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Foreword

It is by now widely appreciated that quantum physics enables tasks that are much
more difficult or even impossible to accomplish by relying on purely classical
phenomena. The applications that benefit from “quantumness” include information
processing (e.g., computing), high-precision measurements, and communications.
The strategies that lead to these benefits vary, and their practical implementations
often have to contend with limitations that are also quantum-specific (e.g., prohi-
bition on cloning or decoherence) and can be “friend or foe”, depending on the
attempted implementation.

The obvious question that arose with the inception of the field quantum infor-
mation concerns the “magic ingredient”, the precise aspect of quantum theory that
is responsible for this “quantum advantage”. Quantum entanglement was the early
suspect, and it remains in a lineup of possible culprits. By now, it is however
abundantly clear that the list of possible suspects should be extended to include
other, less flagrantly quantum correlations (e.g, these with non-zero discord). For
example, while there are quantum algorithms that depend on entanglement in at
least part of their execution, to date there is no general proof that entanglement is
indispensable in every quantum computation. Moreover, in a number of relevant
settings including quantum estimation and communication, one can get an advan-
tage by suitably exploiting discord even in absence of entanglement.

This volume presents a collection of chapters authored by the leading contrib-
utors to the study of general quantum correlations and their applications and is
organized in four parts. The first part of the book discusses the foundations of
quantum correlations beyond entanglement and how to characterize them. Various
forms of quantumness of states are exemplified and several quantitative methods are
introduced, considering both bipartite and multipartite cases. In the second part
of the book, operational interpretations and applications of quantum correlations
come into play. Approaches from broadcasting and distribution of correlations to
quantum metrology and cryptography are revisited, elucidating in particular the
importance of such correlations for quantum information processing. In the third
part of the book, the role of quantum correlations in the dynamics of open systems
is explored. Sudden-change phenomena, robustness to decoherence and revivals are
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among the topics discussed, as well as quantumness indicators in interference and
synchronization effects. Finally, the last part of the book revolves around physical
realizations and experimental demonstrations. Investigations of quantum correla-
tions in different physical systems like nuclear magnetic resonance, solid-state spin
systems, and optical systems are reported.

The whole book samples the diversity of approaches found in the literature along
the past years of research and overall constitutes a comprehensive source to guide
and inspire both experienced researchers and beginners in the fascinating field of
quantum correlations.

Felipe Fernandes Fanchini
Diogo de Oliveira Soares Pinto

Gerardo Adesso
Wojciech H. Zurek
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Part I
Measures of Quantum Correlations

Beyond Entanglement



Foundations of Quantum Discord

Vlatko Vedral

Abstract This paper summarizes the basics of the notion of quantum discord and
how it relates to other types of correlations in quantum physics. We take the funda-
mental information theoretic approach and illustrate our exposition with a number
of simple examples.

1 Introduction

In order to understand quantum discord we need to first understand the difference
between classical and quantum correlations as quantified by mutual information.
Mutual information is originally a classical measure of correlations. It is defined as

I (A, B) = H(A) + H(B) − H(A, B) (1)

where S = −∑
n pn log pn is the Shannon entropy [1] and A and B are two random

variables whose probability distribution is given. There is a different way of writing
this quantity using the conditional entropy, H(A/B) = H(A, B) − H(B), namely,

I (A, B) = H(A) − H(A/B) (2)
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4 V. Vedral

Therefore, there are two equivalent ways of thinking about classical correlations
(there are many more, but they are not necesarily relevant to our topic). One is that
they aremeasured by the difference in the sum of local entropies and the total entropy
and the other one is that they tell us by how much we can reduce the entropy of one
random variable by measuring the other.

When generalizing the concept of mutual information to quantum physics, it
is straightforward to do it using the first expression. All we need do is use the
von Neumann instead of the Shannon entropy. The quantum mutual information is
defined as

IQ = S(A) + S(B) − S(A, B) (3)

where S(A) = −trρA log ρA and the subscript Q just indicates that this is a quantum
measure. The second expression for themutual information, involving the conditional
entropy, is, however, harder to upgrade to quantum physics. The reason is that if we
do the same substitution of the Shannon with the von Neumann entropy, the resulting
entity

S(A, B) − S(B) (4)

can actually be negative for bipartite quantum systems. Take any pure entangled state
of two subsystems (such as a|00〉 + b|11〉) and its total entropy vanishes, while the
reduced entropy is non-zero. It is therefore hard to call this quantum conditional
entropy since the quantity can be negative (and given that entropy quantifies disorder
it is hard to see how disorder can be smaller than zero).

A way out of this is to define the quantum conditional entropy S(A/B) as the
average entropy

∑
n pnS(ρA,n) of states of A after a measurement is made on B.

There are infinitely many measurements we can perform on B, so we will choose the
one that makes S(A/B) minimum (we want to learn as much about A by measuring
B). It is clear that the upper bound on this quantum conditional entropy is S(A),
while the lower bound is zero.

So S(A/B) is always positive when defined as the average entropy reduction,
but now we have another problem. The quantum mutual information defined above
is not equal to S(A) − S(A/B)! Unlike in classical information, the two ways of
expressing quantum mutual information are actually different.

This is because the quantum mutual information can actually reach the value
of 2S(A), while the quantity to S(A) − S(A/B) can at most be S(A). What does
the difference between two quantum quantities (IQ and S(A) − S(A/B)) signify, if
anything?

This question was first asked by Lindblad [2] (he phrased is slightly differently
but that was the spirit). His answer was that the difference is actually due to quantum
entanglement (more precisely, he says: “This extra correlation is of course the cause
of the Einstein-Podolsky-Roscn “paradox” and is thus a typical quantum effect.”).
And for pure states he was perfectly correct (as we will see below), but at that time
there was virtually no work on mixed state entanglement (which only properly took
off in the mid-nineties) and so it was difficult for him to anticipate many subtleties
involved.
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2 Discord: What It Is and How to Quantify It

I came upon this difference of mutual informations after my initial work on entan-
glement because I was asking if the quantum mutual information, which quantifies
all correlations, can actually be written as a sum of entanglement and classical cor-
relations. I defined classical correlations as C(A, B) = S(A/B) and I quantified
entanglement using the relative entropy of entanglement E(A, B).

My then student, Leah Henderson, and I discovered that the sum C + E is mostly
smaller than IQ for mixed states [3]. In other words, there is more to quantum
correlations than just entanglement when it comes to mixed states. For pure states,
entanglement and classical correlations are equal to one another and the sum is
then exactly equal to the quantum mutual information which explains why quantum
mutual information is twice as big as the classical mutual information (as anticipated
by Lindblad).

A few months later, Ollivier and Zurek [4] wrote a paper where they named this
difference between the two ways of defining quantum mutual information quantum
discord. They defined it slightly differently as they had the open system setting
in mind, but I do not wish to enter any subtleties in this introductory article (an
interested reader is encouraged to consult the review in [5]). Physically, quantum
discord, according to Zurek [6], represents the difference between the efficiency of
classical and quantum Maxwell’s demons, while in other interpretations it has also
been linked to the fidelity of remote state preparation as well as to the difference in
information extraction by local and global means (mathematically, at least, a protocol
that is somewhat related to the Maxwell’s demon interpretation).

So discord seems to measure quantum correlations that go beyond just entan-
glement. Disentangled states can actually possess non-zero quantum discord. But is
discord really a form of correlation? To answer that, we need to discuss an important
property of any measure of correlation.

One of the features of correlations is that they cannot increase by local operations
(LO). If we do something to A alone, and, independently, to B, we should not be able
to correlate them to a higher degree than we started with. The intuition behind this is
clear: we cannot correlate things more unless we are allowed to act on them jointly.
Any separate action can only degrade the initial correlation (or, at best, preserve it).

Both mutual information and entanglement are decreasing under LO (entangle-
ment, in fact, under an even more general class, but this need not concern us here
[7]). This is actually straightforward to prove if we express both in terms of the
quantum relative entropy S(σ ||ρ) = tr(σ log σ − σ log ρ). Entanglement is then the
relative entropy to the closest disentangled (separable) state [7, 8] (whose form is∑

n pnρn
A ⊗ ρn

B , where pn is any probability distribution), while the quantummutual
information is the relative entropy to the closest product states (which happens
to be the product of the reduced states σA ⊗ σB). Since quantum relative entropy
is monotonic under completely positive maps and as the sets of product states
and separable states are invariant under LO (which is a special set of completely
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positive maps), it follows that the quantummutual information and entanglement are
monotones (non-increasing) under LO (all the relevant proofs can be found in [9]).

However, monotonicity under LO is not true for discord! We can start with a
state with no discord and actually create some by LO. A simple example is a stating
state which is an equal mixture of |00〉 and |11〉, which can be converted by LO
into a mixture of |00〉 and |1+〉. It is therefore hard to think of discord as a form of
correlations. Also, given that it can be created by local means, it is questionable if
we can think of (all) discordant states as useful for quantum information processing.
Having said this, there are examples of protocols where discord has an operational
meaning [10, 11]. It is also still an open question if universal quantum computation
can be done without entanglmenet in the general case of mixed states. Maybe not
all, but certainly some kind of discord could be of importance.

This does not mean that we cannot quantify discord using the quantum relative
entropy. We can take the relative entropy from a given state to the closest classically
correlated state. This set, however, is not invariant under LOs which is why this
measure fails to be a monotone (as examplified in the previous paragraph).

3 Outlook

One should emphasise that though this article has dealt with bipartite systems only
(for clarity, as well as for historical reasons), correlationmeasures can be generalized
to many partite systems (see e.g. [12] for entanglement in many-body systems and
[5] for discord and related measures). A way to do that is using the same relative
entropy based logic outlines above (see also [13] for a unified view of all correlations
based of the quantum relative entropy).

Also, we did not discuss how we can tell if a given state has discord. The method
is simple and it boils down to showing that correlations are non-vanishing in more
than one basis [14]. Classical correlations, according to this logic, are the ones that
exist only in one basis (though this basis could be different for different subsystems,
depending on how they couple to their environments, for instance).

In conclusion, discord without entanglement can be seen as a form of classical
correlation aided with quantum coherence (superpositions) at the level of individual
subsystems. This is why the research on discord has naturally led to the research on
quantifying quantum coherence.

Acknowledgements The author acknowledges funding from the John Templeton Foundation, the
National Research Foundation (Singapore), theMinistry of Education (Singapore), the Engineering
and Physical Sciences Research Council (UK), the Leverhulme Trust, the Oxford Martin School,
andWolfsonCollege,University ofOxford. This research is also supported by theNational Research
Foundation, Prime Ministers Office, Singapore under its Competitive Research Programme (CRP
AwardNo.NRF-CRP14-2014-02) and administered byCentre forQuantumTechnologies, National
University of Singapore.



Foundations of Quantum Discord 7

References

1. C. Shannon, Bell Syst. Tech. J. 27(379–423), 623–656 (1948)
2. G. Lindbad, Commun. Math. Phys. 33, 305 (1973)
3. L. Henderson, V. Vedral, J. Phys. A: Math. Gen. 34, 6899 (2001)
4. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)
5. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)
6. W.H. Zurek, Phys. Rev. A 67, 012320 (2003)
7. V. Vedral, M.B. Plenio, M. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)
8. V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)
9. V. Vedral, Rev. Mod. Phys. 74, 197 (2002)

10. B. Dakic et al., Nat. Phys. 8, 666 (2012)
11. M. Gu et al., Nat. Phys. 8, 671 (2012)
12. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 1 (2008)
13. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)
14. B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)



From Discord to Entanglement

Shunlong Luo

Abstract Two prominent and widely studied notions of quantum correlations are
discord and entanglement, with the latter occupying a central place in quantum infor-
mation theory, while the former being regarded of marginal significance and even
being criticized by some researchers, although the deep relations between them have
been revealed in recent years. Discord and entanglement, being indistinguishable for
pure states, only differ for mixed states. The aim of this work is to subsume entangle-
ment under discord by identifying entanglement as the minimal shadow of discord
over extended systems. For this purpose, we first present a brief and concise review
of some historical aspects of discord and entanglement, emphasizing the ideas lead-
ing to them and the intimate relations between them. Then by exploiting an intrinsic
connection between classicality and separability of correlations, we derive entangle-
ment from discord in terms of state extensions, and put discord in a more primitive
place than entanglement in this context. We comment that the entanglement of pure
states studied by EPR and Schrödinger can actually also be well understood as dis-
cord, only with the emergence of nonlocality characterized by the Bell inequalities
involving mixed states rather than pure states, the LOCC paradigm for mixed-state
entanglement becomes significant and attracts great interests. Discord and entangle-
ment are different manifestations of the same global quantum substrate, with discord
conceptually more ubiquitous in quantum information and more deeply rooted in
quantum measurements.

1 Introduction

Correlations permeate our interpretation and understanding of the physical world. To
extract correlation information from physical systems, whether classical or quantum,

S. Luo (B)
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Beijing 100190, People’s Republic of China
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10 S. Luo

one has to perform measurements. A key deviation of the quantum from the classi-
cal is the fundamental different characteristics of measurements: While a classical
measurement, by definition, can extract information without disturbance in princi-
ple, a quantum measurement often causes unavoidable disturbance to the measured
system. Actually, quantummeasurements lie at the very heart of quantummechanics
[1], and are the central characters in both theoretical and experimental investiga-
tions of quantum information. The early work of EPR “disproving” completeness of
quantum mechanics and state steering [2], Bohr’s response to the EPR argument [3],
as elaborated by Wiseman [4], and the discussion of probability relations of bipar-
tite states by Schrödinger [5–7], all depend crucially on quantum measurements.
The quantum-to-classical transition in decoherence is essentially a consequence of
quantum measurements [8–10].

Discord arises from the loss of information caused by quantum measurements,
and was explicitly introduced by Ollivier and Zurek [11], and Henderson and
Vedral [12], to quantify the quantumness of correlations. Its early roots, although
implicit, may be traced back to the EPR-Bohr argument on completeness of quan-
tummechanics [2–4], to Everett’s thesis on universal wavefunction and relative-state
formulation of quantum mechanics [13], to Lindblad’s investigations of entropy and
quantummeasurements [14, 15], etc. Its various aspects, including calculation, oper-
ational meaning, ramifications, and applications, are widely studied in the last decade
[16–49].

Entanglement is the underpinning of many fundamental quantum tasks [50, 51],
and is often regarded as a synonym of quantum correlations in early studies, although
now it is recognized that the notion of quantum correlations has a much wide scope,
and entanglement is a particular, albeit most important, kind of quantum correlations,
i.e., entanglement can be identified as nonlocal quantum correlations. The detection
and quantification of entanglement are extremely complicated and difficult for mixed
states, and there are extensive and intensive studies of these issues in the last two
decades [52–59]. The study of entanglement dated back explicitly, as the discord
implicitly, to the seminalworks of Einstein, Podolsky andRosen [2], and Schrödinger
[5–7], as early as 1930s. Now entanglement is regarded as a key resource in quantum
information and is often intertwined with quantum nonlocality [52, 58–61].

Discord and entanglement actually have the same historical as well as theoretical
origin. The present work is to clarify this, and to identify entanglement as theminimal
discord over state extensions. The work is arranged as follows. In Sect. 2, we recall
various notions of correlations, including total correlations, classical correlations,
discord, entanglement, as well as their interplay, in order to set up the context of our
investigation in Sect. 3, which is devoted to the study of entanglement in terms of
discord. We demonstrate that entanglement is actually a kind of shadow (irreducible
residue) of discord over extended systems, and suggest some interesting problems
for further investigations. Finally, we conclude with discussions in Sect. 4.
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2 Classical Versus Quantum Correlations

Correlations are always encoded in physical systems and can be mathematically
synthesized by states (density operators) of composite systems. In the information-
theoretic description of the classical world, correlations are usually quantified by
the Shannon mutual information of bivariate probability distributions [62, 63]. More
precisely, the amount of correlations of a bivariate discrete probability distribution
pab = {pabi j }, shared between parties a and b, is well quantified by the Shannon
mutual information [62, 63]

I (pab) := H(pa) + H(pb) − H(pab),

where pa = {pai := ∑
j p

ab
i j } and pb = {pbj := ∑

i p
ab
i j } are the marginal probability

distributions, H(pa) := −∑
i p

a
i logp

a
i is the Shannon entropy. The Shannonmutual

information is dominated by the marginal entropies in the sense that [63]

I (pab) ≤ min{H(pa), H(pb)}.

In particular, for perfect correlations pab = {pai δi j }, it holds that I (pab) = H(pa) =
H(pb),which saturates the above upper bound and shows that themarginal entropy is
fully employed to establish correlations in such a case. However, the above inequality
fails in general for the quantum cases, as we will see shortly.

The Shannon mutual information for bivariate probability distributions can be
straightforwardly extended to the quantum case as a measure of total correlations
[64, 65]: For any bipartite quantum state (pure or mixed) ρab, the amount of total
correlations is well quantified by the quantum mutual information [12, 50, 66–69]

I (ρab) := S(ρa) + S(ρb) − S(ρab),

where ρa := trbρab and ρb := traρab are the marginal states, and S(ρa) := −trρa

log ρa is the von Neumann entropy. However, unlike the classical case, the quantum
mutual information is not dominated by themarginal entropies in general, but rather is
dominated by twice of the marginal entropies, as shown by the celebrated Araki-Lieb
inequality [65]

I (ρab) ≤ 2min{S(ρa), S(ρb)}.

This subtle factor 2 is really the origin of the difference between the classical and
the quantum, and indicates the presence of quantum correlations, i.e., while the cor-
relations in a classical bivariate probability distribution are always classical, there
may exist both classical and quantum correlations in bipartite quantum states, which
together constitute the total correlations, as quantified by the quantum mutual infor-
mation. This can be most strikingly illustrated in terms of perfect correlations: In the
classical case, the strongest correlations that party a with fixed marginal entropy
H(pa) can possibly establish with another party b are described by the perfect
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correlations in the bivariate probability distribution pab = {pabi j = pai δi j }, or in its
quantum formalism, ρab = ∑

i p
a
i |i〉a〈i |a ⊗ |i〉b〈i | with {|i〉a} and {|i〉b} orthonor-

mal bases for parties a and b, respectively. The amount of total correlations coincides
with the marginal entropy, i.e.,

I (ρab) = I (pab) = H(pa) = S(ρa).

This is also the amount of classical correlations, and there are no quantum cor-
relations here. In contrast, for the quantum case, consider the quantum pure state
σ ab = |�ab〉〈�ab|with the Schmidt decomposition |�ab〉 = ∑

i

√
pai |i〉a ⊗ |i〉b and

the marginal σ a = trb|�ab〉〈�ab| = ρa, the amount of total correlations is

I (σ ab) = 2S(σ a) = 2H(pa) = 2S(ρa).

The extra amount of correlations in the quantum case, I (σ ab) − I (ρab) = H(pa),
is the root lurking in the EPR argument and the state steering [2, 5–7].

The total correlations in a classically correlated state can be fully extracted by
certain measurements, but this is not true for genuinely quantum correlated states.
To see this and to facilitate the comparison between the classical and the quantum,
we cast the classical bivariate probability distribution pab = {pabi j } in the quantum
formalism as

ρab =
∑

i j

pabi j |i〉a〈i | ⊗ | j〉b〈 j |

where {|i〉a} and {| j〉b} are orthonormal bases for parties a and b, respectively. The
amount of total correlations in this state, as quantified by the quantum mutual infor-
mation I (ρab), coincideswith theShannonmutual information I (pab) in the bivariate
probability distribution pab, i.e., I (ρab) = I (pab). This can be interpreted as that all
correlations in ρab = ∑

i j p
ab
i j |i〉a〈i | ⊗ | j〉b〈 j | are classical, and there are no quan-

tum correlations in this state. Indeed, the state ρab is left undisturbed after the local
von Neumann measurements �a = {�a

i := |i〉a〈i |} and �b = {�b
j := | j〉b〈 j |} by

parties a and b, respectively, in the sense that ρab = �(ρab), where

�(ρab) :=
∑

i j

(�a
i ⊗ �b

j )ρ
ab(�a

i ⊗ �b
j )

is the post-measurement state. All the correlations in this state are extracted by these
measurements.

A characteristic feature of classicality is the invariance under certain quantum
measurements. In contrast, disturbance under quantummeasurements signifies quan-
tumness. In the context of correlations, one may define a bipartite state to be classi-
cally correlated if it is left undisturbed under certain vonNeumannmeasurement [70].
More precisely, for a bipartite state σ ab, if there exist local von Neumann measure-
ments {�a

i } and {�b
j } such that σ ab = �(σ ab) := ∑

i j (�
a
i ⊗ �b

j )σ
ab(�a

i ⊗ �b
j ),
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then σ ab can be considered as a classically correlated state, and the correlations
therein can be fully extracted without loss. In this case, σ ab can be identified with
the classical bivariate probability distribution pab = {pabi j := tr(�a

i ⊗ �b
j )σ

ab}.
We have the following equivalent characterizations for the classically correlated

states, which justify the notion of classicality of correlations [70–72]:

(1) σ ab is classically correlated.
(2) σ ab can be represented as σ ab = ∑

i j p
ab
i j �a

i ⊗ �b
j , where pab = {pabi j } is a

bivariate probability distribution, �a
i and �b

j are orthogonal projections for par-
ties a and b, respectively [70].

(3) σ ab commuteswith each�a
i ⊗ �b

j , where�a
i and�b

j are the spectral projections
of the reduced states σ a = trbσ ab and σ b = traσ ab, respectively [70].

(4) The correlations in σ ab can be locally broadcast [71].
(5) Both parties a and b can establish perfect correlations with other systems [72].

Although a state σ ab may not be classically correlated, the post-measurement
state �(σ ab) := ∑

i j (�
a
i ⊗ �b

j )σ
ab(�a

i ⊗ �b
j ) is always a classical state after any

local von Neumannmeasurement� = {�a
i ⊗ �b

j }. By the monotonicity of quantum
relative entropy [65],

I (�(σ ab)) ≤ I (σ ab),

and the difference I (σ ab) − I (�(σ ab)) signifies the loss caused by themeasurements
and captures quantumness of correlations.

Similarly, onemay also define classicality of correlationswith respect to one party.
More precisely, one defines σ ab to be classical-quantum if there exists a local von
Neumann measurement �a = {�a

i } for party a which leaves the state undisturbed
in the sense that σ ab = �a(σ ab), where

�a(σ ab) :=
∑

i

(�a
i ⊗ 1b)σ ab(�a

i ⊗ 1b)

is the post-measurement state after party a performs the quantum measurement �a .

Analogously, the following characterizations of classical-quantum states are equiv-
alent [70, 73]:

(1) σ ab is classical-quantum.
(2) σ ab can be represented as σ ab = ∑

i pi�
a
i ⊗ σ b

i , where {pi } is a probability
distribution, �a

i are orthogonal projections for party a, and σ b
i are local states

for party b.
(3) σ ab commutes with each �a

i ⊗ 1b, where �a
i are the spectral projections of

σ a := trbσ ab.

(4) The correlations in σ ab can be locally broadcast by party a [73].

In general, a classical-quantum state may not be classically correlated due to the
non-commutativity of σ b

i for party b, and it is impossible to identify such a state with
a classical bivariate probability distribution in general.
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All the above characterizations are intimately related to (and actually equivalent
to) the celebrated quantumno-broadcasting theorem [73]: A family of quantum states
can be broadcast if and only if the states commute [74].

Motivated by the idea that classical correlations are those that can be extracted
via quantum measurements, i.e., the maximum amount of correlations extractable
by local von Neumann measurements, a straightforward measure of classical corre-
lations in a bipartite quantum state may be defined as [11, 12]

Ca(ρab) := max
�a

I (�a(ρab)),

where the maximization is over all local von Neumann measurements �a for party
a. One can similarly define Cb(ρab) with the measurement performed on party b, or
in a symmetric fashion [15, 21],

C(ρab) = max
�

I (�(ρab))

with the maximization over all local von Neumann measurements � = {�a
i ⊗ �b

j }.
In general,Ca(ρab) �= Cb(ρab) and by themonotonicity of quantum relative entropy,

C(ρab) ≤ Ca(ρab) ≤ I (ρab), Cab(ρab) ≤ Ca(ρab) ≤ S(ρa), Cab(ρab) ≤ Cb(ρab) ≤ S(ρb).

However, it may happen that Ca(ρab) > S(ρb) [75].
The original discord of a bipartite state ρab is defined as [11]

Qa(ρab) := I (ρab) − Ca(ρab),

which is asymmetric with respect to the two parties. It is known that Qa(ρab) = 0 if
and only if ρab is classical-quantum. A symmetric version of discord in a bipartite
state ρab is defined as the difference [21]

Q(ρab) := I (ρab) − C(ρab)

between the amounts of total correlations and classical correlations, and thus sum-
marizes quantum correlations in a state. Clearly, Q(ρab) = 0 if and only if ρab is
classically correlated.

In general, discord and classical correlations can be defined with respect to other
general distance-like measures [23, 70], which yield the relative entropy of quan-
tumness [23], the geometric discord based on Hilbert-Schmidt distance (or the trace
distance, or the Bures distance) [24, 25, 43, 45, 47, 48], etc. Here we recall that the
relative entropy of quantumness, which will be used late, is defined as [23]

Qrel(ρ
ab) := min

�
D(ρab|�(ρab)),
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where the minimization is over all local von Neumann measurements � = {�a
i ⊗

�b
j }, i.e., the relative entropy of quantumness is defined as the minimal distance

between ρab and the set of classically correlated states, with the (pseudo-)distance
being the quantum relative entropy D(ρab|σ ab) := trρab(logρab − logσ ab).

Now, we come to the separability/entanglement paradigm. A state ρab shared
between two parties a and b is called separable if it has a decomposition [52]

ρab =
∑

i

piρ
a
i ⊗ ρb

i

with local states ρa
i and ρb

i for parties a and b, respectively, and pi ≥ 0,
∑

i pi = 1.
Otherwise it is called entangled (nonseparable). Various entanglement measures,
such as the entanglement of formation, entanglement cost, distillable entanglement,
squashed entanglement, robustness of entanglement, etc., have been introduced to
quantify different aspects of entanglement [57, 58]. In particular, the relative entropy
of entanglement is defined as [23, 54]

Erel(ρ
ab) := min

σ ab
D(ρab|σ ab)

where the minimization is over all separable states σ ab. Thus the relative entropy of
entanglement is theminimal distance betweenρab and the set of separable (rather than
classically correlated) states. Accordingly, the relative entropy of entanglement is
always dominated by the relative entropyof quantumness, i.e., Erel(ρ

ab) ≤ Qrel(ρ
ab),

since the set of classically correlated states is a strict subset of the set of separable
states.

Discord and entanglement are both measures of quantum correlations beyond
classical ones. They coincide for pure states but differ for mixed states. Discord and
entanglement have similarities aswell as radical difference. On one hand, discord and
entanglement are quite different: The phenomenon of discord is a manifestation of
quantum correlations due to non-commutativity rather than nonlocality. Classically
correlated states are separable, but the converse is not true. Separable state may
possess non-zero discord, although their entanglement vanish. In this sense, discord
can be regarded as a more general type of quantum correlations than entanglement.
On the other hand, separable states may be helpful in distributing and manipulating
entanglement [76–79], and entanglement can be indirectly linked to discord created
in quantum measurements [34–36]. Furthermore, there are quantitative relations
connecting entanglement between two parties a and b with the discord between
party a and a third party c which serves to purify the state possessed by ab [80,
81]. More precisely, the Koasi-Winter formula Cb(ρab) + E f (ρ

ac) = S(ρa) implies
that [80]

E f (ρ
ac) = Qb(ρab) + S(ρab|ρb),

where |�abc〉 is a purification of ρab with ρab = trc|�abc〉〈�abc|, ρbc = tra|�abc〉
〈�abc|, ρa = trbc|�abc〉〈�abc|, E f (·) is the entanglement of formation, and
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S(ρab|ρb) := S(ρab) − S(ρb) is the quantum conditional entropy, Cb(ρab) and
Qb(ρab), similar to Cb(ρab) and Qb(ρab) = I (ρab) − Cb(ρab), are the measures
of classical correlations and discord defined in terms of general POVMs rather than
von Neumann measurements [12].

3 Entanglement as Discord

A remarkable relation between the two classification schemes for correlations, clas-
sical/quantum [70, 71] and separable/entanglement [52], is that on one hand, a clas-
sically correlated state is always separable, on the other hand, any separable state
can be imbedded into a classically correlated state in the sense that for any separable
state ρab, there is a classically correlated state ρa′a:bb′

shared between aa′ and bb′
such that

ρab = tra′b′ρa′a:bb′
,

where a′ and b′ are two ancillary systems [82]. Any entangled state does not admit
such an extension. Phrased alternatively, a bipartite state is separable if and only if
it admits an extension which is classically correlated with the natural bipartition,
i.e., with a and b in different parties. This identifies entanglement as truly nonlocal
quantum correlations, and has some interesting consequences [83–85]. Here we
will exploit it to define entanglement in terms of discord. More precisely, for any
reasonable measure of discord Q(·), not necessary defined in terms of the quantum
mutual information as the original one, we define

E(ρab) := min
tra′b′ρa′a:bb′=ρab

Q(ρa′a:bb′
),

where the minimization is over all state extensions ρa′a:bb′
of ρab (i.e., ρab =

tra′b′ρa′a:bb′
), including the cases when a′ or b′ is trivial (one dimensional), and

the discordQ(ρa′a:bb′
) is taken with respect to the bipartition a′a : bb′. This renders

entanglement to a kind of shadow of discord, i.e., the minimal discord over state
extensions.

Clearly, E(ρab) = 0 for separable ρab. This follows from the theorem in Li and
Luo [82] concerning the relation between separable states and classical states: A
bipartite state ρab is separable if and only if it can be extended to a certain classical
state ρa′a:bb′

(with respect to the bipartition a′a : bb′).
The entanglement measure E(·) has the nice property that it is automatically

dominated by the discord in the sense that

E(ρab) ≤ Q(ρab)

since ρa′a:bb′ = ρab with the a′ and b′ being trivial (one-dimensional) can be regarded
as a state extension of ρab itself.
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With the above property, we may decompose the total correlations, as quantified
by the quantum mutual information I (ρab), into classical correlations C(ρab) plus
dissonance D(ρab) plus entanglement E(ρab):

I (ρab) = C(ρab) + D(ρab) + E(ρab),

where the difference
D(ρab) := Q(ρab) − E(ρab)

is interpreted as a measure of dissonance as termed by Kavan et al. [23].
E(·) is locally unitary invariant in the sense that

E((Ua ⊗Ub)ρab(Ua ⊗Ub)†) = E(ρab)

for any unitary operators Ua and Ub on parties a and b, respectively, as long as the
discord is invariant under local unitary transformations.

Since any pure state ρab = |�ab〉〈�ab| has only trivial extensions of the form
ρa′b′ ⊗ |�ab〉〈�ab|, it follows that the entanglement E(ρab) coincides with the dis-
cord Q(ρab), i.e., E(ρab) = Q(ρab), for any pure state ρab, as long as the discord
has the decreasing property Q(ρa′b′ ⊗ |�ab〉〈�ab|) ≥ Q(|�ab〉〈�ab|).

Since any state extension ρa′′a′a:bb′b′′
of ρa′a:bb′

is necessarily a state extension of
the reduced state ρab = tra′b′ρa′a:bb′

, it follows from

E(ρab) ≤ min
tra′′a′b′b′′ρa′′a′a:bb′b′′ =ρab

Q(ρa′′a′a:bb′b′′
)

≤ min
tra′′b′′ρa′′a′a:bb′b′′ =ρa′a:bb′

Q(ρa′′a′a:bb′b′′
)

= E(ρa′a:bb′
)

that E(·) is non-increasing under local partial trace (state reduction) in the sense that

E(ρab) ≤ E(ρa′a:bb′
)

for any state extension ρa′a:bb′
of ρab.

We list some important and interesting problems requiring further investigations:
(1) Classify the discord measures such that the induced entanglement measures

are convex in the sense that

E(
∑

i

piρ
ab
i ) ≤

∑

i

piE(ρab
i ),

where ρab
i are bipartite states shared by parties a and b, and pi ≥ 0,

∑
i pi = 1. We

remark that this may be related to the direct sum property of the discord measures.
(2) More generally, classify the discord measures such that the induced entangle-

ment measures are entanglement monotones.
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(3) How to evaluate the entanglement measures? On may try to find some ana-
lytical formulas for some highly symmetric states, and establish some bounds for
general cases.

(4) What are the relations between the relative entropy of entanglement and the
relative entropy of quantumness? If one defines an entanglement measure induced
by the relative entropy of quantumness Qrel(·) as

Erel(ρab) := min
tra′b′ρa′a:bb′=ρab

Qrel(ρ
a′a:bb′

),

where the minimization is over all state extensions ρa′a:bb′
of ρab (i.e., ρab =

tra′b′ρa′a:bb′
), then an interesting question arises as the relation between this induced

entanglementmeasureErel(·) and theoriginal relative entropyof entanglement Erel(·):
Does it hold that

Erel(ρ
ab) = Erel(ρab)?

Since
Erel(ρ

ab) ≤ Erel(ρ
a′a:bb′

) ≤ Q(ρa′a:bb′
),

we have
Erel(ρ

ab) ≤ Erel(ρab),

thus it remains to establish the reversed inequality.

4 Discussions

Discord stems directly from the pivotal and ubiquitous notion of quantum measure-
ments, while entanglement is widely regarded as a key feature of quantum infor-
mation. We have reviewed briefly several aspects of discord and entanglement with
emphasis on their intertwining, and have illustrated that discord is not only a kind of
quantum correlations beyond entanglement, but also that quantum discord contracts
to entanglement, i.e., entanglement can be interpreted as the irreducible residue, as
the minimal shadow, of discord over all state extensions. This puts discord, concep-
tually, in a more primitive place than entanglement, sheds lights on the fundamental
importance of quantumness in characterizing quantum correlations, and highlights
the significance of the interplay between quantum measurements and state exten-
sions in quantum information science. We have outlined some problems for further
investigations.
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Monogamy of Quantum Correlations
- A Review

Himadri Shekhar Dhar, Amit Kumar Pal, Debraj Rakshit,
Aditi Sen(De) and Ujjwal Sen

Abstract Monogamy is an intrinsic feature of quantum correlations that gives rise
to several interesting quantum characteristics which are not amenable to classical
explanations. The monogamy property imposes physical restrictions on uncondi-
tional sharability of quantum correlations between different parts of a multipartite
quantum system, and thus has a direct bearing on the cooperative properties of multi-
partite states, including those of large many-body systems. On the contrary, a certain
party can be maximally classical correlated with an arbitrary number of parties. In
recent years, the monogamy property of quantum correlations has been applied to
understand several key aspects of quantumphysics, including distribution of quantum
resources, security in quantum communication, critical phenomena, and quantum
biology. In this chapter, we look at some of the salient developments and applica-
tions in quantum physics that have been closely associated with the monogamy of
quantum discord, and “discord-like” quantum correlation measures.

1 Introduction

Quantum correlations, shared between two or more parties [1, 2], boast of novel
features, which are exclusive to the quantum world and are central to quantum infor-
mation science. On one hand, they play a significant role in efficient quantum com-
munication [3–5] and computational [6, 7] tasks,while on the other hand, they help us
to understand cooperative phenomena in quantummany-body systems [8–10]. A key
difference between classical and quantum correlations is the way they can be shared
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among various parts of a multiparty quantum system. Unlike classical correlations,
which can be freely shared, the distribution of quantum correlations is restricted
by the non-classical properties of the quantum system. For example, in a tripartite
quantum state, ρABC , if two parties A and B are maximally quantum correlated, then
none of A and B can share any quantum correlation with the third party,C [4, 11–14]
(for a social representation, see Fig. 1). However, there exist no such constraints for
classical correlations, and the pairs of parties, say AB and AC , can simultaneously
share maximum classical correlations. Similar situation arises in multiparty quan-
tum systems of more than three parties. This exclusive trade-off between quantum
correlations of different combinations of parties in a multiparty quantum system is
known as monogamy of quantum correlations [4, 11–14]. The no-go theorems, like
the no-cloning theorem [15–18], put restrictions on the available options in quantum
cryptography [3]. Similarly, the monogamy of quantum correlations is a restriction
on the sharability of quantum correlations, and yet can potentially help in obtaining
advantages in a quantum system over their classical counterparts.

In the seminal work by Coffman, Kundu, andWootters (CKW) [13], a monogamy
relation for three-qubit pure states was established using an entanglement mea-
sure, namely, the squared concurrence [19, 20]. This scenario was later gener-
alized by Osborne and Verstraete [21] for pure as well as mixed states of an
arbitrary number of qubits. Since quantum correlations are not uniquely defined,
even in the bipartite domain, the immediate question that follows is whether the
monogamy inequality proposed by CKW is necessarily obeyed by all kinds of quan-
tum correlation measures. In general, quantum correlations can be broadly classi-
fied into two categories – entanglement measures [1], and the information-theoretic
measures of quantum correlations [2]. While entanglement of formation [12, 22,
23], concurrence [19, 20], distillable entanglement [24, 25], negativity [26–31],

Fig. 1 Monogamy: Two
persons sharing an umbrella
are unmindful of the
presence of the third person
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logarithmic negativity [28–31], relative entropy of entanglement [32–34], etc. belong
to the first category, quantum discord [35, 36], and quantum work deficit [37–40]
are examples of the second kind. Although quantum correlations are qualitatively
monogamous, not all of them are limited to the form of monogamy constraint pro-
posed by CKW. In particular, while the squared concurrence and negativity satisfy
the CKW monogamy inequality for all three-qubit pure states [13, 21, 41], many
others, such as logarithmic negativity and the information-theoretic measures, do not
satisfy the same [41–45]. Deliberations on the monogamy of quantum correlations
have led to important insights including a “conservation law” between entanglement
and information-theoretic quantum correlations in multiparty quantum states [42].
In Ref. [46], the authors formulate the requirements for a bipartite entanglement
measure to be monogamous for all quantum states, and show that additive and suit-
ably normalized entanglement measures, which can faithfully describe the geometric
structure of the fully antisymmetric state, are non-monogamous. However, it is also
understood that all kinds of quantum correlations obey the CKW monogamy con-
straint for a given state when raised to a suitable power, provided they follow certain
conditions [47].

Interestingly, the limitation imposed by the quantummechanical principles, in the
form of monogamy constraints, is not exclusive to quantum correlations. There exist
no-go theoremswhich place parallel restrictions such asmonogamyofBell inequality
violation [48, 49] and exclusion principle of classical information transmission over
quantum channels [50] (cf. [51–54]). More precisely, within the consideration of
a multiparty set-up, for example, of an editor with several reporters, if the shared
quantum state between the editor and a single reporter violates a Bell inequality
[55, 56] or is quantum dense codeable [57], then the rest of the channels shared
between the editor and the other reporters are prohibited from possessing the same
quantum advantage. Analogous monogamy constraints have also been addressed in
the context of quantum steering [58, 59], quantum teleportation fidelity [60], and
contextual inequalities [61, 62].

The monogamy properties of quantum correlations find potential applications in
quantum information based protocols like quantum cryptography [3], entanglement
distillation [22], quantum state and channel discrimination [44, 45, 63], and in char-
acterizing quantum many-body systems [64–72] as well as in biological processes
[73, 74]. The key concept of entanglement-based quantum cryptography essentially
exploits the trade off in monogamy of quantum correlations, which limits the amount
of information that an eavesdropper can extract about the secret key, shared between
a sender and a receiver, obtained via measurement on both sides of an entangled
state between the sender and the receiver [4, 11, 75]. The constraints on shareability
of entanglement find further application in enhancing quantum privacy via entan-
glement purification [76]. Another importance of monogamy relations, arising due
to the constraints that they put on the distribution of quantum correlation among
many parties, is their ability to capture multipartite quantum correlations present in
the system, the latter being, in general, a challenging task [13, 77, 78]. Moreover,
they play a decisive role in designing the structure of eigenstates of quantum spin
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models, which are expected to obey the no-go principles arising from the monogamy
constraints [67].

In this chapter, our main aim is to review the results on monogamy of quan-
tum discord, and other “discord-like” measures of quantum correlations. We survey
the properties of a proposed multiparty quantum correlation measure, called the
“monogamy score”, and its relations with other measures of quantum correlations.
Finally, we also take a look at the usefulness of the monogamy score for quan-
tum discord in quantum information science, and in quantum many-body physics.
The structure of this chapter is as follows. In Sect. 2, we present a short review
on the studies that have been carried out on the monogamy properties of entangle-
ment. Section3 consists of the definitions of several quantum correlation measures,
such as quantum discord, quantum work deficit, and geometric quantum discord,
that have been defined independent of the entanglement-separability paradigm. The
monogamy properties of these measures are discussed in the following sections.
In Sect. 4, we focus on the monogamy of quantum discord. The monogamy prop-
erty of other information-theoretic quantum correlation measures are discussed in
Sect. 5. Section6 provides a report on the relation between themonogamyof quantum
correlations with other multiparty measures. In Sect. 7, we review some noteworthy
applications of themonogamyproperty. Section8 contains some concluding remarks.

2 Monogamy Relations of Entanglement

In this section, we provide a brief discussion on themonogamy properties of different
entanglement measures, such as concurrence, negativity, etc. Starting from tripartite
quantum systems, we expand the discussion to the more complex cases in multiparty
systems. For a review, see [14].

We also formally define the “monogamy score” corresponding to an arbitrary
quantum correlation measure.

2.1 Tripartite System: CKW Inequality and Beyond

In this subsection, we review monogamy properties of entanglement in the tripartite
scenario, using concurrence as the entanglement measure. For an arbitrary two-qubit
quantum state ρAB , concurrence is defined [19, 20] as CAB ≡ C(ρAB) = max{0,λ1 −
λ2 − λ3 − λ4}, where {λi }, i = 1, . . . , 4, are square roots of the eigenvalues of the
positive operator ρρ̃ in descending order, and the spin-flipped density matrix ρ̃ is
given by ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy). Here and henceforth, σx , σy and σz denote the
standard Pauli spin matrices. Note that C vanishes for the separable states and attains
the value 1 for the maximally entangled states in C

2 ⊗ C
2 systems. The physical

significance of concurrence stems from the fact that the entanglement of formation
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is a monotonic function of concurrence, and vice versa, in C
2 ⊗ C

2 [19, 20]. A
formal definition of entanglement of formation is given later in this section.

Consider a three-qubit pure state, ρABC = (|φ〉〈φ|)ABC . The concurrences corre-
sponding to the reduced density matrices ρAB = TrC(ρABC ) and ρAC = TrB(ρABC)

satisfy the inequalities, C2
AB ≤ Tr(ρAB ρ̃AB) and C2

AC ≤ Tr(ρAC ρ̃AC), respectively. It
can further be shown that Tr(ρAB ρ̃AB) + Tr(ρAC ρ̃AC) = 4 detρA. This leads to fol-
lowing inequality [13]:

C2
AB + C2

AC ≤ 4 det ρA, (1)

where ρA = TrBC(ρABC). Even though BC is a four-dimensional system, the support
of ρBC = TrA(ρABC) is spanned by the eigenstates corresponding to at most two non-
zero eigenvalues of the reduced density matrix ρBC , and hence is effectively defined
on a two-dimensional space. This allows to treat the bipartite split of A and BC as
an effective two-qubit system whose concurrence, CA:BC , is simply 2

√
det ρA. As a

result, the inequality in (1) becomes

C2
AB + C2

AC ≤ C2
A:BC , (2)

and is referred to as the monogamy inequality for squared concurrence in the case of
three-qubit pure states. For a three-qubit mixed state, the state ρBC may, in principle,
have all four non-zero eigenvalues. However, a generalization of the above inequality
for themixed state is prescribedby replacing the right hand side of (2) by theminimum
average concurrence squared over all possible pure state decompositions {pi , |ψi 〉}
of ρBC , and hence (2) also holds for arbitrary mixed three-qubit states.

In this context, let us define the tangle for a three-qubit pure state, ρABC , expressed
in terms of squared concurrences, as [13]

τABC = C2
A:BC − C2

AB − C2
AC . (3)

It turns out that τABC , which is also known as the three-tangle, or the residual
entanglement, is independent of the choice of the “node”,which is the site A here. The
tangle has been argued to characterize three-qubit entanglement. The generalization
of the tangle to mixed states can be obtained by the convex roof extension, the
computation of which is difficult for arbitrary states.

Next, let us present the definition of the entanglement of formation (EoF) [20], a
measure of bipartite entanglement, and its relation with concurrence for two-qubit
states. Consider a bipartite quantum state ρAB , and the ensemble {pi , |ψi 〉} denoting
a possible pure state decomposition of ρAB , satisfying ρAB = ∑

i pi |ψi 〉〈ψi |. The
EoF is defined as

E f (ρAB) = min
{pi ,|ψi 〉}

∑

i

pi S(TrB[|ψi 〉〈ψi |]), (4)
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where S(TrB[|ψi 〉〈ψi |]) is the von Neumann entropy of the reduced density matrix
corresponding to the A part of ρAB . A compact formula for the EoF is known
for two-qubit systems in terms of the concurrence, CAB . For a two-qubit mixed

state ρAB , E f (ρAB) = h

(

(1 +
√
1 − C2

AB)/2

)

[20], where h(x) = −x log2 x −
(1 − x) log2(1 − x). The EoF, being a concave function of squared concurrence,
does not obey the CKW inequality. However, the EoF can also not be freely shared
amongst the constituents of a multiparty system. In fact, the square of the EoF does
obey the same relation as the squared concurrence for tripartite systems [79].

Several studies have addressed the monogamy property of concurrence within the
tripartite scenario. We briefly mention some important findings in this direction. It
is natural to ask whether the monogamy inequality is satisfied in tripartite systems
consisting of higher-dimensional parties. The analysis understandably becomes com-
plex with increasing dimension of the Hilbert space, as much less is known about
the quantification of entanglement in higher dimensional cases. For example, the
exact formula for EoF and concurrence are missing in higher dimensions. How-
ever, there have been definitive efforts to understand the monogamy constraints in
higher dimensional systems. The results reported in Ref. [80] indicate that the CKW
inequality cannot be directly extended to higher-dimensional states. However, it has
been demonstrated that the squared concurrence satisfies the monogamy relation for
arbitrary pure states in C

2 ⊗ C
2 ⊗ C

4 [81] (cf. [82, 83]). The monogamy property
of squared concurrence in higher-dimensional systems of more than three parties has
also been addressed [84]. Other approaches to construct more monogamy inequali-
ties for entanglement in tripartite states havemade use of the generalized concurrence
[85], which is a multipartite measure of entanglement.

2.2 Monogamy Score

Just like for squared concurrence, one can formulate the problem of monogamy for
arbitrary quantum correlation measures. For a given bipartite quantum correlation
measure, Q, and a three-party quantum state, ρABC , we call the state to be monoga-
mous for the measure Q if

Q(ρA:BC) ≥ Q(ρAB) + Q(ρAC). (5)

Otherwise, the state is non-monogamous for that measure. The measure is called
monogamous for a given tripartite quantum system if it is monogamous for all tri-
partite states. Similar to the spirit of tangle defined inEq. (3), one can define a quantity
called monogamy score [77], of a bipartite quantum correlation measure, Q, based
on the monogamy relation in (5). It is given by

δQ = Q(ρABC) − Q(ρAB) − Q(ρAC), (6)
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where we call the party “A” as the nodal observer. With this notion, the tangle [13]
can be called monogamy score for squared concurrence, and can also alternatively be
denoted by δC2 . This definition can be extended to an N -party quantum state, ρ12...N .
An arbitrary N -party state is said to be monogamous with respect to Q, if

Q(ρ j :rest ) ≥
∑

k 
= j

Q(ρ jk), (7)

and the corresponding monogamy score, for any quantum correlation measure, Q,
is defined as

δ
j
Q(ρ1:23...N ) = Q(ρ j :rest ) −

∑

k 
= j

Q(ρ jk), (8)

with j as the node. Here, ρ jk represents the two-party density matrix, which
can be obtained from ρ12...N by tracing out all the other parties except j and k
( j, k = 1, 2, . . . , N ). It has been argued [13, 77] that the monogamy score quanti-
fies a multiparty quantum correlation measure, and hence constitutes a method of
conceptualizing a multiparty measure using bipartite ones. A monogamous quan-
tum correlation measure, for a given node j , have δ

j
Q ≥ 0 for all multipartite states.

Unless otherwise stated, we always use the first party as the nodal observer and in
that case, we denote monogamy score as δQ , discarding the superscript. Henceforth,
we shall always describe an N -party quantum state, pure or mixed, by ρ12...N , while
for ease of notations, we denote a three-party quantum state by ρABC .

In an N -party scenario, Coffman, Kundu, and Wootters conjectured a general-
ization of the CKW inequality to N -qubit pure states, ρ12...N , i.e., the inequality in
(7), by replacing Q with C2. Some time later, the conjecture was proven for arbitrary
N -qubit states by Osborne and Verstraete [21], by using an inductive strategy. Also,
there have been several attempts to construct generalized monogamy inequalities for
entanglement in qubit systems [85–93]. It has also been shown that in all multiqubit
systems, there exist monogamy equalities for certain quantum correlations [94].

2.3 Monogamy of Negativity and Other Entanglement
Measures

The negativity [26–31],N (ρAB), corresponding to the quantum state ρAB defined on
the Hilbert spaceCA ⊗ CB for two parties A and B, is defined byNAB ≡ N (ρAB) =
(‖ρTA

AB‖1 − 1)/2, where ρTA
AB is obtained by performing the partial transposition on

the state ρAB with respect to the subsystem A [26, 27], i.e., (ρTA)i j,kl = (ρ)k j,il ,
and where ‖ρ‖1 = Tr

√
ρρ† denotes the trace norm of the matrix ρ. For systems in

C
2 ⊗ C

2 and C
2 ⊗ C

3, N > 0 is the necessary and sufficient for non-separability.
In order to achieve a maximum value of unity in C

2 ⊗ C
2, the negativity can be

redefined as NAB = ‖ρTA
AB‖1 − 1.
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For any pure three-qubit state ρABC , the monogamy inequality for squared nega-
tivity [41],

N 2
AB + N 2

AC ≤ N 2
A:BC , (9)

holds, where A has been chosen as the nodal party, and in (5), Q is replaced byN 2.
For any three-qubit pure state, it turns out thatNA:BC = CA:BC . Moreover, as shown
in Ref. [95] for arbitrary two-qubit mixed states, we have

NAB = ‖ρTA
AB‖1 − 1 ≤ CAB . (10)

Thus for any three-qubit pure state, we obtain NAB ≤ CAB and NAC ≤ CAC , and
consequently, the proof of (9) automatically follows from the corresponding one for
squared concurrence. For an N -qubit pure state, the generalized monogamy inequal-
ity for squared negativity, given in Eq. (7) can be proven by usingN1:23...N = C1:23...N
for pure states, and the relation in Eq. (10).

As mentioned in the previous subsection, there have been efforts to propose
stronger versions of the monogamy relation for entanglement. Recently, a stronger
monogamy inequality for negativity has been proposed [96], and a detailed study
has been performed for four-qubit states. Another interesting proposal pitches the
square of convex-roof extended negativity as an alternative candidate to characterize
strong monogamy of multiparty quantum entanglement [97].

Monogamy has also been studied for other entanglement measures, including
entanglement of assistance (EoA) [98], and squashed entanglement [99, 100]. The
definition of EoA, which was originally introduced in terms of entropy of entan-
glement, can, in principle, be generalized for other measures of entanglement. For
example, concurrence of assistance (CoA) is an entanglement monotone for pure
tripartite states [101], and similar to the squared concurrence, monogamy properties
of the squared CoA have been studied extensively [79, 101–103]. Ref. [104] found
lower and upper bounds of EoA, among which the upper bound was shown to obey
monogamy constraints for arbitrary N -qubit states. In Ref. [100], Koashi and Win-
ter showed that for arbitrary tripartite states, the one-way distillable entanglement,
the one-way distillable secret key [105], and the squashed entanglement [99] satisfy
the monogamy relation, given in (5). For tripartite pure states, the entanglement of
purification [106] was shown to be non-monogamous in general [107]. There have
also been attempts to consider monogamy relations for entanglement in terms of
Tsallis entropy [108–110].

The monogamy inequality of entanglement sharing has been investigated also
for continuous variable systems. In Refs. [111, 112], monogamy inequality for the
“continuous variable tangle”, or the “contangle”, has been provided for arbitrary
three-modeGaussian states and for symmetric arbitrary-modeGaussian states, where
contangle is defined as the convex roof of the square of the logarithmic negativity.
Further generalization of the results has been achieved in [113–115].
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3 Information-Theoretic Measures of Quantum
Correlation

In this section, we define a few information-theoretic measures of quantum correla-
tions, whose monogamy properties are discussed in the subsequent sections.

3.1 Quantum Discord

Let us consider a bipartite quantum state ρAB , for which the uninterrogated, or
unmeasured quantum conditional entropy is defined as

S̃(ρA|B) = S(ρAB) − S(ρB), (11)

where ρB = TrA(ρAB) is the reduced density matrix of the subsystem B, obtained
by tracing over the subsystem A. One can also define an interrogated conditional
entropy, given by

S(ρA|B) = min
{�B

i }

∑

i

pi S(ρA|i ), (12)

where the minimization is performed over all complete sets of projective measure-
ments, {�B

i }, performed on subsystem B. The corresponding post-measurement
state for subsystem A is given by ρA|i = TrB[(IA ⊗ �B

i )ρAB(IA ⊗ �B
i )]/pi , where

IA is the identity operator on the Hilbert space of the subsystem A, and pi =
TrAB[(IA ⊗ �B

i )ρAB(IA ⊗ �B
i )] is the probability of obtaining the outcome i . These

two definitions of quantum conditional entropy lead to two different but equivalent
expressions of the classical mutual information. The former is used to define the
uninterrogated quantum mutual information, given by

Ĩ (ρAB) = S(ρA) − S̃(ρA|B), (13)

which is interpreted as the “total correlation” of ρAB [35, 36, 116–120]. On the
other hand, the latter provides the definition of the interrogated quantum mutual
information,

I←(ρAB) = S(ρA) − S(ρA|B), (14)

also interpreted as the “classical correlation” present in the quantum state ρAB [35,
36]. The arrow in the superscript begins from the subsystem on which the measure-
ment is performed. The quantum discord of the state ρAB is the difference between
the uninterrogated and interrogated quantum mutual informations [35, 36], and is
given by
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D←(ρAB) = Ĩ (ρAB) − I←(ρAB)

= S(ρA|B) − S̃(ρA|B). (15)

Note here that one can also define quantum discord, D→(ρAB), by performing
local measurement over the subsystem A instead of the subsystem B. In general,
D←(ρAB) 
= D→(ρAB). Unless otherwise stated, here and throughout in this chapter,
we consider D←(ρAB) as the measure of quantum discord. Note also that the defin-
ition of quantum discord is provided by using local projective measurement. How-
ever, quantum discord can also be defined in terms of positive operator valued mea-
surements (POVMs). It has been shown that computation of quantum discord is
NP-complete [121]. However, there has been efforts to determine quantum discord
analytically as well as numerically for certain quantum states [122–128].

3.2 Quantum Work Deficit

The amount of extractable pure states from a bipartite state ρAB , under a set of global
operations, called the “closed operations” (CO), is given by [37–40]

ICO = log2 dim (H) − S(ρAB), (16)

where the set of closed operations consists of (i) unitary operations, and (ii) dephasing
the bipartite state by a set of projectors, {�k}, defined on the Hilbert spaceH of ρAB .
On the other hand, considering the set of “closed local operations and classical
communication” (CLOCC), the amount of extractable pure states from ρAB is given
by [37–40]

ICLOCC = log2 dim (H) − min S
(
ρ′
AB

)
. (17)

Here, CLOCC consists of (i) local unitary operations, (ii) dephasing by local mea-
surement on the subsystem, say, B, and (iii) communicating the dephased subsystem
to the other party, A, via a noiseless quantum channel. The average quantum state,
after the local projective measurement {�B

k } is performed on B, can be written as
ρ′
AB = ∑

k pkρ
k
AB with ρkAB and pk being defined in a similar fashion as in the case

of quantum discord. The minimization in ICLOCC is achieved over all complete sets
{�B

k }. The “one-way” quantum work deficit is then defined as [37–40]

W←(ρAB) = ICO − ICLOCC
= min

{�B
k }

[
S

(
ρ′
AB

) − S(ρAB)
]
, (18)

where similar to quantum discord, the arrow in the superscript starts from the sub-
system over which the measurement is performed.
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3.3 Geometric Measure of Quantum Discord

Geometric quantum discord [129, 130] for a bipartite quantum state ρAB can be
defined as the minimum squared Hilbert–Schmidt distance of ρAB from the set,
SQC , of all “quantum-classical” states, given by σAB = ∑

i piσ
i
A ⊗ |i〉〈i |, where

{|i〉} forms a mutually orthonormal set of the Hilbert space of the subsystem B.
Mathematically, geometric quantum discord is given by

DG(ρAB) = min
σAB∈SQC

||ρAB − σAB ||22, (19)

where ||ρ − σ||2 = Tr(ρ − σ)2, for two arbitrary density matrices ρ and σ (however,
see [131]). Although geometricmeasures can be defined by using general Schatten p-
norms [132] (see also [133, 134]), it has been shown in Ref. [135] that the geometric
quantum discord can be consistently defined by using the one-norm, i.e., the trace-
distance only. Note here that the asymmetry in the definition of quantum discord due
to a local measurement over one of the parties also remains here in the choice of
σAB . One can also consider “classical-quantum” states, σ̃AB = ∑

j p j | j〉〈 j | ⊗ σ
j
B ,

to define the geometric quantum discord.

4 Monogamy of Quantum Discord

The monogamy score for quantum discord, defined after (6), is denoted by δ←
D or

δ→
D , depending on the subsystem over which the measurement is performed while
computing the quantum discord. In Refs. [44, 45], it was found that quantum discord
violates the monogamy relation already for certain three-qubit pure states.

Before discussing the monogamy properties of quantum discord in detail, let us
first ask the question as to whether a measure of quantum correlation, chosen from
the information-theoretic domain, can be monogamous. Although this is a difficult
question to answer in its full generality, some insight can be obtained by noting that
there is a marked difference between such a measure and the ones belonging to the
entanglement-separability category. The former may have a non-zero value in the
case of a separable state, while by definition, entanglement measures vanish for all
unentangled states. Let us consider a general bipartite quantum correlation measure,
Q, which, for an arbitrary bipartite quantum state ρAB , obeys a set of basic properties,
as enumerated below [43].

P1. Positivity: Q(ρAB) ≥ 0.
P2. Invariance under local unitary transformation: Q(ρ′

AB) = Q(ρAB), with ρ′
AB =

(UA ⊗UB)ρAB(U †
A ⊗U †

B). Here,UA andUB are unitary operators defined on the
Hilbert spaces of the subsystems A and B.

P3. Non-increasing upon the introduction of a local pure ancilla: Q(ρAB) ≥
Q(ρ̃A:BC), with ρ̃A:BC = ρAB ⊗ (|0〉〈0|)C .
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Note here that the first two properties are standard requirements for any measure of
quantum correlations, i.e., both entanglement and information-theoretic measures.
The third property is satisfied, for example, by quantum discord, irrespective of
whether the ancilla is attached to themeasured, or the unmeasured side. The direction
of the inequality in P3 is interesting. It may seem that we should have Q(ρAB) ≤
QA:BC(ρAB ⊗ (|0〉〈0|)C), as throwing out the C-part, of a state in A : BC , may only
“harm” (i.e., reduce Q), if at all. However, if we look at the definition of quantum
discord, we find that having the extra C-part may do harm, as it is only the I← term
in D← that can get affected due to the extra C-part. The extra C-part leads to a larger
class of possible measurements that can be performed for the maximization in I←

A:BC ,
than in I←

AB .
A generic separable state of the AC system is given by

ρAC =
∑

i

pi PA(|ψi 〉) ⊗ PC(|φi 〉), (20)

where P(|α〉) = |α〉〈α|. Let us now consider a special form of the tripartite sep-
arable state ρABC = ∑

i pi PA(|ψi 〉) ⊗ PB(|i〉) ⊗ PC(|φi 〉) with {|i〉} being a set of
mutually orthonormal states. The quantum correlation, Q, in the A : BC bipartition,
has the same value as that in the unitarily connected state σABC = ∑

i pi PA(|ψi 〉) ⊗
PB(|i〉) ⊗ PC(|0〉). Also, the amount of quantum correlation present in the stateσABC

in the A : BC bipartition can not be higher than that present in the A : B bipartition in
the state σAB = TrC(σABC), i.e., Q(σAB) ≥ Q(ρA:BC). If we now assume that Q sat-
isfy the monogamy relation, then Q(σAB) ≥ Q(ρAB) + Q(ρAC). Since ρAB ≡ σAB ,
we obtain Q(ρAC) ≤ 0, which, due to the positivity of Q, implies Q(ρAC) = 0.
Hence, a quantum correlation measure, Q, which is monogamous, and which obeys
the properties P1–P3, must be zero for a generic separable state, ρAC . Contrapos-
itively, a general bipartite quantum correlation measure, Q, which has a non-zero
value for at least one separable state, and which obeys a set of basic properties must
be non-monogamous [43].

The above discussion indicates that in the three-qubit scenario, monogamy for a
general measure of quantum correlation, which belongs to the information-theoretic
domain and which can be non-zero for a two-qubit separable state of rank 2, can
be violated for pure three-qubit states. This includes quantum discord, and other
“discord-like” measures [2]. As an example, let us consider the three-qubit general-
ized W states [136, 137], parametrized using two real parameters and given by

|gW〉 = sin θ cosφ|100〉 + sin θ sin φ|010〉 + cos θ|001〉, (21)

with θ,φ (0 ≤ θ ≤ π, 0 ≤ φ < 2π) being the real parameters. The plot of the negative
of the quantity δ←

D = D←(ρA:BC) − D←(ρAB) − D←(ρAC) as a function of θ and
φ is presented in Fig. 2. Note that over the entire plane of (θ,φ), −δ←

D has positive
values, indicating that generalized W states always violate monogamy of quantum
discord [44, 45].
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Fig. 2 Plot of −δ←
D as a

function of θ and φ for
three-qubit generalized W
states given in Eq. (21). In
agreement with the results
reported in [44, 45], −δ←

D is
positive over the entire plane
of (θ,φ). Reproduced figure
with permission from the
Authors and the Publisher of
Ref. [44]. Copyright (2012)
of the American Physical
Society
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In this context, one must note that the monogamy inequality of quantum discord,
as given by D→(ρA:BC) ≥ D→(ρAB) + D→(ρAC), when the measurement is always
performed over the nodal observer, can be shown to be equivalent to an inequality
between the uninterrogated mutual information of the subsystem BC , and the EoF
of the same, as given by [138]

E f (ρBC) ≤ Ĩ (ρBC)

2
, (22)

for three-qubit pure states. Li and Luo [139] have shown that the inequality given
in (22) does not hold for all tripartite pure states, thereby indicating that quantum
discord can be both monogamous as well as non-monogamous, complementing the
results obtained in [44, 45], where the measurements involved in the calculation of
quantum discord are performed over the non-nodal observers.

The question that naturally arises next is whether a quantum correlation measure,
Q, which violates one or more of the properties P1–P3, can bemonogamous. In [43],
it has been shown that a quantum correlation measure, Q, which is monogamous,
and remains finite when the dimension of one of the subsystems, say, A, is fixed,
i.e.,

Q(ρAB) ≤ f (dA) < ∞, (23)

must be zero for all separable states. Here, dA represents the dimension of A, and f
is some function. To prove this, for a generic separable state ρAB , let us consider a
symmetric extension of the form ρAB1B2...BN , where ρAB = ρABi ∀i = 1, 2, . . . , N , N
being an arbitrary positive integer, such that Q(ρAB) = Q(ρABi ), 1 ≤ i ≤ N [140–
143]. This implies

∑N
i=1 Q(ρABi ) = NQ(ρAB). Now, the monogamy of Q implies

Q(ρA:B1B2...BN ) ≥ NQ(ρAB). (24)
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Using (23), we have that Q(ρA|B1...BN ) is finite ∀N , including N → ∞. Therefore,
(24) can be violated with a large enough choice of N if Q(ρAB) 
= 0 for the separable
state ρAB .

4.1 Relation of Entanglement of Formation to Quantum
Discord

Let us consider a tripartite pure state ρABC , which is a purification of the bipartite
density matrices ρAB and ρAC , i.e., TrB(C)[ρABC ] = ρAC(AB). Let us now consider
I←(ρAC), where the only difference with the quantity defined in Eq. (14) is that here
we assume an optimization over POVMs [35, 144]. Let {pi , |ψi 〉} be a pure state
decomposition of ρAB that achieves the minimum in the definition of the EoF of
ρAB . Now, there must exist a particular measurement setting {M̃i } corresponding to
the subsystem C of the state ρABC , for which the joint state of the rest of the system,
AB, turns out to be |ψi 〉 with probability pi corresponding to the i th outcome [145].
This leaves the subsystem A in the state TrB(|ψi 〉〈ψi |). Following the definition of
I←(ρAB), this implies [100]

I←(ρAC) ≥ S(ρA) −
∑

i

pi S [TrB(|ψi 〉〈ψi |)] (25)

= S(ρA) − E f (ρAB). (26)

One may also consider an alternative approach, where a particular measurement
{Mi }, when performed over the subsystem C , attains the maximum in I←(ρAC) =
S(ρA) − ∑

i pi S(ρi ). In general, {Mi } may have a rank more than 1. It is now
suggestive to decompose {Mi } into rank-1 non-negative operators, Mi j , satisfying
Mi = ∑

j Mi j . Let us assume that the action of Mi j on the subsystem C leaves
the subsystem A in ρi j with probability pi j , where the following relations hold:
pi = ∑

j pi j and ρi = ∑
j ρi j . Concavity of the von Neumann entropy implies that

S(ρA) − ∑
i j pi j S(ρi j ) ≥ S(ρA) − ∑

i pi S(ρi ) = I←(ρAC). However, this conflicts
with the definition of I←(ρAC), unless S(ρA) − ∑

i j pi j S(ρi j ) = I←(ρAC). Now
consider the action of {Mi j } on the subsystem C . The state, |φi j 〉, of the subsystem
AB, corresponding to the outcome i j , is a pure state, and the measurement, {Mi j },
therefore, leads to an ensemble {pi j , |φi j 〉}, satisfying∑

i j pi j |φi j 〉〈φi j | = ρAB . This
also signifies that ρi j = TrB

[|φi j 〉〈φi j |
]
. Consequently [100],

E f (ρAB) ≤
∑

i j

pi j S(ρi j ) (27)

= S(ρA) − I←(ρAC). (28)

Combining (26) and (28), we have [100]
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E f (ρAB) + I←(ρAC) = S(ρA). (29)

This directly leads to a relation betweenEoF and quantumdiscord. The above relation
turns out to be extremely important to prove several monogamy relations for different
quantum correlation measures as can be seen in subsequent sections. However, note
that the use of the relation implies that quantum discord is computed by performing
POVMs.

Note here that ρ⊗n
ABC is a purification of the states, ρ⊗n

AB and ρ⊗n
AC . Moreover, the

additivity of von Neumann entropy implies that S(ρ⊗n
A ) = nS(ρA). As a result, one

obtains E f (ρ
⊗n
AB) + I←(ρ⊗n

AC) = nS(ρA). Dividing both sides by n and taking the
limit n → ∞, Eq. (29) reduces to

EC(ρAB) + C←
D (ρAC) = S(ρA), (30)

where EC(ρAB) = lim
n→∞

1
n E f (ρ

⊗n
AB) is the entanglement cost for creating ρAB by local

operations and classical communication (LOCC) from a resource of shared singlets
[146], and C←

D (ρAC) = lim
n→∞

1
n I

←(ρAC) is the one-way distillable common random-

ness of ρAC [144].

4.2 Conservation Law: Entanglement Versus Quantum
Discord

The above discussion directly leads to a conservation relation between EoF and
quantum discord of an arbitrary three-qubit pure state, ρABC . Note here that since
ρABC is pure, S(ρA) is a good measure of quantum correlation of ρABC in the A : BC
partition. Equation (29) implies that the amount of quantum correlation between the
subsystem A and the rest of the system is the sum of the amount of quantum cor-
relation present between A and B, and the amount of classical correlation present
between A and C , thereby imposing a constraint over the distribution of the cor-
relations between A and the rest of the system. Adding the uninterrogated mutual
information between A andC , given by Ĩ (ρAC) = S(ρA) + S(ρC ) − S(ρAC), to both
sides of Eq. (29), one obtains

E f (ρAB) = D←(ρAC) + S̃(ρA|C). (31)

Proceeding in a similar fashion, one can write E f (ρAB) and E f (ρAC) as

E f (ρAB) = D←(ρBC) + S̃(ρB|C),

E f (ρAC) = D←(ρAB) + S̃(ρA|B). (32)
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Since the tripartite state is pure, E f (ρC :AB) = S(ρC ) and E f (ρB:AC) = S(ρB),which,
from Eq. (32), implies [42]

D←(ρAB) = E f (ρAC) − E f (ρC :AB) + E f (ρB:AC). (33)

Also, noticing that S̃(ρA|B) = −S̃(ρA|C) since the state ρABC is pure, and using
Eqs. (31) and (32), one obtains [42]

E f (ρAB) + E f (ρAC) = D←(ρAB) + D←(ρAC). (34)

Note here that in the above discussion, we have considered the party A to be the nodal
observer, and while computing quantum discord, the measurement is performed over
the non-nodal observer. The above equation suggests that for an arbitrary tripartite
pure state ρABC , the sum of all possible bipartite entanglements shared by the nodal
observer with the rest of the individual subsystems, as measured by the EoFs, can
not be increased without increasing the sum of corresponding quantum discords by
the same amount. This seems to indicate a “conservation relation” between EoF and
quantum discord with respect to a fixed nodal observer in the case of a given tripartite
pure state.

In this context, we point out that multipartite measures of quantum correlations
have been defined as the sum of quantum correlations for all possible bipartitions in
a multiparty quantum state, by using EoF, quantum discord, and geometric quantum
discord as measures of bipartite quantum correlations. For tripartite pure states, the
conservation law implies that certain such multipartite measures corresponding to
EoF and quantum discord are equivalent [147, 148]. In the same vein, Ref. [149]
investigates the above multipartite quantum correlations, in terms of EoFs and quan-
tum discords for even and odd spin coherent states.

Since D←(ρA:BC) = E f (ρA:BC) = S(ρA) for an arbitrary tripartite pure state
ρABC , Eq. (34) implies an equivalence between the monogamy relation of EoF and
quantum discord [45]. In the case of mixed states, the conservation law changes into
[42]

D←(ρAB) + D←(ρAC) ≥ E f (ρAC) + E f (ρAB) + �, (35)

where � = S(ρB) − S(ρAB) + S(ρC ) − S(ρAC).

4.3 Relation with Interrogated Information

We now derive a relation which gives a physical insight into the monogamy property
of quantum correlation measures. For an arbitrary tripartite state ρABC , an uninter-
rogated conditional mutual information is defined as
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Ĩ (ρA:B|C) = S̃(ρA|C) − S̃(ρA|BC), (36)

while the corresponding interrogated version can be expressed as

I (ρA:B|C) = S(ρA|C) − S(ρA|BC), (37)

involving measurement over one or more of the subsystems. Here, Ĩ (ρA:B|C) and
I (ρA:B|C) are non-negative, which is a direct consequence of the non-increasing
nature of conditional entropy with an increase in the number of parties over which
it is conditioned. The definitions of S and S̃ are as given in Sect. 3.1. Given a tri-
partite quantum state ρABC , the interaction information [150], I (ρABC), is defined
as the difference between the information shared by the subsystem AB when
C is present, and when C is traced out. Since S̃(ρA|C) = S(ρAC) − S(ρC) and
S̃(ρA|BC) = S(ρABC ) − S(ρBC ), one can write an uninterrogated interaction infor-
mation as [44]

Ĩ (ρABC) = Ĩ (ρA:B|C) − Ĩ (ρAB)

= S(ρAB) + S(ρBC ) + S(ρAC) − S(ρABC)

−(S(ρA) + S(ρB) + S(ρC )). (38)

One can also define an interrogated interaction information, where the conditional
entropies are defined so that a complete measurement has to be performed on one
of the subsystems. In the case of the tripartite state ρABC , an interrogated interaction
information is given by

I (ρABC ){�B
k ,�C

i ,�BC
j } = I (ρA:B|C){�C

i ,�BC
j } − I (ρAB){�B

k }, (39)

where the suffix on I (ρABC){�B
k ,�C

i ,�BC
j } indicates that the measurements are per-

formed over B, C , and BC . A similar notation is used to define I (ρA:B|C){�C
i ,�BC

j } =
S(ρA|C){�C

i } − S(ρA|BC ){�BC
j } and I (ρAB){�B

k } = S(ρA) − S(ρA|B){�B
k } ≡ S(ρA) −

∑
k pk S(ρA|k). For an arbitrary tripartite state ρABC , the value of the interrogated

interaction information is obtained by performing an optimization over the mea-
surements. One can show that the quantum interaction information (i) can be either
positive or negative, (ii) is invariant under local unitaries, and (iii) obeys the inequal-
ity I (ρABC) ≥ Ĩ (ρABC) under unilocal measurements, which can be seen directly
from the fact that quantum discord is non-negative [44].

If the optimization over the complete set of measurements is performed, the
monogamy relation of quantum discord, i.e.,

D←(ρAB) + D←(ρAC) ≤ D←(ρA:BC) (40)

directly leads to
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I (ρA:B|C) − I (ρAB) ≤ Ĩ (ρA:B|C) − Ĩ (ρAB). (41)

On the other hand, assuming the relation (41) implies that min�BC
i
S(ρA|BC){�BC

i }
− S̃(ρA|BC) ≥ [min�B

i
S(ρA|B){�B

i } − S̃(ρA|B)] + [min�C
i
S(ρA|C ){�C

i } − S̃(ρA|C)],
which, in turn, implies the monogamy of quantum discord. Therefore, an arbitrary
tripartite quantum state ρABC is monogamous with respect to quantum discord if
and only if I (ρABC ){�B

k ,�C
i ,�BC

j } ≤ Ĩ (ρABC) [44]. For a tripartite pure state, since

Ĩ (ρABC) = 0, the interrogated interaction information is non-positive.
Consider the space of arbitrary three-qubit pure states, formed by the union of

the GHZ and W classes, which are inequivalent under stochastic local operations
and classical communication (SLOCC) [151]. The monogamy of quantum discord
has been tested numerically for the GHZ and the W classes [44]. Evidence for
both satisfaction and violation of monogamy relation of quantum discord in the
former class has been found, while for the latter, monogamy of quantum discord is
always found to be violated [44], if the measurement is performed over non-nodal
observers. The violation of monogamy of quantum discord in the case of three-qubit
pure states belonging to theW class can be proved analytically using the equivalence
of monogamy relations of EoF and quantum discord in the case of tripartite pure
states (see Sect. 4.2) [45]. Up to local operations, an arbitrary three-qubit pure state
can be parametrized as [152, 153]

|ψABC〉 = λ0|000〉 + λ1e
iγ |100〉 + λ2|101〉 + λ3|110〉

+λ4|111〉, (42)

where {λi : i = 1, . . . , 4} and γ are real parameters. For λ4 = 0, Eq. (42) represents
an arbitrary state from the W class, for which the tangle vanishes [13], i.e.,

C2
AB + C2

AC = C2
A:BC , (43)

where C represents the concurrence [13, 20]. Since E f (0≤E f ≤ 1) is a concave
functionofC2(0 ≤ C2 ≤ 1), for two-qubit states, E f (ρAB) + E f (ρAC) ≥ E f (ρA:BC).
Hence by using Eq. (34), we obtain the proof of violation of monogamy for quantum
discord for the states from the W class.

4.4 Monogamy of Quantum Discord Raised
to an Integer Power

Let us consider a bipartite quantum correlation measure, Q, which is monotonically
decreasing under discarding systems, and remains unchanged under discarding sys-
tems only for quantum states satisfying monogamy. Suppose that ρABC is a state that
violates the monogamy relation for Q. This implies
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Q(ρA:BC) < Q(ρAB) + Q(ρAC),

Q(ρA:BC) > Q(ρAB) > 0,

Q(ρA:BC) > Q(ρAC) > 0. (44)

We have additionally assumed that Q(ρAB) > 0 and Q(ρAC) > 0. However, the
vanishing Q cases can be handled separately. These directly lead to

lim
n→∞

[
Q(ρAB)

Q(ρA:BC)

]n

= 0,

lim
n→∞

[
Q(ρAC)

Q(ρA:BC)

]n

= 0. (45)

Therefore, for all values of ε > 0, there exists two positive integers, n1(ε) and n2(ε),
such that [Q(ρAB)/Q(ρA:BC)]m < ε for all positive integersm ≥ n1(ε), and similarly
for [Q(ρAB)/Q(ρA:BC)]m with respect to n2(ε).With a choice of ε < 1/2, one obtains
[Q(ρAB)/Q(ρA:BC)]m , [Q(ρAC)/Q(ρA:BC)]m < ε for all positive integersm ≥ n(ε),
where n(ε) = max[n1(ε), n2(ε)], leading to

[
Q(ρAB)

Q(ρA:BC)

]m

+
[

Q(ρAC)

Q(ρA:BC)

]m

< 2ε < 1, (46)

for all positive integers m ≥ n(ε). Therefore, considering the bipartite quantum cor-
relation measure Qm , we find that monogamy is obeyed for the state ρABC [47].

In the case of quantumdiscord,monogamyproperty is obeyed form ≥ 2 [47, 154],
while in the subsequent sections,we shall be discussing similar results regardingother
measures of quantum correlations. Note also that if a quantum correlation measure
Q is monogamous in the case of a three-party quantum state, any positive integer
power of the measure is also monogamous for the same state, which can be shown
directly by expanding (Q(ρAB) + Q(ρAC))m , and considering the non-negativity of
Q [47].

We illustrate this by considering the monogamy of squared quantum discord for
two specific cases: (1) The three-qubit generalized W state, discussed in Sect. 4,
and (2) a two-parameter three-qubit pure state, given by |ψ(p, ε)〉 = √

pε|000〉 +√
p(1 − ε)|111〉 + √

(1 − p)/2(|101〉 + |110〉), where p and ε are real. The varia-
tions of the monogamy score of squared quantum discord and quantum discord, as
functions of the state parameters, are plotted in Fig. 3 [154], which clearly indicates
that over the entire range of the state parameters, the squared quantum discord is
monogamous, but the quantum discord itself is not.

The case of non-integer powers was considered in [155]. It was shown that a
monogamousmeasure remainsmonogamous on raising its power, i.e., if Q(ρA:BC ) ≥
Q(ρA:B) + Q(ρAC), then Q(ρA:BC)m ≥ Q(ρA:B)m + Q(ρAC)m , where m ≥ 1. Sim-
ilarly, one can also prove that a non-monogamous measure of quantum correlation
remains non-monogamous with a lowering of the power [155]. Moreover, it has been
pointed out in Ref. [155] that if a convex bipartite quantum correlation measure Q,
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Fig. 3 Variationof themonogamyscore for squaredquantumdiscord (blue solid line) in comparison
to that of quantum discord (red dash-dotted line) [154]. Left Variations of the monogamy score for
squared quantum discord and quantum discord for the generalized W state, |gW〉, as functions of
the parameter φ, where the parameter θ is set to π/4. Right Variations of the monogamy score for
squared quantum discord and quantum discord in the case of the two-parameter state |ψ(p, ε)〉, as
a function of the state parameter p, where the other parameter is chosen to be ε = 0.5. Reprinted
figure with permission from the Authors and the Publisher of Ref. [154]. Copyright (2012) of the
American Physical Society

when raised to a power r = 1, 2, is monogamous for pure tripartite states, then Qr is
also monogamous for the mixed states on the given Hilbert space. Note also that all
the results mentioned in this subsection, except the monogamy of squared quantum
discord, have been generalized to the N -partite case [47, 155].

4.5 N-Partite Quantum States

Research on the monogamy properties of quantum correlations belonging to either
entanglement-separability or the information-theoretic paradigm predominantly
deals with tripartite quantum states [13, 21, 41, 44, 45]. It is observed that “good”
entanglement measures [156], which are known to be non-monogamous, in general,
for tripartite quantum states, tend to obey monogamy, when considered for quantum
states of a moderately large number of parties [157].

Irrespective of the genre of the measure used, it is possible to determine certain
other independent sufficient conditions for an arbitrary bipartite quantum correlation
measure to satisfy monogamy for arbitrary multiparty states. Let us consider an N -
partite pure state ρ12...N , where each of the parties has a dimension d. As the first
condition, we assume our chosen quantum correlationmeasure Q to bemonogamous
for all tripartite quantum states in dimension d ⊗ d ⊗ dm with m ≤ N − 2. The
monogamy of such an N -partite state can be expressed as
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Q(ρ1:23...N ) ≥ Q(ρ12) + Q(ρ1:34...N ), (47)

where a partitioning of ρ12...N , given by 1 : 2 : 34 . . . N , is assumed, and qubit 1
is chosen to be the nodal observer. One may, in turn, partition the state ρ134...N =
Tr2[ρ12...N ] as 1 : 3 : 4 . . . N , and can continue to do so till the last couple of parties,
labeled by N − 1, and N . Recursively applying the tripartite monogamy relation,
(47) can be reduced to

Q(ρ1:23...N ) ≥ Q(ρ12) + Q(ρ1:34...N ),

≥ Q(ρ12) + Q(ρ13) + Q(ρ1:45...N ),

. . .

≥
N∑

k=1

Q(ρ1k), (48)

the intended monogamy of Q for the state ρ12...N [21, 157].
As the second condition, let us assume the convexity of Q, and a convex roof

definition of Q in the case of a mixed state ρ12...N . For a tripartition 1 : 2 : 34 . . . N
of an N -party mixed state ρ12...N , one obtains

Q(ρ12...N ) = Q

(
∑

k

pk(|ψ〉〈ψ|)k12...N
)

,

=
∑

k

pk Q
(|ψ〉k12...N

)
, (49)

where the optimal convex roof decomposition providing Q(ρ12...N ) is {pk, |ψk
12...N 〉}.

If one additionally assumes that Q is monogamous for all tripartite pure states in
dimension d ⊗ d ⊗ dm , with m ≤ N − 2, then by using the convexity of Q, from
Eq. (49), one can write

Q(ρ12...N ) ≥ Q(ρ12) + Q(ρ1:34...N ). (50)

Continuing as before, the monogamy of the mixed state ρ12...N with respect to Q,
i.e., the relation (48), can be proven.

The above result has been numerically tested in Ref. [157], by Haar-uniformly
generating three-, four-, and five-qubit pure states. For several quantum correla-
tion measures, it is found that the percentages of multiqubit pure states increase
with increasing the number of parties. These measures include quantum discord and
quantum work deficit. For example, the percentages of three-, four-, and five-qubit
states, which are monogamous for quantum discord with measurement performed
on the nodal observer, are respectively 90.5, 99.997, and 100%. This result indicates
that in the case of a moderately large number of parties in the system, quantum cor-
relation measures, which are known to be non-monogamous for tripartite quantum
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states, tend to obey monogamy for almost all states [157]. The adjective “almost”
is necessary, since for a fixed number of parties, the set of Haar-uniformly gener-
ated states may exclude the sets of measure zero in the state space. Therefore, there
may exist measure-zero non-monogamous multipartite states which can not be made
monogamous for a specified quantum correlation measure by increasing the number
of parties. Indeed, it is found that the family of N -qubit Dicke states [158] can not
be made monogamous with respect to quantum discord by increasing the number
of parties. More specifically, it has been shown that an N -partite pure state with
vanishing tangle, i.e., C2(ρ12...N ) = ∑N

j=2 C2(ρ1 j ), violates the monogamy relation
for quantum discord if the sum of the uninterrogated conditional entropy condi-
tioned on all the non-nodal observers is a negative quantity [157]. In other words,
C2(ρ12...N ) = ∑N

j=2 C2(ρ1 j ) implies δ←
D ≤ ∑N

j=2 S(ρ1| j ), and hence, for pure states

having vanishing tangle and
∑N

j=2 S(ρ1| j ) < 0, the monogamy score for quantum
discord is negative, and this is the case for the N -qubit Dicke states.

4.6 Monogamy of Quantum Discord in Open
Quantum Systems

Although being of extreme importance, studies on the monogamy property of quan-
tum correlations under noisy environments are limited, possibly due to the inherent
mathematical difficulties. Recently, there has been experimental evidence, in pho-
tonic systems, of a flow of quantum correlations which occurs between a two-qubit
system, AB, and its environment, E [159]. In this scenario, the initially present bipar-
tite entanglement in the system AB decays with time, while multipartite entangle-
ment and multipartite quantum discord emerge in the multipartite system consisting
of the bipartite system and its environment. In another work, the dynamics of the
monogamy property of quantum discord, in the case of global noise,1 and dissipative
and non-dissipative single-qubit quantum channels is discussed in [63], by using
generalized GHZ [160] and generalized W [136, 137] states as input states to the
noise. As a representative of the dissipative noise, amplitude-damping (AD) channel
is used, while phase-damping (PD) and depolarizing (DP) channels are chosen as
examples of non-dissipative channels.2 In case of the three-qubit generalized GHZ

1The global noisy channel considered corresponds to the completely positive trace preserving
(CPTP) map, ρ → ρ′ = ζ(ρ), given by ρ′ = γ I

d + (1 − γ)ρ, where I is the identity matrix, d is the
dimension of the Hilbert space on which ρ is defined, and γ ∈ [0, 1] is the mixing factor.
2The CPTP maps, ρ → ρ′ = ζ(ρ), corresponding to these local noisy channels, can be given in the
form of their respective Kraus operators, {Ek}, such that ρ′ = ∑

k EkρE
†
k , where

∑
k E

†
k Ek = I.

For the single-qubit AD, PD, and DP channels, the Kraus operators are given by {Ead
k }, {E pd

k }, and
{Edp

k }, respectively. The Kraus operators for the AD channel are given by

Ead
0 =

(
1 0
0

√
1 − γ

)

, Ead
1 =

(
0

√
γ

0 0

)

,
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state, given by |gGHZ〉 = a0|000〉 + a1|111〉, the monogamy score of quantum dis-
cord has been shown to be decaying monotonically with increasing strength of the
noise parameter. On the other hand, in the case of three-qubit generalized W states
given by |gW〉 = a0|001〉 + a1|010〉 + a2|100〉,3 monogamy score for quantum dis-
cord exhibits non-monotonic behaviour when the value of the noise parameter is
increased. Here, each qubit of the three-qubit states is used as input to the quantum
channel under study. For example, when the DP channel is being studied, each qubit
of the three-qubit state is fed into three independent DP channels. A characteristic
value of the noise parameter, called the dynamics terminal [63], is introduced to quan-
tify the robustness of the monogamy score against a particular type of noise applied
to the input state, and depolarizing channel is identified as the one that destroys
monogamy score faster than the other channels considered. A related statistics of
three-qubit states belonging to the sets of generalized GHZ states and generalizedW
states is obtained numerically, which leads to a conclusive two-step distinguishing
protocol to identify the type of noise applied to the three-qubit system.We discuss the
details of the two-step channel discrimination protocol in Sect. 7.2. In [161], dynam-
ics of quantum dissension [162], and the monogamy score of quantum discord in
the case of amplitude-damping, dephasing, and depolarizing channels are discussed,
when the input is from a set of three-qubit states including mixed GHZ states, mixed
W states, and a certain mixture of separable and biseparable states. It was also found
there that certain non-monogamous states become monogamous with the increase
of noise.

5 Monogamy of Other Quantum Correlations

In this section, we discuss the monogamy properties of information-theoretic quan-
tum correlation measures other than quantum discord. We will present results that
are specific to the measures, while the results for generic measures of quantum

(Footnote 2 continued)
while for the PD and the DP channels, they are

E pd
0 = √

1 − γI, E pd
1 =

√
γ

2
(I + σ3), E pd

2 =
√

γ

2
, (I − σ3),

and

Edp
0 = √

1 − γI, Edp
i =

√
γ

3
σi ; i = 1, 2, 3,

respectively. Here, γ is the local noise parameter, with γ ∈ [0, 1].
3Note that |gW〉, given in Eq. (21), has been parametrized in the spherical polar coordinates, and
during numerical simulation, θ and φ are generated continuously, while in this case, a0 and a1 are
chosen Haar-uniformly to simulate the |gW〉 state.
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correlations, as discussed in the previous sections, remain valid. We start the discus-
sion with quantum work deficit, which, apart from obeying the properties related to
monogamy for general quantum correlation measures, has a direct relation with the
monogamy of quantum discord in the case of tripartite pure states [47]. Assuming
that the optimizations for both quantum discord and quantum work deficit of the
bipartite state ρAB take place for the same ensemble {pk, ρkAB}, from the definition
of quantum discord and quantum work deficit, one can show that

W←(ρAB) = D←(ρAB) − S(ρB) + H({pk}), (51)

where H({pk}) is the Shannon entropy originating from the local measurement on
the party B. Since H({pk}) ≥ S(ρB), W←(ρAB) ≥ D←(ρAB). This implies that if
quantum work deficit is monogamous, i.e., W←(ρA:BC) ≥ W←(ρAB) + W←(ρAC),
and since W←(ρA:BC) = D←(ρA:BC) = S(ρA) [35–39] for pure states, we have

D←(ρA:BC) = W←(ρA:BC) ≥ W←(ρAB) + W←(ρAC)

≥ D←(ρAB) + D←(ρAC), (52)

which implies monogamy of quantum discord. Note that the reverse is not true.
Note also that although one can show that W←(ρAB) + W←(ρAC) ≥ D←(ρAB) +
D←(ρAC) for a three party mixed state under the same assumption of optimization.

In the case of arbitrary three-qubit pure states, quantum work deficit can be both
monogamous and non-monogamous. As discussed in Sect. 4.4, similar to quantum
discord, a state that is non-monogamous with respect to quantum work deficit can be
made monogamous by raising quantum work deficit to an appropriate integer power,
m. For quantum discord, one requiresm ≥ 2 to obtainmonogamy, while for quantum
work deficit, the percentage of non-monogamous three-qubit pure states withm ≥ 4
is approximately 0.22, implying that a higher integer power of quantum work deficit
is necessary to achieve monogamy for almost all three-qubit pure states.

Similar to the findings for quantum discord and quantum work deficit, and from
the discussion in Sect. 4, geometric quantum discord is not monogamous in general,
since it is non-zero in the case of some separable states. However, in contrast to
quantum discord and quantum work deficit, geometric quantum discord is always
monogamous for an arbitrary three-qubit pure state ρABC [43]. Note that the geo-
metric quantum discord, in the present case, is computed by performing the mini-
mization over the set of all “classical-quantum states” instead of “quantum-classical
states” as defined in Sect. 3.3. This is proved by showing the existence of a classical-
quantum state, σABC , for which DG(ρA:BC) ≥ ||ρAB − σAB ||22 + ||ρAC − σAC ||22,
where σAB(AC) = TrC(B)(σABC), whenever ρABC is pure. Since the right hand side of
the inequality is always bigger than DG(ρAB) + DG(ρAC), due to the minimization
involved in geometric quantum discord, we obtain the claimed monogamy of DG .
Monogamy of geometric quantum discord is also considered in Ref. [163], while
in the multiqubit scenario, the monogamy of DG is addressed in Refs. [164, 165].
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Ref. [166] investigates themonogamy of geometric quantumdiscord in photon added
coherent states.

The monogamy of quantum correlations in the case of three-qubit pure symmet-
ric states, in the Majorana representation [167], was addressed in [168], where the
Rajagopal-Rendell quantum deficit (RRQD) [169, 170] is used as the quantum cor-
relation measure. For a bipartite quantum state ρAB , RRQD is defined as the relative
entropy distance [34, 171] of the state ρAB from ρdAB = ∑

i j pi j |i〉〈i | ⊗ | j〉〈 j |, which
is diagonal in the eigenbasis of the marginals, ρA, and ρB , given by {|i〉} and {| j〉},
respectively. Here, pi j = 〈 j |〈i |ρAB |i〉| j〉, with ∑

i, j pi j = 1. Mathematically,

DRR = S(ρAB ||ρdAB), (53)

where for two arbitrary density matrices ρ and σ, S(ρ||σ) = Tr(ρ log2 ρ − ρ log2 σ).
In the case of three-qubit pure symmetric states, RRQD was shown to be non-
monogamous in general [168]. In particular, it was shown that although generalized
W states can satisfy as well as violate the monogamy inequality for RRQD, the
generalized GHZ states always satisfy the relation.

We conclude this section bymentioning themonogamy property ofmeasurement-
induced nonlocality, introduced by Luo and Fu [172], and defined as

N (ρAB) = max{�A} ||ρAB − ρ′
AB ||22, (54)

where ρ′
AB = ∑

i �
i
A ⊗ IBρAB�i

A ⊗ IB , IB is the identity matrix in the Hilbert
space of B, and {�i

A} is the set of elements of a projective measurement for which∑
i �

i
AρA�

i
A = ρA. For this measure, three-qubit pure states belonging to the GHZ

and W classes can be non-monogamous in general [173], although unlike quantum
discord, both the generalized GHZ and generalized W states satisfy the monogamy
relation. The measurement-induced nonlocality has been also quantified from the
perspective of relative entropy by Xi et al. [174]. Subsequently, Ref. [175] provides
necessary and sufficient conditions for monogamy inequalities of this measure.

6 Relation with Other Multiparty Measures

An important perspective of the monogamy inequality of quantum correlations can
be obtained by harvesting its inherent multipartite nature, and establish relations
between the monogamy scores and the other quantum correlation measures includ-
ing bipartite and multipartite entanglement. In several works, monogamy score
of a given quantum correlation measure has been used as important markers of
multipartite quantum correlations. In the seminal paper by Coffman, Kundu, and
Wootters [13] introducing the monogamy inequality for tripartite states, tangle has
been described as “essential three-qubit entanglement”. Over the years, quantities
such as monogamy scores for different quantum correlation measures, including
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quantum discord and quantum work deficit, have been used as bona-fide measures
of multipartite quantum correlations [44, 77].

Recently, the relations ofmonogamyscore for quantumdiscordwith differentmul-
tipartite quantumcorrelationmeasures, such as tangle [13], genuinemultiparty entan-
glement measures quantified by generalized geometric measure (GGM) [176, 177],
and global quantum discord [178], have been established [44, 179, 180]. Significant
approaches to quantify multipartite entanglement and quantum correlations using
the monogamy principle have also been undertaken [79, 154, 181, 182]. Monogamy
scores of quantumdiscord and violation of Bell inequalities have also been connected
[183, 184]. Tripartite dense coding capacities are also shown to have relations with
the monogamy score of quantum discord [185, 186].

6.1 Monogamy Score Versus Other Multi-site Quantumness
Measures

In Ref. [187], the monogamy score of a quantum correlation measure for an N -qubit
pure multipartite state, ρ12...N = |�〉〈�|, is shown to be intrinsically related to the
genuine multipartite entanglement, as quantified by the GGM [176, 177]. An N -
party pure quantum state |�〉 is genuinely multipartite entangled if there exists no
bipartition across which the state is product. The GGM, G, of |�〉 is defined as

G(|�〉) = 1 − max{|�〉}|〈�|�〉|2, (55)

where the maximization is over the set of states {|�〉}, which are not genuinely
multiparty entangled. The GGM is known to be an entanglement monotone [176].
The above expression for GGM can be simplified to the form, G = 1 − maxk∈[1,N/2][{

ξm(ρ(k))
}]
, where

{
ξm(ρ(k))

}
is the set of highest eigenvalues of all possible reduced

k-qubit states, where k ranges from 1 to N/2.
For three-qubit pure states, the maximum eigenvalue has to arise from single-

qubit density matrices. Hence, an immediate relation between the monogamy score
δQ and the GGM can be established in this case [44, 78]. Let a = max{ξm(ρ(1))} be
themaximum eigenvalue corresponding to the single-qubit reduced state, ρ(1) of |�〉,
so that G = 1 − a. From Eq. (8), δ j

Q ≤ Q(ρ j :rest), where j is the nodal qubit. Now, the
quantity Q(ρ j :rest) is a function of a, say FQ(a). Moreover, we haveG = 1 − a, which
gives us FQ(a) = FQ(1 − G), and thus the bound, δ j

Q ≤ FQ(a) = FQ(1 − G). Now
the monogamy score, δQ , is defined as the minimum score over all possible nodes,
implying δQ ≤ δ

j
Q . Hence, we obtain an upper-bound on the monogamy score in

terms of a function of GGM, given by

δQ(|�〉) ≤ FQ(1 − G(|�〉)). (56)
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For quantum correlation measures that reduce to the von Neumann entropy for pure
states, such as distillable entanglement [12], entanglement cost [188], entanglement
of formation [22], squashed entanglement [99, 100], relative entropy of entangle-
ment [32, 34], quantum discord [35, 36], and quantum work-deficit [37–40], the
function FQ(1 − G) = h(G), where h(x) is the Shannon entropy. For the entan-
glement monotones, squared concurrence [13] and squared negativity [30, 41], the
quantity FQ(1 − G) is equal to zG(1 − G), where z = 4 and 1 for C2 andN 2, respec-
tively. We present a plot in Fig. 4 of the upper bound for the case of three-qubit pure
states, with the quantum correlation being chosen as quantum discord. The above
relation can be generalized to N -qubit pure states, where the upper bound on δQ in
terms of the entropic or quadratic functions of GGM, can be shown to exist for all
states that satisfy a set of necessary conditions. For instance, for all N -qubit states
|�〉 with G = 1 − a, the upper bound is universally valid. In other words, for N -
qubit state |�〉, if the maximum eigenvalue, among eigenvalues of all local density
matrices, is obtained from a single-qubit density matrix, it has been shown that the
upper-bound remains valid [187].

An important implication of the above bound is that it is even for those quantum
correlation measures for which the corresponding δQ can not be explicitly computed
for arbitrary states. Examples of such measures include distillable entanglement,
entanglement cost, and relative entropy of entanglement. The theorem implies that
any possible value for these measures will always result in a δQ that lies on or above
the boundary.

Apart from entanglement measures, violations of Bell inequalities are impor-
tant indicators of quantumness present in compound systems [56]. The two-point
correlation function Bell inequality violations, and their monogamy properties [48,
49] have been connected with the monogamy scores of entanglement and quan-
tum discord in three-qubit quantum systems [183, 184]. It has been shown that
for three-qubit pure states, the monogamy scores for quantum correlations includ-
ing quantum discord can be upper-bounded by a function of the monogamy score
for Bell inequality violation [183]. Moreover, it was shown in Ref. [184] that if
the monogamy score for quantum discord in the case of an arbitrary three-qubit
pure state, |�〉, is the same as that of the three-qubit generalized GHZ state,
then the monogamy score corresponding to the Bell inequality violation of |�〉
is bounded below by the same as that of the generalized GHZ state, when the
measurements in quantum discord are performed on the non-nodal observer. In
case the measurements are performed on the nodal observer, the role of the gen-
eralized GHZ state is replaced by the “special” GHZ state of N qubits [184],
given by |sGHZ〉 = |00 . . . 0〉N + |11〉 ⊗ (β|00 . . . 0〉 + √

1 − β2e−iθ|11 . . . 1〉)N−2,
where β ∈ [0, 1], and θ is a phase.
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6.2 Information Complementarity: Lower Bound
on Monogamy Violation

For a multipartite system in a pure quantum state, ρ12...N , let us first divide the whole
system into two parts, x and y, such that x ∪ y = {1, 2, . . . , N }. It is possible to
derive an information-theoretic complementarity relation between the purity of the
subsystem ρx , where ρx = Tryρ12...N , and the bipartite quantum correlation shared
between the subsystem x with the rest of the system, i.e., with y, and is given by [75]

P(ρx ) + Q(ρxy) ≤ b

{
= 1, if dx ≤ dy,

= 2 − log2 dy
log2 dx

, if dx > dy,
. (57)

Here, dx(y) is the Hilbert-space dimension of x(y), P = log2 dx−S(ρx )

log2 dx
is the nor-

malized purity of the subsystem x , S(ρx ) is the von Neumann entropy of ρx ,
and Q(ρxy) = Q(ρxy)

min{log2 dx ,log2 dy} is the normalized quantum correlation (with Q(ρxy)

being the corresponding quantum correlation) shared between the subsystems x
and y. The proof of the relation (57) requires that Q(ρxy) satisfies the conditions
Q(ρxy) ≤ S(ρx ). However, it is independently satisfied by several important quan-
tum correlation measures [75, 189]. The above complementarity relation has useful
application in quantum key distribution [75].

If we now consider a non-monogamous normalized bipartite quantum correlation
measure,Q, which could, for example, be normalized quantumdiscord or normalized
quantum work deficit, we can obtain a useful lower bound on the monogamy score
in terms of purity. For an N -qudit state, using (8) and (57), one obtains the relation
[189],

δQ ≥ −(N − 2)

(

1 − P(ρn0) + 1 − x0
N − 2

)

, (58)

where n0 is the nodal qubit and x0 = P(ρn0) + Q(ρn0:rest). For x0 ≥ 1 and large N ,
we obtain δQ ≥ −(N − 2)(1 − P(ρn0)), which provides a nontrivial lower bound
for the monogamy score of Q. For three-qubit states, the lower bound of δQ reduces
to δQ ≥ −S(ρn0). See Fig. 4.

6.3 Relation with Multiport Dense Coding Capacity

Another application of the monogamy inequality and the monogamy score is their
role in estimating optimal classical information transfer in multiport dense cod-
ing protocols [57, 190–194]. A complementarity relation of the monogamy score
for quantum correlation measures, such as squared concurrence and quantum dis-
cord, with the maximal dense coding capacity for pure tripartite quantum states was
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established in Ref. [185]. The dense coding capacity of a bipartite quantum state ρ12
is given by [190–194]

C(ρ12) = max
[
log2 d1, log2 d1 + S(ρ2) − S(ρ12)

]
. (59)

Without a shared entangled resource, the capacity would be log2 d1, and hence the
quantum advantage is Cadv = max{0, S(ρ2) − S(ρ12)}. One can consider a multi-
port communication with ρ12...N as the resource state, where 1 is the sender, and
the rests are the receivers. The quantum advantage in multiport dense coding for
the transfer of classical information from 1 to N − 1 individuals can be defined as
Cadv = max [{S(ρi ) − S(ρ1i )|∀i = 2, . . . , N }, 0]. Now, if one considers the set of
pure tripartite quantum states, the monogamy score for squared concurrence and
quantum discord are intrinsically related to the quantum advantage in dense cod-
ing. Specifically, it was shown that for any fixed monogamy score, the maximum
quantum advantage is obtained from a single parameter family of three-qubit pure
states, given by |ψα〉 = |111〉 + |000〉 + α(|101〉 + |010〉) [185]. It is possible to
derive a complementarity relation between the monogamy score of quantum discord
and the quantum advantage. A similar complementarity relation exists between the
monogamy score of squared concurrence and Cadv.

Monogamy scores of entanglement and quantum discord have also been related to
the multiparty dense coding capacity between several senders and a single receiver
[186]. In particular, it was shown that in the noiseless scenario, among all multi-
qubit pure states with an arbitrary but fixed multiparty dense coding capacity, the
generalized GHZ state has the maximummonogamy score for quantum discord, i.e.,
if C̃(|ψ〉) = C̃(|gGHZ〉), it implies δD(|ψ〉) ≤ δD(|gGHZ〉), where C̃(ρ12...N ) =
log2 d1...N−1 + S(ρN ) − S(ρ1...N ), with ρ1...N being a state shared between N − 1
senders, 1, 2, . . . , N − 1, and the receiver, N . Here, d1...N−1 = d1d2 . . . dN−1. We
have suppressed the arrow in the superscript of δD here, as the result is true indepen-
dent of the direction of the arrow. The above result is also true if δD is replaced by
the tangle. Note also that Ref. [186] also considers the noisy channel case.

7 Physical Applications

In recent years, several works have been undertaken to elucidate the role of
monogamy of quantum correlations in studying quantum systems and their dynam-
ics. In particular, the concept of monogamy has been used to characterize quantum
states [44, 45, 168, 173] and channels [63], and also to provide deeper understand-
ing of many physical properties such as critical phenomena in many-body systems
[68–72] involving complex quantummodels such as frustrated spin lattices [72], and
biological compounds [73, 74]. Moreover, monogamy also provides an important
conceptual basis to quantify quantum correlations in multiparty mixed states, by
using the concept of the monogamy score in situations where the usual measures of
quantum correlations are neither easily accessible nor computable. More precisely,
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given a bipartite quantum correlation measure, the monogamy score for that measure
defined for a given multiparty system, leads us to a measure of multipartite quan-
tum correlation, without an increase in the complexity on both experimental and
theoretical fronts as compared to those at the level of the bipartite measure.

7.1 State Discrimination

An important aspect in the study of the monogamy properties of quantum correlation
measures, such as quantum discord and quantum work-deficit, is that these measures
are not universally monogamous. In other words, for these quantum correlation mea-
sures, the monogamy inequality is not universally satisfied for all quantum states.
This dichotomy allows the monogamy of quantum correlations to be an important
figure of merit in state discrimination. In particular, for three-qubit pure states, it was
shown that while the generalized GHZ states are always monogamous with respect
to quantum discord, all generalized W states violate the monogamy inequality [44,
45]. The above results were extended to the more general sets, viz. the GHZ and
the W class states, where it was shown that more than 80% of the Haar-uniformly
generated GHZ class states satisfy monogamy, in contrast to W class states which
are always non-monogamous (see Fig. 4). The monogamy score, therefore, plays
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Fig. 4 Upper and lower bounds on the monogamy score of quantum discord for pure three-qubit
GHZ- and W-class states. For three-qubit pure states, the upper bound using the GGM, G, and the
lower bound from the information complementarity, are given by the quantity h(G) and −h(G),
respectively, where h is the binary entropy function. The scatter points in the figure correspond
to 106 three-qubit pure states generated Haar uniformly. An equal number of W-class states are
also Haar uniformly generated. The figure shows that all W-class states have a negative monogamy
score that is weakly bounded below by−S(G), whereas GHZ-class states can have both positive and
negative monogamy scores. Reprinted figure with permission from the Authors and the Publisher
of Ref. [78]. Copyright (2012) of the American Physical Society
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a role that is akin to entanglement witnesses [27, 195–199]. Indeed a given linear
entanglement witness allots values (real numbers) with a certain sign (say, nega-
tive), to all separable states while for entangled states, the same witness can have
values of both signs. So, a positive value of the witness for a certain state immedi-
ately implies that the state is entangled. Similarly, a positive value of the monogamy
score for quantum discord for a three-qubit pure state implies that the state is from
the GHZ class. Subsequently, the comparative studies of the SLOCC inequivalent
classes was discussed using the monogamy score of another measure of quantum
correlation [168], namely, the quantum deficit [169, 170]. It was shown that while
generalized W states may violate monogamy, generalized GHZ states always satisfy
the monogamy inequality of quantum deficit. We therefore find that the state dis-
crimination protocol using monogamy inequalities is dependent on the choice of the
quantum correlation. For instance, using the monogamy properties of measurement
induced non-locality [172], it was shown that both tripartite generalized GHZ and
generalized W states are monogamous [173].

The monogamy inequality and the related monogamy scores have also been used
to characterize pure tripartite quantum states [77], by finding the relation of the
monogamy scores for those states with the corresponding values for measures of
genuine multipartite entanglement, viz. the GGM [176, 177] and the multipartite
Mermin-Klyshko Bell inequalities [55, 200–202]. In particular, tripartite states that
have a vanishing monogamy score for quantum discord have been explored in this
way [77]. Some of these aspects have been discussed in Sect. 6.

7.2 Channel Discrimination

Another application of the monogamy considerations of quantum correlations comes
from the study of their behavior under the action of global and local noisy channels.
It has been observed that an analysis of the dynamics of the monogamy scores of
quantum discord and entanglement, quantified by negativity, for initial tripartite gen-
eralized GHZ and generalized W states can conclusively identify the noisy channel
acting on the system [63]. By analyzing the monogamy scores for quantum discord
(δD) and negativity (δN ), with generalized GHZ and generalizedW states as inputs, a
two-step discrimination protocol to identify the above channels has been developed.
To describe the protocol, let us consider an apriori unknown noisy channel, chosen
from a set containing a global noise channel, and the AD, PD, and DP channels. See
Sect. 4.6 for descriptions of these channels. In step 1 of the channel-discrimination
protocol, one feeds generalizedW state to the unknown channel withmoderate noise,
i.e., γ ∈ [0.4, 0.6]. The monogamy score of discord is the primary indicator in this
step. For the global noise and DP channel, δD ≥ 0, while it is strictly negative for
the AD and PD channels. In step 2 of the protocol, the same unknown channel, with
moderate noise, is applied to an generalized GHZ state, and in this instance, both δN
and δD of the output state are estimated. It is observed that δN > 0 for the global noisy
channel, but vanishes for the DP channel. Note that step 2 distinguishes between the
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Fig. 5 Schematic
representation of the
two-step channel
discrimination protocol
proposed in [63].
Reproduced figure with
permission from the Authors
and the Publisher of Ref.
[63]. Copyright (2016) of
Physics Letter A (Elsevier)

instances which exhibit δD ≥ 0 in step 1. On the other hand, in step 2, δD ≥ 0.13
for the AD channel and δD ≤ 0.09 for the PD channel. Therefore, the values of δD
and δN together can discriminate between the global noise and the three local noisy
channels [63]. A schematic representation of the two-step channel discrimination
protocol can be found in Fig. 5.

Identification of quantum channels using the dynamics of monogamy scores of
quantum correlations is potentially an important addition to the literature on channel
identification [203] and estimation [204], which is a significant yet less discussed
part of the vast literature on quantum state estimation [205].

7.3 Characterization of Quantum Many-Body Systems

Although several studies have attempted to characterizemany-bodyquantumsystems
using quantum correlations beyond entanglement (for a review, see Ref. [2]), those
engagingmonogamy of quantum correlations to understand cooperative properties in
strongly-correlatedmany-body systems are relatively scarce. InRef. [68],monogamy
property of quantum discord is used to characterize the ground state of the one
dimensional bond-charge Hubbard model. A paradigmatic quantum spin model in
one dimension is the XYZ model, represented by the Hamiltonian

H = J

4

N∑

i=1

{
(1 + g)σx

i σ
x
i+1 + (1 − g)σ

y
i σ

y
i+1 + �σz

i σ
z
i+1

}

+h f

2

N∑

i=1

σz
i , (60)

where J is the strength of the nearest-neighbour exchange interaction, g is the x − y
anisotropy parameter, � and h f are the anisotropy, and the strength of the external
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Fig. 6 Variation of the
monogamy score of squared
quantum discord as a
function of � with
increasing system-size in the
case of the XXZ model.
Reprinted figure with
permission from the Authors
and the Publisher of Ref.
[70]. Copyright (2014) of
the Europhysics Letters
(Institute of Physics)

magnetic field, respectively, in the z direction. Several important one-dimensional
quantum spin Hamiltonians emerge from Eq. (60). For example, the Hamiltonian
in Eq. (60), with g = 0 and h f = 0, represents the one-dimensional XXZ model,
while for � = 0 and g = 1, the model corresponds to the one-dimensional quantum
Ising model in an external transverse magnetic field. In Ref. [70], the monogamy
score of squared quantum discord is used to investigate the critical points of the
one-dimensional XXZ model. See Fig. 6 for the variation of δ←

D2 (given byQ3(ρ1|23)
in Ref. [70]) against the anisotropy parameter, �. Monogamy properties of other
quantum correlation measures such as geometric discord [69] and measurement
induced disturbance [71] have also been investigated in the XXZmodel. In an exper-
imental study investigating the ground state of the one-dimensional quantum Ising
model in a transverse magnetic field, by using a nuclear magnetic resonance (NMR)
setup, monogamy scores of negativity and quantum discord are shown to distin-
guish between the cases of positive (frustrated phase) and negative (non-frustrated
phase) values of J in the ground state of the system [72]. It is interesting to note that
monogamy of entanglement has been used to constrain the bipartite entanglement of
resonating valence bond states [64–66].

7.4 Quantum Biological Processes

An interesting and recent development in physics has been the investigation of quan-
tum effects in certain complex biological processes. In particular, light-harvesting
protein complexes have been modeled to investigate photosynthetic processes in cer-
tain bacteria, with specific interest in the role of quantum coherence and quantum
correlations [206–209]. Several studies have investigated the well-known Fenna-
Mathews-Olson (FMO) complex, which mediates energy transfer from the receiving
chromophores to the central reaction center, and attempted to characterize the effi-
ciency of the energy transfer in terms of quantum correlations [207, 208]. The role



56 H.S. Dhar et al.

of monogamy of quantum correlations in the dynamics was recently investigated in
Refs. [73, 74]. In Ref. [74], it is shown how the monogamy of quantum correlations,
as quantified by negativity and quantum discord, is able to detect the arrangement
of the different chromophore nodes in the FMO complex and support the predicted
pathways for the transfer of excitation energy. The results also reiterate the pre-
dominance of multiparty quantum correlation measures over bipartite correlations
between the nodes of the FMO complex.

8 Conclusions

Like other no-go theorems [15–18, 210–213] in quantum information science, in a
multipartite domain, restrictions on sharability of quantum correlations, named as
monogamy of quantum correlations, play a crucial role in achieving successes in, and
in understanding of several quantum information processing tasks. In this chapter,
we have discussed the monogamy properties of information-theoretic quantum cor-
relations, specifically quantum discord, and highlighted their significant features.
Computable multipartite quantum correlation measures are rare, although there are
a handful of bipartite quantum correlation measures, including quantum discord and
several “discord-like” measures, which are possible to calculate, at least numerically.
The concept of monogamy opens up a new avenue where multipartite properties of
a system can be studied via bipartite quantum correlations and becomes extremely
useful to study different physical systems. This leads to another interesting aspect of
monogamy, namely, its application in several key phenomena in quantum physics,
ranging from quantum communication to the emerging research on quantum spin
models, quantum biology, and open quantum systems, which is also reviewed.
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192. M. Ziman, V. Buẑek, Correlation-assisted quantum communication. Phys. Rev. A 67, 042321
(2003)

193. D. Bruß, G.M. DAriano, M. Lewenstein, C. Macchiavello, A. Sen(De), U. Sen, Distributed
quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)

194. D. Bruß, M. Lewenstein, A. Sen(De), U. Sen, G.M. DAriano, C. Macchiavello, Dense coding
with multipartite quantum states. Int. J. Quant. Inf. 4, 415 (2006)

195. B.M. Terhal, A family of indecomposable positive linear maps based on entangled quantum
states. Lin. Alg. Appl. 323, 61 (2001)

196. O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Detec-
tion of entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002)

197. M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Optimization of entanglement witnesses.
Phys. Rev. A 62, 052310 (2000)

198. D. Bruß, J.I. Cirac, P. Horodecki, F. Hulpke, B. Kraus,M. Lewenstein, A. Sanpera, Reflections
upon separability and distillability. J. Mod. Opt. 49, 1399 (2002)



64 H.S. Dhar et al.

199. O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Experi-
mental detection of entanglement via witness operators and local measurements. J. Mod. Opt.
50, 1079 (2003)

200. N.D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct
states. Phys. Rev. Lett. 65, 1838 (1990)

201. M. Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with
the number of particles. Phys. Rev. A 46, 5375 (1992)

202. A.V. Belinskii, D.N. Klyshko, Interference of light and Bell’s theorem. Phys. Usp. 36, 653
(1993)

203. A. Fujiwara, Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001)
204. M. Sarovar, G.J. Milburn, Optimal estimation of one-parameter quantum channels. J. Phys.

A Math. Gen. 39, 8487 (2006)
205. M. Paris, J. Rehacek (eds.), Quantum State Estimation, vol. 649, Lecture notes in physics

(Springer, Berlin, 2004)
206. G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T.C.M. Caronal, Y.-C. Cheng, R.E. Blanken-

ship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in
photosynthetic systems. Nature 446, 782 (2007)

207. F. Caruso, A.W. Chin, A. Datta, S.F. Huelga, M.B. Plenio, Highly efficient energy excitation
transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J.
Chem. Phys. 131, 105106 (2009)

208. M.Sarovar,A. Ishizaki,G.R. Fleming,K.B.Whaley,Quantumentanglement in photosynthetic
light-harvesting complexes. Nat. Phys. 6, 462 (2010)

209. N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology. Nat.
Phys. 9, 10 (2013)

210. J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38,
447 (1966)

211. S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. J. Math.
Mech. 17, 59 (1967)

212. A.K. Pati, S.L. Braunstein, Impossibility of deleting an unknown quantum state. Nature 404,
164 (2000)

213. A. Kalev, I. Hen, No-broadcasting theorem and its classical counterpart. Phys. Rev. Lett. 100,
210502 (2008)



Measurement-Induced Nonlocality
and Quantum Correlations Under Local
Operations

Xueyuan Hu, Ming-Liang Hu and Heng Fan

Abstract One significant feature of quantum theory is the existence of non-
local quantum correlations which have no classical counterpart. There are various
measures quantifying quantum correlations from different view points. Here, we
present some recent developments about the quantum correlation measures known
as measurement-induced nonlocality, in the sense that quantum measurement may
destroy the quantum correlations for quantum states resulting in measures of non-
locality. Quantum correlations remain invariant under local unitary operations, they
may decrease under general local operations, however, sometimes they can also
show increasing for some local operations. We will review the properties of quantum
correlations under local operations.

1 Introduction

Quantum mechanics is non-local. There exist non-local quantum correlations which
have no classical counterpart. The study of quantum correlations can trace back to
the well-known debate about whether quantummechanics is complete, known as the

Xueyuan Hu and Ming-Liang Hu—those two authors contributed equally

X. Hu
School of Information Science and Engineering, Shandong University,
Jinan 250100, China
e-mail: xyhu@sdu.edu.cn

M.-L. Hu
School of Science, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China
e-mail: mingliang0301@163.com

H. Fan (B)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
e-mail: hfan@iphy.ac.cn

H. Fan
Collaborative Innovation Center of Quantum Matter, Beijing 100190, China

© Springer International Publishing AG 2017
F.F. Fanchini et al. (eds.), Lectures on General Quantum Correlations
and their Applications, Quantum Science and Technology,
DOI 10.1007/978-3-319-53412-1_4

65



66 X. Hu et al.

Einstein-Podolsky-Rosen paradox [1]. It was proposed that there may exist hidden
variables for quantum theory being complete. Later, various Bell-type inequalities
were proposed which are derived based on the local hidden variable theory, see, e.g.,
Ref. [2] for an overview. It was found that the violation of Bell inequalities implies
quantum entanglement in a system, while the opposite case is not always true [3, 4].
Entanglement also plays a critical role in many protocols of quantum information
processing. Great progress has been made in studying quantum entanglement, which
is one kind of quantum correlations showing non-locality of quantum mechanics.
Entanglement is also believed to be the key resource for the advantages of quantum
computation and protocols of quantum information processing. Very recently, it is
realized that entanglement is not the only quantum correlation which has no classical
counterpart. Other type of quantum correlations, such as the quantum discord and
measurement-induced nonlocality, may also be responsible for the speedups in some
quantum algorithms while entanglement may be vanishing or negligible, see review
[5].

In general, most of the quantum correlations for pure quantum states may coin-
cide, and sometimes may demonstrate similar behaviors for mixed states. However,
there are also subtle differences for those quantum correlations and their physical
interpretations are also different. All these indicate that the properties of quantum
correlations, or nonlocality, of a system are intricate, and the characterizations of
them from different aspects are in demanding. Here we will review some recent
results of measurement-induced nonlocality and quantum correlations under local
operations.

We would like to point out that measurement-induced nonlocality is one type of
quantum correlations. However, we remark that nonlocality, for example in form
of non-local correlation, which is non-classical from one side, may not always be
possessed by quantum states from other side, such as the PR box [6, 7]. Here the
measurement-inducednonlocalitymeans thequantumcorrelationpossessedbyquan-
tum states which is naturally quantum mechanical. For quantum correlations, we
mean that some non-classical correlations possessed by quantum states. One may
realize that there also exist classical correlation for quantum states. We remark that
quantum correlation, as valuable resource, cannot be cloned (broadcasted) because
of no-cloning theorem, in contrast with the classical correlation [8]. We know that
entanglement cannot be created by local quantum operations even assisted by clas-
sical communications. However, some other quantum correlations may increase by
local operations. Here, we will review results of quantum correlations under local
operations.

Before we proceed, let us first introduce some notations. Quantum states are
presented as the density operators ρ in the Hilbert space Hd , where d denotes the
dimension. A qubit is a two-dimension quantum system. Let �σ = {σ1,σ2,σ3} denote
the Pauli basis andσ0 = I be the single-qubit identity operator. Any single-qubit state
ρA can bewritten as ρA = 1

2

∑3
μ=0 aμσ

A
μ , where aμ = tr(ρAσA

μ ) and a ≡ (a1, a2, a3)T

is called the Bloch vector of the state ρA. We label ã ≡ (a0, a1, a2, a3)T for later
convenience. Similarly, a two-qubit state ρAB can be expanded in the Pauli basis as
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ρAB = 1
4

∑
μν �μνσ

A
μ ⊗ σB

ν , where the coefficient matrix �μν = tr(ρABσA
μ ⊗ σB

ν )

can be written in the block form � =
(
1 bT

a T

)

.

Here, a and b are the Bloch vectors of the reduced density matrices ρA and ρB

respectively, and the 3 × 3 matrix T represents the correlations.
The vonNeumann entropy of a quantum state is denoted as S(ρ) := −tr(ρ log2 ρ).

The relative entropy of two quantum states ρ and σ is S(ρ||σ) := −tr(ρ log2 σ) −
S(ρ). When we consider the bipartite quantum state ρAB , the conditional entropy is
SA|B(ρAB) := S(ρAB) − S(ρB).

A quantum channel is a trace-preserving completely positive (TPCP) linear map
� : D(Hd) → D(Hd ′). Here D(Hd) denotes the operator space defined on the
Hilbert space Hd . In the following context, we take d = d ′. Any quantum chan-
nel can be presented as the Kraus decomposition �(·) = ∑

j E j (·)E†
j , where E j are

called Kraus operators.

2 What are Quantum Correlations

A bipartite state ρAB is called quantum-classical (QC) if there exist a positive
operator-valued measure (POVM) on B which does not disturb the whole state.
The term “classical” is used to stress the nondisturbing property of classical mea-
surements. Mathematically, a QC state can be written as

ρQC =
∑

i

piρ
A
i ⊗ |φi 〉B〈φi |, (1)

where {|φi 〉B} consist of an orthogonal basis for the Hilbert space of subsystem B,
and ρA

i are density operators of A. The set of quantum-classical states are denoted
as QC. An equivalent expression for the QC states is

ρQC =
∑

i

piζ
A
i ⊗ ξB

i , (2)

where ζ A
i are linearly independent, and ξB

i commute with each other.
A state is said to have nonzero quantum correlation on B if and only if it does

not belong to QC. Like entanglement, the amount of quantum correlation can be
measured in various ways [5]. The measures of quantum correlation Q we discuss
here satisfy the following three conditions:

(C1) Q(ρ) = 0 if and only if ρ ∈ QC;
(C2) Q(UA ⊗UBρU †

A ⊗U †
B) = Q(ρ), whereUA andUB are arbitrary unitary oper-

ators on A and B;
(C3) Q(�A ⊗ 1B(ρ)) ≤ Q(ρ).
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Notice that the measures of quantum correlation are asymmetric for A and B, here
and hereafter, we discuss only the quantum correlation defined on B. In the following,
we list some quantum correlation measures which satisfy (C1–C3).

Quantum discord is defined as the minimum part of the mutual information
shared between A and B that cannot be obtained by the measurement on B [9]:

δA|B(ρ) := min
{MB

i }
SA|B

(
∑

i

IA ⊗ MB
i ρIA ⊗ MB†

i

)

− SA|B(ρ), (3)

where {MB
i } is a POVM on B. We point out here that the calculation of quantum

discord is a hard task in general. Even for the two-qubit states, the analytical solutions
of it exist only for certain special states [10].

Distance-based measure of quantum correlation is the minimum distance
between the state ρ and the set of QC states [11]

QD(ρ) := min
σ∈QC

D(ρ,σ), (4)

where the distance D does not increase under any quantum operation, such that
QD satisfies (C3). When the relative entropy S(ρ||σ) := tr[ρ(log2 ρ − log2 σ)] is
employed as the distance measure, we obtain the one-way quantum deficit

�A|B := min
{�B

i }
S

(
∑

i

IA ⊗ �B
i ρIA ⊗ �

B†
i

)

− S(ρ), (5)

where {�B
i } is a projective measurement on B. �A|B equals to the minimal distance

between ρ and ρQC, and its operational connection with quantum entanglement has
also been established [12, 13].

Measurement-induced disturbance is defined as the minimum disturbance
caused by local projective measurements that do not change the reduced state
ρB ≡ trAρ [14]

QM(ρ) := min
{EB

i }
D

(

ρ,
∑

i

IA ⊗ EB
i ρIA ⊗ EB†

i

)

, (6)

where {EB
i } is a projective measurement on B which satisfies

∑
i E

B
i ρBEB†

i = ρB .
This measure of quantum correlation is favored for its easy of calculation, and its
generalization to continuous-variable systems has also been established [15].
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3 Measurement-Induced Nonlocality

In the following, we recall the recently proposed measure of nonlocality which was
termed as measurement-induced nonlocality (MIN) [16], as well as various forms of
its extension [17–21]. They were all defined from the measurement perspective, and
were motivated by those of the discord-like correlation measures [5]. We shall focus
mainly on the bipartite systems described by the density operator ρ in the Hilbert
space HA ⊗ HB . But the related concepts and ideas can in fact be generalized to
multipartite systems straightforwardly.

Motivated by the idea that the distance from a given state ρ to the set of states
without the desired property is a measure of that property (e.g., the distance to the
closest separable state is a measure of entanglement, and to the closest classical state
is a measure of discord) [5], the MIN can be defined as the maximal distance that
the considered state ρ to the set L of local quantum states, namely

N (ρ) = max
δ∈L

D(ρ, δ), (7)

where D denotes an arbitrary distance measure that does not increase under the
action of TPCP map, while the maximum is taken over the full set of L, which
contains those of the quantum states δ obtained by the locally invariantmeasurements
�A, that is, δ = ∑

k �A
k ρ�A

k for all�A = {�A
k } satisfying∑

k �A
k ρA�A

k = ρA, with
pk = tr(�A

k ρ�A
k ), and ρA = trBρ being the reduced state of ρ.

This definition of nonlocality measure was motivated by the consideration that a
local state should not be disturbed by arbitrary locally invariant measurement �A

on party A (or �B on B), while a nonlocal state may be disturbed by �A, and the
maximal disturbance can be used to quantify the nonlocal property of it.

By adoptingdifferent distancemeasures D, one candefinedifferentMINmeasures
which possess distinct novel characteristics, and have been shown to play crucial role
in many fields of quantum technology.

3.1 MIN Quantified by the Hilbert–Schmidt Norm

The notion of MIN was first introduced by Luo and Fu by using the Hilbert–Schmidt
norm [16]. For a bipartite state ρ shared by two parties A and B, it was defined as

N2(ρ) = max
�A

||ρ − �A(ρ)||22, (8)

where �A denotes the locally invariant von Neumann measurements, and ||X ||2 =
[tr(X†X)]1/2 is the Hilbert–Schmidt norm.

Physically, N2(ρ) can be considered as the maximal global disturbance induced
by the locally invariant measurements �A, or the maximal square Hilbert–Schmidt
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distance that the postmeasurement state �A(ρ) departs from the premeasurement
state ρ. From an applicative point of view, it is also hoped to be useful in the related
field of quantum state steering, remote state control, superdense coding, and cryp-
tography [16].

The MIN measure N2(ρ) has the following basic properties: (i) N2(ρ) is non-
negative, and equals zero for any product state ρ = ρA ⊗ ρB . (ii) N2(ρ) is locally
unitary invariant, namely, N2((U A ⊗UB)ρ(U A ⊗UB)†) = N2(ρ) for any unitary
operatorsU A andUB . (iii) If the reduced state ρA is nondegenerate with the spectral
decomposition ρA = ∑

k λk |k〉〈k|, then the optimal �̃A for obtaining N2(ρ) is given
by �̃A(ρ) = ∑

k |k〉〈k|ρ|k〉〈k|.
For the (m × n)-dimensional bipartite states represented as

ρ =
∑

i j

ri j Xi ⊗ Y j , (9)

with {Xi : i = 0, 1, . . . ,m2 − 1} (X0 = Im/
√
m) is the orthonormal operator base

for subsystem A that satisfy tr(X†
i Xi ′) = δi i ′ (and likewise for Y j ), the MINmeasure

N2(ρ) has been shown to be upper bounded by

N2(ρ) ≤
m2−m∑

i=1

λi , (10)

where λi (i = 1, 2, . . . ,m2 − 1) denote the eigenvalues of RRT in nonincreasing
order, R = (ri j )with i, j ≥ 1 is a realmatrix, and the superscript T denotes transpose
of vectors or matrices.

The MIN measure N2(ρ) is favored for its ease of calculation for a wide range of
quantum states. First, for any bipartite pure state |ψ〉with the Schmidt decomposition
|ψ〉 = ∑

k λk |φA
k 〉 ⊗ |φB

k 〉, one has

N2(|ψ〉〈ψ|) = 1 −
∑

k

λ2
k, (11)

and for the (2 × n)-dimensional states represented as Eq. (9), one has

N2(ρ) =

⎧
⎪⎨

⎪⎩

||R||22 − 1

||�x ||22
�xT RRT �x if �x = 0,

||R||22 − λmin(RR
T ) if �x = 0.

(12)

where λmin(RRT ) is the smallest eigenvalue of RRT , and �x = (r10, r20, r30)T .
Moreover, for certain higher dimensional states with symmetry, N2(ρ) can also

be calculated analytically [22], e.g., for the (d × d)-dimensional Werner state ρW

and isotropic state ρI of the following form
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ρW = d − x

d3 − d
Id2 + dx − 1

d3 − d

∑

i j

|i j〉〈 j i |, x ∈ [−1, 1],

ρI = 1 − x

d2 − 1
Id2 + d2x − 1

d3 − d

∑

i j

|i i〉〈 j j |, x ∈ [0, 1],
(13)

one has

N2(ρW ) = (dx − 1)2

d(d + 1)(d2 − 1)
, N2(ρI ) = (d2x − 1)2

d(d + 1)(d2 − 1)
. (14)

The analytical solutions of N2(ρ) or its bound for certain bound entangled states
[23] and other special states with degenerate ρA [24] have also been reported in the
literature.

3.2 MIN Quantified by the Trace Norm

Although the MIN measure N2(ρ) is favored for its convenience of calculation, it
is problematic as it can increase or decrease under trivial local reversible operations
on the unmeasured subsystem B of ρ. For example, consider a map EB which gives
rise to EB(ρ) = ρ ⊗ ρC , (i.e., it introduces a local ancilla to B), then by making
use of the multiplicativity of the Hilbert–Schmidt norm under tensor products, we
obtain N2(ρ

A:BC) = N2(ρ)tr(ρC)2. As the purity of a state is no larger than one, this
equality means that the MIN is decreased by simply introducing an uncorrelated
local ancillary sytem.

To avoid the aforementioned problem, another geometric measure of MIN based
on the trace norm was introduced. It is given by [17]

N1(ρ) = max
�A

||ρ − �A(ρ)||1, (15)

where ||X ||1 = tr
√
X†X is the trace norm, and �A denotes still the locally non-

disturbing von Neumann measurements.
The new MIN measure can be interpreted as the maximal trace distance that the

premeasurement state ρ departs from those of the postmeasurement states �A(ρ)

caused by the locally invariant measurements. In particular, it is nonincreasing under
the action of any TPCP map EB on the unmeasured party B [17], namely,

N1(ρ) ≥ N1(EB(ρ)). (16)

The proof is as follows. Let �̄A the optimalmeasurement for obtaining N1(ρ), and �̃A

be the optimal measurement for obtaining N1(EB(ρ)), then as EB and �̃A commute,
we obtain �̃A(EB(ρ)) = EB(�̃A(ρ)), and therefore
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N1(ρ) = ||ρ − �̄A(ρ)||1
≥ ||ρ − �̃A(ρ)||1
≥ ||EB(ρ) − EB[�̃A(ρ)]||1
= N1[EB(ρ)], (17)

where the first inequality comes from the fact that �̃A = �̄A in general, and the
second inequality is due to the contractivity of the trace norm under TPCP map.
Therefore, N1(ρ) circumvents successfully the problem incurred for N2(ρ).

For certain quantum states, analytical solutions of N1(ρ) can be obtained, e.g.,
for the (2 × n)-dimensional pure state |ψ〉 with the Schmidt decomposition |ψ〉 =∑2

k=1 λk |φA
k 〉 ⊗ |φB

k 〉, the trace norm MIN is given by

N1(|ψ〉〈ψ|) = 2
√

λ1λ2, (18)

while for two-qubit state ρ of the form of Eq. (9) (i.e., m = 2) with the addition
ri j = 0 for i = j , we have

N1(ρ) =
⎧
⎨

⎩

√
χ+ + √

χ−
||�x ||1 if �x = 0,

2max{|r11|, |r22|, |r33|} if �x = 0,
(19)

whereχ± = α ± 4
√

β|�x |,withα = |�r |2|�x |2 − |�r · �x |2, �r = (r11, r22, r33),β = ∑
〈i jk〉

x2i r
2
j j r

2
kk , and the summation runs over all the cyclic permutations of {1, 2, 3}.

Moreover, for the Werner state ρW and isotropic state ρI of Eq. (13), solutions of
the the trace norm MIN are given, respectively, by

N1(ρW ) = |dx − 1|
d + 1

, N1(ρI ) = 2|d2x − 1|
d(d + 1)

, (20)

which show qualitatively the same x-dependence as those of the MIN measure
N2(ρW ) and N2(ρI ) with finite d. That is to say, for the symmetric states ρW and ρI ,
both the MIN measures N1 and N2 give the same descriptions of nonlocality.

3.3 MIN Quantified by the Bures Distance

The Bures distance dB(ρ,χ) = [2(1 − F1/2(ρ,χ)]1/2 between two states ρ and χ,
which is joint convexity, and is monotonous under the action of any TPCP map
[25], can also be used to give a well-defined measure of MIN [17]. Without loss of
generality, we define it as

NB(ρ) = max
�A

{1 −
√
F(ρ,�A(ρ)}, (21)
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where �A is the locally invariant measurements on party A, and F(ρ,σ) is the
Uhlmann fidelity that is defined as

F(ρ,σ) = [tr(√ρσ
√

ρ)1/2]2. (22)

For states ρwith nondegenerate ρA, NB(ρ) can be obtained directly, as the optimal
�A = {�A

i } are induced by the spectral resolutions of ρA = ∑
i p

A
i �A

i . If ρA is
degenerate, the calculation of NB(ρ) is difficult. But for the (2 × n)-dimensional
states ρ, the minimum Uhlmann fidelity Fmin(ρ,�A(ρ)) = min�A F(ρ,�A(ρ)) can
be calculated via

Fmin(ρ,�A(ρ)) = 1

2
min
‖�u‖=1

(

1 − tr� + 2
n∑

k=1

λk(�)

)

, (23)

with �u = (sin θ cosφ, sin θ sin φ, cos θ) being a unit vector in R
3, n the dimension

of subsystem B, and λk(�) eigenvalues of � arranged in non-increasing order. By
denoting �σ = (σ1,σ2,σ3) the vector of the usual Pauli operators, and In the n × n
identity matrix, we have

� = √
ρ(�u · �σ ⊗ In)

√
ρ. (24)

For the special case of the two-qubit Bell-diagonal states

ρBell = 1

4

(

I4 +
3∑

i=1

ciσi ⊗ σi

)

, (25)

as
√

ρBell can be derived explicitly, Fmin(ρ,�A(ρ)) takes the form

Fmin(ρ,�A(ρ)) = 1

2

(

1 + min
{θ,φ}

√
b23 + [b21 − b23 + (b22 − b21) sin

2 φ] sin2 θ

)

, (26)

where bi = 8(t20 + t2i ) − 1 (i = 1, 2, 3), and by writing csum = c1 + c2 + c3, we
have

t0 = 1

8

√
1 − csum + 1

8

3∑

k=1

√
1 + csum − 2ck,

ti = −1

8

√
1 − csum + 1

8

3∑

k=1

√
1 + csum − 2ck − 1

4

√
1 + csum − 2ci .

(27)

From Eq. (26) one can see that Fmin(ρ,�A(ρ)) = (1 + |b1|)/2 if |b1| ≤ min{|b2|,
|b3|}, Fmin(ρ,�A(ρ)) = (1 + |b2|)/2 if |b2| � min{|b1|, |b3|}, and Fmin(ρ,�A(ρ)) =
(1 + |b3|)/2 otherwise.
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3.4 MIN Quantified by the von Neumann Entropy

Apart from the geometric measures, theMIN can also be quantified from the entropic
perspective. In this respect, if we accept that the quantum mutual information (QMI)
is a good measure of total correlations in ρ, and the entropic measure of MIN, in
the spirit of its original definition [16], can be defined as the maximal discrepancy
between the QMI of the pre- and post-measurement states as [18]

NE (ρ) = I (ρ) − min
�A

I [�A(ρ)], (28)

where I (ρ) = S(ρA) + S(ρB) − S(ρ) is the QMI, and �A denotes still the locally
measurements which do not disturb the reduced state ρA.

This measure of MIN quantifies in fact, the maximal loss of total correlations
under locally non-disturbing measurements on party A. Moreover, as both ρ and
�A(ρ) have the same reduced states ρA and ρB , NE (ρ) defined above is equivalent
to

NE (ρ) = max
�A

S[�A(ρ)] − S(ρ), (29)

which indicates that NE (ρ) quantifies in fact themaximal increment of vonNeumann
entropy induced by the locally invariant measurements. Moreover, as the entropy of
a state measures howmuch uncertainty there is in it, NE (ρ) can also be interpreted as
the maximal increment of our uncertainty about that system induced by the locally
invariant measurements.

The entropic measure of MIN possesses the same basic properties (i), (ii), and
(iii) as that of the Hilbert–Schmidt norm MIN. Furthermore, it is monotonous under
the action of any TPCP map EB on the unmeasured party B, i.e., NE (EB(ρ)) ≤
NE (ρ) [18], which shows that it is a well-defined measure of MIN. Moreover, NE (ρ)

vanishes for the classical-quantumstateρCQ = ∑
i pi |i〉〈i | ⊗ ρB

i withnondegenerate
reduced ρA

CQ , or ρCQ with degenerate ρA
CQ and ρB

i = ρB
j for all i and j .

We point out here that NE (ρ) is also equivalent to theMINmeasure defined based
on the relative entropy, namely, NE (ρ) = NRE (ρ), with

NRE (ρ) = max
�A

S(ρ||�A(ρ)), (30)

where �A(ρ) = ∑
i �

A
i ρ�A

i , and {�A
i } is the set of von Neumann measurements

which do not disturb ρA locally. In fact, the relative entropy between two states can
also be considered as a measure of their distance, although technically it does has a
geometric interpretation.

For the state ρ with nondegenerate ρA, the optimal measurement operators
�̃A

k = |k〉〈k| for obtaining NE (ρ) are induced by the spectral resolutions of ρA =∑
k λk |k〉〈k|. For general cases, NE (ρ) can be obtained numerically. It is lower

bounded by −S(A|B) and upper bounded by min{I (ρ), S(ρA)}, with S(A|B) =
S(ρ) − S(ρB). As an example, we list here the analytical solution of NE (ρ) for the
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two-qubit Bell-diagonal state ρBell of Eq. (25), which is given by

NE (ρBell) = H

(
1 + cmin

2

)

+ 1 − csum
4

log2
1 − csum

4

+
3∑

k=1

1 + csum − 2ck
4

log2
1 + csum − 2ck

4
+ 1,

(31)

with cmin = min{|c1|, |c2|, |c3|}, and H(x) = −(1 + x) log2(1 + x) − (1 − x)
log2(1 − x) is the binary Shannon entropy.

The quantitative relation between NE (ρ) and N2(ρ) has also been established,
which is given by [19]

NE (ρ) ≥ 1

2 ln 2
N 2
2 (ρ), (32)

that is to say, the entropic MIN NE (ρ) is always greater than or equal to the square
of the geometric MIN N2(ρ) divided by 2 ln 2 for any state ρ. As the calculation of
N2(ρ) is somewhat easy, the above inequality can serve as a lower bound of NE (ρ).

3.5 MIN Quantified by the Wigner–Yanase Skew Information

The Wigner–Yanase skew information is given by I(ρ, K ) = −tr{[ρ1/2, K ]2}/2,
with K being an observable [26]. I(ρ, K ) is upper bounded by the variance of K ,
i.e.,I(ρ, K ) ≤ 〈K 2〉ρ − 〈K 〉2ρ, and vanishes iff the state and the observable commute.
It has also been employed to quantify local quantum uncertainty and coherence.

The MIN based on Wigner–Yanase skew information is defined as [20]

NSI (ρ) = max
{K̃ A

i }

m∑

i=1

I(ρ, K̃ A
i ⊗ IdB ), (33)

where the local observables K̃ A = {K̃ A
i } are restricted to rank-one projectors (i.e.,

K̃ A
i = |i A〉〈i A|) which do not disturb the local state ρA, and IdB is the identity operator

for subsystem B, with dB = dimHB . This MIN measure has been shown to be
invariant under locally unitary operations, to be contractive under any TPCP map
EB on party B, and vanishes for the product states ρ = ρA ⊗ ρB and the classical-
quantum states ρCQ with nondegenerate ρA.

If we decompose the bipartite state ρ as follows

√
ρ =

∑

i j

γi j Xi ⊗ Y j , (34)
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then it can be shown that NSI (ρ) is upper bounded by [20]

NSI (ρ) ≤ 1 −
m−1∑

i=1

μi , (35)

with μi (i = 1, 2, . . . ,m2) being the eigenvalues of ��T listed in decreasing order
(counting multiplicity), and � = (γi j ) is the (m2 × n2)-dimensional correlation
matrix.

For the pure states |ψ〉, NSI (|ψ〉〈ψ|) = N2(|ψ〉〈ψ|), while for the (2 × n)-
dimensional states ρ, one has

NSI (ρ) =

⎧
⎪⎨

⎪⎩

1 − μ1 if �u = 0,

1 − 1

2
tr

((
1 �u0
1 −�u0

)

��T

(
1 �u0
1 −�u0

)T
)

if �u = 0.
(36)

where �u = (u1, u2, u3) with ui = tr(ρAσi )/
√
2, and �u0 = �u/|�u|.

Similarly, for theWerner state ρW and the isotropic state ρI , the skew information
MIN are given, respectively, by

NSI (ρW ) = 1

2

(
d − x

d + 1
−

√
d − 1

d + 1
(1 − x2)

)

,

NSI (ρI ) = 1

d

(
√

(d − 1)x −
√
1 − x

d + 1

)2

.

(37)

The above measure of MIN is somewhat different from that of the MIN-like
nonlocality measure defined as [27]

USI (ρ) = max
K A

I(ρ, K A ⊗ IdB ), (38)

whichwasmotivated by the notion of local quantumuncertainty [28], andwas termed
as uncertainty-induced nonlocality (UIN), with K A being the Hermitian observable
on A with non-degenerate spectrum and commuting with ρA.

The UIN USI (ρ) is invariant under locally unitary operation UA ⊗UB , and is
contractive under TPCP map EB on subsystem B. It also equals to the maximal
squared Hellinger distance between ρ and K AρK A, namely, USI (ρ) = maxK A D2

H
(ρ, K AρK A), with D2

H (ρ,χ) = tr{(ρ1/2 − χ1/2)2}/2.
For the (2 × n)-dimensional state of Eq. (9), the UIN is obtained explicitly as

USI (ρ) =
⎧
⎨

⎩

1 − λmin(W ) if �x = 0,

1 − 1

|�x |2 �xTW �x if �x = 0,
(39)
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where �x = (r10, r20, r30)T , andλmin(W ) is the smallest eigenvalue of the 3 × 3matrix
W , the elements of which is given by

Wi j = tr{ρ1/2(σi ⊗ IdB )ρ
1/2(σ j ⊗ IdB )}, (40)

and from Eq. (39) one can also obtain that for the pure (2 × n)-dimensional state |ψ〉,
USI (|ψ〉〈ψ|) reduces to the linear entropy of entanglement 2[1 − tr(ρA)2].

3.6 Generalization of the MIN Measure to Multipartite States

The MIN measures presented above are all defined based on the one-sided locally
invariant measurements �A on party A. They characterize in fact only partial infor-
mation about the nonlocal properties of a state ρ. This is because a local state with
respect to the subsystem A may be nonlocal with respect to the subsystem B.

The MIN measures can be extended to the cases with two-sided locally invariant
measurements. Without loss of generality, we define it as

Ñ (ρ) = max
δ̃∈L

D(ρ, δ̃), (41)

with δ̃ being states that are obtained by the full set of locally invariant measurements
�A ⊗ �B , that is to say, (�A ⊗ �B)δ̃(�A ⊗ �B) = δ̃, and the measurement oper-
ators satisfy the equality

∑
k �A

k ρA�A
k = ρA and

∑
k �B

k ρB�B
k = ρB for arbitrary

ρ. This definition of MIN reveals the genuine nonlocal characteristic of a bipartite
state, and Ñ (ρ) = 0 implies locality with respect to both the subsystems of A and B.

An example of the MIN over two-sided measurements is as follows [21]

Ñ2(ρ) = max
�A⊗�B

||ρ − �A ⊗ �B(ρ)||22, (42)

which is locally unitary invariant, and vanishes for the product states ρ = ρA ⊗ ρB .
For pure state |ψ〉, solution of Ñ2(|ψ〉〈ψ|) is completely the same as N2(|ψ〉〈ψ|).

For the special case that both ρA and ρB are nondegenerate, the optimal measurement
operators are uniquely determined by the eigenvectors of ρA and ρB , while for more
general case, it can be calculated using the numerical method.

Other measures of MIN presented in the above sections can be redefined in a sim-
ilar way, namely, by replacing the original one-sided locally invariant measurements
�A with the two-sided locally invariant measurements �A ⊗ �B .

In fact, the MIN measure Ñ2(ρ) can also be extended to the more general case
of N -partite state ρ. The definition can be written in the same form of Eq. (41), with
however the set L of local quantum states being obtained by performing all possible
locally invariant measurements �A1 ⊗ �A2 ⊗ · · · ⊗ �AN , with

∑
k �

Ai
k ρAi �

Ai
k =
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ρAi for i = {1, 2, . . . , N }, and ρAi the reduced state of the subsystem Ai . But now
the evaluation of their analytical expression becomes a hard work.

Here we summarize briefly the MIN. The notion of MIN is a recently introduced
measure of nonlocality which is defined from a measurement perspective, and pro-
vides a better division between the local and nonlocal features of a system. In general,
the MIN can be defined as distance between the quantum states before and after the
measurement is performed.

Next, we consider the behaviors of quantum correlations under local operations.

4 Quantum Correlations Increased by Local Operations

The states that can be prepared by local operations and classical communications
(LOCC) are called the separable states. The set of bipartite separable states can be
written as S := {

ρ|ρ = ∑
i piρ

A
i ⊗ ρB

i

}
. By definition, QC is a strict subset of the

separable states S. There exist quantum correlated states which are separable and
hence can be prepared via LOCC. Actually, the local operations (LO) alone can
turn a QC state to a quantum correlated one. For example, consider a channel �

with Kraus decompositions K1 = |0〉〈0| and K2 = |+〉〈1|. When � is applied to B
of the two-qubit QC state ρ = 1

2 |00〉AB〈00| + 1
2 |11〉AB〈11|, the output state ρout =

1
2 |00〉AB〈00| + 1

2 |1+〉AB〈1 + | /∈ QC has nonvanishing quantum correlations.
Then questions naturally arises:

(a) What kind of local operations have the ability to create quantum correlations?
(b) What is the power of a given local operation to create quantum correlations?
(c) What kind of states whose quantum correlations are more likely to be increased

In this section, we will give answers to these three questions.

4.1 Condition for Local Creation of Quantum Correlations

The main purpose of this subsection is to characterize the whole set of quantum
operations satisfying

1A ⊗ �B(ρ) ∈ QC, ∀ ρ ∈ QC. (43)

Before solving the problem, let us first introduce a class of quantum channels, which
we call the commutativity-preserving channels.

Definition 1 (Commutativity-preserving channel) A commutativity-preserving
channel �CP is the channel that can preserve the commutativity of any input density
operators; i.e.

[�CP(ξ),�CP(ξ′)] = 0 (44)

holds for any density operators ξ and ξ′ satisfying [ξ, ξ′] = 0.
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When a commutativity-preserving channel acts on B of a QC state, the output
state ρout = ∑

i piρ
A
i ⊗ �CP(φB

i ) is still a QC state. This is because Bob’s states
�CP(φB

i ) commute with each other and a projective measurement on their common
eigenbasis does not change the state ρout .

Conversely, if Bob’s channel � satisfies Eq. (43), it must be a commutativity-
preserving channel. To see this, let us write the input state in the form of Eq. (2),
and the output state ρout = ∑

i piζ
A
i ⊗ �(ξB

i ) is still quantum-classical only when
[�(ξB

i ),�(ξB
j )] = 0, ∀ i, j . As in Eq. (43), we have considered the whole set of QC

states as input state, the channel � must preserves the commutativity of any two
commutable states. Hence we arrive at the following theorem.

Theorem 1 A local quantum channel� acting on a subsystem of a multipartite sys-
tem can create quantum correlation if and only if it is not a commutativity-preserving
channel.

This theorem characterize the set of quantum channels which does not create
quantum correlation in any QC states. The rest of this subsection will be devoted to
provide the explicit form of the commutativity-preserving channels. We will see that
when B is a qubit, the quantum correlations can never be created by a unital channel,
but when B is a higher-dimension system, even unital channels can create quantum
correlation.

Let us first consider the qubit case. In the Bloch presentation, any qubit state
ρ = I+r·σ

2 corresponds to a three-dimension real vector r , where σ = {σ1,σ2,σ3}
are Pauli matrices and the Bloch vector r lives inside or on the surface of a unit
ball, which is called the Bloch ball. The Bloch vectors of two commutative states
are of the same or opposite orientation, so the necessary and sufficient condition for
the commutativity-preserving channels is that they map radial segments onto radial
segments in the Bloch ball. The unital channels are defined as those preserve the
identity �u(I ) = I , i.e., the origin of the Bloch ball, and thus satisfies the above
condition. Another set of channels which are apparently commutativity-preserving
are the semiclassical channels, which map all input states onto states diagonal on the
same basis. It can be strictly proved that a commutativity-preserving qubit channel
is either a unital channel or a semiclassical channel. This leads to the following
theorem.

Theorem 2 A local quantum channel acting on a single qubit can create quantum
correlations in a multiqubit system if and only if it is neither semiclassical nor unital.

Now we turn to multipartite systems of higher-dimension. Apparently, the semi-
classical channels do not have the ability to create quantum correlations. Here we
propose another set of quantum channels, which we call the isotropic channels, that
never create quantum correlations.

Definition 2 (isotropic channel) An isotropic channel is a channel � : D(Hd) →
D(Hd) of the form

�iso(ρ) = p�(ρ) + (1 − p)
I

d
, (45)
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where � is any linear channel that preserves the eigenvalues of ρ, and the parameter
p is chosen to make sure that � is a completely positive channel.

According to Ref. [29], � is either a unitary operation or unitarily equivalent to
transpose. Direct calculations lead to−1/(d − 1) ≤ p ≤ 1 when� is a unitary oper-
ation, and−1/(d − 1) ≤ p ≤ 1/(d + 1)when� is unitarily equivalent to transpose.

Because the unitary operations and the transpose preserve the commutativity
and the identity commutes with any state, the isotropic channels are commutativity
preserving for arbitrary d. For d = 3, we have strictly proved that a commutativity
channel is either semiclassical or isotropic.

Theorem 3 A local quantum channel acting on a single qutrit of a multipartite
system can create quantum correlations if and only if it is neither semiclassical nor
isotropic.

Since isotropic channels are a strict subset of unital channels, there exist unital
channels that are able to locally create quantumcorrelations.Herewegive an example
to look more closely at why a unital channel can create quantum correlation in
multipartite states of higher dimensions. Let us consider the unital channel �(·) =∑

i E
(i)(·)E (i)† with

E (0) = |2〉〈2|, E (1) = |0〉〈0| + |1〉〈1|. (46)

It is not a commutativity-preserving channel, becausewhenwe choose the orthogonal
pure state |ψ〉 = 1√

3
(|0〉 + |1〉 + |2〉) and |φ〉 = 1√

2
(|0〉 − |2〉) as input states, the

output states do not commute. Two higher-dimension orthogonal states may become
nonorthogonal when projected to subspaces. This is just the reason for creating
quantum correlation using a local unital channel. Isotropic channels act on all of
the states equivalently, so they are likely the only subset of unital channels which
belongs to the set of commutativity-preserving channels. This observation leads to
the following conjecture.

Conjecture A local quantum channel acting on a single qubit with d > 3 can create
quantum correlations in a multipartite system if and only if it is neither semiclassical
nor isotropic.

4.2 Quantum Correlating Power of Local Operations

So far, we have discussed the problem of whether a quantum channel can create
quantum correlations. The problem of howmuch quantum correlations can be created
by a quantum channel is the theme of this subsection. The quantum-correlating power
of quantum channel is defined as the maximum amount of quantum correlations that
can be created when the channel is applied locally to a subsystem of a multipartite
system [31]. The formal definition is given as follows.
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Definition 3 (Quantum correlating power, QCP) The quantum correlating power of
a quantum channel � is defined as

Q(�) := max
ρ∈QC

Q(1 ⊗ �(ρ)). (47)

The QCP is an intrinsic attribute of a quantum channel, which quantifies the
channel’s ability to create quantum correlations. In the definition of QCP, the max-
imization is taken over the set of all quantum-classical states. The input states that
correspond to the maximization are called the optimal input states, which are proved
to be in the set of classical-classical (CC) states

CC =
{

ρ|ρ =
∑

i

pi |ψi 〉A〈ψi | ⊗ |φi 〉B〈φi |
}

. (48)

where {|ψi 〉A} and {|φi 〉B} are orthogonal basis ofHA andHB respectively. The proof
can be easily sketched. For any output state ρ′ that corresponds to a general QC input
state, we can find a CC state, whose corresponding output state ρ can be transformed
to ρ′ by a local channel on A, i.e., ρ′ = �A ⊗ 1ρ. From the condition (C3), we have
Q(ρ) ≥ Q(ρ′). Hence the definition of QCP can be optimized to

Q(�) := max
ρ∈CC

Q(1 ⊗ �(ρ)). (49)

A channel with larger amount of QCP is more quantum, in the sense of the
ability to create quantum correlation. Hence it is of interest to find out the quantum
channels with the most QCP. It can be proved that, the local single-qubit channel
which maximum QCP can be found in the set of measuring-preparing channels

MP =
{

�|�(·) =
1∑

i=1

|αi 〉〈φi | · |φi 〉〈αi |
}

, (50)

where |α0〉 and |α1〉 are two nonorthogonal pure states.
When two channels used paralleled, the QCP of the composed channel is no less

than the sumof theQCPsof the two channels.Wecall this property the superadditivity
of QCP [32]. We here give an example of phase-damping (PD) channel to show
exactly how this property works. The Kraus operators of PD channel are EPD

0 =
|0〉〈0| + √

1 − p|1〉〈1| and EPD
1 = √

p|1〉〈1|. Here we consider the nontrivial case
where 0 < p < 1. Clearly, PD channel is a unital channel and thus has vanishing
QCP.

Now consider a four-qubit initial state shared between Alice and Bob

ρAA′BB ′ = 1

4

∑

i, j

|i j〉AA′ 〈i j | ⊗ |ψi j 〉BB ′ 〈ψi j |, (51)
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where |ψ00〉 = 1√
2
(|00〉 + |11〉), |ψ11〉 = 1√

2
(|0+〉 + |1−〉), |ψ01〉 = 1√

2
(|01〉 −

|10〉), and |ψ10〉 = 1√
2
(|0−〉 − |1+〉). Here qubits AA′ belong to Alice and BB ′

belong to Bob. Since |ψi j 〉 are orthogonal to each other, the quantum correla-
tion on Bob is zero. Then qubits B and B ′ each transmits through a PD chan-
nel, and the output state becomes ρ′

AA′BB ′ = 1AA′ ⊗ �PD
B ⊗ �PD

B ′ (ρAA′BB ′). Because
[�PD ⊗ �PD(ψ00),�

PD ⊗ �PD(ψ11)] = 1
8 ĩ p

√
1 − p(σy ⊗ σz + σz ⊗ σy) = 0, the

output state ρ′
AA′BB ′ is not a QC state. Therefore, the quantum correlation on Bob’s

qubits BB ′ is created by the channel �PD
B ⊗ �PD

B ′ .
The super-activation of QCP is a collective effect. For both the input state ρAA′BB ′

and the output state ρ′
AA′BB ′ , any two-qubit marginal is a completely mixed state.

In other words, no correlation exists between any two qubits of the four-qubit state
ρ′
AA′BB ′ . Therefore, we suppose that the effect of super-additivity of QCP is due to

the genuine quantum correlation.

4.3 States Whose Quantum Correlations Can Be Increased

Our aim is now to characterize the quantum states whose quantum correlations can
be increased locally. This is a less studied subject than the condition on quantum
channels to locally create quantum correlations. Obviously, the quantum correla-
tion of all the QC state can be increased locally, by the quantum channels which
are not commutativity preserving. However, it is not obvious whether the quantum
correlation of a discordant state can be increased locally.

Before study the problem, we first introduce the quantum steering ellipsoids
(QSE), which provides a natural geometric presentation of two-qubit states. The
quantum steering ellipsoid of a two-qubit state ρAB is the whole set of Bloch vec-
tors that the qubit A can be collapsed to by a positive-operator valued measurement
(POVM) on qubit B. When the Bloch vector b of ρB satisfies b = 1, ρB is a pure
state which is not correlated to A; hence the QSE at A reduces to a single point a.

Now we consider the case with b ∈ [0, 1). Suppose the qubit B is projected to a
pure state ρx with Bloch vector x. The state of A is steered to ρS

A = trB[ρAB(I ⊗
ρx)]/tr[ρAB(I ⊗ ρx)], whose Bloch vector is aS = a+T x

1+b·x . Let x varies through the
Bloch ball, the set of corresponding aS forms an ellipsoid

EA =
{

a + T x
1 + b · x |x ≤ 1

}

. (52)

To obtain EB , one only need to make the substitution a → b, b → a, T → T T. It is
worth mentioning that the QSE EA and EB of state ρAB have the same dimension,
which equals to rank(�) − 1.

The state ρAB is a QC state if and only if EB is a radial line segment. Local
channels on qubit B can create B-side quantum discord from the above quantum-
classical state. The output discordant state can be written as
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ρ ≡ IA ⊗ �B(ρAB) = p0ρ
A
0 ⊗ ρB

0 + p1ρ
A
1 ⊗ ρB

1 . (53)

Here ρB
i ≡ �B(|φi 〉B〈φi |) (i = 0, 1) do not commute with each other [30] and thus

are linearly independent. The following statement builds the connection between
locally created discordant states and the states with needle-shape QSE. A B-side
discordant two-qubit state can be created from a classical state by a trace-preserving
local channel on B if and only if its QSE at qubit B EB is a non-radial line segment
[33]. It means that all of the quantum states with pancake-shape or obese-shape QSE,
even though not entangled, can not be prepared by local operations.

Next we focus on the Bell diagonal states and study the relation between the effect
of locally increased quantum discord and the shape and position of QSE. For a Bell
diagonal two-qubit state, the density matrix can be written as

ρ̃ = 1

4

(

σ0 ⊗ σ0 +
3∑

i=1

ciσi ⊗ σi

)

. (54)

For such a state, both EA and EB are unit spheres shrunk by c1, c2 and c3 in the x, y
and z direction, respectively. After the action of an amplitude damping channel on
B, the QSE at B becomes

EAD
B =

⎧
⎨

⎩

⎛

⎝
0
0
p

⎞

⎠ +
⎛

⎝

√
1 − pc1x1√
1 − pc2x2

(1 − p)c3x3

⎞

⎠
∣
∣
∣
∣x ≤ 1

⎫
⎬

⎭
. (55)

The effect of�AD
B on EB is to translate it by p in the z direction andmeanwhile shrink

the ellipsoid on three directions. Notice that when p > c3
1+c3

, the ellipsoid does not
contain the origin point any more.

Increase of quantum discord by local amplitude damping channel on B can occur
for all of the three cases when the initial QSE is a needle, a pancake and an obese.
For the last two cases, the local increase of discord occurs when |c1| � |c2|, |c3|,
which means that the shape of the plate or the ball is like a baguette perpendicular
to the z axis. It is worth noticing that, the local quantum operation can increase the
quantum discord of an entangled state.

5 Summary

A local quantum channel acting on a subsystem of a multipartite system can create
quantum correlation if and only if it is not a commutativity-preserving channel. A
qubit channel is commutativity-preserving if and only if it is unital or semiclassical.
For the high-dimension case, some unital channels have the ability to create quantum
correlations. In order to characterise the maximum quantum correlation that a quan-
tum channel can create, the quantum-correlating power is defined. It is an intrinsic
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property of quantum channels. The superactivity of QCP is proved. Concerning the
two-qubit states whose quantum correlation can be increased locally, it is observed
that the quantum correlation of those states possesses baguette-like quantum steering
ellipsoids.

We also presented that nonlocality of a quantum state can be described fromdiffer-
ent aspects. We provided a short review about the recently introduced quantification
of MIN by considering the distances for states before and after the measurement is
taken. The MIN in terms of distance can be defined based on the Hilbert–Schmidt
norm, the trace norm, the Bures distance, the von Neumann entropy, and theWigner–
Yanase skew information. The basic formulae for their respective definitions, the
analytical solutions of them for certain special states, and a comparison of their sim-
ilarities and differences, are given in detail. We have also provided a outlook for its
further development such as its generalization to multipartite systems.
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Quantum Correlations in Multipartite
Quantum Systems

Thiago R. de Oliveira

Abstract We review some concepts and properties of quantum correlations, in par-
ticular multipartite measures, geometric measures and monogamy relations. We also
discuss the relation between classical and total correlations.

1 Introduction

Entanglement is usually said to be the characteristic trait of quantum mechanics.
All started with the recognition by Einstein, Podolsky and Rosen [1] that two-qubit
states such as the superposition

|ψ〉 = |00〉 + |11〉, (1)

where |0〉 and |1〉 are the eigenstates of σz , have some kind of non-local “action at
a distance” since a measure of the first qubit somehow “changes” the state of the
second qubit, no matter how far away it is: if I measure one qubit and obtain |0〉
(|1〉), I know immediately that a measurement on the other, in the same basis, will
also return the state |0〉 (|1〉). However it was later realized that such states alone do
not allow communication at a distance and therefore do not violate the principle of
special relativity. But such states do allow for stronger correlations than allowed by
a classical theory, as seen in the violation of Bell inequalities. One way to see such
stronger correlations is to note that the perfect correlations between measurements
of the spin, are not true only for measurements along the z direction, but actually in
any direction. As far as one deals with pure states, the situation is clear. However, the
generalization of the concept of entanglement to mixed states is more complicated.
Werner in 1989 [2] proposed non-entangled, or separable mixed states, to be the ones
which can be written as
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ρ =
∑

i

pi ρiA ⊗ ρiB . (2)

This definition ismotivated by the fact that these are the stateswhich can be created by
two separated labs using local quantumoperations and classical communication: they
contain only classical correlations due to the classical communication. Entanglement
was then rigorously defined as a property of quantum states which can not be created
by local operation and classical communication (LOCC). This framework of LOCC
created the basis for entanglement theorywhich defines good entanglementmeasures
as the ones which do not increase under LOCC. But already Werner [2] noted that
such definition allowed for entangled states which do not violated any Bell-type
inequality, opening a gap between the concept of entanglement and non-locality.1

And in 2002, studying the correlation between apparatus and system in a mea-
surement, Ollivier and Zurek realized [4] that separable states, as defined byWerner,
may still have some quantumness in the sense that they can be perturbed by local
measurements. Let’s focus on “perfect” von Neumman measurements, defined by a
set of one-dimensional orthogonal projectors {�B

j } on system B, the apparatus. The
state of A after the outcome corresponding to �B

j has been detected is

ρA|�B
j

= �B
j ρAB�B

j

Tr[�B
j ρAB] , (3)

and this outcome happens with probability p j = Tr[�B
j ρAB]. It can be shown that

the only way that the state of A is not perturbed by this measurement is if it can be
written as

χAB =
∑

i

ρiA ⊗ �B
i . (4)

This is a separable state with only fully-distinguishable states (orthogonal ones) for
B and some indistinguishable states for A. Such states are called quantum-classical
since there are measurements on B which do not perturb the state; but measurements
on Amay perturb it. States which can not be written in such form are perturbed by all
local measurements on B. This perturbation of the state of A by local measurements
on B is a quantum aspect of the correlations between A and B that goes beyond
entanglement and that can be quantified in many ways. The perturbation will also in
general decrease the correlation between the parts.

There are many possibilities to quantify this quantum aspect of the correlation.
Lets consider the conditional entropy of A given B:

S(ρA|ρB) = S(ρAB) − S(ρB). (5)

1There is a vast literature studying this gap and looking for more general types of Bell inequality
which may close the gap; see [3].
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Considering that entropy measures the uncertainty about the system, the conditional
entropy is the remaining uncertainty about A after we learn the state of B and it is
associated with our uncertainty, on average, about A, given that we know the state
of B; we measured it. But as we mentioned, the acting of measuring the system can
perturb it and thus change the conditional entropy. Therefore for quantum states we
can define the conditional entropy in a alternative way as

S(ρAB |�B) =
∑

j

p j S(ρA|�B
j
). (6)

It still has the interpretationof the averageuncertainty aboutAgiven thatwemeasured
B. Classically these two definitions are equivalent, but for some quantum states
they can differ.2 This difference in the definition also propagates for other entropy
measures of correlation. The mutual information, for example, can be written as

I (ρAB) = S(ρA) + S(ρB) − S(ρAB) (7)

or in terms of the conditional entropy

J�B (ρAB) = S(ρA) − S(ρAB |�B), (8)

where we used the alternative definition for the conditional entropy and another
symbol, J, since the two definitions of the mutual information may not be equivalent.
The first expression suggests the interpretation of the mutual information as the
common information between A and B and therefore as the measure of its total
correlation. The second expression suggests that the mutual information is a measure
of the decrease on uncertainty, or gain in information, about A as a result of a
measurement on B. The second definition was introduced in [6] as a measure of the
classical correlation.

Based on these considerations the discord was defined by Ollivier and Zurek [4]
as

D�B (ρAB) = I (ρAB) − J�B (ρAB). (9)

It measures how much common information, or correlation, was lost in the mea-
surement. In other words, it measures the information about A that exists in the
correlation but can not be extracted locally by reading the state of B. It can also
be written as the difference between the two definitions of conditional entropy:
S(ρA|ρB) − S(ρAB |�B). One should minimize over all possible measurements on
B to find the one which disturbs the least A and allows us to extract the most infor-
mation about A by measuring B. Thus the measurement independent discord was
defined as

DB(ρAB) = min
�B

D�B (ρAB). (10)

2Actually S(ρA|ρB) is always positive in classical setting, but can be negative for entangled states
and took it a long time to understand this negativity; see [5].
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The discord has the following properties: (i) it is not symmetric under the change of
A for B; (ii) it is non-negative; (iii) it vanishes if and only if the state is quantum-
classical; (iv) it is invariant under local unitary transformations. Unfortunately it does
not have an important property for correlations measures: to not increase under local
operations.3 It may increase by simple local operations and therefore is not a bona
fine measure of correlations. In sum, discord does indicate that the correlation in the
state has a quantum aspect, but it is not a bona fide quantifier of the amount of such
correlation.

There are also many other possibilities to quantify this quantumness in separable
states. And in fact many discord-like measures were proposed, and still are being
proposed (see [7] for a review). We will just mention another one since it will be of
our interest later, and actually is closely related to the original definition of discord.
The idea is to consider local von Neumann measurements on both parties. The state
after the non-selective measurement is

�AB(ρAB) =
∑

i, j

(�A
i ⊗ �B

j )ρAB(�A
i ⊗ �B

j ) (11)

and has the general form

χAB =
∑

i, j

pi j �A
i ⊗ �B

j . (12)

Such states are called classical-classical, since they are the ones which are not per-
turbed by the local measurement on A or B. Thus the probability pi j can be regarded
as a classical joint probability of the random variables i and j. One then defines the
symmetric discord as

DS(A : B) = min
�AB

[I (ρAB) − I (�AB(ρAB))]. (13)

This ideawas originally proposed as ameasurement-induced disturbance andwithout
the optimization over measurements. It was then redefined with the optimization and
studied by several authors (see Sect. II.E of [7]). Note also that it may be argued that
the asymmetric discord is not a good measure of the quantum correlation since it
could be null from one side and not the other. In other words, a quantum-classical
state still has some quantumness in its correlations when measurements are made on
part A. It was also realized that the original asymmetric discord is equivalent to the
difference between the mutual information before and after a local measurement is
made on one of the parts.

For the sake of completeness we should mention that a natural question is what
would happen if one considers positive operator valuedmeasurement (POVM),which

3We should stress that it is a natural requirement that correlation measurements should not increase
under local operations: one should no be able to increase their correlation with someone far away
only acting on their own system.
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are more general than von Neumann projective measures. And the question is if
the minimum discord is attained with von Neumann measurements, in which case
considering POVM would not be necessary. It can be shown that von Neumann are
not always optimum but extremal rank-one POVM are sufficient (see Sect. II.I of
[7]).

2 Multipartite Quantum Discord

One important and difficult question when dealing with correlations is how to extend
them beyond the two-part scenario. In this multipartite scenario there is not even a
single conceptual framework, not tomentionmeasures.One can for example consider
many different bipartitions of the multipartite system. For three qubits we could
consider the correlation between one of the particles and the rest. We could then
average over all possible bipartitions of one with the other two. Or we could take the
minimum, or the maximum. Actually we could consider any function of the possible
combinations. And for more than three particles there are even more options, since
besides the bipartition of one with the rest, we could still have two with the rest,
three with the rest and so on. Thus we have many possible bipartitions and can still
combine the correlations in many different ways. Another possibility would be not
to use a single number but build a correlation vector (or matrix) to characterize the
multipartite correlation. It is clear then that the problem is very complex, something
already realized in the quantification of multipartite entanglement where a zoo of
measures exist, but still very little is well understood.

For discord we also have many possibilities. We could consider measures only
on single particles or in groups of particles. This is equivalent to the many possible
ways to write the mutual information in terms of conditional entropies. For three
particles the mutual information can be written as

I (ρABC) = S(ρA) + S(ρB) + S(ρC). − S(ρABC) (14)

But in terms of the conditional entropy there are many possible combinations. These
would be the classical correlation and two possibilities are

S(ρAB) − S(ρB |ρA) − S(ρA|ρB) − S(ρA|ρC) − S(ρB |ρC) + S(ρAB |ρC) (15)

and
S(ρA) + S(ρB) + S(ρC) − S(ρAB) − S(ρAC) + S(ρA|ρBC) (16)

Note that the first case involves only single-particle measures, while the second one
involves only two-particle measures. One of the first works on multipartite discord
proposed to use the two expressions above to define multipartite discord measures,
which they called quantum dissenssion for one- and two-particle measures [8]. And
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of course one could also combine all these quantities in many ways to define another
multipartite measure or construct a correlation vector as proposed in [9].

One proposal, which gained some attention [10], started by defining a symmet-
ric version of discord as the minimum between the asymmetric discord in relation
to A and in relation to B: DAB = min{DA, DB}. In the same way one can define
the symmetric classical correlation as the maximum between the asymmetric ones:
JAB = max{JA, JB}. It then considers that the correlation in a tripartite system can be
decomposed in a bipartite part and a genuine tripartite part. This division should be
true for the total, classical and quantum correlation. The next step is to use conditional
entropies involving both single and two particles measures as

JBC,B(ρABC) = S(ρA) + S(ρB) − S(ρA|ρBC) − S(ρC |ρB) (17)

to define the total classical correlation (we are assuming a maximization over all
possible measures on BC and B). Actually, there are six possible definitions similar
to the above with difference only on the single or two parties being measured. And
the total classical correlation is defined as the maximum among them: J (ρABC) =
maxi, j,k{Ji j,k(ρABC)}. The bipartite part of this classical correlation is defined as
J (2) = max{JAB, JAC , JBC }. The genuine tripartite classical correlation is then the
difference between the total and the bipartite classical correlation: J (3)(ρABC) =
J (ρABC) − J (2)(ρABC). In the samewaywe can define the total, bipartite and genuine
tripartite correlations. While the definitions may seem arbitrary they are interesting
as they have nice properties and are related to the relative entropy (see [10] for more
details).

There is also the option to consider sequential single-particle measures. In the
bipartite case, one first makes the optimal measurement �̃B on B to get the discord
D�̃B (ρAB). One then makes the optimal measurement on part A of �̃B(ρAB). We
thus have a symmetric discord as the sum:

D�̃B (ρAB) + D�̃A(�̃
B(ρAB)). (18)

The generalization to the N -partite system is straightforward, one realizes the sequen-
tial optimal measurements on each particle adding the corresponding discords (see
[11] for more details).

A natural generalization of discord for multipartite systems is to extend the sym-
metric discord as defined by the mutual information before and after a local measure-
ment on both parts �A ⊗ �B . This was named global quantum discord and defined
as [12]

D(ρAB) = min
�A⊗�B

[I (ρAB) − I (�A ⊗ �B(ρAB))]. (19)

Note that here measures can be done all together or sequentially since they are local
and commute. But one does not add the partial discords after each measurement. For
an arbitrary multipartite state of N parts the natural generalization is
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D(ρA1...AN ) = min
�A1⊗...⊗�AN

[I (ρA1...AN ) − I (�A1 ⊗ ... ⊗ �AN (ρA1...AN ))] (20)

It can be shown that this measure is non-negative. It takes value one for the tripartite
GHZ state. And when one considers a mixture of the tripartite GHZ state with a fully
mixed state (the identity), one can show that the global discord decreases with the
decrease in the weight of the GHZ in the mixture, becoming null only for a zero
contribution of the GHZ.

It is also possible to define multipartite geometric measures of discord. One just
generalizes the definition of the set of product and classical states to states of the form
π1 ⊗ ... ⊗ πN and

∑
pi1...iN π1 ⊗ ... ⊗ πN . Then we just chooses a distance measure

to define the discord, and even other correlations. These measures may be viewed as
true multipartite measures, since one does not appeal to the use of many bipartitions.

3 Geometric Correlations

As we mentioned before, one can use different figures of merit to quantify Discord.
Most of these measures are related to entropy measures. A different4 approach is the
geometric one: to use the distance of a given state to the set of classical states (see
Fig. 1). Mathematically the geometric Discord of a given state ρ is given by

DG(ρ) = min
χ∈C

||ρ − χ||2 (21)

where ||X || is a operator distance in the Hilbert space and C is the set of classical
states (the ones with zero discord), which are mixtures of locally distinguishables
states

χ =
∑

i, j

pi j �A
i ⊗ �B

j , (22)

with pi j a joint probability distribution, �i = |ki 〉〈ki | with local states |ki 〉 spanning
a local orthonormal basis. Here one also has in principle many possible geometric
measures using different distance measures. These measures have the appeal of a
geometric interpretation and for some choices of distances can be interpreted as the
distinguishability between states.

The first proposal of a geometric measure appeared in 2010 and used the Hilbert-
Schmidt norm [13]. The Hilbert-Schmidt norm, also known as the 2-norm, of an
operator X is given by

||X ||22 = Tr(XX†). (23)

4Note that the relative entropy can also be understood as a distancemeasure, even though technically
it is not a genuine distance since it is not symmetric.
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Fig. 1 From [32]. The large
ball represents the set of all
quantum states and the inside
ball the set of separable
states, which is convex. The
squares represents the set of
classical states and the point
the set of product states,
neither of them are convex.
Note that our representation
is just a sketch; actually the
set of zero discord states, the
classical ones, has null
measure

This norm is the most used one since it is easy to evaluate. It thus allows for a closed
expression of the geometrical discord of two qubits (see [13]), what is an important
feature since there are no analytical expressions for most entropic discord measures.
As it was easy to calculate the geometric discord using the Hilber-Schmidt norm
was used in many works, including experimental papers, and it was even related to
the performance of remote state preparation [14, 15]. Nonetheless, it was found that
it was not a proper measure of quantumness of correlations, since it can increase
under trivial local reversible operations on the unmeasured party [16]. To see this,
consider a simple map (channel) �σ : X → X ⊗ σ: it introduces an ancilla which
can be noisy but is uncorrelated. Under such operation we have

||X ||2 → ||X ⊗ σ||2 = ||X ||2||σ||2 = ||X ||2
√
Tr(σ2), (24)

where in the second equality we used that the Hilbert-Schmidt norm is multiplicative
on tensor products. With this we have that

DG(�σ
B(ρAB)) = DG(ρAB)Tr[σ2]. (25)

Therefore just adding, or removing, a local, uncorrelated and noisy ancilla
(Tr[σ2] < 1) in the unmeasured part B, a reversible operation, can change the Dis-
cord. But, if one remembers that Discord measures are not monotonic under local
operations anyway, this can be considered not a fundamental problem. But on the
other side this is a very trivial local operation: we are just adding or removing an
uncorrelated ancilla, which can actually always be there, and in the unmeasured part.
We should also note that the map increases the dimension of part B, but there are
also examples showing that the geometric discord can increase even for local maps
which preserve the dimension [17].

The origin of the problem with the Hilbert-Schmidt geometric discord lies in the
fact that the Hilbert-Schmidt norm can increase under completely positive trace-
preserving (CPTP) maps; it can increase under quantum evolution. Actually this



Quantum Correlations in Multipartite Quantum Systems 95

problemwas already recognized after the proposals of geometric measures for entan-
glement. In the beginning of the development of entanglement theory, Vedral et al.
proposed three necessary conditions that any entanglement measure should satisfy.
[18]. They then showed that the distance between a state and the set of separable states
is a good entanglement measure (satisfying their conditions) if the given distance
has the property of not increasing under CPTPmaps: D(�(ρ), �(σ)) ≤ D(ρ,σ). But
later it was shown that it was not the case for the Hilbert-Schmidt norm [19]. Thus a
possible solution is to use a contractive norm, as usually one calls norms which do
not increase under CPTP maps.

We should also mention that there are other possibilities to fix the problem raised
in [16]. One could redefine the measure taking the supremum over all maps on the
unmeasured part [16]. Besides seeming a bit artificial, this measure is in principle
much more difficult to calculate. Another possibility it to rescale the measure by the
state purity [20]. However in both cases problems are still expected to appear from
the non-contractive property of the Hilbert-Schmidt norm.

Soon after the problem was raised, [21] proposed to use the trace norm for the
geometric discord and obtained an analytical expression for a class of states: the
Bell-diagonal states. Actually they considered an general Schatten p-norm Discord.

The Schatten norm5 of an operator is given by ||X ||p = Tr[(X†X)
p
2 ] 1

p and they are
multiplicative under tensor products: ||�σ(X)||p = ||X ||p||σ||p. We then define the
p-Schatten geometric Discord as

Dp(ρ) = min
χ∈C

||ρ − χ||pp. (26)

It is trivial to note that

Dp(�
σ
B(ρAB)) = Dp(ρAB)||σ||pp. (27)

As density operators are Hermitian we have that ||σ||p = Tr[σ p]1/p. And as Tr[σ] =
1we have that ||σ||p = 1 if and only if p = 1. Therefore the only p-Schatten geomet-
ric Discord which does not increase under the removal or addition of local ancillas
is the trace norm. Even more, as the trace norm is contractive under the CPTP maps,
the trace distance geometric Discord can not increase under local operations in the

5There are many different ways to define a norm for a matrix (or operator). One should first consider
the p-norms of a vector �v given by ||�v|| = (

∑
i |vi |p)1/p with vi being the components of �v in some

basis and p ≥ 1. For p = 2 we have the Euclidean norm. One can then define the induced norm for
the matrix as the maximum norm the matrix can induce in a unit vector: ||X || = sup|�v|=1 ||X �v||.
Then given a vector p-norm vector we get a operator p-norm. Another possibility is to consider an
m x n matrix as a mn vector and use an vector norm. These are usually called “entrywise” norms.
A third possibility, the Schatten norms, is to apply the vector p-norm to the singular values of the
matrix (the singular values are the square root of the eingenvalues of X†X ). For p = 2 we have
the Hilbert-Schmidt, also called Frobenius, norm which is equivalent to the p = 2 entrywise norm
mentioned before. For p = 1 we have the trace norm and for p = ∞ we have the spectral norm
which is equivalent to the induced p = 2 norm and also called operator norm and given by the
largest singular value.
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unmeasured system. This would also be the case for other contractive distance mea-
sures as the Bures and Hellinger distances.

The trace norm geometric Discord is then a bona fide measure of correlations.
It is also related to the probability of distinguishing between two states via a single
measurement6 and to another measure of quantumness of correlation, the negativity
of quantumness, when the measured part is a qubit [23]. In this measure the quantum
correlation is defined as the minimum entanglement created between a system and a
measurement apparatus by a local measurement. One drawback of the trace distance
discord is that is not as simple to calculate as the Hilbert-Schmidt norm. In fact
there is still no closed analytical expression for general two-qubit states, but only for
some classes. An expression for the Bell diagonal states was presented first in [21],
but assuming that the closest classical state also has the Bell diagonal form. Such
assumption was confirmed numerically for random states. Later, using a different
approach, the same formula was obtained without any assumption [23]; they also
obtained a closed expression for Werner, isotropic states and for all two-qubit states
for which the reduced state of the measured systems is maximally mixed. More
recently, the optimization problem for general two-qubit states was shown to be
equivalent to the minimization of a two-variable function (but which parametrically
depends on the Bloch vectors of the reduced density matrix and the singular values
of the correlation matrix) and a closed expression for X states was also obtained [24].
We should also mention that a general analytical expression exists for the geometric
discord using the Hellinger distance [25].

It is also possible to define a measurement-induced geometric measure of discord
as [26]

DMG(ρ) = min
�B

D(ρ − �B(ρ)), (28)

where the minimum is over all von Neumann measurements (rank one projec-
tors) �B = {�B

i } on the part B and �B(ρ) = ∑
i (1

A ⊗ �B
i )ρ(1A ⊗ �B

i ) is the post
measurement state in the absence of readout. Here again there are many possi-
bilities of distance measure to use. When using the same distance it is clear that
DMG(ρ) ≥ DG(ρ) since in the measurement-induced one needs to optimize only
over classical states generated by von Neumann measurements. The two measure-
ments are equivalent when using the Hilbert-Schmidt distance. For the trace distance
the equivalence is true only if the system A is a qubit. They are generally different
when using the Bures and Hellinger distances [25].

One last possibility we should mention is to use the relative entropy as a measure
of distance. The quantum relative entropy, is defined as

S(ρ||σ) = Tr(ρ log ρ − ρ logσ). (29)

6This follows directly from the fact that the trace distance itself has a interpretation in terms of
distinguishability: Suppose Alice prepares a quantum system in state ρ with probability 1/2 and in
state σ with probability 1/2. She then gives the system to Bob, who performs a POVMmeasurement
to distinguish the two states. It can be shown that Bob’s probability of correctly identifying which
state Alice prepared is 1/2 + 1/2||ρ − σ||1 (see sec. 9.2 of [22]).
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Fig. 2 From [7]. The arrows represent the closest state using the relative entropy. ρ is a entangled
state, σ a separable state, χ a classical state and π a product state. E is the entanglement, D the
Discord, Q the quantum dissonance, Tσ and Tρ the total mutual information,Cσ andCρ the classical
correlation. Lσ and Lρ have no physical interpretation but allow for an additivity relation between
the quantities: Tρ = D + Cρ − Lρ and analogously for σ

This entropy is also named the Kullback-Leibler divergence and is often used to
distinguish two probability distributions or density operators. It resembles a distance
measure but strictly it is not one since it is not symmetric. However, it was originally
proposed as a possible unifiedviewon the quantumand classical correlations.Besides
the set of separable and classical states one also defines the set of product states,

π = π1 ⊗ ... ⊗ πN (30)

as the states having no correlation at all. The separable states are mixtures of general
product states and classical states aremixtures of product stateswhich are orthogonal.
Then discord is defined as

D(ρ) = min
χ∈C

S(ρ||χ) (31)

and entanglement as
E(ρ) = min

σ∈S
S(ρ||σ). (32)

For an entangled state ρ, the discord D(ρ) can also contain some entanglement.
So we can look at the closest classical state to the closest separable state σ, denoted
by χσ . This distance contains the non-classical correlation excluding entanglement
and was named quantum dissonance (see Figs. 1 and 2)

Q(σ) = min
χ∈C

S(σ||χ) (33)

Further, we can compute the classical correlation as the minimal distance between a
classically correlated state and a product state
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C(χ) = min
π∈P

S(χ||π) (34)

and the total correlations as the distance of the original state to the closest product
state

T (ρ) = min
π∈P

S(ρ||π). (35)

These distances are illustrated in Fig. 2. Note that for an entangled state ρ one has
both T (ρ) and T (σ), and that given a state ρ one can first find the closest classical
state χρ and then look for the closest product state to χρ, which is πχρ

. Or one can
directly look at the closest product state to ρ, πρ. The two states are not equal and
we then define

L(ρ) = S(πρ||πχρ
) (36)

and similarly L(σ). These two last quantities allow additivity conditions for corre-
lations as illustrated in Fig. 2.

The advantage of using the relative entropy is that it is possible to find the closest
product states and then a closed expression for some of the correlation measures.
First, it is easy to show (as done in [27]) that “the closest product state to any state
ρ, as measured by the relative entropy, is its reduced state in the product form, i.e.,
πρ = π1 ⊗ ... ⊗ πN”. Thus, using the linearity of trace and additivity of log we easily
obtain

Tρ ≡ S(ρ||πρ) = −tr[ρ log(π1 ⊗ ... ⊗ πN ) + ρ log ρ] (37)

=
∑

i

−tr(πi logπi ) + tr(ρ log ρ) (38)

= S(πρ) − S(ρ). (39)

This also allows us to write

Cρ = S(πχρ
) − S(χρ) (40)

and
Cσ = S(πχσ

) − S(χσ). (41)

It is also possible to show that the closest classical state to a generic state ρ is
χρ = ∑

�k |�k〉〈�k|ρ|�k〉〈�k| with {|�k〉} the eigeinbasis of χρ. Then it is possible to show
[27] that the quantum correlations are also a difference between entropies

D = S(χρ) − S(ρ) (42)

Q = S(χσ) − S(σ) (43)
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with S(χρ) = min�k S(
∑

�k |�k〉〈�k|ρ|�k〉〈�k|) and analogously to S(χσ). The minimiza-
tion involved in D and Q is only over the possible local basis �k. However, this is
equivalent to minimizing over all rank-one POVM measurements and is still a very
difficult problem. Note that finding the closest separable state to obtain the relative
entropy of entanglement is also a hard task. Finally it is possible to show that

Lρ = S(πχρ
) − S(πρ) (44)

and
Lσ = S(πχσ

) − S(πσ). (45)

So all the quantities can be written as the difference of entropies, the entropic cost,
of performing operations that bring the states to the closest one without the desired
property; it is the entropic cost of destroying the given correlation. This simple
relation also allows us to obtain the following additivity inequalities:

Tρ = D + Cρ − Lρ (46)

Tσ = Q + Cσ − Lσ (47)

which justify the diagram of Fig. 2. We should also mention a relation with the
original entropic discord. For this we should consider the set of classical-quantum
states instead of the classical-classical states. In this case it is possible to show that
the original entropic discord is equal to D − Lρ or equivalently to Tρ − Cρ, but only
when considering a minimization over only projective measurements for the original
entropic discord.

It is also possible to define the geometric total and classical correlation using
other distance measures. This was studied for the trace distance [28, 29], for the
Hilbert-Schmidt norm in [30] and for the Bures distance in [31], but the separation
of the total correlation in a classical and quantum part does not obey the additivity
relation anymore. Even the first property that the closest product state is the product
of the marginals is not true in general, which makes the computation of the total
correlation non-trivial.

4 Monogamy of Quantum Correlations

One of the most important properties of entanglement is the fact that it can not
be freely shared between many parties. If two systems, A and B, for example, are
maximally entangled, neither of them can be entangled with a third system C. This
comes from the fact that for A and B two be maximally entangled they should be
in a pure state. On the other hand, if any of them is entangled it C, it should have
non-zero entropy and therefore be in a mixed state. But how about when A and B
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are not maximally entangled. In this situation A and B can be entangled with system
C , but there are limits in the amount of entanglement they can share. These relations
are named monogamy inequalities. The first and most well-know one was given by
Cofmman, Kundu and Wootters in 2000 [33], the CKW inequality,

C2
A|BC ≥ C2

A|B + C2
A|C , (48)

with C2
A|BC representing the squared concurrence between A and BC. So we can see

that given the amount of entanglement between A and BC, the amount of entangle-
ment that A and B can share with C is restricted. And if C increases its entanglement
with A or B, it has to decrease the entanglement with the other. This relation can
also be used to define a measure of genuine tripartite entanglement as the differ-
ence: C2

A|BC − C2
A|B + C2

A|C . This measure is usually named tangle or three tangle.
It gives the intuition that the entanglement between A and BC is composed of the
sum of bipartite entanglement of A with B and of A with C , plus a genuine tripartite
entanglement. The relation is also valid for N qubits [34]:

C2
A1|A2...AN

≥ C2
A1|A2

+ C2
A1|A3

+ ... + C2
A1|AN

(49)

Despite its appeal, themonogamy inequality above is not universal: not true for all
measures of entanglement. In particular it is not true for the entanglement of formation
but only for its square. Andwhen it is valid for qubits it usually breaks down in higher
dimensions, with the only known exception being the squashed entanglement. And
in fact, recently it has been shown that an important class of entanglement measures
may not obey a general monogamy relation for arbitrary dimension [35].

Given the importance of monogamy relations, a natural question is if such a
property is also true for other measures of quantum correlation. It was first noted
that discord itself did not obey the CKW inequality for three qubits; it was violated
even for the W state. This could lead one to say that discord is not monogamous.
But we should be careful, as not obeying the specific CKW inequality does not mean
it can be freely shared. It may obey other inequalities. And actually not even the
concurrence or the entanglement of formation obey the CKW inequality, but only
their squares. And it was later realized that the square of discord does obey the CKW
inequality [36], being in this sense as monogamous as entanglement. In fact there is
a stronger relation between entanglement of formation and discord for three qubits.
This comes from an important monogamy relation between entanglement and other
correlations, obtained by Koashi and Winter in 2004 [37]:

EF (AB) + JA(AC) ≤ S(A), (50)

with EF being the entanglement of formation, JA(AC) the classical correlation
between A and C with measure in A and S(A) the usual von Neumann entropy of A.
The equality holds if ρABC is a pure state. By adding the mutual information between
A and C on both sides we have that for pure states
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EF (AB) = DA(AC) + S(A|C), (51)

with S(A|C) = S(AC) − S(C) the unmeasured conditional entropy; a formula
which can be used to obtain the discord. And as for pure states S(AC) = S(B)

and S(A|C) = S(B) − S(C) we have

DA(AC) = S(C) − S(B) + EF (AB) (52)

And with some further manipulation it is possible to show that [38]

DA(AB) + DA(AC) = EF (AB) + EF (AC) (53)

which is a monogamy relation between the sum of bipartite Discord and bipartite
entanglement of formation in a three qubit system. It can also be seen as a conserva-
tion law between bipartite discord and entanglement. This also shows a relationship
between the CKW inequality for discord and entanglement of formation. Actually,
since for pure states discord and entanglement are equivalent, so are the two inequal-
ities [39]. But this is true only for pure states, with the distributed discord exceeding
the distributed entanglement for mixed states. This same relationship is used to show
that the squared discord does obey the CKW inequality.

The general question of which measure of quantum correlation obeys the CKW
inequality for general three-qudit states was addressed in [40]. It was shown that
all measures of quantum correlation beyond entanglement, which are nonzero on at
least one separable state, and obey some basic properties of a bona fide measure are
not monogamous in general. So there is no good measure of quantum correlation
which obey the CKW inequality for all states in any dimension. This can be true only
for some class of states or for some specific dimension, as the squared Discord. We
should also mention that the Hilbert-Schmidt geometric discord also obeys the CKW
inequality for three-qubit pure states. In [40] is is also shown that any bona fide mea-
sure of quantum correlation which obeys the CKW inequality can not increase under
local operations. And it is known that in general quantum correlation can increase
under local operations, which can thus be connected with the lack of monogamy for
such measures. Recently it has also been shown that an important class of entan-
glement measures can not satisfy an CKW type of inequality independent of the
dimension [35].

Another type of monogamy inequality was proposed in [41], by replacing the
bipartite quantum correlation between A and BC by a multiparite measure between
ABC . More specifically, the following inequality was proven

D(A : B : C) ≥ D(A : B) + D(A : C) (54)

with D(A : B : C) being the global quantum discord. However the inequality can
only be proven for quantum states whose conditional mutual information does not
increase under measurement.
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5 Conclusions

In sum, it is now clear that entanglement is just one ofmany interesting and intriguing
characteristics of quantum mechanics. This opens the possibility of new phenomena
and applications based not on entanglement but in these other forms of correlations.
And even tough these measures are not strictly correlation measures, they may have
some operational meaning, as already showed in some particular situations, but still
a question being explored. And the characterization of discord-like measures in
condensed matter systems and dissipative system has also been a very active field;
see [7] for more details of such works.

But as we mentioned before there are many possibilities to quantify the quantum-
ness of correlations. And many of them give qualitative different behaviors when
characterizing physical systems, or just ordering the quantum states by degree of
quantumness. Even the choice of distance in geometric measures can give such dis-
tinct behavior. This is actually not very surprising, given that it is a known result that
different entanglement measures may also present different behaviors and induce
different ordering in the state space. But, while entanglement theory is well devel-
oped, although with still important open questions, the discord and related measures
have just started to be explored.
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Geometric Measures of Quantum
Correlations with Bures and Hellinger
Distances

D. Spehner, F. Illuminati, M. Orszag and W. Roga

1 Introduction

Quantum correlations in composite quantum systems are at the origin of the most
peculiar features of quantum mechanics such as the violation of Bell’s inequali-
ties and non-locality. In quantum information theory, they are viewed as quantum
resources used by quantum algorithms and communication protocols to outperform
their classical analogs. If the composite system is in a mixed state, classical corre-
lations between the parties – arising e.g. from a random state preparation – may be
present at the same time as quantum correlations. In two seminal papers, Ollivier and
Zurek [66] and Henderson and Vedral [41] proposed a way to separate in bipartite
systems classical from quantum correlations and introduced the quantum discord as
a quantifier of the latter. For pure states, this quantifier coincides with the entan-
glement of formation, in agreement with the fact that quantum correlations in pure
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states are synonymous to entanglement. For mixed states, however, the states with a
vanishing discord, i.e. those states which possess only classical correlations, form a
small (zero-measure) subset of the set of separable states. It has been argued that a
non-zero discord could be responsible for the quantum speed-up of the DQC1 algo-
rithm [26, 27]. Furthermore, the discord can be interpreted as the cost of quantum
communication in certain protocols such as quantum state merging [20, 56, 60] and
can be related to the distillable entanglement between one subsystem and a measure-
ment apparatus [74, 86]. On the other hand, the evaluation of the quantum discord
remains a difficult challenge, even in the simplest case of two qubits (see [35, 60]
and references therein).

In this chapter, we study alternative measures of quantum correlations which
share many of the properties of the quantum discord while being easier to compute
and enabling for operational interpretations in terms of state distinguishability. Such
measures are related to the geometry of the set of quantum states E(HAB) of the
bipartite system AB. Actually, they are defined in terms of a distance on E(HAB).
Apart from easier computability and operational interpretations, a notable advantage
of the geometric approach is that it provides additional tools going beyond the quan-
tification of correlations. In particular, one can determine the closest separable and
closest classically-correlated states to a given state ρ, as well as the geodesics linking
ρ to those states. These tools may be useful when studying dissipative dynamical
evolutions. For instance, one can gain some insight on the efficiency of a dynamical
process in changing the amount of entanglement or quantum correlations by com-
paring the physical trajectory t �→ ρt in E(HAB) with the geodesics connecting ρt to
its closest separable or classically-correlated state(s).

The aim of what follows is to introduce and review the main properties of a few
geometric measures of quantum correlations depending on the choice of a distance
on E(HAB). Instead of discussing the (huge amount of) different measures present
in the literature, we shall restrict our attention to three quantities. We will mainly
focus on (1) the geometric discord [25], defined as the minimal distance between the
bipartite state ρ and a classically-correlated state. We compare this discord with two
other measures characterizing the sensitivity of the state to local measurements and
unitary perturbations on one subsystem, namely (2) the measurement-induced geo-
metric discord [55], defined as theminimal distance between ρ and the corresponding
post-measurement state after an arbitrary local measurement on subsystemA, and (3)
the discord of response [32, 34], defined as the minimal distance between ρ and its
time-evolved version after an arbitrary local unitary evolution on A implemented by
a unitary operator with a fixed non-degenerate spectrum. As indicated in the title of
the chapter, we will only consider two distinguished distances on the set of quantum
states, namely the Bures and Hellinger distances. The discord of response for these
two distances corresponds (in a sense that will become clear below) to well known
measures of quantum correlations having clear operational interpretations, called
the interferometric power [37] and Local Quantum Uncertainty (LQU) [36]. We will
show that the geometric discord with Bures and Hellinger distances are related to
a quantum state discrimination task, thereby establishing an explicit link between
quantum correlations and state distinguishability. We will also demonstrate that the
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geometric discord and discord of response with the Hellinger distance are almost as
easy to compute as their analogs for the Hilbert–Schmidt distance (for instance, an
explicit formula valid for arbitrary qubit-qudit states, which involves the coefficients
of the expansion of the square root of the state in terms of generalized Pauli matrices,
will be derived in Sect. 6.4). We point out that for the Bures and Hellinger distances,
themeasures (1)–(3) obey all the basic axioms of bona fidemeasures of quantum cor-
relations, in contrast to what happens for the Hilbert–Schmidt distance [75]. Hence,
the geometric discord and discord of response with the Hellinger distance offer the
advantage of easy computability while being physically reliable.

The material of this chapter is to a large extend self-contained. The proofs of most
results save for basic theorems related in textbooks (e.g. in Ref. [64]) are included.
A few technical proofs are, however, omitted. We apologize to the authors of many
papers related to geometric measures of quantum correlations for not citing their
works, either because they are not directly related to the results presented here or
because we are not aware of them.

The remaining of the chapter is organized as follows. We recall in Sect. 2 the
definitions of the entropic quantum discord and classically correlated states and for-
mulate the basic postulates onmeasures of quantum correlations. The three measures
outlined above are defined properly in Sect. 3. Sufficient conditions on the distance
insuring that they obey the basic postulates are given in this section. A detailed
review on the Bures and Hellinger distances and their metrics is provided in Sect. 4.
Sections5 and 6 are devoted to the geometric discord with the Bures and Hellinger
distances, respectively.We present without proofs in Sect. 7 some results on the other
two measures (2)–(3), in particular some bounds involving these measures and the
geometric discord. The last Sect. 8 contains a few concluding remarks.

2 Quantum Versus Classical Correlations

2.1 Entropic Quantum Discord

In all what follows, we consider a bipartite quantum system AB, formed by putting
together two systems A and B, with Hilbert space HAB = HA ⊗ HB, HA and HB

being the Hilbert spaces of the two subsystems. In the whole chapter, we only
consider systems with finite dimensional Hilbert spaces, nA = dimHA < ∞ and
nB = dimHB < ∞. Let us recall that a state of AB is given by a density matrix ρ,
that is, a non-negative operator on HAB with unit trace tr ρ = 1. We write E(H) the
convex set formed by all density matrices on the Hilbert spaceH. The extreme points
of this convex set are the pure states ρψ = |ψ〉〈ψ|, with |ψ〉 ∈ H, ‖ψ‖ = 1. We often
abusively write |ψ〉 instead of ρψ . Given a state ρ ∈ E(HAB) of the bipartite system
AB, the reduced states of A and B are defined by partial tracing over the other sub-
system, that is, ρA = trB(ρ) ∈ E(HA) and ρB = trA(ρ) ∈ E(HB). They correspond to
the marginals of a joint probability in classical probability theory.
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The quantum discord of Ollivier and Zurek [66] and Henderson and Vedral [41]
is defined as follows. The total correlations between the two parties are characterized
by the mutual information

IA:B(ρ) = S(ρB) + S(ρA) − S(ρ) , (1)

where the information (ignorance) about the state of AB is given by the von
Neumann entropy S(ρ) = − tr ρ ln ρ, and similarly for subsystems A and B. In clas-
sical information theory, the mutual information is equal to the difference between
the Shannon entropy of B and the conditional entropy of B conditioned on A. In the
quantum setting, the corresponding difference is the Holevo quantity1

χ({ρB|i, ηi}) = S(ρB) −
∑

i

ηiS(ρB|i) , (2)

where ηi and ρB|i are respectively the probability of outcome i and the corresponding
conditional state of B after a local von Neumann measurement on A,

ηi = tr ρ�A
i ⊗ 1 , ρB|i = η−1

i trA(ρ�A
i ⊗ 1) . (3)

Here, the measurement is given by a family {�A
i } of projectors satisfying �A

i �
A
j =

δij�
A
i and

∑
i �

A
i = 1 (hereafter, 1 stands for the identity operator on HA, HB, or

another space).
It turns out that, unlike in the classical case, IA:B(ρ) and χ({ρB|i, ηi}) are not

equal for general quantum states ρ, whatever the measurement on A. One defines the
quantum discord as the difference [66]

D ent
A (ρ) = IA:B(ρ) − JB|A(ρ) , JB|A(ρ) = max

{�A
i }

χ({ρB|i, ηi}) , (4)

where the maximum is over all projective measurements2 {�A
i } on A. Alternatively,

one can maximize over all POVMs3 {MA
i } on A [41]. The quantum discord D ent

A is
interpreted as a quantifier of the non-classical correlations in the bipartite system.
Note that it is not symmetric under the exchange of the two parties. One defines the
discord D ent

B analogously, by considering local measurements on subsystem B.

1We recall that χ({ρB|i, ηi}) gives an upper bound on the classical mutual information between {ηi}
and the outcome probabilities when performing a measurement to discriminate the states ρB|i.
2By using the concavity of the entropy S, one can show that the maximum is achieved for projectors
�A

i of rank one.
3Let us recall that a POVM associated to a (generalized) measurement is a family {Mi} of operators
Mi ≥ 0 such that

∑
i Mi = 1. The probability of outcome i is ηi = trMiρ and the correspond-

ing post-measurement conditional state is η−1
i AiρA

†
i , where the Kraus operators Ai satisfy A†

i Ai
= Mi.
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The two discordsD ent
A andD ent

B give the amount of mutual information that cannot
be retrieved by measurements on one of the subsystems. Actually, it is not difficult
to show that:

Proposition 1 ([66]) For any state ρ ∈ E(HAB),

D ent
A (ρ) = IA:B(ρ) − max

{�A
i }
IA:B

(M�
A ⊗ 1(ρ)

)
, (5)

where the maximum is over all projective measurements on A with rank-one projec-
tors�A

i (or with rank-one operators M
A
i if the maximization is taken over all POVMs

in (4)) and

M�
A ⊗ 1(ρ) =

nA∑

i=1

�A
i ⊗ 1 ρ�A

i ⊗ 1 (6)

is the post-measurement state in the absence of readout.

By using (5) and the contractivity of the mutual information under local quantum
operations (data processing inequality), one finds that D ent

A (ρ) ≥ 0 for any state ρ.
Furthermore, JB|A(ρ) = IA:B(ρ) − D ent

A (ρ) is equal to themaximum in the r.h.s. of (5)
and can thus be interpreted as the amount of classical correlations between the two
parties (in fact, local measurements on A remove all quantum correlations between A
and B). One can show that JB|A(ρ) = 0 if and only if ρ = ρA ⊗ ρB is a product state.

It is not difficult to show that D ent
A and D ent

B coincide for pure states with the von
Neumann entropy of the reduced states, i.e., with the entanglement of formation
EEoF [12, 13],

D ent
A (|�〉) = D ent

B (|�〉) = EEoF(|�〉) = S([ρ�]A) = S([ρ�]B) . (7)

In contrast, for mixed states ρ, D ent
A (ρ) and D ent

B (ρ) capture quantum correlations
different from entanglement. In fact, mixed states can have a non-zero discord even
if they are separable. Such states are obtained by preparing locally mixtures of non-
orthogonal states, which cannot be perfectly discriminated by local measurements.
An example of an A- and B-discordant two-qubit state with no entanglement is

ρ = 1

4

(|+〉〈+| ⊗ |0〉〈0| + |−〉〈−| ⊗ |1〉〈1| + |0〉〈0| ⊗ |−〉〈−| + |1〉〈1| ⊗ |+〉〈+|)
(8)

with |±〉 = (|0〉 ± |1〉)/√2. The separable state (8) cannot be classified as “classical”
and actually contains quantum correlations that are not detected by any entanglement
measure.

It turns out that the evaluation of the discord D ent
A (ρ) for mixed states ρ is a

challenging task, even for two-qubits [35, 60]. For the latter system, an analytical
expression has been found so far for Bell-diagonal states only [54], while the formula
proposed in [3] for the larger family of X-states happen to be only approximate
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[45, 60]. For a large number of qubits, the computation of the discord is an NP-
complete problem [46].

2.2 Classical-Quantum and Classical States

States of a bipartite system AB with a vanishing quantum discord with respect to A
possess only classical correlations. They are usually called classical-quantum states,
butwe shall prefer here the terminology “A-classical states”.One can show that a state
σA−cl is A-classical if and only if it is left unchanged by a local von Neumann mea-
surement on A with rank-one projectors �A

i , i.e., σA−cl = M�
A ⊗ 1(σA−cl), where

M�
A is defined by (6).4 Therefore, all A-classical states are of the form

σA−cl =
nA∑

i=1

qi|αi〉〈αi| ⊗ ρB|i , (9)

where {|αi〉}nAi=1 is an orthonormal basis ofHA, {qi} is a probability distribution (i.e.,
qi ≥ 0 and

∑
i qi = 1), and ρB|i are arbitrary states of B. Equation (9) means that the

zero-discord states are mixtures of locally discernable states, that is, of states which
can be perfectly discriminated by local measurements on A.

The A-classical states form a non-convex set CA, the convex hull of which is the
set of all separable states SAB of the bipartite system. It is clear from (9) that a pure
state |�〉 is A-classical if and only if it is a product state |�〉 = |α〉|β〉. Thus, for pure
states classicality is equivalent to separability, as already evidenced by the relation
(7). In contrast, most separable mixed states are not A-classical.

The B-classical states are defined analogously as the states with a vanishing dis-
cord with respect to subsystem B. They are of the form (9) with {|αi〉} replaced by
an orthonormal basis {|βi〉} of HB and ρB|i by arbitrary states ρA|i of A. The states
which are both A- and B-classical are called classical states. They are of the form

σclas =
nA,nB∑

i,j=1

qij|αi〉〈αi| ⊗ |βj〉〈βj| . (10)

We denote by CB and CAB = CA ∩ CB the sets of B-classical states and of classical
states, respectively. An illustrative picture of these subsets of the set of quantum
states is displayed in Fig. 1. Note that this picture does not reflect all geometrical
aspects (in particular, CA, CB, and CAB typically have a lower dimensionality than
E(HAB) and SAB).

4This can be justified by using the identity (5) and a theorem due to Petz, which gives a necessary
and sufficient condition on ρ such that IA:B(ρ) = IA:B(MA ⊗ 1(ρ)) for a fixed quantum operation
MA on A (saturation of the data processing inequality) [39, 71]. We refer the reader to [81] for
more detail. Note that the proof originally given in Ref. [66] is not correct.
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ρ

CA C
ABS

CAB

B

Fig. 1 Schematic view of the set of quantum states E(HAB) of a bipartite system AB. The subset
CAB of classical states (inmagenta) is the intersection of the subsets CA and CB of A- and B-classical
states (in red and blue). The convex hull of CA (or CB) is the subset SAB of separable states (gray
rectangle). All these subsets intersect the border of E(HAB) (which contains all pure states of AB)
at the pure product states, represented by the four vertices of the rectangle. The maximally mixed
state ρ = 1/(nAnB) lies at the center (cross). The two points at the left and right extremities of
the ellipse represent the maximally entangled pure states, which are the most distant states from
SAB (and also from CA, CB, and CAB). The square distances between a given state ρ and SAB (black
line) and between ρ and CA (red line) define the geometric entanglement EG

AB(ρ) and the geometric
discord DG

A (ρ), respectively

2.3 Axioms on Measures of Quantum Correlations

Before proceeding further, let us briefly recall the definition of a quantum opera-
tion (or quantum channel). We denote by B(H) the C∗-algebra of bounded linear
operators fromH into itself, that is, n × n complex matrices with dimH = n in our
finite dimensional setting.Mathematically, a quantum operation is a completely pos-
itive (CP)5 trace-preserving linear map M : B(H) → B(H′). Physically, quantum
operations represent either quantum evolutions or changes in the system state due to
measurements without readout like in (6). More precisely, let a quantum system S
initially in state ρS be coupled at time t = 0 to its environment E, with which it has
never interacted at prior times. If the joint state ρSE(t) of SE either evolves unitarily
according to the Schrödinger equation or is modified by a measurement process,
then the reduced state of S at time t > 0 is given by ρS(t) = Mt(ρS) whereMt is a
quantum operation.

5A linear map M : B(H) → B(H′) is positive if it transforms a non-negative operator ρ ≥ 0 into
a non-negative operator M(ρ) ≥ 0. It is CP if the map

M ⊗ 1 : X ∈ B(H ⊗ C
m) �→

m∑

k,l=1

M(Xkl) ⊗ |k〉〈l| ∈ B(H′ ⊗ C
m) (11)

is positive for any integer m ≥ 1.
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By studying the properties of the quantum discord, one is led to define the fol-
lowing axioms for a bona fide measure of quantum correlations [24, 36, 37, 76,
81].

Definition 1 A measure of quantum correlations on the bipartite system AB is a
non-negative function DA on the set of quantum states E(HAB) such that:

(i) DA(ρ) = 0 if and only if ρ is A-classical;
(ii) DA is invariant under local unitary transformations, i.e., DA(UA ⊗ UBρU

†
A ⊗

U†
B) = DA(ρ) for any unitaries UA and UB acting on HA and HB;

(iii) DA is monotonically non-increasing under quantum operations on B, i.e.,
DA(1 ⊗ MB(ρ)) ≤ DA(ρ) for any quantumoperation MB : B(HB) → B(H′

B);
(iv) DA reduces to an entanglement monotone on pure states.6

These axioms are satisfied in particular by the entropic discord.7

It can be shown8 that axioms (iii) and (iv) imply that, if the space dimensions of
HA and HB are such that nA ≤ nB, DA is maximum on maximally entangled pure
states |�me〉, i.e., if ρ = ρ�me then DA(ρ) = Dmax [75]. It is argued in Ref. [78] that a
propermeasure of quantum correlations DA must actually be such that themaximally
entangled states are theonly states satisfyingDA(ρ) = Dmax.Wewill thus consider the
following additional axiom, fulfilled in particular by the entropic discord D ent

A [81]:

(v) if nA ≤ nB then DA(ρ) is maximum if and only if ρ is maximally entangled, that
is, ρ has maximal entanglement of formation EEoF(ρ) = ln nA.

Many authors have looked for functions DA �= D ent
A on E(HAB) fulfilling axioms

(i–iv), which can be used as D ent
A to quantify quantum correlations in bipartite sys-

tems while being easier to compute and having operational interpretations. Among
such measures, the distance-based measures studied in this chapter are especially
appealing since they provide a geometric understanding of quantum correlations not
limited to their quantification, as stressed in the Introduction.

6Recall that an entanglement monotone E on pure states is a function which does not increase under
Local Operations and Classical Communication (LOCC), i.e., E(|�〉) ≤ E(|�〉) whenever |�〉 can
be transformed into |�〉 by a LOCC operation [44, 64].
7Actually, D ent

A obeys axiom (i) by definition. Axiom (ii) follows from the unitary invariance
of the entropy S. Axiom (iv) is a consequence of (7) and the entanglement monotonicity of the
entanglement of formation. The proof of axiom (iii) is given e.g. in [81].
8This follows from the facts that a functionDA on E(HAB) satisfying (iii) is maximal on pure states
if nA ≤ nB [88] and that any pure state can be obtained from a maximally entangled pure state via
a LOCC.
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3 Geometric Measures of Quantum Correlations

3.1 Contractive Distances on the Set of Quantum States

A fundamental issue in quantum information theory is the problem of distinguishing
quantum states, that is, quantifying how “different” or how “far from each other” are
two given states ρ and σ. A natural way to deal with this problem is to endow the
set of quantum states E(H) with a distance d. One has a priori the choice between
many distances. The most common ones are the Lp-distances

dp(ρ,σ) = ‖ρ − σ‖p = [
tr(|ρ − σ|p)] 1

p (12)

with p ≥ 1 (here |X| denotes the non-negative operator |X| = √
X†X).

In quantum information theory, it is important to consider distances d having
the following property: if two identical systems in states ρ and σ undergo the same
quantum evolution or are subject to the same measurement described by a quantum
operation M, then the time-evolved or post-measurement states M(ρ) and M(σ)

cannot be farther from each other than the initial states ρ and σ. In other words, the
two states are less distinguishable after the evolution or the measurement, because
some information has been lost in the environment or in the measurement apparatus.
Distances d on the sets of quantum states satisfying this property are said to be
contractive under quantum operations (or “contractive” for short). More precisely,
d is contractive if for any finite-dimensional Hilbert spacesH andH′, any quantum
operation M : B(H) → B(H′), and any ρ, σ ∈ E(H), it holds

d(M(ρ),M(σ)) ≤ d(ρ,σ) . (13)

Note that a contractive distance is in particular unitary invariant, i.e.,

d
(
UρU†,UσU†) = d(ρ,σ) if U is unitary onH (14)

(in fact, ρ �→ UρU† is an invertible quantum operation on B(H)).
The relative von Neumann entropy S(ρ||σ) = tr[ρ(ln ρ − ln σ)] is a prominent

example of contractive function on E(H) × E(H) and has a fundamental interpreta-
tion in terms of information. However, S(ρ||σ) is not a distance (it is not symmetric
under the exchange of ρ and σ). It is desirable to work with contractive functions
d on E(H) × E(H) which can be interpreted like S in terms of information while
being true distances. It turns out that the Lp-distances dp are not contractive, with
the notable exception of the trace distance d1 [67, 69, 79]. Hence dp, p > 1 (and
in particular the Hilbert–Schmidt distance d2) cannot be reliably used to distinguish
quantum states. We will focus in what follows on two particular distances, called the
Bures and Hellinger distances, defined by
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dBu(ρ,σ) = (
2 − 2

√
F(ρ,σ)

) 1
2 (15)

dHe(ρ,σ) = (
2 − 2 tr

√
ρ
√

σ
) 1

2 , (16)

where the Uhlmann fidelity is given by

F(ρ,σ) = ‖√ρ
√

σ‖21 =
(
tr
[
(
√

σρ
√

σ)
1
2
])2

. (17)

These distances will be studied in Sect. 4. We will show that they are contractive,
enjoy a number of other nice properties, and are related to theRényi relative entropies.

3.2 Distances to Separable, Classical-Quantum, and Product
States

From a geometrical viewpoint, it is quite natural to quantify the amount of quantum
correlations in a state ρ of a bipartite system AB by the distance d(ρ, CA) of ρ to
the subset CA of A-classical states, i.e., by the minimal distance between ρ and an
arbitrary A-classical state (see Fig. 1). This idea goes back to Vedral and Plenio [94,
95], who proposed to define the entanglement in AB by the (square) distance from ρ
to the set of separable states SAB,

EG
AB(ρ) = d(ρ,SAB)

2 = min
σsep∈SAB

d(ρ,σsep)
2 . (18)

These authors have shown that EG
AB is an entanglement monotone if the distance d is

contractive. By analogy, Dakić, Vedral, and Brukner [25] introduced the geometric
discord

DG
A (ρ) = d(ρ, CA)2 = min

σA−cl∈CA

d(ρ,σA−cl)
2 . (19)

Unfortunately, the distance d was chosen in Ref. [25] to be the Hilbert–Schmidt
distance d2, which is not a good choice because d2 is not contractive (Sect. 3.1).
Further works have studied the geometric discords based on the more physically
reliable Bures distance (see [1, 2, 82, 83, 87]), Hellinger distance (see [57, 78]), and
trace distance (see [24, 63, 68] and references therein).

The discord DG
B relative to subsystem B is defined by replacing CA by CB in (19).

Like for the entropic discord, one has in general DG
A �= DG

B . Symmetric measures
of quantum correlations are obtained by considering the square distance DG

AB(ρ) =
d(ρ, CAB)2 to the set of classical states CAB = CA ∩ CB.

We emphasize that since CAB ⊂ CA ⊂ SAB (see Fig. 1), the geometric measures
are ordered as

EG
AB(ρ) ≤ DG

A (ρ) ≤ DG
AB(ρ) . (20)
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This ordering is a nice feature of the geometrical approach. In contrast, depending on
ρ, the entanglement of formation EEoF(ρ) can be larger or smaller than the entropic
discord Dent

A (ρ).
It is easy to show that EG

AB is an entanglement monotone if the distance d is
contractive (this follows from the invariance of SAB under LOCC operations, see [81,
94]) and that EG

AB(ρ) = 0 if and only if ρ is separable (since a distance d separates
points). Hence EG

AB qualifies as a reliable measure of entanglement.9 Similarly, one
may ask whether the geometric discord DG

A satisfies axioms (i–iv) of Definition 1.
If d is contractive, one easily shows10 that DG

A obeys the first three axioms (i–iii).
Finding general conditions on d insuring the validity of the last axiom (iv) is still an
open question. We will show below that (see Sects. 5.1, 5.2, and 6.1)

Proposition 2 DG
A is a bona fide measure of quantum correlations when d is the

Bures or the Hellinger distance. Furthermore, if d = dBu then DG
A satisfies the addi-

tional axiom (v).

It can be proven thatDG
A obeys axiom (v) also for the Hellinger distance dHe when

A is a qubit or a qutrit (nA = 2 or nA = 3) [78], and we believe that this is still true for
higher dimensional spacesHA. It is conjectured by several authors that DG

A is a bona
fide measure of quantum correlations for the trace distance d = d1, but as far as we
are aware the justification of axiom (iv) is still open (however, this axiom holds for
nA = 2, see e.g. [78]). In contrast, DG

A is not a measure of quantum correlations for
the Hilbert–Schmidt distance d = d2. Indeed, as one might expect from the fact that
d2 is not contractive, DG

A does not fulfill axiom (iii) (an explicit counter-example is
given in Ref. [73]).

One can replace the square distance by the relative entropy S in formulas (18)–
(19). Since S is contractive under quantum operations and satisfies S(ρ||σ) = 0 if
and only if ρ = σ, one shows in the same way as for contractive distances that
the corresponding entanglement measure ES

AB is entanglement monotone [95] and
that the discord DS

A obeys axioms (i–iii). Furthermore, one finds that the closest
separable state to a pure state |�〉 for the relative entropy is a classical state and
that ES

AB(|�〉) is equal to the entanglement of formation EEoF(|�〉) [94]. Hence
DS

A(|�〉) = ES
AB(|�〉) = EEoF(|�〉) for any pure state |�〉 ∈ HAB. As a result, DS

A is
a bona fide measure of quantum correlations.

The mutual information (1) quantifying the total amount of correlations between
A and B is equal to11

9Furthermore,EG
AB is convex if d is theBures or theHellinger distance since then d

2 is jointly convex,
see Sect. 4.3. Convexity is sometimes considered as another axiom for entanglementmeasures, apart
from entanglement monotonicity and vanishing for separable states and only for those states.
10Actually, DG

A clearly obeys axiom (i), irrespective of the choice of the distance. It satisfies axiom
(ii) for any unitary-invariant distance, thus in particular for contractive distances. One shows that it
fulfills axiom (iii) by using the contractivity of d and the fact that the set of A-classical states CA is
invariant under quantum operations acting on B, as is evident from (9).
11This identity follows from the relations IA:B(ρ) = S(ρ||ρA ⊗ ρB) and S(ρ||σA ⊗ σB) − S(ρ||ρA ⊗
ρB) = S(ρA||σA) + S(ρB||σB) ≥ 0. It means in particular that the “closest” product state to ρ for
the relative entropy is the product ρA ⊗ ρB of the marginals of ρ [59].
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IA:B(ρ) = min
σprod∈PAB

S(ρ||σprod) , (21)

where PAB = {σA ⊗ σB;σS ∈ E(HS), S = A,B} is the set of product (i.e., uncorre-
lated) states. In analogy with (21), one can define a geometrical mutual information
IGAB and a measure CG

A of classical correlations by [18, 59]

IGAB(ρ) = d(ρ,PAB)
2 , CG

A (ρ) = min
σρ∈CA

d(σρ,PAB)
2 , (22)

where the minimum is over all12 closest A-classical states σρ to ρ. Unlike in the case
of the entropic discord, the total correlations IGAB(ρ) is not the sum of the quantum
and classical correlations DG

A (ρ) and CG
A (ρ) [59]. However, the triangle inequality

yields IGAB(ρ) ≤ (

√
DG

A (ρ) +
√
CG
A (ρ))2.

3.3 Response to Local Measurements and Unitary
Perturbations

An alternative way to quantify quantum correlations with the help of a distance d
is to consider the sensitivity of the state ρ ∈ E(HAB) to local measurements or local
unitary perturbations.

(1) The distinguishability of ρ with the corresponding post-measurement state
after a local projective measurement on subsystem A is characterized by the
measurement-induced geometric discord, defined by [55]

DM
A (ρ) = min

{�A
i }
d
(
ρ,M�

A ⊗ 1(ρ)
)2

, (23)

where the minimum is over all measurements on A with rank-one projectors
�A

i andM�
A is the associated quantum operation (6). Since the outputs of such

measurements are always A-classical, one has DG
A (ρ) ≤ DM

A (ρ) for any state ρ.
This inequality is an equality if d = d2 is the Hilbert–Schmidt distance [55]. For
the Bures and Hellinger distances, DG

A and DM
A are in general different, even if

A is a qubit [78]. For the trace distance, DG
A = DM

A when A is a qubit but this is
no longer true for nA > 2 [63].

(2) The distinguishability of ρ with the corresponding state after a local unitary
evolution on subsystem A is characterized by the discord of response [32, 34,
76]

DR
A (ρ) = 1

N min
UA,sp(UA)=ei�

d
(
ρ,UA ⊗ 1 ρU†

A ⊗ 1
)2

, (24)

12As we shall see below, ρ may have an infinite family of closest A-classical states.
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where the minimum is over all unitary operators UA on HA separated from
the identity by the condition of having a fixed spectrum sp(UA) = ei� =
{e2iπj/nA; j = 0, . . . , nA − 1} given by the roots of unity.13 The normalization
factor N in (24) depends on the distance and is chosen such that DR

A (ρ) has
maximal value equal to unity. For instance,N = 2 for the Bures, Hellinger, and
Hilbert–Schmidt distances and N = 4 for the trace distance [78].

The measurement-induced geometric discord and discord of response are special
instances of measures of quantumness given by

Qδ,FA(ρ) = inf
MA∈FA

δ(ρ,MA ⊗ 1(ρ)) , (25)

where FA is a family of quantum operations on A and δ is a (square) distance or a
relative entropy. The following result of Piani, Narasimhachar, and Calsamiglia [75]
is useful to check that suchmeasures are bona fidemeasures of quantum correlations.

Theorem 1 ([75]) For all spaces H with dimH < ∞, let δ(ρ,σ) be non-negative
functions on E(H) × E(H) which are contractive under quantum operations and
satisfy the ‘flags’ condition

δ
( ∑

i

ηiρi ⊗ |i〉〈i|,
∑

i

ηiσi ⊗ |i〉〈i|
)

=
∑

i

ηiδ(ρi,σi) , (26)

where {|i〉} is an orthonormal basis of an ancilla Hilbert space HE. Assume that
nA ≤ nB. Let the family FA of quantum operations on B(HA) be closed under uni-
tary conjugations. Then the measure of quantumness (25) satisfies axioms (ii–iv) of
Definition 1.

Proof We first show that Qδ,FA is an entanglement monotone when restricted to
pure states. It is known (see e.g. [64]) that when nA ≤ nB, a LOCC acting on a pure
state |�〉 may always be simulated by a one-way communication protocol involving
only three steps: (1) Bob first performs a measurement with Kraus operators {Bi}
on subsystem B; (2) he sends his measurement result to Alice; (3) Alice performs
a unitary evolution Ui on subsystem A conditional to Bob’s result. Therefore, it is
enough to show that for any pure state |�〉 ∈ HAB, any family {Bi} of Kraus operators
onHB (satisfying

∑
i B

†
i Bi = 1), and any family {Ui} of unitaries on HA, it holds

∑

i

ηiQδ,FA(|�i〉) ≤ Qδ,FA(|�〉) , (27)

where ηi = ‖1 ⊗ Bi|�〉‖2 is the probability that Bob’s outcome is i and |�i〉 =
η

− 1
2

i Ui ⊗ Bi|�〉 is the corresponding conditional post-measurement state after
Alice’s unitary evolution. The inequality (27) is proven by considering the following
quantum operation M : B(HAB) → B(HABE)

13See [76] for a discussion on the choice of the non-degenerate spectrum ei�.
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M(ρ) =
∑

i

Ui ⊗ Bi ρU
†
i ⊗ B†

i ⊗ |i〉〈i| . (28)

From the contractivity of δ and the flags condition, one gets

Qδ,FA
(|�〉) ≥ inf

MA∈FA

δ
(M(|�〉〈�|) , M ◦ MA ⊗ 1(|�〉〈�|))

= inf
MA∈FA

δ

(∑

i

ηi|�i〉〈�i| ⊗ |i〉〈i| ,
∑

i

ηiM(i)
A ⊗ 1(|�i〉〈�i|) ⊗ |i〉〈i|

)

= inf
MA∈FA

∑

i

ηi δ
(
|�i〉〈�i| , M(i)

A ⊗ 1(|�i〉〈�i|)
)

(29)

withM(i)
A (·) = UiMA(U

†
i · Ui)U

†
i . Bounding the infimum of the sum by the sum of

the infima and using the assumption UiFAU
†
i = FA, one is led to the desired result

Qδ,FA
(|�〉) ≥

∑

i

ηi inf
M(i)

A ∈FA

δ
(
|�i〉〈�i|,M(i)

A ⊗ 1(|�i〉〈�i|)
)

=
∑

i

ηiQδ,FA
(|�i〉) .

(30)

In particular, if the pure state |�〉 can be transformed by a LOCC operation into the
pure state |�〉, which means that |�i〉 = |�〉 for all outcomes i, then Qδ,FA(|�〉) ≥
Qδ,FA(|�〉). Axiom (ii) follows from a similar argument and the unitary invari-
ance of δ (which is a consequence of the contractivity assumption, see Sect. 3.1).
Finally, one easily verifies thatQδ,FA fulfills axiom (iii) by exploiting the contractivity
of δ. �

Proposition 3 DM
A and DR

A are bona fide measures of quantum correlations if the
distance d is contractive and d2 satisfies the flag condition (24).

It is easy to show that the square Bures and Hellinger distances d2Bu and d
2
He satisfy

the flags condition, so that Proposition 3 applies in particular to these distances. The
result applies to the trace distance d1 as well, see [75].

Proof Let us first discuss axiom (i). For DM
A , its validity comes from the fact that a

state is A-classical if and only if it is invariant under a von Neumann measurement
on A with rank-one projectors (Sect. 2.2). Note that this axiom would not hold if the
minimization in (23) was performed over projectors �A

i with ranks larger than one.
For DR

A , one uses an equivalent characterization of A-classical states as the states
ρ which are left invariant by a local unitary transformation on A for some unitary
UA onHA having a non-degenerate spectrum [76]. Actually, UA ⊗ 1ρU†

A ⊗ 1 = ρ if
and only if ρ commutes withUA ⊗ 1, or, equivalently, with all its spectral projectors
�A

i . This means that M�
A ⊗ 1(ρ) = ρ with M�

A defined by (6). Since sp(UA) is
not degenerate, the spectral projectors �A

i have rank one. Consequently, the above
condition on unitary transformations is equivalent to the invariance of ρ under a
measurement on A with rank-one projectors and thus to ρ being A-classical. This
proves that DR

A satisfies axiom (i). The fact that DM
A and DR

A obey the other axioms
(ii–iv) is a consequence of Theorem 1. �
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As for the geometric discord, we do not have a general argument implying that
DM

A and DR
A fulfill the additional axiom (v) under appropriate assumptions on the

distance. However, one can show that DR
A obeys axiom (v) for the Bures, Hellinger,

and trace distances, and this is also true for DM
A for the Bures distance [78].

3.4 Speed of Response to Local Unitary Perturbations

All distance-based measures of quantum correlations defined above are global geo-
metric quantities, in the sense that they depend on the distance between ρ and states
that are not in the neighborhood of ρ (excepted of coursewhen themeasure vanishes).
It is natural to look for quantifiers of quantum correlations involving local geometric
quantities14 depending only on the properties of E(HAB) in the vicinity of ρ. The
idea of the sensitivity to local unitary perturbations sustaining the definition of the
discord of response is well suited for this purpose. Indeed, instead of considering
the minimal distance between ρ and its perturbation by a local unitary with a fixed
spectrum, one may consider the minimal speed at time t = 0 of the time-evolved
states

ρout(t) = e−itHA⊗1ρ eitHA⊗1 . (31)

This leads to the definition of the discord of speed of response

DSR
A (ρ) = min

HA,sp(HA)=�
lim
t→0

t−2d
(
ρ, ρout(t)

)2
, (32)

where the minimum is over all self-adjoint operators HA on HA with a fixed non-
degenerate spectrum� = {2πj/nA; j = 0, . . . , nA − 1}. This local geometric version
of the discord of response has apparently not been defined before in the literature. The
results of Propositions 4 and 5 below have up to our knowledge not been published
elsewhere.

Proposition 4 If the distance d is contractive and Riemannian, and if d2 satisfies
the flags condition (26), then DSR

A is a bona fide measure of quantum correlations.
Furthermore, one has

NDR
A (ρ) ≤ DSR

A (ρ) . (33)

Proof If d is a Riemannian distance then the limit in (32) exists and is equal
to gρ(−i[HA ⊗ 1, ρ],−i[HA ⊗ 1, ρ]) where g is the metric associated to d (see
Sect. 4.6). Since gρ is a scalar product, DSR

A (ρ) = 0 if and only if [HA ⊗ 1, ρ] = 0
for some observable HA of A with a non-degenerate spectrum sp(HA) = �. As in
the proof of Proposition 3, this is equivalent to ρ being A-classical. Hence axiom
(i) holds true. One easily convinces oneself that DSR

A fulfills axioms (ii) and (iii) by

14The word “local” refers here to the geometry on E(HAB) and should not be confused with the
usual notion of locality in quantum mechanics.
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using the unitary invariance and the contractivity of d, respectively. One deduces
from the flags condition (26) for δ = d2 that the metric g satisfies

gρABE

( ∑

i

ηiρ̇i ⊗ |i〉〈i| ,
∑

i

ηiρ̇i ⊗ |i〉〈i|
)

=
∑

i

ηigρi (ρ̇i, ρ̇i) for ρABE =
∑

i

ηiρi ⊗ |i〉〈i| . (34)

Similarly, one infers from the contractivity of d that the metric g satisfies the inequal-
ity (66) below. By repeating the arguments in the proof of Theorem 1, one finds that
DSR

A is an entanglement monotone for pure states, i.e., it obeys axiom (iv).
The bound (33) is a consequence of the triangle inequality and the unitary invari-

ance of d. Actually, one has

d
(
ρ,UA ⊗ 1ρU†

A ⊗ 1
)2 ≤ lim

N→∞

{ N∑

n=1

d
(
U

n−1
N

A ⊗ 1ρ
(
U

n−1
N

A

)† ⊗ 1,U
n
N
A ⊗ 1ρ(U

n
N
A )† ⊗ 1

)}2

= lim
N→∞N2d

(
ρ,U

1
N
A ⊗ 1ρ(U

1
N
A )† ⊗ 1

)2 = lim
t→0

t−2d
(
ρ, ρout(t)

)2
, (35)

where ρout(t) is given by (31) and UA = eiHA . �

Note that when subsystem A is a qubit (nA = 2), the dependence of DSR
A on the

choice of the spectrum � reduces to a multiplication factor.15 It follows from the
physical interpretations of the Bures and Hellinger metrics (see Sect. 4.5 below) that

Proposition 5 The discord of speed of response (32) coincides when ρ is invertible
with

• the interferometric power [37] if d = dBu is the Bures distance:

DSR
A (ρ) = P�(ρ) = 1

4
min

HA,sp(HA)=�
FQ(ρ,HA ⊗ 1) , (36)

where FQ(ρ,HA ⊗ 1) is the quantum Fisher information giving the best precision
in the estimation of the unknown parameter t from arbitrary measurements on the
output states (31).

• (twice the) Local Quantum Uncertainty (LQU) [36] if d = dHe is the Hellinger
distance:

DSR
A (ρ) = 2LQU�(ρ) = 2 min

HA,sp(HA)=�
Iskew(ρ,HA ⊗ 1) , (37)

15This is a consequence of the following observations [36]: (a) any H ∈ B(C2)sa with spectrum
{λ−,λ+} has the form (λ+ − λ−)σ�u/2 + (λ+ + λ−)/2,whereσ�u = ∑3

m=1 umσm, �u is a unit vector
in R

3, and σ1, σ2, and σ3 are the three Pauli matrices; (b) as noted in the proof of Proposition 4, the
limit in the r.h.s. of (32) is equal to gρ(−i[HA ⊗ 1, ρ],−i[HA ⊗ 1, ρ]) where gρ is a scalar product.
Hence changing the spectrum � from {0,π} to {λ−,λ+} amounts to multiply DSR

A by the constant
factor [(λ+ − λ−)/π]2.
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where Iskew(ρ,H) = − 1
2 tr([

√
ρ,H]2) is the skew information [97] describing the

amount of information on the values of observables not commuting with H inferred
from measurements on a system in state ρ.

This proposition shows that DSR
A has operational interpretations related to para-

meter estimation and to quantum uncertainty in local measurements for the Bures
and Hellinger distances, respectively.

If nA = 2 and d = dHe is the Hellinger distance, one finds that DR
A and DSR

A (i.e.,
the LQU) are proportional to each other,

LQU{0,π}(ρ) = π2

4
DR

A (ρ) = π2

4
inf

‖�u‖=1
Iskew(ρ,σ�u ⊗ 1) (38)

(this follows from the identity 2Iskew(ρ,U) = dHe(ρ,UρU†)2 for U = U† = U−1

and from the aforementioned property of DSR
A with respect to changes in the spec-

trum �).

3.5 Different Quantum Correlation Measures Lead
to Different Orderings on E(H)

It may appear as an unpleasant fact that the orderings on the states of E(HAB) defined
by the different measures of quantum correlations are in general different, in par-
ticular they depend on the choice of the distance d. This means that, for instance,
it is possible to find two states ρ and σ which satisfy DR

A (ρ) < DR
A (σ) for the Bures

distance and the reverse inequality DR
A (ρ) > DR

A (σ) for the Hellinger distance. This
is illustrated in Fig. 2. This figure displays the distributions in the planes defined by
pairs of discords of response based on different distances for randomly generated
two-qubit states ρ with a fixed purity P = tr(ρ2) (a similar figure would be obtained
if the purity was not fixed). The different orderings translate into the non-vanishing
area of the plane covered by the distribution, which in turn reflects the absence of
a functional relation between the two discords. It is quite analogous to the different
orderings on quantum states established by different entanglement measures. More
strikingly, the states with a fixed purity P < 1 which are maximally quantum cor-
related for one discord are not maximally quantum correlated for another discord,
as is also illustrated in Fig. 2. The distance-dependent families of such maximally
quantum correlated two-qubit states have been determined in Refs. [76, 78] as a
function of the purity P for the Bures, Hellinger, and trace distances. Note that if
the purity is not fixed, axiom (v) precisely makes sure that the family of maximally
quantum correlated states is universal and is composed of the maximally entangled
states.
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(a) (b)

(c)

Fig. 2 a Values of the Hilbert–Schmidt and trace discords of responseDR
HS andD

R
tr for 10

4 random
two-qubit states with the same fixed purity P = 0.6. These states are generated from random spectra
and eigenvectors given by the column vectors of a unitary matrix distributed according to the Haar
measure. States on the thick black line have a hierarchywith respect toDR

HS that is reversed compared
to the hierarchy with respect to DR

tr . The points a and b represent, respectively, some states with
purity P maximizing DR

HS and DR
tr . Note that a has not maximal trace discord of response DR

tr , and
similarly for b and DR

HS. b Same for the Bures and trace discords of response DR
Bu and D

R
tr . c Same

for the Bures and Hellinger discords of response DR
Bu and DR

He. The solid and dashed lines are the
borders of the regions delimited by bounds on DR derived from Table3. This figure is taken from
Ref. [78]
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4 Bures and Hellinger Distances

In this section we review the properties of the Bures and Hellinger distances between
quantum states.

4.1 Bures Distance

The Bures distance was first introduced by Bures in the context of infinite products
of von Neumann algebras [19] (see also [4]) and was later studied in a series of
papers by Uhlmann [92, 93]. Uhlmann used it to define parallel transport and related
it to the fidelity generalizing the usual fidelity |〈ψ|φ〉|2 between pure states. Indeed,
the Bures distance is an extension to mixed states of the Fubini–Study distance for
pure states. Recall that the pure states ρψ = |ψ〉〈ψ| of a quantum systemwith Hilbert
space H can be identified with elements of the projective space PH, that is, the
set of equivalence classes of normalized vectors in H modulo a phase factor. The
vectors |ψθ〉 = eiθ|ψ〉 ∈ Hwith 0 ≤ θ < 2π are called the representatives of ρψ . The
Fubini–Study distance on PH is defined by

dFS
(
ρψ,σφ

) = inf
‖ψθ‖=‖φδ‖=1

∥∥|ψθ〉 − |φδ〉
∥∥ = (

2 − 2|〈ψ|φ〉|) 1
2 , (39)

where the infimum in the second member is over all representatives |ψθ〉 of ρψ and
|φδ〉 of σφ. Observe that the third member depends on the equivalent classes ρψ and
σφ only.

For two mixed states ρ and σ ∈ E(H), one can define analogously [47, 93]

dBu(ρ,σ) = inf
R,S

d2(R, S) , (40)

where d2 is theHilbert–Schmidt distance and the infimum is over all Hilbert–Schmidt
matrices R and S ∈ B(H) satisfying RR† = ρ and SS† = σ. Such matrices are given
by R = √

ρV and S = √
σW for some unitaries V and W on H (polar decomposi-

tions).

Proposition 6 dBu defines a distance on the set of quantum states E(H), which
coincides with the Fubini–Study distance for pure states.

Proof It is clear on (40) that dBu(ρ,σ) is symmetric, non-negative, and vanishes if
and only if ρ = σ. To prove the triangle inequality, let us first observe that by the polar
decomposition and the invariance property d2(RV , SV) = d2(R, S) of the Hilbert–
Schmidt distance for any unitary V , one has dBu(ρ,σ) = infU d2(

√
ρ,

√
σU)with an

infimum over all unitaries U. Let ρ, σ, and τ be three states in E(H). The triangle
inequality for d2 and the aforementioned invariance property yield
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dBu(ρ, τ ) ≤ inf
U,V

{
d2(

√
ρ,

√
σV) + d2(

√
σV ,

√
τU)

}

= inf
V

d2(
√

ρ,
√

σV) + inf
W

d2(
√

σ,
√

τW)

= dBu(ρ,σ) + dBu(σ, τ ) . (41)

Hence dBu defines a distance on E(H). For pure states ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ|,
the Hilbert–Schmidt operators are of the form R = |ψ〉〈μ| and S = |φ〉〈ν| with
‖μ‖ = ‖ν‖ = 1. A simple calculation then shows that the r.h.s. of (39) and (40)
coincide. �

By using the polar decompositions and the formula ‖O‖1 = supU Re tr(UO) for
the trace norm ‖ · ‖1 (the supremum is over all unitaries U), one finds

dBu(ρ,σ) = (
2 − 2 sup

U
Re tr(U

√
ρ
√

σ)
) 1

2 = (
2 − 2

√
F(ρ,σ)

) 1
2 , (42)

where F(ρ,σ) = ‖√ρ
√

σ‖21 is the Uhlmann fidelity. Furthermore, the infimum in
(40) is attained if and only if the parallel transport condition R†S ≥ 0 holds.

Since the fidelity F(ρ,σ) belongs to [0, 1], dBu(ρ,σ) takes values in the interval
[0,√2]. Two statesρ andσ have amaximal distancedBu(ρ,σ) = √

2 (i.e., a vanishing
fidelity F(ρ,σ)) if and only if they have orthogonal supports, ran ρ⊥ ran σ. Such
orthogonal states are thus perfectly distinguishable.

Comparing (39) and (42), one sees that the Uhlmann fidelity F is a generalization
of the usual pure state fidelity F(|ψ〉, |φ〉) = |〈ψ|φ〉|2. More generally, if σφ is pure,
then it follows from (17) that

F(ρ,σφ) = 〈φ|ρ|φ〉 (43)

for any ρ ∈ E(H). A very useful result due toUhlmann shows that for any states ρ and
σ,F(ρ,σ) is equal to the fidelity between two pure states |�〉 and |�〉 belonging to an
enlarged spaceH ⊗ K and havingmarginals ρ = trK(|�〉〈�|) andσ = trK(|�〉〈�|).
Such states |�〉 and |�〉 are called purifications of ρ andσ onH ⊗ K.More precisely,
one has

Theorem 2 ([92]) Let ρ, σ ∈ E(H) and |�〉 be a purification of ρ on the Hilbert
space H ⊗ K, with dimK ≥ dimH. Then

F(ρ,σ) = max|�〉 |〈�|�〉|2 , (44)

where the maximum is over all purifications |�〉 of σ on H ⊗ K.

A simple proof of this theorem for finite-dimensional Hilbert spaces H has been
given in Ref. [50] (see also [64]).

As the fidelity satisfies F(ρA ⊗ ρB,σA ⊗ σB) = F(ρA,σA)F(ρB,σB), the Bures
distance increases by taking tensor products, i.e.,
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dBu(ρA ⊗ ρB,σA ⊗ σB) ≥ dBu(ρA,σA) (45)

with equality if and only if ρB = σB. Note that the trace distance does not enjoy this
property.

4.2 Classical and Quantum Hellinger Distances

Let Eclas = {p ∈ R
n+;∑

k pk = 1} be the simplex of classical probability distributions
on the finite sample space {1, 2, . . . , n}. The restriction of a distance d on E(H) to
all density matrices commuting with a given state ρ0 defines a distance on Eclas.
In particular, if ρ and σ are two commuting states with spectral decompositions
ρ = ∑

k pk|k〉〈k| and σ = ∑
k qk|k〉〈k|, then

dBu(ρ,σ) = dclas(p,q) ≡
(
2 − 2

n∑

k=1

√
pkqk

) 1
2 =

( n∑

k=1

(
√
pk − √

qk)
2

) 1
2

(46)

reduces to the classical Hellinger distance dclas on Eclas. One can of course define
other distances on E(H) which coincide with dclas for commuting density matrices,
by choosing a different ordering of the operators inside the trace in the definition
(17) of the fidelity. For the “normal ordering”, one obtains the quantum Hellinger
distance

dHe(ρ,σ) = (
2 − 2 tr

√
ρ
√

σ
) 1

2 = d2(
√

ρ,
√

σ) . (47)

Since d2 is a distance on E(H), this is also the case for dHe. In the sequel, dHe will be
referred to as the Hellinger distance when it is clear from the context that one works
with quantum states and not probability distributions.

Comparing (40) and (47), one immediately sees that dHe(ρ,σ) ≥ dBu(ρ,σ) for any
states ρ,σ ∈ E(H). Like dBu, the Hellinger distance satisfies the monotonicity (45)
under tensor products. A notable difference between dBu and dHe is that the latter does
not coincide with the Fubini–Study distance for pure states (in fact, dHe(ρψ,σφ) =
(2 − 2|〈ψ|φ〉|2) 1

2 > dFS(ρψ,σφ) if ρψ and σφ are distinct and non-orthogonal).
One can associate to two non-commuting states ρ and σ the outcome probabil-

ities p = (p1, . . . , pm) and q = (q1, . . . , qm) of a measurement performed on the
system respectively in states ρ and σ. A natural question is whether dBu(ρ,σ) or
dHe(ρ,σ) coincide with the supremum of the classical distance dclas(p,q) over all
such measurements.

Proposition 7 For any ρ,σ ∈ E(H), one has

dBu(ρ,σ) = sup
{Mi}

dclas(p,q) , (48)
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where the supremum is over all POVMs {Mi}mi=1 and pi = trMiρ (respectively qi =
trMiσ) is the probability of the measurement outcome i in the state ρ (respectively σ).
The supremum is achieved for von Neumann measurements with rank-one projectors
Mi = |i〉〈i|.

A proof of this result and references to the original works can be found in Nielsen
andChuang’s book [64]. Note that a similar statement also holds for the trace distance
(with dclas replaced by the �1-distance). In contrast, while dclas(p,q) ≤ dHel(ρ,σ) for
any POVM, the maximum over all POVMs is strictly smaller than dHel(ρ,σ), except
when dHe(ρ,σ) = dBu(ρ,σ).

4.3 Contractivity and Joint Convexity

Proposition 8 The Bures and Hellinger distances dBu and dHe are contractive under
quantum operations. Moreover, d2Bu and d2He are jointly convex, that is,

d2Bu
(∑

i

piρi,
∑

i

piσi

)
≤

∑

i

pid
2
Bu(ρi,σi) , (49)

with a similar inequality for dHe.

The relative entropy S(ρ||σ) is also jointly convex. This mathematical property
is interpreted as follows. Given two ensembles {ρi, pi} and {σi, pi} of states in E(H)

with the same probabilities pi, by erasing the information about which state of the
ensemble is chosen, the state of the system becomes ρ = ∑

i piρi or σ = ∑
i piσi.

The joint convexity means that the entropy between the two ensembles after the
loss of information provoked by the state mixing is smaller or equal to the average
of the entropies S(ρi||σi). Note that the Lp-distances dp also fulfill this requirement.
According to Proposition 8, the same is true for the squares of theBures andHellinger
distances, but not for the distances themselves.

The contractivity of dHe will be deduced from the following more general result,
known as Lieb’s concavity theorem [51] (see e.g. [64] for a proof).16 We denote by
B(H)+ the set of all non-negative operators on H.

Theorem 3 ([51]) For any fixed operator K ∈ B(H), β ∈ [−1, 0], and q ∈ [0, 1 +
β], the function (ρ,σ) �→ tr(K†ρqKσ−β) on B(H)+ × B(H)+ is jointly concave in
(ρ,σ).

Proof of Proposition 8. Let us first show that d2Bu is jointly convex. This is a conse-
quence of the bound

16The justification by Lieb and Ruskai [52] of the strong subadditivity of the von Neumann entropy
is based on this important theorem.
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√
F

(∑

i

piρi,
∑

i

qiσi

)
≥

∑

i

√
piqi

√
F(ρi,σi) . (50)

To establish (50), we use Theorem 2 and introduce some purifications |�i〉 of ρi and
|�i〉 of σi onH ⊗ H such that

√
F(ρi,σi) = |〈�i|�i〉| = 〈�i|�i〉. Let us define the

vectors
|�〉 =

∑

i

√
pi|�i〉|i〉 , |�〉 =

∑

i

√
pi|�i〉|i〉 (51)

inH ⊗ H ⊗ HE , whereHE is an auxiliaryHilbert spacewith orthonormal basis {|i〉}.
Then |�〉 and |�〉 are purifications of ρ = ∑

i piρi and σ = ∑
i qiσi, respectively.

Using Theorem 2 again, one finds

√
F(ρ,σ) ≥ |〈�|�〉| =

∑

i

√
piqi〈�i|�i〉 =

∑

i

√
piqi

√
F(ρi,σi) . (52)

We have thus proven that d2Bu is jointly convex. The joint convexity of d2He is a
corollary of Theorem 3, which insures that (ρ,σ) �→ tr(

√
ρ
√

σ) is jointly concave.
The following general argument shows that the contractivity of dBu and dHe is a

consequence of the joint convexity proven above and of Stinespring’s theorem [84] on
CP maps [31, 91, 99]. Recall that if μH is the normalized Haar measure on the group
U(n) of n × n unitary matrices, then

∫
dμH(U)UBU† = n−1 tr B for any B ∈ B(H)

(in fact, all diagonal matrix elements of O = ∫
dμH(U)UBU† in an arbitrary basis

are equal, as a result of the left-invariance of the Haar measure, dμH(VU) = dμH(U)

for any V ∈ U(n); thusO is proportional to the identity matrix). LetM be a quantum
operation on B(H). One infers from the Stinespring theorem that there exists a pure
state |ε0〉 of an ancilla system E and a unitary U on H ⊗ HE such that

M(ρ) ⊗ (1/nE) = trE(Uρ ⊗ |ε0〉〈ε0|U†) ⊗ (1/nE)

=
∫

dμH(UE) (1 ⊗ UE)Uρ ⊗ |ε0〉〈ε0|U†(1 ⊗ U†
E) . (53)

By using the property dBu(ρ ⊗ τ ,σ ⊗ τ ) = dBu(ρ,σ), see (45), and the joint con-
vexity and unitary invariance of d2Bu, one gets

d2Bu(M(ρ),M(σ)) = d2Bu
(M(ρ) ⊗ (1/nE) , M(σ) ⊗ (1/nE)

)

≤
∫

dμH(UE)d2Bu
(
(1 ⊗ UE)Uρ ⊗ |ε0〉〈ε0|U†(1 ⊗ U†

E) ,

(1 ⊗ UE)Uσ ⊗ |ε0〉〈ε0|U†(1 ⊗ U†
E)

)

=
∫

dμH(UE)d2Bu(ρ,σ) = d2Bu(ρ,σ) . (54)

A similar reasoning applies to dHe. �



128 D. Spehner et al.

4.4 Riemannian Metrics

In Riemannian geometry, a metric on a smooth manifold X is a (smooth) map g
associating to each point x in X a scalar product gx on the tangent space TxX at x.
A metric g induces a Riemannian distance d, which is such that the square distance
ds2 = d(x, x + dx)2 between two infinitesimally close points x and x + dx is equal to
gx(dx, dx). For themanifoldX = E(H) of quantum states, the tangent spacesTρE(H)

can be identified with the (real) vector space B(H)0s.a. of self-adjoint operators onH
with zero trace. A curve � in E(H) joining two states ρ0 and ρ1 is a (continuously
differentiable) map � : t ∈ [0, 1] �→ ρ(t) ∈ E(H) with �(0) = ρ0 and �(1) = ρ1
(see Fig. 3). Its length �(�) is

�(�) =
∫

�

ds =
∫ 1

0
dt

√
gρ(t)(ρ̇(t), ρ̇(t)) , (55)

where ρ̇(t) stands for the time derivative dρ/dt. A curve �g(ρ,σ) with the short-
est length joining ρ and σ, or more generally, a curve �g(ρ,σ) ∈ C(ρ,σ) ={
� ∈ C1([0, 1], E(H);�(0) = ρ, �(1) = σ

}
atwhich themap� ∈ C(ρ,σ) → �(�)

has a stationary point. The distance between two states ρ and σ is the length
of the shortest geodesic joining these two states, d(ρ,σ) = min{�(�g(ρ,σ))} =
min�∈C(ρ,σ)�(�). Thanks to this formula, a distance d on E(H) can be associated
to any metric g. Conversely, one can associate a metric g to a distance d if the fol-
lowing condition is satisfied (we ignore here the regularity assumptions): for any
ρ ∈ E(H) and ρ̇ ∈ B(H)0s.a., the square distance between ρ and ρ + tρ̇ has a small
time Taylor expansion of the form

ds2 = d(ρ, ρ + tρ̇)2 = gρ(ρ̇, ρ̇)t2 + O(t3) . (56)

Needless to say, determining themetric induced by a given distance d ismuch simpler
than finding an explicit formula for d(ρ,σ) for arbitrary states ρ,σ ∈ E(H) from the
expression of the metric g.

A trivial example of metric on E(H) is

gρ(O,O′) = 〈O,O′〉 = tr(OO′) , O,O′ ∈ B(H)0s.a. , (57)

Fig. 3 Curve � joining two
states ρ and σ in the set of
quantum states X = E(H)

Γ

ρ

σ

Tρ(t)X

ρ(t+dt)
ds

ρ
(t)ρ
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i.e., gρ is independent of ρ and given by the Hilbert–Schmidt scalar product for
matrices. Introducing an orthonormal basis {|i〉}ni=1 ofH, one finds that gρ(O,O′) =∑n

i,j=1 OijO′
ij is nothing but the Euclidean scalar product. Thus the geodesics are

straight lines, �g(ρ,σ) : t ∈ [0, 1] �→ (1 − t)ρ + tσ, and the distance between two
arbitrary states ρ and σ is the Hilbert–Schmidt distance d2(ρ,σ) = 〈−ρ + σ,−ρ +
σ〉 1

2 = (tr[(ρ − σ)2]) 1
2 .

It is not difficult to show (see [81]) that the Bures and Hellinger distances are
Riemannian and have metrics given by

(gBu)ρ(O,O) = 1

2

n∑

k,l=1

|〈k|O|l〉|2
pk + pl

(gHe)ρ(O,O) =
n∑

k,l=1

|〈k|O|l〉|2
(
√
pk + √

pl)2

, O ∈ B(H)0s.a. , ρ > 0 , (58)

where {|k〉} is an orthonormal basis of eigenvectors of ρ with eigenvalues pk . In
contrast, the trace distance d1 is not Riemannian. One deduces from (58) that

(gBu)ρ(O,O) ≤ (gHe)ρ(O,O) ≤ 2(gBu)ρ(O,O) . (59)

The volume of E(H) and the area of its boundary for the Bures metric have been
determined in Ref. [80].

4.5 Physical Interpretations of the Bures and Hellinger
Metrics

The metrics gBu and gHe have interpretations in quantum metrology and quantum
hypothesis testing. Let us first discuss the link with quantum metrology. Consider
the curve in E(H) given by the unitary evolution of the state ρ(0) = ρ under the
Hamiltonian H ∈ B(H)s.a.,

ρ(t) = e−itHρ eitH . (60)

Then ρ̇(t) = −i[H, ρ(t)]. Assuming that ρ is invertible, the speed of the state
evolution, v(t0) = limt→0 t−1dBu(ρ(t0), ρ(t0 + t)), is given by

√FQ(ρ(t0),H)/2 =√FQ(ρ,H)/2, where

FQ(ρ,H) = 4(gBu)ρ
(−i[H, ρ],−i[H, ρ]) = 2

∑

k,l,pk+pl>0

(pk − pl)2

pk + pl
|〈k|H|l〉|2 (61)

is the quantum Fisher information. This quantity is related to the smallest error
�t that can be achieved when estimating the unknown parameter t by performing
measurements on the output states ρ(t). Indeed, optimizing over all measurements
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and all unbiased statistical estimators (that is, all functions test(i1, . . . , iN ) depending
on the measurement outcomes i1, . . . , iN and such that 〈test〉 = t), the best precision
is given by [17]

(�t)best = 1√
N

√FQ(ρ,H)
, (62)

where N is the number of measurements.17 Note that for pure states FQ(|ψ〉,H) =
4〈(�H)2〉ψ reduces to the square quantum fluctuation 〈(�H)2〉ψ = 〈ψ|H2|ψ〉 −
〈ψ|H|ψ〉2 up to a factor of four. Hence (62) takes the form of a generalized uncer-
tainty relation (�t)2〈(�H)2〉ψ ≥ 1/4 (here we take N = 1), in which H plays the
role of the variable conjugated to the parameter t. We remark that the second equality
in (61) is only valid when ρ > 0. The quantum Fisher information is, however, given
by the last expressionin (61) for any state ρ.

The analog of (61) for the Hellinger metric is the skew information [97]

Iskew(ρ,H) = 1

2
(gHe)ρ

(−i[H, ρ],−i[H, ρ]) = −1

2
tr

([√ρ , H]2) . (63)

It describes the amount of information on the values of observables not commuting
with H in a system in state ρ. The Fisher and skew informations have the following
properties [53, 97]:

(a) they are non-negative and vanish if and only if [ρ,H] = 0 (this follows from the
fact that (gBu)ρ and (gHe)ρ are scalar products);

(b) they are convex in ρ (this follows from the joint convexity of d2Bu and d2He).
18

(c) they are additive, i.e., FQ(ρA ⊗ ρB,HA ⊗ 1 + 1 ⊗ HB) = FQ(ρA,HA)

+ FQ(ρB,HB), with a similar identity for Iskew;
(d) the Fisher information is given by [30, 90]

1

4
FQ(ρ,H) = inf

{|ψi〉,ηi}

{∑

i

ηi〈(�H)2〉ψi

}
, (64)

where the infimum is over all pure state decompositions ρ = ∑
i ηi|ψi〉〈ψi| of ρ;

(e) they obey the bounds19

1

8
FQ(ρ,H) ≤ Iskew(ρ,H) ≤ 1

4
FQ(ρ,H) ≤ 〈(�H)2〉ρ , (65)

17More precisely, the error�t = 〈(test − t)2〉1/2 in the parameter estimation is always larger or equal
to (�t)best and equality is reached asymptotically as N → ∞ by using the maximum-likelihood
estimator and an optimal measurement.
18Actually, if a Riemannian distance d with metric g is such that d2(ρ,σ) is jointly convex, then
gρ(

∑
i piOi,

∑
i piOi) ≤ ∑

i pigρi (Oi,Oi) for any Oi ∈ B(H)0s.a. and any ρ = ∑
piρi. In view of

their expressions (61) and (63) in terms of gBu and gHe, this implies that the Fisher and skew
informations are convex in ρ.
19This follows from (59) and, for the last bound, from (64) and the concavity of ρ �→ 〈(�H)2〉ρ.



Geometric Measures of Quantum Correlations with Bures and Hellinger Distances 131

where 〈(�H)2〉ρ = tr(ρH2) − (tr ρH)2 is the variance of H. The second and
third inequalities are equalities for pure states.

It can be shown that if the system is composed of Np particles, H is the sum of the
same single particle Hamiltonian H1p acting on each particle, and �h is the half
difference between the maximal and minimal eigenvalues of H1p, then FQ(ρ,H) >

4(�h)2Np is a sufficient (but not necessary) condition for particle entanglement [72,
81]. Furthermore, high values ofFQ(ρ,H) imply multipartite entanglement between
a large number of particles [48, 89].

Let us now discuss the link with the hypothesis testing problem. This problem
consists in discriminating two probability measures μ1 and μ2 given the outcomes of
N independent identically distributed random variables with laws given by either μ1

or μ2. In the quantum setting, this is rephrased as a discrimination of two states ρ and
σ givenN independent copies of ρ and σ, by means of measurements on theN copies
either in state ρ⊗N or σ⊗N . One decides among the two alternatives according to the
two possible measurement outcomes. According to the quantum Chernoff bound [6,
65], the probability of error decays exponentially in the limit N → ∞, with a rate
given by a contractive function ξ(ρ,σ), which is equal to gHe(dρ, dρ)/2 for two
infinitesimally close states ρ and σ = ρ + dρ.

4.6 Characterization of All Riemannian Contractive
Distances

In Ref. [70], Petz has determined the general form of all Riemannian contractive dis-
tances on E(H) for finite-dimensional Hilbert spacesH. Such distances are induced
by metrics g satisfying

gM(ρ)

(M(O),M(O)
) ≤ gρ(O,O) , O ∈ B(H)0s.a. , (66)

for any ρ ∈ E(H) and any quantum operation M : B(H) → B(H′). We recall that a
real function f : R+ → R is operator monotone-increasing if for any space dimen-
sion n = dimH < ∞ and any A,B ∈ B(H)+, one has A ≤ B ⇒ f (A) ≤ f (B) (see
e.g. [16]).

Theorem 4 ([70]) Any continuous contractive metric g on E(H) has the form

gρ(O,O) =
n∑

k,l=1

c(pk, pl)|〈k|O|l〉|2 , O ∈ B(H)0s.a. , (67)

where ρ = ∑
k pk|k〉〈k| is a spectral decomposition of ρ,

c(p, q) = pf (q/p) + qf (p/q)

2pqf (p/q)f (q/p)
, (68)
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and f : R+ → R+ is an operator monotone-increasing function satisfying f (x) =
xf (x−1). Conversely, the metric defined by (67) are contractive for any function f
with these properties. TheBures distance is the smallest of all contractiveRiemannian
distances with metrics satisfying the normalization condition gρ(1, 1) = tr(ρ−1)/4.

This theorem is of fundamental importance in geometrical approaches to quantum
information. It relies on the fact that from the classical side, there exists only one
(up to a normalization factor) contractive metric20 on the probability simplex Eclas,
namely the Fisher metric ds2Fisher = ∑n

k=1 dp
2
k/pk [21]. The metric ds2Fisher plays a

crucial role in statistics. It induces the Hellinger distance (46) up to a factor of
one fourth. Therefore, all contractive Riemannian distances on E(H) satisfying the
normalization condition gρ(1, 1) = tr(ρ−1)/4 coincide with the classical Hellinger
distance for commuting density matrices.

It can be shown that the following functions are operator monotone-increasing:

fKM(x) = 4
x − 1

ln x
≤ fHe(x) = (1 + √

x)2 ≤ fBu(x) = 2(x + 1) . (69)

Substituting them into the formula (68), we get

cKM(p, q) = ln p − ln q

4(p − q)
≥ cHe(p, q) = 1

(
√
p + √

q)2
≥ cBu(p, q) = 1

2(p + q)
.

(70)

In view of (58), the last choice fBu gives the Bures metrics and fHe gives the Hellinger
metric.

The first choice in (69) corresponds to the so-called Kubo-Mori (or Bogoliubov)
metric, which is associated to the relative entropy. In fact, an explicit calculation
gives [81]

S(ρ + tρ̇||ρ) = t2

2
(̃gKM)ρ(ρ̇, ρ̇) + O(t3) = S(ρ||ρ + tρ̇) + O(t3) , (71)

where we defined for convenience g̃KM = 4gKM, which satisfies the normalization
condition (̃gKM)ρ(1, 1) = tr(ρ−1). As noted in [7, 8], the Kubo-Mori metric is quite
natural from a physical viewpoint because d̃s2KM = −d2S, where S is the von Neu-
mann entropy (since S is concave, its second derivative is non-positive and defines a
scalar product on B(H)). Actually, one easily deduces from (71) that21

20Here, the contractivity of the classical metrics refers to Markov mappings p �→ Mclasp on Eclas,
with stochastic matrices Mclas having non-negative elements Mclas

ij such that
∑

i Mclas
ij = 1 for

any j = 1, . . . , n.
21The first equality is a consequence of (71) and the identity S(ρ + tρ̇) = S(ρ) − S(ρ + tρ̇||ρ) −
t tr(ρ̇ ln ρ), and the second expression follows from ln(ρ + tρ̇) = ln ρ + t

∫ ∞
0 du (ρ + u)−1ρ̇(ρ +

u)−1 + O(t2).
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(̃gKM)ρ(ρ̇, ρ̇) = −d2S(ρ + tρ̇)

dt2

∣∣∣∣
t=0

= tr ρ̇
d ln(ρ + tρ̇)

dt

∣∣∣∣
t=0

. (72)

Let us consider the exponential mapping ρ ∈ E(H) �→ O ∈ B(H)s.a. defined by

ρ = eO

tr(eO)
⇔ O − F(O) = ln ρ with F(O) = ln(tr eO) . (73)

Note that F(O) − tr ρO = tr ρ(F(O) − O) = S(ρ), hence F is the Legendre trans-
form of the von Neumann entropy. As a result, d2F = d2S + 2 tr dρ dO = d̃s2KM (the
last equality follows from d̃s2KM = −d2S, the last expression of (̃gKM)ρ(ρ̇, ρ̇) in (72),
and tr(dρ) = 0). Hence the metric g̃KM can also be viewed as the Hessian of the
free energy F [7]. A physical interpretation of the Kubo-Mori metric in terms of
information losses in state mixing is as follows: the loss of information when mix-
ing the two states ρt = ρ0 + tρ̇ and ρ−t = ρ0 − tρ̇ with the same weight p = 1/2,
�S = S(ρ0) − S(ρt)/2 + S(ρ−t)/2, equals (t2/2)(̃gKM)ρ0(ρ̇, ρ̇) in the small t limit.
We point out that the explicit expression of the Kubo-Mori distance between two
arbitrary states ρ and σ is unknown, except in the case of a single qubit [7].

4.7 Comparison of the Bures, Hellinger, and Trace Distances

One can find explicit bounds between the Bures, trace, and Hellinger distances show-
ing that these distances define equivalent topologies.

Proposition 9 For any ρ,σ ∈ E(H), one has

dBu(ρ,σ) ≤ dHe(ρ,σ) ≤ √
2 dBu(ρ,σ) (74)

dHe(ρ,σ)2 ≤ d1(ρ,σ) ≤ 2
{
1 −

(
1 − 1

2
dBu(ρ,σ)2

)2} 1
2

. (75)

The last inequality in (75) is saturated for pure states.

The bounds dBu(ρ,σ)2 ≤ d1(ρ,σ) and dHe(ρ,σ)2 ≤ d1(ρ,σ), which are conse-
quences of (74) and (75), have been first proven in theC∗-algebra setting byAraki [4]
and Holevo [42], respectively. An upper bound on d1(ρ,σ) similar to the one in (75)
but with dBu replaced by dHe (which is weaker than the bound in (75) because of (74))
has been also derived by Holevo. Lower and upper bounds on the fidelity F(ρ,σ) in
terms of traces of polynomials in ρ and σ, which are easier to compute than the trace
distance and the fidelity itself, have been derived in [58].

Proof The inequalities in (74) are consequences of the bounds (59) on the Bures and
Hellinger metrics. The first bound in (75) can be obtained as follows [42].We setA =√

ρ − √
σ and B = √

ρ + √
σ and consider the polar decomposition A = U|A| with

the unitaryU = P+ − P−, where P+ and P− = 1 − P+ are the spectral projectors of
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A on [0,∞) and (−∞, 0), respectively. Noting that ρ − σ = (AB + BA)/2, UA =
AU = |A|, and |A|P± = P±|A|, we obtain by using | trUO| ≤ ‖O‖1 that

‖ρ − σ‖1 ≥ trU(ρ − σ) = tr |A|B = tr |A| 1
2 (P+BP+ + P−BP−)|A| 1

2 . (76)

Now −B ≤ A ≤ B, so that

− AP− = −P−AP− ≤ P−BP− , AP+ = P+AP+ ≤ P+BP+ . (77)

Hence the r.h.s. of (76) is bounded from below by tr |A| 1
2A(P+ − P−)|A| 1

2 = tr A2.
This yields ‖ρ − σ‖1 ≥ ‖√ρ − √

σ‖22, that is, d1(ρ,σ) ≥ dHe(ρ,σ)2.
To prove the last bound in (75), we first argue that if ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ|

are pure states, then d1(ρψ,σφ) = 2
√
1 − F(ρψ,σφ), showing that this bound holds

with equality. Actually, let |φ〉 = cos θ|ψ〉 + eiδ sin θ|ψ⊥〉, where θ, δ ∈ [0, 2π) and
|ψ⊥〉 is a unit vector orthogonal to |ψ〉. Since ρψ − σφ has non-vanishing eigenvalues
± sin θ, one has d1(ρψ,σφ) = 2| sin θ|. But F(ρψ,σφ) = cos2 θ, hence the aforemen-
tioned statement is true. It then follows from Theorem 2 and from the contractivity
of the trace distance under partial traces that for arbitrary ρ and σ ∈ E(H),

d1(ρ,σ) ≤ 2
√
1 − F(ρ,σ) . (78)

This concludes the proof. �

4.8 Relations with the Quantum Relative Rényi Entropies

The Rényi entropies Sα(ρ) = (1 − α)−1 ln tr(ρα) depending on a parameter α > 0
are generalizations of the von Neumann entropy S(ρ). For indeed, Sα(ρ) converges to
S(ρ) when α → 1. Moreover, Sα(ρ) is a non-increasing function of α. Similarly, the
relative Rényi entropies generalize the relative entropy S(ρ||σ) = tr[ρ(ln ρ − ln σ)].
Different definitions have been proposed in the literature. The “sandwiched” relative
entropies studied in [62, 98] seem to have the nicer properties. A family of relative
Rényi entropies depending on two parameters (α, z), which includes the sandwiched
entropies (obtained for z = α) as special cases, has been introduced in the context
of fluctuation relations in quantum statistical physics [14, 49] and was later on
studied from a quantum information perspective [5]. These entropies are defined
when ker σ ⊂ ker ρ by

Sα,z(ρ||σ) = − 1

2(1 − α)
lnFα,z(ρ||σ) , Fα,z(ρ||σ) =

(
tr
[(

σ
1−α
2z ρ

α
z σ

1−α
2z

)z])2
. (79)
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Takingα = z → 1, one recovers the vonNeumann relative entropy S(ρ||σ) [62]. The
max-entropy is obtained in the limit α = z → ∞ [62]. For commuting matrices ρ
and σ with eigenvalues p and q, Sα,z(ρ||σ) reduces to the classical Rényi divergence
Sclasα (p||q) = (α − 1)−1 ln(

∑
k p

α
k q

1−α
k ).

It is known that Sα,z(ρ||σ) is contractive and jointly convex when α ∈ (0, 1]
and z ≥ max{α, 1 − α} (see [5] and references therein) and is contractive when
α = z ≥ 1/2 (see [81] and references therein). For those values of (α, z), it is
easy to show22 that Sα,z(ρ||σ) ≥ 0 with equality if and only if ρ = σ. Further-
more, the following monotonicity properties hold: for any ρ,σ ∈ E(H), Sα,α(ρ||σ)

is non-decreasing in α on (0,∞) [62] and for any fixed α ∈ (0, 1), Sα,z(ρ||σ) is
non-decreasing in z on (0,∞) (this follows from the Lieb–Thirring–Araki trace
inequality).

We observe that the Bures andHellinger distances are functions of the generalized
Rényi relative entropies Sα,z for (α, z) = (1/2, 1/2) and (1/2, 1), respectively. In
fact,

dBu(ρ,σ)2 = 2 − 2 exp
{

− 1

2
S1/2,1/2(ρ||σ)

}
,

dHe(ρ,σ)2 = 2 − 2 exp
{

− 1

2
S1/2,1(ρ||σ)

}
. (80)

Thus, Sα,z connects monotonously and continuously to each other the von Neumann
relative entropy S, the Bures distance dBu, and the Hellinger distance dHe.

5 Bures Geometric Discord

In this section we study the Bures geometric discord, obtained by choosing the Bures
distance d = dBu in (19),

DG
Bu(ρ)=dBu(ρ, CA)2 = 2(1 − √

F(ρ, CA)) , F(ρ, CA) = max
σA−cl∈CA

F(ρ,σA−cl) ,

(81)
where F is the fidelity (17). Hereafter, we omit the lower subscript A on all discords,
as we will always take A as the reference subsystem. Instead, the chosen distance is
indicated as a lower subscript. The main result of this section is Theorem 5 below,
which shows that the determination of DG

Bu(ρ) and of the closest A-classical state(s)
to ρ are related to a minimal-error quantum state discrimination problem.

22This follows from the contractivity of Sα,z(ρ||σ) applied to a measurement with rank-one pro-
jectors {|k〉〈k|} and the fact that Sclasα (p||q) ≥ 0 with equality if and only if p = q. The property is
actually true for any α = z > 0 (see e.g. [81]) and, probably, for other values of (α, z).
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5.1 The Case of Pure States

Let us first restrict our attention to pure states ρ� = |�〉〈�|, for which a simple
formula for the geometric discord in terms of the Schmidt coefficients μi of |�〉
can be obtained. We recall that any pure state |�〉 ∈ HA ⊗ HB admits a Schmidt
decomposition

|�〉 =
n∑

i=1

√
μi|ϕi〉 ⊗ |χi〉 , (82)

where {|ϕi〉}nAi=1 (respectively {|χj〉}nBj=1) is an orthonormal basis ofHA (HB) and n =
min{nA, nB}. The basis {|ϕi〉} (respectively {|χj〉}) and Schmidt coefficients μi ≥ 0
are the eigenbasis and eigenvalues of the reduced state [ρ�]A (respectively [ρ�]B).

Let us show that DG
Bu(|�〉) is equal to the geometric entanglement EG

Bu(|�〉). In
order to calculate the latter, we write the decomposition of separable states into pure
product states, σsep = ∑

m qm|φm
A ⊗ φm

B 〉〈φm
A ⊗ φm

B | and use the expression (43) of the
fidelity and

∑
m qm = 1 to get

F(ρ�,SAB) ≡ max
σsep∈SAB

F(ρ�,σsep) = max
{|φm

A 〉,|φm
B 〉,qm}

{∑

m

qm|〈φm
A ⊗ φm

B |�〉|2
}

= max
‖φA‖=‖φB‖=1

{|〈φA ⊗ φB|�〉|2} . (83)

For any fixed normalized vectors |φA〉 ∈ HA and |φB〉 ∈ HB, one deduces from (82)
and the Cauchy–Schwarz inequality that

|〈φA ⊗ φB|�〉| ≤ √
μmax

n∑

i=1

∣∣〈φA|ϕi〉〈φB|χi〉
∣∣

≤ √
μmax

( n∑

i=1

|〈φA|ϕi〉|2
)1/2( n∑

j=1

|〈φB|χj〉|2
)1/2

≤ √
μmax , (84)

where μmax = maxi μi is the largest Schmidt eigenvalue. All bounds are saturated by
taking |φA〉 and |φB〉 equal respectively to the eigenvectors |ϕmax〉 and |χmax〉 of [ρ�]A
and [ρ� ]Bwithmaximal eigenvalueμmax. ThusF(ρ�,SAB) = μmax. Furthermore, the
pure product state |ϕmax〉|χmax〉 is a closest separable state to |�〉. Now, a product state
is also an A-classical state. Since dBu(|�〉, CA) ≥ dBu(|�〉,SAB) (because CA ⊂ SAB,
see Fig. 1), |ϕmax〉|χmax〉 is also a closest A-classical state to |�〉 and DG

Bu(ρ�) =
EG
Bu(ρ�), as claimed above.

Proposition 10 ([82]) The Bures geometric discord is given for pure states |�〉 ∈
HAB by

DG
Bu(|�〉) = EG

Bu(|�〉) = 2(1 − √
μmax) . (85)
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(1) If the maximal Schmidt eigenvalue μmax is non-degenerate, then the closest A-
classical (respectively classical, separable) state to ρ� for the Bures distance is
unique and given by the pure product state |ϕmax〉|χmax〉.

(2) If μmax is r-fold degenerate, say μmax = μ1 = · · · = μr > μr+1, . . . ,μn, then ρ
has infinitely many closest A-classical (respectively classical, separable) states.
These closest states are convex combinations of the pure product states |ϕ̂l〉|χ̂l〉,
with

|ϕ̂l〉 =
r∑

i=1

uil|ϕi〉 , |χ̂l〉 =
r∑

i=1

uil|χi〉 , l = 1, . . . , r , (86)

where {|ϕi〉}ri=1 and {|χi〉}ri=1 are some fixed orthonormal families of eigenvectors
of [ρ�]A and [ρ�]B with eigenvalue μmax and (uil)ri,l=1 is an arbitrary r × r
unitary matrix.

The relation (85) is analogous to the equality between the entropic discord and
the entanglement of formation for pure states (Sect. 2.1). It comes here from the
existence of a pure product state which is closer or at the same distance from the
pure state |�〉 than any other separable state. This property is a special feature of the
Bures distance.

We refer the reader to Refs. [81, 82] for a proof of statements (1) and (2). It
should be noticed that when μmax is degenerate, the vectors (86) provide together
with |ϕi〉, |χi〉, i = r + 1, . . . , n, a Schmidt decomposition of |�〉 (in that case this
decomposition is not unique). Conversely, disregarding degeneracies among the other
eigenvalues μi < μmax, all Schmidt decompositions of |�〉 are of this form for some
unitarymatrix (uil)ri,l=1. Thus, the existence of an infinite family of closestA-classical
states to |�〉 is related to the non-uniqueness of the Schmidt vectors associated to
μmax. This shows in particular that the maximally entangled pure states (for which
μmax is n-fold degenerate) are the pure stateswith the largest family of closest states.23

The properties of the Bures geometric entanglement EG
Bu have been investi-

gated in [85, 94, 96]. We have already argued above that EG
Bu is an entanglement

monotone (Sect. 3.2). Hence, in view of (85), the geometric discord DG
Bu fulfills

axiom (iv) of Definition 1 and is thus a bona fide measure of quantum correla-
tions (recall that axioms (i–iii) hold for any contractive distance). One can deduce
from theUhlmann theorem (Theorem 2) and the one-to-one correspondence between
purifications and pure state decompositions of a state ρ that F(ρ,SAB) is equal
to max

∑
i ηiF(|�i〉,SAB), the maximum being over all pure state decompositions

ρ = ∑
i ηi|�i〉〈�i| of ρ (convex roof) [85].

23This family forms a (n2 + n − 2) real-parameter submanifold of E(HAB).
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5.2 Link with Quantum State Discrimination

As for all other measures of quantum correlations, determining DG
Bu(ρ) is harder

for mixed states ρ than for pure states. Interestingly, this problem is related to an
ambiguous quantum state discrimination task.

The objective of quantum state discrimination is to distinguish states taken ran-
domly from a known ensemble of states [15, 40, 81]. If these states are not orthogo-
nal, any measurement devised to distinguish them cannot succeed to identify exactly
which state from the ensemble has been chosen. The quantum state discrimina-
tion problem is to find the optimal measurement leading to the smallest probability
of equivocation. More precisely, a receiver is given a state ρi ∈ E(H) drawn from a
known ensemble {ρi, ηi}nAi=1 with a prior probability ηi. In order to determine which
state he has received, he performs a measurement given by a POVM {Mi} and con-
cludes that the state is ρj when he gets themeasurement outcome j. The probability of
this outcome given that the state is ρi is pj|i = trMjρi. In the ambiguous (or minimal-
error) strategy, the number of measurement outcomes is chosen to be equal to the
number of states in the ensemble {ρi, ηi}. The maximal success probability of the
receiver reads

P opt
S ({ρi, ηi}) = max

POVM {Mi}

nA∑

i=1

ηi trMiρi . (87)

If the ρi span H and are linearly independent, in the sense that their eigenvectors
|ξij〉 with nonzero eigenvalues form a linearly independent family {|ξij〉}j=1,...,nB

i=1,...,nA of
vectors inH, it is known that the optimal POVM is a vonNeumannmeasurementwith
projectors of rank ri = rank(ρi) [28]. In that case, the maximal success probability
P opt
S ({ρi, ηi}) is equal to

P opt v.N.

S ({ρi, ηi}) = max{�i}

nA∑

i=1

ηi tr�iρi , (88)

the maximum being over all projective measurements with projectors �i of rank ri.

Theorem 5 ([82]) For any state ρ of the bipartite system AB, the largest fidelity
between ρ and an A-classical state reads

F(ρ, CA) = max{|αi〉}
P opt v.N.

S ({ρi, ηi}) , (89)

where the maximum is over all orthonormal bases {|αi〉}nAi=1 of HA and
P opt v.N.

S ({ρi, ηi}) is the maximal success probability in discriminating the states ρi
by von Neumann measurements on AB with projectors of rank nB. Here, the states ρi
and probabilities ηi depend on {|αi〉}nAi=1 and are given by

ηi = 〈αi|ρA|αi〉 , ρi = η−1
i

√
ρ|αi〉〈αi| ⊗ 1

√
ρ , i = 1, . . . , nA . (90)
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Furthermore, the closest A-classical states to ρ are given by

σBu,ρ = 1

F(ρ, CA)
nA∑

i=1

|αopt
i 〉〈αopt

i | ⊗ 〈αopt
i |√ρ �

opt
i

√
ρ|αopt

i 〉 , (91)

where {|αopt
i 〉} is an orthonormal basis ofHA maximizing the r.h.s. of (89) and {�opt

i }
is an optimal measurement with projectors of rank nB maximizing the success prob-
ability in (88).

We postpone the proof of this theorem to Sect. 5.5 and proceed with a few com-
ments and consequences of the theorem. Firstly, the ρi are quantum states because
ρi ≥ 0 and ηi is chosen such that tr ρi = 1 (if ηi = 0 then ρi is not defined but
does not contribute to the sum in (88)). Secondly, the ηi are the outcome prob-
abilities of a measurement on A with rank-one projectors �A

i = |αi〉〈αi|, see (3).
Denoting by ρAB|i = η−1

i �A
i ⊗ 1ρ�A

i ⊗ 1 the corresponding conditional states of
AB and by M�

A the associated quantum operation on A, see (6), we remark that
ρi = RM�

A ,ρ(ρAB|i) is the image of ρAB|i under the Petz transpose operation RM�
A ,ρ,

that is, the approximate reversal operation ofM�
A ⊗ 1 with respect to ρ (see [81] for

more detail). Now,M�
A ⊗ 1(ρ) = ∑

i ηiρAB|i and, by definition of the transpose oper-
ation,RM�

A ,ρ ◦ M�
A ⊗ 1(ρ) = ρ. Thus ρ = ∑

i ηiρi, so that the ensemble {ρi, ηi}nAi=1
gives a convex decomposition ofρ (this can also be checked directly on (90)).Another
notable property of this ensemble is that the least square measurement24 associated
to it, defined by the POVM {M lsm

i } with

M lsm
i = ηiρ

−1/2ρiρ
−1/2 , i = 1, . . . , nA , (92)

coincides with {|αi〉〈αi| ⊗ 1}.
Corollary 1 If ρ is invertible then one can substitute P opt v.N.

S ({ρi, ηi}) in (89) by the
maximal success probability Popt

S ({ρi, ηi}) over all POVMs, given by (87).

Proof If ρ > 0 then the states ρi defined in (90) are linearly independent, thus the
optimal measurement to discriminate them is a von Neumann measurement with
projectors of rank ri = rank(ρi) (see above). The linear independence can be justified
as follows. Let us first notice that ρi has rank ri = nB (for indeed, it has the same
rank as ηiρ

−1/2ρi = |αi〉〈αi| ⊗ 1
√

ρ). A necessary and sufficient condition for |ξij〉
to be an eigenvector of ρi with eigenvalue λij > 0 is |ξij〉 = (λijηi)

−1√ρ|αi〉 ⊗ |ζij〉,
where |ζij〉 ∈ HB is an eigenvector of Ri = 〈αi|ρ|αi〉 with eigenvalue λijηi > 0. For
any i, the Hermitian invertible matrix Ri admits an orthonormal eigenbasis {|ζij〉}nBj=1.

24This measurement bears several other names: it is referred to as the “pretty good measurement”
in [38] and is sometimes also called “square-root measurement” [29]. For a pure state ensemble

{|ψi〉, ηi}, it is given by {M lsm
i = |̃μi〉〈̃μi|} and the vectors |̃μi〉 = √

ηi(
∑

j ηj|ψj〉〈ψj|)− 1
2 |ψi〉 are

such that they minimize the sum of the square norms ‖|̃μi〉 − √
ηi|ψi〉‖2 under the constraint that

{M lsm
i } is a POVM, i.e.,

∑
i |̃μi〉〈̃μi| = 1 [43].
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Thanks to the invertibility of
√

ρ, {|ξij〉}j=1,...,nB
i=1,...,nA is a basis of HAB and thus the states

ρi are linearly independent and spanHAB. �

5.3 Quantum Correlations and Distinguishability
of Quantum States

We give in this subsection a physical interpretation of Theorem 5. We start by dis-
cussing the state discrimination problem in the special cases where ρ is either pure or
A-classical. Of course, the values of DG

Bu(ρ) are already known in these cases (they
are given by (85) and by DG

Bu(ρ) = 0, respectively), but it is instructive to recover
that from Theorem 5.

(a) If ρ = ρ� is pure then all states ρi with ηi > 0 are identical and equal to ρ� ,
so that P opt v.N.

S = max{�i}{
∑

i ηi〈�|�i|�〉} = ηmax. One gets F(ρ�, CA) = μmax by
optimization over the basis {|αi〉}.

(b) If ρ is an A-classical state, i.e., if it can be decomposed as in (9), then the
optimal basis {|αopt

i 〉} coincides with the basis appearing in this decomposition. With
this choice one obtains ηi = qi and ρi = |αi〉〈αi| ⊗ ρB|i for all i such that qi > 0. The
statesρi are orthogonal and can thus be perfectly discriminated by vonNeumannmea-
surements. This yields F(ρ, CA) = 1 andDG

Bu(ρ) = 0 as it should be. Reciprocally, if
F(ρ, CA) = 1 then P opt v.N.

S ({ρi, ηi}) = 1 for some basis {|αi〉} and the corresponding
ρi must be orthogonal. Hence one can find an orthonormal family {�i} of projectors
with rank nB such that ρi = �iρi�i for any iwith ηi > 0. It is an easy exercise to show
that this implies that �i = |αi〉〈αi| ⊗ 1 if ρ|�iHAB is invertible. Thus ρ = ∑

i ηiρi is
A-classical, in agreement with axiom (i).

These special cases help us to interpret Theorem 5 in the following way. The
discordant states ρ are characterized by ensembles {ρi, ηi} of non-orthogonal states,
which are thereby not perfectly distinguishable for any orthonormal basis {|αi〉} of
the reference system.25 This means that the transpose operation RM�

A ,ρ transforms
the ensemble of orthogonal states {ρAB|i, ηi} into a non-orthogonal ensemble {ρi, ηi}.
Furthermore, the less distinguishable are the ρi for the optimal basis {|αopt

i 〉}, the
most distant is ρ from the set of A-classical states, i.e., the most quantum-correlated
is the state ρ.

The states ρ for which the discrimination of the ensemble {ρopti , η
opt
i } is the most

difficult are the maximally entangled states. Actually, with the help of Theorem 5
one can show (see [81, 82]) that DG

Bu satisfies axiom (v) of Sect. 2.3, as already
anticipated in Proposition 2. More precisely, one has

25Note that the entropic discord can also be interpreted in terms of state distinguishability, but
for states of subsystem B. Actually, the measure of classical correlations JB|A(ρ) is the maximum
over all orthonormal bases {|αi〉} of the Holevo quantity χ({ρB|i, ηi}) (see (4) and the footnote
after this equation). The latter is related to the problem of decoding a message encoded in the
post-measurement states ρAB|i when one has access to subsystem B only.
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Corollary 2 If nA ≤ nB then the maximal value of DG
Bu(ρ) is equal to DG

max = 2(1 −
1/

√
nA) and DG

Bu(ρ) = DG
max if and only if ρ is a maximally entangled state.

Proof of the value of DG
max One deduces from (85) and the bound μmax ≥ 1/n (which

follows from
∑n

i=1 μi = 1) that for any pure state |�〉 ∈ HAB,

DG
Bu(|�〉) ≤ 2

(
1 − 1√

n

)
, n = min{nA, nB} . (93)

The inequality is saturated when μi = 1/n for any i, i.e., for the maximally entangled
states. Assuming that nA ≤ nB, since a measure of quantum correlations is maximal
for pure maximally entangled states (Sect. 2.3), one hasDG

Bu(ρ) ≤ DG
max for any state

ρ ∈ E(HAB). �
It is worth mentioning that finding the optimal measurement and success proba-

bility for discriminating an ensemble of nA > 2 states is highly non-trivial and is still
an open problem, even though it has been solved for particular ensembles.26 How-
ever, the Helstrom formula [40] provides a celebrated solution for any ensemble with
nA = 2 states. Thus, as we shall see in the next subsection, Theorem 5 can be used to
compute DG

Bu(ρ) when the reference subsystem A is a qubit. Despite our belief that
this should not be hopeless, we have not succeeded so far to solve the discrimination
problem for the ensemble given in (90) when nA > 2.

5.4 Computability for Qubit-Qudit Systems

If subsystem A is a qubit then the ensemble {ρi, ηi} in Theorem 5 contains only
nA = 2 states and the optimal probability and measurement to discriminate the ρi are
easy to determine. One starts by writing the projector�1 as 1 − �0 in the expression
of the success probability,

P{�i}
S ({ρi, ηi}) = η0 tr�0ρ0 + η1 tr�1ρ1 = 1

2

(
1 − tr�

) + tr�0� (94)

with � = η0ρ0 − η1ρ1. The maximum of tr�0� over all projectors �0 of rank nB
is achieved when �0 projects onto (the direct sum of) the eigenspaces associated to
the nB highest eigenvalues λ1 ≥ · · · ≥ λnB of the Hermitian matrix �. The maximal
success probability is thus given by a variant of Helstrom’s formula [40],

P opt v.N.

S ({ρi, ηi}) = 1

2

(
1 − tr�

) +
nB∑

l=1

λl . (95)

26In particular, if the states ρi = Ui−1ρ1(Ui−1)† are related between themselves through conjuga-
tions by powers of a single unitary operator U satisfying Um = ±1, one can show that the least
square measurement is optimal [9, 10, 23, 29].
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For the states ρi associated to the orthonormal basis {|αi〉}1i=0 ofC
2 via formula (90),

one has � = √
ρ (|α0〉〈α0| − |α1〉〈α1|) ⊗ 1

√
ρ. The operator inside the parenthesis

is equal to σ�u = �u · �σ for some unit vector �u ∈ R
3 depending on {|αi〉} (here �σ is the

vector formed by the three Pauli matrices). Conversely, one can associate to any unit
vector �u ∈ R

3 the eigenbasis {|αi〉}1i=0 of σ�u. Thus, according to Theorem 5, F(ρ, CA)
is obtained by maximizing the r.h.s. of (95) over all Hermitian matrices

�(�u) = √
ρ σ�u ⊗ 1

√
ρ (96)

with �u ∈ R
3, ‖�u‖ = 1. One can show [81] that�(�u) has at most nB positive eigenval-

uesλl(�u) > 0 and atmost nB negative eigenvaluesλl(�u) < 0, countingmultiplicities.
This yields to the following formula, which shows that the computation of DG

Bu(ρ)

for qubit-qudit states reduces to an optimization problem of a trace norm.

Corollary 3 ([81]) If A is a qubit (nA = 2) and B is an arbitrary system with a nB-
dimensional Hilbert space (qudit), the fidelity between ρ and the set of A-classical
states is given by

F(ρ, CA) = 1

2
max
‖�u‖=1

{
1 + ‖�(�u)‖1

}
, (97)

where �(�u) is the 2nB × 2nB matrix defined in (96).

One can also conclude from the arguments above that the closest A-classical
state(s) to ρ is (are) given by (91) where �

opt
0 is a spectral projector associated

to the nB largest eigenvalues of �(�u opt) and �u opt ∈ R
3 is a unit vector achieving

the maximum in (97). Using Corollary 3, an analytical expression for DG
Bu(ρ) can be

derived for Bell-diagonal two-qubit states ρ, and the closest A-classical states to such
Bell-diagonal states can be determined explicitly [83]. The same result for DG

Bu(ρ)

has been found independently in Ref. [1] by another method. Analytical expressions
for the geometric total and classical correlations IGAB(ρ) and CG

A (ρ) for Bell-diagonal
two-qubit states ρ have been obtained in Ref. [18].

The properties of the Bures geometric discord established in this section are sum-
marized in the second column of Table1.

5.5 Proof of Theorem 5

To establish Theorem 5, we rely on a slightly more general statement summarized
in the following lemma.

Lemma 1 For a fixed family {σA|i}ni=1 of states σA|i ∈ E(HA) having orthogonal
supports and spanning HA, with 1 ≤ n ≤ nA, let us define
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Table 1 Properties of the geometric discords with the Bures, Hellinger, trace, and Hilbert–Schmidt
distances. Here nA is the Hilbert space dimension of the reference subsystem A, μmax = max{μi} is
the maximal Schmidt coefficient, and K = (

∑
i μ

2
i )

−1 is the Schmidt number of a pure state. The
question marks “?” indicate unsolved problems. The results quoted in this table have been obtained
in Refs. [1, 24, 25, 78, 82, 83]. The table is taken from [78]

Distance Geometric discord DG

Bures Hellinger Trace Hilbert Schmidt

Bona fide
measure of
quantum
correlations

� � Proved for nA = 2 No

Satisfies axiom
(v)

� Proved for
nA = 2, 3

Proved for nA = 2

Maximal value
if nA ≤ nB

2 − 2/
√
nA 2 − 2/

√
nA 1 for nA = 2

Value for pure
states

2 − 2
√

μmax 2 − 2K− 1
2 ? 1 − K−1

Relations and
cross
inequalities

2 − 2
√
1 − DG

He(ρ)/2 ≤ DG
Bu(ρ) ≤ DG

He(ρ) = 2 − 2
√
1 − DG

HS(
√

ρ)

Computability
for two qubits

Bell-diagonal
states

All states

{
X-states

B-classical states
All states

CA({σA|i}) =
{
σ =

n∑

i=1

qiσA|i ⊗ σB|i ; {qi,σB|i}ni=1 is a state ensemble onHB

}
.

(98)
Then

F
(
ρ, CA({σA|i})

) ≡ max
σ∈CA({σA|i})

{
F(ρ,σ)

} = max
U

{ n∑

i=1

‖Wi(U)‖22
}

, (99)

where the last maximum is over all unitaries U onHAB, ‖ · ‖2 is the Hilbert–Schmidt
norm, and

Wi(U) = trA
(√

σA|i ⊗ 1
√

ρU
)

. (100)

Moreover, there exists a unitary Uopt achieving the maximum in (99) which satisfies
Wi(Uopt) ≥ 0. The states σopt satisfying F(ρ,σopt) = F(ρ, CA({σA|i})) are given in
terms of this unitary by

σopt = 1

F(ρ, CA({σA|i}))
n∑

i=1

σA|i ⊗ Wi(Uopt)
2 . (101)

Proof Using the spectral decompositions of the states σB|i, any σ ∈ CA({σA|i}) can
be written as
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σ =
n∑

i=1

nB∑

j=1

qijσA|i ⊗ |βj|i〉〈βj|i| with qij ≥ 0 ,
∑

ij

qij = 1 , (102)

where {|βj|i〉}nBj=1 is an orthonormal basis ofHB for any i. By assumption, if i �= i′ then
ran σA|i ⊥ ran σA|i′ , so that

√
σ = ∑

i,j
√
qij

√
σA|i ⊗ |βj|i〉〈βj|i|.We start by evaluating

the trace norm in the definition (17) of the fidelity by means of the formula ‖O‖1 =
maxU | trUO| to obtain

F
(
ρ, CA({σA|i})

) = max
σ∈CA({σA|i})

max
U

{∣∣trU†√ρ
√

σ
∣∣2

}

= max
U

{
max

{qij},{|βj|i〉}

∣∣∣∣
∑

i,j

√
qij〈βj|i|Wi(U)†|βj|i〉

∣∣∣∣
2}

. (103)

The squaremodulus can be bounded by invoking twice theCauchy–Schwarz inequal-
ity and

∑
ij qij = 1,

∣∣∣∣
∑

i,j

√
qij〈βj|i|Wi(U)†|βj|i〉

∣∣∣∣
2

≤
∑

i,j

∣∣〈βj|i|Wi(U)†|βj|i〉
∣∣2

≤
∑

i,j

∥∥Wi(U)|βj|i〉
∥∥2 =

∑

i

‖Wi(U)‖22 . (104)

The foregoing inequalities are equalities if the following conditions are satisfied:

(1) Wi(U) = Wi(U)† ≥ 0;
(2) qij = 〈βj|i|Wi(U)|βj|i〉2/(∑i,j〈βj|i|Wi(U)|βj|i〉2);
(3) {|βj|i〉}nBj=1 is an eigenbasis of Wi(U) for any i.

Therefore, (99) holds true provided that there is a unitaryU onHAB satisfying (1). For
a givenU, let us defineUopt = U

∑
i �

A
i ⊗ V †

i , where�A
i is the projector onto ran σA|i

andVi is a unitary onHB such thatWi(U) = |Wi(U)†|Vi (polar decomposition). Then
Uopt is unitary since by hypothesis �A

i �
A
i′ = δii′�

A
i and

∑
i �

A
i = 1. Furthermore,

one readily shows that Wi(Uopt) = Wi(Uopt)
† = |Wi(U)†| ≥ 0. As

∑
i ‖Wi(U)‖22 =∑

i ‖Wi(Uopt)‖22, the identity (99) follows from (103) and (104). From condition
(3) one has Wi(Uopt)|βopt

j|i 〉 = wji|βopt
j|i 〉 with ∑

i,j w
2
ji = F(ρ, CA({σA|i})), see (104).

Condition (2) entails

∑

j

qoptij |βopt
j|i 〉〈βopt

j|i | = Wi(Uopt)
2

F(ρ, CA({σA|i})) , (105)

which together with (102) leads to (101). �

Proof of Theorem 5. Let {|αi〉}nAi=1 be an orthonormal basis ofHA. Applying Lemma 1
with σA|i = |αi〉〈αi| one gets
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F
(
ρ, CA({|αi〉})

) = max
U

{
nA∑

i=1

trU|αi〉〈αi| ⊗ 1U†√ρ |αi〉〈αi| ⊗ 1
√

ρ

}
,

= max{�i}

{
nA∑

i=1

tr�i
√

ρ|αi〉〈αi| ⊗ 1
√

ρ

}
= P opt v.N.

S ({ρi, ηi}) .

(106)

The last maximum is over all orthonormal families {�i}nAi=1 of projectors of rank
nB and the success probability P opt v.N.

S ({ρi, ηi}) is given by (88). Since the fidelity
F(ρ, CA) is the maximum of F(ρ, CA({|αi〉})) over all bases {|αi〉}, this leads to (89)
and (91). �

6 Hellinger Geometric Discord

In this section we study the geometric discord for the Hellinger distance, given by
(see (16) and (19))

DG
He(ρ) = 2 − 2 max

σA−cl∈CA

tr
√

ρ
√

σA−cl . (107)

6.1 Values for Pure States, General Expression, and Closest
A-Classical States

Theorem 6 ([78])

(a) If |�〉 ∈ HAB is a pure state, then

DG
He(|�〉) = 2 − 2K(|�〉)− 1

2 , (108)

where K(|�〉) = (
∑

i μ
2
i )

−1 is the Schmidt number of |�〉. Furthermore, the
closest A-classical state to |�〉 for the Hellinger distance is the classical state

σHe,� = K(|�〉)
n∑

i=1

μ2
i |ϕi〉〈ϕi| ⊗ |χi〉〈χi| , (109)

where |ϕi〉 and |χi〉 are the eigenvectors of [ρ�]A and [ρ�]B in the Schmidt
decomposition (82).

(b) If ρ is a mixed state, then
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DG
He(ρ) = 2 − 2max{|αi〉}

{ nA∑

i=1

trB[〈αi|√ρ|αi〉2]
} 1

2

= 2 − 2max{|αi〉}

√
Plsm
S ({ρi, ηi}) ,

(110)
where the maximum is over all orthonormal bases {|αi〉} for A and Plsm

S ({ρi, ηi})
is the success probability in discriminating the ensemble {ρi, ηi} defined in (90)
by the least–square measurement. Let the maxima in (110) be reached for the
basis {|αopt

i 〉}. Then the closest A-classical state(s) to ρ for the Hellinger distance
is (are)

σHe,ρ =
(
1 − DG

He(ρ)

2

)−2 nA∑

i=1

|αopt
i 〉〈αopt

i | ⊗ 〈αopt
i |√ρ|αopt

i 〉2 . (111)

As the Schmidt number K(|�〉) is an entanglement monotone, one infers from
(a) that DG

He satisfies Axiom (iv) of Definition 1 and is thus a bona fide measure of
quantum correlations, as claimed in Proposition 2. Moreover, if nA ≤ nB then DG

He
has the same maximal value DG

max = 2 − 2/
√
nA as the Bures geometric discord (in

fact, DG
He(ρ) is maximum for maximally entangled pure states which have Schmidt

numbers equal to nA).

Proof Let us first prove part (b) of the theorem. By using the spectral decompositions
of the states ρB|i in (9), any A-classical state can be written as

σA−cl =
nA∑

i=1

nB∑

j=1

qij|αi〉〈αi| ⊗ |βj|i〉〈βj|i| , (112)

where {qij} is a probability distribution, {|αi〉}nAi=1 is an orthonormal basis for A and,
for any i, {|βj|i〉}nBj=1 is an orthonormal basis for B (note that the |βj|i〉 need not be
orthogonal for distinct i’s). The square root of σA−cl is obtained by replacing qij by√
qij in the r.h.s. of (112). Hence, in the same way as in the proof of Sect. 5.5,

tr
√

ρ
√

σA−cl =
∑

i,j

√
qij〈αi ⊗ βj|i|√ρ|αi ⊗ βj|i〉 ≤

(∑

i,j

〈αi ⊗ βj|i|√ρ|αi ⊗ βj|i〉2
) 1

2

. (113)

The last bound follows from the Cauchy–Schwarz inequality and the identity∑
i,j qij = 1. It is saturated when

qij = 〈αi ⊗ βj|i|√ρ|αi ⊗ βj|i〉2∑
i,j〈αi ⊗ βj|i|√ρ|αi ⊗ βj|i〉2 . (114)

Therefore,

max{qij}
tr

√
ρ
√

σA−cl =
(∑

i,j

〈βj|i|Bi|βj|i〉2
) 1

2

(115)
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with Bi = 〈αi|√ρ|αi〉 ∈ B(HB)s.a.. Now, for any fixed i, one has

∑

j

〈βj|i|Bi|βj|i〉2 ≤ tr[B2
i ] . (116)

This inequality is saturated when {|βj|i〉} is an eigenbasis of Bi. Since maximizing
over all A-classical states in (107) amounts to maximize over all {qij}, {|αi〉}, and
{|βj|i〉}, this gives

(
1 − DG

He(ρ)

2

)2

= max{|αi〉}

nA∑

i=1

trB
[〈αi|√ρ|αi〉2

]
. (117)

It has been observed in Sect. 5.2 that the least square measurement for the ensemble
{ρi, ηi} defined in Theorem 5 is the projective measurement {|αi〉〈αi| ⊗ 1}nAi=1. Thus

Plsm
S ({ρi, ηi}) =

nA∑

i=1

ηi tr ρi|αi〉〈αi| ⊗ 1 =
nA∑

i=1

trB〈αi|√ρ|αi〉2 . (118)

Equation (110) follows from (117) and (118). The closest A-classical state is given
by (112) in which |αi〉 = |αopt

i 〉 are the vectors realizing the maximum in (117),
|βj|i〉 = |βopt

j|i 〉 are the eigenvectors of Bopt
i = 〈αopt

i |√ρ|αopt
i 〉, and (see (114)):

qij = 〈βopt
j|i |(Bopt

i )2|βopt
j|i 〉

∑
i tr(B

opt
i )2

. (119)

The expression (111) readily follows.
We now establish part (a) of the theorem. Let ρ = |�〉〈�| be a pure state with

reduced state ρA = trB |�〉〈�|. Then Bi = |βi〉〈βi|, where |βi〉 = 〈αi|�〉 has square
norm ‖βi‖2 = 〈αi|ρA|αi〉. Thus (117) yields

(
1 − DG

He(|�〉)
2

)2

= max{|αi〉}

nA∑

i=1

〈αi|ρA|αi〉2 . (120)

In analogy with (116), the sum in the r.h.s. is bounded from above by tr ρ2A =
K(|�〉)−1, the bound being saturated when {|αi〉} is an eigenbasis of ρA. This leads
to (108). The closest A-classical state to |�〉 is given by (111) with |αopt

i 〉 = |ϕi〉,
which gives (109). �
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6.2 Link with the Hilbert–Schmidt Geometric Discord

In view of the definition dHe(ρ,σ) = d2(
√

ρ,
√

σ) of the Hellinger distance, it should
not come as a surprise thatDG

He(ρ) is related to theHilbert–Schmidt geometric discord
DG

HS(
√

ρ) of the square root of ρ.

Proposition 11 ([78]) For any ρ ∈ E(HAB), one has

DG
He(ρ) = 2 − 2

(
1 − DG

HS(
√

ρ)
) 1

2 . (121)

Note that the Hilbert–Schmidt geometric discord is evaluated for the square
root of ρ, which is not a state but is nevertheless a non-negative operator. Thus
σ = √

ρ / tr
√

ρ is a density operator and DG
HS(

√
ρ) is defined as DG

HS(
√

ρ) ≡
(tr

√
ρ)2DG

HS(σ).

Proof The following expression of DG
HS(ρ) has been found by Luo and Fu [55]:

DG
HS(ρ) = tr ρ2 − max{|αi〉}

nA∑

i=1

trB〈αi|ρ|αi〉2 = min{|αi〉}

nA∑

i �=j

trB |〈αi|ρ|αj〉|2 . (122)

For completeness, let us give a simple derivation of (122). By definition,

DG
HS(ρ) = min

σA−cl∈CA

‖ρ − σA−cl‖22 = tr ρ2 + min
σA−cl∈CA

tr(σ2
A−cl − 2ρσA−cl) . (123)

Thanks to (112), the last trace is equal to

∑

i,j

{(
qij − 〈αi ⊗ βj|i|ρ|αi ⊗ βj|i〉

)2 − 〈αi ⊗ βj|i|ρ|αi ⊗ βj|i〉2
}

. (124)

The minimum over the probability distribution {qij} is obviously achieved for qij =
〈αi ⊗ βj|i|ρ|αi ⊗ βj|i〉.Minimizing also over the orthonormal bases {|αi〉} and {|βj|i〉}
and using (116) again, one finds the first equality in (122). The second equality
follows from the relation tr ρ2 = ∑

i,j trB |〈αi|ρ|αj〉|2. The result of Proposition 11
is now obtained by comparing (110) and (122). �
Remark 1 By using similar arguments as in the proof of Theorem 6, one finds that
the closest A-classical state to ρ for the Hilbert–Schmidt distance coincides with the
post-measurement stateM�

A ⊗ 1(ρ), whereM�
A is the quantum operation (6) asso-

ciated to a measurement on A with projectors �A
i = |αopt

i 〉〈αopt
i |, {|αopt

i 〉} being the
orthonormal basis maximizing the first sum in (122). Therefore, as already observed
in Ref. [55], for the Hilbert–Schmidt distance the geometric and measurement-
induced geometric discords are equal, DG

HS = DM
HS. Furthermore, the known value

DG
HS(|�〉) = 1 − K(|�〉)−1 for pure states [22] is recovered by noting that (121)

implies DG
He(|�〉) = 2 − 2(1 − DG

HS(|�〉)) 1
2 and by comparing with (108).
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Table 2 Properties of the measurement-induced geometric discords with the Bures, Hellinger,
trace, and Hilbert–Schmidt distances. The function g is given by (126). The remaining notations
are the same as in the caption of Table1. The results quoted in this table have been obtained in Refs.
[24, 25, 55, 63, 75] and [78]. This table is taken from [78]

Distance Measurement-induced geometric discord DM

Bures Hellinger Trace Hilbert-
Schmidt

Bona fide
measure of
quantum
correlations

� � � No

Satisfies axiom
(v)

� For nA = 2
(conjecture)

Proved for nA = 2

Maximal value
if nA ≤ nB

2 − 2/
√
nA 2 − 2/

√
nA (2 − 2/nA)2

Value for pure
states

2 − 2K− 1
2 2 − 2

∑
i μ

3
2
i See Theorem 3.3 in [75] 1 − K−1

Comparison
with the
geometric
discord

DG
Bu ≤ DM

Bu ≤
g(DG

Bu)

DG
He ≤ DM

He ≤
g(DG

He)

{
DM
tr = DG

tr for nA = 2

DM
tr ≥ DG

tr for nA > 2
DM
HS = DG

HS

Computability
for two qubits

? ?

{
X-states

B-classical states
All states

6.3 Comparison Between the Bures and Hellinger Geometric
Discords

As pointed out in Sect. 3.5, the Bures and Hellinger geometric discords are not
functions of each other and thereby define different orderings on E(HAB). A large
number of inequalities enabling to compareDG,DM, andDR for the Bures, Hellinger,
trace, andHilbert Schmidt distances have been established in Ref. [78] (some of these
inequalities are given in Tables1, 2 and 3). A particular bound is as follows.

Proposition 12 ([78]) The Bures and Hellinger geometric discords satisfy

g−1(DG
He(ρ)) ≤ DG

Bu(ρ) ≤ DG
He(ρ) , (125)

where the increasing function g(d) and its inverse are defined by

g(d) = 2d − 1

2
d2 , g−1(d) = 2 − 2

√
1 − d/2 . (126)

If A is a qubit, the stronger bound DG
He(ρ) ≤ g−1 ◦ h(DG

Bu(ρ)) holds and is saturated
for pure states, with h(d) = 2g(d) − g(d)2.
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Proof Thefirst statement is a consequence ofTheorem5andof an upper boundon the
probability of success in quantum state discrimination due to Barnum andKnill [11].
According to such bound, the maximum probability of success P opt v.N.

S ({ρi, ηi}) is
at most equal to the square root of the probability of success Plsm

S ({ρi, ηi}) obtained
by discriminating the states ρi with the least–square measurement. Hence

max{|αi〉}
Plsm
S ({ρi, ηi}) ≤ F(ρ, CA) ≤ max{|αi〉}

Plsm
S ({ρi, ηi}) 1

2 . (127)

The second inequality together with (81) and (110) yields to the first bound in (125).
The second bound in (125) is an immediate consequence of the fact that the Bures
distance is always smaller or equal to the Hellinger distance27 (Proposition 9). The
stronger bound when A is a qubit follows from the inequality DR

He(ρ) ≤ 1 − (1 −
DR

Bu(ρ))2 on the discords of response28 and from the identities DR
Bu(ρ) = g(DG

Bu(ρ))

and DR
He(ρ) = g(DG

He(ρ)), see Table3 and Ref. [78]. �

Proposition 9 also yields bounds on DG
He and D

G
Bu in terms of the trace geometric

discord DG
tr :

[DG
He(ρ)]2 ≤ DG

tr (ρ) ≤ 2g(DG
Bu(ρ)) . (128)

Similar bounds hold for themeasurement-induced geometric discordDM and discord
of response DR (but one has to take care of the different normalization factors in the
definition of DR, see Sect. 3.3).

6.4 Computability for Qubit-Qudit Systems

We show in this subsection that the Hellinger geometric discord is an easily com-
putable quantity, at least when A is a qubit. For indeed, we will determine with the
help of (110) an explicit expression for DG

He(ρ) for arbitrary qubit-qudit states ρ.
Let us introduce the vector �γ formed by the (n2B − 1) self-adjoint operators γp on

HB satisfying tr γp = 0 and tr γpγq = nBδpq for any p, q = 1, . . . , n2B − 1 (this means
that {1/√nB, γp/

√
nB} is an orthonormal basis of the Hilbert space of all nB × nB

matrices). This vector is the analog for B of the vector �σ formed by the three Pauli
matrices for A. The square root of ρ can be decomposed as

√
ρ = 1√

2nB

(
t01 ⊗ 1 + �x · �σ ⊗ 1 + 1 ⊗ �y · �γ +

3∑

m=1

n2B−1∑

p=1

tmp σm ⊗ γp

)
(129)

27We remark that by exploiting (81) and (110), this second bound is equivalent precisely to the
lower bound in (127).
28This inequality follows from the definitions of DR

He and DR
Bu and from the trace inequality

F(ρ,UA ⊗ 1 ρU†
A ⊗ 1) = ‖√ρUA ⊗ 1

√
ρ‖21 ≤ tr(

√
ρUA ⊗ 1

√
ρU†

A ⊗ 1). It is saturated for pure
states (see [78] for more detail).
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with t0 ∈ [−1, 1], �x ∈ R
3, and �y ∈ R

n2B−1. We denote by T the 3 × (n2B − 1) com-
plex matrix with coefficients tmp. The condition tr(

√
ρ)2 = 1 entails t20 + ‖�x‖2 +

‖�y‖2 + tr(TTT) = 1 (here TT stands for the transpose of T ). For any orthonormal
basis {|αi〉}i=0,1 for qubit A, one finds

∑

i=0,1

tr〈αi|√ρ|αi〉2 = t20 + ‖�y‖2 + �uT(�x�xT + TTT)�u , (130)

wherewehave introduced the unit vector �u = 〈α0|�σ|α0〉 = −〈α1|�σ|α1〉.Maximizing
over all such vectors and using (110), we have [78]

DG
He(ρ) = 2 − 2

√
t20 + ‖�y‖2 + kmax , (131)

where kmax is the largest eigenvalue of the 3 × 3 matrix K = �x�xT + TTT. Therefore,
the calculation of DG

He(ρ) is straightforward once one has determined the decompo-
sition (129) of the square root of ρ.

A formula for theHilbert–Schmidt geometric discord for two-qubit states has been
given in Ref. [25]. An alternative derivation of (131) consists in using this formula
and Proposition 11. The trace geometric discord DG

tr seems harder to compute than
DG

He and DG
Bu, but analytical expressions have been found in Ref. [24] for two-qubit

X-states and two-qubit B-classical states.
The results of this section are summarized in the third column of Table1.

7 Measurement-Induced Geometric Discord and Discord
of Response

The properties of the measurement-induced geometric discord DM and discord of
responseDR for the Bures, Hellinger, trace, and Hilbert–Schmidt distances are sum-
marized inTables2 and3.We refer the reader toRef. [78] for the proofs and references
to the original works. For any ρ ∈ E(HAB), the following general expressions and
bounds onDM andDR can be derived. For the Bures distance, one has (compare with
(89)) [78]

DG
Bu(ρ) ≤ DM

Bu(ρ) = 2 − 2max{|αi〉}
tr

√√√√
nA∑

i=1

η2
i ρ

2
i ≤ g(DG

Bu(ρ))

1 −
√
1 − DR

He(ρ) ≤ DR
Bu(ρ) = 1 − max{|αi〉}

tr

∣∣∣∣
nA∑

i=1

ηie
−i 2πinA ρi

∣∣∣∣ ≤ DR
He(ρ)

, (132)

where {ρi, ηi} is the state ensemble defined in (90) and g is the function (126).
Similarly, one finds for the Hellinger distance (compare with (110)) [78]
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DG
He(ρ) ≤ DM

He(ρ) = 2 − 2 max{|αi〉}

nA∑

i=1

trB〈αi|√ρ|αi〉
√〈αi|ρ|αi〉 ≤ g(DG

He(ρ))

sin2
(

π
nA

)
g(DG

He(ρ)) ≤ DR
He(ρ) = 2 min{|αi〉}

nA∑

i,j=1

sin2
(π(i − j)

nA

)
trB

∣∣〈αi|√ρ|αj〉
∣∣2 ≤ g(DG

He(ρ))

.

(133)

The first inequality in the last line is an equality when nA = 2 or 3. Thus, for the
Hellinger distance the discord of response is a function of the geometric discordwhen
A is a qubit or a qutrit. This is also true for the Bures and trace distances when A is a
qubit (see Table3). In that case, DR

He(ρ) = g(DG
He(ρ)) can be evaluated analytically

by relying on the formula (131), showing that DR
He is an easily computable measure

of quantum correlations. In fact, when nA = 2 thenDR
He(ρ) is related to the LQU (see

(38)), which has been determined for arbitrary qubit-qudit states in Ref. [36].

8 Conclusion

We have presented the properties of three classes of geometric measures of quantum
correlations, namely the geometric discordDG, the measurement-induced geometric
discordDM, and the discord of responseDR, for two distinguished distances on the set
of quantum states, the Bures and Hellinger distances. These measures satisfy all the
axiomatic criteria for bona fidemeasures of quantum correlations while being easier
to compute than the entropic quantum discord and having operational interpretations.
Indeed, we have found that the geometric discord may be interpreted in terms of
a probability of success in a quantum state discrimination task. The discords of
response for the Hellinger and Bures distances are related respectively to the Local
Quantum Uncertainty (LQU) [36] and the interferometric power [37]. The latter are
in fact local geometrical versions ofDR (called here the discords of speed of response)
and enjoy clear interpretations in local measurements and quantum metrology. The
geometric measures DG, DM, and DR are likely to appear as figures of merit in
other protocols of quantum information and quantum technologies (for instance, DR

provides upper and lower bounds on the probability of error in quantum reading [77]).
Wehave addressed the issue of the explicit evaluation of the geometricmeasureswhen
the reference subsystem A is a qubit. We have found in particular that the Hellinger
geometric discord and Hellinger discord of response are easily computable for any
qubit-qudit states. When A is a qubit or a qutrit, different measures may be linked
by algebraic relations. This is what happens for instance for the Hellinger geometric
discord, Hellinger discord of response, and LQU. When A has a higher dimensional
Hilbert space, however, each geometric measure defines its own ordering on the set
of quantum states. In this sense, the different measures are not equivalent. Some
bounds enabling to compare them have been given.

From a broader perspective, we have tried in this chapter to show that the study
of the geometry on the set of quantum states defined by contractive Riemannian
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distances sheds new light on quantum correlations in bipartite systems and, more
generally, on the whole field of quantum information theory.
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14. T. Benoist, V. Jaks̆ić, Y. Pautrat, C.-A. Pillet, On entropy production of repeated quantum
measurements I. General theory, arXiv:1607.00162 [math-ph]

15. J.A. Bergou, U. Herzog, M. Hillery, Discrimination of quantum states, in Quantum State
Estimation, vol. 649, Lecture Notes in Physics, ed. by M. Paris, J. Rehacek (Springer, Berlin,
2004), pp. 417–465

16. R. Bhatia, Matrix Analysis (Springer, Berlin, 1991)
17. S.L. Braunstein, C.M. Caves, Statistical distance and the geometry of quantum states. Phys.

Rev. Lett 72, 3439–3443 (1994)
18. T.R. Bromley, M. Cianciaruso, R. Lo Franco, G. Adesso, Unifying approach to the quantifica-

tion of bipartite correlations by Bures distance. J. Phys. A: Math. Theor. 47, 405302 (2014)
19. D.Bures,An extension ofKakutani’s theoremon infinite productmeasures to the tensor product

of semifinite w∗-algebras. Trans. Am. Math. Soc. 135, 199–212 (1969)
20. D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Operational interpretations

of quantum discord. Phys. Rev. A 83, 032324 (2011)



Geometric Measures of Quantum Correlations with Bures and Hellinger Distances 155

21. N.N. Cencov, Statistical Decision Rules and Optimal Interferences, vol. 53, Translations of
Mathematical Monographs (American Mathematical Society, Providence, 1982)

22. L. Chang, S. Luo, Remedying the local ancilla problem with geometric discord. Phys. Rev. A
87, 062303 (2013)

23. C.-L. Chou, L.Y. Hsu,Minimal-error discrimination between symmetricmixed quantum states.
Phys. Rev. A 68, 042305 (2003)

24. F. Ciccarello, T. Tufarelli, V. Giovannetti, Towards computability of trace distance discord.
New J. Phys. 16, 013038 (2014)
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Metrological Measures of Non-classical
Correlations

Pieter Bogaert and Davide Girolami

1 Introduction

In this work, we will review studies showing that non-classical, discord-like corre-
lations do not necessarily describe a statistical dependence between measurements
performed by non-communicating parties.Wewill explain how they yield the impos-
sibility of global observers to obtain full knowledge of local properties of quantum
systems. This apparently detrimental feature translates, on the other hand, in an
increased capability of an observer to acquire information about a quantum pertur-
bation by establishing correlations between its probe and an unchanged ancillary
system. The phenomenon is undoubtedly not explicable by classical physics, being
a direct consequence of quantum complementarity. We will present our arguments
by following a two-step line of thinking.

First, we will point out that quantum coherence manifests in the intrinsic quantum
randomness ofmeasurement outcomes (Sect. 2). Genuinely quantum uncertainty dif-
fers from classical randomness. We will explain how to discriminate between them
and quantify the quantum uncertainty from experimental data. Non-classical corre-
lations in a bipartite system will be defined as the degree of irreducible coherence,
i.e. quantum uncertainty or randomness, experienced when measuring local observ-
ables. The result links a local property as quantum uncertainty to a global feature as
non-classical correlations. The proof is given by showing that a quantity called Local
Quantum Uncertainty, which quantifies the minimum local quantum randomness in
a bipartite state, satisfies the very same properties enjoyed by entropic measures of
discord-like correlations (Sect. 2.2).

Then, we will show the link between quantum-induced uncertainty and supraclas-
sical measurement precision (Sect. 3). A measurement can be thought as an informa-
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tion processing task where knowledge encoded in a physical systems is transmitted
to an apparatus. Specifically, a measurement requires a preliminary step in which the
probe is prepared in an input configuration. In a second stage, the information we
want to access is imprinted in the probe state through a quantum dynamics. The final
part is the information decoding by collection and statistical analysis of the data.
We will focus here on the first step, i.e. input state preparation. Arguably, the probe
state has to be sensitive to the perturbation. We will explain why quantum systems
displaying non-classical correlations are intrinsically more sensitive probes. The
key observation is that quantum uncertainty entails sensitivity to quantum dynamics.
Consequently, non-classical correlations guarantee non-vanishing sensitivity to local
quantum perturbations. We will explain how the concept of Interferometric Power
captures genuinely quantum sensitivity in a standard measurement setting, and how
this leads to non-classical performances for phase estimation (Sect. 3.3). Remark-
ably, the minimum precision for local measurements will be shown to be a measure
of non-classical correlations. A third interesting correlation quantifier, the Discrim-
inating Strength (Sect. 3.4), will be shown to evaluate the worst case precision in
another important metrological task, state discrimination.

It is our hope to highlight the main merit, in our opinion, of the metrological
approach to characterizingnon-classical correlations. That is, giving a physicalmean-
ing to an information-theoretic construction, providing an operational interpretation
which goes truly beyond the original one [1]. Quantum discord is a concept devel-
oped to study environmentally-induced decoherence [2], and the limit to information
transmission established by classical correlations [3]. Other concurrent studies char-
acterized non-classical correlations in the context of quantum Shannon information
theory [4]. While QuantumMechanics is somehow a theory of information itself, we
owe its postulate and structure to key experimental observations of low energy light
and atomic structure in the beginning of 20th century [5]. For example, the some-
how elusive concept of Entanglement was originally discussed bymeans of carefully
designed thought experiments. It is therefore reassuring to make real the concept of
non-classical correlations by linking it with observable experimental effects.

2 Local Quantum Uncertainty

2.1 Quantum Uncertainty

Quantum Mechanics predicts the existence of coherent superpositions of quantum
states [5]. The first experimental evidence which suggested such possibility was the
wave-like probability distribution of measurement outcomes observed in low energy
optical experiments [6]. The intuition linking coherence and non-classical outcome
statistics can be formalized. By focusing on finite dimensional quantum systems,
let us suppose to measure the observable being represented by a non-degenerate
Hermitian operator with spectral decomposition O = ∑

i oi |io〉〈io|. The information
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about O in a state represented by a density matrix ρ, tr[ρ] = 1, ρ = ρ†, ρ ≥ 0, can
be quantified by the state change due to the measurement (without postselection)
of O . For our purposes, we focus on the von Neumann measurement model ρ →
ρ′ = ∑

i |io〉〈io|ρ|io〉〈io| [7]. If and only if state and observable commute, there is
no change in the state, ρ = ρ′. This is easily proven to happen if and only if the
state is an eigenstate or a mixture of eigenstates of the observable, taking the form
ρO = ∑

i pi |io〉〈io|. That is, if and only if the state is incoherent in the observable
eigenbasis, the measurement output statistics will be classical. Without coherence,
the measurement uncertainty is only due to incomplete knowledge of the system
state, which is a classical error source. In the more general case of states displaying
coherence, the contribution to the measurement uncertainty is then twofold. Apart
from the classical randomness, there is an additional quantum component, which
manifests in the interference pattern of the outcome statistics.

Let us now quantify quantum uncertainty. The first quantity that has in many
ways become almost synonymous with uncertainty, at least in undergraduate Physics
textbooks, is the variance V (ρ, O) = tr[ρO2] − (tr[ρO])2. The variance enjoys both
a simple expression and a close tie to experimental practice.However, formixed states
the variance includes a contribution of classical uncertainty due to the mixedness of
the state. It is easy to see that the variance does not vanish even if ρ and O commute,
but the case in which the state is an observable eigenstate. The variance is therefore
not suitable to quantify quantum uncertainty. A way to solve the issue is to formally
split the variance, which captures the total measurement uncertainty, into quantum
and classical contributions: V = Vq + Vc [8]. Note that the idea can be extended
to entropic uncertainty quantifiers [9]. A good measure of quantum uncertainty Vq

should be zero if and only if ρ and O commute. Yet, an arbitrary norm of their
commutator is not the finest choice. Additionally, a measure of quantum uncertainty
should be convex, i.e. non-increasing under classical mixing, as this only generates
classical uncertainty, Vq

(∑
i piρi , O

) ≤ ∑
i pi Vq (ρi , O). A suitable candidate is

the (Wigner–Yanase) skew information [10], given by

I(ρ, O) := −1

2
tr[[ρ1/2, O]2]. (1)

The skew information is upper bounded by the variance, being equal to it for pure
states: I(ρ, O) ≤ V (ρ, O). This can be shown as follows [8]. By defining O0 = O −
tr[ρO], one has V (ρ, O) = tr[ρO2

0 ] and I(ρ, O) = tr[ρO2
0 ] − tr[ρ1/2O0ρ

1/2O0] =
V (ρ, O) − tr[ρ1/2O0ρ

1/2O0]. It is easy to see that the second term is non-negative
as it equals tr[(ρ1/4O0ρ

1/4)(ρ1/4O0ρ
1/4)] and noting that ρ1/4O0ρ

1/4 is self-adjoint.
Whilst being just one of the potential choices, the skew information is a consistent yet
sufficiently manageable measure of quantum uncertainty. We illustrate the interplay
between classical and quantum uncertainty by a simple example presented in Fig. 1.
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Fig. 1 Quantum uncertainty disclosed. We calculate the uncertainty on the measurement outcome
of the observable σz = |0〉〈0| − |1〉〈1| in the state ρ = (1 − p)I2/2 + p|φ〉〈φ|, |φ〉 = 1/

√
2(|0〉 +

|1〉), p ∈ [0, 1]. The blue dashed line is the variance, the green blue continuous curve is the skew
information. The red dotted curve depicts the difference between the two quantities, being an heuris-
tic mixedness quantifier. As expected by a measure of quantum uncertainty, the skew information
monotonically increases with the purity parameter p

2.2 Discord Triggers Local Quantum Uncertainty

The Heisenberg uncertainty principle states that complementary properties of quan-
tum systems cannot be measured with arbitrary precision, in the sense that, regard-
less our experimental ability, the product of the experimental uncertainties about
their values in a given state is non-negative [11]. In the original form of the uncer-
tainty relations, the non-commutativity between observables captures such ineludible
quantum randomness. However, it may seem that any single physical quantity, such
as one spin or position component, could be measured with arbitrary precision. We
are going to show that this is not true in general. We identified the truly quantum
uncertainty of the measurement, and, not surprisingly, quantified it by a measure of
state-observable non-commutativity. Zero quantum uncertainty implies that themea-
surement performed by a flawless experimental implementation, i.e. whenever there
is no even classical uncertainty, has a deterministic outcome. Yet, a non-negotiable
intrinsic quantum uncertainty on single observable measurements appears whenever
the system of interest shares non-classical correlations.

Let us examine the quantum uncertainty in local quantum measurements on a
bipartite system. For example, it is given a two-qubit system prepared in a maximally
entangled state |ϕ〉AB = (|00〉 + |11〉)/√2. It is immediate to observe that this is an
eigenstate of the global observable σz ⊗ σz , which means that there is no quantum
uncertainty when measuring that observable. Any local spin measurement, however,
will have intrinsic uncertainty. The only vector n for which n · σA ⊗ IB |ϕ〉AB =
k|ϕ〉AB , k ∈ R, where σ are the Pauli matrices, is indeed n = 0. More generally,
only product states (e.g. |11〉) can be eigenstates of local observables.

By extending the argument to mixed states, it is clear that one does not want to
associate quantum uncertainty to state mixedness (which quantifies the incomplete
knowledge about the state). Given a local complete measurement, we still require
that performing the measurement leaves the mixed state ρAB invariant if and only
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if it commutes with the observable. Supposing without loss of generality that the
measurement is performed on A, this means that it must be possible to express the
state in the following form:

ρAB =
∑

i

pi |i〉〈i |A ⊗ σi
B, (2)

where the elements {|i〉} form an orthonormal basis. Such density matrices are called
classical-quantum (CQ) states, and they are precisely the states with zero quantum
discord [4]. Therefore, non-classical correlations imply local quantum uncertainty.
In other words, for any CQ state there is at least one local measurement which does
not alter it, while for other states quantum uncertainty always appears. However, the
interplay between local randomness and non-local quantum effects turns out to be
deeper. The minimum quantum uncertainty on local measurements is a quantifier
of non-classical correlations. To prove that, let us quantify the quantum uncertainty
of an observable OA in a state ρAB by the skew information I(ρAB, OA ⊗ IB). By
reminding the definition in Eq. (1), we note that the quantity depends on the state
and the observable, while non-classical correlations are a property of the state only.
It is sensible to introduce the Local Quantum Uncertainty (LQU) [12], defined as the
minimum skew information between the state and a local observable. To be more
precise, let us define the set of local observables {K�

A := K�
A ⊗ IB}, where the K�

A
are Hermitian operators with spectrum �, which we demand to be non-degenerate,
as this would represent an additional classical uncertainty source. Thus, the LQU
with respect to the subsystem A is given by

U�
A (ρAB) := min

K�
I(ρAB, K�

A ), (3)

with an optimisation over the previously defined set of local observables with non-
degenerate spectrum �. We rewrite them as K�

A = UAdiag(�)U †
A,UA ∈ SU (d),

where d is the dimension of subsystem A and diag(�) is a diagonal matrix with
the observable eigenvalues being the diagonal entries. The minimisation then runs
over all the possible unitary transformations UA. The LQU is still dependent on the
spectrum �, and this can be interpreted as fixing a “ruler” for the measurement. The
non-degeneracy condition ensures the quality of the ruler, namely that there exist
states for which a measurement will be maximally informative (i.e. states which
commute with the observable and hence do not exhibit quantum uncertainty for it).
Any spectrum choice identifies a different measure of non-classical correlations. On
the other hand, the LQU is by no means dependent on the measurement basis, asUA

is varied over SU(d).
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2.2.1 Local Quantum Uncertainty as a Measure of Non-classical
Correlations

We here review the proof that the LQU is a measure for non-classical correlations,
i.e. it meets the criteria identifying discord-like quantifiers [4]. We shall always work
with the LQU defined by measurements on A.

1. The LQU is zero if and only if the state is CQ. If ρAB is CQ, then one can pick a
K�

A which is diagonal in the local basis of A, which means that the LQU vanishes.
Conversely, if the LQU is zero, then there exists a local observable K�

A which is
simultaneously diagonalisable with ρAB . Since� is non-degenerate, this defines a
basis on A which is unique up to phases (let us call it {|ki 〉}). An eigenvector basis
for K�

A must then be of the form {|ki 〉A ⊗ |ϕi j 〉B}, and the state must therefore be
of the form ρAB = ∑

i j pi j |ki 〉〈ki |A ⊗ |ϕi j 〉〈ϕi j |B , i.e. it must be CQ.
2. The LQU is invariant under local unitary transformations. Few algebra steps give

U�
A ((UA ⊗UB)ρAB(UA ⊗UB)†) = min

K�
I((UA ⊗UB)ρAB(UA ⊗UB)†, K�

A ⊗ IB)

= min
K�

I(ρAB , (UA ⊗UB)†K�
A ⊗ IB(UA ⊗UB))

= min
K�

I(ρAB , (U†
AK

�
A UA) ⊗ IB) = U�

A (ρAB), (4)

where the second and third lines follow from the definition of the skew infor-
mation. The last equality holds because minimising over K�

A is equivalent to
minimising over the observable U †

AK
�
A UA.

3. The LQU is contractive under completely positive trace-preserving (CPTP) maps
on the non-measured subsystem B. The skew information is contractive under
CPTP maps �B : I(ρAB, KA ⊗ IB) ≥ I((IA ⊗ �B)ρAB, KA ⊗ IB). This can be
easily proved by writing the CPTP map �B in a Stinespring representation and
noting that the skew information is contractive under partial trace: I(σAB, XA ⊗
IB) ≥ I(σA, XA). Let us suppose now that K̃ A is the local observable minimising
the skew information. The LQU takes the form

U�
A (ρAB ) = I(ρAB , K̃ A ⊗ IB ) ≥ I((IA ⊗ �B )ρAB , K̃ A ⊗ IB ) ≥ U�

A ((IA ⊗ �B )ρAB ). (5)

4. The LQU reduces to an entanglement monotone for pure states. For the full proof
of this property, we refer to [12], presenting here just a sketch of it. Given the
contractivity and invariance under CPTP and unitary maps respectively, we only
need to prove that the LQU cannot increase on average under local operations
on A: ∑

i

piU�
A (|φi 〉〈φi |AB) ≤ U�

A (|ψ〉〈ψ|AB), (6)

where {pi , |φi 〉 is the output ensemble after a channel with Kraus operators {Mi }
is applied on A: Mi,A|ψ〉AB = √

pi |φi 〉AB . It is possible to prove two auxiliary
lemmas. First, one can always assume dA ≥ dB . Then, one shows that the LQU is
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not affected when measuring B instead of A, where�(KB) is a subset of�(KA).
Suppose that the minimum is achieved for K̃�

B . Since the skew information is
equal to the variance for pure states, and the latter is concave, one finally has

∑

i

piU�
A (|φi 〉〈φi |AB) ≤

∑

i

pi min
K�
B

I(|φi 〉〈φi |AB , K�
B ) ≤

∑

i

piI(|φi 〉〈φi |AB , K̃�
B )

=
∑

i

pi V (|φi 〉〈φi |AB , K̃�
B ) ≤ V

(
∑

i

pi |φi 〉〈φi |AB , K̃�
B

)

=
∑

i

pi 〈φi |(K̃�
B )2|φi 〉AB −

(
∑

i

pi 〈φi |K̃�
B |φi 〉AB

)2

=
∑

i

〈ψ|Mi (K̃
�
B )2M†

i |ψ〉AB −
(

∑

i

〈ψ|Mi K̃
�
B M†

i |ψ〉AB
)2

= 〈ψ|(K̃�
B )2|ψ〉AB −

(
〈ψ|K̃�

B |ψ〉AB
)2

= I(|ψ〉〈ψ|AB , K̃�
B ) = min

K�
A

I(|ψ〉〈ψ|AB , K�
A )

= U�
A (|ψ〉〈ψ|AB). (7)

2.2.2 Restriction to C2 ⊗ Cd

We now consider the case where system A is a qubit and B a qudit, i.e. with states
defined on an Hilbert space C2 ⊗ Cd . A question that remains to be answered is
in which way the LQU depends on the choice of non-degenerate spectrum �. It
is straightforward to show that, since A is a qubit, all �-dependent U�(ρAB) are
equivalent up to a multiplicative factor. This is because a general local observable
K�

A with non-degenerate spectrum � = {λ1,λ2} can be parametrised as

K�
A = UA

(
λ1 − λ2

2
σzA + λ1 + λ2

2
IA

)

U †
A = λ1 − λ2

2
n · σA + λ1 + λ2

2
IA, (8)

where n is a unit vector. From the definition of the skew information, it follows that
I(ρAB, K�

A ) = (λ1−λ2)
2

4 I(ρAB, n · σA). Therefore, for qubit-qudit systems the choice
of the spectrum � does not affect the quantification of non-classical correlations
(we shall therefore drop the � superscript from here onwards), and without loss of
generality, we assume the local observables to be of the form KA = n · σA.

Having simplified the form of the observables over which we need to optimise
(the minimisation runs over n now), we can write the LQU in the following fashion:

UA(ρAB) = 1 − λmax(WAB), (9)

being λmax(WAB) the maximum eigenvalue of the 3×3 symmetric matrix W with
entries
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(WAB)i j = tr[ρ1/2AB(σi A ⊗ IB)ρ
1/2
AB(σ j A ⊗ IB)], (10)

where i, j label the Pauli matrices. Finally, for pure states |ψ〉〈ψ|AB , this further
reduces to (two times) the linear entropy of entanglement

UA(|ψ〉〈ψ|AB) = 2(1 − tr[ρ2A]) = 1 − (σ0 − σ1)
2, (11)

where we used the Schmidt coefficients ρA = σ1|ψ1〉〈ψ1|A + σ2|ψ2〉〈ψ2|A. We
observe that with our choice of observables KA the LQU equals one for pure, maxi-
mally entangled states.

2.2.3 Geometric Insight

Finally, we provide a geometric interpretation of the LQU in qubit-qudit states. The
(squared) Hellinger distance between two states ρ and σ is defined as D2

H (ρ,σ) =
(1/2) tr[ρ1/2 − σ1/2]2 = 1 − tr[ρ1/2σ1/2]. Since KA = n · σ is a root-of-unity uni-
tary, for every function f and any bipartite state one has KA f (ρAB)KA = f (KAρAB

KA). Hence, the skew information takes the form

I(ρAB, KA) = 1 − tr[ρ1/2ABKAρ
1/2
ABKA] = 1 − tr[ρ1/2AB(KAρABKA)

1/2]
= D2

H (ρAB, KAρABKA). (12)

The LQU then represents the minimum distance between the state before and after
a local root-of-unity unitary operations is applied.

3 Interferometric Power and Discriminating Strength

3.1 Quantum Metrology

We discussed a measure of discord-like correlations, the LQU, linked to the uncer-
tainty in a given measurement. Perhaps surprisingly, in this section we will show
that non-classical correlations yield measurement precision! We will explain how
the two apparently contradictory viewpoints are consistently related to each other in
the context of quantum metrology, which we briefly introduce here.

Metrology is the study of measurement strategies and tools. The term can be used
in a variety of contexts related to measurements, for example to denote the estab-
lishment of units of measurement, or the technological application of measurement
instruments and related issues such as calibration. For our purposes, however, metrol-
ogy denotes the study of parameter estimation schemes and the strategies to reach
the highest possible precision in them. Many of the concepts in metrology were first
defined for classical systems, but we shall only discuss the ones which are useful for
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the extension to the quantum realm. For enjoyable reviews on quantummetrology,we
refer the Reader to Refs. [13, 14]. It is indeed possible to take advantage of quantum-
ness to increase the precision of measurement schemes. The reason is that quantum
systems are more sensitive probes in a number of situations. Quantum metrology
is the research line that studies what properties of quantum systems are responsible
for this. Results in quantum metrology have a wide applicability in optical inter-
ferometry, atomic spectroscopy, and even gravitometry. A metrology task usually
consists of three steps. First, the preparation of a probe in an input state. Second, an
interaction or perturbation of the probe, which encodes information in it. Third, a
measurement on the probe followed by data analysis. We here focus on the first step,
and we investigate how non-classical correlations in the input help in two important
metrology protocols: interferometric phase estimation and state discrimination.

3.2 Quantum Phase Estimation

We here focus on the important metrology primitive of parameter estimation [15].
The goal is to assign a probability function pθ(x) to the independent measurement
outcomes x of a random variable X . The parameter θ, which is unknown and unmea-
surable, acts as a coordinate in the probability function space. The task is then to
extract an observable estimator θ̂(x) from themeasurement outcomes, such that pθ̂(x)
characterizes well the observed data. We require the estimator to be unbiased, i.e. its
average value does equal the real value of the parameter,

∫
(θ − θ̂(x))pθ(x)dx = 0.

The quality of the estimation can be then quantified by the variance of the estimator θ̂.
It is possible to establish a fundamental limit to parameter estimation. By employ-

ing the maximum likelihood method, the best estimator θ̂best is defined as the
one maximising the log-likelihood function max

θ̂
ln l(θ̂|x) = ln l(θ̂best|x), l(θ̂|x) ≡

pθ̂(x), where the logarithm is just a convention. This means that pθ̂best
(x) is the best

function to describe the measurement outcomes. The information about θ which can
be obtained by the data x is quantified by the rate of change of the likelihood function
with the parameter value. Ameasure of such information is the zeromean value score
function ∂ ln l(θ|x)

∂θ
. The second moment of the score is called the Fisher Information:

F(θ) =
∫ (

∂

∂θ
log p(x, θ)

)2

p(x, θ)dx . (13)

An important result in classical statistics is the Cramér–Rao bound, which gives a
lower bound on the variance of θ̂:

V (pθ, θ̂) ≥ 1

nF(θ)
, (14)
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Fig. 2 Quantum phase estimation. A system initialized in the state ρ0 is perturbed through a unitary
transformationUθ . A measurement and statistical processing of outcomes give an estimated value θ̃
of the phase shift. The perturbation can be represented both as a geometric path in the parametrized
space of quantum states, where θ is a coordinate (top), or as a logic transformation by applying a
unitary gate (bottom). The resource is found to be the speed of evolution of the state during the
phase shift, as quantified by the quantum Fisher information

for n repetitions of the measurement. Hence, the Fisher information is a key figure
of merit of a parameter estimation protocol. We observe that, under the assumptions
of single parameter, unbiased estimation, the best estimator θ̂best saturates the bound.

Let us now discuss the quantum case. The state of the system under study is
represented by a parametrized density matrix ρθ. Let us assume that the parameter
represents the information about a unitary perturbation ρθ = Uθρ0U

†
θ ,Uθ = e−i Hθ

(Fig. 2). An estimator is built up by a generalized positive operator value measure-
ment (POVM) {�x } on the output state ρθ, where the �x denote the operators cor-
responding to the measurement outcomes x , thus obtaining pθ(x) = tr[ρθ�x ]. The
expression of the Fisher information for an arbitrary POVM is

F(ρθ) :=
∫

dx
1

tr[ρθ�x ] (tr[∂θρθ�x ])2 . (15)

However, the quantum scenario implies a further optimization of the measure-
ment [15, 16]. One can prove that the optimal estimator is given by a projective
measurement into the eigenbasis of the symmetric logarithmic derivative (SLD)
L , defined implicitly as ∂

∂θ
ρθ = 1

2 (ρθL + Lρθ). In particular, an upper bound is

obtained: F(ρθ) ≤ tr[ρθL2]. The quantum Fisher information (QFI, from now on) is
then given by the optimal measurement strategy:

F(ρ, H) := tr[ρL2], (16)

where we dropped the parameter label as the QFI is independent of its value. The
quantum extension of the Cramér–Rao bound reads:

V (ρ, θ̂) ≥ 1/[nF(ρ, H)], (17)
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which alike the classical case is saturated asymptotically by the best estimator. The
QFI enjoys a peculiar compact expression:

F(ρ, H) = 4
∑

k<l

(λk − λl)
2

λk + λl
|〈k|H |l〉|2. (18)

where we have used the eigendecomposition of the state, ρ = ∑
k λk |k〉〈k|. The

formula highlights that the sensitivity of a probe, and therefore its usefulness for phase
estimation, is quantified by the non-commutativity of its state with the Hamiltonian.
In fact, the QFI measures the sensitivity of the state ρ to the unitary evolution e−i Hθ,
or, in other words, the speed of evolution of the probe under such dynamics. If and
only if H is diagonal in the eigenbasis of ρ, the transformation leaves ρ invariant. It
is easy to see that in that case F(ρ, H) = 0.

3.2.1 Properties of the Quantum Fisher Information

Finally, we mention a non-exhaustive list of properties of the QFI, which will be
useful in proofs later in this Section.

1. Up to a constant factor, the QFI is upper bounded by the variance, F(ρ, H) ≤
4V (ρ, H), where the equality is reached for pure states. More precisely, the QFI
is the variance convex roof, F(

∑
i pi |ψi 〉, H) = 4 inf

{pi ,|ψi 〉}
∑

i pi V (|ψi 〉, H) [14].

2. The QFI is convex: F(pρ1 + (1 − p)ρ2, H) ≤ pF(ρ1, H) + (1 − p)F(ρ2, H).
3. For unitaries U , F(UρU †, H) = F(ρ,U †HU ).
4. The QFI is non-increasing under CPTP maps � which do not depend on the

parameter: F(�(ρ), H) ≤ F(ρ, H).

3.3 Interferometry and Non-classical Correlations

An important phase estimation scenario is represented by estimation through inter-
ferometric measurements (Fig. 3). Such template has been the testbed of the first
observations of quantum phenomena, and it is still the standard textbook example
to introduce students to quantum laws. Apart from the historical and pedagogical
value, interferometry plays a premier role in modern quantum sensing schemes [13].
The architecture of an interferometric measurement is extremely simple. A bipartite
system AB in the input state ρAB,0 is injected into a two-arm channel. Subsys-
tem A undergoes a phase shift UA = e−i H�

A θ, generated by an Hamiltonian with
non-degenerate spectrum �. This restriction is useful for understanding the role of
non-classical correlations in this scenario. We remind that the phase θ represents
the unknown perturbation we want to estimate, being not directly measurable. Its
value is a function of the output visibility, i.e. the outcome statistics of a polarization
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ρ
0 AB,

θU 

B 

A 

Fig. 3 Non-classical correlations guarantee non-vanishing precision in interferometric phase esti-
mation. A bipartite system is prepared in an input state ρAB,0, and it is injected into a two-arm
interferometer. A unitary transformation Uθ is applied to subsystem A. The Hamiltonian eigenba-
sis, i.e. the phase direction, is just revealed after the interaction. The value of the imprinted phase is
estimated by a measurement at the output. The minimum precision of the estimation, as quantified
by the Interferometric Power (IP), is a measure of non-classical correlations in the input. That is,
non-classical correlations ensure non-vanishing precision for any Hamiltonian

measurement into the output ρAB,θ = (U�
A ⊗ IB)ρAB,0(U�

A ⊗ IB)†. We here focus
on the optimization of the input. If the Hamiltonian H�

A is fully known, then coher-
ence of the reduced state ρA in its eigenbasis, also called asymmetry in literature
[17], is the necessary and sufficient resource of the phase estimation. In fact, the QFI
F(ρ, H) is a measure of asymmetry of the state with respect to a unitary transfor-
mation generated by H . Here correlations seem to not play any role, a single party
estimation is sufficient and the interferometric configuration appears redundant. Let
us now introduce a further difficulty. We suppose that the estimation is blind, in the
sense that only the spectrum of the Hamiltonian generating the phase imprinting is
known during the input preparation. There is no prior information about the Hamil-
tonian eigenbasis. We allow to disclose the phase direction at the output, so that
the measurement step can be still optimized, and the best estimator is reached. It is
easy to see that there is no possible single system input ρA guaranteeing an arbitrary
degree of precision for every possible Hamiltonian. In other words, the estimation
by a single party relies on pure luck as the key information about the phase direction
is missing. Let us consider what happens if instead we implement the interferometer
to perform the estimation. One can prove that a classically correlated probe AB, or
even a CQ state, are still insufficient to ensure precision for any Hamiltonian. On
the other hand, by employing non-classically correlated states one can overcome the
lack of knowledge about the phase direction [18]. Similarly to what happens for the
LQU, it is possible to show that a quantifier for the worst-case precision is a bona fide
measure of non-classical correlations. The optimal estimator is the one that saturates
the Cramér–Rao bound in the limit of very large n, and in that case the quality of the
input is determined by the QFI. The worst-case QFI for a given state reads

P�
A (ρAB) := 1

4
min
HA

F(ρAB, H�
A ), (19)

where the minimisation is over all Hamiltonians with the given non-degenerate spec-
trum� (and where the factor 1/4 is chosen such that it cancels out the one in Eq. (18)
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for the QFI under unitary dynamics). This quantity is called Interferometric Power
(IP) of the state ρAB [18]. It quantifies the minimum sensitivity in interferometric
phase estimation.

3.3.1 Interferometric Power as a Discord-Like Quantity

One can prove that the IP enjoys the same properties of the measures of non-classical
correlations, as discussed in Sect. 2.2.1 for the LQU.

1. The IP is zero if and only if ρAB is CQ. If ρAB is CQ, then one can choose a
Hamiltonian H�

A which is diagonal in the local basis of A so that the QFI and
hence the IP vanish. If, on the other hand, the IP is zero, the LQU has to be zero
as well. Then we use the fact that the LQU vanishes if and only if ρAB is CQ.

2. The IP is invariant under local unitary transformations. It is clear from the expres-
sion in Eq. (18) that the QFI for Hamiltonians on A is invariant under local uni-
taries on B. On the same hand, local unitaries on A are absorbed in the definition
of H�

A , thus they do not affect the minimisation.
3. The IP is contractive under CPTP maps on the non-affected party B. This is easy

to prove from the properties of theQFI itself, see Sect. 3.2.1, or alternatively by the
following, more intuitive proof. Since any map �B acting on B commutes with
H�

A , it can be included in the measurement process. Next, we note that the QFI
quantifies the maximum precision that is achievable by picking the optimal esti-
mation strategy. Since this maximum precision can only decrease when applying
an extra map on B, we have that F(ρAB, H�

A ) ≥ F((1A ⊗ �B)ρAB, H�
A ).

4 The IP reduces to an entanglement monotone for pure states. For pure states, the
QFI is proportional to the variance of H�

A , and the IP becomes equal to the LQU.
The latter is known to be an entanglement for pure states.

3.3.2 Restriction to C2 ⊗ Cd

We report a simplified formula for the IP in the case A is a qubit, making it a
computable measure of non-classical correlations for qubit-qudit systems. From the
definition of QFI, one has F(ρAB, aH�

A + bIA) = a2F(ρAB, H�
A ). By setting the

spectrum� to be {1,−1} one has HA = n · σ. The IP then becomes theminimisation
of a quadratic form over the unit sphere, which leads to the following expression (like
the one for the LQU of a qubit-qudit system):

P�
A (ρAB) = λmin(MAB). (20)

So the IP is the minimal eigenvalue of the 3×3-matrix MAB with the following
elements:
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(MAB)mn = 1

2

∑

i, j :pi+p j �=0

(pi − p j )
2

pi + p j
〈ψi |σmA ⊗ 1B |ψ j 〉AB〈ψ j |σnA ⊗ 1B |ψi 〉AB,

(21)
where again we have used the eigendecomposition of the state ρAB = ∑

i pi |ψi 〉
〈ψi |AB .

3.3.3 Interplay Between LQU and IP

We have shown how the LQU characterizes the minimum quantum uncertainty
obtained upon measuring local observables. We here point out that the skew infor-
mation and the QFI, and therefore the LQU and the IP, are closely related quantities.
Both the skew information I(ρ, H) and the QFI given by F(ρ, H) measure the
speed of evolution of a quantum state undergoing a unitary dynamics e−i Hθ. In par-
ticular, they are associated with two metrics included in the Fisher metrics family,
which is proven to be the only class of Riemannian metrics in the space of quan-
tum states which is contractive under noisy maps [19]. Any speed measure obtained
from such metrics is a measure of asymmetry. For classical probability distributions
and stochastic processes, they all reduce to the classical Fisher information given in
Eq. (15).

We observe that the following chain of inequalities holds:

I(ρ, H) ≤ 1

4
F(ρ, H) ≤ 2I(ρ, H),∀ρ, H. (22)

This implies U�
A (ρAB) ≤ P�

A (ρAB), and it makes possible to give a metrological
interpretation to the LQU as well, by deriving an upper bound for the minimum vari-
ance in the interferometric schemepresented inFig. 3. In order to estimate the parame-
ter θ, we can optimise the input state ρAB , the Hamiltonian HA, and the final measure-
ment. As mentioned before, the quantum Cramér–Rao bound is saturated asymptoti-
cally by employing the most informative measurement, V (ρ, θ̂best) = 1/(nF(ρ, H))

[13, 14]. Therefore, few algebra steps show that for interferometric phase estimations
one has

V (ρAB, θ̂best) = 1

nF(ρAB, H�
A )

≤ 1

nP�
A (ρAB)

≤ 1

4nU�
A (ρAB)

. (23)

Hence, (the inverse of) non-classical correlations upper bound the smallest possi-
ble variance of the estimator. In other words, it is guaranteed the existence of an
Hamiltonian and a measurement such that the parameter θ can be estimated with a
variance lower than a value determined by the amount of discord-like correlations
and the number of the experiment repetitions. Note that in this set-up we assume
perfect unitary evolution and ideal measurements, but that we allow for noise in the
prepared input state ρAB .
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3.4 Discriminating Strength

We here discuss a third measure of non-classical correlations which represents the
worst-case precision in another metrology task, state discrimination [20]. We also
show how it relates to the LQU and therefore the IP.

Suppose that we want to establish if n copies of a quantum system are prepared
in a state ρ1 or ρ2, where each occurs with equal probability. It is allowed to obtain
information by measuring the system. According to the Holevo–Helstrom theorem,
the minimum error probability after optimising over all possible POVMs is given by

P (n)
err,min := 1

2

(

1 − 1

2
||ρ⊗n

1 − ρ⊗n
2 ||1

)

, (24)

where the optimal POVM discriminates the positive and negative eigenspaces of
ρ⊗n
1 − ρ⊗n

2 . In the asymptotic limit of large n, the minimum error probability follows
an exponential decay law

P (n)
err,min ≈ e−nξ(ρ1,ρ2), (25)

where the decay constant is given by

ξ(ρ1, ρ2) := − lim
n→∞

ln P (n)
err,min

n
= − ln

(

min
0≤s≤1

tr[ρs1ρ1−s
2 )

]

. (26)

Such limit is called quantum Chernoff bound [21]. Finally, we define the quantity

Q(ρ1, ρ2) := e−ξ(ρ1,ρ2) = min
0≤s≤1

tr[ρs1ρ1−s
2 ]. (27)

It is immediately clear that 0 ≤ Q(ρ1, ρ2) ≤ tr[ρ1/21 ρ
1/2
2 ] ≤ 1, and, if at least one

of the two states is pure, Q(ρ1, ρ2) reduces to Uhlmann’s fidelity F(ρ1, ρ2) :=
(
tr[√√

ρ1ρ2
√

ρ1]
)2
.

A state discrimination problem represents the discretized version of a phase esti-
mation scenario, where instead of a continuous parameter θ one wishes to know
the value of a two-value label identifying one of the two options ρ1,2. It is then
not surprising that non-classical correlations play a role in an interferometric state
discrimination scheme called quantum illumination [22, 23]. The protocol runs as
follows. An experimentalist Alice prepares n copies of a bipartite state ρAB , where
A is the probe part and B is a reference system. A second player Charlie chooses an
undisclosed unitary CA from a given set of allowed transformations S. Then, Alice
sends her n copies to Charlie who is free to either leave the n copies unaltered, or
rotate all of them by implementing CA. Finally, Alice has to decide which of the two
actionsCharlie has chosen, being allowed to performanyPOVMon the n copies. That
means that she has to discriminate between ρ⊗n

1 = ρ⊗n
AB and ρ⊗n

2 = (CAρABC
†
A)

⊗n .
The Discriminating Strength (DS) of the probe state ρAB is defined as the Alice
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discriminating ability in the worst possible case:

DS
A (ρAB) := 1 − max

CA∈S
Q

(
ρAB,CAρABC

†
A

)
. (28)

From the definition of the quantum Chernoff bound, it is clear that A is able to
perform better if the DS is higher. Note that we meet again a context in which there
is a clear asymmetry between the role played by the parts of a bipartite system.

So far, we have not specified what the set of allowed transformations S is, and
the DS of course depends heavily on the choice of this set. A first observation is that
if S were chosen to be the whole group of unitaries on A, the DS would always be
zero as this group includes the identity. Clearly, we need to avoid such pathological
case. We restrict the Charlie’s choice within the set of unitaries CA = exp(i H�

A ).
In this parametrisation, H�

A is an Hamiltonian acting on A, with non-degenerate
spectrum � (notice the similarity with the LQU case): H�

A = UAdiag(�)U †
A, where

UA ∈ U(dA). The DS is then define as

D�
A (ρAB) := 1 − max

H�
A

Q
(
ρAB, eiH

�
A ρABe

−i H�
A

)
. (29)

A crucial point to discuss is to what extent the DS depends on the choice of the
spectrum�.Although inRef. [20] the authorsmention that it is tempting to conjecture
that the harmonic spectrum (i.e. λi − λi+1 is constant, ∀i) should be optimal, no clear
answer to this question is given. One obvious property of the DS is the invariance
under constant shifts, D�

A (ρ) = D�+b
A (ρ), ∀ρ, b ∈ R.

3.4.1 Discriminating Strength as a Measure of Non-classical
Correlations

The intuition behind the DS is that establishing whether the state has undergone a
local rotation should be easier the more the part A potentially affected by the rotation
is non-classically correlated with an unaffected part B. We here report the proof that
the DS is a bona fide measure for non-classical correlations, as it has the same
properties of the LQU and the IP discussed in Sects. 2.2.1 and 3.3.1 respectively.

1. The DS is zero if and only if ρ is CQ. The DS is zero if and only if there is a CA

such that Q(ρ,CAρC
†
A) = 1, which is the case if and only if ρ = CAρC

†
A. Since

CA has a non-degenerate spectrum, this is equivalent to require that ρ and H�
A

are diagonal in the same basis, i.e. ρ is CQ.
2. The DS is invariant under local unitary transformations. First we note that

(UρU †)s = UρsU † for any unitary U . Using this property and the cyclicity of
the trace, it follows that Q is invariant under local unitaries on B. For local
unitaries on A, we can use the same property and absorb the transformation in
the Hamiltonian, since maximising over U †

AH
�
A UA is equivalent to maximising

over H�
A .
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3. The DS is contractive under CPTP maps on the unchanged party B. Since any
local map�B commutes with the transformation on A induced by H�

A ,�B can be
absorbed in the POVM.Theminimum error probability is obtained byminimising
the error probability over all POVMs on ρ⊗n

AB . Absorbing the extra local map �B

can only increase the error probability, and hence Q is monotonically increasing:
D�

A (�B(ρAB)) ≤ D�
A (ρAB).

4. The DS reduces to an entanglement monotone for pure states. If |ψ〉AB is trans-
formed to |φ〉AB under LOCC operations, we can write

|φ〉〈φ|AB =
∑

i

Mi,AVi,B |ψ〉〈ψ|ABM†
i,AV

†
i,B, (30)

where {Mi,A} are Kraus operators on A and {Vi,B} are unitaries on B. One has
Mi,AVi,B |ψ〉AB = √

pi |φ〉AB . Similarly to the case of the LQU, one can prove that
maximising over Hamiltonians on A is equivalent to maximising over Hamilto-
nians on B. Assume that H̃�

B achieves that maximum. Then one obtains

D�
A (|φ〉〈φ|AB ) = 1 − max

H�
B

∣
∣
∣
∣〈φ|ei H�

B |φ〉AB
∣
∣
∣
∣

2
= 1 −

∑

i

1

pi
max
H�
B

∣
∣
∣
∣〈ψ|M†

i,Ae
i H�

B Mi,A|ψ〉AB
∣
∣
∣
∣

2

≤ 1 −
∑

i

1

pi

∣
∣
∣
∣〈ψ|M†

i,Ae
i H̃�

B Mi,A|ψ〉AB
∣
∣
∣
∣

2

≤ 1 −
∣
∣
∣
∣
∣
∣
〈ψ|

∑

i

M†
i,AMi,ae

i H�
B |ψ〉AB

∣
∣
∣
∣
∣
∣

2

= 1 −
∣
∣
∣
∣〈ψ|ei H̃�

B |ψ〉AB
∣
∣
∣
∣

2
= D�

A (|ψ〉〈ψ|AB ). (31)

Note that in the first line Vi,B and V †
i,B are included into the maximisation over

H�
B ; in the second line, we rely on the fact that themaximumof a function is lower

bounded by the function evaluated at any given point, and the Cauchy–Schwarz
inequality.

3.4.2 Interplay with the Local Quantum Uncertainty

The DS is related to the LQU. To show it, we remind that, for any given density
matrix ρ and Hermitian operator O , the following result holds:

min
0≤s≤1

tr[ρs Oρ1−s O] = tr[ρ1/2Oρ1/2O]. (32)

This is clear by writing ρ in terms of its eigenvectors {|ψi 〉} and by employing a
non-increasing order for the eigenvalues λi :
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min
0≤s≤1

tr[ρs Oρ1−s O] =
∑

i

λi |〈ψi |O|ψi 〉|2 + min
0≤s≤1

∑

i<i ′
(λs

i λ
1−s
i ′ + λs

i ′λ
1−s
i )|〈ψi |O|ψ′

i 〉|2.
(33)

It is then easy to see that for each term in the second sum the minimum is achieved
for s = 1/2, which proves the result. The link between LQU and DS is manifest by
Taylor expanding eiH

�
A with respect to �:

D�
A (ρAB) = 1 − max

{H�
A }

min
0≤s≤1

tr[ρsABeiH
�
A ρ1−s

AB e
−i H�

A ]

= −max
{H�

A }
min
0≤s≤1

tr[ρsAB H�
A ρ1−s

AB H�
A − H�

A ρABH
�
A ] + O(�3)

= −max
{H�

A }
tr[ρ1/2ABH

�
A ρ

1/2
ABH

�
A − H�

A ρABH
�
A ] + O(�3)

= min
{H�

A }
tr[H�

A ρABH
�
A − ρ

1/2
ABH

�
A ρ

1/2
ABH

�
A ] + O(�3)

= U�
A (ρAB) + O(�3). (34)

where we have used Eq. (32) in the third line.
We observe that for small � the LQU can be interpreted as the DS in a discrim-

ination task. In this statement, small � means that the local transformations should
be close to the identity, i.e. only small perturbations are allowed.

3.4.3 Computable Expressions of the DS

In Ref. [20], the authors present expressions for the DS in a few special cases. We
only give details about the derivation of the formula for qubit-qudit states, in analogy
with the LQU, but other cases are mentioned for the sake of completeness.

First, let us consider pure bipartite states |ψ〉AB . The Schmidt decomposition is

given by |ψ〉AB = ∑min{dA,dB }
i=1

√
σi |i〉A|i〉B with Schmidt coefficients {σi }. Then, the

DS is given by the following expression:

D�
A (|ψ〉〈ψ|AB) = 1 − max

πα

∣
∣
∣
∣
∣

∑

k

σπα[k]eiλk

∣
∣
∣
∣
∣

2

. (35)

wherewe nowhave amaximisation over the group of permutationsπα on the Schmidt
coefficients {σi }, instead of the maximisation over all Hamiltonians H�

A with spec-
trum � (which is an infinite set). If dA > dB , the set of Schmidt coefficients should
be extended with zeros to obtain a set of size dA.

We mentioned before that it is tempting to hypothesise that the DS obtained by
fixing an harmonic spectrumwould yield themost accuratemeasure for non-classical
correlations. Even though it is not clear if this is true, it explains why it is interesting
to calculate the expression of the DS in such a case. By defining the fundamental
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frequency ω := |λi − λi+1| ≤ 2π/dA, we can further simplify the previous formula.
The permutationwhichmaximises the second term gives the following values:σ1=0,
σ2 = ω, σ3 = −ω, σ4 = 2ω, σ5 = −2ω, etcetera. The resulting expression for the
DS is then

D�
A (|ψ〉〈ψ|AB) = 1 −

∣
∣
∣
∣
∣

[(dA+1)/2]−1∑

n=0

σ2n+1e
inω +

dA−[(dA+1)/2]∑

n=1

σ2ne
inω

∣
∣
∣
∣
∣

2

. (36)

The precise details of this expression are not very relevant to our discussion, but it
is noteworthy that we have managed to get rid of the optimisation over the unitaries.

We now analyse the qubit-qudit case (where the subsystem A is the qubit). TheDS
is invariant under constant shifts, thus we can parametrise the spectrum as {−λ,λ}.
The Hamiltonian takes the form H�

A = λn · σA. For conciseness of notation, we
introduce σA,n := n · σA. The quantum Chernoff bound then reads

Q(ρ1, ρ2) = min
0≤s≤1

tr
[
ρsABe

iλσA,nρ1−s
AB e

−iλσA,n
]

= cos2 λ + min
0≤s≤1

tr[ρsABσA,nρ
1−s
AB σA,n] sin2 λ

= cos2 λ + tr[ρ1/2ABσA,nρ
1/2
ABσA,n] sin2 λ. (37)

Using this expression, we finally get the formula

D�
A (ρAB) = min

n

(
1 − tr[ρ1/2ABσA,nρ

1/2
ABσA,n]

)
sin2 λ

= U�
A (ρAB)

sin2 λ

λ2
. (38)

To summarise, there is a proportionality relation between the DS and the LQU for
qubit-qudit systems, which turns out to be an equality when λ approaches zero, as
sin2 λ

λ2 → 1.

4 Conclusion

We here reviewed recent works providing a metrological interpretation to non-
classical correlations. Our understanding of an elusive, information-theoretic con-
cept has been shaped by linking it to experimentally testable effects. State-observable
complementarity implies genuinequantumuncertainty. Suchuncertainty corresponds
to sensitivity to a quantum evolution. The state rate of change triggers measurement
precision of a complementary property. The peculiar asymmetry of non-classical
correlations finds an operational interpretation in metrology, when such an argu-
ment is extended to compound systems. If and only if the state of a bipartite sys-
tem shows non-classical correlations, Quantum Mechanics dictates sensitivity to
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local perturbations, which translates into a guaranteed minimum performance in
paradigmatic scenarios as parameter estimation and state discrimination. The LQU,
the IP and the DS are parent discord-like measures which capture this distinctive
feature of quantum states. An interesting question is to establish if the metrologic
measures of discord, which have been introduced to catch bipartite statistical depen-
dence, can be extended to quantify multipartite correlations.We are actively working
on the problem and we are able to anticipate that the answer is positive, while a com-
plete study on the topic will be published in the near future. Such extension relies
on employing non-unitary evolutions, where the information is imprinted by noisy
channels. The scenario will provide an operational interpreation of multipartite non-
classical correlations in more realistic scenarios, taking in account non-negligible
errors in both state and gate preparations, and the presence of an environment.

Finally, we would like to point the Reader to further results on metrological
measures of non-classical correlations. An experimental comparison of classical and
quantum resources in interferometric phase estimation has been implemented in a
room temperature NMR (Nuclear Magnetic Resonance) system [18]. Extensions of
the reported results to continuous variable systems have been obtained [24–26].Other
geometric measures of non-classical correlations inspired bymetrological tasks have
also been proposed [27, 28].
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Part II
Operational Interpretations

and Applications



Why Should We Care About
Quantum Discord?

Aharon Brodutch and Daniel R. Terno

Abstract Entanglement is a central feature of quantum theory. Mathematical prop-
erties and physical applications of pure state entanglement make it a template to
study quantum correlations. However, an extension of entanglement measures to
mixed states in terms of separability does not always correspond to all the opera-
tional aspects. Quantum discordmeasures allow an alternative way to extend the idea
of quantum correlations tomixed states. Inmany cases these extensions aremotivated
by physical scenarios and quantum information protocols. In this chapter we discuss
several settings involving correlated quantum systems, ranging fromdistributed gates
to detectors testing quantumfields. In each settingwe show how entanglement fails to
capture the relevant features of the correlated system, and discuss the role of discord
as a possible alternative.

1 Introduction

Entanglement has been hailed as the quintessential feature of quantum mechanics.
In Schrödinger’s words it is not “one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of thought”
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[1]. While its role as the only characteristic trait of quantum mechanics has been
challenged, it is clear that pure bipartite entangled states play an essential role in
uniquely quantum phenomena such as Bell non-locality, steering and teleportation
[2, 3]. These phenomena are not restricted to pure bipartite states, and their relation
to entanglement becomes less trivial as we move to mixed states or ensembles of
pure states. For example, it is known that not all entangled states are Bell nonlocal,
steerable or useful for teleportation. Moreover, the quantification of entanglement
becomes more complicated as we step away from the pure bipartite scenario where
all measures of entanglement are functions of the spectrum of the reduced states [2].
For mixed states there is a multitude of entanglement measures, matching different
information processing tasks and, while all vanish on separable states, some vanish
for specific entangled states. A well known example is the distillable entanglement
which vanishes for bound entangled states [2, 4].

The fact that somemixed entangled states do not always exhibit properties that are
directly related to the entanglement in pure states is the first hint that it does not fully
capture the departure from classicality. The second hint in this direction is that some
separable mixed states exhibit properties that are associated with entanglement for
pure states. In pure states, entanglement and classical correlation are synonymous
and some properties may be mistakenly identified with the former instead of the
latter. However, a number of phenomena are related to correlations on the one hand,
but seem to be outside the scope of classical correlations on the other, can be observed
with separablemixed states. It has been argued that entanglement is only a special case
ofmore general types of quantum correlations. These ideas have led to a great amount
of work in trying to quantify these quantum correlations using various measures that
have become known under the collective name of quantum discord (see, e.g., [5] and
references therein).1

In this chapter we present an overview of some scenarios where quantum corre-
lations in bipartite systems are not synonymous with entanglement. We begin with a
brief discussion of entanglement in pure and mixed states, pointing out some exam-
ples where entangled mixed states do not have all the properties associated with
entangled pure states. We continue with a brief introduction to discord, focusing on
one particular discord measure. We then move on to three examples of phenomena
that involve quantum correlations and are in some sense related to measurement
disturbance. In the first example, we examine the ability to distinguish between
orthogonal pure bipartite product states. In the second example, we discuss more
general scenarios where (the lack of) entanglement in the input and output states
fails to indicate the non-local nature of a quantum protocol. In the final example we
consider a scenario where discord is a better figure of merit than entanglement for
capturing a non-classical nature of the physical system.

1In some cases quantum correlations and quantum discord have been used interchangeably, in other
cases quantum correlations have been used as a synonym for entanglement. Here we use the term
discord when referring to discord-like quantities and quantum correlationswhen referring to amore
operational aspect which may or may not relate to either discord and/or entanglement.
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2 Pure State Entanglement, Mixed State Entanglement
and Discord

2.1 Mathematical Preliminaries and Notation

We consider quantum states that are shared between two distant parties Alice and
Bob.2 Subscripts (e.g., A, B, AB) denote subsytems: for example we will consider
a bipartite state ρAB whose local reduced states ρA = trBρAB and ρB = trBρAB are
controlled by Alice and Bob, respectively. Here trK means a partial trace over the
subsystem K .

A classical probability distribution represented by the set of probabilities {pk}
can be encoded in the quantum state

∑
k pk |k〉〈k|, where |k〉 are the normalized

orthogonal computational basis states. If the probability distribution is bipartite it
can be encoded in the state

∑
k,l pkl |k〉〈k|A ⊗ |k〉〈k|B .

We use entropic measures to quantify most of our information theoretic quantities
[4, 6, 7]. These will be based on the von Neumann entropy, that reduces to the
(classical) Shannon entropywhen the states represent classical distributions. The von
Neumannentropyof a stateρ is defined as S(ρ) = −trρ log ρ (all logarithmsusedhere
are base 2). It is non-negative and vanishes only for a pure state S(|ψ〉〈ψ|) = 0. The
state of maximal entropy on a d dimensional system is the d dimensional maximally
mixed state Id , S(Id) = log d.

An entropic measure of correlations in a quantum state ρ is given by the quantum
mutual information

I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (1)

which is one particular way to extend the corresponding classical quantity [4, 5]. The
original motivation for discord was based on the difference between various ways
of extending the classical mutual information [7] to quantum states. A reader who is
unfamiliar with the original motivation for discord is encouraged to read the original
papers [8, 9] or one of the reviews on the subject [5, 10].

Fidelity [4] is a measure of closeness between quantum states. It is defined as
F(ρ,σ) = tr

√√
ρσ

√
ρ and has the following properties:

F(|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|, (2a)

F(ρ1 ⊗ σ1, ρ2 ⊗ σ2) = F(ρ1, ρ2)F(σ1σ2), (2b)

F(ρ,σ) = F(UρU †,UσU †), For all unitaries U (2c)

F(ρ,σ) ≤ F(�(ρ),�(σ)), For all quantum channels �. (2d)

2Weassume that the identity of the subsystems is unambiguous. The extension to systemsof identical
particles (where the position wave-function has to be accounted for explicitly) is mentioned in
Sect. 6.
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In the last equation a quantum channel � is represented by a completely positive
trace preserving map [4].

2.2 Pure State Entanglement and LOCC

A pure bipartite state |ψ〉AB ∈ HA ⊗ HB can always be brought into the Schmidt
form |ψ〉AB = ∑

k λk |αk〉A|βk〉B where λk are unique positive numbers (the Schmidt
coefficients), and {|αk〉A}, {|βk〉B} are complete orthogonal bases for HA and HB

respectively. The state |ψ〉AB is separable (and also a product state) if and only if it
can be decomposed as |ψ〉AB = |α1〉A|β1〉B , i.e. it only has one non-zero Schmidt
coefficient. Pure states that are not separable are called entangled.

The amount of entanglement in a pure state can be quantified in various ways that
depend only on the Schmidt coefficients [2, 4]. Noting that ρA = ∑

k λ2
k |αk〉〈αk | and

ρB = ∑
k λ2

k |βk〉〈βk | we see that the local states contain all the relevant information
about entanglement. Direct product states are parameterized by strictly fewer para-
meters than arbitrary pure states in the same bipartite Hilbert space. Consequently,
the direct product states are of measure zero in the set of all pure states.

A pure state can be described as a state of the maximal knowledge, i.e. zero
entropy. If a pure state is entangled, its reduced states are no longer in such a state of
maximal knowledge, i.e. the local entropies are non-zero. A pure state is maximally
entangled when the knowledge about the local states is minimal, i.e. these states
are completely mixed and thus have maximal entropy. In general the entanglement
entropy

E(|ψ〉〈ψ|AB) = S(ρA) = S(ρB), (3)

is a preferred measure of a pure bipartite entanglement [2]. It equals to the Shannon
entropy of the Schmidt coefficients. Since the entropy of a pure state is zero, the
mutual information is I (|ψ〉〈ψ|AB) = S(ρA) + S(ρB) = 2S(ρA) = 2E(|ψ〉〈ψ|AB).

To further study the properties of pure entangled states we will describe their role
in two operational tasks: Bell inequality violations and distillation. The Bell-type
experiment can be used to verify that a given state shared by Alice and Bob does not
have a local realistic description in terms of hidden variables [3, 11]. A state that
violates a Bell inequality is known as Bell non-local. A pure state is Bell non-local
if and only if it is entangled [3].

In theBell-type experimentsAlice andBob cannot communicate. Scenarioswhere
Alice and Bob can perform arbitrary local quantum operations on their subsystems
and communicate classically, but cannot send quantum information to each other
belong to the paradigm of local operations and classical communications (LOCC).
If Alice and Bob share some maximally entangled pairs they can use LOCC to
perform tasks that cannot be performed locally, e.g. by using teleportation to send
quantum information to each other. Consequently, if they share an unlimited supply
of maximally entangled pairs they can perform any quantum operation in a finite
amount of time. If, on the other hand, they have a finite amount of partially entangled
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pairs, they can use LOCC to distill them into maximally entangled pairs and use
them for teleportation or other tasks. A supply of entangled (but not maximally
entangled) pure states can always be distilled into a smaller supply of states that are
more entangled [4].

Before moving on tomixed states, we recap a few properties of pure state bipartite
entanglement that (as shown below) do not carry over to mixed states:

• All separable pure states are product states (correlations ⇔ entanglement).
• Local mixed states imply a global entangled pure state (and the local states have
the same spectrum).

• Pure product states are zero measure in the set of all pure states.
• All pure entangled states are distillable and can be used to violate a Bell inequality.

2.3 Mixed State Entanglement

A generic state ρAB (i.e. a trace 1 positive-semidefinite operator on HA ⊗ HB) is a
product state if it can be represented as ρA ⊗ ρB . It is a separable state if it can be
decomposed as

ρAB =
∑

k

αkτ
k
A ⊗ ωk

B (4)

(here {τ k
A} and {ωk

B} are sets of local states and {αk} is a set of probabilities). If a
state is not separable it is entangled.

Unlike pure states, not all separable states are product states. If a state is not a
product state, it is correlated as can be verified using mutual information and the fact
that S(ρAB) = S(ρA) + S(ρB) ⇔ ρAB = ρA ⊗ ρB . If a mixed state is correlated it
is not necessarily entangled, but if it is entangled it must be correlated. It is easy to
verify whether a state is correlated or not, but it is usually difficult to verify whether
it is separable or entangled.

The set of separable mixed states is dense. The simplest way to see this is by
showing that for small enough p > 0 the states of the form

ρp,ψ = p|ψ〉〈ψ|AB + (1 − p)

4
11n (5)

(where 11n is the n qubit identity) are separable for any normalized |ψ〉AB . A state of
this type is called pseudo pure and is a natural state in various implementations of
quantum computing.

One interesting family of bipartite pseudo pure states is the family of two
qubit Werner states [2, 12]. Denote the maximally entangled singlet state |�−〉 =
1√
2
[|01〉 − |10〉]. The two-qubit Werner state is

ρW,p = p|�−〉〈�−| + (1 − p)

4
112 (6)
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We can think of this ρW,p as a depolarized singlet state. This state is entangled for
p > 1/3 [2], but not Bell non-local for p < 0.66 [13].

Another difference from pure states is that not all entangled mixed states can be
distilled. States that are entangled but cannot be distilled are called bound entangled.
There are no bound entangled states for a pair of qubits or a qubit and a qutrit. A pair
of qutrits provides a simple example using the so-called tile basis and a stopper tile
[14]. The tile basis is formed by the orthogonal basis states

|ψ 1
2
〉 = 1√

2
|0〉 ⊗ (|0〉 ± |1〉), (7a)

|ψ 3
4
〉 = 1√

2
|2〉 ⊗ (|1〉 ± |2〉), (7b)

|ψ5〉 = |1〉 ⊗ |1〉, (7c)

|ψ 6
7
〉 = 1√

2

(|0〉 ± |1〉) ⊗ |2〉, (7d)

|ψ 8
9
〉 = 1√

2

(|1〉 ± |2〉) ⊗ |0〉, (7e)

and the stopper tile

|ψS〉 = 1
3

(|0〉 + |1〉 + |2〉] ⊗ [|0〉 + |1〉 + |2〉). (8)

It is possible to show that the state

ρAB = 1
4

(
119 −

∑

i∈{2,4,7,9,S}
|ψi 〉〈ψi |

)
, (9)

is bound entangled [14].
The fact that some mixed entangled states are not distillable and some cannot be

used to violate aBell inequality suggests that at least someof the properties associated
with pure state entanglement are not shared by all (mixed) entangled states. In the
following we discuss the opposite scenario, i.e. situations where a property that we
would intuitively associate with entangled states carries over to correlated separable
states.

2.4 Discord

The idea of quantifying quantum correlation beyond entanglement originally
appeared in the studies of decoherence [15]. Within this framework it was noted
that entanglement is not sufficient for capturing all quantum correlations and that
some separable states retain some quantum properties. At around the same time,
a number of different versions of quantum discord and a similar idea called the
information deficit were used to quantify non-classicality in various scenarios (for a
review see [5]). These quantities usually vanish for one of three families of classical
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states, often called Quantum-Classical, Classical-Quantum and Classical-Classical
(although a few vanish for more general families such as product-basis states). A
state ρAB is called Classical-Quantum if there is a basis on {|a〉} forHA and a set of
states {τ a} on HB such that

ρAB =
∑

a

αa|a〉〈a| ⊗ τ a . (10)

where αa are probabilities that sum up to 1. The state is Quantum-Classical if it
has the same structure with A and B swapped and it is Classical-Classical if it
is both Classical-Quantum and Quantum-Classical. These families are all measure
zero in the set of all states. Various versions of discord can be described as different
ways of quantifying the ‘distance’ from the desired family of classical states. One
way to introduce them is by calculating the difference between the quantum mutual
information I (ρAB) that is given by Eq. (1) and different measurement-dependent
quantum generalizations of the classically equivalent expression [7–9],

J�A := S(ρB) − S(ρB |�A), (11)

where the conditional entropy depends on the measurement on A that is described
by a positive operator-valued measure [4] �A via

S(ρB |�A) =
∑

a

pa S(ρB|a), (12)

where the probability pa of the outcome a is pa = trρA�a , and ρB|a is the state of B
conditioned on obtaining the outcome a. Different choices of optimization condition
that determines the measurement selection lead to different versions of discord [5],

D(ρAB) = I (ρAB) − J (ρAB). (13)

In this work we focus on a specific version of discord which we call D3 [16]. It
has the advantage of being easy to calculate and providing an upper bound on some
other discord measures. Most importantly it vanishes if and only if the states are the
Classical-Quantum states of Eq. (10).

Given a state ρAB with marginals ρA and ρB we define the local basis {|la〉} to
be the basis where ρA is diagonal (note that this is not well defined when ρA has a
degenerate spectrum). The dephasing channel �l is defined as3

�l(ρAB) =
∑

a

|la〉〈la|ρAB |la〉〈la| (14)

The quantity D3 is the loss of correlations under this channel

3It should be noted that this channel depends on the state, and is therefore not linear [17].
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D3(ρAB) = I (ρAB) − I [�l(ρAB)] (15)

As a simple example we can consider the Werner state (6). If it was classically
correlated, the correlations would, in principle, be immune to decoherence, however
it can easily be verified that the mutual information for a Werner state gets degraded
when one of the qubits is decohered. In this sense the Werner state is always (for
p > 0) non-classically correlated. This is in-fact true for any pseudo pure state with
|ψ〉 entangled.

3 Local Distinguishability and the Failure of Discord

One of the first hints that separability does not imply classicality in the context of
correlations was the discovery of non-locality without entanglement [14]. Consider a
bipartite system of two qutrits and the set of nine orthonormal basis states of Eq. (7).
Imagine the following task: Alice and Bob are given one of these orthogonal states
and are asked to identify which one it is, they can communicate but cannot use any
shared entanglement. Despite the fact that these are orthogonal product states the
task cannot be completed deterministically. Any LOCC protocol used to identify
out one of these nine states will misidentify some states with some probability. In
other words, any protocol that can perfectly identify all the nine states must include
quantum communication and is in that sense non-local. We can also say that these
states are non-classically correlated although they are separable.

Now, let us assume that the a priori probability for each of the nine states is 1/9,
in such a case we can construct a density matrix ρAB that represents Alice and Bob’s
knowledge about the unknown state. Since these states are an orthonormal basis,
their equal mixture is the maximally mixed state, ρAB = 119. In that sense, we can
see that the non-classical correlations in this scenario cannot be captured by discord
in the average state since the maximally mixed state is not correlated [16]. A natural
approach for correcting this problem is to quantify quantum correlations in a different
way for ensembles. Here we will consider a simple definition of classical ensembles
which is motivated by other approaches [18, 19], but requires fewer formalities.

An ensemble {ρiAB} is classical if and only if for any choice of non-negative
coefficients {αi }, such that

∑
i αi = 1 the state ρ

{αi }
AB = ∑

i αiρ
i
AB is classical. It is

clear that the ensemble {|ψi 〉} is not classical in this sense. However, neither is an
ensemble that consists of two orthogonal maximally entangled pure states [16]. Now
on the one hand an ensemble of two orthogonal maximally entangled states is not
a classical ensemble (by the above definition), on the other hand, it is well known
that any two orthogonal states can be distinguished using LOCC. Consequently, the
notion of non-classically correlated ensembles which we described above does not
seem to play a role in locally distinguishing between orthogonal states.
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4 Restricted Distributed Gates

The process of identifying an unknown state |φk〉AB from the set of orthogonal
states {|φi 〉} can be described as an isometry that takes the state |φi 〉 from the space
HA ⊗ HB to the state |i〉 ⊗ |i〉 on a different spaceHA′ ⊗ HB ′ , where the orthogonal
states |i〉 are quantum pointers to the ‘classical’ labels. The restricted, distributed
gates paradigm [20, 21] is set up along the same lines but with different restrictions.

Consider a unitary operation G(ρ) = UρU † (a quantum gate) and a subset of
states S = {ρiAB}. Now consider the family of channels GS defined through

GS(ρ
i
AB) = G(ρiAB), ∀ρiAB ∈ S (16)

We call such a channel GS a distributed gate if it can be implemented using LOCC.
There are situations where GS cannot be distributed without shared entanglement
resources, even when both S and S

′ = {G(ρiAB)|ρiAB ∈ S} contain only separable
states. This restriction holds even when the set S is very small —- in fact it can
contain only two states [20, 21].4

We begin with the simplest case [20] where S = {|ψ1〉, |ψ2〉} contains two non-
orthogonal pure product states |ψi 〉 = |ai 〉|bi 〉, 〈ψ1|ψ2〉 �= 0. In such a case GS can
be implemented using LOCC if and only if GS = G ′

A ⊗ G ′
B , where G ′

A and G ′
B are

unitary gates. In other words ifGS changes correlations (classical or quantum) for any
convex combination of the two states, ρAB = α|ψ1〉〈ψ1| + (1 − α)|ψ2〉〈ψ2|, then it
cannot be implemented using LOCC.

The proof of this statement is as follows. Denote |ψ f
i 〉〈ψ f

i | = G(|ψi 〉〈ψi |). The
execution by LOCC of a unitary gate implies that the output states are pure and
separable,

|ψ f
i 〉 = |a f

i 〉|b f
i 〉, (17)

as well as the states at all intermediate steps [20]. Now, consider the protocol Alice
and Bob need to use to implement the gate.Without loss of generality, we can assume
that the protocol is broken into rounds where one party performs an operation and
sends the classical outcomes of their measurement to the other party. We can also
assume that the classical measurement results are recorded as quantum states. Since
fidelity is non-decreasing under quantum channels, Eq. (2d), it also cannot increase
at any point due to unitarity of G which implies it is unchanged at the end of the
process.

Assume that Alice acts first by performing some operation, possibly including a
measurement on her input state that corresponds to a classical message k that she
sends to Bob. When averaged over many implementations of the protocol, it results
in a channel �A. As a result of Eq. (2b) the fidelity

F
(|a1〉〈a1|, |a2〉〈a2|

) = |〈a1|a2〉| = F
(
�A(|a1〉〈a1|),�A(|a2〉〈a2|)

)
, (18)

4Note that if S′ contains only one state and this state is separable then the transformation GS is trivial
in LOCC.



192 A. Brodutch and D.R. Terno

is preserved. Alice’s state is now is either of

�A(|a1〉〈a1|) =
∑

k

pk1|ak1〉〈ak1 | ⊗ |k〉〈k|A′
, (19a)

�A(|a2〉〈a2|) =
∑

k

pk2|ak2〉〈ak2 | ⊗ |k〉〈k|A′
, (19b)

where pki are the probabilities of obtaining the outcome k given the state i = 1, 2,
and the subsystem A′ holds the classical information to be sent to Bob. Since the
pointer states on A′ are orthogonal, the fidelity satisfies

|〈a1|a2〉| = F
(
�A(|a1〉〈a1|),�A(|a2〉〈a2|)

) =
∑

k

√
pk1 p

k
2

∣
∣〈ak1 |ak2〉

∣
∣, (20)

However, since
∑

k

√
pk1 p

k
2 ≤ 1, (21)

Equation (20) cannot be satisfied unless either the probability distributions coincide
(which implies that Alice has no relevant information to send Bob5) and

|〈ak1 |ak2〉
∣
∣ = |〈a1|a2〉|, ∀k, (22)

or there must be some l with

|〈al1|al2〉
∣
∣ > |〈a1|a2〉|. (23)

However, if Alice gets the result l (that she will send to Bob) and then the two parties
proceed with the successful implementation of the protocol, they must determinis-
tically decrease the fidelity in at least one stage on the way to the final state. This
contradicts the non-decreasing of fidelity in quantum channels, Eq. (2d). The conclu-
sion is that Alice gets no useful information during the measurement and has nothing
to send Bob. Consequently the overall transformation must be implemented by local
unitary operations.

In the general case, it can be shown [21] that if S contains only two states: ρ and the
maximally mixed state, then an LOCC GS cannot change the correlations in ρ unless
there is some measurement that leaves ρ invariant. This suggests that the maximally
mixed state may play an important role in increasing the quantum resources required
by a quantum protocol.

5If Alice has no relevant information to send Bob, then by symmetry Bob cannot have any relevant
information to send Alice, and the protocol should not involve any communication.
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5 Discord and Unruh-DeWitt Detectors

Various discord-like quantities were calculated in a number of problems of relativis-
tic quantum information [5, 22]. The scenario we consider below is interesting from
several points of view. The state ρAB of the two detectors that are used to characterize
the vacuum entanglement belongs to the family of the X-states at all orders of the
perturbation theory; the discord D3 is a natural quantity to characterize quantum-
ness of correlations; correlations and discord persist in the region of strictly zero
entanglement.

5.1 The Model

From the point of view of local observers the vacuum state of any quantum field is
entangled, and thus localized vacuum fluctuations are correlated [22]. It was demon-
strated that vacuumcorrelationsmeasured by local inertial observers can, in principle,
violate Bell-type inequalities [23]. Further, it is known that localized particle detec-
tors can extract entanglement form the vacuum state of a quantum field, even while
remaining spacelike separated [24–26].

An Unruh-DeWitt detector is a two-level quantum systems that interacts with (a
realmassless) scalar fieldφ via amonopole coupling [27]. It is a popular tool in analy-
sis of entanglement in quantum fields. The time-dependent interaction Hamiltonian
in the interaction picture is given by

HI (τ ) = λ(τ )
(
ei�τσ+ + e−i�τσ−)

φ [x(τ )] , (24)

where τ is the proper time of the detector, λ (τ ) is a weak time-dependent coupling
parameter that controls the strength and length of the interaction,� is the energy gap
between the ground state |0〉d of the detector and its excited state |1〉d , σ± are SU(2)
ladder operators that act on the state of the detector according to σ+|0〉d = |1〉d ,
σ−|1〉d = |0〉d , (σ±)

2 = 0, and φ (x(τ )) is the field evaluated along the trajectory of
the detector.

It is convenient to parameterize the time evolution by the common coordinate
time t [28]. We express the coupling parameter as λ(t) = ε0ε(t), where ε0 � 1 is
the coupling strength and ε(t) = e−t2/2σ2

is a Gaussian switching function.
Prior to the interaction the detectors had been in their ground states |0〉A and

|0〉B , and the field in the vacuum state |0〉, hence the initial joint state of the two
detectors and field was given by |�〉 = |0〉A|0〉B |0〉. The unitary evolution of the
detectors-field system is given by

U = T̂ e−i
∫
dt[HA(t)+HB (t)], (25)
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where T̂ denotes time ordering and the Hamiltonians HA and HB (that are given by
Eq. (24) each) describe the field interaction with detectors A and B, respectively.

The joint state of the two detectors is ρAB = trφ[U |�〉〈�|U †], where the trace
is over the field degrees of freedom. It is possible to show that [28] at all orders of
perturbation theory the density matrix has the form of an X-state [29]

ρAB =

⎛

⎜
⎜
⎝

r11 0 0 r14e−iξ

0 r22 r23e−iζ 0
0 r23eiζ r22 0

r14eiξ 0 0 r44,

⎞

⎟
⎟
⎠ , (26)

in the basis {|00〉, |01〉, |10〉, |11〉} where |i j〉 = |i〉A| j〉B , and all the coefficients
ri j are positive. Since ρAB is a valid density matrix, the normalization condition∑

i rii = 1, and the following two positivity conditions must be satisfied:

r11r44 ≥ r214, r22r33 ≥ r223. (27)

A useful parametrization of this matrix that explicitly separates the local and
nonlocal quantities is

ρAB =

⎛

⎜
⎜
⎝

1 − A − B + E 0 0 X
0 B − E C 0
0 C∗ A − E 0
X∗ 0 0 E

⎞

⎟
⎟
⎠ , (28)

where A and B are the probabilities that either detector A or B are excited after the
interaction with the field, and the other parameters are functions of the properties
of both detectors. Indeed, tracing out either of the detectors in the state ρAB , say
detector B, results in the state ρA of detector A

ρA =
(
1 − A 0
0 A

)

, (29)

in the basis {|0〉A, |1〉A}.
To simplify the exposition we consider the case of two identical detectors, i.e.

HA = HB , at rest at the distance L from each other in the Minkowski spacetime. We
find [28] the matrix elements of ρAB to be

A = ε20
4π

[
e−σ2�2 − √

πσ� erfc (σ�)
]

+ O(
ε40

)
, (30)

X = ε20
4
√

π

σ

L
ie−σ2�2− L2

4σ2

[

1 + erf

(

i
L

2σ

)]

+ O(
ε40

)
, (31)

C = ε20
4
√

π

σ

L
e− L2

4σ2

(

Im

[

ei�L erf

(

i
L

2σ
+ σ�

)]

− sin (�L)

)

+ O(
ε40

)
, (32)
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E = |X |2 + A2 + 2C2 + O(
ε60

)
, (33)

where erf(z) is the error function, erfc(z) = 1 − erf(z).When the distance L between
detectors increases the total state approaches the direct product of the densitymatrices
of the individual detectors, that is

X → 0, C → 0, E → A2. (34)

5.2 Information-Theoretical Properties of the Joint State

Application of the Peres–Horodecki criterion [2, 4] shows that theX-states are entan-
gled if and only if either of the alternatives

r214 > r22r23, r223 > r11r44, (35)

holds.
For two identical detectors in the state ρAB given in Eq. (28), these conditions are

equivalent to

|X | − A + O(ε40) > 0, |C | − √
E + O(

ε40
)

> 0, (36)

respectively. However, Eqs. (32) and (33) ensure that the second condition is never
satisfied. The concurrence [2, 4]

C = 2max
(
0, |X | − A + O(

ε40
))

, (37)

is non-zero if and only if r14 > r22. This is the area below the red line on Fig. 1.
Concurrence and other entanglement measures are inaccessible by local mea-

surements. Instead we focus on the correlation between the detectors A and B. We
characterize the measurement results by random variables rA and rB , respectively,
with rA, rB ∈ {0, 1}. The correlation between these variables is given by

corrAB = covAB

σAσB
= E − AB√

A(1 − A)B(1 − B)
= |X |2 + 2C2

A
+ O(

ε40
)
, (38)

where covAB := 〈rArB〉 − 〈rA〉〈rB〉 is the covariance between rA and rB and σ2
A =

covAA and σ2
B = covBB are the variances associated with rA and rB .

Equation (36) implies that the state ρAB is not entangled when the local terms
dominate the bi-local effects, i.e. A > |X |. However, the state still contains non-
classical correlations that are characterized by quantum discord.

The measurement on the Unruh-DeWitt detector precisely selects the eigenbasis
of Eq. (29), making the discord D3 the preferred measure. The measurement of A is
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Fig. 1 The discord
D(ρAB)/ε20 as given by
Eq. (41). The domain of zero
entanglement lies above the
red line, but there is no
reason to suspect any
qualitative change in the
physics in the vicinity of this
line
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a standard projective measurement in the eigenbasis of the reduced state ρA, and

D3(ρAB) = S(ρ∗
AB) − S(ρAB), (39)

where S(ρ) is the von Neumann entropy of the state ρ and

ρ∗
AB =

∑

a

ρB|a ⊗ |a〉〈a|, (40)

i.e. ρ∗
AB is the average state of the joint system after the eigenbasis projective mea-

surement on A [16].
The discord D3 stands out for the same reason that the entanglement measures are

unobservable. The optimization procedures required by other measures are unavail-
able: no basis other than the standard {|0〉, |1〉} is accessible. A straightforward cal-
culation shows that

D3(ρAB) = (
A + C

)
log

(
A + C) + (

A − C
)
log

(
A − C

) − 2A log A + O(ε40),
(41)

hence quantum correlations persist for any finite separation of the detectors.

6 Discussion

While entanglement is a central feature of quantum mechanics and a fundamen-
tal resource in quantum information processing, it is not always directly related to
interesting qualitative features of correlated quantum systems, be it open quantum
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systems correlated with the environment or quantum phase transitions in correlated
many body systems. Extensions of the quantitative measures of pure state entangle-
ment into mixed states, while very useful in many scenarios,6 do not capture all the
richness of non-classical correlations. These are the settings were the discord-like
quantities find their use.

The three examples described are only a small sample of the vast work regarding
the role of correlations (quantum or classical) in various non-classical scenarios (see
[5] for a review). In many cases the role of correlations is still being explored, and
in others the relation seems to have failed (see for example the work on correlations
and complete positivity [30–32]).

Another area that generated a burst of interest with respect to quantum correlations
is quantum computing and the difficulty of simulating large quantum systems. It is
known that in general it is possible to efficiently simulate the dyanamics of a many-
body systemwhen the state is pure and the entanglement (asmeasured by the Schmidt
rank over all bipartitions) scales at most logarithmically with the system size at all
times [33]. Similarly it is known that a quantum circuit can be efficiently simulated
(classically) when the correlations between the qubits are restricted to blocks of a
constant size [34]. Both of these results imply that pure state dynamics should be
easy to simulate when the systems are separable. It has, however been speculated
[34] that this is not true formixed states. In general there is growing evidence [35–37]
that mixed state dynamics may be difficult to simulate even when the systems are
separable over most bi-partitions.

One particularly unexplored, but potentially important area, is the study of quan-
tum correlations in the system of identical particles. Entanglement of identical par-
ticles, particularly in many-body systems [38], has features distinct from that of the
identical particles, and poses more open questions. Discord-like quantities are also
much less understood beyond few-fermion systems [39]. On the other hand, quantum
simulations of many-body system [40], may resolve the problem of the exponential
scaling of resources needed to calculate, e.g., energies of atoms or molecules, with
their size [41]. While correlations seem to be at the root of the requirement for expo-
nential resources, it is unclear how to best quantify the correlations in order to provide
the best figure of merit for the difficulty of simulating the many-body system. This
still remains to be investigated, particularly in light of the classical cumulant-based
methods of approximating many-electron wave functions that raise the possibility of
breaking this exponential wall [41].

It is clear that ideas regarding pure state entanglement do not always carry forward
to mixed state entanglement and that in many cases a more general (and sometimes
more restrictive) class of statesmust be considered. The questionwe should be asking
is therefore notwhy discord? but ratherwhen discord?.We hope that this brief review
further stimulates work in that direction.

6Mixed state entanglement monotones are a particularly good quantities in scenarios where entan-
glement is consumed as a resource.
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Local Broadcasting of Quantum Correlations

Marco Piani

Operations that are trivial in the classical world, like accessing information without
introducing any change or disturbance, or like copying information, become non-
trivial in the quantum world. In this chapter we will discuss several limitations in
the local redistributing correlations, when it comes to dealing with bipartite quantum
states. In particular, we focus on the task of local broadcasting, by discussing relevant
no-go theorems, and by quantifying the non-classicality of correlations in terms of
the degree to which local broadcasting is possible in an approximate fashion.

1 Cloning, Broadcasting, and Local Broadcasting

1.1 Cloning

A key aspect of quantum information, which strongly differentiates it from classical
information, is the inability to freely copy quantum states. Suppose we are given a
quantum system S1 in an unknown state |ψ〉, and that we want to put – equivalently,
prepare – another system S2 (let us say, of similar physical nature, and initially in
some fiducial state |0〉) in the same state, without changing the state of the system
that was given to us. Thinking in terms of a unitary evolution U , what we want to
accomplish is the following:

U |ψ〉S1 |0〉S2 |0〉E = |ψ〉S1 |ψ〉S2 |ξψ〉E , (1)
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where E is an ancillary system that we may want to use in the process, initially
prepared in some fiducial state |0〉E independent of |ψ〉 and ending up in a state |ξψ〉,
which potentially depends on |ψ〉. Consider now two known states |ψ〉 and |ψ′〉, for
both of which we assume (1) to hold for the same unitary U . By taking the inner
product of the left-hand and of the right-hand sides of the two occurrencies (one for
ψ, and one for ψ′) of (1), and using the fact that U preserves inner products, we
arrive at the relation

〈ψ′|ψ〉 = 〈ψ′|ψ〉2〈ξψ′ |ξψ〉. (2)

Given that the modulus of the inner product of two normalized vector states is always
less or equal to 1, the latter relation can be satisfied only if |〈ψ′|ψ〉| is either 0 (ψ and
ψ′ are orthogonal) or 1 (ψ and ψ′ are the same). This is the content of the no-cloning
theorem [1, 2], which says that, within the quantum formalism, there is no physical
process able to clone pure quantum states that are not orthogonal.

In the general case where one adopts the formalism of density matrices and chan-
nels, the cloning of a state ρ of a system S by means of an S → S1S2 channel Λ

corresponds to the request
Λ[ρS] = ρS1 ⊗ ρS2 , (3)

where the introduction of a system onto which to copy the state and the possibility
of using an ancillary system in the process are already taken into account by the
quantum channel formalism. It is useful to recall that every quantum channel ΛS→S′

from a system S to a system S′ (of potentially different dimensionality) can be seen
as the result of an isometry VS→S′E from S to a combined system S′E , followed by
the tracing out of E :

ΛS→S′ [ρS] = TrE
(
VS→S′EρSV

†
S→S′E

)
(4)

This is known as Stinespring or isometric dilation of quantum channels [3]. In the
case of cloning, the output system S′ consists of two copies of the input system S,
that is, S′ = S1S2.

Consider the fidelity between two states ρ and σ [4],

F(ρ,σ) := Tr

(√√
ρσ

√
ρ

)
= ‖√ρ

√
σ‖1. (5)

In the rightmost expression, ‖ · ‖1 indicates the 1-norm (also called trace norm),
‖X‖1 := Tr

√
XX† = Tr

√
X†X . Such an expression showsexplicitly that thefidelity

is symmetric in ρ and σ. The fidelity satisfies 0 ≤ F(ρ,σ) ≤ 1, with F(ρ,σ) = 0 if
and only ifρ andσ are orthogonal, and F(ρ,σ) = 1 if and only ifρ = σ. Furthermore,
it is multiplicative on tensor states,

F(ρ ⊗ ρ′,σ ⊗ σ′) = F(ρ,σ)F(ρ′,σ′), (6)
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and it is monotone under quantum channels, i.e.,

F(Γ [ρ], Γ [σ]) ≥ F(ρ,σ),

for any pair of states ρ,σ and any quantum channel Γ . Suppose now that ρ and ρ′
can each be cloned by the action of the same Λ. Then we have

F(ρ, ρ′) ≤ F(Λ[ρ],Λ[ρ′]) = F(ρ ⊗ ρ, ρ′ ⊗ ρ′) = F(ρ, ρ′)F(ρ, ρ′). (7)

The inequality is due to the monotonicity of the fidelity under quantum channels;
the first equality is just the hypothesis that Λ is able to clone both ρ and ρ′; the
second equality is due to the multiplicativity of fidelity on tensor states. Since 0 ≤
F(ρ, ρ′) ≤ 1, Eq. (7) can hold only in two situations: either F(ρ, ρ′) = 0 (the states
are orthogonal) or F(ρ, ρ′) = 1 (the two states are actually the same state). Notice
that in both latter circumstances the two states commute, [ρ, ρ′] = 0, and they do
so in a trivial way. Thus, we find that, when it comes to cloning, the conditions for
it to be possible do not vary when moving from pure states to the consideration of
general mixed states.

1.2 Broadcasting

In the general framework of density operators, though, one can relax the condition of
cloning to that of ‘broadcasting’, for which we only require that ρ̃S1S2 = ΛS→S1S2 [ρS]
is such that its marginals ρ̃S1 = TrS2(ρ̃S1S2) and ρ̃S2 = TrS1(ρ̃S1S2) satisfy

ρ̃S1 = ρ̃S2 = ρS. (8)

Thismeans thatwe require that ‘having two copies ofρ’ is only achieved at the level of
reduced states of the output systems, and the copies are not necessarily independent,
that is, we allow ρ̃S1S2 �= ρ̃S1 ⊗ ρ̃S1 . It should be clear that mixed density matrices
that are the convex combinations of a fixed set of orthonormal pure states, can be
broadcast in the above sense. Indeed, for any fixed set {|ψi 〉} of states respecting
|〈ψi |ψ j 〉| = δi j , there is a channel Λ such that

Λ

[∑
i

pi |ψi 〉〈ψi |S
]

=
∑
i

pi |ψi 〉〈ψi |S1 ⊗ |ψi 〉〈ψi |S2 , (9)

for any any probability distribution {pi }. Indeed, it is enough to consider a channel
Λ that clones the orthogonal pure states {|ψi 〉}—something we well know to be
possible—and to exploit the linearity of the action of a channel. One immediately
checks that the state on the right-hand side of (9) is such that the condition (8)
is satisfied with respect to ρS = ∑

i pi |ψi 〉〈ψi |S . What is less trivial is that this is
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the only case where broadcasting of mixed quantum states is possible; this fact is
captured by the no-broadcasting theorem [5].

Theorem 1 Two mixed states ρ and ρ′ can be broadcast simultaneously if and only
if they admit a spectral decomposition with the same eigenvectors, that is, if and only
if they commute, [ρ, ρ′] = 0.

Notice that, this theorem is immediately extended to a collection of states, since
pairwise commutation of Hermitian operators implies joint commutation.

1.3 Local Broadcasting

It is worth stressing that, for a fixed and known state ρ, there is no problem with
‘cloning’, as knowing the state allows one to create as many copies of it as one
wants. Nonetheless, limitations kick in again even for a single state if we consider
restrictions on the operations, like allowing only local operations in a distributed
setting. Then, the broadcasting of a single state of a distributed system cannot be
performed arbitrarily. For example, consider the case where Alice and Bob would
like to clone the maximally entangled state |ψ+〉AB = 1√

2
(|00〉AB + |11〉AB). Notice

that, since we are considering a pure state, we are dealing with actual cloning, not
with broadcasting, that is, the target state is composed of independent copies. If Alice
and Bob could use global operations, with no limit on what they can do across their
laboratories, then Alice and Bob could certainly produce two copies of |ψ+〉AB—
even from scratch, without using the fact that they shared one copy of the state to
begin. If instead they can only implement fully local quantum channels of the form
ΛAB = ΛA ⊗ ΛB , then they cannot transform one copy of |ψ+〉 into two copies of it,
because they cannot increase the entanglement they share. Actually, the task would
be impossible even if they were allowed to communicate classically, that is, allowed
to apply Local Operations aided by Classical Communication (LOCC) [6].

Is there a general no-go theorem for local broadcasting, that goes beyond consid-
erations related to entanglement? Yes, there is! In Ref. [7] the following was proved.

Theorem 2 Let ρAB be a bipartite state. There exist local maps ΛA→A1A2 and
ΓB→B1B2 such that

ρ̃A1A2B2B2 = (ΛA→A1A2 ⊗ ΓB→B1B2)[ρAB] (10)

satisfies
ρ̃A1B1 = ρ̃A2B2 = ρAB, (11)

if and only if ρAB is classical-classical, that is,

ρAB =
∑
i j

pi j |ai 〉〈ai |A ⊗ |b j 〉〈b j |B, (12)
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with {|ai 〉A} ({|b j 〉B}) some orthonormal basis for A (B).

The previous result can be considered a no-local-broadcasting theorem, more
precisely a two-sided no-local broadcasting theorem, that spells out a limitation
about broadcasting in a distributed setting, when only local operations are allowed.
In the next sections we will prove it, and even prove a one-sided version of it. Before
we do that, we will recall some entropic quantifiers of distinguishability of quantum
states and of correlations, and their relation with quantum recoverability.

2 Entropy, Relative Entropy, Mutual Information,
and Conditional Mutual Information

2.1 Entropy

We begin by recalling the notion of von Neumann entropy [4].

Definition 1 The von Neumann Entropy a quantum state ρ is a quantifier of how
mixed ρ is, and is defined as

S(ρ) := −Tr(ρ log2 ρ). (13)

In the following we will sometimes consider the entropy of subsystems. The
entropy S(X)ρ of a subsystem X of a bipartite system XY in a global state ρ = ρXY

is defined as
S(X)ρ := S(ρX ), (14)

where ρX is the reduced state of X . Notice that, when considering a multipartite
system, we can always think of the bipartition into, on one side, the system of interest
and, on the other side, all the other systems.

2.2 Relative Entropy

Relative entropy is a quantifier of the distinguishability of two quantum states [4].

Definition 2 The relative entropy S(ρ‖σ) between a quantum state ρ and a quantum
state σ is defined as

S(ρ‖σ) =
{
Tr(ρ log2 ρ) − Tr(ρ log2 σ) supp(ρ) ⊆ supp(σ)

+∞ otherwise.
(15)

Notice that the relative entropy is not symmetric in the two arguments ρ and σ. In
the following we will always consider the first case, supp(ρ) ⊆ supp(σ).
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It holds that S(ρ‖σ) ≥ 0, with equality, S(ρ‖σ) = 0, if and only if ρ = σ. Fur-
thermore the relative entropy is monotone under channels, that is,

S(ρ‖σ) ≥ S(Γ [ρ]‖Γ [σ]), (16)

for any pair of states ρ,σ and any quantum channel Γ . The latter relation is often
called the ‘data-processing inequality’ for relative entropy; operationally, it follows
directly form the interpretation of relative entropy as measure of distinguishability
between the two states [8].

2.3 Mutual Information

Mutual information is a quantifier of correlations encoded in a bipartite quantum
state, that can be understood as the relative entropy between the state and the product
of its marginals [4, 8].

Definition 3 The mutual information I (A : B)ρ between systems A and B in a state
ρ = ρAB can be defined as

I (A : B)ρ := S(ρAB‖ρA ⊗ ρB) = S(A)ρ + S(B)ρ − S(AB)ρ. (17)

The rightmost side of (17) comes from computing the relative entropy for the specific
choice of statesρ andσ in (15), andproves thatmutual information is symmetric under
the exchange of A and B. A consequence of the data-processing inequality for relative
entropy is that mutual information is monotone under fully local quantum channels
of the form ΛA→A′ ⊗ ΛB→B ′ : if ρ′ = ρ′

A′B ′ = (ΛA→A′ ⊗ ΛB→B ′)[ρAB], then I (A :
B)ρ′ ≤ I (A : B)ρ. Notice that, since ΛA→A′ ⊗ ΛB→B ′ = (ΛA→A′ ⊗ idB) ◦ (idA ⊗
ΛB→B ′), monotonicity of mutual information under fully local quantum channel
is equivalent to the monotonicity of mutual information under both channels that
act non-trivially only on A, i.e., of the form ΛA→A′ ⊗ idB , and channels that act
non-trivially only on B.

2.4 Conditional Mutual Information

Let us consider a tripartite system ABC in a state ρ = ρABC . It is useful to introduce
the notion of conditional mutual information between A and C , conditioned on B,
defined as [3, 4]

I (A : C |B)ρ := I (A : BC)ρ − I (A : B)ρ

= S(AB)ρ + S(BC)ρ − S(ABC)ρ − S(B)ρ.
(18)
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The last expression for the conditional mutual information in (18) proves that I (A :
C |B)ρ is symmetric between A and C ; indeed, it holds

I (A : C |B)ρ = I (A : BC)ρ − I (A : B)ρ = I (AB : C)ρ − I (C : B)ρ.

Conditionalmutual information I (A : C |B)ρ is non-negative, a fact knownalso as the
strong subadditivity of von Neumann entropy [3, 4], and of the foremost importance
in quantum information theory. It has an interpretation as the amount of correlations,
as measured by mutual information, lost between A and BC when C gets discarded.

Notice that, if we consider the tripartite state ρAB ′E = VB→B ′EρABV
†
B→B ′E , that

arises from the isometry step in the implementation of an arbitrary local channel
ΛB→B ′ , the mutual information between A and B ′E is the same as the mutual infor-
mation between A and B, before the action of the channel. On the other hand,
the mutual information after the action of the channel is the mutual information
between A and B ′, after having discarded E . Thus we see that the fact that con-
ditional mutual information is non-negative is equivalent to the fact that mutual
information is monotone under fully local operations.

3 Quantum Recoverability

The data processing inequality (16) can be refined, and linked to the issue of the
recoverability of the action of the quantum channel Γ on ρ [9, 10].

Theorem 3 Given two states ρ and σ, and a channel Γ , there is a recovery channel
R = Rσ,Γ that depends only on σ and Γ such that

S(ρ||σ) − S(Γ [ρ]‖Γ [σ]) ≥ − log2 F
2(ρ, (R ◦ Γ )[ρ]) (19)

(R ◦ Γ )[σ] = σ. (20)

Notice that the right-hand side of (19) is non-negative, so that indeed (19) consti-
tutes a strengthening of (16). In Theorem3, the recovery channel R always recovers
σ from Γ [σ] perfectly. On the other hand, howwell R recovers ρ from Γ [ρ]—that is,
how large the fidelity F(ρ, (R ◦ Γ )[ρ]) can be—depends on the decrease of the rel-
ative entropy under the action of Γ : the fidelity is large—close to 1—if the decrease
in the relative entropy is small, since (19) is equivalent to

F(ρ, (R ◦ Γ )[ρ]) ≥ 2− 1
2 (S(ρ||σ)−S(Γ [ρ]‖Γ [σ])).

Notice that the state ρ is perfectly recovered by R from Γ [ρ]—that is, the fidelity
of (R ◦ Γ )[ρ]with ρ is equal to 1—if there is no decrease of the relative entropy. The
case of equality in the left-hand side of (19) had already been considered by Petz, who
was able to provide an explicit form for a perfect recovery map RP = RP

σ,Γ [11–13]
for such a case:
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RP
σ,Γ [τ ] = σ1/2Γ †

[
(Γ [σ])−1/2τ (Γ [σ])−1/2

]
σ1/2. (21)

Here Γ † is the map dual to Γ , i.e., such that Tr(X†Γ [Y ]) = Tr((Γ †[X ])†Y ) for all
X,Y . In particular, since Γ is a channel that admits a Kraus decomposition, Γ [Y ] =∑

i KiY K †
i , with Kraus operators Ki , thenΓ † acts as follows:Γ †[X ] = ∑

i K
†
i X Ki .

One verifies that RP is completely positive and trace-preserving, hence a channel. In
the general case covered by Theorem3, which considers a non-vanishing decrease
in the relative entropy, it has been proven that the recovery channel R can be chosen
to have some close connection with the structure of the Petz recovery channel [9,
10], but a discussion of the present status in the study of the expression of the best
recovery map—in the general case of imperfect recovery—goes beyond the scope
of these notes.

3.1 Quantum Recoverability and Mutual Information

Given that mutual information is as a special case of relative entropy, it should be
no surprise that Theorem3 can be specialized to the case of mutual information.
Actually, Theorem3 can be seen as a generalization of a theorem previously derived
by Fawzi and Renner about mutual information [14].

Theorem 4 For any state ρ = ρABC there is a recovery channel RB→BC such that

F(ρABC , RB→BC [ρAB]) ≥ 2− 1
2 I (A:C |B)ρ .

Theorem4 says that, if correlations between A and BC do not decrease too much
because of the loss (that is, the tracing out) of C , then the total state ρABC can be
recovered pretty well by means of a channel RB→BC acting on ρAB ; more in detail,
it is possible to choose such a map so that it only depends on ρBC , and not on the
full state ρABC [15].

4 Proof of the No-Local-Broadcasting Theorem

We will use what we recalled about quantum recoverability in Sect. 3 to prove the
no-local-broadcasting Theorem2; we will do so by leveraging the no-broadcasting
Theorem1. We will use an intermediate step that one could call the no-unilocal-
broadcasting theorem [16, 17].
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4.1 No-Unilocal-Broadcasting

We say that a bipartite state ρAB can be locally broadcast on B if there exists a local
map ΓB→B1B2 such that

ρ̃AB1B2 = (idA ⊗ ΓB→B1B2)[ρAB] (22)

satisfies
ρ̃AB1 = ρ̃AB2 = ρAB . (23)

The following holds [16, 17].

Theorem 5 A bipartite state ρAB can be locally broadcast on B if and only if ρAB

is classical on B, that is,

ρAB =
∑
j

p jρ
A
j ⊗ |b j 〉〈b j |B (24)

with {|b j 〉B} some orthonormal basis for B.
In order to prove Theorem5wewill need the following lemma, for which we provide
a more direct proof than the one given in Ref. [17].

Lemma 1 Any bipartite state ρAB admits a decomposition of the form

ρAB =
∑
i

pi F
A
i ⊗ ρB

i (25)

with {pi } a probability distribution, {F A
i } a collection of linearly independent oper-

ators on A, and ρB
i normalized states on B.

Notice that the operators {F A
i } in (25) are in general non-positive; this must be the

case, because otherwise the lemma would claim that every bipartite state can be
written as the convex combination of tensor products of positive operators, while we
know that the latter applies—by definition—only to unentangled states.

Proof (of Lemma1) We will consider a minimal informationally complete POVM
on A, which means a collection of linearly independent operators {E A

i } that form
a valid POVM, i.e., E A

i ≥ 0,
∑

i E
A
i = IA, and at the same time constitute a basis

for the space of operators on A [18]. A minimal informationally complete POVM
constitutes a quantum frame [19]. We can then consider a dual frame {Fi } to it, that
is, a collection of linearly independent operators such that

X =
∑
i

Tr(Ei X)Fi ∀X.
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Then, one has
ρAB =

∑
i

pi F
A
i ⊗ ρB

i ,

with

ρB
i = 1

pi
TrA(E

A
i ⊗ IBρAB) pi = TrAB(E A

i ⊗ IBρAB). (26)

Notice that the ρB
i ’s are normalized states, thanks to the fact that {Ei } is a POVM;

for the same reason, {pi } is a valid probability distribution.
We are now in the position to prove Theorem5.

Proof (of Theorem5) That a state classical on B can be locally broadcast on B is
trivial. To prove the other direction, let us consider a map ΓB→B1B2 that achieves the
local broadcasting of ρAB on B. We are going to prove that ΓB→B1B2 broadcasts the
individual states ρB

i of (26); then, the no-broadcasting Theorem1 will allow us to
conclude that all the ρB

i can be diagonalized in a same basis, which is equivalent to
saying that ρAB is classical on B.

That ΓB→B1B2 broadcasts the individual states ρB
i is true, since we have (we focus

on the B1 output for concreteness, but the same goes for B2):

TrB2(ΓB→B1B2 [ρB
i ]) = 1

pi
TrAB2((E

A
i ⊗ IB1B2)(idA ⊗ ΓB→B1B2)[ρAB])

= 1

pi
TrA((E

A
i ⊗ IB1)ρ̃AB1)

= 1

pi
TrA((E

A
i ⊗ IB)ρAB)

= ρB
i .

The first equality is due to the definition of conditional state (26), and the fact that
the POVM {E A

i } and the map ΓB→B1B2 operate on different systems; the second and
third equalities are due to the broadcasting conditions. �

4.2 No-Local-Broadcasting

We are now in the position to give a straightforward proof of Theorem2.

Proof (of Theorem2) That a classical-classical state can be locally broadcast is
trivial. To prove the other direction, let us assume that ρAB can be locally broad-
cast, and let ΛA→A1A2 and ΓB→B1B2 be the locally broadcasting maps, so that
ρ̃A1A2B2B2 = (ΛA→A1A2 ⊗ ΓB→B1B2)[ρAB] satisfies the broadcasting conditions (11).
We will prove that ρAB can also be locally broadcast on both A and B, and hence it
is classical on both A and B, which means it is classical-classical. For the sake of
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concreteness we will focus on proving that ρAB can be locally broadcast on B. A
similar proof can be followed to prove classicality on A.

Besides ρAB and ρ̃A1A2B1B2 defined above, it is convenient to consider also

ρ̃′
AB1B2

:= (idA ⊗ ΓB→B1B2)[ρAB].

Notice that it holds

ρ̃A1A2B1B2 = (ΛA→A1A2 ⊗ idB)[ρ̃′
AB1B2

].

The key point is that one goes from ρAB , to ρ̃′
AB1B2

, to ρ̃A1A2B1B2 by a sequence of
local operations. This, together to monotonicity of mutual information under local
operations (including partial trace), implies

I (A1 : B1)ρ̃ ≤ I (A1A2 : B1)ρ̃ ≤ I (A : B1)ρ̃′ ≤ I (A : B1B2)ρ̃′ ≤ I (A : B)ρ.

Notice that, because of the broadcasting conditions, the leftmost quantity is actually
equal to the rightmost quantity, hence, all the mutual information quantities in the
latter equation are equal. In particular, I (A : B1)ρ̃′ = I (A : B)ρ. Moreover,

ρ̃′
AB1

= (
idA ⊗ Γ ′

B→B1

)[ρAB],

with Γ ′
B→B1

= (idB1 ⊗ TrB2) ◦ ΓB→B1B2 . It follows then from Theorem4 that there

is a recovery channels R(1)
B1→B such that

(idA ⊗ (R(1)
B1→B ◦ Γ ′

B→B1
))[ρAB] = ρAB

One can argue similarly about B2. We arrive at the conclusion that there are two
channels R(1)

B1→B1
and R(2)

B2→B2
such that

(R(1)
B1→B1

⊗ R(2)
B2→B2

) ◦ ΓB→B1B2

locally broadcasts ρAB on B. �

5 Broadcasting Mutual Information

The characterization of recoverability in terms of mutual information captured by
Theorem4 is such—one could say, ‘strong enough’—that the local (or unilocal)
broadcasting of quantum states, understood in a structural sense—that is, in terms the
densitymatrices—is fully equivalent to the broadcasting of the correlations contained
in the states, as quantified by mutual information. More precisely, one can state a
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no-go theorem for local broadcasting, which, at least at face value, is more general
than Theorem2.

Theorem 6 Let ρAB be a bipartite state. There exist local maps ΛA→A1A2 and
ΓB→B1B2 such that

ρ̃A1A2B2B2 = (ΛA→A1A2 ⊗ ΓB→B1B2)[ρAB] (27)

satisfies
I (A1 : B1)ρ̃ = I (A2 : B2)ρ̃ = I (A : B)ρAB (28)

if and only if ρAB is classical-classical.

This version of the no-local-broadcasting theorem would indeed appears to be more
general than Theorem2 because if ρ̃A1A2B2B2 satisfies the broadcasting conditions
(11), then it satisfies also conditions (27), but the opposite is not immediately evident.
Nonetheless, it is true—and we know it thanks to Theorem 4. Similarly, one can have
an alternative version of the no-unilocal-broadcasting theorem.

Theorem 7 Let ρAB be a bipartite state. There exists a local map ΓB→B1B2 such that

ρ̃AB1B2 = (idA ⊗ ΓB→B1B2)[ρAB] (29)

satisfies
I (A : B1)ρ̃ = I (A : B2)ρ̃ = I (A : B)ρ. (30)

if and only if ρAB is classical on B.

6 Quantifying Non-classical Correlations Through
Broadcasting

So far we have characterized quantum correlations only qualitatively, via no-go
theorems. Moreover, we have made use of Theorem4 only for the case of exact
recoverability. In this section, we delineate some ways in which local and unilocal
broadcasting can be used to quantify the degree of non-classicality of correlations of
the state ρAB under scrutiny. Interestingly, we will connect broadcasting to the well
established quantifier of non-classical correlations known as quantum discord. The
latter is an asymmetric quantity, based on the notion of minimal loss of correlations,
as measured by mutual information, when one tries to ‘extract’ such correlations and
map them into a classical register. More explicitly, consider quantum-to-classical
channels MB→B ′ [σB] = ∑

i Tr(MiσB)|i〉〈i |B ′ , where {Mi } is a POVM on B, and
{|i〉} is an orthonormal basis for the ‘classical register’ B ′. We define ρ′

AB ′ = (idA ⊗
MB→B ′)[ρAB]. Then, the discord of ρAB on B is equal to
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D(A|B)ρ := I (A : B)ρ − max
MB→B′

I (A : B ′)ρ′, (31)

Here the maximum is over all quantum-to-classical channels. Notice that discord can
be rewritten as

D(A|B)ρ := min
VB→B′E

I (A : E |B ′)VρV † , (32)

where V = VB→B ′E is any isometry that realizes a quantum-to-classical channel
MB→B ′ . Discord vanishes only for the quantum-classical states [20–22]; in all other
cases, there is a loss of correlations—ameasured by quantummutual information—in
the local quantum-to-classicalmapping.Nonetheless, one can try to recoverρAB from
the quantum-classical state ρAB ′ , via a recovery channel RB ′→B . It is easy to check
that, without loss of generality, such a recovery map consists of a preparation proce-
dure, so that the composition of measurement M and preparation/recovery R gives
rise to a so-called entanglement breaking map, RB ′→B ◦ MB→B ′ [σB] = ΛEB

B [σB] =∑
i Tr(MiσB)τ i

B , for all σB , with {τ i
B} a collection of states. Let us define [23]

FEB
B (ρAB) := max

ΛEB
B

F
(
ρAB, (idA ⊗ ΛEB

B )[ρAB]). (33)

Then, Theorem4 implies [23]

D(A|B)ρ ≥ −2 log2 F
EB
B (ρAB). (34)

6.1 Imperfect Structural Local Broadcasting

Although cloning and broadcasting of general unknown states is not possible, as
formalized by the no-cloning and no-broadcasting theorems, one can consider how
well the task can be achieved, at least in an approximate sense. This corresponds to the
relative large topic of optimal (albeit not perfect) quantumcloners (see, e.g., [24, 25]).
The same applies to local or unilocal broadcasting. For example, one can consider
the state-dependent1 maximally achievable fidelity

Fmax
B,1→2(ρAB) := max

ΛB→B1B2

F
(
ρAB,TrB1((idA ⊗ ΛB→B1B2)[ρAB])), (35)

where the maximum is over maps ΛB→B1B2 whose output is invariant under swap
of B1B2. Alternatively, one could consider the average of the fidelities, for a gen-
eral map that does not have symmetric output, but one can argue that a symmetric
output is always optimal, thanks to the (joint) concavity of the fidelity in each of its

1A large part of the study about optimal cloners deals with single system, where it is natural to
discuss the cloning of a set of states, or universal cloners, where the figure of merit is either an
average, or state-independent (for pure states).
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arguments [4].Notice that, exactly becauseof the symmetryof the output ofΛB→B1B2 ,
on the right side of (35) we can indifferently consider the trace over B1 or B2. The
no-unilocal-broadcasting Theorem5 ensures that Fmax

B,1→2(ρAB) < 1 (strictly) as soon
as ρAB is not classical on B.

We now observe that any entanglement breaking map can be seen as the compo-
sition of a map with symmetric output followed by a partial trace, because

∑
i

Tr(MiσB)τ i
B = TrB1

(∑
i

Tr(MiσB)τ i
B1

⊗ τ i
B2

)
.

This implies that Fmax
B,1→2(ρAB) ≥ FEB

B (ρAB), which combined with (34), gives

D(A|B)ρ ≥ −2 log2 F
max
B,1→2(ρAB).

Thus, we see that discord can be bounded in terms of the quality of approximate
broadcasting. In Ref. [26] this relation is further explored, showing, on one hand, that
considering a larger number of outputs leads to more stringent bound on the discord,
and, on the other hand, that each quantities like Fmax

B,1→2(ρAB) can be computed
numerically in an efficient and reliable way, since such a quantity can be calculated
by semidefinite programming [27, 28].

6.2 Imperfect Local Broadcasting of Mutual Information

In the same way in which we have cast the no-local-broadcasting and no-unilocal-
broadcasting theorems in terms of broadcasting mutual information, so we can
approach the issue of approximate broadcasting. We will focus on unilocal broad-
casting. Then, for any channel ΛB→B ′n , where B ′n = B ′

1B
′
2 . . . B ′

n , and each B ′
1,

B ′
2, . . . , B

′
n could potentially have a dimensionality different from that of B, one can

define the average loss of correlations in broadcasting as

I (A : B)ρAB − 1

n

n∑
i=1

I (A : B ′
i )(idA⊗ΛB→B′n )[ρAB ]. (36)

Themutual information version of the no-unilocal-broadcasting theorem,Theorem7,
says that such an average loss is strictly positive for all n ≥ 2, if ρAB is not quantum-
classical. One proves that such an average loss actually converges to exactly the
quantum discord (31), with n going to infinity [29].
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7 Conclusions

It is hard to overestimate the importance of the no-cloning theorem in our under-
standing of quantum mechanics and quantum information, and the pivotal role it has
played in the latter field. For example, born from the attempts to reconcile entangle-
ment with a principle of no-faster-than-light signalling, it contributed to the devel-
opment of quantum cryptography. We have seen that the counterpart of no-cloning
in the scenario where one considers mixed states is no-broadcasting.

When it comes to distributed system, and to the study of the limitations in the
local manipulation of correlations, other no-go theorems can be derived, like the
no-local-broadcasting theorem or the no-unilocal-broadcasting theorem. It is worth
emphasizing one last time that the latter no-go results apply to single distributed
quantum states, contrary to the no-cloning and no-broadcasting theorems, which
instead deal with multiple states.

The quantification of the limits in the local manipulation of correlations provide a
sound and physicallymeaningful way to quantify the non-classicality of correlations.
Interestingly, this field of research connects directly to recent and exciting advances
in our understanding of quantum recoverability. The latter connection can also be
exploited for an efficient numerical approach to the quantification of the quantumness
of correlations, allowing, for example, the derivation of reliable numerical bounds
to quantum discord.
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Entanglement Distribution and Quantum
Discord

Alexander Streltsov, Hermann Kampermann and Dagmar Bruß

Abstract Establishing entanglement between distant parties is one of the most
important problems of quantum technology, since long-distance entanglement is
an essential part of such fundamental tasks as quantum cryptography or quantum
teleportation. In this lecture we review basic properties of entanglement and quan-
tum discord, and discuss recent results on entanglement distribution and the role of
quantum discord therein. We also review entanglement distribution with separable
states, and discuss important problems which still remain open. One such open prob-
lem is a possible advantage of indirect entanglement distribution, when compared to
direct distribution protocols.

1 Introduction

This lecture presents an overview of the task of establishing entanglement between
two distant parties (Alice and Bob) and its connection to quantum discord [1–5].
Surprisingly, it is possible for the two parties to perform this task successfully by
exchanging an ancilla which has never been entangled with Alice and Bob. This
puzzling quantum protocol was already suggested in [6], but a thorough study
[7–12] and experimental verification [13–15] (see also [16]) had to wait for almost
ten years until recently, when interest in general quantum correlations arose and led
to insights about their role in the entanglement distribution protocol.

A composite quantum system does not need to be in a product state for the sub-
systems, but it can also occur as a superposition of product states, or as a mixture
of such superpositions. This feature does not exist in the classical world, and a state
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exhibiting it is called entangled. In general, a state is said to contain entanglement if
it cannot be written as a mixture of projectors onto product states. It is said to contain
quantum correlations, if it cannot be written as a mixture of projectors onto prod-
uct states with local orthogonality properties. And it is said to contain correlations
(classical or quantum), if it cannot be written as a product state.

Let us formalize these notions. In the following definitions we will consider for
simplicity only bipartite quantum systems (with superscripts A and B for Alice and
Bob, respectively); the generalization to composite quantum systems with more than
two subsystems is straightforward. Let us denote by {|ei 〉} a complete set of orthogo-
nal basis states (which could also be interpreted as classical states), i.e. 〈ei |e j 〉 = δi j ,
while Greek letters indicate quantum states which are not necessarily orthogonal,
i.e., for the ensemble {|ψi 〉} in general 〈ψi |ψ j 〉 �= δi j holds.

A separable state ρsep can be written as [17]

ρ AB
sep =

∑

i, j

pi j |ψi 〉〈ψi |A ⊗ ∣∣φ j
〉〈
φ j

∣∣B , (1)

where pi j are probabilities with
∑

i, j pi j = 1. The set of all separable states will be
denoted byS. Any separable state can be producedwith local operations and classical
communication (LOCC). An entangled state cannot be written as in Eq. (1). In order
to produce an entangled state, a non-local operation is needed. In Sect. 2 we will
review different ways to quantify the amount of entanglement in a given state.

A state is called classically correlated (CC) if it can be written as [18]

ρAB
cc =

∑

i, j

pi j |ei 〉〈ei |A ⊗ ∣∣e j
〉〈
e j

∣∣B , (2)

with 〈ei |e j 〉 = δi j . Measuring ρcc in the local bases {|ei 〉A} and {∣∣e j
〉B} does not

change the state, i.e.,
�A ⊗ �B[ρ AB

cc ] = ρAB
cc , (3)

where the von Neumann measurement � is defined as

�[σ ] =
∑

i

|ei 〉〈ei | σ |ei 〉〈ei | . (4)

The set of all classically correlated stateswill be denoted byCC. A quantumcorrelated
state cannot be written as in Eq. (2). The eigenbasis of a quantum correlated state
is not a product basis with the property that the sets of local states are orthogonal
ensembles.

It is also possible to combine the aforementioned frameworks of separability and
classicality, thus arriving at classical-quantum (CQ) states [18]:
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Fig. 1 State space for
composite quantum systems
[19]: classically correlated
states form a connected set
CC of measure zero;
separable states form a
convex set S (green,
containing CC). Quantum
correlated states are all states
outside of CC, and entangled
states (blue) are all states
outside of S

ρ AB
cq =

∑

i, j

pi j |ei 〉 〈ei |A ⊗ ∣∣ψ j
〉 〈

ψ j

∣∣B . (5)

The set of all classical-quantum states will be denoted by CQ. For any CQ state,
there exists a local von Neumann measurement on the subsystem A which leaves the
state unchanged, i.e.,

�A ⊗ 11B[ρ AB
cq ] = ρ AB

cq , (6)

where the von Neumann measurement � is given in Eq. (4). If a state cannot be
written as in Eq. (5), we say that the state has nonzero quantum discord with respect
to the subsystem A. Measuring a state with nonzero discord in any orthogonal basis
on the subsystem A necessarily changes the state. In Sect. 3 we will present different
ways to quantify the amount of discord in a given state.

From the above definitions it is clear that classically correlated states are a subset
of separable states, and that entangled states are a subset of quantum correlated
states. These different types of states for composite quantum systems therefore form
a nested structure [19] which is sketched in Fig. 1. Note that separable states form a
convex set, due to their definition in Eq. (1). However, classically correlated states
do not form a convex set: one can produce a quantum correlated state by mixing two
classically correlated states.

Those states which are not entangled, but nevertheless possess quantum correla-
tions a la discord, may exhibit puzzling features. They can be produced via LOCC,
but nevertheless they carry quantum properties. Namely, in order to produce them
one has to create quantumness in the form of non-orthogonality. This makes them a
potential resource for quantum information processing protocols. Counterintuitively,
even though they do not carry entanglement, they may be used for the distribution
of entanglement, as we will see below.

The structure of this lecture is as follows: in Sect. 2 we review different measures
of quantum entanglement, discord quantifiers are reviewed in Sect. 3. In Sect. 4 we
review recent results on entanglement distribution and discuss the role of quantum
discord therein. Conclusions in Sect. 5 complete our lecture.
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2 Quantum Entanglement

Here, we will review different entanglement measures, mainly focusing on measures
which are used in this lecture. More detailed reviews, also containing other entan-
glement measures, can be found in [20–22]. In general, we require that a measure of
entanglement E fulfills the following two properties [23, 24]:

• Nonnegativity: E(ρ) ≥ 0 for all states ρ with equality for all separable states [25],
• Monotonicity: E(�[ρ]) ≤ E(ρ) for any LOCC operation �.

Many entanglement measures also have additional properties such as strong
monotonicity in the sense that entanglement does not increase on average under
selective LOCC operations [23, 24]:

∑
i piE(σi ) ≤ E(ρ), where the states σi are

obtained from the state ρ by the means of LOCC with the corresponding probabil-
ities pi . Moreover, many entanglement measures are also convex in the state, i.e.,
E(

∑
i piρi ) ≤ ∑

i piE(ρi ) [23, 24].
From now on we will focus on the bipartite scenario with two parties A and B of

the same dimension d. In this case, any entanglement measure is maximal on states
of the form

∣∣φ+
d

〉 = 1√
d

d−1∑

i=0

|i i〉 , (7)

since from this state any quantum state can be created via LOCC operations [22]. Of
particular importance is the two-qubit singlet state (|01〉 − |10〉)/√2, which can be
obtained from the state

∣∣φ+
2

〉
via local unitaries. In entanglement theory local unitaries

do not change the properties of a state, and thus we will refer to the state
∣∣φ+

2

〉
as a

singlet.
Operational measures of entanglement are distillable entanglement and entangle-

ment cost. Distillable entanglement quantifies themaximal rate for extracting singlets
from a state via LOCC operations [21, 22]:

Ed(ρ) = sup

{
R : lim

n→∞

(
inf
�

∥∥∥�
[
ρ⊗n

] − (
φ+
2

)⊗nR
∥∥∥
1

)
= 0

}
, (8)

where ||M ||1 = Tr
√
M†M is the trace norm, φ+

2 is the projector onto the state
∣∣φ+

2

〉

[26], and the infimum is performed over all LOCC operations �. Entanglement cost
on the other hand quantifies the minimal singlet rate required for creating a state via
LOCC operations [21, 22]:

Ec(ρ) = inf

{
R : lim

n→∞

(
inf
�

∥∥∥�
[(

φ+
2

)⊗nR
]

− ρ⊗n
∥∥∥
1

)
= 0

}
. (9)

For pure states |ψ〉 = |ψ〉AB these two quantities coincide and are equal to the von
Neumannentropyof the reduced state [27]:Ed(ψ) = Ec(ψ) = S(ρ A) = −Tr[ρ A log2
ρ A]. This implies that the resource theory of entanglement is reversible for pure
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states [21, 22]. In general, it holds that Ed(ρ) ≤ Ec(ρ), and there exist states which
have zero distillable entanglement but nonzero entanglement cost. This phenomenon
is also known as bound entanglement [28].

An important family of entanglement measures is obtained by taking the minimal
distance to the set of separable states S [23, 24]:

E(ρ) = inf
σ∈S

D(ρ, σ ). (10)

Here, D(ρ, σ ) can be an arbitrary functional which is nonnegative and monotonic
under quantum operations, i.e., D(�[ρ],�[σ ]) ≤ D(ρ, σ ) for any quantum opera-
tion� [29]. Examples for such distances are the trace distance ||ρ − σ ||1/2, the infi-
delity 1 − F(ρ, σ ) with fidelity F(ρ, σ ) = ||√ρ,

√
σ ||21, and the quantum relative

entropy S(ρ||σ) = Tr[ρ log2 ρ] − Tr[ρ log2 σ ]. In the latter case, the corresponding
measure is known as the relative entropy of entanglement [23, 24]:

Er(ρ) = min
σ∈S

S(ρ||σ). (11)

The second important family of measures are convex roof measures defined as
[30]

E(ρ) = inf
∑

i

piE(ψi ), (12)

where the infimum is taken over all pure state decompositions of ρ = ∑
i piψi . If for

pure states entanglement is defined as the von Neumann entropy of the reduced state
E(ψ) = S(ρ A), the corresponding convex roofmeasure is knownas the entanglement
of formation [31]:

Ef(ρ) = min
∑

i

pi S (TrA [ψi ]) . (13)

In general, the relative entropy of entanglement is between the distillable entangle-
ment and the entanglement of formation [32]:

Ed(ρ) ≤ Er(ρ) ≤ Ef(ρ). (14)

Moreover, the regularized entanglement of formation is equal to the entanglement
cost [33]: Ec(ρ) = limn→∞ Ef(ρ⊗n)/n. We also mention that the geometric measure
of entanglement defined as

Eg(ρ) = 1 − max
σ∈S

F(ρ, σ ) (15)

is a distance-based and a convex roof measure simultaneously [34, 35].
Another important entanglement measure which will be used in this lecture is the

logarithmic negativity. For a bipartite state ρ = ρ AB it is defined as [36, 37]
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En(ρ) = log2
∥∥ρTA

∥∥
1 (16)

with the partial transposition TA. The logarithmic negativity is zero for states which
have positive partial transpose, and thus there exist entangled states which have
zero logarithmic negativity [38]. Nevertheless, these states cannot be distilled into
singlets [28]. Interestingly, the logarithmic negativity is not convex [39], and is related
to the entanglement cost under quantum operations preserving the positivity of the
partial transpose [40].

Several entanglement measures discussed above are subadditive, i.e., they fulfill
the inequality

E (ρ ⊗ σ) ≤ E (ρ) + E (σ ) (17)

for any two states ρ and σ . Examples for subadditivemeasures are entanglement cost,
entanglement of formation, and relative entropy of entanglement. The logarithmic
negativity is additive, i.e., it fulfills Eq. (17) with equality. It is conjectured [41] that
the distillable entanglement violates Eq. (17).

3 Quantum Discord

Quantum discord was introduced in [1, 2] as a quantifier for correlations different
from entanglement. In themodern language of quantum information theory, quantum
discord of a state ρ = ρ AB can be expressed in the following compact way [42, 43]:

δ(ρ) = I (ρ) − sup
�eb

I (�eb ⊗ 11 [ρ]). (18)

Here, I (ρ AB) = S(ρ A) + S(ρB) − S(ρ AB) is the quantum mutual information and
the supremum is performed over all entanglement breaking channels�eb [44]. Quan-
tum discord vanishes on CQ-states and is larger than zero otherwise [45]. The quan-
tity I (ρ) − δ(ρ)was initially introduced in [2] as a measure of classical correlations.
Interestingly, quantum discord is closely related to the entanglement of formation
via the Koashi-Winter relation [46, 47]:

δ(ρ AB) = Ef(ρ
BC) − S(ρ AB) + S(ρ A), (19)

where the total state ρ ABC is pure [48].
Similar as for entanglement, we can define distance-based measures of discord

[49]:
D(ρ) = inf

�
D(ρ,� ⊗ 11[ρ]), (20)

where the infimum is performed over all local von Neumann measurements � and
D(ρ, σ ) is a suitable distance between ρ and σ , such as the relative entropy. In the
latter case, the corresponding quantity is called relative entropy of discord [50]:
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Dr(ρ) = min
�

S(ρ||� ⊗ 11[ρ]), (21)

and has also been studied earlier in the context of thermodynamics [51, 52]. If
the distance is chosen to be the squared Hilbert-Schmidt distance Tr(ρ − σ)2, the
corresponding measure is known as the geometric discord [53, 54]. Interestingly,
the geometric discord can increase under local operations on any of the subsystems
[55]. It was also shown to play a role for remote state preparation [56].

The role of quantum discord in quantum information theory has been studied
extensively in the last years [3, 4]. Several alternative quantifiers of discord have been
presented [5], and criteria for good discord measures have also been discussed [57].
As an important example, we mention the interferometric power [58], which is a
computable measure of discord and a figure of merit in the task of phase estima-
tion with bipartite states. Further results on the role of quantum discord in quantum
metrology have been presented in [59, 60]. The relation between quantum discord
and entanglement creation in the quantummeasurement process has also been inves-
tigated, both theoretically [61, 62] and experimentally [63]. Monogamy of quantum
discord [64, 65] and its behavior under local noise [66] and non-Markovian dynam-
ics [67] have also been studied. Experimentally friendly measures of discord were
presented in [68, 69], and the possibility of local detection of discord has been
reported in [70]. As we will see in the next section, quantum discord also plays an
important role for entanglement distribution [7, 8].

4 Entanglement Distribution

In the following discussion we will distinguish between direct and indirect entangle-
ment distribution between two parties (Alice and Bob) [11, 12]. Direct entanglement
distribution is achieved if Alice prepares two particles in an entangled state ρ and
sends one of them to Bob. The amount of distributed entanglement is then given
by E(11 ⊗ �[ρ]), where � describes the corresponding quantum channel, and E is a
suitable entanglement measure.

Indirect entanglement distribution is amore general scenariowhereAlice andBob
already share correlations initially. In this case the total initial state is a tripartite state
ρ = ρ ABC , where Alice is in possession of the particles A and C , and the particle B
is in Bob’s hands. Entanglement distribution is then achieved by sending the particle
C from Alice to Bob, see Fig. 2. The amount of distributed entanglement is then
given by E A|BC(11AB ⊗ �C [ρ]) − E AC |B(ρ). In the following, we will discuss recent
results on these two types of entanglement distribution [11, 12].
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Fig. 2 Indirect
entanglement distribution.
Alice and Bob initially share
the state ρ = ρABC , where
Alice holds the particles A
and C , and Bob holds the
particle B. Entanglement
distribution is achieved by
sending the particle C from
Alice to Bob via a (possibly
noisy) quantum channel. The
figure is taken from [11]

4.1 Direct Entanglement Distribution

What is the maximal amount of entanglement that can be directly distributed via
a given quantum channel �? For answering this question, we first introduce the
corresponding figure of merit:

Edirect(�) = sup
σ

E (11 ⊗ �[σ ]) . (22)

In general, the supremum is performed over all bipartite quantum states σ . However,
if the entanglement quantifier E is convex, we can restrict ourselves to pure states.

If the distribution channel is noiseless, i.e., � = 11, then Eq. (22) reduces to

Edirect(11) = E(φ+
d ), (23)

where d is the dimension of the carrier particle. It is tempting to believe that this also
extends to noisy channels, i.e., that for any noisy channel the optimal performance
is achieved by sending one half of a maximally entangled state. Quite surprisingly,
this procedure is not optimal in general [11, 71, 72]. In particular, for any convex
entanglement measure E there exists a noisy channel � and a bipartite state ρ such
that [71]

E(11 ⊗ �[ρ]) > E(11 ⊗ �[φ+
d ]). (24)

Even more, if entanglement is quantified via the logarithmic negativity, then states
with arbitrary little entanglement can outperform maximally entangled states for
some noisy channels [11]. Nevertheless, maximally entangled states are still optimal
in various scenarios, e.g. if the carrier particle is a qubit and entanglement quantifier is
the entanglement of formation or the geometric entanglement [11]. If the distribution
channel is a single-qubit Pauli channel, i.e.,

�p[ρ] =
3∑

i=0

piσiρσi , (25)
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where σi are Pauli matrices with σ0 = 11, thenmaximally entangled states are optimal
for entanglement distribution, regardless of the particular entanglementmeasure [11]:

Edirect(�p) = E(11 ⊗ �p[φ+
2 ]). (26)

This result also holds if entanglement distribution is performed via a combination of
(possibly different) Pauli channels, also in this case sending one half of a maximally
entangled state is the best strategy. Finally, if entanglement is quantified via the
logarithmic negativity, maximally entangled states are optimal for all unital single-
qubit channels [73].

This completes our discussion on direct entanglement distribution, and we will
present the more general scenario in the following.

4.2 Indirect Entanglement Distribution

Can Alice and Bob gain an advantage if they share some correlations initially? To
answer this question, we first introduce a figure of merit for indirect entanglement
distribution:

Eindirect(�) = sup
ρ

{E A|BC(11AB ⊗ �C [ρ]) − E AC |B(ρ)
}
, (27)

where the supremum is taken over all tripartite states ρ = ρ ABC . In particular, we
are interested in the question if Eindirect is larger than Edirect for some noisy channel
and some entanglement measure.

Note that so far no general answer to this question is known, and partial results
have been presented in [11, 12]. In particular, if the channel used for entanglement
distribution is a single-qubit Pauli channel given in Eq. (25) and entanglement is
quantified via a subadditive measure E , then indirect entanglement distribution does
not provide any advantage [11]:

Eindirect(�p) = Edirect(�p) = E(11 ⊗ �p[φ+
2 ]). (28)

This means that in this case sending one half of a singlet state is the optimal dis-
tribution strategy. This result can be generalized to the case where entanglement is
distributed via a combination of (possibly different) Pauli channels [11].

However, not all entanglement measures are subadditive. An important example
is the distillable entanglement Ed whichwas defined in Eq. (8) and is conjectured [41]
to violate subadditivity. Interestingly, if this conjecture is true, then indirect entan-
glement distribution provides an advantage for the distribution of distillable entan-
glement [11].

Finally, we note that entanglement breaking channels cannot be used for entan-
glement distribution for any entanglement measure E [12]:
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Eindirect(�eb) = Edirect(�eb) = 0 (29)

for any entanglement breaking channel �eb. This can be seen by noting that any
entanglement breaking channel is equivalent to an LOCC protocol [74].

4.3 Entanglement Distribution with Separable States

Entanglement can also be distributed by sending a carrier particle which is not entan-
gled with the rest of the system. In particular, there exist tripartite states ρ = ρ ABC

such that

E AC |B(ρ) = E AB|C(ρ) = 0, E A|BC(ρ) > 0. (30)

The first example for a state fulfilling Eq. (30) was presented in [6], and can be
written as

η = 1

3
|
GHZ〉〈
GHZ| +

1∑

i, j,k=0

βi jk�i jk, (31)

with |
GHZ〉 = (|000〉 + |111〉)/√2, �i jk = |i jk〉〈i jk|, and all βi jk are zero apart
from β001 = β010 = β101 = β110 = 1/6. These results were extended to Gaussian
states in [75], and experiments verifying this phenomenon have also been reported
[13–15].

Motivated by this result, Zuppardo et al. [12] proposed a classification of entangle-
ment distribution protocols. In particular, a noiseless distribution protocol is called
excessive if the amount of distributed entanglement is larger than the amount of
entanglement between the carrier and the rest of the system, i.e.,

E A|BC(ρ) − E AC |B(ρ) > E AB|C(ρ). (32)

Otherwise, the protocol is called nonexcessive. As discussed above, the state η in
Eq. (31) gives rise to an excessive distribution protocol.

It is natural to ask if such entanglement distribution with separable states can pro-
vide an advantage when compared to scenarios where the carrier particle is entangled
with the rest of the system. In particular, one might ask if a separable state can show
a better performance for entanglement distribution when compared to maximally
entangled states. This question could be especially relevant if the distribution chan-
nel is noisy. Despite attempts by several authors [9, 13], the question has not yet
been settled.

Finally, we mention that rank two separable states are not useful for entanglement
distribution if entanglement is quantified via logarithmic negativity [10].
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4.4 Role of Quantum Discord for Entanglement Distribution

As was shown in [7, 8], the amount of entanglement that can be distributed via a
noiseless channel by using a tripartite quantum state ρ = ρ ABC is bounded above by
the discord between the carrier particle C and the rest of the system:

E A|BC(ρ) − E AC |B(ρ) ≤ DC |AB(ρ). (33)

This inequality is true for any distance-based measure of entanglement and discord
given in Eqs. (10) and (20) if the corresponding distance does not increase under
quantum operations and fulfills the triangle inequality. Moreover, it is also true for
the relative entropy of entanglement and discord [7, 8].

The inequality (33) immediately implies that zero-discord states cannot be used for
entanglement distribution.Moreover, this result can also be used to bound the amount
of entanglement in one cut of a tripartite state ρ = ρ ABC in terms of entanglement
and discord in the other cuts [7, 8]:

E AC |B(ρ) + DC |AB(ρ) ≥ E A|BC(ρ) ≥ E AC |B(ρ) − DC |AB(ρ). (34)

For the relative entropy of entanglement and discord, the inequality (33) is saturated
for pure states of the form |ψ〉AC ⊗ |φ〉B and also for the state η given in Eq. (31)
[7].

If the channel used for entanglement distribution is noisy, we get the following
generalized inequality [11]:

E A|BC(ρ ′) − E AC |B(ρ) ≤ min
{DC |AB(ρ),DC |AB(ρ ′)

}
. (35)

Here, we used the notation ρ ′ = 11AB ⊗ �C [ρ], and E and D are any measures of
entanglement and discord which fulfill Eq. (33).

5 Conclusions

In this lecture we discussed recent results on entanglement distribution and the role
of quantum discord in this task. Despite substantial progress in recent years, several
important questions in this research field still remain open. In particular, it is still
unclear if indirect entanglement distribution can provide an advantage in comparison
to direct distribution protocols. The question also concerns entanglement distribution
with separable states: also in this case it remains unclear if such scheme can be more
useful than any direct distribution procedure.
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We alsomention that studying entanglement distribution in relation to the resource
theory of coherence [76–78] and its extension to distributed scenarios [79–86] could
potentially shed new light on these questions, and also lead to new independent
results.
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Discord, Quantum Knowledge and Private
Communications

Mile Gu and Stefano Pirandola

Abstract In this brief review, we discuss the role that quantum correlations, as
quantified by quantum discord, play in two interesting settings. The first one is dis-
cerning which unitaries have been applied on a quantum system, by taking advantage
of knowledge regarding its initial configuration. Here discord captures the ‘quantum’
component of this knowledge, useful only when we have access to a quantum mem-
ory. In particular, discord can be used to detect whether an untrusted party has cer-
tain quantum capabilities. The second setting is quantum cryptography. Here discord
represents an important resource for trusted-noise quantum key distribution and also
provides a general upper bound for the optimal secret key rates that are achievable
by ideal protocols. In particular, the (two-way assisted) secret key capacity of a lossy
bosonic channel exactly coincides with the maximum discord that can be distributed
between the remote parties at the two ends of the channel.

1 Knowledge, Correlations, and Guessing Channels

The 1962 James Bond’s movie ‘Dr. No’ taught children around the world a valuable
lesson in how to detect whether nosy siblings are snooping into their rooms. You stick
a small piece hair across the door and the doorframe.When the door is opens, the hair
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falls to the floor. The unsuspecting perpetrator has unwittingly communicated to you
their rather unscrupulous action. This trick demonstrates the power of knowledge;
by knowing how a system is initially configured (the location of hair), one can gain
information about actions that have affected the system (opening the door).

This phenomena can be described by information theory. We denote a system
of interest to be A, and knowledge about the system to be encoded within some
memory B - an approach previously adopted to understand uncertainty relations
under quantum memory [1]. If B contains information about A, the two systems will
be correlated, such that I(A,B) > 0.

The classical one time pad provides a simple example. Here Alice and Bobwish to
communicate some secret message in the future. To do this, Alice and Bob gather in
some secure location, whereAlice generates a string of randombits that Bob commits
them to memory. That is, they share many copies of the classically correlated state

ρ = |00〉〈00| + |11〉〈11|. (1)

Should Alice choose to flip some of her bits and give the resulting string to Bob, Bob
is able to discern exactly which bits have been flipped by comparing the resulting
string with the one stored in his memory. In contrast, anyone without access to Bob’s
memory would gain no information about Alice’s actions. The optimal such scheme
would allowAlice to communicate δI = 1 bit per copy ofρAB shared. Thus possession
of B allows exclusive knowledge of how the system was manipulated. One notes that
here, I(A,B) = 1, which is equal to δI . This is in fact, not a coincidence.

Consider the following general “channel guessing game”.

1. Alice and Bob initially share a state ρ distributed over the system of interest A,
and the memory B. This initial state is publicly known.

2. Alice applies some unitary operatorUk onto her subsystem Awith probability pk .
She publicly announces her protocol (e.g. the unitaries Uk and their probability
of application), but not the specific k she selects in each run.

3. Alice givesA toBob, so thatBob is now inpossession ofρ(k)
AB = UkρABU

†
k .Without

knowledge of k, Bob sees the ensemble state ρ̃AB = ∑
k pkρ

(k)
AB .

4. Alice challenges Bob to guess whichUk she has applied, i.e., to estimate the value
of k.

This game captures a communication channel between Alice and Bob, where
Alice has encoded a random variable K that takes the value k with probability pk ,
onto corresponding codewords ρ

(k)
AB . The maximum information rate of this channel

is then bounded above by the Holevo quantity

Iq = S̃(A,B) − S(A,B), (2)

where S(A,B) and S̃(A,B) represent the respective entropies of ρAB and ρ̃AB. Here we
consider the i.i.d. limit of many trials, where Alice repeats this game a large number
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of times; the performance of Bob, as quantified by the maximum information per
trial, then saturates Iq.

This relation has a nice interpretation. In fact ρ̃ describes the state of the bipartite
system after encoding, as viewed by an observer who is unaware of which k was
encoded in each run. Therefore S̃(A,B) − S(A,B) captures the gain in entropy (or
alternatively, the cost in negentropy) of encoding K from their perspective. Thus
Eq. (2) tells us that communication of k bits of data necessarily incurs a minimum
entropic cost of k.

Suppose Bob cannot access his memory (e.g. it was lost), the effective codewords
would now be be ρ

(k)
A , with associated Holevo quantity

I0 = S̃(A) − S(A). (3)

The impact of having memory on Bob’s in performance at the i.i.d. limit is then

�q ≡ Iq − I0 = I(A,B) − Ĩ(A,B), (4)

where I(A,B) and Ĩ(A,B) are the respective mutual information of ρAB and ρ̃AB.
The quantity I(A,B) − Ĩ(A,B) then represents the cost, in terms of total correlations
between A and B of encoding K . Meanwhile �q represents information about K that
is exclusively available to Bob due to his possession of B.

If we consider I(A,B) to capture the amount of knowledge Bob knows about A,
we find an interesting resource based view of knowledge: Bob can expend k bits of
knowledge about a system A to learn at most k bits of information about actions
on A; in the i.i.d limit, this bound can be saturated. That is, knowing k bits about
some system A, as captured by possessing a system B such that I(A,B) = k, implies
that one can gain up to k extra bits about actions on A. Thus for the one-time pad, a
shared mutual information of 1 allows Alice to securely communicate a single bit to
Bob. Meanwhile in quantum dense coding, Alice and Bob initially share a Bell state
- such that I(A,B) = 2. Thus, Bob can harness his memory to gain 2 exclusive bits
about Alice’s actions on A.

1.1 The Role of Discord

Recall that we can separate correlations into two components, i.e., we can write
I(A,B) = J(A|B) + δ(A|B), where J(A|B) and δ(A|B) respectively represent the
purely-classical correlations and the quantum correlations (discord [2]). This fits
well with the channel guessing game. The approach is to relate quantum and classi-
cal correlations with the quantum and classicality of Bob’s memory. Specifically let
us consider the three scenarios:

1. Memoryless Bob: Bob’s memory is completely faulty. That is, Bob cannot access
B at all. Bob’s resulting performance is then given by I0 (as defined above).
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2. Classical Bob: Bob’s memory is classical. That is, Bob is required to measure any
ρb given to himwith respect to someorthogonal basis, and stored themeasurement
results in place of ρb. Denote Bob’s resulting performance by Ic.

3. Quantum Bob: Bob has unrestricted quantum information processing, and can (i)
store ρb without error, and (ii) coherently interact his memory with the system of
interest. Bob’s resulting performance is given by Iq.

Cases 1 and 3 have been outlined above. Our focus here is thus case 2. The
rationale is that a classical memory should be able to make use of purely classical
correlations, but not quantum correlations. Therefore, we would expect discord to be
related with the performance gap, Iq − Ic, between quantum and classical Bob. This
problem was studied in Gu et al. [3], where they established that

J(A|B) − J̃(A|B) ≤ Ic − I0 ≤ J(A|B). (5)

Here J̃(A|B) and J̃(A|B) represent the classical correlations in ρAB and ρ̃AB. The
equation describes an interesting connection between discord and the performance
advantage of having quantum-over-classical memory. That is, introducing δ(A|B) −
δ̃(A|B) as the discord difference before and after encoding, we get

�δ(A|B) − Ĩ(A,B) ≤ Iq − Ic ≤ �δ(A|B), (6)

where Ĩ(A|B) is the mutual information of ρ̃. Consider now any encoding that
attempts to communicate the maximum amount of information (known as a maximal
encoding). In this scenario, ρ̃A is maximally mixed, δ̃ = Ĩ = 0, and thus we have:

1. I0 = 1 − S(A): a memoryless Bob can only access the local memory available
on A. That is, the maximum amount of information Bob can learn about what
happens to A is exactly the negentropy of A.

2. Ic = I0 + J(A|B): a classical Bob can learn an additional �c = J(A|B) bits of
information about actions on A. That is, he can exactly take advantage of the
classical correlations between A and B.

3. Iq = I0 + I(A,B): a quantum Bob can take advantage of the full correlations
between A and B. As such, his performance advantage over the classical case is
exactly δ(A|B), the discord between B and A.

These relations capture an operational interpretation of discord δ(A|B) as how
much purely quantum mechanical knowledge B has about A. An example if given in
Fig. 1.
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Fig. 1 Example on TwoQubits. Consider the special case where Alice and Bob share a correlated
state on two qubits, A and B, with discord δ(A|B). Alice then encodes a random variableK governed
by a uniform distribution over {0, 1, 2, 3} by applying one of four possible unitaries, I , σx , σz or σxσz
and challenges Bob to estimateK . In this scenario, the encoding is maximal, and Bob’s performance
gain when using quantum in the place of classical memory is given exactly by δ(A|B). This protocol
has been experimentally implemented by Almeida et.al. [4]

1.2 Example: Certifying Entangling Gates Without
Entanglement

The interpretation of discord as quantum knowledge can be applied to verify whether
someone is in possession of entangling gates, as also experimentally realized by using
polarization photons [4]. Consider the case where Bob claims that he is capable of
building entangling two-qubit gates. How can Alice verify that Bob is telling the
truth - without being able to generate entanglement herself?

The inability for classical processors to harness quantum knowledge suggests an
immediate solution. Suppose now Alice prepares some discord, two-qubit state, ρAB.
She can then perform the protocol above, using a specific encoding scheme that
encodes two bits, a, b ∈ {0, 1}, onto A, by applying the unitary U = XaZb, where X
and Z are standard Pauli operators. This corresponds to a scenario where ρ̃A = I/2
is maximally mixed. Alice then challenges Bob guess a and b. Bob’s performance is
then characterized by the mutual information between the encoded bits, and that of
Bob’s guess.

In the 2 qubit case, it can be shown that if Bob is incapable of synthesizing
entangling two-qubit gates, then he cannot exceed the performance level of Ic. As
such any performance exceeding Ic implies that Bob is capable of some entangling
operations. Thus, discord can be used as a way of certifying entanglement without
entangling gates.
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2 Discord in Quantum Key Distribution

Quantum discord also plays an important role in private communications and quan-
tum key distribution (QKD) [5–7]. The fact that it must be non-zero is intuitive:
Quantum discord and its geometric formulation are connected with the concept of
non-orthogonality, which is the essential ingredient for QKD. A scenario where this
is particularly evident is device-dependent (or trusted-device) QKD. This includes
all those realistic situations where the noise affecting the local devices is assumed
to be trusted. For instance this can be detection noise (genuine inefficiency or noise
added by the parties [8, 9]) or preparation noise, as in the settings of untrusted-relay
QKD [10, 11] and thermal-QKD [12–16]. Such trusted noise may be so high to
prevent any entanglement distribution, but still a secure key can be extracted due to
non-zero discord.

Any QKD protocol can be recast into a measurement-based scheme, where Alice
sends Bob part of a bipartite state, then subject to local detections. Let us describe a
device-dependent protocol in this representation. In her private space, Alice prepares
two systems, A and a, in a generally mixed state ρAa. This state is purified into a
3-partite state �PAa with the ancillary system P being inaccessible to Alice, Bob
or Eve. This system accounts for the trusted noise in Alice’s side. Then, system
b is sent to Bob, who gets the output B after the channel (eavesdropping). Bob’s
output B is assumed to be affected by other local trusted noise in Bob’s private space
(denoted as P as before). Finally, from the shared state ρAB, Alice and Bob extract
two correlated variables by applying suitable measurements. On the output data,
they perform error correction and privacy amplification with the help of one-way
classical communication (CC), which can be either forward (direct reconciliation,
�), or backward (reverse reconciliation, �).

They finally extract a key at a rate R = max{R�,R�}, maximised between the
reconciliations. Now we have [17]

ED(A,B) ≤ R ≤ ED(A,B) + I(AB,P), (7)

where ED(A,B) is the one-way distillable entanglement for systems A and B, as
quantified by the maximum between the coherent [18, 19] and reverse coherent
information [20, 21], while I(AB,P) is the quantum mutual information between
AB and the trusted-noise system P. From Eq. (7), we see that the existence of P
is necessary in order to have R > 0 in the absence entanglement (i.e., for ED = 0).
Indeed it is easy to find discord-based Gaussian QKD protocols for which this is
possible [17]. According to Eq. (7), the absence of P implies R = ED, so that secure
key distribution becomes equivalent to entanglement distillation [22].

In the absence of trusted noise, we have ideal QKD protocols where all the noise
in the global output state is partly controlled by the parties and partly by Eve. In this
setting, quantum discord becomes a simple upper bound for the key rate. In fact, for
any ideal QKD protocol in direct or reverse reconciliation, we may write [17]
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R ≤ max{δ(A|B), δ(B|A)}, (8)

where δ(A|B) and δ(B|A) are the two types of discord. Surprisingly, for the important
practical case of a lossy channel [7] with transmissivity η, such as an optical fiber or
a free-space link, the previous bound becomes tight. This is due to a combination of
elements. First of all, we may always write [17]

R� = δ(B|A) − EF(B,E), (9)

where EF(B,E) is the entanglement of formation between Bob and Eve. Second,
the Stinespring dilation of a lossy channel is a beam splitter with transmissivity η,
mixing the Alice’s input state with a vacuum environmental mode. For this reason,
Bob and Eve’s output state is not entangled, i.e., EF(B,E) = 0. Therefore, in a lossy
channel, we always have

R� = δ(B|A). (10)

Most importantly, one can prove [23] that themaximumdiscord δmax(B|A) that can
be distributed to the parties through the lossy channel coincides with the secret-key
capacity K of the lossy channel (where this capacity is generally defined assuming
the most general feedback-assisted protocols for key generation, based on unlimited
two-way CC and adaptive local operations). In fact, Ref. [23] showed that

K(η) = δmax(B|A) = − log2(1 − η), (11)

which provides the ultimate rate-loss scaling for bosonic secure communications,
approximately 1.44η secret bits per channel use for high loss (i.e., at long distances)

The proof Eq. (11) is based on several ingredients. First of all, it exploits the
technique of teleportation stretching, devised in Ref. [23] for point-to-point quan-
tum/private communications, and then extended in Ref. [24] to quantum repeaters
and communication networks. In this technique, an arbitrary adaptive protocol for
quantum/private communication is simplified into amuch simpler non-adaptive form,
providing the same output state as the original one. The advantage is that such out-
put state is now decomposed in the form �̄(ρ⊗n

E ), where �̄ is a trace-preserving
LOCC, ρE is the Choi matrix [25] of the channel E (to be defined as suitable limit
for a lossy channel), and n is the number of uses of the channel. This decomposition
is possible because the lossy channel is covariant with respect to the displacement
operators and therefore can be simulated by means of continuous variable quantum
teleportation [26, 27]. In other words, the lossy channel is a specific example of
teleportation-covariant channel [23].

The second ingredient is introduction of the channel’s relative entropy of entan-
glement ER(E), which extends the original definition for quantum states [28–30] to
quantum channels. Ref. [23] proved that, for any channel E , the secret-key capacity
satisfies the boundK(E) ≤ ER(E). For the specific case of the lossy channel, onemay
combine the Choi-decomposition of the output �̄(ρ⊗n

E ) together with the properties
of the relative entropy of entanglement to prove that K(η) ≤ ER(ρE). The latter term
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is the relative entropy of entanglement of the asymptotic Choi matrix of the lossy
channel and must be computed as a limit over a sequence of two-mode squeezed
vacuum states [23]. This procedure leads to the upper bound

K(η) ≤ − log2(1 − η). (12)

Since the upper bound is achievable by a suitable Gaussian protocol in reverse rec-
onciliation [17, 20], we then achieve Eq. (11). The proof can be easily extended to
include the two-way quantum capacity, so that we also have K(η) = Q2(η) [23].

3 Conclusions

In this brief review, we have discussed the role that quantum discord plays in two
interesting settings. First of all, we considered the scenario of a bipartite system con-
sisting of a system of interest,A, and amemory systemB, such that their correlations,
I(A,B), represent knowledge B has about A. This knowledge can be harnessed by a
person in possession of B to gain extra information about what performed on A. In
this context, we outlined how discord is captured in the quantum component of such
knowledge - measuring the component of I(A,B) that is useful only when B can be
stored in quantum memory.

We then reviewed how quantum discord can be seen as a primitive for quan-
tum cryptography, where it plays a double role. It is the bipartite resource which is
exploited in trusted-noise QKD, where the presence of such noise may prevent the
exploitation of quantum entanglement but not the distribution of a secret key. Then,
quantum discord provides a general upper bound to the key rate in the ideal case
when trusted noise is absent. In particular, this bound is achievable in the important
case of lossy bosonic communications. In this setting, the maximum discord that two
remote parties can generate at the two ends of a lossy channel corresponds exactly
to the maximum number of secret bits that they can generate through the channel by
means of the most general adaptive protocols for QKD.
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Quantum Discord in Quantum
Communication Protocols

Animesh Datta and Vaibhav Madhok

Abstract We review an operational interpretation of quantum discord by
quantifying it as the difference in the yield of the noisy and noiseless fully quan-
tum Slepian-Wolf (FQSW) protocol and the closely related Mother protocol. The
fully quantum Slepian-Wolf protocol is the most general form of unidirectional and
bipartite quantum communication protocols and hence we provided an operational
interpretation of discord for the entire spectrum of such protocols. We discuss exam-
ples giving specific scenarios for the role of discord in quantum communication. We
provide examples of how the properties of discord can be derived intuitively from
our operational view point.

1 Introduction

The universe, as we know, is quantum mechanical. Yet, classical mechanics gives an
excellent description of the macroscopic world. What aspects of quantummechanics
make the quantum world different than the classical world is still an open question.
Historically, this question has been asked in several forms, quantum-to-classical
transition and the Bohr correspondence [1], quantum signatures of chaos, semi-
classical treatment of quantum mechanics [2] etc. Here the key goal is two fold-to
explain how classical mechanics arises out of underlying quantum theory, and to
explain quantum aspects by connecting it to some classical properties of dynamical
systems. Emergence of classicality through weak continuous measurement and the
issues of decoherence as a way into the classical world and the entire framework
of open quantum systems are intimately related to the first goal. Gutzwiller’s Trace
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Formula and Semiclassical description of quantum mechanics [2–4], coherent state
representations and Wigner functions and WKB approximations are the crowning
accomplishments of the latter.

Information theory provides another window in exploring this connection. As
Landauer first pointed out [5], there is an intimate connection between information
processing and the physical properties of a device. “Information is Physical”. After
all, information processing has to respect the laws of physics-classical and quantum.
Does information processing governed by quantummechanics fundamentally differ-
ent than it’s classical counterpart? The answer has been a resounding yes! Over the
last three decades, there has been a revolution as a result of exploring this question.
This has led to the advent of quantum information science.

Two overarching motivations drive the field of quantum information science. The
first is the to uncover the fundamental limits to classical information processing.
The second is to overcome these limits by using the laws of quantum mechanics, in
the process uncovering the more fundamental limits, and attaining them in practice.
Between these two motivations lies a very likely chance of delineating the quantum-
classical boundary.

Quantum information science has added a radically new viewpoint to the inves-
tigation of quantum mechanics. This has brought about a superior comprehension
of quantum aspects like entanglement and decoherence, and given us the devices to
see certain quantum properties of physical systems as an asset. This has additionally
empowered us to address the key inquiries in quantum computation from another
viewpoint. Fromamore foundational point of view, quantum information speculation
has a more significant message for us. How physical systems process and exchange
information is crucial for better understanding of the workings of our universe. For
example, the relationship between entropy, information and thermodynamics are
fundamental to understanding of statistical physics.

Quantum information theory has a – perhapsmore revolutionary –message for us:
Devices employing the laws of quantum physics have superior information process-
ing capabilities than their classical counterparts.What aspects of quantummechanics
makes this possible? This, in the context of communication, is the focus of our work.

Two aspects of quantum mechanics set it apart from its classical counterpart. The
first is the existence of nonclassical states with correlations of a strength impossible
classically [6–8]. The second is the ability of quantum measurements to disturb the
states that are measured. Both of these are uniquely quantum, and their harnessing in
numerous ways underlies quantum information science. For quantum teleportation,
quantum computation [9], and some protocols of quantum cryptography using pure
states, quantum entanglement [10, 11] has been shown to be the reason behind the
quantum enhancement.

However, much less is known about the necessity of quantum entanglement in
mixed-state quantum information processing. In 2008, quantum discord was pro-
posed as a possible resource [12] behind mixed-state quantum computation [13]. In
spite of several early investigations [14–17], and some recent partial successes [18],
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a complete proof on the necessity of quantum discord as a resource for mixed-state
quantum computation remains elusive. Quantum discord has also been studied in
numerous other contexts, as reviewed in Ref. [19].

In this work, we review the role of quantum discord in quantum communication.
We show that quantum discord plays a vital role in all unidirectional, memoryless,
bipartite quantum communication.

The remainder of the paper is organized as follows. In Sect. 2 we review the
definition and a few properties of quantum discord. In Sect. 3 we provide a very
brief background in quantum Shannon theory that leads to the fully quantum Slepian
Wolf (FQSW) protocol. This protocol is the unification of all unidirectional, bipar-
tite and memoryless quantum communication protocols. Next, in Sect. 4, we discuss
the role of quantum discord in the efficiency of the FQSW protocol. Thus, a role of
quantum discord in the FQSW protocol implies its role in all quantum information
processing protocols and therefore establishing the role of quantum correlations in
quantum information theory. We discuss this in Sect. 5, connecting quantum discord
to the efficiency of quantum communication protocols. We give examples of spe-
cific bipartite communication protocols and demonstrate how discord makes them
more efficient. The significance of discord in device dependent cryptography and
entanglement transfer is discussed next in Sects. 6 and 7 respectively.

We conclude with a discussion on the significance of our results in the broader
context of quantum information theory in Sect. 8.

2 The Ingredient: Quantum Discord

Quantum discord was first defined in 2002 [20, 21]. It remained a quantity of mar-
ginal interest until its proposed possibility as the resource of quantum enhancement in
mixed-state quantum computation [12] in 2008. Originally defined to quantitatively
separate bipartite quantum states from classical probability distributions of two ran-
dom variables, quantum discord attempts to demarcate the border between classical
and quantum for bipartite systems that can be extended to multi-party scenarios. It
aims to capture essentially all the “quantumness” in an information theoretic way,
including entanglement [20, 21].

In order to characterize “quantumness” or quantum correlations, we first look
at two ways to define mutual information. For a bipartite systems XY , the mutual
information is defined as I(X : Y) = H(X) + H(Y) − H(X,Y), where H(·) stands
for the Shannon entropy, as defined below.

Let X be a random variable that is distributed according to the probability distri-
bution function (PDF) P(x). Y is the output random variable distributed according
to P(y). Y carries information about X and the conditional PDF is given by P(y|x).

P(y) =
∑

i

P(y|xi)P(xi) (1)



244 A. Datta and V. Madhok

The MI is defined as

I(X : Y) = h(X) − h(X|Y)

= h(Y) − h(Y |X) (2)

or it can be defined as,

I(X : Y) = h(X) + h(Y) − h(X,Y), (3)

where h represents the Shannon entropy function for the random variable with a
given probability distribution. Writing h explicitly in terms of the PDF, we get

h(X) = −
∑

Pi(x) lnP(xi);
h(X|Y) = −

∑ ∑
P(xi, yj) lnP(xiI|yj);

h(X,Y) = −
∑ ∑

P(xi, yj) lnP(xi, yj) (4)

For a classical probability distribution, Eqs. (2) and (3) are equivalent definitions of
the mutual information as I(X : Y) = h(X) − h(X|Y),where the conditional entropy
h(X|Y) is an average of the Shannon entropies of X, conditioned on the outcomes of
Y . This is enabled by Bayes’ rule, a vital cog in proving numerous results in classical
information theory. As we will now show, the definition of conditional probabili-
ties is nontrivial in quantum mechanics due to the role of quantum measurements.
Quantum discord thus captures the nonclassical effects of quantum measurements
in information processing.

In order to determine outcomes of Y to compute conditional probabilities in quan-
tum mechanics, one needs to make measurements. In general, these measurements
disturb the quantum systems and lead to different values of mutual information. For
a quantum system, this depends on the measurements that are made on B. For a
POVM given by the set {�i}, the state of A after the measurement corresponding to
the outcome i is given by

ρA|i = Tr B(�iρAB)/pi, pi = Tr A,B(�iρAB). (5)

Therefore, if we define the conditional quantum entropy as, H̃{�i}(A|B) ≡ ∑
i piH

(ρA|i), and an alternative version of the quantum mutual information can now be
defined as J{�i}(A : B) = H(A) − H̃{�i}(A|B), which depends on the chosen set of
measurements {�i}. To capture all the classical correlations present in ρAB, we
maximize J{�i}(A : B) over all {�i}, arriving at a measurement independent quan-
tity J (A : B) = max{�i}(H(A) − H̃{�i}(A|B)) ≡ H(A) − H̃(A|B), where H̃(A|B) =
min{�i} H̃{�i}(A|B). Since the conditional entropy is concave over the set of POVMs,
which is convex, theminimum is attained on the boundary points of the set of POVMs,
which are rank 1 [22]. Then, quantum discord is finally defined as
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D(A : B) = I(A : B) − J (A : B) (6)

= H(A) − H(A,B) + min{�i}
H̃{�i}(A|B),

where {�i} are now, and henceforth in the paper, rank 1 POVMs. Quantum discord
is non-negative for all quantum states [21, 22], and that quantum discord is sub-
additive [23].

3 The Recipe: Quantum Shannon Theory

The study of inter-conversions between non-local information-processing resources
is the mandate of quantum Shannon theory. Within the resource framework [24, 25],
resources are classified as static (e.g. entanglement, shared randomness) or dynamic
(e.g. communication channels), noisy or noiseless, finite or asymptotic. All proto-
cols involving static resources emanate from a single parent protocol, a quantum
communication-assisted entanglement distillation protocol, known as the ‘mother’
protocol. The ‘father’ on the other hand is an entanglement-assisted quantum com-
munication protocol, the parent of protocols involving dynamic resources [24]. A
protocol which unifies the family tree described above would be at the heart of
quantum Shannon theory, and that is what the fully quantum Slepian-Wolf (FQSW)
achieves [26]. It derives its name from its applicability to distributed compression,
the classical case of which was solved by Slepian andWolf [27, 28]. FQSW is a gen-
eralization of the ‘mother’ protocol since, in addition to quantum communication-
assisted entanglement distillation, it accomplishes state transfer from the sender to
the receiver. Moreover, the FQSW can also be transformed into the ‘father’ protocol
by employing the Schmidt symmetry [26]. FQSW therefore lies at the heart of quan-
tum information theory, and sometimes referred to as state transfer or the merging
mother [29].

This review builds upon on the protocol of quantum state merging. Importance
of the quantum state merging protocol to the field of quantum information theory is
perhaps underappreciated. It provides an operational interpretation for conditional
probabilities in quantum mechanics [30]. Indeed, conditional entropies in quantum
mechanics can be negative, marking a fundamental point of departure of the statis-
tics of quantum systems from that of classical systems. The state merging protocol is
itself inspired by the classical Slepian-Wolf protocol, which provides an operational
interpretation of classical conditional probabilities [27], via its analysis of distrib-
uted compression. In the classical version, the receiver, Bob, has access to some
information Y , and the sender Alice possesses the missing information X. Here X
and Y as random variables. If Bob wishes to learn X fully, how much information
must Alice send to him? One way she can do this is by sending the entire H(X)

bits to Bob. However, Slepian and Wolf showed that she can this more efficiently,
by just sendingH(X|Y) = H(X,Y) − H(Y), the conditional information [28]. Since
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H(X|Y) ≤ H(X), Alice can take advantage of correlations betweenX andY to reduce
the communication cost needed to accomplish the given task.

An interpretation of quantum discord through quantum state merging therefore
reflects this departure, and provides a distinctive measure of what it means and takes
for a system to be quantum. Our result is a consequence of the strong subadditivity
of the Von-Neumann entropy [31]. Strong subadditivity is one of the centerpieces of
information theory and statisticalmechanics. Ourwork considers a bipartite quantum
system of A and B, with C being the ancilla (initially in a pure state) with B. The
information that is lost in the process of measurement on B (which is equivalent to
discarding C after a unitary interaction between B and C) results in making it more
expensive for A to merge her state with B. This enhancement in the cost is quantum
discord [23].

3.1 The “Mother” and the FQSW Protocol

The mother protocol is a transformation on asymptotically many copies of a purified
quantum state |�ABR〉⊗n. The reference system R purifies ρAB and does not actively
participate in the protocol. To start with, Alice and Bob share the state ρAB. The
mother protocol can be viewed as an entanglement distillation protocol between A
and B when the only type of communication permitted is the ability to send qubits
from Alice to Bob. The transformation can be expressed concisely in the resource
inequality formalism as [25]

〈�AB〉 + 1

2
I(A : R)[q → q] ≥ 1

2
I(A : B)[qq], (7)

which means that n copies of the state |�ABR〉 can be converted to 1
2 I(A : B) EPR

pairs per copy, provided Alice is allowed to communicate with Bob by sending him
qubits at the rate 1

2 I(A : R) per copy.
The mother protocol generalizes to a more general FQSW protocol, which lies at

the heart of quantum Shannon theory. Starting with the same |�ABR〉⊗n, and using
1
2 I(A : R) bits of quantum communication from Alice to Bob, they can distill 1

2 I(A :
B) EPR pairs per copy, and in addition Alice can accomplish merging her state with
Bob. In other words, they create a state |�RB̂〉⊗n, where B̂ is a register held with
B and |�R〉 = |�RB̂〉. As purifications are equivalent upto local unitaries, Bob can
convert |�B̂〉 to |�AB〉 at his end and thus complete the state merging with Alice. In
the state merging task, as described above, Alice is able to successfully transfer her
entanglement with the reference system R to Bob. This is expressed as

〈�AB〉 + 1

2
I(A : R)[q → q] ≥ 1

2
I(A : B)[qq] + State Merging. (8)
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To start with, A and B share n copies (asymptotic limit) of a pure state |�ABR〉⊗n.
Here R is simply the purification of the system and does not participate actively in
the protocol. At the end of the protocol, the aim is for A to its entanglement with R
to B and in addition A and B distill EPR pairs between them. The exact quantitative
expression showing the resource transfer is given by

〈US→AB : �S〉 + 1

2
I(A : R)[q → q] ≥ 1

2
I(A : B)[qq] + 〈IS→B : �S〉. (9)

The above inequality is another way of expressing the FQSW protocol, where we
accomplish state merging as well as entanglement distillation. The state S on the left-
hand side of the inequality, is distributes to Alice and Bob, while on the right-hand
side, that same state is given to Bob aone. U is the channel that accomplishes this
“handing over” of the state to the concerned parties. The FQSW protocol is valid
asymptotically in the limit of a large number of copies and we denote this by the
symbol ≥. The final state is of the form |�A1B1〉 ⊗ |� B̃BR〉⊗n, where A1 is held by
Alice, and B, B̃,B1 are held by Bob, and |�A1B1〉 is a maximally entangled state with
|A1| = nI(A : B)� − o(n).The aim is to have |� B̃BR〉 identical to |�ABR〉with system
A now in Bob’s possession. Therefore, the initial entanglement between A and R has
been transferred to B.

In the FQSWprotocol, Alice andBob share the quantum state ρ⊗n
AB , with each party

having the marginal density operators ρ⊗n
A and ρ⊗n

B respectively. It was shown that in
the limit of n → ∞, and asymptotically vanishing errors, the answer is given by the
quantum conditional entropy: S(A|B) = S(A,B) − S(B). When S(A|B) is negative,
Bob obtains the full state with just local operations and classical communication, and
distill −S(A|B) ebits with Alice, which can be used to transfer additional quantum
information in the future. The accounting of resources can be seen from the resource
inequality (9) in a straightforward way. If the bell pairs, quantified by 1

2 I(A : B)[qq],
recovered at the end of the FQSW protocol can be used for teleportation, the net cost
of quantum communication for state merging is given by (I(A : R) − I(A : B))/2 is
exactly equal to the quantum conditional entropy S(A|B) = S(A,B) − S(B).

The central feature to note is that all bipartite, unidirectional, memoryless can be
derived from the FQSW protocol. In the next section, we explore this further and
discuss the role of discord in a few specific examples of such communication.

4 The Result: Quantum Discord in the FQSW Protocol

In this section we present the main result on the role of quantum discord in quantum
communication protocols. Since any practical implementation of a quantum com-
munication protocol will be affected by noise, we now show that quantum discord
assumes its relevance.

We consider loss of information and coherence only at Bob’s end. This can be
effected by considering a global unitary between Bob’s system B and an ancillary
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environment system, say C, and then tracing C out. Physically, such a quantum
operation will emulate environmental decoherence.

We begin by expanding the size of the Hilbert space so that an arbitrary pre-
measurement (or any other quantum operation) can be modeled by coupling to the
auxiliary subsystem and then discarding it. We assumeC to initially be in a pure state
|0〉, and a unitary interaction U between B and C. Letting primes denote the state
of the system after U has acted we have H(A,B) = H(A,BC) as C starts out in a
product statewithAB.Wealso have I(A : BC) = I(A′ : B′C′).As discardingquantum
systems cannot increase the mutual information, we get I(A′ : B′) ≤ I(A′ : B′C′).
Now consider the FQSW protocol between A and B in the presence of C. We can
always view the yield of the FQSW protocol on the system AB to be the same as
that of performing the protocol between systems A and BC, where C is some ancilla
(initially in a pure state) with which B interacts coherently through a unitaryU. Such
an operation does not change the cost or yield of the FQSW protocol, as shown, but
helps us in counting resources. Discarding system C yields

I(A′ : B′) ≤ I(A′ : B′C′) = I(A : BC) = I(A : B). (10)

Now consider a protocol which we call as FQSWDB (fully quantum Slepian-Wolf
after decoherence), where the subscript refers to the decoherence at B. The resource
inequality for FQSWDB is

〈US→A′B′ : �S〉 + 1

2
I(A′ : R′)[q → q] ≥ 1

2
I(A′ : B′)[qq] + 〈IS→B̂ : �S〉. (11)

As in the fully coherent version, the Alice is able to transfer her entanglement with
the reference system R′, and is able to distill 1

2 I(A
′ : B′) EPR pairs ([qq]) with Bob.

Since I(A′ : R′) = I(A : R), theFQSWprotocolwithout decoherencehas a net gain of
1
2 I(A : B) − 1

2 I(A
′ : B′) = 1

2D EPR pairs. Since the cost of quantum communication
is same for both (coherent and decoherent) versions, we regard D as the metric of
how coherently the FQSW protocol operates.

The minimum of D over all possible measurements is the quantum discord. The
state ρAB, under measurement of subsystem B, changes to ρ′

AB = ∑
j pjρA|j ⊗ πj,

where {πj} are orthogonal projectors resulting from a Neumark extension of the
POVM elements. The unconditioned post measurement states of A and B are

ρ′
A =

∑

j

pjρA|j = ρA, ρ′
B =

∑

j

pjπj.

Invoking these relations, we get
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I(A′ : B′) = H(A′) + H(B′) − H(A′,B′),

= H(A′) + S(p) − {
S(p) +

∑

j

pjH(ρA|j)
}
,

= H(A) −
∑

j

pjH(ρA|j), (12)

where S(·) is the Shannon entropy. After maximization, it reduces to J (ρAB), as
defined earlier. The reduction to rank 1 POVMs follows as stated earlier. Quantum
discord quantifies the loss in yield of the FQSW protocol due to decoherence, and
therefore D serves as a valid metric for the net loss in the number of EPR pairs in
the noisy version of the protocol. This result shows that quantum discord is a vital
quantifier of the performance of noisy quantum communication protocols.

In the following section, we show that discord plays the role of quantifying the
role of noise in essentially all the children protocols that are the special cases of the
FQSW protocol [32, 33]. This is to aid in the appreciation of this result in the context
of a few commonly encountered and studied quantum communication protocols.
They are also chosen for their central role quantum computation and quantum error
correction.

5 Quantum Discord in the Children Protocols

5.1 Noisy Teleportation

The resource inequality for teleportation in the presence of noise is given by

〈�AB〉 + I(A : B)[c → c] ≥ I(A〉B)[q → q]. (13)

This resource inequality is a combination of the mother protocol with teleporta-
tion [25], and I(A〉B), the coherent information [34], is equal to−S(A|B). The above
resource inequality states that A can accomplish teleporting I(A〉B) bits of quantum
information using the state 〈�AB〉 and some classical resources.

Under environmental decoherence at Bob, B, the protocol is given by

〈�A′B′ 〉 + I(A′ : B′)[c → c] ≥ I(A′〉B′)[q → q]. (14)

Therefore, we see that the amount of bits teleported gets reduced by I(A〉B) −
I(A′〉B′) or S(A′|B′) − S(A|B).
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5.2 Noisy Super-Dense Coding

Superdense coding is a process that is the reverse of teleportation. Here, the goal
is to transmit classical information using entanglement. The resource inequality for
superdense coding is given by:

[qq] + [q → q] � 2[c → c], (15)

showing that one can employ a shared entangled bit and a single bit of quantum
communication to communicate 2 bits of classical information. The symbol � is
used to denote exact attainability as compared to ≥ which is to denote asymptotic
attainability.

Combining the FQSW protocol with superdense coding, we get,

〈�AB〉 + H(A)[q → q] ≥ I(A : B)[c → c]. (16)

When the party B is undergoing decoherence, the noisy superdense coding can be
expressed as,

〈�A′B′ 〉 + H(A′)[q → q] ≥ I(A′ : B′)[c → c]. (17)

We note that H(A) = H(A′). Thus, due to decoherence, the number of classical bits
communicated through this protocol gets reduced by the amount I(A : B) − I(A′ :
B′). This difference shows up as discord of the state 〈�AB〉.

5.3 Entanglement Distillation

The one-way entanglement distillation can be expressed as

〈�AB〉 + I(A : R)[c → c] ≥ I(A〉B)[qq]. (18)

This inequality can be derived by combining theFQSWprotocol Eq. (9) and recycling
the 1

2 I(A : R) ebits out of the total 1
2 I(A : B) produced for teleportation, as shown

in [25]. Decoherence at Bob’s end B provides

〈�A′B′ 〉 + I(A′ : R′)[c → c] ≥ I(A′〉B′)[qq]. (19)

Thenet change in entanglement distillation is equal to I(A′〉B′) − I(A〉B) = H(A|B) −
H(A′|B′), which is the negative of the quantum discord of the original state. As is
well known, classical communication between parties cannot enhance entanglement,
and we can neglect the overhead of I(A : R) − I(A′ : R′) classical bits.
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6 Quantum Discord in Device Dependent Cryptography

Recently, quantum discord has also been shown to play a vital role in quantum
cryptography [35].

Consider the scenario where two parties, Alice and Bob, want to communicate
secret messages between them using quantum states. Alice prepares a bipartite quan-
tum state ρAB, whose purification is given by ρABR. Then she sends one half of the
state, ρB, to Bob. Alice and Bob then make measurements on their respective subsys-
tems two extract correlated variables,X and Y . More specifically, Alice and Bob both
make rank-1 POVMmeasurements on their respective subsystems. Alice extracts the
random variable X with the distribution {x, px}. Similarly, Bob recovers Y with dis-
tribution {y, py}. After the procedure is repeated a number of times, Alice and Bob
compare their data. After classical procedures like privacy amplification and error
correction, they extract the secret key at a rate of K(x, y) ≤ I(X,Y).

The role of discord becomes evident when we consider the above protocol in
the presence of an eavesdropper, Eve. It was shown in [35], that nonzero discord
is a necessary condition for such a device dependent secure quantum cryptography.
Let us begin with states having zero quantum discord. Suppose, Alice prepares a
“quantum-classical” state, ρAa = ∑

i piρA(k) ⊗ |k〉〈k|, where |k〉 are all orthogonal.
The classical part of this state is perfectly cloneable by Eve due to this orthogonality.
The joint state of Alice, Bob and Eve can be represented as,

ρABE =
∑

i

piρA(k) ⊗ |k〉B〈k| ⊗ |k〉E〈k|. (20)

As the above state is symmetric to perturbations of B and E, Eve is able to decode
the information in variable A of Alice with the same accuracy as Bob. We can
also see that secure communication in the presence of eavesdropper also fails in
the reverse direction. After measurement by Bob, the joint state of the system is
ρAE|y = ∑

i pi|yρA(k) ⊗ |k〉E〈k|., where pk|y = 〈k|My|k〉. The Eve makes measure-
ment using POVM to get K = {k, pk|y} and Alice recovers variable X with the distri-
bution Tr [MxρA(k)]. Since Y → K → X form a Markov chain, the data processing
inequality states that I(Y ,K) ≥ I(Y ,X). Therefore, Eve recovers more information
than Alice.

Thus, non-zero discord, that is D(A : B) > 0, is essential to device dependent
cryptography in the above scenario. Essentially, the same features of traditional
cryptography, the information encoded in non-orthogonal states, is manifested as
non-zero discord in a bipartite setting and this enables secure communication. It is
important to notice that entanglement can be completely absent and yet cryptography
is successful due to quantum discord. It was shown in [35] that any prepare and
measure protocol based on non-orthogonal quantum states can be recast into an
entanglement free device dependent with non zero discord as a necessary condition
for it to be successful.
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7 Quantum Discord in Entanglement Transfer

It was shown in 2003 that no entanglement is necessary to distribute entanglement. In
other words, two distant particles can be entangled by sending a third particle that is
never entangled with the other two [36]. The absence of entanglement in transferring
it was somewhat of a paradox. A primary analysis1 was presented discussing the role
of bound entanglement and quantum discord was first presented in 2008 [22].

In 2012, it was shown that the amount bywhich the entanglement can be increased
between a sender and a receiver is, in fact, bounded by the amount of quantumdiscord
between them and the intermediate carrier [37]. To get an overview of the scheme,
consider Alice and Bob, with their respective quantum systems A and B. They aim to
increase their entanglement via local operations and sending an auxiliary system C
between them. The difference between entanglement between two partitions A : BC
and AC : B can be bound as [37]

EA:CB(ρ) − EAC:B(ρ) ≤ DAB|C(ρ) (21)

Let α be the initial states of A, B and C. Let β = MAC(α) be the state obtained
through local operations on the system AC. Now, C is send over to B. The above
bound implies,

EA:CB(ρ(β)) ≤ EAC:B(ρ(α)) + DAB|C(ρ(β)). (22)

The above shows that the entanglement between two remote subsystems cannot
increase if the discord between the bipartite state cut AB|C is zero. In particular,
states of the form, ρ(β) = ∑

i piρA(k) ⊗ |k〉〈k|C , where |k〉 are orthogonal, known
as the classical-quantum states, cannot be useful for entanglement gain, as they are
equivalent to local operations and classical communication between A and B.

8 Discussions and Outlook

The study we presented in this paper quantifies quantum discord as the cost of quan-
tum communication under environmental noise. We were mainly concerned with
quantum communication protocols. We hope this will lead to further progress in
understanding the quantum resources in quantum information processing. Alterna-
tively, can this picture help us understand quantum resources in quantum computa-
tion and shed new light on such issues? Our work on quantum discord raises many
interesting questions and opens new directions.

The first in the extension of the formalism of the fully-quantum Slepian-Wolf
protocol to multipartite scenarios. This would enable us to show more rigorously
the role of quantum discord in noisy implementations of quantum cryptography
and entanglement. A multipartite generalization has existed since 2008 [38], but a

1It was first brought to the attention of one of the authors (AD) by W. Zurek during 2007-8.
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complete unification into a ‘mother of all protocols’ seems lacking. This unification
shouldbe aworthwhile endeavor as quantum technologiesmakepossible applications
such as multi-party cryptography, anonymous communication, voting, and message
passing.

Thenext extensionwouldbe extend the fully-quantumSlepian-Wolf beyondmem-
oryless channels and bi- and then multidirectional scenarios. One of the challenge
seems to that of deriving the rates of classical randomness distillation with 2-way
communication [39], and its possible connection of multipartite quantum discord.
All of these would be commendable advances in the area of quantum Shannon theory
in their own right, and quantum information theory in general.

At a more foundational level, one may wonder whether a state with zero dis-
cord be treated as “classical”? Are states with vanishing quantum discord useful for
certain tasks which are not possible classically? For example, the question whether
concordant computations can be simulated classically was investigated by Eastin
[17]. A concordant computation is one in which after each stage of computation, the
resulting quantum state is diagonal in a product basis, and hence has zero discord.
The entire simulation is finding the right product basis, yet Eastin’s findings suggest
that it might be difficult to simulate such computations efficiently. Cable and Browne
recently showed that this is possible in a large number of cases [18]. This represents
not only a big step towards a full classical simulation of concordant computations,
but also in the understanding of the role of non-classical correlations in quantum
computation [40]. With greater understanding that quantum discord has provided, it
would appear that the boundary between the quantum and the classical world might
not be that simple after all.

At another level, the role of quantum discord in quantum-to-classical transition
could be vital. Quantum discord is also closely related to the measurement problem
and, indeed, quantum discord arose in the context of pointer states and environment
induced decoherence. Under what conditions does a quantum trajectory that tracks a
measurement of a given observable follow the classical trajectory?A related question
is the role of generic quantum correlations like quantum discord in the emergence
of the classical world. What is the role of quantum discord in the interfering paths a
many-body quantum system takes from one point in spacetime to another? Further,
the role of discord in characterizing quantum chaotic dynamics [41] has come to
the fore. In [41], a multiqubit system that can be viewed as a quantum kicked top
was employed to study this connection. As the initial quantum state, a coherent wave
packet on the entiremulti-qubit Hilbert space, is varied from the regular to the chaotic
regions of the corresponding classical phase space, a contour plot of the long time
averaged discord remarkably reproduces the structures of the classical stroboscopic
map. The key message here suggests as classical chaos produces classical informa-
tion, captured by uncertainty and Kolmogorov-Sinai entropy, quantum chaos seems
to produce quantum information that is manifest is superposition of quantum states
of a multipartite system. Discord is one way to quantify this quantum information
and superpositions and hence characterize chaotic dynamics. Such studies have put
in light the role of discord in efficient simulation quantum chaotic dynamics.
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Non-Classical Correlations in Information
Processing

Anil Shaji

1 Introduction

In purely functional terms, a computation transforms a human readable bit string
referred to as the input or question into another human readable bit string referred
to as the output or answer. We are assuming here that irrespective of the nature of
the input or output, information can always be expressed in the simplest possible
language with only two elements in its alphabet; namely binary. In the process of
getting from the input to the output, the sequence of steps - the algorithm - would
employ additional resources like computational space (memory) computational time
etc. Quantum information processing brings new resources into the mix; entangle-
ment and quantum coherence being the most prominent among them. These addi-
tional resources are known to shorten the path from input to output, as measured
in terms of the conventional resources like computational space and computational
time, for several interesting and useful computational problems. However there is
reason to believe that the full potential of the use of quantum resources in information
processing is only beginning to be understood.

A substantial amount of literature exists exploring the role and relevance of quan-
tum entanglement as a key resource in quantum information processing. These
studies have provided valuable insights into the role of non-classicality as a use-
ful resource [1, 2]. Josza and Linden [3] showed that the presence of multi-partite
entanglement involving a number of parties increasing unboundedly with input
size is necessary for a quantum algorithm operating on pure quantum states to
offer an exponential speed-up over classical computation. If the entanglement does
not increase unboundedly in a computational process then each step of the quan-
tum algorithm can, to any desired accuracy, be simulated on a classical computer.
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An explicit construction for such a simulation scheme is also available [4]. It is also
known that just having large amounts of entanglement by itself need not lead to a
computational advantage. For instance, quantum computations involving a restricted
set of highly entangled states like the stabilizer states can be simulated efficiently
classically, as shown by the Gottesman-Knill theorem [5].

While exploring the role of entanglement in quantum information processing
with exponentially enhanced efficiencies relative to classical algorithms [3], Jozsa
and Linden make it quite clear that the resource(s) responsible for the computational
power of mixed states which may or may not be entangled remains an open question.
The realisation that nonClassical correlations in quantum states - especially mixed
ones - are not limited to entanglement has given some pointers towards unraveling the
resources responsible for enhanced efficiencies in quantum information processing
using mixed states. In this lecture I put together what is known along these lines
and give some pointers on problems that are still open and directions that remain
unexplored.

2 DQC1 and Quantum Discord

The DQC1model of a quantum computation using mixed states [6] provided the first
indication that nonClassical correlations other than entanglement may be a useful
resource for quantum information processing. In the DQC1 model, the normalised
trace of a randomunitarymatrix is evaluated to any desired accuracy in afixednumber
of steps independent of the size of the unitary. The quantum circuit corresponding
to the DQC1 computation is given below:

|0〉 H � X/Y

Un11n/2n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

This circuit evaluates the normalized trace of Un , τ = tr(Un)/2n to any desired
accuracy. The real and imaginary parts of the normalized trace is obtained from
the measurement statistics of the sole pure qubit in the circuit. The measurement
accuracy therefore depends only on the number of repetitions of the computation
and is crucially independent of n. In contrast, the best known classical algorithm to
compute the trace ofUn , which is a 2n × 2n matrix, requires resources (computational
steps) that grows as 2n .

The DQC1 circuit transforms the highly-mixed initial state ρ0 ≡ |0〉〈0| ⊗ 11n/2n

into the final state ρn+1,



Non-Classical Correlations in Information Processing 259

ρn+1 = 1

2n+1

(
|0〉〈0| ⊗ In + |1〉〈1| ⊗ In + α|0〉〈1| ⊗U †

n + α|1〉〈0| ⊗Un

)
. (1)

The pure qubit at the top of the circuit is separable from the bottom mixed qubits at
all times as can be seen easily by inserting the eigen-decomposition of the unitary
Un = ∑

j e
iϕ j |ϕ j 〉〈ϕ j | into the state above leading to the explicitly separable form,

ρn+1 = 1

2n
∑

j

|ψ j 〉〈ψ j ⊗ |ϕ j 〉〈ϕ j |, |ψ j 〉 = 1√
2
(|0〉 + eiϕ j |1〉).

The final state also has vanishingly small entanglement, as measured by the nega-
tivity [7] across any split that groups the top qubit with some of the mixed qubits.
Instead of looking for entanglement in the DQC1 state, in [8] nonClassical corre-
lations as measured by the quantum discord across the natural bipartite split of the
state between the top qubit and the rest was computed and found to be present.

To recap briefly, the notion of quantum discord was introduced by Ollivier and
Zurek [9]. A closely related quantity was introduced independently by Henderson
and Vedral [10] around the same time. Quantum discord captures all the quantum
correlations including entanglement across a bipartite split of a quantum state. Quan-
tum discord [9, 10] is defined in terms of themutual information, which is an entropic
measure of correlations between two systems A and B, in a joint state ρAB , defined
as,

I (A : B) = S (ρA) + S (ρB) − S (ρAB) , (2)

where ρA,B = trB,A(ρAB) are the reduced sub-system density matrices and S(ρ) =
−tr(ρ log ρ) is the vonNeumann entropy of the quantum state ρ. Based on a measure-
ment of subsystem Awe can quantify the correlations between A and B alternatively
as

J (A : B) = S(ρB) − S(B|A), (3)

where the conditional entropy S(B|A) is defined with respect to the measurement
M performed on system A with possible results labelled by ak as

S(B|A) =
∑

k

pk S(ρB |ak). (4)

Here pk ≡ p(ak) is the probability of obtaining the measurement result ak . Note that
if A and B are assumed to the classical random variables with associated probability
distributions then the classical analogues of the mutual informations I (A : B) and
J (A : B) defined by replacing the vonNeumann entropies with the corresponding
Shannon entropies in Eqs. (2) and (3) are identical as a consequence of Bayes’
theorem. Subtracting J from I quantifies the correlations in the AB system that
are not revealed by the measurement M on A. Removing the ambiguity in I − J
stemming from the choice of measurementM by maximising over all possible local
measurements, one defines discord as
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D = I (A : B) − max
M

J (A : B). (5)

In principle the maximisation overM includes all possible measurements including
POVMs. Often discord is computed and/or operationally defined using a simpler
maximisation over all possible projective measurements.

In [8] the DQC1 circuit above was generalised to allow the top qubit to have
an initial state of arbitrary purity given by (11 + αZ)/2, where |α| ≤ 1 and Z is the
Pauli spin-z operator. A closed form expression for the quantum discord of the DQC1
state across the natural bipartite split between the top qubit and the rest assuming a
uniform distribution for the eigen-phases of Un , was obtained as

DDQC1 = 2 − H2

(1 − α

2

)
− log

(
1 +

√
1 − α2

)
−

(
1 −

√
1 − α2

)
log e. (6)

For α = 1 which corresponds to the circuit above, we obtain DDQC1 = 0.5573.
The assumption that the eigen-phases of Un are distributed uniformly around the

unit circle implies that the normalized trace is zero. So the analysis in [8] is open to
the criticism that one is finding the trace using DQC1 for a case where the answer
is already known to be zero and then claiming that the quantum advantage may
possibly be attributed to the discord in the circuit. Numerical investigations however
suggest that the expression in Eq. (6) continues to be a good approximation as well
as an upper bound to the value of discord in DQC1 even if the eigen-phases are
not uniformly distributed. For example the assumption of uniform distribution of
phases breaks down as soon as we assume that the bottom register of qubits in the
DQC1 circuit is made of a small number of qubits. With only a small number of
qubits, unitaries Un can be numerically generated and the corresponding discord in
the DQC1 final state can be computed.

Togenerate randomunitarieswhile sampling faithfully from the set of all unitaries,
we use the method proposed in [11]. For a random unitary on n qubits, one starts
with n independent 2 × 2 SU(2) matrices constructed as

U2(θ,φ, ξ) =
(

eiξ cos θ eiφ sin θ
−e−iφ sin θ e−iξ cos θ

)

,

where ξ, θ and φ are three random numbers between 0 and 2π. Taking the tensor
product of n such matrices, we get a 2n × 2n unitary matrix,

W = U2(θ1,φ1, ξ1) ⊗U2(θ2,φ2, ξ2) ⊗ · · · ⊗U2(θn,φn, ξn),

which is further “mixed up” by multiplying it by the unitary matrix

V = exp

[

i
π

4

n−1∑

j=1

σ j
z ⊗ σ j+1

z

]

,
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Fig. 1 Histogram showing
the distribution of quantum
discord when 5000 instances
of random unitary matrices
are used in a DQC1 circuit in
which the bottom half of the
circuit has nine qubits and
the top (control) qubit is
initially in a pure state
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The resulting unitary,
UPR = VW,

is a pseudo-random unitary “that can reproduce those statistical properties of ran-
dom unitary operators that are most relevant for quantum information processing
tasks” [11].

Numerically computing the discord from five thousand instances of randomly
picked unitaries yields a distribution for the discord in the DQC1 state after the
conditional application of the unitary shown in Fig. 1. The distribution has mean
D̄ = 0.553261 and standard deviation 0.006032. The minimum value for discord
that was found for this trial was 0.462253 and the maximum value was 0.557196.
Numerical computations of the same kind done after changing the number of qubits
in the lower half of the circuit indicate a similar behavior. The discord values cluster
together close to DDQC1. However the values seems to be always less than DDQC1.

The results in [8] suggested that nonClassical correlations other than entanglement
may play a role in the exponentially enhanced ability of the DQC1 circuit in finding
the normalised trace of a random unitary Un . This suggestion triggered a veritable
deluge of results and papers on quantum discord; too numerous to summarise here.
An overview of this flurry of activity may be found in [12] and references therein.We
will focus on a few pertinent lines of thought that came out of these investigations.

2.1 Discord: Resource or Not?

Astate ρ has a zero discord if it can bewritten as ρ = ∑
j p j |ψi 〉〈ψ j | ⊗ ρ j where |ψ j 〉

form an orthonormal basis. This state has a one way zero discord, since one can find
a projective measurement on subsystem A for which ρ = ∑

j (�
A
j ⊗ 11B)ρ(�

A†
j ⊗

11B). In [13] the condition for zero discord is shown to be equivalent to the case where
the state has the form

∑
j c j S

A
j ⊗ FB

j with [SA
j , SA

k ] = 0, where SA
j form a suitable

operator basis for the Hilbert space of subsystem A. The commutativity of all the SA
j

that appear in the expansion of ρ ensure set of common eigenvectors and the state
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can be re-written in the zero discord form explicitly in terms of the projectors on to
these eigenvectors. Using this condition for zero discord states it can be shown that
if the random unitary in the DQC1 circuit has the form Un = eiφAn where An is a
binary observable (A2

n = A2
n), then the final DQC1 state will have no discord across

the division between the top qubit and the rest.
In [13] the authors point out that an efficient classical algorithm for simulating

the DQC1 circuit may not exist even for such an unitary which does not produce any
discord, since the eigenvectors of Un can effectively be random in any fixed basis.
In order to compute the phase picked up by the top qubit as a result of the action
of Un on the bottom qubits, one has to represent the fully mixed state of the bottom
qubits in the eigenbasis of Un . However since the eigenbasis of U are typically
arbitrary and entangled the resources required to simulate these states classically can
be exponential in the number of qubits.

The results in [13] does legitimately pose the question whether non-Classical
correlations as quantified by discord is indeed a resource in mixed state quantum
computation and in particular in the DQC1 model. It does not necessarily imply that
discord is not a resource because it remains to be seen whether the particular family
of unitaries that leave the final DQC1 state with no discord has further structure that
allows for efficient computation of the trace of such unitaries on a classical computer.
There are indications this may be case. For one, it is clear from the structure of these
unitaries that their eigenvalues are restricted to being ±1, or equivalently they are
Hermitian unitaries. In this case finding the trace reduces to finding the number of
positive (or negative) eigenvalues and there may exist an efficient classical algorithm
for doing the same. Such an algorithmwould by implication then lend further support
to the view that the power of DQC1 model of quantum computation obtains at least
partially because of the nonClassical correlations that are generated between the
qubits during the course of the computation.

A further clue that nonClassical correlationsmaybe the key resource inmixed state
quantum computation comes from Eastin’s result on concordant quantum computa-
tions [14]. Concordant states are those that have zero discord across any bipartition
and in a concordant computation, the states remain concordant at every step. Eastin
gives a classical algorithm for efficiently simulating a conventional concordant com-
putation provided that the gate set acting on the qubits is restricted to one qubit or
two qubit gates. The computation is conventional in the sense that the input state
is diagonal in the computational basis and can therefore be read-off as a bit string.
This result was further extended recently by Cable et al. [15]. The results by Eastin
and Cable et al. indicate that there may be transition in terms of the amount and type
of nonClassical correlations generated in the computational qubit registers during
the course of a quantum information processing protocol that decides whether the
quantum computation can be classically simulated or not. Role of discord in DQC1
will then be decided depending on which side of the transition the case of the family
of unitaries in [13] lies.
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3 Other Measures of NonClassical Correlations

Discord is but one way of quantifying the nonClassical correlations in a quantum
state and it is not clear whether discord is the best measure of such correlations
to use when trying to relate it to the enhanced efficiencies of quantum information
processing protocols. Several alternatemeasures have been proposed aswell [16–18].
In [19], several of these measures were be brought together under a unified picture
following the general strategy of constructing measures of nonClassical correlations
for bipartite states as the difference between a quantum entropic measure, Q(ρAB),
and its classical counterpart, C(ρAB), which is derived from the probabilities for
results of local measurements on one or both of the subsystems. Here Q quantifies
appropriately all the correlations in the system,whereas the corresponding classical C
captures only the corresponding classical correlations. The difference,M = Q − C,
is therefore a way of quantifying the nonclassical correlations in the quantum state.

In [19] three types of entropic measures of correlations are chosen, namely (1)
mutual information, (2) conditional entropy and (3) Joint entropy. The joint-entropy
based measures (3) are equivalently thought of measures based on the differences
in abilities of ‘quantum’ and ‘classical’ Maxwell’s demons to extract work from
the same quantum state. Within broad type of measure of nonClassical correlations,
finer sub-divisions can be thought of based on the type of measurements done on
one or more of the subsystems, the statistics of which, in turn, is used to compute the
classical quantity C. We imagine that there are classical observers A and B—demons
or otherwise—whohave access to the twoparts of the bipartite system in the stateρAB .
We allow these observers to employ one of three measurement strategies: (a) Local,
rank-one-projectormeasurements in the eigenbases of themarginal density operators,
(b) Unconditioned local measurements and (c) Conditioned local measurements.
Measurement strategy (a) allows for no freedom in the choice of measurements
performed by the local observers. In the other two cases, C has to be optimised, as in
the case of discord, over all allowedmeasurements. Further the first twomeasurement
strategies are symmetric between the two observers while the third one is not.

Putting together the three types of correlation measures with the three possible
measurement strategies of the local classical observers, we obtain nine possible mea-
sures of nonClassical correlations labeled asM jα, where the index j = 1, 2, 3 labels
the type of correlation measure used and the index α = a, b, c denotes the particu-
lar measurement strategy employed. The nine measures and the inter-relationships
between them are summarised in the following array reproduced from [19]:

M(MID)
1a ≥ M(WPM)

1b

= ≥

M(MID)
2a ≥ M2b ≥ M(discord)

2c

= ≥ ≥

S(A, B) = M3(i) ≥ M(MID)
3a ≥ M3b ≥ M(dd)

3c

(7)
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In the array (7) above, previously known measures belonging to the family of nine
measures we consider are indicated as superscripts within brackets. In particular
M1a ,M2a andM3a are all equal to themeasurement induced disturbance introduced
by Luo [16], while M1b is the symmetric measure of nonClassical correlations
introduced by Wu, Poulsen and Molmer (WPM) [17]. M2c is the discord that we
have already considered while M3c is the Maxwell demon based measure, (dd),
explored by Zurek in [18]. One of the quantities M1c, it turns out, is ill defined
and can be arbitrarily large and negative and hence is omitted from the list. The
joint-entropy based measures (demon based) have one extra entry because one can
further consider work extraction with or without subsequent erasure of the demons’
memory. From the table above we also see that all the measures are upper bounded
by the joint entropy of the bipartite system, S(A, B).

From the hierarchy of measures we see that the quantum discord is typically the
most parsimonious one when it comes to quantifying nonClassical correlations and
in this regard it may be the best suited to quantify nonClassical correlations when
discussing their role in quantum information processing.

4 Discord in Entanglement Distribution

Quantum information processing tasks other than computations per se, also leverages
nonClassical correlations in quantum states to achieve objectives that may not be
possible using classical means. In [20], Cubitt, Verstraete, Dür and Cirac showed
that entanglement can be generated between two qubits A and B using a third qubit
C as an intermediary. In the “Cubitt” protocol, joint operations between the A and
C qubits and separate joint operations between the B and C qubits are allowed.
However, there is no entanglement between A and C or B and C at any point in
the protocol but still entanglement is generated between A and B even though they
started off in a non-entangled state.

In a pair of closely related papers [21, 22], the idea that in order to distribute
entanglement between two parties A and B using a third quantum system C as in
the Cubitt protocol, there has to be at least some non-classical correlations between
A and C has been elaborated upon. In [22] this point is expressed in inequality (6):

Efinal − Einitial =
n∑

i=1

�i , (8)

where E denotes entanglement quantified using any suitable measure and�i denotes
the amount of quantum correlations between the sent particle (C) and the remaining
particle (A) in the i-th application of the quantum channel (that sends C across from
A to B). A similar statement is made in [21] wherein the entanglement gain is found
to be bounded by the amount of quantum discord between the two parties and the
carrier. This idea has been previously illustrated using the example from [20] and
using quantum discord as the measure of quantum correlations in [23]. The same
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is outlined in the following as an example of the role of nonClassical correlation in
information processing tasks other than computing.

The starting point in the example given in [20] is a tripartite state of the three qubits
where, as above, A and B are the qubits between which entanglement is distributed
using the carrier/channel qubit C . The initial state of the three qubits given in an
obviously separable form amongst the three qubits is

ρ
(0)
ABC = 1

6

3∑

k=0

|�k , �−k , 0〉〈�k , �−k , 0| + 1

6

1∑

i=0

|i, i, 1〉〈i, i, 1|, |�k〉 = |0〉 + eikπ/2|1〉√
2

.

In the computational basis,

ρ(0)
ABC = 1

6

(
|000〉〈000| + |010〉〈010| + |100〉〈100| + |110〉〈110| + |000〉〈110| + |110〉〈000|

+ |001〉〈001| + |111〉〈111|
)
.

By construction this is a separable state among all three qubits A, B and C . A cnot
operation between qubits A and C produces the state

ρ(1)
ABC = 1

6

[(|000〉 + |111〉)(〈000| + 〈111|) + |001〉〈001|
+ |010〉〈010| + |101〉〈101| + |110〉〈110|

]
. (9)

To complete the entanglement distribution protocol qubit C is brought together with
B and another cnot operation is performed between them yielding the state

ρ
(2)
ABC = 1

3
|�+〉AB〈�+| ⊗ |0〉C 〈0| + 2

3
11AB ⊗ |1〉C 〈1|, |�+〉 = 1√

2

(|00〉 + |11〉).
(10)

QubitC is separable from AB and bymeasuring qubitC one can get with probability
1/3 a maximally entangled state of AB. The entanglement distribution protocol
produces a state from which 1/3 ebits of entanglement can be extracted starting
from a state with no entanglement between A and B. In this case

Efinal − Einitial = 1

3
,

when the entanglement is measured in ebits.
Let us now look at the intermediate state ρ(1)

ABC in somemore detail so as to quantify
the resources that are required for distributing the 1/3 ebits of entanglement between
qubits A and B using this two step protocol. Since the first cnot gate acts on state
vectors of the form,

|�k〉A ⊗ |0〉C = 1√
2
(|0〉A + eikπ/2|1〉A) ⊗ |0〉C ,
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in the first four terms of ρ(0)
ABC , it is easy to see that ρ(1)

ABC can be written as

ρ(1)
ABC = 1

6

[ 3∑

k=0

|�AC
k , �B

−k〉〈�AC
k , �B

−k | + |001〉〈001| + |110〉〈110|
]

, (11)

where

�k = |00〉 + eikπ/2|11〉√
2

.

Clearly, ρ(1)
ABC is separable with respect to the B − AC split. From Eq.9, we see that

the state ρ(1)
ABC is symmetric under the exchange of B and C and it follows that the

C − AB split has to be separable as well. In fact,

ρ(1)
ABC = 1

6

[ 3∑

k=0

|�AB
k , �C

−k〉〈�AB
k , �C

−k | + |010〉〈010| + |101〉〈101|
]

. (12)

However, the partial transpose of ρ(1)
ABC with respect to qubit A has eigenvalues

{

− 1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

}

.

This shows that across the A − BC split, ρ(1)
ABC is entangled. It us useful to note that

even if the cnot was done between A and C , the reduced state

ρ(1)
AC = trB

[
ρ(1)
ABC

] = 1

3
|00〉〈00| + 1

3
|11〉〈11| + 1

6
|01〉〈01| + 1

6
|10〉〈10|,

does not have any entanglement. The reduced states ρ(1)
AB and ρ(1)

BC are also separable.
In spite of the entanglement between A and BC one cannot extract an entangled

state probabilistically from ρ(1)
ABC by measuring C unlike in the case of ρ(2)

ABC . The
post measurement state after projecting qubit C on to an arbitrary state,

|M1〉 = cos θ|0〉 + e−iφ sin θ|1〉

is

ρ(M1)
AB = 1

3

(

|00〉〈00| + cos2 θ|01〉〈01| + sin2 θ|10〉〈10| + |11〉〈11|

+ 1

2
e−iφ sin 2θ|00〉〈11| + 1

2
eiφ sin 2θ|11〉〈00|

)

. (13)

The eigenvalues of the partial transpose of ρ(M)
AB with respect to either A or B are

(1/3, 1/3, 1/3, 0) independent of θ and φ. This means that one cannot extract an
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entangled state of qubits A and B out of ρ(1)
ABC by measuring C while after the cnot

operation between B and C , this is possible.
Two facts; namely that there is no entanglement between qubits A and C in the

intermediate state ρ(1)
ABC and that there is no known way of quantifying the entangle-

ment between A and BC in terms of ebits prompts one to look for alternate ways of
identifying and quantifying the resources that are essential for this entanglement dis-
tribution protocol. The form of ρ(1)

ABC given in Eq. (12) suggests that the non-classical
correlations may exist between qubit C and subsystem AB because more than two
non-orthogonal states of qubit C are correlated with states of AB. In other words,
since ρ(1)

ABC cannot be written in the form

2∑

j=1

ρ
j
AB ⊗ �

j
C , (14)

where {� j
C} form a complete set of orthogonal projectors on C , we know that there

must be non-zero quantum discord in the AB − C split of ρ(1)
ABC .

The quantum discord in the AB − C split when qubit C is measures is given by

D = S
(
ρ(1)
C

)
− S

(
ρ(1)
ABC

)
+ min

{� j
C }

∑

j

p j S
(
ρ(1)

AB|� j
C

)
,

The eigenvalues of ρ(1)
ABC are (1/3, 1/6, 1/6, 1/6, 1/6, 0, 0, 0, 0) andwe can eval-

uate,

S
(
ρ(1)
ABC

)
= 2

3
+ log 3,

where the logarithm is taken to base 2. The reduced state ρ(1)
C = 11/2 and so

S
(
ρ(1)
C

)
= 1.

In Eq. (13) we already have the post measurement state of AB given a projective
measurement onC along the arbitrary state |M1〉. The post measurement state of AB
given a projective measurement on C along the state

|M2〉 = − sin θ|0〉 + e−iφ cos θ|1〉, 〈M1|M2〉 = 0

is

ρ(M2)
AB = 1

3

(

|00〉〈00| + sin2 θ|01〉〈01| + cos2 θ|10〉〈10| + |11〉〈11|

− 1

2
e−iφ sin 2θ|00〉〈11| − 1

2
eiφ sin 2θ|11〉〈00|

)

.

(15)
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Fig. 2 The entropy of the
post measurement state ρ

(1)
AB

as a function of the angle θ
that specifies the
measurement on C

0 1 2 3 4 5 6
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The eigenvalues of both post-measurement states in Eqs. (13) and (15) are

{
cos2 θ

3
,
sin2 θ

3
,
1 − cos θ sin θ

3
,
1 + cos θ sin θ

3

}

.

The probabilities of the two measurement outcomes when projective measurements
along the orthogonal set {|M1〉〈M1|, |M2〉〈M2|} are both equal to 1/2. A plot of
S(ρ(1)

AB|� j
C

) is shown in Fig. 2 as a function of θ We see that the minima of the

conditional entropy occurs at θ = 0, π/2, π, . . .. At θ = 0, the eigenvalues of the
post measurement states are (1/3, 1/3, 1/3, 0). Accordingly,

min
{� j

C }

∑

j

p j S
(
ρ(1)

AB|� j
C

)
= log 3.

So we have

D = 1 − 2

3
− log 3 + log 3 = 1

3
ebits.

The initial state ρ(0)
ABC is a zero discord state across the AB − C split since it

can be written in the form given in Eq. (14). The first cnot operation generates a
non-zero discord state with exactly 1/3 ebits worth of discord. It is interesting that
the entanglement that can be extracted from the final state ρ(3)

ABC is also exactly 1/3
ebits. When the entanglement is characterized in terms of ebits and quantum discord
is used to quantify the non-classical correlations in the intermediate state we see that
the inequality in (8) is saturated for the specific entanglement distribution example
protocol that was proposed in [20].
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5 Open Quantum Dynamics

Open quantum dynamics [24, 25] may not quite qualify as quantum information
processing but the importance of understanding open dynamics for development and
implementation of information processing protocols is quite obvious. Apart from
identifying, understanding and removing the deleterious effects of an uncontrollable
environment quantum systems of interest, exploring information dynamics in open
systems also provides insights into the possible role for the environment in enabling
a computation particularly in the paradigm of mixed state quantum information
processing.

Finite time dynamics of a quantum system evolving in contact with a (quantum)
environment has traditionally been modelled in terms of completely positive, trace
and hermiticity preserving maps:

ρS(t) = trE [UρSE (0)U †] = �ρS(0),

where ρS is the state of the system and ρSE is the joint state of the system and the
environment. The necessity of the map being completely positive is clear when we
consider composite systems. The most widely accepted argument for demanding
complete positivity is to introduce an arbitrary third system called the witness [26].
To start with, assume that we have a map � describing the evolution of the system.
A witness system which is both blind (no interaction with the system) and dead (no
independent evolution) is introduced and the evolution of S + W is looked at. As the
witness is blind and dead, it is clear that its evolution is given by the map 11W . Since
themere presence of the witness cannot make the evolution of the system unphysical,
it is reasonable to expect � ⊗ 11W to be positive for any choice ofW . It turns out that
for this condition to be satisfied, � should be completely positive.

A completely positive map is obtained when the open dynamics can be modelled
as an interaction with an environment that together with the system is initially in
a factorised (product) state with the environment being discarded after the inter-
action [5, 27, 28]. But from an experimental point of view, such isolation of the
system is difficult and it is only natural to think about the kind of maps describing
the evolution when the system and environment are initially correlated. It turns out
that the reduced evolution of the system alone in these cases may not be described
by completely positive maps.

In this case, the dynamics can be properly defined only on a subset of initial system
states. The trivial extension to all possible states may not be physically realizable
and may not even be positive let alone completely positive [29, 30]. Further, it
has been shown that, in the presence of initial system environment correlations, not
completely positivemaps are perfectly good in describing the dynamics. It is true that
these maps result in non physical evolutions for certain system states, but the point is
that these are exactly those states which are excluded from being the possible initial
states compatible with the specified initial correlationswith the environment. In other
words, the map succeeds in preserving the positivity of the states in the compatibility
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domain [31, 32]. Also, it is interesting to ask, if not completely positive maps are
good candidates to describe open quantum dynamics as well, then in general, what
kind of initial co relations between the system and environment guarantee completely
positive reduced dynamics?A complete answer to this question is still being searched
for.

In a recent notable attempt that did answer several questions regarding complete
positivity or the lack of it for open dynamics using an information theoretic frame-
work, the complete positivity of opendynamics is related to the quantumdata process-
ing inequality [33]. The approach in [33] adopted to comprehensively describe
conditions on initial correlations that lead to completely positive reduced evolutions
involves considering a tripartite scenario involving the reference (R), the system (S)
and the environment (E) and going back to the bipartite system by using ‘steering’,
that is by steering states on the system by measurements on the reference. It turns
out that whether or not the initial tripartite states are Markovian in the sense that they
satisfy the quantum data processing inequality has a lot to do with how the reduced
dynamics of the system manifests.

Checking whether a given family of bipartite system-environment states gives
rise to completely positive reduced dynamics is equivalent to checking whether said
family can be obtained by steering from a tripartite Markov state of S, E and R,
with the steering done on R by implementing all possible measurements on the state
of R. Also, as long as the condition of Markovianity of the initial tripartite state is
met (i.e. I (R : E |S) = 0, where I is the quantum mutual information between R
and E conditioned on S), this approach does not place any restriction on the initial
system-environment correlations. The accessible subset of system states on which
themap gives completely positive dynamics in the case of initial system-environment
correlations can in this approach be identified as the subset of steerable states of the
system from the initial tripartite case. Furthermore, if the steerable set S is to coincide
with the whole set of system states S, the initial factorisation condition is naturally
recovered.

The information theoretic approach to open quantum dynamics in [33] captures
the idea that more information cannot normally be extracted from the system S
regarding the reference system R by letting S interact with an environment E first
and then measuring S rather than looking at S directly. SE states that satisfy this
criteria lead to completely positive dynamics on the subset of states of S that are
compatible with these SE states (states of S that can be obtained as partial traces
over the allowed SE states). Going beyond the discussion in [33], one can start
with the idea that in general open dynamics may be positivity preserving only on a
subset of system states and explore the consequences of nonClassical correlations
between the three protagonists, namely the system, environment and reference [34].
Of particular interest is the case where there are nonClassical correlations between
R and E which can potentially lead to violations of the quantum data processing
inequality and tripartite Markovian state condition. Initial investigations suggest that
nonClassical correlations in the RE subsystem, as expected, lead to not completely
positive evolution even when the SE initial state is taken to be separable and with
zero discord.
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6 Discussion

Coming back to the picture of a quantum information processor that uses a register
of qubits for input and output and an additional register of ancillary qubits for the
computationwith both input and output as human-readable bit strings, the initial state
of the ancilla may be chosen so that the starting state of the quantum computer has no
nonclassical correlation across any bipartite or multipartite division. The computa-
tional process is then a sequence of discrete steps that takes the all the qubits from the
initial, zero-discord, state to the final, zero-discord, state. If we run a deterministic or
probabilistic classical algorithm on the quantum information processor instead, then
at each step the state of the quantum computer has no nonclassical correlation across
any bipartite division. This means that one has to go from the initial to the final state
jumping from one concordant state to another without ever leaving this set which
is known to be of measure zero [13]. A true quantum computation however, lets
one take alternate paths involving intermediate states with nonclassical correlations
which might result in reaching the desired output state in significantly - perhaps even
exponentially - fewer computational steps [35].

Is it possible that a quantum computer that works by acting on mixed quantum
states may in some situations be harnessing the computational power of a much
larger part of the universe that just the computer itself. In probabilistic classical
computation, the computer samples from a given probability distribution defined on
the input bits as part of the computational algorithm. However if the dimensionality
of the distribution grows exponentially with the input size (number of bits, n, as
the input) then the sampling is not efficient. One particular case of interest in the
context of the DQC1 model of computation is the sampling problem when each bit
string of length n is equally probable. Each one of the 2n possible n bit strings have
to be generated at least once to sample judiciously from the uniform distribution.
The completely mixed state of n qubits that is the input into one of the registers of
the DQC1 model achieves the uniform sampling in a single shot since the mixed
state can be considered to be an equally weighted mixture of a complete set of 2n

basis states of the Hilbert space of n qubits. The fully mixed state of n qubits can be
purified by expanding on to the Hilbert space of at least n more qubits (2n in total).
Can the ability of the mixed state to sample efficiently from the uniform distribution
on n-bit strings be attributed to the computational power of the larger environment
of at least n more qubits that it is a part of?

The open questions above are just a few of the interesting avenues to be pursued
in exploring the role of nonClassical correlations in quantum information process-
ing tasks of various kinds. While quantum discord in particular may have received
quite a lot of attention over the past decade, the discussion should generalise to the
broader notion of nonClassical correlations and exploration of several fundamental
and applied problems remain. The experimental challenges and other applied aspects
that would aid us in leveraging these correlations as a practical resource have not
been touched upon in the above. Other contributions to this volume would certainly
be addressing these as well.
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The Local Detection Method: Dynamical
Detection of Quantum Discord with Local
Operations

Manuel Gessner, Heinz-Peter Breuer and Andreas Buchleitner

Abstract Quantum discord in a bipartite system can be dynamically revealed and
quantified through purely local operations on one of the two subsystems. To achieve
this, the local detection method harnesses the influence of initial correlations on
the reduced dynamics of an interacting bipartite system. This article’s aim is to
provide an accessible introduction to this method and to review recent theoretical
and experimental progress.

1 Introduction

Experimental achievements in the last decades have established the precise quantum
control of individual quantum systems [1, 2]. Furthermore, recent efforts are focussed
on the assembly and monitoring of interacting quantum systems, with various appli-
cations in the context of quantum information [3–6]. The efficient characterization
of the underlying quantum states in high-dimensional state spaces, however, remains
a challenge due to the large number of parameters.

One possible strategy for the analysis of systems whose size, complexity or
structure is beyond the reach of a detailed microscopic examination is therefore
to restrict access to a small, easily controllable subsystem [7, 8]. By interaction
with the remaining system, the locally observable quantities of the subsystem may
be able to convey information about the global properties of the interacting system.
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While in general it is not always clear whether sufficient information about a possibly
complex surounding system can be obtained from the few variables of the accessible
subsystem, such an approach has proven to be suitable for probing the presence of
correlations between the probe and its environment in a variety of situations [8, 9].
In the present article, we review recent progress in the local detection method [10,
11]—an interaction-assisted method, able to reveal quantum discord of the global
system through the dynamics of a local subsystem. The method can be implemented
when access is restricted to a controllable subsystem, and it has been tested in various
different experimental settings. With the help of the examples reviewed in this article
we discuss under which physical circumstances a successful local detection based
on this method can generally be expected.

The concept of quantum discord can be intuitively understood in terms of local
measurements of a bipartite quantum system. Measurements usually induce dis-
turbances of the quantum system under observation [12, 13]. An exception to this
textbook rule is found if the system is initially prepared in an eigenstate of the mea-
sured observable. More generally, if observable M and quantum state ρ commute,
i.e., [M, ρ] = 0, a non-selective measurement of M will leave the quantum state ρ
unchanged [12, 13]. Such ameasurement projects the system into the eigenstate |ϕm〉
with probability pm = 〈ϕm |ρ|ϕm〉, where we assume a non-degenerate observable
with spectral decomposition M = ∑

m λm |ϕm〉〈ϕm |. The state at the outcome of the
projective measurement is consequently given as

�(ρ) =
∑

m

pm |ϕm〉〈ϕm |

=
∑

m

|ϕm〉〈ϕm |ρ|ϕm〉〈ϕm |. (1)

In fact,wefind that�(ρ) = ρ if and only if [M, ρ] = 0.Hence, for any given quantum
state ρ, we can construct a family of observables M which can be measured non-
selectively without disturbance. This family is comprised of all observables with the
same eigenvectors as ρ, assuming no degeneracies.

Let us now consider the case of a bipartite quantum system, described by a tensor
product of Hilbert spacesH = HA ⊗ HB . Under which circumstances is it possible
to construct local observables whose non-selective measurement does not disturb the
total quantum state ρ? The post-measurement state of a non-selective measurement
of a local observable MA ⊗ IB = ∑

m λm |ϕm〉〈ϕm | ⊗ IB is given by

(� ⊗ I)ρ =
∑

m

(|ϕm〉〈ϕm | ⊗ IB)ρ(|ϕm〉〈ϕm | ⊗ IB), (2)

with IB the identity on HB . Again considering only non-degenerate observables,
one finds that (� ⊗ I)ρ = ρ is indeed equivalent to [MA ⊗ IB, ρ] = 0. The above
question can thus be reformulated as: Which quantum states ρ commute with at least
one local, non-degenerate observable? Obviously, if systems A and B are completely
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uncorrelated, i.e., if the total quantum state factorizes as ρ = ρA ⊗ ρB , then we
can conclude that a family of local observables, e.g. in system A, can always be
constructed from the eigenvectors of ρA. The presence of correlations between the
two systems, however, changes the situation.

Only a certain set of quantum states admit the existence of a non-degenerate
observable MA, such that [MA ⊗ IB, ρ] = 0. This family is known as the states of
zero discord. They can always be written as [14–16]

ρzd =
∑

m

pm |ϕm〉〈ϕm | ⊗ ρmB , (3)

where pm is a probability distribution and ρmB are density operators on system B. It
is important to note that the |ϕm〉 form an orthonormal basis ofHA since they are the
eigenvectors of the Hermitian operator MA. This distinguishes states of zero discord
from separable states with the general form [17]

ρsep =
∑

i

piρ
i
A ⊗ ρiB, (4)

where the states ρiA are arbitrary and need neither be pure nor orthogonal. Further-
more, unlike entanglement, discord is an asymmetric property, requiring specifica-
tion of the system which is measured. Throughout this article this will always be
system A.

Quantumdiscord therefore characterizes the presence or absence of a local observ-
able which commutes with the full quantum state. Nonzero discord can only be
observed in correlated (i.e. not factorizing) quantum states, however, even some sep-
arable states exhibit discord. For pure states, the concepts of discord and entanglement
coincide. Hence, in general, discord is a concept closely connected to correlations
but does not itself measure correlations. In particular, a local operation on system A
may change the orthogonality properties of the |ϕm〉 in Eq. (3) [18–20] and thereby
create discord without creating correlations [21, 22].

The inability to commute with any local observable renders quantum states
of nonzero discord furthermore suitable for certain technological tasks [16]. For
instance, a phase shift ϕ, imprinted by a local unitary transformation e−iMAϕ ⊗ IB

can be estimatedwith high precision [23] only if the initial quantum state ρ is strongly
affected by this transformation [24]. Conversely, if MA ⊗ IB happens to commute
with ρ, the state is completely invariant under this transformation and, consequently,
an estimation of the phase shift ϕ is impossible. While states of zero discord are
insensitive to the action of certain local operators, this can be excluded for all states
of nonzero discord, since no local operator commutes with these states [24].

Among other applications [16, 25], discord was further shown to be useful for
the distribution [26–31] and activation [32–34] of entanglement. To exploit these
phenomena experimentally, one needs to first find convenient ways to generate suf-
ficiently robust discordant quantum states [19, 20, 22, 35–37]. Second, methods to
recognize the presence of discord, and perhaps to even quantify discord in exper-
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imentally relevant situations are required [16, 38–40]. The local detection method
[10, 11], to be introduced in the next section, is a dynamical method which allows to
detect and quantify discord in a bipartite system with limited experimental require-
ments.

2 The Local Detection Method

The efficient detection of properties such as entanglement or discord is a challenging
task [41–43], which usually requiresmeasurements of correlated observables. A pop-
ular approach for low-dimensional systems is to first obtain full information about
the quantum state, and then to calculate a suitable quantifier based on the measured
entries of the density matrix [22, 44]. Not only require the results of tomographic
reconstructions of quantum states careful statistical analysis [45], their experimental
realization soon becomes prohibitively expensive when high-dimensional or multi-
partite systems are of interest. In these cases, a complete characterization of the full
quantum state can no longer be of interest. Alternatively, the measurement of care-
fully designed observables (such as entanglement witnesses) may reveal the presence
of entanglement [42, 46–49] or discord [38–40, 50–52] without knowledge of the
full quantum state. Yet, such procedures are often restricted to Hilbert spaces of a cer-
tain dimension and structure (e.g. qubit systems or two-mode systems of continuous
variables), cf. [53]. Their implementation furthermore often requires a high degree
of control over the full quantum system (or even multiple copies thereof [54–56])
which is difficult to achieve with increasing system size.

We may also encounter situations in which the experimenter may not even have
full access to the complete quantum state of systems A and B but instead may be
limited to measurements and operations on the subsystem A. This limitation may
be due to a fundamental inability to access the second system, when, for instance
party B is spatially separated from the experimenter at A or describes degrees of
freedom that cannot be measured experimentally. It may also be a deliberate choice
such as to restrict the dimension of the quantum system which is to be controlled.
In either case one may consider the subsystem B an ancilla system or environment
to system A. Since the reduced dynamics of system A may be strongly influenced
by correlations with system B, a dynamical witness for discord may be observable,
even by restricting to local measurements of system A.

2.1 Witnessing Discord with Local Operations

To introduce the basic idea of the local detection method [10, 11] let us recall
that states of zero discord are characterized by their invariance under non-selective
measurements, i.e., a state ρ has zero discord if and only if there exists a com-
plete set of one-dimensional orthogonal projectors � = {�1,�2, . . . , }, such that
ρ = (�� ⊗ I)ρ, where
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(�� ⊗ I)ρ =
∑

i

(�i ⊗ IB)ρ(�i ⊗ IB). (5)

This operation (5) is a purely local operation on system A and its implementation
does not require any knowledge of system B. It furthermore describes complete
dephasing in the basis � and is therefore called a local dephasing operation [10].

Let us assume the state ρ has zero discord. A local dephasing operation that
leaves the state invariant thus exists, but in which particular local basis �? Let us
first express the full quantum state ρ in terms of families of completely arbitrary
local operator bases as ρ = ∑

α Aα ⊗ Bα. To answer the above question, we study
the reduced density matrix of system A, which is obtained by performing the partial
trace over B, after the dephasing operation. We obtain

TrB{(�� ⊗ IB)ρ} =
∑

i

∑

α

�i Aα�iTr{Bα}

=
∑

i

pi�i , (6)

where pi = ∑
α Tr{�i Aα}Tr{Bα} = Tr{(�i ⊗ IB)ρ}. The invariance property ρA =

TrB{ρ} = TrB{(�� ⊗ I)ρ} = ∑
i pi�i shows that the basis � under which a local

dephasing operation has no effect on the total quantum state must coincide with the
eigenbasis of the reduced density matrix ρA [10]. For now, we do not consider the
case of degeneracies, which may complicate the situation [11].

Hence, one may test for the presence of discord by realizing a local dephasing
operation in the eigenbasis of ρA. The full quantum state is invariant under this
operation if and only if it contains no discord. However, a possible change of the
full quantum state under the local dephasing operation cannot be directly observed in
system A: Even if the state contains discord, i.e., it changes under the local dephasing,
the resulting reduced density matrix ρ′

A = TrBρ′ with ρ′ = (�� ⊗ IB)ρ will always
coincide with ρA [10]. This can be seen by realizing that the result of Eq. (6) was
derived without making any assumption about the full quantum state ρ. We will
therefore always observe that ρA = ρ′

A, regardless of whether ρ = ρ′ holds or not.
Moreover, since the local dephasing operation does not act on system B, one

further finds that also ρ′
B = ρB must always hold [11]. In fact, we can conclude that

if any difference between the original state ρ and the locally dephased reference state
ρ′ exists, it must be contained in the correlations between the two subsystems—
their respective local descriptions are always unchanged by the local dephasing.
Does this mean that it is impossible to observe ρ �= ρ′ (which would constitute a
witness for discord) by purely local measurements of any of the two systems? A
solution can be found by considering the dynamics of this bipartite system. In fact, a
change of the correlation properties of the initial state can have a strong observable
impact on the reduced dynamics of one of the subsystems. This is especially well
known in the theory of open quantum systems [57], where the influence of initial
system-environment correlations poses a considerable theoretical challenge [58–60].



280 M. Gessner et al.

Here, however, it can be exploited to reveal a change of the correlations between the
subsystems to the local dynamics. Thus, even if ρ and ρ′ are indistinguishable to
measurements of system A at some initial time t = 0, they may become locally
distinguishable after the two systems have been interacting for a time t > 0.

Let us assume that systems A and B are subject to some interaction. For simplicity,
we consider a unitary evolution of the composite system [61], such that the evolution
in subsystem A, given the initial state ρ, is governed by

ρA(t) = TrB{U (t)ρU †(t)}. (7)

If the state ρ was subject to local dephasing before the time evolution, the state of
system A at time t instead reads

ρ′
A(t) = TrB{U (t)ρ′U †(t)}. (8)

We had already noted that ρA(0) = ρ′
A(0), regardless of the properties of ρ. However,

if we observe

ρA(t) �= ρ′
A(t) (9)

at a later time t > 0 we can safely conclude that ρ �= ρ′ which implies the presence
of discord in the state ρ [10, 11]. All of the necessary steps, i.e.,

Fig. 1 Schematic representation of the local detection method. A local dephasing operation � ⊗ I

produces a reference state ρ′, which differs from the original state ρ only in lacking discord. The
reduced dynamics of the accessible system A can be strongly influenced by the removal of discord.
Hence, at a later time t , the system may evolve differently when the initial state ρ is replaced by ρ′.
If ρA(t) �= ρ′

A(t) is indeed observed, it represents a witness for discord of ρ and the distance among
the local states further serves as a quantitative measure of discord. Adapted from [62]
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• Finding the eigenbasis of ρA

• Observing the time evolution of ρA(t)
• Local dephasing of the initial state in the eigenbasis of ρA

• Observing the time evolution of ρ′
A(t)

can be carried out with strictly local access only to system A, whereas no control or
even knowledge of system B is required. The local detection protocol is illustrated
in the diagram in Fig. 1.

2.2 Quantifying Discord with Local Operations

Detecting themere presence of discord by following the protocol outlined above does
not provide any quantitative information about the discord of the state ρ. Considering
that discord is a rather ubiquitous phenomenon [63], it is also relevant to estimate
how strongly discordant a given initial state is. Certain quantifiers furthermore allow
for an operational interpretation and therefore directly quantify how well a certain
quantum information task can be carried out [24, 25, 27, 28, 32, 33].

A straight-forward way to quantify discord emerges from the local dephasing
operation. From the discussion above, we know that ρ′ differs from ρ if and only
if ρ contains discord. A simple quantifier of discord is thus given by the dephasing
disturbance [8, 64], expressed by the trace distance

D(ρ) = ‖ρ − ρ′‖, (10)

where ‖X‖ = 1/2Tr
√
X†X [65]. The trace distance has several appealing properties,

most notably for our purposes is its contractivity under trace-preserving and positive
operations [66]. The unitary time evolution and the partial trace operation are both
positive operations (they map positive operators, such as the density operator, to
positive operators) [65]. Thus, using the contractivity propertywe find that the locally
observable distance between the reduced density matrices ρA(t) and ρ′

A(t) provides
a lower bound for the dephasing disturbance [11]:

d(t) = ‖ρA(t) − ρ′
A(t)‖ = ‖TrB{U (t)(ρ − ρ′)U †(t)}‖

≤ ‖U (t)(ρ − ρ′)U †(t)‖
= ‖ρ − ρ′‖. (11)

The above inequality holds for all t ≥ 0, hence one may optimize the locally acces-
sible lower bound by observing the time evolution of the local system for as long as
possible and then taking the maximum distance [62]

dmax = max
t

‖ρS(t) − ρ′
S(t)‖ ≤ ‖ρ − ρ′‖. (12)
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The above definition assumes that the local dephasing operation is unique, which
requires that the eigenbasis of ρA is unambiguous. This, however, is not the case if
degeneracies are present in the spectrum of ρA. In these cases the dephasing distur-
bance does not produce a suitable quantifier of discord [39, 67]. This problem can be
circumvented by including a minimization over all possible dephasing bases. Recall-
ing the �-dependent definition (5) of a general dephasing operation, we introduce
the minimal dephasing disturbance [8, 68]

Dmin(ρ) = min
�

‖ρ − (�� ⊗ I)ρ‖. (13)

This measure in fact quantifies the minimal amount of entanglement which can be
activated from discord in a measurement (minimal entanglement potential) [32–34,
69] when the accessible subsystem is a qubit, i.e.,HA = C

2.
A locally accessible bound for theminimal dephasing disturbance can be obtained

by dephasing over different local bases instead of just the eigenbasis of ρA [68]. We
introduce

ρ�
A (t) = TrB{U (t)(�� ⊗ I)ρU †(t)} (14)

and the corresponding local trace distance

d�(t) = ‖ρA(t) − ρ�
A (t)‖. (15)

A more rigorous bound for discord than Eq. (12) is then obtained as [68]

dmin(ρ) = max
t

min
�

d�(t) ≤ Dmin(ρ). (16)

To measure the above quantity, one first records the time evolution of ρ�
S (t) for

different dephasing bases �. At each time t , the minimum of all d�(t) is obtained,
the minimum being taken over all �. Then, within the set of minima one finds
the maximum value over all times t to obtain the strongest available local witness.
Ideally, the optimization over � should be carried out over all possible bases, which
is experimentally impossible. In a realistic situation a systematic sampling over
a sufficiently closely spaced grid of basis vectors can yield a good estimate with
reasonable overhead, see, e.g., [34].

2.3 Pure States: Locally Accessible Lower Bound for
Negativity

Let us consider the simple case of a pure state with a controllable qubit subspace,
HA = C

2. As mentioned before, the concept of discord reduces for pure states to
entanglement—in the absence of classical mixing, this is the only form of correlation
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that can be present. In this case, the dephasing disturbance (10) can be evaluated
analytically and yields [8, 68]

D(ρ) = N (ρ), (17)

where N denotes the negativity [70],

N (ρ) = ‖ρ�‖ − 1

2
, (18)

and ρ� is the partial transpose of ρ.
On the other hand, the minimal dephasing disturbance (13) coincides with the

minimal entanglement potential, which for pure states also reduces to the negativity
[71]. Hence, in the above scenario, the dephasing disturbance (10) coincides with the
minimal dephasing disturbance (13), and the minimum is achieved by dephasing in
the eigenbasis of ρA [68].Moreover, the local distance (12) yields a locally accessible
lower bound for the negativity.

2.4 Efficacy of the Local Detection Method

Discord can ultimately be traced back to those two-body coherences that are present
in ρ but are no longer found in ρ′, i.e., after local dephasing. Those coherences are
not detectable in either of the two subsystems. Therefore, the performance of the
local detection method depends crucially on the interacting dynamics between the
two subsystems. Its role is to map these initially hidden two-body coherences to
measurable elements of the reduced density matrix of system A at a later time.

Certainly some dynamical processeswill work better than others in detecting these
correlations. For instance, if no interaction between the two systems were present,
i.e., U (t) = UA(t) ⊗UB(t), this task could never be achieved [11]. In the course
of this article we will observe a number of different time evolutions and thereby
explore the limitations of the local detection method based on these examples. Let us
alreadymention that early estimates for the efficacy of themethod have been obtained
based on a formulation in terms of the Hilbert–Schmidt distance, which allows for
analytical evaluation of measure-theoretic averages over the unitary group [72]. It
was shown that [10]

∫

dμ(U )‖TrB{U (ρ − ρ′)U †}‖22 = d2
AdB − dB
d2
Ad

2
B − 1

‖ρ − ρ′‖22, (19)

with the Hilbert–Schmidt norm ‖X‖22 = TrX†X , dA and dB being the dimensions of
the Hilbert spaces HA and HB , respectively, and dμ representing the Haar measure
on the unitary group. These group-theoretic methods further allow for analytical
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evaluation of the variance corresponding to the above average [11], as well as time-
dependent averages with respect to more realistic random matrix ensembles [72].
These results show that the locally observable signal, obtained from a generic dynam-
ical system, is directly proportional to the discord of the initial state. Hence a generic
unitary evolution is expected to reveal the quantum discord based on the local detec-
tion method. For further details on the Haar-measure integration techniques and
additional numerical and analytical studies of the local detection method in this con-
text, we refer to Refs. [10, 11, 72, 73]. Note, however, that the Hilbert–Schmidt
distance is not contractive under positive maps. This can lead to unphysical behavior
of Hilbert-Schmidt based quantifiers for discord and related quantities [74, 75]. For
this reason, it is generally recommended to use the trace distance instead [76].

We also observe that the proportionality factor on the right-hand side of Eq. (19)
shrinks to zero as dB increases. This might suggest the conclusion that the sig-
nal becomes undetectably small when the observable system is coupled to a truly
infinite environment. The result (19) however makes statements about generic evolu-
tions which are well represented by the average over all unitaries. Generally speak-
ing, systems that lead to such a dynamics are typically strongly chaotic, and devi-
ations from the average result (19) are certainly expected. In common situations
one might as well encounter highly non-generic evolutions, in particular in quantum
optical systems. Later in this article we will discuss a successful experimental detec-
tion of system-environment discord by means of the local detection method where
the accessible system couples to an infinite-dimensional, Markovian (memoryless)
environment [77].

3 Experiments

The local detection method has been used to reveal discord in experiments with
photons [77, 78] and trapped ions [62]. In all experimental applications reported
so far, the controllable subspace was two-dimensional, whereas correlations were
detected with ancilla systems ranging from two-dimensional systems to continuous
variables.

3.1 Trapped-Ion Experiment

An experimental realization of the local detection method was first reported in [62].
A single trapped ion is used to simulate both a two-dimensional, locally accessible
quantum system by means of its electronic degree of freedom, and a bosonic ancilla
system, comprised of the same ion’s motional degree of freedom. Since the ion
is confined in a harmonic trapping potential, the ancilla system is described by a
quantum harmonic oscillator [79, 80]. When the ion is driven by a laser whose
detuning from the ion’s resonance transition coincides with the frequency of the
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harmonic motion, an interaction between the two degrees of freedom, described to
a good approximation by the anti-Jaynes-Cummings Hamiltonian

H = ��η

2
(σ+a† + σ−a). (20)

is evoked [4, 8, 79–82]. Here, a and a† are the bosonic creation and annihilation
operators of the harmonic oscillator mode, σ+, σ− denote the ladder operators for
the electronic qubit system, � denotes the Rabi frequency and η is the Lamb-Dicke
parameter [80]. In the above expression we assumed, for ease of notation, the Lamb-
Dicke regime, i.e., η

√〈(a + a†)2〉 � 1; the analysis of the trapped-ion experiment,
however, can be extended beyond this regime and beyond ideal experimental condi-
tions [62]; for a detailed account see [8]. The Hamiltonian (20) induces a coherent
coupling between the states |g, n〉 and |e, n + 1〉, where |g〉 and |e〉 describe the
electronic ground- and excited states, respectively, and |n〉 is a Fock state of the har-
monic motion. An ion initially prepared in the state |g, n〉 hence undergoes a Rabi
oscillation of the form

|�(t)〉 = U (t)|g, n〉 = cos

(
�n

2
t

)

|g, n〉 + sin

(
�n

2
t

)

|e, n + 1〉, (21)

where U (t) = exp(−i Ht/�) and �n = √
n + 1η�.

Initially, the system is prepared by optical pumping of the electronic level to the
ground state and laser cooling of the motional degree of freedom, leading to the
product state

ρ0 = |g〉〈g| ⊗
∞∑

n=0

pn|n〉〈n|. (22)

The thermal populations pn = n̄n/(n̄ + 1)n+1 can be given in terms of the mean
phonon number n̄; see, e.g., [80]. When this initial state is exposed to the laser
interaction for a duration t0 (state preparation), it evolves as

ρ(t0) = U (t0)ρ0U
†(t0)

=
∞∑

n=0

pn

[

cos

(
�n

2
t0

)2

|g, n〉〈g, n| + sin

(
�n

2
t0

)

cos

(
�n

2
t0

)

|g, n〉〈e, n + 1|

+ sin

(
�n

2
t0

)

cos

(
�n

2
t0

)

|e, n + 1〉〈g, n| + sin

(
�n

2
t0

)2

|e, n + 1〉〈e, n + 1|
]

.

(23)

The goal is now to detect the presence of discord between the electronic and
motional degrees of freedom in the state ρ(t0). To this end, the local detectionmethod
is employed, which allows us to limit experimental access to the electronic degree
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of freedom. The first task is to obtain the eigenbasis of the reduced density matrix,
which determines the basis for the local dephasing operation. By tracing over the
motional degrees of freedom (system B), we obtain the quantum state of the qubit
(system A),

ρA(t0) = TrBρ(t0) =
∞∑

n=0

pn

[

cos

(
�n

2
t0

)2

|g〉〈g| + sin

(
�n

2
t0

)2

|e〉〈e|
]

, (24)

which is diagonal in the basis {|g〉, |e〉} at all times.
To detect the discord of the state at time t0, the dynamical evolution is interrupted

and a local dephasing is performed by projecting onto the local subspaces, spanned
by |g〉 and |e〉, respectively. Experimentally this is achieved by inducing a weak
ac-Stark shift on the ground state for a well-controlled period of time. To this end,
another laser which off-resonantly addresses a transition between the ground state
and another short-lived excited state is used. This adds a relative phase shift to any
superposition that involves the states |e〉 and |g〉. By performing an average over
a suitably chosen family of phase shifts, the relative phase relation between the
states |e〉 and |g〉 can be completely removed, thereby effectively realizing the local
dephasing operation [8, 62]. This technique can be combined with local, coherent
laser manipulations to achieve dephasing in an arbitrary basis [8, 62].

The total state after local dephasing is then given as

ρ′(t0) = (� ⊗ I)ρ(t0)

=
∑

i∈{e,g}
(|i〉〈i | ⊗ IB)ρ(t0)(|i〉〈i | ⊗ IB)

=
∞∑

n=0

pn

[

cos

(
�n

2
t0

)2

|g, n〉〈g, n| + sin

(
�n

2
t0

)2

|e, n + 1〉〈e, n + 1|
]

.

(25)

By construction, ρ(t0) and ρ′(t0) only differ in asmuch as ρ(t0) contains discordwhile
ρ′(t0) does not, thus, comparison with Eq. (23) now allows us to precisely identify
those terms that produce the discord in ρ(t0). As anticipated, these are the two-body
coherences |e, n〉〈g, n + 1| (and its adjoint counterpart). Since these matrix elements
are indeed off-diagonal in both of the sub-systems, any localmeasurement of the qubit
or the ions’ motion will be unable to detect their presence. One readily confirms that
ρ′(t0) has the same reduced density matrices as ρ(t0). Before we proceed to study the
signature of discord in the subsequent qubit dynamics, we evaluate the dephasing
disturbance, which reads [62],

D(ρ(t0)) =
∞∑

n=0

pn

∣
∣
∣
∣sin

(
�n

2
t0

)

cos

(
�n

2
t0

)∣
∣
∣
∣ . (26)
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As expected, this quantifies precisely the magnitude of the above-mentioned two-
body coherences.

Despite being hidden from local measurements, the discord contained in the state
ρ(t0) can be detected at a later time by observing deviating evolutions of the reduced
density matrices ρA(t0 + t1) and ρ′

A(t0 + t1). The state is again subjected to the laser
interaction, for a duration t1 (detection). The evolution of the unperturbed state was
given in Eq. (24), whereas the dephased state evolves as

ρ′
A(t1 + t0) = TrB {U (t1)ρ

′(t0)U†(t1)}

=
∞∑

n=0

pn

[(

cos

(
�n

2
t0

)2
cos

(
�n

2
t1

)2
+ sin

(
�n

2
t0

)2
sin

(
�n

2
t1

)2
)

|g〉〈g|

+
(

cos

(
�n

2
t0

)2
sin

(
�n

2
t1

)2
+ sin

(
�n

2
t0

)2
cos

(
�n

2
t1

)2
)

|e〉〈e|
]

.

(27)

The difference between the two evolutions can be observed bymeasuring the excited-
state population. In the trapped-ion experiment, this is realized by a highly efficient
fluorescence readout method [79, 80]. We observe the difference

de(t0, t1) = 〈e|ρA(t1 + t0) − ρ′
A(t1 + t0)|e〉

= 1

2

∞∑

n=0

pn sin (�nt0) sin (�nt1) , (28)

where we have used the identity 2 sinα cosα = sin 2α. The fact that both states
ρA(t0) and ρ′

A(t0) are diagonal in the basis {|g〉, |e〉} allows us to determine the trace
distance directly from the excited-state deviations as

d(t0, t1) = ‖ρA(t1 + t0) − ρ′
A(t1 + t0)‖ = |de(t0, t1)|. (29)

This quantity is locally measurable in subsystem A and provides a lower bound to the
dephasing disturbance (26), a global property of the full quantum state. Whenever a
nonzero deviation (29) is observed, we can conclude that ρ(t0) contained nonzero dis-
cord, and the magnitude of the local trace distance further allows for a quantification
of the initial discord.

The experimental protocol and the measured local witness for discord is shown
in Fig. 2. The experiment was performed for two different initial temperatures of
the ion’s motion. The theoretical description used for the plot includes the effects of
experimental imperfections, such as small detunings and fluctuating parameters [8,
62]. For both environmental temperatures, a strong signature of the initial discord is
observed.

Finally, the tightest bound to the dephasing disturbance (26) is obtained by the
largest deviationdmax, as introduced inEq. (12). This quantity is plotted for different t0
in Fig. 3. Comparison with the predictions show that the locally recovered signatures
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(a)

(b) (c)

(d)

(e)
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� Fig. 2 The dynamics of the electronic qubit after state preparation is observed with and without
dephasing (a). Local state tomography (b) identifies the local basis for the local dephasing operation
� ⊗ I. Another tomography after dephasing confirms that the local state is initially unchanged (c).
The ensuing dynamics (d, e) is, however, strongly influenced by the removal of discord through
local dephasing, and any observed difference between the red (unperturbed dynamics) and blue
(dynamics after dephasing) data points indicates the presence of discord in ρ(t0). The average
phonon numbers are n̄ = 5.9 in (d) and n̄ = 0.2 in (e). Figure taken from [62]

Fig. 3 To obtain the tightest possible bound, the maximum deviation between the local quantum
states is taken. In the case of the low-temperature environment the obtained local witness almost
saturates the actual distance between the global states. In the higher-temperature case, such a tight
estimation is not possible, as shown by the theoretical prediction. Figure taken from [8, 62]

of the initial discord are as large as theoretically possible, and almost saturate the
inequality (12) in the case of the low-temperature initial state.

The signal of the higher-temperature state is not as pronounced as the one obtained
from the low-temperature distribution. The question arises whether the local signal
would vanish completely if the temperature was increased even further, as one might
expect if the usability of the local detection method was limited to effectively finite-
dimensional environments. This, is however not the case [8]. A simple estimate of the
signal for higher temperatures can be obtained by fixing the preparation and detection
pulse durations to the value �0t0 = �0t1 = π/2. This leads to the maximum local
signal of 1/2 if the initial state of motion has temperature zero.

From Eq. (29), we obtain

d(t0, t1)|t0=t1=π/(2�0)
= 1

2

∞∑

n=0

n̄n

(n̄ + 1)n+1
sin2

(
π
√
n + 1

2

)

. (30)
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Fig. 4 Expected local signal of discord as a function of the average thermal phonon number n̄, when
preparation and detection time are both chosen as t0 = t1 = π/(2�0). The prediction (30) shows
that the local signal remains at a finite value for phonon distributions of much higher temperatures
than those realized (n̄ = 0.2 and n̄ = 5.9) in the experiment [62]. Figure taken from [8]

The signal is shown in Fig. 4 as a function of n̄. After an initial drop, the signal remains
close to the finite value of 1/4 for much higher average phonon numbers than those
tested in the experiment. This shows that even for a high-temperature thermal distribu-
tion, the local detectionmethod is able to reveal the qubit-motion discord dynamically
under an evolution governed by the Hamiltonian (20). We remark that the derivation
presented in this section was based on the Lamb-Dicke limit. For sufficiently small
values of η, the expression (30) still represents a valid approximation for the exact
expression even for large values of n̄. In particular, values up to n̄ ≈ 50 can be ade-
quately described as long as η � 0.05, which applies to the parameter reported in the
experiment [62]. An exact expression for the effective Rabi frequency �n , beyond
the Lamb-Dicke limit, can be given in terms of the generalized Laguerre polynomials
L (α)
n (x) as �n = ηe−η2

(n + 1)−1/2L (1)
n (η2) [8, 79, 80]. Numerical simulations with

the exact expression produce nonzero values of the local signal even when n̄ and η
attain values outside of the Lamb-Dicke limit. For very high values of n̄, however,
the validity of the effective description of the laser-ion interaction through Eq. (20)
reaches its limits, since the fast-moving ion can no longer be laser-addressed with
sufficient precision; hence the truly infinite limit n̄ → ∞ cannot be tested with this
ansatz.

3.2 Photonic Experiment with Continuous-Variable Ancilla

The first optical realization of the local detection method was reported in [77]. The
accessible system here is represented by a photon’s polarization degrees of freedom,
which interact with the same photon’s frequency degree of freedom when passing
through a birefringent material. In contrast to the trapped-ion experiment, the ancilla
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Fig. 5 Experimental setup for local detection with single photons. State preparation is realized by
a Fabry-Perot (FP) filter, a polarizer and a calcite crystal, followed by a half-wave plate (HWP0)
with a random orientation to scramble the local basis. A removable mirror (RM1) can be inserted to
send the photon into the local state tomography unit (T2) which is used to obtain the full quantum
state of polarization. When the mirrors RM1-3 are removed, the state is sent into the Michelson
interferometer to generate an interacting dynamics between polarization and frequency, by adjusting
the position of mirror M2. This evolution is followed by another tomography section T1 to measure
the local dynamics. To reveal discord, local dephasing is realized by placing RM2 and RM3 to send
the photon through a long polarization-maintaining (PM) fiber which removes all discord, when the
local eigenbasis has been mapped onto its principal axes by means of HWP1. This may affect the
ensuing polarization dynamics observed in T1 which would constitute a witness for discord. Figure
adapted from [77]

system is no longer described by a single harmonic oscillator mode, but instead by
a continuum of modes.

The experimental setup is summarized inFig. 5. Initially single photons are created
in the quantum state

ρpi =
∑

ω

�ωG(ω)

(
1

2
|H,ω〉〈H,ω| + βeiϕ|H,ω〉〈V,ω|

+ βe−iϕ|V,ω〉〈H,ω| + 1

2
|V,ω〉〈V,ω|

)

, (31)

where the mixed frequency distribution is described by a Lorentzian line shape,

G(ω) = 1

π

δω

δω2 + (ω − ω0)2
. (32)
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Here, we have discretized the frequency space by introducing a small frequency
interval �ω; later on we will consider the continuum limit �ω → 0. A basis for
the polarization state is defined by the states {|H〉, |V 〉}, describing horizontal and
vertical polarization, respectively. When passing through a birefringent material,
states with a specific polarization direction travel with a modified velocity, and,
due to a different dwell time inside the material, experience a modified phase shift.
Formally, we find

Uc(t) :
{

|H,ω〉 → |H,ω〉
|V,ω〉 → e−iωt |V,ω〉 , (33)

where the dwell time is given as t = �ncL/c, with the speed of light c, the length
L of the crystal and, the birefringence �nc describing the difference between the
refractive indices for the two polarization directions. This evolution produces the
correlated states

ρ = Ucal(t)ρpiU
†
cal(t)

=
∑

ω

�ωG(ω)

(
1

2
|H,ω〉〈H,ω| + βei(ωt+ϕ)|H,ω〉〈V,ω|

+ βe−i(ωt+ϕ)|V,ω〉〈H,ω| + 1

2
|V,ω〉〈V,ω|

)

. (34)

In the experiment, the initial phase ϕ was chosen such that ϕ = −ω0t .
To reveal the discord of ρ with the local detection method, one first determines

the reduced state of the accessible system, which in this case is the qubit state

ρA =
(

1/2 βC(t)
βC(t) 1/2

)

, (35)

with the real-valued function

C(t) =
∑

ω

�ωG(ω)ei(ω−ω0)t . (36)

Experimentally, this state is obtained by inserting the removable mirror RM1, and
using the tomography section T2, as is pictured in Fig. 5. In contrast to the trapped-ion
experiment, where the local eigenbasis was always given by the computational basis,
here, the eigenvectors are given by |±〉 = 1√

2
(|H〉 ± |V 〉). Note that the local eigen-

basis is first hidden by a random local unitary basis rotation of the qubit, controlled
by the half-wave plate HWP0 in Fig. 5. While this step renders the experimental
detection of discord more challenging, it does not affect the theoretical treatment,
since it can be accounted for by an effective redefinition of the local basis, which
does not alter the correlation properties.
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To realize a dephasing of the qubit experimentally, the eigenstates of the photon
are mapped onto the principal axes of a long polarization-maintaining fiber by means
of HWP1 after removing the mirror RM1, and placing the mirrors RM2 and RM3;
see Fig. 5. The small birefringence of the fiber leads to an effective dephasing after
a sufficiently long interaction time, such that the locally dephased reference state

ρ′ = (� ⊗ I)ρ (37)

=
∑

i∈{+,−}
(|i〉〈i | ⊗ IB)ρ(|i〉〈i | ⊗ IB)

= 1

2

∑

ω

�ωG(ω)
[
|H,ω〉〈H,ω| + |V,ω〉〈V,ω|

+ β(ei(ω−ω0)t + e−i(ω−ω0)t )|H,ω〉〈V,ω|
+ β(e−i(ω−ω0)t + ei(ω−ω0)t )|V,ω〉〈H,ω|

]
,

is created [77].
One may again confirm that the reduced density matrices describing polarization

and frequency degrees of freedom coincide for ρ and ρ′ [8]. The dephasing distur-
bance (10) is evaluated in the continuum limit �ω → 0, i.e.,

∑
ω �ω → ∫

dω, and
yields [8, 77]

D(ρ) = β

2

∫

dωG(ω)
∣
∣ei(ω−ω0)t − e−i(ω−ω0)t

∣
∣ . (38)

For the dynamical detection of the discord (38), the Michelson delay setup, con-
sisting of HWP2 with tunable angle η/2, and a polarizing beam splitter (PBS1)
is used. Theoretically the realized dynamics is equivalent to the one described in
the birefringent material, since, again one of the two polarization states acquires a
modified phase shift due to a different dwell time. The dwell time τ = 2x/c in the
Michelson setup is determined by the delay x of the mirror M2.

The resulting local trace distance can be shown to be independent of η, and reads
in the continuum limit [77],

d(τ ) = β

2

∣
∣
∣
∣

∫

dωG(ω)
(
ei(ω−ω0)t − e−i(ω−ω0)t

)
eiωτ

∣
∣
∣
∣

= β

2

∣
∣e−δω|t+τ | − e−δω|t−τ |∣∣ . (39)

Its maximum value

max
τ

d(τ ) = β

2
(1 − e−2δωt ), (40)
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Fig. 6 The maximum local trace distance (40), maxτd(τ ), provides a lower bound for the total
trace distance (38), D(ρ), for all states (34). While the full amount of the correlations cannot be
revealed locally, the theoretical limit is reached with high precision. Figure adapted from [77]

produces a bound to the dephasing disturbance (38), as depicted in Fig. 6 for different
values of t . The figure shows a strong dynamical signal of the discord, as well as
excellent agreement between experiment and theory.

The dynamics of the qubit system, evoked through interaction with its frequency
degrees of freedom, could be described as pure dephasing. No excitations are
exchanged between the polarization and frequency degrees of freedom. Instead the
presence of correlations between these two subsystems effectively leads to the decay
of coherences in the qubit system. This dynamics if furthermore completely irre-
versible, and can thus be considered as Markovian, i.e., memoryless open-system
evolution [83, 84], with the time scale of the decay being determined by the width
δω of the initial frequency distribution [57]. Hence, in the case of a purely dephasing
coupling between system and environment, the reported experiment demonstrates
the applicability of the local detection method to reveal initial system-environment
discord even if the environment is completely memoryless [8].

3.3 Photonic Experiment with Discrete-Variable Ancilla

In another photonic experiment, discord between the polarization and momentum
degrees of freedomof a photon, created in the process of parametric downconversion,
was detected using the local detectionmethod [78]. Themomentumspace is restricted
here to two possible channels, denoted by |0〉 and |1〉. Hence, the ancilla system is
effectively described by a discrete two-dimensional state space. This distinguishes
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the setup from the two experiments discussed before, where the ancilla was described
by single- [62] and multi-mode [77] harmonic oscillators, respectively.

The state of one of the two photons which are created during parametric down-
conversion is, after suitable manipulations by a double-slit and a tunable half-wave
plate, described by

ρ = λ|H〉〈H | ⊗ |0〉〈0| + (1 − λ)|θ〉〈θ| ⊗ |1〉〈1|, (41)

with |θ〉 = cos θ|H〉 + sin θ|V 〉. This state contains no discord only if the angle θ
is chosen such that |θ〉 = |H〉 or |θ〉 = |V 〉. For all other values the state contains
discord since |θ〉 and |H〉 are neither orthogonal nor parallel. As a side remark, we
note that this type of discordant state can be (and was in fact) generated via a local
operation from a zero-discord state, which is reflected by its low correlation rank
[21].

The accessible system is given, again, by the polarization degree of freedom, and
the associated qubit state is obtained through full state tomography. The local dephas-
ing operation is then implemented using suitably adjusted polarizers. For the dynam-
ical detection of discord a unitary evolution is realized: By inserting a relative phase
shift between the two polarization states in only one of the two momentum channels,
an effective interaction between the polarization and the momentum degrees of free-
dom is mediated. This effectively leads to pure dephasing of the polarization state
and is close in spirit to the dynamics described in the previous experiment. Using
these ingredients and following the local detection protocol, the discord of the initial
states (41) was successfully revealed in the experiment.

When |θ〉 = |V 〉, however, the initial state does not contain discord. Nevertheless
it is still classically correlated since it cannot be written as a factorizing product state.
The deviation from a product state can also be dynamically revealed by observing an
increase of the trace distance above its initial value, when comparing the evolution
of the unperturbed state with the evolution after an arbitrary local operation [9, 84];
for earlier experiments see [85–87]. In the experiment, this is realized whenever the
local detection method did not produce a witness for discord. In this case, a local
unitary operation, implemented through suitably placed half-wave plates, produces a
reference state, such that the presence of correlations in the initial state was detected
by means of an increase of the trace distance above its initial value, except when
the initial state is indeed factorized [78]. This way, the resulting two-step protocol,
comprised of a combination of the local detection method [10, 11] and the trace
distance witness for initial correlations [9], is able, on the one hand, to detect discord,
and on the other hand, to reveal classical correlations in the absence of discord [78].

4 Theoretical Studies

Aside from providing an experimentally convenient method for the detection of
discord, the local detection method may also be helpful to gain insight into the
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impact of correlations and discord through theoretical studies of interacting systems.
Such studies may further provide a useful characterization of the local detection
method itself, by indicating the conditions under which the presence of discord can
be successfully revealed through the local dynamics.

4.1 Dynamical Single-Spin Signature of a Quantum
Phase Transition

A special situation arises when the state |�〉 to which the local detection method
is applied, is at the same time an eigenstate of the Hamiltonian which governs the
interacting time evolution of the system [68]. In this case, the dynamics without
dephasing is trivially constant and any dynamics that arises after the local dephasing
operation constitutes a witness for discord. Additionally, the local trace distance
provides a lower bound to the bipartite entanglement of the system (the bipartition
is defined by the subspace on which the dephasing was implemented and the rest of
the system). Such a situation is particularly interesting when |�〉 is chosen as the
ground state of a many-body system [68], since its quantum correlations can disclose
information about the existence of a quantum phase transition [88, 89].

The local detection method has been applied in a theoretical study to reveal
the quantum correlations of the ground state, as well as quantum discord of finite-
temperature thermal equilibrium states in the context of a quantum phase transition
[68]. The properties of the ground state are often regarded as a principal indicator of
critical phenomena, since quantum phase transitions are defined as abrupt qualitative
changes of the ground state as a function of some external control parameter [90].
By using the local detection method to reveal entanglement properties of the ground
state to the dynamics of a single spin, we connect these ground-state properties to
the entire excitation spectrum, which is relevant for the dynamical evolution of the
spin.

The system studied here is the Ising model with variable interaction range [8,
91–97]

Hα = −
N∑

i, j=1
(i< j)

J0
|i − j |α σ(i)

x σ( j)
x − B

N∑

i=1

σ(i)
y , (42)

where σ(i)
k describe the Pauli matrices for spin i with k ∈ {x, y, z}, J0 determines the

strength of the spin-spin interaction, which stands in competition with the transverse
external field of strength B. The ground state provides an intuitive understanding of
the quantum phase transition: For small values of B the contribution of the internal
spin-spin interaction dominates and the relative orientation of the spins is chosen such
that the associated potential energy is minimized, thereby describing a ferromagnetic
state for J0 > 0.When B is increased above a critical value, which depends on α and
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J0, the spins tend to align along the direction of the external fields and the system
describes a paramagnet.

4.1.1 Local Bound for the Ground-State Negativity

To apply the local detection method to the ground state of the above system, we
consider the left-most spin as the controllable subsystem and consider the ensemble
of all other spins as the inaccessible ancilla. This reduces the state space from an
exponentially large dimension of 2N to the easily manageable size of a qubit.

The initial state |�0〉, being the ground state of Hα, does not evolve in time.
However, by applying the local dephasing operation to the state |�0〉 excited states
are incoherently populated,whichdoes no longer necessarily result in a time-invariant
state. Any time evolution is, according to the local detection method, a witness for
discord, and, since the state is pure, in this case also a witness for entanglement. As
described in Sect. 2.3, local measurements of the single spin dynamics can be used
to obtain a lower bound for the negativity (a simple entanglement measure) of |�0〉.

The local eigenbasis of each individual spin is for symmetry reasons (Z2-
symmetry: invariance of H under a π-rotation around the y-axis) always given by
the y-axis [8, 68]. The local dephasing is therefore always described by

ρ� = (� ⊗ I)|�0〉〈�0| =
∑

ϕ∈{↑y ,↓y}
(|ϕ〉〈ϕ| ⊗ IB) |�0〉〈�0| (|ϕ〉〈ϕ| ⊗ IB) , (43)

where | ↑y〉 and | ↓y〉 describe the eigenstates of σ(1)
y and, here, IB is the identity

operator on all remaining spins. Dephasing in this basis further yields the minimal
trace distance (13), as was shown in Sect. 2.3, and the dephasing disturbance thus
coincides with the negativity [68],

D(|�0〉〈�0|) = ‖|�0〉〈�0| − ρ�‖ = N (|�0〉〈�0|). (44)

The local evolution of the controllable spin is governed by

ρA(t) = TrB{U (t)(� ⊗ I)|�0〉〈�0|U †(t)}, (45)

where U (t) = e−i Hαt/�. At all times t , the local trace distance

d(t) = ‖ρA(t) − ρA(0)‖ (46)

yields a lower bound for the negativity N (|�0〉〈�0|). This quantity is fully deter-
mined by the magnetization my(t) = Tr{ρA(t)σ(1)

y } along the y direction as [68]

d(t) = 1

2
|my(t) − my(0)|. (47)
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(a)

(b)

Fig. 7 Local dephasing of the ground state induces a dynamical evolution (47) of the observed
spin, thereby detecting and quantifying the ground-state entanglement between the measured spin
and the rest of the chain, as quantified by the negativity (44). Further optimization of the local signal
by maximization over all observed times t discloses a finite-size precursor of the quantum phase
transition in form of a pronounced peak in the vicinity of the critical point. Figure taken from [68];
M. Gessner et al., “Observing a quantum phase transition by measuring a single spin”, Europhysics
Letters, vol. 107, issue 4, 2014, available at http://iopscience.iop.org/article/10.1209/0295-5075/
107/40005

Again, we may take the time-maximum dmax of all local distances, Eq. (12), here
coinciding with Eq. (16), to obtain the strongest available lower bound on N , as
plotted in Fig. 7.

A peak of the local signal around B � J0, indicates the quantum phase transi-
tion and hints at the position of the critical field. For larger values of B both the
total ground-state entanglement and the local signal decrease. For small values of
B, entanglement is present, but not dynamically revealed. This can be understood
through an analysis of the dephasing-induced excitations of the state ρ� [8].

4.1.2 Distribution of Dephasing-Induced Excitations

The excitation spectrum of ρ� is determined by the matrix elements of ρ� in a basis
of eigenstates |� j 〉 of Hα:

c j = 〈� j |ρ�|� j 〉. (48)
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(a) (b)

Fig. 8 Dephasing-induced excitations from the ground state for α = 1 and N = 10 (left panels),
as quantified by the overlap c j with energy eigenstates, Eq. (48). For small values of B/J0 only few
states above the ground state are populated, whereas around B � J0 a broad excitation spectrum is
observed. For large values of B/J0 regular bands, characteristic of the paramagnetic spectrum, are
observed. The right panel shows the (renormalized) index of the excited states along y, where the
color code is logarithmically scaled and normalized to 100 steps between the respective minimum
and maximum values of c j , increasing from blue to red. We observe quick convergence of the
images with increasing N towards an almost homogeneous excited-state distribution around the
critical point of the quantum phase transition. Half of the paramagnetic bands are not populated for
symmetry reasons (see text and Fig. 9). Figure adapted from [8]

Figure8 shows the distribution of the dephasing-induced excitations c j on a loga-
rithmic scale for different values of B/J0, J0 > 0. For small values of B/J0 hardly
any significant excited-state populations are created due to the local dephasing. In
contrast, the intermediate regime B/J0 ≈ 1 is characterized by a broadly distrib-
uted excitation spectrum. This shows, on the one hand, that the energy spectrum is
widely spread, and on the other hand, that states of all energies are coupled to the
ground state by means of the local dephasing. These features can be understood as
the consequence of quantum chaotic structures [98] that emerge close to the critical
point in this model [8]. For such dynamics, the local detection method is expected
to be highly efficient since large parts of the state space are explored in the course of
the dynamics, basically regardless of the initial condition [98], recall also Sect. 2.4.
For this reason, a complex dynamical evolution has a higher chance of successfully
mapping the initial two-body coherences, responsible for discord, into the locally
accessible subsystem.

For large values of B/J0 the energy depends linearly on B, with a slope pro-
portional to the number of spins that orient along the y-direction, and thus the
characteristic band structure of paramagnetic systems emerges around E/J0 =
−N B,−(N − 2)B,−(N − 4)B, . . . . The finite width of these bands is due to
nonzero values of J0. However, this implies that besides those dephasing-induced
populations at (E − E0)/J0 = 40, 80 which are observed in Fig. 8 there are other
bands around (E − E0)/J0 = 20, 60 which are not reached by the local dephasing.
The reason for this is again found in the Z2-symmetry of theHamiltonian: The ground
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Fig. 9 Spectra of the spin chain Hamiltonian (42) for α = 1, J0 > 0 and N = 5 (left) and N = 8
(right), respectively. Spectral lines corresponding to the two parity subspaces are distinguished by
color, as indicated in the legends. As is seen from the top panels, the paramagnetic energy bands
comprise only states of a definite parity subspace, causing the local dephasing operation to leave half
of them unpopulated. We further find broadly distributed spectra around B � J0, even if restricting
to only one of the two subspaces. Figure taken from [8]

state, being member of the even-parity subspace, cannot be mapped onto states of
the odd-parity subspace by local dephasing (43), since this operation commutes with
the parity operator [8]. Hence, when applying local dephasing to the ground state,
we remain in the parity subspace of the ground state.

Two ingredients are necessary for a successful mapping of the two-body coher-
ences of |�0〉 to ρ′

A(t0): So far we have discussed the crucial aspect of populating a
family of excited states such thatρ′(t) = U (t)ρ�U †(t) experiences a suitable dynam-
ics. However, this condition is not sufficient, since the partial trace operation may not
disclose this dynamics to the observable subsystem. To see whether the state ρ′(t)
actually shows richer dynamics than ρ′

A(t) in the case of B � J0, we may consult
the global time-autocorrelation function

C(t) = 1

P(ρ�)
Tr{ρ�U (t)ρ�U

†(t)}, (49)

which is normalized by the purity P(ρ�) = Trρ2� such that C(0) = 1. The time
evolution of ρ′(t) depends on the coherences of ρ� in the energy eigenbasis, as seen
from the expression

C(t) = 1

P(ρ�)

∑

i j

|〈� j |ρ�|�i 〉|2e−i(Ei−E j )t/�. (50)
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Fig. 10 Deviations of the dephased state ρ′ from the original state ρ are quantified using the global
time-autocorrelation function C(t). Plotting the minimum value (over all t) as a function of B/J0
confirms that no evolution takes place when B is very large or very small. The plots display different
values of N (see legend) with J0 > 0 andα = 1. Hence, the local signal, as shown in Fig. 7 captures
the qualitative behavior of the global dynamics, and little information is lost through the partial trace
operation. Figure taken from [8]

However, as Fig. 10 shows, the fact that no dynamical witness for entanglement is
obtained around B � J0 is not due to the local observation of the quantum system.
In this parameter regime, hardly any dynamical evolution of ρ′(t) can be observed
[8].

4.1.3 Thermal States: Local Bound for the Minimum Entanglement
Potential

Below the critical point, the energy gap between the ground state and the first excited
state decreases rapidly with increasing N . Rather than a preparation of the pure
ground state, one would, in realistic conditions, therefore expect to find a thermal
state,

ρβ = e−βH

Tre−βH
, (51)

with inverse temperature β = 1/kT . When the energy gap, which also decreases
with decreasing B for fixed N , becomes smaller than the thermal energy kT , then
the two neighboring states are mixed incoherently. As a consequence, all quantum
correlations which are present in |�0〉 are removed in ρβ , which can be shown to
have zero discord [8]. Thus, the minimal dephasing disturbance Dmin, as introduced
in Eq. (13), approaches zero when B is decreased below a temperature-dependent
value. Far away from any degeneracy it reduces, as expected, to the negativity of the
energetically lower-lying state, see Fig. 11.

To obtain a local bound on Dmin, one uses the optimized local witness, described
in Eq. (16). As seen in Fig. 11, this quantity is less sensitive to the mixing process
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Fig. 11 Theminimum dephasing disturbance Dmin (dashed lines), Eq. (13), decreases dramatically
when the thermal energy kT exceeds the energy gap between the two states of lowest energy is
smaller than the thermal energy kT . The local signal dmin (continuous lines), Eq. (16), is more robust
to increasing temperatures. Parameters are N = 7 with kT = 10−5 (thick, red lines), kT = 0.1
(medium, blue), and kT = 1 (black, thin). Figure adapted from [68]; M. Gessner et al., “Observing
a quantum phase transition by measuring a single spin”, Europhysics Letters, vol. 107, issue 4,
2014, available at http://iopscience.iop.org/article/10.1209/0295-5075/107/40005

than the total correlations, and a maximum signal can still be observed around the
critical point.

4.2 Atom-Photon Correlations During Spontaneous
Emission

Let us finally discuss an example of a dynamical system where the local detection
method is unable to reveal initial entanglement in the subdynamics. In the spon-
taneous emission processes, atom and field start and end in factorized conditions,
while the intermediate state contains atom-field entanglement. In a theoretical study
reported in [8] the local detection method was applied to such an entangled inter-
mediate state using the atomic two-level system as the accessible subsystem, while
the spontaneous emission process into the electromagnetic field modes provides the
interacting dynamics.

The situation differs conceptually from the photonic experiment reported in
Sect. 3.2, since the interaction here exchanges energy instead of only imprinting
a relative phase. Moreover, due to the irreversibility of the process, the energy which
is transmitted from the atom to the photons is irretrievably lost. In the trapped ion
experiment, reported in Sect. 3.1, energy was also exchanged between the two sys-
tems, but the ancilla system was described by a single mode instead of a continuum
of modes, with the possibility of feedback from the environment to the controllable
system.

The spontaneous emission process can be described by a unitary evolutionU (t) =
e−i Ht/�, generated by the Hamiltonian H = H0 + V with [99, 100]
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H0 = Ee|e〉〈e| + Eg|g〉〈g| +
∑

k

�ωka
†
kak (52)

and

V =
∑

k

(gka
†
k|g〉〈e| + g∗

kak|e〉〈g|). (53)

The modes of the electromagnetic field are labeled by k and |k〉 denotes a one-
photon state created by the bosonic operators a†k. The atom-field coupling strength
is determined by the constants gk.

The atom is initially prepared in the excited state, while the field starts out in the
vaccum. The initial state |e, 0〉 evolves as

|�(t0)〉 = u00(t0)|e, 0〉 +
∑

k

uk0(t0)|g,k〉, (54)

with the matrix elements u00(t) = 〈e, 0|U (t)|e, 0〉 and uk0(t) = u∗
0k(−t) = 〈g,k|U

(t)|e, 0〉. The local eigenbasis is readily found to be {|e〉, |g〉}, and local dephasing
transforms the above entangled state into the classically correlated reference state,

ρ′(t0) = (� ⊗ I)|�(t0)〉〈�(t0)|. (55)

The difference between the two states,

ρ(t0) − ρ′(t0) =
∑

k

(
u00(t0)u

∗
k0(t0)|e, 0〉〈g,k| + u∗

00(t0)uk0(t0)|g,k〉〈e, 0|) , (56)

quantifies the atom-field negativity at time t0. To determine the negativity explicitly,
the matrix elements of the unitary time evolution are evaluated with the resolvent
method [100] and the continuum limit is performed; for details see [8]. One finds [8]

N (|�(t0)〉〈�(t0)|) = c
√
e−�t0(1 − e−�t0), (57)

where c is a constant, independent of t0, and � is the spontaneous emission rate. This
confirms the presence of atom-field entanglement in the intermediate states of the
emission process.

The ensuing difference in the evolutions of the atomic system from t0 to t1 is
described by

ρA(t1, t0) − ρ′
A(t1, t0) = TrB{U (t1 − t0)(ρ(t0) − ρ′(t0))U †(t1 − t0)}

= 2Re

[
∑

k

u00(t0)u
∗
k0(t0)u00(t1 − t0)u

∗
0k(t1 − t0)

]

σz .

(58)
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Using the same techniques as before to evaluate this quantity, one finds it to be zero
for all values of t0 and t1 [8]. This shows that the atomic evolution is insensitive to a
replacement of all quantum correlations by classical correlations at any intermediate
time t0. Hence, the atom-field correlations that are created during the spontaneous
emission process cannot be detected using the same dynamical evolution. This is
expected to change when modifications of the uniform exponentially decaying evo-
lution, e.g., through higher-order corrections [100] or a structured environment [57,
84, 101, 102] are introduced.

5 Conclusions

In conclusion, the quantum discord of an interacting bipartite system can be probed
withmanageable overhead byusing the local detectionmethod.Todo this, control can
be limited to only one of the two correlated subsystemswhile the second systemmight
even be completely unknown and inaccessible. The protocol requires the realization
of local state tomography of the accessible system and a local dephasing operation,
which may be realized by a non-selective local measurement. Due to the destructive
nature of themeasurement process, the protocol requires multiple copies of the initial
state, as is common practice in quantum mechanical experiments.

By limiting access to oneof the two subsystems, only a smallHilbert space ofmuch
lower dimension than the full quantum system, needs to be controlled. This permits
the detection of discord in high-dimensional and infinite-dimensional systems, where
full tomographic methods and the measurement of witness operators can no longer
be realized. The method is further applicable in an open-system scenario, where a
controllable quantum system couples to an environment which is generally difficult
to access [57].

The efficacy of the method depends strongly on the dynamical behavior of the
interacting system. A non-vanishing local dynamical signature of the initial discord
is expected to be found generically for systemswith complex, e.g., chaotic dynamics,
exploring large parts of the state space. The case studies summarized in this article
also show that for regular quantum optical model systems, the local detectionmethod
can be implemented successfully. In the context of system-environment dynamics,
the photonic experiment reported in [77] demonstrates that non-Markovian effects
[84] are not needed to achieve this: The evolution of the controllable subsystem was
described by irreversible pure dephasing but a strong signature of the initial discord
was recorded.

Conversely, the theoretical case study of the spontaneous emission process showed
that a local dynamical signature of the atom-field entanglement cannot be recorded
[8]. In this extreme case the dynamics is no longer of a purely dephasing nature, but
instead, excitations are decaying irretrievably from the controllable system into an
environment. Thus, the examples discussed in this article suggest that, for dissipa-
tive dynamics, the local detection method relies on the presence of structure in the
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environment, such that excitations are indeed being exchanged both ways between
the subsystems, as was the case in the trapped-ion experiment [62].

Further uses of the local detection method lie in the analysis of large interacting
many-body systems by means of a small “quantum probe” [7, 8, 68, 87, 103, 104].
This was illustrated in the context of a quantum phase transition, where a strong
dynamical signal of ground-state entanglement and thermal discord was observed
in the vicinity of the critical point, with the measurements being limited to a single
spin [68].
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The Sudden Change Phenomenon
of Quantum Discord

Lucas C. Céleri and Jonas Maziero

Abstract Even if the parameters determining a system’s state are varied smoothly,
the behavior of quantum correlations alike to quantum discord, and of its classical
counterparts, can be very peculiar, with the appearance of non-analyticities in its
rate of change. Here we review this sudden change phenomenon (SCP) discussing
some important points related to it: Its uncovering, interpretations, and experimen-
tal verifications, its use in the context of the emergence of the pointer basis in a
quantum measurement process, its appearance and universality under Markovian
and non-Markovian dynamics, its theoretical and experimental investigation in some
other physical scenarios, and the related phenomenon of double sudden change of
trace distance discord. Several open questions are identified, and we envisage that in
answering them we will gain significant further insight about the relation between
the SCP and the symmetry-geometric aspects of the quantum state space.

Keywords Quantum discord · Open systems · Decoherence · Sudden change

1 Introduction

In principle, it is always possible to find a local observable whose measurement does
not disturb a system in a classical-incoherent state. However, the presence of quan-
tum coherence in composite-correlated systems makes local interrogation without
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disturbance inconceivable [1]. Quantum discord (QD) is the generic name we give
to correlations that have a quantum character. Actually, the minimum “distance”
between the states of a multipartite system after and before a local measurement
is quantified by discord-like functions [2]. This kind of correlation is more general
than quantum entanglement and has been shown to be important not only for the fun-
damentals of physics [3–8] but also as a resource for quantum information science
(QIS) [9–11] applications. A few examples of QIS “protocols” for which there are
strong evidences that QD is key for fueling the quantum advantage are noisy compu-
tation [12], state merging [13, 14], assisted state discrimination [15], cryptography
[16], energy transport [17], quantum illumination [18], remote state preparation [19],
data hidding [20], and metrology [21, 22].

Although many useful theoretical developments are usually made in QIS by con-
sidering first idealized isolated systems, subsequently their realistic open dynamics
must be taken into account [9–11]. Quantum features such as entanglement and
discord are particularly fragile to the influence of the environment. This kind of
interaction usually smears the quantumness of the system of interest, inducing it to
behave in a more classical manner. Such type of process is detrimental for applica-
tions of these quantities in QIS and generally goes under the name of decoherence.
Motivated by that observation, much effort have been made in order to describe how
useful quantum features are affected by several kinds of decoherent dynamics. In par-
ticular, the dynamic behavior of quantum discord has been shown to be very peculiar
[23], with sudden discontinuities in its derivative being identified and analyzed in
diverse physical scenarios.

This sudden change phenomenon (SCP) of classical and quantum correlations has
been the theme of numerous works in the last few years, with considerable develop-
ments being put forward. Its geometric description and interpretation were addressed
[24–29]. It has been regarded in the context of classical and quantumphase transitions
[30–35] and in the dynamics of critical systems [36–38]. Considering Markovian
[39–45] and non-Markovian [46] decoherent dynamics, the establishment of system-
environment correlations was investigated in Refs. [47–51], while the protection of
quantum correlations was addressed in Refs. [52–56]. Moreover, investigations of
systems in relativistic motion [57–59] or subjects to classical, chaotic, thermal, and
other kinds of noise environments were also reported [60–71]. Studies considering
interesting physical systems like quantum dots [72, 73], atoms interacting with sep-
arated or common cavities [74–76] or interacting via plasmonic waveguides [77, 78]
appeared in the literature. Finally, some interesting physical interpretations, as e.g.
related to the emergence of the pointer basis in a quantummeasurement process [79],
or the worst-case-scenario fidelity of quantum teleportation [80] and the quantum
speed limits [81] shed new light on the subject. Here we shall make a survey of
some important points related to these developments intending to open up the path
for reaching a better physical and information-theoretic understanding of the SCP
of classical and quantum correlations, bringing out thus its possible role in physics
and in QIS.
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2 Quantum Mechanics, Open System Dynamics
and Quantum Correlations

In this section, we present some important concepts of quantum mechanics and the
quantification of correlations. We start, in Sect. 2.1, by recalling the postulates of
quantum mechanics, with particular emphasis on the description of open quantum
dynamics via the Kraus’ operator-sum representation. In Sect. 2.2 we present the
primary concepts involved in quantum, classical, and total correlation quantification
and describe some of the correlation measures considered in this article. Our exposi-
tion shall be limited to discrete systems divided in two parts, but the main ideas can
be straightforwardly translated to multipartite systems.

2.1 Quantum Mechanics of Closed and Open Systems

In standard quantum mechanics [9], the states of closed systems are described by
normalized vectors on a projective Hilbert space H. In Schrödinger’s picture, these
vectors evolve unitarily (and therefore reversibly): |ψt 〉 = U |ψ〉, with U being a
linear operator such that UU † = U †U = I and I|ψ〉 = |ψ〉 for all |ψ〉 ∈ H. The
time evolution operator U satisfies Schrödinger’s equation: i�∂tU = HU , where
H is the system Hamiltonian. Observables are described by Hermitian operators,
O = O†. For a system prepared in state |ψ〉, measurements of O at a time t yield
one of its real eigenvalues oi with probability given by Born’s rule: pi = |〈oi |ψt 〉|2
(O = ∑

i oi |oi 〉〈oi | is the spectral decomposition of O). Immediate subsequent mea-
surements of O always produce the same result. Because of this repeatability of mea-
surements, one says that the system’s state “jumps” to the observable’s corresponding
eigenvector |oi 〉, whichwill be the system’s state immediately after themeasurement.
Thus, in quantum mechanics the measurement process will irreversibly change the
state of the system unless it is prepared in one of the eigenstates of the observable
being measured.

All systems in Nature generally interact with their surrounds, thus breaking local
unitarity. Considering that quantum states lies at the core of quantum information
science, this fact has been particularly important in the development of this theory,
whose main focus is the manipulation of the information stored in the quantum
degrees of freedom [9]. In this open system scenario, we may use the standard
quantum description for the whole universe, but more general mathematical tools
are needed when we focus on the description of some particular subsystem. In this
case, because of the correlations generated between this system and the rest of the
universe (the environment), the state of thefirstmust be describedby a convexmixture
of state vectors, a density operator ρ, which is a positive-semidefinite, ρ ≥ 0, linear
operator with unit trace, Tr(ρ) = 1.

In what follows we briefly describe the dynamics of open quantum systems in
terms of the so called operator sum representation [9]. Let D(H) be the space of
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density operators, HS ⊗ HE be the whole system Hilbert space, and ρ = ρS ⊗
|E0〉〈E0| be the initial system-environment state. ρS ∈ D(HS) is the system ini-
tial state and {|Ei 〉} is an orthonormal basis for HE . We can take the environment
as being described by a pure state since we can always treat its purification without
changing physical conclusions.

Then, assuming that the entire system evolves by means of a unitary operation,
ρt = UρU †, and considering the partial trace over the environment degrees of free-
dom we obtain

ρS
t = TrE (ρt ) = ∑

l Klρ
SK †

l , (1)

which is the operator sum representation of the evolved system state [82–84]. The
set {Ki } are the Kraus operators, whose matrix elements in the basis |Si 〉 ∈ HS are
defined as

〈Sm |Kl |Sn〉 ≡ 〈SmEl |U |SnE0〉. (2)

In the last equation and hereafter we shall use the notation |φψ〉 := |φ〉 ⊗ |ψ〉. One
can easily verify that

∑
l K

†
l Kl = IS , what implies that the evolution (1) is trace-

preserving, i.e. Tr(ρS
t ) = 1 for all times. Equation (1) is the most general quantum

evolution, known as a completely-positive and trace-preserving map.

2.2 Quantum Discord Quantifiers

Let’s consider a bipartite system with Hilbert spaceHa ⊗ Hb. When can the correla-
tions between the parties a and b be regarded as being classical? One way to answer
this question is by recalling that coherent superpositions are a fundamental character
of quantum systems [85]; and that the measurement of an observable, for a system
prepared in a state other than its eigenstates, will involve wave function collapse
and disturbance. So, it is reasonable to say that if the state of a bipartite system is
invariant, not disturbed, under the composition of (non-selective) local projective
measurement maps (LPMMs), i.e., if ∃ �a,�b | �a ◦ �b(ρ) = ρ, then the correla-
tions between its constituent parts are of a classical nature. In the above equations,
a LPMM applied to sub-system a is defined as

�a(ρ) := ∑
j�

a
j⊗Ibρ�a

j ⊗ Ib, (3)

with
∑dimHa

j=1 �a
j = Ia and�a

j�
a
k = δ jk�

a
j ; and the analogous definition follows for

�b(ρ) := ∑
j Ia ⊗ �b

jρIa ⊗ �b
j .

One can easily verify that, for the so dubbed classical-classical states,

ρcc = ∑
j,k p jk�

a
j ⊗ �b

k , (4)
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where p jk is an arbitrary probability distribution (p jk ≥ 0 and
∑

j,k p jk = 1), we
have �a ◦ �b(ρcc) = ρcc. For a system prepared in such a state, there is no quantum
uncertainty associated with measurements of the local observables A = ∑

j a j�
a
j

and B = ∑
k bk�

b
k . Following these lines, the classical-quantum states (invariance

under a LPMM on a: �a(ρcq) = ρcq ),

ρcq = ∑
j p j�

a
j ⊗ ρbj , (5)

and the quantum-classical states (not disturbed by a LPMM on b: �b(ρqc) = ρqc),

ρqc = ∑
j p jρ

a
j ⊗ �b

j , (6)

are also important for the theory and applications of quantum discord quantifiers.
In the last two equations, p j is a probability distribution and ρsj ∈ D(Hs) are
density operators for s = a, b. We observe that in addition to the nondisturbability-
based characterization above, the classicality of the correlations between the sub-
systems a and b, prepared in either one of these three classes of states, can be given
an operational interpretation in terms of the possibility of locally broadcast them
[86, 87].

Now that we have defined what may be considered as being the classical states,
i.e., those states not possessing quantum correlations, in order to quantify the amount
of quantumness in the correlations of a generic bipartite density operator ρ, we can
use the distance or distinguishability between ρ and the regarded classical states.
But using any classical state would be ambiguous; thus we utilize the classical states
which “seems more” like ρ. That is to say, we define

Dd(ρ) := min
ρcc

d(ρ, ρcc) ≡ min
p jk ,�

a
j ,�

b
j

d(ρ,
∑

j,k p jk�
a
j ⊗ �b

k), (7)

Da
d (ρ) := min

ρcq
d(ρ, ρcq) ≡ min

p j ,�
a
j ,ρ

b
j

d(ρ,
∑

j p j�
a
j ⊗ ρbj ), (8)

Db
d(ρ) := min

ρqc
d(ρ, ρqc) ≡ min

p j ,ρ
a
j ,�

b
j

d(ρ,
∑

j p jρ
a
j ⊗ �b

j ), (9)

where d is a distance or distinguishability measure for density operators.
It is worthwhile noticing that there is a related, but somewhat more operational

way to define discord quantifiers. In this approach one starts by recognizing that
a LPMM transforms ρ into a classical state. Thus, QD is defined as the distance
between a state ρ and the closest classical state obtained by applying a LPMM to
it, i.e.,

Dd(ρ) = min
�a ,�b

d(ρ,�a ◦ �b(ρ)), (10)

Da
d(ρ) = min

�a

d(ρ,�a(ρ)), (11)

Db
d(ρ) = min

�b

d(ρ,�b(ρ)). (12)
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These quantifiers capture the essence of quantum discord, which is equal to the
minimum amount of correlation that is inevitably erased by a LPMM. It is noticeable
that there is no extremization over probability distributions or over local states in
these last three expressions. This is so because, in this case, they are determined
by ρ and by the LPMM. It is interesting observing that we would have Dd ≡ Dd

if we set p jk = Tr(�a
j ⊗ �b

kρ) in the equation for Dd . Besides, �a(ρ) ≡ ρcq if

we make p j = Tr(�a
j ⊗ Ibρ) and ρbj = Tra(p

−1
j �a

j ⊗ Ibρ�a
j ⊗ Ib) in Eq. (8) and

�b(ρ) ≡ ρqc if we use p j = Tr(Ia ⊗ �b
jρ) and ρaj = Trb(p

−1
j Ia ⊗ �b

jρIa ⊗ �b
j ) in

Eq. (9). But now let us address an important issue about these two types of QD
quantifiers, one of then that, to the best of our knowledge, has not been addressed
in literature. It is true, for instance, that any state in the class ρcc can in principle
be produced. Nevertheless, it is also well known that the probability distribution
induced by local measurements (PDILM) on a system prepared in a certain state ρ
cannot, in general, simulate all PDILM. One famous example of this fact is found in
the Bell nonlocality scenario [88]. Therefore, in addition to make the optimization
problem more involved, the measures in Eqs. (7)–(9) may lead to misleading results
due to the application of classical states possible “unrelated” to ρ, i.e., that cannot
be obtained from ρ via LPMMs.

After a LPMM is applied, a and b can still be correlated if, e.g., p jk 
= paj p
b
k ,

with paj and pbk being probability distributions. This remaining correlation may be
said to have a classical nature. But then, before the LPMM, the system posses two
kinds of correlation. And it would be nothing but natural assuming that both types of
correlation, the classical correlation (CC) and the quantum discord, add up to give
the total correlation (TC) in ρ. Surprisingly, the panorama of the theory for measures
of CCs and of TCs is even less satisfactorily developed than for QD. Next we regard
some possible approaches that may be followed for the quantification of TC and of
CC in bipartite states. A good starting point for that is the definition of uncorrelated
states. If the sub-systems a and b are prepared independently, respectively, in states
�a and �b, then their joint density operator would be the product state �a ⊗ �b.
Similarly to what was done for QD, these states can be used to define a measure of
TC

Id(ρ) := min
�a ,�b

d(ρ,�a ⊗ �b). (13)

We use Id instead of Td because of the historic and present importance mutual
information (MI) has for TC quantification. Actually, the MI, which is defined as

I (ρ) := S(ρa) + S(ρb) − S(ρ) (14)

with
S(x) := −Tr(x log2 x) (15)

being the von Neumann’s entropy, is the only TC measure already given an opera-
tional meaning [89].
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It is intuitively expected that the closest product state of ρ is obtained from the ten-
sor product of its reductions. And for the distinguishability measure named quantum
relative entropy [90],

dre(ρ, ξ) := Tr(ρ(log2 ρ − log2 ξ)), (16)

this is indeed the case [91, 92], i.e.,

Ire(ρ) := min
�a ,�b

dre(ρ,�a ⊗ �b) = dre(ρ, ρa ⊗ ρb) ≡ I (ρ). (17)

So, this TC is equal to mutual information. It is rather curious that e.g. for the trace
distance,

dtr (x, y) := ||x − y||tr , (18)

where
||x ||tr := Tr

√
x†x (19)

is the trace norm of x , the state ρa ⊗ ρb is not in general the uncorrelated state most
similar to ρ [93]. This issue certainly deserves additional-thoroughly investigation.
This fact also motivates using a more operational definition also for TC. One possi-
bility would be defining

Id(ρ) := min
�

d(ρ,�(ρ)), (20)

where
�(ρ) := ∑

j p j (U
a
j ⊗Ub

j )ρ(Ua
j ⊗Ub

j )
† (21)

is a randomizing (decoupling) map leading any ρ into product states and Us
j are

appropriately chosen unitary operators acting on Hs . Although being more difficult
to calculate, the total correlation in Eq. (20) may be more suitable because in general
(some property of) ρ may restrict the possible product states that can be produced
by � acting on it.

What about classical correlation quantifiers? One possibility is arguing for addi-
tivity for correlations and simply define

Cd(ρ) := Id(ρ) − Dd(ρ). (22)

Or one can use the classical state minimizing the equation for e.g. Dd , and define the
CC of ρ as the TC of this state. We could continue presenting several other ways in
which CC may be defined. Actually, this observation is in its own an indication that
these definitions are not, in general, operationally satisfying. The only CC quantifier
with a well defined information theoretic interpretation that we know of was inspired
by the Holevo bound and was proposed by Henderson and Vedral in Ref. [94].
But before presenting their CC measure, let us consider the following equivalent
distinguishability-based quantifier
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Ca
hv(ρ) := max

�a

Ire(�a(ρ)) ≡ max
�a

I (�a(ρ)) = max
�a

j

[S(
∑

j p j�
a
j ) + S(

∑
j p jρ

b
j )

− S(
∑

j p j�
a
j ⊗ ρbj )]. (23)

As the states �a
j ⊗ ρbj have support in orthogonal subspaces of Ha ⊗ Hb, one can

verify that

S(
∑

j p j�
a
j ⊗ ρbj ) = H(p j ) + ∑

j p j S(�a
j ⊗ ρbj ) = S(

∑
j p j�

a
j ) + ∑

j p j S(ρbj ),

(24)

where H(p j ) := −∑
j p j log2 p j is Shannon’s entropy. With this we get

Ca
hv(ρ) = max

�a
j

[S(
∑

j p jρ
b
j ) − ∑

j p j S(ρbj )], (25)

which is the Holevo quantity maximized over LPMMs on particle a, which are used
here to acquire information about the subsystem b. Now, we recall that any local
quantum operation can be written as

$a(ρ) = ∑
j K

a
j ⊗ IbρK

a†
j ⊗ Ib, (26)

with
∑

j K
a†
j K a

j = Ia . As expected, $a does not change the state of b:

Tra($a(ρ)) = ∑
l〈al | ⊗ Ib

∑
j K

a
j ⊗ IbρK

a†
j ⊗ Ib|al〉 ⊗ Ib

= ∑
l, j 〈al |Ka

j (
∑

m |am〉〈am |) ⊗ IbρK
a†
j |al〉 ⊗ Ib

= ∑
l, j,m〈am | ⊗ IbρK

a†
j |al〉〈al |Ka

j |am〉 ⊗ Ib

= ∑
m〈am | ⊗ Ibρ|am〉 ⊗ Ib = Tra(ρ) = ρb. (27)

As �a is a particular kind of quantum operation, then ρb = Tra(ρ) = Tra(�a(ρ)) =∑
j p jρ

b
j and [94]

Ca
hv(ρ) = S(ρb) − min

�a
j

∑
j p j S(ρbj ). (28)

This expression leads to a nice entropic interpretation for this CC. The state of b is
the mixture

∑
j p jρ

b
j before and after �a is applied to a. However, because of the

correlations between a and b, the information we get when a collapses to �a
j forces

b to be in one of the states ρbj . And, on average, this decreases our uncertainty about
the state of b.

The notion of quantum discord as a quantum correlation quantifier was first intro-
duced by Ollivier and Zurek in Ref. [95] and is directly related to the Henderson–
Vedral CC:

Da
oz(ρ) := I (ρ) − Ca

hv(ρ). (29)
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The motivation for the name “quantum discord” comes from the fact that classically
the two definitions for correlation, measured by mutual information, are equivalent,
but in the quantum realm we can have I (ρ) 
= Ca

hv(ρ).
As we have seen in this sub-section, there are several motivations one can fol-

low to define a quantum discord quantifier. Of course, the same holds for classical
and total correlations. And even within a certain “kind” of QD quantifier, we can
employ, for instance, several dissimilarity measures, which will imply in multiple
QD functions. Actually, many functions involving ρ and e.g. �a(ρ) can be used to
defined QD quantifiers. For some examples of such quantities, see Refs. [1, 96–112]
and references therein. This scenario has led to a variety of QDQs and has motivated
the discussion about which properties they should enjoy [113, 114]. But, as this is
not the focus of this work, any other QD quantifier, and the related issues, will be
introduced as needed in our subsequent analysis of the sudden change phenomenon.

3 Uncovering of the SCP and Its Experimental Verification

The sudden change phenomenon was discovered in 2009 by us, R.M. Serra and
V. Vedral, and was first reported in Ref. [23]. We considered the simple situation
with two qubits prepared initially in a Bell-diagonal state and let them to interact
with local-independent environments. For the sake of definiteness, we will consider
the so called Pauli channels [10, 11]. These are the phase-damping channel, whose
Kraus operators are

K pd
0 = √

1 − p I, K pd
1 = √

p |0〉〈0| and K pd
2 = √

p |1〉〈1|, (30)

the bit flip, described by the operators

Kbf
0 = √

1 − p I and Kbf
1 = √

p σ1, (31)

phase flip,
K pf

0 = √
1 − p I and K pf

1 = √
p σ3 (32)

and, finally, the bit-phase flip

Kbpf
0 = √

1 − p I and Kbpf
1 = √

p σ2. (33)

p is the parametrized time, usually written as p = 1 − e−γt , with γ being the relax-
ation rate associatedwith the environment. These quantumchannels have the property
that they preserve the Bell-diagonal form of the evolved state, i.e.,

ρbdp = ∑
i, j K

qc
i ⊗ Kqc

j ρab0 Kqc†

i ⊗ Kqc†

j = 2−2 (
I
ab + �qc

p · ϒ
)
. (34)
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Fig. 1 Illustration of the
situation in which two
systems are initially prepared
in a quantum-correlated state
and afterwards let to interact
with local-independent
environments

In the last equation ϒ = (ϒ1, ϒ2, ϒ3) := (σ1 ⊗ σ1,σ2 ⊗ σ2,σ3 ⊗ σ3) and the
evolved correlation vectors�

qc
p = (c(p)

1 , c(p)
2 , c(p)

3 ), with c(p)
j = Tr(ρabp ϒ j ), are given

by (Fig. 1)

�pd
p = (

c1(1 − p)2, c2(1 − p)2, c3
)
, (35)

�b f
p = (

c1, c2(1 − 2p)2, c3(1 − 2p)2
)
, (36)

�p f
p = (

c1(1 − 2p)2, c2(1 − 2p)2, c3
)
, (37)

�bp f
p = (

c1(1 − 2p)2, c2, c3(1 − 2p)2
)
. (38)

For the Bell-diagonal class of states, the Ollivier–Zurek quantum discord (sym-
metric or asymmetric) can be computed analytically and reads [115–117]:

Doz(ρ
bd
p ) = I (ρbdp ) − Chv(ρ

bd
p ) = ∑1

i, j=0λi j log2(4λi j )

− 2−1∑1
i=0

(
1 + (−1)i cp

)
log2

(
1 + (−1)i cp

)
,

(39)

where λi j = 2−2
(
1 + (−1)i c(p)

1 − (−1)i+ j c(p)
2 + (−1) j c(p)

3

)
and

cp = max(|c(p)
1 |, |c(p)

2 |, |c(p)
3 |). (40)

For the sake of understanding the mathematical origin of the SCP from these
equations, we first call the attention for the fact that the components of �

qc
p change

differently with time, with their decaying rates depending on the kind of environment
the system is interacting with. So, fixed an initial state�

qc
0 and the quantum channel,

with exception of those �
qc
0 with the constant component null or greater than all the

others, at the time dubbed sudden change time, psc, the index of the coefficient with
greater modulus shall become different. And this can happens only if the change
rate of cp<psc is different from that of cp>psc (see the example in Fig. 2). Well, and
in this scenario it is this change of decay rate of cp that leads to the sudden change
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Fig. 2 Example of sudden change phenomenon taking placewhen an initial Bell-diagonal statewith
correlation vector �0 = (−0.26, 0.54, 0.40) undergoes time evolution under local phase damping
channels. Here, the sudden change time is psc ≈ 0.14. The inset shows the time evolution of
the components of the correlation vector and cp . We see that |c(p)

3 | ≶ |c(p)
2 | for p ≶ psc. So, as

the rate of change of these two components is different, so is the decaying rate of the classical,
Chv , and quantum, Doz , correlation in the two quite distinct dynamical behavior regimes. For
the environments and correlation measures regarded in this section, the classical correlation is
constant from psc thereon and there is only one possible value for psc, what shall be relevant in
the discussion about the emergence of the pointer basis included in Sect. 4. Because the mutual
information I = Chv + Doz is a monotonically decaying function of p, for p > psc the decaying
rate of the quantum discord must be equal to that of the MI: ∂pDoz = ∂p I . This fact indicates that
if ∂pChv = ∂p I for p < psc, then we shall have what has been called the freezing of quantum
discord or the classical decoherence regime

phenomenon of the classical correlation, Chv , and of quantum discord, Doz . Note
that once the quantum mutual information, I , does not depend on cp, it decays
monotonically with time, without abrupt changes.

For all channels mentioned in this section, the SCP happens when |κ| = max
(|κ′|, |κ′′|), with κ being the constant component of the correlation vector and κ′ and
κ′′ being the components of �

qc
0 that shall be affected by the interaction with the

environment. Thus, in the case of the phase damping channel, the sudden change
time is

psc = 1 −
√

|κ|
max(|κ′|, |κ′′|) = 1 −

√
|c3|

max(|c1|, |c2|) , (41)

and for the other three channels psc = 2−1(1 − √|κ|/max(|κ′|, |κ′′|)). It is worth-
while noticing also that if |κ| 
= 1 and κ 
= 0, there always exists a quantum channel
and an initial state for which psc ∈ (0, 1); thus the SCP is seen to be universal.
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Now, in order to comprehend the physical origin of the SCP, we start by observing
that a positive value of QD is obligatorily linked to a minimum amount of correlation
between the subsystems that has to be destroyed by the non-selective measurement
of local-compatible observables. Although, to our knowledge, there is no proof for
general states, in the case of Bell-diagonal states we can verify that at the sudden
change time the less disturbing observable is also altered. We anticipate that the
resource theory of asymmetry [118] can shed more light on the interpretation and
possible applications of the SCP in the general scenario. Determining formally the
relationship between the SCP and the resource theory of asymmetry is an important
open problem.

Soon after been reported in Ref. [23], the SCP was verified experimentally by Xu
et al., as described in Ref. [119]. They used as qubits the polarization degrees of free-
dom of two photons generated via parametric down conversion. One of the qubits
was then subject to a simulated-controlled dephasing environment. Moreover, the
authors also verified the transition between the classical and quantum decoherence
regimes, that have been theoretically noticed in Ref. [120]. The dynamics shown in
Fig. 2 is one example of such a transition, where for p < psc (p > psc) only classi-
cal (quantum) correlations are affected by the interaction with the environment. In
2011, we and our co-workers observed experimentally these dynamical behaviors for
the real dephasing and dissipative environments encountered in liquid state nuclear
magnetic resonance, where the two qubits were encoded in the 1H and 13C spin-1/2
nuclei [121]. A detailed description of related theory and experiments can be found
in Refs. [122–124].

4 The SCP and the Emergence of the Pointer Basis

In quantum mechanics, for any observable we can think of, coherent superpositions
of its eigenstates are the rule, not the exception. And, asQM lists several of the known
rules of Nature, an immediate questionwe are urged to ask is:Why it is so hard seeing
or maintaining physical systems in states that are coherent with relation to certain
observables? Decoherence [125], einselection [126], and quantum Darwinism [127]
are theories that give fine answers to this question. An important conceptual hint for
these theories can be traced back to 1935, when Schrödinger exposed the idea that
when two particles get entangled, they cannot be described “by endowing each of
them with a representative of its own” [128]. Decoherence theory recognizes that in
the system-environment dynamics, in Zeh’s words, “Any sufficiently effective inter-
action will induce correlations… defining in general a large value of entropy” of the
system [125]. This increase in disorder is generally associated with the diminishing
of quantum coherence. By its turn, environment-induced superselection, or einselec-
tion [126], explains why some observables, the so called pointer observables, are the
chosen ones for classical reality. It is the commutativity of the system-environment
interaction Hamiltonian with the pointer observables that leads to the robustness of
its eigenstates; and to the disappearance of its superpositions. Quantum Darwinism
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identifies the special role information has in this scenario. In addition to be able to
“survive” under the influence of the environment, the pointer states are the ones that
most efficiently spread its information by getting correlated with many parts of the
surroundings. This leads to the classical feature of the classical world: redundancy,
i.e., several observers can have non-disturbing access to the same information [127].

The next natural question to be asked is about how much time it takes for the
quantum-to-classical transition to occur. That is to say, we want to understand when
the pointer basis emerges. This question is usually addressed in the following sce-
nario. We consider a quantum system S and obtain information about it via another
quantum systemM, the measurement apparatus. To do that, a pre-measurement evo-
lution must take place to correlate S and M, reflecting the possible observable values
(or states) of S into the evolved states of M [129]. But S and M are, in general, not
isolate; and the interaction with the environment E correlates all the three entities,
leading to increased mixing of the joint state of S and M. We recall here that the
pointer basis is said to have emerged if, in principle, we can perform a non-selective
von Neumann measurement in this basis without disturbing the system being mea-
sured. The issue now is if suchmeasurement must refer to S or toM. Starting with the
first choice, the figure of merit that have been usually used to quantify the time for the
emergence of classicality is called the decoherence time, or decoherence half-life.
This quantity may represent the time taken for S to lose its coherence with relation
to the pointer basis [130–133]. It is here that the SCP enters the scene. As reported
in Ref. [79], once in practice we look at M to obtain information about S, it is the
disappearance of the coherence of M in the pointer basis that marks the transition
to classicality. Such disappearance can be identified using psc, the time in which
a sudden change in the classical correlation CM

hv between S and M occurs, if CM
hv

remains constant for later times [79, 134, 135]. It is worthwhile mentioning that
for non-Markovian environments, a more complex and interesting situation with the
possibility for more than one pointer observable and metastable pointer bases was
reported in Ref. [136].

5 Dynamics of Correlations

As described earlier, the SCP was predicted by studying the non-unitary evolution
of the system. In other words, considering that the system of interest interacts with
uncontrolled degrees of freedom, collectively called environment. This interaction
generates correlations between system and environment, causing an irreversible loss
of information from the system. Since there is no system that can be regarded as
truly isolated, the study of the behavior of the correlations (inside the system) under
the action of decoherence channels is of major importance both from theoretical and
practical issues.

The usual description of the dynamics of open system is given by the so called
master equation, a first order differential equation for the reduced density operator
describing the system, derived by means of second order perturbation theory [137].
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This equation, whichmust have awell defined Lindblad structure [138], relies on two
main approximations: Weak coupling (between system and environment) and short
correlation times (compared with the typical decoherence time of the system). When
such approximations are not satisfied, the dynamical description of the system must
change accordingly, and non-Markovian effects can appear. In classical mechanics,
non-Markovian effects are identified withmemory. However, in quantummechanics,
this definition is not so direct and care must be taken. We do not intend to discuss
such issue here and we refer the reader to reference [46] for a recent review. In what
follows we consider some results concerning the Markovian and the non-Markovian
dynamical evolutions of correlations, in the context of the SCP.

5.1 Markovian Dynamics of Correlations

There is a vast literature on the subject of quantum correlations under Markovian
dynamics. Here we just comment on a few results, referring the reader to more
technical, and complete, references.

Shortly after the publication of Ref. [23], the related phenomena of quantum
and classical decoherence was predicted [120]. Considering energy-conserving dis-
sipative maps (the ones described in Sect. 3), a class of states were identified such
that before the sudden change point only the classical correlations are affected by
decoherence and, after this critical point, only the quantum correlations are affected.
These two regimes were then called classical and quantum decoherence [120]. An
elegant geometric interpretation of the sudden change behavior, for the simple case
of Bell-diagonal states, was provided in Ref. [24], while the conditions for the corre-
lations to stay constant, the so called freezing phenomena, were put forward in Ref.
[139], considering the phase damping channel.

Following these lines, in Ref. [140] it was proved that virtually all bona fidemea-
sures of quantum correlations present the freezing effect under the same dynamical
conditions. The authors considered the case of Bell-diagonal states under the action
of non-dissipative environments. A geometric interpretation was also provided.

Another interesting study was reported in Ref. [141]. Considering quantum cor-
relations measured by quantum discord and quantum work deficit, the multipartite
case, under local noise, was addressed. Among the results of the paper, a comple-
mentarity relation between the freezing time and the value of quantum correlation
was provided. Moreover, a freezing index was introduced and its usefulness as a
witness for quantum phase transition was discussed.

Instead of correlations shared by distinct parts of the system, in Ref. [142] the
authors addressed the dynamical evolution of the correlations between the system and
the environment. Specifically, they considered a two-qubit system under the action of
two independent channels (the Pauli and the amplitude damping maps). They found
that decoherence may occur without entanglement between system and environment
and also that the initial non-classical correlations, presented in the system, completely
disappears, under certain conditions, being not transferred to the environments [142].
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A new interpretation of the SCP was introduced employing the idea of comple-
mentary correlations [143]. Considering two complementary observables acting on
each one of the subsystems of a bipartite system, it was shown that the sumof the local
correlations between such observables is a goodmeasure of the quantum correlations
shared by the composite system. The general conclusion is that the mixedness of the
initial bipartite state is not enough for the SCP, but the state also needs to present cer-
tain asymmetry with respect to local complementary observables [143]. Moreover,
they also proved that a pure state will never present the SCP and that the freezing
phenomena is not a general property of all the Bell-diagonal states. It is important
to mention that these results were obtained using the quantum discord as a measure
for quantum correlations.

An interesting connection between the SCP and quantum teleportation was
reported in Ref. [144]. The transition point between the classical and quantum deco-
herence was associated with a transition point appearing in the fidelity of the tele-
ported state, signaling a change in the class of states that are harder to teleport.

5.2 Non-Markovian Dynamics of Correlations

Due tomemory effects, non-Markovian evolutionmaypresents amuch richer dynam-
ics than Markovian ones. In this subsection we briefly describe some results in this
field regarding the SCP.

The case of two qubits interacting with two independent non-Markovian envi-
ronments was considered in Ref. [145], where the dynamics of entanglement was
compared with that one for quantum discord. The authors verified that while entan-
glement can present a sudden death (entanglement disappears for all times after the
critical one), quantum discord can only vanish at some specific times. In Ref. [146]
the authors addressed a similar problem, but now they studied the case of a common
reservoir, and the SCP was again observed. An important result of this last work is
the indication that the SCP is a characteristic feature of the evolution, for general
initial conditions.

Regarding the freezing phenomenon, in Ref. [147] the case of two qubits under the
action of local colored-noise dephasing channels was considered. As a main result,
it was observed that, depending on the geometry of the initial state, the freezing
phenomenon and the appearance of multiples SC was observed. Similar results were
experimentally observed in Ref. [148].

InRef. [149] the non-Markovian dynamics of two geometricmeasures of quantum
correlations were compared with that one for the quantum discord considering the
class of Bell-diagonal states. Although all the three considered measures share a
common sudden change point, one of the geometric measures does not present the
freezing phenomenon. This scenario was then extended to include the treatment of
the correlations between the system and the environment in Ref. [150], where the
appearance of the SC was studied as function of the system-environment coupling.
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Relying on trace distance, several measures of quantum correlations were defined
in [93]. The main result of this paper is the observation that the freezing behavior
(and thus, the SCP) occurs for a larger class of states under non-Markovian dynamics
than the Bell-diagonal states.

The geometric quantum discord was employed in the development of a witness
for the SCP for both Markovian and non-Markovian dynamics in Ref. [151]. The
dependence of the freezing effect on the choice of the correlation measure were also
analyzed in this work.

Reference [152] proved that all geometric basedmeasures of quantumcorrelations
under the action of independent quantum channels exhibit the freezing phenomenon,
and thus also the SC, for the Bell-diagonal class of two qubit states.

An interesting paper reported a study of severalmeasures of quantum correlations,
including entanglement, steering and the generalized discord, i.e. a definition of quan-
tum correlations just like quantum discord, but based on the Tsallis q-entropy [153].
In this work the authors discovered a hierarchy among all the quantum resources
and were able to identify a chronology of deaths and births (sudden changes) under
non-Markovian channels.

All of the above studies considered the case in which the environments are all
identical. In Ref. [154] the problem of a two qubit system (considering Bell-diagonal
states) under the action of distinct environments were addressed, considering both
Markovian and non-Markovian dynamics. The rules governing the time evolution
of the classical and quantum correlations, including the sudden change points, were
established.

Studying the information flow for qubits under an Ohmic environment, in Ref.
[155] it was discovered a class of initial states for which quantum discord is forever
frozen and the time-invariant discord was linked with non-Markovianity.

6 The Double SCP of Trace Distance Discord

In this section we discuss the double sudden change phenomenon of trace distance
discord (Dtr ), a puzzling effect with two sudden changes (SCs) for Dtr and only one
SC for the associated classical correlation Ctr [134, 156]. But before doing that, let
us mention that the possible existence of multiple sudden changes points for classical
and quantum correlation is known since the first studies regarding their dynamics
under non-Markovian global environments (see e.g. Ref. [157]). Also, as noticed
in Ref. [154], two sudden change times can be obtained even with a Bell-diagonal
state subject to local Markovian environments, if the qubits are acted on by suitable
nonidentical surroundings. As an illustrative example, let us consider the dynamics
of two qubits with the “qubit a” and “qubit b” let to evolve under the action of the
bit flip (with parametrized time p) and phase flip (with parametrized time q := rp)
channels, respectively (see Sect. 3). Under these conditions the evolvedBell-diagonal
state is determined by the correlation vector:
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�b f ⊗p f
p,q = ((1 − 2q)c1, (1 − 2q)(1 − 2p)c2, (1 − 2p)c3) . (42)

Let’s assume also that the probability for the bit flip error is not greater than that for
the phase flip: q < p ∴ r ∈ (0, 1). We shall have thus that the second component of
�

b f ⊗p f
p,q decays faster than the third one, which by its turn decays faster than the first

one. Therefore, in this setting, any initial state with

|c2| > |c3| > |c1| (43)

will lead to two sudden changes forChv and Doz if the crossing |c(p,q)

2 | = |c(p,q)

3 | hap-
pens before than the intersection |c(p,q)

2 | = |c(p,q)

1 | does. This leads to the following
additional requirement for the existence of a double sudden change:

r >
|c2| − |c3|
|c2| − |c1| . (44)

Once all these conditions are fulfilled and p ∈ [0, 2−1] is adopted, we will see the
SCP taking place at the times

p(1)
sc = |c2| − |c3|

2r |c2| and p(2)
sc = |c3| − |c1|

2(|c3| − r |c1|) , (45)

as exemplified in Fig. 3. We remark that similar conditions can be obtained in an
analogous manner for other combinations of local channels. Besides, we observe
that if r = 1 ∴ q = p then p(2)

sc = 2−1 and there is only one SCP.
Now we shall address the double sudden change phenomenon (DSCP) per se. In

order to do that we will make use of the analytical formulas [135, 158] for the trace
distance correlations of two-qubit X states:

ρx =

⎡

⎢
⎢
⎣

ρ11 0 0 |ρ14|eiφ14

0 ρ22 |ρ23|eiφ23 0
0 |ρ23|e−iφ23 ρ33 0

|ρ14|e−iφ14 0 0 ρ44

⎤

⎥
⎥
⎦ . (46)

This class of state can be transformed into the standard form

ρxr =

⎡

⎢
⎢
⎣

ρ11 0 0 |ρ14|
0 ρ22 |ρ23| 0
0 |ρ23| ρ33 0

|ρ14| 0 0 ρ44

⎤

⎥
⎥
⎦ (47)

by applying the following local unitary (LU) transformation:

U = Ua ⊗Ub = e−i(φ14+φ23)σ3/4 ⊗ e−i(φ14−φ23)σ3/4. (48)
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Fig. 3 Double sudden changes ofHenderson–Vedral classical correlation andOllivier–Zurek quan-
tum discord for two qubits prepared in a Bell-diagonal state with �0 = (0.36,−0.76, 0.48) and
with the qubits a and b undergoing, respectively, bit and phase flip channels. In the inset are shown
the evolved components of the correlation vector and the maximal one. Here we used r = 0.8 and
the sudden change times are seen to be p(1)

sc ≈ 0.23 and p(2)
sc ≈ 0.31, as marked by the gray lines

As a basic property required for correlation quantifiers is invariance under local uni-
taries, we can study the correlations of ρx using its LU-equivalent version ρxr . When
dealing with distance-based correlation measures, it is frequently useful utilizing the
Bloch representation for the density operator; which in this case is

ρxr = 2−2
(
I
ab + a3σ3 ⊗ I

b + b3I
a ⊗ σ3 + ∑3

j=1c j jσ j ⊗ σ j

)
, (49)

where the non-null elements of the Bloch vectors and correlation matrix are

a3 = Tr(ρxrσ3 ⊗ I
b) = 2(ρ11 + ρ22) − 1, (50)

b3 = Tr(ρxr
I
a ⊗ σ3) = 2(ρ11 + ρ33) − 1, (51)

c11 = Tr(ρxrσ1 ⊗ σ1) = 2(|ρ23| + |ρ14|), (52)

c22 = Tr(ρxrσ2 ⊗ σ2) = 2(|ρ23| − |ρ14|), (53)

c33 = Tr(ρxrσ3 ⊗ σ3) = 1 − 2(ρ22 + ρ33). (54)

We observe that the effect of the LU above when transforming ρx into ρxr is: c11 :
2(Reρ23 + Reρ14) → 2(|ρ23| + |ρ14|), c22 : 2(Imρ23 − Imρ14) → 0, c22 : 2(Reρ23
− Reρ14) → 2(|ρ23| − |ρ14|), and c21 : −2(Imρ23 + Imρ14) → 0.
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Regarding the analytical formulas for the correlations, the trace distance discord
of X states was obtained in Ref. [158] and reads

Da
tr (ρ

x ) := min
ρcq

dtr (ρ, ρcq ) (55)

=

√
√
√
√
√

max
(
c233, a

2
3 + min

(
c211, c

2
22

))
max

(
c211, c

2
22

)
− min

(
c233,max

(
c211, c

2
22

))
min

(
c211, c

2
22

)

max
(
c233, a

2
3 + min

(
c211, c

2
22

))
− min

(
c233,max

(
c211, c

2
22

))
+ max

(
c211, c

2
22

)
− min

(
c211, c

2
22

) .

(56)

Closed formulas were obtained in Ref. [135] for the trace distance classical and total
correlations:

Ca
tr (ρ

x ) := max
�a

dtr (�a(ρ
x),�a(ρ

x
a ⊗ ρx

b)) = κ+, (57)

Itr (ρ
x ) := dtr (ρ

x , ρx
a ⊗ ρx

b) = 1

4

1∑

j,k=0

|c11 + (−1) j c22 + (−1)k(c33 − a3b3)|

= 1

2
(κ+ + max(κ+,κ0 + κ−)) . (58)

Above, κ+, κ0 and κ− are, respectively, the maximum, intermediate, and minimum
value among the elements in the list {|c11|, |c22|, |c33 − a3b3|},�a is a complete non-
selective measurement map, and ρx

a(b) = Trb(a)(ρ
x ) are the reduced density matrices.

Its is interesting noticing here that forX states this definition of trace distance classical
correlation is symmetric, Ca

tr (ρ
x ) = Cb

tr (ρ
x ), while the associated discord measure

is generally asymmetric [117], Da
tr (ρ

x ) 
= Db
tr (ρ

x ), if a3 
= b3.
Next we consider the dynamics of ρxr under local phase damping channels, which

maintain the X form for ρx , and for its LU equivalent ρxr
p , with the only changes:

c11 → c11(1 − p)2 and c22 → c22(1 − p)2; (59)

all the other parameters remain constantwith time. For easily seeing themathematical
origin of the DSCP, let us look at the special case of Bell-diagonal states (a3 = b3 =
0). For these states Dtr (ρ

bd
p ) andCtr (ρ

bd
p ) are given, respectively, by the intermediate

and maximum values among those in the list

(|c(p)
11 |, |c(p)

22 |, |c(p)
33 |) = (|c11|(1 − p)2, |c22|(1 − p)2, |c33|). (60)

Thus, the analysis of the sudden changes of Ctr is equivalent to that for Chv (see
Sect. 3). On the other side, we readily see that for a Bell-diagonal initial state with

|c11| > |c22| > |c33| (61)
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Fig. 4 Double sudden change phenomenon of trace distance quantum discord for Bell-diagonal
states (with (c11, c22, c33) = (0.49,−0.14,−0.10)) evolving under the action of local independent
phase damping channels. As shown by the gray lines, there are two sudden changes of Dtr , at
p(1)
sc ≈ 0.16 and at p(2)

sc ≈ 0.55, while the decaying rate of the classical correlation Ctr changes
abruptly only at p(2)

sc . It is noteworthy that the total correlation is (nearly) equal to the classical
correlation for most values of p; a fact that may motivate the questioning about the suitability of
these correlations definitions. Moreover, we identify the existence of abrupt changes also for Itr at
p± = 1 − √|c33|/(|c11| ± |c22|) (for this initial state p− ≈ 0.47 and p+ ≈ 0.60). As the definition
of Itr entails not extremizations at all, this effect has to be induced by the trace distance itself

at the times

p(1)
sc = 1 −

√
|c33|
|c22| and p(2)

sc = 1 −
√

|c33|
|c11| (62)

the intermediate value changes, and so does the decay rate of Dtr . In summary, the
number of SCs of Dtr is greater than the number of abrupt changes ofCtr . This is the
main feature of the DSCP, which is exemplified in Fig. 4. We notice that the analysis
for X states can be made in a similar fashion, just by replacing c33 with c33 − a3b3.

As can be seen in Fig. 4, Dtr (ρ
bd
p ) = |c33| is constant, or freezed, for p ∈

(p(1)
sc , p(2)

sc ). Given the recognized utility of quantum discord as a resource for some
tasks in quantum information science, its robustness to noise is a most welcome
feature; one that we should try to maintain for how much time as we can. In the
case of Bell-diagonal states described above, we can begin doing that by choosing
|c22| = |c33|, what implies in p(1)

sc = 0. The next step is trying to get p(2)
sc as close

to one as possible. But we perceive that the positivity of ρbd restricts the possible
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Fig. 5 Upper bound for the constant value of trace distance discord as a function of the second
sudden change time. This bound holds for any Bell-diagonal state with |c22| = |c33| and evolving
under local-independent phase damping channels

values of c33 and c11; and this will lead to the following tradeoff between p(2)
sc and

the constant value of Dtr :

Dcte
tr ≤ (1 − p(2)

sc )2

1 + 2(1 − p(2)
sc )2

=: D̃cte
tr .

Therefore, for instance, p(2)
sc = 20 ⇒ Dcte

tr = 0, p(2)
sc = 2−1 ⇒ Dcte

tr ≤ 0.16, and
p(2)
sc = 2−2 ⇒ Dcte

tr ≤ 0.26. The upper bound D̃cte
tr for the constant value of TDD

is shown in Fig. 5 for p(2)
sc ∈ [0, 1].

The double sudden change phenomenon, which has been considered to be a gen-
uine quantum feature [134], is a very interesting effect. Notwithstanding, as discussed
in this section, there are several open questions motivated by the analysis of this
phenomenon. Some examples of such questions are: Can we give a physical inter-
pretation to the DSCP? Isn’t the DSCP simply a byproduct of the distance measure
utilized? Shouldn’t we further analyze which properties a distance measure should
have to be used in correlations quantification [159]? For which other distance or
distinguishability measures this kind of effect can be observed [160, 161]? We think
that in addressing these questions, we can deep our understanding about quantum
systems and its correlations.
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7 Final Remarks, Open Questions, and Perspectives

The sudden change phenomenon of quantum discord is an interesting and elusive
effect. Despite the considerable amount of work dedicated or related to it have
been constructing some knowledge, we are yet faced with more open questions
than answers. Some of the main issues we leave here are:

Symmetry is a central concept in physics and is central e.g. for conservations
laws. Can the resource theory of asymmetry bring to light the possible relevance of
the SCP in physics?

Quantum discord has been shown to be a surprisingly general “order parameter”
for phase transitions. As the sudden modification of its rate of change with the
physical parameter determining the system state (phase) seems to play a key role
here, it would be fruitful to pursue more formal connections between the SCP and
symmetry (breaking) in phase transitions.

It is now clear that composite-discordant quantum states are the resource making
possible the efficient implementation of several tasks in quantum information science.
And, in our ever going fight against some noise interactions, the complete robustness
of QD to environment influences is a most welcome feature it possesses. On the other
side, one can also identify the existence of tradeoffs between the constant value of
QD and the amount of time it can stay unchanged. It is important thus to analyze
what kind of limitation this last effect can have on the possible practical applications
of quantum discord.

Also, from the overall analysis we made here, on one side we can conclude
that, as different discord functions are related to different physical or operational
quantities, then the interpretation of the SCP could also be measure dependent. On
the other hand, if future investigations happen to give a universal physical meaning
to the SCP, then this fact could be considered in order to infer further conditions
discord functions should have to satisfy to be faithfully used for the sake of quantum
correlations quantification.
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Zeilinger, Č. Brukner, P. Walther, Quantum discord as resource for remote state preparation.
Nat. Phys. 8, 666 (2012)

20. M. Piani, V. Narasimhachar, J. Calsamiglia, Quantumness of correlations, quantumness of
ensembles and quantum data hiding. New J. Phys. 16, 113001 (2014)

21. D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O.
Soares-Pinto, I.S. Oliveira, G. Adesso, Quantum discord determines the interferometric power
of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

22. N. Friis, M. Skotiniotis, I. Fuentes, W. Dür, Heisenberg scaling in Gaussian quantum metrol-
ogy. Phys. Rev. A 92, 022106 (2015)

23. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Classical and quantum correlations under
decoherence. Phys. Rev. A 80, 044102 (2009)

24. M.D. Lang, C.M. Caves, Quantum discord and the geometry of Bell-diagonal states. Phys.
Rev. Lett. 105, 150501 (2010)

25. B. Li, Z.-X. Wang, S.-M. Fei, Quantum discord and geometry for a class of two-qubit states.
Phys. Rev. A 83, 022321 (2011)

26. M. Shi, F. Jiang, C. Sun, J. Du, Geometric picture of quantum discord for two-qubit quantum
states. New J. Phys. 13, 073016 (2011)

27. Y. Yao, H.-W. Li, Z.-Q. Yin, Z.-F. Han, Geometric interpretation of the geometric discord.
Phys. Lett. A 376, 358 (2012)

28. C. Liu, Y.-L. Dong, S.-Q. Zhu, Geometric discord for non-X states. Chin. Phys. B 23, 060307
(2014)

29. Z. Huang, D. Qiu, P. Mateus, Geometry and dynamics of one-norm geometric quantum dis-
cord. Quantum Inf. Process. 15, 301 (2016)



332 L.C. Céleri and J. Maziero

30. M.S. Sarandy, Classical correlation and quantum discord in critical systems. Phys. Rev. A 80,
022108 (2009)

31. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at
finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

32. A.K. Pal, I. Bose, Quantum discord in the ground and thermal states of spin clusters. J. Phys.
B: At. Mol. Opt. Phys. 44, 045101 (2011)

33. M.S. Sarandy, T.R. de Oliveira, L. Amico, Quantum discord in the ground state of spin chains.
Int. J. Mod. Phys. B 27, 1345030 (2013)

34. S. Campbell, J. Richens, N. Lo, Gullo and T. Busch. Criticality, factorization, and long-range
correlations in the anisotropic XY model. Phys. Rev. A 88, 062305 (2013)

35. G. Karpat, B. Çakmak, F.F. Fanchini, Quantum coherence and uncertainty in the anisotropic
XY chain. Phys. Rev. B 90, 104431 (2014)

36. Z. Xi, X.-M. Lu, Z. Sun, Y. Li, Dynamics of quantum discord in a quantum critical environ-
ment. J. Phys. B: At. Mol. Opt. Phys. 44, 215501 (2011)

37. Y.-C. Li, H.-Q. Lin, J.-B. Xu, Dynamics of correlations and scaling behaviours in a spin-chain
environment. EPL 100, 20002 (2012)

38. L.-J. Tian, C.-Y. Zhang, L.-G. Qin, Sudden transition in quantum discord dynamics: role of
three-site interaction. Chin. Phys. Lett. 30, 050303 (2013)

39. X.-M. Lu, Z. Xi, Z. Sun, X.Wang, Geometricmeasure of quantum discord under decoherence.
Quantum Inf. Comp. 10, 0994 (2010)

40. L.-X. Jia, B. Li, R.-H. Yue, H. Fan, Sudden change of quantum discord under single qubit
noise. Int. J. Quantum Inf. 11, 1350048 (2013)

41. F.-J. Jiang, H.-J. Lu, X.-H. Yan, M.-J. Shi, A symmetric geometric measure and the dynamics
of quantum discord. Chin. Phys. B 22, 040303 (2013)

42. J.-L. Guo, H. Li, G.-L. Long, Decoherent dynamics of quantum correlations in qubit–qutrit
systems. Quantum Inf. Process. 12, 3421 (2013)

43. L. Qiu, G. Tang, X. Yang, Z. Xun, B. Ye, A. Wang, Sudden change of quantum discord in
qutrit-qutrit system under depolarising noise. Int. J. Theor. Phys. 53, 2769 (2014)

44. B.-L. Ye, Y.-K. Wang, S.-M. Fei, One-way quantum deficit and decoherence for two-qubit X
states. Int. J. Theor. Phys. 55, 2237 (2016)

45. J.-D. Shi, D. Wang, Y.-C. Ma, L. Ye, Revival and robustness of Bures distance discord under
decoherence channels. Phys. Lett. A 380, 843 (2016)

46. H.P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: Non-Markovian dynamics in
open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

47. Z.-X.Man,Y.-J. Xia, N.B.An, The transfer dynamics of quantum correlation between systems
and reservoirs. J. Phys. B: At. Mol. Opt. Phys. 44, 095504 (2011)

48. F. Han, The dynamics of quantum correlation and its transfer in dissipative systems. Int. J.
Theor. Phys. 50, 1785 (2011)

49. X.-X. Zhang, F.-L. Li, Controlling transfer of quantum correlations among bi-partitions of
a composite quantum system by combining different noisy environments. Chin. Phys. B 20,
110302 (2011)

50. P.Huang, J. Zhu,X.-X.Qi,G.-Q.He,G.-H. Zeng,Different dynamics of classical and quantum
correlations under decoherence. Quantum Inf. Process. 11, 1845 (2012)

51. Z.-D. Hu, J. Wang, Y. Zhang, Y.-Q. Zhang, Dynamics of nonclassical correlations with an
initial correlation. J. Phys. Soc. Jpn. 83, 114004 (2014)

52. H.-S. Xu, J.-B. Xu, Protecting quantum correlations of two qubits in independent non-
Markovian environments by bang-bang pulses. J. Opt. Soc. Am. B 29, 2074 (2012)

53. F.F. Fanchini, E.F. de Lima, L.K. Castelano, Shielding quantum discord through continuous
dynamical decoupling. Phys. Rev. A 86, 052310 (2012)

54. C.Addis,G.Karpat, S.Maniscalco,Time-invariant discord in dynamically decoupled systems.
Phys. Rev. A 92, 062109 (2015)

55. H. Song, Y. Pan, Z. Xi, Dynamical control of quantum correlations in a common environment.
Int. J. Quantum Inf. 11, 1350012 (2013)



The Sudden Change Phenomenon of Quantum Discord 333

56. M.-L. Hu, H. Fan, Robustness of quantum correlations against decoherence. Ann. Phys. 327,
851 (2012)

57. L.C. Céleri, A.G.S. Landulfo, R.M. Serra, G.E.A. Matsas, Sudden change in quantum and
classical correlations and the Unruh effect. Phys. Rev. A 81, 062130 (2010)

58. Z. Tian, J. Jing, How the Unruh effect affects transition between classical and quantum
decoherences. Phys. Lett. B 707, 264 (2012)

59. M. Ramzan, Decoherence dynamics of geometric measure of quantum discord and mea-
surement induced nonlocality for noninertial observers at finite temperature. Quantum Inf.
Process. 12, 2721 (2013)

60. Y.Y. Xu, W.L. Yang, M. Feng, Dissipative dynamics of quantum discord under quantum
chaotic environment. EPL 92, 10005 (2010)

61. G. Karpat, Z. Gedik, Correlation dynamics of qubit–qutrit systems in a classical dephasing
environment. Phys. Lett. A 375, 4166 (2011)

62. J.-Q. Li, J.-Q. Liang, Quantum and classical correlations in a classical dephasing environment.
Phys. Lett. A 375, 1496 (2011)

63. C. Wang, C. Li, L. Nie, X. Li, J. Li, Classical correlation, quantum discord and entanglement
for two-qubit system subject to heat bath. Opt. Commun. 284, 2393 (2011)

64. L. Xu, J.B. Yuan, Q.S. Tan, L. Zhou, L.M. Kuang, Dynamics of quantum discord for two
correlated qubits in two independent reservoirs at finite temperature. Eur. Phys. J. D 64, 565
(2011)

65. Z.X.Man, Y.J. Xia, N.B. An, Quantum dissonance induced by a thermal field and its dynamics
in dissipative systems. Eur. Phys. J. D 64, 521 (2011)

66. X.Q. Yan, Z.L. Yue, Dynamics of quantum and classical correlations of a two-atom system
in thermal reservoirs. Chaos Solitons Fractals 57, 117 (2013)

67. B.-Y. Yang, M.-F. Fang, Y.-N. Guo, Dissipative dynamics of quantum discord of two strongly
driven qubits. Int. J. Theor. Phys. 53, 921 (2014)

68. M.-L. Hu, D.-P. Tian, Preservation of the geometric quantum discord in noisy environments.
Ann. Phys. 343, 132 (2014)

69. J.-Q. Li, J. Liu, J.-Q. Liang, Environment-induced quantum correlations in a driven two-qubit
system. Phys. Scr. 85, 065008 (2012)

70. J.-B. Yuan, L.-M. Kuang, J.-Q. Liao, Amplification of quantum discord between two uncou-
pled qubits in a common environment by phase decoherence. J. Phys. B: At. Mol. Opt. Phys.
43, 165503 (2010)

71. X.-P. Liao, J.-S. Fang, M.-F. Fang, B. Liu, Z. Huang, Entanglement and quantum discord
dynamics of two atoms in a broadband squeezed vacuum bath. Int. J. Theor. Phys. 52, 1729
(2013)

72. K. Berrada, Investigation of quantum and classical correlations in a quantum dot system under
decoherence. Laser Phys. 23, 095201 (2013)

73. P. Mazurek, K. Roszak, P. Horodecki, The decay of quantum correlations between quantum
dot spin qubits and the characteristics of its magnetic field dependence. EPL 107, 67004
(2014)

74. Q.-L. He, J.-B. Xu, Sudden transition and sudden change of quantum discord in dissipative
cavity quantum electrodynamics system. J. Opt. Soc. Am. B 30, 251 (2013)

75. V. Eremeev, N. Ciobanu, M. Orszag, Thermal effects on sudden changes and freezing of
correlations between remote atoms in a cavity quantum electrodynamics network. Opt. Lett.
39, 2668 (2014)

76. J.S. Sales,W.B.Cardoso,A.T.Avelar,N.G. deAlmeida,Dynamics of nonclassical correlations
via local quantum uncertainty for atom and field interacting into a lossy cavity QED. Phys.
A 443, 399 (2016)

77. Q.-L. He, J.-B. Xu, D.-X. Yao, Mediating and inducing quantum correlation between two
separated qubits by one-dimensional plasmonic waveguide. Quantum Inf. Process. 12, 3023
(2013)

78. N. Iliopoulos, A.F. Terzis, V. Yannopapas, E. Paspalakis, Two-qubit correlations via a periodic
plasmonic nanostructure. Ann. Phys. 365, 38 (2016)



334 L.C. Céleri and J. Maziero

79. M.F. Cornelio, O. Jiménez Farías, F.F. Fanchini, I. Frerot, G.H. Aguilar, M.O. Hor-Meyll,
M.C. de Oliveira, S.P. Walborn, A.O. Caldeira, P.H. Souto Ribeiro, Emergence of the pointer
basis through the dynamics of correlations. Phys. Rev. Lett. 109, 190402 (2012)
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Frozen and Invariant Quantum Discord
Under Local Dephasing Noise

Göktuğ Karpat, Carole Addis and Sabrina Maniscalco

1 Introduction

In nature, there exist various different types of correlations among the constituents of
composite physical systems. While macroscopic systems only form correlations of
classical nature, quantum mechanics allows for the existence of curious correlations
devoid of a classical analogue, such as quantum entanglement. The idea of entan-
glement is as old as the quantum theory itself. In fact, Schrödinger himself believed
that entanglement is not one but rather the characteristic trait of quantum mechan-
ics. Besides its foundational importance for quantum mechanics, entanglement has
attracted renewed interest in the quantum physics community during the past few
decades. The reason lies in the fact that the concept of entanglement has emerged as
the main resource of quantum information science [1–3], that is, it has been shown
to be fundamental to the applications of quantum information processing, quantum
computation and quantum cryptography.
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Despite the central role of entanglement in quantum information science, recent
investigations have proved that it might not be the only kind of quantum correla-
tion serving as a resource for quantum information tasks. For instance, it has been
demonstrated that some quantum systems in separable states can perform more effi-
ciently than their classical counterparts in certain applications [4]. As a consequence,
numerous different correlation measures have been introduced in the recent litera-
ture to be able to characterize and quantify the non-classical correlations in quantum
systems [5–11], which cannot be captured by entanglement measures. Among them,
quantum discord, originally proposed by Ollivier and Zurek [5] and independently
by Henderson and Vedral [6] as a measure of the quantumness of correlations, has
received remarkable attention. This is mainly due to its usefulness as a resource in
various quantum protocols such as the distribution of entanglement [9–14], quantum
locking [15], entanglement irreversibility [16] and many others [17, 18].

Realistic quantum mechanical systems unavoidably interact with their surround-
ing environments. The effects of this inevitable interaction between the principal
system of interest and its environment can be understood within the framework of
open quantum systems theory [19–22]. Indeed, such interactions are typically detri-
mental for the crucial quantum traits present in the principal system as environment
induced decoherence quickly destroys them in general. Therefore, protecting the pre-
cious quantum resources against the effects of the environment is of great importance,
and also a major challenge for the realization of quantum computing devices.

One of the most striking outcomes of the decoherence process is the total loss
of entanglement in composite systems in a finite time interval, also known as the
sudden death of entanglement [23, 24]. On the other hand, quantum discord has
been shown to be robust against sudden death [25–28], that is, where entanglement
vanishes in finite time, quantum discord disappears only asymptotically. Another
remarkable result related to quantum discord is the existence of a sharp transition
between the loss of classical and quantum correlations during the time evolution
of the open system [29, 30]. In particular, this phenomenon implies that, under a
suitable local decoherence setting, quantum correlations as quantified by quantum
discord remain frozen at its initial value for a certain time interval, unaffected by the
destructive effects of the environment, before they finally start to decay. Moreover,
considering non-Markovian open system models, where the role of memory effects
in the dynamics is no longer neglected, several intervals of frozen quantum discord
throughout the dynamics have been observed [31]. In fact, assuming a particular
sort of local non-Markovian environment model with coherence trapping, it has also
been demonstrated that quantum discord can be forever frozen during the whole
time evolution thus becoming time invariant [32]. Although it has also been recently
shown that entanglementmight also become time invariant under suitable conditions,
this requires the existence of global environmental interactions and decoherence free
subspaces [33, 34].

In this chapter, we intend to explore and review some remarkable dynamical
properties of quantum discord under various different open quantum systemmodels.
Specifically, our discussionwill include several concepts connected to the phenomena
of time invariant and frozen quantum discord. Furthermore, wewill elaborate on how
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these two phenomena are related to both the non-Markovian features of the open
system dynamics and the usage of dynamical decoupling protocols.

2 Quantum Discord

Correlations of purely quantum nature and more general than entanglement can be
quantified by quantum discord [35], which is defined as the discrepancy between
the two natural yet non-identical quantum generalizations of classically equivalent
expressions for mutual information. Assuming that one has two classical random
variables denoted by A and B, the first classical expression for themutual information
is given as follows

I (A : B) = H(A) + H(B) − H(A, B), (1)

where the Shannon entropy H(X) = −∑
x px log2 px measures the amount of infor-

mation one can obtain on average after learning the outcome of the measurement
of the random variable X ∈ (A, B), and the probability of obtaining the outcome
labelled by x is denoted as px . Here, H(A, B) = −∑

x,y px,y log2 px,y is the joint
entropy of the random variables A and B, which quantifies the total amount of igno-
rance about the pair, and px,y is their joint probability distribution. On the other hand,
the second definition of the mutual information can be given as

J (A : B) = H(A) − H(A|B), (2)

where H(A|B) is the entropy of the random variable A conditioned on the outcome
of B. Considering that H(A|B) = H(A, B) − H(B) in classical information the-
ory, then it is not difficult to observe that both definitions of the classical mutual
information are equivalent.

A rather straightforward quantum analogue of the classical mutual information,
the so-called quantummutual information, can be deduced by replacing the probabil-
ity distributions related to the random variables with density operators. In particular,
while the reduced densitymatricesρA = TrB{ρAB} andρB = TrA{ρAB} take the place
of the probability distributions for the random variables A and B respectively, ρAB

replaces the joint probability distribution for the A, B pair. Moreover, the Shannon
entropy is replaced by the von Neumann entropy S(ρ) = −Tr(ρ log ρ). With these
considerations, one can define the quantummutual information in the following way

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (3)

which, although first named by Cerf and Adami [36], is known to have already been
considered by Belavkin and Stratonovich [37] many years ago. Today, it is widely
agreed in the literature that the quantum mutual information is the information-
theoretic quantifier of total correlations in a bipartite quantum state. This is also
supported by several operational interpretations. For instance, Groisman et al. have
argued that quantummutual information can be defined via the amount of noise that is
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required to completely destroy the correlations present in the system [38]. Another
supportive example has been provided by Schumacher and Westmoreland, where
they have shown that if two separated parties share a correlated quantum system to
be used as the key for a “one-time pad cryptographic system”, the maximum amount
of information that one party can send securely to the other is equal to the quantum
mutual information of the shared correlated state [39].

The other quantum analogue of the classical mutual information is based on the
concept of conditional entropy. By definition, classical conditional entropy H(A|B)

depends on the outcomeof the randomvariable B. However, as iswell known in quan-
tum theory, measurements generally do disturb quantum systems. In other words,
performing measurements on the system B affects our knowledge of the system A,
and howmuch the system A is disturbed by a measurement of B depends on the type
of measurement performed, i.e., on the measurement basis. Here, we assume that
the measurements on the system B are of von Neumann type (projective measure-
ments), i.e., they can be described by a complete set of orthonormal projectors {�B

k }
corresponding to the outcome k. Then, the quantum generalization of the classical
mutual information in terms of the conditional entropy now reads

J (ρAB) = S (ρA) −
∑

k

pk S
(
ρA|kρA|k

)
, (4)

where ρA|k = TrB(�B
k ρAB�B

k )/pk is the remaining state of the subsystem A after
obtaining the outcome k with probability pk = TrAB(�B

k ρAB�B
k ) in the subsystem

B. Supposing that the reduced state of the subsystem to be measured here is a
two-level quantum system, one can construct the local von Neumann measurement
operators {�B

1 ,�B
2 } in the following way:

�B
1 = 1

2

⎛

⎝I B2 +
3∑

j=1

n jσ
B
j

⎞

⎠ , �B
2 = 1

2

⎛

⎝I B2 −
3∑

j=1

n jσ
B
j

⎞

⎠ , (5)

where σ j ( j = 1, 2, 3) are the Pauli spin operators and n = (sin θ cosφ, sin θ sin φ,

cos θ)T is a unit vector on the Bloch sphere with θ ∈ [0,π) and φ ∈ [0, 2π). It should
be quite clear now that the two classically equivalent definitions of the mutual infor-
mation do not agree in the quantum realm in general, as J (ρAB) is basis dependent
and reduces to I(ρAB) only under special conditions.

A reasonable assumption is that the total amount of correlations in a bipartite
quantum system can be divided into two parts and written as the sum of quantum
(Q) and classical (C) correlations,

I(ρAB) = Q(ρAB) + C(ρAB). (6)

It has been recently suggested that the classical correlations in a bipartite quantum
system can be quantified by the maximization of J (ρAB) over all projective mea-
surements on the subsystem B, that is, C(ρAB) = max�B

k
{J (ρAB)} [6]. This quantity
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captures the maximum amount of information that can be obtained about the sub-
system A by performing local measurements on the subsystem B, i.e., the locally
accessible information. Consequently, genuine quantum correlations can be mea-
sured by subtracting the classical part of the correlations from the total amount,

Q(ρAB) = I(ρAB) − max
�B

k

{J (ρAB)},

= I(ρAB) − max
�B

k

{

S (ρA) −
∑

k

pk S
(
ρA|kρA|k

)
}

, (7)

which is the well known quantum discord [5], also known as the locally inaccessible
information.Quantumdiscord quantifies the genuine quantumcorrelations in a bipar-
tite quantum system. It is important to emphasize that quantum discord is more gen-
eral than entanglement in the sense that it is possible for some separable mixed states
to have non-zero quantum discord and thus non-classical correlations. For instance,
despite the fact that the state ρ = 1/2(|0〉 〈0|A ⊗ |−〉 〈−|B + |+〉 〈+|A ⊗ |1〉 〈1|B)

with |±〉 = (|0〉 ± |−〉)/√2 has zero entanglement, it still cannot be described by
classical means, i.e., by a classical bivariate probability distribution. The reason lies
in the non-orthogonality of the reduced states of the subsystems A and B, which
guarantees the impossibility of locally distinguishing the states of each subsystem.
Indeed, in order to evaluate classical correlations J (ρAB) and thus quantum dis-
cord Q(ρAB), one might more generally perform the optimization over all possible
positive operator valued measures (POVMs) instead of the set of projective mea-
surements. Nevertheless, projective measurements are most widely considered in
the literature since, even for this simpler case, there exists no available generic ana-
lytical expression for quantum discord and analytical results have been obtained only
in few restricted cases, such as Bell-diagonal [40] or X shaped states of two qubits
[41]. On the other hand, it has also been shown that projective measurements are
almost sufficient for calculating the quantum discord of two qubits, and they are
always optimal for the case of rank-2 states [42].

Let us lastlymention someof the important properties of quantumdiscord. Being a
measure for correlations, it is expectedly non-negative, which is due to the concavity
of the conditional entropy [43]. One can also notice that quantum discord is not
a symmetric quantity in general, meaning that its value depends on whether the
measurement is performed on subsystem A or subsystem B, which is a result of the
asymmetry of the conditional entropy. It is invariant under local change of basis,
that is, invariant under local unitary transformations. Furthermore, for pure states,
quantum discord becomes ameasure of entanglement being reduced to entanglement
entropy, and it vanishes if and only if the considered state is classical-quantum
[5]. Finally, even though there are now numerous discord-like or related quantum
correlation measures introduced in the literature [11], we will mainly focus on the
original entropic discord in this chapter.
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3 Open System Dynamics of Quantum Discord

In this section, we will explore some remarkable dynamical features of quantum
discord for bipartite systemsunder local dephasing noise. Particularly,wewill discuss
the phenomena of frozen and time-invariant quantum correlations in the case of both
Markovian and non-Markovian interactions between the open quantum system and
its environment. We will also review the role of dynamical decoupling protocols in
protecting quantum correlations from environment induced decoherence.

3.1 Frozen Quantum Discord

3.1.1 Decoherence of Classical and Quantum Correlations

In the following, we will consider a bipartite system of two non-interacting qubits
evolving in time under the action of a locally acting dephasing (or equivalently phase-
flip) channel. One can start from a Markovian time-local master equation to obtain
the dynamics of the bipartite open system. For each of the two-level systems, the
Markovian master equation is given by

ρ̇A(B) = γ

2
[σA(B)

z ρA(B)σ
A(B)
z − ρA(B)], (8)

where σA(B)
z is the usual Pauli spin operator in the z-direction acting on the subsystem

A(B). Using the solution of the abovemaster equation, the time evolution of the open
system in such a decoherence scenario can be expressedwith the help of the operator-
sum representation as follows

ρAB(t) =
2∑

i, j=1

(MA
i ⊗ MB

j )ρAB(0)(MA
i ⊗ MB

j )†, (9)

where the Kraus operators M1 and M2 defining the dynamical dephasing map are
given as

MA(B)
1 (t) =

(√
1 − p(t)/2 0

0
√
1 − p(t)/2

)

, MA(B)
2 (t) =

(√
p(t)/2 0
0 −√

p(t)/2

)

, (10)

and the explicit time dependence of the dephasing factor is p(t) = 1 − exp(−γt)
with γ being the dephasing rate. Note that here the local noise channels act on both
qubits in the same way with identical dephasing factors. In Ref. [29], the dynamics
of quantum discord and classical correlations have been discussed for a system of
two qubits under such a local dephasing setting.
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For this purpose, one can consider the local dephasing dynamics of the Bell-
diagonal states, i.e., the class of two-qubit states with maximally mixed reduced
density operators,

ρAB = 1

4

(

IAB +
3∑

i=1

ciσ
A
i ⊗ σB

i

)

, (11)

where IAB is the 4 × 4 identitymatrix and c j are real numbers such that 0 ≤ |c j | ≤ 1.
This class of states are indeed nothing but the convex combination of the four Bell
states given as

ρAB = λ+
φ |φ+〉 〈φ+| + λ+

ψ |ψ+〉 〈ψ+| + λ−
ψ |ψ−〉 〈ψ−| + λ+

φ |φ+〉 〈φ+| (12)

where the non-negative eigenvalues of the bipartite density matrix ρAB read

λ±
ψ = [1 ± c1 ∓ c2 + c3]/4, λ±

φ = [1 ± c1 ± c2 − c3]/4, (13)

and |ψ±〉 = (|00〉 ± |11〉)/√2, |φ±〉 = (|01〉 ± |10〉)/√2 are the four maximally
entangled Bell states. From a geometrical perspective, the class of Bell-diagonal
states can be thought to form a tetrahedron with the four maximally entangled Bell
states sitting in the extreme points. In this case, dynamics of the mutual informa-
tion I(ρAB(t)), the classical correlations C(ρAB(t)) and the quantum correlations
measured by quantum discord Q(ρAB(t)) are given by [29]

I(ρAB(t)) = 2 +
∑

kl

λl
k(t) log2 λl

k(t), (14)

C(ρAB(t)) =
2∑

j=1

1 + (−1) jX (t)

2
log2[1 + (−1) jX (t)] (15)

Q(ρAB(t)) = 2 +
∑

kl

λl
k(t) log2 λl

k(t) −
2∑

j=1

1 + (−1) jX (t)

2
log2[1 + (−1) jX (t)],

(16)

where X (t) = max{|c1(t)|, |c2(t)|, |c3(t)|}, k = φ,ψ, and l = ±. We should stress
that, since the Bell diagonal states preserve their form under the local dephasingmap,
time dependence of the eigenvalues λl

k , and thus the coefficients ci , can be easily
obtained from the time evolved density matrix ρAB(t) as c1(t) = c1(0)exp(−2γt),
c2(t) = c2(0)exp(−2γt), and c3(t) = c3(0) = c3.

The authors of Ref. [29] have identified three fundamentally different types of
dynamical behavior for the correlations depending on the region of parameters ci
of the initial Bell-diagonal state. In the first region where |c3| > |c1|, |c2|, classi-
cal correlations C(ρAB(t)) stay constant independently of the dephasing parame-
ter p(t) and quantum discord Q(ρAB(t)) decays in a monotonic fashion. In the
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Fig. 1 Classical correlations C(ρAB(t)) (dashed line), quantum correlationsQ(ρAB(t)) (solid line),
and total correlations I(ρAB(t)) (dotted line) versus the parametrized time p(t) under local dephas-
ing noise. The chosen initial Bell diagonal state parameters are c1 = 0.06, c2 = 0.42, and c3 = 0.30,
and the sudden change occurs at the point psc = 0.15. Note that the quantum discord Q(ρAB(t))
is greater than the classical correlations C(ρAB(t)) for 0.09 ≤ p ≤ 0.20

second region in which |c3| = 0, we have a monotonic decay for both classical and
quantum correlations, which is not particularly interesting. Lastly, and most inter-
estingly, in the region of parameters where |c1| > |c2|, |c3| or |c2| > |c1|, |c3|, after
decayingmonotonically until a specific parametrized time pSC , classical correlations
C(ρAB(t)) experience a sudden change in their dynamics and remain constant after-
wards. At the same specific time psc, quantum discord exhibits an abrupt change in
its decay trend, and then continues to decay monotonically over time. An example
of this scenario is displayed in Fig. 1. We note that such a sudden change in the
dynamics had not been observed before in the literature for the other known quan-
tum correlation measures. In addition, another interesting point we can observe here
is that the early conjecture that C ≥ Q for any quantum state [44] is shown to be
invalid, as can be clearly seen in Fig. 1.

Finally, the result that the classical correlations might become unaffected from
the detrimental effects of the environment induced decoherence for a certain noise
channel can be in principle used to simplify the evaluation of classical correlations
and thus quantum discord, by removing the typically difficult optimization procedure
in their definitions. More specifically, if one knows the dynamical map (assuming
that such a map actually exists), for a given initial bipartite quantum state which
preserves the classical correlations in the system, quantum discord will be given by
the difference between themutual information I(ρAB) and the completely decohered
mutual information I(ρAB |p=1), that is,

Q(ρAB) = I(ρAB) − I(ρAB |p=1), (17)
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due to the simple fact that I(ρAB) = Q(ρAB) + C(ρAB) and also C(ρAB) =
I(ρAB |p=1) in this case.

3.1.2 Sudden Transition Between Classical and Quantum Decoherence

Following the discussion of frozen and time-invariant behavior of classical corre-
lations under non-dissipative dephasing noise, we will now turn our attention to
the possibility of observing frozen quantum correlations as measured by quantum
discord. While it was first thought that quantum discord decays and vanishes asymp-
totically under Markovian noise, the authors of Ref. [30] remarkably identified a
class of two-qubit initial states for which quantum discord preserves its initial value
and therefore becomes frozen for a finite time interval until a critical time point is
reached. This striking result, valid for dephasing noise, was the first evidence that
precious quantum features in open quantum systems can remain intact naturally even
in the presence of decoherence. Clearly, the existence of the phenomenon of frozen
quantum discord might be highly important for quantum information protocols that
rely on it as a resource.

Similarly to the previous subsection, we consider a system of two non-interacting
qubits in Bell-diagonal states under a locally acting Markovian dephasing noise.
Consequently, the formulas for the classical correlations C(ρAB(t)) and the quantum
discordQ(ρAB(t)) are once again given by Eqs. (15) and (16), respectively. However,
one can alternatively focus on a special class of initial states with parameters c1(0) =
±1, c2(0) = ∓c3(0) and |c3| < 1, which can be written as

ρAB = (1 + c3)

2
|�±〉 〈�±| + (1 − c3)

2
|�±〉 〈�±| (18)

For this class of initial Bell-diagonal states, it is straightforward to see from Eq. (14)
that the quantum mutual information I[ρAB(t)] takes the following form:

I(ρAB(t)) =
2∑

j=1

1 + (−1) j c3
2

log2[1 + (−1) j c3] +
2∑

j=1

1 + (−1) j c1(t)

2
log2[1 + (−1) j c1(t)].

(19)

Recalling that c1(t) = exp(−2γt) and the formof the classical correlationsC(ρAB(t))
given in Eq. (15), it follows that, in case one has t < t̃ = −ln(|c3|)/(2γ), the second
term on the right-hand side of Eq. (19) is equal to the classical correlations C(ρAB(t))
due to the fact that |c1(t)| > |c2(t)| and |c3(t)| = |c3|. Hence, the quantum discord
is given by the first term on the right-hand side, which is independent of time. In
other words, quantum correlations Q(ρAB(t)) as quantified by quantum discord,
become frozen until a critical time t̃ is reached. Furthermore, one can control the
time interval in which quantum discord is constant in time by adjusting the value of
|c3|. However, a trade-off exists, that is, the longer the time interval of frozen quantum
correlations, the smaller the initial value of quantum discord one can obtain. Figure2
shows the dynamical behavior of the quantum discord, the classical correlations and
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Fig. 2 Dynamics of mutual information (green dotted line), classical correlations (red dashed line)
and quantum discord (blue solid line) as a function of t for c1(0) = 1, c2(0) = −c3 and c3 = 0.6.
In the inset, we plot the eigenvalues, λ+

ψ (blue solid line), λ−
ψ (green dash dotted line), λ+

φ (red

dashed line) and λ−
φ (violet dotted line) as a function of γt for the same parameters

the mutual information for the initial Bell-diagonal state with parameters c1(0) = 1,
c2(0) = −c3 and c3 = 0.6. Here, one can observe that until the critical time t̃ only the
classical correlations decay and quantum discord remains frozen. After this critical
instant, where a sudden change occurs, classical correlations freeze and quantum
discord begins to decay asymptotically. This is recognized as the phenomenon of
sudden transition between classical and quantum decoherence [30].

One can further investigate the roots of this curious sudden transition between
classical and quantum decoherence from a geometrical point of view. To this aim,
it is customary to adopt a quantity to measure the distance between quantum states.
Here, following the approach of Ref. [7], we choose the relative entropy defined
by S(ρ1||ρ2) = −Tr(ρ1 log ρ2) − S(ρ1) as an entropic distance measure, although
it cannot be technically considered as a distance. An alternative definition of the
quantum discord can then be given as the distance of the considered state from the
closest classical state ρcl. It turns out that the closest classical state to our system of
choice given in Eq. (12), i.e. Bell-diagonal states, during the open system dynamics
will be given by [7]

ρcl(t) = q(t)

2

∑

i=1,2

|�i 〉 〈�i | + 1 − q(t)

2

∑

i=3,4

|�i 〉 〈�i | (20)

where q(t) = λ1(t) + λ2(t), and λ1(t) and λ2(t) are the two greatest time dependent
eigenvalues of ρAB given by Eq. (13) with |�i 〉 being the corresponding Bell states.
The inset of Fig. 2 shows the time evolution of the eigenvalues λ±

ψ and λ±
φ , which

can be considered as weights of the four Bell states forming the Bell-diagonal state.
One can see that there is a transition time t̃ at which the weight of |φ+〉 becomes
identical to the weight of |ψ−〉. This results in a sudden change in the second greatest
eigenvalue. Thus, while the closest classical state for t < t̃ is given by
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ρcl(t < t̃) = 1 + e−2γt

4
(|�+〉 〈�+| + |�+〉 〈�+|) + 1 − e−2γt

4
(|�−〉 〈�−| + |�−〉 〈�−|),

(21)

in case of t > t̃ , the closest classical state will be given by

ρcl(t > t̃) = 1 + c3
4

(|�+〉 〈�+| + |�−〉 〈�−|) + 1 − c3
4

(|�−〉 〈�−| + |�+〉 〈�+|).
(22)

Note that,

D(ρAB(t)||ρcl(t)) = −Tr(ρAB(t) log2 ρcl(t)) + Tr(ρAB(t) log2 ρAB(t)), (23)

from which it is straightforward to show that D(ρAB ||ρcl) = D(ρAB), proving the
equivalence of the original and relative entropy based definitions of quantum discord,
for thewhole class of Bell-diagonal states. Based on this result, we see that the closest
classical state to the considered one before the critical time at t̃ remains unchanged
even though the state evolves in time. On the other hand, after the critical time is
reached, the closest state starts to change over time and thus quantum discord exhibits
a monotonically decaying behavior.

Moreover, to compare the dynamics of quantum discord and entanglement, it is
instructive to study the relative entropy of entanglement E , which is defined as the
distance to the closest separable state ρS . In this case, entanglement for the Bell-
diagonal states can be calculated as

E = 1 + λ1 log2 λ1 + (1 − λ1) log2(1 − λ1), (24)

where λ1 is the greatest of the eigenvalues given by Eq. (13). Thus, entangle-
ment decays in a monotonic way and vanishes when t ≥ ts = −ln[(1 − |c3|)/(1 +
|c3|)]/2γ. More importantly, for ts < t̃ , entanglement vanishes even before quantum
discord begins to decay, which occurs for 0 < |c3| <

√
2 − 1. Figure3 displays an

Fig. 3 Dynamics of the
entanglement (violet
dashed-dotted line) and the
quantum discord (blue solid
line) as a function of γt for
the initial state c1(0) = 1,
c2(0) = −c3 and c3 = 0.6
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example of this situation, where one has constant quantum discord without entan-
glement, for the initial state with c1(0) = 1, c2(0) = −c3 and c3 = 0.6.

After its first discovery, the phenomenon of frozen quantum discord has been
explored in the literature in greater detail. For instance, necessary and sufficient
conditions giving rise to the freezing of quantum discord have been explored for
the Bell-diagonal states under local dephasing noise [45] and for certain multipar-
tite states under other non-dissipative local noise channels [46]. Note that although
the transition from constant to decaying quantum discord has been shown to occur
abruptly for specific two-qubit states, it has been suggested that this transition might
be sudden only for an idealized zero-measure subset of states within the whole set
of two qubit states [47]. The investigation of the dynamics of quantum discord in
open quantum systems has not been limited to the case of two level systems. In par-
ticular, frozen quantum discord has been also observed in hybrid qubit-qutrit states
under local dephasing noise [48]. Furthermore, due to the difficulties in the analytical
evaluation of the original entropic quantum discord, numerous different geometric
versions have been introduced to measure the distance of the considered state to the
closest classical state according to a chosen metric. It has also been demonstrated
that sudden change and freezing behavior of quantum discord can also be observed
for geometric discord under non-dissipative local noise [49]. It is even possible to
have double sudden transitions for a particular version of geometric discord, i.e.,
the trace-norm discord [50, 51]. Later on, the phenomenon of frozen correlations
has been shown to be a common feature of all bona fide measures of quantum cor-
relations [52]. Lastly, it has been proven that all geometric quantifiers of quantum
correlations, having the properties of invariance under transposition, convexity, and
contractivity under quantum channels, might lead to the freezing phenomenon under
suitable local non-dissipative noise [53].

On the other hand, the phenomena of sudden change and freezing of quantum
discord have not remained as a purely theoretical construct. There have been several
experiments demonstrating these peculiar effects with different physical systems.
The first of these investigations has been performed by Xu et al. with an all opti-
cal experimental setup, where they have simulated the effects of a one-sided phase
damping channel on a particular Bell-diagonal state [54]. In their experiment, the
open system is represented by a pair of photons that are entangled in their polariza-
tion degrees of freedom and generated by a spontaneous parametric downconver-
sion process. The dephasing effect is produced when photons pass through a quartz
plate of adjustable thickness which causes their polarization degrees of freedom to
couple to their frequency degrees of freedom, acting as the environment of the pho-
ton. They have observed a clear evidence of the occurrence of the phenomenon of
frozen quantum discord and also experimentally proved that quantum correlations
can be greater than classical correlations disproving the earlier conjecture. Another
important experiment on the open system dynamics of quantum discord has been
performed by Auccaise et al. using a room temperature nuclear magnetic resonance
setup, where the environment induced sudden change takes place during the relax-
ation of two nuclear spins to the Gibbs state [55]. In their work, they have presented
an evidence of both the sudden change and freezing of discord.
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3.1.3 Frozen Discord in Non-Markovian Dephasing Channels

In this section, we will extend the investigation of the dynamics of classical and
quantum correlations to the case where the bipartite open system is under the effect
of non-Markovian dephasing local noise channels. We will elaborate on the non-
trivial consequences of the memory effects, emerging due to the non-Markovian
nature of the noise, for the phenomenon of frozen quantum discord. To this end, we
will consider a well established pure dephasing model where white noise producing
Markovian evolution is replaced by colored noise giving rise to non-Markovian time
evolution [56].

Let us now introduce the open quantum system model which describes the inde-
pendent dephasing of two non-interacting qubits under local identical dephasing
noise channels. The time evolution of each of the qubits can be given by a master
equation of the form

ρ̇ = KLρ, (25)

where ρ is the density matrix of open quantum system,L is a Lindblad superoperator
describing the time evolution of the open quantum system, and K is a time-dependent
integral operator acting on the system as Kφ = ∫ t

0 k(t − t ′)φ(t ′)dt ′. The function
k(t − t ′) is a memory kernel that determines the type of memory in the dynamics.
Such a master equation emerges if one considers the time evolution of a two-level
system interacting with an environment having the properties of random telegraph
signal noise. To give a physical example, this type of a model might be used to
describe a spin in the presence of a constant intensity magnetic field that changes its
sign randomly in time.

One can start to analyze such a system by writing a time-dependent Hamiltonian
as

H(t) = �

3∑

k=1

�k(t)σk, (26)

where � is the Planck’s constant and �k(t) are independent random variables
respecting the statistics of a random telegraph signal which can be expressed as
�k(t) = aknk(t). Here, nk(t) has a Poisson distribution with a mean equal to t/2τk
and ak is a coin-flip random variable having the values ±ak . With the help of the von
Neumann equation ρ̇ = −(i/�)[H, ρ], it is possible to find a solution for the density
matrix of the two-level system given by

ρ(t) = ρ(0) − i
∫ t

0

∑

k

�k(s)[σk, ρ(s)]ds. (27)

If one substitutes Eq. (27) back into the von Neumann equation and performs a
stochastic average, one obtains a master equation of the form
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ρ̇(t) = −
∫ t

0

∑

k

e−(t−t ′)/τk a2k [σk, [σk, ρ(t ′)]]dt ′, (28)

where the memory kernel originates from the correlation functions of the random
telegraph signals given as 〈� j (t)�k(t ′)〉 = a2k exp(−|t − t ′|/τk)δ jk .

In Ref. [56], Daffer et al. have studied the requirements of completely positive
time evolution for this type of a master equation. They have found that the dynamics
generated by Eq. (28) is completely positive when two of the ak are zero, which
corresponds to the situation where the colored noise only acts in a single direction.
In particular, when the condition a3 = a and a1 = a2 = 0 is satisfied, the resulting
time evolution experienced by the open quantum system is that of a colored noise
dephasing channel with non-Markovian features. In this case, the Kraus operators
that describes the dynamics of the each two-level system are given by

M1 = √[1 + �(ν)]/2I2, (29)

M2 = √[1 − �(ν)]/2σ3. (30)

with �(ν) = e−ν[cos(μν) + sin(μν)/μ],μ = √
(4aτ )2 − 1 and ν = t/2τ is the

dimensionless time. Since we will consider the dynamics of two-qubits indepen-
dently interacting with identical colored dephasing environments, we can obtain the
dynamical map using Eq. (9).

We will once again study the problem for initial Bell diagonal states of the form
given in Eq. (12). As a result of the dynamics considered here, the Bell diagonal states
preserve their general form, and the real three parameters defining them evolve in
time as follows

c1(ν) = c1(0)�(ν)2, c2(ν) = c2(0)�(ν)2, c3(ν) = c3(0), (31)

Similarly to the case of Markovian dephasing noise discussed in the previous sub-
section, one can identify three regions of distinct dynamical features depending on
the relations among the initial state parameters c1, c2 and c3 [31].

In the first region of parameters where |c3(0)| ≥ |c1(0)|, |c2(0)|, both the quantum
mutual information and the quantum discord display damped oscillations, eventu-
ally vanishing asymptotically. There exist no sudden changes in either quantum or
classical correlations throughout the time evolution of the open system. On the other
hand, classical correlations do not feel the effect of the noise and remain constant at
all times, which can be easily seen from Eq. (15) as χ(t) is always equal to |c3(0)|
in the course of the dynamics. The second regime includes the time evolution of the
initial Bell diagonal states with c3 = 0. Here, classical, quantum and also total cor-
relations asymptotically tend to zero which means that final state of the open system
is a product state, possessing no correlations of either classical or quantum nature.
The last and the most interesting region is characterized by the initial states having
|c3(0)| < |c1(0)| and/or |c2(0)|. Since χ(t) is initially equal to max{|c1(t)|, |c2(t)|},
classical correlations begin to decay at first until a certain critical time. At this time
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point, they become suddenly frozen due to the fact that |c3(0)|, which is constant
during the dynamics, becomes greater than max{|c1(t)|, |c2(t)|}. Recalling in the
non-Markovian case that, c1(t) and c2(t) are oscillating functions of time, |c1(t)| or
|c2(t)|might grow bigger than |c3(0)| once again during the dynamics, in which case
classical correlations would start oscillating until they become abruptly constant. In
fact, in this last region, we can distinguish two different dynamical behaviors for
quantum discord, namely, sudden change dynamics with or without frozen behavior.
An example of the first case is shown in Fig. 4a, where one can observe that quan-
tum and classical correlations display multiple abrupt changes in their decay rates
due to the non-Markovian memory effects in the open system dynamics. Indeed,
such a behavior can be seen for the whole subclass of Bell diagonal states with
c1(2)(0) = k, c2(1)(0) = −c3k and c3(0) = c3 with k real and |k| > |c3|. On the other
hand, an example of the sudden change without frozen discord behavior is shown in
Fig. 4b. Here, both classical correlations and quantum discord decay until a sudden
change point is reached, where classical correlations become constant while quan-
tum discord abruptly changes its decay rate without getting frozen. As time passes,
this behavior is repeated with intervals of constant classical correlations. In order the
understand the underlying reason behind themultiple periods of constant discord and
sudden changes, one can conduct a geometrical analysis in terms of relative entropy
based discord, similarly to what has been done in the previous subsection. Recall
that original quantum discord and relative entropy based geometric discord turn out
to be equivalent for the Bell diagonal states. Then, in this case, it is possible to track
the trajectory of the state under investigation and its closest classical state during
the dynamics to understand the geometrical origins of sudden changes and freezing
behavior.

Fig. 4 Dynamics of the
quantum mutual information
(green dotted line), classical
correlations (red dashed line)
and quantum discord (blue
solid line) as a function of
dimensionless time ν = t/2τ
with τ = 5 and a = 1.
a Frozen discord with
sudden multiple transitions
where initial state parameters
are c1(0) = 1, c2(0) = 0.6
and c3 = 0.6. b Sudden
change without frozen
behavior with parameters
c1(0) = 0.35, c2(0) = 0.3
and c3 = 0.1. The arrows
show the sudden change
points
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Fig. 5 Sketch of the
trajectories of the state of the
system under investigation
and its closest classical state
in the Hilbert space in the
a Markovian, b non-
Markovian case

Let usfirst have a look at theMarkovian dephasing case illustrated inFig. 5a,where
there are no oscillations in the dynamics of correlations. Whereas the solid black line
represents the trajectory of the considered state ρ(t), the dotted red line depicts the
path traced by the closest classical state χCD

ρ (t). As can be seen from the figure, the
trajectory of the ρ(t) is parallel to the one followed by ρCD(t), that is, the system has
frozen discord until the sudden change point is reached. The green square shows the
sudden change point, where the state of the system ρST has two closest classical states
in equal distance, namely χCD

ρ (t) and χDD
ρ (t) in correspondence with the eigenvalue

crossing point λ2 = λ3. As the open quantum system keeps evolving in time, it
continues to travel along the black line. Therefore, the state under investigation ρ(t)
gets closer to its closest classical state χDD

ρ (t) asymptotically resulting in decaying
quantum discord.

The consequences of the non-Markovian memory effects for the dynamics of
the open system can be seen in Fig. 5b. Note that here the meaning of symbols and
trajectories, and the structure of the set of closest classical states remain the same as
in Fig. 5a. The crucial difference is that the state of the system under investigation
oscillates around the sudden transition point throughout the dynamics, due to the
non-Markovian features of the noise channel. When the considered state ρ(t) first
passes through the transition point as it travels from left to right, it reaches the
closest classical stateχDD

ρ (t) in a finite time interval. After this point, non-Markovian
memory effects force the state ρ(t) to travel back along part of its previous trajectory,
which is shown in Fig. 5b by the thick dashed blue line partially overlapping with
the black one. As it travels back from right to left on the blue line, it once again
enters the frozen discord region after crossing the sudden change point. Finally, the
direction of path of the state ρ(t) flips once more and it enters the decaying quantum
discord region to remain there. Xu et al. observed the dynamics of the correlations
in a non-Markovian dephasing environment with an all-optical setup [57] and found
the same features as described here.
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3.2 Time-Invariant Discord

3.2.1 Time-Invariant Discord and Non-Markovian Open
Quantum Systems

The simple but exact characterisation of local pure dephasing non-Markovian noise
in qubit systems has lead to a plethora of studies surrounding the quantification and
usefulness of non-Markovianity [58–66]. In this subsection, we examine this exact
model in order to reveal the origin of time invariant discord. In more detail, the sud-
den transition between classical and quantum decoherence, inevitable in Markovian
systems, does not necessarily occur in non-Markovian systems. Without this transi-
tion, quantum correlations may persist at all times while other dynamical quantities
evolve.

We consider the following microscopic Hamiltonian describing the local interac-
tion of a qubit and a bosonic reservoir in units of � [58–60],

H = ω0σz +
∑

k

ωka
†
k ak +

∑

k

σz(gkak + g∗a†k ), (32)

with ω0 the qubit frequency, ωk the frequencies of the reservoir modes, ak(a
†
k ) the

annihilation (creation) operators and gk the coupling constant between each reservoir
mode and the qubit. In the continuum limit

∑
k |gk |2 → ∫

dωJ (ω)δ(ωk − ω) where
J (ω) is the reservoir spectral density. The time local master equation for the qubit is
given by,

ρ̇ = γ(t)[σzρσz − ρ]/2. (33)

If the environment is initially in a thermal state at T temperature, the time-dependent
dephasing rate takes the form,

γ(t) =
∫

dωJ (ω) coth[�ω/2kBT ] sin(ωt)/ω (34)

resulting in the decay of the density matrix off-diagonal elements, ρi j (t) = e−�(t)

ρi j (0), i = j , with dephasing factor �(t) = ∫ t
0 γ(t ′)dt ′ given by

�(t) =
∫ ∞

0
dωJ (ω) coth[�ω/2kBT ][1 − cos(ωt)]/ω2

=
∫ ∞

0
dωg(ω, T )[1 − cos(ωt)], (35)

where the Ohmic spectral densities are given by

J (ω) = ωs

ωs−1
c

e−ω/ωc (36)
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with ωc the reservoir cutoff frequency. By changing the s parameter, one goes from
sub-Ohmic reservoirs (s < 1) to Ohmic (s = 1) and super-Ohmic (s > 1) reservoirs,
respectively. Such engineering of theOhmicity of the spectrum is possible, e.g., when
simulating the dephasing model in trapped ultracold atoms, as described in Ref. [62].
A closed analytical expression for the time-dependent dephasing rate can be found
in both the zero T and high T limit. In the former case, one obtains,

γ0(t, s) = [1 + (ωct)
2]−s/2�E [s] sin[s arctan(ωct)], (37)

with �E [x] the Euler gamma function. For high T instead we have,

γHT(t, s) = 2kBTγ0(t, s − 1)/ωc. (38)

Mathematically, the effect of the qubit on its environment is described by a dis-
placement operator acting on each environment mode, with the associated phase
conditional on the state of the qubit. The two qubit states excite each mode with
opposing phases, leading to a decrease in the overlap between the states of the mode
in each case. Destructive interference between excitations of a mode at different
times reverses decoherence leading to recoherence at the frequency of the mode; it
is the balance between these two effects for different modes, captured by Eq. (35)
that determines whether the dynamics is non-Markovian. From Eq. (35), a simple
link between the onset of non-Markovianity and the form of the reservoir spectrum
can be established. As the cosine transform of a convex function is monotonically
increasing, a sufficient condition forMarkovianity is that g(ω, T ) is convex or, equiv-
alently, the non-convexity of g(ω, T ) is a necessary condition for non-Markovianity.
Physically, a convex g(ω, T ) means that any recoherence is always outweighed by
more decoherence from lower frequency modes.

For Ohmic class spectra, a simple connection between the general form of the
spectrum and memory effects in the reduced system can be established from the
form of the decay rate. Memory effects originate from non-divisible maps, corre-
sponding to dissipators with decay rates which take temporarily negative values. It
is straightforward to realize from Eq. (37) that for zero temperature, the dephasing
rate takes negative values if and only if scrit > 2. Equally, from Eq. (38), the onset of
non-Markovianity for high temperatures is scrit > 3. Hence, for the pure dephasing
model, non-Markovianity only occurs for super-Ohmic environments. For intermedi-
ate temperatures, scrit increases monotonically until scrit = 3 at infinite temperatures.
Moreover, it can be shown that for scrit and for all temperatures, the function g(ω, T )

changes from a convex to non-convex function of ω, implying that the condition on
the non-convexity of the spectrum is necessary and sufficient for non-Markovianity
at all T .

For a system of two qubits in Bell-diagonal states experiencing local dephas-
ing, the dynamics of the mutual information I(ρAB(t)), the classical correlations
C(ρAB(t)) and the quantum correlations measured by quantum discord Q(ρAB(t))
are given by Eqs. (14)–(16) with c1(t) = c2(t) = exp(−2�(t)), c3(t) = c > 0 and
χ(t) = max{e−2�(t), c}. Hence, one immediately sees that when e−2�(t) > c, classi-
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Fig. 6 The shaded region
marks the range of
parameters s and c for which
the discord is frozen forever
for T = 0. Outside this
region one will always
observe a transition from
classical to quantum
decoherence

cal correlations decay while discord remains constant. On the other hand, if a finite
transition time t̃ such that,

e−2�(t̃) = c (39)

exists, then for t > t̃ the discord starts decaying and the classical correlations remain
constant. Contrary to the Markovian dephasing model, the transition time t̃ now cru-
cially depends not only on initial state of the two-qubit system through the parameter
c but also on parameters describing the structure of the reservoir spectral density,
specifically s and the reservoir temperature T , through �(t).

In Fig. 6, the values of s and c for which the condition in Eq. (39) is satisfied are
illustrated, for c = 0.1 and T = 0. For a certain range of the parameter s, Eq. (39)
has a solution and accordingly the system has a sudden transition from classical
to quantum decoherence at time t̃ . However, there exist a range of values of s for
which Eq. (39) has no solution and no transition time t̃ exists leading to decaying
classical correlations, while discord remains frozen forever. The two different cases
are illustrated in Fig. 7 where classical correlations and discord for the Ohmic case
s = 1 and s = 2.5 are plotted, respectively. By looking at the asymptotic long time
limit of Eq. (39) we can define the s and c parameter space for which time-invariant
discord exists (see Fig. 6). The value of frozen discord is,

Q = (1 + c)log2(1 + c)/2 + (1 − c)log2(1 − c)/2. (40)

Therefore, frozen discord takes significant values only for small values of c, approx-
imately corresponding to the Ohmic range 2 ≤ s ≤ 3 when the dynamics is non-
Markovian. Increasing the temperature rapidly destroys the time invariant discord
phenomenon and in the high temperature limit, values of s and c for which this effect
occurs can not be found.
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Fig. 7 a Landscape of correlation dynamics in the s − t plane, for c = 0.1 and T = 0. Blue areas
denote parameters (t, s) corresponding to classical decoherence, red areas to quantum decoherence
and the intersection between the two, marking the values of s and t̃ satisfying Eq. (39) defines the
transition time t̃ as a function of the reservoir spectrum parameter s. The two insets show discord
(solid red line) and classical correlations (dashed black line) for two specific choices of s; b for
s = 1 the system has a sudden transition from quantum to classical decoherence while for c s = 2.5
the discord is frozen forever. The blue dot in a and b points the transition time t̃ for s = 1

The occurrence of time invariant discord in two qubit dynamics can be con-
nected to the form of the reservoir spectrum and non-Markovianity in the single
qubit dynamics. It is straightforward to show that the time invariant discord phe-
nomenon can occur only for reservoir spectra leading to a bounded value of �(t).
This ensures the existence of values of c such that e−2�(t) > c for all t implying that
Eq. (39) is never satisfied. On the other hand, an asymptotic divergence of�(t) allows
for the existence of a transition time t̃ . Such a divergence, and therefore absence of
time invariant discord rests on the divergence of ωg(ω, T ) when ω → 0 occurring
for s ≤ 1(2) at zero (finite) temperature. Futhermore, convexity and thusMarkovian-
ity is ensured if g(ω, T ) diverges at low frequencies, occurring for s ≤ scrit = 2(3).
Hence, time invariant discord and non-Markovianity are intimately related and ulti-
mately rely on the eventual dominance of recoherence over decoherence, thus both
require the suppression of coupling to low frequency modes, embodied by the low
frequency dependences of J (ω) and g(ω, T ).

3.2.2 Time-Invariant Discord in Dynamically Decoupled Systems

We now continue our study of the exact purely dephasing system in order to reveal
the connection between time invariant discord and optimal control in the form of
dynamical decoupling. In more detail, we now compare reservoir engineering tech-
niques based on amodification of the reservoir spectral density through the Ohmicity
parameter in order to change the Markovian character of the dynamics with reser-



Frozen and Invariant Quantum Discord Under … 359

voir engineering exploiting dynamical decoupling (which in turn, can also be seen as
effective filtering of the spectral density). Dynamical decoupling (DD) techniques for
open quantum systems are considered one of the most successful control protocols
to suppress decoherence in qubit systems [67, 70]. Inspired by the spin-echo effect,
dynamical decoupling involves the application of a sequence of external pulses to
the system which induce unitary rotations in order to counter the harmful effects of
the environment [68–74]. Specifically, “bang bang” periodic dynamical decoupling
(PDD) schemes have been shown to prolong coherence times and restore decaying
correlations in quantum systems which are undergoing decoherence [69].

We now recall the exact dynamics obtained in Ref. [75] which address the purely
dephasing qubit behavior in the presence of an arbitrary sequence of instantaneous
bang-bang pulses. Each pulse is modelled as an instantaneous π-rotation around the
x-axis. An arbitrary storage time is considered, t , during which a total number of
N pulses are applied at instants {t1, ...tn, ...t f }, with 0 < t1 < t2 < · · · < t f < t . As
shown by Uhrig [76, 77], the controlled coherence function �(t) can be worked out
as,

�(t) =
⎧
⎨

⎩

�0(t) t ≤ t1
�n(t) tn < t ≤ tn+1, 0 < n < N
�N (t) t f < t

, (41)

where the exact representation of the controlled decoherence function �n(t) for
1 ≤ n ≤ N , can be written in the following form:

�n(t) =
∫ ∞

0

J (ω)

2ω2
|yn(ωt)|2dω, n ≥ 0, (42)

Further, from Eq. (42), |y0(ωt)|2 = |1 − eiωt |2, and

yn(z) = 1 + (−1)n+1eiz + 2
n∑

m=1

(−1)meizδm , z > 0. (43)

Here, it is understood that the nth pulse occurs at time tn = δnt and 0 < δ1 < · · · <

δn < · · · < δs < 1. In order to express the controlled decoherence function �n(t) in
terms of its uncontrolled counterpart �0(t), we simply relate |y1(ωt)|2 to |y0(ωt)|2
to write,

�1(t) = −�0(t) + 2�0(t1) + 2�0(t − t1). (44)

Upon iteration, and relating again, |yn(ωt)|2 to |y0(ωt)|2, we find the decoherence
rate for n pulses,

�n(t) = 2
n∑

m=1

(−1)m+1�0(tm)
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+ 4
n∑

m=2

∑

j<m

�0(tm − t j )(−1)m−1+ j

+ 2
n∑

m=1

(−1)m+n�0(t − tm) + (−1)n�0(t). (45)

It is well known that the performance of dynamical decoupling techniques cru-
cially depends on the temporal separation of the pulses. Moreover, the performance
can be linked to the timescale of the environment correlation function, highlight-
ing the important role played by spectral properties of the noise causing decoher-
ence and introducing errors [78]. Following this, in Ref. [79], an explicit connection
between the direction of information flow and dynamical decoupling is established.
The influence of dynamical decoupling on the direction of information flow can
be seen directly from the following relation, connecting γn(tn), i.e., �̇n(tn) at the
moment tn when the system is pulsed and the corresponding quantity at the previous
instant:

γn(tn) = −γn−1(tn), (46)

where for 1 ≤ n ≤ N ,

γn(t) = 2
n∑

m=1

(−1)m+nγ0(t − tm) + (−1)nγ0(t). (47)

From this expression, it is immediate to associate the change of sign of the decay
rate at time tn to a reversal of information flow occurring at the instant the system
is pulsed. As a direct consequence, a Markovian open system dynamics will always
be transformed to a non-Markovian dynamics. Hence, from a reservoir engineer-
ing perspective, in order for each pulse to result in revivals in dynamic quantities,
one should choose environments with Ohmicity parameters s < 2, corresponding to
unperturbed Markovian dynamics.

It is well established that the use of eitherDD techniques or non-Markovian effects
prolongs the preservation of both entanglement and discord in the presence of envi-
ronmental noise [80–85]. Unfortunately, as realized from Eq. (47), simultaneous use
of non-Markovian reservoir engineering and DD protocols is counterproductive for
avoiding decoherence. In more detail, if a pulse occurs during an interval of infor-
mation back flow, information flow is reversed, inducing rapid decay in dynamical
quantities such as coherence. We now consider the preservation of quantum and
classical correlations and the possibility of creating time invariant discord through
PDD techniques in relation to the initial conditions (unperturbed dynamics). For a
more detailed insight, we consider two different scenarios of local dephasing noise
in the presence of DD. Specifically, we first consider the scenario where both qubits
A and B interact locally with identical dephasing environments, where in this case,
both qubits are subject to pulsing. Secondly, we consider the case where only one of
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Fig. 8 The black region shows the range of s and c parameters for which the discord is frozen
forever for a free system evolving without pulsing. The grey region shows the range of s and c
for dynamical decoupled systems with small interval spacing �t = 0.3ω−1

c (i) and long interval
spacing �t = 3ω−1

c (ii). The plots in a are for the case where both qubits are affected by noise, as
the plots in b are for single qubit noise. Outside these regions, one will always observe a transition
from classical to quantum decoherence and thus no time-invariant discord. The final pulse is applied
at t f = Nmax�t ≤ 25ω−1

c where Nmax is the maximum number of pulses that can be applied within
the time interval 0 ≤ t ≤ 25ω−1

c . Quantities plotted are dimensionless

the qubits interacts with the dephasing environment, while the other qubit is entirely
protected from decoherence (the expressions for classical and quantum correlations
hold in this case provided we exchange e−�(t) with e−2�(t)). We note that only the
qubit experiencing noise is subject to DD. Without the possibility of analytically or
numerically defining continuously pulsed dynamics in the asymptotic time limit, we
focus on discord which remains “time-invariant” within a chosen experimental time
interval rather than forever.

We now compare the regions of s and c for which time-invariant discord exists
for both the pulsed and unperturbed case. For a short pulse �t = 0.3ω−1

c , we see
from Fig. 8a, b (i), for two-sided and one-sided noise respectively, time invariant
discord is created for a wider range of parameters compared to the unperturbed case.
Specifically, time-invariant discord is created for sub-Ohmic values of s, (i.e., s < 1)
for up to very high values of c, only when the system is subject to DD. Moreover,
increasingly significant values of time invariant discord, corresponding to increasing
values of c, occur for s < 2. These conclusions are independent of the specific pulse
interval chosen provided that�t < t̄ where t̄ defines the first time instant information
back flow occurs for the unperturbed dynamics. For s � 1, coherence is maintained
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close to unity with no degradation shown to occur within computable times. Hence,
one can conjecture that time invariant discord will be created in the asymptotic long
time limit (t f → ∞). On the other hand, for s > 1, as t f increases, the region of time-
invariant discord will decrease as the coherence decays to increasingly small values.
Physically, it is self-evident that the regions of invariant discord, in the absence and
presence of control, become larger when one of the qubits is fully protected against
noise. We point out however that the difference is less pronounced between the one-
sided and two-sided noise for discord created with DD pulses and more significant
in the case of unpulsed non-Markovian dynamics.

As the pulse interval �t increases, the overlap between the regions of uncon-
trolled and controlled time-invariant discord becomes smaller. In Fig. 8a (ii), b (ii),
the destructive influence of DD on time-invariant discord for large pulse intervals is
immediately evident. Indeed, time-invariant discord is completely destroyed for both
one-sided and two-sided noise. Hence, we find that short pulse interval DD schemes
paired with Markovian environments (specifically s < 1), are optimal for the cre-
ation of time-invariant discord for a larger range of initial states when compared to
strategies relying on non-Markovianity alone as a resource. Following this, one can
say that relying only on non-Markovianity as a resource of time-invariant discord
becomes more preferable in general as the pulse interval �t increases.

3.3 Conclusions

In this chapter, we have presented a comprehensive exploration of the phenomena of
frozen and time invariant quantum discord for bipartite quantum systems evolving
under several different open quantum systemmodels. We have discussed the suitable
conditions for the initial states and the properties of the considered environmental
models so that the behaviors of frozen or time invariant discord can be consistently
observed. We have also considered non-Markovian open system models and shown
how the effects of the memory in the dynamics affect the time intervals during which
quantum discord becomes frozen. Finally, we have elaborated on the effect of pulsed
dynamical decoupling techniques on the preservation of quantum discord at all times
during the dynamics.
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Overview on the Phenomenon of Two-Qubit
Entanglement Revivals in Classical
Environments

Rosario Lo Franco and Giuseppe Compagno

Abstract The occurrence of revivals of quantum entanglement between separated
open quantum systems has been shown not only for dissipative non-Markovian quan-
tum environments but also for classical environments in absence of back-action.
While the phenomenon is well understood in the first case, the possibility to retrieve
entanglement when the composite quantum system is subject to local classical noise
has generated a debate regarding its interpretation. This dynamical property of open
quantum systems assumes an important role in quantum information theory from
both fundamental and practical perspectives. Hybrid quantum-classical systems are
in fact promising candidates to investigate the interplay among quantum and classical
features and to look for possible control strategies of a quantum system bymeans of a
classical device. Here we present an overview on this topic, reporting the most recent
theoretical and experimental results about the revivals of entanglement between two
qubits locally interacting with classical environments. We also review and discuss
the interpretations provided so far to explain this phenomenon, suggesting that they
can be cast under a unified viewpoint.

1 Introduction

Quantum correlations, such as entanglement, nonlocality, steering and discord,
among parts of composite systems are at the core of quantum theory and have
also been acquiring a paramount importance as a resource for quantum informa-
tion processes [1–20]. Realistic systems are open and interact with the surrounding
environment which usually has the effect to eventually destroy the quantum features
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of the system, even at a finite time, thus compromising their exploitation [7–10,
21–27]. Such a fate for quantum properties especially manifests within the configu-
ration of independent qubits each one locally embedded in its own environment [8],
which is the one required for implementing quantum communication and informa-
tion protocols with distant individually addressable particles [18, 19]. Efforts are thus
necessary to design efficient and feasible procedures to protect quantum correlations
against detrimental noise.

Under this perspective, in contrast to Markovian (memoryless) environments,
suitable engineered environments capable to maintain quantummemory effects have
been employed [5–9, 28–51]. Such non-Markovian environments exhibit the general
property to be necessary for revivals of quantum correlations to occur, irrespective
of the fact whether they have either a quantum nature (e.g., a bosonic or fermionic
environment) [7–9, 28, 29, 50, 52, 53] or a classical nature (e.g., stochastic noise,
random field, phase noisy laser) [54–74]. The possibility to have revivals of quantum
correlations allow an extension of their exploitation time for some specific protocol.
In order to make the revival phenomenon in open quantum systems easily repro-
ducible and effective, it is of basic interest to understand its underlying mechanisms,
particularly in light of the fact that it may happen under noise conditions originating
from fundamentally different surrounding environments.

Revivals of entanglement between independent qubits after a finite time of com-
plete disappearance have been first shown in the presence of non-Markovian dis-
sipative quantum environments [28, 29]. Although the emergence of entanglement
revivals under these conditions may appear strange at a first rapid look, it has been
successively explained in termsof periodic entanglement exchanges among thequbits
and the quantum constituents of the environment, because of the back-action of the
local quantum environments on the qubits themselves allowed by thememory effects
(see Fig. 1a) [28, 75–79]. On the other hand, the possibility to retrieve entanglement
once it is destroyed between distant qubits locally subject to classical environments
seems particularly counterintuitive, especially when such environments do not back
react on the quantum system and are not able to store or share any quantum correla-
tions. Thefirst theoretical observations of entanglement revivalswithout environment
back-action, for instance under random telegraph noise for solid state qubits [54–56,
80, 81], put in evidence the importance of the phenomenon yet leaving open its inter-
pretation. Closing this issue is not only relevant from a fundamental point of view
regarding the classical-quantum border, but it also provides insights for the classical
control of quantum systems with potential applications in future quantum technol-
ogy requiring classical interfaces to operate [82–85]. These considerations justify
the wide interest in studying the evolution of quantum coherence and correlations in
hybrid quantum-classical systems during the recent years [47, 54–74, 86–90].

A convenient approach to understand the mechanisms underlying entanglement
revivals in classical environments without back-action is to study simple feasible
systems in order to minimize undesired side effects and make the role of classical
noise prominent. The simplest possible open quantum system which fulfills this
requirement is that depicted in Fig. 1b, made of two initially entangled qubits, one
of which (qubit A) is isolated, evolving according to its free Hamiltonian, while
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Fig. 1 Illustrations of the basic systems. aTwo separated initially entangled qubitsA andB locally
interact with their own quantum environment represented by a cavity with high quality factor. The
plot qualitatively show that the initial two-qubit entanglement spontaneously revive after being
periodically transferred back and forth to the two cavities, thanks to the memory effects of the leaky
cavities under non-Markovian conditions (see also Ref. [77]). b A classical noise acts on the qubit
B, whereas qubit A is isolated. The two qubits are initially entangled. The two-qubit entanglement
evolution under this configuration is qualitatively analogous to the one with both qubits locally
interacting with their own environments

the second one (qubit B) interacts with a classical noise and thus evolves under
the action of a non-unitary dynamical map. The two-qubit system and the classical
environment are initially decoupled. Such a situation, which is paradigmatic for
decoherence problems, is also known as the “spectator configuration” [37]. This
chapter is devoted to review the main theoretical results about the topic within this
configuration, the experimental observations and the interpretations supplied so far.
Moreover, the physical aspect that gathers the various interpretations under a unified
framework is here provided.

In particular, the chapter is organized as follows. In Sect. 2 we first discuss entan-
glement revivals in the case of classical environment modeled by a random external
field [57, 58], which represents the first attempt to provide a simple model for deep-
ening and understanding the phenomenon; we then also report two other models
typical of the solid state where the classical noise is a low-frequency noise [68] and
a random telegraph noise (RTN) [55]. In Sect. 3 we describe two quantum optics
experiments which reproduce the models with random external field [59] and low-
frequency noise [69], respectively, and verify the existence of entanglement revivals.
In Sect. 4 we report the three known interpretations of the phenomenon of entangle-
ment revivals in classical environments [58, 59, 68], putting them under a unified
view. We give our conclusions and outlook on the topic in Sect. 5.
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2 Theoretical Predictions

In this section we review the results about the revivals of entanglement between
two qubits in the configuration of Fig. 1b. We particularly focus on the case when
the classical noise is simply modeled by a random external field and, successively,
consider also the cases when the noise is the typical one encountered by supercon-
ducting qubits in the solid state such as longitudinal low-frequency noise and RTN.
The two qubits are considered identical, that is with the same transition frequency
ω0A = ω0B = ω0, and separated. The total Hamiltonian is thus in general given by
Htot = HA + HB, whereHA = −(ω0/2)σz is the free Hamiltonian of qubit A where
σz = |0〉〈0| − |1〉〈1| is the third Pauli matrix. We shall see that the first two types of
noise are capable to make entanglement revive spontaneously during the evolution,
while the third one needs a local operation to obtain the desired entanglement revival.

2.1 Random External Field

As mentioned in the introduction, when the local environment is a quantum non-
Markovian one (for instance, a bosonic reservoir of photons inside a high-quality
factor cavity [28, 29]), the discovery that the entanglement between two separated
noninteracting qubits can reappear during the evolution after complete vanishing has
been interpreted by repeated bipartite entanglement exchanges among the quantum
parts of the global system [8, 68, 77]. In fact, the initial two-qubit entanglement
is redistributed between the two quantum reservoirs and between a qubit and the
other qubit’s reservoir and, thanks to the memory effects, returns to the two qubits
with a partial loss [77–79]. Revivals of two-qubit entanglement were successively
predicted also for local non-Markovian classical environments which do not back-
react and cannot share quantum excitations, such as random telegraph noises [54–56]
and phase noisy lasers [64], that poses a very simple question: in this case, where do
the initial quantum correlations go when they disappear?

In order to answer this question, the best strategy appears that of finding a simple
yet paradigmatic model which allows a straightforward treatment of the phenom-
enon. Starting from the phase noisy laser, which is a classical field with a randomly
fluctuating phase [64, 91, 92], the natural simplification is that to consider a field
with a random phase assuming only two possible values [57, 58]. While the first
study with such a random external field employs a model where both qubits locally
interact with the noise [57], here we review the simplest case where a qubit is isolated
(Fig. 1b) [58], whose all-optical experimental simulation has been realized [59] and
shall be discussed in Sect. 3.

As illustrated in Fig. 2a, the environment is a classical field (laser) with a random
phase ϕ, which can be ϕ± = ±π

2 with probability p± = 1
2 [57, 58]. The dynamical

map which gives the evolved state of the two-qubit system is
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Fig. 2 Revivals under random external field. a A random external classical field acts on the
qubit B. The random dephaser either shifts of π the phase of the input field with probability 1/2
or leaves it unchanged with probability 1/2 (figure from Ref. [58]). b Concurrence C(t) of ρAB(t)
versus �t for initial conditions x = z = 1 and y = 0.9 in the case of periodic dynamics (σ → 0).
c Concurrence C(t) of ρAB(t) for the same initial conditions in the case of decoherent dynamics
(σ = 0.1�)

ρ�
AB(t) = 1

2

∑

ϕ=ϕ±

(
11A ⊗ Uϕ,�(t)

)
ρAB(0)

(
11A ⊗ U†

ϕ,�(t)
)
, (1)

where 11A is the identity matrix in the Hilbert space of the qubit A and

Uϕ,�(t) =
(

cos(�t/2) e−iϕ sin(�t/2)
−eiϕ sin(�t/2) cos(�t/2)

)
, (2)

is the unitary matrix in the basis {|0〉, |1〉} of the time evolution operator associated
to the interaction between qubit B and a classical electric field E with phase ϕ. This
interaction is described, in the rotating frame at the qubit-field frequency and within
the rotating wave approximation, by the Hamiltonian [57, 59]

Hϕ = i�(�/2)(σ+e−iϕ − σ−eiϕ), (3)

where� is the qubit-field coupling constant (Rabi frequency) proportional to the field
amplitude andσ+ = |1〉〈0|,σ− = |0〉〈1| are the qubit raising, loweringoperators. The
non-Markovian dynamical map of Eq. (1) is a completely positive trace preserving
map representing a unital channel �t (that is, �t11 = 11) of the class of random
unitaries [3, 60, 91, 93]. A useful feature of this dynamical map is that, if the two-
qubit initial state belongs to the class of Bell-diagonal states, which are mixtures of
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the four Bell states, the evolved state will remain inside this class during the evolution
[94–98].

In realistic situations a signal inhomogeneous broadening can be present [59]
whose effect is a Gaussian distribution in the field amplitude and thus in the Rabi
oscillation frequency �g , which must be traced out in order to get the evolved two-
qubit state ρAB(t). In this case one has

ρAB(t) =
∫ ∞

−∞
d�g G(�g) ρ

�g

AB(t), G(�g) = 1

σ
√

π
e− (�g−�)2

4σ2 , (4)

where � is the Rabi frequency without dissipation (the central Rabi frequency) and
σ the standard deviation (the Rabi frequency width). The effect of the noise on the
random field is transferred to the intrinsic evolution of the quantum system.

To investigate the dynamics originating from different initial conditions, a con-
venient two-qubit initial state is [58]

ρ0AB(x, y, z) = y|x+〉〈x+| + (1 − y)|z−〉〈z−|, (5)

where
|x+〉 = x|2+〉 +

√
1 − x2|1+〉, |z−〉 = z|2−〉 +

√
1 − z2|1−〉, (6)

and |1±〉 = (|01〉 ± |10〉)/√2, |2±〉 = (|00〉 ± |11〉)/√2 are the one-excitation and
two-excitation Bell (maximally entangled) states. Such an initial state allows both
a linear combination (quantum coherence) between Bell states of different kinds
and a statistical mixture of them. Here we limit to the case of an initial Bell
diagonal state and utilize the concurrence C [99] to quantify the two-qubit entan-
glement. For convenience, we recall that the concurrence is defined as C(ρAB) =
max{0,√χ1 − √

χ2 − √
χ3 − √

χ4}, where χj’s are the eigenvalues in decreasing
order of the matrix ρAB(σy ⊗ σy)ρ

∗
AB(σy ⊗ σy) with σy denoting the second Pauli

matrix and ρ∗
AB corresponding to the complex conjugate of the two-qubit density

matrix ρAB in the canonical basis {|00〉, |01〉, |10〉, |11〉}.
In Fig. 2b–c the dynamics of entanglement is plotted starting from an initial Bell-

diagonal state ρ0AB(1, 0.9, 1), which has a concurrenceC = 0.8 and is the same initial
state considered in the experiment of Ref. [59]. Figure2b shows the periodic evo-
lution corresponding to the case of fixed qubit-field coupling (that is, fixed Rabi
frequency, σ = 0) [57]; Fig. 2c instead represents the case when the Gaussian distri-
bution of the Rabi frequency of Eq. (4) is considered and entanglement peaks decay
with a decoherence time proportional to σ−1. The periodic dynamics can be meant as
the dynamics of the system at times much shorter than the (Gaussian-induced) deco-
herence time. Revivals and dark periods of entanglement spontaneously shows up in
both cases. The interpretations related to this model shall be discussed in Sect. 4.
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2.2 Local Pulse Under Low-Frequency Noise

Here we briefly review the model of a pure-dephasing classical noise, that gathers
basic characteristics of many nanodevices under low-frequency noise [100–103],
with a local pulse applied at a certain time of the evolution [68]. The Hamiltonian
which rules the dynamics of the open qubit B is given by (� = 1)

HB(t) = [−�Aσz + ε(t)σz + V(t)σx]/2, (7)

where ε(t) is a stochastic process and V(t) an external control field. This V(t) repre-
sents an echo π-pulse at a given time t with evolution operator e−iσxπ/2 = −iσx, short
enough to neglect the effect of noise during its application. The stochastic process
has an exponential autocorrelation function 〈ε(t)ε(0)〉 = σ2e−t/τ , with noise corre-
lation time τ . For simplicity, the stochastic process ε(t) is chosen slow enough to be
approximatively static ε(t) ≈ ε during the evolution time t, which means τ → ∞.
The parameter ε is a Gaussian random variable with zero expectation value and stan-
dard deviation σ. This static noise produces an effect analogous to inhomogeneous
broadening in nuclear magnetic resonance (NMR) [104].

Taking the two qubits initially in any of the four Bell states, indicated with |�0〉,
applying the evolution operator due to the Hamiltonian of Eq. (7) and tracing out
the static noise degrees of freedom, one finds that the two-qubit system evolves
in a mixed state ρ(t) = ∫

dεp(ε)|�ε(t)〉〈�ε(t)|, where |�ε(t)〉 = T̂e−i
∫ t
0 HA(t′)dt′ ⊗

T̂e−i
∫ t
0 HB(t′)dt′ |�0〉 and p(ε) is the Gaussian probability density function of ε. The

corresponding time-dependent concurrence is given by [68]

C(ρ(t)) =
{
e− 1

2 σ2t2 , 0 ≤ t ≤ t,
e− 1

2 σ2(t−2t)2 , t < t ≤ 2t.
(8)

In Fig. 3 the entanglement of formation Ef (ρ(t)) is plotted, which is monotonically
related to the concurrence by [99]

Ef (ρ(t)) = h
(1 + √

1 − C(ρ(t))2

2

)
, (9)

where h(x) = −x log2 x − (1 − x) log2(1 − x). It is displayed that, if no pulse
is applied, Ef (ρ(t)) decays and tends to zero at times σt � 1. Differently, the
action of a local pulse at t = t makes Ef (ρ(t)) revive and reach its initial maxi-
mum value Ef (ρ(2t)) = Emax

f = 1. This value coincides with the average entangle-
mentEav(A(t)) = ∫

p(ε)Ef (|�ε(t)〉〈�ε(t)|)dε = 1 of the evolved physical ensemble
A = {p(ε)dε, |�ε(t)〉} [68]. Notice that in this situation the entanglement revival is
not spontaneously found during the evolution but created bymeans of the local pulse,
which makes the dynamical map indivisible and thus non-Markovian [68, 105–107].
A discussion about the interpretation of this result shall be reported in Sect. 4.
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Fig. 3 Revival by local operation under low-frequency noise. Entanglement of formation
Ef (ρ(t)) as a function of the dimensionless time σt. The thick red line gives the free evolution
under static noise while the thin blue solid line represents the evolution when an echo pulse is
applied at time σt = 4 (individuated by the black arrow). The black dashed line is the average
entanglement of the system Eav = 1. Dotted lines represent Ef (ρ(t)) for a non-static ε(t) with
increasing values of στ from bottom to top. Total entanglement recovery is obtained only in the
limit of static noise (τ/t → ∞). Figure from Ref. [68]

2.3 Random Telegraph Noise

The system we review here consists in a pair of independent superconducting qubits,
A and B, where qubit B interacts with a bistable impurity (fluctuating charge) which
produces pure dephasing RTN [55]. The Hamiltonian of qubit B is (� = 1) [108]

HB = −(ω0/2)σz − (v/2)ξ(t)σz, (10)

where ξ(t) establishes the RTN switching at a rate γ between ±1 and v is the qubit-
RTN coupling constant. The ratio g = v/γ is the characteristic parameter that rules
the crossover between a Markovian noise for weakly coupled impurities (g < 1)
and a non-Markovian noise for strong coupled impurities (g > 1) [108]. The exact
evolution of single-qubit coherence q(t) ≡ ρ01(t)/ρ01(0) is known [55, 108] and in
turn allows to obtain the evolved two-qubit density matrix by a standard procedure
based on the independence of the two qubits and their own environments [28, 29].

With the qubits initially prepared in the extended Werner-like (EWL) states [29]

ρ1 = r|1a〉〈1a| + 1 − r

4
114, ρ2 = r|2a〉〈2a| + 1 − r

4
114, (11)

where |1a〉 = a|01〉 + b|10〉, |2a〉 = a|00〉 + b|11〉 with |a|2 + |b|2 = 1 and 114 is
the two-qubit identity matrix, one can follow the entanglement dynamics by the
concurrenceC = C(t). The density matrix of EWL states has an X form [29] and this
structure is maintained during the pure dephasing evolution. We recall that entangled
states of superconducting qubits with purity ≈ 0.87 and fidelity to Bell states ≈ 0.90
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Fig. 4 Revivals under
random telegraph noise.
Concurrence as a function of
the dimensionless time γt for
values of g equal to 0.5 (solid
black line), 1.1 (red dashed
line), 2 (green dot-dashed
line), 5 (blue dotted line).
Initial state parameters are
r = rexp = 0.91,
a = b = 1/

√
2. Figure from

Ref. [55]
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have been experimentally generated [109] and can be approximately described by
EWL states with a purity parameter rexp ≈ 0.91.

The concurrences at time t for both the two initial states of Eq. (11) are equal to
C(t) = max{0, 2K(t)}, where K(t) = r|a|√1 − |a|2|q(t)| − (1 − r)/4, q(t) being
the single-qubit coherence. The plots of Fig. 4 display that a sequence of revivals of
entanglement occur provided that the coupling parameter g reaches sufficiently high
values which enable a non-Markovian dynamics for the system, with the frequency
of revivals increasing as g increases. Therefore, a noise of completely classical nature
as the RTN causes two-qubit entanglement to reappear after dark periods once the
non-Markovian feature of the noise has been activated by a sufficiently strong qubit-
impurity coupling [54–56].

3 Experimental Observations

This section deals with the description of two all-optical experiments that, simu-
lating two of the models reported above, confirm that quantum entanglement can
either spontaneously revive [59] or be recovered by local operations [69] in classical
environments.

3.1 Experimental Entanglement Revivals Under Random
External Field

The simplicity of the theoretical model of Fig. 2a has the advantage of making it real-
izable by a neat experimental setup which avoids any side effect that can influence
the expected dynamics and complicate its interpretation. In particular, an all-optical
experiment was reported that simulates this model, with the random external field
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mimicked by quantum degrees of freedom of the optical devices, and allows observa-
tion and control of entanglement revivals without system-environment back-action
[59]. The experimental setup is shown in Fig. 5. The bipartite quantum system is
made of two polarized photons, each one representing a qubit with basis states |H〉
(horizontal polarization) and |V 〉 (vertical polarization). We omit the very technical
details of the devices employed in the setup (available in Ref. [59]) while focusing
on the general aspects of the experiment which determine the realization of the target
model.

The preparation part of the setup generates a pair of polarization entangled pho-
tons in a desired Bell-diagonal state ρinab. The photon in mode a (the isolated qubit)
is directly sent to the state tomography part while the photon in mode b goes to the
environment part and finally to state tomography part.

The environment part of the setup simulates the randomexternal field on qubit b by
exploiting a beam-splitter that creates two photon paths (reflected p+ and transmitted
p−), corresponding to the effect of the field with either phase, plus the measurement
process that does not distinguish the two paths p± in a classically probabilistic fash-
ion, creating a statistical mixture of them with equal probabilities (1/2). The two
photonic paths are designed such as to induce, apart from an unimportant global
phase factor, the unitary transformations

b
BBO

CP
HWP1

Wollaston  
Prism a

HWP2

HWP3

PBS D1D2 QWP IFHWP

HWP5

HWP6

QP

SBC

HWPIF

HWP4

HWP7

PBSQWP
Tomography

Preparation

Environment

Fig. 5 Experimental setup simulating the random external field. The all-optical setup which
realizes the model of Fig. 2a is made of three main parts. (i) Preparation. This part is devoted to ini-
tialize the two-photon state in the desired Bell-diagonal state. The photon in mode a (corresponding
to the isolated qubit A) is directly sent to the measurement apparatus. (ii) Environment. The photon
in mode b (representing the open qubit B) reaches the environment part, with two possible proba-
bilistic paths representing the two unitaries (random phases). (iii) Tomography. This part performs
suitable measures of the photon polarizations which allow the construction of the output (evolved)
density matrix. Figure from Ref. [59]



Overview on the Phenomenon … 377

|H〉 p±−→ cos(φ/2)|H〉 ± i sin(φ/2)|V 〉,
|V 〉 p±−→ ±i sin(φ/2)|H〉 + cos(φ/2)|V 〉, (12)

whereφ is the phase difference between |H〉 and |V 〉 introduced by the Soleil-Babinet
compensator (SBC) and the quartz plates (QPs). This phase difference is defined as
φ = ωτ , where ω is the photon frequency and τ ≡ L�n/c is the time taken by the
photon to cross the optical element (SBC or QP), L being the thickness of the optical
element, c the vacuum speed of light,�n the difference between the refraction indices
of H and V polarizations. It is immediate to see that the two paths p± of Eq. (12)
define unitaries Up±(φ) on the basis states {|H〉, |V 〉} of b which act exactly as the
two time evolution operators Uϕ∓(t) of Eq. (2) on the qubit B, respectively, with the
connections |0〉 ↔ |H〉, |1〉 ↔ |V 〉 and φ = ωτ ↔ �t. The overall output state thus
becomes

�ρinab = 1

2

∑

p=p±

(11a ⊗ Up)ρ
in
ab(11a ⊗ U†

p ), (13)

which reproduces the two-qubit evolved density matrix of Eq. (1). In the experi-
ment the photon has an intrinsic Gaussian frequency distribution f (ω) = (2/σ

√
π)

exp[−4(ω − ω0)
2/σ2] [21, 110], where ω0 is the center frequency and σ the fre-

quency width (standard deviation). This frequency degree of freedom is a decoher-
ence source analogous to that due to the Rabi frequency distribution in the model
of Fig. 2a described above. The experimental evolved state ρoutab is then determined
by tracing out the photon frequency stochastic variable from �ρinab, giving rise to an
evolved state analogous to that of Eq. (4).

The tomography part finally performs standard quantum state tomography for
constructing the output (evolved) density matrix ρoutab of the two photons at many
values of the experimental time τ .

The two-photon system is initialized in the Bell-diagonal state ρinab=ρ0AB(1, 0.9, 1)
of Eq. (5). The entanglement evolution is followed by resorting to the concurrence
C(ρoutab ), the experimental points being acquired from the reconstructed output density
matrices by state tomography. The results for the coherent evolution, where only the
SBC is used, are plotted as a function of the relative phase φ = ω0τ in Fig. 6a.
Entanglement exhibits dark periods (around points π/2 and 3π/2 in a 2π period)
and revivals. In Fig. 6b the experimental results are displayed for the decoherent
evolution, where both SBC and QPs are used. In particular, the main panel shows
the envelope dynamics of correlations as a function of the quartz plate length L,
given by the maximum amplitudes of revivals. The maxima of entanglement revivals
monotonously decrease and totally vanishes at L ≈ 258λ0. The inset of Fig. 6b is
a plot of the theoretical curves exhibiting these decaying revivals. The coherent
evolution is part of the decoherent evolution, as highlighted by the red box in Fig. 6b.
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(a) (b)

Fig. 6 Experimental observations for the random external field. a Theoretical (cyan line)
and experimental (cyan points) two-qubit entanglement as a function of the relative phase in the
coherent evolution. Only the SBC is used in the setup and the relative phase (in units of π) is
φ = ω0τ . Revivals of entanglement are clearly visible. b Theoretical (cyan line) and experimental
(cyan points) envelope of entanglement dynamics as a function of the quartz plate length L (in units
of λ0 = 800nm, that is the center photon wavelength). The coherent evolution with revivals in panel
a is a part of the decoherent evolution, evidenced by the red box in panel b. The inset shows the
theoretical dynamics of the various correlations. In both panels, the black, red and blue lines (points)
represent, respectively, the theoretical (experimental) total correlations, classical correlations and
quantum discord, whose description is out of the scopes of this review. The initial state ρinab is the
Bell-diagonal state ρ0AB(1, 0.9, 1) of Eq. (5). Figure from Ref. [59]

3.2 Experimental Entanglement Revival by Local Operations
Under Low-Frequency Noise

An all-optical experiment [69] has been reported which reproduces the theoretical
model of a longitudinal low-frequency noise with a local echo pulse, described above
and ruled by the Hamiltonian of Eq. (7). We review here the main aspects and results
of this experiment.

The experimental setup is illustrated in Fig. 7a. The qubit information is encoded,
as usual, in the horizontal H and vertical V polarizations of two photons A and
B propagating in the freespace. The two-photon system is initially prepared in the
(maximally entangled) Bell state |�−〉 = (|HAVB〉 − |VAHB〉)/

√
2 by standard para-

metric down-conversion. Photon A, representing the isolated qubit, is directly sent
to the measurement device, whilst photon B interacts with a classical environment
described by a stochastic process x(t), playing the role of the variable ε(t) in the
Hamiltonian of Eq. (7).

The designed noisy channel acting on B induces pure dephasing at times tk
by means of a sequence of four liquid crystals retarders (LCk), each one intro-
ducing a phase xk ≡ x(tk) between the photon polarization components, that is
α|HB〉 + β|VB〉 → α|HB〉 + eixkβ|VB〉. This procedure realizes the desired interac-
tion Hamiltonian HB(t) = x(t)δ(t − tk)σz/2, where σz = |H〉〈H| − |V 〉〈V | and δ(t)
is the Dirac delta function. The induced phase xk ∈ [0,π] can be arbitrarily adjusted
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Fig. 7 Experimental setup and observations for the low-frequency noise with local operation.
a The experimental apparatus initially prepares qubits A and B in the Bell state |�−〉 by standard
parametric down conversion (SPDC). While qubit A directly goes to measurement part, qubit B
stroboscopically interacts with the environment through four random phases induced by liquid
crystal (LC) retarders. The noise induced by the environment is compensated by an echo-pulse
unitaryUecho = σx produced by an half-wave plate (HWP). Other elements in the measurement part
are quarter-wave plate (QWP), polarizing beam-splitter (PBS), single photon avalanche photodiode
(SPAD) and coincidence counting electronics (C). The “correction” LCcorr represents a rephasing
unitary which is able to compensate the dephasing noise when the latter is known (a situation that
is not treated here). b Entanglement of formation Ef measured at each step k (k = 1, 2, 3, 4) for
μ = 1 (static noise). Points and lines represent the experimental data and the theoretical calculations,
respectively. Dashed lines are simulations for a state with a fidelity F = 0.96 to a Bell state. Black
and red colors correspond, respectively, to the uncontrolled and pulsed dynamics (the blue one is
the controlled dynamics). Figures from Ref. [69]

by the voltage applied to each LCk . The stochastic process is simulated by generating
an ensemble of N random phase sequences {x1, x2, x3, x4}, where each phase xk is a
Gaussian random variable with same variance σ2 and (normalized) autocorrelation
μ ≡ 〈xkxk+1〉/σ2 (μ ∈ [0, 1]). The local echo pulse on photon B is then produced by
means of a half-wave plate (HW) at 45◦ between LC2 and LC3 (see Fig. 7a) which
realizes a local bit-flip operation Uecho = σx, flipping the polarization of photon B
(σx|H〉 = |V 〉 and viceversa). The dynamics of the two-photon system, which must
be averaged with respect to all the phase sequences in order to trace out the noise
degrees of freedom, is finally determined by mixing together the tomographic mea-
surement data obtained for each realization of the N random phase sequences [69].
Here, we focus on the case of static noise which is produced forμ = 1 (see discussion
after Eq. (7)).

The evolution of the entanglement of formation of the two photons is shown in
Fig. 7b. In absence of local control, entanglement monotonously decays as evidenced
by black points and lines. Differently, entanglement is recovered when a local pulse
is applied, as displayed by red points and lines. An entanglement echo is thus realized
in the system dynamics as predicted by the theoretical model [68].
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4 Interpretations of the Phenomenon

So far, three interpretations for the phenomenon of revivals of entanglement in clas-
sical environments have been proposed that can be summarized as follows:

(i) the classical environment plays a role as a control mechanism which keeps
a classical record for what operation has been applied to the quantum system
[57, 59];

(ii) there is an interchange between threepartite correlations and two-qubit entan-
glement due to system-environment information flows [58];

(iii) the quantum system contains hidden entanglement [68], that is the amount
of quantum correlations not revealed by the density matrix description of the
system which is recoverable by local operations [68, 69, 80].

In this section we review these interpretations, providing the physical aspect that
put them under a unified point of view.

4.1 Quantum-Classical State and Classical Environment
as a Controller

The model with random external field described in Sect. 2 can be conveniently
described by means of a quantum-classical state, the quantum part played by the
two qubits A, B and the classical part by the environment E[57, 59]. For the sake of
clearness, we consider here the case when decoherence due to the Gaussian distri-
bution of the Rabi frequency is negligible (analogous argumentations hold even if
decoherence is present [58]). Since the classical environment can only be in a time-
invariant maximal mixture of its basis states, the overall initial state can be written
as

ρABE(0) = ρAB(0) ⊗ ρE = ρAB(0) ⊗ 1

2

∑

ϕ=ϕ±

|ϕ〉〈ϕ|, (14)

where |ϕ+〉 (|ϕ−〉) corresponds to the state of the field with phase ϕ = π
2 (ϕ = −π

2 ).
It is then possible to define a unitary evolution UBE(t) acting on the bipartition B-E

UBE(t) =
∑

ϕ=ϕ±

Uϕ,�(t) ⊗ |ϕ〉〈ϕ|, (15)

where Uϕ,�(t) is the unitary operator of Eq. (2). By the introduction of UBE(t), the
evolved state of the threepartite system ABE is obtained by

ρABE(t) = [11A ⊗ UBE(t)]ρABE(0)[11A ⊗ U†
BE(t)]. (16)
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Fig. 8 Classical environment as a control system. On the left, a wave rules the dynamics of
two coordinated surfers where only one of them is on the wave which remains unaffected by the
surfer’s motion. This “classical world” situation may supply a pictorial description of a classical
environment without back-action whose states control which unitary Uϕ,�(t) is applied to its qubit
thus determining the dynamics of the two initially correlated qubits

The two-qubit evolved state ρAB(t) of Eq. (4) is then straightforwardly determined
by tracing out the environmental degrees of freedom (|ϕ+〉, |ϕ−〉 in this case) from
ρABE(t). The dynamics of the open system is non-Markovian [59, 60], as witnessed
by well-known measures of non-Markovianity [105, 111]. During the evolution due
to 11A ⊗ UBE , the states of the classical environment remain invariant, the qubitB does
not influence the environmentE and the qubit-environment back-action is thus absent
[57, 59]. Moreover, a classical environment cannot store any quantum correlations
on its own. The bipartition B-E evolves under the local unitary operation UBE so
that the quantum correlations between B-E, including entanglement, are invariant.
If one traces out the isolated qubit A from ρABE(t), it is easy to see that the qubit B
and its environment E never become quantum correlated. For instance, for an initial
A-B Bell-diagonal state, like that considered in the model and in the experiment
described above, the reduced state of B-E during the evolution is the uncorrelated
state (11B/2) ⊗ (11E/2). Therefore, the qubit-environment correlations do not enter
the phenomenon of entanglement revivals.

The introduction of the unitary evolution UBE(t) of Eq. (15) has a crucial role in
suggesting an interpretation of these revivals by means of the role of the classical
environment as a controller for which unitary operation is acting on the system, as
pictorially shown in Fig. 8. By memory effects, being the dynamics non-Markovian,
the environmentE keeps a classical record ofwhat unitary operation has been applied
to the qubit B and this occurs even without back-action. The information about the
quantum systemheld by the environmentE is therefore due towhat actionE performs
on the system itself. At times when the environment loses this classical information
(statisticalmixingof the twodifferent unitary operationsUϕ±,�(t), e.g., at�t = π/2),
entanglement disappears; at times when this information is recovered (both unitaries
Uϕ±,�(t) act as the same operation, e.g., at�t = π they are equal toσx), entanglement
revives [57, 59].
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4.2 Tripartite Correlations and Information Flows

Thegeneralmodel of Fig. 1 canbe viewed from the standard decoherence paradigmof
a quantum system (qubitA) entangled with ameasurement apparatus (qubitB) which
interacts with an environment (E) [112], and studying the information fluxes between
the system A and the environment E [113, 114]. This fact allows the investigation
of themechanisms underlying the revivals of two-qubit entanglement by approaching
the problem from an information-theoretic point of view. For the case of random
external field ofFig. 2a, by suitably tracingout the degrees of freedomof the unwanted
subsystem in the evolved threepartite state ρABE(t) of Eq. (16), it is straightforward to
obtain the evolved reduced density matrices of the various components of the global
system. Relations between the two-qubit entanglement and the genuine threepartite
correlations of the system can be thus found, together with the flows of information
among the different parties which provide physical grounds of this relationship [58].

A suitable measure of genuine tripartite correlations of the system {A,B,E} is
[115, 116]

τ (ρABE) = min
{
I(ρAB,E), I(ρAE,B), I(ρBE,A)

}
, (17)

where I(ρij,k) = S(ρij) + S(ρk) − S(ρijk) is the quantum mutual information across
any possible bipartition ij-k of the tripartite system {A,B,E} and S(ρ) = −Trρ ln ρ
is the von Neumann entropy of the quantum state ρ. We recall that genuine tripartite
correlations are those which cannot be described as bipartite correlations within any
bipartition of a threepartite system [117]. The above measure τ takes into account
both classical and quantum correlations of the hybrid quantum-classical system. To
evidence dynamical relations between two-qubit entanglement and tripartite corre-
lations, the entanglement is quantified, as usual, by the concurrence C(ρAB) of the
two-qubit reduced state.

The evolutions ofC(t) = C(ρAB(t)) and τ (t) = τ (ρABE(t)), starting from theBell-
diagonal state ρ0AB(1, 0.9, 1) considered both in the theoretical model of Sect. 2.1 and
in the experiment of Sect. 3.1, are plotted in Fig. 9a–b for a direct comparison. The
qubit-field interaction reduces the entanglement while correlating the environment
with the two-qubit system. Since B and E always remain uncorrelated during the
dynamics (as discussed in the previous subsection), correlations in the overall sys-
tem can only turn into genuine tripartite correlations, as seen from Fig. 9a–b. When
entanglement decreases, genuine tripartite correlations increase, C and τ showing
a time behavior in phase opposition such that the maxima of τ coincide with the
minima of C and viceversa.1

The study of the information fluxes within the system {A,B,E} can be conducted
by exploiting a relation involving mutual informations I , genuine tripartite correla-
tions τ and von Neumann entropies, which is given by [118]

1It is worth to mention here that, if a coherence between Bell states is introduced in the initial two-
qubit state, for instance for a state as ρ2 = ρ0AB(0.6, 0.8, 0.3) of Eq. (5), freezing of genuine tripartite
correlations occurs for finite time periods, showing a plateau in correspondence of the plateau of
zero entanglement [58]. The discussion of this behavior is out of the scopes of this chapter.
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Fig. 9 Correlation dynamics and information flows. a Total tripartite correlations τ (ρABE(t))
(blue dashed line) and concurrence C(ρAB(t)) (red solid line) versus�t for the initial Bell-diagonal
state ρ0AB(1, 0.9, 1) in the case of periodic dynamics (σ → 0, no Gaussian distribution of the Rabi
frequency). b τ (ρABE(t)) (blue dashed line) and C(ρAB(t)) (red solid line) for the same initial con-
ditions under decoherent dynamics (Gaussian distribution of the Rabi frequency with σ = 0.1�).
c Genuine tripartite correlations τ (dashed blue line), total state information I (dotted black line),
maximal bipartite correlations μ2 (green dashed line) and local state information ILOC (red solid
line) versus �t for the initial Bell-diagonal state ρ0AB(1, 0.9, 1) in the case of periodic dynamics
(σ → 0). d The same quantities of panel c plotted in the case of decoherent evolution (σ = 0.1�).
Figures from Ref. [58]

I = ILOC + τ + μ2, (18)

where I = I(ρABE) = ln d − S(ρABE) is the state information of the total tripar-
tite state ρABE in the Hilbert space of dimension d = 23 = 8, ILOC = I(ρA) +
I(ρB) + I(ρE) is the total state information locally stored in each part, with I(ρi) =
ln di − S(ρi) (i = A,B,E; di = 2), and μ2 = max{I(ρij)} is the maximal mutual
information over any possible bipartite reduced state ρij. According to the expression
of Eq. (18), local information, tripartite and bipartite correlations thus constitute three
containers where the system can store its total information. In Fig. 9c–d the dynamics
of all the quantities involved in Eq. (18) is plotted, when the two qubits are initially in
the Bell-diagonal state ρ0AB(1, 0.9, 1). While in the case of periodic dynamics (closed
system) I ≡ I(0) is constant, in the decoherent (Gaussian-induced) dynamics the
total state information I(t) = τ + ILOC + μ2 decays, as shown in panel Fig. 9d.
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A particular feature of the dynamics is that the local state information ILOC is con-
stantly zero. The information regarding the total state is always stored in bipartite
and (or) tripartite correlations. Precisely, the information is periodically transferred
back and forth between bipartite and tripartite correlations.

This behavior is physically understandable by looking at the meaning of the
involved quantities within the quantum-classical system under consideration. Since
the reduced state of the classical environment is a time invariant maximally mixed
state ρE = 1

2

∑
ϕ=ϕ± |ϕ〉〈ϕ|, it gives I(ρE) = 0. The red line in Fig. 9c–d therefore

describes the local information ILOC due to the two qubits. In this particular case,
ILOC = I(ρA) + I(ρB) is also zero because ρAB(t) remains a Bell-diagonal state,
havingmaximallymixedmarginals for definition and thus I(ρA) = I(ρB) = 0 at any
time. Genuine tripartite correlations τ , involving all the three parties of the system,
represent the information shared among qubit A, qubit B and environment E. As a
consequence, ILOC and τ are two different and non-mixable forms of information
stored in the system. A convenient qualitative behavior of the possible fluxes can be
provided in a nutshell as [58]

ILOC � τ , ILOC � μ2 � τ , (19)

which also indicates that local information and bipartite correlations can transform
into each other as well as bipartite correlations and genuine tripartite correlations
can. Under this scheme, it is clear how in Fig. 9c–d, where ILOC is zero, all the
information is stored in correlations which, periodically, change from the bipartite
to the tripartite kind, enabling entanglement revivals.

4.3 Hidden Entanglement and Lack of Classical Information

Another viewpoint about the occurrence of entanglement revivals under local clas-
sical noise is based on the local operation and classical communication (LOCC)
principle that, if quantum entanglement is restored by means of a local operation
after its disappearance, there must be entanglement hidden in the system which does
not emerge in the density matrix description of the quantum system [1]. It is thus
useful to introduce the concept of “hidden entanglement” [68].

Let us take a bipartite system defined by an ensemble of states A = {(pi, |ψi〉)},
for which the statistical distribution of the bipartite pure states {|ψi〉} occurring with
probabilities {pi} is known, giving the density matrix ρ = ∑

i pi|ψi〉〈ψi|. The hidden
entanglement of the ensemble is defined as [68]

Eh(A) ≡ Eav(A) − E(ρ) =
∑

i

piE(|ψi〉〈ψi|) − E
( ∑

i

pi|ψi〉〈ψi|
)
, (20)

where Eav(A) = ∑
i piE(|ψi〉〈ψi|) is the average entanglement of the ensemble

[119–121] and E(ρ) is a convex quantifier of the entanglement of the state (e.g.,



Overview on the Phenomenon … 385

entanglement of formation) [4]. The convexity of E(ρ) ensures that Eh ≥ 0. Notice
that in the case of a continuous-variable ensemble of the system (see, for instance,
the model of low-frequency noise of Sect. 2.2), the sums become integrals. The hid-
den entanglement Eh represents the amount of entanglement being unexploitable due
to the lack of knowledge of which state of the mixture one is handling. When this
classical information is supplied, such amount of entanglement can be recovered
with the only aid of local operations. Notice that Eh strictly depends on the particular
quantum ensemble description of the state of the system. Its role is thus principally
relevant in those dynamical situations which, starting from a pure state of the system,
univocally determine a physical decomposition in terms of an ensemble of evolved
pure states. Interestingly, this situation is always verified when the system is subject
to classical noise, which can be treated as an ensemble of local unitaries (random
unitaries) applied to the quantum system [68].

For the case of random external field of Sect. 2.1 with fixed Rabi frequency it
is then easy to see that, once fixed the initial two-qubit state ρAB(0), the physical
ensemble is univocally given by

A(t) =
{(

1

2
, (11A ⊗ Uϕ+,�(t))ρAB(0)(11A ⊗ U†

ϕ+,�(t))

)
,

(
1

2
, (11A ⊗ Uϕ−,�(t))ρAB(0)(11A ⊗ U†

ϕ−,�(t))

)}
, (21)

which impliesEav(A(t)) = E(ρAB(0)) at any times, since the amount of entanglement
is invariant under local unitary operations (note that for an initial Bell state, onewould
have Eav(A(t)) = E(ρAB(0)) = 1). Therefore, at times t̄ when the entanglement of
ρAB(t̄) is zero (Ef (ρ(t)) = C(ρ(t)) = 0), one has a nonzero hidden entanglement
Eh = Eav(A(t̄)) = E(ρAB(0)). The ensemble description points out that this hidden
entanglement is due to the lack of knowledge about which local operation is acting on
the system. At times t∗ when this lack of knowledge has no effect, as happens when
the two unitaries act as the same operation, entanglement revives reaching its initial
value, with Ef (ρ(t∗)) = E(ρAB(0)) and Eh(A(t∗)) = 0 (see the argumentations at the
end of above Sect. 4.1).

For the model with local pulse under low-frequency noise of Sect. 2.2, where the
two-qubit system starts from a Bell state, each realization of ε gives a pure max-
imally entangled state forming the ensemble A = {p(ε)dε, |�ε(t)〉}. The average
entanglement is Eav(A(t)) = 1 at any time. Entanglement decay is due to the lack of
classical knowledge on the system A-B, namely on the random frequency ε. When
the pulse is applied (at t = t), Eh ≈ 1 and Ef ≈ 0. Entanglement is not destroyed
during the evolution but hidden. After the pulse, this lack of classical knowledge is
gradually reduced until Eh = 0 and the entanglement reaches its initial value Ef = 1
(at t = 2t). The classical information needed to recover entanglement is therefore
acquired by means of the local echo pulse.
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4.4 Unifying Aspect of the Interpretations

The three mechanisms discussed above which explain the phenomenon of entangle-
ment revivals in classical environment have all a necessary common root: the system
dynamics is non-Markovian as defined by the presence of backflows of (classical)
information from the environment to the system [111, 122].

By collecting the main aspects of the interpretations provided so far, the following
qualitative considerations can be done:

• the classical environment keeps memory of which unitary is acting on the qubit
thanks to the occurrence of backflows of classical information;

• the periodic transformation of genuine tripartite correlations into two-qubit entan-
glement is activated by system-environment information fluxes;

• local control leads to a partial coherent exchange of information between system
and the environment, as also highlighted in the context of discrete qubit dynamics
[106], thus allowing the recovery of the hidden entanglement.

These considerations can be cast under a general unified view by showing that
non-Markovianity of the system dynamics defined by information backflows is the
required condition for entanglement revivals to occur in the presence of classical
environments.

As previously said, local classical noise can be suitably described as an ensemble
of local unitaries [68] which make the corresponding dynamical map of the system
unital [3, 93]. Under the spectator configuration adopted here typical of the deco-
herence paradigm (an isolated qubit plus an open qubit interacting with its local
environment), it is straightforward to prove that two-qubit entanglement revivals
necessarily enable information backflows from the environment to the system and
viceversa. In fact, the occurrence of an entanglement non-monotonic evolutionwithin
this configuration is just the ground aspect for the non-Markovianity quantifier based
on the indivisibility of the dynamical map [105] which coincides, for unital maps
[40, 60, 123], with the quantifier based on distinguishability of quantum states as
measured by trace distance [111]. The latter is then interpreted in terms of informa-
tion backflows from the environment to the system, where this information can be
either quantum (for the case of dissipative quantum environments) or classical (for
the case of nondissipative and classical environments) [40, 111, 113, 114]. Being
the dynamical map associated to a classical environment without back-action a unital
channel, one finally has the equivalence

Backflows of Classical Information ⇔ Entanglement Revivals in Classical Environments.
(22)

Hence, if there is classical information flowing back from the classical environment
to the bipartite quantum system in absence of backaction, then entanglement revivals
occur; viceversa, if bipartite quantum entanglement revives during the system evo-
lution under a local interaction with a classical environment which does not back
react, then system-environment backflows of classical information occur.
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5 Conclusion

In this chapter we have presented an overview about some of the main theoret-
ical and experimental results presenting the phenomenon of revivals of quantum
entanglement between two qubits where one qubit only is locally interacting with
a classical environment, the other qubit being isolated. This configuration is the
simplest one to study the effects of the classical environment on system dynamics
and its role in restoring entanglement initially present in the two-qubit system. This
has been employed by many theoretical studies considering classical noise made,
for instance, of a random external field, pure-dephasing low-frequency noise and
random telegraph noise, which are the ones we have explicitly presented here (see
Sect. 2). Major emphasis has been given to the case of random external field charac-
terized by two random phases, since it constitutes the first instance where a tentative
interpretation of the phenomenon of entanglement revivals in classical environments
without back-action has been provided [57, 58].

We have then discussed two all-optical experiments reproducing, respectively, the
modelwith a two-phase randomexternal field [59] and themodelwith dephasing low-
frequency noisewhere a local pulse is applied tomake entanglement revive [69]. Both
the experiments confirm the theoretical predictions, presenting direct observations
of entanglement revivals (spontaneous or inducted by a local operation) in a classical
environment.

We have also reviewed the three interpretations provided so far for the phenom-
enon treated in the chapter, all of them supplying responses to the question: where
does quantum entanglement go before reappearing during the system dynamics in
absence of back-action? This question stands at the basis of the comprehension of
the physical mechanisms allowing entanglement revivals under this condition. We
notice that for any nondissipative environment, either quantum or classical, back-
action is absent and the entanglement revivals should be thus interpreted by the same
mechanisms: for instance, this is the case of unital quantum channels such as bit flip,
bit-phase flip and phase flip [96–98, 124]. The three interpretations respectively rely
on three different concepts, which can be summed up as follows: (i) classical envi-
ronment as a controller keeping a record for what unitary operation acts on the qubit
[57, 59]; (ii) interchange between threepartite correlations and two-qubit entangle-
ment [58]; (iii) hidden entanglement existing in the system which is recoverable by
a local operation [68]. We have finally shown that these explanations of the phe-
nomenon can be collected under a unified physical aspect, namely the presence of
non-Markovianity as defined by the occurrence of backflows of classical information
from the classical environment without backaction to the quantum system. In gen-
eral, all the studies developed so far suggest that information backflows (quantum
or classical) are the essential requisite to obtain revivals of quantum features, as also
pointed out in Ref. [70], independently of the quantum or classical nature of the
environment.

The reviewed results and the argumentations here reported supply a wide insight
on the mechanisms underlying the recovery of entanglement in hybrid
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quantum-classical systems. Such a knowledge can be useful to motivate and boost
further studies on the manipulation of hybrid systems for quantum technology [82].
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Quantum Correlations and Synchronization
Measures

Fernando Galve, Gian Luca Giorgi and Roberta Zambrini

Abstract The phenomenon of spontaneous synchronization is universal and only
recently advances have been made in the quantum domain. Being synchronization
a kind of temporal correlation among systems, it is interesting to understand its
connection with other measures of quantum correlations. We review here what is
known in the field, putting emphasis on measures and indicators of synchronization
which have been proposed in the literature, and comparing their validity for different
dynamical systems, highlighting when they give similar insights and when they seem
to fail.

1 Introduction

Synchronization phenomena [1, 2] and quantum correlations [3–5] have been studied
for a long timeby twodifferent communities, andonly recently their relation started to
be explored. The common ingredient for the emergence of both features is the mutual
interaction between the components of a system, and in the quantum regime the
potential relation between synchronization and the presence of mutual information,
discord, entanglement or other correlations has been recently explored.

The phenomenon of spontaneous or mutual synchronization refers to the abil-
ity of two or more systems, that would display different dynamics when separate,
to evolve coherently when coupled. In the case of oscillatory dynamics this cor-
responds to achieving oscillation at a common frequency. This concept has been
further refined and generalized in chaotic systems to encompass several scenarios
such as, for instance, lag synchronization, generalized synchronization, or phase syn-
chronization [6]. In general, the definition of classical synchronization itself refers
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to some similarity in the time evolutions, i.e. some temporal correlation between
the local dynamical variables of the involved systems. Therefore, this is a definition
associated to classical trajectories. The counterpart, and eventually generalization,
in the quantum regime can follow different approaches.

The first works on the subject of quantum synchronization were actually dealing
with entrainment, where an external driving acts as a pacemaker, in systems such
as spin-boson with modulated driving [7], driven resonator with one [8] or two
superconducting qubits [9], andmore recently driven quantumVan der Pol oscillators
[10, 11]. In the case of entrainment, or forced synchronization, the driver is a strong
external field, generally classical, and is not influenced by the interaction with the
system. Different is the case of mutual synchronization that refers to the emergence
of synchronization as a collective phenomenon, leading to a coherent dynamics out
of different coupled units, in the absence of a driver.

Mutual synchronization has been recently predicted for spins interacting with a
common bath [12] and for the average positions of quantum optomechanical sys-
tems [13, 14]. The first analysis in the quantum regime dealt with harmonic networks
[15, 16] looking at quantum noise synchronization and showing its counterpart in
relation with classical and quantum correlations, showing the same trend for mutual
information and quantum discord. Synchronization in the dynamics of second-order
quadratures (squeezing) was considered there with an exact approach and role of
local, global and independent baths was elucidated. In Ref. [17] it was instead con-
sidered the question about the limits to perfect synchronization imposed by quantum
fluctuations and uncertainty relations. The phenomenon is characterized with a syn-
chronization error and is discussed in the context of coupled optomechanical devices.
Also in Ref. [10] there is a discussion of coherently coupled Van der Pol oscillators
characterizing synchronization through their phase-locking in phase space.

When extending the concepts of synchronization into the quantum regime, a
first question is about what defines this phenomenon, as actually in the classical
regimes it refers to the dynamics of phase space trajectories and, in general, classical
variables. This chapter reviews this question showing different approaches as well as
the specific peculiarities reported so far for quantum synchronization with respect to
the classical case. In the following section we give a brief overview of the platforms
where quantum synchronization is under study and then review the characterizations
andmeasures proposed for this phenomenon.We then discuss somegeneral questions
and possible future directions.

2 Synchronization in Quantum Systems

The phenomenon of synchronization is paradigmatic in a large variety of biological,
physical, and chemical systems, operating in the classical regime, as reviewed for
instance in [1, 2, 6, 18, 19]. Some fascinating examples are fireflies flashing at
once Fig. 1 cardiac myocytes acting as pacemakers, or the swaying motion of the
millennium bridge due to the crowdwalk in synchrony. The first reported observation
of classical synchronization was described as “sympathy of two clocks” and dates
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Fig. 1 A historical perspective of synchronization. Left panel Original drawing of Huygens of two
synchronizing pendulum clocks attached to a common support. Middle panel Swarms of fireflies
illuminate the undergrowth in a forest (photo by Kei Nomiyama/Barcroft Media). Right panel
Micromechanical oscillator arrays coupled through light (figure taken from Ref. [21])

back to XVII century, when Huygens observed pendula hanging on a wall in a boat
(see extracts and references in [1]). A reproduction of Huygens’ original drawing
is presented in Fig. 1. An equivalent popular experiment is with metronomes on the
same bar placed on two cylinders (cans) free to roll [20]. The extension to chaotic
systems has also been a wide field of research, establishing the possibility to observe
this phenomenon in spite of the high sensitivity to small differences in the initial
conditions or device parameters [6].

When moving to microscopic systems, synchronization phenomena are expected
to take place, and several recent works address quantum synchronization in nanome-
chanical devices, harmonic oscillators and spin systems.

2.1 Nanomechanical Devices

Optomechanical devices exploit radiation pressure to couple coherently light and
matter motional degrees of freedom allowing to explore different aspects of syn-
chronization in a flexible, hybrid and highly sensitive platform, where operation in
the quantum regimehas been achieved [22]. Spontaneous synchronization of optome-
chanical devices has been predicted theoretically considering mechanical coupling
[13] aswell as coupling through a commonopticalmode [14], focusing on the average
positions and laying the base for the study of quantum signatures of synchronization
in these devices. Phase-coherent mechanical oscillations have been shown in regular
optomechanical crystals considering the effects of quantum noise [23].

Reported experiments with microdisks [24] and arrays [21] and nanomechanical
resonators interacting through an optical racetrack [25] display synchronization of
the average (classical) motional degree of freedom. In Fig. 1 the device used in Ref.
[21] is reproduced. The possibility to lock distant optomechanical oscillators has
also been explored in the classical regime [26, 27]. Recently it was also reported
the experimental realization of spontaneous synchronization among micro- [28] and
nano-electromechanical [29] autonomous oscillators. Quantum signatures of syn-
chronization phenomena in experiments on optomechanical devices have not yet
been reported.
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2.2 Linear and Non-linear Oscillators

Among theoretical models, both linear and non-linear oscillators have been consid-
ered in the quantum regime. Van der Pol oscillators have been investigated in the
quantum regime [10, 11, 30, 31] and in comparison with the classical one [1]. These
models exhibit self-sustained oscillations and spontaneous synchronization due to
coherent [10, 32] and dissipative coupling [30, 31], as well as phase locking [10]
and frequency entrainment [11] in presence of external drive. The realization of Van
der Pol oscillators in physical platforms operating in the quantum regime has been
suggested in trapped ions [10] and optomechanical oscillators [31].

Self-sustained oscillators, like Van der Pol oscillators are a well-known platform
for studying synchronization. However, due to their non-linearity the analysis in the
quantum regime can be only addressed in limited cases and under various approxi-
mations, such as truncation of theWigner function, linearization around stable states
[33] or in the limit of infinite non-linear couplings favoring few low-energy Fock
states [10]. An exact analysis can be performed in linear systems like harmonic
networks; these have been considered in order to identify the conditions for quantum
synchronization beyond approximations and to clarify the role of losses, comparing
diffusive and reactive couplings in Refs. [15, 16, 34]. The analysis of networks in
squeezed vacuum [16] shows that under dissipation in separate equivalent baths (a
common assumption), independently on the strength of the coupling the oscillators
will not be able to synchronize, while in any other more complex dissipation scenar-
ios (common bath, local bath, etc.), the presence of one less damped normal mode
of the system allows for a transient or asymptotic synchronization. By accessing few
oscillators’ parameters this synchronization in the squeezing dynamics can be tuned
in the network or in clusters.

2.3 Spin Models

As mentioned before, quantum spin synchronization was first discussed under the
perspective of entrainment to an external driving force, either in the general spin-
boson framework [7] or considering superconducting two-level systems [8, 9]. An
experimental observationwas recently reported considering a damped current-biased
Josephson junction [35].

Studies of spontaneous synchronization of spins within abstract theoretical mod-
els were performed in Refs. [12, 36] considering spin-boson dissipation. In Ref. [12],
it was first observed that synchronization is induced by the coherent exchange of bath
excitations between the two spins, while in Ref. [36] it was shown that pure dephas-
ing is not able to generate synchronization. The formation of Chimera states was
discussed in [37] considering an extended spin chain described by a non-Hermitian
Hamiltonian. In Ref. [32], the authors analyzed the behavior of two qubits placed
inside two coupled cavities where only the first one is driven by a laser. The steady-
state synchronization of ensembles of dissipative, driven two-level atoms collectively
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coupled to a cavity mode, was studied in [38] and, under more general conditions in
[39], where the authors also provided a direct analogy with the synchronization of
classical phase oscillators. Following the experimental results of Ref. [40], where a
self-rephasing mechanism was observed on the ground state of magnetically trapped
ultracold atoms, synchronization within a full quantum model for the case of two
non-dissipative, interacting macro-spins, was studied in Ref. [41].

Finally, a platform to probe synchronization was introduced in Ref. [42]. There,
the authors considered two cold ions in microtraps and studied the synchroniza-
tion between their motional degrees of freedom. The presence of synchronization
was witnessed by the correlations developed by the electronic, discrete, degrees of
freedom of the two ions.

2.4 Applications

Synchronization is clearly a resource in biological systems [1, 2]. The synchronized
flashing of fireflies is a strategy so that the female can identify her species-specific
flashing signal (Fig. 1). Synchronization of neuronal activity by phase locking of
self-generated network oscillations dynamics is one of the coordinating mechanisms
of the brain, and abnormalities in this process are at the basis of several diseases and
dysfunctions, like epilepsy.

The achievement of a coherent dynamics out of different components (also due
to experimental imperfections) is clearly a resource also in physical systems. An
interesting application, for instance, is in cryptographic protocols based on chaotic
carriers of signals [43]. In general, synchronization allows for enhancing of fre-
quency stability, coherence and power output. Therefore applications are envisaged
for precise frequency sources, time-keeping, and sensing [21, 29] and can be taken
also to the domain of quantum technologies.

An application of a synchronization transition was recently proposed as an effec-
tive tool to probe the dynamics of a quantum system dissipating through a thermal
bath [44]. Indeed, coupling the system to an external, detuned object (which plays
the role of the probe) a transition between in-phase and anti-phase system-probe
synchronization is observed as a function of the detuning and of the spectral density
of the bath. Clearly, this transition can be observed monitoring the dynamics of the
probe alone. Then, measuring the critical detuning at which the transition takes place
amounts to getting information about the whole dissipative process.

3 Measures of Mutual Quantum Synchronization

Synchronization refers to some coherence in the temporal dynamics of coupled sys-
tems and several measures are known in the classical realm [1, 2, 6]. Synchronization
in presence of driving, entrainment, is typically encoded in the phase locking of the
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slave system with respect to the drive: the detuning between the slave oscillation and
the driving frequency is typically plotted as a function of the frequency of the driver
to identify the region of locking (zero detuning) and when this region’s width is
considered for different driving strengths one gets the synchronization region known
as Arnold tongue [1].

In autonomous systems, synchronization can arise as a mutual phenomenon, the
final dynamics coming from the interaction between components. The equivalent of
an Arnold tongue appears by considering the relative coupling and detuning of the
system components. Despite its intuitive conceptual definition, the quantification of
synchronization in the quantum realm is a challenging problem where both temporal
and quantum correlations come into play. Two or more objects, irrespective of their
quantum or classical nature, do spontaneously synchronize if they adjust their own
local dynamics to a common pace determined by their mutual interaction. Then,
a good synchronization measure is expected to be able to capture this adjustment
of rhythms, that can only be detected monitoring the behavior of all local units.
Synchronization can be inferred observing how similar the local density matrices
are, according to some meaningful criteria, or considering local observables and
looking at their correlations in time. Furthermore, it is sometimes possible to deduce
the behavior of local observables inspecting overall quantities, like, for instance,
emission spectra.

A broad plethora of studies of synchronization in classical systems in the last
three decades provides useful hints about possible approaches when moving into the
quantum regime. The main difference with respect to classical systems is clearly
that synchronization there generally refers to time trajectories and limit cycles in
the phase space not present in the quantum approach. On the other hand, classical
synchronization has been already generalized in presence of noise and of chaos
[6] where it is identified by assessing the ‘similarity’ of local dynamical evolutions
quantified by several indicators. Indeed a number of these indicators can be taken into
the quantum regime providing insightful approaches to quantum synchronization, as
it is the case of the Pearson function and synchronization error introduced below.

These considerations do not exclude that manifestations of synchronization can
be found also in global indicators, including mutual information and correlations,
and that can be associated to genuine quantum properties of the whole state. Overall,
when addressing the question of the identification of genuine quantum synchroniza-
tion phenomena, two main approaches can be distinguished: one is to define syn-
chronization in local observables and look for the presence of quantum correlations
triggered by this phenomenon; an alternative approach is to define synchronization
itself as a form of quantum correlation. In the following we give an overview of
different physical cases where synchronization is expected to come out, discussing
the interplay between local indicators and collective ones.
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3.1 Pearson Factor

The Pearson’s correlation coefficient is a widely used measure of the degree of linear
dependence between two variables. Calling X and Y the variables, it is defined as

CX,Y = E[XY ] − E[X ]E[Y ]
√
E[X2] − E[X ]2√E[Y 2] − E[Y ]2 , (1)

where E[.] is an average value. As a consequence of the definition, CX,Y gives a value
between +1 and 1, where 1 indicates total positive correlation, 0 is the absence of
correlation, and 1 is total negative correlation. Considering two functions f (t) and
g(t) evolving in time, the Pearson’s coefficient C f (t),g(t)(t) can be calculated over a
sliding window of length �t replacing the expectation values with time averages: in
this case

E[ f ](t,�t) ≡ f (t,�t) = 1

�t

∫ t+�t

t
f (t). (2)

Given two time-dependent variables A1 and A2 the Pearson synchronization measure
reads

CA1,A2(t |�t) =
∫ t+�t
t (A1 − Ā1)(A2 − Ā2)dt

√∫ t+�t
t (A1 − Ā1)2dt

∫ t+�t
t (A2 − Ā2)2dt

, (3)

where

Āi = 1

�t

∫ t+�t

t
Aidt. (4)

By definition, this measure quantifies the temporal correlation between two classical
trajectories and has been widely used in classical synchronization problems [1, 6].

In the quantum framework the trajectories Ai can be the expectation values
of quantum operators, as moments at different orders of local observables, like
〈N̂i 〉, 〈x̂2i 〉, 〈x̂4i 〉, σx

i .... This measure was first adopted in the framework of quantum
synchronization in Ref. [15], using the quantum-mechanical expectation values of
the second moments of the positions and momenta of two linearly coupled harmonic
oscillators dissipating in a common environment. In this way the synchronization in
the dynamics of second-order quadratures was captured. The same quantification of
synchronization was also carried out in the case of an extended network of linear
harmonic oscillators [16].

In the case of dissipating spin pairs, the Pearson’s coefficient was adopted in
Refs. [36, 44] to quantify the degree of synchronization between 〈σx

1 〉 and 〈σx
2 〉. A

slightly different version of it, especially tailored to detect phase synchronization,
was also analyzed in Ref. [32]. A qualitative analysis of the similarity between the
time evolution of local averages of spin operators, even though without any explicit
reference to the Pearson’s measure, was also invoked by Orth et al. [12].
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In general, this measure can be applied to any quantum problem when looking at
temporal dynamics of local observables. The main advantages are (i) that it depends
on the quantum signatures of the system (e.g. quantum noise, when going beyond
first ordermoments) and (ii) that thismeasure has absolute reference values: reaching
the maximum (minimum) value CX,Y = 1(−1) for perfect (anti-)synchronization.

3.2 Synchronization Error

The average distance between classical trajectories has been largely used to study
synchronization of chaotic systems, see e.g. the example of a pair of bidirectionally
coupled Lorenz systems in Ref. [6] of two coupled chaotic systems. This synchro-
nization error was first considered in [17] to study quantum synchronization of cou-
pled optomechanical oscillators attaining limit cycles. For continuous variable (CV)
systems the synchronization error reads

Sc(t) = 〈
q−(t)2 + p−(t)2

〉−1
, (5)

where q− = (q1 − q2)/
√
2 is the difference in position, and the same for momentum,

of the objects of interest. At variance with the classical case where the average
distance can go to zero, in the quantum domain this measure is bounded. It achieves
a maximum value when the two quantum objects are synchronized, and is upper-
bounded by the uncertainty principle

Sc(t) ≤ 1

2
√〈

q−(t)2
〉 〈
p−(t)2

〉 ≤ 1. (6)

A poor value of this quantity can come from two possible origins: either the mean
value (first moment) of q− and p− is big, or because the variances of these operators
are big. In order to neglect the first cause, it is also interesting to define a modified
measure with

q−(t) → q−(t) − 〈q−(t)〉 , p−(t) → p−(t) − 〈p−(t)〉 , (7)

which is preferable if we want to study purely quantum effects.
While synchronization error in classical systems is generally addressed between

the time series of two deterministic variables, as for example q1(t) and q2(t), the
intrinsic probabilistic nature in the quantum domain enlarges this scenario. As for
the Pearson factor, when comparing two operators q̂1(t) and q̂2(t) (hats are omitted
elsewhere), the corresponding first moments can behave independently of the second
moments or moments of higher order. This is particularly the case for Brownian
oscillators initialized in vacuum squeezed states. The intention of the authors in [17]
is to be able to compare the two operators by introducing a quadratic error measure,
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as reported in optomechanical settings (see Sect. 4.2), gauging well (as can be seen
fromcomparison toother synchronization indicators) both the synchronizationoffirst
moments and secondmoments. The relation of thismeasurewith the synchronization
of local dynamics is in general an open question.

In a similar spirit a measure of phase synchronization is also introduced in [17], by
writing the operator a j (t) := [q j (t) + i p j (t)]/

√
2 of the j th system in the following

way
a j (t)) = [r j (t) + a′

j (t)]eiφ j (t), (8)

where r j and φ j are the amplitude and phase of the expectation value of a j (t):〈
a j (t)

〉 = r j (t)eiφ j (t).Now theHermitian and anti-Hermitianparts ofa′
j (t) := [q ′

j (t) +
i p′

j (t)]/
√
2 can be interpreted as amplitude and phase fluctuations, and we can say

that whenever 〈a1(t)〉 and 〈a2(t)〉 are phase locked we can define a phase shift with
respect to this locking by the operator p′−(t) = [p′

1(t) − p′
2(t)]/

√
2. Hence, a mea-

sure of phase synchronization is

Sp(t) = 1

2

〈
p′

−(t)2
〉−1

, (9)

which in contrast to Sc can be arbitrarily large [17]. The authors point out though
that Sp ≤ 1 whenever two CV quantum systems can be represented by a positive P
function (quantum optics notion of classicality), whereas the opposite would require
collective squeezing.

3.3 Mutual Information and Other Information-Based
Correlations

Entropic measures are often used in different contexts to quantify the correlation
between sub-parts. In many cases, these quantities have been compared to other
classical synchronization measures. Here we briefly review the case where they have
been proposed in relation to quantum synchronization.

Classical mutual information, associated to time series of system observables,
has been used as a measure of classical synchronization [6]. The quantum mutual
information (MI ) of a whole density matrix ρAB is defined as

I (ρ) = S(ρA) + S(ρB) − S(ρAB), (10)

where ρA (ρB) is the reduced density matrix obtained tracing the subpart B (A) and
where S stands for the von Neumann entropy: S(ρ) = −Tr{ρ log ρ}. MI was pro-
posed in Ref. [32] as synchronization witness. The authors considered two different
models showing synchronization, that is, two coupled Van der Pol oscillators and
two qubits inside optical cavities in the presence of driving. It was shown that the
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steady-stateMI had the same qualitative behavior of, respectively, the complete syn-
chronizationmeasure of Eq. (5), and relative phase between the two qubits (measured
with an indicator close to Pearson’s parameter) during the transient. Comparisons
between mutual information and synchronization had already been performed in
Refs. [15, 16, 36] showing that in harmonic systems [15, 16] MI is more robust in
the synchronization regime, while for spins coupled through the environment [36] it
is not distinctive signature of synchronization.

In Refs. [15, 16, 32, 36], synchronization was also compared to quantum dis-
cord, the part of mutual information quantifying nonclassical correlations [45, 46],
leading to similar results. Given a bipartite system AB, it is defined as the difference
between I (ρ) and the classical part of correlationsJ (ρ){�B

j } = S(ρA) − S(A|{�B
j }),

where the conditional entropy is S(A|{�B
j }) = ∑

i pi S(�A|�B
i
), pi = TrAB(�B

i �)

and where �A|�B
i

= �B
i ��B

i /pi is the density matrix after an optimal, complete
projective measurement ({�B

j }) has been performed on B.
Generalized versions of MI can be obtained using the Rényi entropy Sα(ρ) =

(1 − α)−1 log Tr{ρα} (which reduces to S in the limit ofα → 1). The Rényi-2mutual
information (I2(ρ) = S2(ρA) + S2(ρB) − S2(ρAB)) was used by Bastidas et al. to
detect chimera-type synchronization in a quantum network of coupled Van der Pol
oscillators [47]. Chimera states describe the coexistence of synchronized and unsyn-
chronized components [48].

Entanglement has also been considered in the context of synchronization [15].
Lee and coworkers, studying the case of two dissipatively coupled Van der Pol
oscillators, argued that the steady-state exhibits an entanglement tongue, the quantum
analogue of the Arnold tongue [30]. Entanglement, after a truncation of the total
Hilbert space of the two oscillators, was quantified using the concurrence E [49].
The concurrence between a pair of qubits, whose density matrix is ρ, is defined as
E = max{0,λ1 − λ2 − λ3 − λ4}, where λr is the square root of the r th eigenvalue of
R = ρρ̃ in descending order. Here, we have introduced ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy),
where ρ∗ is the complex conjugate of ρ.

The linear entropy of the sub-part i S(ρi ) = 1 − Tr{ρ2i } can be used as entan-
glement quantifier provided that the whole state is pure. It was put in relation with
synchronization of chimera states in Ref. [37] in the case of a closed spin chain.

3.4 Correlations of Observables

In Ref. [50] the synchronization between coupled non-linear cavities (a and b)
was addressed considering normalized intensity correlations g2(a, b) = 〈nanb〉/
(〈na〉〈nb〉) between the cavities (first and second harmonic)modes. The average 〈· · · 〉
was temporal in the classic limit (neglecting quantum noise and considering classical
trajectories), and it was in this limit that synchronization was addressed. In the quan-
tum regime, the expectation value over the quantum (steady) state was considered
so that g2 is a measure of intensity correlations (capturing bunching/antibunching
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effects between the coupled systems). The transition between classical and quantum
regimewas described but addressing synchronization only in the classical regime and
comparing it with steady state correlations when moving into the quantum regime.

The average of the collective operator

Z = 〈(σ+
1 σ−

2 + σ+
2 σ−

1 )〉 (11)

was used in Ref. [39] to detect the presence of phase locking between two (ensembles
of) spins and then the synchronization between them. There, it was shown that decay
rates of these correlations encode information about the spectral content of the emitted
radiation, which, in turn can be directly calculated using the two-time correlation
function Z = 〈(σ+

1 (τ )σ−
2 (0) + σ+

2 (τ )σ−
1 (0))〉, as already done in Ref. [38].

The value of spin-spin correlations 〈σα
1 σα

2 〉 − 〈σα
1 〉〈σα

2 〉 (α = x, y, z) was also
used byHush et al. [42] as a sufficient criterion to assess the synchronization between
the motion of two trapped ions. In such set-up, the spins represent the electronic
degrees of freedom of the ions, and the value of their correlations was shown to be
related to the relative phase distribution of the density matrix of the two motional
degrees of freedom.

Looking at quantum correlations between observables to assess quantum syn-
chronization is a natural strategy to identify non-classical signatures but it does not
always capture the emergence of similarity of time evolutions between different
sub-systems. This approach is actually often considered looking at stationary states
loosing any relation with the classical counterpart of synchronization.

3.5 Kuramoto Models

The Kuramoto model [51] was introduced by Yoshiki Kuramoto to study the syn-
chronous behavior of a large set of coupled oscillators, which appears naturally in
the context of chemical/biological systems. The equations of motion for the phase
variable of the N oscillators take the form:

θ̇i = ωi + ξi + K

N

∑

j

sin(θi − θ j ), (12)

where ωi are oscillator frequencies, ξi noise terms, and K quantifies the coupling.
An order parameter is defined assuming mean-field coupling

reiψ = 1

N

∑

i

eiθi , (13)

where r represents the phase-coherence of the population of oscillators. Moving to
a rotating frame where ψ = 0, the equations of motion become (without noise)
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θ̇i = ωi − K r sin(θi ), (14)

which models a particle in a washboard potential. This means that whenever |ωi | <

Kr the phase is trapped and we have synchronization, otherwise the phase slips
down the washboard. If the distribution of frequencies g(ω) is unimodal and centered
around �, the phase transition to complete synchronization occurs for the critical
coupling value Kc = 2/πg(�).

This model and similar ones have spurred a vast amount of research reviewed in
[52]. Herewe note that whenever a system can be reduced to a set of equations similar
to the Kuramoto model, an analogous argument can be made to check whether there
is phase locking or not. This is the case for coupled optomechanical oscillators as
reported in Ref. [13]. The authors are able to reduce the mean field dynamics of
the optomechanical array with all-to-all couplings (after carefully eliminating the
amplitudes from the dynamics) to a Kuramoto-type model, which for only two units
simplifies to

δθ̇ = −δ� − C cos(δθ) − K sin(2δθ), (15)

with δθ = θ2 − θ1 and δ� the frequency difference. Once here, pure analysis of the
parameters in the equation directly point to either phase locking or phase slip.

Notably, translation of the Kuramoto model to the semiclassical domain was
recently achieved [53] and it was shown that the picture of the washboard potential
is a good intuitive guide, where now quantum tunneling can allow the phase to tunnel
through maxima of the (otherwise phase-locking inducing) potential. This leads to
the necessity of a higher critical coupling constant Kc in order to pin down and lock
the phases in the model.

3.6 Other Approaches

Quantum synchronization has also been addressed considering phase space repre-
sentations. In Ref. [23] the collective phase-coherence among the components of an
optomechanical array was characterized through an order parameter, Eq. (13), and
looking at the transition of the Wigner representation from an angular-symmetric
distribution to a coherent displaced state with time dependent phase. Under the
assumption of infinite non-linearity, Van der Pol oscillators in presence of driving
were considered in [10, 31] in strongly non-classical regimes, where the dynamics
is governed by few Fock states: the authors discuss the similarity of the Wigner
distribution (W ) with limit cycle appearing in the classical regime and the breaking
of rotational invariance of W to characterize phase locking. The marginals of the
relative phase are also a signature of phase locking as considered in Ref. [42]. Inter-
estingly, phase state tomography has been recently reported in order to characterize
phase diffusion and locking for an on-fiber optomechanical cavity operating into the
classical regime [54]. Still, when writing this chapter, there are not experimental
results on synchronization reported in the quantum regime.
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4 Synchronization of Oscillators

4.1 Linear Networks of Brownian Oscillators

Coupled harmonic oscillators dissipating in a bosonic environment represent the sim-
plest setup where synchronization of quantum systems can occur [55]. Their intrinsic
linearity precludes the possibility of synchronous limit cycles, but not the presence
of a long transient where synchronization is present and also of steady oscillating
states protected from dissipation. They have been studied for example in [15, 16,
34], where it was shown that eigenmodes in the system of coupled oscillators can
display very different dissipation timescales for some parameter ranges. If one of
the eigenmodes’ dissipative rate is much smaller than that of the rest, this eigen-
mode dominates the dynamics of the coupled oscillators, and hence they become
synchronized at the eigenfrequency of that mode. This synchronization is temporary
but can be very long if such rate is small [15]. For certain situations of high sym-
metry, one of the eigenmodes of the coupled oscillators system can be isolated from
the environment and then synchronization can last forever [16]. Situations of higher
symmetry can also occur wheremore than one eigenmode is not dissipating, whereby
synchronization can not happen [34]. More elaborate situations have been studied,
for example in harmonic networks [16] it has been shown that the full network or
only a motif inside it can be synchronized by tuning one of the frequencies.

One of the main conclusions in this type of systems is that dissipation induces
quantum synchronization through diffusive coupling: be it for some parameter region
or another, synchronization can always be achieved, with the sole exception of the
separate baths case, where each coupled oscillator is attached to its own independent
heat bath. It is easy to demonstrate mathematically that in this case, also eigenmodes
are dissipating into equivalent independent heat baths, and therefore their dissipa-
tive rates are of equal size: no eigenmode then survives longer than the rest and
thus synchronization is avoided. Different dissipation mechanisms that can arise in
extended environments [56] lead to specific forms of diffusive couplings that can
induce synchronization.

The Hamiltonian that describes this dynamics is

H =
∑

j

p2j
2m j

+ m j

ω2
j

2
x2j +

∑

i �= j

λi j (xi − x j )
2, (16)

whereas dissipation is introduced by coupling each oscillator to its own environment
-eventually with different dissipation strengths-, to a common one -with a homoge-
neous coupling or not-, or other combinations. For ease of exposition here we will
present the commonly denominated ‘common bath’ case with system-bath interac-
tion

Hdiss. =
∑

j

x j

∑

k

ck Qk, (17)
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where all system components couple equally to the same environment. In the case
of two units with equal (unit) mass and different frequency the system reads

H = p21
2m

+ p22
2m

+ ω2
1

2
x21 + ω2

2

2
x22 + λx1x2, (18)

where we have already absorbed quadratic contributions from the spring coupling
into the oscillators frequencies. The oscillators in the bath are uncoupled among them
and have frequencies ω j , which together with the coupling constants ck define in the

continuum limit what is usually called the spectral density J (ω) = ∑
k

c2k
ωk

δ(ω − ωk).
This function encodes basically all information about the dissipation characteristics
and is usually taken to be ‘Ohmic’ [that is, J (ω) ∼ ω] which gives a damping of the
oscillators which is just proportional to their velocity. The linearity of the dynamics
means that if we use an initial state which is Gaussian (all its information can be
described from first and second moments), it will remain so at all times. Examples
of Gaussian states [57, 58] widely used and relevant are displaced, squeezed and
thermal states.

Synchronization can for example be displayed by the time evolution of second
moments of quantum states, such as vacuum squeezed states, with the first moments
being zero at all times. An example of this can be seen in Fig. 2, where the Pearson
indicator is drawn for different detunings and coupling strength [15]. The shape
is reminiscent of an Arnold tongue in classical physics, and has been also later
observed with Van der Pol oscillators [32, 50]. The fact that first moments are zero
while second moments are oscillating and synchronize does not seem to fit well with
the synchronization error indicator, which in fact grows in the regions where the
Pearson indicator clearly points to worse values.

Furthermore, information-based correlations are preserved through the common
eigenmode that does not dissipate, and thus survive longer in the synchronized case.
However, correlations cannot assess synchronization if they were not already present
at some initial time and thus are neither good synchronization measures for this

Fig. 2 Left Pearson indicator of synchronization for different detunings and coupling strengths in
the two coupled oscillators model dissipating into a common bath. They are initialized to squeezed
vacuum states with zero first order moments. Synchronization is measured in the quadratures of
each oscillators, i.e. C〈

x21 (t)
〉〈
x22 (t)

〉 is plotted. Right Quantum discord at the same value of time.
A similar, although narrower, “tongue” is observed
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example. We note that the considered system focuses on the effect of dissipative
coupling in harmonic arrays, and this analysis could be applied -for instance- to the
noisy precursor of an optomechanical system below the oscillation threshold.

4.2 Self-sustained Optomechanical Oscillators

An important example of synchronization dynamics are optomechanical systems:
capable of displaying limit cycles of constant amplitude, they provide an intuitive
connection to what is known in the classical realm where the Kuramoto model is
paradigmatic. Their ability to synchronize was first proven in [13], where it was
shown that mechanically coupled optomechanical oscillators above their dynamical
Hopf bifurcation can be describedwith aKuramoto-typemodel; phase and anti-phase
synchronization are displayed. The analysis in the case of a common bosonic mode
[14] and experimental demonstration of the classical synchronization of such system
[24] followed shortly. Quantum synchronization has been later reported: above a
threshold mechanical coupling between optomechanical units, a regime of quantum
phase-coherent mechanical oscillations arises [23]. The measure of quantum syn-
chronization analogue to synchronization error was considered for optomechanical
oscillators in [17].

Optomechanical systems [22] comprise amechanical mode and a confined optical
mode which is typically driven by a laser field. These modes are coupled nonlinearly
through radiation pressure, provided by a movable mirror or a structure which can
be deformed by the action of light such as a dielectric medium. The combination
of an external pump and a nonlinear coupling provides stable limit cycles upon
which synchronization can occur. The usual form of the Hamiltonian describing
such dynamics is

H = �a†a + ωb†b + ga†a(b + b†) + i E(a − a†) (19)

with a(a†) the annihilation (creation) operators of light in the cavity, b(b†) those
of the mechanical mode and E is the intensity of the laser input. The Hamiltonian
is written in the frame rotating with the laser frequency ωL , which is detuned by
� = ωC − ωL with respect to the cavity frequency ωC . Both modes are further cou-
pled to noise sources with strength κ, γ respectively, providing dissipation. Below a
given threshold intensity of the laser, the amplitude of light and mechanical modes
simply decay to the value enforced by the noise sources. However, above that inten-
sity, multistability and limit cycles of increasing complexity can be observed. The
final ingredient to observe synchronization is coupling, via the mechanical or optical
degrees of freedom, several optomechanical systems. For illustrative purposes we
choose here mechanical coupling of the type Hint = μ(b1b

†
2 + b†1b2). We will follow

here the example of dynamics given in [17] to compare different measures of syn-
chronization and correlations. After a transient, limit cycles are achieved for each
degree of freedom and we can linearize them around their stable orbits with the usual
ansatz: â j = A j (t) + δâ j and b̂ j = Bj (t) + δb̂ j , with capital letters representing the
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Fig. 3 Comparison of several synchronization measures: a error synchronization Sc, Sp , b Pearson
indicator for first and second momenta C〈q1〉〈q2〉, C〈

q21
〉〈
q22

〉, and c correlations: mutual information,
logarithmic negativity and quantum discord. We set parameters ω1 = 1, ω2 = 1.005, g = 0.005,
μ = 0.02, detunings � j = ω j , κ = 0.15, γ = 0.005 and laser input E = 320κ = 48, as in Ref.
[17]. The initial condition for first moments are 〈q1(0)〉 = 100 and 〈q2(0)〉 = −100, and all other
first moments zero. The second order moments at t = 0 are 100 times their vacuum value. Changing
these initial conditions does not change qualitatively the results

limit cycles as a classical variable, and δ· the linear displacements (fluctuations) with
respect to them. The ansatz is then used to neglect nonlinear terms in the dynamics.
Finally, the fluctuations can be arranged in the form of a covariance matrix whose
time evolution can be integrated, yielding both the dynamical content and the quan-
tum/classical information content.

Coupled optomechanical oscillators represent a good platform combining suffi-
ciently complex dynamics and the possibility to assess different informational mea-
sures, so that proposed indicators of synchronization can be compared, as seen in
Fig. 3. We consider two optomechanical systems like in Ref. [17]. The qualitative
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Fig. 4 Same parameters as Fig. 3, butwith higher detuningω2 = 1.2, so there is no synchronization.
Notice that the scale in a is ten-fold lower than in Fig. 3a

behaviour is similar for all indicators: an initial build up and a final stage of full
synchronization by a stationary value of all quantities.

As mentioned before, perfect synchronization can be identified looking at the
absolute value of the indicator only for the Pearson coefficient (Sect. 3.1), which
really shows perfect synchronization (value ∼1) for first and second moments of
the mechanical observables (Fig. 3b, time �500). The synchronization error indica-
tors have a rather low value, Fig. 3a, compared to their maximum attainable 1 (see
Sect. 3.2), and we have checked that for different initial conditions of the mechanical
first moments, it can be increased, with very similar qualitative behaviour. The pos-
sibility to reach its maximum bound Eq. (6) in such system has not been reported,
although for fixed initial conditions it might be informative to assess the quality of
synchronization when changing Hamiltonian parameters (as when comparing Figs. 3
and 4). As a note, while these different indicators can signal stable synchroniza-
tion for t > 600, the Pearson coefficient spots it sooner. Comparing Figs. 3c and 4c
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we can conclude too that any measure based on classical/quantum correlations (of
information-theoretic character) is not of too much value if we compare absolute val-
ues. Introducing initial squeezing in the mechanical modes changes the time profile
of all correlations, but as expected not their final stable values.

Finally, what is important to note is that the stability in time of the indicators
is a necessary condition for signaling synchronization, and once that is achieved,
comparison of absolute values might yield some extra information, although only
the Pearson indicator is a bona fide absolute measure in this sense.

5 Synchronization of Interacting Spins

When considering precessing spins, the behavior of local spectra can be used to
extract direct information about the presence of a synchronized dynamics. This
method was adopted by Orth and coworkers in Ref. [12], where they considered
two interacting spins dissipating through a common environment, and observed that
there is a regime in the parameter space of the system where only a single frequency
appears in the spectrum of both the local observables. This single-line spectrum is not
the only possible manifestation of synchronization. It is indeed possible, like in the
infinite-dimension Hilbert space cases discussed above, that the collective dynamics
favours the suppression of some spectral lines, while one of them has a very long life-
time, leaving the system synchronized during the transient decay leading to steady
state [36, 44]. In these cases, the Pearson’s measure can be adopted to observe the
dynamical setting-up of synchronization. It can be defined considering the expecta-
tion values of any arbitrary operator for each spin Ak , k = 1, 2, decomposed in the
single-spin basis {σk

x ,σ
k
y,σ

k
z , I

k
d }:

Ak = akxσ
k
x + akyσ

k
y + akzσ

k
z + ad I

k
d . (20)

Actually, in many cases, it is enough to consider one spin direction. For instance, in
Ref. [36], the z components of the two spins were synchronized from the beginning
and the interesting part of the dynamics concerned the x − y plane.

In the following, we are going to compare the Pearson’s measure of quantum syn-
chronization with correlation indicators in a model of two detuned spins interacting
through an Ising-like coupling:

HS = ω1

2
σz
1 + ω2

2
σz
2 + λσx

1σ
x
2 . (21)

Let us assume that the spins experience a dissipative dynamics induced by the pres-
ence of a thermal environment weakly coupled to the system through

HI =
∑

k

gk(a
†
k + ak)(Aσx

1 + σx
2 ). (22)
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Here, the annihilation (creation) operators ak (a
†
k ) act on the bath degrees of freedom

and the coefficient A determines the ratio between the strength of the two spin-
bath couplings. For the sake of clarity, in the following we will only discuss the
two extreme cases A = 0 (local environment) and A = 1 (common environment).
In order to derive a master equation describing the dynamics of the two spins, it
is necessary to know the diagonal form of HS , which can be obtained applying
the standard Jordan-Wigner transformation, mapping spins into spinless fermions,
defined as σz

1 = 1 − 2c†1c1, σz
2 = 1 − 2c†2c2, σx

1 = c†1 + c1, σx
2 = (1 − 2c†1c1)(c

†
2 +

c2) [59]. We have

HS = E1(η
†
1η1 − 1/2) + E2(η

†
2η2 − 1/2), (23)

with E1= 1
2

(√
4λ2 + ω2+ +

√
4λ2 + ω2−

)
and E2= 1

2

(√
4λ2+ ω2+ −

√
4λ2 + ω2−

)

where ω± = ω1 ± ω2. The quasi-particle fermion operators are obtained combining
the Bogoliubov transformation c1 = cos θ+ξ1 + sin θ+ξ†2, c2 = cos θ+ξ2 − sin θ+ξ†1
together with the rotation ξ1 = cos θ−η†

1 + sin θ−η†
2, ξ2 = cos θ−η†

2 − sin θ−η†
1.

The spectral density J (ω) = ∑
k g2kδ(ω − �k) is assumed to follow, apart from

a high-frequency cut-off, the Ohmic power law J (ω) ∼ ω. Assuming weak dissipa-
tion, the qubit pair dynamics can be studied in the Born–Markov and secular approxi-
mations [60] with Lindblad master equation ρ̇(t) = −i[HS + HLS, ρ(t)] + D[ρ(t)],
where the Lamb shift HLS commutes with HS and where D[ρ(t)], which takes into
account dissipation, is the sum of four terms, each of them associated to one of the
four transition frequencies ±Ei (i = 1, 2):

D(ρ) =
2∑

i=1

γ̃+
i L[ηi ](ρ) +

2∑

i=1

γ̃−
i L[η†

i ](ρ), (24)

Here, the Lindblad superoperators are defined as L[X̂ ](ρ) = X̂ρX̂† − {ρ̂, X̂† X̂}/2.
The exact value of the decay rates γ±

i will depend on the nature of the system-
bath coupling. In the case of local dissipation A = 0, their specific form can be
found in Ref. [44]. As already discussed, synchronization takes place if there is
substantial separation between the two largest γ’s determining the dynamics. In this
case, local degrees of freedom undergo quasi-monochromatic oscillations and their
relative phases get locked.

5.1 Spin Synchronization

As discussed in Ref. [44], the case of a local environment A = 0 shows an “anom-
alous” synchronization pattern. Indeed, unlike classical manifestations of synchro-
nization and quantum synchronization induced by a common environment (Refs. [15,
16, 36]), it is greatly enhanced in the strong detuning � = |ω1 − ω2| regime, while
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Fig. 5 Left panel synchronization diagram as a function ofω2 andλ for a local bath. Cσx
1 ,σx

2
has been

calculated at time t = 75 (in units of ω1) using a time window of τ = 10. As explained in the text,
the local bath (A = 0) is assumed to be Ohmic with cut-off frequency ωc = 20, and its temperature
is T = 0. The initial state is |ψ(0)〉 = (| ↑〉 + | ↓〉)(| ↑〉 + | ↓〉)/2. Right panels σx

1 (t) (blue) and
σx
2 (t) (red) assuming ω2 = 1.25 and λ = 0.11 (top) and ω2 = 0.75 and λ = 0.11 (bottom)

the direct spin-spin coupling λ has a partially detrimental effect. Turning attention to
the case A = 1, the presence of a common bath has the tendency to facilitate spon-
taneous synchronization. In order to observe it, it is fundamental for the two spins
to have an interaction strong enough as to compensate the detuning. Furthermore, in
the local-bath case, depending on the Hamiltonian parameters, synchronization can
appear both in phase and in anti-phase. This feature is suppressed in the presence of
a common environment, where only anti-synchronization can be observed. This is
due to the different interplay between the γ’s in the two scenarios.

The anomalous synchronization emerging from a local environment is shown in
the {� − λ} diagram of Fig. 5. The local observable used to calculate the Pearson’s
parameter C are, respectively, σx

1 and σx
2 , even if the calculation could be extended to

generic local operators without qualitative changes in the results. In the left panel, we
show the synchronization diagram, showing the transition from phase to anti-phase,
while in the right panels we plot the trajectories of the two local observables in the
two distinct regimes.

On the other hand, the behavior of C for a common bath is displayed in Fig. 6
and it is very much similar to the characteristic Arnold tongues emerging in classical
synchronization problems. In this case, anti-synchronization emerges provided that
the spin-spin coupling is not too small with respect to the detuning. As a singular
behavior, around � = 0, the system shows “trivial” synchronization, given that the
two spins become indistinguishable.

The complementarity and the qualitative difference of the synchronization dia-
grams emerging in the two cases under study will be used in the following of this
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Fig. 6 Cσx
1 ,σx

2
(t = 75, τ =

10) as a function of ω2 and λ
in the presence of a common
bath (A = 1). All other
conditions as in Fig. 5

section to compare the Pearson’s measure to correlation quantifiers, namely, spin-
spin correlations 〈σ+

i σ−
j 〉, mutual information, and entanglement.

5.2 Spin Correlations

As noticed in Ref. [39], Z = 〈σ+
1 σ−

2 + σ+
2 σ−

1 〉 plays the role of a phase locking
indicator when applied to interacting spins, and then can be used as a synchronization
measure (see Sect. 3.4). At a first sight, C and Z evolve independently, as the sets
of equations of motion of their respective matrix elements are not coupled to each
other. Actually, the constraints, to which a physical density matrix is subject to, make
the behavior of the two indicators very close to each other. This aspect is discussed
in great detail in Ref. [61], in the case of independent spins, where the interplay
between spontaneous synchronization and superradiance is studied. In fact, in order
for spontaneous synchronization to emerge, the whole system needs to support a
long-lasting collective mode, which unavoidably displays spin-spin correlations.

These qualitative considerations are confirmed in the cases we are discussing
here: in both models (of local and global dissipation), low-quality synchronization
C is always accompanied by a value for Z close to zero. On the other hand, within
the synchronized regions, Z is significantly enhanced. Furthermore, the sign of Z
is reminiscent of the phase–anti-phase form of synchronization. These results are
shown in Fig. 7, where, in order to wash out faster oscillations and regularize the
picture, the time integral of Z (ZI = ∫ 100

t=0 Z(t ′)dt ′) is plotted as a function of ω2 and
λ. Both cases of local (A = 0) and global (A = 1) dissipation are shown. For a local
bath, Fig. 7a, the change from positive to negative values for the spin-spin correlation
parameter takes place in the same regionwhereC passes from synchronization to anti-
synchronization (compare with Fig. 5a, b). In view of the previous considerations,
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Fig. 7 ZI (a, b) and mutual information MI (c, d) as a function of ω2 and λ for a local bath A = 0
(a, c) and for a common bath A = 1 (b, d). All parameters as in Fig. 5

this change is suppressed for A = 1, Fig. 7b. It is worth noticing that the “anomalous”
synchronization peak around ω1 = ω2 displayed by C (Fig. 6) is broadened by ZI

(Fig. 7b), whose value appears smoother at critical changes.

5.3 Mutual Information and Entanglement

Mutual information (MI ) as a quantum synchronization witness in spin systems was
proposed by Ameri et al. in a work dealing with a system of two qubits placed in two
coupled cavities where only the first one is driven by a laser, while the second one is
populated by the photons leaking from the first cavity [32]. In that example, it was
shown that the steady-state mutual information was reminiscent of the synchronized
oscillations of local operators in the pre-steady-state regime.
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In the following we show that, in the models we are investigating, MI does not
play the witnessing role suggested in Ref. [32]. As a first observation, we notice that
we deal with systems decaying towards an equilibrium state (the Gibbs state) that
only depends on the Hamiltonian parameters, while the synchronization diagram
depends critically on the properties of the environment. To make this point clearer,
both cases we are considering here admit the same equilibrium state, whilst the two
synchronization diagrams are radically different. One may ask if some information
about synchronization appears in the dynamical behavior ofMI instead of its asymp-
totic value. For this reason, we considered the time at which synchronization starts
to be solid (t = 80 in Fig. 7c, d) and calculated MI for the two models (at longer
times MI would rapidly converge to zero everywhere). The two behaviors indicate a
very weak connection between MI and spontaneous synchronization. Starting from
a factorized state, the coupling λ immediately produces a quite robust amount of
MI (depending on the strength of λ) between the two spins. Then, the presence of
dissipation makes this correlation disappear, but it seems that the way MI fades
away is not connected with the building up of a synchronized dynamics. A very
similar argument can be applied to entanglement, that can be quantified using the
concurrence E [49]. The dynamical behavior of E (not shown) displays qualitative
features very close to the ones of MI .

Besides the specific models studied here, the argument can be made more general
considering the case of a purely dephasing dynamics.On the one hand, as discussed in
Ref. [36], such a process is not able to induce any synchronization, as no time scale
separation takes place. On the other hand, entanglement and mutual information
can converge to a finite value under the same circumstances. Therefore quantum
correlations in the steady state, in general, do not witness a previous syncronization
during relaxation.

6 Discussion and Conclusions

Present research on quantum synchronization has just started to unveil the distinctive
features of this phenomenon. Several factors, known to influence it in the classical
regime [1] are under study, including, for instance, non-linearity, dissipation, noise,
forcing,mutual or directional coupling between inhomogeneous components, or time
delay. Experiments reporting distinctive signatures of quantum synchronization are
expected to flourish in the next years.

The question about what is essential of quantum synchronization with respect to
the classical one is intimately related to the interplay between temporal and quantum
correlations. From the previous analysis we can establish few relevant criteria to
approach the phenomenon of quantum synchronization as described by different
measures and to assess usefulness and meaningfulness in each specific context:

• Absolute reference value: In order to be able to assess the amount of synchroniza-
tion in different regimes, it is important for a measure to be bounded and to have
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a definite value associated to the perfect emergence of full synchronization. The
Pearson’s parameter Eq. (3) reaches values very close to the maximum attainable
|CA1,A2(t |�t)| � 1 whenever good synchronization emerges. Similarly, the syn-
chronization error Eq. (5) is bounded in the quantum case, whereas the classical
one is not. Still, reported values are rather modest in the case of coupled optome-
chanical oscillators [17] and saturation of this bound that would correspond to the
best quantum synchronization has not yet been reported.

• Time dynamics dependence: The concept of synchronization is relative to the
time evolution of system’s observable or variables and a measure of synchro-
nization should reflect it covering a time window of the system dynamics, like
in temporal averages for instance, or being robust during evolution. This is the
case for several measures in different ways: some are based on time averages (e.g.
Pearson’s parameter (3)), others maintain distinct higher values during synchro-
nization (e.g. synchronization error (5)), and others assess the time stability of the
process (as Lyapunov exponents [62]). In general, the problem when looking at
instantaneous (quantum) correlations, MI etc. is that they can be instantaneously
huge even when there is no synchronization, as shown in Fig. 4. On the other hand,
looking at asymptotic values is not always leading to an insightful synchronization
condition.

• Local versus non-local Among the reported measures of synchronization, some
refer to local observables of the synchronized systems (likePearson factors, or local
phases in Kuramoto models) while other refer to quantum correlations present in
the composed system (in this sense being ‘non-local’). The possibility to associate a
genuine quantum correlation to synchronization is clearly appealing to distinguish
it from classical synchronization, as for instance with the synchronization error
[17]. On the other hand, this can give rise to spurious definitions of quantum
synchronization, actually not related at all with this dynamical phenomenon. This
question is still open and few further considerations are given below.

In the attempt to identify a measure for a genuine quantum synchronization,
different indicators have been proposed that actually do not refer to observables
but to the full quantum state, as discussed in Sect. 3. Invoking generic quantum
correlation as a measure of synchronization is in general not convincing. As an
example, a bipartite Bell-state is strongly correlated under any possible definition of
correlation, but in general this has nothing to do with synchronization. As a matter of
fact, any local unitary would leave it unchanged, while altering the dynamics of the
components of the system can alter dynamical synchronization. Even if non-local
correlations are not necessarily associated to specific synchronization phenomena,
it is important to remind that quantum correlations and dynamical synchronization
can occur under the same conditions in some systems [15–17, 30]. Still, quantum
correlations that capture specific signatures of synchronization are not generally
established. Looking at the examples we have treated here we can also draw some
conclusions.

Optomechanical self-sustained oscillators can achieve synchronization and sev-
eral parameters like the error and Pearson indicators give a similar insight to mutual
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information or other correlations (Figs. 3 and 4). Synchronization error however dis-
plays a small value far for the maximum bound not providing an absolute indication
for the synchronization degree (Fig. 3a). Furthermore, correlations signal synchro-
nization not by their value, but by having a final stable nonzero value, in contrast to
a highly oscillating one in the case of no synchronization.

In the case of linear dissipative oscillators the situation worsens. The Pearson
factor gives a valuable guide to look for synchronization, while all the other indica-
tors fail: synchronization error does not provide a good estimate of the behaviour of
synchronization with respect to the system’s parameters and other information mea-
sures are strongly initial state dependent. Still, robust quantum correlations (such as
discord) can witness synchronization, as both emerge under the same circumstances
in this case. At some level, all of the measures can be used to yield some insight,
however they require some craft efforts as compared to Pearson coefficients.

The literature about quantum synchronization in spins is much more limited with
respect to the case of harmonic oscillators or optomechanical systems. Furthermore,
in many cases, synchronization has been assessed using ad-hoc witness measures
more than quantifiers. This chapter represents the first attempt to compare such
quantities. As a result, we observed consistent indication of synchronization between
Pearson’s and spin-spin Z indicators, due to a strong interplay between phase-locking
dynamics and the dynamics of the local observables. In contrast, mutual information
and entanglement fail to give any useful information.

Finally, all the previousmeasures of synchronization could bemodified to account
for more general forms of synchronization. In all the discussed cases, synchroniza-
tion is either in-phase or anti-phase. It is worth remarking that, in general, delayed
synchronization can also emerge and synchronization indicators need to be improved
to catch this effect. This can be easily done, for instance in the case of the Pearson’s
parameter, allowing one of the two sliding windows to open at a time different from
the other one, that is equivalent to delay the time of one of the observable expectation
value

CA1(t),A2(t+τ )(t |�t). (25)

Similarly this could be done for all indicators based on local observables. Another
way of improving synchronization indicators consists in correcting possible relative
amplitude mismatch effects, similarly to the conditional variance factor appearing
in the context of the EPR correlations [63].

To conclude we would like to stress that the field is still in its early stages and this
work is the first attempt to assess meaning and utility of different synchronization
measures as well as their possible dependence to the specific features of the system
under study. Up to now, no experimental results in the quantum domain are at hand.
Therefore there is plenty of room for improvement and surprises, both regarding the
theoretical framework and possible practical applications of potential use as quantum
technologies.
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How Does Interference Fall?

Patrick J. Orlando, Felix A. Pollock and Kavan Modi

Abstract We study how single- and double-slit interference patterns fall in the pres-
ence of gravity. First, we demonstrate that universality of free fall still holds in this
case, i.e., interference patterns fall just like classical objects. Next, we explore lowest
order relativistic effects in the Newtonian regime by employing a recent quantum
formalism which treats mass as an operator. This leads to interactions between non-
degenerate internal degrees of freedom (like spin in an external magnetic field) and
external degrees of freedom (like position). Based on these effects, we present an
unusual phenomenon, in which a falling double slit interference pattern periodi-
cally decoheres and recoheres. The oscillations in the visibility of this interference
occur due to correlations built up between spin and position. Finally, we connect the
interference visibility revivals with non-Markovian quantum dynamics.

Since the days of Galileo and Newton, it has been known that acceleration under
the influence of gravity is independent of an object’s mass [1, 2]. This peculiarity
has led to the proposition of various gravitational equivalence principles which, if
broken, represent a departure from our current understanding of the theory of gravity.
Einstein’s theory of general relativity is fundamentally classical, describing gravity
on large length scales in terms of curvature of the underlying spacetime metric.
Although it is possible to formulate quantum field theories on a static curved metric,
it remains unclear how existing theory should be modified to describe gravity on the
quantum mechanical scale [3]. Whilst the work we present here does not attempt

P.J. Orlando (B) · F.A. Pollock · K. Modi
School of Physics and Astronomy, Monash University,
Melbourne, Victoria 3800, Australia
e-mail: patrick.james.orlando@gmail.com

F.A. Pollock
e-mail: felix.pollock@monash.edu

K. Modi
e-mail: kavan.modi@monash.edu

© Springer International Publishing AG 2017
F.F. Fanchini et al. (eds.), Lectures on General Quantum Correlations
and their Applications, Quantum Science and Technology,
DOI 10.1007/978-3-319-53412-1_19

421



422 P.J. Orlando et al.

to quantise gravity, it demonstrates that there is much insight to be gained from
exploring non-relativistic quantum mechanics in weak-field gravity.

In the weak-field limit, a Newtonian description of gravity provides a satisfactory
approximation and is, advantageously, compatible with the Hamiltonian formulation
of quantum mechanics; however, its disadvantage lies in the concealment of rela-
tivistic effects, such as gravitational time dilation and the gravitational redshift of
photons. Fortunately, one need not utilise the complete machinery of general relativ-
ity to take these effects into account. In fact, lowest order relativistic effects can be
introduced by simply considering the mass contributions of different energy states,
as given by the mass-energy relation E = mc2 of special relativity [4].

This is true even in the case of internal energy and becomes particularly interesting
for quantum systems, whose internal energy can exist in superposition. Recent work
by Zych and Brukner [5] treats this by promoting mass to an operator, the purpose of
which is to account for the effective mass of quantised internal energy. In addition to
introducing lowest order relativistic effects, this construction provides a newquantum
mechanical generalisation of the Einstein equivalence principle to superpositions of
energy eigenstates.

The role that Newtonian gravity plays in quantum theory was perhaps best high-
lighted by the famous experiment of Colella, Overhauser and Werner (COW), who
demonstrated interference of cold neutrons due to a relative phase acquired due to
the difference in gravitational potential between two arms of an interferometer. We
include details of the COW experiment in Appendix A.

More recently, the theory of ultra-cold atom condensates has provided a way to
test gravitational equivalence principles with quantum systems, by using optically
trapped atomic gases as an integrated interferometer [6–10]. The short de Broglie
wavelength of an atom makes atomic interferometers highly sensitive, whilst the
macroscopic nature of the condensate allows for a high degree of control. Proposals
for tests on board the international space station have been put forward which, if per-
formed, are expected to surpass the best classical tests by a factor of 100 [11]. Finally,
tests of the uniquely quantum mechanical equivalence principle for superpositions
have also been proposed [12].

In this article, we study how single- and double-slit interference patterns fall due to
gravity. Initially, we ignore the lowest order relativistic effects introduced by internal
degrees of freedom and find (unsurprisingly) that the interference patterns fall just
as classical objects do; in other words, the universality of free fall holds for spatially
delocalised quantum systems.

We then pedagogically introduce the mass operator and use it to explore non-
Newtonian effects on quantum systems with quantised internal energy. One such
system is a particle with intrinsic spin incident on a double slit in a gravitation field.
We demonstrate that when placed in a uniform magnetic field, the internal energy
results in periodic decoherence and re-coherence of the double-slit pattern. This
result is an example of decoherence due to gravitational time dilation presented by
Pikovski et al. [13] and other related works [14, 15].

The decoherence occurs due to the buildup of correlations between the spin and
position degrees of the particle. We identify the oscillations in the visibility of the
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interference fringes as a signature of non-Markovian quantum dynamics [16], and
demonstrate explicitly how memory effects play a role in the evolution of these
fringes. This illustrates that the tools of open quantum systems theory can help us
clearly understand Newtonian gravity in a quantum mechanical context.

1 Dropping a Quantum Interference Pattern

General relativity arose from the concept that gravitational effects are a result of the
underlying spacetime geometry. Whilst three fundamental forces of nature: electro-
magnetism, the strong force and the weak force; all depend on the internal properties
of matter, gravity, in the Newtonian regime, depends only on the mass of the particle.
Further, its dependence on the mass is such that the dynamics are completely inde-
pendent of the particle itself. This is often attributed to Galileo in a famous thought
experiment, devised to refute Aristotle’s claim that the gravitational acceleration of
a body is proportional to its mass. His very elegant thought experiment, described
in Fig. 1, led to the conclusion that all objects must fall at the same rate, regard-
less of their mass. This is known as the universality of free fall, and has profound
consequences for theories of gravity.

In this section we study how quantum interference patterns fall due to gravity. We
imagine that massive quantum particles (say neutrons) are ejected towards a single or
double slit. Once the particle passes through the slit, it falls freely under the influence
of gravity, while simultaneously interfering with itself.

Fig. 1 Galileo’s thought experiment. Galileo considered three spheres composed of the same
material. Two of the spheres had identical mass, whilst the third sphere was much lighter. He then
imagined attaching a rope between the small mass and one of the larger masses, and wondered what
would happen if all three were simultaneously dropped from the leaning tower of Pisa. According
to Aristotle, the small mass should fall slower than the large mass, pulling the rope taught and
impeding the acceleration of the larger mass. One would then expect to see the solitary large mass
hit the ground before the attached pair. However, one could also consider the pair of attachedmasses
as a single body, whose mass exceeds that of the large mass alone. In this case, the attached pair of
masses would be expected to hit the ground before the solitary large mass. This results in a logical
contradiction, from which the only escape is to conclude that both the small and large masses fall
with the same acceleration
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Here, we are concerned with the possibility of interesting gravitational effects
appearing in a single slit diffraction or double slit interference experiment. In accor-
dancewith the Einstein equivalence principle, we have come to expect that all objects
should fall identically under the influence of gravity, and this by no means excludes
quantum particles exhibiting their wave-like nature. However, this does not discount
the possibility of COW-like phases [17] skewing the wavefunction at the screen to
give apparent violations.

This leads us to our first result, which is to explore how the phase generated by
the gravitational potential results in an interference pattern that appears to fall like
a classical object. It also provides the foundation for a more sophisticated problem
explored in a later section. From a conceptual point of view, this is an interesting
scenario to investigate, especially when one considers the path integral formulation
of quantum mechanics.

In simple terms, the Feynman propagator is the Green’s function for the
Schrödinger equation, the solution resulting from the initial spatial wavefunction
being a dirac-delta distribution. It represents the amplitude for a particle at position
x and time t to be found at cx ′ a later time t ′. Once the propagator is known, the evo-
lution for any initial wavefunction can be found by convolution with the propagator.
The one dimensional propagator is often expressed as

〈
x ′∣∣U (t ′ − t)

∣∣x
〉= K0(x

′, t ′; x, t) =
∫

D (x(t)) exp

[
i

�

∫ t ′

t
L (x(s), ẋ(s), s) ds

]

,

(1)

whereU (δt) = exp(−i Ĥδt/�) is the time evolution operator, x(t) is a parametrised
path in space,D (x(t)) is the Feynmanmeasure over all possible paths and L (x, ẋ, t)
is the Lagrangian describing the system.

The path-integral formulation of quantummechanics is conceptually very appeal-
ing, since it can be interpreted as a statement about how quantummechanical objects
may deviate from the laws of classical dynamics. In fact, even in the presence of a
gravitational field, there is a non-zero amplitude which corresponds to the quantum
system not falling at all: 〈x, t ′|x, t〉 > 0 for some t ′ > t . Thus, from a foundational
point of view, we would like to use the path integral approach to examine the way
in which the gravitational potential affects a single-particle, double-slit interference
pattern.

A short outline of the derivation is shown here, with full details available in
Appendix B. The Lagrangian for a particle in a Newtonian gravitational potential
is L = 1

2mẋ2 − mgx . With reference to the propagator defined in Eq. (1), we para-
metrise the path x(t) in terms of deviations δx(t) from the classical trajectory, xc(t),
between the two points. This gives x(t) = xc(t) + δx(t), with δx(t) = δx(t ′) = 0.
This parametrisation leaves the Feynmanmeasure unchanged, as a sum over all paths
is equivalent to a sum over all deviations from a specific path. We are then left with
two terms: a phase dependent on the action of the classical trajectory and a Feynman
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integral over the deviations that has a form identical to that of a free particle. We
substitute the integral with the free particle propagator, but acknowledge that, since
this is sum over deviations, we must set x = x ′ = 0. The propagator for a particle in
a Newtonian gravitation potential is then

Kg(x
′, t ′; x, t) = exp

[
i
�
S [xc(t)]

]

√
2πi�(t ′ − t)/m

, (2)

where S [xc(t)] is the functional that gives action associated with the classical tra-
jectory between the points. We can express it as a function of (x, t, x ′, t ′) by solving
the equations of motion for the boundary conditions xc(t) = x and xc(t ′) = x ′. With
complete details inAppendixB.1, the general form for the classical action is given by,

S[xc(t)] = m

2

{
(x ′ − x)2

t ′ − t
− g(x + x ′)(t ′ − t) − g2

12
(t ′ − t)3

}
. (3)

1.1 Single and Double Slit Interference

We now consider applying this propagator to the problem at hand. Let’s begin by
assuming that the slits are long enough to ignore diffraction effects in the y-direction
(perpendicular to the gravitational field – which is in the negative x-direction – but
in the plane of the screen), this allows us to effectively reduce the problem to two
dimensions. Consider a source of particles at the origin (0, 0) and let a double slit be
located at distance D from the source in the z-direction. Each slit has width 2a with
centre located at x = ±b. The screen is then a further distance L away from the slits.
The two-dimensional propagator required for this problem is given by a free particle
propagator in the z-direction, multiplied by the gravitational propagator for the x
direction, as calculated in Eq. (2). This propagator allows us to ask the question: If a
particle initially starts at position �r = (0, 0), what is the probability of finding it at
position �r ′ = (x, D + L) on the screen? This distribution in x will be the the two
slit interference pattern that we seek.

When computing this amplitude, we consider a semi-classical approach. We
assume that the ‘trajectory’ of the neutron can be separated into two parts: (a) the
path from the source to the slits, followed by (b) the path from the slits to the screen.
Quantum mechanically, the particles need not pass through the slits and there even
exists the possibility of them passing through the slits multiple times before hitting
the screen. That being said, the probabilities associated with these events are negligi-
ble under certain conditions: The semi-classical approach is valid, provided that the
majority of the particle’s momentum is in the z direction, such that the wavelength is
approximately the z-direction wavelength, λ ≈ 2π�

mvz
. We assume that this wavelength

is much smaller than the relevant z-direction length scales, D and L , in conjunction
with the assumption that these are much larger than the relevant x direction length
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scales, b and a. Within this regime, the problem reduces to a single dimension. After
a rather tedious calculation (included in Appendix B.2 for completeness), the wave-
function at the screen due to a single slit centred at x = b, the instant the particle hits
it in the semi-classical approximation (τ = L/vz), is given by

ψ(1)(x) = eiφ(x)

i2
√

ηa

{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
, (4)

whereC[u] ≡ ∫ u
0 cos

(
π
2 x

2
)
dx is theFresnel cosine function, S[u] ≡ ∫ u

0 sin
(

π
2 x

2
)
dx

is the Fresnel sine function and η = 1 + L
D . Above

σ±(x) =
√

2

λL
η

{
(b ± a) − x

η
− 1

2
g
m2λ2

h2
DL

}
and (5)

φ(x) = π

{
x2

λ(D + L)
− mgx

λ(D + L)

h2
− g2

12

m4λ3

h4
(D + L)(D − L)2

}
. (6)

If b is set to zero, then this gives single slit diffraction. Extension to double slit
or even N -slit interference is given by taking a normalised superposition of the
wavefunctions corresponding to the different slit positions.

The square of this wavefunction will give the observed probability distribution
for the position at which the particle hits the screen; this is plotted for a single slit
in Fig. 2. The pattern clearly appears to shift towards the negative x direction as the
screen is moved further from the slit. In general, this is far easier to identify in single

Fig. 2 Single Slit Diffraction in a Gravitational field. In the top row, the magnitude squared
of the wavefunction in Eq. (4) |ψ(1)(x)|2 is plotted for source to screen distance D = 2m and
slit to screen distances z = {1m, 3m, 8m}. The second row shows the same information as a
two-dimensional probability density on the screen. The particle was chosen to be a neutron with
wavelength λ ∼ 10−9 m, and the gravitational field strength g = 9.8ms−2. In addition to the typical
spreading of the pattern, we observe an apparent translation of the pattern, which we can interpret
as falling
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slit diffraction, as the spreading of the pattern is less noticeable than in the double
slit case.

The location of the central maximum is indicative of the position at which a
classical point particle would arrive. If we consider a single particle incident on the
slit, then there exists a possibility that it will be detected above the central maximum.
We could interpret this as the particle having fallen less than expected classically.
Similarly we could detect a particle below the central maximum, indicating that it
fell faster than expected classically. Although it would be appealing to label this as
violation of the equivalence principle, to do so would be incorrect. The easiest way
to verify this is to transform to an accelerated coordinate system, taking us to the
freely falling frame, in which gravitational effects should completely vanish.

When calculating the propagator in Eq. (2), we made use of the general form
for the classical trajectory, which satisfies the Euler-Lagrange equations of motion.
Using the solution, we find that the classical parabolic trajectory an object takes from
the source at (x = 0, t = 0) to the slit at (x = 0, t = T ) requires an initial upward
speed vx (t = 0) = 1

2gT and final vertical speed of vx(t = T ) = − 1
2gT . The position

of the object τ seconds later would then be,

xc(T + τ ) = −gτ

2
g(τ + T ) = −gm2λ2

2h2
(
L2 + LD

)
. (7)

We would expect that, by performing the coordinate transformation x = ξ +
xc(T + τ ), the pattern should become identical to the case where g = 0, in accor-
dance with the equivalence principle. Since the x dependence in the wavefunction
ψ(1) appears only through the function σ±(x), we can work directly with the expres-
sion given in Eq. (5),

σ±(ξ) =
√

2

λL
η

{

(b ± a) − ξ − 1
2g

m2λ2D2

h2
(
L2 + LD

)

η
− 1

2
g
m2λ2

h2
DL

}

(8)

=
√

2

λL
η

{
(b ± a) − ξ

η
+ 1

2
g
m2λ2D2

h2
L

[
D (L + D)

L + D
− D

]}
(9)

=
√

2

λL
η

{
(b ± a) − ξ

η

}
. (10)

The result above shows that the gravitational effect on the interference can be elimi-
nated by transforming to an accelerated coordinate system. It is now clear that there
are no equivalence principle violations; if we detect a particle away from the central
maximum, it is interpreted as the usual deviations of a quantum particle from its
classically expected trajectory.

We don’t need to calculate the double slit pattern to identify the absence of a
COW phase. Since the multi-slit wavefunction is simply a superposition of single
slit wavefunctions, the coordinate transform above extends to the general case; the
only effect gravity will have is a translation of the entire pattern. The reason for this
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is that in the COW experiment, theMach–Zehnder interferometer constrains the path
of the particle to an approximate binary. Whilst confined to these paths, the relative
Aharonov–Bohm-like phase is accumulated. In the case of single-slit diffraction,
there is no path confinement, and even for multiple slits, where there are discrete
variations between paths, there is no relative phase accumulated; this is because the
slits are effectively infinitely thin in our scenario.

Therefore, it would appear that there are no peculiar quantum effects that appear in
a freely falling interference pattern, beyond what one would expect in the absence of
gravity. The quantum mechanical deviations from the classically expected trajectory
represent a departure from the laws of classical physics, and, although the devia-
tions might seem to constitute a violation of the universality of free fall, the effects
are completely consistent with quantum behaviour as viewed from an accelerating
coordinate system. In other words, an interference pattern falls like a classical object.

2 Effects of Internal Degrees of Freedom

In this section, we examine some of the gravitational effects that appear at leading
relativistic order for particles with internal degrees of freedom. These effects, which
can be seen as arising from relative time dilation of different internal levels, were first
investigated in detail by Zych et al. [14, 15] and Pikovski et al. [13], and were further
discussed by Zych and Brukner in the context of the equivalence principle [5].

2.1 The Hamiltonian Formulation

According to the Einstein equivalence principle, all internal energy acts as a mass
from the perspective of both general and special relativity. That is, the mass terms
appearing in the kinetic and potential energy of a system in a gravitational field
should depend on the internal energy state. When the internal state corresponds to
a dynamically varying degree of freedom, with its own Hamiltonian H int, then all
terms involving the mass should couple it to the external degree of freedom. In other
words, the mass is promoted to an operator on the internal degree of freedom:

m → M = m 1int + H int

c2
. (11)

The full Hamiltonian for a particle in a uniform gravitational field, including the
newly defined mass operator is then (to leading relativistic order) [5]
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H = Mc2 + P2

2M
+ Mgx (12)

=
(
m1int + H int

c2

)
c2 + P2

2
(
m1int + H int

c2

) +
(
m1int + H int

c2

)
gx (13)

= mc2 + H int + P2

2m
+ mgx + 1

mc2

{
− P2

2m
H int + gxH int

}
+ O (c−4

)
, (14)

where, in the last line, we have expanded the M−1 in a Taylor expansion. This is
valid, provided that the largest eigenvalue of the internal Hamiltonian, denoted by
‖H int‖, satisfies ‖H int‖/mc2 � 1, i.e., the internal energy is small compared to the
rest mass. The additional terms introduced by the mass operator give lowest order
relativistic effects. The first effect is introduced by the coupling of the internal energy
to the kinetic energy operator, which represents lowest order special relativistic time
dilation. The other interaction term, coupling the internal energy to the Newtonian
potential, represents lowest order gravitational time dilation effects.

We can verify this by looking at the evolution of the internal degree of freedom.
Provided that the internal evolution is not trivial, i.e., that it is not in an eigenstate
of the internal Hamiltonian, it can be considered operationally as a clock [13]. If we
denote q to be an observable of the internal degree of freedom, then the evolution
given in the Heisenberg picture is, as described in Ref. [5],

q̇ = 1

i�
[q, H ] = 1

i�

{
[q, H int]1ext − [q, H int] P2

2m2c2
+ [q, H int]gx

c2

}
(15)

= q̇loc

(
1 − P2

2m2c2
+ g x

c2

)
. (16)

Here q̇loc, is the normal rate of internal evolution as given in the system’s rest frame.
Recalling that the rate of change of proper time, in the non-relativistic, weak-field
limit, is dτ = (1 − v2

2c2 − φ(x)
c2 )dt , we can easily identify these additional terms as

a result of lowest order time dilation. For semi-classical evolution of the external
degrees of freedom, the evolution of the internal degree of freedom is affected in a
manner that is consistent with our understanding of relativistic effects. Interestingly
this equation is valid not just for semi-classical systems, but also for non-local systems
or systemswithmomentum that is notwell defined. In these cases however,we cannot
apply any of our classical intuition [13].

This result can be interpreted in the following way; general relativity provides
a description for the evolution of clocks which are attached to observers evolving
according to the laws of classical mechanics. On the other hand, the mass operator,
has in a sense, allowed us to describe the evolution of a clock attached to an observer
who evolves according to the laws of quantum mechanics.

Though this intuition can be applied to the internal evolution, we will present
results that show this is not true when observing the external evolution. The evolution
of the position degree of freedom is given by,
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ẋ = 1

i�
[x, H ] = 1

i�

[x, P2]
2m
(
1 + H int

mc2

) = P

m

(
1 − H int

mc2

)
+ O (m−2c−4) . (17)

Again, if we consider a semi-classical wavepacket, and take the expectation value of
the equation above, we find that the velocity of this wavepacket depends on the state
of the internal degree of freedom. In particular, a particle in an excited state will have
a slower expected velocity than one in its ground state. If the particle is prepared
in a superposition state of internal energy, then its position at a later time will be
entangled with the internal degree of freedom. Thus, the mass operator introduces
spatial decoherence, which even appears in the case of a free particle [13].

2.2 The Path Integral Formulation

To examine these effects further, we will investigate the mass operator from the
perspective of the path integral formalism. We motivate the work here with the
question: How does the mass operator affect the falling interference presented in
the last section? In order for there to be any effect, the particle must have some
non-degenerate internal energy levels. We will restrict ourselves to the simple case
discussed in Ref. [12], where the particle is spin- 12 with a Zeeman splitting induced
by an external magnetic field.1 Before we can answer the above question, we need
to find the form for the propagator in this scenario.

We begin with the newly defined Lagrangian for this problem,

L(x, ẋ) = 1

2
Mẋ2 − Mgx − Mc2, (18)

For a particle with magnetic moment μ in a uniform magnetic field of strength B,
the mass operator is given by

M =
[
m − μB

2c2 0
0 m + μB

2c2

]
. (19)

From this point,we can construct theFeynmanpropagator, in accordancewithEq. (1).

K χ′,χ(x ′, t ′; x, t) = 〈x ′,χ′∣∣U (t ′ − t)
∣∣x,χ

〉
(20)

This is still a matrix element of the time-evolution operator; however, the evolution
operator now contains an index for spin, accounting for the two-dimensional internal
Hilbert space. This also naturally leads to a matrix representation:

1We will, however, still consider the particle to be neutral, so there is no coupling to the electro-
magnetic field beyond its spin interaction.
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K χ′,χ(x ′, t ′; x, t) =
[
K↑↑(x ′, t ′; x, t) K↑↓(x ′, t ′; x, t)
K↓↑(x ′, t ′; x, t) K↓↓(x ′, t ′; x, t)

]

. (21)

Since the interaction terms appearing in Eq. (18) all commute with the mass operator
in Eq. (19), the propagator can be greatly simplified, as it is then diagonal in the
internal energy eigenbasis:

K(x ′, t ′; x, t) =
[
Km−(x ′, t ′; x, t) 0

0 Km+(x ′, t ′; x, t)
]

, (22)

where Km±(x ′, t ′; x, t) is the propagator for a particle of massm± = m ± μB/(2c2);
from the perspective of the propagator, the different internal energy states just appear
as modified masses. Typically, the rest mass energy is excluded from the Lagrangian;
it has no effect on the dynamics, and merely leads to an unmeasurable global
phase exp(−imc2t/�). When promoting mass to an operator, a relative phase of
exp(−iμBt/�) is introduced between the two internal states, which could in princi-
ple have a measurable effect.

We wish to use this propagator to calculate the wavefunctions for particles which
initially have spin in the superposition

∣∣χ0

〉 = α |↑〉 + β |↓〉, with |α|2 + |β|2 = 1.
However, if we are only interested in the interference pattern observed on the screen,
and do not measure the spin state of the particle, then we need to trace out the
spin information. We review how to do this in Appendix C. We find that the spatial
probability distribution for an initial state

∣∣χ0

〉⊗ |ψ0〉 is then

〈x〉 = |α|2
∣∣∣∣

∫
dxKm−(x, t; x, 0)ψ0(x)

∣∣∣∣

2

+ |β|2
∣∣∣∣

∫
dxKm+(x, t; x, 0)ψ0(x)

∣∣∣∣

2

,

(23)
which is a convex sum of the contributions coming from each internal state. This is
immediately identifiable as decoherence, which is consistent with our interpretation
of Eq. (17). Additionally, this demonstrates that, when tracing out the spin degree of
freedom, the phase introduced by the rest mass operator becomes irrelevant.

The form of Eq. (23) allows for easy calculation of the decohered spatial distrib-
ution, which we will illustrate with an example. Take the propagator to be that of a
free particle and choose the initial wavefunction to be a Gaussian wavepacket with
momentum p. This wavefunction is given by

ψ0(x) = (πσ)−
1
4 exp

[
− x2

2σ2
+ i px

�

]
. (24)

After convolving this with the free space propagator Km±
0 (x, t, x0, 0), we have

ψm±(x, t) =
exp
[
iφ − 2 (z−p/m±t)2

σ2(1+γ2
m± )

]

(πσ2)1/4
√
i − γm±

, (25)
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where γm± = �t
m±σ2 and φ is an irrelevant phase factor. We notice that the mean of

this Gaussian moves with speed p/m±. If the particle is prepared in a superposition
state of internal energy then Eq. (23) states that the probability distribution will be
given by

P(x, t) = |α|2∣∣ψm−(x, t)
∣∣2 + |β|2∣∣ψm+(x, t)

∣∣2. (26)

In other words, the spatial distribution is given by amixture of Gaussian wavepackets
propagating with different speeds.

Given the initial state |�〉 = (α |↑〉 + β |↓〉) ⊗ |ψ0〉, the coupling introduced by
themass operator evolves the state to |�(t)〉 = α |↑〉 ⊗ ∣∣ψm−(t)

〉+ β |↓〉 ⊗ ∣∣ψm+(t)
〉
.

If a detector is placed at a distance from the source far enough for the Gaussian
distributions described by 〈x |ψm−(t)〉 and 〈x |ψm+(t)〉 to become distinct, then the
arrival time of the particle will be bimodal. Again, if the position degree of freedom
is considered to be a ‘clock’ – its non-trivial evolution permits this – then this may
be considered to be a special relativistic time dilation effect [13].

3 Gravitational Decoherence in Double Slit Interference

We have now developed the tools to explore falling double slit interference with an
internal degree of freedom. Again, we consider a particle incident on slits of width 2a
centred at x = ±b. Our earlier calculation in the first section used the semi-classical
approximation for the z-direction, to replace arrival times T and τ with the classically
expected times, D/v and L/v. We have just shown, however, that the arrival time of
the particle will no longer be well defined when the internal degree of freedom plays
a dynamical role.

We also saw, in the previous section, that the effect of using the gravitational
propagator was equivalent to performing a mass-independent coordinate transfor-
mation. This means that, for a wavepacket with zero initial average momentum, the
mass operator has no effect on the position expectation value under the influence
of a gravitational potential.2 This leads to an interesting effect if we consider a two
dimensional Gaussian wavepacket with zero average momentum in the x-direction
(in the direction of the gravitational field) and a non-zero average momentum in the
z-direction. At some fixed distance along z from the particle’s initial location, the
difference in expected arrival times will mean that, depending on the internal state,
gravity will have displaced the wavepacket for different amounts of time. As a result,
the higher energy state will fall further than the lower energy state, causing gravity
to act, in some sense, like an asymmetric Stern–Gerlach device. This effect will be
very small, as it depends on the magnitude of ‖H int‖/(mc2), but can be sensitively
detected by introducing an interference pattern along x .

We calculate the pattern produced by the double slit by returning to a two dimen-
sional propagator, and simplifying the problem to a Gaussian particle distribution

2It will however affect the spreading of the wavepacket and therefore the variance in the position.
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incident on the slits which is then detected at a screen L metres away. In this case,
the wavefunction just beyond the slits, for a particle of mass m, is given by

ψ(1) (x, z, t) =
∫ b+a
b−a

∫∞
−∞ dx0dz0K0(z, t; z0, t)Kg(x, t; x0, 0)ψ0(x0, z0)

∫ b+a
b−a dxψ(x0, 0)

. (27)

This avoids the semi-classical approximations made in the previous calculation,
but leads to a time-dependent wavefunction. However, we are only interested in the
spatial distribution observed at the screen, with nomeasurement performed regarding
the time of arrival. The simplest way to account for this is to average the distribution
over some length of time so that

ψ̄(x, z = L) = 1

2�t

∫ �t

−�t
|ψ(x, L , t)|2dt, (28)

where �t will have some relationship with the spatial spread of the Gaussian packet
in the z direction, such that the majority of the probability lies within ±�t . Figure3
shows a plot of the resulting two-slit interference, calculated for a neutron in equal
superposition of its internal energy states. The energy splitting is �E ≈ 10−14 J,
corresponding to a magnetic field on the order of 1012 T. Even with this infeasibly
large energy splitting, the decoherence effect occurs over tens of metres. If a more
reasonable value for the energy splitting is used, then spreading of the wavepacket
delocalises the particle before the decoherence is even detectable.

Fig. 3 Decoherence of Double Slit Interference in a Gravitational Field. The internal energy
splitting leads to different expected arrival times for the wavepacket at the screen. The pattern
corresponding to the higher energy spin state will fall further than its counterpart, resulting in
periodic reductions in the visibility of the interference. The intensity at the screen for distances of
10, 30 and 50m is shown for a neutron with wavelength λ ∼ 10−8 m and internal energy splitting
of �E = 10−14 J. The top row shows the time-averaged spatial probability distribution for the
up (green, solid) and down (blue, dotted) spin components, while the bottom row plots the spin-
averaged probability distribution as it would be observed on the screen. All x positions are relative
to the position of a classical particle with mass m−
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This decoherence is suggestive of the effects described in Ref. [14]; where Zych
et al. demonstrate that the interference pattern in a Mach–Zehnder interferometer
decoheres as a result of proper time. The work we present here is a free space inter-
ference analogue, which similarly exhibits periodic decoherence effects. This gives
strength to the argument in Ref. [13] that the effects on external evolution, intro-
duced by the mass operator, are complementary to the interpretation of time dilation,
occurring for evolution of the internal degrees of freedom. To put it more elegantly,
embedding an operational clock in a system which behaves quantum mechanically
results in an evolution which destroys this quantum nature.

4 Coherence, Correlations, and Non-Markovian Dynamics

The decoherence of the interference fringes discussed above can be better understood
in terms of correlations between internal and external degrees of freedom. It also turns
out that spin coherence is necessary for the generation of non-classical correlations
between the internal and external degrees of freedom.We discuss each of these ideas
successively below, beginning with coherence theory, before providing a further
interpretation in terms of non-Markovian open dynamics.

Incoherent operations. The total Hamiltonian in Eq. (14) is diagonal in the spin
basis and can therefore be expressed as H = ∣∣↑〉〈↑∣∣⊗ Hm− + ∣∣↓〉〈↓∣∣⊗ Hm+ . There-
fore, the unitary operator for the joint dynamics has the form of a controlled-unitary
on the external degree of freedom:

U = ∣∣↑〉〈↑∣∣⊗Um− + ∣∣↓〉〈↓∣∣⊗Um+ , (29)

which has the potential to generate correlations between the internal and external
degrees of freedom. However, when considering the reduced dynamics of the spin
alone, evolution between two points in time is described by an incoherent operation
(one whichmaps incoherent states to incoherent states) in the energy eigenbasis [18],
i.e.,

U |s ψ(0)〉 = ∣∣s ψmr (t)
〉
, (30)

where s ∈ {↓,↑}, r = + if s = ↓, and r = − if s = ↑. More specifically,U is inco-
herent since it will map a mixed state of the form σIC = q

∣∣↑〉〈↑∣∣+ (1 − q)
∣∣↓〉〈↓∣∣

to itself:
trext [UσIC ⊗ ρU †] = σIC , (31)

where ρ is any state of the external degree and IC stands for incoherent.
On the other hand, due to the non-vanishing commutator [P2, x] �= 0, the dynam-

ics of the external degree of freedomalone is not described by an incoherent operation
in the position basis. That is,U |s x〉 = ∣∣s ψmr (t)

〉
, and coherence of thewavefunction

can increase. For the same reason, both conditional unitary operationsUm− andUm+
will also look like incoherent operations from the perspective of the spin.
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Entanglement and discord. In recent years, researchers studying coherence theory
have shown that incoherent operations can lead to generation of entanglement and
quantum discord when the initial spin state possesses coherence. The generation of
entanglement is easily checked by taking the spin to initially be in the pure state
α |↓〉 + β |↑〉 for α,β �= 0 and the position state to be |ψ〉:

U (α |↓ψ(0)〉 + β |↑ψ(0)〉) = α
∣∣↓ψm+(t)

〉+ β
∣∣↑ψm−(t)

〉
, (32)

which is an entangled state, since the marginal states are not pure.
It is known that any coherence can be turned into entanglement via some inco-

herent operation and a pure ancilla [19]. However, in our setup we are limited to a
specific incoherent operation, which may not be able to generate entanglement for
all coherent initial states. Consider the case when the initial spin state is the mixed
state

σCO = w
∣∣↑〉〈↑∣∣+ (1 − w)

∣∣+〉〈+∣∣ , (33)

where |+〉 = (|↑〉 + |↓〉)/√2 andCO stands for coherent. For 0 ≤ w ≤ 1, the time-
evolved state will have quantum correlations, but for some values of w will have no
entanglement; the future state will be fully separable for w = 1 and entangled for
w = 0. Therefore, theremust be a critical value forw = wc where the transition from
entangled state to separable state occurs. In the regime where the state is separable,
it will necessarily have quantum discord [20–22] as measured by the internal or
external degree of freedom.

In fact, the only time quantum discord vanishes for t > 0 is when the initial spin
state has the form σIC = q

∣∣↑〉〈↑∣∣+ (1 − q)
∣∣↓〉〈↓∣∣. Let us further suppose that the

initial external state is given by a density matrix ρ. After evolving for some time t ,
the system will be in state

UσIC ⊗ ρU † = q
∣∣↑〉〈↑∣∣⊗ ρm−(t) + (1 − q)

∣∣↓〉〈↓∣∣⊗ ρm+(t). (34)

This clearly becomes a classical mixture of the states ρm−(t) and ρm+(t)with weight-
ingwwhen the internal degree of freedom ismeasured (whichevermeasurement basis
is chosen). That is, the unitary operation in Eq. (29), being an incoherent operation
on the internal degree of freedom, will not generate any non-classical correlations
when the initial spin state is a classical mixture of energy eigenstates.

On the other hand, with the exception of pathological cases where the initial
wavefunction does not have support everywhere, the two spin-conditioned external
states will never be exactly orthogonal, i.e., tr[ρm+(t)ρm−(t)] �= 0. This means that
the spin state after a measurement on the external degree of freedom will, in general,
depend on the choice of measurement basis; in other words, there are non-classical
correlations (discord) in one direction.

Let us now consider the case where both initial states can be arbitrary mixed
states. Then the time evolved states have form
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U

(
a b
b∗ 1 − a

)
⊗ ρU † =

(
a ρm− bUm− ρU †

m+
b∗Um+ ρU †

m− (1 − a)ρm+ .

)
(35)

If we can make (non-unitary) operations on the spin degree of freedom, such as
projections, we will see different interference patterns corresponding to different
outcomes. By making strong measurements on the spin by, e.g., introducing a Stern–
Gerlach apparatus, the correlations could be used to steer the interference pattern.

For example, to see how correlations affect the reduced dynamics, consider the
middle column of Fig. 3. If the magnetic field, and hence the effective coupling, was
turned off for z > 30m, the interference pattern would subsequently evolve unitarily
with a single mass-m propagator. It would continue to fall as if it were a classical
object, and the fringe visibility would never return. This is because the spin degree
of freedom, which ‘remembers’ the original two-slit pattern, is no longer interacting
with the position degree of freedom. However, if the spin components were filtered
out at a later time using a Stern–Gerlach apparatus, the visibility could be recovered
in full; the spin acts as a memory, hiding information about the particle’s earlier
trajectory. In other words, the periodic re-coherence of the spatial wavefunction is
indicative of non-Markovian behaviour, which we will now discuss further.

Reduced non-Markovian dynamics. In order to see the effects of these correlations
from another perspective, suppose we only look at the position of the particle. From
the perspective of an observerwho cannotmeasure the internal degree of freedom, the
evolution of the particle appears to be open, with the spin acting as an environment.
We immediately see that the same features are seen whether the initial spin state
possesses coherence or not. The external state is obtained by tracing over the spin in
Eq. (35) to get

ρext = aρm− + (1 − a)ρm+ . (36)

That is, the observed interference pattern is indistinguishable and independent
of b. When b = 0 the internal and external degrees of freedom become classically
correlated, andboth entanglement anddiscord are vanishing.Conversely,whenb �= 0
discord (and possibly entanglement) will be present.

Whenever the past state of a system directly affects its future evolution, a process
is called non-Markovian. While there have been several mathematical definitions of
‘non-Markovianity’ proposed for quantum processes [23, 24] (with variable levels of
descriptive success), the operationalmeaning of the term is clear cut [16]: If the causal
continuity of a system’s evolution is broken at some time t by, for example, making
a measurement and re-preparing the system in a fixed state |φ〉, independently of the
measurement outcome, then the process is non-Markovian if the system’s density
operator ρτ (x, x ′) at a later time τ depends on the measurement outcome k or on the
system’s history h prior to t . Formally,

ρτ (x, x
′ | |φ〉 , k, h) �= ρτ (x, x

′ | |φ〉 , k ′, h′) ⇒ Non-Markovian. (37)



How Does Interference Fall? 437

Fig. 4 Non-Markovian Behaviour of an Interfering Particle with Spin. A grating filter is intro-
duced at z = 30m, allowing particles to pass through either the white or black regions in the top-left
panel. The particle is then subsequently re-prepared in a Gaussian state, whose probability density
is shown in the bottom-left panel; this state is the same for either choice of filter. The plots on the
right show the probability distribution to find the particle at different positions on a screen placed at
z = 80m for the two choices of filter; top curves show spin-up (green, solid) and spin-down (blue,
dotted) projections, the lower plots show the spin-averaged position distribution. Distinguishability
of the two cases indicates non-Markovian behaviour. All x positions are relative to the corresponding
position of a classical particle with mass m−

This kind of behaviour implies that there is some sort of memory transmitting infor-
mation from the past across the causal break. We will see that this is the case for the
falling particle described earlier in this section.

In order to introduce a causal break in the evolution, we will put the spatial
filter shown in the left column of Fig. 4 at z = 30m. This can be set to either allow
particles through the white region (which has the greatest overlap with the spin-up
wavefunction) or the black region (which has the greatest overlap with the spin-down
wavefunction). After the filter, the particle is rapidly (effectively instantaneously)
collimated into a Gaussian state along x , which does not depend on whether the
black or white filter is chosen.

Since the overlap of the white (black) filter function fw(b)(x)with the spin-up and
spin-down wavefunctions at z = 30m is different, the subsequent spin state will be
conditioned on the choice of filter. The post-filter spin density operator is given by

ρw(b) = |α|2
∣∣∣∣

∫
dx fw(b)(x)ψm−(x)

∣∣∣∣
∣∣↑〉〈↑∣∣+ |β|2

∣∣∣∣

∫
dx ′ fw(b)(x)ψm+(x)

∣∣∣∣
∣∣↓〉〈↓∣∣

+ αβ∗
∫

dxdx ′ fw(b)(x)ψm−(x) fw(b)(x
′)ψ∗

m+(x ′)
∣∣↑〉〈↓∣∣+ h.c., (38)

where ψm±(x) is the time-averaged wavefunction for the relevant spin branch at the
z position the filter is applied. For α = β = 1/

√
2, the post-filter probabilities for

the spin-up and down states are ∼ 4
5 and ∼ 1

5 respectively for the white filter, and vice
versa for the black filter.
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The right hand side of Fig. 4 shows the probability distribution further from the
slits after each of the filters is applied (note that the two spin components have already
begun to separate again). Since the two conditional distributions are clearly different,
the dynamics of the spatial distribution must be non-Markovian; the only way the
post re-preparation evolution can depend on which filter was applied is through the
spin state, which is acting as a memory.

5 Conclusion

The universality of free fall is a pervasive phenomenon, and one which has inspired
more fundamental gravitational equivalence principles. This includes Einstein’s
famous equivalence between mass and energy which, ultimately, forms part of the
foundation for our current understanding of gravity. Here, we have explored how a
self-interfering quantum particle falls under the influence of Newtonian gravity. We
have shown that the universality of free fall holds even in this case, as the interference
pattern itself fall just like a classical particle.

We have also considered interference of falling neutrons in the presence of a
strong magnetic field. The presence of the magnetic field leads to splitting of the
internal energyof the neutronswhich, according to theEinstein equivalence principle,
should make spin-down neutrons more massive than spin-up neutrons. Moreover,
if a neutron is prepared in a spin-superposition state (with respect to the internal
energy eigenbasis), this seemingly leads to the violation of a super-selection rule,
i.e., superposition of masses. However, we use the mass operator formalism [5] to
show that, if the energy splitting of the internal spin contributes to the mass of the
neutron, then the visibility of the interference pattern periodically decreases and
increases.

Our results indicate that these decoherence effects are a consequence of an opera-
tional clock embedded within a quantum mechanical rest frame. That is, the internal
degree of freedom keeps track of the time the particle spends being in different mass
states. Finally, we have shown that this accounting of the internal energy (mass) state
can be understood as non-Markovian dynamics for the position degree of freedom,
with the spin acting as a memory. We show the non-Markovian behaviour by opera-
tional methods using the notion of causal break introduced in Ref. [16]. In particular,
we have given an operational recipe to witness the non-Markovian memory by solely
acting on the external degree of freedom.

In Ref. [13] it is argued that gravity may be the culprit for quantum decoherence.
This mechanism does not depart from how we think of decoherence in open systems
theory more generally. This view is fundamentally different from that posited by
the proponents of collapse theory who claim that gravity leads to fundamentally
irreversible dynamics, cf. Ref. [25]. Thankfully, one can differentiate between the
two hypotheses by checking whether the decoherence can be reversed [26], which
we do here demonstrating that coherence-information loss due to gravity can be
recovered.
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Appendices

A The COW Experiment

The Colella-Overhauser-Werner experiment provided the first evidence of a gravi-
tational effect that is purely quantum mechanical [17]. In this experiment, Colella
et al. used a silicon crystal interferometer to split a beam of neutrons, placing one of
the beam paths in a higher gravitational potential (see Fig. 5). The difference in the
gravitational potential between each arm results in a relative phase shift, which, when
recombined, can bemeasured asmodulated intensity. On the length scale of the inter-
ferometer, the gravitational field is approximately constant. This allows the relative
phase difference between the beams to be calculated using the Wentzel-Kramers-
Brillouin (WKB) approximation; that is to integrate the potential difference between
the classical trajectories over time [27]. The two vertical paths of the interferometer
contribute phases which cancel out, leaving only the horizontal paths. The phase
shift is found to be

�� = 2πmImG gAλ

h2
sin φ. (39)

A phase shift of this form would be predicted for a quantum mechanical particle
in the presence of any scalar potential; in this case, it is the Newtonian gravitational
potential. A full description of this effect requires only regular quantum mechanics
and Newtonian theory, needing nometric description of gravity, but being unexplain-
able by classical Newtonian gravity alone. It represents the first evidence of gravity

Δh

φ

2θ

d

d

L

Fig. 5 COW Interferometer | Left Schematic of the apparatus used in the COW experiment, taken
from Ref. [17]. The interferometer is rotated about the axis of the first Bragg angle of diffraction.
Right Simplified diagram used to derive the induced phase shift
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interacting in a truly quantum mechanical way. However, from the perspective of
quantum theory, this effect is well understood as a scalar Aharanov–Bohm effect and
manifests similarly for charged particles in electric potentials [14, 28].

B Single Slit Diffraction in a Newtonian Gravitational
Potential

B.1 Derivation of the Propagator

First consider the Lagrangian for a free particle L = 1
2mẋ2. The Feynman propagator

is given by

〈x ′, t ′|x, t〉 = K0(x
′, t ′; x, t) =

∫
D (x(t)) exp

[
i

�

∫ t ′

t

1

2
mẋ(s)2ds

]

(40)

=
exp
[
im
2�

(x ′−x)2

t ′−t

]

√
2πi�(t ′ − t)/m

. (41)

This result will be needed when we consider the propagator for a particle in a linear
gravitational potential. In this case the Lagrangian is given by L = 1

2mẋ2 − mgx ,
which gives the Feynman propagator

Kg(x
′, t ′; x, t) =

∫
D (x(t)) exp

[
i

�

∫ t ′

t
ds

{
1

2
mẋ(s)2 − mgx(s)

}]

. (42)

To simplify this calculation we express the path x(t) in terms of deviations from
the classical trajectory xc(t)which satisfies the Euler-Lagrange equations of motion.
The Feynman measure which sums over all possible paths then becomes a sum over
all possible deviations from the classical path. The action expressed in terms of this
new parametrisation is

S[xc(t) + δx(t)] =
∫ t ′

t
dt

{
1

2
m
(
ẋ + δẋ

)2 − mg
(
xc + δx

)}
(43)

=
∫ t ′

t
dt

{
1

2
mẋ2c − mgxc + mẋcδẋ + 1

2
m(δẋ)2 − mgδx

}
,

(44)

where 1
2mẋ2c − mgxc = s[xc(t)], which is evidently the extremised action given by

the classical trajectory. The term containing ẋcδẋ can be integrated by parts, realising
that the deviations are zero at the endpoints of the path:
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S[xc(t) + δx(t)] = S[xc(t)] +
∫ t ′

t

1

2
m(δẋ)2 dt + [ẍδx]t ′t −

∫ t ′

t
mδx (ẍc + g) dt.

(45)
The last two terms vanish (ẍc = −g) and substituting the rest into Eq. (42) and
factoring out the classical action we arrive at

Kg(x
′, t ′; x, t) = exp

[
i

�
S [xc(t)]

]∫
D (δx(t)) exp

[
i

�

∫ t ′

t

1

2
mδẋ(s)2ds

]

.

(46)
The remaining Feynman integral over the deviations is recognised as the free par-
ticle propagator in Eq. (40), but with the subtle difference being that x = x ′ = 0.
Substituting the integral with the expression from Eq. (41) the propagator becomes

Kg(x
′, t ′; x, t) = exp

[
i
�
S [xc(t)]

]

√
2πi�(t ′ − t)/m

. (47)

Now, all that remains is to find the explicit form for the classical action. We begin
with the classical equation ofmotion, ẍc = −g, and solve to find the general solution,

xc(t) = −1

2
gt2 + at + b. (48)

We now impose the boundary conditions x(t) = x and x(t ′) = x ′ and solve for the
constants a and b:

x = −1

2
gt2 + at + b and x ′ = −1

2
gt ′2 + at ′ + b. (49)

Solving for a and b gives

a = x ′ − x

t ′ − t
− g(t2 − t ′2)

2(t ′ − t)
= x ′ − x

t ′ − t
+ 1

2
g(t + t ′), (50)

and

b = 1

2

(
x ′ + x + 1

2
g(t2 + t ′2) − a(t + t ′)

)
(51)

= 1

2

(
x ′ + x − (x ′ − x)

t + t ′

t ′ − t
+ 1

2
g(t2 + t ′2) − 1

2
g(t + t ′)2

)
(52)
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= 1

2

(
(x ′ + x)(t ′ − t) − (x ′ − x)(t + t ′)

t ′ − t
− gt t ′

)
(53)

= 1

2

(
2(xt ′ − x ′t)

t ′ − t
− gt t ′

)
= xt ′ − x ′t

t ′ − t
− 1

2
gt t ′. (54)

Thus, the action of the path taken from (x, t) to (x ′, t ′) is

S[xc(t)] =
∫ t ′

t
dt

{
1

2
m(−gt + a)2 − mg(−1

2
gt2 + at + b)

}
(55)

= m

2

∫ t ′

t
dt
{
2g2t2 − 2gat + a2 − 2gb

}
(56)

= m

2

(
a2(t ′ − t) − 2g

(
a(t ′ − t) + b

)
(t ′ − t) + 2g2

3
(t ′ − t ′)3

)
(57)

= m

2

{
(x ′ − x)2

t ′ − t
− g(x + x ′)(t ′ − t) − g2

12
(t ′ − t)3

}
. (58)

Finally, substituting this into Eq. (47), we arrive at the complete expression for the
propagator for a particle in a gravitational potential,

Kg(x
′, t ′; x, t) =

exp
[
im
2�

{
(x ′−x)2

t ′−t − g(x + x ′)(t ′ − t) − g2

12 (t
′ − t)3

}]

√
2πi�(t ′ − t)/m

. (59)

B.2 Calculating the Single Slit Wavefunction

We now consider applying this propagator to the problem at hand. Let’s begin by
assuming that the slits are long enough to ignore diffraction effects in the y direction.
Consider a source of particles at the origin (0, 0) and let a double slit be located at
distance z = D metres from the source. Each slit has width 2a with centre located at
x = ±b. The screen is then a further L metres away from the slits. The two dimen-
sional propagator required for this problem is given by a free particle propagator
in the z-direction multiplied by the gravitational propagator for the x direction as
calculated in Eq. (2). This propagator allows us to ask the question of If a parti-
cle initially starts at position �r = (0, 0), what is the probability of finding the it at
position �r ′ = (x, D + L) on the screen? This distribution in x will be the the two
slit interference pattern that we seek. When computing this amplitude we consider
a semi-classical approach. We assume that the ‘trajectory’ of the neutron can be
separated into two parts: (a) the path from the source to the slits, followed by (b)
the path from the slits to the screen. Quantum mechanically the particles need not
pass through the slits and there even exists the possibility of them passing through
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the slits multiple times before hitting the screen. That being said the probabilities
associated with these events are negligible.

The semi-classical approach is valid provided that the majority of the particle’s
momentum is in the z direction, such that the wavelength is approximately the z-
direction wavelength, λ ≈ 2π�

mvz
. We assume that this wavelength is much smaller

than the z-direction scale lengths D and L in conjunction with the assumption that
these are much larger than the x direction scale lengths. This allows us to consider
the particles motion in the z-direction as approximately classical and allows for the
motion to be partitioned about the slits. The specific propagator K (1)

g (x, T + τ ; 0, 0),
for the process of starting at point (x = 0, z = 0) at time t = 0, passing through
position (ω ∈ [b − a, b + a], D) at time T and then arriving at position (x, D + L)

at time T + τ will simply be a product of propagator for each independent component
of the path, integrated over the slit distribution �(ω),

�(ω) =
{
1 b − a < ω < b + a
0 otherwise

, (60)

K (1)
g (x, T + τ ; 0, 0) =K0(D, T ; 0, 0)K0(D + L , T + τ ; D, T )

×
∫ b+a

b−a
Kg(ω, T ; 0, 0)Kg(x, T + τ ;ω, T )dω. (61)

Evidently for any particular choice of D and L , the two z propagators will only give
global phase which is identical for all x . This global phase has no measurable effects,
allowing us to discard the z propagators. This integral is performed in below giving
the result

K (1)
g (x, T + τ ; 0, 0) = eiφ(x)

i
√
2λ(D + L)

×
{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
,

(62)

whereC[u] ≡ ∫ u
0 cos

(
π
2 x

2
)
dx is theFresnel cosine function, S[u] ≡ ∫ u

0 sin
(

π
2 x

2
)
dx

is the Fresnel sine function and η = 1 + L
D and

σ±(x) =
√

2

λL
η

{
(b ± a) − x

η
− 1

2
g
m2λ2

h2
DL

}
, (63)

φ(x) = π

{
x2

λ(D + L)
− mgx

λ(D + L)

h2
− g2

12

m4λ3

h4
(D + L)(D − L)2

}
. (64)

The propagator obtains its name for good reason. An initial wavefunction ψ0(x)
convoluted with the propagator will give the future state of the wavefunction for all
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time ψ(x, t) = ∫ G(x, t; s, 0)ψ0(s)ds. For the purposes of this calculation we can
assume a point source of particles such that the initial spacial distribution of the
particle is a δ-function. This however means that the wavefunction is the ‘square
root of a δ-function’, which is not guaranteed to be defined. That aside, we can
calculate the spatial distribution of the particle at the screen, but in order to have this
distribution be normalised, we must account for the fact that a large portion of the
wavefunction does not pass through the slit. Thus in actual fact the distribution at
the screen is given by the conditional probability to be at position x and time T + τ
given that it was at position x ′ ∈ [−a, a] at time T . Fortunately as outlined below,
the normalised wavefunction is simply the propagator in Eq. (62) multiplied by a

factor
√

λD
2a . Finally we arrive at the normalised wavefunction at the screen, for a

particle passing through a single slit of width 2a, centred at x = b,

ψ(1)(x) = eiφ(x)

i2
√

ηa

{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
, (65)

with φ(x) and σ±(x) defined in Eqs. (6) and (5), and η = 1 + L/D. The square of
this wavefunction will give the probability distribution for the particle at the slit,
which is plotted in Fig. 2 for various distances between slit and screen. The pattern
clearly appears to shift towards the negative x direction as the screen is moved further
from the slit.

Integrating over the Slit Profile

The propagator to arrive at x having passed through a single slit of width 2a with
centre at x = b is found by integrating over the slit distribution, �(ω), which is 1
for b − a < ω < b + a and 0 otherwise:

K (1)
g (x; a, b) =

∫ ∞

−∞
A(x,ω)�(ω)dω (66)

=
∫ b+a

b−a
Kg(ω, T ; 0, 0)Kg(x, T + τ ;ω, T )dω (67)

=
∫ ∞

−∞
dω �(ω)

√
m

2πi�T

√
m

2πi�τ
exp

[
im

2�

{
ω2

T
− gωT − g2

12
T 3
}]

(68)

× exp

[
im

2�

{
(x − ω)2

τ
− g(x + ω)τ − g2

12
τ3
}]

. (69)

Completing the square in ω,
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ω2

T
− gωT− g2

12
T 3 + (x − ω)2

τ
− g(x + ω)τ − g2

12
τ 3 (70)

= ω2

T
+ ω2

τ
− 2xω

τ
− gω(T + τ ) + x2

τ
− gxτ + g2

4
(T 3 + τ 3)

(71)

= ω2 T + τ

T τ
− 2ω

(
x

τ
+ 1

2
g(T + τ )

)
+ x2

τ
− gxτ − g2

12
(T 3 + τ 3)

(72)

= ζ

(
ω − κ

ζ

)2

− κ2

ζ
+ x2

τ
− gxτ − g2

12
(T 3 + τ 3), (73)

where ζ = T+τ
T τ

and κ = x
τ

+ 1
2g(T + τ ). Returning to Eq. (69),

K (1)
g (x; a, b) = eiφ(x,T,τ )

√
m

2πi�T

√
m

2πi�τ

∫ ∞

−∞
dω exp

[
imζ

2�

(
ω − κ

ζ

)2
]

,

(74)

where φ(x, T, τ ) = m
2�

(
x2

τ
− κ2

ζ
− gxτ − g2

12 (T
3 + τ 3)

)
is the phase produced by

terms not dependent on ω. We make the substitution v =
√

mζ
π�

(ω − κ
ζ
), and define

new limits of integration σ±(x) =
√

mζ
π�

(
(b ± a) − x T

T+τ
− 1

2gT τ
)
:

K (1)
g (x; a, b) = eiφ(x,T,τ )

√
2πi�

mζ

√
m2

(2πi�)2T τ

∫ σ+

σ−
exp

[
iπ

2
v2
]
dv (75)

= eiφ(x,T,τ )

√
(2i)2π�(T + τ )/m

∫ σ+

σ−

{
cos

(
iπ

2
v2
)

+ i sin

(
iπ

2
v2
)}

dv (76)

= eiφ(x,T,τ )

2i
√

π�(T + τ )/m

{
C[σ+(x)] − C[σ−(x)] + i S[σ+(x)] − i S[σ−(x)]

}
,

(77)

whereC[u]≡ ∫ u
0 cos

(
π
2 x

2
)
dx is theFresnel cosine function, S[u] ≡ ∫ u

0 sin
(

π
2 x

2
)
dx

is the Fresnel sine function. Now to simplify φ(x, T, τ ) we first have

κ2 = x2

τ 2
+ x

τ
g(T + τ ) − g2

12
(T + τ )2, (78)

κ2

ζ
= x2

τ 2

T τ

T + τ
+ x

τ
g(T + τ )

T τ

T + τ
− g2

12
(T + τ )2

T τ

T + τ
(79)

= x2T

τ (T + τ )
+ gxT − g2

12
T τ (T + τ ) (80)
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to get

φ(x, T, τ ) = m

2�

{
x2

τ
− κ2

ζ
− gxτ − g2

12
(T 3 + τ 3)

}
(81)

= m

2

{
x2(T + τ ) − x2T

τ (T + τ )
− gx(T + τ ) − g2

12
(T 3 + τ 3 − T τ (T + τ ))

}

(82)

= m

2

{
x2

T + τ
− gx(T + τ ) − g2

12
(T + τ )(T − τ )2

}
. (83)

We can make use of the approximation vz � vx and that λ ≈ h
mvz

to find expressions

T = mλD
h and τ = mλL

h . Thus, we have

T ± τ = mλ(D ± L)

h
and T τ = m2λ2

h2
DL . (84)

Using these we get

mζ

π�
= 2

λ

(
1

D
+ 1

L

)
where ζ = T + τ

T τ
= h

mλ

D + L

DL
= h

mλ

(
1

D
+ 1

L

)
.

(85)
Next, let

η = T

T + τ
= D

D + L
= 1

1 + L/D
, (86)

allowing us to express φ and σ± in terms of L , D and λ:

σ±(x) =
√
mζ

π�

(
(b ± a) − x

T

T + τ
− 1

2
gT τ

)

=
√

2

λL
η

{
(b ± a) − x

η
− 1

2
g
m2λ2

h2
DL

}
, (87)

φ(x, T, τ ) = m

2

{
x2

T + τ
− gx(T + τ ) − g2

12
(T + τ )(T − τ )2

}
, (88)

φ(x) = π

{
x2

λ(D + L)
− mgx

λ(D + L)

h2
− g2

12

m4λ3

h4
(D + L)(D − L)2

}
. (89)

This is the form of the propagator given in Eq. (62).

Normalisation of the Distribution at the Screen

As derived in the first section the propagator for the process of starting at posi-
tion �r = (0, 0), passing through the point (x ′ ∈ [b − a, b + a], D) and finally being
detected at position �r ′ = (x, D + L) on the screen is not the same as the wave-
function at the screen. To obtain this we must first convolve the propagator with a
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initial wavefunction whose squaremagnitude is a δ-function giving the wavefunction
as seen at the other side of the slit. This wavefunction however will not be normalised
due to the fact that only a portion of the initially normalise wavefunction has been
propagated beyond the slits. It can be renormalised however by scaling by the prob-
ability of passing through the slit. Unfortunately the ‘square root of a δ-function’ is
not always well defined as is the case for operators acting on any distribution.We can
however attempt to use a Gaussian with variance σ as the initial wavefunction, com-
pute the quantity of interest and take the limit σ → 0. Under suitable circumstances
the limit will be defined giving the desired result.

We will begin with an initial wavefunction that is the square root of a Gaussian

ψσ(x) = gσ(x) = 1

(2πσ2)
1
4

e− x2

4σ2 . (90)

However we notice that the square root of a Gaussian is simply another Gaussian
of variance ρ = σ

√
2 multiplied by the factor (8πσ2)

1
4 . So the initial function can

represented as

ψρ(x) = (4πρ2)
1
4
e
− x2

2ρ2

√
2πρ2

= (4πρ2)
1
4 gρ(x). (91)

Convolving this with the propagator K (1)
g (x, T + τ ; x0, 0) will give the

un-normalised wavefunction at the screen:

ψρ(x, T + τ ) =
∫ ∞

∞
dx0K

(1)
g (x, T + τ ; x0, 0)ψρ(x0). (92)

To renormalise this, we scale by the probability of the particle passing through the
slit. The probability of the particle being in x ∈ [b − a, b + a] at time T is

P(x ∈ [b − a, b + a]; T ) =
∫ b+a

b−a

∣∣∣∣

∫ ∞

−∞
Kg(x

′, T ; x0, 0)ψρ(x0)dx0

∣∣∣∣

2

dx ′, (93)

which gives that the renormalised wavefunction at the screen is

ψρ
′(x, T + τ ) = ψ(x, T + τ )

√∫ a
−a | ∫∞

−∞ Kg(x ′, T ; x0, 0)ψρ(x0)dx0|2dx ′
(94)

=
∫∞
∞ K (1)

g (x, T + τ ; x0, 0)ψρ(x0)dx0
√∫ b+a

b−a | ∫∞
−∞ Kg(x ′, T ; x0, 0)ψρ(x0)dx0|2dx ′

(95)

= (4πρ2)
1
4
∫∞
∞ K (1)

g (x, T + τ ; x0, 0)gρ(x0)dx0

(4πρ2)
1
4

√∫ b+a
b−a | ∫∞

−∞ Kg(x ′, T ; x0, 0)gρ(x0)dx0|2dx ′
. (96)



448 P.J. Orlando et al.

Now the limit σ → 0 can equivalently be taken as ρ → 0. The Gaussians gρ(x) then
become delta functions δ(x):

ψ′(x, T + τ ) = lim
ρ−→0

∫∞
∞ K (1)

g (x, T + τ ; x0, 0)gρ(x0)dx0
√∫ b+a

b−a | ∫∞
−∞ Kg(x ′, T ; x0, 0)gρ(x0)dx0|2dx ′

(97)

= K (1)
g (x, T + τ ; 0, 0)

√∫ b+a
b−a |Kg(x ′, T ; 0, 0)|2dx ′

= K (1)
g (x, T + τ ; 0, 0)

√∫ b+a
b−a (2π�T/m)−1dx ′

(98)

= K (1)
g (x, T + τ ; 0, 0)

√
h
m T

2a
= K (1)

g (x, T + τ ; 0, 0)
√

mλD
h

h
m

2a
(99)

= K (1)
g (x, T + τ ; 0, 0)

√
λD

2a
, (100)

where |Kg(x ′, T ; 0, 0)|2 was taken from Eq. (59). Thus we see that the normalised

wavefunction at the screen is given bymultiplying the propagator by the factor
√

λD
2a .

C Tracing Out Spin from a Matrix Propagator

This is best achieved using the density operator prescription. The pure density opera-
tor ρ for a quantum state |ψ〉 is ρ = |ψ〉 〈ψ|. For a state comprised of two subsystems,
we can ignore the state of a subsystem by tracing it out. This is given by the operation
trB[XAB] =∑k 〈k|B XAB |k〉B , where XAB is an operator on the composite system
AB and {|k〉B} forms a complete basis for subsystem B.

Here, we would like to trace out the spin state. The initial density operator is ρ0 =∣∣χ0
〉〈
χ0

∣∣⊗ ∣∣ψ0
〉〈
ψ0

∣∣, where 〈x |ψ0〉 = ψ0(x), is the spatial distribution of the particle,
and it is assumed that, initially, the spatial location of the particle is uncorrelated with
the spin state. The state of the system at later time t is given by ρ(t) = U (t)ρ0U †(t).
We can represent the time evolution operator in terms of the propagator by making
use of the resolution of the identity

∑
{χ,χ′}∈{↓,↑}

∫
dx dx ′ ∣∣x ′,χ′〉〈x,χ

∣∣ = 1:

U (t) =
∑

{χ,χ′}∈{↓,↑}

∫
dx dx ′K χ′,χ

g (x ′, t; x, 0) ∣∣x ′,χ′〉〈x,χ
∣∣ , (101)

which gives that,



How Does Interference Fall? 449

ρ(t) =
∑∫

dx dx ′dy dy′K χ′,χ
g (x ′, t; x, 0)K ∗φ′,φ

g (y′, t; y, 0) ∣∣x ′,χ′〉

× 〈x,χ∣∣ρ0
∣∣y,φ

〉 〈
y′,φ′∣∣ , (102)

where the sum is over all spin variables. We can then take the trace over the spin
subspace to give,

ρ̃(t) = trspin[ρ(t)] =
∑∫

dx dx ′dy dy′K χ′,χ
g (x ′, t; x, 0)K ∗φ′,φ

g (y′, t; y, 0)
× 〈x,χ∣∣ρ0

∣∣y,φ
〉 〈χ′|φ′〉 ∣∣x ′〉〈y′∣∣ . (103)

The spatial probability distribution is then given by the expectation of the position
operator

〈
x̂
〉 = tr[ρ̃(t)x̂]. Making use of the fact that 〈χ′|φ′〉 = δχ′,φ′ and 〈y′|x ′〉 =

δ(x ′ − y′), we find

〈
x̂
〉 =
∑∫

dx dyK χ′,χ
g (x ′, t; x, 0)K ∗χ′,φ

g (x ′, t; y, 0) 〈x,χ∣∣ρ0
∣∣y,φ

〉
. (104)

At this point, we work with the term
〈
x,χ
∣∣ρ0
∣∣y,φ

〉

〈
x,χ
∣∣ρ0
∣∣y,φ

〉 =
〈
x,χ
∣∣
( ∣∣χ0

〉〈
χ0

∣∣⊗ ∣∣ψ0
〉〈
ψ0

∣∣
)∣∣y,φ

〉
(105)

= 〈χ|
(
α |↑〉 + β |↓〉

)(
α∗ 〈↑| + β∗ 〈↓|

)
|φ〉 〈x |ψ0〉〈ψ0|y〉 (106)

= 〈χ|
(
|α|2 ∣∣↑〉〈↑∣∣+ |β|2 ∣∣↓〉〈↓∣∣+ α∗β

∣∣↓〉〈↑∣∣+ β ∗ α
∣∣↑〉〈↓∣∣

)
|φ〉

× ψ0(x)ψ
∗
0(y). (107)

Since the matrix propagator in Eq. (22) is diagonal, we can immediately discard
the
∣∣↓〉〈↑∣∣ and ∣∣↑〉〈↓∣∣ terms when substituting into the expression for the spatial

distribution in Eq. (104),

〈
x̂
〉 =
∫

dx dy|α|2K↑,↑
g (x ′, t; x, 0)ψ0(x)

(
K↑,↑

g (x ′, t; y, 0)ψ0(y)
)∗

(108)

+ |β|2K↓,↓
g (x ′, t; x, 0)ψ0(x)

(
K↓,↓

g (x ′, t; y, 0)ψ0(y)
)∗

=|α|2
∣∣∣∣

∫
dxK↑,↑

g (x ′, t; x, 0)ψ0(x)

∣∣∣∣

2

+ |β|2
∣∣∣∣

∫
dxK↓,↓

g (x ′, t; x, 0)ψ0(x)

∣∣∣∣

2

.

(109)

This result is simply a convex sum of the initial spatial distribution evolved by each
propagator.
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Quantum Discord and Entropic Measures
of Quantum Correlations: Optimization
and Behavior in Finite XY Spin Chains

N. Canosa, M. Cerezo, N. Gigena and R. Rossignoli

Abstract We discuss a generalization of the conditional entropy and one-way infor-
mation deficit in quantum systems, based on general entropic forms. The formalism
allows to consider simple entropic forms for which a closed evaluation of the asso-
ciated optimization problem in qudit-qubit systems is shown to become feasible,
allowing to approximate that of the quantum discord. As application, we examine
quantum correlations of spin pairs in the exact ground state of finite XY spin chains
in a magnetic field through the quantum discord and information deficit. While these
quantities show a similar behavior, their optimizingmeasurements exhibit significant
differences, which can be understood and predicted through the previous approxi-
mations. The remarkable behavior of these quantities in the vicinity of transverse
and non-transverse factorizing fields is also discussed.

1 Introduction

Non-classical correlations in mixed states of composite quantum systems have
attracted strong attention in recent years [1, 2]. In pure states they can be identi-
fied with entanglement [3–6] and are essential for quantum teleportation [7] and for
achieving exponential speed-up in pure state based quantum algorithms [8, 9]. How-
ever, in the case of mixed states it is now well known that separable states, defined
in general as convex mixtures of product states [10], i.e. those which can then be
created by local operations and classical communication [5, 10], may still exhibit
non-classical features, such as a non-zero value of the quantum discord [11–14]. The
latter is defined as the difference between two distinct quantum extensions of the
classical mutual information or conditional entropy, becoming zero for classically
correlated states and reducing to the entanglement entropy for pure states. A finite
quantum discord is also present in the mixed state based quantum algorithm of Knill
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and Laflamme [15], as shown in [16], which achieves an exponential speed-up over
classical algorithms without substantial entanglement [17]. This fact triggered the
interest not only in the quantum discord and its fundamental properties [18–23] but
also in other related measures with similar features [1, 2], which include among
others the one-way information deficit [1, 24–26], the geometric discord [27], the
generalized entropic measures introduced in [28, 29] (which contain the previous
ones as particular cases), the local quantum uncertainty [30, 31], the trace distance
discord [32–34] and more recently coherence based measures [2, 35, 36]. Besides,
various operational interpretations of the quantumdiscord and other relatedmeasures
have been provided [1, 19, 26, 37–41]. It is worth mentioning, however, that most of
these measures require the determination of an optimizing local measurement, which
makes their evaluation difficult in a general situation (shown to beNP-complete [42]).

Interacting spin chains provide a useful scenario for studying the previous mea-
sures and their behavior in the vicinity of critical points [1, 43–53]. In general, ground
states of interacting spin chains are strongly entangled states, implying that the state
of a reduced spin pair or group of spins will typically be a mixed state. Hence, for
these subsystems differences between discord type measures and entanglement will
arise already at zero temperature.

In this chapter we first briefly review in Sect. 2 the quantum discord and the
associated local measurement dependent conditional entropy on which it is based.
We then discuss the consistent generalization of this entropy to general entropic
forms [54, 55]. This extension enables in particular the consideration of simple forms
which allow an analytic solution of the associated optimization problem, i.e., that
of determining the local measurement leading to the lowest conditional entropy, for
general mixed states of qudit-qubit systems [54, 55]. The solution is given in terms
of an eigenvalue equation which admits a simple geometrical picture [54]. We then
examine the generalized information deficit [28], based on general entropic forms,
which contains the standard one-way information deficit [24–26] as a particular case,
together with its exact minimization for simple quadratic entropic forms for general
states of qudit-qubit systems [27, 29].

In Sect. 3 we will analyze the exact behavior of the quantum discord and the
information deficit associated with spin pairs in the ground state of finite XY spin
1/2 chains immersed in a magnetic field. We will show that while their behavior
is quite similar, significant differences do arise in their corresponding minimizing
measurements, which can be correctly predicted and understood by the approxima-
tions based on simple entropic forms. A remarkable effect in these chains is the
possibility of exhibiting a completely separable exact ground state at a factorizing
field. The existence of a factorizing field was first discussed in Ref. [56] and its
properties together with the general conditions for its existence at transverse fields
were analyzed in [57–66]. The transverse factorizing field actually corresponds to
the last ground state parity transition [61, 64, 65], and accordingly, it will be shown
that in finite chains the quantum discord and information deficit exhibit full range in
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its vicinity, with an appreciable finite limit value at this field. We will also discuss
the behavior for a non-transverse field [67], which will differ from the previous one
due to the broken spin parity symmetry. Conclusions are finally given in Sect. 4.

2 Formalism

Wefirst describe the main features of the quantum discord and the generalized condi-
tional entropy and information deficit, together with some analytic results for general
states of qudit-qubit systems.

2.1 Quantum Discord and Conditional Entropy

Let us start with the well known quantum discord, introduced in [11, 12]. For a
bipartite quantum system A + B initially in a state ρAB , it can be defined as the min-
imum difference between two distinct quantum versions of the mutual information,
or equivalently, of the conditional entropy:

D(A|B) = Min
MB

[I (A, B) − I (A, BMB )] (1)

= Min
MB

S(A|BMB ) − S(A|B) (2)

where the minimization is over all possible local POVMmeasurements [5] MB on B,
characterized by a set of operators Mj = IA ⊗ MjB satisfying

∑
j M

†
j M j = IA ⊗

IB . Here I (A, B) = S(ρA) − S(A|B) represents the quantum mutual information
[68] before the measurement and I (A, BMB ) = S(ρA) − S(A|BMB ) a measurement
dependent mutual information, with

S(A|B) = S(ρAB) − S(ρB) (3)

S(A|BMB ) =
∑

j

p j S(ρA/j ) (4)

the corresponding conditional entropies, where

ρA/j = p−1
j TrB ρABM

†
j M j (5)

is the reduced state of A after outcome j at B, with p j = Tr ρABM
†
j M j the probability

of such outcome, and S(ρ) = −Tr ρ log2 ρ the von Neumann entropy. In the case of
complete localprojectivemeasurementsMj = Pj = IA ⊗ PjB ,with PjB ≡ | jB〉〈 jB |
one-dimensional orthogonal projectors (PjB PkB = δ jk Pj B), then
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S(A|BMB ) = S(ρ ′
AB) − S(ρ ′

B) (6)

where ρ ′
AB is the joint state after the (unread) local measurement,

ρ ′
AB =

∑

j

PjρAB Pj =
∑

j

p jρA/j ⊗ PjB (7)

and ρ ′
B = TrAρ ′

AB = ∑
j p j Pj B the ensuing state of B.

As is well known, the mutual information I (A, B) is a measure of all correlations
between subsystems A and B, being non-negative and vanishing just for product
states ρAB = ρA ⊗ ρB [68]. Equations (1)–(2) can then be regarded as the difference
between all correlations present in the original state and the classical correlations that
remain after the local measurement on B, measuring then the quantum correlations.
Accordingly, D(A|B) is always non-negative [11, 12], a property which stems from
the concavity of the conditional von Neumann entropy S(A|B) [68]. It vanishes
just for semi-quantum states ρAB , which are already of the form (7) and which then
remain invariant under the local measurement determined by the projectors PjB .
The quantum discord is then non-zero not only in entangled states but also in most
separable mixed states, i.e., those not of the form (7) (and hence not diagonal in
a conditional product basis {|i jA〉| jB〉}). For pure states (ρ2

AB = ρAB) it reduces to
the entanglement entropy S(ρA) = S(ρB) of the system, as S(A|BMB ) = 0 for any
measurement based on rank one projectors.

We remark that in the general case, the minimum in Eq. (2) is always reached for
measurements based on rank one projectors MjB ∝ PjB , not necessarily orthogonal
[1, 54, 55], with a minimization based on standard projective measurements, Eq. (6),
providing normally a good approximation. Nevertheless, the minimization in Eq. (2)
is in general still difficult, being in fact an NP-complete problem [42].

2.2 Generalized Conditional Entropy After a Local
Measurement

Due the previous difficulty, and in order to obtain a more clear picture of the opti-
mization problem associated with the quantum discord, it is convenient to consider
more simple entropic forms, which may enable an easier evaluation of the mini-
mum conditional entropy. We then consider first the generalized conditional entropy
[54, 55]

S f (A|BMB ) =
∑

j

p j S f (ρA/j ) (8)

where S f (ρ) = Tr f (ρ) is a generalized trace form entropy [68, 69]. Here
f : [0, 1] → R is a smooth strictly concave function satisfying f (0) = f (1) = 0,
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such that S f (ρ) ≥ 0, with S f (ρ) = 0 just for pure states. Concavity of f implies,
for S f (A) ≡ S f (ρA) [54],

S f (A) ≥ S f (A|BMB )

so that the average conditionalmixedness of A aftermeasurement is never greater than
the original mixedness, irrespective of the measure S f used to quantify it. Moreover,
theminimumof S f (A|MB) is also always reached for rankoneprojectorsMjB ∝ PjB

[55], as in the von Neumann case. Hence, these properties remain valid for general
concave functions f .

In particular, we may consider simple entropic forms, like the quadratic entropy

S2(ρ) = 2[1 − Tr ρ2] (9)

which follows from f2(ρ) = 2ρ(1 − ρ) and is also known as linear entropy since
it corresponds to the linear approximation −ρ ln ρ ≈ ρ(1 − ρ). It is a particular
case of the Tsallis entropies [70] Sq(ρ) = 1−Tr ρq

1−21−q , obtained for fq(ρ) ∝ ρ − ρq ,
q > 0, which approach the von Neumann entropy for q → 1 (we set S f (ρ) = 1 for
a maximally mixed single qubit state).

Equation (9) is just a linear function of the purity Tr ρ2 and does not require the
explicit knowledge of the eigenvalues of ρ, thus enabling an easier evaluation, both
theoretically and experimentally [71–73]. For instance, writing a general mixed state
of a system with Hilbert space dimension d as

ρ = 1

d
(I + r · σ ) (10)

where σ = (σ1, . . . , σd2−1) is an orthogonal basis for traceless operators in the sys-
tem (Tr σμ = 0, Tr σμσν = dδμν), implying r = Tr ρσ = 〈σ 〉, we obtain the explicit
expression

S2(ρ) = 2

d
(d − 1 − |r|2) . (11)

Equation (11) shows that |r|2 ≤ d − 1, with |r|2 = d − 1 just for pure states.

2.3 The Qudit-Qubit Case

Let us now consider a composite system where A is a system with Hilbert space
dimension dA and B a single qubit. Denoting with σ A an orthogonal basis for oper-
ators in A and σ B ≡ σ the Pauli matrices of B, a general state of this system can be
written as [54]

ρAB = ρA ⊗ ρB + 1

2dA

∑

μ,ν

CμνσAμ ⊗ σBν (12)
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where ρA = 1
dA

(IA + r A · σ A), ρB = 1
2 (I2 + r B · σ ) are the reduced states of A and

B, with r A = 〈σ A〉, r B = 〈σ 〉, and

Cμν = 〈σAμ ⊗ σBν〉 − 〈σAμ〉〈σBν〉 (13)

are the elements of the correlation tensor, represented by the (d2
A − 1) × 3 matrix

C .
We consider a local POVM measurement on the qubit B based on rank one

operators MkB = √
qkPkB , where PkB = 1

2 (I2 + k · σ ), with k a unit vector (|k| =
1), is the projector onto the pure qubit state with 〈σ 〉 = k, and

∑
k qkPkB = I2. We

may then express the ensuing conditional entropy (8) as

S f (A|Bk) =
∑

k

pkS f (ρA/k) (14)

where

ρA/k = ρA + 1

dA

(
Ck

1 + r Bk

)

· σ A (15)

pk = 1

2
qk(1 + r B · k) (16)

are, respectively, the conditional post measurement state of A after result k and
the probability of obtaining this result. The vector r A/k characterizing the post-
measurement state of A is then

r A/k = r A + Ck
1 + r B · k . (17)

For a standard projective spin measurement along direction k just vectors ±k are to
be considered in the previous sums, with q±k = 1.

While in the general case the eigenvalues of ρA/k are required for the evaluation
of (14), for the quadratic entropy (9) a closed evaluation is directly feasible with
Eq. (11). For a standard projective spinmeasurement along direction kweobtain [54]

S2(A|Bk) = S2(ρA) − ΔS2(A|Bk) , (18)

ΔS2(A|Bk) = 2

dA

|Ck|2
1 − (r B · k)2 = 2

dA

kTCTCk

kT NBk
, (19)

where CTC and NB = I − r B rTB , are 3 × 3 positive semi-definite matrices.
Equation (19) is non-negative and independent of r A, and represents the average
conditional purity gain due to the measurement on B. Since Eq. (19) is a ratio of
quadratic forms, the direction k which leads to the maximum entropy decrease, i.e.
to the minimum conditional entropy, can be obtained by solving the generalized
eigenvalue equation [54]
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CTCk = λNBk , (20)

which implies Det[CTC − λNB] = 0, and selecting the eigenvector k associated
with the largest eigenvalue λmax. This leads to ΔS2(A|Bk) ≤ 2λmax/dA ∀ k, i.e.,

Min
k

S2(A|Bk) = S2(ρA) − 2

dA
λmax . (21)

An important remark is that generalized POVM measurements on qubit B cannot
decrease the projective minimum (21) for this entropy [54].

It is then seen that the minimizing measurement is essentially determined by the
correlation tensor (13), i.e., it is essentially a spin measurement along the direction of
maximum correlation. Wemay also express (19) as the quadratic formΔS2(A|Bk) =
2
dA
kTNC

T
NCN kN , where CN = CN−1/2

B and kN = N 1/2
B k/|N 1/2

B k|, and write (20) as

CT
NCN kN = λkN , which shows that

√
λmax is the maximum singular value of CN .

The counterpart at A of this equation is CNCT
N kA = λkA, which has the same non-

zero eigenvalues and provides a clear geometric picture: As k is varied in the Bloch
sphere of qubit B, the set of post-measurement vectors (17) determining the post-
measurement state of A form a three dimensional correlation ellipsoid on the d2

A − 1
dimensional space containing the vector r A/k [54] (see Fig. 1 for the two-qubit case)
whose principal axes are precisely determined as the eigenvectors kA of the previous
equation. Therefore, the optimizing measurement of the quadratic entropy is that
leading to δr A = r A − r A/k ∝ Ck parallel to the major semi-axis of the correlation
ellipsoid (see [54] for more details).

Fig. 1 The set of possible
Bloch vectors r A/k of the
post-measurement state of
qubit A after a measurement
on the qubit B form the
correlation ellipsoid (from
[54]). For a spin
measurement along direction
k at qubit B, the vectors
r A/±k in A are the endpoints
of a chord running through
r A. The optimizing
measurement determined by
Eq. (20) leads to δr A parallel
to the major axis of this
ellipsoid

x

y

z

rA−
CrB

(1−r
2
B
)

Ck1+r
B ·k

−Ck1−r
B ·krA
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While not strictly valid for other entropies, these results provide an approximate
picture of the measurement minimizing the conditional entropy in these systems,
which will typically lie close to that minimizing the quadratic entropy. In fact, all
entropies S f (ρ) reduce essentially to the quadratic entropy if ρ is sufficiently close to
maximum mixedness, as S f (

I
d + δρ) ≈ S f (

Id
d ) + 1

4 | f ′′( 1d )|[(S2( I
d + δρ) − S2(

Id
d )]

up to O(δρ2). Moreover, for a sufficiently small correlation tensor, i.e. if |δr A| =
| Ck
1±r B k

| � 1 ∀ k, an expansion of the conditional entropy (8) up to second order in
δρA leads to [54]

S f (A|Bk) ≈ S f (ρA) − 2

dA

kTCTΛ f (ρA)Ck

kT NBk
(22)

where Λ f (ρA) is a scaled (d2
A − 1) × (d2

A − 1) Hessian matrix [54], showing that in
the present weakly correlated regime the effect of a general entropy is just to replace
C by the “deformed” correlation tensor C f = √

Λ f (ρA)C . Let us finally mention
that the minimum generalized conditional entropy coincides with the associated
generalized entanglement of formation between A and a third system C purifying
the whole system [18, 55].

2.4 Generalized Information Deficit

As mentioned in the introduction, several other measures of quantum correlations
with properties similar to those of the quantum discord have been considered. In
particular, we have introduced in [28, 29] the generalized information deficit

I Bf (ρAB) = Min
MB

S f (ρ
′
AB) − S f (ρAB) , (23)

where ρ ′
AB is the state of the system after an unread local measurement at B,

Eq. (7), and the minimization is over all complete local projective measurements
on B. Here S f (ρ) denotes a generalized entropy. In the case of the von Neumann
entropy S(ρ), Eq. (23) becomes the standard one-way information deficit [1, 24, 26],
which will be denoted as I B1 . It can be rewritten in terms of the relative entropy [68,
74] S(ρ||ρ ′) = −Tr ρ(log2 ρ ′ − log2 ρ) as

I B1 (ρAB) = Min
MB

S(ρ ′
AB) − S(ρAB) = Min

MB

S(ρAB ||ρ ′
AB) . (24)

Like the quantum discord, Eq. (23) (and hence (24)) is non-negative if S f (ρ) is
Schur-concave [75], due to the majorization relation [28, 68] ρ ′

AB ≺ ρAB satisfied
by the post-measurement state (7). Essentially, the off-diagonal elements of ρAB

in the conditional product basis {|i jA〉| jB〉} where ρ ′
AB is diagonal are lost in the

measurement, and Eq. (23) is then a measure of the minimum information loss under
such measurement. It can also be considered as the minimum relative entropy of
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coherence [35] in this type of basis. And it is ameasure of theminimum entanglement
between the measurement device and the system generated by a complete local
measurement [76], with (24) representing the minimum distillable entanglement
[26, 39].

For strict concavity of S f , Eq. (23) vanishes only if ρAB is already of the semi-
quantum post-measurement form (7). And for pure states ρAB = |ΨAB〉〈ΨAB | it can
be shown [28] that it reduces to the corresponding entanglement entropy:

I Bf (|ΨAB〉) = S f (ρA) = S f (ρB) (25)

with (24) becoming the standard entanglement entropy like the quantum discord.
Nonetheless, unlike the latter (which in this case is minimized by a complete mea-
surement in any local basis) the minimum of (23) and (24) for a pure state is always
reached for ameasurement in the basis of Bwhich corresponds to theSchmidt decom-
position of |ΨAB〉 (and hence diagonalizes ρB) [28], already indicating a different
behavior of the minimizing measurement.

As in the case of the conditional entropy, the use of generalized entropies enables
the possibility of using simple entropic forms like the quadratic entropy (9) or the

Tsallis entropies, in which case Eq. (23) becomes I Bq (ρAB) = MinMB

Tr (ρq
AB−ρ ′q

AB )

1−21−q .
We may also consider the deficits based on the Renyi entropies [68] SRq (ρ) =
1

1−q log2 Tr ρ
q , q > 0 (just an increasing function of Sq ), which are given by [76]

I BRq
(ρAB) = Min

MB

1

1 − q
log2

Tr ρ ′q
AB

Tr ρq
AB

. (26)

They approach the von Neumann information deficit (24) for q → 1 and likewise
do not depend on the addition of an uncorrelated ancilla to A (ρAB → ρC ⊗ ρAB).
Nonetheless, they are just increasing functions of I Bq for fixed ρAB and the associated
optimization problem is the same as that for I Bq .

2.5 Minimizing Measurement and Stationary Conditions

The determination of the minimizing measurement MB in (23) is, like in the case
of the quantum discord, again a difficult problem in general. Complete projective
measurements at B are determined by d2

B − dB real parameters if B has Hilbert
space dimension dB , growing then exponentially with the number of components of
B. Nevertheless, it can be shown that the minimizing measurement should fulfill the
stationary condition [29]

TrA[ f ′(ρ ′
AB), ρAB] = 0 , (27)
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which leads to dB(dB − 1) real equations [29, 77]. In the quantum discord (1), an
additional term −[ f ′(ρ ′

B), ρB] = [log2 ρ ′
B, ρB] is to be added in (27) for complete

projective measurements [29].
Important differences between the measurements minimizing I Bf (ρAB) and

D(A|B) may arise, as previously mentioned for the case of pure states. While for
a general classically correlated state of the form (7) the minimum for both D(A|B)

and all I Bf (ρAB) is attained for a measurement in the local basis defined by the pro-
jectors PB

j (i.e., the pointer basis [11, 12]), in the particular case of product states
ρA ⊗ ρB , D(A|B) (but not I Bf (ρAB)) becomes the same for any MB , as for such states
S(A|MB) = S(A) ∀ MB . These differences will have important consequences in the
results of the next section, leading to a quite different response of the minimizing
measurement to the onset of quantum correlations. They reflect the fact that while
in I Bf (ρAB) one is looking for the least disturbing local measurement, such that ρ ′

AB
is as close as possible to ρAB , in D(A|B) the search is for the measurement in B
which makes the ensuing conditional entropy smallest, i.e., by which one can learn
the most about A, which leads to those observables which are most correlated, as
discussed before.

These differences become apparent in the case of the quadratic entropy (9), as an
analytic evaluation of the associated deficit I B2 for qudit-qubit systems becomes again
feasible [27, 29]. In this case Eq. (23) becomes just a purity difference, I B2 (ρAB) =
2MinMBTr (ρ

2
AB − ρ ′ 2

AB) = 2Minρ ′
AB

||ρAB − ρ ′
AB ||2, where ||O||2 = Tr O†O and

the last minimization can be extended to any state of the general form (7). Through
the last expression it is seen that it is then proportional to the geometric discord [1,
27], defined as the closest squared Hilbert-Schmidt distance between ρAB and a state
of the form (7). For pure states I B2 becomes the squared concurrenceC2

AB [78], which
for such states is just the quadratic entropy of any of the subsystems [79]. While as
a measure it does not comply, due to the lack of additivity, with all the properties
satisfied by the quantum discord or the von Neumann based information deficit, it
has the advantage of enabling a simple analytic evaluation in qudit-qubit systems
and admitting through its relation with the purity a more direct experimental access
[71–73]. Moreover, the optimizing measurement will be the same measurement as
that minimizing the associated Renyi deficit I BR2

(ρAB).
Writing again a general ρAB of a qudit-qubit system in the form (12), it can be

shown that for a projective spin measurement at B along direction k, the quadratic
information loss becomes [27, 29]

I B2 (k) = 1
dA

(||r B ||2 + ||J ||2 − kT M2k) (28)

where M2 is the positive semi-definite matrix

M2 = r B rTB + J T J , (29)

with J = C + r ArTB , i.e., Jμν = 〈σAμ ⊗ σν〉.Minimization of I B2 (k) leads then to the
standard eigenvalue equation M2k = λk, implying I B2 (ρAB) = 1

dA
(tr M2 − λmax),
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with λmax the largest eigenvalue of M2 and the minimizing k the associated eigenvec-
tor. Such direction will not necessarily coincide with that minimizing the quadratic
conditional entropy, as the latter is determined essentially by the correlation tensorC
while the present one by the tensor J and r B .While coinciding in some regimes (they
become identical if r B = 0, i.e., ρB maximally mixed, in which case J = C), they
can deviate considerably in others, as will be explicitly shown in the next section.
In fact, a transition in the least disturbing measurement direction k from the main
eigenvector of J T J to the direction of r B can be expected as J decreases, which may
not imply a concomitant change in the main eigenvector of (20). A closed expres-
sion for the minimum of I B3 (ρAB) can also be obtained [29]. We finally note that
for a general qubit-qubit state and entropy S f , the stationary condition (27) becomes
explicitly

(α1r B + α2 J
T r A + α3 J

T J )k = λk (30)

which represents a non-linear eigenvalue equation since the coefficients αi depend
on f ′(ρ ′

AB) and hence on k [29]. Again, the prominent role of J T J is clearly evident.

3 Results in Spin Chains

We now consider the correlations of spin pairs in the ground state (GS) of finite spin
1/2 arrays interacting through XY type Heisenberg couplings and immersed in a
magnetic field h. The Hamiltonian reads

H = −
∑

i

h · Si − 1
2

∑

i �= j,μ=x,y

J i jμ Sμ

i S
μ

j , (31)

where i, j label the sites in the array and Sμ

i the spin components at site i .
In the transverse case h = (0, 0, hz), the Hamiltonian commutes with the Sz spin

parity Pz = eiπ
∑

i (S
z
i +1/2) = ∏

i (−2Szi ), implying that the exact GS will have a defi-
nite parity if non-degenerate. In particular, in finite chains of N spins with first neigh-
bor couplings and anisotropy χ = Jy/Jx ∈ (0, 1], the exact GS, which can be analyt-
ically obtained through the Jordan–Wigner fermionization [61, 80], will exhibit N/2
parity transitions as the field hz increases from 0, where the lowest levels of each par-
ity cross, the last one at the transverse factorizing field [61] hzs = √

Jy Jx = Jx
√

χ .
These transitions are reminiscent of the N/2 magnetization transitions of the XX
case χ = 1 [53, 81], where H commutes with the z component of the total spin
Sz = ∑

i S
z
i .

At the factorizing field, the two crossing states generate a two dimensional GS
subspacewhich is spanned, remarkably, by completely separableground states |Θ〉 =
|θ, . . . , θ〉 and | − Θ〉 = Pz|Θ〉 = | − θ, . . . ,−θ〉 in the ferromagnetic case Jx >

0, where |θ〉 = e−ıθ Sy | ↓〉 is the single spin state forming an angle θ with the −z
direction and cos θ = hsz/Jx = √

χ . Hence, at this point the system possesses two
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Fig. 2 The quantum discord (top left), the information deficit (top right), the concurrence (bottom
left) and the angle θ determining theminimizing spinmeasurement of the first two quantities (bottom
right) for reduced states of spin pairs in the exact ground state of a spin 1/2 chain with first neighbor
anisotropic XY coupling as a function of the transverse field (B = hz). L indicates the separation
between the spins of the pair (L = 1 denotes first neighbors) while N is the number of spins and
χ = Jy/Jx the anisotropy. The angle θ is that formed between the measurement direction and the z
axis in the xz plane, which is constant for D (θ = π/2) but experiences an x → z transition in the
information deficits I1 (solid line) and I2 (dashed line), which is sharp in the latter. All quantities
reach full range at the factorizing field B = Jx

√
χ , with common L-independent limits, which are

negligible in the case of the concurrence but finite for the discord and information deficit

completely separable parity breaking degenerate ground states. Yet, the exact GS
side-limits at this point are provided by the definite parity combinations [61]

|Θ±〉 = |Θ〉 ± | − Θ〉√
2(1 ± 〈−Θ|Θ〉) (32)

approached for hz → h±
zs , which are entangled states. They lead to common reduced

states ρθ± for any spin pair i �= j [47, 61], becoming both identical with ρθ =
(|θθ〉〈θθ | + | − θ − θ〉〈−θ − θ |)/2 if the overlap 〈−Θ|Θ〉 = cosN θ is neglected
(it is negligible if N and θ are not too small). This is a separable mixed state,
therefore leading to a zero concurrence (and hence zero entanglement of formation
[78]) for any pair, as seen in the bottom left panel of Fig. 2. The concurrence actually
approaches small common side limits C± = χn/2−1(1−χ)

1±χn/2 if the overlap is preserved
[61, 64], not appreciable in the scale of Fig. 2.
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However, ρθ is a discordant state for θ ∈ (0, π/2), leading to appreciable finite
limits of the quantum discord D and the information deficit I1 at the factorizing field,
as seen in the top panels of Fig. 2. These limits can be analytically determined from
the previous expression for ρθ [47, 76] and are independent of the separation L .
Moreover, these quantities actually attain their maximum values in the vicinity of
this point, remaining appreciable for all hz < hzs , since in this sector the reduced
state of any pair in the exact GS will be essentially ρθ (with a field-dependent θ ) plus
smaller corrections. Let us note that in the cyclic chain considered, the reduced pair
states ρi j depend just on the separation L = |i − j |, implying D(i | j) = D( j |i) = D
and I if (ρi j ) = I j

f (ρi j ) = I f ∀ i �= j .
These results remain strictly valid for arbitrary range couplings with a common

anisotropyχ = J i jy /J i jx in the ferromagnetic case J i jx > 0 [61], including dimer-type
chains [65], since they also exhibit a factorizing field with the same factorized states.
They hold as well in the antiferromagnetic case Jx < 0 for first neighbor couplings
in a spin chain, since for a transverse field it can be mapped to the ferromagnetic
case by a local rotation at even sites, which leads to |θθ . . .〉 → |θ,−θ, . . .〉 in the
factorized states and in ρθ . The same reduced state ρθ also follows from the mixture
1
2 (|Θ+〉〈Θ+| + |Θ−〉〈Θ−|) if the overlap is neglected, which is the exact T → 0+
limit at hzs of the thermal state ∝ exp[−H/kT ]. We remark finally that in the ther-
modynamic limit N → ∞, the lowest states for each parity become degenerate for
hz < hc = Jx+Jy

2 , so GS correlations actually depend on the choice of GS, the present
results applying for the definite parity choice.

As seen in Fig. 2, although the quantum discord D and the information deficit
I1 exhibit a similar qualitative behavior, I1 shows a more pronounced maximum in
comparison with D. This feature reflects the transition in the orientation k of the
local spin measurement minimizing I1 as the field increases, which is absent in the
quantumdiscord. This effect can be understood from the expressions (28)–(29) for the
quadratic deficit I2, which lead to a sharp x → z transition in the optimizing k for all
separations as themaximumeigenvalue ofM2 shifts from that associatedwith k = ex
to that for k = ez as the transverse field increases [29, 76]. In the case of I1 such sharp
transition is smoothed, as seen in the bottom right panel of Fig. 2, with θ covering
all intermediate values in a narrow field interval centered at the I2 measurement
transition. In contrast, the quantum discord prefers a spin measurement (we consider
here projective spin measurements) along the x axis for all transverse fields, for
any separation L , following the strongest correlation [54, 55], which is along x
for |Jx | > |Jy|. This is precisely the same measurement minimizing the quadratic
conditional entropy, determined by Eqs. (19)–(21), since the largest eigenvalue in
(20) of the contracted correlation matrix CTC corresponds to k along the x axis for
the present anisotropic XY coupling ∀ hz [54, 55].

The measurement transitions of the information deficit reflect, on the other hand,
the qualitative change undergone by the reduced state of the pair (essentially by its
dominant eigenstate) as the field increases [76]. The same x → z transition in I1 is
found in the XX case, where it reflects the transition in the dominant eigenstate of
the reduced state of the pair from a Bell state |↑↓〉+|↓↑〉√

2
to the aligned state | ↓↓〉 as the
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Fig. 3 The quantum discord D and the entanglement of formation E f (left panel), and the angles
θ , φ determining the minimizing spin measurement direction k = (sin θ cosφ, sin θ sin φ, cos θ)

for D (right panel, solid lines), for a first neighbor pair in a XY spin chain with χ = 0.5, and a
non-transverse field h in the xz plane, as a function of the angle γ it forms with the z axis, for
|h| = Jx . Here both D and E f vanish at the factorizing field due to the non-degeneracy of the
factorized ground state. A transition from the xz plane to the y axis takes place in the minimizing
projectivemeasurement as γ increases, which can be predicted through themeasurement optimizing
the quadratic conditional entropy (dashed lines in right panel)

transverse field increases [53]. The main correlation in CTC stays, however, along
the x axis. And in spin 1 systems, while the local optimizing measurements become
more complex (they are not standard spin measurements), a similar transition pattern
is observed in the measurement minimizing the information deficit [77].

In Fig. 3 we depict illustrative results for a non-transverse field h = (hx , 0, hz)

in the xz plane, for an XY chain with coupling anisotropy χ = 0.5 and small spin
number N = 8. As recently shown [67], such chains also exhibit a non-transverse
GS factorizing field in the xz plane, whose magnitude is given by

|hs | = hzs sin θ

sin(θ − γ )
(33)

where hzs = Jx cos θ is the transverse factorizing field, with cos θ = √
χ and γ < θ

the angle formed by the field with the z axis. In contrast with the transverse case,
such field is now associated with a non-degenerate separable GS |Θ〉 = |θθ . . .〉, as
parity symmetry no longer holds. It is then seen that both D and the entanglement of
formation E f exactly vanish at hs , being now smaller than in the previous case since
the GS no longer has parity symmetry. Moreover, for first neighbors the reduced
pair state is much less mixed than before, and hence E f and D have similar values,
with E f slightly larger than D, as also occurs for strong transverse fields [47]. For
second and more distant neighbors, the behavior of D is qualitatively similar but
becomes smaller (and larger than E f ). It should be remarked that E f (and also D,
I f ) continues to exhibit long range in the vicinity of the non-transverse factorizing
field [67].

In addition, the quantum discord now also exhibits a measurement transition if
the field is not too small, from the xz plane to the y axis (θ = φ = π/2) as the
field rotates in the xz plane from the z axis to the x axis. This transition can be
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understood through the quadratic conditional entropy, as the maximum eigenvalue
of the contracted correlation tensor CTC in (20) jumps from the xz block to the
y block as the field is rotated, following the main correlation. As verified in the
right panel, the measurement minimizing the quadratic conditional entropy lies very
close to that minimizing the von Neumann based quantum discord. In contrast, even
though the information deficit (not shown) still exhibits a behavior similar to that of
D, the associated minimizing measurement tends to align with the field for strong
|h|, deviating again considerably from that minimizing the quantum discord.

4 Conclusions

We have first described a consistent extension to general concave entropic forms of
the measurement dependent von Neumann conditional entropy for bipartite quan-
tum systems. This extension, while providing a general characterization of the aver-
age information gain after such measurement, enables the use of simple entropic
forms like the quadratic entropy, for which a closed evaluation of the minimizing
measurement (leading to maximum purity gain) in terms of the correlation tensor
becomes feasible for general states of qudit-qubit systems. Such solution admits a
simple geometrical picture and allows to capture the main features of the projec-
tive measurement minimizing the quantum discord, which is then seen to follow
essentially the direction of maximum correlation. In contrast, that minimizing the
information deficit is essentially a least disturbing local measurement, and can then
exhibit significant differences with the latter. The entropic generalization of the one
way information deficit was also described, and for the quadratic entropy a closed
evaluation for qudit-qubit states becomes again feasible, which allows to identify the
previous differences.

When considered in spin pairs immersed in finite XY spin chains, both quantities,
discord and information deficit, exhibit similar trends although with significant dif-
ferences in the behavior of their optimizing measurements, which can be understood
and predicted with the closed evaluations for the quadratic case. For transverse fields,
these quantities exhibit appreciable values and long range for fields h < hc in the
exact definite parity ground state, reaching full range and becoming independent of
the pair separation in the vicinity of the factorizing field. A measurement transition
takes place in the information deficit, which is absent in the quantum discord. In
contrast, for non-transverse factorizing fields parity symmetry is broken and these
quantities become smaller, strictly vanishing at factorization. Measurement transi-
tions can occur in both quantities.
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Experimental Investigation of the Dynamics
of Quantum Discord in Optical Systems

Jin-Shi Xu, Chuan-Feng Li and Guang-Can Guo

One of the most remarkable properties in quantum systems is the existence of
correlations without the classical counterparts. Entanglement, a special kind of non-
classical correlation, has been studiedwidely [1] and is found to be an useful resource
in quantum communication and quantum computation [2]. However, entanglement
is not the only kind of quantum correlation. There are other nonclassical correla-
tions even existing in separable quantum states. Quantum discord [3, 4], as a mea-
sure of total quantum correlations encoded in a quantum system, has attracted great
attentions [5]. Quantum discord without entanglement has been proposed to has
the potential to implement quantum information tasks that can benefit from quantum
advantages [5]. Several experimental works, such as the implementation of determin-
istic quantum computation with one qubit [6] and remote quantum state operation [7]
have been reported.

On the other hand, since any quantum system is always unavoidably coupled to
its surrounding environment, quantum correlations would be greatly affected during
the evolution. Entanglement as a fragile quantum resource, has been shown to suffer
from sudden death in its dynamic behavior, in which case entanglement disappears
completely at a finite evolution time [8]. Quantumdiscord, which is shown to bemore
robust than entanglement against decoherence [9, 10], displays peculiar properties
in the dynamical behavior in open quantum systems and they are shown to be of
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fundamental and practical importance [5]. Experimental investigation on the dynamic
behavior of quantum discord therefore arises great interests. Optical systems provide
a versatile and well-control platform, in which the distinguished dynamics behaviors
of quantum discord can be conveniently investigated. In this chapter, we would focus
on the optical investigation of the dynamics of quantum discord.

1 The Definition of Quantum Discord

Quantum discord represents the difference between the classical information theory
and quantum information theory [3]. Consider a bipartite system with components
A and B, the classical mutual information between them is characterized by [11]:

I (A : B) = H(A) + H(B) − H(A, B), (1)

where H(A) (H(B)) is the Shannon entropy representing the uncertainty of the
outcomes of A (B). According to the Bayes rule, the conditional entropy of A given
B can be represented as H(A|B) = H(A, B) − H(B). As a result, the classical
mutual information has the equivalent form

J (A : B) = H(A) − H(A|B). (2)

In the quantum case, the entropy of the composite quantum state ρAB is characterized
by the von Neumann entropy S(ρ). The quantum mutual information can be directly
extended from Eq. (1) and becomes

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (3)

where ρA = TrBρAB (ρB = TrAρAB) is the reduced density matrix of the partition A
(B). The extension of J (A : B) to its quantum form is not so direct. Since the condi-
tional entropy is greatly dependent on the measurement we chose on B. Considering
a set of complete measurement {Mi

B} on the subsystem B, the reduced state of sub-
system A conditioned on the measurement labeled by i becomes ρiA = 1

ni
TrB[(1A ⊗

Mi
B)ρAB(1A ⊗ Mi

B)†]with probability ni = TrAB[(1A ⊗ Mi
B)ρAB(1A ⊗ Mi

B)†] and
1A representing the identical operator on the subsystem A. If we define S(A|B) =∑

i ni S(ρiA), the quantum generalization of Eq. (2) becomes

J (ρAB) = S(ρA) − S(A|B). (4)

I (ρAB) and J (ρAB) are normally unequal to each other. Quantum discord is then
defined as [3]

Q(ρAB) = I(ρAB) − C(ρAB), (5)
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where
C(ρAB) = max

{Mi
B }

[J (ρAB)] = max
{Mi

B }
[S(ρA) − S(A|B)], (6)

represents the maximum information extractable from the measurement on B and is
independently defined as the classical correlation of ρAB[4]. For bipartite quantum
systems, the quantum mutual information I (ρAB) quantifies the total correlations
[12, 13].

In order to calculate quantum discord, one usually need to perform the optimiza-
tion process over all possible positive-operator-valued measurements (POVMs) [4].
However it would be difficult to do so in practical for even two-qubit systems. Many
works have employed the form of quantum discord with the operators {Mi

B} taking as
the vonNeumannmeasurements. Nevertheless, great efforts have beenmade for sim-
plifying the process of optimization especially for two-qubit cases and it has been
shown that projective measurements with rank-one are sufficient to maximize the
classical correlation between two qubits [14]. Moreover, for some special two-qubit
states, analytical results are obtained. The most common case is the Bell-diagonal
states, which possess maximally-mixed marginal and can be written as

ρAB = 1

4
(1 + �3

i=1ciσi ⊗ σi ), (7)

where ci are the three real parameters and σi are the three Pauli matrices. The reduced
density matrix ρA = ρB = 1/2. If we choose the four Bell states |φ±〉 = 1√

2
(|00〉 ±

|11〉) and |ψ±〉 = 1√
2
(|01〉 ± |10〉) as the basis, the densitymatrix of Eq. (7) is written

in the diagonal form. By optimizing the projective measurement on particle B, the
classical correlation is given by [15]

C(ρAB) = 1 − c

2
log2(1 − c) + 1 + c

2
log2(1 + c), (8)

with c = max(|c1|, |c2|, |c3|). The quantum discord is then given by

Q(ρAB) = 2 + �4
i=1λi log2 λi − C(ρ), (9)

where λi are the four eigenvectors of the state ρAB with the values of {λ1 = 1
4 (1 +

c1 − c2 + c3),λ2 = 1
4 (1+ c1 + c2 − c3),λ3 = 1

4 (1− c1 + c2 + c3),λ4 = 1
4 (1 − c1 −

c2 − c3)} and the total correlation I(ρAB) = 2 + �4
i=1λi log2 λi . The equivalence

between the approaches by using orthogonal projectors and rank-one POVM to
maximize the classical correlation of Bell-diagonal states has been demonstrated
in Ref. [16].

There are other measures of quantum correlations in composite quantum systems,
for example, the thermodynamic approach [17, 18], the measurement-induced dis-
turbance [19], the relative entropy measurement [20] and the geometry measurement
[21–23]. An explicit review on different nonclassical measurement can be found in
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Ref. [5]. Usually these definitions of nonclassical correlation are not equal to each
other.However, someof themeasures are shown tobe equivalent for theBell-diagonal
states [20]. In optical experiment, the Bell-diagonal states can be conveniently pre-
pared by mixing different Bell states [24, 25]. We focus on such kind of states and
demonstrate the particular dynamic behaviors of quantum discord in open quantum
systems.

2 Dynamics of Quantum Discord in Dephasing
Environment

Dephasing noise is of particular interests in quantum information processing. The
interaction quantum map for the dephasing evolution of a two-level quantum system
S with lower and upper states |0〉S and |1〉S can be represented as

|0〉S ⊗ |0〉E → √
1 − p|0〉S ⊗ |0〉E + √

p|0〉S ⊗ |1〉E ,

|1〉S ⊗ |0〉E → √
1 − p|1〉S ⊗ |0〉E + √

p|1〉S ⊗ |2〉E .
(10)

|0〉E is the initial state of the environment. During the evolution, the environment
has the probability p to be scattered to its excited state of |1〉E (|2〉E ) when the
system state is |0〉S (|1〉S), and has the probability 1 − p to remain unchanged. The
system S remains in the initial state and its coherence decays exponentially. p =
1 − exp(−γt), where γ is the decay rate.

In optical systems, the coupling between the information carriers (photon polar-
ization modes) and the degrees of freedom that are not involved in information
representation (photon frequency modes) can occur on birefringent crystals, such as
quartz plates. More explicitly, the evolution of |H〉 (horizontal polarization) and |V 〉
(vertical polarization) in the birefringent crystal would become |H〉 → eiδH (ω)|H〉
and |V 〉 → eiδV (ω)|V 〉 (a global phase is omitted), with δH (ω) = ωLnH/c and
δV (ω) = ωLnV /c depending on the polarization and frequency ω of the incident
photon. Here L is the length of the crystal, c is the speed of the light in vacuum, and
nH and nV are the refractive indexes of two polarizations in the birefringent crystals.
Now, consider a photon frequency distribution with the complex amplitude g(ω), a
general single photon state is initialized as

∫
dωg (ω) (α |H〉 + β |V 〉) ⊗ |ω〉, where

α and β are the complex amplitudes of |H〉 and |V 〉, respectively. Here we assume
that the initial state is decoupled from the frequency degrees of freedom. For each fre-
quency component ω passing through the crystal, the corresponding reduced density
matrix of the qubit is (the information detecting process is frequency independent,
i.e., by tracing over the frequency)

( |α|2 αβ∗e−iδ(ω)

α∗βeiδ(ω) |β|2
)

, (11)
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where δ(ω) = L(nV − nH )/cω = κω. In general, the phases resulting from differ-
ent frequency components will cause dephasing. For example, consider a Gaussian
distribution f (ω) = |g (ω)|2 = (

2/τ
√

π
)
exp(−4(ω − ω0)

2/τ 2) of the photon with
the center frequency ω0 and a distribution width τ . The value of the off-diagonal
element of the final density matrix imposed by the decoherence parameter η =
exp

(− 1
16κ

2τ 2 + iκω0
)
decays exponentially [26] and a dephasing environment is

simulated (such kind of environment also exists in the polarization-maintaining opti-
cal fibers [27]).

When one of two photons is sent to the depahsing environment, different from the
exponentially decay of the coherence of a single qubit, photonic entanglement may
completely disappear in a finite time, showing the phenomenon of entanglement sud-
den death [8], which has been experimentally demonstrated [28, 29]. The dynamical
behavior of the more general quantum correlation-quantum discord in the dephasing
environment would behaves quite different and has been experimentally investigate
in an all optical system [30]. In this work, different kinds of two-photon Bell diagonal
states are prepared by constructing unbalanced Mach-Zehnder interferometers. One
of the two photons is passing through quartz plates to introduce dephasing. During
the experiment, the minimum of conditional entropy S(ρiA) is scanned by perform-
ing different projective measurement on photon B (|i〉 = cos θ|H〉 + sin θ|V 〉), as
shown in Fig. 1a. Due to the symmetry feature of the evolved state, the minimum
value of S(A|B) in Eq. (6) is equal to the minimum value of S(ρiA) [32]. It is found
that the minimum value of S(ρiA) is obtained by projecting the state of photon B
to 1/

√
2(|H〉 + |V 〉) when the length of the quartz plate is smaller than 138λ0, and

|H〉 (|V 〉) when the length of quartz plates is larger than 138λ0 (λ0 = 0.78µm).
The final evolved state is reconstructed by the quantum state tomography process,
in which S(ρA), S(ρB) and S(ρAB) can be obtained. Therefore, the values of quan-
tum discord and classical correlation can then be calculated from Eqs. (5) and (6).
During the evolution the sudden change in behavior in the decay rates of quan-
tum discord and classical correlation are observed, as shown in Fig. 1b. When the
length of quartz plates is smaller than 138λ0, quantum discord remains unchanged
and classical correlation decays exponentially. With further increasing the length
of quartz plates, quantum discord decays exponentially and classical correlation
remains unchanged. The phenomenon is further explained as the sudden transition
from classical to quantum decoherence regime [31]. By comparing the dynamics of
quantum discord and quantum entanglement, we find that during the decoherence-
free region of quantum discord (remain unchanged), entanglement (characterized
by the entanglement of formation [33] and relative entropy of entanglement [34])
decays exponentially. Moreover, quantum discord still exists even when entangle-
ment sudden death occurs. These observation confirm the prediction that quantum
discord is more robust against decoherence than entanglement [9, 10]. We further
show the dynamics of non-entanglement quantum correlation defined as the differ-
ence between quantum discord and the relative entropy of entanglement, which also
suffers from sudden changes. By preparing a special input Bell diagonal state, quan-
tum discord is observed to be larger than classical correlation as the system evolves,
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(a)

(b)

Fig. 1 The correlation dynamics of input state ρAB = 0.75|φ−〉〈φ−| + 0.25|ψ−〉〈ψ−|. a The val-
ues of conditional entropy S(ρiA), with photons evolving in different thicknesses of quartz plates,
as a function of the measurement angle θ in mode B (|i〉 = cos θ|H〉 + sin θ|V 〉). b The dynamics
of correlations. Green upward-pointing triangles, black squares, red dots, blue stars and magenta
downward-pointing triangles represent experimental results of mutual quantum information, clas-
sical correlation, quantum correlation, entanglement of formation and relative entropy of entangle-
ment with the green solid line, black solid line, red dashed line, blue dotted line andmagenta dotted
line representing the corresponding theoretical predictions. Non-entanglement quantum correlation
(purple dots with the purple dotted line representing the theoretical prediction) is further compared
with classical correlation in the inset. The x axis represents the total thickness of quartz plates with
λ0 = 0.78μm which corresponds to the time evolution of the photons. This figure is reproduced
from Xu et al. Nat. Comm. 1, 7 (2010)

which disproves an early conjecture that classical correlation is always larger than
quantum correlations [35].

Usually, the dissipative correlation evolution is essentially dependent on the type
of noise that acts on the system. Markovian noise leads to the irreversible decay of
quantum correlations, as shown above. Non-Markovian noise, on the other hand,
would lead to the revival of quantum correlations. In order to simulate the non-
Markovian environment in optical systems, we employ a Fabry-Perot cavity followed
by quartz plates, which has been used in the investigation of non-Markovian evolu-
tion of quantum entanglement [28, 29]. The Fabry-Perot cavity behaves as an optical
resonator. Optical wavelengths for which the cavity optical thickness is equal to an
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integer multiple of half wavelengths are resonant in the cavity and transmitted. Other
wavelengths within the reflective band of the Fabry-Perot cavity are reflected. In the
experiment, the Fabry-Perot cavity is a 0.2mm thick quartz glass with coating films
(reflectivity 90% at wavelengths around 780nm) on both side. When a photon with a
Gaussian frequency distribution is sent through the Fabry-Perot cavity, the frequency
distribution is filtered to be the combination of three Gaussian frequency distribu-
tions and it can be written as f (ω) = ∑3

j=1 A j (2/
√

πτ j ) exp[−4(ω − ω j )
2/τ 2

j ]. A j

is the relative amplitude for each Gaussian function distribution with the central fre-
quency ω j and frequency width τ j . The photon is then sent through quartz plates.
The decoherence parameter is calculated as η = ∑3

i=1 A j exp[−κ2τ 2
j /16 + iκω j ].

During the dephasing process, the overall relative phase may refocus and the non-
Markovian effect occurs, which leads to the revival of η and then the revival of
quantum correlations.

The dynamics of quantum discord has been experimentally investigated in the
non-Markovian environment described above [36]. In the experiment, one of the two
correlated photons (denoted as B) is sent to the non-Markovian environment simu-
lated by the Fabry-Perot cavity and quartz plates. The final evolved state can be trans-
formed to a Bell diagonal form with local unitary operations, in which the relative
entropy are used to measure the quantum correlation and classical correlation [20].
For Bell diagonal states, the entropy quantum discord and classical correlation only
relate to the four eigenvalues of the final states, which can be directly calculated from
the reconstructed densitymatrixes.During the experiment, the sudden transition from
classical to quantum decoherence area was observed, which is similar to that in the
Markovian evolution [30]. Due to the refocusing effect of the relative phase, quan-
tum correlations revive from near zero. However, the non-Markovian effect is too
small to revive classical correlation and it keeps constant even when the revival of
quantum discord occurs. In order to obtain stronger non-Markovian effect, we can
narrow the frequency width of the filtered wave packets. It is theoretically shown that
when the frequency width are identically fitting to 0.2nm (the value reads 0.85nm in
the experiment), quantum discord and classical correlation both revive. The sudden
transition from quantum to classical revival regime can be further obtained. Usually,
it would difficult to obtain narrower frequency width. We use a spin-echo approach
to obtain the revival of classical correlation. A σx operation is implemented on the
photon B followed by another quartz plates. The σx operation (realized by a half-
wave plate with the angle setting to 45◦) exchanges |H〉 and |V 〉, i.e., |H〉 → |V 〉
and |V 〉 → |H〉. When the photon further passes through the same thickness of
quartz plates, each of the information basis (|H〉 and |V 〉) obtains the same phase as
ei(δH (ω)+δV (ω)) (|H〉 → ei(δH (ω)+δV (ω))|V 〉 and |V 〉 → ei(δV (ω)+δH (ω))|H〉), which can
be treat as a global phase. The decoherence effect is compensated. Another σx is
used to change the final state back to the initial state. All the correlations are revived
to the initial values and correlation echoes are formed.
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3 Revival of Quantum Discord in Classical Environment

In the above experiments, the frequency spectrum (unobserved degree of freedom)
is initially decoupled from polarizations (observed degree of freedom). After the
coupling in the birefringent crystals, the qubit states (polarization) entangled with
environmental states (frequency). The revival of quantum correlations is explained
to be the refocusing of relative phase in the non-Markovian quantum environment,
which is due to the back-action from the environment to the qubits [36]. Recently,
the revival of quantum correlations has been extended to the classical environment
without back action on the quantum system [38–42]. In such case, the environment
can not store or share the quantum correlations initially present in the quantum
system.

Recently, the experimental recovery of quantumcorrelations in absence of system-
environment back-action in an all-optical setup has been reported [43]. A simple
theoretical model is proposed to exclude other side effects, in which the environment
is considered to be a random external classical field, whose phase is either π/2 or
−π/2with equal probability 1/2. The classical field acts only on one of the two qubits
with the rotation operation corresponding to r+ and r−, respectively. In the optical
experiment, the environment is simulated by separating the photon with a 50:50
beam-splitter and implementing half-wave plates and quartz plates in both paths, in
which the operations of p+ (reflected path) and p− (transmitted path) can be realized.
Since the measurement process traces over the path information, the measurement
result would create a statistical mixture of them with equal probabilities 1/2. The
unitary transformations of p+ and p− correspond to the random field operations of
r+ and r−, respectively. The operations on the photon basis states |H〉 and |V 〉 can
be written as (a global phase factor is omitted)

|H〉 p±−→ cos(δ/2)|H〉 ± i sin(δ/2)|V 〉,
|V 〉 p±−→ ±i sin(δ/2)|H〉 + cos(δ/2)|V 〉, (12)

where δ = κω is the phase difference between |H〉 and |V 〉 introduced by quartz
plates. If the thickness of quartz plates is increased, there will be decoherence in the
evolution in both paths due to the fact that the frequency is also traced over during
the measurement process.

In the experiment, different kinds of Bell diagonal states are prepared as the initial
states. After the evolution in the simulated classical environment, the final quantum
states are reconstructed through quantum state tomography. The quantumdiscord and
classical correlation defined in Eqs. (5) and (6) are obtained by numerically scan the
projective operators {Mi

B} represented by {cos θ|H〉 + eiϕ sin θ|V 〉, e−iϕ sin θ|H〉 −
cos θ|V 〉} on photon Bwith the scan precision ofϕ and θ setting to π/100. During the
coherent evolution region (the length of quartz plates is small), the sudden changes
in the dynamics of quantum and classical correlations occur several times, which is
shown in Fig. 2. Quantum discord and classical correlations are observed to be robust
against variations of the relative phase δ at certain evolution periods. When come
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Fig. 2 Dynamics of correlations in the absence of system-environment back-action. The initial
input state is ρAB = 0.9|φ+〉〈φ+| + 0.1|φ−〉〈φ−|. The black solid line, dashed red line, dot-dashed
blue line and dotted dark cyan line represent, respectively, the theoretical predictions of total corre-
lation, classical correlation, quantum discord and entanglement measured by concurrence [37]. The
black, red, blue and dark cyan dots represent the corresponding experimental results. This figure is
reproduced from Xu et al. Nat. Comm. 4, 2851 (2013)

to the decoherent evolution (the length of quartz plates is large), a sudden change
in behaviour in the dynamics of the maximum values of classical correlation and
quantum discord is also found. Although the decay behavior of the maximum values
of correlations is similar to that in quantumMarkovian environment [36], the internal
noise mechanism is completely different. There are no revivals of correlations in the
Markovian evolution in [36]. However, the correlations exhibit collapses and revivals
during the evolution in the classical environment without back-action (as shown in
Fig. 2). If the initial states are changed, the maximum values of quantum discord
remain unchanged for a range of initial states and the sudden change behaviours of
quantum and classical correlations are observed again. The revival without back-
action are connect to the intrinsic non-Markovian of the system evolution, in wich
the non-Markovianity based on the trance distance [44] are measured. The non-
Markovianity can be identified by the positive rate of change of the trace distance [45].
It is found that the rate of change is positive when entanglement revivals occur. As
a result, the revival of quantum correlations is a dynamical feature of open systems
no matter what kind of environment is (classical or quantum).

The existence of non-Markovianity presents a necessary condition for the revival
to occur. We further provide a possible interpretation of the observed phenomenon
by treating the system-environment state as a quantum-classical state. The classical
environment acts only on one of the two qubits B and it never correlates with the
qubit B during the evolution. There is not the back-action by the environment on
the qubit and the classical environment cannot store any quantum correlations on
it own. However, the environment plays a control system (rotation operations) and
keep records on what kinds of unitary operation (r+ or r−) is applied to qubit B.
When such kind of classical information is lost, quantum correlations disappear. The
recovery of the control classical information would lead to the recovery of quantum
correlations.
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4 Conclusion and Outlook

The origin and application of quantum advantages are the subjects in the heat of
quantum information processing. However, real quantum systems are always sur-
rounded by their environment. Fragile correlations in quantum systems would be
easily destroyed by the unavoidable noises and there are also distinctive dynamic
behaviors of correlations, which would be of both practical and fundamental impor-
tance. Optical systems play important roles in quantum information science [46,
47]. Due to well-control coupling between observed degree of freedom and unob-
served degree of freedom, optical systems provide an ideal platform to investi-
gate the dynamics behaviors of quantum systems in different kinds of environment
(Markovian or non-Markovian, quantum or classical). Initial photon states can be
prepared with high enough precision. After the well-control coupling and evolution,
the final states can be reconstructed by the quantum state tomography. The dynamics
of quantum discord and other correlations in quantum systems can then be deduced.

Recently, in order to understand the dynamical behaviors of correlations, the
transference of correlation between the system and reservoir are further studied [48,
49]. Correlations between the system and reservoir can fundamentally influence the
dynamics of system. It is shown that vanishing quantum discord of the initial system-
environment state is the sufficient and necessary condition to induce a completely
positive map of the quantum dynamical process [50]. Moreover, it is proved that a
class of system-environment states called lazy states leads to the zero system entropy
rate under any system-reservoir coupling [51]. We expect that the optical systems
would play important roles in experimental investigation the system-environment
dynamics.

The discussion of different kinds of correlations in the same contextwould provide
a particular perspective on quantum discord. Quantum discord has been predicted
to closely related to the generated entanglement [52, 53] and the experimental work
has been reported [54]. Recently, the relation between quantum discord and quantum
coherent has further been investigated [55]. From the experimental view, a more con-
venient method except for the quantum state tomography to investigate the dynamics
of quantum discord is of great interest. Similar to the evolution equation of entan-
glement in noisy environment [28, 56, 57], the characterization of the dynamics of
quantum discord may be further simplified.
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Experimental Investigation of Quantum
Correlation in Solid-State Spin System

Jiangfeng Du, Fangzhou Jin and Xing Rong

Abstract Quantum systems exhibit diversified correlations which have no classical
counterparts. It has been pointed out that quantum entanglement cannot describe
all the nonclassicality in the correlations. The quantum discord, which can describe
quantum correlations in separable states, has been demonstrated as important physi-
cal resources in quantum information processing. Since the solid-state spin systems
are promising for applications of quantum computation and metrology, it is of practi-
cal significance to experimentally characterize the properties of quantum correlation
in such systems. In this chapter, we review the experimental investigations of quan-
tum correlations in solid-state spin system.

1 Introduction

Nowadays the significance of quantumcorrelations goeswell beyond quantumentan-
glement, which has been widely investigated and believed to be the key resources of
quantum information processing [1, 2]. However, the quantum entanglement does
not provide a complete characterization of the nonclassicality: there exist quan-
tum nonlocality without entanglement [3]. Moreover, quantum entanglement is not
always necessary for quantum computation: we presented the experiment to perform
a quantum algorithm for parity problemwithout using entanglement as early as 2001
[4], and recently a deterministic quantum computation with one qubit proposed in
1998 [5] has been realized experimentally [6] on the mixed separable states. It is
likely the type of quantum correlation known as quantum discord [7, 8], rather than
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quantum entanglement, that provides the enhancement for the computation [9],
although there are different views [10, 11] on this. There are also many other aspects
where the quantum discord has shown its significance, such as remote state prepa-
ration [12], encoding information [13], entanglement irreversibility [14], the link to
distillable of entanglements [15, 16], entanglement distribution [17–19], and quan-
tum metrology [20, 21] etc.

Apart from the wide applications, quantum discord has been exhibited peculiar
characters in decoherent dynamics. For example, quantum discord has been claimed
to have no sudden death [22] but has peculiar sudden change in its decay rates
[23], and be robust in its initial period of decoherence but suffers a sudden change
phenomenon [24]. Such behaviors has been experimentally investigated in various
systems [25–28]. Quantum correlations also provide a powerful framework for the
understanding of complex quantum systems. It has been shown that quantumdiscord,
in contrast to entanglement, captures the critical points associated with quantum
phase transitions (QPT) for XXZ and XY model, even at a finite temperature or in an
externalmagnetic field [29–33]. Subsequently, therewas experimental demonstration
of the quantum discord for capturing the critical points associated with the behavior
of the two-qubit XXZ Hamiltonian [34].

On the other hand, solid-state spin systems such as donor electron spins in
phosphorus-doped silicon (Si:P) [35–37] and nitrogen-vacancy colour centres in dia-
mond [38–40] are promising for applications of quantumcomputation andmetrology.
In Si:P ensemble system, there will be usually no quantum entanglement, but quan-
tum discord could exist. This system can be served as bed for study the capability
of using quantum discord in the absence of entanglement, which is in accord with
the comments by Zurek on quantum discord [41] “There is no longer a question that
discord works”, and “the important thing now is to find out when discord without
entanglement can be exploited most usefully”. Thus experimental investigation of
quantum correlations in such systems are of both fundamental and practical signifi-
cance. In this chapter,we focus on two experimentalwork about quantumcorrelations
in solid-state spin system [27, 34].

The chapter is organized as follows. In Sect. 2, we describe the definition and
calculation of quantum correlations. In Sect. 3, we study the dynamics of quantum
correlations in open solid systems, and protect the quantumcorrelations by dynamical
decoupling (DD) technique. In Sect. 4, we use quantum discord for capturing the
critical points of the two-qubitXXZ Hamiltonian, andwe further describe the creation
of quantumdiscord by theUnruh effect. The final discussions are presented in Sect. 5.

2 The Definition and Calculation of Quantum Correlation

Wefirst briefly introduce the definition of quantumcorrelations. In a quantum system,
a bipartite state AB described by the density matrix ρAB, with the subsystems ρA and
ρB. The total correlations is quantified by the mutual information of the expression
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I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (1)

where S(ρ) = −Tr[ρLog2ρ] is the von Neumann entropy. On the other hand, another
form of mutual information which is equivalent to Eq. (1) in classical scenario, is
expressed as

J(ρAB) = S(ρA) − S(ρA|B), (2)

where S(ρA|B) is the conditional quantum entropy, which clearly depends on the
observable we are measuring on B.

A general measurement on B is positive-operator-valued-measurement (POVM)
{�B

k }. After the outcome corresponding to �B
k has been detected, the state of A is

ρA|�B
k

= TrB[(1 ⊗ �B
k )ρAB(1 ⊗ �B

k )
†]/pk, (3)

with probability pk = Tr[(1 ⊗ �B
k )ρAB(1 ⊗ �B

k )
†]. Then Eq. (2) can be written as

J(ρAB){�B
k } = S(ρA) − S(ρA|{�B

k }), (4)

where S(ρA|{�B
k }) = ∑

k pkS(ρA|�B
k
). This quantify represents the information gained

about the system A as a result of the measurement {�B
k }. The maximal accessible

information about A is the classical correlation [7, 8]

CB(ρAB) = S(ρA) − min
{�B

k }

∑

k

pkS(ρA|{�B
k }). (5)

Then, the quantum part of the total correlation is defined as quantum discord

DB(ρAB) = I(ρAB) − CB(ρAB). (6)

In the same way, DA can also be calculated by optimizing over all projective mea-
surements onA. Note that in general, discord is asymmetric, i.e.,DB �= DA. However,
in the case of Bell-diagonal states, DB = DA.

Up to now, there isn’t an analytical formula of quantum discord for general
two-qubit states, except for the Bell-diagonal states [42] and two-qubit X states
[43–45]. In an experiment, the density matrix is reconstructed by the state tomog-
raphy, with almost all elements nonzero. The quantum discord of these recon-
structed density matrices need to be numerically calculated according their def-
initions. The mutual information of ρAB is calculated with Eq. (1). The classical
correlation and quantum discord are obtained with Eqs. (5) and (6) by optimizing
over all one-qubit measurements on B. It has been proven [46] that the optimal
measurement is always projective for two-qubit states, so it is sufficient to max-
imize over all the following projective measurements {1⊗ | �k〉〈�k |, k =‖,⊥},
where | �‖〉 = cos θ | 0〉 + eiφ sin θ|1〉 and |�⊥〉 = e−iφ sin θ|0〉 − cos θ|1〉 presents
an arbitrary basis of B formed by two orthogonal states on the Bloch sphere, with
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0 ≤ θ ≤ π
2 and 0 ≤ φ ≤ 2π. Then the classical correlation and quantum discord can

be obtained numerically.

3 Dynamics of Quantum Correlation in Open Solid Systems

Quantum systems inevitably interact with the environment, the evolution of the quan-
tum discord in a noisy environment is certainly of interests. It is well-known that in a
dissipative environment entanglement decays to zero in a finite time, which is called
entanglement sudden death (ESD) [47]. In contrast, quantum discord has no sudden
death but has peculiar sudden change in its decay rates. Meanwhile, as quantum
discord is regarded as an important resource in many quantum tasks, it is essential
to preserve the quantum correlation in a fragile quantum system, thus it is vital to
overcome decoherence effect induced by the environment. One of the strategies is
the dynamical decoupling (DD) technique [48, 49], which uses stroboscopic spin
flips to reduce the average coupling to the environment to effectively zero. DD is a
particularly promising strategy for combating decoherence [50, 51], since it can be
naturally integrated with other desired functionalities, such as quantum gates.

Herewe describe the experimental investigation of the dynamics of both the classi-
cal and quantum correlations in solids [27]. The phosphorous donors in silicon (P:Si)
material with P concentration about 1 × 1016 cm−3 is chosen for the study. Silicon
is a particularly attractive material for hosting spin qubit for its low-orbit coupling
and low natural abundance of nuclear-spin-bearing isotope [52]. The experiment was
performed at temperature 8K. The system consists of an electron spin S = 1/2 and
a nuclear spin I = 1/2. It can be described by an isotropic spin Hamiltonian

He,n = ωeSz − ωI Iz + 2πa · −→S · −→
I , (7)

where ωe = gβeB0/� and ωI = gIβIB0/� characterize the Zeeman interactions for
the electron and nuclear spins, respectively. a = 117MHz is the strength of the

isotropic hyperfine interaction, and
−→
S (

−→
I ) is the electron (nuclear) spin operator.

The energy diagram of this system is plotted in Fig. 1a, where the four-level system
can be manipulated by resonant the microwave (MW1, MW2) and radio-frequency
(RF1, RF2) radiation. The dynamics of an open quantum system ρAB coupling to the
environment in solids can be described by longitudinal and transverse relaxations of
time constants T1 and T2, respectively. For the electron spin, the transverse relaxation
time is T2e = 120µs, the longitudinal (i.e., electron population) relaxation time is
T1e = 5.6ms and the dephasing time T∗

2e ≈ 0.2µs. For the nuclear spin, the dephas-
ing time is determined as T∗

2n = 24µs by the nuclear spin free induction decay (FID)
experiment. The longitudinal relaxation time T1 of both the electron and the nuclear
spins are much larger than the transverse relaxation time T2 and so can be neglected
in our experiments. The decay of the off-diagonal elements depends on the time scale
of dephasing time T∗

2 of the electron and the nuclear spin. Since T∗
2e is almost two

orders of magnitude smaller than T∗
2n, the decay of the secondary diagonal elements

is dominated by T∗
2e. For the phosphorous donors in silicon with natural abundance
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of 29Si, the hyperfine fields of the 29Si nuclei cause random static shifts of the indi-
vidual electron-spin resonant frequencies which satisfy a Gaussian distribution [53].
Averaging over the Gaussian-distributed resonant frequencies, the dephasing of the
electron spin can be derived with the form ∼ exp[−(t/T∗

2e)
2].

Here the Bell-diagonal state is considered for the initial state. It can be obtained
from the thermal equilibrium state ρ0 = 1

414×4 − εσz ⊗ 12×2, where ε = gβeB0/

8kBT = 7.35 × 10−3 (at temperature 8K) is the ratio between the magnetic and
thermal energies. Then with the dephasing of the electron spin, the time evolution of
the total system is given by

ρAB(t) = 1

4
[1 + c1(t)σ

A
x σB

x + c2(t)σ
A
y σB

y + c3(t)σ
A
z σB

z ], (8)

whereσA(B)
i (i = x, y, z) are the Paulimatrices of the first (second) qubit, and the coef-

ficients c1(t) = c1(0) exp[−(t/T∗
2e)

2], c2(t) = c2(0) exp[−(t/T∗
2e)

2] and
c3 (t) = c3.

The typical coefficients ci ∼ 10−3 (i = 1, 2, 3), therefore we focus on a class of
reasonable and widely used states for which c1(0) = 0, |c3(0)| < |c2(0)|  1. By
following Ref. [42], we obtain the analytical expressions for the mutual information,
the classical correlation and the quantum discord. Expanding I[ρ(t)] and C[ρ(t)] in
the Taylor series of c2(t) and c3 and neglecting high-order terms, we obtain

I[ρ(t)] = 1

2 ln 2
[c23 + c22(t)], (9)

C[ρ(t)] = 1

2 ln 2
c2(t), (10)

where c(t) = max{c2(t), c3}. Hence, the quantum discord is calculated to be

D[ρ(t)] =
{

1
2 ln 2 c23 if t � tc,
1

2 ln 2 c22(t) if t > tc.
(11)

Here tc = √− ln[c3/c2(0)]T∗
2e is obtained by setting c2(tc) = c3. Consequently, in

the noisy environment, the quantum discord is constant and the classical correlation
decreases in the initial period t � tc, while for t > tc, the classical correlation does
not change in time and only the quantum discord is reduced sharply.

Figure1b shows the pulse sequence applied in our experiment. It consists of three
steps: state preparation, evolution under the noisy environment, and the tomography.
Firstly the quantum state is initialized to be a Bell-diagonal state, which satisfies the
conditions c1(0) = 0, |c3(0)| < |c2(0)|  1. We present the result of the tomogra-
phy of the initial state in Fig. 1c, d, where the real and imaginary parts of the deviation
density matrix in unit of ε are presented. After the preparation step, the quantum sys-
tem is left to evolve under the noisy environment. Then the resultant quantum states
are reconstructed by state tomography [54].
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(a) (b)

(c) (d)

Fig. 1 a Energy level diagram for the P:Si system. There are four Zeeman product states which are
labeled by states 1–4, respectively. ↑ and ↓ stand for the ±1/2 states of electron and nuclear spins.
Electron spin resonance (ESR) and nuclear magnetic resonance (NMR) transitions are indicated by
two-way arrows. b Diagram of the experimental pulse sequence, which includes three steps: state
preparation, evolution under the noisy environment, and the tomography. c,dThe real and imaginary
parts of the reconstructed deviation density matrix �ρ = ρ − �/4, in unit of ε, respectively, where
ε ≈ 7.35 × 10−3. From Ref. [27]

The dynamics of the quantum and classical correlations depend on the decay of
secondary diagonal elements according to Eqs. (10) and (11). The decay of ρ23 and
ρ14 decay with function of ∼ exp[−(t/Tdecay)2], where Tdecay ≈ 175ns. The values
of mutual information (darkgreen circle), the quantum discord (red quadrate) and
the classical correlation (black triangle), which are obtained by numerical calculat-
ing from the state tomography density matrix, are plotted in Fig. 2a. The theoretical
predications plotted in Fig. 2a can successfully describe the experimental data. It
clearly shows that the sudden transition from the classical to the quantum deco-
herence regime occurs at about 166ns. In the initial period (0 ≤ t � 166ns), the
quantum discord remains constant but the classical correlation decreases, while for
t � 166ns, the classical correlation does not change but the quantum correlation
decreases dramatically.

Then the two-flip DD pulse sequence is applied to the electron spin to prolong
both classical and quantum correlations. Dynamics decoupling is an effectivemethod
to preserve the coherence of a quantum system and it has been tested by experiments
in both single qubit [50] and two-qubit [51] systems. Recently, ultralong coherence
times of both electron and nuclear spins have been achieved by DD in high-purity
silicon [55, 56]. However, the ability of DD to preserve the nonclassical correlations
(quantum discord) between electron and nuclear spins remains elusive. Figure2b
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Fig. 2 a Dynamics of classical and quantum correlations. The logarithmic-scale values of mutual
information (darkgreen circle), quantum discord (red square) and classical correlation (black trian-
gle) are numerical computed with their original definitions (and so do the other experimental data
in the chapter). The curves are the theoretical predication. b The evolution of classical and quantum
correlations under the dynamical decoupling protection. The curves are drawn to follow the trend
of the variation of correlations. I and II denote the classical and quantum decoherence regimes,
respectively. Adapted from Ref. [27]

shows that the decay of classical and quantum correlations become much slower,
and the period before the sudden transition of correlations is prolonged via DD by
about 50 times to 8.0µs.

The results show clearly a transition from classical decoherence regime to quan-
tum decoherence regime at a critical point tc ≈ 166ns, and tc can be extended via a
simple DD approach by about 50 times to 8.0µs. Since quantum discord might be
the reason for the power of quantum computation in some cases [6], and a resource
for remote state preparation [12], together with the demonstration of an operation
method to use quantum discord as a physical resource [13], the experimental demon-
stration of the existence of a non-decay region, the revival and prolonging of the
quantum discord in a noisy solid-state system may have great potential applications
in quantum information processing.

4 Quantum Correlation for Capture the Critical Points
of the XXZ Model

QPT [58] is a purely quantum process occurring at absolute zero temperature when
an external parameter of the Hamiltonian is varied. It is different from classical
phase transition because they are strictly determined by the properties of the ground
state. This phenomenon is one of the main interests in the field of condensed matter
physics. On the other hand, correlations play an important role in critical systems, for
instance, it has shown that the significant connection between entanglement andQPT
in the XY spin chain [57]. Recently, quantum discord is shown to capture the critical
points associated with QPT for XXZ and XY model, even at a finite temperature or in
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an external magnetic field [29–33].With extensive theoretical studies about quantum
discord in critical systems having been carried out, experimental studies are essential
but very few.

Here we describe the experiment to characterize the quantum correlations in two-
qubit XXZ Heisenberg model at a finite temperature [34]. By tuning the state para-
meter that corresponds to the anisotropic coupling constant in the XXZ model, the
sudden changes of the quantum discord is observed. The sudden changes correspond
exactly to the energy-level crossing of the XXZ Hamiltonian, and also indicate the
critical points on which the ground state of the Hamiltonian transforms from product
state to entangled one, or vice versa. When the number of the qubit on the XXZ chain
tends to infinity (i.e., thermodynamic limit), the sudden changes of discord spotlight
the critical points associated with QPT [31].

The Hamiltonian of a two-qubit XXZ Heisenberg chain is given by

H = J

4
(σA

x σB
x + σA

y σB
y + �σA

z σB
z ), (12)

where J is the coupling constant and � is the anisotropy parameter. In fact, the
density matrix for this model at thermal equilibrium at temperature T is given by
the canonical ensemble ρAB = e−βH/Z , where β = 1/kBT , and Z = Tr(e−βH) is the
partition function. This is in form of Bell-diagonal states. The entanglement of for-
mation (EoF) [59] and the quantum discord of the state ρAB can be easily obtained
from Refs. [60] and [42], respectively. When T = 0, the state ρAB is the ground state
of the Hamiltonian H. When the temperature T is appreciably larger than the max-
imum splitting of H in Eq. (12), the thermal-equilibrium state can be approximated
as

ρAB = 1

4
− βJ

16
(σA

x σB
x + σA

y σB
y + �σA

z σB
z ). (13)

We depict the energy levels with respect to the anisotropic parameter � in Fig. 3a,
where the units have been chosen such that J = 1 and kB is unity [61]. It is shown that
with the temperature increasing, the EoF becomes zero, while the quantum discord
is always larger than zero [Fig. 3b]. Also, at finite temperature, the quantum discord
changes suddenly at� = ±1which corresponds exactly to the energy-level crossing,
but it is not the case for EoF, whose behavior is illustrated by dotted lines in Fig. 3b.

The P:Si material is chosen as a benchmark system as well. The energy diagram
of this system is shown in Fig. 1a. The experiment consists of three steps: state
initialization, evolution to the target states, and the tomography. After the target states
corresponding to the different values of � are achieved, tomography technique [54]
is then used to reconstruct the density matrix ρAB.

The values of quantum discord [triangles in Fig. 3c] are numerically calculated
from the reconstructed density matrices according its definition. The experimental
data agree with the theoretical prediction [line in the Fig. 3c]. It is clear that quantum
discord experiences a sudden change at � = ±1 where the energy level crossing
occurs. It is worthy of pointing out that the entanglement, which is characterized
by EoF, is measured to be zero in our experiments. Thus, we have presented a case
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Fig. 3 a The energy levels of the Hamiltonian given by Eq. (12). b The EoF (black dotted lines) and
quantum discord (red solid lines) of the state ρAB. When the temperature increases from 0 to 2K, the
EoF vanishes while the discord remains positive. The sudden changes of the discord correspond to
the level crossings shown in a. c The behavior of quantum correlations when� varies. The triangles
are experimental data of quantum discord derived from the reconstructed density matrices, which
agree with the theoretical values (red solid line). The deviation between the experimental data and
the theoretical prediction is due to the imperfection of the pulses. Adapted from Ref. [34]

where entanglement fails to capture the energy level crossing while the tempera-
ture is of a finite value. Note that there are theoretical studies which conclude that
quantum discord can be utilized to capture the quantum phase transition even at
finite temperatures [30, 31, 33]. The success in highlighting the sudden change of
the ground state (� = −1) in the two-qubit system employed in our experiments
indicates that quantum correlation could be used to observe the quantum criticality
at finite temperatures.

Here the two-qubit XXZ Heisenberg model has been taken as an example, and
the abrupt change of its ground state has been unambiguously spotlighted by quan-
tum correlations. The results reveal the capability of using quantum correlations to
indicate the intrinsic change of the physical system. This experiment may serve as
a preliminary meaningful step to observe quantum criticality at finite temperatures
via quantum correlations.

Besides above peculiar characters, quantum discord has been shown playing an
important role in relativistic quantum information [62–64]. It has been shown that
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quantum discord is observer-dependent and degrades with observer’s acceleration
for both bosonic [62] and fermionic systems [63] via the Unruh effect [65–67].
Interestingly, it was pointed out recently that quantum discord could be created by
the Unruh effect even from the classically correlated states [68]. This remarkable
phenomenon could be ascribed to the nonunital characteristics of the Unruh channel,
for which quantum discord can be produced by the local nonunital channel [69–71].

Consider an inertial observer Alice (A) and a uniformly accelerated observer
Bob (B) with a constant acceleration a. As shown in Fig. 4a, Alice moves in the
Minkowski plane with coordinate (t, z). The setting of the uniform acceleration can
be conveniently described by the Rindler coordinate (τ , ζ) with two disconnected
regions I and II. One can describe the uniformly accelerated Bob to travel on a
hyperbola constrained to region I, as Fig. 4a shown. Bob has no access to field modes
in the causally disconnected region II. Therefore, he must trace over the inaccessible
region II, which unavoidably leads to the detection of amixed state. Under the single-
mode approximation, the Minkowski vacuum state |0〉M and one-particle state |1〉M
can be expressed as [63, 72]:

|0〉M = cos r|0〉I|0〉II + sin r|1〉I|1〉II ,

|1〉M = |1〉I|0〉II .
(14)

The dimensionless acceleration parameter r is defined by cos r = [exp(−2π�c
a ) +

1]−1/2 with r ∈ [0,π/4], a ∈ [0,∞), and � is the frequency of Unruh mode.
The Bell-diagonal states ρAB shared by Alice and Bob initially in an inertial frame

are taken into account. Then theMinkowski particle states are expended into Rindler
region I and II particle and antiparticle states. Since Bob is causally disconnected
from region II, we trace over the mode in this region II. The quantum state shared
by Alice and Bob can be expressed as

ρABI = 1

4

(
1 + c1 cos rσ

A
x ⊗ σB

x + c2 cos rσ
A
y ⊗ σB

y

+ c3 cos
2 rσA

z ⊗ σB
z − sin2 r1A ⊗ σB

z

)
.

(15)

This is an X-type state which has an analytical formula of quantum discord [44,
45]. For clarity, we focus on a special Bell-diagonal state with c1 = 1, c2 = c3 = 0
which is a classically correlated state.

The behaviours of correlations are depicted in Fig. 4b. It is shown that both mutual
information and classical correlation decay along with r, however, quantum discord
can be created from this classically correlated state via the Unruh effect. Further-
more, this remarkable phenomenon has been experimentally simulated on a nuclear
magnetic resonance quantum simulator [68]. The experimental results are shown in
Fig. 4b as well. This result implies that, although the total correlations decay, the
non-classical correlations can be generated under the Unruh effect. Note that the
quantum entanglement in this case is always zero.
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Fig. 4 a Alice (A) is an inertial observer and Bob (B) is a uniformly accelerated observer. The
sets (t, z) and (τ , ζ) denote the Minkowski and Rindler coordinates, respectively. The right and left
Rindler wedges are the regions with |t| < z and |t| < −z, respectively. They are separated by the
Rindler horizon so that they are causally disconnected from each other. b The behavior of mutual
information (black - MI), classical correlation (olive - CC), and quantum discord (red - QD) under
the Unruh effect. The discrete points are the experimental results with the nuclear spin quantum
simulator. The curves are the corresponding theoretical predications. Insets the zoom-in plot of the
sectional region. Adapted from Ref. [68]

5 Concluding Remarks

To summarize, quantum discord is a concept intended to describe the whole non-
classical correlation in quantum systems. Although both quantum discord and entan-
glement are used to measure quantum correlation, it has been found that quantum
discord can identify quantum correlation in separable states while entanglement
cannot. Theoretical work has been carried out recently in various aspects, while
experimental studies are few. As the promising applications of the solid-state spin
systems, we believe that it is necessary to perform clear and reliable experiments
to investigate experimentally the presence of quantum discord where entanglement
vanishes in such systems.

This chapter has introduced mainly two experimental work about quantum cor-
relations in solid-state spin system. One is the dynamics of quantum correlations in
open solid systems and its protection byDD, another one is the utilization of quantum
discord for capturing the critical points of the two-qubit XXZ Hamiltonian. These
are just a sub branch of the characters and applications of quantum correlation. And,
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attentions should be paid to quantum correlations and related aspects, that studying
the nature of correlations in the world around us might even help us catch a glimpse
of the theory that comes to supersede quantum physics [2].
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Quantum Correlations in NMR Systems

T.S. Mahesh, C.S. Sudheer Kumar and Udaysinh T. Bhosale

‘Correlations cry out for explanation’ - J.S. Bell in Speakable
and Unspeakable in Quantum Mechanics, Cambridge university
press (1989).

Abstract In conventionalNMRexperiments, the Zeeman energy gaps of the nuclear
spin ensembles are much lower than their thermal energies, and accordingly exhibit
tiny polarizations. Generally such low-purity quantum states are devoid of quantum
entanglement. However, there exist certain nonclassical correlations which can be
observed even in such systems. In this chapter, we discuss three such quantum cor-
relations, namely, quantum contextuality, Leggett–Garg temporal correlations, and
quantum discord. In each case, we provide a brief theoretical background and then
describe some results from NMR experiments.

1 Introduction

Quantum physics is known for many nonintuitive phenomena including certain clas-
sically forbidden correlations. To study and understand these mysterious quantum
correlations we require a suitable testbed. Nuclear Magnetic Resonance (NMR) [1,
2] of an ensemble of molecular nuclei in bulk liquids/solids form a convenient test-
bed even at room temperatures [3]. The weakly perturbed nuclear spins in such
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systems can store quantum superpositions for long durations ranging from sec-
onds to minutes. In addition, excellent unitary controls via radio-frequency pulses
allow precise manipulations of spin-dynamics. Even though one can not have local
addressability of individual spins, and one works with the spin-ensemble as a whole,
it is still possible to study many of the quantum correlations, namely contextual-
ity, temporal correlation, discord etc (Fig. 1). The ensemble measurements are often
sufficient, since many of the quantum correlations can be evaluated via expectation
values. However, at room temperature there is little entanglement in conventional
NMR systems [4]. In fact, this makes NMR a good candidate for studying quantum
correlations without entanglement.

In the following sections we are going to review some NMR experiments inves-
tigating quantum contextuality, Leggett–Garg inequality, and quantum discord. For
the sake of completeness, we have provided a brief theoretical background in each
case.

2 Quantum Contextuality

As the name suggests, outcome of a quantummeasurement in general depends on the
context i.e., measurement-setting, arrangement, situation, circumstance, etc. Quan-
tum contextuality (QC) states that the outcome of a measurement depends not only
on the system and the observable being measured, but also on the context of the
measurement, i.e., on other compatible observables which are measured along with
[5–7]. QC signifies a mysterious nonclassical correlation between measurement out-
comes corresponding to distinct observables. One consequence of QC is violation
of Bell’s inequality [8, 9], which has challenged the most cherished tenet of special
theory of relativity, i.e., locality.

Peres explained quantum contextuality using a pair of electrons in a singlet
state (|01〉 − |10〉)/√2 [6]. Suppose we measure a Pauli observable σiα, where
α ∈ {x, y, z}, on the i th particle, and obtain an outcome αi = ±1. For the singlet
state, the result of measuring σ1xσ2x is x1x2 = −1 since 〈σ1xσ2x 〉 = −1. Similarly,
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y1y2 = −1. However, if one measures σ1xσ2y followed by σ1yσ2x one would obtain
the outcome x1y2y1x2 = −1 since 〈σ1xσ2yσ1yσ2x 〉 = 〈σ1zσ2z〉 = −1, which is in
contradiction with x1x2 = y1y2 = −1.

Later Mermin [10] generalized quantum contextuality to a state-independent
scenario. Consider a pair of spin-1/2 particles and a set of nine Pauli-observables
arranged in the following fashion:

σ1z σ2z σ1zσ2z +1
σ2x σ1x σ1xσ2x +1

σ1zσ2x σ1xσ2z σ1yσ2y +1

+1 +1 −1

. (1)

Here the last column (row) lists the product along the row (column). In this arrange-
ment, all the operators along any row, or any column,mutually commute and therefore
they can bemeasured sequentially or simultaneouslywithout anymutual disturbance.
Whatever may be the state of the spin-pair, if one measures the three consecutive
observables along any row one would obtain the outcome +1, the only eigenvalue of
1. Similarly, if one measures along first or second column one would obtain +1. On
the other hand, choosing observables along the last column will lead to an outcome
−1. However, no assignment of ±1 values to individual measurements of all the
nine observables can satisfy the above joint-measurement outcomes, indicating that
such noncontextual preassignments of measurement outcomes is incompatible with
quantum physics.

2.1 Contextuality Studies Using NMR Systems

The first demonstration of contextuality in NMR systems was reported by
Moussa et al. [11]. Using a solid state NMR system, they evaluated the state inde-
pendent inequality [8]

β = 〈πr1〉 + 〈πr2〉 + 〈πr3〉 + 〈πc1〉 + 〈πc2〉 − 〈πc3〉 ≤ 4 (2)

where 〈πri 〉 are the expectation values obtained when all the observables along the
i th row of matrix in (1) are measured. Similarly 〈πc j 〉 is the expectation value for
measurements along the j th column. Exploiting the state independent property, they
initialized the system in the maximally mixed state and obtained the value β =
5.2 ± 0.1. While the result is in agreement with the quantum bound which is β ≤ 6,
it strongly violates the inequality in (2).

Later, XiKong et al. demonstratedQCby a single three level system in aNVcenter
setup [12]. More recently, Dogra et al. demonstrated QC using a qutrit (spin-1) NMR
system with a quadrupolar moment, oriented in a liquid crystalline environment.
Using a set of 8 traceless observables (Gell-Mannmatrices) and an inequality derived
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based on a noncontextual hidden variable (NCHV) model, they observed a clear
violation of the NCHV inequality [13].

Contextuality via Psuedo Spin Mapping

Suet al. [14] have theoretically studiedQCof eigenstates of onedimensional quantum
harmonic oscillator (1D-QHO) by introducing two sets of pseudo-spin operators,

� = (�x , �y, �z), �′ = (�′
x , �

′
y, �

′
z)

with components,

�x = σx ⊗ �2, �y =σz ⊗ σy, �z = − σy ⊗ σy, �
′
x =σx ⊗ σz, �

′
y =�2 ⊗ σy, �

′
z = − σx ⊗ σx ,

(3)

where 12 is 2 × 2 identity matrix. Defining the dichotomic unitary observables,

A = �x , B = �′
x cosβ + �′

z sin β, C = �z, D = �′
x cos η + �′

z sin η, (4)

they setup Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality [15],

I = 〈AB〉 + 〈BC〉 + 〈CD〉 − 〈AD〉 ≤ 2. (5)

However, the quantum boundwas shown to be IQ ≤ 2
√
2, clearly violating the above

Bell-CHSH inequality and thus exhibiting QC of QHO.
Katiyar et al. carried out an NMR investigation of this inequality by mapping the

QHO eigenstates to the spin-states of a 2-qubit system (with an additional ancilla
qubit) [16]. Using the Moussa protocol [11] (described in the next section) to extract
the joint-expectation values in the inequality (5), they obtained IQ ≈ 2.4 ± 0.1.
Although decoherence limited the experimental value to below the quantum bound
(IQ ≤ 2.82), it is clearly above the classical bound (I ≤ 2) and therefore establishes
QC of 1D-QHO.

Thus, we observe that even when a system is in a separable state, measuring
nonlocal observables leads to violation of Bell-CHSH inequality [17].

3 Temporal Correlations

Bell’s inequalities (BI) are concerned with how two systems (each with a dimension
of at least 2) are correlated over space, where as the Leggett–Garg inequality (LGI)
is concerned with the correlation of a single system (with a dimension of at least
2), with itself at different time instants. While the former deals with context of the
measurement, the latter deals with a temporal context.

LGI is based on the following two assumptions:
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1. Macroscopic realism (MR): Amacroscopic system, with two ormoremacroscop-
ically distinct states available to it, exists in one of these states at any given point
of time.

2. Noninvasivemeasurability (NM): It is possible to determine the state of the system
with arbitrarily small perturbation to its future dynamics [18, 19].

Although the original motivation of Leggett and Garg was to test the existence of
quantumness even at a macroscopic level, most of the violations of LGI reported so
far are on microscopic systems [19]. The LGI violations in such systems were either
due to invasivemeasurement or the systembeing inmicroscopic superpositions. Even
though LGI violation in a macroscopic system such as a superconducting qubit has
been reported [20], the existence of macroscopically distinct states in such a system
is not clear [19]. Other experimental works on LGI includeNitrogen-Vacancy centers
[21, 22], photonic systems [23], electron interferometers [24], superconducting qubit
[25], and more recently in neutrino oscillations [26]. Recent theoretical extensions
of LGI include its entropic formulation [27] and LGI in a large ensemble of qubits
[28]. The violation of the former was recently observed using NMR experiments by
Katiyar et al. [29]. LGI is also studied for a system of qubits coupled to a thermal
environment [30]. For more details reader can refer to the review [19]. LGI violation
in a 3-level NMR system has also been reported recently [31].

In the following we provide a brief theoretical as well as experimental review of
LGI in the context of NMR.

3.1 Leggett–Garg String

Consider a system (the ‘target’) evolving under some Hamiltonian. Let Q be a
dichotomic observable with eigenvalues Q = ±1, and let Q(ti ) denotes the mea-
surement outcome at time ti . Repeating these measurements a large number of times
we obtain the two-time correlation coefficient (TTCC) Ci j for each pair:

Ci j = lim
N→∞

1

N

N∑

r=1

Qr (ti ) · Qr
(
t j

) = 〈Q (ti ) · Q (
t j

)〉, (6)

where r is the trial number. Finally, the values of these coefficients are to be substituted
in the n-measurement LG string given by:

Kn = C12 + C23 + C34 + · · · + C(n−1)n − C1n. (7)

Each TTCC Ci j is bounded by a maximum value of +1, corresponding to a perfect
correlation, and a minimum value of −1, corresponding to a perfect anti-correlation.
Ci j = 0 indicates no correlation. Thus, the upper bound for Kn consistent with
macrorealism comes out to be (n − 2), while the lower bound is −n for odd n,
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(a)

(b)

(c)

Fig. 2 Extreme values of TTCCs for a classical particle in a double-well potential for the cases
of a three-time measurement and b four-time measurement. The left and right columns illustrate
minimum and maximum values of Kn-strings respectively. c Kn versus n and ω�t/π for a single
qubit. The filled regions indicate LGI violations

and −(n − 2) for even n (see Fig. 2a and b). With these considerations LGI reads
−n ≤ Kn ≤ (n − 2) for odd n, and − (n − 2) ≤ Kn ≤ (n − 2) for even n.

In the following, we consider the case of a single qubit, namely a spin-1/2 nucleus
precessing in an external static magnetic field.

3.2 Violation of LGI with a Single Qubit

A spin-1/2 nucleus precessing in an external magnetic field along z-axis has the
following Hamiltonian: 1

2ωσz , where ω is the Larmor frequency. Let σx be the
dichotomic observable [32]. Starting from the definition of TTCCs, we obtain for an
arbitrary initial state ρ0 [33, 34],

Ci j = 〈
σx (ti ) σx

(
t j

)〉 = cos
{
ω(t j − ti )

}
. (8)

Dividing the total duration from t1 to tn into (n − 1) parts each of length �t , we can
express the LG string consistent with Eq. (8) as

Kn = (n − 1) cos{ω�t} − cos{(n − 1)ω�t}. (9)

Figure2c illustrates Kn curves for n = 3–8 and for ω�t ∈ [0, 2π]. The classical
bounds in each case are shown by horizontal lines. As indicated by the filled areas,
LGI is violated for each value of n at specific regions ofω�t . Quantum bounds of K3

are −3 and +1.5 and that for K4 are −2
√
2 and +2

√
2, and so on. In the following

we discuss an experimental protocol for evaluating the LG strings.
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3.3 Moussa Protocol

As described before, one needs to extract TTCCs in a way as noninvasive as
possible. One way to achieve this is by using an ancilla qubit and employing Moussa
protocol (Fig. 3). It involves preparing the ancilla in |+〉 state (an eigenstate of σx ;
or a pseudopure state (1 − ε)1/2 + ε|+〉〈+|) followed by a pair of CNOT gates
separated by the delay t j − ti . Finally σx observable of the ancilla qubit is measured
in the form of transverse magnetization which reveals the corresponding TTCC [11]:

〈σx 〉ancilla = Tr[ρsσx(ti )σx(t j )] = Ci j , (10)

Fig. 3 Moussa circuits (left) to extract TTCCs for the three-measurement case and the experimental
results (crosses in the right) of Ci j and K3 obtained with 1H (ancilla) and 13C (system) spins of
chloroform (molecular structure shown in bottom-left). Both short-time and long-time behavior of
K3 are shown. Here smooth curves are drawn with theoretical expression (Eq.8) along with an
appropriate decay factor. Parts of this figure are adapted from [32]
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where ρs = 1/2 is the initial state of the system qubit.
The Moussa circuits are easy to implement using a two-qubit NMR system [32,

35]. Athalye et al. [32] have used 13C and 1H spins of 13C-Chloroform as system
and ancilla qubits respectively and found a clear violation of LGI by more than 10
standard deviations at short time scales. However, with longer time scales, the TTCCs
decayed resulting in a gradual reduction in the violation, and ultimately satisfying
the LGI bounds.

More recently, Knee et al. [36] have used ideal negative result measurements
(INRM) to extract TTCCs noninvasively. The method involves two sets of experi-
ments - one with CNOT and the other with anti-CNOT. In the former, the system
qubit is unaltered if the ancilla (control-qubit) is in state |0〉, while in the latter, the
system is unaltered if the ancilla is in state |1〉. Postselecting the subspaces wherein
the system is unaltered is considered to be more noninvasive [36]. Using nuclear and
electronic spins as system and ancilla, Knee et al. demonstrated LGI violation with
INRM [36].

3.4 Entropic Leggett–Garg Inequality (ELGI)

In 2013, Usha Devi et al. [27] have formulated the entropic Leggett–Garg inequality
in which they place bounds on amount of information associated with a noninva-
sive measurement of a macroscopic system. The amount of information stored in a
classical observable Q(ti ) at time ti is given by the Shannon entropy,

H(Q(ti )) = −
∑

Q(ti )

P(Q(ti )) log2 P(Q(ti )), (11)

where P(Q(ti )) is the probability of the measurement outcome Q(ti ) at time ti . The
conditional entropy H(Q(t j )|Q(ti )) is related to the joint-entropy

H(Q(t j ),Q(ti )) = −
∑

Q(ti ),Q(t j )

P(Q(ti ), Q(t j )) log2 P(Q(ti ), Q(t j )) (12)

by Bayes’ theorem, i.e.,

H(Q(t j )|Q(ti )) = H(Q(ti ),Q(t j )) − H(Q(ti )). (13)

For n measurements performed at equal intervals �t , we denote h(�t) =
H(Q(�t)|Q(0)) = H(Q(2�t)|Q(�t)) = · · · , and h((n − 1)�t) = H(Q((n − 1)
�t)|Q(0)). By setting up a quantity called information deficit

Dn = (n − 1)h(�t) − h((n − 1)�t)

log2(2s + 1)
, (14)
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Fig. 4 a, b The quantum circuits for extracting single-time and joint probabilities. HereU †
i denotes

the back-evolution of the system in the computational basis which is equivalent to having the
dynamical observable Q(ti ). c Experimental information deficit (crosses with errorbars) compared
to theoretical values (solid curve) for a spin-1/2 particle. The dashed line indicates themacrorealistic
bound. Here θ = (n − 1)ω�t . Parts of this figure are adapted from [29]

where 2s + 1 is the number of distinct states (where s is spin number),UshaDevi et al.
proved that Dn ≥ 0 for classical systems.

The experimental violation of ELGI was first demonstrated by Katiyar et al. [29]
again using 13C-Chloroform as the two-qubit register. The single-time probability
P(Q(ti )) and the joint probabilities P(Q(ti ), Q(t j )) are extracted using the circuits
shown in Fig. 4a and b respectively. Note that an ancilla spin is used to extract joint
probabilities with the help of INRM procedure applied to the first measurement.
The results displayed in Fig. 4c, indicate a clear violation of ELGI by four standard
deviations.

4 Quantum Discord

In the early days of quantum information and quantum computation it was shown
that entanglement is the key resource to perform various tasks [37]. However, it
was later realized that quantum correlations beyond entanglement are also useful for
quantum information processing [38–41]. Itwas shown theoretically [4, 42] aswell as
experimentally [43] that some tasks can be made efficient even with separable states,
but with non-zero quantum correlations. Thus, quantifying the quantum correlation
becomes important, and it can be achieved by usingmeasures such as discord [44, 45]
and geometric discord [46–48]. For more details on the topic of quantum correlations
one may refer to the reviews in [49–54].
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Discord has also been studied in the ground state of certain spin chains particularly
close to quantum phase transitions [55]. Signatures of chaos in the dynamics of
quantum discord are found using themodel of the quantum kicked top [56]. Quantum
critical behavior in the anisotropic XY spin chain is studied using geometric discord
[57].

It is believed that discord is a resource behind the efficiency of the DQC-1 model
[38, 42, 58–60]. Quantum advantage with no entanglement but with non-zero quan-
tum discord has been demonstrated in single-photon states [61]. Quantum discord
has also been estimated in optical systems using mixed states [43] and in an anti
ferromagnetic Heisenberg compound [62].

Non-zero quantum discord in NMR systems has been observed by many
researchers [63–66]. For various theoretical and experimental aspects of quantumdis-
cord and relatedmeasures reader can refer to review [67]. Investigations on the evolu-
tion of quantum discord under decoherence [68] and under decoherence-suppression
sequences [66] have also been reported. In the following we briefly describe some
aspects related to discord and geometric discord.

4.1 Discord and Mutual Information

Mutual Information I (A : B) is defined as the amount of information that is common
to both the subsystems A and B of a bipartite system, and is given in terms of Shannon
entropy

I (A : B) = H(A) + H(B) − H(A, B). (15)

It can be seen that mutual information is symmetric, i.e., I (A : B) = I (B : A).
Another classically equivalent expression based on Bayes rule can be obtained from
Eq. (15) as follows:

J (A : B) = H(A) − H(A|B) = H(A) −
∑

i

pbi H(A|b = i) . (16)

These expressions can be intuitively understood using Fig. 5.
In the quantum information theory, the von Neumann entropy gives the informa-

tion content of a density matrix and is defined as

H(ρ) = −
∑

x

λx log2 λx , (17)

where λx ’s are the eigenvalues of the density matrix ρ. Although the two expressions
of mutual information given in Eqs. (15) and (16) are equivalent in classical infor-
mation theory this is not the case in quantum information theory. The reason for this
difference is that the expression for mutual information given by Eq. (16) involves
measurements and its value depends on the measurement outcomes. Measurements
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Fig. 5 Venn diagram representing total information H(A, B), individual informations (H(A) ,
H(B)), the conditional information (H(A|B), H(B|A)), and the mutual information I (A : B) =
J (A : B) in classical information theory

in quantum theory depends on the basis used and it changes the final state of the
system. Henderson and Vedral [45] have proved that the total classical correlation
can be obtained as the maximum value of

J (A : B) = H(B) − H(B|A) = H(B) −
∑

i

pai H(B|a = i), (18)

where the maximization is performed over all possible orthonormal measurement
bases {�a

i } for A. The quantum mutual information I(A : B) is defined in a way
analogous to that of the classical mutual information, i.e.,

I(A : B) = H(A) + H(B) − H(A, B). (19)

Therefore, the non-classical correlations can be quantified as the difference

D(B|A) = I(A : B) − max
{�a

i }
J (A : B). (20)

Ollivier and Zurek had called this difference as ‘discord’ [44]. Zero-discord states
or “classical” states are the ones in which the maximal amount of information about
a subsystem can be obtained without disturbing its correlations with the rest of the
system.

It should be noted that discord is not a symmetric function in general, i.e.
D(B|A) and D(A|B) can differ. Datta [69] has proved that a given state ρAB satisfies
D(B|A) = 0 if and only if there exists a complete set of orthonormal measurement
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operators on A such that

ρAB =
∑

i

pai �
a
i ⊗ ρB|a=i . (21)

When the first part of a general bipartite system is measured, the resulting density
matrix is of the form given by Eq. (21). Since the final state after measurements
is a classical state, one can extract the classical correlations from it. Thus, for any
quantum state and every orthonormal measurement basis, there exists a classically
correlated state. Maximization ofJ (A : B) gives the maximum classical correlation
that can be extracted from the system, and the remaining extra correlation is the
quantum correlation.

4.2 Evaluation of Discord

Given a density matrix ρAB , one can easily construct the reduced density matrices
ρA and ρB of the individual subsystems. Then the total correlation I(A : B) can be
found using the quantum mutual information Eq. (19). Maximization of J (A : B)

to evaluate discord is nontrivial. The brute force method is to maximize J (A : B)

over as many orthonormal measurement bases as possible, taking into account all
constraints and symmetries. Strictly speaking, this method gives a lower bound on
J (A : B) since the maximization may not be perfect.

While a closed analytic formula for discord does not exist for a general quantum
state, analytical results are available for certain special classes of states [70]. For
example, Chen et al. have described analytical evaluation of discord for two qubit
X -states under specific circumstances [71–75]. Luo has given an analytical formula
for discord of the Bell-diagonal states which are a subset of the X -states [76], and
are defined as the states which are diagonal in the Bell basis

|ψ±〉 = 1√
2
(|01〉 ± |10〉) , |φ±〉 = 1√

2
(|00〉 ± |11〉). (22)

The generic structure of aBell-diagonal state is ρBD = λ1|ψ−〉〈ψ−| + λ2|φ−〉〈φ−| +
λ3|φ+〉〈φ+| + λ4|ψ+〉〈ψ+|. This state is separable iff its spectrum lies in [0, 1/2]
[77].

Using only local unitary operations (so that the correlations remain unaltered), all
Bell-diagonal states can be transformed to the form given by

ρBD = 1

4

(
1 +

3∑

j=1

r jσ j ⊗ σ j

)
, (23)
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Fig. 6 Discord (DW ) and
geometric discord (DG

W ) of
Werner state as a function of
its purity factor ε. Typical
ranges of purity and discord
values for some spin-based
architectures such as NMR,
low-field ESR, and optically
polarized electronic spin of
nitrogen-vacancy center
(NVC) are indicated

where the real numbers r j are constrained such that all eigenvalues of ρBD remain
in [0, 1]. The symmetric form of ρBD also implies that it has symmetric discord, i.e.,
DBD(B|A) = DBD(A|B). Thus, the analytical formula for discord in this case is,
using Eq. (20),

DBD(B|A) = 2 +
4∑

i=1

λi log2 λi −
(
1 − r

2

)
log2(1 − r) −

(
1 + r

2

)
log2(1 + r),

(24)

where r = max{|r1|, |r2|, |r3|}.
A special Bell-diagonal state, i.e., when λ1 = (1 + 3ε)/4 and λ2 = λ3 = λ4 =

(1 − ε)/4, is known as the Werner state

ρW (ε) = 1 − ε

4
1 + ε|ψ−〉〈ψ−|. (25)

It has entanglement iff 1/3 ≤ ε ≤ 1. In this case r j = −ε for j = 1, 2, 3 and r = ε.
The discord using Eq. (24) is then given by

DW (ε) = 1

4
log2

(1 − ε)(1 + 3ε)

(1 + ε)2
+ ε

4
log2

(1 + 3ε)3

(1 − ε)(1 + ε)2
= ε2

ln 2
+ O(ε3). (26)

This expression is plotted in Fig. 6.



512 T.S. Mahesh et al.

4.3 Geometric Discord

Geometric discord is a form of Discord that is relatively easier to compute [46, 47].
In the following, we discuss the case of two-qubit geometric discord [46, 78]. For
every quantum state there exist a set of postmeasurement classical states (�0), and
the geometric discord is defined as the distance between the quantum state (ρ) and
the nearest classical state (χ),

DG(B|A) = min
χ∈�0

‖ρ − χ‖2, (27)

where ‖ρ − χ‖2 = Tr[(ρ − χ)2] is the Hilbert–Schmidt quadratic norm. Obviously,
DG(B|A) is invariant under local unitary transformations. Explicit and tight lower
bound on the geometric discord for an arbitrary Am×m ⊗ Bn×n state of a bipartite
quantum system is available [47, 79]. Protocols to determine lower bounds on geo-
metric discord without tomography have also been discovered recently [79, 80].

Following the formalism of Dakic et al. [46] analytical expression for the geomet-
ric discord for two-qubit states was obtained in [77]. The two-qubit density matrix
in the Bloch representation is

ρ = 1

4

(
1 ⊗ 1 +

3∑

i=1

xiσi ⊗ 1 +
3∑

i=1

yi1 ⊗ σi +
3∑

i, j=1

Ti jσi ⊗ σ j

)
, (28)

where xi and yi represent the Bloch vectors for the two qubits, and Ti j = Tr[(ρ(σi ⊗
σ j ))] are the components of the correlation matrix. The geometric discord for such
a state is

DG(B|A) = 1

4

(‖x‖2 + ‖T ‖2 − ηmax
)
, (29)

where ‖T ‖2 = Tr[T †T ], and ηmax is the largest eigenvalue of the matrix �x �x† + T T †.
Explicit form of ηmax and a remarkable tight lower bound on geometric discord are
given in [77].

Using the transformed form of Bell-diagonal states as given in Eq. (23) it can be
seen that xi = yi = 0 and T is a diagonal matrix with elements Tii = ri . Then the
geometric discord is given as

DG
BD = 1

4

(
3∑

i=1

r2i − max(r21 , r
2
2 , r

2
3 )

)
. (30)

For the Werner state ri = −ε. Then ‖T ‖2 = 3ε2 and all eigenvalues of T T † are
ε2, yielding

DG
W (ε) = 1

4

(
3ε2 − ε2

) = ε2

2
. (31)
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This expression is plotted versus the purity ε in Fig. 6. Comparison with Eq. (26)
reveals that discord and geometric discord are proportional for low-purity Werner
states. Also, the numerical difference between DW (ε) and 2DG

W (ε) does not exceed
0.027 for all ε ∈ [0, 1]. An analytical formula for symmetric geometric discord for
two-qubit systems is given in [81] and geometric discord for qubit–qudit systems is
given in [82].

4.4 NMR Studies of Quantum Discord

Katiyar et al. [66] have studied discord and its evolution in certain NMR systems.
After preparing the pseudopure state ρ0 = (1 − ε)1/2 + ε|00〉〈00| they applied the
pulse sequence shown in Fig. 7a. The initial state ρ0 is transformed into a Werner
state when θ is set to an odd integral multiple ofπ/2. Katiyar et al. measured quantum
discord using extensive measurement method described earlier. Figure7b displays
discord as a function of θ. One can notice that discord is zero for the initial state
ρ0, grows with θ and reaches a maximum value at the Werner state. This experiment
demonstrates the existence of small, but non-zero, nonclassical correlations in NMR
systems even at room temperatures.

Maziero et al. studied the behavior of quantum discord under decoherence using
anNMR testbed [68]. They observed a sudden change in the behavior of classical and
quantum correlations at a particular instant of time and found distinct time intervals
where classical and quantum correlations are robust against decoherence. Yurishchev
[83] has analytically and numerically studied NMR dynamics of quantum discord in

Fig. 7 a NMR
Pulse-sequence used by
Katiyar et al. to prepare
Werner state and measure
discord and b experimental
and simulated discord as a
function of the nonlocal
rotation θ. Parts of this figure
are adapted from [66]



514 T.S. Mahesh et al.

gas molecules (with spin) confined in a closed nanopore. Kuznetsova and Zenchuk
[84] have theoretically studied quantum discord in a pair of spin-1/2 particles (dimer)
governedby the standardmultiple quantumNMRHamiltonian and shown the relation
between discord and the intensity of the second-order multiple quantum coherence
in NMR systems.

5 Summary

In this chapter, we have briefly discussed three types of quantum correlations, namely
quantum contextuality, Leggett–Garg temporal correlations, and quantum discord.
In each case, we have surveyed a few NMR experiments.

Exploiting the state independent nature of quantum contextuality, Moussa et al.
[11] demonstrated that even a content-less maximally mixed-state (1/4) violates cer-
tain noncontextual hidden variable inequalities when subjected to quantummeasure-
ments of certain observables. Similarly, the violation of Leggett–Garg inequalities
can be observed even in a two-level quantum system (while quantum contextuality
is exhibited by a quantum system with at least three levels). Hence, as demonstrated
by Athalye et al. [32] the violation of LGI is observable even in a spin-1/2 NMR
system at room temperature. Moreover, Maziero et al. [68] and Katiyar et al. [29]
showed the existence of nonzero discord in NMR systems.

NMR has wide-ranging applications from spectroscopy to imaging, and quan-
tum information testbed is the latest of them. Although NMR offers excellent con-
trol operations and long coherence times, highly mixed nature of spin-ensembles at
room temperatures allows only separable quantum states. In the absence of entan-
glement, does it have any resource for quantum information studies? This question
was answered in terms of above nonclassical correlations.

Acknowledgements TSM acknowledges support from DST/SJF/PSA-03/2012-13 and CSIR
03(1345)/16/EMR-II. UTB acknowledges support from DST-SERB-NPDF (File Number PDF/
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46. B. Dakić, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)
47. S. Luo, S. Fu, Phys. Rev. A 82, 034302 (2010)



516 T.S. Mahesh et al.

48. P. Giorda, M.G.A. Paris, Phys. Rev. Lett. 105, 020503 (2010)
49. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)
50. J.-S. Zhang, A.-X. Chen, Quant. Phys. Lett. 1, 69 (2012)
51. M. Horodecki, J. Oppenheim, Int. J. Mod. Phys. B 27, 1345019 (2013)
52. K. Modi, Open Syst. Inf. Dyn. 21, 1440006 (2014)
53. A. Streltsov, Quantum Correlations Beyond Entanglement and their Role in Quantum Infor-

mation Theory (Springer International Publishing, Heidelberg, 2015)
54. G. Adesso, T.R. Bromley, M. Cianciaruso, arXiv:1605.00806 [quant-ph] (2016)
55. M.S. Sarandy, T.R. de Oliveira, L. Amico, Int. J. Mod. Phys. B 27, 1345030 (2013)
56. V. Madhok, V. Gupta, D.-A. Trottier, S. Ghose, Phys. Rev. E 91, 032906 (2015)
57. W.W. Cheng, C.J. Shan, Y.B. Sheng, S.M. Gong, L.Y. Zhao, B.Y. Zheng, Phys. E 44, 1320

(2012)
58. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)
59. G. Passante, O. Moussa, C.A. Ryan, R. Laflamme, Phys. Rev. Lett. 103, 250501 (2009)
60. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)
61. A. Maldonado-Trapp, P. Solano, A. Hu, C.W. Clark, arXiv:1604.07351 [quant-ph] (2016)
62. H. Singh, T. Chakraborty, P.K. Panigrahi, C. Mitra, Quant. Inf. Process. 14, 951 (2015)
63. D.O. Soares-Pinto, L.C. Céleri, R. Auccaise, F.F. Fanchini, E. R. deAzevedo, J. Maziero, T. J.

Bonagamba, and R. M. Serra. Phys. Rev. A 81, 062118 (2010)
64. G. Passante, O. Moussa, D.A. Trottier, R. Laflamme, Phys. Rev. A 84, 044302 (2011)
65. R. Auccaise, J. Maziero, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, T.J. Bonagamba,

R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 107, 070501 (2011)
66. H. Katiyar, S.S. Roy, T.S. Mahesh, A. Patel, Phys. Rev. A 86, 012309 (2012)
67. L.C. Celeri, J. Maziero, R.M. Serra, Int. J. Quant. Inform. 09, 1837 (2011)
68. J. Maziero, R. Auccaise, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, T.J. Bonagamba,

R.S. Sarthour, I.S. Oliveira, R.M. Serra, Braz. J. Phys. 43, 86 (2013)
69. A. Datta, Ph.D. thesis, The University of New Mexico, arXiv:0807.4490; arXiv:1003.5256
70. D. Girolami, G. Adesso, Phys. Rev. A 83, 052108 (2011)
71. T. Yu, J.H. Eberly, Quantum Inf. Comput. 7, 459 (2007)
72. A.R.P. Rau, J. Phys. A Math. Theor. 42, 412002 (2009)
73. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)
74. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Phys. Rev. A 81, 052107

(2010)
75. Q. Chen, C. Zhang, S. Yu, X.X. Yi, C.H. Oh, Phys. Rev. A 84, 042313 (2011)
76. S. Luo, Phys. Rev. A 77, 042303 (2008)
77. R. Horodecki, M. Horodecki, Phys. Rev. A 54, 1838 (1996)
78. Z. Huang, D. Qiu, Quantum Inf. Process. 15, 1979 (2016)
79. A.S.M. Hassan, B. Lari, P.S. Joag, Phys. Rev. A 85, 024302 (2012)
80. S. Rana, P. Parashar, Phys. Rev. A 85, 024102 (2012)
81. J. Feng-Jian, L. Hai-Jiang, Y. Xin-Hu, S. Ming-Jun, Chin. Phys. B 22, 040303 (2013)
82. S. Vinjanampathy, A.R.P. Rau, J. Phys. A Math. Theor. 45, 095303 (2001)
83. M.A. Yurishchev, J. Exp. Theor. Phys. 119, 828 (2014)
84. E. Kuznetsova, A. Zenchuk, Phys. Lett. A 376, 1029 (2012)



NMR Contributions to the Study of Quantum
Correlations

Isabela A. Silva, Jefferson G. Filgueiras, Ruben Auccaise,
Alexandre M. Souza, Raimund Marx, Steffen J. Glaser,
Tito J. Bonagamba, Roberto S. Sarthour, Ivan S. Oliveira
and Eduardo R. deAzevedo

Abstract In this chapter we review the contributions of Nuclear Magnetic Reso-
nance to the study of quantum correlations, including its capabilities to prepare initial
states, generate unitary transformations, and characterize the final state. These are
the three main demands to implement quantum information processing in a physical
system, whichNMRoffers, nearly to perfection, though for a small number of qubits.
Our main discussion will concern liquid samples at room temperature.

1 NMR Fundamentals

1.1 Classical NMR

Nuclear Magnetic Resonance (NMR) was first reported in 1939 by Isidor Rabi and
co-workers, as a method to measure nuclear magnetic moments, a work inspired by
the earlier Stern-Gerlach experiment [1]. For that work Rabi received the Nobel Prize
in Physics in 1944. In 1946 Felix Bloch and Edward Purcell [2, 3] demonstrated,
independently, the NMR phenomenon in matter, solid and liquid, and reached an
adequate parametric mathematical formulation known as the Bloch Equations. For
that work they received the Nobel Prize in Physics in 1952. In 1950 a giant step
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was given by Erwin Hahn, a step that would turn NMR, in the years to come, into
one of the main experimental techniques in Physics, Chemistry and Biology with
a revolutionary application to Medicine. Hahn discovered the phenomenon of spin
echoes [4], inaugurating Pulsed NMR. For further developments and applications of
pulsed NMR, the Nobel Prize in Chemistry in 1991 was granted to Richard Ernst [5].
In 2002 another NMR Nobel Prize in Chemistry was awarded to Kurt Wuthrich [6]
and, in 2003, the Nobel Prize in Medicine went to Paul Laterbur and Peter Mansfield
for the discovery of theNMR imaging technique [7, 8]. Therefore, since its discovery,
NMR has been awarded five Nobel Prizes, three of them due to contributions after
the discovery of its pulsed version.

In a basic NMR experiment [9], an ensemble of nuclear magnetic moments are
subject to a magnetic field given by:

B(t) = B0k + B1 {cos(ωt)i + sin(ωt)j} (1)

In this expression, B0 is the magnitude of a homogeneous static magnetic field, typ-
ically of the order of 10 Tesla, whereas B1 is the magnitude of a radiofrequency
field (RF), typically four to five orders of magnitude below B0. Therefore, B1 can be
considered a perturbation over B0. It is worth mentioning that, although B0 is consid-
ered homogeneous in the above equation, the description of the NMR phenomenon
necessarily include a field inhomogeneity [9].

In the classical description of NMR the field described by Eq. (1) interacts with
the nuclear magnetization producing a torque on it. The magnetization rotates with a
characteristic frequency given byω0/2π = (γn/2π)B0,whereγn is a nuclear parame-
ter called gyromagnetic ratio, different for each isotopic specimen. This frequency,
called the Larmor frequency of the system, can range from a few tomany hundreds of
MHz. The presence of time-dependent terms in the field complicates the description
of the time evolution of the magnetization in the laboratory frame. Fortunately, due
to the special geometrical arrangement, it is possible to make a transformation to a
rotating frame in which the total field is static [9]. By adding the relaxation terms,
we arrive at the Bloch Equations in the rotating frame, which can be conveniently
written in the matrix form:

∂M
∂t

+ ÃM = f (2)

where:

Ã =
⎛
⎝

1/T2 −�ω 0
+�ω 1/T2 −ω1

0 ω1 1/T1

⎞
⎠ ; M =

⎛
⎝

Mx

My

Mz

⎞
⎠ ; f =

⎛
⎝

0
0

M0/T1

⎞
⎠ (3)

In this equation, M0 is the equilibriummagnetization, T1 and T2 are, respectively, the
longitudinal and transverse relaxation times, and�ω = ω − ω0 is the offset between
the RF and the resonance frequencies. The resonance condition is given by ω =
ω0. Finally, ω1 = γn B1 is the rotating frequency of the magnetization about B1 in
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the rotating frame. From the microscopic point of view, the longitudinal relaxation
describes processes in which the nuclear spins interact with a bath and decay towards
equilibrium by releasing energy (heat). The transverse relaxation is more subtle: it
describes processes in which the nuclear magnetization loses coherence (quantum
and classical) due to the random interactions between the nuclearmagneticmoments;
the energy is conserved and there is no heat transfer to the bath in the process.

The general solution of Eq. (2) is:

M(t) = M∞ + exp(−Ãt) × {M(0) − M∞} (4)

where M∞ is the stationary solution:

M∞ = Ã−1f (5)

We see that the dynamics of themagnetization is governedby the exponential operator
on the transient (second) term of Eq. (4). In spite of its apparent simplicity, it is not
an easy task to obtain an analytical expression for the magnetization for arbitrary
T1, T2 and �ω [52]. Figure1 shows the trajectory of the magnetization, calculated
numerically fromEq. (4), for three different regimes of relaxation: slow, intermediate
and fast, and �ω �= 0. Figure2 shows the time evolution of the components of the
magnetization with transient and stationary regimes. We see that at resonance, Mx =
0 and the magnetization rotates only about the field B1. We also see that in the
regime of fast relaxation and/or low RF power (small B2

1 ), Mz ≈ M0, which means
the system absorbs RF energy and releases it very fast as heat to the bath. On the other
hand, in the regime of negligibly slow relaxation, the solutions of Bloch equations
can be found easily:

Mx(t) = −2M0
ω1�ω

�2
sin2

(
�t

2

)

My(t) = −M0
ω1

�
sin

(
�t

2

)
(6)

Mz(t) = M0

[
1 − 2

ω2
1

�2
sin2

(
�t

2

)]

where � =
√

�ω2 + ω2
1. As long as T1 is much longer than the duration of a RF

pulse, we can consider the system isolated. In this regime, using the above results we
can calculate the work done by a RF pulse of duration τ to rotate the magnetization.
This will be simply the difference between final and initial internal energy:

W = U f inal −Uinitial = −B0Mz(τ ) + B0M0 = 2B0M0
ω2
1

�2
sin2

(
�τ

2

)
(7)
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Fig. 1 Trajectories of the magnetization for different relaxation regimes

1.2 Quantum NMR

NMR has also a very cool quantum description. For an isolated spin-1/2, which
encodes a quantum bit (qubit) in quantum information processing experiments, under
a rotating frame hamiltonian [9]:

H = −1

2
��σu (8)

where σu is the component of the spin along the direction of the effective field:

σu = �ω

�
σz − ω1

�
σx (9)

Assuming that a spin is initially in the state | ↑〉, aligned with B0, a RF pulse of
duration τ takes the state to:

|ψ(τ )〉 = e−i(�τ/2)σu | ↑〉 =
{
I cos

(
�τ

2

)
− i

�ω

�
sin

(
�τ

2

)}
| ↑〉 + ω1

�
sin

(
�τ

2

)
| ↓〉 (10)

The expectation value of the z component, and energy at τ are:
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Fig. 2 Time evolution of the magnetization with transient and stationary regimes

〈σz〉(τ ) = 〈ψ(τ )|σz|ψ(τ )〉 = 1 − 2
ω2
1

�2
sin2

(
�τ

2

)
(11)

and

E f = −�ω0

2
+ �ω0

ω2
1

�2
sin2

(
�τ

2

)
(12)

Therefore, the work produced by the pulse is:

W = E f − Ei = �ω0
ω2
1

�2
sin2

(
�τ

2

)
(13)

which is the same as the classical result, Eq. (7), if we remember that for a spin-1/2,
�ω0 = 2μN B0, where μN is the nuclear magneton.

The above calculation wasmade for an isolated spin. If we allow a thermal contact
with a bath at equilibrium the initial magnetization will be 〈σz〉0. Besides, if there
are fluctuations in the work performed by the pulse, the average work will be given
by [12]:

〈W 〉 = 2〈σz〉0B0
ω2
1

�2
sin2

(
�τ

2

)
(14)



522 I.A. Silva et al.

That is, in the presence of fluctuations, the quantum average work equals the classical
expression in the absence of relaxation. An equivalent quantum expression for the
average work in the presence of relaxation, is still lacking in the literature.

NMR samples for quantum information processing applications are mainly liq-
uids, typically 0.6 cc, in a glass tube at room temperature. The tube is positioned at
the center of a RF coil, which is in turn placed in a static magnetic field. After a few
seconds the nuclear spins reach thermal equilibrium in the field, and the initial state
of the system is given by the thermal density matrix:

ρeq = e−H/kBT

Z (15)

where Z is the partition function. The energy scale of the hamiltonian is μN B0 ≈
10−6 eV, much smaller than thermal energy, kBT ≈ 0.01 eV for room temperature.
Therefore, the equilibrium density matrix can be expanded to first order:

ρeq ≈ I

2N
− H

2NkBT
(16)

where I is the identity matrix,Z ≈ 2N and N is the number of quantum bits (qubits)
in the system. The application of RF to the sample can generally be represented by
an unitary transformation, U , of the density matrix:

ρ′ = UρeqU
† = I

2N
− UHU †

2NkBT
(17)

Therefore, NMR state transformations turn out to be hamiltonian transformations. If
after the transformation the mean value of the spin component σu is measured, we
get the nuclear magnetization in the direction u:

Mu = Tr
{
σuρ

′} = − 1

2NkBT
Tr

{
σuU HU †

}
(18)

This result is extremely important for NMR quantum information processing: the
measured signal is not sensitive to the first term, proportional to the identity. This
term represents a huge amount of noise, but which is simply invisible to NMR! By
combining unitary transformations and space or time averages, the state (15) can be
transformed to [13]:

ρpp = 1 − ε

2N
I + ε|ψ〉〈ψ| (19)

where ε ≈ �ω0/kBT ≈ 10−6 for liquid samples at room temperature at magnetic
field of the order of 10 Tesla, and |ψ〉 a pure quantum state. This is a non-equilibrium
state known as pseudopure state. It is so-called because under unital operations it
transforms as a pure state. Besides, if a measurement of 〈σu〉 is performed for this
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state, the detected signal will come only from the ε|ψ〉〈ψ| part of the pseudopure
state:

Mu = εTr {σu |ψ〉〈ψ|} (20)

The fact that ε is small is immaterial for both, transformation of states and detection
of NMR signal. In a standard NMR quantum information processing task, the initial
density matrix is the pseudopure state:

ρ0pp = 1 − ε

2N
I + ε|00 · · · 000〉〈00 · · · 00|, (21)

a protocol represented by unitary transformations U1,U2, . . .UN is applied:

ρ′
pp = 1 − ε

2N
I + ε

{
UN · · ·U2U1|00 · · · 0〉〈00 · · · 00|U †

1U
†
2 · · ·U †

N

}
, (22)

and the NMR signal is measured:

Mu = εTr
[
σu

{
UN · · ·U2U1|00 · · · 0〉〈00 · · · 00|U †

1U
†
2 · · ·U †

N

}]
(23)

By performing multiple measurements, the full density matrix can be reconstructed,
the process called Quantum State Tomography [13]. Among the many examples in
the literature on the application of this general procedure are NMR testing of Bell-
inequality violation [15], violation of Leggert–Garg inequality [16], and an NMR
quantum complementarity principle study [17, 18].

2 NMR Classical and Quantum Correlations

The NMR observable is the transverse nuclear magnetization, following a sequence
of RF pulses. It is a classical quantity. Suppose a 90◦ pulse is applied along the x axis
to an ensemble of nuclear magnetic moments initially at thermal equilibrium with a
static and homogeneous magnetic field along the z axis. If the initial magnetization
is M0, after the pulse the magnetization will be My = M0 and Mz = 0. Neglecting
longitudinal relaxation, in the absence of field inhomogeneity and spin-spin interac-
tions, the magnetization would rotate permanently about the z direction, maintaining
its initial magnitude M0. That is, all the magnetic moments in the sample, something
like 1018 along the sensitive region of the sample holder, would rotate in perfect
synchronism keeping their relative initial phase difference. This is a classical NMR
coherent state. However, because field inhomogeneities and spin-spin interactions
are always present, the initial coherent state My = M0 will dephase, first due to field
inhomogeneity and then due to spin-spin interaction. The first effect is reversible in
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a spin-echo experiment, but the second is not. It is worth mentioning that until quite
recently the debate whether the spin-echo phenomenon violates the Second Law of
Thermodynamics could be found in the literature [19, 20].

Those two independent relaxation phenomena are well described applying the
operator-sum formalism [10], which is possible since every transformation that is
given by a complete positive map admits a representation like

σ(t) =
∑
k

Ek(t)σ(0)E†
k (t), (24)

with Ek(t) being the Kraus operators satisfying

∑
k

E†
k (t)Ek(t) = 1. (25)

The transverse relaxation process in liquid state NMR is exactly analogous to the
quantum information’s phase damping (PD) channel, mathematically described as

E1 =
√
1 − q(t)

2
I, E2 =

√
q(t)

2

[
1 0
0 −1

]
, (26)

where q(t) = 1 − e−t/T2 , and T2 being the NMR transversal relaxation characteristic
time.

Moreover, the longitudinal relaxation is also known as Generalized Amplitude
Damping (GAD) channel and has the mathematical description

E1 = √
p

[
1 0
0

√
1 − γ

]
, E2 = √

p

[
0

√
γ

0 0

]
(27)

E3 = √
1 − p

[√
1 − γ 0
0 1

]
, E4 = √

1 − p

[
0 0√
γ 0

]
,

where γ = 1 − e−t/T1 , p ≈ (1 − α)/2, α = �ωL/kBT and T1 the NMR longitudinal
relaxation characteristic time.

2.1 NMR Entanglement

NMR contributions to quantum information processing appeared right after the dis-
covery of pseudopure states in 1997 [21, 22]. In the year after, the question of NMR
entanglement was raised [23], and further elaborated [24]. From Eq. (20) we see
that the signal measured from a peudopure state is proportional to spins in a single
quantum state. Therefore if |ψ〉 is entangled, the NMR signal will bring the signa-
ture of spins in an entangled state, as demonstrated by quantum state tomography in
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various works [25]. However, if we consider the whole density matrix, Eq. (19), for
ε below a threshold, the state will be separable. As an example consider two qubits
in a pseudo-entangled state. From (20):

ρpp =

⎛
⎜⎜⎝

(1 + ε)/4 0 0 0
0 (1 + ε)/4 −ε/2 0
0 −ε/2 (1 + ε)/4 0
0 0 0 (1 + ε)/4

⎞
⎟⎟⎠ (28)

Calculating the eigenvalues of the partially transposed matrix, we obtain λ1 = λ2 =
λ3 = (1 + ε)/4 and λ4 = (1 − 3ε)/4. Therefore, according to Peres criterium [26],
the state will be entangled for ε > 1/3, much above that for room temperature liquid-
state samples.

The question of NMR entanglement is quite subtle, and the whole thing has to
do with the value of ε, which does not affect neither the unitary transformations,
nor the measured signal besides its intensity. For instance, in Ref. [15] the NMR
protocol for an experiment of Bell inequality violation produces a result which is
indistinguishable from those obtained in a quantum optics experiment or quantum
mechanical prediction. For that comparison the NMR data are normalized by the fac-
tor ε. Of course, if the normalization is not performed the curves cannot be compared
with each other. The equivalent procedure in a quantum optics experiment is called
post-selection, in which pairs of entangled photons are selected out from the total
number of detected particles. If in a such experiment one pair of entangled photons
is detected with probability 10−6 we would have the analog of a NMR experiment
[27].

It has been shown that some of the aspects of entangled states cannot be tested by
NMR, such as nonlocality [28]. However, the fact that NMR is capable of implement-
ing all the basic steps for quantum information processing, state preparation, unitary
evolution and quantum state tomography, makes the technique an unique laboratory
system to test quantum information protocols in small systems. A non-exhaustive
compilation of NMR earlier works involving entanglement can be found in [13].
For a recent compilation of NMR Quantum Information Processing from various
research groups in the World, see [14].

One key aspect of NMR to study quantum correlations, in general, and entangle-
ment, in particular, is the ability to prepare very specific initial states. In a two-qubit
state scenario, an important class of states are theBell diagonal states,mathematically
written as

ρ = 1

4

[
I +

3∑
i=1

ci (σi ⊗ σi )

]
, (29)

where a full description only depends on the correlation triple c = {c1, c2, c3}, with
ci = Tr{ρ(σi ⊗ σi )}. In Ref. [11], this class of states was first prepared in NMR,
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Fig. 3 Bell diagonal states
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and the pulse sequence implemented, described in Fig. 6A, can be easily changed to
produce a desired Bell diagonal state.

Figure3 shows all physical Bell states. The states in the vertices are maximally
entangled states. States inside the octahedron are separable, however presenting non-
zero quantum correlations, measured by quantum discord, the subject of the next
section.

In a more general scenario, this class of two-qubit states can be generalized to

ρ = 1

2N

[
I
⊗N +

3∑
i=1

ci (σ
⊗N
i )

]
, (30)

which was named M3
N states [50], meaning N-qubit states with maximally mixed

marginals. This general case will present similar properties as the Bell diagonal (M3
2 )

one, as we shall discuss in the next sections.

2.2 NMR Discord

Correlation is a key concept in statistics. Two random variables are said to be cor-
related when knowledge about one of them can be gained by measuring the other.
Since the seminal work of Shannon [36], information is quantified by entropy, a
quantity which appears with different names in diverse contexts: thermodynamical
entropy, statistical entropy, Shannon entropy, von Neumann entropy. The concept
was proposed by Rudolf Clausius (1822–1888) as a “measure of the energy” in a
thermodynamical system not available for the realization of work. The statistical
entropy connects microscopic dynamics with macroscopic thermodynamical quan-
tities. Shannon entropy is measured in bits: the entropy of one bit of information is
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equal to 1. But it is only the von Neumann entropy which captures the correlations
present in quantum states.

It is possible to quantify quantum correlation, even in thermal systems in the
presence of noise. Let us recall the definition of Shannon entropy, associated to
two dichotomic random variables X and Y which can take the values {x, y} with
probabilities {px , py}:

SX = −
∑
i

px log2 px and SY = −
∑
i

py log2 py (31)

SX (Y ) quantifies our uncertainty about X (Y ): the larger the entropy, the less we
know about the system. If X and Y are correlated, a measurement of Y will yield
information about X . Then, our knowledge about X must be “updated”; the new
entropy of X after we got to know Y is represented by SX |Y :

SX |Y = SX,Y − SY (32)

where:

SX,Y = −
∑
i

px,y log2 px,y (33)

In this expression, px,y is the joint probability of obtaining x in a measurement of
X , and y in a measurement of Y .

The content of information which belongs to both, X and Y , is called mutual
information, SX :Y , defined by:

SX :Y = SX + SY − SX,Y = SX − SX |Y (34)

For classical states the above equality is always valid, but for quantum correlated
states it is not! For two-qubits an entangled state, for instance, SX,Y = 0, whereas
SX = SY = 1. On the other hand, SX |Y = 0. The difference between the classical and
quantummutual information is called discord [37]. A thorough review about discord
and NMR is made in [38]. For a two-qubit system, ρAB , in a Bell diagonal state, Luo
S. [39] found a simple analytical expression for this entropic-based quantum discord
given by

D(ρAB) = 2 +
3∑

k=0

λk log2 λk − 1 − c

2
log2(1 − c) − 1 + c

2
log2(1 + c), (35)

where λk is the k-th eigenvalue of ρAB and c = max{|c1|, |c2|, |c3|}.
However, as this entropic formulation depends on numerical extremizations, ana-

lytical expressions are known for only few classes of states. For that reason, and
based on which were previously defined for entanglement measurements, discord
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quantifiers based on geometric arguments were proposed [31]. By definition, entan-
glement captures the non-separability degree of a global state ρ. An entanglement
geometric quantifier is calculated through the distance between a state and its closest
separable state, σ, which can be written as a convex combination of product states,

σ =
∑
i j

pi jρ
A
i ⊗ ρB

j (36)

Analogously, a discord geometric quantifier is defined based on the distance between
a state and its closest classical state. This classicality is associatedwith the application
of a local projective measurement, then, in the two-qubit system example, this mea-
surement can be applied on a subsystem only (asymmetric discord-type measures) or
on both of them (symmetric discord-type measures). For an asymmetric discord-type
geometric measure the distance is calculated to the closest classical-quantum state,
defined as

χ =
∑
i

pi |i〉 〈i | ⊗ σB
i (37)

The symmetric version, however, requires a classical-classical state

χ =
∑
i, j

pi, j |i〉 〈i |A ⊗ | j〉 〈 j |B (38)

To calculate this distance it is necessary to choose a metric, that is why a whole
set of geometric-based discord quantifiers can be found in the literature nowadays.
However, only some of them are proved to be bona fide [42].

2.2.1 NMR Discord and Relaxation Effects

Discord is an extremely useful quantity to detect quantum correlation. Figure4, taken
from Ref. [30] shows the time evolution of classical and quantum correlations of a
two-qubit system under natural decoherence of a carefully prepared initial state. The
picture shows the respective transverse relaxation times of the two-qubit system.

In Ref. [29] three general types of dynamics were identified for this two-qubit
system under natural decoherence (phase flip, bit flip and bit-phase flip channels).
These three categories depend on the relation between the correlation matrix ele-
ments. For the NMR natural phase flip decoherence, the three different types of
dynamics are observed for (i) |c3| ≥ |c1|, |c2|, (ii) |c3| = 0 and, the most interesting
case, (iii) |c1| ≥ |c2|, |c3| or |c2| ≥ |c1|, |c3| and |c3| �= 0. Figure5 (taken from Ref.
[38]) shows these three dynamical possibilities for classical, quantum correlations
and mutual information.

As pointed out in Ref. [29], the case (iii) reveals a peculiar sudden change in
classical and quantum correlations. Afterwards, in Ref. [40] it was discovered that
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Fig. 4 The panel displays a witness and computed correlations of a quantum correlated state
(c1 = 2ε, c2 = 2ε and c3 = −2ε) relaxed during a time interval, tn = nδt (δt = 55.7ms, n =
0, 2, . . . , 11). The red tick bars represent the witness expectation value (proposed in Ref. [30]),
the grey bars display the quantum mutual information (total correlation), the dark grey section
represents the amount of classical correlation, and the light grey section represents the quantum
discord. In each experimental run, the correlations quantifiers were computed from the tomography
data while the witness was directly measured [30, 32]. The classicality bound is represented by the
blue doted line. The inset image shows the real part of the deviation matrix elements reconstructed
by QST for an intermediate classically correlated state. The effective transversal relaxation times,
shown below the figure, are T ∗

2 = 0.31s and T ∗
2 = 0.12 s, for 1H and 13C nuclei, respectively. The

correlations are displayed in units of (ε2/ ln 2)bit. Taken from Ref. [30]

for a special class of initial states, quantum correlations are not destroyed by deco-
herence for times t < t̄ , while classical correlations decay. Then, for t > t̄ , classical
correlations remain constant in time and quantum correlations are destroyed. This
phenomenon was called Quantum Correlation Freezing. The classical correlation
freezing is associated to the appearance of a pointer basis [41].

Ref. [32] shows the first experimental observation of quantum correlations freez-
ing phenomenon, where a direct measurement procedure was applied. Until then,
the NMR experiments were recorded applying full quantum state tomography. This
work proved that, since discord quantifiers for Bell diagonal states depend only on the
correlation function elements and these elements are proportional to the NMR signal
(when a proper set of unitary rotations are applied), it is possible to avoid the expen-
sive quantum state tomography and perform a direct measurement. Mathematically,
it means

ci = Tr{(σi ⊗ σi )ρ} = Tr{(σi ⊗ I )ξi }, (39)

ξi = UiρU
†
i , (40)

where Ui are the properly unitary rotations as described in Ref. [32] and Tr{(σi ⊗
I )ξi } is the detected NMR signal, as described in Eq. (20).
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Fig. 5 Total (blue dotted line), classical (red dashed line), and quantum discord (gray continuous
line) correlations for a Bell diagonal state evolving under local independent PD channels. In a
the correlation triple is given by c = {0.06, 0.30, 0.33}. In this case the classical correlation is
not affected by the environment while the quantum correlation decays monotonically. In b c =
{0.25, 0.25, 0.00} and all correlations decay monotonically. In c c = {1.00,−0.60, 0.60}. For this
state a sudden change occurs at pSC ≈ 0.22 and the quantum discord (classical correlation) remains
constant (decays monotonically) for p ≤ 0.22 with the opposite scenario taking place for p ≥ 0.22.
Taken from Ref. [38]

In the same line, Ref. [33] reported an NMR experiment of double sudden change,
theoretically predicted in Ref. [34], where two different two-qubit NMR setups were
applied. The first one was performed on a Varian 500MHz spectrometer on a liquid
state Carbon-13 enriched Chloroform sample (13CHCl3) at room temperature. In this
case, the two-qubit are encoded in the 1H and 13C spin-1/2 nuclei. The measurement
of characteristic relaxation times provided TC

1 ≈ 12.46 s, TC
2 ≈ 0.15 s, T H

1 ≈ 7.53
s and T H

2 ≈ 0.27 s. Since T1 >> T2 for both spins, and being the experiment eval-
uation time smaller than 0.5 s, the GAD channel effects can be neglected and the
entire relaxation mechanism can be described effectively by a PD channel only. The
prepared initial state corresponds to a Bell state with c = {0.49, 0.20, 0.067}, which
satisfies condition (iii). In Fig. 6 it is possible to observe clearly one sudden-change in
classical correlations (CG) and two points of sudden change in quantum correlation
dynamics (QG).

The other system was a spin-3/2 NMR quadrupolar setup encoded in a liquid
crystal sample with an NMR detectable sodium nuclei (more details about this setup
is found in Ref. [44, 45]). The experiment was performed in a Varian 400MHz
spectrometer at room temperature. Considering that in this case a two-qubit system
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Fig. 6 a Schematic representation of the pulse sequence employed to obtain a deviation matrix
in the form of a Bell diagonal state. b Experimentally reconstructed block diagrams for real and
imaginary parts of the deviation matrix related to the Bell diagonal initial state with c1 = 0.49,
c2 = 0.20 and c3 = 0.067. The curves in c denote the time evolutions of quantum (QG , bullet)
and classical (CG , triangle) correlations, respectively. The dots represents the experimental results
and the solid lines are the theoretical predictions. In the inset we detail the time evolutions of |c1|
(yellow upward triangles), |c2| (blue squares), and |c3| (purple downward triangles) experimentally
obtained for the PD decoherence process. Taken from Ref. [33]

is encoded in a single nuclei (which in the presence of a strong static magnetic field
is described by four energy levels), the relaxation is described by the GAD channel
and a modified PD channel called Global Phase Damping (GPD), which acts on
both logical qubits simultaneously, and was proposed in Ref. [35]. However, GPD
does not act on the cross-diagonal terms of the deviation matrix, meaning that Bell
diagonal states are not affected by them and the decoherence is completely dictated
by GAD channel. The initial Bell diagonal state prepared in this case corresponds
to c = {0.08, 0.14, 0.16} and was implemented applying a strongly modulated pulse
(SMP) method, where the radio frequency pulses are numerically optimized, as
described in Ref. [46]. Although the relaxation is described by a non-conservative
energy channel, it is also possible to observe a single and a double sudden change
on classical and quantum correlations, respectively, as shown in Fig. 7. In this case
classical correlations do not remain constant, so a pointer basis is not reached. And
despite the quantum correlation changes its relaxation rate, it is destroyed during the
entire process, while in the other system (under PD action) it is frozen between t�1
and t�2 .

2.2.2 NMR Observation of Freezing Phenomenon

The frozen quantum correlation phenomenon was theoretically explained in detail in
Ref. [42], where it was demonstrated that for an initial Bell diagonal state (two-qubit
system) satisfying
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Fig. 7 a Experimentally reconstructed block diagrams for real and imaginary parts of the deviation
matrix related to the Bell diagonal initial state with c1 = 0.08, c2 = 0.14 and c3 = 0.16. The curves
in b denote the time evolutions of quantum (QG , bullet) and classical (CG , triangle) correlations,
respectively. The dots represents the experimental results and the solid lines are the theoretical
predictions. In the inset we detail the time evolutions of |c1| (yellow upward triangles), |c2| (blue
squares), and |c3| (purple downward triangles) experimentally obtained for the GAD decoherence
process. Taken from Ref. [33]

c1(0) = ±1, c2(0) = ∓c3(0), (41)

under a PD channel effect, for any reliable geometric quantum coherence quantifier,
the freezing phenomenon will be observed from t = 0 (initial time) until t = t�,

t∗ = − 1

2γ
ln

|c3(0)|
|c1(0)| , (42)

after that the dynamical evolution occurs in an exponential way, and the relaxation
rate is different for each adopted quantifier.

Figure8 shows those experimental results, where the 13CHCl3 sample was once
more employed as a two-qubit system setup. A pulse sequence analogous to Fig. 6-a
was applied, choosing θ and α appropriately to produce the initial state c1 = 1,
c2 = 0.7 and c3 = −0.7. Then, we observe that quantum discord calculated from
entropic discord, trace, Bures and fidelity-based distances, is frozen until t� = 0.04 s.

For more general systems, N > 2 qubits, the quantifier called Global Quantum
Discord, defined in Ref. [47, 48], predicts that frozen quantum correlations will be
observed for systems with an even number of qubits, while it will never be observed
for the odd case.
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Fig. 9 Global Quantum Discord measured for NMR setups of a 3 and b 4 qubits. The dots corre-
spond to experimental data and lines to theoretical predictions

In order to experimentally observe those predictions, see Fig. 9, a three-qubit
system was encoded on a sample of Diethyl 2-Fluoromalonate-2-13C dissolved in
CDCl3, for which the structural formula and coupling topology is shown in Fig. 10.
The three-qubit were encoded in the 1H, 19F and 13C nuclear spins. In this molecule
each qubit is coupled to the two other ones. All scalar coupling constants were
measured in E-COSY (exclusive correlation spectroscopy) type experiments: JHF ≈
+48.2, JHC ≈ +159.7 and JFC ≈ −196.7Hz. This experiment was performed in a
BrukerAVIII 600MHz spectrometer, equippedwith aQXI 600MHzS3five channels
(2H, 1H, 13C, 15N, 19F) probe with z-gradient, at room temperature.

The initial M3
3 state,
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Fig. 10 Structural formula of Diethyl 2-Fluoromalonate-2-13C. The three-qubit were encoded in
1H, 19F and 13C. The coupling topology for this three-qubit system is shown

Fig. 11 Pulse sequence for the three-qubit experiment. First, a continuous wave (cw) pulse is
applied to the 19F and 13C spins in order to avoid contributions from those nuclei. Then, a pulse
with variable length (angle) is implemented to produce the correct scaling in the correlation function
elements. Next, an INEPT-like sequence (where thin bars represent π/2 pulses and large bars π
pulses) is applied to produce the desired multispin term (like I Hz I Fz ICz ), where dkl = 1/(4Jkl ).
After that, as at this point the multispin term is aligned along the longitudinal axis, a gradient pulse
is applied to eliminate other terms and guarantee the state quality. Then, π/2 pulses are applied,
with the appropriate phase, to produce the M3

3 state term. The system is allowed to evolve freely
and later π/2 pulses, with appropriate phases, are applied to produce an NMR detectable (single
quantum) term in the 1H channel

ρ = 1

8
I
⊗3 + c1σ

⊗3
x + c2σ

⊗3
y + c3σ

⊗3
z , (43)

was prepared applying the pulse sequence shown in Fig. 11. To distinguish the phys-
ical qubits, we will associate each σ⊗3

i term to the spin operators I Hi I Fi I Ci . Each of
these terms is independent of the others and also interacts independently with the
environment (considering the same kind of decoherence process described before
for the two-qubit system), therefore each term was prepared separately. First, a
continuous wave (cw) pulse is applied to 19F and 13C to guarantee that all terms
will be generated from 1H magnetization. Then, a pulse with an appropriate angle,
θ = {0.8, 1.27, 1.27} rad, is applied followed by a gradient pulse, which guaran-
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Fig. 12 Pulse sequence (with time flowing from left to right) to prepare four-qubit gener-
alised Bell states encoded in the 1H, 19F, 13C, and 31P nuclear spins of the 13CO -15N-diethyl-
(dimethylcarbamoyl)fluoromethyl-phosphonate molecule (whose coupling topology is illustrated
in a by an INEPT-like procedure, where dkl = 1 = (4Jkl ) and Jkl is the scalar coupling between
spins k and l. Light-gray rectangles denote continuous-wave pulses, used to decouple the 15N
nucleus. The dark grey bar denotes a variable pulse, applied to set the desired correlation triple
{c j (0)}. Thicker (red) and thinner (blue) bars denote π and π/2 pulses, respectively; the phases of
the striped π/2 pulses were cycled to construct each density matrix element. After the preparation
stage, the system was left to decohere in its environment; π pulses were applied in the middle of
the evolution to avoid Jkl oscillations. The final π/2 pulses served to produce a detectable NMR
signal in the 1H spin channel. Taken from Ref. [51]

tees that only cos θ of initial magnetization will survive, producing the correct scal-
ing c = {0.7, 0.3, 0.3}, after normalizing with full magnetization spectra. Then, an
INEPT-like sequence produces the multispin term (I Hz I Fz I Cz ) from

1H , and a gradi-
ent pulse guarantees the initial state quality. The π/2 pulses applied on all nuclei,
with appropriate phases, produce each density matrix term and are followed by a free
evolution period. Finally, each element of the coherence triple is directly measured
by producing single-quantum terms (like I Hx I Fz I Cz ), similarly to what was imple-
mented in Ref. [32], where it was shown that a direct measure is as good as a full
state tomography.

The even case was observed in a four-qubit system encoded in the 13CO -15N-
diethyl-(dimethylcarbamoyl)fluoromethyl-phosphonate compound, whose coupling
topology is shown in Fig. 12; a detailed description of its synthesis can be found in
Ref. [49]. This molecule contains five NMR-active spins (1H, 19F, 13C, 31P and 15N),
so a continuous wave (cw) pulse was applied to decouple 15N. The initialM3

4 (alias
generalised BD) state,

ρ(0) = 1

16

(
I
⊗4 + c1(0)σ

⊗4
1 + c2(0)σ

⊗4
2 + c3(0)σ

⊗4
3

)
, (44)

was prepared according to the pulse sequence displayed in Fig. 12. Similarly to what
was implemented for the three-qubit case, each term of these density matrix was
prepared separately.
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Those phenomena were theoretically and experimentally discussed for quantum
coherence in Refs. [50, 51].

2.2.3 Discord and the Interferometric Power of Quantum States

Liquid state NMR was also employed to study quantum correlations in a quantum
metrology scenario [43]. Unlike most common metrological applications, the object
of investigation was the role of quantum discord in an interferometric configuration
when only the spectrum of the generating Hamiltonian is known. In more details, we
consider a bipartite probe state ρAB entering a two-arm channel, in which only the
subsystem A is affected by a local unitaryUA = e−iϕHA ⊗ I, whereϕ is the parameter
to be estimated and HA is the generating Hamiltonian. The information about ϕ is
obtained through the application of an estimator ϕ̃ over the output state ρ

ϕ
AB =

UAρABU
†
A. If we have full knowledge of HA, the maximum achievable precision is

obtained when the input state has maximum coherence in the eigenbasis of HA, and
no quantum correlation between subsystems A and B is necessary [53]. A figure
of merit to quantify the information about ϕ encoded in ρ

ϕ
AB is the quantum Fisher

information [54]. The quantum Cramer–Rao bound sets a lower limit to the variance
of ϕ̃, the estimated parameter, as Varρϕ

AB
(ϕ̃) ≥ [νF(rhoAB, HA)]−1, where ν is the

number of repetitions of the experiment with identical copies and F(ρAB, HA) is the
quantum Fisher information [55].

When a “black box” paradigm is considered, i.e., if only the spectrum of HA is
known a priori, some aspects of game are changed. One can imagine this setting
as as a referee deciding the local transformation over A, after the probe state ρAB

is prepared. After the application of UA, the referee discloses his choice for HA,
allowing the experimenter to perform the respective optimal estimator. For the worst
case scenario, the precision is minimal over all HA and can be computed using the
quantum Fisher information as

PA(ρAB) = 1

4
inf
HA

F(ρAB, HA), (45)

where the infimum is over all Hamiltonians with a given spectrum and the normaliza-
tion factor 1/4 is solely for convenience. PA(ρAB), termed interferometric power of
ρAB , is a well defined measure of quantum correlations of a bipartite state, as shown
in [43] and discussed in details by Bogaert and Girolami [56]. On one hand, if ρAB

is not discordant the interferometric power vanishes, since there is a HA such that
[ρAB, HA] = 0, and no information about ϕ can be retrieved. On the other hand, the
degree of quantum correlations of ρAB not only guarantees a minimal precision but
also quantifies the usefulness of ρAB as a resource to estimate ϕ.

In the particular case of the subsystem A being a qubit, a computable and closed
formula was obtained for the interferometric power [43]

PA(ρAB) = ζmin[M], (46)
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where ζmin[M] is the minimal eigenvalue of the 3 X 3 matrix M :

Mmn = 1

2

∑
i,l;qi+ql �=0

(qi − ql)2

qi + ql
〈ψi |σmA ⊗ IB |ψl〉〈ψl |IA ⊗ σnB |ψl〉, (47)

and {qi , |ψi 〉} is the set of eigenvalues and eigenvectors of ρAB , respectively.
The role of interferometric power was observed experimentally, in a proof-of-

principle implementation, with the quantum state ρAB encoded in the nuclear spins
of a 13C-labelled chloroform sample. Two different classes of states were compared,
a discordant and a classical-quantum ones. The chosen families are

ρQ
AB = 1

4

⎛
⎜⎜⎝
1 + p2 0 0 2p

0 1 − p2 0 0
0 0 1 − p2 0
2p 0 0 1 + p2

⎞
⎟⎟⎠ , ρCAB = 1

4

⎛
⎜⎜⎝

1 p2 p p
p2 1 p p
p p 1 p2

p p p2 1

⎞
⎟⎟⎠ .(48)

The parameter p quantifies the purity of both classes, as Tr(ρ(Q,C)
AB )2 = 1/4(1 +

p2)2, and 0 ≤ p ≤ 1. This allows a fair comparison between quantum and classical
states, since for a given value of p we have the same degree of mixedness. The states
ρCAB are classically correlated, with PA(ρCAB) = 0 for any p, while ρQ

AB has discord
monotonically increasing for p > 0.

The state preparation comprises three steps. First, the pseudopure state |00〉〈00|
is prepared using a spatial average [22]. Secondly, the purity is chosen with (θ)−y

Classical probes 

Discordant probes 

(a)

(b)

Fig. 13 Experimental scheme for black box parameter estimation with NMR. a Classical probes.
b Discordant probes. The protocol is divided in three steps: probe state preparation (yellow); black
box transformation (red); optimal measurement (green). Taken from Ref. [43]
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pulses on both nuclei, followed by a pulsed gradient field Gz . The final step consists
in the application of the combination of CNOT and Hadamard gates as depicted in
Fig. 13a for classical probes and Fig. 13b for the quantum ones.

To calculate the interferometric power, a full quantum state tomography was
performed to each prepared state, with a mean fidelity of (99.7 ± 0.2) with the
theoretical density matrices of Eq. (48). The interferometric power was computed
using the closed formula of Eq. (46) on the reconstructed states and is displayed in
the first row of Fig. 14, with an excellent agreement with the theoretical expectation,
PA(ρQ

AB) = p2.
For each fixed probe, three choices for HA were performed. H (1)

A = σA
z ⊗

IB , H (2)
A = (σA

x + σA
y )/

√
2 ⊗ IB and H (3)

A = σA
x ⊗ IB . These three Hamiltonians

encompass the worst and best settings for H (1)
A and H (3)

A , respectively, while H (2)
A is

an intermediate case [43]. In all experiments, the parameter ϕ was set to ϕ0 = π/4.
Finally, the optimal measurement is carried out to estimate ϕ, for all six combina-

tions of input states andblackboxes. This set of estimators is givenby the eigenvectors
of the symmetric logarithmic derivative Lϕ = ∑

l j |λ j 〉〈λ j |,which satisfies∂ϕρ
ϕ
AB =

1
2 (ρ

ϕ
AB Lϕ + Lϕρ

ϕ
AB). The quantum Fisher information is given as F(ρAB, Ha) =

Tr(ρϕ
AB L

2
ϕ) = 4

∑
i,l;qi+ql �=0

(qi−ql )2

qi+ql
|〈ψi |HA ⊗ IB|ψl〉|2, where {qi , |ψi 〉} is the set of

eigenvalues and eigenvectors of ρAB [57]. The readout procedure comprises a global
rotation into the eigenbasis of Lϕ, shown as V

(C,Q)
k

1 in Fig. 13, followed by a pulsed
gradient field Gz , which performs an ensemble measurement of the expectation
values d j = 〈λ j |ρϕ

AB |λ j 〉. After the (π/2)−y rotations on both qubits, these d j are
obtained without the need of a full state reconstruction and resulting in the ensemble
measured data dexp

j .
The estimation is accomplished with an statistical estimator for ϕ, defined in such

way that it asymptotically saturates the Cramer–Rao bound [43, 57]:

ϕ̃ = ϕ0I + Lϕ√
νF(ρAB, HA)

, (49)

such that 〈ϕ̃〉 = ϕ0 and Var(ϕ̃) = [νF(ρAB, HA)]−1, by definition. The ensemble
mean and variance of this estimator are directly computed from the measured dexp

j ,
the initial probe states ρAB and the calculated eigenvalues lϕ of Lϕ for each HA,
which are independent from ϕ.

The mean value for ϕ̃ is fitted minimizing the the function �(ϕ) = ∑
j [dexp

j −
dth
j ]2, where the model dth

j = 〈λ j |(e−iϕHA ⊗ IB)ρAB(eiϕHA ⊗ IB)|λ j 〉) is employed.
The value ϕ̃ that minimizes � is set as the expected value 〈ϕ̃exp〉. These values
are plotted in the last row of Fig. 14 and show good agreement with the true value
ϕ0 = π/4 for all settings, but the pathological one for ρCAB and H (3)

A . The latter case
shows how the classical probe gives an unreliable result when it commutes with the
generating Hamiltonian.

1All the V (C,Q)
k transformations, along their implementations, are shown in [43].
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Fig. 14 Experimental results. Each column corresponds to a different black box setting H (k)
A ,

k = 1, 2, 3, and the set directions are depicted in the insets of row (b). Empty red squares refer to
data from classical probes ρCAB and filled blue circles refer to data from discordant probes ρ

Q
AB .

Both classes depend on the purity, quantified by the parameter p. The first row shows the measured
quantum Fisher information normalized by a factor of 4 for each setting, along with the lower
bound provided by PA(ρ

Q
AB). The middle row (b) presents the measured variances, together with a

theoretical prediction for the saturation of the Cramer–Rao bound. Last row (c) depicts the inferred
mean value for each setting. The lines refer to theoretical predictions. Taken from Ref. [43]

The experimental quantum Fisher information is obtained through the expan-
sion of Lϕ on its eigenbasis and using the measured data dexp

j , as Fexp(ρAB, HA) =∑
j (l

j
ϕ)2dexp

j . These values are shown in the first row of Fig. 14, along the lower

bound given by PA(ρQ
AB). These quantum Fisher information are obtained from the

output of our experiments, while the interferometric power is measured on the recon-
structed input states. For H (2)

A and H (3)
A , the quantum Fisher information saturates

this lower bound defined by the interferometric power. It is also worth mentioning
that F(ρCAB, H (3)

A ) = 0, since l jϕ = 0 for any j .
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Finally, the variance of the optimal estimator is calculated replacing ϕ0I with
the experimental mean value ϕ̃exp in Eq. (49) and expanding it in terms of l jϕ and
the measured dexp

j [43]. The resulting variances are shown in the row (b) of Fig. 14.
This data is in excellent agreement with the relation Var(ϕ̃exp = [νF(ρAB, HA)]−1,
allowing us to conclude that the optimal estimation strategy was performed in all
settings.

Concluding, the experimental results show that quantum discord-type quantum
correlations, via the interferometric power, offer a priori a minimal precision in the
worst case scenario for any bipartite probe in a black box estimation.

2.2.4 Final Remarks

The recognition that nuclear spins in a magnetic field would be a clear representation
of qubitsmadeNMRanatural candidate for quantum information processing. Indeed,
because of the capability of implementing all basic steps necessary for QIP using
conventional spectrometers, NMRwas used as a bench test formost of the pioneering
experimental demonstrations of quantum gates and algorithms. Despite that, the
lack of scalability of pseudopure states and the criticisms concerning the absence
of entanglement in room temperature liquid state NMR systems led to the general
feeling that the contribution of the technique to QIP would be limited to the first
demonstrations. However, this also initiated a discussion about the quantumness of
such systems, as discussed in Sect. 2.

Which aspects of NMR systems makes them useful in application to quantum
information experiments? The discovery and study of quantum correlations in sepa-
rable states, so-called general quantum correlations such as quantum discord, bring
back the attention of the QIP community to NMR and led to a partial answer to the
question of quantumness of NMR systems. Indeed, the facts that the system is highly
mixed and subject to a very noisy environment played in favor of NMR because these
are extreme conditions to test the quantum properties of a system. As shown in this
chapter, such correlations can be observed and quantified even at room temperature
in a highly mixed state. As examples, we presented bench tests on quantifiers of
general quantum correlations, discussed phenomena like the freezing and sudden
change of quantum discord in open systems and the role of discord in guaranteeing
a minimum precision in black box estimation in interferometry.

In summary,NMRoffers an excellent test bench for quantum information process-
ing studies in few qubit systems, being able to perform with high precision experi-
ments about quantum algorithms and foundations of quantum physics. However, the
discovery of other types of quantum correlations, such as discord and the interest in
the QIP community in understanding quantum phenomena associated tomixed states
interacting with noisy environments brought liquid state NMR back as a method for
demonstrating new concepts related to the quantum properties of these systems. As
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new perspectives, the new questions on the role of quantum coherences in quan-
tum systems and in specific QIP procedures might benefit from NMR, since these
concepts are explored in NMR techniques since its early days.
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