Consider the Euclidean 2-sphere V2 with Riemannian metric

ds2 = dθ2 + sin2 θdφ2.

(a) Show that the orthonormal frame

e1̂ = ∂θ, e2̂ =
1

sin θ
∂φ,

with dual

ω1̂ = dθ, ω2̂ = sin θdφ,

admits a single non-vanishing structure function

C 2̂
1̂2̂ = −cot θ.

(b) Show that the only non-vanishing Christoffel symbols are

Γφ
θφ = cot θ, Γθ

φφ = −sin θ cos θ.

(c) Solve the Killing equation ∇(βξα) = 0 in the above metric and show
that the general solution for the vector ξ is given by

ξ = c1ξ1 + c2ξ2 + c3ξ3,

where c1, c2, c3 are constants and

ξ1 = sinφ∂θ + cot θ cosφ∂φ,

ξ2 = cosφ∂θ − cot θ sinφ∂φ,

ξ3 = ∂φ,

are the well-known angular momentum operators or the generators of
the rotation group.

(d) Show that the 4-acceleration of the curve with unit tangent vector eφ̂ =
1/ sin θ∂φ is

a(eφ̂) ≡ ∇eφ̂
eφ̂ = −cot θ∂θ.

Is it possible to specify a priori the direction of a(eφ̂)?

(e) Evaluate the wedge product a(eφ̂) ∧ eφ̂.
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(f) Discuss the parallel transport of a general vector

X = Xθ∂θ +Xφ∂φ

along a φ-loop, that is, the curve with parametric equations

θ = θ0 = constant, φ = φ(λ),

i.e. with unit tangent vector eφ̂ = (1/ sin θ)∂φ.
Hint. Using φ (in place of λ) as a parameter along �, the transport
equations reduce to the system

dXθ

dφ
− sin θ cos θXφ = 0,

dXφ

dφ
+

cos θ
sin2 θ

Xθ = 0.

It is also convenient to use frame components for X:

X θ̂ = Xθ, X φ̂ = sin θXφ.

In fact the above equations reduce to

dX θ̂

dφ
− cos θX φ̂ = 0,

dX φ̂

dφ
+ cos θX θ̂ = 0,

and can be easily solved:(
X θ̂(φ)
X φ̂(φ)

)
= R(φ cos θ)

(
X θ̂(0)
X φ̂(0)

)
,

where

R(φ cos θ) =
(

cos(φ cos θ) sin(φ cos θ)
−sin(φ cos θ) cos(φ cos θ)

)
.

(g) Study the conditions for holonomy invariance of the transported vector
after one loop.
Hint. When φ = 2π, for θ = π/2 (equatorial orbit) as well as for θ = 0
we have

R(2π cos θ) →
(

1 0
0 1

)
.

For a general value of θ the invariance is lost.

2. Repeat the above exercise for the 2-pseudosphere with metric

ds2 = dθ2 + sinh2 θdφ2.

3. Consider Schwarzschild space-time written in standard spherical-like coor-
dinates. Discuss the parallel transport of a vector X = Xα∂α along a cir-
cular orbit on the equatorial plane with unit tangent vector

U = Γ(∂t + ζ∂φ).
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4. Considering the setting of the previous problem, discuss the parallel trans-
port of the vector X = Xα∂α along a φ-loop with parametric equations

t = t0, r = r0, θ = π/2, φ = φ(λ),

and unit tangent vector eφ̂ = 1/r0∂φ.

(a) Discuss the conditions for holonomy invariance after a φ-loop.

(b) Compare with the limiting case ζ → ∞.

5. Consider the Schwarzschild metric.

(a) Show that the unit 4-velocity vector of an observer at rest with respect
to the spatial coordinates is

m� = −
√

1 − 2M
r

dt.

(b) Show that

dm� = m� ∧ g(m), g(m)� =
M

r2
(
1 − 2M

r

) dr.
(c) Show that g(m) is a gradient, i.e. that dg(m) = 0, and find the potential.

(d) Show that £mg(m)� = 0.

6. Discuss the geometric properties of the 2-metric

ds2 = dv2 − v2du2.

7. Show that the Riemann tensor of a maximally symmetric space-time is
given by

Rαβ
γδ =

R

12
δαβ
γδ ,

where R is the curvature scalar.

8. Show that, for the unit 4-form η,

ηαβγδηαβγδ = −4!

9. Prove that P (u)η = 0, where P (u) is the projection tensor onto LRSu.
Hint. A tensor vanishing in a frame vanishes identically.

10. Prove Eq. (2.51).
Hint. First permute indices in Eq. (2.45) as follows:

eγ(gδβ) − 2Γ(δβ)γ = 0,

eδ(gβγ) − 2Γ(βγ)δ = 0,

eβ(gγδ) − 2Γ(γδ)β = 0,
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then add and subtract these relations side by side so that

eγ(gδβ) − eδ(gβγ) + eβ(gγδ) − 2Γ(δβ)γ + 2Γ(βγ)δ − 2Γ(γδ)β = 0,

or, equivalently,

eγ(gδβ) − eδ(gβγ) + eβ(gγδ) − 2Γδ(βγ) + 2Γβ[γδ] + 2Γγ[βδ] = 0.

Noting that

Cγ
αβ = 2Γγ

[βα],

one can cast the above relation in the form

eγ(gδβ) − eδ(gβγ) + eβ(gγδ) − 2Γδ(βγ) + Cβδγ + Cγδβ = 0,

which in turn gives

2Γδ(βγ) = eγ(gδβ) − eδ(gβγ) + eβ(gγδ) + Cβδγ + Cγδβ .

From this it follows that

Γδβγ = Γδ(βγ) + Γδ[βγ]

=
1
2

[eγ(gδβ) − eδ(gβγ) + eβ(gγδ)

+Cβδγ + Cγδβ + Cδγβ ] ,

as in (2.51).

11. Show that Fermi-Walker transport preserves orthogonality.

12. Let u be the time-like unit tangent vector to a world line γ parameterized
by the proper time τ . Show that

D(fw,u)

dτ
uα = 0.

13. Let u be the time-like unit tangent vector to a world line γ and let X be a
spatial vector with respect to u (X · u = 0) Fermi-Walker dragged along γ.

Show that
D

dτ
Xα = [a(u) ·X]uα.

14. Discuss the extension of Fermi-Walker transport to null curves. This result
is discussed in Bini et al. (2006), generalizing previous results by Castagnino
(1965).

15. Let u be the time-like unit vector tangent to a (time-like) world line γ

parameterized by the proper time τ and the spatial vectors eâ (a = 1, 2, 3)
mutually orthogonal and orthogonal to u, so that eα̂ = {e0̂ ≡ u, eâ} is an
orthonormal tetrad. Show that
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D(fw,u)

dτ
eâ = ∇ueâ − a(u)âu ≡ C b̂

(fw)â eb̂,

where the coefficients C b̂
(fw)â are the Fermi rotation coefficients.

16. If T is a
(
0
3

)
-tensor, show that its fully symmetric and antisymmetric parts

are given by

T(μνλ) =
1
3!

(Tμνλ + Tνλμ + Tλμν + Tνμλ + Tμλν + Tλνμ) ,

T[μνλ] =
1
3!

(Tμνλ + Tνλμ + Tλμν − Tνμλ − Tμλν − Tλνμ) .

17. If T is a
(
0
4

)
-tensor, evaluate its fully symmetric and antisymmetric parts.

18. Show that for a differential form S, the Lie derivative can be expressed in
terms of the exterior derivative and the contraction operation:

£XS = X dS + d(X S).

19. Verify the following identity for a 1-form X:

δX η = ∗δX = ∗∗d∗X = −d∗X,

which can also be written in the form

d(X� η) = [divX] η.

20. Show that, in the Kerr metric, the Papapetrou field associated with the
time-like Killing vector ξ = ∂t, namely Fαβ = ∇α ξβ , has principal null
directions which are aligned with those of the Weyl tensor.

21. Show that a constant curvature space-time is conformally flat, i.e. Cαβ
γδ =

0.

22. Show that
∗[u� ∧ S] = ∗(u)S,

and therefore that
∗[∗(u)S] = (−1)pu ∧ S.

23. Consider the splitting of a 2-form F and that of its space-time dual ∗F with
respect to an observer u. Show that

F = u ∧ E(u) + ∗(u)B(u), ∗F = u ∧B(u) − ∗(u)E(u),

where E(u) = −u F , B(u) = ∗(u) [P (u)F ].

24. Let X be non-spatial with respect to an observer u, so that

X = X || u+X⊥.
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Show that its spatial curl as defined in Eq. (3.37) is given by

curlX = 2X ||ω(u)α + [curluX⊥]α.

25. Show that the symmetric spatial Riemann tensor R(sym) satisfies the alge-
braic conditions characterizing a Riemann tensor:

R(sym)(ab)cd = 0, R(sym)ab(cd) = 0,

R(sym)abcd −R(sym)cdab = 0,

R(sym)a[bcd] = 0.

26. Show that the Lie derivative along u of the projection tensor P (u) is
given by

£uP (u)� = 2θ(u),

£uP (u)� = −2θ(u)�,

£uP (u) = u⊗ a(u)�.

27. Show that

£uη(u)αβγ = Θ(u)ηαβγ .

Hint. From the definition of the Lie derivative and that of the unit spatial
volume 3-form η(u), one gets

£uη(u)βγδ = η(u)μγδθ(u)μ
β − η(u)μβδθ(u)μ

γ + η(u)μβγθ(u)μ
δ.

For β = 1, γ = 2, and δ = 3 (the only possible choice of indices apart from
permutations), we have

£uη(u)123 = Θ(u)η123.

28. Consider an observer u with his adapted orthonormal spatial frame e(u)â,
with a = 1, 2, 3. If another observer U is related to u by a boost in the
generic direction ν̂(U, u), i.e.

U = γ(U, u)[u+ ν(U, u)ν̂(U, u)] ≡ γ[u+ νν̂(U, u)],

show that the boost of the triad e(u)â onto LRSU gives the following
orthonormal triad:

e(U)â = e(u)â + [ν̂(U, u) · e(u)â] [γνu+ (γ − 1)ν̂(U, u)].

29. Show that if X(U) ∈ LRSU and Y (u) ∈ LRSu then

X(U) ×U Y (u) = γ {[P (u,U)X(U) ×u Y (u)]

− (ν · P (u,U)X(U))(ν ×u Y (u))

−u[P (u,U)X(U) · (ν ×u Y (u))]} .
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Hint. From the definition of cross product in LRSU we have

η(U)αβγX(U)βY (u)γ = ημαβγUμX(U)βY (u)γ

= [−uμη(u)αβγ + uαη(u)μβγ − uβη(u)γμα

+uγη(u)βμα]UμX(U)βY (u)γ

= γ[−uμη(u)αβγ + uαη(u)μβγ − uβη(u)γμα]

× [uμ + ν(U, u)μ]X(U)βY (u)γ .

30. Deduce the algebra of the mixed projection operators

P (u,U, u) ≡ P (u,U)P (U, u), P (u,U, u)−1.

Show that these maps have the following expressions:

P (u,U, u) = P (u) + γ2ν(U, u) ⊗ ν(U, u)�,

P (u,U, u)−1 = P (U, u)−1P (u,U)−1

= P (u) − ν(U, u) ⊗ ν(U, u)�.

31. Deduce the algebra of the mixed projection operators

P (u,U, u′) ≡ P (u,U)P (U, u′), P (u,U, u′)−1.

Show that

P (u,U, u′) = P (u, u′) + γ(U, u)γ(U, u′)ν(U, u) ⊗ ν(U, u′)

P (u,U, u′)−1 = P (u′, u) + γ(u, u′)[(ν(u, u′) − ν(U, u′)) ⊗ ν(U, u)

+ ν(U, u′) ⊗ ν(u′, u)].

Hint. For the various observers u, U , and u′, we have

U = γ(U, u)[u+ ν(U, u)],

U = γ(U, u′)[u′ + ν(U, u′)],

u′ = γ(u′, u)[u+ ν(u′, u)],

u = γ(u, u′)[u′ + ν(u, u′)].

32. Prove the following relations:

P (U, u)−1P (U, u′) = P (u, u′) + γ(u, u′)ν(U, u) ⊗ ν(u, u′),

P (u′, u)P (U, u)−1P (U, u′) = P (u′) + δ(U, u, u′)ν(U, u′) ⊗ ν(u, u′),
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P (u′, u)P (u′, U, u)−1 = P (u′)

+ δ(U, u, u′)ν(U, u′) ⊗ [ν(u, u′) − ν(U, u′)],

P (u′, u)P (u,U, u)−1 = P (u′, u) − δ(U, u, u′)
γ(u, u′)

ν(U, u′) ⊗ ν(U, u)

+ γ(u, u′)ν(u, u′) ⊗ ν(U, u),

P (u′, u)P (u,U, u)−1P (u, u′) = P (u′) + δ(U, u, u′)[ν(U, u′) ⊗ ν(u, u′)

+ ν(u, u′) ⊗ ν(U, u′)]

− δ(U, u, u′)2ν(U, u′) ⊗ ν(U, u′)/γ(u, u′)2,

where

δ(U, u, u′) =
γ(U, u′)γ(u′, u)

γ(U, u)
, δ(U, u, u′)−1 = δ(u,U, u′).

33. Consider the Schwarzschild solution in standard coordinates (t, r, θ, φ), and
an observer at rest at a fixed position on the equatorial plane.

Show that the Schwarzschild metric can be cast in the following form (see
(5.41)):

ds2 = −(1 − 2AX)dT 2 + dX2 + dY 2 + dZ2 +O(2),

where (T,X, Y, Z) are Fermi coordinates associated with an observer at rest
at r = r0, θ = θ0 = π/2, φ = φ0 (Leaute and Linet, 1983; see also Bini,
Geralico, and Jantzen, 2005 for the generalization to the case of a Kerr
space-time and a uniformly rotating observer) and related to Schwarzschild
coordinates (t, r, θ, φ) by the transformation

t � t0 +
(

1 − 2M
r0

)−1/2

T,

r � r0 +
(

1 − 2M
r0

)1/2

X +
1
2

[
M

r20
X2 +

1
r0

(
1 − 2M

r0

)
(Y 2 + Z2)

]
,

θ � π

2
+
Y

r0
− 1
r20

(
1 − 2M

r0

)1/2

XY,

φ � φ0 +
Z

r0
− 1
r20

(
1 − 2M

r0

)1/2

XZ.

All the above relations are valid up to O(3) and with the uniform acceler-
ation A in Eq. (5.41) given by

A =
M

r20

(
1 − 2M

r0

)−1/2

.

34. Find the transformation laws for the relative thermal stresses (q(u)) and
the relative energy density (ρ(u)) passing to another observer U .
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35. Deduce relations (7.40) and (7.41) and then combine them to obtain (7.46).

36. Deduce Eq. (7.50).

37. Show that by taking the covariant derivative of both sides of (7.59) one gets
the relative acceleration equation.
Hint. The covariant derivative of both sides of the equation

∇UY = ∇Y U

gives

∇UUY = ∇U∇Y U = [∇U ,∇Y ]U + ∇Y ∇UU

= [∇U ,∇Y ]U + ∇Y a(U)

= R(U, Y )U + ∇Y a(U),

since [U, Y ] = 0.

38. Show that the coordinate transformation

r = r̄

(
1 +

M
2r̄

)2

leads to the isotropic form of the Schwarzschild metric,

ds2 = −
(

1 − M
2r̄

)2(
1 +

M
2r̄

)−2

dt2

+
(

1 +
M
2r̄

)4

(dx2 + dy2 + dz2).

39. In Schwarzschild space-time let U be the unit time-like vector tangent to a
circular orbit, U = Γ(∂t +ζ∂φ). Consider the vector fields m = (1/

√−gtt)∂t

(congruence of static observers) and eφ̂ = (1/√gφφ)∂φ (congruence of spa-
tial φ-loops). Show that

∇Um =
ΓM
r2

er̂,

∇Ueφ̂ = −Γζ

[(
1 − 2M

r

)1/2

sin θ er̂ + cos θ eθ̂

]
.

40. With the Kerr metric written in Painlevé-Gullstrand coordinates Xα (see
(8.79)), the locally non-rotating observers have 4-velocity N � = −dT .

(a) Show that they form a geodesic (a(N ) = 0) and vorticity-free (ω(N ) =
0) congruence, with non-vanishing expansion tensor given by

θ(N ) = θ(N )αβ∂Xα ⊗ ∂Xβ ,
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with

θ(N )RR =
rΔ
√

2Mr(r2 + a2)
Σ3

− (r2 + a2)2 − 4Mr3

Σ2

√
M

2r(r2 + a2)
,

θ(N )ΘΘ = −r
√

2Mr(r2 + a2)
Σ3

,

θ(N )ΦΦ = −
√

2Mr

r2 + a2

r

(r2 + a2)Σ sin2 θ
,

θ(N )RΘ = −a
2 sin θ cos θ

Σ3

√
2Mr(r2 + a2),

θ(N )RΦ = − 2aMr2

(r2 + a2)Σ2
,

being the only non-zero components.

(b) Show that the trace is also non-zero, and given by

Θ(N ) = −a
2 + 3r2

Σ

√
M

2r(r2 + a2)
.

41. Consider a set of particles orbiting on spatially circular trajectories in Kerr
space-time, and let U = Γ(∂t + ζ∂φ) be the unit time-like tangent vector.

(a) Show that

Γ =
[
1 − 2Mr

Σ
(1 − aζ sin2 θ)2 − (r2 + a2)ζ2 sin2 θ

]−1/2

.

Consider the following adapted frame:

Et̂ = Γ(∂t + ζ∂φ),

Er̂ = (Δ/Σ)1/2∂r,

Eθ̂ = Σ−1/2∂θ,

Eφ̂ = Γ̄(∂t + ζ̄∂φ).

(b) Determine the expressions for Γ̄ and ζ̄.

(c) Show that the frame components of the electric part of the Riemann
tensor associated with U are given by

E(U)r̂r̂ =
Γ2Mr

Σ4
(r2 − 3a2 cos2 θ)[(3Δ + 2Mr)J

+ Σ(2Δ sin2 θζ2 + 1)],

E(U)θ̂θ̂ = −Γ2Mr

Σ4
(r2 − 3a2 cos2 θ)[(3Δ + 4Mr)J

+ Σ(Δ sin2 θζ2 + 2)],
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E(U)r̂θ̂ =
3a sin θ cos θMΓ2

√
Δ

Σ4
[a− ζ(r2 + a2)]

× (1 − a sin2 θζ)(3r2 − a2 cos2 θ),

E(U)φ̂φ̂ =
Mr

Σ3
(r2 − 3a2 cos2 θ),

where

J = −(1 − aζ)2 sin2 θ − ζ2r2 sin2 θ − cos2 θ.

(d) Show that the Fermi rotation of the above frame has components

ζ(fw)r̂
= −Γ2 cos θ

Σ2

√
Δ
Σ

[2Mra(1 − aζ sin2 θ)2 − ζΣ2],

ζ(fw)θ̂
= −Γ2 sin θ

aΣ5/2

{
M(r2 − a2 cos2 θ)[(r2 + a2)ζ − a]2

+ ζ[M(a2 − r2)ζ + Σ2a(r −M)]
}
.

42. Deduce the 4-vector U(g) as in Eq. (8.196).
Hint. Use coordinates (u, v, y, z) and the Killing vectors.

43. Prove that (i) ∗
y− < yc− and (ii) yc− ≤ ∗

y+ < yc+, where ∗
y is given by (9.51)

and yc± are given by (9.48).
Hint. To prove point (i) let us first notice that

yc− > −1/a, lim
r→∞

yc− = 0−,

yc− ≥ 0 for r ≤ 2M, yc−< 0 for r > 2M.

On the other hand, we have from (9.51) that ∗
y− < 0 and ∂

∗
y−/∂r > 0 for

0 < r <∞, and

lim
r→0

∗
y− = −∞, lim

r→∞
∗
y− = −1

a
.

Then it is always the case that ∗
y− ≤ −1/a < yc−.

The function ∗
y+ is always positive (∗y+ > 0) and satisfies the condition

∗
y+ ≤ a/r2 for Δ ≥ 0, so, because yc+ ≥ a/r2 whenever Δ ≥ 0, we also have
∗
y+ ≤ yc+.

To prove point (ii) we need to show that ∗
y+ > yc− in the range r+ <

r ≤ 2M, where yc− > 0. At r = r+ (where Δ = 0) we have, as stated,
yc− = ∗

y+, but these two functions leave the point r+ with different slopes;
in fact ∂yc−/∂r|r+ = −∞, while

∂
∗
y+

∂r

∣∣∣∣
r+

= −
(

6Ma

r4

)(
1 +

8Ma2

r3+

)−1/2

is finite and negative. Hence for r = r+ + ε (ε > 0 and sufficiently small) we
certainly have ∗

y+ > yc−. However, since yc− goes to zero monotonically as
r → 2M, the function ∗

y+ could intersect yc− (it should do it at least twice!)
only if the plot of ∗

y+ is convex somewhere in the range r+ < r < 2M. But
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this is never so because the second derivative of ∗
y+ is always positive, being

equal to

∂2∗y+

∂r2
=

24Ma

r5
1 + 5Ma2/r3

(1 + 8Ma2/r3)3/2
.

44. Show that the Riemann tensor Rα
βγδ has in general no specific symmetries

with respect to the indices β and γ.

45. In Schwarzschild space-time, consider a particle moving in a circular orbit
in the equatorial plane θ = π/2 with 4-velocity

Uα = Γ
(
δα
t + ζδα

φ

)
,

where Γ is the normalization factor given by

Γ =
(

1 − 2M
r

− ζ2r2
)−1/2

.

If the magnitude of the 4-acceleration of the particle, namely ||a(U)|| =√
gαβa(U)αa(U)β , where a(U)α = Uβ∇βU

α, measures the effective specific
weight of the particle with respect to a comoving observer, calculate the
value of ζ at which the particle’s weight is maximum.

46. Given the Friedmann-Robertson-Walker solution describing a spatially
homogeneous and isotropic universe,

ds2 = −dt2 +R2(t)
[

dr2

1 − κr2
+ r2dθ2 + r2 sin2 θdφ2

]
,

where R(t) is a differentiable function of time and κ = ±1 or 0 according
to the type of spatial section, i.e. a pseudo-sphere (κ = −1), a flat space
(κ = 0), or a sphere (κ = 1):

(a) Show that the cosmic observer with 4-velocity

uα = δα
t

is a geodesic for any κ.

(b) Given two cosmic observers very close to each other, their relative accel-
eration in the radial direction depends only on the component of the
Riemann tensor Rr

trt. Calculate this component.

47. Given a null vector field with components �α, so that

�α�
α = 0,

if it satisfies the condition

∇[α�β] = 0,

show that it is tangent to a family of affine geodesics.
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48. Given an electromagnetic field with energy-momentum tensor

Tαβ =
1
4π

[
FασFβ

σ − 1
4
gαβFρσF

ρσ

]
,

show that the curvature it generates satisfies the condition

R = 0,

R being the curvature scalar.

49. In Schwarzschild space-time, consider two static observers with unitary
4-velocities

u1 =
(

1 − 2M
R1

)−1/2

∂t

and

u2 =
(

1 − 2M
R2

)−1/2

∂t,

with R2 > R1. Determine which of these observers ages faster.

50. Consider Kerr space-time written in standard Boyer-Lindquist coordinates.
Discuss the parallel transport of a vector X = Xα∂α along a circular orbit
on the equatorial plane with unit tangent vector

U = Γ(∂t + ζ∂φ).

51. Considering the setting of the previous problem, discuss the parallel trans-
port of the vector X = Xα∂α along a φ-loop with parametric equations

t = t0, r = r0, θ = π/2, φ = φ(λ),

and unit tangent vector eφ̂ = [r/(r3 + a2r + 2Ma2)]1/2∂φ.

(a) Discuss the conditions for holonomy invariance after a φ-loop.

(b) Compare with the limiting case ζ → ∞.

52. Under what condition does the relation

(£XY
�)� = (£XY

�)

hold for any pair of vector fields X and Y ?

53. Consider Minkowski space-time in cylindrical coordinates {t, r, φ, z}:

ds2 = −dt2 + dr2 + r2dφ2 + dz2.

Let U be an observer in circular motion on the hyperplane z = 0, i.e. with
4-velocity

U = γζ [∂t + ζ∂φ], γζ = [1 − ζ2r2]−1/2.
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(a) Show that

a(U) = −γ2
ζ ζ

2r∂r.

(b) Show that the triad

e1̂ = ∂r, e2̂ = γζ

[
ζr∂t +

1
r
∂φ

]
, e3̂ = ∂z,

with e0̂ = U , is identical to a Frenet-Serret frame along U .

(c) Show that the associated curvature and torsions are given by

κ = −γ2
ζ ζ

2r, τ1 = γ2
ζ ζ, τ2 = 0.

54. Consider the setting of the above problem. Show that the triad

E1̂ = cos(γζζt)e1̂ − sin(γζζt)e2̂,

E2̂ = sin(γζζt)e1̂ + cos(γζζt)e2̂,

E3̂ = ∂z

with e0̂ = U , is identical to a Fermi-Walker frame along U .

55. Consider Minkowski space-time in cylindrical coordinates {t, r, φ, z}:

ds2 = −dt2 + dr2 + r2dφ2 + dz2.

Let u = ∂t be a static observer. Show that this observer is inertial, that is

a(u) = 0, ω(u) = 0, θ(u) = 0.

Consider then an observer in circular motion, i.e. with 4-velocity

U = γζ [∂t + ζ∂φ], γζ = [1 − ζ2r2]−1/2.

Show that

F
(G)
(fw,U,u) = 0, ∇Ueφ̂ = −γζζ∂r.

Use this result to show that

a
(C)
(fw,U,u) = −[ sign ζ] rζ2∂r.

56. Consider the setting of the above problem, but with two rotating observers:

U = γζ [∂t + ζ∂φ], γζ = [1 − ζ2r2]−1/2,

u = γω[∂t + ω∂φ], γω = [1 − ζ2r2]−1/2.

Show that

F
(G)
(fw,U,u) = γζγωωζr∂r, F

(G)
(lie,U,u) = γζγωωr[(ζ − ω)γ2

ω + ζ]∂r.

Hint. For a detailed discussion, see Bini and Jantzen (2004).
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57. Show that in a three-dimensional Riemannian manifold, conceived as the
LRS of an observer u, one has the following identity for the Scurl operation:

Scurlu ∇X = −X × Ricci,

where X is a vector field.
Hint. Start from the Ricci identities,

2∇[b∇c]X
a = Ra

dbcX
d,

and take the symmetrized dual of each side:

ηbc(a∇[b∇c]X
e) = −Xdη(e

dgR
a)g.

58. Consider the setting of the above problem. Show that if the vector field X
is a gradient, Xa = ∇aΦ, then the following identity holds:

Scurl [X ⊗X] = −X ×∇X.

59. Consider Kerr space-time in standard Boyer-Lindquist coordinates, and let
m denote the 4-velocity field of the static family of observers.

(a) Show that the projected metric onto LRSm is given by

γ� =
Σ
Δ
dr ⊗ dr + Σdθ ⊗ dθ − ΔΣsin2 θ

Σ − 2Mr
dφ⊗ dφ.

(b) Evaluate the Ricci tensor Rab associated with the above 3-metric.

(c) Show that the only non-vanishing components of the corresponding
Cotton tensor are the following:

[yrφ, yrθ] =
6a2M2

[Σ(Σ − 2Mr)]5/2
[Δ cos θ,−(r −M) sin θ],

where yab = −[ScurlmR]ab.

(d) What conclusions can be drawn in the limiting case of Schwarzschild
space-time?

60. Consider Kerr space-time in standard Boyer-Lindquist coordinates and let
m denote the 4-velocity field of the static family of observers.

(a) Evaluate the acceleration vector a(m) and the vorticity vector ω(m)
associated with m.

(b) Evaluate the electric (E(m)) and magnetic (H(m)) parts of the Weyl
tensor as measured by the m observers.

(c) Define the complex fields Z(m) = E(m)− iH(m) and z(m) = −a(m)−
iω(m) and show that

S(m) = z(m) × Z(m) = 0.
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Note that S(m) is proportional to the so-called Simon tensor (Simon,
1984), whose vanishing is a peculiar property of Kerr space-time.

(d) Show that if in general a × A = 0 (with a a spatial vector and A a
spatial symmetric 2-tensor) then necessarily A ∝ [a⊗ a](TF).

61. Let u be a congruence of test observers in a general space-time. Show that
the vorticity and expansion fields have the representations

ω(u)� =
1
2
d(u)u�, θ(u)� =

1
2
£(u)u g

�.

62. Consider Minkowski space-time in standard Cartesian coordinates:

ds2 = −dt2 + dx2 + dy2 + dz2.

Let

t =
1
A sinhAτ, x = 0, y = 0, z = − 1

A coshAτ,

the parametric equations of the world line u of an observer uniformly accel-
erated with acceleration A along the negative z-axis.

(a) Show that the frame

e0̂ = coshAτ∂t − sinhAτ∂z,

e1̂ = ∂x,

e2̂ = ∂y,

e3̂ = −sinhAτ∂t + coshAτ∂z

is Fermi-Walker transported along u.

(b) Use this result to set up a system of Fermi coordinates {T,X, Y, Z} on
u.
Hint. The map between Cartesian and Fermi coordinates is given by

t =
(

1
A − Z

)
sinhAT,

x = X,

y = Y,

z = −
(

1
A − Z

)
coshAT,

and the Minkowski metric in coordinates {T,X, Y, Z} is given by

ds2 = −(1 −AZ)2dT 2 + dX2 + dY 2 + dZ2.

63. Consider the Kasner vacuum metric (2.134),

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2,

with p1 + p2 + p3 = 1 = p2
1 + p2

2 + p2
3.
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(a) Define the complex tensor C̃αβγδ = Cαβγδ − i∗Cαβγδ and form the two
complex curvature invariants

I =
1
32
C̃αβγδC̃

αβγδ, J =
1

384
C̃αβγδC̃

γδ
μνC̃μναβ .

Show that the ratio

S =
27J2

I3
= −27

4
p1p2p3,

i.e. that it is a constant.
Hint. The quantity S is also known as the spectral index or speciality
index of the space-time and plays a role in the Petrov classification of
space-times as well as in perturbation theory.

(b) Consider the static family of observers u = ∂t with adapted orthonormal
frame

e1̂ = t−p1∂x, e2̂ = t−p2∂y, e3̂ = t−p3∂z.

Show that they see a purely electric Weyl tensor, i.e.

E(u) =
p1p3

t2
e1̂ ⊗ e1̂ +

p1p2

t2
e2̂ ⊗ e2̂ +

p2p3

t2
e3̂ ⊗ e3̂, H(u) = 0.

64. Consider Minkowski space-time with the metric written in cylindrical coor-
dinates, i.e.

ds2 = −dt2 + dr2 + r2dφ2 + dz2.

(a) Show that under the change of coordinates

t′ = t, r′ = r, φ′ = φ− Ωt, z′ = z

the metric becomes

ds2 = −γ−2dt′2 + 2r′2Ωdt′dφ′ + r′2dφ′2 + dr′2 + dz′2,

where γ−2 = 1 − Ω2r′2. Minkowski space-time endowed with the latter
form of the metric will be referred to as rotating Minkowski. For conve-
nience the space-time coordinates will be relabeled t, r, φ, z hereafter.

(b) In a rotating Minkowski space-time, consider the static family of
observers, m� = γ∂t. Show that they are accelerated inward with
acceleration

a(m) = −γ2Ω2r∂r ;

that the vorticity vector is aligned with the z-axis,

ω(m) = γ2Ω∂z ;

and that the expansion vanishes identically, θ(m) = 0.
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(c) In a rotating Minkowski space-time, consider the ZAMO family of
observers n� = −dt or n� = ∂t + Ω∂φ. Show that they are geodesic
(a(n) = 0), vorticity-free (ω(n) = 0, by definition), and expansion-free
(θ(n) = 0).

(d) In a rotating Minkowski space-time, consider the family of circularly
rotating orbits U = Γ(∂t + ζ∂φ).

1. Show that Γ−2 = 1 − r2(ζ − Ω)2.

2. Show that for null circular orbits ζ = ζ± = −Ω ± 1/r.

65. Consider a rotating Minkowski space-time,

ds2 = −γ−2dt2 + 2r2Ωdtdφ+ r2dφ2 + dr2 + dz2,

where γ−2 = 1 − Ω2r2, and the family of static observers m = γ∂t.

(a) Show that the projected metric onto LRSm is given by

P (m) = dr ⊗ dr + γ2r2dφ⊗ dφ+ dz ⊗ dz.

(b) Show that the Ricci scalar associated with this 3-metric is given by

R = −6Ω2γ4.

(c) Consider the r − φ part of this 3-metric,

P (m)|z=const. = dr ⊗ dr + γ2r2dφ⊗ dφ.

1. Show that the Ricci scalar associated with this 2-metric is again
given by

R = −6Ω2γ4.

2. Show that the embedding of this 2-metric is completely Minkowskian
(hRR = γ−6 < 1) and that the surface Z = Z(R) can be explicitly
obtained in terms of elliptic functions (Bini, Carini, and Jantzen,
1997a; 1997b).

66. Using the purely imaginary 4-form

Eα1...α4 = iηα1...α4 ,

Eα1...α4 = −iηα1...α4

instead of η for the duality operation on 2-form index pairs defines the
“hook” duality operation, with symbol ˘. For example, for a 2-form F this
leads to ˘F = i∗F and hence to ˘ ˘S = S. One can then find eigen-2-forms
of the operation ˘ with eigenvalues ±1, called self-dual (+) and anti-self-
dual (−), respectively.
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(a) Show that the complex quantity

C+
αβ

γδ = Cαβ
γδ + i∗Cαβ

γδ,

where C = Cαβγδ is the Weyl tensor, is anti-self-dual, i.e.

˘ C+
αβ

γδ = −C+
αβ

γδ.

(b) Show that the complex quantity

C−αβ
γδ = Cαβ

γδ − i∗Cαβ
γδ

is self-dual, i.e.

˘ C−αβ
γδ = C−αβ

γδ.

Hint. Recall the property ∗∗C = −C of the Weyl tensor.

67. Suppose that S is a tensor-valued p-form, i.e. it has p antisymmetric indices
(indices of a p-form) in addition to other tensorial indices:

S = Sα...
β...α1...αp

= Sα...
β...[α1...αp].

DS, the covariant exterior derivative of S, is defined so that it acts as the
ordinary covariant derivative on the tensorial indices and as the exterior
derivative on the p-form indices, that is

DSα...
β...α1...αp+1 = (p+ 1)∇[α1S

α
|β|α2...αp+1].

Show that the covariant exterior derivative of the curvature 2-form

Rα
β =

1
2
Rα

βγδω
γ ∧ ωδ

vanishes identically, i.e. DR = 0 or, in components,

[DR]αβγδμ = ∇[μR
α
|β|γδ] = 0.

Hint. The right-hand side of the above equation is identically zero due to
the Bianchi identities.

68. Show that Maxwell’s equations,

∇β
∗Fαβ = 0, ∇βF

αβ = 4πJα,

where Fαβ = 2∇[αAβ] is the Faraday 2-form, Aα is the vector potential,
and Jα is the 4-current vector, can be written in index-free form as follows:

dF � = 0, δF � = −4πJ�,

with δJ� = 0.
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69. Consider Kerr-Newman space-time in standard coordinates. The associated
electromagnetic field can be written as

F � =
Q

Σ2
(r2 − a2 cos2 θ) dr ∧ [dt− a sin2 θdφ]

+
2Q
Σ2

ar sin θ cos θ dθ ∧ [(r2 + a2)dφ− adt].

Introduce the ZAMO family of observers, with 4-velocity

n = −Ndt, N =

√
ΔΣ
A
,

and the following observer-adapted frame

er̂ =
1

√
grr

∂r =

√
Δ
Σ
∂r,

eθ̂ =
1

√
gθθ

∂θ =
1√
Σ
∂θ,

eφ̂ =
1

√
gφφ

∂φ =
1

sin θ

√
Σ
A
∂φ.

(a) Show that the electric and magnetic fields as measured by ZAMOs are
given by

E(n) =
Q

Σ2
√
A

[(r2 + a2)(r2 − a2 cos2 θ)er̂

− 2a2r sin θ cos θ
√

Δeθ̂],

B(n) = − Q

Σ2
√
A

[2ar cos θ(r2 + a2)er̂

+ a sin θ(r2 − a2 cos2 θ)
√

Δeθ̂].

(b) Show that electromagnetic energy density as measured by ZAMOs is
given by

E(n) =
1
8π

[E(n)2 +B(n)2] =
1
8π

Q2

Σ2

(r2 + a2)2 + a2Δsin2 θ

(r2 + a2)2 − a2Δsin2 θ
.

Compute the limit of E(n) for r → r+.

70. In Kerr-Newman space-time, consider the Carter family of observers,

u�
(car) =

√
Δ
Σ

(−dt+ a sin2 θdφ).

Let

ū�
(car) =

sin θ√
Σ

[−adt+ (r2 + a2)dφ]
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be the unit vector orthogonal to ucar in the t − φ plane. Show that the
background electromagnetic field can be expressed as

F � =
Q

Σ3/2

[
− 1√

Δ
(r2 − a2 cos2 θ) dr ∧ u�

(car) + 2ar cos θ dθ ∧ ū�
(car)

]
.

Using the splitting relation

F � = u�
(car) ∧ E(u(car)) + ∗(u(car))B(u(car)),

show that E(u(car)) and B(u(car)) are parallel.

71. Consider the setting of the above problem. Introduce the following orthonor-
mal frame adapted to Carter’s observers:

e0̂ = u(car), e1̂ = er̂, e2̂ = eθ̂, e3̂ = ū(car).

(a) Show that the energy momentum tensor of the field is given by

T = E(u(car))[−e0̂ ⊗ e0̂ − e1̂ ⊗ e1̂ + e2̂ ⊗ e2̂ + e3̂ ⊗ e3̂],

where E(u(car)) is the energy density of the background electromagnetic
field as measured by Carter observers.

(b) Show that

T 2 = E(u(car))2[−e0̂ ⊗ e0̂ − e1̂ ⊗ e1̂ + e2̂ ⊗ e2̂ + e3̂ ⊗ e3̂],

so that the mixed form is such that [T 2]μν = E(u(car))2δμ
ν .

72. In Kerr-Newman space-time, consider the two electromagnetic invariants

I1 =
1
2
FαβF

αβ , I2 =
1
2
∗FαβF

αβ .

(a) Show their expressions in terms of the electric and magnetic fields as
measured by ZAMOs, E(n) and B(n).

(b) Evaluate them.
Hint. A straightforward calculation leads to

I1 =
Q2

Σ4
[4r2a2 cos2 θ − (r2 − a2 cos2 θ)2],

I2 =
Q2

Σ4
[4ra cos θ(r2 − a2 cos2 θ)].

73. Show that

A� = aB0[∂t +
1
2a
∂φ]

is a vector potential for an electromagnetic test field on Kerr background.
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(a) Evaluate the electric and magnetic fields as measured by ZAMOs and
make a plot of the lines of force of these fields.
Hint. A straightforward calculation shows that

E(n)r̂ = −aσ[(r2 + a2)Y + rΔΣsin2 θ],

E(n)θ̂ = −aσ
√

Δ[X − Σ(r2 + a2)] sin θ cos θ,

B(n)r̂ = σ[(r2 + a2)X − a2ΔΣsin2 θ] cos θ,

B(n)θ̂ = −σ
√

Δ[a2Y + rΣ(r2 + a2)] sin θ,

where

σ =
B0

Σ2
√
A
,

Y = 2r cos2 θ(r2 + a2) − (r −M)(1 + cos2 θ)(r2 − a2 cos2 θ),

X = (r2 + a2)(r2 − a2 cos2 θ) + 2a2r(r −M)(1 + cos2 θ).

(b) Evaluate the invariants of this field.

Note that this electromagnetic field was found by Wald in 1974 (Wald,
1974).

74. Consider Kerr space-time. Show that the 2-form field

f =
1
2
fμνdx

μ ∧ dxν = a cos θ dr ∧ (dt− a sin2 θ dφ)

+ r sin θ dθ ∧ [−a dt+ (r2 + a2) dφ]

satisfies the relations

∇(γfβ)α = 0.

Note that the field f with this property is known as a Killing-Yano tensor.

75. Consider the metric (Euclidean Taub-NUT) with coordinates {ψ, r, θ, φ}:

ds2 =
(

1 +
2�
r

)
[dr2 + r2(dθ2 + sin2 θdφ2)]

+
4�2

1 + 2�/r
(dψ + cos θdφ)2,

where � is a parameter which can be either positive or negative.

(a) Solve the equations

∇(γfβ)α = 0.

The tensor fields f are Killing-Yano tensors.

(b) Show that the above metric admits four Killing-Yano tensors.
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Hint. The Killing-Yano tensors are

f1 = X� ∧ dr −
(

1 +
2�
r

)
dθ ∧ dφ,

f2 = X� ∧ dθ −
(

1 +
2�
r

)
dφ ∧ dr,

f3 = X� ∧ dφ−
(

1 +
2�
r

)
dr ∧ dθ,

f4 = X� ∧ dr + 4r(r + �)
(
1 +

r

2�

)
sin θdθ ∧ dφ,

where X� = 4�(dψ + cos θdϕ).

(c) Show that ∇αfiβ = 0 when i = 1, 2, 3.

76. Consider the Reissner-Nordström space-time. Show that the equilibrium
condition for a massive and charged particle to be at rest at a fixed point
r = b, θ = 0 on the z-axis is given by

m = qQ
b
(
1 − 2M

r + Q2

r2

)1/2

Mb−Q2
.

What can one deduce from this relation? What happens when the black
hole becomes extreme?

77. Consider the Friedmann-Robertson-Walker space-time, with metric

ds2 = −dt2 +R2(t)
[

dr2

1 − κr2
+ r2(dθ2 + sin2 θdφ2)

]
,

where R(t) is a scale function and κ = −1, 0, 1 according to the type of
spatial sections: a pseudo-sphere, a flat space, or a sphere, respectively.

(a) Compute the ratio between area and volume of the spatial sections in
the three cases κ = −1, 0, 1.

(b) Discuss the geodesic deviation equation and evaluate the acceleration
of the relative deviation vector in the three cases κ = −1, 0, 1.

78. Show that the two metrics

ds2 = −dt2 + e2H0t(dx2 + dy2 + dz2), H2
0 = Λ/3

and

ds2 =
[
1 +

H2
0

4
(x2 + y2 + z2 − t2)

]−2

(−dt2 + dx2 + dy2 + dz2)

are equivalent. Note that both these metrics represent de Sitter space-time
(see Section 5.4).
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Hint. Introduce standard polar coordinates,

x = ρ sin θ cosφ, y = ρ sin θ sinφ, z = ρ cos θ.

The first metric thus takes the form

ds2 = −dt2 + e2H0t[dρ2 + ρ2(dθ2 + sin2 θdφ2)].

Applying the coordinate transformation

t =
1
H0

ln
[
eH0τ

√
1 −H2

0R
2

]
, ρ =

Re−H0τ√
1 −H2

0R
2
, θ = θ, φ = φ,

gives

ds2 = −(1 −H2
0R

2)dτ2 +
dR2

1 −H2
0R

2
+R2(dθ2 + sin2 θdφ2).

The further transformation

τ =
1

2H0
ln
[
H2

0 ρ̄
2 − (H0t̄− 2)2

H2
0 ρ̄

2 − (H0t̄+ 2)2

]
, R =

ρ̄

1 + H2
0

4 (ρ̄2 − t̄2)
,

θ = θ, φ = φ,

finally gives

ds2 =
[
1 +

H2
0

4
(ρ̄2 − t̄2)

]−2

[−dt̄2 + dρ̄2 + ρ̄2(dθ2 + sin2 θdφ2)],

which reduces to the second metric once the Cartesian coordinates are
restored by using standard relations.

By combining the two transformations we get

t =
1

2H0
lnχ,

ρ =
ρ̄

1 + H2
0

4 (ρ̄2 − t̄2)
χ−1/2,

θ = θ, φ = φ,

where

χ =

[
H2

0 ρ̄
2 − (H0t̄− 2)2

H2
0 ρ̄

2 − (H0t̄+ 2)2

(
1 − H2

0 ρ̄
2

[1 + H2
0

4 (ρ̄2 − t̄2)]2

)]
,

which allows us to pass directly from one metric to the other.

79. Show that the metric

ds2 = −
(

1 − r2

α2

)
dt2 +

(
1 − r2

α2

)−1

dr2 + r2(dθ2 + sin2 θdφ2)
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represents de Sitter space-time. Consider spatially circular orbits U =
Γ(∂t + ζ∂φ) and show that the magnitude of the 4-acceleration is given
by

||a(U)|| =
r2
[(

1 − r2

α2

) (
1

α2 + ζ2 sin2 θ
)2

+ ζ4 sin2 θ cos2 θ
]

(
1 − r2

α2 − r2ζ2 sin2 θ
)2 .

80. Consider Gödel space-time, with the metric given by (2.133). Compute the
vorticity of the congruence of time-like Killing vectors.

81. Consider the metric tensor of a general space-time. Show that the inverse
metric is also a tensor.

82. Consider the Mathisson-Papapetrou equations for spinning test bodies (see
Chapter 10, Eqs. 10.2, 10.3, 10.4),

DPμ

dτ
= −1

2
Rμ

ναβU
νSαβ ,

DSμν

dτ
= PμUν − P νUμ ,

SμνPν = 0 ,

where D/dτ = ∇U and with P = mu (u time-like and unitary).

(a) Deduce the evolution equations for the spin vector Sα = η(u)αβγSβγ .

(b) Show that the quadratic invariant

s2 =
1
2
SαβS

αβ

is constant along U , that is

∇Us = 0 .

(c) Determine the evolution equation for the mass m along U .

(d) Show that

ν(U, u)α =
P (u)μ

α[∗R∗]μνρσS
νSρuσ

(1 + [∗R∗]μνρσuμSνuρSσ)
.

Hint. See Tod, de Felice, and Calvani (1976) for details.

83. Consider the Friedmann-Robertson-Walker space-time with metric

ds2 = −dt2 +R2(t)
[

dr2

1 − κr2
+ r2(dθ2 + sin2 θdφ2)

]
,

where R(t) (which we leave as unspecified) is a scale function and κ =
−1, 0, 1 is a sign indicator. Let U be the 4-velocity of a massive parti-
cle moving along a radial geodesic and let its velocity, relative to a static
observer, be ν0 at some initial time t = t0.
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(a) Show that U = coshα∂t + sinhαer̂, where er̂ = (
√

1 − κr2/R)∂r is the
unit vector associated with the radial direction and sinhα = γ0ν0R0/R,
with γ0 = (1 − ν2

0)−1/2.

(b) Show that the relative velocity as measured by another static observer
at the generic value t of the coordinate time is

ν ≡ tanhα =
ν0γ0R0√

R2 + ν2
0γ

2
0R

2
0

.

(c) Discuss the limit ν0 → 0.

84. Consider the case κ = 0, R(t) = tn of the Friedmann-Robertson-Walker
metric of Exercise 83.

(a) Show that

Rα
β =

n

t2
diag[3(n− 1), 3n− 1, 3n− 1, 3n− 1] .

(b) Discuss the two cases n = 1 and n = 1/3.

85. Consider the induced metric on the t =const hypersurfaces of a Friedmann-
Robertson-Walker space-time which is the local rest space of the observers
with 4-velocity u = ∂t, namely

γ� =
[
dr ⊗ dr

1 − κr2
+ r2dθ ⊗ dθ + r2 sin2 θdφ⊗ dφ

]
,

conformally rescaled by the factor R(t) (constant in this case).

(a) Show that the Ricci tensor associated with this metric in its mixed form
is Ra

b = −2κδa
b.

(b) Show that the three-dimensional Cotton tensor yab = −[ScurluR]ab,
where R is the Ricci tensor associated with the metric γ, for the three
cases κ = −1, 0, 1 is always vanishing.

(c) Show that the geodesics of this metric when θ = π/2 satisfy the follow-
ing equations:

dr

ds
= ±1

r

√
(r2 − L2)(1 − κr2) ,

dφ

ds
=
L

r2
,

where s is the curvilinear abscissa parameter and L is a Killing constant.

(d) Integrate the above equations.

86. Show that the equations of state p = (1/3)ρ and p = −ρ, p and ρ being
the isotropic pressure and the energy density of a perfect fluid, are Lorentz
invariant.
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87. Consider the 1-form

X� = Xαdx
α , Xα = Xα(r, θ) ,

in the Kerr space-time with metric written in standard Boyer-Lindquist
coordinates. Introduce the families of static observers (m, m = M−1∂t,
M =

√−gtt) and ZAMOs (n, n� = −N dt, N = 1/
√

−gtt).

(a) Evaluate curlmX and curlnX.

(b) Compare these results in the special case X� = Xφ(r, θ)dφ.

88. Consider the vector X in a generic space-time. Let u = e0 be a family of
test observers with associated spatial frame ea, so that

X = X || u+X⊥ , X⊥ · u = 0 .

(a) Evaluate the components of ∇X = (∇X)αβ ≡ (∇βXα) in terms of the
kinematical fields associated with u.

(b) Show that in the case X || = 0, i.e. X spatial with respect to u, one has

∇αX
α = [∇(u)a + a(u)a]Xa .

89. Repeat Exercise 88 in the case of a
(
1
1

)
-tensor S ≡ Sα

β .

90. Consider a three-dimensional Riemannian space with metric ds2 =
gabdx

adxb and a conformal transformation of the metric g̃ab = e2Ugab.

(a) Show that the unit volume 3-form transforms as follows:

η̃abc = e3Uηabc , η̃abc = e−3Uηabc .

91. Vaidya’s metric for a radiating spherical source is given by

ds2 = −
(

1 − 2M(u)
r

)
du2 − 2dudr + r2(dθ2 + sin2 θdφ2) ,

where M(u) is a non-increasing function of the retarded time u = t − r,
often chosen in the form

M(u) = M1 +
M2 −M1

2
(1 + tanhαu) , M1,M2, α = constant.

Consider the family of observers at rest with respect to the coordinates, i.e.
with 4-velocity

ū = e0̂ =
1√−guu

∂u

and associated spatial orthonormal triad

e1̂ =
√
−guu

[
∂r +

1
guu

∂u

]
, e2̂ =

1
√
gθθ

∂θ, e3̂ =
1

√
gφφ

∂φ .
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(a) Show that these observers are accelerated with acceleration

a(ū) = −M
′r2 −M(r − 2M)
[r(r − 2M)]3/2

e1̂, M ′ =
dM

du
.

(b) Show that the congruence Cū of the integral curves of ū has a shear
given by

θ(ū) =
M ′√r

(r − 2M)3/2
e1̂ ⊗ e1̂.

(c) Show that the vorticity of Cū is identically zero, ω(ū) = 0.

(d) Show that

£ūe1̂ = a(ū)1̂ū− θ(ū)1̂1̂e1̂, £ūe2̂ = 0, £ūe3̂ = 0.

Consider then the null vector k = 1/
√

2∂r and show that Vaidya’s met-
ric is a solution of the Einstein equations with Tμν = qkμkν where
q = 1

2πr2 dM/du.

92. The general relativistic motion of extended bodies with structure up to
the quadrupole is described by Dixon’s model (Dixon, 1964; 1970a; 1970b;
1974):

DPμ

dτU
= −1

2
Rμ

ναβU
νSαβ − 1

6
JαβγδRαβγδ

; μ

≡ F (spin)μ + F (quad)μ ,

DSμν

dτU
= 2P [μUν] +

4
3
Jαβγ[μRν]

γαβ

≡ 2P [μUν] +D(quad)μν ,

where Pα is the generalized linear momentum of the body, Uα is the unit
tangent vector to the world line of the moment’s reduction, Jαβγδ (a ten-
sor with the same algebraic properties as the Riemann tensor, and hence
with 20 independent components and support along U) is the space-time
quadrupolar momentum tensor of the body, and Sαβ (an antisymmetric
tensor, also with support along U) is the proper angular momentum ten-
sor of the body. The completeness of the model is assured if one requires
the further conditions SαβPβ = 0 and specifies the type of body under
consideration through the so-called constitutive equations.

(a) Show that the following two expressions for the torque D(quad)μν , due
to Dixon (1974) and Ehlers-Rudolph (1977), are equivalent:

D
(quad)
Dixon

μν = −4
3
R[μ

αβγJ
ν]αβγ , D

(quad)
E−R

μν =
4
3
Jαβγ[μRν]

γαβ .
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(b) Write down a 1+3 representation of the quadrupole momentum tensor
with respect to an arbitrary observer family u, and identify the physical
meaning of the various terms.

93. Starting from the definition of scalar expansion, Θ(u) = ∇αu
α, show that

the Raychaudhury equation,

∇uΘ(u) = ∇αa(u)α − Tr(k(u)2) −Rαβu
αuβ ,

holds identically. Consider then a full splitting of the terms ∇αa(u)α and
show that it can be written as

∇αa(u)α = ∇(u)αa(u)α + a(u)αa(u)α .

94. In the Schwarzschild space-time (with metric written in standard coordi-
nates), consider the foliation

T = t− f(r) ,

where f(r) is an arbitrary function of the radial variable only.

(a) Show that the induced metric on each leaf is given by

(3)ds2 = γrrdr
2 + r2(dθ2 + sin2 θdφ2) , γrr =

(
1
N2

−N2f ′2
)
,

where N2 = 1 − 2M/r.

(b) Evaluate the three-dimensional Cotton tensor

yab = −[ScurluR]ab

of this 3-geometry, where Rab is the Ricci tensor and f is arbitrary.

(c) Introduce the family N of observers whose world lines are orthogonal
to the T = constant foliation and show that they are in radial motion
with respect to the static observers n.
Hint. Put N � = −LdT and determine L from the normalization condi-
tion N · N = −1.

(d) Show that the relative velocity satisfies the condition ν(N , n)r̂ = N2f ′.

(e) Show that

γrr =
(

1
Nγ(N , n)

)2

.

(f) Under which conditions is the previous 3-metric is intrinsically flat? Is
it possible to forecast such a condition without studying the induced
Riemann tensor components?
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(g) Prove that the family N of observers with associated intrinsically flat 3-
metric are geodesic and coincide with the Painlevé-Gullstrand observers
introduced in the text.

95. Consider Minkowski flat space-time in Cartesian coordinates.

(a) Write the 4-velocity of an observer U moving with constant speed ν

along the positive direction of the x-axis until he reaches the distance �
(at the coordinate time t = t∗) from the origin (which he left at t = 0)
and then suddenly reversing his direction to return to the origin with
the same speed, during another interval t∗ of coordinate time.

(b) Show that the associated 4-acceleration is

a(U) = −2νγ2δ(t− t∗)∂x ,

where δ denotes the Dirac δ-function and γ is the Lorentz factor.

96. Consider Rindler’s metric,

ds2 = −(1 − gz)dt2 + dx2 + dy2 + dz2,

where g is a constant, and the family of observers at rest with respect to
the coordinates, U = (1 − gz)−1∂t.

(a) Show that a(U) = −g/(1 − gz)∂z .

(b) Write down the geodesic equations and find the corresponding solution
for both the time-like and null cases when the motion is confined in the
(t, z)-plane.

(c) Find a coordinate transformation mapping Rindler’s metric in
Minkowski space-time with Cartesian coordinates and show that
Rindler’s geodesics are mapped into straight lines, as expected.

97. In Kerr space-time in standard Boyer-Lindquist coordinates, consider the
family of time-like “spherical orbits” parametrized by their coordinate angu-
lar velocities ζ = dφ/dt and η = dθ/dt,

Uα = Γ[δα
t + ζδα

φ + ηδα
θ] ,

where Γ = dt/dτU > 0 is defined by

Γ−2 = −[gtt + 2ζgtφ + ζ2gφφ + η2gθθ]

because of the condition UαU
α = −1. Introduce also the family of static

observers, m = (−gtt)−1/2∂t.

(a) Evaluate the relative velocity ν(U,m).

(b) Evaluate the 4-acceleration a(U) of these orbits.
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(c) Evaluate the Fermi-Walker gravitational force

F
(G)
(fw,U,m) = −Dm/dτU .

(d) Study the evolution of ν(U,m) along U and determine the relative accel-
eration a(fw,U,m).

(e) Determine the expressions for ζ, η, and Γ corresponding to the U(geo)

geodesic and evaluate F (G)
(fw,U(geo),m).

98. The general stationary cylindrically symmetric vacuum solution (see Iyer
and Vishveshwara, 1993) can be written in the form

ds2 = λ00dt
2 + 2λ03dtdφ+ λ33dφ

2 + e2φ(dτ2 + dσ2),

where coordinates are such that x0 = t, x1 = τ , x2 = σ, x3 = φ, and

λα = Aατ
1+b +Bατ

1−b , α = 00, 03, 33,

e2φ = cτ (b2−1)/2 , τ =
√

2ρ , σ =
√

2z ,

b and c being constants. The coefficients Aα and Bα are related by the
algebraic conditions

A00A33 −A2
03 = 0 ,

B00B33 −B2
03 = 0 ,

A00B33 +A33B00 − 2A03B03 = −1
2
,

and to the mass per unit length m and angular momentum per unit length
j by

m =
1
4

+
1
2
b(A33B00 −A00B33) ,

j =
1
2
b(A03B33 −A33B03) .

Note that τ here is a radial coordinate while σ is the z coordinate (rescaled
by a factor). Consider a time-like circular orbit with 4-velocity

U = Γ(∂t + ζ∂φ) ,

with ζ constant along U , £Uζ = 0.

(a) Show that the normalization factor is given by

Γ = [−(λ00 + 2λ03ζ + λ33ζ
2)]−1/2 .

(b) Show that these orbits are accelerated with purely radial acceleration

a(U) = −1
2
e−2φΓ2(λ̇00 + 2λ̇03ζ + λ̇33ζ

2)∂τ ,

where a dot denotes differentiation with respect to τ .



298 Exercises

(c) Show that time-like circular geodesics correspond to

ζK± = − λ̇03

λ̇33

±

√
1−b2

2

λ̇33

.

(d) Show that geodesic meeting point observers have angular velocity

ζ(gmp) = − λ̇03

λ̇33

.

99. In the context of Exercise 98, show that extremely accelerated observers
ζ(crit)± have angular velocities which are solutions of the following equation:

λ2
03ζ

2 d

dτ

(
λ33

λ03

)
+ λ2

00ζ
d

dτ

(
λ33

λ00

)
+ λ2

00

d

dτ

(
λ33

λ00

)
= 0 .

Show that extremely accelerated observers have constant angular velocities.

100. In the context of Exercise 98,

(a) study the kinematical properties of static observers, with

ζ(stat) = 0 .

(d) study the kinematical properties of zero angular momentum observers,
with

ζ(ZAMO) = −λ03

λ33
.
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