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Preface 

THIS manual is a practical introduction to some quantitative and statistical techniques of 
use to geographers and related scientists. It is not a textbook. Each chapter begins with an 
outline of the purpose and necessary mechanics of a technique or group of techniques and 
is concluded with the most important feature of the manual, namely the exercises and the 
particular approach adopted. Each exercise involves an in-depth treatment of a topic of 
interest to geographers, and encourages the critical assessment of techniques in a context. 
The intention has been to emphasize the whole approach to problem-solving, rather than 
merely the techniques themselves. In this way, a superficial treatment of problems is 
avoided and students are not led to expect easy answers. The overall aim of this kind of 
exercise is to enhance the student's ability to use the techniques as part of the process by 
which sound judgements are made according to scientific standards while tackling 
complex problems. To this end, real data are used in the exercises (with the exception of 
the standard deviations in exercise 7, which were invented in order to include this 
interesting problem). 

The manual has been written with first-year undergraduates in mind and assumes no 
previous knowledge of the techniques - hence the need for the outline of each technique 
before beginning an exercise. Graphical explanations are used wherever possible and 
formulae are explained in words as well as numbers. This is essential for students of 
Geography with an 'Arts ' background; and speaking as a scientist who still requires 
graphical explanations to overcome mathematical 'blockages', it can do 'Science' 
students no harm either. Further information on the mathematics and statistical theory of 
the techniques must be sought elsewhere, for example in the many new textbooks covering 
various aspects of Quantitative Geography. 

Answers are provided to numerical questions where appropriate, but many questions 
do not have a single, correct answer. I consider it essential that students are exposed 
to such uncertainties at an early date, and that they should be capable of recognizing and 
understanding limitations of various sorts present in all geographical work. Indeed, it is 
envisaged that, drawing on their geographical experience (no matter how limited), 
students will put forward more than one interpretation or hypothesis and that alternatives 
will be evaluated in discussion. 

Most of the exercises began life in Geography practical classes at the University of 
Edinburgh and at University College, Cardiff, and have been found eminently suitable for 
use as class exercises. Many of the longer exercises should be divided among the students 
in a class and the results pooled for class discussion. Mixed-ability classes are catered for 
by permitting answers at more than one level of understanding, and open-ended questions 
towards the end of each exercise enable the student to pursue the problem to the limits of 
his or her ability. 

Two chapters do not follow the general format. The first chapter is an introduction. In 
particular it provides an explicit statement of why quantitative and statistical techniques 
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viii Preface 

are an important part of Geography, and a framework for viewing the techniques that 
have been included in the manual. Chapter 15 is a conclusion. It emphasizes: (i) the choice 
of a suitable technique for a problem; and (ii) the collective limitations of statistical 
techniques. The final chapter thus provides an overview with hindsight, advising caution 
to those intending to make further use of the techniques. 

It is hoped that this manual will increase the effectiveness of the teaching of quantitative 
and statistical techniques and that it will generate interest on the part of students in this 
part of the Geography curriculum. There is certainly considerable scope for the approach 
adopted here in the teaching of undergraduates, a branch of education in which the 
lecture is pre-eminent and perhaps too deeply entrenched. The manual and the approach 
are particularly appropriate as a means of introducing closely supervised project-style 
teaching as a preliminary to much more loosely supervised individual projects in later 
years of the Geography course. 

Llandaff 
June 1979 

J. A. M. 
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1 
Introduction. 
Quantification in 
a Context 

QUANTIFICATION and statistics are present, in some form or other, in all branches 
of Geography. It follows, therefore, that no geographer can be adequately prepared 
to pursue the subject unless he or she has at least an elementary knowledge of 
this group of techniques. A knowledge of quantitative and statistical techniques is 
necessary to obtain full benefit from the literature of Geography, which increasingly (and 
quite rightly) tends to expect from the reader a basic level of technical competence. These 
techniques are also necessary if one wishes to be a practitioner of Geography, no matter at 
what level this may be attempted. The manual proceeds on the assumption that the best 
way to understand a technique is to use it, and that the best way to appreciate the 
advantages and limitations of its use in Geography is to apply it to geographical 
problems. First, however, this chapter provides a framework within which the range of 
techniques can be viewed and their interrelationships clarified. 

Why should Geography be quantitative? 

Geography employs quantitative techniques for a very good reason. Nothing is wrong 
with a qualitative statement, but it will carry more weight if it is possible to make a 
statement quantitatively; that is, in a mathematical language rather than in words. Why is 
this so? 

Ideally, the aim of a geographical statement is to convey unbiased, objective 
information. The advantage of a quantitative statement is its precision, which allows less 
room for subjective bias to enter into the construction and interpretation of the statement. 
Consequently, a quantitative statement is more amenable to verification, more easily 
compared with other statements, and generally more suitable for testing hypotheses and 
developing theory by scientific method. In these respects geographical statements are no 
different from those of any other science. 

Superiority of a quantitative statement over a qualitative one cannot be taken for 
granted however. Quantitative techniques, like all others, can be misused. A quantitative 
statement is superior only if the following two conditions, namely validity and accuracy, 
are met. For any statement to be valid, it must express the true meaning of what it is 
attempting to represent. For example, if the aim is to compare the 'standard of living' in 
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2 Quantitative and Statistical Approaches to Geography 

FIG. 0 ACCURACY AND PRECISION 
The Target Analogue 

A 

Precise 
Inaccurate 

Precise 
Accurate 

Imprecise 
Inaccurate 

Imprecise 
Accurate 

(from Griff iths, 1967) 

According to Walter (1973), (b) is accurate and precise and therefore the best of the four 
statements. Both (a) and (c) are seriously in error, the former being inaccurate though 
precise, the latter being inaccurate and imprecise. Statement (d) is accurate but its 
imprecision allows a range of possible interpretations and could be a source of confusion. 

different countries throughout the world, then one quantitative measure that is available 
for most countries is the 'income per capita' of the population. The question is whether or 
not 'income per capita* is a valid measure of 'standard of living'. In the minds of many, 
'standard of living' has very little to do with income in monetary terms. Furthermore, the 
imprecision of the qualitative phrase 'standard of living' may be necessary to adequately 
describe this complex concept. Thus the availability of data, the ease of measurement, the 
simplicity of many quantitative measures, and related features of quantification, should 
not be confused with the more important notion of validity. 

Just as a precise, quantitative statement may not be valid, so it may not be accurate. 
Precision (exactness) does not necessarily ensure accuracy (correctness), although lack of 
precision precludes the highest accuracy and, other things being equal, a precise statement 
is more likely to be accurate than an imprecise one. A simple example of an inaccurate but 
precise statement is one based on measurements with a faulty instrument, but there are 
many other potential sources of error. The results of shooting at a target provide good 
analogies of accuracy and precision and illustrate the differences between qualitative and 
quantitative statements in terms of these two concepts (Fig. 1 ). Precision is represented by 
the degree of scatter of the individual shots; accuracy is the analogue of closeness to the 
bull's eye. Figure 1(A) is as precise as Fig. 1(B) but is not as accurate; Fig. 1(C) is not as 
accurate or as precise as either 1(A) or 1(B); Fig. 1(D) has a wide scatter, but is centred on 
the target, and is therefore not very precise but quite accurate. Figures 1 (B) and 1 (D) have 
much in common with good quantitative and good qualitative statements, respectively. 
Geographical statements, which are equivalent to the graphical representations in Fig. 1, 
may be listed: 

(a) 9 million k m
2
 in northern Siberia has a tundra vegetation cover; 

(b) 3 million k m
2
 in northern Siberia has a tundra vegetation cover; 

(c) most of northern Siberia is covered with Boreal coniferous forest (taiga); 
(d) most of northern Siberia is covered with tundra vegetation. 
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The greater role of scientific method 

Quantification is rarely an end in itself but is an integral part of the method by which 
reliable knowledge is accumulated. Any science proceeds by a cycle of observation and 
hypothesis* from which emerges scientific order, or explanation, in which observed facts 
are given meaning within a conceptual framework (Fig. 2). Observations are not made 
without the benefit of experience or existing hypotheses, and hypotheses are not derived 
entirely in isolation from the real world. Moreover, our hypotheses are always subject to 
improvement. Thus scientific method should not be viewed as having a starting-point or 
an end-point, but as a progressive process of successive approximation. 

Description, quantitative or qualitative, may involve and be followed by some kind of 
simplification and the formulation of hypotheses. Thus we might classify the phenomena 
and put forward the characteristic features of a small number of groups rather than 
describe a large number of individuals in turn. In this way, hypotheses with a strong 
inductive component could be suggested from observation of the real world. 
Alternatively, hypotheses may have a strong deductive component, being derived in 
large part from the existing body of reliable knowledge (rather than from observation 
directly). 

The expected consequences of hypotheses—predictions—can be made about similar 
phenomena, in the same place, or in different places, or at different times (in the past or 
future). Hypotheses, no matter how derived, are tested by comparing such predictions 
against independent evidence', for example, new observations which were not used in the 
original formulation. Failure to stand such a test—refutation—calls for a new or at least a 
modified hypothesis, to take account of the independent evidence. On the other hand, 
well-tested hypotheses may be raised in status and may be said to provide general 
explanations or principles, which form part of the body of reliable knowledge. 

Hypotheses (together with descriptions, predictions and other aspects of scientific 
method) are ideally simple, quantitative and gênerai Unfortunately, a hypothesis does not 
always possess all three properties. For example, simplicity often results in the recognition 

* A hypothesis is a general proposition about all the individuals of a particular sort; a testable conjecture; a 
potential solution to a problem; a model. 

FIG. (§) SCIENTIFIC METHOD-. 
A Cyclic Association of Facts and Ideas 

QSAG - Β 
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The component quantitative techniques 

Four broad categories of quantitative techniques are considered in the manual and will 
be outlined here: measurement, sampling, descriptive statistics and inferential statistics. 

(i) M E A S U R E M E N T 

Measurement is the quantitative description of single objects and in Geography 
involves such diverse topics as the use of instruments and the construction of 
questionnaires. A particularly important aspect is the level of measurement (or order of 
precision) that is attempted. Measurement is most commonly conceived as interval scale 
measurement; that is, with an exact difference between phenomena measured on that 
scale. For example, the three highest peaks, measured on an interval scale are: 

In Geography, much use is made of two other levels of measurement: ordinal scales, on 
which objects are measured according to their rank-order (that is, they are placed in 
increasing or decreasing order); and nominal scales, which indicate differences in kind 
rather than degree. Ordinal scale measurement of the three highest peaks results in the 
statement that Everest is higher than Mount Godwin-Austen, which is higher than 
Kangchenjunga. Note that this statement does not say by how much one peak differs from 
another. On a nominal scale, all three peaks might simply be described as belonging to the 
same class of phenomena—'mountains '—without even an implied ordering. Ordinal and 
nominal scales are particularly widely used in Human Geography. For example, the 
description of people as belonging to 'upper', 'middle' or 'lower' classes, or countries as 
being 'developed' or 'developing', involves the use of ordinal scales. Examples of nominal 
scales include land-use categories, industrial types and personal occupations. 

Mount Godwin-Austen (K2) 

Kangchenjunga 

Everest 8840 m (29,002 feet) 

8611 m (28,250 feet) 

8579 m (28,146 feet) 

of many exceptional individuals and it may be difficult to quantify the necessary range of 
variation to achieve generality. Although words can be used for logical reasoning and 
may result in hypotheses and the establishment of scientific order, words are clumsy tools. 
Numbers and mathematical signs are less obstructive to precise and accurate reasoning, 
as outlined above. 

Scientific method is not the only basis for understanding, but it provides us with the 
'most consistent, coherent and empirically justified body of information upon which to 
base such understanding' (Harvey, 1969). This is how scientific progress is made; 
geographers should be satisfied with nothing less. Geography is no less dependent than 
any other science on the accumulation of reliable knowledge. However, its subject matter 
does differ in some important respects from that of 'conventional ' or 'hard' sciences, such 
as Physics and Chemistry. The complexities of geographical phenomena in space and time 
(particularly on the social science side of the subject) are often very difficult to tackle 
quantitatively, and partially account for the slower progress of Geography relative to 
some other sciences. 
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Just as quantitative statements are superior to qualitative statements (because of higher 
precision), so interval scale measurement is superior to ordinal scale measurement, which 
is in turn superior to nominal scale measurement, for the same reason. Quantitative data 
resulting from different levels of measurement often require different techniques for 
further analysis because many techniques are specifically designed to handle data at a 
particular level of measurement. However, whenever possible, measurements should be 
made on an interval scale as more precise information about the objects is involved in the 
measurement. For this reason most emphasis is given in the manual to techniques 
requiring interval scale data. 

(Ü) SAMPLING 

Sampling is concerned with the choice of an object or set of objects for measurement. 
Geographers have always utilized sampling although they have not always sampled 
quantitatively or objectively. Case studies (such as a detailed examination of one farm 
within an agricultural region, a detailed study of one section exposed in a particular 
landform, or a detailed study of the development and economic consequences of a single 
hurricane) are a traditional approach in all branches of the subject; Case studies are 
samples of one object (sample size = 1); more usually, sampling is concerned with the 
choice of a set of objects of the same sort, because it can be dangerous to rely on results 
derived from a single example. 

The aim of sampling is usually to obtain an unbiased or representative sample of the 
larger population of objects from which the sample is drawn, thereby ensuring that the 
sample has some general significance. It is often grossly inefficient and unnecessarily time-
consuming to measure the whole population, because it is possible to arrive at a 
sufficiently accurate and precise estimate from a sample. It is essential, however, that a 
sample is representative and not subject to bias, such as the personal prejudices of the 
investigator. 

Sometimes it is virtually impossible to measure the whole population—such as all the 
pebbles on a beach or all the people in a city—even if it were desirable to do so. 
Conservation can also be an additional incentive to sample as efficiently as possible 
(particularly in the study of soils and vegetation, where the object of study is sometimes 
destroyed, or at least disturbed, during sampling and measurement). The primary 
consideration in sampling must remain the representativeness of the sample, which 
determines to a great extent the value of results following from the analysis of data. All 
subsequent quantitative techniques that are used to analyse data in this manual assume 
the data are representative, unbiased samples. 

(iii) DESCRIPTIVE STATISTICS 

Descriptive statistics are quantitative summaries of the measurements made on a set of 
objects. Examples include totals, averages, percentages and measures of the variability of 
a set of objects. Assuming that adequate measurement and suitable sampling techniques 
have been employed, then the result should be a lot of reliable quantitative data. Such 
information, perhaps based on 500 questionnaires collected from a survey by interview, 



6 Quantitative and Statistical Approaches to Geography 

( i v ) INFERENTIAL STATISTICS (PROBABILISTIC STATISTICS) 

The geographer's need of inferential statistics is a result of his need to take account of 
the variability of individual objects within samples, which reflects, in a representative 
sample, the variability of the underlying population. We require to know the confidence 
that we can place in statements about populations derived from samples. Inferential 
statistics meet this requirement by making such statements with reference to a standard— 
the likelihood of a given sample outcome having occurred by chance. 

The likelihood of occurrence by chance is determined from sample descriptive statistics 
in conjunction with the laws of probability, and is expressed in terms of probabilities. The 
following three statements are quantitative and probabilistic, mean exactly the same 
thing, and are given as examples of a simple conclusion from the application of inferential 
statistical techniques to a sample of pebbles from a beach: 

(a) there is a 95 % (p = 0.95) probability that any pebble on this beach is greater than 
2.0 cm long; 

(b) there is a 19:1 (95:5) chance that any pebble on this beach exceeds 2.0 cm in length; 
(c) 95 pebbles out of any 100 (950 out of any 1000) on this beach are likely to be longer 

than 2.0 cm. 
The uses of inferential statistics are most commonly described in two closely related 

ways. These are: 
(a) estimating the properties of populations on the basis of samples; 
(b) testing hypotheses about one or more populations from samples. 

The three statements given above are examples of the first use. They give an estimate 
of some property of the population of pebbles and a measure of the confidence that can be 
placed in it. Use of inferential statistics in the testing of hypotheses might involve the 
comparison of the pebble sizes on two beaches, based on a sample of pebbles from each. 
Possible conclusions would be: 

(a) there is a > 95 % (/?> 0.95) probability that the two beaches differ in terms of their 
pebble sizes; 

(b) there is a > 19:1 (>95:5) chance that pebble sizes differ between the two beaches; 
(c) there is a < 5 % chance of there being no difference between the two beaches in terms 

of their pebble sizes. 
Inferential statistics provide, therefore, a means of measuring the uncertainty associated 
with sampling from populations, and a precise measure of the confidence that can be 
placed in results based on representative samples. 

or 1000 measurements of pebble size from a beach, is of little use in the form of raw data 
but is more easily assimilated and communicated to others in a summarized form. 
Moreover, once summarized, one data set is more easily compared to other data 
sets. 

By the judicious substitution of a few descriptive statistics for many individual 
measurements generalizations are made but, inevitably, some information is lost. It is the 
information that is lost and the information that is retained which determines the 
advantages and limitations of the various descriptive statistics. The manual begins with 
an introduction to descriptive statistics (see Chapter 2). 
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Exercise 1. Problems of measurement in the invention of shape 
indices for landforms. 

Background 

Shape or form is often a more interesting and more important aspect of phenomena 
than mere size. The terms 'geomorphology' (earth-form study) and 'landform' emphasize 
this importance. Shape is difficult to quantify, however. The same shape may occur at 
widely different scales. For example, running water naturally tends to meander whether 
one considers a small streamlet on a waste-tip or the Mississippi river before it enters the 
sea. The meander landform has a characteristic shape, irrespective of its scale. Any 
quantitative measure designed to describe the shape of a meander must not be influenced 
by the size of the feature, but should capture the essentials of 'meanderingness' or 
'sinuosity'. 

FIG. (5) MEANDERS OF DIFFERING SINUOSITY 

A suitable measure or index of sinuosity is illustrated in Fig. 3. It is easy to appreciate 
that sinuosity increases from A to D and that the straight channel A has minimum 
sinuosity. In D the length of the channel is great in relation to the straight-line distance 
between χ and y (defining the reach of the river that is being described). It is a small step 
from this observation to the definition of an index of sinuosity as the ratio of the actual 
length of the channel to the straight-line distance (that is, A/S). The advantage of the 
index is that it enables one to state precisely the degree of sinuosity of any channel. In Fig. 
3, for example, A has a sinuosity of 1.0, C is twice as different from a straight channel than 
is B, and D is more different from C than is B. 

Although shape is independent of size, measurements of size (measurements of length 
in the example above) are necessary to determine a measure of shape. It is the use of the 
measures of size as a ratio that removes the effect of size. The following exercise on the 
invention of shape indices for various landforms requires, therefore, the construction of 
appropriate ratios. 
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Practical work 

1. Drumlins are ice-moulded landforms composed of glacial till and have been 
described qualitatively as being shaped like birds' eggs, cigars, airships and upturned 
spoons. A plan view of part of a drumlin field in Wisconsin, U.S.A., is shown in Fig. 4. 
Many research workers have used the length:width ratio (L/W) as a measure of drumlin 
shape. This shape index varies from 14.5 to 1.6 when applied to the individual drumlins in 
Fig. 4. 

(a) What aspect of shape changes as this index increases in value? 
(b) Draw drumlins with shape indices of 2.0, 3.0 and 6.0, respectively. 
(c) Suggest a name for this index. 
(d) Values of this index in two other drumlin fields are: 

Region Maximum value Minimum value 

Central Finland 50.0 2.0 

S.W. Scotland 6.0 1.0 

Suggest some geomorphological reasons why the shape of drumlins varies between 
these three areas of Wisconsin, Finland and Scotland. 
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F I G . © DIVERSE LANDFORMS 

A Clipperton Atoll 
(Eastern Pacific) 

Coral reef 

1km 

Β Cinder Cone 

Cinder Cone 
on a slope 

200m 

D Mount Rainier Ice-cap 
(Western U.S.A.) 

Glacier Ice 6 km 

Ε A Desert Barchan 

Sand dune 

f.t Λ 
\ ί — i ^ y 

100m 
ι 1 

F Headlands and Bays 
( Pembroke coast, U.K.) 

J I Beach 

tS5>- Cliff 

Mano<*
x
 ( 

Priest 's Nose 

1km 

2. Drainage basin shape is commonly measured by the length:width ratio. Two other 

widely used indices are: 

/ Area of the largest circle that can be drawn within the watershed 

C Area of the smallest circle that can be drawn around the watershed 

(e) Name at least one aspect of drumlin shape that is not taken into account by the 
length:width ratio. 
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^ L Length of the basin 

A Diameter of a circle with the same area as the basin ' 

(a) Discuss the differences between the indices in the context of drainage basin shape. 
(It would be advisable to draw some 'model' shapes to assess the application of the 
three indices.) 

(b) Considering each index in turn, what differences in index value would be expected 
for basins in the following regions: 

(i) A region of uniform sedimentary rock and a maritime temperate climate. 
(ii) A region recently deglaciated after a period of intense glacier erosion. 

3. Theoretically, if a landform can be described qualitatively it should also be possible 
to describe it quantitatively. Figure 5 gives a selection of geomorphological phenomena, 
some of which have characteristic shapes, but few of which have been described by 
suitable shape indices. Make notes on possible indices for these features, paying particular 
attention to the following points: 

(a) Precise definitions of what must be measured. 
(b) The aspect of shape that each index is describing. 
(c) Any limitations of your indices. 

Exercise 2. Scientific method in the analysis of the Roman road 
network in England and Wales. 

Background 

Historical and archaeological research suggests that London was probably the 
economic centre of Roman Britain, an importance attributed in part to its geographical 
position and the excellence of its communications. Provincial administration was centred 
on a large number of towns of supposed lesser economic importance than London: the 
'colonia' (Colchester, Gloucester, Lincoln and York) and the 'municipium' (St. Albans), 
which were communities of Roman citizens; and fifteen 'civitates' or provincial capitals. 
Major legionary forts were located at York, Chester and Caerleon. The road network of 
Roman Britain (Fig. 6A) was a carefully planned system, linking these civil and military 
centres of occupation. 

This exercise applies a simple quantitative technique to the Roman road network, as a 
means to improving our understanding of London in relation to the rest of Britain at that 
time. Particular attention is paid to the care required in the formulation of hypotheses and 
to the relationship between hypotheses, independent evidence and assumptions. 

In Fig. 6B the original network has been converted into a 'polar network', that is a 
network centred on a particular point, in this case London. This has been achieved by 
identifying 'indifference' points that are equidistant from London by alternative routes. 
At indifference points the original network has been cut. In Fig. 6C the polar network has 
been 'ordered', as indicated in the inset to Fig. 6B. In this way the routes centred on 
London have been quantified using an ordinal scale level of measurement. 

Practical work 

1. Is the converging pattern of routes in Fig. 6C evidence for the focal position of 
London in the Roman road network? 
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FIG. (g) NETWORK ANALYSIS OF 

BRITISH ROMAN R O A D S 
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2. What meaning can be attached to the order of a route in Fig. 6C, and, for the 
ordering system to be meaningful, what simplifying assumptions have to be made? 

3. Which of the following were involved in the construction of Fig. 6C: 
(a) A test of a hypothesis? 
(b) The formulation of a hypothesis? 
(c) The predicted consequences of a hypothesis? 
(d) The description of observations? 
(e) An arrangement of data to fit preconceived ideas? 

Fully justify your answer in each case, including an explicit statement of any hypotheses 
that are discussed. 

4. The municipium, the four coloniae and seven of the civitates are located on third- or 
fourth-order routes; all the remaining civitates are on second-order routes. Does the 
independent evidence of the location of the Roman towns, when viewed in relation to the 
polar network (Fig. 6C), corroborate the hypothesis that the Roman urban hierarchy was 
dependent on London? Fully explain your answer. 

5. The following three routes are thought to have been the main arteries of Roman 
Britain: 

(i) The northern route (Ermine Street), linking London, Lincoln and York. 
(ii) The midland route (Watling Street), linking London, St. Albans and Chester. 

(iii) The western route, linking London to Silchester with branches to Gloucester and 
Caerleon. 

Does the high order of these routes in Fig. 6C support any hypothesis? If so, what is the 
hypothesis, and why is it supported? If not, why not? 

6. If you were given polar networks based on the same roads, but centred on different 
foci, what additional information might be forthcoming? 

7. Figure 6C bears some similarity to Britain's contemporary motorway system. 
Would it be valid to suggest that the same terminals and the same problems of 
determining the most practicable routes to London therefore governed the engineers' 
choices in both ages? 

8. Would the discovery of new Roman roads influence the results obtained? 
9. Discuss the bearing of the following points on the validity of possible conclusions 

from Fig. 6: 
(a) At stage 2 of the analysis (Fig. 6B) two routes of major importance in Roman 

Britain were cut, namely: 
(i) The straight-line route linking Exeter to Cirencester and Lincoln (the Fosse 

Way). 
(ii) The east-west route linking Colchester, St. Albans and Cirencester. 

(b) There were important links between Roman London and continental Europe, 
which are not reflected in the ordering of routes in south-east England. 

(c) York, whose legions were strategic reserves for the defence of the north, is entirely 
unconnected with the western half of Hadrian's Wall in Fig. 6C. 

10. The analysis in Fig. 6 was originally carried out by Dicks (1972) who concluded: 

Decomposing the complex network of the Roman road system of Britain into a polar network centred on 
London, corroborates much of our knowledge of Roman Britain, emphasizes the primacy of London, and 
suggests the value of network analysis as an exploratory tool in historical geography. 

Give your views on the validity of these conclusions. 



2 
Measures of 
Central Tendency 

GIVEN a set of measurements derived from a set of objects of similar sort, what descriptive 
statistics are necessary to describe adequately the data? These can be appreciated by 
reference to the frequency histogram (Fig. 7) which is a graphical representation of the 
data. The figure indicates how many of the measurements (vertical axis) fall within certain 
limits on the scale of measurement (horizontal axis). The histogram has a form or 
distribution that is commonly found with data derived from objects of interest to 
geographers; there is a peak which indicates the most frequently occurring measurement 
and the distribution tapers off with relatively few extremely high or extremely low values. 
Sometimes the distribution is asymmetrical, but for the present a symmetrical distribution 
will be assumed. The distribution in Fig. 7 is centred on a particular point on the scale of 
measurement and has a certain amount of spread (variability) along that scale. Two 
summarizing measures would adequately describe these aspects of the distribution: first, a 
measure of central tendency; second, a measure of variability or dispersion. 

F I G . 0 A FREQUENCY HISTOGRAM 
Describing the distribution of a set of measurements 
along a measurement scale 

Number of 
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4 - ι 

3· f 

2- ι 

1- ι ' 

o-|—I I I I I f I I • 
0-4 5 -9 10-14 15-19 20-24 25-2930-34 35-39 

Class intervals along the measurement scale 

The most useful measure of central tendency is the mean, commonly termed the 
average. To calculate the mean of a set of measurements, the individual measurements are 

13 
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added together and then divided by the number of measurements. In symbols, this 
calculation becomes: 

Σ χ 
χ = — 

η 

where, χ = an individual measurement, 
Σχ = the sum (total) of the individual measurements, 

η = the number of measurements (the sample size), 
χ = the mean (average) of the sample. 

The mean of the whole population, from which the sample was taken, should be 
represented, as μ, and the number of individual measurements in the population by N. 
These population values are not usually known, however. 

Two other measures of central tendency, generally less useful but having important 
applications associated with particular types of distribution and with ordinal and 
nominal scales of measurement, are the median and the mode. The median is the middle 
value when the individual measurements in a set of data are arranged in rank order (that 
is, in order of increasing or decreasing value). The mode is simply the most commonly 
occurring value in the set (or the highest column in the histogram). If the data form a 
symmetrical distribution (as in Fig. 7) the three measures of central tendency will be 
approximately the same. 

Mean annual rainfall is a very widely used measure of central tendency, which describes 
the amount of rainfall that has occurred, on average, over a period of years. This value 
usually gives a good indication of rainfall conditions, but under some conditions this 
mean can be misleading. For example, at Iquique, a meteorological station in the 
Atacama Desert (northern Chile), 63.5 mm (2.5 inches) of rain fell in a few hours on 
22nd June 1911, in a series of otherwise rainless years. This amount of rain falling on one 
occasion in 8 years gives a mean annual rainfall of almost 8.0 mm. But in seven out of the 
eight years no rainfall was experienced! The median (the middle value) and the mode (the 
most common value) are both 0.0 mm in this example and are surely more representative 
of desert conditions that the mean. More generally, it can be said that the mean is the most 
sensitive of the three measures of central tendency to extreme cases. One more year with, 
say, 30 mm of rain would not alter the median or the mode at the desert station, but the 
mean would be greatly changed. 

The mean also reacts differently to asymmetry of the distribution. Figure 8 shows two 
basic ways in which distributions may depart from symmetry. A positively skewed 
distribution (Fig. 8A) has more measurements concentrated at the low end of the 
measurement scale; a negatively skewed distribution (Fig. 8B) has more cases at the high 
end of the scale. In both examples the mean is closest to the centre of the range of the 
measurements (the range being the part of the measurement scale that is occupied by the 
measurements) and farthest from the 'peak' of the distribution. The mode is furthest from 
the mean and is, by definition, the highest column in each histogram. The median is 
intermediate in its sensitivity to skewness. 

One situation in which the mean and median will both give a totally misleading 
impression is when a distribution is hi- or multi-modal. An example is given in Fig. 9, 
which shows a bimodal distribution (two modes). In this example the mean and the 
median not only give no indication of the two peaks but suggest a central tendency at a 
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F I G . ® FREQUENCY DISTRIBUTIONS WITH SKEW 
Showing the relative positions of three measures 
of central tendency 

Mo 

χ Md 
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Md = Median 

X = Mean 

FIG. (9) A BIMODAL FREQUENCY 
HISTOGRAM 
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point on the measurement scale where very few individual measurements are found. If 
such a distribution were to be found in reality, then each mode would have to be noted (as 
will be necessary in Exercise 3). In general, it is best to examine the distribution of 
individual measurements, by plotting a histogram, before any measure of central 
tendency is calculated. Other things being equal, however, the mean is to be preferred as it 
incorporates more information about the individual measurements (interval scale data). 

These niceties are particularly relevant in Geography because geographical data are 
often far from symmetrical, there are often extreme cases, and the measurements are often 
only available on ordinal or nominal scales. In short, geographical data are statistically 
'dirty', as opposed to the 'clean' data sets often available in the 'hard ' sciences. This makes 
for difficulties when we wish to compare two or more 'dirty' data sets. An actual example 
where such effects as have been discussed above could be crucial is provided in Fig. 10. 
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F I G . ® 
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(from Schümm, 1956) 

Exercise 3. Application of histograms and use of the mode in 
the reconstruction and dating of glacier fluctuations 
in Swedish Lappland. 

Background 

In the Kebnekaise Mountains of Swedish Lappland, twenty-three small glaciers were 
investigated and up to eight crescentic end-moraines were found to have been deposited 
within a few kilometres of each glacier snout. The moraines are present-day field evidence 
of past variations in size of the glaciers, for each time that a glacier increases in size it tends 
to deposit a morainic ridge at the limit of the advance. By dating the end-moraines, it is 
possible to reconstruct the recent history of glacier fluctuations and hence to make 
inferences about changes in climate over the same period. The moraines can be dated by 
lichenometry—that is, by the size of the largest lichens growing on them—for the longer a 
moraine has been deposited, the longer the period of time that has been available for 
lichen growth, and the larger the diameters of the almost circular lichens tend to be. 

The histograms describe maximum valley-side slope angles in badland topography at 
Perth Amboy, New Jersey, in 1949 and in 1952, respectively. After 4 years of erosion mean 
slope angle appears to have been reduced by 0.2°. It may well be, however, that this 
difference is the result of extreme cases or a difference in symmetry of the distributions. 
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An example of the setting of the moraines in front of one of the glaciers is shown in 
Fig. 11. This glacier has five end-moraines, characterized by lichens up to 22 mm, 28 mm, 
40 mm, 88 mm and 160 mm in diameter, respectively. These data indicate that this glacier 
was larger at least five times in the past than it is today. The most likely cause of a change 
in the volume of the glacier is a change in climate; in particular, a change in the balance 
between the accumulation of snow-fall in winter and the ablation or melting in summer. 

r ™ J rjjH Undifferentiated r-^-i Glacier Largest 
I™ Ü B moraines M ice lichens (mm) 

(from Karlen, 1973) 

Figure 12 shows the relationship between lichen size and moraine age, established by 
examination of the size of lichens on surfaces of known age in the same region (young 
moraines that were observed being formed, mine spoil-heaps, buildings and railway 
workings of known age). 

By use of a histogram to summarize graphically the lichen-size data from all twenty-
three glaciers, it is possible to elucidate much concerning the recent glacier and climatic 
fluctuations. In particular, a mode indicates that a large number of glaciers advanced to 
form a moraine at about the same time and is therefore evidence for fluctuations of 
regional, rather than local, significance. 

Practical work 

1. The data given in Table 1 are the largest specimens of Rhizocarpon geographicum 
(the map lichen) growing on ninety-three moraines in front of twenty-three glaciers in 
Lappland. 
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F I G . (ii) L I C H E N O M E T R I C D A T I N G C U R V E 

For the Kebnekajse Mountains, Swedish Lappland 
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TABLE 1. Lichen sizes on moraines in front of glaciers in northern Sweden 

Glacier Largest lichen (mm) on each moraine 

1. Karsajökeln 21, 42, 58, 88, 155 
2. Blaisen 21, 31, 90, 355 
3. Rabots glaciär 21 
4. Riukojietna 22, 26, 285 
5. Storlaciären 21, 30, 60, 75, 85, 185 
6. Norra Kaskasapakteglaciären 22, 28, 40, 88, 160 
7. Nipalsglaciären 20, 62, 93, 180 
8. Östra Pyramidglaciären 19, 38, 75, 176 
9. Tjäktjapakteglaciären 21, 85, 178, 320 

10. Kuoblavaggeglaciären 14, 100 
11. Isfallsglaciären 18, 31, 60, 77, 86, 180 
12. Sydöstra Kaskasatjäkkoglaciären 16, 30, 56, 76, 170 
13. Östra Kaskevaggeglaciären 13, 62, 72, 87 
14. Mellersta Kaskevaggeglaciären 17, 85 
15. Enquists glaciär 14, 32, 60 
16. Vaktpostglaciären 21, 33, 43, 70, 85, 180, 260, 380 
17. Tarfalaglaciären 60, 195, 260 
18. Södra Kaskasapakteglaciären 14, 53, 90 
19. Björlings glaciär 20, 33, 84, 192, 201, 256, 380, 410 
20. Östra Repiglaciären 21, 61, 77, 172 
21. Knivglaciären 21, 31, 76, 158 
22. Passglaciären 13, 61 
23. Kitteldalsglaciären 16, 31, 55 

(After Karlen, 1973.) 



Measures of Central Tendency 1 9 

(a) Draw a histogram to summarize the data. Number of moraines (vertical axis) 
should be plotted within lichen-size classes (horizontal axis). A 4-mm class interval 
is recommended. (The class interval should be no larger than this because the data 
for individual glaciers indicate that distinct moraines differ in lichen size by as little 
as 4 mm.) 

(b) Describe, in some detail, this multi-modal distribution. Consider, in particular: 
(i) The overall distribution. 

(ii) Whether there are broad groups within the general pattern. 
(iii) To what extent minor modes are meaningful. 

2. Relate your histogram to the graph in Fig. 12 and summarize the ages of the 
moraines. Your answer should include: 

(i) A description involving precise dates where this is justifiable. 
(ii) Some tentative suggestions about the age of the older moraines. 

3. Given that a distinct mode indicates that many glaciers produced moraines (at the 
limit of an advance) at the same time, what can be concluded about glacier fluctuations 
from the spacing between modes? 

4. What can be concluded about glacier fluctuations from the relative heights of the 
various modes? 

5. Only two glaciers (numbers 16 and 19) have as many as eight moraines; one glacier 
(Rabots glaciär, number 3) has only one moraine, and this moraine is a very recent 
feature. State at least two alternative hypotheses to account for these observations. 

6. Comment on the limitations of this investigation (at any stage) and suggest methods 
that might be used in the field to improve our understanding of past glacier and climatic 
fluctuations in this area. 

Exercise 4. Comparison of measures of central tendency in the 
study of a fan of erratics in the Central Lowlands of Scotland. 

Background 

About 10 km north-east of Glasgow (near Lennoxtown) there is a small outcrop 
of a distinctive type of intrusive rock known as essexite. The last ice sheet to move across 
the area eroded and then deposited fragments of essexite in the form of a fan of erratics 
eastwards across the Central Lowlands of Scotland. Today, essexite erratics are common 
in walls throughout the region, having been removed from the fields by farmers, along 
with other stones above a minimum size. This readily accessible source of erratics of 
known origin permits the quantitative investigation of changes in the properties of the 
erratics with distance from the outcrops. These changes may in turn lead to inferences 
about processes and rates of glacial transport and erosion. 

The location of the essexite outcrop and the points at which walls were examined are 
shown in Fig. 13. Each point is located in the centre of a 200-m section of wall. There are 
no other outcrops of essexite known to have given rise to erratics in this area, and the 
outcrops have never been quarried. The majority of the walls were built in the late 
eighteenth century and are assumed to be a representative sample of glacially transported 
material. 

This exercise is concerned with an investigation of the variation in size of erratics with 
distance from the outcrops. The study area in Fig. 13 has been sub-divided into zones of 
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increasing distance from the outcrops; each zone being 2 km wide. Different measures of 
central tendency are useful for obtaining a generalized and precise measure of the size of 
erratics with increasing distance from the outcrops. The high variability of erratic size at a 
given distance makes such measures particularly appropriate for the recognition of any 
pattern in the data. 

Practical work 

1. The data given in Table 2 represent the size of individual erratics based on a random 
sample of 30 erratics from each 2-km zone of the Lennoxtown erratics fan. 

TABLE 2. Size of erratics (cm
2
) near Lennoxtown, Scotland 

Distance from the outcrops (zone mid-point in km) 

1 3 5 7 9 11 13 15 17 19 

1116* 234 900 432 858 195 459 168 216 342 
100 728 192 925 322 575 231 153 420 162 
130 784 189 403 544 525 464 105 240 182 
588 270 315 405 368 330 289 180 100 200 

920 200 512 396 360 252 330 779 247 150 

561 1404 462 560 630 425 570 768 128 300 

500 170 198 416 442 432 528 216 540 130 

432 136 285 330 198 578 170 119 594 160 

440 351 450 380 680 384 242 322 160 208 

112 144 735 108 520 264 392 378 286 252 

234 450 736 198 391 392 437 84 216 703 

208 261 480 380 896 288 459 165 448 208 

70 250 672 910 520 594 1824 144 380 171 

306 660 140 437 1440 588 440 350 459 868 

169 150 238 432 187 286 375 264 90 200 

208 75 • 325 475 540 56 638 165 156 135 

1363 144 551 378 480 70 132 156 135 255 

288 527 406 925 308 136 75 247 225 180 

322 126 252 209 322 352 437 171 304 91 

225 98 289 784 544 234 322 261 144 522 

660 77 189 336 434 1080 288 779 152 1880 

130 650 644 144 368 56 378 252 143 190 

725 144 490 216 198 600 313 714 135 340 

532 595 540 290 551 364 294 195 266 66 

660 176 483 391 240 162 336 135 286 190 

880 200 210 437 486 336 98 289 154 440 

450 180 506 486 252 286 756 54 154 198 

1440 576 170 380 187 330 150 171 336 242 

874 234 437 490 345 513 403 352 378 247 

100 513 357 384 459 220 378 442 160 273 

* Size of erratics is the area visible in the wall face. 

(From R. A. Shakesby, pers. comm.) 

Perusal of the data does not reveal any clear pattern; the situation is not much clearer if 
the whole distribution at each distance is represented graphically in the form of 
histograms (Fig. 14). Without some additional summarizing of the data, any pattern 
might remain undetected. 
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F I G . (14) V A R I A B I L I T Y I N T H E S I Z E O F E R R A T I C S 

Near Lennoxtown, Central Lowlands of Scotland 
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(a) Calculate the mean size of erratics for each distance, using the above data. 
(b) Calculate the median sizes for the same data. 
(c) Using Fig. 14, note the modal class at each distance. 
(d) Tabulate the measures of central tendency in a manner facilitating comparison. 
2. Plot the measures of central tendency on graph paper, with erratic size (vertical axis) 

against distance from the outcrops (horizontal axis). 
(a) Describe the patterns revealed by the three measures of central tendency, paying 

particular attention to: 
(i) Points of agreement between the measures. 

(ii) Points of disagreement. 
(b) Which measure of central tendency shows the most irregular pattern and why 

should this be so? 
(c) Account for the consistent difference between the mean and the median. 
(d) Which measure of central tendency is the most suitable in the present context and 

why? 
3. Suggest some possible explanations, in terms of glacial transport or other 

geomorphological factors, for: 
(a) The general pattern observed. 
(b) Significant departures from the general pattern. 
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Are there any good reasons why one or more of your hypotheses could be eliminated from 
consideration, thus approaching closer to a correct explanation? 

4. List any difficulties and/or limitations of this study. These might be considered 
under three headings: 

(a) Statistical factors. 
(b) Geomorphological factors. 
(c) Human factors. 



3 
Measures of 
Dispersion 

M O S T sets of measurements have a considerable amount of dispersion (also known as 
variability or spread) which gives any histogram its width. A good quantitive summary of a 
data set requires, therefore, not only a measure of central tendency but also a 
complementary measure of dispersion. As well as being an important property of objects 
of a similar sort, dispersion must also be taken into account when two data sets are being 
compared. Two sets of measurements may have identical central tendencies but differ 
greatly in dispersion (Fig. 15). Moreover, a small difference in central tendency between 
two or more data sets may be of questionable significance if each of the sets possesses a 
large dispersion with consequent great overlap with other sets (Fig. 10). 

Three measures of dispersion will be discussed here, and these may be considered to 
be complementary to the three measures of central tendency that were considered in 
Chapter 2: 

The range is the difference between the highest and lowest measurements in a data set. In a 
histogram, the range is the occupied section of the measurement scale along the horizontal 
axis (Fig. 7). Like the mode, it is an easily obtained measure containing little information. 
The biggest limitation of the range is that it is controlled entirely by the extreme 
measurements at the ends of the distribution, and cannot, therefore, be said to have much 
generality. The bulk of the measurements in a distribution are usually quite close to the 
measure of central tendency and a good measure of dispersion should take this fact into 
account. 

The other two measures of dispersion are of much greater importance to the geographer 
who wishes to make full use of available data. The quartile deviation is used in conjunction 
with the median and, like the median, it is based on ordinal scale measurement (that is, it 
utilizes rank-order information about individual measurements in a data set). By far the 
most important measure of dispersion is, however, the standard deviation, a measure based 
on interval scale data (taking the exact value of every individual measurement into 
account). 

Measure of central tendency Measure of dispersion 

1. 
2. 
3. 

Mode 
Median 
Mean 

Range 
Quartile deviation 
Standard deviation 

24 
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F I G . ® F R E Q U E N C Y C U R V E S A N D H I S T O G R A M S 

With the same mean but different dispersions 

No. 
A HIGH DISPERSION 

Β LOW DISPERSION 

• Class 

The quartile deviation 

The quartile deviation is used to measure dispersion about the median. Just as the 
median divides a data set into two halves, so the upper and lower quartiles subdivide the 
upper and lower halves of the data. This is illustrated in Fig. 16, which shows individual 
measurements distributed against a measurement scale in the form of dispersion diagrams. 
It must be stressed that the median and the quartiles are located by counting the number of 
measurements from the top or bottom. Thus in Fig 16A, the median is the 28th 
measurement (because there are 55 points on this diagram) and the quartiles are located at 
the 14th measurements from top and bottom of the measurement scale. If an even number 
of measurements is involved then the median or quartiles are located half-way between the 
two middle measurements. The data set, in this case, has been divided into four quarters; it 
is possible, of course, to make other divisions for particular purposes—quintiles (fifths) or 
octiles (eighths), for example. In Fig. 16 the individual points are census tracts in the city of 
Atlanta, Georgia, U.S.A. Each tract has been measured in terms of a quality of life index 
(derived from information on health, crime, housing, socio-economic status and 
population density). Separate dispersion diagrams are shown for tracts in which over 50 % 
of the population are white (Fig. 16A) and for tracts in which over 50 % of the population 
are black (Fig. 16B). These diagrams give a clear representation of the difference in quality 
of life between the two communities, which also are segregated within the city. It is 
particularly noteworthy that while the ranges of the two communities overlap con-
siderably, there is no overlap between the inter-quartile ranges. 

The inter-quartile range (the shaded portion in Fig. 16) is the difference, on the 
measurement scale, between the upper and lower quartiles. Whereas the range encloses 
100 % of the individual measurements in a data set, the inter-quartile range encloses 50 %. 
The latter, as well as the quartile deviation (which is derived from it), is unaffacted by the 
extreme values that provide the main limitation of the range. The quartile deviation is 
simply half of the inter-quartile range, or: 

U Q — LQ Value of the upper quartile minus the value of the lower quartile 

2 2 
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FIG. (16) D I S P E R S I O N D I A G R A M S Summarizing a Quality of Life Index 
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As a general rule, the quartile deviation is preferable to the standard deviation in the 
same kinds of situation where the median is preferable to the mean, namely: 

(a) If the data form an asymmetrical distribution. 
(b) If extreme values are a strong influence. 
(c) If data are based on an ordinal scale of measurement. 

The standard deviation 

In Fig. 15 two distributions are shown, with the same mean but different dispersions. 
They are represented by histograms, and by frequency curves, which should be viewed as 
smooth curves drawn through histograms. What characteristic of the individual 
measurements comprising the upper distribution is responsible for its greater dispersion? 
Therein lies the key to understanding the nature of the standard deviation. 

If a lot of the individual measurements are found far from the mean, then the dispersion 
is great, and it is the amount by which the individual measurements differ from the mean 
that controls the degree of dispersion. An individual difference or individual deviation is 



Measures of Dispersion 27 

represented by: 

( x - x ) 

where, χ = the value of an individual measurement, 
χ = the mean of the data set. 

The average deviation, which is very closely related to the standard deviation, is simply a 
quantitative summary of the amount by which the whole set of individual measurements 
differ from the mean: 

Σ(χ — χ) The sum total of all the individual deviations from the mean 

The average deviation that has just been described is not a suitable measure of 
dispersion as it stands. When the individual deviations are added up, those measurements 
that are greater than the value of the mean (positive deviations) would cancel out the 
measurements less than the mean (negative deviations). In other words, the above formula 
gives an answer of zero. There are two ways to solve this problem: the first is to ignore the 
sign (which is not good practice) and deal in deviations irrespective of sign; the second is to 
take the sign into account mathematically, by squaring the individual deviations, thus 
converting all positive and negative deviations to positive values. The standard deviation 
takes advantage of this second procedure: 

where (x — x) — an individual deviation from the mean, 
(x — x )

2
 = the square of an individual deviation, 

Σ ( χ — x )
2
 = the sum total of the squared deviations, 

η = the number of individual measurements (the sample size), 
s = the standard deviation of the sample. 

The formula for the standard deviation differs in one other respect from the formula for 
the average deviation. The last step in the calculation of the standard deviation is to take 
the square root, which is necessary to take account of the fact that the individual deviations 
have been squared previously. Although this procedure compensates for squaring the 
individual deviations (by taking the square root) squaring has a disproportionate influence 
on extreme values. Herein lies a possible disadvantage of the standard deviation, in that a 
few extreme values can make this measure unusually large. 

As a general rule, the standard deviation is best applied when the following conditions 
are met: 

(a) The data have a symmetrical distribution. 
(b) Extreme values are not a strong influence. 
(c) The data are based on an interval scale of measurement (indeed, the standard 

deviation cannot be calculated for nominal or ordinal scales). 
Although the standard deviation requires more calculation than the quartile deviation, 
and is not so intuitively interprétable as the average deviation, it is to be preferred in 
situations where the properties of data are not seriously in conflict with its requirements. It 
will also be encountered as a vital component of many other techniques in later chapters. 

η The number of measurements 



28 Quantitative and Statistical Approaches to Geography 

FIG. @ M E A N A N N U A L R A I N F A L L 
For the Brit ish Isles (1916-1950) 

Highly generalised 

Alternative formulae for the standard deviation 

The general formula given above for the standard deviation of a sample is not a good 
estimate of the population standard deviation when sample size is small. For small 
samples, therefore, a modified formula is used, which incorporates Bessel's correction and 
gives us the best estimate of the population standard deviation. This involves the use of 
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(n — 1) rather than (n) in the formula; it makes the resulting measure of dispersion larger 
and has a greater effect the smaller the sample size. 

To distinguish clearly between the various concepts and formulae, the following terms 
and symbols will be used throughout the manual: 

s = the standard deviation of a sample, 

σ = the population standard deviation (usually not known), 

σ = the best estimate of the population standard deviation 
(calculated from s by use of Bessel's correction). 

The following formulae are appropriate: 

S = ΙΣ(χ-χ)
2
 _ / Σ χ ^ _ _ 2 

yj n y] η 

Β= /
Σ

( * - * )
2

 = / Σ χ
2
 ( Σ χ )

2
~ 

η —I \J η — 1 η (η — 1) 

The second version of each formula is quicker on a hand-calculator. The best estimate of 
the population standard deviation should usually be used as it is based on the principle of 
'safety first'; it makes more sense to allow for the possibility that a small sample of 
measurements may contain less variability than the population from which that sample 
was drawn. In the worked example given below, the standard deviation of the size of fifteen 
erratics within 2 km of the source outcrop near Lennoxtown, central Scotland (see 
Exercise 4), is calculated by all four formulae. 

TABLE 3 

χ X
2
 {x— x)

2 

1116 1,245,456 723.6 523,596.96 
100 10,000 - 2 9 2 . 4 85,497.76 
130 16,900 - 2 6 2 . 4 68,853.76 
588 345,744 195.6 38,259.36 
920 846,400 527.6 278,361.76 
561 314,721 168.6 28,425.96 
500 250,000 107.6 11,577.76 
432 186,624 39.6 1568.16 
440 193,600 47.6 2265.76 
112 12,544 - 2 8 0 . 4 78,624.16 
234 54,756 - 1 5 8 . 4 25,090.56 
208 43,264 - 1 8 4 . 4 34,003.36 

70 4900 - 322.4 103,941.76 
306 93,636 - 8 6 . 4 7464.96 
169 28,561 - 2 2 3 . 4 49,907.56 

Σ χ = 5886 Σ χ
2
 = 3,647,106 Σ ( χ - χ )

2
 = 1,337,439.60 

5886 
χ = = 392.4 

15 

Σ ( χ - χ ) 1,337,439.6 

15 
y89,162.64 = 298.60 
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Σ χ
2 

3,647,106 

15 
(392.4)

2
 = 7 5 4 3 , 1 4 0 . 4 - 153,977.76 = 298.60 

Σ ( χ - χ )
2 

η-\ 

1,337,439.6 

14 
= χ/95,531.4 = 309.08 

/ Σ χ
2
 (Σχ) 

' Η - Ι η(η-\) 

3,647,106 (5886)
2 

14 (15) (14) 
= ν^60,507,57 - 164,976.17 = 309.08 

Exercise 5: Application of dispersion diagrams and measures 
of dispersion in the study of British rainfall patterns. 

Background 

Mean monthly and mean annual rainfall data are in common use and are readily 
understood. The Geography of British rainfall when presented in terms of mean annual 
values (Fig. 17) presents a striking pattern, is well known, and can be readily explained, 
particularly with reference to topography. However, mean data can hide great variability, 
and rainfall is notoriously variable from year to year. It is advisable, therefore, when 
seeking to describe and explain the climate of a place, to consider measures of dispersion as 
well as the more usual measure of central tendency. 

This exercise seeks to demonstrate the usefulness of dispersion diagrams and measures 
of dispersion in going beyond mere description, to the inference of processes responsible 
for the observed patterns. The exercise consists of two parts: first, to clarify the techniques 
themselves, dispersion diagrams and measures of dispersion are calculated for data from a 
local meteorological station; second, maps and graphs are presented, which summarize the 
labours of many such calculations from the remainder of the British Isles. 

Practical work 

1. The data in Table 4 are monthly rainfall totals for Cardiff (Rhoose airport) for the 
period 1955-76, a 22-year record. 

TABLE 4. June and December rainfall totals (mm) for Cardiff, South Wales 

June December June December 

1955 135.8 131.3 1966 107.1 119.1 
1956 49.8 93.2 1967 20.4 83.5 
1957 41.4 41.8 1968 121.6 85.3 
1958 85.6 105.7 1969 46.3 67.2 
1959 44.2 162.5 1970 71.3 56.4 
1960 31.5 131.4 1971 151.3 50.9 
1961 40.0 112.4 1972 64.5 97.8 
1962 23.4 54.6 1973 51.2 61.1 
1963 60.9 53.3 1974 57.0 100.9 
1964 55.8 101.6 1975 5.4 38.5 
1965 96.3 208.0 1976 32.0 90.0 

(From the Meterological Officer, Rhoose airport, pers. comm.) 
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It would be profitable if the reader could obtain local data for this section of the exercise. 
(a) Using the above data, draw two comparable dispersion diagrams, one for the month 

of June, the other for December. 
(b) Calculate the median and quartile deviation for each. 
(c) Calculate the mean and standard deviation for the same data. 
(d) Write a brief description of the climate at Cardiff, incorporating your results from 

(a) to (c). 
2. Examine the summarized dispersion diagrams for selected stations in the British Isles 

(Fig. 18) and note their location on the map of mean annual rainfall (Fig. 17). 
(a) Describe the main features of amount and seasonality of rain along a transect across 

England and Wales from Tenby, through Cardiff, Bath and Oxford to Cambridge. 
(b) Describe and explain the differences between the dispersion diagrams for Loch 

Quoich, Mull and Islay in the Highlands and Islands of Scotland. 
(c) Using the evidence of the dispersion diagrams, consider the validity of the 

suggestion that eastern stations have a summer maximum of rainfall whereas 
western stations have a winter maximum. 

(d) Suggest some meteorological reasons for differences in the variability and in the 
seasonality of western and eastern stations. 

(e) Is the mean an appropriate measure of central tendency for these data? 
3. Figure 19 is a representation of the variability of annual rainfall over the British Isles. 

The map shows the coefficient of variability (or coefficient of variation), a descriptive 
statistic derived from the standard deviation. The coefficient of variability is the standard 
deviation expressed as a percentage of the mean; that is, it is a measure of variability, 
relative to the mean: 

Standard deviation 
χ 100% 

mean 

(a) Calculate this coefficient for the meteorological station in question 1. 
(b) Describe the pattern shown for the British Isles as a whole in Fig. 19. 
(c) Explain why the coefficient of variability tends to attain highest values in those areas 

of the country where the dispersion diagrams indicate that monthly totals vary least 
from year to year. This part should consider both statistical reasons for this 
paradox, and a meteorological explanation for the pattern in Fig. 19. 



4 
Probability Statements 
and Probability Maps 
BECAUSE of the variability of geographical phenomena of a particular sort, descriptive 
statistics are of only limited value in summarizing geographical data and in the testing 
of geographical hypotheses. For example, one cannot be 100% sure of the amount of 
rainfall that will fall at a particular place in a particular year, even though the mean annual 
rainfall is known precisely from a long period of observations. The mean annual rainfall 
(and the complementary standard deviation) are the best estimates available. 

Although it is not possible to be certain of exceeding a given amount of rainfall in any 
one year (such as next year), it is possible to obtain a precise statement of the uncertainty 
involved. That is, one can be certain of exceeding a given amount at a precisely known 
level of probability. The introduction of probability into Geography requires a consider-
ation of inferential statistics. Geographical statements that are probabilistic are clearly 
superior to deterministic statements because they give additional information about the 
likelihood of the statement being true or false (assuming that the techniques have been 
correctly applied and that their data requirements have been met). 

In Fig. 7 a data set was represented as a histogram and a frequency distribution curve, 
both of which were symmetrical. For the remainder of this chapter it will be assumed that 
data have not only a symmetrical distribution but also a particular type of symmetrical 
distribution, known as a normal distribution. The usefulness of the mean and standard 
deviation are in large measure a result of their relationship to normal distributions. 

If we have a large representative sample from a population that is normally distributed, 
then there are fixed probabilities of any one measurement being within certain areas under 
the curve (Fig. 20). Intuitively, it is easy to understand that it is more probable that any 
single measurement will occur near the central tendency of such a distribution than far 
away from it. It is also clear that all individual measurements are found somewhere 
beneath the curve. Thus the area under the curve represents 100% probability (or a 
probability of 1.0). This is shown in Fig. 20A. 

Similarly, there is a 50 % (or 0.5) probability that any measurement will occur above the 
mean and you would also expect 5 0 % of the measurements to lie below the mean 
(Fig. 20B). Because the curve is symmetrical, there is an identical probability of lying 
below the mean as lying above it. Just as there are 5 0 % of the measurements above and 
50 % below the mean, so there are fixed proportions of the measurements lying above, 
below or between any given number of standard deviations from the mean. 

Figure 20 C illustrates the 'rule of thumb' that approximately 68 % of the measurements 
lie between one standard deviation above the mean and one standard deviation below the 

34 
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mean (χ ± 1 s). To put this another way, there is a 68 % (or 0.68) probability that any one 
measurement (any one year's annual rainfall, for example) will lie within these limits 
placed either side of the mean. It is profitable to reflect on the quartile deviation in this 
respect. The probability that any one measurement will lie between plus and minus one 
quartile deviation from the median is approximately 50 %; the standard deviation tends to 
be a more conservative measure of dispersion than the quartile deviation as it encloses a 
greater proportion of the measurements within the set limits. 

Figure 20D shows that approximately 9 5 % of the measurements lie within plus and 
minus two standard deviations of the mean (x±2s). There is a probability of 
approximately 99.5% that any one measurement will lie within plus and minus three 
standard deviations of the mean (x + 3s). It is therefore extremely unlikely that many 
measurements in any sample will be as far away from the mean as three standard 
deviations. This fact is sometimes used as a rough check on the calculation of the standard 
deviation itself (the three standard deviations check). If more than one or two measure-
ments lie outside of three standard deviations above or below the mean, then the 
calculated standard deviation is likely to be in error. Only one measurement in 
200 (0.5:99.5) is expected to lie farther than three standard deviations from the mean. 

One further point needs emphasis. The areas beneath the curve can be added or 
subtracted to find the probability of being above, between or below any number of 
standard deviations above or below the mean. Figure 20 E, for example, which can be 
derived from Fig. 20 C, shows that there is an 8 4 % probability of any individual 
measurement lying above one standard deviation below the mean (that is, greater than 
- Is), and a 16% probability of any measurement being below one standard deviation 
below the mean (that is, less than - Is). 

So far, only 'rules of thumb' have been discussed. More accurate probability values, 
which apply to any normal curve and enable the use of probability values associated with 
fractions of standard deviations, are available in Table A (Appendix). In the table there are 
two columns of values. These are: 

(a) The number of standard deviations from the mean (defined as z). 
(b) The probability (p) that any one measurement will lie above that number of 

standard deviations below the mean (identical to the probability of lying below ζ 
standard deviations above the mean). 

Note that the table always gives the larger area (a probability value greater than 50%) 
when a situation like that illustrated in Fig. 20E is being examined. To obtain the smaller 
area, the tabulated probability is simply subtracted from 100 % (probability 1.0). Thus the 
probability value opposite ζ = 1.0 in the table is 84.13 % (probability 0.8413), which is the 
probability that any individual measurement will lie above one standard deviation below 
the mean (greater than — 1 s). 

A worked example using the mean and standard deviation of annual rainfall totals for 
Edinburgh, Scotland, will serve to clarify the mechanics of the calculations necessary to 
make probability statements. Given a mean annual rainfall of 664 mm, and a standard 
deviation of 120 mm, what is the probability of less than 500 mm occurring in any one 
year? Assuming a normal distribution, the problem is illustrated in Fig. 21 A, where the 
shaded area represents the required probability value. The stages involved in the 
calculations are set out below: 

(a) The rainfall value of 500 mm is (664 -500 ) = 164 mm below the mean. 
(b) 164 mm is equivalent to = 1.37 standard deviations below the mean. 
(c) The required ζ in Table A is therefore 1.37. 
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(d) The corresponding probability value in Table A is 0.9147 (or 91.47%). 
(e) The required probability is (1 .0-0.9147) = 0.0853 (or 8.53%). Note in particular 

that it is the small area in Fig. 21A that is required here. 

F I G . @ MAKING PROBABILISTIC STATEMENTS IN R E A L T Y 

THE PROBABILITY OF LESS THAN 500 MM OF RAINFALL 

AT EDINBURGH, SCOTLAND, IN ANY ONE YEAR 

8 53·/. 

X = 
:
 664 mm 

s = = 120 mm 

Scale in standard 
deviation units 

Scale in millimetres 
of rainfall 

Β THE RAINFALL AMOUNT THAT IS EXCEEDED 

WITH A PROBABILITY OF 90V. IN ANY ONE YEAR 

AT EDINBURGH, SCOTLAND. 

510mm 
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Probability maps 

The usefulness of statistics to Geography is nowhere more obvious than in the 
probability map, in which the concept of probability is combined with the geographer's 
most important tool. The kind of calculations carried out earlier in this chapter, on data 
from particular places, can quite readily be performed on data relating to a large number 
of locations, and the results summarized in the form of a map. 

In Fig. 21 A, the probability of receiving greater or less than a given amount of rainfall at 
one meterological station was calculated. Similar calculations applied to a large number of 
meterological stations would yield a set of probability values. In the same way that mean 
annual rainfall maps (Fig. 17) are based on mean annual rainfall values for individual 
stations, so probability values can be plotted and a generalized map produced. Figure 22 A 
depicts the probability of receiving greater than 750 mm of rainfall in any one year for the 
British Isles. Thus most of Highland Britain is likely to experience this amount of rainfall, 
or more, in 9 years out of 10 (probability 90 %), whereas in eastern England, between the 
Humber and Thames estuaries, this amount of rainfall is unlikely to be reached in at least 7 
years out of 10. 

A second type of probability map is produced if amounts of rainfall are mapped, which 
correspond to a known probability of occurrence. Such a map involves the sort of 
calculation (for each meterological station) illustrated in Fig. 21B. An example of this type 
of map is shown in Fig. 22 B, which indicates the amount of rainfall that is likely to be 
exceeded in 9 years out of 10, or with a probability of 90%. Thus over most of Highland 
Britain there is a 9 0 % probability of at least 750 mm of rainfall in any one year (compare 
with the statement in the previous paragraph referring to Highland Britain). 

Exercise 6. Use of tables of the normal distribution function 
for making elementary probability statements. 

Background 

This exercise has two parts. Question 1 concentrates on the manipulation of tables of 
the normal distribution function (Table A, Appendix). The remaining questions all 

In the example above, we have answered a question of the form: 'What is the probability 
of rainfall exceeding (or being less than) a certain amount in any one year?' It may be more 
useful in some circumstances to answer the reverse kind of question, such as: 'What 
amount of rainfall has a probability of occurrence of greater than (or less than) a certain 
probability value, in any one year?' In the context of Edinburgh rainfall: what amount of 
rainfall can be relied upon to occur 9 years out of any 10? The stages are set out below and 
illustrated in Fig. 21B: 

(a) 9 years in 10 is equivalent to 90 years in 100 or a probability of 90%. 
(b) The required ρ in Table A is therefore 0.90. 
(c) The corresponding value of ζ is 1.28 in Table A. 
(d) 1.28 standard deviations from the mean is equivalent to (1.28 χ 120) = 154 mm. 
(e) 154 mm below the mean is a rainfall amount of (664 — 154) = 510 mm, which is the 

required amount of rainfall. 
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require similar manipulations in the context of actual data. These questions are all 
extensions of previous exercises; they involve the concept of probability in problems that 
were considered previously in a deterministic manner. 

Practical work (a normal curve should be drawn in connection with each answer, showing 
the area required, as in Fig. 21) 

1. Using Table A, calculate the following: 
(a) The probability of any one measurement in a set of measurements being above one 

standard deviation below the mean (i.e. > — Is). 
(b) The probability of any one measurement being below two standard deviations 

below the mean (i.e. < — 2s). 
(c) The probability of any one measurement lying between three standard deviations 

above and below the mean (i.e. between ± 3 s , or < + 3 s but > —3s). 
(d) The probability of any one measurement being above one standard deviation 

below the mean, but below two standard deviations above the mean (i.e. > - Is 
and < +2s ) . 

(e) How many standard deviations above the mean must a value lie in order to be 90 % 
(p = 0.9) certain that any one measurement will be less than (or will not exceed) that 
value? 

(f) How many standard deviations below the mean must a value lie in order to be 95 % 
sure that any one measurement will exceed that value? 

(g) What is the probability of any one measurement being outside of three standard 
deviations from any mean? 

2. Using your answers to question 1, Exercise 5, relating to monthly rainfall at Cardiff, 
calculate the following: 

(a) The probability of greater than 40 mm of rain in any one June. 
(b) The probability of less than 50 mm of rain in any one December. 
(c) The probability of less than 150 mm in any one December. 
(d) The probability of between 40 mm and 100 mm in any one June. 
(e) The minimum amount of rain expected in June with a probability of 95 %. 
(f ) The amount of rain that you would expect to be exceeded in June in 19 years out of 

any 20. 
(g) If a drought is experienced in any June with less than 20 mm of rain, what is the 

probability of a drought in any one June? 
(h) In any period of 100 years, how many droughts are likely in June? 
( i ) If flooding is experienced in a December in which greater than 150 mm of rain falls, 

what is the probability of a flood next December? 
(j) State at least two statistical assumptions made in (a)-(i). 
(k) State at least two meteorological/hydrological limitations to the answers in (g)-(0-
3. In Fig. 16 A and B, the quality of life index for black census tracts in Atlanta, 

Georgia, U.S.A., was shown by the use of dispersion diagrams to be lower than the 
quality of life index for white census tracts. The mean and standard deviation for the black 
and white tracts are: 

Black census tracts, mean = — 64.22, standard deviation(s) = 76.42 

White census tracts, mean = + 78.04, standard deviation(s) = 107.66 
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F I G . @ A P R O B A B I L I T Y M A P O F A N N U A L R A I N F A L L : 

THE PROBABILITY OF EXCEEDING 750 MM IN ANY YEAR, 

(B r i t i sh Isles) 

(from Gregory, 1957) 

(a) What is the probability that a black census tract, selected at random, will possess a 
standard of living index that is higher than the mean value found in white tracts? 

(b) What is the probability that a white census tract, selected at random, will possess a 
standard of living index that is lower than the mean value found in black tracts? 
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F I G . @ Β P R O B A B I L I T Y M A P O F A N N U A L R A I N F A L L : 
THE RAINFALL AMOUNT EXCEEDED IN ANY YEAR 

WITH A PROBABILITY OF 9 0 % (Br i t i sh Isles) 

( f rom Gregory, 1968 ) 

(c) Calculate the minimum expected standard of living index for 95 % of white tracts. 
(d) Calculate the minimum expected standard of living index for 95 % of black tracts. 
(e) Discuss the limitations on using these data and answers as a test of the hypothesis 

that 'black households are grossly underprivileged in the U.S.A.'. 
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Exercise 7: Construction of a probability map of atmospheric 
pollution for north-west Europe. 

Background 

The chemical composition of the atmosphere can be modified by human activity, 
sometimes in extensive and complex ways. One method of monitoring the effect is to 
analyse the composition of rain-water and compare this with 'unpolluted' rain. A good 
indicator of degree of pollution is the acidity of rainfall, which is measured in pH units (a 
pH of 7.0 being neutral, and the lower the pH the higher the acidity). 

Under natural, unpolluted conditions rain-water is normally weakly acid in reaction 
(pH about 6.0), due to the presence of carbon dioxide ( C 0 2 ) in the atmosphere. One of the 
major atmospheric pollutants is sulphur dioxide ( S 0 2 ) , which forms a much stronger acid 
when in combination with atmospheric moisture. Under polluted conditions, therefore, 
rainfall becomes air-borne acid. 

Figure 23 A and Β shows the geographical distribution of acidity in precipitation over 
north-west Europe in 1956 and in 1966, an interval of 10 years.The values mapped are 
annual means of pH. While these maps indicate where acidity is greatest, on average, they 
give no information on the acidity that can be expected to occur -at a known level of 
certainty, or how likely it is that rainfall will be more or less acid at any one time. Given a 
knowledge of the standard deviations associated with the mean values given in Fig. 23, it 
is possible to construct maps containing such probabilistic information. 

Practical work 

The data in Table 5 show the mean and standard deviation of the pH of precipitation 
at 48 sites in north-west Europe. The mean values were taken from the maps in Fig. 23; the 
standard deviations are invented values, not measured values. 

1. The aim is to construct probability maps (one for 1956 and one for 1966) showing 
the probability that a pH value of less than 6.0 will occur in any one fall of rain. In effect, the 
maps will show the probability of any one fall being more acid than the natural 
background level of acidity. 

(a) For each of the sites listed, calculate and tabulate the probability of a pH value of 
less than 6.0 in any one fall. 

(b) Transfer the tabulated values to the map in Fig. 24. 
(c) Draw isolines of equal probability ( 'isoprobs'), interpolating sensibly, choosing a 

suitable interval for the isolines, and only entering isolines in areas where good 
control is available. 

2. Using your probability maps (and Fig. 23) describe the major patterns and changes 
in rainfall acidity that have occurred between 1956 and 1966. 

3. Offer some explanations for the pattern and changes including the following: 
(a) The areas of highest acidity. 
(b) The negligible change in acidity in south-west England. 
(c) The change in the pattern and intensity of acidity in the Scandinavian peninsula. 
(d) The change in Iceland. 
4. Discuss the limitations of this application under the following headings: 
(a) Limitations of the data as an index of atmospheric pollution. 
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FIG. @) ACIDITY OF RAIN IN EUROPE 
(after Odén.from Brosset, 1973) 
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TABLE 5. Acidity of rain in north-west Europe 

Standard 
Site Mean (1956) deviation (1956) χ (1966) σ (1966) 

1. Belfast 6.0 0.9 5.5 1.0 
2. Galway 6.3 0.8 6.1 0.8 
3. Dublin 6.1 0.7 5.7 0.9 
4. Cork 6.2 0.9 5.9 0.9 
5. Edinburgh 5.4 1.2 4.9 1.2 
6. Manchester 5.4 1.1 4.7 1.1 
7. Hull 4.9 1.4 4.6 1.3 
8. Birmingham 5.3 1.4 4.8 1.2 
9. Cardiff 5.7 1.0 5.6 1.1 

10. Southampton 5.5 1.1 4.8 1.2 
11. London 4.9 1.3 4.4 1.3 
12. Brest Not available 6.0 0.9 
13. Nantes Not available 5.3 1.2 
14. Lyon Not available 5.5 1.0 
15. Paris 5.4 1.1 4.7 1.3 
16. Dijon Not available 4.8 1.3 
17. Bern 5.4 1.1 4.9 1.2 
18. Munich 5.4 1.1 4.9 1.3 
19. Strasbourg 5.3 1.3 4.7 1.3 
20. Frankfurt 5.1 1.3 4.4 1.3 
21. Cologne 4.8 1.4 4.2 1.4 
22. Brussels 4.8 1.5 3.9 1.6 
23. Antwerp 4.7 1.5 3.8 1.5 
24. Rotterdam 4.7 1.6 3.8 1.7 
25. Amsterdam 4.7 1.5 3.9 1.6 
26. Bremen 5.2 1.5 4.2 1.5 
27. Hannover 5.2 1.5 4.2 1.5 
28. Hamburg 5.2 1.6 4.3 1.5 
29. Esbjerg 5.1 1.4 4.2 1.6 
30. Kobenhavn 5.3 1.4 4.3 1.6 
31. Malmo 5.4 1.5 4.4 1.5 
32. Göteborg 5.4 1.3 4.4 1.5 
33. Norrköping 5.8 1.2 4.5 1.4 
34. Stockholm 5.8 1.1 4.6 1.3 
35. Turku 5.7 1.0 4.7 1.1 
36. Helsinki 5.7 1.0 4.8 1.2 
37. Karlstad 5.8 1.3 4.4 1.4 
38. Oslo 5.3 1.2 4.5 1.4 
39. Kristiansand 4.9 1.2 4.4 1.3 
40. Stavanger 5.0 1.1 4.7 1.2 
41. Bergen 5.4 1.0 5.1 1.0 
42. Trondheim 6.1 0.8 5.2 1.0 
43. Sundsvall 6.1 0.9 4.7 0.9 
44. Luleâ 5.9 1.0 4.9 1.3 
45. Narvik 6.2 0.9 5.8 1.1 
46. Vadso 6.3 0.7 5.4 1.1 
47. Hammerfest 6.2 0.9 6.0 1.0 
48. Reykjavik 6.2 0.8 5.1 1.3 
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(b) Limitations of the calculation of probabilities at any site. 
(c) Limitations of map construction from the values for all sites. 
5. Describe and explain how you would go about constructing a different type of 

probability map from the same data, illustrating the kind of calculation necessary with 
reference to the mean and standard deviation for Cork in 1956 and in 1966. 



The Problem of 
Time-dependence and 
Time-series Analysis 

IN THE discussion of probability in the preceding chapter, it was assumed that the data 
were representative samples and that they were normally distributed. A third assumption 
was also made, namely that the individual measurements were statistically independent. In 
the context of annual rainfall, for example, it was assumed that a particular annual total 
was equally likely to occur in any of the years; that is, a particular annual amount was said 
to be independent of the amount received in the previous years and of the amount received 
in the years following. It is known, however, that climates often change gradually and that 
groups of wet or dry years sometimes occur. Under these circumstances climatic data are 
time-dependent. Such time-dependence is a common feature of data collected over any 
time interval; examples from the field of Human Geography include variations in 
agricultural production, industrial output and population growth. 

Any time-series (a set of measurements collected over a period of time) may or may not 
exhibit time-dependence. Time-dependence can take a variety of forms: there may be 
long-term trends (when values tend to rise or fall gradually); there may be irregular 
fluctuations (when values tend to rise and fall over time and may return to approximately 
the same level), and there may be cyclic fluctuations (when similar fluctuations tend to 
repeat themselves through time). Figure 25A, a graph of the level of carbon dioxide in the 
atmosphere measured in Hawaii from 1958 to 1975, shows a time-series with pronounced 
trend and cyclic components. Unpredictable or random variation often obscures such 
patterns, however, as shown in Fig. 25B, which gives the annual rainfall totals in 
Edinburgh, Scotland, from A.D. 1785 to 1973 (one of the longest rainfall records in the 
world). 

If the random component of a time-series is the only component, then it may be valid to 
apply the normal distribution function to the data in the manner described in the 
preceding chapter. If, on the other hand, trends, fluctuations or cycles are present, then 
the probability of a given measurement value cannot be calculated with reference to the 
normal distribution function, because the actual probability is statistically dependent on 
position in the series. This is a rather important limitation if one is using a set of data to 
predict likely values for future years. 

One method of time-series analysis, which permits the detection of trends and non-
random fluctuations, is the use of running means (also known as moving averages). A 5-
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FIG. @ T IME SERIES 

A ATMOSPHERIC CARBON DIOXIDE LEVELS : 

Monthly data for Hawaii with clear cycles and a trend 
(from Holdgate and White, 1977) 

year running mean of river discharge data, recorded at a gauge on the Bristol Avon at 
Bath in south-west England, is shown in Fig. 26. The annual data plotted are the number 
of times that the river exceeded a discharge of 56.6 cumecs (cubic metres per second). The 
bold line is the 5-year running mean, and it shows a rising trend which reflects the 
increasing frequency of floods in recent years. 
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FIG. @ RIVER FLOWS AT BATH, ENGLAND 
Represented by 5-year running means 

0 + — ' ι
 1 1

 ' ι
 1 1

 ' ' ι 1 • 1 • Date 

1940 1945 1950 1955 1960 1965 ( A.D.) 

(courtesy of the Chief Engineer, Bristol Avon River Authority) 

The principle of this approach lies in a property of the mean. If one calculates the mean 
of a number of measurements then the value obtained is a central tendency and averages-
out or masks the high and low values. A running mean simply involves the calculation of 
overlapping means. The first mean plotted in Fig. 26 (to the left) is a mean of the number 
of discharges recorded in the first 5 years of the record (that is, 1940-4). The second value 
plotted is the mean for the period 1941-5, and so on, to the last mean for 1963-7. Each 
mean overlaps the next for 4 years, and each mean is plotted opposite the middle year of 
the 5 year period involved. The superimposed graphs in Fig. 26 illustrate the smoothing 
effect produced by use of a running mean, an effect resulting from the smoothing effect of 
each individual mean on the five individual measurements within it. Note also that the 
running mean graph is 4 years shorter than the graph of the annual measurements. This 
loss in length of the series is inevitable when running means are used and depends on the 
number of measurements involved in each calculated mean. The more measurements 
included in each mean, the shorter the length of the running mean graph, and the 
smoother are its fluctuations. 

Another property of the running mean (which can be an advantage or a disadvantage, 
depending on the context) is that the number of measurements involved in each calculated 
mean determines the length of any non-random fluctuation that can be detected. Where a 
5-year running mean is used, as in Fig. 26, any fluctuation that lasts for less than 5 years 
will be masked. In general, fluctuations lasting for a greater period than the number of 
years involved in the calculation of each mean will be registered in a running mean graph. 
The logical conclusion of extending the number of years included in each mean is to take 
the mean of the whole series, which results in the elimination of all fluctuations of 
whatever length (Fig. 26). 
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A detailed time-series analysis might use a number of running mean graphs in order to 
detect fluctuations of differing frequency and amplitude (length and height) by 
application of different degrees of smoothing. Another possible extension of the 
technique is to use weighted means, in which the middle years in each mean could be given 
greater weight than the outlying years. An example of a weighted 5-year mean is given by: 

where xltoxs are five individual measurements. A running mean based on such weighted 
means would smooth the data in a different way to unweighted means. 

Exercise 8. Running means and the analysis of birth and 
death rates in pre-industrial Norway. 

Background 

A general theory proposes that during the development of any country, population 
growth passes through a number of stages. Initially, population growth is slow, and 
characterized by high birth and high death rates. With the onset of 'development', 
particularly medical facilities, death rates (particularly infant mortality rates) are rapidly 
reduced. Finally, but after a considerable time-lag, birth rates are also reduced, a 
condition represented by advanced Western societies. This theory states, therefore, that 
population growth passes through a 'demographic transition' (during which rapid 
population growth occurs) between two stages during which birth and death rates are 
maintained in relative balance with only slow overall growth in the population. This 
theory or model is illustrated graphically in Fig. 27. 

Very complete records of population growth are available for the Kingdom of Norway 
from the early eighteenth century. The registration of births and deaths was the 
responsibility of the State Church from A.D. 1687, and the first complete population 

X j + 2x2 + 3 x 3 + 2 x 4 + x 5 

9 

THE DEMOGRAPHIC TRANSITION 
A general model 
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\ 

RATE 

Death Rate 
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TIME 
(from Chang, 1970) 
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census took place in 1769. These and similar data from neighbouring countries of 
northern Europe are important because they provide rare examples of long series of 
measurements relating to population growth from pre-industrial times. In many ways, 
population fluctuations in Norway in the eighteenth and nineteenth centuries reflect the 
form of population growth in underdeveloped countries at present. The Norwegian data 
provide, therefore, a useful test of the general demographic transition model. 

These data also enable the investigation of the relationship between population growth 
and the physical environment, a relationship which has changed as the country has 
'developed'. Running means are used in this exercise to analyse data on birth rates and 
death rates in Norway from 1735 to 1855. In this way, major trends and fluctuations are 
detected, and the changing relationship with the physical environment can be 
appreciated. 

Practical work 

1. The data given in Table 6 are birth and death rates for Norway from A.D. 1735 to 
1855. The rates are expressed as the number of births per 1000 population and the number 
of deaths per 1000 population, respectively. 

TABLE 6. Birth and death rates in Norway (1735-1855) 

Year Births Deaths Year Births Deaths Year Births Deaths Year Births Deaths 

1735 29.0 19.0 1765 31.2 28.1 1795 32.3 22.5 1825 34.4 17.5 
1736 30.3 20.5 1766 31.0 27.7 1796 31.7 21.7 1826 34.9 18.5 
1737 30.1 24.5 1767 32.2 22.2 1797 32.8 22.5 1827 32.1 18.0 
1738 27.6 22.8 1768 30.2 22.3 1798 32.3 22.6 1828 31.8 19.4 
1739 30.4 22.8 1769 30.9 21.8 1799 32.6 21.0 1829 33.7 19.4 
1740 28.8 25.1 1770 31.5 23.6 1800 30.0 25.6 1830 32.4 19.7 
1741 26.8 40.8 1771 31.1 22.9 1801 28.3 27.4 1831 31.0 19.8 
1742 25.7 52.2 1772 27.8 26.8 1802 27.2 25.2 1832 29.9 18.5 
1743 27.7 28.4 1773 23.4 47.5 1803 29.1 24.9 1833 30.7 20.4 
1744 29.5 21.4 1774 28.0 25.5 1804 27.4 23.5 1834 31.7 22.5 

1745 31.9 18.2 1775 33.0 22.9 1805 30.1 20.7 1835 32.7 19.5 
1746 29.1 20.6 1776 29.3 20.4 1806 30.5 21.1 1836 29.4 19.3 
1747 32.0 23.2 1777 30.9 20.8 1807 29.7 22.6 1837 28.7 20.8 
1748 31.8 32.1 1778 31.0 20.0 1808 27.8 26.1 1838 30.3 21.7 
1749 32.0 27.1 1779 31.1 27.1 1809 22.3 35.9 1839 26.7 21.6 
1750 29.7 25.5 1780 32.1 25.3 1810 26.9 26.8 1840 27.8 19.8 
1751 33.9 26.1 1781 31.0 20.7 1811 27.7 25.5 1841 29.8 17.3 
1752 32.4 24.6 1782 30.6 22.4 1812 29.5 21.3 1842 30.8 18.0 
1753 33.7 22.7 1783 27.4 24.6 1813 26.1 29.5 1843 30.2 17.9 
1754 34.2 23.4 1784 30.2 23.8 1814 24.5 22.6 1844 29.9 17.1 

1755 32.6 24.8 1785 28.7 33.1 1815 30.6 19.8 1845 31.2 16.9 
1756 35.0 26.3 1786 30.3 24.2 1816 35.2 19.4 1846 31.1 17.9 
1757 33.5 21.5 1787 29.0 22.7 1817 32.5 17.7 1847 30.8 20.4 
1758 32.6 23.9 1788 30.6 26.1 1818 30.8 19.1 1848 29.8 20.5 
1759 31.5 26.2 1789 30.5 30.4 1819 32.0 19.7 1849 32.1 18.3 
1760 34.2 22.6 1790 31.9 22.9 1820 33.4 18.9 1850 30.9 17.2 
1761 33.0 22.6 1791 32.6 22.9 1821 34.8 20.5 1851 31.9 17.1 
1762 32.9 23.2 1792 34.6 23.9 1822 33.0 19.5 1852 31.0 17.9 
1763 31.4 35.6 1793 34.0 22.1 1823 34.0 17.8 1853 32.0 18.3 
1764 32.9 27.0 1794 33.6 20.8 1824 32.5 18.5 1854 34.2 16.0 

1855 33.4 17.1 

(From Drake, 1965.) 
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(from Drake, 1965) 

2. Describe the graphs of birth and death rates, paying particular attention to the 
following: 

(a) Trends. 
(b) Non-random fluctuations. 
(c) Random variation. 
3. Describe the main features of population growth, defining in particular periods 

when the total population of Norway is likely to have declined and periods during which 
the population of the country grew most rapidly. 

4. What other factor(s) need to be taken into account (besides birth and death rate 
data) to determine the actual population change over a number of years? 

5. Compare your running mean graphs with the 'demographic transition model' 
given in Fig. 27. 

(a) At what point in time (if any) can Norway be said to have entered the demographic 
transition? Fully justify your answer. 

(b) Do the Norwegian data suggest any modification to the model depicted in Fig. 27? 
6. In the eighteenth century the Norwegian economy, especially in the north and east 

of the country, was dominated by grain cultivation. Grain harvest failures occurred over 
wide areas of the country in 1741-2, 1748, 1762-3, 1773, 1784-5, 1807-9 and 1812. The 
early years of the 1740s were particularly severe and were known as the 'green years', 
when grain failed to ripen and bread was made from lichens, birch bark and other plants. 
In one area straw was taken from dung heaps, washed, mixed with meal and baked. 
Reduced tree-growth and/or glacier advances indicate abnormally cold summers in the 
early 1740s, the early 1780s, the early 1800s, the early 1820s, about 1840, and about 1850. 

QSAG - Ε 

These time series are plotted as graphs in Fig. 28. The aim is to construct the 
corresponding graphs using 5-year running means. 

(a) Calculate and tabulate the birth rate 5-year running means. 
(b) Calculate and tabulate the death rate 5-year running means. 
(c) Draw up superimposed graphs of the smoothed birth and death rates. 
(d) Note the smoothness of the running mean graphs compared to the graphs of the 

raw data. 
(e) Note the highest and lowest values and the amplitude (difference between the 

highest and lowest values) for all four graphs. 
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Years 
Vaccinated as a percentage of 

Years 
population live-births 

1802-10 0.43 15.6 
1811-20 0.92 30.7 
1821-30 1.59 47.9 
1831^*0 1.72 58.1 
1841-50 2.31 75.3 
1851-60 2.69 81.5 

(After Malm, from Drake, 1965) 

Using the above facts relating to possible causes of changes in birth and death rates, 
construct a reasonable explanation for the running mean graphs and population changes 
in Norway from 1735 to 1855. Your explanation must account for all the evidence and be 
internally consistent. 

Potatoes were introduced into Norway in the 1750s, and increased in cultivated area very 
sharply between 1800 and 1830 becoming the major crop in the country by 1835. During 
the Napoleonic Wars, importation of grain into Norway was prevented on several 
occasions between 1807-14 by the British fleet, at a time when about 25 % of Norwegian 
needs were normally imported. In the first decade of the nineteenth century, herring and 
cod fisheries failed in coastal areas of the country. In the first 30 years of the nineteenth 
century, the harvest per head of the agricultural population increased by 70 %. Between 
1820 and 1865 the cultivated area of Norway doubled. Vaccination against smallpox was 
made compulsory by a royal edict in 1810 and was quickly adopted for children: 



The Problem of 
Non-normality and 
Data Transformations 

IT HAS been shown in earlier chapters that descriptive statistics, particularly the mean and 
standard deviation, are most successfully applied to sets of measurements that have a 
symmetrical distribution. It should also be clear that, assuming the data are statistically 
independent, it is possible to make inferences about populations based on a representative 
sample, if the measurements have a particular type of symmetrical distribution—namely a 
normal distribution. However, as pointed out in Chapter 2, geographical data are often 
statistically 'dirty', that is they do not conform to the ideal statistical model. One of the 
most important problems in statistical analysis is that data are often skewed. Skewed 
distributions are asymmetrical and are therefore more difficult to analyse in a meaningful 
way. 

What are the possible solutions to non-normality? Two solutions are available. The 
first solution is to employ 'distribution-free' or non-parametric statistics, an approach that 
is being increasingly adopted by geographers. The validity of non-parametric statistics 
does not depend on symmetry or a normal distribution. Nevertheless, they do have 
limitations, and in particular require interval scale measurements to be 'degraded' to a 
lower-order scale of measurement (such as an ordinal scale). Some non-parametric 
inferential statistics will be treated later in the manual. The present chapter deals with the 
second solution to non-normality. 

If a distribution is skewed it may be possible to transform the distribution to produce a 
normal shape. The solution is possible only if the distribution has one mode (uni-modal) 
as is illustrated in Fig. 8. An example of a positively skewed distribution is provided by the 
number of people in different income brackets. Many more people have low incomes than 
have high incomes. The distribution of incomes therefore tends to resemble Fig. 8 A with 
relatively few people in the tail to the right-hand side of the distribution. Another example 
is provided by the age of plants on a patch of bare ground that has been subject to invasion 
and colonization for several years; there would be many young plants, but relatively few 
old ones. A forestry plantation, on the other hand, will tend towards a negatively skewed 
age-distribution. There is likely to be many relatively mature trees, no trees will be older 
than the original seedlings at the time of planting, and there will tend to be relatively few 
younger generation trees (survivors of forest management). The younger generations are 
represented by the tail to the left-hand side of the distribution in Fig. 8B. 
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FIG. (29) LOGARITHMIC TRANSFORMATION 
Of a positively skewed distribution 
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A UNTRANSFORMED DATA Β TRANSFORMED DATA 

Age (years) 1.5 2.0 2.4 3.0 3.4 3.8 4.4 5.6 8.1 

Log age 0.18 0.31 0.38 0.48 0.53 0.58 0.64 0.75 0.91 

The untransformed data results in a positively skewed histogram when a 2-year age-class 
is used (Fig. 29A). The transformed data, with a class-interval of 0.2 log age units, shows 
that a successful transformation to normality has been achieved (Fig. 29B). 

A logarithmic transformation is quite powerful. If a distribution is less skewed than in 
the example above, then a milder transformation (less stretching), such as a square-root 
transformation, can be used. Similarly, the transformation of a negatively skewed 
distribution could involve squaring the original values. Such a transformation 'stretches' 
the distribution in the opposite direction to a logarithmic transformation. Selection of an 
appropriate transformation requires, therefore, a consideration of the type and degree of 

How does one go about transforming a distribution like the positively skewed 
distribution in Fig. 8A? Consider the effect of 'stretching' the measurement scale in this 
figure. If the scale is 'pulled-out' such that the right-hand side of the distribution is 
stretched more than the left-hand side, the resulting distribution is even more skewed than 
before. If, on the other hand, the left-hand side is stretched more than the right-hand side, 
then it is possible to produce a normal distribution. Too little 'stretching', and normality 
will not be reached; too much 'stretching' and a positive skew will be transformed into a 
negative skew. 

A commonly used method for the transformation of a positively skewed distribution 
involves taking the logarithms of each measurement in the data set. The effect is to bring 
high values relatively 'close' together (recall the arrangement of lines on log-paper). 
Regrouping of the measurements into class-intervals on the transformed scale produces a 
modified histogram, as shown in Fig. 29. This example depicts the number of plants 
(vertical axis) in different age-classes (horizontal axis) on ground cleared of vegetation 10 
years previously. The actual age of each plant and the logarithms of these ages are as 
follows: 
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Type of skewness 
Degree of skewness 

Weak Strong 

Positive y/x lOg X 

Negative x
2
 antilog χ 

Once a normal distribution has been obtained, such as in Fig. 29B, it is then possible to 
begin answering questions of the kind: 'What is the probability of any one individual 
measurement being greater than a specified amount from the mean value?' To answer this 
question, the mean and standard deviation of the transformed values must be calculated. 
Then the number of standard deviations from this mean can be used in conjunction with 
tables of the normal distribution function. 

The question remains, however, of how normal does a distribution have to be to enable 
valid use of the normal distribution function? At the present time geographers are usually 
prepared to accept rather wide departures from normality in their analyses, but they are 
rarely very precise about this point. 

Use of probability paper 

One way of assessing whether a data set is normally distributed is to draw a histogram 
or a frequency distribution curve. An even easier method of testing for normality is by use 
of probability paper. This is a special type of graph paper on which a normal distribution 
(plotted in a particular way) results in a straight line, whereas skewed distributions plot as 
curves. 

Figure 30A shows a frequency histogram and a normal frequency distribution curve. 
Figure 30B shows the same data plotted as a percentage frequency distribution curve, the 
number of occurrences (vertical axis) having been converted to a percentage of the 
occurrences. Note that in this example there are ten individual measurements involved. 
Cumulative percentage frequency has been plotted as the vertical axis in Fig. 30C; the 
corresponding curve is sigmoidal (or

 fc
S'-shaped) in form. In this figure, the percentage of 

the occurrences in a particular class and below has been plotted. Note also that the vertical 
axis is divided equally and regularly. If the same cumulative percentage frequencies are 
plotted on probability paper (Fig. 30D) a straight line results because, in this example, the 
original data (Fig. 30A) were normally distributed. Note that the only difference between 
the axes in Figs. 30C and D lies in the spacing or intervals on the vertical axis. Probability 
paper has this very useful property of representing normal distributions as straight lines. 

Figure 31A shows the expected result when a positively skewed distribution is plotted in 
this way on probability paper. The cumulative percentage frequency curve is convex 
upwards. After a square-root transformation (suitable for a mild positive skew) a plot of 
the transformed data may give a straight-line graph (Fig. 3IB). In this case, a logarithmic 
transformation (more powerful, and therefore more suited to a severe skew) would result 
in a curve that is concave upwards (Fig. 31C), indicating that the distribution has been 
converted to a negative skew; that is the data has been over-transformed (assuming the 
aim was to achieve a normal distribution). 

skewness that is characteristic of a data set. A number of transformations are summarized 
below: 
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FIG. (Si) A POSITIVELY SKEWED DISTRIBUTION 

AND TWO TRANSFORMATIONS 
Plotted on probability paper 

A UNTRANSFORMED 

*· Original data units 

Β SQUARE-ROOT TRANSFORMATION 

• Square-root units 

C LOGARITHMIC TRANSFORMATION 

Log. units 

The use of probability paper does not require the transformation and regrouping of 
individual measurements. The class mid-points can be taken from a histogram of the 
original data (stage 1 in Fig. 30A); transformed class mid-points can then be used with a 
transformed measurement scale (stages 2 to 4 in Fig. 30). In this way a number of 
transformations may be carried out rapidly, thus assuring that the best transformation for 
the data is identified. Once the best transformation has been found, then the individual 
measurements can be transformed in order to take the analysis further. The application of 
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probability paper thus permits the visual identification of non-normality and the visual 
selection of an appropriate transformation. Its main advantage lies in the ease with which 
the straightness of a line can be judged visually; its main disadvantage lies in the possible 
influence of chosen class-intervals on results (a limitation of histograms also). 

Exercise 9. Use of transformations and probability paper in 
the analysis of the wealth of nations at a world scale. 

Background 

The poverty of Africa and South-east Asia in particular is in marked contrast to the 
developed nations of North America and Europe. This gap between 'rich' and 'poor ' 
nations is not closing despite the increasing amount of international aid to the T h i r d 
World' . This exercise attempts to describe and summarize quantitatively some of the main 
disparities on a world scale, and should be concluded with a discussion of the causes of 
these disparities. 

The data given in Table 7, and summarized in Fig. 32, are the per capita national 
incomes of all countries for which estimates have been made by the United Nations 
Statistical Office. N o importance should be attached to small differences between nations, 
because some estimates are more reliable than others. Some estimates are based on 
reliable national sources, some are adjusted official figures, while others are rough 
estimates where no national figures have been published. All estimates have been 
converted into U.S. dollars using currency exchange values. 

FIG. (32) WORLD PER CAPITA NATIONAL INCOMES ( 153 Nations in 1970) 
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TABLE 7. Per capita national incomes in 1970 

Country $ Country S Country $ 

AFRICA LATIN AMERICA ASIA—E. & S E . 
Algeria 295 Antigua 332 Afghanistan 83 
Angola 284 Argentina 984 Bangladesh 59 
Benin 76 Barbados 618 Bhutan 44 
Botswana 132 Belize 405 Brunei 1178 
Burundi 60 Bolivia 175 Burma 73 
Central African Brazil 468 Dem. Kampuchea 119 

Republic 119 Br. Virgin Isles 1190 East Timor 103 
Chad 70 Chili 659 Hong Kong 747 
Comoros 97 Colombia 310 India 94 
Congo 213 Costa Rica 525 Indonesia 70 
Egypt 202 Dominica 271 Japan 1636 
Equat. Guinea 253 Dominican Rep. 334 Korea, Rep. of 250 
Ethiopia 68 Ecuador 250 Lao People's Dem. 
Fr. Terr, of El Salvador 281 Republic 71 

Afars & Issas 1046 Grenada 332 Malaysia 345 
Gabon 468 Guadeloupe 698 Maldives 86 
Gambia 101 Guatemala 320 Nepal 73 
Ghana 236 Guyana 323 Pakistan 163 
Guinea 79 Haiti 94 Philippines 164 
Guinea-Bissau 247 Honduras 266 Singapore 870 
Ivory Coast 324 Jamaica 641 Sri Lanka 166 
Kenya 127 Martinique 818 Thailand 167 
Lesotho 91 Mexico 632 
Liberia 189 Montserrat 517 EUROPE 
Libyan Arab Rep. 1412 Neth. Antilles 1275 Austria 1730 
Madagascar 127 Nicaragua 393 Belgium 2417 
Malawi 66 Panama 646 Denmark 2898 
Mali 53 Paraguay 239 Finland 1998 
Mauritania 136 Peru 302 France 2490 
Mauritius 223 Puerto Rico 1738 Germany, Fed. Rep. 2749 
Morocco 221 St. Ki t t s -Nev i s - Greece 1090 
Mozambique 216 Anguilla 248 Iceland 2058 
Niger 81 St. Lucia 328 Ireland 1254 
Nigeria 130 St. Vincent 222 Italy 1585 
Reunion 769 Surinam 650 Luxembourg 2638 
Rwanda 54 Trinidad and Netherlands 2232 
Senegal 219 Tobago 732 Norway 2458 
Sierra Leone 150 Turks & Caicos Malta 721 
Somalia 87 Islands 380 Portugal 677 
South Africa 662 Uruguay 809 Spain 985 
S. Rhodesia 258 Venezuela 932 Sweden 3719 
Sudan 109 Switzerland 3072 
Swaziland 272 A S I A — M I D D L E EAST United Kingdom 2031 
Togo 125 Bahrain 888 
Tunisia 260 Cyprus 873 OCEANIA 
Uganda 127 Iran 352 Australia 2660 
United Rep. of Iraq 309 Fiji 385 

Cameroon 179 Israel 1655 Fr. Polynesia 2001 
United Rep. of Jordan 261 New Caledonia 3079 

Tanzania 94 Kuwait 2814 New Zealand 2030 
Upper Volta 62 Lebanon 589 Papua New Guinea 255 
Zaire 76 Oman 292 Solomon Islands 178 
Zambia 365 Qatar 1837 Tonga 162 

Saudi Arabia 495 Western Samoa 177 
NORTH AMERICA Syrian Arab Rep. 259 
Canada 3366 Turkey 350 
United States 4285 Yemen 

Yemen, Democrat. 
77 
92 

(From United Nations, 1977.) 
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Practical work 

1. Using probability paper and the data arranged in classes (Fig. 32) plot the raw data 
in the form of a cumulative % frequency curve. Cumulative % frequency should be 
derived and tabulated in the following way: 

Class interval Frequency % frequency Cumulative % 
(Income class) (No. of countries) frequency 

0 - 9 9 27 
100-199 23 
200-299 27 
300-399 16 
400-499 4 
etc. 

Cumulative % frequency is plotted against the class mid-points on probability paper. 
2. Select two transformations appropriate for a positively skewed distribution, 

transform the class mid-points, calculate cumulative % frequency values for these 
transformed data, and plot curves on probability paper. Cumulative % frequency is 
plotted against the transformed class mid-points. 

3. Describe and explain the three cumulative % frequency curves that you have 
plotted, paying particular attention to their degree of curvature and to the relative 
appropriateness of the transformations. 

4. Describe and explain the form of cumulative % frequency curve that you would 
expect to result from the application of a transformation involving taking the square of 
the class mid-points. 

5. Using the most appropriate transformation (determined in question 3), transform 
the individual national values of per capita income. 

(a) Calculate the mean and standard deviation of the untransformed data. 
(b) Calculate the mean and standard deviation of the transformed data. 
(c) Describe the differences between your answers in (a) and (b) and account for the 

differences. 
6. Using the transformed mean and standard deviation derived in question 5(b), 

calculate: 
(a) The per capita national income that is likely to be exceeded by 90 % of nations. 
(b) The minimum expected per capita national income in the 'richest 10 %' of nations 

and the maximum expected in the 'poorest 10%' of nations. 
(c) The probability that any one nation chosen at random will have a per capita 

national income lower than that in the United Kingdom. 

The graphical representation of this data in the form of a histogram (Fig. 32) reveals a 
strong positive skew. Mean income values calculated from the data would be misleading 
descriptive statistics (either for the whole data set or for sub-sets of the data). 
Furthermore, probabilistic statements based on the mean and standard deviation would 
not be valid. The transformation of this distribution to normality is therefore an essential 
preliminary to this type of analysis. 
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(d) The proportion of nations that are expected to have a per capita national income 
that is higher than the United Kingdom value. 

7. Using the transformed data for individual nations derived in question 5, calculate 
the mean and standard deviation for each of the following sub-sets of the data: 

(a) Africa. 
(b) Latin America. 
(c) Asia. 
(d) Europe. 
8. Calculate the minimum expected per capita national income in the richest 10 % of 

each of these sub-sets and the corresponding values for the maximum expected in the 
poorest 10%. 

9. Using the results of your calculations in questions 6 to 8, describe the major 
differences in income at a world scale. 

10. Write an essay on the possible causes of the disparities revealed in your analyses. 



7 
Elements of 
Sampling Methodology 

SAMPLING methodology is concerned with the study of the methods that are available for 
obtaining a representative sample of a population. More precisely, it is concerned with the 
theory and practice of obtaining, as efficiently as possible, accurate sample estimates of 
population parameters. In the preceding chapters, several properties of samples have been 
discussed and it was assumed that they were accurate estimates of the corresponding 
characteristics of populations. The most important of these may be tabulated: 

Sample mean x Population mean μ 
Sample standard deviation s Population standard deviation σ 
Sample size η Population size Ν 

Samples are not always representative. Descriptive and inferential statistics will be of 
little use if they are summaries of non-representative samples. More generally, results can 
only be as good as the data on which they are based, and sampling methods are a major 
determinant of data quality. 

What is involved in choosing a suitable sampling method? Five major factors are 
considered in turn below, each factor being viewed in relation to efficiency and accuracy. 
Efficient methods (requiring little cost/time/effort) are desirable but sufficient accuracy of 
the resulting estimate must be maintained. 

(i) The purpose for which the estimates are required is obviously of major importance. 
Some purposes demand greater accuracy than others. For example, if a new drug or 
vaccine was to be tested by a sample survey of its effects on volunteers, then a very high 
level of accuracy would be necessary. If, on the other hand, a new detergent was to be put 
on the market and research was undertaken to assess the probable demand for the new 
product, a relatively inaccurate estimate would not be quite so disastrous; the greater the 
investment in the new product, however, the more important it would be to obtain a 
highly accurate prediction. Some methods are relatively inaccurate and designed for high 
efficiency but may be ideal for some purposes. Contrast, for example, a slope angle 
measured by an Abney level and a theodolite. 

(ii) A second factor for consideration is the sampling frame. The sampling frame is the 
setting in which the sampled population is found. Ideally, sampling should be from the 
target population (about which information is required) but some sampling frames result 
in the sampled population being only a sub-set of the target population. For example, if 
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one was estimating the characteristics of people in contrasting areas of a city by interview 
techniques, one possible sampling frame would be the telephone directory. The problem 
here is that not all people have a telephone and that a sample taken from the directory will 
under-represent certain social and economic groups. In other words, the sampled 
population (the telephone-owners) is not the target population (all persons in the city). Of 
particular relevance to geographers are spatial sampling frames, such as maps and aerial 
photographs. Spatial sampling frames differ from non-spatial ones in that location on the 
earth's surface influences the choice of individuals from the sampled population. If the 
purpose of a study involves aspects of location, such as the recognition of a distribution 
pattern, the calculation of areal coverage or the analysis of spatial variations, then a 
spatial sampling frame will be needed. 

(iii) Sampled individuals and attributes must be defined. During sampling, observation 
and measurement is directed towards specific individuals within the population of similar 
individuals, and towards specific attributes (properties) of the individuals. For example, 
'velocity' is an attribute of 'rivers' and 'glaciers' (individuals); 'depth', 'colour' and 
'texture' are attributes of a 'soil profile' (individual); 'coverage', 'density' and 
'productivity' are attributes of 'plant species' (individuals). Operational definitions, which 
define exactly what is to be measured and exactly how sampling is to proceed, form 
therefore an essential part of any sampling scheme. Such definitions must enable the 
recognition, description and recording of individuals and attributes without ambiguity. 
In these ways measurement and sampling will be repeatable and unbiased. 

(iv) Rules for selecting individuals from the sampling frame constitute the sampling 
design. Purposive or judgement sampling involves selection based on the opinion of 
whosoever is doing the sampling (the operator). This approach can be very efficient, 
particularly if an expert is involved, and is especially useful in preliminary and extensive 
studies. 'Typical', 'best' and 'representative' samples (particularly case studies) are often 
merely judgement samples. The major limitation of this kind of sampling is that there is no 
way of knowing the extent to which bias, such as personal prejudices, or circular 
argument, is entering into the scheme and into the results. Nevertheless, much useful 
information will continue to be accumulated based on judgement sampling and, in almost 
every case, choice of 'the study area' in geographical research projects will remain 
purposive. 

The alternative approach to judgement sampling is probability sampling, which is 
defined as a procedure by which individuals are selected from the sampling frame such 
that each individual has a known chance of being in the sample. Three simple but 
important types of probability sampling designs are: random, systematic and stratified 
designs. These may be spatial (locational) or non-spatial (non-locational), depending on 
the sampling frame. Figure 33 shows examples of the spatial variety; the points in the 
figure could represent points for the sampling of vegetation on an aerial photograph or for 
the sampling of farms from a map. Lines (transects or traverses) or areas (quadrats or 
plots) are valid alternatives to points for particular purposes or for particular types of 
individual. 

The random design in Fig. 33A was derived in the following manner. The two edges of 
the area within which the sample was to be taken were scaled-off and used as axes. Each 
individual point was then located by two random numbers, each being a coordinate of the 
point (note the broken lines in the figure). Random numbers are conveniently prepared in 
the form of random number tables from which numbers can be read off in any direction 
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and within which every number has an equal chance of occurrence (see Table B, 
Appendix). It must be emphasized that a truly random sample has a precise statistical 
meaning and should not be confused with samples that are chosen in a haphazard 
manner. For example, some biogeographers falsely believe that a random sample of 
vegetation can be obtained by standing in the centre of the area of interest and throwing 
quadrats over their shoulder! The advantage of a truly random sample is that every 
individual in the sampling frame has an equal chance of selection, with the result that no 
known bias is influencing the sample. A comparatively minor disadvantage of a random 
sample is that for some geographical purposes an even distribution of points is an 
advantage, and a random sample is certainly not evenly distributed over space. 

The systematic design (Fig. 33B) is characterized by a regular sampling interval. In non-
spatial context this might involve sampling of every tenth individual; in the two-
dimensional spatial case regularity might be achieved by sampling at the intersections of a 
grid, as in Fig. 33B. This design has the advantage of an even coverage, which means that 
spatial variation within the area of interest is likely to be efficiently sampled. Its main 
disadvantage is that regularity within the phenomenon being sampled may clash with the 
regularity of the design and hence result in a biased sample. For example, if an area of bog 
hummock/hollow or an area of stone stripes were sampled systematically, sampling might 
result in the selection of only one of the phases in the pattern. The systematic sampling 
design employed at most weather stations (systematic sampling through time at 9.00 am 
each day) can lead to a biased sample of some attributes of the weather, namely those 
attributes that possess a diurnal rhythm. 

Stratified designs (Fig. 33C) utilize prior knowledge to subdivide the sampling frame, 
usually with a view to controlling the effect of certain independent factors. A sample is 
then taken from each subdivision. Such a procedure can be much more efficient than 
sampling from the sampling frame as a whole. The validity of this type of design depends, 
of course, on the reliability of the prior knowledge and its relevance to the purpose of the 
investigation. 

There are many more varieties of sampling design but most, on close inspection, are 
combinations of the above-mentioned types and therefore possess a mixture of their 
advantages and limitations. It would be profitable to examine some of the work described 
in recent geographical periodicals, paying particular attention to sampling designs. 

(v) Lastly, sample size (or the number of individuals selected from the sampling frame) 
must be considered. The bigger the sample size, the more accurate will be the sample 
estimate of a population parameter. The problem is to be efficient but to take sufficient. 
Figure 34 shows a graph that illustrates the gradual approximation of a sample estimate 
to a population parameter as sample size increases. In the figure, the sample estimate 
could be a sample mean approaching the population mean (the latter indicated by the 
horizontal broken line). The accuracy required in a particular study will be dependent on 
its purpose. Thus, in theory, there is a minimum sample size necessary to achieve sufficient 
accuracy (that is, necessary to ensure that the sample estimate will be sufficiently close to 
the line). A sample size that is smaller than this minimum cannot be relied upon to be 
representative. Small sample sizes are one of the most important reasons for the 
inaccurate predictions of election results from opinion polls. 

One other aspect of sample size will be considered. Non-sampling errors, such as 
measurement precision and operator error (errors resulting from different workers 
interpreting and carrying out instructions differently), may prevent high accuracy being 
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FIG. (33) PROBABILISTIC SAMPLING DESIGNS 
(Spatial cases) 

x' 

A RANDOM Β SYSTEMATIC C STRATIFIED 

FIG. (34) THE EFFECT OF INCREASING SAMPLE 

SIZE (n) ON THE SAMPLE ESTIMATE 

The Sample 
Estimate 

(e.g. χ ) 

FIG. (55) ERROR COMPONENTS AND THE ROLE 
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(from Blalock, 1960) 

obtained, no matter how large the sample size. Figure 35 represents total error as the 
resultant of sampling error and non-sampling error. In Fig. 35B, an increase in sample 
size, with consequent reduction in sampling error, will have a relatively great effect on the 
total error, because non-sampling error is relatively small. Figure 35A, however, shows a 
situation where non-sampling error is relatively large; in this situation, a reduced 
sampling error produced by increasing the sample size will have little effect on the total 
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Exercise 10: Application of sampling techniques in the extraction 
of information from soil maps in north Wales. 

Background 

Figure 36 is a map of the soils around Rhyl, a coastal area of north Wales. The majority 
of the soils in this area have been classified into six types, based on the field work and 
classification of the Soil Survey of England and Wales. This exercise illustrates some of the 
problems that will be encountered in any attempt to obtain and use reliable samples from 
this map. The first problem may be phrased in the form of a question: 'What sample size is 
necessary to obtain a reliable estimate of the areal coverage of each soil type on the map? ' 
The second problem involves the choice of a sampling design: 'What are the differences in 
practice between the results obtained from random sampling and the results obtained 
from systematic sampling?' 

The remainder of the exercise considers the use of sampling to compare maps and to 
approach the testing of hypotheses. Figure 37 is a map of the underlying parent materials 
in the same area as Fig. 36, based on the Drift Geology recorded by the Geological 
Survey. A subjective appraisal of the two maps suggests that there is some correspondence 
between the two sets of patterns. This in turn suggests that the underlying parent material 
is an important determinant of soil type in the area mapped. There are, however, other 
soil-forming factors—such as relief, organisms (vegetation and animals including man), 
climate and time—which are independent of parent material and may account for some of 
the pattern of soil types in Fig. 36. It would be of some value, therefore, to obtain objective 
information on the extent to which particular soil types are associated with particular 
parent materials. In this way, application of sampling techniques may be considered the 
first stage in the testing of a hypothesis by objective procedures. 

Practical work 

1. The aim of this section is to draw a random sample of points from Fig. 36, using a 
number of sample sizes. 

(a) Construct a grid-reference system along the horizontal and vertical axes of Fig. 36. 
The interval must be suitable for use with random number tables. 

(b) Using the random number tables in Table Β (Appendix), locate 80 random points 
on the map. After the 5th, 10th, 15th, 20th, 25th, 30th, 40th, 50th, 60th, 70th and 
80th points have been located, calculate the percentage areal coverage of the 
following: 

(i) gleyed soils, 
(ii) brown earths, 

(iii) calcareous soils, 
(iv) podzolized soils. 

(c) Draw up graphs of estimated percentage cover (vertical axis) against sample size 
(horizontal axis) for these four soil types. 

error. A profitable increase in overall accuracy will, therefore, only be achieved by 
increasing the sample size in the case of Fig. 35B. 
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(d) Comment on the form of the graphs and draw conclusions about the necessary 
sample size for a representative sample in each case. 

2. The aim of this section is to compare samples drawn by means of random and 
systematic sampling designs. 

(a) By means of a grid, locate a systematic sample of 80 points on the map (Fig. 36). 
(b) Compare the estimated percentage cover of the four soil types obtained by 

systematic sampling with the results obtained in (1) with a similar sample size. 
(c) Draw conclusions about the relative suitability of the two alternative sampling 

designs, bearing in mind the differences to be expected on theoretical grounds. 
3. The aim of this section is to compare the map of soil types with the map of parent 

materials (Fig. 37). 
(a) Using either the random or the systematic design, transfer the same points to the 

parent material map. 
(b) Cross-tabulate soil type with parent material. That is, enter the number of points 

falling in each cell of the table: 

Parent Material Category 

Soil Type 
Alluvium Till Sand & Gravel Limestone Peat, etc 

Blown sand 
Gleyed 
Brown earths 
Calcareous 
Podzolized 
Organic 
Other 

(c) Construct a similar cross-tabulation showing the percentage of each soil type 
within each parent material category. 

(d) Construct a third cross-tabulation showing the percentage of each parent material 
category that is associated with particular soil types. 

(e) D o the results in the three tables support the hypothesis that particular soil types 
are characteristic of particular parent materials? Fully justify your answer. 

(f ) Using your knowledge of the properties of the soils and of the parent materials, 
suggest some ways in which parent materials are here influencing soil properties. 

(g) Discuss ways in which the results of this study might be improved and the 
conclusions could be made more decisive. 



Confidence Intervals 
and Estimation 
from Samples 

IN THE previous chapter we considered the factors necessary to ensure that a representative 
and accurate sample is obtained. The present chapter is concerned with assessing the 
precision of a sample estimate, once it has been obtained. In other words, interest is 
focused on the limits, either side of a sample estimate, within which the corresponding 
population parameter can be inferred to lie. Here, the precision of a sample mean will be 
considered and the result will be expressed in the form of a confidence interval. A 
confidence interval is defined as the interval, either side of a sample estimate, within which 
the population parameter is expected to lie, at a known level of probability. 

In Fig. 38, a population with mean (μ) and standard deviation (<x) is represented as a 
normal curve. Every individual in the population lies somewhere beneath the curve and 
there are fixed probabilities associated with particular areas (defined by the normal 
distribution function, Table A). Usually the mean and standard deviation of a population 
(the population parameters) are not known; instead, sample estimates have been obtained. 
For example, the population mean pebble size on a single beach would not be known but a 
sample mean pebble size might be available based on a large sample size of 1000 individual 
pebbles. How likely is it that this sample mean will correspond with the true (population) 
mean? 

Consider Fig. 38. Any sample mean derived from this population must lie closer to the 
population mean (μ) than do some of the extremely large or extremely small individual 
values (pebbles, for example). This is because a mean evens out individual differences. 
Indeed, a particular sample mean must lie somewhere beneath another curve (indicated as 
a broken line in Fig. 38), which has the same mean as the population curve but a lower 
dispersion or spread. This second curve is known as a sampling distribution, in this case a 
distribution of sample means. This is the distribution that would result if a large number of 
samples were taken from the same population (each sample based on the same sample size) 
and the sample means were plotted in the form of a curve. 

It is known, therefore, that a particular sample mean lies somewhere beneath the broken 
curve in Fig. 38. The accuracy of this sample mean depends on how close it is to the 
population mean. Given that the distribution of sample means is normally distributed, 
then the probability of a particular sample mean being any number of standard deviations 
of the distribution of sample means from the population mean can be found. Note that we 
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are not concerned here with the sample standard deviation but with the standard deviation 
of the broken curve, known for short as the standard error of the mean. The standard error 
of the mean is easily estimated from the sample standard deviation and the sample size, 
because it is determined by the population standard deviation and the sample size. If the 
population is characterized by great variability and /o r if the sample size is small, then the 
standard error of the mean will be large. The effect of sample size on the standard error of 
the mean is portrayed in Fig. 39. As sample size is increased, so the spread or dispersion of 
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the sampling distribution (the distribution of sample means) is reduced—the result of the 
relative smoothing power of a mean based on a large sample size. Note that as sample size 
is reduced, so the distribution of sample means approximates to the population 
distribution (identical to a sampling distribution with η = 1). 

The standard error of the mean is, in fact, proportional to the population standard 
deviation (σ) and inversely proportional to the square root of sample size: 

αχ = -^-= — standard error of the mean (symbol is sigma subscript x). 

When the population standard deviation is unknown (almost always) the best estimate of 
the standard error of the mean is calculated by: 

S G 
= —γ== = —= = best estimate of the standard error of the mean 

where s = the sample standard deviation, 
σ = the best estimate of the population standard deviation (derived from s with the 

application of BessePs correction). 

We can now place confidence intervals around a sample mean. Because one sample mean 
varies from the next to some unknown degree, only probability statements can be made 
about the value of the true or population mean; definite, absolute values cannot be given. 
However, an interval, within which the population mean is likely to lie at a selected level of 
probability can be defined precisely. For example, it is approximately 68 % certain that the 
true population mean (μ) lies between ± 1 standard error of the mean from the sample 
mean, that is: 

χ ± 1.0 <7X (probability level approximately 68 %) 

If we want to be more certain of the limits within which the population mean is likely to be 
found, then a higher probability level must be used, which results in a broader confidence 
interval. The 'rule of thumb' for 95 % certainly is to use a confidence interval of ± 2 
standard errors of the mean: 

χ ± 2 . 0 σ χ (probability level approximately 95 %) 

The 95 % probability level is the most commonly used in Geography. That is, the 
population parameter is expected to lie within the given intervals on 95 % of the occasions 
on which it is used; the corollary being that on one occasion in twenty (5 % of occasions) 
the true mean will lie outside the set limits. 

Confidence intervals for particular levels of probability can be found by employing the 
normal distribution function (Table A). In general: 

x +ζ'άχ (probability level determined by z) 

The table shows that a 95 % confidence interval is set, strictly speaking, at ± 1.96 standard 
errors of the mean, not at 2.0 standard errors of the mean. Figure 40 illustrates how this 
value for ζ is found. A diagram is always useful to avoid obtaining the wrong area under 
the normal curve. It should be noted that there is considerable similarity between the use 
of the normal distribution function for setting up confidence intervals around a sample 
mean and its use in Chapter 4 for making probability statements about individual 
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measurements. Normal distributions are involved in both applications, but the setting up 
of confidence intervals involves a sampling distribution (the distribution of sample means) 
whereas in the previous chapter the distribution of individual measurements was involved. 

It has already been pointed out that a distribution of sample means can be envisaged as 
the normal distribution that would result from the plotting of a very large number of 
sample means, which had been drawn from the same population. This is shown in Fig. 41 , 
in which twelve sample means are represented and the corresponding sampling 
distribution shown in relation to the fixed value of the population mean (μ). This figure 
clarifies why it is that a 95 % confidence interval placed around a sample mean is 95 % 
certain to include the true mean value. Because the sampling distribution is normally 
distributed, there is a 95 % probability that any particular sample mean will lie within 
± 1.96 standard errors of the mean from the population mean. The 95 % confidence 
interval that has been placed around each sample mean (the horizontal bars in Fig. 41) has 
a width of ± 1.96 standard errors of the mean. Only when a sample mean lies to the left of 
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x 1 2 or to the right of x 7 will the confidence interval fail to include μ, and this is likely to 
happen on only 5 % of occasions. One's faith, therefore, should be placed in the approach, 
rather than the precise limits of a particular confidence interval. 

Calculation of confidence intervals using Student's t 

The normal distribution function is appropriate for the calculation of confidence 
intervals only when the sample size is large. When sample size is small, ζ is replaced by t. 
Student's t tables are used in much the same way as tables of the normal distribution 
function (Table C, Appendix), although they are arranged in a more convenient way for 
the calculation of confidence intervals. In the table, t values are given corresponding to a 
particular probability level (across the top of the table) and to particular degrees of 
freedom (down the left-hand margin). Degrees of freedom (ν = η — 1 ) is one less than the 
sample size; the probability value given (p) is the significance level. For example, to set a 
95 % confidence interval around a sample mean based on a sample size of 20, ρ = 5 % and 
ν = 19; the t value is thus 2.093. It can be seen that as sample size increases so the t value 
approaches the corresponding value of ζ (1.96 at the 5 % significance level). The value of t 
differs markedly from ζ at very small sample sizes, which results in a wider confidence 
interval when t is used. In other words, use of ζ at small sample sizes gives rise to a false 
sense of precision. 

The formula for a confidence interval about a sample mean can therefore be rewritten 
as: 

x + t · σ χ (probability level determined by t) 

_ s 
or χ ± t -

The necessary calculations in relation to actual data are given in the following worked 
example. 

Lichenometric dating was applied to the outermost end moraine in front of the 
Storbreen glacier in the Jotunheimen Mountains of southern Norway. From lichen 
measurements made in A.D. 1974, the following mean age of the moraine was obtained, 
with a sample size of 100 (100 datings were obtained): 

Data X s 

Raw data 229 years 75 years 
Log-transformed data 2.33646 0.1306 

Transformed data were used to account for a positive skew shown by the raw data (Fig. 
42). The problem is to estimate the confidence interval within which the true age of the 
moraine lies at a selected probability level. The stages involved in the calculation are: 

(a) Select a probability level. Here the 95 % confidence interval will be used. 
(b) Calculate the best estimate of the standard error of the mean (σ χ), using the sample 

standard deviation (s) and the sample size (n). 

s 0.1306 •* *y * 
σ-χ = , = — j = - = 0.0131. 
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(c) Obtain the appropriate t value from Table C (Appendix); using 99 degrees of 
freedom (η — 1) and a 5 % significance level for the 9 5 % confidence interval, 
t = 1.984. 

(d) The required confidence interval is therefore 1.984 standard errors of the mean 
(around the sample mean), or 

χ±ί·σ-χ = 2.33646 ± 1.984(0.0131) = 2.33646 ±0.0259 

(e) In other words, we can be 95 % certain that the true mean age of the moraine lies 
between antilog 2.3105 and antilog 2.3623 years, or between 204 and 230 years. That 
is, the moraine dates from between A.D. 1744 and A.D. 1770 with 95 °/0 certainty. 
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Exercise 11. Use of tables of the t distribution and the 
calculation of confidence intervals around sample means. 

Background 

This exercise concentrates on the manipulation of tables of Student's t (Table C, 
Appendix) and the calculation of confidence intervals around sample means; means that 
have been calculated in previous exercises. Particular attention should be paid to the 
different concepts behind the present exercise compared to the concepts underlying 
Exercise 6. 

Practical work 

1. (a) Using Table C, what number of standard errors of the mean, placed either side of 
a sample mean, is appropriate to define confidence intervals with the following 
probability levels and sample sizes: 

Probability 
level 

10 

Sample size 

25 60 00 

9 0 % 
9 5 % 
9 9 % 

(b) Explain, with the aid of diagrams to represent areas under a normal curve, how the 
values of t in the last column of the above question can be obtained from Table A 
(the normal distribution function). 

(c) Based on a sample size of thirty individual measurements, the following confidence 
intervals have been placed around a sample mean: 

This result is shown graphically in Fig. 42C. If the chance of failing to include the true 
mean within the confidence interval is to be minimized even further, then a 99 % 
confidence interval might be appropriate. This would, of course, result in a broader 
interval, with greater certainty gained at the expense of precision. Conversely, a narrower 
confidence interval around the sample mean is a more precise statement about the value of 
the true mean, but it is less certain to enclose the true mean. The more precise the estimate, 
the lower the confidence that can be placed in it. 

In conclusion it can be stated that confidence intervals are controlled by three factors: 
(1) the variability of the data, reflected by the standard deviation of the sample and 
dependent on the variability of the underlying population; (2) the size of the sample on 
which the sample estimate is based; and (3) the probability level or certainty with which 
one wishes to express conclusions. All three factors are represented in the above formula 
for a confidence interval, which will give meaningful results provided that the sample is 
unbiased and provided that the individual measurements comprising the sample are 
statistically independent. 
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(i) ± 1.70 a, 

(ii) ±2.04& x 

(iii) ±2.Ί5σ-χ 

For each of these confidence intervals: 
(i) How certain are you that the true mean lies within the interval? 

(ii) What is the probability that the true mean is not enclosed within the 
interval? 

(iii) What is the probability that the true mean lies above the upper confidence 
limit? 

(iv) What is the probability that the true mean lies above the lower confidence 
limit but has a lower value than the sample mean? 

(d) Based on a sample size of 28, at what number of standard errors of the mean must 
confidence limits be set to ensure the following: 

(i) That there is a less than 1 in 10 chance of the true mean lying outside the 
confidence interval. 

(ii) That there is at most a 5 % chance that the true mean lies below the lower 
confidence limit. 

(iii) That you are at least 45 % certain that the true mean lies between the sample 
mean and the upper confidence limit. 

2. Using your answers to question 1, Exercise 5, relating to the mean and standard 
deviation of June and December monthly rainfall totals at Cardiff over a 22-year period, 
calculate the following: 

(a) The interval within which the true mean rainfall for June is expected to lie with 95 % 
certainty. The true mean can be envisaged as the mean for an extremely long run of 
years. 

(b) The maximum and minimum quantities of rain between which the true mean 
rainfall for December is expected to lie with at least a 95 % probability of being 
correct. 

(c) What can be concluded from your answers to 2(a) and 2(b) regarding the difference 
in raininess of June and December at this station? 

(d) Set 90 % confidence intervals around the June and December means and explain the 
implications of the change in width of the interval for 2(c). 

(e) Would a longer period of record result in a wider or a narrower confidence interval 
at a particular probability level? Explain your answer. 

(f ) What is the probability that the true mean rainfall for June lies within ± 25 mm of 
the sample mean? 

(g) What is the probability that the true mean rainfall for June lies more than 25-mm 
above the sample mean? 

3. The following means and standard deviations relate to the data on erratic size (cm
2
) 

given in Exercise 4, question 1: 

Distance from the outcrop (km) 

Descriptive statistic 1 3 5 7 9 11 13 15 17 19 

Sample mean (x) 
Standard deviation (σ) 

491 
374 

350 
292 

412 
196 

435 
208 

469 
256 

363 
212 

407 
309 

286 
210 

255 
135 

316 
342 
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Exercise 12: Use of confidence intervals in the evaluation 
of models of vegetation succession in the Jotunheimen Mountains 
of southern Norway. 

Background 

The sequence of vegetation that invades a newly formed habitat, follows forest 
clearance, or is initiated by the abandonment of agricultural land, is known as a vegetation 
succession. Vegetation successions are in progress almost everywhere, but little precise 
information is available concerning such changes, except over rather short time-spans. In 
only a limited number of situations is it possible to gain detailed information about 
longer-term successional change. The present exercise is based on one such situation, 
where progressively older terrain is found with increasing distance from the margin of a 
retreating glacier. 

Figure 43A shows the area in front of Storhreen, Jotunheimen, southern Norway, where 
the course of déglaciation has been reconstructed in detail from historical and 
lichenometric evidence. On this terrain of known age, the plant species have been recorded 
at each of 638 sites (each site being an area of 16 m

2
 located according to a systematically 

stratified random sampling design). 
From the study of vegetation on ground of increasing age, the progress of a vegetation 

succession can be traced. For example, Figs. 43 B-D depict the colonization patterns of 
three plant species, and indicate that the Tufted saxifrage (Saxifraga groenlandica) is 
replaced by the Mountain sorrel (Oxyria digyna), which is in turn replaced by the Arctic 
crowberry (Empetrum hermaphroditum) on progressively older terrain. However, it is not 
the intention here to deal with individual species, but to deal with the total number of 
species at each site. 

There are at least three alternative views about the changes that occur in the number of 
species during a vegetation succession (Fig. 44): 

(1) There is a steady increase in numbers towards an equilibrium state. 
(2) There is a rapid increase in numbers followed by an observable decrease to an 

equilibrium state, as well adapted species become dominant. 
(3) There is a rapid increase in numbers, followed by a decrease, followed by further 

waves of immigration and a succession of dominant species. 
The purpose of this exercise is to evaluate these alternatives in the light of data from in 

front of Storbreen (Table 8). The number of species per site is given in ten zones of 
increasing age, which permits the calculation of the mean number of species per site for 
each zone, and hence the construction of a graph of the type shown in Fig. 44. Use of 
confidence intervals will be found crucial for deciding on the degree, direction and number 
of meaningful changes from zone to zone. 

(a) Calculate the 95 % confidence interval for each sample mean and represent the 
results in a graph of erratic size plotted against distance from the outcrop. 

(b) In the light of the confidence intervals, comment on the patterns shown by your 
graph, and the adequacy of the sample size used in this investigation. 

(c) Using the results from the 1-km distance, what sample size would be necessary to 
reduce the width of the confidence interval to at most ± 50 cm

2
? 
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Age of zone (mid-point in years before 1970) 

5 15 25 32 48 81 109 139 190 >220 

4 10 12 13 15 9 20 19 10 17 
2 8 23 17 8 12 15 19 18 18 
6 11 17 27 15 11 16 23 30 23 
6 11 20 24 11 8 19 17 21 28 
6 13 13 22 24 13 14 13 27 29 
5 10 18 29 15 18 15 14 24 26 
7 4 11 26 5 16 20 18 28 30 
6 10 13 10 19 11 12 24 27 13 
6 13 20 15 13 17 15 16 32 20 
6 16 18 15 12 11 19 12 21 13 
6 12 18 24 18 18 16 14 16 14 
8 10 24 10 10 11 9 10 17 15 
9 15 14 14 10 17 14 17 25 9 
4 15 19 9 14 13 14 20 23 13 
6 12 8 10 11 10 14 20 22 16 
7 12 13 16 13 12 7 18 28 18 

17 13 19 13 23 16 23 28 28 
14 16 22 13 20 15 22 29 28 
14 13 24 12 11 15 10 17 19 
7 7 11 18 6 13 8 25 24 
7 7 13 10 12 20 5 23 16 

13 12 12 12 11 13 11 13 11 
17 9 16 20 20 13 10 26 17 
17 13 20 16 10 9 20 14 12 
18 10 16 12 9 12 9 9 21 
11 18 22 16 13 14 11 9 13 
24 14 10 12 11 10 9 19 
16 11 15 10 13 11 6 19 
8 13 13 16 15 23 

19 11 
10 
6 

13 
21 
14 
10 
16 
16 
21 
17 
14 
10 

11 
13 
12 
14 
12 
17 
9 

25 
10 
14 

14 
10 
10 

14 
12 
17 
10 
23 
14 
14 
14 
23 

7 

Each value is the number of 12 13 
species at a 16 m

2 
site 7 14 

23 
15 
18 
18 
15 
14 
23 
15 
21 
16 

T A B L E 8. The number of species on terrain of increasing age in front of Storbreen, southern Norway 
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FIG. (44) ALTERNATIVE MODELS: VEGETATION SUCCESSION 

A MODEL 1 

Time 

No. 

Β MODEL 2 

Time 

No. 

C MODEL 3 

Time 

Practical work 

1. For each time zone, calculate the following: 
(a) The mean number of species per site. 
(b) The sample standard deviation. 
(c) The standard error of the mean. 
(d) The 95 % confidence interval about the sample mean. 

81 



82 Quantitative and Statistical Approaches to Geography 

Summarize your results in the form of a table: 

5 15 25 32 48 . . . , etc. Zone age 

X 

s 

. / \ 
t-o-x 

2. Plot a graph showing the relationship between mean number of species and terrain 
age. Your graph should depict clearly the mean number of species for each zone, together 
with its confidence interval. The graph should be drawn in such a way that it is comparable 
to the graphs in Fig. 44. 

3. Describe the graph, paying particular attention to: 
(a) Its overall form. 
(b) Any significant 'wiggles'. 
4. Discuss the probable effect on your answer to 3(b) if (i) 90 % or (ii) 99 % confidence 

intervals had been used. 
5. Evaluate the models of vegetation succession (Fig. 44), in the light of the evidence 

from in front of Storbreen, paying particular attention to: 
(a) The 'best' model (if any). 
(b) Uncertainties remaining as to the precise form of the succession at Storbreen. 
6. Suggest some possible explanations for the form of the vegetation succession at 

Storbreen. 



Statistical Hypothesis 
Testing Based on 
Student's t 

Tests involving one sample 

A confidence interval about a sample mean (defined and explained in Chapter 8) is the 
interval within which the underlying population mean is expected to be found, at a known 
probability level. This concept of a confidence interval can be used as the basis for the 
statistical testing of hypotheses relating to the population from which the sample was 
drawn. There may be, for example, independent evidence that suggests a hypothesized true 
mean for the underlying population. Given an unbiased sample, then it is possible to 
calculate the likelihood that the sample mean was drawn from the same population as the 
hypothesized true mean, thereby testing the hypothesis of 'no difference' between the 
sample mean and the hypothesized true mean. If the confidence interval around the sample 
mean fails to enclose the hypothesized true mean it must be concluded that there is a 
significant difference between the sample mean and the hypothesized true mean. In other 
words, the hypothesis o f 'no difference' is rejected at a known probability level. If, on the 
other hand, the confidence interval around the sample mean encloses the hypothesized 
true mean, then the hypothesis of 'no difference' cannot be rejected. In this instance, the 
sample mean is more likely to have been drawn from the same population as the 
hypothesized true mean. By rejecting or failing to reject hypotheses of 'no difference' in 
this way, statistical tests of hypotheses are carried out at known probability levels. 

The confidence interval in Fig. 42 (C) can be used to test a hypothesis in the manner 
outlined above. The figure shows that the true age of the outermost end moraine in front of 
the Storbreen glacier is expected to lie between 204 years and 230 years at the 9 5 % 
probability level. These ages correspond to dates of A.D. 1744 and A.D. 1770. 
A hypothesized true age is suggested by documentary evidence from a neighbouring 
glacier (Nigardsbreen), which attained its historical maximum extent about 1750. We are 
now in a position to test the hypothesis that there is no difference between the estimated 
age of the Storbreen end moraine and the known age of the Nigardsbreen moraine. 
Because there is a 95 % probability that the true date of the Storbreen moraine lies between 
A.D. 1744 and A.D. 1770, we cannot reject the possibility of the moraine dating from A.D. 
1750. The phrasing of the preceding sentence is very important; it is not valid, for example, 
to state that an A.D. 1750 date is accepted, only that this date cannot be rejected, for there 
are a large number of alternative dates within the confidence interval. Similarly, it is not 

QSAG - G 83 
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valid to state that the hypothesis of 'no difference' is accepted, only that the difference is 
not sufficiently great to permit rejection (at the 9 5 % confidence level). 

This example has shown how confidence intervals may be used to test hypotheses. The 
same test of the difference between a sample mean (x) and a hypothesized true mean (μ) 
may be expressed more formally as a one-sample Student's t-test, which has three steps: 

(a) Calculation of the difference between the sample mean and the hypothesized true 
mean in terms of standard errors of the mean. This will be termed the calculated t 
statistic. 

(b) Assessment (by reference to tables of Student's f, Table C, Appendix) of the 
difference that would be expected to occur by chance (as a result of sampling from a 
population with the hypothesized true mean). This will be termed the tabulated t 
statistic. 

(c) Comparison of the calculated and tabulated t values. If the calculated t exceeds the 
value that is likely to result by chance, then the hypothesis of 'no difference' between 
the sample mean and the hypothesized true mean can be rejected, and the difference 
is said to be statistically significant. 

Application of these three steps to the above example gives the following results (using 
log-transformed values throughout). 

(a) The calculated t becomes: 

(3c — μ) Difference between sample mean and hypothesized true mean 

Standard error of the mean 

_ 2 .33646 -2 .35025 _ 

0 .1306Λ /99 

(b) The tabulated t depends on the sample size and the probability level and is derived 
from Table C. With a sample size of 100 (that is, η - 1 = 9 9 degrees of freedom) and 
a 95 % confidence level (that is, a 5 % significance level), a t value as high as 1.98 is 
expected to occur by chance if the true mean were indeed 224 years. This value for 
the tabulated t is illustrated in Fig. 45, which shows that a difference in excess of t = 
± 1.98 is likely to occur with a probability of less than 5 % (the critical shaded area 
in the figure). 

(c) Because the calculated t statistic does not exceed the value of t that is likely to occur 
by chance, we are unable to reject the hypothesis of 'no difference' from a true age of 
224 years. The sample mean does not, therefore, differ significantly from the 
hypothesized age at the 5 % level of significance (the 9 5 % confidence level). 

This means that there is a less than 95 % probability of an actual difference. In other 
words, if the hypothesis of 'no difference' were to be rejected, then there would be a greater 
than 5 % chance of having made the wrong decision. In fact, the calculated t also fails to 
exceed the value of t that has a probability of occurrence by chance of 10 % (see Table C); 
thus it is possible to say that it is less than 9 0 % likely that the sample mean differs 
significantly from a true age of 224 years. 

Two-sample difference of means test 

In the section above, a hypothesis relating to a single sample mean (x) and a 
hypothesized true mean (μ) was tested. A modification of the one-sample Student's r-test 
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FIG. (£5) HYPOTHESIS TESTING USING STUDENT'S t 
DISTRIBUTION 

IN ORDER TO REJECT A HYPOTHESIS OF 

'NO DIFFERENCE' (A NULL HYPOTHESIS) 

The calculated Τ statistic must lie in the area 

shaded (the critical region). The example shows 

a 5% significance level and a sample size of 100. 

gives rise to the two-sample Student's t-test of a difference between two sample means (xl 

and x 2) . In the one-sample test, the standard error of the mean was used; in the two-sample 
test, we use the standard error of the difference between two means or, for short, the 
standard error of the difference. The standard error of the mean is given by: 

The standard error of the difference is given by: 

Recollect that in the one-sample test we calculate the number of standard errors of the 
mean that a sample mean lies from a hypothesized true mean (the calculated t statistic); in 
the two-sample test interest focuses on the number of standard errors of the difference 
that one sample mean lies from the other sample mean. If the difference between the two 
means is greater than the appropriate tabulated t statistic, then the difference between the 
two means lies in the critical shaded region of Fig. 45, and the difference is greater than 
would be expected to occur by chance between two sample means drawn from the same 
population. If the calculated t is greater than the tabulated f, then the hypothesis of 'no 
difference' between the two sample means is rejected, at a particular significance level. 
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For the two-sample test the calculated t statistic is found from: 

x1 — x2 Difference between two sample means 

(i_ _) Standard error of the difference 

The appropriate tabulated t statistic is obtained from Table C in the usual way, using 
(nx — 1) + (n2 — 1) degrees of freedom, where ηγ and n2 are the two sample sizes. 

An example is provided by the results of an experiment on the growth of the southern 
beech (Nothofagus) near the timber line in New Zealand (Wardle, 1971). Wardle found that 
seedlings grown at an altitude of 1100 m and then transplanted to 1600 m grew at a mean 
rate of 4.9 mm/week (based on a sample size of 15 seedlings), whereas seedlings grown at 
1100 m and then transplanted to another site at 1100 m grew at a mean rate of 
49.1 mm/week (based on a sample size of 11 seedlings). Given that the standard errors of 
the two means were 0.8 mm/week and 7.5 mm/week, respectively, is there a significant 
difference between the two sample means at the 5 % significance level? 

Following the same three steps defined previously in relation to a one-sample test, the 
appropriate two-sample test can be outlined. 

(a) The calculated t statistic is 

r /

 4
·

9
 -

 4 91
 -

4 4
-

2
 c ~ 

V(&Xl)
2
 + (&,2)

2 vO.82
 + 7.5

2
 7.5425 

(b) The tabulated t statistic is derived from Table C using the 5 % significance level, and 
(nl — 1) + (n2 — 1) = 14 + 10 = 24 degrees of freedom. Thus a i value as high as 2.06 
would be expected if the two means were drawn from the same population. 

(c) The calculated t exceeds the tabulated t. It is therefore concluded that the difference 
between the sample means is greater than is likely to occur by chance at the 5 % 
significance level. In other words, there is a less than 5 % probability of making a 
wrong decision by rejecting the hypothesis of 'no difference' between the two 
means. Similarly, one is greater than 95 % certain that the two means reflect a real 
difference. 

Wardle carried out a second experiment in which seedlings were germinated and grown 
at 1600 m and at 1100 m. He found that the two sample means were not significantly 
different. The results of his two experiments suggest that the growth of the southern beech 
near the timber line is strongly influenced by the development of 'hardiness' in the early 
stages of growth. This hardiness was not developed by the seedlings that were germinated 
at 1100 m and transplanted to 1600 m. From these and similar experiments involving 
statistical testing of the differences between sample means, Wardle went on to propose an 
explanation for alpine timberlines in general. 

Tests involving 'dependent' (matched) samples 

The two-sample Student's ί-test, like most statistical tests used in Geography, assumes 
independent sampling. That is, each individual in each sample must be selected 
independently of each other. This condition might be achieved by drawing a random 
sample from the first population, followed by a random sample from the second 
population (without any reference to the first). However, certain types of controlled 
dependence can be an advantage in the context of hypothesis testing, provided that an 
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appropriate modified test is used. The comparison of'before' and 'after' situations, when a 
group of people is interviewed twice, provides a good example of where such a test is 
appropriate. The interviewees might be selected at random, but if the same group is 
interviewed after a set period, then the second sample is not independent of the first. 
Nevertheless, this type of data is extremely valuable, because many 'interfering' variables 
are controlled or held constant if the matched pairs of answers are analysed. 

An appropriate test for this kind of matched data is the Student's t-test of a difference 
between two dependent means. The calculated t statistic is obtained from the pair by pair 
differences and involves the initial calculation of the mean difference ( x D)a n d the standard 
deviation of the differences ( s D) : 

x D Mean difference between matched pairs off individuals 

5 D Standard error of the mean difference between matched pairs 

The degrees of freedom for the test are (n — 1) and the tabulated t statistic is obtained in the 
same way as in a two-sample test of the difference between independent means. 

Schumm's (1956) study of badland slopes at Perth Amboy, New Jersey, which was 
referred to in Chapter 2 (Fig. 10), will be used as a worked example of the application of the 
test. Slope angles were measured in 1949 at 149 points; the same points were remeasured in 
1952. The mean difference in slope angle was found to be - 0 . 2 1 ° ; in other words the 
slopes had, on average, declined by 0.21 °. The standard deviation of the differences was 
found to be 3.76°. Is the apparent decline in slope angle statistically significant at the 5 % 
level? 

The three steps for the test are as follows: 
(a) The calculated t statistic is 

r _ x D _ - 0 . 2 1 _ - 0 . 2 1 
1
 ~ s D ~ 3.76 " 0.30907 ~ " ' 

(b) The tabulated t statistic is derived from Table C using the 5 % significance level and 
(n — 1) = 148 degrees of freedom. Thus a i-value of up to 1.97 would be expected to 
be the result of chance. 

(c) The calculated t (the measured difference in terms of standard error units) does not 
exceed the tabulated t. It can therefore be concluded that the measured difference is 
less than is likely to occur by chance at the 5 % significance level, so that the 
hypothesis of 'no difference' cannot be rejected. In other words, there is a greater 
than 5 % probability of making a mistake if the hypotheses of 'no difference' is 
rejected, and we are less than 95 % certain of a difference. 

It is interesting to note that Schümm (1956) concluded from this test that his 
measurements indicated 'uniform lowering' of his slopes. He claimed these results to be 
evidence against the concept of slope decline through time. These conclusions were not 
entirely justified, however. There is a less than 95 % probability of a difference in slope 
angle over the period of interest, which is far removed from being confident of 'no 
difference' (necessary for 'uniform lowering' to be accepted). 



88 Quantitative and Statistical Approaches to Geography 

The language of statistical hypothesis testing 

The three Student's Mests that have been outlined in this chapter are governed by the 
same statistical concepts* and rules. The purpose of this section is to define some terms 
which, although not necessary for understanding the principles, are commonly used in 
association with any statistical test, and will be encountered in further reading on this 
topic. 

The term null hypothesis (H 0) is commonly used to describe a hypothesis of 'no 
difference'. This is the hypothesis that is actually tested in a statistical test and should be 
distinguished from the alternative hypothesis (H x) . The null hypothesis is testable because 
it is an exact, precise statement, whereas there are many alternatives to the hypothesis of 
'no difference'. In particular, a precise null hypothesis is necessary for the computation of a 
sampling distribution (such as the tabulated t statistic), which describes the expected 
probabilities of all outcomes of a test, assuming the null hypothesis to be true (that is, 
assuming there is in fact 'no difference'). 

Any test of a null hypothesis is carried out at a given level of statistical significance (a). 
This is the probability of making a type 1 error, which is defined as rejecting a true null 
hypothesis, or recognizing a difference that does not really exist. Use of the 5 % (p = 0.05) 
significance level ensures that there is only a small (1 in 20) chance of committing a type 1 
error. By minimizing the probability of making a type I error, the probability of having 
made the correct decision (the confidence level) is maximized. However, in so doing, the 
probability of making a type II error (failing to reject a false null hypothesis, or failing to 
recognize a real difference) increases. Although it is considered that first priority should be 
given to the avoidance of type I errors, the sensible use of statistical tests in Geography 
requires that the possibility of type II error should not be ignored. This is a similar 
problem to the one encountered in the setting of confidence intervals; too broad a 
confidence interval and too stringent a significance level are related by their inability to 
detect differences. 

When a statistical test involves an unqualified hypothesis of 'no difference', then the 
critical region for rejecting, or failing to reject, the null hypothesis involves both ends 
(tails) of the sampling distribution. All the tests described in this chapter (and illustrated in 
Fig. 45) have been of this type, and are known as two-tailed tests. It is also possible to test 
null hypotheses of the form 'no greater than' or 'no less than'. This kind of hypothesis 
involves a one-tailed test. In a one-tailed test, the critical region for rejecting the null 
hypothesis lies in one tail only (Fig. 46A). In practice, the tabulated t statistic has a lower 
value for a one-tailed test than for a two-tailed test. In the worked example concerning the 
growth of southern beech seedlings near the tree line in New Zealand, the hypothesis that 
growth at 1600 m was 'no different' from growth at 1100 m was tested. The tabulated t 
statistic for a 5 % significance level and 24 degrees of freedom was 2*06. A test of the 
hypothesis that growth at 1600 m was 'no less than' growth at 1100 m, for the same 
significance level and degrees of freedom, results in a tabulated t statistic of 1.71. Reference 
to Fig. 46 shows that the required tabulated t for a one-tailed test at the 5 % significance 
level is equivalent to the tabulated t for a two-tailed test at the 10 % significance level, 
because the area in the lower tail is twice as great for a one-tailed test as for a two-tailed 
test. Whether a one- or two-tailed test is chosen will depend on the nature of the research 
problem and in particular the availability of reliable independent knowledge, which would 
have some bearing on the formulation of hypotheses. If in doubt, however, a two-tailed 
test should be used. 
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F I G . (46) F U R T H E R A S P E C T S O F S T A T I S T I C A L 

H Y P O T H E S I S T E S T I N G With a 5V.significance level 

Exercise 13. Hypothesis testing about the upper limit of 
agriculture on the North York Moors [north-east England] 
using Student's Mests. 

Background 

The moorland edge is an important feature of the landscape in most upland areas where 
the semi-natural, extensively-used wildscape impinges on the more intensively-used, man-
made farmscape. Its prominence as a morphological feature, and its sensitivity to the 
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Up- Down- Up- Down-
Group Altitude slope slope Group Altitude slope slope 

no. (ft) Aspect angle angle no. (ft) Aspect angle angle 

F A R N D A L E 
1 750 Ε 25° 14

e 

1 700 Ε 21 11 
1 650 N E 16 3 
1 750 N E 15 6 
1 800 SW 21 14 
1 600 sw 18 15 
1 650 NE 21 19 
1 600 Ε 32 5 
1 650 N E 16 18 
2 700 Ε 19 12 
2 725 Ε 20 13 
2 725 Ε 17 17 
2 800 Ε 14 11 
2 750 Ε 21 13 
2 750 Ε 21 13 
3 N o valid measurements made 
4 850 WSW 15 12 
4 675 SSE 10 9 
4 750 SSE 10 10 
4 700 SSW 19 17 
4 625 sw 14 14 
4 750 sw 13 8 
4 675 w 14 15 
4 650 w 10 8 
5 1000 w 15 15 

)SEDALE 
7 725 Ε 14 11 
7 600 N E 17 13 
7 625 NE 23 18 
7 575 NE 23 14 
7 650 Ε 18 9 
7 775 Ε 26 19 
7 600 Ν 35 20 
7 650 Ν 9 8 
7 520 Ν 25 11 
7 600 Ν 21 32 
7 570 Ν 36 14 
8 . 750 N E 20 8 
8 750 NE 30 15 
8 740 N E 15 10 
8 750 SE 30 22 
8 720 N E 20 10 
8 730 NE 25 10 
8 740 NE 30 15 
8 750 SE 30 25 
9 900 sw 15 15 
9 825 Ε 15 10 
9 900 wsw 12 10 
9 775 Ε 10 5 
9 775 Ε 15 8 
9 975 Ε 18 16 
9 850 w 21 13 
9 825 NE 30 22 
9 825 ESE 12 15 

10 750 ssw 16 11 
10 750 ssw 17 9 
10 875 s 21 21 

5 900 s 11° 11 
5 910 S 14 15 
5 900 sw 19 13 
5 1000 sw 13 22 
5 700 w 13 11 
5 800 w 21 15 
5 810 w 23 13 
5 810 w 23 14 
5 1000 WNW 25 19 
5 825 w 18 15 
5 900 SE 22 9 
5 800 Ε 16 10 
5 950 w 15 4 
6 650 WNW 14 11 
6 1000 wsw 30 21 
6 750 WNW 25 8 
6 850 w 19 12 
6 750 w 30 6 
6 700 NW 25 2 
6 850 w 5 4 
6 700 w 12 12 
6 800 w 18 16 
6 625 sw 19 12 
6 650 NW 10 8 
6 700 w 14 12 

10 800 wsw 17 9 
10 700 s 16 8 
10 775 sw 18 14 
10 925 sw 22 17 
10 700 ssw 16 14 
10 800 sw 23 8 
11 850 Ε 13 11 
11 850 Ε 22 14 
11 900 Ε 16 8 
11 700 w 18 11 
11 800 w 22 19 
11 800 w 18 11 
11 750 w 16 6 
11 850 Ε 12 10 
11 900 Ε 14 10 
11 800 w 21 17 
11 750 w 17 12 
12 875 sw 11 9 
12 700 sw 16 14 
12 700 sw 16 11 
12 780 sw 10 10 
12 850 sw 18 9 
12 925 sw 0 3 
12 650 sw 9 11 
12 750 sw 9 2 
12 600 sw 13 11 
12 850 sw 9 12 
12 675 w 18 15 
12 675 sw 8 8 
12 800 sw 16 8 
12 700 sw 10 9 

TABLE 9. Data relating to the moorland edge, North York Moors, north-east England 
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present and changing physical and human factors that control its position, make it a 
particularly relevant topic for geographical inquiry. 

Variation in the altitude of the moorland edge/agricultural limit exists from place to 
place, partly as a result of chance and our imperfect ability to describe and measure it, 
partly due to spatial variation in factors of the physical and human environment. 
Furthermore, the moorland edge is not a static feature; any present-day 'snapshot' reveals 
a feature that may or may not be in equilibrium with present conditions; the edge may be 
advancing, static or retreating in different locations. Above a critical altitude, at any one 
time and in any one place, physical factors, such as climate and slope, may limit the crops 
that can be grown or other uses to which the land can be put. On the other hand, the 
controls are not necessarily physical, for economic, social, political and other constraints 
may determine what a farmer does with his land. 

This exercise is based on a field study undertaken by students in Rosedale and Farndale, 
two valleys within the North York Moors National Park (Fig. 47). Both valleys have been 
cut deeply into the surface of the surrounding High Moors. Farmland occupies the valley 
bottoms and extends for some distance up the valley sides. Geologically, the Nor th York 
Moors consists of Oolitic Limestone, which dips gently to the south; in the valley bottoms 
fertile inliers of the underlying Liassic rocks are exposed. The object of the exercise is to 
test some preliminary hypotheses concerning the factors controlling the altitude of the 
moorland edge by judicious use of Student's i-tests. 

Practical work 

The data in Table 9 were collected from the moorland edge of Rosedale and Farndale. 
Group numbers refer to the areas located in Fig. 47. Measurements were made at equally-
spaced intervals along the moorland edge in the field (a systematic sample). Altitude and 
aspect were found from the Ordnance Survey, 1:25,000 topographic map with a 25-feet 
contour interval (hence altitudes are given in feet). Slope angles were measured over a 
distance of 5 m either side of the moorland edge, and at right angles to the contours. 

1. Using the data from either Farndale or Rosedale, the aim is to use a Student's ί-test of 
the difference in altitude of the moorland edge on valley sides with different aspects. 

(a) Draw two histograms summarizing the altitude of the moorland edge on (i) north 
and east-facing slopes and (ii) south- and west-facing slopes (two histograms in all). 

(b) Calculate the mean and standard deviation of the altitudes on (i) north and east-
facing slopes and (ii) south- and west-facing slopes. 

(c) Using an appropriate significance level, test the hypothesis that there is 'no 
difference' between the mean altitudes of the moorland edge on these two aspects. 

(d) Fully explain the statistical implications of the test. 
(e) Suggest some reasons for any differences detected. 
2. (a) Using data for the same dale as in question 1, use a Student's ί-test to determine 

whether or not there is a significant difference between the altitude of the moorland 
edge and the 900-ft contour. Separate tests should be carried out for: 

(i) North- and east-facing slopes 
(ii) South- and west-facing slopes 

(iii) All slopes. 
(b) For each test in 2 (a), what is the probability of a real difference existing between the 

altitude of the moorland edge and the 900-ft contour? 
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(c) What are the possible conclusions if a hypothesis is: 
(i) Rejected for one aspect but not rejected for the other? 

(ii) Rejected for the whole dale but not for individual aspects? 
(iii) Rejected for individual aspects but not for the whole dale? 

3. Again for the same dale used in questions 1 and 2, the aim is to test the significance of 
the difference between slope angles found either side of the moorland edge. If slope angle is 
an important factor in accounting for the location of the moorland edge, then a difference 
in slope angle would be expected. It should be noted that the up-slope and down-slope 
angles are not independent samples, because the data are in the form of matched-pairs of 
angles (an up-slope and a down-slope angle is available for each point at which 
measurements were made). 

(a) Calculate the mean difference (xD) and the standard deviation of the differences (sD) 
for the dale as a whole. 

(b) Carry out an appropriate Student's ί-test of the difference between the up-slope and 
down-slope angles. 

(c) What is the probability of being wrong if the hypothesis o f 'no difference' was to be 
rejected in this case? 

(d) Discuss the limitations of the test, paying particular attention to the ways in which 
slope angle is likely to influence farming. 

4. Using your calculations from question 3, carry out a test of the hypothesis that the 
up-slope angles are 'no greater than' the down-slope angles. 

5. In what ways could confidence in the above conclusions be improved? 
6. Briefly outline one other hypothesis that could be tested with this data, and state the 

appropriate Student's i-test(s). 
7. Briefly suggest some effective influences on the altitude of the moorland edge, which 

were not investigated in this study. The ways in which these influences might operate, and 
the methods that could be used to investigate them, should be mentioned. 



10 
χ 2 Tests and 
the Analysis of 
Contingency Tables 

IN CHAPTER 9 Student's f-tests were used to test the significance of differences between two 
sample means, assuming interval scales of measurement and normal distributions. In this 
chapter somewhat less powerful but more widely applicable tests, based on the χ

2
 (Chi-

square) statistic, are introduced. Greater applicability is gained from the non-parametric 
nature of the tests—they do not require normal distributions—their ability to test 
differences between more than two samples simultaneously, and their less stringent 
requirements concerning the level of measurement of the data (ordinal-scale or nominal-
scale data can be accommodated, as well as interval-scale data). The power of a χ

2
 test, the 

ability of the test to detect significant differences, is somewhat lower than the power of the 
corresponding parametric test for the same reasons that make it of wider applicability. The 
limitations of the tests will be dealt with more fully at the end of the chapter. 

One-sample tests 

Although a χ
2
 test can be applied to nominal, ordinal or interval-scale data, use of the 

test requires that the data be arranged in the form of a contingency table, which shows the 
number or frequency of occurrence of individual measurements or observations within 
categories or classes. An example of a contingency table is set out below, using data from 
the field of Medical Geography: 

Season 

Spring Summer Autumn Winter Total 

Observed frequency (O) 
(No. of cases of D.H.F.) 65 255 860 140 1320 

The table shows the number of cases of dengue haemorrhagic fever (D.H.F.) in the four 
seasons of the year, for Singapore in 1973 (from Aiken and Leigh, 1978). This is a 1 x 4 
contingency table with one sample and four categories. It should be noted that the 
occurrences or observed frequencies have been placed into categories on a nominal-scale 

94 
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level of measurement. If interval-scale or ordinal-scale data are to be used, then they too 
must be grouped into categories for purposes of this test. 

The data suggest that dengue fever is most prevalent in the autumn season (August, 
September and October). Α χ

2
 one-sample test can be used to investigate the seasonality of 

the fever, and in particular to test the significance of the difference of the observed 
frequencies from the frequencies that would be expected if there were 'no difference' in the 
incidence of the fever through the seasons. The expected frequencies for no seasonality in 
the incidence of fever are: 

Spring Summer Autumn Winter Total 

Expected frequency (E) 330 330 330 330 1320 

The χ
2
 test is essentially a method for determining whether the difference between the 

observed and expected frequencies are greater than are likely to have occurred by chance. 
Whether or not this is the case is determined by comparing a measure of the discrepancy 
between observed and expected frequencies (the calculated χ

2
 statistic) with the 

discrepancy that is likely to occur by chance, as a result of sampling, at a given probability 
level (the tabulated χ

2
 statistics, Table D, Appendix). 

The calculated χ
2
 statistic is given by the formula: 

where Ο = an observed frequency, 
JE = an expected frequency, 

(Ο — E) — the difference between an observed and an expected frequency. 

For the example, four steps are involved in the calculation: 

Spring Summer Autumn Winter 

(a) (O-E) 265 75 530 190 

(b) (O-E)
2 

70,225 5625 280,900 36,100 

(c) 
(O-E)

2 

Ε 
212.80 17.05 851.21 109.39 

(d) Σ
 Ε 

1190.45 = the calculated χ
2 

statistic 

The appropriate tabulated χ
2
 statistic is obtained from Table D (Appendix) using 

(h — 1) = 3 degrees of freedom, where h is the number of categories in the contingency table. 
Using a 5 % significance level, the tabulated χ

2
 statistic is 7.82. If a χ

2
 value as large as 7.82 

can be attributed to chance at the 5 % significance level, then the calculated value of 
1190.45 reflects a far greater difference than would be likely to occur if there was in fact 'no 
difference' between the observed data and a uniform distribution of dengue fever 
throughout the year. The hypothesis o f ' no difference' must therefore be rejected. Use of 
the 5 % significance level means that there is a less than 5 % chance of having made a wrong 
decision; that is, we are greater than 95 % certain of a real difference. Furthermore, it can be 
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Observed frequencies (0) 
Aspect category 

Observed frequencies (0) 
sw w N W Ν N E Ε SE s Row total 

N. Cascades 
(U.S.A.) 

Tashkent area 
(U.S.S.R.) 

31 

6 

37 

9 

86 

69 

189 

103 

150 

109 

89 

40 

52 

35 

32 

3 

666 

374 

Column total 37 46 155 292 259 129 87 35 1040 

seen from Table D (Appendix) that the hypothesis of 'no difference' would be rejected at 
all the significance levels tabulated, so that we can be extremely confident in declaring there 
to be a seasonal pattern in the incidence of D.H.F. Although the example has involved 
testing the hypothesis of 'no difference' from a uniform distribution, it would be quite 
possible to test a hypothesis of 'no difference' from some other distribution of interest. 

The χ
2
 test may be viewed graphically with reference to Fig. 46(C). Possible calculated 

χ
 2
 values occur somewhere beneath the curve (a sampling distribution). If the calculated χ

 2 

exceeds the critical value, which is tabulated for particular significance levels, then the 
hypothesis of 'no difference' is rejected. The larger the calculated χ

2
, the more likely that it 

will lie within the critical region for rejection of the 'null hypothesis'. The tabulated χ
2 

statistic increases from zero towards the right in the figure and reflects the fact that the 
calculated χ

2
 statistic increases as the differences between observed and expected 

frequencies increase (irrespective of the sign of the differences), χ
 2
 tests should therefore be 

viewed as one-tailed tests, but within the upper tail both positive and negative differences 
are represented. Occasionally, the χ

2
 test is used to test for significant similarity; such tests 

involve the lower tail in Fig. 46(C) and the left-hand side of the χ
2
 tables. In these tests the 

calculated χ
2
 must be less than the tabulated χ

2
 in order to accept the hypothesis o f ' no 

difference'; one would use the 95 % significance level in Table D (Appendix) if one wanted 
to be 95 % sure of the hypothesis of 'no difference' being true. 

Tests involving two or more samples and two or more categories 

The last example was concerned with observed frequencies in four categories of one 
sample. Contingency tables involving more than one sample (k samples) and more than 
one category (h categories) can be analysed in a similar manner, providing a very flexible 
test, which is widely used in Geography and in other subjects for assessing the significance 
of differences between two or more samples. Here a worked example will be based on the 
aspect (orientation) of glaciers in the U.S.A. and the U.S.S.R. Figure 48 shows the 
orientation of a sample of glaciers in the North Cascades, Washington, and of a second 
sample from the Tashkent area, U.S.S.R. The data are represented as vector diagrams, 
which depict the number of glaciers orientated towards each of the eight points of the 
compass and indicate the resultant tendency for the glaciers to possess a north-north-east 
aspect (Evans, 1977). Such a preferred orientation might be explained in terms of a 
combination of prevailing snow-bearing winds and a shading effect (controls on the 
accumulation and melting of glacier ice). The example involves a χ

2
 test of the hypothesis 

of 'no difference' between the two regions with respect to glacier orientation. 
The data in Fig. 48 are first arranged in a 2 χ 8 contingency table: 
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FIG. (48) ORIENTATION OF GLACIERS (U.S.A.and u.s.s.R.) 
Representation in vector diagrams 

Expected frequencies are next calculated, for each of the sixteen cells of the contingency 
table. Each expected frequency is obtained from the 'formula': 

Row total χ Column total 
Ε — . 

Overall total 

Thus, for the N. Cascades and a south-westerly aspect the expected number of glaciers is 
(666 χ 37)/1040 = 24. For the other cells the expected frequencies are: 

Expected frequency (£) sw W N W Ν N E Ε SE s 

N. Cascades 24 29 99 187 166 83 56 22 
Tashkent area 13 17 56 105 93 46 31 13 

The expected frequencies are the frequencies that would be expected if there were indeed 
4
no difference' between the two regions in terms of glacier orientations; each Ε value taking 

into account the proportion of glaciers in each region and in each aspect category. Again, if 
37 glaciers out of a total of 1040 glaciers 

(Propor t ion = JL) 

are known to face south-west, then in a region with 666 glaciers, 

the number expected is 666 χ 
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TABLE 10 

sw w NW Ν N E Ε SE s 

(a) (O-E) 7 8 13 2 16 6 4 10 Ν. Cascades (a) 
7 8 13 2 16 6 4 10 Tashkent area 

(b) (O-E)
2 

49 64 169 4 256 36 16 100 Ν. Cascades (b) (O-E)
2 

49 64 169 4 256 36 16 100 Tashkent area 

(O-E)
2 

(c) 
(O-E)

2 

2.04 2.21 1.71 0.02 1.54 0.43 0.29 4.55 Ν. Cascades (c) 
Ε 3.77 3.76 3.02 0.04 2.75 0.78 0.52 7.69 Tashkent area 

(d) £ — = 35.12 = calculated χ
2
 statistic 

The tabulated χ
2
 statistic is obtained from Table D using (k - 1 ) (h - 1) = 7 χ 1 = 7 

degrees of freedom (h = 8 categories, k = 2 samples). With a 5 % significance level, the 
tabulated χ

2
 statistic is 14.07. The calculated statistic therefore exceeds the value that 

would be likely to result by chance if the two samples of glaciers were in fact drawn from 
the same population. In other words, the hypothesis of 'no difference' between the two 
areas is rejected at the 5 % significance level; there is a less than 5 % chance (0.05 
probability) of 'no difference' between the two regions, and we are greater than 95 % 
certain of a difference (despite the apparent similarity between the two vector diagrams in 
Fig. 48). Use of a higher significance level (Table D) only confirms and emphasizes the 
confidence that can be placed in this decision. 

Limitations of χ
2
 tests 

Although these tests do not possess the restrictive assumptions of the parametric tests, 
which accounts in part for their wide use in the context of geographical problems, they are 
not without limitations, and should not be applied indiscriminately. In particular, the 
following requirements should be met: 

1. Data must be in the form of frequencies (that is, counted data within categories), χ
2 

tests are eminently suited to comparing frequencies within nominal-scale categories, but 
can also be applied to higher-order levels of measurement if the data are grouped into 
categories prior to analysis. It is in this sense that these tests are not applicable to interval 
scale data. 

2. The contingency table, in which the observed frequencies are placed, must consist of 
at least two categories (columns). 

3. Expected frequencies in any cell of a contingency table should not be less than 5. 
Although it is permissible for 20 % of cells to have expected frequencies of less than 5 when 
contingency tables are larger than 2 χ 2, no cell is allowed to have an expected frequency of 
less than 1. This requirement can sometimes be met by the amalgamation of categories, 
producing fewer cells with more observations in each. 

(which is in agreement with the expected frequency derived from the 'formula'). 
The calculated χ

2
 statistic is obtained using the same four steps as in the one-sample test, 

namely as shown in Table 10. 
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4. Samples are assumed to be independent. The test is therefore not applicable to 
dependent samples. 

5. Random sampling is assumed. This assumption is common to all the statistical tests 
contained in the manual but it is considered valid to use other sampling designs provided 
that they are unbiased (see also Chapter 15). 

Exercise 14: Hypothesis testing about the location of Eskimo 
settlements on the coast of Baffin Island, Canada, using χ2 tests. 

Background 

Archaeological and historical evidence has revealed that the eastern coast of Baffin 
Island was occupied by Eskimo populations over much of the last 2000 years. As well as 
temporary summer tent rings, there are abundant remains of more permanent winter 
dwellings. The location of forty-two summer sites and fifty-five winter sites is shown in 
Fig. 49. The winter sites have been assigned, on the basis of type of structure, to three 
cultural stages: first, the 'Early Thüle' culture (A.D. 1200 to 1550), characterized by semi-
subterranean turf and stone houses; second, the 'Late Thüle' culture (A.D. 1550 to 1850), 
indicated by turf and stone qarmats (tent foundations); and third, the 'Historic' culture 
(post-A.D. 1850) with wood and canvas frame houses. Although some of the summer sites 
can be assigned to the 'Historic' cultural stage, most of these are of uncertain age. 

The climate of the region is very severe with a short summer season. Mean summer 
temperatures are about — 10°C, with average daily temperatures rising above zero from 
mid-June to the end of August in most years. Coastal ice-floes add to the difficulties of life 
and in some summers may not break up at all. Biological productivity is low on land and 
the Eskimo cultures were geared to the maritime ecosystem (particularly to the ringed 
seal). Despite the climatic fluctuations of the last 2000 years, including the 'Little Ice Age', 
very severe climatic conditions have characterized the period of interest. 

It is the purpose of the present exercise to test hypotheses relating to the Eskimo 
dwellings, and to characteristics of their sites, using χ

2
 tests. In this way it should be 

possible to make an overall assessment of whether or not the Eskimo populations were 
adapted to their environment in this region of climatic stress. The data are given in Table 
11, which, in addition to cultural stage and seasonal character of the dwellings, indicates 
the following site characteristics: (a) aspect, according to four points of the compass; 
(b) presence or absence of a protected beach; (c) presence or absence of land rising to 
greater than 150 m behind the dwelling; and (d) degree of development of the 
soil/vegetation complex, according to three categories. 

Practical work 

1. What is the level of measurement of the following characteristics of the sites of 
Eskimo dwellings: 

(a) Aspect? 
(b) Presence or absence of land above 150 m behind the dwellings? 
(c) Presence or absence of a protected beach? 
(d) Degree of development of the vegetation/soil complex? 

QSAG - Η 



TABLE 11. Site characteristics of Eskimo settlements Baffin Island, Canada 

Site Site 

no. Stage Season Aspect Height Beach Soil no. Stage Season Aspect Height Beach Soil 

l ? S W + - 1 3 6 b ? S W + - 2 
2 H S S + + 1 3 7 L T W W - + 1 
3 ? S S + + 1 38a LT W S + + 1 
4 H S S + + 1 3 8 b ? S S + + l 
5 ET W S + + 2 39a LT W S + + 1 
6a ET W S + - 1 39b ? S S + + 1 
6 b H S S + - 1 4 0 H W S + + 2 
7a ET W S + + 2 41a ET W S + + 2 
7b H S S + + 2 41b LT W S + + 2 
8a ET W W + + 3 41c ? S S + + 2 
8b ? S W + + 3 42a ET W S + 3 
9 LT W S + + 1 42b LT W S + - 3 

10 ? S S + 1 42c ? S S + - 3 
11 ? S W - + 1 43a ET W Ε + + 3 
12 ? S Ν - - 1 4 3 b H W E + + 3 
13a LT W Ε - - 1 43c ? S Ε + + 3 
13b ? S Ε - - 1 44a ET W Ε + 1 
14 H S S - + 1 44b LT W E - + 1 
1 5 ? S S - - 2 4 4 c ? S E - + l 
16a LT W S + + 2 45a ET W Ε + + 2 
16b ? S S + + 2 45b H W Ε + + 2 
17 LT W S + + 2 45c ? S Ε + + 2 
18a ET W S + + 2 46 ? S S + + 1 
18b ? S S + + 2 47 ET W S + + 2 
1 9 H S N - + 1 4 8 a H W E + + l 
20a LT W Ν - + 1 48b ? S Ε + + 1 
2 0 b ? S N - + 1 4 9 H W S + + 3 
21a ET W S - - 2 50 LT W S + - 2 
21b ? S S 2 51 LT W S + + 1 
22a ET W S + - 2 52a ET W S + + 2 
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22b ? S S + - 2 52b LT W S + + 2 
23a ET W S + + 3 52c ? S S + + 2 
23b ? S S + + 3 53a LT W Ν + + 2 
24 LT W S + + 1 53b H S Ν + + 2 
25 ET W S + + 1 54 ? S Ν + - 1 
26 ET W S + + 3 55 ? S S + + 2 

27 ET W S + + 2 56 ? S Ε + + 1 
28 ET W W + + 2 57a ET W S + + 3 
29a ET W S + 4- 2 57b LT W S + + 3 
29b ? S S + + 2 57c H W S + + 3 
30 ET W S + + 3 58 LT W S + * + 2 
31 ? S W + + 1 59a LT W S + + 2 
32a ET W W + + 1 59b H S S + + 2 
32b LT W W + + 1 6 0 H S Ε + + 2 

33 ET W S + + 2 61 H S S + + 2 
34a LT W S + 3 62 LT W W + - 2 
34b ? S S + 3 63a ET W W + + 3 
35 LT W S + 1 63b ? S W + + 3 
36a LT W W + - 2 

Key: Stage = Cultural Stage (ET = Early Thüle, LT = Late Thüle, H = Historie, ? = Unknown). 
Season = Seasonal group (S = summer dwelling, W = winter dwelling). 
Aspect = Aspect of site (N = north, S = south, Ε = east, W = west). 
Height = Presence ( + ) or Absence ( - ) of land over 150 m behind the dwelling. 
Beach = Presence ( + ) or Absence ( - ) of a protected beach. 

Soil = Degree of development of the vegetation/soil complex (1 = thin or absent soil and discontinuous or absent vegetation, 2 = developed soil and continuous 
vegetation, 3 = deep soil and lust vegetation). 

(From Jacobs and Sabo, 1978.) 
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2. Suggest ways in which each of the above characteristics of the environment would be 
anticipated to influence the selection of dwelling places by Eskimos. 

3. Using the data for all dwellings, irrespective of cultural stage or seasonal character, 
use χ

2
 tests to help answer the following questions: 

(a) Do the dwelling places have a preferred aspect? 
(b) Are the dwelling places associated with protected beaches? 
(c) Are the dwelling places related to the degree of development of the vegetation/soil 

complex? 
Each answer should include a full account of the χ

2
 test, including a contingency table, an 

explicit statement of the hypothesis of 'no difference' (null hypothesis) that is actually 
tested, a clear explanation of the decision reached, and comments on any limitations of the 
test. 
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Exercise 15: Analysis of spatial variation of water quality in the River 
Exe drainage basin (south-west England) using χ2 tests. 

Background 

Water quality constitutes a valuable environmental indicator, the dissolved load of a 
river reflecting, amongst other factors, the inputs to the basin from precipitation, the 
geological strata over which the river is flowing, and the land-use practices in operation on 
the surrounding slopes. In this exercise, the effect of land use on the water quality of 
tributaries of the River Exe is examined, while controlling for the effect of geology. In this 
way it is possible to assess whether land use is an effective input to the spatial variation in 
dissolved load. 

The basin of the River Exe extends over a variety of rock types, the three most 
widespread being shown in Fig. 50(A). Water samples were taken at over 500 sites in early 
June 1971 during several days of dry weather with stable low river levels. Accessible points 
were chosen, usually on small tributaries, so as to ensure a relatively rapid and even spatial 
coverage of the entire basin (Fig. 50B). Using a conductivity meter, the specific 
conductance of each sample was measured in micromhos/cm, thus providing an accurate 
set of near-contemporaneous measurements of total dissolved load over the whole basin. 
The predominant land use (woodland, farmland, or moorland) was noted for the 
catchment area of each sampling point. 

Initial inspection of the data revealed that rock type was the primary control on river 
water quality in the Exe basin. This is demonstrated in Fig. 51, which shows histograms of 
the specific conductance values grouped according to rock type. These groups were 
compared using χ

 2
 tests and were found to be statistically different at the 1.0 % significance 

level (Walling and Webb, 1975). The susceptibility to weathering of the various rock types 

4. Use χ
2
 tests to investigate the significance of the differences between winter and 

summer sites in respect of the following: 
(a) Aspect of the site. 
(b) The presence or absence of land over 150 m behind the dwelling. 
(c) The quality of vegetation and soil at the sites. 
5. Basing your answers on χ

 2
 tests, are there grounds for suggesting that dwelling places 

of the 'Early Thüle' culture differ from those of the 'Late Thüle' culture in terms of being 
associated with: 

(a) Protected beaches? 
(b) Land rising to over 150 m behind the dwellings? 
(c) Degree of development of vegetation/soil at the site? 
6. Write an essay on the degree to which the Eskimo culture can be said to have been 

adapted to its environment. Your answer should be based on the χ
2
 tests that you have 

carried out and should pay particular attention to any differences detected between 
cultural stages and between seasonal categories of dwelling place. 

7. Discuss the relative merits of an approach based on χ
2
 tests and an approach based 

on a qualitative appraisal of the data. (It should be noted that the research paper by Jacobs 
and Sabo (1978), on which this exercise is based, merely described the tabulated data, 
without the application of statistical tests.) 
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FIG. (5 l ) DISSOLVED LOAD OF RIVER EXE TRIBUTARIES 
According to rock type 

A DEVONIAN χ = 92.1 

η = 80 

Specific conductance (micromhos/cm) 

(from Walling & Webb, 1975) 

controls the input of dissolved load to the various tributaries. The Middle and Upper 
Devonian strata are siliceous and weather only slowly, resulting in a mean specific 
conductance of 92.1 micromhos/cm; at the other extreme, the Permian rocks weather 
more rapidly and deeply, and are characterized by much higher conductances (mean 
= 380.3 ^mhos/cm); the Upper Carboniferous rocks are intermediate in character (mean 
conductance = 251.6 ^mhos/cm). If a land-use effect is to be detected, therefore, the 
influence of geology must be in some way controlled. The approach adopted here is to use 
the data from the three rock types as stratified samples. In other words, data from each 
rock type are analysed separately (by use of χ

2
 tests) for the effect of land use. 

Practical work 

The following tables (Tables 12a-c) show the frequency of occurrence of particular 
levels of specific conductance (measured in /mihos/cm) found in tributaries associated with 
various combinations of rock type and land use. 
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Specific conductance class 

30-69 70-109 110-149 150-189 

Woodland 3 9 12 0 
Farmland 0 13 12 2 
Moorland 20 8 1 0 

(From Walling and Webb, 1975) 

TABLE 12b. Permian tributaries (excluding lower Marls) 

2 3 0 - 270- 310- 350- 390- 430 - 470- 5 1 0 - 5 5 0 - 5 9 0 -

269 309 349 389 429 469 509 549 589 629 

Woodland 4 1 3 4 3 1 2 0 0 0 
Farmland 9 7 13 13 13 5 8 8 1 1 

(From Walling and Webb, 1975) 

TABLE 12c. Upper carboniferous tributaries 

110- 150- 190- 230- 270- 310- 350- 390- 430 
149 189 229 269 309 349 389 429 469 

Woodland 10 33 9 3 7 7 3 3 2 

Farmland 1 12 17 14 17 12 4 4 0 

(From Walling and Webb, 1975) 

1. Throughout this and subsequent questions care should be taken to ensure that the 
assumptions of χ

2
 tests are met, before proceeding with the calculations. It may be found 

that Tables 12a-c cannot be used in their present form, but can be used if some regrouping 
is carried out. 

(a) Using the data for the Middle and Upper Devonian rock type, and a single χ
2
 test, is 

there a significant difference between the dissolved load of the tributaries associated 
with different land uses? 

(b) Test the significance of the differences between each pair of land uses, using the data 
relating to Middle and Upper Devonian rocks. 

(c) Discuss the added information gained from carrying out the tests in 1(b). 
For each test, the hypothesis of

 4
no difference' should be stated, a significance level 

selected, and the statistical decision clearly explained. 
2. As far as you are able, use the data relating to the other two rock types to test further 

the conclusions reached in question 1. 
3. To what extent do the results of the χ

2
 tests support the following statements: 

(a) Land use differences cause differences in the dissolved load of rivers? 
(b) The effect of farming on the quantity of dissolved load in rivers is greater than the 

effect of forestry? 
(c) If an area of moorland is subjected to afforestation, this will result in an increase in 

the dissolved load of the catchment? 
4. Briefly discuss the ways in which land-use practices may indeed alter the dissolved 

load of rivers. 

TABLE 12a. Middle and Upper Devonian tributaries 
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5. In the background information to the present exercise it was pointed out that the 
researchers who carried out this study found statistically different dissolved loads to be 
associated with different rock types (Fig. 51 illustrates these differences in visual form). 
Bearing in mind the data shown in Fig. 51, and your experiences so far with χ

2
 tests, 

critically assess how this may have been done. 



11 
Further Non-parametric 
Tests for 
Independent Samples 

THIS chapter considers three non-parametric statistical tests. These are suitable for testing 
differences between two or more independent samples, and all three tests require at least 
an ordinal-scale level of measurement. They have, therefore, more exacting data 
requirements than the χ

2
 tests, but less exacting requirements than the parametric 

Student's ί-tests. When the assumptions of χ
2
 tests or of Student's f-tests are not met, one 

of the following may be applicable. 

The Kolmogorov-Smirnov two-sample test 

The Kolmogorov-Smirnov two-sample test is a test of the difference between two 
independent samples. It is therefore useful in the same sort of situation as a two-sample χ

2 

test, although it avoids what is perhaps the main limitation of χ
2
 tests—namely the 

requirement of sufficient observations within each cell of the contingency table to give rise 
to sufficiently high expected frequencies. The Kolmogorov-Smirnov test circumvents this 
difficulty by comparing two cumulative frequency histograms, rather than two histograms 
(the latter being a way of visualizing the equivalent χ

2
 test). If the two cumulative 

frequency histograms differ by more than is likely to occur by chance as a result of 
sampling from the same population, then the hypothesis of 'no difference' can be 
rejected. 

The test requires a very simple calculation; the calculation of the D statistic, which is the 
maximum difference between the two cumulative frequency histograms (when both 
histograms are expressed as proportions or percentages). The tabulated D statistic, 
describing the highest value of D that can be expected to occur by chance at a known 
probability level, is given in Table Ε (Appendix). A worked example from a study of 
perception and attitudes towards water management in south-west Ontario, Canada, is 
detailed below. 

A number of questions were directed towards the 'public' and towards 'professionals' to 
find out whether these two groups (samples) differed in their perception of a range of 
water-management problems (Mitchell, 1971). One of the questions asked of a sample of 
400 members of the public and a sample of 40 professionals was: 

108 
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"The average person may not know what is best for him where technical problems are 
concerned and should rely upon professionals." 

Do you (a) Strongly Agree? 
(b) Agree? 
(c) Neutral? 
(d) Disagree? 
(e) Strongly Disagree? 

The results are summarized in the following table, in which the percentage of the public 
and the percentage of the professionals who answered this question are indicated: 

Strongly 
Agree Agree Neutral Disagree 

Strongly 
Disagree 

Public 9 80 7 4 0 

Professionals 18 55 8 16 3 

The application of the Kolmogorov-Smirnov test involves a test of the hypothesis of 'no 
difference' between the responses of the two groups. The results are therefore recast in the 
form of cumulative percentage frequencies: 

Strongly 
Agree Agree Neutral Disagree 

Strongly 
Disagree 

Public 9 89 96 100 100 

Professionals 18 73 81 97 100 

The calculated D statistic is thus 0.16, for 16 % is the maximum difference between the two 
sets of cumulative percentage frequencies. This is shown in the form of a histogram in Fig. 
52. The tabulated D statistic is obtained from Table E, and using the 5 % significance level: 

D = 1.36 Ι
η
>

 + η
> 

ΠΛΠ 1"2 

where nl = sample size of sample 1 (public) = 400 and n2 = sample size of sample 2 
(professionals) = 40. The tabulated D statistic is thus 

440 
D = 1 - 3 6 W = ° - 2 2 5 5 o r 2 1 5 5 %· 

The hypothesis of 'no difference' cannot in this case be rejected, because the calculated 
difference does not exceed the difference that is likely to occur by chance. In other words, 
we are less than 95 % confident in the existence of a real difference between the attitude of 
the public and the attitude of the professionals over this question; that is, there is a greater 
than 5 % chance of 'no difference'. 

The following limitations to the Kolmogorov-Smirnov two-sample test should be 
noted: 

1. Unless sample sizes are equal, Table Ε can only be used when both sample sizes are 
greater than about 40. 



110 Quantitative and Statistical Approaches to Geography 

F I G . ( 5 2 ) C U M U L A T I V E ·/. F R E Q U E N C Y H I S T O G R A M S 

Il lustrating the Kolmogorov-Smirnov two-sample test 

based on Mitchell 's Canadian questionnaire survey (1971) 

100-1 

50· 

D = 

1 6 · / . 

• 
m 

RESPONDENTS 

Public 

Professional 

ATTITUDE SCALE 

2. At least two categories (and preferably as many as the data permit) must be available. 
3. The categories must be at least ordinal-scale categories. 
4. The samples are assumed to be independent. 
5. Random sampling is assumed. 

The Mann-Whitney two-sample test 

This test is used for the same purpose as the Kolmogorov-Smirnov test, that is to test 
whether two independent samples could have been drawn from the same population. 
Whereas both tests (and the two-sample χ

2
 test) are sensitive to any kind of difference 

between the samples (such as central tendency, dispersion or skewness) the M a n n -
Whitney test is most sensitive to differences in central tendency. It can therefore be 
regarded as the most powerful alternative to the Student's ί-test of a difference between 
two sample means, and is most appropriate when the assumptions of the Student's i-test 
are not met. Like the Kolmogorov-Smirnov test, the Mann-Whitney test is applicable to 
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very small samples as well as to large ones; the former test is slightly more powerful with 
small samples, but the latter can be applied to samples with unequal sample sizes. 

In a Mann-Whitney test the individual observations or measurements are first listed in 
rank-order, irrespective of whichever of the two samples they belong to. If there was, in 
reality, 'no difference' between the populations from which the samples were drawn, then 
the sum of the ranks of the observations in sample 1 would be approximately equal to the 
sum of the ranks in sample 2. The hypothesis of 'no difference' can be rejected if the sum of 
the ranks of either sample differs sufficiently from the sum of the ranks that is likely to 
occur by chance. The test involves the calculation of the Mann-Whitney U statistic, which 
is dependent on the sum of the ranks of one of the samples. The tabulated U statistic, 
describing the highest value of U that can be expected to occur by chance at a known 
probability level, is given in Table F (Appendix). 

As a worked example, the data from Exercise 12 will be used, and the number of species 
present on ground in the first two time-zones will be compared. The data, which represent 
the number of species per 16 m

2
, are set out in Table 13, together with the rank-order of 

each measurement. It should be noted that the data are the same as those in Exercise 12, 
but they have been rearranged in order of increasing value (within each sample) and have 
been ranked irrespective of the sample in which they occur. The lowest value has been 
given rank 1. 

TABLE 13 

Sample 1 Κ = 16) Sample 2 {n2 = 30) 

Value Rank Value Rank 

2 1 4 3 
4 3 7 15.5 
4 3 7 15.5 
5 5 8 19 
6 9.5 8 19 
6 9.5 10 23.5 
6 9.5 10 23.5 
6 9.5 10 23.5 
6 9.5 10 23.5 
6 9.5 11 27 
6 9.5 11 27 
6 9.5 11 27 
7 15.5 12 30 
7 15.5 12 30 
8 19 12 30 
9 21 13 33 

13 33 
13 33 
14 35.5 
14 35.5 
15 37.5 
15 37.5 
16 39.5 
16 39.5 
17 42 
17 42 
17 42 
18 44 
19 45 
24 46 
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The hypothesis of 'no difference' (null hypothesis) to be tested is that there is 'no 
difference' between the two samples at the 5 % significance level. The sum of the ranks is 
calculated for each sample and found to be R l = 159.0 and R2 = 922.0. Note that some of 
the ranks are ties; when a tie occurs, the average rank is used. The calculated U statistic is 
whichever of the following two values is the greater: 

(a) U' = njx2 + - Rl 

= 1 6 . 3 0 +

 1 6 ( 1

2

6 + 1 )
- 1 5 9 

= 4 8 0 + 1 3 6 - 1 5 9 = 457 

or (b) V" = nxn2 - V = 480 - 457 = 23 

where n1 = the sample size of sample 1, 
n2 = the sample size of sample 2, 
Rl = the sum of the ranks of sample 1. 

In this case, therefore, the calculated U statistic is 457. 
Referring to Table F (Appendix) we find that a value of U as large as 326 would be 

expected to occur by chance at the 5 % significance level. As the calculated U statistic is 
457, the difference between the two samples is greater than can be attributed to chance, so 
that the hypothesis of 'no difference' must be rejected. In other words there is a greater 
than 95 % chance of a real difference between the two time zones in terms of number of 
species. Indeed, the hypothesis of 'no difference' is also rejected at the 1 % significance 
level, which means that there is a less than 1 % chance of 'no difference'. 

When sample sizes are greater than those shown in Table F (Appendix) the significance 
of U may be found by use of tables of the normal distribution function, ζ being found from 
U by means of the formula: 

2 
ζ = 

( « l ) ( « 2 ) ( " l + « 2 + l ) 

12 

In the present example, ζ becomes: 

480 
457-

2 217 217 
'480(16 + 3 0 + 1 ) /(480)(47) 43.359 

12 J 12 

= 5.0 

It should be noted that tables of the normal distribution function (Table A, Appendix) are 
arranged in a form suitable for one-tailed tests. In order to reject a hypothesis of 'no 
difference' at the 5 % significance level a tabulated ζ of 1.96 must be exceeded. The 
Mann-Whitney test has the following limitations: 
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1. At least ordinal scale data are required. 
2. If the number of ties between samples is very large, then the test may be affected. The 

effect of ties is usually negligible, however, and tied ranks within a sample do not influence 
the results. 

3. The samples are assumed to be independent. 
4. Random sampling is assumed. 

The Kruskal-Wallis test for more than two samples 

Three or more (k) independent samples may be compared using the Kruskal-Wallis 
one-way analysis of variance by ranks. This test involves a hypothesis of 'no difference' 
between more than two samples and tests whether the k samples are likely to have been 
drawn from the same population. It is applicable in situations where neither of the other 
two tests discussed in this chapter can be used. Moreover, it is more powerful than the 
equivalent χ

2
 test as it utilizes more information, being based on ordinal-scale data. 

The Kruskal-Wallis test is related in principle to the Mann-Whitney test in that it 
requires the calculation of a statistic based on the sum of the ranks for each sample, when 
all observations (irrespective of the sample to which they belong) have been placed in rank-
order. If all the k samples were drawn from the same population, then it would be expected 
that the sum of the ranks for each sample would be approximately the same. The 
calculated Kruskal-Wallis Η statistic is a measure of the actual difference in the sum of the 
rankings between samples. If this measured difference exceeds the difference that is likely 
to have occurred by chance, then the hypothesis of 'no difference' between the k samples 
can be rejected. 

The calculated Η statistic is obtained from the formula: 

H=
 12 

N(N + 1) Σ— 
η 

-3(N + 1) 

where Ν = the overall, total sample size (that is, the sum of the sample sizes of all k 
samples), 

η = the sample size of a particular sample, 
R = the sum of the ranks of a particular sample, 
R

2
 = the square of R, 

R
2 

Y — = for each of the k samples, the quantity R
2
/n is calculated, and the sum of 

^ η 
these k quantities is taken. 

When there are three samples or less, and when sample sizes are 5 or less (η ^ 5), then 
Table G (Appendix) gives the tabulated H statistic. For a greater number of samples and 
sample sizes, the tabulated χ

2
 statistic can be used with (k — 1) degrees of freedom (Table 

D, Appendix). 
The worked example tests the difference in shape of particles in four types of deposit in 

the Oetztal Alps of Austria. The data tabulated in Table 14 are values of a 'flatness' index 
for particles from the four types of deposit: (i) glacial till; (ii) fluvio-glacial sediments; (iii) 
supra-glacial debris; and (iv) scree. The flatness index was calculated from the dimensions 
of the particles, as indicated in Fig. 53A. 
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Till Fluvio-glacial Supra-glacial Scree 

Value Rank Value Rank Value Rank Value Rank 

1.1 1 1.5 11 1.5 11 1.4 5.5 

1.2 2 1.5 11 1.8 25 . 1.6 16.5 

1.3 3 1.5 11 2.0 35 2.0 35 

1.4 5.5 1.6 16.5 2.0 35 2.0 35 

1.4 5.5 1.6 16.5 2.1 41 2.5 52 

1.4 5.5 1.7 21 2.2 45 2.6 57 

1.5 11 1.7 21 2.5 52 2.6 57 

1.5 11 1.8 25 2.7 60 2.8 61 

1.5 11 1.8 25 3.0 65 3.0 65 

1.6 16.5 1.9 29 3.0 65 3.1 67 

1.7 21 1.9 29 3.2 68 3.5 74.5 

1.7 21 1.9 29 3.3 70 3.8 77.5 

1.7 21 2.1 41 3.4 72 4.1 82.5 

1.9 29 2.1 41 3.5 74.5 4.1 82.5 

1.9 29 2.1 41 3.5 74.5 4.1 82.5 

2.0 35 2.2 45 3.8 77.5 4.4 86 

2.0 35 2.3 48 3.9 79 5.4 87 

2.0 35 2.3 48 4.0 80 5.7 88 

2.1 41 2.5 52 4.1 82.5 6.5 90.5 

2.2 45 2.6 57 4.3 85 6.5 90.5 

2.3 48 2.6 57 6.1 89 7.4 94 

2.5 52 2.9 62.5 6.7 92.5 8.4 95 

2.5 52 2.9 62.5 6.7 92.5 9.1 97 

2.6 57 3.3 70 8.5 96 10.2 99 

3.3 70 3.5 74.5 9.2 98 10.8 100 

(After Shakesby, pers. comm.) 

The hypothesis to be tested is that there is 'no difference' between the four samples. The 
first step is to calculate the sum of the ranks for each sample: 

Rx = 663.0 R2 = 944.5 R3 = 1665.0 RA = 1777.5 

R
2
/n is calculated for each sample: 

17,582.76 35,683.21 110,889.0 126,380.24 

Y^R
2
^ is thus the sum of these four quantities = 290,535.21 

The calculated H statistic is therefore: 

Η = ϊ Μ ( ^ χ 2 9 0 ' 5 3 5 · 2 1 - 3 ( 1 0 0 + 1 ) 

= (0.001 18811 χ 290,535.21)-303 
= 345 .18488-303 

= 42.184 88 

Reference to Table D (Appendix) with (k — 1) = 3 degrees of freedom yields a χ
2
 value of 7.82 

(using the 5 % significance level). As the calculated statistic exceeds the tabulated statistic, 
the measured difference can be said to be greater than would be expected if the four 
samples were drawn from the same population. The hypothesis of 'no difference' must 

TABLE 14 
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F I G . (53) P A R T I C L E S H A P E I N A L P I N E D E P O S I T I O N A L 

E N V I R O N M E N T S , A U S T R I A 

a > b > c 
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2c 

Β PERCENTAGE FREQUENCY HISTOGRAMS OF FLATNESS 

V. 
30-

Ll Fluvio-glacial 
20 

• OH 

0 

Talus 

1 2 3 4 5 6 7 8 9 10 

Classes of increasing flatness 

V. 
30 

20-

10H 

Till 

V. 
30-1 

20H 
Supra-glacial 

1 2 3 4 5 6 

(from Shakesby & Ward, 1978 ) 
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therefore be rejected, and we can be at least 95 % sure of a real difference between the 
flatness of the particles comprising the four deposits. 

The test indicates that there is a significant difference between the shape of the particles 
within the four depositional environments. N o indication is given, however, as to the 
precise nature of the differences. The promising result from the Kruskal-Wallis test could 
be investigated further by more detailed analysis of differences between particular pairs of 
samples. This latter approach was adopted by Shakesby and Ward (1978) who used the 
Kolmogorov-Smirnov test to examine, for example, the possibility of one type of deposit 
being derived from another. Figure 53B shows the percentage frequency histograms for 
the larger data set on which the tests were carried out. 

The limitations of the Kruskal-Wallis test are the same as those listed for the 
Mann-Whitney test. 

QSAG - I 
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Exercise 16: A comparative study of hobby farms and commercial farms in Ontario, 
Canada, using Kolmogorov-Smirnov tests. 

Background 

Hobby farms have been defined as
 4
 a condition of land ownership in which a farm and 

residence have been added to non-farm employment' (Layton, 1978). Since the Second 
World War, hobby farmers have become a major land-owning group in many 
industrialized countries, but they are known from the rural estates of ancient China and 
Egypt. Some hobby farms are run essentially as recreational pursuits, whereas others are 
run primarily to supplement an income received elsewhere. In this exercise, an attempt is 
made to define some of the characteristics of hobby farms, using data collected from a 
postal questionnaire survey carried out in the ru ra l -u rban fringe of London, Ontario, 
Canada, an area of high quality agricultural land and rapid urbanization. 

Hobby farming has increased rapidly since the 1960s in the thirteen townships involved 
in the survey, and at present hobby farms make up 13 % of the study area. Two other types 
of land ownership were recognized in the survey: first, full-time farms, with farming as the 
only occupation of the owner; and secondly, part-time farms, which have added non-farm 
employment to farm income. In addition, the hobby farms have been subdivided into two 
groups: first, the commercially-motivated group, who view hobby farming as a 
transitional step towards farming on a more-or-less commercial basis; and secondly, the 
non-motivated group, who regard hobby farming as recreation and attach little 
importance to the supplementary income obtained from farming. 

The exercise uses the Kolmogorov-Smirnov two-sample test to examine the differences 
between the various groups in terms of farm size, their man-day requirement (intensity of 
operation), income received and the enterprises involved. In this way insights are obtained 
into the economic and social role of the hobby farm in the ru ra l -u rban fringe. It should be 
noted that the data below are in percentage form. Where more than two samples are 
available for comparison, the results are given of χ

2
 tests carried out by Layton (1978) on 

the data in the form of frequencies. 

Practical work 

1. Using the data relating to farm size, use a Kolmogorov-Smirnov test to examine 
whether or not the differences between the following are significant: 

(a) hobby farms and part-time commercial farms; 
(b) motivated and non-motivated hobby farms; 
(c) part-time and full-time commercial farms. 

Each test should be fully described at all stages. 
2. With reference to the data on farm size, which of the following could be compared 

legitimately using a Kolmogorov-Smirnov test: 
(a) hobby farms and non-motivated hobby farms?; 
(b) motivated hobby farms and part-time commercial farms?; 
(c) hobby farms and commercial farms (full- and part-time combined)? 

Do not attempt any calculations, but point out any aspects of the data that would prevent 
the valid application of a Kolmogorov-Smirnov test. 

3. Referring to the data for farm income, and assuming the use of a Ko lmogorov-
Smirnov test, which of the possible comparisons between ownership types would be 
expected to yield: 
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TABLE 15. Characteristics of hobby farms and commercial farms in Ontario, Canada 

A. Percentage of farms of various sizes according to ownership type 

Ownership type Farm size (acres) 

<10 10-25 2 6 - 5 0 51-100 101-200 >200 (n) 

Hobby 
Part-time commercial 
Full-time commercial 

23 
3 
1 

16 
8 
1 

27 
30 
10 

27 
29 
43 

4 
30 
44 

(a χ test of a difference between the three ownership types was found significant at the 0.01 % level) 

(114) 
(109) 
(187) 

Motivated hobby 0 6 9 35 38 12 (50) 
Non-motivated hobby 5 35 16 18 24 2 (64) 

(After Layton, 1978.) 

B. Percentage of farms with various man-day requirements according to ownership type 

Ownership type Standard man-day requirement 

0 '-24 2 5 - 4 9 50 -99 100-199 200-365 >365 (n) 

Hobby 33 31 17 12 2 5 (114) 
Part-time commercial 10 14 13 19 10 34 (109) 
Full-time commercial 0 0 4 10 14 72 (187) 
( a /

2
 test of a difference between the three ownership types was found significant at the 0.01 ° / level) 

Motivated hobby 10 35 20 20 15 0 (50) 
Non-motivated hobby 61 24 9 3 0 3 (64) 

(After Layton, 1978.) 

C. Percentage of farms with various incomes according to ownership type 

Ownership type Gross income (dollars) 

<50 50-1999 2000-4999 5000-9999 > 10,000 (n) 

Hobby 16 32 28 7 17 (114) 
Part-time commercial 0 9 16 18 57 (109) 
Full-time commercial 0 1 4 7 88 (187) 
(a χ

2
 test of a difference between the three ownership types was found significant at the 0.01 / ί level) 

Motivated hobby 3 16 31 20 30 (50) 
Non-motivated hobby 40 32 7 11 10 (64) 

(After Layton, 1978.) 

D. Percentage of farms in various enterprises according to ownership type 

Enterprise Ownership type 

Hobby Part-time Full-time Motivated Non-motivated 
commercial i commercial hobby hobby 

Non-commercial 29 1 0 52 6 
General mixed 23 35 29 7 41 
Cash crop 19 24 9 15 22 
Beef 9 12 8 7 13 
Horses 6 0 0 9 3 
Mixed cash crops 5 7 6 7 3 
Mixed livestock 5 6 10 0 9 
Pigs 2 3 4 0 3 
Horticulture 2 2 1 3 0 
Poultry 0 1 3 0 0 
Tobacco 0 1 5 0 0 
Dairy 0 8 25 0 0 

(After Layton, 1978.) 
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(a) the most statistically significant difference?; 
(b) the least statistically significant difference? 

Again, do not attempt the calculations, but give a brief reasoned argument for your choice 
in each case. 

4. Using the data on man-day requirement, farm income and farm size, can one 
differentiate between the characteristics of the motivated hobby farm and the part-time 
commercial farm? This question requires the application of further Ko lmogorov -
Smirnov tests. 

5. Discuss how the data on farm enterprises might be analysed to yield information on 
the differences between hobby farms and commercial farms. Your discussion should 
consider whether and how Kolmogorov-Smirnov and/or χ

2
 tests could be applied, and 

what further information would be required (if any) in order to carry out the tests. 
6. Write a short essay on the similarities and differences between hobby farms and 

commercial farms referring, where necessary, to your results and conclusions from 
questions 1-5. 

Exercise 17: Do regions exist? Testing the distinctiveness of 
planning regions in South Wales using Kruskal-Wallis analysis 
of variance by ranks. 

Background 

Definitions of region(s) are numerous and diverse, as revealed by the following 
selection: 

1. 'Any circumscribed territorial unit ' (Rodoman). 
2.

 4
 An area whose physical conditions are homogeneous' (Joerg). 

3.
 4

A geographic area unified culturally . . .' (Young). 
4.

 4
 An area wherein there has grown up one characteristic human pattern of 
adjustment to environment' (American Society of Planning Officials). 

5. 'Genuine entities, each of which experiences both natural and cultural differenti-
ation from its neighbours' (Reiner). 

6.
 4

 An area within which a higher degree of mutual dependency exists than in 
relationships outside that area' (Stanberry). 

7.
 4

 An area or unit within which the economic and social activity of the population are 
integrated around a focal and administrative centre' (Mackenzie). 

8. Ά complex created by man and which man can destroy' (Gottmann). 
9.

 4
 A constellation of communities' (Dawson and Gettys). 

10.
 4

A way of life' (Labasse). 
11.

 4
Any one part of a national domain sufficiently unified . . . to have a true 
consciousness of its own customs and ideals, and to possess a sense of distinction 
from other parts . . .' (Royce). 

12. 'Spatial structures which are smaller in area than the state, which possess a certain 
individuality, and which are considered as entities either by the people who live 
there or by outside observers' (Claval). 

It is clear that different types of region are recognized and that there is no agreement on 
a universal definition, despite the centrality of the regional concept within the field of 
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F I G . ( 5 4 ) P L A N N I N G R E G I O N S I N M I D - G L A M O R G A N , S O U T H W A L E S 

(courtesy of the County Planning Officer, Mid-Glamorgan C O 

Figure 54 shows the four planning regions used by the Mid-Glamorgan County 
Council Planning Department in South Wales. These regions include part of the South 

Geography. Some types of region are difficult to define, let alone to delimit on the ground, 
or to make use of in a constructive manner. One of the most successful types of region, at 
least in so far as it has been found useful in the real world, is the planning region. For 
purposes of town and country planning it is normal practice to subdivide the area under 
consideration into smaller units, thus achieving a simplification and facilitating the 
implementation of planning policies. These units may or may not be the optimum 
divisions, however, and planning regions are likely to be most useful if they reflect actual 
differences and if the differences between the regions are greater than the differences 
within the regions. 
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Practical work 

Five socio-economic indicators for each ward within the four planning regions of Mid-
Glamorgan are given in Table 16. These data were compiled from the 1971 Census 
returns. The indices are: 

Wales coalfield, the Ogmore, Rhondda, Cynon and Taff valleys, and the South Wales 
coast and have been named as follows: 

(i) The Valley Head Region. 
(ii) The Valley Heart Region. 

(iii) The Valley Mouth Region. 
(iv) The Coastal Zone Region. 

The present planning problems in the Mid-Glamorgan County are a microcosm of those 
of South Wales generally and, like many other areas formerly dominated by coal, owe 
much to the history of the development of the coalfield. 

Blast furnaces began operation at Merthyr Tydfil in the Valley Head Region in 1759 
and by 1820 a line of 'iron towns' had developed along the north crop of the coalfield 
utilizing the local resources of coal, ironstone and limestone. After 1840 iron was 
overshadowed by the development of coal, especially the steam coals of the centre of the 
coalfield, which were most accessible in the deep nor th - sou th valleys. Merthyr Tydfil 
remained the largest town in Wales until the late nineteenth century, however. The 
building boom which accompanied the development of coal mining in the Valley Heart 
Region was responsible for most of the housing present there today, and for the 
devastated landscape. The Taff -Rhondda valley system, which in the 1850s was virtually 
uninhabited, supported 161,000 people (almost all in coal mining) by 1911. Throughout 
the period of the pre-eminence of coal, the growth of Cardiff and the other ports of South 
Wales was phenomenal, benefiting from the export of coal and the import of iron ore for 
steel works, which had, by the end of the nineteenth century, moved to the coast. The 
Valley Mouth Region as a whole took part in the general prosperity and attracted many 
industries. In contrast, the period 1920-40 was one of unmitigated decline in the Valley 
Heart Region. The Taff -Rhondda valleys suffered the biggest decline, a result of the 
decline of coal mining, and although economic conditions improved after 1945, by 1966 
these valleys supported only 5000 people connected with coal at the five collieries 
remaining. The decline of the inland areas was accompanied by continued growth of the 
Valley Mouth Region, which is today characterized by the rapid growth of service 
industries. The Coastal Zone was relatively little effected by the industrial development 
that accompanied the development and decline of coal mining. Today, the Coastal Zone 
is important for recreation and as a residential area for high-income commuters from the 
larger towns. 

This exercise considers the four planning regions of Mid-Glamorgan with a view to 
answering two questions: 

(i) Are there distinct socio-economic differences between them? 
and (ii) Can any differences be related to the legacy of the past? 
The first question will be tested directly by use of Kruskal-Wall is tests; the second 
question is more difficult and will require inference on the basis of your results. 
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TABLE 16. Socio-economic indicators for Mid-Glamorgan wards, South Wales 

Socio-economic indicator Socio-economic indicator 
Ward 

no. (i) (ii) (iii) (iv) (v) 
Ward 

no. (i) (ii) (iii) (iv) (v) 

1 0.506 
2 0.518 
3 0.377 
4 0.405 
5 0.394 
6 0.430 
7 0.341 
8 0.361 
9 0.365 

10 0.320 
11 0.295 
12 0.434 
13 0.242 
14 0.429 
15 0.465 
16 0.394 
17 0.385 
18 0.374 
19 0.360 
20 0.417 
21 0.382 
22 0.330 
23 0.397 
24 0.405 
25 0.336 
26 0.367 
27 0.364 
28 0.369 
29 0.431 
30 0.433 
31 0.390 
32 0.490 
33 0.417 
34 0.398 
35 0.350 
36 0.593 
37 0.506 
38 0.523 
39 0.545 
40 0.507 
41 0.485 
42 0.662 
43 0.662 
44 0.627 
45 0.476 
46 0.573 
47 0.767 
48 0.594 
50 0.646 
51 0.560 
52 0.853 
53 0.578 
54 0.778 
55 0.756 
56 0.838 
57 0.674 
58 0.770 

0.519 
0.535 
0.370 
0.797 
0.757 
0.635 
0.776 
0.640 
0.585 
0.622 
0.537 
0.553 
0.335 
0.713 
0.382 
0.479 
0.339 
0.489 
0.656 
0.603 
0.643 
0.474 
0.585 
0.681 
0.629 
0.643 
0.747 
0.809 
0.588 
0.691 
0.786 
0.501 
0.259 
0.481 
0.416 
0.419 
0.587 
0.338 
0.215 
0.452 
0.596 
0.576 
0.722 
0.497 
0.427 
0.677 
0.814 
0.481 
0.785 
0.615 
0.441 
0.604 
0.730 
0.659 
0.851 
0.586 
0.642 

0.700 
0.751 
0.741 
0.556 
0.627 
0.663 
0.437 
0.495 
0.675 
0.370 
0.452 
0.652 
0.590 
0.533 
0.736 
0.611 
0.853 
0.581 
0.508 
0.650 
0.455 
0.454 
0.558 
0.501 
0.611 
0.405 
0.366 
0.453 
0.720 
0.674 
0.442 
0.821 
0.770 
0.608 
0.578 
0.767 
0.831 
0.904 
0.956 
0.923 
0.734 
0.980 
0.853 
0.931 
0.832 
0.897 
0.947 
0.672 
0.924 
0.905 
0.971 
0.526 
0.900 
0.821 
0.943 
0.930 
0.877 

0.092 0.569 
0.115 0.596 
0.079 0.559 
0.119 0.482 
0.139 0.470 
0.084 0.584 
0.079 0.575 
0.071 0.602 
0.030 0.647 
0.096 0.634 
0.052 0.631 
0.063 0.690 
0.052 0.623 
0.087 0.650 
0.078 0.574 
0.108 0.500 
0.121 0.524 
0.059 0.572 
0.062 0.526 
0.133 0.509 
0.062 0.517 
0.066 0.615 
0.085 0.525 
0.106 0.578 
0.060 0.676 
0.019 0.705 
0.044 0.707 
0.071 0.452 
0.149 0.552 
0.067 0.674 
0.097 0.597 
0.135 0.678 
0.034 0.625 
0.108 0.641 
0.044 0.622 
0.071 0.643 
0.138 0.630 
0.097 0.559 
0.119 0.547 
0.080 0.591 
0.169 0.470 
0.149 0.649 
0.212 0.623 
0.286 0.506 
0.101 0.604 
0.256 0.493 
Ö.239 0.619 
0.097 0.806 
0.343 0.410 
0.159 0.527 

0.400 0.466 
0.293 0.483 
0.242 0.606 
0.405 0.595 
0.144 0.643 
0.235 0.529 

60 0.344 0.619 0.475 
61 0.375 0.825 0.499 
62 0.388 0.806 0.506 
63 0.386 0.737 0.448 
64 0.314 0.698 0.521 
65 0.366 0.776 0.360 
66 0.395 
67 0.345 
68 0.387 
69 0.403 
70 0.387 
71 0.386 
72 0.331 
73 0.418 
74 0.344 
75 0.363 
76 0.344 
77 0.395 
78 0.251 
79 0.311 
80 0.391 
81 0.368 
82 0.416 
83 0.442 
84 0.526 
85 0.346 

0.704 0.459 
0.530 0.573 
0.630 0.563 
0.661 0.445 
0.539 
0.408 
0.360 
0.798 
0.489 
0.380 
0.678 
0.675 
0.141 
0.568 
0.458 
0.237 
0.563 
0.405 
0.625 
0.590 

86 0.533 0.623 
87 0.570 0.612 
88 0.421 0.581 
89 0.515 0.261 
90 0.556 0.555 
91 0.482 0.387 
92 0.439 0.411 
93 0.582 0.509 
94 0.515 0.317 
95 0.698 0.603 
96 0.622 0.730 
97 0.576 0.436 
98 0.590 0.748 
99 0.851 0.617 

100 0.514 0.486 
101 0.529 0.457 
102 0.624 0.585 
103 1.000 0.833 
104 0.484 0.122 
105 0.449 0.783 
106 0.501 0.401 
107 0.383 0.711 
108 0.487 0.801 
109 0.337 0.661 
110 0.422 0.767 
111 0.408 0.239 
112 0.725 0.712 
113 0.510 0.427 
114 0.692 0.600 
115 0.830 0.283 

0.087 0.514 
0.102 0.572 
0.080 0.632 
0.061 0.566 
0.063 0.593 
0.069 0.553 
0.062 0.620 
0.032 0.520 
0.084 0.562 
0.107 0.494 

0.539 0.044 0.635 
0.739 0.066 0.618 
0.813 0.063 0.550 
0.503 0.106 0.575 
0.584 0.035 0.474 
0.633 0.071 0.548 
0.275 0.032 0.508 
0.388 0.044 0.652 
0.139 — 0.588 
0.268 0.026 0.553 
0.653 0.042 0.590 
0.639 0.017 0.681 
0.698 0.062 0.588 
0.711 0.122 0.604 
0.774 0.168 0.538 
0.505 0.033 0.533 
0.682 0.166 0.589 
0.800 0.153 0.542 
0.596 0.087 0.558 
0.962 0.115 0.622 
0.838 0.124 0.621 
0.837 0.088 0.582 
0.713 0.047 0.698 
0.838 0.121 0.590 
0.963 0.114 0.535 
0.598 0.125 0.625 
0.757 — 0.571 
0.924 0.198 0.603 
0.870 0.263 0.589 
0.787 — — 
0.792 0.142 0.539 
0.772 0.117 0.683 
0.836 0.194 0.583 
1.000 — — 
0.893 0.015 0.594 
0.529 0.126 0.541 
0.921 0.089 0.580 
0.585 0.082 0.577 
0.627 0.164 0.617 
0.365 0.067 0.548 
0.551 0.159 0.561 
0.845 0.067 0.496 
0.932 0.188 0.623 
0.830 0.106 0.553 
0.915 0.253 0.544 
0.774 0.333 0.333 

(From the County Planning Officer, Mid-Glamorgan County Council) 
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FIG. (55) SOME SOCIO-ECONOMIC INDICATORS IN MID-GLAMORGAN, SOUTH WALES 

(i) Car ownership = the proportion of households with at least one car. 
(ii) House tenure = the proportion of households that is owner-occupied. 

(iii) Amenities = the proportion of households with the exclusive use of all amenities 
(i.e. hot water, W.C., etc.). 

(iv) Managers = the proportion of householders in Standard Economic Groups 1, 2, 
3, 4, 13 (employers and managers). 

(v) Skilled workers = the proportion of householders in Standard Economic Groups 
5, 6, 8, 9, 12, 14 (foremen, skilled manual workers and non-manual workers). 

Each ward is numbered on Fig. 54, which shows the planning region within which it is 
located. Five wards, numbered 80,86,100,101 and 112, are located across the boundaries 
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of planning regions; these wards should not, therefore, be used in the analyses. There are 
no wards numbered 49 or 59. Selected aspects of four of the socio-economic indicators are 
mapped in Fig. 55 (A) to (D). 

1. Use a Kruskal-Wall is four-sample test to test the hypothesis that there is no 
significant difference between the regions in terms of car ownership. All steps in the test 
should be clearly shown. 

2. Carry out a similar test on one other of the socio-economic indicators. 
3. In the light of the data, Fig. 55, and the results of the Kruskal-Wall is tests, briefly 

outline the main socio-economic differences between the four regions. 
4. (a) Which of the following two-sample tests for independent samples could be 

appropriately applied to the data from the Coastal Zone and the Valley Mouth 
Regions to test for a difference between them: 

(i) Student's t-test? 
(ii) χ

2
 test? 

(iii) Kolmogorov-Smirnov test? 
(iv) Mann-Whi tney test? 

(b) Which, if any, of these tests would be most appropriate for this purpose? Give 
your reasons. 

5. To what extent do the results of the Kruskal-Wall is test confirm that the four 
regions are genuine entities (cf. definition 5 of Reiner)? 

6. Are the data and the results of the Kruskal-Wall is tests consistent with the view that 
the present socio-economic characteristics of the planning regions of Mid-Glamorgan 
reflect a legacy of the past? 

7. This exercise has utilized a large data set but has only considered five socio-economic 
indicators derived from census returns. Suggest some other ways in which the regions may 
differ and methods that could be used to obtain suitable data for their investigation. 



12 
Non-parametric Tests 
for Dependent (matched) 
Samples 

APART from the Student's /-test for two dependent samples (Chapter 9) all the tests so far 
considered have been appropriate for independent samples. In this chapter two non-
parametric tests for dependent samples are introduced. The Wilcoxon matched-pairs 
signed-ranks test is the non-parametric equivalent of the Student's f-test for two 
dependent samples, but the Wilcoxon test can be applied to non-normal distributions and 
requires only ordinal-scale data. The second test to be considered is the Friedman two-way 
analysis of variance by ranks, which is a test for more than two dependent samples. There 
is great potential for more widespread use of these tests in geographical studies. To realize 
this potential, however, it will be necessary to adopt a more 'experimental' approach to 
geographical analysis. 

The Wilcoxon matched-pairs signed-ranks test 

Wherever the Student's r-test for dependent samples is applicable, the Wilcoxon test is 
applicable, although the Wilcoxon test is less powerful if the assumptions of the ί-test are 
met. In other words, the Wilcoxon test is less likely to detect a difference in marginal cases 
because ordinal scale information about the differences between the samples is less precise 
than interval scale information. Just as the Student's r-test for dependent samples analyses 
the differences between each matched-pair of observations or measurements, so the 
Wilcoxon test analyses the rank order of the differences between the matched-pairs. The 
sort of situations where this test would be appropriate include: (i) measurement of changes 
in opinion between two time-periods (when the same group of people are interviewed on 
both occasions); (ii) measurement of supposedly asymmetrical valleys by cross-profiles 
(where slope angles have been recorded for pairs of north-and south-facing valley-side 
slopes); and (iii) measurement of the response of crops to two intensities of treatment by 
fertilizers (where the experiment involves a number of plots, and half of each plot receives 
treatment A and the other half of each plot receives treatment B). The following worked 
example is based on a set of hypothetical results from one such experiment. 

Twelve plots (each with different environmental conditions of shading, stoniness, 
drainage, etc.) were planted with the same crop, and half of each plot was given fertilizer 

124 



Non-paramet r i c Tests for Dependen t (matched) Samples 125 

Yield (bu/acre) 

Plot Treatment A Treatment Β Difference Direction of 
difference 

1 26.3 28.0 1.7 2 + 
2 24.2 25.7 1.5 3 + 
3 23.1 25.1 2.0 1 + 
4 21.6 22.3 0.7 7 + 
5 24.5 25.2 0.7 7 + 
6 23.3 25.4 1.1 5 + 
7 21.8 23.0 1.2 4 + 
8 22.9 23.4 0.5 9 + 
9 25.7 25.5 0.2 12 — 

10 24.1 24.8 0.7 7 + 
11 25.8 25.5 0.3 11 -
12 26.1 25.7 0.4 10 -

If there were in fact 'no difference' between the two samples (treatments) then the sum of 
the positive rankings would be expected to be about equal to the sum of the negative 
rankings. The greater the difference between the two samples, the smaller will be the sum 
of the ranks with the less frequent sign. The tabulated Wilcoxon's Τ statistic (Table H, 
Appendix) gives the smallest value of Ttha t would be expected to occur by chance if there 
were indeed 'no difference' between the samples. The calculated Wilcoxon's Τ statistic is 
obtained from the sum of the ranks with the less frequent sign (Rx) and is whichever of the 
following two values is the smaller: 

(a) Γ = Rl or (b) T" = m(n + 1) - Γ 

where m — the number of ranks with the less frequent sign, 

η — the sample size (number of matched-pairs). 

In the example, 

(a) Γ = 33 and (b) T" = 3(12-hi) —33 = 6 

In this instance, the calculated Τ statistic is therefore 6. 
Reference to Table Η (Appendix) shows that, with a sample size of 12 and a 5 % 

significance level, a value of Τ as small as 13 would be expected if there was in fact 'no 
difference' between the two treatments. The calculated Γ statistic is smaller than this; it is 
therefore concluded that the calculated Tis smaller than can be attributed to chance and 
that the hypothesis of 'no difference' must be rejected. It should be noted, however, that 
the Wilcox on test is the only test in the manual that requires the calculated statistic to be 
smaller than the tabulated statistic in order to reject the hypothesis o f ' no difference' (null 
hypothesis). 

A second example is based on population data from the thirty largest cities in Australia 
(Scott, 1965). The Wilcoxon test will be used to test for a significant difference between the 

treatment A while the other half of each plot was given treatment B. The yields of each plot 
under each treatment, the difference between each pair, the rank-order of the difference 
between each pair (dr ) and the direction of the difference ( + or — ) were as shown in Table 
17. 

T A B L E 17 
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TABLE 18 

City 
% of the population (1961) 

British-born Continental 
Europeans 

Difference Sign 

Sydney 8.2 8.7 0.5 29 + 
Melbourne 8.1 12.8 4.7 6 + 
Brisbane 8.4 4.7 3.7 11 -Adelaide 8.2 12.5 4.3 8.5 + 
Perth 12.4 9.2 3.2 12 — 
Newcastle 6.4 5.1 1.3 23 -
Wollongong 11.4 15.7 4.3 8.5 + 
Hobart 5.9 5.1 0.8 26 — 
Geelong 7.3 13.5 6.2 4.5 + 
Launceston 5.9 4.0 1.9 19 — 
Canberra 9.6 14.2 4.6 7 + 
Ballarat 3.9 5.4 1.5 21.5 + 
Townsville 5.4 2.8 2.6 16 — 
Toowoomba 5.5 1.5 4.0 10 -
Latrobe Valley 12.8 13.6 0.8 26 + 
Ipswich 6.2 3.4 2.8 14 -
Rockhampton 4.1 1.1 3.0 13 -Bendigo 3.1 1.6 1.5 21.5 — 
Cessnock 9.4 1.9 7.5 3 — 
Gold Coast 8.9 2.7 6.2 4.5 — 
Penrith 9.2 11.9 2.7 15 + 
Broken Hill 1.9 4.0 2.1 18 + 
Blue Mountains 11.6 3.9 7.7 2 — 
Maitland 2.4 4.2 1.8 20 + 
Cairns 6.1 5.2 0.9 24 — 
Elizabeth 42.3 7.6 34.7 1 — 
Bundaberg 4.5 2.1 2.4 17 -
Wagga Wagga 2.9 3.2 0.3 30 + 
Kalgoorlie 6.9 7.5 0.6 28 + 
Goulburn 3.3 2.5 0.8 26 -

The sum of the ranks with the less frequent sign is the sum of the + ranks, which is 
R{ = 222.0. 

The number of ranks with the less frequent sign is m = 13. 
The sample size is η = 30. 
The calculated Τ statistic is the smaller of: 

(a) r = K 1 = 222 and (b) T" = 13(30+ 1 ) - 222 = 403 - 2 2 2 = 181 

The calculated Τ statistic is therefore 181. 
Table Η (Appendix), with a 5 % significance level, shows that a value of T a s low as 137 

would be expected to result by chance if there was 'no difference' between the two samples. 
We are therefore unable to reject the hypothesis of 'no difference' (because the calculated Τ 
is not small enough). In other words, we are unable to detect a consistent difference in the 
relative proportions of British-born and 'Europeans' in the Australian cities. 

percentage of the population that was British-born and the percentage of the population 
that was born on mainland Europe. The data are made up of thirty matched-pairs of 
measurements or observations, which are set out in Table 18. 
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When sample sizes are larger than those tabulated in Table H (Appendix) the 
significance of the calculated Τ can be found from tables of the normal distribution 
function, ζ being given by the formula: 

ζ = 
n ( n + l ) ( 2 M + 1) 

In the example, 

1 8 1 - » 

24 

181 - 2 3 2 . 5 - 5 1 · 5 = _ 1 Ό 59 

'30(31)(61) ^2363.75 48.618 

24 

Table A (Appendix) shows that, using a 5 % significance level (p = 0.975 in the table, 
which is arranged for a one-tailed test), a tabulated ζ value of 1.96 must be exceeded for 
rejection of the hypothesis o f ' no difference'. Thus we are unable to reject the hypothesis 
of 'no difference'; a similar conclusion to that reached by the use of Table H. 

For the limitations of the Wilcoxon test, see the Mann-Whitney test. In the case of 
the Wilcoxon test, however, the independent and random sampling assumptions apply 
within samples, not between samples (within columns, not within matched-pairs). 

The Friedman two-way analysis of variance by ranks 

Friedman's test is applicable to situations where there are more than two (k) dependent 
samples and when measurements are on at least an ordinal scale. Dependent (matched) 
samples may be related qualitatively with respect to some condition, state, or aspect of the 
environment. For example, the production of three types of paper at twelve paper mills in 
Kent, southern England, in 1860-65 provides three related samples with twelve 
individuals in each (sample size = 12). The rank of the three types of paper at each mill was 
as shown in Table 19 (Lewis, 1977). 

T A B L E 19 

Mill 
Rank order of importance of: 

Specialist paper Printing paper Packing paper 

Sundridge 3 2 1 
Cray 3 2 1 
Chafford 3 2 1 
Darenth 3 1.5 1.5 
Basted 2 3 1 
Roughway 2 3 1 
East Mailing 3 2 1 
Lower Tovil 3 2 1 
Upper Tovil 1 3 2 
Medway 1.5 1.5 3 
Springfield 3 2 1 
Hayle 3 2 1 
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The most important type of paper at each mill has been assigned rank 1. Furthermore, 
by ranking across a row (a matched set of three observations or measurements) differences 
between mills are controlled and do not influence the rankings obtained. Now, if there is 
no difference in the relative importance of the three types of paper throughout this area, it 
would be expected that the column totals would be approximately equal. The greater the 
difference between the column totals, the more likely it is that there exists a real difference 
in the relative importance of the three types of paper. The calculated χ

2
 statistic measures 

the difference between the column totals, and is found from the formula: 

1 2 

XI = Σ*2 •3n(fc+l) 
nfc(k+l) 

where η = the sample size (number of rows), 
k = the number of samples (number of columns), 
R = the sum of the ranks of a particular sample, 

R
2
 = the square of R, 

Σ Κ
2
 = the sum of the squares of the ranks of the k samples. 

The formula is thus very similar to that used to calculate Η in the Kruskal-Wallis test (the 
equivalent test for independent samples). In the example, the sum of the ranks for each 
sample are: 

R, = 30.5 R2 = 26.0 R3 = 15.5 

These values squared give: 

930.25 676.0 240.25 

Σ Κ
2
 is therefore 1846.5 and the calculated χ

2
 statistic becomes: 

* ' 2 - Ï 2 ( 3 P T Ï Ï 1 8 4 6 5 - 3< 1 2>< 3 + 1> 

= ΐ τ
χ
 1846 .5 -144 

144 

= 153 .875-144 = 9.875 

For very small sample sizes Table I (Appendix) gives the tabulated χ
2
 statistic. For larger 

sample sizes (or for a larger number of samples) χ
2
 approximates to χ

2
, so that Table D 

(Appendix) can be used with (k — 1) degrees of freedom. In this case, using the 5 % 
significance level, a χ

2
 value as large as 5.99 would be expected as a result of chance. The 

calculated statistic is larger than the tabulated statistic; the difference between the three 
samples is thus greater than can be attributed to chance and the hypothesis of 'no 
difference' must be rejected. It is therefore concluded that there is a real difference in the 
relative importance of the three types of paper production in this region. A similar 
conclusion would probably result from a geographical interpretation of the pie-graphs in 
Fig. 56, but the traditional approach would not give a measure of the statistical significance 
of this conclusion. 

For the limitations of the Friedman test, see the Mann-Whitney test. In the case of the 
Friedman test, however, the independent and random sampling assumptions apply within 
samples, not between samples (within columns, not between columns). 
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FIG. (56) P A P E R M I L L S I N K E N T , E N G L A N D ( 1 8 6 0 - 6 5 ) 

Showing the relative importance of their 
three types of paper output 

I 
PAPER TYPES 

Specialist 

.a 
Printing Packing 

1st 

2nd 

3rd 

RANK 

(from Lewis, 1977) 

Exercise 18. Form and origin of saw-tooth moraines in Bödalen, 
Norway, investigated by Wilcoxon tests and Mann-Whitney tests. 

Background 

A series of end moraines with an unusual saw-tooth plan (Fig. 57) are found in Bödalen 
in front of one of the outlets of the Jostedalsbreen ice-cap. The saw-tooth pattern of the 
moraines appears to reflect a radial pattern of crevasses at a former glacier snout. The 
present-day glacier is found immediately to the south of Fig. 57, and it seems that the 
moraines were deposited during the Ti t t le Ice Age' of the last few centuries, when the 
glacier was more extensive than it is today. As these moraines are remarkably well 
preserved, and because it was thought possible that the detailed form of the moraines 
would reveal clues to their mode of formation, a field survey was carried out by means of 
cross-profiles. The location and form of the profiles are shown in Figs. 57 and 58, 
respectively. 

The aim of the exercise is to analyse the width, height and slopes from each cross-
profile, with particular reference to the similarities and differences between teeth (sections 
of moraine pointing down-valley) and notches (sections of moraine pointing up-valley). 
In this way a detailed picture of the three-dimensional form of the moraines can be built 
up. Precise information on the form of the moraines is a necessary prerequisite to the 
making of inferences about possible mechanisms for their formation. 
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F I G . ( 5 7 ) S A W - T O O T H M O R A I N E S , B Ö D A L E N , S O U T H N O R W A Y 

(from Matthews, Cornish & Shakesby,1979) 

The mechanisms by which end moraines are formed by glaciers is a matter of 
controversy. Three of the possible mechanisms can be conveniently labelled dumping, 
squeezing and pushing. Dumping implies that supra-glacial debris (which originates by 
rockfall and avalanche from the surrounding terrain) is dumped as the glacier melts. If the 
margin of the glacier is stationary for a sufficiently long period, then the dumped material 
will begin to accumulate. Squeezing implies that water-soaked, sub-glacial debris is 
squeezed up from beneath the glacier at the glacier snout. Such a process may form a 
deposit along the margin of the glacier snout. Pushing implies that, during a glacier 
advance, the glacier acts as a bulldozer, which results in the accumulation of pro-glacial 
debris in front of the advancing ice. 



Non-parametric Tests for Dependent (matched) Samples 131 

FIG. (58) CROSS-PROFILES OF SAW-TOOTH MORAINES 
(Bödalen, Norway) 

A TEETH Β NOTCHES 

(from Matthews, Cornish & Shakesby,1979) 

It transpires that only one of the contending mechanisms is likely to have produced the 
characteristic form of the saw-tooth moraines in Bödalen. 

Practical work 

The following data (Table 20) were derived from the profiles in Fig. 57. 

TABLE 20. Cross-profiles of saw-tooth moraines, Bödalen, southern Norway 

Teeth Notches 

Profile Width Height Proximal Distal Profile Width Height Proximal Distal 
no. (m) (m) slope (°) slope (°) no. (m) (m) slope (°) slope (°) 

2 47.0 5.0 20.0 13.0 1 45.0 7.5 23.0 26.0 
5 39.5 4.0 9.0 17.0 3 42.5 4.5 6.5 27.5 
7 50.5 5.0 8.5 19.0 6 50.5 8.0 15.5 22.0 
9 32.5 3.0 7.5 15.0 8 40.5 9.0 27.0 21.5 

11 24.5 3.5 16.5 20.0 10 39.5 4.0 17.0 10.0 
14 32.5 5.0 3.0 25.0 12 40.0 4.5 29.0 20.0 
17 31.0 4.0 15.0 19.0 13 38.0 8.0 22.0 22.0 
19 33.5 5.0 9.0 27.5 16 33.5 7.0 21.5 25.0 
22 51.0 2.0 8.0 17.5 18 38.5 7.5 21.0 25.0 

20 41.5 7.5 18.0 25.0 
21 42.0 6.5 13.0 24.0 

QSAG - J 
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Exercise 19. Recent trends in causes of death in some advanced 
Western societies characterized by application of Friedman 
analysis of variance by ranks. 

Background 

On the basis of data compiled by the United Nations and the World Health 
Organization (Spiegelman, 1965), the aim of the exercise is to generalize about recent 
changes in causes of death for a number of countries with a long history of low death rates. 
These include the countries of Western Europe and the U.S.A., Canada, Australia, New 

Proximal slopes are facing towards the glacier; distal slopes face away from the glacier. 
Measurements are made to the nearest 0.5 m and 0.5°. 
Slope angles are maximum slope angles. 
Width is defined as the length of the line joining the base of the proximal slope to the 

base of the distal slope (the base-line). 
Height is defined as the vertical distance from the crest (point of maximum slope angle 

change) to the base-line. 
1. For teeth and for notches (separately) calculate the mean of each of the following 

attributes: 
(a) Height. 
(b) Width. 
(c) Proximal slope angle. 
(d) Distal slope angle. 
2. Briefly describe the differences in size and shape of teeth and notches as revealed by 

the mean values. 
3. Use Mann-Whi tney tests for two independent samples to throw light on the 

following questions: 
(a) D o teeth and notches differ significantly with respect to proximal slope angles? 
(b) D o teeth and notches have similar distal slope angles? 
(c) Can the saw-tooth moraines be said to possess a constant width? 
(d) Have saw-tooth moraines an undulating crest-line? 
4. Reassess your answer to question 2 in the light of the Mann-Whi tney tests. 
5. Examine the asymmetry of the moraine cross-profiles, including a Wilcoxon 

matched-pairs signed-ranks test to compare each of the following: 
(a) The proximal and distal slope angles of teeth. 
(b) The proximal and distal slope angles of notches. 
6. Draw a sketch (perspective view) of a short stretch of saw-tooth moraine, taking 

care to include all of their characteristic features. 
7. Bearing in mind the analyses and the background information given previously, 

which of the mechanisms for end moraine formation—dumping, squeezing or pushing— 
accounts for all of the characteristic features of the saw-tooth moraines? Reasons for the 
acceptance or rejection of each mechanism should be discussed. Any further evidence that 
would be necessary to resolve two or more possible conclusions ought to be mentioned. 

8. Can general conclusions about mechanisms of moraine formation be drawn from 
these unique forms? 
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Zealand and (white) South Africa. Although there are differences in the practices adopted 
regarding the recognition and documentation of mortality, the data can be expected to 
portray the overall changes in causes of death as reflected by medical opinion in these 
countries. 

The data are given in ten tables (Table 21 a- j ) , each of which shows the average annual 
number of deaths per 100,000 of the population (death rate) for each country. The first 
table (A) shows the number of deaths from all causes. The remaining tables cover: 

B. Cardio-vascular and renal (heart and kidney diseases) 
C. Cancer 
D. Diabetes 
E. Tuberculosis 
F. Influenza and pneumonia 
G. Cirrhosis of the liver 
H. Suicide 
I. Motor vehicle accidents 
J. All other accidents 

For each country, data are available for three periods: 1950-3, 1954-7 and 1958-61. 
We have, therefore, three related samples, which can be compared by means of the 
Friedman two-way analysis of variance by ranks for ^-dependent samples. In this way it is 
possible to test whether or not there are consistent tendencies in the incidence of the 
various causes of death in this group of countries. These tendencies may in turn be related 
to the advancement of medical knowledge and other changes in society. 

TABLE 21. . Causes of death in countries of low mortality 

(a) Death rates from all causes (b) Death rates from cardio-vascular and renal 
diseases 

Country 1950-3 1954- 7 1958-61 Country 1950-3 1954-7 1958-61 

U.S.A. 962 936 941 U.S.A. 488 483 488 
England/Wales 1172 1154 1169 England/Wales 560 568 571 
Scotland 1216 1197 1209 Scotland 597 616 623 
Australia 945 899 861 Australia 465 451 439 
New Zealand 924 910 894 New Zealand 468 437 429 
Canada 884 820 788 Canada 403 384 377 
South Africa 857 852 876* South Africa 320 330 338* 
Ireland 1267 1207 1198 Ireland 505 550 571 
Netherlands 751 758 756 Netherlands 280 311 315 
Belgium 1221 1209 1181 Belgium 465 357 345 
France 1227 1212 1113 France 384 380 359 
Switzerland 1017 1008 951 Switzerland 437 439 416 
West Germany 1068 1101 1100 West Germany 364 403 407 
Denmark 902 899 935 Denmark 389 406 423 
Norway 863 862 905 Norway 331 374 421 
Sweden 979 964 973 Sweden 443 461 473 
Finland 988 920 892 Finland 384 402 419 
Portugal 1186 1145 1058 Portugal 299 316 307 
Italy 1003 971 945 Italy 364 394 396 
Spain 1037 949 870* Spain 303 276 262* 

(From Spiegelman, 1965.) (From Spiegelman, 1965.) 
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Country 1950-3 1954-7 1958-61 

U.S.A. 142 147 148 
England/Wales 197 207 215 
Scotland 195 207 213 
Australia 128 130 130 
New Zealand 149 146 143 
Canada 128 129 129 
South Africa 123 132 136* 
Ireland 148 161 167 
Netherlands 150 157 166 
Belgium 159 208 220 
France 176 185 195 
Switzerland 187 190 191 
West Germany 179 195 205 
Denmark 174 194 209 
Norway 156 160 163 
Sweden 155 165 181 
Finland 143 148 153 
Portugal 65 82 93 
Italy 115 131 146 
Spain 81 99 109* 

(From Spiegelman, 1965.) 

Country 1950-3 1954-7 1958-61 

U.S.A. 16.4t 15.7 16.3 
England/Wales 7.4 7.1 7.6 
Scotland 9.0 9.2 10.8 
Australia 12.6 12.3 11.6 
New Zealand 12.2 10.8 11.8 
Canada 10.9 11.0 11.5 
South Africa 8.5 9.0 9.6* 
Ireland 6.9 7.1 8.2 
Netherlands 11.3 12.8 14.7 
Belgium 18.6 24.0 23.7 
France 11.2 12.0 12.1 
Switzerland 14.4 13.5 13.9 
West Germany 11.1 11.3 12.9 
Denmark 5.2 6.3 7.3 
Norway 6.6 6.8 7.9 
Sweden 11.5 10.4 12.9 
Finland 6.1 6.5 9.9 
Portugal 5.2 6.3 6.7 
Italy 9.8 11.5 12.5 
Spain 6.3 7.5 8.0* 

(From Spiegelman, 1965.) 

(e) Death rates from tuberculosis 

Country 1950-3 1954-7 1958-61 

U.S.A. 17.7 8.9 6.2 
England/Wales 28.0 13.8 8.3 
Scotland 38.4 17.7 10.9 
Australia 16.2 7.9 5.0 
New Zealand 17.7 11.6 6.3 
Canada 20.2 8.6 5.1 
South Africa 17.1 8.3 7.4* 
Ireland 61.8 28.2 17.5 
Netherlands 14.2 6.1 3.4 
Belgium 34.2 23.8 16.9 
France 49.6 30.1 22.5 
Switzerland 30.0 20.2 13.7 
West Germany 31.6 20.0 16.0 
Denmark 11.7 5.9 4.2 
Norway 22.3 11.8 6.5 
Sweden 19.1 10.5 7.5 
Finland 69.9 39.7 27.6 
Portugal 108.2 61.6 47.2 
Italy 34.1 22.2 17.9 
Spain 73.8 34.7 26.3* 

(f ) Death rates from influenza and pneumonia 

Country 1950-3 1954-7 1958-61 

U.S.A. 31.3 29.2 32.8 
England/Wales 61.1 55.2 67.1 
Scotland 48.3 43.0 49.9 
Australia 36.3 34.9 32.8 
New Zealand 26.0 37.4 44.3 
Canada 42.2 36.8 34.6 
South Africa 57.3 53.0 57.8* 
Ireland 67.3 50.3 59.2 
Netherlands 35.8 28.2 26.3 
Belgium 50.8 37.4 35.7 
France 82.0 61.7 46.9 
Switzerland 41.5 41.0 33.1 
West Germany 60.7 49.9 44.8 
Denmark 42.4 24.9 29.6 
Norway 51.9 45.6 50.7 
Sweden 40.9 47.2 47.9 
Finland 56.8 52.3 37.7 
Portugal 83.6 87.3 85.8 
Italy 71.9 57.9 47.5 
Spain 91.4 71.5 57.4* 

(From Spiegelman, 1965.) (From Spiegelman, 1965.) 

TABLE 21 {com.) 

(c) Death rates from cancer (d) Death rates from diabetes 
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Country 1950-3 1954-7 1958-61 

U.S.A. 9.9 10.6 11.1 
England/Wales 2.5 2.6 2.8 
Scotland 3.2 3.9 4.3 
Australia 4.7 4.7 4.8 
New Zealand 3.0 3.1 2.3 
Canada 4.6 5.2 5.9 
South Africa 7.5 6.0 6.1* 
Ireland 2.0 2.1 2.2 
Netherlands 2.9 3.4 3.8 
Belgium 6.0t 8.2 9.1 
France 21.7 30.4 28.0 
Switzerland 11.6 13.4 12.4 
West Germany 8.7 13.2 17.3 
Denmark 5.3 7.0 8.1 
Norway 2.9 3.6 3.9 
Sweden 3.4 4.8 5.3 
Finland 2.3 3.3 3.4 
Portugal 18.7t 23.7 20.5 
Italy 12.7 14.6 16.7 
Spain 10.4 13.6 14.4* 

(From Spiegelman, 1965.) 

(i) Death rates from motor vehicle accidents 

Country 1950-3 1954-7 1958-61 

U.S.A. 23.9 23.0 21.1 
England/Wales 9.8 10.9 13.6 
Scotland 9.8 10.9 12.6 
Australia 23.3 23.6 24.4 
New Zealand 13.6 16.2 16.3 
Canada 19.3 20.7 20.9 
South Africa 17.7 20.4 27.5* 
Ireland 5.8 7.5 9.0 
Netherlands 9.4 13.8 15.5 
Belgium 11.511 12.5 17.5 
France 9.7 18.6 18.7 
Switzerland 14.8 19.1 21.9 
West Germany 15.5 23.0 24.4 
Denmark 9.9 14.8 17.0 
Norway 5.0 7.5 8.9 
Sweden 10.5 13.0 14.3 
Finland 8.3t 11.0 15.3 
Portugal 19.1** 6.9§ 9.3 
Italy 10.3 16.1 17.6 
Spain 2.9 5.3 6.7* 

(From Spiegelman, 1965.) 

* = 1958-60 Î = 1950-51 II = 1951-53 
t = 1952-53 § = 1955-57 ** = 1952 

Country 1950-3 1954-7 1958-61 

U.S.A. 10.5 10.0 10.6 
England/Wales 10.3 11.6 11.4 
Scotland 5.4 7.4 8.2 
Australia 10.1 11.0 11.5 
New Zealand 9.8 9.1 9.1 
Canada 7.4 7.3 7.5 
South Africa 10.2 11.4 13.0* 
Ireland 2.4 2.4 2.9 
Netherlands 6.1 6.2 6.8 
Belgium 13.3 14.2 14.3 
France 15.3 16.5 16.3 
Switzerland 22.0 21.7 19.4 
West Germany 18.4 18.9 18.8 
Denmark 23.5 22.8 19.9 
Norway 7.1 7.4 7.0 
Sweden 16.6 18.7 17.4 
Finland 16.6 20.8 20.6 
Portugal 10.0Î 9.1§ 8.8 
Italy 6.6 6.6 6.2 
Spain 5.9 5.5 5.2 

(From Spiegelman, 1965.) 

(j) Death rates from all other accidents 

Country 1950-3 1954-7 1958-61 

U.S.A. 37.4 33.4 30.6 
England/Wales 23.3 24.9 24.7 
Scotland 35.1 34.7 34.0 
Australia 33.2 31.6 27.6 
New Zealand 29.0 32.2 30.2 
Canada 38.3 36.2 32.4 
South Africa 30.5 29.4 30.2 
Ireland 22.5 23.6 22.2 
Netherlands 25.1 21.2 21.1 
Belgium 29.9f 40.2 36.0 
France 47.5 42.7 41.5 
Switzerland 40.7 37.6 38.1 
West Germany 33.7 34.2 31.7 
Denmark 31.8 29.3 28.3 
Norway 38.6 38.3 37.2 
Sweden 28.1 26.8 28.5 
Finland 47.111 38.9 36.2 
Portugal - 32.3§ 28.1 
Italy 22.1 21.3 23.2 
Spain 24.3 22.5 21.3* 

(From Spiegelman, 1965.) 

TABLE 21 (cont.) 

(g) Death rates from cirrhosis of the liver (h) Death rates from suicide 
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Practical work 

1. (a) Using the data on deaths from all causes (A), carry out a Friedman test on the 
three dependent samples, giving a full account of all stages of the test. 

(b) What was the hypothesis of
 4

no difference' in the test? 
(c) Assuming that the test resulted in rejection of the hypothesis of

 4
no difference', 

which of the following is indicated: 
(i) The countries show a similar tendency to an increase in death rate over 

time. 
(ii) The countries show no significant increase in death rate over time. 

(iii) The countries show no significant increase or decrease in death rate over 
time. 

(iv) The countries show similar patterns of change in death rate over time. 
(v) The countries show no similarity in their patterns of change over time. 

2. (a) Investigate the recent trends in the nine individual causes of death using 
Friedman tests. Up to nine tests can be made, 

(b) Write a short comparative account of your results, summarizing the changes in 
the causes of death. Limit your discussion to what can be concluded from the 
tests themselves. 

3. The overall change in death rates between 1950-53 and 1958-61 is summarized for 
the same countries in Table 22. 

TABLE 22. Summary table of causes of death in countries of low mortality 

% change in death rate 1950-53 to 1958-61 
Country — 

Β C D Ε F G H I J 

U.S.A. 0.0 4.2 - 0 . 6 * - 6 5 . 0 4.8 12.1 1.0 - 1 1 . 7 - 1 8 . 2 
England/Wales 2.0 9.1 2.7 - 7 0 . 4 9.8 12.0 10.7 38.8 6.0 
Scotland 4.4 9.2 20.0 - 7 1 . 6 3.3 34.4 51.9 28.6 - 3 . 1 
Australia - 5 . 6 1.6 - 7 . 9 - 6 9 . 1 - 9 . 6 2.1 13.9 4.7 - 1 6 . 9 
New Zealand - 8 . 3 - 4 . 0 - 3 . 3 - 6 4 . 4 70.4 - 2 3 . 3 - 7 . 1 19.9 4.1 
Canada - 6 . 5 0.8 5.5 - 7 4 . 8 - 1 8 . 0 28.3 1.4 8.3 - 1 5 . 4 
South Africa 5.6 10.6 12.9 - 5 6 . 7 0.9 - 1 8 . 7 27.5 55.4 - 1 . 0 
Ireland 13.1 12.8 18.8 - 7 1 . 7 - 1 2 . 0 10.0 20.8 55.2 - 1 . 3 
Netherlands 12.5 10.7 30.1 - 7 6 . 1 - 2 6 . 5 31.0 11.5 64.9 - 1 5 . 9 
Belgium - 2 5 . 8 38.4 27.4 - 5 0 . 6 - 2 9 . 7 51.7 7,5 52.2 20.4 
France - 6 . 5 10.8 8.0 - 5 4 . 6 - 4 2 . 8 29.0 6.5 92.8 - 1 2 . 6 
Switzerland - 4 . 8 2.1 - 3 . 5 - 5 4 . 3 - 2 0 . 2 6.9 - 1 1 . 8 48.0 - 6 . 4 
West Germany 11.8 14.5 16.2 - 4 9 . 4 - 2 6 . 2 98.9 2.2 57.4 - 5 . 9 
Denmark 8.7 20.1 40.4 - 6 4 . 1 - 3 0 . 2 52.8 - 1 5 . 3 71.7 - 1 1 . 0 
Norway 27.2 4.5 19.7 - 7 0 . 9 - 2 . 3 34.5 - 1 . 4 78.0 - 3 . 6 
Sweden 6.8 16.8 12.2 - 6 0 . 7 17.1 55.9 4.8 36.2 1.4 
Finland 9.1 7.0 62.3 - 6 0 . 5 - 3 3 . 6 47.8 24.1 84.3 - 2 3 . 1 
Portugal 2.7 43.1 28.8 - 5 6 . 4 2.6 9.6 - 1 2 . 0 - 5 1 . 3 - 1 3 . 0 t 
Italy 8.8 27.0 27.6 - 4 7 . 5 - 3 3 . 9 31.5 - 6 . 1 70.9 5.0 
Spain - 1 3 . 5 34.6 - 2 7 . 0 - 6 4 . 4 - 3 7 . 2 38.5 - 1 1 . 9 131.0 - 1 2 . 3 

(From Spiegelman, 1965.) 

* = 1952-53 to 1958-61 t = 1954-57 to 1958-61. 

(a) Analyse these data using a Friedman test. 
(b) What conclusions are possible from the application of a Friedman test to Table 
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22 and why do possible conclusions differ from those obtained from the 
previous questions? 

4. (a) In the light of your geographical and general knowledge, suggest some 
explanations for the changes that have occurred in the incidence of the various 
causes of death since 1950. 

(b) What future changes might be expected in these causes of death in these 
countries: 

(i) in the short-term? 
(ii) in the long-term? 



13 
The Strength of 
Relationships: 
Correlation Coefficients 

MANY hypotheses of interest to geographers involve not only questions about overall 
differences and similarities between data sets but also the degree to which one data set is 
reflected in, associated with, related to or correlated with variability in another data set. 
We might show, for example, that within a region of tropical Africa, areas with different 
quantities of soil nutrients differ significantly in the population that they support. One of 
the tests previously outlined could be used for this purpose. Such a test does not, however, 
enable us to say to what degree the variability in SQÜ quality is associated with variability in 
population. Measures of association or correlation are available for this type of problem, 
which can be described as a problem involving the strength of relationship between two 
measurable attributes or variables. The problem becomes one of statistical inference if we 
wish to be sure that a given strength of relationship differs significantly from 'no 
relationship' or from a relationship likely to have occurred by chance. 

Figure 59 consists of scatter graphs representing ('perfect', 'strong', 'weak' and 'no ' 
relationship between two variables. In each graph, a point represents an observation or 
measurement of two variables, χ and y; the axes are the respective measurement scales. In 
Fig. 59 A, the value of χ is always high when the value of y is high, and low values of one 
variable are always associated with low values of the second variable. This is perfect 
positive correlation. A perfect negative correlation, where a high value of one variable is 
associated with a low value of the other variable, is shown in Fig. 59 B. Weaker 
relationships are shown in Fig. 59 C to E, where the scatter of points indicates that the 
variability of one variable is associated with the variability of the other variable, but to a 
lesser degree than in Fig. 59 A and B. Extreme cases o f ' no relationship' are shown in Fig. 
59 F to H. A correlation coefficient (described in the following section) can be viewed as a 
measure of the extent to which the relationship between two variables departs from the 
situations shown in Fig. 59 F to H, and approaches the situations shown in Fig. 59 A and B. 

Pearson's correlation coefficient (r) 

Pearson's correlation coefficient, also known as the product-moment correlation 
coefficient, is a ratio of the extent to which two variables vary together to the overall 

138 
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F I G . (59) S T R E N G T H A N D D I R E C T I O N O F R E L A T I O N S H I P S 

Between two variables 

Perfect, +ve 

Strong, +ve 

Weak, 
+ve 

y . y 
;·.· . No relationship 

Perfect, -ve 

Weak, -ve 

No relationship 

No relationship 

variability in the two sets of data. Mathematically, this is expressed as the ratio of the 
covariance to the product of the standard deviations of the two variables: 

Σ(
χ
-

χ
)(y-y) 

r = -
Covariance of χ and y 

Product of the standard deviation of χ ' 
and the standard deviation of y 

It is clear from the above formula that as the proportion of the variability that is 
involved in the covariance increases, so the correlation coefficient increases. Figure 60 can 
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FIG.(£0) A GRAPHICAL EXPLANATION OF COVARIANCE 
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be used to explain why this is so, and to explain the meaning of covariance. In Fig. 60 the 
means of two variables, χ and y, are shown superimposed on each of the scatter graphs. 
Covariance depends on the difference between each value of χ and the mean value of x, in 
relation to the corresponding difference between each value of y and the mean value of y. 
Consider Fig. 60 A, in which all points lie in the shaded quadrants. In this case (x — x) is 
positive when (y — y) is positive, and they are also negative together (represented by the 
upper right and lower left quadrants, respectively). Consequently (x -x)(y — y) is positive 
for all points, covariance is large and positive, and the correlation coefficient is large and 
positive. Similarly, in Fig. 60 B, (x — x) ( y — y) is large and covariance is large. However, in 
this case, (x - x)(y — y) is negative for all points, so that covariance and the correlation 
coefficient are large and negative. 

Where only a weak relationship exists between the two variables (Fig. 60 C), the points 
are scattered throughout the four quadrants; some of the values for (x —x) (y — y) are 
therefore positive and some are negative; covariance is the summation of these values and 
is therefore small, and the correlation coefficient is small. N o relationship implies an equal 
distribution of points between the four quadrants, a covariance of zero and a correlation 
coefficient of zero. 

The calculated value of Pearson's r can vary between + 1.0 (perfect positive correlation) 
through zero (no relationship) to - 1.0 (perfect negative correlation). The involvement of 
η (sample size) in the calculation of covariance, and the standardization with reference to 
the overall variability of the data when r is calculated as a ratio, ensure this convenient and 
easily interpreted range of values. The greater the calculated correlation coefficient, the less 
likely it is to differ from zero as a result of chance. The value of r that is likely to occur by 
chance at a given probability level, and a given sample size, can be found in statistical 
tables. Thus to reject a hypothesis of 'no difference' from zero, the calculated r must exceed 
the tabulated r (using η — 2 degrees of freedom). 
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F I G . ® A C I D I T Y O F C E R T A I N L A K E S 

Near Copper CI iff nickel smelter, Sudbury, Canada 
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(from Nriagu & Harvey, 1978) 

With a small sample size (few points in Fig. 60) it is quite possible for a relatively large 
correlation coefficient to result by chance. For example, if a small number of points were 
located, using random number tables, in relation to two axes, there would be a high 
probability of a reasonably strong correlation coefficient. A given correlation coefficient 
is therefore not as 'significant' with a small sample size as with a large sample size. I t also 
follows that to be able to claim a statistically significant correlation a smaller correlation 
coefficient is necessary as sample size becomes larger, because the likelihood of a given 
value of r occurring by chance is reduced. 

In order to avoid the necessity for a separate table of r values, a calculated t can be 
obtained from the calculated r value by means of the formula: 

_ r _ Correlation coefficient 

ar Standard error of the correlation coefficient 

The tabulated t statistic is then looked-up in the usual way with (n - 2) degrees of freedom. 
A worked example will be based on the data given in Fig. 61, which shows the 

relationship between the pH (acidity) of certain lakes according to their distance from the 
Copper Cliff nickel smelter near Sudbury, Ontario, Canada. Inspection of the scatter 
graph suggests a weak positive correlation between the two attributes (variables) of the 
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lakes. Use of Pearson's correlation coefficient enables measurement of: 
(i) the strength of the relationship 

and (ii) whether the correlation is significantly different from zero. The coefficient will 
be calculated using the following formula, which is suitable for more rapid calculation 
than the formula provided above but gives identical results: 

η(Σχγ)-(Σχ)(Σγ) 

^[η(Σχ
2
) - ( Σ χ )

2
] · [n&y

2
) - ( l y )

2
] 

where η = the sample size, 

Σ χ = sum of the individual values of variable x, 

Σ y = sum of the individual values of variable y, 

( Σ χ )
2
 = sum the individual values of variable χ and square the total, 

(Σ>>)
2
 = sum the individual values of variable y and square the total, 

( Σ χ
2
) = square the individual values of variable χ and sum the squares, 

(Σ>>
2
) = square the individual values of variable y and sum the squares, 

(Σχ>>) = sum of the product of each pair of χ and y values. 

The data for thirty-two lakes are as shown in Table 23. 

TABLE 23 

Lake Distance to Acidity 
Lake Distance to Acidity Lake 

smelter (km) (pH) 
Lake 

smelter (km) (pH) 

Hannah 3.9 3.40 Panache 32.9 6.70 
St. Chaires 4.5 4.53 Carlyle 49.0 4.85 
'e' 5.2 3.20 Kakakise 50.3 5.75 
Silver 6.5 3.20 Lang 52.3 6.75 
Lohi 10.3 4.20 Acid (Lum II) 57.4 4.39 
Raft 11.6 4.15 Lumsden I 58.1 4.39 
Clearwater 12.9 3.50 Lumsden III 58.1 4.60 
Tilton 13.5 4.20 Apsey 61.3 7.01 
Wavy 20.0 3.30 Frood 62.6 6.70 
Broker 37.4 5.20 Grab 67.0 6.25 
Tyson 39.4 5.70 Evangeline 73.6 6.42 
Log Boom 41.9 5.19 Maple 75.5 6.40 
Johnnie 45.2 4.15 Cutler 76.7 6.79 
Ruth-Roy 45.2 4.50 La Cloche 83.9 6.68 
Norway 47.1 4.20 Little La Clo. 85.8 6.80 
Perdix 47.7 4.41 Owl 90.3 4.75 

(From Nriagu and Harvey, 1978.) 

The required values for substitution in the formula are: 

n = 32 

Σ χ = 1427.1 

Zy = 162.26 
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( Σ χ )
2
 = 2,036,614.4 

(Σ>>)
2
 = 26,328.307 

( Σ χ
2
) = 84,895.83 

(Σγ
2
) = 870.7698 

(Σχγ)= 7957.853 

The correlation coefficient is therefore: 

32(7957.853) - (1427.1) (162.26) 
r = 

[32(84,895.83) - 2,036,614.4] χ [32(870.7698) - 26,328.307] 

(254,651.29-231,561.24) 

y (2,716,666.5- 2,036,614.4) χ (27,864.633-26,328.307) 

23,090.05 23,090.05 

J (680,052.1)(1536.326) 32,323.056 

The calculated Pearson coefficient is thus + 0.714, and its statistical significance is 
obtained by use of the calculated Student's t statistic: 

Reference to Table C (Appendix), and using a 5.0% significance level, shows that a 
calculated t statistic as large as 2.02 would be likely if there was 'no relationship' between 
the two variables (with η — 2 = 30 degrees of freedom). The calculated t statistic (and 
hence the correlation coefficient) is therefore greater than is likely to be the result of 
chance, and we reject the hypothesis o f no relationship'. In other words there is a less than 
5 % chance that the two variables are unrelated and we are 95 % certain of a relationship. 
The test does not indicate that we are 95 % sure of a correlation coefficient of -I- 0.714, only 
that we are 95 % sure of the correlation coefficient being different from zero. A statistically 
significant positive correlation coefficient indicates that there is a tendency for pH to 
increase with increasing distance from the smelter. It appears, therefore, that atmospheric 
pollution from the smelter provides the explanation for the low pH (high acidity) of lakes 
near the smelter and that there is a decreasing effect with distance. It must be emphasized, 
however, that inferences such as these do not follow from, but are additional to, the 
statistical analysis. Similarly, a correlation coefficient does not tell us which of the two 
variables (if any) influences the other. Any inferences about the direction of causation must 
be based on something more than a correlation coefficient. 

Correlation coefficients are particularly useful for the comparison of maps, and for 
describing the degree of correspondence between distribution patterns in space. Figure 
62A and Β show two variables - rural farm population and mean annual precipitation - in 
Nebraska, U.S.A. High values of precipitation appear to be associated with high densities 
of the farm population. Robinson and Bryson (1957) used these maps to show how a 
correlation coefficient can be used to give a precise measure of the degree to which the two 

= 0.71435 χ = (0.714 35) (7.826 97) = 5.5912 
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FIG. (62) MAPS OF TWO VARIABLES THAT ARE POSITIVELY 

CORRELATED ( Nebraska, U.S.A.) 

• Sampling point 

(after Robinson & Bryson, from Taylor, 1977) 

maps are related. A sample of points from the map supplied the data for calculation of 
Pearson's coefficient, which indicates a moderate positive correlation ( + 0.8). Once again, 
correlation does not imply causation, so that it would be invalid to suggest (on the basis of 
the correlation coefficient alone) that high rainfall causes high rural farm population 
densities in Nebraska. It would be equally invalid to suggest, on the basis of the correlation 
coefficient, that high population densities cause high rainfall! 

Being a parametric statistical technique, the use of the correlation coefficient (r) as an 
inferential statistic has some important limitations. Particularly important is the 
requirement of interval-scale data and the necessity for an underlying bi-variate normal 
distribution. A bi-variate normal distribution has each variable normally distributed, 
individually, and in relation to each other. The technique also assumes a linear relationship 
between the two variables, and that the individuals measured are an independent random 
sample. 
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Spearman's rank correlation coefficient (rs) 

Pearson's coefficient can be used to measure the degree of statistical association between 
two variables measured on the interval scale. It is a parametric statistic and tests of 
significance require the variables to be drawn from populations that have normal 
distributions. Furthermore, Pearson's coefficient measures the strength of linear relation-
ships only, a point that will be examined more closely in the context of regression in the 
next chapter. Spearman's rank correlation coefficient (rs or rho) is suitable for ordinal-
scale data and does not require normal distributions or a linear relationship. If, therefore, 
interval scale data are not available or one wishes to avoid some of the assumptions of the 
parametric correlation coefficient, Spearman's coefficient is a very useful alternative. The 
calculated rs statistic varies from —1.0 to + 1 . 0 and is interpreted and tested for 
significance in the same way as Pearson's r. For small sample sizes, however, Table J, 
(Appendix), gives the tabulated rs statistic. 

The distribution of the coloured population of Britain is summarized in Fig. 63. The 
pattern bears some relationship to the distribution of the white population. Spearman's 
correlation coefficient can be used to measure the strength of the relationship between the 
coloured population and the white population. The centres with coloured populations of 
over 5000 in 1971 will be used here. These centres are arranged in rank order according to 
their coloured population in Table 24. The centres are also given a rank according to their 
white population, and the table gives the difference between the rankings for each 
centre (d). 

TABLE 24 

Rank Rank 
according according 

Coloured to coloured to white Difference 
Centre population population population in ranks (d) d

2 

Greater London 547,588 1 1 0 0 
Birmingham 92,632 2 2 0 0 
Wolverhampton 28,853 3 11 + 8 64 
Leicester 27,826 4 10 + 6 36 
Bradford 26,195 5 9 + 4 16 
Manchester 22,484 6 3 - 3 9 
Coventry 19,968 7 7 0 0 
Leeds 16,938 8 5 - 3 9 
Nottingham 15,017 9 8 - 1 1 
Warley 13,433 10 15 + 5 25 
Huddersfield 12,132 11 13 + 2 4 
Walsall 11,956 12 19 + 7 49 
Luton 10,694 13 16 + 3 9 
Sheffield 10,551 14 4 - 1 0 100 
Derby 10,296 15 12 - 3 9 
Slough 10,010 16 23 + 7 49 
Bristol 9499 17 6 - 1 1 121 
West Bromwich 8722 18 14 - 4 16 
Bolton 8346 19 17 - 2 4 
Reading 6586 20 18 - 2 4 
Blackburn 6313 21 20 - 1 1 
Preston 6112 22 21 - 1 1 
Bedford 5891 23 24 + 1 1 
High Wycombe 5110 24 25 + 1 1 
Rochdale 5011 25 22 - 3 9 

(Data from Jones, 1978.) 
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A perfect positive correlation (identical rankings in the two columns) would give rise to 
zero's in the right-hand column, whereas a perfect negative correlation (maximum 
disagreement between rankings) would give rise to very large values for the last columns. 
Consequently, the sum of the squares of the differences in the rankings (Σά

2
) is very small 

or very large when the correlation is strong. The formula for Spearman's correlation 
coefficient is: 

6 Σ α
2 

' s = l — 
η — η 
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where η = sample size, 

Σ d
2
 = the sum of the squares of the differences between rankings. 

When Σά
2
 is very small, r5 is large and positive; when Σά

2
 is very large, rs is large and 

negative. Whether rs is sufficiently large (positive or negative) to constitute a significant 
relationship, requires consideration of Table J (Appendix). 

In the example, Σά
2
 = 538 and rs becomes: 

Table J (Appendix) indicates that using a 5 % significance level and a sample size of η = 25, 
a calculated rs value as large as 0.362 (positive or negative) would be expected if there was 
'no relationship' between the two variables. We therefore reject the hypothesis of 'no 
relationship' and conclude that the distribution of the coloured population is related to the 
distribution of the white population. 

For larger sample sizes than those tabulated in Table J (Appendix), rs can be used to 
calculate a Student's t statistic, using the formula given in connection with Pearson's r. 
Spearman's rs is simply substituted for Pearson's r in that formula; the tabulated Student's 
t statistic is then looked-up in the usual way. The tabulated rs statistic (like the tabulated t 
statistic) is arranged for two-tailed tests but one-tailed tests can be applied by the use of the 
appropriate column. A one-tailed test would be appropriate if it was required to test for a 
significant positive correlation (or for a significant negative correlation) rather than for a 
significant correlation (positive or negative). 

The limitations of Spearman's rank correlation coefficient are relatively few: 
1. At least ordinal scale data are required. 
2. If the number of tied ranks is large, then rs may be affected; however, the effect of 

ties is usually negligible. 
3. Independent random sampling is assumed. 
4. Although rs does not assume a linear relationship between the two variables (unlike 

Pearson's coefficient), it does assume a monotone relationship; that is, it indicates the 
strength and direction of a rising or falling relationship. A linear relationship is a 
more stringent requirement, implying rising or falling values in a particular (linear) 
form. 

The contingency coefficient (C) 

The contingency coefficient is calculated from χ
2
 and is suitable for measuring the 

degree of association between two (or more) nominal-scale variables. C has a value of zero 
when there is 'no relationship' but does not reach 1.0 when there is a perfect relationship. 
The calculated value is influenced by the dimensions of the contingency table on which it is 
based, so that two or more contingency coefficients are only comparable if derived from 
contingency tables with the same number of cells. 

The contingency coefficient is given by the formula: 

6(538) 

15 ,625-25 

= 1 -
3228 

15,600 
= 1 -0 .2069 = +0 .71 . 

QSAG - Κ 
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Parent materials 
Soil types Soil types 

Alluvium Till 

Gleyed soil 15 5 

Brown earths 5 30 

We want to know the degree to which the soil types are associated with particular parent 
materials, χ

2
 is calculated in the usual way and is found to be 20.274. The contingency 

coefficient is therefore: 

/ 20.274 /20.274 /— — 
C = / = / = . /0 .2693 = 0.519. 

V 55 + 20.274 V 7 5 · 2 7 4 

A test for the significance of χ
2
 is also a test of the hypothesis that the contingency 

coefficient is 'no different' from zero. The tabulated χ
2
 statistic, using a 5 % significance 

level and (h — 1) (k — 1) = (1) (1) = 1 degree of freedom, is found to be 3.84. The calculated 
χ

2
 exceeds the value that is necessary for the contingency coefficient to be regarded as 

significant. The strength of the relationship between soil type and parent material is thus 
C = 0.519, a value that is significantly different from zero. 

Exercise 20: An investigation into the processes forming modern beach ridges 
on Jura, Scottish Inner Hebrides, using Pearson's correlation coefficient 

Background 

Beach ridges, composed of small cobbles 3-10 cm in diameter or boulders up to 50 cm in 
diameter, are the most common depositional coastal landforms on the west coast of Jura 
and neighbouring islands off the west coast of Scotland. The beach ridges are found in the 
backshore zone, above the high-water mark of ordinary spring tides (H.W.M.O.S.T.) (Fig. 
64). 

A levelling survey of the altitudes of forty-eight ridge crests indicated altitudes ranging 
from 2.8-7.7 m O.D. (metres above Ordnance Datum) with a mean altitude of 4.6 m. It has 
been proposed that the beach ridges are formed during high wave energy storm 
conditions. The aim of the exercise is to analyse the regional variation of beach ridge 
altitudes in an attempt to substantiate the proposal that the beach ridges are storm ridges. 

Figure 65 shows the location of the beach ridges and also the location of measurement 
sites of the "Pelvetia line'. The latter feature is the landward limit of the dark-brown 
seaweed, Pelvetia canaliculars, which is deposited at H.W.M.O.S.T. A levelling survey of 
the "Pelvetia line' during May-September 1977, when no storms occurred, showed a range 
of altitudes from 1.9 m to 3.1 m and a mean altitude of 2.43 m. The "Pelvetia line' for 1977 is 
thus a good indicator of the altitude limit of low-energy wave activity on this coast. 

The problem is approached by the application of Pearson's correlation coefficient to 
relationships between the altitude of the "Pelvetia line' and beach ridges, and certain factors 
that influence wave activity under low-energy or high-energy conditions. The factors 

where η = sample size (total number of frequencies in the contingency table). 
The example is taken from the results of Exercise 10, which have been arranged in the 

form of a 2 χ 2 contingency table: 
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TABLE 25. 'Pelvetia line' and beach ridge altitudes on Jura, Scottish Inner Hebrides 

Site 'Pelvetia line' Width of the Site Beach ridge Width of the Angle of open 

no. altitude (m) inter tidal no. altitude (m) inter tidal Atlantic 
zone (m) zone (m) fetch Ο 

1 2.75 7 52 3.54 30 11 

2 2.70 7 53 3.26 25 2 

3 2.20 20 54 2.88 32 1* 

4 2.06 26 55 4.36 15 27 

5 2.05 50 56 3.41 10 21 

6 2.18 45 57 3.70 15 8 

7 2.71 8 58 4.66 30 26 

8 2.46 23 59 3.63 63 2 

9 1.97 40 60 2.85 55 1 

10 2.47 30 61 4.30 35 17 

11 2.40 21 62 4.81 45 8 

12 2.03 35 63 5.14 53 33 

13 2.64 14 64 7.31 42 29 

14 2.81 10 65 3.54 17 16 

15 2.02 45 66 4.46 30 2-5 

16 1.99 50 67 3.78 20 1 

17 2.42 11 68 3.91 23 23 

18 2.93 15 69 3.81 30 24 

19 2.43 50 70 6.53 44 20 

20 2.16 26 71 4.12 50 14 

21 2.39 11 72 4.21 30 27 

22 2.82 12 73 3.04 39 24 

23 2.58 10 74 3.71 28 25 

24 2.32 15 75 4.79 13 19 

25 2.12 55 76 4.77 8 1 

26 2.11 37 77 5.03 14 26 

27 2.05 40 78 6.55 9 26 

28 2.61 25 79 3.66 35 3 

29 2.61 32 80 4.49 16 7 

30 2.82 15 81 4.76 21 4 

31 2.65 30 82 5.97 7 8 

32 2.22 45 83 4.65 15 7 

33 2.74 25 84 3.26 8 3 

34 2.10 40 85 3.71 37 1 

35 2.72 14 86 4.22 15 3 

36 2.59 20 87 5.24 11 28 

37 2.17 55 88 4.39 40 29 

38 2.90 10 89 4.26 15 1 

39 2.47 37 90 5.32 33 30 

40 2.52 45 91 4.54 14 30 

41 2.82 17 92 5.44 11 28 

42 2.50 30 93 4.98 19 23 

43 2.40 22 94 5.32 25 30 

44 2.25 28 95 7.67 18 30 

45 2.36 55 96 5.32 115 38 

46 2.18 45 97 5.00 140 46 

47 2.26 23 98 5.91 120 33 

48 2.30 38 99 7.23 105 40 

49 2.05 55 
50 3.07 5 
51 3.07 8 (* 0° is entered as Γ ) 

(After Dawson, pers. comm.) 
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FIG. (64) MODERN BEACH RIDGES IN RELATION 
TO PRESENT SEA-LEVELS ON JURA 

(Scottish Inner Hebrides) 

BEACH RIDGE 

Y 

(from A. Dawson, pers.comm.) 

investigated are the width of the intertidal zone (Fig. 64) and the angle of open Atlantic 
fetch (Fig. 66). Although, as has been emphasized, a correlation does not necessarily 
indicate a causal relationship, the exercise is based on the principle that if a causal link 
exists between two variables then one would expect a strong correlation between those 
variables. 

Practical work 

1. Using the data given in Table 25, plot the following relationships as scatter-graphs: 
(a) 'Pelvetia line' altitude against width of the intertidal zone. 
(b) Beach ridge altitude (ridge crests were measured) against width of the intertidal 

zone. 
(c) Beach ridge altitude against angle of open Atlantic fetch. 
2. For each of the scatter-graphs, indicate: 
(a) whether or not there appears to be a correlation between the two variables; 
(b) whether any correlation appears to be positive or negative. 
3. Calculate Pearson's correlation coefficient for each of the three relationships and test 

the statistical significance of the relationships. All steps should be shown and results 
should be clearly stated in terms of probabilities. 

4. Are the correlation coefficients involving the width of the intertidal zone consistent 
with the following suggestions: 

(a) the waves responsible for the "Pelvetia line' were influenced by the width of the 
intertidal zone?; 

(b) the waves responsible for the deposition of the beach ridges were influenced by the 
width of the intertidal zone?; 
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(c) the waves responsible for the deposition of the beach ridges were storm waves? 

Fully explain your answer. 

5. To what extent does the correlation coefficient between the altitude of the beach 

ridges and the angle of open Atlantic fetch support the proposal that the beach ridges are 

storm ridges? 
6. (a) Suggest some additional factors that may account for some of the variation in the 

altitude of the beach ridges, 
(b) How might the storm-wave origin of the beach ridges be tested further? 
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Exercise 21: Analysis of indicators of economic development for Latin American 
countries by application of Spearman's rank correlation coefficient. 

Background 

Latin America is the only region of the underdeveloped world that had evolved from 
colonial status prior to World War II. It is consequently the most advanced of the 
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underdeveloped regions of the world in terms of income per capita, death rates and 
literacy, and is regarded by some as an indicator or harbinger of conditions that will soon 
prevail in the other underdeveloped regions (Gonzales, 1967). 

Although Latin America has had a relatively long history of development, a wide 
spectrum of conditions of development is represented in the various countries. An 
examination of the inter-relationships between certain indicator variables, which are 
available for each of the countries of Latin America, would be expected to reveal insights 
into some of the characteristics and problems of economic development. For example, a 
simple model of economic development suggests that development is accompanied by a 
fall in the infant mortality rate and in the proportion of the population engaged in 
agriculture, but by a rise in average incomes and in the gross domestic product (G.D.P.). 
One would expect, therefore, a positive correlation between the first two variables and 
between the last two variables, but negative correlations between other combinations of 
these variables. Correlation coefficients between socio-economic variables may suggest 
relationships that are important in terms of economic development; alternatively, 
hypothesized relationships can be tested against the Latin American data. 

Eight socio-economic indicators of development are given for twenty Latin American 

countries in Table 26. 

Practical work 

1. State, and give a brief explanation of, the direction and strength of relationship that 
you would expect between the following pairs of variables: 

(i) income per capita and calorie intake per capita; 
(ii) income per capita and percentage of the economically active population in 

agriculture; 
(iii) manufacturing production index and agricultural production index; 
(iv) agricultural production index and percentage of the economically active popu-

lation in agriculture. 
2. (a) Using Spearman's correlation coefficient, measure the direction and strength of 

the relationships considered in question 1. 
(b) Test the statistical significance of the relationships. 
(c) Briefly discuss the meaning of each result. 

3. Using the appropriate Spearman's correlation coefficients, and assuming those 
countries with the highest percentage of the economically active population in agriculture 
are relatively underdeveloped: 

(a) to what extent do the data support the assertion that underdeveloped countries have 
an undernourished population. 

(b) to what extent do the data suggest that underdevelopment is characterized by high 
infant mortality rates and low population growth rates? 

4. Use Spearman's correlation coefficients to examine the relationships between some 
other combinations of variables. Give reasons for your selection and a short discussion of 
your results. 

5. Select two relationships from your results (questions 1-4) that have been found to be 
of no (or low) statistical significance. Consider possible reasons for this result under the 
headings: (i) the complexities of economic development and (ii) the characteristics of the 
data. 
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6. Pearson's correlation coefficient (r) was calculated for the variables involved in 
question 1 and was found to be: 

(i) variable G with variable H = r — +0 .81 , 
(ii) variable C with variable G = r = —0.85, 

(iii) variable D with variable Ε = r = + 0.44, 
(iv) variable C with variable D = r = + 0.28, 

Compare the results of Spearman's correlation coefficient (r s) with the above values for r 
commenting on any differences and discussing the relative appropriateness of the two 
coefficients. 

TABLE 26. Indicators of economic development in Latin American countries 

Variables 

Country A Β C D Ε F G H 

Mexico 3.1 67.7 54 183 162 4.9 415 2580 
Guatemala 3.2 92.8 68 196 123 4.8 258 1970 
El Salvador 3.6 65.5 60 203 152 268 2000 
Honduras 3.0 47.0 66 162 5.4 252 2330 
Nicaragua 3.5 53.9 68 226 134 10.8 288 2190 
Costa Rica 4.3 77.6 55 119 - 362 2520 
Panama 3.3 42.9 46 144 - 8.1 371 2370 
Cuba 2.0 41.8 42 86 - 9.0 516 2730 
Dominican R. 3.6 79.5 56 144 - 313 2020 
Haiti 2.2 171.6 83 104 149 1780 
Venezuela 3.4 47.9 32 176 175 4.0 645 2330 
Colombia 2.2 88.2 54 135 141 5.0 373 2280 
Ecuador 3.2 95.6 53 195 - 3.7 223 2100 
Peru 3.0 94.8 46 136 154 6.7 269 2060 
Bolivia 1.5 86.0* 72 160 122 2010 
Paraguay 2.4 98.0t 54 117 92 3.6 193 2400 
Chili 2.4 111.0 28 122 146 5.8 453 2610 
Argentina 1.6 60.7 19 122 107 - 0 . 1 799 3220 
Uruguay 1.4* 47.4 - 110 98 561 3030 
Brazil 3.0 170.0J 58 131 147 4.7 375 2710 

Latin America 2.9 - 47 133 129 3.6 421 2570 

(From Gonzalez, 1967.) 

Variable A 

Variable B 

Variable C 

Variable D 

Variable Ε 

Variable F 

Variable G : 

Variable H = 

= Population, % annual increment 1958-64 (* 1940-50). 

= Infant mortality rate 1960 (*1959; 1 1 9 4 5 ^ 9 ; î 1958-62). 

= % economically active population in agriculture ca. 1950-60. 

= Agricultural production index 1964 (1958 = 100). 

= Manufacturing production index 1963-64 (1958 = 100). 

= Gross domestic product, growth rate ca. 1960-63. 

= Income per capita 1961 (U.S. dollars). 

= Calorie intake per capita 1959-61. 



14 
The Form of 
Relationships and 
Prediction by 
Regression 

CORRELATION analysis emphasizes the degree to which two sets of data vary together and 
the direction of the covariation. Correlation does not, however, tell us about the way in 
which the variables are related, the form of the relationship, or possible anomalies or 
deviations from the overall form, and it does not enable the prediction or forecasting of 
values of one variable from a knowledge of the way in which the second variable varies. 
The technique of regression enables consideration of these ς μ 6 5 ί ϊ ο η 5 . 

Figure 67 describes in graphical form the positive relationship between pH of lake water 
and distance from a smelter near Sudbury, Ontario, Canada. It has been shown that the 
strength of this relationship can be quantified by the correlation coefficient, r, as +0 .71 . 
The generalized form of the relationship is approximated by a straight line, which also 
highlights any deviations (residuals) from the overall pattern. This linear relationship is 
defined if the intercept (point of intersection of the vertical axis) and the slope of the line 
are known. 

Regression is partly concerned with the construction of 'best-fit' lines describing the 
form of relationships, such as the one in Fig. 67, and is partly concerned with questions of 
inference and prediction. The descriptive use of regression is simply curve-fitting; the use of 
regression as a technique of inferential statistics, permitting, for example, the prediction of 
the pH of lake water from the distance of a lake from the smelter, involves many more 
assumptions. Linear regression will be emphasized here, although some relationships are 
obviously non-linear relationships. A familiar example of a non-linear relationship is 
provided by population growth through time, which is often exponential and is 
approximated by an exponential curve (that is, the rate of increase is constant). Many non-
linear relationships can be transformed to linear relationships prior to regression analysis 
(see Chapter 6 in which the object was to transform a variable to normality, rather than 
linearity). 

155 
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FIG. (67) R E G R E S S I O N O F A C I D I T Y O N 

D I S T A N C E For lakes near Copper Cliff smelter, 

Sudbury, Canada 

(from Nriagu & Harvey, 1978) 

'Least-squares' regression 

In a two-variable situation, if one variable is postulated as being a function of the second 
variable, then the one variable is said to be dependent on the other. In Fig. 67, pH is termed 
the dependent variable and distance is the independent variable (by convention, y (the 
vertical axis) and χ (the horizontal axis) respectively). When it is possible to specify 
dependent and independent variables, or when one variable is being predicted (y) from 
another (x), then the appropriate regression line involves the regression of y on x. It is 
particularly important when applying the method of least-squares' to regress the 
dependent variable on the independent variable, because the resulting line is not the same 
as the line produced by regression of χ on y. 

Consider Fig. 68A. 'Least-squares' regression fits the curve that minimizes the squares 
of the distances indicated by short vertical lines. In other words, it minimizes the squares of 
the y-residuals from the regression line. The regression line itself is described by: 

y = a + bx 

where y = any predicted value of the dependent variable, 
χ = the corresponding value of the independent variable, 
a = the intercept (the value of y for which χ is zero; the point at which the 

regression line cuts the y-axis), 
b = the slope of the line (the number of units of variable y corresponding to 

one unit of variable x). 



The Form of Relationships and Prediction by Regression 157 

FIG. @ ) PRINCIPLES OF LINEAR REGRESSION 
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Thus for any value of x, y can be predicted when a and b are known. Because the residuals 
are minimized in this way, instead of in terms of x-residuals (Fig. 68B), we can be relatively 
sure that a predicted y value will be close to its true value; that is, the likely error in the 
prediction is minimized. 

If it is required to describe the relationship between two variables that cannot be 
sensibly regarded as dependent and independent then there is no reason to prefer a 
regression on y o n χ to a regression of χ on y. In this situation, the line that bisects the angle 
between the two possible lines (the reduced major axis line) is recommended (Fig. 68C). 
This line minimizes the area of the triangles between individual points and the line (Fig. 
68D). All three lines pass through the mean of variable χ and the mean of variable y. 

The b coefficient (the slope of the line defined by the regression of y on x) is calculated 
from the formula: 

K ( I x y ) - ( I x ) (Zy) 

η ( Σ χ
2
) - ( Σ χ )

2 

where symbols are the same as those used in the calculation of Pearson's correlation 
coefficient (r). Given that a least-squares regression line passes through the means of the 
two variables (x and y\ once the b coefficient has been calculated, then the a coefficient can 
be found by substitution in the basic equation of the regression line (y = a + bx). 
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FIG. @ ) RELATIONSHIPS BETWEEN CORRELATION 

AND REGRESSION 
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The close relationship between correlation and regression is also shown by the 

following formula: 

b = r · — 

where sy = the standard deviation of variable y, 
sx = the standard deviation of variable x, 
r = Pearson's correlation coefficient. 

The standard deviations in the formula are a quantitive expression of the variability factor 
considered qualitatively and graphically in Fig. 69. 

Because of the close relationship between correlation and regression, the statistical 
significance of the slope of a regression line (that is, whether the slope is sufficiently 
different from zero) is tested in the same way as the significance of the correlation 
coefficient (that is, whether r is sufficiently different from zero). 

Calculations 

The regression line in Fig. 67 was calculated as follows, with pH as the dependent 
variable (y) and distance as the independent variable (x), using the data-given in Chapter 

The correlation coefficient can be envisaged as being related to the angle between the 
lines described by regression of y on χ and of χ on y. When variability within the data is 
great (Fig. 69A) then the angle between the regression lines is large; this corresponds to a 
weak relationship and the correlation coefficient is relatively small (near zero). Figure 69B 
represents a strong relationship with a correlation coefficient that is relatively large (near 
one); in this figure the variability is low so that the two regression lines make a small angle. 
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13. The slope of the regression line is: 

η(Σχγ)-(Σχ)(Σγ) 
b = 

η(Σχ
2
)-{Σχ)

2 

where Σγ = 162.26 

Σχ = 1427.1 

Σχγ = 7957.853 

( Σ χ )
2
 = 2,036,614.4 

( Σ χ
2
) = 84,895.83 

that is 

b = 
32 (7957.853) - (1427.1) (162.26) 

32 (84,895.83)-(2,036,614.4) 

254,651.29-231,561.24 

2,716,666.5-2,036,614.4 

23,090.05 

680,052.1 
= 0.033 95 

The coefficient a is next calculated by substitution of three known quantities in the 
formula: 

y = a + bx 

where b = 0.033 95 

χ = — = 44.5969 
η 

Σ ν 
y = — = 5.0706 

η 

Thus a = y — bx 

= 5.0706 - (0.033 95) (44.5969) 

= 5.0706-1.5140 = 3.5566 

The equation for the regression line is therefore y = 3.55673 + 0.033 95x, from which 
other values of y can be predicted. Although a regression line (such as that in Fig. 67) can be 
drawn once the intercept and the values for χ and y are known, it is advisable to calculate a 
third point (which, if the calculations have been carried out correctly, should lie in a 
straight line). In this instance, the predicted acidity (y) corresponding to a distance of 
100 km is found from: 

J = a + bx = 3.556 7 3 + (0.033 95) (100.0) 

= 6.9517 

It can be seen from Fig. 67 that the calculation is correct and that we have in fact predicted 
the acidity of a lake found at 100 km distance from the smelter. It should be pointed out, 
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FIG.(70) REGRESSION OF SUMMER TEMPERATURE ON 

HIGH-ALTITUDE TREE-GROWTH, A.D. 1900-1950 

5 0 100 150 

TREE-GROWTH INDEX 
(Normal growth = 100 ) 

(from Matthews,1976) 

however, that it is dangerous to predict values from regression lines that have been 
extrapolated from beyond the area of the diagram for which there is good control by data 
points. It must also be emphasized that predictions only apply to lakes around this 
particular smelter, that is to the population of lakes from which the measured lakes were 
sampled. 

The slope of the regression line is statistically significant as it has been shown that the 
correlation coefficient is significantly different from zero. We conclude, therefore, that the 
slope of the regression line in Fig. 67 is greater than is likely to have resulted by chance or 
to have been found from sampling from lakes that exhibit

 4
no relationship' between pH 

and distance from the smelter. 
An example of how regression may be used further in a predictive way is provided in 

Figs. 70 and 71. Figure 70 shows the relationship between tree growth index (derived from 
the width of annual rings) and summer temperature index (derived from June and July 
temperatures) for Scots pine (Pinus sylvestris) near the tree-line in southern Norway. 
Each data point represents a particular year from 1901 to 1950, the period over which 
meteorological data are available for this area. The regression equation is given and 
Pearson's correlation coefficient is r = +0 .77 . The strength of this correlation coefficient 
can be attributed to summer temperature being the limiting environmental factor near the 
tree-line at high altitudes and high latitudes, where moisture is normally adequate for tree 
growth. Using the regression line in Fig. 70, summer temperatures can be predicted from 
tree growth. Assuming that the same controls on Scots pine existed in the past it is 
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possible to predict summer temperatures back to the beginning of the eighteenth century 
using values of tree-growth from the long tree-growth series in Fig. 71 as the independent 
variable. In this way, information on climate can be obtained for periods when few 
instrumental records are available (Matthews, 1976). 

The final example indicates how an analysis of residuals may form part of a regression 
analysis. Figure 72A summarizes the form of the relationship between rural farm 
population density and mean annual precipitation in Nebraska (discussed in the context 
of correlation in Chapter 13). The residuals (deviations of data points from the regression 
line in Fig. 72A) are mapped in Fig. 72B. The map indicates those areas of Nebraska where 
the relationship is least reliable or where predictions of rural farm population density are 
most likely to be in error. It therefore points to those areas where additional factors to 
precipitation are necessary to explain the level of rural farm population density. In the 
centre of the state, rural farm population densities tend to be overpredicted (that is, 
residuals are negative and the predicted values are higher than were observed in reality); 
towards the east and west there is a tendency for underprediction (where residuals are 
positive and the predicted values are lower than the observed values). It should be noted, 
however, that there is one extreme residual in the west of the state, perhaps the result of a 
unique factor. 

The coefficient of determination ( r
2
) 

This coefficient, simply the square of the correlation coefficient, is a useful aid in the 
interpretation of any regression analysis. It measures the proportion of the variability in 
one variable that can be accounted for, determined from, predicted or 'explained' by 
variability in the second variable. In other words, it is a measure of the 'goodness-of-fit' of 
a regression line, r

2
 = 1.0 denoting a perfect fit and the possibility of predicting with 

certainty. 
The regression in Fig. 67 has a coefficient of determination of r

2
 = 0 . 5 1 , which indicates 

that distance from the smelter accounts for just over 50 % of the variability in the acidity 
of the lakes. This in turn indicates that other variables, such as the volume of the lakes, 
account for almost as much of the variability in acidity. The regression in Fig. 70 has a 
coefficient of determination of 0.59, which indicates that some 40 % of the variability in 
tree growth is accounted for by variables other than summer temperature. In both 
examples, therefore, there remains considerable uncertainty in any predictions. This 
uncertainty could be measured precisely using confidence intervals around the predicted 
values of the dependent variable, a topic covered in some textbooks and sometimes 
represented as a confidence band around regression lines. 

Limitations of linear regression 

Use of regression for inferential statistical purposes is limited by its many assumptions. 

Some of these are: 
1. Interval-scale data are required. 
2. The relationship is assumed to be linear, or the data must be transformed to linearity 

prior to analysis. 
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FIG.(72) ANALYSIS OF RESIDUALS FROM REGRESSION 
Of rural farm population on mean annual rainfall (Nebraska,U.S.A.) 
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(from Taylor, 1977) 

3. Homoscedasticity is assumed. That is, the population distributions of y for every 
value of χ are assumed to possess equal variability. 

4. Any errors in the measurement of the χ variable are assumed to be small in relation 
to any errors in the measurement of variable y. 

5. Independent random sampling is assumed. 

QSAG - L 
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Practical work 

The tabulated data (Table 27) give the mean annual temperature for Iceland based on 
weather stations at Stykkisholmur and Teigarhorn, and the incidence of sea-ice off the 
coast of Iceland in months per year. The data are from the years 1846-1919; years in which 
no sea-ice was observed have been omitted, and the data are not listed in their order of 
occurrence year by year. 

1. (a) Which of the two variables is the dependent variable in the context of the 
exercise? 

(b) Draw a scatter graph of the relationship between the two variables. 
(c) Measure the strength of the relationship using Pearson's correlation coefficient. 
(d) Calculate the regression equation appropriate for the prediction of mean annual 

temperatures from sea-ice conditions. 
(e) Draw the best-fit line on your graph. 
(f) Briefly describe and explain the direction, strength and form of the relationship. 

2. (a) Is the slope of the regression line statistically significant? 
(b) Calculate and assess the coefficient of determination for this relationship. 

3. The following questions should be answered in two ways: firstly, using the regression 

Exercise 22: Prediction of annual temperatures from sea-ice conditions off 
Iceland using regression analysis. 

Background 

Historical evidence of the extent of sea-ice off the coast of Iceland has survived from the 
time of settlement by Norsemen in the ninth century. Although chronicle writing began 
several centuries after settlement, the historical accounts provide valuable evidence of sea-
ice conditions, and hence climate, since that time (with the notable exception of the 
fifteenth century). From the beginning of the seventeenth century, records are sufficiently 
detailed to enable the reconstruction of a continuous record of ice incidence in months per 
year (Fig. 73 A); from earlier times, only a generalized picture of ice conditions is available 
(Fig. 73B). 

Bergthorsson (1969) has shown how regression analysis can be used to estimate, from 
the incidence of sea-ice, substantial changes in the mean annual temperatures in Iceland 
over the last 1000 years - the whole period of human settlement on the island and a record 
unequalled anywhere in the world. The first stage of the analysis involves the relationship 
between the incidence of sea-ice and mean annual temperature since 1846, when 
meteorological data are available from local meteorological stations. The strength of the 
relationship is estimated by correlation, and linear regression is used to describe the 
overall form of the relationship. The second stage of the analysis uses the regression line 
and regression equation to predict the past history of temperatures in Iceland from the 
long record of sea-ice conditions. 

It transpires that a knowledge of the mean annual temperatures derived in this way 
helps to explain some of the features of human history in Iceland and in neighbouring 
areas, such as Greenland where settlements were established at the end of the tenth 
century but did not survive the 'Little Ice Age'. The Greenland settlers appear to have died 
out by the beginning of the sixteenth century. 
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TABLE 27. Temperatures and sea-ice conditions off Iceland in recent times 

Mean annual Sea-ice Mean annual Sea-ice 
temperature incidence temperature incidence 

( °Q (months/year) ( °Q (months/year) 

4.4 0.5 3.7 2.8 
4.1 0.8 3.5 2.8 
4.2 0.9 3.4 2.9 
4.1 1.1 3.2 2.8 
3.9 0.6 3.2 2.2 
3.9 0.9 3.1 2.4 
3.8 0.4 2.4 2.9 
3.5 1.0 2.6 2.9 
3.2 0.7 3.3 3.1 
3.1 0.9 3.6 3.2 
3.1 0.7 3.6 3.3 
3.0 0.8 2.6 3.3 
2.8 0.6 2.2 3.5 
2.7 0.2 1.0 3.2 
2.6 0.6 1.8 4.6 
2.4 0.9 2.1 4.6 
2.2 1.4 2.0 4.0 
2.4 1.2 2.2 4.8 
2.6 1.2 2.5 4.1 
2.5 1.3 2.7 4.6 
2.9 1.3 2.9 5.0 
2.8 1.8 3.8 4.6 
3.0 1.7 2.7 5.1 
3.2 1.2 1.2 5.5 
3.3 1.5 1.2 6.0 
3.4 1.3 1.8 6.2 
3.4 1.6 2.4 7.2 
3.4 1.8 1.0 7.3 
3.4 1.9 

(From Bergthorsson, 1969) 

line that you have drawn on your graph, and secondly, directly from the regression 
equation that you have calculated. 

(a) If sea-ice survives for 6 months, what mean annual temperature is predicted? 
(b) What mean annual temperature is indicated if no sea-ice is observed in any 

year? 
(c) What change in mean annual temperature would be expected if, over a period of 

years, the incidence of sea-ice increased by one month? 
4. In what ways are the following statements incorrect? 
(a) The regression analysis enables one to say that in years with 3 months of sea-ice 

there will be a mean annual temperature of 2.78°C. 
(b) The fitted regression line can be used to predict the incidence of sea-ice in years 

when mean annual temperatures are 3.0°C. 
(c) The regression equation should be used in preference to the regression line when 

predicting mean annual temperatures from sea-ice incidences in excess of 10 
months. 

5. Using the results of your regression analysis, in conjunction with Fig. 73, answer the 
following questions as far as you are able. 
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(a) What was the lowest mean annual temperature experienced in Iceland over the last 
1000 years? 

(b) What has been the degree of change in mean annual temperatures in Iceland during 
the twentieth century? 

(c) What have been the main changes in the mean annual temperature of Iceland since 
A.D. 900? 

6. Comment on the possible limitations of this type of analysis. 
7. To what extent can the evidence from this analysis be used in support of the 

contention that the settlement of Iceland and Greenland and the subsequent extinction of 
the Greenland population were caused by changes in summer temperature conditions. 

Exercise 23: Application of regression to the description and analysis of 
urban population densities in London and Chicago. 

Background 

One of the early contributions to quantitative Geography established a relationship 
between population density and distance from a city centre (Clark, 1951). Clark showed 
that the relationship has a similar form in twenty cities including Berlin, Boston, Budapest, 
Dublin, Manchester, Melbourne, Oslo, Philadelphia and Vienna; since Clark's study 
many more cities have been shown to exhibit similar negative exponential relationships 
(Berry et ai, 1963). This form of relationship is described by the regression equation: 

log ey = l o g e a - f c x 

where \ogcy = the natural logarithm of population density (predicted value of the 
dependent variable), 

logç a = the natural logarithm of population density in the city centre 
(the intercept of the regression line), 

b = the slope of the regression line (population density gradient), 
χ = distance from the city centre (independent variable). 

In other words, there is a constant rate of decline in population density with distance from 
the city centre, which is described by a linear relationship between the natural logarithm of 
population density (the dependent variable) and distance from the city centre (in-
dependent variable). A graphical representation of this form of relationship is shown for 
Los Angeles, California, U.S.A., in Fig. 74. 

According to Berry et al (1963) the negative exponential form is a logical outcome of 
urban land-use theory, but the intercept (city centre density) and the slope (density 
gradient) vary from city to city. In this exercise the aim is to compare the change in the 
intercept and slope of the relationship during the growth of two 'Western cities'—London 
and Chicago—and to relate these changes to some alternative models of city growth. 
Figure 75 A to C is a diagrammatic representation of three possible patterns of change 
in the density-distance relationship through time. These are: 

(a) the 'uniform growth' model, in which growth in population density occurs equally 
at all distance from the city centre; 

(b) the 'suburban growth' model, in which peripheral growth exceeds city-centre 

growth; 
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FIG. (74) POPULATION DENSITIES IN LOS ANGELES, U.S.A. (1940) 
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Year Central density Density gradient 
(OOO's per mile

2
) 

London (after Clark, 1951) 

1801 290 1.35 
1841 800 1.40 
1871 290 0.65 
1901 210 0.45 
1921 180 0.35 
1939 80 0.20 

Chicago (after Berry et al, 1963) 

1860 30 0.91 
1880 97 0.79 
1900 100 0.40 
1920 73 0.25 
1940 71 0.20 
1950 64 0.18 

The graphs should be drawn on semi-logarithmic graph paper (e.g. Fig. 74) and 
the regression equation should be used in the construction of the regression 
lines. 

(b) Describe the graphs. 
3. Evaluate the models in Fig. 75 in relation to the evidence from London and Chicago. 
4. The aim of this question is to test further the extent to which one of the models in 

Fig. 75 gives a true picture of the growth of London and Chicago. Use whichever of the 
models appears to be the best representation of reality. 

(a) Draw graphs of density gradient against time and of central density against time for 
London and Chicago. 

(b) Note that the models in Fig. 75 suggest linear relationships in each case. Test, using 
regression analysis, whether the slope of each regresssion line is significantly 
different from zero, and hence whether the model is a good one. 

(c) the 'city-centre growth' model, in which the central density increases faster than 
densities at the periphery. 

It should be recognized that the three models are distinguishable in terms of the intercept 
and slope of regression lines. 

Practical work 

1. Examine Fig. 75 and, in a similar format, construct a fourth model of changes in the 
density-distance relationship through time. 

2. (a) Using the data given in Table 28, draw up accurate graphs of the relationship 
between population density and distance from the city centre for: 

(i) London (1801-1939), 
(ii) Chicago (1860-1950). 

TABLE 28. Results of regression analysis of population densities in Chicago and London 

Regression coefficients 
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5. Construct an improved, revised model of the density-distance relationship through 
time (in the format of Fig. 75) in the light of your answers to questions 1 to 4. 

6. It is generally held that changes in the population density in London and Chicago 
owe much to the provision of mass transport systems, such as steam trains, underground 
(in the case of London) and surface electric trains (in the case of Chicago). 

(a) Discuss how the efficiency and cost of mass transport may influence changes in 
population density with distance from the city centres. 

(b) Given that many non-Western cities have not had the benefit of efficient mass 
transport systems, discuss which model is most likely to 'fit' non-Western cities. 

7. The highest city centre density ever recorded was estimated at greater than 350,000 
per square mile from Lower East Side, New York, in 1900, and archaeologists estimate 
that from the earliest times cities have supported maximum densities of less than half this 
value (Clark, 1951). In the light of the central densities predicted by the regression lines for 
London (particularly the value for 1841) what is the implication for this kind of analysis? 

8. If the data were expressed in 'OOO's per k m
2
, rather than square miles, would the 

following remain the same: 
(a) the value of a (the intercept of the regression line); 
(b) the value of b (the slope of the regression line); 
(c) the value of r (the correlation coefficient); 
(d) the statistical significance of the slope of the regression line. 
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Conclusion: Choice 
and Limitations of 
Statistical Techniques 

"For the most part, Statistics is a method of investigation that is used when other methods are of no avail; 
it is often a last resort and a forlorn hope. A statistical analysis, properly conducted, is a delicate 
dissection of uncertainties, a surgery of suppositions." M. J. Moroney (1956), p.3. 

Choice of a statistical technique for hypothesis testing 

There is no real substitute for practical experience in choosing an appropriate technique 
to assist in solving a particular problem. A simple scheme to help in this choice is given in 
Table 29, which includes those techniques that are covered in this manual and are suitable 
for statistical hypothesis testing; other useful techniques can be found in the textbooks 
listed at the end of the manual under 'Further Reading'. The table employs four criteria to 
determine which technique should be used: 

(a) the nature of the hypothesis; 
(b) the level of measurement of the data; 
(c) the number of samples; 
(d) the nature of the samples (dependent or independent). 
First priority must be given to the nature of the hypothesis, which is determined by the 

purpose of the investigation. Some hypotheses cannot be tackled by the use of techniques 
given in the manual. Examples have been given of hypotheses in which we are interested 
but which cannot be tested directly, such as hypotheses about cause and effect 
relationships discussed in the context of correlation. However, there are few problems 
involving data where the judicious use of statistics does not clarify some issue in 
connection with the problem. Thus although a high correlation coefficient does not 
indicate a cause, it does indicate that a causal relationship is possible and may prompt a 
search for causes. 

Table 29 includes three types of hypothesis that can be tested directly using the 
techniques in the manual. These are: 

(a) hypotheses about differences; 
(b) hypotheses about the strength of relationships; 
(c) hypotheses about the form of relationships. 

In order for a hypothesis to be tested statistically it must be phrased in a testable form; 
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TABLE 29. Choice of an appropriate technique 

Level of Questions about differences Questions about the Questions about 
measurement strength of relationships the form of 

requirement relationships 

1 sample 2 independent 2 dependent > 2 independent > 2 dependent 

samples samples samples samples 2 samples > 2 samples (2 samples) 

N o m i n a l s c a l e O n e - s a m p l e T w o - s a m p l e — χ2 tes t — C o n t i n g e n c y C o n t i n g e n c y — 

χ2 t e s t χ2 t e s t for k s a m p l e s c o e f f i c i e n t (C) c o e f f i c i e n t (C) 

O r d i n a l s c a l e — M a n n - W h i t n e y W i l c o x o n K r u s k a l - W a l l i s F r i e d m a n S p e a r m a n ' s — — 

test ( U ) m a t c h e d - p a i r s a n a l y s i s o f t w o - w a y r a n k 

K o l m o g o r o v - s i g n e d - r a n k s v a r i a n c e by a n a l y s i s o f c o r r e l a t i o n 

S m i r n o v test (Γ) r a n k s {H) v a r i a n c e {χ2) c o e f f i c i e n t 

tes t (D) (r,) 

I n t e r v a l s c a l e O n e - s a m p l e S t u d e n t ' s t- S t u d e n t ' s t- — — P e a r s o n ' s — R e g r e s s i o n 

S t u d e n t ' s test for t w o tes t f o r t w o c o r r e l a t i o n 

/ - t e s t i n d e p e n d e n t d e p e n d e n t c o e f f i c i e n t 

s a m p l e s s a m p l e s (r) 

1
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that is, in the form of a null hypothesis (or a hypothesis of 'no difference'). Reasons for 
this requirement were given at the end of Chapter 9. The danger here is that the hypothesis 
actually tested may not be the one that is required for the purpose of the investigation, 
unless great care is taken over the formulation of hypotheses. When a decision is made 
regarding the null hypothesis, further care is required in the correct interpretation of the 
result. Recall, for example, that 'failing to reject' a null hypothesis does not mean the same 
thing as 'accepting' the null hypothesis (see Chapter 9). 

The level of measurement of the data is important, because particular tests require data 
at particular levels of measurement. Three levels of measurement are recognized in the 
table; these are, in order of increasing precision of measurement: 

(a) nominal scale measurement; 
(b) ordinal scale measurement; 
(c) interval scale measurement. 

Although it is not possible to use data based on a low-precision measurement scale (e.g. 
nominal scale measurements) in a statistical test demanding a high-precision level of 
measurement (e.g. Student's /-tests), it is possible to employ high-precision data (e.g. 
interval scale measurements) in a statistical test with less demanding requirements (e.g. χ

2 

tests) if the data are appropriately 'degraded' to the lower level. It should be borne in 
mind, however, that information is lost if the latter practice is adopted and that, as a 
general rule, a test should be carried out at the highest level of measurement that is 
available (provided that other assumptions of the test are met). 

Different tests are often necessary for different numbers of samples. Table 29 
distinguishes between: 

(a) one-sample tests; 
(b) two-sample tests; 
(c) tests appropriate for more than two samples. 

Some tests, such as the extremely flexible χ
2
 tests, can be used, with only slight 

modifications, for any number of samples, while others, such as the Mann - Whitney test, 
are strictly for a specified number of samples. Although a modified K o l m o g o r o v -
Smirnov test is available for one-sample testing, only the two-sample test has been 
introduced in the manual. An elementary mistake, to be avoided, is the confusion of the 
number of samples with the sample size. An adequate sample size is, of course, required 
for all statistical tests, and may be an additional criterion for selection of a particular 
technique. 

Lastly, the table recognizes the need for different tests for: 
(a) independent samples; 
(b) dependent (matched) samples. 

At first sight, it may be difficult to decide whether or not two samples are independent, but 
it is important to be certain of the nature of the sample for two reasons. Not only is it 
incorrect to apply one category of test to the wrong kind of sample, but failure to 
recognize dependence will result in the loss of important, controlled information (see 
Chapters 9 and 12). Although tests that are suited to dependent samples are based on 
matched-pairs or matched-sets of data, they still require the pairs or sets to be 
independent of each other. 

Additional assumptions of individual tests have been outlined in their respective 
chapters and the more stringent assumptions of the parametric tests (those along the 
bottom row of Table 29) are discussed further in the following section. 
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On the limitations of a statistical approach 

Some limitations of the various statistical techniques that have been considered in the 
present and preceding chapters will be already apparent. The purpose of this section is to 
summarize and discuss these limitations. An understanding of limitations is essential for 
evaluating the use of any technique to be found in the geographical literature, and is 
particularly necessary if a technique is to be used in a dissertation or in any other project. 

Perhaps the greatest limitation of statistics is that they are techniques and as such are 
applied for particular purposes in the context of particular problems; they are one set of 
tools for use in the pursuit of knowledge by scientific method. Two variations on this 
theme require emphasis here. First, elaborate techniques are no substitute for precise and 
accurate data, a point that can be summed up by stating that statistical analyses are only 
as good as the data on which they are based. Second, statistical significance must not be 
confused with geographical significance. For example, Table J shows that if a sample size 
of 100 is employed, then a correlation coefficient of r = 0.2 is statistically significant at 
the 5 % significance level. But a correlation coefficient of 0.2 indicates that only 4 % of the 
variability of one variable is accounted for by variability in the second variable (see the 
coefficient of determination in Chapter 14), which in turn indicates that this level of 
correlation provides us with a very low level of explanation in real terms. Thus one should 
not expect statistics to 'produce' new Geography, only to act as an aid in the imaginative 
analysis of carefully collected data. In short they are a means to an end, not an end in 
themselves. 

Probability is the central theme of inferential statistics. Throughout this manual a 5 % 
significance level has usually been employed in the testing of hypotheses, and a 5 % 
significance level is commonly used in geographical applications generally. The precise 
meanings of the term 'significance level', and related terms such as 'confidence level', have 
been emphasized in the manual. However, the arbitrariness of a chosen significance level 
is a very great limitation of statistics, for this makes what appears at first sight to be an 
objective procedure dependent on judgement. For example, there is no definite level at 
which a difference between two samples establishes with certainty a difference between the 
corresponding populations; there is always a possibility of a wrong decision, albeit at a 
known level of probability. On the other hand, some geographers have argued that the 
commonly used significance levels are too stringent, that relationships and differences 
that are significant at the 5 % level are obvious anyway (with the consequence that 
statistics are not required to tell us so) and that many weak relationships that would be 
thrown out using a 5 % significance level should be retained for deeper investigation 
(Gould, 1970). The arbitrariness of the significance level also means that inferential tests 
are easily abused by choice of significance level after the test has been performed. The last 
point is more a human limitation than a limitation of statistics, however. A significance 
level should be chosen before a test is carried out (with due regard to the seriousness of 
making a wrong decision) or the precise level of significance should be quoted for each 
test. If the latter procedure is adopted then the arbitrariness remains to be resolved by the 
reader rather than the investigator. 

All the techniques considered in the manual are limited by one or more assumptions 
relating to the sampling scheme, the data and/or the underlying population. Random 
sampling has been assumed for most of the techniques, although other objective and 
unbiased sampling schemes (such as systematic sampling) are usually considered equally 
valid bases for statistical inference. A related point, which has caused considerable 
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concern to quantitative geographers in recent years, is the difficulty of distinguishing 
between population and sample in some applications. For example, in Exercise 17 on the 
planning regions of Mid-Glamorgan, South Wales, socio-economic data for the 113 
wards were used to test whether or not the four regions differed. Some would argue that 
we used the population for each region (rather than samples). If this was so, then 
inferential statistics (which make inferences about underlying populations) would be 
inappropriate. The problem can be circumvented by considering a theoretical population, 
from which the actual Mid-Glamorgan situation is considered to be one possible sample 
outcome. When we asked 'are the differences between the regions greater than are likely to 
have resulted by chance?' we were in effect saying that there are many possible outcomes 
that could occur by chance (in theory) and testing whether or not the measured situation 
might be one of them. In other words, is the observed pattern a non-random outcome or 
not, or can the observed pattern be regarded as the result of a random (stochastic) process 
or not? This way of looking at the problem has been termed inferential statistics in a 
natural sampling context (Silk, 1979) to distinguish it from the use of inferential statistics 
in an artificial sampling context; an example of the latter being the random sampling of a 
number of individuals from a real-world population of individuals. 

A major distinction has been made between parametric and non-parametric statistics 
because there are major differences in their statistical assumptions. In particular, the more 
demanding requirements of the parametric tests (such as normality, linearity and 
homoscedasticity) present a problem. When all of these assumptions are met by the data 
under analysis, a parametric test is preferable to a non-parametric alternative. When the 
assumptions are not met, then four alternatives are available: 

(a) apply the parametric test without satisfying its assumptions; 
(b) apply the parametric test after data transformation(s); 
(c) apply a non-parametric test; 
(d) apply both parametric and non-parametric tests in parallel. 

There is evidence to suggest that many parametric tests are quite robust, meaning that 
they are insensitive to moderate violations of their assumptions (Norcliffe, 1977). More 
research is necessary, however, on the degree of departure from the ideal which can be 
tolerated. There are as yet no well-founded guidelines for the user to follow. Transform-
ations may sometimes satisfy the normality and linearity assumptions of parametric tests, 
but only fairly simple transformations (such as the use of logarithms and square roots) are 
usually interprétable in a meaningful way. The non-parametric tests have many attractive 
features that recommend them for geographical application, but less is known about their 
limitations, which have not been so thoroughly explored as the limitations of the 
parametric tests. The most important advantage of the non-parametric techniques is their 
ready application to data that are only available at low levels of measurement (such as 
nominal and ordinal scales). Their most important disadvantage lies in their use of less 
information about the individuals being analysed; when all the assumptions of the 
equivalent parametric test are met, the power-efficiency of the equivalent non-parametric 
test is therefore less (that is, a larger sample size is necessary in the case of a non-
parametric test to be equally effective in the rejection of null hypotheses). One method of 
overcoming such difficulties is to apply both parametric and non-parametric tests to the 
same data. The difficulty of using both kinds of test in parallel arises if they disagree, a 
result that may well arise in borderline cases where a clear-cut decision would be most 
valuable. 
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The multivariate nature of the real world places further constraints on the use of 
statistics. This is clearly demonstrated with reference to the techniques of correlation and 
regression. There are often many more than two variables interacting in any real-world 
situation so that a consideration of only two variables contributes, at best, only a 
partial explanation. Although the manual contains only three techniques that are 
applicable to more than two samples (χ

2
 tests, the Friedman test and the K r u s k a l -

Wallis test), there is a vast field of statistics-multivariate statistics-which takes this 
kind of analysis much further. Nevertheless, many insights can be obtained into complex 
real world problems by the careful use of one-and two-sample tests. 

Most of the statistical techniques in the manual are appropriate for independent 
samples, although some tests for two or more dependent samples have been considered 
and other issues of non-independence were introduced in the context of time-series 
analysis in Chapter 5. Time-dependence is related in principle to spatial-dependence 
(spatial autocorrelation) which is manifest as gradients and clusters on maps, and lies at 
the very roots of Geography. In Geography, the central concern is often with spatial 
populations distributed over the earth's surface, whereas statistical theory is based largely 
on abstract statistical populations distributed along a measurement scale. Thus most 
statistics can be said to ignore spatial co-ordinates. Can techniques designed for non-
spatial populations be transferred to spatial populations? A random sample from a map is 
not a random sample from a non-spatial sampling frame unless the individuals are 
randomly distributed in space. Yet the phenomenon of spatial autocorrelation describes 
the common situation of non-random spatial distributions. Given the existence of non-
random spatial distributions, the scale at which a problem is considered and the choice of 
areal units will lead to different results with the same technique. These fundamental points 
have often been neglected in the enthusiasms of the application of statistics to Geography 
and have led some geographers to stress the need for spatial statistics (rather than the 
application of statistical techniques in geographical contexts). In this respect, the design 
and investigation of measures of spatial autocorrelation form one of the most important 
frontiers of quantitative Geography today. 

The above discussion shows that the limitations of a statistical approach to Geography 
are not inconsiderable; they are the limitations of particular statistical techniques, of 
statistics in general and of statistics in Geography. However, wherever anything is 
measured and wherever there is an attempt to assess variability in the form of numbers, 
there is the necessity to define our uncertainty and to specify significance. To obtain such 
benefits while avoiding many pitfalls requires some effort. The encouragement of clear 
logical thinking in the application of statistics, such as in the formulation and testing of 
hypotheses, is an additional bonus. At the present time the debate in Geography is not 
whether statistics should be applied but how they should best be used in the accumulation 
of reliable geographical knowledge. What can be said with certainty is that the only way to 
proceed is for more geographers to become competent in statistics (and vice versa). 

Exercise 24: Choosing an appropriate technique for particular purposes. 

Background 

This exercise is concerned with choosing techniques, rather than carrying them out. 
There may be a number of alternative techniques that are equally suited to the solution of 
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a particular problem posed. More usually, however, one particular technique is more 
suitable than any other included in the manual. In answering the questions the most 
important point is to give full justification for your choice of technique, to give reasons for 
rejection of other possibilities, and to point out any limitations or uncertainties remaining 
after the chosen technique has been applied. 

Practical work 

1. (a) A research worker in Ghana is studying the distribution of an eye infection 
known as 'river blindness'. He knows the number of infected people in a random sample 
of 100 people living on a river flood plain and in a second random sample of 200 people 
living on the neighbouring plateau. How can he test the hypothesis that the incidence of 
infection on the flood plain is the same as on the plateau? 

(b) I n a second survey, the same worker has collected data on the level of infection in a 
sample of twenty villages. He knows the proportion of the population infected in each 
village and the distance of each village from the river, (i) How could he test whether or not 
there is a significant relationship between the level of infection and distance from the 
river? (ii) How could he best estimate the likely level of infection at a village located at a 
known distance from the river? 

2. (a) A sample survey of chalk grassland was conducted in a single valley in south-
east England, based on 190 quadrats located at the intersection of a grid. A previously 
conducted, detailed, regional survey revealed that there are, on average, fifteen species per 
square metre in chalk grassland generally. How can a decision be reached on whether or 
not the sample valley is suitable for: (i) a detailed case study of the chalk grassland 
ecosystem; and (ii) the establishment of a nature reserve? 

(b) The same sample survey showed that two particular plant species were found 
growing together in fifty quadrats; in ninety quadrats neither of the species were found; in 
twenty-five quadrats the first species occurred, but not the second species. What statistical 
test could the investigator carry out to help him decide whether or not the two species 
belong to the same plant community? 

3. A recent earthquake in Turkey resulted in the following number of deaths in fifteen 
villages located at increasing distances from the earthquake epicentre: 520, 410, 320, 310, 
50, 210, 250, 400, 100, 100, 20, 50, 80, 90, 200. 

(a) If no further information is available, how can these data be used to decide if 
proximity to the earthquake epicentre increased significantly the number of casualities? 

(b) In what ways could the answer be improved if the following information is known: 
(i) the population of the villages; (ii) the precise distance of each village from the epicentre; 
(iii) a map showing the location of the villages? 

4. A random sample of thirty-three urban counties and nineteen rural counties in the 
U.S.A. showed that at a presidential election the mean percentage voting Democrat was 
5 7 % ( . = 11 %) and 5 2 % ( 5 = 1 4 % ) , respectively. 

(a) How might one test the contention that the level of Democratic support was higher 
in urban counties than in rural counties? 

(b) Given that in the previous election the urban counties of the U.S.A. voted, on 
average, 65 % Republican and 34 % Democrat, how could the sample data be used 
to decide whether or not there was a significant swing to the Democrats in urban 
areas? 
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Voting 
preference Protestants Catholics Others 

Conservatives 126 61 38 
Labour 71 93 69 
Others 19 14 27 

(a) On the basis of these findings, how could the idea that religious affiliation influences 
voting behaviour be tested? 

(b) How could these data be used to determine whether Catholics vote differently from 
the remainder of the population? 

6. In a study of rates of weathering, the thickness of weathering rinds (measured to the 
nearest 0.01 mm) were examined on boulders deposited by a glacier in the mountains of 
British Columbia. Fifty boulders were measured of each of four rock types on each of four 
moraines of known age. How could each of the following hypotheses be tested: 

(a) Rock type influences weathering rind thickness, on surfaces of the same age? 
(b) Weathering proceeds at a constant rate, for a particular rock type? 
(c) Weathering rate does not differ between rock types? 
7. Five alternative sites are being considered for a new airport close to a major city in 

the United Kingdom. A random sample of 500 citizens are asked to place the five sites in 
order of preference. 

(a) What statistical test could be used to determine whether or not there is agreement 
amongst the public as to their preference? 

(b) What test would be appropriate if there were only two prospective sites? 
8. A tidal study is being made in a shallow bay in the West Indies, using coloured 

pebbles and observing their direction of movement. Observations were made on the 
pebbles over two periods, each of 60 consecutive days. The number of pebbles that had 
moved in each period were: 

Direction of 
movement Period 1 Period 2 

Ν 9 10 
NE 15 13 
Ε 8 9 
SE 6 6 
S 6 5 
sw 2 3 
N 4 6 
NW 10 8 

(a) How can a test be made of whether or not there was a significant movement in any 
one direction, in either period? 

(b) What test is appropriate to decide whether or not there was a significant difference 
between the results in the two periods? 

9. Four districts (A to D) in Nigeria have approximately the same area and population 
but different numbers of primary schools (32, 30, 48 and 50, respectively). The chiefs in 
districts A and Β feel that their districts are neglected by central government, whereas in 

5. Religious affiliation and voting preference were inter-related by means of a sample 
survey in an English city. The numbers of people involved in each category were: 
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Rock type No . of springs % of the area 

Calcareous marl 18 45 
Limestone 26 32 
Sandstone 5 23 

How can a test be made of the proposition that the frequency of springs is controlled by 
rock type? 

14. Von Thunen's theory concerns the zonation of land uses around a city market. 
How could the following data be used to test whether or not land uses fall into zones based 
on distance from the city: 

Distance from the 
city centre 

(km) 

No . of farms according to land use Distance from the 
city centre 

(km) Horticulture Crops Dairying Beef 

0-24 .9 50 20 20 10 
25-89 .9 40 110 20 30 
90 -190 15 10 60 15 

> 190 50 10 20 70 

QSAG - M 

districts C and D the chiefs argue that the differences in the selection processes are 
'accidental' and are not due to government bias (although the prime minister was born in 
region D). How could the arguments be analysed statistically? 

10. (a) The organic matter content of the surface horizon of soil in an area of 
heathland was sampled at fifty sites and a comparable sample was taken from a 
neighbouring area of pine forest. Organic matter content was expressed in 
grammes of carbon per 1 kg of soil (wet weight). What statistical test could be 
used to determine whether or not the organic content of the heathland soil 
differs from that of the pine forest? 

(b) A second study was made of the organic matter changes that accompanied the 
afforestation of an area of heathland by a pine plantation. Prior to 
afforestation, fifty sites were selected and from each site a soil sample was 
retained. Twenty-five years after afforestation, soil samples were taken from 
the same sites. How could a statistical test help in determining whether or not 
afforestation produced a change in the organic content of these soils? 

11. For a factory to be located on a flood plain, it should gain more from locational 
advantages than is lost through flood damage. A factory is built on a flood plain on which 
flood levels reach an average depth of 3 m (with a standard deviation of 1.5 m). Assuming 
that all perishable goods are located on the second floor at 5.5 m above the flood plain, 
and given that profits are such that this firm can stand losses in 1 year in 5, how could a 
decision be made on whether or not investment in this firm is well founded? 

12. The height of a river terrace was measured at 25 m intervals in a straight line 
parallel to the present course of the river. In theory such terraces have a regular, smooth 
slope, but in practice irregularities are common. What technique could be used to 
approximate the theoretical surface? 

13. The following figures are concerned with the distribution of springs in a region with 
three different rock types: 



Further Reading 

THERE is a large number of textbooks on quantitative and statistical techniques written 
specifically for use by geographers. These should be consulted for further information on 
the various techniques included in the manual and for an introduction to other and more 
advanced techniques. 

A relatively simple treatment is given in: 
1. Hammond, P. and McCullagh, P. S. (1978) Quantitative Techniques in Geography: An Introduction. Oxford 

University Press, Oxford. 

A more advanced text, giving a full discussion of statistical principles and many short exercises which give 
an indication of the range of possible applications is: 

2. Silk, J. (1979) Statistical Concepts in Geography. George Allen & Unwin, London. 
A thorough treatment of inferential statistics with interesting comments on applications in the geographical 

literature is given in: 
3. Norcliffe, G. B. (1977) Inferential Statistics for Geographers. Hutchinson, London. 

A broader view of quantitative approaches to Geography is taken by: 
4. Taylor, P. J. (1977) Quantitative Techniques in Geography: An Introduction to Spatial Analysis. Houghton 

MifThin, Boston. 

A formal treatment with many techniques not included in the other texts, but rather difficult reading, is 
found in: 

5. Lewis, P. (1977) Maps and Statistics. Methuen, London. 
Clearly presented worked examples are given in: 

6. Ebdon, D. (1977) Statistics in Geography: A Practical Approach. Blackwell, Oxford. 
The earliest introductory textbook on statistics in Geography, which has been revised and still has much to 

recommend it is: 
7. Gregory, S. (1978) Statistical Methods and the Geographer. Longman, London. 

A readable account, with useful examples, but limited to Human Geography is: 

8. Smith, D. M. (1975) Patterns in Human Geography. Penguin Books, Harmondsworth, Middlesex. 
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Answers to 
Numerical Questions 

Exercise 4 
Ql. Mean 491.4 350.2 411.7 435.5 469.0 363.4 406.9 285.9 255.1 316.2. 

Median 436.0 234.0 421.5 399.5 438.0 333.0 376.5 205.5 220.5 204.0. 

Exercise 5 
Q l . (b) 

Median 
Quartile deviation 

(c) 
Mean 

Standard deviation (à) 

Q3. (a) June 60.5 %; December 44.5 %. 

June December 
53.5 mm 91.6 
22.8 28.0 

63.31 mm 93.02 
38.33 41.39 

Exercise 6 
Q l . (a) 84.13% (or 0.8413). (e) 1.28. 

(b) 2.275 %. (0 1.645. 
(c) 99.730%. (g) 0.270%. 
(d) 81.855%. 

Q2. (a) 72.91%. (f) 0.26 mm 

(b) 14.92%. (g) 12.92%. 
(c) 91.62%. (h) 12 or 13. 

(d) 56.06%. (i) 8.38%. 

(e) 0.26 mm. 
Q3. (a) 3.14%. (c) - 9 9 . 0 6 

(b) 9.34%. (d) +61.49 

Exercise 7 

Ql. (a) 1956 1966 
Belfast 50.0% 69.2% 
Gal way 35.8% 45.2% 
Dublin 44.4% 62.9% 
Cork 41.3% 54.4% 
Edinburgh 69.2% 82.1% 
Manchester 70.5% 88.1% 
etc. 

Exercise 8 
Q l . (a) 1735-39 29.48 (b) 1735-39 21.92 

1736-40 29.44 1736-40 23.14 
1737-41 28.74 1737-41 27.20 
1738^*2 27.86 1738-42 32.74 
1739-43 27.88 1739-43 33.86 
etc. etc. 

QSAG - M* 
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(a) Sample size 

Probability level 10 25 60 oo 
90% 1.833 1.711 1.671 1.645 

95% 2.262 2.064 2.000 1.960 

99% 3.250 2.797 2.660 2.576 

(c) All are approximate percentages: 

(i) (i) 90% (i) (Ü) 10% (i) (in) 5% (i) (iv) 45% 

(") (i) 95% (ii) (Ü) 5% (ii) (iii) 2.5% (ii) (iv) 47.5% 

(in) (i) 99% (iü) (Ü) 1 % (iii) (iii) 0.5% (iii) (iv) 49.5% 

(d) (i) 1.703. 
(ii) 1.703. 

(iii) 1.703. 
Q2. (a) 63.31 ± 16.998 mm. 

(b) Max. = 111.375 mm; min. = 74.665 mm. 
(d) June 63.31 ± 14.064 mm. 

December 93.02 ± 15.187 mm. 
(f) Less than 99.9% but greater than 99.0%. 
(g) < 0 . 5 % , > 0 . 0 5 % . 

Q3. (a) ± 1 4 0 ± 1 0 9 ± 7 3 ± 7 8 ± 9 6 ± 7 9 ± 1 1 5 ± 7 8 ± 5 0 ± 1 2 8 . 
(c) η = 234. 

17.73. 
5.86. 
0.93. 

±1.87. 

Exercise 12 
Ql . (a) 5.88 

(b) 1.58 
(c) 0.41 
(d) ±0.87 

12.80 13.88 
4.13 4.51 
0.77 0.81 

±1.57 ±1.65 

17.18 14.49 
5.78 4.12 
1.11 0.58 

±2.28 ±1.17 

13.15 14.26 
4.11 3.53 
0.82 0.57 

±1.69 ±1 .16 

15.14 19.56 
5.14 7.45 
0.99 1.34 

±2 .03 ±2.73 

Exercise 13 
Answers are given for Farndale. 

Ql . (b) N&E (includes NW): χ = 709.375; σ = 57.6447. 
S&W (includes SE): χ = 795.606; σ = 119.8681. 

(c) At 5 % significance level, with 47 degrees of freedom, and calculated t statistic of 3.40, the hypothesis of 
'no différence' is rejected. 

Q2. (a) (i) t = 13.228 (with 15 degrees of freedom and a 5 % significance level, the hypothesis of 'no difference' 
is rejected.) 

(ii) t = 5.003 (32 degrees of freedom). 
(iii) t = 8.371 (48 degrees of freedom), 

(b) > 99.9 % in all cases. 
Q3. (a) x D = 5.8776; s D = 6.6964. 

(b) / = 6.0810 (48 degrees of freedom). The difference is significant at the 5% significance level. 

(c) < 5 % . 
Q4. Also significant at the 5% level (use the 10% column of Table C). 

Exercise 9 
Q5. (a) χ 697.517; σ 871.369. 

(b) χ 2.55160; σ 0.50635 (using a log-transformation). 
Q6. (a) 80.07 dollars. 

(b) Min. in richest 10% = 1584 dollars. (c) 93.19%. 
Max. in poorest 10% = 80dollars. (d) 0.0681. 

Q7. (a) χ = 2.214 76 (164 dollars); σ = 0.33264 (using a log-transformation). 
(b) χ = 2.651 22 (448 dollars); σ = 0.263 12. 
(c) χ = 2.407 45 (256 dollars); σ = 0.49746. 
(d) χ = 3.267 19 (1850 dollars); σ = 0.211 92. 

Q8. (a) Min. in richest 10% = 437 dollars; max. in poorest 10% = 62 dollars. 
(b) Min. in richest 10% = 973 dollars; max. in poorest 10% = 206 dollars. 
(c) Min. in richest 10% = 1107 dollars; max. in poorest 10% = 59 dollars. 
(d) Min. in richest 10% = 3454 dollars; max. in poorest 10% = 991 dollars. 

Exercise 11 
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Exercise 14 
Q3. (a) χ

2
 = 76.45 (degrees of freedom = 3). The difference is significant at the 5 % level (and all tabulated 

significance levels). 

(b) χ
2
 = 35.89 (degrees of freedom = 1). The difference is significant at the 5 % level (and all tabulated 

significance levels). 

(c) χ
2
 = 7.44 (degrees of freedom = 2). The difference is significant at the 5 % level (but not at the 1 % level). 

Q4. (a) After combining Ν and Ε aspects to make expected frequencies sufficiently large, χ
2
 = 1.523 (degrees of 

freedom = 2 for a 3 χ 2 contingency table). Cannot reject the hypothesis of 'no difference' at the 5 % 
level (or 1 % level). 

(b) χ
2
 = 2.05 (with 1 degree of freedom for a 2 χ 2 contingency table). 

(c) χ
2
 = 3.949 (with 2 degrees of freedom for a 3 χ 2 contingency table). 

Q5. (a) Test not valid because two cells have expected frequencies below 5. 
(b) Test not valid because two cells have expected frequencies below 5. 

(c) χ
2
 = 7.943 (degrees of freedom = 2 for a 3 χ 2 contingency table). The hypothesis of 'no difference' 

cannot be rejected at the 5% level (only at the 10% level). 

Exercise 15 

Q l . (a) After combining categories to form two columns, χ
2
 = 18.70 (with 2 degrees of freedom for a 2 χ 3 

contingency table). The hypothesis of 'no difference' is rejected at the 5 % level (and at all the tabulated 
significance levels), 

(b) Woodland versus farmland. 
After combining categories to form two columns, χ

2
 = 0.0174 (with one degree of freedom for a 2 χ 2 

contingency table), the hypothesis of 'no difference' cannot be rejected at the 5 % level (or at the 10 % 
level). 

(b) Farmland versus moorland. 
After combining categories to form two columns, χ

2
 = 16.70 (with 1 degree of freedom for a 2 χ 2 

contingency table), the hypothesis o f 'no difference' is rejected at the 5 % level (and at all the tabulated 
significance levels), 

(b) Woodland versus moorland. 

χ
2
 = 21.65 (with 2 degrees of freedom for a 2 χ 3 contingency table). The hypothesis of 'no difference' is 

rejected at all tabulated significance levels. 

Exercise 16 
Q l . (a) D = 0.31 (tabulated D = 0.1822 at the 5% level of significance). The hypothesis of 'no difference' is 

rejected at the 5 % significance level (and at all tabulated significance levels). 

(b) D = 0.41. The hypothesis o f ' n o difference' is rejected at all the tabulated significance levels. 
(c) D = 0.28. The hypothesis of 'no difference' is rejected at all the tabulated significance levels. 

Exercise 17 
Q l . Η = 68.2. Using Table D, with 3 degrees of freedom, the hypothesis o f 'no difference' is rejected at the 5 % 

level (and at all the tabulated significance levels). 

Exercise 18 
Q l . (a) Teeth 4.06; notches 6.73. (c) Teeth 10.72; notches 19.41. 

(b) Teeth 38.00; notches 41.05. (d) Teeth 19.22; notches 22.55. 
Q3. (a) U = 84 (a significant difference at the 5% and 1 % levels). 

(b) U = 73.5 (not a significant difference at the 5 % level, only at the 10% significance level). 
(c) U = 63.5 (not a significant difference at the 5% level, or at the 10% level). 
(d) U = 86 (a significant difference at the 5 % and 1 % levels). 

Q5. (a) Τ — 3 (a significant difference at the 5 % and 2 % levels). 

(b) Τ — 14.5 (not a significant difference at the 5% or 10% levels). 

Exercise 19 
Q l . (a) χ

2
 = 16.9. Using Table D with 2 degrees of freedom, the difference is significant at the 5 % level (and at 

all tabulated significance levels). 
Q3. (b) xf = 98.9. Using Table D with 8 degrees of freedom, the difference is significant at the 5 % level (and at 

all tabulated significance levels). 
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Exercise 21 
Q2. (i) rs = +0 .754 (significant at the 5% 

(Ü) rs = - 0 . 7 0 8 (significant at the 5% 
(iii) rs = + 0.505 (not significant at the 
(iv) rs = +0.305 (not significant at the 

level and at all tabulated significance levels), 
level and also at the 1 % level). 
5% level, only at the 10% level with η = 12). 
5% level, or at the 10% level). 

Exercise 22 
Ql . (c) r = - 0 .5945 . 

(d) y = 3 .5458-0 .2547 χ. 
Q2. (a) t = 4.9596 (significant at all tabulated significance levels). 

(b) r
2
 = 0.3534 (or 35.34%). 

Q3. (a) 2.02 C. 

(b) 3.55 C (a coefficient). 
(c) - 1.53 C (b coefficient). 

Exercise 20 

Q3. (a) r = - 0 . 7 3 (/ = 7.477 with 49 degrees of freedom). The relationship is significant at the 5% level. 

(b) r = +0.21 (t = 1.4568 with 46 degrees of freedom). The relationship is not significant at the 5% level 

(only at the 20% significance level). 

(c) r = + 0.55 (t = 4.4665 with 46 degrees of freedom). The relationship is significant at the 5 % level. 



Appendix: Statistical Tables 

TABLE A. Tables oj the ζ statistic {the normal distribution function) 

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 
0.41 
0.42 
0.43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.50 

0.5000 
0.5040 
0.5080 
0.5120 
0.5160 
0.5199 
0.5239 
0.5279 
0.5319 
0.5359 
0.5398 
0.5438 
0.5478 
0.5517 
0.5557 
0.5596 
0.5636 
0.5675 
0.5714 
0.5753 
0.5793 
0.5832 
0.5871 
0.5910 
0.5948 
0.5987 
0.6026 
0.6064 
0.6103 
0.6141 
0.6179 
0.6217 
0.6255 
0.6293 
0.6331 
0.6368 
0.6406 
0.6443 
0.6480 
0.6517 
0.6554 
0.6591 
0.6628 
0.6664 
0.6700 
0.6736 
0.6772 
0.6808 
0.6844 
0.6879 
0.6915 

0.50 
0.51 
0.52 
0.53 
0.54 
0.55 
0.56 
0.57 
0.58 
0.59 
0.60 
0.61 
0.62 
0.63 
0.64 
0.65 
0.66 
0.67 
0.68 
0.69 
0.70 
0.71 
0.72 
0.73 
0.74 
0.75 
0.76 
0.77 
0.78 
0.79 
0.80 
0.81 
0.82 
0.83 
0.84 
0.85 
0.86 
0.87 
0.88 
0.89 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 
1.00 

0.6915 
0.6950 
0.6985 
0.7019 
0.7054 
0.7088 
0.7123 
0.7157 
0.7190 
0.7224 
0.7257 
0.7291 
0.7324 
0.7357 
0.7389 
0.7422 
0.7454 
0.7486 
0.7517 
0.7549 
0.7580 
0.7611 
0.7642 
0.7673 
0.7704 
0.7734 
0.7764 
0.7794 
0.7823 
0.7852 
0.7881 
0.7910 
0.7939 
0.7967 
0.7995 
0.8023 
0.8051 
0.8078 
0.8106 
0.8133 
0.8159 
0.8186 
0.8212 
0.8238 
0.8264 
0.8289 
0.8315 
0.8340 
0.8365 
0.8389 
0.8413 

1.00 
1.01 
1.02 
1.03 
1.04 
1.05 
1.06 
1.07 
1.08 
1.09 
1.10 
1.11 
1.12 
1.13 
1.14 
1.15 
1.16 
1.17 
1.18 
1.19 
1.20 
1.21 
1.22 
1.23 
1.24 
1.25 
1.26 
1.27 
1.28 
1.29 
1.30 
1.31 
1.32 
1.33 
1.34 
1.35 
1.36 
1.37 
1.38 
1.39 
1.40 
1.41 
1.42 
1.43 
1.44 
1.45 
1.46 
1.47 
1.48 
1.49 
1.50 

0.8413 
0.8438 
0.8461 
0.8485 
0.8508 
0.8531 
0.8554 
0.8577 
0.8599 
0.8621 
0.8643 
0.8665 
0.8686 
0.8708 
0.8729 
0.8749 
0.8770 
0.8790 
0.8810 
0.8830 
0.8849 
0.8869 
0.8888 
0.8907 
0.8925 
0.8944 
0.8962 
0.8980 
0.8997 
0.9015 
0.9032 
0.9049 
0.9066 
0.9082 
0.9099 
0.9115 
0.9131 
0.9147 
0.9162 
0.9177 
0.9192 
0.9207 
0.9222 
0.9236 
0.9251 
0.9265 
0.9279 
0.9292 
0.9306 
0.9319 
0.9332 

1.50 
1.51 
1.52 
1.53 
1.54 
1.55 
1.56 
1.57 
1.58 
1.59 
1.60 
1.61 
1.62 
1.63 
1.64 
1.65 
1.66 
1.67 
1.68 
1.69 
1.70 
1.71 
1.72 
1.73 
1.74 
1.75 
1.76 
1.77 
1.78 
1.79 
1.80 
1.81 
1.82 
1.83 
1.84 
1.85 
1.86 
1.87 
1.88 
1.89 
1.90 
1.91 
1.92 
1.93 
1.94 
1.95 
1.96 
1.97 
1.98 
1.99 
2.00 

0.9332 
0.9345 
0.9357 
0.9370 
0.9382 
0.9394 
0.9406 
0.9418 
0.9429 
0.9441 
0.9452 
0.9463 
0.9474 
0.9484 
0.9495 
0.9505 
0.9515 
0.9525 
0.9535 
0.9545 
0.9554 
0.9564 
0.9573 
0.9582 
0.9591 
0.9599 
0.9608 
0.9616 
0.9625 
0.9633 
0.9641 
0.9649 
0.9656 
0.9664 
0.9671 
0.9678 
0.9686 
0.9693 
0.9699 
0.9706 
0.9713 
0.9719 
0.9726 
0.9732 
0.9738 
0.9744 
0.9750 
0.9756 
0.9761 
0.9767 
0.9772 

2.00 
2.01 
2.02 
2.03 
2.04 
2.05 
2.06 
2.07 
2.08 
2.09 
2.10 
2.11 
2.12 
2.13 
2.14 
2.15 
2.16 
2.17 
2.18 
2.19 
2.20 
2.21 
2.22 
2.23 
2.24 
2.25 
2.26 
2.27 
2.28 
2.29 
2.30 
2.31 
2.32 
2.33 
2.34 
2.35 
2.36 
2.37 
2.38 
2.39 
2.40 
2.41 
2.42 
2.43 
2.44 
2.45 
2.46 
2.47 
2.48 
2.49 
2.50 

0.97725 
0.97778 
0.97831 
0.97882 
0.97932 
0.97982 
0.98030 
0.98077 
0.98124 
0.98169 
0.98214 
0.98257 
0.98300 
0.98341 
0.98382 
0.98422 
0.98461 
0.98500 
0.98537 
0.98574 
0.98610 
0.98645 
0.98679 
0.98713 
0.98745 
0.98778 
0.98809 
0.98840 
0.98870 
0.98899 
0.98928 
0.98956 
0.98983 
0.99010 
0.99036 
0.99061 
0.99086 
0.99111 
0.99134 
0.99158 
0.99180 
0.99202 
0.99224 
0.99245 
0.99266 
0.99286 
0.99305 
0.99324 
0.99343 
0.99361 
0.99379 

2.50 
2.51 
2.52 
2.53 
2.54 
2.55 
2.56 
2.57 
2.58 
2.59 
2.60 
2.61 
2.62 
2.63 
2.64 
2.65 
2.66 
2.67 
2.68 
2.69 
2.70 
2.71 
2.72 
2.73 
2.74 
2.75 
2.76 
2.77 
2.78 
2.79 
2.80 
2.81 
2.82 
2.83 
2.84 
2.85 

0.99379 
0.99396 
0.99413 
0.99430 
0.99446 
0.99461 
0.99477 
0.99492 
0.99506 
0.99520 
0.99534 
0.99547 
0.99560 
0.99573 
0.99585 
0.99598 
0.99609 
0.99621 
0.99632 
0.99643 
0.99653 
0.99664 
0.99674 
0.99683 
0.99693 
0.99702 
0.99711 
0.99720 
0.99728 
0.99736 
0.99744 
0.99752 
0.99760 
0.99767 
0.99774 
0.99781 

2.90 0.99813 

2.95 
3.00 
3.10 
3.20 
3.30 
3.40 
3.50 
3.60 
3.70 
3.80 
3.90 
4.00 

0.99841 
0.99865 
0.99903 
0.99931 
0.99952 
0.99966 
0.99977 
0.99984 
0.99989 
0.99993 
0.99995 
0.99997 

(From Lindley and Miller, 1966.) 
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TABLE B. Tables of random sampling numbers 

57780 97609 52482 12783 88768 12323 64967 22970 11204 37576 
68327 00067 17487 49149 25894 23639 86557 04139 10756 76285 
55888 82253 67464 91628 88764 43598 45481 00331 15900 97699 
84910 44827 31173 44247 56573 91759 79931 26644 27048 53704 
35654 53638 00563 57230 07395 10813 99194 81592 96834 21374 

46381 60071 20835 43110 31842 02855 73446 24456 24268 85291 
11212 06034 77313 66896 47902 63483 09924 83635 30013 61791 
49703 07226 73337 49223 73312 09534 64005 79267 76590 26066 
05482 30340 24606 99042 16536 14267 84084 16198 94852 44305 
92947 65090 47455 90675 89921 13036 92867 04786 76776 18675 

51806 61445 32437 01129 03644 70024 07629 55805 85616 59569 
16383 30577 91319 67998 72423 81307 75192 80443 09651 30068 
30893 85406 42369 71836 74479 68273 78133 34506 68711 58725 
59790 11682 63156 10443 99033 76460 36814 36917 37232 66218 
06271 74980 46094 21881 43525 16516 26393 89082 24343 57546 

93325 61834 40763 81178 17507 90432 50973 35591 36930 03184 
46690 08927 32962 24882 83156 58597 88267 32479 80440 41668 
82041 88942 57572 34539 43812 58483 43779 42718 46798 49079 
14306 04003 91186 70093 62700 99408 72236 52722 37531 24590 
63471 77583 80056 59027 37031 05819 90836 19530 07138 36431 

68467 17634 84211 31776 92996 75644 82043 84157 10877 12536 
94308 57895 08121 07088 65080 51928 74237 00449 86625 06626 
52218 32502 82195 43867 79935 34620 37386 00243 46353 44499 
46586 08309 52702 85464 06670 18796 74713 81632 34056 56461 
07869 80471 69139 82408 33989 44250 79597 15182 14956 70423 

46719 60281 88638 26909 32415 31864 53708 60219 ' 44482 40004 
74687 71227 59716 80619 56816 73807 94150 21991 22901 74351 
42731 50249 11685 54034 12710 35159 00214 19440 61539 25717 
71740 29429 86822 01187 96497 25823 18415 06087 05886 11205 
96746 05938 11828 47727 02522 33147 92846 15010 96725 67903 

27564 81744 51909 36192 45263 33212 71808 24753 72644 74441 
21895 29683 26533 14740 94286 90342 24674 52762 22051 31743 
01492 40778 05988 65760 13468 31132 37106 02723 40202 15824 
55846 19271 22846 80425 00235 34292 72181 24910 25245 81239 
14615 75196 40313 50783 66585 39010 76796 31385 26785 66830 

77848 15755 91938 81915 65312 86956 26195 61525 97406 67988 
87167 03106 52876 31670 23850 13257 77510 42393 53782 32412 
73018 56511 89388 73133 12074 62538 57215 23476 92150 14737 
29247 67792 10593 22772 03407 24319 19525 24672 21182 10765 
17412 09161 34905 44524 20124 85151 25952 81930 43536 39705 

68805 19830 87973 99691 25096 41497 57562 35553 77057 06161 
40551 36740 61851 76158 35441 66188 87728 66375 98049 84604 
90379 06314 21897 42800 63963 44258 14381 90884 66620 14538 
09466 65311 95514 51559 29960 07521 42180 86677 94240 59783 
15821 25078 19388 93798 50820 88254 20504 74158 35756 42100 

10328 60890 05204 30069 79630 31572 63273 13703 52954 72793 
49727 08160 81650 71690 56327 06729 22495 49756 43333 34533 
71118 41798 34541 76432 40522 51521 74382 06305 11956 30611 
53253 23100 03743 48999 37736 92186 19108 69017 21661 17175 
12206 24205 32372 46438 67981 53226 24943 68659 91924 69555 

(From Neave, 1978.) 
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freedom 20% 10% 
3
 / ο 2 % 1% ο.ι% 

1 3.078 6.314 12.706 31.821 63.657 636.619 
2 1.886 2.920 4.303 6.965 9.925 31.598 
3 1.638 2.353 3.182 4.541 5.841 12.941 
4 1.533 2.132 2.776 3.747 4.604 8.610 
5 1.476 2.015 2.571 3.365 4.032 6.869 
6 1.440 1.943 2.447 3.143 3.707 5.959 
7 1.415 1.895 2.365 2.998 3.499 5.408 
8 1.397 1.860 2.306 2.896 3.355 5.041 
9 1.383 1.833 2.262 2.821 3.250 4.781 

10 1.372 1.812 2.228 2.764 3.169 4.587 
11 1.363 1.796 2.201 2.718 3.106 4.437 
12 1.356 1.782 2.179 2.681 3.055 4.318 
13 1.350 1.771 2.160 2.650 3.012 4.221 
14 1.345 1.761 2.145 2.624 2.977 4.140 
15 1.341 1.753 2.131 2.602 2.947 4.073 
16 1.337 1.746 2.120 2.583 2.921 4.015 
17 1.333 1.740 2.110 2.567 2.898 3.965 
18 1.330 . 1.734 2.101 2.552 2.878 3.922 
19 1.328 1.729 2.093 2.539 2.861 3.883 
20 1.325 1.725 2.086 2.528 2.845 3.850 
21 1.323 1.721 2.080 2.518 2.831 3.819 
22 1.321 1.717 2.074 2.508 2.819 3.792 

23 1.319 1.714 2.069 2.500 2.807 3.768 
24 1.318 1.711 2.064 2.492 2.797 3.745 

25 1.316 1.708 2.060 2.485 2.787 3.725 
26 1.315 1.706 2.056 2.479 2.779 3.707 

27 1.314 1.703 2.052 2.473 2.771 3.690 

28 1.313 1.701 2.048 2.467 2.763 3.674 
29 1.311 1.699 2.045 2.462 2.756 3.659 

30 1.310 1.697 2.042 2.457 2.750 3.646 

40 1.303 1.684 2.021 2.423 2.704 3.551 

50 1.299 1.676 2.009 2.403 2.678 3.496 

60 1.296 1.671 2.000 2.390 2.660 3.460 

70 1.294 1.667 1.994 2.381 2.648 3.435 

80 1.292 1.664 1.990 2.374 2.639 3.416 

90 1.291 1.662 1.987 2.368 2.632 3.402 

100 1.290 1.660 1.984 2.364 2.626 3.390 

120 1.289 1.658 1.980 2.358 2.617 3.373 

150 1.287 1.655 1.976 2.351 2.609 3.357 

X 1.282 1.645 1.960 2.326 2.576 3.291 

(From Fisher and Yates, 1974) 

TABLE C. Tables of the Student t statistic 

Degrees Significance level 



TABLE D. Tables of the χ2 statistic 1
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Degrees Significance levei 
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Freedom 9 9 . 5 % 9 9 % 9 7 . 5 % 9 5 % 1 0 % 5 % 2 . 5 % 1% 0 . 5 % 0 . 1 % 
1 0.0000393 0.000157 0.000982 0.00393 2.71 3.84 5.02 6.63 7.88 10.83 
2 0.0100 0.0201 0.0506 0.103 4.61 5.99 7.38 9.21 10.60 13.81 
3 0.0717 0.115 0.216 0.352 6.25 7.81 9.35 1 1.35 12.84 16.27 
4 0.207 0.297 0.484 0.711 7.78 9.49 11.14 13.28 14.86 18.47 
5 0.412 0.554 0.831 1.15 9.24 11.07 12.83 15.09 16.75 20.52 
6 0.676 0.872 1.24 1.64 10.64 12.59 14.45 16.81 18.55 22.46 
7 0.989 1.24 1.69 2.17 12.02 14.07 16.01 18.48 20.28 24.32 
8 1.34 1.65 2.18 2.73 13.36 15.51 17.53 20.09 21.95 26.12 
9 1.73 2.09 2.70 3.33 14.68 16.92 19.02 21.67 23.59 27.88 

10 2.16 2.56 3.25 3.94 15.99 18.31 20.48 23.21 25.19 29.59 
11 2.60 3.05 3.82 4.57 17.28 19.68 21.92 24.73 26.76 31.26 
12 3.07 3.57 4.40 5.23 18.55 21.03 23.34 26.22 28.30 32.91 
13 3.57 4.11 5.01 5.89 19.81 22.36 24.74 27.69 29.82 34.53 
14 4.07 4.66 5.63 6.57 21.06 23.68 26.12 29.14 31.32 36.12 
15 4.60 5.23 6.26 7.26 22.31 25.00 27.49 30.58 32.80 37.70 
16 5.14 5.81 6.91 7.96 23.54 26.30 28.85 32.00 34.27 39.25 
17 5.70 6.41 7.56 8.67 24.77 27.59 30.19 33.41 35.72 40.79 
18 6.26 7.01 8.23 9.39 25.99 28.87 31.53 34.81 37.16 42.31 
19 6.84 7.63 8.91 10.12 27.20 30.14 32.85 36.19 38.58 43.82 
20 7.43 8.26 9.59 10.85 28.41 31.41 34.17 37.57 40.00 45.31 
21 8.03 8.90 10.28 11.59 29.62 32.67 35.48 38.93 41.40 46.80 
22 8.64 9.54 10.98 12.34 30.81 33.92 36.78 40.29 42.80 48.27 
23 9.26 10.20 11.69 13.09 32.01 35.17 38.08 41.64 44.18 49.73 
24 9.89 10.86 12.40 13.85 33.20 36.42 39.36 42.98 45.56 51.18 
25 10.52 11.52 13.12 14.61 34.38 37.65 40.65 44.31 46.93 52.62 
26 11.16 12.20 13.84 15.38 35.56 38.89 41.92 45.64 48.29 54.05 
27 11.81 12.88 14.57 16.15 36.74 40.11 43.19 46.96 49.64 55.48 
28 12.46 13.56 15.31 16.93 37.92 41.34 44.46 48.28 50.99 56.89 
29 13.12 14.26 16.05 17.71 39.09 42.56 45.72 49.59 52.34 58.30 
30 13.79 14.95 16.79 18.49 40.26 43.77 46.98 50.89 53.67 59.70 

40 20.71 22.16 24.43 26.51 51.81 55.76 59.34 63.69 66.77 73.40 
50 27.99 29.71 32.36 34.76 63.17 67.50 71.42 76.15 79.49 86.66 
60 35.53 37.48 40.48 43.19 74.40 79.08 83.30 88.38 91.95 99.61 
70 43.28 45.44 48.76 51.74 85.53 90.53 95.02 100.4 104.2 112.3 
80 51.17 53.54 57.15 60.39 96.58 101.9 106.6 112.3 116.3 124.8 
90 59.20 61.75 65.65 69.13 107.6 113.1 118.1 124.1 128.3 137.2 

100 67.33 70.06 74.22 77.93 118.5 124.3 129.6 135.8 140.2 149.4 
120 83.85 86.92 91.57 95.70 140.2 146.6 152.2 159.0 163.6 173.6 
150 109.1 112.7 118.0 122.7 172.6 179.6 185.8 193.2 198.4 209.3 
200 152.2 156.4 162.7 168.3 226.0 234.0 241.1 249.4 255.3 267.5 

(From Lindley and Miller, 1966, with additions from Neave, 1978.) 
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Significance level 
Sample 
s i ze (M) 5% 1% 

3 
4 1.0000 — 

5 1.0000 1.0000 
6 0.8333 1.0000 
7 0.8571 0.8571 
8 0.7500 0.8750 
9 0.6667 0.7778 

10 0.7000 0.8000 
11 0.6364 0.7273 
12 0.5833 0.6667 
13 0.5385 0.6923 
14 0.5714 0.6429 
15 0.5333 0.6000 
16 0.5000 0.6250 
17 0.4706 0.5882 
18 0.5000 0.5556 
19 0.4737 0.5263 
20 0.4500 0.5500 
21 0.4286 0.5238 
22 0.4091 0.5000 
23 0.4348 0.4783 
24 0.4167 0.5000 
25 0.4000 0.4800 
26 0.3846 0.4615 
27 0.3704 0.4444 
28 0.3929 0.4643 
29 0.3793 0.4483 
30 0.3667 0.4333 

35 0.3429 
40 0.3250 — 

5% 1% 

> 4 0 1.36 /
 1 2 

V nxn2 

1.63 h*"* 

10% o . i % 

> 4 0 1.22 / 1.95 / 
V nxn2 V nxn2 

(From Taylor, 1977.) 

TABLE E. Tables of the Kolmogorov-Smirnov D statistic 
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TABLE F. Tables of the Mann- Whitney U statistic 

Sample sizes Significance level 

nx n2 10% 5% 2 % 1 7 0 .1% 

1 1-15 _ _ _ _ _ 

16 - _ - - -
17 - - - - -
18 - - - - -

19 19 - - - -
20 20 - - - -

30 30 - - - -

2 2 _ _ _ _ -

3 - - - - -
4 - - - - -
5 10 - - - -
6 12 - - - -
7 14 - - - -
8 15 16 - - -
9 17 18 - - -

10 19 20 - - -
11 21 22 - - -
12 22 23 - - -
13 24 25 26 - -
14 25 27 28 - -
15 27 29 30 - -
16 29 31 32 - -
17 31 32 34 - -
18 32 34 36 - -
19 34 36 37 38 -
20 36 38 39 40 -

30 53 55 58 59 -

3 3 9 _ _ _ _ 

4 12 - - - -
5 14 15 - - -
6 16 17 - - -
7 19 20 21 - -
8 21 22 24 - -
9 23 25 26 27 -

10 26 27 29 30 -
11 28 30 32 33 -
12 31 32 34 35 -
13 33 35 37 38 -
14 35 37 40 41 -
15 38 40 42 43 -
16 40 42 45 46 -
17 42 45 47 49 -
18 45 47 50 52 -
19 47 50 53 54 -
20 49 52 55 57 -

30 73 77 81 84 89 
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TABLE F. (cont.) 

Sample sizes Significance level 

10% 5% 2 % 1% 0.1% 

4 4 15 16 _ _ 

5 18 19 20 - -
6 21 22 23 24 -

7 24 25 27 28 -
8 27 28 30 31 -
9 30 32 33 35 -

10 33 35 37 38 -
11 36 38 40 42 -

12 39 41 43 45 -

13 42 44 47 49 52 
14 45 47 50 52 56 
15 48 50 53 55 60 
16 50 53 57 59 63 
17 53 57 60 62 67 
18 56 60 63 66 71 
19 59 63 67 69 74 
20 62 66 70 72 78 

30 92 97 103 107 115 

5 5 21 23 24 25 _ 

6 25 27 28 29 -

7 29 30 32 34 -

8 32 34 36 38 -
9 36 38 40 42 45 

10 39 42 44 46 50 
11 43 46 48 50 54 
12 47 49 52 54 59 
13 50 53 56 58 63 
14 54 57 60 63 68 
15 57 61 64 67 72 
16 61 65 68 71 77 
17 65 68 72 75 81 
18 68 72 76 79 86 
19 72 76 80 83 90 
20 75 80 84 87 95 

30 111 117 124 128 139 

6 6 29 31 33 34 _ 

7 34 36 38 39 -
8 38 40 42 44 48 
9 42 44 47 49 53 

10 46 49 52 54 58 
11 50 53 57 59 64 
12 55 58 61 63 69 
13 59 62 66 68 74 
14 63 67 71 73 79 
15 67 71 75 78 85 
16 71 75 80 83 90 
17 76 80 84 87 95 
18 80 84 89 92 100 
19 84 89 94 97 106 
20 88 93 98 102 111 

30 130 137 145 150 163 
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Sample sizes Significance level 

10% 5 ° / 2 % 1% 0 .1% 

7 7 38 41 43 45 49 
8 43 46 49 50 55 
9 48 51 54 56 61 

10 53 56 59 61 67 
11 58 61 65 67 73 
12 63 66 70 72 79 
13 67 71 75 78 85 
14 72 76 81 83 91 
15 77 81 86 89 97 
16 82 86 91 94 103 
17 86 91 96 100 109 
18 91 96 102 105 115 
19 96 101 107 111 120 
20 101 106 112 116 126 

30 149 156 165 170 185 

8 8 49 51 55 57 62 
9 54 57 61 63 68 

10 60 63 67 69 75 
11 65 69 73 75 82 
12 70 74 79 81 89 
13 76 80 84 87 95 
14 81 86 90 94 102 
15 87 91 96 100 109 
16 92 97 102 106 115 
17 97 102 108 112 122 
18 103 108 114 118 129 
19 108 114 120 124 135 
20 113 119 126 130 142 

30 167 175 185 191 208 

9 9 60 64 67 70 76 
10 66 70 74 77 83 
11 72 76 81 83 91 
12 78 82 87 90 98 
13 84 89 94 97 106 
14 90 95 100 104 113 
15 96 101 107 111 120 
16 102 107 113 117 128 
17 108 114 120 124 135 
18 114 120 126 131 142 
19 120 126 133 138 150 
20 126 132 140 144 157 

30 185 194 205 212 230 

10 10 73 77 81 84 92 
11 79 84 88 92 100 
12 86 91 96 99 108 
13 93 97 103 106 116 
14 99 104 110 114 124 
15 106 111 117 121 132 
16 112 118 124 129 140 
17 119 125 132 136 148 
18 125 132 139 143 156 
19 132 138 146 151 164 
20 138 145 153 158 172 

30 204 213 224 232 252 

TABLE F. {com.) 
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TABLE F. {com.) 

Sample sizes Significance level 

n
i 10% 5% 2 % 1% ο.ι% 

11 11 87 91 96 100 109 
12 94 99 104 108 117 
13 101 106 112 116 126 
14 108 114 120 124 135 
15 115 121 128 132 144 
16 122 129 135 140 152 
17 130 136 143 148 161 
18 137 143 151 156 170 
19 144 151 159 164 178 
20 151 158 167 172 187 

30 222 232 244 252 273 

12 12 102 107 113 117 127 
13 109 115 121 125 136 
14 117 123 130 134 146 
15 125 131 138 143 155 
16 132 139 146 151 165 
17 140 147 155 160 174 
18 148 155 163 169 183 
19 156 163 172 177 193 
20 163 171 180 186 202 

30 240 251 264 272 295 

13 13 118 124 130 135 146 
14 126 132 139 144 157 
15 134 141 148 153 167 
16 143 149 157 163 177 
17 151 158 166 172 187 
18 159 167 175 181 197 
19 167 175 184 190 207 
20 176 184 193 200 217 

30 258 270 283 292 316 

14 14 135 141 149 154 167 
15 144 151 159 164 178 
16 153 160 168 174 189 
17 161 169 178 184 199 
18 170 178 187 194 210 
19 179 188 197 203 221 
20 188 197 207 213 231 

30 276 289 302 312 337 

15 15 153 161 169 174 189 
16 163 170 179 185 201 
17 172 180 189 195 212 
18 182 190 200 206 224 
19 191 200 210 216 235 
20 200 210 220 227 246 

30 294 307 322 331 358 

16 16 173 181 190 196 213 
17 183 191 201 207 225 
18 193 202 212 218 237 
19 203 212 222 230 249 
20 213 222 233 241 261 

30 312 326 341 351 379 
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TABLE F. (com.) 

Sample sizes Significance level 

10% 5% 2 % 1% 0 .1% 

17 17 193 202 212 219 238 

18 204 213 224 231 250 
19 214 224 235 242 263 
20 225 235 247 254 275 

30 330 344 360 371 400 

18 18 215 225 236 243 263 
19 226 236 248 255 277 
20 237 248 260 268 287 

30 348 363 379 390 421 

19 19 238 248 260 268 291 
20 250 261 273 281 304 

30 366 381 398 410 442 

20 20 262 273 286 295 319 

30 384 400 418 430 463 

(From Zar, 1974.) 
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Sample sizes Significance level 

« 1 « 2 « 3 10% 1% 

3 2 1 4.286 
3 2 2 4.500 4.714 — 

3 3 1 4.571 5.143 — 

3 3 2 4.556 5.361 — 

3 3 3 4.622 5.600 7.200 
4 2 1 4.500 — — 

4 2 2 4.458 5.333 — 

4 3 1 4.056 5.208 — 

4 3 2 4.511 5.444 6.444 
4 3 3 4.709 5.727 6.746 
4 4 1 4.167 4.967 6.667 
4 4 2 4.554 5.455 7.036 
4 4 3 4.546 5.598 7.144 
4 4 4 4.654 5.692 7.654 

5 2 1 4.200 5.000 — 

5 2 2 4.373 5.160 6.533 
5 3 1 4.018 4.960 — 

5 3 2 4.651 5.251 6.909 
5 3 3 4.533 5.648 7.079 
5 4 1 3.987 4.986 6.954 
5 4 2 4.541 5.273 7.204 
5 4 3 4.549 5.656 7.445 
5 4 4 4.619 5.657 7.760 
5 5 1 4.109 5.127 7.309 
5 5 2 4.623 5.338 7.338 
5 5 3 5.545 5.705 7.578 
5 5 4 4.523 5.666 7.823 

5 * 5 5 4.560 5.780 8.000 

TABLE G. Tables of the Kruskal-Wallis H statistic 
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Significance level 
Sample size 

(n) 10% 5% 2 % 1% 0.1% 

6 2 _ 

7 3 2 - - -

8 5 3 1 - -

9 8 5 3 1 -

10 10 8 5 3 -

11 13 10 7 5 -

12 17 13 9 7 1 

13 21 17 12 9 2 
14 25 21 15 12 4 
15 

1
 30 25 19 15 6 

16 35 29 23 19 8 
17 41 34 27 23 11 
18 47 40 32 27 14 
19 53 46 37 32 18 
20 60 52 43 37 21 
21 67 58 49 42 25 
22 75 65 55 48 30 
23 83 73 62 54 35 
24 91 81 69 61 40 
25 100 89 76 68 45 
26 110 98 84 75 51 
27 119 107 92 83 57 
28 130 116 101 91 64 
29 140 126 110 100 71 
30 151 137 120 109 78 
31 163 147 130 118 86 
32 175 159 140 128 94 
33 187 170 151 138 102 
34 200 182 162 148 111 
35 213 195 173 159 120 
36 227 208 185 171 130 
37 241 221 198 182 140 
38 256 235 211 194 150 
39 271 249 224 207 161 
40 286 264 238 220 172 

50 466 434 397 373 304 
60 690 648 600 567 476 
70 960 907 846 805 689 
80 1276 1211 1136 1086 943 
90 1638 1560 1471 1410 1240 

100 2045 1955 1850 1779 1578 

(From Zar, 1974) 

TABLE H. Tables of the Wilcoxon Τ statistic 
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Number of Sample Significance level 
samples size samples size 

(*) (n) 10% 5% 2 % 1% 0.1% 

3 3 6.000 6.000 _ 

3 4 6.000 6.500 8.000 8.000 
3 5 5.200 6.400 6.400 8.400 10.(XX) 
3 6 5.333 7.000 8.333 9.000 12.000 
3 7 5.429 7.143 8.000 8.857 12.286 
3 8 5.250 6.250 7.750 9.000 12.250 
3 9 5.556 6.222 8.000 8.667 12.667 
4 2 6.000 6.000 - - _ 
4 3 6.600 7.400 8.200 9.000 _ 
4 4 6.300 7.800 8.400 9.600 11.100 

(From Zar, 1974.) 

TABLE I. Tables oj the Friedman χ
2
 statistic 
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TABLE J. Tables of the Spearman rank correlation coefficient 

Sample Significance level 

size 
(n) 10% 5% 2 % o.i % 

4 1.000 _ _ 
5 0.900 1.000 1.000 - -

6 0.829 0.886 0.943 1.000 -

7 0.714 0.786 0.893 0.929 1.000 
8 0.643 0.738 0.833 0.881 0.976 
9 0.600 0.700 0.783 0.833 0.933 

10 0.564 0.648 0.745 0.794 0.903 
11 0.536 0.618 0.709 0.755 0.873 
12 0.503 0.587 0.678 0.727 0.846 
13 0.484 0.560 0.648 0.703 0.824 
14 0.464 0.538 0.626 0.679 0.802 
15 0.446 0.521 0.604 0.654 0.779 
16 0.429 0.503 0.582 0.635 0.762 
17 0.414 0.485 0.566 0.615 0.748 
18 0.401 0.472 0.550 0.600 0.728 
19 0.391 0.460 0.535 0.584 0.712 
20 0.380 0.447 0.520 0.570 0.696 
21 0.370 0.435 0.508 0.556 0.681 
22 0.361 0.425 0.496 0.544 0.667 
23 0.353 0.415 0.486 0.532 0.654 
24 0.344 0.406 0.476 0.521 0.642 
25 0.337 0.398 0.466 0.511 0.630 
26 0.331 0.390 0.457 0.501 0.619 
27 0.324 0.382 0.448 0.491 0.608 
28 0.317 0.375 0.440 0.483 0.598 
29 0.312 0.368 0.433 0.475 0.589 
30 0.306 0.362 0.425 0.467 0.580 
31 0.301 0.356 0.418 0.459 0.571 
32 0.296 0.350 0.412 0.452 0.563 
33 0.291 0.345 0.405 0.446 0.554 
34 0.287 0.340 0.399 0.439 0.547 
35 0.283 0.335 0.394 0.433 0.539 
36 0.279 0.330 0.388 0.427 0.533 
37 0.275 0.325 0.383 0.421 0.526 
38 0.271 0.321 0.378 0.415 0.519 
39 0.267 0.317 0.373 0.410 0.513 
40 0.264 0.313 0.368 0.405 0.507 

50 0.235 0.279 0.329 0.363 0.456 
60 0.214 0.255 0.300 0.331 0.418 
70 0.198 0.235 0.278 0.307 0.388 
80 0.185 0.220 0.260 0.287 0.363 
90 0.174 0.207 0.245 0.271 0.343 

100 0.165 0.197 0.233 0.257 0.326 

(From Zar, 1974.) 
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Accuracy, precision and validity 1, 4, 62 
Alternative hypotheses (H t) 83, 88 
Analysis of variance 175 
Area (quadrat) sampling 63 
Areal (spatial) sampling · 63, 65 
Arithmetic mean see Mean 
Artificial sampling contexts 175 
Association between variables 138, 148 
Assumptions of statistical tests 175 
Asymmetry of distributions 14, 53 
Attributes of individuals 63 
Autocorrelation 176 
Average see Mean 
Average deviation see Mean deviation 

Bessel's correction 28 
Best estimate of the population standard deviation 

(σ) 29 
Bias in sampling 1, 5, 63 
Bi-modal distribution 14 
Bi-variate normal distribution 144 

'Calculated' statistic 84 
Case studies 5, 63 
Central tendency 13, 24 
Chance see Probability 
Chi-square see χ

2 

Choice of statistical tests 171 
Coefficients 

coefficient of determination (r
2
) 161 

coefficients in regression (intercept, a; slope, b) 
155 

coefficient of variability (or variation) 33 
correlation coefficients 138 

Confidence intervals and limits 70 
Confidence levels 

and significance levels 88 
in relation to statistical hypothesis testing 84 

Contingency coefficient (C) 147 
Contingency tables 94 
Correlation and correlation coefficients 138 

relationship to regression 158 
Covariance 139 
Critical region in statistical hypothesis testing 88 
Cumulative frequency curve 55, 108 
Curve fitting in regression 155 
Curvilinear relationships see Non-linear relationships 
Cyclic fluctuations in time series 46 

D statistic see Kolmogorov-Smirnov test 

Deductive component in scientific method 3 
Degrees of freedom (v) 74 

see also Statistical hypothesis testing 
Dependent samples 46, 86, 114, 173, 176 

spatial dependence 176 
statistical tests for dependent samples 86,114,173 
time dependent samples 46 

Dependent variables in regression (y) 156 
Descriptive statistics 5 
Determination see Coefficient of determination 
Deviation from a mean 26 

average (mean), quartile and standard deviations 
24 

deviation from a median 25 
deviation from a regression line (residuals) 155 

Diflference-of-means test see Two-sample Student's 
t test 

Dispersion diagrams 25 
Dispersion measures 13, 24 
Distribution-free statistics see Non-parametric 

statistics 
Distributions 

distribution of sample means 70 
frequency distribution 13 
sampling distribution 70 
skewed distributions 14, 53 

Efficiency of sampling 62 
Errors see Measurement error; Operator error; 

Sampling errors; Standard errors; Type I and 
Type II errors 

Estimation from samples 6, 62, 70 
Estimation in regression see Prediction 
Expected frequencies in χ

2
 tests 94 

Expected probabilities in sampling distributions 
88 

Explanation in geography 3, 174 
Extrapolation in regression 160 
Extreme cases 14 

Fluctuations in time series 46 
Forecasting see Prediction 
Form of relationships 155 
Frequency curves 25, 55 
Frequency histograms 13 
Friedman two-way analysis of variance by ranks 

127 
tables of the χ

2
 statistic 199 

Geographical data 15, 34, 53, 176 
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H statistic see Kruskal-Wallis test 
Histograms see Frequency histograms 
Homoscedasticity assumption in regression 163 
Hypothesis 

alternative hypothesis ( H J 88 
defined 3 
hypothesis of no difference 83, 88 
null hypothesis (H 0) 88 
Statistical hypothesis testing 6, 83, 171 

see also One-sample, Two-sample and A;-sample 
tests 

Independence of observations 46 
see also Dependence 

Independent evidence 3 
Independent variable (x) in regression 156 
Inductive component in scientific method 3 
Inferential statistics 5 
Intercept coefficient in regression {a) 155 
Inter-quartile range 25 
Interval estimates see Confidence intervals 
Interval scale measurement 4, 173 
'Isoprobs' 42 

Judgement sampling 63 

fc-sample tests 171 
Friedman test for more than two dependent 

samples 127 
Kruskal-Wallis test for more than two independent 

samples 113 
χ

2
 tests for more than two independent samples 

96 
Kolmogorov-Smirnov two-sample test 108 

tables of the D statistic 191 
Kruskal-Wallis test for more than two samples 113 

tables of the Η statistic 197 

Least-squares regression 155 
Level of measurement 4, 173 
Level of statistical significance see Significance level 
Limitations of statistical techniques 174 

see also individual tests 
Line sampling see Transects 
Linear regression 155 
Little Ice Age' 16, 49, 74, 83, 99, 129, 164 

Logarithmic transformation 53, 167 
Long-term trends 46 
Lower quartile 25 

Mann-Whitney two-sample test 110 
tables of the U statistic 192 

Matched-pairs (or sets) of samples see Dependent 
samples 

Mean of a sample (x) 13 
comparing means 84, 86, 110 
distribution of sample means 70 

mean of a population (μ) 62 
running mean 46 
weighted mean 49 

Mean deviation 27 
Mean difference (xD) 87 
Measurement errors 64 
Measurement principles 4 
Measurement scales see Level of measurement 
Median 14, 25 
Minor modes 19 
Mode 14 
Monotonie relationship 147 
Moving average see Running mean 
Multi-modal distribution 14 
Multivariate statistics 176 

Natural sampling contexts 175 
Negative correlation 138 
Negative skew 14 

transformation of negatively skewed distri-
butions 53 

Nominal scale measurement 4, 173 
Non-linear relationships 155 
Non-normality of distributions 14, 53 
Non-parametric statistics 53, 175 
Non-sampling error 64 
Normal distribution 34 

bi-variate normal distribution 144 
tables of the normal distribution function (z) 187 
transformation of data to normality 53 
use of tables of the normal distribution 

function 36 
Norway 49, 74, 78, 83, 111, 129, 160 
Null hypothesis (H 0) 83, 88 

Objectivity 1, 5 
Observation and hypothesis 3 
Observed frequencies in χ

2
 tests 94 

Octiles 25 
One-sample tests 172 

one-sample Student's t test 83 
one-sample χ

2
 test 94 

Operational definitions in sampling 63 
Operator error 64 
Ordinal scale measurement 4, 173 

Paired samples see Dependent samples 
Parameters of a population 62 
Parametric statistics 53, 175 
Pearson's correlation coefficient (r) 138 
Population and sample 5, 62, 175 

best estimate of the population standard deviation 
(σ) 28, 72 

population mean (μ) 62, 70 
population parameters 62 
population size (Λ7) 62, 70 
population standard deviation (σ) 29, 62, 72 
target population 62 

Point sampling 63, 65 
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Positive correlation 138 
Positive skew 14 

transformation of a positively skewed distri-
bution 53 

Power-efficiency of statistical tests 175 
Precision, accuracy and validity 1, 4, 62 
Prediction in regression 155 

prediction in scientific method 3 
prediction in time-series 46 

Probabilistic statistics see Inferential statistics 
Probability 6, 34 
Probability levels in confidence intervals 70 

probability levels in hypothesis testing 83, 88,174 
probability levels in simple probability state-

ments 34 
Probability maps 38, 40 
Probability paper 55 
Probability sampling 63 
Probability statements 6, 34 
Product-moment correlation see Pearson's corre-

lation coefficient 
Purposive sampling see Judgement sampling 

Quadrat sampling 63 
Qualitative versus quantitative statements 1 
Quantification in principle 1 
Quartiles 25 
Quartile deviation 25 
Quintiles 25 

Range 24 
Random numbers 63 

tables of random numbers 188 
Random sampling 63 
Random variation in time-series 46 
Rank correlation 145 
Reduced major axis line (R.M.A.) 157 
Rejection level see Significance levels 
Region of rejection see Critical region 
Regression 155 
Relationships between variables 138, 155 
Relative variability 33 
Representative samples 5, 63 
Residuals from regression 155 
Running mean 46 

Sample size (n) 5, 62, 64 
relationship to the standard deviation 28 
relationship to the standard error of the mean 70 

Sampling 5, 62, 175 
point, area (quadrat) and line (transect) sam-

pling 63 
random, systematic and stratified sampling de-

signs 63 
sampling distribution 70, 88 
sampling error 65, 70 
sampling frames 62 

Scatter graph (scattergram) 141 
Scientific method 3 

Semiquartile range see Inter-quartile range 
Shape indices 7 
Significance levels (a) in statistical hypothesis 

testing 8 3 , 8 8 , 1 7 4 
significance levels in relation to confidence 

intervals 70 
significance levels and simple probability 

statements 34 
Skewed distributions 14 

transformation of skewed distributions to 
normality 53 

Slope coefficient (b) in regression 155 
Spatial autocorrelation 176 
Spatial dependence 176 
Spatial sampling 63, 65 
Spatial statistics 176 
Spearman's rank corrélation coefficient (rs) 145 

tables of the rs statistic 200 
Square-root transformation 53 
Standard deviation 24 

alternative formulae for the standard deviation 29 
best estimate of the population standard deviation 

(σ) 29 
population standard deviation (er) 29 
sample standard deviation (s) 29 
standard deviation of the differences between the 

two means {sD) 87 
standard deviation of the distribution of sample 

means (σχ) 70 
Standard error of the mean (σ^) 70 

standard error of the correlation coefficient 

(&r) ! 4 ! 
standard error of the difference between two means 

standard error of the mean difference ( σ χ ) 87 
Storbreen gletschervorfeld 74, 78, 83, 111 ° 
Stratified sampling 63 
Statistical hypothesis testing see Hypotheses 
Statistics (descriptive and inferential) 5 
Strength of a relationship 138 
Student's t statistic in relation to confidence in-

tervals 74 
tables of the Student's t statistic 189 

Student's t tests 83 
one-sample tests 83 
one-tailed tests 88 
tests involving two dependent means 86 
two-sample (difference of independent means) 

tests 84 
two-tailed tests 88 

Subjectivity 1, 5 
Symmetry of distributions 14, 53 
Systematic sampling 63 

t statistic see Student's t statistic 
Τ statistic see Wilcoxon matched-pairs signed-ranks 

test 
Tabulated' statistic 84, 88 
Target analogue of precision and accuracy 2 
Target population 62 
Testing hypotheses see Hypotheses 
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Three standard deviations' check 36 
Ties in non-parametric statistics 113, 147 
Time dependence 46 
Time-series analysis 46 
Transects 63 
Transformation of data to normality 53, 175 

transformation to linearity 155 
Trends 

long- and short-term 46 
mean see Population mean 

Two-sample tests 171 
Kolmogorov-Smirnov test for two independent 

samples 108 
Mann-Whitney test for two independent sam-

ples 110 
Student's t test for two dependent samples 86 
Student's t test for two independent samples 84 
χ

2
 test for two independent samples 96 

Wilcoxon test for two dependent samples 124 
Type I and Type II errors 88 

U statistic see Mann-Whitney test 
Uncertainty 6, 34, 70, 176 

Upper quartile 25 

Validity, accuracy and precision 1, 4, 62 
Variability of data 1, 24, 138, 176 
Variables, dependent and independent 156 

Weighted mean 49 
Wilcoxon matched-pairs signed-ranks test 124 

tables of the Τ statistic 198 
χ

2
 tests 94 

one-sample tests 94 
tables of the χ

2
 statistic 190 

tests for two or more samples 96 
χ; statistic see Friedman two-way analysis 

variance by ranks 

y intercept see Intercept coefficient in regression 

ζ statistic (the normal distribution function) 36 
tables of the ζ statistic 187 


