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Preface

This work has been developed by the authors after 30 years of teaching several
courses of electricity and magnetism. The book contains more than three hundred
solved problems, the majority of which have been proposed by the Department of
Applied Physics to Natural Resources in official exams of Advance Physics,
Physics II and Electromagnetism and Waves in the Mining and Energy School
(ETSIME) of the Polytechnic University of Madrid (UPM).

The book has been written for both beginners and advanced students in this
subject. However, it may be useful for physicists and engineers, and also for people
that work with related topics and need the electromagnetic theory for understanding
other disciplines.

The objective of this book is to expose the fundamental concepts of electro-
magnetism through problems. Starting with this idea each chapter is divided into
two parts. The first one contains a brief theoretical introduction where the most
important concepts and formulae employed in the chapter are usually presented
without demonstrating them. The second one is devoted to the exercises labeled as
problems A, B and C, respectively, depending on its difficulty and sometimes
thematically. Problems of type A are thought for beginners in electricity and
magnetism or for lectures on General Physics, where definitions and concepts about
this subject appear for first time. Problems of type B are a bit tougher and can be
worked by students who have some basic knowledge in calculus and electromag-
netics. For closing each chapter, problems of type C are introduced. These kinds of
exercises, even though they are not very difficult, have some conceptual or/and
mathematical complications which make them more adequate for advanced lec-
tures. According with the academic level of the student, this chapter distribution
gives to the reader the possibility of using the book in a flexible way.

Our experience showed us that the most simplest things may be very difficult for
the student at the beginning of learning a subject, if the explanations of the ideas
involved are not clear. Sometimes, the supposition by part of the writer that one
idea or concept is obvious may lead to waste reader’s time. For this reason we have
tried to explain the problems in-depth with an emphasis on physical concepts rather
than on the mathematical developments.
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The book is structured in 14 chapters. It begins with an introductory chapter
devoted to the basic mathematical theorems and formulae that are needed for further
developments. The next two chapters deal with the electric field in different situ-
ations, namely in vacuum and when matter is present. An important topic when
studying fields and circuits are the currents; this is the subject of Chap. 4. In the
same way as commented for the electric field, Chaps. 5 and 6 study the origin of the
magnetic field and the phenomenon of the magnetization. Until this part of the book
the techniques for solving the electric and magnetic fields generated under specific
circumstances are based on direct calculations. In Chap. 7 other more complicated
methods for obtaining these fields are studied. Chapter 8 works out the important
topic of the electromagnetic induction. The different causes of producing electro-
motive force are explained in detail. The understanding of this phenomenon
encompasses the knowledge of former chapters. For this reason it is not recom-
mended to be studied without studying previously the fundamentals of the electric
and magnetic fields. Chapter 9 refers to energetic aspects of the electromagnetic
field and a didactic investigation of the Maxwell equations is left to Chap. 10. The
solution of partial differential equations may be very difficult. However, the
viewpoint adopted in this chapter is more conceptual than mathematical. In fact,
for systems of high symmetry it is possible to find a solution in a simpler way
without solving the system of differential equations. In our opinion, numerous
questions can be answered using a simple mathematical apparatus, without losing
rigor and clarity. Due to the importance of the plasmas, cosmic rays, and machines
as cyclotron and betatron, among others, we have included the study of the
movement of charged particles in electromagnetic field. This is the subject of
Chap. 11. One of the most important consequences of the Maxwell equations is the
unification of the electricity and the magnetism and also the light. In this regard in
Chap. 12 a general view of the electromagnetic waves is given and in Chap. 13, the
phenomena of reflexion and refraction are treated. In this context, an interesting
approach to the propagation of electromagnetic waves throughout anisotropic
media is dealt with in the last part, Chap. 14.

We would like to express our sincere gratitude, wholeheartedly, to our colleague
and friend Faustino Fernández López, for many years of his teaching, experience
and for help wherever we needed.

We are also in indebted to Prof. Aristide Dogariu and his scientific team at
CREOL of the University of Central Florida. Their valuable discussions in the
group meetings provided us very important information which allowed to introduce
some ideas and explanations in some parts of this book.

A very special place in this book is for our colleague Dr. James Germann, who
reviewed all this work, word by word, and also corrected all equations carefully.
We would like to thank him for his invaluable work, dedication, and profession-
alism. Without his help this book would not have seen the light. We wish him all
the best for his future and expect the best in his work with two-photon microscopy
and corneal imaging. We hope his work in this book can be appreciated in his
scientific career.
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Thanks are also due to the Editorial Springer, especially Dr. Claus Ascheron for
providing help in the preparation of this book. His generosity and patience with us
during the writing is largely appreciated.

Finally, we would like to give special thanks to all our students, without whom
we would have never written this book.

Madrid, Spain Félix Salazar Bloise
Madrid, Spain Rafael Medina Ferro
Madrid, Spain Ana Bayón Rojo
Seville, Spain Francisco Gascón Latasa
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Chapter 1
A Mathematical Introduction

Abstract This chapter does not really deal with electromagnetism, but it is needed
as the mathematical foundation for the vector treatment of this subject. It is the
purpose of this chapter to give a brief exposition of basic mathematical elements
to provide an introduction to the field theory which is required for a treatment of
electromagnetism.

1.1 Coordinate Systems and Transformations

A point or vector can be represented in any curvilinear coordinate system. A coor-
dinate system is orthogonal if the coordinates are mutually perpendicular. The three
best-known orthogonal coordinate systems are the Cartesian, the cylindrical and the
spherical.

A Cartesian (or rectangular) coordinate system specifies the position of any point
P in three-dimensional space by three Cartesian coordinates (x, y, z), its signed dis-
tances from three mutually perpendicular planes. A vector OP in Cartesian coordi-
nates can be written as (Px , Py, Pz) or Pxux + Pyuy + Pzuz , with ux ,uy,uz defined
as the unit vectors along the x-, y- and z- directions (Fig. 1.1).

In a cylindrical coordinate system, the three coordinates (ρ,φ, z) of a point P are
defined as (Fig. 1.2):

• The radial distance ρ is the Euclidean distance from the Z -axis to the point P , that
is, the radius of the cylinder passing through P .

• The azimuthal angle φ is the angle between the X -axis and the line from the
origin to the projection of P on the XY -plane.

• The height z is the Euclidean distance from the XY -plane to the point P .

A vector OP in cylindrical coordinates can be written as (Pρ, Pφ, Pz) or Pρuρ +
Pφuφ + Pzuz , with uρ, uφ, uz defined as the unit vectors along the ρ-, φ- and z-
directions.

The relationship between the variables (x, y, z) of theCartesian coordinate system
and those of the cylindrical system (ρ,φ, z) are:

x = ρ cosφ , y = ρ sin φ , z = z , (1.1)

© Springer-Verlag Berlin Heidelberg 2017
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2 1 A Mathematical Introduction

Fig. 1.1 Point P and unit
vectors in the Cartesian
coordinate system

Fig. 1.2 Point P and unit
vectors in the cylindrical
coordinate system

or
ρ =

√
x2 + y2 , φ = tan−1 y

x
, z = z . (1.2)

The relationship between (uρ,uφ,uz) and (ux ,uy,uz) are

uρ = cosφux + sin φuy

uφ = − sin φux + cosφuy (1.3)

uz = uz

or

ux = cosφuρ − sin φuφ

uy = sin φuρ + cosφuφ (1.4)

uz = uz

In a spherical coordinate system, a point P is defined by three coordinates (r, θ,φ)

(Fig. 1.3):
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Fig. 1.3 Point P and unit
vectors in the spherical
coordinate system

• The radius or radial distance r is the Euclidean distance from the origin O to P ,
that is, the radius of a sphere centered at the origin and passing through P .

• The inclination (or polar angle or colatitude) θ is the angle between the Z -axis and
the position vector of P .

• The azimuth (or azimuthal angle) φ is the angle between the X -axis and the line
from the origin to the projection of P on the XY -plane (the same one in cylindrical
coordinates).

AvectorOP in spherical coordinates can bewritten as (Pr , Pθ, Pφ) or Prur + Pθuθ +
Pφuφ, with ur ,uθ,uφ defined as the unit vectors along the r -, θ- and φ- directions.

The relationship between the variables (x, y, z) of theCartesian coordinate system
and those of the spherical system (r, θ,φ) are:

x = r sin θ cosφ , y = ρ sin θ sin φ , z = r cos θ , (1.5)

or

r =
√
x2 + y2 + z2 , θ = tan−1

√
x2 + y2

z
, φ = tan−1 y

x
. (1.6)

The relationship between (ur ,uθ,uφ) and (ux ,uy,uz) are

ur = sin θ cosφux + sin θ sin φuy + cos θuz

uθ = cos θ cosφux + cos θ sin φuy − sin θuz (1.7)

uφ = − sin φux + cosφuy

or

ux = sin θ cosφur + cos θ cosφuθ − sin φuφ

uy = sin θ sin φur + cos θ sin φuθ + cosφuφ (1.8)

uz = cos θur − sin θuθ
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1.2 Differential Length, Area and Volume

Differential elements in length, area and volume are used in integration to solve
problems involving paths, surfaces and volumes. The line element or differential
displacement dl (or dr) is given, in Cartesian coordinates, by

dl = dxux + dyuy + dzuz , (1.9)

in cylindrical coordinates by

dl = dρuρ + ρdφuφ + dzuz , (1.10)

and in spherical coordinates by

dl = drur + rdθuθ + r sin θdφuφ . (1.11)

The surface element or differential normal area is given, in Cartesian coordi-
nates, by

dS = dydzux + dxdzuy + dxdyuz , (1.12)

in cylindrical coordinates by

dS = ρdφdzuρ + dρdzuφ + ρdφdρuz , (1.13)

and in spherical coordinates by

dS = r2 sin θdθdφur + r sin θdrdφuθ + rdrdθuφ . (1.14)

The volume element or differential volume is given, in Cartesian coordinates, by

dV = dxdydz , (1.15)

in cylindrical coordinates by

dV = ρdρdφdz , (1.16)

and in spherical coordinates by

dV = r2 sin θdrdθdφ . (1.17)
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Fig. 1.4 a Scalar field ϕ = x · e−x2−y2 and its isolines. b Vector lines of a vector field

1.3 Scalar and Vector Fields

A scalar is a quantity which is completely characterized by its magnitude. A vector is
a quantity which is completely characterized by its magnitude and direction.1 A field
is a function that specifies a particular quantity everywhere in a region. Therefore,
a scalar field associates a scalar value to every point in a space and a vector field
associates a vector to every point in a space.

In �n , a scalar field is a function ϕ : A ⊂ �n → �. If a point r is considered, a
scalar field can be defined by a function ϕ = ϕ(r). If a Cartesian coordinate system
is used, r = r(x, y, z) and ϕ = ϕ(x, y, z).

A scalar field ϕ can be represented by its level surfaces or equipotential surfaces.
Points at which the function ϕ has the same value, [ϕ(x, y, z) = c with c ∈ � a
constant] are said to define a level surface of the function. Such surfaces are usually
named by the use of the prefixes iso or equi. If ϕ is a function of two variables,
ϕ(x, y) = c is a curve along which the function has a constant value and is called a
contour line or isoline. Figure1.4a is an example of a scalar field and its isolines.

In �n , a vector field is a function F : A ⊂ �n → �n . A vector field F can be
represented by its vector lines. If we start at a given point of a vector field and
consider the vector of the field at that point to be the tangent to a curve passing
through the point, the field will determine a set of curves which will at every point
have the vector of the field as tangent (Fig. 1.4b). So if F is a vector field, a vector
line is a curve �(t) defined by

�′(t) = F(�(t)) , (1.18)

where t is a parameter. If rectangular coordinates are used, F = F(r) = Fx (x, y, z)
ux + Fy(x, y, z)uy + Fz(x, y, z)uz , and vector lines are determined by

1Direction and sense.



6 1 A Mathematical Introduction

Fig. 1.5 Regions. a Simply connected. By deforming the curve � we reach a point without leaving
the region. b Multiply connected. If we deform � we cannot obtain a point

dx

Fx
= dy

Fy
= dz

Fz
. (1.19)

Vector lines are oriented with the same direction of vector field.

1.4 Concept and Definition of Regions, Curves and Surfaces

In this section we try to show some basic concepts that are important for understand-
ing calculation we will develop throughout the next chapters. As we will see, the
majority of the integrals used in electromagnetic theory extend over surfaces and
curves, and it useful to comment on them to some extent.

A set D is said to be simply connected if any closed curve � ⊂ D may be shrunk
to a point inside this region. Roughly speaking such a region does not have holes
(Fig. 1.5a). In the same way we have a multiply connected region when we cannot
reduce a closed curve belonging D to a point without touch its boundaries (Fig. 1.5b).
For instance, a sphere is a simply connected set in �3, but an infinite cylinder or a
torus are not. A region D is said to be star-shaped if there exist a point P in D such
that all points inside of this domain can joined with P by means of a straight line
(Fig. 1.6).

Let us suppose a vectorial function of scalar variation �(t) that transforms the
points of an interval I [a, b] ∈ � into �3. Then the idea is that when the parameter
t varies over I , �(t) draws a curve in the space �3.2 The mathematical form of a
curve is the following:

�(t) = x(t)ux + y(t)uy + z(t)uz . (1.20)

Two simple curves are represented in Fig. 1.7. Both are of special interest for us,
as we will see in Chap.5. The first one (a) is an open curve and corresponds to a

2In general a curve is a continuous application �(t) : I ⊂ � → �n , but for our practical use in this
book we will restrict to the cases of �3 and �2.

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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(a) (b)

Fig. 1.6 Regions. a Star-shaped region. Point P can connect any point inside the domain through
a straight line. b In this case we cannot find a point Pi , belonging to D, which joins every interior
point with a straight line without cutting some part of its boundary

(a)

(b)

Fig. 1.7 a Helix. This curve may be expressed as �(t) = a cos(t)ux + a sin(t)uy + b
2π tuz . b This

curve is represented by �(t) = (a + b sin(ωt)) cos(t)ux + (a + b sin(ωt)) sin(t)uy + cos(ωt)uz

helix. It is the typical form of a finite solenoid. The second one (b) is a closed curve
because its beginning coincides with the end. This geometry is described as a toroidal
solenoid.

Depending on the problem, an adequate change of parameter may be chosen to
obtain the same curve. In this regard we must understand a curve as an equivalence
class of equivalent parametric representations. Basically we can distinguish four
classes of curves (Fig. 1.8): (a) simple open curves; (b) simple closed curves; (c) not
simple open curves, and (d) not simple closed curves. Simple curves, contrary to not
simple curves, does not intersects themselves anywhere.

A surface is the image of a continuous transformation of a two dimensional region
D ∈ �2 into a subset G of the space �3.3 This transformation must have some
properties as the continuity of the partial derivatives, and must admit an inverse

3There are other definitions of a surface. See, for example, [21].
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Fig. 1.8 Different kind of
curves. a Simple open. b
Simple closed. c Not simple
open. d Not simple closed

(a) (b)

(c) (d)

transformation between the subset G and D ∈ �2. This last characteristic prevents
the surface from cutting itself and guarantees that the geometry of the surface does
not depend of the parametrization chosen. Moreover, the transformation must be
regular, i.e., the differential dS : D(�2) → G(�3) exists, which means that we can
define a tangent plane for every point belonging to G.

Conceptually, a surface is a geometrical place of the space (�3) of two degrees
of freedom.4 For its mathematical representation we have three different forms:

(a)Vectorial or parametric. In this representation eachpoint P(x, y, z) is expressed
as a function of two parameters

S(u, v) = X (u, v)ux + Y (u, v)uy + Z(u, v)uz . (1.21)

(b) Explicit form. By this representation one of the variables may be set as a
function of the other two. For example, if we have x , y and z, we can express z as a
function of x , y as z = g(x, y).

(c) Implicit representation. By this form of surface we find a relationship among
variables of the form S(x, y, z) = 0.

An important concept when studying surfaces is related with its orientation. We
will use this concept also when calculating surface integrals (see next section), then
we are going to define it.

If the surface is smooth enough we could locate a vector perpendicular to each
point on the surface. In other words, we could find a tangent plane at every point

4Actually, the same idea may be extended for more dimensions (hypersurfaces), but for the scope
of this book such a case is of no interest.
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whose normal associate vector coincides with the outward normal at the same point
of the surface. However, we could define a similar vector at the same point but inward
to the surface. For this reason when dealing with two-sided5 surfaces it is necessary
to say which orientation we have chosen for the calculations. Moreover, in cases for
which a surface integral is related with a linear integral (see Stokes theorem), the
orientation of the open surface is related with the sense chosen for the vector dl, i.e.,
with the chosen direction for travelling the closed curve delimiting the surface. For
defining correctly such a concept we say that a surface is orientable if there exist
local mapping for every region such that the Jacobian of the transformation from one
local coordinate system to another is positive.6

1.5 Line, Surface and Volume Integrals.
Circulation and Flux

We may consider three kinds of integrals: line, surface and volume according to the
nature of the differential appearing in the integral. The integrand may be either a
vector or a scalar. Certain combinations of integrands and differentials give rise to
interesting integrals.

An open line has a beginning and an end. A closed line is onewhich it is possible to
begin at any point, traverse the entire curve in a given sense, and return to the starting
point. Therefore, it may be considered to be the boundary of an open surface. So a
closed path defines an open surface whereas a closed surface defines a volume.

If F is a vector field and dr (or dl) is the line element, a vector representing the
differential length of a small element of a defined curve �, the line integral of F
along � between two points A and B is the integral of the tangencial component of
F along curve �,

WF (�) =
∫ B

A �

F · dr =
∫ B

A �

(Fx (x, y, z)ux + Fy(x, y, z)uy + Fz(x, y, z)uz)(dx, dy, dz) =

=
∫ B

A
(Fxdx + Fydy + Fzdz). (1.22)

This expression may be written in another equivalent form

WF (�) =
∫ B

A �

F · dr =
∫ B

A
F cos θdr , (1.23)

5Not all surfaces have this property. For example, the well known Möbius strip is a non-orientable
surface. In fact, when moving along one of its sides, the normal vector reverses its sense at the same
point but on the another side.
6In differential geometry the open region to be transformed together with a local coordinate system
is called a chart, and the set of charts covering the entire surface is said an atlas.
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Fig. 1.9 Circulation of a
vector field

where θ is the angle betweenF and dr at each point along the curve. This line integral
is called the circulation7 of F along �. Since F · dr is a scalar it is clear that the
circulation is a scalar. Figure1.9 shows a visualization of such a line integral, as the
limit of the infinite series

WF (�) = lim
N→∞

N∑

i=1

F(ri ) · �ri = lim
N→∞

N∑

i=1

F(ri ) · �ri cos θi . (1.24)

When the curve � is closed, a change is made in the symbol for the circulation over
the closed path

WF (�) =
∮

�

F · dr . (1.25)

In the language of mathematics (1.22) is known as a differential form of first degree.
Differential forms of this kind are expressed as a linear combination of the differen-
tials of the variables, i.e.,

dF = Fx(x, y, z)dx + Fy(x, y, z)dy + Fz(x, y, z)dz, (1.26)

where the coefficients Fx , Fy , and Fz are real valued functions of x , y and z. An
important characteristic of (1.26) is that dF does usually not represent the differential
of a function. As a consequence the integral (1.22) or (1.25) will depend not only on
the endpoints A and B, but also on the curve� chosen for performing the calculation,
then the integral around a closed path may or not may be zero. The class of vector
fields for which such an integral around any closed curve is zero is of considerable
importance in physics, and we will briefly discuss them in Sect. 1.12.

If F is a vector field, continuous in a region containing the smooth surface S the
surface integral of F through S is

�F =
∫

S
F · dS =

∫

S
F · n dS =

∫

S
F cos θdS , (1.27)

7Sometimes the expression “circulation” is used only if � is a closed line.
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(a) (b)

Fig. 1.10 Flux of a vector field through: a an open surface; b a closed surface

which is called the flux of F through S. Vector n is the unit normal (or normal vector)
to S at any point of S and dS is the surface element, dS = dSn, as defined in Sect. 1.2.
Surface S is arbitrary orientated (Fig. 1.10a). For a closed surface (defining a volume
V ),

�F =
∮

∂V
F · dS =

∮

∂V
F · n dS , (1.28)

where ∂V is the surface defining the volume V and n is the outward unit normal to
∂V (Fig. 1.10b).

If ϕ is a scalar field and F is a vector field, defined in a region V , the two volume
integrals in which we are interested are

J =
∫

V
ϕdV , K =

∫

V
FdV . (1.29)

J is a scalar and K is a vector. In K there is one integral for each component of F.
Since dV is as defined in Sect. 1.2, the volume integral can be written using a triple
integral,

J =
∫∫∫

V
ϕ(x, y, z)dxdydz =

∫∫∫

V
ϕ(ρ,φ, z)ρdρdφdz

=
∫∫∫

V
ϕ(r, θ,φ)r2 sin θdrdθdφ , (1.30)

in Cartesian, cylindrical and spherical coordinates, respectively.

1.6 Gradient

It is convenient to introduce the idea of the directional derivative of a scalar function
ϕ of several variables. The directional derivative ofϕ at point r in the direction of u is
denoted byDuϕ(r), where r is the point where the directional derivative is evaluated
and u is the unit vector along the considered direction. It may be defined as
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Fig. 1.11 Isolines and
gradient of the scalar field
ϕ = x · e−x2−y2

Duϕ(r) = lim
�r→0

ϕ(r + �ru) − ϕ(r)
�r

. (1.31)

Note that partial derivatives
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
are the directional derivatives in the direc-

tions ux ,uy,uz , respectively.
It is also convenient to introduce the del operator, written ∇, which is the vector

differential operator. In Cartesian coordinates,

∇ = ∂

∂x
ux + ∂

∂y
uy + ∂

∂z
uz . (1.32)

In cylindrical coordinates,

∇ = ∂

∂ρ
uρ + 1

ρ

∂

∂φ
uφ + ∂

∂z
uz (1.33)

In spherical coordinates,

∇ = ∂

∂r
ur + 1

r

∂

∂θ
uθ + 1

r sin θ

∂

∂φ
uφ (1.34)

The gradient of a scalar fieldϕ at a point is a vector∇ϕ (or gradϕ) that represents
both the magnitude and the direction of the maximum directional derivative at the
point. Figure1.11 shows the example of Fig. 1.4a with its gradients.8

8In the appendix, a MATLAB program to calculate surfaces, isolines and gradients is included.
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Using the del operator, the value of ∇ϕ in the Cartesian coordinate system is

∇ϕ = ∂ϕ

∂x
ux + ∂ϕ

∂y
uy + ∂ϕ

∂z
uz , (1.35)

in cylindrical coordinates

∇ϕ = ∂ϕ

∂ρ
uρ + 1

ρ

∂ϕ

∂φ
uφ + ∂ϕ

∂z
uz , (1.36)

and in spherical coordinates

∇ϕ = ∂ϕ

∂r
ur + 1

r

∂ϕ

∂θ
uθ + 1

r sin θ

∂ϕ

∂φ
uφ (1.37)

We can also take note of the following fundamental properties of the gradient of
a scalar field ϕ:

• The gradient ∇ϕ of a scalar field ϕ is a vector field.
• The magnitude of ∇ϕ equals the maximum rate of change in ϕ per unit distance.
• ∇ϕ points in the direction of the maximum rate of change in ϕ.
• ∇ϕ at any point is perpendicular to the level surface that passes through that point.
• The directional derivative can be calculated as

Duϕ(r) = ∇ϕ(r) · u , (1.38)

the projection of the gradient in the direction of a unit vector u.

• The differential of a scalar field ϕ(r), dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dz, can be

calculated as

dϕ(r) = ∇ϕ(r) · dr . (1.39)

1.7 Curl

The curl of a vector field F at a point r is an axial (or rotational) vector ∇ × F (or
curlF)9 whose magnitude is the maximum circulation of F per unit area as the area
tends to zero and whose direction is the normal direction of the area when the area
is oriented so as to make the circulation maximum,

curlF(r) = ∇ × F(r) =
(
lim
S→0

1

S

∮

∂S
F · dl

)

max

n , (1.40)

9Because of its rotational nature, rot F is also used.
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where n is the outward unit normal to surface S (surrounding r) which are bounded
by the curve ∂S in which r is located and is determined using the right-hand rule.

Note that the curl (∇ × F) of a vector field F is a vector field which are related
with closed circulation of a vector around a point. The direction of the rotational of
a vector field at each point P is perpendicular to the plane crossing P for which the
circulation is a maximum.

Using the del operator, the value of curlF = ∇ × F in the Cartesian coordinate
system is

∇ × F =

∣
∣
∣
∣
∣
∣
∣
∣

ux uy uz
∂

∂x

∂

∂y

∂

∂z
Fx Fy Fz

∣
∣
∣
∣
∣
∣
∣
∣

=
(

∂Fz
∂y

− ∂Fy
∂z

)
ux +

(
∂Fx
∂z

− ∂Fz
∂x

)
uy +

(
∂Fy
∂x

− ∂Fx
∂y

)
uz ,

(1.41)
in cylindrical coordinates

∇ × F =

∣
∣
∣
∣
∣
∣
∣
∣

uρ uφ uz
∂

∂ρ

1

ρ

∂

∂φ

∂

∂z
Fρ Fφ Fz

∣
∣
∣
∣
∣
∣
∣
∣

=
(
1

ρ

∂Fz
∂φ

− ∂Fφ

∂z

)
uρ +

(
∂Fρ

∂z
− ∂Fz

∂ρ

)
uφ + 1

ρ

(
∂

∂ρ
(ρFφ) − ∂Fρ

∂φ

)
uz ,

(1.42)
and in spherical coordinates

∇ × F =

∣
∣
∣
∣
∣
∣
∣
∣

ur uθ uφ
∂

∂r

1

r

∂

∂θ

1

r sin θ

∂

∂φ
Fr Fθ Fφ

∣
∣
∣
∣
∣
∣
∣
∣

= (1.43)

= 1

r sin θ

[
∂

∂θ
(Fφ sin θ) − ∂Fθ

∂φ

]
ur +

[
1

r sin θ

∂Fr
∂φ

− 1

r

∂

∂r
(r Fφ)

]
uθ + 1

r

[
∂

∂r
(r Fθ) − ∂Fr

∂θ

]
uφ .

1.8 Divergence

The divergence of a vector field F at a point r is an scalar ∇ · F (or divF) whose
value is the outward flux per unit volume as the volume shrinks about P. Hence,

divF(r) = ∇ · F(r) = lim
V→0

1

V

∮

∂V
F · dS , (1.44)

where the volume V is enclosed by the closed surface ∂V in which r is located.
Note that the divergence (∇ · F) of a vector field F is a scalar field which is related

to flux of a vector through a closed surface surrounding each point per unit volume
(or source density). Physically, we may regard the divergence of the vector field F
at a given point as a measure of how much the field diverges or emanates from that
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point. It is positive at a source point in the field, and negative at a sink point, or zero
where there is neither sink nor source.

Using the del operator, the value of divF = ∇ · F in the Cartesian coordinate
system is

∇ · F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
, (1.45)

in cylindrical coordinates

∇ · F = 1

ρ

∂

∂ρ
(ρFρ) + 1

ρ

∂Fφ

∂φ
+ ∂Fz

∂z
, (1.46)

and in spherical coordinates

∇ · F = 1

r2
∂

∂r
(r2Fr ) + 1

r sin θ

∂

∂θ
(Fθ sin θ) + 1

r sin θ

∂Fφ

∂φ
. (1.47)

1.9 Stokes’s Theorem and Divergence Theorem

Stokes’s theorem: Let S be an orientable surface in �3 whose boundary is a simple
closed curve ∂S, and let F(x, y, z) = Fx (x, y, z)ux + Fy(x, y, z)uy + Fz(x, y, z)uz

be a smooth vector field defined on some subset of �3 that contains S. Then
∮

∂S
F · dl =

∫

S
(∇ × F) · dS . (1.48)

The direction of dl and dS involved in Stokes’s theorem is shown in Fig. 1.12 and is
determined using the right-hand rule. Stokes’s theorem states that the circulation of
a vector field F around a closed path ∂S is equal to the flux of the curl of F over the
open surface S bounded by ∂S provided that F and ∇ × F are continuous on S.

Divergence theorem (or Ostrogradski–Gauss theorem): Let V be a volume in
�3 whose boundary is a closed surface ∂V , and let F(x, y, z) = Fx (x, y, z)ux +
Fy(x, y, z)uy + Fz(x, y, z)uz be a vector field defined on some subset of �3 that
contains ∂V . Then

Fig. 1.12 Sense of dl and
dS involved in Stokes’s
theorem
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∮

∂V
F · dS =

∫

V
∇ · F dV . (1.49)

The divergence theorem states that the total outward flux of a vector field F through
a closed surface ∂V is the same as the volume integral of the divergence of F over
the volume V bounded by ∂V .

Note that whereas Stokes’s theorem relates a line integral (circulation) to a surface
integral, the divergence theorem relates a surface integral (flux) to a volume integral.

1.10 Normal Vector to a Surface

When calculating some surface integrals, as the flux of a vectorial field across a sur-
face, the problem of obtaining the normal vector n to a surface arises. The expression
for this vector depends on the representation chosen for the surface, i.e., parametric,
implicit and explicit.

1.10.1 Vectorial or Parametric

In this case, if we suppose we have u and v as parameters for representing the surface
S, the expression of the surface may be written as follows

S(u, v) = X (u, v)ux + Y (u, v)uy + Z(u, v)uz, (1.50)

and the normal vector

n = ±
∂S(u, v)

∂u
× ∂S(u, v)

∂v∣
∣
∣
∣
∂S(u, v)

∂u
× ∂S(u, v)

∂v

∣
∣
∣
∣

. (1.51)

Note that, in general, the result will depend on u and v. Once we have the normal
the element of the differential surface is

dS =
∣
∣
∣
∣
∂S(u, v)

∂u
× ∂S(u, v)

∂v

∣
∣
∣
∣ du dv, (1.52)

and the final formula for the flux
∫

S
F · dS =

∫

S
F(S(u, v)) · ndS =

∫

S
F(S(u, v)) · ∂S(u, v)

∂u
× ∂S(u, v)

∂v
du dv.

(1.53)
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1.10.2 Explicit

Such a representation is of the form z = g(x, y), but we can put it in vectorial form.
In fact, making the substitution x = u and y = v, the function z = g(x, y) may be
written as z = g(u, v), obtaining for the surface the following expression

S(u, v) = uux + vuy + g(u, v)uz, (1.54)

then for calculating n we must first to determine the partial derivatives (1.51)

∂S(u, v)

∂u
= ux + ∂g(u, v)

∂u
uz, (1.55)

and
∂S(u, v)

∂v
= uy + ∂g(u, v)

∂v
uz . (1.56)

As a result we have for the vectorial product (1.51)

n = ±
−∂g(u, v)

∂u
ux − ∂g(u, v)

∂v
uy + uz

√(
∂g(u, v)

∂u

)2

+
(

∂g(u, v)

∂v

)2

+ 1

, (1.57)

and

dS =
∣
∣
∣
∣
∂S(u, v)

∂u
× ∂S(u, v)

∂v

∣
∣
∣
∣ du dv =

√

1 +
(

∂g(u, v)

∂u

)2

+
(

∂g(u, v)

∂v

)2

du dv.

(1.58)
The expression for the flux in explicit form is

∫ ∫

S
F · dS =

∫ ∫

S
F · ndS

=
∫ ∫

S
F(u, v, g(u, v)) ·

(
−∂g(u, v)

∂u
ux − ∂g(u, v)

∂v
uy + uz

)
du dv.

(1.59)

1.10.3 Implicit

As we have seen, when a surface is written in implicit form we obtain a function
S(x, y, z) = 0. If consider S(x, y, z) as a level surface, we know that the gradient
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is perpendicular to it, then the normal unitary vector may be found through this
mathematical operator,

n = ± ∇S(x, y, z)

|∇S(x, y, z)| = ±
∂S(x, y, z)

∂x
ux + ∂S(x, y, z)

∂y
uy + ∂S(x, y, z)

∂z
uz

√(
∂S(x, y, z)

∂x

)2

+
(

∂S(x, y, z)

∂y

)2

+
(

∂S(x, y, z)

∂z

)2
.

(1.60)

For calculating the flux across the surface S we must project such a surface over
some of the three coordinate planes OXY , OY Z or OXZ . If the plane chosen is
the OXY we can express z = f (x, y), and for the other projections we can define
x = h(y, z) for the plane OY Z and y = q(x, z) for OXZ . In principle the choice
of projection has no influence in the procedure, however sometimes we cannot find
some of the aforementioned functional relations. For instance, let us suppose we
would like to do the calculations by z = f (x, y). In this case we must find the
function S(x, y, f (x, y)), but it is not possible because the equation S(x, y, z) = 0
is not one-valued. Another problem could be that we cannot arrange z = f (x, y)
from S(x, y, z) = 0. In these cases we can try other projections.

To obtain the flux we start we the scalar product F · n, were F = Fx (x, y, z)ux +
Fy(x, y, z)uy + Fz(x, y, z)uz which leads to

F · n =
Fx

∂S(x, y, z)

∂x
+ Fy

∂S(x, y, z)

∂y
+ Fz

∂S(x, y, z)

∂z
√(

∂S(x, y, z)

∂x

)2

+
(

∂S(x, y, z)

∂y

)2

+
(

∂S(x, y, z)

∂z

)2
. (1.61)

We know the relation between the variables, then if we substitute z = f (x, y) in
(1.61) we have a function only depending on x and y, i.e., (F · n)z= f (x,y) = G(x, y)
and it follows that dS has the same form as (1.58) that we have seen in Sect. 1.10.2.
By combining all in the definition of (1.59) may be obtained

∫ ∫

S
F · dS =

∫ ∫

S
F · ndS =

∫ ∫

S
G(x, y)

√

1 +
(

∂f(x, y)
∂x

)2
+

(
∂f(x, y)

∂y

)2
dx dy. (1.62)

This result is sometimes also written as
∫ ∫

S
F · ndS =

∫ ∫

S

[
F · n
cos γ

]

z= f (x,y)

dx dy, (1.63)

γ being the angle between the normal to the surface S and the positive OZ axis, thus
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cos γ = ± 1
√

1 +
(

∂f(x, y)
∂x

)2

+
(

∂f(x, y)
∂y

)2
.

Alternatively we can use

∫ ∫

S
F · dS =

∫ ∫

S
[Fx (x, y, z) cos α + Fy(x, y, z) cos β + Fz(x, y, z) cos γ] dS, (1.64)

where
dS cos α = ± dy dz, (1.65)

dS cos β = ± dx dz, (1.66)

and
dS cos γ = ± dx dy. (1.67)

Introduction of all these formulae into (1.64) leads to

∫ ∫

S
F · dS =

∫ ∫

SOY Z

Fx (h(y, z), y, z) dy dz +
∫ ∫

SOXZ

Fy(x, q(x, z), z) dx dz +

+
∫ ∫

SOXY

Fz(x, y, f (x, y)) dx dy (1.68)

in which SOY Z , SOXZ , and SOXY are the projections of the surface S over the planes
OY Z , OXZ , and OXY , respectively. The principal difference between both pro-
cedures is that by (1.63) we need only to perform one double integration, but using
(1.68) three integrations are required (one for each projection).

1.11 Further Developments

Several operations including gradient, curl or divergence of appropriate kinds of
fields may be done.

The curl of the gradient of any scalar field is zero:

curl gradϕ = ∇ × ∇ϕ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ux uy uz
∂

∂x

∂

∂y

∂

∂z
∂ϕ

∂x

∂ϕ

∂y

∂ϕ

∂z

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 . (1.69)
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The divergence of any curl is also zero:

div curlF = ∇ · (∇ × F) = ∂

∂x

(
∂Fz
∂y

− ∂Fy
∂z

)
+ ∂

∂y

(
∂Fx
∂z

− ∂Fz
∂x

)
+ ∂

∂z

(
∂Fy
∂x

− ∂Fx
∂y

)
= 0 .

(1.70)

The divergence of the gradient of any scalar field ϕ is a scalar field �ϕ (or ∇2ϕ)
that is called the laplacian of the scalar field. Hence,

div gradϕ = �ϕ = ∇2ϕ = ∇ · ∇ϕ . (1.71)

Using the del operator, the value of �ϕ in the Cartesian coordinate system is

�ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
, (1.72)

in cylindrical coordinates

�ϕ = 1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+ 1

ρ2
∂2ϕ

∂φ2
+ ∂2ϕ

∂z2
, (1.73)

and in spherical coordinates

�ϕ = 1

r2
∂

∂r

(
r2

∂ϕ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+ 1

r2 sin2 θ

∂2ϕ

∂φ2
. (1.74)

The curl of the curl of a vector field results

curl curlF = grad divF − �F , (1.75)

or

∇ × (∇ × F) = ∇(∇ · F) − ∇2F , (1.76)

where the Laplacian of a vector field is defined as the Laplacian of each component,

�F = ∇2F = �Fxux + �Fyuy + �Fzuz . (1.77)

Themost interesting extension of the divergence theorem and of Stokes’s theorem
is Green’s theorem, which is

∫

V
(ψ�ϕ − ϕ�ψ) dV =

∮

∂V
(ψ∇ϕ − ϕ∇ψ) · dS . (1.78)
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If ψ = 1, ∫

V
�ϕ dV =

∮

∂V
∇ϕ · dS , (1.79)

the volume integral of the Laplacian of ϕ over V is the same as the total outward
flux of gradient of ϕ through the closed surface ∂V .

1.12 Classification of Vector Fields

As it was previously commented (see Sect. 1.5), some vector fields have special
behaviorwith respect to the integral (1.22). For this reason,we devoted this paragraph
for explaining the most important results referred to them.

Let us suppose a vector field F(x, y, z) defined in a simple connected region D.
If the line integral of that field around any closed curve is zero, i.e.,

∮

∂S
F · dl =

∮

∂S
dF = 0 . (1.80)

we say that this field is irrotational or conservative. If we look at Stokes’s theorem
(1.48), this result may be enounced in an equivalent form by means of the curl of the
field. In fact, as (1.80) holds, then∇ × F = 0, and the following system of equations
apply

∂Fz

∂y
= ∂Fy

∂z
,

∂Fx

∂z
= ∂Fz

∂x
,

∂Fy

∂x
= ∂Fx

∂y
, (1.81)

hence, a vector field whose curl is zero at every point of a simple connected domain
is conservative in that region. When condition (1.80) is satisfied we say that the
differential form dF is exact. As a result, the irrotational field F can always be
expressed in terms of another scalar field V (x, y, z), since ∇ × (∇V ) = 0, that is,

∇ × F = 0 ⇒
∫

S
(∇ · F) · dS =

∮

∂S
F · dl = 0 and F = −∇V . (1.82)

For this reason F may be called a potential field and V the scalar potential of F.
As a corollary of this result we have that the curvilinear integral of such a field

between two points A and B in D does not depend on the trajectory chosen for
performing the calculation, but only of the endpoints, i.e.,

∫ B

A
F · dl = −

∫ B

A
∇V · dl = V (B) − V (A) . (1.83)

Even though the conditions given for potential fields arewell posed, someattention
should be given for non-simply connected domains. In this case, conditions (1.81)
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Fig. 1.13 Multiply
connected domain D. The
line integral around �1 is not
zero. However, the same
calculation along �2 is zero.
If curve is opened and does
not pass throughout the
singularities the result will
depend only of the endpoints

do not guarantee (1.80). In effect, if (1.80) is fulfilled but the closed curve � encloses
holes (curve �1, Fig. 1.13), the linear integral is not zero, i.e.,

∮

∂S
F · dl =

∮

∂S
dF 
= 0 . (1.84)

This result shows that formultiply connected regions (see Fig. 1.13) the necessary
condition ∇ × F = 0 to have a potential so that F = −∇V is not sufficient. When
it happens we say that the differential form dF is closed. Therefore, the condition to
be closed is only (1.81) and we can say that all exact 1− f orm are closed, but the
converse is false unless the region G is simply connected. Nevertheless, a comment
about it must given.

Observe that in this last case, even the differential 1 − dF form is closed (see
Fig. 1.13), two possibilities may arise. In fact, let us choose another closed curve as
�2 belonging to the multiply connected domain. As �2 does not surrounds any hole,
its line integral will be zero as (1.80). It is equivalent to say that, if we do not touch
or enclose holes, and ∇ × F = 0 simultaneously in this subregion of D, we can also
find a scalar function V (r) so that F = −∇V . Hence, a closed integral must be zero
(curve �2 in Fig. 1.13) and an open integral from A to B (curve �3) will only depend
on the endpoints A and B.

The aforementioned definitions were focused on the rotational of a vector field.
In the same way we can also define other kinds of fields if we look at divergence. So,
the vector fields that have zero divergence (∇ · F = 0) are called solenoidal fields.
Such fields have neither source nor sinks of flux (see Chap. 5). From the divergence
theorem, we get ∮

∂V
F · dS =

∫

V
∇ · F dV = 0 . (1.85)

A solenoidal field F can always be expressed in terms of another vector field A
through the curl, since ∇ · (∇ × A) = 0, that is,

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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∇ · F = 0 ⇒
∫

V
∇ · F dV =

∮

∂V
F · dS = 0 and F = ∇ × A . (1.86)

A is called the vector potential of F.
A vector field F is uniquely prescribed within a region by its divergence and its

curl. If we let
∇ · F = ρ , ∇ × F = j , (1.87)

ρ can be regarded as a point source density of F and j its circulation density. Any
vector F satisfying (1.87) with ρ and j vanishing at infinity can be written as

F = −∇V + ∇ × A , (1.88)

where V is the scalar potential and A the vector potential of F. This is called
Helmholtz’s theorem. This theorem shows that any vector field F verifying (1.87)
can be written as the sum of two vector fields: one irrotational (−∇V ), the other
solenoidal (∇ × A).

1.13 Obtaining the Scalar Potential

Aswe have seen in the preceding section, when∇ × F = 0 at every point of a simply
connected open set it is possible to find a scalar function V (r) so that F = −∇V (r).
As a result, the curvilinear integral of the field F around any simple closed curve is
zero. The aim of this paragraph is to present a procedure for determining the scalar
function V (r) from the vectorial field F.

1.13.1 First Method

Let us consider a vectorial function F(r) in �3 which may be obtained from a scalar
potential V (r)

F(r) = Fx(x, y, z)ux + Fy(x, y, z)uy + Fz(x, y, z)uz = −∇V (r). (1.89)

By identifying them by term of that equality it may be written

Fx (x, y, z) = −∂V

∂x
, (1.90)

Fy(x, y, z) = −∂V

∂y
, (1.91)
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and

Fz(x, y, z) = −∂V

∂z
. (1.92)

By choosing, for example the first one, we can integrate in the variable x considering
the other variables are constant, i.e.,

V = −
∫

Fx (x, y, z)dx + C(y, z) = −Gx (x, y, z) + C(y, z), (1.93)

where C(y, z) is an unknown constant that depends on the rest of variables y and z,
andGx (x, y, z) is the integral of Fx (x, y, z)10 with respect to x . Now, if we introduce
this last result into (1.91), we have

∂V

∂y
= ∂

∂y
{−Gx (x, y, z)} + ∂C(y, z)

∂y
= −Gx

y(x, y, z) + Cy(y, z) = Fy(x, y, z),

(1.94)
where the superindex x of Gx

y(x, y, z) represents the integral with respect to the
coordinate x and the subindex y the partial derivative respect to y. Integrating again
(1.94) but with respect to y,

C(y, z) =
∫

Fy(x, y, z)dy +
∫

Gx
y(x, y, z)dy + D(z), (1.95)

and therefore

V = −Gx (x, y, z) +
∫

Fy(x, y, z)dy +
∫

Gx
y(x, y, z)dy + D(z)

= −
∫

Fx (x, y, z)dx +
∫

Fy(x, y, z)dy + D(z). (1.96)

In (1.96) the constant D is only a function of z. By proceeding in the same way, that
is, using (1.92), we have

− ∂V

∂z
= Fz(x, y, z). (1.97)

1.13.2 Second Method

As F = −∇V (r) for these type of fields, the integral

∫ B

A
F · dl = −

∫ B

A
∇V · dl (1.98)

10Observe that, in this case for F , this subindex x (or y and z) does not represent the derivative.
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Fig. 1.14 This path is
formed by three segments
parallel to the coordinate
axis X , Y , and Z

must be true for any curve � whose endpoints are A and B. The idea for finding the
potential function V is to choose an easily integrable curve and solve (1.98) directly.
In fact, let us use the curve shown in Fig. 1.14. This path is composed by three finite
line segments, each of them parallel to one of the coordinate axes. The first part
of the curve begins at point A, whose coordinates are (x0, y0, z0), and finishes at
B(x, y0, z0). As this segment is parallel to OX , the projections over OY and OZ
are constants between A and B. Following the same idea for the straight lines BC
and CD, we can write

V (x, y, z) = −
∫ x

x0

Fx (x, y0, z0)dx −
∫ y

y0

Fy(x, y, z0)dy −
∫ z

z0

Fz(x, y, z)dz + R,

(1.99)
R being a constant.

1.13.3 Third Method*

Aswe have previously seenmentioned in Sect. 1.4, some kinds of regions have stellar
form. In such a domain there is at least one point that may be connected with any
point inside of this region. When working with stellar-shaped domains with respect
to the origin of coordinates O , the potential V (x, y, z) corresponding to a vectorial
field F can be obtained by means of the following mathematical relation

V (x, y, z) = −
∫ 1

0
F(P1) · rdλ + C, (1.100)
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Fig. 1.15 A point goes over
the line � when parameter t
varies from 0 to 1

where r = xux + yuy + zuz is the vector joining the origin of the reference frame
with the point (x, y, z), and P1 = (λx,λy,λz) for 0 ≤ λ ≤ 1. Observe that the effect
of varying parameterλ is to travel the curve� from the beginning to its end (Fig. 1.15).

1.14 Vectorial Field from the Vector Potential

As we have seen in Sect. 1.1211 a special case when studying vector fields occurs
with solenoidal fields. For such fields holds ∇ · F = 0, and then we can express F
as the curl of a vector field, i.e., F = ∇ × A. In the same manner studied before for
the scalar potential, sometimes we know the vector field F, and we are interested in
obtaining the vector potential A which gives F through the rotational. The solution
to this problem may be found through two different ways.

1.14.1 First Method

By the first procedure we start with the definition of rotational, and we equate each
of its components to the fieldF(r) = Fx (x, y, z)ux + Fy(x, y, z)uy + Fz(x, y, z)uz ,
then we can write (

∂Az

∂y
− ∂Ay

∂z

)
= Fx (x, y, z), (1.101)

(
∂Ax

∂z
− ∂Az

∂x

)
= Fy(x, y, z), (1.102)

11We will see again this topic when we study the magnetic vector potentialA in Chap.5. There, the
vector field here denoted by F will be the magnetic field B.

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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and (
∂Ay

∂x
− ∂Ax

∂y

)
= Fz(x, y, z). (1.103)

In this system of equations the Ax , Ay and Az are the unknowns, and Fx , Fy and Fz

the data. Aswe can suppose, the above complicated systemwill not have a solution in
a simple way. Therefore, it would be necessary to have some compatibility equations
in order to give some restrictions to that system, and make it solvable. One easy
restriction we can imagine in the properties of the nabla mathematical operator. As
we know that ∇.(∇ × F) = 0, we can add to the (1.101), (1.102) and (1.103) the
following condition (

∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z

)
= 0. (1.104)

For finding A we can start by choosing a component zero, and with this condition
we can try to adjust the other components by playing with the constants that appear
in the integrations, as we demonstrate below.

Let us set, for instance, Ax = 0. If that holds, the second and third equations of
the system reduce to

− ∂Az

∂x
= Fy(x, y, z), (1.105)

and
∂Ay

∂x
= Fz(x, y, z). (1.106)

Integrating both equations we have

Az = −
∫

Fy(x, y, z)dx + C(y, z), (1.107)

and
Ay =

∫
Fz(x, y, z)dx + D(y, z). (1.108)

If we would like to calculate one of the infinite possibilities for A without more
specifications we can put C(y, z) = 0 or D(y, z) = 0 with the aim to simplify the
equations. Let us seek a solution with C(y, z) = 0. For this case and employing
(1.101) yields

(
∂Az
∂y

− ∂Ay

∂z

)
= − ∂

∂y

∫
Fy(x, y, z)dx − ∂

∂z

∫
Fz(x, y, z)dx − ∂D(y, z)

∂z
= Fx (x, y, z).

(1.109)
Supposing there exist continuous partial derivatives for the components of F in the

domainwhere this function is defined, we can introduce
∂

∂y
and

∂

∂z
under the symbol

of integration, that is
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−
∫

∂Fy(x, y, z)

∂y
dx −

∫
∂Fz(x, y, z)

∂z
dx − ∂D(y, z)

∂z
= Fx (x, y, z), (1.110)

or what is the same

−
∫ (

∂Fy(x, y, z)

∂y
+ ∂Fz(x, y, z)

∂z

)
dx − ∂D(y, z)

∂z
= Fx (x, y, z). (1.111)

But this expression may be reduced if we take into consideration the restriction

(1.104). Owing to that we can substitute

(
∂Fy

∂y
+ ∂Fz

∂z

)
by −∂Fx

∂x
, thus

∫
∂Fx

∂x
dx + ∂D(y, z)

∂z
= Fx (x, y, z) ⇒ Fx (x, y, z) − ∂D(y, z)

∂z
= Fx (x, y, z),

(1.112)
then

D(y, z) = H(y), (1.113)

that is, this constant of integration (with respect to x) could depend on y. Bringing
this last result to (1.108), we know all components of the vector potential.

This method has two variants. The first one consists on the same calculation made
but instead of doing the first integrations as (1.107) and (1.108), we could extend
such integrals from one initial point P0(x0, y0, z0) to another generic end point as
follows

Az = −
∫ x

x0

Fy(x, y, z)dx + C(y, z), (1.114)

and the same for Ay . The only difference is that by this procedure we obtain another
form for the constant D(y, z) = H(y), but the basic idea is not affected in any way.

The second variation we can use refers to (1.109). If we do not suppose that we
can introduce the partial derivatives into the corresponding integrals we have had for
D(y, z)

D(y, z) =
∫ {

− ∂

∂y

∫
Fy(x, y, z)dx − ∂

∂z

∫
Fz(x, y, z)dx

}
dz −

∫
Fx (x, y, z)dz, (1.115)

and now, introducing this expression into (1.108) the value of the component Ay of
the vector potential is obtained.

1.14.2 Second Method

In a similar way we saw for the scalar potential in Sect. 1.13.3 another possibility for
calculating the vector potential, if the domain is star-shaped, is the following
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A(x, y, z) =
∫ 1

0
(F(P1) × r) λdλ, (1.116)

where P1 = (λx,λy,λz), λ being a parameter for which 0 ≤ λ ≤ 1.

Solved Problems

Problems A

1.1 Obtain the expression of the gradient of a scalar function V (x, y, z) in cylindrical
and spherical coordinates.

Solution

As we have seen the relation between the differential of a scalar function and the
gradient is

dV (x, y, z) = ∇V (x, y, z)dl. (1.117)

In cartesian coordinates the element dl is (dx, dy, dz), but if we wish to calculate the
expression of ∇V (x, y, z) in other coordinates we must first change the form of the
differential element. In our case we would like to obtain the gradient in cylindrical
coordinates, then we put

dl = (dρ, ρdφ, dz) = dρuρ + ρdφuφ + dzuz . (1.118)

Introducing (1.118) into (1.117) we have

dV (ρ, φ, z) = ((∇V )ρ, (∇V )φ, (∇V )z)(dρ, ρdφ, dz) = (∇V )ρdρ + (∇V )φρdφ + (∇V )zdz,
(1.119)

where (∇V )i represents each of the components of the gradient along ρ, φ, and z,
respectively.

On the other hand, the differential of any scalar function is by definition

dV (ρ,φ, z) = ∂V

∂ρ
dρ + ∂V

∂φ
dφ + ∂V

∂z
dz. (1.120)

Therefore, by identifying term by term of (1.119) and (1.120), we can write

(∇V )ρ = ∂V

∂ρ
, (1.121)

(∇V )φρ = ∂V

∂φ
, (1.122)

and
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(∇V )z = ∂V

∂z
, (1.123)

hence, the gradient of V in cylindrical coordinates is

∇V (ρ,φ, z) =
(

∂V

∂ρ
,
1

ρ

∂V

∂φ
,
∂V

∂z

)
. (1.124)

For calculating a similar expression in spherical coordinates, we will follow the same
procedure. Let us write the differential of V (r,φ, θ) as function of the gradient, i.e.,

dV (r,φ, θ) = ((∇V )r , (∇V )φ, (∇V )θ)(dr, r sin θ dφ, rdθ), (1.125)

and developing the scalar product

dV (r,φ, θ) = (∇V )r dr + (∇V )φ r sin θ dφ + (∇V )θ rdθ. (1.126)

The differential with respect to r , φ and θ is

dV (ρ,φ, z) = ∂V

∂r
dr + ∂V

∂φ
dφ + ∂V

∂θ
dθ. (1.127)

Now, identifying the corresponding parts of both equalities (1.126) and (1.127), we
have

(∇V )r = ∂V

∂r
, (1.128)

(∇V )φ r sin θ = ∂V

∂φ
, (1.129)

and

(∇V )θ r = ∂V

∂θ
, (1.130)

therefore, the gradient in spherical coordinates has the form

∇V (r,φ, θ) =
(

∂V

∂r
,

1

r sin θ

∂V

∂φ
,
1

r

∂V

∂θ

)
. (1.131)

1.2 Starting from the differential equation of the field lines, calculate the curve �

that corresponds to the following vector field

F(x, y, z) = −yux + xuy + Puz,

P being a constant.
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Solution

For obtaining lines of the field in cartesian coordinates we use (1.19). If the compo-
nents of the field are Fx , Fy , and Fz , the following equality holds

dx

Fx
= dy

Fy
= dz

Fz
. (1.132)

Setting Fx = −y, Fy = x , and Fz = P in that equation, we have

dx

−y
= dy

x
= dz

P
. (1.133)

This equation may be separated in two parts,

dx

−y
= dy

x
, (1.134)

and
dy

x
= dz

P
. (1.135)

The first one can be integrated directly, i.e.,

xdx = −ydy ⇒
∫

xdx = −
∫

ydy ⇒ 1

2
x2 = −1

2
y2 + C (1.136)

where C is a constant, due to the indefinite integration. Grouping the variables x and
y we can write

xdx = −ydy ⇒
∫

xdx = −
∫

ydy ⇒ 1

2
x2 + 1

2
y2 = C ⇒ x2 + y2 = 2C = G,

(1.137)
G being a constant, which is the equation of a circle.

1.3 Calculate the gradient of the following scalar field

V (x, y, z) = x + 2y + 3z,

at the points of coordinates P(1, 2, 3) and Q(4,−2, 9).

Solution

By directly using the definition of gradient we apply the nabla operator

∇ = ∂

∂x
ux + ∂

∂y
uy + ∂

∂z
uz (1.138)

to the scalar function V (x, y, z), i.e.,
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∇V (x, y, z) = ∂V (x, y, z)

∂x
ux + ∂V (x, y, z)

∂y
uy + ∂V (x, y, z)

∂z
uz, (1.139)

obtaining
∇V (x, y, z) = 1ux + 2uy + 3uz . (1.140)

If we introduce the points P(1, 2, 3) and Q(4,−2, 9) into (1.140) the result does
not vary. Actually, the expression of the gradient for this function does not depend
on the variables x , y or/and z, and therefore its value is the same everywhere. The
reason for this result may be found in the geometry of the surface V (x, y, z) studied.
In fact, considering V as a level surface it represents planes parallel to each other in
the space. As we have explained in the theory (see also Problems 1.6 and 1.7), the
gradient geometrically represents a vector perpendicular to the level surface at each
point. In the case of this problem the surface is a plane, which has the same normal
vector everywhere, and therefore the result is the same independently of the point
chosen for calculating the gradient. As we will see in other problems, usually this is
not the case for any scalar function.

1.4 Calculate the flux of the vector field

F = x2ux + xyuy + zuz

across the plane 2x + 3y + z = 6 that corresponds to the first octant of the
OXY Z system.

Solution

In order to calculate the flux we must first obtain the unitary perpendicular vector
to the surface S(x, y, z) ≡ 2x + 3y + z − 6 = 0 at any point. With this aim we use
(1.60) which leads to

n = ± ∇S(x, y, z)

|∇S(x, y, z)| = 2ux + 3uy + uz√
4 + 9 + 1

= 2ux + 3uy + uz√
14

. (1.141)

where the sign (+) represents the outward normal. Following Sect. 1.10, introducing
it into (1.27) we have

∫ ∫

S
F · dS =

∫ ∫

S
F · ndS = 1√

14

∫ ∫

S
(x2ux + xyuy + zuz) · (2ux + 3uy + uz)dS =

= 1√
14

∫ ∫

S
(2x2 + 3xy + z) dS. (1.142)

As we can see we have three variables, but the element dS. To solve this difficulty we
choose, from the equation of the surface in implicit form, for instance, z = f (x, y)
giving z = f (x, y) = 6 − 2x − 3y. Now, substituting this value of z in the above
integral and employing (1.141) we obtain (Sect. 1.10.3)
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1√
14

∫ ∫

S
(2x2 + 3xy + f (x, y))

√

1 +
(

∂ f (x, y)

∂x

)2

+
(

∂ f (x, y)

∂y

)2

dx dy.

(1.143)
The partial derivatives are

∂ f (x, y)

∂x
= −2, (1.144)

and
∂ f (x, y)

∂y
= −3, (1.145)

thus the root square

√

1 +
(

∂ f (x, y)

∂x

)2

+
(

∂ f (x, y)

∂y

)2

= √
1 + 4 + 9 = √

14. (1.146)

Writing the value of f (x, y)

∫ ∫

SOXY

(2x2 + 3xy + (6 − 2x − 3y)) dx dy. (1.147)

As we can see this last expression depends only of the variables x and y, therefore
we can easily perform the calculation. The domain of integration is surface of the
triangle formed by the straight line 6 − 2x − 3y = 0 and the axis OX and OY .
Grouping the variables may be obtained

∫ ∫

SOXY

(2x2 − 2x − 3y + 3xy + 6) dx dy. (1.148)

The limits of integration are determined by using the equation y = 2 − 2

3
x . So,

0 ≤ y ≤ 2 − 2

3
x and 0 ≤ x ≤ 3. Substitution of these limits in the integrals

∫ 3

0

∫ 2− 2
3 x

0
(2x2 − 2x − 3y + 3xy + 6) dx dy =

∫ 3

0

(
2x2y − 2xy − 3

2
y2 + 3x

y2

2
+ 6y

)2− 2
3 x

0
dx =

=
∫ 3

0

(
− 2

3
x3 + 2

3
x2 + 2x + 6

)
dx =

(
− 1

6
x4 + 2

9
x3 + x2 + 6x

)3

0
= 19.5. (1.149)

1.5 A square thin plate of side L = 20 cm of a material placed with one of its corners
at the origin, has a non-homogeneous density which is given by the following
function in two variables

ρ(x, y) = 7800 + 10000(x2 + y2), (1.150)
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Fig. 1.16 Three dimensional
representation of the scalar
function ρ(x, y) =
7800 + 10000(x2 + y2)
in the domain
[0, 0.2] × [0, 0.2] m2.
Observe the curves of
constant density (level
curves) on the plane OXY
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ρ

in kgm−3. Calculate: (a) The curves of the same density. (b) The gradient at the
points of coordinates (4, 6) cm and (10, 10) cm. Give an interpretation of the
result obtained.

Solution

(a) Before beginning to calculate both questions it is important to understand the
problem from a geometrical viewpoint.

The physical problem, that is, the density of the plate, is a two dimensional prob-
lem, and then the function giving the density has two variables. However, geometri-
cally, we need three dimensions (axis) for representing the scalar function ρ(x, y).
Actually, this is a general characteristic of all scalar functions of two variables. If we
draw (1.150) we have Fig. 1.16 which corresponds to a paraboloid.

The curves equal density must verify the following equation

ρ(x, y) = 7800 + 10000(x2 + y2) = C, (1.151)

whereC is a constant. This equation may be written in an equivalent form by leaving
the variables alone in a member

x2 + y2 = C − 7800

10000
. (1.152)

As the right side of (1.152) is constant, that equation represent a family of circum-
ferences centered at the origin of coordinates. Mathematically it corresponds to the
intersection of the function ρ(x, y) with a plane parallel to the OXY plane, whose
distance to the origin of coordinates varies as the constant C changes. Therefore,
what we see in Fig. 1.16 is the projection of this intersection on the plane OXY .
(b) To calculate the gradient of a function in cartesian coordinates (1.35) may be
used, but considering only two variables, i.e.,
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Fig. 1.17 Level curves of
the function ρ(x, y)
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∇ρ(x, y) = ∂ρ

∂x
ux + ∂ρ

∂y
uy . (1.153)

Applying that equation we have

∇ρ(x, y) = 20000xux + 20000yuy . (1.154)

By introducing the two points of coordinates (4, 6) cm and (10, 10) cm, we obtain

∇ρ(0.04, 0.06) = 800ux + 1200uy . (1.155)

and
∇ρ(0.1, 0.1) = 2000(ux + uy), (1.156)

respectively.
Figure1.17 depicts the gradient of that function for many points. It is interesting

to note that the gradient of a function is perpendicular to the curve of level of the
corresponding problem studied, then the gradient (and the curve of level) is located
always on the physical object (plate of material in this case) which, mathematically
appears in the domain of the scalar function (plane XY ), and not on the surface that
corresponds to the graphic of the scalar function in three dimensions! (see the note
at the end of the next problem).

1.6 The temperature in celsius degrees inside of a metallic sphere of radius R = 10
cm is given by the following function

T (x, y, z) = 1000(x2 + y2 + z2). (1.157)
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Fig. 1.18 Family of spheres
of constant radius. Each
surface corresponds to a
different constant C in
(1.158)

Fig. 1.19 Picture of the
gradient of the function
T (x, y, z) =
1000(x2 + y2 + z2) = C .
Note that the vectors are
perpendicular to the surface
level, which in this case has
three dimensions (sphere).
This surface is placed in the
domain of T (x, y, z), and
then it is not possible to
represent (visualize) such
scalar function T (x, y, z)
(we would need four
dimensions)
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Obtain: (a) The surfaces of constant temperature. (b) The gradient at any interior
point of the sphere. (c) A picture of the gradient. Comment on this result.

Solution

(a) As we have seen in the preceding problem, when representing a scalar function of
two variables it is necessary to consider one additional dimension (variable) to draw
the graphic of this function. The present exercise corresponds to the temperature
of a sphere which physically is a three dimensional problem, then the function in
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Fig. 1.20 a Vectors perpendicular to a surface z = f (x, y). These normal vectors do not represent
the gradient of f (x, y) (error!). b Level curves of z = f (x, y) and the corresponding gradient.
Observe that the gradient of a function has the same dimension as the number of independent
variables (two in this case) and that it must be placed in the domain of the function and not on the
three-dimensional graphic z = f (x, y) (a)

cartesian coordinates has three variables.12 If we want to represent in a graphic the
value temperature (1.157) at every point inside of themetallic sphere we immediately
see that it is impossible. In fact, as the temperature T has three variables, we should
have one additional dimension (axis) for drawing the graphic which means we need
a four-dimensional space. In general, for all cases of scalar functions of three or
more variables, the construction of a graphic is impossible. However, for functions
of three variables we can represent the family of surfaces of constant temperature,
because them are located in the domain of the corresponding function, which has
three dimensions.

To calculate the surfaces inside of the sphere of the same temperature we equal
(1.157) to a constant C

T (x, y, z) = 1000(x2 + y2 + z2) = C, (1.158)

that is

x2 + y2 + z2 = C

1000
. (1.159)

This resulting equation corresponds to a family of spheres of different radius, centered
at the origin (0, 0, 0) (Fig. 1.18).
(b) By using (1.35), we have for the gradient

12Be careful when examining the physical dimensions of a problem and the number of variables.
Many problems, from the viewpoint of theirmathematical representation (variables)may be reduced
to a fewer number of variables, even though physically they are posed in space or in a plane. For
example, in this problem ifwe introduce spherical coordinates the temperature becomesT (r,φ, θ) =
1000r , which is a function of only one variable. However, the physical problem continues being
three-dimensional.
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∇T (x, y, z) = 2000xux + 2000yuy + 2000zuz . (1.160)

(c) Picture of the gradient is in Fig. 1.19.
Note: A common error of the students when representing the gradient of a

function of two variables is to draw it perpendicular to the function self (graphic
in three dimensions-Fig. 1.20a) instead to the level curves in two dimensions
(Fig. 1.20b).13 Conceptually, they confuse the surface z = f (x, y) with the surface
level F(x, y, z) = C , C being a constant (as, for instance Fig. 1.18), of other three
dimensional problems (because both are surfaces). Observe that in this last case the
resulting surface F = C is located in the domain of F(x, y, z), then it does not mat-
ter with the three dimensional representation of z = f (x, y) of a two dimensional
problem.

1.7 Let us suppose a fluid whose particles move with constant velocity (Fig. 1.21).
Calculate the rotational of the field velocities. Interpret the result.

Solution

Employing (1.41) to a vector v constant, we have

∇ × v = 0 (1.161)

Due to the rotational of the velocity at any point of the fluid is zero, the movement is
said to be irrotational or potential. As a result the curvilinear integral (circulation) of
the velocity over a closed curve must be zero. In fact, by applying Stokes’s theorem
we have

∮

�

vdl =
∫ ∫

S
∇ × v = 0. (1.162)

This result means that, in case of amovement potential it is not possible to find closed
lines of current.14 When (1.162) applies we can find a scalar function ϕ(r) so that
its gradient gives the velocity, i.e.,

v = ∇ϕ(r). (1.163)

Observe the similitude between this equation and the relation for the electrostatic
field E = ∇V (r) (see Sect. 2.4).15

13The same applies for any scalar function of n independent variables, i.e., the gradient has n
components located in the domain of the function, and the representation of the hypersurface needs
(n + 1) dimensions.
14This result is valid if the domain where the fluid moves is a simply connected region. If the region
is multiply connected the circulation over a closed curve could be not zero (see Sect. 1.12).
15Actually, we could have posed one electromagnetic problem substituting the velocity of the
fluid by the electric field E, and we would obtain the same result and interpretation. However, the
examples with fluids and other mechanical pictures are easier to understand by the students.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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Fig. 1.21 Field of constant
velocities. Though the
velocity has three
components, this picture
depicts the velocity on a
plane parallel to the vectors
for commodity
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1.8 A wall is held on the plan OXZ and a fluid moves parallel to it. Under some
conditions of the fluid stream the velocity may be expressed by the following
function

v = byux , (1.164)

b being a constant. Obtain: (a) A graphic representation of the field velocities.
(b) The rotational at any point. (c) The divergence.

Solution

(a) Physically (1.164) shows the characteristics of fluid that moves parallel to a solid
wall. As it may be seen the fluid velocity on the wall is zero, which means that the
fluid close to the solid does not move. The thin layer in contact with the wall is
governed by viscous forces and appears as glued to it due to the molecular forces
between both the fluid and the wall. A graphic representation of the field velocities
is depicted in Fig. 1.22.

In fluid mechanics this kind of flow that moves in parallel layers is said to be lam-
inar flow and, as we can observe, for moving in parallel laminas it is not necessarily
the same velocity.
(b) The rotational in cartesian coordinates of the field of velocities may be calculated
by (1.41), i.e.,

∇ × v = −buz . (1.165)

This result is shown in Fig. 1.23 (blue vectors). We can also calculate (Fig. 1.24a)

∮

�

vdl =
∫ ∫

S
∇ × vdS = −b

∫ ∫

S
uzdSuz = −bS. (1.166)
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Fig. 1.22 Field of velocities
of a fluid moving parallel to
a solid wall
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Fig. 1.23 Green vectors
represent the field velocities
and the blue one the value of
the curl at any point

−5
−4

−3
−2

−1
0

1
2

3
4

5

0

1

2

3

4

5
−1

−0.5
0

Taking into account the definition of rotational (1.40) the results obtained (1.165)
and (1.166) mean that when a fluid moves with a velocity proportional to the distance
to a wall and parallel to it, a net circulation per unit surface appears, i.e., the density
of circulation at any point of the fluid is −b (see Fig. 1.23). Geometrically, the non-
nullity of the rotational shows that there is a net projection of the vector v along the
closed curve � distinct to zero (Fig. 1.24b). Roughly speaking it would mean that, if
we would place very small paddle wheels (we can neglect their weights) at different
parts of the fluid we would see a rotation at points where the rotational is not zero,
being the angular velocity of each wheel a maximum if its rotation axis is parallel to
∇ × v.16

16A complementary conceptual viewpoint is given in continuum mechanics. In fact, the movement
of a point Q in the neighbor of a point P may be expressed as the addition of three terms, namely

v(Q) = v(P) + 1

2
∇ × v(P) × (Q − P) + ζ̃(Q − P), where ζ̃ = d ε̃

dt
represents the velocity of
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(a) (b)

Fig. 1.24 a Closed curve � and dl to perform the curvilinear integral
∮
�
vdl. b Due to ∇ × v 
= 0,

there exist a circulation of v per unit surface

(c)Using (1.44)we easily deduce∇ · v = 0. Remembering the concept of divergence
this means that, in the fluid studied there is no net flux of velocity per unit volume.17

1.9 Let us consider a rigid solid whose center of gravity coincides with the origin of
the coordinate system. This body rotates around one axis that passes through its
center with an angular velocity ω = ωuz . Obtain the rotational of the velocity v.

Solution

As it is known, the linear velocity is related with the angular velocity through the
equation v = ω × r. If we introduce ω and r = xux + yuy + zuz in that equation
we have

v = −yωux + xωuy = ω(−yux + xuy). (1.167)

This result may be expressed in polar coordinates by changing the variables x =
ρ cosφ and y = ρ sin φ, obtaining

v = ωρ(− sin φux + cosφuy) = ωρuφ, (1.168)

whereuφ = − sin φux + cosφuy . Physically itmeans the longer distance of a point to
the rotation axis, the bigger linear velocity. The rotational may be directly calculated
by using its definition (Figs. 1.25 and 1.26),

(Footnote 16 continued)

the deformation, and ε̃ = 1

2

(
∂ui j
∂x j

+ ∂u ji

∂xi

)
is the strain tensor. Physically this expression says

that each small part Q of a continuum system nearby of P translates with the velocity of P , rotates

with angular velocityω = 1

2
∇ × v and deforms at velocity of dilatation ζ̃. Aswe can intuitively see,

the rotational at a point P is in some extent related with the angular velocity of the fluid around P .
17In the same way we have explained in the previous footnote for ∇ × v, we can associate an
intuitive understanding to the divergence too. In fact, when∇ · v = β 
= 0, β represents the velocity
of volume deformation. Thus, in this problem∇ · v = 0means that ifwe choose a small fluid volume
element we cannot observe a deformation of such a volume in time.
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Fig. 1.25 Rigid solid
turning with constant angular
velocity ω = ωuz

Fig. 1.26 Velocities of the
solid on a plane
perpendicular to the axis OZ
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∇ × v = 2ωuz = 2ω (1.169)

The rotational is distinct to zero and constant, then we have the same circulation
per unit length at any point of the solid. If we remember (see footnote 16) that ω =
1

2
∇ × v, we obtain ω = ω. Taking into account that the system only has rotational

motion, the result is logical. In fact it means that the neighbor region of any point on
a plane perpendicular to the OZ axis rotates at angular velocity ω (Fig. 1.27).

1.10 Obtain the expression of the laplacian operator in cylindrical coordinates.

Solution

The laplacian operator in cartesian coordinates is defined as
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Fig. 1.27 Field velocities
and rotational on a plane
perpendicular to the rotation
axis. Note that the rotational
(blue vectors) is the same at
any point
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∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (1.170)

Let us suppose a function f (x, y, z) in this coordinate frame, and we would like to
know how such an operator is transformed when working in cylindrical coordinates.
This case is sometimes useful in problemswith such a symmetry. To calculate the new
expression we start with the relation between cartesian and cylindrical coordinates,
that is

x = ρ cosφ, y = ρ sin φ, z = z. (1.171)

The problem is now to carry out the partial derivatives taking into consideration
(1.171). Thus, application of the chain rule leads to

∂ f

∂x
= ∂ f

∂ρ

∂ρ

∂x
+ ∂ f

∂φ

∂φ

∂x
, (1.172)

∂ f

∂y
= ∂ f

∂ρ

∂ρ

∂y
+ ∂ f

∂φ

∂φ

∂y
, (1.173)

and
∂ f

∂z
= ∂ f

∂z
. (1.174)

We can concentrate our attention on (1.172) and (1.173), because (1.174) does not
change therefore may be written

∂ρ

∂x
= ∂

∂x

√
x2 + y2 = x

√
x2 + y2

= cosφ, (1.175)

∂ρ

∂y
= ∂

∂y

√
x2 + y2 = y

√
x2 + y2

= sin φ, (1.176)



44 1 A Mathematical Introduction

∂φ

∂x
= ∂

∂x
arctan

( y

x

)
= − sin φ

ρ
, (1.177)

and
∂φ

∂y
= ∂

∂y
arctan

( y

x

)
= cosφ

ρ
. (1.178)

Introduction of (1.175), (1.176), (1.177) and (1.178) into (1.172) and (1.173) gives

∂ f

∂x
= ∂ f

∂ρ
cosφ + ∂ f

∂φ

(− sin φ

ρ

)
, (1.179)

∂ f

∂y
= ∂ f

∂ρ
sin φ + ∂ f

∂φ

cosφ

ρ
. (1.180)

The second partial derivatives are

∂2 f

∂x2
= ∂

∂ρ

(
∂ f

∂ρ
cosφ + ∂ f

∂φ

(− sin φ

ρ

))
∂ρ

∂x
+ ∂

∂φ

(
∂ f

∂ρ
cosφ + ∂ f

∂φ

(− sin φ

ρ

))
∂φ

∂x
=

=
(

cosφ
∂2 f

∂ρ2
+ sin φ

ρ2
∂ f

∂φ
− sin φ

ρ

∂2 f

∂ρ∂φ

)

cosφ +

+
(

− sin φ
∂ f

∂ρ
+ cos φ

∂2 f

∂ρ∂φ
− cosφ

ρ

∂ f

∂φ
− sin φ

ρ

∂2 f

∂φ2

)(− sin φ

ρ

)
=

=
(

cos2 φ
∂2 f

∂ρ2
+ 2 cosφ sin φ

ρ2
∂ f

∂φ
− 2 cosφ sin φ

ρ

∂2 f

∂ρ∂φ
+ sin2 φ

ρ

∂ f

∂ρ
+ sin2 φ

ρ2
∂2 f

∂φ2

)

.

(1.181)

In a similar way we can calculate the second derivative for the variable y, that is,

∂2 f

∂y2
= ∂

∂ρ

(
∂ f

∂ρ
sin φ + ∂ f

∂φ

cosφ

ρ

)
∂ρ

∂y
+ ∂

∂φ

(
∂ f

∂ρ
sin φ + ∂ f

∂φ

cosφ

ρ

)
∂φ

∂y
=

=
(

sin φ
∂2 f

∂ρ2
− cosφ

ρ2
∂ f

∂φ
+ cosφ

ρ

∂2 f

∂ρ∂φ

)

sin φ +

+
(

cos φ
∂ f

∂ρ
+ sin φ

∂2 f

∂ρ∂φ
− sin φ

ρ

∂ f

∂φ
+ cosφ

ρ

∂2 f

∂φ2

)(
cosφ

ρ

)
=

=
(

sin2 φ
∂2 f

∂ρ2
− 2 cosφ sin φ

ρ2
∂ f

∂φ
+ 2 cosφ sin φ

ρ

∂2 f

∂ρ∂φ
+ cos2 φ

ρ

∂ f

∂ρ
+ cos2 φ

ρ2
∂2 f

∂φ2

)

.

(1.182)

By adding both expressions for
∂2 f (ρ,φ, z)

∂x2
and

∂2 f (ρ,φ, z)

∂y2
wefind the expression

for the laplacian,

∇2 ≡ ∂2 f

∂ρ2
+ 1

ρ

∂ f

∂ρ
+ 1

ρ2
∂2 f

∂φ
+ ∂2 f

∂z2
. (1.183)
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These coordinate systemswe have seen are some of themost common frames used
in basic and intermediate electromagnetics. However, we can have many other prob-
lems which, because of their physical characteristics, the aforementioned solutions
do not work, and then we must employ other forms for the differential equations,
if possible. For example, for calculating the potential and electric field of a metal-
lic or dielectric ellipsoid of revolution in presence of a homogeneous electric field
we can use spheroidal coordinates. Some of the solutions for the Laplace equation
by means of these coordinates may be also employed for obtaining boundary value
problems for geometries bounded by a hyperboloid of revolution. Another example
is the computation of the potential created by a charged toroidal conductor. In this
case the most appropriate frame seems to be expressed by toroidal coordinates.

1.11 Aspecial situation in physics corresponds to some scalar fields that only depend
on the distance r between the source and the point where we are going to study
such a field. In this case the field may be represented by a function ϕ(r).
Calculate the expression of its gradient.

Solution

∇ϕ(r) =
(

∂ϕ(r)

∂r

) (
∂r

∂x

)
ux +

(
∂ϕ(r)

∂r

) (
∂r

∂y

)
uy +

(
∂ϕ(r)

∂r

) (
∂r

∂z

)
uz (1.184)

∂ϕ(r)

∂r
= ϕ′(r) (1.185)

∂r

∂x
= ∂

∂x

(√
x2 + y2 + z2

)
= x

√
x2 + y2 + z2

(1.186)

∂r

∂y
= ∂

∂y

(√
x2 + y2 + z2

)
= y

√
x2 + y2 + z2

(1.187)

∂r

∂z
= ∂

∂z

(√
x2 + y2 + z2

)
= z

√
x2 + y2 + z2

(1.188)

∇ϕ(r) = ϕ′(r) x
√
x2 + y2 + z2

ux + ϕ′(r) y
√
x2 + y2 + z2

uy + ϕ′(r) z
√
x2 + y2 + z2

uz =

= ϕ′(r)
(
xux + yuy + zuz√

x2 + y2 + z2

)

= ϕ′(r) r
|r| (1.189)

Functions of these characteristics are, for example, the potentials of electric
charges or the potentials generated by point masses. Both examples correspond to

the well known newtonian potentials which have the form of ϕ(r) ∼ 1

r
.

1.12 Calculate the divergence of a vectorial field of the form
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F(r) = ϕ(r)
r
r
.

Solution

By using the properties of the nabla operator we have

∇ (φ(r)G) = φ(r)∇.G + ∇φ(r).G. (1.190)

If we apply this result to F(r) it gives

∇.F(r) = ∇.
(
ϕ(r)

r
r

)
= ∇.

(
ϕ(r)

r
r
)

= ∇
(

ϕ(r)

r

)
.r +

(
ϕ(r)

r
∇.r

)
, (1.191)

then

∇
(

ϕ(r)

r

)
= ∂

∂x

(
ϕ(r)

r

)
ux + ∂

∂y

(
ϕ(r)

r

)
uy + ∂

∂z

(
ϕ(r)

r

)
uz . (1.192)

Now employing the chain rule, we get

∂

∂x

(
ϕ(r)

r

)
=

(
∂ϕ(r)

∂r

) (
∂r

∂x

)
1

r
+ ϕ(r)

∂

∂r

(
1

r

)
∂r

∂x
(1.193)

Taking into account that

∂r

∂x
= ∂

∂x

(√
x2 + y2 + z2

)
= x

√
x2 + y2 + z2

(1.194)

the aforementioned equality (1.193) leads to

∂

∂x

(
ϕ(r)

r

)
= ϕ′(r)

x
√
x2 + y2 + z2

(
1

r

)
+ ϕ(r)

(−1

r2

)
x

√
x2 + y2 + z2

= x

r3
(
rϕ′(r) − ϕ(r)

)
. (1.195)

Proceeding in the same manner with the variables y and z it is easy to obtain

∂

∂y

(
ϕ(r)

r

)
= y

r3
(
rϕ′(r) − ϕ(r)

)
, (1.196)

and
∂

∂z

(
ϕ(r)

r

)
= z

r3
(
rϕ′(r) − ϕ(r)

)
. (1.197)

Thus, introducing these results in (1.192) leads to
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∇
(

ϕ(r)

r

)
=

(
rϕ′(r) − ϕ(r)

r3

)
(
xux + yuy + zuz

) =
(
rϕ′(r) − ϕ(r)

r3

)
r.

(1.198)
On the other hand, in the second part of (1.191) appears ∇.r, whose value is

∇.r = ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
= 3. (1.199)

The final expression of (1.191) is

∇.F(r) =
(
rϕ′(r) − ϕ(r)

r3

)
r.r +

(
ϕ(r)

r
· 3

)
=

(
rϕ′(r) − φ(r)

r

)
+ 3

ϕ(r)

r
.

(1.200)
Simplifying that equation we obtain

∇.F(r) = ϕ′(r) + 2
ϕ(r)

r
. (1.201)

1.13 Using the results of the Problems 1.11 and 1.12 obtain the laplacian of a scalar
function φ(r) that only depends on r , that ∇2φ(r) = �φ(r).

Solution

The laplacian of function may be written in the following form

∇2φ(r) = ∇. (∇φ(r)) , (1.202)

where ∇φ(r) represents the gradient.18 As we have demonstrated (1.189), the gradi-
ent of a function only depending on distance has the form

∇φ(r) = φ′(r)
r
|r| , (1.203)

which is a vector field. At this point we must not calculate the divergence of equality
(1.203) again. We have in the preceding exercise demonstrated the value of the
divergence of a vector field depending only on distance. In fact, let us put the gradient
(1.203) D(r), and let us name φ′(r) = ϕ(r), that is

D(r) = φ′(r)
r
|r| = ϕ(r)

r
|r| . (1.204)

As we can see this function is the same that appears in the Problem 1.12. Therefore,
by introducing (1.204) into (1.201) we obtain the solution

18In this exercise we use φ(r) instead ϕ(r) in order to be clear and do not confuse with the notation
the reader.
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∇.D(r) = ϕ′(r) + 2
ϕ(r)

r
, (1.205)

but we named φ′(r) = ϕ(r), then

∇2φ(r) = ∇.D(r) = φ′′(r) + 2
φ′(r)
r

. (1.206)

Observe that, in the case of a newtonian potential this identity is zero. In effect, if

we introduce in this (1.206) a function of the form φ(r) = a

r
, a being a constant, we

have

∇2φ(r) = φ′′(r) + 2
φ′(r)
r

= 2a

r3
+ 2

(−a

r2

)
1

r
= 0. (1.207)

This results tells us that the potentials of spherical symmetry that are inversely pro-
portional to the distance verify the laplace equation where there are no sources. For
instance, this is the case of the potential created by point charges excluding the place
where the charge is located (in this point Poisson’s equation is verified-see Chap. 2).

1.14 Calculate the flux of the vector field

F(x, y, z) = 1

4π

br
(x2 + y2 + z2)3/2

,

where b is a constant, across the sphere of radius a centered at the coordinate
origin (0, 0, 0).

Solution

φ =
∮

S
F.dS =

∮

S

1

4π

br
(x2 + y2 + z2)3/2

.dS = b

4π

∮

S

r
r3

.ndS. (1.208)

The normal n to the sphere of radius a coincides with the unitary vector ur = r
r
in

spherical coordinates, then we can write

φ = b

4π

∮

S

r
r3

.ur dS = b

4π

∮

S

r
r3

.
r
r
dS = b

4π

∮

S

r2

r4
dS = b

4π

∮

S

dS

r2
. (1.209)

As the radius a remains the same for all points of the sphere, we can substitute r = a
in the integral above, obtaining

φ = b

4π

∮

S

dS

a2
= b

4πa2

∮

S
dS = bS

4πa2
. (1.210)

If we calculate this integral (for instance, by using spherical coordinates), we have
S = 4πa2, and then the flux

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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φ = b. (1.211)

Note: The area of sphere can be calculated as follows:

∮

S
dS =

∫ 2π

0

∫ π

0
J (r,φ, θ)dφdθ, (1.212)

where J (r,φ, θ) = r2 sin θ is the jacobian of the transformation. Thus

∮

S
dS =

∫ 2π

0

∫ π

0
r2 sin θdφdθ =

∫ π

0
r2 sin θdθ

∫ 2π

0
dφ = 2π

∫ π

0
r2 sin θdθ.

(1.213)
As r = R for all point on the sphere we have

∮

S
dS = 2πR2

∫ π

0
sin θdθ = 2πR2 (− cos θ)π0 = 4πR2. (1.214)

When we study the electric field we will see that a field like F(x, y, z) in this
problem corresponds to that created by a point charge, and the flux of the electric

field throughout any closed surface equals
q

ε0
, where q is the net charge19 enclosed

by the surface and ε0 is a constant. In this example we obtain the same result by

substituting the constant b by
q

ε0
.

1.15 Obtain the flux of the vector r throughout the sphere x2 + y2 + z2 = R2.

Solution

Let F = r. Applying the definition of flux of a vector field we have

φ =
∮

S
F.dS =

∮

S
r.ndS. (1.215)

The unitary vector to a sphere we have seen is ur = r
r
, then we can write

φ =
∮

S
r.
r
r
dS =

∮

S

r2

r
dS =

∮

S
rdS. (1.216)

As we calculate the flux across the surface of radius R, we substitute r = R in that
integral, which leads to

φ = R
∮

S
dS = R4πR2 = 4πR3. (1.217)

19In this problem the expression of F corresponds to a point charge located at the origin of coordi-
nates, but the final result (known as Gauss’s theorem) holds for any interior distribution of charge,
that is, the flux across a closed surface S depends only of the total charge enclosed by S.
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Another way to calculate the flux is to use the divergence theorem (1.49). As we
know the following identity holds

∮

∂V
F · dS =

∫

V
∇ · F dV , (1.218)

then employing the divergence of the field, we should obtain the same result. In fact,
computing the divergence of F we have

∇ · F = 3,

and introducing this value in the right side of (1.49), it gives

∫ ∫ ∫

V
∇ · F dV = 3

∫ ∫ ∫

V
dV = 3

4

3
πR3 = 4πR3, (1.219)

result that coincides with (1.217).

1.16 A vector field B = B uz has constant modulus at any point of space and has the
direction of the positive OZ axis. Obtain the flux across the upper hemisphere
x2 + y2 + z2 = R2.

Solution

By definition of flux, we have

φ =
∮

S
F.dS =

∮

S
B uz .n dS. (1.220)

From (1.60),

n = ∇S(x, y, z)

|∇S(x, y, z)| = xux + yuy + zuz√
x2 + y2 + z2

= xux + yuy + zuz

R
. (1.221)

Introducing this result into (1.220), we get

∮

S
F.dS =

∮

S
B uz .

(
xux + yuy + zuz

R

)
dS = B

R

∮

S
z dS. (1.222)

The equation of the hemisphere can be written in explicit form:

z = f (x, y) =
√
R2 − x2 − y2 . (1.223)

Applying Sect. 1.10.2, we obtain for dS

dS =
√

1 +
(

∂ f (x, y)

∂x

)2

+
(

∂ f (x, y)

∂y

)2

dx dy, (1.224)
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thus
∂ f (x, y)

∂x
= −x

√
R2 − x2 − y2

(1.225)

and
∂ f (x, y)

∂y
= −y

√
R2 − x2 − y2

. (1.226)

Employing these results, we have

dS =
√

1 + x2

R2 − x2 − y2
+ y2

R2 − x2 − y2
dxdy =

√
R2 − x2 − y2 + x2 + y2

R2 − x2 − y2
dxdy

= R
√
R2 − x2 − y2

dxdy. (1.227)

Introducing these values in (1.222),
∮

S
F.dS = B

R

∫

S

√
R2 − x2 − y2

R
√
R2 − x2 − y2

dx dy = B
∫

S
dx dy = B π R2.

(1.228)

Problems B

1.17 A vector field in �3 has the following form

F(x, y, z) = − ay

x2 + y2
ux + ax

x2 + y2
uy,

a being a constant. (a) Discuss the possibility to find a scalar function V (r)
so that F(r) = −∇V (r) and obtain the circulation of this field along the cir-
cumference x2 + y2 = R2. (b) Compute the line integral along the segments
shown in Fig. 1.29.

Solution

(a) We have seen in the theory that a necessary condition for finding a potential
function is that the rotational of the vector field be zero. Applying (1.81) toF(x, y, z),
holds

∇ × F(r) = 0. (1.229)

At first sight we could think that there exists a potential V (r). If this hypothesis
is true, the curvilinear integral along any closed curve in the region where we study
the problem must be zero. Let us calculate the

∮
�
Fdl, � being the circumference of

radius R centered at the origin of coordinates on the plane z = 0, Fig. 1.28a,
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(a) (b)

Fig. 1.28 a Circumference centered at P(0, 0, 0) contained in the plane z = 0. b Closed curve �

that does not intersect the cut and does not pass through the origin

Fig. 1.29 Three different paths with the same ends. The coordinates of A, B, and C are (R, 0),
(R, R) and A(0, R), respectively

∮

�

F · dl =
∮

�

(
− ay

x2 + y2
,

ax

x2 + y2
, 0

)
· (dx, dy, 0) = a

∮

�

(
− ydx

x2 + y2
+ xdy

x2 + y2

)
.

(1.230)

Due to the symmetry of the curve � we change to polar coordinates by substituting
x = ρ cosφ and y = ρ sin φ. Setting these values and those of the differentials dx =
−ρ sin φ dφ , dy = ρ cosφ dφ we have
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a
∮ 2π

0

(
ρ2 sin2 φ

ρ2
+ ρ2 cos2 φ

ρ2

)
dφ = a

∮ 2π

0

(
R2 sin2 φ

R2
+ R2 cos2 φ

R2

)
dφ

= a
∮ 2π

0
dφ = 2π a. (1.231)

This non-nullity of the calculation shows that condition (1.81) does not guaranty
the existence of a potential function, because the integral calculated does not equal

zero. In this case we say that the differential form

(
− ydx

x2 + y2
+ xdy

x2 + y2

)
is closed

but not exact (see Sect. 1.12), then the closed line integral depends on the curve
chosen. Being ∇ × F = 0, how can we understand this result? Actually, it is not
completely true that the rotational of the field F is zero, contrary to what seems to be
by looking at (1.229). As a matter of fact, in order to be correct we should say that the
rotational of F is zero in all points where this vector field iswell defined. However, as
it may be easily proved, F(x, y, z) is a discontinuous function at the origin P(0, 0, 0)
and therefore any domain containing this point is a multiply connected region, and
we have seen that in these cases (1.84) holds. In other words, the calculation of
the rotational at P(0, 0, 0) has no mathematical sense because we cannot define the
function F at this point (it tends to infinity), and therefore is not true that ∇ × F = 0
there.20 To conclude this discussion we see that the condition curl(F(r)) = 0 is not
sufficient for F(r) to be a gradient in the region G = (�2 − {(0, 0)})21; it would be
both necessary and sufficient if G was convex, but this is not the case.

In order to be clear for understanding the idea, we are going to do the same
calculation, but now along another closed curve that does not contain the origin of
coordinates. Let us suppose we choose the curve � represented in the Fig. 1.28b. As
the curve is displaced from the origin, not only the angleφ varies, but also the distance
from O to a point over the curve.We use polar coordinates again but when calculating
dx and dy we take into consideration that ρ is not constant (as, for instance, a
circumference centered at the origin). By using x = ρ cosφ and y = ρ sin φ we can
write

dx = d(ρ cosφ) = −ρ sin φ dφ + cosφ dρ, (1.232)

and

dy = d(ρ sin φ) = ρ cosφ dφ + sin φ dρ. (1.233)

Introducing both expressions into (1.230) we have

∮

�
F.dl = a

∮

�

(
−ρ sin φ(−ρ sin φ dφ + cosφ dρ)

ρ2
+ ρ cosφ(ρ cosφ dφ + sin φ dρ)

ρ2

)
. (1.234)

20In the language of the distributions we could express the rotational of the field at (0, 0) as
∇ × F = 2π aδ(ρ)uz , δ(ρ) being the Dirac’s delta.
21Though the problem is posed in �3, the vector field is symmetric with respect the z coordinate,
therefore we can refer our study to a two dimensional plane perpendicular to the OZ axis.
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By reducing the terms we obtain

a
∮

�

ρ2 dφ

ρ2
= a

∮

�

dφ = a
∮ φ f

φi

dφ, (1.235)

where φi and φ f represent the initial and final angles formed by ρ with the OX axis.
But in this case φi = φ f , because � is closed, thus

a
∮ φ f

φi

dφ = φ f − φi = 0. (1.236)

This result agrees with the explanations given in Sect. 1.12, and shows that if we do
not surround the origin (0, 0, 0) the closed integral is zero. Even though we cannot
find a gradient in the domain studied, it is easy to note that F is the differential of

φ(x, y) = tan−1
( y

x

)
. (1.237)

This result may be immediately obtained by means of the procedure shown in
Sect. 1.13.1. By examining (1.237) we see that this function jumps (Figs. 1.30 and
1.31), and from another point of view this is the reason because the circulation around
a closed curve containing the origin is nonzero. However, we may render φ(x, y)
single-valued by choosing a radial cut along one angle (appropiately), for instance,
φ(x, y) = φ0 (it depends on the function). In this way we restrict valuable values of
φ(x, y) to φ0 ≤ φ(x, y) < φ0 + 2π (Fig. 1.32). Due to the introduction of this cut
(observe that the point (0, 0) is included in this restriction), we can consider φ(x, y)
as a gradient in this domain, and therefore, it is logical that the circulation of F along
any closed simple curve that not contain the origin is not zero. As a corollary, the
curvilinear integral over an open curve not passing the origin of coordinates should
be only dependent of the initial and end points of that curve (limits of integration).
With the aim to see more in deep this possibility, we can examine the next question.

(a) (b)

Fig. 1.30 a Function tan−1
( y
x

)
. b Idem from another view
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Fig. 1.31 Lines of constant
values of the function
tan−1

( y
x

)

Fig. 1.32 Restriction of the
values by means of a cut

(b) Let us calculate the curvilinear integrals along some open curves. Figure1.29
depicts three open paths with the same ends. The first one �1 corresponds to a
quarter of circle; the second one �2 is half of square, and the third �3 is a segment.
All of them are different but they have a common characteristic, namely they do
not pass across the origin (0, 0). Let us see whether the results depend on the curve
chosen.

For the integral along �1 we do not need to repeat the computation in detail. The
procedure is the same as shown in (1.231), with the only difference that now the

integral extends to
π

2
instead 2π, i.e.,
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a
∫ π

2

0

(
R2 sin2 φ

R2
+ R2 cos2 φ

R2

)
dφ = a

∮ π
2

0
dφ = a

π

2
. (1.238)

Let us choose �2. The integration along this curve may be divided in two paths:
from A to B, and from B toC . In the first one (AB) x remains constant, then dx = 0
throughout and only y changes. The opposite occurs for the segment (BC), that is,
y is a constant and x varies. Taking this facts into account the line integral gives

∫

�2

F · dl =
∫ B

A
F · dl +

∫ C

B
F · dl = a

(
0 +

∫ R

0

xdy

x2 + y2

)
+ a

(
−

∫ 0

R

ydx

x2 + y2
+ 0

)
.

(1.239)

The semi-straight lines for the segments (AB) and (BC) are, respectively, x = R
and y = R, therefore

a
∫ R

0

Rdy

x2 + y2
− a

∫ 0

R

Rdx

x2 + y2
= a tan−1

( y

R

)R

0
− a tan−1

( x

R

)0

R
= a

π

2
,

(1.240)
which is the same as we have obtained before.

In order to be sure, we will calculate the path integral along �3. The segment that
lies points A and C is y = R − x , thus

∫

�3

F · dl = a
∫

�

(
− ydx

x2 + y2
+ xdy

x2 + y2

)
= a

(∫ 0

R
− (R − x)dx

x2 + (R − x)2
+

∫ 0

R

x(−dx)

x2 + (R − x)2

)

=

= −aR
∫ 0

R

dx

x2 + (R − x)2
. (1.241)

With a few calculation this integral converts to

− a

(
2

R

) ∫ 0

R

dx

1 +
(
2x

R
− 1

)2 = −a tan−1

(
2x

R
− 1

)0

R

= a
π

2
. (1.242)

As we can notice, we obtain the same values for the integral along three different
curves with the same ends. It means that, even though we have demonstrated that
there is not a gradient in �2 excluding only the origin of coordinates, the integral
between two point not passing through (0, 0) does not depend on the curve (of course,
on the basis that previously ∇ × F = 0 for these points belonging to G = (�2 −
{(0, 0)}), Fig. 1.13). To conclude this problem we can say that, when investigating
the possibility of finding a potential function of any vector field we must not only
calculate the curl of such a field to prove whether it is zero or not, but we must also
study the domain where this field is defined.

To close this problem it is interesting to comment that in Chap.5, when we study
the magnetic field produced by a very large conducting wire currying a constant

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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current I , we will obtain this vector field F again. There we will have a similar

expression like F where a = μ0 I

2π
, i.e.,

B(x, y, z) = μ0 I

2πρ
uφ, (1.243)

and we will study Ampère’s theorem which asserts that the curvilinear integral of
the magnetic field along a closed curve depends only of the net current hooked up
by the curve. The point (0, 0) at which we had the discontinuity corresponds to the
place where the linear current is located (along the OZ axis), and this is the physical
reason because the domain of definition of F is a multiply connected region.

1.18 Evaluate the flux of the vector field

F(x, y, z) = xux + yuy + zuy

across the cylinder x2 + y2 = R2 and limited by the planes z = ±a.

Solution

φ =
∮

S
F · dS =

∮

S
r · ndS. (1.244)

The cylinder is formed by three surfaces, the lateral, the basis and the top. For this
reason, we can split the surface integral in three parts corresponding to the three
surfaces of the cylinder. The unitary vectors of the outward normal to every surface
are the following (1.60)

(a) Lateral surface SL(x, y, z) = x2 + y2 − R2 = 0.

nL = ∇S(x, y, z)

|∇S(x, y, z)| = 2xux + 2yuy

2
√
x2 + y2

= xux + yuy

R
. (1.245)

(b) Upper basis surface (top) S1(x, y, z) = z − a = 0.

n1 = uz

1
= uz = (0, 0, 1). (1.246)

(c) Lower basis surface S2(x, y, z) = z + a = 0.

n2 = −uz

1
= −uz = (0, 0,−1). (1.247)

In this last equation observe that we have introduced a minus to account that the
outward normal at this surface is opposite to calculated in (b).

φ =
∮

S
F · ndS =

∫ ∫

SL
F · nLdS +

∫ ∫

S1
F · n1dS +

∫ ∫

S2
F · n2dS = (1.248)



58 1 A Mathematical Introduction

∫ ∫

SL
(x, y, z) · (x, y, 0)

R
dS +

∫ ∫

S1
(x, y, z) · (0, 0, 1)dS +

∫ ∫

S2
(x, y, −z) · (0, 0,−1)dS.

In the last integral appears−z as the third component of thefield because its projection
over OZ is negative (lower space under the plane z = 0). Making the scalar products
may be obtained

φ =
∫ ∫

SL

x2 + y2

R
dS +

∫ ∫

S1
zdS +

∫ ∫

S2
zdS =

∫ ∫

SL

R2

R
dS + 2

∫ ∫

S1
zdS =

= R
∫ ∫

SL
dS + 2z

∫ ∫

S1
dS. (1.249)

The lateral surface of a cylinder is 2πRh, h being its height, and of a circle πR2.

Considering that h = 2a and z = h

2
= 2a

2
= a we can write

φ = RSL + 2zS1 = R2π R 2a + 2πR2 a = 6πR2 a. (1.250)

The same result should be obtained by means of the divergence theorem

∮

∂V
F · dS =

∫

V
∇ · F dV . (1.251)

In order to apply it, let us first calculate the divergence of the field

∇ · F = 3,

and bringing this value in the right side of (1.49) holds

∫ ∫ ∫

V
∇ · F dV = 3

∫ ∫ ∫

V
dV = 3V . (1.252)

Taking into consideration that the volume of a cylinder is πR2 h, and that in our case
h = 2a, it yields

φ = 3πR2 2a = 6πR2 a. (1.253)

1.19 Calculate the potential function of the vector field

F(x, y, z) = 2xy2z2ux + 2yx2z2uy + 2zx2y2uz .

Solution

Before beginning we must prove that the necessary conditions for the existence of a
potential function hold.Wecanfind a function so that its gradient givesF(x, y, z) if, at
least, ∇ × F = 0. In fact, introducing F into (1.41) we obtain curlF = 0. Therefore,
as F(x, y, z) is defined in a connected region of �3, it is in principle possible to find
a scalar function V (r) so that F(x, y, z) = ∇V (r). Using the procedure explained
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in Sect. 1.13, let us compute the first integral with respect to the variable x

Fx(x, y, z) = −∂V

∂x
= 2xy2z2 ⇒

V (x, y, z) =
∫

Fx(x, y, z)dx + C(y, z) = −
∫

2xy2z2dx = −x2y2z2 + C(y, z).

(1.254)

Once we have a general expression of V , where C(y, z) is yet a unknown function,
we apply (1.91) as follows

Fy(x, y, z) = −∂V

∂y
= 2yx2z2 − ∂C(y, z)

∂y
, (1.255)

but we know the second component of F, thus introducing Fy into (1.255)

2yx2z2 − ∂C(y, z)

∂y
= Fy(x, y, z) = 2yx2z2 ⇒ −∂C(y, z)

∂y
= 0. (1.256)

Because of partial derivative ofC(y, z) = 0, this functionmust be a constant (respect
to y), which we will label as D, i.e.,

C(y, z) = D(z), (1.257)

then
V (x, y, z) = −x2y2z2 + D(z). (1.258)

Operating in the sameway as before,we can calculate the value of D(z) by employing
(1.92)

Fz(x, y, z) = −∂V

∂z
= −2zx2y2 + ∂D(z)

∂z
= −2zx2y2 ⇒ ∂D(z)

∂z
= 0 ⇒ D(z)

= constant = R. (1.259)

Finally, the potential may be written

V (x, y, z) = −x2y2z2 + R. (1.260)

By this second procedure we apply (1.98) and we choose at initial point of the
finite line element A = (0, 0, 0), then

V (x, y, z) = −
∫ x

x0

Fx (x, 0, 0)dx −
∫ y

y0

Fy(x, y, 0)dy −
∫ z

z0

Fz(x, y, z)dz =

= −
∫ x

x0

0dx −
∫ y

y0

0dy −
∫ z

z0

2x2y2zdz = −x2y2z2 + R. (1.261)
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Let us introduce P1 = (λx,λy,λz) into the function F of (1.100), then we obtain

F(λr) = 2xy2z2λ5ux + 2yx2z2λ5uy + 2zx2y2λ5uy = λ5
(
2xy2z2ux + 2yx2z2uy + 2zx2y2uy

)
.

(1.262)

Using r = xux + yuy + zuz and calculating the scalar product F(λr) · r in (1.100)
we obtain the following integral

V (x, y, z) = −
∫ 1

0
F(P1) · rdλ + C = −

∫ 1

0
F(λr) · rdλ + C =

= −
∫ 1

0
2λ5

(
xy2z2x + yx2z2y + zx2y2z

)
dλ + C. (1.263)

The last integral depends only on λ, and therefore we can put the expression depend-
ing on x , y, and z outside. Under these conditions (1.263) gives

V (x, y, z) = −
∫ 1

0
2λ5(x2y2z2 + y2x2z2 + z2x2y2)dλ + C

= −2

6
(3x2y2z2) + R = −x2y2z2 + R, (1.264)

which agrees with the results obtained before.

1.20 Obtain the vector potential of the vector field F(x, y, z) = Buz .

Solution

For calculating the vector potential we employ the fact that

F(r) = ∇ × A(r) = Buz . (1.265)

As we have only one component for F we can write

(
∂Ay

∂x
− ∂Ax

∂y

)
= B. (1.266)

The easiest possibility to fulfill this condition is to choose Ax (x, y, z) = 0, thus

∂Ay

∂x
= B ⇒ Ay =

∫
Bdx = Bx + C(y, z), (1.267)

where C(y, z) is a function that may depends on y and/or z. We must find the value
of the component Az . To this end we can use the fact that curlF(r) does not have
projections over x and y, then the cross partial derivatives verify
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(
∂Az

∂y
− ∂Ay

∂z

)
= 0, (1.268)

and (
∂Ax

∂z
− ∂Az

∂x

)
= 0. (1.269)

Equation (1.268) still contains information about Ay , but also appears Az . If we
choose Az(x, y, z) = 0, a condition for C(y, z) must be found in order to fulfill
(1.268). Let us introduce this value that equality

(
0 − ∂Ay

∂z

)
= − ∂

∂z
(Bx + C(y, z)) = −∂C(y, z)

∂z
= 0, (1.270)

thus
C(y, z) = D(y). (1.271)

Of course we can set D(y) = 0 but, in general (1.271) holds for any continuous
function depending on y. As we can observe, as Ax = Az = 0 (1.269) is immediately
accomplished. Owing to C(y, z) = D(y), a possibility for the vector potential is the
following

A(r) = (Bx + D(y))uy . (1.272)

Note that curl((Bx + D(y))uy) = Buz .
But the vector potential is not single-valued, which means that such a potential

is not unique (indeterminate). In effect, we could find other relationship for A(r),
namely A′(r), which differ each other in the gradient of a scalar function. In other
words, if we write

A′(r) = A(r) + ∇ϕ(r), (1.273)

ϕ(r) being scalar, we get the same F(r) due to ∇ × (∇ϕ(r)) = 0, always. As a
consequence an infinite number of vector potentials apply to one vector field.

In order to understand this problem, we will obtain another A that gives the same
F. However, in this case not by adding a gradient, but by directly calculating the
potential through (1.116) (or by the procedure demonstrated above setting other
values for Ax and Az). Let us write the solution in the form of the integral

A′(x, y, z) =
∫ 1

0
[F(P1) × r]λdλ, (1.274)

where r is the vector (x, y, z) and F(P1) = F(λr) = Buz . The vectorial product
gives

F(P1) × r = x Buy − yBux = B(−yux + xuy). (1.275)

By introducing it into (1.274) yields
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A′(x, y, z) =
∫ 1

0
B(−yux + xuy)λdλ = B(−yux + xuy)

∫ 1

0
λdλ = 1

2
B(−yux + xuy). (1.276)

This result is also valid and shows that A is multivalued.
Sometimes we have the opposite question, that is, starting from two potentials,

what is the function ϕ(r) that satisfies (1.273)? To solve this problem let us arrange
(1.273) as follows

A(r) − A′(r) = −∇ϕ(r) = W(r). (1.277)

This function W(r) is the difference of the vector potentials that we have previ-
ously calculated, i.e.,

W(r) = Bxuy − 1

2
B(−yux + xuy) = 1

2
B(yux + xuy), (1.278)

where, for simplicity, we have chosen D(y) = 0. As W(r) comes from a gradient,
ϕ(r) may be computed by means of any of the methods shown in Sect. 1.12. For
instance, employing (1.99) yields

ϕ(x, y, z) = −
∫ x

x0
Wx (x, y0, z0)dx −

∫ y

y0
Wy(x, y, z0)dy −

∫ z

z0
Wz(x, y, z)dz + R, (1.279)

R being an additive constant. Using the components of (1.278) we have

ϕ(x, y, z) = −
∫ x

x0

0 dx −
∫ y

y0

1

2
Bx dy −

∫ z

z0

0 dz + R = −1

2
Bxy + R. (1.280)

To test that this potential reproduces the function W, simply calculate the gradient
of ϕ(x, y, z), giving

W = −∇ϕ(r) = 1

2
B(yux + xuy). (1.281)

To conclude a comment about this problem. We have studied two possible vector
potentials that generate the same homogeneous field F(r) = Buz . Such a vector field
corresponds, for instance, to the magnetic field produced inside a very large solenoid
carrying a current I whose revolution axis coincides with OZ (see Chap.5), or to

the magnetic field generated by Helmholtz’s coils of radius R at a distance
R

2
over

its symmetry axis with respect to a plane containing any of the coils.

1.21 As we will demonstrate in Chap.5, the magnetic field generated by a very large
conducting wire carrying a current I , and placed along the OZ axis may be
expressed by the function

B = μ0 I

2π

(−yux + xuy)

(x2 + y2)
. (1.282)

Calculate a vector potential for this field.

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Solution

(a) First procedure
To calculate the vector potential we will use the second method of Sect. 1.14. To

do so we must obtain the vectorial product of B(P1) and the vector r. In order to
express the calculation as easy as possible, let us call the components of the field
(Bx , By, 0). Using this nomenclature we have

B(P1) = B(λr) = μ0 I

2π

(−λyux + λxuy)

λ2(x2 + y2)
= μ0 I

2πλ

(−yux + xuy)

(x2 + y2)
= 1

λ
(Bx , By, 0),

(1.283)
and for the product

B(λr) × r = 1

λ
zByux − 1

λ
zBxuy + 1

λ
(yBx − x By)uz = 1

λ
(zByux − zBxuy − uz).

(1.284)

Observe that the component over OZ of the last formula is only −uz . With this
result and (1.116) we conclude

A(x, y, z) =
∫ 1

0

1

λ
(zByux − zBxuy − uz)λdλ

=
∫ 1

0
(zByux − zBxuy − uz)dλ = zByux − zBxuy − uz, (1.285)

and introducing the projections Bx and By the components of A are

Ax (x, y, z) = μ0 I

2π
z

x

(x2 + y2)
, (1.286)

Ay(x, y, z) = μ0 I

2π
z

y

(x2 + y2)
, (1.287)

and

Az(x, y, z) = −μ0 I

2π
. (1.288)

(b) Second procedure
By using the first method of Sect. 1.14 we have many possibilities. For example,

choosing Az = 0 or constant we have

− ∂Ay

∂z
= Fx (x, y, z), (1.289)

∂Ax

∂z
= Fy(x, y, z), (1.290)
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and (
∂Ay

∂x
− ∂Ax

∂y

)
= Fz(x, y, z). (1.291)

Integrating the first equation yields

Ay = −
∫

Fx (x, y, z)dz + C(x, y) = −
∫

μ0 I

2π

−y

(x2 + y2)
dz + C(x, y)

= μ0 I

2π
z

y

(x2 + y2)
+ C(x, y), (1.292)

and for the second

Ax =
∫

Fy(x, y, z)dz + D(x, y) =
∫

μ0 I

2π

x

(x2 + y2)
dz + D(x, y)

= μ0 I

2π
z

x

(x2 + y2)
+ D(x, y). (1.293)

Choosing C(x, y) = 0, and bringing Ay and Az into (1.291)

(
∂Ay

∂x
− ∂Ax

∂y

)
= Fz(x, y, z) = 0. (1.294)

μ0 I

2π
zy

−2x

(x2 + y2)2
− μ0 I

2π
zx

(−2y)

(x2 + y2)2
− ∂D(x, y)

∂y
= 0, (1.295)

thus

− ∂D(x, y)

∂y
= 0 ⇒ D(x, y) = H(x). (1.296)

Summing up the results we can write

Ax = μ0 I

2π
z

x

(x2 + y2)
+ H(x), Ay = μ0 I

2π
z

y

(x2 + y2)
, Az = 0. (1.297)

Note that if we put H(x) = 0 and we would have chosen Az = constant = −μ0 I

2π
,

these results would coincide with the method used previously.
Following this method, we have more possibilities. For instance, if we at first

choose Ax = 0, we can obtain another form for A. In fact, this case corresponds
exactly with the development shown in Sect. 1.14. Applying directly (1.108) and
(1.107), and setting D(y, z) = 0 yields

Ay =
∫

Bz(x, y, z)dx + D(y, z) = 0, (1.298)
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and

Az = −
∫

By(x, y, z)dx + C(y, z) = −μ0 I

2π

∫
x

(x2 + y2)
dx + C(y, z)

= −μ0 I

4π
ln(x2 + y2) + C(y, z). (1.299)

(
∂Az
∂y

− ∂Ay

∂z

)
= Bx (x, y, z) ⇒ −μ0 I

2π

y

(x2 + y2)
+ ∂C(y, z)

∂y
= Bx = −μ0 I

2π

y

(x2 + y2)
,

(1.300)
then

∂C(y, z)

∂y
= 0 ⇒ C(y, z) = H(z). (1.301)

As a result we can write

Ax = 0, Ay = 0, Az = −μ0 I

4π
ln(x2 + y2) + H(z). (1.302)

Usually textbooks of electromagnetism assign to the constant H(z) the value

H(z) = μ0 I

4π
ln(x20 + y20 ),

then the expression for A leads to

A = −μ0 I

4π
ln

(
x2 + y2

x20 + y20

)
. (1.303)

1.22 Let us suppose a scalar field ϕ(r) and a vector field F(r). Probe the following
relations: (a) ∇ × (∇ϕ(r)) = 0. (b) ∇ · (∇ × F(r))) = 0.

Solution

(a) The gradient of scalar function is given by

∇ϕ = ∂ϕ

∂x
ux + ∂ϕ

∂y
uy + ∂ϕ

∂z
uz, (1.304)

and applying the definition of rotational, we have

∇ × (∇ϕ(r)) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ux uy uz
∂

∂x

∂

∂y

∂

∂z
∂ϕ

∂x

∂ϕ

∂y

∂ϕ

∂z

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

=
(

∂2ϕ

∂y∂z
− ∂2ϕ

∂z∂y

)
ux +

(
∂2ϕ

∂z∂x
− ∂2ϕ

∂x∂z

)
uy +

(
∂2ϕ

∂x∂y
− ∂2ϕ

∂y∂x

)
uz = 0.

(1.305)
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(b) Let Fx (x, y, z) be the first component of the rotational of the vector field F(r),
whose value is

Fx (x, y, z) =
(

∂Fz

∂y
− ∂Fy

∂z

)
.

By introducing this component and the other corresponding to the projections over
y and z (1.41) into the definition of divergence, we have

∇ · (∇ × F(r)) =
(

∂2Fz
∂x∂y

− ∂2Fy

∂z∂x

)
+

(
∂2Fx
∂z∂y

− ∂2Fz
∂x∂y

)
+

(
∂2Fy

∂x∂y
− ∂2Fx

∂y∂z

)
= 0.

(1.306)



Chapter 2
Static Electric Field in Vacuum

Abstract This chapter introduces forces between charges at rest, which are not
supposed to be inside any media (Coulomb’s law). Concepts such as electric field
or electric potential are introduced, as well as its calculus when produced by differ-
ent charge distributions, including conductive materials. Gauss’ law and its use to
calculate electric field caused by certain charge distributions is also seen.

2.1 Electric Charge

Charge is a basic and characteristic property of the elementary particles which make
up matter. There are two kinds of charges: positive and negative. Every portion of
matter contains approximately equal amounts of each type. When speaking about
charge, we are referring to the net sum of positive and negative. Therefore, when
something is positively charged it is because the amount of positive charges (usually
protons) is higher than the negative ones (usually electrons). The electric charge is
found in multiples of the elementary charge e (electron or proton charge). It is an
experimental fact that charge can be neither created nor destroyed. This is known as
the principle of conservation of charge: for any process performed in an isolated
system, net or total charge does not change or in a non-isolated system the charge
introduced into a system is equal to its increase of charge. Charge is represented by q
and its unit in International System (SI) is coulomb (C).1 For continuous distributions
of charge, and given the smallness of the elementary charge e, any small element
of volume that we consider will be constituted by a large number of electrons and
protons.Hencewe can consider a charge density function as the limit of the charge per
unit volume as the volume becomes infinitesimal, and the corresponding integration
will allow us to obtain the overall charge of the object. It is defined as volume charge
density ρ by

ρ = lim
�V →0

�q

�V
≡ dq

dV
, (2.1)

1Coulomb can be defined as a function of the elementary charge e as 1C = 6.25 × 1018 e. In later
chapters, when magnetic experiments are discussed, it will be possible to define it as an ampere’s
derivative.

© Springer-Verlag Berlin Heidelberg 2017
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which represents the charge per unit volume at each point of a surface. The SI unit
is Cm−3. The overall charge qV in the volume V is obtained as

qV =
∫

V
ρdV . (2.2)

If the charge is distributed on one surface S, surface charge density σ can be defined
as

σ = lim
�S→0

�q

�S
≡ dq

d S
, (2.3)

which represents charge per unit area at each point of a surface. Its unit in SI is Cm−2.
Total charge qS on S is obtained as

qS =
∫

S
σd S. (2.4)

When charge is distributed on amaterial line L , line charge density λ can be defined
as

λ = lim
�l→0

�q

�l
≡ dq

dl
, (2.5)

that represents charge per unit of length at each point of the line. Its unit in SI is
Cm−1. Total charge qL on L is obtained as:

qL =
∫

L
λdl. (2.6)

2.2 Coulomb’s Law

From several observations that took place in 18th century by Coulomb and others, it
can be established that force between two electric charges at rest can be mathemati-
cally expressed by Coulomb’s law:

�Fq = k
qq ′

|�r − �r ′|2
�r − �r ′

|�r − �r ′| = k
qq ′

d2
u, (2.7)

which states that forces between two point charges q and q ′ act along the line joining
them, and are directly proportional to the product of these charges and inversely
proportional to the square of the distance d = |r − r ′| between them (Fig. 2.1).

Equation (2.7) express the force Fq which acts on q due to q ′’s action. Fq ’s direc-
tion is determined by the unitary vector u = (r − r ′)/|r − r ′|, oriented from q ′ to q,
aswell as charges’ sign. Forces are repulsive if charges have the same sign, and attrac-
tive if they have opposite sign. Fq ′ over q ′ due to q is the vector −Fq . If (r − r ′) is
replaced in (2.7) by (r ′ − r), Newton’s third Law is obtained.
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Fig. 2.1 Forces between
point charges q

q'

Fq'

Fq

r'

r

u

r r- '

O

The value of the proportional constant k depends of the units system. In SI, it is

k = 10−7c2, (2.8)

where c is the velocity of light in vacuum. It can also be written as

k = 1

4πε0
, (2.9)

where ε0, is the permittivity of free space. Therefore

k ≈ 8.9875 × 109 Nm2/C2 ≈ 9 × 109 Nm2/C2, (2.10)

and
ε0 ≈ 8.8542 × 10−12 C2/(Nm2). (2.11)

When several n point charges q j act on q, it’s been experimentally established that
the total force acting on a charge is the vector sum of the individual forces which
act on it. This is known as the superposition principle for electrostatic forces.
Therefore, the force is determined by the repeated application of (2.7):

Fq = q
n∑

j=1

q j

4πε0|r − r j |2
r − r j

|r − r j | = q
n∑

j=1

q j

4πε0d2
j

u j , (2.12)

where d j = |r − r j | is the distance between the j-ith charge and q, and u j = (r −
r j )/|r − r j | is the unitary vector in the direction from q j to q.

The same principle can be applied in a continuous charge distribution case. If a
very small volume dV ′ is considered at a point in the charge distribution, where the
density is ρ, charge inside dV ′ is, according (2.1), dq ′ = ρdV ′ (Fig. 2.2). If these
values are substituted in (2.12) and the sum is substituted by an extended integral to
the whole charge, it results:

Fq = q

4πε0

∫

V ′

ρ

|r − r ′|2
r − r ′

|r − r ′|dV ′, (2.13)

where r is the point charge position and r ′ is the position of each of the volume
differentials. Figure2.2 represents the force dF of point element dq ′ = ρdV ′ over
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Fig. 2.2 Force due to a
continuous charge
distribution

O

qdV'

r'
r

r r- '
V'

dF

Fq

point chargeq;Fq ’s value comes fromadding every element dF. The same expression
can be applied when a charge is distributed on a surface or on a line substituting
dq ′ = ρdV ′ by dq ′ = σd S′ or dq ′ = λdl ′, respectively. The integral in (2.13) is
well behaved even in case q falls inside the charge distribution.

2.3 Electric Field

In (2.7), (2.12) and (2.13) it is observed that the force that acts onq is proportional toq.
Therefore a vectorial field which is independent from q is introduced. Its dimensions
are force per unit of charge. Hence electric or electrostatic field2 can be defined as

E = lim
q→0

F
q

, (2.14)

where the test charge placed at the point goes to zero, so it can be assured that it does
not affect the charge distribution which produces E. The electric field unit in SI is
NC−1.

For a point charge, the expressionof electric field is directly obtained fromdividing
by q in (2.7):

E(r) = q ′

4πε0|r − r ′|2
r − r ′

|r − r ′| = q ′

4πε0d2
u. (2.15)

When electric field’s definition is applied to (2.12) and (2.13) a general equation
can be obtained for the electric field due to a given distribution of charge at rest,

E(r) = 1

4πε0

n∑

j=1

q j

|r − r j |2
r − r j

|r − r j | + 1

4πε0

∫

V ′

ρ(r ′)
|r − r ′|2

r − r ′

|r − r ′|dV ′+

+ 1

4πε0

∫

S′

σ(r ′)
|r − r ′|2

r − r ′

|r − r ′|d S′ + 1

4πε0

∫

L ′

λ(r ′)
|r − r ′|2

r − r ′

|r − r ′|dl ′.

(2.16)

2‘Electrostatic field’ is usually used when phenomena are time independent.
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This is themathematical expression of superposition principle for electric field:
the electric field created by a number of charges is equal to the sum of the fields
produced independently by each of them,3 where the symbol r represents the position
vector of the point where the field is calculated (field point), and rj or r ′ is the vector
position of any of the charges or the charge differentials (source point). r − r ′ or
r − r j is the vector that goes from each of the source points to the field point, and its
magnitude represents distance between them. The sum or integration is calculated
over total charge: therefore the variable is not r, but r j or r′; quantities ρ,σ and λ
can also be dependent on variables of position r ′.

It is not necessary to apply (2.2)’s formulas to calculate the force that acts on a
charged particle q when introduced in a region where exists an electric field E, but
once E is determined it is simple to see from (2.14) that:

F = qE. (2.17)

2.4 Electrostatic Potential

It has been seen in Chap.1 that if the field’s curl is zero, then the vector can be

expressed as the gradient of a scalar field. It’s easy to demonstrate that∇ × r − r′
|r − r′|3 = 0,

and as every term of (2.16) corresponds to this form,we establish that the electrostatic
field is irrotational, and therefore it is derived from a potential:

∇ × E(r) = 0 ⇒ E(r) = −∇V (r), (2.18)

where V is called the electrostatic potential. It is important to note that if the
phenomena were time-dependent, the electric field’s curl would not be zero.

If we bear in mind the gradient’s property dV = ∇V · dr given by (1.39), and we
apply it to (2.18) it results that:

V (r) = −
∫

E(r) · dr. (2.19)

It can be observed that potential represents potential energy per unit charge. So,
if we remember potential energy of a conservative force is:

Ep(r) = −
∫

F(r) · dr, (2.20)

3The superposition principle has been experimentally checked also for very high field intensities: in
engineering practices with fields which reach several millions of volts per meter (accelerators, high
voltage discharges), when calculating fields in electron orbits (E ≈ 1011 . . . 1017 V/m) or when
calculating the field of highly weight nucleus (E ≈ 1022 V/m). For fields over 1020 V/m vacuum
polarization is introduced and makes the problem non-linear.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_1
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and, taking into account from (2.17) that F = qE, it results that

Ep(r)/q = −
∫

E(r) · dr = V (r). (2.21)

If two points A and B are taken, it is observed from (2.19) that the potential
difference between two points is the circulation of the electrostatic field E between
these two points, along any path between them4:

VA − VB =
∫ rB

rA

E · dr. (2.22)

Any convenient point rB = rre f can be chosen as the potential reference, at which
VB = Vref = 0 in (2.22). It is common to choose infinity as potential reference. The
expression we reach is

VA =
∫ rre f

rA

E · dr =
∫ ∞

rA

E · dr, (2.23)

which represents thework done by an external agent in transferring the unit of positive
charge from infinity to a considered point.

If the E field is due to a point charge q ′ (2.15) and (2.19) is integrated, the
electrostatic potential is obtained,

V (r) = q ′

4πε0|r − r ′| = q ′

4πε0d
. (2.24)

The integration constant does not appear because infinity has been chosen as potential
reference (V∞ = 0 ⇒ C = 0). If the same calculus is applied to (2.16) a general
expression for the electrostatic potential is obtained:

V (r) = 1

4πε0

n∑

j=1

q j

|r − r j | + 1

4πε0

∫

V ′

ρ

|r − r ′|dV ′ + 1

4πε0

∫

S′

σ

|r − r ′|d S′

+ 1

4πε0

∫

L ′

λ

|r − r ′|dl ′. (2.25)

This is themathematical expression of the superposition principle for electrostatic
potential: the electrostatic potential created by a number of charges is equal to the
sum of potentials caused by each of them independently.

4It must be observed in expression (2.22) that the order of integral limits have been changed. This
is due to the negative sign removal.
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2.5 Flux of Electric Field. Gauss’ Law

Let V be a region in space, bordered by ∂V and let n be the outward unit normal to
∂V on every point of a surface. The flux �E through ∂V (1.28) of the electric field
E produced by a point charge q located at the origin is

�E =
∮

∂V

q

4πε0r3
r · n d S. (2.26)

where r is a vector that goes from q to a point on ∂V .
Gauss’ law states that if V is smooth enough and if q /∈ ∂V , it is verified

�E =
∮

∂V

q

4πε0

r · dS
r3

=

⎧
⎪⎨

⎪⎩

0 if q /∈ V,

q

ε0
if q ∈ V .

(2.27)

If we have any charge distribution, and we apply the principle of superposition
for electrostatic fields, the previous theorem can be generalized as:

�E =
∮

∂V
E · dS = qin

ε0
, (2.28)

where qin represents charge inside surface ∂V , which is usually called a Gaussian
surface. This is known as Gauss’ law or Gauss’ theorem.

This theorem shows that the flux of the electric field through a closed surface
only depends on the charge qin inside the surface. It must be noted that the flux can
be zero even though the field is not, as in Fig. 2.3, where the flux is positive in dS1

and negative in dS2, and where the direction of field E2 is towards V ’s inner part. It
must be also observed that the flux (not the field) through one surface is the same as
another surface if the charge is in the volume bounded by the surface is the same.

Gauss’ law allows calculating an electrostatic field created by charge distributions
with different geometric and electric symmetries. This calculus is usually possible
if a Gaussian surface with the same electric field (same magnitude and same angle
with a normal vector to the surface) can be taken at each of its points.

Fig. 2.3 Flux of an electric
field through a closed surface
due to a point charge q

V

V
dS2

E2

dS1

E1

http://dx.doi.org/10.1007/978-3-662-48368-8_1
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2.6 Electrostatic Equations

The integral expression of Gauss’ law makes results dependent on the region we
integrate. To avoid this problem, proper application of the divergence theorem results
in a differential expression for the law:

∇ · E(r) = ρ(r)
ε0

, (2.29)

where ρ = ρ(r) is the charge density on the considered point. This expression rep-
resents the differential form of Gauss’ law,5 which together with (2.18), compose
electrostatics fundamental equations. If we remember the concept of divergence from
Chap.1, it can be observed that electric field sources are positive charge points, and
sink ones are points with negative charge.

If we combine the two electrostatic equations, the result is

�V (r) = − ρ(r)
ε0

, (2.30)

which is known as the Poisson equation. In regions where charge density is null, we
have

�V (r) = 0, (2.31)

which is known as the Laplace equation.
Equations (2.30) and (2.31) are second order partial differential equations for a

scalar field (electrostatic potential). If these equations are integrated and boundary
conditions are given by a known charge distribution, the potential can be obtained for
particular problems. The problem is simplified if an appropriate coordinate system
is chosen. A Poisson (or Laplace) Equation solution is a unique one (unity theorem).
This property allows us to establish methods to obtain the differential equation solu-
tion without specifically solving it (as occurs with the method of images, Sect. 7.4).
This is because once a solution is obtained, it is unique, independent of the way it is
obtained.

2.7 Electric Dipole

A special case of electric charge distribution can be studied: two equal and opposite
charges separated by a small distance. This is known as an electric dipole. This can
occur not only with two charges, but due to more complex charge distributions where

5This equation is valid even when conditions are not static.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_7
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the effective centers of negative and positive charges satisfy dipole characteristics, as
it will be seen in Chap.3. The electric dipole is characterized by its dipole moment,
expressed by

p ≡ qd, (2.32)

whose SI unit is Cm. The magnitude d is equal to the distance between charges, and
d has the direction from the negative charge to the positive charge. This is especially
interesting for the case when the distance d goes to zero (it’s very small compared
to the other dimensions of the problem): a point dipole is formed. It has neither net
charge nor space extension, but it is completely characterized by its dipole moment.
Polar molecules are an example of a point dipole.6 The electric field and the potential
distribution produced by a point dipole can be calculated with the aid of the formulas
of Sects. 2.3 and 2.4. The electric field is

E(r) = 1

4πε0

{
3(r − r ′) · p

|r − r ′|5 (r − r ′) − p
|r − r ′|3

}
, (2.33)

where the point dipole is located at point r ′. The potential distribution produced by
a point dipole is given by

V (r) = 1

4πε0

p · (r − r ′)
|r − r ′|3 . (2.34)

2.8 Conductors and Insulators

Materials have charged particles inside them which can move through-out the mate-
rial under the influence of an outside electric field. These charged particles are called
charge carriers. Charge carriers are electrons and ions in gases and liquids, electrons
in crystalline solids (semiconductors and metals) and pairs of electrons in supercon-
ductors. The physical property used to measure the ease of charge movement is the
conductivity.7 According to electric behavior, materials can be divided into conduc-
tors, semiconductors and insulators (or dielectric).

Conductors are substances in which charges are free to move throughout the
material under the influence of an outside electric field. Metallic conductors are the
most characteristic example. The conductivity of metals generally increases with
a decrease in temperature. At temperatures near absolute zero (T ≈ 0 ◦K), some
conductors exhibit infinite conductivity and are called superconductors.

Dielectrics are substances in which charged particles are not free to move (low
conductivity). These charges (nucleus and electrons) are strongly linked forming a
material’s atoms or molecules. In fact, they change position very little.

6[104] can be seen for more detailed information about the electric dipole.
7This concept will be studied on Chap.4.

http://dx.doi.org/10.1007/978-3-662-48368-8_3
http://dx.doi.org/10.1007/978-3-662-48368-8_4
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Semiconductors have electrical properties intermediate between conductors and
dielectrics, though in electrostatic fields they behave as conductors.

A material’s ability to conduct electricity can be understood with band theory:
electrons in solid materials are distributed in bands, each one with a grade of energy.
Electrons can change from one to another by absorbing or giving energy. Between
bands there can be gaps or forbidden regions where an electron’s presence is not
possible. In the case of conducting materials, superior bands (conducting ones) are
partially full, so the electron can move along them. For the insulating materials, the
gap is large; they need a large energy to allow electrons to jump from the highest
full band (valence’s band) to the next one. In semiconductors, the necessary energy
to go from the valence band to the conducting one is small.

Behavior of dielectric materials undergone to electric fields will be studied in
next chapter. Charge carriers in conducting materials move until they reach positions
where no net force is exerted, so they will have electrostatic balance. Hence, in
electrostatic conditions:

• Electric field is null (E = 0) inside conducting materials, because equilibrium
implies a null force, and E is perpendicular on the surface.

• From (2.29), charge density ρ in the interior of the conductor is zero.
• From (2.18), each conductor forms an equipotential region of space.
• If (2.28) is applied, it can be deduced that the field in a very close point from
conducting’s surface is E = σ/ε0, where σ is the surface charge density of the
conductor.

It must be observed that the Laplace equation (2.31) can be applied for conductors
problems, because in almost every point the charge density is zero. You can solve
the Laplace equation for every point outside the conductor if you know the boundary
conditions, which involve the electrostatic potential V . Solution to the problem is
already completed, because for the rest of the points (inside the conductor), the
solution is the one that follows: as conducting materials are equipotential volumes,
the potential inside them is the same as the one on its surface.

2.9 Biot–Savart-like Law in Electrostatics

The Biot–Savart law in one of the most basic relations in electromagnetism. We will
study it in later chapters this law which allows us to calculate the total magnetic field
B at a point in space as superposition of dB produced by the flow of current I through
an infinitesimal path segment dl. In [79], we can see an application of Biot–Savart
law to obtain the electric field E produced by a plane charge distribution, bounded
by a curve C and kept at a fixed potential V while the rest of the plane is held at zero
potential. If r′ locates the source point and r refers to the field point, it follows that:

E(r) = V

2π

∮

C

(r − r′) × dl′

|r − r′|3 , (2.35)
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where dl′ is a length element of the integration pathC . The direction of the integration
aroundC is determined by the direction of the outward unit normal via the right-hand
rule. Notice that to calculate the electric field we just need to take into account the
contributions coming from the boundary contour C .

Solved Problems

Problems A

2.1 In a cartesian coordinate system, with the axis in meters, two point charges are
considered, one of them positive of 1 nC, located at the origin of coordinates, and
the other one, negative of −20 nC, located at A(0, 1). Determine the resulting
field at B(2, 0) and the necessary work to take a positive charge of 3µC from
B(2, 0) to C(4, 2).

Solution

Applying the superposition principle for electrostatic field, field at B will be the
vectorial addition of the fields due to each charge (Fig. 2.4), this is:

EB = EO B + EAB .

To calculate the field due to each charge, (2.15) is applied. Point B’s coordinates are
r = 2ux . In the case for the charge at O , position vector is r ′ = 0, and we obtain
r − r ′ = OB = 2ux and |r − r ′| = 2. Position vector of charge at A is r ′ = uy ,
so r − r ′ = AB = 2ux − uy and |r − r ′| = √

5. If (2.15) is applied to the charge
located at O , the result is,

EO B = 1

4πε0

q ′

|r − r ′|2
r − r ′

|r − r ′| = 9 · 109 10
−9

4
ux = 9

4
ux .

And for the charge located at A,

Fig. 2.4 Field produced by
point charges

Y

XB(2,0)

A(0,1)

C (4,2)

O

EOB

EAB EB
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EAB = 1

4πε0

q ′

|r − r ′|2
r − r ′

|r − r ′| = 9 · 109 (−20 · 10−9)

5

(
2√
5

ux − 1√
5

uy

)

= 36√
5

(−2ux + uy
)
.

The field could be obtained without using position vectors, and bearing in mind
Fig. 2.4. Since there is a negative charge at A, field E AB is pointed to A. If we use
(2.15) to calculate the electric field magnitude and if we project it, we obtain the field
expressed as,

EAB = 9 · 109 20 · 10−9

5
(− cosαux + sinαuy) = 36

(−2√
5

ux + 1√
5

uy

)
.

The resulting field will be

EB = EO B + EAB =
(
9

4
− 72√

5

)
ux + 36√

5
uy = −29.95ux + 16.10uy .

Since the electrostatic field is conservative, the work necessary to take a charge
from B to C is equal to the variation of potential energy between B and C (2.20),
with negative sign. From (2.21) which relates electrostatic potential to the potential
energy,

WBC = −(EpB − EpC) = −q(VB − VC),

and potentials at points B and C due to the charge system of the problem must
be calculated. To obtain the potential on each point, the superposition principle is
applied, this is, the potential to be the added due to each charge, VB = VO B + VAB

and VC = VOC + VAC . If (2.24) (potential produced by a point charge) is applied

V = 1

4πε0

q ′

|r − r ′| ,

potentials due to each charge on each point VO B, VAB, VOC and VAC can be deter-
mined. It is necessary to define the terms (|r − r ′|), which are the distances from
each charge to points B and C . On the case of point B the distances have already
been determined for the calculus of the electric field, so potential in B will be

VB = VO B + VAB = 9 · 109
(
10−9

2
+ (−20 · 10−9)√

5

)
= −76V.

For point C , its position vector is r = 4ux + 2uy , and it becomes that r − r ′ values
are OC = 4ux + 2uy for the charge at O and AC = (4ux + 2uy) − uy = 4ux + uy

for the charge at A. Potential is
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VC = VOC + VAC = 9 · 109
(
10−9

√
20

+ (−20 · 10−9)√
17

)
= −41.6V.

And circulation from point B to C is

WBC = −q(VB − VC) = −3 · 10−6(−76 + 41.6) = 103.2 · 10−6J = 103.2µJ.

2.2 In the space region defined by y > 0, a charge density ρ = cy exists, with c =
2µC/m4 and y the distance (in meters) from any point to plane X O Z . Calculate:
(a) The flux of the electrostatic field through the prism’s surface in Fig. 2.5.
(b) Divergence of electrostatic field in the prism’s faces which are parallel to
plane X O Z .

Solution

(a) Gauss’ law (2.28) states the flux of the electric field due to a charge distribution,

�E =
∮

∂V
E · dS = qin

ε0
= 1

ε0

∫

V
ρdV .

Therefore we must calculate the charge qin inside the prism in Fig. 2.5. Since charge
density ρ only depends on coordinate y, every point located at the same distance
y have the same density. Let’s consider the infinitesimal volume drawn in Fig. 2.6,
dV = 3 · 3 dy = 9 dy. At every point in it the density is cy, so the volume integral
becomes a simple integral:

qin =
∫

V
ρdV =

∫ 5

1
cy 9 dy = 9cy2

2

∣
∣
∣
∣

5

1

= 216µCm−3.

Fig. 2.5 Prism of
Problem 2.2
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Z
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Fig. 2.6 Differential
element to calculate internal
charge
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And therefore the flux is

�E = qin

ε0
= 216 · 10−6

8.85 · 10−12
= 24.4 · 106 NC−1m2.

(b) We obtain the divergence of the electric field from (2.29). If we particularize for
each of the prism faces, we obtain:

divE = ρ

ε0
= cy

ε0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y = 1, divE = 2 · 10−6 · 1
8.85 · 10−12

= 2.26 · 105 NC−1m−1

y = 5, divE = 2 · 10−6 · 5
8.85 · 10−12

= 1.13 · 106 NC−1m−1

2.3 Determine the electric field produced on any point in space by a very long line
(infinite) charged with a uniform density λ.

Solution8

This problem has cylindrical symmetry. Hence all the points at the same distance to
the line have the same electric field magnitude, and E is perpendicular to the line.9

The problem can be solved by applying Gauss’ law (2.28). We take as a Gaussian
surface ∂V a closed cylindrical surface, with any length L , with the axis on the line
and with radius r making the surface to pass through point P , the field desired to
be calculated (discontinuous line in Fig. 2.7). The electric field at any point on the
Gaussian surface is radial (perpendicular to the cylinder lateral surface), outward
pointed, if we suppose the line as positively charged,10 and has the same magnitude
at every point on the lateral surface. It should be observed that the Gaussian surface is
a closed surface and therefore to calculate the flux the cylinder lateral surface where
the point P is and the cylinder bases, where the magnitude of the field is not constant
and is different from the one at the lateral surface, should be considered. However,
this is not a problem, since the flux through the bases is null due to the fact that dS
and E are perpendicular at any point. Calculating the flux through the lateral surface,
where dS and E are parallel:

�E =
∮

∂V
E · dS =

∫

Slat

E dS = E
∫

Slat

d S = E2πr L ,

8Infinite is usually used to express that the element is much longer than the distance r to point P ,
so the symmetry reasonings can be used for the calculus.
9To check this, the field can be considered to be produced at a point by an element dq and its
symmetric regarding to the normal to the line by the considered point. Tangential components
from one and another have the same magnitude, since they are at the same distance, and opposite
directions. Then the result is a radial field.
10If the charge were negative, the charge sign on the solution indicates that the field vector has the
opposite direction.
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Fig. 2.7 Gaussian surface
and field vectors to apply
Gauss’ law to an infinite line

P

E
dS

L

E
dS

V

r

r

where Slat is the cylinder lateral surface. On another side, if Gauss’ law is applied, it
is obtained

�E = qin

ε0
= λL

ε0
.

Equating both expressions,

E = λ

2πε0r
,

shows that the field varies inversely with the distance to the line. This expression is
the same as the one calculated by integration in Problem 2.4. Using vectors:

E = λ

2πε0r

r
r

= λ

2πε0r
uρ, (2.36)

where uρ is the radial unit vector for cylindrical coordinates.

Problems B

2.4 Determine the electric field, at any point in space, produced by a line with
length L , which has been uniformly charged by a total charge Q: (a) directly;
(b) from electrostatic potential. Apply the result for the particular cases of the
field produced by an infinitely long line with density λ and to the field produced
by a semi-infinite line with density λ at a point located on the perpendicular to
its extreme.

Solution

(a) The problem above is drawn in Fig. 2.8, where a cartesian coordinate system
has been defined, just to simplify the calculus. To achieve this, we choose a point
P where we want to calculate the field (field point), and we define a plane XY as
drawn. The X axis is on the charged line and the origin is at one extreme of the line.
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Fig. 2.8 Field produced by
an finite line at any point

Y

XL

P(x,y)

dq'

dE

d
r

O r'

f
i

The coordinates of point P will be (x, y) and the electric field E will be on plane
XY .

To solve the problem we calculate the field due to an element dq ′ from the line,
and the superposition principle is applied. The field produced by an element dq ′ is
given by (2.15)

dE(r) = dq ′

4πε0|r − r ′|2
r − r ′

|r − r ′| ,

where r = xux + yuy is the position vector of point P and r ′ = x ′ux is the position
of each charge element (source point) dq ′. Charge dq ′ is obtained from lineal charge
density definition λ (2.5) as

dq ′ = λdl = λdx ′.

λ is obtained from (2.6), bearing in mind that, since it is a uniform charge, λ is
constant:

λ = Q

L
.

With r and r ′ values we obtain vector r − r ′ and the distance from dq ′ to point P:

r − r ′ = (x − x ′)ux + yuy , d = |r − r ′| =
√

(x − x ′)2 + y2.

If we substitute the electric field produced by dq ′ at point P , we have

dE(r) = dq ′

4πε0|r − r ′|2
r − r ′

|r − r ′| = 1

4πε0

λdx ′
[
(x − x ′)2 + y2

]
(x − x ′)ux + yuy√

(x − x ′)2 + y2
.

The total field is obtained by applying the superposition principle (2.16):

E = λ

4πε0

∫

L

dx ′
[
(x − x ′)2 + y2

]
(x − x ′)ux + yuy√

(x − x ′)2 + y2
.
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Solving using integrals, where the only variable is x ′, allows us to obtain the total
field’s value. A way of solving this integral is by introducing a variable change,
depending on the angle ϕ in Fig. 2.8,

cosϕ = x − x ′

d
, sinϕ = y

d
, cot ϕ = cosϕ

sinϕ
= x − x ′

y
.

If we take the derivative of the last expression, the result is

dϕ

sin2 ϕ
= dx ′

y
.

If we obtain dx ′ and d values,

dx ′ = y dϕ

sin2 ϕ
, d = y

sinϕ
,

and we substitute into the integral, and substitute
√

(x − x ′)2 + y2 for d, it follows

E = λ

4πε0

∫

L

dx ′

d2

(x − x ′)ux + yuy

d

= λ

4πε0

(∫

ϕ

sin2 ϕ

y2
y dϕ

sin2 ϕ
cosϕux +

∫

ϕ

sin2 ϕ

y2
y dϕ

sin2 ϕ
sinϕuy

)

= λ

4πε0y

(∫ ϕ f

ϕi

cosϕdϕux +
∫ ϕ f

ϕi

sinϕdϕuy

)
.

where ϕi and ϕ f are the angles measured from the initial and final positions of the
line, as shown in Fig. 2.8. It should be observed that y, the generic ordinate of a point
field, is not a variable in the integral. If we solve it, it results

E = λ

4πε0y

(
(sinϕ f − sinϕi )ux + (cosϕi − cosϕ f )uy

)
. (2.37)

The result can be written in Cartesian coordinates:

E = Q

4πε0yL

[(
y

√
(L − x)2 + y2

− y
√

x2 + y2

)

ux

+
(

x
√

x2 + y2
+ L − x

√
(L − x)2 + y2

)

uy

]

, (2.38)

where λ’s value has been replaced by Q/L .
(b) To calculate the electric field at P from the potential V , wemust obtain a potential
generic expression at any point (for example P(x, y)) and then obtain the field from
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(2.18). It is important to notice that this procedure can be done because the potential
at all the points is known, and therefore its gradient can be calculated. To obtain the
potential at point P , the potential produced by a charge element dq ′ is expressed,
taking the potential reference at infinity (2.24),

dV = 1

4πε0

dq ′

|r − r ′| = λ

4πε0

dx ′
√

(x − x ′)2 + y2
,

and the superposition principle for electrostatic potential is applied (2.25):

V = λ

4πε0

∫ L

0

dx ′
√

(x − x ′)2 + y2
.

Solving this integral,

V = − λ

4πε0
ln

(
x − x ′ +

√
(x − x ′)2 + y2

) ∣
∣
∣
∣

L

0
= λ

4πε0
ln

x +
√

x2 + y2

x − L +
√

(x − L)2 + y2
.

If we apply now (2.18),

E = −∇V = −(∂V/∂x)ux − (∂V/∂y)uy,

and if we solve the indicated partial derivative, the total field E at P is obtained
(2.38).

Let’s consider the case of an infinite line (very long line). Since the line has an
infinite length, (2.38) is not obvious. It is easier to use (2.37). It should be observed
in Fig. 2.8 that if the line is infinite, initial and final angles are ϕi = 0 and ϕ f = π.
If we substitute in (2.37), it results

E = λ

2πε0y
uy .

Let’s consider that the line begins at O and is very long (semi-infinite line) and
P is over the perpendicular to the line at O . Point P coordinates are P(0, y). If we
consider (2.37), we observe in Fig. 2.8 that, since P(0, y), ϕi = π/2 and ϕ f = π.
Then,

E = λ

4πε0y
(−ux + uy),

We should be cautious when applying the used procedure in section (b) to obtain
the field when the line is infinitely long. We observe the potential for this charge
distribution as

V = lim
L−→∞

λ

4πε0
ln

x + √
x2 + y2

x − L + √
(x − L)2 + y2

−→ ∞.
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So it is not possible to obtain the field from this potential. Infinite potential has been
obtained because for charge distributions that spread in an infinite region, it can never
be certain that this potential converges. However, the field from the potential can be
obtained as follows: firstly we calculate the finite line potential, then its gradient,
and then we make the line’s length to infinity. This difficulty will also appear in the
magnetostatic chapter.

2.5 Determine the electric field and the potential at any point in space produced by
a spherical crown where the internal radius is R1 and the external one R2, with
a total charge Q, for the following cases: (a) non conducting and an uniform
charge distributed throughout the volume; and (b) metallic and on electrostatic
equilibrium. Particularize the results for a solid sphere with radius R.

Solution

(a) In this case the spherical crown has a uniform volume charge density ρ at every
point between R1 and R2, that can be calculated by applying (2.2):

Q =
∫

V
ρdV = ρ

∫

V
dV = ρV = ρ

4

3
π(R3

2 − R3
1) ⇒

ρ = Q

V
= 3Q

4π(R3
2 − R3

1)
.

Because of its symmetry, Gauss’ law (2.28) is applied, considering a spherical
Gaussian surface ∂V (Fig. 2.9), concentric with the charge distribution, and passing
through the point where we want to calculate the field. At every point inside a sphere
whose radius is r ≤ R1, field is null since internal charge is zero:

E(r≤R1) = 0.

Fig. 2.9 Gaussian surfaces
and field vectors to apply
Gauss’ law to a spherical
crown
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Due to the charge distribution symmetry, the electric field at any other point on the
Gaussian surface will be radial,11 outward12 and with the same magnitude at every
point on the surface. Two different expressions are obtained for the electric field,
depending on the point to be studied, if it is outside or inside the spherical crown
(P and P ′ in Fig. 2.9), since internal charge to the Gaussian surface has a different
expression.

Let’s firstly consider point P , outside the crown. The flux through the Gaussian
surface passing through P is

�E =
∮

∂V
E · dS =

∮

∂V
E d S = E

∮

∂V
d S = E4πr2,

where 4πr2 is the spherical surface’s area, with radius r . We observe that the total
charge within the Gaussian surface is all the charge of the spherical crown (grey in
figure). If Gauss’ law is applied, the flux is

�E = qin

ε0
= Q

ε0
= ρ4π(R3

2 − R3
1)

3ε0
.

If we equate the two previous expressions for the flux and we solve it, we obtain the
field at an external point P ,

E(r≥R2) = ρ(R3
2 − R3

1)

3ε0r2
= Q

4πε0r2
,

expression that coincides with the field produced by a point charge Q located at the
spherical crown centre. In fact, the field produced by a point charge, known from
Coulomb’s law, can be calculated by applying Gauss’ law to a random spherical
surface whose centre is on the charge.

To know the field at a point P ′ (Fig. 2.9), inside the spherical crown, the same
procedure is followed.We set up a spherical concentric surface, with radius r , passing
through P ′. The expression of the flux through a surface of radius r is the same, but
since R1 ≤ r ≤ R2, internal charge to theGaussian surface is now not the total charge
of the crown charge, but only the dark grey region in the figure. If we calculate

�E = qin

ε0
= ρ4π(r3 − R3

1)

3ε0
,

and then, from �E = E4πr2, the field at a point P ′ inside the spherical crown is
obtained,

11It can be checked by taking the field produced by a random element dq and its symmetrical with
regard to the diameter that passes through the considered point. Tangential components from one
to the other have the same magnitude and opposite directions, and the result is a radial field.
12It will be supposed, unless it is stated otherwise, these bodies are positively charged. If the charge
is negative, the vector field has the opposite direction.
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E(R1≤r≤R2) = ρ(r3 − R3
1)

3ε0r2
= Q

4πε0r2
(r3 − R3

1)

(R3
2 − R3

1)
.

Joining both results and expressing the field as a vector, it results

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 r ≤ R1,

Q

4πε0r2
(r3 − R3

1)

(R3
2 − R3

1)
ur = ρ(r3 − R3

1)

3ε0r2
ur R1 ≤ r ≤ R2,

Q

4πε0r2
ur = ρ(R3

2 − R3
1)

3ε0r2
ur r ≥ R2,

(2.39)

where ur is the radial unit vector for spherical coordinates. The field at a point on the
outside spherical surface can be calculated by using either one of the expressions,
making r = R2:

E(r=R2) = Q

4πε0R2
2

ur = ρ(R3
2 − R3

1)

3ε0R2
2

ur .

If the spherewere solid,with radius R, results can be obtained by replacing R1 = 0
and R2 = R:

E =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q

4πε0

r

R3
ur = ρr

3ε0
ur r ≤ R,

Q

4πε0r2
ur = ρR3

3ε0r2
ur r ≥ R,

(2.40)

And the field at a point on the surface would be:

E(r=R) = Q

4πε0R2
ur = ρR

3ε0
ur .

To determine the potential at any point, we calculate the potential difference
between that point and infinity, with null potential. Since the circulation of the elec-
trostatic field is path-independent, we take the radial direction from the point, where
E and dl are parallel,13 as shown in Fig. 2.10.

For an external point P we have, if we circulate the field E between P and infinity
(Fig. 2.10), that

13It is not necessary to take a circulation line where E and dl are parallel, if we bear in mind the
property of any vector r, for which r · dr = |r|d|r|. If we express E depending on ur we would
achieve the same calculus expression, but it is explained like this to make the circulation concept
comprehension easier.
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Fig. 2.10 Potential
calculation of a charged
spherical crown
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VP − V∞ = VP =
∫ ∞

P
E · dl =

∫ ∞

r
E(r≥R2)dr

=
∫ ∞

r

ρ(R3
2 − R3

1)

3ε0r2
dr =

= − ρ(R3
2 − R3

1)

3ε0r

∣
∣
∣
∣

∞

r

.

Then,

VP = ρ(R3
2 − R3

1)

3ε0r
= Q

4πε0r
.

It can be observed how the potential given by the charged spherical crown at an
external point is the same as a point charge, located at the centre, with the same
charge, would create.

If the point P ′ is inside the spherical crown, fromwhich we need to circulate from
P ′ to infinity, field expressions are different depending on where we circulate, inside
or outside the spherical crown. Potential difference is obtained from

VP ′ − V∞ = VP ′ =
∫ ∞

P ′
E · dl =

∫ R2

r
E(r≤R2)dr +

∫ ∞

R2

E(r≥R2)dr

=
∫ R2

r

ρ(r3 − R3
1)

3ε0r2
dr +

∫ ∞

R2

ρ(R3
2 − R3

1)

3ε0r2
dr =

= ρr2

6ε0

∣
∣
∣
∣

R2

r

+ ρR3
1

3ε0r

∣
∣
∣
∣

R2

r

− ρ(R3
2 − R3

1)

3ε0r

∣
∣
∣
∣

∞

R2

.

The potential will be

VP ′ = ρ(R2
2 − r2)

6ε0
+ ρR3

1

3ε0

(
1

R2
− 1

r

)
+ ρ(R3

2 − R3
1)

3ε0R2
.

If the point (P ′′) is in the hole (Fig. 2.10), so r ≤ R1, given the field at the hole is
null, circulation from point P ′′ to the inner radius of the crown R1 is also null. Point
P ′′ potential is the same as the one at point P ′ located on the inner spherical surface,
with r = R1. If the previous result is specified for r = R1 the result is:
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VP ′′ = ρ(R2
2 − R2

1)

6ε0
+ ρR3

1

3ε0

(
1

R2
− 1

R1

)
+ ρ(R3

2 − R3
1)

3ε0R2
.

If all the results are joined,

V =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(R2
2 − R2

1)

6ε0
+ ρR3

1

3ε0

(
1

R2
− 1

R1

)
+ ρ(R3

2 − R3
1)

3ε0R2
r ≤ R1,

ρ(R2
2 − r2)

6ε0
+ ρR3

1

3ε0

(
1

R2
− 1

r

)
+ ρ(R3

2 − R3
1)

3ε0R2
R1 < r ≤ R2,

ρ(R3
2 − R3

1)

3ε0r
= Q

4πε0r
r ≥ R2.

(2.41)

(b) If the spherical crown is metallic and has electrostatic balance, charge is only
distributed on its external surface, as it can be deduced from conductor properties
seen in Sect. 2.8. To obtain null electric field inside the conductor, the crown must be
charged on its external surface with a uniform superficial density. This density can
be obtained from (2.4):

Q =
∫

S
σd S = σ

∫

S
d S = σ4πR2

2 ⇒ σ = Q

4πR2
2

.

The field at internal points (r < R2) is null, due to the charge distribution symmetry.
To obtain the electric field produced by the crown at external points to it, and due
to the fact that the problem’s symmetry is analogous to the one in section (a), we
proceed as it was done in that section. We use the same Gaussian surfaces (Fig. 2.9)
but just changing that the charge Q is only on the surface. The flux through the
spherical surface of radius r is, as it happened with the previous case,

�E = E4πr2.

If Gauss’ law is applied to an external point P to the spherical crown,14 (r > R2),
results in

�E = qin

ε0
= Q

ε0
= 4πR2

2σ

ε0
.

In solving it, the result for an external point P is

E(r>R2) = Q

4πε0r2
= σR2

2

ε0r2
,

14It should be observed that Gauss’ theorem cannot be applied to the points exactly located on the
sphere’s surface, due to the fact that in this case charges would be on the Gaussian surface, breaking
the theorem’s condition q /∈ ∂V .
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the same expression depending on the total charge Q that in section (a). If it is
expressed with vector notation, the results are:

E =
⎧
⎨

⎩

0 r < R2,

Q

4πε0r2
ur = σR2

2

ε0r2
ur r > R2,

(2.42)

where ur is the radial unit vector for spherical coordinates.
Since the field at external points to the metallic crown is the same as the one in

section (a), if the same reference is taken (infinity), the potential is also the same for
points outside the crown. For points inside it, given the field is null at these points,
potential does not change and has the same value that on the crown’s surface. Then,

V =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q

4πε0R2
= σR2

ε0
r ≤ R2,

Q

4πε0r
= σR2

2

ε0r
r ≥ R2.

(2.43)

2.6 Determine the electric field produced by a very long charged cylinder at any
point, with inner radius R1 and external radius R2, with a charge per unit of
length q, for the following cases: (a) non conductor and uniformly charged; and
(b) metallic and in electrostatic balance. Specify the results for a solid cylinder
with radius R.

Solution

(a) In this case the cylinder has a uniform volumetric charge density ρ, at every point
between R1 and R2, that can be calculated by applying (2.2), and considering the
finite cylinder length L ,

Q =
∫

V
ρdV = ρ

∫

V
dV = ρV = ρπ(R2

2 − R2
1)L ⇒

⇒ ρ = Q

V
= Q/L

π(R2
2 − R2

1)
= q

π(R2
2 − R2

1)
.

The problem has cylindrical symmetry: at points inside the cylinder (r < R1), the
field is null, due to that symmetry and, for the other zones, all the points at the same
distance to the cylinder axis have the same electric field magnitude, with direction
perpendicular to that axis.15 The problem can be solved by applying Gauss’ law
(2.28), the same as it was done for Problem 2.3. For this we take as a Gaussian surface

15To check this, consider the field produced at a point by an element dq and its symmetric pair
with respect to a perpendicular to the cylinder axis at the considered point. The components parallel
to the cylinder axis have the same magnitude, since they are at the same distance, and opposite
direction, and we obtain a radial field.
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Fig. 2.11 Gaussian surface
and field vectors to apply
Gauss’ law to an infinite
cylinder
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∂V a cylindrical surface, with any length L , with the same axis as the cylinder and
radius r , making the surface pass through point P (or P ′) where we want to calculate
the field (discontinuous line in Fig. 2.11).

The flux through the bases of the Gaussian surface, is null, since dS and E are
perpendicular at any given point. Calculating the flux through the lateral surface,
where dS and E are parallel:

�E =
∮

∂V
E · dS =

∫

Slat

E d S = E
∫

Slat

d S = E2πr L , (2.44)

where Slat is the cylinder lateral surface. Applying Gauss’ law we have:

�E = qin

ε0
,

where qin’s value depends on the point where the field is calculated, whether it’s
inside (P ′) or outside (P) the charged cylinder. If we calculate the field at an external
point P , the entire charged cylinder (with height L , light grey coloured in Fig. 2.11)
remains inside the Gaussian surface, and it results

�E(r>R2) = qin

ε0
= 1

ε0

∫ R2

R1

ρdV = ρ

ε0
π(R2

2 − R2
1)L = q L

ε0
,

If the point P ′ is inside the charged cylinder, there is a part of the charge outside the
Gaussian surface, which produces no flux. Then the only inner charge that remains
is the dark grey coloured one in Fig. 2.11, and it results

�E(R1<r<R2) = qin

ε0
= 1

ε0

∫ r

R1

ρdV = ρ

ε0
π(r2 − R2

1)L .
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Equating these expressions with (2.44) it results, at external points as P ,

E(r > R2) = ρπ(R2
2 − R2

1)L

ε02πr L
= ρ(R2

2 − R2
1)

2ε0r
,

And at internal points as P ′,

E(R1 < r < R2) = ρπ(r2 − R2
1)L

ε02πr L
= ρ(r2 − R2

1)

2ε0r
.

If we combine both results and we express them using vectors, it results

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 r ≤ R1,

ρ(r2 − R2
1)

2ε0r
uρ = q

2πε0r

(r2 − R2
1)

(R2
2 − R2

1)
uρ R1 ≤ r ≤ R2,

ρ(R2
2 − R2

1)

2ε0r
uρ = q

2πε0r
uρ r ≥ R2,

where uρ is the radial unit vector for cylindrical coordinates. The field at any point
on the cylinder outside surface can be calculated by using either expressions, and
making r = R2.

E(r=R2) = ρ(R2
2 − R2

1)

2ε0R2
uρ = q

2πε0R2
uρ.

If the cylinder were solid, with radius R, the field can be obtained by replacing
R1 = 0 and R2 = R:

E =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρr

2ε0
uρ = q

2πε0r

r2

R2
uρ r ≤ R,

ρR2

2ε0r
uρ = q

2πε0r
uρ r ≥ R.

And at any point on the surface

E(r=R) = ρR

2ε0
uρ = q

2πε0R
uρ.

(b) If the cylinder is metallic (conductor) and in electrostatic balance, charge is only
distributed on the external surface and its distribution is uniform.16 Charge superficial
density σ can be calculated from (2.4), considering a cylinder with length L:

16If the superficial charge density were not uniform, and due to the cylindrical symmetry, the inner
field in the conductor would not be null, against the electrostatic balance hypothesis.
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Q =
∫

S
σd S = σ

∫

S
d S = σ2πR2L ⇒ σ = Q/L

2πR2
= q

2πR2
.

The field at points inside this surface (r < R2) is null, due to the symmetry of the
charge distribution. To calculate the field at external points (r ≥ R2) we do the same
as in section (a). Calculating the flux through the Gaussian surface, the same (2.44)
is obtained. Applying Gauss’ law, it results:

�E(r>R2) = qin

ε0
= 1

ε0

∫

S
σd S = σ

ε0
Slat = σ

ε0
2πR2L = q L

ε0
,

where Slat is the lateral surface area of the external cylindrical surface, where the
charge is distributed. If we calculate with (2.44) it results

E(r > R2) = σ2πR2L

ε02πr L
= σR2

ε0r
= q

ε02πr
.

Combining all results,

E =

⎧
⎪⎨

⎪⎩

0 r < R2,

σR2

ε0r
uρ = q

ε02πr
uρ r > R2,

where uρ is the radial unit vector for cylindrical coordinates. The field at a closed
point to the external surface of the cylinder can be calculated with r = R2:

E(r=R2) = σ

ε0
uρ,

which is the known value for the field at points near the conductor surface.

2.7 Determine the electric field and the potential produced at any point by a very
large plate, with thickness d, on the following cases: (a) non conductor and
uniformly chargedwith density ρ; and (b)metallic andwith electrostatic balance,
with charge density σ. Particularize these results to the case in which the plate
thickness is null (infinite plane). Note: take as the potential reference its central
plane.

Solution

(a) Let’s firstly consider the case inwhich charge is uniformly distributed on the plate.
Due to symmetry of the charge distribution, every point at the same distance from the
central plane of the plate and far away from the ends has the same electric field value,
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Fig. 2.12 Gaussian surfaces
and field vectors to apply
Gauss’ law to a uniformly
charged plate
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which is also perpendicular to the plate.17 The problem can be solved by applying
Gauss’ law (2.28). As a Gaussian surface ∂V , and due to the symmetry, it can be
chosen a straight cylinder (any parallelepiped surface would also be valid), with its
axis perpendicular to the plate, with one of its bases passing through point where
the field is calculated, and the other base symmetric to the previous one, referring to
the central plane of the plate (Fig. 2.12). Two different expressions are obtained for
the electric field, depending on the point to be studied, if it is outside or inside the
plate (P and P ′ in Fig. 2.12), since charge inside the Gaussian surface has a different
expression.

Electric field at any point on the Gaussian surface is perpendicular to the plate,
outward if we suppose the plate positively charged, and with the same magnitude at
every point of the two cylinder bases. The flux through the lateral surface of either
gaussian cylinder ∂V is null, since E and dS are perpendicular at any point of this
surface. There is only flux through the bases, it is

�E =
∮

∂V
E · dS =

∫

Bupp

Ed S +
∫

Blow

Ed S = E2S. (2.45)

It should be noticed that S is the area of the upper base Bupp and that of the lower
base Blow.

If we apply Gauss’ law, it is obtained for an external point P ,

�E = qin

ε0
= ρSh

ε0
.

Charge inside the Gaussian surface is only inside the cylinder of height h (marked in
light grey in Fig. 2.12). That’s the reason that the charged volume is just Sh. Equating
this expression with (2.45), and solving, it results

17To check this, consider the field produced at a point by an element and its symmetric pair with
respect to a perpendicular to the plate at the considered point. The components parallel to the plate
have the same magnitude, since they are at the same distance, and opposite direction, so we need
only to add the two normal components of the electric field.
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Eext = ρh

2ε0
.

If we apply Gauss’ law for an internal point P ′, inside the plate, the flux is

�E = qin

ε0
= ρ2r S

ε0

The cylinder intersection with the plate is the entire cylinder with height 2r (marked
in dark grey in Fig. 2.12). Equating this expression with (2.45) and solving, it results

Ein = ρr

ε0
.

If it is expressed with vector notation, using the distance r to the central plane of
the plate or Cartesian coordinates, it results

E =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρr

ε0

r
r

= ρr

ε0
sgn(z) uz r ≤ h/2 (|z| ≤ h/2),

ρh

2ε0

r
r

= ρh

2ε0
sgn(z) uz r ≥ h/2 (|z| ≥ h/2),

(2.46)

where (x, y, z) are the coordinates of field point P and sgn(z) the signum function
of z, which indicates that the direction of electric field is downward at points under
the central plane of the plate.

To determine the potential at any point P , and due to the fact that the potential
reference is on the central plane of the plate, the circulation of the electric field must
be calculated from the point P to any point of the central plane of the plate. Since
circulation is independent of the chosen path, and any point of the central plane has
null potential, we take as the circulation line the perpendicular one from the point

to the plane, for which E and dl = dr
r
r
are parallel,18 as shown in Fig. 2.13. If we

consider an internal point P ′ in Fig. 2.13 at a distance r from the central plane of the
plate and if O is the point of the central plane perpendicular to P ′, which has null
potential, it results,

VP ′ = VP ′ − VO =
∫ O

P ′
Ein · dl =

∫ 0

r

ρ

ε0
rdr = ρ

2ε0
r2

∣
∣
∣
∣

0

r

= −ρr2

2ε0
.

To determine the potential at an external point P , since the electric field expression
is different depending onwhether the point is inside or outside the plate, it is necessary
to circulate E from P to a point Ps on the surface using the expression for an external

18The same result is achieved without taking a circulation line in which E and dl are parallel, as it
was already said in Problem 2.5.
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Fig. 2.13 Calculation of the
potential of a charged plate
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field, and then from this point Ps to the centre of the plate, using the expression for
the field at internal points. The result is

VP = VP − VO =
∫ O

P
E · dl =

∫ Ps

P
Eext · dl +

∫ O

Ps

Ein · dl

=
∫ h/2

r

ρh

2ε0
dr +

∫ 0

h/2

ρr

ε0
dr = ρh

2ε0
r

∣
∣
∣
∣

h/2

r

+ ρ

2ε0
r2

∣
∣
∣
∣

0

h/2

= ρ

2ε0

(
h2

2
− hr − h2

4

)
= ρh

2ε0

(
h

4
− r

)
.

It can be observed that calculated potentials for point P and for point P ′ are negative,
which coincides with the fact that field E has the direction of decreasing potentials.
(b) If the plate is a conductor, charge is distributed over the lower and upper surfaces,
since interior charge in conductors is null. Charge density σ on the surfaces must be
homogeneous, because if not, field inside the plate wouldn’t be null, as it has to be
a balanced conductor. The field at internal points of the plate is therefore null. To
calculate the field at external points, symmetry reasonings are the same as the ones
in section (a). The Gaussian surface is the same as before, but now the charge is only
in the intersection of the Gaussian surface with the plate surfaces (Fig. 2.14). The
flux through the surface is obtained as in (2.45),

�E = E2S.

If Gauss’ law is applied the result is

�E = qin

ε0
= σ2S

ε0
.

If both expressions are equated, the result is

Eext = σ

ε0
,
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Fig. 2.14 Gaussian surfaces
and field vectors to apply
Gauss’ law to a conducting
plate
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So the field at any external point is constant. If we express it with vectors

E =

⎧
⎪⎨

⎪⎩

0 r ≤ h/2 (|z| ≤ h/2),

σ

ε0

r
r

= σ

ε0
sgn(z)uz r ≥ h/2 (|z| ≥ h/2),

To calculate the potential, since the field is null inside the plate, internal points
have the same potential (zero) as the ones on the centre of the plate. To calculate
the potential at an external point P , it is enough to circulate E from P to the plate’s
surface, since circulation from the surface to the centre of the plate is null. If the
circulation path indicated in Fig. 2.13 is followed, the result is

VP = VP − VO =
∫ O

P
E · dl =

∫ Ps

P
Eext · dl =

∫ h/2

r

σ

ε0
dr = σ

ε0
r

∣
∣
∣
∣

h/2

r
= σ

ε0

(
h

2
− r

)
.

If the plate has no thickness, the problem is the same as the previous one with the
only difference that there aren’t two charged surfaces with density σ but only one;
so if the same calculus is repeated,

�E = qin

ε0
= σS

ε0
.

And if we equate with (2.45) the result is

E = σ

2ε0
.

The resulting potential is

VP = VP − VO =
∫ O

P
E · dl =

∫ 0

r

σ

2ε0
dr = − σ

2ε0
r.
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2.8 We have a wire AB with length l and its line charge density is λ1 = λ(1 + kx),
where x is the distance of a point of the wire to the central point M of segment
OA (Fig. 2.15), and λ and k are two known constants. Perpendicularly to this
wire at a distance a of its extreme A, an infinite wire with line charge density
λ2 = λ is placed. Determine the electric field at point M .

Solution

To solve the problem, the superposition principle for electric fields is applied: fields at
point M is the addition of the fields produced by both wires at that point. To calculate
the field ofwire AB we consider Fig. 2.16,where distance fromany element of charge
dq ′ = λ1dx to point M is expressed by variable x . Field dE1 produced at point M
by the differential element of charge dq ′ is given by (2.15):

dE1 = dq ′

4πε0d2
u = 1

4πε0

λ1dx

x2
(−ux ) =

= 1

4πε0

λ(1 + kx)dx

x2
(−ux ),

To calculate total field due to wire AB, the superposition principle (2.16) is applied:

E1 =
∫ l+a/2

a/2

λ

4πε0

(1 + kx)dx

x2
(−ux ) = λ

4πε0

(∫ l+a/2

a/2

1

x2
dx +

∫ l+a/2

a/2

k

x
dx

)

(−ux ) =

= λ

4πε0

(−1

x
+ k ln x

)∣
∣
∣
∣

l+a/2

a/2
(−ux ) = λ

4πε0

[
2

a
− 2

a + 2l
+ k ln

l + a/2

a/2

]
(−ux ) =

= λ

2πε0

[
− 1

a
+ 1

a + 2l
− k

2
ln

a + 2l

a

]
ux .

It should be observed that the limits of the integral are the ends of the charged wire.
To calculate the field produced by the infinite wire with density λ2 the problem’s

2.3 result is applied,

Fig. 2.15 Figure
of Problem 2.8
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l

MO

a/2 a/2

Fig. 2.16 Field produced by
the finite wire
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E2 = λ2

2πε0r
uρ = λ

2πε0a/2
ux = λ

πε0a
ux ,

where distance from the wire to the point field is a/2 and the radial unit vector is, in
this case, ux .

The electric field at point M , applying superposition principle, is

E = E1 + E2 = λ

2πε0

(
1

a
+ 1

a + 2l
− k

2
ln

a + 2l

a

)
ux .

2.9 Two straight conductors, parallel and infinite, with respective density charge
λ1 = λ and λ2 = −2λ are separated by a distance d. Calculate the potential
difference between points A and B in Fig. 2.17.

Solution

To calculate the potential difference between A and B, VA − VB , it is necessary to
know the electrostatic field at every point in a line between these points. For this, the
superposition principle is applied, and the resulting field at each point is the addition
of the fields produced by each wire independently. From Problem 2.3 it is known
that electric field produced by an infinite line is perpendicular to this line, and with
the same magnitude at every point of a cylindrical surface whose axis is the line. The
electric field at P (Fig. 2.18) is given by (2.36), which for the line of density λ1 is

E1 = λ1

2πε0r1

r1
r1

= λ

2πε0r1

r1
r1

.

The field produced by the line of density λ2 is

E2 = λ2

2πε0r2

r2
r2

= −2λ

2πε0r2

r2
r2

= λ

πε0(d − r1)

r1
r1

.

Adding both fields, the total electric field at any point P is obtained

E = E1 + E2 = λ

2πε0

(
1

r1
+ 2

d − r1

)
r1
r1

.

To calculate the potential difference between A and B, a circulation of E from
A to B must be done. A line from A to B ′ has been taken (Fig. 2.19), where E and

Fig. 2.17 Figure
of Problem 2.9 A

B
d

d/4

d/4
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Fig. 2.18 Fields produced
by the two infinite wires

d

r1P

E2

E1

r2

Fig. 2.19 Scheme to
calculate the potential
difference between A and B

A

B
d

d/4

d/4

r

E
B’

dr
dr

dr are parallel, and then from B ′ to B where they are perpendicular, and circulation
null.19 Applying (2.22),

VA − VB =
∫ rB

rA

E · dr =

=
∫ 3d/4

d/4

λ

2πε0

(
1

r
+ 2

d − r

)
dr =

= λ

2πε0

(
ln r |3d/4

d/4 − 2 ln(d − r)|3d/4
d/4

)
= λ

2πε0
3 ln 3.

2.10 We have an isolated spherical conductor whose radius is R1 = 4 cm, andwhose
potential is 9000V referring to ground. After, it is surrounded with a concentric
spherical conducting layer, with inner radius R2 = 8 cm and exterior one R3 =
10 cm, isolated and with null total charge. Determine charges and potentials on
the inner conductor, as well as the conducting layer, for the following cases:
(a) Inner conductor and conducting layer isolated. (b) If the conducting layer
is connected to ground. (c) If the layer is once again isolated and the conductor
is connected to ground by a conducting wire that goes through a small hole in
the layer.

Solution

(a) Note the charge distribution is not known. The isolated spherical conductor will
have certain charge q1, since its potential is not zero. If the expression of potential
for a spherical conductor is applied ((2.43) of Problem 2.5), it results

V = q1

4πε0R1
.

19As it was already indicated in Problem 2.5, it is not necessary to consider a specific circulation
line, since r · dr = |r|d|r|.
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Fig. 2.20 Isolated
conducting sphere and
isolated conducting layer
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From where conductor’s charge q1 is obtained,

q1 = 4πε0R1V = 40 nC.

If the conductor is surrounded by the conducting layer, Fig. 2.20, charges for both
conductors are reorganized, until the balance is reached, all properties in Sect. 2.8
are verified. Since conductor A is isolated, charge q1 remains, and this charge can
only be on its outsider surface. Due to the spherical symmetry of the figure, it will be
uniformly distributed over the surface, and thus the electric field inside the conductor
is null. On the conducting layer B, charges are distributed so that the field inside it
is null. If Gauss’ law (2.28) is applied to a Gaussian surface ∂V totally inside the
conductor (discontinuous line in the figure),

�E =
∮

∂V
E · dS = 0 = qin

ε0
⇒ qin = 0 = q1 + qB,in,

where qB,in is the charge of the inner surface of the conducting layer B. It should be
observed that the flux is null because the field at every point of ∂V is zero. Therefore

qB,in = −q1.

If the principle of conservation of charge is applied to conductor B, the external
surface charge of B is

qB = 0 = −q1 + qB,ex ⇒ qB,ex = +q1.

The charge distribution is the one shown in Fig. 2.20.
Potential at any point is derived from the superposition of potentials created by

each of the charge distributions. For every distribution, (2.43) obtained in Problem
2.5 is applied. For conductor A, the distance r from any interior point P to the
centre is lower (or equal) than the distance from the centre to the charge distributions
(r ≤ R1, r < R2, r < R3), so it results

VA = 1

4πε0

(
q1
R1

− q1
R2

+ q1
R3

)
= 9 · 109 · 40 · 10−9

(
1

0.04
− 1

0.08
+ 1

0.1

)
= 8100V.
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Fig. 2.21 Isolated
conducting sphere and
grounded conducting layer

R2R2

R1

R3

q1
-q1 A B

For conductor B, the distance r ′ from any interior point P ′ to the centre results in
r ′ > R1, r ′ ≥ R2, r ′ ≤ R3, so if (2.43) is applied,

VB = 1

4πε0

(
q1

r ′ − q1

r ′ + q1

R3

)
= 9 · 109 · 40 · 10−9

0.1
= 3600V.

(b) Connecting the conducting layer to ground, Fig. 2.21, we equalize the potentials
of conductor B and the ground. Ground potential is taken as a reference (0V) and,
therefore,

VB = 0.

Since there is no potential difference between B and ground, there cannot exist any
electric field between them (due to (2.18), E = −∇V ). The field is null in B, as
well as outside the conductor B. From (2.29) (∇ · E = ρ/ε0), it is obtained that
on the outside surface of conductor B there cannot be charges. The other charge
distributions remain the same, as seen by reapplying the reasoning from section (a).
It can be observed how grounded conductor B does not have a null charge (it is not
an isolated system), but it remains negatively charged. If (2.43) is applied, the result
for conductor A is,

VA = 1

4πε0

(
q1

R1
− q1

R2

)
= 9 · 109 · 40 · 10−9

(
1

0.04
− 1

0.08

)
= 4500V.

A device like this, a grounded conductor which surrounds another one, is the base of
electrostatic shields and it is called a Faraday cage. Even though charge or potential
inside it is changed, the electric field and potential outside it is always zero. Also,
any external electric field would affect neither the electric field nor the potential of
the conductors.
(c) If conducting layer B is disconnected from ground, its charge, −q1 = −40 nC,
remains and distributes between the inner and outsider surface of B,

−q1 = q ′
2 + q ′

3,

as seen in Fig. 2.22.
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Fig. 2.22 Grounded
conducting sphere and
isolated conducting layer

R2R2

R1

R3

q3' q2' A Bq1'

Conductor A does not keep its charge anymore, since it is grounded. New charge
is called q ′

1. Applying the reasoning from section (a), the charge on the inner surface
of conductor B will be

q ′
2 = −q ′

1.

It is also known that conductor A potential is zero, since it is grounded. If (2.43) is
applied to conductor A the result is

VA = 0 = 1

4πε0

(
q ′
1

R1
+ q ′

2

R2
+ q ′

3

R3

)
⇒ q ′

1

0.04
+ q ′

2

0.08
+ q ′

3

0.1
= 0.

With these three equations the new values of the charges are obtained,

q ′
1 = 4

9
q1 = 17.8 nC, q ′

2 = −4

9
q1 = −17.8 nC, q ′

3 = −5

9
q1 = −22.2 nC.

If (2.43) is applied we obtain conductor B potential,

VB = 1

4πε0

(
q ′
1

r ′ + q ′
2

r ′ + q ′
3

R3

)
= 9 · 109 · −22.2 · 10−9

0.1
= −2000V.

2.11 Consider two coaxial conductor cylindrical surfaces, A and B, with infinite
length, whose radii are a and b. Outer conductor B is grounded and potential
of inner conductor A is Va . The space between both conductors and outside
of conductor B is a vacuum. (a) Calculate surface charge densities on both
conductors. (b) If P is a point between A and B, and P ′ is outside of conductor
B, calculate potential difference VP − V ′

P .

Solution

(a) Figure2.23 shows both cylinders. Firstly, since charges can freely move inside
conductors, we must study how charges distribute inside both conductors. As it was
seen in Sect. 2.8, charges distribute on conductor surfaces, so the field inside them is
zero. Due to the symmetry, charge has to be distributed uniformly on the surface. The
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Fig. 2.23 Set of two coaxial
hollow cylindrical
conductors, the exterior one
connected to ground
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entire charge of conductor A is distributed on its external surface.20 Let’s suppose
that qa is the charge on conductor A for a finite length L . If Gauss’ law for a coaxial
cylindrical surface ∂V totally inside conductor B, with length L is applied, the result
is, following the same reasoning as Problem 2.10,

�E =
∮

∂V
E · dS = 0 = qin

ε0
⇒ qin = 0 = qa + qB,in,

where qB,in is the charge on inner surface of conductor B. It should be observed that
the flux is null since the field on every point of the considered Gaussian surface is
zero. Therefore

qB,in = −qa .

As conductor B is grounded, its potential is zero. The electric field outside B is zero
and charge on the outside surface of the cylinder is also zero, as it was previously
explained on Problem 2.10.

To obtain charge densities, we find the electric field’s expression at any point
P between both conductors. Due to the cylindrical symmetry, the problem can be
solved by applying Gauss’ law (2.28) in a similar way as it was done in Problem 2.6.
To do it, we take as a cylindrical Gaussian surface ∂V , with any length L , with the
same axis as the cylinder, and with radius r so that the surfaces passes through point
P where we want to calculate the field (discontinuous line in Fig. 2.23). The flux
through the bases of the Gaussian surface is zero, since dS and E are perpendicular
at any point of the bases. So it only remains to calculate the flux through the lateral
surface, where dS and E are parallel:

�E =
∮

∂V
E · dS =

∫

Slat

E d S = E
∫

Slat

d S = E2πr L ,

20If there were a charge on the internal surface of conductor A, an electric field inside the conductor
should exist, but this would contradict electrostatic equations.
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where Slat is the cylinder lateral surface. On the other side, if we apply Gauss’ law,
we obtain

�E = qin

ε0
= σa2πaL

ε0
,

where σa is charge density of cylinder A. It should be observed that qin is the charge
inside the Gaussian surface, and that there’s only charge on the lateral surface of
cylinder A, whose radius is a. If both expressions are equalized, electric field is
obtained,

E = σaa

ε0r
⇒ E = σaa

ε0r
uρ,

where uρ is the radial unit vector for cylindrical coordinates. As additional informa-
tion, the potential of both conductors is known. The potential difference VA − VB

between them is Va − 0 = Va , since B is grounded. If we circulate the electric field
by following a line perpendicular to the cylinder axis, so that E and dl are parallel,
the result is

VA − VB = Va =
∫ b

a
E · dl =

∫ b

a

σaa

ε0r
dr = σaa

ε0
ln

b

a
,

from which charge density σa of conductor A can be calculated,

σa = Vaε0

a ln b
a

.

On a piece of cylinder with length L , A’s charge will be qa = σa2πaL . As charge
at inner surface of conductor B is −qa , it results that its density σb can be obtained
from

σa2πaL = −σb2πbL ⇒ σb = −a

b
σa = − Vaε0

b ln b
a

.

The outer surface of conductor B mentioned previously is not charged due to the fact
that it is grounded.

(b) To calculate the potential between points P and P ′ in Fig. 2.23, at a distance r
and r ′ from the axis, we circulate the electric field between both points,21

VP − VP ′ = VP =
∫ r ′

r
E · dl =

∫ b

r

σaa

ε0r
dr = σaa

ε0
ln

b

r
= ln b

r

ln b
a

Va .

21We will bear on mind the property of every vector r: r · dr = |r|d|r|. It can be reasoned in a
similar way by taking the following circulating line: first the perpendicular to the axis from P ,
where E and dl are parallel, until we reach the distance of r ′ from the center of the cylinders, and
then by circulating parallel to the cylinder’s axis, whose circulation’s value is null, since E and dl
are perpendicular.



106 2 Static Electric Field in Vacuum

It should be observed that P ′’s potential is null: it has ground potential since there
is no electric field outside of conductor B. This is also the reason to use b as the
superior limit of the integral, and not r ′: between b and r ′, the electric field is zero.

Problems C

2.12 Determine the field produced at the coordinate’s origin by a circular-shaped
arc wire with radius R in Fig. 2.24, symmetrically placed with respect to the
X axis, and charged with positive charge density λ = k| sin θ|, where θ is the
angle with the horizontal of the position vector of any differential element in
the wire, and k is a constant.

Solution

The wire in the problem has a symmetric charge with respect to the X axis. If
any charge element dq is taken (Fig. 2.25), field dE produced by this element of
charge has the same magnitude, and forms the same angle θ with X axis as the field
produced by its symmetric dq ′ in reference to this axis. Components parallel to the
Y axis of these fields cancel; components along the X axis will be added. The total
field produced by a wire has, therefore, a null vertical component, while a horizontal
component is twice the one produced by the piece of wire placed in the first quadrant.

Considering the field produced by element dq = λdl, which according to (2.15) is

dE = λdl

4πε0|r − r ′|2
r − r ′

|r − r ′| = k| sin θ|dl

4πε0R2
(− cos θux − sin θuy),

where r = 0 is field point O position and r ′ = R cos θux + R sin θuy is the source
point dq position.

The total field produced by the wire is

E =
∫

dE =
∫

L

k| sin θ|dl

4πε0R2 (− cos θux − sin θuy) =

=
∫

L+
k sin θdl

4πε0R2 (− cos θux − sin θuy) +
∫

L−
k(− sin θ)dl

4πε0R2 (− cos θux − sin θuy),

Fig. 2.24 Figure
of Problem 2.12
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Y

30º
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Fig. 2.25 Field produced at
coordinate’s origin by the
circular-shaped wire

dq

dE dq’

dE’

O X

Y

where L+ indicates the piece of wire in the first quadrant and L− indicates the piece
of wire in the fourth quadrant. Length element dl, arch of circle, can be expressed
as a function of angle θ, dl = Rdθ, and the integral results in22

E =
∫ π

6

0

k sin θRdθ

4πε0R2 (− cos θux − sin θuy) +
∫ 0

− π
6

k(− sin θ)Rdθ

4πε0R2 (− cos θux − sin θuy) =

= − k

4πε0R

[(∫ π
6

0
sin θ cos θdθ −

∫ 0

− π
6

sin θ cos θdθ

)

ux

+
(∫ π

6

0
sin2 θdθ −

∫ 0

− π
6

sin2 θdθ

)

uy

]

=

= − k

4πε0R

[(
sin2 θ

2

∣
∣
∣
∣

π
6

0
− sin2 θ

2

∣
∣
∣
∣

0

− π
6

)

ux

+
((

2θ − sin 2θ

4

)∣
∣
∣
∣

π
6

0
−

(
2θ − sin 2θ

4

)∣
∣
∣
∣

0

− π
6

)

uy

]

= − k

4πε0R

[(
1

8
− 0 − 0 + 1

8

)
ux + 1

4
(π/3 − sin(π/3) − π/3 − sin(−π/3)) uy

]

= − k

16πε0R
ux .

The same results can be reached bearing in mind the previous symmetry consid-
erations,

E =
∫

L

k| sin θ|dl

4πε0R2
(− cos θux − sin θuy) = 2

∫

L+
k sin θdl

4πε0R2
(− cos θux )

= −2
∫ π

6

0

k sin θ cos θRdθ

4πε0R2
ux =

= − k

2πε0R

∫ π
6

0
sin θ cos θdθux = − k

2πε0R

sin2 θ

2

∣
∣
∣
∣

π
6

0

ux

= − k

2πε0R

(
1

8
− 0

)
ux = − k

16πε0R
ux .

22To solve the integral, remember that sin2 θ = (1 − cos 2θ)/2.
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2.13 The spherical crown in Fig. 2.26 (sectioned by plane XY ) is shown, whose
centre is at point C(1m, 0, 0), with inner radius Ri = 20 cm and exte-
rior one Re = 50 cm, has a non homogeneous charge density ρ = k/r with
k = 2µC/m2 and r the distance to the crown’s centre measured in meters. The
wire in the figure, in XY plane, is infinitely long, makes 45◦ with X axis,
and has a charge per unit of length λ = 30 nC/m. Determine the electric field
produced at point A(1m, −1m, 0).

Solution

To calculate the field at point A, the superposition principle is applied, adding the
fields produced by the spherical crown and the wire at that point. The field produced
by each of the distributions can be obtained by applying Gauss’ law (2.28).

For the spherical crown, the same procedure as Problem 2.5 is applied: we take
a spherical Gaussian surface, concentric with the charged crown, that passes over
point A on the field to be calculated (Fig. 2.27). Field Eρ is radial and to determine
its magnitude, the flux through this Gaussian surface is calculated

�Eρ
=

∮

∂V
Eρ · dS = Eρ4πr2,

If Gauss’ theorem is applied,

�Eρ
= qin

ε0
= 1

ε0

∫

Vin

ρdV = 1

ε0

∫

Vin

k

r
4πr2dr = 4πk

ε0

∫ Re

Ri

rdr = 4πk

ε0

R2
e − R2

i

2
,

since the volume element in a sphere can be written as dV = 4πr2dr . Equating both
flux calculations and taking the data, results are

Eρ = 0.105k

ε0
= 23729N/C.

Fig. 2.26 Figure
of Problem 2.13
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Fig. 2.27 Fields produced
by the charged distributions
and Gaussian surfaces
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And using vector notation, if Fig. 2.27 is observed:

Eρ = −23729uy N/C.

For the wire, the procedure of Problem 2.4 is applied: a cylindrical Gaussian
surface is drawn in Fig. 2.27, whose axis is the wire, with any length L and passing
over point A. Field Eλ is perpendicular to the wire, and to obtain its magnitude, the
flux through the surface is calculated,

�Eλ
=

∮

∂V
Eλ · dS =

∫

Slat

Eλ d S = Eλ2πr L|r=√
2m ,

since the distance from the wire to A, the radius of the cylindrical surface, is
√
2

meters long. And applying Gauss’ theorem,

�Eλ
= qin

ε0
= λL

ε0
.

Equating the two calculations of the flux, results are

Eλ = λ

2πε0r
= 30 · 10−9

2πε0
√
2

= 381.5N/C.
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And using vector notation

Eλ = 381.5
ux − uy√

2
= 270 (ux − uy)N/C.

The total field is obtained by adding both fields (vectorially):

E = Eρ + Eλ = (270 ux − 23999uy)N/C.

2.14 The space region defined by equation 0 < z < 2 (with Cartesian coordinates
in meters) has a charge density ρ = k|z − 1| with k = 8µC/m4. (a) Determine
the electric field value for the points in the region defined by the sphere with its
centre at the coordinates’ origin and radius 2m. (b) Determine the divergence
value of the electric field at the previous points. (c) Determine the electric field
flux through the previous sphere surface.

Solution

(a) Figure2.28 represents the region of the problem. Charge distribution is symmetric
in reference to the center plane z = 1, so Gauss’ law (2.28) can be easily applied. A
similar procedure as the one used for the infinite plate on Problem 2.7 is followed.
Now the points at the field to be calculated are a few specific points defined by the
sphere indicated in the statement and light grey coloured in the figure. Points in
the higher hemisphere are all the inside points of the charged plate, while points in
the lower hemisphere are outside the plate. If Gauss’ law is applied as in Problem
2.7, with cylindrical Gaussian surfaces indicated in Fig. 2.28 (which are the ones
used before)

�E =
∮

∂V
E · dS =

∫

Bupp

Ed S +
∫

Blow

Ed S = E2S.

To calculate the charge inside the Gaussian surface, it should be taken into account
that the charge density is variable. As the charge is symmetric in reference to the

Fig. 2.28 Figure
of Problem 2.14
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medium plane, we will determine the higher half charge, where |z − 1| = z − 1, and
we will double the resulting charge. For points outside of the charged region, as point
P , it results

�E = qin

ε0
= 1

ε0

∫

Vin

ρdV = 1

ε0
2

∫ 2

1
k(z − 1)Sdz = 2kS

ε0

(z − 1)2

2

∣
∣
∣
∣

2

1

= kS

ε0
.

To calculate the integral we have taken a volume element dV = Sdz (in dark grey
in the figure), that represents a differential cylinder whose area is S and its height is
dz and it is located at any distance from the medium plane. If we compare both flux
expressions, the results are

Eext = k

2ε0
= 8 · 10−6

2ε0
= 4.52 · 105 NC−1,

If Gauss’ law is applied to an interior point P ′, it is obtained

�E = qin

ε0
= 1

ε0
2

∫ z

1
k(z − 1)Sdz = 2kS

ε0

(z − 1)2

2

∣
∣
∣
∣

z

1

= kS

ε0
(z − 1)2.

where z is the coordinate in meters of point P ′. Comparing both flux expressions,
results are

Ein = k

2ε0
(z − 1)2 = 4.52 · 105 (z − 1)2 NC−1.

Vectorially, at points over the center plane (z = 1) the sense of field vector is uz and
for the ones below it is −uz .

Every point in the lower hemisphere (z < 0) is exterior to the charged region, and
since they are below the center plane, the sense of the vector field E is the negative
Z -axis, as can be observed in Fig. 2.28. Points in the higher hemisphere are all inside
the plate. The vector field has the orientation parallel to the Z -axis in the positive
direction at points above the center plane, and it has the opposite orientation at points
below the medium plane. If we express the result using vector notation and Cartesian
coordinates, it results, for the points in the sphere x2 + y2 + z2 ≤ 4:

E =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−4.52 · 105 uz NC−1 z < 0,

−4.52 · 105 (z − 1)2 uz NC−1 0 ≤ z ≤ 1,

4.52 · 105 (z − 1)2 uz NC−1 1 ≤ z ≤ 2,

with z expressed in meters.
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(b) From (2.29) the result is

∇ · E(r) = ρ(r)
ε0

=

⎧
⎪⎪⎨

⎪⎪⎩

0 x2 + y2 + z2 ≤ 4 and z < 0 ,

k|z − 1|
ε0

= 9.04 · 105|z − 1|NC−1m−1 x2 + y2 + z2 ≤ 4 and z ≥ 0.

It can be observed that the lower hemisphere points are outside of the charged zone
(ρ = 0) and the electric field’s divergence at these points is null.

(c) If Gauss’ law (2.28) is applied to the surface defined by the sphere it results

�E =
∮

∂V
E · dS = qin

ε0
= 1

ε0

∫

Vsph

ρdV = 1

ε0

∫

Vupsph

k|z − 1|dV,

where Vupsph is the upper hemisphere’s volume. To calculate the integral we use
spherical coordinates. It can be observed that r varies from 0 to 2 (sphere’s radius),
coordinate φ goes from 0 to 2π because the whole circumference is described, and
coordinate θ goes from 0 to π/2, since only the upper hemisphere is charged:

�E = 1

ε0

∫

Vuppsph

k|z − 1|dV = 1

ε0

∫ R

0

∫ π/2

0

∫ 2π

0
k|r cos θ − 1|r2 sin θdrdθdφ,

wherewe have taken into account that z = r cos θ. It should be observed that function
|z − 1| = |r cos θ − 1| has a different value depending on z, whether z > 1 or z < 1.
Where z = 1 and the sphere’s radius R = 2, results are cos θ = 1/2 → θ = π/3.
Using two integrals to substitute the absolute value expression and solving them,
results are

�E = k

ε0

(∫ 2

0

∫ π/3

0

∫ 2π

0
(r cos θ − 1)r2 sin θdrdθdφ

−
∫ 2

0

∫ π/2

π/3

∫ 2π

0
(r cos θ − 1)r2 sin θdrdθdφ

)

=

= 2πk

ε0

(∫ 2

0

∫ π/3

0
(r cos θ − 1)r2 sin θdrdθ −

∫ 2

0

∫ π/2

π/3
(r cos θ − 1)r2 sin θdrdθ

)

=

= 2πk

ε0

(∫ π/3

0

(
4 cos θ sin θ − 8

3
sin θ

)
dθ −

∫ π/2

π/3

(
4 cos θ sin θ − 8

3
sin θ

)
dθ

)

=

= 2πk

ε0

(

4
sin2 θ

2
|π/3
0 + 8

3
cos θ|π/3

0 − 4
sin2 θ

2
|π/2
π/3 − 8

3
cos θ|π/2

π/3

)

= 2πk

ε0

(
3

2
− 4

3
− 1

2
+ 4

3

)
.

The flux obtained is

�E = 2πk

ε0
= 5.68 · 106Nm2C−1.
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2.15 Calculate the electric field produced at point P in Fig. 2.29 by the cylinder with
volumetric uniform density ρ, whose height is H , inner radius Ri and exterior
one Re.

Solution

The problem can be solved by direct integration using cylindrical coordinates. Any
charge element dq (Fig. 2.30), at r ′ = r cosφux + r sin φuy + zuz is expressed by
using cylindrical coordinates as follows

dq = ρdV = ρrdrdφdz.

The field produced by this element at point P , located at r = huz , is

dE = dq

4πε0

r − r ′

|r − r ′|3 =

= ρ

4πε0

−r cosφux − r sin φuy + (h − z)uz

[r2 + (h − z)2]3/2 rdrdφdz.

If the superposition principle is applied

Fig. 2.29 Figure
of Problem 2.15

Re

Ri

h

P

H

Fig. 2.30 Charge
differentials for a
finite cylinder P

X
Y

Z

dq

dE

r

z

dE’
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E =
∫ Re

Ri

∫ 2π

0

∫ H

0

ρ

4πε0

−r2 cosφux − r2 sin φuy + (h − z)ruz

(r2 + (h − z)2)3/2
drdφdz.

The sine integral and the cosine integral between 0 and 2π are null, and therefore,
components in ux and uy are null. This can be deduced from the figure’s symmetry:
the field can only have a component in uz as each dq has its symmetric dq ′ in a
horizontal plane whose dE ′ makes the same angle with the vertical, and it gives
opposite components in ux and uy , and equal components in uz . The integral to
solve is

E= ρ

4πε0

∫ Re

Ri

∫ 2π

0

∫ H

0

(h − z)r

(r2 + (h − z)2)3/2
drdφdzuz

= ρ

2ε0

∫ Re

Ri

∫ H

0

(h − z)r

(r2 + (h − z)2)3/2
drdzuz,

because
∫ 2π

0
dφ = 2π. Solving in r , bearing in mind that the derivative of the func-

tion [r2 + (h − z)2] is 2r , the result is

E= ρ

2ε0

∫ H

0

−(h − z)

(r2 + (h − z)2)1/2

∣
∣
∣
∣

Re

Ri

dzuz =

= − ρ

2ε0

∫ H

0

⎛

⎝ (h − z)
√

R2
e + (h − z)2

− (h − z)
√

R2
i + (h − z)2

⎞

⎠ dzuz .

Hence,

E= ρ

2ε0

(√
R2

e + (h − z)2
∣
∣
∣
∣

H

0

−
√

R2
i + (h − z)2

∣
∣
∣
∣

H

0

)

uz

= ρ

2ε0

(√
R2

e + (h − H)2 −
√

R2
i + (h − H)2 −

√
R2

e + h2 +
√

R2
i + h2

)
uz .

2.16 Considere an infinite plate with thickness h = 1m in Fig. 2.31, with uniform
charge density ρ = 20µC/m3, except inside a spherical cavity with charge
density three times that of the plate, with the centre the medium plane, and
diameter h. Determine the electric field produced at point P(1, 2, 2), with the
coordinates measured in meters referring to the coordinate axis located at the
centre of the sphere, as shown in Fig. 2.31.

Solution

To calculate the electric field produced by the charge distribution, it can be observed
that the superposition principle can be applied, and therefore it can be calculated
as the addition of the fields produced by the two distributions with high symmetry:



Solved Problems 115

Fig. 2.31 Infinite plate with
a spherical cavity and higher
density

Y

Z

X

O

h

h
P

Fig. 2.32 Superposition
principie for fields produced
by the plate and the sphere

Y

Z

X

O

h

h
P

Ep

Es

E

an infinite plate with uniform charge density ρ and a uniformly charged sphere with
density 2ρ. In this way the spherical area would have a charge distribution, by adding
of the previous ones, of 3ρ indicated on the problem’s statement. Fields produced by
these distributions (Fig. 2.32) can be obtained from exercises previously worked in
this book.

To calculate the fieldEp produced by the whole plate, without the cavity, we apply
the obtained results in Problem 2.7, bearing in mind that point P is outside the plate.
According to (2.46), the electric field results

Ep = ρh

2ε0
sgn(z)uz = 20 · 10−6 · 1

2 · 8.85 · 10−12
uz = 1.130 · 106uz N/C.

To calculate the field produced by the sphere Es , we apply the result of Problem
2.5, and bear in mind that the sphere is solid (2.40), with density 2ρ and radius h/2
and that point P is outside the sphere. The distance r from the sphere’s centre to
point P is calculated from the vector’s position at point P:

r = ux + 2uy + 2uz, r = 3, ur = ux + 2uy + 2uz

3
.

The field results

Es =
2ρ

(
h

2

)3

3ε0r2
ur = ρh3

12ε0r
2 ur = 20 · 10−6 · 13

12 · 8.85 · 10−12 · 32
ux + 2uy + 2uz

3

= 6975(ux + 2uy + 2uz)N/C.

The field E produced by the plate with the cavity is the addition of the fields Ep

and Es ,
E = Ep + Es = (6975ux + 13950uy + 1.144 · 106uz)N/C.
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2.17 Consider the bent wire in Fig. 2.33, where coordinates are expressed in meters,
with uniform charge density λ = 8µC/m. The horizontal piece is very long
(semi-infinite) and the other one, L = 2m long, making an angle of 60◦ with
respect to the horizontal axis. Determine the electric field and the electric poten-
tial at point P(2, 1).

Solution

To solve the problem, the superposition principle can be applied if the problem is
considered as the addition of the fields and potentials produced by a semi-infinite
horizontal wire and a finite one (60◦) in respect to the horizontal axis. For the case
of the semi-infinite wire, we consider Fig. 2.34 and (2.37) of Problem 2.4,

E1 = λ

4πε0y

(
(sinϕ f − sinϕi )ux + (cosϕi − cosϕ f )uy

)
.

Angle ϕi can be obtained from its tangent: tanϕi = y/x = 1/2 ⇒ ϕi = 30◦. Angle
ϕ f is 180◦, since the wire is infinite along the +X direction. Therefore,

E1 = 8 · 10−6

4πε0 · 1
(
(sin 180◦ − sin 30◦)ux + (cos 30◦ − cos 180◦)uy

)

= 71.9 · 103 (−0.5ux + 1.87uy
)
,

E1 = (−36ux + 134.2uy) · 103N/C.

Considering the finite wire of length L = 2m (Fig. 2.35) and applying (2.37) of
Problem 2.4 again, the result is

E2 = λ

4πε0h

(
(sinϕ f − sinϕi )ux + (cosϕi − cosϕ f )uy

)
.

Fig. 2.33 Charged wire of
Problem 2.17
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Fig. 2.34 Field produced by
the semi-infinite wire
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Fig. 2.35 Field produced by
the finite wire

Y

X

P(2,1)

O

60º

L
E2

h

P’

i

f

Let’s determine the coordinates of the wire’s extreme P ′(x ′, y′):

x ′ = L cos 60◦ = 1, y′ = L sin 60◦ = √
3,

so
PP′ = (1 − 2)ux + (

√
3 − 1)uy = −ux + 0.732uy,

with |P P ′| = 1.239.
The vector magnitude r = OP is |OP| = √

5, and angle θ is obtained from

tan θ = 1/2 → θ = 26.6◦.

Angle ϕi is, therefore,
ϕi = 60◦ − θ = 33.4◦.

Distance h from point P to the wire is obtained from

h = |O P| sinϕi = 1.232.

The value of ϕ f is obtained from

sinϕ f = h

|P P ′| = 0.994 → ϕ f = 83.9◦.

If we substitute in E2 expression

E2 = 8 · 10−6

4πε0 · 1.232
(
(sin 83.9◦ − sin 33.4◦)ux + (cos 33.4◦ − cos 83.9◦)uy

) =
= 58.44 · 103 (

0.44ux + 0.73uy
) = (25.9ux + 42.6uy) · 103N/C.

The total field at point P , if the superposition principle is applied, is

E = E1 + E2 = (−10.1ux + 176.8uy
) · 103N/C.
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2.18 A thin, flat plate, which has the shape of a regular n-sided polygon, inscribed
in a circle of radius a in plane XY , is considered. This plate is maintained at a
fixed potential V , while the rest of the plane XY is held at zero potential. Apply
Biot–Savart-like law in electrostatics to calculate the electric field produced by
this plate at a point P located over the perpendicular to the plate by its centre.

Solution

Figure2.36 shows the schematic view of the regular n-sided polygon plate, located
in the XY -plane, with its centre at the origin, and kept at a potential V (n = 6 in
Fig. 2.36). In this plane (z = 0), the potential is set to zero in the region outside the
plate. To solve the problem we apply the (2.35),

E(r) = V

2π

∮

C

(r − r′) × dl′

|r − r′|3 .

r refers to the field point and r′ locates the source point. dl′ is an element of length
of the integration path C . As discussed in Sect. 2.9, we just need to calculate the
contributions coming from the boundary contour C .

Looking at Fig. 2.36, it can be seen that electric field at point P can be calculated
as the superposition of the field due to n triangles obtained by joining the centre of
circle O to the vertices of the polygon: the sense of integration along their common
sides is opposite for two adjacent triangles and adding all the contributions from these
triangles, we obtain the integration around the contour C . Therefore, the only non-
zero contributions come from the n sides that define the contour C . By symmetry,
when the n fields are added vectorially, only the components located along Z -axis
remains; the XY -plane components add to zero.

Then, considering the point P at Z -axis in the Fig. 2.36 and a point P ′ and dl′ at
the upper straight side,

r = zuz, r′ = x ′ux + a cos
π

n
uy,

r − r′ = −x ′ux − a cos
π

n
uy + zuz |r − r′| = (x ′2 + a2 cos2(π/n) + z2)1/2,

Fig. 2.36 Schematic view of
the regular n-sided polygon
plate

P

X

Y

Z

nC
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dl′ = dx ′ux (r − r′) × dl′ = zdx ′uy + a cos
π

n
dx ′uz .

Calling b2 = a2 cos2(π/n) + z2 and applying the (2.35) to calculate the contribution
Eiz along uz ,

Eiz = V

2π

∫ a sin(π/n)

−a sin(π/n)

a cos(π/n)dx ′
(
x ′2 + b2

)3/2 = V a cos(π/n)

2πb2

x ′
√

x ′2 + b2

∣
∣
∣
∣

a sin(π/n)

−a sin(π/n)

=

= V a cos(π/n)

2πb2

2a sin(π/n)
√

a2 sin2(π/n) + b2
= V

2π

a2 sin(2π/n)

[a2 cos2(π/n) + z2]√a2 + z2
.

Adding the n contributions from the n sides that define the contour C , the total
electric field at P is obtained,

E = nEiz = V

2π

na2 sin(2π/n)

[a2 cos2(π/n) + z2]√a2 + z2
uz .



Chapter 3
Static Electric Field in Dielectrics

Abstract In the last chapter, we considered electrostatic fields in free space,
produced exclusively by free charges, either by a specified charge distribution or
by a free charge on the surface of conductors, but not inside a material media. In this
chapter it will be considered the most common case, where materials do not have
free charges (ideal dielectric material), as well as the case of free charges considered
on conductor materials. Actually, a dielectric is composed of charged particles (the
atomic nucleus and electrons), which are strongly joined and which form atoms or
molecules. They just change their positions lightly, with movements on the order of
the radius of an atom, or one angstrom, (∼ 1Ȧ = 10−10 m) as a response to external
electric fields. This kind of charge is called bound charge, in contrast to free charge
found in conducting materials, to express the fact that these charges are not free
to move very far or to be extracted from the dielectric material. Strictly speaking,
dielectrics do not satisfy this definition, because they have some conductivity, but
very little compared to those of metal conductors (more or less 1020 times lower). It
can be said that dielectrics are non-conductor materials, or insulators.

3.1 Polarization

Dielectrics are usually classified as molecularly polar or non-polar. Their behavior
when they are placed in an external electric field is different, even though the final
result is similar.

Substanceswith non-polarmolecules1 have an electronic negative charge for each
molecule symmetrically distributed in reference to its positive nucleus, so its dipole
moment p (2.32) is null. An external electric field creates a force over the charged
particles of the dielectric material, and the positive particles tend to move along the
direction of E and the negative ones in the opposite direction. When the restoring
forces bring the molecule into equilibrium, the centre of positive charge is displaced

1Monoatomic molecules such as He, Ne or Ar, with spherical symmetry, diatomic with two equal
atoms, such as H2, O2, and polyatomic with certain symmetries, such as CO2, C2H6 (ethane), C2H2
(acetylene) or C6H6 (benzene), are not polar, by the fact that the negative and positive charge centres
are the same.
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from the centre of negative charge by a very small fraction of an angstrom. So the
molecule acquires a dipole moment induced by the external electric field (electric
induced dipoles). The dielectric is polarized.

Substances with polar molecules have a permanent polarization caused by the
fact that their molecules are asymmetric. These polar molecules can be therefore
modeled by an electric dipole formed by the positive and negative charge centres,
and with an electric dipole moment p which is not null,2 even without an electric
field. It is said that they have a permanent dipole moment. However, when there
is no electric field these dipole moments will be randomly oriented, and therefore
the total dipole moment of the dielectric will be null, as it happened with non-polar
dielectrics.When there is an electric field, the opposite movement of the negative and
positive charges, whose charge centres are separated by a certain distance, produce
a torque which spins every molecule, orienting the positive charges in the direction
of the field, and the negative ones in the opposite direction. This produces a dipole
moment along the electric field’s direction, and the dielectric is polarized.

The polarized dielectric material can be considered as a configuration of electric
dipoles, on average neutral, which creates a field at points inside and outside of
the dielectric, adding to the external field. As an alternative, it can be supposed that
equal charge distributions on the surface and inside the dielectric, called polarization
charges, create this electric field. An electric field created by a polarized dielectric has
opposite direction in relation to the field applied on the dielectric. Hence a complex
situation appears: the dielectric’s polarization depends on the total electric field in
the media, but a part of this field is created by the dielectric itself. Also, the field
created by a dielectric canmodify the free charge distribution over conductors, which
at the same time will modify the field inside the dielectric. It is therefore necessary
to create tools to solve this situation.

Let’s consider a differential volume dV inside a dielectric material (Fig. 3.1). If
the number of polarized molecules in it is N , with dipole moments pi, dV will also
behave as a dipole with net dipole moment equal to the sum of the dipole moments
of every molecule, dp = ∑N

i=1 pi. The electric polarization vector P is then defined
as the electric dipole moment per unit of volume,

P(r ′) = dp
dV

, (3.1)

whose SI unit is Cm−2. We bear in mind that P is a vectorial field defined over the
dielectric volume. This concept can be applied to a vacuum by writing P = 0, since
there are no molecules that can be polarized. In fact, a vacuum can be considered as
a dielectric (it is not a conductor) whose polarization vector is always zero.

2Polar molecules are almost always diatomic molecules with two different atoms. The order of
magnitude of p is 10−30 Cm, hence a unit for the dipole moment known as the debye exists: 1D
= 3.34 × 10−30 Cm. Dipole moments of common bonds for simple diatomic molecules go from
0 to 11D (CO, 0.112D; HI, 0.44D; ClNa 9D; KBr 10.41D). Polyatomic molecules (water, 1.85D;
ammonia, 1.47D; formic acid, 1.41D; methanol, 1.70D; formamide, 3.73D; phenol, 1.45D) can also
represent electric dipole moments ([77]).
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Fig. 3.1 Dipole moments of
a polarized dielectric
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3.2 Polarization Charges

If we calculate the potential produced by the dielectric at any point, as a result of the
sum of potentials produced by each of the dipole moments dp, it can be observed
that the potential is the same as the one that would create a polarization volume
charge density ρp and a polarization surface charge density σp given by

ρp = −∇ · P, (3.2)

σp = P · n, (3.3)

where P represents the electric polarization vector and n is the outward unit normal
for the considered surface at a point on the surface. It can be observed that volumetric
density only appears if polarization is not homogeneous, so its divergence is not null.
Since polarization charges are a consequence of a molecular charge reorientation,
it is always verified that in any finite dielectric, the total polarization charge is null,
qp = 0. This can be deduced from the polarization charge densities by applying
divergence Theorem 1.49,

qp =
∫

V
ρp dV +

∫

∂V
σp dS = −

∫

V
∇ · P dV +

∫

∂V
P · n dS

= −
∫

∂V
P · n dS +

∫

∂V
P · n dS = 0 , (3.4)

where V is the dielectric’s volume and ∂V its surface.

3.3 The D Field

If we remember the definition of the electric field produced by a charge distribution
according to (2.16), it is observed that E is created by any charge, not depending
on its type or origin. A distinction should be made between charges explained in
the previous section: the ones that are derived from the dielectric’s polarization, also
known as bounded charges whose density is ρp and all the other charges which do

http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_2
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not arise from polarization, whose density is ρnp, also known as free charges.3 So
the total charge density is

ρ = ρnp + ρp = ρnp − ∇ · P. (3.5)

And if we apply Gauss’ law (2.29)

∇ · E = ρ

ε0
= 1

ε0
(ρnp + ρp), (3.6)

we obtain
∇ · (ε0E + P) = ρnp. (3.7)

Observing the previous equation, divergence of the vector ε0E + P is equal to the
free (non-polarization) charge density; it is useful to define a new field vector D as,

D = ε0E + P. (3.8)

The vector D has generally been called the electric displacement, but recently
it is simply called the D field. Its units in SI are Cm−2. If we substitute in (3.7),
another Gauss’ law expression is obtained, and therefore, an alternative form of one
of Maxwell’s equations,

∇ · D = ρnp, (3.9)

known as Gauss’ law for D field. Equations (3.6) and (3.9) display an essential dis-
tinction between E and D. Any kind of charge density, ρp or ρnp, acts as a source for
E; but only non-polarization charge density ρnp is a source of D.

If the divergence Theorem 1.49 is used, Gauss’ law expression forD in an integral
way can be obtained:

�D =
∮

∂V
D · dS = qnp,in, (3.10)

where ∂V is a closed surface which bounds a volume V and qnp,in is the non-
polarization charge inside this volume. An important use of this law is in the deter-
mination ofD from non-polarization charge in cases with some degree of symmetry,
which mirror the examples and equations done in Chap.2 to determine E.

3Even though it is very common to use “free and bounded charges”, this can lead to misunder-
standings when talking about dielectrics, where non-polarized charges are not free to move. So
“free charges” is used to indicate that it is possible to control their distribution, by moving them
physically or by introducing them on or inside materials. However, to avoid misunderstandings, we
will refer to both charges namely as the ones that come from polarization or the ones that do not.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_2
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3.4 The Constitutive Equation

In this chapter it has been studied that the polarization of a dielectric medium occurs
in response to the electric field in the medium. The degree of polarization depends
not only on the electric field but also on the properties of the dielectric medium.
Macroscopically it can be said that a material’s behavior is completely specified if
the relation between E and P is known, P = P(E) as determined experimentally.
This relation is known as the constitutive equation of the material.

Dielectrics can be classified according to this relation. For most dielectrics, P
vanishes when E vanishes; however in some materials the polarization P is not
null even when the electric field E is reduced to zero. The dielectric has permanent
polarization and it is called electret. When the P vector components can be expressed
as a function of the first potence of the E vector components, the dielectric is known
as linear, and as not linear in the opposite case. The constitutive equation for linear
dielectrics is

P = ε0χeE, (3.11)

where χe is a second order tensor (3× 3 matrix) called the electric susceptibility
tensor. The constant ε0 appears, if χe is to be dimensionless, in order to make the
equation correct dimensionally. In many cases, at a given point, electric properties
of the dielectric do not depend on E’s direction. A material is called electrically
isotropic in this case, and anisotropic otherwise. If a material is isotropic, the tensor
χe becomes a scalar, and the constitutive equation results as follows

P = ε0χeE, (3.12)

where it can be observed that P and E have the same direction. If electric properties
do not depend on the position, the dielectric is called electrically homogeneous and
susceptibility χe will be the same at every point on the material. Many materials are
electrically homogeneous and isotropic.

When the electric field in a dielectric is sufficiently large, instead of producing
small displacements on dipoles, it begins to pull electrons completely out of the
molecules, and the dielectric becomes conducting. This phenomenon is known as
dielectric breakdown. The maximum field magnitude that can be sustained before
a field-stressed material loses its insulating properties is called dielectric strength,
Emax. In SI, the unit of dielectric strength is V/m. Dielectric breakdown can also
be described by the breakdown voltage of a dielectric, as the maximum voltage
difference that can be applied across the material before insulator collapses and
conducts.

Substituting (3.12) in (3.8), the result is

D = ε0E + P = ε0E + ε0χeE = ε0(1 + χe)E. (3.13)
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By setting
εr = 1 + χe, (3.14)

the dielectric constant or relative permittivity of the substance,4 the result is

D = ε0εrE = εE. (3.15)

The multiplying factor ε = ε0εr that connects E and D is called the absolute per-
mittivity (or simply permittivity) of the substance and its SI unit is F/m.5 The same
considerations made in regards to isotropy and homogeneity that were made for χe

can be applied to εr .
In problems that only involve linear, homogeneous and isotropic dielectrics, and

with some degree of symmetry, Gauss’ law (3.10) can be used to determine D, so
then the electric field can be determined as

E = D
ε0εr

. (3.16)

If we substitute in (3.12), the polarization vector can be obtained from

P = εr − 1

εr
D, (3.17)

and polarization charge densities, if we substitute in (3.3) and (3.2), from

σp = εr − 1

εr
D · n, (3.18)

and

ρp = −εr − 1

εr
∇ · D = −εr − 1

εr
ρnp. (3.19)

It can be observed that the three vectors E, P and D have the same direction for this
kind of dielectric. This relation establishes that if the dielectric is linear, homogeneous
and isotropic, there can only be a polarization volume charge if non-polarization
charge is distributed in it.

4In the appendix there is a table with dielectric constants and dielectric strength values of various
common materials [66].
5Farad (F) is defined in Sect. 3.6. ε unit is also C2/(Nm2).
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3.5 Boundary Conditions

When we study an electrostatic problem, if many media appear, we must know the
field vector’s behavior in passing through an interface between two media. The two
media may be two different dielectrics, or a dielectric and a conductor. A vacuum
can be considered as a dielectric with εr = 1.

Let’s consider two arbitrary media 1 and 2 in contact (Fig. 3.2). On the interface
a certain surface density of charge σ can exist, the sum of the contribution of polar-
ization σp and non polarization σnp charges, which may vary from point to point on
the interface. Since the electrostatic field is conservative, if the potential difference
is calculated along a closed curve abcda which goes through both media, as the one
in Fig. 3.2a, it can be deduced that the tangential component of field E is continuous
when going through an interface between two media,

E1t = E2t . (3.20)

If we apply Gauss’ law for D, (3.10), to a volume as the one that appears in
Fig. 3.2b, it is deduced that the value of the discontinuity on the normal component
of electric displacement D when going through an interface between two media is
the same as the non-polarization charge density on the surface:

D2n − D1n = σnp. (3.21)

Therefore, if non-polarization charge on the surface between two media does not
exist, then D’s normal component is continuous.

The above results have been obtained for two arbitrary media. If one of the media
is a conductor (for example medium 1), E1 = 0 and, by (3.8), also D1 = 0. Thus
(3.20) and (3.21) become

E2t = 0, D2n = σnp. (3.22)

Fig. 3.2 Boundary
conditions. Study of: a
tangential component of E; b
tangential component of D

1

2

ab

c d

D2

D1
E1

E2

n2

n1

(a) (b)
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3.6 Coefficients of Potential and Capacitance

In Sect. 2.8 it was mentioned that if we have N conductors with known potential,
the problem of solving the potential at every point in space is reduced to solving the
Laplace equation for points outside the conductors, while taking into account that
boundary conditions are the respective conductor’s potentials. Let’s now study the
case where a linear relationship exists between the potentials and charges on a set of
conductors.

Let’s consider that all the conductors are discharged, but the j-th. The Laplace
equation determines potential Vi of each of the conductors. Since the Laplace equa-
tion is linear, if we multiply the charge of j-th conductor by a factor k, potential at
every point will be also multiplied by the same factor k. In other words, potential Vij

of each conductor i when just conductor j is charged is proportional to its charge qj:

Vij = pijqj, (3.23)

where pij is a constant that only depends on conductor geometries. Using the same
reasoning for each of the N conductors and taking into account the Laplace equation
linearity, it results that the potential of the i-th conductor, when the N conductors,
including itself, are charged, is

Vi =
N∑

j=1

pijqj, (3.24)

which represents a linear relationship between potentials Vi and charges qj. pij are
known as coefficients of potential and they only depend on the geometry (shape, size
and mutual layout) of conductors. If conductors, instead of being surrounded by a
vacuum,were surrounded by a linear dielectric, the analogous result is valid, since the
superposition principle of the solutions can also be applied in the Laplace equation,
but coefficients pij will also depend on properties of the dielectric media. In (3.24)
it can be observed that potential coefficient pij is the potential of conductor i when
just conductor j is charged and its charge is the unity, which allows its experimental
determination. The S.I. unit is VC−1 = F−1, and farad (F) is defined as 1F≡ 1CV−1.
The farad is a unit too large for most practical applications and it is customary to
use either the microfarad (1µF = 10−6 F), the nanofarad (1 nF = 10−9 F) or the
picofarad (1 pF = 10−12 F).

The coefficients of potential verify these relations: pij = pji and pii ≥ pij > 0,
that is to say, the matrix of the coefficients of potential is symmetric, and all the
coefficients are positive.

If the matrix of the coefficients of potential is inverted, it results

qi =
N∑

j=1

cijVj, (3.25)

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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where cij, i �= j, are called coefficients of influence and cii, coefficients of capac-
itance. Their units in SI are for both of them the farad (F) and their values depend
just on conductor geometries and on dielectric media. It is verified that cii > 0 (coef-
ficients of capacitance are positive) and that cij = cji < 0 (coefficients of influence
are negative and the matrix is symmetric).

3.7 Capacitors

Twoconductorswhich can store equal but opposite charges, independently ofwhether
other conductors in the system are charged, are called a capacitor. Let’s consider two
conductors 1 and 2: number 1 with charge q positive and with potential V1; number 2
with charge−q negative and potential V2. The independence of other charges implies
that both conductors are placed in a way where all the lines of E that originate on
the positive body terminate on the negative body, which is known as total influence.6

It will be supposed that between them there is a linear dielectric media or vacuum
(in order to be able to use the results obtained in previous sections). The conductors
are sometimes referred to as the plates of the capacitor. Capacitors are used to store
electrical charges and electrostatic energy. When they are introduced in a circuit,
they are usually represented by | |.

Equation (3.24) allows us to express the potentials of both capacitors as a function
of their charges, as follows

V1 = p11q + p12(−q) + Vx

V2 = p21q + p22(−q) + Vx,

where Vx is the common potential contributed by other external charges. If both
expressions are subtracted, and bearing in mind that p12 = p21, we find

V1 − V2 = (p11 − 2p12 + p22)q, (3.26)

this is, the potential difference between the plates of a capacitor is proportional to
the charge stored q. Previous expression can be rewritten as

q = C(V1 − V2), (3.27)

where the positive constant of proportionality C = (p11 −2p12 −p22)−1 is called the
capacitance of the capacitor and represents the electric charge stored in each plate
(in absolute value) per unit of the potential difference applied between them. This

6Since the field is bounded between the conductors it can be deduced, by applying Gauss’ theorem
to a surface that surrounds both conductors, that charges of both conductors must be equal and
opposite.
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constant, as well as the coefficients of potential, does not depend on the load or on
the potential difference between the conductors, and only depends on the geometry
of the conductors and on the media between them. Its SI unit is the farad (F).

The simplest example (but not the only one) of a capacitor consists of a conductor
totally surrounded by another one, and between them a vacuum or a linear dielectric.
Then it is easy to understand, in this case, that when the inside conductor is charged
with a charge +q, the outside one remains charged with a charge −q on its internal
surface.7 Any external field would not affect this charge distribution, but it would
change both conductor potentials. However, the potential would change by the same
amount for both conductors, so the potential difference between the plates would
remain constant.

A typical case of a capacitor is the one known as the parallel-plate capacitor. It is
formed by two parallel plates, with equal and opposite charges and, assuming an ideal
case, the plate separation is very small compared with the dimensions of the plate.
It can be assumed that the entire electric field remains inside the region between the
plates (total influence). The dielectric media between the plates are usually linear,
homogeneous and isotropic, distributed by forming parallel layers to the conducting
plates. Thus the field between plates is uniform, except for the fringing field at the
edge of the parallel plates. This effect may be neglected in this ideal case and it will
also be assumed that the plates have a uniform charge distribution.8

Capacitors can also be joined by connecting one of the conductors of the first
capacitor to a conductor of the second, etc., or in different ways, depending on
whether we want more accumulated charge or a reduction of the potential difference.
When we join them, the set of capacitors has a certain potential difference (V1 −
V2) and accumulates a charge q. It is called the equivalent capacitance of the
combination, as

Ce = q/(V1 − V2), (3.28)

which is equivalent to the capacitance that would have a unique capacitor with the
same potential difference and that would store the same amount of charge.When they
are connected in parallel (Fig. 3.3a), we match positive plates with negative plates,
so all the capacitors have the same potential difference (V1 −V2) between the plates.
Each of the capacitors of the combinations acquires a charge

qi = Ci(V1 − V2), (3.29)

7It is enough to apply Gauss’ theorem to a Gaussian surface inside the outsider conductor: since
the field is null at every point, the charge inside the Gaussian surface must be zero. So if the inside
conductor had charge +q, then the outside one should have −q.
8If charge is not uniformly distributed, electric field would be different on equidistant points to the
plates, and when calculating the potential difference between the plates, the results will be different
depending on the chosen circulation path.



3.7 Capacitors 131

Fig. 3.3 Capacitors
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series C1

C2

Cn

V1 V2

+q
1

q
1

_

+q2 q2
_

+qn qn
_

C1

C2

Cn

+q
q_

+q
q_

+q
q_

V1

V2

(a) (b)

so total stored charge is

q =
n∑

i=1

qi . (3.30)

This association, therefore, allows storing a higher amount of charge than we would
store if we used each capacitor individually. The equivalent capacitance is

Ce = q

V1 − V2
= 1

V1 − V2

n∑

i=1

qi =
n∑

i=1

qi
V1 − V2

=
n∑

i=1

Ci . (3.31)

The equivalent capacitance of a combination of capacitors in parallel is, therefore,
the sum of the capacitances of each capacitor,

Ce =
n∑

i=1

Ci, (3.32)

which is higher than the capacitance of individual capacitors. On the particular case
of n capacitors with the same capacitance C, the equivalence capacitance is

Ce = nC . (3.33)

If capacitors are connected in series (Fig. 3.3b), a plate from one capacitor is con-
nected with a plate of the next one and so on, and subsequently they are charged by
subjecting the extreme plates to a potential difference (V1 − V2). All the capacitors
take the same charge, but the potential difference is divided in smaller fractions.
This combination is usually used when the stored charge produces an electric field
inside a capacitor that exceeds the breakdown voltage. In other words, it is used
when V1 − V2 is higher than the breakdown voltage, and therefore it is necessary to
divide the potential difference into lower fractions that do not exceed the breakdown
voltage of each capacitor. The potential difference �Vi of each capacitor will be

�Vi = q

Ci
, (3.34)
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which is lower than V1 − V2. The equivalent capacitance of the combination is

1

Ce
= V1 − V2

q
=

∑n
i=1 �Vi

q
=

n∑

i=1

�Vi

q
=

n∑

i=1

1

Ci
. (3.35)

The equivalent capacitance of a capacitor association in series is, therefore,

1

Ce
=

n∑

i=1

1

Ci
, (3.36)

which is smaller than any of the capacitor separately. On the particular case of n
capacitors with the same capacitance C, the equivalent capacitance is

Ce = C

n
. (3.37)

Solved Problems

Problems A

3.1 The square plate made of a dielectric material shown in Fig. 3.4 has thickness e
and is polarized over its entire volume according to equation P = (ay3 + b)j,
wherea andb are constants. (a)Determine the polarization surface charge density
and the polarization volume charge density. (b) Verify explicitly why the total
polarization charge is null.

Solution

(a) Polarization surface density σp is calculated from (3.3). Since vector P has a
component just in the uy-direction, it is only necessary to calculate polarization
density on the upper and lower surfaces of the plate. On the other ones, the scalar
product of (3.3) is zero, because P and n are perpendicular at all points. In Fig. 3.5
the orientation of P at different points can be observed, and also the outward unit
normal on surfaces where polarization is not zero. It can be observed on the upper

Fig. 3.4 Square plate of
Problem 3.1

O X

Y
L
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Fig. 3.5 Vectors P and n in
the plate of Problem 3.1 P n

n

O X

Y

P

dy

surface of the plate n = +uy and on the lower one, n = −uy. If (3.3) is applied it
results, for the upper surface, where y = L/2,

σp,upp = P · n =
[

a

(
L

2

)3

+ b

]

uy · uy = a
L3

8
+ b.

And for the lower surface

σp,low = P · n =
[

a

(
−L

2

)3

+ b

]

uy · (−uy) = a
L3

8
− b.

To calculate the polarization volume charge density ρp, (3.2) is applied:

ρp = −∇ · P = −
(

∂Px

∂x
+ ∂Py

∂y
+ ∂Pz

∂z

)
= −3ay2.

(b) To verify that total polarization is null, we calculate this charge:

qp =
∫

∂V
σpdS +

∫

V
ρpdV =

∫

Supp

(
a
L3

8
+ b

)
dS

+
∫

Slow

(
a
L3

8
− b

)
dS +

∫

V
−3ay2dV .

Functions inside the surface integrals are constant. To solve the volume integral,
since the function to be integrated only depends on y, the differential volume can be
taken as shown in Fig. 3.5, dV = Ledy. It results,

qp =
(

a
L3

8
+ b

)

Supp +
(

a
L3

8
− b

)

Slow +
∫ L/2

−L/2
−3ay2Ledy =

=
(

a
L3

8
+ b

)

Le +
(

a
L3

8
− b

)

Le − 3aLe
y3

3

∣
∣
∣
∣
∣

L/2

−L/2

= a
L4

4
e − a

L4

8
e − a

L4

8
e = 0.

3.2 The plates of a plane capacitor have A = 2m2 area and they are separated
by a distance of d = 2cm. Two different cases are established: on one side,
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space between them is a dielectric medium whose permittivity is εr = 3 and,
on the other side, space between them is constituted by two different dielectric
media: one is d/4 thickness with a permittivity of εr1 = 3 and the other is 3d/4
thickness and its permittivity is εr2 = 2. The capacitor is uniformly charged
with q = 20µC. (a) Determine the electric displacement field at any point of the
capacitor. (b) Calculate the capacitance of the capacitor for each configuration.

Solution

(a) Figure3.6 represents both configurations of the capacitor. The value of D does
not depend on polarization charges, so its value is the same for both configurations.
Charge q of the capacitor, as it was explained in Sect. 3.5, is uniformly distributed
over each of the plates with appearing a density on the conducting plates that can be
easily calculated from (2.4)

q =
∫

A
σdS = σ

∫

A
dS = σA ⇒ σ = q

A
= 10 µCm−2.

It can be observed, the sameway as it was done in Problem 2.7, that themagnitude
of D is the same for all the points at the same distance from any of the plates, and
the direction is perpendicular (if the fringing field is negligible) from the positive
to the negative plate, as shown in Fig. 3.6a. To determine its magnitude, due to the
symmetry of the charge distribution, Gauss’ law for D can be applied. We take as
a Gaussian surface ∂V a straight cylinder with its axis perpendicular to the sheet,
going through one of the conducting plates (in Fig. 3.6a it goes through the upper
plate, whose charge is q) and one of its bases, with section S, inside the dielectric.
Flux through the other base (the upper one in the figure) is null, since all the electric
field is confined to the plates. If flux through ∂V is calculated, taking into account
that on the cylinder’s lateral surface D and dS are perpendicular,

�D =
∮

∂V
D · dS =

∫

Slow

DdS = D
∫

Slow

dS = DS,

where S is the area of the lower base Slow (and of any straight section of the cylinder).
If Gauss’ law for D is applied

r

A

q

-q

r1

A

q

-q
r2dS

S

D

dS
d 3d/4

d/4V

(a) (b)

A

B

A

B

C

E

dl
dl

E1

E2
D

u u

Fig. 3.6 Capacitors of Problem 3.2 and Gaussian surface to determine D: a with one dielectric
medium; b with two dielectric media

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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�D = qnp,in = σS,

where qnp,in is the intersected charge by the cylinder when going through the con-
ducting plate (dark grey colored in Fig. 3.6a). If both equations are compared,

D = σ = 10 µCm−2.

(b) The capacitance of the capacitor is calculated according to its definition, using
(3.27),

C = q

VA − VB
,

where VA−VB is the potential difference between the positive and the negative plates.
This potential difference has to be calculated for both of the given configurations.
To do it, we calculate the circulation of electric field E from the positive plate to
the negative one, choosing a circulation path parallel to E, which is parallel to D,
because the dielectrics are linear, homogeneous and isotropic. In the case with only
a single dielectric medium, electric field E is the same across all the medium, and is
obtained by applying (3.16),

E = D
ε0εr

= σ

ε0εr
u = σ

3ε0
u,

where u is the unit normal to the plates, pointing from the positive plate towards the
negative one. If the potential difference between the positive plate and the negative
one is obtained using the circulation along line AB in Fig. 3.6a, where E and dl are
parallel,

VA − VB =
∫ B

A
E · dl =

∫ B

A

σ

ε0εr
u · dlu =

∫ d

0

σ

ε0εr
dl = σd

ε0εr
.

Remembering that q = σA, and if we substitute in capacitance expression, it results

C = q

VA − VB
= σA

σd/(ε0εr)
,

and we obtain what it is known as the capacitance of a parallel-plate capacitor,

C = εrε0A

d
= εA

d
. (3.38)

Using our numerical values,

C = 3ε0A

d
= 3ε0 · 2

0.02
= 2.655 nF.



136 3 Static Electric Field in Dielectrics

In the second case, with two dielectrics, Fig. 3.6b, it should be observed that even
though D is the same in both of them, E is different in each medium. In medium 1,

E1 = D
ε0εr1

= σ

ε0εr1
u = σ

3ε0
u.

And in medium 2,

E2 = D
ε0εr2

= σ

ε0εr2
u = σ

2ε0
u.

If we calculate the potential difference between A and B, line ACB in Fig. 3.6b, we
proceed as in the previous case and the result is

VA − VB =
∫ C

A
E1 · dl +

∫ B

C
E2 · dl =

∫ d/4

0

σ

3ε0
dl +

∫ d

d/4

σ

2ε0
dl

= σ

3ε0

d

4
+ σ

2ε0

3d

4
= 11

24

σd

ε0
.

And if we substitute this value into the equation of the capacitance,

C = q

VA − VB
= σA

11σd/(24ε0)
= 24

11

ε0A

d
= 1.931 nF.

3.3 A spherical capacitor consists of a conducting sphere 1, whose radius is R1,
surrounded by a conducting spherical crown 2,whose inner radius isR2. Between
both of them there is a dielectricmedium,with relative permittivity εr . Determine
its capacitance.

Solution

Let’s suppose that the capacitor plates have electric charges +q and −q, as shown in
Fig. 3.7. The capacitance of the capacitor is calculated from its definition, by using
(3.27),

C = q

VA − VB
,

Fig. 3.7 Spherical capacitor
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where VA−VB is potential difference between the positive plate and the negative one.
To determine it, we calculate the circulation of electric field E from the positive to
the negative one, choosing a line parallel to E. So it is necessary to calculate, firstly,
D and then E.

Because of its symmetry, charges +q and −q are uniformly distributed over the
outer surface of conductor 1, and the inner surface of conductor 2, respectively, and
polarization charges in the dielectric will be also distributed with the same spherical
symmetry. Consequently,E andD have to be radial. Gauss’ law (3.10) can be applied
to a spherical Gaussian surface ∂V whose radius is r, passing through any point P
of the dielectric, as it can be seen in Fig. 3.7 with the discontinuous line. It follows
that

�D =
∮

∂V
D · dS = D4πr2 = qnp,in = q,

since charge +q of the inner plate is the only charge inside the Gaussian surface.
Solving,

D = q

4πr2
⇒ D = q

4πr2
ur,

where ur is the radial unit vector for spherical coordinates. The electric field between
the plates is obtained by applying (3.16),

E = D
ε0εr

= q

4πε0εrr2
ur .

If the circulation of E between points A and B in Fig. 3.7 is calculated,

VA − VB =
∫ 2

1
E · dl =

∫ R2

R1

q

4πε0εrr2
ur · drur = q

4πε0εr

∫ R2

R1

dr

r2
=

= − q

4πε0εr

1

r

∣
∣
∣
∣

R2

R1

= q

4πε0εr

(
1

R1
− 1

R2

)
= q

4πε0εr

(
R2 − R1

R1R2

)
.

If we introduce this value in (3.27), the capacitance of spherical capacitor is obtained:

C = q

VA − VB
= 4πε0εrR1R2

R2 − R1
.

3.4 A cylindrical capacitor consists of a cylindrical conductor with radius R1 and
length L, surrounded by another coaxial cylindrical conductor, with inner radius
R2 and the same length L. Between them a dielectric with permittivity εr has
been introduced. The capacitor’s length is large enough in regards to separation
between the conductors, so a fringing field can be neglected. Determine the
capacitance of the capacitor.
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Fig. 3.8 Cylindrical
capacitor
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Solution

We follow a procedure similar to that of the preceding problem. We suppose that the
conducting cylinders have electric charges +q and −q, as shown in Fig. 3.8 and the
capacitance of the capacitor is calculated from its definition, using (3.27),

C = q

VA − VB
,

where VA − VB is the potential difference between the positive cylinder and the
negative one. To determine it, we calculate the circulation of E from the positive to
the negative one, by choosing a path parallel to E.

If a fringing field is neglected, charges +q and −q are uniformly distributed on
the surface of the inner cylindrical conductor and on the inner surface of the outer
cylinder, respectively. Their line charge densities are λ = q/L and −λ = −q/L.
The electric field E and field D are radial in regards to the cylinder axis. Gauss’
law for D (3.10) can be applied to a cylindrical Gaussian surface ∂V with radius r
and length l, passing through any point P of the dielectric (discontinuous line in the
Fig. 3.8). The flux of D through the bases of the Gaussian surface is null, since dS
and D are perpendicular at all points (or D is null inside the inner conductor). It is
only necessary to calculate the flux through the lateral surface, where dS and D are
parallel:

�D =
∮

∂V
D · dS =

∫

Slat

DdS = D
∫

Slat

dS = D2πrl,

where Slat is the lateral surface of the Gaussian cylinder. If (3.10) (Gauss’ law for D)
is applied, it results

�D = qnp,in = λl,

since only the charge of the inner conductor is enclosed by the Gaussian surface. If
both expressions obtained for the flux are set equal to each other, the result is

D = λ

2πr
⇒ D = q

2πrL
uρ,

where uρ is the radial unit vector for cylindrical coordinates. E is obtained from D
by applying (3.16)

E = D
ε0εr

= q

2πrLε0εr
uρ.
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If we circulate the electric field between points A and B in Fig. 3.8 using the
marked path, parallel to E,

VA − VB =
∫ B

A
E · dl =

∫ R2

R1

q

2πε0εrrL
uρ · druρ = q

2πε0εrL

∫ R2

R1

dr

r

= q

2πε0εrL
ln

(
R2

R1

)
.

which when substituted in (3.27), gives the capacitance of cylindrical capacitor

C = q

VA − VB
= 2πε0εrL

ln (R2/R1)
.

Problems B

3.5 A very large metallic sheet with negligible thickness is surrounded by a 2cm
thickness polystyrene layer, whose electric susceptibility is 1.6 and its dielectric
strength is 20kV/mm. (a) Determine the maximum charge density that the sheet
can have without reaching the polystyrene dielectric breakdown. (b) Calculate
the polarization charge densities in polystyrene for this value.

Solution

(a) In Fig. 3.9 the metallic sheet, whose surface charge density σ has yet to be deter-
mined, is grey colored. Polystyrene is over and below the sheet, with e = 0.02m
thick, permittivity εr = χe + 1 = 1.6 + 1 = 2.6 and dielectric strength Emax =
20kV/mm = 20 × 106 V/m. Dielectric breakdown has not be reached; therefore the
electric field E created by this sheet in polystyrene must remain below its dielectric
strength Emax.

Since there are dielectric materials, it is necessary to calculate the field D pro-
duced by the sheet to calculate the field E. The problem has charge and geometric
symmetries (uniformly charged infinite sheet), so Gauss’ law for D (3.10) can be
applied. The problem can be solved according to Sect. 3.4 for linear, homogeneous
and isotropic dielectrics. For a uniformly charged sheet, as previously seen inChap.2,
we take as a Gaussian surface ∂V a cylindrical surface (Fig. 3.9), symmetric accord-
ing to the sheet, whose bases, with area S, are inside the dielectric, and with height

Fig. 3.9 Gauss’ law for D in
Problem 3.5
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2r, where r is the distance from the sheet to any point on the dielectric. The field
D at any point is normal to the sheet, outwards (if σ > 0 is supposed) and with the
same magnitude at every point of both of the bases of the Gaussian cylinder. The
flux through the lateral surface is null, since D and dS are perpendicular at any point
of this surface. So there only exists flux through the bases,

�D =
∮

∂V
D · dS =

∫

Supp

DdS +
∫

Slow

DdS = D2S.

It should be observed that S is the area of both the highest Supp and lowest Slow bases
of the Gaussian cylinder. If Gauss’ law for D is applied (3.10) the result is

�D = qnp,in = σS,

where the charge qnp,in within ∂V equals the intersection between the sheet and the
cylinder (darker grey coloured in Fig. 3.9). If we equate both equations, the result is

D = σ/2.

If (3.16) is applied, we have for field E, with the same direction of D,

E = D

ε0εr
= σ

2ε0εr
.

And if we make this field to be lower than the dielectric strength, σ can be obtained,

σ

2ε0εr
< Emax ⇒ σ < 2ε0εrEmax = 920.4µCm−2.

(b) To obtain the polarization charge densities in polystyrene, we follow what was
previously said in Sect. 3.4 for linear, homogeneous and isotropic dielectrics. The
polarization volume charge density ρp is obtained from (3.19),

ρp = −εr − 1

εr
∇ · D = −εr − 1

εr
ρnp = 0,

since inside the dielectric there are no non-polarization charges. The polarization
surface charge density σp is obtained from (3.18),

σp = εr − 1

εr
D · n.

for every surface of the dielectric. It should be firstly considered that, due to the
symmetry of the figure, density of the upper layer of polystyrene is the same that the
one of lower layer. If we consider the upper layer (Fig. 3.10), there are two surfaces:
one in contact with the sheet, where the angle between unitary n1 and D is 180◦; and
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Fig. 3.10 Vectors to
calculate polarization surface
charge densities on the upper
layer

D

r

r
n1

D n2

the other in contact with the vacuum, where the angle between unitary n2 and D is
0◦. If (3.18) is applied for each of them, taking into account that D = σ/2, where
σ = 920.4µCm−2 was calculated in the previous section, it results

σp1 = εr − 1

εr
D · n1 = −εr − 1

εr
D = −1.6

2.6
σ/2 = −283.2µCm−2,

σp2 = εr − 1

εr
D · n2 = εr − 1

εr
D = 1.6

2.6
σ/2 = 283.2µCm−2.

3.6 A point charge q = −4 nC is located at the centre of a spherical crown dielec-
tric material, whose permittivity εr = 2, and its inner and outsider radii are
R1 = 20 cm and R2 = 60 cm respectively. (a) Determine the polarization charge
densities in the spherical crown. (b) Calculate the potential difference between
the spherical surfaces.

Solution

(a) The polarization volume charge density ρp is obtained from (3.19),

ρp = −εr − 1

εr
∇ · D = −εr − 1

εr
ρnp = 0,

since there are no non-polarization charges inside the dielectric. The polarization
surface charge density σp is obtained from (3.18),

σp = P · n = εr − 1

εr
D · n.

for both surfaces of the dielectric crown. To obtain the field D created by the point
charge at any point, distance r from the centre, Gauss’ law (3.10) can be applied
considering a spherical surface ∂V , whose centre is charge q (discontinuous line in
Fig. 3.11). Since D only depends on non-polarization charges, and the only one is q,
its value is the same for every point in space:

�D =
∮

∂V
D · dS = qnp,in ⇒

∮

∂V
−DdS = q ⇒ −D4πr2 = q.
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Fig. 3.11 Vectors for
calculus in Problem 3.6 r
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It should be observed that since q is negative, field D points towards charge q and
makes 180◦ with dS. If we solve it

D = −q

4πr2
= 4 · 10−9

4πr2
⇒ D = 10−9

πr2
(−ur).

where ur is the radial unit vector for the spherical coordinate system. If we substitute
D in (3.18), and considering that r = R1 = 0.2m and n1 = −ur for the inner surface,
and r = R2 = 0.6m and n2 = ur for the outer surface, it results

σp|r=R1 = εr − 1

εr
D · n1|r=R1 = 1

2
· 10−9

π · (0.2)2
(−ur) · (−ur) = 3.98 · 10−9 Cm−2.

σp|r=R2 = εr − 1

εr
D · n2|r=R2 = 1

2
· 10−9

π · (0.6)2
(−ur) · ur = −4.42 · 10−10 Cm−2.

(b) To determine the potential difference between both surfaces of the spherical
crown, and since circulation does not depend on the path, we circulate the electric
field along the radial direction, where E and dl are parallel, from A on the inner
surface to B on the outer one, as shown in Fig. 3.11. E is obtained9 from D by
applying (3.16),

E = D
ε0εr

= 10−9

πr2ε0εr
(−ur).

All points along the circulation path are inside the dielectric crown, where εr = 2.
So the potential difference between A and B is

VA − VB =
∫ B

A
E · dl =

∫ B

A

10−9

πr2ε0εr
(−ur)urdr = −

∫ 0.6

0.2

10−9

2πε0r2
dr

= 10−9

2πε0r

∣
∣
∣
∣

0.6

0.2

= −59.95V.

3.7 A coaxial cable consists of a cylindrical copper conductor whose radius is a =
2mm surrounded by a coaxial cylindrical dielectric (polyethylene) of exterior

9It can be observed thatE could be directly obtained by applying (2.15) for the electric field produced
by a point charge by merely substituting ε0 by ε0εr . Field P, necessary for Section (a), could be
directly obtained from the constitutive equation P = ε0χeE , being χe = εr − 1.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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radius b = 8mm, whose relative dielectric constant εr = 2.3, protected by a
coaxial cylindrical outer conductor whose radius is also b. The inner conductor
is maintained at a potential of 300 kV and the outer conductor at null potential.
Determine the line charge density of the conductor.

Solution

The charged conductor produces an electric field at points in the dielectric (which
depends on the charge of the conductor). Line charge density of the conductor will
therefore appear in the mathematical expression of this electric field.

The problem has cylindrical symmetry: every point of the dielectric located at the
same distance of the cylinder’s axis has the same magnitude of electric field, which
is perpendicular to this axis. The problem can be solved by applying Gauss’ law for
field D (3.10) and then by obtaining E, bearing in mind that the dielectric is linear,
homogeneous and isotropic. So we take as the Gaussian surface ∂V (discontinuous
line in Fig. 3.12) a cylindrical surface, whose length is L, coaxial with the conductor
and with radius r, passing through a point P of the dielectric.

The flux of D through the bases of the Gaussian surface is null, since dS and D
are perpendicular at all points (or D is null, at any point inside the conductor). It is
only necessary to calculate the flux through the lateral surface, where dS and D are
parallel:

�D =
∮

∂V
D · dS =

∫

Slat

DdS = D
∫

Slat

dS = D2πrL,

where Slat is the lateral surface of the cylinder. Furthermore, if Gauss’ law for field
D (3.10) is applied, it results

�D = qnp,in = λL,

where λ is the line charge density of the conductor whose radius is a, which we want
to know. If both expressions obtained for the flux are equated, then the result is

D = λL

2πrL
⇒ D = λ

2πr
uρ,

where uρ is the radial unit vector for cylindrical coordinates. E is obtained from D
by applying (3.16)

E = D
ε0εr

= λ

2πrε0εr
uρ.

Fig. 3.12 Electric cable of
Problem 3.7 and Gaussian
surface to calculate D
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Additional data in the problem are the potentials of both conductors, so we can
calculate the potential difference between them. Since the circulation of E does not
depend on the path, we use a radial path between two points A and B, one for each
conductor (Fig. 3.12). Therefore dl = druρ is parallel to the field E between the
conductors:

WAB =
∫ B

A
E · dl =

∫ B

A

λ

2πrε0εr
uρuρdr = λ

2πε0εr

∫ b

a

dr

r

= λ

2πε0εr
ln r|ba = λ

2πε0εr
ln

b

a
.

The circulation calculated between points A and B is the potential difference VA−VB

between both conductors, which according to the problem’s statement is 300 kV. If
we equalize it and solve it, the charge density λ of the inner conductor is obtained:

3 · 105 = λ

2πε0εr
ln

b

a
⇒ λ = 6 · 105πε0εr

ln b
a

= 6 · 105πε0 · 2.3
ln 4

= 2.77 · 10−5 C/m = 27.7µC/m.

3.8 Two charged spherical shells, with radius R, are placed in a linear, homogeneous
and isotropic dielectric liquid, as shown inFig. 3.13. Their charges stay uniformly
distributed. The sphere S1 on the left side has a charge q, while the sphere S2 on
the right side has a charge −q. The potential difference between points A and B
is the same as the potential difference between A and C, if the spheres were in a
vacuum. Determine the relative permittivity of the liquid.

Solution

Since the problem’s statement refers to a potential difference between points, it is
necessary to calculate the electric field produced by the charge distribution of the
figure at any point in the dielectric medium. Since there are two spheres, we firstly
calculate the field created by any spherical shell with charge q and then we apply the
superposition principle for electric fields.

To calculate the electric fieldEwe follow the procedure of Problem3.6:D is calcu-
lated by applying Gauss’ law forD (3.10) and then E is obtained by applying (3.16).
The Gaussian spherical surface ∂V is discontinuously plotted in Fig. 3.14, concen-
tric with the charged spherical shell, passing through any point P of the dielectric.

Fig. 3.13 Figure
of Problem 3.8

S1 S2
R RR2 R2
A BC

q -q
O1 O2

r
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Fig. 3.14 Field produced by
a charged sphere inside a
dielectric medium

r
P

R
O

DdS

r

V

q

Applying (3.10),

�D =
∮

∂V
D · dS = qnp,in ⇒

∮

∂V
DdS = q ⇒ D4πr2 = q,

bearing in mind that the charge enclosed by the Gaussian surface is the charge q of
the sphere. If we solve it

D = q

4πr2
⇒ D = q

4πr2
r
r

= q

4πr2
ur .

where ur is radial unit vector for spherical coordinates. E is obtained from D by
applying (3.16),

E = D
ε0εr

= q

4πε0εrr2
ur .

In Fig. 3.13 it is observed that all points referred to the statement are placed over
line O1O2 which joins both spheres’ centre. The circulation of E may be calculated
along this line to obtain the potential differences, so we should know the expression
of the electric field at every point on this line. Let’s consider O1 as the origin of
the coordinate system. Fields produced by spheres at any point P on this line, at a
distance r of O1 (Fig. 3.15) are

E1 = q

4πε0εrr2
r
r

= q

4πε0εrr2
ur,

for sphere S1 and

E2 = −q

4πε0εrr22

r2
r2

= q

4πε0εr(8R − r)2
ur,

for sphere S2. It is considered that r2 = O2O1 − r = 8R− r and that
r2
r2

= −ur . The

total field E at a point on the line O1O2 is

E = E1 + E2 = q

4πε0εr

(
1

r2
+ 1

(8R − r)2

)
ur .
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Fig. 3.15 Electric field due
to both charged spheres
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To obtain the potential differences indicated in the statement, we circulate the
previous electric field10 between points A and B as indicated in Fig. 3.13:

VA − VB =
∫ B

A
E · dl =

∫ B

A

q

4πε0εr

(
1

r2
+ 1

(8R − r)2

)
urdrur

= q

4πε0εr

∫ 6R

2R

(
1

r2
+ 1

(8R − r)2

)
dr.

If the integral is solved,

VA − VB = q

4πε0εr

(
−1

r
+ 1

8R − r

)∣
∣
∣
∣

6R

2R

= q

4πε0εr

(
− 1

6R
+ 1

2R
+ 1

2R
− 1

6R

)

= q

4πε0εr

2

3R
.

The statement says that the potential difference between points A and C is the same
as the previous one, if the spheres were in a vacuum. We follow the same procedure,
but making εr = 1, and considering the new integration limits,

VA − VC =
∫ C

A
E · dl = q

4πε0

∫ 4R

2R

(
1

r2
+ 1

(8R − r)2

)
dr

= q

4πε0

(
−1

r
+ 1

8R − r

)∣
∣
∣
∣

4R

2R

= q

4πε0

1

3R
.

Since both potential differences have to be the same,

q

4πε0εr

2

3R
= q

4πε0

1

3R
.

Hence
εr = 2.

3.9 The conducting plate, which is gray coloured in Fig. 3.16 and whose thickness
is d = 20cm, is large enough in regards to this dimension. It is charged with
a uniform surface charge density σ = 200µC/m2. It is completely covered

10Potential differences could also be calculated for each field separately and then the superposition
principle applied.
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Fig. 3.16 Figure of Problem
3.9.

e

e

d

d
d

R

by layers of dielectric material whose electric susceptibility is χe = 3 and its
thickness is d. The dielectric has a uniform charge density, that does not come
from polarization, and whose value is ρ = 500µC/m3. (a) Determine the flux
of the electric displacement D through the cylinder with oblique bases in the
figure, whose straight section has a radius of R = 30 cm. (b) Determine the
polarization surface charge densities and the polarization volume charge density
in the dielectric layers. (c) Determine the minimum value of dielectric strength
to avoid the breakdown of the dielectric layers.

Solution

(a) To calculate the flux of D through the cylindrical surface of Fig. 3.16, Gauss’
law for D (3.10) is applied. Non-polarization interior charge qnp,in is determined
by intersecting the cylinder with the charged areas. The conductor is charged with
density σ on both surfaces. The dielectric is entirely charged with density ρ. Then

�D =
∮

∂V
D · dS = qnp,in =

∫

cond
σdS +

∫

diel
ρdV = 2σπR2 + ρπR22d = 170µC.

(b) The dielectric is linear, homogeneous and isotropic, so the polarization volume
charge density ρp is obtained from (3.19),

ρp = −εr − 1

εr
ρnp = −3

4
· 500µC/m3 = −375µC/m3,

where εr = χe + 1 = 4. The polarization surface charge density σp is obtained from
(3.18),

σp = P · n = εr − 1

εr
D · n.

Calculus should be applied to each of the four surfaces of the dielectric. From the
symmetry of the problem, Gauss’ law for D can be applied to obtain the field D at
any point of the dielectric. We take as a Gaussian surface ∂V a cylindrical surface
(Fig. 3.17), whose bases are inside the dielectrics at the same distance in regards to
the centre of the conducting plate, with area S and height 2r, where r is the distance
from the centre of the plate to any point of the dielectric. Field D at any point is
normal to the plate, outward, with the same magnitude at every point on both bases
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Fig. 3.17 Field D and unit
normals to calculate
polarization surface densities
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of the Gaussian cylinder. Flux of D through the cylinder lateral surface is null, since
D and dS are perpendicular at any point on the surface. So there only exists flux
through the bases,

�D =
∮

∂V
D · dS =

∫

Bupp

DdS +
∫

Blow

DdS = D2S.

Applying Gauss’ law for D, the result is

�D = qnp,in = 2σS + ρS2h = 2S(σ + ρh),

where h = r − d/2, is the dielectric’s height inside either of the Gaussian cylinder
halves. The charge inside theGaussian surface is the result of intersecting the cylinder
with the conducting plate (dark grey coloured in Fig. 3.17) and with the dielectric
(lined in Fig. 3.17). If both expressions are equated, the result is

D = σ + ρh.

If we substitute this value in (3.18), and we consider that D and n make 180◦ on
dielectric surfaces in contact with the conductor (surface 1) and 0◦ on the other ones
(as it can be seen in Fig. 3.17), it results

σp1 = εr − 1

εr
D1 · n1 = −3

4
D1 = −3

4
σ = −150µCm−2.

σp2 = εr − 1

εr
D2 · n2 = 3

4
D2 = 3

4
(σ + ρd) = 225µCm−2.

It should be observed that h = 0 for the surfaces in contact with the conductor, and
h = d for the furthest surfaces.

(c) To obtain the dielectric strength, it is necessary to calculate the maximum electric
field which the dielectric can withstand without breaking down. Since field D is
known at every point of the dielectric, field E can be obtained by applying (3.16),

E = D
ε0εr

.
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The maximum value of the electric field E occurs when D has the highest value. If
previous results for D are observed, this occurs on the most outlying surface of the
dielectric (h = d). If we substitute, the minimum dielectric strength is obtained,

Emax = Dmax

ε0εr
= σ + ρd

ε0εr
= 8.47 kV/mm.

3.10 A point charge q = 24µC is placed at the centre of an aluminium spherical
crown, that is also charged with q = 24µC, whose interior radius is R1 = 2 cm
and the exterior one R2 = 10 cm. The sphere is surrounded by a concentric
plastic sphere, whose relative permittivity is εr = 4 and its thickness e = 5 cm.
(a) Determine the induced charge densities in the plastic. (b) Determine the
potential difference between the conducting sphere and a point P placed 20 cm
away from the centre.

Solution

(a) The polarization volume charge density ρp is obtained from (3.19),

ρp = −εr − 1

εr
∇ · D = −εr − 1

εr
ρnp = 0,

since there are non-polarization charges inside the dielectric. The polarization surface
charge density σp is obtained from (3.18),

σp = P · n = εr − 1

εr
D · n,

for both surfaces of the plastic crown. It is necessary, therefore, to calculate D at
points of the dielectric.

The charges of the conductor (aluminium) move until they find positions in which
the field inside the conductor is null (Sect. 2.8 and Problem 2.10). If Gauss’ law 2.28
is applied to a Gaussian surface ∂V1 totally inside the conductor (discontinuous line
in Fig. 3.18),

�E =
∮

∂V1

E · dS = 0 = qin
ε0

⇒ qin = 0 = q + qcond,in,

Fig. 3.18 Fields D and E,
normal unit vectors and path
to calculate circulation in
Problem 3.10
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where qcond,in is the charge on the inner surface of the conductor. It should be observed
that the flux is null because the field at every point of ∂V1 is null. Therefore

qcond,in = −q.

If the principle of conservation of charge is applied to the conductor, with charge q,
charge of its outer surface is obtained,

qcond = q = −q + qcond,ex ⇒ qcond,ex = 2q

and the charge distribution of Fig. 3.18 is obtained.
Due to spherical symmetry, charge will be uniformly distributed over the con-

ductor surface, making the field inside it null. As a consequence, the field outside
the conductor will be radial. Due to the existence of a dielectric (plastic), we need
to calculate D before calculating the electric field E. Due to spherical symmetry,
Gauss’ law for D (3.10) is applied to a Gaussian spherical surface ∂V2, discontinu-
ous in Fig. 3.18, concentric with the conductor, and passing through any point of the
dielectric, at a distance r from the centre,

�D =
∮

∂V2

D · dS = qnp,in ⇒
∮

∂V2

DdS = 2q ⇒ D4πr2 = 2q,

where the charge qnp,in inside the Gaussian surface is the sum of all the charges:
q − q + 2q. Solving,

D = q

2πr2
⇒ D = q

2πr2
r
r

= q

2πr2
ur .

where ur is the radial unit vector for spherical coordinates. Since D only depends on
non-polarization charges, and there are no charges of this kind beyond the conductor,
the calculated value is also valid outside the dielectric.

If we substitute it into (3.18), bearing in mind that for the inner surface, r = R2 =
0.1m and n2 = −ur , and for the outer one, r = R3 = R2 + e = 0.15m and n3 = ur ,
it results

σp|r=R2 = εr − 1

εr
D · n2|r=R2 = 3

4
· 24 · 10−6

2π · (0.1)2
ur · (−ur) = −286µCm−2.

σp|r=R3 = εr − 1

εr
D · n3|r=R3 = 3

4
· 24 · 10−6

2π · (0.15)2
ur · ur = 127µCm−2.

(b) To determine the potential difference we circulate the electric field along the
radial direction, where E and dl are parallel, from point C at the conductor surface
(since the conductor is equipotential) to point P, as shown in Fig. 3.18,
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VC − VP =
∫ P

C
E · dl =

∫ D

C
Eplas · dl +

∫ P

D
Evac · dl.

The path CP goes through two different media, plastic and vacuum, so the electric
field E will be different, even though field D is the same. E is obtained from D by
applying (3.16),

Eplas = D
ε0εr

= q

8πε0r2
ur,

Evac = D
ε0εr

= q

2πε0r2
ur .

If we calculate the potential difference, taking into account that E is parallel to dl,

VC − VP =
∫ 0.15

0.1

q

8πε0r2
dr +

∫ 0.2

0.15

q

2πε0r2
dr

= − q

2πε0

(
1

4r

∣
∣
∣
∣

0.15

0.1

+ 1

r

∣
∣
∣
∣

0.2

0.15

)

= 1.08 · 106 V.

3.11 An empty spherical cavity with radius R is made in a linear, homogeneous and
isotropic dielectric of infinite extent, with relative permittivity εr = 2. The
dielectric has a non-polarization charge density ρ = a/r4, with a as a constant
and r the distance from the centre of the spherical cavity to any point of the
dielectric. Determine: (a) the polarization charge densities in the dielectric; (b)
the potential at the centre of the spherical cavity, taking infinity as the reference
potential.

Solution

(a) The polarization volume charge density ρp at inner points of the dielectric is
obtained from (3.19),

ρp = −εr − 1

εr
∇ · D = −εr − 1

εr
ρnp = − a

2r4
.

For points of the dielectric material in contact with the cavity, the polarization surface
charge density σp is obtained from (3.18),

σp = P · n = εr − 1

εr
D · n.

Since there are no charges in the hollow, and due to spherical symmetry of outer
charges, the electric field in the cavity is null, and therefore D = 0. Hence

σp = 0.
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Fig. 3.19 Fields D and E
and path to calculate
circulation in Problem 3.11
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(b) To calculate the potential at the centre of the cavity, it is necessary to calculate
the potential difference between the centre of the sphere and infinity (reference
potential). We need to know the electric field E at every point in space. Due to
spherical symmetry of charges, E is null at every point in cavity (r < R) and radial
at every point in dielectric. Therefore,

VO − V∞ = VO =
∫ ∞

O
E · dl =

∫ ∞

P
E · dl,

where P is any point on dielectric surface (Fig. 3.19).
To calculate E in the dielectric, we firstly determine D. Due to the spherical sym-

metry of the charge distribution, Gauss’ law for D (3.10) can be applied considering
a spherical Gaussian surface ∂V concentric with the cavity (discontinuous line in
Fig. 3.19), and passing through any point of the dielectric, at a distance r from the
centre,

�D =
∮

∂V
D · dS = qnp,in ⇒

∮

∂V
DdS = D4πr2 = qnp,in.

Since charge density depends on distance r from the centre, to calculate non-
polarization charge inside the volume, qnp,in, we take into account that the volume
element in a sphere can be written as dV = 4πr2dr,

qnp,in =
∫

Vin
ρdV =

∫ r

R

a

r4
4πr2dr = 4πa

∫ r

R

1

r2
dr = 4πa

−1

r

∣
∣
∣
∣

r

R
= 4πa

(
1

R
− 1

r

)
.

Therefore, substituting the expression for qnp,in into the flux expression, we obtainD,

D = qnp,in
4πr2

= a

r2

(
1

R
− 1

r

)
⇒ D = a

r2

(
1

R
− 1

r

)
ur .

where ur is the radial unit vector for spherical coordinates. E is obtained from D by
applying (3.16),

E = D
ε0εr

= a

2ε0r2

(
1

R
− 1

r

)
ur .
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To calculate the potential difference, we circulate the electric field along the radial
direction, in which E and dl are parallel,

VO =
∫ ∞

P
E · dl =

∫ ∞

R

a

2ε0r2

(
1

R
− 1

r

)
dr = a

2ε0

(−1

Rr
+ 1

2r2

)∣
∣
∣
∣

∞

R

= a

4ε0R2
.

3.12 Aparallel-plate capacitor consists of two squared shellswhose sidemeasuresL,
separated by a distance d, much smaller than L. There are two dielectric media,
whose relative permittivities are εr1 = 2 and εr2 = 3. They can be placed
between plates in two ways, (a) and (b), shown in Fig. 3.20. Each dielectric
occupies half the space between the shells in both cases. Capacitors are charged
with a charge q and they remain isolated. Make a comparison between the
capacitance of both capacitors.

Solution

The capacitance is calculated from its definition, using (3.27),

C = q

VA − VB
,

where VA−VB is the potential difference between the positive and the negative plate.
We calculate it by circulation of the electric field E from the positive shell to the
negative one. Since there is a dielectric medium, D must be calculated first.

Let’s first consider the dielectrics of Fig. 3.20a. We follow a procedure similar
to that of Problem 3.2. Because of the symmetry, charge q is uniformly distributed,
with a density

σ = q/L2.

D is perpendicular to the plates (if the fringing field at the edge is neglected) and with
direction from the positive shell to the negative one. To obtain its magnitude, Gauss’
law for D (3.10) can be applied, by taking as Gaussian surface ∂V a cylindrical
surface, drawn with a discontinuous line in Fig. 3.21a. The flux of D through the
upper base is null, since the electric field is confined between the plates. Flux through
the lateral surface is also zero, since D and dS are perpendicular. We only need to
calculate the flux through the lower base, and if Gauss’ law for D is applied, the
result is

�D =
∮

∂V
D · dS =

∫

Slow

DdS = DS = qnp,in = σS ⇒ D = σ,

Fig. 3.20 Parallel-plate
capacitors with two different
layouts for the dielectrics q

q

q

q

L
d

(a) (b)
L

d
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Fig. 3.21 Gaussian surface
to calculate D and E

q

q

q

q
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dS

E2 D1 D2

2
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d

(a) (b)

d
dS

DE1
E

A

B

A

B

C

where S is the area of the lower base Slow of the Gaussian cylinder (and of any straight
section of it). Electric field E for each dielectric medium is

E1 = D

ε0εr1
= σ

2ε0
, E2 = D

ε0εr2
= σ

3ε0
.

Calculating the potential difference between A and B, line ACB of Fig. 3.21a, per-
pendicular to the plates, the result is

VA − VB =
∫ B

A
E · dl =

∫ C

A
E1 · dl +

∫ B

C
E2 · dl =

∫ d/2

0

σ

2ε0
dl +

∫ d

d/2

σ

3ε0
dl

= σ

2ε0

d

2
+ σ

3ε0

d

2
= 5

12

σd

ε0
.

And if it is substituted in the definition of capacitance,

Ca = q

VA − VB
= σL2

5σd/(12ε0)
= 12

5

ε0L2

d
.

If we consider the layout of Fig. 3.20b, charge q does not uniformly distribute on
the plates; it now depends on permittivity of the dielectric between them. Let σ1 be
the charge density on the plate over dielectric 1 and σ2 the charge density on plate
over dielectric 2, Fig. 3.21b. The result is,

q = σ1L
L

2
+ σ2L

L

2
.

Since the circulation of the electrostatic field is path-independent (AB through dielec-
tric 1 or A′B′ through dielectric 2), the potential difference between the plates of
capacitor is the same. If we calculate these potential differences, and taking into
account previous calculations made for layout (a), the result is, through dielectric 1

VA − VB =
∫ B

A
E1 · dl =

∫ d

0

σ1

2ε0
dl = σ1d

2ε0
,
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and through dielectric 2

V ′
A − V ′

B =
∫ B′

A′
E2 · dl =

∫ d

0

σ2

3ε0
dl = σ2d

3ε0
.

Since both potential differences are the same, it can be observed that both fields E1

and E2 must be the same (E in Fig. 3.21b). It follows that

VA − VB = V ′
A − V ′

B ⇒ σ1d

2ε0
= σ2d

3ε0
⇒ σ1

σ2
= 2

3
.

It should be observed that the relation between charge densities is the same as the
relation of permittivities. If the capacitance is calculated, by using either expression
for potential difference,

Cb = q

VA − VB
=

σ1
L2

2
+ σ2

L2

2
σ1d

2ε0

=
σ1

L2

2
+ 3

2
σ1

L2

2
σ1d

2ε0

= 5

2

ε0L2

d
.

The same results could be reached if we considered each layout a combination
of separate capacitors. In case (a), the capacitor is equivalent to the one shown in
Fig. 3.22a. It is necessary to introduce a metallic plate between both dielectrics,
but the capacitance does not change. This capacitor is therefore equivalent to two
parallel-plate capacitors connected in series. The equation of capacitance for each
capacitor has been calculated in Problem 3.2 (3.38). The equivalent capacitance is
obtained by (3.36),

1

Ca
= 1

C1
+ 1

C2
= d/2

ε0εr1L2
+ d/2

ε0εr2L2
,

from where

Ca = 12

5

ε0L2

d
.

In case (b), the capacitor is equivalent to the one shown in Fig. 3.22b: two capac-
itors connected in parallel. Its capacitance can be calculated, according to (3.32), as
the sum of the capacitances of both parallel-plate capacitors:

Fig. 3.22 Equivalence of
plane capacitors of Fig. 3.20

r1 L/2

L

d

d/2

(a) (b)

L/2

L

d/2 r2
dr1 r2
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Cb = C1 + C2 = ε0εr1L2/2

d
+ ε0εr2L2/2

d
.

Therefore

Cb = 5

2

ε0L2

d
.

Problems C

3.13 A very long dielectric cylinder, with length L, radius R1 = 2m and permittivity
εr = 4, is charged with a non-polarization charge density ρ = cr2, where
c = 6µCm−5 and r is the distance from the cylinder axis in meters. It is
surrounded by a grounded conducting coaxial cylinder, also very long, with
radii R2 = 4m and R3 = 6m. The space between them is a vacuum. (a)
Determine the charge distribution in the conductor. (b) Determine the flux of
the electric field through the cylindrical surface whose radius is R = 3m and
length is l = 5m, coaxial with the very long cylinders. (c) Determine the charge
densities in the conductor and in the dielectric. (d) Determine the potential at
a point placed 1m from the axis of the cylinders.

Solution

(a) Figure3.23 shows the layout of the problem. Charges in the conductor (grey
coloured) are reorganized in order to make the field E null inside the conductor
(Sect. 2.8). Gauss’ law (2.28) is applied to a Gaussian cylindrical surface ∂V1, length
L, totally inside conductor (discontinuous line in the figure)

�E =
∮

∂V1

E · dS = 0 = qin
ε0

⇒ qin = 0 = q + qcond,in,

where qcond,in is the charge on the inner surface of the conductor, and q is the charge
of the dielectric, which is inside the cylinder ∂V1. It should be observed that the flux
is null, since field E is null at every point of ∂V1. Therefore

qcond,in = −q.

We have to determine charge q of the dielectric. Since the charge distribution has
cylindrical symmetry, taking as a volume element a cylinder with any radius r, length
L and thickness dr (dV = 2πrLdr):

Fig. 3.23 Charged dielectric
cylinder surrounded by a
conductor

R R1 R2
q
q

l

E=0
R3

V1

V2

L

r

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_2
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q =
∫

Vin

ρdV =
∫ R1

0
cr22πrLdr = 2πcL

r4

4

∣
∣
∣
∣

R1

0

= πcR4
1L

2
= 1.5 · 10−4LC.

To determine charge on the outer surface of the conductor, it is taken into account
that there is no potential difference between ground and the conductor, since the
conductor is grounded. There cannot exist any field between them (because of (2.18),
E = −∇V ). Field E is null in the conductor and outside it and, from (2.29) (∇ ·E =
ρ/ε0), there cannot be any charges on the outer surface of the conductor. Therefore,

qcond,in = −1.5 · 10−4LC, qcond,ex = 0.

(b) To calculate the flux through the cylindrical surface whose radius is R = 3m and
length is l = 5m (discontinuous line in Fig. 3.23), Gauss’ law (2.28) can be applied

�E =
∮

∂V2

E · dS = qin
ε0

.

qin is the charge of the dielectric, whose value can be calculated the same way as it
was done in section (a), but inside a cylinder of length l:

�E = qin
ε0

= 1.5 · 10−4l

ε0
= 84.7 · 106 Vm.

(c) Charge in the conductor is located on the inner surface, with value −q. Charge
density is obtained from (2.3). Since the cylinder is very long, a fringing field at the
edges can be neglected and therefore the charge density is uniform,

σcond = dq

dS
= −q

Scond,in
= −q

2πR2L
= −6µCm−2,

where Scond,in is the area of the inner surface of the conductor. The polarization
volume charge density ρp at inner points of the dielectric is obtained from (3.19),

ρp = −εr − 1

εr
∇ · D = −εr − 1

εr
ρnp = −3

4
· 6 · 10−6r2 = −4.5 · 10−6r2 Cm−3,

with r in meters.
The polarization surface charge density σp at points on the dielectric’s surface is

obtained from (3.18),

σp = P · n = εr − 1

εr
D · n|r=R1 .

with n = uρ, the outward unit normal to the dielectric, as can be seen in Fig. 3.24.
It is necessary to calculate D on the surface of the dielectric. Since in section (d) we

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_2
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Fig. 3.24 Polarization
densities and potential
differences calculus of
Problem 3.13 P

dS

dS
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h
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n

D

r

C

will need to calculate field E (and therefore D) at every point in space, we will make
this calculus and then we will take r = R1.

Field is null inside the conductor, and also for distances r > R3, since the con-
ductor is grounded. For r < R2, because of the cylindrical symmetry of charge
distribution, every point at the same distance from the cylinder’s axis has the same
field magnitudeD, which is perpendicular to this axis (neglecting the fringing field at
the edges). To obtain fieldDGauss’ law forD (3.10) can be applied. AsGaussian sur-
face ∂V we construct a cylindrical surface, which is coaxial with the actual cylinders,
with length h and radius r, passing through the point where the field is calculated
(discontinuous lines in Fig. 3.24). Flux through the bases of the Gaussian surface
is null, since dS and D are perpendicular at every point of them. We only need to
calculate the flux through the lateral surface, where dS and D are parallel:

�D =
∮

∂V
D · dS =

∫

Slat

DdS = D
∫

Slat

dS = D2πrh, (3.39)

where Slat is the lateral surface of the cylinder.
On the other hand, if Gauss’ law (3.10) is applied for D, the result is

�D = qnp,in.

The value of qnp,in depends on the position of the point where the field is calculated
(inside or outside the dielectric cylinder). If the point is outside, the dielectric cylinder
of radius R1 and length h is totally inside the Gaussian surface, as it can be seen in
Fig. 3.24. Charge is determined, as in section (a), taking as a volume element a
cylinder with any radius r, length h and thickness dr (dV = 2πrhdr):

�D(R1≤r<R2) = qnp,in =
∫

Vin

ρdV =
∫ R1

0
cr22πrhdr = πcR4

1h

2
.

If the point is inside the dielectric, part of the dielectric cylinder stays outside the
Gaussian surface, not producing any flux. Interior charge is only in the dark grey
colored region in Fig. 3.24. Therefore, the result is

�D(r≤R1) = qnp,in =
∫

Vin

ρdV =
∫ r

0
cr22πrhdr = πcr4h

2
.
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If these expressions are equated to the one of the calculated flux (3.39), and
replacing the values of R1 = 2m and R2 = 4m, D is obtained:

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

πcr4h

4πrh
uρ = cr3

4
uρ r ≤ 2,

πcR4
1h

4πrh
uρ = 4c

r
uρ 2 ≤ r < 4

0 r ≥ 4,

where uρ is the radial unit vector for cylindrical coordinates. E is obtained from D

by applying (3.16) (E = D
ε0εr

) where εr = 4 if the point is inside the dielectric and

εr = 1 if the point is in the vacuum,

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cr3

16ε0
uρ r ≤ 2,

4c

rε0
uρ 2 ≤ r < 4

0 r ≥ 2.

Substituting the values ofD into (3.18), with r = R1 = 2m and n = uρ, the result
is

σp = P · n = εr − 1

εr
D · n|r=R1 = 3

4
· cR

3
1

4
uρ · uρ = 9µCm−2.

(d) To determine the potential difference we circulate the electric field along the
normal direction to the cylinder axis, where E and dl are parallel (Fig. 3.24), from
pointP (1m from the axis, inside the dielectric) to a pointC on the conductor surface,
with a known potential (0 V, since the conductor is grounded),

VP − VC = VP =
∫ C

P
E · dl =

∫ D

P
Ediel · dl +

∫ C

D
Evac · dl.

D is a point on the dielectric surface, at a distance R1 of the axis. The path PDC
goes through two different media, dielectric and vacuum. Therefore the electric field
E will be different. Calculating, taking into account that that the angle between the
vectors E and dl is 0◦,

VP =
∫ 2

1

cr3

16ε0
dr +

∫ 4

2

4c

rε0
dr = c

ε0

(
r4

64

∣
∣
∣
∣

2

1

+ 4 ln r|42
)

= 2.04 · 106 V.
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3.14 A very large plate of a dielectric material, whose dielectric constant is εr and its
thickness e, is charged with a volume charge density ρ = ax, being a a positive
constant and x the distance from a point of the dielectric to one of the surfaces.
Determine fields D, E and P at any point placed at distance x, as well as the
polarization charge densities.

Solution

Figure3.25 shows the dielectric plate. The vertical direction (perpendicular to the
plate) is taken as axis X, with the origin on the upper surface. D can be directly
obtained by applying (3.9),

∇ · D = ρnp ⇒ ∂Dx

∂x
= ax,

because D only changes along direction x. If the equation is integrated,

Dx = 1

2
ax2 + C,

where C is a constant to be determined. Since there is the same charge beneath the
upper face as over the lower one, Dmust be the same at x = 0 and at x = e, but with
opposite direction,

1

2
a02 + C = −(

1

2
ae2 + C) ⇒ C = −ae2

4
.

And therefore,

D = a

2

(
x2 − e2

2

)
ux.

E is obtained from D by applying (3.16),

E = D
ε0εr

= a

2ε0εr

(
x2 − e2

2

)
ux.

Fig. 3.25 Dielectric plate
with variable charge
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P is obtained from (3.8) (definition of field D) or by using (3.17),

D = ε0E + P ⇒ P = D − ε0E = εr − 1

εr
D = a

2

εr − 1

εr

(
x2 − e2

2

)
ux.

The polarization volume charge density ρp is

ρp = −∇ · P = −∂Px

∂x
= −εr − 1

εr
ax.

The same result can be obtained if (3.19) is applied.
Polarization surface charge densities are

σp|x=0 = P · n1 = a

2

εr − 1

εr

(
02 − e2

2

)
ux · (−ux) = εr − 1

εr

ae2

4
,

and

σp|x=e = P · n2 = a

2

εr − 1

εr

(
e2 − e2

2

)
ux · ux = εr − 1

εr

ae2

4
,

taking into account the unit normals drawn in Fig. 3.25.

3.15 Determine the capacitance of a parallel-plate capacitor whose plates are circu-
lar, separated by a distance e, and whose radius is R, very large compared to e.
There is an isotropic dielectric between the plates, whose relative permittivity
is εr = a + br, with a and b constants and r the distance from the revolution
axis of the plates. Neglect the fringing field at the edge.

Solution

The capacitance of the capacitor is calculated from its definition, using (3.27),

C = q

VA − VB
,

where VA − VB is the potential difference between the positive and negative plates.
To solve it, the circulation of electric field E is calculated from the positive plate to
the negative one. To obtain E, it is necessary to know D, since there is a dielectric
medium. As the dielectric permittivity depends on distance r to the axis, the charge
q of the capacitor does not distribute uniformly; the charge density on conducting
plates also depends on the distance (σ = σ(r)). Due to rotational symmetry, field
D will be perpendicular to the plates (if fringing field at the edge is neglected) and
with direction from the positive to the negative plate. As D magnitude depends on
the charges, D will also depend on r.

Let’s consider the set of points located at any distance r from the axis, and the
ones at a r + dr (hollow cylinder, darker in Fig. 3.26). These sets of points form a
differential capacitor whose area is dS = 2πrdr and the distance between plates is
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Fig. 3.26 Parallel-plate
capacitor of circular plates,
with a dielectric of variable
permittivity e

r dr

Rq
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dl
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D
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B

e, with a dielectric medium whose permittivity is εr = a + br, the same at every
point. Surface charge density σ on the plates is, therefore, the same at every point in
the differential volume. To determine the magnitude of D, Gauss’ law for D (3.10)
can be applied, taking as a Gaussian surface ∂V (discontinuous line in Fig. 3.26)
the surfaces of a cylinder with the same axis and the same radii r and r + dr as the
differential capacitor. ∂V only goes through one of the conducting plates (the upper
one in Fig. 3.26) so one of the bases of ∂V (the lower one) is inside the dielectric.
The flux of D through the upper base is null, since all the electric field is confined
between the capacitor plates. Flux through the lateral surfaces is also zero, since D
and dS are perpendicular on the lateral surfaces of the cylinder. If the flux through
surface ∂V is calculated, the result is

�D =
∮

∂V
D · dS =

∫

Slow

DdS = D
∫

Slow

dS = D2πrdr,

where Slow = 2πrdr is the area of the lower base. If Gauss’ law for D is applied

�D = qnp,in = σ2πrdr,

which is the charge intersected by the cylinder when going through the conducting
plate, (black colored in Fig. 3.26). If both equations are compared,

D = σu,

where u is the unit normal to the plates, with direction from the positive to the
negative one.

In the differential capacitor, since εr = a+br is a constant value in it, the electric
field E, parallel to D, is obtained from (3.16),

E = D
ε0εr

= σ

ε0εr
u = σ

ε0(a + br)
u.

To calculate the circulation of the electric field E from the positive plate to the
negative one,AB is the chosen path (Fig. 3.26), parallel toE, where the angle between
E and dl = dlu is zero,
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VA − VB =
∫ B

A
E · dl =

∫ e

0

σ

ε0(a + br)
dl = σe

ε0(a + br)
,

where σ = σ(r) depending on the distance r to the axis. It can be observed that we
use dl instead of dr because the circulation is calculated along the vertical direction.
Since the potential difference does not depend on the chosen path, even though σ and
εr are not constant, this quotient is the same for any defined differential capacitor.
From this expression σ can be obtained, dependent on r,

σ = (VA − VB)ε0(a + br)

e
.

From this value, the charge q of the capacitor can be obtained,

q =
∫

S
σdS =

∫ R

0
σ2πrdr =

∫ R

0

(VA − VB)ε0(a + br)

e
2πrdr

= 2π(VA − VB)ε0

e

(
aR2

2
+ bR3

3

)
.

The resulting capacitance of the capacitor is

C = q

VA − VB
= 2πε0

e

(
aR2

2
+ bR3

3

)
.

Similarly to Problem 3.12, this problem could have been solved as a capacitor
association. The differential capacitor of area dS = 2πrdr (dark in Fig. 3.26) is a
parallel-plate capacitor whose capacitance is (Problem 3.2, (3.38))

dC = εrε0dS

e
= (a + br)ε0

e
2πrdr.

The capacitor of the problem can be considered as a set of capacitors connected in
parallel, with r from 0 to R. Therefore, by applying (3.32) for a capacitor association
in parallel, if the sum becomes an integral, the result is

C =
∫ R

0

(a + br)ε0
e

2πrdr = 2πε0

e

(
aR2

2
+ bR3

3

)
.



Chapter 4
Electric Current

Abstract In the previous chapters we saw problems with charge at rest. In this
chapter we will study charges in motion, which is known as an electric current.
Conducting materials will be studied, in which charge carriers are free to move
under electric field action. This movement leads to two types of currents: conduction
currents and convection currents. In conduction currents, free electric charges, which
are known as current carriers, move on a neutral media. The most characteristic
example is the current in metals, where valence (or conductive) electrons (which can
move fromone atom to another randomly)move in anorganizedwaywhenan external
electric field is applied, and they generate electric current. This type of current can
also be seen in electrolytes or in ionized gases, where conduction is by positive and
negative ions, which travel in opposite directions. However, they produce a current in
the same direction. By convention, the direction in which the positive carrier moves
is taken as the direction, or sense, of the current. In convection currents, negatively or
positively charged media (liquid or solid) suffer a hydrodynamic movement which
implies mass transport. This is how an electric current is generated. Some examples
of this are atmospheric electricity or electron beams in a cathode ray tube.

4.1 Current Density. The Current

In Fig. 4.1 a metal conductor is shown with electric current in it. Electric current is
characterized by the current density, defined for every point of the conductor as

j(r, t) ≡ qn(r, t)v(r, t) , (4.1)

where v(r, t) is a velocity field (current carriers velocity on each point r of the
material for each point in time t), q is every carrier charge (for a metal, q = −e =
−1.6 × 10−19 C) and n is the number of carriers per unit volume. The current density
is a vector point function. Observing Fig. 4.1, we see current density and carriers
velocity have opposite direction, due to the electron negative sign. From Expression
(4.1) it is deduced that the current density vector unit in SI is Cs−1m−2. Cs−1 is called
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Fig. 4.1 Conduction current
in a metal
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ampere, with symbol A. So the unit of j is Am−2. The ampere is considered as one
of the fundamental units in SI, instead of the coulomb.1

When several types of carriers exist (in electrolytes or in ionized gases), the
expression (4.1) converts into

j(r, t) ≡
∑

i

qini(r, t)vi(r, t) , (4.2)

where index i refers to different carriers types.
Expression (4.1) can also be applied to convection currents, where q is a free

moving charge. If it is observed that Nq represents free moving charges per volume
unit ρ, the same equation can be written as

j(r, t) = ρ(r, t)v(r, t) . (4.3)

Current density is a point vector function. If total current through a macroscopic
arbitrary surface with area S is studied, it will be necessary to determine current
density flux j through S. This calculus is known as current or current intensity I ,
expressed by:

I =
∫

S
j · dS . (4.4)

The unit of I in SI is ampere (A). Current density may have positive or negative
sign depending on the scalar product between j and dS or, equivalently, on surface
orientation relative to the carrier velocity.

It can be demonstrated that the current I is the charge that goes through surface S
per time unit. This is the reason why I is also defined as:

I ≡ lim
�t→0

�q

�t
≡ dq

dt
, (4.5)

which shows that, generally, current is time dependent.

1It is necessary to use the magnetic force concept (Chap. 5) to define ampere as a fundamental unit.

http://dx.doi.org/10.1007/978-3-662-48368-8_5


4.2 The Equation of Continuity 167

4.2 The Equation of Continuity

Current density j and charge density ρ are not independent quantities. They are
related at each point by a differential equation called the equation of continuity.
This equation can be easily deduced from the principle of charge conservation, by
applying (4.4) to an arbitrary closed surface. If a current I flows towards the inside
region, charge in the volume must increase. If flux through this surface is calculated
and the divergence theorem is applied to volume V enclosed by S, the result is:

I(t) = −
∮

S
j · dS = −

∫

V
div j dV . (4.6)

The negative sign appears because dS is outward oriented, and we want to consider
positive currentwhen jmoves into the volume. Ifwe take into account that I represents
the rate at which the charge is transported into V , the result also is,

I = dq

dt
= d

dt

∫

V
ρdV =

∫

V

∂ρ

∂t
dV . (4.7)

Since the volume is fixed, the derivative operates just over ρ and it can be introduced
in the integral as a partial derivative. If (4.6) and (4.7) are equated,

∫

V

(
∂ρ

∂t
+ div j

)
dV = 0 . (4.8)

But V is arbitrary, and the only way that previous expression can hold for an arbitrary
volume is

div j + ∂ρ

∂t
= 0 , (4.9)

to express the equation of continuity.

4.3 Direct Current

Electric current is said to be direct, constant or stationary, if none of themagnitudes
previously seen are time-dependent: v = v(r), j = j(r). Therefore, current I , given
by the flux of j, is also time independent. For direct current, ∂ρ/∂t = 0, and the
equation of continuity (4.9) states that

div j = 0 . (4.10)

This means that the current density is a solenoidal vector field. Its current lines have
neither sources nor sinks. Since these lines must be inside a finite volume in space,
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Fig. 4.2 Scheme for the
equation of continuity
deduction in a metal
straight wire

j

j1v1 n1

S1

S2

j2v2 n2

they have to be closed curves. The volume integral of this equation, if the divergence
theorem is applied, is ∮

S
j · dS = 0 . (4.11)

The equation of continuity for direct current is usually particularized to current
in a conducting straight wire. Let’s consider a wire segment between two straight
sections, with areas S1 and S2, as shown in Fig. 4.2. j can be assumed to be parallel
to the wire and uniform on every section. Outward current from the volume defined
by these two sections and lateral surface is, from (4.11)

0 =
∮

S
j · dS =

∫

S1

j · dS +
∫

S2

j · dS +
∫

Slat

j · dS
= −j1S1 + j2S2 = −e(n2v2S2 − n1v1S1) ,

The third integral is null, due to the fact that dS is perpendicular to j (wire tangent)
on its lateral surface. If it is solved, we obtain

j1S1 = j2S2 , (4.12)

the equation of continuity for a wire with direct current, which expresses current
equality on every section from the wire. If the electron density is the same on every
section, n1 = n2, the result is

v1S1 = v2S2 , (4.13)

which states that electron velocity on every section is inversely proportional to its
cross-section.

4.4 Ohm’s Law

It can be analytically justified, and it has been experimentally verified that, on almost
every conducting material, including metals, electrolytes and ionized gases, when
temperature is constant, current is proportional to the electric field, with same direc-
tion and sense, and null when it does not exist:
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j = σE . (4.14)

This relation is known asOhm’s law, and conductors that follow this law are called
ohmic conductors or isotropic lineal conductors.2

The constant of proportionality σ > 0 that appears in Ohm’s law is called the
conductivity, and its inverse

ρ = 1

σ
, (4.15)

the resistivity. From (4.14), it is obtained that resistivity is measured in VA−1m. An
ohm (�) is defined as a VA−1. Therefore, resistivity is measured in �m. From (4.15)
it is obtained that conductivity is measured in�−1m−1.�−1 is known as siemens (S).

Sometimes, atoms ormolecule dispositionmay lead to dependence between resis-
tivity and the directionwhich an electric field is applied on.Thesematerials are known
as anisotropic. For these, Ohm’s law (4.14) is expressed as j = gE, where g is a sec-
ond order tensor, represented as a 3 × 3 matrix. For other materials, resistivity and
conductivity depend not only on material or temperature, but also on the applied
field. These materials are non linear, and Ohm’s law (4.14) should be replaced by
j = g(E)E.

Conductivity and resistivity values are specific for each material, but change sig-
nificantly with temperature. This variation is usually empirically expressed by

ρ(T) = ρ0[1 + α(T − T0) + β(T − T0)
2 + · · · ] , (4.16)

where T is temperature and ρ0 resistivity to T = T0. α is known as the temperature
coefficient3 and is measured with K−1.

4.5 Ohm’s Law in a Conducting Straight Wire. Resistance

Let’s now consider an ohmic conductor, straight wire-shaped, with section S and
resistivity ρ not necessarily uniform along it. Two sections of the wire are maintained
at a constant potential difference V1 − V2 (Fig. 4.3). There will be a static electric
field, with decreasing potential direction, and due to Ohm’s law, a direct current in
the same direction. According to (4.14), the electric field and the current density j
can be supposed approximately perpendicular and uniform on each straight section
of the wire.

2Field E which appears on the expression is force per unit time, independent from its origin,
electrostatic or not, and is represented sometimes as Eef . If the unique origin is electrostatic, as
occurs with conductors, it will be necessary to maintain the conductor out of the balance by using
right devices (generators), so the field is not null.
3See Appendix for a table with resistivity values and temperature coefficients for commonmaterials
[34, 66].
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Fig. 4.3 Vectors for Ohm’s
law application to a
conducting straight wire

j
E

V1

V2

S,
1

2

dS

dl

Potential difference between sections 1 and 2 (Fig. 4.3) can be written, using
Ohm’s law (4.14) and (4.15), as

V1 − V2 =
∫ 2

1
E · dl =

∫ 2

1
ρj · dl =

∫ 2

1
ρ
dl

S
jS , (4.17)

where dl and j have the same direction. The product jS is the current I on every wire
section (from (4.4), if dS is taken with dl direction), with constant value due to direct
current. Therefore it can be removed from the integral, and the result is

V1 − V2 = I
∫ 2

1
ρ
dl

S
. (4.18)

The resistance of the wire is defined as

R =
∫ 2

1
ρ
dl

S
. (4.19)

The equation may be rewritten

V1 − V2 = RI , (4.20)

which is the familiar form of Ohm’s law. This law states that the potential differ-
ence (voltage drop) between two points in a conducting wire is proportional to the
current that goes through it. In Sect. 4.11 it will be shown that (4.14) implies (4.20),
independently of the shape of the conductor.

Resistance R ≥ 0 is the proportionality constant, and is a characteristic property
of each conductor that depends on its material resistivity (and from temperature), on
its shape, and dimensions. If, as is common, resistance and section do not vary along
the wire, (4.19) becomes

R = ρL

S
, (4.21)

where L is the wire length. Resistance from a uniform wire section increases with
its resistivity and length, and decreases when its cross-sectional area is increased.
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4.6 Power Supplied by Electric Field. Joule’s Law

When conduction charges are accelerated by an electric field, they continually gain
energy from it. This energy is transferred to the bulk of the material by collisions,
increasing the thermal motions of the atoms. If the metal is not thermally isolated,
energy per unit of time P is transferred to the surrounding media as heat. This
phenomenon is called the Joule’s effect.

Work done by an electric field E to move charge qi a distance �li is qiE · (�li).
Power is

pi = lim
�t→0

�wi

�t
= qiE · vi , (4.22)

where vi = �li
�t

is the velocity of the carrier i. Power given to all the carriers in a

volume dV is

dP =
∑

i

pi = E ·
(

∑

i

niqivi

)

dV , (4.23)

ni being the number of carriers per volumen unit. If (4.2) is applied, the result is

dP = E · j dV , (4.24)

or
dP

dV
= E · j , (4.25)

which represents the power density in a direct current. It is a point functionmeasured
inWm−3. For a macroscopic volume V , total electric power given by an electric field
and transformed into heat, is

P =
∫

V
E · j dV , (4.26)

measured in W. Equation (4.26) is known as Joule’s law.
If a wire conductor is considered, (4.26) can be rewritten, if j is taken with the

same direction as dl

P =
∫

L
Edl

∫

S
jdS = (V1 − V2)I , (4.27)

where I is the current in the conductor and V1 − V2 is the potential difference estab-
lished between the conductor ends. If Ohm’s law (4.20) is applied the result is

P = RI2 , (4.28)

a well known equation from elementary circuit theory. The equation represents heat
dissipated in resistance R per time unit.
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4.7 Direct Current Generators

It’s been seen that if we want an electric field to appear and to maintain direct current
in a conducting wire (on grey in Fig. 4.4) it is necessary to maintain a potential
difference V1 > V2 between two of its points. Besides, due to (4.10), j’s vector lines
must be closed, setting up a circuit. But with electric fields,

∮
E · dl = 0, which

implies
∮
j · dl = 0, applying Ohm’s law (4.14). In other words, a pure electrostatic

force cannot make the current circulate in the same direction around a closed path.
It is necessary to apply another type of force (mechanic, chemical, etc.) so, in a part
of the circuit, charge moves in an opposite direction to electrostatic field E. This is
done by an electric generator (also known as voltage source), that allows current
to pass and maintains the electric potential difference, preventing it from reaching
equilibrium. A generator produces non electrostatic fields due to changing magnetic
fields, different concentrations, etc.

Potential difference that applies to an ideal electric generator between its terminals
is called the electromotive force E (or simply the emf) of the generator, and is
measured, therefore, in volts (V). An ideal generator has an extreme (pole) with
higher potential V1 or positive terminal, and another extreme with lower potential V2

or negative terminal. Current exits the generator via the positive terminal.
To understand the physic meaning of emf the scheme in Fig. 4.4 should be

observed. In the generator two electric fields appear: electrostatic field E, due to
electric potential difference between the terminals, and field Ens (non electrostatic
field). The force acting over a charge q is F = q(E + Ens), where Eef = E + Ens is
known as the effective field. The electromotive force (emf) E around a closed path
is defined as the circulation of the effective field along this line.

E =
∮

�

Eef · dl =
∮

�

E · dl +
∮

�

Ens · dl =
∮

�

Ens · dl , (4.29)

which depends solely on the non electrostatic field circulation, since circulation of
the electrostatic field along a closed path is null. If the only source of non electrostatic
field included in the closed path is the generator, hence that between its terminals
there will only exist Ens, so

E =
∫

gen
Ens · dl , (4.30)

Fig. 4.4 Scheme of a
generator’s behaviour
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which is the electromotive force (emf) of the source. The integral is taken around
the circuit from one terminal of the source to the other, with a positive value if we
circulate with the same direction as the non electrostatic field (and therefore, with the
same direction as the current). It represents the energy per unit of circulating charge
dq that the generator should supply to move the charge against the electrostatic field,
carrying this charge from the negative terminal to the positive one (from 2 to 1 in
Fig. 4.4), that is,

E ≡ dWG

dq
. (4.31)

An ideal generator is the one where all the work dWG = dqE is expended to increase
the energy of charge dq. As dq goes from point 2, with lower potential V2, to 1, with
higher potential V1, this increase is dq(V1 − V2). So, for an ideal generator, we have

dq E = dq(V1 − V2) ⇒ E = (V1 − V2) . (4.32)

In real generators, from all the developed work dqE , a part is lost by the generator
itself and the rest is used to increase the energy of charge dqwhen it passes through the
generator. The simplest supposition is that losses per unit of charge depend linearly
on current. So, for a real generator, we have

dq E = dq(V1 − V2) + losses ⇒ V1 − V2 = E − rI , (4.33)

where coefficient r > 0 is the internal resistance of the generator, measured in
ohms (�). It should be observed that the voltage drop in terminals of a real generator
where current circulates is always lower than its emf. Emf is the same as the elec-
tric potential difference between the generator terminals when no current circulates
through it (due, for example, to a circuit where the switch is open). It is also called
the open-circuit voltage. Power supplied to the carriers (also known as the power at
the generator terminals) is obtained applying (4.27) and (4.33),

Psup = (V1 − V2)I = EI − rI2 . (4.34)

EI represents actual power produced by the generator, considering zero losses (or
power generated by the generator):

Pgen = dq

dt
E = EI = (V1 − V2)I + rI2 . (4.35)

Power supplied by the generator is always lower than power generated by it in the
quantity rI2, which represents the part of the power generated that is dissipated by
the generator itself, as heat (losses caused by Joule’s effect).
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4.8 Direct Current Motors

Besides generators and electric resistances, elements generically known as motors
are usually included in circuits. They take electric energy from the circuit to convert
into other types of energy.

A motor has an extreme or positive terminal where potential is higher (V3 in
Fig. 4.5), and another extreme or negative terminal with lower potential (V4 on the
figure). Current enters the motor via the positive terminal. It is characterized by its
counter-electromotive force E (cemf), which is the energy that the motor converts
(on mechanical energy, chemical energy, etc.) per unit of circulating charge.With the
same reasoning used in the previous section, it is observed that cemf coincides with
the circulation of non electrostatic field inside the motor. It is a positive magnitude
that is measured in volts (V).

When a charge dq circulates through the motor, from 3 to 4, it loses an energy
dq(V3 − V4). An ideal motor converts this energy integrally: dWtransf = dqE . So, for
an ideal motor, we have

dq(V3 − V4) = dqE ⇒ V3 − V4 = E , (4.36)

this means that the electric potential difference between terminals 3 and 4 from an
ideal motor is the same as the counter-electromotive force. In real motors, from all
the energy dq(V3 − V4) that reaches the motor, a part of it is converted by it, and the
rest is lost in it; this is

dq(V3 − V4) = dqE + losses ⇒ V3 − V4 = E + rI , (4.37)

where it has been supposed that losses depend linearly on the current, as it occurs
in most motors. Proportionality constant r > 0 is known as the internal resistance
of the motor and is measured in ohms (�). The voltage drop in terminals of a real
motor is, therefore, higher than its electromotive force.

From (4.36) it is deduced that energy converted by amotor per unit of time (power)
is

Fig. 4.5 Motor’s behavior
scheme
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Pconv = dq

dt
E = EI , (4.38)

and applying (4.37), the result is

Pconv = EI = (V3 − V4)I − rI2 . (4.39)

The term (V3 − V4)I is power consumed (absorbed) or power extracted from the
circuit (also known as power at the motor terminals),

Pcons = (V3 − V4)I = EI + rI2 (4.40)

The power converted by a motor is always rI2 less than power extracted from the
circuit. rI2 represents power dissipated by the motor itself (losses because of Joule’s
effect).

4.9 Ohm’s Law in Circuits

A simple direct current circuit can consist of one or several generators, with elec-
tromotive forces Ei and internal resistances ri, of one or several motors, with
counter-electromotive forces E ′

i and internal resistance r
′
i , joined by conductors with

resistance Ri.
Let’s consider an example of a simple circuit (Fig. 4.6), that consists of a gener-

ator G1 and two motors M1 and M2 joined by conductor wires with resistance Ri,
represented by . The symbol used to represent polarized devices (generators and
motors) is , where the longest stroke represents the positive pole and the shortest the
negative one. It should be observed that the current exits the generators and enters

Fig. 4.6 Example of simple
circuit
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Fig. 4.7 Sign criteria to apply Ohm’s law

the motors via the positive pole.4 Let’s calculate the circulation of electrostatic field
along all the closed circuit (we know its value is null). This circulation will be the
sum of voltage drops between the different marked point on the figure, if we start and
finish in the same point (A, for example). From (4.20), (4.33) and (4.37) the result is

∑

i

Ei = I
∑

i

Ri , (4.41)

which is known as Ohm’s law for a circuit.
∑

i Ri includes every resistance in the
circuit: conductor ones and internal ones in generators and motors.

∑
i Ei includes all

emf and cemf, with positive sign in the generator’s case and a negative one in motors.
If the obtained value for current that circulates through the circuit were negative, it
would mean that motors couldn’t work with that cemf in the given circuit.5

It should be observed, as it was previously said when Ohm’s law was deduced,
that assigned direction to dS (perpendicular to the conductor’s cross section used to
calculate I), should be the same as the one that the circulation of electric field has
(marked by dl), so (4.20), (4.33) and (4.37) are right. Current, electromotive force
and counter-electromotive force signs are a consequence of scalar product sign that
appears in its definitions. Bearing in mind that the direction coincidence between dl
and dS, it is convenient to emphasize the sign criteria for E and for I only depend on
dl, as it can be observed in Fig. 4.7.

If when circulating we first go through the negative pole (Fig. 4.7a), E is positive,
because according to expressionE = ∮

�
Ens · dl, directions ofEns anddl are the same.

Current I is positive when we circulate with the same current direction because j and
dl (or j and dS in the expression I = ∫

j · dS) have the same direction (Fig. 4.7c).
To balance the energy it is sufficient to multiply the terms of the (4.41) by current

I , separating on different sides generators’ and motors’ power, and the result is

∑

i

EiI =
∑

i

E ′
i I +

∑

i

RiI
2 . (4.42)

4In practice somedevices, knownas reversible ones, canworkboth as generators ormotors (releasing
or absorbing power). The way to know their working mode is analyzing the direction of the current
when going through them.
5In fact, motor or motors could work with a lower regime, with a cemf value lower than the nominal
one.
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This equation expresses the energy conservation principle in a direct current circuit.
Therefore, generated energy per unit time is used in converting energy in the motors
and in dissipating energy as heat.

If all this is applied to a circuit portion (branch) in Fig. 4.6, the result is in what is
usually known as Ohm’s law for a branch:

VA − VB +
∑

i

Ei =
∑

i

RiI , (4.43)

with sign criteria previously mentioned for I and Ei.6
If both sides in (4.43) are multiplied by current I and we rearrange them, the

energy balance for a branch is:

(VB − VA)I =
∑

i

EiI −
∑

i

E ′
i I −

∑

i

RiI
2 , (4.44)

which shows that energy given by a branch to the rest of the circuit
(if (VB − VA)I > 0) or absorbed from it (if (VB − VA)I < 0), is the difference
between the one generated by generators in the branch and the one consumed by
its resistance and motors.

4.10 Direct Current Networks

It has been previously stated that current that circulates through each element in a
circuit is the same, because elements are connected one after the other. However, cur-
rent is not necessarily the same because several conductors can be joined at any point
of the circuit. They form a conductor network where all the other studied devices
are included (generators and motors). The point where two or more conductors are
linked is known as a node. Each circuit portion between two consecutive nodes is
known as a branch, and every closed path defined in the network, without going
through the same branch twice, is known as a mesh (or loop7).

4.10.1 Kirchhoff’s Circuit Laws

In simple circuits, Ohm’s law (4.41) allows us to determine a circulating current if
the device characteristics are known (resistance, electromotive forces and counter-
electromotive ones). If we have a conductor network, the basic problem is: given the

6For this case, the equation is as follows: VA − VB + E1 − E ′
1 = (r1 + r′

1 + R1)I .
7Strictly speaking a mesh is a loop in a planar circuit. Planar circuits are circuits that can be drawn
on a plane surface with no wires crossing each other.
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resistance and emf of each circuit element, find the current in each of these elements.
To solve this problem, nodes and branches are firstly numbered and then a sense is
assigned to the current on each branch, due to the fact that at this time it is not that
easy to determine the sense or to know which device works as a generator or as a
motor (if we have reversible ones). Let’s call Ii the current by branch i and Ri the
total resistance in the branch, including internal generators and motors. To solve the
problem, two rules known as Kirchhoff’s circuit laws are applied:

1. (Kirchhoff’s current law (KCL)). The algebraic sum of the currents flowing
towards a node is zero, ∑

i

Ii = 0 . (4.45)

2. (Kirchhoff’s voltage law (KVL)). The algebraic sum of the electric potential dif-
ferences around any closed path is zero,

∑

i

�Vi = 0 .

If we bear expression (4.43) in mind for each branch in the mesh, the result is
�Vi = RiIi − ∑

i Ei, where
∑

i Ei is the summed emfs,with its sign, frombranch i.
Therefore it can be written that in a mesh, the algebraic sum of electromotive
forces is equal to the algebraic sum of the voltage drop in resistances. That is,

∑

i

Ei =
∑

i

RiIi . (4.46)

KCL is an immediate consequence of the equation of continuity for direct current
(4.10), div j = 0 , which implies that there are neither sources nor sinks of direct
current. If a closed surface, which includes the node, is taken and considering that
the equation is integrated for the closed volume, the result is that the total flux
through the surface is null. This means that the algebraic sum of all currents leaving
and entering the given node is also null. The number of independent equations that
can be obtained from the first law is the same as the number of nodes minus one.

KVL is an immediate consequence of the fact that the electric field is conserva-
tive, determined by the gradient of the potential. Therefore, its circulation along a
closed path is null. If we bear in mind the equations previously obtained with KCL,
the application of KVL allows us to obtain the necessary amount of independent
equations to reach the number of branches (and therefore, of unknown values) in the
network. In other words, the number of equations is the number of branches minus
the number of nodes plus one. Bear in mind that when selecting meshes to complete
the number of equations, every branchmust be picked up at least once. Sign criteria is
the same as the one indicated in Fig. 4.7. If the numerical solution of these equations
yields a negative value for a particular current, the correct sense of this current is
opposite to that assumed.



4.10 Direct Current Networks 179

4.10.2 Mesh Analysis

If the number of conductors in a network is large, the number of equations resulting
from Kirchhoff’s laws will be so large that solving the problem becomes a cumber-
some task. The mesh analysis (also known as mesh current method) is used to solve
planar circuits and to find the currents (and indirectly the voltages) at any place in the
circuit. By applying this method fewer equations are needed to solve the problem.

This method is based on supposing that one continuous current, with current
ij, is flowing in each mesh j of a circuit. These currents are called mesh currents.
The current in each element of the circuit is the algebraic sum of all mesh currents
flowing through that element. The number of meshes to consider is the same as the
one obtained if KVL is applied.

To solve an electric circuit problem by means of mesh analysis, we select a set of
meshes such that at least one mesh passes through each branch. One mesh current is
assigned to each mesh. The direction chosen for each such current is arbitrary. KVL
is applied around each mesh, applying the usual sign criteria (Fig. 4.7): positive sign
is assigned to mesh current ij when we circulate with the same current direction, and
negative sign if we circulate in the opposite direction. Then, N equations (as many
as meshes) are obtained,

Ei =
N∑

j=1

Rijij . (4.47)

The NxN resistances matrix Rij, which includes generator and motor internal resis-
tances, is a symmetric matrix; an element Rii in the main diagonal is the sum of all
the resistances on mesh i; an element Rij, with i �= j, is the sum of the resistances
that have in common meshes i and j, with a negative sign if circulating directions are
opposite.8 Ei and ij are column vectors. Ei represents the sum of electromotive and
counter-electromotive forces in mesh i, applying the usual sign criteria (Fig. 4.7).
Mesh currents ij, always with a positive sign, are the unknown values to obtain. Cur-
rents Ii through each branch are obtained as the algebraic sum of all mesh currents
through this branch.

4.11 Passive Network Equivalence

Two-terminal networks are called terminally equivalent if the same current flows
into both networks when the potential difference between their terminals (or terminal
voltages) is equal, and/or if the same electric potential difference appears between
their terminals when identical currents are forced into both networks.

Resistance is a property of amaterial object and it depends on both the nature of the
material fromwhich the object is composed and on its geometry. A conducting object

8If the direction chosen for each mesh current is the same in all meshes, this sign is always negative.
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Fig. 4.8 Passive network
equivalence

I I

A B

I I

A B

Re

of convenient shape, primarily characterized by its resistance, is called a resistor. It
is known as a passive network (or resistance network) in direct current to a network
just formed by resistors.

Let’s consider a randompassive network (Fig. 4.8). Furthermore, let’s suppose that
when an electric potential difference VA − VB between two of its points is established,
a certain current I enters by point A, and by point B it leaves the same one. It is called
the equivalent resistance of the passive network between two points A and B to a
resistance Re that when the same potential difference VA − VB is established between
these two points, the same current I flows.

4.11.1 Resistances in Series, Parallel, Triangle
and Star Associations

N resistors connected as shown in Fig. 4.9a are said to be connected in series. Current
is the same in all of them, but the potential difference across each resistor is generally
different. If Ohm’s law (4.20) is applied to the potential difference between the
terminals of the equivalent resistance Re (Fig. 4.9b), VA − VB = ReI . If this value is
compared to the one obtained with all the resistances VA − VB = VA − VC + · · · +
VD − VB = R1I + · · · + RnI , the result is that the equivalent resistance Re for N
resistances Ri in series verifies

Re =
N∑

i=1

Ri , (4.48)

which is larger than any of individual resistance.
N resistors connected as shown in Fig. 4.10a are said to be connected in parallel.

The potential difference across each resistor is the same, but generally each one with
a different current. If Ohm’s law (4.20) is applied to determine the current I that
goes through an equivalent resistance (Fig. 4.10b), I = (VA − VB)/Re. If we do the

I

A B

I

A B

Re
R1 R2 Rn

C D

(a) (b)

Fig. 4.9 a Resistors connected in series and b their equivalent resistance
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R1

Rn

I1
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R2I2

(a) (b)

Fig. 4.10 a Resistors connected in parallel and b their equivalent resistance
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A
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O
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Fig. 4.11 a Triangle and b star associations

same for every current Ii on every branch, Ii = (VA − VB)/Ri; if these currents Ii
are summed, this addition is equal to current I . Therefore equivalent resistance Re

between points A and B for N parallel resistances Ri verifies

1

Re
=

N∑

i=1

1

Ri
, (4.49)

which is smaller than any of the individual resistances.
Figure4.11a shows another way of connecting resistances, and it is known as a

triangle association. In this case there’s not an equivalent resistance to the three of
them, but another one called a star association does (Fig. 4.11b). Both associations
will be equivalent, if the potential differences between its points A, B and C are the
same the currents that go through the other circuit branches are the same. Every
resistance value in the star association can be determined from the resistances of the
associated triangle association by the Kennelly’s theorem

R′
A = RABRAC

RAB + RAC + RBC
, (4.50)

R′
B = RABRBC

RAB + RAC + RBC
, (4.51)

R′
C = RACRBC

RAB + RAC + RBC
. (4.52)
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Practically every resistance in the star is the product of resistances that converge on
each node, divided by the sum of resistances in the triangle association.

By solving the system of equations (4.50)–(4.52), each resistance in the triangle
association can be written in terms of the resistances of the star association:

RBC = R′
AR

′
B + R′

AR
′
C + R′

BR
′
C

R′
A

, (4.53)

RAC = R′
AR

′
B + R′

AR
′
C + R′

BR
′
C

R′
B

, (4.54)

RAB = R′
AR

′
B + R′

AR
′
C + R′

BR
′
C

R′
C

. (4.55)

Every passive network can be easily reduced to an equivalent resistance by apply-
ing previous equivalences.

4.11.2 Resistance in a Conductor with Any Shape

Previous results can be applied to obtain a non linear conductor’s equivalent resis-
tance. So let’s consider the conductor block with constant thickness (parallelepiped)
in Fig. 4.12. As it was supposed in (4.21) where current entered perpendicular to
the wire’s section, here it can be also considered to enter perpendicularly, through
the shaded left face and to leave it perpendicularly through the right one, parallel
to the rest of the block faces. This way we could consider a problem similar to the
wire. The boundary conditions are therefore that the block has two equipotential
surfaces (the shaded faces), perpendicular to current, while the rest of the faces are
impermeable, and through them no current passes. So (4.21) can be equally applied,
if S is the shaded section area and L the block’s length (Fig. 4.12).

If we want to apply all this to any conductor shape, the block in Fig. 4.12 can be
divided in both ways as shown in Fig. 4.13. Figure4.13a shows the block shown as
a set of conductors in parallel (they are usually known as tubes of current), since
extremes in contact with shaded faces have the same potential and are separated by
ideal insulating sheets (light grey in figure). Figure4.13b shows the block as a set of
conductors in series (equipotential slices), all of them traversed by the same current
and with separations of infinite conductivity (dark grey in figure).

Fig. 4.12 Conducting block L

S
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Fig. 4.13 a Tubes of
current. b Equipotential
slices

L

S

(a) L

S

(b)

Equivalent resistance from a block formed by n tubes of current is obtained by
applying (4.49)

1

Re
=

n∑

i=1

1

Rti
, (4.56)

where Rti is every tube resistance. Since there are n tubes, each straight section is
Si = S/n, the same for all of them, and the result for Rti (4.21):

Rti = ρL

Si
= nρL

S
= Rt , (4.57)

And then (4.56) results
1

Re
= n

Rt
. (4.58)

Equivalent resistance from a block formed by m equipotential slices is obtained
by applying (4.48)

Re =
m∑

i=1

Rsi , (4.59)

where Rsi is the resistance of each of the slices. Since there are m slices, the length
of each one is Li = L/m, the same for all of them, and the result is for Rsi:

Rsi = ρLi
S

= ρL

mS
= Rs , (4.60)

with (4.59) as
Re = mRs . (4.61)

It is obvious that nothing is earned by the subdivision of a parallelepiped into
tubes and slides. The power of this method becomes apparent only if the shape of the
conductor is more complicated. Previous expressions allow us to separate a block
in any form in different lengths and sections of tubes and slices, so its equivalent
resistance can be obtained. Lengths and sections from slices and tubes can be as
small as wanted, so they can be adjusted appropriately to the form of the considered
block.
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Fig. 4.14 Equivalent active
networks
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Fig. 4.15 Thévenin
equivalent circuit
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Active network

e

Fig. 4.16 Norton equivalent
circuit

A B

Re
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Active network

4.12 Thévenin’s and Norton’s Theorems

We define an active network as a network with a direct current that which is formed
by resistances, generators and motors. A passive network is obtained by removing
generators and motors and substituting them solely with their internal resistances.
Two active networks (Fig. 4.14) are equivalent when having equal resistances R
between their terminals, the current I that circulates through them is the same for
both networks.

Thévenin’s theorem: A circuit between two points A and Bwhich has an electric
potential difference VA − VB and an equivalent passive resistance Re between these
points is equal to an ideal generator with emf Ee = VA − VB and a series resistance
Re (Fig. 4.15).

Norton’s theorem: A circuit between two points A and B which has an electric
potential difference VA − VB and an equivalent passive resistance Re between these
points is equal to an ideal current source9 with current Ie = (VA − VB)/Re and a
parallel resistance Re (Fig. 4.16).

To explain the previous theorems, let’s consider with subscripts T all values in the
Thévenin equivalent circuit and with subscripts N all values in the Norton equivalent
circuit. If a resistor of value R = ∞ (an open-circuit) is connected between terminals
A and B (Fig. 4.14) and we measure the potential difference (the voltage) between
A and B, the open-circuit voltage Voc is determined. In the Thévenin equivalent
circuit, Fig. 4.15, VA − VB = Voc = ET . In the Norton equivalent circuit, Fig. 4.16,
VA − VB = Voc = INRN . Thus,

9A current source (ideal) is a device that supplies constant current, regardless of what is connected
to its terminals. It is represented by .
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Voc = ET = INRN .

If the value of external resistance in Fig. 4.14 is changed to R = 0, (a short-circuit),
the current I that flows out of the network is the short-circuit current Isc. In Fig. 4.15,
Isc = ET/RT . In Fig. 4.16, Isc = IN . Thus,

IN = ET
RT

,

and therefore
RT = RN .

It should be noted that the value of RT (or RN ) can be observed from the terminals if
and only if the internal voltage source in the Thévenin circuit (or the current source in
the Norton circuit) is set to zero. In other words, its value is the equivalent resistance
Re of the passive network.

Summarizing,

• The voltage source in the Thévenin equivalent circuit is the open-circuit voltage.
• The current source in the Norton equivalent circuit is the short-circuit current.
• The series resistor in the Thévenin equivalent is identical to the parallel resistor in
the Norton equivalent (RT = RN ), and its value is the equivalent resistance Re of
the passive network.

• The previous values are interrelated by Ohm’s law: ET = INRT .

Solved Problems

Problems A

4.1 Let’s consider two cylindrical threads with length 4m and radius 4mm. The
first thread is made of tungsten (the first half) and aluminum (the other half).
The other thread is made by surrounding a 2mm radius tungsten cylinder with
a cylindrical aluminum layer, also with 2mm thickness. Each thread is sub-
jected to a potential difference between their extremes of 1.5V. Find the current
that goes through each line. Conductivities: tungsten 1.81 × 107 �−1m−1; alu-
minum 3.77 × 107 �−1m−1.

Solution
The first of the wires can be considered as a resistance R1 resulting from joining
two resistors in series, one with resistance R11 constituted by a 2m length and 4mm
radius tungstenwire, and the other onewith resistanceR12 constituted by a 2m length
and 4mm radius aluminumwire. Thread and its equivalence are shown in Fig. 4.17a.

The second wire can be considered as a resistance R2 resulting from joining two
parallel resistors, one with resistanceR21 constituted by a 4m length and 2mm radius
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R1 R2

R11 R12

R21

R22

(a) (b)

Fig. 4.17 Cylindrical wires: a series tungsten (dark grey) and aluminum (light grey) resistor;
b parallel tungsten and aluminum resistor

tungsten wire, and the other one with resistanceR22 constituted by a 4m length, inner
radius 2mm and outer one 4mm, aluminum wire. Thread and its equivalence are
shown in Fig. 4.17b.

If we bear in mind that conductivity and section do not vary for every resistor,
each one’s value can be obtained by applying (4.21),

Rij = ρjLij
Sij

.

Resistivities ρj can be obtained from (4.15)

ρj = 1

σj
,

where σj are conductivity data given for the problem. So, for tungsten,

ρ1 = 1

σ1
= 1

1.81 × 107
= 5.52 × 10−8 �m .

For aluminum,

ρ2 = 1

σ2
= 1

3.77 × 107
= 2.65 × 10−8 �m .

with these values all resistances can be obtained:

R11 = ρ1L11
S11

= ρ1L11
πr2

= 5.52 × 10−8 · 2
π(4 × 10−3)2

= 2.20m�,

R12 = ρ2L12
S12

= ρ2L12
πr2

= 2.65 × 10−8 · 2
π(4 × 10−3)2

= 1.05m�,

R21 = ρ1L21
S21

= ρ1L21
πr2int

= 5.52 × 10−8 · 4
π(2 × 10−3)2

= 17.57m�,
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R22 = ρ2L22
S22

= ρ2L22
π[r2ext − r2int]

= 2.65 × 10−8 · 4
π[(4 × 10−3)2 − (2 × 10−3)2] = 2.81m� .

For the first of the wires, since resistors are in series, the result is,

R1 = R11 + R12 = 2.20 + 1.05 = 3.25m� .

For the second one, since resistors are in parallel, the result is,

1

R2
= 1

R21
+ 1

R22
= 1

17.57
+ 1

2.81
= 0.41 ⇒ R2 = 2.42m� .

Current is obtained by applying Ohm’s law (4.20), V1 − V2 = RI ⇒ I = (V1 −
V2)/R , for every resistance, where 1 and 2 are each of the studied wire extremes.
For the first wire,

I1 = (V1 − V2)/R1 = 1.5

3.25 × 10−3
= 461.5A .

For the second one,

I2 = (V1 − V2)/R2 = 1.5

2.42 × 10−3
= 619.8A .

4.2 If any of three equal bulbs are connected to a 220V voltage source, it absorbs
100W. How should these three bulbs be connected, so that the power dissipated
by the three bulbs is the highest? (It is assumed that temperature variation over
bulb’s resistance value is negligible.)

Solution

Power dissipated by each bulb individually allows us to determine its resistance.
This is the only parameter that does not depend on how we connect them (with the
condition of discounting temperature’s effect). Due to this fact, (4.28) is used, and if
in it we replace (4.20) (Ohm’s law), the result is

P = RI2 = V 2/R ⇒ R1 = R2 = R3 = R = V 2/P = 2202

100
= 484� .

The four different interconnections of bulbs linked to a 220V source are shown
in Fig. 4.18. To determine the power dissipated by them, the current through each
bulb should be calculated for every case.

In series interconnection (Fig. 4.18a), the current, since it is direct, is the same on
the whole circuit,

V = ReI ⇒ I = V

Re
= V

R1 + R2 + R3
= 220

3 · 484 = 0.15A .
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Fig. 4.18 Three equal bulbs interconnection. a Three of them in series. b 1 in series with 2 and
3 in parallel. c 1 and 2 in series with 3 in parallel. d Three of them in parallel

Note that since resistors are in series, equivalent resistance is the sumof the individual
resistances.

Power dissipated by each bulb is obtained from (4.28) (Joule’s effect losses),

P1 = P2 = P3 = RI2 = 484 · 0.152 = 11.11W .

Total power is the sum of the powers dissipated by each bulb,

P = P1 + P2 + P3 = 33.33W .

The same result can be obtained by using the equivalence resistance:

P = V 2

Re
= 2202

3 · 484 = 33.33W .

In Fig. 4.18b interconnection, the current I through the circuit (and, therefore,
through the bulb 1) is firstly determined. To do this, equivalent resistance from 2 and
3 is calculated,

1

R23
= 1

R2
+ 1

R3
= 2

R
⇒ R23 = R

2
,

in series with bulb 1 resistance. The current through the circuthe result is:

I = V

Re
= V

R1 + R23
= V

R + R/2
= 220

1.5 · 484 = 0.30A .

To obtain the current through bulbs 2 and 3, KCL is applied. Since bulbs are equal,
the current through both is the same:

I = I2 + I3 = 2I2 ⇒ I2 = I3 = I/2 = 0.15A .

So power dissipated by each bulb is:

P1 = RI2 = 484 · 0.302 = 44.44W P2 = P3 = RI22 = RI23 = 484 · 0.152 = 11.11W .
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Total power, as a sum of individual powers, is

P = P1 + P2 + P3 = 66.66W .

The same result can be obtained by using the equivalence resistance:

P = V 2

Re
= 2202

1.5 · 484 = 66.67W .

For interconnection in Fig. 4.18c, we can obtain the current through the bulbs by
applying Ohm’s law (4.20) to every branch, due to the fact that each one has the same
potential difference of 220V:

V = (R1 + R2)I12 = R3I3 ⇒ I12 = V

R1 + R2
= 220

2R
= 0.23A ,

I3 = V

R3
= 220

R
= 0.45A .

Power dissipated by each bulb is:

P1 = P2 = RI212 = 484 · 0.232 = 25W P3 = RI23 = 484 · 0.452 = 100W .

Total power, which is the sum of the three individual powers, is

P = P1 + P2 + P3 = 150W .

The same result can be obtained by using the equivalence resistance

1

Re
= 1

R1 + R2
+ 1

R3
= 3

2R
⇒ Re = 2R

3
= 322.67� .

Power dissipated is

P = V 2

Re
= 2202

322.67
= 150W .

In parallel interconnection (Fig. 4.18d), we can obtain the current through the
bulbs by applying Ohm’s law to every branch, since each one has the same potential
difference of 220V:

V = R1I1 = R2I2 = R3I3 ⇒ I1 = I2 = I3 = V

R
= 220

484
= 0.45A .

Power dissipated by each bulb is:

P1 = P2 = P3 = RI21 = 484 · 0.452 = 100W ,
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and total power
P = P1 + P2 + P3 = 300W .

The same result can be obtained by using the equivalence resistance

1

Re
= 1

R1
+ 1

R2
+ 1

R3
= 3

R
⇒ Re = R

3
= 161.33� .

Power dissipated is

P = V 2

Re
= 2202

161.33
= 300W .

From these results it can be observed how the three bulbs in parallel interconnec-
tion is the one that dissipates the highest power value: the voltage source is the same
in all the connections but the equivalent resistance has the lowest value in parallel
interconnection.

4.3 A generator with emf E supplies current to a motor with cemf E ′ = 100V. Both
of them have the same internal resistance r. Determine the generator’s emf if the
power converted by the motor into mechanical power is half the power supplied
to the network by the generator.

Solution

Figure4.19 represents the circuit, with a generator of emf E that supplies current
to a motor with cemf E ′. Direct current circulates following the indicated sense: it
exits the generator and enters the motor via the positive pole. Let’s apply Ohm’s law
(4.20) to determine the current that goes through the circuit:

E − E ′ = 2rI ⇒ I = E − E ′

2r
.

If we bear in mind (4.34) and (4.39), which give us power supplied by the generator,
and the one converted by the motor, it is obtained

E ′I = 0.5
(EI − rI2

) ⇒ E − rI = 2E ′ .

Fig. 4.19 Direct current
generator supplying current
to a motor

I

)

r)
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Substituting the current’s I value, emf is obtained:

E − r
E − E ′

2r
= 2E ′ ⇒ E = 3E ′ ⇒ E = 300V .

4.4 In Fig. 4.20, determine the voltage of point A, the power supplied by generators
to the circuit and total losses due to Joule’s effect.

Solution

At least one generator is needed in a circuit, therefore both devices behave as gen-
erators. Since current exits the generator via its positive pole, the current direction
must be the one indicated in Fig. 4.21.

To calculate voltage in A, potential difference between A and B is calculated,
bearing in mind that, as B is grounded, it is considered to be at zero potential. If
Expression (4.43) is applied, and if we circulate from A to B following the current
direction, the result is:

VA − VB +
∑

i

Ei =
∑

i

RiI ⇒

⇒ VA − VB + 110 = (40 + 5)I ⇒ VA = 45I − 110 .

Note that 110Vemf is introducedwith positive sign, because ifwe circulate following
the mentioned direction we firstly pass through its negative pole. The current I is
positive because the direction of circulation is the same as the one of the current.
Every resistance is taken into account, including internal resistances of the generators
between A and B.

Expression (4.41) (Ohm’s law for a circuit) is applied to determine current I
through the circuit. If we circulate around a closed path following the same direction
of current, the result is:

∑

i

Ei = I
∑

i

Ri ⇒ 220 + 110 = (40 + 5 + 25 + 50 + 5 + 40)I ⇒ I = 2A .

And substituting in voltage’s expression:

Fig. 4.20 Circuit of
Problem 4.4

B

A 40 50

25

220V )

V )
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Fig. 4.21 Circuit of Problem
4.4, with current direction

B

A 40 50

25

220V )

V )

I

VA = 45I − 110 = −20V .

We could check the result by calculating the same potential difference, but this
time from A to B by the opposite direction as the current. The result is

VA − VB − 220 = −(40 + 5 + 50 + 25)I ⇒ VA = 220 − 120I = −20V .

Emf has been introduced with a negative sign because we firstly pass through the
positive pole. I is introduced with a negative sign, because it is opposite to the
direction of circulation. The result is the same as the one obtained before.

To determine the power supplied by generators, Expression (4.34) is applied to
both generators in the network. For the 220V generator:

Psup = EI − rI2 = 220 · 2 − 5 · 22 = 420W .

For the 110V generator:

Psup = EI − rI2 = 110 · 2 − 5 · 22 = 200W .

The losses due to Joule’s effect in the circuit are obtained if (4.28) is applied to
every resistance in the network, including the generators’ internal ones:

P =
∑

i

RiI
2 = (40 + 25 + 50 + 40) · 22 + (5 + 5) · 22 = 620 + 40 = 660W .

Internal resistance losses have been separated from the rest of the ones in the circuit,
so it can be noted that the power supplied by generators is the same as the losses of
the network’s resistances.

4.5 A generator with emf E and internal resistance r, connected to a resistance line
R, is shown in Fig. 4.22. We want to connect to poles a and b a device, with emf
E ′ and internal resistance r′, that is able to work as a generator or as a motor.
Determine in which case (generator or motor) losses in the circuit, due to Joule’s
effect, are the highest.
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Fig. 4.22 Generator and
supplying line of Problem
4.5

Rr)

a b

Solution

Any device connected between a and b results in a current leaving the generator
by its positive pole. Losses due to Joule’s effect in the circuit (power dissipated by
resistances) are given by (4.28):

P = (R + r + r′)I2.

where r′ is the resistance of the connected device. Since resistances are the same no
matter how the element is connected, losses will be higher as the current I increases.

In Fig. 4.23 current enters by the negative pole of the device with emf E ′, that
works as a generator. To determine current I through the circuit, (4.41) (Ohm’s law
for a circuit) is applied, circulating with current direction:

∑

i

Ei = I
∑

i

Ri ⇒ E + E ′ = (R + r + r′)I ,

I = E + E ′

R + r + r′ .

Note that emfs are both positive, because when circulation is done, we pass first
through the negative poles of the devices. Substituting in the previous expression of
power, it is obtained, in this case:

P = (R + r + r′)
( E + E ′

R + r + r′

)2

= (E + E ′)2

R + r + r′ .

In the other case, Fig. 4.24, current enters through the positive pole of the device
with emf E ′, therefore it works as a motor. The new current I is obtained applying
(4.41). If we circulate in the direction of the current, the result is

Fig. 4.23 Circuit of
Problem 4.5, with the device
working as a generator

R
r)

a b

r )' 'I
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Fig. 4.24 Circuit of
Problem 4.5, with the device
working as a motor

R
r)

a b

r )' '
I

∑

i

Ei = I
∑

i

Ri ⇒ E − E ′ = (R + r + r′)I ,

I = E − E ′

R + r + r′ .

Note the negative sign of emf E ′, due to the fact that we firstly pass through its
positive pole. And if we substitute it in previous expression of power, losses in this
case are obtained:

P = (R + r + r′)
( E − E ′

R + r + r′

)2

= (E − E ′)2

R + r + r′ ,

lower than the one previously calculated.
As it can be observed, when the device is connected as a generator, current is

higher, therefore losses due to Joule’s effect are higher.

Problems B

4.6 A generator with emf E and internal resistance r supplies current to a set of two
resistors in parallel, each one with value R. Determine value R, in order to obtain
the maximum power dissipated.

Solution

Figure4.25a represents the circuit’s scheme. The circuit is firstly simplified by obtain-
ing the equivalent resistance of the two parallel resistances (Fig. 4.25b):

1

Re
= 1

R
+ 1

R
= 2

R
⇒ Re = R/2

Power dissipated by resistance Re is obtained from (4.28),

P = I2Re = I2R/2 .

It is necessary to determine the current I through the circuit, which is the same that
flows through resistance Re. If (4.41) is applied (Ohm’s law for a circuit), the result
is:
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Fig. 4.25 a Generator
supplying current to two
resistors in parallel.
b Equivalent circuit

R
I

r)

R
R =R/2e

I

r)
(a) (b)

∑

i

Ei = I
∑

i

Ri ⇒ E = I(r + Re) ⇒ I = E
r + Re

.

Note that in
∑

i Ri, the generator’s internal resistance r and Re = R/2 are included.
If this current value is substituted in the power’s expression, the power dissipated by
resistance R is obtained,

P = E2Re

(r + Re)2
.

This power should be maximum. Therefore the derivative of P in regards to the
variable (in this case Re) is computed and equaled zero:

dP

dRe
= E2(Re + r)2 − 2(Re + r)E2Re

(Re + r)4
= 0 .

Solving this equation,

(Re + r)2 = 2(Re + r)Re ⇒ Re + r = 2Re ,

and then
Re = r ⇒ R = 2r .

is the resistance value.
From the result it might be deduced that we should not use higher resistance to

increase the losses by Joule’s effect (for example, to generate more heat). Ohm’s
law explains it: if the circuit’s resistance increases, current through it decreases. This
affects losses due to Joule’s effect. It must be observed that equivalent resistance of
the network should have the same value as the generator’s internal resistance.

4.7 A direct current line is 1 km long and has a resistance of 0.2�. This line, due to
a bad isolation, has a leakage current to earth ground, so current at the entrance
is 53A and at the end 45A. Voltage at the entrance is 230V, and at the end
220V.Determinewhere the breakdown has occurred and the value of the leakage
resistance to ground.
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Solution

Figure4.26 represents the problem’s line. Resistance Rf represents the leakage resis-
tance to ground at the breakdown point A. If the line is L = 1000m long, point A
splits the line in two stretches A1 and A2 with respective lengths of x and L − x,
where x is the value to be determined. Point O (ground) is at 0 V. Entering voltage,
electric potential difference between point 1 and ground is V1 = 230V. Ending volt-
age, potential difference between point 2 and ground is V2 = 220V. Through the
first stretch, current is I1A = 53A, and through the second one IA2 = 45A. Leakage
current through resistance Rf is easily determined, applying KCL (4.45) at point A:

I1A = IA2 + If ⇒ If = I1A − IA2 = 8A .

To determine resistance on every stretch, we apply Ohm’s law between point 1
and ground (point O), and the result is

V1 − 0 = R1AI1A + Rf If ,

and between point 2 and ground,

V2 − 0 = −RA2IA2 + Rf If ,

because in this case current IA2 direction is opposite to the chosen direction for the
circulation (from point 2 to ground). Total resistance of the line R = 0.2� is the sum
of both resistance R1A and RA2 of both stretches, so RA2 = R − R1A . Substituting into
the second equation,

V2 − 0 = (R1A − R)IA2 + Rf If ,

and substracting both equations, we obtain

V1 − V2 = R1A(I1A − IA2) + RIA2 ⇒ R1A = V1 − V2 − RIA2
I1A − IA2

= 230 − 220 − 0.2 · 45
53 − 45

= 0.125� .

Fig. 4.26 Leakage current
to ground

I1A IA2

RA2

Rf

R1A

If

A1 2
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To calculate length x of stretch 1A, (4.21) (resistance of a wire with constant
resistivity and cross-section) is applied to the resistance of the complete line and to
the one of stretch 1A, whose length x is the unknown value in the problem:

R = ρ
L

S
; R1A = ρ

x

S
,

where ρ is conductor’s resistivity and S the section’s line.
If both expressions are divided, the value of x is obtained

R1A

R
= x

L
⇒ x = L

R1A

R
= 1000

0.125

0.2
= 625m .

So the breakdown is 625m away from the beginning point.
The leakage resistance value can be determined by finding the value in any of

previous expressions where Ohm’s law is applied, and the result is

V1 − 0 = R1AI1A + Rf If ⇒ Rf = V1 − R1AI1A
If

= 230 − 0.125 × 53

8
= 27.9� .

4.8 A generator with emf E and internal resistance r = 0.2� supplies current
through a line with resistance R = 0.4� to a lighting installation. It is consti-
tuted by 10 lamps, each one consuming 550W at a voltage of 220V. Determine:
(a) Equivalent resistance of the lighting installation. (b) Power supplied by the
generator. (c) Line’s efficiency. (d) Generator’s emf.

Solution

Figure4.27 represents the network’s scheme of the problem.
(a) If (4.27) is applied to each lamp, current Ii through each of them can be determined

Pi = (VA − VB)Ii ⇒ 550 = 220Ii ,

Ii = 2.5A ,

which will be the same for all the lamps, since they are equal. The total current
through the circuit is obtained by applying KCL, (4.45),

Fig. 4.27 Direct current
generator supplying a
lighting installation
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I =
∑

i

Ii = 10Ii = 25A .

The circuit equivalent resistance is obtained by applying Ohm’s law (4.20):

VA − VB = ReI ⇒ 220 = 25Re ⇒ Re = 8.8� .

(b) The electric potential difference (voltage drop) at the generator terminals,
(VC − VB), is the sum of voltage drops at the lamps and the voltage drop in the
line. If Ohm’s law is applied:

VC − VB = (VC − VA) + (VA − VB) = 0.4I + 220 = 230V .

The power supplied by the generator is obtained by applying (4.34):

Psup = (VC − VB)I = 230 · 25 = 5750W .

(c) Since the power consumed by each lamp is 550W, the total power consumed by
the installation is

P = 10Pi = 5500W .

Efficiency η of the line is obtained by dividing power consumed by the installation
between power supplied by it:

η = 5500

5750
= 0.96 .

(d) If (4.33) is applied, the generator’s emf can be obtained:

VC − VB = E − rI ⇒ E = 230 + 0.2 · 25 = 235V .

4.9 The potential difference measured by voltmeter V between terminals C and D
(Fig. 4.28), is supplied to motor M and resistance R. Its value is 380V. The
current measured by the ammeter A is 6A. The resistance value is 2 k� and
the motor has a cemf of 300V, and an internal resistance with unknown value.
Determine this resistance and study the power in the branches. (Note: ammeter

Fig. 4.28 Circuit of
Problem 4.9

C D
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and voltmeter are supposed to be ideal: zero resistance for the ammeter and
infinite resistance for the voltmeter.)

Solution

Let’s suppose that current I measured by the ammeter splits in two currents, as
shown in Fig. 4.29. Through the voltmeter no current circulates, because it has infinite
resistance. If Ohm’s law (4.20) is applied to the lower branch, the result is

VC − VD = RI1 ⇒ I1 = VC − VD

R
= 380

2000
= 0.19A .

If KCL (4.45) is applied, current I2 is obtained:

I = I1 + I2 ⇒ I2 = I − I1 = 6 − 0.19 = 5.81A .

If Ohm’s law for a branch (4.43) is applied to the upper branch, the internal
resistance r is obtained:

VC − VD − 300 = rI2 ⇒ r = (VC − VD) − 300

I2
= 380 − 300

5.81
= 13.77� .

Note that the motor’s cemf of 300V is introduced in the expression with negative
sign because if we circulate from C to D we firstly pass through the motor’s positive
pole.

Power converted by the motor is obtained by applying (4.39):

Pconv = EI2 = 300 · 5.81 = 1743W .

Power extracted (or consumed) from the circuit by the motor is obtained by applying
(4.40):

Pcons = (VC − VD)I2 = EI2 + rI22 = 380 · 5.81 = 2207.8W .

Power dissipated by Joule’s effect, in resistance R and in the motor’s internal resis-
tance r, is obtained by applying (4.28):

PJoule = RI21 + rI22 = 2000 · 0.192 + 13.77 · 5.812 = 537W .

Fig. 4.29 Currents of
Problem 4.9
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4.10 In the circuit shown in Fig. 4.30, devices have electromotive forces E1 =
24 V, E2 = 6 V, E3 = 12 V , and internal resistances r = 1�. Calculate: (a)
If switch C is open, the potential difference between A and B. If switch C is
closed, (b.1) the potential difference between A and B; (b.2) total power in each
element.

Solution

(a) When switch C is open, closed paths cannot be found. Therefore, the current is
null through every branch. To determine the potential difference between A and B,
(4.43) (Ohm’s law for a branch) is applied. Circulating from A to B through the lower
branch, we obtain

VA − VB +
∑

i

Ei =
∑

i

RiI ⇒ VA − VB − 12 − 6 = 0 ⇒ VA − VB = 18V .

Emfs are introduced with negative sign, because circulating from A to B, we firstly
go through the positive poles.
(b.1)When switchC is closed (Fig. 4.31), we find a unique closed path in the network,
formed by its external lines. To calculate the potential difference between A and B
using (4.43), we need to determine the currents through the circuit branches. Through
the branch with generator of emf E2 there’s no current, because the branch is open.
To determine the current through the external circuit, we suppose a current direction
(showed in Fig. 4.31), and we apply Ohm’s law for a circuit, (4.41):

∑

i

Ei = I
∑

i

Ri ⇒ 24 − 12 = (8 + 1 + 1 + 20)I ⇒ I = 0.4A ,

including in
∑

i Ri every resistance of the resistors in the external circuit, also includ-
ing generator internal resistances. Circulation has been done counterclockwise, there-
fore current is positive (the same direction as the circulation), and the emf of device
1 has a positive sign (we firstly go through the negative pole), and a negative sign
for E3 (we firstly go through the positive one).

Once the current is obtained through every branch in the circuit, (4.43) can be
applied to obtain the potential differencebetweenA andB. Circulation is done through
the lower branch, bearing in mind the sign criteria explained previously:

Fig. 4.30 Circuit of
Problem 4.10
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Fig. 4.31 Circuit of Problem
4.10. Switch C is closed

V )

I

)V

A B

C

)V

VA − VB +
∑

i

Ei =
∑

i

RiI ⇒ VA − VB − 12 − 6 = (1 + 20) · 0.4 .

Hence
VA − VB = 26.4V .

If we do the calculation through the upper branch, we reach the same result:

VA − VB − 24 − 6 = (1 + 8) · (−0.4) ⇒ VA − VB = 26.4V .

Note the current’s negative sign, because the direction of the circulation is opposite
to the current.
(b.2) Since no current passes through the device whose emf is E2 = 6V, power
supplied or consumed by it is zero. The current exits the device with emf E1 via the
positive pole, so it behaves as a generator. The current enters the device with emf E3
via the positive pole, therefore it behaves as a motor.

If (4.34) is applied to the generator we obtain the power supplied by it:

P1sup = E1I − rI2 = 24 · 0.4 − 1 · 0.42 = 9.44W ,

where E1I = 24 · 0.4 = 9.6W is the power generated by it, and rI2 = 1 · (0.4)2 =
0.16W are Joule’s effect losses.

If (4.40) is applied to the motor, the power consumed by it is obtained:

P3cons = E3I + rI2 = 12 · 0.4 + 1 · 0.42 = 4.96W ,

where E3I = 12 · 0.4 = 4.8W is the power converted by the motor and rI2 = 1 ·
(0.4)2 = 0.16W the loss due to Joule’s effect.

If we calculate losses due to the resistors in the circuit by applying (4.28) (without
bearing in mind internal resistances), and taking into account that no current passes
through resistance 5�, the result is:
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P =
∑

i

RiI
2 = (8 + 20) · 0.42 = 4.48W ,

equal to the difference between the power supplied by generator 1 and the power
consumed by generator 3.

4.11 For the network in Fig. 4.32, find the value that variable resistance Rx has
if no current goes through resistance R. In this case, determine the potential
difference between points a and b in the figure, as well as power supplied by
the generator or generators to the network.

Solution

In Fig. 4.33 the three nodes in the network have been labeled. But since the branch
connected between nodes 2 and 3 is open and its current is null, it can be considered
only a branch through node 3, whose current is I1. Therefore, the network has only
two nodes, 1 and 2. In Fig. 4.33, the direction chosen for each current is arbitrary.
Note that no direction has been assigned to the open branch, because the current is
null.

If KCL (4.45) is applied to any of them (for example 1), the result is:

∑

i

Ii = 0 ⇒ I1 = I2 + I3 .

Since the problem’s statement shows that current through resistance R is null, the
previous equation becomes as follows:

Fig. 4.32 Network of
Problem 4.11
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Fig. 4.33 Network of
Problem 4.11 with the
directions of currents and
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I2 = 0 I1 = I3 .

Considering these results, and applying KVL (4.46) to specifiedmeshes in the figure,
the result is:

Mesh (I): 12 = 22I3 − RI2 ⇒ I3 = I1 = 6
11 A .

Mesh (II): 24 = (Rx + 4)I1 + RI2 ⇒ 24 = (Rx + 4) 6
11 ⇒ Rx = 40� .

To calculate the electric potential difference between a and b, we apply Ohm’s
law for a branch (4.43). If we circulate from a to b by the lower branch, and taking
into account the sign criteria in Fig. 4.7, the result is:

Va − Vb + 12 − 24 = −4I1 ⇒ Va − Vb = 9.82V .

Devices of 12V (in upper branch) and 24V behave as generators, since the current
exits both of them via the positive pole. Power supplied by them is obtained by
applying (4.34):

Psup = EI − rI2 = (24I1 − 4I21 ) + (12I3 − 2I23 ) = 17.85W .

4.12 Two generators with the same electromotive force E and internal resistance r,
are connected in parallel, as shown in Fig. 4.34. A passive network is connected
to terminals A and B, whose equivalent resistance is Re. Discuss how the gen-
erators should be connected in order to obtain the maximum power dissipated
by the passive network.

Solution

Generator terminals can be connected by joining the same sign poles (Fig. 4.35) or
by joining the positive sign of one with the negative one of the other (Fig. 4.36).

Fig. 4.34 Generators of
Problem 4.12
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A B
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2

Fig. 4.35 Generators
connected by joining the
poles with the same sign
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Fig. 4.36 Generators
connected by joining
opposite sign poles

I1

I2

I

Re

(I)

r)

r)

A B

(II)

If Ohm’s law (4.20) is applied to the ends of the equivalent resistance Re, and the
I direction is taken into account, the result for both cases is:

VB − VA = ReI → I = (VB − VA)/Re . (4.62)

The power consumed by resistance Re, according to (4.28), is

P = ReI
2 = Re[(VB − VA)/Re]2 = (VB − VA)

2/Re .

From the previous expression, since Re is a constant value, it follows that the highest
value of (VB − VA) makes the maximum power. Thus (VB − VA) should be deter-
mined for both settings.

Considering the interconnection in Fig. 4.35 and applying KCL (4.45), the result
is

I = I1 + I2 .

Applying KVL (4.46), with the directions for the circulations shown in Fig. 4.35,
and taking into account the previous node’s equation, the result is:

Mesh (I): E − E = rI1 − rI2 ⇒ I1 = I2 = I/2 .

Mesh (II): E = ReI + rI2 = (Re + r/2)I ⇒ I = E
Re + r/2

.

If this result for I is compared to the one obtained in (4.62), the result is:

I = E
Re + r/2

= VB − VA

Re
⇒ VB − VA = ERe

Re + r/2
.

The same procedure is done for the interconnection in Fig. 4.36. Applying KCL
(4.45),

I1 = I + I2 .

Applying KVL (4.46) with the directions shown in Fig. 4.36,

Mesh (I): E + E = rI1 + rI2
2E = r(I2 + I) + rI2 = rI + 2rI2 .

Mesh (II): −E = ReI − rI2 .
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Solving
0 = (r + 2Re)I ⇒ I = 0 .

The potential difference is
VB − VA = ReI = 0 .

So for the circuit in Fig. 4.36 the power consumed by the passive network is null,
since no current passes through it.

Maximum power, therefore, corresponds to the interconnection in Fig. 4.35 and
its value is

P = (VB − VA)
2/Re = E2R

(R + r/2)2
.

4.13 For the circuit in Fig. 4.37, determine the value of emf E that will cause the
power converted by the motor to be 90% of the value of the power absorbed
by it. Motor values: 220V cemf and 20� internal resistance. Resistance value:
R = 200�.

Solution

To make the calculus easier, it is better to simplify the circuit by obtaining the equiv-
alent resistance of the ones that allow it. Firstly, the two resistances R on the central
branch AC are in series and are added, so we obtain a resistance 2R (Fig. 4.38a).
In this figure a triangle association between nodes A, B and C can be seen. It is
simplified to star abc, according to Kennelly’s theorem (4.50)–(4.52):

a = R · 2R
R + R + 2R

= R

2
= 100� b = R · R

R + R + 2R
= R

4
= 50�

c = R · 2R
R + R + 2R

= R

2
= 100� .

The simplified circuit is shown in Fig. 4.38b. There are three branches and two
nodes. Applying KCL, one node equation is obtained, but two more mesh equations
to solve the three unknown currents are needed. The direction chosen for each current
has been indicated, as well as the direction for the circulation assigned to the two
meshes. If KCL (4.45) is applied to any of the nodes C or D in Fig. 4.38b,

I1 = I2 + I3 .

Fig. 4.37 Network of
Problem 4.13
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220V )

)

R

R

R2R

a b

c

(a)

220V )

)

(b)
A B

C

50100

100
200

(I) (II)
I1

I2I3

D

C

D

Fig. 4.38 a Simplified network of Problem 4.13. b Scheme to apply Kirchhoff’s laws

If KVL (4.46) is applied to the two indicatedmeshes, bearing inmind the sign criteria
shown at Fig. 4.7, the result is:

Mesh (I): E = (100 + 20 + 200)I1 + 100I3
Mesh (II): −220 = (20 + 50)I2 − 100I3 ,

a system of three-equations with four unknown values.
The additional equation is obtained from the condition, Pconv = 0.9Pcons, and the

result is, from (4.39) and (4.40):

220I2 = 0.9(220I2 + 20I22 ) ⇒ I2 = 1.22A .

If this value is substituted into the previous Kirchhoff’s laws equations, and we solve
it, the result is:

I3 = 3.06A , I1 = 4.28A , E = 1675.6V .

Problems C

4.14 Extreme 1 of the copper wire in Fig. 4.39 is in contact with water at a tempera-
ture of 80 ◦C,while extreme 2 is in contactwith boilingwater, so a linear distrib-
ution of temperatures along thewire is generated. Thewire, of 20cm length, has
tronco-conical shape, with its straight section radius of 2mm on extreme 1, and
6mm on extreme 2. Its resistivity varies with temperature according to expres-
sion ρ = ρ0(1 + α(t − t0)), where copper resistivity is ρ0 = 1.71 × 10−8 �m
at t0 =20 ◦Cand its temperature coefficientα = 4 × 10−3 K−1. Determinewire
resistance.
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Fig. 4.39 Copper wire with
non-constant section
submitted to a temperature
gradient

O x

t=80ºC t=100ºC

1

2

Solution

If (4.19), resistance of a wire, is applied,

R =
∫ 2

1
ρ
dl

S
=

∫ 2

1
ρ0 [1 + α(t − t0)]

dl

S
.

It is indicated that on the wire, a linear temperature relation has been established,

(x − x0) ⇒ t − 80 = a(x − 0) .

As values on the wire’s extremes are known, its slope value a can be determined:

(100 − 80) = a(0.2 − 0) ⇒ a = 100 km−1 .

If we bear in mind the temperature value depends on the position, t = 80 + 100x
and t0 = 20, the expression for the resistance can be integrated, with dl = dx,

R =
∫ 2

1
ρ0 [1 + α(t − 20)]

dl

S
=

∫ L

0
ρ0 (1 + α(60 + 100x))

dx

S
.

Since the wire’s section S is not constant, its value should be obtained as x-
dependent. If the slope of the cone’s generatrix is obtained, the x-dependent radius
r can be obtained (both in meters) (Fig. 4.40):

m = tanϕ = r2 − r1
L

= 6 − 2

200
= 0.02

r = r1 + mx = 2 × 10−3 + 0.02x .

If this value is introduced to obtain the wire’s circular section S, the result is:

Fig. 4.40 Scheme to obtain
radius’ equation depending
on its position

x

r
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R =
∫ L

0

ρ0 (1 + α(60 + 100x))

π(r1 + mx)2
dx .

To solve the integral, the polynomial is decomposed:

R = ρ0

π

∫ L

0

(1 + α(60 + 100x))

(r1 + mx)2
dx = ρ0

π

∫ L

0

(
A

(r1 + mx)2
+ B

r1 + mx

)
dx =

= ρ0

π

[ −A

m(r1 + mx)
+ B

m
ln(r1 + mx)

]L

0
= ρ0

π

( −A

m(r1 + mL)
+ A

mr1
+ B

m
ln

r1 + mL

r1

)
.

When decomposing the polynomial the result is A = 1 + 60α − 100αr1/m = 1.2
and B = 100α/m = 20. If values are substituted, the resistance is obtained:

R = 1.71 × 10−8

π
(20000 + 1000 ln 3) = 1.15 × 10−4 � .

4.15 Figure4.41 represents the straight section of a trapezoidal block with resistivity
ρ, whose dimensions are measured in meters. Both lateral striped surfaces
are equipotential. The other surfaces are isolated. Determine, approximately,
resistance per unit depth of the block.

Solution

In Fig. 4.41, the current flux would enter perpendicular to the left surface, and would
leave it perpendicular to the right side. Therefore we can suppose that equipotential
surfaces are vertical, and we can decompose the block into slices connected in series
by highly conductive thin sheets, as we did in Fig. 4.13b (Sect. 4.11.2). The figure
could be also decomposed in the way shown in Fig. 4.42. The narrower the trapezoids
of the decomposition are, the more similar to the rectangle in Fig. 4.13b they will be,
and therefore the more accurate the calculation will be.

It is true that the white trapezoid i whose thickness is li and height is hi is not a
rectangular block, but since hi >> li the approximation of using the mean height hi
is justified. Resistance of the block i (4.21) is:

Ri = li
hi

ρ .

Fig. 4.41 Conductor block
of Problem 4.14

6

5
3
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Fig. 4.42 Block as slices

i

Fig. 4.43 Block as a simple
tube

I

The total block’s resistance, if we apply (4.59), is

Re =
m∑

i=1

Ri .

If, for example, we decompose it in only two trapezoids, their thickness will be of
3m and their medium heights will respectively be 3.5 and 4.5m, and resistance

R− = 3

3.5
ρ + 3

4.5
ρ = 1.524ρ ,

which corresponds to the lowest resistance value that can be obtained. If we decom-
pose it, for example, in 10 trapezoids (slices), the result would be R = 1.5321ρ ,

more accurate than the previous result.10

Figure4.41 is decomposed now into current tubes. The simplest way (Fig. 4.43)
would be to suppose that current I enters perpendicular through the left surface,
and flows horizontally until the right one. The effect would be to ignore the upper
triangle’s material conductivity, and therefore a higher level of the resistance is
obtained. If we apply (4.21) the result is:

R+ = ρL

S
= 6

3
ρ = 2ρ .

If we calculate the media of the lowest (R−) and highest (R+) values obtained for
the resistance,

R̄ = R− + R+
2

= 1.524 + 2

2
ρ = 1.762ρ .

and we determine the error

(R+ − R̄)/R̄ = 0.135 ,

10See Appendix, Matlab programm to calculate the resistance using slices.
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Fig. 4.44 Block as tubes

1i 2i

we have the range of values for the resistance:

R = 1.762ρ ± 13.5% .

Better schemes of tubes can be built, as for example the one in Fig. 4.44, where
one of the diagonals has been drawn and tubes parallel to every face of the trapezoid
have been obtained. The two white tubes (1i and 2i) are connected in series. If its
lengths and heights are respectively l1i, h1i and l2i, h2i, the white tube’s resistance is,
applying (4.59) and (4.21):

Ri = l1i
h1i

ρ + l2i
h2i

ρ .

The whole set of tubes, as the white one, are connected at the same time in parallel,
obtaining the equivalent resistance of the block if (4.49) is applied:

1

R
=

n∑

i=1

1

Ri
.

To apply this method it is necessary to determine the lengths and heights of each
tube.11 For example, in case of dividing the block in 10 tubes, it results inR = 1.645ρ.

4.16 In the network in Fig. 4.45, every device has 10V emf and 1� internal resis-
tance. (a) Calculate the Thévenin and Norton equivalents between terminals
A and B. (b) If a small motor, with 6V cemf and 0.5� internal resistance, is
connected to these terminals, calculate the power consumed by this motor.

Solution

(a) To determine Thévenin and Norton equivalents it is necessary to calculate the
potential difference and equivalent resistance between the asked points. To calculate
the potential difference it is always necessary to know the currents that go through
the network between these points. Firstly, it can be observed that there is a triangle
association abc (Fig. 4.46a) that can be simplified by Kennelly’s theorem (4.50)–
(4.52), obtaining a star-association. If equations of this theorem are applied, the
values of the resistances in the star are obtained. In practice these equations represent
the product of the resistances that converge in the node divided by the sum of the
resistances of the association:

11See Appendix, Matlab programm to calculate the resistance using tubes.
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Fig. 4.45 Network of
Problem 4.15

5

5 5.5

A B

Ra = 2 · 2
2 + 2 + 4

= 0.5� Rb = 2 · 4
2 + 2 + 4

= 1� Rc = 2 · 4
2 + 2 + 4

= 1� .

The resulting network is shown in Fig. 4.46b, where the resistance of 5.5� from the
original star and the one of Ra = 0.5�, which are in series, have also been summed.
This network has a lower number of nodes and branches than the original one, so its
solution is easier.

Since there are somany nodes and branches, it is better to solve it by applyingmesh
analysis (4.47), with the mesh currents shown in Fig. 4.46b. The only real current
which is necessary to be known to determine the potential difference between A and
B is current I that goes through the branch between A and B. This current I is the
same as mesh current i3. Following the indicated criteria for the mesh current method
(Sect. 4.10.2), the matrix of emfs, mesh resistances and currents results:

⎛

⎝
−10 + 10
−10 + 10
10 + 10

⎞

⎠ =
⎛

⎝
1 + 1 + 1 + 5 + 6 −1 − 1 −6

−1 − 1 1 + 1 + 1 + 1 + 4 −1 − 1
−6 −1 − 1 1 + 1 + 6 + 5 + 1

⎞

⎠

⎛

⎝
i1
i2
i3

⎞

⎠

=
⎛

⎝
14 −2 −6
−2 8 −2
−6 −2 14

⎞

⎠

⎛

⎝
i1
i2
i3

⎞

⎠

Emfs have been introduced following the sign criteria indicated in Fig. 4.7. Values on
the principal diagonal of the resistance matrix are the sum of the resistances on every
mesh. Common resistances to the different meshes are introduced with negative sign
because circulations through them are opposite depending on the mesh. The internal
resistance of the generators and motors should not be forgotten. Solving the system
of equations,

i3 = I = 1.93A .

To obtain the potential difference between A and B, Ohm’s law for a branch (4.43)
is applied to the lower branch in the figure,



212 4 Electric Current
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i3
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Fig. 4.46 a Simplified network of Problem 4.15. b Scheme to apply Mesh analysis
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Fig. 4.47 Scheme for the calculation of the passive network equivalent resistance

VA − VB +
∑

i

Ei =
∑

i

RiI ⇒ VA − VB + 10 = 1 · 1.93 ⇒ VA − VB = −8.07V ,

Ee = VB − VA = 8.07V .

To calculate equivalent resistance we follow the scheme in Fig. 4.47, with every
value in ohms. It should be remembered that points A and B cannot be changed,
because we are calculating equivalent resistance between them. Figure4.47a is the
passive network of the circuit in Fig. 4.46b. 1� resistances of branches de and df on
the right side in Fig. 4.47a are in series and have to be summed, as well as resistances
of 5 and 1� in the higher branch. 2� resistances in branches de and df , and the one
of 4� in branch ef in Fig. 4.47b are in triangle configuration. If they are simplified
to a star association, each resistance has a value of



Solved Problems 213

Rd = 2 × 2

2 + 2 + 4
= 0.5� Re = 4 × 2

2 + 2 + 4
= 1� Rf = 4 × 2

2 + 2 + 4
= 1� .

In the central branch of Fig. 4.47c, 6 and 0.5� resistances are in series, as well as
the 6 and 1� in the upper branch. They are summed and the result is Fig. 4.47d.
7 and 6.5� resistances are in parallel. Its equivalent is obtained by

1

Rp
= 1

7
+ 1

6.5
⇒ Rp = 3.37� .

In Fig. 4.47e resistances in the upper branch are in series. They are summed resulting
Fig. 4.47f, with two resistances in parallel. Equivalent resistance is

1

Re
= 1

9.37
+ 1

1
⇒ Re = 0.9�,

which is the resistance we are asked for.
If we consider the scheme in Fig. 4.15, the Thévenin equivalent is the one in

Fig. 4.48a. It should be observed that the negative terminal is on the side of point A,
since this is the one with the lowest potential (VA − VB is negative).

To obtain the Norton equivalent it is necessary to calculate the current source,

Ie = Ee/Re = 8.07/0.9 = 8.97A.

According to the scheme in Fig. 4.16, the Norton equivalent is the one in Fig. 4.48b.
The current source supplies current in the sense of lower to higher potential, from A
to B, which explains the direction of current Ie.

e VRe=0.9

Re=0.9A B

(a)

A B

Ie=8.97A
(b)

Fig. 4.48 a Thévenin equivalent. b Norton equivalent

Fig. 4.49 Circuit to
calculate power consumed
by the motor

e VRe=0.9

A B

(6V,0,5

I
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(b) To calculate power consumed by the motor, we connect it to terminals A and B
from Thévenin equivalent (Fig. 4.49), since its behavior is the same as the one of
the complete network. If Ohm’s law (4.41) is applied to the circuit in the current
direction, ∑

i

Ei = I
∑

i

Ri ⇒ 8.07 − 6 = (0.9 + 0.5)I ,

whence
I = 1.48A .

Power consumed by the motor (taken from the circuit) is, according to Expression
(4.40),

P = (E + rI)I = (6 + 0.5 · 1.48) · 1.48 = 9.975W .

4.17 For the circuit in Fig. 4.50, the current through generator G is four times the
one that passes through motorM. It is also known that motor converts 1000W
into mechanical energy. Determine Thévenin and Norton equivalents between
points A and B, and power supplied to the network by the generator. Lines’
resistance values: R = 100�. Generator’s and motor’s internal resistance: r =
10�.

Solution

To determine Thévenin and Norton equivalents it is necessary to calculate the poten-
tial difference and equivalent resistance between the asked points. To calculate the
potential difference it is necessary to know the currents that circulate through the
branches of the network between these points.

The circuit can be simplified, since there are associations of resistances that can
be substituted by their equivalent resistance. Both vertical resistances with value 2R
are in parallel. If (4.49) is applied, the result is:

1

Rp
= 1

2R
+ 1

2R
= 1

R
⇒ Rp = R ,

as shown in Fig. 4.51a. Resistance R and 2R between C and D are in series and have
been summed. In this figure, once these simplifications are done, it can be observed
that between points C, D and E a triangle association exists that can be simplified to

Fig. 4.50 Network of
Problem 4.17

2R

R

R

A

B

R
2R 2R

M G
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B
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20
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I2 I1

I3

D

FF

Fig. 4.51 a Simplified network of Problem 4.17. b Scheme to apply Kirchhoff’s laws

the star association cde shown in the figure. Applying Kennelly’s theorem (4.50)–
(4.52):

c = R · 3R
R + R + 3R

= 3R

5
= 60� d = R · 3R

R + R + 3R
= 3R

5
= 60�

e = R · R
R + R + 3R

= R

5
= 20� .

Figure4.51b shows the circuit already simplified. Note that there are three
branches and two nodes (D and F). If KCL is applied, only one node equation
is obtained. We need two more mesh equations to solve the three unknown values,
which are currents through the branches. Supposed currents have been drawn through
the different branches in the network, as well as the direction of circulation for the
two meshes. If KCL (4.45) is applied to any of the two nodes D or F in Fig. 4.51b,
the result is:

I1 = I2 + I3 .

If KVL (4.46) is applied to both of the indicated meshes, taking into account the sign
criteria indicated in Fig. 4.7, the result is:

Mesh (I): EG = 30I1 + 60I3
Mesh (II): −EM = 170I2 − 60I3 .

Since current through the generator is four times the one through the motor, it is
obtained:

I1 = 4I2 .

Since power converted by the motor to mechanical energy is 1000W, if (4.39) is
applied, we obtain:

PM = EMI2 = 1000 ⇒ EM = 1000/I2 .
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If these two equations are introduced in the three equations that we have obtained
from Kirchhoff’s laws, the following values are obtained:

I1 = 40A , I2 = 10A , I3 = 30A , EG = 3000V , EM = 100V .

With these results, power supplied by the generator to the network can be deter-
mined, if we apply (4.34):

Psup = EGI1 − rI21 = 3000 · 40 − 10 · 402 = 104 kW .

The potential difference between points A and B is obtained by applying Ohm’s
law for a branch (4.43). If circulation is done using the path ADB, the result is:

VA − VB + 3000 = 100I2 + 10I1 ⇒ VA − VB = −1600V .

EG is introduced with positive sign, due to the fact that it goes firstly through the
negative pole of the generator. We can check the result by circulating through the the
path AFB:

VA − VB + 100 = −70I2 − 20I1 ⇒ VA − VB = −1600V .

To obtain the equivalent resistance between A and B, the passive network of the
circuit (Fig. 4.51b) is obtained by following the scheme in Fig. 4.52, with all the
values in ohms. In the passive network in Fig. 4.52a, resistances of 10 and 60� are
in series and are summed.

There is also a triangle association BDF (also the triangle association ADF could
be taken) which simplifies the star association bdf according to Kennelly’s theorem
(4.50)–(4.52):

b = 20 · 10
20 + 10 + 60

= 20

9
� d = 60 · 10

20 + 10 + 60
= 20

3
� b = 20 · 60

20 + 10 + 60
= 40

3
� .

Note thatA andB are nodes, because they are the endings of the equivalent. The result
obtained is Fig. 4.52b, where resistances AD andDG are in series, being summed, as

(b)
A

B

(a)

60

100

60

20

D

F

A

B

70

100
D

F

d
f

b G
G

(c)
A 320 A

(d)

B

G

B

46.8
G

Fig. 4.52 Scheme for equivalent resistance in the passive network calculus
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e VRe=49

Re=49A B

(a)

A B

Ie=32.65A
(b)

Fig. 4.53 a Thévenin equivalent. b Norton equivalent

well as resistances AF and FG, resulting in Fig. 4.52c. Resistances in both branches
AG are in parallel, whose equivalent is (4.49):

1

Rp
= 3

320
+ 3

250
⇒ Rp = 46.8� .

Figure4.52d shows the final result with two resistances in series, whose sum is the
equivalent resistance that is asked,

Re = 49� .

If we consider the scheme in Fig. 4.15, the Thévenin equivalent is the one in
Fig. 4.53a. Note that the negative pole is on point A side, since this is the one with
the lowest potential (VA − VB is negative).

To obtain the Norton equivalent it is necessary to calculate the current source,

Ie = Ee/Re = 1600/49 = 32.65A.

According to the scheme in Fig. 4.16, the Norton equivalent is the one in Fig. 4.53b.
The current source supplies current from lower to higher potential (from A to B),
which explains the current Ie direction.

4.18 The connection of Fig. 4.54 between four resistance Rx,Rv,R1 and R2, the
generator G and the galvanometer W is used to measure resistance Rx and it is
called the Wheatstone bridge. Resistances are known: R1 = 10�,R2 = 5�.
Rv is a variable resistance which can be adjusted until the galvanometer W
shows that current through branch BC is zero. The generator G has 24V emf
and 2� internal resistance, and the galvanometer detects no current when
Rv = 8�. (a) Determine the value of Rx. (b) By using the Thévenin equivalent,
find the cemf value of a motor, whose internal resistance is 2�, so that if the
motor is connected between points B and D, maximum power is converted.

Solution

(a) Since resistance Rv can be adjusted so that no current passes through the gal-
vanometer W , current through the two upper branches of the Wheatstone bridge is
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Fig. 4.54 Network of
Problem 4.18
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Fig. 4.55 Currents scheme
of Problem 4.18 to
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G

equal (Fig. 4.55). The same occurs with the two lower branches. Since no current
passes through branch BC, the voltage drop is zero and points B andC have the same
potential:

VB − VC = RW IW = 0 ⇒ VB = VC ,

where RW is the galvanometer resistance and IW is the current through it. If the
potential difference between points A,B,C,D of the circuit is calculated through the
different branches of the circuit, the result is:

VA − VB = RxI1

VA − VC = RvI2

⎫
⎬

⎭

VC = VB

RxI1 = RvI2 ⇒ Rx

Rv

= I2
I1

(4.63)

In a similar way,

VB − VD = R1I1

VC − VD = R2I2

⎫
⎬

⎭

VC = VB

R1I1 = R2I2 ⇒ R1

R2
= I2

I1

(4.64)
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From (4.63) and (4.64) it follows that:

Rx = R1

R2
Rv , (4.65)

Substituting the problem values,

Rx = 16� .

(b) To obtain the Thévenin equivalent it is necessary to know the potential difference
and equivalent resistance between points B andD. With previous equations and with
the value of Rx, the potential difference can be determined. First, from (4.65), the
result is

Rv = R2

R1
Rx = 8� .

From (4.63) or from (4.64) it is also obtained that

I2 = 2I1 .

The same result can be obtained by applying KVL (4.46) to mesh (I) in Fig. 4.56,
where resistance values have already been substituted, and the current is considered
null through the galvanometer. Taking into account the indicated senses in the figure,
the result is

Mesh (I): 0 = (16 + 10)I1 − (8 + 5)I2 ⇒ I2 = 2I1 .

One of the other two equations is obtained from KCL (4.45), by applying it, for
example, to node D:

I = I1 + I2 = 3I1 ,

Fig. 4.56 Current scheme of
Problem 4.18 to calculate
potential difference between
B and D

(24V,2 )

16 10

W

B

D

C

A

I1 I1

I2I2

I

I =W 0

(I)

(II)
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(b)
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Fig. 4.57 Scheme to calculate the passive network equivalent resistance

Fig. 4.58 Thévenin
equivalent

e VRe=2.3

B D

I

and the other one by applying KVL to mesh (II), with the indicated senses,

Mesh (II): 24 = (8 + 5)I2 + 2I = 26I1 + 6I1 = 32I1 ⇒ I1 = 0.75A .

The potential difference between B and D (and therefore the Thévenin equivalent’s
electromotive force) is obtained by applying Ohm’s law (4.20) between these points

Ee = VB − VD = 10I1 = 7.5V .

To determine the equivalent resistance of the circuit between points B and D, its
passive network should be solved (Fig. 4.57a, with all the values in ohms). B and C
have the same potential. Points B and D should stay the same, since the equivalent
has to be calculated between these two points. In the figure, resistance between A
and B and the ones between B and D are in parallel. If (4.49) is applied, the result is

1

Rp1
= 1

16
+ 1

8
⇒ Rp1 = 16

3
�,

and
1

Rp2
= 1

10
+ 1

5
⇒ Rp2 = 10

3
�,

as it can be seen in Fig. 4.57b. It seems that resistance on the upper branches are in
series, but this is not true: point B behaves as a node and therefore cannot disappear,
as well as D. However, resistance of 16/3� and 2� are in series, because point
A is not a node, and they can be summed (Fig. 4.57c). These two resistances are in
parallel (B and D are nodes), and the equivalent resistance results

1

Re
= 3

10
+ 3

22
⇒ Re = 2.3� .
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If we consider the scheme in Fig. 4.15, the Thévenin equivalent between B and D
is the one in Fig. 4.58. Note that the negative pole is on the side of point D, since this
is the one with the lowest potential.

A motor is connected to the equivalent, with unknown E cemf and 2� internal
resistance. Current I has the indicated direction, leaving the generator through the
positive pole and entering to the motor by its positive one. Applying Ohm’s law
(4.41),

7.5 − E = (2.3 + 2)I ⇒ I = 7.5 − E
4.3

.

The motor must convert the maximum power. The expression of power converted is
(4.39)

Pconv = EI = E 7.5 − E
4.3

,

which has to be its maximum. Applying the maximum condition:

dP

dE = 7.5 − 2E
4.3

= 0 ⇒ E = 3.75V ,

which is the value of the counter electromotive force we are asked for.



Chapter 5
Magnetostatics

Abstract This chapter deals with the basic characteristics of themagnetostatic field.
Even though such a field is a special case of the general electromagnetic field de-
scribed by theMaxwell equations (Chap.10), it is important formany actual problems
that occur in applied science and technology. For this reason, some procedures for
calculating it are presented, and in detail explained.

5.1 Differential Equation of the Magnetostatic Field

When we studied the electrostatic field we saw that through some differential equa-
tions it is possible to determine the electric fieldE at any point in space for stationary
phenomena. In addition, these equations allowed us to understand what were the
sources of the electric field. In the same way we are now interested in finding out
what are the general laws governing the magnetic field independent of time. The
study of this particular case is the purpose of magnetostatics.

The basic equations of the magnetostatic field are the following:

∇ × B = μ0j, (5.1)

∇ · B = 0. (5.2)

In addition, by using the law of charge conservation (see Chap. 2) for stationary
currents:

∇ · j = 0. (5.3)

Equation (5.1) indicates that a possible source of the magnetic field B is the electric
current, i.e.moving electric charges.1 The second equality, being equal to zero,means
that there are no sources or sinks for B, which implies that magnetic charges do not
exist (monopoles). In short, the magnetic field B has vector sources (current density)

1Commonly this field is referred in many textbooks as magnetic induction, but we will refer to it
as the magnetic field B.
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but no scalar sources (magnetic charge density). If magnetic charges would exist
similarly to the electric charges, the equation ∇ · B would be different from zero, in
a way similar to Gauss law for electric field.2 The non-existence of magnetic charge
restricts the topological characteristics of the magnetic field lines. As a consequence
of it being divergence free, we can distinguish three possibilities for the geometry of
the magnetic field lines (MFL): (a) They may be closed; (b) They can be born and
die at infinity, i.e. they extend infinitely. (c) They can ergodicaly recover a surface in
a bounded region, unable to establish origin or end.

In this chapter we shown the differential system of equations we can employ for
determining the of the vector lines of a vector field (1.19). In the same way we can
write for the magnetic field

dx

Bx
= dy

By
= dz

Bz
, (5.4)

which define a set of trajectories in �3. Geometrically it has a simple interpretation.
In fact, the integrals of (5.4) represent two surfaces in the space, whose intersection
corresponds to the field lines of the magnetic field B. Magnetic fields, in general,
do not form magnetic surfaces. Such surfaces arise in magnetohydrostatic equilibria
and for some highly symmetric field configurations.3

The unit of measurement in the SI of the magnetic field B is the Tesla, and is
symbolized by the letter T. However, due to the fact that the the Tesla quite large,
on many occasions, a smaller unit than the Tesla is used, namely the gauss. The
equivalence between the two is: 1 Gauss = 10−4 T. With the aim of providing some
idea about these quantities we show an example.

As it is known Earth’s magnetic field is not uniform over all parts of the Earth.
However the order of magnitude can be estimated at about 0.2−0.6 ·10−4 T, and the
field generated by the coils often used in laboratory practices is around 10−3 T, for an
intensity that ranges from 0.3 to 0.5 A. This means that the Tesla is a large unit. There
are other examples of practical importance where themagnitude of themagnetic field
may differ from the aforementioned values. This is the case of the nuclear magnetic
resonance (NRM)4 for medical diagnosis in which the field employed is of the order
of one Tesla. But in other cases it exceeds many times that magnetic field. For

2There is a theory aboutmagneticmonopoles, although, to date, has not been experimentally proven.
3When studying the characteristics of the magnetic field lines and surfaces, an important concept is
the magnetic helicity. The helicity H of a magnetic field B is defined as H = ∫ ∫ ∫

V A · BdV (see
Sect. 5.3). This concept plays an important role in Magnetohydrodynamics. The physical meaning
is complex, but sometimes is related with the linkage of the field lines.
4This non-invasive technique, also calledmagnetic resonance imaging (MRI), employs several coils
that produce different kinds of magnetic fields. One of them creates a quasi-homogeneous static B
and the other ones produce variable fields in different directions. By using radiowaves the atoms of
the body can absorb energy at different frequencies, and depending on the way the absorbtion takes
place, and by means of computer technology, makes it possible to reconstruct three-dimensional
images of the body. The data obtained through these images provides structural and biochemical
information about tissue, and also the possibility of detecting spine abnormalities, cerebral edema,
and early-stage cancer.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
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example, the magnetic field existing in nuclear fusion experimental reactors ranges
from 3.5 (JET) to 5.3 Tesla (ITER). In stellerators, such as the Wendelstein 7-X the
magnetic field can reach 3 Tesla and at CERN, the highest field recently obtained
has been 13.5 Tesla.

5.2 Integral Form of the Equations

The equations of the previous section give information about the magnetostatic field
at each point in the space, i.e. they are pointlike equations.However, these expressions
can be represented in an integral form, which under certain circumstances are more
useful to address problems.

The integral representation of (5.1) is called Ampère’s law, which states that
circulation of the magnetic field B along a closed � trajectory, depends only on the
net current passing through theopen surfaceSwhoseboundary is� (∂S) (Fig. 5.1), i.e.

∮

�

B(r)dl = μ0

∫

S
j · dS = μ0I. (5.5)

Ampère’s theorem is important because under certain conditions it easily allows us
to calculate the magnetic field components known the current density. Theoretically
this law is always true if the conditions of Stokes’s theorem are satisfied (see Chap.1,
(1.48)). However, from a practical point of view Ampère’s theorem is only useful
when the system under study possesses symmetries. In this case the basic idea for
applying (5.5) is to find a curve containing the symmetry of the component of the
magnetic field to be analyzed and performing the integral. In this case, the scalar
product of B(r) · dl is a constant along the path, then the corresponding component
i5 of B may be move outside of the integral like a scalar, i.e.

Bi

∮

�

dl = μ0

∫

S
j · dS. (5.6)

To apply Ampere’s law some caution must be taken into account. Rewriting (5.5),
we have: ∮

∂S
B · dl = μ0

∫

S
j · dS = μ0

∫

S
j · ndS = μ0I, (5.7)

where n is the unit normal vector at each point of the open surface. This equation
shows that the choice of the direction over � to perform the contour integral deter-
mines the orientation of the surface S and vice versa. In short, � is directly related
to S, and determines the sign of the scalar product of j · ndS. Regarding the double
integral of the secondmember in (5.7), in principle it extends to the surface S chosen,

5This component i may be the projection of B(r) over x, y or z in a cartesian coordinate frame, or
if we work with cylindrical coordinates ρ, φ or z.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
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(a) (b)

Fig. 5.1 Open surface crossed by a density current j. The integral along the closed curve � depend
only of the net intensity I . a The total intensity crossing the surface S is calculated by

∫
S j · dS. b In

this case only a part of the current density crosses the surface

(a) (b) (c) (d)

Fig. 5.2 a The actual surface of integration is smaller than S. b Here the limits of integration
coincide with S = S∩Vj . c In this case the intersection also corresponds with S, although j extends
beyond S. d The intersection corresponds only to a part of the surface S chosen to perform the
integral

however the actual surface of integration is only the intersection between S and the
volume Vj corresponding to the current density j, since the scalar product j ·S is zero
where S or j are zero (see Fig. 5.2). Accordingly, we can write:

∫

S
j · dS =

∫

S∩Vj

j · ndS = I . (5.8)

In relation to (5.2), its integral form is what is known the flux law for the magnetic
field B. It shows that the magnetic field flux B through a closed surface is always
zero, which is a direct consequence of the non-existence of magnetic charge

∫

V
∇ · BdV =

∮

∂V
B · dS = 0, (5.9)

where ∂V denotes the boundary of V , i.e., the surface S.
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5.3 Vector Potential

Asdiscussed inChap. 2 (see alsoChap.1), electrostatic conditionsmeant that∇×E =
0. This means that, in principle, we can find a potential function V (x, y, z) such that
E = −∇V . The importance of this is that, to calculate the electric field corresponding
to an arbitrary charge distribution it is not necessary to use the integral expression
(2.16), rather finding it from the gradient of this potential function. This is simpler
because V (x, y, z) is a scalar, then wemust perform only one integration. In the same
way the question that arises is whether there is a similar function from which it is
possible to obtain field B.

To answer this question one need only examine the (5.2). Taking into account
some of the properties of the differential operators seen in Chap. 1, the divergence of
the curl is always zero. Consequently, because the divergence of B is always zero,
we can express the magnetic field as the curl of a vectorial function, that is,

∇ · B = ∇ · (∇ × A) = 0, (5.10)

thus we can write
B(r) = ∇ × A(r) (5.11)

This new vector field is called vector potential A(r). This potential has some differ-
ences and similarities to that established for the electric field. V (x, y, z) is a scalar
function while A(r) is vectorial and generally more complicated. However, like
the electrostatic potential the vector potential is multivaluated. As we have seen in
Chap.2, if we add a constant c to the potential V the new function V ′ = V + c is
a potential too. It means both potentials provide the same electric field. In a similar
way, the vector potential suffers some indetermination. To show this let us consider
a scalar function ϕ(x, y, z). If we calculate the rotational of this results

∇ × (∇ϕ) = 0. (5.12)

This means that if we define a new field say A′ such that

A′ = A + ∇ϕ, (5.13)

this new vector potential reproduces the same fieldB. In fact, introducingA′ in (5.11)
we have

∇ · B = ∇ × A′ = ∇ × A + ∇ × (∇ϕ) = ∇ × A, (5.14)

and then for amagnetic fieldB givenwe have infinite fieldsA. Thismight suggest that
A is only a mathematical procedure for calculating the field without physical mean-
ing. This, however, is not what experience shows, since particles are capable of de-
tecting the vector potentialA in a region of space whereB = 0 (see Aharonov–Bohm

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_2
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effect in [28, 48, 97, 112]). With the aim of obtaining an expression for calculating
the vector potential, we have

∇ × ∇ × A(r) = ∇(∇ · A(r)) − ∇2A(r) = μ0j. (5.15)

The solution to this differential equation provides A, which allows us to determine
the magnetic field B by means of the rotational ofA. At first sight it seems to be very
difficult and contrary to the first idea for calculating B, however as we will show
(5.15) may be simplified.

If we examine inmore detail this equation we see that, if we did not have∇(∇ ·A),
its structure would be similar to Poisson’s equation seen in Chaps. 2 and 7. In this
case, we could directly obtain the solution to our problem. With the aim to resolve
(5.15) as easily as possible, we will impose the condition that the divergence of the
potential vector be zero, i.e.

∇ · A = 0, (5.16)

hence obtaining the result we are seeking. However, this election must be justified.6

In fact, in order to demonstrate that this condition may be always chosen, we apply
the nabla operator on both sides of (5.13)

∇ · A′ = ∇ · A + ∇2ϕ. (5.17)

Let us suppose that (5.16) does not hold and we choose, for instance, ∇ · A = f (r),
f (r) being a scalar smooth function. Introducing it in (5.17) we have

∇ · A′ = f (r) + ∇2ϕ. (5.18)

Remembering that all vector potentials differing in ∇ϕ give the same magnetic field
B,we canuse the potentialA′ instead ofA. Ifwe impose the aforementioned condition
on A′ we can write

0 = ∇ · A′ = f (r) + ∇2ϕ ⇒ ∇2ϕ = −f (r). (5.19)

This result tell us that we can always choose ∇ · A = 0, and if this condition is not
chosen, we can resolve ∇2ϕ = −f (r) and then work with A′, whose divergence is
zero (5.19). In this case we have

∇2A′(r) = −μ0j. (5.20)

6This election only on the basis of simplifying (5.15) is confusing and a priori non comprehensible.
Otherwise, why don’t we choose ∇2A = 0?

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_7
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This differential equation is similar, for each of its components, to the Poisson equa-
tion for the electrostatic field (Chaps. 2 and 7). It follows that the solution must be
formally the same, so we can write7

A(r) = μ0

4π

∫

V ′

jv(r′)dV ′

|r − r′| , (Tm) (5.21)

where jv represents the volume current density. In the case that the currents extend
over a surface the equalities are:

A(r) = μ0

4π

∫

S′

js(r′)dS′

|r − r′| , (Tm) (5.22)

where js represents the surface current density. Finally, when the system may be
considered mathematically one-dimensional, taking into consideration that jvdV ′ =
jvS′ · dl′ = Idl′, we obtain

A(r) = μ0

4π

∮

�′

Idl′

|r − r′| , (Tm) (5.23)

where�′ is the linewhere it extends the current. Note that the domain of integration of
all expressions for the vector potential extends over the respective current elements,
i.e. integration variables dV ′, dS′ and dl′, respectively (variables have ′).

There is also the called magnetic scalar potential, but we will talk a little about it
in Sect. 5.7 and in Chap.7 (Problem 7.20).

5.4 The Biot–Savart Law

In this section we are interested in finding an expression for directly obtaining the
magnetic field B created by an arbitrary current distribution. To this aim, calculating
the rotational (5.21) we have

B(r) = μ0

4π

∫

V ′

jv(r′) × (r − r′)
|r − r′|3 dV ′ , (T). (5.24)

This expression is known as the Biot–Savart law.
As in the preceding section, it may occur that the current distribution extends in

a two-dimensional or one-dimensional domain. For these cases we use,

B(r) = μ0

4π

∫

S′

js(r′) × (r − r′)
|r − r′|3 dS′, (5.25)

7In the following we use A instead A′. The reasoning employed to justify the election for the
divergence of the vector potential does not depend on the nomenclature chosen.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_7
http://dx.doi.org/10.1007/978-3-662-48368-8_7
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and

B(r) = μ0

4π

∮

�′

Idl′ × (r − r′)
|r − r′|3 . (5.26)

5.5 Forces on Currents

Another important problem is the effect of the magnetic field over currents. Let us
imagine a region � in the space R3 in which we have a magnetic field B. If in such a
region a density current jv extends over V ′, such that V ′ ⊆ �, by using the Lorentz
force (Chap.9), we can find that

F(r) =
∫

V ′
jv(r′) × B(r′)dV ′. (5.27)

If the current flows into a filament, i.e. is a one-dimensional current, the expression
for the force exerted is

F(r) = I
∫

�′
dl′ × B. (5.28)

Of particulary interest is if the magnetic field present in the region is homogeneous.
In this case we have,

F(r) = I

[∫

�′
dl′
]

× B(r). (5.29)

From (5.29) we can deduce that the force exert by a homogeneous magnetic field
over a closed filament crossed by a current I ′ is zero since

∮
�′ dl′ = 0.

On the other hand, the moment of the force N is defined as

N(r) =
∫

�′
r′ × dF(r′). (5.30)

In some circumstances we have two or more circuits for which currents flow. Taking
into account that each circuit produces a magnetic field, they exert a force on each
other. For simplicity, let us suppose that we have two circuits represented by �1 and
�2 whose currents are respectively, I1 and I2. If we look at one of the circuits, for
instance �2, it is affected by the presence of the magnetic field B1. By using (5.29)
it may be demonstrated that the force over the current I2 is

F1−2 = μ0

4π

∮

�2

∮

�1

I2dl2 × (I1dl′1 × [r − r′)]
|r − r′|3 . (5.31)

where r′ represents the vector joining the origin of reference with a generic point
on the first circuit. In case we had calculated the force on the first circuit due to the
magnetic field generated for I2, we would have obtained the same results provide the
changes of the subindexes in (5.31) were done adequately.

http://dx.doi.org/10.1007/978-3-662-48368-8_9


5.6 Magnetic Dipole 231

5.6 Magnetic Dipole

The magnetic field created on a point in the space by a circuit of an arbitrary shape is,
in general, of huge complexity. However, when calculatingB produced by any circuit
of magnetic moment m far away from its location, it can be demonstrated that this
field does not depend on the specific geometrical characteristics of such a circuit but
only of m. This means that all circuits with the same magnetic moment m produce
the same B in a point away from the source. Of course the question of the actual
meaning of far away arises. In our context the words far or near are meaningless
without a reference for comparison. For this reason, when we say that one point is
very far from a system it should be understood that the distance from the origin of
the circuit to the point where we calculate the field is much greater than the linear
dimensions of such a circuit. The expressions for the magnetic vector potential and
the magnetic field B created by a dipole are, respectively,

A = μ0

4π

m × r
r3

, (5.32)

and,

B = μ0

4π

(
−m
r3

+ 3 · m · r
r5

· r
)

. (5.33)

Sometimes it is necessary to study themechanical behavior of a dipole in the presence
of an external uniform magnetic field Be. In this case we can use the notion of the
potential energy of the dipole, which is defined as follows:

Ep = −m · Be = −mBe cos θ, (5.34)

where θ is the angle formed by both vectors. From this equation it is inferred that
magnetic moments tend to orient in the same direction as the external magnetic field
Be, because for this disposition the potential energy is a minimum. This result may
be also obtained by applying (5.30) i.e. N = m × Be.

5.7 Off-Axis Magnetic Field for Axisymmetric Systems

Let us suppose a system with rotational symmetry with respect to the OZ axis. The
solution for the axial and radial components of the magnetic field B for this system
with axisymmetric geometry is given by

Bz =
∞∑

n=0

(−1)n
B(2n)
z (0, z)

22n(n!)2 ρ2n, (5.35)
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and for the radial component

Bρ =
∞∑

n=0

(−1)n
B(2n)
z (0, z)

22n+1n!(n + 1)!ρ
2n+1, (5.36)

where Bz(0, z) is the z-component of the magnetic field along the revolution axis of
the system. Due to the rotational symmetry the magnetic vector potential has only
the angular component distinct to zero

Aφ =
∞∑

n=0

(−1)n+1 B(2n+1)
z (0, z)

22n+1n!(n + 1)!ρ
2n+1. (5.37)

Another possibility is to use the magnetic scalar potential. In a current-free region
∇ × B = 0 we can derive the magnetic field through a potential function, i.e.
B = −μ0∇Um(r).8 On the other hand from the Maxwell equations ∇ · B = 0
resulting in ∇2Um = 0, which is Laplace’s equation for the magnetic potential in
any region free of currents (see Chap. 7). Due to the axial symmetry of the system
we can use spherical coordinates to express the general solution of the Laplace
differential equation. Our solution for the axisymmetric scalar potential is

U(r, θ) =
∞∑

n=0

(
alr

l + bl
rl+1

)
Pl(cos θ), (5.38)

where al and bl are unknown coefficients to be determined and Pl(cosθ) represent a
Legendre polynomial of order l. In order to avoid singularities inside the system to
be analyzed, we set bl = 0 in of (5.38) obtaining the following development

U(r, θ) = a0 + a1rP1(cos θ) + a2r
2P2(cos θ) + · · · + anr

nPn(cos θ) + · · · (5.39)

Particularizing for points over the revolution axis of the system (OZ-axis)we intro-
duce cos θ = 1 in (5.39) obtaining

U(r, θ) = a0 + a1z + a2z
2 + · · · + anz

n + · · · (5.40)

The problem we have is determining the values of the coefficients al. With this aim
we employ the relation between the magnetic scalar potential and the magnetic field
B. For the component z of the field this relation is

Bz(z) = −μ0
∂Um

∂z
, (5.41)

8In the next chapter we will define the magnetic field H with which we can express this equation
in a equivalent form as B = −μ0∇Um(r) = μ0H, thus H = −∇Um(r). See Chap.7, Problem 20.

http://dx.doi.org/10.1007/978-3-662-48368-8_7
http://dx.doi.org/10.1007/978-3-662-48368-8_7
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and integrating (5.41) we have

Um(z) = − 1

μ0

∫
B(z)dz + C, (5.42)

C being a constant. OnceUm(z) is known,we have away to determine the coefficients
al of (5.40). In fact, expanding the magnetic potential (5.42) in Taylor series around
z = 0 9 for our specific system (solenoid, paraboloid, etc.), (5.42) leads to

Um(z) = Um(0) + ∂Um

∂z
z + 1

2!
∂2Um

∂z2
z2 + · · · + 1

n!
∂nUm

∂zn
zn + ϑ(z(n+1)), (5.43)

whose coefficients are the same that appear in (5.40), thus it holds

al = 1

l!
∂lUm

∂zl
. (5.44)

From these data we have the general expression (5.40) for the potentialUm(r). Thus,
taking its gradient, the components of the magnetic field B take the form

Br(r, θ) = −μ0
∂Um

∂r
, (5.45)

and

Bθ(r, θ) = −μ0
1

r

∂Um

∂θ
. (5.46)

This magnetostatic potential technique gives good analytical results everywhere in-
side of the system to be studied, if the number of terms of the Taylor expansion
is enough. However, it does not accurately describe the magnetic field outside the
system.

The most important conclusion of this technique explained, is that for calculating
themagnetic field inside a systemwith rotational symmetrywe only need to know the
field B along its symmetry axis (in our development z). This procedure is very useful
for analyzing electromagnetic systems, in which the computation of the off-axis
magnetic field through the current distributions is very difficult.

9We have expanded Um around z = 0 for simplicity. In general, we can take the Taylor expansion
around any point of interest.
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Solved Problems

Problems A

5.1 Calculate the magnetic field created by a very long straight conducting wire
carrying a homogeneous current density j = juz, in any point of the space
exterior to the wire.

Solution

Themagnetic field created for a very long conducting wire may be solved in different
ways. One of them is by directly applying the Biot–Savart law, and the other one is
by following Ampère’s law. Both procedures are equivalent but we will first resolve
it through the second method leaving the (5.26) for another exercise. We will explain
the solution in detail because the reasoning and results we are going to see are
applicable to many other problems.

As we have mentioned in the theory, the Ampère law procedure is specially
useful when the system that creates the magnetic field has symmetries. For this
reason we will begin with the study of geometrical characteristics of our system.
Let us suppose the current extends along the OZ axis. This election facilitates the
calculation without loss of generality. In principle, as we have seen in (5.1), the
existence of a density current may generate a magnetic field. Let us fix a generic
point P of coordinates (x, y, z) at which we want to study such a field. As we do
not know a priori the structure of B(r), we work with the usual components in three
dimensions (Fig. 5.3). With the aim to study the symmetries, let us consider another
point, say P′, with the same projection on the OXY plane but different coordinate
over OZ , i.e. (x, y, z + z0), z0 being a constant (Fig. 5.4). From a geometrical point
of view both points are equivalent. In fact, an observer located at P translates to
P′ cannot realize the difference between both positions because, due to the infinite
length of the wire, nothing is changed upwards nor downwards. This means that the
system is invariant under a translation along OZ and, as a consequence the magnetic
field at P and P′ must be equal.

Fig. 5.3 Metallic wire
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Fig. 5.4 The points P and
P′ have the same projections
on the plane OXY but
different coordinate z

Fig. 5.5 Point P∗ is
reached by a rotation of
angle ξ around OZ

Now let us imagine a parallel plane to OXY and on it a P(x, y, z) (Fig. 5.5). If
we rotate this point an angle ξ around the OZ axis we obtain another point P∗ of
coordinates (x∗, y∗, z). This new point has different projections over OX and OY ,
however both points are again equivalent because we are not able to distinguish the
magnetic field detected at both positions. Thus the system is invariant under rotations
around one axis passing through the wire. Therefore, rotational symmetry is inferred
and the magnetic field must be equivalent as well. Strictly speaking, when rotating
the reference system S(OXYZ) to another S′(OX ′Y ′Z ′), the cylindrical components
of B in the new system S′ are the same as the projections of the magnetic field in S.

Due to the symmetries of the system we will employ a cylindrical system of coor-
dinates ({uρ,uφ,uz}). In order to apply Ampère’s law for obtaining the components
of the magnetic field, we must choose different curves for performing the integral
(5.5). The curve chosen in every case must be such that when performing the scalar
product B · dl there appears the component of the field to be calculated. But, on the
other hand, this projection over dl needs to be constant, otherwise we cannot reach
an expression like (5.6).

Let us begin by calculating the tangential component of B. With this aim, because
of the rotational symmetry of the system, it seems logical using a curve with the
same characteristics of such a symmetry. For this reason we choose a circle of radius
ρ whose center is on the wire and contained in a plane perpendicular to the current
(Fig. 5.6).
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(a) (b)

Fig. 5.6 a Three components of the magnetic field in cylindrical coordinates. b Actual area of
integration. Observe that the intersection between the volume density current and the surface S is
surface S′ on which we perform the integration (case (a) in Fig. 5.2)

Together with the curve we need a differential dl along the curve and a surface
(whose boundary is the curve) to perform the right side of (5.7). In principle, we
can chose any well defined open surface whose contour coincides with the curve
�. In order to resolve the problem as easy as possible, we employ the plane where
the circle is contained. We also select the sense (or direction) of the differential
length to be anticlockwise, then the surface S is oriented in a direction parallel to
the positive OZ axis. The vector dl tell us the way we go along the curve and its
direction (clockwise or anticlockwise) determines the surface orientation, and the
sign of the integral, but do not change the final result of the magnetic field produced.
As aforesaid, taking into consideration the symmetries of the system, we will use
cylindrical coordinates. Since the circle lies entirely in theOXY plane, and the density
current over OZ , we have j = juz and dl = dluz = (0, dl, 0). On the other hand,
as we chose a plane surface parallel to OXY , the element differential of surface is
dS = dS uz = (0, 0, 1) dS. Introducing these values in (5.7) we obtain:

∮

∂S
(Bρ,Bφ,Bz) · (0, dl, 0) = μ0

∫

S
(0, 0, j) · (0, 0, 1)dS.

and operating the scalar products

∮

∂S
Bφdl = μ0

∫

S′=S∩Vj

jdS.
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By analyzing the integral on the left we observe that now Bφ is a constant magnitude
(due to the scalar product). It means that its value is the same for any point on the
circumference, then we can place it outside the integral. With respect to the term on
the right side, we must calculate the intensity by evaluating the scalar product of juz
through the surface S. However, as we commented in the theory, such a surface does
not always coincide with the surface S bounded by �. In fact, this integral is taken
over the surface S′ = S ∩ Vj (S′ ⊂ S). When calculating the scalar product we see
that it is positive and the current density is constant, thus

∫ L

0
Bφdl = μ0

∫

S
jdS ⇒ Bφ

∫ L

0
dl = μ0j

∫

S
dS, (5.47)

where L = 2πρ and j S = I , I being the current through the wire. Then

BφL = μ0jS
′ ⇒ Bφ2πρ = μ0I,

obtaining the result

Bφ = μ0I

2πρ
. (5.48)

Since I is positive, Bφ is the tangential component of the field B, which is positive
over the coordinate system chosen,

Bφ = μ0I

2πρ
uφ. (5.49)

If we had taken the differential dl in the opposite direction, we would have obtained
the scalar products with the signs changed, but on both sides of (5.47), thus not
varying the result.

By following this procedure, we only obtain the tangential component of the field.
This does not mean the other components are zero because they do not appear. It just
means that with the curve chosen we were able to compute the tangential component
of B. Ultimately, the geometry of the curve determines the information about the
magnetic field we can get from Ampère’s law. To calculate the components over z
and ρ, it is necessary to use other integration paths.

In effect, if wewish to calculate the field overOZ , we need a curve that can account
for the symmetry related to this coordinate axis. Taking into account the analysis
employed at the beginning of this exercise, let us consider a rectangle-shaped curve
γ (Fig. 5.7). This rectangle is coplanarwith thewire, and its opposite sides are parallel
to each other. Subdividing the curve into smaller segments γi (i = 1, 2, 3, 4) we see
that γ1 and γ3 are parallel to OZ , where we have translation symmetry. Observe
that the distances from the segments γ1 and γ3 to OZ are not the same (we shall
explain the reason later). On the other hand, following in the same way shown for
the tangential component of the field, we choose a plane surface for integrating the
right side of (5.5), and dl counterclockwise. Applying again Ampère’s theorem over
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Fig. 5.7 Rectangular curve.
Throughout the segments γ1
and γ3 only appears the
component Bz , once we have
computed the scalar product
B · dl. In the same way, over
the curves γ2 and γ4 we have
information about Bρ

γ (γ1 + γ2 + γ3 + γ4), and on the surface �, we find by subdividing γ into its four
segments

∮

γ
(Bρ,Bφ,Bz) · dl =

∫

γ1

B1 · dl1 +
∫

γ2

B2 · dl2 +
∫

γ3

B3 · dl3 +
∫

γ4

B4 · dl4 =μ0

∫

�
(0, 0, j) · dS.

(5.50)

To develop (5.50) we introduce differentBi for each segment, because we only know
Bφ. By setting the differential element of length for every path corresponding to the
curve γ, i.e. dl1 = dzuz = (0, 0, dz), dl2 = dρuρ = (dρ, 0, 0), dl3 = dzuz =
(0, 0, dz) y dl4 = dρuρ = (dρ, 0, 0), into (5.50) we obtain

∫ 2

1
(Bρ1,Bφ1,Bz1) · (0, 0, dz) +

∫ 3

2
(Bρ2,Bφ2,Bz2) · (dρ, 0, 0) +

∫ 4

3
(Bρ3,Bφ3,Bz3) · (0, 0, dz)+

(5.51)

+
∫ 1

4
(Bρ4,Bφ4,Bz4) · (dρ, 0, 0) =

∫ 2

1
Bz1dz +

∫ 3

2
Bρ2dρ +

∫ 4

3
Bz3dz +

∫ 1

4
Bρ4dρ.

By analyzing this last expression we notice that because of the symmetry of trans-
lation along the OZ direction, the value of the magnetic field over all points of
the curve γ2 (path 2–3) must be the same as the field over γ4 (path 2–3), then
Bρ2(ρ,φ, z)γ2 = Bρ4(ρ,φ, z)γ4 , and then

∫ 3

2
Bρ2dρ =

∫ 4

1
Bρ4dρ. (5.52)

However, the integral over γ4 in (5.51) goes from point 4 to 1 and not vice versa,
then their signs must be different. As a consequence we can write

∫ 3

2
Bρ2dρ = −

∫ 1

4
Bρ4dρ. (5.53)
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By introducing it into (5.50), and knowing that dS= −dSuφ = (0,−1, 0)dS, we have

∫ 2

1
Bz1dz +

∫ 4

3
Bz3dz = μ0

∫

�

(0, 0, j) · (0,−1, 0)dS = 0. (5.54)

Due to the aforementioned symmetry we cannot distinguish between two points
located over the same curve γ1, or γ3. This means that independently of the point
belonging to γ1 the value ofBz1 is the same for all points of this segment, andmust not
depend on z, otherwise we would have different values of Bz1 for the same distance to
the wire, breaking the translation symmetry in theOZ direction. The same reasoning
applies to Bz3 over the segment γ3. However, Bz1 must not be necessarily the same
as Bz3 because curves γ1 and γ3 are placed at distinct distances to OZ . This is the
reason why we have chosen a non-symmetrical square for applying the Ampère law.
Otherwise the integrals corresponding to this paths would have cancelled each other
out due to symmetry. Therefore we can write,

Bz1

∫ 2

1
dz + Bz3

∫ 4

3
dz = 0 ⇒ Bz1L − Bz3L = 0 ⇒ Bz1 = Bz3, (5.55)

where the minus sign appears due to the fact that the integrals over γ1 and γ3 are
calculated in opposite direction, and L is the length of the segment. This result shows
that the z component of the magnetic field is identical for all points, independently
of the distance to the wire, then it cannot depend on the ρ. Neither shall it depend on
z, nor φ, because it contradicts the argument of symmetries previously done. From
this it follows that Bz1 = Bz3 = C, where C is a constant undetermined. This result
is ambiguous, as it shows that Bz is constant for every point but does not say what is
its value. In order to determine the constant C let us imagine that we repeat the last
calculations but not over the original curve γ, but for another rectangle γ∗, similar
to γ in shape, but with Sects. 2.3 and 1.4 larger (Figs. 5.8 and 5.9). If this is done we
observe that the result obtained for Bz is identical to the first one. Then, apparently
we are not able to determine the value of the constant C.

As a last attempt let us consider the same calculation again, but choosing a rec-
tangular curve in which the lengths γ2 and γ4 are as large as possible (Fig. 5.9). The

Fig. 5.8 Rectangular curve
with longer sides

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_1
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Fig. 5.9 Rectangular curve
composed of very long
segments

Fig. 5.10 Plane curve for
applying the theorem

result is again the same, but there is a difference. In effect, it is known that a general
property of the magnetic field is that it must be a well defined function. It means that
the field must converge from far away from the currents, i.e. the wire in our case.
Therefore, theoretically, the field must tend to zero at infinity. Using this argument
we arrive at the conclusion that C has to be zero. As the physical reasoning followed
for all the curves chosen is the same, this result obtained must be valid for all of
them, thus we infer that the constant C is zero in any case, and then we can write
Bz = 0. To calculate the radial part of the field through (5.7), we must first find a
path over which Bρ appears when doing B · dl and, moreover, that is constant for
this radial component. To do so we look at the symmetries studied. In principle, a
possible curve may be a sector as showing in Fig. 5.10. This curve

∫ b

a
(Bρ1,Bφ1,Bz1) · (dρ, 0, 0) +

∫ c

b
(Bρ2,Bφ2,Bz2) · (0, ρdφ, 0) +

∫ d

c
(Bρ3,Bφ3,Bz3) · (dρ, 0, 0) +

(5.56)
∫ a

d
(Bρ4,Bφ4,Bz4) · (0, ρdφ, 0) =

∫ b

a
Bρ1dρ +

∫ c

b
Bφ2ρdφ +

∫ d

c
Bρ3dρ +

∫ a

d
Bφ4ρdφ.

However, when closely examining this closed path it is observed that it can not give us
the desired information because the integrals along (a–b) and (c–d) are the same but
in opposite directions, then they cancel each other, losing the information about Bρ.
For this reason, it is necessary to consider a different point of view for determining
the radial component.
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Fig. 5.11 Closed surface
used for applying flux
theorem

To calculate the radial component we may try (5.2) in its integral form, which
accounts for the flux of the magnetic field throughout a closed surface (see Chap.10).
The application of this equality differs from (5.7) because the integral must be taken
over a closed surface instead a closed curve. However, we can continue to use the
symmetries.

The only surface that retains some of the symmetries of the wire is a cylinder.
Thus, let us consider a cylinder-shaped surface of height h (Fig. 5.11) and radius ρ,
whose axis of revolution coincides with the wire. The closed surface may be divided
in three parts: the upper and lower bases, S1, S2, and the lateral surface SL. Applying
(5.2) we obtain

∮

S
B · dS =

∫

S1

B1 · dS1 +
∫

S2

B2 · dS2 +
∫

SL

BL · dSL = 0 , (5.57)

Setting, dS1 = dS1uz = (0, 0, 1)dS1, dS2 = dS2uz = (0, 0,−1)dS2 y dSL =
dSLuρ = (1, 0, 0)dSL , we have:

∫

S1

(Bρ1 ,Bφ1 ,Bz1) · (0, 0, 1)dS1+
∫

S2

(Bρ2 ,Bφ2 ,Bz2) · (0, 0,−1)dS2

+
∫

SL

(Bρl ,BφL ,BzL ) · (1, 0, 0)dSL =0.

Owing to the translational symmetry, the field that exists at a point P1(ρ,φ, z) on the
surface S1, has to be equal to another point P2 on S2 translated an amount h parallel
to the OZ axis, i.e. P2(ρ,φ, z − h). The same does not apply a point on the lateral
surface SL, because the distance to the rotation axis is different, so the magnetic

http://dx.doi.org/10.1007/978-3-662-48368-8_10
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field does not have to be identical to the other ones. However, due to the rotational
symmetry, all points on SL are equivalent since the distance of such a point to OZ is
the same, and therefore the modulus of the field is the same too. Putting dS1 = dS2
in the above equation we have

∫

S1
Bz1S1 −

∫

S1
Bz1dS1 +

∫

SL
BρdSL = 0 ⇒ Bρ

∫

SL
dSL = 0 ⇒ BρSL = 0 ⇒ Bρ = 0,

(5.58)
and then,

Bρ = 0. (5.59)

In conclusion we observe after all the calculus for each of the components of B,
the magnetic field created by a very long wire which carries a current I , only has
tangential component, thus the final expression is

B = μ0I

2πρ
uφ. (5.60)

5.2 A current of I = 2 A flows through a large cylindrical conductor of radius
R = 10 cm. Obtain: (a) The magnetic field B for ρ < R. (b) Idem for ρ > R.

Solution

(a) Let us suppose we have chosen a reference system in which the cylinder is placed
coinciding its revolution axis with the OZ axis. Due to the rotational symmetry of
the conductor, it seems appropriate to use (5.7) instead the Biot–Savart Law. To
calculate the magnetic field we have to define a curve for performing the integral.
Because of the aforementioned symmetry a circle is chosen (Fig. 5.12). Using polar
coordinates we can write for dl = (0, dl, 0), and for the current density (0, 0, j). By
using Ampère’s theorem we have

Fig. 5.12 a Plane view of
the current in direction of
OZ axis. The surface S is
delimited by the curve � of
radius ρ < R (S < Sc). b For
a point P exterior to the
cylinder the effective surface
is the same as the surface of
the conductor Sc, and it
corresponds to the
intersection between the
volume where the current j
exists and the surface S
whose border is the curve �

(S ∩ Vj = Sc)

(a) (b)
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∮

�

B · dl =
∮

�

(Bρ,Bφ,Bz) · (0, dl, 0) = μ0

∫

S
j · dS = μ0

∫

S
(0, 0, j) · (0, 0, dS),

(5.61)
and making the scalar products

∮

�

Bφdl = μ0

∫

S
jdS ⇒

∫ 2π

0
Bφρdφ = μ0

∫ 2π

0

∫ ρ

0
jρdρdφ. (5.62)

Due to its symmetry, the system is invariant under a rotation around the OZ axis,
then Bφ and j do not change over the curve � of radius ρ. For this reason we may
write

Bφρ

∫ 2π

0
dφ = μ0j

∫ 2π

0
dφ

∫ ρ

0
ρdρ ⇒ 2πρBφ = 2πμ0j

1

2
ρ2, (5.63)

that is

Bφ = 1

2
μ0jρ. (5.64)

This result depends on the current density j which is not given in the problem. We
must transform this expression to another where I appears. With this aim let us
employ the definition of intensity, i.e.

I =
∫

S
j · dS. (5.65)

In this problem we know the total intensity I through the conductor. Thus, applying
(5.65) to a surface of the conductor perpendicular to the current density j, it results

I =
∫ 2π

0
dφ

∫ R

0
ρdρ = jπR2 ⇒ j = I

πR2
, (5.66)

in the direction of the OZ axis. Combining this result with (5.64) we obtain

Bφ = μ0I

2πR2
ρ. (5.67)

(b) The calculation for an exterior point may be made in a similar form as shown
in the preceding paragraph, but choosing a curve that passes for the point to be
analyzed. In fact, applying the Ampère theorem to the curve � in Fig. 5.12b we have

∮

�

Bφdl = μ0

∫

S∩Vj

jdS ⇒
∫ 2π

0
Bφρdφ = μ0

∫ 2π

0

∫ R

0
jρdρdφ. (5.68)

Note that the integral of the right extends over the surface of radius R of the cylinder
and not ρ as seen in section (a). The reason for this is that, although the surface of
integration extends to ρ, the scalar product j ·dS is zero outside the conductor, where
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j is zero (Fig. 5.12). Therefore the integral extends to R, which corresponds to the
intersection between the surface S and the volume Vj where the current density flows
(S ∩ Vj). Integrating this latter expression we have

Bφ = μ0I

2πρ
, (5.69)

result similar to the obtained for the wire. For the other components of the magnetic
field can proceed similarly as we saw in Problem 5 obtaining the same result, i.e.
Bρ = Bz = 0.

5.3 Find the magnetic field created by a toroidal solenoid of N turns if the density
current that circulates is j.

Solution

A torus is the geometry that is the result of rotating a circle of radius R around an
axis coplanar with it (Fig. 5.13). The final surface may be mathematically described
by giving its minor and major radius, which are labelled in the figure by R1 and R2,
respectively. Roughly speaking it appears to be like a donut or a smooth wheel. In
our problem what we physically have is a wire wound around an imaginary torus,
obtaining a geometry as depicted in Fig. 5.14. As it may be observed, the curve
formed by the wire is like a spring screw (Fig. 5.15a). To calculate the tangential
component of the magnetic field we suppose that the wire is closely wound, then

Fig. 5.13 Torus of N turns
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Fig. 5.14 a Plane view of a toroidal solenoid. b The same figure in perspective. Observe that the
wire is closely wound

Fig. 5.15 a Winding of wire in form of a screw helix. b In this case the wire is closely wound,
then the solenoid may be illustrated as a set of N independent coils

the winding does not have space (Fig. 5.15b). Examining the symmetries of the
torus we can see that it is invariant under rotations around an axis that crosses its
geometrical center (OZ axis in Fig. 5.13). If we remember the explanations done
for the infinite wire, the symmetries show a way to solve problems simply. In the
present case we are dealing with the computation of the tangential component of the
field, where the system has symmetry. For this reason we will apply Ampère’s law
in lieu of the Biot–Savart integral. Due to the aforementioned rotational symmetry,
we choose cylindrical coordinates for the calculation. On the other hand for studying
the different parts of the torus, we divide the problem in three parts. The first one
corresponding to the inner solenoid (R1 < ρ < R2), and the otherwhen (0 < ρ < R1)

and (R2 < ρ < ∞), respectively. (a) (R1 < ρ < R2). For working this problem we
choose a curve � circular in shape, centered in the geometrical center of the solenoid
(Fig. 5.16). For calculating the flux of j corresponding to the right side of the Ampère
integral we choose an open plane surface and the element dl in clockwise direction,
then the normal to the surface is oriented in the negative direction of theOZ axis, i.e.
dS1 = −dS n1 = (0, 0,−1) dS. If we suppose, for instance, that the current density
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Fig. 5.16 Plan view of the torus. A circular curve � of radius ρ is chosen (R1 < ρ < R2)

follows the direction entering the surface, its expression at the intersection with the
surface S is (0, 0,−j).10 Introducing all these data in (5.7) we have

∮

�

(Bρ,Bφ,Bz) · (0, dl, 0) = μ0

∫

S1

(0, 0,−j) · (0, 0,−1)dS ⇒
∫ 2π

0
Bφdl =

∫

S1

jdS .

(5.70)

As we have mentioned previously, due to curve used for integration, the only com-
ponent that appears after the scalar product is Bφ which, on the other hand, must be
the same for all points on the curve � because of the symmetry of revolution. For the
surface integral of the second member, the domain of integration for the intensity is,
in principle, the surface S. However the integrand is zero except at intersections of
S with each one of the turns,11 then the intensity of current through the surface S,∫
S j · dS, is NI . Considering this, and putting the differential element of length dl in
polar coordinates, we have:

10The density current is tangent a each point of the toroidal solenoid, hence this expression is only
valid for points of intersection between j and dS. If the surface chosen for calculating the flux is
not planar, the components of j over dS would be different to (0, 0,−j) but the final result of the
Ampère law does not change.
11In this case S ∩ Vj corresponds to the section of the wire used in the coil (see Sect. 5.2).
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∫ 2π

0
Bφρdφ =

∫

S∩Vj
jdS = NI ⇒ Bφ

∫ 2π

0
ρdφ = NI ⇒ 2πρBφ = NI ⇒ Bφ = NI

2πρ
, (5.71)

that is,

Bφ = NI

2πρ
uφ (5.72)

(b) ρ < R1. To analyze this case we follow the same procedure as before. Let
us consider a circular curve � of radius ρ but now ρ < R1 (Fig. 5.17). As we have
seen when explaining Ampère’s law, the curvilinear integral of B over the curve �

depends on the net intensity crossing the open surface S. Bearing in mind this idea,
it is obvious that there is no net current traversing S, then

∫ 2π

0
Bφρdφ = 0 ⇒ Bφ

∫ 2π

0
ρdφ = 0 ⇒ 2πρBφ = 0 ⇒ Bφ = 0, (5.73)

that expressed in vectorial form gives

Bφ = 0. (5.74)

(c) ρ > R2. Let us now choose a curve � of radius ρ larger than R2 (see Fig. 5.18).
Again applying Ampère’s law, no differences are found in the integral of the field.
Following the same procedure as the preceding sections (a) and (b), a similar result
is obtained. However this is not the case of the intensity (right hand of (5.70)). In

Fig. 5.17 In this case j does not cross the surface S

(a) (b)

Fig. 5.18 a Curve � for ρ > R2. b Side view. The density j cross S once down and another up,
then the net intensity is zero
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effect, the density current j crosses the surface S once down and again up, the net
intensity crossing S is zero. For this reason we can write

∫ 2π

0
Bφρdφ = NI − NI ⇒ Bφ = 0 ⇒ Bφ = 0. (5.75)

In short we can say that a toroidal solenoid of N coils carrying a current I produces
a tangential magnetic field Bφ only inside, being zero at any point outside it.

5.4 Find the tangential component of the magnetic field corresponding to a closely
wound finite solenoid of length L, radius a, and n turns per unit length, carrying
a current I for ρ < a and ρ > a (Fig. 5.29).

Solution

To address the problemdifferentwaysmaybe used, and the difficulty of the resolution
depends, to some extent, on the initial suppositions about the geometry of the system.
If we observe an actual solenoid it consists of a wire of diameter d wound in a helix. If
the pitch of the helix coincides with d the coil is said to be closely wound (Fig. 5.19b).
On the contrary, if we augment the pitch it does not (Fig. 5.19a). However, even
though it occurs the calculation of the field may be not easy. In effect, in both cases,
due to the finiteness of the solenoid and the form of the turn, we do not have either
translational symmetry nor rotational invariance, hence the use of Ampère’s law does
not apply (it is not of practical use). For this reason the first possibility is to employ
the Biot–Savart integral and directly see the tangential field component at the end of
the calculation. Another similar method, however tedious too, would be to calculate
the vector potential (5.26) and its curl. However, these procedures are usually of
high complexity, for it requires the integration along the parametric equations of the
helical curve.

But the problem actuallymay be simplified if we suppose that, besides that the coil
is closely wound, the diameter of the wire is very thin. In this case we might neglect
the pith of the helix, thus the solenoid would be equivalent to a set of independent
rings carrying a current I (Fig. 5.20). The advantage of this new configuration is that
it has rotational symmetry, hence allowing us to use Ampere’s law as we have seen
previously. But in order to do this simplification, what does thinmean? 0.5 cm? If not,
1 mm? 0.1mm? To intuitively answer this question it is enough to look at Fig. 5.19.
In effect, if the angle formed for the coils with respect to the plane perpendicular
to the OZ axis is very small, then it means that the wire is thin. However, we need
to make this intuitive idea more specific for applying it to actual problems. Even
though each problem may require different conditions, a possible criterium could be
the following (Fig. 5.21)

tan(α) = d

2a
<< 0.0025, (5.76)

which corresponds to a solenoid of D = 2a = 4 cm and diameter of the wire
d = 1 mm.
Supposing condition (5.76) holds, let us first begin with the calculation of the field for
a point ρ < a. To this aim for performing the line integral of B(r) we choose a curve
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(a) (b)

Fig. 5.19 a Finite solenoid of radius a for a pitch greater than the diameter of the wire. b Closed
wound solenoid. Due to the dimension of the diameter, although the helix pitch coincides with d,
the turn wire is inclined with an angle α with respect to a plane perpendicular to the OZ axis

(a) (b)

Fig. 5.20 a Finite solenoid of radius a. b Curves �1 and �2 for ρ < a and ρ > a

�1 circular in shape, concentric with the coil and contained on a plane perpendicular
to the OZ axis (Fig. 5.22a and b). With respect to the open surface for calculating
the flux of B(j), as we have seen in the problem (5.1) we can use a plane, due
to its simplicity. In the present case we have j(r′) = (0, jφ, 0), n = (0, 0, 1) and
dl′ = (0, dl′, 0). Introducing them into (5.7) we get

∮

�1

(Bρ,Bφ,Bz) · (0, dl, 0) = μ0

∫

S
(0, jφ, 0) · (0, 0, 1)dS = 0, (5.77)
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Fig. 5.21 Solenoids of different lengths and radii

Fig. 5.22 a Plane view
of the curve �1 and
j(r′) = (0, jφ, 0). b Side
view of the finite solenoid of
radius a. Observe that there
is no flux of j through the
surface S

(a) (b)

then

∫ L

0
Bφdl = 0 ⇒ Bφ = 0. (5.78)

Therefore, the tangential magnetic potential of a finite coil is zero. For a point ρ > a
the procedure is the same, but by choosing a curve of a larger radius. In that case we
again obtain identical result.

Observe that the results obtained does not depend on the high z at which the curve
�i (i = 1, 2) is located with respect to the solenoid.

5.5 A circular loop of radius a and constant current I is located at the coordinate
origin as shown in Fig. 5.23. Obtain the magnetic field B at a point P(0, 0, z).
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Fig. 5.23 Circular loop
carrying a current I

Solution

As the current flows through a filament the Biot–Savart law (5.26) may be used
directly. To evaluate the field at P, we must first find the coordinates of the sources
(primed) and the field coordinates (unprimed). The radius vector from the coordinate
origin to the source (current) is,

r′ = (x′, y′, 0),

and for the field point
r = (0, 0, z).

Besides the differential element of curve dl′ is

dl′ = (dx′, dy′, 0),

and the radius vector from the source to the field point

(r − r′) = (−x′,−y′, z).

With these data we can perform the vectorial product appearing in (5.26) and the
integral. In fact, introducing these vectors in (5.26) we obtain

dl′ × (r − r′) = zdy′ux − zdx′uy + (xdy′ − y′dx′)uz , (5.79)

thus,

B = μ0I

4π

{∮

�

zdy′ux − zdx′uy + (xdy′ − y′dx′)uz
(x′2 + y′2 + z2)3/2

}
, (5.80)

and separating the integral into components

B = μ0I

4π

{∮

�

zdy′
(x′2 + y′2 + z2)3/2

ux −
∮

�

zdx′
(x′2 + y′2 + z2)3/2

uy +
∮

�

(xdy′ − y′dx′)
(x′2 + y′2 + z2)3/2

uz

}
.

(5.81)
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Due to the symmetry it is convenient to write the coordinates of the source in term
of polar coordinates, i.e.

B = μ0I

4π

{∫ 2π

0

za cosφ′dφ′
(a2 + z2)3/2

ux +
∫ 2π

0

za sin φ′dφ′
(a2 + z2)3/2

uy +
∫ 2π

0

a2(cos2 φ′ + sin2 φ′)dφ′
(a2 + z2)3/2

uz

}

.

(5.82)

For an arbitrary point over the OZ axis, the denominator of each summand of the
above expression is a constant magnitude, so it can be taken outside the integral,

B = μ0I

4π

za

(a2 + z2)3/2

∫ 2π

0
cosφ′dφ′ux + za

(a2 + z2)3/2

∫ 2π

0
sin φ′dφ′uy + a2

(a2 + z2)3/2

∫ 2π

0
dφ′uz.

(5.83)
The first and second integrals are zero, then we have

B = μ0I

4π

a2

(a2 + z2)3/2

∫ 2π

0
dφ′uz = μ0Ia2

2(a2 + z2)3/2
uz, (5.84)

and the final expression for the loop field

B(z) = μ0Ia2

2(a2 + z2)3/2
uz. (5.85)

5.6 A metallic ring of radius a is centered at the origin and lying in the z plane. If
the circulating current I is constant, obtain the magnetic vector potential at point
(0, 0, z). Do these results hold for calculating the magnetic field over the rotation
axis OZ?

Solution

This problem may be solved by directly applying (5.23). With this aim we start by
setting the field and source coordinates, and the differential vector line element, i.e.
r = (0, 0, z), r′ = (x′, y′, 0) and dl′ = (dx′, dy′, 0). Introducing these data in (5.23)
it results,

A(r)= μ0I

4π

∮

�

dx′ux + dy′uy
(x′2 + y′2 + z2)1/2

= μ0I

4π

{∮

�

dx′

(x′2 + y′2 + z2)1/2
ux +

∮

�

dy′

(x′2 + y′2 + z2)1/2
uy

}
.

Due to symmetry we may use polar coordinates to compute the integrals obtaining

A(r) = μ0I

4π

{∫ 2π

0

−a sin φ′dφ′
(a2 + z2)1/2

ux +
∫ 2π

0

a cosφ′dφ′
(a2 + z2)1/2

uy

}

= μ0I

4π

{
−a

(a2 + z2)1/2

∫ 2π

0
sin φ′dφ′ux + a

(a2 + z2)1/2

∫ 2π

0
cosφ′dφ′uy

}

= 0 .
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(b) At first sight this results seems to be useful to calculate the magnetic field at
any point P over the OZ axis. However, as we shall show this assumption leads to a
contradiction. In fact, introducing the value of the magnetic vector potential obtained
into (5.11) we have

A = 0 ⇒ B = ∇ × A = ∇ × 0 = 0, (5.86)

then the magnetic field created by a circular loop of radius a, at any point of coordi-
nates (0, 0, z) is zero, which contradicts (5.85). This result leads to two possibilities
either (5.85) is wrong and the new value for B is valid, or we have not proceeded
properly in some of our explanation when calculating the magnetic field through
A (5.86).

The reason for this contradiction is that we have applied the (5.11) incorrectly. If
we examine (5.11), we see that to determine the magnetic field at a generic point P
we have to do certain partial derivatives of the vector potential. A derivative gives
us information about how a function varies in the neighbor of the point. This, from
a mathematical point of view requires not only the knowledge at P of the function
to be derived but also the values that it takes around this point. In our case we only
know the vector potential at point (0, 0, z), then it is not possible to calculate the curl.
Thus, the result (5.86) does not mean that the magnetic field is zero, simply shows
that the procedure employed is wrong. To calculate B from A we have to calculate
first the magnetic vector potential at a generic point P(x, y, z) of space. As a result
we have the value of the function at P and its surroundings (in a ball Bε(P) of radius
ε centered at P), and we can compute the rotational. To finish, particularize the value
of the rotational (field B) for the point under study (in our case (0, 0, z)) (Figs. 5.24
and 5.25).

Fig. 5.24 Coil of radius a = 4cm. a Lateral view with a magnetometer located at its center.
bMagnetic field registered for an intensity I = 4 A. The field of 6 · 10−5 T coincides with the field
calculated theoretically
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Fig. 5.25 Finite wire of
length L = L1 + L2

Fig. 5.26 This complex
system may be divided into
two parts, one of them
corresponding to the
segment from −L1 to L2, and
the other one to the rest of
the circuit

5.7 Find the magnetic field produced by a finite straight wire of length L carrying a
steady current I , in a point P(x, y, z).

Solution

Before solving the problem it is worthy to make a clarification. If we analyze the
exercise rigourously we find that, in principle, what we want to calculate makes
no sense. The reason for this lies in the fact that an open circuit cannot circulate a
stationary current, and therefore the computation of the field is irrelevant. Observe
that the Biot–Savart integral must be taken over a closed curve (5.26). In order to
make sense, the problem needs to be reformulated. In fact, what we should actually
say when calculating fields of open conducting filaments is: assuming a system
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as in Fig. 5.26 (or similar), obtain B(r) at P(x, y, z), belonging only to a straight
segment of length L. Physically it means that we are interested in only in the field
contribution owing to this segment, even though the rest of the circuit produces a
magnetic field, too. Bearing in mind this idea, let us apply first the Biot–Savart law
to all the conductor of Fig. 5.26. We divide the interval of integration in two parts,
one of them corresponding to segment of length L, and the other one to the rest,

B(r) = μ0I

4π

∮

�

dl′ × (r − r′)
|r − r′|3 = μ0I

4π

∫ L2

−L1

dl′ × (r − r′)
|r − r′|3 + μ0I

4π

∫

rest of the circuit

dl′ × (r − r′)
|r − r′|3 .

(5.87)

Observe that the separation of the integral in two summands (5.87) is but the prin-
ciple of superposition of fields. From these two parts we only calculate the integral
corresponding to the straight wire, which is the only part that interests us,

μ0I

4π

∫ L2

−L1

dl′ × (r − r′)
|r − r′|3 (5.88)

Proceeding in this way, the initial contradiction disappears, allowing us to solve the
problem (the procedure explained has general validity, and can be applicable to any
problem).

In order to compute (5.26), we must write the value of r and r′. The variables
with prime represent source points, which are our variables of integration. Points
denoted without prime are called field points, and they show places at which we
calculate B. In our case we have: r = (x, y, z), r′ = (0, 0, z′) and dl′ = (0, 0, dz′),
thus dl′ × (r − r′) = −ydz′ux + xdz′uy, and introducing them into (5.26),

B(r) = μ0I

4π

∫ L2

−L1

−ydz′ux + xdz′uy
[x2 + y2 + (z − z′)2]3/2 . (5.89)

This integral may be decomposed into two parts,

B(r) = μ0I

4π

{
−y
∫ L2

−L1

dz′

[x2 + y2 + (z − z′)2]3/2 ux + x
∫ L2

−L1

dz′

[x2 + y2 + (z − z′)2]3/2 uy
}

= (−yux + xuy)
μ0I

4π

∫ L2

−L1

dz′

[x2 + y2 + (z − z′)2]3/2

= (−yux + xuy)
μ0I

4π

[ −(z − z′)
(x2 + y2)[x2 + y2 + (z − z′)2]1/2

]L2

−L1

.

Remembering the study of the symmetries done in the problem of the metallic wire,
we can also see that the finite wire has symmetry of revolution as well, thus it seems
useful to introduce cylindrical coordinates for the field points (it does not affect the
variable of integration). Therefore we can write x = ρ cosφ and y = ρ sin φ, where
ρ represents the distance from point P(x, y, z) to the OZ .
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(a) (b)

Fig. 5.27 a α1 y α2 are measured with respect ρ, ρ being the segment perpendicular to the OZ
axis (it does not depend on the length of the finite wire). b Plot of B = B(ρ, z) for symmetric wire
of L = 2m

(a) (b) (c)

Fig. 5.28 a P(x, y, z < L2). b P(x, y, z = L2). c P(x, y, z > L2). Observe that ρ is always
perpendicular to an imaginary line across the wire

B(r) = μ0I

4π

[
−(z − z′)

ρ2
√

ρ2+(z − z′)2

]L2

−L1

(−ρ sin φux + ρ cosφuy)= (5.90)

μ0I

4π

[
−(z − L2)

ρ
√

ρ2+(z − L2)2
− −(z + L1)

ρ
√

ρ2+(z + L1)2

]

uφ .

This result may be expressed in an easier form if we look at the geometrical signifi-
cance of its two terms. From Fig. 5.27, we have:
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B(r) = μ0I

4πρ
(sinα1 + sinα2)uφ. (5.91)

where α1 and α2 are the angles between ρ and the straight lines that join such a
point P(x, y, z) with the top and the bottom of the wire, respectively. Taking into
account the discussion at the beginning of the problem, the approach of the problem
may appear to not make sense, because a finite wire cannot have a stationary current
flowing through it. The result is important because many electromagnetic systems
are composed of electrical elements, some of them are straight segments, requiring
knowledge of themagnetic field created for the entire system. In this case, by applying
the superposition principle of linear fields, we can find an easy way for calculating
the magnetic field. Before finishing the exercise, it is worthy to comment about the
application of (5.91), when the coordinate z of point P at which the magnetic field
must be calculated is greater thanL2 or smaller than−L1. To understand the procedure
let us begin with the geometry shown in Fig. 5.28a. In that case, the coordinate z
belongs to the interval (−L1 < z < L2), and the angles α1 and α2 are both positives
over the distance ρ. If we displace point P parallel to theOZ axis over the lineM, the
angleα1 increases andα2 decreases to zero, when the coordinate z = L2 (Fig. 5.28b).
If we go higher still, we reach the picture of Fig. 5.28c. Here α1 continues increasing
and α2 becomes negative respect to ρ. The same result may be obtained from (5.90)
by putting any value of z > L2. On the other hand it should be noted that ρ must be
drawn perpendicular to the axis of symmetry of the wire (in our case the OZ axis),
even though there is no filament (see Fig. 5.28c).

5.8 Find the magnetic field produced by a very large straight wire carrying a steady
current I , in a point P(x, y, z), by using (5.91).

Solution

Aswe will demonstrate, we can solve the problem in an easy way, by applying (5.91)
directly. In effect, when extending the segment of length L at its ends, a very large
wire is achieved. Geometrically, the larger the wire, the larger the angles and its limit
should hold α1 = α2 = α = π/2. By introducing these values into (5.91), we have

B(r) = μ0I

4πρ
(2 sinα)uφ = μ0I

2πρ
uφ , (5.92)

result which agrees with (5.60).
The use of the Biot–Savart law has the advantage that its application gives the

solution to the three components of the magnetic field.We do not need symmetries or
something else to apply it. However, the disadvantage is that its calculation may be
highly difficult needing the use of numerical techniques. On the contrary, Ampère’s
law is usually easier, but is application is restricted to systemswith a certain degree of
symmetry, and we need different integration curves for each component (Fig. 5.29).

5.9 A solenoid of length L, radius a and n turns per unit length, is carrying a
current I . Find the magnetic B at a generic point P(0, 0, z) over the OZ axis.
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Fig. 5.29 Finite solenoid of
length L and radius a

Fig. 5.30 Section of the
solenoid. Note how the loops
dN are displaced a distance
z′, with respect to the origin
O. Mathematically it
corresponds to a shift over
the OZ axis

Solution

To resolve this exercise, we can adopt two different points of view. The first one
is to assume that the solenoid is closely wound, so that it is equivalent to a set of
independent coils with radius a. The second, completely equivalent, is to see the
solenoid not as a set of independent rings but rather as a conducting sheet on which a
tangential density current circular in shape flows. Starting from the first model for the
solenoid, we are dealing with the calculation of the magnetic field at a point z over
the axis of revolution of the system. To do so, we first compute the field produced by
a differential loop of current located at z′, and then we add the contributions of all
rings by integrating over the total length of the solenoid. Using the reference frame
of Fig. 5.30, the magnetic field B at point P(0.0, z) due to dN coils situated at z′ with
respect to the origin of the coordinates is

dB(P) ≈ μ0dNIa2

2
[
a2 + (z − z′)2

]3/2 uz. (5.93)

As we can see in the denominator of this equality appears (z − z′), and not z′ which
is a consequence of the location of the element dN . At first glance it seems easier to
choose the current loops dN at the origin of coordinates and then integrate. However
this is not possible, because if we take a differential element at the origin (0, 0, 0),
the variable of integration z′ in the denominator disappears automatically, making an
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error in the calculus. We must always take the current elements (or charges) located
at generic points.

Now we must integrate (5.93), however we have a problem because in this ex-
pression two variables appear, z′ and N . For this integration we should have one
independent variable, then it is necessary to find the function that relates to both
variables. To do this we can use the definition of number of turns per unit length,
n = N

l , which is a known quantity. However, taking into account the viewpoint
followed at the beginning of our reasoning, we need a relationship between the two
differential quantities. For this reason we may employ the definition of n in differ-
ential form,

n = dN

dz′
, (5.94)

which represents the number of turns per unit length referred to the symmetry axis of
the solenoid. This result is important because it allows us to obtain dN as a function
of dz′. In fact, by using the concept of differential of a function we have12

dN =
(
dN

dz′

)
dz′ = ndz′ . (5.95)

Introducing this result into (5.93) we obtain:

dB(P) = μ0Ia2ndz′

2
[
a2 + (z − z′)2

]3/2 , (5.96)

which depends on the variable z′ only. Once the field produced by a differential of
loops is known, the total magnetic field B produced by the system is computed by
integrating (5.96),

B(P) =
∫ L

0

μ0Ia2ndz

2
[
a2 + (z − z′)2

]3/2 = μ0Ia2n

2

∫ L

0

dz
[
a2 + (z − z′)2

]3/2 = (5.97)

μ0Ia
2n

2

[
−(z − z′)

a2
[
a2 + (z − z′)2

]1/2

]L

0

= μ0In

2

[
−(z − L)

[
a2 + (z − L)2

]1/2 − −z
[
a2 + z2

]1/2

]

.

This is the expression for the magnetic field B produced by a solenoid at a point
over its revolution axis (in our case the OZ axis). The sense of the field depends on
the sign of the intensity current. Equation (5.97) may be simplified if we take into
consideration the geometry of the solenoid (Fig. 5.31).

12Notice how dN is not obtained directly from (5.94) by multiplying n by dz′ from the member
on the right. This is not possible since mathematically it is not correct to multiply and divide by
differential quantities; for this reason we have used the definition of differential on dN directly.
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Fig. 5.31 Final scheme for calculating the magnetic field along the symmetry axis. αi (i = 1, 2)
corresponds to the angle between the segment joining the point P(0, 0, z) and the last coil on the
right (left) of the solenoid and the OZ axis

In fact, by analyzing the two parts that appear in (5.97) we see that the quotients
in the bracket correspond to the cosines of the angles formed by the semi-straight
line joining the upper extreme of the solenoid and the Oz axis, thus it holds

cosα2 = −(z − L)
[
a2 + (z − L)2

]1/2 , cosα1 = z
[
a2 + z2

]1/2 , (5.98)

and for the magnetic field

B(z) = μ0In

2
(cosα1 + cosα2)uz, (5.99)

where α1 and α2 are measured positively with respect to OZ .
This equation, therefore, allows the magnetic field calculation of a finite solenoid

at any point over its axis of revolution, but care should be taken outside the length
of the coil. In fact, as we explained before (see problem for the finite wire), there
are locations in the space where the angles may change their sign (see Fig. 5.28),
and this case can also occur in a solenoid. To demonstrate this, let us consider a
point P(0, 0, z) for which z > L. For this situation α1 decreases and α2 increases
exceeding π

2 (Fig. 5.32). It means we can write α2 = (π − β) in (5.99), thus

B(z) = μ0In

2
(cosα1 + cos(π − β))uz = μ0In

2
(cosα1 − cosβ)uz, (5.100)

where β = arctan a
(z−L)

(Fig. 5.33).
As commented at the beginning, we canmodel the solenoid in anotherway. In fact,

as the coils are closely wound, we can face the solenoid as a conducting sheet over
which a tangential current density js flows. Physically this density current represents
the charge per unit time and per unit length (located on the surface) perpendicular to
movement of charges, i.e. (Fig. 5.34)

js = dI

dl
= IN

L
. (5.101)
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Fig. 5.32 Point P(0, 0, z) outside of the solenoid. Observe that the angle α2 exceeds π
2 , then

cos(α2) changes its sign

Fig. 5.33 Set-up for measuring the magnetic field created by a finite solenoid. The device is
composed by a DC generator, a multimeter, and a magnetometer. In the attached figure the head
sensor is located at a point over the revolution axis of the coil

(a) (b)

Fig. 5.34 a Density js is tangent to the surface at every point. It represents the charge per unit time
and per unit length perpendicular to the movement of charges. Observe that js has dimensions of
A/m. b Model of solenoid. The current now circulates over the surface of a conducting sheet
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Taking into consideration that (N/L) = n and that in this case the length perpendic-
ular to the current is the OZ axis, we can write

dI =
(
dI

dz

)
dz = js dz = IN

L
dz = nI dz, (5.102)

then

dB(P) ≈ μ0a2dI

2
[
a2 + (z − z′)2

]3/2 uz = μ0a2nIdz

2
[
a2 + (z − z′)2

]3/2 uz, (5.103)

which coincides with (5.93).

5.10 Through a solenoid of radius a very long length, flows a current I , find: (a) The
magnetic field B at a point P over its revolution axis. (b) The magnetic field in
any interior point (ρ < a). (c) Idem for (ρ > a).

Solution

(a) In a previous exercise we have demonstrated the magnetic field created by a finite
solenoid along the OZ axis. Now the problem deals with an analogous situation, but
when the length of the coil is very large. For finding the field it is not necessary to
repeat the calculation, on the contrary it is enough to apply (5.99) for our special
case. In fact, for a very large solenoid we can suppose the extremes of the solenoid
are far away from point P, then α1 = α2 ≈ 0 (see Fig. 5.31). Introducing these
values in (5.99) we have (Fig. 5.35)

B(z) = μ0In

2
(1 + 1)uz = μ0In uz. (5.104)

(b) The result obtained (5.104) represents only the magnetic field at any point
over OZ , but it is not valid for points out of the symmetry axis (OZ). Thus, (5.104),
in principle, does not solve the question, because we need to calculate the magnetic
field at any point inside of the system, i.e. at points that are not only located along
the OZ axis. For calculating the field at an inner point of the solenoid, we may use
Ampère’s Law. In fact, supposing that the the system may be treated as a set of
independent rings, it has symmetry of translation, and symmetry of rotation with
respect to OZ .

Let us suppose we choose a rectangular curve � as shown in Fig. 5.36a, and a
planar surface for calculating the flux of j. By dividing the integral of Ampère in four
paths, corresponding to each segment of the curve, and choosing dl in the clockwise
direction, we can write

∮

�

B · dl =
∫ 2

1
Bz1dz +

∫ 3

2
Bρ2dρ +

∫ 4

3
Bz3dz +

∫ 1

4
Bρ4dρ = μ0NI. (5.105)
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(a) (b)

Fig. 5.35 aMagnetic field over theOZ axis for a solenoid ofL = 30cm, n = 10,000, a = 4cm and
I = 0.5A, as function of distance z. Observe that the field is quasi-homogeneous in the geometrical
center and for a small interval around of L/2. b The same calculation but for L = 1m. In this case
the region where the field is practically uniform grows. From it we can imagine that if the lengths
of the solenoids are very large we reach a homogeneous field along the OZ axis (see (5.104))

A similar procedure was explained in the problem of the infinite wire. There we saw
that, due to the translation symmetry of the system, the integrals over the segments
(2–3) and (4–1) cancel each other out, because the path integrals are taken in opposite
directions. Then, the calculation refers only to the other segments,

∫ 2

1
Bz1dz +

∫ 4

3
Bz3dz = Bz1

∫ 2

1
dz + Bz3

∫ 4

3
dz = μ0NI ⇒ Bz1l − Bz3l = μ0NI,

(5.106)

where Bz1 is the field along the path (1–2) and Bz3 is the field along the path (3–4).
Therefore,

Bz1 − Bz3 = μ0NI

l
⇒ Bz1 = μ0nI + Bz3. (5.107)

The above equation depends on a constant to be determined. To obtain Bz3, let
us suppose we repeat the same calculation but over a similar rectangular curve �,
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(a) (b)

Fig. 5.36 a Curve �. b Curve � with two of its parallel segments elongated ((2–3) and (4–1))

whose segments perpendicular to the solenoid ((2–3) and (4–1)) are much longer
(Fig. 5.36b). The result we will obtain is identical. Hence, it is not possible to distin-
guish between them. In other words, the result does not depend on the curves we have
chosen. However, if the path (3–4) is far from the solenoid, as we have seen, the mag-
netic field must decrease rapidly because of its convergence. Thus, as Bz3 represents
the magnetic field over the segment (3–4), we conclude that Bz3 = 0, and then

Bz1 = μ0nI. (5.108)

This result means that the component z of the magnetic field is the same for any point
interior to a large solenoid. The procedure for finding Bφ is identical as explained
in the problem of the infinite metallic wire. The final result is that the tangential
component for the infinite solenoid is zero.With respect toBρ for the infinite solenoid,
we can integrate the Maxwell equation ∇ · B = 0 over a closed cylindrical surface
with radius ρ < R (Fig. 5.37a), as we made for the infinite wire. The result we obtain
is the same as there (5.59). The radial component of B is zero as well.

(c) For points exterior to the spool let us begin with Bz. We proceed as we have
seen, but now the curve � is located outside of the solenoid (Fig. 5.38). Employing
Ampère’s law we have

∫ 2

1
Bz1dz +

∫ 4

3
Bz3dz = Bz1

∫ 2

1
dz + Bz3

∫ 4

3
dz = 0 ⇒ Bz1l − Bz3l = 0. (5.109)
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Fig. 5.37 a Cylindrical
closed surface of radius
ρ < a. Idem for ρ > a

(a) (b)

Fig. 5.38 Curve � for
applying Ampère’s law. If
we enlarge the curve so that
points 3 and 4 extend to 3′
and 4′, far away from the
solenoid, we obtain the
same result

Observe that in this case the integral must vanishes because no current crosses the
open surface S, whose delimitation is �. From (5.109) follows that

Bz1l − Bz3l = 0 ⇒ Bz1 = Bz3, (5.110)

that is, the Bz is a constant. However, if we enlarge � to infinity, the result must be
equivalent, as we have shown in the section above. Then, Bz1 = Bz∞ which shows
that Bz is zero for any point exterior to the solenoid. For the components φ and ρ,
there are no differences in the way to calculate such projections. In effect, let us
look at Fig. 5.37b. Applying the equation of the flux of B for a cylinder of radius
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greater than the radius of the solenoid, we find that Bρ = 0. The same occurs with
the tangential component, Bφ = 0. The only difference is the radius of the curve �

to perform the integration.
The final result viewed in this exercise is that, a very large circular solenoid

whose coils may be considered as independent rings carrying a current I creates
only a magnetic field in its interior, and the exterior field is zero. Note that the field
for ρ < a is uniform (the same for all interior points), which is not true for a finite
solenoid.

Problems B

5.11 Using the the characteristics of the vector potential demonstrate the formula
(5.37).

Solution

As we have seen, the magnetic field B can be derived from a vector potential through
the relation

B = ∇ × A. (5.111)

Due to the circular symmetry of the system, we choose a plane surface delimited by
a circular curve �, whose revolution axis coincides with the symmetry axis of the
physical system to be studied (solenoid, hyperboloid, hemispherical cap, etc.). By
integrating over the open surface S (5.111) we obtain

∫ ∫

S
B · dS =

∫ ∫

S
∇ × A · dS, (5.112)

an expression that may be expressed by a curvilinear integral along the curve � by
applying the Stokes theorem,

∫ ∫

S
B · dS =

∮

�

A · dl, (5.113)

dl being the differential curve length. Equation (5.113) states that the magnetic flux
of the field B through an open surface S is equal to the circulation of the magnetic
potential vector along the delimiting curve of the surface. Employing (5.113) and
(5.35) and (5.36) together we have

∫ ∫

S
(Bρ,Bφ,Bz) · (0, 0, 1)dS =

∮

�

(Aρ,Aφ,Az) · (0, 1, 0)dl, (5.114)

thus, ∫ ∫

S
BzdS =

∮

�

Aφdl. (5.115)
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Substituting (5.35) into (5.115) it yields the relation between the potential vector and
the magnetic field

∫ ∫

S

∞∑

n=0

(−1)n
B(2n)
z (0, z)

22n(n!)2 ρ2ndS =
∮

�

Aφdl. (5.116)

Because of the symmetry the modulus of the component Aφ of the vector potential
takes the same values for all points belonging to the curve chosen �, then we can set
it outside of the integral

∞∑

n=0

(−1)n
B(2n)
z (0, z)

22n(n!)2
∫ ∫

S
ρ2ndS = Aφ

∮

�

dl, (5.117)

and integrating

Aφ2πρ =
∞∑

n=0

(−1)n
B(2n)
z (0, z)

22n(n!)2
∫ 2π

0
dφ

∫ ρ

0
ρ2nρdρ = 2π

∞∑

n=0

(−1)n
B(2n)
z (0, z)

22n(n!)2
ρ2n+2

(2n + 2)
. (5.118)

Taking into account that (n!)2(2n+ 2) = n! · n! · ((n+ 1) + (n+ 1)) = n! · (n! · (n+
1) + n! · (n + 1)) = 2n! · (n + 1)!· expression (5.118) may be written

Aφ =
∞∑

n=0

(−1)n
B(2n)
z (0, z)

22n+1n!(n + 1)! ρ2n+1, (5.119)

equation which coincides with (5.37).

5.12 In �3 there is a vector potential whose value may be represented by

A =
⎧
⎨

⎩

a
2 (x

2 + y2)uz if ρ < R1

0 if ρ > R1,

where a is a constant. Find: (a) The current density for any point of �3. (b) The
magnetic field Bφ for ρ < R1 using Ampère’s law. (c) The differential equation
of the magnetic field lines and its geometry for ρ < R1.

Solution

(a) For calculating the density current we can use (5.20), which gives the relation
between the laplacian of the vector potential and j

�A = −μ0j = 2a uz ⇒ j = −2a

μ0
uz, (5.120)

for ρ < R1. Notice that the density obtained has the same direction and symmetry as
the vector potential.
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For ρ > R1, the application of the same formula as before (5.120) leads to

�A = −μ0j = 0 ⇒ j = 0. (5.121)

(b) The current density calculated has cylindrical symmetry with respect to the
OZ axis. On the other hand we already know the mathematical expression of the
density current, so we try to calculate the tangential component of the magnetic field
B by means of Ampère’s theorem. By choosing a circular curve of radius ρ < R1 we
have
∮

�

B · dl = μ0

∫

S
j · dS = μ0I ⇒

∮

�

(Bρ,Bφ,Bz) · (0, dl, 0) = −μ0

∫

S

2a

μ0
uz · dS uz.
(5.122)

Making the scalar products of both sides it leads to

2πρBφ = −μ0
2a

μ0
πρ2 ⇒ Bφ = −aρ. (5.123)

(c) The differential equation of the field lines can be found by applying the following
equality (1.19)

dx

Bx
= dy

By
= dz

Bz
. (5.124)

Regrouping terms
dx

Bx
= dy

By
⇒ Bxdy = Bydx. (5.125)

To resolve this equation we need to introduce the field projections over OX and OY
axis. To do this, we transform (5.123) from cylindrical into cartesian coordinates

Bφ = −aρuφ = −aρ(− sin φux + cos φuy)

= −a(−ρ sin φux + ρ cos φuy) = −a(−y ux + x uy). (5.126)

Introducing these components into (5.125) and integrating we obtain

Bxdy = Bydx ⇒ aydy = −axdx ⇒
∫

ydy = −
∫

xdx ⇒ 1

2
y2 = −1

2
x2 + C,

(5.127)
C being a constant. Joining the variables x and y on a side

1

2
x2 + 1

2
y2 = C ⇒ x2 + y2 = 2C, (5.128)

which is the equation of a family of circles centered at the reference frame OXY .
This result agrees with previous problems where there was rotational symmetry.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
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5.13 Calculate the magnetic field B of a very large wire starting from the magnetic
vector potential.

Solution

The idea of this problem is to obtain the vector potential and thereafter the magnetic
field B by means of the relation B = ∇ × A.

In previous problems we have calculated the magnetic field of a wire by using
Ampère’s law and the Biot–Savart integral. Now we will obtain B by using (5.11).
To do so, we first need the vector potentialA and then we take its rotational. To apply
(5.23) we have to identify all quantities appearing in the integral. From Fig. 5.25
we see that r = (x, y, z), r′ = (0, 0, z′), and dl′ = (0, 0, dz′). Introducing them in
(5.23), and choosing the sense of the curve from below to above, we have

A = μ0I

4π

∫ L2

−L1

dz′
[x2 + y2 + (z − z′)2]1/2 uz = μ0I

4π

∫ L2

−L1

dz′
[ρ2 + (z − z′)2]1/2 uz

= μ0I

4π
ln

[
(z′ − z) +

√
ρ2 + (z′ − z)2

]∣∣
∣
∣

L2

−L1

= μ0I

4π

{
ln

[
(L2 − z) +

√
ρ2 + (L2 − z)2

]
− ln

[
(−L1 − z) +

√
ρ2 + (L1 + z)2

]}

= μ0I

4π
ln

[
(L2 − z) +

√
ρ2 + (L2 − z)2

]

[
(−L1 − z) +

√
ρ2 + (L1 + z)2

] .

The expression found corresponds to the vector potential of a finite wire. To calcu-
late the magnetic field of the complete conducting filament we extend the limit of
integration L1 and L2 to infinity and over the final mathematical expression, we take
the curl. However, this statement even though correct, sets up an important question,
as we will see. In fact, when computing the limit of (5.129) we find

lim
L1,L2→∞

μ0I

4π

[

ln
(z + L1) +√

ρ2 + (z + L1)2

(z − L2) +√
ρ2 + (z − L2)2

]

= ∞. (5.129)

This result does not make sense, because we already know that the magnetic field of
a wire is perfectly defined. It might suggest that the procedure followed is unsuitable
for calculating the field, however this is not true. Actually sometimes it occurs when
resolving some electromagnetic problems. The reasonmay be understood by looking
at the basic hypothesis on which the electromagnetic theory is found. If we do not
impose any restriction about the geometrical location of charges and currents in the
space (infinite), it is not possible to ensure a priori the convergence of the potentials
like A or V (r). On the contrary, a more realistic point of view for this situation is to
consider that the currents are confined to finite regions of the space, then conceptually
difficulties as shown in (5.129) disappear. However, even though we could adopt a
non-restricting start point like this, and the singularity of the vector potential remains,
it is possible to avoid the problem for the calculation of the magnetic field.
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In effect, let us again consider (5.129) for the finite thread. The trick is to evaluate
first ∇ × A on this wire of total length L, obtaining the magnetic field of a finite
filament, and then to take the limitwhenL1 andL2 tend to infinity over this expression.
Using cylindrical coordinates, we have:

B = ∇ × A = −∂Az

∂ρ
uz

= μ0I

4πρ

⎡

⎢
⎢
⎣

ρ
√

ρ2 + (L2 − z)2

(L2 − z) +√
ρ2 + (L2 − z)2

−
ρ

√
ρ2 + (z + L1)2

(−z − L1) +√
ρ2 + (z + L1)2

⎤

⎥
⎥
⎦

(5.130)

= μ0I

4πρ

[
L1 + z

√
ρ2 + (L1 + z)2

+ L2 − z
√

ρ2 + (L2 − z)2

]

uφ (5.131)

Now by making L1 and L2 very large, yields

μ0I

2πρ
uφ, (5.132)

a result that agrees with (5.92).
The conclusion we can highlight from this problem is that when having singu-

larities for the potentials like (5.129), due to the large regions over which currents
extend (infinite), calculate first the potential for a finite part of the system and then
take the limit when the variable becomes infinity. By means of this procedure the
difficulty disappears allowing us the calculation of the magnetic field.

5.14 InFig. 5.39, a toroidal solenoidwith radiusR = 10 cm,main radiusRm = 50 cm
and n = 100 is represented. The current circulating is Is = 0.1A. Together with
the torus, a finite conducting wire of length L = 1 m is placed symmetrically
along its revolution axis. If throughout the wire circulates a current Ih = 2 A,
find: (a) The magnetic field B at P1(Rm, 0, 0). (b) The magnetic field B at point
P2(1/2, 0, 1/2) m.

Solution

(a) Supposing that the currents across the wire and solenoid have no influence on
each other, we can figure out this problem as the superposition of two independent
problems consisting of two systems: the wire and the torus. Let us first focus our
attention on the finite wire. The filament is located symmetrically with respect to the
solenoid (see Fig. 5.39), then the anglesα1 andα2 are the same for this configuration.
By applying (5.91) for this case we have

Bh = μ0Ih
4πρ

(sinα1 + sinα2)uφ = μ0Ih
4πρ

2 sinα1 uφ = μ0Ih
2πRm

sinα1 uφ. (5.133)
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Fig. 5.39 System composed
by a torus and a finite wire

On the other hand, the field produced by the torus at point P may be calculated
directly through the (5.72). In fact, by setting ρ = Rm in this formula we can write

Bs = μ0NIs
2πρ

uφ = −μ0NIs
2πRm

uφ = −μ0nIsuy. (5.134)

Applying now the superposition principle of fields we find B, i.e.

B = Bh + Bs = μ0Ih
2πRm

sinα1 uφ − μ0nIsuy = μ0Ih
2πRm

sinα1 uy − μ0nIsuy = 1.2 · 10−5uy.

(5.135)

Observe that at point P1(Rm, 0, 0) the unitary vector uφ in (5.133) coincides with uy.

(b) For this second part of the problem, the idea is the same but not the point
P where the magnetic field must be calculated. If we look at the data, point
P2(1/2, 0, 1/2) corresponds to the case shown in Fig. 5.28b. By setting L = 1 m
and ρ = Rm = 0.5 we have α1 = 0 and α2 = arctan(L/Rm) = 63.4◦, then

Bh = μ0Ih
4πRm

(0 + sinα2)uy = 3.6 · 10−7uy. (5.136)

5.15 Figure5.40 represents a long region with rotational symmetry about the OZ
axis that consists of two zones. The first one is a cylinder of radius R1 = 5
cm and altitude h, very large, and the second region is a cylinder with inner
and external radius R1 = 5 cm and R2 = 10 cm, respectively. For the first
region flow np = 1019 m−3 protons with velocity vp = 1000 �uz m/s, and for
the second (R1 < ρ < R2) ne = 1017 m−3 electrons with velocity ve = 500
uz m/s. Find: (a) The magnetic field �Bφ for any point such that (0 < ρ < R1).
(b) The magnetic field Bφ for a generic interior point to the hollow cylinder
(R1 < ρ < R2). (c) Supposing the conditions of the inner region (0 < ρ < R1),
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Fig. 5.40 Cylindrical region

determine the increment of the electron density �ne in (R1 < ρ < R2) in order
for the magnetic field Bφ to be zero in any point P(ρ > R2). Consider the
electrons are homogeneously distributed in the volume.

Solution

(a) The system represented in the figure attached is symmetric under translations
and rotations. This means that the magnetic field produced must be the same when
translating the reference system parallel to theOZ axis or when rotating the reference
frame aboutOZ . For this reasonwe can try to solve the exercise bymeans ofAmpère’s
theorem (see problem of the infinite wire). With this goal we have to use (5.7),
however, as we can notice in the statement of the problem, no density current is
given, then we cannot perform the right hand of (5.7). Nonetheless we are able to
calculate j for each region of the space with the numerical values corresponding to
the particles velocities. In fact, remembering the definition of density current, we can
write for the protons

jp = npqpvp = 1062 uz, (5.137)

and for the electrons
je = neqeve = −8uz. (5.138)

For the calculation of the field for a distance smaller than R1, only the protons
contribute to generateB. In effect, as we explained Ampère’s law in the introduction,
the circulation of the magnetic field over a closed curve � only depends on the net
intensity crossing the open surface whose delimiting curve is �, therefore, protons
and electrons outside the curve do not play any role. Applying the Ampère theorem
for a curve � and a surface Sp = S ∩ Vj as shown in Fig. 5.41 we obtain

∮

�

B · dl =
∮

�

(Bρ,Bφ,Bz) · (0, dl, 0) = μ0

∫

S
jp · dS = μ0

∫

S
(0, 0, jp) · (0, 0, dS),

(5.139)
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Fig. 5.41 Plane view of the current in direction of OZ axis. The surface S is delimited by the
curve � of radius ρ < R1. The effective surface Sp for performing the flux of jp corresponds to the
intersection between the volume, where the current jp exists and the surface S whose border is the
curve � (S ∩ Vj = Sp)

Fig. 5.42 a Plane view of the current of electrons and protons. The surface S* is delimited by the
curve �. For a point P in the region R1 < ρ < R2 the effective surface of integration S∗ is divided
in two parts. The first one S1 and the second S2 that corresponds to the intersection between the
volume where the electrons move and the total surface S∗ (S2 = S∗ ∩ Vje = (πρ2 − πR2

1))

∮

�

Bφdl = μ0

∫

Sp=S∩Vj

jpdS ⇒
∫ 2π

0
Bφρdφ = μ0

∫ 2π

0

∫ ρ<R1

0
jpρdρdφ. (5.140)

Due to the symmetries mentioned, the system is invariant under a rotation about the
OZ axis, then Bφ and jp do not change over the curve � of radius ρ. For this reason
we may write

Bφρ

∫ 2π

0
dφ = μ0jp

∫ 2π

0
dφ

∫ ρ<R1

0
ρdρ ⇒ 2πρBφ = 2πμ0jp

1

2
ρ2, (5.141)

hence

Bφ = 1

2
μ0jpρ. (5.142)

This result tells us that the tangential component of the magnetic field varies linearly
with distance to the OZ axis (Fig. 5.42).

(b) The magnetic field for (R1 < ρ < R2) may be computed in the same way,
because the symmetries apply to this case as well. When applying Ampère’s law we
must divide the surface of integration S∗ in two parts, one corresponding to S1 = πR2

1
where protons move, and the other S2 where electrons displace (surface between S∗
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and S1), i.e. S2 = πρ2 − πR2
1 (see Fig. 5.2b). In fact, setting S∗ = S1 + S2 in (5.7),

we have
∮

∂S
B · dl = μ0I = μ0

∫

S∗
j · dS = μ0

∫

S1

jp · dS + μ0

∫

S2

je · dS. (5.143)

Observe that with the nomenclature shown in Sect. 5.2 (see Fig. 5.2) S1 = S∗ ∩Vjp =
πR2

1 and S2 = S∗ ∩ Vje = (πρ2 − πR2
1). Integrating (5.143) yields

2πρBφ = μ0jp

∫ 2π

0
dφ

∫ R1

0
ρdρ + μ0je

∫ 2π

0
dφ

∫ ρ<R2

R1
ρdρ = μ0[jpπR2

1 + je(πρ2 − πR2
1)],

(5.144)
and then the tangential component of the field

Bφ = μ0

2ρ
[jpR2

1 + je(ρ
2 − R2

1)] = 6.2 · 10−7

ρ
[4 − 8(ρ2 − 0.01)]. (5.145)

(c) Before beginning tomake calculations, we try to understand the question. If we
would compute Bφ for a point P(ρ > R2) using density currents (5.137) and (5.138),
we would obtain, in principle, a magnetic field distinct from zero. The question that
arises is, how many electrons must be added in the hollow cylinder in order to have
no magnetic field in the exterior region of the system. To investigate it, we first have
to calculate the field outside R2 supposing an unknown density current j′e for the
electrons, and later imposing the condition of zero magnetic field. With this aim,
let us determine Bφ for a generic exterior point by means of Ampère’s theorem. In
this case we do not have density current outside R2, then the effective surface of
integration S∗ is S1 + S2, distinct to S (see Fig. 5.43). As a result, proceeding in the
same way as shown in (5.144) we obtain

Bφ = μ0

2ρ
[jpR2

1 + j′e(R
2
2 − R2

1)] = 0 ⇒ jpR
2
1 = −j′e(R

2
2 − R2

1). (5.146)

Notice that in this expression we have R2
2 instead of ρ2 (5.145). On the other hand,

employing the definition of current density we can write

Fig. 5.43 For a point P
belonging to ρ > R2, the
effective surface of
integration S∗ coincides with
S1 + S2 because outside of
this region there is not
current density (see
Fig. 5.2c)
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j′e = n′
eqve = (ne + �ne)qve, (5.147)

where �ne represents the increment of electrons in the hollow cylinder we must to
augment for obtaining zero exterior magnetic field. Resolving this equality we have

jpR
2
1 = −(ne + �ne)qe ve(ρ

2 − R2
1) ⇒ �ne = 6.6 · 1018. (5.148)

5.16 Figure5.44 represents a finite solenoid of length L = 80 cm, radius r = 3
cm and n = 1000 turns per unit length. The coil is crossed by a very large
conducting wire. The symmetry axis of the solenoid coincides with the axis
OY , and the wire is perpendicular to it and located on the OYZ plane. If the
currents circulating through the solenoid and wire are Is = 0.5 A Iw = 0.2
A, respectively, find: (a) The magnetic field B at the origin of the coordinate
frame. (b) The force on the wire.

Solution

(a) To calculate the magnetic field at point P(0, 0, 0) we apply the principle of
superposition of linear fields.

Let us first focus our attention to the field generated by the solenoid. For obtain-
ing its field we will directly use (5.99) because the point P is located on the line
corresponding to its symmetry axis (remember that (5.99) is only valid for points
belonging to the revolution axis of the coil). Thus, taking into consideration that the
revolution axis of the solenoid lies along the OY coordinate axis, we can write

By = μ0nI

2
(cos α1 + cos α2)uy. (5.149)

On the other hand, as the point P is located outside of the coils, one of the angles of
the cosine function is negative. In fact, from Fig. 5.45 we can see that α1 = (π − β),
and therefore

Bs = μ0nI

2
(− cos β + cos α2)uy = 9.2 · 10−5uy. (5.150)

Fig. 5.44 Finite solenoid
and very large conducting
wire
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Fig. 5.45 Due to the point P(0, 0, 0) is outside of the solenoid one of the angles is greater than
π

2

Fig. 5.46 Magnetic field lines of a solenoid

Once the magnetic field of the solenoid is obtained, the field B of the conducting
wire may be easily computed by means of (5.49)

Bh = μ0I

2πρ
ux = 8.9 · 10−8ux. (5.151)

Now, the resulting field at P is

Bs = Bh + Bs = 8.9 · 10−8ux + 9.2 · 10−5uy. (5.152)

(b) The force exerted on the wire may be calculated by means of (5.28). However,
some comment about it is needed before. In fact, when trying to apply (5.28) we
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Fig. 5.47 Observe that the in the central region the magnetic field is almost uniform

immediately see that we are not able to calculate it easily. In order to compute the
integral in (5.28), wemust first know themagnetic field created by the solenoid along
the wire.

In Problem 5we obtained the field generated by a finite solenoid at any point on its
symmetry axis, but not in space regions off of this axis. Therefore, if we would like
to determine the force exerted by the magnetic field of the coils along the conducting
wire, we have to calculate the field generated by the solenoid at a generic point
P(x, y, z) (Fig. 5.46), and then introducing it into (5.28) for computing the force.
This procedure, although correct, is very hard to come by. The calculation requires
the application of theBiot–Savart lawbydirect integration, or othermore complicated
techniques. However, by carefully examining the pose of the problem, we can avoid
the complicated calculus. In fact, if we look at the geometrical characteristics of the
systemwe can observe that we have a slender solenoid. By this nounwemean that the
coil is longer than wide, i.e. its length L >> r, r being the radius. As a consequence,
the field inside the solenoid where the wire is placed is almost homogeneous, and
outside of the coils the field strength is low. Thus, at first sight, we can neglect the
influence of the external field on thewire outside of the coils. Ultimately, even though
we do not accurately describe the magnetic field along all parts of the metallic wire,
nevertheless our simplification provides a reasonable way for solving the problem.
Taking into account the reasoning commented, we can consider that there exist a
uniform magnetic field along the segment of the wire inside of the solenoid (central
region in Fig. 5.47), and outside it no field. For the calculation we will suppose that
the internal field over the segment S (see Fig. 5.47) is the same, approximately, as
the magnetic field at the centre of the coil (point Q). Introducing α1 = α2 = α =
arctan(

2r

L
) = 4.3◦ into (5.149) we obtain

By(Q) = μ0nI

2
(cos α1 + cos α2)uy = μ0nI cosα uy, (5.153)

and then

F(r) = Ih

∫

�′ dl
′ × B(r) ≈ IhL × B = Ih(Luz × (μ0nI cosα uy)) = −IhLBux = 7.5 · 10−6ux N .

(5.154)
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5.17 In the region between two very large concentric cylinders of radius R1 and
R2 (R1 < R2), whose revolution axis coincides with OZ , flow ne = 1021

electrons per cm−3 (μr ≈ 1) (Fig. 5.48). Their velocities may be represented
by v = bρuφ, where b is a constant and ρ is the distance from a generic point
within the current to the OZ axis. Find: (a) The magnetic field Bφ in ρ < R1.
(b) The component Bz in the interval R1 < ρ < R2. (c) Idem if ρ > R2. Data:
R1 = 10 mm; R2 = 11 mm; b = 10 s−1

Solution

(a) For (ρ < R1). Taking into account that the system is invariant under rotations
around the OZ axis and translations parallel to the generatrix of the hollow cylinder,
the use of Ampère law seems to be adequate. To calculate the tangential component
of the field in the interior of the system, we choose a circular curve of radius ρ < R1

and a plane surface S. Proceeding in the same way as we have seen in other exercises,
we may write

∮

�

B · dl = μ0

∫

S
j · dS = μ0I ⇒

∮

�

(Bρ,Bφ,Bz) · (0, dl, 0) = μ0I. (5.155)

For determining Bφ we need the intensity through the surface S, but we do not know
its value. However, it is possible to calculate it by means of the particle velocities.
By using the definition of current density, we have

j = nqv = nqbρuφ. (5.156)

Taking into account that dS = (0, 0, dS)

∫

S
j · dS =

∫

S
(0, jφ, 0) · (0, 0, dS) = 0, (5.157)

Fig. 5.48 a Current density
in a cylindrical region
between the radii delimited
by R1 < ρ < R2. b Surface S
and circular curve � of
radius ρ < R1

(a) (b)
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then,
2πρBφ = 0 ⇒ Bφ = 0. (5.158)

(b) Let us again apply Ampère’s law over a rectangular curve directed counter-
clockwise, and a plane surface as shown in Fig. 5.49 (see Problem 5.1). Dividing the
curve � in four paths, we have

∮

�
(Bρ,Bφ,Bz) · dl =

∫ 2

1
B12 · dl12 +

∫ 3

2
B23 · dl23 +

∫ 4

3
B34 · dl34 +

∫ 1

4
B41 · dl41.

(5.159)

In order to obtain information for the z component of the field we suppose distinct
values for Bρ1 and Bz over each part of �, that is, Bi, for i = 1, 2, 3, 4. Introducing
dl12 = dzuz = (0, 0, dz), dl23 = dρuρ = (dρ, 0, 0), dl34 = dzuz = (0, 0, dz) and
dl41 = dρuρ = (dρ, 0, 0) in (5.159), we have

∫ 2

1
(Bρ1,Bφ1,Bz1) · (0, 0, dz) +

∫ 3

2
(Bρ2,Bφ2,Bz2) · (dρ, 0, 0) +

∫ 4

3
(Bρ3,Bφ3,Bz3) · (0, 0, dz)+

∫ 1

4
(Bρ4,Bφ4,Bz4) · (dρ, 0, 0) =

∫ 2

1
Bz1dz +

∫ 3

2
Bρ2dρ +

∫ 4

3
Bz3dz +

∫ 1

4
Bρ4dρ.

(5.160)
In the same way we have seen in Problem 1, the integrals along the line segment
(2–3) and (4–1) cancel each other out because are run in opposite directions, then

∫ 3

2
Bρ2dρ = −

∫ 1

4
Bρ4dρ, (5.161)

(a) (b)

Fig. 5.49 a Plane view of the current of electrons and protons. The surface S is delimited by
the curve �. For a point P in the region R1 < ρ < R2 the effective surface of integration S2
corresponds to the intersection between the volume where the electrons moves and the total surface
S (S2 = S ∩ Vje = (πρ2 − πR2

1))



280 5 Magnetostatics

which is also true if Bρ = Bρ(ρ). By setting this expression into the general Ampère
law (5.7), and dS = dSuφ = (0, 1, 0)dS for the differential surface element, we
have:

∫ 2

1
Bz1dz +

∫ 4

3
Bz3dz = μ0

∫

�

(0, j, 0) · (0, 1, 0)dS = μ0I. (5.162)

Let us calculate the intensity current through the plane surface S. Remembering that
j = nqbρuφ, the flux of the density current through the surface S is

I =
∫

S
j · dS =

∫ h

0

∫ R2

R1

nqbρdρdz = nqb
∫ R2

R1

ρdρ

∫ h

0
dz = 1

2
nqbh(R2

2 − R2
1)

(5.163)
and introducing it into (5.162) results

∫ 2

1
Bz1dz +

∫ 4

3
Bz3dz = μ0I = 1

2
μ0nqbh(R

2
2 − R2

1). (5.164)

As a consequence of the translation symmetry of the system, the magnetic fields Bz1
and Bz3 have a constant value over their respective integration paths, hence we can
locate them outside of the integrals,

Bz1h + Bz3h = μ0I = 1

2
μ0nqbh(R

2
2 − R21) ⇒ Bz1 = μ0I = 1

2
μ0nqb(R

2
2 − R21) − Bz3.

(5.165)

In this expression the constant Bz3 is not known yet. However its value may be
determined by using the same argument showed in the Problem 1 when calculating
the longitudinal component of the field for the conducting wire. In effect, if we
would have chosen a similar curve with the segments (2–3) and (4–1) very large,
we would not have observed any change in the final result. This means that this
new rectangular curve � has the same validity for obtaining the magnetic field. The
advantage of employing it is that we know that themagnetic fieldmust be convergent,
then at infinity it must vanish. For this reason we conclude that Bz3 = 0, hence

Bz1 = μ0I = 1

2
μ0nqb(R

2
2 − R2

1) = 0, 22T . (5.166)

(c) If ρ > R2, from the reasoning of the above section (see also Problem 5.1) we
see that B = 0.

5.18 A very large solenoid with radius a and n turns per unit length, is carrying a
current I1. In its interior two parallel conducting wires A y B are located. If the
distance between the wires is d, and their currents are IA and IB, respectively,
find: (a) The magnetic field generated by the solenoid and wire A at any point
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over the filament B. (b) The force exerted over the segment L of the wire B
between the points 1 and 2.

Solution

(a) For calculating the magnetic field exerted at any point on wire A, we can apply
the superposition principle of fields proceeding in two steps. In the first one we
determine thefield generated by the solenoid and in the secondweobtain themagnetic
contribution due to the wire B (Figs. 5.50 and 5.51).

As the wire A is located over the OZ axis of the reference frame, coinciding with
the symmetry axis of the solenoid, we can use the formula (5.99) for the field along
the revolution axis of a spool. Taking into consideration that the coil is very large we
can introduce α1 = α1 ≈ 0 in (5.99), thus

Bs = μ0nI1
2

(cos α1 + cos α2)uz = μ0nI1uz. (5.167)

On the other hand, the magnetic strength of a large conducting wire carrying an
intensity IA is (5.49)

BA = μ0IA
2πρ

uφ = μ0IA
2πd

uφ, (5.168)

Fig. 5.50 System of wires
and solenoid

Fig. 5.51 a Lateral section
of the system. bMagnetic
fields corresponding to the
wire and coils

(a) (b)
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ρ being the distance between the two wires, and considering uφ with respect a
coordinate system located on wire A. With these expressions the total field at any
point of wire B is

B = Bs + BA = μ0nI1uz + μ0IA
2πd

uφ. (5.169)

Notice that the resulting magnetic field has two components, one of them over uφ

and the other one over uz. The direction of the magnetic field forms an angle α with
the direction denoted by uφ whose value is

tanα = μ0nI1
μ0IA
2dπ

= 2ndπI1
IA

⇒ α = arctan

(
2ndπI1

IA

)
. (5.170)

(b) To calculate the force on wire B we must know the expression of the magnetic
field generated by filamentA, but this is the same as we have seen in the above section
for IB. The only difference is that in this new case we locate the reference system on
the wire A. By introducing (5.169) into (5.29)

F(r) = IB

∫

�′
dl′ × B(r) = IB

∫ 2

1
dl′uz ×

[
μ0nI1uz + μ0IA

2πd
uφ

]
=

−IB

∫ z+L

z

μ0IA
2πd

dz′ uρ = −μ0IAIB
2πd

∫ z+L

z
dz′ uρ = −μ0IAIBL

2πd
uρ. (5.171)

From this result we notice that the field produced by the solenoid has no influence
on the magnetic forced exerted over the segment L, because the direction of the field
B of the coil and the direction of the element dl′ are parallel.

5.19 The system in Fig. 5.52 is formed by two semi-infinite solenoids, of radii r = 5
cm and R = 10 cm, and n1 = 500 and n2 = 1000 turns per unit length,
respectively. The distance between the right side of the first coil to the origin
of coordinatesO is a = 10 cm, and the left top of the second solenoid is placed
at an unknown distance b. If the current through the solenoid is I1 = 1 A, and
through coil 2 the absolute value of the current is I2 = 2 A, find: (a) The sign
of I2 and the value of b for obtaining a magnetic field zero at point P(0, 0, 0).
(b) The value of the field at a pointP(0, y > 0, 0) placed at a very large distance
from the origin O.

Solution

(a) Due to the dispositions of the solenoids and the current of coil 1, we can deduce
the sign of the current I2 for obtaining zero magnetic field. In fact, applying the
rule of the right hand we see that the solenoid 1 creates a field at P over the positive
direction of theOY axis. Hence the magnetic field generated by 2 must be in opposite
direction, which happens if the current I2 flows from the bottom to top (clockwise).
Once we know the sign of this current, we can calculate the magnitude of I2. To do
this we will calculate the mathematical expressions of the magnetic fields generated
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Fig. 5.52 System of two
solenoids

for both solenoids at point P. As P belongs to the symmetry axis of the coils, we can
use (5.99), i.e.

By = μ0nI

2
(cos α1 + cos α2)uy. (5.172)

As the solenoids are very large by one of their extremes and the loci where we want
to obtain the field is outside the coil (see Fig. 5.32) α2 excedes π

2 and cosα2 has a
negative values (5.100), then we have

B1 = μ0nI1
2

(cos α1 − cos β)uy ≈ μ0nI1
2

(
cos 0 − a√

a2 + r2

)
uy. (5.173)

Let us call α′
1 and α′

2 the angles corresponding to the coil 2. Proceeding in the same
way as shown for the solenoid 1 it holds

B2 = μ0nI2
2

(− cos β′
1 + cos α′

2)uy ≈ μ0nI2
2

(
− b√

b2 + r2
+ cos 0

)
uy. (5.174)

Now applying the superposition principle of the linear fields we add both at P, and
we impose the condition that the total field be zero (5.174), resulting in

B = B1 + B2 = μ0nI1
2

(

cos 0 − a
√
a2 + r2

)

uy + μ0n(−I2)

2

(

− b
√
b2 + r2

+ cos 0

)

uy = 0 ⇒ b = 42.5 cm.

(5.175)

(b) As point P(0, y, 0) is located at a very large distance from the origin of the
coordinate frame α1 = 0, but α2 does not equal zero, even though it is very small.
Thus we can write (Fig. 5.53)

B1 ≈ μ0nI1
2

(
cos 0 −

(
1 − r2

a2

)
+ · · ·

)
uy = μ0nI1

2

r2

a2
uy, (5.176)
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Fig. 5.53 Point P(0, y, 0) located a very large distance on the right of the first solenoid. Notice
that α1 ≈ 0 and β = π − α2 is very small

Fig. 5.54 Point P(0, y, 0)
placed at the end of the coil 2

which tends to zero when a is very large. For the coil 2 the point P is viewed as
placed at the end of its right side (see Fig. 5.54), hence the magnetic field is

B2 = μ0nI2
2

(cos α′
1 + cos α′

2)uy = μ0nI2
2

(
1 + cos

π

2

)
uy. (5.177)

Considering these approximations, the total field at P is the following

B = B1 +B2 = μ0nI1
2

r2

a2
uy + μ0nI2

2
uy ≈ μ0nI2

2
uy = −1.25 · 10−3uy,T . (5.178)

5.20 A metallic ring of radius R holds a free charge Q. The ring begins to spin
around its revolution axis with an angular velocity � = (0, 0,ω). Find: (a)
The component Bz of the field at P(0, 0, z). (b) The magnetic field Bφ at P1 =
(0, y, z).

Solution

(a) The effect of the ring rotation around the OZ axis (see Fig. 5.55) is to create a
current, due to the charge movement. On the other hand, as a consequence of the
circular geometry of the ring, the system is equivalent to a coil of radius R carrying a
current I generated by the velocity of the charges. Accepting this physical model, the
first step for determining the magnetic field at a point over theOZ axis is to calculate
the current, and then the field corresponding to such a current. By employing the
definition of current, we have
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Fig. 5.55 Circular loop of
radius R. Observe that the
rotation makes the ring
equivalent to a coil of the
same radius carrying a
current I = λωR

I = Q

T
= Qv

2πR
= QωR

2πR
= Qω

2π
, (5.179)

T being the period of the rotation. This equation can be expressed in terms of the
linear density of charge. In effect, remembering its definition we may write

λ = Q

L
= Q

2πR
. (5.180)

Thus introducing (5.180) into (5.179) it holds

I = 2πRλω

2π
= λωR. (5.181)

Once the intensity is obtained, themagnetic fieldmay be computed by (5.85) directly,

B = μ0IR2

2(R2 + z2)3/2
uz = μ0λωR3

2(R2 + z2)3/2
uz. (5.182)

(b) Due to the circular symmetry of the system with respect to the OZ axis, it is
advisable to use Ampère’s Law. To this end, we choose a circular curve � parallel
and concentric to the metallic ring, passing at point P of coordinates (0, y, z) (see
Fig. 5.56). As no currents flow through this curve, we can write

∮

�

B · dl = μ0

∫

S
j · dS = μ0I ⇒

∮

�

(Bρ,Bφ,Bz) · (0, dl, 0) = 0 ⇒ 2πρBφ = 0,

(5.183)
then

Bφ = 0. (5.184)
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Fig. 5.56 Circular curve �

of radius ρ for applying
Ampère’s law

This means that the tangential magnetic field generated by circular current is zero.

5.21 Ahollow cylinder of radiusR, lengthL, surface charge densityσs, and neglected
thickness, rotates around its symmetry axis with an angular velocityω constant.
Find: (a) The surface density current js. (b) The magnetic field B at any point
over its revolution axis.

Solution

Let us consider the OZ axis coinciding with the axis of revolution of the hollow
cylinder. In order to find the magnetic field, we must first calculate the density
current generated by the system as a result of the rotation of the free charge, here
represented by σs. Employing the definition of js and the relation between linear and
the angular velocity, it follows

js = σsv = σs(ω × r′). (5.185)

Taking into consideration that ω = (0, 0,ω) and r′ = (x′, y′, z′), the vectorial
product is

ω × r′ = ωx′uy − ωy′ux. (5.186)

Using cylindrical coordinates x′ = R cos φ′ y′ = R sin φ′, and introducing them into
(5.186) results

ω × r′ = ωR cos φ′uy − ωR sin φ′ux = ωR(− sin φ′ux + cos φ′uy) = ωRuφ,

(5.187)

hence,
js = σsωRuφ, (5.188)

which has dimensions of [js] = [Cm−2s−1m] = [Cm−1s−1] = [Am−1]. Examining
the physical significance of this result, we observe that the effect of the constant
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charge movement tangential to the cylinder surface is similar to a solenoid of the
same radius carrying a current per unit length done by (5.101). Thus, identifying
nI = js, we have

B = μ0nI

2
(cos α1 + cos α2)uz = μ0js

2
(cos α1 + cos α2)uz = μ0σsωR

2
(cos α1 + cos α2)uz.

(5.189)

5.22 Ametallic wire is closely wound on a truncated conical surface of radiiR and r,
respectively (Fig. 5.57). If the number of turns per unit length is n, considered
with respect to its symmetry axis: (a) Determine the magnetic field B at point
P(0, 0, 0). (b) The vector potential A at the same point.

Solution

Since the radius of the wire is very small and closely wound, in the same way as
shown for the finite solenoid, we can model our problem as a conical coil carrying a
current per unit length nI , where n is defined as the following expression (Fig. 5.58)

n = dN

dz′
. (5.190)

Fig. 5.57 Conical surface.
The density current surface
is like a sheet current js = nI

Fig. 5.58 Magnetic field
created by a set of dN coils
carrying a current I
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z′ being the coordinate denoting a source point. Let us suppose we focus our
attention to a set of dN coils of the solenoid. As dN is very small, the radius associated
to these ringsmay be considered the same and equal to ρ. For this reason themagnetic
field produced by these differential number of coils at a point P over its revolution
axis is

dB(P) = μ0dNIρ2

2
[
ρ2 + (z − z′)2

]3/2 uz. (5.191)

From (5.190) and using the definition of differential of a function we have

dN =
(
dN

dz′

)
dz′ = n(z′)dz′. (5.192)

By introducing this values into (5.191)

dB(P) = μ0Iρ2ndz′

2
[
ρ2 + (z − z′)2

]3/2 . (5.193)

This last expression depends on two variables, z′ and ρ, hence we cannot perform
the integration directly. With the aim to integrate (5.191) we need only one variable,
which may be obtained by means of the geometrical relation between z′ and ρ,

ρ

z′
= tan α ⇒ ρ = z′ tan α .

Setting ρ = f (z′) in (5.191), we have

dB(P) = μ0I(z′ tan α)2ndz′

2
[
(z′ tan α)2 + (z − z′)2

]3/2 uz . (5.194)

Actually, the point at whichwemust compute the field isP(0, 0, 0), thenwe calculate
(5.194) for z = 0

dB(P) = μ0I(z′ tan α)2ndz′

2
[
(z′ tan α)2 + z′2

]3/2 uz = μ0I(z′ tan α)2ndz′

2|z′|3 (1 + tan2 α
)3/2 uz = μ0nI z′2dz′ sin2 α cos α

2|z′|3 uz.

(5.195)
Now, integrating it holds

B(P) = μ0nI sin2 α cos α

2

∫ L

l

dz′

|z′| uz. (5.196)

We do not known the values of L and l, but of the radii R and r. However, we can
express these limits in the integral as function of the radii as follows
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R

L
= tan α ⇒ L = R

tan α
,

and r

l
= tan α ⇒ l = r

tan α
.

Setting these values in the limits of the integral it leads to

B(P) = μ0nI sin2 α cos α

2

∫ R
tan α

r
tan α

dz′

|z′| uz = μ0nI sin2 α cos α

2
ln

R

r
uz. (5.197)

5.23 Find the magnetic field at the center of a polygon of N identical segments
carrying a current I and prove that when the number of sides is large, the
magnetic field created agrees with the field of a circular coil.

Solution

We can face this problem as the superposition of N finite wires disposed as shown in
the Fig. 5.59. Let us first focus our analysis on only ametallic segment of the polygon.
In order to apply (5.91) directly, let us assume that the OZ axis is perpendicular to
the plane where the polygon lies, then the magnetic field of one of the wires which
forms the polygon may be expressed as

Bz = μ0I

4πρ
(sin α1 + sin α2)uz. (5.198)

Remembering that ρ is the distance between the center of the polygon and the wire
chosen, we realize that α1 = α2 = α. Introducing these angles into (5.91), we have

Bz = 2
μ0I

4πρ
sin α1 uz = μ0I

2πρ
sin α uz. (5.199)

From Fig. 5.59 we see that a
2 = R sin α, and ρ = R cos α, then

Fig. 5.59 Polygon formed
by N wires of length a
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Bz = μ0I

2πR cos α
sin α uz = μ0I

2πR
tan α uz. (5.200)

On the other hand, for a polygon of N sides it holds that 2α · N = 2π, thus

Bz = μ0I

2πR
tan
( π

N

)
uz. (5.201)

Applying the principle of superposition of fields, the magnetic field created by the
polygon is N times (5.201)

Bz = μ0IN

2πR
tan
( π

N

)
uz. (5.202)

When the number of wires composing the polygon is large, the field produced should
be the same as that produced by a circular loop carrying an intensity I . In order to
demonstrate this, we calculate the limit of (5.202) for N → ∞

lim
N→∞

μ0IN

2πR
tan
( π

N

)
= ∞ · 0, (5.203)

which is an indetermination. But this result may be expressed in another form, so
that we may employ L’Hôpital rule

lim
N→∞

μ0I

2πR

tan
(

π
N

)

1
N

= 0

0
. (5.204)

In fact, the quotient 0
0 allows us to use such a rule as follows

lim
N→∞

μ0I

2πR

tan
(

π
N

)

1
N

= lim
N→∞

μ0I

2πR

−π( 1
N )

2

1+( π
N )

2

− ( 1N
)2 = lim

N→∞
μ0I

2πR

π
(
1 + (

π
N

)2) = μ0I

2R
.

(5.205)

(a) (b) (c)

Fig. 5.60 a Polygon of 7 sides. b Polygon of 10 sides. c Polygon of 14 sides. Observe that if we
increase the number of sides, when N → ∞ a circle is obtained
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Fig. 5.61 System formed
by a semi-infinite conducting
wire and a semi-infinite
hollow metallic cylinder

This result is the same reached by directly applying (5.85) with z = 0 (Fig. 5.60).
Another possibility for obtaining the same result is to substitute n = π

α
into

(5.202), i.e.

Bz = μ0Iπ

2πRα
tanα uz. (5.206)

When the number of sides grows to infinity, the angle α tends to zero, then may be
written

lim
α→0

μ0I

2Rα
tanα = 0

0
. (5.207)

Again, by applying L’Hôpital’s rule we have

lim
α→0

μ0I

2R

1
cos2 α

1
= μ0I

2R
, (5.208)

which agrees with (5.205).

Problems C

5.24 The system of the figure attached (Fig. 5.61) is built by a semi-infinite con-
ducting wire joined to one of the bases of a metallic hollow cylinder of the
same length and with radius R. If a current I flows along the wire, find: (a) The
density current circulating by the lateral side of the cylinder. (b) The tangential
component of the magnetic field at a generic point for z > 0, and ρ > R.

Solution

(a) Let us apply the equation of the conservation of the electric charge in integral
form. As the current is stationary (

∂ρ(r)
∂t = 0), we can write
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∫

V
∇ · j dV =

∮

S
j · dS = 0. (5.209)

In order to obtain the intensity circulating by the lateral surface of the conducting
cylinder, we choose a closed cylindrical surface S with basis �′ and height 2h, as
shown in Fig. 5.62. Since the current flows on the surface of the basis �′ of the
cylinder, j may be expressed by means of a Dirac’s delta, i.e. j = j δ(z)uρ (note
that j is a current density of free charge). As a consequence, the flux of the density
current through the closed surface S actually represents the flux across a circular
line � (intersection between the lateral surface of the cylinder and the closed surface
S-see Figs. 5.62b and 5.63). In fact, the intersection of j and S is a circular line when

(a) (b)

Fig. 5.62 a Closed surface S together with the system. Observe that, as we have chosen the closed
surface S it contains a segment of wire and part of the basis of the hollow cylinder. Observe that �,
�′, and �′ are three identical circular parallel surfaces. �′, and �′ correspond to the closed surface
S and � is the intersection of the actual basis of the hollow cylinder. b Closed surface for applying
the theorem of the charge conservation

Fig. 5.63 Density current
on the basis of the
conducting cylinder. Note
that the flux is across the
curve �. This curve
corresponds to the
intersection of the closed
surface S and the base of
the hollow cylinder
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the basis of the cylinder is considered (Fig. 5.63). On the other hand, the intersection
of the current flow along the wire j = −j uz and the closed surface S is σ, direct
application of (5.209) gives

∫ ∫

σ
j · dS +

∫ ∫

�
j · dS = −I +

∫ ∫

�
j · dS = −I +

∫ ∫

�
j δ(z)uρ · dS uρ =

−I +
∫ 2π

0

∫ h

−h
js δ(z) ρ dφ dz = −I + js ρ

∫ 2π

0
dφ

∫ h

−h
δ(z) dz = −I + 2π ρ js = 0,

(5.210)

then,

js = I

2πρ
⇒ js = I

2πρ
uρ. (5.211)

If we examine this result obtained, we observe that the intensity depends on the
distance ρ from a point placed on the basis of cylinder to the axis of revolution of
the system. This current density diminishes when ρ increases. When the charge goes
out of the wire it must expand over the entire base of the cylinder, then its magnitude
should decrease with distance in such a manner.

(b) For calculating the magnetic field at a point P(x, y, z > 0) outside of the
cylinder we may use Ampère’s law. In fact, due to the rotational symmetry of the
system, we choose a circle� of radius ρ > R for applying this theorem (see Fig. 5.64)
and a differential element of curve dl = (0, dl, 0), all in cylindrical coordinates.
Introducing these data in (5.7) we have for the first integral

∫

�

B · dl =
∫ L

0
Bφdl =

∫ ρ>R

0
Bφρdφ = 2πρBφ. (5.212)

The second part corresponding to the net current crossing the open surface S can
be obtained by employing (5.211). For calculating the flux of j through S we must
take into account that j extends on the lateral surface of the cylinder. This means that
the product j · dS actually represents the flux of the density current across a line (see
Fig. 5.34). As we have seen j depends on ρ, but when the current reaches the lateral
surface the distance remains constant, then we can write for this case

Fig. 5.64 a Plane view of
the system. b Closed curve �

for applying Ampère’s
theorem

(a) (b)
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js = I

2πR
uρ. (5.213)

By setting (5.213) into the integral of the intensity, it yields

∫

S
j · dS =

∫ ∫

S
jwire · dSuz +

∫ ∫

S
js(R) δ(ρ − R)uz · dSuz. (5.214)

As the density current corresponding to the wire goes in the direction of the negative
OZ axis, and the element dS = (0, 0, dS), the intensity due to the filament is negative,
then it follows

∫

S
j · dS = −I +

∫ ∫

S
js(R)δ(ρ − R) · ρdρdφ =

−I +
∫ 2π

0
dφ

∫ ρ>R

0

I

2πR
δ(ρ − R) ρ dρ = −I + 2π

I

2πR

∫ ρ>R

0
δ(ρ − R) ρ dρ =

−I + 2π
I

2πR
R = −I + I = 0. (5.215)

Using this value with (5.212) it results

Bφ = 0.

5.25 A very large hollow metallic cylinder of negligible thickness, is located coin-
ciding its symmetry axis with OZ . Along its surface flows a density current
js = 100 uz (A/m). If the radius of the cylinder is R = 10 cm, find: (a) The
magnetic field Bφ if ρ < R and ρ > R. (b) The component Az of the vector
potential for an exterior point (ρ > R). (c) Prove that for ρ > R the general
equation B = ∇ × A applies.

Solution

(a) In the same way we have seen in other problems, we can use Ampère’s law for
answering this first question. In fact, due to the rotational symmetry of the system
we may use integral (5.7) for calculating the tangential component of the field. With
this aim let us apply the law to a circular curve of radius ρ < R and delimiting plane
surface S. By making the scalar product B · dl and taking into consideration that no
density current across the surface S exists, we have

∮

∂S
Bφdl = μ0

∫

S
jdS = 0 ⇒ Bφ = 0. (5.216)

This result shows that no magnetic field Bφ is present in the interior of a hollow
cylinder.

For an exterior point we follow the same procedure, but now the flux of the density
current through the surface S is not zero. When calculating such a flux, we observe a
difference from other problems in which we have used Ampère’s theorem. We have
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Fig. 5.65 a Close curve �

for a point P interior to the
cylinder. b Plane view of the
density current over the
lateral surface of the cylinder

(a) (b)

shown that the effective surface of integration corresponded to the intersection of the
volumewhere jv flowswith the surface S whose delimitation is the curve�. However
in this case the density current js extends on the surface of the cylinder, but not in a
volume. Hence the actual region of integration is a curve.

As the current is located over the lateral surface of the cylinder, as shown in
Fig. 5.65, we may represent it by means of Dirac’s delta distribution as follows

js = js δ(ρ − R)uz = 100 δ(ρ − R)uz. (5.217)

By introducing this expression into the right side of Ampère’s law, we have

∮

∂S
Bφdl = μ0

∫

S
js · dS = μ0

∫ 2π

0

∫ ρ

0
js δ(ρ − R) ρ dρ dφ, (5.218)

and integrating

Bφ2πρ = μ0 js

∫ 2π

0
dφ

∫ ρ

0
δ(ρ − R) ρ dρ = μ0 js2π

∫ ρ

0
δ(ρ − R) ρ dρ = 2πμ0 jsR.

(5.219)

From this last result we find for the tangential component of the magnetic field

Bφ = μ0 jsR

ρ
uφ. (5.220)

This equation may be written in another form. In effect, the product 2πRjs represents
the flux of js across the circular line of length 2πR, then we can call it the surface
intensity Is. Setting it into (5.220) we have

Bφ = μ0 Is
2πρ

uφ, (5.221)

whose form is identical to those of the very large wire carrying intensity I (see
Problem 1).
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(a) (b)

Fig. 5.66 a Closed curve� for a point P interior to the cylinder. b Plane view of the current density
over the lateral surface of the cylinder

(b) For the calculation of the vector potential we may use the following relation

∮

�

A · dl =
∫ ∫

S
B · dS. (5.222)

In this equationwefinda relationbetween themagneticfieldB andA. It tells us that
the circulation of the vector potential A along a closed curve � is the same as the flux
of the magnetic field through the open surface S whose boundary is �. As we know
the magnetic field, by choosing an adequate curve and surface it should be possible
to determine any of the components of A. In fact, due to the translational symmetry
we employ a curve rectangular in shape as depicted in Fig. 5.66. By dividing such a
curve in four paths, we have

∮

�

(Aρ,Aφ,Az) · dl =
∫ 2

1
A12 · dl12 +

∫ 3

2
A23 · dl23 +

∫ 4

3
A34 · dl34 +

∫ 1

4
A41 · dl41,

(5.223)

and setting the components of A

∫ 2

1
(Aρ1,Aφ1,Az1) · (0, 0, dz) +

∫ 3

2
(Aρ2,Aφ2,Az2) · (dρ, 0, 0) +

∫ 4

3
(Aρ3,Aφ3,Az3) · (0, 0, dz) +

∫ 1

4
(Aρ4,Aφ4,Az4) · (dρ, 0, 0) =

∫ 2

1
Az1dz +

∫ 3

2
Aρ2dρ +

∫ 4

3
Az3dz +

∫ 1

4
Aρ4dρ. (5.224)
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As we explained in the problem of the infinite wire, the integrals from (2–3) and
(4–1) take the same values but opposite sign, the they cancel each other out,

∫ 3

2
Aρ2dρ = −

∫ 1

4
Aρ4dρ, (5.225)

hence we can write

∮

�

A · dl =
∫ 2

1
Az1dz +

∫ 4

3
Az3dz = Az1h − Az3h. (5.226)

For the plane surface shown in Fig. 5.66, the lines of the tangential magnetic field are
perpendicular to S. Due to the election of dl, surface S has its normal in the direction
of uφ. Thus introducing its value on right side of (5.222), we have

∫ ∫

S
B · dS =

∫ ∫

S
(Bρ,Bφ,Bz) · (0, dS, 0) =

∫ ∫

S
Bφ dS =

∫ h

0
dz
∫ ρ

R

μ0 jsR

ρ
dρ =

μ0 jsRh ln
ρ

R
, (5.227)

and the component z of the vector potential is

Az1h − Az3h = μ0 js R h ln
ρ

R
⇒ Az3 = Az1 − μ0 js R ln

ρ

R
, (5.228)

thus
A =

(
Az1 − μ0 js R ln

ρ

R

)
uz, (5.229)

Az1 being a constant.
(c) If we know the vector potentialA, we can obtain themagnetic fieldB bymeans

of B = ∇ × A. Due to A only having non-zero projections over the OZ axis, (5.11)
becomes

∇ × A = −∂Az

∂ρ
uφ. (5.230)

Introducing (5.229) into (5.230) leads to

B = − ∂

∂ρ

(
Az1 − μ0 js R ln

ρ

R

)
uφ = μ0 jsR

ρ
uφ, (5.231)

results that agrees with (5.220).

5.26 A cylindrical solenoid of length L = 20 cm and constant radius R = 5 cm is
located with respect to the coordinate axes as shown in Fig. 5.30. The wire is
closely wound in such a way that the number of turns per unit length is not a
constant, but the function n(z) = bz, b = 1000 m−2. (a) Find the component
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z of the magnetic field B at a generic point P(0, 0, z). (b) What is the value of
the field over the OZ axis if z >> L, and z >> R?

Solution

(a) As the solenoid is closely wound, we can consider this solenoid equivalent to a
ensemble of independent loops together where the current forms a sheet of current
per unit length

n(z) = 1000z.

For this reason the calculus of the magnetic field at the point P, may be regarded as
the addition of the fields produced bymany circular loops. In that sense, this problem
can solved as explained in the problem of the solenoid.

To start we calculate the magnetic field due to a differential set of coils located at
a generic position z = z′ only. As the number of loops dN is small enough, we can
write

dB(P) ≈ μ0dNIR2

2
[
R2 + (z − z′)2

]3/2 uz. (5.232)

As known, the relation between dN and dz′ is

dN =
(
dN

dz′

)
dz′ = n(z′)dz′. (5.233)

By introducing this expression into (5.232), we have

dB(P) ≈ μ0IR2n(z′)dz′

2
[
R2 + (z − z′)2

]3/2 uz = μ0IR21000z′dz′

2
[
R2 + (z − z′)2

]3/2 uz. (5.234)

Once we know the field produced by these differential currents, the total magnetic
field is found by integrating over the complete length of the solenoid,

B(P) =
∫ L

0

μ0IR21000z′dz′

2
[
R2 + (z − z′)2

]3/2 uz = 1000μ0IR2

2

∫ L

0

z′dz′
[
R2 + (z − z′)2

]3/2 uz.

(5.235)
By substituting (z − z′) = t, we have

B(P) = 1000μ0IR2

2

∫ (z−L)

z

(z − t)(−dt)
[
R2 + t2

]3/2 uz = (5.236)

1000μ0IR2

2

(

−z
∫ (z−L)

z

dt
[
R2 + t2

]3/2 +
∫ (z−L)

z

tdt
[
R2 + t2

]3/2

)

uz.

Integrating we obtain
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B(P) = 1000μ0IR2

2

{

z

(
z

R2
[
R2 + z2

]1/2 − (z − L)

R2
[
R2 + (z − L)2

]1/2

)

+
(

1
[
R2 + z2

]1/2 − 1
[
R2 + (z − L)2

]1/2

)}

uz , (5.237)

and introducing R2 in the brackets it follows

B(P) = 1000μ0I

2

{

z

(
z

[
R2 + z2

]1/2 − (z − L)
[
R2 + (z − L)2

]1/2

)}

+
{

R

(
R

[
R2 + z2

]1/2 − R
[
R2 + (z − L)2

]1/2

)}

uz . (5.238)

If we look at the geometry of the solenoid, it is easy to identify

z
[
R2 + z2

]1/2 = cosα1,
−(z − L)

[
R2 + (z − L)2

]1/2 = cosα2, (5.239)

and
R

[
R2 + z2

]1/2 = sinα1,
R

[
R2 + (z − L)2

]1/2 = sinα2. (5.240)

With all these equalities, the mathematical expression for the magnetic field may be
written as

B(0, 0, z) = 1000μ0I

2
[z(cosα1 + cosα2) + R(sinα1 − sinα2)]uz . (5.241)

(b) To analyze the behavior of the magnetic field B at distances z large compared
to the length L and the radius of the solenoid, we can expand the trigonometric
functions that appear in (5.241). In fact, by using the series for the square root, we
have

z
[
R2 + z2

]1/2 ≈ 1 − 1

2

(
R

z

)2
+ · · · ,

(z − L)
[
R2 + (z − L)2

]1/2 ≈ 1 − 1

2

(
R

z − L

)2
+ · · · ,

(5.242)
and

R
[
R2 + z2

]1/2 ≈ R

z

(

1 − 1

2

(
R

z

)2

+ · · ·
)

,

R
[
R2 + (z − L)2

]1/2 ≈ R

(z − L)

(

1 − 1

2

(
R

z − L

)2

+ · · ·
)

, (5.243)
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thus

[z(cosα1 + cosα2) + R(sinα1 − sinα2)] ≈ R2L2

2z(z − L)2
≈ R2L2

2z3
. (5.244)

Introducing this expression into (5.241) it results

B(0, 0, z) = 1000μ0IR2L2

4z3
uz . (5.245)

5.27 Let us suppose a solenoid of variable cross circular section, and length L =
(z2 − z1). If the number of turns per unit arc s is η and the current circulating
through each coil is I , obtain a general expression for calculating the field at a
point on its axis of revolution.

Solution

Before beginning the calculation of themagnetic field, we draw a solenoid of variable
radius as shown in Fig. 5.67. As the cross section of the system is circular in shape,
we can apply the procedure used in the Problems 5.4 and 5.5 to compute themagnetic
field B. With this aim, first we calculate the field B due to a set of dN rings located at
a generic distance z′ of the origin O, and then we add the contributions of all loops
of the solenoid. In fact, as dN is a differential quantity, these circular wires have the
same radius, approximately, then the following expression holds

dB(P) ≈ μ0dNIR2

2
[
R2 + (z−z′)2

]3/2 uz, (5.246)

where R is constant only for the rings contained in the distance dz′. If we follow the
same way as the Problem 5 – 3 it may be seen that, in order to integrate (5.246), we
need to have one variable only (say z′). However, two difficulties arise. The first one

Fig. 5.67 Solenoid of
variable cross-circular
section
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is that R depends on the distance z′ (see Fig. 5.67); and the second is that the number
of turns per unit length is unknown. Thus, to solve the problem it is necessary to
know the functions that relate to radius R, and the value of dN, with distance z′. To
find dN we use the definition of number of turns per unit length in (5.94),

dN =
(
dN

dz′

)
dz′ = n(z′)dz′,

where n(z′) is in our case unknown. To obtain the expression that depends on the
number of turns per unit arc it is enough to apply the chain rule,

n(z′) =
(
dN

dz′

)
=
(
dN

ds

)(
ds

dz′

)
, (5.247)

then

dN =
(
dN

dz′

)
dz′ =

(
dN

ds

)(
ds

dz′

)
dz′. (5.248)

On the other hand, if the function representing the outline of the longitudinal cross-
section of the solenoid is x(z′) (really, x(z′) = R(z′)), the expression for ( ds

dz′ ) is

ds

dz′
=
√

1 +
(
dx

dz′

)2

. (5.249)

By introducing (5.249) into (5.248), we have

dN = n(z′)dz′ =
(
dN

dz′

)
dz′ = η

√

1 +
(
dx

dz′

)2

dz′, (5.250)

η being the turns per unit arc s. Hence, by using (5.250) and adding the contribution
of all loops we have

B(P) = μ0I

2

∫ z2

z1

η(z′)[R(z′)]2
[[R(z′)]2 + (z0 − z′)2

]3/2

√

1 +
(
dR(z′)
dz′

)2

dz′uz. (5.251)

Sometimes the equation of the curve may be obtained in parametric form. In this
case, by parameterizing z = z(t) and x = x(t), (5.251) takes the form

B(P) = μ0I

2

∫ t2

t1

η(t)[x(t)]2
[[x(t)]2 + (z − z(t))2

]3/2
√
ẋ(t)2 + ż(t)2dt uz, (5.252)

where t is the parameter and z is the point at which the magnetic field must be
calculated.
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Fig. 5.68 Solenoid spherical
in shape

5.28 A wire is closely wound forming a spherical surface with radius R (Fig. 5.68).
The solenoid is equivalent to N turns per unit arc s, η constant. If current I
circulates through the turns, calculate the magnetic field B in the center of the
sphere.

Solution

Aswe have seen in previous problems, the calculus of the magnetic field at the center
of the sphere may be regarded as the addition of the fields produced by many circular
loops. However, in this case, the circular wires have different radii.

With the same ideawe compute themagnetic fieldB at pointP due to a differential
set of coils located at position z = z′, and then we integrate for all the coils. For this
purpose we use the formula corresponding to dN circular coils with radius a,

dB(P) ≈ μ0Ia2dN

2
[
a2 + (z − z′)2

]3/2 uz = μ0Ia2dN

2
[
a2 + (z′)2

]3/2 uz. (5.253)

This expression has three unknowns, a, dN and z′, but we need only one to carry out
the integration. In the problem of the solenoid, this difficulty was solved by using the
expression of dN versus dz′, but it is not possible due to dependence of a in this case.
To solve this problem we employ first the relation between a and z′. For a generic
loop located at z′ holds

tan θ = a

z′
⇒ a = z′ tan θ.

Introducing this result in dB, we have

dB(P) = μ0I(z′ tan θ)2dN

2
[
(z′ tan θ)2 + (z′)2

]3/2 uz = μ0Iz′2 tan2 θdN

2|z′|3
[
1 + sin2 θ

cos2 θ

]3/2 uz = (5.254)

μ0Iz′2 tan2 θdN

2|z′|3 1
cos3 θ

uz = μ0I sin2 θ cos θdN

2|z′| uz.

Two variables z′ and dN remain even with these changes, thus the functional rela-
tion between these unknowns must be found. With attention to the geometry of the
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problem we can write z′ = R cos θ, then

dB(P) = μ0I sin2 θdN

2R
uz. (5.255)

Now, we need only to express dN = f (θ). If we look at the data of the problem, we
know the number of turns per unit arc η, and we can write

η = dN

ds
⇒ dN = ηds = ηRdθ.

Using this expression, (5.255) yields

dB(P) = μ0I sin2 θηdθ

2
uz, (5.256)

and summing all the wires

B(P) = μ0Iη

2

∫ π

0
sin2 θdθ = πμ0Iη

4
uz. (5.257)

The same result may be obtained if (5.251) is employed. In fact, from (5.250) we
have

n(z′)′ = η

√

1 +
(
df

dz′

)2

.

There is another possibility to resolve this exercise. It consist of computing the
magnetic field directly by means of (5.252). Taking into account the symmetry of
the ball (in two dimensions) we may choose polar coordinates as follows,

z′(θ) = R cos θ

x′(θ) = R sin θ,

where θ is the parameter. Introducing these coordinates and their derivatives in
(5.252) we have for B

B(P) = μ0I

2

∫ π

0

ηR2 sin2 θ
[
R2 sin2 θ + R2 cos2 θ

]3/2
√
R2 sin2 θ + R2 cos2 θdθ uz =

(5.258)

= μ0Iη

2

∫ π

0
sin2 θdθ = πμ0Iη

4
uz,
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Fig. 5.69 Conducting wire
and a finite solenoid of
length L

which is the same result obtained above.

5.29 The Fig. 5.69 represents a system formed by a rectilinear conducting wire, very
large, located on the OZ axis and a finite solenoid of length L = 10 cm and
radius a = 5 cm, closely wound and concentric with the filament. The coil is
constructed by ametallic wire in form of helix of pitch b = 1mm. If the current
circulating through the wire is Ih = 0.1 A and for the solenoid Is = 0.05 A,
find: (a) The force on the solenoid. (b) The momentum.

Solution

(a) For calculation the forced exerted on the solenoid due to themagnetic field created
by the infinite wire, we directly use (5.28)

F(r) = I
∫

�′
dl′ × B(r), (5.259)

where I is the intensity circulating through the system upon which the force is
calculated (in this case the solenoid, I = Is), and B is the magnetic field produced
by the wire. As the wire is very large we can use (5.49),

B = Bφ = μ0Ih
2πρ

uφ. (5.260)

Expressing the value of the unitary vector uφ with its cartesian components we may
write

B = μ0I

2πρ
(− sin φux + cos φuy). (5.261)

Taking into account that dl′ is tangential to the curve representing the system upon
which we will compute the force, we put it in a general form and then we express it
in the appropriate coordinates for this geometry, i.e. dl′ = (dx′, dy′, dz′). By using
this last expression we can calculate the vectorial product appearing in (5.28),

dl′ × B(r) = −Bydz
′ux + Bxdz

′uy + (Bydx
′ − Bxdy

′)uz. (5.262)
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With the aim to perform the integral as easiest as possible, we may try to express the
curve �′ in its parametric form. Thus a circular helix of radius R and pitch b may be
described by the following equations

x(φ) = Rcosφ

y(φ) = Rsinφ

z(φ) = b

2π
φ. (5.263)

With this parameterization, the differential element of the curve has the form dl′ =
(dx′, dy′, dz′) = (−R sin φ,R cos φ,

b

2π
)dφ, and introducing it into (5.262) and

(5.28), gives

F(r) = μ0IhI ′

2πR

∫

�′
− cos φ dz′ux + sin φ dz′uy + ( cos φ dx′ − sin φ dy′)uz

= μ0IhI ′

2πR

∫

�′
− cos φ

(
b

2π

)
dφux + sin φ

(
b

2π

)
dφuy

+ ( cos φ (−R sin φ) − cos φ (R sin φ)) dφuz, (5.264)

where I ′ is the intensity circulating by the solenoid. The limits of integration may be
obtained by using the diameter of the wire. In fact, as the wire is closely bounded in
each turn the filament advances a distance equal to its diameter, therefore L = Nb, b
and N being the diameter of the wire (pitch) and the number of turns, respectively.
From this, it yields

z = 0 ⇒ φ = 0

z = L = b

2π
φ ⇒ φ = 2πL

b
= 2πN . (5.265)

Introducing this result into the limits of integration, we have

F(r) = μ0IhI ′

2πR

{

−
∫ 2πL

b

0
cos φ

(
b

2π

)
dφux +

∫ 2πL
b

0
sin φ

(
b

2π

)
dφuy

−
∫ 2πL

b

0
(cos φ sin φ + sin φ cos φ) dφuz

}

= μ0IhI ′

2πR

{

−
(

b

2π

)∫ 2πL
b

0
cos φ dφux +

(
b

2π

)∫ 2πL
b

0
sin φ dφuy

−2
∫ 2πL

b

0
cos φ sin φ dφuz

}

= 0. (5.266)
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(b) Once the force upon the solenoid is obtained, the calculus for the moment of
the force may be computed by employing (5.30)

N(r) =
∫

�′
r′ × dF(r′). (5.267)

Using the results obtained in (a) we can write

dFx = −I ′Bydz
′ = −μ0IhI ′

2πR
cos φ dz′ = −μ0IhI ′

2πR
cos φ

b

2π
dφ

dFy = I ′Bxdz
′ = −μ0IhI ′

2πR
sin φ dz′ = −μ0IhI ′

2πR
sin φ

b

2π
dφ, (5.268)

and

dFz = (Bydx
′ − Bxdy

′) = μ0IhI ′

2πR
(cos φ dx′ − sin φ dy′)

= μ0IhI ′

2πR
(−R cos φ sin φ + R sin φ cos φ) = 0, (5.269)

that is, the component z of the force disappears. Introducing these expressions into
the vectorial product of (5.30) it results

r′ × dF(r′) = (−zdFy ux + zdFx uy + (xdFy − ydFx)uz
) =

μ0IhI ′

2πR

{(
b

2π
φ

)
sinφ

(
b

2π

)
dφux +

(
b

2π
φ

)
cos φ

(
b

2π

)
dφuy+

(
−R cos φ sin φ

(
b

2π

)
dφ + R sin φ cos φ

(
b

2π

)
dφ

)
uz

}
, (5.270)

and integrating by parts over the curve �′, it holds (Fig. 5.70)

N(r) = μ0IhI
′

2πR

(
b

2π

)2 ∫ 2πL
b

0
φ sin φ dφ ux +

(
b

2π

)2 ∫ 2πL
b

0
φ cos φ dφ uy = −μ0IhI

′bL
4π2R

ux .

(5.271)

5.30 Avery thin flat diskwith inner and outer radiiR1 cmandR2 cm, respectively, has
a uniform surface charge density σs Cm−2. The disk is coplanar with the OXY
plane and its axis of revolution coinciding with the axis OZ (Fig. 5.70). If the
disk rotates with a constant angular velocity ω = ω uz, find: (a) The magnetic
field B at point P(0, 0, z). (b) Idem at point P(0, 0, 0) cm. (c) The field Bφ at
P(x > R2, 0, 0) cm.

Solution

(a) To calculate the magnetic field at a point on the OZ axis we first need to know
the current circulating in the ring. As the charge per unit surface on the disc is σs,
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when the ring rotates about its axis of symmetry the charges on it move and generate
a surface current density. Thus, the first step is to obtain js and introduce it in (5.25).
With this aim let us use the definition of js, i.e.

js = σsv = σs (ω × r′) = σs(x
′ω uy − y′ω ux). (5.272)

Changing to cylindrical coordinates x′ = ρ′ cos φ′ and y′ = ρ′ sin φ′ we can express
(5.272) as the following

js = σs(ρ
′cosφ′ω uy − ρ′sinφ′ω ux) = σsωρ′ uφ (5.273)

Now we will employ (5.25)

B(r) = μ0

4π

∫

S′

js(r′) × (r − r′)
|r − r′|3 dS′. (5.274)

The vectorial product in (5.25), where the field and source points are r = (0, 0, z)
and r′ = (x′, y′, 0), respectively, yields

js(r′) × (r − r′) = σsωρ′ (z cos φ′ ux + y′ sin φ′ uz + x′ cos φ′ uz + z sin φ′ uy).
(5.275)

Introducing into (5.25) these results together with x′ = ρ′ cos φ′ and y′ = ρ′ sin φ′
and the jacobian J(ρ′,φ′) = ρ′, we have

B(r) = μ0σsω

4π

(

z
∫ 2π

0
cos φ′dφ

∫ R2

R1

ρ′2 dρ′

(ρ′2 + z2)
3
2

ux + z
∫ 2π

0
sin φ′dφ

∫ R2

R1

ρ′2 dρ′

(ρ′2 + z2)
3
2

uy

+
∫ 2π

0
dφ′

∫ R2

R1

ρ′3( sin2 φ′ + cos2 φ′) dρ′

(ρ′2 + z2)
3
2

uz

)

. (5.276)

Fig. 5.70 Thin flat disc
with a homogeneous surface
charge density
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When integrating this expression, the components of the field over OX and OY
disappear. The reason is that the integrals of the circular functions cos φ′ and sin φ′
over the interval [0, 2π] are zero. Thus, we can write13

B(r) = μ0σsω

4π

∫ 2π

0
dφ′

∫ R2

R1

ρ′3

(ρ′2 + z2)
3
2

uz = μ0σsω

2

∫ R2

R1

ρ′3

(ρ′2 + z2)
3
2

uz =

μ0σsω

2

⎧
⎨

⎩

[
z2

√
ρ′2 + z2

]R2

R1

+
[√

ρ′2 + z2]
]R2

R1

⎫
⎬

⎭
uz =

μ0σsω

2

⎧
⎨

⎩
z2

√
R22 + z2

+
√
R22 + z2 − z2

√
R21 + z2

−
√
R21 + z2

⎫
⎬

⎭
uz (5.277)

(b) For obtaining the magnetic field at the origin of coordinates we may directly
use the last result from section (a). In fact, by setting z = 0 in (5.277), we obtain

B(r) = μ0σsω

2
(R2 − R1)uz (5.278)

(c) Since the disc has symmetry of rotation around the OZ axis, and that the
component of the field to be investigated is Bφ, we can use Ampère’s theorem. As
we have seen in the exercise of the solenoid, tangential component of the magnetic
field at P(x > R2, 0, 0) is zero.

5.31 Find the off-axis magnetic field produced by a finite solenoid of length L and
radius a, carrying a current I .

Solution

As we have studied in the Problem 5, a finite solenoid of constant radius is a system
with rotational symmetry. Thus, for determining the off-axis magnetic field, we can
apply the procedure explained in Sect. 1.6. The first step of the calculation is to know
the field along the symmetry axis, which in the present case coincides withOZ . Using
directly Fig. 5.29, we have

B(P) = μ0In

2

[
−(z − L)

[
a2 + (z − L)2

]1/2 + z
[
a2 + z2

]1/2

]

. (5.279)

Once we have B(z), we may calculate the magnetic potential Um(z) by means of
(5.42), i.e.

13For calculating the following integral you can consult [36], p. 101 or [91], p. 156 integral 114.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
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Um(z) = − In

2

∫ [
−(z − L)

[
a2 + (z − L)2

]1/2 + z
[
a2 + z2

]1/2

]

dz + C

= In

2

[(
a2 + (z − L)2

)1/2 − (
a2 + z2

)1/2]+ C. (5.280)

Nowwemust obtain the coefficients of the expansion (5.40). To do this, it is necessary
to develop our formula (5.280) for obtaining the coefficients al. Due to the magnetic
field of a solenoid being symmetric with respect to its center of symmetry, we expand
the magnetic potential around z = L/2, obtaining

a0 = Um

(
L

2

)
= 0 (5.281)

a1 =
(

∂Um

∂z

)

z= L
2

= nI

2

[

− L

(a2 + ( L2 )
2)

1
2

]

, (5.282)

a2 = 1

2!
(

∂2Um

∂z2

)

z= L
2

= 0, (5.283)

a3 = 1

3!
(

∂3Um

∂z3

)

z= L
2

= nI

2

[
L

2(a2 + ( L2 )
2)

3
2

− L3

8(a2 + ( L2 )
2)

5
2

]

, (5.284)

a4 = 1

4!
(

∂4Um

∂z4

)

z= L
2

= 0, (5.285)

a5 = 1

5!

(
∂5Um

∂z5

)

z= L
2

= nI

2

⎡

⎣− 21

384

L5

(a2 + ( L2 )2)
9
2

+ 15

48

L3

(a2 + ( L2 )2)
7
2

− 3

8

L

(a2 + ( L2 )2)
5
2

⎤

⎦ ,

(5.286)
and

a6 = 1

6!
(

∂6Um

∂z6

)

z= L
2

= 0. (5.287)

Observe that all the even derivatives are zero.
By introducing (5.281)–(5.287) into the general solution for axisymmetric sys-

tems (5.40), the expression of the scalar magnetic potential Um(r, θ) is directly
obtained. Therefore, the components of the field in spherical coordinates may be
calculated by means of the gradient of the potential, (see (5.45) and (5.46)), i.e.

Br(r, θ) = −μ0
∂Um(r, θ)

∂r
= μ0nI

2

[
L

(a2 + ( L2 )
2)

1
2

]

cos θ (5.288)
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−3
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4 )
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4 )
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]

+ ϑ(r3),

and for the θ component,

Bθ(r, θ) = −μ0
1

r

∂Um(r, θ)

∂θ
= −μ0nI
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5
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]

+ ϑ(r3).

5.32 In some atomic problems special solenoids must be designed. One of them is
the well known Zeeman slowing technique. By this method, using a solenoid
as shown in Fig. 5.71, a parabolic axial magnetic field is produced to keep the
radiation pressure constant throughout the coil. Such a field is modeled by the
following expression

B(z) = B1 + B0

√
1 − βz (5.290)

where B1, B0 and β are constants. Find the magnetic field inside the solenoid
by using the magnetostatic potential method.

Solution

This solenoid is used in different fields of science such as atomic and molecular
physics. The aim of this non-uniform coil is to reduce the velocity of a beam of
atoms or molecules that cross the solenoid in the direction of its axis of symmetry.
This geometry is known as a Zeeman-slower, and by using it in conjunction with the
radiation pressure of a laser light, it is able to slow down and cool neutral atoms. The
design consist of an inhomogeneous conoidal-like current distribution (see Fig. 5.71),
that leads to a non-uniform magnetic field along the symmetry axis of the system. At
the same time, a pumped laser beam is directed through the cavity of the coil in the
direction opposite to the particle motion. If the transition of the atoms (or molecules)
are nearly resonant with the laser beam, they could absorb a photon, then the particle
reaches an excited state. However, this new state is unstable and the atom will reach

Fig. 5.71 Solenoid with
inhomogeneous current
distribution
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its ground state by emitting spontaneously a photon in a direction compatible with the
momentum conservation law, but random, which leads to an increases of the atoms
velocity, whose directions are randomly distributed. When studying this process for
a large number of events, statistically, it is observed that the absorption of the photon
diminishes the speed of the atoms, thus reducing its temperature (cooling). By this
procedure it is possible to diminish the temperature up to mK.

To calculate the magnetic field produced by this system at any point inside of the
coil, we will apply the equations of Sect. 5.7.

In this case we know the value of the magnetic field produced by the solenoid
along its symmetry axis, which is given by (5.290)

B(z) = B1 + B0

√
1 − βz, (5.291)

then introducing it into (5.42) we have

Um(z) = − 1

μ0

∫
B(z)dz + C = − 1

μ0

∫
(B1 + B0

√
1 − βz)dz + C = − 1

μ0

(
B1z − 2

3

B0

β
(1 − βz)

3
2

)
.

(5.292)

By using (5.43), expanding in Taylor series around z = 0 (5.292) we obtain

a0 = Um(0) =
(

2B0

3μ0β

)
, (5.293)

a1 =
(

∂Um

∂z

)

z=0

= − (B0 + B1)

μ0
, (5.294)

a2 = 1

2!
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∂2Um

∂z2

)

z=0

= B0β

2!2μ0
, (5.295)

a3 = 1

3!
(

∂3Um

∂z3

)

z=0

= B0β
2

3!4μ0
, (5.296)

a4 = 1

4!
(

∂4Um

∂z4

)

z=0

= 3B0β
3

4!8μ0
, (5.297)

and so on. Taking into account that the gamma function14 verifies that �(n + 1) =
n�(n), we can express the magnetic scalar potential in a closed form as follows

Um(z) = 2

3

B0

μ0β
− (B0 + B1)

μ0
r cos θ + B0

μ0
√

π

∞∑

n=2

β(n−1)�(n − 1
2 )

n!(2n − 3)
rnPn(cosθ).

(5.298)

14See, for example [29] pp. 204 and 219.
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The magnetic field may be calculated by means of (5.45) and (5.46)

Br(r, θ) = (B1 + B0) cos θ − B0√
π

∞∑

n=2

β(n−1)�(n − 1
2 )

(n − 1)!(2n − 3)
r(n−1)Pn(cos θ), (5.299)

and for the θ component

Bθ(r, θ) = −(B1 + B0) sin θ − B0√
π sin θ

∞∑

n=2

β(n−1)�(n − 1
2 )

(n − 1)!(2n − 3)
r(n−1)

· (cos θPn(cos θ) − Pn−1(cos θ)). (5.300)

Due to the rotational symmetry, sometimes it is useful to manipulate the result in
cylindrical coordinates, even though we started with spherical coordinates. In this
case we can express the result in a cylindrical reference frame by using the following
change

Bρ = Br sin θ + Bθ cos θ (5.301)

Bz = Br cos θ − Bθ sin θ.

Now calling z̃ = z
√

ρ2 + z2
, we obtain

Bρ(ρ, z) = − B0√
π

∞∑

n=2

β(n−1)�(n − 1
2 )

(n − 1)!(2n − 3)

(
√

ρ2 + z2)n

ρ
(Pn(z̃) − z̃Pn−1(z̃)), (5.302)

and

Bz(ρ, z) = (B1 + B0) − B0√
π

∞∑

n=2

β(n−1)�(n − 1
2 )

(n − 1)!(2n − 3)
(
√

ρ2 + z2)nPn−1(z̃)). (5.303)



Chapter 6
Static Magnetic Field in Presence of Matter

Abstract In this chapter we will study the behavior of matter in the presence of
magnetic fields. A comprehensive explanation of magnetism of substances requires
employing quantum physics, which is beyond the scope of this book. In this chapter
wewill use classical physics to give a qualitative and conceptually simple explanation
of the phenomenon of magnetism. This will be not very rigorous, but it will give us
an idea about the phenomenon of magnetization.

6.1 Magnetization

From a microscopic point of view, gases, liquids, solids and plasmas, are constituted
by atoms. According to Bohr’s model, a possible construction of the atom consist of
a nucleus of positive charge (protons) and neutrons without charge surrounded by
electrons with negative charge which move in definite closed orbits around it. If we
assume that the number of electrons and protons is the same, we obtain a model of
an atom that is electrically neutral. In this way, matter can be thought to be formed
by circuits (micro-coils) of the order of atomic dimensions by which a determined
current circulates, producing, therefore, a magnetic field. Taking into account that
such circuits are very small compared with the distance to which the magnetic field
is measured, its behavior may be approximated to that of a magnetic dipole (see
Chap.5). In short, from this point of view we will consider magnetic matter to be
equivalent to an ensemble of magnetic dipoles. This is the basic idea to understand
the classical concept of magnetism.

We will define the vectorial field magnetization, and we will denote it asM, like
the magnetic dipolar moment per unit volume,

M(r′) = lim
�V→0

�m
�V ′ ≡ dm

dV ′ , (6.1)

the unit which is in the S.I. as Am−1. Conceptually, the magnetization represents the
density of dipole moments at each point in the material.

Thus, magnetic fields may be produced both by electric currents (Chap.5) and by
magnetized materials.
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6.2 Magnetic Current Densities

Assuming that, from a magnetic point of view, matter behaves like many magnetic
dipoles together, it seems logical that if we add all contributions of the dipoles that
compose a body, sometimes we find a zero magnetic field at a given point in space. In
this case two microscopic possibilities may occur. One of them is that the magnetic
moment of each micro-coil is zero, and then the addition for all atoms

∑
mi = 0.

Another possibility is that the magnetic moment mi of the individual atoms is not
zero, but due to their atomic spacial locations, and the their type of atoms, the net
contributions of the atomic currents is also zero,

∑
mi = 0. However, this is not

the only case that may occur. In fact, a non-complete cancellation of the bounded
atomic currents can occur, giving a net magnetizationM in the material. In this case,
it is interesting to know what is the magnetic field produced. To this aim, we can
calculate the vector potential at a point P(x, y, z) and, from it the magnetic field B
by means of the curl. Let us suppose we have a magnetized substance occupying the
volume V ′ (see Fig. 6.1).

If we choose a differential volume element dv′, whose magnetic moment is dm,
its contribution to the vector potential A at P is

dA = μ0

4π

dm × r
r3

. (6.2)

Now, to calculate the total vector potential of the body, we sum over all differential
volume elements of moment dm, obtaining

A(r′) = μ0

4π

{∫

V ′

∇′ × M(r′)
|r − r′| dV ′ +

∮

S′

M(r′) × n
|r − r′| dS′

}
. (6.3)

If we compare this expression with those given to the vector potential in Chap.5, we
see that instead of ∇′ ×M(r′) andM(r′)×n we have the volumetric current density
jv and the surface current density js, respectively. For this reason we can extract
a simile, that the vector magnetic potential A created by the magnetized matter is

Fig. 6.1 Vector potential at
point P(x, y, z) produced by
a differential volume element
dv′ of magnetic moment dm

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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equivalent to that would be created in vacuum volume and surface density currents
of values

jm = ∇′ × M, (6.4)

and
jms = M × n, (6.5)

where n represents the outward normal vector to that surface. These currents are
called volumetric magnetization current density and surface magnetization current
density, respectively. Note that these currents are bounded currents different from
the free currents seen in Chap. 5. In this way we can rewrite the expression of the
following potential form:

A(r) = μ0

4π

{∫

V ′

jm
|r − r′|dV

′ +
∮

S′

jms
|r − r′|dS

′
}

. (6.6)

In short, what this result shows is that the effect provoked by a magnetized material
is the same as that produced by these currents.

To obtain the magnetic field B we use (5.11)

B(r) = μ0

4π

{∫

V

jm × (r − r′)
|r − r′|3 dV +

∮

S

jms × (r − r′)
|r − r′|3 dS

}
. (6.7)

As we have commented jm and jms are not free current densities. The free current
jf is actually the only current that appears in the problems of the previous chapter,
however we wrote j instead of jf . The reason for this is twofold. Firstly, at that time,
we did not have the magnetization vector defined yet. Making this distinction in
Chap.5 would be confusing to the reader. Secondly, and perhaps more importantly,
in the Ampère theorem explained in Chap.5 appears j, which includes all density
currents, and not only jf . If we would write there only the free currents it could make
us to think that the magnetic field B can be produced only by conduction currents jf ,
which is obviously false.

6.3 The Magnetic Field H

As we have seen, magnetized matter can create a magnetic field B, which can be
explained through the currents jm and jms. On the other hand, free moving electric
charges, also called conduction currents, are also source of B. As a consequence, the
(5.1) can be written as

∇ × B(r) = μ0j = μ0
(
jf + jm

)
. (6.8)

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Note that we have not included jms in the expression (6.8), which is also one of the
bound current densities defined in the previous section due to the existence of the
field M. There are several reasons. Firstly, the differential partial equation (6.8) is
defined on amathematically open region of space,1 given the information concerning
to the surface and their currents with the boundary conditions. Secondly, to calculate
the curl of B in (6.8) we need that the magnetic field be differentiable in all points
of the region to be investigated. However this condition is violated on the surface
of the body where the field changes abruptly. Thirdly, it is not possible to write
j = jf + jm + jms because the unities of the surface current density are ampère per
meter, and of the other currents Am−2.

By introducing (6.4) into (6.8), we have

∇ ×
[
B
μ0

− M
]

= jf . (6.9)

This new magnitude in the brackets is defined as the magnetic field H, i.e.

H = B(r)
μ0

− M. [Am−1] (6.10)

The physical units of H in the S.I. are the same asM, that is, Am−1.
With this definition, the differential equation (6.9) may be written as follows

∇ × H = jf . (6.11)

Equation (6.11) states that a current of free charge creates a magnetic field H, or
equivalently: the current jf is a possible source of magnetic fieldH. It is important to
note that we do not exclude other possible sources for this field. In fact, from (6.10)
we have

B = μ0(H + M), (6.12)

and by using (5.2), we get

∇ · H + ∇ · M = 0 ⇒ ∇ · H = −∇ · M. (6.13)

This result is very important and it shows another source of magnetic fieldH. Those
points of space at which the divergence ofM is distinct from zero, are points of non-
zero divergence of H and, consequently, we will have a source or sink (depending
on the sign) of lines of field H.

1If the region is infinite (from a mathematical viewpoint) we have no boundary conditions nor
surface density currents.

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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In addition, there would be a third source of field H, which is the variation of
electric displacement D with time, although variable fields have not yet been intro-
duced, this possibility does not affect us in this chapter (see the Maxwell equations
in Chap.10).

6.4 The Ampère Law of the Magnetic Field H

Ampère’s theorem is the integral expression of (6.11) and provides that the circulation
of the magnetic field H along a closed path � depends only on the net intensity due
to the free current that crosses any open surface S whose boundary is �,

∮

∂S
H · dl =

∫

S
jf · dS =

∫

S
jf · ndS = If . (6.14)

where If corresponds to the conduction currents.
Note that in (6.14) the conduction currents only appear, whereas the expression

(5.7) includes all currents. To explain this fact, let us write Ampère’s theorem for the
field B again considering all density currents

∮

∂S
B · dl = μ0

∫

S
j · dS =

∫

S
(jf + jm) · dS+

∮

�

jms · ndl = If + Im + Ims (6.15)

Observe that in this case we have included jms, which on the other hand, seems to
be a contradiction if we compare it with (6.8) and remember the arguments given in
the previous section for not considering the surface density current in the differential
equation. The reason of this deals with the boundary conditions in (6.8). In fact,
when the partial differential equation is converted into the integral form (6.15),
the boundary conditions disappear, thus we would lose this information. Actually,
the information retained in the BC is transformed into a surface integral. However,
accepting this conclusion, another problem arises. In effect, taking into consideration
the units of jms (A/m), we have seen that this current cannot be added to volumetric
densities jf and jms, which apparently contradicts (6.15), however correct it may be.

To explain the idea, let us consider Fig. 6.2. As we can observe, although the jms
flows over the surface �, the product (intersection) jms · dS (it has no sense; see
the physical units) extends over a one-dimensional manifold (the curve �), which
implies that the integration domain for jms is not a surface, but actually the curve �

(see Problem 6.23). Thus, dS behaves as if it were an element of length dl, making
the units of this product jmsdl in the integrand ampère (A), like (jc + jm) · dS.

∫

S
jms · dS =

∫

�

jms · ndl = Ims. (6.16)

To some extent this equation represents the flux of jms throughout the line � (the
number of lines jms crossing this curve).

http://dx.doi.org/10.1007/978-3-662-48368-8_10
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Fig. 6.2 Flux of the surface
current density jms across the
surface S. Observe that the
product jms · ndl extends
along the curve �. This
situations differs from that
corresponding to
(jc + jm) · dS in which the
intersection is a surface (see
also Fig. 5.2 in Chap.5)

6.5 Basic Kinds of Magnetic Materials

From a magnetic point of view, substances existing in nature can be divided into dia-
magnetic, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic and meta-
magnetic. In reality this classification refers to different types of magnetism, since,
for example, a substance that at a temperature is ferromagnetic becomes paramag-
netic if a certain temperature is exceeded, namely the Curie temperature. Actually
matter at high temperatures behaves as paramagnetic or diamagnetic.

In order to classify magnetic materials we must study the relation between the
magnetizationM and the magnetic field H. To this aim, we define the susceptibility
χm as

χm = M
H

. (6.17)

Thus, it is possible to characterize magnetic materials by giving the functional
dependence M = M(H). On the other hand, we can divide the magnetism of mate-
rials in two types: weak magnetism and intense magnetism. The first one includes
diamagnetism and paramagnetism, and the second one is represented basically by
the ferro- and ferrimagnetism. The fundamental characteristics of all of them are
manifested by (6.17) or, equivalently, by the functional dependence of B versus H.
In general, we can write

M = χm(H)H, (6.18)

where χm may be, in general, a function of H. Therefore, introducing (6.18) into
(6.12) we have

B = μ0[1 + χm(H)]H = μ0μr(H)H = μ(H)H, (6.19)

where μ is the magnetic permeability of the material and μr the relative magnetic
permeability. Bearing this in mind, we can make the following classification:

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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(a) (b)

Fig. 6.3 a Hysteresis curve on plane (H–B). b Idem on (M, H)

(A) Diamagnetic materials. χm is constant, small and negative, then μr is smaller
than 1. The relations M = M(H) and B = B(H) are linear.

(B) Paramagnetic materials. χm > 0 and constant and μr > 1, also functions
M = M(H) and B = B(H) are linear.

(C) Ferromagnetic materials. Here the relationship M = M(H) is not linear
(Fig. 6.3), being, therefore, χm and μr functions ofH. In these substances the relation
B = B(H) and M = M(H) are called hysteresis curve on the plane BH and on the
plane MH, respectively. In order to know at which point in the hysteresis curve we
are, we will call the path OC, the first magnetization curve, and the stretch CE and
EC, the second and third magnetization curves, respectively. The MH diagram can
be obtained from cycle BH using the general expression B = μ0(M + H). In these
materials themagnetization appears spontaneously. The reason of that is the existence
of magnetic domains each of which behaves like magnets of magnetic moment mi.
The magnetization inside each microscopic region (domain)2 is made up of the sum
of the atomic magnetic moments which are aligned in a definite direction due to the
exchange force. On the other hand, between magnetic domains are boundaries in
which the direction of magnetization vector rotates from one domain to the next; this
transition region is called the Bloch wall.3

6.6 Description of the Magnetization Curve

As we have mentioned in the preceding section, the magnetization process of a
ferromagnetic material may be divided in three segments. The first magnetization

2In general for solid bodies, they are different factors that may contribute to the distribution
of the spontaneous magnetization such as magnetostriction, magnetostatic energy and magnetic
anisotropy.
3The boundary between the magnetic regions is thin but not sharp (discontinuous) when regarding
on atomic scale. Actually, the wall spreads over a thickness which depends on the material (from
100 to 1000 atomic lattice constants). In this transition layer between domains the spin directions
of the atoms change gradually.
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Fig. 6.4 First magnetization
curve. The part OA is
reversible. The second
segment goes from A to B,
and is irreversible. The third
zone BC corresponds to the
magnetization rotation, and
in CD the saturation is
reached

curve starts at point O (Fig. 6.4) where H = 0 and B = 0, and represents the
demagnetized state. Starting from this point the magnetization increases along the
curve OAB with a increase of the magnetic field H, and if we continue increasing
H, the saturation magnetization at point C is reached. For greater values of H, the
magnetic field B scarcely varies (point D). To describe in more detail this first part
we distinguish three intervals.

Thefirst one corresponds to the pathOA and it is almost reversible. In this stage, the
application of amagnetic fieldH leads to an increase in volume of the domainswhose
magnetic moments are substantially located in the same direction of the applied field.
On the contrary, the domains with magnetization directions very different from H
tend to decrease the size. This variation in volume of the domains is possible because
of the displacement of the Bloch wall.

At the beginning in the neighborhood of the origin O the curve has a finite slope.
We define the initial permeability as

μi =
(
dB

dH

)

H→0

. (6.20)

This path goes from O to A and it may be fitted to

B = μiH + νH2. (6.21)

Taking into account that B = μ(H)H we can write (6.21) as follows

B = (μi + νH)H = μ(H)H, (6.22)

and then,
dμ(H)

dH
= ν,

is a constant. The second part extends from A to B with a steep slope. In this interval
the process is not reversible. If the field H is decreased, the magnetization also
changes but not along the path BA, but rather following the segment b (Fig. 6.4). The
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Fig. 6.5 Hysteresis loop. Observe that by increasing the magnetic field H between C and D, the
magnetic field B is almost the same (saturation). When we go back the fields H and B follow the
paths CE (second magnetization curve) and EC (third magnetization curve), respectively, and not
the curve CO. This means that the magnetization process is not reversible. In some extent we can
say that these kind of materials have memory

reason for this irreversibility is thatwhen themagnetic field diminishes, Bloch’swalls
cannot move back by the same paths to their initial positions. As a consequence, the
domains do not acquire their original size and then the sum of all magnetic moments
corresponding to each magnetic domain is not zero. On the other hand, over this
segment AB the permeability μ(H) reaches its maximum. The third part covers the
segment from B to C. In this interval most of the domains have reached a stable
configuration, then when magnetic field H increases, the only possibility is to rotate
the magnetization in each domain. For greater values of H the material follows the
straight CD in which the practical totality of the domains have their magnetization
vector in the direction of themagnetic fieldH applied. This last segment is reversible,
that is, if H decreases a little, the systems goes back through the straight DC. If the
magnetic field is now reduced to zero the curve is not retracted (see Fig. 6.5). On
the contrary, the magnetic field B follows the line CE and stops at the B-axis (where
H = 0). This point of the curve is the remanet magnetic field Br . If we continue
reducing H the point (−Hc, 0) is obtained, in which B is zero (observe that in the
second quadrant H is negative, then considering its sign we can say “reducing”.
However in modulus we increase the magnetic fieldH). This value ofH is called the
coercitive magnetic fieldHc. By increasing the modulus ofH, we reach E, where the
material is again saturated. From this point diminishing H to zero −Br is reached,
whose value coincides in modulus with the remanet magnetic field aforementioned.
If we continue augmenting it, positively, more and more, we holds C again.

For experimentally obtaining the hysteresis curve, a device as shown in Fig. 6.6
may be used. By changing the value of the variable resistance VR the current cir-
culating in the circuit is controlled. For low values of the current we cannot obtain
a saturated hysteresis curve. We obtain a smaller loop (Fig. 6.7) within the major
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(a)

(b)

Fig. 6.6 a Experimental set-up for obtaining the hysteresis loop. In this picture appear: AC, alter-
nating current source;Rp, standard resistance; VR, variable resistance;A, amperimeter;R, resistance
of the secondary circuit; L1 and L2, autoinductances (see Chap.8); C, capacitor. On the right the
oscilloscope. b Subsystem formed by the ferromagnetic core and the coils L1 and L2 (transformer).
See next section

Fig. 6.7 Experimental hysteresis curve obtained in the laboratory for a steel sample. Observe that
the first magnetization curve does not appear

loop as shown in Fig. 6.8, where Hm and Bm are the maximum values for H and B,
respectively (observe the first loops in the Fig. 6.8).4

However, by increasing the intensity enough, it is possible to cycle the material
between symmetrical fieldsH to achieve saturation (see the bigger hysteresis loop in
Fig. 6.8). Ifwe vary themagnitude of the field strengthH following the above process,

4The first magnetization curve does not appear in this figure, due to the experimental procedure
we have used for measuring this hysteresis loop. When an AC current is employed, the fields vary
rapidly (50 or 60 times per second), incapable for the human eye to observe the initial part of the
hysteresis loop. For detecting directly this segment of the curve we should take a photograph with

an exposure time on the order of
(

1
5×50(60)

)
s−1.

http://dx.doi.org/10.1007/978-3-662-48368-8_8
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Fig. 6.8 Family of hysteresis loops

and we draw all curves together, thus we get a family of loops whose appearance is
displayed in Fig. 6.8. This enables the reconstruction of the first magnetization curve
by joining the maxima (Hm,Bm) for each loop.5

6.7 Magnetic Circuits and Electromagnets

A magnetic circuit is, in general, a system formed by magnetic materials, often with
presence of electric currents, although not necessarily (e.g., the permanent magnet).
The most representative circuit is, perhaps, the denominated electromagnet, shown
in Fig. 6.9a. This is formed by two parts, one corresponding to the material, we will
call core or yoke, and an air gap.6 Furthermore, it has one or several insulated copper
coils around the core. The main objective in the problems is the determination of
the fields H, M and B, in all parts of the eletromagnet, i.e. in the core and the
air gap. The exact calculation of the fields is a very difficult problem which requires
special techniques. However, it is possible to find an approximate solution bymaking
some approximations. With the aim of answering these questions, the resolution of a
magnetic circuit may be carried out by following three steps: (1) Application of the
Ampère law forH. To this end we choose a closed curve � passing through the mean
lengths of the electromagnet arms. Depending on the geometry of the problem one
or more curves may be used (see Figs. 6.9a, 6.10). Let us suppose, for simplicity, that
we have a simple electromagnet with an air gap and constant cross section (Fig. 6.11).
For this case it holds that

5In some cases the form of the hysteresis loop may be very different as we have seen for ferromag-
netic materials. See for example [94].
6In fact, an electromagnet can be formed by more than one material. We start with this scheme from
simplicity. The same procedure holds for other more complex systems.



324 6 Static Magnetic Field in Presence of Matter

(a) (b)

(c) (d)

Fig. 6.9 a Electromagnet. b Closed surface. Observe that this surface encloses three parts of the
magnetic material. c Closed surface which contains a part of the material and a zone of the air gap.
d Lateral view of (c). By calculating the magnetic flux through these closed surfaces we can find
equations which relate the magnetic field B in the regions of interest

Fig. 6.10 a Front view of an electromagnet that can reach 1.1Tesla when cone poles are inserted.
b Back view. In order to refrigerate the electromagnet, water flows through a system of tubes that
have been located properly

∮

�

Hdl =
∫ ∫

S
jc · dS = If ⇒

∫

core
H dl+

∫

gap
H dl = Hclc +Hglg = NI, (6.23)
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Fig. 6.11 Electromagnet of
constant cross-section S and
mean lengths lc and lg

where NI is known as the magnetomotive force (m.m.f.). This result is valid under
the hypothesis that the mean magnetic field H is the same along the core where the
cross section does not vary. For a more general case we can write

n∑

1

∫

�i−(core)
Hi dl +

∫

gap
H dl = NI, (6.24)

and if the magnetic field Hi for each part of the electromagnet is constant, (6.24)
yields

n∑

1

Hi li + Hg lg = NI. (6.25)

(2) Calculation of the flux of B through closed surfaces. In (6.23) a field appears
that corresponds to the core and air gap, simultaneously. Hence this equation is not
sufficient to calculate the fields in the different parts of the system; we need more
equations. In order to have equalities, we use a general property of themagnetic field,
namely its divergence is always zero. We need to relate parts of the electromagnet
in which either the magnetic properties of the materials change or the sections vary
(Fig. 6.9b), since both may cause a variation of the magnetic fields. In the case of
Fig. 6.11 the electromagnet has a constant cross section, thus the zoneof interest lies in
the transition from the magnetic material to the air gap. By choosing a closed surface
for this electromagnet as shown in Fig. 6.9c, d, and integrating ∇ ·B throughout, we
have
∮

S
BdS =

∫

S1

B1dS+
∫

S2

B2dS+
∫

S3

B3dS+
∫

S4

B4dS+
∫

S5

B5dS+
∫

S6

B6dS = 0.

(6.26)
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If we suppose that the field lines follow the geometry of the core arms, and that no
flux leakage at the air gap exists, the magnetic flux crossing the surfaces 3, 4, 5, and
6 are zero, and then (6.26) leads to

−
∫

S1

B1d S +
∫

S2

B2 dS = 0 ⇒ BcSc = BgSg, (6.27)

where B1 = Bc in the core and B2 = Bg in the air gap. However, since the cross
sections are identical, Bc = Bg .

(3) Using the material equations including the gap properties. The magnetic
characteristics of the materials that form the core are given by the equation B =
μ0μr(H)H = μ(H)H. If the yoke is made of a ferromagnetic material, this corre-
sponds to the hysteresis curve. For the gap it holds that B = μ0H.

6.8 Operating Straight Line and Operating Point

By using the general equation of B in the case of the air gap, we can substitute Hg as
a function of Bg ,

Bg = μ0(Hg) ⇒ Hg = Bg

μ0
, (6.28)

and introducing it into (6.23),

Hclc + Hglg = NI ⇒ Hclc +
(
Bg

μ0

)
lg = NI. (6.29)

This equation has two unknowns corresponding to the core and the air gap, respec-
tively. The first step to solve it is to express this equality as a function of fields
only corresponding to the core. To this aim, we employ (6.27) together with (6.29),
obtaining

Hclc +
(
Bc

μ0

)
lg = NI ⇒ Bc = μ0NI

lg
− μ0lc

lg
Hc, (6.30)

which is known as operating straight line (OSL), and depends on the fields in the
yoke. To calculate Hc and Bc we still need another equation. This is the material
equation, which in case of ferromagnetic bodies is the hysteresis loop. The solution of
both equations simultaneously corresponds to the intersection between the operating
straight line and the material equation, and is said to be the operating point of the
system. Because of the hysteresis curve, for ferromagnetic materials the intersection
gives three (or two in the third quadrant) different solutions as depicted in Fig. 6.12a.
It means that to calculate the intersection in a problem it is necessary to know the
history of the material. So if the specimen starts from a demagnetized state (point
O), by increasing the current we run throughout the first magnetization curve, then
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(a) (b)

Fig. 6.12 a The operating straight line OSL intersects at three points on the hysteresis curve (P1,
P′
1, and P

′′
1 ). The solution depends on the previous history of the material. If the body started from

a demagnetized state and the intensity grows positively, the operating point is P1. If the saturation
is reached and the intensity is diminished, the solution is P′

1. If we continue in this direction we get
P0. At this operating point (I = 0) the magnetic internal field B is opposite to H , then it tends to
demagnetize the material. This field is called demagnetizing field Hd . In the case we cross I = 0
and the direction of the intensity is inverted, we have a generic point P′

n. By increasing the absolute
value of I , we obtain the saturation again (third quadrant), and reducing |I| the operating point P′′n
is obtained. b Electromagnet when I = 0. Observe that the points where ∇ · M �= 0 act as sources
or sinks of magnetic field H

Fig. 6.13 Observe that
owing the demagnetizing
field Hd , the effective field
inside of the specimen is less
than the external field H , and
therefore the actual
hysteresis curve is sheared

the operation point must be P1. If we would have reached material saturation, the
state of the system is described by the second curve of magnetization. As a result,
the operation point belongs to this upper or the lower curve depending on the value
of the intensity (point P′

1 or P
′
n), passing through P0 which corresponds to I = 0.

This last point is of some interest and it should be commented in more detail. In fact,
at this point no intensity is flowing through the coils, but we have magnetic fields H
and B. To understand this, we have to remember that a magnetostatic field H may be
generated not only by free currents, but also by the existence of a nonzero divergence
of magnetization (6.13). If we examine the electromagnet of Fig. 6.12b we see that
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Fig. 6.14 Operating straight
line OSL for a paramagnetic
material. Here the
intersection is single valued.
Observe that the operating
straight lines OSL for each
problem are parallel (same
slope)

on the surface S1 magnetization M is born (∇ · M > 0), then the magnetic field H
dies (∇ · H < 0), and on S2 the contrary occurs (∇ · M < 0 and ∇ · H > 0).

This result shows two important characteristics of H for the present case. The
first one is that the magnetic field H is discontinuous on the surfaces delimiting the
material and air-gap; secondly, that H inside the electromagnet (for I = 0) has an
opposite direction to the magnetic field B and M. As a result inside the material B
is less than M (B = μ0(−H + M)), hence it tends to demagnetize the sample. For
this reason this field is called demagnetizing field Hd . This field must be taken into
account in device design, however its calculation is a task of high difficulty (see
Problem 6.2). Due to the fact this demagnetizing field is opposite to magnetization,
when studying the hysteresis loop this fact must be taken into account (Fig. 6.13).

If the material of the core is paramagnetic we simply use B = μ0μrH. The
geometrical interpretation is shown in Fig. 6.14.

6.9 The Permanent Magnet

If we look at Fig. 6.12a we see that for I = 0, the magnetic fields H and B are
non-zero. This means that in absence of electric currents magnetic fields may arise
from magnetized matter. When that occurs, the material is said to be a permanent
magnet. The magnetic circuit for a magnet may be calculated in the same way shown
in the preceding section. The only difference is that the right side of (6.29) is zero
(Fig. 6.15),

Hili +
(
Bi

μ0

)
lg = 0 ⇒ Bi = −μ0li

lg
Hi. (6.31)

Observe that the value of Bi depends directly of the quotient li
lg
. Although the

air gap is an important part for many devices (recording heads, filters, etc.), it
may not necessarily be for some applications. In this case, the magnet must be
designed without an air gap (see Fig. 6.16). In this case, a toroidal core geometry
may be used. The key idea is to bring the ferromagnetic core to saturation by using
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Fig. 6.15 Permanent magnet with air-gap

(a)

(b)

Fig. 6.16 a Permanent magnet of mean length lc with tangential magnetization M = Muφ.
b Operating straight line and operating point. For a magnet without air gap the OSL has an infinite
slope. As a consequence, the intersection between this line and the hysteresis curve coincides with
the remanent magnetic field Br

multiple-layer solenoidal coils (Fig. 6.16a), and then reducing the electric current to
zero. In applying this procedure the magnetic field in the material coincides with Br .
The reason is that the operating straight line has an infinite slope, i.e. is parallel to the
B-axis (Fig. 6.16b), thus the intersection between the operating straight line and the
second magnetizing curve of the material, when I = 0, corresponds to the remanent
magnetic field.7

7Whenwe explained the hysteresis loop of ferromagneticmaterials in Sect. 6.5, we simply described
it without commenting about the OSL, because we had not yet defined it.



330 6 Static Magnetic Field in Presence of Matter

6.10 The Demagnetizing Field

As we have commented in Sect. 6.8, when a material of finite size is magnetized, as
a consequence of the existence of a divergence of its magnetization, on their ends
appears a magnetic field in a direction opposite that of the magnetization M. We
will call this field that tends to demagnetize a body the demagnetizing field. As a
result, the effective magnetic field H inside of the body is smaller than the field if
we do not consider this effect. Therefore the magnetic field H in the interior of the
material must be corrected for obtaining its correct value. Considering a first order
demagnetizing field Hd , it is, in general, proportional to the magnetization, it may
be expressed as follows8

Hdp = NdpqMq, (6.32)

Ndpq = ¯̄Nd being the demagnetizing tensor.9

The demagnetizing correction is usually very difficult to calculate.Only in the case
of ellipsoidal materials with a uniform magnetization may an analytical solution of
the demagnetizing factor be obtained, also resulting in a homogeneous demagnetizing
field. Even in the case of uniformmagnetization of a specimen, if the body is irregular
in shape, its demagnetizing field will be non-homogeneous. In general, for non-
ellipsoidal bodies the computation is highly difficult to determine, with it being
necessary to employ numerical techniques.

For ellipsoidal samples, the internal field may be expressed by the following
formula

Hin = Hex + Hd = Hex − ¯̄NdM, (6.33)

where Hex is the external field applied. For this geometry N is a diagonal tensor
whose components verify the relation

Nxx + Nyy + Nzz = 1. (6.34)

Nxx = cosϕ cos θ

sin3 θ sin2 α
(F(k, θ) − E(k, θ)), (6.35)

Nyy = cosϕ cos θ

sin3 θ sin2 α cos2 α

(
E(k, θ) − cos2 αF(k, θ) − sin2 α sin θ cos θ

cosϕ

)
,

(6.36)

8We will comment on this definition latter, when we deal with non-ellipsoidal samples.
9For very large one-dimensional samples, N is only a number, thus employing the formula Hd =
NdM. This is the normal case in solving problems for students. In this case the noun demagnetizing
factor instead demagnetizing tensor is usually employed.
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Nzz = cosϕ cos θ

sin3 θ sin2 α

(
cosϕ sin θ

cos θ
− E(k, θ)

)
, (6.37)

where
cos θ = c

a
,

(
0 ≤ θ ≤ π

2

)
(6.38)

cosϕ = b

a
,

(
0 ≤ ϕ ≤ π

2

)
(6.39)

and

sinα =
(
1 − (

b
a

)2

1 − (
c
a

)2

)

,
(
0 ≤ α ≤ π

2

)
. (6.40)

Functions F(k, θ) and E(k, θ) are elliptic integrals of the first and second kinds,
respectively, k being the modulus and θ the amplitude of these integrals. In (6.38)
and (6.39), a, b and c are the lengths of the semiaxis of the ellipsoid.

These equations may be simplified in some cases. For instance, if the ellipsoid
is elongated (c 	 a, b) and has one axis of symmetry we can work with only one
coefficient of the tensor. In this case, supposing the magnetization parallel to the long
axis we have

Nzz = 1

κ2 − 1

(
κ√

κ2 − 1
ln(κ +

√
κ2 − 1 − 1)

)
, (6.41)

κ being the ratio of its long length to the diameter of the ellipsoid (cross-section
perpendicular to c). In the case of an oblate ellipsoid, if the magnetization is parallel
to its circular section we can use

N = 1

2

(
κ2

(κ2 − 1)
3
2

sin−1

√
κ2 − 1

κ
− 1

κ2 − 1

)

, (6.42)

where here κ is the quotient between diameter and thickness.
If the body is non-ellipsoidal in shape the above definition of the demagnetizing

factor must be changed because, in general, the relation between the demagnetizing
field and the magnetization is not linear. In fact, when it occurs, supposing that the
specimen is located in a homogeneous magnetic field, the demagnetizing factor is
defined as the ratio of the average demagnetizing magnetic field H to the average
magnetization of the whole body, i.e.

∫ ∫

S
Hd(r) · dS = −N

∫ ∫

S
M(r) · dS. (6.43)

By this type of non-ellipsoidal shaped materials the magnetization is usually
non-uniform which leads to demagnetizing factors depending on the point
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examined of the sample. It means that the components of the tensor will be a function
of the coordinates, i.e. Npq = Npq(x, y, z), where p, q = x, y, x.10

Solved Problems

Problems A

6.1 A finite bar of radius R and length L is magnetized homogeneously in the direc-
tion of its symmetry axis (Fig. 6.17). Find the volumetric and surface density
currents of magnetization, and give the expression of the magnetic field B at any
point over its symmetry axis.

Solution

Due to the symmetry of the bar let us choose a cylindrical system of coordinates, in
which its revolution axis coincides with OZ . In this case we can write the magne-
tization field as M = M uz. For determining the volumetric magnetization current
density we have to apply its definition (6.4),

jm = ∇′ × M. (6.44)

Substituting M = (0, 0,M) into this equation we obtain

jm = ∇′ × (0, 0,M) = 0, (6.45)

which is logical because of the homogeneity of M in the volume.
With respect to the surface magnetization current density, we follow the same

process. However in this case it is necessary to distinguish the different parts of the
bar, the two bases and the lateral face. Applying definition (6.5) we have

jms = M × n, (6.46)

For the right side of the cylinder its normal vector to its surface is n1 = (0, 0, 1).
Using definition (6.5), we have (Fig. 6.17)

jms1 = M(r′) × n1 = (0, 0,M) × (0, 0, 1) = 0. (6.47)

For the another base the normal is n2 = (0, 0,−1), and jms:

jms2 = M(r′) × n2 = (0, 0,M) × (0, 0,−1) = 0. (6.48)

10The knowledge of the local distribution of the demagnetizing factorsNpq(x, y, z) is very important
for some technological applications, for instance in plane ferrite elements. These type of materi-
als are the constituents of many devices such as phase shifters, magnetic circuits, isolators, and
microwave systems.
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Fig. 6.17 Rod
homogeneously magnetized

The density corresponding to the lateral surface may by calculated in the same way,
but changing the normal vector. As we have chosen cylindrical coordinates,11 such a
vector has only one component which corresponds to the direction uρ, then it holds
that n3 = uρ = (1, 0, 0). Introducing it into (6.5), it yields

jms3 = (0, 0,M) × (1, 0, 0) = (0,M, 0) = Muφ. (6.49)

If we analyze the preceding results we conclude that the bar only has surface mag-
netization current density on the lateral surface. Geometrically we can represent this
result as shown in Fig. 6.18, which remeinds us of a solenoid (Chap. 5). By using
(5.101) and (5.102) we can write,

dIm3 =
(
dIm3
dz

)
dz = jms3 dz, (6.50)

where Im3 represents the flux of jms3 through a line perpendicular to this current
density, ∫

S
jms3 · dS =

∫

�

jms3 dl = Ims3. (6.51)

Aswe have studied in Chap.5when obtaining themagnetic field of a solenoid closely
wound, we were able to calculate B by computing first the field produced by a set
of dN coils, and then integrating for the total length of the solenoid. In our case we
try to use the same idea, but with the current Im due to magnetization because we do
not have free charge currents. To confront this problem, let us suppose we wish to
calculate first the magnetic field produced by a slice dz′ of the bar at a point P(0, 0, z)
(Fig. 6.19)

dB(P) ≈ μ0dIma2

2
[
a2 + (z − z′)2

]3/2 uz = μ0a2jms3dz

2
[
a2 + (z − z′)2

]3/2 uz. (6.52)

11If we would have chosen cartesian coordinates the normal to the surface would be n3 = cosφ ux+
sinφ uy, obtaining the same result.

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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(a)(b)

Fig. 6.18 a Surface density current on the lateral side S3. Observe that jms3 is perpendicular to
the line l. Im represents the flux of jms3 across that line (see Fig. 5.31). b Equivalent Solenoid to a
homogeneous magnetized bar of the same length and radius

Fig. 6.19 Magnetized bar
and surface magnetization
currents

If we compare this expression with (5.96) we observe that both equations are similar,
however the only difference is that in (6.52) jms3 appears instead nI . In other words,
the computation of the magnetic field for the magnetized bar from (6.52) is formally
the same as that performed for the coil of n turns per unit length, but now appears
jms3. For this reason when making calculations with a homogeneous magnetized bar,
we may work with an equivalent solenoid if we identify jms3 with nI . Physically it
means that the magnetic field B produced by a cylinder of uniform magnetization
M along its revolution axis, is the same as the field B created by an actual solenoid
of the same geometry with a flux current of nI . Notice that we identify the effects
of both systems, but not the causes that create such a field. By integrating (6.52),
we conclude that the magnetic field B may be expressed as follows (see (5.99) in
Chap.5)

B = μ0jms
2

(cosα1 + cosα2)uz = μ0M

2
(cosα1 + cosα2)uz. (6.53)

Ultimately, if we construct a coil of length L and radius R so that the product nI
coincides with the magnetization of a bar of the same shape, we cannot distinguish
between themagnetic fieldsB produced by both systems, because their effects are the
same. In this regard we come to understand the term equivalent solenoid (Fig. 6.19).

6.2 A magnetic bar of circular cross-section has a length and radius � = 0.2m and
r = 0.03m, respectively. The material is homogeneously magnetized in the
direction of its axis of revolution reaching magnetization M = 15,000Am−1.
Find: (a) The magnetic fields B andH over its symmetry axis at its center and on

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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the top. (b) A graphical representation of B, M and H. (c) A sketch of the field
lines of B, M and H.

Solution

(a) As we have shown in the preceding exercise, for calculating the magnetic field B
of a homogeneously magnetized bar, we can use the expression of a finite solenoid
if we put nI = jms, nI being the current per unit length circulating through the actual
coil. By applying (6.53) we have

B = μ0nI

2
(cosα1 + cosα2) = μ0M

2
(cosα1 + cosα2). (6.54)

For a point at the center of the bar holds α1 = α2 = α. On the other hand α =[
arctg

(
r

�/2

)]
, then we can write

B = μ0M

2
2 cos

[
arctg

(
r

�/2

)]
= 4π × 10−7 × 15,000

2
2 cos

[
arctg

(
0.03

0.2/2

)]
= 0.018 T.

To obtain B on the center of one base of the bar (point P) we proceed in the same
way, but now α1 �= α2. For this case we introduce α1 = [

arctg
(
r
�

)]
and α2 = π

2 ,
then we have (Fig. 6.20)

B = μ0M

2
cos

[
arctg

( r
�

)]
= 4π × 10−7 × 15,000

2
cos

[
arctg

(
0.03

0.2

)]
= 0.009 T.

For determining the magnetic field H we use its definition, i.e.

H = B
μ0

− M, (6.55)

whereM is the magnetization, which is known. By employing the above results for
B, we can find the values of H at the center and on the base. In fact, for L/2 over its
revolution axis, we can write

Fig. 6.20 Point P at the extreme of the solenoid. Notice that α2 = π
2
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(a) (b)

Fig. 6.21 The magnetic field H changes its sigh for points immediately outside of the rod. a The
right and b the left end of the thin bar

H = 0.018

4π × 10−7
− 15,000 A/m = −6300 A/m. (6.56)

The negative sign means that H and B have opposite directions in the material. On
the top of the bar we should distinguish between a point on the inner face of the
material, and outside of the material (the point very near of the base).

Since the points we are going to study are very close to each other, we can put for
both cases the angles corresponding to calculation at the edge on the top. The only
difference when applying (6.54) is that there is magnetization if we are inside of the
material, but there is no magnetization outside the bar, then for a point close to the
end and inside of the system we have

H = 0.0093

4π × 10−7
− 15,000 A/m = −7600 A/m, (6.57)

on the left of the surface S (see Fig. 6.21), but very near P. For P outside on the right,

H = 0.0093

4π × 10−7
A/m = 7400 A/m. (6.58)

(b) Taking into account the values of H, M and B obtained, the graphical repre-
sentation of these fields has the forms shown in Fig. 6.22.

(c) To sketch the field lines inside and outside of the bar it is necessary to under-
stand the physical significance of the results obtained in section (a). These results
mean that at the center of the circular base H changes sharply, because its sign
changes (Fig. 6.21). The magnetic field H is negative just on the inner side where
there is material (left), and on the same face but outside on the point exterior to
the material the resulting H field is positive (right). As this result is conceptually
important, we will devote some discussion to it. To gain some physical insight into
its meaning we are going to use (6.13). From this equation we saw that we can have
a source or a sink of magnetic field H at any point where the divergence of the mag-
netization is nonzero. Let us suppose we examine the surface S1 corresponding to
the right side end of the bar (Fig. 6.21a). On this surface the lines of M die on S1
then ∇ · M < 0. It means that at P1 ∇ · H > 0, hence lines of magnetic field H
must be born (Fig. 6.21a). A similar analysis holds on the surface S2, but in this case
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Fig. 6.22 This graphic
shows the fields B,M and H
versus the distance z, inside
and outside of the magnetic
bar

the physical result differs. In fact, at P2 we have a source of magnetization and then
∇ · M > 0 (Fig. 6.21b). At the same time from (6.13) it leads to ∇ · H < 0, thus
lines of H die at this point. Definitely, point P1 behaves like a sink of magnetic field
H, and P2 like a source of H. In the interior of the rod there are neither sources nor
sinks because ∇ · M = 0.

By analyzing the results obtained we see that each field behaves differently. So,
the magnetic field B is formed by closed lines (Fig. 6.22(1)), which is a consequence
of the non-existence of monopoles. However, the magnetic field H is discontinuous
on the base of the rod and the directions inside and outside the material are opposite
(Fig. 6.23(3)). This field is going from north to south outside of the bar, and inside too
(contrary to what occurs with the magnetic field B). This interior fieldH opposite the
magnetizationM is the demagnetizing field Hd , already commented in the theoretical
introduction. In this case, we can mathematically express this field by means of a
scalar instead of a tensor as follows

Hd = NdM, (6.59)
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Fig. 6.23 In this picture a
qualitative sketch of the
fields B,M and H are
presented. Notice that as a
consequence of the existence
of ∇ · M �= 0, the magnetic
field H is discontinuous on
the surfaces S1 and S2

where Nd is the demagnetizing factor. Observe that, becauseHd goes in the opposite
direction toM, applying (6.10) we can write for the magnetized bar B = μ0(−Hd +
M), which means that the magnetic field inside of the specimen is less than M, but
in the same direction. However, the magnitude of Hd does not surpasses M.

As the system is a slender bar (see (6.41)), an easy expression for Nd may be
found. In fact, a slender rod may be approximated to an ellipsoid whose revolution
axis c is greater than its diameter, then r(κ = c

a = r
l 	 1). In this case, by using

(6.41) we obtain

Nzz ≈ (ln(2κ) − 1)

κ2
. (6.60)

As the rod is homogenously magnetized along OZ and its cross-section is circular
then Nxx = Nyy, and the value of Nxx may be easily deduced by applying (6.34).

6.3 A magnetic bar of radius a = 5 cm extends from the origin of coordinates to a
very far point on theOY axis. If the rod has a homogeneous magnetizationM =
1000 uy, find: (a) The magnetic field B at P(0,−10, 0)cm. (b) The magnetic
field H at the same point P. (c) The magnetic field H at Q(0, 5, 0)cm.

Solution

(a) To answer this question we may directly use the basic results obtained in the
Problems 6.1 and 6.2. This means we identify the magnetic field B produced by a
homogeneous magnetized bar with the field of a solenoid of the same radius and
length in which the identity nI = M holds. From (6.53) it follows

B = μ0M

2
(cosα1 + cosα2)uy. (6.61)
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Fig. 6.24 Magnetic field B outside of the bar. Notice that α1 exceeds π/2

Fig. 6.25 Point Q over the OY axis inside of the rod. In this case the angle α1 < π
2 , but α2 does

not change because the right side of the bar (equivalent solenoid) is far away from Q

As point P is located over the OY axis outside of the rod, the angle α1 exceeds π/2.
Actually α1 = (π − β), then we can introduce it into (6.61) cosα1 = cos(π − β) =
− cosβ. On the other hand, as the bar is very large over the OY axis, the angle α2 is
very small, and at the limit where the length of the right side of the solenoid tends
to infinity α2 → 0, i.e. (Fig. 6.24)

B = μ0nI

2
(− cosβ + cosα2)uy = μ0M

2
(− cosβ + 1)uy = 6.6 · 10−5 T, (6.62)

where we have substituted β = arctan( 5
10 ) = 26.6◦ (Fig. 6.25).

(b) Once we know the magnetic field B, the calculation of H may be computed
by directly applying (6.12). In fact, introducing B into that equation we have

H = B
μ0

− M = B
μ0

− 0 = B
μ0

= 52.9 A/m. (6.63)

Observe that outside the rod M = 0, because we do not have matter.
(c) For determining H at point Q inside of the bar, we must first calculate the

magnetic field B. The reason for this (see Exercise 6.1) is that the physical effects we
are going to equalize refer to B, but not to H or M. In other words, the magnetized
bar and a solenoid of the same dimensions in which nI = M are only equivalent
when regarding their magnetic fields B produced.
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Starting again from (6.53) we can write

B = μ0M

2
(cosα1 + cosα2)uy = μ0M

2
(cosα1 + 1)uy. (6.64)

For the point Q holds α1 = arctan( 55 ) = 45◦, and then B = 1.1 · 10−3 T. Unlike in
section (b) pointQ is located inside of the material, then magnetizationM �= 0. This
means that for calculating H we must use its value, i.e.

H = B
μ0

− M = B
μ0

− 1000 uy = −146.5 A/m. (6.65)

6.4 Figure6.26 represents a system composed by a finite solenoid of length L =
50cm and radius R = 20cm, and a paramagnetic cylindrical slender bar of
l = 2cm, radius r = 1mm, and μr = 10. The current circulating through the
coil is I = 2A and the number of turns per unit length is n = 10,000. If the
distance between the solenoid and the left top of the rod is d = 1m, find: (a)
The magnetizationM of the bar, approximately. (b) The magnetic field B in the
magnetic bar. (c) The magnetic current densities of the rod.

Solution

(a) The magnetization in the bar may be obtained by means of its definition, that is,

M = χmH,

whereχm = (μr−1). Then,magnetization of the slender rod depends on the intensity
ofH, which, on the other hand, is produced by the solenoid. For calculating the field
generated by the coil we can use the (5.99), demonstrated in the previous chapter,
that is,

B = μ0nI

2
(cosα1 + cosα2)uz.

Fig. 6.26 System formed by a finite solenoid and a magnetic slender rod

http://dx.doi.org/10.1007/978-3-662-48368-8_5


Solved Problems 341

Fig. 6.27 Finite solenoid. Observe as the point where the field must be calculated is located outside
of the coil

However, for calculating M we need H and not B. We can easily determine it by
using (6.12)

B = μ0(H + M),

but in a vacuum M = 0, hence

B = μ0(H + M) ⇒ H = B
μ0

.

Nowwemust apply (5.99), but some approximations are needed. In fact, this equation
gives the magnetic field B at any point over the symmetry axis of the coil. In the
present case the magnetic rod has a finite extent, thus the angles α1 and α2 do not
have a constant value along OY (for each point of the rod). However, taking into
account that the distance between the solenoid and the slender rod is much greater
than the length of said bar (L + d 	 l), and that its diameter is larger than the
diameter of the rod (R 	 r), we can suppose that the field created by the solenoid in
the volume where the rod is placed is homogeneous, approximately. If so, we can put
(see Fig. 6.27) the same angles for all parts of the bar, i.e. α1 ≈ arctan

(
0.2
1.5

) = 7.59◦

and β ≈ arctan
(
0.2
1

) = 11.31◦, and then the magnetic field H

H = nI

2
(cosα1 + cosα2)uy = 10,000 · 2

2
(cosα1 − cosβ)uy = 106.6uy A/m.

(6.66)
For the calculation of M we employ its definition, however some comments must
be said. Firstly, the specimen is small compared to the solenoid and the distance
between both systems is very long; secondly, as we have seen in the theory that when
a sample is magnetized, a demagnetized field appears. In our case we have a slender
rod, which means that r  l, that is, its diameter is much smaller that its length, then
we can neglect the demagnetized field produced. For this reason we can work with
the fieldH generated by the solenoid without introducing corrections. Acceptingthis

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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statement we can write

M = χmH = (μr − 1)H ≈ (μr − 1)H(P) = 9H = 959.6uy. (6.67)

(b) For obtaining the magnetic field we apply (6.12)

B = μ0(H + M) ≈ μ0(H + M) = 1.3 × 10−3 T. (6.68)

(c) Considering that the fields in the bar are homogeneous, approximately, we can
compute the magnetization current densities directly through (6.4) and (6.5). Using
a cylindrical coordinate frame were the symmetry axis coincides with the OY axis,
we obtain,

jm = ∇′ × M = 0, (6.69)

and
jms = M × n = M uy × n = M uφ = 937.6uφ (A/m). (6.70)

6.5 In the interior of a torus with mean radius Rm andN turns of wire closely wound,
a ferromagnetic material is introduced, whose curve of first magnetization is
given by

B = aH/(b + cH),

where a, b and c are constants. Find: (a) The magnetic field B if a current I flows
throughout the entire wire. (b) The value of χm(H). (c) The magnetic field B at
saturation.

Solution

(a) A magnetic circuit may be solved by following three steps:
(1) Application of Ampère’s Law for the magnetic field H. (2) The flux of B. (3)

The magnetic material equations.
The Ampère theorem for H only depends on the free current of charge, i.e.

∮

�

Hdl =
∫ ∫

S
jf · dS = If . (6.71)

For applying this law we take a circular curve � of radius Rm, concentric with the
magnetic torus, and a plane surface S. As we explained in Chap.5 (Problem 4), a flat
surface is the easiest to calculate the flux of jf throughout. Introducing the cylindrical
coordinates for all components of H and the current density, we can write

∮

�

Hφuφ dluφ =
∫ ∫

S
jf uz · dS uz = If (total) ⇒

∫ L

0
Hφ dl = Hφ

∫ L

0
dl = N I.

(6.72)

Hφ L = N I ⇒ Hφ = H = NI

L
= nI, (6.73)

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Fig. 6.28 Hysteresis curve
and operating straight line
(OSL). Observe that in this
case the OSL is parallel to
the OB axis because the
electromagnet has no air-gap

where L = 2πRm and n = N
L . To obtain the magnetic field B we must find the

operating point of the system, which corresponds to the intersection of the operating
straight line (OSL) with the hysteresis curve of the electromagnet. In this case, since
that the system has no air-gap, the OSL is simply given by (6.73), and the material
equation is

B = aH/(b + cH). (6.74)

To determine such an intersection (see Fig. 6.28)we introduce the value ofH in (6.74)

B = anI

(b + cnI)
. (6.75)

(b) To obtain the magnetic susceptibility, we can use (6.19). In fact,

B = μ0[1 + χm(H)]H = μ0μr(H)H = a

(b + cH)
H, (6.76)

then
χm = μr − 1 = a

μ0(b + cnI)
− 1. (6.77)

(c) The magnetic field B in saturation may be obtained by increasingH in the hys-
teresis curve (Fig. 6.28). As we have the function of the first magnetization curve,the
limit of B(H) for extremely high values of H,

lim
H→∞B = lim

H→∞
aH

(b + cH)
= a

c
. (6.78)

6.6 Over an electromagnet of lengths li and lg for the iron and the air-gap, respec-
tively, N coils are closely wound. Starting from the demagnetized state, the
current I circulating through the coils is increased progressively to reach satu-
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ration. From this state, the intensity is diminished to an unknown value. If the
second magnetization curve corresponding to the two first quadrants is given by
B = a

√
H + |Hc| (for −Hc ≤ H ≤ Hmax), where a is a constant and Hc is the

coercitive field, find the condition for the current circulating through each coil
in order that the magnetic field Hi in the iron core always takes positive values.

Solution

As we have reached saturation, and considering the current is diminishing, the oper-
ating point for the material must correspond to the intersection of the operating
straight line and the second magnetization curve (see Fig. 6.29). In order to find the
aforementioned condition, we proceed as usual, i.e. we begin with the Ampère law,
then the flux of the magnetic field B is evaluated, and finally the material equation is
included in the resulting equation for the operating straight line.

Applying Ampère’s theorem we have

∮

�

Hdl =
∫ ∫

S
jf · dS = If ⇒ Hili + Hglg = NI. (6.79)

inwhichwehave substituted the intensity of free charge If by I , in order to simplify the
notation. On the other hand, the section is the same for all parts of the electromagnet,
henceBi = Bg . Thematerial equation for the air gap isBg = μ0 Hg , and in thematerial
is the hysteresis loop, whose mathematical expression is given in the statement.
Introducing in (6.79) Hg = Bg

μ0
= Bi

μ0
, we obtain the operating straight line (OSL)

Bi = μ0 NI

lg
− μ0 li

lg
Hi. (6.80)

As we know, any operating point corresponds to the intersection between the OSL
and the hysteresis loop, thus we have to calculate such a point by means of (6.80) and

Bi = a
√
Hi + |Hc|. (6.81)

Introducing (6.81) into the left side of (6.80), we obtain

Fig. 6.29 The operating
point corresponds to the
intersection of the (OSL) for
H = 0 and the hysteresis
curve
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a
√
Hi + |Hc| = μ0 NI

lg
− μ0 li

lg
Hi. (6.82)

The magnetic field in the iron core must always be positive, then all possible
values of H and B allowed are in the first quadrant. We can find the condition by
calculating just the limit when Hi → 0, guaranteeing that the magnetic field H is
still positive,

a
√|Hc| = μ0 NI

lg
⇒ I = a

√|Hc| lg
μ0 N

. (6.83)

This current corresponds to the operation point (Br, 0), but in our caseHi > 0, hence
the current must verify the condition

I >
a
√|Hc| lg
μ0 N

. (6.84)

This unequality means that all operating points corresponding to values of the inten-
sity given by (6.84) verify that the magnetic field H is always positive.

6.7 An electromagnet with iron core of 3.0 m in length, and an air-gap of length
1cm and 1000 turns is constructed. For the material employed B = Ksin(H/C)

in a first magnetization curve, where K = 1.2 T and C = 2800A/m. A field of
0.6 T in the air-gap is required. Calculate the intensity that must flow along the
coil. Disregard the flux leakage.

Solution

As explained previously, for resolving the question we will follow three steps. To
begin, we useAmpère’s law for themagnetic fieldH. In order to calculate the integral
we employ a curve passing over the midline of the electromagnet (see Fig. 6.11),
obtaining ∮

�

Hdl =
∫ ∫

S
jc · dS = If ⇒ Hclc + Hglg = NI, (6.85)

lc and lg being the middle lengths corresponding to the iron core and air-gap, respec-
tively. Since the flux leakage of B is not considered, magnetic field B is limited to
the zone of the air gap and core, and hence, due to the law of the flux applied to a
pole of the electromagnet, the value of B must be the same in the iron core as in the
air-gap, thus Bc = Bg . On the other hand, in the air gap it holds that

Bg = μ0 Hg ⇒ Hg = Bg

μ0
= Bc

μ0
, (6.86)

and then we can write the operating straight line

Hclc + Bc

μ0
lg = NI. (6.87)
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Fig. 6.30 Hysteresis loop
corresponding to the first
magnetization curve. The
maximum value of B is 1.2T.
Notice that the operating
straight line (OSL) cross the
curve at B = 0.6T

The operating point of the electromagnet corresponds to the intersection between
(OSL) and thematerial equation for the iron core, themagnetization curve (Fig. 6.30).
In this problemwe know the value ofBwewill reach, then in (6.87) we can substitute
Bc = 0.6T. The equation remains with two unknowns, namely Hc and I . Easily we
can calculate Hc. In fact, as the first magnetization loop is done analytically, we can
obtain the magnetic field Hc as follows

B = 1.2 sin

(
H

2800

)
= 0.6 ⇒ Hc = 2800 arcsin

(
0.6

1.2

)
= 1466A/m. (6.88)

Now, substitution of the two above results into (6.87) yields

I = 1

N

{
Hclc + Bc

μ0
lg

}
= 1

1000

{
1466 · 3 + 0.6

μ0
0.001

}
= 9.7A. (6.89)

6.8 In an electromagnet of constant cross section S = 16cm2, the length of the iron
core and the air-gap are lc = 44cm and lg = 5 mm, respectively. A multiturn
of 1000 coils are wound around the core. The material employed for the core
is ferromagnetic and its first magnetization curve is B = 0.001H2, for 0 <

H < 10,000Am−1. Starting from the demagnetizing state the carrying current
through the coils is increased to a unknown value I , in which the magnetization
is M = 105 Am−1. Find the intensity circulating for each coil. There is no flux
leakage.

Solution

Following the procedure described in the theory, and as stated in the previous prob-
lem, applying first Ampère’s law yields

∮

�

Hdl =
∫ ∫

S
jf · dS = If ⇒ Hclc + Hglg = NI. (6.90)

As we do not have flux leakage, the divergence theorem gives
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∮

S
BdS = 0 ⇒ BcSc = BgSg ⇒ Bc = Bg, (6.91)

because the electromagnet has constant cross section. Introducing it in (6.90), and
using the fact that Bg = μ0 Hg , we have

Hclc + Bc

μ0
lg = NI, (6.92)

which corresponds to the operating straight line. The idea for calculating the intensity
is to obtain the magnetic fields H and B and substitute them in (6.92). Contrary to
what usually occurs, we know the material magnetization, then when calculating
the operation point (H,B) by means of the intersection between the (OSL) and
the material equation (hysteresis loop), such a point of coordinates must be what
corresponds to a magnetization M = 105 Am−1. In order to determine H and B we
use (6.12)

B = μ0(H + M) = 0.001H2 ⇒ μ0(H + 105) = 0.001H2, (6.93)

that is
795.7H2 − H − 105 = 0. (6.94)

The solution of this equation gives two values for H. One of them is negative, which
is physically incorrect because we are in the first magnetization curve, therefore the
value of H must be positive. For this reason the only magnetic field possible is

H = 11.2A/m.

Once we knowH, the field Bmay be calculated directly through the hysteresis curve
B = 0.001H2, obtaining

B = 0.13T .

Nowwe know the operating point (H,B)where the electromagnet works, hence such
valuesmust also satisfy (6.95). For this reason, the current being carried through each
coil I is

I = 1

N

{
Hclc + Bc

μ0
lg

}
= 1

1000

{
11.2 · 0.44 + 0.13

μ0
0.005

}
= 0.5A. (6.95)

6.9 Over an electromagnet of total mean length L = 0.4m, and an unknown air
gap lg , a set of N = 10,000 turns are closely wound around. The susceptibility
χm = χm(H) in the interval corresponding to the first magnetization curve may
be approximated by the following function

χm = (
9.5 × 10−4 H2 − 1

)
, 100 ≤ H ≤ 1500 (A/m).
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Obtain lg if we would reach a magnetic field 0.3T in the air gap, when the
intensity circulating through the coils is 1A.

Solution

(a) We begin with the Ampère theorem for the magnetic field H,

∮

�

Hdl =
∫ ∫

S
jc · dS = Ic ⇒ Hclc + Hglg = NI. (6.96)

Taking into consideration the absence of flux leakage, we can write

∮

S
BdS = 0 ⇒ BcSc = BgSg, (6.97)

but due to Sc = Sg the fields Bc and Bg are equal. In the air gap Bg = μ0 Hg and, on
the other hand, the cross sections of the electromagnet are equal. As a consequence,
the operating straight line has the form

Hclc + Bc

μ0
lg = NI. (6.98)

We know the total length L of the electromagnet, but neither the length of the air
gap lg nor lc. However, it is always true that L = lc + lg, thus we can substitute lc by
(L − lg) in (6.98) obtaining

Hc(L − lg) + Bc

μ0
lg = NI. (6.99)

This is the operating straight line of the magnetic system, and for obtaining the
operating point we need to use the material equation of the iron, i.e.

B = μ0(H + M) = μ0μrH = μ0(1 + χm(H))H, (6.100)

and by setting the value of χm = χm(H), we have

B = μ0(9.5 × 10−4 H2)H = 9.5 × 10−4μ0 H
3. (6.101)

To determine the point of the hysteresis curve at which the electromagnet works,
we calculate the intersection between (6.101) and (6.99). In this case we know the
magnetic field B to be obtained, hence we clear H away as function of B,

(
Bi

9.5 × 10−4μ0

) 1
3

(L − lg) + Bi

μ0
lg = NI. (6.102)

Introducing now B = 0.3T, N = 10,000 and I = 1A, we obtain
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Fig. 6.31 Hysteresis loop
and operating point P.
Notice that the operating
straight line is vertical since
the system has no air gap

631(0.4 − lg) + 238732 lg = 10,000 ⇒ lg ≈ 4.1 cm. (6.103)

6.10 A torus of mid average radius Rm and N turns, is built with a ferromagnetic
material whose first and second magnetization curves are represented by the
following function (see Fig. 6.31):

B = a H3,

(H − b)2 + B2 = c2 (c > b and − Hc ≤ H ≤ Hmáx),

where a, b, and c are constants. Find: (a) The magnetic field H in the material
when starting in the demagnetized state when the current circulating through
the coils reaches the value I . (b) Idem for the magnetic field B. (c) If the current
increases so that the saturation point is reached and then the current is brought
to zero, find the magnetic field Br .

Solution

(a) Let us apply Ampère law for H over a circular curve � of length 2πRm

∮

�

Hdl =
∫ ∫

S
jf · dS = If ⇒ Hili = NI, (6.104)

and introducing l = 2πRm we have

H = NIf
2πRm

, (6.105)

which corresponds to the intersection between the operating straight line parallel
to the OB axis and the first magnetization curve. This result is logical because the
electromagnet has a constant cross section and does not have an air-gap. As a con-
sequence, the field H over the mean curve � must be the same inside the material.
Notice that in this case there is no demagnetizing field (we have neglected the flux
leakage).
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(b) The magnetic field B is found by using the magnetization curve. In effect, we
know the coordinate H of the operating point (6.105), hence another coordinate of
the point P is

B = a

(
NIc
2πRm

)3

. (6.106)

(c) If the intensity is diminished to zero from saturation we reach the remanent
magnetic field. In this case the operating straight line coincides with the OB axis,
hence Br is found by introducing in the second magnetization curve H = 0, that is

B =
√
c2 − b2 (6.107)

Problems B

6.11 A hollow bar of length L = 20cm is built of a ferromagnetic material. The rod
ismagnetized along its revolution axis which coincideswithOX (see Fig. 6.32).
If theminimumandmaximum radii areR1 = 2cmandR2 = 5cm, respectively,
and the magnetization M = 10,000 uxA/m, find: (a) The magnetic field B at
P1(10, 0, 0)cm. (b) The vector M at the same point. (c) The magnetic field H
at P2(20, 0, 0)cm.

Solution

Before making calculations, we should focus our attention on the geometry of the
system. In effect, this problem seems to be very different from the preceding exercises
of magnetized bars, however as we will see, the present problem may easily be
resolved using the same ideas we explained there. So, by means of the principle
of superposition of linear fields,12 the hollow magnetized bar is equivalent to two
rods of opposite magnetization, whose geometries coincide with the two cylindrical
surfaces (exterior and interior), and thus delimiting the hollow bar (Fig. 6.33).

This means that, in order to compute the magnetic field B, we can divide the
problem in two. The first one would correspond to the field produced by a rod of
length L, radius R1 and magnetizationM = M ux, and the second one to a bar of the
same length but with radius R2 and magnetizationM = −M ux. Denoting by B2 the
field produced by the rod of radius R2, and by B1 the corresponding field of R1, it
follows

12It is important to note that, even though the process of the magnetization of the ferromagnetic bar
is non-linear (see Sect. 6.6) we can apply the principle of superposition for calculating the magnetic
field. The reason is that we examine the bar when it has already reached its magnetization M, but
we do not account for the previous process of magnetization. In other words, we work with a final
physical state of rod regarding only the effect of its magnetization (the creation of the fields B
and H). To some extent (in the language of the system theory) the bar behaves like a black box of
magnetizationM.
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Fig. 6.32 Hollow magnetized ferromagnetic bar

Fig. 6.33 The hollow magnetized cylinder behaves like two massive bars of radius R1 and R2,
respectively, whose magnetizations are in opposite directions

Fig. 6.34 Massive bar of radius R1 and its equivalent solenoid. Notice that for this case point P is
located at the middle point of the rod, then α1 = α2

B2 = μ0M

2
(cosα1 + cosα2)ux = μ0M

2
(2 cosα1)ux, (6.108)

where we have written α1 = α2 because P1 is at the mid point (Fig. 6.34). For the
small bar we proceed in the same way, but we must change the angles,

B1 = −μ0M

2
(cosα′

1 + cosα′
2)ux = −μ0M

2
(2 cosα′

1)ux. (6.109)

Now, setting α1 = arctan( 5
10 ) and α′

1 = arctan( 2
10 ) into (6.109), we have

(Fig. 6.35)

B = B2 + B1 = μ0M cosα1ux − μ0M cosα′
1ux = −1.1 × 10−3ux (T). (6.110)
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Fig. 6.35 Massive bar of radius R2 with its corresponding equivalent solenoid. Here the angles α′
1

and α′
2 are different than α1 and α2 of the big bar

(b) Point P1 is placed over the OX axis of the system, in the hollow region of the
cylinder, where there is no matter present, then M must be zero.

(c) For obtaining the magnetic field H at P2(20, 0, 0), we previously calculate
the magnetic field B. As point P2 is at the end of the hollow rod the angles are
α1 = arctan( 5

20 ), α2 = π
2 , and α′

1 = arctan( 2
20 ), α

′
2 = π

2 , resulting in

B = B1 + B2 = μ0M

2
(cosα1 − cosα2)ux − μ0M

2
(cosα′

1 − cosα′
2)ux = (6.111)

= μ0M(cosα1 − cosα′
1)uz = −1.56 × 10−4ux (T).

Introducing this result into (6.10) leads to

H = B
μ0

− M = B
μ0

− 0 = −124.4 ux (A/M). (6.112)

6.12 A very long hollow cylinder of radii R1 = 5cm and R2 = 8cm as shown in
Fig. 6.36, is constructed of a magnetic material whose magnetization is M =
10,000 uz (A/m). Find: (a) The magnetic field B for every point belonging �3.
(b) The magnetic field H.

Solution

(a) (0 < ρ < R1) In the Problem 6.11 of this chapter, we have calculated themagnetic
field B produced by a finite magnetized hollow cylinder at any point of its symmetry
axis. There we saw that, for homogeneous magnetization the field B produced by
this system was equivalent to that produced by two solenoids of length L and radii
R1 and R2, respectively. Now we are dealing with the field produced at any region
of space when the hollow bar is very long. At first glance it seems to be not possible
to solve the problem in the same way, because the formula obtained there was found
for the special case of a cylinder of finite length, however such a formula does not
apply here (in our case the hollow cylinder is very long). However, even though the
latter is true, we will explain how to determine B based on the equivalence of the
magnetic fields B produce from different geometries (Fig. 6.37).
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Fig. 6.36 Magnetized hollow cylinder

(a) (b)

Fig. 6.37 a Normal vectors to the inner and outer surfaces. b Plan view cross section of the
magnetized hollow cylinder

In effect, let us first calculate the magnetization currents of the system. Beginning
with the volumetric current density, using (6.4) it holds that

jm = ∇′ × M = 0. (6.113)

We regard to the surface we apply (6.5) to both the inner and outer surfaces of the
cylinder, obtaining

jms1 = M × n1 = −Muφ, (6.114)
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Fig. 6.38 The field B produced by a very long homogeneous magnetized hollow cylinder is equiv-
alent to the magnetic field B generated by two long solenoids of the same dimensions

and
jms2 = M × n2 = Muφ. (6.115)

Taking into account the explanation made in the Problems 6.1, 6.2 and 6.11, we
can assert that, from the point of view of the magnetic field B, the hollow slender
magnetized bar behaves like a system composed of two very long coils of the same
length and radii of the inner and outer cylinders, throughwhich circulates an intensity
per unit length of n1I1 = M and n2I2 = −M, respectively. Therefore, for calculating
Bwe can use the formula studied in Chap.5 referring to the solenoid. In fact, we can
apply the general expression, only valid over the axis of revolution, for the infinite
solenoid by setting α1 → 0 and α2 → 0, giving

lim
α1=α2→0

B(α1,α2) = μ0nI

2
(cosα1 + cosα2)uz = μ0nI uz. (6.116)

In principle this result applies over theOZ axis (see Fig. 6.38), but the problem refers
to any point of the space, thus we have found only a partial solution, right? Wrong.
Actually, the result obtained holds for any point inside the hole, or what is the same,
inside of a solenoid with radius R1. The reason for this is that when the solenoid
is very long, the magnetic field inside of the coil is homogeneous (the same value
anywhere) and its value coincides with (6.116) (see Problem 5.10). Thus we may
write for the field produced by jms inside of the solenoids with radius R1

B1 = μ0n1I1 uz = −μ0M uz, (6.117)

and for the solenoid with radius R2

B2 = μ0n2I2 uz = μ0M uz. (6.118)

The total magnetic field B for ρ < R1 is

B1 = B1 + B2 = −μ0M uz + μ0M uz = 0. (6.119)

This result differs from (6.110) as a consequence of the non-finite length of the
hollow bar.

(R1 < ρ < R2)

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Outside of a very large solenoid it was demonstrated that a magnetic field does
not exist, and so in the region between solenoids only the coil of radius R2 generates
a magnetic field B, hence

B = 0 + B2 = μ0M uz. (6.120)

(ρ > R2)

For any point outside both long solenoids there is no magnetic field, then

B = 0. (6.121)

(b) (0 < ρ < R1)

Referring to the magnetic fieldH, once B is known it may be calculated by using
(6.12), i.e.

B = μ0(H + M) ⇒ H = B
μ0

− M = 0,

where we have used the fact that in a vacuum the magnetization M equals zero.
(R1 < ρ < R2)

For this region we also employ the value of B calculated in the previous section

H = B
μ0

− M = B2

μ0
− M = μ0M

μ0
uz − M uz = 0. (6.122)

(ρ > R2)

For this part we have neither magnetizationM nor magnetic fieldB, and therefore

H = B
μ0

− M = 0.

6.13 Avery long conducting cylinder of radiusR = 10cm,whose revolution axis co-
incides with theOZ axis, is carrying a density current j = (1000/π)uz (A/m2).
The bar has a hole also cylindrical in shape of radius r = 2cm, whose sym-
metry axis is parallel to the other one. The distance between the axes of both
cylinders is d = 4cm. If the metallic bar is surrounded by a homogeneous lin-
ear magnetic material of relative permittivity μr = 100, find: (a) The magnetic
field Bφ at P(8, 0, 0)cm. (b) The magnetic field Bφ at P(15, 0, 0)cm. (c) The
magnetization M at P(15, 0, 0)cm.

Solution

(a) At first sight this problem seems to be very difficult to resolve because we do
not have enough symmetries to apply Ampère’s law. In fact the hollow cylinder has
translational symmetry along OZ , but it does not have rotational symmetry, then, in
principle, it may be not useful. As a consequence, we should try to employ other
methods for calculating themagnetic field. However, as wewill demonstrate, another
simple method may be applied (Fig. 6.39).
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Fig. 6.39 Hollow cylinder carrying a density current j

Fig. 6.40 Decomposition of the hollow cylinder into two bars whose density currents flow in
opposite directions

As we have commented in other parts of the book, for linear fields there is an
important principle, namely the principle of superposition of linear fields. In our
case, we should divide the problem into parts so that the addition of each contribution
equals the original problem. If this applies, by looking at the geometry of the hollow
bar we observe that the system should behave like the sum of two separated cylinders
of radii R and r, respectively, carrying the same density current but in opposite
directions (see Fig. 6.40). This means we can compute each cylinder separately, and
then add the magnetic fields obtained. When examining the first bar we notice that
now the system has revolution symmetry and, as a consequence, we may directly
use Ampère’s theorem. As in this first question we are inside the cylinder where
μr ≈ 1, thus we can directly employ the Ampère law for the magnetic field B (see
Fig. 6.41). In effect, choosing a plane surface S and circular delimiting curve �1 of
radius ρ1 = 8cm (ρ1 < R) we have
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Fig. 6.41 Curve �1 of
radius ρ1 = 8cm, where the
magnetic field B must be
calculated

Fig. 6.42 Curve �2 with
radius ρ4 = 4cm, passing
through point P where the
field B must be calculated

∮

�1

(Bρ,Bφ,Bz)(0, dl, 0) = μ0

∫ ∫

S1

j · dS = μ0

∫ 2π

0

∫ ρ1<R1

0
juz dS uz

= μ0

∫ 2π

0

∫ ρ1<R1

0
j ρdρdφ, (6.123)

and integrating both terms of the equality

Bφ = 1

2
μ0j ρ1, (6.124)

which represents the field contribution at point P due to the cylinder of radius R.
With the same idea we calculate the field B at the same point, created by the bar of
radius r located at (4, 0, 0)cm, carrying a current j = −j uz. Taking a circular curve
�2 and a flat surface S2, we have (Fig. 6.42)

∮

�2

(Bρ,Bφ,Bz)(0, dl, 0) = μ0

∫ ∫

S2

j · dS = μ0

∫ 2π

0

∫ ρ2>r

0
(−j)uz dS uz

= −μ0

∫ 2π

0

∫ ρ2>r

0
j ρdρdφ. (6.125)
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Fig. 6.43 Curve �1 with
radius ρ = 15cm, and
surface S. Notice that in this
region μr = 100, then it is
better to begin with the
Ampère law for H

However, though the last integral extends to ρ2 > r, between r and ρ there is no
current density, and thus the product of j · dS is zero. This means that the effective
surface of integration must correspond to S ∩ Vj = S (see Chap.5). In our case
S2 ∩ Vj = Sr , Sr being the surface of the circle with radius r. By performing the
integrations we obtain

2πρ2Bφ = −μ0

∫ 2π

0

∫ r

0
j ρdρdφ = −π μ0j r

2 ⇒ Bφ = − μ0

2ρ2
j r2, (6.126)

where ρ2 = (ρ1−d) = 4cm for the point (8, 0, 0)cm, and ρ1 = 8cm.Now, applying
the superposition principle of fields, the total magnetic field produced by the hollow
cylinder is

Bφ = μ0j

(
1

2
ρ1 − 1

2 |ρ1 − d| r
2

)
= 1.2 · 10−5 T. (6.127)

(b) As we have explained in other exercises, if magnetic matter is present, then it
is preferable to use Ampère’s theorem for the field H rather than for B, because in
magnetostatics, when the demagnetizing fields are negligible, H only depends of
the free current density. On the contrary, if we start with Ampère’s law for B, we
must take into account the possible contributions of the magnetization currents, if
any. Applying such a law for the field H, and considering a circular curve of radius
ρ1 = 15cm concentric with the cross section of the bar, it results (Fig. 6.43)

∮

�1

(Hρ,Hφ,Hz)(0, dl, 0) =
∫ ∫

S1
jc · dS =

∫ 2π

0

∫ ρ>R

0
juz dS uz =

∫ 2π

0

∫ R

0
j ρdρdφ, (6.128)

and then

2πρ1Hφ = 2π
1

2
j R2 ⇒ Hφ = 1

2ρ1
j R2. (6.129)

Observe that, in this case, the effective surface of integration is S ∩ Vj = S′
1 = πR2.

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Fig. 6.44 Curve �2 centered
at a point located at distance
d from the origin of the
coordinate frame

This field corresponds to thewhole cylinderwithout a hole and it fails to determine
the magnetic field H produced by the thin bar carrying a current j = −juz. To do
this, we also choose a circular curve, but with radius ρ2 = 11cm, centered at point
(4, 0, 0)cm, where the cross section of that cylinder has its revolution axis (see
Fig. 6.44). Bear in mind that the effective surface of integration is S′

2 = πr2, we may
write

2πρ2Hφ = −2π
1

2
j r2 ⇒ Hφ = − 1

2ρ2
j r2. (6.130)

Once we know the fields produced by each part of the equivalent system, using the
superposition principle it follows

Hφ = 1

2ρ1
j R2 − 1

2ρ2
j r2. (6.131)

Considering the data of the statement ρ2 = (ρ1 − d) = 11cm, then

Hφ = j

2

(
1

ρ1
R2 − 1

|ρ1 − d| r
2

)
= 10A/m. (6.132)

Once we have H, we calculate the magnetic field B by means of (6.19),

Bφ = μ0(1 + χm)H = μ0μrHφ = μ0μr j

2

(
1

ρ1
R2 − 1

|ρ1 − d| r
2

)
= 1.2 · 10−3 T.

(6.133)
(c) The magnetization may be directly obtained by using (6.12)

B = μ0(H + M) ⇒ Mφ = Bφ

μ0
− Hφ = χmHφ = 990Am−1. (6.134)
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Fig. 6.45 Magnetic system
formed by a big region in
which there is a hollow
cylinder of radius
R2 = 15cm. Inside of this
hole a very long wire of
radius R1 = 5cm is
introduced

Fig. 6.46 Curve � with
radius ρ used to calculate the
field in region of μr=10

6.14 Throughout a big region of space of relative permittivity μr = 10, a current
density j = −0.32

ρ2
uz Am−2 is circulating, where ρ is the distance from the

origin of coordinates O to a generic point P in cylindrical coordinates (see
Fig. 6.45). A cavity cylindrical in shapewith radiusR2 = 15cm ismade, whose
rotational axis passes by O. A very long cylindrical metallic wire of radius
R1 = 5cm is introduced into the hole parallel to the cavity, and coinciding
with the symmetry axis of the system. If the density current flowing through
the wire is j = 510 uz Am−2, find: (a) The magnetic field Bφ for ρ = 20cm.
(b) The magnetization M at the same point. (c) The values of ρ for which the
magnetic field Hφ is zero.

Solution

(a) The system shown in Fig. 6.45 is symmetric under a translation parallel to OZ
and also under rotations about this axis. The point at which we must calculate the
field belongs to the region where the material has a relative permittivity 10, then we
will employ Ampère’s law for the magnetic field H. Choosing a circular curve of
radius ρ > R2, centered at O, and a plane surface S whose boundary is such a curve,
we have (Fig. 6.46)

∮

�

(Hρ,Hφ,Hz)(0, dl, 0) =
∫ ∫

S
j · dS, (6.135)
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and taking into consideration that in the region R1 < ρ < R2 there is no current
density, Ampère’s theorem leads to

∮

�
Hφdl =

∫ 2π

0

∫ R1

0
510uzdSuz +

∫ 2π

0

∫ R2

R1
0dS −

∫ 2π

0

∫ ρ>R2

R2

0.32

ρ2
uzdSuz =

510
∫ 2π

0

∫ R1

0
ρdρdφ −

∫ 2π

0

∫ ρ>R2

R2

0.32

ρ2
ρdρdφ =

2π · 510
∫ R1

0
ρdρ − 2π · 0.32

∫ ρ>R2

R2

1

ρ
dρ = 2π 510

1

2
R21 − 2π · 0.32 ln

ρ

R2
.

(6.136)

As we have seen in other problems the first integral of the left side is

∫ 2π

0
Hφρdφ = 2πρHφ, (6.137)

thus,

Hφ = 255

ρ
R2
1 − 0.32

ρ
ln

ρ

R2
= 2.7Am−1. (6.138)

Once the magnetic field H is known, we get the field B by (6.12)

B = μ0(H + M) = μ0μrH = μ0μrHφ uφ = 3.4 × 10−5uφ T (6.139)

(b) By using the aforementioned equation, we can write

B = μ0(H + M) ⇒ M = B
μ0

− H = (μr − 1)H = 24.5uφ Am
−1. (6.140)

(c) By making (6.138) equal to zero, we obtain the points for which the magnetic
field H disappear,

255

ρ
R2
1 − 0.32

ρ
ln

ρ

R2
= 0 ⇒ ρ ≈ 1.1m. (6.141)

This result tells us that over all points corresponding to a circumference of radius
ρ ≈ 1.1 m (ρ > R2) the field H equals zero. But it is possible that other points
also have the same characteristics. In fact, applying the Ampère theorem again to the
cross section of the wire of radius R1, we get

∫ 2π

0
Hφρdφ = 2πρHφ =

∫ 2π

0

∫ ρ<R1

0
510uz.dSuz, (6.142)

and calculating the double integral as shown in preceding sections
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Hφ = 510 πρ2 ⇒ Hφ = 255 ρ (A/m), (6.143)

that is, the magnetic field Hφ in the interior of the cylindrical conductor of radius R1

is a linear function of the distance ρ to the symmetry axis OZ . From this result we
can conclude that at point ρ = 0 the magnetic field Hφ is zero as well.

6.15 A magnetic cylinder of length L = 10cm and circular cross section of radius
R = 2cm, is located with its axis of symmetry coinciding with the OZ coor-
dinate axis. The cylinder is magnetized heterogeneously in such a manner
that M = az′uz, where a is a constant of value 13,000Am−2. Calculate: (a)
The magnetic field H at the point P(0, 0, 8) cm. (b) The magnetic field B at
P(0, 0, 1)m.

Solution

As we have seen in Exercise 4, it is not necessary to always employ (6.6) and its curl
for solving a problem ofmagnetization. Sometimes it is possible to construct a simple
model that allows us to obtain the field. The idea is to calculate the magnetization
currents and analyze if there is an equivalent system from the viewpoint of the effects
with respect to the magnetic field B produced.

The currents jm and jms are
jm = 0, (6.144)

and
jms = az′uφ. (6.145)

This result shows that a magnetization current only exists over the surface of the bar.
As these currents are tangent in the circumferential direction to the cylinder surface,
the system seems to be equivalent to a solenoid in which the current I is variable
with distance z′. In Chap.5 we have studied a solenoid whose turns per unit length
were also proportional to z′. When we analyzed the homogeneously magnetized bar
we saw that there was an equivalence between nI of the actual solenoid and the
modulus of the magnetization M. Now, following the same process and taking into
consideration the physical dimensions of jms, we can write

M(z′) = az′ = jms = n(z′)I, (6.146)

but n(z′) = bz′ (see Problem 5.26), hence

az′ = bz′I ⇒ a = bI. (6.147)

This means that the mathematical expression for the magnetic field B at a point P
over the axis of symmetry of the cylinder is the same as (5.241) but changing bI by
a (i.e. 1000I by 13,000).

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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(a)

(b)

Fig. 6.47 a Magnetic slender bar. Observe the rotational symmetry around the OZ axis. b Plane
section of the bar. A curve� of radius ρ < R is chosen. In this figure Vj∩S represents the intersection
of the volumetric current density j and the surface S chosen for applying Ampère’s Law

B(0, 0, z) = 13,000μ0

2
[z(cosα1 + cosα2) + R(sinα1 − sinα2)]uz . (6.148)

This equivalence means that the magnetic field B produced by the heterogeneously
magnetized bar is the same as that generated by a solenoid carrying a current per
unit length bz′I (we identify effects but not causes!). Once we know B, the value of
the magnetic field H is obtained by (6.10) (Fig. 6.47)

H = B
μ0

− M =
{a
2
[z(cosα1 + cosα2) + R(sinα1 − sinα2)] − az

}
uz

= −228uz (A/m). (6.149)

(b) In the same way as in the former section, employing (6.10) and taking into
account that for P(0, 0, 1) meter there is no matter, we have

H = B
μ0

− M = B
μ0

⇒ B(0, 0, z) = 13,000μ0

2
[z(cosα1 + cosα2) + R(sinα1 − sinα2)]uz

= 3.2 × 10−7(T). (6.150)

6.16 A slender cylindrical bar of radius R = 8cm is made of a conducting ferro-
magnetic material whose initial magnetization curve is

M(H) = 600H + 101H2 (6.151)
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A constant current I = 2A corresponding to a current density j along its
axis of revolution flows through the bar. Calculate: (a) The magnetic field Bφ

for ρ = 6cm. (b) The magnetic flux through a surface perpendicular to the
revolution axis of the bar.

Solution

(a) Since we have matter it is convenient to employ the Ampère law for the magnetic
field H. In this problem the only sources for H are the moving free charges resulting
from the current I . Applying (6.14) we can write

∮

�

Hdl =
∫ ∫

S
j · dS = Ic. (6.152)

The bar is symmetric with respect to a rotation around the OZ axis, then it seems
appropriate to use cylindrical coordinates. Rewriting (6.152) for this coordinate sys-
tem it yields to ∮

�

(Hρ,Hφ,Hz)(0, dl, 0) =
∫ ∫

S
j · dS (6.153)

If we look at the point where the magnetic field must be calculated, we see that
it belongs to the interior region of the bar. It means that the effective surface for
computing the integral of the right side is not the total cross-section surface S of the
cylinder given in the problem. Actually, the surface of integration corresponds to the
intersection of the volumetric current density j and the surface S. As a result this
effective surface is smaller than the cross-section S, ρ and � being the radius and
delimiting curve, respectively. Thus, it follows

∮

�

Hφdl = j
∫ ∫

Vj∩S
dS ⇒ Hφ2πρ = jS = jπρ2, (6.154)

and this leads to

Hφ = 1

2
jρ. (6.155)

We only know the value of I but not j. However, we can find the relation between
both magnitudes by means of the definition of intensity. In fact, the intensity through
the total circular surface of the bar is

∫ ∫

S
j · dS = Ic ⇒ jπR2 = I, (6.156)

then

j = I

πR2
, (6.157)

and introducing this result in (6.155)
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Hφ = Iρ

2πR2
. (6.158)

Now, to calculate the magnetic field B the hysteresis curve must be used

Bφ(H) = μ0(H + M) = μ0(H + 600H + 101H2) = μ0(1 + 600 + 101H)H =
(6.159)

μ0

(
1 + 600 + 101

Iρ

2πR2

)
Iρ

2πR2
= 1.7 · 10−3 T.

(b) Due to the circular symmetry of the bar and the fact that its diameter is much
smaller than its length, the magnetic field produced is tangential only, hence the flux
of this field through a circular surface perpendicular to its revolution axis is zero (the
field is perpendicular to the surface S).

6.17 A very large magnetic hollow cylinder of radii R1 and R2, carries a homoge-
neous current I . If themagnetic permeability isμr = ρ/R1, ρ being the distance
from the revolution axis of the system to a generic point, find: (a) The magnetic
field Bφ for R1 < ρ < R2. (b) The flux of Bφ across a section of the cylinder of
high h as shown in Fig. 6.48.

Solution

(a) The system has translational symmetry along the OZ axis, and also rotational
symmetry about OZ . Hence the best way for calculating Bφ is to apply Ampère’s
law. As we have magnetic matter, in principle, we cannot control the magnetization
density currents, so we employ Ampère’s theorem for H

∮

�

H · dl =
∫

S
jf · dS. (6.160)

Fig. 6.48 Very large hollow
cylinder carrying current I
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(a)
(b)

Fig. 6.49 a Cross-section of the hollow cylinder carrying a current density jf . bApplication of the
Ampère theorem over an open plane surface S of radius ρ (R1 < ρ < R2) and boundary �

For applying this law, we choose a plane surface whose boundary is a circle of radius
ρ such that R1 < ρ < R2 (Fig. 6.49). Using cylindrical coordinates it yields

∮

�

H·dl =
∮

�

(Hρ,Hφ,Hz)·(0, dl, 0) =
∫

S
jf ·dS =

∫

S
(0, 0, jc)·(0, 0, dS) (6.161)

and performing the scalar products

∮

�

Hφdl =
∫

S
jf dS ⇒

∫ 2π

0
Hφρdφ =

∫ 2π

0

∫ ρ<R2

R1

jf ρdρdφ ⇒ Hφρ

∫ 2π

0
dφ

= jf

∫ 2π

0
dφ

∫ ρ<R2

R1

ρdρ. (6.162)

Notice that the variable ρ in the double integral extends from R1 to a generic ρ inside
the crown R1 < ρ < R2, because in the region 0 < ρ < R1 there is no density current
jf . Operating the integrals it follows

2πρHφ = πjf (ρ2 − R2
1) ⇒ Hφ = jf (ρ2 − R2

1)

2ρ
. (6.163)

This last expression does not depend on I but on jf , which is unknown (the data given
in the statement is the total current I). However, we can calculate the value of the
current density of free charge as a function of I . In fact, employing the definition of
intensity we can write

I =
∫

S
jf · dS. (6.164)

Now, applying (6.164) over a surface of the hollow conductor perpendicular to the
current density jf leads to (Fig. 6.49b)
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I =
∫ 2π

0
dφ

∫ R2

R1

jf ρdρ = jf π(R2
2 − R2

1) ⇒ jf = I

π(R2
2 − R2

1)
, (6.165)

and introducing it into Hφ, we have

Hφ = I

2πρ

(ρ2 − R2
1)

(R2
2 − R2

1)
. (6.166)

Once we know H, the magnetic field B may be obtained using (6.19)

B = μ0μrH ⇒ Bφ = μ0μrHφ = μ0μrI

2πρ

(ρ2 − R2
1)

(R2
2 − R2

1)
, (6.167)

where μr depends on ρ. Now substituting the value of μr we have

Bφ = μ0I

2πR1

(ρ2 − R2
1)

(R2
2 − R2

1)
(6.168)

(b) In the previous section we have determined the field B in the shaded region
(Fig. 6.48), but for calculating the flux of B through the entire surface we also need
to know the magnetic field in the region [R1, 0] × [0, h] (ρ < R1 in Fig. 6.48; see
also Fig. 6.50). For this reason, we are going to compute such a field in the hole of
the bar. Applying Ampère’s theorem again over a circular curve of radius ρ < R1

Fig. 6.50 Lateral section of the hollow cylinder for calculating the flux across the surface S. Observe
that the normal to this surface has the direction of the unitary vector uφ. The right part of S (ρ < R1)

does not contribute to the flux integral because Bφ = 0 in this region
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Fig. 6.51 Circular curve of
radius ρ < R1 and planar
surface S to apply Ampère’s
law. Notice that this surface
(blue) is not crossed by any
current

(Fig. 6.51), we have

∮

�

Hφdl =
∫

S
jf dS =

∫ 2π

0

∫ ρ<R1

0
jf ρdρdφ = 0 ⇒ Hφ = 0, (6.169)

because there is no density current in the hole of the cylinder, and therefore Bφ = 0.
The calculation of the flux may be performed directly by its definition, i.e.

φ =
∫

S
B · dS. (6.170)

Taking the normal outward to S, the unit vector uφ of the magnetic field coincides
with n on this surface (Fig. 6.50). On the other hand, due to the fact that there is no
magnetic field for ρ < R1, the integral for the variable ρ extends only from R1 to R2,
thus

φ =
∫

S
B · dS =

∫ ∫

S
Buφ · dS uφ =

∫ h

0

∫ R2

R1

μ0I

2πR1

(ρ2 − R21)

(R22 − R21)
dρ dz =

μ0I

2πR1(R
2
2 − R21)

∫ h

0
dz

∫ R2

R1
(ρ2 − R21) dρ =

μ0Ih

2πR1(R
2
2 − R21)

{
1

3
(R32 − R31) − R21(R2 − R1)

}
(6.171)

6.18 A very large cylindrical conductor whose revolution axis coincides with OZ ,
has an unknown radius R. A density current of free charge jf = (−ρ2 +
0.005)uzAm−2 circulates along the OZ axis. If the relative permeability is
μr = 2, find: (a) The value of R in order that for any external point to the
cylinder (ρ > R), the resulting magnetic field B be zero. (b) The magnetic field
B at ρ = 0.05m.
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Solution

(a) To know the radius R, we need to first calculate the magnetic field B for a generic
external point and then we will impose the condition that such a field be zero.

As the system has translational and rotational symmetry, we proceed as shown in
the former exercises, that is, by applying Ampère’s law for H over a circular curve
� of radius ρ > R, which is the boundary of an open plane surface S

∮

�

H · dl =
∫

S
jf · dS (6.172)

∮

�

H·dl =
∮

�

(Hρ,Hφ,Hz)·(0, dl, 0) =
∫

S
jf ·dS =

∫

S
(0, 0, jf )·(0, 0, dS), (6.173)

and making the scalar products

∮

�

Hφdl =
∫

S
jf dS ⇒

∫ 2π

0
Hφρdφ =

∫ 2π

0

∫ R

0
(−ρ2 + 0.005)ρdρdφ. (6.174)

Due to the rotational symmetry around the axis of the cylinder, the modulus of the
magnetic field Hφ is the same for all points along the curve � used for making the
integral, hence we can put it outside

Hφρ

∫ 2π

0
dφ =

∫ 2π

0
dφ

∫ R

0
(−ρ2 + 0.005)ρdρ = 2π

[

−
∫ R

0
ρ3 dρ +

∫ R

0
0.005 ρdρ

]

=

2π

[

−R4

4
+ 0.005

R2

2

]

⇒ 2π ρHφ = 2π

[

−R4

4
+ 0.005

R2

2

]

,

(6.175)

then

Hφ = R2

2ρ

[
−R2

2
+ 0.005

]
. (6.176)

Once the magnetic field H is known the field B may be calculated by (6.12),

B = μ0(H + M) ⇒ Bφ = μ0μrHφ = μ0μrR2

2ρ

[
−R2

2
+ 0.005

]

= 2μ0R2

2ρ

[
−R2

2
+ 0.005

]
. (6.177)

This expression depends on R and gives us the value of Bφ for any point outside of
the conductor. Now we must impose the condition that the field is zero
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(a) (b)

Fig. 6.52 a Density current of free charge versus distance ρ to the symmetry axis of the cylinder.
Observe that jf is not homogeneous inside the conductor. b For point R = 0.05m, the density
current that contributes to the field flows in the direction of the positive OZ axis. At this point jf
has not reached zero yet (ρ = 0.7m)

B = μ0(H + M) ⇒ Bφ = 2μ0R2

2ρ

[
−R2

2
+ 0.005

]
= 0 ⇒ R = 0.1m. (6.178)

To understand the result obtained, Fig. 6.52a helps us. Bearing in mind R = 0.1 m,
we see that the density current has a negative part in the interval [0.07, 0.1] m. This
is logical; if we do not have a part of the density current in an opposite direction
inside of the cylinder, we can not reach a zero field at any exterior point.

(b) Point ρ = 0.05 m belongs to the interior of the conductor. For calculating Bφ

inside, we proceed in the same way used in Section (a). The only difference is that
the integral over ρ extends to a specific ρ, i.e.

2π ρHφ =
∫ 2π

0
dφ

∫ ρ<R=0.05

0
(−ρ2 + 0.005)ρdρ = 2π

[
−ρ4

4
+ 0.005

ρ2

2

]ρ

0

,

(6.179)

thus

Hφ = ρ

2

[
−ρ2

2
+ 0.005

]
, (6.180)

and B

B = μ0(H + M) ⇒ Bφ = 2μ0ρ

2

[
−ρ2

2
+ 0.005

]
. (6.181)

For ρ = 0.05 m, (6.181) yields B = 2.3 × 10−10 T.

6.19 In the interior of a very large solenoidwith radiusR2 = 6cm and n = 1000m−1

turns per unit length, a cylindrical paramagnetic bar, also very large, of radius
R1 = 4cm is placed with their symmetry axes coinciding. If the magnetic
permeability of the slender rod is μr = 10 and the current through the solenoid
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is 1A, obtain: (a) The magnetic field B in the bar. (b) The component Aφ of
the vector potential at a generic point inside of the rod (0 < ρ < R1). (c) The
value of Aφ between the rod and the coil (R1 < ρ < R2). (d) Idem for any point
outside of the system (ρ > R2).

Solution

(a) The magnetic field H created by a very long solenoid is

H = nI uz, (6.182)

which is homogeneous and confined inside of the coils (remember that outside of a
very long solenoid (mathematically infinite), the field produced is zero-see Problem
5.10). This field acts on the bar and as a result the rod reaches a magnetization M,
which in turn produces a magnetic field B inside of value

B = μ0(H + M) = μ0μrH = μ0μrnI uz = 0.013uz T . (6.183)

The same result may be obtained by considering the magnetization reached by the
slender bar due to the magnetic fieldH. In fact, the presence ofH leads to a homoge-
neous magnetization M in the direction of the symmetry axis of the cylindrical bar.
As we have studied, the magnetic field B of a bar magnetized along its revolution
axis is equivalent to a solenoid of the same dimensions in which nI = jms = M. If
we apply this result to our problem, the magnetic field inside the cylindrical bar may
be calculated as the superposition of the magnetic field Bs of the solenoid plus the
magnetic field Bb of the equivalent solenoid corresponding to the bar. The existence
of H leads to a magnetizationM = χmH = (μr − 1)H. With this magnetization the
equivalent solenoid creates the magnetic field

Bb = μ0jms uz = μ0M uz = μ0(μr − 1)H uz = μ0(μr − 1)nI uz. (6.184)

then, the resulting magnetic field B is

B = Bs + Bb = μ0nI uz + μ0(μr − 1)nI uz = μ0 (nI + (μr − 1)nI)

uz = μ0μrnI uz = 0.013uz T , (6.185)

which is the same result shown in (6.183).
(b) For obtaining the potential vector inside of the rod (ρ < R1) we can use the

relation between themagnetic fieldB andA (remember thatB = ∇×A-see Chap.5),
i.e. ∫ ∫

S
B · dS =

∫ ∫

S
∇ × A · dS =

∮

�

A · dl, (6.186)

and introducing the corresponding vectors

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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∫ ∫

S
(Bρ,Bφ,Bz) · (0, 0, 1)dS =

∮

�

(Aρ,Aφ,Az) · (0, 1, 0)dl, (6.187)

thus,

∫ ∫

S
BzdS =

∮

�

Aφdl ⇒
∫ 2π

0

∫ ρ<R1

0
Bzρdρdφ =

∫ 2π

0
Aφρdφ, (6.188)

2π
ρ2

2
Bz = 2πAφρ ⇒ Aφ = 1

2
μ0μrnI ρ = 0.0063 ρ T m. (6.189)

(c) For a generic point between the bar and the solenoid (R1 < ρ < R2) we have

∫ 2π

0

∫ ρ>R1

0
Bzρdρdφ =

∫ 2π

0
Aφρdφ (6.190)

Since the magnetic field B is different in the bar and in the region between the
solenoid and the magnetic material, the integral on the left hand side of (6.190) must
be separated in two parts. The first one corresponds to the bar radius R1, and the
second region goes from R1 to ρ belonging to a point P in (R1 < ρ < R2)

∫ 2π

0

∫ R1

0
μ0μrnIρdρdφ +

∫ 2π

0

∫ ρ

R1

μ0nIρdρdφ =
∫ 2π

0
Aφρdφ. (6.191)

Integrating this last expression it yields

2π
R2
1

2
μ0μrnI + 2π

(ρ2 − R2
1)

2
μ0nI = 2πAφρ ⇒ Aφ = μ0μrnIR2

1

2ρ
+ μ0nI(ρ2 − R2

1)

2ρ
= (6.192)

= 6.3 · 10−5

ρ
+ 6.3 · 10−3(ρ2 − 0.0016)

ρ
.

(d) For a exterior point to the system (ρ > R2), by means of the same procedure
employed in (b) and (c), and denoting as B(i) for i = 1, 2, 3 the magnetic fields in
the three different regions of the system, we have

∫ 2π

0

∫ R1

0
Bz(1)ρdρdφ +

∫ 2π

0

∫ R2

R1
Bz(2)ρdρdφ +

∫ 2π

0

∫ ρ

R2
Bz(3)ρdρdφ =

∫ 2π

0
Aφρdφ.

(6.193)

However, the magnetic field outside of a very large solenoid (ρ > R2) is zero, so the
preceding equality has the following form

∫ 2π

0

∫ R1

0
Bz(1)ρdρdφ +

∫ 2π

0

∫ R2

R1

Bz(2)ρdρdφ + 0 =
∫ 2π

0
Aφρdφ, (6.194)
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or

∫ 2π

0

∫ R1

0
μ0μrnIρdρdφ +

∫ 2π

0

∫ R2

R1

μ0nIρdρdφ =
∫ 2π

0
Aφρdφ, (6.195)

which leads to

2π
R2
1

2
μ0μrnI +2π

(R2
2 − R2

1)

2
μ0nI = 2πAφρ ⇒ Aφ = μ0μrnIR2

1

2ρ
+ μ0nI(R2

2 − R2
1)

2ρ
= (6.196)

= 6.3 · 10−5

ρ
+ 1.3 · 10−6

ρ
.

6.20 The attached figure represents an iron core built from two different materials
with two distinct coils closely wound of Nh = 1000 and Np = 15,000 turns,
respectively. Thematerial of the lower part is paramagnetic and its permeability
is μr = 25. The upper is built with a ferromagnetic material, whose second
magnetization curve is given by

Bh(H) =
⎧
⎨

⎩

Bh(H) = 1, 0 < Hh < 40,000

Bh(H) = 1 + Hh

20,000
, −20,000 < Hh ≤ 0

The middle lengths of both parts are the same, approximately, and of value
lh ≈ lp = 20cm. The cross sections are Sh = 25cm2 and Sp = 16cm2.
From the demagnetized state the system reaches saturation by increasing the
current circulating through the coils. Under these circumstances, find: (a) The
magnetic fieldsHh and Bh, if starting from the saturation state the currents vary
to Ih = 2A and Ip = 1A. (b) The fields Hp and Bp if both currents are reduced
to zero (Fig. 6.53).

Solution

Unlike all previous problems, in this case the core system has two different materials.
However, the steps for calculating the fields Hh and Bh in the iron core are the same

Fig. 6.53 Electromagnet composed by two parts
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(a)

(b)

Fig. 6.54 a Curve � chose for applying Ampère’s law. b Observe that for the dl counterclockwise
the normal is outward of the surface S, and as a consequence the NpIp has a negative sign and NhIh
a positive one

as those followed for electromagnets. Choosing a mean curve � passing through the
system it results (Fig. 6.54)

∮

�

Hdl = If ⇒ Hhlh + Hplp = NhIh − NpIp. (6.197)

As we do not have flux leakage and the cross sections of the electromagnet are
different for each part, we may write

∮

S
BdS = 0 ⇒ BhSh = BpSp. (6.198)

Introducing BhSh = BpSp into (6.23), and substituting the equation for the paramag-
netic material Bp = μ0Hp

Hhlh + Bp

μ0μr
lp = NhIh − NpIp ⇒ Hhlh + BhSh

μ0μrSp
lp = NhIh − NpIp. (6.199)

Taking into consideration that lh ≈ lp, the above equation takes the form

Hh + BhSh
μ0μrSp

≈ NhIh − NpIp
lp

, (6.200)

and then the operating straight line is

Bh = μ0μrSp
Sh

(
NhIh − NpIp

lp

)
− μ0μrSp

Sh
Hh. (6.201)
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(a) (b)

Fig. 6.55 a Different possibilities for the position of the (OSL). Observe that if at the beginning we
had chosen the curve (c–a), the intersection with the (OSL) corresponding to the values Ih = 2A
and Ip = 1A would be the point OP4, which is outside of the hysteresis loop; for this reason the
only possible values is OP1. If due to the values of Ih and Ip the operating straight line would be
(OSL1), we also have two possibilities corresponding to the intersections of the (OSL) with (a–b)
and with (c–a). In this case only one of the operating points, i.e. eitherOP2 orOP3, would be valid.
b Operating point when the intensities are zero

We do not know whether the operating point (OP) is in the first quadrant (a−b) or
in the second quadrant (c−a) of the hysteresis curve (HC). Hence for calculating
the intersection between the straight line (OSL) and (HC) we must try with the two
parts. In principle, four possibilities for the operating point arise from the graphic
represented in Fig. 6.55a. Firstly, let us consider the function B(H) = 1 correspond-
ing to the interval 0 < H < 40,000 (segment (a−b)). If we calculate the intersection
with the operating straight line whose equation is (6.201), we have two possibilities.
In fact, the intersection can be the pointOP1 orOP2 depending if the (OSL) isOSL1
orOSL2. In order to know the point, we calculate the intersection of both curves and
then we examine the result. It reduces to solve the following equation systems

⎧
⎨

⎩

Bh(H) = 1, 0 < Hh < 40,000

Bh(H) = μ0μrSp
Sh

(
NpIp − NhIh

lp

)
− μ0μrSp

Sh
Hh.

Introducing the values of the lengths, turns, sections and intensities, it yields Hh =
15264Am−1, and Bh = 1T. This point corresponds to (OP1) in Fig. 6.55a, and
belongs to the curve, so this is the desired intersection. However if we had calculated
the intersection with the curve segment (c−a) the intersection would be the point
(OP4), which is outside of the hysteresis curve, and therefore is invalid.

(b) If the intensities are reduced to zero, the operating point must be in the second
quadrant of the hysteresis loop (Fig. 6.55b). In fact, making Ip = Ih = 0 in (6.201)
we obtain

Bh = −μ0μrSp
Sh

Hh, (6.202)
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which is the equation of a straight line passing through the origin of coordinates,
whose slope is −μ0μrSp

Sh
. The intersection with the hysteresis curve corresponds to

the point represented in Fig. 6.55, for which (−20,000 < H < 0). Hence to find the
solution we resolve the system of equations composed by (6.202) and

Bh(H) = 1 + Hh

20,000
. (6.203)

The result of that intersection is Hh = −14,260Am−1 and Bh = 0.28T. However,
these values of the fields refer to the ferromagnetic material, but not the paramagnetic
on the lower part of the system. For obtaining the magnetic fields in this part we need
to use (6.198), and the equation for the paramagnetic material Bp = μ0Hp,

BhSh = BpSp ⇒ Bp = BhSh
Sp

= 0.4 T, (6.204)

and

Hp = Bp

μ0
= 14,000Am−1. (6.205)

Notice that in this electromagnet we do not have an air-gap, however we obtain
an operating straight line that is not parallel to the axis of the magnetic field B
(Fig. 6.16b). At first sight it may seem contradictory with that explained in section
(6.9), where the permanent magnet without an air-gap had an OSL parallel to the
vertical axis. Thus, the same result could be expected in this case, but it is not what
we see and the reason is the following.

From the point of view of the equation employed for solving the problem, the
electromagnet of Fig. 6.53 behaves like a system with an air-gap (compare (6.197)
and (6.23); there is no difference). In effect, to some extent it is like an electromagnet
in which the air-gap has been filled up with the paramagnetic material,13 then it is
logical that the OSL has the form shown in (6.202). For this reason this equation is a
straight line of finite slope, as we obtained for systems with an air-gap (Fig. 6.12a).
Observe that the magnet presented in Fig. 6.16 was built only of one material. In
conclusion we may say that, even though we do not have an air gap, we can have
an operating straight line of finite slope if the electromagnet is formed with several
specimens of distinct physical characteristics.

Problems C

6.21 The figure attached shows a truncated magnetized cone of radii r = 5cm and
R = 10cm, respectively. The angle formed by the generatrix and the OZ axis

13In this reasoning we do not take into account the length of the air-gap, which usually is very small;
this is only one way for explaining the form of the OSL.
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Fig. 6.56 Truncated cone
solenoid

is α = 30◦, and the magnetization of the material is M = −10,000uzA/m.
Find: (a) The volumetric magnetization current. (b) The surface magnetization
current. (c) The magnetic field B created by the magnet at point P(0, 0, 0).

Solution

(a) To determine the volumetric magnetization current we apply its definition
(Fig. 6.56)

jm = ∇′ × M = ∇′ × (0, 0,−M) = 0. (6.206)

This result is logical if we consider that the magnetization of the cone is homoge-
neous.

(b) For calculating the surface magnetization current we divide the sample into
three parts, which correspond to the faces of the truncated cone. The perpendicular
unitary vector to the left base is n1 = (0, 0,−1), and therefore

jms1 = M × n1 = 0. (6.207)

For the right side
n2 = (0, 0, 1)

which leads to
jms2 = M × n2 = 0, (6.208)

that is, we do not have magnetization currents on both bases. In the same way,
the normal to the lateral surface of the specimen is n3, and then jms3 = M × n3.
However, in this case the unitary normal vector depends on the point on the surface,
i.e. n3 = n3(x, y, z). For obtaining the value of n3 we can use the gradient of the
surface (see Chap.1) as follows

n3 = ∇ S(x, y, z)

|∇ S(x, y, z)| , (6.209)

http://dx.doi.org/10.1007/978-3-662-48368-8_1
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S(x, y, z) being the equation of the surface.
A conical surface may be represented in cartesian coordinates by

x2 + y2 = tan2 α z2 (6.210)

or in cylindrical coordinates
ρ2 = tan2 α z2. (6.211)

By applying the nabla operator over S(x, y, z), we obtain

S(x, y, z) ≡ x2 + y2 − tan2 α z2 ⇒ ∇ S(x, y, z) = 2x ux + 2y uy − 2 tan2 α z uz,
(6.212)

and dividing by the its modulus we have the normal vector n3

n3 = 2x ux + 2y uy − 2 tan2 α z uz

2
√
x2 + y2 + (tan2 α)2 z2

. (6.213)

Introducing the equation of the surface (6.210) into the denominator of (6.209)we get

n3 = (nx, ny, nz) = x ux + y uy − tan2 α z uz√
x2 + y2 + (tan2 α)(x2 + y2)

= 1
√
x2 + y2

x ux + y uy − tan2 α z uz√
1 + tan2 α

=
(6.214)

x ux + y uy − tan2 α z uz√
x2 + y2

cosα.

Once we know the expression of n3 we can calculate the surface magnetization
current

jms3 = M × n3 = M ny ux − M nx uy = y ux − x uy√
x2 + y2

M cosα. (6.215)

Due to the rotational symmetry of the truncated cone is seems to be logical to change
to polar coordinates. In fact, substituting x = ρ cosφ and y = ρ sin φ leads to

jms3 = M cosα

ρ
(ρ sin φux − ρ cosφuy)

= −M cosα (− sin φux + cosφuy) = −M cosα uφ. (6.216)

From the definition of the modulus of the surface magnetization current density
(6.50) we can write

jms3 = dIm
dl

= −M cosα (6.217)

Considering a very thin slice of material, the magnetic field B created is (6.52)
(Fig. 6.57)
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Fig. 6.57 Slice of the
Truncated cone

dB(P) = μ0a2dIm

2
[
a2 + (z0 − z)2

]3/2 uz, (6.218)

where dIm is the differential surface magnetization intensity of such a slice. From
(6.217) we can write

dIm =
(
dIm
dl

)
dl = jms3 dl = −M cosα dl, (6.219)

and substituting into (6.218)

dB(P) = μ0a2jms3dl

2
[
a2 + (z0 − z)2

]3/2 uz. (6.220)

As we can observe, to this formula three variables appear, namely a, z′ and l. For
performing the calculation we need to express it in terms of only one variable. To
reduce the number of unknowns we first see the relation between a and z′

a

z′
= tan α ⇒ a = z′ tan α, (6.221)

and therefore

dB(P) = μ0(z′ tan α)2jms3 dl

2
[
(z′ tan α)2 + (z − z′)2

]3/2 uz. (6.222)
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Taking into account that the point where we wish to calculate the magnetic field
is the origin of coordinates, we can introduce the value 0 for z. In this case (6.222)
reduces to

dB(P) = μ0(z′ tan α)2jms3 dl

2
[
(z′ tan α)2 + z′2

]3/2 uz = μ0(z′ tan α)2jms3 dl

2|z′|3 (1 + tan2 α
)3/2 uz = μ0(z′ tan α)2jms3 dl

2|z′|3
(

1
cos3 α

) uz.

(6.223)
By introducing (6.219) in (6.223)

dB(P) = −μ0 z′2 sin2 α cos αM cosα dl

2|z′|3 uz = −μ0 sin2 αM cos2 α dl

2|z′| uz.

(6.224)

Observe that the variable of integration is the length l and not z′, then we cannot
compute the integral. In order to express (6.224) as a function of one of them, we
use the relation to the arc of length,

dl =
√

1 +
(
dx

dz′

)2

dz′. (6.225)

In our case x = tan α z′, thus
(
dx
dz′
) = tan α, and (6.224) converts to

μ0 sin2 α cos2 αM
√
1 + tan2 α dz′

2|z′| uz = −μ0 sin2 α cos2 αM ( 1
cos α

) dz′

2|z′| uz =
(6.226)

= −μ0 sin2 α cos αM dz′

2|z′| uz.

Integrating this expression we obtain,

B(P) = −μ0 M sin2 α cos α

2

∫ L

b

dz′

|z′| uz. (6.227)

We do not know the values of L and l, however the radii R and r are known. Hence,
we can express these limits in the integral as functions of the radii as follows

R

L
= tan α ⇒ L = R

tan α
,

and r

b
= tan α ⇒ b = r

tan α
.

Setting these values in the limits of the integral it leads to
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B(P) = −μ0 M sin2 α cos α

2

∫ R
tan α

r
tan α

dz′

|z′| uz = −μ0 M sin2 α cos α

2
ln

R

r
uz.

(6.228)
(b) Second method.
Taking into consideration that l = √

a2 + z′2, and setting into (6.218) z = 0, may
be written

dB(P) = μ0a2dIm
2l3

uz = μ0a2jms3 dl

2l3
uz. (6.229)

In this equation the denominator does not depend on z′ but on l directly. Thus, another
possibility to integrate (6.229) is to express it as function of l. However, this equation
also depends on a, so l is not the only variable. It therefore remains to find the relation
between a and l. Knowing that a = l sin α, we have,

dB(P) = −μ0(l sin α)2M cos α dl

2l3
uz = −μ0 M sin2 α cos α dl

2l
uz. (6.230)

The integration of this last result between l1 l2 leads to

B(P) = −μ0 M sin2 α cos α

2

∫ l2

l1

dl

l
uz = −μ0 M sin2 α cos α

2
ln

l2
l1
uz. (6.231)

On the other hand, by introducing l1 = r
sinα and l2 = R

sinα we have

B(P) = μ0 M sin2 α cos α

2
ln

R

r
uz, (6.232)

which coincides with (6.228).

6.22 A ball with radius R = 10cm of a ferromagnetic isotropic material has a
homogeneous magnetization M = 100,000 uzA/m. If the center of gravity of
the sphere coincides with origin of the coordinate frame, find: (a) Themagnetic
field B at P(0, 0, 0). (b) The magnetic field H.

Solution

(a) A first approach to solve this problem could be to calculate the magnetization
density currents and then to apply (6.3). However, this procedure is difficult because
of the calculation of the second integral that appears (the first over the volume is
zero). Perhaps the easiest way to calculate B is to try finding an equivalent solenoid
of the same geometrical characteristics to the ball, in which we can identify their
effects with respect to the magnetic field B. In other words, we follow the same idea
shown in the Exercise 6.2 when the field produced by a magnetized finite bar was
studied. To do so, we obtain first the jm and jms, i.e.

jm = ∇′ × M = ∇′ × (0, 0,M) = 0. (6.233)
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For the surface magnetization current density we have

jms = M × n. (6.234)

In this case, to calculate it, we need to know the normal n, which will depend on the
coordinates (x, y, z). We can determine this vector by means of the gradient of the
spherical surface as follows

n = ∇ S(x, y, z)

|∇ S(x, y, z)| . (6.235)

Taking into consideration that a spherical surface of radius R is

x2 + y2 + z2 = R2, (6.236)

its gradient has the form

S(x, y, z) ≡ x2 + y2 + z2 − R2 ⇒ ∇ S(x, y, z) = 2x ux + 2y uy + 2z uz. (6.237)

Dividing by its modulus, we obtain the normal at any point of the sphere

n = 2x ux + 2y uy + 2z uz
2
√
x2 + y2 + z2

= x ux + y uy + z uz√
x2 + y2 + z2

= x ux + y uy + z uz
R

. (6.238)

Introducing that into (6.234), it leads to

jms = −M ny ux + M nx uy = M

R
(−y ux + x uy). (6.239)

Due to the symmetry of the problem, it seems to be adequate to introduce spherical
coordinates, thus we have

jms = M

R
(−R sin φ sin θ ux + R cos φ sin θ uy)

= M sin θ(− sin φux + cos φuy) = M sin θ uφ. (6.240)

This result tells us that the surface density current is distributed on the spherical
surface. By employing (6.50), we can determine dIm

jms = dIm
dl

= M sin θ ⇒ dIm =
(
dIm
dl

)
dl = jms dl = M sin θ dl, (6.241)

where dl is the differential arc length on the surface of the sphere. Once we have
obtained the value of dIm, we may try to find the magnetic field at the center of the
system.
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Fig. 6.58 Homogeneous
magnetized sphere

If we look at (6.240) we observe that the geometry of the currents jms is similar
to that corresponding to coils of different radii located on a sphere of radius R (see
Problem 5.28). For this reason, for computing the field B we can pose the problem
as we had a set of coils of variable radii carrying a current that depends on the angle
θ (6.241). Formally, the mathematical procedure is as shown in Chap.5 (however
conceptually it is very different). In this sense, we first calculate the field produced
by a set of surface magnetization currents dIm corresponding to a small slice (see
Fig. 6.58), and then we integrate for all the system (6.52). By using the expression of
the magnetic field created by a coil of radius R (5.85), the differential field produced
at the origin of the coordinate frame by the aforementioned slice corresponding to
dIm is

dB(P) = μ0a2dIm

2
[
a2 + z′2

]3/2 uz = dB(P) = μ0a2jms dl

2
[
a2 + z′2

]3/2 uz = μ0 a2 M sin θ dl

2
[
a2 + z′2

]3/2 uz,

(6.242)
where we have assumed the same radii for this set of fictitious currents, approxi-

mately. Due to the spherical symmetry of the problemwe can express z′ as a function
of θ, then reducing the number of integration variables (Fig. 6.58). Therefore we can
write a

z′
= tan θ ⇒ a = z′ tan θ, (6.243)

and introducing it into (6.242) it yields

dB(P) = μ0(z′ tan θ)2 M sin θ dl

2
[
(z′ tan θ)2 + z′2

]3/2 uz = μ0(z′ tan θ)2 M sin θ dl

2|z′|3 (1 + tan2 θ
)3/2 uz =

μ0(z′ tan θ)2 M sin θ dl

2|z′|3 ( 1
cos3 θ

) uz = μ0 sin3 θM cos θ dl

2|z′| uz, (6.244)

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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but z′ = R cos θ, hence

dB(P) = μ0 sin3 θM cos θ dl

2R cos θ
uz = μ0 sin3 θM dl

2R
uz. (6.245)

The arc length may be expressed as a function of the angle θ by using polar coordi-
nates, i.e. dl = R dθ, thus

dB(P) = μ0 sin3 θM dθ

2
uz. (6.246)

Introducing it into (6.244) and integrating, we have

B(P) =
∫ π

0

μ0 sin3 θM dθ

2
uz = μ0 M

2

∫ π

0
sin3 θ dθuz = μ0 M

2

∫ π

0
sin θ(1 − cos2 θ) dθuz =

(6.247)
μ0 M

2

{∫ π

0
sin θ dθ −

∫ π

0
sin θ cos2 θ dθ

}
uz = 2

3
μ0 M uz.

Observe that this problem can also be directly solved by using methods shown in
Chap.5, yielding the same result. If we remember, whenwe studied the homogeneous
magnetized bar (Problems 6.1 and 6.2) we saw that the field created by the rod was
the same as the field created by an equivalent solenoid of the same dimensions as the
rod, in which the free current per unit length verifies that nI = M. To some extent
the basic idea of the procedure consisted of finding a system of currents (solenoid)
that produces identical effects regardingB. In that case, we were able to calculate the
field produced by themagnetized body in a simpleway, without resolving differential
equations or difficult integrals.

This idea is not restricted to a rod. On the contrary, as we are going to see, this
method may also be used in this problem. In general, if we construct a model in
which it is possible to identify the magnetization currents of the matter with the free
currents of its equivalent system, we will be able to solve the problem as we had no
matter. Though we could find such a model, as we can suppose, the procedure is only
easy if we have some symmetries. In our case we have studied a magnetized sphere,
thus, we can likely find an easy model.

In fact, in Problem 5.28 we calculated the magnetic field created by a coil of N
turns per unit arc η (constant)wound on a spherical surface. Therewe saw that, setting
dN as a function of η, we obtained the field B at the center of the spherical solenoid.
If we compare (5.256) with (6.246) we see that both expressions are identical if
Iη = M sin θ = jms. Therefore, introducing the values of Iη into (5.256) we have

dB(P) = dB(P) = μ0 sin2 θ Iηdθ

2
uz = μ0 sin2 θM sin θdθ

2
uz, (6.248)

and integrating it gives the same value as shown in (6.248). This result means that
if we construct a spherical solenoid or radius R carrying an intensity per unit arc

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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(a)

(b)

Fig. 6.59 a Homogeneous magnetized sphere. Notice that due to jms(θ) = M sin θ the fictitious
current per unit length accumulates more near the equator θ = π

2 . b Front view

Iη = M sin θ, it will produce the same magnetic field B that those corresponding to
a sphere homogeneously magnetized.

It is important to note that, in this case, contrary to what occurred with the homo-
geneous magnetized bar, we cannot directly substitute Iη = M sin θ into the final
result (5.257). The reason is that in the case of the rod the surface magnetization
current density is constant (jms = M), and therefore we can replace nI by M in the
final equation (5.99). However, in the present problem jms is a function of the angle θ
(jms(θ) = M sin θ), then it must be introduced in (6.242) in order to be integrated.14

Physically, this dependence of the surface magnetized currents on the direction, that
is jms(θ) = dIm

dl = M sin θ, means that the fictitious currents per unit length are not
homogeneously distributed over the surface of the ball. They concentrate more in
the proximity of θ = π

2 (zero meridian-equator) where the sine function is one, and
decreases when θ → 0 and θ → π (the poles). See Fig. 6.59.

6.23 A very large cylinder of radius R, is magnetizedM = Kρ2 uφA/m, where K is
a constant and ρ represents the distance between a generic point and the sym-
metry axis of the cylinder. Find: (a) The volumetric and surface magnetization
currents. (b) The fields Hφ and Bφ at any point of space. (c) Sketch a graph of
the fields as a function of distance to the revolution axis of the system.

Solution

(a) We can get the magnetization density currents by applying definitions (6.4) and
(6.5), i.e.

14Note that the introduction of Iη = M sin θ into (5.257) gives B(P) = πμ0Iη
4 uz = πμ0M sin θ

4 uz
(false!), a result very different from what we obtained in (6.247).

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Fig. 6.60 a
Non-homogeneous
magnetized cylinder. Notice
thatM increases with the
distance to the axis of
symmetry (OZ). b
Magnetization density
currents

(a) (b)

jm = ∇′ × M = 1

ρ

∂

∂ρ
(ρMφ)uz = 3Kρuz. (6.249)

and for the surface density current,

jms = M × n′ = (0,Mφ, 0) × (1, 0, 0) = −K R2 uz. (6.250)

These results show that the cylinder not only has jms like in the Problems 6.1 and
6.2, but also volumetric magnetization density current. The reason for this is found
in the existence of a non-homogeneous magnetization of the body (Fig. 6.60).

First method

(b) (ρ < R) In Chap.5 we devoted some time to explain in detail the utility of
studying the symmetries of a problem (see for example Problem 5.1). With the same
idea, we first analyze the symmetries of our system and then we try to solve it.

In the present problem the bar is very large, thus following what was explained
previously we conclude that the magnetized rod has rotational and translational
symmetry. It means we may employ the Ampère theorem for solving the question.
However an important question arises, namely which of the Ampère laws interests
us. In effect, in the preceding Chapter we studied Ampère’s integral theorem for the
magnetic field B (5.7). We saw that the circulation of B along a closed curve � only
depends of the net current crossing the open surface whose delimitation is �. At that

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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time we knew neither about magnetization nor about the existence of volumetric and
surface magnetization currents, so we identified the net current I with the current of
free charge If . Now we know that this point of view does not correspond with the
general case B (see (6.15)), in which

∮
�
B · dl depends not only on If but on Im and

Ims as well. On the other hand in this chapter we have defined the magnetic field H,
whose sources are either currents of free charge, or regions in which ∇ · M �= 0
(for the magnetostatic field). Hence, why should we use (5.7) or (6.15)? In principle
we can employ either of the two equations, but the exact procedure depends on the
specific problem. So, if in addition to magnetic materials we have currents of free
charge, and we can neglect the demagnetizing fields, if any, it is usually easier to
begin with Ampère’s theorem for the magnetic field H. Later, as this field is known
we get B by means of (6.12). The reason to proceed in this way is that the theorem
(6.14) is directly related with If . On the contrary, if we start with

∮
�
B · dl we must

work with the magnetization currents, which are not known a priori.
In our case we have neither conduction currents, nor demagnetizing fields (since

the cylinder is very long). On the other hand, we have calculated the magnetization
currents. Hence we can apply both equations and, as we will demonstrate, we obtain
the same result.

In fact, for obtaining the magnetic field B in the interior of the cylinder, due to
its rotational symmetry, we choose a circular curve of radius ρ < R and directly
apply (6.15). Setting dl = (0, dl, 0) so that the surface S is oriented in the positive
direction of the OZ axis, we have

∮

�

B · dl = μ0

{∫

S
jf · dS +

∫

S
jm · dS +

∮

�

jms · ndl
}

. (6.251)

Integrating the first member leads to

∮

�

(Bρ,Bφ,Bz) · (0, dl, 0) =
∮

�

Bφ dl =
∫ 2π

0
Bφ ρ dφ = 2π ρBφ. (6.252)

For the second part of (6.251), as the curve� does not reach the surfacemagnetization
density current jms does not appear, then only jm matters because we do not have jf .

∫

S∩Vj

jm · dS =
∫

Sρ

3Kρuz · dS uz = 3K
∫ ρ<R

0

∫ 2π

0
ρ2 dρ dφ =

3K
∫ 2π

0
dφ

∫ ρ<R

0
ρ2 dρ = 2π Kρ3 (6.253)

Bφ = μ0K ρ2. (6.254)

Once we have the magnetic field B we may determine H through (6.12) because we
know the value of the magnetization M,

http://dx.doi.org/10.1007/978-3-662-48368-8_5
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H = B
μ0

− M = μ0Kρ2

μ0
uφ − K ρ2uφ = 0. (6.255)

Second method

(b*) (ρ < R) Now we try to obtain the same results but from another point of
view. Let us write (6.15) as a function of the magnetization. In this case we have

∮

∂S
B · dl = μ0

{∫

S
jm · dS +

∮

�
jms · ndl

}
= μ0

∫

S
(∇ × M) · dS + μ0

∮

�
(M × n′) × ndl,

in which we related the magnetic field B with the magnetization M. As we have
previously seen for ρ < R, only the volumetric magnetization currents are in place,
thus we can rewrite ∮

∂S
B · dl = μ0

∫

S
(∇ × M) · dS. (6.256)

By applying Stokes’s theorem we convert this double integration into a curvilinear
integral along the delimiting curve of the surface S

∮

�

B · dl = μ0

∮

�

M · dl. (6.257)

By introducing M = Mφ = Kρ2 uφ into (6.256), we have

∮

�
(Bρ,Bφ,Bz) · dl=μ0

∫

�
(0,Mφ, 0) · dl⇒

∮

�
(Bρ,Bφ,Bz)(0, dl, 0)=μ0

∮

�
(0,Kρ2, 0)(0, dl, 0) ⇒

(6.258)∮

�

Bφdl = μ0

∮

�

Kρ2 dl ⇒
∫ 2π

0
Bφρdφ = μ0

∫ 2π

0
Kρ2 ρdφ ⇒ (6.259)

Bφρ

∫ 2π

0
dφ = μ0 K ρ3

∫ 2π

0
dφ ⇒

Bφ2πρ = 2πμ0 K ρ3 ⇒ Bφ = μ0K ρ2,

and in vectorial form
Bφ = μ0K ρ2 uφ. (6.260)

obtaining the same result. Referring to field H, there are no differences in the proce-
dure for the calculation with respect to those shown in section (b).

First method

(ρ > R)
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(a) (b)

Fig. 6.61 a Non-homogeneous magnetized cylinder. Notice that M grows with distance from the
axis of symmetry (OZ). bMagnetization density currents

Returning to the first procedure seen in (b), we calculate the fields for ρ > R. In
this case the curve chosen is also circular but the radius ρ is greater than R. As we
show in Fig. 6.61b, the surface S is crossed by jm and jms, thus we can write

∮

�

B · dl = μ0

{∫

S
jm · dS +

∮

�

jms · ndl
}

(6.261)

Taking into consideration that outside the cross section of the cylinder isn’t any
magnetization currents (Fig. 6.61b), the effective surface of integration is not S = πρ2

but S ∩ Vj = SR, then it gives

∫

S∩Vj

jm · dS =
∫

SR

3Kρuz · dS uz = 3K
∫ R

0

∫ 2π

0
ρ2 dρ dφ = 2πK R3 (6.262)

Due to the surface magnetization density current flowing through the surface of the
cylinder, it seems to be adequate employing the Dirac’s delta distribution (if we want
to work with dS, and the Dirac delta, instead of dl). If we put jms = −K R2δ(ρ−R)uz
into (6.15), we obtain

∫

S∩Vj

jms · dS =
∫ ρ>R

0

∫ 2π

0
−KR2 δ(ρ − R)uz · dS uz = (6.263)

= −K lim
a→∞

∫ a(ρ>R)

0

∫ 2π

0
R2 δ(ρ − R) ρ dρ dφ = −2π K R3,

and all together15
2π Bφ = 2π R3 − 2π R3 = 0 ⇒ Bφ = 0. (6.264)

15In the former calculation appears lima→∞
∫ a
0 . . .This is only in order to bemathematically correct

by definition of the Dirac delta distribution.
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The magnetic field H once again by means of (6.12),

H = B
μ0

− M = 0 − 0 = 0. (6.265)

Second method

(b*) (ρ > R)

As the region in which we are going to obtain the magnetic fields is outside of
the bar, we again choose a circular curve � with radius ρ > R together with a plane
surface S for applying Ampère’s theorem (see Fig. 6.61a), which may be nowwritten
in the following form

∮

�

B · dl = μ0

∮

�

M · dl +
∮

�

(M × n′) × ndl. (6.266)

Upon calculating the integrals, a doubt arises. In fact,we have seen that the integration
of the magnetic field B is carried out over the curve with radius ρ, independent of
the fact that at points belonging up � there is current density. On the other hand,
the calculation of the surface integrals (6.15) are taken through the corresponding
effective surface Sef = S∩Vjm , but now we have converted

∫
S(∇ ×M) ·dS into a line

integral, and the question is whether or not the integration curve is also � as for the
magnetic field B. To answer this question we must remember that before performing
Stokes’ theorem over ∇ × M, its double integral extends over the effective surface
Sef = S ∩ Vjm , the integration curve for M in (6.266) must be the corresponding
boundary of Sef = πR2 = SR. The same reasoning holds for

∫
S(M × n) · dS (see

6.262). The density jms flows on the lateral surface of the magnetized rod, then the
product (M×n) ·dS (actually (M×n′)×ndl. Look at the physical units) is distinct
from zero where jms and dS intersect, which in this case is not actually a surface but
the curve Vjms ∩ S = S� = � = 2πR = ��.

Adequately setting the integration limits in (6.266) we can write

∮

�

B · dl = μ0

{∮

�R

M · dl +
∫

S�

(M × n) · dS
}

,

�R being the boundary of SR

∮

�
(Bρ,Bφ,Bz)(0, dl, 0) = μ0

{∮

�R

(0,K ρ2, 0)(0, dl, 0) +
∫

S�

(0, 0, −K ρ2)(0, 0, dS)

}
.

As we have already commented, actually the last integral does not extend over a
surface but a line (otherwise the units have no sense). For this reason we can express∫
S(−K ρ2)uz dS uz by means of Dirac’s delta distributions. In effect, we may write
jms = −K ρ2 δ(ρ − R)uz, and introducing it in the expression above

∫

S�

(M×n) · dS =
∫

S
(−K ρ2) δ(ρ−R)uz dS uz = −

∫

S
K ρ2 δ(ρ−R) dS. (6.267)
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Fig. 6.62 Tangential
magnetic field B versus
distance. Observe that no
field exist out of the cylinder

Changing to polar coordinates and taking into account that to do the integration along
the curve �R, the magnetization must be particularized for ρ = R, thus we have

∫ 2π

0
Bφρdφ = μ0

{∫ 2π

0
K R2Rdφ −

∫ ∞

0
K ρ2 δ(ρ − R) ρ dρ

∫ 2π

0
dφ

}
⇒

Bφρ

∫ 2π

0
dφ = μ0

{
K R3

∫ 2π

0
dφ − K R3

∫ 2π

0
dφ

}
= 0 ⇒

Bφ = 0,

which agrees with (6.254). Referred to H the procedure is the same as shown in the
first method.

(c) Taking into consideration all results of the preceding sections, the magnetic
field Bφ as a function of distance ρ has the form shown in Fig. 6.62.

6.24 Let us suppose we will construct a permanent magnet whose iron core length
and cross-section are li and Si, respectively, whereas for the air gap those
magnitudes are lg and Sg . Find: (a) The operating straight length of the iron
core. (b) Theminimum volume of ferromagnetic material we need for reaching
a magnetic field Bi in the air gap. (c) Under the conditions of section (b), how
does the iron volume increase if we wish to increase the magnetic field Hg?,
what implications does that have?

Solution

(a) By applying the Ampère theorem over the mean length of the electromagnet it
yields

Hhlh + Hglg = 0 ⇒ Hhlh + Bg lg
μ0

= 0. (6.268)

On the other hand, from the flux of the magnetic field B throughout a closed surface
containing both an iron core and an air-gap we obtain BiSi = BgSg , and then
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Hili + Bi Si
μ0 Sg

lg = 0, (6.269)

that is to say

Bi = −μ0 li Sg

Silg
Hi. (6.270)

This result is the same as we saw in (6.31).
(b) Starting from the equality, BiSi = BgSg , and considering the material equation

for the air gap Bg = μ0 Hg , we can write

BiSi = BgSg = μ0 HgSg. (6.271)

From Ampère’s law (6.268) we know

Hili = −Hglg. (6.272)

By multiplying (6.271) and (6.272) we have

BiSiHili = μ0 HgSgHglg. (6.273)

But Sili and Sglg are the volume of the iron core Vi and the gap vg , respectively,
therefore (6.273) leads to

BiHiVi = −μ0 H
2
g vg, (6.274)

and the volume Vi

Vi = μ0 H2
g vg

BiHi
. (6.275)

Equation (6.275) provides a reasonable value for the volume of the permanentmagnet
supposing the leakage of the magnetic flux negligible. On the other hand, (6.275)
shows that theminimumvolumematerial corresponds to themaximumof the product
BiHi. Let us find the operating point corresponding to this minimum volume of
material.

As BiHi must be a maximum, we differentiate such a product and we impose the
condition to be an extreme,

d(BiHi) = BidHi + HidBi = 0. (6.276)

But we know that dBi = ( dBi
dHi

)dHi, so introducing this expression into (6.276) it
yields

BidHi + Hi

(
dBi

dHi

)
dHi ⇒

(
Bi + Hi

(
dBi

dHi

))
dHi = 0. (6.277)

To fulfill this result the term in the bracket must be zero
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Fig. 6.63 First and a part of
the second hysteresis curve.
Observe that, due to the
air-gap the operating point of
the permanent magnet is
located in the second
quadrant of the loop

Bi + Hi

(
dBi

dHi

)
= 0 ⇒ dBi

dHi
= −Bi

Hi
. (6.278)

where Hi and Bi are the coordinates of the operating point OP. From the Fig. 6.63
we see that

Bi

Hi
= tanα.

On the other hand the derivative dBi
dHi

represents the straight line tangent atOP, whose
slope is tan β (see Fig. 6.63), hence it holds

dBi

dHi
= tan β = −Bi

Hi
= − tanα ⇒ tan β = − tanα ⇒ α = β. (6.279)

This result means that when both angles are equal, the volume needed to construct
the electromagnet is minimum. This angle α depends only of the geometrical char-
acteristics of the magnetic circuit. In fact, employing (6.270) we have

Bi

Hi
= −μ0 li Sg

Silg
= − tanα, (6.280)

which is a function of the lengths and cross sections of both the iron core and the
air-gap.

(c) The basic characteristics in the design of a permanent magnet depend on the
applications for which it must be used. However, in general, for a specific volume
of the air-gap vg , from (6.275) we see that the volume of ferromagnetic material
Vi needed for the construction of a permanent magnet increases proportional to the
square of the magnetic field Hi in the air-gap. It means that the price of the device
grows very much with the field we must reach in this gap.

6.25 The electromagnet of the attached Fig. 6.64 was constructed with a material for
which the firstmagnetization curve isH = KB2. The cross section of the system
is circular, with area of constant value S1 along the length l1, and it narrows
to S1/2 in the polar pieces of lengths l2. The values of the different parts of
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Fig. 6.64 Electromagnet of
variable cross section

Fig. 6.65 Electromagnet of
variable section

the electromagnet are: l1 = 0.60m, l2 = 0.10m; K = 10,000Am−1 T−2 and
NI = 1000A. Obtain the magnetic field B1 in the longer part of the material.
There is no flux leakage.

Solution

As we have seen in other problems, we proceed in three steps. Firstly, we apply the
Ampère law along the mean length of the material,

∮

�

Hdl = Ic ⇒ H1l1 + 2
∫ l2

0
H2 dl = NI. (6.281)

Although the material is the same, we cannot write H2l2 for the polar pieces, since
the sections vary. As a result, the field H2 must be different from H1, in principle.
The second step is to use the equality of fluxes over a closed surface. As we need to
relate the field in the two parts of the system, we choose a surface which encompasses
them (Fig. 6.65). Observe that this closed surface does not reach the right side S2.
The reason for this is that the fieldH in region 2 depends on x, thus wemust leave the
flux equation as a function of a generic point within region 2. Applying the integral
equation for the flux of B over this surface, we have
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Fig. 6.66 Electromagnet of
variable section

∮

S
BdS = 0 ⇒ B1S1 =

∫ ∫

S(x)
B(x) dS = B(x) S(x) = B(x)π y2, (6.282)

and then, the magnetic field on the right side at a distance x is

B1 = B(x)
π y2

π R2
= B(x)

y2

R2
⇒ B(x) = B1

R2

y2
. (6.283)

This equation depends on the height y at point x inside the polar piece of length l2,
but in (6.283) x does not appear, then we need to find the magnetic field B as function
of x. With this aim, let us look at Fig. 6.66. On the plane of this figure we can identify
two similar triangles, namely AOO′ and yxO′. For them it holds

R

L
= y

L − x
⇒ y = R(L − x)

L
. (6.284)

The difficulty of this result is that we do not know the value of L, however we can
deduce it from the initial data of the problem. In fact, as the surface S2 = S1

2 , we may
write

π r2 = 1

2
π R2 ⇒ R = √

2 r, (6.285)

which represents the relation between the radii of the polar piece surfaces. On the
other hand, as equation (6.284) is valid in the interval (0 < x < L), we particularize
it for y = r obtaining

r = R(L − l2)

L
⇒ r =

√
2 r(L − l2)

L
⇒ L =

√
2√

2 − 1
l2 = 3.4 l2 = 0.34m,

(6.286)
and then

y = R(0.34 − x)

0.34
. (6.287)

Introducing (6.287) in (6.283) gives
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Fig. 6.67 Electromagnet of
variable section

B(x) = B1
R2

(
R(L−x)

L

)2 = B1

(
0.34

(0.34 − x)

)2

, (6.288)

which corresponds to the magnetic field in the polar piece (denoted by 2 in Fig. 6.65).
Now, taking into account that we know the the first magnetization curve B = B(H),
we introduce it into (6.281) resulting in (third step)

H1l1 + 2
∫ l2

0
K B2

2(x) dl = NI, (6.289)

and through (6.283), we have

H1l1 + 2
∫ l2

0
K B2

1

(
L

L − x

)4

dl = NI ⇒ H1l1 + 2
∫ l2

0
K B2

1

(
L

L − x

)4

dl = NI.

(6.290)
Under the basic approximation made for solving magnetic circuits, the average mag-
netic field B1 along the length l1 is the same, hence we can write (Fig. 6.67)

H1l1 + 2K B2
1 L

4
∫ l2

0

(
1

L − x

)4

dl = NI ⇒ H1l1 + 2K B2
1 L

4 1

3

(
1

(L − l2)3
− 1

L3

)
= NI.

(6.291)
This expression represents the operating straight length (OSL) of the electromagnet.
For finding the operating point we must calculate the intersection of (6.290) with
the magnetization curve H = K B2. To accomplish this we substitute H1 by K B2

1,
getting

K B2
1 l1 + 2K B2

1 L
4 1

3

(
1

(L − l2)3
− 1

L3

)
= NI, (6.292)

and then we have

B1 =
√√
√
√

NI

K
[
l1 + 2L4

3

(
1

(L−l2)3
− 1

L3

)] = 0.31T. (6.293)



Solved Problems 397

6.26 The system shown in the figure below is constructed of the same ferromagnetic
material and comprises a hollow cylinder of radius R1 = 4cm and R2 =
6cm, height h = 10cm, and base thickness of d = 1cm. This cylinder is
traversed in the direction of its symmetry axis by a slender bar of radius R =
1cm, on which a coil of N = 100 turns is wound. Assuming there is no
magnetization saturation, the first magnetization curve, excluding the origin
and its near neighboring points, is

B = aH2, 0 < H ≤ Hmax,

where a = 1 × 10−5 Tm2A−2. If the current circulating through the wires is
I = 0.5A, and the leakage of flux is negligible, obtain the magnetic field B at
point P in the bar (region 1) and in the external region delimited between R1

and R2 (region 3).

Solution

In the samemanner thatwe have seen in other problems,we beginwith the application
of Ampère’s theorem. To do so we choose a curve � as shown in Fig. 6.68,

Fig. 6.68 Front and plane view of the system. On the right the curve �. Observe that l1 and l3 are
equal and the same occurs between l2 and l4
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(a) (b)

Fig. 6.69 Surfaces for calculating the magnetic flux. a This closed surface relates the magnetic
flux across the surfaces S1 and Sρ. b Idem for the surfaces Sρ and S3

∮

�

Hdl = If ⇒ H1l1 +
∫ 3

2
H dl + H3l3 +

∫ 1

4
H dl = NI. (6.294)

To find the flux we first choose a closed curve as depicted in Fig. 6.69. Supposing
that there is no flux leakage we can write

∮

S
BdS = 0 ⇒ B1S1 = BρSρ ⇒ B1πR

2 = Bρ2πρ d ⇒ Br = B1
R2

2ρd
. (6.295)

At the same time we must relate the magnetic field B1 with B3. With this end, we can
again use the flux law for relating region 3 (surface S3) with the intermediate zone
between 1 and 3 (surface Sρ) (see Fig. 6.69), i.e. the part ρ. Thus, it results that

∮

S
BdS = 0 ⇒ BρSρ = B3S3 ⇒ Bρ2πρ d = B3π(R22 − R21) ⇒ Bρ = B3

(R22 − R21)

2ρd
,

(6.296)

which gives Br as a function of B3. Once we know (6.296), we can obtain the relation
between B1 and B3 by means of (6.295)

B3
(R2

2 − R2
1)

2ρd
= Bρ = B1

R2

2ρd
⇒ B3 = B1

R2

(R2
2 − R2

1)
. (6.297)

Now, setting this latter equation into (6.295) it yields
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H1l1 + 2
∫ 3

2
H dl + H3l3 = NI

⇒
√
B1
a

l1 + 2
∫ (R1+R2)

2

0
R

√
B1
2aρd

dρ + R

√
B1

a(R22 − R21)
l3 = NI

⇒
√
B1
a

l1 + 2R

√
B1
2ad

∫ (R1+R2)

2

0

dρ√
ρ

+ R

√
B1

a(R22 − R21)
l3 = NI (6.298)

Observe that the second term of the addition in (6.298) is an integral instead a single
product. This is due to the fact that over the segment 2−3 (l2) and 4−1 (l4) the
magnetic fieldH varies with distance ρ toOZ axis. Along the segments 1−2 (l1) and
3−4 (l3) the field H remains constant (mean average line-see Fig. 6.68).

By integrating,

√
B1

a
l1 + 4R

√
B1

2ad

[√
r
] (R1+R2)

2

0 + R

√
B1

a(R2
2 − R2

1)
l3 = NI ⇒

√
B1

a
l1 + 4R

√
B1

2ad

√
(R1 + R2)

2
+ R

√
B1

a(R2
2 − R2

1)
l3 = NI ⇒

√
B1

a

⎧
⎨

⎩
l1 + 2R√

d

√
(R1 + R2) + R

√
(R2

2 − R2
1)

l3

⎫
⎬

⎭
= NI (6.299)

B1 = a(NI)2
{
l1 + 2R√

d

√
(R1 + R2) + R√

(R2
2−R2

1)
l3

}2 = 0.83T . (6.300)

To calculate themagnetic fieldB3 (segment 2−3) corresponding to the exterior region
(R1 < r < R2), we employ (6.297)

B3 =

⎛

⎜
⎜
⎜
⎝

a(NI)2
{
l1 + 2R√

d

√
(R1 + R2) + R√

(R2
2−R2

1)
l3

}2

⎞

⎟
⎟
⎟
⎠

R2

(R2
2 − R2

1)
= 0.04 T . (6.301)

6.27 Acube of sideL hasmagnetizationMuniformandparallel to an edge.Calculate
the magnetic field B at an exterior point P, situated at a distance d (d  L)
from one of the faces for which B is tangent, and is separated from the edges.

Solution

There are no conduction currents, and therefore jc = 0.
The magnetization M is uniform inside the cube, and hence does not depend on

the coordinates of the point. Its curl is therefore zero and the current of volumetric
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Fig. 6.70 Magnetized cube

jms

jmsM

l
P

magnetization is
jm = ∇ × M = 0

The surface current density of magnetization is

jms = M × n

Hence jms is null on the faces whereM is perpendicular to the face, whereas jms = M
on those faces whereM is parallel to the face. The problem is thereby reduced to the
calculation of field B originated by the surface current density jms which flows on
four of the vertical faces (Fig. 6.70).

Since the distance d is significantly less than L, then d is also significantly less
than any typical distance of the cube. In other words: from point P only the presence
of the closest face is detectable, and the problem is then comparable to a single,
infinitely large face transporting the uniform current jms. The relationship is

∇ × B = μ0 (jc + jm) = μ0jm ⇒
∮

B · dl = μ0Im

By drawing a rectangle of base 2d, with a side of length l inside the cube and another
side containing point P, and by imagining a vertical axis, OZ, we can apply the
preceding equation on this rectangle to obtain:

∮
B · dl = Bzl − B′

zl = μ0Im = μ0jmsl

Since, through symmetry, the inner and outer vertical components of B are of equal
magnitude and of opposite directions, we finally obtain:

2Bz = μ0jms ⇒ Bz = μ0jms/2 = μ0M/2

6.28 A ferromagnetic material has a hysteresis loop, which can be approximated as
a square in the diagram H − B/μ0, as shown in the Fig. 6.71b.
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1

2

3

4

H (A/m)

B/μ0 (A/m) (a) (b)

Fig. 6.71 a Magnetic material. b Hysteresis loop

With such material, a torus of average length l, and cross sectional area S, is created,
onto which N turns of a conducting wire are wound. At point 1, H = b. Calculate
the flow of B through the induction coil in each segment of the loop.
Solution

In order to calculate the flux, it is necessary to express B within the coil in terms of
current I .

Ampère’s law, over an inner circumference of the torus and of the mean radius,
gives ∮

c
H · dl =

∮

c
H.dl = Hl = Ic = NI ⇒ H = NI

l

Segment 1–2. The relationship B(H)/µ0 is, see figure,

B

μ0
= −H + b ⇒ B = −μ0

N

l
I + μ0b

The flow of B is

� = μ0

(
−N

l
I + b

)
NS

In the same way, it is deduced that:

Segment 2–3.

B = μ0
N

l
I + μ0b ⇒ � = μ0

(
N

l
I + b

)
NS

Segment 3–4.

B = −μ0
N

l
I − μ0b ⇒ � = μ0

(
−N

l
I − b

)
NS
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Fig. 6.72 Electromagnet

I

l1

l2

Segment 4–1.

B = μ0
N

l
I − μ0b3 ⇒ � = μ0

(
N

l
I − b

)
NS

6.29 The electromagnet depicted in the Fig. 6.72 is constructed of a material whose
magnetization curve is H = kB2. The cross section is circular, of constant area
S1 all along the length l1 and narrows to S2 = S1/2 at the poles, which are
of length l2. The expression is required of B1 in the wide part that supposedly
has negligible flux leakage. Calculate B1 for: l1 = 0.60m, l2 = 0.10m, k =
10,000AT−2 m−1, NI = 1000A.

Solution

The flux theorem of the magnetic field B applied to one of the conical zones yields:

B1S1 = B2S2 = B2
S1
2

⇒ B2 = 2B1

where B2 is the field in the narrowest part.
Ampere’s law along the length of themean circumference and in an anti-clockwise

direction takes the form
∮

H · dl = H1l1 + H2l2 = Ic = NI

where the substitution of the material property:

H1 = kB2
1, H2 = kB2

2
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leads to the following relationship

NI = kB2
1l1 + kB2

2l2 = kB2
1l1 + 4kB2

1l2 ⇒ B1 =
(

NI

k(l1 + 4l2)

)1/2

For the specific case of data supplied, this becomes

B1 =
(

NI

k(l1 + 4l2)

)1/2

=
(

1000

10,000(0.60 + 4 × 0.10)

)1/2

T = 0.32 T

6.30 A cylinder of radius R1 and of relative permeability μr is given. Concentric to
this cylinder there is a hollow cylinder of the samematerial with an inner radius
R2 > R1 and exterior radius of R3 > R2, through which a steady current of
uniform intensity I flows. Determine B and M at all points inside and outside
the cylinders. Both cylinders are very long.

Solution

The system presents an axis of symmetry, and hence we expect the magnetic field
to be tangential to a concentric circumference. The current is specified by the value
of the conduction current, and therefore the magnetic field H that only depends on
this current should be calculated first, and then the relationship B = μrμ0H should
be applied. We apply Ampere’s law to a circumference c that is concentric with the
system, located successively (Fig. 6.73):

(a) Inside the inner cylinder

∮

cin
H · dl =

∮

cin
H.dl = Hin2πr = Icin = 0 = ⇒ Hin = 0 ⇒ Bin = 0

(b) In the empty space between the two cylinders

∮

ce
H · dl =

∮

ce
H.dl = He2πr = Ice = 0 = ⇒ He = 0 ⇒ Be = 0

Fig. 6.73 Cylindrical region

R1 R2

R3
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(c) Inside the outer cylinder

∮

cio
H · dl =

∮

cio
H.dl = Hio2πr = Ic

Since the current density in the hollow cylinder is

j = I

π(R2
3 − R2

2)

then the intensity Ic across the circular corona of the radii r and R2 is

Ic = jS = I

π(R2
3 − R2

2)
π(r2 − R2

2) = (r2 − R2
2)

(R2
3 − R2

2)
I

Hence

Hio2πr = (r2 − R2
2)

(R2
3 − R2

2)
I ⇒ Hio = (r2 − R2

2)

2πr(R2
3 − R2

2)
I

(d) Outside the cylinders

∮

co
H · dl =

∮

co
Ho.dl = Ho2πr = Ic = I ⇒ Ho = I

2πr

The relations B = μrμ0H and M = B/μ0−H for (a)–(c) determine B and M
respectively.

6.31 A material is dielectric, isotropic and its magnetic properties are governed by
the equation B = cH2. A cone is constructed with that material. The cone has
a height h and radius R2. An axial hole of radius R1 is drilled through which a
non-magnetic conductor of radio R1 is inserted. An electric current of intensity
I is made to flow along the conductor (Fig. 6.74).

Fig. 6.74 Cone with
cylindrical hole

I

R1R2



Solved Problems 405

Fig. 6.75 Curve for
applying Ampère’s theorem

I

R1

R2

r
l

h

dl

(1) Obtain the flux of B across the striped triangle.
(2) Apply the result to the particular case of R2 = 24 cm, h = 50 cm, R1 = 4.0 cm,
I = 6.7A, and c = 0.055 SI units.

Solution

(1) In order to calculate the flux of B across the triangle, it is necessary to determine
B at every point of the triangle. However, since the total currents remain unknown
but data on the conduction currents is available, the solution should start with the
calculation of H.

Ampere’s law along a concentric circumference within the material is (see
Fig. 6.75):

∮

c
H · dl =

∮

c
Hϕ.dl = Hϕ2πr = Ic = I ⇒ Hϕ = I

2πr
⇒ Bϕ = cH2

ϕ = c

(
I

2πr

)2

As Bφ depends on r, a vertical strip, as shown in the diagram, should be considered
whose points are at the same distance r from the axis of symmetry. The flux is:

� =
∫

B · dS =
∫

Bϕ.dS =
∫

c

(
I

2πr

)2

ldr

From the figure, it is deduced due to the similarity of the triangles that

h

R2
= l

R2 − r
⇒ l = h

R2
(R2 − r)

and hence

� =
∫

B · dS =
∫

Bϕ.dS =
∫ R2

R1
c

(
I

2πr

)2 h

R2
(R2 − r)dr = cI2h

4π2R2

(
−1 + R2

R1
− ln

R2

R1

)

(2) In the particular case specified above, this becomes
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Fig. 6.76 Piece of magnetic
material

2L

L

L

L

� = 0.055 × 6.72 × 0.5

4π2 × 0.24

(
−1 + 24

4
− ln

24

4

)
Wb = 0.42Wb

6.32 A material in the form of two coaxial cylinders has uniform magnetization M
which is axial and in an upwards direction (Fig. 6.76).

(a) Obtain B in the centre of the base.
(b) Calculate B for M = 822A/m.
Solution

(a) The conduction current density is null across the whole space. The magnetization
current density is obtainable fromM, thereby implying that B is directly attainable.
Inside the piece, the magnetizationM is independent from the coordinates and there-
fore its curl is null and hence

jm = ∇ × M = 0

On the surface of the piece, the current of magnetization is

jms = M × n

In the three bases, the unit normal vector is vertical, as is M, and hence the surface
magnetization currents are null.
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Fig. 6.77 Surface current
density

R

D z
α

P

90ο−α

jsxD

r'

r

js

In the cylindrical surface, n and M are perpendicular, and therefore

jms = M

and the direction of jms is horizontal and towards the right in the strip in the diagram,
as shown in Fig. 6.77.

A cylindrical surface of radius R carrying an electric current of magnetization can
be considered as formed by a set of cylindrical strips of radius R and width dz, as
in Fig. 6.77. The magnetic field B, created by the strip at a point P of its axis, must,
according to the Biot–Savart law, be

dB = μ0

4π

∫

strip

jms × (
r − r′)

|r − r′|3 dS′ = μ0

4π

∫

strip

jms × D
D3

dS′

where D denotes the vector r − r′. The magnetic field is infinitely small due to the
tiny current intensity carried by the strip.

The projection of dB over the axis of symmetry is

dB = μ0

4π

∫

strip

jmsD

D3
dS′ cos(90◦ − α)

= μ0

4π

∫

strip

M

D2
2πRdz sinα = μ0

2
M

∫

strip

R

D2
dz sinα



408 6 Static Magnetic Field in Presence of Matter

Fig. 6.78 Lateral
cross-section

2L

L

L

L

The trigonometric relationship

tanα = R

z
⇒ dz = − z2

R cos2 α
dα

yields

dB = −μ0

2
M

∫

strip
sinαdα

Each cylindrical surface is a set of strips, and hence the resulting magnetic field in
the centre of the base of the piece is (Fig. 6.78)

B = −μ0

2
M

∫

all
sinαdα = −μ0

2
M

∫

large
sinαdα − μ0

2
M

∫

small
sinαdα

= −μ0

2
M

∫ arctan(L/L)

π/2
sinαdα − μ0

2
M

∫ arctan(L/2/(2L))

arctan(L/2/l
sinαdα

= −μ0

2
M

∫ arctan1

π/2
sinαdα − μ0

2
M

∫ arctan0.25

arctan0.5
sinαdα = μ0M

2
〈 [cosα]arctan1π/2 + [cosα]arctan0.25arctan0.5 〉

= 3.96 × 10−7M

(b) With the numerical data supplied, this becomes

B = 3.96 × 10−7M = 3.96 × 10−7 × 822 T = 3.26 × 10−4 T

6.33 The magnetic circuit of the Fig. 6.79 is of constant cross section, without
flux leakage, and contains 10,000 turns. The left column has a mean length
L = 20 cm and is of linear magnetic material. The remaining material is fer-
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Fig. 6.79 Electromagnet

L

Fig. 6.80 A part of the
hysteresis loop

B

H

romagnetic. The mean length of each horizontal beam is 2L. When the wire
carries a given current, the circuit is magnetized. Then the intensity of the cur-
rent is decreased to the value I = 10A. In this stage of the reduction of I , it
is known that the equation B2

f = k1Hf + k2 with k2 = 0.4T 2 in the ferromag-
netic material is satisfied. Calculate the magnetic susceptibility of the linear
material, indicating whether it is paramagnetic or diamagnetic.

Solution

In the linear material
Bl = μrμ0Hl

In the ferromagnetic material for the given current I (Fig. 6.80)

B2
f = k1Hf + k2

Since there is no flux leakage, that is to say, the magnetic field outside the core is
null, hence the fluxes ofB in the linear section and in the non-linear section are equal,
and therefore we can write

� = �l ⇒ Bf S = BlS ⇒ Bf = Bl.
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Ampère’s law relating to H, along the mean line and denoting Hl as the longitudinal
field in the linear material, yields

∮
H · dl = HlL + 2Hf L + Hf L + 2Hf L = (Hl + 5Hf )L = Ic = NI ⇒ Hl + 5Hf = NI

L

When, in the second equation, Hf = 0, then

Bf ,H=0 =
√
k2

The first and third equations give

Bf = μrμ0Hl ⇒ Hl = 1

μrμ0
Bf

which substituted into the fourth equation yields

1

μrμ0
Bf + 5Hf = NI

L
⇒ Bf = −5μrμ0Hf + μrμ0NI

L

This line is called the operation line. If Hf = 0 is substituted into this line and the
fifth equation is taken into consideration, then

√
k2 = −0 + μrμ0NI

L
⇒ μr = L

√
k2

μ0NI

With the numerical data provided, we obtain

μr = L
√
k2

μ0NI
⇒ χ = μr − 1 = 0.20 × √

0.4

4π × 10−7 × 10,000 × 10
− 1 = 0.007

The linear material is therefore paramagnetic. With such a small value of suscepti-
bility it is difficult to justify that there is no flux leakage.

6.34 A ring of mean length L and constant cross-section is made up of two fer-
romagnetic materials, each of mean length L/2. Material a has a hysteresis
loop which, owing to saturation, is similar to a line passing through the point
Ha = 0A/m, Ba = 1T and through the point Ha′ = −200A/m, Ba′ = 0 T.
The similar line of material b is parallel to that of material a and passes through
Hb = 0A/m, Bb = 0.5T. A conductor is wound around the ring, which is
then subjected to a current sufficient for the saturation of both materials. The
current is then switched off. Find the values of H and B acquired by the two
materials.
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Solution

Assuming that there is no flux leakage, then the flux theorem of B yields

∮

S
B · dS = 0 ⇒ Ba = Bb

Ampere’s law along the circumference of the mean length, applied to H, gives

∮
H · dl = HaL/2 + HbL/2 = Ic = NI = 0 ⇒ Ha + Hb = 0

where it has been taken into account that at the moment when the calculations are
made, the current has already been switched off.
From the Fig. 6.81, it can be deduced that both lines have a slope of 1/200 T/(A/m)
and their equations are, respectively:

Ba = 1

200
Ha + 1

Bb = 1

200
Hb + 0.5

Substitution of these two relations into the first equation yields

1

200
Ha + 1 = 1

200
Hb + 0.5 ⇒ Ha − Hb− = −100

This equation together with the second equation give:

Ha = −50 A/m
Hb = 50 A/m

Fig. 6.81 Hysteresis curve

1

-200 H (A/m)

B (T)

0.5
0.75 T

50-50
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Fig. 6.82 Magnetic materials

IL

LL

G

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

H

B
(a)

(b)

Fig. 6.83 a Electromagnet. b First magnetization curve

By substituting one of these values into the equation which relates Ba with Ha, we
finally obtain

Bb = Ba = 1

200
(−50) + 1 T = 0.75 T

Observe that if the direction of B is clockwise, then the direction ofH changes from
one material to the other (Fig. 6.82).

6.35 Figure6.83a depicts a double and symmetric electromagnet. It is desired that a
magnetic fieldB be reachedwithin the air gaps in its firstmagnetization process.
The curve of the first magnetization is drawn in the Fig. 6.83b. Calculate the
length G of the air gaps. Data: L = 45 cm, area of cross section S = 486 cm2,
number of turns N = 600, I = 40A, B = 0.40 T.

Solution

Let 1 be the left branch, 2 be the central branch, and 3 be the right-hand branch.
Assuming that there is no flux leakage, the application of the conservation of the

flux to the highest node gives
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0 =
∮

S
B · dS = B1S − B2S + B3S ⇒ B1 − B2 + B3 = 0

The application of Ampere’s law to the closed line 1–2, running in an anti-clockwise
direction, yields

∮
H · dl = H2L + H1L + H1 (L − G) + HGG + H1L = (H2 + 3H1)L + (HG − H1)G = Ic = NI

⇒ G = NI − (H2 + 3H1)L

HG − H1

The application of Ampere’s law to the closed line 2–3, running in a clockwise
direction, yields

∮
H · dl = H2L + H3L + H3 (L − G) + HGG + H3L = H2L + H3 (3L − G) + HGG = Ic = NI

A comparison of these two latter equations brings us to the conclusion that

H1 = H3 ⇒ B1 = B3

where it is taken into account that materials 1 and 3 are equal, the equality of H
corresponds to the equality of B. This result could have been reached through the
symmetry of the figure.

The application of the conservation of the flux to the left-hand air gap yields

B1 = B

where B is a data.
Hence the first equation can be written:

B1 − B2 + B1 = 0 ⇒ B2 = 2B1 = 2B

The air gap is linear and with μr = 1, therefore

B = μ0HG ⇒ HG = B/μ0

The values obtained for B1 and B2 permit the values of H1 and H2 to be deduced
from the graph provided.

With the data B1 = B = 0.40 T, the graph gives H1 = 500A/m, and with the
data B2 = 2B = 0.80 T, the graph gives 740A/m. Substitution in the equation that
provides the length of the air gap finally results in:

G = 600 × 40 − (740 + 3 × 500)0.45

40/
(
4π × 10−7

) − 500
m = 0.072 m
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Fig. 6.84 Electromagnet
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6.36 A certain company wants to manufacture a device as indicated in the Fig. 6.84,
where each branch has a circular cross section. A magnetic field in the air gap
of Hg = 200A/m is required from this device when a current intensity of
I = 1A flows through the coil. For technical reasons, no more than 203m of
conductor cable can be employed. The material of the device is paramagnetic.
What should the value of its μr be? Apply values of L = 1m, l = 0.04m, and
radius of cross section r = 5 cm.

Solution

Let 1 be the upper left-hand branch of the magnetic circuit, 2 be the central branch,
and 3 be the lower right-hand branch, as shown in Fig. 6.84. Suppose that there is no
flux leakage dispersion (this approximation is imprecise since it is not a ferromagnetic
material). The flux theorem for B applied to a small closed surface that surrounds
the upper node relates the tangential components of B (Fig. 6.85):

0 =
∮

S
B · dS = B1A − B2A + B3A ⇒ B1 − B2 + B3 = 0

and applied to a small cylinder that surrounds the upper magnetic pole yields:

0 =
∮

S
B · dS = BgA − B3A ⇒ B3 = Bg

In the three branches of paramagnetic material, the following equations hold, respec-
tively:

B1 = μrμ0H1, B2 = μrμ0H2, B3 = μrμ0H3
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Fig. 6.85 Magnetic circuit
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and in the air gap, this is
Bg = μ0Hg

Substitution of these expressions into the first two equations yields:

μrμ0H1 − μrμ0H2 + μrμ0H3 = 0 ⇒ H1 − H2 + H3 = 0

μrμ0H3 = μ0Hg ⇒ μrH3 = Hg

Through the application of Ampere’s law to H along the closed line 1–2, running in
an anti-clockwise direction, another relationship between the tangential components
of H is obtained: ∮

H · dl = H2L + H1L = Ic = NI

The same law applied to the closed line 2–3, running in a clockwise direction, gives

∮
H · dl = H2L + 2H3(L + l) + Hg (L − 2l) = Ic = NI

The system of the last four equations enables the unknown values H1, H2, H3, and
μr to be solved. The solution is

μr = (5L + 4l)Hg

NI − 2 (L − 2l)Hg
= (5 × 1 + 4 × 0.04) 200

203
2π×0.05 × 1 − 2 (1 − 2 × 0.04) 200

= 3.94
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Fig. 6.86 Ferromagnetic
system

I

6.37 A bar of cross section S = 4.0 cm2 is given from which a circumference and
three radii are formed. Each radius is of length r = 20 cm and forms an angle
of 120◦ with the other radii. The curve of the first magnetization of the material
used can be expressed as B = CH3. From the virgin state, N = 300 turns are
wound and subjected to a current of I = 30A. Calculate B in the left-hand
radius, disregarding the flux leakage (Fig. 6.86).

Solution

Although this problem could be solved with the systematic methodology of applying
the flux theorem to the three nodes and Ampere’s theorem to the two loops, this
problem will be solved here by taking advantage of the symmetry of the figure.

Due to the symmetry, if B in the lower branch were, for any reason, on the right-
hand direction, then the same reasonwould exist for it to be on the left-hand direction.
Therefore B must be null in the lower branch and this branch can be disregarded for
the solution of this problem, see Fig. 6.87.

Again owing to symmetry, if B in the upper left-hand branch has anti-clockwise
direction and its module is B1, then the upper right-hand branch has clockwise direc-
tion, and B has the same module. Let B2 be the projection towards the top of the field
in the vertical radial branch.

The flux theorem in the upper node yields:

0 =
∮

S
B · dS = B1S − B2S + B3S = 2B1S − B2S ⇒ B2 = 2B1

Ampere’s law applied to the line formed by the vertical radial branch, the upper
left-hand branch and the left-hand radial branch gives:

∮
H · dl = H2r + H1

(
1

3
2πr + r

)

4

= H2r + 2π + 3

3
H1r = Ic = NI
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Fig. 6.87 Magnetic circuit
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Substitution of the relation B = CH3 into the first equation gives:

CH3
2 = 2CH3

1 ⇒ H2 = 3
√
2H1

And the substitution of this expression into that above yields:

3
√
2rH1 + 2π + 3

3
H1r = NI ⇒ H1 = NI

(
3
√
2 + 2π+3

3

)
r

Hence

B1 = CH3
1 = C

⎡

⎣ NI
(

3
√
2 + 2π+3

3

)
r

⎤

⎦

3

With the numerical data provided, this finally results in

B1 = 1.0 × 10−12

⎡

⎣ 300 × 30
(

3
√
2 + 2π+3

3

)
0.20

⎤

⎦

3

T = 1.1 T



Chapter 7
Methods for Solving Electrostatic
and Magnetostatic Problems

Abstract In the preceding chapters we have studied properties of the electrostatic
and magnetostatic fields in vacuum and in the presence of matter. We have also seen
how we can generate them and some techniques for calculating E and B. However, it
is not always possible to obtain a solution by means of these techniques for different
reasons. For instance, when we wanted to calculate the electric field produced by
a system of charges, we needed to know exactly its distribution and then apply
Coulomb’s law. This method is very clear, but sometimes does not easily work.
In fact, when the configuration of charges has a low symmetry the integral to be
computed cannot be resolved in terms of elementary functions. The same occurs
with the magnetic field. Even in case of symmetry its calculation may be of hight
difficulty if the region where the field must be calculated is off the axis of revolution
of the system (see Chap.5). To solve these drawbacks different methods of analysis
have been developed. In this chapter we try to introduce the reader to some of the
most important analytical and numerical techniques for solving non-time dependent
electromagnetic problems.Wepresent a set of exerciseswith the aim to show the basic
ideas so that the student can understand a further reading in specialized books about
this subject. Because of the characteristics of the fields to be studied in this chapter,
we focus our attention on the Laplace equation. As we will see many problems
appearing in electromagnetics may be posed on the basis of this equation, or on
the Poisson equality, depending on the existence of charges in the place where the
potential must be obtained. The question is then to seek a solution subjected to some
boundary conditions, which depend on the specific problem to be investigated.

7.1 The Laplace Equation

In a charge or current free region of the space where there does not exist time varying
fields it is in principle possible to obtain a potential function, because ∇ × E = 0
and ∇ × H = 0. Both cases bring to differential equation of Laplace type for the
respective potentials, that is,

∇2V (r) = 0 (7.1)
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for the electric potential and
∇2Vm(r) = 0 (7.2)

for the magnetic scalar potential. Scalar functions that verify the Laplace equation
are called harmonic functions, and they are very important in the potential theory.

From a mathematical viewpoint Laplace’s equation is a partial differential equa-
tion of elliptic type whose specific solutions depend on the conditions imposed on
the boundary of the region where the problem is defined. Physically, the three most
important cases we have are known as the Dirichlet, Neumann and Robin problems,
which differ to each other in the boundary conditions.

Let us suppose a region D delimited by a surface S. Under these schema we have
different possibilities for the solution of the problem in the interior and exterior of
the boundary.

(a) The Dirichlet problem consist of finding a function V that accomplishes (7.1)
(or (7.2), for the magnetostatic potential) in the interior ofD and it is subjected to the
condition V (r) = f (r) on the surface S. Physically it would represent the problem of
calculating the potential at any interior/exterior point of the system whose potential
at the surface is prescribed by the function f .

(b) The Neumann problem is posed in the same way but giving the boundary
conditions on the normal derivatives. In this case we impose the condition ∂V (r)

∂n =
h(r) on S. From a physical point of view it represent the problem of finding the
potential at any interior/exterior point of the system whose potential has a specific
normal derivative at the surface.

(c) Mixed problems. In this case, Dirichlet and Neumann conditions are satisfied
on the boundary in such a way that on some parts of it we impose the value of the
potential, and on other parts we know the value of the normal derivative, that is

∂S = Di

n⋃

1

Ni, (7.3)

where Di and Ni represent the regions on the boundary where the Dirichlet and
Neumann conditions apply, respectively.

(d) TheRobin problem is themost generally posed of the study, and uses boundary
conditions of the two aforementioned problems but not disjointed. In fact, we seek
solutions for the conditions on the surface

V (r) + f (r)
∂V (r)

∂n
= h(r). (7.4)

For solving the differential equations it is useful to sum up the frame in which we
must locate an electrostatic or magnetostatic problem. In this context, we are going
to give characteristics of both fields.

In the case of electrostatics in a vacuum, the potential verifies the following
properties
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(1) ∇2V = 0 for every point of the space where there is no charge.
(2) V (x, y, z) is constant on any conductor system.
(3) ∂V

∂n = −σ, σ being the conductivity.
(4) The total charge on the conductor surface may be calculated by means of the

following integral

−
∫ ∫

S

∂V

∂n
dS (7.5)

(5) The potential V (x, y, z) −→ 0 at infinity, if the system of charges is confined in
a finite region of space.

(6) If there exist discontinuities in the potential they must be placed at the charges,
dipoles or similar structures.

In case we have dielectrics, the basic information to be taken into consideration
is

(1) ∇.(ε∇V (x, y, z)) = −ρ.
(2) If there are two different contacting materials of permittivities ε1 and ε2, on

the surface of separation of both media, the potential and its normal derivative
realize the following relations

V1(x, y, z) = V2(x, y, z), (7.6)

and

ε1
∂V1

∂n
= ε2

∂V2

∂n
. (7.7)

With respect to Magnetostatics, we also have additional information to apply in
solving problems.

(1) In a current-free region of space a magnetic potential Vm(x, y, z) may be found
so that the magnetic field H fulfills H = −∇Vm(x, y, z).

(2) ∇.(μ∇Vm(x, y, z)) = 0.
(3) If there are two different contacting materials of susceptibilities μ1 and μ2, on

the surface of separation of both media the potential and its normal derivative
accomplish the following relations

Vm1(x, y, z) = Vm2(x, y, z), (7.8)

and

μ1
∂V1

∂n
= μ2

∂V2

∂n
. (7.9)
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7.2 The Method of Separation of Variables

There are different techniques for solving the Laplace equation and, in general,
partial differential equations (PDF). One of them is the method of separation of
variables (MSV). This technique consists of finding solutions in the form of products
of functions; each of them depending only of one of the variables that appears in
the unknown function. This method is a very powerful tool if the problem has some
symmetries, that is, problems that can be expressed easily in a coordinate system, such
as cylindrical, spherical, or rectangular among others. In others cases where there
does not exist the possibility of identifying the geometrical characteristics of physical
system with a specific coordinate frame, the MSV is not a useful way to calculate
the solution, if not impossible. However, there are many actual problems were the
geometries involved have some symmetries (translational or rotational symmetry,
for instance). It is not the aim of this chapter to demonstrate all the possibilities we
can have, but only to show the final results for the most important cases.

When analyzing a problem in cartesian coordinates the Laplace equation for a
scalar potential V (x, y, z) has the form

�V (x, y, z) ≡ ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0. (7.10)

The technique of separation of variables supposes that the general solution may
represented by means of the following product

V (x, y, z) = X(x)Y(y)Z(z). (7.11)

As we can observe the functions appearing above depend only on one of the three
variables involved. By introducing (7.11) into (7.10), and manipulating this expres-
sion we find

1

X(x)

d2X(x)

dx2
= k2x , (7.12)

1

Y(y)

d2Y(y)

dy2
= k2y , (7.13)

and
1

Z(z)

d2Z(z)

dz2
= k2z , (7.14)

where kx, ky, and kz are constants which satisfy the relation

k2x + k2y + k2z = 0. (7.15)
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We have different solutions, but we can express in a general form all of them as a
combination of the following possibilities1

X(x) = A exp(kxx) + B exp(−kxx), (7.16)

Y(y) = C exp(kyy) + D exp(−kyy), (7.17)

and
Z(z) = E exp(kzz) + F exp(−kzz). (7.18)

In case that k2x < 0, k2y < 0, and k2z < 0 the solutions are

X(x) = A sin(kxx) + B cos(kxx), (7.19)

Y(y) = C sin(kyy) + D cos(kyy), (7.20)

and
Z(z) = E sin(kzz) + F cos(kzz) (7.21)

A particular solution occurs when kx = ky = kz = 0. In this case we can construct a
polynomial function containing a combination of all variables

V (x, y, z) = X(x)Y(y)Z(z) = (A + Bx)(C + Dy)(E + Fz). (7.22)

In cylindrical coordinates, by making the substitutions x = ρ cosφ, y = ρ sin φ,
and z = z we have

� ≡ 1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+ 1

ρ2
∂2V

∂φ
+ ∂2V

∂z2
= ∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ
+ 1

ρ2
∂2V

∂φ
+ ∂2V

∂z2
= 0.

(7.23)
Following the same method as explained before, we try to find solutions in the form
of products of functions of one variable

V (ρ,φ, z) = R(ρ)�(φ)Z(z). (7.24)

Taking into account that V (φ) = V (φ + 2π), the different combinations we can have
are of the form

V (ρ,φ, z) = exp(±kz)Zm(kρ)(A cos(mφ) + B sin(mφ)), (7.25)

V (ρ,φ, z) = exp(±kz)Z0(kρ)(A + Bφ), (7.26)

1In these equations the parameters A, B, etc. depend on a subindex related to its corresponding ki
(i = x, y, z). We do not choose here An, Bn, etc., for simplicity of the notation. Otherwise we should
write kxn , and so on.



424 7 Methods for Solving Electrostatic and Magnetostatic Problems

V (ρ,φ, z) = (C + Dz)
∞∑

1

(
amρm + bm

ρm

)
(Am cos(mφ) + Bm sin(mφ)), (7.27)

and
V (ρ,φ, z) = (C + Dz)(a + b ln ρ)(A + Bφ), (7.28)

where Zm(kρ) are the cylinder functions obtained from the Bessel differential equa-
tion, and A, B, C, D, a, and b are constants which depend on the specific conditions
of the problem, and m = 0, ±1, ±2, ±3, . . ..

In spherical coordinates, using the substitutions x = r cosφ sin θ, y = r sin φ
sin θ, and z = r cos θ we have

� ≡ 1

r2
∂

∂r

(
r2

∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

r2 sin θ

∂2V

∂φ2
= 0. (7.29)

Introduction a function V (r,φ, θ) = R(r)�(φ)�(cos θ) into (7.29) leads to

V (r,φ, θ) =
∞∑

1

(
amr

m + bm
rm+1

)
Ym(φ, θ) (7.30)

Yi(φ, θ) being the spherical functions,

Ym(φ, θ) =
m∑

j=0

Pj
m(cos θ)(aj cos(jφ) + bj sin(jφ)), (7.31)

where Pj
m(cos θ) are the associated Legendre functions of the first kind

(j = 1, 2, 3, . . .). Sometimes, because of the symmetries of the problem we can
reduce our study to two variables. In such a case the solutions we can find working
with cartesian coordinates is

V (x, y) = (A + Bx)(C + Dy) +
∞∑

n=1

(En sin(kxx) + Fn cos(kxx)) +
∞∑

n=1

(Gn sinh(kxy) + Hn cosh(kxy)).

(7.32)
If we have rotational symmetry, the solution may be expressed as a function of ρ and
φ, i.e.

V (ρ,φ) = (C + D ln ρ)(E + Fφ) +
∞∑

m=1

(
amρm + bm

ρm

)
(Am cos(mφ) + Bm sin(mφ)).

(7.33)
These two last results are the most general expression we can construct in two
dimensions.
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7.3 Green’s Function Method

Themethod of separation of variables is very usefulwhen there is a coordinate system
in which the intervening variables of the differential equation can be separated. This
is not always possible. In actual problems the domains inwhich differential equations
are solved do not always have the desired symmetry, then the separation of variables
does not work. On the other hand, solutions using this technique appear as sums
of functions, which are required to verify the boundary conditions of the specific
problem. Therefore, obtaining the numerical value of the potential at a point in space
(or plane) for a problem is a laborious task, since a sufficient number of terms in the
series are needed.

In this context,Green functions give the solution of electrostatic andmagnetostatic
problems by means of integral representations.

The Green function is named as G and is defined as follows. Let us suppose a
domain D bounded by a surface S and two points P, Q belonging to D, then Green’s
function satisfies

∇2G(r, r′) = δ(r − r′) (7.34)

where δ(r − r′) is the Dirac’s delta distribution. Green’s function has some proper-
ties, which may be summing up as follows:

(a) This function is of the form

G(r, r′) = 1

|r − r′| + g(r, r′) (7.35)

where g(r, r′) is a continuous function for every point on S which also verifies
Laplace equation.

(b) G(r, r′) = 0 for all P on S. For unbounded domains g(r − r′) −→ 0 when
r −→ ∞.

(c) Green’s function is symmetric, i.e. G(P,Q) = G(Q,P), which has an easy
physical interpretation. It means that the potential at a point P (in the space or the
plane) due to an electric charge located at point Q, is the same as the electrostatic
potential at Q if the charge is now placed at P.

(d) G(r, r′) is unique for the domain where it is defined.
Aswehave commented in Sect. 7.1, inmany problems the boundary conditions are

not given on the value of the function (potential) on the surface but on its derivative in
the direction normal to S. For this reason, in order to distinguish the two possibilities,
we will define the Neumann function.

Let D be a region delimited by the surface S. Neumann’s function denoted by
N(r, r′) verifies

∇2N(r, r′) = δ(r − r′), (7.36)

in D, with boundary conditions
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(
∂N(r, r′)

∂n

)

S

= C, (7.37)

C being a constant. In short, theNeumann function is theGreen function for boundary
conditions on the normal derivative. As we have seen for G, Neumann’s function is
symmetric too, i.e. N(P,Q) = N(Q,P). On the other hand, it may be observed that
the function N is not unique. This means that if we find a function N that solves
the problem (7.36), any other function that differs from N by a constant is also a
solution. In order to eliminate this difficulty a normalizing condition for N is often
chosen as follows ∫ ∫

S′
N(P,Q)dS′ = 0. (7.38)

Once we have defined the functions G(r, r′) and N(r, r′), we can obtain the gen-
eral solutions for Dirichlet and Neumann boundary conditions. In fact, when taking
Dirichlet’s problems into account, the problem is posed in the following form

{
∇2V = 0 in D,

V = f on S.
(7.39)

where V → 0 at infinity. Now, if we know the Green function, the result may be
expressed in integral form as follows

V (r) =
∫ ∫

S′
f

(
∂G(r, r′)

∂n′

)
dS′. (7.40)

Formula (7.40) gives the value of the function V (r) at any interior point of D if the
derivative of G and the value of f on the surface S′ are known. Equation (7.40) is
normally called Poisson’s formula.

In the case of the non-homogeneous problem, i.e. for the Poisson equation for a
bounded domain D where the normal derivative on the smooth surface S′ is regular,
we have {

∇2V = u in D,

V = f on S.
(7.41)

The solution of this differential equation is given by the following formula

V (r) = −
∫ ∫ ∫

V ′
G(r, r′)u(r′)dV ′ +

∫ ∫

S′
f

(
∂G(r, r′)

∂n′

)
dS′. (7.42)

Observe that if we put u = 0, we have (7.40) again.
In the same way expressed before, when analyzing Neumann’s boundary condi-

tions the problem is posed as
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{
∇2V = 0 in D,
∂V
∂n′ = h on S.

The function h(r′) must be correctly chosen because of the Gauss integral theorem
which says that if there are no sources enclosed by the surface S′, the integral over
this surface of the derivative of the potential V in the direction of n′ must be zero,
i.e. ∫ ∫

S′

(
∂V

∂n′

)
dS′ = 0, (7.43)

the result of which is valid for any harmonic function in a finite domain. With the
same idea shown in (7.38), to avoid the non-unicity of the solution, a normalizing
condition is needed. As a result, a value for V is often chosen so that

∫ ∫

S′
VdS′ = 0, (7.44)

over the surface S′.
Taking into account (7.43), and applying the Green formula, the solution may be

expressed as

V (r) = −
∫ ∫

S′
h(r′)N(r, r′)dS′, (7.45)

where N(r, r′) is the Neumann function defined before. Similarly, for the Poisson
equation with Neumann boundary conditions it holds that

V (r) = −
∫ ∫ ∫

V ′
N(r, r′)u(r′)dV ′ −

∫ ∫

S′
N(r, r′)

(
∂V (r, r′)

∂n′

)
dS′ + C,

(7.46)
whereC is a constant unknown. This constant does not represents a problem because
the scalar potential is not uniquely determined (see Chap.2).

The most important thing about this method for solving the Laplace equation
is, perhaps, that the way for obtaining a solution (see (7.40) and (7.45)) is quite
different from those presented in Sect. 7.2. In effect, there the solution was sought in
the form of a product of functions which had to verify their corresponding boundary
conditions. In the present case, by means of the Green and Neumann functions, the
calculation is presented in the formof integral equations. This approach does not need
additional boundary conditions because this information is included explicitly in the
integrands of the integral. On the other hand, another advantage of this technique is
that the region where the integrals must be performed is not the volume, but only
the surfaces delimiting the region D (7.40) and (7.45), even in cases of non-linear
materials. Therefore, if we know the potential V and its normal derivative on S, we
can find a solution for the problem everywhere.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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7.4 Method of Images

Themethod of images is a procedure to solve the Laplace equation without analyzing
the differential equation. This procedure is not applicable in all cases, however it is
a useful tool under some circumstances where symmetries exist. The basic idea is to
seek a charge distribution that creates the same potential like the actual problem to
be solved. To make this possible it is necessary that the surfaces of the conductors
of our problem coincide with the equipotential surfaces for the charge distribution
that produce the same effect. Mathematically this is justified by the existence and
uniqueness theorem for the equation of Laplace. Indeed, if a function verifies the
equation and boundary conditions of a specific problem, the function obtained is
unique. Therefore, if we reach a charge disposition that produces the same potential,
the solution can be calculated using the fictitious load distribution, since the solution
is the same. In order to understand the procedurewewill beginwith a simple example,
which also is the basis for solving other problems.

We will deal with the potential created by two charges of different sign. Let us
consider the picture appearing in Fig. 7.1. Two charges q1 and −q2 separated by a
distance a over theOY axis. If we calculate the potential created at an arbitrary point
P(x, y, z) of space, we have

V (x, y, z) = 1

4πε0

q1√
x2 + y2 + z2

+ 1

4πε0

−q2√
x2 + (y − a)2 + z2

. (7.47)

The surfaces of constant potential may be determined by matching V (x, y, z) to
be a constant C. The result is shown in Fig. 7.2. In this graphic different curves for
the distinct values of C are obtained. If we examine the equipotential surfaces for
C = 0, (7.47) yields

(a) (b)

Fig. 7.1 a Plane view of the surface of constant potential for C = 0 when |q1| < |q2|. b The same
in a three-dimensional perspective. Observe that, for this case, the centre is displaced on the left
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Fig. 7.2 a Two-dimensional potential of two charges q1 = q and q2 = −3q. b Two-dimensional
curves of constant potential for different values of the constant C

V (x, y, z) = 1

4πε0

q1√
x2 + y2 + z2

+ 1

4πε0

−q2√
x2 + (y − a)2 + z2

= C = 0 (7.48)

or

x2(1 − q22
q21

) + y2(1 − q22
q21

) + z2(1 − q22
q21

) − 2ay + a2 = x2 + (y − aq21
(q21 − q22)

)2 + z2 = a2q21q
2
2

(q21 − q22)
2
.

(7.49)

This is a sphere of radius

R =
∣
∣
∣
∣

aq1q2
(q21 − q22)

∣
∣
∣
∣ (7.50)

whose center is displaced from the origin of coordinates by a quantity y0 = aq21
(q21−q22)

over the OY axis. Depending on the relation between the value of the charges q1 and
q2, the location of y0 may be on the left or on the right with respect the location of
the charge q1. In fact, if |q1| < |q2|, then (q21 − q22) < 0, which displace the center of
the sphere on the left side (Fig. 7.1). The contrary occurs when |q1| > |q2|. By this
possibility (q21 − q22) > 0, and y0 > 0, locating the centre on the right.

For simplicity, if we rewrite the expression of R2 which appears in (7.49) by using
only, for instance, the coordinate y, we obtain

R2 = a2q21
(q21 − q22)

(
q22

q21 − q22

)

= a2q21
(q21 − q22)

(
q21

q21 − q22
− 1

)

= ay0
( y0
a

− 1
)

= y20 − ay0 = y0(y0 − a),

(7.51)
where the sign of y0 must be taking into account. For example, if y0 < 0 (see Fig. 7.1)
(7.51) has the form R2 = y0(y0 + a). In general we can write

R2 = y0(y0 − a) = y0d0. (7.52)
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Equation (7.52) means that the product of the distance from the center of the sphere
to the image charge q1 times the distance between O and the position of the actual
charge q2 is a constant of value R2. On the other hand, considering the value of a as
a function of R and introducing it into y0, we have

R(q21 − q22)

(q1q2)

(
q21

q21 − q22

)
= y0, (7.53)

that is,
q1 = y0

R
q2. (7.54)

By using (7.53) and taking into consideration that the values of y0 for the system of
coordinates chosen is negative, (7.54) takes the form

q1 = R

d0
q2, (7.55)

whered0 = (y0 + a). Note that in these equations the signs of the charges are opposite
to each other.2

From this resultwe can see that, for instance, ifwehave ametallic spherical surface
of radius R held to zero potential in front of a charge q2, adjusting with an adequate
image charge q1, we could obtain an equipotential surface (V = 0) coinciding with
the sphere. Therefore, as the solution is unique, the fictitious disposition for the charge
q1 makes the problem equivalent to the actual problem (it produces the same effect),
thus questions about the potential at any point of space, or the induced distribution
of charge on the conducting sphere, may be answered by referring to calculations
based on the aforementioned fictitious system of charges. This idea is the basis of
the method for any geometry where this technique can be applied.

From a more mathematical way the problem may be posed in a different way.
In the foregoing section we saw that the solution of the Dirichlet and Neumann

problems may be reduced to the calculation of the corresponding Green’s function
which has the form (see (7.35) in Sect. 7.3)

G(r, r′) = 1

|r − r′| + g(r, r′). (7.56)

This equation tells us that, in principle, we can find a charge distribution g(r, r′)
which is capable of exactly compensating the potential 1

|r−r′ | created by a point unit
charge, so that on the surface G(r, r′) = 0 (see properties again), or ∂G(r,r′)

∂n = 1
S , S

being the surface area.3 As it can be examined, this result is the same as exposed
before (Fig. 7.3).

2If we have considered the sign of the charges at the principle of the problem, then both members
of (7.55) appear positive. If we do not do it (7.55) would appear as q1 = − R

d0
q2.

3See Problem 7.14.
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Fig. 7.3 The mapping w = f (z) transforms the domain D into another D∗ where the solution may
be calculated easier

7.5 Application of Complex Analysis to Electromagnetism

In this section we will briefly explain the fundamentals of another technique based
on complex analysis for determining the solution of electromagnetic problems under
certain conditions. Because of the specific characteristics of the many different prob-
lems, sometimes they should be simplified so that the solution is easier to find. For
instance, as we have seen in foregoing chapters, the calculation of the electric ormag-
netic fields with symmetries allow us to consider reducing the number of variables
necessary for calculations. Specifically, when the system to be studied has transla-
tional symmetry in one of the axes chosen for its representation, we can analyze the
problem like a two dimensional problem, considering only two variables for the com-
putations. The final result in 	3 is then obtained by translating the solution through
the symmetry axis. In this regard,methods of complex analysis play an important role
in these kind of systems due to their versatility to transform plane regions difficult
to study to domains where the problem may be posed in a simpler and compre-
hensive way. Basically, the application of complex analysis to solve the problem is
based on conformal mapping.4 By this method we transform the region of the actual
two-dimensional electromagnetic problem defined on the z-plane (domain D), onto
another in the w-plane (domain D∗) in which either we can calculate the solution
easily or we already know the solution of the transformed problem. Once we have
solved the solution in w, the final result of our original problem is obtained going
back to the z-plane.

4The existence of the symmetry along one axis provides the study a system in an easier form. In
the way we present this method based on complex variables, it could seem that this technique is
only useful when symmetries exist, however that is not complectly true. In fact, recently it has
been demonstrated that conformal mapping may be also employed for systems where the symmetry
is partially broken. Specifically, it is possible to find the electrostatic potential in a space limited
axisymmetric geometry by mapping the plane parallel to the axis and rotating it (see, for example,
[116]).
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When transforming the domain D on D∗ in the w-plane we must examine
the boundary conditions given. If the boundary conditions corresponds to the
Dirichlet problem, the boundary values of the region D get mapped unchanged to
the corresponding values of ∂D∗. However, if we work under Neumann conditions
the transformation changes the data.

To fix these ideas we will denote a function of complex variables as usual, i.e.
f (z) = u(x, y) + iv(x, y) where z = x + iy. In this context of complex analysis, a
function assigns at every point z of the complex plane in the domain D a one-
to-one value f (z) belonging to D∗. As we will succinctly comment, sometimes a
function is multiple-valued, i.e. points of D can have more than one image in D∗.
To solve this drawback the concept of a branch of the complex function f (z) is
introduced. It consists of delimiting the region on D where, for sure, at every point
z ∈ D corresponds only one value in D∗. To do so, a cut line in D is chosen in such
a manner that no value of z may cross through it, then guarantying the one-to-one
correspondence between z and f (z).

There is another more general way to obtain a similar result, but in a more com-
plicated way. In effect, a multiply-valued function may be regarded as a Riemann
surface. From a geometrical viewpoint we can imagine a non single-valued function
of a complex variable z as a construction containing different sheets of the same f (z).

In effect, let us suppose that two functions f1(z) and f2(z), each one defined in its
respective domain D1 and D2, have a part of themselves where they coincide (D1 ∩
D2 = 
 �= 0). In this case we can obtain a single-valued function by eliminating the
sheet corresponding to the overlapping regions (
), and joining what remains of D1

and D2 along (
).5

7.5.1 Transforming Boundary Conditions

Taking into account the key idea expressed of using methods of conformal repre-
sentation, an important question that must be taken into account refers to how do
boundary conditions change when mapped. In fact, let us suppose that the 2D-curve
delimiting D is parameterizable. Then we can write x = x(t) and y = y(t), t being
the parameter. By introducing these functions into the functions u(x, y) and v(x, y),
we have

u = u(x, y) = u(x(t), y(t)) ≡ α(t), (7.57)

and similar to v(x, y)

v = u(x, y) = v(x(t), y(t)) ≡ β(t). (7.58)

5In some extent a Riemann surface may be regarded as an analytic continuation of the function
f1(z).
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By using Neumann’s boundary conditions, the form of the equation, considering the
new variables is

b(t)
∂V (x(t), y(t))

∂n
= d(t), (7.59)

where b(t) and d(t) are prescribed in the specific problem.

b(t)
∂V (x(t), y(t))

∂n
= b(t)

(
∂V (x, y)

∂x

ẏ

(ẋ2 + ẏ2)
− ∂V (x, y)

∂y

ẋ

(ẋ2 + ẏ2)

)
= d(t),

(7.60)
where b(t) and d(t) denote functions well defined on the boundary. The values of the
boundary condition are transformed by means of the following relation

b(t)

√√
√
√
(

α̇2 + β̇2

˙x(t)2 + ˙y(t)2
)(

∂V (u, v)

∂u

β̇

(α̇2 + β̇2)
− ∂V (u, v)

∂v

β̇

(α̇2 + β̇2)

)

= d(t).

(7.61)
As we can see, in this case the boundary conditions change in the mapping.

7.5.2 Conformal Mapping

A single valued transformation w = f (z) between the domains Dand D∗ is said to
be conformal if at all points z belonging to D the mapping conserves the angles
and invariance of stretching. Conceptually it means that, when transforming points
z ∈ D into points w ∈ D∗ by means of w = f (z), supposing f ′(z) �= 0, all curves �

that cross a point z0 are transformed into curves �∗ that go through w0 = f (z0) in
such amanner that the angle between tangents to any two curves�i at z0 is the same as
the angle atw0 of the tangents corresponding to the transformed curves �∗

i (Fig. 7.4).
When the transformation preserves the signs of the angles the conformal mapping is
called of the first kind. If in the transformation the angles between tangents change
sign (conserving the absolute value) we speak of conformal mapping of the second
kind. This class of transformation is fulfilled by complex conjugates of analytic
functionswhich have derivatives distinct from zero. Startingwith the aforementioned
definitions, two important characteristics of this transformation can be demonstrated,

Fig. 7.4 Conformal
mapping. Observe that the
angles in the transformation
are conserved
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namely: (a)A conformalmapping transforms infinitesimal circumferences belonging
to D onto infinitesimal circumferences in D∗. (b) It conserves the angle between
curves at its intersection point. From a practical standpoint, when solving problems
it is interesting to establish mathematically how can we perform calculations in order
to know whether a transformation is conformal or not. In this regard, the necessary
and sufficient condition for a mapping to be conformal is thatw = f (z) be univalued
and analytic.6

7.5.3 Some Conformal Transformations

In order to show examples of conformal mappings, we present some of the most
important elementary functions.

• Linear function
Let f (z) = u(x, y) + iv(x, y) be the function of complex variable z defined as

f (z) = a + bz, (7.62)

where a and b are complex constants. The geometrical significance of (7.62) consist
of a translation and a stretching. For this reason thismappingmay be used in problems
where we want to transform figures so that their characteristics do not change, but
only the locations or/and the magnitudes of them.

For analyzing whether this function transforms points z ∈ D into points w ∈ D∗
conformally, we must examine its characteristics. If the mapping is conformal, f (z)
must be univalued and analytic. In fact, given generic points z1 and z2, it is verified
that f (z1) �= f (z2), which means that this function is univalued. On the other hand it
is easy to see that f ′(z) = b �= 0 ∀z ∈ D, hence the mapping is conformal.7

• Bilinear transformation
A bilinear or fractional transformation is defined as follows

f (z) = a + bz

c + dz
, (7.63)

a, b, c, and d being complex constants and bc − ad �= 0. This transformation also
maps points z ∈ D onto points w ∈ D∗ conformally, because

6There are four equivalent ways to define whenw = f (z) is analytic. The function f (z) = u(x, y) +
iv(x, y) is analytic in D if it can be expanded by polynomials of the form f (z) = �∞

n=0an(z − z0)n,
where z0 ∈ D. If there exist f ′(z) �= 0 for any point of D. If its real and imaginary parts verify
the Cauchy–Riemann conditions, i.e. ∂u(x,y)

∂x = ∂v(x,y)
∂y , and ∂u(x,y)

∂y = − ∂v(x,y)
∂x . This last equality

is the same as to say that u(x, y) and v(x, y) are harmonics, and they verify Laplace equation. If∮
�
f (z) = 0, for any closed curve � ∈ D.

7Actually, for proving that the transformation is conformal we also must study the behavior of f (z)
in the neighbor of z = ∞. To do this it is enough to change the variable z by 1

q , and by introducing

it into (7.62) we can analyze f ′(q) for q → 0.
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(a) (b)

Fig. 7.5 a Two cylindrical conductors whose symmetry axes are parallel to each other but not
coincident. b After transforming conformally both have their centers at the same point in the w-
plane

f ′(z) = bc − ad

(c + dz)2
�= 0, (7.64)

and transforms the extended z-plane onto the extended w-plane in an infinite num-
ber of different ways. However, for solving problems it is necessary to choose the
adequate constants that appear in (7.64). In this sense it is possible to find the exact
form of the function if we can specify three points z ∈ D and their corresponding w

in D∗. The expression that allows us to find these constants is the following,

(w1 − w)(w2 − w3)

(w1 − w3)(w2 − w)
= (z1 − z)(z2 − z3)

(z2 − z)(z1 − z3)
. (7.65)

In electromagnetics, often the systems’ object of study are formed by cylinders
(capacitors, wires, etc.). In some cases the spacial disposition of each one can break
the symmetry of the system, making the calculations difficult. For analyzing such
cases it would be useful to have a transformation so that the mapping changes the
geometry of the problem in D∗ in such a way that the study is easier. For example,
Fig. 7.5a depicts a system formed by two parallel metallic cylinder whose centers
are not coincident. The study of the electric field and charge distribution on the
surfaces is not easy to compute. However, if we would have the picture shown in
(b) the problem could be solved immediately, because it corresponds to a cylindrical
capacitorwhose solution is known.Thenworkingwith this kind of system the bilinear
transformation plays an important role because of its basic characteristics, namely: (a)
Points z symmetric to a circle8 will be mapped into points symmetric with respect to
the transformed circle inD∗. (b) Every circle belonging to the z-plane is transformed
into a circumference of the w-plane. As we will see in the worked problems, we
can find an adequate procedure for mapping these types of regions. In this context

8Two points z1 and z2 are said to be symmetric with respect to a circle � defined as |z1 − z0| = R
if they lie on the same segment containing z0 and |z1 − z0| |z2 − z0| = R2.
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Fig. 7.6 Mapping of a
region D into the unit circle

of transforming regions for obtaining other more simpler domains, a very important
theorem due to Riemann, must be commented on. Let us suppose a singly connected
domainD of the complex z-plane whose boundary is ∂D. It can be demonstrated, that
this region D can be conformally mapped onto the interior of the unit circle |w| < 1
of the w-plane. The problem of this theorem is that, even if a mapping can convert
(see Fig. 7.6) a difficult domain D into the unit circle, it does not say how we can
construct the transformation. To seek this mapping, intuition and experience come
into play, and in no case is it easy when working with very irregular domains, where
numerical techniques must be employed.

7.5.4 Complex Potential

In this section wewill present a procedure that does allow geometrical characteristics
of the fields. With this aim, let us suppose a transformation (x, y) ∈ 	2 −→ C so that
at every point of the plane OXY where an electric field E(x, y) is defined, we map it
into the following complex variable function

E(z) = Ex(x, y) + iEy(x, y). (7.66)

If in the region of interest we have neither charges nor currents, we can derive the
electric field from a scalar potential, i.e. E(x, y) = −∇V (x, y), then

Ex(x, y) = −∂V (x, y)

∂x
Ey(x, y) = −∂V (x, y)

∂y
, (7.67)

and

E(z) = −∂V (x, y)

∂x
− i

∂V (x, y)

∂y
. (7.68)

Since the field is irrotational and solenoidal, the potential V (x, y) verifies the Laplace
equation, thus it is represented by a harmonic function. For this reason we can form
an analytic function in such a way that one its parts (real or imaginary) coincides
with V (x, y),
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f (z) = V (x, y) + i�(x, y), (7.69)

�(x, y) being the imaginary part of the analytic function f (z), and at the moment
unknown. However, with V (x, y) being harmonic in a simple connected domain, we
can construct �(x, y) by means of the following formula

�(x, y) =
∫ z

z0

−∂V (x, y)

∂y
dx + ∂V (x, y)

∂x
dy + C (7.70)

where C is a constant. The election of V (x, y)9 for the real part of the complex
potential f (z) is complectly arbitrary. We could also choose the imaginary part (see
Problem 15).

The two parts of (7.69) have an important interpretation. In order to understand
its significance, let us consider the curves V (x, y) = C1 and�(x, y) = C2, where C1

and C2 are constants. As we know such equations represent an independent family
of level curves for both parts of f (z). Calculating at any point the scalar product of
the gradients for V (x, y) and �(x, y), we could investigate the geometrical relation
between both level lines,i.e,

∇V (x, y).∇�(x, y) =
(

∂V

∂x
,
∂V

∂y

)
.

(
∂�

∂x
,
∂�

∂y

)
= ∂V

∂x

∂�

∂x
+ ∂V

∂y

∂�

∂y
. (7.71)

On the other hand, as f (z) is analytic it must fulfill the Cauchy–Riemann conditions,

∂V

∂x
= ∂�

∂y
,

∂V

∂y
= −∂�z

∂x
, (7.72)

and therefore setting (7.72) into (7.71) leads to

∇V (x, y).∇�(x, y) = −∂V

∂x

∂V

∂y
+ ∂V

∂y

∂V

∂x
= 0. (7.73)

From this result we can interpret that, as the gradients at any point are orthogonal and
at the same time eachgradient is perpendicular to its respective level line, the family of
curves V (x, y) = C1 and�(x, y) = C2 must be also perpendicular to each other (see
Fig. 7.7). As we can see, owing to the foregoing perpendicularity,∇V (x, y)is parallel
to the level curves �(x, y) = C, then the electric field E is tangent to �(x, y) at each
point. For this reason we can identify the imaginary part of the complex potential
(7.69) as the line forces of the field.

9It is necessary to be careful with the notation presented. For us a complex function has the form
f (z) = u(x, y) + iv(x, y). By the way we have written the complex potential f (z), V (x, y) corre-
sponds to u(x, y) but not with v(x, y). We have selected V instead of U(x, y), for instance, because
we have chosen V for the scalar potential in all the book.
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(a) (b)

Fig. 7.7 aLines V (x, y) = Ci and�(x, y) = Ci corresponding to the complex potential of a infinite
conductingwire of constant chargeper unit length.b Idembut corresponding to the potential between
two curved metallic plates of a capacitor. Note that ∇�(x, y) is tangent to the curves of constant
potential V (x, y) = C, and ∇V (x, y) also to �(x, y) = C

From the above definition of the complex potential we see its utility for studying
electric or magnetic potentials and fields but if f (z) it is known, but the knowledge of
the conformal representation for a specific problem is sometimes hard to come by.

Once the complex potential is known, it is possible to set up its relationship
with the electric field. Taking into account the Cauchy–Riemann relations and our
definition (7.66), we have

E(z) = − ∂V (x, y)

∂x
− i

∂V (x, y)

∂y
= − ∂V (x, y)

∂x
+ i

∂�(x, y)

∂x
= −

(
∂V (x, y)

∂x
− i

∂�(x, y)

∂x

)
= −f ′(z),

(7.74)
where f ′(z) is the conjugate of f ′(z). From (7.74) we can obtain the expression of
the potential as a function of the complex electric field

f (z) = −
∫

E(z) dz + a, (7.75)

a being a constant.
Now we will calculate the integral of −f ′(z) = E(z), because, as we are going

to demonstrate it has an important physical significance. Observe that we focus our
attention on the conjugate of E(z) and not on the electric field self. To clarify the
ideas, the vector fieldE(z) is called the Pólya vector field ofE(z). In general (not only
for the electric field), the Pólya vector field of a vector P(z) is simply its conjugate
P(z).

By means of the derivative and using the Cauchy–Riemann conditions it holds
that

−
∮

�

f ′(z) dz =
∮

�

E(z) dz = −
∮

�

(
∂V (x, y)

∂x
+ i

∂�(x, y)

∂x

)
(dx + i dy) =

−
∮

�

(
∂V (x, y)

∂x
dx − ∂�(x, y)

∂x
dy

)
− i

∮

�

(
∂V (x, y)

∂x
dy + ∂�(x, y)

∂x
dx

)
=
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−
∮

�

(
∂V (x, y)

∂x
dx + ∂V (x, y)

∂y
dy

)
− i

∮

�

(
∂V (x, y)

∂x
dy − ∂V (x, y)

∂y
dx

)
=

∮

�

〈E · ut〉 dl + i
∮

�

〈E · n〉 dl =
∮

�

Et dl + i
∮

�

En dl, (7.76)

where Et and En are the tangential and normal bidimensional components of the
electric field, and ut and un are unitary vectors. From a physical point of view, the
first integral of the last result shown in (7.76) represents the circulation of the electric
field over the closed curve chosen, and the second one the flux of E throughout �.
Labelling the circulation � and the flux �, we obtain

∮

�

E(z) dz = −
∮

�

f ′(z) dz = � + i�. (7.77)

This result shows that we can compute the circulation (work) and flux of the electric
field along the integration contour � by using its corresponding Pólya field.10

Observe that by applying Green’s theorem we also can express (7.76) and (7.77)
by means of the rotational and divergence in a similar way to the three-dimensional
case. To do this, let us first consider � as a function of the field projections instead
the potentials by substituting Ex = − ∂V (x,y)

∂x and Ey = − ∂V (x,y)
∂y

� =
∮

�

(
−∂V (x, y)

∂x
dx − ∂V (x, y)

∂y
dy

)
=
∮

�

Ex dx + Ey dy =
∫ ∫

S

(
∂Ey(x, y)

∂x
− ∂Ex(x, y)

∂y

)
dS,

(7.78)

which represents the rotational in two-dimensions. In the same manner, we obtain
for � the following formula

� =
∮

�

(
−∂V (x, y)

∂x
dy + ∂V (x, y)

∂y
dx

)
=
∮

�

Ex dy − Ey dx =
∫ ∫

S

(
∂Ex(x, y)

∂x
+ ∂Ey(x, y)

∂y

)
dS,

(7.79)

whose right side is the divergence, hence we can write

∮

�

E(z) dz =
∫ ∫

S
∇ × E dS + i

∫ ∫

S
∇ · E dS. (7.80)

This equation gives us a complementary interpretation of (7.77). It tells that the
circulation of the Pólya field ofE(z)may be also understood in terms of the rotational
and the divergence of electric field. It is very important because it sheds light on
important theorems in electromagnetism.

In fact, in the case we are going to study where we do not have fields depending
on time (∇ × E = 0), then there is no circulation (irrotational) and, as a result, �

must be zero. Rewriting (7.77) yields,

10In this moment we deal with E, but the idea is also applicable to any vector field.
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−
∮

�

f ′(z) dz = i
∮

�

En dl = i
∫ ∫

S
∇ · E dS = i�, (7.81)

thus ∮

�

En dl =
∫ ∫

S
∇ · E dS = λ

ε0
, (7.82)

λ being the charge per unit length (remember the symmetry). Equation (7.82) repre-
sents Gauss’s law when working with complex potentials and shows that the flux of
the electric field across � depends on the charge enclosed by the curve (see Chap. 2).
Therefore, we can conclude that the Gauss theorem for the electric field E is con-
nected with the imaginary part of the circulation of its Pólya field along the curve �.

If instead of E we investigate the magnetic field H, it is also possible to define a
complex potential in a similar way, however some differences appear. In fact, let us
suppose a region free of currents where our system is symmetric with respect to a
specific direction in space. Under these condition we can find a scalar function Vm so
thatH = −∇Vm, and therefore a complex potential can be defined in such a manner
that its real part coincides with Vm, i.e.,11

F(z) = Vm(x, y) + i�m(x, y), (7.83)

where Vm(x, y) represents the potential and �m(x, y) the function of force lines.12

The process to determine the expressions for H is the same as shown for the electric
field, however some results differ. For instance, (7.77) is modified because of the own
characteristics of the magnetic field. As we saw in Chap.5, for non-varying fields
we worked with Ampère’s law, which established a relation between the circulation
of H (or B) and the intensity pierced by the closed curve chosen for performing the
integration. On the other hand we know that ∇ · H = −∇ · M because ∇ · B = 0,
then in a region free of magnetized matter ∇ · M = 0, and therefore ∇ · H = 0.
This means that we cannot have a flux of H across a closed curve (in the context
spoken before), but only a circulation because of the tangential component. As a
consequence, the equivalent equation to (7.77) for H is the following

∮

�

H(z) dz = −
∮

�

f ′(z) dz =
∮

�

Ht dl =
∫ ∫

S
∇ × H dS = �, (7.84)

11We have supposed that the physical system has the direction OZ as the axis of symmetry.
12The definition of complex potential is also very useful in other branches of physics such as Fluid
Mechanics or Thermodynamics. By working with incompressible fluids a potential is defined as
f (z) = φ(x, y) + iψ(x, y) for the velocities,where the significance of the real and imaginary parts are
changed with respect to our presentation of the electric and magnetic fields. Indeed, φ(x, y) = C, C
being constant, corresponds to stream lines, and ψ(x, y) = C are the equipotential curves. Besides,
some signs are also modified.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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where H(z) is the Pólya field of H(z). Observe that this new expression depends on
� and not on �, which is related with the rotational. In the same manner we wrote
forthe Gauss theorem in (7.82), remembering that for the magnetic field ∇ × H = j,
(7.84) may be expressed as

∮

�

Ht dl =
∫ ∫

S
∇ × H dS = I, (7.85)

I being the current crossing the surface delimited by the curve �. Equation (7.85) is
the form of Ampère’s theorem with complex variables, and as we can see it is linked
with the real part of the line integral of the Pólya field of H. The other formulae we
can obtain are

H(z) = −∂Vm(x, y)

∂x
− i

∂Vm(x, y)

∂y
= −F ′(z), (7.86)

where F ′(z) is the conjugate of F ′(z). From (7.74) we can obtain the expression of
the potential as a function of the complex electric field

F(z) = −
∫

H(z) dz + b, (7.87)

where b is again a constant.

7.6 Numerical Techniques

There are distinct important numerical methods that may be employed for solving
electromagnetic problems. The election of one of them in particular may depend on
the kind and characteristics of problem to be solved. So, the geometry, boundary
conditions, precision, and time of calculation are some of the most basic questions
that usually are posed before choosing a specific technique. In this section we are
first dealing with the method of finite differences which, as we will see, has some
advantages. Additionally, some basic ideas of other techniques will be also presented
but not in detail, because they are beyond the scope of this book.

7.6.1 The Finite Difference Method

The method of finite differences (FDM) is one of the most successful numerical
techniques used, not only in electromagnetics but also in other scientific and technical
branches. This technique consists of dividing the region of interest into amesh formed
by parallel lines, which leads to a set of nodes spaced a length a from each other. A
numerical value is given to each node and, under some approximations, the potential
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(a) (b)

Fig. 7.8 a Grid and nodes corresponding to the nearest neighbors. bMesh in a rectangular domain

value at each point may be related with the potentials of the nearest neighbors by
linear equations (Fig. 7.8).

Let us suppose we want to know the potential V at point P of coordinates (x, y),
approximately. For relating the potential at this node with the potentials at P1, P2,
P3, and P4, if the function representing V is continuous, we can expand the potential
in Taylor series as follows

V (x + a, y) ≈ V (x, y) + ∂V (x, y)

∂x
a + 1

2

∂2V (x, y)

∂x2
a2 + ϑ(x3), (7.88)

and for the point on the left

V (x − a, y) ≈ V (x, y) − ∂V (x, y)

∂x
a + 1

2

∂2V (x, y)

∂x2
a2 + ϑ(x3). (7.89)

In the same manner, for the neighbors above and below

V (x, y + a) ≈ V (x, y) + ∂V (x, y)

∂y
a + 1

2

∂2V (x, y)

∂y2
a2 + ϑ(y3), (7.90)

and

V (x, y − a) ≈ V (x, y) − ∂V (x, y)

∂y
a + 1

2

∂2V (x, y)

∂y2
a2 + ϑ(y3). (7.91)
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The addition of the two first equations leads to

∂2V (x, y)

∂x2
≈ V (x + a, y) + V (x − a, y) − 2V (x, y)

a2
, (7.92)

and the same for (7.90) and (7.91)

∂2V (x, y)

∂y2
≈ V (x, y + a) + V (x, y − a) − 2V (x, y)

a2
. (7.93)

From these results the approximate expression of the Laplace equation at point P is

∇2V (x, y) = ∂2V (x, y)

∂x2
+ ∂2V (x, y)

∂y2
≈

≈ V (x + a, y) + V (x − a, y) + V (x, y + a) + V (x, y − a) − 4V (x, y)

a2
= 0,

(7.94)

and then the potential

V (x, y) ≈ V (x + a, y) + V (x − a, y) + V (x, y + a) + V (x, y − a)

4
. (7.95)

By this procedurewe have reduced the solution of the Laplace differential equation to
a set of algebraic equations that allow us to estimate the potential at each point of the
net. Relation (7.95) is then the basis of the method and, according to that, applying it
at the nodes of the mesh we should obtain a system of N linear algebraic equations
with N unknowns in order to have a solution. These results may be expressed in a
matrix form as

S̃V = B, (7.96)

where S̃ represents a matrix with the respective coefficients of the potentials at point
(xi, yj), V is a vector containing all unknown Vk with k = 1, . . .N , and B is another
vector with known values. Thus the problem solution consists of determining the
inverse of S̃ and multiplying it by B.

Themethod of finite differences explained has the advantage that its mathematical
procedure is very easy and simple for programming, however it has some drawbacks.
For example, when studying complex irregular boundary shapes it is necessary, but
not always easy, to match with enough accuracy the boundary with a suitable grid
and density nodes. Another difficulty arises when, because of the characteristics of
the problem, a higher terms of the Taylor’s series must be introduced in order to
augment the precision of the results. In this case the degree of complexity makes the
FDM not be so flexible and easy to apply, and then not very useful if the precision,
programming time and truncation errors are important conditions of the potential
solution.
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If the distances of the neighbors to the point P(x, y) are not equal, the expressions
that relate the potential V (x, y) with the nearest potentials to P is

V (x, y) ≈ h3h4(h2V1 + h1V2)

(h1 + h2)(h1h2 + h3h4)
+ h1h2(h4V3 + h3V4)

(h3 + h4)(h1h2 + h3h4)
, (7.97)

where h1, h2, h3 and h4 are the unequal distances between point P and its surrounding
points.

The formulae shown above started on conditions for the potential on the boundary.
However, aswe sawwith the Laplace equation, sometimeswe do not have knowledge
of the potential but on its normal partial derivatives (Neumann). In such a case
additional equation are needed to pose the problem. The basic idea consists of adding
new virtual points outside the region of interest, but near to it, and work with them
in a similar way. By this procedure, with the new equations generated it is possible
to rearrange the variables in such a manner that the virtual points do not appear in
the final set of equations.

For simplicity let us suppose we have a rectangular geometry with Neumann’s
boundary conditions, i.e. ∂V

∂n = h on its sides. If the value of h on the edges are,
respectively, hA, hB, hC , and hD, the equations that must be considered at each point
of the boundary together with (7.95) are the following

V (i + a, 0) + V (i − a, 0) − 2ah(i, 0) = 0 ⇒ V (i + a, 0) + V (i − a, 0) = 2ahA,
(7.98)

V (i + a, L1) + V (i − a, L1) − 2ah(i, L1) = 0 ⇒ V (i + a, L1) + V (i − a, L1) = 2ahD,

(7.99)

V (0, j + a) + V (0, j − a) − 2ah(0, j) = 0 ⇒ V (0, j + a) + V (0, j − a) = 2ahB,

(7.100)
and

V (L2, j + a) + V (L2, j − a) − 2ah(L2, j) = 0 ⇒ V (L2, j + a) + V (L2, j − a) = 2ahC .

(7.101)
At points on the corners it is usual to take values obtained by averaging the two
nearest neighbors. For instance, at point (0, 0) we have

V (1, 0) + V (0, 1) − 2ah(0, 0) = 0, (7.102)

and similar equations hold for the other three.
There exist more possibilities to construct a solution. So, we could choose the

nearest four neighbors points located on the diagonal (see Fig. 7.9). Proceeding in
the same way as at the beginning of this subsection we get

V (x, y) ≈ V (x + a, y + a) + V (x − a, y + a) + V (x − a, y − a) + V (x + a, y − a)

4
.

(7.103)
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(a) (b)

Fig. 7.9 a Calculation by considering the four nearest point over the diagonal. b Idem but using
eight

Another way can be selecting all the points of the foregoing schemes presented,
i.e. the eight neighboring points. In this case the approximate solutions adopts the
following form

V (x, y) ≈ V (x + a, y) + V (x − a, y) + V (x, y + a) + V (x, y − a)

20
+

+ V (x + a, y + a) + V (x − a, y + a) + V (x − a, y − a) + V (x − a, y + a)

20
.

(7.104)

7.6.2 Other Important Techniques

There exist more ways for finding an approximate solution of a well behaved bound-
ary value problem. One of the most used techniques is the Finite element method
(FEM). This technique is a very powerful tool for solving all types of problems,
not only in electromagnetics but also in many other branches of knowledge such
as fluid mechanics, elasticity, building structures, thermal problems and vibration
analysis among others. This technique is a variational procedure which, starting on
a set of subregions Di belonging to a whole region D, it approximates the values
of the unknowns by functions inside of each subdomain. Such a subregion of D
constitutes the finite element (Fig. 7.10). The functions chosen are usually algebraic
polynomials generated by interpolating the unknown function by means of its values
at the nodes of the geometrical element. The way we approximate does not depend
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Fig. 7.10 Domain D and subdomains Di. Observe the different geometries of the finite elements

Fig. 7.11 A triangle and a rectangle as finite elements

on the boundary conditions of the problem. For instance, for a triangle, only three
neighboring nodes are chosen and the following function may be employed13

V (x, y) = a1 + a2x + a2y, (7.105)

and for a rectangle
V (x, y) = a1 + a2x + a2y + a3xy. (7.106)

Once we know the functions to be employed, a variational appropriate model is
chosen in order to develop a system of algebraic equations in which a relationship
among the values at each point of the element is obtained. This process holds for
any of the elements used for constructing the mesh, thus repeating the procedure for
each of them we get more equations, making the connections among points shared
by different elements. In the same manner we have seen for the method of finite
differences, in some of the steps of the procedure the boundary conditions must be
imposed, withwhich awhole system of equations is created for solving the unknowns
(Fig. 7.11).

As we can see this method is a very powerful method for any kind of geometry,
but has the inconvenience of employing a huge number of steps to obtain the results
even for only a few elements, which makes it not practicable by hand.

In the same context of the variational procedures, other important techniques
should be mentioned. Of special relevance are the methods of Ritz–Rayleigh,
Galerkin (GM), Kantorovich (KM), Trefftz (TM), and least squares (LSM).

13In each element we can choosemore nodes, but in this case the algebraic functionmust be changed
by adding more terms.
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The Ritz–Rayleigh technique allows finding solutions to the variational problem
posed by approximating V (x, y) by a linear combinations of basis functions

V (x, y) =
N∑

i=1

N∑

j=1

cijVij, (7.107)

which must also verify the corresponding boundary conditions. Coefficients cij are
parameters to be determined. The election of the functions in (7.107) should be made
with the aim of obtaining matrices easy to deal with, so that an analytical evaluation
of the integrals that appear is possible. Common basis functions employed are of the
Chebishev, Legendre polynomials, and functions of the form Vi(x, y) = almxlym as
well. Of course, the functions chosen depends on the geometrical characteristics of
the specific problem. With all this information a functional F(c11, c12a, . . . , cnn) can
be formed and a variational principle applied to calcule the terms cij. Ritz–Rayleigh
method (RRM) has some advantages to some problems when compared with FEM
and other techniques. For instance using global functions is more accurate per degree
of freedom of the problem. Besides, from another viewpoint, RRM is like breaking
the global problem into smaller problemswhich it is not possible to dowith the FEM.

The Galerking method also starts with a linear combination of basis functions,
but it calculates the coefficients cij imposing that the residual R, i.e. the difference
between the exact and the approximate solution, is orthogonal to the functions Vij.
When this technique is used in variational problems, including quadratic functionals,
it is essentially the same as the Ritz–Rayleigh method.

The Kantorovich method basically consists in reducing the integration of the
partial differential equation to the integration of a system of ordinary differential
equations in terms of unknown functions. For this reason it is very useful when
resolving problems in which the variables are independent.

By the Trefftz technique (TM), different from the other methods we have seen,
the basis functions are chosen for satisfying the differential equation but not neces-
sarily the boundary conditions. In this approach the method starts from a variational
principle as before, seeking the solution parameters cij in such a way to obtain the
boundary conditions required. In other words; this procedure focuses on obtaining
the adjustment of the boundary values. In some extent the idea is complementary to
the other methods presented, in which the boundary conditions are imposed, known
data.

In relation to the least square method (LSM) the only difference with the Galerkin
method is in the conditions imposed to the residual whenminimizing the functionals.
In this new case the constrain holds on R in the following form

∫ ∫

D
R2 dS, (7.108)

which must be a minimum.
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The differences among these methods are in the form of the variational statement
used and on the functions selected. However, compared with the method of finite dif-
ferences these last techniques shownmay be somehow considered as semi-analytical
procedures. In fact, though they give numerical approximate values in the region of
study, they use analytical functions for constructing an approach to the problem.

Solved Problems

Problems C

7.1 Consider two parallel conducting square plates located at z1 = −d and z2 = d.
If the potentials of the plates are V1 and V2, respectively, find: (a) The expression
of the potential between plates. (b) The capacity of the capacitor.

Solution

This dispositive formed by two parallel thin metallic plates is known as a capacitor
(see Chap.2). This set-up is one of the most simple geometries we can have for
a condenser. For solving this problem we suppose the distance between plates is
much smaller than the length of the side, that is, |z2 − z1| << L, L being the length
of the square sheet. By this way we can neglect end effects that capacitors have.
Starting from this viewpoint, we can directly use the Laplace equation in cartesian
coordinates. However, due to the symmetries of the devicewemay reduce the number
of differential equations to be solved. In fact, as the ratio 2d

L << 1, regardless of end
effects, we can consider the plates as almost infinite, and then along the directions
OX, and OY , translational symmetry holds. In this case, we do not need to solve
the differential equations for all the variables. On the contrary, we must focus our
attention only to z, where we have no symmetry. Employing (7.10) we can write

∂2V

∂z2
= d2V

dz2
= 0, (7.109)

which is a differential equation of only one variable. Integrating it gives

dV

dz
= C1, (7.110)

where C1 is a constant. Integrating again

V = C1z + C2, (7.111)

C2 being another constant. The problem is now to determine both constants. To this
aim we use the boundary conditions, that is, the value of the potential on each plate
of the capacitor. We impose the following conditions

http://dx.doi.org/10.1007/978-3-662-48368-8_2


Solved Problems 449

V (z1) = V (−d) = V1, (7.112)

and
V (z2) = V (d) = V2, (7.113)

then we get
V (−d) = −C1d + C2 = V1, (7.114)

and
V (d) = C1d + C2 = V2. (7.115)

We have obtained a system of two linear equations with two unknowns, whose
solutions is

C1 = V2 − V1

2d
, (7.116)

and

C2 = V2 + V1

2
, (7.117)

Introduction of these constants into (7.111) leads to

V (z) = V2 − V1

2d
z + V2 + V1

2
= 1

2

(
V2 − V1

d
z + (V2 + V1)

)
. (7.118)

As a particular case if V1 = 0, and making V2 = V , we have

V (z) = V

2

( z
d

+ 1
)

. (7.119)

7.2 The capacitor of the figure consists of two metallic identical non-parallel plane
plates a and b. The edge perpendicular to the plane of the Fig. 7.12 is L1, and
the other one L2. The side L1 is very large and L2 is large enough so that we can
neglect end effects. The angle between these plates is θ and the distance from
the origin O to both edges parallel to OZ is c. The potential of the first one is V1

[V], and of the upper plate V2 [V]. Obtain: (a) The potential in the interior region
of the plates. (b) The electric field. (c) The density of charge on the plates. (d)
The total charge on a plate per unit length L1.

Solution

As we can observe, both plates are located in such a manner that two of their edges
are parallel to theOZ axis, then considering both sheets as very large in this direction
the problem has translational symmetry along OZ . Due to this fact, we can suppress
the z coordinate in (7.23) simplifying the problem, thus we may write

� ≡ 1

ρ

∂

∂ρ

(
ρ
∂V (ρ,φ)

∂ρ

)
+ 1

ρ2
∂2V (ρ,φ)

∂φ2
= 0. (7.120)
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Fig. 7.12 Two thin metallic
plates forming an angle α.
The surface of each plate is
L1.L2

Using the method of separation of variables we can try solutions of the form
V (ρ,φ) = R(ρ)�(φ). Introduction of this function into (7.120) leads to

1

ρ

∂

∂ρ

(
ρ
∂(R(ρ)�(φ))

∂ρ

)
+ 1

ρ2
∂2(R(ρ)�(φ))

∂φ2
= 0, (7.121)

and computing the derivatives this equation may be expressed as

ρ

R(ρ)

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
+ 1

�(φ)

∂2(R(ρ)�(φ))

∂φ2
= 0. (7.122)

The first part of the last equation depends only on ρ and the second only on φ,
therefore this equality holds if

ρ

R(ρ)

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
= − 1

�(φ)

∂2(R(ρ)�(φ))

∂φ2
= k2, (7.123)

k being a constant. Resolving separately both equations we have

ρ

R(ρ)

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
= k2. (7.124)

Here we have two possibilities, namely k = 0 and k �= 0. For the first case we get

ρ

R(ρ)

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
= 0 ⇒ ρ

∂R(ρ)

∂ρ
= A1, (7.125)

where A1 is a constant. The solution is

R(ρ) = A1 ln ρ + A2, (7.126)
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for A2 constant, too. If k �= 0 the solution of (7.124) is

R(ρ) = B1ρ
k + B2ρ

−k . (7.127)

The equation for �(φ) is

1

�(φ)

∂2(R(ρ)�(φ))

∂φ2
= −k2 ⇒ ∂2�(φ)

∂φ2
+ k2�(φ) = 0, (7.128)

which consist of two solutions as before for R(ρ). In effect, when k = 0

1

ρ2
∂2V (ρ,φ)

∂φ2
= 0 ⇒ ∂V (ρ,φ)

∂φ
= C1, (7.129)

and integrating for C1 constant

V (ρ,φ) = C1φ + C2 (7.130)

If k �= 0 the solution is

V (ρ,φ) = D1 cos(kφ) + D2 sin(kφ). (7.131)

With all these results we must find what solution is valid for our case. Owing to the
boundary conditions of the problem, that is, each of the plates are held a constant
potential, the solution must not depend on the distance ρ. For this reason we, in
principle, can exclude (7.126) and (7.127). From the other two referring to the angle,
(7.131) does not work, because it cannot fulfil the boundary conditions of constant
potential on eachmetallic plate of the capacitor. Thus,wehave only (7.130). Imposing
that V (φ = 0) = V1 and V (φ = θ) = V2, we easily get

V (ρ,φ) = (V2 − V1)

θ
φ + V1. (7.132)

The electric field inside, neglecting end effects, may be calculated be means of the
gradient, i.e.,

∇V = ∂V

∂ρ
+ 1

ρ

∂V

∂φ
+ ∂V

∂z
. (7.133)

As the potential only depends on φ, we can write for the electric field

E = −∇V = −1

ρ

∂V (φ)

∂φ
uφ, (7.134)

which leads to

E = −∇V = −1

ρ

(V2 − V1)

θ
uφ. (7.135)
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The surface charge density may be calculated bymeans of the following relation (see
Chap.4)

σ(φ = 0) = εE = −1

ρ

(V2 − V1)

θ
ε, (7.136)

and for the upper plate

σ(φ = θ) = −εE = 1

ρ

(V2 − V1)

θ
ε. (7.137)

(d) For calculating the total charge per unit length L1 on a plate we can employ the
definition of surface charge density, i.e.

σ(x, y) = dQ(x, y)

dS
. (7.138)

By integrating this equation we have

Q(x, y) =
∫ ∫

S
σ(x, y) dS. (7.139)

Let us suppose we choose the lower plate. Even thoughwe have used at the beginning
of the problem polar coordinates, since this conducting plate lies on the plane OXZ ,
for simplicity we can work with x and z coordinates. In this case the differential
element of surface is dS = dx dz, then

Q(x, y) =
∫ ∫

S
σ(x, y)dxdz = −

∫ ∫

S

ε

x

(V2 − V1)

θ
dxdz = −

∫ L1

0
dz
∫ c+L2

c

ε

x

(V2 − V1)

θ
dx =
(7.140)

(V2 − V1)L1
θ

ln

(
c + L2

c

)
,

thus
Q(x, y)

L1
= (V2 − V1)

θ
ln

(
c + L2

c

)
, (7.141)

where we suppose L2 large in order to avoid end effects, but not infinite.14

7.3 Let us consider four metallic thin rectangular plates with sides a × L and b × L
forming a prismatic system as shown in Fig. 7.13a. The edges of length L are
much longer than the other. The side AD is held to a potential V0 = 200 V, and
the other parts are grounded. (a) Calculate the potential in the region 0 < x < a
and 0 < y < b, if a = 20 cm and b = 10cm. (b) Obtain the electric fieldE(x, y).

14Equation (7.141) could also be valid for theoretical cases in which the edge L1 is mathematically
infinite, because the result is expressed per unit length. This procedure is very useful to prevent us
from having difficulties with infinite quantities. Observe that in this problem the length L1 must be
large in order we can apply reasoning of symmetries which lead to a simplification of the differential
equation.

http://dx.doi.org/10.1007/978-3-662-48368-8_4
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(a)

(b)

Fig. 7.13 a Prismatic system formed by four metallic plates one of them is grounded. b Cross-
sectional view of the system

Solution

As the edge of length L verifies that L >> a and L >> b, we can consider that the
system has translational symmetry with respect to the OZ axis. It then means that
V (x, y, z) = V (x, y, z + h) and E(x, y, z) = E(x, y, z + h), h being a constant and
neglecting end effects. For this reason we can work with the two-dimensional system
depicted inFig. 7.13b,which is easier. Bearing inmind the geometrical characteristics
of the prismatic set of metallic plates, we can find the solution of the problem by
employing the two dimensional Laplace equation in cartesian coordinates, that is,

�V (x, y, z) ≡ ∂V

∂x
+ ∂V

∂y
= 0, (7.142)

constrained by the boundary conditions

V (0, y) = V0 = 200, (7.143)

V (x, 0) = 0, (7.144)

V (a, y) = 0, (7.145)

and
V (x, b) = 0. (7.146)

The first difficulty to account for is that we do not have homogeneous boundary
conditions, and if we would like to use the method of separation of variables we
must have them. To solve this difficulty we first try solutions of the form

V (x, y, z) = X(x)Y(y), (7.147)

and later, we pursue to adjust some coefficients that will appear. Let us introduce
(7.147) into (7.142)
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Y(y)
∂2X(x)

∂x2
+ X(x)

∂2Y(y)

∂y2
= 0. (7.148)

Now, dividing by the product X(x)Y(y) we have

1

X(x)

∂2X(x)

∂x2
+ 1

Y(y)

∂2Y(y)

∂y2
= 0. (7.149)

The only possibility for a non-trivial solution is

1

X(x)

d2X(x)

dx2
= − 1

Y(y)

d2Y(y)

dy2
= ±k2. (7.150)

k being a constant. The election of plus or minus in this equation depends on the
conditions of the problem. So, in our case we know that the potential must be zero
on sides AB, BC, and CD, then Y(y) must be zero at y = 0 and y = b, and X(x) = 0
at x = a, exclusively, because at x = 0 it is non-homogeneous. Thus, one of these
two possibilities does not work.

As we know, the general solution of the one dimensional differential equation
d2Q(s)
ds2 = k2Q(s) isQ(s) = A exp(ks) + A exp(−ks), which may also be written as an

addition of hyperbolic sines and cosines. These kind of functions cannot be zero at
two points, namely y = 0 and y = b at the same time. On the contrary, the solution
of d2Q(s)

ds2 = −k2Q(s) is the combination of sinusoidal functions,Q(s) = A cos(ks) +
A sin(ks), which reach zero periodically. From these solutions we see that the only
way for this problem to be solved is

1

Y(y)

d2Y(y)

dy2
= −k2, with Y(0) = Y(b) = 0, (7.151)

and
1

X(x)

d2X(x)

dx2
= k2, with X(a) = 0. (7.152)

The solution of the first equationmust be zero at the first and last points of the interval,
which may be accomplished by periodic functions. The second one (7.152) will be
zero only at a point, and therefore a linear combination of hyperbolic functions holds.

The general solution of (7.151) is

Y(y) = A cos ky + B sin ky. (7.153)

Imposing the boundary conditions it yields

Y(0) = A = 0, (7.154)

and for the extreme of the rectangle at y = b
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Y(b) = B sin kb = 0 ⇒ kb = nπ ⇒ k = nπ

b
. (7.155)

Y(y) = B sin
(nπy

b

)
. (7.156)

Introduction of the values of k obtained in (7.155) into (7.153) gives

d2X(x)

dx2
=
(nπ
b

)2
X(x). (7.157)

This is the differential equation for the function X(x) to be solved, with value
X(a) = 0. As we can observe, we only have homogeneous conditions at x = a,
then this problem is not properly a boundary value problem as in the preceding case
for Y(y). However, we will avoid this drawback later.

The general solution of this equation may be written in the form of real exponen-
tials or as a combination of hyperbolic functions, that is,

X(x) = C cosh
((nπ

b

)
(x − L)

)
+ D sinh

((nπ
b

)
(x − a)

)
. (7.158)

This solution must satisfy X(a) = 0, thus

X(a) = C + 0 = 0 ⇒ C = 0, (7.159)

and therefore
X(x) = D sinh

((nπ
b

)
(x − a)

)
. (7.160)

Knowing the expressions for X(x) and Y(y), we can put the solution as the product
of (7.156) and (7.160)

V (x, y) = X(x)Y(y) = BD sin
(nπy

b

)
sinh

((nπ
b

)
(x − a)

)
. (7.161)

This function V (x, y) verify V (0, y) = V0 = 200, but (7.161) does not fulfill this
non-homogeneous boundary condition at all (it is not a boundary value problem). In
order to avoid this trouble, we try with linear combinations of such functions (7.161).
Denoting the product BD = α, we can put

V (x, y) = X(x)Y(y) =
∞∑

1

αn sin
(nπy

b

)
sinh

((nπ
b

)
(x − a)

)
. (7.162)

The objective is now to obtain the coefficients αn of the series so that the solution
meets the aforementioned condition at x = 0. For calculating them we will employ
the value of the potential on the side AD, that is,
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V (0, y) =
∞∑

1

αn sin
(nπy

b

)
sinh

(−nπa

b

)
= V0. (7.163)

For obtaining the values of αn we multiply both members by sin
(mπy

b

)
, m being an

integer and we integrate in the interval from 0 to b for the variable y

∞∑

1

∫ b

0
αn sin

(nπy
b

)
sin
(mπy

b

)
sinh

(−nπa

b

)
dy =

∫ b

0
V0 sin

(mπy

b

)
dy.

(7.164)
As sinh(−x) = − sinh(x), we have

−
∞∑

1

αn sinh

(−nπa

b

)∫ b

0
sin
(nπy

b

)
sin
(mπy

b

)
dy =

∫ b

0
V0 sin

(mπy

b

)
dy.

(7.165)
We must now compute the integral for all n and m. Taking into consideration that

∫
sin(py) sin(qy)dy = sin(p − q)y

2(p − q)
− sin(p + q)y

2(p + q)
, (7.166)

we get
∫ b

0
sin
(nπy

b

)
sin
(mπy

b

)
dy =

{
0, if n �= m,
b
2 , if n = m.

(7.167)

− αn
b

2
sinh

(nπa
b

)
=
∫ b

0
V0 sin

(mπy

b

)
dy, (7.168)

thus

αn = − 2

b sinh
(
nπa
b

)
∫ b

0
V0 sin

(nπy
b

)
dy = − 2V0

b sinh
(
nπa
b

)
b

nπ
(− cos(nπ) + 1) ,

(7.169)
which depends on the values of n. In a general form it may be written15

αn =
{
0 if n even,

− 4V0

nπ sinh( nπa
b )

n odd.
(7.170)

To be clear, right now we will denote these odd numbers by l instead of n. With all
the data the final expression for the potential is

15If instead of constant the potential on the sideADwould be a function of y, namely V (0, y) = f (y),
the expression we get for the coefficients is αn = 2

b sinh( −nπa
b )

∫ b
0 f (y) sin

(mπy
b

)
dy.



Solved Problems 457

Fig. 7.14 a Graphic of the first element of the expansion of (7.171). b This corresponds to the
potential V (x, y) considering n = 1 and n = 3

V (x, y) =
∞∑

l=odd

− 4V0

sinh
(
lπa
b

) sin
(
lπy

b

)
sinh

((
lπ

b

)
(x − a)

)
. (7.171)

In Figs. 7.14, 7.15, and 7.16 the solution considering up to six terms of the expansion
(7.171) is plotted. As we can see the potential reaches its maximum at x = 0 and
decrees progressively when x grows, being zero at x = a and on sides y = 0 and
y = b. Due to the finite number of terms chosen (six), over the side (0, y) the solution
oscillates not being V0 exactly. To reproduce an almost constant potential on this
side in this graphic, we would need more terms of the series. Figure7.17a represents
curves of constant potential for n = 1 (Fig. 7.14a), and Fig. 7.17b the same in the
case of n = 11. As we can observe, both family of curves are similar to each other
from x = 0.04m, being themajor difference in the vicinity of the sideAD. Therefore,
in this problem the election of the number of terms of the series mostly affects the
result near the edge not grounded.

(b) Once we have calculated the potential for any point interior to the region
delimited by the four sides of the rectangle, the electric field may be obtained by
means of the gradient. In fact,

E = −∇V (x, y) =
∞∑

l=odd

4V0l

nb sinh
(
lπa
b

) sin
(
lπy

b

)
cosh

((
lπ

b

)
(x − a)

)
ux+
(7.172)

∞∑

l=odd

4V0l

nb sinh
(
lπa
b

) cos
(
lπy

b

)
sinh

((
lπ

b

)
(x − a)

)
uy.

Figures7.18 and 7.19 show the electric field (red vectors) at every interior point of the
cavity ABCD. Note that from 0.1m, approximately, the electric field is very small.
We can easily understand this result by looking at the graphics of Fig. 7.16 (the other
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(c) (d)

Fig. 7.15 c Representation considering the three first terms. d Idem for four terms of the series.

(e) (f)

Fig. 7.16 e Graphic with five terms. f Idem for six terms

Fig. 7.17 a Graphic of the first element of the expansion of (7.171). b This corresponds to the
potential V (x, y) considering n = 1 and n = 3
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Fig. 7.18 Graphic of the electric field with only the first element of the expansion of (7.172)

Fig. 7.19 This corresponds to the field E(x, y) with n = 1 and n = 3

Fig. 7.20 The calculation procedure is studied as two independent problems

pictures of Figs. 7.14 and 7.15 are also valid, but Fig. 7.16 ismore precise). In fact, the
function V (x, y) is very flat up x = 0.1m, even in the solution regarding only the first
term. As a result, as the electrostatic field is related with the potential by a gradient,
the electric field must be smaller on this part than in regions where the slope of the
potential is larger (the region close to the side AD). Note: As we have commented in
this problem, for correctly applying the method of separation of variables the partial
differential equation and the boundary conditions must be linear and homogeneous.
The importance of this exercise lies on the fact that other problems with the same
symmetry, but with other boundary conditions, may be solved taking this result as
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a basis. For instance if we would have the same prismatic system but besides the
side AD, the side AB held to a potential V (a, y) = g(y), we can pose the problem as
two independent problems, each of one has its boundary conditions, and at the end
apply the principle of superposition. This is schematically represented in the picture
(Fig. 7.20). Therefore the final solution V (x, y) of the problem may be obtained as
the sum two problems in which only one side is held to a potential. We mean that

V (x, y) = V1(x, y) + V2(x, y). (7.173)

The same principle applies in the most general case if every side has a nonzero
potential. For this case we can write

V (x, y) = V1(x, y) + V2(x, y) + V3(x, y) + V4(x, y). (7.174)

7.4 A dielectric sphere of constant ε1 and radius R is placed coinciding its centre
with the origin of the coordinates system OXYZ . The sphere is surrounded by
a system of permittivity ε2. If before locating the sphere in the medium there
was a homogeneous electric fieldE = Euz, calculate the electric field inside and
outside of the dielectric ball.

Solution

Due to the rotational symmetry of this problem we can employ spherical coordi-
nates (see Fig. 7.21). Taking into consideration that we do not have free charges, the
differential equation to be solved is that of the Laplace (7.29), thus

�V ≡ 1

r2
∂

∂r

(
r2

∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

r2 sin θ

∂2V

∂φ2
= 0 (7.175)

In this problem the solutionmust not depend on the angleφ, because of the revolution
symmetry, that is, if the field at a point P(r,φ, θ) is E, the components of E over the
spherical unitary vectors basis ur , uφ, and uθ displaced at any other point P′(r,φ +

Fig. 7.21 Electric field E at
two points on the same plane
but with different coordinate
φ. Because of the rotational
symmetry, its projections
over the basis {ur ,uφ,uθ}
are the same when
maintaining r and θ constant
and φ varies to (φ + φ′)
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φ′, θ) must be the same. For this reason we can eliminate the derivative with respect
to φ in the above equation, i.e.,

1

r2
∂

∂r

(
r2

∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
= 0. (7.176)

Considering the symmetry of the problem seem to be adequate, looking for solutions
of the form shown in (7.30), that is, the spherical harmonics

V (r,φ, θ) =
∞∑

0

(
amr

m + bm
rm+1

)
Pm(cos θ), (7.177)

where Pm
i (cos θ) are the Legendre polynomials. However, the solution will be only

valid if it satisfies the following boundary conditions:

V1(R,φ, θ) = V2(R,φ, θ), (7.178)

ε1

(
∂V1

∂r

)
= ε2

(
∂V2

∂r

)
, (7.179)

and
V2(R,φ, θ) −→ V, r −→ ∞. (7.180)

The first one means that the potentials V1 and V2 on the sphere surface must be the
same. The second condition depicts that the normal components of the displacement
vector D on the boundary are equal. The third shows that at large distances the
potential takes the same values as before the dielectric sphere was placed into the
electric field. Physically it is the same to say that the sphere has no influence on
the potential far away of its loci; if an effect exists, it is in proximity to the sphere
(Fig. 7.22).

(a)

(b)

Fig. 7.22 a Lines of electric field for ε1 > ε2. b Field lines for ε1 < ε2
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To solve the problemwe first study the potential inside of the dielectric ball. There
holds

V1(r, θ) = a0P0(cos θ) + b0
r
P0(cos θ) + a1rP1(cos θ) + b1

r2
P1(cos θ) + a2r

2P2(cos θ) + · · ·
(7.181)

The Legendre polynomials may be obtained by means of the following relations

Pm(cos θ) = 1

2mm!
dm

d(cos θ)m
(cos θ2 − 1), (7.182)

or through

Pm+1(cos θ) = (2m + 1) cos θ Pm(cos θ) + mPm−1(cos θ)

(m + 1)
. (7.183)

For the calculation it is not necessary to introduce the expanded expression of
Pm(cos θ). As we will see, we can work only with P0 and P1 at hand. These first two
polynomials are P0(cos θ) = 1 and P1(cos θ) = cos θ. Introduction of both terms
into (7.181) gives

V1(r, θ) = a0 + b0
r

+ a1r cos θ + b1
r2

cos θ + a2r
2P2(cos θ) + b2

r3
P2(cos θ) + · · ·

(7.184)
This expression may be simplified if we take into account some properties that

the potential inside of the sphere must have. So, the potential at the center of the ball
must be well valued, but if we examine equality (7.181) we see that for r = 0 it tends
to infinity. To avoid this difficulty we make all bi = 0, for i = 0, 1, 2, . . ., and then
we have

V1(r, θ) = a0 + a1r cos θ + a2r
2P2(cos θ) + · · · =

∞∑

n=0

anr
nPn(cos θ) (7.185)

Outside of the sphere we have an expansion identical to (7.181) but with other
coefficients (now with primes’), i.e.,

V2(r, θ) = a′
0 + b′

0
r

+ a′
1r cos θ + b′

1
r2

cos θ + a′
2r

2P2(cos θ) + b′
2
r3

P2(cos θ) + · · · =
(7.186)

= a′
0 + b′

0

r
+ a′

1r cos θ + b′
1

r2
cos θ +

∞∑

n>1

b′
n

rn+1
Pn(cos θ) +

∞∑

n>1

a′
nr

nPn(cos θ).

This equation must satisfy the boundary conditions too. As we commented before,
far away from the ball the potential and the electric field must not depend on the
presence of the dielectric sphere. It means that if the field is E = Euz, then it holds
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for the potential

E = −∇V ⇒ V (r, θ) = −
∫

E.dl = −E z + V0, (7.187)

V0 being a constant. For an arbitrary point of space r, as z = r cos θ, (7.187) may be
written as

V2(r, θ) = −E r cos θ + V0. (7.188)

This is the form of that the potential has at infinity and this condition must be valid
for (7.184), and therefore

lim
r→∞ V2(r, θ) = −E r cos θ + V0 = (7.189)

= lim
r→∞

(

a′
0 + b′

0
r

+ a′
1r cos θ + b′

1
r2

cos θ +
∞∑

n>1

b′
n

rn+1 Pn(cos θ) +
∞∑

n>1

a′
nr

nPn(cos θ)

)

.

From this equality it follows

− E r cos θ + V0 = a′
0 + a′

1r cos θ, (7.190)

thus
a′
0 = V0, (7.191)

a′
1 = −E, (7.192)

and for n > 1
a′
n = 0, (7.193)

otherwise the potential at large distances would be divergent. Substitution of these
constants into (7.184) leads to

V2(r, θ) = V0 + −E r cos θ + b′
1

r2
cos θ +

∞∑

n �=1

b′
n

rn+1
Pn(cos θ). (7.194)

Oncewehave the general expressions for the potential inside and outside of the sphere
we can apply the other boundary conditions. The first one equates the potential on
the ball surface, that is, V1(r,φ, θ) = V2(r,φ, θ), then

∞∑

n=0

anr
nPn(cos θ)|r=R = V0 +

(
−E r + b′

1

R2

)
cos θ +

∞∑

n �=1

b′
n

rn+1
Pn(cos θ)|r=R.

(7.195)
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Since the last equationmust hold for any value of θ (remember that it does not depend
on φ), the only possibility we have is

a0 = V0, (7.196)

(
−E R + b′

1

R2

)
= R a1, (7.197)

and
b′
n

Rn+1
= Rn an, n > 1. (7.198)

In order to apply (7.179) we take the derivative of (7.184) and (7.186), obtaining

(
∂V1

∂r

)

r=R

=
∞∑

n>1

anr
n+1Pn(cos θ), (7.199)

and

(
∂V2

∂r

)

r=R

= −
(
E + 2b′

1

R3

)
cos θ −

∞∑

n �=1

(n + 1)
b′
n

rn+2
Pn(cos θ), (7.200)

then using (7.179)

ε1

∞∑

n>1

anr
n+1Pn(cos θ) = −ε2

(
E + 2b′

1

R3

)
cos θ − ε2

∞∑

n �=1

(n + 1)
b′
n

rn+2
Pn(cos θ),

(7.201)
which gives

ε1a1 = −ε2

(
E + 2b′

1

R3

)
, (7.202)

and for n �= 1

ε1nanR
n−1 = −ε2(n + 1)

b′
n

Rn+2
. (7.203)

Combining (7.197) and (7.202) we get

a1 = − 3 ε2

ε1 + 2ε2
E, (7.204)

and
b′
1 = ε1 − ε2

ε1 + 2ε2
R3 E. (7.205)
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On the other hand (7.198) and (7.203) are only possible if a0 = b′
0 = 0 and an =

b′
n = 0 for n > 1. By inspection of (7.196) we observe that as a0 = 0, the potential
V0 = 0, that is, the potential at the center of the dielectric sphere vanishes (see (7.184)
and note that V1(0, θ) = 0). Once we have the value of the constants the potential
and field inside and outside of the ball are, respectively

V1(r, θ) = − 3 ε2

ε1 + 2ε2
E r cos θ, r < R, (7.206)

and

V2(r, θ) = −
(
1 − ε1 − ε2

ε1 + 2ε2

R3

r3

)
r E cos θ, r > R. (7.207)

The electric field may be determined through the gradient. For r < R, we have

E1 = −∇V = −∂V1

∂z
= − ∂V2

∂(r cos θ)
uz = 3 ε2

ε1 + 2ε2
E uz r < R. (7.208)

As it is known, when a dielectric material remains in the presence of an electric field,
a local redistribution of its charges is produced and the material will polarize. As a
consequence, in general, two kinds of bounded charges appear: a volume distribution
of polarization charge ρp = −∇ · P, and a surface polarization charge σp = −P · n,
where P and n are the polarization field and the unitary normal vector to the surface,
respectively (see Chap. 2). In the case studied we see from (7.208) that inside the
ball the electric field is uniform, hence the polarization P = ε0χeE too, which means
that we do not have ρp but only σp. The apparition of these bounded surface charges
behaves as a source of electric field modifying the electric properties inside of the
sphere and in its outside surroundings. Physically it means that the field inside of
the ball is the result of the addition of the exterior electric fieldE (generated before the
ball was placed there) and the field created in the interior by the bound charges that
appear on the surface of the dielectric sphere. Calling E′

σp
the electric field created

by σp inside, it yields

E1 = Eexterior + E′
σp ⇒ E′

σp = E1 − Eexterior = 3 ε2
ε1 + 2ε2

E uz − E uz =
(

ε2 − ε1
ε1 + 2ε2

)
E uz.

(7.209)
Outside we obtain the field in the same way

E2(r, θ) = −∇V = −∂V2
∂r

= −∂V2
∂r

ur − 1

r

∂V2
∂θ

uθ =
(

1 + 2
ε1 − ε2
ε1 + 2ε2

R3

r3

)

E cos θ ur

(7.210)

−
(
1 − ε1 − ε2

ε1 + 2ε2

R3

r3

)
E sin θ uθ, r > R.

As we can prove, contrary to what occurs inside, the field is not homogeneous and
depends on the point examined. Equation (7.210) shows that in the surrounding
material of the sphere we will observe the major modification of the electric field.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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However, a very different behavior of the field lines happens depending on the values
of ε1 and ε2. So, from (7.208) it follows that

E1 = 3
(
2 + ε1

ε2

) E uz. (7.211)

and then, if ε1 > ε2 the electric field inside is smaller than E. On the contrary, when
ε1 < ε2 holds E1 > E (the contrary occurs with the displacement vector D). This
case is very important in industrial production processes. In fact, the existence of
air bubbles in a dielectric matrix creates an increment of the electric field inside
of the microspheres. As the gas bubbles have a dielectric constant ε1 ≈ 1, if ε1 <

ε2 (or <<), the electric field inside them can be very high, which may produce
discharges into the system. For this reason, in most applications where it matters,
a control in the material fabrication is needed in order to avoid this problem. As a
particular case, if the permittivities are the same, that is ε1 = ε2, then E1 = E and
the field are not affected.

The understanding of this study shown is very important in some fields of applied
physics and technology. For example, sometimes researchers try to modify dielectric
properties of materials by means of the inclusion of dielectric (and metallic too)
balls into a dielectric matrix. In those cases the problem is to calculate the effective
permittivity εeff of the new system.To solve this question some formulaemaybe used.
The two most important are the relationship of Maxwell-Wagner and the Rayleigh
formula. The first one is

εeff (α) =
(
2 ε2 + ε1 + 2α (ε1 − ε2)

2 ε2 + ε1 − α (ε1 − ε2)

)
ε2, (7.212)

where ε1 and ε2 are the permittivities of the spheres and of the medium (matrix),
respectively. For the simplified relation of Rayleigh (α << 1) we have

εeff (α) =
(
1 + 3α

(ε1 − ε2)

(2 ε1 + ε2)

)
ε2. (7.213)

Recently, however, recent attention has shifted to the employment of inhomogeneous
materials containing inclusions for modifying optical properties.16 Specifically, it
is possible to induce surface anisotropy by different mechanisms by introducing
inclusions adequately (dielectric or metallic-see next problem), leading to a change
in the refractive index of the material (see Chapter 14). In fact, it can be shown that
the anisotropic induced properties may be controlled by adjusting the concentration
of the spheres and the thickness of the corresponding layer, which opens a large
number of scientific and technical applications.

16See, for example, [111].
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7.5 A metallic sphere of radius R is located with its center coinciding with the
origin of the coordinates systemOXYZ . The sphere is immersed into a dielectric
substance of permittivity ε2. If before locating the sphere in the medium there
was a uniform electric field E = Euz, obtain the electric field inside and outside
of the sphere.

Solution

This problem is similar to the one explained previously, but now the ball is made of
a metallic material instead of a dielectric. At first sight we can proceed in the same
manner, however due to the characteristics of the conductors, some new information
about the boundary conditions appears. In fact, the potential must fulfill the following
conditions

V (R,φ, θ) = C, (7.214)

C being a constant, and

V (R,φ, θ) −→ V, r −→ ∞. (7.215)

Thefirst condition shows that the potential at r = R is constant.Actually this potential
is constant in all the ball, because it is a conductor, hence the electric field inside
vanishes. The second BC is the same as we studied before for the dielectric sphere
and physically means that the effect of the metallic ball on the field is only important
in its owing vicinity, and not far away from it.

The resolution of this problem again requires using the Laplace equation in spher-
ical coordinates where the variable φ does not appear due to the symmetry of the
system. However, instead of solving this equation together with the boundary con-
ditions, we can proceed in an easier way if we consider the results of the preceding
exercise. In effect, as the ball is made of a metallic material, we can consider that
the constant ε1 of the ball tends to infinity. If that is true, we could directly make
the substitution ε1 → ∞ in (7.206), (7.207), (7.208) and (7.209) for obtaining the
solution. According to this idea we get

V1(r, θ) = 0 + C, r < R, (7.216)

and

V2(r, θ) = −
(
1 − R3

r3

)
r E cos θ, r > R. (7.217)

For the electric inside of the ball (r < R), we have

E1 = 0 r < R, (7.218)

and outside (r > R)



468 7 Methods for Solving Electrostatic and Magnetostatic Problems

E2(r, θ) =
(
1 + 2

R3

r3

)
E cos θ ur −

(
1 − R3

r3

)
E sin θ uθ, r > R. (7.219)

In the same manner as we commented in the preceding problem, the inclusion
of metallic balls in a dielectric matrix is of great practical interest. In this way we
can modify the physical properties of the matrix varying the concentrations of the
metallic balls in the dielectric. A simple formula that gives the modified permittivity
is due to Bruggeman

εeff (α) = ε2

(1 − α)3
, (7.220)

where α is the volume concentrations of the spheres and ε2 is the permittivity of
dielectric matrix.

7.6 A long wire of diameter R carries a current I . Find (a): The vector potential A
for ρ < R. (b) The vector potential A for ρ > R. (c) The magnetic field B.

Solution

(a) This problem could be solved using techniques we have seen in Chap.5. In fact,
by means of Ampère’s circuital law we can obtain the magnetic field everywhere
and, once we know it, the relation between both fields, i.e., the potential vector and
B is determined by the following relation

∮

�

Adl =
∫ ∫

S
B · dS. (7.221)

However, taking into account the methods exposed in the introduction, we will try
to seek a solution directly solving the corresponding differential equation.

For non-varying electromagnetic fields (see Chap. 5) it holds that

∇2A = −μ0j. (7.222)

Let us suppose we place the wire coinciding its length with the OZ axis. As the
wire is very long and its cross section is constant, we have translational symmetry
along OZ in the direction of the current and rotational symmetry, too. Starting from
a cylindrical coordinate frame it means that the solution will depend neither on the
coordinate z, nor the angleφ. For this reasonwe can study the problem by eliminating
the partial derivatives of these variables. Doing so, we have

1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
= μ0j, (7.223)

whose solution may be obtained by direct integration

ρ
∂Az

∂ρ
= −μ0

∫
jρdρ = −μ0j

ρ2

2
+ C1, (7.224)

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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and then

∂Az

∂ρ
= C1

ρ
− μ0j

ρ

2
⇒ Az(ρ) = C1 ln ρ − μ0j

ρ2

4
+ C2, (7.225)

where C1 and C2 are two constants. As the vector potential must be finite in the
region examined, to accomplish this condition, the only possibility we have is that
C1 = 0, otherwise the logarithm becomes infinity for ρ = 0, with then yields

Az(ρ) = −μ0j
ρ2

4
+ C2. (7.226)

(b) In this case the calculation refers to exterior region of the wire, where there is
no current. As a result, (7.222) adopts the form

∇2A = 0. (7.227)

Integrating again, we get

1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
= 0 ⇒ ∂

∂ρ

(
ρ
∂Az

∂ρ

)
= 0 ⇒

(
ρ
∂Az

∂ρ

)
= D1, (7.228)

D1 being a constant to be determined. An integration more gives

Az =
∫

D1

ρ
dρ + D2 = D1 ln ρ + D2. (7.229)

At this point we are tempted to put D1 = 0 in (7.229), because for ρ −→ ∞ the
ln ρ −→ ∞, and making D1 this constat zero this problem is avoided; however it
would be wrong. The reason for this is that, contrary to what happens with the
magnetic field, the vector potential can be unbounded if the region where the current
extends is not confined in a finite domain of space, as in our case (the wire is infinite
(mathematically) seeChap.5). Therefore, the expression (7.229) is valid, in principle,
it being necessary to seek other possibilities to determine the constants.

(c) The magnetic field can be computed by using the relation between B and A
(5.11), i.e.

B(r) = ∇ × A(r). (7.230)

Considering that the only component of the vector potential we have is the z com-
ponent, we can write

Bφ = −∂Az

∂ρ
= 1

2
μ0jρ, (7.231)

which represents the general formula for B inside of the wire. In the same manner,
calculating the rotational in a exterior region (5.11) leads to

http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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Bφ = −∂Az

∂ρ
= −D1

ρ
. (7.232)

Now, for obtaining D1 and D2, we impose the continuity of the magnetic field on the
surface of the wire

Bφ(1)ρ=R = Bφ(2)ρ=R, (7.233)

yielding

μ0j
R

2
= −D1

R
⇒ D1 = −μ0j

R2

2
, (7.234)

thus

Bφ = μ0jR2

2ρ
. (7.235)

In relation with B, we do not need anything else. Observe that, even though we
did not obtain constants C1 and D2 in (7.224) and (7.229), the magnetic field has
been determined without difficulty. The reason of that is due to the fact that for
computing B we must calculate a partial derivative, then eliminating C1 and D2,
indirectly. Nevertheless, we can determine such constants by imposing the boundary
conditions for the vector potential

Az(1)ρ=R = Az(2)ρ=R, (7.236)

which gives

− μ0j
R2

4
+ C2 = −μ0j

R2

2
lnR + D2. (7.237)

This result has no unique solution, because we have two constants and only one equa-
tion. However, we can impose a normalization condition at the origin of coordinates.
For instance, we can choose Az(1)ρ=0 = 0 which gives C2 = 0 (or any other value),
and then we get

− μ0j
R2

4
= −μ0j

R2

2
lnR + D2 ⇒ D2 = 1

4
μ0jR

2(lnR2 − 1). (7.238)

Introducing these values into (7.226) and (7.229), holds

Az(ρ) = −1

4
μ0jρ

2, (7.239)

and

Az(ρ) = −1

2
μ0jR

2 ln ρ + 1

4
μ0jR

2(lnR2 − 1). (7.240)
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(a) (b)

Fig. 7.23 Potential due to two identical charges of opposite signs. a The straight line in the middle
of this figure represents the points in two dimensions where the potential is zero. b In a three
dimensional representation we have a plane

7.7 Consider two charges of different signs separated by distance 2a over the OY
axis. Show that if the absolute value of them is the same, the geometric points
of zero potential are located on a plane.

Solution

As we explained in Sect. 7.4, when two charges of opposite signs, namely q1 and
q2, are placed at a distance a, a family of different surfaces are obtained, each one
corresponds to a constantC (7.48). In the example seen there, forC = 0 we obtained
a spherical surface whose centre was displaced with respect to the location of the
charge q1 (Fig. 7.23a). In the present problem the charges have the same absolute
values, i.e. |q1| = |q2| = q, thus probably the surface of constant potential changes
(see the example in Sect. 7.4).

To demonstrate it, let us first suppose that the charges are located at points
P1(0,−a, 0) and P2(0, a, 0). To see what are the loci of constant potential for this
configuration we introduce |q1| = |q2| = q into (7.48), and the distance between
charges 2a, which leads to

(x2 + (y − a)2 + z2) = (x2 + (y + a) + z2). (7.241)

This equation is verified only in the case that y = 0, which represents the equation
of a plane (see Fig. 7.23b). This result is important and provides a means to other
questions that may be solved by the method of images. In fact, it is tied to a problem
that we could pose as follows. Let us imagine a point charge q placed at the point
of coordinates P(0, a, 0) in front of a semi-infinite conducting block whose face
coincides with theOXZ plane. If the metallic block is held to zero potential, calculate
the potential at a generic point of space P(x, y, z), y > 0. To stress this issue, we
must find a charge disposition in such a way that the potential on the plane y = 0
disappears. For this to occur we can place a fictitious charge−q in front of the charge
q, at a distance a with respect the origin of the coordinate frame. By this procedure
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we immediately see that if we add the potentials corresponding to both charges we
again obtain

V (x, y, z) = V1(x, y, z) + V2(x, y, z) = 1

4πε0

q
√
x2 + (y − a)2 + z2

+ 1

4πε0

−q
√
x2 + (y + a)2 + z2

.

(7.242)

As we can prove (7.242) fulfills the Laplace equation and the boundary conditions,
namely V (x, 0, z) = 0. It means that, following the uniqueness theorem, expression
(7.242) must be the solution for the potential created by a charge q in front of a
metallic plane.

Once we know the potential, other questions as how does the density charge
distribute on the metallic surface, or the force between the charge and the plane, can
be answered easily.

For the new density of charge on the metallic plane as a result of the presence of
the charge q at P(0, a, 0) we have

σ(x, 0, z) = ε0

(
∂V (x, y, z)

∂n

)

y=0

= ε0nE, (7.243)

n being the normal unitary vector to the surface. The force is F = −q∇V2(x, y, z),
which coincides with the force that the image (fictitious) charge creates on the actual
charge q.

7.8 A grounded conducting sphere of radius R has its center coinciding with the ori-
gin of coordinatesO(0, 0, 0). A point charge q2 is located at the point P(0, d0, 0)
with d0 > R. Find: (a) The potential at any point of space.(b) The induced surface
charge density on the sphere (Fig. 7.24).

Solution

(a) Because the sphere is grounded, this problem is easily solved using the result
seen in the theoretical introduction. In this introduction we have demonstrated that

Fig. 7.24 Metallic sphere in presence of a charge q2. The charge q1 is the corresponding image
charge
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when two electric charges of different values are placed at a distance a from each
other, the equipotential surface corresponding to the zero potential is a sphere whose
center lies on the line connecting the charges. Thus, the problem can be understood
as follows: given ametal sphere S and an external charge q = q2, where an additional
charge should be placed, such that the surface of zero potential obtained for the two
charges does coincide with the spherical surface S?

To answer this question we can employ the equations seen in the theory (see
Fig. 7.1). In particular those of most interest are

q1 = − R

y0 + a
q2 = − R

d0
q2, (7.244)

and

y0 = R2

d0
, (7.245)

which represent the fictitious charge that together with q2 produces zero potential
on the surface of radius R, and the distance between q1 and the center of the sphere,
respectively.17 Physically it allows us to substitute the metallic sphere by a charge
of magnitude given by (7.244), at y0, because the effect is the same (it fulfills the
boundary conditions). The potential created by this electric system outside of the
sphere is

V (x, y, z) = 1

4πε0

R

d0

−q2√
x2 + (y − R2

d0
)2 + z2

+ 1

4πε0

q2√
x2 + (y − d0)2 + z2

.

(7.246)
The potential for points in the interior may be deduced by using the Gauss theorem
shown in Chap.2. As it was demonstrated the electric field in the interior of a con-
ductor in equilibrium is zero. As a result, the potential is, in principle, a constant.
In our case the sphere was grounded which means that the potential on the surface
must be zero, and in the interior of the surface too, because the potential inside has
to take the value zero when approaching the surface.

(b) The surface density charge may be calculated by means of the boundary
condition in the proximity of the conductor

σ(x, y, z) = ε0
∂V (x, y, z)

∂n
= ε0nE. (7.247)

This means we have to obtain firstly the electric field, and then σ. The electric
field is easy to calculate through the potential V (x, y, z), by using gradient, i.e.
E = −∇V (x, y, z), obtaining

17Observe that here we have written the equation keeping the signs. In the theory (7.55) appears as
q1 = R

d0
q2 because we knew q2 was negative.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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(a) (b)

Fig. 7.25 Density of charge versus the angles φ and θ corresponding to spherical coordinates. The
maximum absolute value of σ(x, y) is reached at (φ, θ) = (π/2,π/2). The difference between the
graphics in (a) and (b) corresponds only to the sign of the charge induced

E(x, y, z) = q2
4πε0

(
1

|r − r2|3 (r − r2) − R

d0|r − r1|3 (r − r1)
)

(7.248)

where r2 and r1 refer to the position vectors of the charge q = q2 and the image
q1 = − R

d0
q2, respectively.

Due to the symmetry of the problem, it seems to be adequate to choose the normal
n to the surface in spherical coordinates, which coincides with uρ.

E(x, y, z) = q2
4πε0

(
1

|r − r2|3 (rur − d0uy) − R

d0|r − r1|3 (rur − R2

d0
uy)
)

.

(7.249)

In order to make the scalar product of the electric field with the normal vector we set
uy = sin θ sin φuρ + cos θ sin φuθ + cos θ uφ, obtaining,

σ(x, y, z) = ε0nE = q2
4π

1

(x2 + (y − d0)2 + z2)3/2
(R − d0 sin θ sin φ). (7.250)

− q2
4π

R

d0(x2 + (y − R2

d0
)2 + z2)3/2

(R − R2

d0
sin θ sin φ)

Obviously, the induced surface charge density is not homogeneous (Figs. 7.25 and
7.26). This is logical because the presence of the charge q2 in front of the metallic
sphere modifies the charge distribution on its surface. Observe that, for a fixed dis-
tance between the charge and the sphere, the accumulation of induced charge is a
maximum in the direction (φ, θ) = (π/2,π/2) with respect to the coordinate frame
chosen.

7.9 A metallic sphere of radius R has its center coinciding with the origin of coordi-
natesO(0, 0, 0). A point charge q2 is located at the pointP(0, d0, 0)with d0 > R.
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Fig. 7.26 Curves of constant
density charge in the space
of the angles φ and θ

If the sphere is connected to a constant potential V0, find: (a) The potential for all
points of	3. (b) The electric field. (c) The surface charge density on the surface.
(d) The force exerted on the charge (Fig. 7.27).

Solution

If we wish to solve this problem directly as in the preceding case we have some
difficulties, because the results obtained in the introduction were developed for the
case of zero potential. At first glance we could think in solving the (7.48) for an
arbitrary value of C, and proceed like in the previous exercise, that is, adjusting
an image charge and its location so that the spherical surface of constant potential
obtained coincides with the potential V . However this is not possible. In fact, if we
solve the (7.48) for an arbitrary value of the constants C, it can be demonstrated that
the surface of constant potential is not a sphere, which means that it is not possible
to solve this problem by only using one image charge (Fig. 7.28).

To face this problem we can divide the system into more subproblems, but
being careful that the boundary conditions of the initial system are maintained.
To do so, we will employ the principle of superpositions of fields. This proce-
dure is justified because of the linearity of the Laplace equation.18 In fact, if V1(r)
and V2(r) separately verify this equation, the function constructed by the sum, i.e.
V (r) = V1(r) + V2(r) is also a solution. On the other hand, if we obtain a solution
by means of a configuration of fictitious charges, due to the uniqueness theorem, the
solution sought is the same as the actual problem (Fig. 7.29).

If we remember the preceding problem, we obtained a spherical surface of zero
potential. As in our case the problem is to simulate the metallic sphere that has
a potential V0, we must only add a configuration of charges in such a way that
its corresponding potential coincides with V0. Usually it would be a very, if not
impossibly, difficult task. However, due to the spherical symmetry of the problem,
it seems to be plausible to seek a geometrical disposition of charges that fulfills the
requirements. In fact, as the potential generated by an electric charge has spherical

18If the partial differential equation is non-linear, the principle of superposition does not apply.
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Fig. 7.27 Metallic sphere held to a constant potential V0 in front of a charge q2

(a) (b)

Fig. 7.28 a Surface of constant potentialV (x, y, z) = C = 0.25 of two charges q1 and q2 = − R
d0
q1,

for R
d0

= 0.5. b Two dimensional cross-section. Observe that only changing the potential from
V = C = 0 to V = C = 0.25, the equipotential surface obtained does not correspond to a sphere

Fig. 7.29 Considering the principle of superposition the problem is equivalent to the sum of the
two problems. If we find the charge distribution that creates a potential V0 on a surface of radius
R, the solution may be expressed as sum of the potential due to two charges q1 and q2, so that
q1 = − R

d0
q2 (we obtain zero potential), and the potential produced by the other system of charges
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symmetry, the easiest solution one may think is to locate a charge Q at the center of
the sphere, whose exact value is at the beginning unknown. In order to obtain the
same behavior for the system, the value and sign of Q must be adjusted so that the
potential on the sphere surface is V0. To calculate its magnitude we need only employ
the expression for the potential of an electric charge Q, i.e.

V (r) = 1

4πε0

Q

r
, (7.251)

and then the potential V0 may be obtained from this latter equation as follows

Q = 4πε0RV (R) = 4πε0RV0. (7.252)

Applying the commented principle of superposition, the potential at any point of
space may be regarded as the sum of the potential generated by two charges q1 and
q2 (see the former problem) and the potential due to a point charge at the origin of
the coordinate frame

V (x, y, z) = 1

4πε0

R

d0

−q2√

x2 + (y − R2
d0

)2 + z2
+ 1

4πε0

q2√
x2 + (y − d0)2 + z2

+ RV0√
x2 + y2 + z2

.

(7.253)
For points r < R we proceed using Gauss’ theorem. In effect, we know that the
electric field inside of the conducting sphere is zero, and the potential is a constant
magnitude. However, contrary to the preceding exercise, the potential now is V0 if
r < R, which fulfils the boundary condition on the surface.

(b) The electric field may be directly calculated by means of the gradient of the
potential,

E = −∇V (x, y, z) = q2
4πε0

(
1

|r − r2|3 (r − r2) − R

d0|r − r1|3 (r − r1)
)

+ RV0

r3
r,

(7.254)

where r2 = d0 uy, and r1 = R2

d0
uy. Introduction of these values in the latter equality

leads to

E(x, y, z) = q2
4πε0

(
1

|r − r2|3
(rur − d0uy) − R

d0|r − r1|3
(rur − R2

d0
uy)

)

+ RV0
r2

ur . (7.255)

In the interior of the sphere the electric field is zero.
(c) Using the formula (7.247), the surface charge density is

σ(x, y, z) = ε0
∂V (x, y, z)

∂n
, (7.256)

and then
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σ(x, y, z) = ε0nE = 1

4π

(
1

(x2 + (y − d0)2 + z2)3/2
(R − d0 sin θ sin φ)

)

− 1

4π

(
R

d0(x2 + (y − R2

d0
)2 + z2)3/2

(R − R2

d0
sin θ sin φ)

)

+ ε0RV0

r3
. (7.257)

(d) The force on the charge by the conducting sphere is very hard to compute.
However we have found an electrical configuration which, in some extent (see next
problem), is equivalent to the system in Fig. 7.27. For this reason the calculus may
be simplified if we take into consideration that this force is the same as that which
would be produced by the two image charges. The force is

F = −1

4πε0

Rd0q22
(d20 − R2)2

ur + RV0q2
d20

ur . (7.258)

7.10 For the geometrical disposition of the preceding problem, let us suppose that
initially the charge q2 was far away of the sphere. If the sphere is maintained
at constant potential V0, calculate the work necessary to bring the charge q2
from its initial position to the point d0.

Solution

Applying the definition of work we will calculate it. Starting from P1 = ∞ and
finishing at P2 = d0, we have

W =
∫ P2

P1

F(r).dr = lim
P1→∞

∫ P2

P1

q2 E(r).dr = lim
P1→∞

∫ P2

P1

−q2 ∇V (x, y, z).dr =
(7.259)

= −q2 (V (P2) − V (∞)) = −q2V (P2),

that is,

W = −1

8πε0

Rq22
(d20 − R2)

+ RV0q2
d0

. (7.260)

7.11 On the same metallic sphere of the preceding exercises a charge Q is placed
on its surface. A point charge q is located at the point P(0, b, 0) where b > R.
Determine: (a) The potential for all points of space. (b)The electric field. (c)
The surface charge density of the conducting sphere.

Solution

This problem can be resolved with the help of the results obtained in the preceding
exercises. As we have shown in the problem (7.8), by means of an image charge q1
with respect to an external charge q2, we can only obtain a spherical surface if the
potential is zero (V = C = 0), otherwise it is necessary to introduce changes in the
system in order to reach the desired potential. In a similar manner, when a charge Q
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is placed on a metallic sphere, the only thing we know is that the conducting surface
will be a sphere of constant potential, but not necessarily zero. The condition we
have is that the total charge enclosed in the surface is Q, then employing the Gauss
theorem it may be written ∮

S
E · dS = Q

ε0
. (7.261)

Due to the spherical symmetry of the problem, the idea consists of introducing another
charge q3 at the centre of the sphere whose valuemust be determined, and adjusting it
so that we obtain the constant potential desired. To find out q3, we can apply (7.261)
as follows. Let us first thing of a charge q2 in the exterior and a grounded spherical
surface. For understanding this systemwe can put an fictitious image charge q1 inside
of the sphere whose effect together with q2 is to bring the metallic sphere to zero
potential. If nowwe have a actual total chargeQ on the surface the potential changes.
In this situation, applying (7.261) holds

∮

S
E · dS = Q

ε0
= q1 + q3

ε0
. (7.262)

Physically this latter result means that the final effect of having a charge Q on the
sphere is equivalent to those generated by two fictitious charges at points y0 = R2

b ,
and y = 0. From (7.262) we have

Q = q1 + q3 ⇒ q3 = Q − q1,

thus introducing in this expression the value of Q1 (7.244) calculated previously it
yields

q3 = Q + q2
R

b
, (7.263)

and then the potential is

V (x, y, z) = 1

4πε0

⎛

⎝R

b

−q2√
x2 + (y − R2

b )2 + z2
+ q2√

x2 + (y − b)2 + z2
+ Q + q2

R
b√

x2 + y2 + z2

⎞

⎠

(7.264)

For the interior of the metallic sphere, as we know, the potential is uniform, but
due to the boundary conditions imposed it must not be necessarily the same as we
saw in latter problems. In fact, the potential depends only on the net charge enclosed
by the surface, and this is the charge Q located externally and the image charge that
appears as a consequence of q2. Thus, we have

V (x, y, z) = 1

4πε0

Q + q2
R
b√

x2 + y2 + z2
= 1

4πε0

Q + q2
R
b

R
(7.265)
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(b) The electric field may be directly calculated by means of the gradient

E(x, y, z) = 1

4πε0

(
q2

|r − r2|3
(rur − buy) − q2R

b|r − r1|3
(rur − R2

b
uy) + Q + q2

R
b

R2
ur

)

(7.266)

(c) The surface charge density is (7.247)

σ(x, y, z) = ε0
∂V (x, y, z)

∂n
, (7.267)

thus

σ(x, y, z) = ε0nE = 1

4π

(
q2

(x2 + (y − b)2 + z2)3/2
(R − b sin θ sin φ)

)
− (7.268)

1

4π

(
q2R

b(x2 + (y − R2

b )2 + z2)3/2
(R − R2

b
sin θ sin φ) + Q + q2

R
b

R2

)

.

7.12 The system of the figure is composed by a metallic sphere of radius R1 and a
circular conducting wire of radiusR2. The coil is charged with a total chargeQ2

(Fig. 7.30). Find the electric field at any point P on the OZ axis of a cartesian
coordinate frame.

Solution

To face this problemwe can use the results obtained in the Exercise 7.8, to help us. In
fact, wewill first focus our attention on the potential generated by a system composed
of a metallic sphere and a charge q2. As we are going to see, the solution found is
directly applicable to our present problem. To explain it, look at the Fig. 7.31a. Let
us suppose we examine only one of the charges located over the conducting ring of
radius R2, namely q2. Setting aside the other charges, to q2 corresponds an image
charge q1 located inside of the sphere. Now, if we fix our attention only to another
charge q′

2 infinitely close to q2, as it would be alone, we can again find a fictitious
charge q′

1. Both image charges obtained are placed at distinct points in the space,

Fig. 7.30 A metallic sphere with a circular conducting ring
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(a) (b)

Fig. 7.31 Planar view of the system. a The charges q′
1, q

′′
1 , q

′′′
1 ,…, q

′n
1 are the respective images of

the charges q′
2, q

′′
2 , q

′′′
2 ,…, q

′n
2 located in the conducting wire. b The circle in red corresponds to the

metallic sphere of radius R1

but at the same distance to the surface S. It seems to be logical that, if we repeat
this reasoning with all charges composing the metallic ring we will obtain a set of

image charges q
′n
1 whose location forms another circle of radius r = y0 = R2

1
R2

(7.52).
This new circle represents the image of the external circular conducting wire, and
having a total charge Q1 = ∑n

i=1 q
′n
1 . From the viewpoint of the method of images,

this reasoning shown leads to an equivalent pose of the problem in the following
terms: calculate the electric field on the axis OZ , generated by two concentric and
parallel metallic rings of radius19 R2 and R1, charged with Q2 and Q1 coulombs,
respectively.

To respond to this question we can directly use (7.244). Introducing the notation
chosen it yields

Q1 = −R1

R2
Q2. (7.269)

InChap.2we studied the electric field producedby a circular conductingwire charged
by a homogeneous lineal charge density λ = 2πR2Q2. The formula is

E = 1

4πε0

zq

(R2 + z2)
3
2

uz (7.270)

Taking into account this result, substituting R = R2 and q = Q2, we get the field Ew

produced by the metallic wire

Ew = 1

4πε0

zQ2

(R2
2 + z2)

3
2

uz. (7.271)

19Remember that, for a point charge located at a distance d0 from the origin of a conducting sphere
of radius R, the following formula holds R2 = y0d0, where y0 is the distance of its center to the
image charge.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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In the same way, setting r = R2
1

R2
and (7.269) into (7.270) we get the electric field

generated by the image ring

ER = 1

4πε0

zQ1

(r2 + z2)
3
2

uz = −1

4πε0

zR1Q2

R2((
R2
1

R2
)2 + z2)

3
2

uz. (7.272)

Applying the principle of superposition

E = Ew + ER = zQ2

4πε0

⎛

⎝ 1

(R2
2 + z2)

3
2

− R1

R2((
R2
1

R2
)2 + z2)

3
2

⎞

⎠uz, (7.273)

which represents the field at any point on the revolution axis of the system.

7.13 Let us suppose that the Neumann boundary conditions apply. Demonstrate
that the election of ∂G

∂n = 0 for the Green function on the surface yields to a
contradiction.

Solution

In the development of the theory we have seen for the definition of Neumann’s
function imposed that the normal derivative on the surface S must be a constant
(7.37). Taking into consideration the definition of Green’s function it seems more
logical to choose this derivative to be zero because it makes the solution easier.
However, if we analyze the problem in more detail we conclude that this choice
leads to a contradiction. In fact, by applying Gauss’ theorem on the left side of (7.36)
we obtain
∫ ∫ ∫

D
�N(r, r′)dV ′ =

∫ ∫ ∫

D
∇ · ∇N(r, r′)dV ′ =

∫ ∫

S′
(
∂N(r, r′)

∂n′ )dS′ = 0.

(7.274)
Taking volume integrals on the right side of (7.36),it results

∫ ∫ ∫

D
�N(r, r′)dV ′ =

∫ ∫ ∫

D
δ(r, r′)dV ′ = 1, (7.275)

that is 1 = 0, which is a contradiction.

7.14 Show that in the case of the Neumann problem, the constant value chosen for
the normal derivative on the surface S′ is not arbitrary, and calculate it.

Solution

By applyingGauss’s theorem to (7.36), and taking into consideration (7.37), we have

∫ ∫ ∫

D
�N(r, r′)dV ′ =

∫ ∫ ∫

D
∇ · ∇N(r, r′)dV ′ =

∫ ∫

S′ (
∂N(r, r′)

∂n′ )dS′ = C
∫ ∫

S′ = CS.

(7.276)
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On the other hand, the first integral on the left may be calculated

∫ ∫ ∫

D
�N(r, r′)dV ′ =

∫ ∫ ∫

D
δ(r, r′)dV ′ = 1, (7.277)

then,

C = 1

S
, (7.278)

where S is the boundary surface of the region D.

7.15 When studying the conformal mapping in the theoretical introduction we pro-
posed a formulation for defining a complex potential under some circum-
stances. By using the Maxwell equations show another procedure to introduce
the complex potential.

Solution

As we saw in the introduction of this chapter, sometimes a problem in three dimen-
sions can be reduced to two variables because of symmetries. This is the case, for
example, of problems in which the fields are the same on every section perpendicular
to an axis. As we shall show in the next problems, for these specials problems it is
possible to use methods that are based on complex variables to find the solution. To
show this, consider a region of space free of charge, then

∇ · E = 0, (7.279)

∇ × E = 0. (7.280)

Equation (7.279) means that a scalar potential V (r) for E may be found, i.e.

E = −∇V (r). (7.281)

On the other hand, as in the case of the magnetic field (∇ · B = 0), (7.280) allows
us to introduce a vector potential for E. In effect, let this potential be �, then

E = ∇ × �. (7.282)

To study a plane electric (or magnetic) field we only need two variables, namely
(x, y). In this case, the third component of E does not appear, and then component z
of the rotational (7.282) must be zero, i.e.

Ez = ∂�y

∂x
− ∂�x

∂y
= 0. (7.283)

The simplest possibility to fulfill (7.283) is to choose�x = �y = 0, hence the vector
potential � has only the component along the OZ axis,
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E = ∂�z

∂y
ux − ∂�z

∂x
uy. (7.284)

Simultaneously, from (7.279) we have for the x and y components of the electric
field E,

E = −∂V

∂x
ux − ∂V

∂y
uy, (7.285)

and comparing (7.284) with (7.285), we have

Ex = −∂V

∂x
= ∂�z

∂y
,Ey = −∂V

∂y
= −∂�z

∂x
. (7.286)

These (7.286) have the same structure as the Cauchy–Riemann relations of complex
analysis, and aswe have commented in Sect. 7.5.4,we can form a function of complex
variable z which physically represents the potential. In fact, we can write

f (z) = �(x, y) + iV (x, y). (7.287)

This equation is similar to (7.69), but its real and imaginary parts have been inter-
changed. Now the curves of constant potential V (x, y) = C1 correspond to the imag-
inary part of (7.287), and the lines of force �(x, y) = C2 take the place of the
imaginary part of f (z). This result affects neither the key idea of the method nor the
basic procedure for solving problems. Actually, the choice of V (x, y) and �(x, y)
as real or imaginary parts of the potential is completely arbitrary. We could have
develop in the same manner and with the same validity the technique exposed in the
theory with an expression like (7.287), but the formulae seen there changed some
signs and constants. For instance, considering the potential in the form of (7.287) for
the electric field holds

E(z) = −∂V (x, y)

∂x
− i

∂V (x, y)

∂y
= −∂V (x, y)

∂x
− i

∂�(x, y)

∂x
= −

(
∂V (x, y)

∂x
+ i

∂�(x, y)

∂x

)
=

(7.288)

−i

(
∂�(x, y)

∂x
− i

∂V (x, y)

∂x

)
= −if ′(z).

As we can see the only difference with (7.74) is the factor i.

7.16 InChap.2we have seen the electric field created by a very long conductingwire
charged with a homogeneous density of charge λ. Find its complex potential
and show the potential level curves and the force lines.

Solution

Let us suppose, for simplicity, that the wire is located along the OZ axis coinciding
with the origin of coordinates of the cartesian system. As the wire is very large, we
have translational symmetry alongOZ . Thismeans that we can reduce the calculation

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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to a plane perpendicular to the OZ direction, with the result we will obtain the same
for every plane parallel to the OXY plane (see theory).

For finding the complex potential we start with the formula of the electric field
generated by a large metallic wire holding a density of charge per unit length λ. As
it was demonstrated in Chap.2, the expression of E is

E = λ

2πε0ρ
uρ, (7.289)

where ρ is the distance from the point where the field is calculated to the wire, and
ε0 is the permittivity. Setting uρ as functions of its cartesian components we obtain

E = λ

2πε0
√
x2 + y2

(cosφux + sin φ uy) = λ

2πε0
√
x2 + y2

(
x

√
x2 + y2

ux + y
√
x2 + y2

uy) =
(7.290)

λ

2πε0

(
x

(x2 + y2)
ux + y

(x2 + y2)
uy

)
.

Now, we construct a complex number in such a way that its real and imaginary parts
coincide with the components of (7.290)

E = Ex + iEy = λ

2πε0

x + iy

(x2 + y2)
. (7.291)

Transforming this equation to z coordinates, we have

E = λ

2πε0

z

z z
= λ

2πε0

1

z
. (7.292)

Introduction of this last result into (7.75) gives

f (z) = −
∫

E(z) dz + a = −
∫

λ

2πε0

1

z
dz + a = − λ

2πε0

∫
1

z
dz + a = λ

2πε0
ln

1

z
+ a, (7.293)

a being a constant. This result represents the complex potential corresponding to the
electric field (7.289). Taking into consideration that z = ρ exp iθ (7.293) yields20

f (z) = λ

2πε0
(ln ρ + i θ), (7.294)

then

u(ρ, θ) = λ

2πε0
ln ρ, (7.295)

20For simplicity we will consider in what follows a = 0.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
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Fig. 7.32 a Real part of the complex potential. Observe that the circles represent the curves of
constant potential. b Imaginary part of f (z). The level curves are straight lines starting from the
origin of coordinates, where the wire is located

Fig. 7.33 Electric field created by the charged wire. The field lines are perpendicular to the level
curves of the potential (real part). The direction coincides with the force lines shown in Fig. 7.32a

and

v(ρ, θ) = λ

2πε0
θ. (7.296)

As we commented in the theory, the level lines u = C1 (Fig. 7.32a) represent the
equipotential curves, and v = C2 (Fig. 7.32b) the constant lines of force. If λ > 0
the lines of force are directed away of the singularity, and for λ < 0 the field lines
are pointed toward z = 0. The electric field is depicted in Fig. 7.33. Note that these
vectors are perpendicular to the curves u = C1.

7.17 Let us suppose a very largemetallic wire carries a homogeneous density current
j. Give the corresponding complex potential and study its real and imaginary
parts.

Solution

As we explained in Chap.5 (see Problem 5.1), the magnetostatic field produced by
a very large metallic wire only has a tangential component, i.e.

http://dx.doi.org/10.1007/978-3-662-48368-8_5


Solved Problems 487

H(ρ) = I

2πρ
uφ. (7.297)

By introducing the expression of the unitary vector uφ = (− sin φux + cosφuy)
(7.297) leads to

H = I

2π
√
x2 + y2

(− sin φ ux + cosφuy) = I

2π
√
x2 + y2

(
−y

√
x2 + y2

ux + x
√
x2 + y2

uy) =
(7.298)

I

2π

( −y

x2 + y2
ux + x

x2 + y2
uy

)
.

With this last formula the magnetic field expressed as a complex number adopts
the following form

H = Hx + iHy = I

2π

−y + ix

(x2 + y2)
= I

2π

i(x + iy)

(x2 + y2)
= I i

2π

z

zz
= I i

2πz
. (7.299)

Once the field is known, the complex potential may be obtained by means of (7.87)

F(z) = −
∫

H(z) dz + b = −
∫ −I i

2πz
dz + b = I i

2π

∫
1

z
dz + b = I i

2π
ln z = I i

2π
(ln ρ + i θ) + b,

(7.300)

where b is a constant which for simplicity we consider zero. Separating in real and
imaginary parts F(z) = I

2π (−θ + i ln ρ) = u + iv, we have

u(ρ, θ) = − I

2π
θ, (7.301)

and

v(ρ, θ) = I

2π
ln ρ. (7.302)

As we can observe the result is similar to the former problem, but the value of the
real and imaginary parts are switched. In fact, the curves of constant potential in a
reference frame of polar coordinates are now − I

2π θ = C1, which represent straight
lines as depicted in Fig. 7.32b for the electric field of awire.On the contrary, I

2π ln ρ =
C2 are the line forces and as the reader can probe there are perpendicular to the
isolines u(ρ, θ) = Constant at each point. The field lines, i.e. the magnetostatic field
generated by the wire currying an intensity I has the form shown in Fig. 7.34.

7.18 The attached figure shows a system composed by two very long conducting
cylinders of radii R and r, respectively (r < R), whose revolution axes are
parallel to each other, but they do not coincide. The inner cylinder is held to
zero potential and the other one to V0 volts. Determine the potential in the
region between cylinders and the capacitance per unit length of the system.
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Fig. 7.34 Magnetic field generated by a very large wire. The direction of the field coincides with
the lines of force represented by the imaginary part of the complex magnetic potential F(z)

Solution

The problem in its presented form is very difficult to solve. It would be easier if we
had two exact concentric cylinders as depicted in Fig. 7.35, because in such a case
the solution is well known. In order to obtain these new geometric configuration,
we must find a mapping for which our problem is transformed. With this aim, we
will investigate the characteristics we must have. In the introductory theory given
about this subject (Sect. 7.5.3), we saw that the fractional transformation (Möbius
mapping) has properties very adequate for this case. For instance, circles in the
z-plane are mapped into circles in the w-plane, then it seems to be logical to try
using these kind of functions for solving the question. Actually, we must find a
transformation that maps the exterior circle onto itself, and the center of the small
cylinder transforms into the origin of coordinates in the w-plane. Thus, we would
have two concentric circles in w, as we wanted. In this way, by means of the bilinear
transformation, points symmetric in the z-plane with respect to a circle are mapped
into points symmetric with respect to the transformed circle in the plane w. Taking
it into account we see that the circles will be concentric if we find two points in
z-plane that are symmetric with respect to both circles, simultanously. These two
symmetric points will be transformed into two symmetric points inw with respect to
the new geometry. Considering the disposition shown in Fig. 7.35, and labelling x1
and x2 the coordinates over the OX axis in the z-plane (because of the disposition),
the equations that must be fulfilled in order to find a transformation are the following

x1 · x2 = R2, (7.303)

and
(x1 − d) · (x1 − d) = r2. (7.304)

The first one gives the symmetric point with respect to the big cylinder, and (7.304)
allows us to compute the same for the small circle. Observe that if we would only
have a centered circle (in this case of radius R), the symmetric point to (0, 0) is
the point z = ∞. However, because of the two conditions (7.303), and (7.304), the



Solved Problems 489

Fig. 7.35 Two metallic
cylinders whose revolution
axes are parallel to each other

solution is different. Combining both equations, we obtain a new expression where
only one variable appears,

d x21 + (r2 − R2 − d2) x1 + d R2 = 0. (7.305)

The solution of (7.305) gives two roots that solve the problem. The bilinear trans-
formation we find has the following form

w = f (z) = α
z − x1
z − x2

, (7.306)

where x1 and x2 are yet unknown. The parameter α is, in general, a complex number
that does not affect the final result. Introductions of the values r = 0.2, d = 0.2, and
R = 1 into (7.305) 0.2 x21 − x1 + 0.2 = 0 yields x1 = 0.21 and x2 = 4.79, therefore

f (z) = z − 0.21

z − 4.79
= w. (7.307)

The mapping (7.307) transforms the two eccentrical circles of the z-plane into two
centered circles in the w-plane. The new radii of the cylinders can be calculated
by means of the (7.307). In fact, w1 = |f (0)| ≈ 0.04 and w2 = |f (R = 1)| ≈ 0.2.
The expression of the potential between two concentric metallic cylinders held to
potentials V1 = 0 and V2 = v0 in the coordinates of the plane w is21

ϕ(w) = V0

ln
(

w2
w1

) ln

( |w|
w1

)
, (7.308)

where |w| = √
u2 + v2 represents in that plane the same as ρ in the z-plane. The

solution is determined by mapping (7.308) back to the z-plane. It can be immediately
performed by substituting (7.307) into (7.308)

21The calculation of the potential in aOXY coordinate frame, may be directly obtained from the dif-

ferential equation 1
ρ

∂
∂ρ

(
ρ ∂V

∂ρ

)
= 0, with boundary conditions V (r) = V1 and V (R) = V2 (r < R).

The solution is V (ρ) = V2−V1
ln
(
R
r

) ln
( ρ
r

)+ V1.
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V (x, y) = V0
ln(5)

ln

∣
∣
∣
∣
25(z − 0.21)

(z − 4.79)

∣
∣
∣
∣ = V0

ln(5)

[
ln(25) + 1

2
((x − 0.21)2 + y2) − 1

2
((x − 4.79)2 + y2))

]
.

(7.309)
This result is represented in Fig. 7.36a. Figure7.36b shows the curves of constant
potential between the two cylinders. The imaginary part of the complex potential
which gives information of the line forces can be computed with the (7.70) by means
of a simple integration. The result is depicted in Figs. 7.37 and 7.38.

7.19 The cross section of a square prismatic metallic system (see Problem 7.3) is
formed by four sides of length L. The depth h of the system is larger than L
(L << h) and each of its sides is held to potentials A, B,C, andD, respectively.
Calculate the potential at any interior point of the system in the following cases:
(a)A = 200,B = 0,C = 0, andD = 0. (b)A = 500,B = 0,C = 0, andD = 0.
(c)A = 500,B = 100,C = 0, andD = 0. (d)A = 500,B = 100,C = 300, and
D = 400.

(a) (b)

Fig. 7.36 a Graphic of the potential V (x, y). b Curves of constant potential on the OXY plane

Fig. 7.37 The geometry of
the problem in the w-plane
corresponds to two
concentric cylinders of radii
w1 and w2
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Fig. 7.38 Line forces
between the two circles in
the z-plane. Observe that this
vector field is perpendicular
to the level potential curves

Solution

Due to the side of the square section being much smaller than the length of the
prismatic hole (L << h), we can study the system as a two dimensional problem
(Fig. 7.39). The only solution we are going to find differs from the actual one in
the vicinity of the top and bottom of the prismatic geometry, where the end effects
are present. Accepting this viewpoint, we will work with a cross-section of the four
metallic plates as depicted in Fig. 7.40. For obtaining the electric field inside of the
system we have previously successfully employed the technique of separation of
variables. However, now we want to apply the method of finite differences with the
aim to explain the procedure. As we will see, by examining only a few points we are
able to know roughly the electric field between the metallic sheets. By this method
we want to obtain a numerical solution of the laplace equation inside of the region of
interest. Because of its characteristics, it follows that we can perform the calculation
only at a finite number of points, and therefore we must first construct a discretized
model adapted to the specifications of the problem to be solved. The points selection
over the domain of interest depends on the geometry and resolution wewant to reach.

We begin to construct a grid of points with the intersections of crossing parallel
lines to the coordinate frame. The more resolution, the more points, but also more
computation steps and time consuming. As we have seen in Sect. 7.6.1, the basic
idea consists in determining an approximate solution at any node of the mesh by
averaging of its nearest four neighbors. Boundary points have information of the

Fig. 7.39 Square metallic
guide
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Fig. 7.40 Square sections
with the 36 points to be
studied

boundary conditions given, and their values and the mesh size must be introduced
in the equations correctly. Otherwise the solution propagates with errors which are
amplified at every step.

In order to have all possibilities for the different Dirichlet boundary conditions on
all the sides, we suppose that the potential on the edges of the square section are A,
B,C andD, respectively. It means that the potential for the points over these lines are
known.We start at point 8 of the Fig. 7.40, which depends on V2, V7, V9, and V14, one
of them is located on the boundary (V2), and continue in order to the point 29. The
general system of equations for the 16 points inside of the square is the following

4V8 − V9 − V14 = A + D (7.310)

4V9 − V8 − V10 − V15 = A (7.311)

4V10 − V9 − V11 − V16 = A (7.312)

4V11 − V10 − V17 = A + B (7.313)

4V14 − V8 − V20 − V15 = D (7.314)

4V15 − V9 − V14 − V16 − V21 = 0 (7.315)

4V16 − V10 − V15 − V17 − V22 = 0 (7.316)

4V17 − V11 − V16 − V23 = B (7.317)

4V20 − V14 − V21 − V26 = D (7.318)

4V21 − V15 − V20 − V22 − V27 = 0 (7.319)

4V22 − V16 − V21 − V23 − V28 = 0 (7.320)

4V23 − V17 − V22 − V29 = B (7.321)

4V26 − V20 − V27 = C + D (7.322)

4V27 − V21 − V26 − V28 = C (7.323)

4V28 − V22 − V27 − V29 = C (7.324)
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4V29 − V23 − V28 = C + B. (7.325)

It is interesting to note that for Dirichlet boundary conditions, the procedure does
not begin at points over the boundary. We start with points placed over the next line.
This situation differs from that corresponding toNeumann. In that case the conditions
are over the normal derivative on the surface, which leads to one additional system
of equations taking the points over the boundary.

Setting the (7.310)–(7.325) in matrix form we get

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
−1 4 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 −1 4 0 0 0 −1 0 0 0 0 0 0 0 0

−1 0 0 0 4 −1 0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 −1 4 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0 4 −1 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0
0 0 0 0 0 0 0 −1 0 0 −1 4 0 0 0 −1
0 0 0 0 0 0 0 0 −1 0 0 0 4 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V8
V9
V10
V11
V14
V15
V16
V17
V20
V21
V22
V23
V26
V27
V28
V29

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A + D
A
A

A + B
D
0
0
B
D
0
0
B

C + D
C
C

C + B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.326)

The problem reduces to calculating the inversematrix andmultiplying it by the vector
containing a combination of values of boundary conditions. Specifically for the first
case (case (a)) the side A is held to potential V = 200v, then introducing in (7.326)
A = 200, we obtain ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V8

V9

V10

V11

V14

V15

V16

V17

V20

V21

V22

V23

V26

V27

V28

V29

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

90.9
118.9
118.9
90.9
44.7
65.9
65.9
44.7
22.0
34.1
34.1
22.0
9.1
14.4
14.4
9.1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.327)
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Fig. 7.41 Surface representing the potential inside of the prismatic system for A = 200, B = 0,
C = 0, and D = 0. Observe the level curves in both graphics

Fig. 7.42 Three
dimensional representation
of V (x, y) for A = 500,
B = 0, C = 0, and D = 0

Figure7.41 represents the scalar surface corresponding to potential. Observe that
even if the mesh resolution chosen is bad, the result is enough to see the behavior of
the potential (Fig. 7.42).

(b) Starting with the same scheme we substitute A = 500, B = 0, C = 0, and
D = 0 into (7.326), obtaining the following vector with values of the potential for
all points studied, i.e.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V8

V9

V10

V11

V14

V15

V16

V17

V20

V21

V22

V23

V26

V27

V28

V29

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

227.3
297.3
297.3
227.3
111.7
164.8
164.8
111.7
54.9
85.2
85.2
54.9
22.7
36.0
36.0
22.7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.328)

The diagram for this case is exhibited in Sect. 7.6.1. The figure has the same basic
characteristics like the picture presented in Fig. 7.41. The most important difference
appears in the potential on the side A, because of the initial condition here. The rest
of the interior points take also other values, but the form of the surface has the same
structure.

(c) In the same manner that we have seen in the foregoing sections, if two sides
of the system are held to potentials A = 500, B = 100, and on the edges C andD are
zero, we put such a values in (7.326) again yielding

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V8

V9

V10

V11

V14

V15

V16

V17

V20

V21

V22

V23

V26

V27

V28

V29

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

231.8
308.3
319.7
272.7
118.9
181.8
197.7
171.2
62.1
102.2
118.2
114.4
27.3
47.0
58.3
68.2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.329)
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Fig. 7.43 Two perspectives of the surface representing the potential inside of the prismatic system
for A = 500, B = 100, C = 0, andD = 0. Note that in this case the curves of constant potential are
not symmetric like Fig. 7.17

(a) (b)

Fig. 7.44 Graphic when A = 500, B = 100,C = 300, andD = 400. a Lateral view of the function
V (x, y). b Same representation but viewed from the right

The potential versus the coordinates x and y is shown in Fig. 7.43. Now, the level
curves22 are not similar to that which we saw in Fig. 7.17 for the rectangular plate.
This follows from the introduction of the potential on side B, which breaks the
symmetry with respect to an axis passing across the geometrical center and parallel
to B (Fig. 7.44).

(d) Introduction of A = 500, B = 100, C = 300, and D = 400 into (7.326)
leads to

22Remember what we saw in Chap.1. The level curve (or level surface) is in the domain of the
scalar function considered.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V8

V9

V10

V11

V14

V15

V16

V17

V20

V21

V22

V23

V26

V27

V28

V29

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

427.3
419.3
385.2
304.5
389.8
364.8
317.0
233.0
367.0
333.0
285.2
210.2
345.5
314.8
280.7
222.7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.330)

The picture corresponding to this vector is represented below.

7.20 A big ferromagnetic material has a hole inside with the shape of a square
prism. In the centre of it a very large metallic wire carrying a current I = 1 A
is located (see figure attached). Supposing that μ is very high and the edge of
the hole has length L, using the finite difference method (FDM), determine the
magnetostatic potential in the square region showed in the figure and sketch
the magnetic field lines.

Solution

Before beginning the calculation we are going to analyze the symmetries, because it
shows us how to simplify the problem.

As we can observe, the system of Fig. 7.45 has translational symmetry in the
direction of the axis perpendicular to the plane view. Let us choose this direction
as the OZ axis. Because of this characteristic we can consider the system as a two
dimensional problem, and therefore the solution we will find to be the same for all
parallel planes to that figure. On the other hand, according to its square cross section,
we also have a four order rotational symmetry with respect to OZ , which means that
we do not need to calculate the potential directly at every point of the grid, but only
at those locations inside a triangle of side L, because the solution for the other parts
are connected together. Now, let us follow with the scalar potential.

In a region of the space where there are no currents ∇ × H = 0, so in a way
similar to what we have seen for the electric field, we can define a magnetostatic
potential Vm so that

H = −∇Vm. (7.331)

By virtue of that equation the linear integral between two points a and b not passing
throughout the current depends on such endpoints, i.e.,
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Fig. 7.45 Rectangular grid. The first region corresponds to the triangle without an asterisk. The
other regions on the left, on the right and on the upper triangle are depicted with one asterisk ∗,
two ∗∗ and three ∗ ∗ ∗, respectively

(a) (b)

Fig. 7.46 a Open curve with extremes a and b. b Closed curve. The initial point a on the plane
OXY is the same as the final point in the integration

∫ b

a
H dl = −

∫ b

a
∇Vm dl = Vm(a) − Vm(b). (7.332)

In principle, it seems to be the same as we studied for the electric potential, however
there are some differences. The most important difference between both potentials
deals with the region where the magnetostatic potential is defined. To explain them,
let us suppose a point a as shown in Fig. 7.46, from which we begin to construct a
closed curve. If we go step by step we have an open curve, but at the end of the trace
we reach the same point a, then we draw a closed line. Applying Ampère’s law we
have for the magnetic field H
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∮

�

H dl = I, (7.333)

which means that the integral over a closed curve � is not zero. Now, if we combine
this result with (7.332) it yields

Vm(a) − Vm(a) = I (!!!), (7.334)

a result that seems to be illogical because Vm(a) − Vm(a) should be zero, and not I .
The only possibility to make (7.334) feasible is that the value of the function Vm at
point a when starting to follow the curve � is not the same as the value it reaches
when arriving again at a after going around the curve; in other words it means that the
potential is a multivalued function of position, that is to say, that Vm maps different
images at the same point when closing the curve. In order to be clear and distinguish
the two values, we will label with an asterisk ∗ the second potential, then the (7.333)
converts to

Vm(a) − V ∗
m(a) = I. (7.335)

Mathematically this equation means that a discontinuity exists when completing a
whole closed circulation, and it is due to the fact that the region where we have the
potential is multiply connected (see Chap.1).23 In such a case we can understand
this behavior for Vm as if it displaces on another sheet when passing across the
discontinuity (see Fig. 1.30 from Chap.1).24 However we can prevent this problem
by introducing a cut barrier which avoids having a closed curve in such a way to link
currents. Once we have located the cut (there are infinite possibilities for that), the
potential in this constrained region is single-valued, then the curvilinear integral of
H over any closed curve will be zero.

To determine the scalar potential of this problem we must use the (5.60) Problem
5.1 of the magnetic field created by a very large metallic wire currying a current I
that we have seen in Chap.5, i.e.,

B = μ0I

2πρ
uφ ⇒ H = I

2πρ
uφ. (7.336)

Taking into account the symmetry of the system, by virtue of (7.331) and using
cylindrical coordinates we can write

H = −∇Vmuφ = −1

ρ

∂Vm

∂φ
uφ = I

2πρ
uφ, (7.337)

thus

1

ρ

∂Vm

∂φ
= − I

2πρ
⇒ Vm(φ) = −

∫
I

2π
dφ + D = − I

2π
φ + D, (7.338)

23If we complete n circulations around a current we get the expression Vm(a) − V ∗
m(a) = nI .

24Observe that this function seen in Chap.1 (tan−1
( y
x

)
) is the same as shown in Fig. 7.32.

http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_5
http://dx.doi.org/10.1007/978-3-662-48368-8_1
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D being an arbitrary constant. For this problem we choose D = 0, which does not
affect to the final result in any way.

Once we know the function Vm(φ) for the wire alone, we can employ the finite
difference method for calculating the scalar potential of the system represented in
Fig. 7.45. As we have seen in the previous problem, for applying the FDM we first
divide the region to be studied in subdomains by means of a mesh formed by parallel
lines, which intersect at points where we will calculate the solution of the differential
equation. However, in the present problem, we must not compute the calculations
for all the points we see in Fig. 7.45. On the contrary, due to the symmetry of the
rectangular cavity, we can perform the calculations in one of the triangles depicted,
and then the results for the other points may be computed by using the relation
between triangles which, as we are going to see, differ in quantities determined by
(7.338).

At the starting point let us divide the square region into four identical triangles
(Fig. 7.45). We will denote with asterisks the triangles on the left, on the right and
on the upper part of the square, and the first one on the lower region without signs.
For applying the finite difference method we mesh the region of interest by parallel
lines and the intersections of them are labelled with numbers. In this problem, with
the aim to be didactic and show the procedure, we have drawn in the square only 64
points. To explain the calculations it is enough and it does not lose generality. It only
has influence on the resolution of the final result, but it does not affect the idea of the
technique.Oncewe have identified the points, we choose one of the triangular regions
of the square. We begin with the lower triangle where every point has a number from
1 to 15. Observe that at the corner we have written 0, then we have 16 points to be
studied in each triangle. All points in this subregion have their corresponding point
in the other parts, which corresponds to the same number but labelled with asterisks
(see Fig. 7.45). Now, we will apply (7.95), however as it can be seen some problems
occur. As we have explained in Sect. 7.6.1, using FDM requires the knowing of the
potential values at the neighbors of the points where the potential will be computed.
As a result in our case we see that points such as 1, 2 or 5 need data from region ∗,
which are not known a priori. This difficulty may be solved by employing (7.338).
In fact, as the magnetic potential grows linearly with angle φ, then every point i∗ of
the region b will differ by a quantity I

4 , that is to say, if the potential at point 4 is V4

its equivalent in the region b, V ∗
4 = V4 + I

4 . The same occurs for domains c and d.
For these subregions it holds that V ∗∗

j = Vj − I
4 and V

∗∗∗
j = Vj + I

2 for j = 1, . . .N ,
N being the number of points. With these relations, the values of the potential at set
points of a domain are connected with the other ones. The second important thing
refers to the conditions on the boundaries. Let us suppose two media as shown in
Fig. 7.47, of permeabilities μ1 and μ2, respectively. If the angles of incidence with
respect the normal to the surface are α1 and α2, from the figure it yields

tanα1

tanα2
=
(

B1t
B1n

)

(
B2t
B2n

) , (7.339)



Solved Problems 501

(a) (b)

Fig. 7.47 a Magnetic field in the proximity of a boundary surface. b If μ2 >> μ2 the field lines
almost do not penetrate into the medium 2

but as B1n = B2n, H1t = H2t and Bit = μiHit (i = 1, 2), this equation becomes

tanα1

tanα2
= B1t

B2t
=
(
H1t
μ1

)

(
H2t
μ2

) = μ1

μ2
. (7.340)

This expression gives the behavior of the magnetic lines in the proximity of the
boundary of two media. If one of them has a high permeability (as in our case), for
instance material 2, μ2 >> μ1 separation, and therefore from (7.340) holds

tanα1

tanα2
= μ1

μ2
≈ 0 ⇒ α1 ≈ 0. (7.341)

This important resultmeans that themagnetic lines in the regionof lower permeability
are practically perpendicular to the boundary surface (Fig. 7.47). As a consequence
the separation surface corresponding to the domain of high μ may be approximately
considered as an equipotential surface. Taking into account that the material of the
problem is ferromagnetic, we cannot exactly speak about the magnetic permittivity,
because of its non-linear behavior. We mean that μ is a function of the magnetic field
and not a constant (see Chap. 6). However, even though in case of low H fields, the
corresponding μ(H) is usually larger than μ0 (vacuum or air), hence we can employ
the aforementioned conclusions. Thus, choosing for instance that the potential at
all points on the surface domain A are zero (at 0, 10, 11, 12, 13, 14 and 15),25 and
applying (7.94) to the points of the first triangle, we have

25Due to the potential at the boundary being constant, we could take another constant value for
these points, but in order to perform the calculations as simply as possible we have set it to zero.

http://dx.doi.org/10.1007/978-3-662-48368-8_6


502 7 Methods for Solving Electrostatic and Magnetostatic Problems

4V1 − V ∗
4 − V ∗

1 − V3 − V ∗∗
1 = 0 ⇒ 4V1 −

(
V4 + I

4

)
−
(
V1 + I

4

)
− V3 −

(
V1 − I

4

)
= 0 (7.342)

4V2 − V3 − V6 − V ∗
4 − V ∗

9 = 0 ⇒ 4V2 − V3 − V6 −
(
V4 + I

4

)
−
(
V9 + I

4

)
= 0 (7.343)

4V3 − V1 − V2 − V4 − V7 = 0 (7.344)

4V4 − V3 − V ∗∗
2 − V8 − V ∗∗

1 = 0 ⇒ 4V4 − V3 −
(
V2 − I

4

)
− V8 −

(
V1 − I

4

)
= 0 (7.345)

4V5 − V6 − V ∗
15 − V10 − V ∗

9 = 0 ⇒ 4V5 − V6 −
(
0 + I

4

)
− V10 −

(
V9 + I

4

)
= 0 (7.346)

4V6 − V2 − V5 − V7 − V11 = 0 ⇒ 4V6 − V2 − V5 − V7 − 0 = 0 (7.347)
4V7 − V3 − V6 − V8 − V12 = 0 ⇒ 4V7 − V3 − V6 − V8 − 0 = 0 (7.348)
4V8 − V4 − V7 − V9 − V13 = 0 ⇒ 4V8 − V4 − V7 − V9 − 0 = 0 (7.349)

4V9 − V8 − V ∗∗
2 − V ∗∗

5 − V14 = 0 ⇒ 4V9 − V8 −
(
V2 − I

4

)
−
(
V5 − I

4

)
− 0 = 0. (7.350)

Simplifying these equations we obtain

2V1 − V3 − V4 = I

4
(7.351)

4V2 − V3 − V4 − V6 − V9 = I

2
(7.352)

4V3 − V1 − V2 − V4 − V7 = 0 (7.353)

4V4 − V1 − V2 − V3 − V8 = − I

2
(7.354)

4V5 − V6 − V9 = I

2
(7.355)

4V6 − V2 − V5 − V7 = 0 (7.356)

4V7 − V3 − V6 − V8 = 0 (7.357)

4V8 − V4 − V7 − V9 = 0 (7.358)

4V9 − V2 − V5 − V8 = − I

2
, (7.359)

which form a system of 9 linear equation with 9 unknowns.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 −1 −1 0 0 0 0 0
0 4 −1 −1 0 −1 0 0 −1

−1 −1 4 −1 0 0 −1 0 0
−1 −1 −1 4 0 0 0 −1 0
0 0 0 0 4 −1 0 0 −1
0 −1 0 0 −1 4 −1 0 0
0 0 −1 0 0 −1 4 −1 0
0 0 0 −1 0 0 −1 4 −1
0 −1 0 0 −1 0 0 −1 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1

V2

V3

V4

V5

V6

V7

V8

V9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I
4
I
2
0

− I
2

I
2
0
0
0

− I
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.360)
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Calculating the inverse andmultiplication by the column on the right side introducing
I = 1 we get ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1

V2

V3

V4

V5

V6

V7

V8

V9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.125
0.125
0.055

−0.055
0.125
0.069
0.025

−0.025
−0.069

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.361)

Knowing the potential for all points in the subdomain a, we can determine the
other values by using the relations between homologous points V ∗∗

j = Vj − I
4 ,

V ∗
j = Vj + I

4 and V ∗∗∗
j = Vj + I

4 , the potential for the other points in b, c and d
may be determined. The results for these potentials are

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V ∗
1

V ∗
2

V ∗
3

V ∗
4

V ∗
5

V ∗
6

V ∗
7

V ∗
8

V ∗
9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.375
0.375
0.305
0.195
0.375
0.319
0.275
0.225
0.181

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.362)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V ∗∗
1

V ∗∗
2

V ∗∗
3

V ∗∗
4

V ∗∗
5

V ∗∗
6

V ∗∗
7

V ∗∗
8

V ∗∗
9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.125
−0.125
−0.195
−0.305
−0.125
−0.181
−0.225
−0.275
−0.319

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.363)

and



504 7 Methods for Solving Electrostatic and Magnetostatic Problems

Fig. 7.48 Different perspective views of the reconstructed scalar function Vm(x, y). a On the lower
graphic we can identify the points where the potential has been calculated by means of the FDM.
The upper side represents the same function after smoothing. b Idem from a viewpoint parallel to
the cut line C∗. Observe the curves of constant potential on the plane OXY

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V ∗∗∗
1

V ∗∗∗
2

V ∗∗∗
3

V ∗∗∗
4

V ∗∗∗
5

V ∗∗∗
6

V ∗∗∗
7

V ∗∗∗
8

V ∗∗∗
9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.625
0.625
0.555
0.445
0.625
0.569
0.525
0.475
0.431

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.364)

These data allow reconstruction of the function Vm(x, y) in the region LxL.
Figure7.48 show the mathematical surface corresponding to the aforementioned
values. Observe that this function is similar to the graphic (1.30) studied in Chap.1
(this similitude is not fortuitous-see Problem 1.17).

The magnetic field may be sketched approximating the partial derivatives that
appear in H = −∇Vm(x, y) by means of the following formulae

http://dx.doi.org/10.1007/978-3-662-48368-8_1
http://dx.doi.org/10.1007/978-3-662-48368-8_1
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Fig. 7.49 Magnetic field at
points studied. Note that on
the right side and on the
upper row do not appear
vectors because the
derivative needs two points
to be performed. Over the
edge of triangle C we can
calculate the partial
derivative with respect the
coordinate y, but not x. The
contrary occurs for the points
over the upper side

∂Vm(x, y)

∂x
≈ �Vx-direction

�x
, (7.365)

and
∂Vm(x, y)

∂y
≈ �Vy-direction

�y
, (7.366)

where �Vx-direction represents the difference between two contiguous potentials in
the direction of the x coordinate, and �Vy-direction the same for y. For example, the
gradient at point 3 in the domain A (first triangle) is

H = −∇Vm(x, y) ≈ −V4 − V3

a
ux − V1 − V3

a
uy. (7.367)

Computing all the differences, the magnetic field H in the hole has the form rep-
resented in Fig. 7.49. Obviously a part of the vector field depicted is wrong. As we
commented at the beginning of this problem, we have a symmetry of fourth order,
but this cannot be seen in all regions of this figure. The result seems to be correct
on the domains A, B and D, and fails for some points of C. Specifically, at points
1∗∗, 4∗∗, 9∗∗, 1∗∗∗, 2∗∗∗, and 5∗∗∗, the magnetic field does not correspond to the
actual H. Because of the symmetry, at each of these points the field should theo-
retically have the same modulus as its complementary point of the other parts by
changing the sign of the components adequately. For instance, at point 4 the field is
H4 = 0.07

a ux + 0.07
a uy, and at 4∗∗ it would be H4∗∗ = − 0.07

a ux + 0.07
a uy. The reason

for this lies in the fact that for calculating the partial derivatives at these points we
need points over the cut line C∗(see Fig. 7.45).26 It leads to a great error because the
points on this line are multivalued, and then the result must be wrong. On the other
hand, if we analyze the values of the well behaved points in domain A, we observe
that they do not exactly maintain the foreign principle of symmetry stated. At point

26The election of the cut C∗ along this edge is completely arbitrary.
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Fig. 7.50 Sketch of the lines
of magnetic field H

3 the field is H3 = 0.11
a ux − 0.07

a uy, and at point 4 it reaches H4 = 0.07
a ux + 0.07

a uy
instead of H

′
4 = 0.11

a ux + 0.07
a uy. The reason may be found in the precision of the

grid elements we have chosen. Our election was very roughwith the only objective to
present the method didactically without addressing other concerns. If much smaller
elements would be selected, the difference between the field components at such
points would be negligent. The easiest way to generate the magnetic field H the rest
of the points in regions B, C and D, is to take as a basis the results obtained in the
triangle A, and then determine their field by means of a rotation around one axis
coinciding with the wire axis. So, in this sense, for calculatingH at points belonging
to the domain C, we apply the following transformation

Rz(φ) =
[
cosφ − sin φ
sin φ cosφ

]

φ= π
2

=
[
0 −1
1 0

]
. (7.368)

For instance, let us suppose we want to compute the field at point 3∗∗. Applying this
matrix we have

H3
∗∗ = Rz(

π

2
)H3 =

[
0 −1
1 0

]
⎡

⎢
⎣

0.11

a

−0.07

a

⎤

⎥
⎦ =

⎡

⎢
⎣

0.07

a
0.11

a

⎤

⎥
⎦ . (7.369)

For the domain B, the following transformations holds

[−1 0
0 −1

]
, (7.370)

and for D [
0 1

−1 0

]
. (7.371)

A hand sketch of the magnetic lines has been represented in Fig. 7.50.
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7.21 Let a closed curve be the cross section of a conducting cylindrical shell, whose
cross section has one axis of symmetry (Fig. 7.51). Let this shell be divided into
four parts by two planes at right angles, the line of intersection of the planes
being parallel to the generator and one of the planes containing the symmetry
axis. Show that the direct capacitance, per unit length of the cylinder, between
opposing parts of the shell due to the field inside is a constant of valueC0 = 2, 8
pFm−1. This result is known as the Thompson-Lampard theorem.

Solution

To demonstrate this theorem we calculate the cross capacitance between two seg-
ments of the Fig. 7.51. Let us consider, for example, the arcs (a, b) and (c, d). The
cross capacitance C13 is the ratio of the negative of the charge Q3 to the potential V
on the surface S1. For simplicity we suppose that the surface S1 is held at unity poten-
tial and the rest of the system is held at zero. The calculation of charge for a generic
geometry with an axis of symmetry like that shown in Fig. 7.51 may be very difficult.
In order to make it easier, we can use the Riemann theorem. According to this the-

Fig. 7.51 Plane view of a cross section of a system with an axis of symmetry

Fig. 7.52 Transformation of the region delimited by the curve � in the z-plane onto the circle
(region �) of the w-plane
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Fig. 7.53 Transformation of the region D belonging to the z-plane into the w-plane

orem, any simply connected region D of the plane can be transformed conformally
into a unit circle (Fig. 7.52). Thus in our case, we can map any cylinder cross section
onto a circle in which each segment of the original geometry ((a, b),(b, c), etc.) over
the curve � has its corresponding arc over γ (circle) in thew-plane (Fig. 7.52). Using
an adequate phase in the conformal mapping we can get the segment (a, c) over the
OX-axis to be transformed into the diameter of the circle (A,C) (Fig. 7.53). The
problem reduces to calculating the cross capacitance of the arcs (A,B) and (C,D) in
the w-plane. As we have seen in the theory, if the boundary conditions are those of
Dirichlet, the values of the potential in the boundary � remain unaltered on γ when
the region D is transformed into �. The potential �(ρ,φ) inside the circle is well
known and may be found by using the following series

�(ρ,φ) =
∞∑

n=1

ρn[an cos(nφ) + bn sin(nφ)], (7.372)

where the coefficients of (7.372) for the unit circle (ρ = 1) are

an = 1

π

∫ 2π

0
�(1,φ) cos(nφ)dφ, (7.373)

bn = 1

π

∫ 2π

0
�(1,φ) sin(nφ)dφ, (7.374)

respectively. In our case

an = 1

π

∫ 2π

0
�(1,φ) cos(nφ)dφ = 1

π

∫ α

0
cos(nφ)dφ = 1

nπ
sin nα, (7.375)
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and

bn = 1

π

∫ 2π

0
�(1,φ) sin(nφ)dφ = 1

π

∫ α

0
cos(nφ)dφ = 1

nπ
[1 − cos nα].

(7.376)
As we have commented, for calculating the cross capacitance C13 it is necessary to
know the charge on the arc (C,D), which may be obtained bymeans of the following
expression

Q3 =
∫

S3

σ dS = ε0

∫

S3

∂�

∂n3
dS. (7.377)

Introducing (7.372) into (7.377), and knowing that due to the circular symmetry
∂�
∂n3

= ∂�
∂ρ
, it yields for V = 1

C13 = Q3

V
= Q3

ε0
=

∞∑

n=1

∫ 2π−α

π
n[an cos(nφ) + bn sin(nφ)] =

∞∑

n=1

{

n
1

nπ
sin nα

∫ 2π−α

π
cos(nφ)dφ + n

1

nπ
[1 − cos nα]

∫ 2π−α

π
sin(nφ)dφ

}

=

∞∑

n=1

{
1

nπ
sin nα sin[(2π − α)n] + 1

nπ
[1 − cos nα][− cos(2π − α)n + cos nπ]

}
=

∞∑

n=1

{
− 1

nπ
sin2 nα − 1

nπ
[1 − cos nα][cos nα − (−1)n]

}
. (7.378)

However, taking into account that −(−1)n = (−1)n−1 we have

−Q

ε0
=

∞∑

n=1

{
− 1

nπ
sin2 nα − 1

nπ
[cos nα − cos2 nα − (−1)n−1 cos nα + (−1)n−1]

}
=

−
∞∑

n=1

1

nπ
(−1)n−1 −

∞∑

n=1

1

nπ

{
sin2 nα − cos2 nα + cos nα[1 − (−1)n−1]

}
=

−
∞∑

n=1

1

nπ
(−1)n−1 −

∞∑

n=1

1

nπ

{
− cos 2nα + cos nα[1 − (−1)n−1]

}
. (7.379)

∞∑

n=1

(−1)n−1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
· · · . (7.380)

This is an alternating series whose sum may be calculated by means of different
procedures. Perhaps the easiest way is to compare it with the Taylor series of a known
function whose coefficients coincide with those appearing in (7.380) (if possible). In
this case we know that the terms of the logarithmic function are alternately positive
and negative, and the denominator of the fractions grow with the number of terms n,
then we try the expansion
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ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
· · · , (7.381)

which is convergent in the interval −1 < x ≤ 1. If we put x = 1 in (7.381), we have

ln(2) = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
· · · , (7.382)

which is the same as (7.380). Thus we can write

∞∑

n=1

(−1)n−1

n
= ln 2 (7.383)

−Q

ε0
= − ln 2 + 1

π

∞∑

n=1

1

n
cos 2nα − 1

π

∞∑

n even

2

n
cos nα =

− ln 2 + 1

π

{
cos 2α + 1

2
cos 4α + 1

4
cos 6α + · · · − cos 2α − 1

2
cos 4α − 1

4
cos 6α − · · ·

}
. (7.384)

If we observe this expression for the charge on the arc (γ, δ) we see that the terms
in the brackets cancel each other out and result in a constant, hence we can write

Q

ε0
= ln 2. (7.385)



Chapter 8
Electromagnetic Induction

Abstract Faraday (1831) discovered experimentally that an electric current flows
in a circuit when the circuit moves in presence of a magnet, or the circuit is fixed
and the position of the magnet changes. Furthermore, the electric current is also
induced in a circuit when it is close to another circuit carrying a varying current.
Non-steady currents give rise to non-steady magnetic fields, which also give rise to
electric fields. In all these cases, generation of the induced currents is due to either
the circuit moving in a magnetic field or the magnetic field changes with time; i.e.
whenever the magnetic flux through the circuit varies. This chapter is concerned
with electromagnetic induction. First, we consider Faraday’s law of electromagnetic
induction for a stationary closed loop. Secondly, we will discuss the electromotive
force induced in conductors moving in a static magnetic field. Then, the general case
of a circuit moving in a time-varying magnetic field is considered. Finally, we will
study the phenomena of self-inductance andmutual inductance of closed loops along
with some applications of Faraday’s law.

8.1 Electromotive Force

Figure8.1 shows a closed curve�, at point P the resulting electric force on a charge q
is F. The effective electric field Ee, equal to the total electric force per unit of charge
q, can be written as

Ee = F
q

. (8.1)

The electromotive force (e.m.f.) E along the curve � is defined as the line integral
around the closed curve of the effective electric fieldEe. Hence, the e.m.f. calculated,
following the direction given by dl, can be expressed as

E =
∮

�

Ee · dl. (8.2)

It should be noted that the curve along which the e.m.f. is calculated must be closed.
In many applications, either part or the whole curve will be a conducting wire. In the
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512 8 Electromagnetic Induction

Fig. 8.1 A closed loop � around which the electromotive force is calculated. The effective electric
field at the elemental longitudinal element dl is Ee

latter case, a current around the conducting wire will flow whenever the flux linked
by the circuit changes. Electromotive force is measured in units of volts (V).

Since Ee = F/q, the tangential component of the force per unit charge, integrated
around the closed curve, will only contribute to the resulting electromotive force. The
result of integrationwill be equal to thework done on a single charge that travels once
around the circuit. In general the resulting effective electric field can be expressed
as the sum of two fields: one being a conservative electric field, Ecs, and the other
non-conservative, Encs. When the line integration is done over the closed curve,
the conservative electric field will not contribute to generation of e.m.f., whereas
the closed line integral of the non-conservative electric field will produce the net
electromotive force around such a curve. Non-conservative electric fields induced by
changing magnetic fields or associated with physical circuits moving in the presence
of a magnetic field will cause e.m.f. to be induced. According to Lorentz’s law, the
effective electric field can be expressed as

Ee = E + v × B, (8.3)

the first term on the right side will give rise to e.m.f., when time-dependent magnetic
fields are present, and the second one will produce e.m.f., when there are moving
charges in the presence of magnetic fields.

8.2 Faraday’s law

Let us consider a stationary closed loop situated in a region where there is a time-
varying magnetic field, as shown in Fig. 8.2. Part of or the whole contour of the
loop can be a physical circuit. However, the loop can also be a mathematical curve.
According to Faraday’s law, the point relationship between the varying magnetic
field and the induced electric field is given by

∇ × E = −∂B
∂t

. (8.4)

This equation shows that a time-varying magnetic field produces an electric field,
which is non-conservative and, therefore, cannot be expressed as the negative gradient
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Fig. 8.2 The electromotive
force is evaluated around the
fixed closed curve �,
boundary of the open surface
S. The orientation of dS is
determined by the direction
of dl, set by the right-hand
rule

of a scalar potential. The electromotive force along the loop is given by the closed
line integral around the contour of the effective electric field, (8.2). As the loop is
considered to be stationary, the electromotive force is only induced by the electric
field. Taking the surface integral of both sides of (8.4) over an open surface S with
contour �, and applying Stoke’s theorem, it is found that

E =
∮

�

Ee · dl =
∮

�

E · dl = −
∫

S

∂B
∂ t

· dS = − d

d t

∫

S
B · dS = −d �

d t
. (8.5)

This result shows that the electromotive force induced in a closed stationary loop
is equal to the negative rate of change of the magnetic flux through any surface
bounded by the loop. If the e.m.f is evaluated following the direction dl, then the
surface element dS used in calculating the flux through the open surface, whose
perimeter coincides with �, is in the direction given by the right-hand rule; i.e. if the
fingers of the right hand follow the direction of dl, the thumb points in the direction
of dS, as shown in Fig. 8.2. The electric field can be expressed in terms of the vector
potential A and the scalar potential V as

E = −∇V − ∂A
∂ t

. (8.6)

The line integral of the first term on the right side of (8.6) around a closed loop is zero
and, therefore, the vector potential A, related to the magnetic field by B = ∇ × A,
is the term that will create an induced electric field. Thus, the electromotive force
induced in a closed stationary loop can be expressed in terms of the vector potential as

E =
∮

�

Ee · dl =
∮

�

E · dl =
∮

�

−∂A
∂ t

· dl = − d

d t

∮

�

A · dl . (8.7)

According to Faraday’s law, an electric field is induced whenever the magnetic
flux through a loop varies. This field will induce, in turn, a current if the closed loop
is a conducting circuit. The direction of the current is given by Lenz’s law. This law
states that the current induced is in a direction such that it produces a magnetic flux
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Fig. 8.3 A magnet approaching with velocity v a stationary closed conducting wire. As a result of
the time-dependent magnetic field, a current I is induced, whose field is indicated in dashed line

tending to maintain the total flux through the circuit. The minus sign means that the
current induced produces a magnetic flux through the circuit that tends to oppose the
original change of flux.

As one example of the application of Lenz’s law, let us consider a permanent
magnet approaching a stationary closed conducting loop, as shown in Fig. 8.3. The
e.m.f. is calculated around the contour following the direction dl (counterclockwise),
and the direction of the corresponding surface element dS is given by the right-hand
rule, thus the resulting flux through the open surface is positive. As themagnet moves
towards the loop, the magnetic flux increases, and, consequently, d�/dt > 0. The
line integral of the induced electric field, the e.m.f., is negative and, therefore, the
induced current will flow in the opposite direction to that of dl. The induced current
is thus in a clockwise direction and produces a magnetic field that is shown by the
dashed lines. This field tends to stop the flux through the loop from increasing,
reducing the change of the magnetic flux, caused initially by the magnet motion.

Figure8.4 shows another example of an application of Lenz’s law. In (a) the switch
in circuit 1 has just been closed and a current I1 flows in the direction indicated that
produces the magnetic field B1. In evaluating the e.m.f. around the upper coils,

(a) (b)

Fig. 8.4 a In the coil denoted 1, current I1 flows when the switch is closed, resulting in an induced
clockwise current I2 in coil 2, according to Lenz’s law. b When the switch is open, the induced
current in coil 2 is counterclockwise and tries to maintain a constant flux through the coils
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circuit 2, the line integral in the direction dl produces a negative result since the
magnetic flux through the coils increases. The induced current I2 will tend to lessen
the change of the magnetic flux, the corresponding field being B2, in the opposite
direction to B1. When the equilibrium is reached in 1, no more induced current flows
in coil 2. In Fig. 8.4b the switch is open and the magnetic flux decreases as a result
of the decay of the current I1. Then, the direction of the current is such that the
corresponding magnetic field B2 tends to stop the flux through the coils from falling.

8.3 Motional Electromotive Force

Let us consider a physical circuit that either moves or is deformed (or both), in the
presence of a stationary magnetic field. According to Lorentz’s law, the effective
electric field at a line element dl will be Ee = v × B, where v is the velocity of
the element and B the magnetic field (where the element is located). Firstly, we
consider an open circuit with terminals ab, as shown in Fig. 8.5. The e.m.f. around
the closed path aba, including the physical circuit ab and a mathematical dashed line
ba, results in,

E =
∮

�(aba)
Ee · dl =

∫

ab(circuit)
(v × B) · dl +

∫

ba(exterior)
(v × B) · dl =

∫ b

a(circuit)

(v × B) · dl ,
(8.8)

which is generated by the magnetic force acting on the moving circuit.
It should be noted that no matter how the loop is closed, only the physical circuit

ab contributes to the generation of e.m.f. However, in defining the electromotive
force the line integral must be closed. The conservative field will give a resulting
integral equal to zero and only the non-conservative field (v × B) will cause e.m.f.
to be generated.

As a simple example of the generation of e.m.f. in an open circuit, consider a
conducting rod with length �, moving with velocity v, perpendicular to a uniform
magnetic field B, as shown in Fig. 8.6. The e.m.f. calculated following the path
ab(rod)-ba(exterior) is given by

Fig. 8.5 Closed path formed
by the open circuit with
terminals ab (solid line) and
the mathematical line ba
(dashed line)
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Fig. 8.6 Conducting rod with terminal abmoving in a stationary magnetic field directed out of the
page

E =
∫

aba
(v × B) · dl =

∫ b

a(rod)

(v × B) · dl =
∫ b

a
[(−v, 0, 0) × (0, 0,B)] · (0, dy, 0) (8.9)

=
∫ b

a
(0, vB, 0) · (0, dy, 0) =

∫ �

0
vBdy = vB� . (8.10)

There is a magnetic force F = q(v × B) on each charge in the rod. The free
electrons in the rod will move towards the end a and terminal bwill be then positively
charged. Then, this new charge distribution will give rise to an electric field opposite
to v × B. Migration of electrons halts when electric and magnetic forces balance
each other and a state of equilibrium is reached. As the conducting circuit is not
closed, no resulting current flows through the rod.

For a closed circuit moving in a static magnetic field, as shown in Fig. 8.7, the
electromotive force around the closed contour � will be

E =
∮

�

Ee · dl =
∮

�

(v × B) · dl . (8.11)

If the closed circuit is a conducting one, the e.m.f. results in motion of electrons
and, consequently, an electric current will flow in the circuit. By manipulation of
(8.11), it can also be expressed in terms of the change of magnetic flux. Then, the
electromotive force around a closed circuit moving in a stationary magnetic field can
be expressed as,

E =
∮

�

Ee · dl =
∮

�

(v × B) · dl = −d�

d t
= − d

d t

∫

S
B · dS , (8.12)

where the variation of magnetic flux is only due to themotion of the circuit.When the
circuit is closed, the motional electromotive force given by (8.11) and that given by
the rate of change of the magnetic flux (8.12) are equivalent expressions. However,
for open circuits, (8.8) can always be applied but (8.12) can only be used when the
path is closed in such a way that the change of magnetic flux is equal to the flux
swept out by the open circuit in its motion.
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Fig. 8.7 Closed circuit
moving in a stationary
magnetic field

A simple example of e.m.f. induced in a closed circuit follows. Figure8.8 shows
a conducting rod with length � sliding over parallel rails in a stationary magnetic
field B.

Let us calculate the e.m.f. around the closed circuit formed by the bar-rails-
resistance, following the path abcda (clockwise direction). By applying (8.11), it
follows that

E =
∮

�

Ee · dl =
∮

abcda
(v × B) · dl =

∫ b

a
(v × B) · dl = vB� . (8.13)

The net contribution to the line integral comes from the portion ab of the loop.
If the flux rule is applied to calculate the e.m.f. at an instant t, as shown in Fig. 8.8,

the magnetic flux through the circuit will be � = ∫
S B · dS, with dS opposite to B.

As B is uniform, � = B · S = −BS = −B�x = −B�vt, where S = �x and x = vt.
Therefore,

E = −d�

d t
= B�v , (8.14)

which agrees with the result found in (8.13).
As both rod and rails are conducting media, an electric current will be induced.

The term (v × B) causes electrons to move around the contour defined by the circuit,
which, in turn, results in a stationary electric current j = nQv, in the direction shown
in Fig. 8.8. The current is such that the induced magnetic field points into the page
and tends to keep the total flux through the circuit constant, in agreement with Lenz’s
law. If the self-inductance of the loop and the resistance of the bar and the rails are
negligible, the induced current is given by

I = E
R

= B�v

R
, (8.15)

in a clockwise direction.
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Fig. 8.8 A conducting rod moving with velocity v on two conducting rails in an uniform and
stationary magnetic field directed out of the page. The rails are terminated in a resistance R

8.4 The General Law of Electromagnetic Induction

Let us now consider a closed moving circuit in a time-varying magnetic field. The
total electromotive force induced in the closed contour is due to both the timevariation
of the magnetic field and to the motion of the closed circuit in the magnetic field. The
resulting effective electric field is the sum of the electric induced field, as a result
of the change of the magnetic field, plus the term (v × B) given by Lorenz’s law.
Therefore, the electromotive force around the contour is given by

E =
∮

�

Ee · dl =
∮

�

E · dl +
∮

�

(v × B) · dl . (8.16)

The first term on the right side can be expressed in terms of the variation of B with
time,

E =
∮

�

Ee · dl =
∫

S
−∂B

∂ t
· dS +

∮

�

(v × B) · dl . (8.17)

As shown above, the terms on the right-hand side of (8.17) can be written as the
variation of magnetic flux,

E =
(

−∂�

∂t

)

B(t)

+
(

−∂�

∂t

)

motion

, (8.18)

where the change of flux through the contour is due to the time variation of B (first
term) and to the motion of the circuit in B (second term).

In general, (8.18) is equivalent to

E = −d�

d t
, (8.19)

which is of the same form as (8.5), but the change of the magnetic flux linked by
the circuit can be due to one or both of the aforementioned causes. Equation (8.19)
is another form of Faraday’s law and either (8.17) or (8.19) can be used to evaluate
the induced electromotive force in the general case.
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As an example of application of the general form of Faraday’s law, let us consider
the example included in Sect. 8.3 (see Fig. 8.8), but with the magnetic field varying
with the time in the form B(t) = B0 sin(ωt). Then, the resulting flux at a given instant
t, dS used in calculating the flux according to the right-hand screw rule, is given by

� =
∫

S
B · dS = B · S = −BS = −B0 sin(ωt)�x = −B0 sin(ωt)�vt , (8.20)

where the surface determined by the circuit at the instant t is S = �x = �vt and since
B is a uniform field, it can be taken outside the surface integral. The resulting e.m.f.
is given by

E = −d�

d t
= B0ω cos(ωt)�vt + B0 sin(ωt)�v , (8.21)

the first term on the right side is due to the variation of B with the time, while the
second one is due to the motion of the circuit, in this case part of the circuit, in the
presence of a magnetic field.

8.5 Self-inductance and Mutual Inductance

8.5.1 Self-inductance

Figure8.9 shows a closed quasi-filamentary stationary loop with contour � and
bounding surface S. If a current flows in �, a magnetic field will be created. The
magnetic flux through the loop will be produced by the current in the circuit itself.
A time-varying current in the circuit will induce at all points an electric field. The
self-induced electric field along the loop will give rise to an electromotive force in
the loop. Therefore, any change of the current in the loop itself induces an e.m.f. in
the loop that can be written in the form

E = −d�

dt
= −d�

dI

dI

dt
= −L

dI

dt
, (8.22)

L = d�

dI
. (8.23)

Fig. 8.9 A closed fixed
filamentary circuit with a
current intensity I . A change
in its current produces an
induced e.m.f. in the circuit
itself
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The coefficient L is known as the self-inductance of the circuit. The unit of self-
inductance is the henry (H), which is equal to Wb/A.

If the flux � is proportional to the current I , the self-inductance coefficient can
be written as

L = �

I
. (8.24)

This equation can be used to calculate the self-inductance of a circuit in air or when
it is situated in a linear magnetic medium. Then, the self-inductance of the circuit
depends on its geometry and on the magnetic properties of the surrounding medium.
In a linear medium, self-inductance does not depend on the current in the circuit.
However, (8.23) must be used when the relation between flux and current is non-
linear.

The e.m.f. induced in a circuit by any change of the current in the circuit itself
calculated in accordance with (8.22) is in agreement with Lenz’s law. Hence, it must
also be included when other electromotive forces are induced due to other causes.

As an example of the calculation of L, let us consider a long straight solenoid of
length �, with radius a and with n turns per unit of length, which carries a current
I . The end effect is considered to be negligible. The magnetic field B at all points
within the solenoid is B = μ0nI , and in the direction of solenoide axis. The magnetic
flux through each turn is

�one =
∫

S
B · dS = B · S = μ0nIπa

2 , (8.25)

where S = πa2. The total magnetic flux through the n� turns of the complete solenoid
results as

� = n��one = μ0n
2Iπa2� . (8.26)

Then, the self-inductance of the solenoid is given by

L = d�

dI
= �

I
= μ0n

2πa2� , (8.27)

which depends on the number of turns and on the size of the coil.

8.5.2 Mutual Inductance

Figure8.10 shows two closed stationary loops, labelled 1 and 2, carrying currents I1
and I2, respectively. The current I1 produces the field B1. The magnetic flux due to
B1 will pass through the open surfaces S1 and S2 bounded by �1 and �2, respectively.
The field B1 at the differential surface element dS2 is denoted by B21, as shown
in Fig. 8.10. The relative directions of dl and dS follow the right-hand rule. As the
current in loop 1 is varied, the magnetic flux will also change, and there will be an
induced e.m.f. in loop 2. Analogously, if current I2 varies, an e.m.f. will be induced in
Circuit 1. Circuits 1 and 2 aremagnetically coupled. The electromotive force induced
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Fig. 8.10 Two magnetically
coupled circuits labelled 1
and 2. B1 is the magnetic
field produced by I1, which
is denoted B11 and B21 at the
differential surface elements
dS1 and dS2, respectively.
A change in current in 1
induces an e.m.f. in 2, and
vice versa

in a circuit as a result of the variation of the current in the magnetically coupled loop
can be expressed in terms of the mutual inductance.

For Circuit 2, shown in Fig. 8.10, the total magnetic flux �2 is equal to �21 due
to B21, produced by I1, plus �22 resulting from B22, caused by its own current I2.
The induced electromotive force in loop 2 is then given by

E2 = −d�2

d t
= −∂�22

∂I2

dI2
d t

− ∂�21

∂I1

dI1
d t

(8.28)

= −L2
dI2
d t

− M21
dI1
d t

, (8.29)

where the self-inductance of Circuit 2 is designated L2 and the mutual inductance is
denoted M21 = ∂�21/∂I1. In the same way, the e.m.f. induced in loop 1 is

E1 = −d�1

d t
= −∂�11

∂I1

dI1
d t

− ∂�12

∂I2

dI2
d t

(8.30)

= −L1
dI1
d t

− M12
dI2
d t

, (8.31)

where the mutual inductance is given byM12 = ∂�12/∂I2.
In general, mutual inductance between the circuit i and the circuit j, is defined as

Mij = d�ij

dIj
i �= j , (8.32)

which can be used to calculate mutual inductance in linear and non-linear systems.
The unit of magnetic inductance is the henry (H).

Let us consider twoquasi-filamentary stationary loops situated in a linearmagnetic
medium. It is assumed that currents vary so slowly that the magnetic field created
by them is equal to that produced by steady currents, having magnitudes equal to
those of the varying currents at a given instant of time (quasi-stationary conditions).
Then, it can be demonstrated that the general expressions for the coefficient M21 is
given by

M21 = μ0

4π

∮

1

∮

2

dl1 · dl2
r21

, (8.33)
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where r21 is the distance from the element dl1 in loop 1 to the element dl2 in 2,
assuming that the loops are in the air. This equation is known as the Newmann
formula for themutual inductance between two quasi-filamentary loops. From (8.33)
it follows that the quantitiesM21 andM12 have the same value and can be represented
by the symbol M. The mutual inductance of the two loops depends on the circuit
geometry and the magnetic properties of the surrounding medium.

For two rigid stationary circuits in a linearmedium,with quasi-stationary currents,
the magnetic flux�21 is proportional to I1, and thereforeM21 = d�21/dI1 = �21/I1.
Taking into account that M21 between loops 2 and 1 is equal to M12 between loops
1 and 2, it follows that

M = M21 = M12 = �21

I1
= �12

I2
. (8.34)

In general, the procedure for determining the mutual inductance between two
circuits, labelled 1 and 2, is as follows:

• Assume current I1 in loop �1, and then determine the magnetic field due to this
current.

• Determine the magnetic flux �21 created by I1 through �2.
• Determine the mutual inductance as

M = d�21

dI1
= �21

I1
.

It should be noted that the same result is obtained if a current is assumed to flow in
�2 and the effects are calculated on the circuit denoted 1.

As an example, let us calculate the mutual inductance of two long straight
solenoids, as shown in Fig. 8.11. The length of both solenoids is � and the radius
is a. If the end effect is negligible, the magnetic field due to I1 is B1 = μ0n1I1 uz,
where n1 is the number of turns per unit length of the solenoid 1. The flux through a
coil of the second solenoid is

�21one =
∫

S2

B21 · dS2 = B21 · S2 = μ0n1I1πa
2 , (8.35)

and the total magnetic flux through the second circuit with n2� turns is

�21 = n2��21one = μ0n1I1πa
2n2� . (8.36)

Fig. 8.11 Two mutually
coupled straight solenoids:
labelled 1 (thin solid line)
and 2 (thick solid line)
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The mutual inductance M is given by

M = �21

I1
= μ0n1πa

2n2� , (8.37)

which depends on the geometry of the solenoids.

8.6 Voltage Between Two Points

In Fig. 8.12 a voltmeter at rest is connected to the two terminals of a circuit. Following
the path between points a and b through the voltmeter, the voltage measured Vab

between these points can be expressed as the line integral of the electric field from
point a to b,

Vab =
∫ b

a
E · dl =

∫ b

a

(
−∇V − ∂A

∂t

)
· dl

= Va − Vb − ∂

∂t

∫ b

a
A · dl.

This result shows that in the presence of a time-varying magnetic field, the voltage
between two points differs from the potential difference. Therefore, the reading of
the voltmeter depends on the path followed between a and b. On the other hand, in
the static case, voltage and potential difference become identical, thus the reading of
the voltmeter will only depend on the potential at points a and b.

In Fig. 8.12b the voltmeter is connected to terminals a and b following two dif-
ferent paths. The readings of the voltmeter Vab1 and Vab2 in the connections labelled
1 and 2, respectively, are different when time-varying magnetic fields are present. It
can be easily shown that

Vab1 = Vab2 − d�

dt
,

where � is the magnetic flux through the surface bounded by the contour a1b2a.

Fig. 8.12 a Voltmeter V
connected between the two
terminals a and b. b The
voltmeter is connected
following two different paths
labelled 1 and 2

(a) (b)
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Solved Problems

Problems A

8.1 A square loop with a side of length a and resistance R moves, from the position
shown in Fig. 8.13, at a constant velocity v = v ux in the presence of a uniform
magnetic field B = B uz, confined to the region shown in the figure. Find the
induced current intensity in the square loop. Assume that self-inductance is
negligible.

Solution

Electromotive force is induced by motion of the square loop in the magnetic field.
The e.m.f. can be calculated by applying the “flux rule,” (8.12), or the expression
for motional e.m.f., (8.11). As an illustrative example, both procedures are used in
calculating the e.m.f. in the square loop following the path 1–2–3–4–1 (see Fig. 8.14).

The following cases are studied:

• (a) For 0 < x < a, at an instant t on the interval 0 < t < a/v (Fig. 8.14a).
Magnetic field lines do not pass through the square loop. Then, the e.m.f. is zero
as is the current intensity.

• (b) For a < x < 2a, a/v < t < 2a/v (Fig. 8.14b).
The motional e.m.f. calculated in the sides labelled 2–3 and 4–1 is zero since v is
parallel to dl. In the side labelled 1–2, the e.m.f. is also zero because B = 0. Then,
the e.m.f. in the loop is given by

E =
∮

1−2−3−4−1
(v × B) · dl =

∮

3−4
(v × B) · dl =

∫ 4

3
[(v, 0, 0) × (0, 0,B)] · dl

=
∫ 4

3
(0,−vB, 0) · (0, dy, 0) =

∫ y1

y1+a
−vBdy = vBa.

Fig. 8.13 The square loop
begins to move with a
constant velocity parallel to
OX-axis
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Fig. 8.14 The square loop at
an instant on the interval:
a 0 < t < a/v,
b a/v < t < 2a/v,
c 2a/v < t < 3a/v,
d 3a/v < t < 4a/v. The
e.m.f. is calculated following
a clockwise path

(a) (b) (c) (d)

As a clockwise path is followed to calculate the e.m.f., the surface element used
in evaluating the flux through the loop will be dS = dS (−uz) = −adx uz. Calcu-
lating the flux through the loop first and then applying Faraday’s law, it follows
that

� =
∫

S
B · dS =

∫

S
(0, 0,B) · (0, 0,−dS) =

∫ vt+a

2a
−Badx

= −Ba(vt − a) ⇒ E = −d�

dt
= Bav.

Therefore, the current intensity induced in the square loop, calculated in a clock-
wise direction, is

I = E
R

= vBa

R
.

As a positive sign is obtained for I , the induced current will have the same direction
as that assumed in the calculation, i.e. that of dl (clockwise direction).

• (c) For 2a < x < 3a, 2a/v < t < 3a/v (Fig. 8.14c).
The resulting e.m.f. is zero since the value obtained for the line integral in side
3–4 is equal in magnitude to that obtained in 1–2, however, opposite in sign. The
magnetic flux is constant, and hence no e.m.f. is induced. Then, no current intensity
flows in the circuit.

• (d) For 3a < x < 4a, 3a/v < t < 4a/v (Fig. 8.14d).
In the side labelled 3–4, the e.m.f. is zero because B = 0. The e.m.f. in the loop is
given by

E =
∮

1−2−3−4−1
(v × B) · dl =

∮

1−2
(v × B) · dl =

∫ 2

1
[(v, 0, 0) × (0, 0,B)] · dl

=
∫ 2

1
(0,−vB, 0) · (0, dy, 0) =

∫ y1+a

y1

−vBdy = −vBa.
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Fig. 8.15 The intensity
induced in the square loop in
terms of its position in the
magnetic field

Calculating the flux through the loop first and then applying Faraday’s law, it is
found

� =
∫

S
B · dS =

∫

S
(0, 0,B) · (0, 0,−dS) =

∫ 4a

vt
−Badx

= −Ba(4a − vt) ⇒ E = −d�

dt
= −Bva.

Therefore, following a clockwise path, the current intensity induced in the square
loop is

I = E
R

= −vBa

R
.

The minus sign means that the induced current flows in a counterclockwise direc-
tion; i.e. in opposite direction to that assumed in the calculation of the current
intensity (Fig. 8.15).

8.2 Figure 8.16 shows a circular ring of radius r, a straight vertical wire and a bar
of length r, electrically connected to the straight wire and to the ring. All these
components are assumed to be perfect conductors. The bar rotateswith a constant
angular velocity ω = ω uz while the rest of components remain at rest. There
is a uniform magnetic field of magnitude B, making an angle of α with OZ .
A voltmeter is connected between the terminals a and b. What is the voltmeter
reading V ?

Solution

At an instant t, the e.m.f. is calculated following the closed path represented by the
dotted lines shown in Fig. 8.17, i.e. the path bcOdab. The e.m.f. is caused by the
motion of the bar in the presence of a magnetic field. Then,

E =
∮

bcOdab
Ee · dl =

∫

Od
(v × B) · dl.

The velocity of a point on Od is given by v = ω uz × ρuρ = ωρuφ, where ρ is the
distance from the point to the rotation axis (OZ-axis). The non-conservative field
v × B can be calculated as
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Fig. 8.16 Horizontal ring
and a rotating bar in a region
where there is a uniform
magnetic field

Fig. 8.17 Electromotive
force is calculated following
the closed path bcOdab
(dotted lines)

v × B =
∣
∣
∣
∣
∣
∣

uρ uφ uz
0 ωρ 0
Bρ Bφ Bz

∣
∣
∣
∣
∣
∣
= ωρBz uρ − ωρBρ uz.

The line integral of Encs = v × B along the segment Od is

E =
∫

Od
(v × B) · dl =

∫

Od

(
ωρBz, 0,−ωρBρ

) · (dρ, 0, 0) =
∫

Od
ωρBzdρ

=
∫ r

0
ωB cosα ρdρ = ωBr2

2
cosα,

where it has been taken into account that Bz = B cosα.
The voltagemeasured by the voltmeter can be determined by calculating again the

line integral ofEe along the path bcOdab and taking into account that all components
(ring, bar, vertical wire) are perfect conductors (Ee = 0). Exterior to the physical sys-
tem, the effective electric field can be expressed as the gradient of a scalar potential,
Ee = −∇V . Under these assumptions, the voltage between terminals a and b is

E =
∮

bcOdab
Ee · dl =

∫

bcOda
Ee · dl +

∫

ab
Ee · dl = 0 +

∫

ab
−∇V · dl = Va − Vb.

Hence, it is found that the voltage has the same value as that of the e.m.f.:

Vab = Va − Vb = E = ωBr2

2
cosα.
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(a) (b)

Fig. 8.18 A planar coil and the time-varying magnetic field confined to the region of radius a

8.3 Figure8.18 shows a sketch of a planar coil with N turns with radius b located
in the XY -plane. The magnetic field is confined to the region given by ρ ≤ a,
the field being in the OZ-direction, uniform within such a region but varying
with time as shown in Fig. 8.18, where B0 is a constant. (a) Determine the e.m.f.
induced in the coil in terms of time. (b) If the resistance of the coil is R and its
self-inductance L, not negligible, find the current flowing through the coil at an
instant t on the interval 0 < t < t0.

Solution

(a) The electromotive force is produced by the time-varying magnetic field within
the cylinder with radius a. Hence, e.m.f. is calculated by using Faraday’s law (8.5).
Let us study two different situations corresponding to the intervals:

• For 0 < t < t0, where the magnetic field is B = (B0/t0)t, pointing out of the plane
of the page, as shown in Fig. 8.18. A counterclockwise path is followed in calcu-
lating the e.m.f. around the coil; then the corresponding surface element will be
dS = dS uz. The flux linking each turn, �one, and the total flux, �, are

�one =
∫

S
B · dS =

∫

S
(0, 0,B) · (0, 0, dS) =

∫

S
BdS = BSef

= B πa2 ⇒ � = N
B0

t0
t πa2.

Note that although the flux is calculated through the circle of radius b, only the
magnetic lines of force crossing the surface Sef = πa2 contribute to the total flux;
i.e. the area over which B exits. The resulting e.m.f. is

E = −d�

dt
= −N

B0

t0
πa2.

• For t0 < t < 2t0:
By applying the same procedure and taking into account that dB/dt = −B0/t0, it
is found that

E = −d�

dt
= N

B0

t0
πa2.
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Fig. 8.19 The e.m.f. in the
coil as a function of time,
resulting from the
time-varying magnetic field,
where E0 = N(B0/t0)πa2

Figure8.19 shows the result obtained for the e.m.f. in the coil versus time.

(b) By applying Kirchhoff’s law:
∑ E = ∑

RI and denoting E0 = N(B0/t0)πa2, and
following a counterclockwise path around the loop, it is found that

E − L
dI

dt
= RI ⇒ −E0 − L

dI

dt
= RI ⇒ dI

RI + E0 = −dt

L
.

By integrating this equation and taking into account that t = 0, the current intensity
is I = 0, hence, it results

∫ I

0

dI

RI + E0 =
∫ t

0
−dt

L
⇒ 1

R
ln(RI + E0) − 1

R
ln(E0) = − t

L
,

I = E0
R

(
−1 + e− R

L t
)

⇒ I = NB0

t0

πa2

R

(
−1 + e− R

L t
)

.

8.4 Figure8.20 shows a toroidal coil with N turns of conducting wire tightly wound
on a toroidal frame with circular cross-section. The toroid has a mean radius Rm,
and the radius of each turn is a. Find the self-inductance of the toroidal coil.

Solution

By assuming a current I in the conducting wire, and taking into account that due to
the cylindrical symmetry, B has only the φ-component, which is constant along any
circular path around the axis of the toroid, it is found by applying Ampère’s law to
a circular path with radius ρ (Rm − a < ρ < Rm + a):

∮

C
B · dl = Bφ2πρ = NI ⇒ Bφ = μ0NI

2πρ
.

It has been assumed that the toroid has an air core with permeability μ0.

Fig. 8.20 A sketch of a
closely wound toroidal coil
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We assume that the dimensions of the cross-section of the core are very small
in comparison to the mean radius, i.e. a � Rm, and the magnetic field inside the
solenoid is approximately constant and equal to

Bφ = μ0NI

2πRm
= μ0NI

�
,

where the toroidal mean length is � = 2πRm.
Hence, the flux through one turn will be

�one � BφS = μ0NIS

�
,

where the cross-sectional area S = πa2. The total flux through the N turns,

� = N�one � μ0N2IS

�
.

Finally, the self-inductance of the toroidal coil will be,

L = d�

dI
= �

I
= μ0N2S

�
.

It should be noted that the self-inductance is not a function of I and is proportional
to the square of the number of turns.

8.5 Figure 8.21 shows a sketch of two closed circuits labelled 1 and 2. Circuit 1 is a
circular loop, with a small radius R1, centered at the coordinate origin. Circuit 2
consists of “two almost circular loops” whose radii are R2 and R3, respectively,
centered at the coordinate origin, and two straight wires, close to each other but
there is no electrical contact between them. Find (a) self-inductance L1 and (b)
mutual inductance M.

Solution

It is assumed that R1 � R2 < R3.
(a) The magnetic field produced by a counterclockwise current I1 in Circuit 1 is that
of a circular loop. Then, at the coordinate origin, the field will be

Fig. 8.21 Two closed loops
labelled 1 and 2
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Fig. 8.22 A current
intensity I2 flows through
Circuit 2 and the effects are
calculated in 1

B11 = μ0I1R2
1

2(R2
1 + z2)3/2

∣
∣
∣
∣
z=0

uz = μ0I1
2R1

uz.

It is assumed that as radius R1 is small, the magnetic field produced by I1 is approx-
imately homogeneous over the area of the circular loop 1. Then, the magnetic flux
through the closed loop with a radius of R1 and the self-inductance are given, respec-
tively, by:

�11 =
∫

S1

B11 · dS1 � B11S1 = μ0I1
2R1

πR2
1 = μ0I1πR1

2
,

L1 = d�11

dI1
= �11

I1
= μ0πR1

2
.

(b) Circuit 2 is assumed to carry a current I2 as shown in Fig. 8.22. Let us calculate
the effect of this current on Circuit 1. As R1 is much smaller than R2 and R3, the
magnetic field resulting from the current in 2, can be assumed to be homogeneous
in the circular area defined by Circuit 1. The magnetic field at the coordinate origin
produced by the “almost circular loops” with radii R2 and R3 are, respectively,

B12(R2)
= μ0I2

2R2
uz B12(R3)

= −μ0I2
2R3

uz.

The resulting field produced by the two straight wires at the coordinate origin is
equal to zero, since the current intensities are in opposite directions. Then, the total
flux is

�12 =
∫

S1

B12 · dS1 � B12S1 =
[
μ0I2
2R2

− μ0I2
2R3

]
πR2

1.

The mutual inductance is therefore

M = d�12

dI2
= �12

I2
=

[
μ0

2R2
− μ0

2R3

]
πR2

1.

8.6 The transmission line shown in Fig. 8.23 consists of two long parallel wires with
radius a carrying currents in opposite directions. The axes of the two wires are
separated by a distance b such that b � a. Find the inductance per unit length
of the line.
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Fig. 8.23 Cross section of a transmission line with two long wires carrying currents in opposite
directions

Fig. 8.24 The two-wire
transmission line and the
surface through which the
magnetic flux is calculated

Solution

Since b � a, only the “external” inductance is considered which is calculated from
the flux through the surface between the two wires due to their own currents. Assum-
ing a current I in the wires, as shown in Fig. 8.24, the currents flowing through the
left and right wires produce magnetic fields at a distance x from the left wire:

Bl = μ0I
2πx (−uz)

Br = μ0I
2π(b−x) (−uz)

}

B = Bl + Br = −
(

μ0I

2πx
+ μ0I

2π(b − x)

)
uz.

By considering a length of wire �, and a surface element dS = −�dx uz, the flux
through the rectangular surface between the two wires yields

� =
∫

S
B · dS =

∫

S

(
0, 0, − μ0I

2πx
− μ0I

2π(b − x)

)
· (0, 0, −�dx) =

∫ b−a

a

(
μ0I

2πx
+ μ0I

2π(b − x)

)
�dx

= μ0I�

2π
[ln x − ln(b − x)]b−a

a = μ0I�

2π
[ln(b − a) − ln(a) − ln(a) + ln(b − a)]

= μ0I�

π
ln

(
b − a

a

)
.

The self-inductance is then obtained

L = d�

dI
= μ0�

π
ln

(
b − a

a

)
.
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Finally, the self-inductance L′ per unit length is

L′ = L

�
= μ0

π
ln

(
b − a

a

)
� μ0

π
ln

(
b

a

)
.

Problems B

8.7 Figure8.25 shows three conducting straight wires labelled 1, 2, and 3, respec-
tively. Wires 1 and 2 are connected to each other at O, making an angle θ. Wire
3 slides on the rails formed by wires 1 and 2; moving from the origin at constant
velocity v = v ux. There is a stationary magnetic field of magnitude B, confined
in the regions shown in Fig. 8.25 and in the directions indicated. The resistance of
the wires per unit length is Ru. Self-inductance is negligible. Numerical values:
B = 0.1 T; v = 3ms−1; θ = 30◦; Ru = 0.57 �m−1. Find the current induced in
the closed circuit formed by the three wires.

Solution

Figure8.26 shows the different positions of Wire 3. The position of the wire is
determined by x = vt. The following situations are considered:
(a) For 0 < x < a (0 < t < a/v):
As the e.m.f. is induced due to the motion of Wire 3, the e.m.f. is calculated by
applying (8.11). It should be noted that the “flux rule,” (8.12), can also be applied.
A counterclockwise direction is followed in evaluating the e.m.f. in the closed loop
OijO, as shown in Fig. 8.26. Then, it is found

E =
∮

OijO
(v × B) · dl =

∫

ij
(v × B) · dl =

∫

ij
[(v, 0, 0) × (0, 0,B)] · (0, dy, 0)

=
∫ j

i
(0,−vB, 0) · (0, dy, 0) =

∫ vt tan θ

0
−vBdy = −vBvt tan θ.

The total resistance will be R = ROi + Rij + RjO, which can be expressed as

R = RuOi + Ruij + RujO = Ruvt + Ruvt tan θ + Ru
vt

cos θ
= Ruvt

(
1 + tan θ + 1

cos θ

)
.

Fig. 8.25 A straight wire
sliding over two conducting
bars at constant velocity v
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Fig. 8.26 Wire 3 in the three
different situations to be
considered: a 0 < x < a,
b a < x < 2a, c
2a < x < 3a

(a) (b) (c)

The current intensity, calculated following a counterclockwise direction, becomes

I = E
R

= − vB tan θ

Ru
(
1 + tan θ + 1

cos θ

) = − 3 × 0.1 × tan 30◦

0.57(1 + tan 30◦ + 1/ cos 30◦)
= −0.11 (A),

the minus sign means that the current induced is in opposite direction to that used in
the calculation of the current. Thus, a clockwise current intensity will be induced.
(b) For a < x < 2a (a/v < t < 2a/v):

E =
∮

Oij0
(v × B) · dl =

∫

ij
(v × B) · dl = 0.

The result obtained is due to the magnetic field being zero at all points in the bar.
(c) For 2a < x < 3a (2a/v < t < 3a/v):

E =
∮

OijO
(v × B) · dl =

∫

ij
(v × B) · dl =

∫

ij
[(v, 0, 0) × (0, 0,−B)] · (0, dy, 0)

=
∫ j

i
(0, vB, 0) · (0, dy, 0) =

∫ vt tan θ

0
vBdy = vBvt tan θ.

In the same way as (a), it is found that I = E/R = 0.11 A. In this case, a positive
sign is obtained, hence, the induced current in the loop OijO is counterclockwise
(Fig. 8.27).

8.8 A conducting bar of length � and mass m slides frictionlessly on two parallel
conducting rails in the presence of a uniformmagnetic field pointing out the page,
as shown in Fig. 8.28. There is a resistance R connected across the rails. The bar
is given an initial velocity v0 parallel to the rails. (a) Find the velocity and the
current intensity in the bar as a function of time. (b) If � = 20.0cm,m = 20.0g,

Fig. 8.27 The induced
intensity in the closed circuit
formed by the three wires in
the cases (a), (b), and (c)
(see Fig. 8.26)

(a) (b) (c)
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Fig. 8.28 The sliding bar at
an instant t with velocity v

R = 40.0�, v0 = 30.0m/s, and B = 1T, find the magnitude of the velocity and
the current intensity for t = 3τ , τ = mR/�2B2. (c) In order for the bar to move
at constant velocity v0 = 30.0 uxm/s, find the external force required and the
power delivered to keep the bar in motion at constant velocity v0.

Solution

(a) It can be easily shown that at an instant t, when the velocity of the bar is v,
the current intensity in the circuit shown in Fig. 8.28 is given by (8.15), I = E/R =
vB�/R, in the clockwise direction according to Lenz’s law. The magnetic force Fm

experienced by the bar as it moves to the right is given by

Fm = I
∫

bar
dl × B = I

[−�uy × Buz
] = −I�B ux = −B2�2v

R
ux,

in the opposite direction to v. By applying Newton’s second law to the sliding bar,
rearranging the resulting equation, and then separating the variables v and t, we have

F = ma ⇒ max = m
dv

dt
= −B2�2v

R
⇒ dv

v
= −B2�2

mR
dt.

Integrating both sides of the last equation, taking into account that at t = 0 the
velocity is v0, it is found that

∫ v

v0

dv

v
=

∫ t

0
−�2B2

mR
dt ⇒ ln

(
v

v0

)
= −

(
�2B2

mR

)
t.

Therefore, if τ denotes the constant value τ = mR/(�2B2), the velocity at any instant
t can be expressed as

v = v0 e
(−t/τ ).

As I is related to the velocity by (8.15), the current intensity can be expressed as
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I = B�v0

R
e(−t/τ ),

which decreases exponentially with time.
(b) For t = 3τ = 3(mR/B2�2) = 3(0.020 × 40/12 × 0.202) = 60 s, substituting
this value of t into the above equations for v and I , it is found that v = 1.49m/s
and I = 7.5mA. These values correspond to approximately 5% the initial velocity
and intensity, respectively.
(c) For the bar to move at a constant velocity v0, the resultant force acting on the bar
must be zero. Then, an external force Fext should be applied to balance the magnetic
one Fm, i.e.

Fext = −Fm = B2�2v0

R
ux = 12 × 0.202 × 30

40
ux = 0.03ux (N).

The power P delivered by Fext is given by

P = Fext · v0 =
(
B2�2v0

R
, 0, 0

)
· (v0, 0, 0) = (B�v0)

2

R
= (1 × 0.20 × 30)2

40
= 0.9 (W).

It should be noted that P = (B�v0)
2/R = E2/R = RI2, the power delivered to the

circuit, (Fextv0), is equal to the power transferred from the e.m.f. to the load resistance,
as required by energy conservation.

8.9 Figure8.29 shows a core of a linearmagneticmaterial, with high permeabilityμr ,
mean length lc, and with an air gap of length lg. Around the core is wound a coil
of wire, with N turns, carrying a current intensity I . The cross section of the core
is a square with side length a. At the center of the air gap, there is a circular coil
with diameterD (D < a), which initially lies in YZ-plane, as shown in Fig. 8.29.
If from this position the circular coil starts to rotate, determine the e.m.f. induced
in the coil as a function of time when the coil rotates around: (a) OX-axis with
constant angular velocityω (ωx, 0, 0). (b)OY -axis withω (0,ωy, 0). (c)OZ-axis
with ω (0, 0,ωz).
Numerical values: μr = 4000; N = 10,000; lc = 1.5m; lg = 10cm, I = 5A;
a = 6cm; D = 1.5cm; ωx = ωy = ωz = 50 rad/s.

Fig. 8.29 An electromagnet
with a rotating circular coil
centered in the air gap



Solved Problems 537

Solution

First of all, let us calculate the magnetic field B in the air gap by applying Ampère’s
law. The following assumptions aremade: themagnetic field in the air gap is uniform,
the magnetic field in a cross-section of the core is homogeneous, and flux leakage is
negligible. Under these assumptions and since the cross-sectional area is constant,
the magnetic field in the core Bc is constant and equal in magnitude to that in the
air gap Bg. Then, B = Bc = Bg. In the core: B = Bc = μ0μrHc and in the air-gap:
B = Bg = μ0Hg. By applying Ampère’s law, it follows

Hclc + Hglg = NI ⇒ B

μ0μr
lc + B

μ0
lg = NI,

B = μ0μrNI

lc + μr lg
= 4π × 10−7 × 4000 × 104 × 5

1.5 + 4000 × 0.10
= 0.626 T.

Therefore in the air gap, the magnetic field is uniform and can be expressed as

B = 0.626 uy.

(a) In this case the surface of the coil S at any instant is parallel to ux and, therefore,
is perpendicular to the uniformmagnetic field, as shown in Fig. 8.30a. Consequently,
the flux through the coil � = 0 and hence E = −d�/dt = 0.
(b) At instant t, the surface of the circular coil is S (S cosωyt, 0,−S sinωyt), with
S = πD2/4 (see Fig. 8.30b). Then, � = ∫

S B · dS = B · S = (0,B, 0) · (S cosωyt,
0,−S sinωyt) = 0 ⇒ E = −d�/dt = 0.
(c) As shown in Fig. 8.30c, the surface of the circular coil at instant t is S (S cosωzt,
S sinωzt, 0). Then, the magnetic flux and the e.m.f. are respectively,

� =
∫

S
d� =

∫

S
B · dS = B · S = (0,B, 0) · (S cosωzt, S sinωzt, 0)

= BS sinωzt = B
πD2

4
sinωzt,

(a) (b) (c)

Fig. 8.30 The circular coil at an instant t when it is rotating about: a OX-axis, b OY -axis, and
c OZ-axis
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Fig. 8.31 A conducting disc
rotating in an uniform
magnetic field with a
resistance between the
connecting brushes

E = −d�

dt
= −B

πD2

4
ωz cosωzt = −0.626 × π × 0.0152

4
× 50 cos(50t)

= −5.53 × 10−3 cos(50t) (V).

8.10 A circular disc with diameter D rotates around its axis of revolution with a
constant angular velocity ω in an uniform magnetic field of magnitude B. The
direction of themagnetic field produces an angle of 30◦ with the axis of the disc.
The terminals of a resistor R (always at rest) are electrically connected through
the brushes to the rim of the disc and to the axis, as shown in Fig. 8.31. Both the
disc and the axis are assumed to be perfect conductors. Find the current passing
through the resistor: (a) if self-inductance is negligible, (b) if self-inductance
is included in the analysis.

Solution

Motion of the conducting disc in the magnetic field causes e.m.f. to be induced and
therefore a current intensity will flow through the wire with resistance R. Let us
determine first the velocity of a point P on the disc at a distance ρ from the axis,
then the e.m.f. is evaluated along the closed loop (dotted line), OACO, shown in
Fig. 8.32. Finally, the induced current is calculated in the two cases: (a) negligible
self-inductance; (b) including self-inductance in the analysis.
(a)

• Calculation of the velocity of P:

v = ω × r = (0, 0,ω) × (ρ,φ, 0) = ω ρuφ.

The non-conservative field v × B can be easily obtained

v × B = (0,ω ρ, 0) × (Bρ,Bφ,Bz) = (ωρBz, 0,−ωρBρ).

• Calculation of the e.m.f. around the closed path:

E =
∮

OACO
(v × B) · dl =

∫

OA
(v × B) · dl =

∫

OA
(ωρBz, 0,−ωρBρ) · (dρ, 0, 0)

=
∫ D/2

0
ωρBz dρ = ωBz

ρ2

2

∣
∣
∣
∣

D/2

0

= ωB cos 30◦ D2

8
= ωBD2

√
3

16
,
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Fig. 8.32 The e.m.f. is
calculated around the closed
dotted path

where it has been taken into account that only the segment OA on the disc
contributes to the e.m.f. and that Bz = B cos 30◦.

• Calculation of the current induced:

I = E
R

= ωB
√
3D2

16R
.

(b) If the self-inductance L of the closed path is included, we have by evaluating the
e.m.f. around the aforesaid closed path, following a clockwise direction and applying
Kirchhoff’s second law,

E − L
dI

dt
= RI ⇒ L

dI

dt
= E − RI ⇒ dI

E − RI
= dt

L
,

∫ I

0

dI

E − RI
=

∫ t

0

dt

L
⇒ − 1

R
ln(E − RI)

∣
∣
∣
∣

I

0

= t

L

∣
∣
∣
∣

t

0

,

− 1

R
[ln(E − RI) − ln E] = t

L
⇒

I = E
R

(
1 − e− R

L t
)

.

When a long time has passed, the current intensity tends to the value obtained in (a).

8.11 The semicircular loop of diameterD shown in Fig. 8.33 begins to rotate around
its diameter with angular velocity ω = ω uy in the presence of a magnetic
field B = B uz, confined to the region x ≥ 0. If the resistance of the loop is
R and self-inductance is assumed to be negligible, find the current induced
in the loop at any instant t. Numerical values: D = 0.25m; ω = 100 rad s−1;
B = 0.8T; R = 2�.
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Fig. 8.33 Semicircular loop
lying in XY -plane begins to
rotates around OY -axis.
Electromotive force around
the loop is calculated
following a
counterclockwise direction

Fig. 8.34 The projection of
the loop of Fig. 8.33 at an
instant t on the XZ-plane

Fig. 8.35 The current
intensity induced in terms of
the time during one period
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Solution

Let us calculate the e.m.f. and the induced intensity in the time period T .

• For 0 < ωt < π
2 ⇒ 0 < t < T

4 = π
2ω :

In this case, the flux through the semicircular loop is zero, as are the e.m.f. and the
induced intensity (see Fig. 8.34).

• For π
2 < ωt < 3π

2 ⇒ T
4 = π

2ω < t < 3T
4 = 3π

2ω :
The magnetic flux through the loop is given by

� =
∫

S
B · dS =

∫

S
BdS cos(ωt) = B cos(ωt)

∫

S
dS = B cos(ωt)S = B

πD2

8
cos(ωt),

where the area of the loop is S = πD2/8. Then, we find the e.m.f to be

E = −d�

dt
= B

πD2

8
ω sin(ωt) = 0.8

π × 0.252

8
100 sin(100t) = 1.96 sin(100t) (V).
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Finally, the current intensity induced is

I = E
R

= 1.96

2
sin(100t) = 0.98 sin(100t) (A).

• For 3π
2 < ωt < 2π ⇒ 3T

4 = 3π
2ω < t < T = 2π

ω
:

In this interval the same conditions applied as in case (a). Magnetic lines of force
do not pass through the semicircular loop. Hence, the e.m.f induced equals zero
and the current is not induced in the loop.

Figure8.35 shows the result obtained for the intensity as a function of time.

8.12 A rectangular conducting loop with sides �1 and �2 is placed in a uniform
magnetic fieldB = B0 uy, confined to the regionwhere the rectangle is situated.
The coil rotates with an angular velocity ω about the X-axis, as shown in
Fig. 8.36, and is initially placed on the XZ-plane with its center at the origin.
The two ends of the loop are connected to two rings provided with sliding
contacts. (a) Find the e.m.f. induced in the loop and the voltage between its
terminals. (b) If a load resistance is connected to the terminals, and the coil
has N turns, find the intensity flowing through the resistance and determine the
external mechanical power required to maintain the rotation of the coil at an
angular frequency ω.

Solution

(a) The e.m.f. in the loop is caused by the motion of the loop in the uniformmagnetic
field. Either (8.11) or the “flux rule” given by (8.12) can be used to calculate the e.m.f.
around the coil. In order to calculate the e.m.f., we follow the counterclockwise
closed path determined by the rectangular wire and a mathematical line between
terminals ab: ba (wire)+ab (external line), see Fig. 8.37a. The flux of the magnetic
field through the planar surface bounded by such a closed path is equal to the flux
through the rectangle. At any time t, see Fig. 8.37b, the resulting flux is

Fig. 8.36 A sketch of a
simple generator consisting
of a rectangular coil rotating
about its own axis in a
magnetic field
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(a) (b)

Fig. 8.37 a Sketch of the closed path followed to evaluate the e.m.f. bView of the rectangular loop
from +OX direction at a certain instant in time t

� =
∫

S
B · dS = B · S = BS cos(ωt) = B�1�2 cos(ωt),

where the area of the rectangular coil S = �1�2. Therefore, we have for the electro-
motive force of the simple generator

E = −d�

dt
= −d(BS cos(ωt))

dt
= BSω sin(ωt),

which varies in time according to a sinusoidal law. Assuming that the wire is made
of a perfect conductor and following the above described counterclockwise closed
path ba(wire)-ab(exterior), it is found

E =
∮

ba(wire)−ab(exterior)
Ee · dl = BSω sin(ωt) =

∫

ba(wire)
0 · dl +

∫

ab(exterior)
−∇V · dl,

where it has been taken into account that in the wire Ee = 0 and in the exterior
Ee = −∇V .

Hence, the voltage Vab between the terminals can be easily obtained,

E = BSω sin(ωt) =
∫ b

a(exterior)
−∇V · dl = Va − Vb = Vab.

(b) If the circuit is completed through an external load (seeFig. 8.38),Vabwill produce
a harmonic current. If the coil has N turns, the voltage between terminals will be
Vab = NBSω sin(ωt). Assuming that the electrical resistance and self-inductance of
the coil are negligible, the current in the load is

I = Vab

R
= NBSω

R
sin(ωt).
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Fig. 8.38 The coil has N
turns and a load resistance
is connected across the
terminals of a generator

When the coil is open-circuited, no current flows and therefore no power is devel-
oped by the generator. On the other hand, if the circuit is closed through the load
resistance, the power P dissipated in the resistance is

P = IVab = (NBSω)2

R
sin2(ωt).

As the current flows, there is a torque Nt opposing the motion of the coil,

Nt = m × B = (NIS) × B = NISB sin(ωt) (−ux),

wherem = NIS is the magnetic dipole moment of the coil and S is the vector perpen-
dicular to the plane of the coil in a direction related to the current by the right-hand
screw rule. Therefore, a external torque Nt,ext, equal in magnitude but in opposite
direction to Nt , is required to maintain the rotation of the coil at a steady angular
frequency ω. Thus, the external mechanical power supplied to rotate the loop is

Pext = Nt,ext ω = NISB sin(ωt)ω = (NBSω)2

R
sin2(ωt).

The power delivered from mechanical work is the same as the electric power gener-
ated and consumed by the resistance, as expected on energy conservation grounds.

8.13 Consider a very long solenoid with an air core, n turns of wire per unit length,
and a circular cross-section of radius a. The cylindrical solenoid carries a
varying current I = I0 cos(ωt). Determine the induced electric field both inside
and outside the solenoid.



544 8 Electromagnetic Induction

Fig. 8.39 Cross section of a very long cylindrical solenoid carrying a varying current I = I0 cos(ωt)

Solution

As can be proved by the reader, the lines of the vector potential A created by a
current I carried by a long cylindrical solenoid are circles centered at the solenoid
axis. Assuming the current in our solenoid to be slowly varying, the instantaneous
value of the vector potential is given by

• For ρ < a:

Aφ = μ0nρ

2
I0 cos(ωt).

• For ρ > a:

Aφ = μ0na2

2ρ
I0 cos(ωt).

The varying solenoid current creates an electric field E at all points that can be
calculated by applying Faraday’s law (8.5). The induced electric field E can also be
obtained from the vector potential A through (8.7). Cylindrical symmetry ensures
that E has only the component Eφ, which is constant along any circular path around
the axis of the solenoid. For a circular path with radius ρ, as shown in Fig. 8.39, (8.7)
leads to ∮

C
E · dl = Eφ2πρ = − d

dt

∫ 2π

0
Aφρdφ ⇒ Eφ = −dAφ

dt
.

So, the induced electric field can be directly obtained from the vector potential, and
the results obtained for the instantaneous value is

• For ρ < a:

Eφ = −dAφ

dt
= μ0nI0ωρ

2
sin(ωt).

• For ρ > a:

Eφ = −dAφ

dt
= μ0nI0ωa2

2ρ
sin(ωt).

Electric field lines are also circles centered on the solenoid axis. Finally, the electro-
motive force around circular paths also centered on the solenoid axis is given by

• For ρ < a:

E =
∮

C
E · dl =

∫ 2π

0
Eφρdφ = Eφ2πρ = μ0nI0ωπρ2 sin(ωt).
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• For ρ > a:

E =
∮

C
E · dl =

∫ 2π

0
Eφρdφ = Eφ2πρ = μ0nI0ωπa2 sin(ωt).

8.14 Four long conducting straight wires, parallel to the coordinate axes and situated
in the XY -plane, move, from the coordinate origin, at constant velocities, as
shown in Fig. 8.40. The resistance of the wires per unit length is r. There is a

magnetic fieldB = B0 cos(ωt)
[√

3
2 uy + 1

2 uz
]
. Find the current intensity in the

circuit formed by the four conducting wires at any instant t. Self-inductance is
negligible.

Solution

Let us determine, at an instant t, the e.m.f. around the closed loop formed by the four
wires, the line element as shown in Fig. 8.40 (counterclockwise direction). Then, the
surface element used in calculating the magnetic flux is dS = dS uz = dxdy uz. At
any instant, the resulting magnetic flux can then be written as

� =
∫

S
B · dS = B · S =

(

0,B0 cos(ωt)

√
3

2
,B0 cos(ωt)

1

2

)

· (0, 0, S) = B0
2

cos(ωt)S

= B0
2

cos(ωt)4v2t2 = 2B0 cos(ωt)v
2t2,

where at the instant t, the surface defined by the four wires is S = (2vt)2 = 4v2t2.
The electromotive force is then given by

E = −d�

dt
= 2B0ω sin(ωt)v2t2 − 4B0 cos(ωt)v

2t.

The resistance of the closed circuit isR = 4(2vt)r = 8vtr. Then,wefind the resulting
current to be

I = B0ω

4r
sin(ωt)vt − 1

2r
B0 cos(ωt)v.

Fig. 8.40 The four moving
conducting wires at an
instant t; the e.m.f. is
calculated following
the path given by dl
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Fig. 8.41 A conducting bar
sliding on two rails in
presence of a time-variant
magnetic field. At an instant
t, the e.m.f. is calculated
following the direction dl

8.15 A bar slides frictionlessly on two parallel rails electrically connected by a
resistor of resistance R, as shown in Fig. 8.41. Both the sliding bar and the
rails can be considered perfect conductors. The bar moves parallel to the OY -
axis, the distance from the bar to the OX-axis is given by y = b[1 − sin(ω1t)],
where b and ω1 are constants, and t is the time. In the region shown in Fig. 8.41,
there is a time-varying magnetic field B = B0 cos(ω2t)uz, where B0 and ω2

are also constants. (a) Find the current intensity flowing through the resistor
as a function of the time. (b) Represent the result obtained for the intensity
as a function of time in the case ω1 = ω2. Self-inductance is considered to be
negligible.

(a) First of all, let us calculate the e.m.f. following the closed path: bar, rails, and
the resistor (clockwise direction), as shown in Fig. 8.41. At a given instant t, the flux
through the surface, whose boundary is the closed path, is given by

� =
∫

S
B · dS =

∫

S
(0, 0,B) · (0, 0, dS) =

∫

S
BdS = BS = B0 cos(ω2t) ab [1 − sin(ω1t)] ,

where B = B0 cos(ω2t) and S = ay = ab[1 − sin(ω1t)].
Faraday’s law becomes

E = − d�

dt
= B0abω2 sin(ω2t) [1 − sin(ω1t)] + B0ab cos(ω2t)ω1 cos(ω1t),

whereas the first term is produced by the time-variation of B, and the second is due
to the motion of the bar in the magnetic field.

Finally, the current intensity, calculated as indicated in Fig. 8.41, is given by,

I = E
R

.

(b) Substitution of ω1 = ω2 = ω into the value calculated of E , yields

I = E
R

= B0abω[sinωt + cos 2ωt]
R

,

which is represented in Fig. 8.42. The induced intensity is periodic, the period being
2π/ω.



Solved Problems 547

Fig. 8.42 The resulting
induced current intensity
as a function of time
(Problem 8.15)

Time

In
te

ns
ity

8.16 Figure8.43 shows a sketch of a toroidal core along with its cross section. The
core material is of high permeability μr . Coil labelled 1 has N1 turns uniformly
distributed and tightly wound on the entire toroid, while the N2 turns of coil 2
are uniformly distributed along a portion of the toroid, between terminals c and
d. Determine: (a) Self-inductance L1 and mutual inductance M. If terminals
c and d are connected to a generator and terminals a and b to a resistance
R, (b) find the differential equation corresponding to the intensity through the
resistance when the current intensity through Coil 2 is given by I02 sin(ωt).

Solution

(a) Let us calculate the self-inductance L1. Firstly, a current intensity I1 is assumed to
flow through Coil 1. Secondly, the magnetic field B1 is calculated from the H1-field
by applying Ampère’s law to a circular path � with radius ρ (R < ρ < R + w), see
Fig. 8.43:

∮

�

H1 · dl =
∫

S
jc · dS ⇒ Hφ1 2πρ = N1I1 ⇒ Hφ1 = N1I1

2πρ
,

where Hφ1 and ρ are constant around the circular path � that encircle a total current
N1I1. By taking into account the linear relation B1 = μ0μrH1, we have

Bφ1 = μ0μrN1I1
2πρ

.

Next we determine the flux through one loop in Coil 1:

�11,one =
∫

S1

B1 · dS =
∫

S1

(
μ0μrN1I1

2πρ
uφ

)
· (
hdρuφ

)
(8.38)

Fig. 8.43 A toroidal core
and its cross section with size
lengths w and h. The internal
radius is denoted R. The two
wire coils wound around the
core are labelled Coil 1 (with
terminals a and b) and Coil 2
(with terminals c and d)
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= μ0μrN1I1h

2π

∫ R+w

R

dρ

ρ
= μ0μrN1I1h

2π
ln

(R + w)

R
(8.39)

Then, the total flux through Coil 1 is,

�11 = N1�11,one = μ0μrN2
1 I1h

2π
ln

(R + w)

R
.

Finally, we obtain for the self-inductance of Coil 1:

L1 = d�11

dI1
= �11

I1
= μ0μrN2

1h

2π
ln

(R + w)

R
.

Note that the self-inductance of circuits in linear magnetic media is not a function
of I and that it is proportional to the square number of turns.

Let us now calculate themutual inductanceM betweenCoil 1 andCoil 2.A current
can be assumed in Coil 1 and then the effect on Coil 2 evaluated, or the current in
Coil 2 assumed and the effect on Coil 1 determined. The former procedure seems
much simpler. The flux linkage in Coil 2 due to the magnetic field produced by I1 is

�21 = N2�21,one = μ0μrN1N2I1h

2π
ln

(R + w)

R
.

Hence, the mutual inductance is

M = d�21

dI1
= �21

I1
= μ0μrN1N2h

2π
ln

(R + w)

R
.

(b) By applying Kirchhoff’s second law to loop 1 in a clockwise direction (see
Fig. 8.44), it is found:

E1 = −L1
dI1
dt

− M
dI2
dt

= RI1,

L1
dI1
dt

+ RI1 = −MI02ω cos(ωt).

Fig. 8.44 Terminals a and b are connected to a resistance and c and d to a generator. Points represent
the directions of current intensities in which the magnetic fields produced by I1 and I2 are in the
same direction
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Fig. 8.45 A coaxial transmission line with a conductor tube of radius r1 and a thin conductor with
radius r2

(a) (b)

Fig. 8.46 Two sections of the transmission line

8.17 Determine the inductance per unit length of a coaxial transmission line with
an inner hollow tube of radius r1 and a thin hollow conductor of radius r2 as
shown in Fig. 8.45.

Solution

We assume that the inner conductor carries a current I and that identical current
flows in the outer conductor but in opposite direction. By symmetry, the lines of
B are circles, i.e. B has only the component Bφ. From Ampère’s law applied to a
circular path of radius ρ as shown in Fig. 8.46b, it is found that the values for B are

Bφ(ρ) =
⎧
⎨

⎩

Bφ = 0 0 < ρ < r1,
Bφ = μ0I

2πρ
r1 < ρ < r2,

Bφ = 0 ρ > r2.

The resulting magnetic field is confined to the region between the two cylinders and
B-field lines are concentric circles centered on the axis of the cylinders.

Consider a cylinder between the two conductors with an inner radius ρ, an outer
radius ρ + dρ, and a length �, as shown in Fig. 8.46a. The flux of the magnetic field
Bφ = μ0I/2πρ through the surface dS = �dρ, with cross hatches in Fig. 8.46a, and
the total flux are, respectively,



550 8 Electromagnetic Induction

d� = μ0I

2πρ
�dρ ⇒ � =

∫ r2

r1

μ0I

2πρ
�dρ = μ0I�

2π
ln ρ|r2r1 = μ0I�

2π
ln

r2
r1

.

The self-inductance is then obtained

L = d�

dI
= μ0�

2π
ln

r2
r1

.

Finally, the inductance per unit length of the coaxial transmission line is therefore

L′ = L

�
= μ0

2π
ln

r2
r1

.

Problems C

8.18 A conducting rectangular loop, with sides of length �1 and �2, lies in the XY -
plane and moves with a constant velocity v = v ux, as shown in Fig. 8.47. At
time t = 0, the vertex a is coincident with the origin of the coordinate system.
Two different situations are considered:

• (a) The loop moves through a region where there is a magnetic field given
by B = B0 cos(kx)uz (B0 and k are constants). Calculate the induced e.m.f.
in the loop as a function of time. Show the direction of the current induced
in the loop at time t = 1µs.

• (b) If the magnetic field is now B = B0 cos(kx) sin(ωt)uz, where ω is also
a constant, find the e.m.f. induced in the loop.
Numerical values: �1 = 5cm; �2 = 10cm; v = 0.5m/s; B0 = 1 T; k =
40m−1; ω = 50 s−1.

Solution

(a) The electromotive force in the rectangular loop is induced by the motion of the
loop in the non-uniform magnetic field and can be calculated by applying (8.11) or
(8.12). The latter will be used in the calculation of the e.m.f. At a certain instant t,
when the square loop is located at the position shown in Fig. 8.48, the surface element
being dS = �2dx uz, thus the flux through the loop can be expressed as

Fig. 8.47 A rectangular
loop moving at a constant
velocity v in a non-uniform
magnetic field perpendicular
to the XY -plane
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Fig. 8.48 The rectangular
loop at a certain instant t.
Electromotive force is
calculated following a
counterclockwise path

Fig. 8.49 The direction of
the current induced in the
loop at t = 1µs

� =
∫

S
B · dS =

∫

S
(0, 0,B0 cos(kx)) · (0, 0, �2dx) =

∫ vt+�1

vt
B0 cos(kx)�2dx

= B0�2
sin(kx)

k

∣
∣
∣
∣

vt+�1

vt

= B0�2

k
{sin [k(vt + �1)] − sin[kvt]} .

Then, the induced e.m.f can be calculated by applying (8.12), becoming

E = −d�

dt
= −B0�2

k
kv {cos [k(vt + �1)] − cos[kvt]}

= B0�2v {cos[kvt] − cos [k(vt + �1)]}
= 0.05 [cos(20t) − cos(20t + 2)] (V).

At t = 1µs, E = 0.07 (V) > 0. Neglecting self-inductance, the current intensity
calculated following a counterclockwise path around the loop becomes I = E/R > 0,
and the direction of the induced current is the same as that assumed in the calculation,
shown in Fig. 8.49.

This result can also be easily obtained by applying the Leibniz rule for the differ-
entiation of an integral. For the function F(t) obtained by integration of the function
f (x, t),

F(t) =
∫ x2(t)

x1(t)
f (x, t) dx,

the derivative with respect to time can be expressed as

dF(t)

dt
=

∫ x2(t)

x1(t)

∂f (x, t)

∂t
dx + f [x2(t), t]

dx2(t)

dt
− f [x1(t), t]

dx1(t)

dt
.

Then for the flux obtained at t, by applying this rule it is found

�(t) =
∫ x2(t)=vt+�1

x1(t)=vt
B0 cos(kx)�2dx ⇒



552 8 Electromagnetic Induction

d�(t)

dt
= 0 + B0 cos[k(vt + �1)]�2v − B0 cos[kvt]�2v,

E = −d�(t)

dt
= B0�2v {cos[kvt] − cos[k(vt + �1)]} .

(b) In this case the change of the magnetic flux through the loop is due to both the
circuit movement and the magnetic field variation with time. Then, the general law
given in (8.19) is used to evaluate the induced e.m.f. in the rectangular loop. As in
(a), the magnetic flux through the circuit at a certain instant t is first calculated. Then,
the induced e.m.f. is obtained by applying the “flux rule” (8.19).

� =
∫

S
B · dS =

∫

S
(0, 0,B0 cos(kx) sin(ωt)) · (0, 0, �2dx) =

∫ vt+�1

vt
B0 cos(kx) sin(ωt)�2dx.

Applying the Leibniz rule, we have

d�

dt
=

∫ vt+�1

vt
B0 cos(kx)ω cos(ωt)�2 dx + B0 cos[k(vt + �1)] sin(ωt)�2v

−B0 cos[kvt] sin(ωt)�2v
= B0ω cos(ωt)�2

[
sin(kx)

k

]vt+�1

vt

+ B0 cos[k(vt + �1)] sin(ωt)�2v
−B0 cos[kvt] sin(ωt)�2v

= B0ω�2

k
cos(ωt) {sin [k(vt + �1)] − sin [kvt]}

+B0�2v sin(ωt) {cos [k(vt + �1)] − cos[kvt]} .

E = −d�

dt

= −B0ω�2

k
cos(ωt) {sin [k(vt + �1)] − sin [kvt]}

−B0�2v sin(ωt) {cos [k(vt + �1)] − cos[kvt]}
= −0.125 cos(50t) [sin(20t + 2) − sin(20t)]

− 0.05 sin(50t) [cos(20t + 2) − cos(20t)] (V).

The first term on the right side is produced by the time-varying magnetic field,
while the second one results from the motion of the loop in the magnetic field.

8.19 Figure8.50 shows a magnetic core and two conducting coils with N1 and N2

turns, respectively. The mean magnetic path length is also shown. The core is
made of two linear materials with high permeabilities μr1 and μr2, respectively.
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Fig. 8.50 Core made of two
magnetic materials around
which two coils are wound

The cross-section is a square of side c. (a) Find the mutual inductance between
the two coils. (b) If the coil labelled Coil 1 carries a slowly varying current
I1 = 0.5 cos(100πt) (A), find the open-circuit voltage that appears between
the terminals of the coil labelled Coil 2.
Numerical values:a = 15cm;b = 10cm; c = 5cm;N1 = 100;N2 = 50;μr1 =
1000, and μr2 = 500.

Solution

(a) It is assumed that the entire magnetic field is confined within the core. The
magnetic flux through the cross-section of the core can be approximately expressed
as � ≈ BS. As the core has the same cross sectional area throughout its length,
the magnetic field B in the core is constant, i.e. B = B1 = B2. However, the H-
field changes due to the two different constitutive equations of the core materials:
B1 = μ0μr1H1 and B2 = μ0μr2H2. By assuming a current intensity I1 in Coil 1 and
applying Ampère’s law:

H1l1 + H2l2 = N1I1 ⇒ B

μ0μr1
l1 + B

μ0μr2
l2 = N1I1,

where the total length of the path is l1 + l2, and l1 = l2 = a + b. Therefore, the
magnetic field in the core becomes

B = μ0μr1μr2N1I1
(a + b)(μr1 + μr2)

.

For one turn in Coil 2, the magnetic flux is �21,one = BS = Bc2, and the total flux
trough Coil 2 due to the current intensity I1 can be expressed as

�21 = N2�21,one = N1N2μ0μr1μr2c2I1
(a + b)(μr1 + μr2)

.
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Fig. 8.51 Electromotive
force is induced in Coil 2 as
a result of a time-dependent
current flowing through
Coil 1

Finally, the mutual inductance is

M = d�21

dI1
= N1N2μ0μr1μr2c2

(a + b)(μr1 + μr2)

= 100 × 50 × 4π × 10−7 × 1000 × 500 × 0.052

(0.15 + 0.10)(1000 + 500)
= 0.021 (H).

(b) The current intensity flowing in Coil 1 is I1 = I0 cos(ωt) = 0.5 cos(100πt) (A),
whereas in Coil 2 the current intensity is I2 = 0. Then, the e.m.f. evaluated along
the closed path formed by Coil 2 and the mathematical external line (dc) between its
terminals, as shown in Fig. 8.51, is given by

E2 =
∮

�

Ee · dl = −d �22

d t
= −M

dI1
dt

= N1N2μ0μr1μr2c2I0ω sin(ωt)

(a + b)(μr1 + μr2)
.

The e.m.f. can also be calculated as

E2 =
∮

�

Ee · dl2 =
∫

coil 2
Ee · dl2 +

∫

ext. line (dc)
Ee · dl2 = 0 +

∫

ext. line (dc)
−∇V · dl2

=
∫ c

d
−∇V · dl2 = Vd − Vc = Vdc,

where it is assumed that the electric field in Coil 2 is Ee = 0 (the wire is a perfect
conductor) and the magnetic field outside the core is negligible. Then, the voltage
between the terminals of Coil 2 is equal

Vdc = E2 = N1N2μ0μr1μr2c2I0ω sin(ωt)

(a + b)(μr1 + μr2)
= 3.29 sin(100πt) (V).

8.20 The system shown in Fig. 8.52a consists of a long straight wire, w, and a
closed square loop of wire with sides of length b = 10cm, N = 100 turns, and
a resistance of R = 30�. The loop is placed in the XZ-plane at a distance a
from the straight wire. If the straight wire carries a current intensity I(t) =
3
[
1 − exp(−0.1t)

]
(A) and a = 5cm, find: (a) the e.m.f. induced in the square

loop at the instant t = 3s. (b) Mutual inductance between the straight wire and
the square loop in this situation.
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Fig. 8.52 a The straight
wire and the square coil with
N turns. b In this case, the
square loop rotates with
angular velocity � and the
loop is located a long
distance from the wire

(a) (b)

Fig. 8.53 The e.m.f. is
calculated following the
direction dl, the surface
element being dS = bdx uy

In a new situation, when a long time has elapsed and the distance between the
loop and the wire is such that a � b, the loop begins to rotate with an angular
velocity� = (0, 0, 200) s−1, around the symmetry axis parallel to the wire and
passing through the centre O′, as shown in Fig. 8.52b. (c) Calculate the current
intensity induced in the square loop.

Solution

(a) In the plane of the Fig. 8.53, the magnetic field produced by the straight wire
depends on the distance x to the wire and is given by:

B = μ0I

2πx
uy.

The magnetic flux through one coil;

�one =
∫

S
B · dS =

∫

S
(0,B, 0) · (0, dS, 0) =

∫

S
BdS =

∫ a+b

a

μ0I

2πx
bdx = μ0Ib

2π
ln

(a + b)

a
,

and the magnetic flux through the complete square loop becomes,

� = N�one = μ0NIb

2π
ln

(a + b)

a
.
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Fig. 8.54 A view in the
XY -plane of the rotating
square loop at an instant t.
As a � b, the distance from
O′ to O, a + b/2, is
approximately equal to a

The e.m.f. obtained is therefore

E = − d�

dt
= −μ0Nb

2π
ln

(a + b)

a

dI

dt
= −μ0Nb

2π
ln

(a + b)

a
[−3(−0.1) exp(−0.1t)]

= − 4π × 10−7 × 100 × 0.10

2π
ln

0.05 + 0.10

0.05
× 0.3 × exp(−0.1 × 3) = −4.88 × 10−7 (V).

(b) In order to calculate M, we evaluate the effect of the field created by the current
in the straight wire on the coil. The magnetic flux through the coil has been already
calculated. Then, we have for the mutual inductance

M = d�21

dI1
= μ0Nb

2π
ln

(a + b)

a
= 4π × 10−7 × 100 × 0.10

2π
ln

0.05 + 0.10

0.05
= 2.20 × 10−6 (H).

(c) In this case, with t → ∞, intensity tends to I → 3 (A). As a � b, the current
through the wire creates a magnetic field in the square coil that can be assumed to
be approximately uniform. Under these assumptions, the magnetic field in the coil
is B = (μ0I)/(2πa)uy, and at an instant t the magnetic flux through the coil results
to be (see Fig. 8.54):

�one =
∫

S
B · dS � B · S = BS cos(�t) = μ0I

2πa
b2 cos(�t),

� = N�one = μ0NI

2πa
b2 cos(�t).

Finally, neglecting self-inductance, the e.m.f. and the induced intensity can be
expressed as:

E = −d�

dt
= μ0INb2

2πa
� sin(�t) ⇒ Iind = E

R
,

Iind = μ0INb2

2πaR
� sin(�t) = 4π × 10−7 × 3 × 100 × 0.102 × 200

2π × a × 30
sin(200t)

= 0.4 × 10−5

a
sin(200t) (A).
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Fig. 8.55 Two long straight
wires in the XY -plane and a
square loop lying in this
plane

8.21 A rectangular loop is formed by two long straight wires and two short wire
segments connected between their ends (see Fig. 8.55). The distance between
the two long wires is d. A square loop with sides of length a = d/4 and a
resistance R lies in the same plane as the two long wires, between them and
at a distance b = d/6 from the left long wire, as shown in Fig. 8.55. (a) Find
the mutual inductance between the two loops. (b) If the square loop is at rest,
in the position shown in the figure, and the current carried by the long wires
is I = I0 cos(ωt), find the e.m.f. induced in the square loop. (c) If the current
flowing in the long straight wires is I = 1A and the square loop begins to move
at constant velocity v = v ux, find the induced current in the square loop when
its center is equidistant from the long parallel wires.

Solution

(a) A current, I1, is made to flow through the long straight wires (see Fig. 8.56).
The magnetic field of the two short straight wires connecting the ends of the long
wires is considered to be negligible. Therefore, the flux through the square loop
to be considered is only that due to the current flowing through the long wires. The
magnetic fields produced by the left and right straight wires carrying the current I1, at
a point located between them, and at a distance x from the left wire are, respectively,

Bl = μ0I1
2πx

(−uz) and Br = μ0I1
2π(d − x)

(−uz).

Following the square loop in a clockwise direction, the corresponding surface ele-
ment is dS = −adx uz. Then, the magnetic fluxes through the square loop produced
by Bl and Br are given by

�l =
∫ b+a

b

μ0I1
2πx

adx = μ0I1a

2π
ln x|b+a

b = μ0I1a

2π
ln

(
b + a

b

)
= μ0I1a

2π
ln

5

2
,
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Fig. 8.56 The two long
straight wires, circuit
denoted 1, and the square
loop, circuit denoted 2

�r =
∫ b+a

b

μ0I1
2π(d − x)

adx = −μ0I1a

2π
ln(d − x)|b+a

b = −μ0I1a

2π
ln

(
d − (b + a)

d − b

)

= −μ0I1a

2π
ln

7

10
.

The resulting flux through the square loop results in

�21 = �l + �r = μ0I1a

2π
ln

(
b + a

b

)
− μ0I1a

2π
ln

(
d − (b + a)

d − b

)
= μ0I1a

2π
ln

[
(b + a)(d − b)

b(d − (b + a))

]

= μ0I1a

2π
ln

25

7
= μ0I1d

8π
ln

25

7
.

The mutual inductance is finally obtained as

M = �21

dI1
= μ0d

8π
ln

[
(b + a)(d − b)

b(d − (b + a))

]
= μ0d

8π
ln

25

7
(H).

(b) The induced e.m.f. E in the square loop (see Fig. 8.57), produced by the current
I = I0 cosωt flowing through the long straight wires, can be expressed as

E = −d�

dt
= −M

dI

dt
= −μ0d

8π
ln

25

7

dI

dt
= μ0d

8π
ln

25

7
I0ω sin(ωt) (V).

(c) The induced electromotive force in the square loop caused by the motion of the
loop in the non-uniform magnetic field produced by the current I = 1 (A) can be
calculated by applying (8.11) or (8.12). By applying (8.11) when the square loop is
located at the position shown in Fig. 8.58, it is found

E =
∮

ijkli
(v × B) · dl =

∫

ij
(v × B) · dl +

∫

jk
(v × B) · dl +

∫

kl
(v × B) · dl +

∫

li
(v × B) · dl.

On sides labelled jk and li, the cross product (v × B) is perpendicular to the cor-
responding longitudinal differential element. Thus, the line integrals along sides jk
and li are equal to zero. Due to the symmetry conditions, on side ij the resulting
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Fig. 8.57 The straight wires
carry a current I = I0 cosωt
and the induced e.m.f.
around the square loop is
calculated following a
counterclockwise direction

Fig. 8.58 The square loop
with its center equidistant
from the long parallel wires
moves with constant velocity
v. The current flowing
through the long straight
wires is I = 1A

magnetic field Bij = Bij,l + Bij,r is equal to Bkl = Bkl,l + Bkl,r . As the path direction
along side ij is opposite to that of side kl, the resulting line integral is zero. Then, the
e.m.f. induced in the loop at the position shown in Fig. 8.58 is zero, as is the current
induced in the square loop.

8.22 Two conducting rails with negligible resistance, separated by a distance D =
1m, are connected through a fixed bar ab with a resistance of 6 �. There
are two conducting bars cd and ef of resistance 8 � and 12 �, respectively,
sliding frictionlessly on the parallel rails at constant velocities vcd = 6m/s and
vef = 8m/s (in direction parallel to the rails, and the bars moving away from
ab). The angles that cd and ef makewith the normal to the rails areα = 30◦ and
β = 45◦, respectively. Figure8.59 shows the initial position of the two bars, the
initial distances being d0 = 20cm and f0 = 15cm. There is a homogeneous and
stationary magnetic field of magnitude B = 0.2 T, perpendicular to the plane
of the figure and pointing inward. Find the current intensity flowing in bar ab
at a given instant t.

Solution

Electromotive force is induced by the motion of bars cd and ef in the magnetic
field, and hence the current in bar ab results. By calculating the e.m.f. around the
loops labelled 1 and 2, see Fig. 8.60, following the clockwise and counterclockwise
directions, respectively, it is found at a given instant t:
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Fig. 8.59 Two parallel rails on which two bars cd and ef slide at constant velocity vcd and vef ,
respectively, in the presence of a uniform magnetic field pointing into the page

Fig. 8.60 Sketch showing, at an instant t, the direction assumed in calculating e.m.f. and the
directions of the current intensities

E1 =
∮

�1

(v × B) · dl =
∫

ef
[(vef , 0, 0) × (0, 0,−B)] · (dx, dy, 0)

=
∫ f

e
(0, vef B, 0) · (dx, dy, 0) =

∫ 0

D
vef Bdy = −vef BD,

E2 =
∮

�2

(v × B) · dl =
∫

cd
[(−vcd, 0, 0) × (0, 0,−B)] · (dx, dy, 0)

=
∫ d

c
(0,−vcdB, 0) · (dx, dy, 0) =

∫ 0

D
−vcdBdy = vcdBD.

Kirchhoff’s laws, the first law applied to the node labelled a and the second law
to loops 1 and 2, become:

Iab + Ief = Icd
E1 = RabIab − Ref Ief
E2 = RabIab + RcdIcd

⎫
⎬

⎭

By solving the equations set, it is found for Iab:

Iab = E1Rcd + E2Ref

RabRcd + Ref Rcd + RabRef
= (−vef BD)Rcd + (vcdBD)Ref

RabRcd + Ref Rcd + RabRef

= (−8 × 0.2 × 1)8 + (6 × 0.2 × 1)12

6 × 8 + 12 × 8 + 6 × 12
= 7.4 × 10−3 (A).

8.23 Figure8.61 reminds us of Faraday’s experiment to generate electric current
from the flowingwater in theRiver Thames. This figure shows a sketch of a river
of widthw and two rectangular electrodes, with side lengths a and b, which are
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Fig. 8.61 A simple sketch of a river and the two electrodes used in the experiment to generate
electric current

Fig. 8.62 The closed path around which the e.m.f. is calculated: 21 (between the electrodes) and
12 (exterior). As a result of the the term v × B, positive and negative charges are accumulated on
the electrodes, producing a electric field denoted Ecs,in (water) and Ecs,ex (exterior)

placed on both sides of the river. The velocity of the river is v and the component
of the Earth’s magnetic field in the region between the electrodes isB, as shown
in the figure. (a) Find the voltage between the two electrodes (open-circuit
voltage). (b) If a resistance R is connected to the electrodes, find the current
intensity I flowing through the resistance. The end effect of the electrodes
can be neglected. (c) For the particular case: R = 1�, a = 190m, b = 4.00m,
w = 18m, v = 3m/s, B = 0.50µT, resistivity of water ρ = 100�m, find the
current intensity in the resistance.

Solution

(a) The term v × B causes charges to be accumulated on the electrodes until the field
Ecs (electrostatic) produced by them balances the field v × B. Then, between the
electrodes Ee,in = v × B + Ecs,in = 0. In the exterior, the resulting field is only due
to the accumulation of charges, Ee,ex = Ecs,ex = −∇V (see Fig. 8.62).

The e.m.f. around the closed path shown in Fig. 8.62, 21 (water)-12 (exterior), is

E =
∮

212
Ee · dl =

∮

212
(v × B) · dl =

∫

21(water)
(v × B) · dl +

∫

12(exterior)
(v × B) · dl

=
∫

21(water)
[(0, v, 0) × (0, 0,B)] · (dx, 0, 0) =

∫ 1

2
(vB, 0, 0) · (dx, 0, 0) =

∫ w

0
vBdx = vBw.
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Fig. 8.63 When the circuit
is closed by a resistance R
the current intensity I flows

This equation can also be written as

E =
∮

212
Ee · dl = vBw =

∫

21(water)
Ee,in · dl +

∫

12(exterior)
Ee,ex · dl

= 0 +
∫ 2

1
−∇V · dl = V1 − V2 = V0 ⇒ V0 = vBw,

where V0 is the voltage between the electrodes (open-circuit).
(b) If the circuit is closed by a load resistance R connected to the electrodes as
shown in Fig. 8.63, the charges escape from the electrodes producing a current in the
resistance. Due to the unbalance, current flows between the electrodes, the current
density in the water being j = σ(v × B + Ecs,in), where σ is the conductivity of
water.

By neglecting the end effects of the electrodes, the conservative electric field
due to the accumulation of charges can be considered uniform, Ecs,in = Ecs,in (−ux).
Then, the current density in the water can be expressed as

j = σ[(v × B) + Ecs,in] = σ(vB − Ecs,in)ux.

The new voltage V between the electrodes can be calculated as

V =
∫ 2

1
Ecs,in · dl = Ecs,inw.

When a steady-state condition is reached, the current intensity I in the water is
equal to the current flowing through the resistance. The current I through the water
between the electrodes, with a section S = ab, is given by

I =
∫

S
j · dS = j · S = (σ(vB − Ecs,in), 0, 0) · (ab, 0, 0) = σ(vB − Ecs,in)ab,

where j is assumed to be uniform. The same current intensity flows through the
resistance, which can be expressed in terms of the voltage between its terminals,
I = V/R. The conservative field can be easily obtained by substituting V = Ecs,in w

into this equation for I ,
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Fig. 8.64 A simple sketch
of an ideal transformer. Note
that the secondary current is
flowing in such a direction as
to oppose the flux change
due to I1

I = V

R
= Ecs,inw

R
⇒ Ecs,in = RI

w
.

Finally, substitution of Ecs,in into the above expression of I in the river yields

I = σ

(
vB − RI

w

)
ab ⇒ I = σabvBw

w + σabR
.

The problem can also be solved by evaluating the e.m.f. around the closed path
21(water)-12(resistance), see Fig. 8.63, and applying Kirchhoff’s second law,

E = vBw = (R + Rw)I ⇒ I = σabvBw

w + σabR
,

where the resistance of the water between the electrodes is Rw = (1/σ)(w/ab).
(c) By substituting the values given in the expression obtained for I , it is found that
I = 8µA, resulting in a very small value to be measured.

8.24 Figure8.64 shows a sketch of an ideal transformer with two coils coupled
magnetically through a ferromagnetic core with a mean path length � and a
uniform cross-section S. The primary coil, with N1 turns, is connected to a
source of e.m.f. with a voltage V1 across its terminals. The secondary coil has
N2 turns and is connected to a load resistance R. Find: (a) the ratio of output
voltage V2 to the input voltage V1, (b) the ratio of the currents in the primary
and secondary coils, and (c) the value of the resistance seen by the source
connected to the primary circuit.

Solution

(a) The varying current in the primary coil creates a varying magnetic flux confined
to the core that produces a voltage in the secondary coil as a result of Faraday’s law.
If a load is connected to the secondary coil, electric current will flow through the
load and therefore electric energy will be transferred from the primary circuit to the
secondary circuit.
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We assume that the transformer is ideal: the magnetic coupling between the coils
is perfect, there is no dissipation of energy, and the core has a very high permeability
(but it is not saturated). Then, the self-inductance of each coil is enormous, there is
no flux leakage, and the resistance of the coils is negligible. Moreover, hysteresis
and eddy-currents are also assumed to be negligible.

Under these assumptions, the same flux,�, passes through each turn of both coils,
and an e.m.f., −d�/dt, is induced around each turn. Since there is no resistance, the
e.m.f. E1 produced by the generator is equal to the voltage V1 across its terminals.
According to Faraday’s law, we obtain

V1 − N1
d�

dt
= 0, V2 − N2

d�

dt
= 0.

Then, it follows that
V2

V1
= N2

N1
= n.

Therefore, the ratio of output voltage of the secondary to the primary voltage is the
turns ratio n = N2/N1.
(b) By applyingAmpère’s law, the line integral of theH-field along the closed dashed
path shown in Fig. 8.64 gives

∮

�

H · dl = N1I1 − N2I2.

As the core has a uniform cross-section, the magnetic field is nearly uniform over
any cross-section, and has the average magnitude B = �/S. The magnetic field B is
related to H by B = μH. Then,

N1I1 − N2I2 =
∮

�

H · dl =
∮
�
B · dl
μ

= B�

μ
= �

μS
�

≈ 0,

where it has been taken into account that the magnetic permeability is very large
(μ → ∞). The quotient μS/� is called reluctance of the magnetic circuit. From the
last equation, we find

I2
I1

= N1

N2
= 1

n
.

This result shows that the ratio of the currents in the primary and secondary coils is
equal to the inverse of the turns ratio n. The same result is obtained by equating the
power in the primary and secondary circuits since there is no energy loss in an ideal
transformer, i.e. P1 = P2 = V1I1 = V2I2.
(c) In the secondary circuit, in the case studied with a load resistance R,

V2 = RI2,
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and from the equations for the ratio of voltages and currents, we have

V1 = V2
N1

N2
= RI2

N1

N2
= RI1

(
N1

N2

)2

⇒ (R)1 = V1

I1
= R

(
N1

N2

)2

,

i.e. the load (R)1 seen by the source connected to the primary coil is R/n2.



Chapter 9
Energy of the Electromagnetic Field

Abstract This chapter deals with the energy associated with the electric and mag-
netic fields. In all branches of Physics, the concept of energy is present. The intro-
duction of the idea of energy in electromagnetism provides a way of understanding
many different phenomena, such as the properties of magnetic matter at different
temperatures, circuits and networks, thermal electromagnetic radiation of bodies,
and electromechanical machines. Due to the wide range of applications we can find,
we have chosen for this chapter a viewpoint as simple as possible but, at the same
time, accurate in order to explain the most important ideas involved.

9.1 The Electrostatic Energy of Charges

Consider a system formed exclusively by two electrically charged particles, one of
which is fixed to a point P1 in space and with charge q1, and the other located at P2

and with charge q2. The distance between the two points is r12. Suppose that both
charges are positive. Since like charges repel, q1 applies a repulsive force F on q2
that causes it to accelerate and to attain the consequent kinetic energy. In order to
perform the following demonstration, the device shown in Fig. 9.1 is formed. The
charge q1 is fixed. The second charge is attached to a thread which passes over a
pulley and ends in a weight whose value is continually adjusted to maintain balance.
The block is external to the electrical system and applies the force Fex. The balance
implies that Fex = −F and that the magnitude of the force Fb = F. When lightening
a small fraction of the block, it moves upwards by a small amount dr′ such that dr′
= dr: hence the charge q2 applies work of Fb.dr′ = F.dr on the block. Therefore,
the two-charge system has potential energy Ue measurable by the work that can be
carried out on an external system: in this case, the block.

The work of the electrostatic force in the displacement dr is

dW = F.dr = Fdr = q1q2
4πε0r212

dr12. (9.1)
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Fig. 9.1 Experimental
device to evaluate the
electrostatic energy P1 P2

Fdr

q2q1

Fex

Fb

G

The total work to move q2 away towards infinity is the electrostatic energy of the
two-charge system:

Ue ≡ W =
∫ ∞

P2

dW =
∫ ∞

r12

q1q2
4πε0r212

dr12 = q1q2
4πε0

∫ ∞

r12

dr12
r212

= q1q2
4πε0

[
− 1

r12

]∞

r12

= q1q2
4πε0r12

. (9.2)

It can be seen that this work is the same as that which force Fex, originated by the
block, would have to apply to q2 for it to approach P2 from infinity.

The (9.2) can be written thus

Ue = q1
q2

4πε0r12
= q1V1 = q2

q1
4πε0r12

= q2V2 = 1

2
(q1V1 + q2V2), (9.3)

that is, the potential energy of the pair of charges is the charge of one of them times
the electrical potential that the other creates at the position that the first occupies, or
the semi-sum of each charge times the potential at its point, due to the other charge.

Once the two-charge system is established, if it is wished to introduce a third
charge, then it must be taken into account that the resulting force that is applied on
it is the vectorial sum of those exerted by the first two, and it is therefore possible to
reach the conclusion that the energy (electrostatic energy) of a system of N discrete
point charges is

Ue =
N−1∑

i=1

N∑

j=i+1

qiqj
4πε0rij

= 1

2

N∑

i=1

qiVi, (9.4)

where Vk , the electrical potential at qk , is caused by all the other charges.

9.2 The Energy of a Capacitor

Consider a capacitor during the charging process. In a certain intermediate state, the
charge of the plate 1 is q, that of plate 2 is – q, and the difference of potential V1 − V2

is V . In order to increase the charge from q to q + dq, a charge dq is taken from
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the second plate and given to the other. The required work is dW = Vdq = qdq/C.
The total energy that the capacitor acquires when its charge changes from zero to a
certain final value q is

Ue =
∫ q=q

q=0
dW =

∫ q=q

q=0

q

C
dq =1

2

q2

C
= 1

2
qV = 1

2
CV 2. (9.5)

9.3 The Electrostatic Energy of Distributed Charges

If dealing with a system of distributed charges, the charge in an element of volume
of space dv is ρdv and its potential energy, by analogy with (9.4), is

Ue = 1

2

∫

v
ρVdv, (9.6)

where V is the potential at the point where the volume charge density is ρ and v is
the volume of the region where the charge distribution exits.

For electrostatic systems containing dielectrics, a small change in the energy dUe

can be expressed in terms of field quantities E and the variation of D

dUe =
∫

v
E.dDdv. (9.7)

The total electrostatic energyUe can be calculated by allowingD to be brought from
an initial value null to its final value D.

In a linear isotropic dielectric medium, the electrostatic energy is expressed in
terms of the fields as

Ue = 1

2

∫

v
D.Edv. (9.8)

This expression can be expressed by saying: where an electrostatic field exists there
is a stored energy, or, the electrostatic field has the energy per unit volume

ue = 1

2
D.E, (9.9)

known as the electrostatic energy density ue.

9.4 Relationship Between Force and Electrostatic Energy

If an axisOX is drawn in Fig. 9.1 with its origin in the charge q1 and directed towards
the charge q2, this has a coordinate x, and (9.2) gives
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Ue = q1q2
4πε0r12

= q1q2
4πε0x

⇒ ∂Ue

∂x
= − q1q2

4πε0x2
= −Fx. (9.10)

This equation indicates the relationship between the x-component of the electrostatic
force acting on the charge q2 and the electrostatic energy. By generalizing this result,
it is possible to arrive at the following theorem: The electrostatic force that is exerted
on a charged body with constant charges is equal, except for the sign, to the gradient
of the electrostatic energy, that is,

F = −∇Ue. (9.11)

This result allows the calculation of forces on objects if the expression of the elec-
trostatic energy in terms of the coordinates is known. It is assumed that there is no
contribution of energy from other systems and the charges are kept fixed.

9.5 Magnetostatic Energy of Quasi-stationary Currents

Consider the simple circuit shown in the Fig. 9.2. At the instant t = 0 the circuit is
closed. The application of Ohm’s law at instant t gives

E − d�

dt
= RI. (9.12)

Multiplying all the terms of this equation by I gives

EI − I
d�

dt
= RI2 ⇒ EI = I

d�

dt
+ RI2. (9.13)

In the second of these equations, the first term, EI , represents the power injected into
the circuit by the generator, the third term, RI2, represents the power dissipated in
the resistance, therefore, through the principle of conservation of energy, the second
term Id�/dt, must be the power P stored in the circuit, that is, the speed of change
of a certain energy Um:

P = I
d�

dt
⇒ dUm

dt
= I

d�

dt
⇒ dUm = Id�. (9.14)

Therefore, by the fact of creating a current, an energy Um is stored in this device.
On the other hand, the coil creates a magnetic field, which is why there must be a
relationship between the magnetic field and the energy.

The energy stored by the coil when current I flows through it and flux � is
proportional to I , is
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Fig. 9.2 Circuit with
resistance and
autoinductance

L

R

I

dl

dS

∫ Um

0
dUm =

∫ I

0
Id� =

∫ I

0
ILdI ⇒ Um = 1

2
LI2, (9.15)

where L is the self-inductance.

9.6 Generalization

A toroidal solenoid is a circular ring on which a large number of turns of a wire are
wound (Fig. 9.3); the magnetic field is confined in its interior. Consider the circum-
ference of mean path length l, cross-sectional area of S, with N windings through
which circulates a current of intensity I . Ampère’s theorem gives

∮
H.dl = Hl = NI ⇒ H = NI

l
. (9.16)

Suppose there is a vacuum in the interior of the solenoid, which is magnetically linear
(B = μ0H), then the magnetic field B has the tangential component

B = μ0H = μ0
NI

l
. (9.17)

Fig. 9.3 Toroidal solenoid

dl

l

I
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The flux through the whole electrical circuit is

� = BNS = μ0
N2S

l
I. (9.18)

From (9.14), (9.16) and (9.18), the energy variation of the solenoid due to the
variation of field B

dUm = Id� = INSdB = Hl

N
NSdB = vHdB, (9.19)

where v is the volume of the solenoid. Therefore the variation of energy stored per
unit volume is

dum = HdB. (9.20)

Although the demonstration of (9.20) is for a very simple particular case, it can be
demonstrated rigorously that it is valid for any case. Moreover the magnetic energy
density variation caused by an infinitesimal variation of field B is

dum = H.dB. (9.21)

For a magnetically linear and isotropic material B = μrμ0H, the total magnetic
energy density is given by

um =
∫ B

0
H.dB =

∫ B

0
HdB = 1

μrμ0

∫ B

0
BdB = 1

μrμ0

1

2
B2 = 1

2
BH = 1

2
B.H.

(9.22)

Therefore, if there is an electric field and a magnetic field in a linear and isotropic
material, then the energy density can be written, in agreement with (9.9) and (9.22),
as

u = 1

2
D.E + 1

2
B.H. (9.23)

9.7 Magnetic Energy in a Hysteresis Loop

Integrating by parts in the (9.21) between state 1 and state 2 gives

um2 − um1 =
∫ B2

B1

H.dB = H.B]B2
B1

−
∫ H2

H1

B.dH. (9.24)

If a ferromagnetic material traces a hysteresis loop, where the initial and final states
are equal, then the energy introduced per unit volume is
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umcicle = −
∮

B.dH. (9.25)

That is, this energy is introduced for each loop traced but, as the initial and final
states are identical, the principle of conservation of energy indicates that when a
ferromagnetic material is taken around a complete hysteresis cycle an energy per
unit volume equal to the area of the loop is dissipated as heat.

Solved Problems

Problems A

9.1. Ahydrogen atom is formed by a proton of charge 1.602×10−19C and an electron
of charge –1.602×10−19C. Supposing that the separation between these two
charges is 0.5 ×10−10 m, calculate the electrostatic energy of the atom.

Solution

As the charges and distances are known, Eq. (9.2) is applicable:

Ue = q1q2
4πε0r12

= − 1.602 × 10−19 × 1.602 × 10−19

4π8.8542 × 10−12 × 0.5 × 10−10
J = −4.61 × 10−18 J.

9.2. Calculate the energy of a system of three particles, each with charge q and
located on the vertices of an equilateral triangle of side L.

Solution

Suppose that the three charges are initially located on the vertices of the triangle. The
work that the charge q3 can give to exterior charges in its displacement dr, with q1
and q2 remaining fixed, is, by application of the principle of superposition of forces
and of (9.1),

dW = F.dr = (F1 + F2).dr = F1.dr + F2.dr = q1q3
4πε0r213

dr13 + q2q3
4πε0r223

dr23,

where dr12 and dr13 are the components of the displacement dr in the directions of
the respective forces. Applying (9.2) to the displacement of q3 to infinity gives

Ue3 = q1q3
4πε0r13

+ q2q3
4πε0r23

.

Charge q2 then moves to infinity, with q1 remaining fixed. The energy provided by
this charge is, in agreement with (9.2),
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Ue2 = q1q2
4πε0r12

,

then the energy of the system of the three charges is

Ue3 = q1q2
4πε0r12

+ q1q3
4πε0r13

+ q2q3
4πε0r23

= q1q2 + q1q3 + q2q3
4πε0L

,

where it has been taken into account that r12 = r13 = r23 = L.
Equation (9.4) could have been applied directly and would give

Ue =
3−1∑

i=1

3∑

j=i+1

qiqj
4πε0rij

=
3∑

j=1+1

q1qj
4πε0r1j

+
3∑

j=2+1

q2qj
4πε0r2j

= q1q2
4πε0r12

+ q1q3
4πε0r13

+ q2q3
4πε0r23

,

which can be also expressed as

Ue = 1

2

N∑

i=1

qiVi = 1

2

[
q1

(
q2

4πε0r12
+ q3

4πε0r13

)
+ q2

(
q1

4πε0r12
+ q3

4πε0r23

)
+ q3

(
q1

4πε0r13
+ q2

4πε0r23

)]

= q1q2
4πε0r12

+ q1q3
4πε0r13

+ q2q3
4πε0r23

.

Note how this result agrees with the previous results.

9.3. A parallel-plate capacitor has a separation between the plates of z = 5mm,
the area of each plate is 200cm2, the gap is filled with a dielectric of relative
permittivity 5 and the potential between the plates is 300V. Calculate the energy
that it accumulates.

Solution

Applying (9.5) and taking into account the formula of the capacitance of a parallel-
plate capacitor gives

Ue = 1

2
CV 2 = 1

2

εrε0S

z
V 2

= 1

2

5 × 8.854 × 10−12 × 200 × 10−4

5 × 10−3
3002 J = 7.969 × 10−12 J.

9.4. A system is formed by two flat, opposed plates each of area S, and separated by
a small distance d. This system is introduced into a dielectric liquid of relative
permittivity εr . The plates are connected to a battery of electromotive force V ,
and they slowly move apart due to the application of an exterior force Fe to one
of plates until their separation is d′. Calculate: (a) the increase of energy of the
system; (b) the work of the exterior force; (c) relate the force F from one plate
on the other and the electrostatic energy of the capacitor.
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Solution

(a) According to (9.5), the initial energy of the capacitor is given by

Ue = 1

2
CV 2 = 1

2

εrε0S

d
V 2.

The energy that the capacitor has when the distance between the plates is d′ can be
expressed as

Ue
′ = 1

2

εrε0S

d′ V 2,

therefore the increase of energy is

�Ue = Ue
′ − Ue = 1

2

εrε0S

d′ V 2 − 1

2

εrε0S

d
V 2 = −1

2
εrε0SV

2 d
′ − d

dd′ .

Note that the energy of the capacitor has diminished, because d′ > d.
(b) Capacitance decreases with the separation of the plates, but the electric voltage
remains constant, therefore the charge, q = CV , decreases. The charge variation is

�q = q′ − q = C′V − CV = εrε0S

d′ V − εrε0S

d
V = −εrε0S

d′ − d

dd′ V .

Therefore, the energy that the battery provides is

Wbat = �q.V = −εrε0S
d′ − d

dd′ V 2.

If Wex is the work provided by the external force, then the principle of conservation
of energy can be written thus:

Wbat + Wex = �Ue ⇒ −εrε0S
d′ − d

dd′ V 2 + Wex = −1

2
εrε0SV

2 d
′ − d

dd′
⇒ Wex = 1

2εrε0SV
2 d′−d

dd′ .

Note that both the work of the external force and the reduction of the energy of the
capacitor have gone into increasing the energy of the battery, that is, in recharging
the battery. Furthermore

Wbat = 2�Ue.

(c) For a infinitesimal displacement dx under forces exterior Fe and interior F the
principle of conservation of energy gives

dWbat + dWex = dUe ⇒ 2dUe + Fedx = dUe ⇒ Fedx = −dUe = −∂Ue

∂x
dx

Fe = −∂Ue

∂x
.
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In equilibrium, the electrostatic force is opposite to the external force, F = −Fe,
therefore, the electric force between the two plates is

F = +∂Ue

∂x
.

Note the plus sign in this case of constant potential. In (9.11), at constant charge, the
sign was minus.

9.5. In a region of space that contains no matter, there is an electrostatic field E =
ayux. Calculate the energy inside a cube of side L, which supports three edges
on the positive part of the coordinate axes. Solve for: a = 20000V/m2 and L =
0.4m.

Solution

Application of (9.8) gives

Ue = ε0

2

∫

v
E.Edv = ε0

2

∫

cube
ayi.ayidv = a2ε0

2

∫ x=L

x=0

∫ x=L

y=0

∫ x=L

z=0
y2dxdydz

= a2ε0
2

L2 1

3
L3 = a2ε0

6
L5.

With the numeric data provided, this becomes

Ue = a2ε0
6

L5 = 200002 × 8.8542 × 10−12

6
0.45 J = 60.44 × 10−7 J.

9.6. Calculate the energy of a flat capacitor with capacitance C and charge q by
means of the application of (9.7).

Solution

The electric field outside the capacitor is dismissed by considering that the separation
between the plates is small, and it is null within each plate since it is a conductor,
therefore the only region of space to consider is that between the plates. Consider
a rectangular parallelepiped, such as that shown in Fig. 9.4, that includes the inner
face of the positive plate, of charge q; the flux of the electric field through its surface
is ∮

paral.
E.dS =

∫

S
EdS = ES,

Fig. 9.4 Capacitor and the
Gaussian surface

q
E

-q
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where S is the area of the plate. Applying Gauss’s theorem to the parallelepiped gives

ES = q

ε0
⇒ E = q

ε0S
.

Applying (9.8) to the space between the plates, with a separation of z, gives

Ue = ε0

2

∫

v
E.Edv = ε0

2

q

ε0S

q

ε0S
Sz = 1

2

q2

ε0S
z.

Remembering the formula of the capacity of the flat capacitor, C = ε0S/z, finally
gives

Ue = 1

2

q2

C
,

in agreement with (9.5).

9.7. Obtain the expression of the energy of a capacitor by applying (9.6).

Solution

Consider the box of volume v, drawnwith dotted lines, in the diagramof the capacitor,
shown in Fig. 9.5; all the charges of the capacitor are in its interior. Let q be the charge
of the upper plate and V1 its potential, and – q and V2 be those corresponding to the
lower plate. The integral that appears in (9.6) can be broken down into three integrals,
one extended to the space surrounding the interior face of the upper plate, the other
extended to the lower plate, and the third to the space between the plates which has
no charge:

Ue = 1

2

∫

v
ρVdv = 1

2

∫

v1
ρ1V1dv + 1

2

∫

v2
ρ2V2dv + 1

2

∫

v
0Vdv = 1

2
V1

∫

v1
ρ1dv + 1

2
V2

∫

v2
ρ2dv

= 1

2
V1q + 1

2
V2(−q) = 1

2
qV,

where V = V1 − V2, i.e. the potential difference between the potential of the upper
plate and that of the lower plate.
Note: the exterior field E has not been considered because the distance between the
plates is assumed to be small.

Fig. 9.5 Capacitor and a
closed surface (dotted lines)

q

-q
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9.8. In the cube described in Problem 9.5, in addition to the indicated electric field,
there is a uniform magnetic field of B = 0.001 ux T. Calculate the magnetic
energy stored inside the cube.

Solution

The energy contained in the cube due to the existence of the electric field is, as was
seen in Problem 9.5,

Ue = a2ε0
6

L5 = 60.44 × 10−7 J.

The magnetic energy is, according to (9.22),

Um = 1

2

∫

v

B.Hdv = 1

2

∫

v

BHdv = 1

2

∫

v

B2

μ0
dv

= 1

2

B2

μ0
L3 = 1

2

0.0012

4π × 10−7
0.43 J = 25.46 × 10−3 J.

Therefore, the total energy contained in the cube is

U = 60.44 × 10−7 J + 25.46 × 10−3 J =25.47 × 10−3 J.

Problems B

9.9. A spherical region of space of radius R has a uniform charge density of ρ
(Fig. 9.6). The charge is made in stages such that in an intermediate stage, when
a sphere of radius r has been charged, then a layer of charges of thickness dr is
added to it, and so on. Calculate: (a) The electric field Ee outside the sphere of
radius r in the intermediate stage. (b) The work necessary to place the charged
layer on the spherical surface of radius r. (c) The energy of the charged sphere
of radius R. (d) The energy of this sphere if R = 20cm and ρ = 0.3C/m3.

Solution

(a) By applying Gauss’s theorem to the spherical surface of radius re (re > r), the
outer electric field Ee is obtained:

∮
Ee.dS =

∮
EedS = Ee4πr

2
e = qint

ε0
= 1

ε0
ρ
4

3
πr3

⇒ Ee = ρr3

3ε0

1

r2e
,

where it has been taken into account that the charge is located inside the sphere of
radius r.
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Fig. 9.6 Spherical region of
charge density ρ

r

r+dr

R
re

Ee

(b) As the charge of the layer is dq = ρdv = ρ4πr2dr, thework necessary to approach
it from infinity is

dW =
∫ re=r

re=∞
dFex.dre = −

∫ re=r

re=∞
dqEedre = −

∫ re=r

re=∞
ρ4πr2dr

ρr3

3ε0

1

r2e
dre

= −4πρ2

3ε0
r5dr

∫ re=r

re=∞
dre
r2e

= 4πρ2

3ε0
r5dr

1

r
= 4πρ2

3ε0
r4dr.

(c) The energy of the charged sphere is the sum of the work needed for the transport
of all the layers from the first, r = 0, to the last, r = R:

Ue =
∫ r=R

r=0

4πρ2

3ε0
r4dr = 4πρ2

3ε0

1

5
R5 = 4πρ2R5

15ε0
.

(d) The application of this result to the data provided gives

Ue = 4πρ2R5

15ε0
= 4π0.32 × 0.205

15 × 8.854 × 10−12
J = 2.725 × 106 J.

9.10. Calculate the energy of the charged sphere of the previous problem by applying
(9.7).

Solution

The electric field E inside the sphere of radius r is radial, due to the symmetry.
Applying Gauss’s theorem it is deduced:

∮
E.dS =

∮
EdS = E4πr2 = qint

ε0
= 1

ε0
ρ
4

3
πr3 ⇒ E = ρr

3ε0
.

Applying this result in (9.8), gives, for the interior of the sphere of radius R,
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Uein = ε0

2

∫

v
E.Edv = ε0

2

∫

v
E2dv = ε0

2

∫ R

0

ρ2r2

32ε20
4πr2dr = 2πρ2R5

45ε0
,

which does not agree with the result of the previous problem. Why? Equation (9.7)
refers to the whole of the space where there is an electric field, not only to the zone
where there are charges. Therefore the energy outside the sphere of radius R must
be added. The electric field outside this sphere is

∮
Eex.dS =

∮
EexdS = Eex4πr

2 = qint
ε0

= 1

ε0
ρ
4

3
πR3 ⇒ Eex = ρR3

3ε0r2ex
,

and the energy outside is

Ueex = ε0

2

∫

vex
Eex.Eexdv = ε0

2

∫

vex
Eex

2dv

= ε0

2

ρ2R6

32ε20

∫ rex=∞

rex=R

1

rex4
4πrex

2drex = 2πρ2R5

9ε0
.

The total energy is

Ue = Uein + Ueex = 2πρ2R5

45ε0
+ 2πρ2R5

9ε0
= 4πρ2R5

15ε0
,

which coincides, as would be expected, with that of Problem 9.9.

9.11. The capacitor described in Problem 9.3 becomes disconnected from the gener-
ator that has charged it. It is wished to calculate the electrostatic force exerted
by the plates. Take into account that if, once charged, an external force F is
applied to move a plate a distance dz from the other, then the capacitance and
the energy vary.

Solution

As the plates of the capacitor have charges of opposite signs, they are attracted to each
other. In order to quantify the electrostatic force, we make use of energy methods.

The capacity of a flat capacitor is C = εS/z, therefore its energy is, accord-
ing to (9.5),

Ep = 1

2

q2

C
= 1

2

q2

εS
z.

When the distance is increased by dz by the application of external force F, which
is just the minimum force necessary to keep the plates of the capacitor in equilib-
rium, then the charge does not change upon being disconnected from the generator,
although the energy increases, according to the equation above, by
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dEp = 1

2

q2

εS
dz.

The energy is supplied to the capacitor by means of the external force F and is Fdz,
which, by application of the principle of conservation of energy, must be equal to
the increase of energy (given by the previous expression), that is:

Fdz = dEp = 1

2

q2

εS
dz,

and hence

F = 1

2

q2

εS
= 1

2

q2

εrε0S
= 1

2

C2V 2

εrε0S
= 1

2

εrε0SV 2

z2

= 1

2

5 × 8.854 × 10−12 × 200 × 10−4 × 3002

(5 × 10−3)2
N = 1.59 × 10−3N.

It should be noted that the mechanical and electrostatic forces are of equal magnitude
and in opposite direction. The result obtained above is coincident with that given by
(9.11).

9.12. Suppose that the capacitor described in Problem 9.3 remains connected to the
generator that has charged it. It is wished to calculate the force exerted by the
plates.

Solution

In this case, when F changes the distance between the plates by dz (Fig. 9.7), then
capacity of the capacitor changes by dC, but since the tension remains constant, the
charge will change by dq. Therefore:
(a) The exterior supplies the mechanical energy Fdz,
(b) The generator supplies the energy

Fig. 9.7 Capacitor
connected to a generator

q

dr
F

-q

C

G
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dUg = Vdq = V 2dC = −V 2εS

z2
dz,

whereC = εS /z, z being the distance between the two plates, and dC = (−εS /z2)dz.
(c) The capacitor changes its energy by

dUe = d

(
1

2
CV 2

)
= 1

2
V 2dC = −1

2

V 2εS

z2
dz.

The principle of conservation of energy establishes that

Fdz + dUg = dUe,

which can be written as:

Fdz − V 2εS

z2
dz = −1

2

V 2εS

z2
dz ⇒ F = 1

2

V 2εS

z2
= 1

2

q2

εS
.

Note that the result is equal to that of Problem 9.11. This equality should be evident,
since the distribution of charges is the same in both problems and, therefore, the
forces must be equal.

Observe that, if the distance between the plates increases, dz > 0, then: (a) the
energy supplied to the system from the external force is positive; (b) the energy
provided by the generator is negative, that is, the generator is recharged; (c) the
capacitor reduces its energy. That is, both the exterior and the capacitor collaborate
in recharging the generator.

9.13. The attached figure represents a parallel-plane capacitor with charge q. Each
plate has a size a×b and the separation between them is t, which is small. A
dielectric plate, of length a, depth b and thickness t, with dielectric constant
εr , is introduced a known distance x between the plates, as shown in Fig. 9.8.
Calculate the force that the plates exert on the dielectric, discounting friction
and neglecting edge effects.

x

t
q

-q
a

Fig. 9.8 Parallel-plate capacitor and a dielectric plate
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a-xx

+
-

+ ++

- -

-
F

q1 q2

-q1 -q2

Fig. 9.9 Parallel-plate capacitor. Observe the sense of the force

Solution

On introducing the dielectric, it is polarised as indicated in the figure, and hence the
polarisation charges are attracted by those of the plates and, due to the symmetry,
the resultant force is expected to be towards the right.

The electrostatic force acting on the dielectric slab is going to be calculated
through the energy of the system and application of (9.11), where charges are kept
constant.

The system shown in Fig. 9.9 can be considered as two capacitors in parallel. Each
of the capacitors has the respective areas, charges, capacities and energies:

S1 = bx, q1, C1 = εrε0S1
t

= εrε0b

t
x, Ue1 = 1

2

q21
C1

,

S2 = b(a − x), q2, C2 = ε0S2
t

= ε0b

t
(a − x), Ue2 = 1

2

q22
C2

.

The energy is additive, therefore the energy of the system is the sum of both energies,

Ue = Ue1 + Ue2.

To calculate the resulting force, it is sufficient to find the component of the force in
the x-direction i.e. in the direction towards the right, by applying (9.11). A difficulty
remains: to find the values of q1 and q2. To this end, use is made of the principle of
conservation of electric charge

q = q1 + q2,

and of the fact that, being conducting plates, the potential is the same at all the points
of the upper plate, as it is also in the lower plate. For this reason, the difference of
potential V is identical in both capacitors, and can be written

q1
C1

= V = q2
C2

⇒ q1
q2

= C1

C2
.
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These last two equations allow the calculation of q1 and q2:

q1 = qC1

C1 + C2
, q2 = qC2

C1 + C2
.

Replacing both values in the previous equations, the energy is given by

Ue = q2t

2ε0b[(εr − 1)x + a] .

The force is calculated by

F = −∂Ue

∂x
= q2t

2ε0b[(εr − 1)x + a]2 (εr − 1).

Applying this formula to the particular case x = a, which corresponds to the circum-
stance where the dielectric is totally inserted, gives

F = q2t

2ε2rε0ba2
(εr − 1).

That is, when x = a, F is not null. However, if the figure is considered when the
dielectric is inserted, then the plane perpendicular to that of the drawing which
passes through the centre of the plates is symmetric, therefore it is impossible that
there is a force towards the right, because the same reasoning would lead to the result
that the force is towards the left. As the argument of symmetry is more basic than
that used in the solution of the problem, the conclusion is reached that the force is not
properly calculated. In the demonstration of the calculation ofF it is supposed that the
electric field is limited to the parallelepiped delimited by the plates, i.e. edge effects
have been neglected. However, this assumption is not in complete agreement with
the laws of Electromagnetism, therefore, it can be taken as only an approximation
of the reality, and therefore the formula obtained for the force is only approximate.

Problems C

9.14. Take a capacitor which is equal to that in the previous problem except it is
connected to a battery of electromotive force E (Fig. 9.10). Calculate the force
on the dielectric.

Solution

To establish equilibrium and obtain the solution, the force Fex = −F is added to the
electric force F of the system (Fig. 9.11). In a state of equilibrium, the difference of
potential between the upper and the lower plates is V = E and it remains constant
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x

t ε
a

Fig. 9.10 Capacitor connected to an external source

for any value of x because the battery gives, or removes, charges to/from the plates.
Let us consider that the dielectric moves the small distance dx towards the right, the
energy conservation principle (First Law of Thermodynamics) states that the energy
provided by the external force Fex, plus the energy provided by the battery is equal
to the increase of energy of the system:

dWex + dWbat = dUe.

Furthermore:
dWex = Fex.dr = −F.dr = −Fdx,

where F is the component on the axis OX of the force F. By definition, the electro-
motive force is

dWbat = Edq ⇒ dWbat = E2dC.

The energy is additive, therefore the energy of the system formed by both capacitors is

Ue = Ue1 + Ue2 = 1

2
C1E2 + 1

2
C2E2 = 1

2
E2(C1 + C2) = 1

2
E2C

⇒ dUe = 1

2
E2dC,

where C = C1 + C2 is the capacitance of the system.
Therefore,

−Fdx + E2dC = 1

2
E2dC ⇒ Fdx = 1

2
E2dC.

The capacity C of the system is

x

εFFex

dx

Fig. 9.11 The forces on the dielectric material



586 9 Energy of the Electromagnetic Field

C = C1 + C2 = εrε0bx

t
+ ε0b(a − x)

t

⇒ dC = εrε0b

t
dx − ε0b

t
dx = ε0b

t
(εr − 1)dx.

From the two last equations it is deduced that

Fdx = 1

2
E2 ε0b

t
(εr − 1)dx

⇒ F = 1

2
E2 ε0b

t
(εr − 1) = q2t

2ε0b[(εr − 1)x + a]2 (εr − 1),

where it has been taken into account that C = q/V = q/E . This result agrees with
that of the previous problem.

It should be noted that in this case of constant voltagedWbat = 2dUe and, therefore,
Fdx = dUe. Hence, the electrostatic force can be expresses as

F = +∂Ue

∂x
,

where it is assumed that the voltage between the two plates is kept constant. This
equation also leads to the result obtained above for F.

9.15. The coil represented inFig. 9.12 is ofN tightened turns, of small cross-sectional
area S, and great mean length l. The circulating current intensity is I . The core
material is magnetically linear and of relative permeability μr . Calculate the
magnetic energy that it contains. Apply: N = 2000, S = 1cm2, l = 30cm, I =
4 A, and μr = 10.

Solution

Ampère’s law applied to the inner circumference of length l gives

Fig. 9.12 Coil of N turns

d l

l

I
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∮
H.dl = Hl = NI ⇒ H = NI

l
.

Although H depends on l, if the solenoid is very thin, then the length of all the inner
circumferences are almost equal, and hence H can be assumed independent of the
inner point considered. Of course the circulation ofH in outer circumferences is null
and, therefore, outside the solenoid the magnetic field is null.

Therefore the magnetic field B in the interior is

B = μrμ0H = μrμ0
NI

l
.

Hence, the energy per unit volume (9.22) is

um = 1

2
B.H = 1

2
BH = 1

2
μrμ0

NI

l

NI

l
= 1

2
μrμ0

N2I2

l2
.

As the volume is v = Sl, then the magnetic energy is

Um = umSl = 1

2
μrμ0

N2I2

l2
Sl = 1

2
μrμ0

N2I2S

l
.

Using the numerical data provided yields:

um = 1

2
μrμ0

N2I2

l2
= 1

2
10 × 4π × 10−7 2000

2 × 42

0.302
J

m3
= 4468

J

m3
,

Um =1

2
μrμ0

N2I2

l2
Sl = 1

2
10 × 4π × 10−7 2000

2 × 42

0.302
10−4 × 0.30 J = 0.134 J.

9.16. The capacitor in Fig. 9.13 has a charge q0. The switch is closed and it is wished
to know the energy of the capacitor and the coil, of null resistance, at instant t.

Solution

The charge that the capacitor contains at any instant must be known in order to
calculate the energy stored in it, and the current intensity that circulates around the
coil must be determined to obtain its stored energy.

When closing the circuit, a certain current of intensity I will be established at
t, and the electromotive force, evaluated around the circuit following the direction

Fig. 9.13 Electric circuit

LC q0

I dl
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attributed to dl, will be −LdI/dt, then the difference of potential between the upper
and lower terminal of the coil is LdI/dt. This value agrees with the difference of
potential between the upper plate of charge q and lower of charge – q, that is,

L
dI

dt
= V = q

C
.

As the current is equal to the charge that crosses a section of the conductor per unit
of time, it must agree, by the principle of conservation of charge, with the reduction
of charge q per unit of time: I = −dq/dt. Therefore:

L
d

dt

(
−dq

dt

)
= 1

C
q ⇒ d2q

dt2
+ 1

LC
q = 0.

As this equation is mathematically equal to that which regulates the harmonic move-
ment of a block attached to a spring, the solution must be equal, that is:

q = A cos(ωt + ϕ) ⇒ dq

dt
= −Aω sin(ωt + ϕ) ⇒ d2q

dt2
= −Aω2 cos(ωt + ϕ).

Since, in t = 0, the charge is q = q0, the first of these equalities gives

q0 = A cosϕ.

From the second equality it is deduced that

I = −dq

dt
= Aω sin(ωt + ϕ).

As at the initial moment, t = 0, I = 0, therefore

0 = Aω sin(0 + ϕ) = Aω sinϕ ⇒ ϕ = 0.

Therefore q0 = A cos 0 = A, which implies:

q = q0 cos(ωt) ⇒ I = q0ω sin(ωt).

The angular frequency ω can be obtained by substituting q and I in the expression
LdI/dt = q/C, giving

ω = 1√
LC

⇒ f = 1

2π
√
LC

,

where f is the frequency in Hertz.
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Fig. 9.14 Different
functions depending on time

q

Um

Ue

t

t

t

q0

q0
2/(2C)

q02/(2C)

t

I

q0ω

With these results it is possible to deduce the energies stored by the capacitor and
the coil:

Ue = 1

2

q2

C
= q20

2C
cos2(ωt),

Um = 1

2
LI2 = 1

2
Lq20ω

2 sin2(ωt) = q20
2C

sin2(ωt).

Figure9.14 represents the charge of the capacitor, the current intensity and the ener-
gies of the capacitor and the coil as functions over time. Note how the intensity varies
with time (oscillating circuit) and how the capacitor and the coil transfer the energy.

9.17. A ring of linear magnetic material, of relative permeabilityμr , hasmean length
l and its cross section is a circle of area S (Fig. 9.15). There are N windings of
a conductor wire on the ring. It is wished to know the magnetic energy in the
device when the current intensity through the conductor is I .

Solution

Ampère’s law around the circumference of mean length l gives

∮
H.dl = Hl = NI ⇒ H = NI

l
.

Therefore, magnetic field B is
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Fig. 9.15 Ring of a
magnetic material

d l

l

I

S

B = μrμ0H = μrμ0
NI

l
.

The flux through the whole circuit is

� = BNS = μrμ0
NI

l
NS ⇒ d� = μrμ0

N2S

l
dI.

Applying (9.14) gives

dUm = Id� = μrμ0
N2S

l
IdI ⇒ Um = μrμ0N2S

2l
I2.

9.18. A toroidal solenoid has an outer radiusRe = 40cm, an inner radiusRi = 30cm,
and N = 1200 windings, through which circulates a current of intensity I =
20 A. (a) Calculate the energy that it contains. (b) Calculate the energy that
it would contain if it were filled successively with a diamagnetic, paramag-
netic and ferromagnetic material, of relative permeability 0.9, 1.1, and 50,000
respectively.

Solution

The stored energy is calculated from the density of magnetic energy and the volume
of the solenoid.

To calculate the field H inside the solenoid, Ampère’s law is applied to the mean
circumference, giving:

∮
H.dl = Itotal ⇒ HL = NI ⇒ H = NI

L
.

The length of the solenoid can be estimated with the average radius
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R = Re + Ri

2
⇒ L = 2πR = π(Re + Ri).

Therefore

H = NI

π(Re + Ri)
.

The magnetic field B = µrµ0H, therefore the density of energy is

um = 1

2
B.H = 1

2
BH = μrμ0

2
H2 == μrμ0

2

(
NI

π(Re + Ri)

)2
= μrμ0

2

N2I2

π2(Re + Ri)2
.

The diameter of the circle that produces a cross section is Re − Ri, then the area of
the circle is

S = π
(Re − Ri)

2

4
,

and hence the volume of the solenoid can be estimated thus

v = SL = π
(Re − Ri)

2

4
π(Re + Ri),

and therefore the energy stored with any of the materials is

Um = umv = μrμ0
2

N2I2

π2(Re + Ri)2
π

(Re − Ri)
2

4
π(Re + Ri) = μrμ0

N2I2

8

(Re − Ri)
2

Re + Ri
.

For the diamagnetic material this is

Um = μrμ0
N2I2

8

(Re − Ri)
2

Re + Ri
= 0.9 × 4π × 10−7 1200

2202

8

(0.4 − 0.3)2

0.4 + 0.3i
J = 1.16 J.

For the paramagnetic material with μr = 1.1 it is Um = 1.42 J and for the ferromag-
netic material with μr = 50,000 it is Um = 64.4 × 103 J.

Note the large amount of energy accumulated when the introduced material is
ferromagnetic.

9.19. At instant t = 0, terminal 1 is connected to terminal 2 by means of the switch
drawn in Fig. 9.16. After a long time, 1 is disconnected from 2 and immediately
connected with 3. (a) During the first operation, calculate the current for the
coil, the energy it stores and the power released as heat. (b) Calculate these
magnitudes in the second operation.

Solution

(a) In the first stage, Kirchhoff’s second law (Fig. 9.17) gives
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Fig. 9.16 Electric circuit

12

3

RR

L

E − L
dI

dt
= 2RI ⇒ dI

E − 2RI
= dt

L
⇒ − 1

2R
ln (E − 2RI) = t

L
+ k.

As at the initial instant, t = 0, I = 0 therefore:

I = E
2R

(
1 − e− 2R

L t
)

.

Note that the current is null when beginning the first stage, and when finishing the
first at t ≈ ∞, it becomes

I = E
2R

.

The energy stored in the coil, (9.15), is

Um = 1

2
LI2 = 1

2
L

E2

22R2

(
1 − e− 2R

L t
)2 = LE2

8R2

(
1 − e− 2R

L t
)2

.

The energy when finishing the first stage ( t ≈ ∞) is

Um = LE2

8R2
.

Note how the stored energy grows until reaching this final value.
The calorific power released is

dQ

dt
= 2RI2 = 2R

E2

22R2

(
1 − e− 2R

L t
)2 = E2

2R

(
1 − e− 2R

L t
)2

.

Fig. 9.17 Electric circuit
when connecting 1 and 2

RR

L

dl I
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Fig. 9.18 Circuit composed
by a resistance R and an
autoinductance L

R

L

I dl

Note that this power begins as null and finishes as E2/(2R).
(b) In the second stage, the clock restarting from 0s at the start of this stage,

terminal 1 is connected to terminal 3, see Fig. 9.18. From Ohm’s Law, we have for
the voltages

−L
dI

dt′
= RI ⇒ dI

I
= −R

L
dt′ ⇒ ln I = −R

L
t′ + k′,

where time is denoted by t′.
At t′ = 0, then I = E /(2R), as demonstrated in section (a), and hence ln(E /(2R))

= k′ and therefore

ln I = −R

L
t′ + ln

E
2R

⇒ ln
2RI

E = −R

L
t′ ⇒ I = E

2R
e− R

L t
′
.

It can be seen how the intensity diminishes over time t′ from the final value of the
first operation to zero.

The energy stored in the coil at this stage is

Um = 1

2
LI2 = 1

2
L

E2

22R2
e− 2R

L t′ = LE2

8R2
e− 2R

L t′ .

Which indicates that the initial energy in the second stage agrees with the energy at
the end of the first, LE2/(8R2), and the energy at the end of the whole process is null.

The power released as heat is

dQ

dt
= RI2 = R

E2

22R2
e− 2R

L t′ = E2

4R
e− 2R

L t′ ,

beginning with E2/(4R) and becoming null at the end of the experiment.
To sum up, the energy provided by the generator in the first stage is partly stored

in the coil and the rest is transmitted to the outside in heat form by the resistance. In
the second stage, the electrical energy stored in the coil is transformed into thermal
energy of the resistance of the circuit of Fig. 9.18 and released as heat.
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Fig. 9.19 Hysteresis loop B

H

1

43

2

c/s
-c/s

c

-c

9.20. A ferromagnetic material has such a simple behaviour that its hysteresis loop
is in the form of a rhomboid, two sides of which are: segment 1–2 on the
line B = c and segment 2–3 on the line B = sH + c, where c and s are known
positive constants (Fig. 9.19). Calculate themagnetic energy dissipated by each
cycle described and per unit volume.

Solution

With the data provided, the complete hysteresis loop 1–2–3–4–1 can be drawn in
diagram B − H. For an intermediate state, for example on side 4–1 of the loop, a
certainH and a certain B exist in the material. If an infinitesimal change of B occurs,
dB, the magnetic energy provided to the system per unit volume is dum= HdB.

Applying this change to the four sections of the loop gives:
Section 1–2. This is described by the line B = c, therefore

u21 =
∫ B2

B1

HdB = 0,

since dB = 0.
Section 2–3. Its points belong to the line B = sH + c. The point 3 is at B = −c,

therefore H3 = −2c/s, and H2=0.Hence,

u32 =
∫ B3

B2

HdB =
∫ −2c/s

0
H(sdH + 0) = 2c2/s.

Section 3–4. This section is contained in the line B = −c, therefore

u43 =
∫ H4

H3

HdB = 0.

Section4–1. This is defined by B = sH − c. Therefore

u14 =
∫ H1

H4

HdB =
∫ 2c/s

0
H(sdH + 0) = 2c2/s.
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The total energy supplied in one cycle and per unit volume is the sum of the variations
in each section. Therefore

umcicle = 0 + 2c2/s + 0 + 2c2/s = 4c2/s.

However, as the system has recovered its initial magnetic state and therefore its initial
magnetic energy, this energy appears as thermal internal energy, which is transmitted
to the exterior in the form of heat. That is, the system has “lost” the supplied energy
4c2/s per unit volume by the fact of following a hysteresis loop.

It should be noted that the area of the loop is 4c2/s.

9.21. The magnetic circuit shown in Fig. 9.20 has N windings. It is connected to
an alternating current generator such that an alternating current of intensity
I = I0sin(ωt) circulates. The material is ferromagnetic with a hysteresis loop
for the said current as drawn (Fig. 9.21). (a) Estimate the energy dissipated per
cycle. (b) Estimate the dissipated power. (c) Calculate the dissipated power,

Fig. 9.20 Experimental
set-up

d

d

b

a

c

I

Fig. 9.21 Hysteresis loop B

H

1

3

h

e

-e

2

-h

4
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using: a = 40cm, b = 30cm, c = 20cm, d = 10cm, e = 0.005 T, N = 1000,
I0 = 6 A, and current frequency of 50Hz.

Solution

(a) Ampère’s law establishes that

∮
H.dl = Itotal = NI ⇒ HL = NI ⇒ H = NI

L
.

The mean length can be estimated, from the figure of the ferromagnetic core, as

L = 2(a − d) + 2(b − d) = 2a + 2b − 4d,

therefore

H = NI

L
= NI

2a + 2b − 4d
= NI0

2a + 2b − 4d
sin(ωt).

The maximum value of H is given when sin(ωt) is one and must coincide with the
value H = h, that is,

h = NI0
2a + 2b − 4d

.

Given the data of the hysteresis loop, a change of B gives rise to an injection of
energy per unit volume of H.dB, and therefore for one cycle of the loop, the energy
per unit of volume introduced is

umcicle =
∮

HdB =
∫ 2

1
HdB +

∫ 3

2
HdB +

∫ 4

3
HdB +

∫ 1

4
HdB

= 0 − h(−e − e) + 0 + h(e + e) = 4eh.

Therefore the power dissipated per unit volume of material is 4eh, which coincides
with the “area” of the loop, as expected. Substituting the value calculated for h gives

umcicle = 4e
NI0

2a + 2b − 4d
= 2eNI0

a + b − 2d
.

As the volume of the material is

v = 2(acd) + 2((b − 2d)cd) = 2acd + 2bcd − 4cd2,

the energy given off per cycle in heat form is

Q = 4eNI0
acd + bcd − 2cd2

a + b − 2d
.
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(b) As frequency f represents the number of cycles per unit time, the dissipated power
is

P = 4eNI0f
acd + bcd − 2cd2

a + b − 2d
.

(c) Application

P = 4 × 0.005 × 1000 × 6 × 500.40×0.20×0.10+0.30×0.20×0.10−2×0.20×0.102

0.40+0.30−2×0.10 W
= 120 W.

This is the dissipated power.



Chapter 10
Maxwell’s Equations

Abstract In this chapter we will study the Maxwell equations. These equations,
together with the material relationships (constitutive) of the system to be analyzed,
contain all classical macroscopic information we can obtain from an electromagnetic
viewpoint. In fact, the electric andmagnetic fields studied in the previous chapters are
particular cases of a more general establishment of the problem when the Maxwell
equations are considered. Taking into account the high quantity of important devel-
opments that have beenmade in all fields of science and technology by applying these
equations, it can be said that the daily life of millions of people has been changed by
James Clerk Maxwell and, of course, by the contribution of quantum mechanics.

10.1 Generalization of Ampère’s Law

Ampère’s law states that the magnetic field B and the electric current density j obey
the equation

1

μ0
∇ × B = j. (10.1)

However, when the currents are neither stationary nor quasi-stationary, experience
shows that this law is not correct.

Indeed, a fundamental principle of nature is that of the conservation of charge,
which establishes that if a certain electrical charge leaves the boundary of a domain
of space per unit of time, then the total charge contained in the domain decreases by
the same amount, that is ∮

S
j · dS = − ∂

∂t

∫

V
ρdV . (10.2)

Application of the divergence theorem and Gauss’s theorem gives

∇ · j = −∂ρ

∂t
⇒ ∇ · j + ∂ρ

∂t
= 0 ⇒ ∇ ·

(
j + ε0

∂E
∂t

)
= 0. (10.3)
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On the other hand, if the identity 1
μ0

∇ · ∇ × B = 0 is considered and it is equalized
to the above, then the following simple solution is obtained

1

μ0
∇ × B = j + ε0

∂E
∂t

. (10.4)

This equation is known as theAmpère–Maxwell Law in honour of its discoverers and
establishes that when a magnetic field, an electric current and an electric field coexist
at a point in space, they are always related by (10.4). This is sometimes interpreted
by stating that the magnetic field can be supposed to be generated by the electric
current and by the time-varying electric field. When the product of ε0 times the rate
of change of the time-varying electric field is much smaller than the current density,
then this law becomes Ampère’s law.

10.2 Maxwell’s Equations for a Point

The electromagnetic magnitudes: Electric charge density ρ, electric current density
j, electric fieldE, and magnetic fieldB are, in general, functions of the coordinates of
the point where they are measured and of time. Maxwell grouped all the laws of elec-
tromagnetism into a set of four fundamental equations which are called Maxwell’s
equations, and these are valid for all points in space and for all time instants:

∇ · E = ρ

ε0
, (10.5)

∇ × E = −∂B
∂t

, (10.6)

∇ · B = 0, (10.7)

1

μ0
∇ × B = j + ε0

∂E
∂t

. (10.8)

10.3 Maxwell’s Equations for a Domain

When considering a domain of space bounded by a closed surface S for the above first
or third equation or an open surface S with its boundary closed line Γ for the second
or fourth equation, Maxwell’s equations acquire the following forms, respectively:

∮

S
E · dS = qint

ε0
, (10.9)
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∮

�

E · dl = − ∂

∂t

∫

S
B · dS, (10.10)

∮

S
B · dS = 0, (10.11)

1

μ0

∮

�

B · dl = I + ε0
∂

∂t

∫

S
E · dS. (10.12)

The first three equations have already been deduced in previous chapters of this book.
The last equation can be obtained by calculating the circulation of B along a closed
line Γ , by applying the circulation theorem and the Ampère–Maxwell law (10.8).

The first and last equations of this set can be written in terms of the free charge
ρnp and of the conduction current intensity jf , respectively

∇ · D = ρnp ⇔
∮

S
D · dS = qint,np, (10.13)

∇ × H = jf + ∂D
∂t

⇔
∮

�

H · dl = If + ∂

∂t

∫

S
D · dS. (10.14)

10.4 Scalar Potential

In electrostatics (see Chap.2), the difference in potential can be defined because
the curl of the electrostatic field is null. However, Maxwell’s second law or law of
induction, (10.6), affirms that, in general, this curl is not null, but depends on the rate
of change of the magnetic field B.

Recalling the definition of vector potential shown in Chap.5 we can write:

∇ × A ≡ B, (10.15)

and (10.6), gives:

0 = ∇ × E + ∂B
∂t

= ∇ ×
(
E + ∂A

∂t

)
. (10.16)

Now, the scalar potential difference can be defined as:

V2 − V1 ≡ −
∫ 2

1

(
E + ∂A

∂t

)
· dl. (10.17)

It is evident that this definition is appropriate for electrostatics, where nothing
depends on time, and therefore ∂A/∂t = 0.

http://dx.doi.org/10.1007/978-3-662-48368-8_2
http://dx.doi.org/10.1007/978-3-662-48368-8_5
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From (10.17) it can be deduced that

∇V = −E − ∂A
∂t

. (10.18)

10.5 Surface of Discontinuity

In this field of study it frequently occurs that there are two different materials in
contact through a common surface S, for example, air and water in a swimming
pool, or glass and a metal in an ordinary mirror. In these cases, Maxwell’s laws still
hold, and important consequences, which are discussed below, are produced.

Consider medium 1 and medium 2, Fig. 10.1, where P is a point on the separation
surface S and n is the perpendicular unit vector directed frommedium 1 tomedium 2.

The material located at a point of medium 1, infinitely close to P, has at instant t
the electromagnetic properties: charge density ρ1, surface charge density σ1, surface
current density js1, electric fieldE1, andmagnetic fieldB1. At another point infinitely
close to P, but within medium 2, the electromagnetic properties are ρ2, σ2, js2, E2,
and B2.

The boundary conditions for the electric and magnetic fields at the interface
between two media can be determined as follows:

1◦. Consider a small box surrounding point P, with two faces parallel to surface S
of area dl × dl′ and a height dh that will tend towards zero. The application of (10.9)
to the box gives

∮

S
E · dS = En2dldl

′ − En1dldl
′ + E2 · dSlat2 + E1 · dSlat1

= qint
ε0

= σ2 + σ1

ε0
dldl′ + ρ2dV2 + ρ1dV1.

(10.19)

When dh tends towards zero, the lateral area and the volume also tend towards
zero, and hence

Fig. 10.1 Surface of
discontinuity

S

1

2

ndl

dl'

dh
P
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En2dldl
′ − En1dldl

′ = σ2 + σ1

ε0
dldl′ ⇒ En2 − En1 = σ2 + σ1

ε0
. (10.20)

This result indicates that the components of the electric field following the perpen-
dicular to the surface are, in general, different, that is, they undergo a discontinuity.

2◦. When considering the rectangular boundary of the anterior face of the box,
applying (10.10) and having dh → 0 it gives

∮
E · dl = Et2dl

′ − Et1dl
′ + 0 = − ∂

∂t

∫

S
B · dS = − ∂

∂t

∫

S
B · dSfront = 0

⇒ Et2 − Et1 = 0. (10.21)

therefore the tangential component of the electric field is identical on both sides
of S.

3◦. Following the method applied in section 1◦, but with (10.11), the following is
obtained

Bn2−Bn1= 0. (10.22)

4◦. Following the method used in 2◦, but with (10.12), the following is obtained

Bt2−Bt1 = μ0(js2−js1). (10.23)

Figure10.2 schematically represents the obtained result, showing the continuity of
the tangential component of the electric field and the perpendicular of the magnetic
field.

If, instead of (10.9) and (10.13) is applied to the box, then the following equation
is derived

Dn2 − Dn1 = σnp2 + σnp1. (10.24)

If (10.14) is applied to a small rectangle that covers a section of boundary and with
two sides parallel to this boundary, the following equation results

Ht2 − Ht1 = μ0(jfs2−jfs1). (10.25)

Fig. 10.2 Projection of the
fields B1

B2 E1

E2

n

S Et

Bn

1

2
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Solved Problems

Problems A

10.1. A dielectrically linear material is characterized by the following properties,
which do not depend on time: uniform free-charge density ρnp, null-total cur-
rent density, and electric field E variable with x and of a direction parallel to
the OX axis. The magnetic field also has the direction of the OX axis and is
variable with x. At the point of the material located at the origin of coordinates,
E and B are null. Mathematically express the fields E and B.

Solution

As the electrical properties do not depend on time, Maxwell’s laws are simplified
and are expressed by the equations:

∇ · E = ρ

ε0
, ∇ × E = 0, ∇ · B = 0,

1

μ0
∇ × B = j.

From the data, it follows that E = E(x)ux and B = B(x)ux.
As the charge density data only refers to the free charges and not all the charges,

it is convenient to use field D instead of E. To this end, the relationship (10.13) can
be taken into account,

∇ · D = ρnp,

and, in addition

D = ε0εrE ⇒ E = 1

ε0εr
D and D = ε0εrE(x)ux.

Therefore

∇ · D = ∇ · [ε0εrE(x)ux] = 0 + 0 + ε0εr
∂E(x)

∂x
= ρnp ⇒ E(x) = ρnp

ε0εr
x + C

⇒ E =
(

ρnp

ε0εr
x + C

)
ux,

where C is a constant of integration. Since for x = 0, then E = 0, it follows that
C = 0, therefore

E = ρnp

ε0εr
xux.

Similarly, the third equation gives

∇ · B = ∂B

∂x
+ 0 + 0 = 0 ⇒ B = C′ ⇒ B = C′ux,

where C′ is a constant of integration.
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The fourth equation leads to

1

μ0

∣
∣
∣
∣
∣
∣

ux uy uz
∂
∂x

∂
∂y

∂
∂z

C′ 0 0

∣
∣
∣
∣
∣
∣
= 0 = 0,

which is an identity without utility.
As for x = 0, B = 0, it is deduced that

B = 0.

Note how the calculations of the expressions of fields E and B have been made
independently because everything is independent of time.

10.2. The circular hoop of Fig. 10.3 has a radius R and is immersed in a uniform
magnetic field, perpendicular to its diameterDD′. (a) Calculate the electromo-
tive force induced in the hoop if the magnetic field is constant and the hoop
is immovable. (b) Calculate the electromotive force induced in the hoop if
the field varies with time such that B = B0 sin(ωt) and the hoop is motionless.
(c) Calculate the electromotive force induced in the hoop if the field is constant
and the hoop turns around diameter DD′ with the angular velocity ω.

Solution

The application of (10.10) gives, respectively:
(a)

∮
E · dl = − ∂

∂t

∫

S
B · dS = − ∂

∂t

∫

S
B · dS · cos θ = − ∂

∂t
(BS cos θ) = 0,

Fig. 10.3 Circular loop D

D'

B

n
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because neither B, nor S, nor θ depends on time. That is, as the magnetic field flux
through the hoop is constant, the electromotive force is zero.
(b) ∮

E · dl = − ∂

∂t

∫

S
B · dS = − ∂

∂t

∫

S
B0 sin (ωt) · dS · cos θ

= − ∂

∂t
(B0S cos θ sin (ωt)) = −B0Sω cos θ cos (ωt) .

In this case there is variation in the magnetic field flux because the magnetic field is
variable with time at the points of the hoop.
(c)

∮
E · dl = − ∂

∂t

∫

S
B · dS = − ∂

∂t

∫

S
B · dS · cos θ = − ∂

∂t

∫

S
B · dS · cos (ωt + θ0)

= − ∂

∂t
(BS cos (ωt + θ0)) = BSω sin (ωt + θ0) .

In this last case the electromotive force is due to the movement of the points of the
hoop in the magnetic field.

10.3. A flat capacitor is formed by two opposed, circular plates of large radii R, with
a small separation between them (Fig. 10.4). There is a vacuum between the
plates. At the initial instant it is connected to a current generator that provides
constant current I . It is required to know the charge at the upper plate and the
electric and magnetic fields in the space between the plates at moment t.

Fig. 10.4 Capacitor

I

r
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Solution

The device has symmetry of revolution. Considering a circumference of radius r,
concentric with the axis of symmetry and located in a plane parallel to the plates and
equidistant from them, the tangential component of the magnetic field Bφ is of the
same value at the points of the circumference. The axial component of the electric
field must also have a value Ez equal at all the points on the said circumference.

The total charge stored in the positive plate at moment t is that which has passed
through a section of the upper conductor, and this is obtained from the current defi-
nition:

I = dq

dt
⇒ qint =

∫ t

0
I.dt = It.

If we suppose that the charge is uniformly and rapidly distributed through the plates,
then the application of (10.9) to a box that surrounds an interior portion of a plate
and does not lie close to the borders gives

∮

S
E · dS =

∮

S
Ez · dS = EzdS = dqint

ε0
⇒ Ez = 1

ε0

dqint
dS

= 1

ε0

qint
S

.

Therefore,

Ez = 1

ε0

qint
S

= It

ε0S
= It

πε0R2
⇒ ∂Ez

∂t
= I

πε0R2
.

The application of the Ampère–Maxwell law (10.12) to the circumference, consid-
ered as the boundary of the circle of radius r, gives

1

μ0

∮
B · dl = 1

μ0

∮
Bφ · dl = 1

μ0
Bφ2πr = I + ε0

∂

∂t

∫

S
E · dS = 0 + ε0

∂

∂t

∫

S
Ez · dS

= ε0
∂

∂t

∫ r

0
Ez · 2πrdr.

Therefore

Bφ = ε0μ0

r

∫ r

0

∂Ez

∂t
rdr.

Note how the magnetic field appears to be produced, not by electrical currents but
by a time-variable electric field.

Finally

Bφ = ε0μ0

r

∫ r

0

I

πε0R2
rdr = ε0μ0

r

I

πε0R2

r2

2
= μ0I

πR2
r.

10.4. Let us suppose that n = 1000 electrons per mm2 are placed on the upper
face of a thin, linear dielectric sheet, of relative dielectric permittivity εr = 4.
Calculate the electric fields D and E.
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Fig. 10.5 Dielectric sheet

dS

dS'

Solution

As the immediately calculable data is the free electrical charge σnp, the (10.13) is
applicable. In effect,

σnp = n(−e) = −ne,

where n is known and e is obtained from a table of physical constants.
The sheet appears infinite in length and equal in all directions if it is observed from

a point next to the sheet and remote from its borders, and therefore the horizontal
component of D is null (except close to the borders).

Only the free charges are involved in the calculation ofD, and therefore the upper
surface is a plane of symmetry for D.

Application of the (10.13) to the drawn box (Fig. 10.5) gives
∮

S
D · dS =

∫

S−up
D′ · dS′+

∫

S′−down
D · dS+ 0 = D′dS′ + DdS = 2DdS = σnpdS

⇒ D = σnp/2 = −ne/2.

The electric field E above the sheet, in vacuum, is obtained from

D = ε0εrE = ε0E ⇒ E = 1

ε0
D = − 1

2ε0
ne

= − 1

2 × 8.8542 × 10−12
1000 × 106 × 1.602 × 10−19 V/m = −9.048 V/m,

whereas on the interior of the sheet D′ = D, and therefore

E′ = 1

ε0εr
D = − 1

2ε0εr
ne

= − 1

2 × 8.8542 × 10−12 × 4
1000 × 106 × 1.602 × 10−19V/m = −2.262 V/m.

10.5. The adjacent figure represents an ideal parallel-plane capacitor, whose plates
are circles of radiusR = 5 cm, filled inwith a dielectric of relative permeability
μr = 10 and thickness d = 2mm. A current of I = 1 mA runs through the
wires.Calculate the tangential component of fieldB at the points of a concentric
circumference of radius r, located between the plates, as shown in Fig. 10.6.
Apply this to r = 1 cm.
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Fig. 10.6 Plane capacitor

I I

r

Solution

Given the symmetry of revolution of the problem, (10.14) can be applied to the
circumference described, considered as the boundary of the circle. Since the intensity
of current through this circle is null, the following is given

∮
H · dl = ∂

∂t

∫

S
D · dS.

Consider the relationship between D and the charge density σ , which is assumed to
be homogeneous, by supposing the charge of the capacitor varies slowly with time
since the current is small. Thus

Hφ2πr = πr2

πR2

dq

dt
= r2

R2
I ⇒ Hφ = rI

2πR2
⇒ Bφ = μrμ0

rI

2πR2
.

Application:

Bφ = μrμ0
rI

2πR2
= 10 × 4π × 10−7 0.01 × 0.001

2 × π × 0.052
T = 8 × 10−9T.

10.6. Consider a very long ideal solenoid of radius R, with n turns per unit length,
of constant current intensity I , and which is in a vacuum.
(a) Obtain the value of B at the interior and exterior points, using Maxwell’s
equations.
(b) Determine the vector potential at these points.
(c) Graphically represent the values obtained as functions of the distance from
the axis of the solenoid.
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Fig. 10.7 Long solenoid

Idl

dl

dla

b c
d

Z
R

Solution

(a) Application of Maxwell’s third (10.11) to the closed cylinder a in Fig. 10.7 gives:

0 =
∮

S
B · dS =

∫

lat
BrdSlat +

∫

ri
BzdSbaseri +

∫

le
−BzdSbasele

=
∫

lat
BrdSlat + 0 =

∫

lat
BrdSlat ⇒ Br = 0,

where it is considered that Bz does not depend on z, except at the proximities of the
borders. The radial component Br is null in both the interior and the exterior.

Applying the fourth law to circumference b, while remembering that everything
is independent of time, and that the coil can be replaced by a set of conducting rings,
gives:

1

μ0

∮
B · dl = 1

μ0

∮
Bφ · dl = 1

μ0
Bφ2πr = I + ε0

∂

∂t

∫

S
E · dS = 0 + 0 = 0.

⇒ Bφ = 0

The tangential component is therefore null in the interior and the exterior.
Applying the fourth law to the very long exterior rectangle c, gives:

1

μ0

∮
B · dl = 1

μ0
Bzex · dl = I + ε0

∂

∂t

∫

S
E · dS = 0 + 0 = 0 ⇒ Bzex = 0.

Applying the fourth law to the rectangle d that includes part of the electrical con-
ductor, gives:

1

μ0

∮
B · dl = 1

μ0

(
Bzin · dl − Bzex · dl) = 1

μ0
Bzin · dl = I + ε0

∂

∂t

∫

S
E · dS = nIdl

⇒ Bzin = μ0nI.
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(b) From the definition of vector potential, the following is deduced:

B = ∇ × A ⇒
∮

A · dl =
∫

S
(∇ × A) · dS =

∫

S
B · dS,

which, applied to the exterior circumference, gives:

∮
A · dl =

∮
Aφ · dl = Aφ2πr =

∫

S
B · dS = BzinπR

2 = μ0nIπR
2,

⇒ Aφ = μ0nIR2

2r
,

Fig. 10.8 Magnetic field
versus distance

Bz

R
r

0nI

Fig. 10.9 Potential vector A
against r

R
r

0nIR/2

A
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and when applied to the interior circumference gives:

∮
A · dl =

∮
Aφ · dl = Aφ2πr =

∫

S
B · dS = Bzinπr

2 = μ0nIπr
2

⇒ Aφ = μ0nIr

2
.

(c) Figures10.8 and 10.9 show the variations of Bz and Aφ with r, respectively.

10.7. In a region of space, the vector potential is A = C1t(z2ux + x2uy + y2uz) and
the scalar potential is V = C2(x2y + z2x + y2z). The vectors ux, uy, uz are the
unit vectors along the coordinate axes. Calculate the charge ρ and current j
densities in this region.

Solution

From the data of the problem it follows that:

∇V = ∂V

∂x
ux + ∂V

∂y
uy + ∂V

∂z
uz = C2(2xy + z2)ux + C2(2yz + x2)uy + C2(2xz + y2)uz

∂A
∂t

= C1(z
2ux + x2uy + y2uz).

Applying (10.18) gives

E = −∇V − ∂A
∂t

= −
[
C2(2xy + z2) + C1z

2
]
ux −

[
C2(2yz + x2) + C1x

2
]
uy −

[
C2(2xz + y2) + C1y

2
]
uz.

Substituting this result in Maxwell’s first equation gives

ρ

ε0
= ∇ · E = −2C2(x + y + z) ⇒ ρ = −2ε0C2(x + y + z).

The expression of B is obtained from the definition of A:

B = ∇ × A = 2C1t(yux + zuy + xuz).

Maxwell’s fourth equation with the calculated values of B and E finally gives:

1

μ0
∇ × B = j + ε0

∂E
∂t

⇒ j = 1

μ0
∇ × B − ε0

∂E
∂t

= −2C1t

μ0
(ux + uy + uz).

10.8. Adielectric sheet of electrical susceptibilityχe = 3 is polarizedwith the polar-
ization vector P perpendicular to the sheet and of modulus P = 0.3C/m2.
Calculate the electric field in the vicinity of the sheet.
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Solution

The electric field inside the sheet is obtained directly from the relationship

P = ε0χeE ⇒ E = 1

ε0χe
P

⇒ E = 1

ε0χe
P = 1

8.8542 × 10−12 × 3
0.3 V/m = 1.129 × 10−14 V/m.

and is in the same direction as P.
In order to calculate the electric field on the exterior, expression (10.20) can be

applied with the following considerations. The exterior is separated from the interior
by a plane that is the boundary between the dielectric and the vacuum, and there are
polarization charges on the surface of the dielectric, but no free charges. The total
charge next to this plane is the polarization charge on the surface of the dielectric,
which is obtained from

σp = P · n = P cos θ = P cos 0 = P = 0.3 C/m2.

Equation (10.20) gives

En2 − En1 = E′ − E = σ2 + σ1

ε0
= σp

ε0

⇒ E′ = E + σp

ε0
= 1.129 × 10−14 + 0.3

8.8542 × 10−12 V/m = 4.516 × 10−14 V/m.

This problem can also be solved by calculating field D inside the dielectric and
applying the condition of continuity to obtain the value of D outside, and from this
point by calculating E outside the dielectric.

10.9. A large, flat, perfectly conducting sheet has a total electric charge q, an area
S on each face, and is surrounded by air of relative dielectric permittivity εr .
Calculate the electric field in the air next to the sheet.

Solution

As the sheet is a perfect conductor, the electric field in its interior is zero; otherwise
there would be an infinite current density within it, which makes no sense. Since
the tangential component of the electric field E is continuous, the tangential electric
field in the air must be zero.

By symmetry, the charge is equally distributed on both faces of the sheet.
Drawing a box (see Fig. 10.10) that contains a small part of the sheet, of area dS,

the charge within it is

dq = q

2S
dS.

Applying (10.13) gives
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Fig. 10.10 Conducting sheet Ea

air

perfect conductor

q/2

q/2

∮

S
D · dS =

∮

S
D · dS = 2Dn · dS = qint.np = q

2S
dS ⇒ Dn = q

4S
.

The perpendicular component can be calculated from

D = εrε0E ⇒ En = 1

εrε0
Dn = 1

εrε0

q

4S
.

Problems B

10.10. In the points of a region there is a total charge density ρ0, null total current
density, the electric field E parallel to the OZ axis and the magnetic field
B = axux+bxuy. Obtain the expression of the electric field.

Solution

From the statement it is deduced that E = E(x, y, z, t)uz.
Maxwell’s first equation gives

∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
= 0 + 0 + ∂E

∂z
= ρ0

ε0
⇒ E = ρ0

ε0
z + f1(x, y, t),

where f1(x, y, t) is an arbitrary function of x, of y, and of time.
From Maxwell’s second equation it is deduced that

∣
∣
∣
∣
∣
∣

ux uy uz
∂
∂x

∂
∂y

∂
∂z

0 0 E

∣
∣
∣
∣
∣
∣
= −∂B

∂t
= 0 ⇒ ∂E

∂y
= 0,

∂E

∂x
= 0, 0 = 0,

therefore
E = ρ0

ε0
z + f2(t).
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Maxwell’s third equation leads to

∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z
= 0 ⇒ a + 0 + 0 = 0 ⇒ a = 0 ⇒ B = bxuy.

This is the only possibility for the magnetic field.
Maxwell’s fourth equation provides equality

1

μ0

∣
∣
∣
∣
∣
∣
∣

ux uy uz
∂
∂x

∂
∂y

∂
∂z

0 bx 0

∣
∣
∣
∣
∣
∣
∣
= 1

μ0
buz = 0 + ε0

∂f2(t)

∂t
uz ⇒ ∂f2(t)

∂t
= 1

ε0μ0
b

⇒ f2(t) = 1

ε0μ0
bt + C ⇒ E = ρ0

ε0
z + b

ε0μ0
t + C ⇒ E =

(
ρ0

ε0
z + b

ε0μ0
t + C

)
uz,

where C is a constant of integration.

10.11. In a region of empty space, the electric field is measured and it is concluded
that its value is E = aytuz where a is a constant, y the coordinate correspond-
ing to a Cartesian reference system, and t the time. Find a possible value for
the magnetic field in that region.

Solution

In the vacuum there are no charges (ρ = 0), nor electric current (j = 0), and hence
Maxwell’s equations are reduced to

∇ · E = 0, ∇ × E = −∂B
∂t

, ∇ · B = 0,
1

μ0
∇ × B = ε0

∂E
∂t

.

Both the known electric field and the magnetic field yet to be calculated must verify
the four equations. Substituting the data E = aytuz in the first equation gives

0 = ∇ · E = ∂0

∂x
+ ∂0

∂y
+ ∂(ayt)

∂z
= 0.

Which demonstrates that E verifies Maxwell’s first equation.
Substituting E in the second gives

∂B
∂t

= −∇ × E = −
∣
∣
∣
∣
∣
∣

ux uy uz
∂
∂x

∂
∂y

∂
∂z

0 0 ayt

∣
∣
∣
∣
∣
∣
= −atux ⇒ B = −at2

2
ux + F(x, y, z),

where F(x, y, z) is an arbitrary vector function of the coordinates of the point under
consideration. For simplicity, we are going to test an easy solution, F(x, y, z) = 0,
with which

B = −1

2
at2ux.
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This solution verifies the first two basic equations. Substituting it in the third gives

0 = ∇ · B = ∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z
= 0 + 0 + 0 = 0.

This identity demonstrates that the adopted solution is correct for the third equation.
Substituting it in the fourth gives:

∇ × B =
∣
∣
∣
∣
∣
∣

ux uy uz
∂
∂x

∂
∂y

∂
∂z

1
2at

2 0 0

∣
∣
∣
∣
∣
∣
= 0 = ε0μ0

∂E
∂t

= ε0μ0ayuz.

To verify this equation at all points of the space, a = 0 must be a condition, but the
electric field would then be null. Therefore it is necessary to try another solution,
which can be intuited from observing the last equation. Let us try with

B =
(

−1

2
at2 − 1

2
ε0μ0ay

2

)
ux,

which verifies the third equation. Substituting this into the fourth equation gives

∇ × B =
∣
∣
∣
∣
∣
∣

ux uy uz
∂
∂x

∂
∂y

∂
∂z

− 1
2at

2 − 1
2ε0μ0ay2 0 0

∣
∣
∣
∣
∣
∣
= 0 + 0 + ε0μ0ayuz = ε0μ0ayuz

= ε0μ0
∂E
∂t

= ε0μ0ayuz.

Therefore all Maxwell’s equations are verified and the second proposal is a correct
solution.

Note that the magnetic field obtained is perpendicular to the measured electric
field. What creates what? E creates B, or B creates E? They simply coexist.

10.12. The attached figure shows a flat capacitor, of circular plates of radius Rwith a
small separation between them (in order to be able to ignore the edge effect).
The capacitor is charged by means of a current of small intensity I that runs
through the wires.
(a) Determine the flux of E and B through the cylindrical surface shown in
Fig. 10.11, whose bases S1 and S2 are of radius 2R. Base S2 is between the
plates.
(b) Compare the values of the tangential component of field B at the points
of the two circumferences of radius 2R.
(c) Obtain the expression for the tangential field inside the capacitor in terms
of the distance to the axis.
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Fig. 10.11 Plane-parallel
capacitor

2R

S1

S2

I

I

R

Solution

If the current is connected at instant t = 0, the electric charge in the anterior plate is

q =
∫ t

0
Idt = It.

From the statement of the problem, it is inferred that the electric field is very close
to zero, except in the interior of the capacitor where it is uniform and parallel to the
axis of the system.
(a) Applying Maxwell’s first equation to the drawn cylinder gives

∮

cil
E · dS = qint

ε0
= q

ε0
= I

ε0
t.

Applying Maxwell’s third equation to the drawn cylinder gives

∮

S
B · dS = 0.

(b) Maxwell’s fourth equation applied to the circumference which is the boundary
of the circle S1 gives

1

μ0

∮
B · dl = 1

μ0

∮
B1φ · dl = 1

μ0
B1φ2π2R = I + ε0

∂

∂t

∫

S
E · dS

= I + ε0
∂

∂t

∫

S
0 · dS = I ⇒ B1φ = μ0I

4πR
.
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The same equation applied to the circumference which is the boundary of the circle
S2 gives

1

μ0

∮
B · dl = 1

μ0

∮
B2φ · dl = 1

μ0
B2φ2π2R = I + ε0

∂

∂t

∫

S2
E · dS

= 0 + ε0
∂

∂t

∫

S2
EndS = ε0

∂

∂t

∫

R
EndS.

The electric field between the plates is calculated from Maxwell’s first equation
applied to a cylinder with an end between the plates and the other inside the con-
ducting plate:

∮

cil
E · dS = I

ε0
t ⇒

∮

cil
En · dS = En · S = EnπR

2 = I

ε0
t ⇒ En = I

πε0R2 t.

Therefore

1

μ0
B2φ2πR = ε0

∂

∂t

∫

R

I

πε0R2
t dS = ε0

I

πε0R2
πR2 ⇒ B2φ = μ0I

2πR
.

This result is identical to the previous one, although it can be said that in S1 the field
B is due to the current and in S2 it is due to the magnetic field.

(c) Maxwell’s fourth equation applied to a circumference of radius r < R and
located between the plates gives

1

μ0

∮
B · dl = 1

μ0
Bφ2πr = I + ε0

∂

∂t

∫

S
E · dS = 0 + ε0

∂

∂t

∫

r
EndS

= ε0πr
2 ∂

∂t

(
I

πε0R2
t

)
= r2

I

R2
⇒ B2φ = μ0I

2πR2
r.

Problems C

10.13. The capacitor in Fig. 10.12 is formed by two circular, plane-parallel, metallic
plates, of radius R, filled with a dielectric of relative permittivity εr . A current
flows through the wire such that the charge density on plate a is of the form
σ = σ0 sin(ωt). Obtain the value of the magnetic field B at a point in a plane
between the plates, located at a distance r from the axis of revolution: (a) for
r < R, (b) for r > R.

Solution

(a) For r < R, the charge density σ is known, therefore the charge Q of plate a is
Q = σS, S being the area of the plate and the field D = σ . Note that between the
plates I = 0.
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I I

r

a

Fig. 10.12 Capacitor formed by to circular parallel plates

For the circle whose boundary is the circumference of radius r, (10.14) gives

∮
Hφdl = 0 + ∂

∂t

∫

S
DndS ⇒ Hφ2πr = ∂

∂t

∫

S
σdS = πr2

∂

∂t
σ0 sin(ωt)

= πr2σ0ω cos(ωt) ⇒ Hφ = rσ0ω

2
cos(ωt) ⇒ Bφ = μ0μrrσ0ω

2
cos(ωt).

Note how the tangential field increases with the distance to the axis.
The null solutions for the radial and axial components are appropriate because,

when considering a concentric cylinder that is interior to the dielectric, a zero flux is
given for field B in agreement with (10.11).
(b) For r > R, the calculation is repeated but it must be borne in mind that the electric
field is practically limited to the region between the plates:

∮
Hφdl = 0 + ∂

∂t

∫

S
DndS ⇒ Hφ2πr = ∂

∂t

∫

S
σdS = πR2

∂

∂t
σ0 sin(ωt)

= πR2σ0ω cos(ωt) ⇒ Hφ = R2σ0ω

2r
cos(ωt) ⇒ Bφ = μ0μrR2σ0ω

2r
cos(ωt)

Note how the field diminishes with the distance to the axis, which seems reasonable.

10.14. In a region of space, there is a magnetic field B, parallel to an axis, and of
modulus

B = 0.2r cos(π t) ∀ 0 ≤ r ≤ R

B = 0 ∀ r > R

where r is the distance from a point to the axis.



620 10 Maxwell’s Equations

Fig. 10.13 The tangential
component of A in terms of r

rR

0.2R2/3

A

Calculate: (a) the tangential component of the vector potential for r < R, (b) the
tangential component of the vector potential for r > R. (c) Represent this component
as a function of r at the instants t = 0 and t = 0.5 s.

Solution

(a) The definition ofA is∇ × A ≡ B. Given the symmetry of revolution of the prob-
lem, for a concentric circle with the axis and the circumference that is its boundary,
of radius r < R, the application of the circulation theorem gives

∮
A · dl =

∫

S
∇ × A · dS =

∫

S
B · dS ⇒ Aφ2πr =

∫ r

0
0.2r cos(π t)2πrdr

⇒ Aφ = 0.2

3
r2 cos(π t).

(b) Similarly, if r > R the following is given

∮
A · dl =

∫

S
∇ × A · dS =

∫

S
B · dS ⇒ Aφ2πr =

∫ r

0
0.2r cos(π t)2πrdr

=
∫ R

0
0.2r cos(π t)2πrdr +

∫ r

R
0 × 2πrdr ⇒ Aφ = 0.2

3

R3

r
cos(π t).

(c) At t = 0, these are, respectively:

Aφ = 0.2

3
r2;Aφ = 0.2

3

R3

r
,

the graphical representation of which is shown in Fig. 10.13.
In t = 0.5 s, they are, respectively:

Aφ = 0.2

3
r2 cos(0.5π) = 0;

Aφ = 0.2

3

R3

r
cos(0.5π) = 0.
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10.15. In a region without electrical currents, there is an electromagnetic field char-
acterised by: (a) its vector potential A = uxA0 sin(kz − ωt), where ux is the
unit vector in the direction of theOX axis, and A0 and ω are known constants;
(b) its electric field E = uxE0 cos(kz − ωt). Find the values of B, E0, k and
the difference in scalar potential between the points (x, 0, 0) and the origin
of the coordinates.

Solution

The relationship between B and A is obtained from the definition of A:

B = ∇ × A =
∣
∣
∣
∣
∣
∣

ux uy uz
∂
∂x

∂
∂y

∂
∂z

A0 sin(kz − ωt) 0 0

∣
∣
∣
∣
∣
∣
= uyA0k cos(kz − ωt).

The data must verify Maxwell’s equations. Therefore:

ρ

ε0
= ∇ · E = ∇ · (uxE0 cos(kz − ωt)) = 0 ⇒ ρ = 0,

∇ × E = −E0k sin(kz − ωt) = −∂B
∂t

= −A0kω sin(kz − ωt) ⇒ E0 = A0ω,

∇ · B = 0.

1

μ0
∇ × B = 1

μ0
A0k

2 sin(kz − ωt)ux = j + ε0
∂E
∂t

= 0 + ε0uxE0ω sin(kz − ωt)

⇒ A0k
2 = ε0μ0E0ω.

Substituting the value of E0 in the last equation gives:

A0k
2 = ε0μ0E0ω = ε0μ0A0ωω

⇒ k = √
ε0μ0ω ⇒ B = uyA0

√
ε0μ0ω cos(kz − ωt).

The difference in scalar potential is calculated by integrating equation (10.17) along
a simple path, the axis OX, whose points are at y = 0, z = 0 and, therefore, E =
uxE0 cos(ωt) and A = uxA0 sin(−ωt):

Vx,0,0 − V0,0,0 ≡ −
∫ x,0,0

0,0,0

(
E + ∂A

∂t

)
· dl

= −
∫ x,0,0

0,0,0
(uxE0 cos(ωt) + uxA0ω cos(ωt)) · (

uxdx + uydy + uzdz
)

= −
∫ x

0
(E0 + A0ω) cos(ωt)dx = −2E0x cos(ωt).
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10.16. Considering the relationship ∇ × ∇ × A = ∇ · (∇ · A) − ∇2A and forcing
vector potentialA and scalar potential V to verify the equation ε0μ0∂V/∂t +
∇ · A = 0, calculate ∇2A and ∇2V from Maxwell’s equations.

Solution

From the two given relationships, from the definition of A, and from Maxwell’s
fourth equation, the following is deduced:

∇2A = ∇ · (∇ · A) − ∇ × ∇ × A = −∇ ·
(

ε0μ0
∂V

∂t

)
− ∇ × B

= −ε0μ0∇ ·
(

∂V

∂t

)
− μ0j − ε0μ0

∂E
∂t

.

Taking the derivative of (10.18) with respect to time, and substituting the result in
the last equation, gives:

∇2A = −ε0μ0∇ ·
(

∂V

∂t

)
− μ0j − ε0μ0

(
∂2A
∂t2

− ∇ · ∂V

∂t

)
= −μ0j − ε0μ0

∂2A
∂t2

.

From (10.18) it is deduced:

∇2V = ∇ · (∇V ) = ∇ ·
(

−E − ∂A
∂t

)
= −∇ · E − ∂

∂t
(∇ · A) = − ρ

ε0
+ ε0μ0

∂2V

∂t2
.

10.17. The surface of a swimming pool is flat and separates the water, of relative
dielectric permittivity εrw = 1.8, from the air, of relative dielectric permit-
tivity εra = 1.0. The electric field in the air is Ea = E0 cos θuy + E0 sin θuz,
where θ is the angle that the electric field forms with the separation plane
(Fig. 10.14). Calculate the electric field in the water next to the air.

Fig. 10.14 Surface of
separation

Ea

X

Y

Z


n

water

air

1

2
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Solution

As the tangential component of the electric field is conserved, (10.21), it will have
the same value in the water

Etw = Eta = E0 cos θ.

As there are no free charges, (10.24), gives

Dna − Dnw = σnp = 0 ⇒ Dnw = Dna = εraε0E0 sin θ.

Fields E and D are related by the equation

D = εrwε0E ⇒ Dnw = εrwε0Enw ⇒ Enw = 1

εrwε0
Dnw.

From these last two equations, the following is derived

Enw = εra

εrw
E0 sin θ = 1.0

1.8
E0 sin θ = 0.56E0 sin θ.

10.18. The surface of a swimming pool separates the water, of relative dielectric
permittivity εrw = 1.8, from the air, of relative dielectric permittivity εra =
1.0. The electric field in the water is Ew = E0 cos θuy + E0 sin θuz, where θ

is the angle that the electric field forms with the separation plane. Calculate
the electric field in the air next to the water. What happens if the angle θ is
large?
Note: The statement of the problem is the same as the previous problem,
except here the known electric field is that of the water and the unknown
quantity corresponds to the air. The way to solve this problem must be anal-
ogous to that of the previous problem.

Solution

As the tangential component of the electric field is conserved, (10.21), it will have
the same value in the water

Eta = Etw = E0 cos θ.

As there are no free charges, (10.24) gives

Dna − Dnw = σnp = 0 ⇒ Dna = Dnw = εrwε0E0 sin θ.

Fields E and D are related by the equation

D = εraε0E ⇒ Dna = εraε0Ena ⇒ Ena = 1

εraε0
Dna.
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Fig. 10.15 Two media and
the electric fields
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Ena

Enw

Eta=Etw

1

2

From the two last equations, the following is given

Ena = εrw

εra
E0 sin θ = 1.8

1.0
E0 sin θ = 1.8E0 sin θ.

It can be seen in Fig. 10.15 how the angle, which the electric field vector in the air
forms with the separation plane, is greater than that formed by the electric field in
the water with the separation plane.

The perpendicular component of Ea can be written thus: Ea sin θa = Ena =
E0(1.8 sin θ), where θa is the angle that Ea forms with the separation plane. The
maximum value of sin θa is one, and hence the maximum value of θ is such that
sin θ = 1/1.8 which implies that θmax = 33.7◦. Values greater than 33.7◦ cannot
exist.

10.19. A flat boundary separates a paramagnetic material from the vacuum. The
relative magnetic permeability of the material is μr = 4. The magnetic field
B in the vacuum has a modulus Bv , and forms an angle θv with the boundary,
and is incoming into the vacuum. There are no surface conduction currents.
(a) Calculate the field Bm in the material; (b) Relate the tangents of the angles
formed by B in both media.

Solution

(a) Applying (10.22) and considering the material as medium 1 and the vacuum as
medium 2 gives

Bn2−Bn1 = Bnv−Bnm= 0 ⇒ Bnm = Bnv = Bv sin θv.

Equation (10.25) with jfs = 0 gives:

Ht2 − Ht1 = Htv − Htm = 0 ⇒ Htm = Htv = Hv cos θv.
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From the relationship between B and H, we have

B = μrμ0H ⇒ Btm = μrμ0Htm.

Therefore
Btm = μrμ0Htm = μrμ0Hv cos θv = μrBv cos θv.

(b) The angle in the vacuum is such that

tan θv = Bnv

Btv
,

whereas in the material it is

tan θm = Bnm

Btm
= Bv sin θm

μrBr cos θm
= tan θv

μr
⇒ tan θv

tan θm
= μr = 4.

10.20. The air gap of a magnet is narrow compared with the diameter of the polar
pieces, which are circular. The magnetic field measured in the air gap is
B = 0.1 T. It is known that the material with which the magnet is constructed
has a very complicated relationship between B and H. Calculate B at a point
within the iron but next to the air gap.

Solution

Due to the small distance from the surface of the iron to the point at which magnetic
field B is measured, field B is uniform, perpendicular to the polar surfaces (except
in the proximities of the borders) and whose direction points from the north pole to
the south pole (by definition of north pole). By studying the flux through a box that
encloses a part of the north polar surface (see Fig. 10.16), and applying (10.11), it is
deduced that

0 =
∫

S
B · dS =

∫

S−down
B.dS +

∫

S−up
B′ · dS +

∫

S−lat
B · dS = B · dS + B′ · dS + 0

⇒ B′ = −B,

Fig. 10.16 The air gap of a
magnet

N

S
dS

dS'

B
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where B and B′ are the downward projections of B in the air gap and the iron respec-
tively.

Therefore the magnetic field in the interior of the north magnetic pole is down-
wards, in the same direction as in the air gap. The properties of the material do not
influence the result.

10.21. Aboundary separates amagnetized ferromagneticmaterial from the air.Mag-
netic field B in the material has a modulus Bm, which forms an angle θm with
the boundary, and is incoming into the air. There are no surface conduction
currents. Estimate the field Bv in the air.

Solution

The relative magnetic permeability of the air is approximately μra = 1. The relative
magnetic permeability of the ferromagnetic material μrm is not a constant but it
is always much larger than one. Applying the result of the problem 10.19 gives
approximately

tan θv

tan θm
= μrm � 1 ⇒ tan θv � 1 ⇒ θv ≈ 90◦.

Therefore, the magnetic field B in the air, next to the surface of the material, always
forms an angle close to 90◦. The lines of themagnetic fieldB in air are thus practically
perpendicular to surfaces of ferromagneticmaterials. This important fact is illustrated
in Fig. 10.17.

Fig. 10.17 Magnetized
ferromagnetic material



Chapter 11
Motion of Charged Particles
in Electromagnetic Fields

Abstract One of the most important applications of the electric and magnetic fields
deals with the motion of charged particles. For instance, in experimental nuclear
fusion reactors the study of the plasma requires the analysis of the motion, radiation,
and interaction, among others, of the particles that forms the system. In biomedicine
the use of accelerators, like the cyclotron, allows the preparations of compounds to
be employed in diagnostics, such as the FDG (see Problem 11.5), which is used as
a tracer in the detection of some kinds of cancer and body diseases by means of the
PET technique. Or in a closer case, the Earth, where its magnetic field, acting like a
particle mirror, protects us against many of the cosmic rays.

11.1 Lorentz Force

From the definition of the electric field E, it follows that the force that an electric
field exerts on a particle with charge q is

F = qE. (11.1)

From the definition of magnetic field B, it is deduced that the force that a magnetic
field applies on a particle is

F = qv × B, (11.2)

where v is the velocity of the charge.
If the particle is simultaneously submitted to an electric field and a magnetic field,

the resultant of the forces is the sum of the two aforesaid forces, that is,

F = qE + qv × B, (11.3)

which is called the Lorentz force.
Furthermore, it is known that all force applied on a particle causes its acceleration

a in accordancewith the fundamental equation of dynamicsF = ma. The particle fol-
lows a trajectory and the force F generally has a component throughout the trajectory

© Springer-Verlag Berlin Heidelberg 2017
F. Salazar Bloise et al., Solved Problems in Electromagnetics,
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that produces the tangential acceleration, whose value, studied in kinematics, is dv/dt
and measures the rate by which the modulus of the velocity varies. The force per-
pendicular to the trajectory causes an acceleration perpendicular to the trajectory;
this component of the acceleration is directed towards the centre of curvature, and
measures the rate by which the direction of the velocity varies; its modulus is v2/R,
where R is the radius of curvature of the trajectory.

11.2 Trajectory of a Charge in a Homogeneous
Electric Field

Consider a region of space where only a homogeneous and constant electric field E
exists. At the initial moment, t = 0, a particle of mass m and electrical charge q is
impelled with an initial velocity v0. In general, this velocity will form an angle θ

with E. Three coordinate axes are drawn such that their origin O coincides with the
initial position of the particle, such that axisOZ has the same direction as the electric
field, and such that axis OX is contained in the plane defined by the vectors E and v0
(see Fig. 11.1).

The electric field can be written in the form of its components thus

E = 0ux + 0uy + Euz = Euz. (11.4)

Applying the formula of the Lorentz force gives

F = qE = qEuz. (11.5)

The fundamental equation of dynamics leads to

a = F/m = qE/m = qE/muz
⇒ ax = ay = 0; az = qE/m.

(11.6)

Fig. 11.1 Homogeneous
electric field E
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That is, the components of the acceleration on axes OX and OY are null and conse-
quently the velocities along the axes OX and OY are constants, that is

dvx
dt = 0 ⇒ vx = C1 = v0x ⇔ dx

dt = v0x ⇒ x = v0xt
dvy
dt = 0 ⇒ vy = C2 = v0y = 0 ⇔ dy

dt = 0 ⇒ y = 0.
(11.7)

The third component of the acceleration gives

dvz
dt

= qE/m ⇒ vz = qEt/m + C3 ⇒ (11.8)

vz = qEt/m + v0z ⇒ z = 1

2m
qEt2 + v0zt. (11.9)

Therefore the particle moves on the plane formed by the vectors E and v0, with a
constant velocity in the direction perpendicular to E and with a velocity increasing
linearly with time in the direction of the electric field. The trajectory is ascertained
by finding the time value through (11.7) and substituting it into the (11.9):

z = 1

2m
qEt2 + v0zt = 1

2m
qE

(
x

v0x

)2

+ v0z
x

v0x
= qE

2mv0x2
x2 + v0z

v0x
x. (11.10)

This equation corresponds to a parabola such as the one drawn in Fig. 11.2.

11.3 Trajectory of a Charge in a Homogeneous
Magnetic Field

If there is only one homogeneous and constant magnetic field in a region of space,
and a particle with electrical charge q moves within it, then the force that is applied
on it is (Lorentz force)

Fig. 11.2 Trajectory of the
charged particle
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Fig. 11.3 Trajectory in
presence of a homogeneous
magnetic field

B
vpe

vpa

v

R

R

F = qv × B. (11.11)

If the particle has a mass m, then the acceleration to which it is subjected is

a = q

m
v × B. (11.12)

Breaking down the velocity vector into a component vpa parallel to B and another
vpe perpendicular to B, as shown in Fig. 11.3, gives

a = q

m

(
vpa + vpe

) × B = q

m
vpa × B + q

m
vpe × B = 0 + q

m
vpe × B = q

m
vpe × B,

(11.13)
where it has been taken into account that q

mvpa × B = 0 since they are parallel vectors.
Furthermore, q

mvpe × B is perpendicular to both vectors and, as v is tangent to the
trajectory, it means that the acceleration is perpendicular to the trajectory. Therefore,
the tangential acceleration is null and consequently the modulus of the velocity
is constant and the component vpa is constant. The acceleration is centripetal, its
modulus is vpe2/R, and therefore

q

m
vpeB = vpe2

R
⇒ q

m
B = vpe

R
⇒ R = mvpe

qB
. (11.14)

This expression provides the value of the radius of curvature of the trajectory of the
charged particle.

From this equation, the following are deduced for the period of revolution and
angular frequency, respectively:

T = 2πR

vpe
= 2πm

qB
; ω = 2π

T
= qB

m
. (11.15)

While the particle advances with constant velocity vpa along the direction of B, the
projection of the trajectory follows a circumference of radius R, thus tracing a helix.
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11.4 Hall Effect

(a) Consider a strip of a material that conducts electric current, of small thickness
and of a length much greater than the width w. The strip is connected to an electric
battery through a resistor, as indicated in Fig. 11.4. A magnetic field B is applied
perpendicular to the strip and directed towards the material. A permanent regime is
acquired upon the establishment of the current. If the charges that the strip transports
are positive and of value q, then they are deflected downwards by the magnetic
field force qv × B, and hence the lower part acquires a positive charge. This charge,
together with the negative of the side above, creates an upward electric field E. In the
permanent regime the charges go from right to left due to the electric field applied by
the battery Eb. Therefore the component of the resultant of the forces in the direction
perpendicular to v is null, that is

qE + qv × B = 0 ⇒ qE = qvB ⇒ E = vB. (11.16)

Moreover, the electric field is related to the difference of potential and the width of
the strip by the formula

E = VH

w
⇒ VH

w
= vB. (11.17)

The magnitude VH is called the Hall voltage.
In an experiment, if the strip is metallic, then when measuring the VH with a

voltmeter, the upper part is positive with respect to the lower, and hence the metals
conduct by means of negative charges. This effect can therefore serve to ascertain
the sign of the charge of the charge carriers.

The Hall effect also serves to measure magnetic field B according to (11.17). A
Hall probe is applied as a transducer, where amagnetic fieldB produces ameasurable
voltage VH .

(b) Certain natural physical phenomena are not in agreement with the classical
theory of physics. For example, according to the classical theory of physics, if a
body emits a certain amount of energy, this energy can be of any value; nevertheless,
according to quantum theory this energy is necessarily an integer multiple of the
product hf of a universal constant h, named Plank’s constant, times the frequency f
of the radiation.

Fig. 11.4 Hall effect
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By studying the Hall effect in a conductive sheet through which a current of
intensity I circulates at a temperature close to 0K, and to which an intense magnetic
field is submitted, the conclusion is reached that the Hall voltage VH depends on the
magnetic field in a staggered manner, that is, when increasing the field, the voltage
remains unchanged until it changes abruptly to a certain higher value and so on.
This is called the quantum Hall effect. The Hall resistance defined by the quotient
RH = VH/I yields the value

RH = h

ne2
, (11.18)

where n is an integer, and e is the electrical charge of the electron which is also a
universal constant.

As h/e2 is a universal constant, therefore its value for n =1 depends on nothing,
and the electrical resistance of the sheet has a fixed value. The sheet therefore serves
as a resistance standard and has been assigned the value 25812.807 �.

11.5 Trajectory of a Charge in Simultaneous, Homogeneous
and Constant, Magnetic and Electric Fields

If a particle of charge q and massmmoves within a region where an electric field and
a magnetic field exist simultaneously, then it is subjected to the Lorentz force given
by (11.3), and its acceleration is obtained by applying the fundamental equation of
dynamics. From this acceleration and from the initial conditions it is possible to
obtain the velocity, the displacement, and the trajectory. In general, the solution can
be very complicated, and for this reason some simple cases will be studied.

If the fields have the same direction, the calculation is simplified by forming a
system of coordinating axes with their origin in the initial position of the particle and
axis OZ in the common direction, as indicated in Fig. 11.5. The force on the particle
is given by the Lorentz formula (11.3), and hence the acceleration is

Fig. 11.5 Trajectory in
presence of E and B
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a = q

m
E + q

m

(
vpa + vpe

) × B = q

m
E + q

m
vpe × B, (11.19)

whose component on the OZ axis is

az = q

m
E. (11.20)

Therefore the projection of the particle position on the OZ axis moves with a uni-
formly accelerated movement caused by the electric field.

The component of the acceleration perpendicular to the OZ axis is

ape = q

m
vpe × B , (11.21)

which is identical to (11.13). Therefore, this acceleration causes an equal movement
to that studied in Sect. 11.3, that is, the projection of the trajectory on the plane
perpendicular to theOZ axis is a circumference whose radius is that given by (11.14).

In short, the trajectory is a helix whose pitch increases with time.

11.6 The Mass Spectrometer

Figure11.6 represents a type of device called a Bainbridge mass spectrometer. A
beam of diverse charged particles is accelerated by an electric field and enters an
electric field E and a magnetic field B1, which are perpendicular. These fields are
such that the Lorentz force is null for certain particles with velocity v, that is,

F = qE + qv × B1 = 0 ⇒ E = vB1 ⇒ v = E/B1. (11.22)

Therefore only the particles that have that velocity are subjected to a null force and
move with a constant velocity v, and hence their trajectory is straight and they arrive
at orifice H. This part of the device is called a velocity selector. The particles of
selected velocity v then enter by orifice H into a region with only a magnetic field

Fig. 11.6 Mass
spectrometer
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B2, where the trajectory is circular, and after tracing a semi-circumference they are
detected at D. From (11.22) and (11.14), the following is given

R = mv

qB1
= mE

qB1B2
. (11.23)

Therefore, if the charge of the all particles is the same, those that have a mass m
are detected at the distance 2R from the orifice. The other particles of equal electric
charge but with different mass can be detected at other distances.

11.7 The Cyclotron

The cyclotron is an apparatus that serves to accelerate charged particles. It was
invented by the american Ernest Lawrence in 1929. This is formed by two metallic
cases, each in the form of the capital letter “D”, open on their rectangular faces.

The two D’s are put under a vacuum, subjected to a magnetic field B, and a differ-
ence of alternating potential V = V0sin(ωt) between the D’s, of angular frequency
ω. Figure11.7 shows a diagram of the device. The trajectory of a charge q is drawn
with dashed lines and it can be observed that it is formed by a semi-circumference of
radiusR1 = mv1

qB inside the D1 case, where v1 is the velocity in its interior. When the
charge arrives at the gap between the D’s it meets a difference of potential that impels
it, increasing its velocity up to v2, and therefore its trajectory is a circumference of
radius R2 = mv2

qB , which is greater than R1. Hence, with a suitable ω, each half cycle
increases the velocity of the charge and its energy until it reaches a maximum radius
and is extracted from the system.

Fig. 11.7 The cyclotron
B

R2

D1
D2R1
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11.8 The Betatron

The betatron accelerates charged particles by an electric field induced by a changing
magnetic field. A charged particle, initially at rest, is required to follow a circular
orbit of radius R. To this end, an axially symmetrical magnetic field B is produced
(as in Fig. 11.8), which is initially null, of modulus variable with the distance to the
axis of symmetry, and increasing with time. The field is BR within the zone of the
orbit. The induced electric field is tangent to the orbit due to the symmetry and, at a
certain moment, its modulus is obtained by applying the law of induction along the
circumference that the particle is going to orbit:

E2πR = d

dt

∫

S
B · dS = d

dt

∫

S
B.dS ⇒ E = 1

2πR

d

dt

∫

S
B dS. (11.24)

The tangential field E causes a tangential force Ft = mat = mdv/dt, therefore, the
fundamental equation of dynamics gives

m
dv

dt
= q

2πR

d

dt

∫

S
B dS. (11.25)

Solving (11.14) for v, its derivative with respect to time gives

dv

dt
= qR

m

dBR

dt
. (11.26)

Substitution of this last equation into (11.25) yields

m
qR

m

dBR

dt
= q

2πR

d

dt

∫

S
B dS ⇒ dBR

dt
= 1

2

d

dt

(
1

πR2

∫

S
B dS

)
. (11.27)

This condition is satisfied if the magnetic field in the orbit is half of the average
magnetic field in the circle.

Fig. 11.8 The betatron
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R
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11.9 Relativistic Correction

In some problem in Physics, the velocity of charged particles inside electromagnetic
fields is often close to the speed of light in a vacuum, henceforth simply called the
speed of light, and it is known to be represented by c. The value of c is c = 299792458
m/s (a value of approximately 3×108 m/s). The formulationgiven in classical physics
is not adequate in these circumstances and it is necessary to use the formulation
given in the theory of special relativity so that the results of applying the equations
of physics are consistent with the experimental facts.

When the speed of light is measured, it is observed that it is independent of the
state of rest or of movement of the observer. Hence a series of consequences may be
deduced, of which two are of interest here:

(a) The force that is applied on a particle is related to its mass and its velocity v
by means of the formula

F = d

dt

(
mv

√
1 − v2/c2

)

, (11.28)

wherem is always the mass of the particle, measured when the particle is at rest with
respect to the observer. Equation (11.28) is the fundamental equation of relativistic
mechanics. When the velocity v of the particle is small (compared with c), the
radicand of (11.28) is approximately 1 and (11.28) is reduced to approximately
F = d(mv)/dt = ma, which is the fundamental equation of classical mechanics.

(b) The energy of a particle is expressed by means of the formula

Er = mc2
√
1 − v2/c2

. (11.29)

In order to understand the physical significance of this energy, it is sufficient to make
a series expansion for small values of v, that is, for values of v2/c2 much smaller
than 1. This yields

Er = mc2
√
1 − v2/c2

= mc2
(
1 − v2/c2

)−1/2 = mc2
(
1 + 1

2
v2/c2 + · · ·

)

≈ mc2
(
1 + 1

2
v2/c2

)
= mc2 + 1

2
mv2 .

(11.30)

Therefore, theEr is, for small velocities, the sum of the kinetic energy and the addend
mc2. The addend mc2 is the energy that the particle holds at rest and is due solely to
the fact of having mass. The Er can be termed relativistic energy.

Solving (11.29) for v, the velocity can be calculated from the relativistic energy,
giving

v = c
√
1 − (mc2/Er)2 . (11.31)
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If the particle has an electrical charge q and is located at a point where the scalar
potential is V , then the total energy of the particle is the sum of the relativistic and
the potential energy, that is,

Et = mc2
√
1 − v2/c2

+ qV . (11.32)

11.10 A Relativistic Particle in an Electromagnetic Field

As an application of the theory of relativity, the movement of a charged particle in an
electromagnetic field will be analysed. Considering the Lorentz force together with
(11.28) gives

qE + qv × B = d

dt

(
mv

√
1 − v2/c2

)

. (11.33)

The movement of charges in stationary electromagnetic fields will be studied, that
is, those independent of time.

The elemental work that the electromagnetic field applies on a charged particle
that moves by dr is

dW = F.dr = (qE + qv × B) .dr = qE.dr, (11.34)

since (qv × B) .dr is null because v and dr are parallel. Therefore the work is due
solely to the electric field. The magnetic field cannot vary the energy of a particle,
however it could vary the velocity direction.

11.11 Charge in a Homogeneous Electric Field

Let B = 0. The coordinate axes are located such that the axisOZ has the direction of
the electric field E. It is assumed that, at the initial moment, the particle is impelled
from the origin of the coordinates, with the velocity v0 and in the direction of the
electric field.

The component of (11.33) on axis OX is

0 = d

dt

(
mvx√

1 − v2/c2

)

. (11.35)
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Integration of (11.35) gives

mvx√
1 − v2/c2

= k1 = mvx0√
1 − v20/c

2
= 0, (11.36)

where k1 is a constant and it yields vx = 0. Therefore

dx

dt
= 0, (11.37)

and hence

x = k2 = x0 = 0. (11.38)

Repeating the calculation for the component of (11.33) on OY axis yields

y = 0. (11.39)

The trajectory of the charged particle is thus the OZ axis.
The component of (11.33) on the OZ axis is

qE = d

dt

(
mvz√

1 − v2/c2

)

. (11.40)

Integrating gives
mvz√

1 − v2/c2
= qEt + k3. (11.41)

Since at t = 0, then vx = 0, vy = 0, and vz = v0, therefore

mv0√
1 − v20/c

2
= k3. (11.42)

Hence mvz√
1 − v2z /c

2
= qEt + mv0√

1 − v20/c
2

. (11.43)

This formula gives the velocity of the particle v = vz at any moment.
Calculating the derivative that appears in (11.40) yields

qE = d

dt

(
mv

√
1 − v2/c2

)

= m

(
1 − v2

c2

)−3/2
dv

dt
, (11.44)
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Fig. 11.9 Acceleration
versus velocity
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and therefore the component of the acceleration along axis OZ is

dv

dt
= qE

m

(
1 − v2

c2

)3/2

. (11.45)

Note that if velocity v is null, then the acceleration isqE/m, in agreementwith classical
mechanics; however if the velocity is equal to that of light, the acceleration is zero.
Figure11.9 represents the acceleration of a charge starting from rest as a function
of its velocity according to relativistic theory. The conclusion is drawn that as the
particle reaches high velocities, its acceleration becomes smaller, even if the force
exerted by the electric field remains constant, that is, the increase of velocity becomes
more difficult the faster the particlemoves. Therefore, even if the accelerating electric
field is large, the particle will not be able to reach the speed of light. According to
classical mechanics, a constant force causes a constant acceleration and therefore an
increase of velocity that will become infinite. The classical theory is not adequate
for the high velocities that are considered here.

Squaring (11.43) yields

m2v2z =
⎛

⎝qEt + mv0√
1 − v20/c

2

⎞

⎠

2

− v2z /c
2

⎛

⎝qEt + mv0√
1 − v20/c

2

⎞

⎠

2

, (11.46)

from which the square of the velocity is obtained

v2z =

⎛

⎝qEt + mv0√
1 − v20/c

2

⎞

⎠

2

m2 + 1/c2

⎛

⎝qEt + mv0√
1 − v20/c

2

⎞

⎠

2 . (11.47)
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11.12 Charge in a Homogeneous Magnetic Field

Let E = 0. A system of coordinate axes is drawn such that the axis OZ is parallel to
magnetic field B. Equation (11.33) is reduced to

qv × B = d

dt

(
mv

√
1 − v2/c2

)

. (11.48)

Substituting in this equation that of (11.29) gives

qv × B = d

dt

(
mv

√
1 − v2/c2

)

= d

dt

(
Erv
c2

)
. (11.49)

Since Er is constant in a magnetic field, then

qv × B = Er

c2
dv
dt

⇒ qc2

Er
v × B = dv

dt
. (11.50)

Since the product v × B is perpendicular to B, it is also perpendicular to axis OZ,
and therefore the acceleration dv/dt has a null component along axis OZ. Therefore,
the component of the velocity vz is constant. If the charge is impelled with an initial
velocity v perpendicular to the magnetic field, then vz0 = 0, and the particle moves
in a plane perpendicular to the magnetic field.

Since the product v×B is perpendicular to v, the acceleration dv/dt is perpendicu-
lar to the velocity, that is, to the trajectory, and therefore it is a centripetal acceleration.
Equalizing the components of (11.50) along the perpendicular to the trajectory gives

qc2

Er
vB = an = v2

R
= ω2R, (11.51)

where R is the radius of curvature of the trajectory. Since the first member of (11.51)
is constant, so is R and therefore the trajectory is a circumference of radius

R = vEr

qc2B
. (11.52)

The quantity ω represents the angular velocity, or angular frequency, with which the
particle travels the circumference and has the value

ω = qc2B

Er
. (11.53)

Note that, as the centripetal acceleration is towards the centre of curvature, the centre
is indicated by the vector v × B (if q is positive).
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If the velocity of the particle is small (v � c), then (11.29) gives Er = mc2 and
these last two equations are converted into those formulated with classical mechanics
at the start of this chapter.

Solved Problems

Problems A

11.1. Aproton ofmassm = 1.672 × 10−27 kg and electrical charge q= e= 1.602 ×
10−19 C is left without an initial velocity in a homogeneous electric field E =
20V/m. The velocity that the proton acquires and the distance travelled when
the elapsed time is 0.08 s are required.

Solution

As the charge and the electric field are known, the force that is exerted on the particle
can be calculated. With the force calculated and the mass known, the fundamental
equation of dynamics allows the acceleration to be calculated. From the value of the
acceleration it is possible to obtain the velocity and the displacement.

The equations (11.7)–(11.9) can be applied directly, in which, the initial velocity
is v0x = v0y = v0z = 0. If the origin of coordinates is taken as the starting point of
the proton, and the axis OZ coincides with the direction of the electric field, then:

vx = 0 ⇒ x = 0,
vy = 0 ⇒ y = 0,

vz = 1.602 × 10−19 × 20 × 0.08

1.672 × 10−27
= 1.5330 × 108 m/s,

z = qE

2m
t2 = 1.602 × 10−19 × 20

2 × 1.672 × 10−27
0.082m = 6.132 × 106 m .

As the obtained velocity is about half the speed of light, these results can only be
taken as approximate.

11.2. At a point in space there is an electric field E in the direction of the coordinate
axis OX, a magnetic field B in the direction of the axis OY, and a particle of
charge q moving with velocity v in the direction of the axis OZ (Fig. 11.10).
Calculate the components of the force along the three coordinate axes.

Solution

The force acting on the particle is the Lorentz force

F = qE + qv × B .
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Fig. 11.10 Particle with
velocity v

O
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E
qE

qvxBv

B

Since E has the direction of OX axis, then the components of qE are, respectively:
qE, 0, and 0.

The vectorial productv×Bhas the opposite direction toOX axis, and its respective
components are: - qvB, 0, and 0.

Therefore, the components of the force are, respectively: (qE–qvB), 0, and 0 and
can be written

F = q (E − vB) ux.

11.3. An ion of charge q = e = 1.602 × 10−19 C and mass m = 1.50 × 10−25 kg
is impelled with a velocity v =100000m/s perpendicular to a homogeneous
electric field E = 3V/m. Calculate the velocity acquired by the ion during the
first 0.4 s and draw the trajectory.

Solution

The force on the particle can be calculated from data q and E. The acceleration is
calculated from the force and the mass, and hence the velocity and the trajectory.

Drawing coordinate axes with their origin at the initial position of the particle,
with the OZ axis in the direction of the electric field and with the OX axis in the
direction of the initial velocity, as shown in Fig. 11.11. With respect to these axes,
the data can be written thus:

v0x = v = 100000m/s, v0y = 0, v0z = 0.

The distance travelled along axis OX in 0.4 s is, according to (11.7),

x0.4 = v0xt = 100000 × 0.4 m = 40000 m.

The velocity along axis OZ is, according to (11.9),

vz = qE

m
t + v0z = qE

m
t = 1.602 × 10−19 × 3

1.50 × 10−25
0.03 m/s = 9.612 × 104 m/s.
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Fig. 11.11 Reference of
frame
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4000 m

2563 m

Directly applying (11.10) gives the trajectory

z = qE

2mv2
x2 = 1.602 × 10−19 × 3

2 × 1.50 × 10−25 × 1000002
x2 = 1.602 × 10−4x2.

The graphical representation is given as a continuous line in Fig. 11.11.

11.4. An electric field has the direction of axis OY and its modulus varies with
the point of space in the form E = E0 + kz, where k is a constant. At the
initial instant, a particle of charge q and mass m is impelled from the origin
of the coordinates, with a velocity v0 parallel to axis OZ (Fig. 11.12). Find the
distance of the particle to the origin of the coordinates at instant t.

Solution

Since the electric field, the charge, and the mass are known, it is possible to calculate
the acceleration, the velocity and the components of the displacement along the axes.
Given this displacement, the distance can be determined.

The field has the components Ex = 0, Ey = E0 + kz, and Ez = 0, which cause the
respective accelerations ax = 0, ay = q(E0 + kz)/m, and az = 0. Therefore:

dvx
dt

= 0 ⇒ vx = C1 = 0 ⇔ dx

dt
= 0 ⇒ x = C2 = 0,

dvy
dt

= q

m
(E0 + kz),

dvz
dt

= 0 ⇒ vz = C3 = v0 ⇔ dz

dt
= v0 ⇒ z = v0t + C3 = v0t.

By substituting the third result into the second, this is transformed into
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Fig. 11.12 Electric field
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dvy
dt

= q

m
(E0 + kv0t) ⇒ vy = q

m

(
E0t + kv0

2
t2

)
+ C4 = q

m

(
E0t + kv0

2
t2

)

⇒ y = q

m

(
E0t

2

2
+ kv0

2 × 3
t3

)

+ C5 = q

2m

(
E0t

2 + kv0
3

t3
)

.

The distance d to the centre is therefore

d =
√
x2 + y2 + z2 =

√
q2

4m2

(
E0t2 + kv0

3
t3

)2

+ (v0t)
2.

11.5. Electrons, q = −e, are used as a test charge to determine a field B. This field
can be considered homogeneous, stationary, perpendicular to the plane of
Fig. 11.13, and confined to the hatched area. The electrons are accelerated
starting from rest when passing through plates between which there is a dif-
ference of potential V ’=V2 − V1.
(a) Determine the modulus and direction of B if, after a certain route through
the interior of the magnetic field, the point of impact of the electrons on the
screen (plane x = 0) is at (0, a, 0). The mass and the charge of the electron are
assumed to be known.
(b) Later, at a pointP of the previous fieldB, two charged particles are impelled
with the same velocity perpendicular to the field (Fig. 11.14). These particles
have equal mass. The figure shows the trajectory followed by each particle,
recorded by means of a Wilson cloud chamber (basically it contains gas and
water vapour). Give reasons for the difference between these particles and
explain what may cause the progressive reduction of the radius of curvature.
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Fig. 11.13 Experimental
set-up with magnetic field
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Y
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Fig. 11.14 Trajectory of the
two particles

P

Solution

(a) The principle of conservation of energy establishes that the sum of the kinetic
and potential energies in 1 and 2 is the same, that is

0 + qV1 = 1

2
mv2 + qV2 ⇒ −eV1 = 1/2mv2 − eV2 ⇒ v =

√
2eV ′

m
.

If q > 0, then the impact is to the right, and therefore the half circumference travelled
within themagnetic field has its centre at (0, a/2, 0). Since the centripetal acceleration,
caused by B, points towards the centre of the circumference, then so does the force
qv × B = −ev × B, and thereforev × Bpoints away from the centre.HenceBpoints
out of the paper. Put another way, at the moment when the electron enters the field,

F = −ev × B ⇒ Fyuy = −evxux × Bzuz = evxBzuy ⇒ Fy = evxBz

⇒ Bz = Fy

evx
> 0.

Moreover, the fundamental equation of dynamics gives

mv2

R
= evxBz = evB ⇒ B = mv

eR
= m

ea/2

√
2eV ′

m
= 2

a

√
2mV ′

e
.

(b) The main difference is that the initial centres of curvature are one to each side,
therefore the acceleration is equal except for the direction, and hence the force is equal
except for the direction, and therefore the charges must be of opposite signs. The
particle to the left must have a negative charge and the particle to the right a positive
charge. This allowed experimentally discovery of a new particle: the positron 0

+1e.
The reduction of the radius of curvature is due, with high probability, to the reduction
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of velocity, caused by the collision of the particles with the gasmolecules in the cloud
chamber.

The existence of the positron was predicted by P. Dirac in 1931, and discovered
experimentally byC.Anderson in 1932while studying cloud chamber photographs of
cosmic rays. The positron has the samemass andmagnitude of charge, but opposite in
sign, as the electron.Rigorously speaking, it constitutes the antiparticle of the electron
and it is antimatter. The behaviour of the antimatter is not as usual as thought. In
fact, when an electron (matter) coincides with a positron (antimatter) in a region of
the space they annihilate each other. As a result two photons (gamma rays) appear
moving in opposite directions with energies of 511keV (momentum conservation
law). At first sight it may be thought that the study of the antimatter is only important
for the physicists that investigate in quantum field theory, but that is completely
wrong. The study of the elementary particles performs a fundamental role in great
variety of subjects, such as biology, medicine, chemistry, and of course Physics.
By way of illustration, suffice it to say, that the application of the positrons for the
diagnostic of some diseases has been used since 1969 (the first time in USA) by
means of the PET technique (Positron Emission Tomography). More specifically,
by this procedure it is possible to diagnose cancer, degenerative anomalies such as
Alzheimer and Parkinson, metabolic disorders, and epilepsy, among others.

PET is a non-invasive method which employs chemical compounds labelled with
radioisotopes of short haf-life time, like 11C, 13N, 15O and 18F. These compounds are
called tracers and are injected into the body in order to measure where its activity is
greatest. The election of the tracer depends on the disease to be investigated.However,
one of the most employed tracer is FDG (Fluorodeoxyglucose). As the tumours
consume more energy than normal cells, the FDG accumulates more in the regions
where the body needs more energy. Due to the fact that the 18F is introduced in the
molecule it disintegrates (beta plus decay (β+), 11p → 1

0n + 0
+1e + 0

0ν) emitting one
positron (0+1e) which annihilates with one of the electrons of the surrounding matter
leading to two photons. By using photomultiplier-scintillator detectors located on
opposite sides, and computerized tomographic reconstruction based on correlation
direction and time coincidence of the photons emitted, it is possible to obtain an
image of the regions of more activity. From a medical viewpoint this technique is
very sensitive for detecting the activity zones but not the morphology of the tumours.
For this reason the new PET-machines bring an incorporated CT11 scanner, which
allows a good reconstruction of the region. As a result by means of the fusion of both
data, a precise location of the tumour and its possible malignity are obtained.

11.6. A conductive strip (Hall probe) is located in a region of space where there
is a known magnetic field B, and voltage VH is measured when the plane of
the tape is perpendicular to the magnetic field. The probe is turned an angle θ

around the axis of symmetry parallel to the longest edge. Calculate the Hall
voltage that will be measured after the turn.

1Computerized Tomography (CT) is also a very important technique, but very different from PET.
It is based on X rays, and permits physicians to obtain images of plane sections through the body.
It is very good for visualizing anatomic structures.
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Fig. 11.15 Specimen
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Solution

In the first position of the probe, the voltage is given by (11.17)

VH = wvB ⇒ wv = VH/B .

In the second position (see Fig. 11.15), in permanent regime, the carrying charges,
if positive, move in the direction of the vector density of current j and are subjected
to the magnetic field and the electric field caused by the charges that have been
deposited at the edges. The resultant of the forces throughout the width of the tape
must be null. Therefore

qE = qvB cos θ ⇒ E = vB cos θ.

The resultant voltage is obtained from

E = VH
′

w
⇒ VH

′ = wE = wvB cos θ ⇒ VH
′ = VH

B
B cos θ = VH cos θ.

11.7. In a region of space, an electric field E and a magnetic field B are parallel and
homogeneous. A particle with charge q and mass m is impelled with velocity
v0 perpendicular to the fields. Calculate the advance made in the first turn and
in the second turn.

Solution

If the OZ axis is drawn in the common direction of the fields and the origin of the
coordinates is located at the point of release of the particle, then Fig. 11.16 shows
the results. With the data given, the acceleration, velocity and displacement can be
calculated. As demonstrated in the theoretical introduction (11.20), the electric field
causes an acceleration along the axis OZ of value

az = qE

m
⇒ vz = qE

m
t ⇒ z = qE

2m
t2 .
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Fig. 11.16 Electric and
magnetic field
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Moreover, the rotation period caused by the magnetic field, (11.15), is

T = 2πm

qB
.

Substituting this value of time into the previous equation gives the distance travelled
in the direction of OZ axis in the first turn thus

L1 = qE

2m
T 2 = qE

2m

22π2m2

q2B2
= 2π2mE

qB2
.

In the time spent in the two turns, 2T , the distance travelled in the commondirection is

L2 = qE

2m
(2T)2 = qE

2m

22 × 22π2m2

q2B2
= 4

2π2mE

qB2
.

Note how the distance L2 is not double but four times the distance L1 in only double
the time. The trajectory is not a simple helix but a kind of helix whose pitch increases
with time.

11.8. Two isotopes of electrical charge q = e = 1.602 × 10−19 C and masses m1 =
1.673 × 10−26 kg and m2 = 1.743 × 10−26 kg, respectively, enter the mass
spectrometer described in Sect. 11.6. The electric field applied in the veloc-
ity selector is E = 1000V/m and the magnetic fields are equal in the whole
device, B = 0.02 T. Calculate the velocity of the isotopes on their arrival at
the detector and the point where they can be detected.

Solution

By observing the figure of Sect. 11.6, and applying (11.22), the velocity of the iso-
topes that cross the exit orifice of the velocity selector is calculated

v = E/B1 = 1000/0.02 m/s = 50000 m/s.

Since there is only one magnetic field inside the mass selector, and the modulus of
velocity does not vary, then the arrival at the detector iswith the velocity of 50000m/s.
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The radius of curvature is obtained by applying (11.23):

R = mE

qB1B2
= mE

qB2
.

Therefore, for the isotopes of mass m1 and m2, the respective radii are:

R1 = m1E

qB2
= 1.673 × 10−26 × 1000

1.602 × 10−19C × 0.022
= 0.2611 m,

and

R2 = m2E

qB2
= 1.743 × 10−26 × 1000

1.602 × 10−19C × 0.022
= 0.2720 m.

The points where they can be detected are at the respective distances 2R1 and 2R2.

11.9. A cyclotron of radius R has a space L between itsD’s, such that L � R. There
is amagnetic fieldB perpendicular to the plane of the cyclotron.A difference of
potential V = V0cos(ωit) is applied between the D’s, where ωi is the suitable
angular frequency value for each particle. Two different types of particles, of
identical positive charges but of respective masses m1 and m2, are impelled
sequentially. (a) In a first experiment, the particle of mass m1 and negligible
initial velocity is accelerated. In a second experiment, the particlewithmassm2

is accelerated. Calculate the revolutions given by each particle. (b) Determine,
by reasoning, the amount of energy supplied by the magnetic field to each of
the particles. (c) Obtain the period of rotation of the particle of mass m1 when
the semicircular trajectory of radius R/2 is described and compare it with the
period corresponding to the trajectory of the last cycle where the radius is R.

Solution

(a) The fundamental equation of dynamics for the particle travelling the final semi-
circumference and projected on a radius and towards the centre:

qvf B = mvf 2

R
⇒ vf = qBR

m
.

Energy that the electric field between the D’s contributes for each cycle (double
pass): 2qV0.

Applying the principle of conservation of energy to Nrevolutions, where they
reach the final velocity vf , we have

1

2
mvf

2 − 0 = N2qV0 ⇒ N = m

4qV0
v2f = m

4qV0

(
qBR

m

)2

= qB2R2

4mV0
.
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For each particle, substitute m for m1 or m2 accordingly. Since the mass is in the
denominator, the greater the mass, the fewer the number of cycles traced by the
particle.
(b) The energy contributed by the magnetic field can be calculated by means of the
work carried out by the force that the magnetic field exerts on the particle, which is

W =
∫ 2

1
F.dr =

∫ 2

1
qv × B.dr =0,

since v×B is perpendicular to v, that is, to the trajectory, and dr is tangent to the
trajectory.
(c) The period is calculated by applying (11.15)

T = 2πm

qB
,

and therefore the period depends on the mass of the particle, but is independent of
the radius of the semi-circumference that it travels.

11.10. An electronwith null velocity is injected into a betatron at distanceR = 0.2m
from its centre. The magnetic field varies from B = 0 to B = Bmax = 0.005
T. Calculate the final energy of the electron.

Solution

The velocity at any instant, and the final velocity reached by the electron are obtained
from (11.14):

v = qRB

m
⇒ vmax = qRBmax

m
.

Substituting the data from the statement and from the table of constants yields

vmax = 1.602 × 10−19 × 0.2 × 0.005

9.109 × 10−31

m

s
= 1.759 × 108

m

s
.

Since this velocity is close to the speed of light in a vacuum, it is not very reliable.
The kinetic energy acquired is estimated bymeans of substitution of thismaximum

value into the expression of the kinetic energy:

Ek = 1

2
mv

2

max = 1

2
9.109 × 10−31 × (

1.759 × 108
)2
J = 1.409 × 10−14J.

11.11. An electron is pulled by the photoelectric effect, with negligible velocity,
from the inner face of the negative plate of a flat capacitor. The separation
between the plates is D = 2cm and the difference of potential between them
is such that it is at the point of producing a disruptive discharge. Calculate:
(a) the energy of an electron on being pulled; (b) the velocity acquired by an
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electron before colliding against the positive armature supposing that there
are no collisions against air molecules. Take the data for m and q from the
table of physical constants. The dielectric strength of the air is E = 30000
V/cm.

Solution

(a) The potential energy is calculated by the work of the force that the electric field
applies to the charge:

Ep =
∫ 2

1
qE.dr =

∫ 2

1
qE.dr = −e(V1 − V2) ≡ eV .

The maximum allowable difference of potential is

V = ED.

Therefore the energy that it has is

Ep = eEDEp = eED = 1.602 × 10−19 × 30000 × 0.02 J = 961 × 10−19J.

(b) According to the principle of conservation of energy we can write

eED = 1

2
mv2 ⇒ v =

√
2eED

m
=

√
2 × 1.602 × 10−19 × 30000 × 0.02

9.107 × 10−31
m/s

= 1.453 × 107m/s,

which is, approximately, 5% of the speed of light; therefore, the classical solution
of the problem can give an approximated result, although not exact.

11.12. A synchrotron is formed by an annular vacuum tube of mean radius R
(Fig. 11.17). Electrons are required to be accelerated to high velocities while
maintaining the radius of the orbit. There is a magnetic field inside the ring,
perpendicular to its plane. (a) Given the values for the energy Er and field
B at a certain instant, calculate the period T . (b) An accelerating alternat-
ing voltage V of constant period T is applied. Calculate the increase of B to
compensate an increase of energy �Er in a cycle. Given that it is desired to
cause an increase per unit time of value �Er/Δt, calculate the rapidity of the
increase of B with time that is needed.

Solution

(a) Since the velocity to be attained is high, it is necessary to apply the formulae of
relativistic mechanics. The period is obtained from (11.53)
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Fig. 11.17 The synchrotron

B

V

T = 2π

ω
= 2πEr

ec2B
.

(b) From this expression B is obtained in terms of Er

B = 2π

ec2T
Er .

Therefore, in this problem, B only depends on the variable Er . The Er is increased by
ΔEr in each pass by the accelerating electric field due to V , and hence the magnetic
field must be increased by

�B = 2π

ec2T
�Er,

and the increase of B per unit of time is

�B

�t
= �B

T
= 2π

ec2T 2
�Er .

Problems B

11.13. A beam of protons, of charge e, homogeneously distributed within a very
long cylinder with n protons per unit volume, moves with velocity v along
the cylinder axis. Calculate: (a) the electric field existing at distance r from
the axis; (b). themagnetic field at this point; (c) the outward radial component
of the resultant of the forces on one of the protons.

Solution

(a) As the distribution of charges is known, Gauss’s theorem can be applied to any
closed surface.
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Fig. 11.18 Cylindrical
region with protons

L

B r

E
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v
j

FB d Sd l

Since there is an axis of symmetry, it is advantageous to consider a cylindrical
surface of radius r, concentric with the charge conducting cylinder limited by bases
distanced from each other in L (Fig. 11.18).

The flow of the electric field through the specified cylinder is

∫
E.dS =

∫

lat

E.dS cos 0◦ +
∫

ends

E.dS cos 90◦ = E
∫

lat

dS = E2πrL,

where it has been taken into account: (1) the distributive property of the integral,
(2) that the electric field is of radial direction due to the symmetry and that E is the
component of E in the outward radial direction.

The electrical charge density is ρ ≡ dq/dVol, therefore the charge within the
cylinder is ∫

ρdVol =ρ

∫
dVol = ρπr2L = neπr2L.

Gauss’s theorem establishes that

E2πrL = neπr2L

ε0
⇒ E = ner

2ε0
.

(b) As the system of currents is known and there is cylindrical symmetry, Ampère’s
law may be applied to a circumference of radius r concentric with the axis of the
cylinder.

The circulation of field B along the circumference is

∮
B.dl =

∮
Bφdl =Bφ

∮
dl =Bφ2πr = B2πr,

therefore, through symmetry, the only non-null component of B is the tangent to the
circumference and B is its projection on dl.

The current density is
j = ρv = nevuz,

and hence the flow of j, through the circle whose border is the circumference, is
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∫
j.dS = jπr2 = nevπr2.

Applying Ampère’s law to the circumference gives

B2πr = μ0nevπr
2 ⇒ B = μ0nevr

2
.

(c) The outward radial component of the net force on one of charges q is

F = qE − qvB = q
ner

2ε0
− qv

μ0nevr

2
= ne2r

2

(
1

ε0
− μ0v

2

)
.

11.14. There are two parallel conducting plates, one of which, called the anode, has
an orifice, and a potential V =20 V with respect to the other plate, called
the cathode. By illuminating the cathode, electrons of electrical charge q =
−e = −1.602× 10−19 C and of massm = 9.107× 10−31 kg, can be extracted
from this plate via the photoelectric effect, thereby leaving it with negligible
velocity. Calculate the velocity of the electrons that pass through the orifice
of the anode.

Solution

Suppose that the distance between the plates is d.With this distance and the difference
of potential V, the electric field E can be calculated. With the data q, E and m the
acceleration, the velocity and the displacement towards the anode can be calculated
successively. In effect

E = V

d
⇒ a = F

m
= qE

m
= eV

md
⇔ dv

dt
= eV

md
⇒ v = eV

md
t ,

and since the distance travelled from leaving the cathode can be calculated from the
velocity, then

dx

dt
= eV

md
t ⇒ d ≡ x = eV

2md
t2 ⇒ t = d

√
2m

eV
.

Substitution of this time into the previous equation finally gives

v = eV

md
t = eV

md
d

√
2m

eV
=

√
2eV

m
.

In the resolution of this problem, the use of the principle of conservation of energy is
advantageous (the sum of the kinetic and potential energies when leaving the cathode
is the same as that when arriving at the plane of the anode), in fact,
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0 + qVc = 1

2
mv2 + qVa ⇒ −eVc = 1

2
mv2 − eVa ⇒ v =

√
2e(Va − Vc)

m

=
√
2eV

m
.

11.15. A free particle, of positive charge q and mass m, penetrates into a region
of space where a homogenous and stationary magnetic field B is present.
The velocity v0 of the particle when entering this region forms an angle α

with field B. (a) Explain the type of trajectory that the particle will follow in
the magnetic field for α = 0 and for α = 90◦. (b) If, in addition to B with
α = 90◦, there is also a homogeneous and stationary electric field E, what
would the direction of E have to be to render the movement of the particle
rectilinear and uniform?

Solution

(a) The applied force is

F = qv × B,

which for α = 0 gives

F = qvBsin0 = 0,

and since the fundamental equation of dynamics demands that the acceleration is
null, therefore the velocity is constant and the trajectory is a straight line and parallel
to B.

However for α = 90◦ the modulus of the force is

F = qvBsin 90◦ = qvB,

and the direction is obtained simply by observing Fig. 11.19. A positive charge of
initial velocity v0, undergoes an increase of velocity dv in a veryshort time dt. Since

Fig. 11.19 Initial velocity

F
v

B
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dv
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the force is perpendicular to v0 and B, hence the acceleration a = dv/dt, and dv are
also perpendicular. Therefore, the new velocity will be in the plane perpendicular to
B and the charge will follow in the plane perpendicular to B.
(b) If the resultant force of both fields must be null, then the following must happen

F = qE + qv × B = 0.

Therefore the vectors E and v×Bmust be of equal modulus and opposed directions,
that is, E must be of direction opposite to that of drawn force F and of modulus
E = vB.

11.16. A magnetic field B = Buz is homogeneous and stationary. An electron of
mass m and charge q = −e is impelled from the origin of coordinates with
the velocity v0 = v0yuy + v0zuz (Fig. 11.20). (a) Calculate the radius of the
helix that it describes, the pitch OP of the helix, and the coordinates of the
point P after the first revolution. (b) If the angle of v0 with OZ is small,
calculate the position of P.

Solution

(a) For this problem the time taken for one turn is obtained from (11.15)

T = 2πm

qB
.

As the component of the velocity parallel toB is v0z and remains constant, the distance
travelled in the direction of B in the time T in which the particle completes a turn is

OP = v0zT = 2πm

qB
v0z .

Therefore, point P has coordinates (0, 0,
2πm

qB
v0z).

(b) The component of the velocity on the direction of B is v0z = v0cosθ , where v0 is
the modulus of the velocity and θ is the angle that v0 forms with B. If the angle is
small, a series expansion of cos θ allows the following to be written

Fig. 11.20 Trajectory
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v0z = v0 cos θ ≈ v0

(
1 − θ2

2
+ · · ·

)
≈ v0.

Therefore point P is located in the position (0, 0, 2πm
qB v0) for any small value of θ .

That is, if a jet of electrons leaves O, each one in a different direction (but directions
close to that of B), all are focused on the same point. This fact forms the foundation
of certain electron microscopes.

11.17. A current j circulates through a long conductive sheet of width w = 15 mm
and thickness d = 3 mm. The sheet is introduced into a magnetic field B = 2
T perpendicular to the plane of the sheet. The difference of potential between
the edge towards which the product B × j points and the opposite edge is
VH = 3μV. The mass density of the sheet is ρ = 8000 kg/m3 and consists
of atoms of massm = 1.7 × 10−25 kg. Each atom contributes a charge carrier
of unknown sign whose absolute value 1.602 × 10−19 C. Calculate: (a) The
velocity of the charge carriers, (b) the intensity of the current in the circuit.

Solution

Suppose that the current density j is towards the left. If the transported charges
were positive, they would move towards the left and the force that the magnetic
field would apply would be downwards; there would be an accumulation of positive
charges below and the potential of the lower edge would be positive with respect to
the upper edge: this is a contradiction. Therefore, the charge carriers are negative
and, as j is towards the left, they move towards the right.
(a) By applying (11.17), it is deduced that the modulus of the velocity is

v = VH

wB
= 3 × 10−6

1.5 × 10−2 × 2

m

s
= 10−4 m

s
.

(b) The density of mass can be obtained by multiplying the mass of each atom by
the number of atoms in a unit volume, therefore

ρ = nm ⇒ n = ρ

m
.

Fig. 11.21 shows that, over time dt, the charges move the distance vdt, and there-
fore all the charges contained in the parallelepiped of volume wdv.dt, which are

Fig. 11.21 Conductive sheet
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dq = nqwdv.dt, cross its face on the right. The current intensity through this face is

I = dq

dt
= ρqwdv

m
= 8000 × 1.602 × 10−19 × 1.5 × 10−2 × 3 × 10−3 × 10−4

1.7 × 10−25 A

= 33.92 A.

11.18. Figure11.22 shows a device that corresponds to a curved tube, of average
radius R, with two slots S1 and S2. Within the device there is a homogeneous
field B pointing out of the paper. A group of particles are introduced through
slot S1 in the direction drawn, all of mass m and charge q, but which differ in
the modulus of velocity. Determine: (a) Which particles pass through the S2
slot. (b) The time taken for particles to travel from S1 to S2. (c) If the particles
that leave S2 continue to be subjected to the same field B, determine the
modulus and direction of a homogeneous and stationary field E outside the
tube, such that the movement of particles upon leaving the tube is rectilinear
and uniform.

Solution

The trajectory followed within the tube is circular, as drawn, and implies that the
acceleration is directed towards its centre of curvature, and since the force qv×B has
the same direction as the acceleration, it follows that charge q is positive.
(a) The projection of the fundamental equation of dynamics in the radial direction
and towards the centre of curvature gives

qvB = m
v2

R
⇒ v = qBR

m
,

which provides the dependency of v on the data of the problem and therefore it is
the velocity of the particle arriving at slot S2.

Fig. 11.22 Tube
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(b) The length of the trajectory is 2πR/4 and the velocity has already been calculated,
therefore the time taken for the route is

t = l

v
= 2πR/4

qBR/m
= πm

2qB
.

(c) For the velocity to be constant on the trajectory once having left the tube, the
acceleration must be null, and hence the force of the electromagnetic field must be
zero, that is, at any point of the rectilinear trajectory

qE + qv × B = 0.

Since v×B is towards the left, Emust be towards the right. Otherwise, the projection
of the last equation towards the left is

qE + qvBsen90◦ = 0 ⇒ E = −vB = −qB2R

m
.

Problems C

11.19. A beam of particles of charge q enters Aston’s mass spectrometer. This appa-
ratus is formed (see the Fig. 11.23) by a section of a cylindrical capacitor of
smaller radius R1 and greater radius R2 and an aperture S. The particles that
pass through S after following the arc of average radius R, perpendicularly
penetrate a cylindrical region of radius R′, where there is a magnetic field B
inside the cylinder, perpendicular to the plane of the drawing. When leaving
the field there is a detector D. The difference of potential between the arma-
ture of the capacitor is V. Calculate: (a) The electric field at the points of the
arc of radius R inside the capacitor. (b) The velocity of the particles that pass
through S. (c) The massm of those particles which leave towards the detector
in a direction perpendicular to that of entry into the magnetic field.

Fig. 11.23 Mass
spectrometer
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Solution

(a) In order to calculate the electric field, a closed surface is drawn formed by a
portion of a cylindrical surface of radius r and length L located between the plates
and the rest of the surface enclosing the lower plate. Discounting the effect of the
edges, that is, considering that the electric field is null except in the space between
the armatures, Gauss’s theorem establishes that

rθLE = qi
ε0

⇒ E = qi
ε0rθL

,

where θ is the angle formed by the drawn radii R1 and R2, and the electrical charge
qi is on the lower plate.

In order to relate the electric field to the difference of potential between the upper
and lower armatures, the following are used

V =
∫ R2

R1

Edr =
∫ R2

R1

Edr =
∫ R2

R1

qi
ε0rθL

dr = qi
ε0θL

ln
R2

R1

⇒ V = ER ln
R2

R1
∀r = R

⇒ E = V

R ln(R2/R1)
= V

(R1 + R2)/2 × ln(R2/R1)
.

(b) The particles that pass through S are those that follow the arc of radius R. Since
the magnetic field is perpendicular to this trajectory, the component of that of the
fundamental equation of dynamics in the direction perpendicular to the trajectory is

qE = m
v2

R
⇒ v2 = qRE

m
= qRV

m(R1 + R2)/2 × ln(R2/R1)
.

Therefore only those particles whose square of their velocity satisfies this equation
pass through S, thereby producing a particle selection.
(c) From Fig. 11.23, it is deduced that the radius of the arc travelled inside the
magnetic field is R′. The perpendicular component of the fundamental equation of
dynamics gives

qvB = m
v2

R′ ⇒ q2B2 = m2

R′2 v
2 .

By substituting the square of the velocity obtained in the previous section yields

m = qB2R′2(R1 + R2) ln(R2/R1)

2RV
.

The particles with masses different from this are not detected by D.



Solved Problems 661

11.20. A magnetic field B acts in a cyclotron of radius R. A deuteron (formed by a
proton and a neutron) is impelled between its D’s with an initial velocity v0.
A difference of alternating potential of type V = V0cos(ωt) is established.
Given that the mass and the charge of the deuteron are m and q, respectively,
obtain by reasoning: (a) The velocity of the deuteron on completing the first
cycle. (b) The energy of the deuteron when exiting the cyclotron. (c) The
relationship that must be fulfilled between B, m, q, R and the initial velocity
v0 such that the particle makes at least one cycle. (d) What forces act in the
cyclotron? Are they conservative? Explain it.

Solution

(a) The increase of kinetic energy is not due to the magnetic field but to the electric
field between the D’s. In a cycle of the proton it passes twice between the D’s,
therefore it absorbs energy 2qV0. The increase of kinetic energy in the first cycle is

1

2
mv2 − 1

2
mv20 = 2qV0 ⇒ v =

√

v20 + 4qv0
m

.

This is the expression of the velocity on completing the first revolution.
(b) In the last cycle, the radius of curvature is R, and therefore the fundamental
equation of dynamics for the final cycle gives

qvf B = m
v2f
R

⇒ vf = qBR

m
⇒ Ekf = 1

2
mv2f = q2B2R2

2m
.

(c) If N cycles were covered, the variation of the kinetic energy would be

1

2
mv2f − 1

2
mv20 = N2qV0 ⇒ N = mv2f − mv20

4qV0
.

Since N ≥ 1 must be true,

mv2f − mv20 ≥ 4qV0 ⇒ m

(
qBR

m

)2
− mv20 ≥ 4qV0 ⇒ q2B2R2

m
≥ mv20 + 4qV0 .

d) The force of magnetic fields acts everywhere. The force of the electric acts in
between the D’s.

The work of the forces along a closed line is

∮
F.dl =

∮
qE.dl +

∮
q (v × B) .dl = qV0 + qV0 + 0 = 2qV0 .

Magnetic force is not conservative. Electric force is conservative.
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11.21. A betatron has an electromagnet whose polar pieces produce a magnetic field
B1 within a circle of radius R1, and produce a magnetic field B2 within an
annulus concentric with the circle and of inner radius R1 and outer radius
R2 = 2R1. A proton is introduced so that it reaches energy Ek following the
orbit of radius R2. (a) Calculate the average magnetic field in the circle of
radius R2, assuming B1 and B2are known. (b) Assuming that the magnetic
fields B1 and B2 are unknown, calculate them.

Solution

(a) The magnetic field averaged over the area of the circle bounded by the orbit is

Bm = 1

S

∫

S
BdS = 1

S

(∫

S1
B1dS1 +

∫

S2−1

B2dS2−1

)
= B1πR2

2/4 + B2π
(
R2
2 − R2

2/4
)

πR2
2

= 1

4
B1 + 3

4
B2 .

(b) The charged particle circulates in the orbit of constant radius if the magnetic field
on the orbit is half that of the average magnetic field, B2 = Bm/2, and hence, taking
into account the value calculated for Bm, gives

2B2 = 1

4
B1 + 3

4
B2 ⇒ B1 = 5B2 .

Furthermore, the fundamental equation of dynamics gives a perpendicular compo-
nent

qvB2 = m
v2

R2
⇒ v = qR2B2

m
.

The kinetic energy is related to the velocity by Ek = mv2/2 and, considering the
previous equality, gives

Ek = m

2

(
qR2B2

m

)2

⇒ B2 = (2mEk)
1/2

qR2
⇒ B1 = 5

(2mEk)
1/2

qR2
.

11.22. A force of constant direction and modulus F =10000N is applied to a stone
block of mass m = 2kg at rest. Calculate the velocity of the block after time
t = 20h. Comment the results.

Solution

Take the OZ axis as the direction of the applied force. With this choice, the compo-
nents of the force are: Fx = Fy = 0, Fz = F.

Application of the fundamental equation of classical dynamics for the compo-
nents of the acceleration gives: ax = ay = 0, az = Fz/m = F/m = 10000/2m/s2 =
5000m/s2.
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Therefore, from v = ∫adt, the acquired velocity has the components: vx = 0,
vy = 0, vz = azt = 5000 × 20 × 60 × 60m/s = 3.6 × 108 m/s.

As this calculated velocity is greater than the speed of light, this value is impos-
sible. Thus a relativistic approach is necessary.

From the fundamental equation of relativistic dynamics, (11.28), the three com-
ponents are:

0 = d

dt

(
mvx√

1 − v2/c2

)

⇒ mvx√
1 − v2/c2

= k1 = 0m
√
1 − 02/c2

= 0 ⇒ vx = 0 .

Idem vy = 0

F = d

dt

(
mvz√

1 − v2/c2

)

= d

dt

⎛

⎝ mvz√
1 − v2z /c

2

⎞

⎠ ⇒ mvz√
1 − v2z /c

2
= Ft + k2 = Ft

⇒ m2v2z
1 − v2z /c

2 = F2t2 ⇒ vz =
⎛

⎝ 1
1
c2

+ m2

F2t2

⎞

⎠

1/2

=
⎛

⎝ 1
1

2997924582
+ 22

100002(20×60×60)2

⎞

⎠

1/2

m/s = 2.3037 × 108m/s .

11.23. In a region of space there is an electromagnetic field that, with respect to a
reference system, has the componentsEx = 0,Ey = 3V/m,Ez = 0,Bx = 0.2
T, By = 0, and Bz = 0. Express the equations of motion of a particle of mass
m and charge q with a high velocity.

Solution

The force that the field applies on the charge is

F = q(E + v × B) = q(3uy +
∣
∣
∣
∣
∣
∣

ux uy uz
vx vy vz
0.2 0 0

∣
∣
∣
∣
∣
∣
) = q

[
(3 + 0.2vz)uy − 0.2vyuz

]
.

If the velocity is high, the laws of relativistic dynamics (11.33) must be applied,
whose three components are:

0 = d

dt

⎛

⎝ mvx√
1 − (

v2x + v2y + v2z
)
/c2

⎞

⎠

⇒ mvx√
1 − (

v2x + v2y + v2z
)
/c2

= k1 = mvx0√
1 −

(
v2x0 + v2y0 + v2z0

)
/c2

,
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q (3 − 0.2vz) = d

dt

⎛

⎜
⎜
⎝

mvy√
1 −

(
v2x + v2y + v2z

)
/c2

⎞

⎟
⎟
⎠

⇒ mvy√
1 −

(
v2x + v2y + v2z

)
/c2

= q (3 − 0.2vz) t + k2 = q (3 − 0.2vz) t + mvy0√
1 −

(
v2x0 + v2y0 + v2z0

)
/c2

,

− 0.2qvy = d

dt

⎛

⎝ mvz√
1 − (v2x + v2y + v2z /c

2)

⎞

⎠ ⇒ mvz√
1 − (v2x + v2y + v2z /c

2)

= −0.2qvyt + k3 = −0.2qvyt + mvz0√
1 − (v2x0 + v2y0 + v2z0/c

2)
.

11.24. A cyclotron has a radius R = 4 m and a magnetic field B = 0.012T. (a)
Find the velocity of the electrons whose charge is of absolute value e =
1.602×10−19 C and whose mass ism = 9.107×10−31 kg. (b) For the protons
of equal charge to that of the electrons except for the sign and the mass
mp = 1.673 × 10−27 kg, calculate the velocity that they acquire.

Solution

Fundamental equation of classical dynamics

F = ma ⇒ qv × B = ma.

In absolute values
qvB = mv2/R ⇒ v = qBR/m.

For the electrons, we have

v = 1.602 × 10−19 × 0.012 × 4

9.107 × 10−31
m/s = 8.444 × 108m/s.

This result is impossible since no object carrying energy can move faster than light
in a vacuum. Therefore the fundamental equation of dynamics used is inapplicable
in this case.

For the protons

v = 1.602 × 10−19 × 0.012 × 4

1.673 × 10−27
m/s = 4.596 × 105m/s.

This result is acceptable since protons have a much greater mass than the electrons
but have equal energy, and hence their velocity is much smaller.
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If the fundamental equation of relativistic dynamics is applied to the electrons, it
is sufficient to substitute the value of the energy Er , (11.29), into the expression of
the radius of curvature, (11.52), to obtain

v =
(

R2e2B2

m2 + R2e2B2/c2

)1/2

=
(

42 × 1.6022 × 10−38 × 0.0122

9.1072 × 10−62 + 42 × 1.6022 × 10−38 × 0.0122/
(
2.997924582 × 1016

)

)1/2

m/s

= 2.7924 × 108m/s.

Observe that the result for the electron is very different from that previous and
constitutes the only good result.

11.25. Spain’s new 3-GeV synchrotron, Alba (Spanish for “dawn light”), appeared
on-line in 2010. The first seven beamlines are a mixture of soft X rays, (for
applications in material science, solid-state physics, biology, chemistry, and
medicine), and of hard X rays for crystallography and absorption studies. The
electrons acquire energy of 3GeV in the accelerator of the machine and enter
the storage ring. It is supposed that upon passing through a small zone in this
ring where there is a magnetic field of 10 T, the electrons are accelerated by
being deflected 3◦ from their straight trajectory, in order to emitX-rays. Given
that themass of the electron ism = 9.109 × 10−31 kg and its electrical charge
is negative and of absolute value e = 1.602 × 10−9 C, and Planck’s constant
is h = 6.626 × 10−34Js = 4.136 × 10−15 eVs, calculate: (a) the velocity of
the electrons; (b) the time they remain within the magnetic field; (c) the
radius of curvature in the magnetic field of 10 T; (d) If the energy of the
emitted X-rays is 10keV, calculate their frequency and wavelength. (1 eV
= 1.602 × 10−19 C ×1V = 1.602 × 10−19 J).

Solution

(a) From (11.31), the following is given

v = c

√

1 −
(
9.109 × 10−31 × 2997924582

3 × 109 × 1.602 × 10−19

)2

= 0.999999971c = 299792449 m/s,

therefore, the electrons are relativistic.
(b) If the magnetic field of 10T were unlimited in space, then the period that the
protons would remain within the magnetic field would be

T = 2πr

v
= 2πm

qB
= 2π × 9.109 × 10−31

1.602 × 10−19 × 10
s = 357.3 × 10−14s.
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Hence the time spent during the rotation of 3◦ is

t = 3◦

360◦
2πm

qB
= 3

360

2π9.109 × 10−31

1.602 × 10−19 × 10
s = 2.978 × 10−14s.

(c) The radius is calculated from (11.52), giving

R = vEr

qc2B
≈ Er

qcB
≈ 3 × 1.602 × 10−19 × 109

1.602 × 10−19 × 3 × 108 × 10
= 1.000 m.

(d)

Er = hν ⇒ ν = Er

h
= 10000 × 1.602 × 10−19

6.626 × 10−34
Hz = 2.4177 × 1018Hz.

Therefore, the wavelength is

λ = c

ν
= 299792458

2.4177 × 1018
m = 1.2408 × 10−10 m = 0.12408 nm,

which is of the size of the atoms.



Chapter 12
Electromagnetic Waves

Abstract Any varying current or charge distribution varying with time can give
rise to radiated electromagnetic fields. Electromagnetic waves, once created, have
no connection with the system of charges and currents that produced them. The
propagating disturbance travels from one region to another as time passes carrying a
certain amount of energy. However, it is only for rapid variations that an appreciable
amount of energy is carried away by the wave. In this chapter, we consider the prop-
erties of electromagnetic waves derived from the classical electromagnetic theory,
Maxwell’s equations and Poynting’s theorem. The study refers to waves propagating
in an uniform, isotropic, and non-conducting medium.

12.1 Electromagnetic Wave Propagation: Wave Equation

Let us assume that there exists time-varying charges or currents within a certain
region of space. We will consider here that the electromagnetic waves produced
are travelling in an isotropic, homogeneous, and non-conducting linear medium of
relative permittivity εr and relative permeability μr , with no charges, free charge
density ρnp = 0, and free current density jf = 0, at any point. Then, propagation
may occur not only in dielectric media, where ε = ε0εr and μ = μ0μr , but also in
vacuum, where ε = ε0 and μ = μ0. Under these assumptions, Maxwell’s equations
reduce to

∇ · D = 0 ⇒ ∇ · E = 0, (12.1)

∇ × E = −∂B
∂t

, (12.2)

∇ · B = 0, (12.3)

∇ × H = ∂D
∂t

⇒ ∇ × B = με
∂E
∂t

. (12.4)

By manipulating the above simplified equations, it is found that the fields E and B
obey the equations
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∇2E = 1

1/με

∂2E
∂t2

, (12.5)

∇2B = 1

1/με

∂2B
∂t2

. (12.6)

These equations are wave equations, with the wave’s velocity given by

v = 1√
με

= 1√
μ0μrε0εr

. (12.7)

It should be noted that in vacuum, the velocity of propagation is c = 1/
√

ε0μ0 �
3 × 108 m/s. Solutions to these equations are electric and magnetic fields that are not
independent and together constitute an electromagnetic wave. As (12.5)–(12.6) are
linear differential equations, the principle of superposition holds for time-varying
electromagnetic fields.

12.2 Plane and Spherical Waves

In Cartesian coordinates, (12.5) for E is equivalent to three scalar equations, corre-
sponding to the components Ex, Ey, and Ez, respectively. The same can be said for
B. Let � be any of the three components of E, or of B, hence the wave equation is
simplified to

∇2� = ∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 1

v2

∂2�

∂t2
, v = 1√

εμ
, (12.8)

which is known as the three-dimensional wave equation. For a given orientation
of the coordinate system, let us consider that � does not vary in the OY and OZ
directions. Then, (12.8) reduces to

∂2�

∂x2
= 1

v2

∂2�

∂t2
, (12.9)

which is the one-dimensional wave equation for a non-dispersive medium, in which
the velocity is independent of the frequency. The solution of this equation is

�(x, t) = f1(x − vt) + f2(x + vt). (12.10)

These solutions represent waves travelling in opposite directions: f1(x − vt) corre-
sponds to a waveform moving unchanged in shape with velocity v along the positive
OX-axis (Fig. 12.1), whereas f2(x + vt) represents a waveform travelling in the direc-
tion of the negative OX-axis.
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Fig. 12.1 Function f1(x − vt) at two instants of time. This function represents a travelling wave
propagating in the positive OX-direction with velocity v

Let us consider solutions to the wave equation that vary with time according to a
harmonic law. Harmonic waves are of special interest because, according to Fourier’s
theory, any waveform can be obtained by a suitable combination of harmonic waves.
A harmonic solution of (12.9) can be written as

�(x, t) = �0 cos(kx − ωt + ϕ0) , (12.11)

where �0 is the amplitude, k is the wavenumber, and ω the angular frequency. The
phase of the wave is given by ϕ = kx − ωt + ϕ0, where ϕ0 is called the initial phase.
This function (12.11) is periodic both in space and time. The distance between
equivalent points on successive cycles is equal to the wavelength λ of the wave.
The period T is the time required to complete one oscillation. The inverse of the
period is known as the frequency ν = 1/T and is measured in Hz. The wavenumber
and the angular frequency are related to the wavelength and the temporal period by
k = 2π/λ and ω = 2π/T , respectively. It can be seen that (12.11) is a particular case
of (12.10), if the wavenumber and the angular frequency are related to the velocity
of propagation of the wave by

v = ω

k
, (12.12)

which is the rate at which the phase of the wave propagates in space (phase velocity
vp). Note that vp = v in a non-dispersive medium. Substitution of (12.11) into (12.9)
also shows that the former is a solution to the wave equation (12.9).

At a fixed time, the surfaces forwhich the phase is a constant are calledwavefronts,
i.e. the surface given by the equation ϕ = constant. If the amplitude of the wave is a
constant over the wavefronts, the wave is said to be homogeneous; if not, the wave
is nonhomogeneous. Equation (12.11) represents a wave whose wavefront is a plane
(x = cte). The wave has the same amplitude �0 everywhere, and at all points with
the same x-coordinate, the wave has the same phase. A wave with a plane phase front
is called a plane wave. In general, harmonic solutions of the three-dimensional wave
equation, (12.8), representing plane waves can be expressed as

�(r, t) = �0 cos(k · r − ωt + ϕ0) , (12.13)

where the vector r is a position vector of a point in the plane, k is called the propaga-
tion vector and is in the direction of propagation of the wave with magnitude equal
to the wave number k, i.e. k = (kx, ky, kz) = k k̂, k̂ being a unit vector normal to the
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plane in the propagation direction. In (12.13), the phase is a constant, at a fixed time,
in planes k · r = cte, that is

kxx + kyy + kzz = constant , (12.14)

and this constant is equal to the distance from the origin to the plane. If �0 does not
depend on r, (12.13) represents a homogeneous harmonic plane wave.

If complex notation is used, the harmonic wave is written as

�(r, t) = Re {�0 exp [i (k · r − ωt + ϕ0)]} = Re {�0c exp [−i ωt]} , (12.15)

where �0c = �0 exp [i (k · r + ϕ0)] is called the complex amplitude, which can
be considered as a phasor that contains amplitude and phase information but is
independent of t. Then, the complex wave can be expressed as

�c = �0c exp[−i ωt] . (12.16)

The real part of (12.16) actually represents the wave (12.13). If complex notation is
used, the subscript “c” is usually omitted for simplicity.

The wave with a spherical phase front is called a spherical wave. It can be shown
that the wave equation for spherically symmetric solutions becomes

∂2

∂r2
(r�) = 1

v2

∂2

∂t2
(r�) . (12.17)

The general solution to this equation is

�(r, t) = f1(r − vt)

r
+ f2(r + vt)

r
, (12.18)

where r = |r| is the distance from a point to the source. The harmonic, spherical
wave solution is

�(r, t) = A

r
cos(kr − ωt + ϕ0) , (12.19)

where A is a constant, and the amplitude A/r is inversely proportional to the distance
travelled from the source.

12.3 Harmonic Plane Waves in Unbounded Dielectrics

Any electromagnetic field must satisfy all of Maxwell’s equations. Solutions to the
wave equations (12.5) and (12.6) that satisfy Maxwell’s equations constitute elec-
tromagnetic waves. The wave equations have a wide variety of possible solutions.
The simplest type of wave that is a solution to (12.5) is a plane wave. Harmonic
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plane waves are important because any three-dimensional wave can be written as
a combination of plane waves of different amplitudes, directions, and frequencies.
Moreover, far enough away from a source of radiation, the electromagnetic wave
can be considered as a plane wave, with considerable approximation. The general
expression for a harmonic plane wave solution to (12.5) and (12.6) is of the form

E = E0 cos (k · r − ωt + ϕ0E), (12.20)

B = B0 cos (k · r − ωt + ϕ0B) . (12.21)

This wave is said to be linearly polarized because electric field E is always parallel
to the direction of the amplitude vector E0. E points either in the positive or negative
direction depending on the instant. Analogously, B always oscillates in a direction
parallel to the amplitude vector B0.

In order for (12.20) and (12.21) to satisfy Maxwell’s equations (12.1)–(12.4), the
electric and magnetic fields are not independent, and their amplitudes and phases
cannot be specified independently. The following relationships must be satisfied:

∇ · E = 0, (12.22)

∇ · B = 0 , (12.23)

k × E0 = ω B0 ⇒ k × E = ω B . (12.24)

From these equations it can be inferred that the electric and magnetic fields are
perpendicular to each other, in phase, ϕ0E = ϕ0B = ϕ0, and form a right-handed
coordinate system with the propagation vector k, as shown in Fig. 12.2. As E and B
are both perpendicular to the propagation direction, electromagnetic waves are said
to be transverse waves. The magnitude of the magnetic field and that of the electric
field are related byB = E/v orB0 = E0/v. Therefore, the magnitude of themagnetic
field in a plane wave is quite small.

Fig. 12.2 E andBfields of a linearly polarized planewave at an instant of time. Thewave propagates
in the positive X-direction. The electric field oscillates along the Y -axis and the magnetic field is
along the Z-axis and in phase with the electric field
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12.4 Polarization

For a plane electromagnetic wave in an isotropic dielectric medium, the electric and
magnetic fields aremutually perpendicular and lie in a plane normal to the direction of
propagation k. The polarization of a plane electromagnetic wave describes the time-
varying behaviour of the electric field at a fixed position in space. As the direction of
B is related to that of E by (12.24), a separate study of the behaviour of the magnetic
field is not necessary.

The plane of polarization of a wave is defined by the direction of propagation
k and the direction of oscillation of the electric field E. Equation (12.20) describes
a plane electromagnetic wave whose plane of polarization is fixed and vector E is
always in this plane oscillating in direction E0 (positive or negative). As aforesaid,
this wave is said to be linearly polarized. The superposition of two linearly polarized
plane waves of the same frequency, propagating in the same direction and with the
electric fields oscillating in perpendicular directions, is a plane wave of the same
frequency whose state of polarization depends on the phase difference between its
components. As a simple example, let us consider the superposition of two plane
waves, progressing along +OX, which are linearly polarized: one polarized in the
Y -direction, and the other polarized in the Z-direction,

Ey = E0y cos(kx − ωt + ϕ0y) , (12.25)

Ez = E0z cos(kx − ωt + ϕ0z) , (12.26)

where E0y and E0z are real numbers denoting the amplitudes, E0y, E0z > 0, and ϕ0y

and ϕ0z are the initial phases (independent on time). The orientation of the resulting
electric field (in a plane perpendicular to the direction of propagation) can be fixed
or changing with time depending on the phase difference δ = ϕ0y − ϕ0z. The con-
vention used in Optics is followed here. Then, looking into the direction from which
the wave is coming, the wave travelling towards us from the source, the electric field
E, at a fixed position (x = constant), will behave as time progresses as follows:

1. For δ = ϕ0y − ϕ0z = 2πN (N being a whole number), the components are in
phase, which results in a vector E that oscillates along a line making an angle θ
with the Y -axis, where tan θ = E0z/E0y, which is an constant phase angle. This
electromagnetic wave is said to be linearly polarized. It should be noted that if
Y and Z components oscillate 180◦ out of phase, i.e. δ = π + 2πN , the resulting
polarization is also linear.

2. For δ = ϕ0y − ϕ0z = π
2 + Nπ:

2.1. If E0y = E0z, the resulting vector E has a constant magnitude but is continu-
ously changing its direction. In the plane normal to k, the tip of the vector E
describes a circumference with angular frequency ω. If the E vector rotates
in a clockwise direction, as we view the wave travelling towards us, the
wave is said to be right-handed circularly polarized. If the tip of the elec-
tric field moves along the circle in counterclockwise direction, the wave is
left-handed circularly polarized.
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2.2. If E0y �= E0z, the curve described by the tip of the vector E is an ellipse in
the plane normal to k, with its axes aligned with OY and OZ axis. This wave
is said to be elliptically polarized, right-handed or left-handed as described
for a circularly polarized wave.

3. In the general case, when E0y �= E0z and the phase difference δ is an arbitrary
amount, the vector E will be elliptically polarized. The equation of the ellipse
described by the tip of E is given by

E2
y

E2
0y

+ E2
z

E2
0z

− 2
EyEz

E0yE0z
cos δ = sin2 δ . (12.27)

The orientation of the ellipse with respect to the Y -axis is

tan 2θ = 2E0yE0z

E2
0y − E2

0z

cos δ , (12.28)

as shown in Fig. 12.3.

For the cases considered in 1 and 2, (12.27) becomes a straight line, a circle,
or a ellipse with its axes aligned with those of the coordinate system, as shown in
Fig. 12.4.

Fig. 12.3 Ellipse described by the tip of vector E for the general case given by (12.27)

Fig. 12.4 Figures described for the tip of the vectorE in the YZ-plane perpendicular to the direction
of propagation for different phase differences
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If the direction of oscillation of the electric field E is changing randomly with
time, the wave is said to be unpolarized. Only when the varying charges and current
distributions producing thewaves are suitably controlled do the sources emit radiation
of a fixed state of polarization. Plane waves for most visible light sources, except
lasers, are unpolarized or randomly polarized.

12.5 Intensity and Poynting Vector

Electromagnetic waves carry with them electromagnetic energy. The energy is trans-
ported through space, from one point to another point, by means of waves. Let us
consider a finite region of space, with volume V , containing linear isotropic media,
and bounded by a surface S. Application of the principle of conservation of energy to
the region under consideration leads to the Poynting theorem,which can be expressed
as

∮

S
(E × H) · dS = − d

dt

∫

V

[
1

2
εE2 + 1

2
μH2

]
dV −

∫

V
(jf · E)dV . (12.29)

The first term on the right of this equation is the time rate of change of the electro-
magnetic energy inside the volume V . The last term represents the rate at which the
electric field E does work on the free charges within the volume V . If there are not
sources of e.m.f. in V , and jf is a conduction current, the latter is the rate of energy
dissipation from Joule’s heating, i.e. the ohmic power dissipated in V . The integral
on the left represents the amount of energy flowing outwards over the surface S per
second. The vector Po = E × H, is called the Poynting vector, and can be interpreted
as the vector giving the direction and rate of electromagnetic energy flow per unit
time per unit area. The units of the Poynting vector are W/m2.

If in the region under consideration there are not free charges, (12.29) gives that
the energy of the electromagnetic field in the volume V decreases at a rate equal to
the energy flowing out of the surface S per unit time.

The energy density e associated with an electromagnetic field in a linear and
isotropic medium, with permittivity ε and permeability μ, is given by (see Chap. 9
(9.23)),

e = 1

2
D · E + 1

2
B · H = 1

2
εE2 + 1

2

B2

μ
. (12.30)

By using the simple constitutive relations of themedium and the relationship between
the magnitude of the magnetic and electric fields in an electromagnetic wave, B =
E/v, it can be demonstrated that the magnetic energy density is equal to the electric
energy density. Hence, the total density energy in an electromagnetic wave can be
written as

e = εE2 . (12.31)

http://dx.doi.org/10.1007/978-3-662-48368-8_9
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Fig. 12.5 The relative
directions of electric E and
magnetic fields B and H,
propagation vector k, and
Poynting vector Po in a plane
wave propagating in a
isotropic dielectric medium
in the OX-direction

Let us calculate the Poynting vector associated with a plane electromagnetic wave.
Using (12.24) and velocity v = 1/

√
με, it is found that the instantaneous value of

the Poynting vector can be expressed as

Po = E × H = E × B
μ

=
√

ε

μ
E2 k̂ = vεE2 k̂ = ve k̂ . (12.32)

Therefore, energy is propagated by the wave in the direction in which the wave
propagates at the same velocity as the wave, as shown in Fig. 12.5.

The time average of the Poynting vector over a complete period is given by

< Po >= vε < E2 > k̂ = v < e > k̂ . (12.33)

The magnitude of the Poynting vector can be defined as the intensity Iw,

Iw ≡<| Po |>= vε < E2 >= v < e > . (12.34)

This equation gives the average energy flow per unit time across a unit area perpen-
dicular to the direction of propagation (W/m2).

For a plane harmonic wave, linearly polarized, the fields E and B are given by
(12.20) and (12.21). The instantaneous value of the Poynting vector will be

Po = E × H =
√

ε

μ
E2
0 cos2(k · r − ωt + ϕ0) k̂ = εvE2

0 cos2(k · r − ωt + ϕ0) k̂ .

(12.35)
Calculating the average Po, the average value of cos2(k · r − ωt + ϕ0) over a period
is equal to 1/2, thus we have for the intensity Iw of a linearly polarized plane wave

Iw = 1

2
εv E2

0 = v < e >, (12.36)

where < e >= εE2
0/2 represents the average energy density. Note that the intensity

is proportional to the square of the amplitude of the electric field.



676 12 Electromagnetic Waves

12.6 Introduction to Fourier Analysis

In the preceding sections, harmonic solutions to wave equation, given by (12.20) and
(12.21), have been considered. In nature, wave disturbances have a finite temporal
duration and, therefore, waves propagate as wave trains of finite length. However, by
applying Fourier analysis, arbitrary wavefronts can be described in terms of combi-
nations of harmonic plane waves. The Fourier theory states that a periodic function
can be expressed as a Fourier series, a sum of sinusoidal functions, while the Fourier
transform can be used to describe non-periodic functions.

If a periodic function f (t), with period T0, has a finite number of points of discon-
tinuity, and has a finite number of maxima and minima in the interval representing
the period, then the function can be represented by a Fourier series

f (t) = a0
2

+
∞∑

n=1

[an cos(2πnν0t) + bn sin(2πnν0t)] , (12.37)

where ν0 is the fundamental frequency equal to 1/T0. The coefficients of the two
summations are given by the integrals

an = 2

T0

∫ T0/2

−T0/2
f (t) cos(2πnν0t)dt n = 0, 1, 2 . . . , (12.38)

bn = 2

T0

∫ T0/2

−T0/2
f (t) sin(2πnν0t)dt n = 1, 2, 3 . . . . (12.39)

Equation (12.37) shows the expansion of f (t) in terms of sine and cosine functions
that are harmonics of the frequency ν0. The term a0, associated with zero frequency,
represents the average value of f (t) over one period. The plot displaying the coeffi-
cients as a function of the frequencies (nν0) is called the frequency spectrum (discrete
for the series).

We have written (12.37) using time variable, t, the conjugate variable being the
frequency ν in Hz. When a spatial variable is used, for instance x, the conjugate
variable is called spatial frequency α (in m−1).

Frequency analysis of non-periodic signals and, in general, signals defined in a
finite time interval, can be carried out by means of the Fourier transform, and defined
by the expression

FT {f (t)} = F(ν) =
∫ ∞

−∞
f (t) exp(−i 2πνt) dt . (12.40)

This integral, which is a function of ν, yields the function F(ν), and thus we have
the Fourier transform of f (t). The non-periodic function f (t) is represented by an
infinite number of harmonic functions with frequencies infinitely closely together.
F(ν) gives the contribution of frequency ν to the representation of the function. The
absolute value of F(ν) is called the spectrum of the function f (t). The inverse Fourier
transform is defined as
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FT−1 {F(ν)} = f (t) =
∫ ∞

−∞
F(ν) exp(i 2πνt) dν , (12.41)

which allows the determination of a function from its Fourier transform.
There are conditions for the existence of Fourier transforms that are discussed

in depth in mathematic treatments, such as that by Bracewell or that by Papoulis.
We only point out here that if the integral of |f (t)| from −∞ to ∞ exits and any
discontinuities in f (t) are finite, the Fourier transform F(ν) exits and satisfies the
inverse Fourier transform.

Solved Problems

Problems A

12.1 The electric field of an electromagnetic wave is given by the expression:

E = (E0x ux + E0z uz) cos(ky + ωt).

The wave is travelling in a nonmagnetic, dielectric medium with velocity v.
Find: (a) The relationship between k and ω so that this field represents a wave
propagatingwithout distortion. (b) Thewavefront, the direction of propagation,
and the state of polarization. (c) The associated magnetic field B. (d) The
instantaneous Poynting vector.

Solution

(a) For the electric field to be an electromagnetic wave, components Ex = E0x cos
(ky + ωt) and Ez = E0z cos(ky + ωt) must satisfy the wave equations,

∂2Ex

∂y2
= 1

v2

∂2Ex

∂t2
; ∂2Ez

∂y2
= 1

v2

∂2Ez

∂t2
.

For the X-component, it is found

∂Ex

∂y
= −E0xk sin(ky + ωt) ⇒ ∂2Ex

∂y2
= −E0xk2 cos(ky + ωt),

∂Ex

∂t
= −E0xω sin(ky + ωt) ⇒ ∂2Ex

∂t2
= −E0xω

2 cos(ky + ωt)

By eliminating the cosine term in the equations above and comparing the equation
obtained with (12.9), we find the relationship between phase velocity v, wavenumber
k, and angular frequency ω,
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∂2Ex

∂y2
= k2

ω2

∂2Ex

∂t2
⇒ v = ω

k
.

Analogously, component Ez yields the same relationship.
(b)

• Wavefront: By equating the phase to a constant at a fixed time, it is found that

ky + ωt = constant ⇒ y = constant ,

therefore, the wavefront is planar.
• The direction of propagation is determined from the condition that E does not
change as the electric field propagates. Then, the value of E at position y and
time t is the same as that obtained at y + �y in the time t + �t (�t > 0). This
requirement is satisfied if the phases are equal,

ky + ωt = k(y + �y) + ω(t + �t) ,

from which we obtain that �y < 0 and �y = −v�t. Therefore, E represents a
cosinusoidal wave travelling in the −OY -direction.

• The wave is oscillating in the direction of the vector (E0x ux + E0zuz), i.e. the
direction of E remains the same at all times, then the wave is linearly polarized,
and thus the equation of the straight line is given by

Ez = E0z

E0x
Ex

(
z = E0z

E0x
x

)
.

(c) The wave propagates along the −OY -axis, the propagation vector is given by
k = −k uy. From (12.24), which relates B, E, and k, the magnetic field is given by

k × E = ω B ⇒ B = 1

ω

∣
∣
∣
∣
∣
∣

ux uy uz

0 −k 0
E0x cos(ky + ωt) 0 E0z cos(ky + ωt)

∣
∣
∣
∣
∣
∣
,

B = 1

ω

[−kE0zux + kE0xuz
]
cos(ky + ωt) = −E0zux + E0xuz

v
cos(ky + ωt).

(d) The instantaneous Poynting vector is calculated from the cross product of E and
H, where H = B/μ0.

Po = E × H = [
E0x cos(ky + ωt), 0, E0z cos(ky + ωt)

]×
[−E0z

vμ0
cos(ky + ωt), 0,

E0x

vμ0
cos(ky + ωt)

]

= − cos2(ky + ωt)

μ0v
(E2

0x + E2
0z)uy,
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where v = 1/
√

μ0ε0εr (μr � 1). It should be noted that the Poynting vector points
in the same direction as the propagation of the wavefronts.

12.2 The electric field of an electromagnetic wave propagating in vacuum is given
by

E =
⎧
⎨

⎩

Ex = E0x cos 2π
3 (z − 3 × 108t)

Ey = E0y sin 2π
3 (z − 3 × 108t)

Ez = 0

Determine: (a) The wavefront and the wavelength. (b)The state of polarization.
(c) The magnetic field.

Solution

(a) By equating the phase to a constant, we have at a fixed time

ϕ = 2π

3
(z − 3 × 108t) = constant ⇒ z = constant (plane wavefront).

As the wavenumber k = 2π/λ = 2π/3 m−1, the wavelength is λ = 3 m.
(b) In order to obtain the curve described by the tip of E at a fixed location in space,
we eliminate the dependence of Ex and Ey on k(z − ct) by calculating the sum of
squares of Ex/E0x and Ey/E0y,

(
Ex

E0x

)2

+
(

Ey

E0y

)2

= cos2
[
2π

3
(z − 3 × 108t)

]
+ sin2

[
2π

3
(z − 3 × 108t)

]
= 1.

Therefore, the tip of E traces an ellipse as time passes and the wave is said to be
elliptically polarized.

To determine the direction of rotation of the E field vector, we examine the locus
of E versus time at z = 0, for simplicity. We look at this plane so that we can observe
the wave travelling to us, as shown in Fig. 12.6. At z = 0, we have

E(0, t) = E0x cos(−2π × 108t)ux + E0y sin(−2π × 108t)uy

= E0x cos(−2π × 108t)ux + E0y cos(−2π × 108t − π/2)uy.

The phase difference between ϕ0x and ϕ0y is: ϕ0x − ϕ0y = π/2, which gives right-
hand elliptical polarization according to the cases described in the example included
in Sect. 12.4 (point 2.2) and in Fig. 12.4, i.e. if a stationary observer faces against
the direction of propagation of the wave, the observer sees the vector E rotating
clockwise, and the tip describes an ellipse whenever a period T passes, as shown in
Fig. 12.6a.

Let us verify the direction of rotation of the electric field by evaluating the value
of E at different instants of time. Simplifying the above expressions for Ex and Ey at
z = 0, we have:
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(a) (b)

Fig. 12.6 a A stationary observer that faces against the direction of travel sees at z = 0 that E
rotates clockwise around an ellipse. b Polarization ellipse at z = 0 and electric field E at t0, t1, and
t2, corresponding to ωt = 0,π/6, and π/3, respectively

Ex = E0x cos(−ωt) = E0x cos(ωt),

Ey = E0y sin(−ωt) = −E0y sin(ωt),

where ω = 2π × 108 (rad/s).
At t = 0, the E field points in the+X-direction. As time increases a bit, Ex begins

to decreasewith time andEy to increase negatively. Figure12.6b shows theE-field for
ωt = 0 (t0), ωt = π/6 (t1), and ωt = π/3 (t2). The electric field rotates clockwise,
as predicted by applying the general results discussed in Sect. 12.4.
(c) The magnetic field B is calculated taking into account that v = ω/k = c = 3 ×
108 m/s, and k = 2π/3uz (k̂ = uz). Then, we have

ωB = k × E ⇒ B = 1

c
(k̂ × E) = 1

c

∣
∣
∣
∣
∣
∣

ux uy uz

0 0 1
Ex Ey 0

∣
∣
∣
∣
∣
∣
= 1

c

(−Ey ux + Ex uy
)
,

Bx = −E0y

c sin 2π
3 (z − 3 × 108t)

By = E0x
c cos 2π

3 (z − 3 × 108t)
Bz = 0

⎫
⎬

⎭

12.3 Write the expression for the E field of a harmonic plane electromagnetic wave
with awavelength of 600nmand an intensity of 60W/m2. Thewave is travelling
in the +OZ-direction in vacuum and is linearly polarized at an angle of 30◦ to
the OX-axis.

Solution

The amplitude of the electric field of the linearly polarized wave can be calculated
from the intensity. Then, from (12.36), for vacuum ε = ε0 and v = c,

Iw = 1

2
ε0cE2

0 ⇒ E0 =
√
2Iw
ε0c

=
√

2 × 60

8.85 × 10−12 × 3 × 108
= 212.6 V/m.
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Fig. 12.7 Directions of k
and E for the linearly
polarized electromagnetic
wave

The wave number is determined from the wavelength,

k = 2π

λ
= 2π

600 × 10−9
= π

3
× 107 m−1.

As the wave is linearly polarized at 30◦ to OX, the amplitude E0x = E0 cos 30◦ =
212.6 cos 30◦ = 184.1 V/m, and E0y = E0 sin 30◦ = 212.6 sin 30◦ = 106.3 V/m.
Then, the components of the wave are given by

Ex = E0x cos[k(z − ct)] = 184.1 cos
[

π
3 × 107

(
z − 3 × 108t

)]
(V/m)

Ey = E0y cos[k(z − ct)] = 106.3 cos
[

π
3 × 107

(
z − 3 × 108t

)]
(V/m)

Ez = 0

⎫
⎬

⎭

It should be noted that a cosine-type wave is assumed and both components are in
phase, the initial phase assumed being zero. Figure12.7 shows the k and E vectors
for the linearly polarized wave.

12.4 The electric field of an electromagnetic wave is given by the expression,

E =
(
−ux + √

2 uy

)
× 102 cos

[
5

3
π

(

x +
√
2

2
y

)

105 − 1.9253 × 1014t

]

V/m.

Find: (a) Propagation vector and direction of propagation of the wave. (b)
Wavelength and phase velocity. (c) State of polarization. (d) Intensity.

Solution

(a) The electric field is of the type:

E = E0 cos (k · r − ωt) = E0 cos (kxx + kyy + kzz − ωt) ,

where E0 =
(
−ux + √

2 uy

)
× 102 V/m, kx = (5π/3) × 105 m−1, ky = (5π/3) ×

(
√
2/2) × 105 m−1, kz = 0, and ω = 1.9253 × 1014 rad/s. Then, the propagation

vector, k = kx ux + ky uy + kz uz, will be

k = 5

3
π × 105

(

ux +
√
2

2
uy

)

m−1,
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whose magnitude |k| is the wave number

k = 5

3
π × 105 ×

√
3

2
= 6.41 × 105 m−1.

An unit vector k̂ in the direction of propagation of the wave is given by

k̂ = k
k

=
√
2

3
ux + 1√

3
uy = 0.82 ux + 0.58uy.

Note that k̂ · E = 0, as expected.
(b) From the wavenumber k,

k = 2π

λ
⇒ λ = 2π

k
= 9.80 × 10−6 m (infrared).

From the angular frequencyω = 1.9253 × 1014 rad/s, and the value of k calculated
in (a), the phase velocity gives

v = ω

k
� 3 × 108 m/s,

which shows that the wave is travelling in a material whose velocity is approximately
equal to that of vacuum.

(c) The wave is oscillating in the direction of the vectorE0 =
(
−ux + √

2uy

)
× 102,

thus the wave is linearly polarized. The equation of the straight line described by the
tip of E is calculated from the quotient,

Ex = −102 cos
[
5
3π

(
x +

√
2
2 y

)
105 − 1.9253 × 1014t

]

Ey = √
2 × 102 cos

[
5
3π

(
x +

√
2
2 y

)
105 − 1.9253 × 1014t

]

⎫
⎬

⎭
⇒ Ey

Ex
= −√

2 ⇒ y = −√
2 x.

Then, tan θ = Ey/Ex = −√
2, θ = −54.7◦, as shown in Fig. 12.8. At a fixed position

in space, the y and x components oscillate in phase, the tip of the electric field
undergoes a simple harmonic motion along the straight line segment of the above
calculated line, the amplitude being equal to the magnitude of E0, |E0| = E0 =√
3 × 102 (V/m).

Fig. 12.8 Directions of the
fields E and B and the
propagation vector k for the
linearly polarized wave.
Vector E points in the
direction given by θ
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(d) For the linearly polarized wave travelling in a media with electromagnetic prop-
erties similar to those of vacuum, (12.36) gives

Iw = 1

2
ε0cE2

0 = 1

2
× 8.85 × 10−12 × 3 × 108 × (

√
3 × 102)2 W/m2 = 39.83 W/m2.

12.5 The average intensity of sunlight at the Earth’s surface is about 1.36 × 103

W/m2. (a) Calculate the amplitude of the electric and magnetic fields at the
Earth’s surface. (b) Estimate the total power radiated by the Sun. Assume that
the radius of Earth’s orbit around the Sun is 1.49 × 1011 m. (c) Estimate the
power received by the Earth from the Sun. The average radius of the Earth is
6371km. (d) For a country such as Spain, with a surface of 5 × 1011 m2 and
an average latitude of 40 degrees, estimate the power received.

Solution

(a) Since the distance between the Sun and the Earth is very large, the wave received
on the Earth can be considered to be plane. For simplicity, the wave is assumed to
be linearly polarized and the velocity of propagation is v � c. The amplitude of the
electric field can be calculated from (12.36), which gives the average intensity,

Iw = 1

2
ε0c E2

0 ⇒ E0 = |E0| =
√
2Iw
ε0c

=
√

2 × 1.36 × 103

8.85 × 10−12 × 3 × 108
≈ 1012 V/m.

Then, the amplitude of the magnetic field will be B0 = |E0|/c = E0/c = 1012/3 ×
108 T = 3.38 × 10−6 T.
(b) Assuming that the total power from the Sun is radiated isotropically and that
there is no loss of energy in travelling through space, it is found that the Sun’s
total emission power Ps equals the total power spread over a sphere with the Sun
at the center. It is assumed that Earth has a “imaginary” circular orbit with a radius
of Ro = 1.49 × 1011 m. At the Earth’s orbit each square meter of area facing the
Sun receives about 1.36 × 103 W (Iw = 1.36 × 103 W/m2). Figure12.9a shows the
sphere of radius Ro and area S = 4πR2

o. Equating the total power Ps from the Sun to
the total power over this sphere,

Ps = IwS = Iw × 4πR2
o ≈ 1.36 × 103 × 4π × (1.49 × 1011)2 W ≈ 3.79 × 1026 W.

(a) (b) (c)

Fig. 12.9 a Earth traveling on an “imaginary” circular orbit around the Sun with radius Ro. b The
circle is the projection of Earth’s surface on a plane perpendicular to Sun’s rays. c The angle at
which sunlight strikes the Earth varies with the latitude angle ϕ
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(c) Let us consider a simple model to make an estimate. If the Earth were a flat disk
perpendicular to the sunlight rays, with radius Re, the area of the planet facing the
Sun would be the area of the circle, πR2

e , see Fig. 12.9b, and the power Pe received
by the Earth would be given by

Pe ≈ Iw × πR2
e ≈ 1.36 × 103 × π × (6371 × 103)2 W ≈ 1.73 × 1017 W.

(d) The powerPSp received by a country such as Spainwith an areaSSp = 5 × 1011 m2

and a latitude of ϕ = 40◦ (see Fig. 12.9c) can be estimated by

PSp ≈ IwSSp cosϕ ≈ 1.36 × 103 × 5 × 1011 × cos 40◦ W ≈ 5.2 × 1014 W,

where cosϕ is included in the formula because the surface is not normal to the Sun’s
rays. Then, the solar power falling on it will be reduced by the cosine of the angle
between the line perpendicular to the surface and a central ray from the Sun, as shown
in Fig. 12.9c.

12.6 The electric field detected by a radio receiver has an amplitude of 0.15 V/m.
Assuming that the wave can be considered linearly polarized, determine: (a)
The amplitude of the magnetic field. (b) The intensity of the wave and the
energy density. (c) If the distance of the receiver to the transmitter is 1.5km,
calculate the power with which the radio transmitter emits.

Solution

It is assumed that a harmonic electromagnetic wave propagates in vacuum and that
the emitter can be considered a point source. As the energy is emitted isotropically
in all directions, the energy of the wavefront is spread out over a spherical surface
with area 4πr2, where r is the distance from the transmitter to the receiver, as shown
in Fig. 12.10. At a point on the spherical surface, the electric field can be expressed
as

E(r, t) = A

r
cos(kr − ωt) = E0(r) cos(kr − ωt),

where ω is the angular frequency of the source, A a constant, and E0(r) = A/r.
(a) At the location of the radio receiver, the magnetic field has an amplitude,

B0 = E0

c
= 0.15

3 × 108
T = 5 × 10−10 T.

Fig. 12.10 Geometry of wave propagation from a point transmitter Q that emits with a power P.
Energy is radiated homogenously in all directions. Wavefront is spherical in shape
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(b) In calculating the average intensity, we can use (12.36), E0 being the amplitude
of the magnetic field at the detection point. Hence, (12.36) yields for the intensity

Iw = 1

2
ε0c E2

0 = 1

2
× 8.85 × 10−12 × 3 × 108 × 0.152 W/m2 ≈ 3 × 10−5 W/m2.

From (12.36), it is inferred that the average energy density < e > is given by

< e >= Iw
c

= 1

2
ε0 E2

0 ≈ 10−13 J/m3.

(c) In the case under consideration, the wave energy is conserved as it propagates
through the medium. Thus, the average power P emitted by the point source Q
equals the average power crossing the spherical wavefronts. Since the distribution of
intensity on the spherical wavefronts can be considered homogeneous, application
of the conservation of energy principle leads to

P = Iw S = Iw 4πr2 = 3 × 10−5 × 4π × (1500)2 W ≈ 848 W.

Problems B

12.7 An electromagnetic harmonic plane wave of frequency 1MHz is travelling
through vacuum in the direction of the unit vector (0,

√
3/2, 1/2). The wave

is linearly polarized, along the X-direction, and has an amplitude of 0.05 V/m.
Write the expressions for the electric and magnetic fields.

Solution

First of all, let us determine the wavelength λ and the wavenumber k:

c = λν ⇒ λ = 3 × 108

106
= 300m and k = 2π

λ
= 2π

300
m−1.

Then, we have for the propagation vector

k = k k̂ = 2π

300

(√
3

2
uy + 1

2
uz

)

m−1.

As the amplitude of the electric field is known, E0 = 0.05 (V/m), as well as its direc-
tion of oscillation, parallel to OX, the electric field can be expressed as (Fig. 12.11)

E = E0 cos (k · r − ωt)

= (0.05ux) cos

[
2π

300

(√
3

2
y + 1

2
z

)

− 2 × π × 106t

]

(V/m).
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Fig. 12.11 The electric and
magnetic fields of the
electromagnetic wave are
perpendicular to the
direction of propagation

The magnetic field can be easily calculated by (12.24):

k × E = ωB ⇒ B = 1

c

(
k̂ × E

)
= 1

c

∣
∣
∣
∣
∣
∣

ux uy uz

0
√
3
2

1
2

Ex 0 0

∣
∣
∣
∣
∣
∣
= 1

c

[
Ex

2
uy −

√
3

2
Ex uz

]

.

B = 1

3 × 108

(
1

2
uy −

√
3

2
uz

)

× 0.05 × cos

[
2π

300

(√
3

2
y + 1

2
z

)

− 2 × π × 106t

]

= 1

3 × 108
(0.025uy − 0.043uz) cos

[
2π

300

(√
3

2
y + 1

2
z

)

− 2 × π × 106t

]

(T).

12.8 Figure12.12 shows a sketch of two sources, labelled A and B, which emit syn-
chronously plane electromagnetic waves of frequency 120MHz propagating
in free space (through air). Both waves are linearly polarized, the electric field
vibrating along the X-direction, and are directed toward point Q. An intensity
of 10−6 Wm−2 is detected at Q when either A or B is emitting. Write down
the expressions for the propagating electric and magnetic fields of the waves
emitted by A and B.

Solution

First of all, let us calculate the wavelength, λ = c/ν = 3 × 108/120 × 106 = 2.5 m.
Then, the wave number is k = 2π/λ = 2π/2.5 = 2.51 m−1. The amplitude of the
electric field can be calculated from the intensity, (12.36) with ε = ε0 and v = c,

Iw = 1

2
ε0c E2

0 ⇒ E0 =
√
2Iw
ε0c

=
√

2 × 10−6

8.85 × 10−12 × 3 × 108
= 2.74 × 10−2 V/m.

From E0, the amplitude of the magnetic field results to be, B0 = E0/c = 2.74 ×
10−2/3 × 108 T = 9.13 × 10−11 T.
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Fig. 12.12 Sketch showing
two sources labelled A and B
and the rays directed toward
point Q

For the wave emitted by A, directed toward Q, the wave vector is k = k uy =
2.51uy m−1 and the angular frequency ω = 2π ν = 2π × 120 × 106 rad/s = 7.54
× 108 rad/s. Since the wave is linearly polarized, the electric field can be written as
(12.20). In the case studied, inwhich the electric field oscillates along theX-direction,
the electric field amplitude vector can be expressed as E0 = 2.74 × 10−2 ux V/m.
Then, assuming a cosine type wave with ϕ0 = 0, the electric field is given by

E = E0 cos(k · r − ωt) = 2.74 × 10−2 ux cos(2.51 y − 7.54 × 108t) (V/m).

According to (12.24), we have for B

k uy × Ex ux = ω B ⇒

B = 1

7.54 × 108
[2.51uy] × [2.74 × 10−2 cos(2.51 y − 7.54 × 108t)ux]

= −9.12 × 10−11 uz cos(2.51 y − 7.54 × 108t) T.

In the same way, for the wave emitted by B, the wave vector is given by

k = 2.51
(
cos 30◦ uy + sin 30◦ uz

)
m−1.

In this case (12.20) becomes,

E = E0 cos(k · r − ωt)

= 2.74 × 10−2 ux cos(2.51 cos 30◦ y + 2.51 sin 30◦ z − 7.54 × 108t)

= 2.74 × 10−2 ux cos(2.17 y + 1.26 z − 7.54 × 108t) (V/m).

Equation (12.24) yields for B,

B = 9.12 × 10−11 (sin 30◦ uy − cos 30◦ uz) cos(2.17 y + 1.26 z − 7.54 × 108t)

= (4.56uy − 7.90 uz) × 10−11 cos(2.17 y + 1.26 z − 7.54 × 108t) (T).

12.9 Determine the result of the superposition of two waves with amplitudes A and
B (A > B) propagating along OX and that are left and right-handed circularly
polarized, respectively. Describe the polarization of the resulting wave.
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Solution

Let us consider a left-handed circularly polarized wave E1 propagating along +OX
whose components can be written as

E1x = 0
E1y = A sin(kx − ωt)
E1z = A cos(kx − ωt) = A sin(kx − ωt + π

2 )

⎫
⎬

⎭

It should be noted that the phase difference is ϕ01y − ϕ01z = −π/2 and E0y = E0z =
A, which corresponds to a left-handed circularly polarized wave.

For a right-handed circularly polarized wave, E2, propagating along +OX, E2y

leads E2z by π/2 and E0y = E0z. Then, the components of E2 can be written as

E2x = 0
E2y = B sin(kx − ωt)
E2z = −B cos(kx − ωt) = B sin(kx − ωt − π

2 )

⎫
⎬

⎭

The components of the resulting field E = E1 + E2 are:

Ex = 0

Ey = E1y + E2y = A sin(kx − ωt) + B sin(kx − ωt) = (A + B) sin(kx − ωt),

Ez = E1z + E2z = A cos(kx − ωt) − B cos(kx − ωt)

= (A − B) cos(kx − ωt) = (A − B) sin
(

kx − ωt + π

2

)

The resulting wave propagates along +OX, Ey component lags Ez by π/2, i.e. ϕ0y −
ϕ0z = −π/2, and E0y �= E0z. Then, the wave is left-handed elliptically polarized.
The ellipse is inscribed into a rectangle whose sides are parallel to the co-ordinates
axes OY and OZ and whose lengths are 2(A + B) and 2(A − B), respectively.

12.10 A right and a left-handed circularly polarized wave can combine to yield a lin-
early polarized wave. Prove this statement by expressing a linearly polarized
wave of amplitude E0 travelling along +OX as the sum of two waves with
circular polarization and amplitudesA andB for the right and left polarization,
respectively. Find A and B in terms of E0.

Solution

We asume, without loss of generality, that the wave is polarized in the OZ-direction.
The wave can be expressed as

E = E0 uz cos(kx − ωt) = Re {E0 uz exp[i(kx − ωt)]} ,

where complex notation is used to simplify the calculation. An expression for a
right-handed circularly polarized wave with amplitude A propagating along OX is



Solved Problems 689

E1 = Auy cos
(

kx − ωt + π

2

)
+ Auz cos(kx − ωt)

= Re
{

Auy exp
[
i
(

kx − ωt + π

2

)]
+ Auz exp[i(kx − ωt)]

}
.

In the same way, for the left-handed circular wave we have

E2 = Buy cos
(

kx − ωt − π

2

)
+ Buz cos(kx − ωt)

= Re
{

Buy exp
[
i
(

kx − ωt − π

2

)]
+ Buz exp[i(kx − ωt)]

}
.

Using complex notation, one obtains

E = E1 + E2,

E0 uz exp[i(kx − ωt)] = Auy exp
[
i
(

kx − ωt + π

2

)]
+ Auz exp[i(kx − ωt)]

+ Buy exp
[
i
(

kx − ωt − π

2

)]
+ Buz exp[i(kx − ωt)],

E0uz = Auy exp
[
i
π

2

]
+ Auz + Buy exp

[
−i

π

2

]
+ Buz ⇒ E0uz = iAuy + Auz − iBuy + Buz,

E0uz = A(uz + iuy) + B(uz − iuy).

By equating real and imaginary parts,

E0 = A + B
0 = A − B

}
⇒ A = B = E0

2
.

Then, a linearly polarized wave with amplitude E0 can be expressed as the sum of a
right-handed circularly polarized wave and a left-handed circularly polarized wave,
each having amplitude E0/2.

12.11 Identify the polarization state for the following waves:
(a) E = 2 ux cos(kz − ωt) + 3uy cos(kz − ωt),
(b) E = ux cos(kz − ωt) − √

3uy cos(kz − ωt),
(c) E = 2 ux cos(kz + ωt) + 2 uy sin(kz + ωt),
(d) E = ux sin(kz − ωt) + 2 uy cos(kz − ωt).

Solution

In this problem, the process followed in determining the polarization state is as fol-
lows. Firstly, we obtain the equation resulting from eliminating the dependence of
the components on (kz ± ωt). Secondly, we plot this equation on a plane perpendic-
ular to the direction of propagation, at a fixed position in space (z = constant). We
consider the wave seen by an observer towards whom the wave approaches (optic
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convection). Finally, we analyze how the electric field oscillates in the plot of the
locus of the tip of the E vector versus time.
(a)

Ex = 2 cos(kz − ωt)
Ey = 3 cos(kz − ωt)

}
⇒ Ey

Ex
= 3

2

(
tan θ = 3

2
, θ = 56.3◦

)
.

The propagation vector is k = k uz and the two components are in phase. Then, the
plane wave is linearly polarized. The electric field oscillates on a straight line that
makes 56.3◦ with the OX-axis, as shown in Fig. 12.13a. The tip of E at z = 0 will be
at the point P when ωt = 0. Its magnitude will decrease toward zero as ωt increases
toward π/2. Then, E starts to increase in the opposite direction, toward the point P′,
where ωt = π.
(b)

Ex = cos(kz − ωt)
Ey = −√

3 cos(kz − ωt) = √
3 cos(kz − ωt + π)

}
⇒ Ey

Ex
= −√

3 (tan θ = −√
3 , θ = −60◦) .

The components are π out of phase; the electric field is linearly polarized oscillating
on a straight line that makes−60◦ with the OX-axis. For z = 0, and ωt = 0, π/2, π,
the tip of E will be at the points P, O, P′, respectively, as shown in Fig. 12.13b.
(c)

Ex = 2 cos(kz + ωt)
Ey = 2 sin(kz + ωt) = 2 cos(kz + ωt − π/2)

}
⇒ E2

x + E2
y = 4 .

The components differ in phase by π/2 and are equal in amplitude. The propagation
vector is k = −k uz. The tip of the electric field traces out a circle of radius 2, as
shown in Fig. 12.13c. In examining the direction change of E at z = 0 as t changes,
we set ωt = 0, ωt = π/2. For ωt = 0, we get Ex = 2 and Ey = 0, point P in this
figure, whereas for ωt = π/2, Ex = 0 and Ey = 2, point P′. Then, the electric vector

Fig. 12.13 Plot of the locus
of E for the cases studied in
Problem 12.11

(a) (b)

(d)(c)
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moves around the circle in a clockwise direction; this is a right handed circularly
polarized wave.
(d)

Ex = sin(kz − ωt) = cos(kz − ωt − π/2)
Ey = 2 cos(kz − ωt)

}
⇒ E2

x + (Ey)
2

(2)2
= 1.

Ex lags Ey by π/2 and are unequal in magnitude. The propagation vector is k = k uz.
The tip of the electric field traces out an ellipse, as shown in Fig. 12.13d. In this figure
the position of E at z = 0 for ωt = 0 and ωt = π/2, points P and P′, respectively,
are also shown; the electric vector rotates counterclockwise as time progresses.

12.12 Determine the polarization state and plot the locus of E(0, t) for a plane wave
with:

(a) E(z, t) = 3ux cos(kz − ωt) + 3uy cos(kz − ωt − π/4),
(b) E(z, t) = 3ux cos(kz − ωt + 3π/4) + uy cos(kz − ωt).

Solution

(a) In this case, the wave is travelling in the +OZ-direction. The x and y components
are not in phase; the y component lags the x component by π/4. Then, according
to Sect. 12.4, and for the new orientation of the axes: OZ ⇒ OX, OX ⇒ OY , and
OY ⇒ OZ , the resulting phase difference is δ = ϕ0x − ϕ0y = π/4. Hence, the wave
is elliptically polarized, in accordance with case 3 described in Sect. 12.4. The equa-
tion of the ellipse is given by (12.27) with E0x = E0y = 3, and the E vector rotates
in the clockwise direction (see Fig. 12.4).

Let us verify the above results by calculating the equation of the ellipse and
determining the sense of polarization from the plot of the locus of E(0, t). The
components of the plane wave are described by

Ex(z, t) = 3 cos(kz − ωt)
Ey(z, t) = 3 cos(kz − ωt − π/4)

}

At any time and at any position, the phase difference remains constant. Therefore,
the electric field will change with time in a similar way at any fixed position in space.
For the sake of simplicity, let us study what happens when z = 0, the resulting wave
is given by:

Ex = 3 cos(−ωt) = 3 cos(ωt),
Ey = 3 cos(−ωt − π/4) = 3 cos(ωt + π/4)

}

The electric vector E varies with time both in magnitude and in direction. In order
to determine the equation described by the tip of E, the term cos(ωt + π/4), in the
second equation, is first expanded. Then, cos(ωt) is eliminated between the two
equations as follows

Ex/3 = cos(ωt)
Ey/3 = cos(ωt + π/4) = cos(ωt) cos (π/4) − sin(ωt) sin (π/4)

}
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⇒ Ey

3
= Ex

3
cos

(π

4

)
− sin(ωt) sin

(π

4

)

Multiplying the first equation by sin(π/4), re-writing the second one, and squaring
and adding both equations gives

Ex/3 sin (π/4) = cos(ωt) sin (π/4)
Ex/3 cos (π/4) − Ey/3 = sin(ωt) sin (π/4)

}
⇒ E2

x

32
+ E2

y

32
− 2

ExEy

9
cos

(π

4

)
= sin2

(π

4

)

This equation is that of an ellipse in the XY -plane. From (12.28) is obtained that
its major axis makes an angle of 45◦ with the OX-axis, as shown in Fig. 12.14. The
ellipse is inscribed into a square with sides 3 × 2 and touches the sides at the points
(±3,±3 cos(π/4)) and (±3 cos(π/4),±3). To know the sense in which the end
point of the electric vector describes the ellipse, we plot, at z = 0, the position of the
tip of E for ωt = 0 and π/2, the resulting points being P and P′, respectively (see
Fig. 12.14). Then, the wave is right-handed elliptically polarized since the E vector
rotates clockwise.

The same result is obtained by calculating, for instance at point P (point
tangent to the ellipse), the derivative

(
∂Ey/∂t

)
t=0 = (−3ω sin(ωt + π/4))t=0 =

−3ω sin(π/4) < 0. Hence, Ey decreases with time, and the rotation is clockwise
as viewed by an observer that receives the wave.
(b) The same reasoning as in case (a) can be applied (OZ is equivalent to OX, OX to
OY , and OY to OZ). The wave is also a plane wave travelling in the +OZ-direction.
The x component leads the y component by 3π/4 and the amplitudes are different.
According to Sect. 12.4, case 3, the wave is elliptically polarized, the equation given
by (12.27), with E0x = 3, E0y = 1, and δ = ϕ0x − ϕ0y = 3π/4. Figure12.4 predicts
that the ellipse is described in a clockwise direction.

As in case (a), let us calculate the equation of the ellipse and determine the sense
in which the ellipse is described. The components of the wave are

Ex(z, t) = 3 cos(kz − ωt + 3π/4)
Ey(z, t) = cos(kz − ωt)

}

Fig. 12.14 The tip of the
electric vector moves along
the ellipse. The phase
difference between the x and
y components is π/4 and the
amplitudes of the two
components are equal
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Fig. 12.15 Elliptically
polarized wave. E0x = 3,
E0y = 1 and the phase
difference between the x and
the y components is 3π/4

For z = 0:
Ex = 3 cos(−ωt + 3π/4) = 3 cos(ωt − 3π/4)
Ey = cos(−ωt) = cos(ωt)

}

The equation described by the tip of E is calculated as in (a). Firstly, cos(ωt − 3π/4)
is expanded. This gives

Ex/3 = cos(ωt − 3π/4) = cos(ωt) cos(3π/4) + sin(ωt) sin(3π/4)
Ey = cos(ωt)

}

Secondly, cos(ωt) in the first equation is replaced by Ey and the resulting equation
is re-rearranged. Next, the second equation is multiplied by sin(3π/4). Finally, the
dependence on t is eliminated by squaring and adding the two equations:

Ex/3 − Ey cos(3π/4) = sin(ωt) sin (3π/4)
Ey sin (3π/4) = cos(ωt) sin (3π/4)

}
⇒ E2

x

32
+ E2

y − 2
ExEy

3
cos

(
3π

4

)
= sin2

(
3π

4

)
.

This equation describes the ellipse shown in Fig. 12.15, whose major axis makes an
angle of about −14◦ with OX, obtained from (12.28). The ellipse is inscribed into
the rectangle with sides 2 × 3 and 2 × 1. Figure12.15 also shows the points P and
P′ (at z = 0), for ωt = 0 and π/2, respectively. Then, the ellipse is described in the
clockwise direction.

12.13 Find the average intensity for an elliptically polarized plane electromagnetic
wave propagating in vacuum.

Solution

As an example, let us consider an elliptically polarized plane electromagnetic wave
propagating in vacuum in the +X-direction, given by the equation

Ey(x, t) = E0y cos(kx − ωt + δ)
Ez(x, t) = E0z cos(kx − ωt)

}

where, in general, E0y �= E0z, and δ = ϕ0y − ϕ0z is an arbitrary but constant quantity.
Equation (12.24) gives for the magnetic field



694 12 Electromagnetic Waves

B = 1

ω
k × E = 1

c
ux × E = 1

c
(1, 0, 0) × (

0, Ey, Ez
) = 1

c

(−Ez uy + Ey uz
)
,

where it has been taken into account that k = k ux and c = ω/k. Then,

H = B
μ0

= 1

μ0c

(−Ez uy + Ey uz
) = ε0c

(−Ez uy + Ey uz
)
,

and the instantaneous Poynting vector will be

Po = E × H = (
0, Ey, Ez

)× (
0, Hy, Hz

) = (EyHz − EzHy)ux

= ε0c
(
E2

y + E2
z

)
ux = ε0c [E2

0y cos
2(kz − ωt + δ) + E2

0z cos
2(kz − ωt)]ux.

The intensity Iw is equal to the time average of thePoynting vector,which is calculated
by integrating the instantaneous Poynting vector over one period and dividing by the
period,

Iw =< |Po| > = ε0c < [E2
0y cos

2(kx − ωt + δ) + E2
0z cos

2(kx − ωt)] >

= ε0cE2
0y < cos2(kx − ωt + δ) > + ε0cE2

0z < cos2(kx − ωt) >,

< cos2(kx − ωt) > = 1

2π/ω

∫ 2π/ω

0
cos2(kx − ωt)dt = 1

2π/ω

∫ 2π/ω

0

(
1

2
+ cos 2(kx − ωt)

2

)
dt = 1

2
.

In the same way, < cos2(kx − ωt + δ) >= 1/2. Hence, the average intensity results
to be

Iw = 1

2
ε0c (E2

0y + E2
0z).

The average intensity for an elliptically polarized wave is equal to the sum of the
intensities of the components regardless of the phase difference δ. In the particular
case, E0x = E0y = E0, the average intensity becomes

Iw = ε0c E2
0 .

It should be noted that this case includes a circularly polarized wave, where the
amplitudes are equal and the phase difference is δ = ±π/2.

12.14 Two point radio transmitters, A and B, emit synchronously with a frequency
of 75MHz and a power of 125 and 200W, respectively. A point Q, on the line
joining A and B, is 5km away fromA and 6.950km from B. (a) Determine the
intensity detected at Q when either A or B is emitting. Find also the amplitude
of the corresponding electric and magnetic fields. (b) Calculate the intensity
detected at Q when both sources are emitting simultaneously. Assume that the
electric fields at Q from A and B vibrate in a direction parallel to each other.
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Fig. 12.16 Two waves
emitted by point transmitters
A and B interfere at point Q

Solution

(a) For a point source emitting in a homogeneous medium such as air, whose electro-
magnetic properties are approximately the same as those of a vacuum, the resulting
wavefront is spherical. As the wave propagates from the source, the power is distrib-
uted homogenously over a spherical wavefront of area 4πr2. When only transmitter
A is emitting, the intensity detected at Q and the corresponding amplitudes of the
electric and magnetic fields are (Fig. 12.16):

PA = IQA 4πr2A ⇒ IQA = PA

4πr2A
= 125

4π × (5 × 103)2
W/m2 = 3.97 × 10−7 W/m2.

IQA = 1

2
ε0cE2

0A ⇒ E0A =
√
2IQA

ε0c
=
√

2 × 3.97 × 10−7

8.85 × 10−12 × 3 × 108
V/m = 1.73 × 10−2 V/m

⇒ B0A = E0A

c
= 1.73 × 10−2

3 × 108
T = 5.76 × 10−11 T.

In the same way, when only source B is emitting,

PB = IQB 4πr2B ⇒ IQB = PB

4πr2B
= 200

4π × (6.950 × 103)2
W/m2 = 3.29 × 10−7 W/m2.

IQB = 1

2
ε0cE2

0B ⇒ E0B =
√
2IQB

ε0c
=
√

2 × 3.29 × 10−7

8.85 × 10−12 × 3 × 108
V/m = 1.57 × 10−2 V/m

⇒ B0B = E0B

c
= 1.57 × 10−2

3 × 108
T = 5.24 × 10−11 T.

(b) When the two sources emit simultaneously, the intensity at Q is that of the wave
resulting from the superposition of the wave from A and that from B. As indicated,
both waves vibrate in a direction parallel to each other. The two transmitters emit
synchronously with the same frequency, therefore the phase difference at Q is only
due to the path difference. Path AQ has a length rA = 5000 m, while length of BQ is
rB = 6950 m. Hence, the two waves arriving at Q differ in phase by

δ = ϕB − ϕA = k (rB − rA) = 2π

λ
(rB − rA) = 2π

4
(6950 − 5000) = 975π ,
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where ϕA = krA − ωt and ϕB = krB − ωt are the corresponding phases at Q, and the
wavelength λ = c/ν = 3 × 108/75 × 106 = 4 m. Note that cos δ = cos(975π) =
cos(π + 2π × 487) = −1. As the two electric fields at Q, EA and EB, oscillate π out
of phase, the resulting electric field at Q can be expressed as

E = EA + EB = E0A cos(ϕA) + E0B cos(ϕB) = E0A cos(ϕA) − E0B cos(ϕA) = (E0A − E0B) cos(ϕA) ,

whose amplitude is equal to E0 = E0A − E0B = (1.73 − 1.57) × 10−2 = 0.16 ×
10−2 V/m. Finally, the resulting intensity can be calculated by

Iw = 1

2
ε0cE2

0 = 1

2
× 8.85 × 10−12 × 3 × 108 × (0.16 × 10−2)2 W/m2 = 3.40 × 10−9 W/m2.

12.15 Two antennas on two satellites, labelled A and B, emit synchronously electro-
magneticwaves of frequency 1010 Hzwith a power of 50 kW.The antennas are
considered point-like sources emitting isotropically in all directions. Deter-
mine the intensity detected at point Q on the Earth’s surface. The distance
between point Q and antennas A and B is 100km and 97km, respectively
(Fig. 12.17).

Solution

As both antennas are considered point sources emitting isotropically in all direc-
tions, the emitted wavefronts are spherical. Since the distance from the source to the
detection point is very large, the wave detected at point Q on the Earth’s surface can
be considered to be plane. We assume that the electric fields of the two waves at Q
oscillate in the same direction. Thus, we can add both waves as if they were scalars.
Using complex notation, the superposition of both waves at Q gives an electric field

Ec = E0A exp[i(krA − ωt)] + E0B exp[i(krB − ωt)] = [
E0A exp i(krA) + E0B exp i(krB)

]
exp(−iωt),

where an initial phase is not included because both sources emit synchronously. The
complex amplitude Ec0 of the resulting wave and its conjugate E∗

c0 are, respectively,

Ec0 = E0A exp i(krA) + E0B exp i(krB) ; E∗
c0 = E0A exp i(−krA) + E0B exp i(−krB).

Fig. 12.17 Sketch showing
two rays coming from
antennas labelled A and B
that interfere at point Q on
Earth’s surface
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Multiplying the complex amplitude by its conjugate, one obtains the amplitude
squared, to which the intensity is proportional. Then, the amplitude squared of the
electric field resulting from the superposition can be calculated by

E2
0 = Ec0 E∗

c0 = [
E0A exp i(krA) + E0B exp i(krB)

] [
E0A exp i(−krA) + E0B exp i(−krB)

]

= E2
0A + E2

0B + 2E0AE0B cos[k(rA − rB)].

Multiplying the above expression by (1/2)ε0c, it is found

1

2
ε0cE2

0 = 1

2
ε0c E2

0A + 1

2
ε0c E2

0B + 1

2
ε0c 2E0AE0B cos[k(rA − rB)]

⇒ I = IA + IB + 2
√

IA

√
IB cos[k(rA − rB)],

where I is the intensity detected at Q when both sources are emitting; IA and IB are
the intensities when either source A or B emits, respectively. The interference term,
2
√

IA
√

IB cos[k(rA − rB)], depends on the phase difference δ = k(rA − rB).
Let us calculate I from IA, IB and the phase difference. From the emission power,

and the distance from the source to the detection point Q, one obtains for IA and IB,

PA = IA 4πr2A ⇒ IA = PA

4πr2A
= 50 × 103

4π × (105)2
W/m2 = 3.98 × 10−7 W/m2,

PB = IB 4πr2B ⇒ IB = PB

4πr2B
= 50 × 103

4π × (97 × 103)2
W/m2 = 4.23 × 10−7 W/m2.

The wavelength results to be λ = c/ν = 3 × 108/1010 m = 0.03 m. Then, the phase
difference resulting from the different paths, rA and rB, is equal to

δ = k(rA − rB) = 2π

0.03
(100 × 103 − 97 × 103) rad ≈ 2π 105 rad ⇒ cos δ = 1.

Finally, the resulting intensity gives

I = IA + IB + 2
√

IA
√

IB cos δ

= 3.98 × 10−7 + 4.23 × 10−7 + 2
√
3.98 10−7 ×

√
4.23 10−7 × 1W/m2 = 1.64 × 10−6 W/m2.

12.16 Two linearly polarized plane waves with equal amplitude E0 and slightly
different angular frequencies ω1 and ω2 travel in the same direction at the
same velocity v. Find the wave that results from the superposition of the two
waves.
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Solution

We assume that both waves travel along OZ and the electric fields oscillate in the
OX-direction. Then, considering sine functions, the electric fields can be expressed
as

E1 = E1 ux = E0 ux sin(k1z − ω1t),

E2 = E2 ux = E0 ux sin(k2z − ω2t),

where k1 = ω1/v and k2 = ω2/v. The wave resulting from the superposition will be
E = E1 + E2 = (E1 + E2)ux, oscillating in the same direction as their components.
Then, as a result of the superposition we have

E = E1 + E2 = E0 sin(k1z − ω1t) + E0 sin(k2z − ω2t)

= 2E0 sin

[(
k1 + k2

2

)
z −

(
ω1 + ω2

2

)
t

]
× cos

[(
k1 − k2

2

)
z −

(
ω1 − ω2

2

)
t

]
,

where the following trigonometric identity has been taken into account:

sin A + sin B = 2 sin

(
A + B

2

)
cos

(
A − B

2

)
.

We use the following notation: k0 = (k1 + k2)/2, ω0 = (ω1 + ω2)/2, km = (k1 −
k2)/2, ωm = (ω1 − ω2)/2.

Since both waves have almost the same frequency (ω1 ≈ ω2), we have:

ωm = ω1 − ω2

2
= �ω

2
; ω0 ≈ ω1 ≈ ω2 ; ωm  ω0 ;

km = k1 − k2
2

; k0 ≈ k1 ≈ k2 ; km  k0 ;

λm = 2λ1λ2
|λ2 − λ1| ; λ0 ≈ λ1 ≈ λ2 ; Tm = 2T1T2

|T2 − T1| ; T0 ≈ T1 = 2π

ω1
≈ T2 = 2π

ω2
.

Then, the resulting expression obtained for the superposition of two waves with
nearly identical frequencies and wavelengths can be expressed as

E = 2E0 cos (km z − ωm t) sin (k0 z − ω0 t) = E0(z, t) sin (k0 z − ω0 t) ,

where the amplitude varies with position z and time t, and can be written as

E0(z, t) = 2E0 cos (km z − ωm t) .

The above equation obtained for the sum of the two waves represents a rapidly
oscillating wave with an angular frequency ω0, whose amplitude varies slowly with
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Fig. 12.18 Sum of two
waves of equal amplitudes
and slightly different
frequencies at a given time

z

E

λ0

mλ

angular frequency ωm (ωm  ω0). Figure12.18 shows the sum of the two waves at a
given time. The wave inside the envelope (carrier wave) has a wave length λ0, about
the same wavelength as the two initial waves, while the amplitude of the envelope
(modulating signal) is λm (λm  λ0). The intensity is proportional to the square of
the amplitude

E2
0(z, t) = 4E2

0 cos2 (km z − ωm t) = 2E2
0 [1 + cos 2 (km z − ωm t)].

At a given position z, E2
0(z, t) oscillates with an angular frequency equal to 2ωm =

ω1 − ω2 = �ω, known as “beating frequency”. This frequency is double that of the
envelope.

The wave inside the envelope propagates with a phase velocity vp = ω0/k0.
The velocity of the envelope (the group velocity) can be expressed as vg = (ω1 −
ω2)/(k1 − k2) = �ω/�k = dω/dk. In the particular case studied, in which both
waves propagate with the same velocity, we have vp = vg = v.

Problems C

12.17 Two waves with the same amplitude A that propagate in the same direction
with velocity v are right and left-handed circularly polarized, respectively.
The frequencies ω1 and ω2 of the waves are slightly different. Determine the
polarization state of the superposition of the two waves.

Solution

Let us consider the superposition of two waves E1 and E2 propagating along OZ
whose angular frequencies are ω1 and ω2, respectively, (|ω1 − ω2|  ω1 ≈ ω2). We
take E1 and E2 to be right and left-handed circularly polarized, respectively. Then,
both waves can be expressed as

E1 =
⎧
⎨

⎩

E1x = A sin(k1z − ω1t + π/2)
E1y = A sin(k1z − ω1t)
E1z = 0

and E2 =
⎧
⎨

⎩

E2x = A sin(k2z − ω2t − π/2)
E2y = A sin(k2z − ω2t)
E2z = 0
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The resulting wave from the superposition, E = E1 + E2, has the following compo-
nents:

Ex = E1x + E2x = A sin (k1z − ω1t + π/2) + A sin (k2z − ω2t − π/2)

= 2A sin

[
k1 + k2

2
z − ω1 + ω2

2
t

]
cos

[
k1 − k2

2
z − ω1 − ω2

2
t + π

2

]

= −2A sin

[
k1 − k2

2
z − ω1 − ω2

2
t

]
sin

[
k1 + k2

2
z − ω1 + ω2

2
t

]
,

Ey = E1y + E2y = A sin (k1z − ω1t) + A sin (k2z − ω2t)

= 2A sin

[
k1 + k2

2
z − ω1 + ω2

2
t

]
cos

[
k1 − k2

2
z − ω1 − ω2

2
t

]

= 2A cos

[
k1 − k2

2
z − ω1 − ω2

2
t

]
sin

[
k1 + k2

2
z − ω1 + ω2

2
t

]
.

The results obtained for Ex and Ey represent amplitude-modulated waves. The sine
wave oscillates rapidlywith angular frequency (ω1 + ω2)/2 (“carrier frequency”) and
its amplitude is modulated by a slowly varying sine or cosine wave, for Ex and Ey,
respectively, whose angular frequency is (ω1 − ω2)/2. Since ω1 ≈ ω2, we get ω1 −
ω2  ω1 + ω2, the envelope containsmany oscillations of the fast propagating wave,
as shown in Fig. 12.18.At a given position z, the amplitude can be considered constant
for a short interval of time �t  2π/(ω1 − ω2). However, during this interval many
high frequency oscillations for the sinusoidal wave (with the “carrier frequency”)
can occur.

By denoting,

α = k1 − k2
2

z − ω1 − ω2

2
t and β = k1 + k2

2
z − ω1 + ω2

2
t,

the sum of the two waves can be written as

E = 2A
[− sin α ux + cos α uy

]
sin β.

At a given position z, α varies slowly with time but the variation of β is very rapid.
For a givenα, the locus ofE describes a segment of amplitude 2A that makes an angle
αwith the Y -axis, as shown in Fig. 12.19, the oscillation period being 4π/(ω1 + ω2).

Fig. 12.19 The segment
described by the tip of E
rotates slowly around the
OZ-axis
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Then, the polarization is lineal but the segment described rotates around the direction
of propagation OZ with angular frequency (ω1 − ω2)/2.

12.18 Determine the state of polarization of the superposition of two waves
linearly polarized: E1 = A(

√
2/2 ux − √

2/2 uy) sin (k1z − ω1t) and E2 =
A(

√
2/2 ux + √

2/2 uy) sin (k2z − ω2t), where the polarization directions are
perpendicular to one another, the propagation vectors are parallel, and their
amplitudes are equal. Both waves propagate with the same velocity v and the
angular frequencies are slightly different.

Solution

Figure12.20 shows both waves and the vector E, resulting from the superposition of
E1 and E2, E = E1 + E2, which has components:

Ex = A

√
2

2
[sin (k1z − ω1t) + sin (k2z − ω2t)]

= A
√
2 cos

[
k1 − k2

2
z − ω1 − ω2

2
t

]
sin

[
k1 + k2

2
z − ω1 + ω2

2
t

]
,

Ey = A

√
2

2
[− sin (k1z − ω1t) + sin (k2z − ω2t)]

= −A
√
2 sin

[
k1 − k2

2
z − ω1 − ω2

2
t

]
cos

[
k1 + k2

2
z − ω1 + ω2

2
t

]
,

where the following identities are taken into account:

sin α + sin β = 2 sin
α + β

2
cos

α − β

2

sin α − sin β = 2 cos
α + β

2
sin

α − β

2
.

By denoting: � = k1−k2
2 z − ω1−ω2

2 t and � = k1+k2
2 z − ω1+ω2

2 t, the components of E
yield,

Ex = A
√
2 cos � sin �,

Ey = −A
√
2 sin � cos �,

Ez = 0.

Fig. 12.20 Vector E is
calculated as the sum of the
perpendicular vectors E1 and
E2. X-axis is aligned with E



702 12 Electromagnetic Waves

The angular frequencies associated with � and � are (ω1 − ω2)/2 and (ω1 + ω2)/2,
respectively. As |ω1 − ω2|  ω1 + ω2, � varies slowly with time, while for � the
variation is very rapid. Hence, at a given position z, during short time intervals
�t  2π/|ω1 − ω2|, the tip of E traces out the following curves as time progresses:

• For � = 0, since Ey = 0, the electric vector undergoes simple harmonic motion
along the X-axis with amplitude A

√
2 (linear polarization).

• For 0 < � < π
2 , we have:

Ex = A
√
2 cos � sin �,

Ey = −A
√
2 sin � cos � = A

√
2 sin � sin

(
� − π

2

)
.

Eliminating the dependence ofEx andEy on�, it is found thatE is elliptically polar-
ized, and the vector E rotates with angular frequency (ω1 + ω2)/2. The lengths
of the two semi-axes of the polarization ellipse are A

√
2 cos � and A

√
2 sin �,

whose magnitudes change with time. Note that the principal axes of the ellipse
are aligned with the coordinate axes. As ϕ0x − ϕ0y = π/2, the E vector rotates in
a clockwise direction. In the particular case that � = π/4, the ellipse becomes a
circle, i.e. the wave is circularly polarized.

• For � = π/2, Ex = 0 and the ellipse collapses into a straight line along the y
direction. Hence, the wave is linearly polarized.

• For π/2 < � < π, ϕ0x − ϕ0y = −π/2. Thus, E is elliptically polarized, rotating
in a counterclockwise direction. This is a left-handed elliptically polarized wave.
The ellipse becomes a circle for � = 3π/4.

• For � = π, the wave is linearly polarized in the X-direction.
• For π < � < 3π/2, the wave is right-handed elliptically polarized since ϕ0x −

ϕ0y = π/2. As in the above cases, for � = 5π/4 the wave is circularly polarized.
• For � = 3π/2, the wave is linearly polarized in the Y -direction.
• For 3π/2 < � < 2π,E is left-handed elliptically polarized. For� = 7π/4, polar-
ization is circular.

12.19 Find the coefficients of the Fourier series for the periodic rectangular wave
shown in Fig. 12.21,

f (t) =
⎧
⎨

⎩

0, −T0/2 < t < −τ/2
H, −τ/2 < t < τ/2
0, τ/2 < t < T0/2

(12.42)

Fig. 12.21 Rectangular wave with period T0
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If H = 1 and T0 = 2τ , write the Fourier series for f (t) and plot the frequency
spectrum for the coefficients.

Solution

The Fourier series in terms of the sine and cosine functions are given by (12.37). For a
periodic even function, g(t) = g(−t), its Fourier series expansion is expressed as the
sumof cosine functions only, since the sine termsmake contributions of opposite sign
at t and −t. Thus, for even functions bn = 0. On the other hand, for odd functions,
g(t) = −g(−t), we have coefficients an = 0. As the periodic rectangular wave given
by (12.42) is an even function, coefficients bn = 0. According to (12.38), and taking
into account that ν0 = 1/T0, coefficients an are given by

an = 2

T0

∫ T0/2

−T0/2
f (t) cos(2πnν0t)dt = 2

T0

∫ τ/2

−τ/2
H cos(2πnν0t)dt

= 2H

T0

sin(2πnν0t)

2πnν0

]τ/2

−τ/2

= H

πn
2 sin

(
2πnν0

τ

2

)

= 2H

nπ
sin

(
nπτ

T0

)
. (12.43)

Then, the coefficients of the Fourier series are:

a0 = 2Hτ

T0
; a1 = 2H

π
sin

(
πτ

T0

)
; a2 = H

π
sin

(
2πτ

T0

)
; a3 = 2H

3π
sin

(
3πτ

T0

)
; ....

For n = 0, we have the indetermination form 0/0, which has been evaluated by
applying L’Hôpital’s rule.

In the case of a square wave such that T0 = 2τ (ν0 = 1/T0 = 1/2τ ) and H = 1,
we have for n = 0, a0 = 1, and for n �= 0,

an = 2

nπ
sin

(
n

π

2

)
.

Then, even coefficients are equal to zero as a result. The expansion of the function
in harmonic terms can be written as,

f (t) = 1

2
+ 2

π

(
cos(2πν0t) − 1

3
cos(6πν0t) + 1

5
cos(10πν0t)

)
+ · · ·

Figure 12.22 shows the frequency spectrum, that is, the size of the coefficients
an in terms of nν0 = n/T0. The coefficients represent the amplitudes of each of the
harmonic waves in the Fourier series for the square wave. Given this plot, we can
simply reconstruct the original square wave by summing the series it represents. As
an/a1 = (1/n) × sin(nπ/2), for n = 9 we have a9 ≈ 10% a1. Then, with 9 terms, a
good approximation of the square wave is obtained. Adding more terms to the series
does not significantly modify the result obtained for the square wave.



704 12 Electromagnetic Waves

Fig. 12.22 Coefficients of
the Fourier series of a square
wave with T0 = 2τ

As τ becomes smaller, the width of the pulse decreases. In the case under study,
where T0 = 2τ , the first occurrence of the zero coefficient occurs for n = 2 (a2 = 0),
the corresponding frequency being 2/T0. For T0 = 4τ ; the first zero is obtained for
n = 4 (a4 = 0) and a frequency of 4/T0, while for T0 = 8τ the zero amplitude occurs
for n = 8 and a frequency of 8/T0. Then, the frequency n/T0 at which the first zero
coefficient occurs increases as the width of the pulse decreases. The number of
coefficients contained in the interval between zero frequency and the frequency for
the first zero coefficient also increases as the pulse becomes narrower.

12.20 (a) Find the Fourier transform of a rectangular pulse centered at the origin
given by the equation

f (t) =
⎧
⎨

⎩

0, −∞ < t < −τ/2
H, −τ/2 < t < τ/2
0, τ/2 < t < ∞

(12.44)

(b) What is the Fourier transform of the pulse centered at t0?

Solution

(a) Figure12.23a shows the pulse defined in (12.44) of height H and width τ and
centered at the origin, which can be expressed as H�(t/τ ). To calculate the Fourier
transform, we use (12.40) that yields

F(ν) =
∫ ∞

−∞
f (t) exp(−i 2πνt) dt =

∫ τ/2

−τ/2
H exp(−i 2πνt) dt

= H

−i2πν

[
exp

(
− i2πντ

2

)
− exp

(
i2πντ

2

)]

= H

πν
sin(πντ ) = Hτ

sin(πντ )

πντ
= Hτ sinc(ντ ), (12.45)

where the function sin(πντ )/πντ is called sinc(ντ ). Therefore, theFourier transform
of a rectangular pulse of height H and width τ is equal to
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(b)(a)
F (υ)

 τ1/

Ητ

υ

Fig. 12.23 a Rectangular pulse centered at the origin. b The frequency spectrum of the rectangular
pulse

FT

{
H �

(
t

τ

)}
= Hτ sinc(ντ ).

The transform is illustrated in Fig. 12.23b. The function is symmetric with respect
to theY -axis. At frequency ν = 0, the sinc function takes on the indetermination form
0/0. Applying L’Hôpital’s rule to determine the value of the function

lim
ν⇒0

Hτ sinc(ντ ) = lim
ν⇒0

Hτ
πτ cos(πντ )

πτ
= Hτ .

Therefore, at ν = 0, the transform has a valueHτ , which is equal to the area under the
pulse. The function decreases as ν increases from ν = 0, reaching the first zero when
πντ = π, i.e. ντ = 1 ⇒ ν = 1/τ . Then, the transform alternates between positive
and negative values, being zero at πντ = nπ (n �= 0).

As τ increases, the value of the frequency at which the transform becomes zero
decreases, ν = 1/τ . The wider the pulse, the narrower the sinc function. Conversely,
as τ decreases the transform spreads out.

Comparing Fig. 12.23b with the envelope of the coefficients in the Fourier series
in Fig. 12.22, we find that there is an equivalence between both figures. It is as if
(12.43) were a sampled version of (12.45).
(b) If the rectangular pulse is shifted in time by t0, as shown in Fig. 12.24, the
transform of the function fs = f (t − t0) becomes

Fs(ν) =
∫ t0+τ/2

t0−τ/2
H exp(−i 2πνt) dt

= H

−i2πν

{
exp

[
−i2πν

(
t0 + τ

2

)]
− exp

[
−i2πν

(
t0 − τ

2

)]}

Fig. 12.24 Rectangular
pulse centered at t0
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= Hτ exp(−i2πνt0)
sin(πντ )

πντ
= Hτ exp(−i2πνt0) sinc(ντ ).

The Fourier transform for the shifted rectangular pulse differs from that for the
rectangular pulse centered at the origin by the phase factor exp(−i2πνt0). However,
the amplitudes |Fs(ν)| = |F(ν)| are equal.
12.21 Figure12.25a shows a sinusoidal wave train of limited extent given by the

equation

f (t) =
{

�0 cos(ω0t), − τ
2 < t < τ

2
0, all other t

(12.46)

(a) Find the Fourier transform of the finite wave. (b) Estimate the width of the
frequency spectrum from the width of the central peak. (c) Evaluate how the
pulse width affects the frequency spectrum.

Solution

(a) Equation (12.46) represents the time variation of a wave of finite duration (a
pulse) at a given location, for instance at x = 0. The time origin is chosen in such
a way that the wave is defined on the interval (−τ/2, τ/2), thus the duration of the
pulse is τ .

The Fourier transform of the cosine wave train is

F(ν) =
∫ ∞

−∞
f (t) exp(−i2πνt)dt =

∫ τ/2

−τ/2
�0 cos(ω0t) exp(−i2πνt)dt

= �0

∫ τ/2

−τ/2

[
exp(i2πν0t) + exp(−i2πν0t)

2

]
exp(−i2πνt) dt

= �0

2

∫ τ/2

−τ/2
[exp(−i2π(ν − ν0)t + exp(−i2π(ν + ν0)t]dt

 t

τ

f(t)
(a)

ν

(ν)F

−ν0 ν0

(b)

Fig. 12.25 a A wave of frequency ν0 whose amplitude is modulated by a rectangular pulse. b The
Fourier transform for a pulse with width τ
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= �0

2

exp[−i2π(ν − ν0)t]
−i2π(ν − ν0)

+ exp[−i2π(ν + ν0)t]
−i2π(ν + ν0)

]τ/2

−τ/2

= �0

2

{
sin[π(ν − ν0)τ ]

π(ν − ν0)
+ sin[π(ν + ν0)τ ]

π(ν + ν0)

}

= �0 τ

2

{
sin[π(ν − ν0)τ ]

π(ν − ν0)τ
+ sin[π(ν + ν0)τ ]

π(ν + ν0)τ

}

= �0 τ

2
{sinc[(ν − ν0)τ ] + sinc[(ν + ν0)τ ]} .

The Fourier spectrum consists of two symmetric terms (sinc functions), one cen-
tered at ν0 and the other at−ν0, as shown in Fig. 12.25b. The latter is associated with
the negative frequency distribution and contains the same information in frequencies
as the spectrum for the positive frequencies. Although negative frequencies seem to
contain redundant information, they should be retained to recover the original signal
from the whole spectrum.
(b) The major contribution to F(ν) comes from the tallest peak, centered at ν0, see
Fig. 12.26. The frequency that contributes most to the resulting oscillation is ν0. At
ν0, the numerator and denominator of the function, sinc[(ν − ν0)τ ] = sin[π(ν −
ν0)τ ]/π(ν − ν0)τ , give the value of zero, but the limit of the quotient is equal to
unity. The spectrum can be evaluated without excessive error by considering only
the central peak. Then, the range of “important” frequencies are those that lie within
the maximum peak. The width of the peak can be estimated by twice the distance
from ν0 to the first frequency, where F(ν) = 0. The zero occurs when

sin[π(ν − ν0)τ ] = 0 ⇒ π(ν − ν0)τ = nπ ⇒ ν = ν0 ± n

τ
(n = 1, 2 . . .).

For n = 1, we have

π(ν1 − ν0)τ = π ⇒ (ν1 − ν0) = 1

τ
⇒ �ν τ = 1, (12.47)

where �ν = ν1 − ν0. The important frequencies are those in the range

ν1′ = ν0 − 1

τ
< ν < ν1 = ν0 + 1

τ
,

Fig. 12.26 Tallest peak of
the spectrum of Fig. 12.25b

ν

1’ ν1

2/τ

0

(ν)F

ν0ν
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t

(a)

4τ

f(t)

ν

(ν)

(b)
F

ν0−ν0

Fig. 12.27 a A wave train with width four times that of Fig. 12.25a. b The Fourier transform of
the pulse of width 4τ . A wider pulse results in a narrower frequency spectrum

and thewidth of the range�γ = ν1 − ν1′ = 2/τ = 2�ν, which provides an estimate
of the spectral width of the pulse.
(c) Equation (12.47) shows that �ν is inversely proportional to the pulse width τ .
There is an inverse relation between spectral width �ν and the pulse temporal width
τ . Then, a narrow pulse has a broad frequency spectrum, whereas a wide pulse
has a narrow spectral distribution. The wider the pulse, the narrower the frequency
spectrum. For very wide widths, with a large number of cycles, the wave train is
nearly a pure cosine wave and the sinc curve becomes a sharp and narrow spike
(with its symmetric one).

Figure12.27a shows a pulse with a width τ ′ = 4τ . Its Fourier transform,
Fig. 12.27b, has a four times narrower spectrum width than that of Fig. 12.25b.

The sameconsiderations hold for the relationship between the spatialwidth and the
corresponding spectral width. Narrow confinement in space implies a wide spectral
distribution. Conversely, a narrow spatial frequency spectrum implies a broad spatial
distribution.

12.22 At a given position in space, the waveform can be expressed as

E(t) =
{

A0 exp(−at) cos(2πν0t), t > 0
0, all other t

(12.48)

where a ≥ 0. Find the Fourier transform of this function.

Solution

For a = 0, (12.48) becomes a cosine wave with a frequency ν0. For a > 0, the cosine
wave has an initial amplitude of A0, but decreases exponentially in time with the
damping constant a, as shown in Fig. 12.28a. At a time t = 1/a, the amplitude falls
to 1/e of its original value A0. Then, if the period T0 = 1/ν0  1/a, the wave can
be considered to be weakly damped. Thus, for small damping ν0 � a.

Equation (12.48) can be expressed as

E(t) = A0 exp(−at) cos(2πν0t) = A0 exp(−at)

[
exp(i2πν0t) + exp(−i2πν0t)

2

]
.
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Then, applying (12.40) to (12.48), the Fourier transform of the damped harmonic
wave will result

F(ν) =
∫ ∞

−∞
f (t) exp(−i2πνt)dt

=
∫ ∞

0
A0 exp(−at)

[
exp(i2πν0t) + exp(−i2πν0t)

2

]
exp(−i2πνt) dt

= A0

2

∫ ∞

0
{exp[(−i2π(ν − ν0) − a)t] + exp[(−i2π(ν + ν0) − a)t]} dt

= A0

2

[
exp[(−i2π(ν − ν0) − a)t]

−i2π(ν − ν0) − a

]∞

0

+ A0

2

[
exp[(−i2π(ν + ν0) − a)t]

−i2π(ν + ν0) − a

]∞

0

= A0

2

[
1

i2π(ν − ν0) + a
+ 1

i2π(ν + ν0) + a

]
.

This function is symmetrical and consists of two bell-shaped curves centered at ν0
and −ν0, as shown in Fig. 12.28b.

Figure12.29 shows |F(ν)| for a damped wave with a frequency of ν0 = 10 Hz
and damping constant a = 0.5 s−1. The spectrum for a damping constant of 2a = 1
s−1 is also shown. Both functions are normalized such that the maximum is 1. The
difference between the frequencies ν2 and ν1, corresponding to the peak width at a
height equal to the peak amplitude divided by

√
2, is �ν = ν2 − ν1 = a/π, hence

t

E(t)

(a)

Frequency

|F(  )|ν

ν−ν0 0

(b)

Fig. 12.28 a Damped wave in time domain and b its frequency spectrum

Fig. 12.29 Normalized
|F(ν)| for a frequency
ν0 = 10 Hz and damping
constant a = 0.5 s−1

(continuous line) and 2a
(dashed line). As damping
increases, spectral width
becomes broader

Frequency
0ν

Δν
ν1 ν2

|F(  )|ν

(  )ν
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�ω = 2a. Then, spectral width increases with damping. The larger the damping, the
more the frequency spectrum is spread over a wider range of frequencies beyond the
fundamental ν0. As the damping goes to zero, the width of the frequency spectrum
also vanishes, only the fundamental frequency remains and the Fourier transform
becomes a delta function.

12.23 An amplitude modulated wave has a carrier frequency of ν0 = 100 MHz. Its
amplitude is modulated by the function sinc(Ax), where A = 0.5 m−1. The
wave passes through a low-pass filter, which passes low-frequency signals
and attenuates signals with frequencies higher than the cutoff frequency. Find
the cutoff frequency so that the bandwidth of the output signal will be four
times that corresponding to the incident wave signal.

Solution

At a given time, for instance t = 0, using complex notation, thewave can be expressed
as,

E(x, 0) = E0 sinc(Ax) exp(i2πα0x),

where α0 = ν0/c. In the same way, at a given location, for instance x = 0, the signal
is given by

E(0, t) = E0 sinc(Bt) exp(i2πν0t),

where B = A c.
Let us calculate the Fourier transform of the signal in the time domain,

FT {E(t)} = F(ν) =
∫ ∞

−∞
E0 sinc(Bt) exp(i2πν0t) exp(−i2πνt) dt

= E0

∫ ∞

−∞
sinc(Bt) exp[−i2π(ν − ν0)t] dt

If ν ′ ≡ ν − ν0, the above equation can be written as

FT {E(t)} = F(ν ′) = E0

∫ ∞

−∞
sinc(Bt) exp(−i2πν ′t) dt.

The Fourier transform and the inverse Fourier transform can be related by

FT {f (t)} = FT−1 {f (−t)} ,

which for even functions, fe(t), and odd functions, fo(t), becomes:

FT {fe(t)} = FT−1 {fe(t)} ; FT {fo(t)} = −FT−1 {fo(t)} .
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Fig. 12.30 The Fourier
transform of the amplitude
modulated wave by a sinc
function

Applying these properties to F(ν ′) and taking into account that sinc(Bt) is an even
function, we have

F(ν ′) = E0 FT { sinc(Bt)} = E0 FT−1 { sinc(Bt)} = E0

B
�

(
ν ′

B

)
.

Finally, the spectrumobtained for the amplitudemodulatedwave can be expressed
as

F(ν ′) = E0

B
�

(
ν ′

B

)
= E0

B
�

(
ν − ν0

B

)
,

which is a rectangular pulse centered at ν0 with height E0/B and width B, as shown
in Fig. 12.30.

In order for the bandwidth of the signal coming out of the filter to be four times
that of the input signal, the width of the spectrum must be a quarter of B. As a low-
pass filter allows the low frequencies to pass through, the cutoff frequency νc will
be

νc = ν1 + B

4
= ν0 − B

2
+ B

4

= ν0 − B

4
= 100 × 106 − 0.5 × 3 × 108

4
= 62.5 MHz.

12.24 The wave arriving at a detector is given by the function: E(t) = 400 sinc
[400(t − t0)]. The received signal passes through a filter that allows frequen-
cies above 100Hz to pass (|ν| ≥ 100 Hz). Find the output waveform.

Solution

The Fourier transform of the input signal, which is centered at t0, is

FT {E(t)} = F(ν) = FT {400 sinc[400(t − t0)]} = exp(−i2πνt0) FT {400 sinc(400t)}
= exp(−i2πνt0) × 400 × FT {sinc(400t)} .

When comparing the spectrum of the input signal with that of the signal centered at
the origin, there is a phase shift, given by exp(−i2πνt0), but there is no change in
amplitude. For the sinc function centered at the origin, the spectrum is given by

FT {sinc(400t)} = FT−1 {sinc(−400t)} = FT−1 {sinc(400t)} = 1

400
�
( ν

400

)
.
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(a) (b)

Fig. 12.31 a Fourier transform of the input signal. b Spectrum of the output signal

Therefore, the Fourier transform of the input signal and its modulus are, respectively,

F(ν) = exp(−i2πνt0)�
( ν

400

)
; |F(ν)| = �

( ν

400

)
.

Figure12.31a shows |F(ν)|, a rectangular pulse whose width is 400Hz.
Frequencies such that |ν| ≥ 100 Hz are allowed to pass through the filter.

Figure12.31b represents the intervals of frequencies that pass through the filter.
Then, the frequency spectrum of the output signal consists of two rectangular pulses
with a width of 100Hz, centered at 150 and −150Hz, respectively. Moreover, the
term exp(−i2πνt0) produces a phase change. The function Fout(ν) corresponding to
the frequency spectrum of the output signal is given by

Fout(ν) = exp(−i2πνt0)

[
�

(
ν + 150

100

)
+ �

(
ν − 150

100

)]
.

The output signal in the time domain Eout(t) can be calculated from the inverse
transform,

Eout(t) = FT−1 {Fout(ν)} =
∫ ∞
−∞

exp(−i2πνt0)

[
�

(
ν + 150

100

)
+ �

(
ν − 150

100

)]
exp(i2πνt)dν

=
∫ ∞
−∞

�

(
ν + 150

100

)
exp[i2π(t − t0)ν] dν +

∫ ∞
−∞

�

(
ν − 150

100

)
exp[i2π(t − t0)ν] dν.

If we make t′ = t − t0, the above equation can be written as

Eout(t
′) =

∫ ∞
−∞

�

(
ν + 150

100

)
exp(i2πt′ν) dν +

∫ ∞
−∞

�

(
ν − 150

100

)
exp(i2πt′ν) dν

= FT−1
{
�

(
ν + 150

100

)}
+ FT−1

{
�

(
ν − 150

100

)}
.

When the origin is shifted, we have for the inverse Fourier transform,

FT−1 {F(ν − ν0)} = exp(i2πν0t)FT−1 {F(ν)} .
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From the above equation, one obtains the output signal in terms of t′,

Eout(t
′) = exp(−i2π × 150t′) FT−1

{
�
( ν

100

)}
+ exp(i2π × 150t′) FT−1

{
�
( ν

100

)}

= exp(−i300πt′) 100 sinc(100t′) + exp(i300πt′) 100 sinc(100t′).

Finally, the output waveform as a function of t,

Eout(t) = exp[−i300π(t − t0)]100 sinc[100(t − t0)] + exp[i300π(t − t0)]100 sinc[100(t − t0)]
= 100 sinc[100(t − t0)]2

(
exp[−i300π(t − t0)] + exp[i300π(t − t0)]

2

)

= 200 sinc[100(t − t0)] cos[300π(t − t0)],

which could be considered as a cosine-type waveform modulated in amplitude by a
sinc function.



Chapter 13
Reflection and Refraction

Abstract In the previous chapter, a plane wave propagating in a homogeneous non-
conducting isotropic medium was considered. In this chapter, we will examine what
happens to an electromagneticwave at a plane boundary between twonon-conducting
media with different electromagnetic properties. The laws of refraction and reflec-
tion will be applied to determine the directions of propagation of the reflected and
transmitted waves. Their amplitudes will be obtained from Fresnel’s coefficients. We
will also evaluate what fraction of the energy in a plane wave incident on a dielectric
boundary is reflected, and what fraction is transmitted. As electromagnetic theory
of light states that light is an electromagnetic wave, all included in this chapter is
applicable in optics, provided that the size of the object is large compared with the
wavelength.

13.1 Laws of Reflection and Refraction

Figure13.1 shows a plane electromagnetic wave travelling in the direction ki that
impinges on a plane boundary between two media with different electromagnetic
properties. The wave is partially reflected and partially transmitted. The wave veloc-
ities of medium 1 and 2 are v1 and v2, respectively. The refractive index n1 ≡ c/v1
characterizes medium 1, which contains the incident and reflected wave, whereas
n2 ≡ c/v2 characterizes medium 2, containing the transmitted wave. The plane
defined by the incident wave vector ki and the normal to the boundary surface, at the
point where ki intersects the boundary, is called the plane of incidence. The angle
of incidence θi, the angle of reflection θr, and the angle of refraction θt represent,
respectively, the angles that the vector of propagation of the incident, reflected, and
transmitted waves make with the normal to the boundary. Lines perpendicular to the
wavefronts, and, therefore, collinear with the propagation vector k, are referred to as
rays. The frequency of the wave is not altered by reflection or transmission. At the
boundary between twomedia, there are relationships which must be obeyed between
the fields on the two sides. By requiring that the phase of the wave be continuous
across the boundary between two media with different wave propagation velocities,
the laws of reflection and refraction can be derived, which can be expressed as:

© Springer-Verlag Berlin Heidelberg 2017
F. Salazar Bloise et al., Solved Problems in Electromagnetics,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-662-48368-8_13
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Fig. 13.1 Directions of
propagation for incident
plane wave (vector of
propagation ki), reflected
wave (kr), and transmitted
wave (kt ). All the vectors are
in the plane of incidence

1. The propagation vector of the reflected wave, kr , and that of the transmitted wave,
kt , lie in the plane of incidence.

2. The angle of reflection is equal to the angle of incidence,

θr = θi. (13.1)

3. The angle between the propagation vector of the transmitted wave and the normal
to the boundary is given by

sin θt = n1
n2

sin θi ⇒ n1 sin θi = n2 sin θt (Snell’s law). (13.2)

When n2 > n1, sin θt < sin θi, and there is a real angle θt of refraction for every
angle of incidence. However, if n2 > n1, sin θt > sin θi. Since θt increases with θi,
we can find a critical angle of incidence,

θc = sin−1 n2
n1

, (13.3)

at which θr = π/2 and the refracted wave will glaze along the interface. When
θi ≥ θc, there is no refracted wave, and the incident wave is then said to be totally
reflected.

13.2 The Fresnel Coefficients

The laws of reflection and refraction give no information about the relations between
the magnitudes of the field vectors in the reflected, transmitted, and incident waves.
These relations are obtained fromMaxwell’s equations and the boundary conditions
for E and B, studied in Chap.10. Figure13.2 shows the components of the fields.
The plane of the figure is the plane of incidence. The electric field in each wave

http://dx.doi.org/10.1007/978-3-662-48368-8_10
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Fig. 13.2 Incident, reflected,
and transmitted plane wave
fields at a material interface.
Vectors are decomposed into
components: parallel (‖) and
perpendicular (⊥) to the
plane of incidence. The latter
is assumed to be directed out
of the plane of the page and
is represented by dots

is represented as the sum of two components: E‖ denotes the component in the
plane of incidence and E⊥ is the component perpendicular to this plane. The ratio of
the reflected and transmitted field components to the incident field components are
determined by the following coefficients, called the Fresnel coefficients:

r‖ ≡ Er‖
Ei‖

= n2 cos θi − n1 cos θt

n1 cos θt + n2 cos θi
; r⊥ ≡ Er⊥

Ei⊥
= n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
, (13.4)

t‖ ≡ Et‖
Ei‖

= 2n1 cos θi
n1 cos θt + n2 cos θi

; t⊥ ≡ Et⊥
Ei⊥

= 2n1 cos θi
n1 cos θi + n2 cos θt

. (13.5)

These coefficients allow us to obtain the amplitude of the components of the electric
field for the reflected and transmittedwaves in terms of the components of the incident
wave. The components for the reflected wave are either in phase with those of the
incident wave or shifted by π whereas the phase of the transmitted wave is equal to
that of the incident wave.

In Fig. 13.3, the Fresnel coefficients are plotted in the case of air-glass interface.
It should be noted that a sign change occurs for r‖, which corresponds to a phase
shift of π upon reflection. Note in Fig. 13.3b that for θi = θc,

∣
∣r‖

∣
∣ = |r⊥| = 1.

From (13.4), it is obtained that r‖ goes to zero when

θi + θt = π

2
, (13.6)

which occurs when the reflected and transmitted vectors, kr and kt , are perpendicular
to each other. The incident angle that satisfies this equation, in terms of the refractive
indices, is found to be

θB = tan−1 n2
n1

, (13.7)

which is called Brewster’s angle. At Brewster’s angle, the electric vector of the
reflected wave has no component in the plane of incidence; the reflected wave is said
to be linearly polarized, with the electric vector normal to the plane of incidence.



718 13 Reflection and Refraction

Fig. 13.3 a The Fresnel
coefficients in terms of the
incident angle θi for n1 = 1
and n2 = 1.5. b The
reflection coefficients r‖ and
r⊥ for n1 = 1.5 and n2 = 1
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13.3 Reflected and Transmitted Energy

Application of the principle of conservation of energy to the flow across the boundary
yields the fraction of the incident energy that is reflected and the fraction that is trans-
mitted. Let us denote by Ii, Ir, and It the average intensity for the incident, reflected,
and transmitted wave, respectively. The reflection coefficient R (reflectance) is
defined as the reflected energy divided by the incident energy,

R ≡ Ir cos θr

Ii cos θi
= Ir

Ii
, (13.8)

where Ii cos θi represents the amount of energy that is incident on a unit area of the
boundary per second and Ir cos θr the energy of the reflected wave leaving a unit
area of the boundary per second. In the same way, the transmission coefficient T
(transmittance) is defined as the energy transmitted divided by the energy incident,

T ≡ It cos θt

Ii cos θi
, (13.9)
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Fig. 13.4 Reflection and
transmission of an incident
wave front. The energy
balance is made across
surface A on the interface

where It cos θt corresponds to the energy of the transmitted wave. Conservation of
energy flowing through the boundary surface, see Fig. 13.4, leads to

R + T = 1, (13.10)

where it has been assumed that absorption is negligible. It is usually convenient to
express the reflection and transmission coefficients for the parallel and perpendicular
directions. Conservation of the energy, in such directions, leads to the following
coefficients for the reflected wave:

R‖ = r2‖ and R⊥ = r2⊥, (13.11)

and for the transmitted wave,

T‖ = n2 cos θt

n1 cos θi
t2‖ and T⊥ = n2 cos θt

n1 cos θi
t2⊥. (13.12)

For each polarization, it can be verified that,

R‖ + T‖ = 1 and R⊥ + T⊥ = 1. (13.13)

It should be noted that (13.12) does not hold when the incident angle exceeds the
critical angle for total internal reflection.

Solved Problems

Problems A

13.1 Calculate the angle between the refracted ray and the normal to the surface
between the two media in the cases shown in Fig. 13.5.
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Fig. 13.5 Ray of light
incident at 45◦ on:
a air-water interface and
b water-air interface

(a) (b)

Solution

(a) From Snell’s law, n1 sin θi = n2 sin θt , we obtain

sin θt = n1
n2

sin θi.

Note that the angle of incidence θi and that of refraction θt are measured with
respect to the surface normal. The incident ray, normal, and refracted ray, all lie in
the same plane (plane of incidence). n1 represents the refractive index of the medium
in which the incident wave travels, while n2 is the refractive index of the medium
in which the refracted wave moves. In the case under study, we have: n1 = 1.00,
θi = 45◦, and n2 = 1.33. Thus, it follows that

sin θt = n1
n2

sin θi = 1.00

1.33
sin 45◦ = 0.532 ⇒ θt = sin−1 0.532 = 32.1◦.

The angle of refraction is 32.1◦, less than 45◦, as shown in Fig. 13.6a. In this case
that light passes from air to water, i.e. from a medium of lower index to a higher
index, the light ray is bent toward the normal.
(b) In the second case, light passes from water, n1 = 1.33, to air, n2 = 1.00. Snell’s
law yields

Fig. 13.6 As refractive
index for water is greater
than that for air, in a bending
is toward the normal while in
b bending is away from the
normal

(a) (b)
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sin θt = n1
n2

sin θi = 1.33

1.00
sin 45◦ = 0.940 ⇒ θt = sin−1 0.940 = 70.1◦.

As light passes from a higher index to lower index, the ray is bent away from the
normal, as shown in Fig. 13.6b.

13.2 Figure13.7 shows a medium (glass) with refractive index n = 3, limited by two
spherical surfaces whose radii are R and 2R, respectively. At the center of the
sphere of radius R, there is a point light source. Determine the values of α that
delimit the external surface through which light does not emerge.

Solution

For any ray emerging from the point source, the angle of incidence at the air-to-
glass boundary is zero since the rays propagate in the radial direction. Therefore, the
refracted ray does not change its direction at the first interface (air-glass). Figure13.7
shows a ray emerging from the light source that makes an angleαwith the horizontal,
which does not suffer a change in direction at point A on the air-glass interface. At
the interface between the material and air, the angle between the incident ray and the
normal to the interface, the radial direction CB, is denoted by θi. Applying Snell’s
law to the glass-air interface, the critical angle obtained is

n sin θc = 1 × sin
π

2
⇒ sin θc = 1

n
,

where it is assumed that the refractive index of air is approximately 1. Therefore,
the incident ray on the second interface will be totally reflected, if the following
condition is satisfied

sin θi ≥ 1

n
.

From the figure and the sine theorem, it follows that

sin θi

R
= sinα

2R
⇒ sin θi = sinα

2
.

Fig. 13.7 Sphere of radius
2R and refractive index
n = 3. A spherical hole of
radius R has been cut in the
large sphere. A point light
source is located at the
center O
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Thus, the values of α for which rays do not emerge from the spherical surface are
given by

sinα

2
≥ 1

n
⇒ sinα ≥ 2

n
= 2

3
⇒ 41.8◦ ≤ α ≤ 138.2◦.

Due to the symmetry of the problem, this condition is also satisfied in the lower
hemisphere.

13.3 A light ray is incident from air on a plane-parallel glass plate at an angle θi, as
shown in Fig. 13.8. The plate has a refractive index n and a thickness t. Derive
the expression for the lateral displacement � of the emerging ray.

Solution

Figure13.9 shows the path followed by a ray through the plate. Snell’s law at the
point of incidence A, on the air-glass interface, gives

1 × sin θi = n sin θt ⇒ sin θt = sin θi

n
⇒ cos θt =

√

1 − sin2θi
n2

. (13.14)

In the same way, at the interface between air and glass, we obtain

n sin θ′
i = 1 × sin θ′

t.

From the geometry of the ray path shown in Fig. 13.9, we have θ′
i = θt . Then, the

above two equations yield the following relationship

n sin θ′
i = n sin θt = sin θi = sin θ′

t,

which implies that θ′
t = θi, i.e. the direction of the ray emerging from the plate is the

same as that of the incident ray impinging on the plate. However, there is a lateral
displacement � between the two rays.

From the geometry shown in Fig. 13.9, the lateral displacement � can be calculated
as follows

CD = AC sin (θi − θt)
AC = AB

cos θt
= t

cos θt

}
⇒ � = CD = t

cos θt
sin (θi − θt) ⇒

Fig. 13.8 Ray impinging
obliquely on a glass plate
of refractive index n
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Fig. 13.9 Lateral
displacement of a ray after
passing through a glass plate

� = t

cos θt
(sin θi cos θt − cos θisin θt) = t (sin θi − cos θitan θt) .

The value of tan θt can be obtained from (13.14), tan θt = sin θi/
√
n2 − sin2 θi. Sub-

stituting tan θt into the equation obtained for �, it follows that

� = t sin θi

[

1 − cos θi√
n2 − sin2θi

]

.

This equation gives the lateral displacement � in terms of the angle of incidence θi,
the refractive index n, and the thickness of the plate t.

13.4 Consider a simple lens formedby aglass half sphere,with radiusR and refractive
index n1, surrounded by air, whose refractive index is denoted by n2. A ray of
light, parallel to the axis of rotational symmetry, and at a distance H from the
axis, is incident on the flat surface, as shown in Fig. 13.10. If H 
 R, find the
location of point F where the emerging ray from the glass intersects the axis.

Solution

Figure13.10 shows a ray of light propagating in a direction parallel to the axis, which
impinges from air on the flat surface of a lens at normal incidence. Therefore, the
direction of the ray remains unchanged according to Snell’s law. Then, the ray passes
through the glass and hits the glass-air interface making an angle θi with the normal
(coincident with the radial line). Finally, the ray emerges from the lens at angle θt
(the angle of refraction). From the geometry (see Fig. 13.10) and the condition that
H 
 R, it is found that

sin θi = H

R
≈ tan θi ≈ θi,

where the small-angle approximation (angle θ approaches 0) has been used, i.e.
sin θ ≈ tan θ ≈ θ and cos θ ≈ 1.

By applying Snell’s law to the glass-air interface, it follows that the angle of
refraction is equal to

sin θt = n1
n2

sin θi ⇒ θt ≈ n1
n2

H

R
.
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Fig. 13.10 Path followed by
a single ray through the lens.
Rays travelling parallel to
the axis and close to it
converge to point F, the
focal point of the lens

Then, for small angles, the following relation can be obtained

tan (θt − θi) ≈ θt − θi ≈ n1
n2

H

R
− H

R
= n1 − n2

n2

H

R
.

The distance fromF, the intersection point of the ray emerging from the glass with
the axis, to the flat surface is denoted by L in Fig. 13.10. According to the geometry,
point F is located a distance

L = R cos θi + H

tan(θt − θi)
≈ R + H

n2
n1 − n2

R

H
≈ n1

n1 − n2
R ,

from the front of the lens. Therefore, all parallel rays close to the axis converge to
point F after passing through the lens. This point is called the focal point of the lens.

13.5 Apoint light source at an unknown distanceH underwater yields an illuminated
circular area with diameter 12 m, seen from the air side of the interface. Find
H. Assume that the refractive index of water is 1.33.

Solution

Figure13.11 shows a light source at a distanceH under water. Rays emerging fromO
in all directions are incident on the water-air interface. On the water surface, directly
above the source, the area illuminated is a circle of diameterD. The maximum radius
of this circle is determined by the critical angle for refraction. Refraction can only
occur if the ray incident on the interface makes an angle with the normal line smaller
than the critical angle.

For rayOO′, at normal incidence, there is no change in the direction that the wave
is travelling, whereas for ray OP, the incident angle being θ, the transmitted ray into
air changes its direction relative to the normal to the surface. As n1 = 1.33 > n2 = 1,
it follows that θt > θ. It should be noted in Fig. 13.11 that the greater the angle that the
ray emitted by the source makes with OO′, which is equal to the angle of incidence
at the water-air interface, the greater the angle of refraction. At angles of incidence
greater or equal to the critical angle, light rays will experience total reflection and,
hence, no light is emerging from thewater to the air. The critical angle at the water-air
interface is given by
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Fig. 13.11 A point light
source under water emitting
rays that impinge on the
water-air interface

n1 sin θc = n2 sin 90◦ ⇒ θc = sin−1

(
1

n1

)
= sin−1

(
1

1.33

)
= 48.75◦.

Note in Fig. 13.11 that ray OC hits the interface at the critical angle. Then, the point
light source is submerged below surface at a distance,

H = O′C
tan θc

= 6

tan 48.75◦ m = 5.26 m,

where O′C is the radius of the illuminated circle.

13.6 A prism is made of a glass whose refractive index varies with wavelength:
np = 1.60 − 0.10λ, where λ represents the wavelength in vacuum in µm. A
beam of white light is incident on a face of the prism at an angle of 45◦, as
shown in Fig. 13.12. If the wavelength of the red light is 0.750 µm and that of
violet light 0.390 µm, find the angular dispersion.

Solution

A ray of white light incident obliquely on a prism is twice refracted as it passes
through it. As the refractive index is dependent on the wavelength, the angle of
refraction varies with thewavelength and light is hence dispersed into all the colors of
the visible spectrum. The visible spectrum ranges in wavelength from approximately
0.390 µm, for violet light, to 0.750 µm, for red light. Longer wavelengths have
smaller refractive indexes and are refracted less than shorter wavelengths.

We have for violet light, the lower end of the visible spectrum, a refractive index,
nv, and an angle of refraction, θtv:

nv = 1.60 − 0.10 × 0.390 = 1.561, sin θi = nv sin θtv ⇒ sin θtv = sin 45◦

1.561
⇒ θtv = 26.94◦.

From the triangle ABC (see Fig. 13.12) the angle of incidence at B, θ′
iv, can be

obtained,

180◦ = (90◦ − θtv) + 60◦ + (90◦ − θ′
iv) ⇒ θ′

iv = 33.06◦.

Therefore, for violet light, the angle of refraction for the refracted ray emerging from
the second face of the prism, θ′

tv, will be
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Fig. 13.12 Dispersion of
light by a prism. θi = 45◦

´´

nv sin θ′
iv = sin θ′

tv ⇒ 1.561 sin 33.06◦ = sin θ′
tv ⇒ θ′

tv = 58.38◦.

In the same way, for red light, the longer wavelength of the visible spectrum, the
refractive index being nr , we have

nr = 1.60 − 0.10 × 0.750 = 1.525, sin θtr = sin 45◦

1.525
⇒ θtr = 27.62◦.

The angle of incidence at the second face will be

θ′
ir = 60◦ − 27.62◦ = 32.38◦,

and the angle of refraction at the second face

1.525 sin 32.38◦ = sin θ′
tr ⇒ θ′

tr = 54.75◦.

Therefore, the angular dispersion is given by

θ′
tv − θ′

tr = 58.38◦ − 54.75◦ = 3.63◦.

13.7 (a) Determine the Fresnel coefficients for normal incidence. (b) A monochro-
matic plane wave with an amplitude of 10 V/m is incident normally on the
plane surface of an air-glass interface. Find the amplitude and phase for the
reflected and transmitted waves in the following two cases: (1) When the wave
is incident from the air side; (2) when the wave is incident from the glass side.
The index of refraction for glass is 1.5. Take the index of air to be one.

Solution

(a) At normal incidence θi = 0, Snell’s law (13.2) gives for the angle of refraction:
sin θt = 0, θt = 0, since θt ≤ π/2. Therefore, the direction of propagation of the
incident wave remains unchanged in the process of reflection and refraction.

For θi = 0, themeaning of plane of incidence is lost, since the two vectors defining
this plane are parallel, and therefore, the distinction between the parallel and perpen-
dicular components is of no interest. The Fresnel coefficients (13.4) and (13.5) for
θi = θt = 0 reduce to
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r‖ ≡ Er‖
Ei‖

= n2 − n1
n1 + n2

; r⊥ ≡ Er⊥
Ei⊥

= n1 − n2
n1 + n2

,

t‖ ≡ Et‖
Ei‖

= 2n1
n1 + n2

; t⊥ ≡ Et⊥
Ei⊥

= 2n1
n1 + n2

.

The r‖ and r⊥ coefficients lead to the same direction of oscillation for the electric field
of the reflected wave and, therefore, at normal incidence, the reflection coefficient
of a plane wave is independent on the wave’s polarization. We can conclude that for
normal incidence the ratio of amplitudes of the reflected and incident waves and the
ratio of the amplitude of the transmitted wave to that of the incident wave can be
expressed, respectively, as,

r = Er

Ei
= n1 − n2

n1 + n2
and t = Et

Ei
= 2n1

n1 + n2
, (13.15)

where a positive r means that reflected wave oscillates in phase with the incident
wave. On the other hand, a negative coefficient means that the reflected wave oscil-
lates π radians out of phase with the incident wave.

It follows from (13.15) that if n1 < n2, the electric vector in the reflected wave is
in the opposite direction to that of the incident electric field. As coefficient t always
has a positive sign, the transmitted wave oscillates in phase with the incident wave.
In this case, the amplitude of the transmitted wave is smaller than that of the incident
wave. On the other hand, for n1 > n2, the reflected wave oscillates in phase with the
incident wave, and the amplitude of the transmitted wave is larger than that of the
incident wave.
(b) For the air-glass interface (n1 = 1 and n2 = 1.5), (13.15) gives: r = −0.2 and
t = 0.8. Then, for an incident wave with amplitude 10 V/m, the amplitudes of the
reflected and transmitted waves will be:

E0r = r × E0i = −0.2 × 10 = −2 V/m ; E0t = t × E0i = 0.8 × 10 = 8 V/m.

Fig. 13.13 The amplitude
and phase relations for
harmonic plane waves
incident normally on an
interface: a air-glass and
b glass-air. The wave is
assumed to be linearly
polarized

(a) (b)
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Figure13.13a shows the amplitude and phase relations for this case; the phase of the
reflected wave is shifted by π with respect to the incident wave.

For the glass-air interface (n1 = 1.5 and n2 = 1), the results are shown in
Fig. 13.13b, which corresponds to r = 0.2 and t = 1.2, the resulting amplitudes
being::

E0r = r × E0i = 0.2 × 10 = 2 V/m ; E0t = t × E0i = 1.2 × 10 = 12 V/m.

The reflected wave does not change phase, as expected. Figure13.13 shows the
continuity of the tangential component of the electric field across the interface.

13.8 (a) Use the equations for reflectance and transmittance for normal incidence
to prove that energy is conserved. (b) For the cases considered in the previous
problem for an air-glass interface, determinewhat fraction of the incident energy
is reflected and what fraction is transmitted.

Solution

(a) At θi = 0, (13.11) and (13.15) give for the reflectance:

R = R‖ = R⊥ = r2 =
(
n1 − n2
n1 + n2

)2

. (13.16)

Analogously, for the transmittance, (13.12) and (13.15) lead to:

T = T‖ = T⊥ = n2
n1

t2 = 4n1n2
(n1 + n2)2

. (13.17)

By adding R and T ,

R + T =
(
n1 − n2
n1 + n2

)2

+ 4n1n2
(n1 + n2)2

= n21 + n22 − 2n1n2 + 4n1n2
(n1 + n2)2

= n21 + n22 + 2n1n2
(n1 + n2)2

= 1.

As R and T represent, respectively, the reflected and transmitted energy divided by
the incident energy (across unit area per unit time), this result means that the reflected
energy plus the transmitted energy is equal to the energy incident on the interface,
and, therefore, energy (per unit surface area per unit time) is conserved.
(b) For the air-to-glass interface, n1 = 1 and n2 = 1.5, the reflection and transmission
coefficients, calculated from (13.16) and (13.17), are:

R = 0.04 and T = 0.96,

which means that 4% of the incident energy (per unit area and unit time) is reflected
and 96% is transmitted.

For the glass-to-air interface, n1 = 1.5 and n2 = 1, we find that R = 0.04 and
T = 0.96. Then, through a flat-glass window panel, due to the multiple reflection
and refraction in the two interfaces, the total power reflected is approximately 8%.
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13.9 Plot R and T for normal incidence in terms of the quotient n1/n2.

Solution

Let the quotient n1/n2 be denoted by x. Then, (13.16) and (13.17) can be written as

R =
(
x − 1

x + 1

)2

; T = 4x

(x + 1)2
.

Figure13.14 shows reflectance R and transmittance T in terms of x = n1/n2. For
x ≈ 1, i.e. n1 ≈ n2, all the energy is transmitted. The smaller the difference of the
indices of the two media, the less energy is carried by the reflected wave. When R
equals T , we have

R = T ⇒
(
x − 1

x + 1

)2

= 4x

(x + 1)2
⇒ x2 − 6x + 1 = 0 ⇒ x = 0.17 and 5.83.

For x = 0.17 and 5.83, it follows that R ≈ T ≈ 0.5. Figure13.14 shows that for
x > 1, R and T increases and decreases, respectively, with x. Analogously, for x < 1,
R increases and T decreases with the same proportion (T = 1 − R) as x becomes
smaller. Therefore, the greater the difference between the properties of the twomedia,
the greater the energy reflected and the smaller the energy transmitted. Note that R
yields the same result for a given value of x and its reciprocal, 1/x. The same holds
for T .

13.10 For an air-to-water interface, plot the reflectance, R‖ and R⊥, as a function
of incident angle θi. Also plot the water-to-air reflectance. Assume that water
has an index of refraction of 1.33. Take the index of air to be one.

Solution

It follows from (13.11) and (13.4) that reflectance for the parallel and perpendicular
polarization is given, respectively, by

Fig. 13.14 Reflectance
(dashed line) and
transmittance (continuous
line) in terms of x = n1/n2
for normal incidence
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Fig. 13.15 Reflectance R‖
(continuous line) and R⊥
(dashed line) plotted versus
θi for the air-water interface,
n1 = 1 and n2 = 1.33.
Brewster’s angle is
θB = 53.06◦
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R‖ =
(
n2 cos θi − n1 cos θt

n1 cos θt + n2 cos θi

)2

; R⊥ =
(
n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

)2

.

We have to represent R‖ and R⊥ in terms of θi for the air-water interface first and
then for the water-air interface.
(a) The plot of the reflectance for the case of n1 = 1 and n2 = 1.33 is show in
Fig. 13.15. We find that for normal incidence the fraction of power reflected is 2%
(R‖ = R⊥ = 0.02). For the perpendicular polarization, the fraction of energy reflected
increases with the angle of incidence andwhen θi approaches 90◦, 100% of the power
is reflected. For the component in the plane of incidence, the reflectance decreases
to zero at Brewster’s angle, θB = tan−1 = n2/n1 = 1.33 = 53.06◦, and then exhibits
the same behaviour as the reflectance for the perpendicular polarization.
(b) For the interface water-air, n1 > n2, we can find a critical angle θc at which
there is total reflection and then R‖ = 1 and R⊥ = 1. From (13.3), the critical angle
θc = sin−1(1/1.33) = 48.75◦. Beyond the critical angle, the wave is said to undergo
total reflection. Figure13.16 shows the plot of the reflectance versus θi for both
components. For angles of incidence greater than the critical angle, the reflectance
(modulus) is 1, hence the incident energy is reflected and no energy is transmitted to
the second medium. At normal incidence, we find the same values for the reflectance
as those for the air-water interface. The reflectance for the perpendicular polarization
increases with θi until the critical angle is reached. For the component in the plane of
incidence, the reflectance becomes zero at Brewster angle θB = 36.94◦, as expected.
For θi > θB, R‖ increases sharply with θi until the incident angle equals the critical
angle.

Problems B

13.11 Figure13.17 shows an optical fiber surrounded by a material of lower refrac-
tive index, known as cladding. Find the maximum angle of incidence θi for
rays incident on the core’s end face to be trapped inside the core. Consider
that air has a refraction index of 1.
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Fig. 13.16 Reflectance R‖
(continuous line) and R⊥
(dashed line) plotted versus
θi for a water-air interface
n1 = 1.33 and n2 = 1.
Brewster’s angle is
θB = 36.94◦ and critical
angle θc = 48.75◦
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Solution

Figure13.17 shows a ray meeting the air-core boundary at an angle θi, measured
relative to a line normal to the boundary. The angle of refraction at P1 is θt . At P2 on
the interface between the core and the cladding, Snell’s law gives

n1 sin θ′
i = n2 sin θ′

t,

where n1 and n2 are the indices of refraction of the core and cladding (n1 > n2),
respectively. Note that θt and θ′

i are complementary angles, i.e. θt = 90◦ − θ′
i . Then,

we can infer the following relationship, between the angles of incidence at P1 and
P2, by applying Snell’s law at P1 on the interface between the air and the core:

na sin θi = n1 sin θt = n1 sin(90◦ − θ′
i) = n1 cos θ′

i ⇒ cos θ′
i = na sin θi

n1
,

(13.18)
where na is the refractive index of air (na ≈ 1). The critical angle at P2 is determined
by

sin θ′
c = n2

n1
.

For internal reflection to take place, the angle of incidence at P2 must satisfy

Fig. 13.17 Sketch of an optical fiber showing the core, the cladding, and the path followed by a
ray incident at the core’s end face with an angle θi
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θ′
i ≥ θ′

c ⇒ cos θ′
i ≤ cos θ′

c =
√
1 − sin2 θ′

c =
√

1 −
(
n2
n1

)2

. (13.19)

Rays that meet the core-cladding boundary at an angle greater than the critical angle
are completely reflected. For this condition to be satisfied, it follows from (13.18)
and (13.19) that the following equation must hold

cos θ′
i = na sin θi

n1
≤

√

1 −
(
n2
n1

)2

⇒ sin θi ≤ 1

na

√
n21 − n22.

Then, the maximum angle of incidence is given by

sin θi,max = 1

na

√
n21 − n22. (13.20)

Using this equation, we can calculate the maximum angle of incidence (acceptance
angle) at which the rays incident on the core’s end face are trapped inside the core
by total internal reflection.

13.12 The refractive index of mammalian tissues can be measured by using a fiber
optic cladding method [105] based on substituting the usual cladding by the
tissue under study and utilizing the principle of total internal reflection. If
a He-Ne laser, with wavelength 632nm, is used as a light source, the core
made from fused quartz with refractive index nq = 1.457 at 632nm, and the
half-angle of the emergent cone of light from the output of the optical fiber is
23.8◦, find the refractive index of the tissue.

Solution

In reference [105], a method formeasuring the refractive index ofmammalian tissues
is described, which is based on the principle of internal reflection at the core-cladding
interface. If the refractive indices of air and quartz are known, and the angle of the
emergent cone of light from the output of the fiber is measured, the refractive index
of the tissue can be calculated from (13.20).

Figure13.18 shows a sketch of a typical optical fiber. The core is made from fused
quartz with refractive index nq = 1.457, at the wavelength of He-Ne laser light, and
the cladding is a tissue with a refractive index nt < nq. The incident beam comes
from air and enters the fiber at the acceptance angle, θa, which is the maximum angle
of a ray hitting the fiber core that is kept within the core. Then, total reflection takes
place at the quartz-tissue interface. It should be noted that the half-angle of the cone
at the exit of the fiber is equal to θa. It follows from (13.20) that the refractive index
of the tissue, nt , can be expressed in terms of the refractive index of the core, nq, the
refractive index of air, na, and the aperture angle, θa,

sin θa = 1

na

√
n2q − n2t ⇒ nt =

√
n2q − (na sin θa)2.
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Fig. 13.18 Sketch showing an optical fiber.An incident light ray is first refracted and then undergoes
total internal reflection at the core-cladding interface. Cladding is substituted by mammalian tissue
for which refractive index is to be measured. Light acceptance cone is shown

By substituting the numerical values into the above equation, the refractive index of
the tissue is

nt =
√
1.4572 − (1 × sin 23.8◦)2 = 1.40.

13.13 (a) Determine the phase velocity for a harmonic plane wave of frequency f
propagating in a homogeneous ionized gas with N electrons per unit volume.
(b) Calculate the lowest frequency of the wave that can propagate through the
ionized gas. (c) For a wave perpendicularly incident on the interface between
vacuum and a layer of an ionized gas with N = 1010 m−3, determine the
frequencies of the waves that can penetrate into the layer. What are such
frequencies for N = 1012 m−3? (d) For oblique incidence on an interface
between vacuum and a layer of an ionized gas with N = 1012 m−3, calculate
the lowest frequency of the wave that can penetrate into the layer if the angle
of incidence is θi = 30◦. Mass of electronme = 9.1 × 10−31 kg and electronic
charge −e = −1.6 × 10−19 C.

Solution

(a) Electrons are much lighter than positive ions and, therefore, they are accelerated
more by the electric field of electromagnetic waves passing through the ionized gas.
At a given point in the medium, the electric field associated with a plane electro-
magnetic wave of angular frequency ω = 2πf can be expressed as E = E0 sin (ωt).
If there are N electrons per unit volume, with mass me and charge e, the equation of
motion of each electron and the velocity v due to the electric field of the wave are
given by

me
dv
dt

= −eE0 sin (ωt) ⇒ v = e

meω
E0 cos(ωt).

Note the integration constant can be disregarded by choosing an appropriate origin
in time. The current density j is

j = −Ne v = − Ne2

meω
E0 cos(ωt).

Maxwell’s equation for B becomes
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∇ × B = μ0 j + μ0ε0

∂E
∂t

= −μ0Ne2

meω
E0 cos(ωt) + μ0ε0ωE0 cos(ωt)

= μ0ε0

[
1 − Ne2

meε0ω
2

]
ωE0 cos(ωt)

= μ0ε0

[
1 − Ne2

meε04π2f 2

]
2πfE0 cos(2πft).

The result obtained shows that the propagation of electromagneticwaves in an ionized
gas with N electrons per unit volume can be analyzed as if the wave propagates in a
dielectric with “an effective permittivity” ε,

ε = ε0

(
1 − Ne2

meε04π2f 2

)
= ε0

(
1 − f 2c

f 2

)
,

where f 2c = Ne2/meε04π
2. Hence, in the ionized gas, the phase velocity and the

refractive index n can be expressed as

v = 1√
μ0ε

= 1
√

μ0ε0(1 − f 2c /f 2)
= c

√
1 − f 2c /f 2

⇒ n = c

v
=

√

1 − f 2c
f 2

. (13.21)

(b) When f < fc, (13.21) shows that the phase velocity is imaginary, which does not
make physical sense. Waves with frequencies less than fc cannot propagate through
the ionized gas. On the other hand, if f > fc, electromagnetic waves will propagate
in the ionized gas. The frequency fc is referred to as the critical frequency (or cutoff
frequency). For electrons, with e = 1.6 × 10−19 C, me = 9.1 × 10−31 kg,

fc =
√

Ne2

meε04π2
=

√
N × (1.6 × 10−19)2

9.1 × 10−31 × 8.854 × 10−12 × 4π2
= √

80.5N ≈ 9
√
N .

(13.22)
(c) For perpendicular incidence, θi = θt = 0, i.e. the direction of the refracted ray is
the same as that of the incident. The velocity of propagation in the ionized layer is
given by (13.21). ForN = 1010 m−3, (13.22) gives fc = 0.9MHz,while forN = 1012

m−3 we have fc = 9MHz. Therefore, for N = 1010 m−3, if a wave with frequency
f < 0.9MHz impinges perpendicularly on the ionized gas layer, the wave will be
totally reflected. On the other hand, the wave will penetrate through the gas if f >

0.9MHz. For perpendicular incidence and N = 1012 m−3, waves with frequencies
greater than 9MHz can penetrate through the gas.
(d) For critical incidence, θt = π/2, with n1 = 1 and the index of refraction of the
the ionized gas given by (13.21), Snell’s law gives

n1sin θi = n2sin θt ⇒ 1 × sin θi =
√

1 − f 2c
f 2

sin
(π

2

)
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⇒ f 2c
f 2

= 1 − sin2 θi = cos2 θi ⇒ f = fc
cos θi

.

Then, for θi = 30◦, the lowest frequency of the waves that can propagate through
the gas is

f = fc
cos θi

= 9

cos 30◦ MHz ≈ 10.4MHz,

where fc = 9MHz forN = 1012 m−3, as seen in (c). Frequencies lower than10.4MHz
make sin θt in Snell’s law be greater than 1 and, hence, such frequencies cannot
penetrate into the gas. On the other hand, waves with f > 10.4MHz will propagate
through the gas.

13.14 The ionosphere is a layer of ionized gas around the earth. If the refractive

index of the ionosphere can be expressed as ni =
√
1 − λ2

C , where λ is the
wavelength of the wave and C is a constant, (a) find the wavelength of the
shortest radiowave that can be totally reflected by the ionosphere. It is assumed
that the ionosphere has a sharp boundary at an altitude H above the surface
of the Earth. The wave is emitted, at a given angle θe, by an emitter E on
the surface of the earth, as shown in Fig. 13.19. (b) For θe = 0 and π/2, find
the wavelength of the shortest totally reflected wave. (c) For H ≈ 300km,
R ≈ 6371km, andC ≈ 103 m2, find the wavelength of the shortest radio wave
that can be totally reflected from the ionosphere.

Solution

In a region extending from a height of about 50km to over 500km, molecules of
the atmosphere are ionized by radiation from the Sun. This region is called the
ionosphere. The altitude and character of the ionized layers depend on the nature
of the solar radiation and on the composition of the atmosphere. Ionization of the
ionosphere varies greatly with the time of day, the season, and other factors. An
important feature of the ionosphere is that it makes it possible for the reflection
of radio waves. However, only those waves within a certain wavelength range (or
frequency range) will be reflected. Critical wavelengths (or frequencies) change with

Fig. 13.19 Emitter E on the
surface of Earth emits a
plane wave with angle θe that
is reflected when entering the
ionosphere. θi and θt denote
the angles of incidence and
that of refraction,
respectively, at the boundary
“atmosphere-ionosphere”. R
represents the radius of Earth
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time of day, atmospheric conditions, and the emission angle. The greater the density
of electrons, the shorter the wavelength (or the higher the frequencies) that can be
totally reflected. The electron density of the ionosphere ranges from about 1010 m−3,
in the lowest layer, to 1012 m−3 in the highest layer. At night, the lower regions
become very much depleted of free electrons, and only radio waves with the longest
wavelengths can be totally reflected.

In this problem, a simple model of the ionosphere is considered, consisting of a
layer at an altitude H above the surface of the Earth. It is assumed that ionization
varies sharply at the boundary between the atmosphere and the ionosphere.
(a) Figure13.19 shows a wave leaving the Earth at an angle θe. From Fig. 13.19, it
follows,

sin θi

R
= sin (π − θe)

H + R
= sin θe

H + R
⇒ sin θi = R

R + H
sin θe = sin θe

1 + H/R
.

Snell’s law at the interface “atmosphere-ionosphere” gives

na sin θi = ni sin θt ⇒ 1 × sin θe

1 + H/R
=

√

1 − λ2

C
× sin θt, (13.23)

where the refractive index for the atmosphere na is assumed to be approximately
equal to 1.

Total reflection begins for θt = π/2, which gives the smallest wavelength in
(13.23) for total reflection to occur. Then, the smallest wavelength, denoted by λc,
which can be totally reflected for a given θe is given by

1 × sin θe

1 + H/R
=

√

1 − λ2
c

C
× sin

(π

2

)
⇒ λc =

{

C

[

1 −
(

sin θe

1 + H/R

)2
]}1/2

.

(13.24)
Thus, waves with λ < λc are transmitted into the ionosphere, whereas waves with
λ > λc are totally reflected.
(b) At vertical incidence, θe = 0, (13.24) gives

λc = √
C, (13.25)

which corresponds to the largest λc. For θe = π/2, then the wave is sent off in the
direction of the horizon, thus it follows from (13.24) that

λc =
{

C

[

1 −
(

1

1 + H/R

)2
]}1/2

≈
{
C

[
1 −

(
1 − 2H

R

)]}1/2

=
[
C × 2H

R

]1/2
, (13.26)

which corresponds to the smallest wavelength obtained with the model proposed that
can be totally reflected from the ionosphere.
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Fig. 13.20 Communications
between stations on the Earth
using the reflection of waves
from the ionosphere

(c) Equation (13.26) provides the smallest λc,

λc ≈
[
C × 2H

R

]1/2

=
[
103 × 2 × 300

6371

]1/2

= 9.7 (m).

Therefore, if we wish to use the ionosphere as a reflector of radio waves for commu-
nicating between stations on the Earth, as shown in Fig. 13.20, waves shorter than
approximately 10 m cannot be used. On the other hand, if we wish to communicate
with a satellite beyond the ionosphere, we must use shorter wavelengths to ensure
wave penetration through the ionosphere.

13.15 Linearly polarized light is incident along the normal of faceAB of a glass prism
of refractive index n = 1.5, as shown in Fig. 13.21. Calculate the percentage of
the intensity of incident light reflected back by the prism when light emerges
from the glass into the air in the opposite direction of the incident beam.

Solution

When the incident light impinges on face AB at normal incidence, from Snell’s law
we have: θi = θt = 0. At the air-glass interface, (13.5) gives for the transmission
coefficient, denoted by t1,

t1 = t‖ = t⊥ = 2na
na + n

,

where na represents the refractive index of air, na ≈ 1. Then, the amplitude of the
transmitted wave at face AB, E0t1, in terms of the amplitude of the incident wave,
E0i, can be expressed as E0t1 = t1E0i.

Intensity Iw (the average Poynting vector) can be expressed in terms of n as

Iw = 1

2
εvE2

0 = 1

2
ε0ncE

2
0 , (13.27)

where it has been taken into account that n = c/v = √
εrμr , and that for materials

with negligible magnetic properties μr � 1 and, hence, n � √
εr . Therefore, at face

AB, the intensities of the incident beam Ii and that of transmitted beam It1 can be
written, respectively, as
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Fig. 13.21 Light enters the
prism along the normal of
face AB, undergoes total
internal reflection twice from
the sloped faces, and exits
again through face AB

Ii = 1

2
ε0nacE

2
0i and It1 = 1

2
ε0ncE

2
0t1 = 1

2
ε0nct

2
1E

2
0i.

Then, the ratio of the intensity of the transmitted wave to that of the incident wave,
results in

It1
Ii

= n

na
t2t1 = n

na

(
2na

na + n

)2

= 4nna
(n + na)2

. (13.28)

The light continues straight on until it hits the back face AC. Total internal reflec-
tion occurs at AC when

n sin θc = na sin
π

2
⇒ sin θc = na

n
= 1

1.5
⇒ θc = sin−1 1

1.5
= 41.8◦.

The light strikes the surface AC at 45◦, which is greater than the critical angle. After
that, the totally reflected ray falls on face CB at 45◦ and it is again totally reflected.
Note that no light is refracted out of the prism at faces AC and BC. Following the ray
path shown in Fig. 13.21, the ray then hits surfaceAB along its normal and exits again
through the glass-air interface. At this interface, (13.5) gives for the transmission
coefficient

t2 = 2n

n + na
,

where it has been taken into account that θi = θt = 0. Denoting the intensity of the
beam transmitted to air by It2, at glass-air interface AB, the quotient of the intensities
of the transmitted and incident beams can be expressed as

It2
It1

= na
n
t22 = na

n

(
2n

na + n

)2

= 4nan

(n + na)2
,

where It1 corresponds to the incident intensity. As the light undergoes total reflection
twice, at BC and AC interfaces, the intensity incident on the glass-air interface (for
the exiting beam) is the same as that transmitted through the air-glass interface (for
the entering beam).

Substituting It1 given by (13.28) into the above equation, it follows that
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It2
Ii

= 4nna
(n + na)2

× 4nan

(n + na)2
= (4nna)2

(n + na)4
= (4 × 1.5 × 1)2

(1.5 + 1)4
= 0.92.

Then, the intensity of the beam exiting from face AB is 92% of the intensity of the
entering beam.

13.16 A plane harmonic wave linearly polarized is incident at the Brewster angle
on an interface between two dielectric media with n1 = 1.2 and n2 = 1.5
(Fig. 13.22). The electric field of the incident wave makes an angle of 60◦
with the normal to the plane of incidence. If the intensity of the incident wave
is 2 Wm−2, determine the intensities for the reflected and transmitted waves.

Solution

Equation (13.7) for the Brewster angle gives an angle of incidence of

tan θB = n2
n1

= 1.5

1.2
= 1.25 ⇒ θB = 51.34◦ = θi.

Then, according to (13.6) the angle of refraction is given by (Fig. 13.22)

θt + θB = 90◦ ⇒ θt = 90◦ − 51.34◦ = 38.66◦.

The incident linearly polarized wave can be expressed as

Ei = E0i cos(ki · r − ωt) = [E0i‖u‖ + E0i⊥u⊥] cos(ki · r − ωt),

E0i‖ = E0isin 60◦,
E0i⊥ = E0i cos 60◦,

}

where E0i = |E0i| is the amplitude of the incident wave and E0i‖ and E0i⊥ are the
amplitudes of the components parallel and normal to the plane of incidence, respec-
tively. u‖ and u⊥ represent the corresponding unit vectors in these directions. The
components of the incident wave, parallel and perpendicular to the incidence plane,
can then be expressed as

Ei‖ = E0i‖ cos(ki · r − ωt),
Ei⊥ = E0i⊥ cos(ki · r − ωt).

}

Fig. 13.22 Plane wave
incident obliquely on a plane
boundary at the Brewster
angle. The reflected wave is
linearly polarized along a
direction normal to the plane
of incidence
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From the intensity of the incident wave Ii, it is found from (13.27) that the ampli-
tude of the incident wave is given by

Ii = 1

2
ε0n1cE

2
0i ⇒ 2 = 1

2
× 8.85 × 10−12 × 1.2 × 3 × 108 E2

0i ⇒ E0i = 35.43 N/C.

Then, the amplitudes of the parallel and perpendicular components are, respectively,

E0i‖ = E0i sin60◦ = 35.43 sin 60◦ N/C = 30.68 N/C,

E0i⊥ = E0i cos 60◦ = 35.43 cos 60◦ N/C = 17.72 N/C.

}

From (13.4), and n1 = 1.2, n2 = 1.5, θi = 51.34◦, and θt = 38.66◦, the coeffi-
cients for the reflected wave are: r⊥ = −0.22 and r‖ = 0, as expected for Brewster
incidence. Then, the amplitudes of the components of the reflected wave are, respec-
tively,

E0r‖ = 0,
E0r⊥ = r⊥E0i⊥ = −0.22 × 17.72 � −3.90 N/C.

}

Finally, the intensity of the reflected wave will be

Ir = 1

2
ε0n1cE

2
0r = 1

2
× 8.85 × 10−12 × 1.2 × 3 × 108 × (0 + 3.902)W/m2 = 0.024 W/m2.

In the same way, for n1 = 1.2, n2 = 1.5, θi = 51.34◦, and θt = 38.66◦, (13.5)
yields: t‖ = 0.80 and t⊥ = 0.78. Then, the amplitudes of the components of the
transmitted wave are found to be

E0t‖ = t‖ E0i‖ = 0.80 × 30.68N/C = 24.54 N/C,

E0t⊥ = t⊥E0i⊥ = 0.78 × 17.72N/C = 13.82 N/C.

}

Thus, the intensity of the transmitted wave will be

It = 1

2
ε0n2cE

2
0t = 1

2
ε0n2c

(
E2
0t‖ + E2

0t⊥
)

= 1

2
× 8.85 × 10−12 × 1.5 × 3 × 108

(
24.542 + 13.822

)
W/m2 = 1.58 W/m2.

Problems C

13.17 A linearly polarized plane wave of frequency 100MHz is incident on an air-
glass interface at an angle of 30◦. The refractive index of the glass is n = 1.60.
The electric vector of the incident beam makes an angle of 45◦ with the
plane of incidence and has an amplitude of 25 V/m. (a) Find the reflection
and transmission coefficients. (b) Write the expressions for the reflected and
transmitted electric fields. (c) Describe the polarization state of the reflected
and transmitted beams.
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Fig. 13.23 Linearly
polarized plane wave
incident obliquely on an
air-glass boundary

Solution

(a) Application of Snell’s law to the air-glass interface with θi = 30◦, n1 ≈ 1, n2 =
1.6 gives θt = 18.2◦. From (13.4) and (13.5), we have for the Fresnel coefficients

r‖ = 1.60 × cos 30◦ − 1 × cos 18.2◦

1 × cos 18.2◦ + 1.60 × cos 30◦ = 0.19 t‖ = 2 × 1 × cos 30◦

1 × cos 18.2◦ + 1.60 × cos 30◦ = 0.74

r⊥ = 1 × cos 30◦ − 1.60 × cos 18.2◦

1 × cos 30◦ + 1.60 × cos 18.2◦ = −0.27 t⊥ = 2 × 1 × cos 30◦

1 × cos 30◦ + 1.60 × cos 18.2◦ = 0.73

(b)Let theXY planebe the planeof incidence, as shown inFig. 13.23.Thepropagation
vector for the incident wave can be then expressed as

ki = 2π

λ

(
sin 30◦ ux − cos 30◦ uy

) = 2π

3

(
1

2
ux −

√
3

2
uy

)

m−1, (13.29)

where λ denotes the wavelength in air, equal to λ ≈ c/f = 3 × 108/100 × 106 m =
3 m.

The incident wave is linearly polarized along a direction that makes 45◦ with the
plane of incidence. Then, the amplitude of the components parallel and perpendicular
to the plane of incidence are E0i‖ = E0i cos 45◦ and E0i⊥ = E0i sin 45◦, respectively,
where E0i is the amplitude of the incident wave. The components parallel and per-
pendicular of the incident electric field are then given by

Ei‖ = E0i‖ cos (ki · r − ωt) = E0i cos 45
◦ cos (ki · r − ωt)

= 25 ×
√
2

2
cos

[
2π

3

(
1

2
x −

√
3

2
y

)

− 2π × 108t

]

V/m

= 17.68 cos
(
1.05 x − 1.81 y − 6.28 × 108t

)
V/m,

Ei⊥ = E0i⊥ cos (ki · r − ωt) = E0i sin 45
◦ cos (ki · r − ωt)

= 25 ×
√
2

2
cos

[
2π

3

(
1

2
x −

√
3

2
y

)

− 2π × 108t

]

V/m

= 17.68 cos
(
1.05 x − 1.81 y − 6.28 × 108t

)
V/m,
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where it has been taken into account that the position vector is r = (x, y, z), ki is
given by (13.29), and ω = 2πf = 2π × 108 s−1.

The propagation vectors for the reflected and transmitted waves are, respectively,

kr = 2π

λ

(
sin 30◦ ux + cos 30◦ uy

) = 2π

3

(
1

2
ux +

√
3

2
uy

)

m−1,

kt = 2π

λ
n

(
sin 18.2◦ ux − cos 18.2◦ uy

) = 2π

3
× 1.60

(
0.31ux − 0.95uy

)
m−1.

Then, the reflected wave has the following components

Er‖ = E0i‖ r‖ cos (kr · r − ωt)

= 25 ×
√
2

2
× 0.19 cos

[
2π

3

(
1

2
x +

√
3

2
y

)

− 2π × 108t

]

V/m,

= 3.36 cos
(
1.05x + 1.81 y − 6.28 × 108t

)
V/m,

Er⊥ = E0i⊥ r⊥ cos (kr · r − ωt)

= 25 ×
√
2

2
× (−0.27) cos

[
2π

3

(
1

2
x +

√
3

2
y

)

− 2π × 108t

]

V/m,

= −4.77 cos
(
1.05 x + 1.81 y − 6.28 × 108t

)
V/m

= 4.77 cos
(
1.05 x + 1.81 y − 6.28 × 108t + π

)
V/m,

whereas for the components of the transmitted wave, we have

Et‖ = E0i‖ t‖ cos (kt · r − ωt)

= 25 ×
√
2

2
× 0.74 cos

[
2π

3
× 1.60 (0.31 x − 0.95 y) − 2π × 108t

]
V/m

= 13.08 cos
(
1.04 x − 3.18 y − 6.28 × 108t

)
V/m,

Et⊥ = E0i⊥ t⊥ cos (kt · r − ωt)

= 25 ×
√
2

2
× 0.73 cos

[
2π

3
× 1.60 (0.31 x − 0.95 y) − 2π × 108t

]
V/m

= 12.90 cos
(
1.04 x − 3.18, y − 6.28 × 108t

)
V/m.

(c) The phase difference between the perpendicular and parallel components of the
reflected wave is

(
ϕ0⊥ − ϕ0‖

)
r = π. Therefore, the wave is linearly polarized, the

electric field of the reflected wave makes an angle with the plane of incidence of

tan θr = Er⊥
Er‖

= −4.77

3.36
⇒ θr = −54.84◦.
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For the transmitted wave,
(
ϕ0⊥ − ϕ0‖

)
t = 0, and, hence, the transmitted wave is

linearly polarized, its electric field making an angle with the plane of incidence of

tan θt = Et⊥
Et‖

= 12.90

13.08
⇒ θt = 44.60◦.

13.18 A right-handed circularly polarized electromagnetic wave is incident on a
glass-air interface, as shown in Fig. 13.24. The incident wave has an intensity
of 20 × 10−4 Wm−2. When the reflected wave is linearly polarized along a
direction perpendicular to the plane of incidence, the angle of incidence is
33.69◦. (a) Find the intensity of the reflected wave. (b) Describe the state
of polarization of the transmitted wave. (c) Determine the intensity of the
transmitted wave.

Solution

Since the incident wave is circularly polarized and the reflected wave is linearly
polarized, the wave is incident at the Brewster angle, θi = θB = 33.69◦. The angle of
refraction can be obtained from (13.6), θt = 90◦ − 33.69◦ = 56.31◦. At the Brew-
ster incidence, (13.7) gives for the refractive index of the glass through which the
electromagnetic wave is propagating

tan θB = n2
n1

⇒ tan 33.69◦ = n2
n1

⇒ n1 = n2
tan 33.69◦ = 1

tan 33.69◦ = 1.50,

where the refractive index of air is assumed to be n2 ≈ 1.
The amplitude of the components of the incident wave can be calculated from the

intensity of the incident wave Ii, which for a circularly polarized wave is given by

Ii = ε0n1cE
2
0i ⇒ 20 × 10−4 = 8.85 × 10−12 × 1.5 × 3 × 108 E2

0i ⇒ E0i = 0.71 N/C.

Then, the parallel and perpendicular components can be expressed as

Ei‖ = E0i sin(ki · r − ωt + π/2) = E0i cos(ki · r − ωt) = 0.71 cos(ki · r − ωt) N/C,

Ei⊥ = E0i sin(ki · r − ωt) = 0.71 sin(ki · r − ωt) N/C,

}

where it has been taken into account that for a right-handed circularly polarized wave
(ϕ0‖ − ϕ0⊥)i = π/2.

Fig. 13.24 Circularly
polarized plane wave
incident on a plane glass-air
interface
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(a) For n1 = 1.5, n2 = 1, θi = 33.69◦, and θt = 56.31◦, (13.4) for the reflection
coefficients gives r‖ = 0, as expected, and r⊥ = 0.38. Then, the amplitudes of the
components of the reflected wave are, respectively,

E0r‖ = 0,
E0r⊥ = r⊥E0i = 0.38 × 0.71 = 0.27 N/C.

}

Thus, the intensity of the reflected linearly polarized wave is equal to

Ir = 1

2
ε0n1cE

2
0r = 1

2
× 8.85 × 10−12 × 1.5 × 3 × 108 × 0.272 W/m2 = 1.45 × 10−4 W/m2.

(b) Equation (13.5) yields for the transmission coefficients: t‖ = 1.50 and t⊥ = 1.38.
The amplitudes of the components of the transmitted wave will be

E0t‖ = t‖ E0i = 1.50 × 0.71 = 1.07 N/C,

E0t⊥ = t⊥E0i = 1.38 × 0.71 = 0.98 N/C,

}

and the components of the transmitted wave are then given by

Et‖ = 1.07 cos(kt · r − ωt) = 1.07 sin(kt · r − ωt + π/2) N/C,

Et⊥ = 0.98 sin(kt · r − ωt) N/C,

}

which corresponds to a right-handed elliptically polarizedwave since (ϕ0‖ − ϕ0⊥)t =
π/2 and E0t‖ �= E0t⊥.
(c) Finally, the intensity of the transmitted wave can be expressed as

It = 1

2
ε0n2cE

2
0t = 1

2
ε0n2c

(
E2
0t‖ + E2

0t⊥
)

= 1

2
× 8.85 × 10−12 × 1 × 3 × 108 ×

(
1.072 + 0.982

)
W/m2 = 2.79 × 10−3 W/m2.

13.19 A linearly polarized plane harmonic wave is incident normally on a plane
boundary between two dielectric media, denoted 1 and 2, with permeabilities
μ1 = μ2 = μ0 and refractive indices n1 and n2, respectively, see Fig. 13.25a. In
order to eliminate the reflectedwave, a plane parallel dielectric layer is inserted
between the two media, as shown in Fig. 13.25b. Determine the thickness of
the layer L and its refractive index n′ so that the condition of no reflection is
fulfilled.

Solution

Let OY direction be along the polarization direction of the incident electromagnetic
plane wave, as shown in Fig. 13.26. Then, for simplicity, using complex notation, the
electric field vector of the incident wave can be written as
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Fig. 13.25 a A plane wave
is incident normally on the
interface between two
dielectrics. b A dielectric
layer is inserted between the
two media in order to
eliminate the reflected wave

(a) (b)

Ei = (
E0i uy

)
e
jω

(
t− x

v1

)

= (
E0i uy

)
ej(ωt−k1x),

where v1 is the velocity in medium 1 and the wavenumber k1 = ω/v1. The corre-
sponding magnetic field H is given by

Hi =
(

E0i

μ0v1
uz

)
ej(ωt−k1x) =

(
n1E0i

μ0c
uz

)
ej(ωt−k1x).

Transmitted and reflected waves are generated by the incident wave impinging on
the dielectric layer at the interface x = 0. In the dielectric layer, the transmitted wave
in turn will give rise to reflected and refracted waves at x = L. The wave returning
back into the layer will be reflected and transmitted, in turn, at x = 0. As a result of
the multiple reflections at the two boundaries, two set of waves will be propagating
in opposite directions through the dielectric layer, denoted byE′

t andE
′
r in Fig. 13.26.

Note that these waves can be considered to be the result of the interference of the
multiple reflected and transmitted waves at the two boundaries. The resulting wave
from the superposition of the transmitted waves into medium 2 is denoted by Et and
the resulting reflected wave travelling in medium 1 is represented byEr . These waves
can be expressed as

Er = (
E0r uy

)
e
jω

(
t+ x

v1

)

= (
E0r uy

)
ej(ωt+k1x), x < 0,

E′
t = (

E′
0t uy

)
ejω(t−

x
v′ ) = (

E′
0t uy

)
ej(ωt−k′x), 0 < x < L,

E′
r = (

E′
0r uy

)
ejω(t+

x
v′ ) = (

E′
0r uy

)
ej(ωt+k′x), 0 < x < L,

Et = (
E0t uy

)
e
jω

[
t− (x−L)

v2

]

= (
E0t uy

)
ej[ωt−k2(x−L)], x > L,

where E0r, E′
0t, E

′
0r, and E0t represent complex amplitudes. The boundary conditions

must be satisfied simultaneously at the two interfaces.
The field H associated with the above expressions for the electric fields can be

written as
Hr = n1E0r

μ0c
(−uz)ej(ωt+k1x), x < 0,

H′
t = n′E′

0t
μ0c

(uz)ej(ωt−k′x), 0 < x < L,

H′
r = n′E′

0r
μ0c

(−uz)ej(ωt+k′x), 0 < x < L,

Ht = n2E0t
μ0c

(uz)ej[ωt−k2(x−L)], x > L.
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Fig. 13.26 Coordinate system in a plane parallel dielectric layer. Ei is the incident wave, Er is the
reflected wave, and Et represents the resulting wave transmitted out of the layer. As a result of the
multiple reflections at the boundaries, two waves,E′

r andE
′
t , are propagating in the layer in opposite

directions

The continuity of Ey requires that at x = 0

E0i + E0r = E′
0t + E′

0r,

where the common factor ejωt is omitted. At x = L, the boundary conditions gives

E′
0te

−jk′L + E′
0re

jk′L = E0t.

The continuity of Hz requires that at x = 0

n1E0i − n1E0r = n′E′
0t − n′E′

0r.

For x = L, the continuity of Hz gives

n′E′
0te

−jk′L − n′E′
0re

jk′L = n2E0t.

Rearranging the above set of equations, the following system of linear equations
is obtained

−E0r + E′
0t + E′

0r + 0 = E0i,

n1E0r + n′E′
0t − n′E′

0r + 0 = n1E0i,

0 + E′
0te

−jk′L + E′
0re

jk′L − E0t = 0,

0 + n′E′
0te

−jk′L − n′E′
0re

jk′L − n2E0t = 0,

where E0i is assumed to be known. From the condition of no reflection, E0r must be
zero, and, therefore, by applying Crammer’s rule, it follows that
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∣
∣
∣
∣
∣
∣
∣
∣

E0i 1 1 0
n1E0i n′ −n′ 0
0 e−jk′L ejk

′L −1
0 n′e−jk′L −n′ejk′L −n2

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Manipulation of the determinant, dividing the first column by E0i, and subtracting
the first row multiplied by n1 from the second row, gives

∣
∣
∣
∣
∣
∣
∣
∣

0 n1 − n′ n1 + n′ 0
n1 n′ −n′ 0
0 e−jk′L ejk

′L −1
0 n′e−jk′L −n′ejk′L −n2

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Multiplying the third row by n′ and addition and substraction of the third and fourth
rows leads to ∣

∣
∣
∣
∣
∣
∣
∣

0 n1 − n′ n1 + n′ 0
n1 n′ −n′ 0
0 2n′e−jk′L 0 −n′ − n2
0 0 2n′ejk′L −n′ + n2

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Evaluating this determinant, we have

(n1 − n′)
(
2n′ejk

′L
)

(n′ + n2) − (n1 + n′)
(
2n′e−jk′L

)
(−n′ + n2) = 0 ⇒

(2n1n
′ − 2n′n2)cos(k′L) + j sin(k′L)(−2n′2 + 2n1n2) = 0.

The real part is zero if

(2n1n
′ − 2n′n2)cos(k′L) = 0 ⇒ n1 = n2 or cos(k′L) = 0 ⇒ k′L = π

2
+ Nπ.

Only the second solution is valid since the first one would imply that there is no
change in medium properties. For the imaginary part to be zero

sin(k′L)(−2n′2 + 2n1n2) = 0 ⇒ sin(k′L) = 0 or n′ = √
n1n2,

where only the second solution is valid. The first condition cannot be satisfied
because the solution chosen for the real part to be zero is cos(k′L) = 0 and, therefore,
sin(k′L) = ±1.

Therefore, the conditions for no reflection are

k′L = π

2
+ Nπ and n′ = √

n1n2.
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Note that the first condition determines the thickness of the layer, whereas the second
one the value of the refractive index. The first condition can be expressed as

k′L = π

2
+ Nπ ⇒ L = λ′

4
(1 + 2N) ⇒ n′L = λ0

4
(1 + 2N),

where λ′ is the wavelength in the dielectric layer and λ0 the wavelength in vac-
uum. The dielectric layer thickness must be an odd multiple of λ′/4 for no light to
be reflected from the surface and the dielectric layer will then be an antireflection
coating.



Chapter 14
Wave Propagation in Anisotropic Media

Abstract In this chapter we will develop the basic electromagnetic characteristics
that account when plane electromagnetic radiation propagates throughout an
anisotropic linear material. With this aim it is necessary to explain the concept of
anisotropy. In order to be clear we will begin with some easy examples that will
allow us to understand, not only what does it mean, but also the importance of such
a concept in physics.

14.1 Concept of Anisotropy

Let us suppose a rubber balloon is inflated with air. If the balloon is pressed with the
same force at two symmetrical points of its surface in opposite directions, it deforms
and change its shape. If we repeat the same experiment but from other directions, we
will observe the same result, i.e. the system deforms in a similar way. It means that
the deformation of the balloon does not depend on the direction of the force applied.
In this case we say that the system is isotropic. The reason for this may be found in
the specific characteristics of the gases. As it is well known, the interaction between
the particles constituting the gas (atoms or molecules) is low enough, then permitting
them to move easily inside the volume. As a result, when a force is applied particles
change their positions in space adapting themselves to the new form of the boundary
(rubber). An identical result is observed if the balloon is filled with a liquid. A typical
example in thermodynamics occurs when fluid inside of a cylinder, enclosed with a
piston, is compressed. In this case the compressibility coefficient remains constant
independently of the direction in which the piston is located over the fluid. When
analyzing solids we have many examples too. In fact, let us suppose an elastic body
as shown in Fig. 14.1. Let us cut a slender bar in an arbitrary direction (rod 1). If
we are interested in determining elastic mechanical properties, we will measure its
Young’s modulus and Poisson’s ratio. Now, choose another direction in space and
take another sample (rod 2). If the result obtained is the same we will say that the
mechanical behavior of the solid is isotropic with respect to an external load. The
same idea applies when the external excitation is the temperature, electric field or

© Springer-Verlag Berlin Heidelberg 2017
F. Salazar Bloise et al., Solved Problems in Electromagnetics,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-662-48368-8_14
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Fig. 14.1 Samples 1 and 2
in two directions

magnetic strength. However, not all systems in nature behave in the same manner,
as in the case of crystals.

Unlike the former examples, crystals are composed by an infinite repetition of
identical structural units in space. This unit may be one atom or a more complex
structure formed by many atoms of molecules. In general all the possibilities we
have to form a crystal can be faced by mean points separated periodically from one
another at which we have placed a set of atoms. This array of points are called the
lattice of the crystal and the group of atoms, ions or molecules is said to be the basis.
In this sense we can rigourously define a crystal like a lattice plus a basis.1 Due
to the different dispositions of the units in the space mentioned, the characteristics
of crystals are basically anisotropic. With this word we mean that, in general, the
physical properties depend on the direction chosen. For instance, it is from well
known daily experience that, that when the temperature of a material is modified
it deforms. The same occurs in crystals, but the change of the shape depends on
the direction examined (anisotropic), therefore this shows that depending on the
direction, the thermal expansion behaves in a different way.

In what follows in this chapter, we will focus the analysis on the behavior of the
radiation when interacting with matter which is anisotropic to electric excitations.
Specifically, we will find that, owing to the non-isotropic polarization response of a
system to an external electric field, propagation of a light beam throughout a body
differers from the usual behavior in isotropic matter.

An intermediate case is represented by the liquid crystal, which combine proper-
ties of liquids and crystalline solids. Liquid crystals share with solids some kinds of
partial orientational order (symmetries) and with liquids its possibility to flow like a
fluid, thus having properties of both states. Depending on the symmetries and orien-
tation of its molecules we find different families of liquid crystals. In principle, the

1There are 14 lattices in three dimensions which are known as Bravais lattices, and 7 crystal systems
namely, cubic, tetragonal, orthorhombic, monoclinic, triclinic, trigonal, and hexagonal. Besides,
from the viewpoint of the crystallography we have 32 crystallographic point groups that a crystal
structure may have. They can be generated by symmetry operations which, leaving one point of
the crystal fixed, take the structure into itself. Additionally, if we allow translational symmetries in
three dimensions, we obtain that a lattice with a basis can have 320 space groups.
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basic form of the molecules that compose the liquid crystals are slender and disk-like
in shape, which leads to geometrical anisotropy. As a consequence, molecular and
atomic interactions are anisotropic too, giving rise to different internal states known
as mesophases. In this regard we can divide liquid crystals in some categories as
nematics, smetics, cholesterics2 and discotics. For optical applications nematic and
cholesteric liquid crystals are the most used because of their high anisotropic optical
properties. They are usually employed in many types of displays and optical system,
for instance.

14.2 Susceptibility and Permittivity Tensors Definition

When we studied dielectric materials in Chaps. 3 and 13 we supposed that their
properties, from an electrical point of view, were isotropic. It meant the body was
described by a dielectric constant only depending on the frequency ε = ε(ω). As a
consequence electromagnetic plane waves with a definite phase velocity and without
change in amplitude and polarization were possible. However, when the system is
not isotropic, the propagation of waves throughout is very different.

When an isotropic dielectric is submitted into an external electric field, we have
seen that its response is to polarize itself. Consequently, a dipolar moment per vol-
ume unit P appears. In the same way explained in the introduction there are many
solids that, due to the arrangement in space and properties of the individual atoms or
molecules, their physical response in the presence of an electric field E is to polarize
too, but differently for each direction. We can understand it by imagining that the
atoms regularly spaced (depending on the crystal system) do not have, necessarily,
the same electronic distribution for all directions. Due to this fact, it seem to be logical
that the polarization, which is very sensitive to molecular geometry and electronic
properties, depends on the direction in space.

The polarizationP that comes up fromapplying an electric fieldE to an anisotropic
medium may be represented by the following expression

⎡

⎣
Px

Py

Pz

⎤

⎦ = ε0

⎡

⎣
χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

⎤

⎦

⎡

⎣
Ex

Ey

Ez

⎤

⎦ , Pi = ε0χijEj (14.1)

This can be also written as P = ε0 ¯̄χeE, where ¯̄χe is called the susceptibility tensor.
Thus, when studying anisotropic media the relation between P and E is no longer a
scalar, as it occurs in isotropic systems. On the other hand, taking into account that
D = ε0E + P, we can write

D = ε0E + P = ε0E + ε0 ¯̄χeE = ε0(
¯̄I + ¯̄χe)E = ε0 ¯̄εrE = ¯̄εE (14.2)

2Cholesteric liquid crystals are in the literature also known as chiral nematic liquid crystals.

http://dx.doi.org/10.1007/978-3-662-48368-8_3
http://dx.doi.org/10.1007/978-3-662-48368-8_13
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Fig. 14.2 In this figure
OXYZ represents an arbitrary
coordinate frame in the body,
and ξηζ are the principal
axes of the system

where ¯̄I and ε̄r are the identitymatrix and the relative permittivity tensor, respectively.
Equation (14.2) shows that the displacement vector D won’t be either, in general,
parallel to E. Expanding (14.2) yields

⎡

⎣
Dx

Dy

Dz

⎤

⎦ =
⎡

⎣
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤

⎦

⎡

⎣
Ex

Ey

Ez

⎤

⎦ (14.3)

It can be demonstrated that susceptibility and permittivity tensors are symmetric.
This is to say that χij = χji and εij = εji.3 This property of symmetry for the tensor
does not depend on the reference system chosen for its representation. Due to this
symmetry, both tensor are diagonalizable. It means that we can always find a basis
where the representation of εij is diagonal, i.e. we only have terms in the diagonal of
the tensor

¯̄ε =
⎡

⎣
ε1 0 0
0 ε2 0
0 0 ε3

⎤

⎦ . (14.4)

As a consequence it may be demonstrated, that all its eigenvalues are real and the
corresponding eigenvectors are perpendicular to each other. The associated directions
to the eigenvectors are called principal directions, and its respective eigenvalues εi
(i = 1, 2, 3) are known as principal dielectric constants. In these directions the
corresponding components of E, D and P are parallel, then it follows (Fig. 14.2)

Dε = ε0εr1Eε = ε1Eε, (14.5)

Dη = ε0εr2Eη = ε2Eη, (14.6)

Dζ = ε0εr3Eζ = ε3Eζ . (14.7)

3In the development of this chapter wewill workwith non-activemedia, then all εij are real numbers.
This situation is different for an active material for which some components of εij may be complex.
In this case holds εij = ε∗

ji, i.e. the tensor is hermitian.
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An important fact is that the tensor εij (χij) represents a physical property, which is
totally independent from the choice of the reference frame. Therefore, if the axes are
modified, the physical property does not change, but only its representation.4

14.3 Maxwell’s Equations in an Anisotropic Linear
Medium Free of Charges and Currents

Let us imagine a magnetically isotropic medium, but with anisotropic dielectric
constants. Under these assumptions, we are interested in studying the propagation
of plane waves throughout the material, i.e. fields E, D, and H of the form

E = E0e
jkrejωt, (14.8)

D = D0e
jkrejωt, (14.9)

H = H0e
jkrejωt . (14.10)

For this propagation to occur, these waves must verify the Maxwell equations

∇ · D = 0, (14.11)

∇ × E = −∂B
∂t

, (14.12)

∇ × H = ∂D
∂t

, (14.13)

∇ · B = 0, (14.14)

and the material equations B = μ0H and D = ε0 ¯̄εrE. Then, introducing (14.8)–
(14.10) into (14.11)–(14.14) and considering ω ∈ [1014, 1016] s−1

D · k = 0 ⇒ D⊥k, (14.15)

k × E = μ0ωH, (14.16)

4To describe a symmetric tensor of second rank a quadric can be used. More specifically, a quadric
can be employed to describe a physical property that is represented by a tensor. In general we
can write (Sijxixj = 1), where Sij are its coefficients. They transform in the same manner like the
components of a second order symmetric tensor. If the quadric is referred to its principal axes it
takes the simplest form (it corresponds to the diagonal tensor), i.e. (S1x2+S2y2+S3z2 = 1), S1, S1,
and S3 being the principal components of the tensor Sij . Depending on the values and signs of Si,
(i = 1, 2, 3), the corresponding quadric surface may be a sphere, an ellipsoid, a hyperboloid of one
sheet or a hyperboloid of two sheets (there is also the possibility of imaginary ellipsoids).
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Fig. 14.3 a Vector D is
perpendicular to k. b As D is
perpendicular to H, taking
into consideration the figure
(a), the only possibility is
that D, k and H are
perpendicular to each other

(a)
(b)

Fig. 14.4 a Vectors B and H
have the same direction. b
Observe that the direction of
propagation of the phase
vibrations does not coincide
with the direction of the
electromagnetic beam
(Poynting’s vector)

(a) (b)

k × H = −ωD, (14.17)

and
k · H = 0 ⇒ k⊥H. (14.18)

These last equations give the relations among E, D, B andH for a given propagation
direction k. As a result, we can obtain some consequences. In fact, from (14.15)
we see that D is perpendicular to k. Equation (14.17) yields that D is perpendicular
to H (observe the sign (14.17)). In addition, k is perpendicular to H, then the only
possibility is that D, k and H are mutually orthogonal as represented in Fig. 14.3b.
Furthermore, E is perpendicular to H (14.16), but due to the anisotropy, in general,
its direction is not the same as D (Fig. 14.4a). This means that E lies in the same
plane defined byO,D, and k as shown in Fig. 14.4a. Therefore, we can conclude that
for anisotropic media the vector k and E are not perpendicular to one another. This
is an important result differing for those of the isotropic bodies.

With respect to B, as supposed that the medium is magnetically isotropic, then
B = μ0H. As a consequence, B and H have the same direction (Fig. 14.4b). Finally,
Poynting’s vector is perpendicular to E and H, thus its direction and the direction
of k are different (Fig. 14.4b). Physically it shows that, in general, the direction of
propagation of the wavefront does not coincide with the direction of the energy
propagation (Poynting’s vector S = E×H). However, D, E, k and S are in the same
plane (Fig. 14.4b).
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Once we know the basic structure of the fields inside of the anisotropic material,
we will deduce the equation relating the possible values of k with the electric field
E. With this aim, let us first multiply vectorially both members of (14.16) by k

k × E = μ0ωH → k × (k × E) = μ0ωk × E. (14.19)

Now, using (14.17) and (14.2) we obtain

(k · E) · k − k2E + μ0ω
2ε0 ¯̄εrE = 0 (14.20)

This result is a system of equations that relates the characteristics of the field E for
a given direction of k.

14.4 Electromagnetic Waves in Uniaxial Dielectrics

In this section we will examine the relations for the electromagnetic fields and the
vector k when the crystal has two of the three principal dielectric constants equal.
Let us suppose that ε2 = ε3 �= ε1. In this case the system to be studied has symmetry
of revolution around Oξ. When this occurs the crystal is said to be uniaxial and this
direction of symmetry is called the optic axis. Due to this invariance the pose of
the problem may be simplified by restricting k to the plane Oξζ. In fact, choosing
k = (kξ, 0, kζ) and the dielectric tensor referring to its principal axes, and introducing
k and E into (14.20) it leads to (Fig. 14.5) and the following set of equations

(−k2ζ + μ0ω
2ε1)Eξ + kξkζEζ = 0, (14.21)

(−k2ξ − k2ζ + μ0ω
2ε2)Eη = 0, (14.22)

kξkζEξ + (−k2ξ + μ0ω
2ε2)Eζ = 0, (14.23)

Fig. 14.5 a The vector k is
contained in the plane
formed by the principal axes
Oξ and Oζ. In order to
simplify, in this figure we
have chosen k in the
direction of OX . b Plane
view of the reference frames

(a)
(b)
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This system has two different solutions. In fact, examining (14.21)–(14.23) we see
that this system is verified if Eη �= 0 and Eξ = Eζ = 0. In this case, from (14.22) we
deduce that, for this possibility to occur the bracket in (14.22) must be zero, i.e.

− k2ξ − k2ζ + μ0ω
2ε1 = 0 −→ k2ξ + k2ζ = μ0ω

2ε2 = ω2

c2
εr2. (14.24)

If we label ω2

c2 = k20 and take into account that εr2 = n22, (14.24) may be rewritten as

k2ξ + k2ζ = ω2

c2
εr2 = ω2

c2
n22 = k20n

2
2. (14.25)

This last equation shows that the value of the modulus of k does not depend on the
direction. To see this in another way, let us consider the projections of the vector k
over the optic axis, i.e. kξ = k cos γ and kζ = −k sin γ, where γ is the angle between
k and ξ (see Fig. 14.6). Introducing them into (14.25) we have

k2 = k20n
2
2 −→ k = k0n2 = ω

√
ε0μ0εr2. (14.26)

The propagating waves inside of the crystal for this case are called ordinary waves
and the principal index n2 the ordinary index, which we will label no. Consequently,
the phase velocity of these waves is also constant, with value

vo = ω

ko
= 1√

ε0μ0εr2
= c√

εr2
, (14.27)

and the refractive index
no = c

vo
= √

εr2. (14.28)

On the other hand, the solution obtained for the electric field means that these waves
are linearly polarized.

With this information and applying (14.15)–(14.18), a scheme of the correspond-
ing fields is represented in Fig. 14.6. The second possibility is the opposite to that
last one, which means that Eη = 0, and Eξ �= 0 and Eζ �= 0. If it does occur, the

Fig. 14.6 a Schema of the
vector fields for the ordinary
wave. Observe that E and D
oscillate in the same
direction. b Plane view

(a) (b)



14.4 Electromagnetic Waves in Uniaxial Dielectrics 757

only way to have a non-trivial solution is that the determinant of the coefficients in
(14.21) and (14.23) be zero, i.e.

det

[
(−k2ζ + μ0ω

2ε1) kξkζ

kξkζ (−k2ξ + μ0ω
2ε2)

]
= 0. (14.29)

The solution of this determinant is

(k2ξn
2
1 + k2ζn

2
2)k

2
0 = n21n

2
2, (14.30)

which may be expressed in the following form

k2ξ
n22

+ k2ζ
n21

= n20. (14.31)

In this case the modulus of k does depend on the direction of propagation. As we
have seen in the case of the ordinary wave, the introduction of kξ = k cos γ and
kζ = −k sin γ into this former equation leads to

k2
(
cos2 γ

n22
+ sin2 γ

n21

)

= k20 −→ k(γ) = k0√
cos2 γ

n22
+ sin2 γ

n21

= ω
√

ε0μ0√
cos2 γ

εr2
+ sin2 γ

εr1

.

(14.32)

This expression for k shows that its value depends on the angle γ between the
propagation direction and the optic axis ξ.

To determine the polarization of the wave we use (14.21) together with (14.31),
obtaining

Eζ

Eξ
= −n21kξ

n22kζ

, (14.33)

which means that the wave is linearly polarized, because the quotient between Eζ

Eξ

is a constant for the corresponding values of kξ and kζ . Besides, as we can see
from the second solution the electric field is contained in the plane Oξζ. This new
wave whose electric field vibrates along the straight line defined by (14.33) is said
to be an extraordinary wave, and its corresponding principal index n1 is called the
extraordinary index, which we will denote by ne. As a consequence (14.32), the
velocity ve and refractive index ne must be functions of γ. Using the definitions
(14.27) and (14.28) for n and v, and identifying εr2 = εo and εr1 = εe with the
ordinary and extraordinary relative dielectric permittivities, respectively, we have

ve = ω

ke(γ)
= c

√
cos2 γ

εr2
+ sin2 γ

εr1
= c

√
cos2 γ

εo
+ sin2 γ

εe
, (14.34)
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(a)

(b)

Fig. 14.7 a Location of the vector fields in the reference frames OXYZ andOξηζ. Observe that for
the extraordinary wave E and D do not have the same direction. Vector D is orthogonal to k and H
((14.15) and (14.17)). b Plane view

and the refractive index

ne = c

ve(γ)
= 1

√
cos2 γ

εr2
+ sin2 γ

εr1

= 1
√
cos2 γ

εo
+ sin2 γ

εe

. (14.35)

Proceeding in the same way as before for the first solution, by virtue of (14.15)–
(14.18), we can draw the electromagnetic fields (Fig. 14.7). Observe that, contrary
to what occurs for the ordinary wave, the electric field E does not have the same
direction as D. However, D, E, k, and the optic axis are contained in the same plane.
To sum up these results we can say that, when a wave propagates throughout an
uniaxial medium it splits into two orthogonal linearly polarized waves, each one
travelling with different phase velocities (note that no = c

vo
and ne = c

ve
). In this

context it is important to understand that the velocity of propagation of a wave (in our
case the ordinary and the extraordinary wave) depends on the direction of vibration
of the field and not on the direction of the wave propagation. This dependence on
the field amplitude oscillation can be understood as follows.

Let us suppose that an anisotropic material is built by non-spherical atoms or
molecules as shown in Fig. 14.8. If due to its constitution and geometrical shape
the electrons are displaced from the center of charge, the molecule polarizes. The
resulting polarization is, in turn, proportional to the electric dipole moment per unit
volume and to the local field. This local field is the result of the superposition of
external electric field E and the dipole fields produced by the set of molecules. Thus,
if an external electric field interacts with the atoms in such a way that its direction
of oscillation coincides approximately with the polarization direction (Fig. 14.8a),
it would increase the polarization of the material. As a result, an increasing of the
refractive index will occur, leading to a slow velocity. On the contrary, if E acts more
or less perpendicular to the dipole fields (Fig. 14.8b), it will not enhance the dipole
moments resulting in a increasing of the velocity, and therefore a smaller refraction
index. Finally, from this reasoning we conclude that, linear polarized wave fields
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Fig. 14.8 a Molecule and
electric field along its easy
direction. b Here the electric
field is perpendicular to its
symmetry axis

(a) (b)

parallel to the polarizable axis of the molecules (usually its symmetry axis) travel
slower than linear polarized waves whose vibration directions are perpendicular to
the aforementioned axis.

14.5 Propagation of the Energy

As we have seen in Sect. 14.4, due to the fact that in anisotropic media the electric
field E and the vector k are not, in general, perpendicular to each other (see (14.15)–
(14.18)) and Fig. 14.4b, the energy does not propagate in the same direction as k
does. By using the definition of Poynting’s vector S = E × H, the structure of the
electromagnetic vectors in a plane perpendicular to H has been drawn in Fig. 14.9.
From this figure we can observe that, the planes of constant phase are perpendicular
to the vector k, but they do not move in this direction but in the direction of the
propagation of the energy given by S. This fact did not occur in the case of isotropic
materials for which k and S had the same direction. Due to this fact, the velocity
with which energy propagates is different as the phase velocity along the direction
of k. The relation between both velocities is given by

vS = vk

cosβ
, (14.36)

where vk is the velocity with respect to k (phase velocity), and vS is the velocity
along S, also known as ray velocity. Observe that both velocities coincide if the
propagation is along a principal axis of the crystal. In the case of uniaxial crystals we
can also deduce the relations among the electromagnetic vectors for the ordinary and
extraordinary waves. In effect, by again using (14.15)–(14.18), we obtain a scheme
as shown in Fig. 14.10 for the fields corresponding to both waves. Observe that,
owing to the electric field E having the same direction as D, Poynting’s vector and k
have the same direction for the ordinary wave too (Fig. 14.10). On the contrary, for
the extraordinary wave E and D are not collinear, then k and S propagate through
different directions (Fig. 14.11).Aswe can deduce fromFig. 14.11, the angle between
D and E is the same as the angle formed by k and S. Skipping the demonstration,
this angle may be calculated by means of the following relation
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Fig. 14.9 Disposition of the electromagnetic vectors in a general case for an anisotropic media.
Observe that the direction of propagation of k forms an angle β with the direction of the energy
propagation (Poynting’s vector S = E × H)

(a) (b)

Fig. 14.10 Ordinary wave. a Vector k is perpendicular to D and H, and S is orthogonal to E and
H. In this case, due to E and H are collinear, k and S have the same direction. b Plane view

(a)
(b)

Fig. 14.11 Extraordinary wave. a Here the direction of E and D differ and as a result k and S form
an angle β. b Plane view
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tan β = (n21 − n22) tan γ

n21 + n22 tan
2 γ

= tan β = (n2e − n2o) tan γ

n2e + n2o tan
2 γ

= (εe − εo) tan γ

εe + εo tan2 γ
. (14.37)

14.6 Geometrical Interpretation

From a geometrical point of view, (14.25) and (14.31) have an easy interpretation.
If we look at both equations considering the projections of k over the principal axes
Oξ and Oζ, we see that they represent two curves in the space of the k vectors.
In fact, (14.25) corresponds to a circumference and (14.31) to an ellipse. Actually
these curves in two dimensions are the intersections of a surface (quadric) with
the plane Oη. In general the vector k describes a surface which is known as the
wave vector surface. Therefore, the wave vector surface expressed by (14.25) is a
sphere and (14.31) an ellipsoid of revolution, because in uniaxial crystals two of the
three principal dielectric constants are equal. Taking into account the characteristics
found for the ordinary and extraordinary waves we have demonstrated in the former
sections, that it is possible to construct a section of the surfacewave vector for uniaxial
crystals. In both cases the surfaces are a sphere and an ellipsoid of revolution, whose
symmetry axis corresponds to the optic axis of the body. Figure14.12 represents the
two possibilities we can have. The first one (Fig. 14.12a) depicts a negative material

(a)
(b)

Fig. 14.12 a Uniaxial negative crystal (ne < no, (n1 < n2)). bUniaxial positive crystal (ne > no).
Observe that in the direction of the optic axis ko and ke are equal. Besides, in this last case, the
direction of propagation of the energy is the same for both waves and coincide with of the wave
vectors
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(ne < no) and in (b) a positive crystal is shown (ne > no).5 By these drawings we
can again examine the relations among the vectors of the waves. In general, for a
given direction of propagation we have two different wave vectors labelled as ko and
ke, corresponding to the ordinary and extraordinary waves, respectively. From this
construction it is obvious that the magnitude of ke depends on the angle γ formed
by this vector with the optic axis ξ. On the contrary, the modulus of ko is always the
same. Only if the propagation direction is along ξ vectors ko and ke are equal, which
means that the refractive index for both waves is the same (and their velocities). As
a consequence, when a wave travels throughout a crystal in the direction of the optic
axis it does not suffer the phenomenon of the double refraction. Physically, in this
case the crystal behaves like an isotropic material.

In how the energy propagation is concerned, in the ordinary wave Poynting’s
vector goes in the same direction as ko.6 For the extraordinary wave the direction of
Se differs from of ke, except in the direction of the optic axis (γ = 0).

14.7 Electromagnetic Waves in Biaxial Crystals

This section deals with the most general case of optical anisotropic crystals. In the
previous section we studied materials for which two of the three principal dielectric
constants were equal. In the present case, we will consider crystals with all principal
indices different, i.e. ε1 �= ε2 �= ε3. Because of these unequal dielectric constants
these specimens do not have any axis of symmetry. This kind of material is known
as biaxial, and the analysis of the wave propagation is more difficult.

The general pose of the problem can be solved by employing (14.20). Starting
from a reference frame ξηζ (where the dielectric tensor is diagonal), and setting into
(14.20) k = (kξ, kη, kζ), we obtain

(−k2η − k2ζ + μ0ω
2ε1)Eξ + kηkξEη + kξkζEζ = 0 (14.38)

kξkηEξ + (−k2ξ − k2ζ + μ0ω
2ε2)Eη + kηkζEζ = 0 (14.39)

kξkζEξ + kηkζEη + (−k2ξ − k2η + μ0ω
2ε3)Eζ = 0, (14.40)

5For example, calcite (ne = 1.5534, no = 1.6776), tourmaline (ne = 1.638, no = 1.669), sapphire
(ne = 1.760, no = 1.768) and ruby (ne = 1.762, no = 1.770) are negative, and quartz (ne =
1.553, no = 1.544), rutile (ne = 2.903, no = 2.616), and magnesium fluoride (ne = 1.385, no =
1.380) are positive.
6In Fig. 14.12 we have not represented the Poynting vector for the ordinary wave in order to not
drawmany vectors at the same figure. For the ordinary wave So is always orthogonal to the spherical
surface, thus following the same direction as ko.



14.7 Electromagnetic Waves in Biaxial Crystals 763

Fig. 14.13 Wave vector
surfaces. The intersect at a
point for which the k vectors
are equal. This direction is
called the optic axis of the
crystal

Fig. 14.14 Intersection of
the k-surfaces with the plane
kη = 0. Observe that two
optic axes appear

which may be expressed in a matrix form as follows

⎡

⎢
⎣

(−k2η − k2ζ + μ0ω
2ε1) kηkξ kξkζ

kξkη (−k2ξ − k2ζ + μ0ω
2ε2) kηkζ

kξkζ kηkζ (−k2ξ − k2η + μ0ω
2ε3)

⎤

⎥
⎦

⎡

⎣
Eξ
Eη

Eζ

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

(14.41)

This system has a non-trivial solution if the determinant of the matrix coefficients
is zero. The solution is composed of two surfaces in k-space. However in the case
of uniaxial crystals, because of the lack of symmetry, there are more geometrical
possibilities for the cross-sections of the wave vector surfaces. Figure14.13 repre-
sents an octant of the double surface. As we can see by inspection, for a chosen
direction there exist two distinct wave vectors k. However, there is a direction for
which the two wavenumbers are the same, which corresponds to the point where the
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two surfaces intercept and it is defined as the optic axis (see Fig. 14.12).7 Actually,
when representing the whole surfaces in three dimensions, or their intersection with
the plane Okξkη we may note that biaxial crystals have two optic axis (Fig. 14.14).

14.8 Crystal Classification

In the previous sectionswe have presented the basic characteristics of the uniaxial and
biaxial media. The results obtained show that the anisotropy of the materials leads to
a tensorial relationship between the displacement vector D and E. As a consequence
the wave propagation differs from that corresponding to isotropic bodies.

To classify optical properties we can use Neumann’s principle. This principle says
that the symmetry group of any physical property must include the point symmetry
group of the crystal. According to this, any physical property (wave normal, veloc-
ity surface, etc.) have all symmetry elements corresponding to the crystal. Apply-
ing this principle to the wave vector surface (or velocity surface), it follows that
crystals belonging to systems triclinic, monoclinic, and orthorhombic must be biax-
ial. In fact, the symmetry of the surface is mmm then it includes the point groups
1, 1̄, 2,m, 2/m, 222,mm2, and mmm.

In the case of uniaxial crystals the surface has a higher symmetry, then other
crystals verify the conditions. So, following the same reasoning we conclude that the
crystalline systems trigonal, tetragonal and hexagonal are uniaxial. For this case the
symmetries included in thegroupmmm are 3, 3̄, 32, 3̄m, 3m, 4̄, 4/m, 422, 4̄2m, 4mm,

4/mmm, 6, 6̄, 6/m 622, 6mmm, 6̄m2, 6/mmm,∞,∞2,∞/m,∞m,∞/mm.
The maximal symmetry corresponds to the optical isotropic materials. In this case

the wave surface is a sphere (n1 = n2 = n3), then only the symmetry groups 23,
m3, 43m, 432, m3m, ∞∞, and ∞∞m are possible, which corresponds to the cubic
system.

In the above discussion we did not take into consideration the effects of wave
propagation across the crystal when other external perturbations act simultaneously.
A more general study of any physical property of a crystal structure should also
include the investigation of the symmetry of the external factor. To do this we can
apply the well known Curie’s principle, together with Neumann’s law. The basic idea
is the following.

When a physical perturbation acts on a crystal (variation of temperature, electric
field, magnetic field, etc.) it can modify its structure. As a result, from the viewpoint
of the symmetry, the body will have the symmetry elements which are common for
the crystal before applying the external action, and for the field itself. In this regard,
Curies’s law may be envisaged as a symmetry superposition principle. To illustrate
the significance of this principle, we will give an example.

7Observe that for uniaxial crystals we defined the optic axis as that of the symmetry of the system.
Due to the absence of high symmetry in biaxial materials, we must define the optic axis in another
way.
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Let us suppose a crystal of halite (NaCl). This mineral has symmetry m3m and
its refractive indices are n1 = n2 = n3 = 1.54, which means that it is optically
isotropic. Therefore it will not exhibit optical birefringence. However if we apply an
electric field E in the direction [001], the index ellipsoid (indicatrix) of the crystal
will be deformed as a result of the action of such a field. The state of the crystal is
transformed from the spherical symmetry of the initial state (halite) into an ellipsoid
of revolution after the external perturbation, and then it becomes optically uniaxial.
If the electric field were directed along any direction [hh0] which corresponds to a
plane of symmetry the ellipsoid would have three different principal axes, converting
the crystal to biaxial.

The important consequence that we can get from the above results is that, under
some circumstances we can modify optical properties of materials by using external
actions. For instance,we can induce optical anisotropies by using electric ormagnetic
fields, and mechanical stress as well. For instance, the application of an of an electric
field to a isotropic substance leads to birefringence. The electrooptical effects that
result are called Kerr and Pockels effects.8 By employing a magnetic field, induced
double refraction is also possible. The resulting magnetooptical effect is known as
the Cotton-Mouton effect and like theKerr effect it is proportional to the square of the
magnetic field applied. In the same way, by producing deformations in a substance
we can induce optical anisotropies which are known as photoelastic effects. In fact,
a strain in a body produces a change of the index ellipsoid, which leads to a variation
of the polarization constants, and therefore to the apparition of double refraction. In
this context it is important to note that there are other new mechanisms for inducing
optical anisotropy.

In Chap.7 (Problems 4 and 5) we studied the behavior of the electric field inside
and outside of a dielectric sphere (and metallic) in presence of an external E. One
of the applications shown was that corresponding to the inclusion of microspheres
(dielectric or metallic) into a material. We commented that it is possible to induce
surface anisotropy which leads to randomly anisotropic optical properties. Recently
it has been demonstrated that inhomogeneous layers have different refractive indices
for s and p polarized light. Ultimately, these kind of new materials (layers) behave
as having uniaxial properties, which depend on the layer thickness, on the inclu-
sion concentration, and on the incidence angle. Besides, in some cases, this surface
induced anisotropy leads to large spin Hall effects.9

8In general when an electric field is applied to a material, it can produce linear and non-linear
electrooptical effects. In the Kerr effect the difference of indices is proportional to the square of
the electric field (non-linear), 
n = KλE2, K being the Kerr constant. In the case of the Pockels
effect 
n is proportional to the field strength (linear). In substances without center of symmetry the
most important effect is the Pockels effect. On the contrary, in materials with center of symmetry
the Pockels effect does not exist.
9See [56].

http://dx.doi.org/10.1007/978-3-662-48368-8_7
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14.9 Retarders

One of the most important applications of the optical anisotropic materials we have
studied is the construction of slabs for modifying the polarization state of light
beams. This anisotropic sheet is constructed in such a way that two principal axes of
the material are disposed parallel to its faces. One of them corresponds to the optic
axis ξ, then the other one is perpendicular. The idea is based on the decomposition
of any radiation that impinges the anisotropic plate into two projections, one over ξ,
and the other along OY . As we have previously seen, when a light beam is directed
perpendicularly to the optic axis of an anisotropic uniaxial material, inside of the
sample two independent linear polarized beams appear, each of them perpendicular
to each other. The wave whose electric field vibrates perpendicularly to the sym-
metry axis direction (optic axis) was labelled as the ordinary wave, and the other
perpendicularly to it the extraordinary wave. The beams at the exit of the plate (for
this disposition) are superimposed but they differ in their respective propagation
velocities, and therefore when light crosses the slab, a phase difference between both
components holds. As a result, the emerging light may change its polarization state.
Depending on the magnitude of the velocities, the material is said to be positive or
negative uniaxial material. If the material is positive (ne > no), then the velocity
of the ordinary wave is faster than of the extraordinary perturbation (perpendicular
direction). The contrary happens when the material is negative (ne < no).

In these type of retarders a slow and a fast axis are usually identified. The first
one corresponds to the vibration direction of the electric field of the longer optical
path, and it is labelled with the word S. The perpendicular, or fast direction, is called
the F axis.

For a slab of thickness d the phase difference of two perpendicularly linear polar-
ized waves is

δ = ±2π

λ
(ne − no) d, (14.42)

λ being the light wavelength in vacuum. This equation allows us to calculate the
change of the polarization state of a monochromatic radiation that impinges orthog-
onally onto its optic axis (Fig. 14.15). Rearranging (14.42) we can write the optical
path difference as

� = rλ = ±(ne − no) d, (14.43)

where r is called the retardation parameter. This last expression holds for labelling
the different kinds of retarders. In general, a slab which verifies (14.43) is called a
r-wave plate. In this way, two of the most used retarders in the laboratories are the
quarter and half-wave plates. For them r = 1

4 and r = 1
2 , respectively. However, there

are other types of wave plates which allow the manipulation of a polarized beam in
a more extended way. For some application birefringent nanostructured glass plates
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(a)

(b)

Fig. 14.15 a Plane wave directed onto a uniaxial plate whose optic axis is perpendicular to k
(lateral view). b Front view of the displacement vector D inside of the plate

are used.10 These kind of plates are characterized by a spatial distribution of the optic
axis that depends on the point over the plate plane.

Solved Problems

Problems A

14.1 Through an optically uniaxial material of refractive indices n1 = ne = 1.7
and n2 = no = 1.4 a wave whose wavefront is perpendicular to the OX axis
is propagated. If the optic axis forms an angle of 45◦ with OX, as shown
in Fig. 14.16, obtain: (a) The velocity of the extraordinary ray. (b) Draw the
propagation direction of the extraordinary ray.

Solution

(a) As we know from the theory (14.34), n1 = √
εr1 and n2 = √

εr2. There we
obtained for the velocity of the extraordinary wave the following relation

ve = c

√
sin2 γ

ε1
+ cos2 γ

ε2
, (14.44)

c being the velocity of light in vacuum. Introducing the values of the permittivities
and of the angle γ = 45◦ in the latter equation we obtain

vext = 1.96 × 108 ms−1 (14.45)

10See, for instance, [40, 71].
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Fig. 14.16 Direction of the
extraordinary ray in the
material

(b) Due to the fact that the impinging beamdoes not have a direction perpendicular
or parallel to the optic axis, it will form an angle β with the direction of k. Using
(14.37) we obtain

tan β = (n21 − n22) tan γ

n21 + n22 tan
2 γ

= (n2e − n2o) tan γ

n2e + n2o tan
2 γ

= 0.19, (14.46)

then
β = 10.9◦. (14.47)

A picture of the result is shown in Fig. 14.16.

14.2 An uniaxial dielectric material is cut in form of a cube of side 3cm. The optic
axis is located at 45◦ with respect to the sides as shown in Fig. 14.17. The values
of the permittivities are εo = 2.25 and εe = 4. A non-polarized plane wave is
directed perpendicularly onto the left side (see Fig. 14.18). If the light beam is
very thin, obtain the separation between the ordinary and extraordinary beams
at the exit of the material.

Solution

To calculate the separation between the ordinary and extraordinary beams when light
leaves the material, we must first obtain the angle β that forms both rays inside of
the cube. Taking into consideration that no ≈ √

εo and ne ≈ √
εe, this angle may be

calculated by means of (14.37) as follows

tan β = (n2o − n2e) tan γ

n2o + n2e tan
2 γ

= (εo − εe) tan γ

εo + εe tan2 γ
= −0.28. (14.48)

Once β is known, the distance between the beams is determined by a simple calculus
(see Fig. 14.18)

tan β = �

L
=⇒ � = −0.84 cm, (14.49)
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Fig. 14.17 Cube made of an anisotropic material

Fig. 14.18 The ordinary ray o.r. does not suffer anymodification in its trajectory. The extraordinary
ray e.r. forms an angle β to the o.r

� being the separation.

14.3 The Fig. 14.19 represents a system of two plane-parallel plates of quartz of
indices no and ne. Both plates are placed in such a way that their optic axes
are perpendicular to each other. Obtain the phase difference introduced by the
system to a plane monochromatic wave that falls perpendicularly upon the first
sheet and passes through the second one.

Solution

The light beam that impinges the first uniaxial plate may have any polarization.
We have seen in the theory that, in general, when a plane monochromatic wave
reaches the face of a uniaxial specimen, two different ray vectors propagating inside
the anisotropic material appear. Each one is linearly polarized but the oscillation
directions of their respective electric field are perpendicular to each other. These two
beams were denoted as ordinary and extraordinary waves. In the present problem
the direction of the vector k at the entrance of the sample is perpendicular to the
optic axis of the material, then we will have two superimposed beams with the
same direction of propagation. However, as each wave has a different velocity (their
refractive indices are different) a phase difference between them will occur. As a
consequence, depending on the thickness of the plate and on the difference (ne−no),
the light at the exit of the slab can change its polarization. In other words, the light
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Fig. 14.19 Direction of the extraordinary ray in the material

beam will modify its phase in a quantity of (Fig. 14.19)

ϕ = 2π

λ0
(ne − no)d1, (14.50)

where d1 is its thickness and λ0 is the wavelength in vacuum of the monochromatic
radiation employed. Depending on the specific characteristics of the beam when
impinging the first sheet, the value of the phase difference ϕ introduced by the plate
will produce emerging light that could be linear, circular or elliptical. In fact, let us
suppose that the incident light is linear polarized. If ϕ = 0,π, 2π, . . . the exiting
light beam is also linear, but if ϕ = (2n+ 1) π

2 it will be in general elliptical. Only in
the case that the two components of the incident electric field are equal, the emerging
polarization will be circular. All other possibilities, for instance when incident light
is elliptical polarized, must be analyzed for each specific case.

The result obtained above holds for the beam leaving the first plate, but after that
the emerging light reaches another sheet of thickness d2, whose optic axis is located
parallel to the vector k corresponding to the wave leaving the first plate. As this beam
goes inside of this second slab in the same direction of the optic axis ξ2, it does not
suffer any modification related with its polarization state. In other words, the light
beam at the exit of the second plate is the same as those emerging from the first sheet
(neglecting the losses in intensity due to reflections on the boundaries-faces).

Ultimately,when the light beampasses through the first plate there is birefringence
but no double refraction, because the propagation is perpendicular to the optic axis.
However, when light goes through the second sheet, the beam does not suffer any
change, thus there is neither double refraction nor birefringence.
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Problems B

14.4 Two thin identical plates of refractive indices n1 = 2 (ne) and n2 = 1.5 (no), and
thickness 250nm, are cut of the same uniaxial material. A linearly polarized
plane wavefront of wavelength λ = 500nm propagates along the OZ axis and
impinges the first plate perpendicularly (see Fig. 14.20). The electric field of
the incident field forms an angle of 45◦ with respect the optical axis of the first
sheet. If the light beam at the exit of the first plate strikes perpendicularly the
second one, obtain: (a) The polarization state of light at the exit of the system
when the two optical axes are parallel to each other. (b) Idem when the two
optical axes are perpendicular.

Solution

(a) The vector k of the light beam is perpendicular as shown in Fig. 14.20 to the optic
axis of the first plate and, the impinging electric field E has projections along OY
and OX, respectively. As a consequence inside of the slab we will have two electric
fields, one vibrating parallel to ξ1 and another perpendicular to it, but propagating in
the same direction with different velocities. This difference of velocities leads to a
difference between the phases of the ordinary and extraordinary waves, and then the
polarization state of the emerging light may change. The phase difference introduced
in the beam by the first anisotropic slab is

δ1 = 2π

λ
(ne − no)d = 2π

500 · 10−9
(2 − 1)250 · 10−9 = π

2
. (14.51)

As the two beams go out superimposed, at the exit of this first sample light has
modified its polarization from linear to circular. However, before detecting this beam,
the light must travel throughout the second plate whose optic axis ξ2 is parallel to
ξ1. The situation is similar to the first one, but now the impinging light is circularly
polarized. As we can imagine the result is the same, i.e. inside of the second plate

Fig. 14.20 In this set-up the
optic axes are parallel to
each other
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each of the two electric fields sees a different refraction index, thus the change in the
phase becomes

δ2 = 2π

λ
(ne − no)d = π

2
, (14.52)

and hence, the total phase difference introduced by the system of slabs is

δ = δ1 + δ2 = π

2
+ π

2
= π. (14.53)

This result shows that light travelling throughout this system suffers a change in
the polarization. The beam at the beginning is linear polarized but due to the phase
difference of π radians introduced by the plates, the light becomes linear polarization
too, butmodifying its plane of oscillation. In fact, the resulting emerging electric field
forms an angle of αe = 45◦ with OY but on the right (see Fig. 14.21).

(b) In this case the second plate is rotated in such a manner that its optic axis ξ2 is
perpendicular to ξ1. To understand what happens we choose the same procedure as
in section (a). The first stage is the same, because the first slab does not suffer any
modification. This means that after light passes throughout it a change of the phase
in π

2 radians accounts. After that the beam strikes the second plate perpendicularly
to the optic axis ξ2, but in this case the location of it is rotated π

2 with respect to the
first set-up. This fact leads to a phase modification different from before. In effect,
the change in the phase when the optic axis is placed as drawn in Fig. 14.22 is

δ2 = 2π

λ
(no − ne)d. (14.54)

Observe that the difference of indices is changed, i.e. (no − ne) instead of (ne − no)
(see (14.52)). Combining (14.51) and (14.54) we have

Fig. 14.21 The electric field at the exit forms an angle of αe = 45◦ on the right of the OX axis



Solved Problems 773

Fig. 14.22 This figure
represents two uniaxial
plates with their respective
optic axes perpendicular to
each other

δ = δ1 + δ2 = 2π

λ
(ne − no)d + 2π

λ
(no − ne)d = 0, (14.55)

hence we do not have any change of the polarization of light when the beam travels
through the system.

14.5 A beam of linearly polarized white light is incident perpendicularly onto a
quartz plate of thickness 0.865nm. Such a plate is cut so that its optic axis lies
parallel to its plane. The electric field vibrates along a direction parallel to the
plane sheet forming 45◦ with the OX coordinate axis. The refraction indices
of the material are n1 = 1.5533 (ne) and n2 = 1.5442 (no). The emerging
beam passes through a polarizer whose transmission axis is perpendicular to
the vibration direction of the electric field at the input of all the system. By
neglecting the variation of the refractive index with wavelength, what wave-
lengths between 600 and 650nm are absent in the transmitted light beam?

Solution

The only possibility for obtaining extinction of light when the radiation crosses the
polarizer is that the light beam emerging from the uniaxial plate does not changes its
state of polarization. In effect, if that happens the radiation remains linearly polarized
in the sameplane as it impinges at the entrance of the slab, and therefore, as the electric
field on the analyzer would be perpendicular to its transmission axis no light will be
detected after the polarizer (Fig. 14.23).

The above reasoningmay be expressed as a condition on the phase of the travelling
beam by imposing that the phase difference be

δ = 2π

λ
(ne − no)d = 2πN, (14.56)

N being an integer. Rearranging (14.56) for N , we have

N = (ne − no)d

λ
. (14.57)
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Fig. 14.23 Anisotropic plate
and polarizer

Introducing the first wavelength into (14.57) we can write

N1 = (ne − no)d

λ
= 13.1. (14.58)

As we must seek radiations extincted in the interval 600 < λ < 650, the value
N1 = 13.1 represents the limit, then the next valid number must fulfill N1 < 13.1
(observe that the smaller the wavelength the bigger the numberN). In the samewave,
we impose the same condition to λ = 650 obtaining

N2 = (ne − no)d

λ
= 12.1. (14.59)

This number is again the limit for λ = 650, thus the next (for a smaller λ) must verify
N2 > 12.1. Combining the results (14.58) and (14.59), the interval ofwavelengthswe
are not able to detect after crossing the polarizer correspond to the interval between
N2 and N1, then N = 13. To determine the for what λ it corresponds we employ
(14.56) for N = 13, obtaining

λ = (ne − no)d

N
= 605 nm. (14.60)

14.6 A plate of a negative uniaxial material is located as shown in Fig. 14.24, ξ being
the optic axis. The refraction indices of this material are n1 = 2 and n2 = 3.
A monochromatic linear polarized radiation beam is directed perpendicularly
to the slab, whose electric field forms an angle α with the OY axis. Calculate:
(a) The angle α in order that the intensity of the ordinary ray in the material be
the half of the corresponding to the extraordinary. (b) The minimum thickness
of the plate for which, if α = 45◦, light exits the system circular polarized.
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Fig. 14.24 Direction of the
extraordinary ray in the
material

Solution

The anisotropicmaterial is negative whichmeans that ne < no, and therefore we have
no = 3 ne = 2. As we have already commented before, when the beam propagates
inside of the plate two linearly polarized wave fields appear, one of them called
ordinary wave and the other one labelled as extraordinary wave. Inside the slab each
wave travels at different velocities because they see unlike refraction index. The
projections of the electric field of the impinging wave over the OY axis and along
the optic axis ξ (see Fig. 14.24) depend on the angle α. It means that changing this
angle we can modify the projections and, as a result, the intensities associated with
the ordinary and extraordinary waves will also be changed.

Let us denote the field amplitudes of the ordinary and the extraordinary waves Eo

and Ee, respectively. Taking into consideration that both are linearly polarized, their
respective intensities inside of the plate are

Io = 1

2
cnoε0E

2
o = 1

2
cn2ε0E

2
o (14.61)

for the ordinary, and

Ie = 1

2
cneε0E

2
e = 1

2
cn1ε0E

2
e (14.62)

for the extraordinary wave. On the other hand, the electric field projections may be
related with the angle α as follows (see Fig. 14.25)

tanα = Eo

Ee
. (14.63)

The relation between the intensities must be Io = 1
2 Ie, thus dividing (14.61) by

(14.62) we have (Fig. 14.26)

Io
Ie

=
1
2cn2ε0E

2
o

1
2cn1ε0E

2
e

= n2E2
o

n1E2
e

, (14.64)
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Fig. 14.25 The electric field
parallel to the optic axis Ee
corresponds to the
extraordinary wave, and the
perpendicular to it in
direction of OZ represents
the field of the ordinary beam

(a) (b)

Fig. 14.26 a Fields corresponding to the ordinary wave. b Idem for the extraordinary way

hence
Io
Ie

= n2
n1

tan2 α = 1

2
. (14.65)

Rearranging this last equation we obtain

3

2
tan2 α = 1

2
−→ α = tan−1 1√

3
= 30◦. (14.66)

14.7 A linearly polarized monochromatic radiation of wavelength λ = 400nm,
and intensity I0, impinges onto a plate of a uniaxial material whose optic axis
is parallel to OX. The thickness of the material is d = 7mm, and the indices
n1 = 2 and n2 = 1, respectively. After the plate, a polarizer whose transmission
axis as shown in the attached figure is placed. If the polarization plane of the
incident light forms 15◦ with the OY axis, obtain the light intensity registered
on a detector placed on the right side of the polarizer (Fig. 14.27).

Solution

To know what happens after the analyzer we must first investigate the effect of the
anisotropic slab when light passes through it. With this aim let us employ (14.42) to
determine the phase difference between the extraordinary and the ordinary wave

δ = 2π

λ
(ne − no)d = 2π

λ
(n1 − n2)d = 17,500 2π = 2πN, (14.67)
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thus N = 17,500, which is an even number. As a result, light does not change its
state of polarization, i.e. it remains linear polarized when leaving the anisotropic
plate. After that, the beam reaches the polarizer whose transmission axis forms η =
45◦ with OY ′. Therefore, the electric field when the light passes through it is the
corresponding to the projection ofE0 over the direction coinciding with the polarized
axis,

Ep = E0 cos(45 − 15) = E0 cos(30) =
√
3

2
E0. (14.68)

But in the problem the question is about the intensity of the resulting beam, then
we must relate (14.68) with the intensity I0 of the light before reaching the plate. To
calculate it let us write this intensity as a function of the electric field E0

I0 = 1

2
cnε0E

2
0 , (14.69)

which is known. The intensity after the analyzer has a similar expression, but it
depends on Ep (14.68)

Ip = 1

2
cnε0E

2
p . (14.70)

Introducing (14.68) into (14.69) yields

Ip = 1

2
cnε0

(√
3

2
E0

)2

. (14.71)

and dividing this equation by (14.68) we obtain

Ip
I0

= 3

4
=⇒ Ip = 3

4
I0, (14.72)

which, obviously, is smaller than the intensity I0.

Fig. 14.27 Direction of the
extraordinary ray in the
material
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Problems C

14.8 In the Fig. 14.28 P1 represents a polarizer whose transmission axis forms an
angle of 30◦ with respect to the vertical axis OX. L is a plate of a uniaxial
crystal with thickness d unknown. The optic axis is parallel to its faces. P2

is an analyzer with a transmission axis that makes an angle ϕ with respect to
the vertical axis. The system is illuminated perpendicularly with a radiation
composed by two wavelengths of λ1 = 400nm and λ1 = 600nm, respectively.
Calculate the minimum thickness d of the plate up to 1mm so that the analyzer
P2 is able to completely avoid that one of the wavelengths crosses P2. Explain
the value of ϕ for all the solutions found. Assume that n1 − n2 = 0.01 for both
wavelengths.

Solution

The only possibility for extinguishing with one polarizer any radiation, after light
crosses the anisotropic material, is that the beam at the exit of the plate must be
linearly polarized. For this reason, in order to ensure that the polarization of light
that impinges the analyzer is linear, we will first impose the condition

δ = 2π

λ
(n1 − n2)d = Nπ. (14.73)

Equation (14.73) guaranties a linear state of polarization, but depending on N being
either even or odd, the plane of polarization may change.

To face this problem it is important to note that, what we are going to seek is the
minimum thickness up to 1mm for detecting only one of the two radiations (400 or
600nm) that combined form the light beam. In this way, we will first use (14.73)
setting d = 1mm, which is the limit. This will give us the value of N that fulfills
(14.73) for d = 1mm. Introducing the corresponding data we have

Fig. 14.28 System composed by an anisotropic plate of unknown thickness, one polarizer and one
analyzer
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δ = 2π

400 · 10−9
(0.01) 1 · 10−3 = 2π 25 = Nπ =⇒ N = 50. (14.74)

This result means that there is a change of the phase of light at the exit of the material.
However, as N is an even number it is equivalent to say, that no modification of the
state of polarization accounts (observe that δ = 2π. 25) if the sample would have a
thickness of 1mm. But the specimen must be thicker than d = 1mm, therefore if we
substitute into (14.73) the next integer number, i.e. N = 51, leaving d as unknown,
we can find out the value of d up to 1mm that verifies the condition required. Note
that with N = 51 we conserve a linear polarization state of light, which is necessary
for guaranteeing the extinction of a wavelength when light crossing the analyzer for
some location of it (until now unknown). However, in viewing polarization only, for
N = 51 it is equivalent to say that δ = π, light modifies its plane of vibration. In other
words, light impinges on the sheet perpendicularly with its electric field forming an
angleα = 30◦ with the vertical axis, and when the beam exits the materialα = −30◦
(with respect to OX). Therefore, setting N = 51 into (14.73) leads to

δ = 51π = 2π

λ
(n1 − n2)d =⇒ d = 51πλ

2π(n1 − n2)
= 1.02 mm. (14.75)

Now, let us make the same calculation for the radiation of λ = 600nm. To do this,
we employ (14.73) again, but for this wavelength obtaining

δ = 2π

600 · 10−9
(0.01) 1 · 10−3 = 2π 16.7 = Nπ =⇒ N = 33.33. (14.76)

This result shows that for 1mm and λ = 600 light changes the state of polarization,
because the phase difference is not an integer number of π. As far as the polarization
is concerned, (14.76) is equivalent to say that the beam suffers a phase change of
δ = 2π 0.7 ≈ 1.33π, which leads to an elliptically polarized light. However it does
not matter with our problem. In fact, as we need that the light after crossing the
plate be linear polarized, we can impose this condition by introducing N = 34 into
(14.73), and considering d unknown. Thus it holds

Fig. 14.29 Electric fields for
both lights
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Fig. 14.30 Electric fields for
both lights

d = 34πλ

2π(n1 − n2)
= 1.02 mm, (14.77)

which gives a value for d identical that obtained for λ = 400. Nevertheless, as we
have used N = 34 (even number) in this case, neither the state of polarization of the
beam nor its plane of oscillation change.

Once we know the characteristics of the light for the two radiations when passing
through the anisotropic plate, we can examine how the polarizer must be located in
order to avoid one of the wavelengths crossing throughout. In fact, for d = 1.02mm
light comes linearly polarized in both cases, but their respective electric fields do
not vibrate on the same plane. The beam of λ = 600nm oscillates forming an
angle of α = −30◦ with respect to axis OX, then if we place the analyzer at ϕ =
60◦ (see Fig. 14.28), this radiation will be eliminated when seeing the phenomenon
after the polarizer. In this case the polarization direction and the analyzer axis are
perpendicular. The light of λ = 400nm will be observed, but not in its totality. As
the transmission axis of the analyzer forms ϕ = 60◦ with OX, the light intensity of
400nm we will detect corresponds to those of the projection of the electric filed E
over the polarization axis. Thus, the intensity of the wave leaving the analyzer will be
Ip ∼ I1 cos2 30 (see Fig. 14.29), I1 being the intensity corresponding to λ = 400nm
once light has crossed the anisotropic sheet. In the same way, we can investigate
what happens with the radiation of λ = 400nm. This light goes out from the plate
linearly polarized but its vibration axis corresponds to α = 30◦, therefore if we
locate the analyzer at ϕ = 120◦ (see Fig. 14.30) we note that the electric field of
this light oscillates perpendicularly to the analyzer axis. By this procedure no beam
of λ = 400nm will be detected, but radiation of λ = 600nm does. In fact, for
this configuration, the intensity measured is again Ip ∼ I2 cos2 30, where I2 is the
intensity of 600nm observed directly behind the uniaxial plate.

14.9 A sodium lamp of wavelength λ radiates spherical waves with circular right-
hand polarization. In front of the lamp, a lens is placed in order to generate
plane waves of intensity I0 = 2 Wm−2. The beam after the lens impinges a
uniaxial plate of quartz perpendicularly. The sample is cut parallel to the optic
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axis and its indices and thickness are n1 = 1.5533 and n2 = 1.5442, and
d = 5.663mm, respectively. At the output of this plate, the light crosses a
polarizer whose transmission axis is parallel to the aforementioned optic axis.
(a) Obtain the polarization state of light after crossing the plate. (b) Calculate
the intensity thatmay be registered at the exit of the polarizer. (c) If the radiation
that emerges from the polarizer reaches a sheet of the figure attached under an
angle of θ = 63.4◦, find the refractive index that the plate has to be in order
that no reflected light beam appears (Fig. 14.31).

Solution

(a)When the light passes through the uniaxial plate it suffers a change in phase which
may be calculated by using (14.42)

δ = 2π

λ
(n1 − n2)d = 2π 87.5 = 2πN . (14.78)

From the point of view of the polarization, this value obtained means that the change
in the phase of the perturbation is equivalent to δ = π, and therefore, the light at the
exit of the anisotropic plate becomes circular left-hand polarized.

(b) The intensity of the radiation after the slab is that corresponding to circularly
polarized light. If we neglects the reflections on the surface boundaries of the sample,
the expression for the intensity in the most general case may be expressed as follows
(see Problem 12.13)

I0 = 1

2
cnε0(E

2
x + E2

y ), (14.79)

where Ex and Ey are the components of the electric field over the coordinate axes
OX and OY , respectively. In the present problem as the light is circular polarized,
Ex = Ey, and then

I0 = 1

2
cnε0(2E

2
x ) = cnε0E

2
x . (14.80)

Now, this radiation impinges the analyzer, which only allows passing the projection
of the electric field over its axis. Thus, the intensity is

Ip = 1

2
cnε0E

2
x , (14.81)

and the relation between this last equation and (14.80) leads to

Is
I0

= 1

2
=⇒ Is = 1

2
I0 = 1Wm−2. (14.82)
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Fig. 14.31 Set-up

Fig. 14.32 Observe that the electric field of the light before impinging the slab has two components,
one along OX and the other over OY . After the pass through the analyzer only the component
Ex remains, but when light reaches the glass under conditions of Brewster’s angle it losses this
component, thus no light is reflected by the surface (we only have a refracted beam at θ′

r)

(c) In the former Chapter we studied the Brewster angle.11 There we defined it as
the angle forwhich the reflected light on a surfacewas only polarized perpendicularly
to the plane of incidence (direction OY , see Fig. 14.32). In the present case, because
of the polarizer, we only have the component over OX, then when reaching the glass
no light is reflect but it does refracted. Applying (14.7), we have

11It is interesting to note that the definition of Brewster’s angle given in Chap.13 and applied in this
problem is only valid for dielectric materials. For planar metallic surfaces, due to the nature of the
refraction index (n(ω) = n1(ω) + in2(ω)), the reflectance at these surfaces for p-waves (parallel to
the incidence plane) is nonzero at the Brewster angle. However, in order to address some important
features of the reflected light, two different definitions account. So when the modulus of the ratio
rp
rs

= r‖
r⊥ reaches a minimum, the corresponding angle at which it occurs is called the second

Brewster’s angle. The second possibility refers to the incidence angle at which r‖ is a minimum.
Such an angle is known as the pseudo-Brewster’s angle. For more details the reader may consult
the following references: [3, 5, 47]. A special case of Brewster’s angle is referred to rough surfaces.
In this case for dielectric interfaces, there is a dip in the p-waves of the scattered light at a specific
angle which depends on the dielectric properties of the medium. When studying metallic random
surfaces there exist no real solution to the equation which gives Brewster’s scattering angle (see,
for instance, [57]).

http://dx.doi.org/10.1007/978-3-662-48368-8_13
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tan θB = ng
n0

=⇒ ng = n0 tan θB = 1 · tan(63.4) ≈ 2. (14.83)

14.10 The system represented in the Fig. 14.33 consists of a polarizer whose trans-
mission axis is parallel to OZ , a crystal of quartz with dielectric constants
ε1 and ε2, and optic axis ξ forming an angle γ with OX, and a screen P. A
thin light beam impinges perpendicularly to the polarizer. (a) Howmany light
points we will see on the screen P? (b) Obtain the angle that Poynting’s vector
of the extraordinary ray will form with the optic axis ξ as a function of ε1 and
ε2.

Solution

(a) When a plane electromagnetic radiation impinges an uniaxial slab, in principle,
two independent waves orthogonally polarized to each other appear, whose phase
velocities are different. In other words it means that, for any direction of the vector
k we have two possible values of the wave-number k. Taking this fact into account,
for understanding what happens when a beam strikes an anisotropic plate, we can
first decompose the electric field at the entrance of the material into two components,
one parallel to the optic axis and the another one perpendicular to it. In the case of
this problem, before the beam reaches the slab it passes through a polarizer, then
at the exit of the polarizer we only have one component of the electric field, which
corresponds to the projection over the OZ axis (see Fig. 14.33), which in turn lies on

Fig. 14.33 System formed by a polarizer, a quarz crystal, and a screen
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Fig. 14.34 Direction of the
extraordinary ray in the
material

the plane formed by Oξ and k. As a result, only one wave propagates throughout the
material, and therefore, only one point will be shown on the screen P.

(b) As we have seen in the theory, in anisotropic media k and E are, in general,
not perpendicular to each other. This means that the direction of propagation of the
wavefront k does not coincide with the propagation direction of the energy, which
is represented by the Poynting vector S. For obtaining a solution to the question,
we will use the principal axes of the material Oξηζ with OXYZ , simultaneously
(see Fig. 14.34). As we can observe, the Poynting vector of the extraordinary ray
forms an angle β with OX, and α with Oξ. The electric field is perpendicular to S,
but not to k, therefore the angle betweenEe andOZ is the same as that between S and
k. Focusing first our attention to the electric field, we can obtain a relation between
its components and the angle α as follows (see Fig. 14.35)

tanα = Eξ

Eζ
, (14.84)

where Eξ and Eζ are the projections of Ee over the principal axes of the crystal Oξ
and Oζ, respectively. Along these axes it holds that

Dξ = ε1Eξ (14.85)

and
Dζ = ε2Eζ , (14.86)

then introduction of these values into (14.84) leads to

tanα = Eξ

Eζ
= ε2Dξ

ε1Dζ
= n22Dξ

n21Dζ

. (14.87)

Now, in order to eliminateDξ andDζ from (14.86) we will use the diagram shown
in Fig. 14.35. This picture represents the vectors Ee, D, and S for the extraordinary
wave togetherwith the corresponding ellipse (in two dimensions). Aswe can observe,
it is possible to project the components of D along Oξ and Oζ (Dξ and Dζ ) over the
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Fig. 14.35 Scheme for the
vectors E, D, and S

OZ axis of the OXYZ coordinate frame. Then, the new components of D are12 (see
Fig. 14.35)

Dξ = Dz sin γ, (14.88)

and
Dζ = Dz cos γ. (14.89)

Substituting these equations into (14.86) we obtain

tanα = ε2Dz sin γ

ε1Dz cos γ
= ε2

ε1
tan γ = n22

n21
tan γ. (14.90)

This last equation allows us to relate the angle γ formed by the optic axis with OX
(direction of k-see Fig. 14.35), and the angleα, but it does not give information about
β. However, from the Fig. 14.35 we see that α + β = γ, thus we can write

tan(γ − β) = ε2

ε2
tan γ, (14.91)

and then

β = γ − tan−1

(
ε2

ε1
tan γ

)
. (14.92)

12The vectors appearing in this figure are not correctly scaled. This is only a scheme for understand-
ing the problem. On the other hand, the semi-axes of the ellipse could be the opposite depending
on the optical characteristics of the material-positive or negative.



Appendix A
Matlab Programs

Matlab Program to Calculate Surfaces, Isolines and Gradients

figure
[x,y] = meshgrid(-2:.1:2,-2:.1:2);
z = x .* exp(-x.ˆ2 - y.ˆ2); %Function
[px,py] = gradient(z,.1,.1);
surfc(x,y,z)
figure
contour(x,y,z), hold on
quiver(x,y,px,py), hold off, axis image

Matlab Program to Calculate Resistance Using Slices

rho=1 % Resistivity
%Width of trapezoid
L=6
%Heights of trapezoid
H1=3
H2=5
slop=(H2-H1)/L
%Number of slices
m=10
%Width of each slice
li=L/m
%Heights
h(1:m)=0;
for i=1:m
h(i)=H1+slop*[(i*li)+(i-1)*li]/2;
end
h
%Resistances
R=0;
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for i=1:m
R=R+li/h(i);
end
R=R*rho

Matlab Program to Calculate Resistance Using Tubes

rho=1 % Resistivity
%Width of trapezoid
L=6
%Heights of trapezoid
H1=3
H2=5
%Slope
sup=(H2-H1)/L;
%Number of tubes
n=8
%
h(1:2,1:n)=0;
l(1:2,1:n)=0;
%Height 1
h(1,1:n)=H1/n
%Length 1
lados(1:2,1:n+1)=0;
lados(1,1)=L;
for i=1:n
lados(1,i+1)=L-i*L/n;
l(1,i)=(lados(1,i+1)+lados(1,i))/2;
end
%Length 2
lados(2,1)=0;
for i=1:n
vert=i*(H2-H1)/n;
horiz=L-lados(1,i+1);
lados(2,i+1)=sqrt(vertˆ2+horizˆ2);
l(2,i)=(lados(2,i+1)+lados(2,i))/2;
end
%Height 2
hdiag=sqrt(H1ˆ2+Lˆ2)/n %Diagonal
hvert=H2/n %Right
a=lados(2,n+1)
b=hvert
c=lados(2,n)
d=hdiag
h(2,1:n)=sqrt(4*(a-c)ˆ2*dˆ2-(dˆ2+(a-c)ˆ2-bˆ2)ˆ2)/(2*(a-c)) %Height of a trapezoid
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%Resistances
l
h
Re=0;
Reinv=0;
R(1:n)=0;
for i=1:n
R(i)=l(1,i)/h(1,i)+l(2,i)/h(2,i); %Series
Reinv=Reinv+1/R(i); %Parallel
end
Re=rho/Reinv



Appendix B
Electric and Magnetic Properties
of Several Materials

See Tables B.1, B.2 and B.3.

Table B.1 Resistivity values and temperature coefficient of various common materials

Material η (�m) α (K−1)

Metals

Iron 9.71 × 10−8 0.0065

Aluminum 2.65 × 10−8 0.0043

Copper 1.67 × 10−8 0.0039

Silver 1.59 × 10−8 0.0041

Gold 2.35 × 10−8 0.004

Nickel 6.84 × 10−8 0.0069

Mercury 95.8 × 10−8 0.0009

Tungsten 5.51 × 10−8 0.0045

Alloys

Nichrome 100.0 × 10−8 0.0004

Constantan 49.0 × 10−8 0.000008

Manganin 48.2 × 10−8 0.000002

(continued)
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Table B.1 (continued)

Material η (�m) α (K−1)

Semiconductors

Germanium 0.46 −0.048

Silicon 4300 −0.075

Graphite 1.4 × 10−5 −0.0005

Insulators

Sulfur 2 × 1015

Quartz (SiO2) 1 × 1014

Wood 108–1011

Glass 1010–1014

Lucite >1013

Mica 1011–1015

Diamond 1013

Table B.2 Dielectric constant and dielectric strength of various common materials

Material εr Emax (MV/m)

Air (standard conditions T, P) 1.00058986 ± 0.00000050 3.0

Alumina 10 13.4

Benzene 2.3 163

Distilled Water (20 ◦C) 80.1 65–70

Glass 4–10 9.8–13.8

Mica 4.5–8 118

Neoprene rubber 6.7 15.7–26.7

Paper 3.7 16

Polyethylene 2.2 18.9–21.7

Polystyrene 2.56 19.7

PTFE (Teflon, Extruded) 2.1 19.7

PTFE (Teflon, Insulating Film) 2.1 60–173

Quartz 3.3 8

Silicone oil 2.5 10–15
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Table B.3 Relative magnetic permeability of various common materials

Sustancia μr

Bismuth 0.99983 (diamagnetic)

Copper 0.9999906 (diamagnetic)

Silver 0.9999736 (diamagnetic)

Lead 0.9999831 (diamagnetic)

Water 0.99999 (diamagnetic)

Air 1.00000036 (paramagnetic)

Aluminium 1.000021 (paramagnetic)

Platinum 1.000265 (paramagnetic)

Palladium 1.0008 (ferromagnetic)

Cobalt 250 (ferromagnetic)

Níckel 600 (ferromagnetic)

Mild Steel (0.2 C) 2000 (ferromagnetic)

Iron (0.2 impurity) 5000 (ferromagnetic)

Permalloy 78 (78.5 Ni) 100000 (ferromagnetic)

Mu-metal (75 Ni, 5 Cu, 2 Cr) 100000 (ferromagnetic)
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Index

A
Acceleration, 639, 642
Aharonov-Bohm effect, 228
Air gap, 324–326
Alzheimer, 646
Ampere, 168
Ampère–Maxwell Law, 600
Ampère’s law, 235, 440, 468, 599

for H , 323
Analytic continuation, 432
Analytic function, 433, 436
Analyzer, 782
Anderson, C., 646
Angular frequency, 640
Antiferromagnetism, 318
Antimatter, 646
Aston’s mass spectrometer, 659
Atomic currents, 314
Axisymmetric geometry, 431

B
Bainbridge mass spectrometer, 633
Beta plus decay, 646
Betatron, 635, 650, 662
Biaxial, 764, 765
Biology, 646, 665
Biot–Savart, 254, 257

law, 76, 229
Birefringence, 765
Bloch wall, 319
Bohr’s model, 313
Boundary conditions, 317

Dirichlet, 420
mixed, 420
Neumann, 420
Robin, 420

Branch, 179
Bravais’s lattice, 750
Breakdown voltage, 125
Brewster’s angle, 717, 782
Brewster’s scattering angle, 782
Bruggeman formula, 468

C
Calcite, 762
Capacitance, 129, 153

coefficients of, 129
equivalent, 130–132
of cylindrical capacitor, 139
of parallel-plate capacitor, 135
of spherical capacitor, 137

Capacitor, 129, 575, 577, 587, 589, 609
cylindrical, 137
in parallel, 130, 155
in series, 131, 155
non-parallel plates, 449
parallel-plate, 130, 153, 448
spherical, 136

Cauchy–Riemann conditions, 434, 437, 438,
484

CERN, 225
Charge, 67

density
line, 68
polarization surface, 123, 132, 140,

147, 149, 151, 157, 161
polarization volume, 123, 132, 140,

141, 147, 149, 151, 157, 161
surface, 68
total, 124
volume, 67

distribution, 430

© Springer-Verlag Berlin Heidelberg 2017
F. Salazar Bloise et al., Solved Problems in Electromagnetics,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-662-48368-8

799



800 Index

polarization, 122
the principle of conservation of, 67, 150

Chebishev polynomials, 447
Chemistry, 646, 665
Circular metallic ring, 284
Circular right-hand polarization, 780
Circulation, 10, 13, 16, 51
Cloud chamber, 646
Coefficients

reflection, 717
refraction, 717, see also Fresnel coeffi-
cients

Complex
electric field, 438, 441

Complex analysis
method, 431

Complex potential, 436–438, 440, 483, 485,
487, 488

magnetic field, 440
Computerized tomographic, 646
Computerized tomography (CT), 646
Conducting polygon, 289
Conducting sheet, 613
Conductive sheet, 657
Conductivity, 75, 171, 421
Conductor, 75, 421

in electrostatic conditions, 76
Cone poles, 324
Conformal mapping, 433
Conformal transformations, 434
Conical solenoid, 287
Conservation of energy, 570, 573, 645
Conservative field, 21, 23
The constitutive equation, 125

for linear dielectrics, 125
isotropic, 125

Contour line, see isoline
Coordinates

Cartesian, 1
cylindrical, 1
spherical, 2

Core arms, 326
Cosmic rays, 646
Cotton-Mouton’s effect, 765
Coulomb’s law, 68
Counter-electromotive force, 176
Critical angle, 716
Cross section, 326
Crystal, 764, 765

anisotropic, 762
biaxial, 762
uniaxial, 763, 764, 778

Crystal systems, 750

Crystallographic point groups, 750
Curie’s principle, 764
Curie temperature, 318
Curl, 13, 38, 39, 41
Current, 167

density, 167
direct, 169
intensity, 168
mesh, 181

Current density
surface, 314
tangential, 260
volumetric, 314

Current of electrons, 278
Current of protons, 272
Currents

bounded, 315
free, 315

Curve, 6, 30, 34
closed, 7, 225

Curved tube, 658
Curves of constant potential, 484
Cyclotron, 634, 649, 661, 664
Cylindrical capacitor, 435
Cylindrical conductor, 242

D
Del operator, 12
Demagnetized state, 327
Demagnetizing factor, 331, 338
Demagnetizing field Hd , 327
Demagnetizing tensor, 330
Deuteron, 661
D field, 124
Dielectric, 75, 121

breakdown, 125, 139
constant, 126, 751, see also permittivity,
relative

sphere, 460
strength, 125, 148

Dielectric sheet, 612
Differential

length, 4, 9
surface, 4, 16, 17
volume, 4

Dipole, 758
electric, 74
induced, 122
moment, 75, 121, 122, 758

permanent, 122
point, 75

Dirac, P., 646
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Directional derivative, 11, 13
Dirichlet, 420

boundary conditions, 426, 430, 432, 492,
493

Discotics, 751
Distributed charges, 569
Divergence, 14, 39, 45, 79, 439

of M, 327
Divergence theorem, 15, 22, 58
Domain

transformed, 432
Double refraction, 765

E
Effective field, 327
Electric charge density ρ, 600
Electric displacement D, 317, see also D

field
Electric field, 439, 455, 457, 576, 580, 584,

613–615, 627, 628, 632, 635, 641,
643, 647, 648, 654

complex potential, 436
dielectric sphere, 465
efective, 511, 512
finite wire, 81
in plane waves, 671
induced, 513
infinite cylinder, 90
infinite plate, 93
infinite wire, 80, 484
metallc sphere, 468
metallic spherical crown, 89
spherical crown, 85

Electric force, 661
Electric potential, 455

properties, 420
Electric susceptibility, 125
Electromagnet, 325, 328

cylindrical, 398
variable cross-section, 393, 394

Electromagnet arms, 323
Electromagnetic induction

examples of application, 514, 515, 517,
519

general law, 518
in moving contours, 515
in stationary contours, 512

Electromagnetic waves, 667
in dielectric media, 667
in free space, 667

Electromotive force, 584
Electromotive force (e.m.f.), 174, 175, 192,

511

Electrooptical effect, 765
Electrostatic, 425
Electrostatic energy, 568, 569
Electrostatic field, 70, 576
Electrostatic force, 570, 580, 583
Eletromagnet, 323
Energy, 582

in electromagnetic waves, 674
of plane waves, 675
reflected, 718
transmitted, 718

Energy density, 572
in electromagnetic fields, 674

The equation of continuity, 169
Equipotential surfaces, 5, 428
Equivalent solenoid, 381
Ergodicity, 224
Exchange force, 319
Extraordinary wave, 757

F
Farad, 128, 130
Faraday cage, 102
Faraday’s law

general form, 518
in moving contours, 515, 516
in stationary loops, 512, 513

Ferrimagnetism, 318
Ferromagnetic

material, 319, 590, 626
Ferromagnetism, 318
Fictitious charge, 430
Field, 5

Escalar, 5
vector, 5

Finite difference method (FDM), 441, 443,
491, 497, 500

Finite element method (FEM), 445, 447
Finite solenoid, 275

force, 304
off-axis magnetic field, 308

First magnetization curve, 319, 326
Flat capacitor, 606, 616
Flux, 11, 14, 16–18, 32, 48–50, 57, 79, 147,

157
electric field, 439

Flux leakage, 326
Force, 574, 575, 580, 584, 635, 645, 656, 662
Forces on currents, 230
Fourier

series, 676
transform, 676
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Free current
non-homogeneous, 369

Fresnel coefficients, 716, 717

G
Galerkin method (GM), 446
Gauss

divergence theorem, 439
integral theorem, 427

Gauss theorem, 441, see also Gauss’ law
Gauss’ law, 73, 79, 80, 85, 90, 94, 108, 124,

156
differential form of, 74
for D, 124, 126, 127, 134, 137–139, 143,
144, 150, 152, 153, 158, 162

Gauss’s theorem, 599
Gaussian surface, 73
Generator, 582
Gradient, 12, 29, 31, 34, 36, 45

in Cartesian coordinates, 12
in cylindrical coordinates, 30
in spherical coordinates, 30

Green
function, 427
function method, 425

properties, 425
Green’s theorem, 20

H
Hall effect, 631, 632
Hall voltage, 646
Harmonic function, 427
Harmonic plane wave, 670

electromagnetic fields, 670
general expression, 670
linearly polarized, 670

Harmonic wave, 669
angular frequency, 669
frequency, 669
period, 669
phase, 669
wavelength, 669
wavenumber, 669

Helicity, 224
Helix, 656
Helmholtz’s theorem, 23
Heterogeneous current density, 369
Heterogeneous magnetization, 362, 385
Hollow cylinder, 286, 366
Hollow magnetized bar, 350, 352
Hollow metallic cylinder, 294

vector potential, 296

Hysteresis curve, 327, 374
Hysteresis loop, 321, 322, 326, 594, 596

family, 322

I
Inclusions, 466
Index of refraction, see refractive index
Indicatrix, 765
Induced anisotropy, 765
Inductance

mutual, 520
self, 519

Induction, 511
Infinite metallic wire, 275
Infinite solenoid, 282
Infinite wire

charge density, 438
Influence

coefficients of, 129
total, 129

Intensity, 674
of electromagnetic wave, 675

Intersection surfaces, 226
Inverse Fourier transform, 676
Irrotational field, see conservative field
Isoline, 5
Isotropic, 749
ITER, 225

J
JET, 225
Joule’s

effect, 173, 175, 177, 193, 194, 196, 201,
203

law, 173

K
Kantorovich method (KM), 446
Kennelly’s theorem, 183, 207, 212, 217, 218
Kerr’s effect, 765
Kinetic energy, 636, 661
Kirchhoff, 591
Kirchhoff’s circuit laws, 180, 204, 206, 208,

217, 221

L
Laplace

equation, 74, 76, 128, 419, 420, 422, 427,
434, 443, 491

Laplacian, 20, 42, 47
Lattice, 750
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Lawrence, Ernest, 634
Laws of reflection and refraction, 715
Least squares method (LSM), 446
Legendre polynomials, 447
Lenz’s law, 513
Level curves, 437
Level surfaces, see equipotential surfaces
Linearly polarized light, 773
Liquid crystal, 750

cholesteric, 751
nematics, 751
smetics, 751

Lorentz force, 627, 629, 632, 637

M
Magnesium fluoride, 762
Magnet, 625
Magnetic

resonance imaging, 224
circuit, 323, 328
dipole, 231
domain, 321
field, 223, 226

surfaces, 224
field lines, 224
material, 326
moment, 314
permeability, 318
scalar potential, 232
substances, 318
susceptibility, 318

Magnetic energy, 572, 578, 586
Magnetic field, 605, 619, 629, 635, 640, 641,

647, 662, 665
circular ring, 250
coil, 251
conical solenoid, 287
earth, 224
finite solenoid, 258
finite wire, 254
infinite solenoid, 262–264
infinite wire, 56, 234, 257, 486, 497
metallic infinite wire, 234
metallic polygon, 289
off axis, 231
rotating disk, 306
spherical solenoid, 302
toroidal solenoid, 244
variable cross-section solenoid, 300
wire, 254

Magnetic field B, 315
remanent, 321, 329

Magnetic field H, 315, 316, 318
circulation, 317
coercitive, 321
divergence, 327, 336

Magnetic field lines, 268, 501
Magnetic force, 661
Magnetic material, 589
Magnetic potential, 421, 499
Magnetism

intense, 318
weak, 318

Magnetization, 313, 330
hollow cylinder, 350
homogeneous, 332
rotation, 320
saturation, 320

Magnetization current
surface, 315
volumetric, 315

Magnetization M
divergence, 337

Magnetization rotation, 321
Magnetized

ball, 381
bar, 335
cone, 377
matter, 440

Magnetohydrodynamics, 224
Magnetometer, 253
Magnetomotive force, 325
Magnetooptical effect, 765
Magnetostatic, 420, 425

energy, 319
field H , 327

Magnetostatic field, 223
Magnetostatic potential, 497, 498
Magnetostriction, 319
Mapping, 435
Material

equations, 326
negative, 761
positive, 762

Material equation, 326
Maxwell’s equations, 599, 600, 622

dielectric media, 667
Maxwell’s laws, 602, 604
Maxwell-Wagner formula, 466
Mechanical stress, 765
Medicine, 665
Mesh, 179
Mesh current method, 181, 213
Metallic plates, 618
Metallic sphere, 467
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Metamagnetism, 318
Method of images, 428, 430, 471, 473, 475,

478, 480
Microspheres, 466
Möbius mapping, 488
Monochromatic radiation, 776
Motional e.m.f., 515
Multimeter, 261
Multiply-valued function, 432
Multivalued function, 499
Mutual inductance, 520

coefficient, 521, 522
example of application, 522

N
NaCl, 765
Negative uniaxial material, 774
Network, 179

active, 186
passive, 182

Neumann, 420
boundary conditions, 426, 430, 432, 433,
444

function, 425–427, 482, 483
Neumann’s principle, 764
Node, 179
Non-homogeneous finite solenoid, 298
Normal vector, 9, 11, 14, 16–18, 32
Normalizing condition, 427
Norton

equivalent, 186, 215, 219
theorem, 186

Numerical techniques, 441

O
Ohm, 171, 175, 176
Ohm’s law, 172, 198, 201, 223, 570, 593

anisotropic lineal conductors, 171
for a branch, 179, 201, 202, 205, 213, 218
for a circuit, 178, 193, 195, 196, 202
isotropic lineal conductors, 171
non linear conductors, 171

Open surface, 225
Operating straight line, 326, 329, 345

slope, 329
Optic axis, 755, 767, 768
Ordinary waves, 756
Ostrogradski-Gauss theorem, seedivergence

theorem

P
Parallel conducting plates, 654
Parallel-plane capacitor, 608
Parallel-plate capacitor, 574
Paramagnetic bar, 371
Paramagnetic material, 624
Paramagnetism, 318
Parkinson, 646
Permanent magnet, 328, 391

construction, 391
Permittivity

absolut, 126
of free space, 69
relative, 126

Phase velocity, 669, 751, 759
Photoelastic effect, 765
Photoelectric effect, 650
Photomultiplier-scintillator, 646
Plane-parallel, 618
Plasma, 627
Pockels’s effect, 765
Poisson

equation, 74, 229, 419, 426
Polarization, 673, 751

ellipse, 673
Polarization of plane waves

circular, 672
elliptic, 672
linear, 672

Polarization vector, 122
Polarizer, 777
Pólya field, 438–441
Positive charge, 645
Positron, 646
Positron Emission Tomography (PET), 646
Potential

coefficients of, 128
difference, 72, 142, 150, 152, 172, 202,
204, 218, 220, 221

electrostatic, 71
of a finite wire, 84
of a point charge, 72
of a spherical crown, 87

field, 21
newtonian, 45, 48
scalar, 21, 23–25, 51, 58, 227, 428, 437

Potential energy, 567, 637
Power

consumed, 177, 201, 203, 216
converted, 177, 201, 203, 207, 223
density, 173
electric, 173
generated, 175, 203
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supplied, 175, 193, 203
Poynting

theorem, 674
vector, 674, 675, 754, 759, 762, 783

Propagation vector, 669
Proton, 573, 641, 652, 661

Q
Quadric, 753
Quantum Hall effect, 632
Quartz, 762, 769

R
Rayleigh formula, 466
Reflectance, 718
Reflection of plane waves, 715
Refraction

law of, 715, see also Snell’s law
Refraction of plane waves, 715
Refractive index, 466, 715
Region

multiply connected, 6
simply connected, 6
star-shaped, 6

Relativistic dynamics, 663
Resistance, 172, 208

equivalent, 182, 183, 185, 207, 210, 216,
218, 222

in paralell, 182
in series, 182
in star, 183
in triangle, 183
internal, 175, 176

Resistivity, 171
Retarders, 766
Riemann

mapping theorem, 436
surface, 432

Ritz–Rayleigh method (RRM), 446, 447
Robin, 420
Rotating hollow cylinder, 286
Rotating ring, 284
Rotational, see curl
Rotational symmetry, 235, 245
Ruby, 762
Rutile, 762

S
Sapphire, 762
Saturation magnetization, 320
Scalar potential, 622

Second magnetization curve, 319, 321, 327
Self-inductance, 519

coefficient, 520
example of application, 520

Semi-analitical methods, 448
Semiconductor, 76
Semi-infinite conducting wire, 292
Semi-infinite solenoid, 282, 283
Semi-infinte wire, 292
Separation of variables method (MSV), 422,

449, 452, 460
Simple domain, 436
Single-valued function, 432
Singularity, 486
Sink point, 15
Snell’s law, 716
Solenoid, 587, 609

equivalent, 334
finite, 248
infinite, 262
toroidal, 245

Solenoidal field, 22, 23
Source point, 15
Space groups, 750
Special relativity, 636
Spherical surface, 430, 578
Spin Hall effect, 765
Stokes’s theorem, 15, 21
Superposition principle

for electric field, 71, 77, 98, 108
for electrostatic forces, 69
for electrostatic potential, 72, 78

Surface, 7, 36
Susceptibility, 752
Symmetry

broken, 435
Synchrotron, 651, 665

T
Temperature coefficient, 171
Tesla, 224
Theory of relativity, 637
Thermal internal energy, 595
Thévenin

equivalent, 186, 215, 219, 223
theorem, 186

Third magnetization curve, 319, 321
Thompson-Lampard theorem, 507
Toroidal core, 328
Toroidal solenoid, 270, 571, 590
Torus, 244, 245
Tourmaline, 762
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Translational symmetry, 234, 497
Transmitance, 719
Trefftz method (TM), 446

U
Uniaxial, 764

crystals, 761
material, 767
plate, 769, 773
slab, 783

Uniqueness theorem, 428
Univalued, 434

V
Variational model, 446
Vector lines, 5
Vector potential, 23, 26–28, 60, 62, 227, 253,

266, 267, 269, 314, 371, 468, 513,
621

circular ring, 252
infinite wire, 269

Voltage, 523

W
Wave

plane, 670
spherical, 670

Wave equation, 667
electromagnetic fields, 667
one-dimensional, 668
three-dimensional, 668

Wave plate, 766
Wave vector

surface, 763
Wave velocity, 668
Wavefront, 670
White light, 773
W plane, 435

Y
Yoke, 326

Z
Zeeman slowing technique, 310
Z plane, 435
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