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Preface

Professor Nobutada Ohno is one of the leading Japanese
researchers in solid mechanics and has a worldwide
reputation because of his great impact on several
research topics. This volume of the Advanced
Structured Materials Series has been published to cele-
brate his 65th birthday, and to express sincere respect
and gratitude for his significant achievements and
longtime contributions to solid mechanics. Many active
researchers in his fields have contributed to this
memorial volume, some of them are close to Prof. Ohno,
and have also contributed to his published studies. The
contents of this book are not limited to one field.
Professor Ohno’s research fields have been extensive, as seen in the book title “From
Creep Damage Mechanics to Homogenization Methods,” which will be referred to
later in this Preface. We hope that the readers enjoy the variety of the contents of this
volume.

Professor Ohno was born in 1950 in Ichinomiya, near Nagoya, and spent his
early years there. After graduating from high school, he entered the Department of
Mechanical Engineering in Nagoya University, and graduated with top honors in
1973. He then majored in solid mechanics in the graduate course, and received his
Ph.D. from the university in 1979. He began his career as an Assistant Professor at
Nagoya University before moving to the Toyohashi University of Technology in
1980, where he spent about 8 years. During this time, he spent a year at Harvard
University in 1982 as a visiting scholar, and collaborated with Prof. John
Hutchinson. In 1988, he returned to Nagoya University as an Associate Professor,
and he has been a full Professor there since 1994.

In his academic career, Prof. Ohno has received many awards. He has received
international awards such as the K. Washizu Medal (2001) and Khan International
Award (2009), and a special issue was published in his honor in the International
Journal of Plasticity in 2011. He has also received almost all of the major awards
of the Japan Society of Mechanical Engineers (JSME). He has been awarded the
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JSME Medal for Outstanding Paper thrice (1977, 1991, 2004), Materials and
Mechanics Achievement Award (2004), Computational Mechanics Achievement
Award (2006), Computational Mechanics Award (2010), Materials and Mechanics
Award (2013), etc. He has been a fellow of JSME since 2002. The Japan Society of
Materials Science (JSMS) has also awarded him the JSMS Award for Scientific
Papers (1998), JISMS Award for Academic Contribution (2005), etc. He also
received the JACM Award from the Japan Association for Computational
Mechanics in 2010.

His many awards and honors clearly show his outstanding academic achieve-
ments. However, it is difficult to explain what his research field is because his
research has been quite wide-ranging, as is often the case with distinguished
researchers. We will take this opportunity to summarize his main achievements,
although we cannot cover all of his research because of space limitations. The
summary below will briefly describe his extensive research, and will help the
readers understand the meaning of the title of this book. His papers mentioned in
this summary are listed at the end of Preface.

1. Continuum theory of anisotropic creep damage
Nobutada Ohno investigated continuum modeling of anisotropic creep damage
during his doctoral studies under the supervision of Prof. Sumio Murakami. As a
result, a continuum theory was developed in which a second order tensor was
shown to be an internal variable to represent the anisotropic damage caused by
net area reductions in tertiary creep (Murakami and Ohno 1981). This study is
highly evaluated as one of the pioneering works on anisotropic damage mod-
eling, and has been cited in many papers and books.

2. Non-hardening region in cyclic plasticity
Ohno (1982, 1986) postulated that isotropic hardening does not evolve within a
plastic strain region after a load reversal, and represented the plastic strain
region, referred to as the non-hardening region, by generalizing Chaboche’s
memory surface. This postulation was used to represent work-hardening stag-
nation for accurate springback analysis by Yoshida and Uemori in 2002.
Professor Ohno thus contributed to the well-known Yoshida-Uemori model,
which has been available in LS-DYNA and PAM-STAMP since 2007.

3. Kinematic hardening model for ratcheting
The nonlinear kinematic hardening model of Armstrong and Frederick is well
known, but has the drawback of overpredicting ratcheting and cyclic stress
relaxation. Ohno and Wang (1993a) improved the dynamic recovery term in the
Armstrong-Frederick model. The developed model, called the Ohno-Wang
model, is highly rated and has been used by many researchers to simulate
ratcheting and cyclic stress relaxation. The papers of Ohno and Wang (1993a, b)
and Abdel-Karim and Ohno (2000) have been cited many times.

4. Homogenization methods for nonlinear time-dependent composites
Ohno and co-workers extended the computational homogenization method of
periodic composites to include nonlinear time-dependent behavior such as creep
and viscoplasticity (Wu and Ohno 1999; Ohno et al. 2000). The method was
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further extended in the presence of point-symmetric internal structures (Ohno
et al. 2001). The extended methods have been verified by simulating the
experiments of long fiber-reinforced laminates and plain-woven laminates
(Matsuda et al. 2003, 2007, 2014). Recently, the homogenized viscoplastic
behavior of pore-pressurized, anisotropic open-porous solids has been studied
(Ohno et al. 2012, 2014).

5. Homogenization analysis of cellular material instability
By developing an updated Lagrangian-type homogenization method based on
two scales of periodic structures, the elastic and elastoplastic buckling behavior
of hexagonal honeycombs subjected to in-plane biaxial compression were
analyzed to elucidate the complex buckling modes observed in experiments
(Ohno et al. 2002; Okumura et al. 2002, 2004). These studies have been fre-
quently cited, and have been presented in about twenty invited lectures,
including five plenary lectures, at conferences. The method has been applied to
other cellular materials (e.g., Ohno et al. 2004; Takahashi et al. 2010).

6. Strain gradient plasticity based on the self-energy of GNDs
Considering the self-energy of geometrically necessary dislocations (GNDs),
Ohno and Okumura (2007) provided an explicit physical basis for strain gra-
dient plasticity theories, and analyzed model crystal grains to derive a closed-
form evaluation of initial yield stress. They showed that the self-energy of
GNDs explains well the grain-size dependence of initial yield stress in the
submicron to several-micron range of grain sizes. This study is highly regarded,
and has been presented in about ten invited lectures, including one plenary
lecture, at conferences.

7. Implementation of cyclic (visco)plastic models in FEMs
Implicit stress integration algorithms were developed to implement cyclic
(visco)plastic models, including the Ohno-Wang model, using user subroutines
in commercial finite element programs (Kobayashi and Ohno 2002; Kobayashi
et al. 2003; Akamatsu et al. 2008; Ohno et al. 2013). The subroutine programs
developed for cyclic thermomechanical analysis have been used by about ten
companies in Japan. Recently, the programs have been integrated into a new
version, OLMATS (Ohno Lab. Material Model Software).

As well as performing the above-mentioned research, Prof. Ohno has also been
actively involved with scientific journals. He has served as an editorial board
member of the International Journal of Plasticity (1991 to present), Computer
Modeling in Engineering and Sciences (2004-2010), International Journal of Solids
and Structures (2005 to present), Acta Mechanica Solida Sinica (2009 to present),
and Bulletin of the JSME (2014 to present). He has also served as the editor-in-
chief of the Journal of Solid Mechanics and Materials Engineering (2006-2007), an
associate editor of the Materials Science Research International (1997-1999) and
JSME International Journal, Series A (2000-2003), a guest co-editor and guest
editor of the International Journal of Plasticity (2000, 2008), and a guest editor
of the International Journal of Mechanical Sciences (2008).
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Moreover, he has played a number of leading roles in academic societies and
conference organizations. He has held important positions in academic societies,
such as the chair of the JSME Materials and Mechanics Division (2002), chair
of the JSME Computational Mechanics Division (2008), executive board member
of the JSMS (1996-1997, 2000-2001, 2005-2006), executive board member of the
JSME (2013-2014), and vice president of the JSME (2014). He has also made
substantial contributions to international and domestic conferences by serving as,
for example, the co-chair of the 5th IUTAM Symposium on Creep in Structures
(2000), chair of the 8th Asia-Pacific Symposium on Engineering Plasticity and Its
Applications (2006), and chair of the 56th JSMS Annual Meeting (2007). All
of these conferences took place at Nagoya University, and were very successful
owing to his strong leadership.

Professor Nobutada Ohno has had a significant impact on solid mechanics
because of his original and unique point of view. His work has spread from aca-
demic to industrial fields: your laptop or car may contain proof of his achievements.
In addition, he has served in academic societies for decades. His about 20 Ph.D.
students have moved into academia and industry. He has hosted several foreign
researchers for short- and long-term stays at Nagoya University. All of these
contributions have given us great respect for him, and we regard him as an ideal
researcher. At the same time, he is a man of heart and humor. He is a husband,
father, and grandfather, loves watching movies, and is a fan of the Chunichi
Dragons-Nagoya’s professional baseball team.

We are grateful to Prof. Ohno for his seminal and longtime contributions to solid
mechanics, and believe that he will continue to have an impact in research.

Last but not least, we gratefully acknowledge Dr. Christoph Baumann and
Benjamin Feuchter (Springer Publisher) for support of the book project.

Magdeburg Holm Altenbach
Tsukuba Tetsuya Matsuda
Nagoya Dai Okumura

September 2015
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Chapter 1

Thermo-Electro-Mechanical Properties

of Interpenetrating Phase Composites

with Periodic Architectured Reinforcements

Rashid K. Abu Al-Rub, Diab W. Abueidda and Ahmed S. Dalaq

Abstract Inthis study, the multifunctional properties (thermal, electric, and mechan-
ical properties) of a new type of three-dimensional (3D) periodic architectured inter-
penetrating phase composites (IPCs) are investigated computationally. These new
IPCs are created using two interconnected, bicontinuous, and intertwined material
phases. The inner reinforcing phase takes the shape of the 3D morphology (archi-
tecture) of the mathematically-known triply periodic minimal surfaces (TPMS). The
TPMS reinforcements are 3D solid sheet networks with a certain volume fraction
and architecture. The interconnectivity of the proposed TPMS-based IPCs provide
a novel way of creating multifunctional composites with superior properties. In this
study, the effect of six well-known TPMS architectures of various volume fractions on
the thermal/electrical conductivity and Young’s modulus of the IPCs is investigated
using the finite element analysis of a unit cell with periodic boundary conditions. The
contrast effect (high and low) between the conductivities and Young’s modulus of
the two phases is also investigated. The calculated effective properties are compared
with some analytical bounds. The proposed TPMS-IPCs possess effective proper-
ties close to the upper Hashin-Shtrikman bounds. It is also shown that the effect of
TPMS architecture decreases as the contrast decreases. Finally, the manufacturability
of these new TPMS-IPCs is demonstrated through using 3D printing technology.
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1.1 Introduction

Design of new materials that are durable, lightweight, and environmentally sustain-
able are commonly inspired by natural composites. For example, bone is strong and
tough because its two constituent materials; soft collagen protein and stiff hydrox-
yapatite mineral, are arranged in complex hierarchical patterns that change at every
scale of the composite, from the micro up to the macro (Ashby et al. 2013). How-
ever, as engineers we are no longer limited to the natural patterns. We can design our
own architectured materials that may perform even better than the ones that already
exist in nature. While researchers can come up with hierarchical structures in the
design of new materials, going from a computer model to the production of physical
artifacts has been a persistent challenge. However, due to the recent advances in three-
dimensional (3D) printing (Schaedler et al. 2011; Zheng et al. 2014), researchers can
now move from computer-optimized material architectures that are designed using
the concepts of structural mechanics directly to fabrication and testing. 3D printing
is a process of creating 3D objects from a digital file using a material’s printer, in
a manner similar to printing images on paper. With the latest 3D printers capable
of printing materials with widely contrasting mechanical behavior simultaneously
in complex geometries at micrometer resolutions, the potential of this technology
is growing. Advanced printing technology now offers the possibility to create com-
plex topologies with fine features composed of a multitude of materials with varying
mechanical properties quickly, cheaply and at a large scale. In a matter of few hours,
3D printing can be used to fabricate complex architectures.

The focus of this chapter is on presenting and studying a new type of 3D-
printable multifunctional composites that have unique mechanical and physical prop-
erties as compared to traditional composites (Abueidda et al. 2015). These com-
posites combine two main ideas; interpenetrating phase composites (IPCs) and the
mathematically-known triply periodic minimal surfaces (TPMS). TPMS-based IPCs
are virtually created and manufactured using 3D printing technology so that they can
be tested and characterized. We will explain next IPCs and TPMS.

IPCs are a new kind of composite microstructures in which both the matrix and
reinforcement phases are entirely interconnected and continuous in 3D throughout
the microstructure space. Different than traditional composite materials that usually
have a continuous phase with one or more discrete (discontinuous) reinforcement
phases such as fibers, whiskers, or particles, the continuity of each phase kept in
IPCs make them a truly multifunctional and highly durable materials. In IPCs, if
any one of the constituent phases were removed, the remaining phase(s) would form
a self-supporting foam or porous media. IPCs take the best qualities of the two or
several constituents to generate a superior composite material. Periodic (not random
or stochastic) 3D IPCs that today do not exist in either engineered or biological
forms have not been explored much and this chapter focuses on such composites. It
is envisioned that such new materials and composites will transform the way materials
are designed for several engineered properties.
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(@) (b) ©

Fig. 1.1 Examples of TPMS, a crossed layers of parallels (CLP), b diamond in rhombic dodeca-
hedron (diamond), ¢ IWP, d Neovius, e primitive, f gyroid

However, the key to engineering the multifunctional properties of IPCs is in the
exact way the composite constituents fit together. In this work, this is achieved
through creating 3D geometries based on triply periodic minimal surfaces (TPMS)
(see Fig. 1.1). Triply periodic means repeating themselves in three dimensions. TPMS
are widely used in architectural design due to their remarkable geometric properties.
3D printing provides a novel technique for fabricating such 3D geometric patterns.
TPMS are infinite continuous smooth surfaces that separate the space into two inter-
twined, continuous, and complex regions (Kapfer et al. 2011). Furthermore, TPMS
are surfaces that are locally area minimizing, and they are defined as surfaces with
zero mean curvature at each point on the surface (Jung and Torquato 2005; Chen
et al. 2009). Several TPMS were discovered in the last century, and they were dis-
cussed by several investigators (Abueidda et al. 2015; Kapfer et al. 2011; Gandy and
Klinowski 2000; G6zdz and Hotyst 1996; Lord 1997; Yoo 2011, 2012). Figure 1.1
illustrates some of the commonly known TPMS. Brakke (2014) developed the soft-
ware Surface Evolver that generates the TPMS based on minimizing the energy of a
surface subjected to constraints. The energy of a surface is proportional to its surface
area (Torquato and Donev 2004). The most common natural example of minimal sur-
faces is the soap films in which the surface tension minimizes the energy of the film;
and consequently, minimizes its surface area (Torquato and Donev 2004). TPMS are
described in terms of a fundamental patch or asymmetric unit from which the whole
minimal surface can be created by its symmetry elements (Gandy and Klinowski
2000).

In the present work, TPMS are utilized to create unique and novel two-phase IPCs
and computationally study their effective mechanical, electrical, and thermal proper-
ties. These novel IPCs have been discovered recently by Abu Al-Rub and co-workers
(Abueiddaetal. 2015). The prediction of the macroscopic effective properties of these
TPMS-IPCs is based on the finite element analysis of a periodic unit cell. IPCs based
on TPMS that are considered in literature are basically IPCs in which the TPMS
separate the space into two disjoint but intertwining regions. Each region of those
represents a phase of the composite. Furthermore, the two phases of TPMS-IPCs
studied in literature such as Torquato and Donev (2004), Challis et al. (2008), Kass-
ner et al. (2005), Torquato et al. (2003) have the same volume fraction (50 % each).
In the work of Abu Al-Rub and co-workers (Abueidda et al. 2015), the TPMS are
employed differently; TPMS are thickened to create solid shell or sheet networks
taking the shape of the TPMS and representing the reinforcing phase with different
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Fig. 1.2 Unit cells of TPMS-IPCs; a CLP, b diamond, ¢ IWP, d Neovius, e primitive, f gyroid.
This figure shows a unit cell of the proposed IPC with TPMS as a solid sheet reinforcement

volume fractions (see Fig.1.2). In fact, since the TPMS are incorporated into the
matrix as a 3D solid sheet network, it splits the matrix into two phases such that the
TPMS is another phase. However, in this work, two-phase IPCs are considered such
that the TPMS solid sheet network is one phase and the matrix material is the other
phase.

The most advantageous property of a TPMS-IPC lies in its ability to achieve
several desirable properties at once by combining a number of contiguous phases,
each of which possesses one of the properties desired. Of course, the goal of research
into new composite materials has generally been to achieve combinations of material
properties which are not possible with single phase materials. Considering this goal,
periodic IPCs may provide strategic solutions for numerous property combinations
(i.e., multifunctionality). Moreover, due to the presence of many interfaces in [PCs
(i.e., boundaries between dissimilar materials), periodic architectured IPCs are very
effective advanced materials for resisting fracture and for distributing damage over a
larger area. Hence, IPCs with a large relative fraction of interfaces promise to provide
an over an order of magnitude increase in damage-tolerance and, in turn, increased
sustainability.
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Generally, the effective properties can be quantified using analytical models,
empirical equations, and/or numerical modeling. Most of the analytical models devel-
oped to predict the behavior of IPCs are based on the volume fractions and the mate-
rial properties of the individual phases. However, there are other factors influencing
the effective properties such as the topology of the phases and the thermal residual
stresses (Cheng et al. 2014). In this work, the effect of the architecture or morphology
of the microstructure, through using TPMS-type 3D solid sheet reinforcements, the
effective properties including the ones related to the transport phenomena (electrical
and thermal) and the mechanical elastic properties are investigated computationally
using the finite element modeling of a unit cell of the TPMS-IPC.

1.2 Architecture and Numerical Analysis Assumptions

1.2.1 Architectures

The proposed IPCs are composed from solid shells or sheets obtained from thick-
ening the TPMS embodying the reinforcing phase and their complementary cubes
representing the matrix. Figure 1.3 schematically shows how the TPMS-IPC is cre-
ated, for example, using the primitive TPMS-based IPC (P-IPC). The geometries
of the TPMS are created using the software Surface Evolver to create STL (voxel
based) files. After that, these surfaces are transferred to the software SolidWorks to
be thickened and to create their complementary parts. The thickened TPMS and their
complementary parts are then transferred to the commercial finite element software
Abaqus.

Figure 1.2 shows six unit cells of proposed TPMS-IPCs. From Fig. 1.2, it can
be noticed that the primitive-IPC, diamond-IPC, IWP-IPC, Neovius-IPC, and
gyroid-IPC are macroscopically isotropic whilst the CLP-IPC is macroscopically
transversely-isotropic.

STL file

Creating voxels Fitting
surfaces
Subtraction Combine

Fig. 1.3 CAD-based TPMS-IPC preparation scheme of the P-IPC composite
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1.2.2 Governing Equations and Boundary Conditions

The problem under investigation is a two-phase IPC with geometries based on TPMS
as illustrated in Fig. 1.2. Each phase is described by the following differential equa-
tion:

div(CVu) = 0 (1.1)

with div is the divergence, V is the gradient operator, u is the displacement, temper-
ature, or electric potential, and C is the material property (i.e., elastic, thermal, or
electrical property of the material). In the subsequence of this chapter, the mismatch
in the property between the two phases in the TPMS-IPC is defined by the ratio
a = C1/C,, where C» is the property of TPMS and C is the property of the matrix.

The effective properties of composites in general are evaluated at the macroscopic
scale which is large enough so heterogeneities to be smeared out (Michel et al. 1999).
The smallest material volume element of the heterogeneous material (composite) that
can be used to capture the response and the effective properties is called the represen-
tative volume element (RVE) (Kanit et al. 2003). The homogenization theory using
RVE is usually carried out to numerically determine the effective properties of com-
posites (Kanit et al. 2003; Muliana 2009; Zohdi and Wriggers 2008). Based on the
imposed boundary conditions, either the macroscopic flux or the macroscopic gradi-
ent field is calculated by averaging or homogenizing the microscopic counterparts,
and then the effective property is calculated by using the macroscopic constitutive
relationships (Kushch and Chernobai 2014; Giraud et al. 2007; Lutz and Zimmerman
2005):

1 — 1

j=— [ qdV, Vu=— [ Vqadv, 1.2

g V/q u V/ q (1.2)
\% \%

qg=C*"Vu (1.3)

where the superimposed bar indicates a spatial average quantity, q is the stress, local
heat flux, or electric current, V is the volume, Vu is the spatial average displacement
gradient, temperature gradient, or electrical potential gradient, and C* is the effective
property (i.e., effective thermal or electrical conductivity or the effective Young’s
modulus). Types of the applied boundary conditions strongly affect the size of the
RVE needs to be considered (Jiang et al. 2002). The size of RVE is defined by
dimensionless parameter 6 = D/d, where d and D are illustrated in Fig. 1.4, and
it is assumed to be large enough compared to the atomistic scale, so the continuum
mechanics models remain valid (Muliana 2009).

Generally, there are four types of boundary conditions (Jiang et al. 2002; Dalaq
etal. 2013; Jiang et al. 2001) that can be applied to the RVE in order to estimate the
effective property, which are:
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Fig. 1.4 Sample
microstructural architecture
employed in studying the
effect of the boundary
conditions

1. Essential Boundary Condition (EBC)
u=Vux, VxedB (1.4)
2. Natural Boundary Condition (NBC)
qu =qn, Vx € 0B (1.5)
3. Periodic Boundary Condition (PBC)
ux+L)=ux)+VuL, qx+L)=—-q(x), VYxedB (1.6
4. Mixed Boundary Condition (MBC)
(u — Vux)(gx —qn) =0, Vx € dB (1.7)

Here 90 B is the boundary of the RVE, n is the outer unit normal vector to d B, and
L is the length of the periodicity. The effect of boundary conditions is investigated
briefly in the present work. In case of PBC and EBC, a given Vu is applied while a
given q is used when NBC is applied. When MBC is utilized, EBC is applied on one
pair of parallel faces, and NBC is applied on the other pairs.

Figure 1.5 demonstrates the effect of the boundary conditions on the conductivity
(thermal or electrical) or the Young’s modulus and the required size of the RVE. The
results displayed in Fig. 1.5 is for the primitive-IPC, mismatch o = 1000, and 2 %
volume fraction of the TPMS reinforcing phase. The results obtained from MBC and
PBC are independent of while the results obtained from EBC and NBC converge
to those of MBC and PBC as § increases. The architectures of TPMS-IPCs are
geometrically periodic. Consequently, periodic boundary conditions can be applied
besides mixed ones.

From the argument above, MBC/PBC should be applied to evaluate the effective
property and the macroscopic response of TPMS-IPCs due to scale-independence
when they are employed. Another advantage of MBC have over the other types of
boundary conditions is that they are common in experimental setups for measuring
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C*/C,

o -#-NBC —— MBC/PBC EBC

0 5 10 15 20 25 30 35 40
Normalized RVE Size, 6=L/d

Fig. 1.5 Effect of different types of boundary conditions on effective property and required size of
the RVE or unit cell

the effective properties (Jiang et al. 2002). On the other hand, PBCs are essential
for the case where the RVE (or the unit cell in this work) is selected to represent
the material’s microstructure. Therefore, the PBCs will be employed in this work for
estimating the effective properties.

1.2.3 Analytical Models for Calculating Effective Properties

Among the first well-known analytical models for estimating the effective properties
are those of Reuss and Voigt. The upper (Voigt) and lower (Reuss) bounds for esti-
mating the effective property of any composite (i.e., the so-called rule of mixture),
are given by:

(@1/C1+¢2/C)7 L <C* < ¢1/C1 + ¢/ Ca (1.8)

where ¢ and ¢, are the volume fractions of the complimentary part of the IPC (the
matrix) and the reinforcing TPMS phase, respectively. The upper and lower bounds
are also called the arithmetic and harmonic means, respectively.

The Hashin-Shtrikman bounds (HS bounds) are one of the most common bounds,
and they are derived based on the variational principles (Wegner and Gibson 2000).
The Hashin-Shtrikman bounds are the tightest bounds (Cadman et al. 2013). The
effective property of a two-phase isotropic composite is bounded by these bounds
(Torquato et al. 2003), such that:
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2 2
_ $12(C1 — &) <C'<<C>— $192(C1 — C2)

<C > = =
<C+2C1 > < C+2C >

(1.9)

<C>= Cip1 + Capp, < C >= Cio+ C29 (1.10)

These bounds are generally applicable to all composites including IPCs in case of
isotropic and homogeneous phases when composite with large enough volume is
studied (Wegner and Gibson 2000).

It is noteworthy that theory of mixture and Hashin-Shtrikman analytical bounds
are prone to deviations from the numerical and experimental results, where at low
volume fractions and for high contrasts in the mechanical properties of individual
phases the accuracy of these bounds are questionable. There are many other improved
analytical models and approximations, but the focus of this study will be on compar-
ing the finite element predictions of effective properties to these well-known bounds.

1.3 Results and Discussions

1.3.1 Effective Thermal/Electrical Conductivity

In this section, we present the predicted effective thermal/electrical conductivities
C* = ke for the IPCs in Fig. 1.2 for different volume fractions of the TPMS and for
various contrast « = C»/Cy, where k» = C» is the conductivity of the TPMS sheet
and k; = C is the conductivity of the surrounding matrix material. Figure 1.6 shows
the estimated effective conductivities (thermal or electrical) of the TPMS-IPCs for
2% TPMS volume fraction and for « = 1000. The mismatch « = 1000 indicates
that the TPMS reinforcing phase is relatively very conductive as compared to the
matrix material. This is similar to having the TPMS 3D sheet networks made of car-
bon nanotubes, graphene, or carbon nanotube/graphene reinforced polymer. Such
composites are attractive for various applications such as heat dissipaters in elec-
tronics or as self-sensing structural components. Comparison between the predicted
effective conductivities and the analytical bounds is also shown in Fig. 1.6.

Figure 1.6 shows that the diamond-IPC has the lowest conductivity among the
other isotropic TPMS-IPCs. One main reason for this behavior is that diamond-IPC
has poor connectivity at the boundary of the unit cell compared to the others (see
Fig. 1.2b). The results obtained for diamond-IPC, IWP-IPC, Neovius-IPC, primitive-
IPC, and gyroid-IPC are bounded by the rule of mixtures and the isotropic Hashin-
Shtrikman (HS) bounds. In addition, it can be observed that the effective conductivity
of CLP-IPC in the longitudinal direction exceeds the upper HS bound. This does
not violate the HS bounds since Eq. (1.9) is used for macroscopically isotropic
composites, and the CLP-IPC is transversely-isotropic at the macro-scale. In fact,
the average normalized conductivity is k. / k1 = 13.6, which is within the HS bounds.
Figure 1.6 shows that IWP-, Neovius-, and primitive-IPCs have comparable effective
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Fig. 1.6 Comparison between the predicted effective conductivity for different TPMS-IPCs with
2% TPMS volume fraction and mismatch o = 1000

conductivity which is close to the HS upper bound. The primitive- and average CLP-
IPCs have slightly lower, but sill excellent effective conductivity.

It is also apparent from Fig. 1.6 that the conductivity of CLP-IPC (average value),
IWP-IPC, Neovius-IPC, primitive-IPC, and gyroid-IPC are very close to the upper
HS bound, and this indicates that the volume of the TPMS is well-distributed when
these geometries are used so the effective conductivity is maximized.

Figure 1.7 shows the impact of the mismatch o« = 10 on the predicted effective
conductivity. Figure 1.7 represents a case where the conductivities of both phases are
comparable, but the TPMS reinforcement is more conductive. This figure shows that

1.2
1.15
1.1
<105
e
1
0.95
0.9
> S > >
@qy 0&‘ \Q\S Q\g &o‘\ @ﬁ 04\‘\’ @4 & OQQ &Q,‘T’Q
R R & O ¢
\\‘& RS ] @B‘ &42' < 0‘2‘ &0‘0
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Ys\ QQQ \P@o & N Q&

Fig. 1.7 Comparison between the predicted effective conductivity for different TPMS-IPCs with
2% TPMS volume fraction and mismatch o = 10
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Fig. 1.8 Effect of the TPMS volume fraction on the effective conductivity with mismatches of
o = 1000

all the TPMS architectures provide almost the same effective conductivity. This indi-
cates that the effect of the architecture is decreasing as the mismatch « is decreasing.
The conductivity of the CLP-IPC in the longitudinal direction provides the highest
conductivity, whereas it provides the lowest in the transverse direction. However, the
average conductivity of CLP-IPC is comparable to the other architectured IPCs.

Figure 1.8 depicts the effect of the reinforcing TPMS phase volume fraction till
10 % for mismatches of 1000. The conclusions from Fig. 1.8 are maintained as the
volume fraction of the TPMS reinforcement is increased. This figure shows that the
diamond-IPC gives the lowest conductivity whereas the maximum conductivity is
achieved though the CLP-IPC in the longitudinal direction.

Figure 1.9 shows the heat flux or the electric current for different IPCs with a2 %
reinforcing phase volume fraction and a mismatch greater than one. The values of
the contour in Fig. 1.9 reflect a qualitative distribution. According to Milton (1981),
the upper HS bound is attained whenever uniform electric current or heat flux in
all the phases except the phase with the highest conductivity (the TPMS in this
study) is obtained. This behavior is shown in Fig. 1.9 and obtained with IWP-IPC,
Neovius-IPC, primitive-IPC, gyroid-IPC, and CLP-IPC in the longitudinal direction.

1.3.2 Effective Elastic Properties

In this section, we present the enhancement of Young’s modulus upon using the
TPMS architecture as a reinforcement for « = C,/C; = E/E; = 1000 and 10
where £y = C; is the Young’s modulus of the TPMS sheet and £ = Cj is the
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Fig. 1.9 Heat flux/electric current contours in the direction of the imposed temperature gradient
in the matrix (left) and the TPMS reinforcing-phase (right). a CLP in the longitudinal direction,
b CLP in the transverse direction, ¢ diamond, d IWP, e Neovius, f primitive, g gyroid

Young’s modulus of the surrounding matrix material. The volume fraction of the
TPMS reinforcement is 5 %. The results are presented in Figs. 1.10 and 1.11.

According toFigs. 1.10and 1.11, the highestenhancement C*/Cy = E¢/E\(E. =
C* is the estimated effective Young’s modulus) is achieved by the CLP-IPC loaded
in the longitudinal orientation, which is similar to that for the effective conductiv-
ity. Note that the CLP-IPC in the longitudinal direction coincided with the upper
HS bound. The IWP- and Neovius-IPC resulting in comparable enhancements as
they both possess similar geometrical morphology (shape). The order continues as
primitive-, transverse CLP-, Gyroid and finally the Diamond-IPC being the least per-
former. At a mismatch of @ = 10 the enhancement E./E] of each TPMS becomes
closer to one another, while the order of Young’s modulus is preserved. This is an
agreement with the conclusion in the previous section concerning the effective con-
ductivity where the effect of the architecture decreases as the contrast « is decreasing.
However, the IWP-IPC gives the highest effective Young’s modulus, which is higher
than the average Young’s modulus of CLP-IPC.
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Fig. 1.10 Comparison between the predicted effective Young’s modulus for different TPMS-IPCs
with 5% TPMS volume fraction and mismatch o« = 1000
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Fig. 1.11 Comparison between the predicted effective Young’s modulus for different TPMS-IPCs
with 5 % TPMS volume fraction and mismatch o = 10

Figure 1.12 shows the variation of the normalized effective Young’s modulus as
the volume fraction of the TPMS reinforcement is increased. According to Fig. 1.12,
the same order of Young’s modulus is depicted as a function of TPMS volume
fraction. Moreover, the enhancement E./E] varies linearly with the TPMS volume
fraction. It is noticed that as the volume fraction increases, the differences in the
effective Young’s modulus between different architectures increases. However, still
primitive- and gyroid-IPCs show comparable properties, whereas IWP-, Neovius-,
and average CLP-IPCs show comparable properties.

Figure 1.13 represents an interesting case for @ = 0 such that the complementary
part is removed creating a cellular material made out of the TPMS only (i.e., TPMS-
based foam). The volume fraction of TPMS in Fig. 1.13 is 5 %. Once again the same
order of Young’s modulus is preserved for different architectured foams indicating
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Fig. 1.13 The effective Young’s modulus for 5 % TPMS foam (i.e., « = 0)

that TPMS reinforcement dictates the overall effective Young’s modulus in case of
IPCs. This case of foam with TPMS architectures has many applications; mainly as
light-weight and tough materials.

Figure 1.14 shows the contours of the maximum principal stress within the IPC,
TPMS reinforcement, and the matrix for different architectures. Regions at which
debonding and cracks are most likely to initiate are designated by the stress con-
tours. The stress contours within each TPMS show how effective the TPMS as a
reinforcement. The distribution of the von Mises is qualitatively similar to that in
Fig.1.14.
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(a)

Fig. 1.14 The Maximum principle stresses contours for a Primitive-IPC (left), Primitive-TPMS
(middle), and Primitive-complementary (right); b Diamond-IPC (left), Diamond-TPMS (middle),
and Diamond-complementary (right); ¢ Longitudinal CLP-IPC (left), Longitudinal CLP-TPMS
(middle), and Longitudinal CLP-complementary (right); d Transverse CLP-IPC (left), Trans-
verse CLP-TPMS (middle), and Transverse CLP-complementary (right); e IWP-IPC (left), IWP-
TPMS (middle), and IWP-complementary (right); f Neovius-IPC (left), Neovius-TPMS (middle),
and Neovius-complementary (right); g Gyroid-IPC (left), Gyroid-TPMS (middle), and Gyroid-
complementary (right)

1.4 Manufacturability

With recent technologies and advancements in manufacturing techniques, TPMS-
IPCs can be manufactured and analyzed utilizing the techniques mentioned in Cooke
et al. (2003), Schroder-Turk et al. (2011). However, while researchers can come up
with hierarchical structures in the design of new materials, going from a computer
model to the production of physical artifacts has been a persistent challenge. Due
to the recent advances in 3D printing, researchers can now move from computer-
optimized material architectures that are designed using the concepts of structural
mechanics directly to fabrication and testing. 3D printing is a process of creating 3D
objects from a digital file using a materials’ printer, in a manner similar to printing
images on a paper. With the latest 3D printers capable of printing materials with
widely contrasting mechanical behavior simultaneously in complex geometries at
micrometer resolutions, the potential of this technology is growing. Advanced print-
ing technology now offers the possibility to create complex topologies with fine
features composed of a multitude of materials with varying mechanical properties
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quickly, cheaply, and at a large scale. In a matter of few hours, 3D printing can be
used to fabricate complex architectures.

3D printing begins with a 3D graphical model of the object. Then the model is
digitized and sliced into model layers with special software. The 3D printer then
prints 2D layers into a 3D build, adding each new layer on top of the prior layer.
Finally, a 3D object is realized that can frequently be used directly from the printer.

The proposed TPMS-IPCs can be manufactured using the 3D-printer such as using
the Stratasys Objet260 Connex as shown in Fig. 1.15. Therefore, the current compu-
tational results can be easily validated by testing these 3D printed IPCs. Figure 1.15
depicts the manufactured unit cells.

Designing architectured IPC using 3D printing offers a new paradigm for com-
posite functionality. In fact, utilizing periodic architectural features as key elements
in defining multi-dimensional material design space promises to enable in-dependent
manipulation of the currently coupled physical attributes and to develop materials
with unprecedented capabilities. Using architectural features to elicit desired func-
tionality will shift the material creation paradigm from structure— processing—
property to property— architecture— fabrication. Feasibility of this “reverse”

(a) (b)

Fig. 1.15 Manufactured architectures of the TPMS-IPCs. a CLP-IPC, b diamond-IPC, ¢ IWP-IPC,
d Neovius-IPC, e primitive-IPC, f gyroid-IPC. The left pictures show the TPMS-IPCs while the
right pictures represent the TPMS solids
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material construction approach is gated by our ability to understand and predict
mechanical and physical responses of these architectured materials (materials whose
properties are controlled by their engineered structure rather than by atomic compo-
sition alone), where a new design parameter, feature size, plays a critical role.

Potential applications of the proposed TPMS-IPCs are in the energy (energy stor-
age, heat transfer), aerospace (lightweight materials, radiation-tolerant paneling and
shielding, high temperature), semiconductor (heat dissipation), and oil and gas (dam-
age resistance, corrosion resistance) sectors. In the energy sector, combining multiple
materials in the same IPC would allow us to move from simple to more complex
printed objects such as fuel cells, batteries, solar cells, etc. The use of 3D printing
technology as a novel technique for fabricating IPCs has the advantages of limited
material waste, the ability to build complex geometries, immediate production time,
and minimal human involvement.
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Chapter 2

A Continuum Damage Model Based
on Experiments and Numerical
Simulations—A Review

Michael Briinig

Abstract The paper summarizes the author’s activities in the field of damage
mechanics. In this context, a thermodynamically consistent anisotropic continuum
damage model is reviewed. The theory is based on consideration of damaged as
well as fictitious undamaged configurations. The modular structure of the contin-
uum model is accomplished by kinematic decomposition of strain rates into elastic,
plastic and damage parts. A generalized yield condition is used to adequately describe
the plastic flow properties of ductile metals and the plastic strain rate tensor is deter-
mined by a non-associated flow rule. Furthermore, a stress-state-dependent damage
criterion as well as evolution equations of damage strains are proposed. Different
branches of the respective criteria are considered corresponding to various damage
and failure mechanisms depending on stress state. Since it is not possible to propose
and to validate stress-state-dependent criteria only based on tests with uniaxially
loaded specimens for a wide range of stress states, numerical calculations on the
micro-level have been performed to be able to study stress-state-dependent mecha-
nisms of micro-defects and their effect on macroscopic behavior. In addition, new
experiments with two-dimensionally loaded specimens have been developed. Cor-
responding numerical simulations of these experiments show that they cover a wide
range of stress triaxialities and Lode parameters in the tension, shear and compression
domains.

Keywords Ductile damage -+ Stress triaxiality + Lode parameter - Experiments -
Numerical simulations

M. Briinig (X))

Institut Fiir Mechanik und Statik, Universitit der Bundeswehr Miinchen,
85577 Neubiberg, Germany

e-mail: michael.bruenig@unibw.de

© Springer International Publishing Switzerland 2015 19
H. Altenbach et al. (eds.), From Creep Damage Mechanics

to Homogenization Methods, Advanced Structured Materials 64,

DOI 10.1007/978-3-319-19440-0_2



20 M. Briinig

2.1 Introduction

The accurate and realistic modeling of inelastic deformation and failure behavior
of engineering materials is essential for the solution of numerous boundary-value
problems. For example, microscopic defects cause reduction in strength of materi-
als and shorten the life time of engineering structures. Therefore, a main issue in
engineering applications is to provide realistic information on the stress distribution
within material elements or assessment of safety factors against failure.

Continuum damage mechanics analyzes systematically the effect of damage on
mechanical properties of materials. Critical values of damage variables can be seen
as major parameters at the onset of fracture. An important issue in such phenom-
enological constitutive approaches is the appropriate choice of the physical nature of
mechanical variables characterizing the damage state of materials and their tensorial
representation. Therefore, to be able to develop a realistic, accurate and efficient
phenomenological model it is important to analyze and to understand the complex
stress-state-dependent processes of damage and fracture as well as its respective
mechanisms acting on different scales. In this context, in the last years various
damage models have been published based on experimental observations as well
as on multi-scale approaches (Briinig 2001, 2003; Gurson 1977; Murakami and
Ohno 1981; Lemaitre 1996; Voyiadjis and Kattan 1999). In this context, Briinig et
al. (2011b; 2008); Briinig and Gerke (2011) have proposed a generalized and ther-
modynamically consistent, phenomenological continuum damage model which has
been implemented as user-defined material subroutines in commercial finite element
programs allowing analyses of static and dynamic problems in differently loaded
metal specimens. To be able to detect stress triaxiality dependence of the constitu-
tive equations tension tests with carefully designed specimens have been developed.
For example, differently pre-notched specimens and corresponding numerical sim-
ulations have been used by Bai and Wierzbicki (2008); Bao and Wierzbicki (2004);
Becker et al. (1988); Bonora et al. (2005); Briinig et al. (2011b; 2008); Dunand and
Mohr (2011); Gao et al. (2010). However, these experiments with unnotched and
differently notched flat specimens showed stress triaxialities only in a small region
of positive values. Larger triaxialities appear in tension tests with cylindrical (axi-
symmetric) specimens but they cannot be manufactured when the behavior of thin
sheets is investigated. Thus, specimens with new geometries have been designed
to be able to analyze stress states with small hydrostatic parts. Tension tests with
these specimens have been performed (Bao and Wierzbicki 2004; Gao et al. 2010)
leading to shear mechanisms in their centers. Similar specimens have been devel-
oped and tested by Briinig et al. (2008); Driemeier et al. (2010). Furthermore, to be
able to take into account other regions of stress triaxialities butterfly specimens have
been manufactured (Bai and Wierzbicki 2008; Dunand and Mohr 2011; Mohr and
Henn 2007) which can be tested in different directions using special experimental
equipment. Alternatively, series of new tests with biaxially loaded flat specimens
taken from thin sheets have been developed by Briinig et al. (2014a; 2015) leading to
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experimental results on inelastic behavior, damage and fracture of ductile metals for
a wide range of stress triaxialities not obtained by the experiments discussed above.

Further information on damage and failure mechanisms can be obtained by per-
forming numerical simulations on the micro-level (Brocks et al. 1995; Briinig et al.
2011a, 2013, 2014b; Chew et al. 2006; Kuna and Sun 1996; Needleman and Kush-
ner 1990; Ohno and Hutchinson 1984; Zhang et al. 2001) considering individual
behavior of growth and coalescence of voids and micro-shear-cracks as well as their
accumulation to macro-cracks. These numerical calculations have been carried out
with different loading conditions covering a wide range of macroscopic stress states.
The numerical results elucidated which parameters had remarkable effect on macro-
scopic stress-strain relations and on evolution equations for the damage variables
and which ones only had marginal influence. Thus, it was possible to detect different
damage mechanisms which have not been exposed by experiments.

In the present paper main ideas and fundamental governing equations of the phe-
nomenological continuum damage model proposed by the author are reviewed. Some
experimental and numerical results are summarized to demonstrate the efficiency and
applicability of the approach.

2.2 Continuum Damage Model

Large deformations as well as anisotropic damage and failure of ductile metals are
predicted by the continuum model proposed by Briinig (2003) which is based on
experimental results and observations as well as on numerical simulations on the
micro-level detecting information of microscopic mechanisms due to individual
micro-defects and their interactions. Similar to the theories presented by Betten
(1982); Grabacki (1991); Murakami and Ohno (1981); Voyiadjis and Park (1999)
the phenomenological approach is based on the introduction of damaged and corre-
sponding fictitious undamaged configurations and has been implemented into finite
element programs. Extended versions of this model (Briinig et al. 2011b, 2008,
2014a, 2015) propose a stress-state-dependent damage criterion based on differ-
ent experiments and data from corresponding numerical simulations. Furthermore,
it takes into account numerical results of various analyses using unit cell models
(Briinig et al. 2011a, 2013, 2014b). Based on these numerical results covering a
wide range of stress states it was possible to propose damage equations as functions
of the stress triaxiality and the Lode parameter.

2.2.1 Kinematics

The kinematic approach is based on the introduction of initial, current and elasti-
cally unloaded configurations each defined as damaged and fictitious undamaged
configurations, respectively (Briinig 2001, 2003). This leads to the multiplicative
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decomposition of the metric transformation tensor

o—1 _ *
Q=R Q" RQ (2.1)

o
where Q describes the total deformation of the material body due to loading, R
represents the initial damage, QP! denotes the plastic deformation of the fictitious

3
undamaged body, R characterizes the deformation induced by evolution of damage
and Q¢ represents the elastic deformation of the material body. In addition, the
elastic strain tensor

1
A = 3 InQ*! 22

and the damage strain tensor
*

1
Ada — 51n R (2.3)

are introduced.
Furthermore, the strain rate tensor

. 1 .
H=3 Q'Q (2.4)

is defined, which using Eq. (2.1) can be additively decomposed

. . = pl .
H — Hel + R—l Hp R + Qel—lHda Qel (25)
into the elastic 1
Hel — z Qelfl Qel , (26)
the plastic
= pl 1 = 4 2pl
H — E Qel 1 Q[JZ 1 Q Qel , (27)

and the damage strain rate tensor

. 1 «—1 3
Hé* — 51’3 R. (2.8)

With the identity (see Briinig (2003) for further details)
el [
RQ“ = Q“R (2.9)

the damage metric transformation tensor with respect to the current loaded configu-
rations, R (see Eq. (2.5)), has been introduced.
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2.2.2 Constitutive Equations

Dislocations and growth of micro-defects are the most common modes of irreversible
micro-structural deformations at each stage of the loading process. In particular, pure
plastic flow is caused by dislocation motion and sliding phenomena along crystallo-
graphic planes whereas damage-related irreversible deformations are due to residual
opening of micro-defects after unloading. These dissipative processes are distinctly
different in their nature as well as in the manner how they affect the compliance
of the material and are active on different scales. Consequently, in damage-coupled
elastic-plastic theories two sets of internal variables corresponding to formation of
dislocations (plastic internal variables) as well as to nucleation and growth of micro-
defects (damage internal variables) are separately used to adequately describe the
irreversible constitutive behavior and to compute corresponding strain rate tensors.

The effective undamaged configurations are considered to characterize the behav-
ior of the undamaged matrix material. In particular, the elastic behavior of the undam-
aged matrix material is described by an isotropic hyperelastic law leading to the
effective Kirchhoff stress tensor

_ 2
T=2G A% + (K - 50) trA? 1 (2.10)

where G and K represent the constant shear and bulk modulus of the undamaged
matrix material, respectively, and 1 denotes the second order unit tensor.

In addition, onset and continuation of plastic flow of ductile metals is determined
a yield criterion. Experiments on the influence of hydrostatic stress on the behavior
of metals carried out by Spitzig et al. (1975; 1976) have shown that the flow stress
depends approximately linearly on hydrostatic stress. Additional numerical studies
performed by Briinig (1999) elucidated that hydrostatic stress terms in the yield
condition affect onset of localization and associated deformation modes leading to
notable decrease in ductility. Thus, plastic yielding of the matrix material is governed
by the Drucker-Prager-type yield condition

P (L, Jc) = \/J: —c (1 — %’I]) =0, (2.11)

where I} = t'T and J, = %dev'i‘ -devT denote invariants of the effective stress
tensor T, ¢ is the strength coefficient of the matrix material and a represents the
hydrostatic stress coefficient.

The experiments (Spitzig et al. 1975, 1976) also showed that plastic deformations
are nearly isochoric. Thus, the plastic potential function

g"(T) = \/72 2.12)
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is assumed to depend only on the second invariant of the effective stress deviator
leading to the non-associated isochoric effective plastic strain rate

- pl . agP! | _ _
P i devl = yN. (2.13)

T 2

In Eq. (2.13) Ais a non-negative scalar-valued factor, N = 1

A/ 2 ./_2

. L . o =Pl :
the normalized deviatoric stress tensor and y = N-H = %@ A represents the

devT denotes

equivalent plastic strain rate measure used in the present continuum model.

Furthermore, the damaged configurations are considered to characterize the
behavior of anisotropically damaged material samples. In particular, since damage
remarkably affects the elastic behavior and leads to material softening, the elastic
law of the damaged material sample is expressed in terms of both the elastic and
the damage strain tensor, (2.2) and (2.3). The Kirchhoff stress tensor of the ductile
damaged metal is given by

T=2 (G +m trAd“) A
2
+ [(K — §G +2m trAd“) trA + 13 (Ad“ .Ad)} 1
+ 73 trAelAda + 14 (AelAda + AdaAel) (2.14)

where the parameters 711 ...174 describe the deteriorating effect of damage on the elastic
material properties. The parameters 77 and 7, are related to the isotropic character of
damage whereas 13 and 14 correspond to anisotropic evolution of damage. With these
additional parameters it is possible to simulate the decreases in Young’s modulus,
Poisson’s ratio, shear and bulk moduli measured in experiments (Briinig 2003).
Based on many experiments it is well known that the stress state remarkably
affects damage mechanisms occurring in ductile metals which is illustrated in Fig. 2.1
(Briinig et al. 2011a,b). For example, under tension dominated loading conditions
(high positive stress triaxialities, n > 1,) damage in ductile metals is mainly caused

Micro-shear Micro-shear
No damage i -cracks \Voids
cracks and voids
[
s ok |
o2 DA ‘
/ /e
T
e 0 nt n

Fig. 2.1 Damage mechanisms depending on stress triaxialities
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by nucleation and isotropic growth of voids whereas under shear and compression
dominated conditions (negative stress triaxialities, . < 1 < 0) evolution of micro-
shear-cracks is the predominant damage mechanism. Between these regions, 0 < n <
n; damage is a combination of both basic mechanisms with simultaneous growth of
voids and formation of micro-shear-cracks. In addition, no damage occurs in ductile
metals for high negative stress triaxialities n < 7.. Therefore, to be able to develop
a realistic, accurate and efficient phenomenological model it is important to analyze
and to understand the complex stress-state-dependent processes of damage as well
as its respective mechanisms acting on different scales.

To model onset and continuation of damage the concept of damage surface is
adopted. Following the ideas given in Briinig (2003); Chow and Wang (1987) the
damage surface is formulated in stress space at the macroscopic damaged continuum
level

fl=al 4+ Byl —0=0 (2.15)

with the stress invariants /1 = tr'T and J, = 1 devT - devT and the damage threshold
o.In Eq. (2.15) the variables « and § represent damage mode parameters depending
on the stress intensity (von Mises equivalent stress) 0., = «/3J2, the stress triaxiality

Om 11
=2 - 2.16
n o 330 (2.16)
with the mean stress o, = 1/3 I as well as on the Lode parameter
2T =T . o~ - -
w=—7———— withT1 >, > T3 2.17)
I —T3

expressed in terms of the principal stress components Ty, T» and T3.

Furthermore, evolution of macroscopic irreversible strains caused by the simulta-
neous nucleation, growth and coalescence of different micro-defects is modeled by
a stress-state-dependent damage rule. Thus, the damage potential function

g (1) = g%y, S, J3) (2.18)

is introduced where T represents the stress tensor formulated in the damaged con-
figuration which is work-conjugate to the damage strain rate tensor H¢ (see Briinig
2003, for further details) and 7, J> and J3 are corresponding invariants. This leads
to the damage strain rate tensor

. ) agda ) agda agda B agda »
HY = = 1 devT devS 2.19
m oF (811 + o evl 4 A ev ( )
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where [t is a non-negative scalar-valued factor and
~ - - 2

devS = devT devT — 3 J1 (2.20)

represents the second order deviatoric stress tensor (Briinig et al. 2013, 2014b).
Alternatively, the damage strain rate tensor (2.19) can be written in the form

. 1 _ _
Hd“:ﬂ(&—l—i-,BN—i-SM) (2.21)
V3
. . . _ 1 id _ 1 &~
where the normalized deviatoric tensors N = ENA devT and M = T devS

have been used. In Eq. (2.21) the parameters &, 8 and & are kinematic variables
describing the portion of volumetric and isochoric damage-based deformations. The
damage rule (2.21) takes into account isotropic and anisotropic parts correspond-
ing to isotropic growth of voids and anisotropic evolution of micro-shear-cracks,
respectively. Therefore, both basic damage mechanisms (growth of isotropic voids
and evolution of micro-shear-cracks) acting on the micro-level are involved in the
damage rule (2.21).

2.3 Uniaxial Tension Tests

Uniaxial tension tests with unnotched specimens taken from thin sheets are used to
identify basic elastic-plastic material parameters appearing in the constitutive equa-
tions discussed above. From these experiments equivalent stress—equivalent plastic
strain curves are easily obtained from load-displacement curves as long as the uni-
axial stress field remains homogeneous between the clip gauges fixed on the spec-
imens during the tests (Briinig et al. 2011b, 2008). For example, fitting of numeri-
cal curves and experimental data for an aluminum alloy leads to Young’s modulus
E = 65000 MPa and Poisson’s ratio is taken to be v = 0.3. In addition, the power law
function for the equivalent stress—equivalent plastic strain function appearing in the
yield criterion (2.11)

(B 1Y
Cc =00 m“rl (2-22)

is used to model the work-hardening behavior. Good agreement of experimental data
and numerical results is achieved for the initial yield strength cop = 175MPa, the
hardening modulus H = 2100 MPa and the hardening exponent n = 0.22 (Briinig
et al. 2015).

Since uniaxial tension tests with differently pre-notched specimens are charac-
terized by different hydrostatic stress states in the small region between the notches
(Briinig et al. 2011b, 2008; Driemeier et al. 2010), these experiments can be used
to determine the hydrostatic-stress-dependent parameter a/c appearing in the yield
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criterion (2.11). However, in these tests with pre-notched specimens stress and strain
fields are not homogeneous and only quantities in an average sense can be evaluated
from these experiments. Therefore, corresponding finite element simulations of these
uniaxial tests have been performed. Comparison of the numerically predicted load-
displacement curves and the experimental ones leads with an inverse identification
procedure to the parameter a/c = 0.000055MPa~!.

Moreover, various parameters corresponding to the damage part of the constitu-
tive model have to be identified. For example, onset of damage is determined by
comparison of experimental load-displacement curves of the uniaxial tension tests
with those predicted by numerical analyses based on the elastic-plastic model only
(Briinig et al. 2011b, 2015). First deviation of these curves is an indicator of onset of
deformation-induced damage. Using this procedure, the damage threshold appear-
ing in the damage condition (2.15) is o = 300 MPa for the aluminum alloy under
investigation.

2.4 Numerical Analyses on the Micro-Scale

Identification of further damage parameters is more complicated because most crite-
ria and evolution equations are motivated by observations on the micro-level. There-
fore, stress state dependence of the parameters in the damage condition (2.21) and in
the damage rule (2.21) has been studied in detail by Briinig et al. (2013; 2014b) per-
forming numerical simulations with micro-void-containing representative volume
elements under various loading conditions. In particular, the numerical analyses of
differently loaded micro-defect containing unit cells have been performed using the
finite element program ANSYS enhanced by an user-defined material subroutine.
One eighth of the symmetric cell model as well as the finite element mesh with 3123
3D-elements of type Solid185 are shown in Fig.2.2. Various loading conditions with

Fig. 2.2 Finite element
mesh of one eighth of the
unit cell
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principal macroscopic stresses acting on the outer bounds of the representative vol-
ume elements are taken into account to be able to cover the wide range of stress
triaxiality coefficients (16) n = —1, —2/3, —1/3, 0, 1/3, 2/3, 1, 5/3, 2, 7/3 and 3 as
well as of the Lode parameters (2.23) w = —1, —1/2, 0, 1/2, and 1.

In all micro-mechanical numerical calculations the stress triaxiality coefficient
and the Lode parameter are kept constant during the entire loading history of the unit
cell to be able to accurately analyze their effect on damage and failure behavior of
ductile metals. Based on the numerical results of these unit-cell calculations (Briinig
etal. 2013) different damage mode parameters have been identified for the aluminum
alloy: In particular, the damage mode parameter « (see Eq. (2.15)) is given by

a(n) = [(%) ff‘(’)rr nTlfO” =0 (2.23)
whereas S is taken to be the non-negative function
B, w) = Po(n, © =0) + fu(w) =0, (2.24)
with
o[ DEE s o
and
Bu(@) = —0.017 w* — 0.065 w?> — 0.078 w . (2.26)

This function B(n, w) is visualized in Fig.2.3.

In addition, based on the results of the unit cell analyses the stress-state-dependent
parameters &, B and § in the damage rule (2.27) have been identified by Briinig et al.
(2013). The non-negative parameter & > 0 characterizing the amount of volumetric
damage strain rates caused by isotropic growth of micro-defects is given by the
relation

Fig. 2.3 Damage mode

parameter 3 versus stress

triaxiality n and Lode 1
parameter @
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0 for n < 0.09864
—0.07903 4+ 0.80117 n for 0.09864 < n <1
a(n) = { 0.49428 +0.22786n for 1 <n <2 . (2.27)
0.87500 + 0.03750n for 2 < n < 3.33333
1 for n > 3.33333

The parameter « is high for high stress triaxialities, smaller for moderate ones and
zero for negative triaxilities. Dependence on the Lode parameter w has not been
revealed by the numerical simulations on the micro-scale. In addition, the parameter
B characterizing the amount of anisotropic isochoric damage strain rates caused by
evolution of micro-shear-cracks is given by the relation

B, ®) = Bo(n) + f5(n) Bu(w) (2.28)
with
0.94840 4 0.11965 1 + f5(n) Bw(w) for _Tl <n<j
i 1.14432 — 0.46810 + fp(n) Pu(w) for T <n <3
B, @) = { 1.14432 — 0.46810n for <y <2 (2.29)
0.52030 — 0.15609 5 for 2 <n <
10
0 for n > 5
with
fp(n) = —0.0252 +0.0378 (2.30)
and )
Bo(@) =1— . (2.31)

The parameter § also corresponding to the anisotropic damage strain rates caused by
the formation of micro-shear-cracks is given by the relation

5(n, ®) = f3(1) bu(®) (2.32)
with
_ — — w? =1 2
5(n. w) = ( 0.12936+0.192404 Ml —w?) for 4 <n <3 (2.33)
0 for n > 3

It is worthy to note that this parameter § only exists for small stress triaxialities
and mainly depends on the Lode parameter w. Although its magnitude is small in
comparison to the parameters & and S its effect on the evolution of macroscopic
damage strain rates H?“ is not marginal (Briinig et al. 2013).
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2.5 Experiments and Numerical Simulations with Biaxially
Loaded Specimens

The damage related functions discussed above are only based on numerical calcu-
lations on the micro-level and their validation has to be realized by experiments
also covering a wide range of stress states. This is not possible by the uniaxial tests
mentioned above and, therefore, new experiments with biaxially loaded specimens
have been developed by Briinig et al. (2014a; 2015). The experiments are performed
using the biaxial test machine (Type LFM-BIAX 20kN from Walter - Bai, Switzer-
land) shown in Fig.2.4. It is composed of four electro-mechanically, individually
driven cylinders with load maxima and minima of £20kN (tension and compres-
sion loading is possible). The specimens are fixed in the four heads of the cylinders
where clamped or hinged boundary conditions are possible. The geometry of the flat
specimens and the loading conditions are shown in Fig.2.5. The load F; will lead to
shear mechanisms in the center of the specimen whereas simultaneous loading with
F> leads to superimposed tension or compression modes leading to shear-tension
or shear-compression deformation and failure modes. Therefore, these tests cover
the full range of stress states corresponding to the damage and failure mechanisms
discussed above with focus on high positive as well as low positive, nearly zero and
negative stress triaxialities.

Figure 2.6 clearly shows that different load ratios Fj : F> have remarkable influ-
ence on the damage and final fracture modes. For example, for the tension test without

Fig. 2.4 Biaxial test machine
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Fig. 2.5 Specimen and F
loading conditions T
O
B B
a © Q|—>
O

b

shear loading, F1 : F> = 0 : 1, a nearly vertical fracture line is obtained. Under
this loading condition, damage is mainly caused by growth and coalescence of voids
with small influence of micro-shear-cracks leading to the macroscopic tensile frac-
ture mode with small cup-cone fracture effect (Fig.2.6a). On the other hand, for pure
shear loading, F| : F» = 1 : 0, shear fracture is observed where the fracture line
has an angle of about 25° with respect to the vertical line. Under this loading con-
dition, damage is mainly caused by formation of micro-shear-cracks leading to the
macro-shear-crack shown in Fig. 2.6b. For shear-tension loading, F; : F, = 1:0.5,
shear-tension fracture is obtained and the fracture line has an angle of only about
10° with respect to the vertical line. Under this loading condition, damage is caused
by the simultaneous growth of voids and formation of micro-shear-cracks leading to
the macroscopic fracture mode shown in Fig. 2.6¢c which is between tensile fracture
(Fig.2.6a) and shear fracture (Fig.2.6b). However, for shear-compression loading,
F1: F> = 1:—0.5, again shear fracture is observed and the fracture line again has
an angle of about 25° with respect to the vertical line. Under this loading condition
damage seems to be caused only by formation of micro-shear-cracks leading to the
macro-shear-crack shown in Fig. 2.6d. It is worthy to note that the damage and failure
mechanisms for Fy : F, = 1 :0 (Fig.2.6b) and F; : F, = 1 : —0.5 (Fig.2.6d)
seem to be very similar and damage modes characteristic for shear loading will not
be remarkably affected by superimposed small compression loads.

Furthermore, corresponding numerical simulations have been performed to be
able to get detailed information on amounts and distributions of different stress and
strain measures as well as further parameters of interest especially in critical regions
(Briinig et al. 2015). For example, numerically predicted distributions of the stress
triaxiality »n at the onset of damage are shown in Fig.2.7 for different load ratios.
In particular, for uniaxial tension loading F; : F» = 0 : I remarkable high stress
triaxialities up to n = 0.84 are numerically predicted in the center of the specimen.
These high values are caused by the notches in horizontal and thickness direction
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Fig. 2.6 Fracture modes of differently loaded specimens: a F : F, = 0:1,b F;: F, = 1:0,
cFl:Fh=1:05dF :F =1:-05

FI:F2=1:O F1:F2=1:-0.5

Fig. 2.7 Distribution of the stress triaxiality n for different load ratios

leading to high hydrostatic stress during elongation of the specimen. This will lead
to damage and failure mainly due to growth of voids. In addition, when the specimen
is only loaded by Fj : F> = 1 : O (shear loading condition) the stress triaxiality 7 is
numerically predicted to be nearly zero in the whole vertical section shown in Fig.2.7.
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Thus, damage will start in the specimen’s center and will be caused by formation
and growth of micro-shear-cracks. Furthermore, combined loading in vertical and
horizontal direction, F| and F>, will lead to combination of these basic damage
modes. For example, for the load ratio F : F, = 1 : 1 the stress triaxiality is again
nearly constant in the vertical section with n = 0.25, and very similar distribution
is numerically predicted for Fj : F, = 1 : 0.5 with n = 0.14. On the other hand,
the load ratio F1 : F, = 1 : —0.5 represents combined shear-compression loading
with the stress triaxiality 7 = —0.14 which is nearly constant in the vertical section
shown in Fig.2.7. For this negative stress triaxiality 7 damage and failure will be
caused by formation and growth of micro-shear-cracks only. These numerical results
nicely correspond to the fracture modes discussed above and shown in Fig.2.6.
The stress triaxialities n covered by experiments with different flat specimens
manufactured from thin sheets are shown in Fig.2.8. In particular, for unnotched
dog-bone-shape specimens (green) nearly homogeneous stress states occur in the
small part during uniaxial tension tests with stress triaxiality n = 1/3. Higher stress
triaxialities can be obtained in uniaxial tension tests when notches with different
radii are added in the middle part of the specimens (red). Decrease in notch radius
will lead to an increase in stress triaxiality in the specimen’s center up to 7 = 1/+/3.
In addition, shear specimens (blue) elongated in uniaxial tension test will lead to
stress triaxialities of about = 0.1 when notches in thickness direction are added in
the central part (Briinig et al. 2011b, 2008; Driemeier et al. 2010) whereas without
additional notch they will also lead to onset of damage at nearly n = 1/3. However,
with these flat specimens taken from thin sheets elongated in uniaxial tension tests
only the stress triaxialities shown in Fig.2.8 (green, red and blue points) can be
taken into account whereas no information is obtained for high positive (7 > 1/+/3),
low positive (between 0.1 < n < 1/3) or negative stress triaxialities (n < 0).
However, further experiments with new specimens (grey) tested under biaxial loading
conditions will lead to stress triaxialities in the requested regimes. The grey points
shown in Fig.2.8 correspond to the loading conditions discussed above but variation
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Fig. 2.8 Stress triaxialities covered by different specimens
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of the load ratios F7 : F> may lead to stress triaxialities marked by the grey zone
shown in Fig.2.8. Therefore, biaxial tests with 2D specimens discussed above cover
a wide range of stress triaxialities and Lode parameters.

2.6 Conclusions

The author’s activities in the field of damage mechanics have been summarized. The
continuum model taking into account stress-state-dependent damage criteria and
damage evolution laws has been reviewed. Elastic-plastic material parameters as
well as onset of damage have been identified by uniaxial tension tests with smooth
and pre-notched flat specimens and corresponding numerical simulations. Further
damage parameters depending on stress triaxiality and Lode parameter have been
determined using numerical results from unit-cell calculations on the micro-level.
Since the proposed functions are only based on numerical analyses validation of
the stress-state-dependent model was required. In this context, a series of experi-
ments with biaxially loaded specimens has been presented. Different load ratios led
to shear-tension and shear-compression mechanisms with different fracture modes.
Corresponding finite element simulations of the experiments revealed a wide range of
stress states covered by the tests depending on biaxial loading conditions. They could
be used to validate the proposed stress-state-dependent functions of the continuum
model.
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Chapter 3

The Multiplicative Decomposition
of the Deformation Gradient in
Plasticity—Origin and Limitations

Otto T. Bruhns

Abstract The history of material equations and hence the development of present
material theory as a method to describe the behavior of materials is closely related
to the development of continuum theory and associated with the beginning of indus-
trialization towards the end of the 19th century. While on the one hand new concepts
such as continuum, stresses and strains, deformable body etc. were introduced by
Cauchy, Euler, Leibniz and others and mathematical methods were provided to their
description, the pressure of industrialization with the need to ever newer, and likewise
reliably secure, developments has led to the fact that more appropriate models for the
description of elastic-plastic behavior were introduced. Upon this background, this
Chapter wants to introduce into the history of plasticity of the sixties and seventies
of last century, and likewise highlight the eminent contributions of A.E. Green and
P.M. Naghdi, E.H. Lee and J. Mandel to a modern description of finite plasticity
theory.

Keywords Plasticity - Large deformation - Additive decomposition - Multiplicative
decomposition * Intermediate configuration - Green-Naghdi theory - Lee-Liu theory *
Isoclinic configuration * Director triads

3.1 Introduction

The present article continues a series of contributions intended to highlight the
history of plasticity. The first was devoted to the life and works of Heinrich Hencky
and the rapid development of plasticity at the beginning of last century (Bruhns
2014a). At that time the main focus of the different considerations was on the math-
ematical description of the basics of plasticity within the general frame of con-
tinuum mechanics, and the combination of the solid-like elastic behavior of most

O.T. Bruhns ()

Institute of Mechanics, Ruhr-University Bochum, Universititsstr. 150,
44780 Bochum, Germany

e-mail: otto.bruhns @rub.de

© Springer International Publishing Switzerland 2015 37
H. Altenbach et al. (eds.), From Creep Damage Mechanics

to Homogenization Methods, Advanced Structured Materials 64,

DOI 10.1007/978-3-319-19440-0_3



38 O.T. Bruhns

materials below a certain threshold and the fluid-like plastic behavior beyond this
limit. Accordingly in a second contribution (Bruhns 2014b) the significant input
of Ludwig Prandtl and Endre Reuss to formulate a unified rate relation for elastic-
plastic behavior was underlined. These so-called Prandtl-Reuss equations and several
amendments related with the effort to establish more realistic descriptions of sev-
eral phenomena observed during experiments of plastic flow like the hardening of
the material and the Bauschinger effect were rapidly accepted in science and appli-
cation. In their original forms, however, these relations were formulated within a
geometrically linear theory. As for many technological applications, e.g. in metal
forming processes such as rolling, extrusion and deep drawing, the deformations and
rotations are much larger than a small deformation theory would allow,! after World
War II this classical plasticity theory was transferred to application within large
deformations. Tremendous effort by several German refugees like Hilda Geiringer
and William Prager—to mention only two of them—and the excellent foundational
works of Drucker (1949, 1950) and Hill (1948, 1950) has led to a at that time
well accepted extension of the Prandtl-Reuss theory to finite deformations with the
corotational Jaumann rate as objective time derivative replacing the material time
derivative of the original formulation.?

Nevertheless, in discussion of the development of continuum mechanics, Truesdell
(1964) and Truesdell and Noll (1965) have stated that the above classical theory of
plasticity fails to meet basic requirements of continuum mechanics, and so they
have not included this topic in reviews of the development of non-linear theory:
“Various doctrines of plasticity arose in the latter part of the last century and have
been cultivated diffusively in this. These theories have always been closely bound
in motive, if not in outcome, to engineering needs and have proliferated at once
in detailed approximate solutions of boundary-value problems. Their mechanical
foundations are insecure to the present day, and they do not furnish representative
examples in a program of continuum physics.”

This harsh statement may have motivated Green and Naghdi (1965a,b) to estab-
lish a rigorous theory of plasticity in the framework of modern continuum mechanics,
where the restrictions on the general form of the constitutive relations were derived
from thermodynamics principles. The kinematical basis of this work was the assump-
tion that the total strain could be decomposed into the sum of an elastic-like and a
plastic strain tensor, respectively.’

An alternative approach to a finite deformation theory of plasticity was presented
by Lee and Liu (1967) and Lee (1969). This approach was shortly later modified by
Mandel (1973a,b) by adding so-called director triads and the notion of an isoclinic

It should be generally accepted that a strain larger than 10 % would violate the requirements of a
linear theory.

2For details we refer to Bruhns (2014a,b). See also the additional works of Prager (1944) and
Edelman and Drucker (1951).

3 Although in their paper the plastic strain has been introduced as a primitive variable, and the
elastic-like strain is merely defined by the difference of the total strain and this plastic variable, it
is common practice to refer to this sum as an additive decomposition of the strain tensor into its
elastic and plastic parts.



3 The Multiplicative Decomposition of the Deformation Gradient ... 39

intermediate configuration. In contrast to Green and Naghdi’s approach in these
papers the multiplicative decomposition of the deformation gradient into elastic and
plastic parts is assumed.

The present paper will be restricted to an introduction to these different approaches
and a discussion of their pros and cons, thus confining this contribution to the devel-
opment of plasticity during the sixties and seventies of the last century.

3.2 One-Dimensional Considerations

This introductory Section contains an elementary one-dimensional preview on the
different ways to describe the complex behavior of a composite elastic-plastic mater-
ial. It further may be instrumental in understanding the structure of finite deformation
plasticity and the various ideas and proposals from different groups that may have
contributed to its development.

Let us consider a one-dimensional body, say, a rod. We denote this body by B,
and agree on the fact that this body’s movement is reduced to axial displacements
due to axial forces, one-dimensional temperature treatment, etc. For the sake of
simplicity, we here reduce the possible actions to an axial force 7. The body consists
of a number of elements or particles jointly fixed together. These particles possess
specific properties like mass, density, etc. A typical particle may be denoted X.

We refer to X as the material or Lagrangean coordinate of the particle. The set
of material coordinates is called the reference configuration. If ¢ is time, then the
deformation function is a function y (e, t) which, for each #, maps B into its present
configuration

x = x(X,1), (3.1)

where x is the spatial position or coordinate of the particle X at time ¢. These coordi-
nates are also referred to as Eulerian coordinates. For a description within continuum
mechanics, we will assume here? that for each ¢ there exists an inverse X —1guch that

X =x"'(x,0). (3.2)
The velocity of X at time ¢ is
Ix(X,t
i X0 (3.3)
ot

In the same way, we also may define higher order derivatives, e.g. the acceleration
of X at time 7.

4This insures that X and x are in a one-to-one correspondence, which is reasonable for solid
bodies. We note, however, that this assumption also has limitations, e.g. in fracture mechanics,
crystallographic slip, lattice distortions, etc., which appear on the microscale level during e.g.
plastic deformation.
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Because of (3.2) we can regard x, and the displacement u = x — X as functions
of (x,t) or (X, t). The pair (X, t) are called material variables, and likewise the pair
(x, t) are spatial variables. Any function of one set of variables can be converted to
a function of the other set.

The deformation gradient is defined by

ox(X,t
po X0 (3.4)
0X
Since x has an inverse, it is trivially true that x[x ~L(x, 1), 1] = x and thus,
Ax (X, 1) dx (x,t
XX DI Dy (3.5)
X ox
Equation (3.5) shows that F' # 0 and thus bound to F > 0, and
Oy (x, 1
pot e (3.6)
0x

If dX denotes the differential element of the body at X, then it follows from Egs. (3.1)
and (3.4) that
dx = FdX. (3.7

Equation (3.7) shows that if dX is a material element at X then F dX = dx is the
deformed element at x. Thus, ' measures the local deformation of the material in the
neighborhood of X. It should be easily understood that in our case of homogeneous
deformation F is the current stretch ratio. Thus, comparing the lengths of the element
in both configurations one reasonable measure to describe the strain E of the body
would be

E=F—-1, (3.8)

since the strain should vanish for the undeformed body. This measure is sometimes
called nominal strain.”

However, quantity E as defined by Eq. (3.8) is not the only admissible measure
to describe the strain of the body. Any function, e. g., of the form

n _ _ Lo
E® = g(F) = —~(F" = 1) (3.9)

can replace Eq.(3.8) in the calculations.® Here g(F) ought to be a monotonically
increasing function, i.e. g’(F) > 0 for all F > 0, and fulfilling the conditions

SBesides this measure is also called Biot strain or Cauchy strain (Ogden 1984; Bertram 2005).

OThis generalization of the strain measure is mainly due to Doyle and Ericksen (1956); Seth (1964);
Hill (1968), and includes also non-integral real values of n.
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g)=0, gM=1.

Different results for E as functions of F are given with Fig. 3.1.

We note that with n = 2 from Eq. (3.9) we get the well-known Green strain E®
which frequently is used in descriptions of finite deformation. On the other hand,
with n = —2 the Almansi strain E(2 would be given. Moreover, these generalized
measures for n = 0 also include the so-called natural or logarithmic strain, almost
100 years ago introduced by Ludwik (1909); Hencky (1928), and others, viz.

1 1
H =lim —(F"—1) = lim —(exp(nIn F) — 1) = In(F). (3.10)
n—0 n n—0 n

The significant advantage of this logarithmic (Hencky) measure lies in the fact that
it tends to infinity as F tends to zero, thus in a very natural way bounding the
regime of applicability to the case F > 0. This behavior can also be observed for
strain measures with negative exponent n. Compared with the latter, however, the
logarithmic measure also goes to infinity as F does, whereas it is evident that for
negative values of n the strain according to Eq. (3.9) is bound to the limit —%.

Fig. 3.1 Different strain measures for different values of n and admissible regime of F > 0



42 O.T. Bruhns

All measures with positive values of n including the Green strain share the
reasonable property of the logarithmic strain for F' going to infinity. For F' going to
zero, however, these measures arrive at finite values for the specific strains, e.g. at
—% for n = 2, which would mean that interpreted from physics a total compression
of the rod (to zero length) is related to a finite value of the strain. This awkward result
would not agree with our observation—at least what concerns the behavior of solid
materials.

This has led Bock and Holzapfel (2004) and somewhat later Darijani and
Naghdabadi (2010) to combine the advantages of both groups of measures (with
positive and negative values of 7) by introducing the following linear combination’

E™ = g(F) = ﬁ(F’" —F™). (3.11)

Let us now consider a sequence of two deformations of a material element at
X first into a position &, and then into the position x, and let us compare the total
deformation of this sequence with the deformation of the same element at X in a
single step into position x.
According to Eq. (3.7) for the former case, we have to split the total deformation
into two parts
dé = FdX, dx=F,d&, (3.12)

whereas for the latter Eq. (3.7) holds. Introducing now Eq. (3.12) into Eq. (3.7) results
in
dx = b FidX, F=FF;. (3.13)

This is called a multiplicative decomposition of the deformation gradient. Now from
Eq.(3.9) it follows that
1
E™W = - [(FF)" — 1] (3.14)
n

for the single step deformation. The corresponding strains for the two sequential
steps will be introduced accordingly as

EM = % (FP—1), E= % (Fy —1) (3.15)

for the deformation from By to B, and from 55’ to 3, respectively. Introducing these
definitions into Eq. (3.14)

EM — nEén)Egn) + Eén) + E%n) # Eéﬂ) + E%n) (3.16)

"This combination with m = 1 was introduced by Bock and Holzapfel (2004) as a two-point defor-
mation tensor. The extension to a more general two-parameter form with independent parameters n
and m is due to Darijani and Naghdabadi (2010). We here will confine ourselves to the most simple
case when n = m.
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would prove that the total strain cannot be decomposed additively into the strains of
the two sequential steps, unless n = 0.

We note, however, that the latter of both strains of Eq. (3.15) is defined relative to
the so-called intermediate configuration I3. Therefore, to compare both total strains,
one might also follow the idea that prior to such a comparison the strain Eé") should
be transformed into the same reference configuration. With the help of Eq. (3.12),

this would mean 1

n

—=(n)

Ey” = EYF} =~ (Fy —1) F}', (3.17)

where Fgl) is now defined relative to the initial configuration. Introducing these
results into Eq. (3.14), it turns out that

E® = % (nEY” + P —1) =By + B, (3.18)
showing that the given strain components are additive irrespective of the chosen
number n. Thus, we note further that this result is significantly subject to the definition
of the strain of the second step of the deformation. We will see later that this difference
in the definition of strains relative to their reference configuration may explain some
aspects of the debate on the additivity or non-additivity of the strains during large
deformation.
If x is expressed as a function of (x, ¢), then

ok

L=— 3.19
ox (3.19)

is the velocity gradient. Upon multiplying this expression by F, we find
F=LF. (3.20)

Again it turns out that only when introducing here the logarithmic strain (3.10), we
can reformulate Eq. (3.20) to get the most simple relation

H=L (3.21)

between the rate of the logarithmic strain H and the velocity gradient. For the more
general case of Eq.(3.9), we arrive at a relation

EW =L1+nEW), (3.22)
also containing the strain £, and the number #.

It should be mentioned that the two-point deformation described with Eq.(3.11)
arrives at a much simpler relation, namely
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EM — [ EM (3.23)

similar to the relation for the deformation gradient . We note further that this result
again appears to be independent of any number .

We now come back to the above mentioned example which has its own meaning
for sequential loading. We will use it here to explain the split of the total strain into
its reversible elastic and irreversible plastic parts, respectively, if our rod is stretched
beyond a given yield load with T > Ty. After reloading this rod we will observe
a permanent (stress-free) elongation of the rod which may have led particle X to
position &,. According to the above sequential process, we will interpret the first
part of the deformation of the material element into position &,, as purely plastic, and
the second part into position x as purely elastic. Thus we write

d&, = FpdX, dx=F,dg,, (3.24)
dx = F,F,dX, F=F,F,. (3.25)

This is the well-known and nowadays frequently used multiplicative decomposition
of the deformation gradient into elastic and plastic parts of the deformation, respec-
tively, here straightforwardly derived from a combined elastic-plastic loading of a
rod under the action of an axial force.
To summarize, we can conclude that for the given one-dimensional problem, we
find from Eq. (3.17)
E,=E{"F) (3.26)

according to the chosen strain measure Eq. (3.9), or in other words
E=E,+E,#E.+E,. (3.27)

This means that due to Eq.(3.17) E, and E, are far away from additivity to give the
total strain E in the presence of finite plastic strain. This, however, would be the case
for the logarithmic strain H, where n = 0

H=H,+H,. (3.28)

We note that due to the underlying transformation into the reference configuration
E, comprises a combination of both parts, the purely elastic and the purely plastic
part, respectively, of the deformation. This makes it extremely difficult, perhaps
even impossible, to attribute in a unique manner the different constitutive relations
of elastic and plastic behavior to the allocated strains. As will be seen later this
issue may illustrate the crucial point of the Green-Naghdi theory (Green and Naghdi
1965a,b) which has been introduced in 1965.

This problem does not apply for the stretching D, which here due to the symmetry
of the underlying one-dimensional problem coincides with the velocity gradient L.
As a natural rate quantity characterizing the changing of the deformation state, the
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stretching is solely related to the current configuration and thus independent of any
referential configuration (Haupt 2002). Therefore, the kinematical features of the
stretching are essentially different from those of the conventional time rate of any
strain tensor (Xiao et al. 2006). As direct extension of the classical separation of the
infinitesimal strains into elastic and plastic parts, for finite elastic-plastic deforma-
tions we may write

D =D, + Dy, (3.29)

or equivalently . . .
H=H+H,, (3.30)

provided Hencky strains are used. Moreover, we find
D=L=F,F,' + FF;", (3.31)

for the relation between the stretching and the respective parts of the deformation
gradient.

This fast and easy derivation of a concept for separating the kinematics of large
elastic-plastic deformations into its reversible elastic and irreversible plastic parts,
respectively, may explain why Lee and Liu (1967) and Lee (1969) have used the
multiplicative decomposition concept to describe elastic-plastic deformation at finite
strain. This nowadays commonly used method to combine different behaviors of
components to derive a self-contained constitutive relation for a composite material,
became generally accepted over the last almost 50 years. It is the great merit of E.H.
Lee having initiated and promoted this development. Indeed, however, he was not
the first to use the concept of multiplicative decomposition to combine different
disparate material behaviors.® We will come back to this point later.

3.3 Basic Facts for a Deforming Continuous Body

We now switch to some relevant facts in finite deformation kinematics of continua.
For a deformable body in the pure mechanical sense, as basic field variables the
deformation gradient F and the Cauchy or “true” stress o at each particle characterize

8The history of the multiplicative decomposition of the total deformation into elastic and plastic
parts seems to be somewhat vague or at least unclear. Different authors mention different origins,
and the different disciplines continuum mechanics and materials science involved in this discussion
seem to have different sources. In their own paper Lee and Liu (1967) mention: “The concept of an
unstressed configuration ...has appeared before in the literature, but does not seem to have been put
to satisfactory use.” All in all, it should be almost clear that Eckart (1948) was the first to use local
natural configurations in order to separate the elastic from the plastic part of a total deformation.
Backman (1964) introduces three continuous configurations, and represents the elastic and plastic
components of the total strains in terms of displacement derivatives, which in general cannot be
done. It seems that Kroner (1958, 1960) and Bilby et al. (1957) then were the first to use this
expression, with respect to sequences of elastic and plastic distortions.
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the local deformation state relative to a reference configuration and the local stressed
state, respectively. Let again X and x = x (X, ¢) be the reference and the current
position vector of a material particle, respectively. Then, the deformation gradient is
given by

Ix
S AX

F (3.32)

We consider the local deformation state occurring at the infinitesimal neighborhood of
each particle with dX and dx the reference and the current line element, respectively.
Then, at the infinitesimal neighborhood of each particle, we have the transformation
formula between the line elements

dx =FdX, detF >0. (3.33)

The particle velocity and the velocity gradient, respectively, are denoted by

v
L_

== FF!, (3.34)

V=X,
where the superposed dot designates the material time derivative.
According to the well-known polar decomposition theorem, the deformation gra-
dient F has the unique left and right multiplicative decompositions

F=VR=RU, R"=R', detR=1, (3.35)

where V and U are known as the left and right stretch tensors, and R as the rota-
tion tensor.” Both V and U are positive definite symmetric tensors, and determined
uniquely by

B=V?>=FF", C=U>=F"F, (3.36)

where B and C are usually called the left and right Cauchy-Green tensors.
On the other hand, the velocity gradient L has the unique additive decomposition

1 1
L=D+W, D:E(L—i-LT), W:E(L—LT), (3.37)

where D and W are known as the stretching and the vorticity tensor, respectively.
This relation may suggest the particular role of D as a natural, exact characterization
of the rate of change of the local deformation state.

As mentioned before, a general class of strain measures may be defined through
a single scale function g(&) with g(1) = g’(1) — 1 = 0. Their forms can be given by

) _ _1am_ ) _ _1oon_
E gW) n(U I, e gV) n(V I, (3.38)

9The symbol (e)T herein is used to represent the transpose of the second order tensor.



3 The Multiplicative Decomposition of the Deformation Gradient ... 47

defining Lagrangean and Eulerian strain tensors.!? Two important examples are the
Green strain of Lagrangean type

1 1
E® —F = z(U2 -DH= E(FTF -0 (3.39)
and the Hencky strain of Lagrangean and Eulerian type
1 1
EOQ=H=nhU-= 3 In(F'F), e =ph=mvV = 3 In(FFY).  (3.40)

With various strain measures, various stress measures may be introduced via
the unified concept of work conjugacy.!! According to this idea, for any given
Lagrangean strain A the work conjugacy relation

T:A=1:D (3.41)

determines a stress-like symmetric tensor 7', referred to as the conjugate stress of
the strain A. Here, 7 is used to designate the Kirchhoff stress T = (det F)o .
One example is the conjugate stress of the Green strain E, given by

S=Flg(F YT, (3.42)

which is usually called the second Piola-Kirchhoff stress.

3.4 A Short Historical Overview

This article is primarily devoted to the history of plasticity after World War II and
before the eighties of last century when with the rapid development of fast and
powerful computers in conjunction with efficient numerical methods (e.g. the FEM)
new trends in plasticity were initiated. The origins and the development until 1945
with the contributions of the French Barré de Saint-Venant, Maurice Lévy, and Henri
Tresca at the end of 19th century, and the great impact of the German-Austrian school
around Richard von Mises and Ludwig Prandtl, and Heinrich Hencky have been
pointed out in Bruhns (2014a). In addition the effort of the Hungarian group including
Andrds (Endre) Reuss and the many contributions of the great European Jewish
community has been elaborated in Bruhns (2014a, b). Persecuted by the Nazi regime
most of them were forced to emigrate—provided they had this chance to survive.

10A5 usual 1 is a second order unit tensor.

"' This idea was exemplified by Macvean (1968), and fully developed by Hill (1968, 1970, 1978).
Hill (1978) also introduced the notion of “work conjugacy”, although work-rates or stress powers
are discussed (see also the Appendix of Hill 1968).
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Thus, after World War II the development of plasticity had to be reanimated.'?
However, most of the former German, Austrian and Hungarian scientists now were
living and working in Great Britain or in the USA. This may explain why World
War II apart from the total destruction of Europe and a large amount of Asia has
marked a decisive event in the history of plasticity. One even can realize this from
the literature: The German language which primarily has been used before now was
replaced by English.

First attempts to describe the behavior of an elastic-plastic material, following the
idea of combining the constitutive relations of solid-like elastic and fluid-like plastic
materials, were undertaken in the twenties and thirties of last century.

Hencky (1924)—as civil engineer—tried to model this composite behavior as a
more solid-like structure. Similar to the proceeding for an elastic material, he started
out from an energetic approach of Haar and von Kdrmén (1909), finally specifying
an invertible relationship between stresses and strains:

119 0 o) = - (o), 3K =3h42 (3.43)
ZI,L ) _3K £ - I‘Ly .

1
— —tr(e)] =
e 3r(e)

where here & are the infinitesimal strains, A and p are the two Lamé’s constants of
elasticity, and K is the bulk modulus. Moreover, ¢ is a still undetermined Lagrange
parameter, and o’ is the stress deviator.!3 It turns out that this later on called “defor-
mation theory” tries to include the plastic part of the behavior via a degradation of
the stiffness of the still dominating elastic material behavior. For ¢ = 0, this law
changes into that of a linear elastic material. The volumetric deformation is purely
elastic and at plastic behavior the shear modulus u is reduced by (1 +¢), the material
thus becomes “‘softer”.

This formulation, though rapidly accepted, soon meets its limitations. A neu-
tral change of the stress, as e.g. occurs during non-proportional loading, cannot
be reflected. Moreover, the applicability of the above model was restricted to a
monotonic loading of the body. Thus, an improvement was necessary to include
also unloading processes. To this end an incremental form of Hooke’s law was
introduced'*

1 1
é— 5tr(é)l =5 o' (3.44)

12In a review of the development and the usage of internal variables in inelasticity Horstemeyer
and Bammann (2010) stated that—with respect to the period between 1870 and 1945: “Over the
next 75 years progress (of plasticity) was slow and spotty,...” It seems to the present author that one
should be aware that just this period was marked by two big wars that have reduced large amount
of Europe and Asia to wrack and ruin.

3Here for simplicity the notation ()’ = (e) — %tr(o)l will be used to mark a deviator of a second
order tensor.

14This amendment was due to Nadai (1931). N4dai having arrived in the USA in 1927 as well as
Hencky himself during his time in the former Soviet Union successfully promoted the distribution
of this theory.
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In contrast to this approach, Prandtl (1924) and Reuss (1930, 1932) connected the
fluid-like behavior of a plastic material with that of an (incremental) elastic one. Like
Hencky, Reuss in his works emanated from the v. Mises yield condition'® and the
observation of a typical tensile test (refer to Fig. 3.2) that the total strain the specimen
may achieve can be divided into two parts, a plastic one €, that will remain after a
total unloading of the specimen into a stress-free state, and a second reversible elastic
part &,:

eE=¢,tée,. (3.45)

Herein the fluid-like plastic part will be described by a fluid type law according to
the Saint-Venant/Lévy approach

D =co’, (3.46)

where c is a constant of proportionality. We note that herein the fluid is assumed to
be incompressible—what usually applies for the plastic flow of metals.
Thus, Eq. (3.45) may be differentiated to give

E=¢€.+¢€p, (3.47)

or accordingly
D=D,+D,, (3.48)
where D, and D, are the respective elastic and plastic parts of the stretching. We
note that the latter due to its definition as symmetrical part of the velocity gradient L
is also valid for the description of finite deformation, whereas Eqs. (3.45) and (3.47)

are bound to small deformations. Combining now Eq. (3.46) with the description of
an incremental elastic behavior, Reuss obtained a constitutive law

5In a generalized manner this is a surface bounding the domain of elastic deformations. In the
classical v. Mises stress space formulation a yield function f = f(o’) as function of the stress
deviator is bound to a so-called yield limit.
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/ / 1 ./ /
D:De—i-Dp:z—a + Ao’ , (3.49)
w

that with A still contains a yet undetermined function,'® and where the volumetric
part

tr(D) = tr(D,) = % tr(o) (3.50)

remains purely elastic. Here, D, stands for the (deviatoric) plastic part of the strain
rate and D, for its elastic part. Thus, the basic version of the nowadays commonly
used Prandtl-Reuss theory was introduced.

Several steps towards a more general theory to account also for a hardening of the
material or to reflect the Bauschinger effect—to mention only a few examples—have
been undertaken shortly after.!” In this respect, we refer to the recently published
paper (Bruhns 2014b) which has been devoted to the development of the Prandtl-
Reuss theory. This paper also contains some remarks about an extension of these
relations towards larger or even finite deformations. In addition, we also should
mention the works of Tokuoka (1977, 1978) who following the idea of Prandtl and
Reuss, and starting out from the additive decomposition (3.48) has introduced a
rate type description of elastic-plastic behavior, where scalar and tensorial internal
variables were used to account for the isotropic and kinematic hardening during
plastic flow. The elastic part herein is modeled as hypoelastic material with D,

. . . . Y .
linearly related to an objective corotational rate of the stress o, i.e.,
o
c =L:D,. (3.51)

Here L is a fourth order tensor of elasticity, and the colon defines a double contraction
according to (A : B);j = A,‘jlekl.lg

Whereas the deformation theory of Hencky just from its setting was restricted to
applications within small deformations, this was not the case for the Prandtl-Reuss
theory. Having in mind its setting as a combination of fluid-like and solid-like materi-
als, its description of the fluid-like plastic part originally was introduced as a relation
of the stress o as function of the rate of deformation tensor D—without containing
any strain measure. Thus, its extension to Egs. (3.48), and (3.49), respectively, seems
to be canonical. Likewise, however, it should be born in mind that neither the material
time derivatives incorporated in the solid-like elastic part of Egs. (3.49); and (3.50)

10This function is in general determined by means of the so-called condition of consistency f(¢”) =
0, which during plastic loading forces the stress to stay on the yield surface.

17To this end scalar-valued and second order tensor-valued internal variables have been introduced
to model these phenomena by means of the evolution of these variables.

181f our notations are used. As objective rate Tokuoka has taken a Jaumann rate—without mentioning
this source. Instead he referred to the fundamental work of Truesdell (1955). For the sake of
completeness, we add that Truesdell (1952a, b, ¢, 1955) has introduced the notion of “hypoelasticity”
for this specific material, and that in the original forms the tangential stiffness tensor L has been
used in a more general form as function of the stress.
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meet the principle of objectivity, nor does a hypoelastic material in general really
behave like an elastic material.

It is e.g. observed that in a closed cyclic process even for purely “elastic” defor-
mations a dissipation will occur. This may explain several anomalies and spurious
effects like the shear oscillatory phenomenon that were observed when in a first step
replacing the material time derivatives in the Prandtl-Reuss equations by objective
ones like the Jaumann rate or the Green-Naghdi rate.!”

3.5 Lagrangean Formulations with Plastic Strain

In contrast to the aforementioned Eulerian formulation, a Lagrangean type formu-
lation of finite deformations was proposed by Green and Naghdi (1965a,b).2° This
theory represents the first effort towards a rigorous treatment of finite elastoplasticity
within the framework of continuum thermodynamics.

As extension of the classical small deformation theory to finite deformations, a
perhaps more direct idea is to use a finite strain measure and its conjugate stress. The
starting point is again the direct extension of the separation (3.45) to finite strain. Let
A be any given Lagrangean strain. Then we may define

A=A, +A4A,, (3.52)

where A, and A, are labeled elastic and plastic parts of A, respectively, with the
intention that in conjunction with the conjugate stress of A, they will be used as basic
variables to formulate an elastic relation and a flow rule.

It is known that the additive separation of a total strain into elastic and plastic
parts is restricted to very particular cases. In general, such separation might be of
formal sense only.

On account of the complexity and difficulties involved in defining the notion
of plastic strain, Green and Naghdi (1965a,b) introduced a strain-like variable of
Lagrangean type, denoted E,, and regarded it as a primitive variable, “stating cer-
tain of its properties but not defining it explicitly, and thus relegated its explicit
identification to special assumptions or situations”.

This variable is associated with the total Green strain E as given by Eq.(3.39).
Well understanding the limited applicability of the additive separation of E, they did

190nly recently it was demonstrated that this problem was closely related to a second one, namely to
prove the integrability of hypoelastic relation (3.51). It turned out that to prove this a new objective
time derivative had to be defined which, moreover applied to a yet undetermined Eulerian strain
measure, could give the (Eulerian) stretching. It was shown that this (Eulerian) strain had to be the
Hencky strain, and the new (objective) time derivative, in turn, was the logarithmic rate. Only with
this logarithmic rate applied to o Eq. (3.51) could be integrated to give a really elastic relation. We
therefore refer to Bruhns (2014b) and the numerous references mentioned therein.

201ts formulation from a purely mechanical point of view has been developed later by Naghdi and
coworkers and others. For details, we refer to Naghdi (1990).
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not interpret the difference E — E, as an elastic strain or part, but as an alternative
convenient variable used for well-motivated purposes.

With the plastic strain E, as additional variable, now the set of basic variables
entering the constitutive formulations will be given by (E, E,, &, «). Note that herein
a and « are internal variables representing the progress of the plastic deformations by
suitably defined evolution equations.?! In accord with the general setting of their the-
ory, the tensor-valued internal variable « is introduced as back stress of Lagrangean
type to model the Bauschinger effect, whereas the isotropic hardening is modeled
through the evolution of .22 The set (E, Ep, a, k) of basic variables represents a
strain space formulation.?

In general, it is assumed that the conjugate stress of Green strain E, i.e., the 2nd
Piola-Kirchhoff stress S given by Eq. (3.42), is determined by the foregoing set of
basic variables. This leads to the total stress-strain relation

S=S(E,Ep a,«), (3.53)

where S is a tensor-valued constitutive function relying on all four variables. It is
assumed that this tensor function is twice differentiable and establishes a one-one
relationship between the stress S and the total strain E. Then, the inverted form of
Eq.(3.53) yields

E=ES.Ep o). (3.54)

In addition, g(E, E,, &, «) is a yield function in a strain space formulation. It is
a§sumed that the time derivative of each of the three variables E, &, « is linear in
E with coefficients that are functions of the whole set of variables. Thus, the flow
rule is given by:

R 0 .
E,=¢ (% : E) 0(E. E,. a.K), (3.55)

where g is a tensor-valued constitutive function, and ¢ is the so-called plastic mul-
tiplier differentiating elastic behavior (including unloading) from elastic-plastic one
by taking the values 0 and 1, respectively.

The loading-unloading criterion in strain space is shown to possess a simple,
unified form for perfect elastic-plastic as well as hardening and softening behavior
(see, e.g., Naghdi 1990). The evolution equations for the hardening variable « and
for the back stress o are given in the forms:

2lSimilar internal variables have been first used in line with the amendments of the Prandtl-Reuss
relations. We refer e.g. to Bruhns (2014b).

22Altematively, the sets (E — E,, E,, a, k) as well as (S, E,, o, k) may be useful for certain
specific purposes. For instance, the last set is used in a stress space formulation.

23See, e.g., Naghdi and Trapp (1975a, b, ¢). For a discussion of the pros and cons of the strain space
formulation, we also refer to Naghdi (1990).
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. ag .

k= (8_E : E) WE, E, k), (3.56)
v = (a—g‘E),B(EE ) (3.57)
=7 3E s Ep, o, k). .

Here, A and B are additional scalar- and tensor-valued constitutive functions.
Within the general context of the Lagrangean theory summarized above, Naghdi
and coworkers made a rigorous, systematic study of the consequences implied by
the work postulate, e.g. Naghdi and Trapp (1975a) broadened the scope of Ilyushin’s
postulate by introducing
Iy
/S:EdtzO (3.58)

fo

for every homogeneous finite strain cycle. From this postulate, the essential struc-
ture of Green-Naghdi’s general theory was derived. For simplicity, these results are
presented here in the absence of a back stress «.

Itis demonstrated that there is a stress potential g[Af (E, E,, k) such that the general
relation (3.53) for the stress response is reduced to>*

_

S= % (3.59)

Moreover, it is shown that the constitutive function o(E, E, k) characterizing the

flow rule isrelated to the yield function g(E, E, «) and the stress potential 12/ (E,Ep,
k) as well as the hardening function A(E, E, «) in the following manner:

924 9% dg

=Y, =y L 3.60
*=3E,E %7 (3.60)

okoE oE’

where y is a undetermined scalar function relying on (E, E,, ). From the above, it
may be seen that the tensor-valued constitutive function @(E, E, ) is obtainable
from three scalar constitutive functions, i.e., the yield function g(E, E,, ), the
stress potential 1& (E, Ep, ), and the hardening function A(E, E, k), whenever the
second gradient 32y /dE pOE as linear transformation over 2nd order symmetric
tensor space is invertible.

A direct relation between the stress rate and the total strain rate is derivable

S=K:L:E (3.61)

2j‘ln a general context, Hill and Rice (1973) have demonstrated that such a relation holds true with
Y being a fully general elastic potential relying on the “prior history of inelastic deformation”, and
with (S, E) any given work-conjugate pair.
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and its inverse (see, e.g., Naghdi 1990):

E=X:L)':§, (3.62)
where L is the tensor of elasticity and K is a second 4th-order material tensor

32y . of . 02 1
L=2Y, K=I = o 28) Lt 3.63
dE? MRS +§<U®8E) (3.63)

Here, f = (S, E,, «) is the yield function in stress space, which is obtained by
substituting the inverted form (3.54) into the yield function g = g(E, E, «) in strain
space, and the 4th-order tensor I is the identity transformation over the symmetric
2nd order tensor space.

As has been mentioned in the Introduction, the critical point within this theory is
mainly hidden in its setting, namely in the additive splitting of the total strain E to
determine the elastic-like quantity E,, if the plastic strain is introduced as a primitive
variable E . This point has been addressed first by Lee and Liu (1967) and has led
to a long discussion about the admissibility or even the significance of the additivity
of strains in a finite deformation theory, in order to achieve an effective uncoupling
of elastic and plastic properties.?

A second issue is related with the specific free Helmholtz energy function V(E,
E,, «) or @(E — E,, E,, k) in an alternative form which is incorporated as an
essential quantity of this theory. It might be not clear how this function apart from
some very special cases will be determined. While forms of this energy function
for elastic and even thermoelastic solids are well established, the introduction of
plastic, i.e. irreversible, processes into this function will produce new if not intractable
problems.

3.6 Formulations with Unstressed Configurations

In recent years the multiplicative separation of elastic-plastic deformations has
become popular and found increasing applications in the phenomenological study
of finite elastoplasticity.?0 It is not derived merely from the direct extension of the
small deformation case, but motivated by physical considerations. The central idea
is the notion of a local intermediate unstressed configuration at each particle defined
by an imaginary destressing process. If such configuration could be defined, then

251n this respect, we refer, e.g., to Lee (1996) and Lee and Germain (1974), and to the discussion
of the different strains for the subsequently loaded rod of Sect.3.2.

26This was initiated by Lee and Liu (1967) and Lee (1969) and use was made by Fox (1968), Willis
(1996), Freund (1970), Rice (1971), albeit it may be traced back to earlier works by Eckart (1948),
Eglit (1960), Backman (1964), Sedov (1966); see Clayton and McDowell (2003) and the references
therein. We also refer to footnote 8.
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at each particle elastic and plastic deformations could be separated from the total
elastic-plastic deformation in a definite and accurate manner.

Extending our previous considerations, we consider a continuous material body
with initial configuration 5y experiencing finite elastic-plastic deformations in the
current configuration 3. According to Lee (1996) we may introduce a straining-
destressing experiment: “Following elastic-plastic deformation from the undisturbed
configuration X to x, destressing to zero stress occurs from x to p ---. Since the
configuration p is unstressed, the elastic strain there is zero and the strain in p is
therefore totally plastic.” Here, X and x are the position vectors of a generic material
particle in the initial and current configurations By and 13, respectively, and p is the
position vector of the same particle in the unstressed configuration (refer to Fig. 3.3).

In the above cited statement, the total elastic-plastic deformation F from X to x
is actually undergone by the material body, while the plastic deformation from X to
p and the elastic deformation from p to x, denoted F, and F), are introduced by an
imaginary destressing procedure and hence not actually undergone by the material
body. F, and F,, will serve as additional deformation-like variables. The question as
to how the destressing procedure is achieved is at the moment left open and will be
discussed later.

The deformation gradient F is related to a local affine configuration and based
upon the notion of line elements at the infinitesimal neighborhood of a particle.
Following Lee (1996), the deformation of a material line element dX in the afore-
mentioned straining-destressing experiment is given by:

dp=F,dX, dx=FEdp. (3.64)

dx = F dX, (3.65)

Fig. 3.3 Kinematics of elastic-plastic deformation
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In the above, dx and dp are the (actual) spatial line element in the current config-
uration B and the line element in the fictitious unstressed configuration, which are
the counterparts of the material line element dX in By after experiencing the actual
elastic-plastic deformation and the plastic deformation induced by the destressing
procedure, respectively. The transformation relations yield the widely used multi-
plicative separation:

F =FEF,. (3.66)

Once the above separation could unambiguously be established, the elastic and
plastic deformations F, and F, would be separated exactly from the total elastic-
plastic deformation F and hence endowed with the desired physical features. There-
fore, F, and F, could be employed as additional variables to realize physically
pertinent formulations of elastic and plastic behavior. However, a central issue with
the separation is the non-uniqueness in the following sense: If F, and F, obey the
separation (3.66), then the same may be true for F, QT and QF, with an arbitrary
rotation Q. This means that the rotational parts of F, and F),, i.e., R, and R, would
be rendered indeterminate. In other words, a non-unique separation (3.66) would fail
to separate the just-mentioned two rotations.”’

The decoupling represented by Eq. (3.66) enables us to accomplish a direct for-
mulation of elastic behavior. Now, the Kirchhoff stress T may be specified by a
single variable, i.e., the elastic deformation F,. Emphasizing the substantial invari-
ance property of the elastic moduli in the process of elastic-plastic deformations, Lee
(1969) assumed the following invariable elastic relation

oV ¢
=2F —F . 3.67
T e aC, e ( )

Note that all elastic domains correspond to the same elastic potential ¥ = ¥ (C,)
with C, = F,TF,. This means that the elastic behavior will be described by that for
the initial elastic domain prior to the occurrence of yielding.

The foregoing non-uniqueness, however, renders relation (3.67) incomplete. To
eliminate this, an extra condition was introduced (see, e.g., Lee and Liu 1967; Lee
1969):

ET=F,. (3.68)

27Sometimes the rotational parts incorporated in F, and F, and even in F are loosely said to
be “superimposed rigid-body rotations”. This expression may produce an impression as if these
rotations might be not so essential. However, essential difference exists between each such rotation
and any truly rigid body rotation. The latter is constant at all points in a body and should have
no effect on both basic equations of motion and constitutive formulations of material behavior,
whereas the former varies from point to point and exhibits essential effects on both. In fact, the
rotational parts of F and F, and F, are inseparable parts of deformations and deformation rates,
and incorporated in constitutive formulations for both elastic and plastic behavior.
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and then the elastic relation (3.67) in the case of isotropy would become?®
oy
=2B, —, 3.69
T e 3B, ( )

The relation (3.67), in particular (3.69), assumes the standard form for the classi-
cal hyperelastic relation, which is usually regarded to describe the elastic behavior
included in but separated from the elastic-plastic behavior as a single entity.
Towards a physically pertinent formulation of plastic flow, it is desirable to have
a proper separation of the total deformation rate D into elastic and plastic parts, as
shown by Eq. (3.48). Although the separation (3.66) could realize the decoupling of
elastic and plastic deformation except for an arbitrary rotation, a definite deformation
rate separation based on it has proved to be not so clear and simple. In fact, we have

D = sym(F,E ")+ sym(EF,F,” ' E") # sym(E,F, ") + sym(F,F,” "),
(3.70)
where the last two terms may be called the elastic and plastic deformation rates and
will be denoted D, and D .

The above inequality shows that the total deformation rate D can not be split
into the sum of the two rates D, and D p.zg Moreover, the non-uniqueness property
of Eq.(3.66) leaves each rate term in Eq.(3.70) unspecified. With F, = VR, and
F, = R,U,, the following relations make this clear:

EF' =V, '+ V.RRV,". F,F,'=R,R," +R,U,U'R,".

They show that each rate term in Eq.(3.70) is essentially dependent on either the
elastic rotation R, or the plastic rotation R, or on both. To resolve this difficulty,
additional assumptions and procedures would be needed. It has been shown (see,
Lubarda and Lee 1981; Lee 1996) that the deformation rate separation (3.48) may
be re-established by assuming the extra condition (3.68) and defining the elastic and
plastic deformation rates by

D,=K':(B,+BW-WB,), D,=K"':QV.D,V,), (3.71)

with K a 4th-order tensor given by

~

Kijr = 2(Be)ikdji = 2(Be) jidik - (3.72)

28We note that in this specific case we also have: C, = Ve2 = EET = B,, i.e. the left and right
Cauchy-Green tensors are equal. Moreover, for an isotropic material, V,, B, and dy//d B, have the
same principal axes so that the products are commutative.

29We also refer to the discussions in Nemat-Nasser (1979, 1982); Lee and McMeeking (1980); Lee
(1981); Lubarda and Lee (1981); Mandel (1981).
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With the deformation rate separation described above, the isotropic elastic relation
(3.69) may be reformulated in an equivalent Eulerian rate form as given by

D, =@ K7/, (3.73)

Y] .
where T 7 is the Jaumann rate of T and

A B %y
L =26; 2(BY)im | —= . 3.74
ijkl ik (aBe )jl +2(Be)im (8B2)mﬂd ( )

e

We note that the material tensor

A~ A

N=L:K

herein has the same major and minor symmetry properties as the elasticity tensor L,
namely N;jr = Nyjij = Nijie = Njig.

It appears that within the context of the general constitutive formulation sketched
above the consequences implied by the work postulate have not yet been derived.>? In
this case, the normality rule is accepted as a plausible assumption, but the convexity
property of the yield surface may or may not be assumed. With the normality rule,
the total stress rate-strain rate relationship is established as follows:

1af  af\ o
D=|(N+c-——o—):t’/. 3.75
(+§hat®81) T (3.75)

where f = f(7, a, «) is the yield surface in stress space, % is a hardening function,
which can be derived from the normality rule for the plastic deformation rate D,
the consistency condition of plasticity, and the evolution equations of the internal
variables a and k.3>! As before ¢ is a plastic multiplier, differentiating the cases of
loading and unloading.

Similar to the situation with the Green-Naghdi theory a long discussion evolved
about different issues related with this multiplicative decomposition or the Lee-Liu
theory.3? Three different aspects were mainly under discussion:

(i) The non-uniqueness property of the separation (3.66) would imply that it might
be indeterminate not only in mathematical sense, but also in physical sense. It
might fail to separate the elastic and plastic deformations from the total elastic-
plastic deformation in a full sense. As indicated before, a rotation associated
with the unstressed configuration could not be determined. But it is just such
a rotation that incorporates the coupling between the elastic and plastic defor-

30Results have been given e.g. by Lubliner (1984, 1986), assuming maximal plastic dissipation
principles.

31For details we refer e.g. to Bruhns (2014b).

32This discussion was primarily between the two schools and their followers and lasted several
years. We therefore refer to Green and Naghdi (1971); Casey and Naghdi (1980, 1981) and Lee
(1982) and the instructive discussion therein.
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(ii)

mations F, and F),, since both F, and F, are related to the same unstressed
configuration, as shown in Eq. (3.64). With this understanding in mind, it might
be said that, unlike what has been expected, in principle the separation (3.66)
could realize only a partial or an incomplete decoupling of the total elastic-
plastic deformation, unless the respective rotational parts incorporated in F,
and F), could be specified in a consistent manner.

The above fact might explain the main reason behind a number of known anom-
alies accompanying constitutive theories based upon the multiplicative sepa-
ration. In fact, with a non-unique separation (3.66), the elastic relation (3.67)
might be incomplete, except for an isotropic potential i, and the two rate quan-
tities D, and D p could not be fully specified. Moreover, the objectivity of the
constitutive formulation would be rendered questionable. Under the change
of an observing frame, general transformation relations of F, and F, were
derived (see, e.g., Green and Naghdi (1971); Casey and Naghdi (1980, 1981,
1983)) allowing the unstressed configuration to undergo an arbitrary rotation
O(t) independent of the rotation of the observing frame Q(r). Naghdi and
coworkers pointed out that a constitutive formulation based upon a non-unique
separation could not fulfill the objectivity requirement.>3

To establish a complete constitutive formulation, Lee and coworkers assumed
the isotropy of the potential ¥ and introduced the particular additional condi-
tion (3.68), which neglects the rotational part of F,, i.e., R,. The objectivity
may be met with this ad hoc assumption,>* since the separation (3.66) is ren-
dered unique in this particular case. However, this assumption would imply that
only particular elastic and plastic rates D, and D p are treated, since the latter
two rely essentially on the elastic rotation R,. On the other hand, even from a
mathematical standpoint, the assumption (3.68) would be consistent only for
an isotropic potential . In this case, the stress T does not involve the elastic
rotation R,, as shown by Eq. (3.69).

A further issue is how to separate the total deformation rate D into elastic
and plastic parts, namely, how to define proper elastic and plastic deformation
rates D, and D, in terms of F, and F, such that Eq. (3.48) holds. In doing so,
again, an additional assumption has to be introduced. The definition given by
Eq. (3.71) gives us only one example. It seems that its physical pertinence need
to be clarified. For instance, the definition of the purely elastic deformation rate

33This aspect was also discussed in the foregoing references and in Sidoroff (1973); Lee (1981,
1996); Lubarda and Lee (1981); Haupt (1985, 2002); Dashner (1986), and many others.

341n fact, the assumption (3.68), the separation (3.66) as well as the elastic relation (3.69) become

E;kT — Fz;*’ F* = F:F;, * = ¢(E>*)’

under the change of frame. Here, Eq. (3.69) is written in the form T = ¢ (F,) considering Eq. (3.68).
Since ¢ is isotropic, the last above and the objectivity of T yield ¢(F*) = ¢(Q*F, Q*T). From
this follows that F* = Q* F, Q*T for an invertible ¢ with a symmetric argument due to Eq. (3.68).
Then, Fp* = Q*F, may be derived from F* = Q*F and Eq.(3.66), and the second above.
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(iii)
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D, as given by Eq. (3.71); involves the total spin W containing both elastic and
plastic contributions.

The above mentioned issues of non-uniqueness based on Eq.(3.66) would
entail introducing respective additional assumptions. There are many possi-
bilities for either of them. For instance, instead of assumption (3.68), either
W, = skw(Fp Fp_l) =0or FpT = F, may be assumed. On the other hand, as
further examples, the elastic deformation rate D, defined by Eq.(3.71); may
be replaced by either of the following two definitions:

D, = %F’TCEF’I, D.=A,—AL"— LA, A,= %(Be —1I).

With the above facts in mind, an observation may be made on the conceptual
basis of relation (3.67) which is regarded to represent the hyperelastic behavior
formulated by the elastic deformation F,. This would become justified, when-
ever the following two facts would be confirmed true: First, the elastic part of
the stress power, i.e., w, = T : D,, should be well-defined and, second, the
elastic stress work given by the integration of w, should be dissipationless.
These two may be evident for an elastic process. However, with the foregoing
non-uniqueness properties of the separation (3.66) for an elastic-plastic process,
the elastic strain rate D, could not be well-defined in a unique manner. Further-
more, even if F, would be rendered unique by a particular assumption, generally
the elastic stress work need not be dissipationless for an elastic-plastic process.
This observation may be explained by the fact that relation (3.67) which is
formally like a hyperelastic equation would be essentially different from the
latter, considering that the “elastic deformation” F, therein is referred to a non-
unique fictitious intermediate configuration, whereas a classical hyperelastic
equation is formulated by the total deformation F referred to a fixed reference
configuration.
A further fundamental issue is concerned with the limitation of the notion
“elastic destressing”, as pointed out by Naghdi and coworkers.?> It is noted
that ““...the stress at a point in an elastic-plastic material can be reduced to zero
without changing plastic strain only if the origin in stress space remains in the
region enclosed by the yield surface” Naghdi (1990). Here, one may go a bit
further by observing that even if the current stress may be reduced to zero when
the origin in stress space stays outside the elastic region, the resultant plastic
deformation F, (and hence F,) might be essentially non-unique in orientation
and in magnitude, due to the fact that there exist several elastic-plastic paths
or processes from the current to the null stress point. Note that the destressing
procedure may be achieved by any possible “thought” experiment, such as by
cutting and then destressing infinitesimal material elements out of the material
body.

3See, e.g., Green and Naghdi (1971), Casey and Naghdi (1980), Naghdi (1990), Naghdi and Casey
(1992).
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3.7 Director Triads and Isoclinic Configurations

With the particular assumption (3.68), a complete elastic-plastic formulation may
be established, but it is confined to the case of an isotropic elastic potential .
Towards a more general treatment, one approach is to use director triads and isoclinic
configurations, which originated from Kratochvil (1971) and Mandel (1972).36 The
main idea is quoted as follows: “...to determine in some way the orientation of the
present (stressed or released) configuration, so that an orientation variable must be
added to the state variables. We shall use the following mode of orientation. We
consider a material plane of unit normal n, and in this plane a material direction
m (a unit vector). The element is oriented ...by the orthonormal triad formed from
m and n, and which will be called a director triad” Mandel (1974b) and then, “we
assume that at time # the material element is very rapidly unloaded .... This unloading
process is elastic .... We thus obtain a present released configuration («) which is
only defined up to an arbitrary rotation.” This idea may be realized by selecting a triad
formed by three orthonormal vectors, say, & = (d1, d», d3), for each material element.
Embedded in the present released configuration, i.e., the unstressed configuration,
such a triad & is rotating as the former is changing, so that it determines the orientation
of the former by specifying the related rotation. Such a triad is said to be a director
triad. Further, if a particular director triad & = (d?, d, dg) is chosen in such a
manner that it always keeps the same orientation with respect to the fixed axes,
then it may be called an isoclinic triad. Accordingly, the unstressed configuration
with the orientation specified by an isoclinic triad & is referred to as an isoclinic
configuration.
Evidently, the isoclinic configuration with a well-defined isoclinic triad &y results
in a unique separation (3.66) and as such the elastic and plastic deformations F,
and F), are accordingly specified. Now the constitutive relations are formulated in a
somewhat different way. It is assumed that the potential ¥ relies on both the elastic
Green strain E, = %(FETFe — I') and the internal variables, while the yield function
f depends on the stress
Se=FE'tF" (3.76)

and the internal variables, where S, is the so-called Mandel stress, acting on the
unstressed intermediate configuration. Then, the elastic relation (3.67) is converted

to 5
Se = v . (3.77)
JoE,
Besides, the flow rule is non-symmetric and formulated for Fp Fp_l in a9-dimensional
37
space.

36We also refer to the following works of Mandel (1973a,b, 1974a,b, 1981).

3T There might be some doubt about the physical pertinence of such a non-symmetric flow rule
in 9-dimensional space. It would imply that nine, instead of six, rate equations governing plastic flow
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The formulation with an isoclinic triad & may, finally, be changed to a more
general type with an arbitrary director triad § = Q&p, and a rotation variable Q. Such
general results involve the corotational rate relative to the triad & and the rotation Q
will enter as an additional variable into each constitutive function.

An observation on the notion of director triad is as follows. Let & be an arbitrary
director triad embedded in the unstressed configuration. At the initial instant 7y, it is
given by the fixed triad & in the undeformed configuration 5y. Since a director triad
is always orthogonal at any instant ¢,i.e.,d; -d; = Ofori # j, and Eq.(3.64); yields
di = del.o, we deduce d? - (F,,TF,,)d? = 0 for i # j. This implies that the three

orthonormal vectors dl.0 are just the eigenvectors of the plastic stretch U, =/ FpT F,.

From this and the right polar decomposition of F,, we may infer

3
F,=R,U,, U,=> 1ld®d.

i=1

In the above, the plastic rotation R, is arbitrary for a general director triad, whereas
it is constant for an isoclinic triad.

This result would mean that the principal axes of the plastic stretch U, always
keep unchanged, and this might be a too strong restriction. It could be eliminated by
assuming that the rotation of the director triad at each particle to be independent of the
deformation of the material element at this particle. But this would not only offer no
assistance in clarifying the issues concerning the separation (3.66) but also go beyond
the scope of a classical continuum. In fact, no director triad, let alone an isoclinic triad,
could be defined in a classical continuum. Generally, any three mutually orthogonal
line elements at each particle in the initial configuration could not always maintain
the orthogonality property, since any line element in the unstressed configuration, no
matter whether real or imaginary, should obey the basic kinematic relation (3.64).

However, the above remark would in no way invalidate the constitutive formula-
tion in the foregoing. Actually, the latter may be independent of the notion of director
triad, albeit it was thought to be the starting-point. Here, the essential point might be
that three additional conditions or relations would be needed to eliminate the non-
uniqueness of the separation (3.66). Now, a flow rule for F,, Fp_l in 9-dimensional
space already furnish adequate constitutive relations specifying F,. As such, how-
ever, three additional constitutive relations incorporated in the non-symmetric flow
rule for Fp Fp_1 would have to be introduced, as compared to a symmetric flow rule
for D).

Numerous modifications of the above mentioned concepts have been reported in
the literature of the last almost 50 years. Herein also their implementation into robust

(Footnote 37 continued)
should be needed even in the case of infinitesimal deformation, except for some particular cases.
We also refer to Mandel (1974a) and the discussion therein.
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and efficient numerical codes and the improvement of the latter became increasingly
important. This issue, however, would be beyond the scope of the present article, and
will be reported elsewhere.
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Chapter 4

Effect of Biaxial Work Hardening Modeling
for Sheet Metals on the Accuracy

of Forming Limit Analyses Using

the Marciniak-Kuczynski Approach

Tomoyuki Hakoyama and Toshihiko Kuwabara

Abstract A servo-controlled tension-internal pressure testing machine with an
optical 3D deformation analysis system (ARAMIS®, GOM) was used to measure
the multiaxial plastic deformation behavior of a high-strength steel sheet with a ten-
sile strength of 590MPa for a strain range from initial yield to fracture. Tubular
specimens were fabricated by roller bending and laser welding the as-received flat
sheet materials. Many linear stress paths in the first quadrant of the stress space were
applied to the tubular specimens to measure the forming limit curve (FLC), forming
limit stress curve (FLSC), and forming limit plastic work per unit volume (FLPW) of
the as-received sheet material in addition to the contours of plastic work and the direc-
tions of the plastic strain rates. Differential hardening behavior was observed; the
shapes of the work contours constructed in the principal stress space changed with an
increase in plastic work. The observed differential hardening behavior was approx-
imated by changing the material parameters and the exponent of the Y1d2000-2d
yield function as functions of the reference plastic strain. Marciniak-Kuczynski-type
forming limit analyses were performed using both the differential hardening model
and isotropic hardening models based on the Y1d2000-2d yield function. It was found
that the material model that is capable of reproducing both the work contours and the
directions of the plastic strain rates measured for a strain range close to the fracture
limit can give a more effective constitutive model for accurately predicting the FLC,
FLSC, and FLPW.
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4.1 Introduction

Lightening the weight of automotive bodies is effective in reducing CO; emissions,
which is an important step towards the preservation of Earth’s environment. High-
strength steel sheets are considered a candidate material for reducing the weight of
automobiles. However, high-strength steel sheets generally have less ductility than
ultralow-carbon steel sheets and are therefore difficult to use for the manufacture
of automotive body panels. Finite element analysis (FEA) is a key technology for
enhancing the predictive accuracy of forming failures in high-strength steel sheets
and realizing trial-and-error-less manufacturing.

A forming limit curve (FLC), which consists of the strains at which localized
necking is first observed in sheet metal, is widely used in industry. However, since
FLCs are path dependent (Nakazima et al. 1968; Graf and Hosford 1993), they are
not effective for predicting the fracture of sheet metals subjected to non-proportional
loading. On the other hand, a forming limit stress curve (FLSC), which consists
of the stresses at which localized necking is first observed in sheet metal, has been
proven to be path independent both experimentally (Yoshida et al. 2005; Yoshida and
Kuwabara 2007) and analytically (Stoughton 2000; Yoshida et al. 2007; Yoshida and
Suzuki 2008) if the metal sheet obeys the isotropic hardening law. Zimniak (2000a, b);
Stoughton and Yoon (2005), and Chen et al. (2007) applied the FLSC to the fracture
prediction of sheet metals subjected to proportional and non-proportional loading
in FEA and found that the FLSC is useful for improving the predictive accuracy of
forming failure in sheet metal parts.

Since the measurement of FLCs and FLSCs takes a significant amount of time in
real experiments, it would be helpful if FLCs and FLSCs can be predicted by numer-
ical calculations based on plasticity theories. It is well known that yield functions
have a significant effect on the predictive accuracy of FLCs (Kuroda and Tvergaard
2000; Banabic and Dannenmann 2001; Butuc et al. 2002). Therefore, material models
(yield functions or polycrystal models) that are capable of accurately reproducing the
plastic deformation behavior of real sheet metals are crucial for accurately predicting
FLCs and FLSCs.

One of the most popular constitutive models for metals in phenomenological plas-
ticity theories is isotropic hardening, which assumes that the yield surface expands
with its shape being maintained as plastic deformation progresses. However, the yield
surface shape can change even in monotonic loading because of the change in texture
with plastic deformation. Hill and Hutchinson (1992) proposed a simple constitutive
model to account for progressive changes in the yield locus shape as plastic defor-
mation accumulates. Hill et al. (1994) proposed a new constitutive analysis method
by focusing on the contours of equal plastic work (henceforth referred to as work
contour) in the stress space; the change in shape of successive work contours with
increasing deformation was formulated. They further assumed that the successive
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work contours act instantaneously as plastic potentials; a normality flow rule applies
in relation to the work contours. Moreover, they conducted tension-internal pressure
tests of 70—30 brass thin-walled tubes with linear stress paths and evaluated the
differential hardening behavior as the work contours developed. One of the present
authors developed biaxial tensile testing methods for sheet metals using cruciform
specimens (Kuwabara et al. 1998) and for tubular specimens (Ishiki et al. 2011;
Kuwabara and Sugawara 2013) to observe the differential hardening behavior of
cold-rolled ultralow-carbon steel sheets (Kuwabara et al. 1998, 2002; Kuwabara and
Sugawara 2013), high-strength steel sheets (Kuwabara et al. 2011; Kuwabara and
Nakajima 2011), aluminum alloy sheets (Kuwabara et al. 2006; Yanaga et al. 2012,
2014), pure titanium sheets (Ishiki et al. 2011; Sumita and Kuwabara 2014), and a
magnesium alloy sheet (Andar et al. 2012). In these works, it was found that for the
most part, a normality flow rule applies in relation to the work contours. Actually,
it was experimentally confirmed that the yield functions determined to fit the work
contours measured from the biaxial tensile tests gave closer FEA results to the mea-
sured data for hole expansion simulations (Hashimoto et al. 2010; Kuwabara et al.
2011) and hydraulic bulge forming simulations (Yanaga et al. 2012, 2014) than other
yield functions.

Several authors developed constitutive models that enable us to reproduce the dif-
ferential hardening behavior in sheet forming simulations. Savoie et al. (1995) inves-
tigated the effect of the initial crystallographic textures of three different annealed
aluminum alloy sheets on the FL.Cs using the Marciniak-Kuczyiiski (M-K) approach
(Marciniak and Kuczyiiski 1967) in conjunction with crystal plasticity models. Xu
and Weinmann (2000) calculated the FLCs based on the M-K approach with Hill’s
1993 yield criterion (Hill 1993) by changing the anisotropic parameters as functions
of the equivalent plastic strain. Aretz (2008) calculated the FLC and FLSC of an
aluminum alloy using the M-K approach with the Y1d2003 yield function (Aretz
2005) with an exponent of 8; the differential hardening behavior was approximated
by changing the anisotropic parameters as functions of the equivalent plastic strain.
He found that the differential hardening behavior significantly affects the calculated
results for the FLC and FLSC. Stoughton and Yoon (2009) calculated the FLC and
FLSC of 5182 aluminum alloy sheet using the M-K model. A non-associated model
based on Hill’s quadratic yield function (Hill 1948) was used, and the yield stresses
(00, 045, 090, and o1,) were changed as functions of the equivalent plastic strain. Wang
et al. (2012) conducted biaxial tensile tests of aluminum alloy sheets using cruciform
specimens and approximated the measured work contours using the Y1d2000-2d yield
function (Barlat et al. 2003; Yoon et al. 2004) with an exponent of 8 and the material
parameters being changed as a function of the equivalent plastic strain. They calcu-
lated the FLCs of 5754-O aluminum alloy sheet and compared them with the mea-
sured data. Zamiri and Pourboghrat (2007) showed that the r-values of high-purity
niobium are very sensitive to plastic strain. They proposed a material model based on
Hill’s quadratic yield function with the material parameters changing as functions of
plastic strain to perform a hydraulic bulge forming simulation. They concluded that
the yield function with evolutionary coefficients can correctly predict the strain local-
ization position during the forming of the high-purity niobium sheet. Yoshida et al.
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(2014) investigated the differential hardening behavior of an aluminum alloy tube
under biaxial and triaxial stress states using a tension-internal pressure-torsion testing
machine. They demonstrated that a dislocation-density-based model reproduces the
stress-path-dependent work-hardening behavior observed in the experiments.

The objective of the present study is to clarify the effects of the constitutive
models (i.e., isotropic hardening models and a differential hardening model) on the
accuracy of forming limit predictions based on the M-K analysis. The biaxial plastic
deformation behavior of a high-strength steel sheet with a tensile strength of 590 MPa
was precisely measured using the multiaxial tube expansion testing (MTET) method
proposed by Kuwabara and Sugawara (2013). Many linear stress paths in the first
quadrant of the stress space were applied to the test material to measure progressive
changes in the work contour shapes in the stress space and the directions of the
plastic strain rates as plastic deformation accumulates. Moreover, the FLC, FLSC,
and forming limit plastic work per unit volume (FLPW) of the test material were
precisely measured. The observed work hardening behavior was approximated using
isotropic hardening models and a differential hardening model. The FLC, FLSC, and
FLPW of the test material were then calculated using the M-K analyses based on
these models and compared with the measured data.

4.2 Constitutive Model

Assuming small elastic and finite plastic deformations, we can write the kinematics
in the form )
D = D° + D" = D° + ®NP, (4.1)

W=0+W°=0w+dRP, (4.2)

where D is the rate-of-deformation tensor (the symmetric part of the velocity gradient
tensor L = dv;/0x;e; ® e;, where v is the velocity of a material particle, x is its
current position, and e; is the Cartesian basis), W is the continuum spin tensor (the
antisymmetric part of L), the superscripts e and p respectively denote the elastic and
plastic parts, @ is the spin of the material substructure, and NP and 2P define the
directions of DP and WP, respectively. The scalar-valued quantity & is a non-negative
overstress function for rate-dependent cases.

With a superposed o denoting an objective rate with respect to the spin @ and the
superposed dot denoting a material time derivative, the elasticity relation is assumed
to be given by Hooke’s law as follows:

0=6-w-0+0 - ©=C":D°=C°:D—HC®: NP, (4.3)

where o is the Cauchy stress tensor, and C°¢ is the fourth-order elastic moduli tensor.
It is assumed that C® is determined by Young’s modulus E and Poisson’s ratio v.
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Orthotropic symmetries in the plasticity are assumed. The structure variables to
be considered include two types of equations: the orthonormal unit vectors n; and
the equivalent plastic strain £P. The orthonormal vectors n; are defined along the
axes of orthotropy X;, which evolve according to

ni=w-n; (4.4)

since n; = 0. In this paper, the plastic spin is neglected (i.e., 2P = 0 for the sake of
ease).

The equivalent plastic strain rate £ is conjugated with an equivalent stress & with
respect to the plastic stress-power density increment wP; i.e.,

WP =0 : NP = 5P, (4.5)
gP is defined as o
= / FPdr — / AR (4.6)
o

For rate-dependent viscoplasticity, the dynamic yield surface is assumed to be
given by
é m
f=0a0,n;, &%) —g(E) (;) =0, (4.7)

0

where g is a strain hardening function, @y is a reference value of the overstress
function, and m is a rate sensitivity parameter. In this study, in order to express the
differential hardening, the dynamic yield function is a function of &P.

We employ the Y1d2000-2d yield function (Barlat et al. 2003; Yoon et al. 2004)
to define ¢ and Swift’s power law to define g; i.e.,
|M

1 1/M
5(a,n,-,gp):’§(|X/1—X§|M+|2X’{+Xg +|X’{+2X/2’|M)] , (4.8)

g=cE +aw)" (4.9)

Here, X! and X/ (i = 1,2) are the principal values of the second-order tensors X’
and X", respectively, and are given as

1
X =3 (X;x + X}, £ /X, - X2 + 4x;y2) , (4.10)

1
X1 (x;;x X0 X - Xt 4x;gy2) S @
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X’ and X” are obtained from the following linear transformation of o':

/ X%x L:“ L:12 0 Oxx . X.:xc:x L:lil L:1:2 0 Oxx
X = X%’y =| Ly Ly 9 oy |, X7 = X,/v/,v =Ly Ly (/), 9y |
X, 0 0 Li| oo X7, 0 0 LY | |ow

(4.12)
L, 2/3 00 Ly, 2 2 8-207[
Ly —1/3 00 |[a Lo | | 1=4=4 401 ay
Ly | = 0-1/30 |l oo |, | Loy | =5 | 444 10|/
L, 0 2/30||as Ly, -2 8 220 a
’ "
Lig 0 01 LY 000 09]|as
(4.13)
where «; (i = 1 — 8) are the anisotropic parameters.
From Eq. (4.7), the expression for @ is
. [5G, m, &))"
D =Py ——— (4.14)
g (€P)

For numerical computation, we use a rate tangent modulus method (Peirce et al.
1984). First, we use a linear interpolation within the time increment A¢ as follows:

A® = At[(1 = X)b; + X Pryail, (4.15)
where x ranges from O to 1. The subscripts ¢ and ¢ + At indicate arguments of

the functions evaluated at t and r + At, respectively. By substituting the overstress
function at t + At (approximated using the Taylor series) into Eq. (4.15), we obtain

: @, £ }
AD = DAL = At + N":C°:D|, 4.16
[1+$ h(1+&) (10
b
§ = xAt (—) h, 4.17)
Jo ‘
.0 =1 . _
0} 0} . NP
h:N“:Ce:NP—(a—_) (a—) _W e Ny
Jo ‘ 0P [ deP o

ad\ " fod & og 05 &P
o PP = (228 _ 0% (4.19)
do J, \da®/, gad 0ePId
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where N" = 06 /do . Here,0eP /0 is given as

Bép_a:NP
P 4

(4.20)

In this analysis, we use an associated flow rule; i.e., NP = N" = 95 /do. Upon
substituting Eqs. (4.16)—(4.19) into Eq. (4.3), we finally obtain the rate form consti-
tutive equations as follows:

s—cw.p_ P ce.nv. 4.21)
E+1
ctn = — ﬁ (C°:NP)® (N": C°). (4.22)

4.3 Experimental Methods

4.3.1 Test Material

The test material used in the present study was 1.2mm thick precipitation harden-
ing steel sheet with a tensile strength of 590 MPa (JSC590R). The work hardening
characteristics and r-values at 0°, 45°, and 90° (transverse direction, TD) to the
rolling direction (RD) are listed in Table4.1. Hereafter, the RD, TD, and thickness
direction of the material are defined as the x-, y-, and z-axes, respectively.

4.3.2 Biaxial Tensile Testing Methods

Two types of biaxial tensile tests were performed in order to measure the plastic
deformation behavior of the test material from initial yield to fracture. Figure4.1a
shows a schematic diagram of the cruciform specimen used for the biaxial tensile
tests of the as-received sheet sample. The geometry of the specimen was the same

Table 4.1 Mechanical properties of the test material (JSC590R)

Tensile direction 00.2 (MPa) c¢® (MPa) n? o? r-value®
0° 458 1054 0.192 —0.0026 0.588
45° 450 1007 0.205 0.0021 1.316
90° 476 1075 0.202 0.0037 0.790

2 Approximated using o = c(a + €P)" at eP = 0.02 ~ 0.092.

bMeasured at uniaxial nominal strain ey = 0.1
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Fig. 4.1 Specimens used for the biaxial tensile tests (units in mm): a cruciform specimen and b
tubular specimen. In b, <> indicates the rolling direction (RD) of the original sheet sample, and the
RD is taken in the axial direction for the type I specimen and in the circumferential direction for
the type II specimen; 6 indicates the angle from the weld line

as that proposed by Kuwabara et al. (1998). The specimen arms were parallel to
the RD and TD of the material. Each arm of the specimen had seven slits 60 mm
long and 0.2 mm wide at 7.5 mm intervals to remove the geometric constraint on the
deformation of the 60x60 mm? square gauge area. The slits were fabricated by laser
cutting.

The normal strain components (&y, €,) were measured using uniaxial strain gauges
(YFLA-2, Tokyo Sokki Kenkyujo Co.) mounted at +£21 mm from the center along
the maximum loading direction. According to the FEA of the cruciform specimen
with the strain measurement positions shown in Fig.4.1a, the stress measurement
error was estimated to be less than 2 % (Hanabusa et al. 2010, 2013). Details of the
biaxial tensile testing apparatus and test method are given in Kuwabara et al. (1998)
and Kuwabara et al. (2000).

Figure4.1b shows a schematic of the tubular specimen used for the MTET. The
specimens were fabricated by bending a sheet sample into a cylindrical shape and
CO» laser welding the sheet edges together to fabricate a tubular specimen with
an inner diameter of 44.6mm, a length of 200mm, and a gauge length (distance
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between the grips of the testing machine) of 150 mm. The width of the weld line,
including that of the heat affected zones, measured approximately 2 mm based on the
data for the Vickers hardness distribution across the weld line. Two types of tubular
specimens were fabricated; the type I specimen had the RD in the axial direction, and
the type II specimen had the RD in the circumferential direction. Type I specimens
were used for the tests with o < o, and type II specimens were used for the tests
with o, > oy; the maximum principal stress direction was always taken to be the
circumferential direction.

A servo-controlled tension-internal pressure testing machine was used in the
MTET; the testing machine was developed by Kuwabara et al. (2003, 2005).
Figure 4.2 shows a schematic diagram of a strain measurement system using a non-
contact optical 3D deformation measuring system (ARAMIS®, GOM).

By measuring the coordinates of subsets A, B, C, and D on the surface of the
tubular specimen (Fig.4.2), the axial and circumferential strains £} and &} on the
outer surface of the specimen were calculated using the following equations:

R L
&5 =In . sin~! <—¢)] (4.23)
R¢,’0 Nt (L¢/2R¢’0) 2R¢,
I
&) =In L—‘; (4.24)

where Ly and [y are the initial and current gauge lengths between A and B, Ly and
lg are the initial and current gauge lengths between C and D, and Ry o and Ry are
the initial and current radii of axial curvature, respectively. In this study, the subset
size of the measuring point was 25 pixels (approximately 2 mm). The initial gauge
lengths Ly and Lg were chosen to be 15mm.

By measuring the coordinates of subsets P, O, and Q aligned parallel to the axial
direction of the tubular specimen (with O being taken at the center of the bulging
specimen), the radius of axial curvature was calculated as

o

+ ,
21— ((p2+q% — 0)/2pg)?

Ry = (4.25)

where o, p, and ¢ are the current distances between P and Q, O and Q, and P and O,
respectively. In order to reduce the measurement error for Ry as much as possible,
the gauge length between P and Q was automatically changed during the tests to be

Fig. 4.2 Conceptual
diagram of the measurement /—‘
method for the axial and

circumferential strains and .

the radius of axial curvature |E|
of a bulging specimen DIC ‘

Camera
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46mm when |Ry| > 1000mm, 26 mm when |Ry| < 1000mm, and 13 mm when
|Rp| < 150 mm.

From Eqs. (4.23) and (4.24), the axial and circumferential strains e4 and &g at the
mid-wall of the specimen were evaluated using the following equations:

s R¢
Ep =€y — In———, (4.26)
Ry — (1/2)
D—t
gp =1In , 4.27)
Do —19

where Dy and #( are the initial outer diameter and wall thickness of the specimen,
respectively. The current outer diameter D at the mid-section of the bulging speci-
men is determined as D = Dy exp(ej). From the assumption of a constant volume
and neglecting elastic strains, the current wall thickness ¢ at the mid-section was
calculated as

t =tyexp(—&p — &p). (4.28)

Equation (4.28) can only be calculated implicitly. Therefore, during the testing, the
current wall thickness ¢ was calculated using the following equation:

—3a? +2DRy £ /(3a2 —2DRy)> — 4(=3a+ D +2R4)I"
2(=3a+ D +2Ryp)

’

(4.29)
r

(—a’ 4+ 2Do Ryt exp(—e}) — 2Ryt exp(—¢j)).

Equation (4.29) was derived from Eq. (4.28) using a Taylor series at an initial thick-
ness a.

The axial and circumferential stresses o and oy at the mid-section of the bulging
specimen were calculated as those at the mid-wall using the following equations
based on the equilibrium requirements for a material element at the mid-section of
the specimen:

Prn(D/2—1)*+T
Op =
n(D — )t

, (4.30)

(Rp —t)(D —2t) D—t
op = —
k Ry — 01 2Ry —1

7 (4.31)

where T and P are the measured values for the axial load and internal pressure,
respectively.

Figure4.3 shows the feedback control circuit used for controlling the true
stress paths using the servo-controlled tension-internal pressure testing machine
and ARAMIS®. The nominal strains and axial curvature were calculated on the
ARAMIS® computer and output as analog data from 0 to 10 V at 15Hz. A Bessel
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Fig. 4.3 Electrical feedback circuit for servo-controlled tension-internal pressure testing machine.
LPF indicates a low-pass filter

low-pass filter whose filter frequency was 30 Hz was used between the ARAMIS®
computer and a personal computer in order to reduce the line noise.

The measured values of T, P, s;, 82, and 1/Ry were input into the personal
computer, and o and oy were calculated using Eqgs. (4.30) and (4.31). The calculated
values of o4 and oy were then compared with the command values of o4 and op.
According to the discrepancy between the measured and commanded stress values,
two P-controllers output command signals for controlling 7 and P every 0.01s. The
command signals for 7 and P were then compared with the measured values, and the
servo valves were controlled according to the difference between the measured and
command values of 7" and P so as to activate the hydraulic cylinders and intensifier
such that the desired values of o4 and oy are applied to the specimen. The resolution in
the axial load measurements was 4 N, and that in the internal pressure measurements
was 1kPa. The outputs of T, P, g4, €9, 0y, 09, and Ry were recorded every 0.01s
with A/D data conversion and a personal computer and were saved on a disk.

Linear stress paths were applied to the cruciform and tubular specimens; the true
stress ratios o, : o, were chosen to be 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, and 1:4. Standard
uniaxial tensile specimens (JIS 13 B-type) were used for the uniaxial tensile tests with
oy : 0y = 1 :0and 0:1. True stress increments were controlled and applied to the
specimens so that the von Mises equivalent plastic strain rate became approximately
constant at (3=7) x 10~ s~! for all stress paths. Two specimens were used for each
stress path.

The concept of the work contour in the stress space (Hill and Hutchinson 1992;
Hill et al. 1994) was introduced to evaluate the work hardening behavior of the
test material under biaxial tension. The true stress-logarithmic plastic strain curve
obtained from a uniaxial tensile test along the RD was selected as a reference datum
for work hardening; the uniaxial true stresses o and the plastic work per unit volume
Wy performed during the test up to the instant when a particular value of uniaxial
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logarithmic plastic strain 88 (henceforth referred to as reference plastic strain) was
reached were determined first. The uniaxial true stress o9y measured from a tensile
test in the TD and the biaxial true stress components (o, oy) measured from biaxial
tensile tests were then determined for the same plastic work as Wy. The stress points
(00, 0), (0, 099), and (o, oy) plotted in the principal stress space form a work contour
associated with 88.

4.3.3 Measurement of Forming Limit Strains, Stresses,
and Plastic Work per Unit Volume

Forming limit strains, forming limit stresses, and forming limit plastic work per unit
volume were measured using MTET. The forming limit strains were defined as the
maximum logarithmic plastic strain components (sg, 85) achieved at the instant of
fracture of the tubular specimens for the respective linear stress paths. The forming
limit stresses were defined as the measured stress components (oy, o) at the instant
when the specimen reached the forming limit strain. The forming limit plastic work
per unit volume was defined as the total plastic work performed during the test up to
the instant of fracture of the tubular specimen.

Standard uniaxial tensile specimens were used for oy : 0y = 1 : 0 and 0:1. The
forming limit strains were determined by measuring the deformation of a2 mm square
grid pattern printed on the top surface of the specimen adjacent to the localized neck.
The forming limit stresses were determined by extrapolating Swift’s power law.

As described later in Sect. 4.4.1, the maximum value of 88 attained using a tubular
specimen for equibiaxial tension (o, : oy, = 1:1) was 0.16 because of fracture occur-
ring in the weld line. Therefore, hydraulic bulge tests were additionally performed
to measure the forming limit strain and stress for equibiaxial tension. See Kuwabara
and Sugawara (2013) for details on the hydraulic bulge testing method. The diam-
eter and shoulder radius of the die opening were 150 and 8 mm, respectively. The
forming limit strains were determined by measuring the deformation of 4 mm grid
squares printed on the top surface of the specimen. The forming limit stress for the
equibiaxial tension was determined by extrapolating Swift’s power law determined
for the measured equibiaxial stress-thickness strain curve.

In order to clarify the effect of the specimen geometry on the measurement of
the forming limit strains and stresses, biaxial stretching tests using a flat-head punch
proposed by Marciniak and Kuczynski (1967) were conducted for & : sf. ~ 1:0,
1: 1, and 0:1. The diameter and shoulder radius of the punch were 100 and 15 mm,
respectively. For the strain measurement, a 4 mm square grid was printed on the
top surface of the specimen. A Teflon sheet lubricated with Vaseline and a driving
plate with a 30 mm diameter hole in the center were inserted between the specimen
and the punch. The time average of the von Mises equivalent plastic strain rate was
approximately constant at (3-7) x 10~* s~ ! for each specimen. Two specimens were
used for each strain path.
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4.4 Material Modeling

4.4.1 Results of Biaxial Tensile Tests

The true stress-logarithmic plastic strain (s-s) curves measured from the MTET were
offset and smoothly connected to those measured using the cruciform specimens to
compensate for the effect of prestrain (bending strain) applied to the tubular spec-
imens during their fabrication. For details on the offset method, see Kuwabara and
Sugawara (2013).

Figure 4.4a shows the measured stress points forming the work contours. Each
stress point represents an average of two specimen data; the difference between the
two was less than 2 % of the flow stress for all data points. The maximum value of 88
for which the work contour has a full set of nine stress points was 88 = 0.16, which
is approximately three times larger than that obtained using a cruciform specimen.
Moreover, it is noteworthy that a maximum strain of 88 = 0.285 was attained for
oy : 0y =4 :3.Foronly oy : 0y = 1 : 1, fracture occurred at the weld line of the
tubular specimens at 88 = 0.16.

Figure4.4b shows the measured stress points forming the work contours for
88 < 0.16. All of the stress values forming a work contour were normalized by
oy associated with specific values of 88 . The shapes of the work contours slightly
changed with work hardening or equivalently with 58; thus, the test material exhibited
differential hardening.

The shape ratios of the work contours normalized by oy were determined and are
shown in Fig. 4.5 for a quantitative evaluation of the amount of differential hardening.
The shape ratio is defined as r/rg >, where rq is the distance between the origin in
the principal stress space and a stress point that forms the work contour for 88 =
0.002, and r is the distance between the origin in the principal stress space and a
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Fig.4.4 Experimental results for the MTETS of the test material. a Linear stress paths and measured
stress points forming the work contours. In b, the stress values associated with a specific value of
88 are normalized by o( belonging to the same group of the work contour and are compared with

the theoretical yield loci based on the Y1d2000-2d yield function (method I)
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Fig. 4.5 Variation in the shape ratios r/rp 2 of the work contours with ag for linear stress paths

stress point that forms a work contour for a particular value of 88(2 0.002). Here,
(r/ron) > 1 and (r/rg2) < 1 indicate the expansion and shrinkage of the work
contour, respectively. The values of r/rg 5 for all stress ratios increase steeply for a
strain range of 0 < s(% < 0.02. The value of r/rp for o, : 0y = 0 : 1 decreases
steeply for 0.02 < g; < 0.06, while the values of r/rg2 for other stress ratios
gradually decrease for 0.02 < 88 < 0.12. For 0.12 < sg, the values of r/rg, are
almost constant for all stress ratios; thus, the material can be viewed as exhibiting

isotropic hardening.

4.4.2 Isotropic Hardening Model

The Y1d2000-2d yield function was used to approximate the work contours for
88 = 0.03 and 0.12. 88 = 0.03 is the strain at which yield elongation almost
terminates, and 88 = 0.12 is a representative strain value at which the test material
can be viewed to initiate isotropic hardening. The material parameters «; (i = 1 —8)
and exponent M of the Y1d2000-2d yield function were determined following meth-
ods I, I, III, and I'V:

Method I: rg, 745, r90, v, 00/00, 045/00, 090/00, and o1, /o were used, where ry
and oy are the r-value and tensile flow stress measured at an angle of # from the RD,
respectively, and r, and oy, are the plastic strain rate ratio dsg / dsg and the flow stress
at equibiaxial tension o, : 0, = 1 : 1, respectively. The values of rg, r45, and rgg
used were the same as those in Table4.1. An exponent M was selected to minimize
the root mean square error between the work contour and the calculated yield locus
(see Appendix Al).
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Methods II, III, and I'V: The anisotropic parameters and exponent M were deter-
mined to minimize the cost function as given by Eq. (4.32)

N N
F=Y wio0'=r*+ D> wjs — B> (4.32)

j=1 j=1

with the weighted parameters w; , = 1 and w; g = 0 for method I, w; , = 0 and
wj g = 1formethodIll,andw; , = landwj g = 0.01 formethod IV. Here, N (= 9)
is the number of stress points forming a work contour, r is the distance between the
origin of the principal stress space and the jth stress point, r’ is the distance between
the origin of the principal stress space and the calculated yield locus along the stress
path to the jth stress point, B is the direction of the plastic strain rate measured for the
Jjth stress path, and 8’ is the predicted direction of the plastic strain rate calculated
using the yield function and the associated flow rule for the jth stress path. Real-
coded genetic algorithm was used to minimize the cost function and to avoid a local
optimum solution. The value of w;  (for o, : 0y, = 1 : 0) was set to 100 because the
equivalent stress calculated using the yield function should coincide with the flow
stress calculated using the strain hardening function determined for the RD.

The calculated values of ¢;(i = 1 — 8) and M determined using methods I to
IV are shown in Table4.2. The yield loci determined using method I are shown in
Fig.4.4b.

The yield loci and the directions of the plastic strain rates determined using meth-
ods II, III, and IV are shown in Fig.4.6. The yield loci calculated using methods
IT and IV are in good agreement with the measured work contours, while the yield
loci calculated using method III slightly deviate from the measured work contours
(Fig.4.6a). The directions of the plastic strain rates calculated using method II show
significant deviation from the measured values for 88 = (.03, while the directions of
the plastic strain rates calculated using methods Il and I'V are in good agreement with
the measured values for both 88 = 0.03 and 0.12 (Fig.4.6b and c). Consequently,
it is concluded that the Y1d2000-2d yield function determined by method IV gave
the closest agreement with the experimental data for both the work contours and the
directions of the plastic strain rates.

4.4.3 Differential Hardening Model

In order to reproduce the differential hardening behavior of the test material, the work
contours and the directions of the plastic strain rates were measured for every 88 at
an increment of 0.01. Then, «; (i = 1 — 8) and M of the Y1d2000-2d yield function
were determined for respective work contours for 0.002 < 58 < 0.16 using method
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Fig. 4.6 Calculated results based on the Y1d2000-2d yield function determined using methods II,
111, and IV compared with the experimental data. a Work contours. b and ¢ Directions of DP
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Fig.4.7 Variationsin M and ¢; (i = 1—8) of the Y1d2000-2d yield function with ag , approximated
using Eqgs. (4.33) and (4.34)

IV. Figure4.7 shows the calculated values of «; (i = 1 — 8) and M for respective

values of 88 . Moreover, the variations in «; and M with sg were approximated by
the following equations:
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Fig. 4.8 Calculated results obtained from the differential hardening model for the test material
compared with the experimental data. a Work contours. b Directions of DP

c
M,a; = Aexp(—Beb) + —— i=1,7,8), 433
i p( 0) 88+D ( ) (4.33)
Alog(B + &0) + Ceg (i=2-6) (4.34)
o = Alo € — i=2-06). .
1 g 0 88+D

The parameters A, B, C, and D for «; (i = 1 — 8) and M are listed in Table4.3.
The approximation curves for o; (i = 1 — 8) and M are also shown in Fig.4.7. For
88 > 0.16, isotropic hardening was assumed (o; (i = 1 — 8) and M were assumed
to be constant). See Appendix A2 for details on the formulation method for the
differential hardening.

Figure 4.8 shows the yield loci and the directions of the plastic strain rates cal-
culated using the differential hardening model. The calculated results are in good
agreement with the measured results for a strain range of 0.002 < 88 < 0.16. Thus,
it is concluded that the successive work contours determined using method IV act
instantaneously as plastic potentials. See also Fig.4.15.

4.5 Forming Limit Analysis
4.5.1 Conditions of Analysis

The forming limit analysis based on the M-K model was performed using the elasto-
viscoplasticity model, as described in Sect. 4.2. The forming limit strain for one strain
rate ratio was determined as follows: (i) calculate the strain components 8{“1 and 8]2“2
outside the band at the onset of localized necking for an initial band angle of ¥; (ii)
find the minimum value of £1L1 by varying ¥ from 0° to 90° at an interval of 1°; and
(iii) determine the corresponding strain components elLl and 812“2 and the initial band
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Table 4.4 Parameters used in Swift’s power law for strain hardening

Strain range c¢* (MPa) n* ol

ey < 0.0185 29.1 2.767 2.7115
0.0185 < 88 <0.1 1034 0.183 —0.0047
0.1 < 88 968 0.140 —0.0254

2 Approximated using o = c(a + 58)”

angle Y as the forming limit strains e}, and €}, and the critical initial band angle
¥*, respectively. Please refer to Yoshida et al. (2007) for details on the calculation
procedures of the M-K analysis.

The M-K analyses were performed using the Y1d2000-2d yield function whose
parameters were determined from methods I-IV to evaluate the effect of the mate-
rial modeling methods on the accuracy of the forming limit predictions. The M-K
analysis based on the Y1d2000-2d yield function whose parameters were determined
for the work contour with 88 = 0.03 using methods I-IV are denoted as MK1-I-1V,
respectively. The M-K analysis based on the Y1d2000-2d yield function whose para-
meters were determined for the work contour with 88 = 0.12 using methods I-IV
are denoted as MK2-I-1V, respectively. The M-K analysis based on the differential
hardening model as determined in Sect.4.4.3 is denoted as MK3. The other mate-
rial parameters assumed in the M-K analyses are as follows: the elastic modulus
is 210 GPa, the Poisson’s ratio is 0.3, and the strain rate sensitivity exponent (-
value) is 0.01. The magnitude of the initial imperfection was assumed to be 0.996,
which was estimated from the variation in measured thickness. Swift’s power law
was applied to the strain hardening function, the parameters of which are listed in
Table4.4. The parameters were changed depending on the strain ranges in order to
achieve an accurate reproduction of the strain hardening behavior. The strain rate of
the maximum principal strain was assumed to be 5.0 x 10~ s~ 1.

4.5.2 Results and Discussion

Figure4.9a shows the fractured specimens for respective proportional stress paths.
Localized necks appeared all around the central bulged area of the respective speci-
mens for the stress ratios oy : 0y = 1:4, 1:2, 3:4, as shown in Fig.4.9b.
Figures4.10 and 4.11 show the FLC, FLSC, and FLPW calculated from MK1-I-
IV and MK2-I-1V, respectively, compared with the measured data. MK2 had closer
agreement with the measurement than MK1. This means that the forming limit strains
and stresses are mainly dominated by the plastic deformation behavior for a strain
range close to the fracture limit. Moreover, from the fact that MK2-IV had the closest
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agreement with the measurement for all three cases (i.e., FLC, FLSC, and FLPW),
it is concluded that the yield function that is capable of reproducing both the work
contours and the directions of the plastic strain rates measured for a strain range
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Fig. 4.11 Calculated results obtained from MK2-I-IV models: a FL.C, b FLSC, and ¢ FLPW

close to the fracture limit can give a more effective constitutive model for accurately
predicting the FLC, FLSC, and FLPW than those determined for a smaller strain
range.

Figure4.12 compares the measured FLC, FLSC, and FLPW with those calculated
using MK3. The calculated FLC, FLSC, and FLPW based on MK2-VI are also
depicted in the figure. The FLC, FLSC, and FLPW based on MK2-VI are almost
identical to those based on MK3. Thus, it is concluded that the differential hardening
behavior for 88 < 0.12 has little effect on the forming limits of the test material.

For oy : 0y = 1 : 0and O : 1, the measured forming limit strains, stresses,
and plastic work per unit volume are significantly larger than the calculated results.
This could be attributed to the fact that the material was assumed to follow isotropic
hardening for 88 > 0.16 and that the extrapolation of the strain hardening function
for that strain range including the diffuse necking phenomenon was erroneous.
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Fig. 4.12 Calculated results obtained from MK2-IV and MK3 models: a FLC, b FLSC, and ¢
FLPW

4.6 Conclusions

A MTET system combined with a digital image correlation (DIC) system as a strain
measurement method was developed for the first time. MTET was performed to
measure the deformation behavior and forming limits of a high-strength steel sheet
subjected to linear stress paths. The isotropic and differential hardening models deter-
mined from the MTET results were applied to the forming limit analyses based on the
M-K approach, and the effect of the material model on the accuracy of the forming
limit predictions was investigated. The conclusions of this study are summarized as
follows:

1. The work contours for the test material were successfully measured for a reference
plastic strain range of 0.002 < 88 < 0.16. A maximum strain of 88 = 0.285 was
attained for oy : oy = 4 : 3. The test material exhibited significant differential
hardening for sg < 0.12, while the hardening behavior was almost isotropic for
88 > 0.12; the shapes of the work contours were almost similar.
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2. A material modeling method for reproducing the differential hardening using
the Y1d2000-2d yield function was developed, in which the material parameters
a;(i = 1 — 8) and the exponent M change as functions of sg .

3. The forming limit strains, stresses, and plastic work per unit volume of the test
material were calculated using the M-K approach based on the isotropic and
differential hardening models. It is concluded that a yield function that is capable
of reproducing both the work contours and the directions of the plastic strain rates
measured for a strain range close to the fracture limit can give a more effective
constitutive model for accurately predicting the FLC, FLSC, and FLPW than
those determined for a smaller strain range.
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Appendix A1l

To quantitatively evaluate the difference between the shapes of the theoretical yield
loci and the measured work contours, the root mean square error &, was calculated
using the following equation:

. \/Zi{r'(wiiv—r«oi)}?, .

where ¢; (i = 1 to N) is the loading angle of the ith stress point from the x-axis in
the principal stress space, r(g;) is the distance between the origin of the principal
stress space and the ith stress point, and r’(¢;) is the distance between the origin of
the principal stress space and the theoretical yield locus along the loading direction
@;, as shown by the schematic in Fig.4.13a.

(a) (b)

o, /o, 7

o Experimental ) .
— Yield function | B o Experimental
;] — — Calculated

> P

o lo, O ?,

Fig. 4.13 Schematics for the calculation of a the root mean square error §, of a calculated yield
locus from the measured work contour and b the root mean square error §g of the calculated
directions of the plastic strain rates based on the normality flow rule for a calculated yield locus
from those measured
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To quantitatively evaluate the difference between the measured directions of the
plastic strain rates and those predicted using the selected yield functions, the root
mean square error g was calculated using the following equation:

") — )12
Sﬂ:\/zi{ﬁ (o0 =B w36

where S(¢;) is the direction of the plastic strain rate measured for the i th stress path,
and B'(g;) is that predicted using a selected yield function for the ith stress path, as
shown by the schematic in Fig.4.13b. In method I, only §, was taken into account,
and 8 was not considered.

Appendix A2

In order to formulate the differential hardening model for the test material, the mate-
rial parameters «; (i = 1 — 8) and exponent M of the Y1d2000-2d yield function
were determined as functions of 88 by the following calculation procedures:

1. Determine «; (i = 1 — 8) and M for the measured work contours corresponding
to particular values of 58 by method IV.

2. Approximate the variation in M with eg using Eq. (4.33).

3. Recalculate «;(i = 1 — 8) using M determined in 2. by method IV for the
measured work contours corresponding to particular values of 88.

4. Approximate the variations in «; (i = 1 — 8) with 88 obtained in 3. using Eqgs.
(4.33) and (4.34).

Appendix A3

In order to verify the computer program of the M-K analysis based on the differential
hardening model (MK3), the biaxial stress-strain (s-s) curves for proportional loading
were calculated, and the calculated s-s curves were compared with those measured.
Figure4.14 shows the biaxial s-s curves for o, : 0y =2 : 1 and 3 : 4. Figure4.15
shows the variations in the work contours and the directions of the plastic strain rates.
The calculated results are in good agreement with the measured data; thus, the M-K
analysis program has been validated.
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Appendix A4

In order to check the accuracy of the strain measurement method using the DIC, the
logarithmic thickness plastic strain £ and the axial curvature R ! measured using
the DIC were compared with those measured using a micrometer (PMUD150-25M17,
Mitsutoyo Co.) and a 2D contour tester (Contourecord 1700SD3, Tokyo Seimitsu
Co.), respectively. The values of R;] were approximated using circular arcs for a
range of =13 mm at the mid-section of the tubular specimens. The test material used
was a cold-rolled ultralow-carbon steel sheet (SPCG), and the initial thickness was
0.6 mm. The sheet sample was bent and welded using a YAG laser to fabricate tubular
specimens with an inner diameter of 44.6 mm, a length of 200 mm, and a gauge length
(distance between the grips of the testing machine) of 150 mm.
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Fig. 4.16 Validation of the accuracy of the DIC measurement: a R;l and b ?

Figure 4.16 compares the measured data for oy : 09 = 1 : 1 and gg = 0.10. The
relative measurement error was 5.6 % for R;l and 0.39 % for ¥ .
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Chapter 5

Three-Dimensional FE Analysis Using
Homogenization Method for Ductile
Polymers Based on Molecular Chain
Plasticity Model Considering Craze
Evolution

Hideyuki Hara and Kazuyuki Shizawa

Abstract Thermoplastic polymers can be classified into glassy polymers and crys-
talline polymers depending on their internal structures. Glassy polymers have a ran-
dom coil structure in which molecular chains are irregularly entangled. Crystalline
polymers can be regarded as a mixture consisting of glassy and crystalline phases
where molecular chains are regularly folded. Moreover, the fracture of ductile poly-
mers occurs at the boundary between regions with oriented and non-oriented mole-
cular chains after neck propagation. This behavior stems from the concentration of
craze, which is a type of microscopic damage typically observed in polymers. In this
study, three-dimensional FE simulations coupled with a craze evolution equation are
carried out for glassy and crystalline polymers using a homogenization method and
models of ductile polymers based on crystal plasticity theory. We attempt to numer-
ically represent the propagation of a high-strain-rate shear band and a high-craze-
density region in the macroscopic structure and to directly visualize the orientation
of molecular chains in glassy and crystalline phases. In addition, differences between
the deformation behavior of glassy and crystalline polymers at both the macroscopic
and microscopic scales are investigated.
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5.1 Introduction

Polymers form different internal structures depending on the cooling rate in their
production process. In general, polymers tend to form a glassy state at a high cooling
rate and a crystalline state at a low cooling rate. Glassy polymers such as poly-
methyl methacrylate (PMMA) and polycarbonate (P) have a random coil structure in
which molecular chains are irregularly entangled as shown in Fig.5.1a. Crystalline
polymers such as polypropylene (PP) and polyethylene (PE) can be regarded as a
mixture of glassy and lamellar crystalline phases, where molecular chains are reg-
ularly folded in the latter as shown in Fig.5.1b. A spherulite structure is formed at
a lower cooling rate by the radial growth of a twisted lamellar crystalline phase.
However, because it is difficult to model such a complicated structure, we employ
a mixed structure consisting of glassy and crystalline phases as shown in Fig.5.1b
formed at a middle cooling rate as the internal structure of crystalline polymers.
Thermoplastic polymers have many useful properties such as high ductility and a
light weight. In particular, composite materials with a polymer matrix are industrially
applicable and have been widely used as structural materials in severe mechanical
environments involving a large strain. Therefore, it is highly desirable to develop
a material model that can precisely express the mechanical deformation responses
and fracture behavior peculiar to polymers. On the other hand, it is known that the
ductile fracture of polymers occurs along the high-strain-rate shear band at the front
edge of a propagating neck, i.e., at the boundary between the region with oriented
and non-oriented molecular chains after neck propagation as shown in Fig.5.2. This
distinct behavior in ductile fracture stems from the accumulation of craze, which is
a type of microscopic damage typically observed in polymers. A craze, which is dif-
ferent from conventional damage, consists of voids and fibrils, which are aggregates
of oriented molecular chains. When stress exceeding the fibril strength is applied to
a region where sufficient craze has accumulated, ductile fracture is caused by the
breaking of the fibrils.

Fig. 5.1 Internal structures of polymers, a General glassy polymer, b General crystalline polymer
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Fig. 5.2 Ductile fracture Craze Strain rate shear band
mechanism of polymers ;

\ |
\\ U
Crack Oriented region

The mechanical properties of polymers, such as strain softening after yielding,
and the formation and propagation of the neck, have conventionally been expressed in
terms of the phenomenological theory of plasticity (Tugcu and Neale 1990; Tomita
and Hayashi 1993; Murakami et al. 2002). However, in this theory, it is undesir-
able that the constitutive equations become complicated when developing a rigorous
model. Recently, multiscale models considering the knowledge obtained from the
materials science to solid mechanics have been actively studied as a means of describ-
ing the mechanical response of polymers more precisely. As a typical example of such
attempts, the molecular chain network model (Boyce et al. 1988; Arruda and Boyce
1993; Wu and Giessen 1993; Tomita and Tanaka 1995), which employs Argon’s
hardening law (Argon 1973) and back stress based on the eight-chain model (Arruda
and Boyce 1993), was proposed. However, these models cannot directly express the
deformation-induced orientation of molecular chains from information of the micro-
scopic structure because the plastic constitutive equation used is based on J,-flow
theory or J;-deformation theory (Murakami et al. 2002). On the other hand, one
of the authors numerically reproduced crazing behavior with the formation of the
high-strain-rate shear band in terms of continuum mechanics and predicted ductile
fracture at the front edge of a propagating neck by evaluating the stress applied to
fibrils (Takahashi et al. 2010). However, the craze evolution equations proposed in
that paper were developed macroscopically. Thus, they should not be applied to a
multiscale model such as the molecular chain plasticity model (Nada et al. 2015)
used in this study. In our previous paper (Hara and Shizawa 2013), we proposed a
multiscale material model for crystalline polymers, referred to as the homogenized
molecular chain plasticity model, that homogenizes the mixed structure of the glassy
phases expressed by the molecular chain plasticity model and the crystalline phases
represented by the conventional crystal plasticity model (Peirce et al. 1983) for met-
als in unit cell. Moreover, a craze evolution equation for the glassy phase was newly
developed in terms of chemical kinetics (Glasstone et al. 1941). The propagation of
the craze-concentration region and high-strain-rate shear band in the macroscopic
specimen were numerically reproduced using these models. However, these analy-
ses were conducted using simplified two-dimensional slip systems and the plane
strain condition. Thus, the material parameters were not suitably determined since
the experimental data used to identify the parameters were obtained using a thin
plate. In addition, the three-dimensional orientation state of the molecular chains
was not visualized. In this paper, the slip systems in the crystal-plasticity-based
models and computational models used in finite element (FE) analyses are extended
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to three-dimensional structures. Orientation parameters, which can express the
three-dimensional orientation of molecular chains in the glassy phase, are newly
developed. Moreover, to handle inelastic phenomena in ductile polymers in a unified
manner based on the chemical kinetics, we employ the thermal activation model
(Kocks et al. 1975) instead of the strain rate hardening law of Pan and Rice (1983)
for calculation of the inelastic shear strain rate in the crystalline phase. FE simu-
lations using the present model are carried out for ductile polymers. We attempt
to computationally represent the propagation of the high-strain-rate shear band and
high-craze-density region in a three-dimensional structure and to directly visualize
the orientation of molecular chains in the glassy and crystalline phases. Furthermore,
by adopting the homogenization method (Ohno et al. 2002; Nakamachi et al. 2007)
for unit cells consisting of only the glassy phase or both glassy and crystalline phases,
differences between the deformation behaviors of glassy and crystalline polymers at
both the macroscopic and microscopic scales are discussed.

5.2 Material Models for Ductile Polymers

In this section, we summarize the material models for glassy and crystalline polymers
proposed in our previous paper (Hara and Shizawa 2013). Note that the visualization
methods of the orientation of molecular chains in the glassy phase and the slip systems
in the crystalline phase are extended to enable three-dimensional analysis, in contrast
to in our previous paper.

5.2.1 Configurations with Damage

A fictitious configuration neglecting the change in the cross-sectional area storing
the stress is called the pseudo-undamaged configuration, although damage such as
craze exists inside the structure. A real configuration that takes account of the change
in the cross-sectional area is called the damaged configuration. By using the fraction
of the damaged area w, corresponding to the craze density in this paper, the stress
o* in the damaged configuration, called the effective stress, and Young’s modulus
E in the pseudo-undamaged configuration can be expressed as

o =0/(1 —w), (5.1)
E =(1—-w)Eo, (5.2)
where o denotes the stress in the pseudo-undamaged configuration and Ey denotes
Young’s modulus in the damaged configuration, which is a constant. In the following

section, constitutive equations are derived by considering the apparent reduction of
Young’s modulus in the pseudo-undamaged configuration as given by Eq. (5.2).
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5.2.2 Model for Glassy Phase

For the glassy phase, the molecular chain plasticity model proposed in our previous
paper (Nada et al. 2015) is employed. We replace the chain structure neighboring an
entangled point in the glassy phase with an eight-chain model as shown in Fig.5.3a.
Assuming that four molecular chains sharing an entangled point exist on the same
plane, the shear deformation of a molecular chain due to the kink rotation of a segment
occurs in the diagonal direction of the plane as shown in Fig.5.3b. Thus, there are
four slip systems per unit block. In this case, the molecular chain basis tensor is
defined by P@ = 5@ @ m@, where s*) and m® are the molecular chain basis
vectors in the shear direction and the normal direction to the slip plane of slip system
«a, respectively. Using these vectors, we can express the inelastic deformation rate
D' and inelastic spin W' as

D'=>" D =" y@py, (5.3)
o o

W= W =" y@pl (5.4)
o o

where (...)sand (. ..)s denote the symmetric and anti-symmetric parts of the second-
order tensor, respectively, and y ) is the inelastic shear strain rate. On the other hand,
the temporal evolutions of the molecular chain basis vectors are given by

§@ = (W — Wi(“)) s@, (5.5)

M@ = (W _ Wi(“)) m@, (5.6)

where W denotes the continuum spin. From Egs. (5.5) and (5.6), each slip system
rotates independently in accordance with its own inelastic spin W) not with the
continuum spin W common to all slip systems. To express the random coil structure
in the glassy phase, a number of slip system sets are assigned at each material point

Fig. 5.3 Model of internal (a) (b)
structure in glassy phase, a .
Modified eight-chain model, 3 -

b Slip systems | \ 'kim
\ @

oy L

Entangled point Slip direction Slip plane
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by using the extended Taylor model (Asaro and Needleman 1985). Therefore, the
molecular chain plasticity model has the following elasto-viscoplastic constitutive
equation for the glassy phase:

1 o 1 okl
T W _ l—ofee - D -5 @kl g@Ik _ T,
Ng Ng ; o ;V 1= old

(5.7)

Q(a)[k] = (l _ w[k])cg . Péa)[k] +ﬁ(a)[k], ﬁ(a)[k] = P(p‘j)[k]T[k] _ T[k]PXI)[k]v
(5.8)

o
where T= T — WT + TW is the Jaumann rate of the Cauchy stress T, D the total
deformation rate, k the number of entangled points, N, the total number of entangled
points and Cg is the fourth-order tensor of isotropic elastic moduli.
Subsequently, orientation parameters that can be used to visualize the three-
dimensional orientation of molecular chains are newly proposed. The orientation
direction is expressed by averaging the directions of all molecular chains as follows:

zzs(a)[k]
§=_Fk* (5.9)

S s@IK]
k o

To calculate the intensity of the orientation, we consider the average projection of
each molecular chain base vector s @ in the average direction § as

1 1

S — 5. (@)[k]

§ = E E s-5 . (5.10)
Ng N; — %

Here, § takes a value of 1 when all molecular chains have the same direction and
a value of Sy, in the perfectly isotropic case; thus, the orientation intensity can be
expressed as a value from O to 1 if we define the orientation intensity parameter ® as

(5.11)

Note that ® and s should be determined so that ® takes a maximum value at each
material point because the molecular chain base vector s @1 is identical to (—s (©[*])
in the crystal-plasticity-based model. In this study, Spyin is set to a constant value
regardless of the total number of molecular chain slip systems per material point
for convenience. By assuming the existence of consecutive molecular chains in a
hemispherical region to be the most isotropic state, Syin can be calculated as
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Smin = Lz//s s(0, ¢)dpdod = Lz//(sme sin ¢)d¢dd = i (5.12)
0 0

5.2.3 Model for Crystalline Phase

In this paper, we assume the orthorhombic structure as the internal structure of
the crystalline phase for simplicity, although the crystalline phases of crystalline
polymers have several types of the crystal structure (Ahzi et al. 1994). Thus, the
model of the crystalline phase has eight slip systems consisting of chain slips a=
1-4 and transverse slips o= 5-8 as shown in Fig.5.4 (Uchida and Tada 2013). The
temporal evolution of the crystal basis is represented by the following equations so
as to retain the angle between the slip systems in the same way as in conventional
crystal plasticity theory:

(@) ~(@)

s (W W ) s (5.13)
) ()
m (W W )m , (5.14)
(100)[001] (010)[001] (110)[001] (110)[001]
a=1 a=2 a=3 a=4
(b) ! ! '
C I 1 1
b q’) ey
a ,’/ /, ,’, /,
(100)[010] (010)[100] (110)[110] (110)[110]
a=5 a=6 a=7 =8

Fig. 5.4 Slip systems in crystalline phase (c-axis denotes molecular chain direction), a Chain slip,
b Transverse slip
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where (.7.) denotes the quantity of the crystalline phase. The crystalline phase is
~()  ~

inextensible in the chain direction. This property, expressed as S -D=0, is
approximately represented by using a penalty method (Uchida and Tada 2013). Then,
the penalty constant v is introduced into the elastic modulus tensor in the constitutive
equation of crystal plasticity theory. Furthermore, by considering @ = 0 in the
crystalline phase and rewriting the corotational rate of the Cauchy stress as the
Jaumann rate, we obtain the constitutive equation for the crystalline phase as

e}

2 ~() ~() ~ s(@) ~ (@)

T=(C§+voS ®S ):D-> Vv R . (5.15)
o
~ (@) ~  ~@)  ~(@)

Q2 =C§:Pg +8 . (5.16)

~() ~M 1~
where § isdefinedby S =5 ®s .

5.2.4 Homogenization Method

We suppose that the material velocity v is decomposed into v° and v" such that
v = v° 4+ o', where (...)° and (...)" denote the macroscopic component and
microscopic disturbance component, respectively. In addition, v¥ for a heteroge-
neous microstructure can be written in the form

v = —xF' DY + ¢, (5.17)

where Xl.kl and ¢; are the characteristic velocities and D,?l is the macroscopic de-
formation rate. Noting that there is a characteristic velocity ¢; originating from
the strain rate dependence, i.e., the viscoplasticity in Eq.(5.17), the homogenized-
crystal-plasticity constitutive equation in the macroscopic structure can be derived in
the same manner as in the conventional homogenization method (Ohno et al. 2002;
Nakamachi et al. 2007).

5.3 Material Response Law

5.3.1 Inelastic Response Law for Glassy Phase

To calculate the inelastic shear strain rate y @ in Eq.(5.7), we employ the inelas-
tic response law based on the change in the local free volume proposed by Hasan
and Boyce (1995). Introducing a probability density function ¢@ for the activation
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energy A Fp, Hasan and Boyce expressed the local distribution of the high-free-

volume-fraction region that can be shear deformed and formulated the inelastic shear
strain rate as

o0
. . —AF{1 —1t9 /1)
7@ = posgn(z@) / @ [exp( /

0

kg6

(5.18)
—AFy 1 (@) S@)
_exp( ol + 1@ /7o) + )]dAFO’

kgb

where yo g denotes the reference strain rate, kg the Boltzmann constant, 6 the ambient
temperature, 7@ the resolved shear stress, 7oy the critical strength and S @) ig the
molecular-chain friction energy, which affects the nonlinear strain recovery in the
unloading process. Moreover, ¢® in Eq.(5.18) is expressed as

1 AFy—a®\ . ( AFy —a@®
ZASO‘) exp 2@ sin 2@
(@® < AFy <a® + 370 @ /4)
¢ =1 1 AFy—d @Y\ . (AFy—d©® ,
_2A gx) exp _—a @ sin —a @
(@@ 4+ 37105(“)/4 < AFy<a® + 37105("‘)/2)
| 0 (otherwise)

(5.19)

where a® and «® are the minimum value and standard deviation of the probabil-
ity distribution of the activation energy, respectively. Their temporal equations are
expressed as

a@ = —(a("‘) — deq) eXp[—¢ exp(—Lva)] Z w(ﬁ), (5.20)
B

@@ = — (@@ — eq) Zw(ﬂ), (5.21)
B

where aeq and oeq are the equilibrium values of a® and «®), respectively, ¢ is a
material parameter and y, = >, |y @]. Using the frequency factor @y, @@ is
expressed as @ @ = (wo/yor)|y @ |. In addition, Ag“), Agx) and @' @ in Eq. (5.19)
are calculated as

(@) 3
AW = “T [1 +2exp (T”)} =AW, (5.22)
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ra®

(@) _ (@)
a% =a
+ 2

(5.23)

5.3.2 Hardening Law for Crystalline Phase

To handle the inelastic phenomena of polymers in a unified manner in terms of the
chemical kinetics, we adopt the following thermal activation model (Kocks et al.

1975) for the calculation of )7(3) in Eq.(5.15), which can specifically express the
dependence of the yield stress on the ambient temperature differently from the strain
rate hardening law of Pan and.Rice (1983) employed in Hara and Shizawa (2013).

The inelastic shear strain rate ¥ (*) is expressed as

—AFoll —| T @{®)
kg6

(@)
T )exp

Y@ = popsen( , (5.24)

where ypg denotes the reference strain rate and Tég) is the shear strength for each
slip system. Conventionally, material constants p and g are introduced in the term
{1—| T ("‘)/tég)lp}q. In this paper, p and g are set to 1 and are not specified as
variables for simplicity. Moreover, we assume the relation rég)

ré%) and the flow stress g("‘), where « is a material parameter (see Sect.5.5.2.1). The

— 1g(® between

flow stress g(®) is assumed to be constant for each slip system.

5.4 Craze Evolution Equation

We adopt the craze evolution equation proposed in Hara and Shizawa (2013) for the
glassy phase. The craze density rate in each slip system ®@ is decomposed into a

craze nucleation rate c'ur(la) and craze growth rate cng), such that @ = d)r(la) + d)fga).

Also, d)r(la) and Cng) are expressed in terms of the chemical kinetics as follows:

o
—AG1(AF
o = i / 9 (AFy) exp (%) dAFy, (5.25)
) B
7 AGHr(AF
0@ =cb(()°‘)/¢‘“)(AFo) exp —AGxAFK) dAFy, (5.26)
g 2 kg6
0
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where AG| and AG; denote the activation energies required for craze nucleation
and growth, respectively, which are given as

AG; = CiAFy(1 — 1t /rom]) + Di(va/ve)", (5.27)

where C;, D; and p; (i = 1,2) are material parameters and y, is the oriented-
hardening strain. It is assumed that the craze nucleation rate is proportional to the
area of the remaining region where the craze can nucleate, given as the difference
between the saturated craze nucleation density wl(l‘f) and the present craze nucleation
density a)r(la). It is also assumed that the craze growth rate is proportional to the

craze nucleation density wy () Therefore, the reference craze nucleation rate a)( o)

and growth rate a)(“) in Egs. (5.25) and (5.26), respectively, can be represented as

i) =n, < 0@ — 0@ >, (5.28)
gy = grol®, (5.29)
where n, and g, are material constants and < ... > are the Macaulay brackets,

which give a value of zero when (a)(a) w{(}a)) takes a negative value. By modify-

ing the equation for the saturated craze number density proposed by Kitagawa and
Kawagoe (1978) to make it applicable to our craze evolution model, the saturated

craze nucleation density w( O

0@ =o /qa(“)(AFo) exp (W) dAF, (5.30)
B

is expressed as

where @* denotes the total area density where the craze can nucleate.

5.5 FE Simulation and Discussion

5.5.1 Analysis with Specimen Model for Glassy Polymer

‘We conduct an FE simulation for a glassy polymer using the molecular chain plastic-
ity model and the craze evolution equation described in Sects.5.2.2 and 5.4, respec-
tively. Note that the homogenization method is not used in this section.

5.5.1.1 Computational Model for Glassy Polymer

In our computational model, we consider a PMMA plate whose length L is 60.0 mm,
initial mean width is W and thickness is H as shown in Fig.5.5a. The aspect ratio is
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() (b)
L| B I:._
BN W+;W~» -

xx,-plane Rotation around x,-axis
Fig. 5.5 Analysis condition for glassy polymer, a Mesh of glassy polymer specimen, b Determi-

nation process of initial direction of molecular chain base vectors

L/W =3and H/W = 0.1. The variable AW is the initial geometrical imperfection,
which expresses the geometrical heterogeneity of the material and is written in the
form (Tvergaard et al. 1981)

AW = W[—Wjcos(mwxz/L) + W> cos(mymxy/L)], (5.31)
where W1 = 0.00375 and W, = 0.00150 are the amplitudes of the imperfection and
my, = 4.00 is the number of waves. The boundary conditions of the displacement

u; are given as follows:

ur=ur=u3=0atx;=x=x3=0

u, =0 at x2=0 (5.32)
u =U at xp =1L
The strain rate and ambient temperature are fixed to U/L = 0.550ks~! and

6 = 338K, respectively, which are the same values as the experiment (Inoue and
Yamamoto 1982). Eight-node hexagonal elements are used and the number of ele-
ments is 1536. Forty sets of slip systems are assigned to each integration point using
the extended Taylor model (Asaro and Needleman 1985).

The initial directions of molecular chain base vectors are determined by the fol-
lowing procedure. First, qbf]) and ¢§2) are given so that slip system 1 is symmet-
ric with respect to slip system 2 about the x;-axis in the xjxp-plane as shown in
Fig.5.5b. Next, slip systems 1 and 2 are rotated equally around the x;-axis by the

angle d:él) = qbéz). The directions of slip systems 3 and 4 are determined by the same

process as for slip systems 1 and 2. The angles ¢§1) and ¢§3) are given by uniformly

distributed random numbers in the range of 10°-~70°. The angle ¢§1) is a uniformly
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Table 5.1 Material constants and numerical parameters used in glassy phase

Elastic parameters Ep = 700 MPa, vy = 0.350

Inelastic response law of Hasan and Boyce you = 15.0 ns~!, Tog = 42.5MPa,

@ =600ns~!, ¢ =5.00ap = 1.06eV,

aeq = 1.00eV, ap = 0.0435¢€V, aeq = 1.00eV
Craze evolution equation ny = 10.0ns™ !, gr = l.OOpS*I,

y. = 0.800, w* = 1.00

Ci =C, =0.500, D; = D, =0.0252¢V,

p1 = p2 =500

distributed random number in the range of 0°-90°, and ¢§3) = qbél) 4+ 90°. Note that
the same set of initial directions is assigned for each integration point to make the
initial state homogeneous. The material constants used here are listed in Table 5.1,
where vy denotes Poisson’s ratio and ag and o are the initial values of @ and @,
respectively. Moreover, S in Eq.(5.18) is set to 0.00eV for all analyses because
reverse-loading analysis is not conducted in this study.

5.5.1.2 Computational Results for Glassy Polymer

Figure 5.6 shows experimental data of the uniaxial tension for PMMA obtained by
Inoue and Yamamoto (1982) and the numerically obtained nominal stress-strain
curve. We can confirm the validity of the present models since the numerical stress-
strain curve closely fits the experimental plots. Moreover, the distributions of the
equivalent inelastic strain rate, those of the craze density and the orientation state
of molecular chains at 30, 50 and 70 % elongations are shown in Fig.5.7. Note that
the material constants @ and deq used in Fig. 5.7 have been modified to @y = 1.20
ps~! and aeq = 0.860¢V, respectively, so that the neck formation after yielding is
relatively strengthened. In Fig. 5.7c, the length and color of the line segment denote
the orientation intensity ®, and the direction of the line segment expresses the orien-
tation direction §. First, we can see from Fig. 5.7a that the neck forms in the center

Fig. 5.6 Experimental plots 50
and numerically obtained
nominal stress-strain curve E 40 b
obtained by FE simulation 2, N
for PMMA using present 2 30 .
model for glassy phase and g * 2 *
material constants shown in C—C: 20 b
Table 5.1 g + Experimental
2 10 — Numerical
0 1 1 1
0 0.2 0.4 0.6 0.8

Nominal strain
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Fig. 5.7 Computational results for glassy polymer, a Distributions of equivalent inelastic strain
rate, b Distributions of craze density, ¢ Orientation of molecular chains, d Direction of molecular
chains in eight-chain model at sampling points I and II

region of the specimen at 30 % elongation and propagates in the tensile direction with
the high-strain-rate shear band. The region with high craze density also propagates
with increasing the craze density shown in Fig.5.7b. Furthermore, the propagation
of the high-strain-rate shear band coincides with the propagation of the region with
high craze density. Comparing Fig.5.7c, d, we find that the directions of the molec-
ular chains approach each other in the eight-chain model at sampling point I in the
specimen, where the orientation intensity is high. On the other hand, the directions
of the molecular chains are almost unchanged from the initial state in the eight-chain
model at point II, located in a region of the specimen with a low orientation intensity.
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Therefore, the anisotropy of the molecular chains can be expressed by Eq.(5.11),
which is newly proposed in this paper. In addition, the orientation of molecular
chains in the necking region can be observed in Fig.5.7c. Consequently, the char-
acteristic deformation and crazing behaviors of ductile polymers can be clarified
by three-dimensional analysis similar to the two-dimensional analysis conducted in
Hara and Shizawa (2013).

5.5.2 Single-Phase Analysis for Crystalline Phase

In this section, by conducting FE simulations for the crystalline phase of a crystalline
polymer using the crystal plasticity model described in Sect.5.2.3, the orientations
of the molecular chains and the stress-strain responses are investigated.

5.5.2.1 Computational Model for Crystalline Phase

We assume a microscopic region in the crystalline phase of PP undergoing uniaxial
tension and apply a periodic boundary condition to the analytical region as shown in
Fig.5.8. The analytical region is cubic and divided into eight elements by eight-node
hexagonal elements. A constant deformation rate of Dgz = 1.00s! is applied to
the analytical region. The ambient temperature 6 is set to 293 K to represent room
temperature. Furthermore, the initial directions of the crystal base vectors in the
crystalline phase are determined by the Euler angle as follows:

(@) ~(@)
s =Ry Ry,Ry;s0 (5.33)
(@) ~ (@)
m =Ry, R,R,my , (5.34)

Fig. 5.8 Schematic diagram
of computational model for
crystalline phase (mixed
lamellar structure and a
microscopic region in the
crystalline phase)

Crystalline phase
/— Glassy phase

Analytical region
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: , . ~(@) ~ (@)
where Ry, denotes the rotation matrix around the y;-axis, and s9 and mo  are

the crystal base vectors when the a, b and ¢ axes of the crystal lattice coincide with
the y1, y» and y3 axes of the microstructure, respectively.

Here, it is desirable that the material parameters A I? o and « in Eq.(5.24) are
determined from the material parameters in the strain rate hardening law by Pan and
Rice (1983), which is described as

Lo | ~@) |

(@) . ~() | T

Y  =ypsgn(t ) |——| , (5.35)
g

where ypp denotes the reference strain rate and m is the strain rate sensitivity. We

consider the case in which the resolved shear stress takes a positive value in the

following formulation for convenience. Assuming that the resolved shear stress ?(a)

in Egs.(5.24) and (5.35) takes the same value and that the strain rate sensitivities
@ e

(Int /Iny )ofEgs.(5.24)and (5.35) are identical, we can derive the following

relations:

-A(&) -A(&)
K= y— 1—mln y— , (5.36)
Yop YOE
@\ "
~ kg6 | v
AFo=x22 2| . (5.37)
m Yop

Substituting the material parameters yop and m into Egs. (5.36) and (5.37), we can
—~ (@)
obtain k and A F ¢ corresponding to the substituted parameters. Note that ¥ is
set to ypp for all slip systems and that 6 denotes the temperature observed during the
experimental calibration of m. Therefore, yof is the only arbitrary value in the above
formulation. In this paper, ypp = 1.00s~!, m = 0.09 and & = 343K are substituted
into Eqs.(5.36) and (5.37) on the basis of the paper by G’sell et al. (1997), and
YoE is set to 15.0ns™!. The material parameters used for the crystalline phase are

summarized in Table 5.2.
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5.5.2.2 Computational Results for Crystalline Phase

Figure 5.9 illustrates numerically obtained true stress-strain curves whose initial crys-
tal basis vectors are rotated around only one axis, where ¢y, denotes the rotation
angle around the y;-axis. In the numerical results for rotation around the yj-axis,
i.e., Fig.5.9a, the stress increases sharply after yielding in all analyses, whereas the
stress has a constant value after strain hardening in Fig. 5.9c. In Fig.5.9b, the stress
takes a constant value immediately after yielding regardless of the initial direction
of the crystal basis.

To investigate the relation between these stress-strain responses and the direc-
tion of molecular chains, we conducted further analyses with the initial directions of
crystal base vectors that allow the easy visualization of molecular chains. The numer-
ical stress-strain curves for the initial directions (¢y, , ¢y, , ¢y;) = (90°, 135°, 0°) and
(0°,90°, 60°) are shown in Fig.5.10a, b, respectively. From Fig.5.10a, we can see
that the molecular chains are oriented in the tensile direction, i.e., the y,-axis direction
during plastic deformation and that the stress rapidly increases owing to the orienta-
tion of the molecular chains. This is caused by a decrease in the resolved shear stress
for the chain slip systems, and the penalty constant facilitates a sharp increase in
the stress. On the other hand, In Fig.5.10b, the molecular chains are rotated around
the direction of the molecular chains, i.e., the c-axis direction of the crystal lattice,
because the slip system that can be most easily activated among the transverse slip
systems, i.e., slip system 6 as shown in Table 5.2, is oriented in the tensile direction.
After the orientation, the slip continuously occurs by activation of slip systems 7

Table 5.2 Material constants and numerical parameters used in crystalline phase

Elastic parameters E o = 4.00GPa, v o =0.330, ¥ = 100 GPa

Thermal activation model YOE = 15.0ns" 1, A 1? o=1.02eV,xk =3.10

Flow stress [MPa] (G’sell et al. 1997) g =128,8@ =4.00,¢® =134,¢g® =134
g™ =128,8© =4.00,¢7 =134,¢g® =134

(a) (b) (c)
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Fig. 5.9 Numerical stress-strain responses in crystalline phase with various initial directions of
crystal base vectors rotated around only one axis, a Rotated around y;-axis (¢y, = ¢y, = 0°), b
Rotated around y-axis (¢y; = ¢y, = 0°), ¢ Rotated around y3-axis (¢y, = ¢,, = 0°)
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Fig. 5.10 Typical orientation modes of crystalline phase under uniaxial tension (left true stress-
strain curve, right orientation state of molecular chains), a Mode 1: primary slip system of chain
slip is oriented in tensile direction, b Mode 2: primary slip system of transverse slip is oriented in
tensile direction

and 8, which are still subject to the resolved shear stress. It results in a plastic flow
state with a constant stress after the hardening. Therefore, we can conclude that
the orientation behavior of the crystalline phase, which has an orthorhombic crystal
structure, can be classified into two modes depending on whether its primary slip
system becomes a chain slip or transverse slip. This is the main difference from the
analysis using the two-dimensional slip system in our previous paper. The stress-
strain responses in Fig. 5.9a results from orientation mode 1, as shown in Fig.5.10a,
and those in Fig.5.9b, ¢ are caused by orientation mode 2 as shown in Fig.5.10b.
Although the crystal base vectors are only rotated around the y,-axis, the chain
direction is perpendicular to the tensile direction regardless of the angle of rotation,
similarly to in Fig.5.10b-(iii), (iv). Thus, a hardening stage does not appear, and the
stress always takes a constant value during plastic deformation in Fig.5.9b.

5.5.3 Multiscale Analysis for Ductile Polymers

In this section, we carry out multiscale FE simulations for ductile polymers using all
the models mentioned in Sects. 5.2-5.4 including the homogenization method. Unit
cells consisting of only the glassy phase or both the glassy and crystalline phases are
employed as microscopic structures to discuss an effect of the crystalline phase on
deformation behaviors in macroscopic and microscopic structures.
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Fig. 5.11 Computational models of macro-micro coupling analysis, a Computational model and
mesh of macroscopic specimen, b Mesh of unit cell for glassy polymer and crystalline polymer

5.5.3.1 Computational Model for Ductile Polymers

We assume a PP plate, which has the same size and aspect ratio as the computational
model in Sect.5.5.1.1 as shown in Fig. 5.11a. Here, only one-eighth of the specimen
model is calculated assuming symmetric deformation to reduce the computational
cost. A constant strain rate of 2U’/L = 1.00s~! is applied to the edge of the
specimen. Fight-node hexagonal elements are used and the number of elements is
192. As the microscopic structure, we assume a square plate of width w = 0.900pum
and thickness 7 = 0.0500 pm as shown in Fig. 5.11b. A periodic boundary condition
and the macroscopic deformation rate D® obtained by macroscopic analysis are
applied to the unit cells. The unit cell comprising only the glassy phase is used to
analyze a glassy polymer, and the unit cell including the nine crystalline phases in
the glassy matrix is employed in the analysis of a crystalline polymer. Each unit
cell is divided into 2096 four-node tetrahedron elements. The ambient temperature
0 is set to 293 K. One entangled point is assigned to each integration point in the
glassy phase of both polymers since the microscopic heterogeneity is satisfactorily
expressed by introducing the homogenization method. The initial directions of the
molecular chain base vectors are determined in the same way as in Sect.5.5.1.1. Note

that the angles ¢§1) and ¢§3) are given by uniformly distributed random numbers in the
range of 10°-75°, differently from in Sect. 5.5.1.1. The Euler angles (¢y, , ¢y,, ¢y;)
for the crystalline phases are given by random numbers in the range of 0°~180° that
are distributed uniformly at intervals of 10°. The material constants used for the
glassy phases are given in Table 5.1 but with the modified values Eg = 1.80GPa,
vo = 0.330, t9 = 19.0MPa, w = 1.00ps_1 and aeq = 0.900€V, and for the
crystalline phases, the values given in Table 5.2 are used.
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5.5.3.2 Computational Results for Ductile Polymers

The numerically obtained nominal stress-strain curves for the glassy polymer and
crystalline polymer are shown with experimental plots for PP (Murakami et al. 2002)
in Fig.5.12. It is found that the present model accurately predicts the experimental
results for the crystalline polymer. The level stress after strain softening of the crys-
talline polymer is higher than that for the glassy polymer because the flow stress of
the crystalline phase is greater than that of the glassy phase. The distributions of the
equivalent inelastic strain rate and the craze density in the glassy polymer and crys-
talline polymer at 25 % elongation are exhibited in Figs.5.13 and 5.14, respectively.
Note that the computational results for the macroscopic specimen are expressed as
those for the full-specimen model by copying the one-eighth model. In the glassy
polymer, the high-strain-rate shear band and craze-concentration region propagate
in the tensile direction, although those in the crystalline polymer become difficult to

= 301
& . .
2
@« 20 .
é 0 ¢ Experimental
@ —— Glassy polymer
g 10 — Crystalline polymer
5

0 1 1

0 0.1 0.2 0.3

Nominal strain

Fig.5.12 Experimental plots and numerical nominal stress-strain curves obtained by FE simulation
for PP using present model for glassy polymer and crystalline polymer
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Fig. 5.13 Distributions of equivalent inelastic strain rate and craze density in glassy polymer at
25 % elongation, a Macroscopic specimen, b Unit cell at sampling point I
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Fig. 5.14 Distributions of equivalent inelastic strain rate and craze density in crystalline polymer
at 25 % elongation, a Macroscopic specimen, b Unit cell at sampling point I

localize, corresponding to the increase in the level stress shown in Fig.5.12. More-
over, from the distribution of the equivalent inelastic strain rate in the unit cell of
the glassy polymer, we can confirm that the inhomogeneous inelastic deformation,
i.e., the micro-shear band, appears differently from the computational results in
Sect.5.5.1.2. In the crystalline polymer, microscopic deformation is concentrated
at some of the crystalline phases since the crystalline phases become softer in the
tensile direction than the glassy phase depending on the initial crystal direction. On
the other hand, the craze density in the unit cell is not clearly distributed in the glassy
phase, while the craze density becomes zero in the crystalline phases. Therefore, the
craze density develops so that the craze threads between the crystalline phases in the
crystalline polymer.

5.6 Conclusions

In this paper, we employed the molecular chain plasticity and crystal plasticity models
for the glassy and crystalline phases in ductile polymers, respectively. The scalar
quantities for inelastic phenomena including craze evolution are expressed on the
basis of the chemical kinetics. We developed a material model that can handle the
deformation and damage behaviors of ductile polymers in the unified manner of the
crystal-plasticity-based model and chemical kinetics, and the model was extended
to have three-dimensional slip systems. Three-dimensional FE simulations using
the present model were carried out for ductile polymers under a uniaxial tensile
condition. The conclusions obtained in this study are summarized as follows.
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1. Characteristic behaviors in ductile polymers under uniaxial tension, i.e., the for-
mation and propagation of a neck with a high-strain-rate shear band and a high-
craze-density region with increasing a craze density, can be reproduced by the
three-dimensional analysis of a glassy polymer.

2. By performing the single-phase analysis of a crystalline phase, we find that the
orientation behavior of molecular chains can be classified into two modes, i.e., the
orientation of molecular chains in the tensile direction, resulting in rapid strain
hardening, and the orientation of perpendicular direction to molecular chains, i.e.,
a-axis direction of a crystal lattice, in the tensile direction, yielding a constant
stress.

3. As aresult of the multiscale simulations using the homogenization method that
couples a macroscopic specimen with unit cells assuming glassy and crystalline
polymers, it is suggested that the deformation rate and craze density of the crys-
talline polymer are difficult to localize in the macroscopic specimen compared
with those of the glassy polymer owing to inclusion of crystalline phases.
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Chapter 6
Inelastic Deformation and Creep-Fatigue
Life of Plate-Fin Structures

Toshihide Igari, Fumiko Kawashima, Yorikata Mizokami
and Nobutada Ohno

Abstract The equivalent-homogeneous-solid concept, i.e., the homogenization
approach, is often applied to inelastic analysis and creep-fatigue life prediction for
plate-fin heat exchangers such as those used in high-temperature gas cooled reac-
tors. The applicability of this approach to actual plate-fin structures manufactured
by means of brazing still remains to be clarified. Firstly in this paper, basic features
of the inelastic behavior of ultra-fine plate-fin structures with offset were numer-
ically clarified by homogenization FEM analysis for a unit cell model. Secondly,
considering the weakest loading direction, uniaxial tensile, creep and creep-fatigue
tests on small-size plate-fin structures made of SUS316 were carried out at 600 °C.
Lastly, thermal fatigue tests using the partial model of heat exchangers were per-
formed under cyclic loading of temperature distribution. The results obtained can
be summarized as follows. The macroscopic stress-strain behavior and macroscopic
strength of plate-fin structures were successfully predicted by the homogenization
approach. Fatigue failure, on the other hand, is sensitive to local structures such as
the brazing filler metal shape in plate-fins, and experiments are necessary to obtain
the fatigue strength reduction of plate-fin structures. Thermal fatigue life predic-
tion based on anisotropic elastic-plastic FEM analysis yielded good results showing
predicted life of 2,100 cycles, or 60 % of the observed life, thus within a factor of 2.
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6.1 Introduction

When undertaking the structural design of a plate-fin-type heat exchanger such
as for recuperative heat exchangers (RHX) used in high-temperature gas cooled
reactors (HTGR) (Ishiyama et al. 2001; Kawashima et al. 2007), the equivalent-
homogeneous-solid concept, i.e., the homogenization approach, is necessary for
modeling large-scale heat exchangers with numerous periodic local structures.
Figure 6.1 shows the outline of the equivalent-homogeneous-solid concept applied
to the structural design of a plate-fin structure. Both the macroscopic cross section
area and the macroscopic length of the equivalent-homogeneous-solid are the same
as those of a unit cell of the periodical structure. The strength of the base material
of the plate and fin is the base line for strength evaluation. In the structural design
taking into account primary loads such as internal pressure, strength reduction in
tensile and creep loading in the plate-fin structure is considered by multiplying the
“stress magnification factor” with the macroscopic stress. With respect to thermal
fatigue life prediction for cyclic loading of temperature distribution, fatigue strength
reduction in plate-fin structures is considered by multiplying the “strain range mag-
nification factor” with the macroscopic strain range from structural analysis based
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Fig. 6.1 Outline of the equivalent-homogeneous-solid concept
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on “homogenization modeling”. The essential features of homogenization model-
ing, the stress magnification and strain concentration factors, can be studied by FEM
analysis for the unit cell model. Experimental verification is required because the
local configuration of brazing filler material can have an influence on deformation
and failure of plate-fin structures.

The equivalent-homogeneous solid concept, i.e., the homogenization approach,
was itself originally adopted for the structural design of perforated structures with
triangular patterns of circular holes in heat exchangers, such as elastic-plastic design
procedure (O’Donnell and Porowski 1982), creep deformation and creep rupture life
prediction (Igari et al. 1986, 2001) and application to thermal fatigue life prediction
(Tokiyoshi et al. 2001; Igari et al. 2003).

Regarding the application of the homogenization approach to plate-fin struc-
tures, on the other hand, several works taking both experimental and the numerical
approaches have been published in the last decade, such as pressure burst tests of
small-size core models (Ishiyama et al. 2001), high-temperature strength behavior
(Kawashima et al. 2007; Jiang et al. 2008), fabrication process by means of brazing
(Mizokami et al. 2010) and high-temperature structural design procedure (Mizokami
et al. 2013). In the homogenization analysis in previous works (Kawashima et al.
2007), both isotropy and the conventional assumption of volume-incompressibility in
macroscopic inelastic deformation were incorporated. Recently, a material model was
proposed considering both anisotropy in macroscopic power-law creep and volume-
compressibility in macroscopic creep strain (Tsuda et al. 2010; Ohno et al. 2012),
based on the numerical simulation of an idealized configuration of a unit cell of
ultra-fine plate-fin structures without offset (the meaning of offset is discussed in
Sect. 6.3).

Firstly in this paper, basic features of elastic-plastic behavior of an idealized ultra-
fine plate-fin structure with offset were clarified by homogenization FEM analysis,
such as multi-axial anisotropy of macroscopic deformation and stress-strain concen-
tration. Secondly, uniaxial tensile, creep and creep-fatigue tests were carried out at
600 °C, using small-size plate-fin specimens of SUS316 (JIS SUS316 equivalent to
ASME Type 316 stainless steel) to clarify the actual strength characteristics of the
brazed structure. Lastly, a thermal fatigue test using a structural model with a 100 mm
cubic core corresponding to the plate-fin was undertaken to obtain the crack initiation
life under a cyclically loaded temperature gradient. Inelastic analysis for the thermal
fatigue test was performed to predict fatigue life, based on homogenization modeling
for plate-fin structures.

6.2 Outline of a Plate-Fin Heat Exchanger

Figure 6.2 shows the outline of the planning design (Mizokami et al. 2010) of RHX for
HTGR whose core is composed of a periodic structure of SUS316 plate and fin. Dur-
ing steady state operation, the maximum temperature of helium gas is 600 °C, and the
pressure difference between the two counter flows is 4.7 MPa. Fins are manufactured
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Fig. 6.2 Outline of the plate-fin heat exchanger

by means of a forming press from a flat plate with a thickness of 0.2 mm; the thickness
of the pressed fins varies from 0.15 to 0.2 mm; the height is 1.0 mm; the pitch, i.e.,
half the distance between the tops of the neighboring fins, is 1.2 mm; the length of
fins in the flow direction is 5.0 mm; and there is an offset of 5.0 mm for neighboring
fins in the flow direction to increase the heat transfer performance.

Both the flat plates with a thickness of 0.5 mm and the fins are vertically stacked,
and are brazed into periodic plate-fin structures in vacuum conditions in an electric
furnace. The melting point of the brazing filler metal is 1080 °C. During the brazing,
a pressure of 0.2 MPa is loaded towards the stacking direction on the work to avoid
incomplete bonding.

6.3 Elastic-Plastic Homogenization Analysis
of Unit Cell Model

An example of a unit cell model, considering the periodic repetition of configuration,
is shown in Fig. 6.3a. In this figure, two layers of plate and fin are modeled, where the
thickness of plate is 0.5 mm, and the height and thickness of fin are 1.0 and 0.2 mm,
respectively. The three dimensional size of the model is set as follows: the width x|
is 2.4mm, i.e., double the pitch of fin; the height y; is 3mm, i.e. two fins and two
plates, where the upper and bottom plates are of half thickness in consideration of
symmetry; and the length z; is 10mm, i.e., two pitches of offset length. Figure 6.3b
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Fig. 6.3 FEM model for unit cell. a A unit cell model (Phase 0°) with upper plate. b A unit cell
model (Phase 0°) without upper plate. ¢ 3 types of phase in the unit cell model (a part of each model
is shown)

shows the configuration of an offset fin by removing the upper plate from Fig. 6.3a.
At the both ends of the offset length of 5 mm, offset of 0.6 mm in the x-direction is
seen. To simulate the periodic repetition of the plate-fin structure, periodic boundary
conditions (Tsuda et al. 2010) were employed in the unit cell model. Figure 6.3c
shows a part of the unit cell model with three types of phase angle. The phase angle
expresses the difference in the stacking pattern of the upper and lower layers. Here,
three types of phase angle (0°, 90° and 180°) were considered, as shown in the figure.
0° means that the location of the two peaks in the upper and lower fins are the same;
180 ° means that the location of the peaks in the upper fins and lower fins are opposite.
Since the shape of the brazing filler metal determined by the surface tension of the
melted filler metal is not known before brazing, the shape of the brazing filler metal
is not considered in this modeling. As shown in Fig. 6.12 for the actual configuration
of brazing filler metal shape, the influence of the filler metal is large at both ends of
the offset length, and is small at the center of the offset length.
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The elastic-plastic stress-strain curve for the base material itself was that for
SUS316 at 600°C, as expressed in the following equation (Kawashima et al. 2007)

8_0+ o —0p % ©.1)
T E K ’ '

where Young’s modulus £ = 1.488 x 10° MPa, Poisson’s ratio v = 0.31, propor-
tional limit o}, = 106.2MPa, coefficient K = 335.9 MPa and exponent m = 0.363.
The uniaxial stress-strain relation indicated in Eq. (6.1) was multi-linearly approxi-
mated to use the cyclic plasticity model of Ohno and Wang (1993). Three types of
loading in the x, y and z-directions were applied to the unit cell model to obtain the
relation between macroscopic stress o* and macroscopic strain ¢* in each loading
direction. The definition of the macroscopic stress o* and strain ¢* for the case of
loading in the y-direction, for example, is considered for the area of “x; x z;” and
the gage length of y, respectively.

Figure 6.4 shows the macroscopic stress-strain behavior of a unit cell model with
a phase angle of 0°. When compared with the flow stress of the base material itself,
the macroscopic flow stresses in the x and z-directions were approximately 50 %,
and that in the y-direction was approximately 8 %. This anisotropy in macroscopic
stress-strain behavior was nearly the same as in the case without offset (Tsuda et al.
2010; Ohno et al. 2012).

Figure 6.5 shows the macroscopic strain response in the x- and z-directions in
the case of loading in the y-direction. Along with the increase of 8;‘,, both ¢} and
s;‘ showed gradual reduction. This reduction, however, was much smaller than the
conventional assumption of volume-incompressibility in plastic strain (expressed as
the broken line). At the point of &§ = 0.5 %, both £} and & in the isotropic and
incompressible material should be approximately —0.25 %, but the actual values
were below —0.02 %. The reason for this tendency is that the plate itself cannot
easily shrink in the x- and z-directions with loading in the y-direction.
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Figure 6.6 shows the influence of both fin-pitch and phase angle on the macro-
scopic Young’s modulus with loading in y-direction. Smaller pitch and larger phase
angle are found to give the larger macroscopic Young’s modulus. In the case of pitch
of 1.2mm, for example, the ratio E*/E is in the range of 0.08-0.12, depending
on the phase angle. The macroscopic Young’s modulus for a phase angle of 180°
is approximately 40 % larger than that of 0°, and that for a phase angle of 90° is
between the other two phase angles. The influence of phase angle was found to be
negligible in the range of plastic deformation.

Figure 6.7 shows the distribution of the local strain concentration factor K, in Eq.
(6.2), along the fin length AB in the figure, at a macroscopic strain of 0.15 % in the
y-direction loading for the model with a phase angle of 0°, as shown in Fig. 6.3.

K. = 8;’:‘* (6.2)
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The local strain concentration factor K at the center position of the line AB was 2.1 in
the elastic range, and 3.71n the elastic-plastic range. The local strain concentration
factor in the elastic-plastic range at ends A and B showed a peak of 10.3, almost three
times higher than that at the center of the fin length. As shown in Fig. 6.12 in the next
section, the strain concentration in the actual plate-fin shows a different tendency
from the results in this section, because the existence of brazing filler metal at both
ends of offset length (at ends A and B) drastically reduces the strain concentration.
At the center of the offset length of 5mm, i.e., the center of A and B, the influence
of brazing filler metal is small.
Five kinds of stress and strain concentration factors appear in this paper; Table 6.1
summarizes these factors, including the strain concentration factor in Eq. (6.2).

Table 6.1 Summary of stress and strain concentration factors

Notation Eq. no. Definition | Note
K. (6.2) Sm:X Monotonic loading in Fig. 6.7. emax is the maximum
€ local strain on a fin surface along AB line in Fig. 6.7
K, (6.3) Uf:ﬂure Monotonic loading. o} .. is an experimental failure
Ofailure strength of plate-fin. oyajjyre is the failure strength of
base metal
E
K f (6.4) - Monotonic loading. Simplified prediction of K
E based on the Young’s modulus of base metal and
plate-fin
R Aémax . . . . . .
K; 6.5) " Cyclic loading, i.e. fatigue loading. Strain ranges of
Ag base metal and plate-fin at a given fatigue life
K; (6.10) Imaxe Monotonic loading. oom = %a* in Eq. (6.8). omaxe
Onom

is an elastic maximum local stress on the fin surface
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6.4 Uniaxial Strength Tests with Small Plate-Fin Specimens

6.4.1 Tensile and Creep Tests

Figure 6.8 shows a small plate-fin specimen with a rectangular cross-section of
30 x 10 mm, with eight layers of fins and nine layers of plates, and two solid pieces
on the top and bottom. All materials are made of SUS316. These small specimens
were subjected to tensile load through pins and holes located in the two solid pieces.
The gage length of the tensile and fatigue tests was 15 mm, and that of the creep test
was 25 mm. The macroscopic stress o* was determined by dividing the tensile load
by the cross section area (30 x 10 mm). The macroscopic strain £* was determined by
dividing the displacement of gage length by the height of the plate-fin part (12 mm).
All tests were performed in an air environment. Test specimens were heated to a
uniform temperature using an electric furnace in both the tensile and creep tests. In
the fatigue test shown in the next section, however, the specimens were heated by
high frequency.

Figure 6.9 summarizes the results of the tensile test in the temperature range from
room temperature to 700 °C. Four types of brazing conditions, from No. 1 to 4 were
adopted (Kawashima 2008), although condition No. 3 (4days at 1080°C with the
filler metal thickness of 100 wm) is the main focus. In the figure, the open circle
and open square symbols depict brazing condition No. 3. The failure location was a
fin, and the failure mode was ductile failure in all conditions for No. 3. In the case
of No. 3 at 600°C, strength reduction from tensile strength and 0.2 % yield stress
of the base material were 1/(12.4) and 1/(7.64), respectively (Kawashima 2008).
The tensile strength o and 0.2 % yield stress oy of the base material multiplied by
the reduction are respectively shown as solid and broken lines in Fig.6.9. Although
there is scattering depending on the brazing condition, experimental data for No. 3
corresponded fairly well to the data trend of the solid and broken lines.

Two types of the stress magnification factor K, i.e., inverse values of the strength
reduction, were determined as shown in Eq. (6.3) for tensile strength and 0.2 % yield
stress

__ Ofailure

Ky =

(6.3)

%
Ofailure

Fig. 6.8 Plate-fin small 150mm |
specimen

8 layers, about 12Zmm
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The inverse value of “12.4” for the case of tensile strength is 8 %, nearly the same
reduction as the plastic flow stress from homogenization FEM in the previous section.

Figure 6.10 shows the results of the creep test at 600 °C. The test was carried out
up until final rupture in the three loading cases. Among these three cases, the test
with macroscopic stress of 49 MPa ruptured almost instantaneously. The other two
cases with macroscopic stresses of 29 and 25 MPa ruptured respectively at 83.5 and
467.8 h. The failure location was at the fin, and failure mode was ductile creep failure
in all three cases. In Fig. 6.10, rupture times for these three cases are presented as
solid circles, and those for the other nine conditions being interrupted before final
rupture are indicated as open circles. When compared with the creep rupture data for
the base material (Kawashima 2008), strength reduction for the three ruptured cases
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was from 1/(13.4) to 1/(10.5), as shown in Fig. 6.10. The stress magnification factor
K, in Eq. (6.3) for the case of the creep test is the inverse value of these strength
reductions, in the range of 10.5-13.4 depending on macroscopic stress and rupture
time.

When the creep test results are extrapolated to the long-term side, the macroscopic
stress corresponding to the RHX design rupture life of 2.5 x 10° h is predicted to be
13.1 MPa. Long-term creep rupture data for the plate-fin specimen are necessary to
confirm the allowable stress in the structural design for RHX.

In order to discuss the stress dependence of strength reduction in the tensile and
creep tests, the stress magnification factors from these tests are plotted against the
applied stress as shown in Fig. 6.11. The stress magnification factor as shown in Eq.
(6.4) is also included here, where the ratio of Young’s modulus for the base material
and plate-fin structure is obtained from the homogenization FEM of the unit cell.

kt=E (6.4)
o E* .
Equation (6.4) is a simplified prediction of K, in Eq. (6.3). The idea of using the
ratio of Young’s modulus for undamaged and damaged material is shown in Lemaitre
(1985) as describing the effective stress in a damage mechanics approach for ductile
fracture. Equation (6.4) gives values of 8.3 to 12.2 for phase angles 180° and 0°,
respectively. This range is in basic accordance with those from the tensile and creep
tests of the plate-fin specimens. Although the phase angle of the fin is not controlled
in the manufacturing process, Eq. (6.4), based on the ratio of Young’s modulus from
FEM, can serve as a preliminary method for predicting the strength of the plate-fin

structure.

6.4.2 Fatigue Tests

Fatigue tests of the plate-fin specimens were carried out at 600°C under strain-
controlled conditions with a macroscopic strain range from 0.121 to 0.577 %. The
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brazing condition for the fatigue test specimens was No. 3 (4 days at 1080 °C with
filler metal thickness of 100 wm). Three cases in the tests include a strain hold at the
maximum tensile strain for 10 or 60 min to examine the creep-fatigue interaction.
The strain waveform was triangular and the macroscopic strain rate was 6 cpm.
Fatigue life N was determined as a cycle showing a 25 % decrease in macroscopic
peak stress from the steady cycles. An observed image of crack initiation in the cross
section of the plate-fin specimen is shown in Fig. 6.12. The failure location was in the
fillet part of the fin, i.e., line AB as shown in Fig. 6.7 with respect to homogenization
FEM. Although the strain concentration at the two ends of AB was higher than that
at the center of line AB (as shown in Fig. 6.7 in the case without brazing filler metal),
cracks initiated at the center of the fin length in the actual configuration that had
brazing filler metal. The decrease of 25 % in peak stress for defining the fatigue
life of the plate-fin specimen is considered to represent a 25 % decrease of the total
cross-sectional area in all fins due to cracks.

Figure 6.13 shows the results of the fatigue test of the plate-fin specimen. Since
the results of the creep-fatigue test for the plate-fin specimen shown by the solid
circles nearly agreed with those for the fatigue test shown by the open circles, the
life reduction by strain hold was found to be negligible in the tested conditions, having
a rather short hold time duration. When comparing the fatigue data of the plate-fin
specimen with that of the base material (Kawashima 2008) shown as a broken line,
a reduction of fatigue strength, i.e., a reduction in strain range at a prescribed cycle
is found. The fatigue curve of the plate-fin specimen in the figure was found to have
an almost linear shape, differing from that of base material. As can be seen from
Fig.6.13, the strain range magnification factor in Eq. (6.5) shows a dependence on
fatigue life, showing 2.9-5.7 for fatigue life of 300-70,000 cycles

Ae
R _
K. = N (6.5)
N~ Brazing fillep
s metal o
7 o
=] g .
< g Start point
e of crack
4 _
Brazing filler

metal
Fin

Cross section in flow direction A-A Cross section from accumulated
direction (concept drawing)

Fig. 6.12 Conceptual drawing of the start point of fatigue crack
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€ 10 ‘ ”
fatigue tests and the strain % E SUS316 Plate-fin, 600°C
concentration factor < ) .

) Plate-fin Tl Base material

o 1001 10° (mm/mm/sec) |

2 3 -

o I e N A e T

- [

E 1 | \/

% 107 £ 1omin.

© f hold 60min.

8 F hold O Fatigue

% L ® (reep-fatigue

5 107 i M N i

= 10! 102 10° 104 10°

Fatigue life N25 (Cycles)

Fig. 6.14 Macroscopic T o 6

strain and strain
concentration factor

SUS316 Plate—fin
600°C

2t FEM i
Phase angle 0 A
Phase angle 180 A

Strain concentration factor K ¢

Strain range magnification factor K

T Fatigue test [ ] I
Neuber’s rule ]
0 ! ! ! !
0 0.1 0.2 0.3 0.4 0.5

Macroscopic strain e, Ag*/2 (%)

When considering the observed image of crack initiation in Fig. 6.12, an initial crack
area or a crack growth rate near the center of the fin length could be different depend-
ing on the fatigue life or the strain level. Figure 6.14 summarizes the relationship
between the experimentally obtained strain range magnification factor in Eq. (6.5),
and the strain amplitude. In this figure, the results for strain concentration at the
center of fin length by elastic-plastic analysis of the unit cell model in Fig.6.3 are
also depicted for the phase angles of 0° and 180°. As can be seen from the figure,
an increasing tendency of the strain concentration factor with increased strain ampli-
tude is similar for both the fatigue test and FEM results. Regarding the influence
of phase angle, results for the phase angle of 180° nearly coincides with those for
the fatigue test. Experimental results with the strain amplitude above 0.1 % show
slightly higher values than those by FEM for the phase angle of 180°. In this figure,
a simplified prediction of the strain concentration factor by Neuber’s rule is included.
A discussion on this prediction appears in the next section.
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6.4.3 Comparison with FEM Results

Figure6.15 shows an example of the macroscopic stress-strain curve in the first
cycle of the fatigue test, together with simulation results by FEM for the unit cell
with phases of 0° and 180 ° in Fig. 6.3. Young’s modulus from the experiment nearly
coincided with the FEM result of 180° in the elastic range. Plastic flow stress, on the
other hand, coincided with the averaged value for the two phase angles. Although the
actual shape of the brazing filler metal was neglected in FEM modeling of the unit
cell in Fig. 6.3, the influence of neglecting the local structure is found to be small in
describing the macroscopic stress-strain behavior of the plate-fin structure.

Asreported in Kawashima et al. (2007), a simplified prediction of the macroscopic
stress-strain behavior of the plate-fin structure was tried by way of the effective stress
concept. The following process is used in this approach: the stress-strain curve of
the base material in Eq. (6.6) is assumed; the macroscopic stress-strain curve of the
plate-fin structure is predicted by Eq. (6.7) using the same function as Eq. (6.6); and
the effective stress opon 1s defined in Eq. (6.8) by the ratio of Young’s modulus of the
base material and the equivalent-homogeneous solid. This is known as the reference
stress approach (Boyle and Spence 1983), in which the meaning of effective stress
is the stress of the base material giving the same macroscopic strain as the plate-fin
structure. Determination of the effective stress using the ratio of Young’s modulus
is based on the damage mechanics approach (Lemaitre 1985) for ductile fracture,
which defines the damage using the ratio of Young’s modulus of undamaged material
and damaged material with an array of defects

o
e=éetep=1+/f(0) (6.6)
0,
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The ratio of Young’s modulus E/E* in Eq. (6.8) is in the range of 8.3-12.2 depending
on the phase angle, as shown in Fig. 6.11. Predicted results of the macroscopic stress-
strain curve using Young’s modulus for the phase angle of 180°, E/E* = 8.3, are
shown in Fig.6.15. A simplified prediction of the effective stress by means of Eq.
(6.8) in the reference stress approach makes sense in describing macroscopic stress-
strain behavior.

The other viewpoint is the relation between the macroscopic stress-strain behav-
ior from the homogenization FEM and experimentally-obtained tensile and creep
strength. In the homogenization FEM for loading in the stacking-direction of the
plate-fin structure, plastic flow stress in the stacking direction was almost 8 % of that
for the base material. The inverse value of 8% is 12.5 and almost the same value
as the strength magnification factor 12.4 from the tensile strength of the plate-fin
specimen. The reason is that the failure mode of the plate-fin specimen is ductile
failure in the fins; in other words, the effective stress based on the ratio of Young’s
modulus in Eq. (6.8), or that based on the plastic flow stress, governed the ductile
failure in the fins.

A simplified evaluation method of K, in Eq. (6.2) on the basis of elastic analysis
is useful in the initial stage of structural design. Here, a simplified evaluation of K,
based on Neuber’s rule is examined. Neuber’s rule is defined in Eq. (6.9) for the case
of plate-fin structures (Kawashima et al. 2007)

Omax€max — Ktzanomgnom’ (6.9)
K, = Jmaxe (6.10)
Onom

where omax, €max> Kr» Onom and enom are, respectively, elastic-plastic maximum local
stress and strain at the cross section of the fillet in the fin, the elastic stress con-
centration factor in Eq. (6.10) and the above-mentioned effective stress and strain.
Considering the relation of Egs. (6.8) and (6.11), Eq. (6.9) can be rewritten as shown
by Eq. (6.12)

€nom = €%, (6.11)
E
OmaxEmax = Ktzﬁa*e* (6.12)

The strain concentration factor K, in Eq. (6.2) is obtained using Eqgs. (6.9) and
(6.11), where both pairs of “omax and emax” and “onem and epom” Obey the stress-
strain relationship of the base material in Eq. (6.1). The elastic stress concentration
factor K, of 2.64 at the center of the offset length by FEM for the unit cell model with a
phase angle of 180° in Fig. 6.3 is also used. The difference between K; of 2.64 and K
of 2.1 in Sect. 6.3 above is due to the difference of definition. Predicted results for the
strain concentration factor K, for a given macroscopic strain are shown in Fig. 6.14.
Predicted results by Neuber’s rule were found to be conservative when compared
with the FEM results for a phase angle of 180 °. From the standpoint of a comparison
with the experimental results, the increasing tendency in the experimental data differs
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from the predicted results based on the elastic stress concentration at the center of the
fin length. The reason is considered to be that the influence of the actual distribution
of strain concentration along the fin length is reflected in the experimental data. In
the range of strain amplitude below 0.2 %, however, the results predicted by Neuber’s
rule serve as a conservative estimate for the strain range magnification factor in the
plate-fin specimen fatigue experiment.

6.5 Thermal Fatigue Test of Plate-Fin Structure

6.5.1 Method and Results of Thermal Fatigue Test

Figure 6.16 shows the heat exchanger model for the thermal fatigue test. The model
having a cubic shape was made of SUS316, with the width, length and height of the
model being the same at 100 mm. The bottom and upper plate thickness was 6 mm,
and the thickness of side walls was 10 mm. Additional cooling fins were set on the
cooled surface in order to increase the cooling efficiency. The loading condition is
schematically depicted in the figure; first the heat exchanger model was heated to
a uniform temperature of 600 °C in an electric furnace, after which the model was
taken out of the furnace for cooling by blowing air into the core. In this process,
the temperature of the cooled surface fell rapidly, while the other side of the cooled
surface was kept at a high temperature. This resulted in the temperature distribution
in the plate-fin portion as schematically indicated in Fig. 6.16. One cycle of heating
and cooling was 40 min, and was repeated until cracks were observed on the cooled
surface.

Visual inspection using a digital microscope was carried out periodically. While
no cracks were observed at 3000 cycles, indication was seen after 3200 cycles.
After 3500 cycles several cracks were observed at the center of the cooled surface.
After the thermal fatigue test, the heat exchanger model was dissected for detailed
investigation. Figure 6.17 shows the cross-section area A-A near the center of the
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Fig. 6.16 Small heat exchanger model for thermal fatigue test
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cooled surface; Fig.6.17(a-1) is a view of the cooled surface; Fig.6.17(a-2) is cut
section A-A; Fig.6.17b is a zoom up of the cut section (I) showing cracks in the
fins; Fig.6.17c¢ is a zoom up of the cooled surface (IT) showing cracks in the fillet of
the fins. Almost 50 cracks were observed and the distance from the cooling surface
was measured for each crack. Figure 6.18 summarizes the distribution of the distance
from the cooled surface for all observe cracks. The distance of cracks from the cooled
surface was in the range of 0—40 mm, and 40 cracks, or 80 % of the total number of
cracks, were found to be in the range of 0—10 mm. These 40 cracks were considered
to have initiated at around 3200 cycles, and the other short cracks at distances of over
10mm were considered to have initiated at around 3500 cycles.

6.5.2 Fatigue Life Prediction Based on Homogenization
FEM Analysis

Transient temperature distribution during the thermal fatigue test was obtained by
heat conduction analysis using the FEM model. The plate-fin structure was modeled
as the equivalent-homogeneous-solid material with both anisotropic heat conduc-
tion coefficient and density, considering the ratio of actual and macroscopic cross-
sectional area in the three directions of width, stacking and flow (Kawashima 2008).
The heat transfer coefficient at the cooled surface was determined so that the sim-
ulated temperature distribution by FEM could agree with the measured one in the
test. Considering the symmetry of the configuration of the heat exchanger model,
a quarter-size FEM model (with respect to the actual test model) was prepared. A
time history of the simulated temperature at representative points by FEM analysis
showed good agreement with the measured results.

Based on the calculated time history of the temperature distribution in the model,
the following three cases of FEM analysis were carried out using ABAQUS ver.6.2.
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e Case 1: Isotropic elastic analysis

e Case 2: Anisotropic elastic analysis

e Case 3: Anisotropic elastic-plastic analysis considering volume-compressibility
in plasticity

Anisotropic material constants at 600 °C were determined from the FEM results
by the unit cell model with a phase angle of 0° and a fin pitch of 1.2 mm (Kawashima
2008). The reason for choosing 0 © is to examine the case with a lower Young’s mod-
ulus yielding a larger strain range. Temperature dependence of the material constants
were considered, except Poisson’s ratio. In Case 2, the macroscopic Young’s mod-
ulus values for the stacking, width and flow directions in the plate-fin structure are
set respectively as 8, 42 and 51 % of that of the base material. In Case 1, Young’s
modulus in all directions is 8 % of that for the base material. Regarding Case 3, the
generalized quadratic equivalent stress of von Mises (von Mises 1928) was used to
represent the plastic anisotropy and volume-compressibility at 0.2 % macroscopic
plastic strain in the homogenization FEM analysis in Sect.6.3.

An example of the distribution of stacking-direction stress in Case 2 at 20s after
the start of cooling is shown in Fig.6.19. The maximum stress was located at the
center of the cooled surface, where cracks were found in the thermal fatigue test.
Distribution of the stacking-direction strain at this time is shown in Fig. 6.20 for the
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Fig. 6.19 Distribution of macroscopic stress in stacking direction (20s after cooling, anisotropic
elastic analysis)
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above three cases, along the flow direction from the center of the cooled surface.
Results of the comparison between Cases 1, 2 and 3 are summarized as follows:
Case 3 gives the maximum, and Case 1 shows the minimum strain; Case 3 gives 1.3
times larger strain than that of Case 2.

The results of fatigue life prediction for the thermal fatigue test are shown in
Fig.6.21, where the fatigue curve of the base material and that of the small plate-fin
specimen are the same as shown in Fig. 6.13. The three kinds of macroscopic strain
range at 10 mm from the cooled surface are shown.

As aresult of the combination of the macroscopic strain range from FEM and the
fatigue curve of the small plate-fin specimen, predicted fatigue life values at 10 mm
from the cooled surface in the thermal fatigue test are as follows: 60,000 cycles by
isotropic elastic analysis for Case 1, 6,900 cycles by anisotropic elastic analysis for
Case 2 and 2,100 cycles by anisotropic elastic-plastic analysis for Case 3. Since the
cracks were found at 3200-3500 cycles, Case 3 was found to give a conservative
fatigue life prediction. Regarding the elastic analysis, there is a possibility for Case
2 to be applied to the preliminary design analysis of the plate-fin heat exchanger by
considering additional factors such as elastic follow up.
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The other point of view of fatigue life prediction is to combine the fatigue curve
of the base material and the predicted local strain range considering the strain range
magnification factor. As can be seen from Fig. 6.13, the strain range magnification
factor, i.e., the ratio of the strain range of the base material and the plate-fin at a
prescribed number of cycles, takes different values depending on the number of
cycles. If the strain range magnification factor is 3.6 as a representative value, the
predicted fatigue life is 21,000, 5,000 and 3,000 cycles respectively for Cases 1 to 3.
This tendency is similar to that for the case combining the macroscopic strain range
and the fatigue curve for the small plate-fin specimen.

6.6 Conclusions

(1) Anisotropy and volume-compressibility in macroscopic plastic deformation
were found by the homogenization FEM analysis of the unit cell with offset.
The deformation in the stacking direction exhibited the weakest behavior, show-
ing nearly 8 % of macroscopic flow stress when compared with those of the base
material. The influence of local structure such as the brazing filler metal shape
was small in describing the macroscopic stress-stress behavior obtained in the
uniaxial tensile test of small plate-fin specimens.

(2) Tensile and creep strength in the stacking direction of the small plate-fin speci-
men showed a reduction from the strength of the base material, and this reduction
showed similar values to the results of the homogenization FEM of the unit cell,
including reduction of plastic flow stress. The failure mode of the fins in the
tensile and creep tests was ductile, and this is considered to be the reason that
the strength in the experiment and the plastic flow stress in FEM showed similar
reductions to each other.

(3) Regarding the fatigue test in the stacking direction of the small plate-fin spec-
imen, a reduction of strain range from that of the base material at prescribed
cycles was found. Since the fatigue strength of the plate-fin structure is very sen-
sitive to local structures such as the brazing filler metal shape, an experimental
approach is required so as to quantify the fatigue curve of plate-fin structures.

(4) The homogenization approach, combining homogenization FEM and the exper-
imentally obtained fatigue curve of the plate-fin structure, was successfully
applied to life prediction for the thermal fatigue test of the heat exchanger partial
model. Thermal fatigue life prediction based on anisotropic elastic-plastic FEM
analysis gave a predicted life of 2,100 cycles, or 60 % of the observed life, thus
within a factor of 2.
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Chapter 7

Review on Spatio-Temporal Multiscale
Phenomena in TRIP Steels and Enhancement
of Its Energy Absorption

Takeshi Iwamoto and Hang Thi Pham

Abstract Among various materials used for structures, TRIP steel has attracted the
interest of the scientific community because TRIP steel indicates better performances
such as formability, toughness and energy absorption as well as strength and ductility
than other kinds of advanced high strength steel because of strain-induced martensitic
transformation. From a microstructural point of view, two mechanisms are usually
considered to explain the high performances: the Magee and the Greenwood-Johnson
effects: however, it has not been proven yet. On the other hand, even though TRIP
steel shows the excellent energy absorption under the high-speed deformation, the
amount of martensite is very small by an influence of the heat generation with plastic
transformation. In order to solve this paradox and explain macroscopic performances
from the microscopic deformation mechanism, a concept of a spatio-temporal mul-
tiscale should be introduced. In this paper, research works done by the one of the
authors on the mechanism of high functionalization in TRIP steel from the viewpoint
of a spatio-temporal hierarchy are summarized with reviewing some related papers.
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7.1 Introduction

In temperature range from martensitic start temperature without applied stress M to
temperature My determined by its chemical composition, martensitic transformation
occurs in steel with a metastable austenitic microstructure when it undergoes plastic
deformation. As aresult, volume fraction of martensite in the steel increases with pro-
motion of deformation. This phase transformation is called strain-induced martensitic
transformation (SIMT) (Tamura 1982). In the steel with SIMT, it can be easily imag-
ined that its strength increases because of formation of hard martensite. However, not
only the strength but also its ductility increase in a certain range of temperature near
room temperature. This phenomenon with high ductility is called transformation-
induced plasticity (TRIP) (Tamura 1982; Zackay et al. 1967). The steel with a fully
austenitic microstructure by arrangement of chemical compositions with an appro-
priate thermo-mechanical treatment is called TRIP steel (Zackay et al. 1967).
Among various materials used for structures, TRIP steel has attracted the inter-
est of the scientific community. There are two types of such steels: TRIP steels and
TRIP-assisted steels. TRIP steel tends to be rich in nickel and other expensive austen-
ite stabilizing elements. By contrast, austenite is only a minor phase in the overall
microstructures of TRIP-assisted steels (Matsumura et al. 1987). Allotriomorphic
ferrite comprises about 50-60 vol.% of the microstructures of these materials and
the residue becomes a mixture of bainite and retained austenite with higher carbon
content (Chatterjee 2006). Comparing with TRIP-assisted steels, TRIP steels have
particularly attracted the more considerable attention of researchers because of its
simplicity on the initial microstructure (Fischer et al. 2000). The well-known relation-
ship between strength and ductility parameters for conventional low and advanced
high strength steels for automobile components is described in Fig.7.1. It is clearly
seen that the elongation decreases with the increase in the ultimate tensile strength.
However, TRIP steel including TRIP-assisted steel indicates better performance than
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Fig. 7.1 Total elongation versus tensile strength for advanced high strength steels (Keeler and
Kimchi 2014)
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other kinds of advanced high strength steel. Therefore, it can be considered that
TRIP steels possess favorable mechanical properties such as excellent formability
and toughness as well as high strength and ductility. These excellent properties may
be appeared because of SIMT (Iwamoto et al. 1998; Fischer et al. 2000). At the same
time, the process of microscopic shape and volume change due to SIMT can dissipate
the significant amount of energy. As a result, TRIP steel might indicate the excellent
characteristic of energy absorption. It can be considered that in TRIP steel, huge
amount of kinetic energy may be absorbed during the collision (Kazanci and Bathe
2012) when TRIP steel is applied to the components of the vehicles. Therefore, TRIP
steel might be suited for the automotive structures and safety components, such as
crash-boxes, front side members, bumpers and side panels. They are nowadays in
widespread use in the automotive industry.

From a microstructural point of view, two mechanisms are usually considered to
explain TRIP: the Magee mechanism (Magee 1966) and the Greenwood-Johnson
effect (Greenwood and Johnson 1965). The first effect accounts for the preferred
orientation of martensitic plates caused by the applied force which is equivalent to
an internal resultant force of microscopic shear stress and an average macroscopic
shape change. The Greenwood-Johnson effect accounts for the instantaneous volume
expansion and shape change produced by the martensitic transformation. This stress-
free strain of the formed martensite is accommodated in the surrounding austenitic
region, leading to redundant plastic deformation and, consequently, to extra strain
hardening. Moreover, according to the Greenwood and Johnson effect (Greenwood
and Johnson 1965) for an explanation of TRIP phenomenon, martensitic transforma-
tion induces the instantaneous volume expansion and shape change. It is considered
that the volume expansion due to SIMT relaxes the negative hydrostatic pressure
which may be a cause of damage or micro-cracking (Delannay et al. 2005). There-
fore, these microscopic effects are caused by delay the onset of necking. As a result,
macroscopic performances such as the work hardenability of the steel related to the
formability can be enhanced. This discussion can be accepted logically; however, it
has not been proven yet. In order to prove the result of this discussion, a computational
method with considering the spatial multiscale should be established.

On the other hand, He and Sun (2010) recently studied about an existence of the
temporal hierarchy as well as the spatial one and a relationship between different
temporal and spatial scales by conducting experiments under the various conditions
for a Ni-Ti shape memory alloy in order to consider the strain rate sensitivity and
effects of the thermal conductivity and the heat transfer on plateau and hysteresis
which appear in the stress-strain curve. In this study, it is attempted to make clear
the multi-time-scale problem on the mechanical behavior of metallic materials by an
experimental observation. At the same time, the direction of the study is quite impor-
tant to focus on the multi-time-scale. Focusing upon the energy absorption in TRIP
steel, TRIP steel may be excellent on the energy absorption due to a formation of
more martensitic phase because SIMT occurs during a high-speed deformation with
consumption of the energy by itself. This discussion can be also accepted logically;
however, it has not been proven yet as well as the above-mentioned multi-spatial-scale
problem. Generally, martensitic transformation is a strongly-temperature-dependent
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phenomenon and much heat generates by an irreversible work with plastic transfor-
mation. As a result, the probability of the formation of martensitic phase decreases.
In other words, it can be possible to appear a paradoxical phenomenon which the
amount of martensite is very small by an influence of the heat generation with plas-
tic transformation even though TRIP steel shows the excellent energy absorption in
the high-speed deformation. It is quite important to elucidate the transformation-
thermomechanical of TRIP steel behavior under the high strain rate for this paradox.
To understand a mechanism of this paradox essentially, let consider time scale of
transformation-thermomechanical fields in TRIP steel as shown schematically in
Fig.7.2. As shown in this figure, a change in the characteristic variables in each field
is measured with respect to time and an initial slope of the respective diagram is
expressed. The slope, i.e. rate in generation of deformation, martensitic phase and
heat, represents the characteristic time scale however correlations between slopes
have not been clarified as an experimental evidence because their measurements at
higher strain rate are not established and quite difficult.

The aim of this paper is to summarize research works done by the one of the
authors on the mechanism of high functionalization in TRIP steel from the viewpoint
of spatio-temporal hierarchy with reviewing some related papers. First, a spatio-
temporal macroscopic model for TRIP steel proposed by one of authors (Tomita and
Iwamoto 1995; Iwamoto et al. 1998; Iwamoto and Tsuta 2000, 2002b) are described
and two spatial multiscale models (Iwamoto 2004; Iwamoto and Tsuta 2004) also
proposed by the one of authors are reviewed. Next, a validity by comparing with
the experimental results is confirmed and the applicability of the model is discussed.
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Fig. 7.2 Schematic illustration on time scale in different fields to observe a special phenomenon
in steels; a strain rate versus time, b volume fraction of martensite versus time, and ¢ temperature
rise versus time
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Related to the experiment, results on geometrically orientation distribution function
of martensite in micrographs are shown by an image analysis based on the Fourier
transformation (Iwamoto and Tsuta 2002a) and geometrical orientation of martensite
is discussed. Then, some computational results with the different spatial length scales
are introduced and make some discussions. Finally, an importance of the temporal
multiscale modeling is addressed with introducing a quite interested experimental
result on the energy absorption of TRIP steel.

7.2 Constitutive Model for TRIP Steel

The influence of strain and temperature on the deformation behavior and the micro-
scopic transformation mechanism in TRIP steels are quite complicated, and it may
be very difficult to determine a method for the evaluation of the mechanical prop-
erties merely through experiments (Tomita and Shibutani 2000). From this point of
view, several macro- and micromechanical models have been proposed to account
for the TRIP effect. Most of the models are based on an idea of the Greenwood
and Johnson effect (Greenwood and Johnson 1965) from the microscopic point of
view even though the model is established macroscopically (Dan et al. 2007). On
the other hand, physical and phenomenological models of SIMT have been proposed
and examined by some researchers.

7.2.1 Macroscopic Model

Among the models of SIMT, the model by Olson and Cohen (1975) has been the
most widely-applied. They found the fact that a mesoscopic shear-band intersection
is the dominant mechanism of nucleation in SIMT, and proposed a semi-physical
model to predict the temperature-dependent SIMT well. Then, phenomenological
phase transformation model was developed by Cortes et al. (1992) and the energy
balance equation was formulated to calculate flow stress of each phase. Furthermore,
Stringfellow et al. (1992) incorporated the effect of mechanical driving force on the
martensitic transformation into the Olson and Cohen model (Olson and Cohen 1975)
and predicted the stress-strain behavior as the two-phase composite. The contribution
of the martensitic phase for strengthening is also examined to establish the consti-
tutive equation. Based on the proposed constitutive model, they performed finite
element analysis of the necking behavior of the circular cylinder and clarified the
effect of the stress state on the strain-induced martensitic transformation (Stringfel-
low et al. 1992). The thermo-coupled effects and strain rate sensitivity was taken
into transformation kinetics model proposed by Tomita and Iwamoto (1995). After
that, Iwamoto et al. (1998) generalized the Tomita and Iwamoto model to incorporate
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stress state dependence and formulated the constitutive equation for TRIP steels. The
validity of the modeling approach was further investigated by Tomita and Shibutani
(2000), by comparing the empirical results with those of simulations of laboratory
test on samples with varying geometries under various loading conditions. Moreover,
further models of the computational simulation were developed by various authors
(Cortes et al. 1992; Sachdev 1983) incorporating the various condition in order to
predict the evolution of the SIMT. In addition, Lichtenfeld et al. (2006) applied
the Olson-Cohen model to high strain rate deformation by taking into account the
variation of the parameters o and 8 with temperature. A new kinetic model, which
considers the SIMT as a relaxation process of internal strain energy, aiding the chem-
ical driving force was proposed by Shin et al. (2001). Then, Zaera et al. (2012) has
suggested a constitutive model for analyzing martensite formation in austenitic steels
deforming at high strain rate. This model includes temperature effects in the phase
transformation kinetics, and in the softening of each solid phase through the use of
a homogenization technique.

The macroscopic constitutive equation (Tomita and Iwamoto 1995; Iwamoto and
Tsuta 2000, 2002b) expressed thermo-elasto-visco-plastic behavior as two-phase
aggregate material of austenite and martensite can be derived to account for finite
deformation using the standard notation of the updated Lagrangian formulation as
follows
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where Ei ; is the Jaumann rate of Kirchhoff stress, ij xl is the elastic stiffness tensor,
a7 is the thermal expansion coefficient, E is Young’s modulus and v is Poisson’s ratio,
J> and J3 are the 2nd and the 3rd invariants of the deviatoric stress, Av and R are the
parameters accounting for the magnitudes of volume change and shape changes, « is
the parameter which reflects the development of microstructures inside the material
such as the texture, C is a constant, and ¢ is the equivalent stress which express
the tension-compression asymmetry in the uniaxial stress-strain curve (Iwamoto and
Tsuta 2002b; Altenbach and Kolupaev 2015). The forward gradient method (Peirce
et al. 1984) is introduced to improve the computational efficiency.

The volume fraction of martensite is regarded as an internal state variable.
The macroscopic model proposed by Olson and Cohen (1975), and Stringfellow
et al. (1992) as the evolution equation is generalized by considering the strain rate
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sensitivity and pressure dependency of shear band formation, the dependence of grain
size as follows (Iwamoto et al. 1998; Iwamoto and Tsuta 2000)
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where é{’;)l ' is the equivalent strain rate of the slip deformation in the austenite, f*°
is the volume fraction of the shear band, p is the probability that an intersection
forms a martensitic embryo (Stringfellow et al. 1992; Tomita and Iwamoto 1995),
g denotes the driving force for martensitic transformation, og, go and g1 are the
standard deviation, the mean value of g and a constant, respectively. H(g) is the
Heaviside step function with respect to ¢ which describes the irreversible process of
martensitic transformation, n represents a geometrical constant and has a value of
4.5 (Olson and Cohen 1975) determined by stereology, 1 is a geometric coefficient,
o;j is Cauchy stress, T is the absolute temperature, d is the initial grain size of the
austenite (Iwamoto and Tsuta 2000), dj is the reference grain size, M is the strain
rate sensitivity exponent for nucleation sites, o1, a2, o3, &4 are material parameters,
and £, is the reference strain rate.

In addition, the heat conduction equation considering latent heat by means of
martensitic transformation can be expressed as

LW

pCT = KTVZT + CO’E)IP] — pﬁa,fa (73)

where p is density, C is specific heat, k7 is heat conductivity coefficient, ¢ is a Taylor-
Quinney coefficient, 2% is latent heat of martensitic transformation. The robust com-
putational protocol is established by implementing Eqgs. (7.1)—(7.3) into the finite
element method.

7.2.2 A Bridging Method Between the Spatial Scales
and Microscopic Model

The most noticeable research works about a microscopic model are done by Leblond
et al. (1986), Taleb and Sidoroff (2003), and Fischer et al. (2000). Leblond’s model
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(Leblond et al. 1986) is proposed to take account of the interaction between classi-
cal plasticity and TRIP, however, its experimental validation has not yet been per-
formed (Taleb and Petit 2006). Then, Taleb and Sidoroff (2003) investigated some
discrepancies from a re-evaluation of the micromechanical model as originally devel-
oped by Leblond et al. (1986). In their research work, a more complete formulation
taking into account the elasticity in both phases is developed.

Because phase transformation occurs in the crystal lattice scale basically, the con-
tinuum crystal plasticity theory established by Asaro (1983) due to adecomposition of
the deformation gradient is expanded to treat phase transformation including Magee
and Greenwood-Johnson effects within the crystal plasticity theory. The following
constitutive equation (Iwamoto and Tsuta 2004) is formulated as
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where s?t (@ js a unit vector after elastic deformation and martensitic transformation in

the direction of slip deformation lying on the slip plane, me @ is the normal vector on

the slip plane after elastic deformation and martensitic transformation, y @ is shear
strain rate on the slip plane and index (a) means the ath slip system. Kie(l) is a unit
vector in the direction of deformation due to martensitic transformation after elastic
deformation, nf(l) is the normal vector on a habit plane after elastic deformation
and p'() is transformation strain rate. To elucidate a mechanism of the occurrence
of martensitic transformation in the microstructure, the model is combined with the
cellular automata approach using a local rule on the basis of thermodynamics-based
transformation drive force and new computational method by a use of the finite
element method is established.

To link the above-mentioned macroscopic model to phenomena in a lower spatial
hierarchy, the asymptotic homogenization method is introduced (Iwamoto 2004).
Obeying the conventional homogenization procedure on velocity and temperature
fields, rearranging obtained governing equations with respect to the same order in 7,
which is the non-dimensional scale parameter, and taking the limit of  — +0, the
following homogenized expressions of a rate form of the virtual work principle and
weighted residual method for velocity and temperature fields can be obtained as
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Equations (7.5) and (7.6) are the governing equations for macroscopic velocity and
temperature fields, respectively. X,’kl , ©i, @; and ¢; are the characteristic functions
defined in the unit cell, which satisfy the Y—periodic condition. As a result, it
becomes possible to estimate deformation and transformation behavior in both macro
and microscopic regions.
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7.3 Validation by Experiments

7.3.1 Macroscopic Model

The one of authors conducted uniaxial tensile and compressive tests in the temper-
ature range from liquid nitrogen temperature to the room temperature. As a result,
macroscopic uniaxial stress and the martensitic volume fraction-strain relationships
can be obtained. From the obtained experimental results, material constants and para-
meters in the above-mentioned models including uniaxial stress-strain relationship
of martensitic phase, which is more difficult to determine, based on the optimiza-
tion technique by a combination between the nonlinear least-square method and the
finite element method (Iwamoto et al. 2001). Figure 7.3 indicates (a) the true stress—
plastic strain and the (b) martensitic volume fraction—plastic strain simulated using
the parameters in the constitutive models obtained by the least-square technique at
each test temperature. As shown in this figure, the developed model is possible to
reproduce experimental results successfully.

To measure strain-induced martensitic transformation behavior under high-speed
compression in real time, a method to capture both the temperature change and
the microstructural change macroscopically has been developed during an impact
compression test using the split Hopkinson pressure bar (SHPB) method (Iwamoto
et al. 2008). Figure 7.4 shows a (a) the nominal compressive stress—nominal strain
obtained by the FE simulation and test based on SHPB method and (b) the change in
volume resistivity measured during compressive test—nominal strain relationship.
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g : 2!
o, > Tenv =77 [KJ %
c
b
2 o Ten=213[K] £ Tony = 213 [K]
g ——————— b ny = E env =
Z 273 [K] 5 273 [K]
E G I3}
8 o i gosf
T o Ve = s
o =TT S B
- - eny —
2 i Teny = 298 [K] 298 [K]
Teny = 353 [K]
—— Tension Teny = 353 [K]
------ Compression R
] 0.2 0.4 0.6 0.8 0 0.6 0.8
Plastic strain P Plastic strain P

Fig. 7.3 Computational results of uniaxial tensile and compressive tests for TRIP steel using the
parameters in the constitutive models obtained by the least-square technique at each test temperature
with experimental results; a the true stress—plastic strain, and b volume fraction of martensite—
plastic strain.
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Fig. 7.4 Computational and experimental result of dynamic compressive behavior of TRIP steel;
a the nominal compressive stress—nominal strain obtained by the FE simulation and test based on
SHPB method, and b the change in volume resistivity measured during compressive test—nominal
strain relationship (Iwamoto et al. 2008)

From this figure (a), the developed model (7.1) can reproduce experimental results
for not only quasi static but also impact tests successfully as similar to Fig. 7.3. Addi-
tionally, from this figure (b), it can be observed that the change in measured volume
resistivity is increased with increase in nominal strain as similar to Fig.7.4b. Fur-
thermore, the computational results obtained by FE simulations of fracture behav-
ior of CT specimen under mode I loading (Iwamoto and Tsuta 2002b) and cyclic
deformation behavior at two different temperature Tomita and Iwamoto (2001) indi-
cate qualitative agreement with experimental results. From these simulations, it is
clarified that higher functionalization can be realized by a similar mechanism as
above-mentioned for the uniaxial deformation.

7.3.2 Analyzes of Micrographs to Discuss
the Microstructural Change

On the other hand, to clarify the relationship between macroscopic mechanical prop-
erties of TRIP steel and geometrical features of the transformed phase in micrographs,
micrographs of the specimen after the experiment are taken and geometrical features
in microregions are analyzed by an image processing analysis method based on the
Fourier transformation (Iwamoto and Tsuta 2003). As a result, it becomes possible
to set up a guideline of how to control the microstructure of the transformed phase
by an arrangement of the huge amount of data by processing the images. Figure 7.5
indicates orientation distribution functions obtained by the analysis of micrographs
of the specimens after tensile deformation at 77K when the plastic strain are (a)
0.03 and (b) 0.28. In this figure, the angle where a peak can be seen in the relative
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Fig. 7.5 Dependence of the plastic strain ¢” on orientation distribution functions; a for 0.03 of the
plastic strain, and b for 0.28 of the plastic strain

power corresponds the orientation angle of martensitic phase. It can be understood
that martensitic phase orients in the direction of 145° because a peak around 145°
can be observed in the early stage of deformation as shown in this figure (a). Then,
as shown in the figure (b), an another peak appears around 45° with progressive
deformation and the magnitude of the peak becomes the similar level with the peak
in the orientation of 145°. Therefore, it can be summarized that at first martensitic
phase orients in the direction of 145° and then martensitic phase is also transformed
with the orientation around 45° with promotion of deformation.

7.4 Obtained Results and Discussions

7.4.1 Spatial Multiscale Phenomena

Figure 7.6 shows (a) true stress and work hardening rate— true strain and (b) volume
fraction of martensite—nominal strain with each test temperature for tensile defor-
mation of a rounded bar simulated using the above-mentioned macroscopic model
(7.1) ~ (7.3). It can be found that the amount of the martensitic phase is increased
with tensile deformation of the bar as shown in this figure (b). Additionally, it can be
observed that the relationship between the volume fraction and strain becomes linear
around room temperature. This means continuous transformation during deforma-
tion around the room temperature can be found. On the other hand, if a satisfaction of
Considere’s condition which the work-hardening rate becomes equal to true stress is
obeyed, a white circle expresses an onset point of necking in the point in this figure
(a). Conventional metallic materials indicate a decrease in ductility with decreasing
temperature, however, TRIP steel shows that ductility is increased suddenly in the
temperature range around the room temperature as shown in this figure (a). It is also
able to reproduce the phenomenon observed already in the experiment by the numer-
ical simulation. Actually, it cannot be denied about the suppression of progressed
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Fig. 7.6 Computational results of tensile deformation of a rounded bar simulated using the above-
mentioned macroscopic model with each test temperature; a true stress and work hardening rate—
true strain, and b volume fraction of martensite—nominal strain

necking by an interspersing effect of hard martensitic phase on the neck as the former
experimental results of microscopic observations. However, it can be considered that
transformed martensitic phase contributes to a retarding effect of an onset of necking
by generating continuous transformation with promotion of deformation from this
macroscopic computational result (Tomita and Iwamoto 1995).

Figure 7.7 presents distribution of equivalent plastic strain £” at environmental
temperature T,,, = 150 K with nominal strain rate ¢, =5 x 10~* s~! for nominal
strain ¢, = 0.06 in the cases of tensile directions ® = 0 and 45° during a growth
process of a ellipsoidal martensitic phase in a unit cell simulated using the asymptotic
homogenization technique expressed in Egs. (7.5) and (7.6) (Iwamoto 2004). In this
figure, an interior side in the ellipsoid indicates martensitic phase. In the case of ®=
45°, &P becomes larger around the martensitic particles and €7 in both phases is higher
than that in the case of ® =0. A region of high £” can be observed particularly near the
boundary in the direction perpendicular to ®. In the case of ® =45°, the localization
of &7 in the austenite region can be observed across the two corners. Therefore, f o
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45° (Iwamoto 2004)
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and the size of elliptic martensite with ® =45° increases. Figure 7.8 shows a process
of the microstructural change at each ¢, in the single crystal TRIP steel simulated
using the crystal plasticity theory including SIMT expressed in Eq.(7.4) (Iwamoto
and Tsuta 2004) when an initial crystal orientation of parent phase is 60° against the
horizontal direction. In the figure, martensitic and austenitic phases indicate black
and white, respectively. As shown in this figure, nothing happens until the certain
level of macroscopic strain and then the periodic band-like structure is suddenly
appeared along the perpendicular direction to the initial orientation. After that, the
bands of the product phase are extending to the direction. Finally, the region almost
transforms to the fully martensitic state. It can be considered that the simulated band-
like microstructure reproduces geometric characteristic of the micrstructure usually
observed by a microscope.

7.4.2 Temporal Multiscale Phenomenon on the Energy
Absorption Characteristic

In order to discuss the temporal multiscale phenomenon in TRIP steel, the energy
absorption is focused upon here. Generally, energy absorption of materials them-
selves can be evaluated from the stress-strain curve obtained by a tensile test.
Nevertheless, at the high deformation rate, an interaction between a plastic wave
and unstable deformation during tension induces the difficulties to avoid an onset of
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a necking in a specimen. As a result, the specimen is always fractured earlier at a
high velocity of tensile loading than a required period (Nemes and Eftis 1993). Thus,
the mechanism of the capability of absorbing energy for the tensile deformation is
quite complicated, especially at high strain rate.

As the above-mentioned from Fig.7.2, the strain rate sensitivity represents the
time scale and becomes one of the deformation characteristic to discuss the energy
absorption because it can be calculated by an increase in the external force since the
area surrounding the normalized force-normalized deflection curve until a certain
level of normalized deflection increases because of a rate-sensitive hardening effect.
Normally, temperature rise in the material due to adiabatic heating by an inelastic irre-
versible work is occurred. At the same time, this heating phenomenon introduces ther-
mal softening of the material. The rate sensitivity in TRIP steel includes the effects
of the rate-sensitive hardening, SIMT and temperature change as shown in Fig.7.2.

7.4.2.1 Strain Rate Sensitivity

The rate sensitivity in TRIP steel can be divided by two factors. One is the effect
of temperature on the kinetics of SIMT. Temperature rise with an increase in strain
rate induces stabilization of the austenitic phase. Thus, the condition prevents fur-
ther martensitic evolution (Hecker et al. 1982; Murr et al. 1982; Nanga et al. 2009;
Talonen et al. 2014).

The other is the rate sensitivity of a microscopic shear band. This part is already
understood and reported for fully austenitic stainless steels. The increase in strain rate
results in an acceleration of the martensitic transformation at low strain as reported
by Hecker et al. (1982) and Murr et al. (1982). They studied the strain rate sensitivity
on the stress-strain response of type 304 stainless steel over a range of strain rate of
1073 to 10° s~!. It is observed that the number of transformation site as well as the
o’ -martensite content at low strains increases with increasing strain rate. However,
the adiabatic heating at high strain rate results in lower martensite content at strain
above 0.25 as above-mentioned. Talonen et al. (2014) and Nanga et al. (2009) studied
the effect of strain rate on martensitic transformation in type 301LN stainless steel
over a range of strain rate from 3 x 10~* to 200 s~!. Both authors reported that
increasing the strain rate halts the martensite transformation because of stabilizing
austenite. The strain rates during the crushing of automotive components may be
up to approximately 1000 s~!, while forming operations involve lower intermediate
strain rates (Talonen et al. 2014).

7.4.2.2 Three-Point Bending Test for the Pre-cracked
Specimen of TRIP Steel

The bending deformation mode is considered to be relatively simple than tensile
test. In fact, the smooth specimen made of ductile materials can be deformed at
high deflection rate without fracture and any plastic instabilities. Thus, energy can



158 T. Iwamoto and H.T. Pham

be dissipated just only into inelastic bending deformation with phase transformation
process during bending deformation of TRIP steel and energy absorption capability
can be evaluated through an investigation of bending deformation behavior of smooth
specimen. At the same time, energy absorption capability during fracture process of
materials is considered to be associate d with fracture toughness (Nakayama 1964).
Thus, the evaluation of the energy absorption is equivalent to measure J-integral
from force-displacement curve at an onset point of a crack extension. The fracture
toughness can be determined as the critical value of fracture mechanical parameters
such as stress-intensity factor, J-integral, etc.

On the other hand, three-point bending test under impact loading has become an
important tool in the determination fracture toughness. The pre-cracked three-point
bending specimen is widely used to measure the fracture toughness of materials
under static (ASTM Standard E399-90 2002) and dynamic loading (Kobayashi et al.
1986; Kalthoff 1985; Server et al. 1977). Figure 7.9 shows a relationship between the
J-integral and the normalized deflection rate obtained from the three-point bending
test of TRIP steel (Shi et al. 2013). It can be observed that there is an approximately
linear relationship between J-integral and the normalized deflection rate in the semi-
logarithmic plot. The positive rate-sensitivity can be observed that the J-integral in
TRIP steel increases with increasing the deflection rate.

In three-point bending test, the inertia influence the stiffness and the natural fre-
quency of pre-cracked specimen. In addition, the inertia effect can be an influence on
the behavior of the pre-cracked bending specimens under impact loading, in partic-
ular at the very beginning of the impact process. Therefore, it should be considered
in calculating the dynamic fracture toughness (Jiang et al. 2004; Atluri et al. 1984;
Iwamoto and Tsuta 2002b). The observed finding in the paper by Bohme and Kalthoff
(1982) illustrated the quite complicated influences of dynamic effects on the behavior
of impacted specimens.
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7.5 Summary

In order to summarize research works done by the one of the authors on the mecha-
nism of high functionalization in TRIP steel from the viewpoint of spatio-temporal
hierarchy, first, a spatio-temporal macroscopic model for TRIP steel proposed by one
of authors were described and two spatial multiscale models also proposed by the
one of author were reviewed. After a validation by comparing with the experimental
results was confirmed and the applicability of the model was discussed, results on
geometrically orientation distribution function of martensite in micrographs were
shown by an image analysis based on the Fourier transformation to discuss the geo-
metrical orientation of martensite. Then, some computational results with the dif-
ferent spatial length scales were introduced. Finally, an importance of the temporal
multiscale modeling was addressed with introducing a quite interested experimental
result on the energy absorption of TRIP steel.

The authors believe that new findings related to understand quite complicated
phenomena with the plastic deformation and enhancement of mechanical proper-
ties by means of the martensitic transformation have already been provided on the
basis of considering a hierarchical structure of space and time. In addition, advanced
techniques are proposed to control the mechanical properties and the validity and
applicability of the techniques are shown by the computational simulation and exper-
iment. Obtained fruitful outcomes can be sufficiently exploited for requests from the
industry to predict the performance of a material and a process design on various
kind of work.
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Chapter 8

Methods for Creep Rupture
Analysis—Previous Attempts
and New Challenges

Zbigniew L. Kowalewski

Abstract The chapter presents selected methods of creep analysis with special
emphasis on damage development. It is divided into three main sections. In the first
one some previous methods of creep rupture analysis are described. The attention
is focused on certain kind of uniaxial creep characterisation of materials, namely,
an influence of prior deformation on creep behaviour. Subsequently, the results
from creep tests under complex stress states are presented together with theoreti-
cal approaches commonly used to their description. In the second section a com-
prehensive historical survey concerning advances in modelling of creep constitutive
equations is discussed. The third section illustrates selected new concepts of damage
development due to creep on the basis of data captured from the own experimental
programme.

Keywords Creep + Creep damage - Prior deformation + Constitutive equations *
Complex stress states - Non-destructive testing

8.1 Introduction

Typical creep phenomenon occurs as a result of long term exposure to high levels
of stress that are below the yield point of the material. It is more severe in materials
that are subjected to elevated temperature for long periods, and near melting point.
It always becomes faster with temperature increase. The rate of this deformation
is a function of the material properties, exposure time, exposure temperature and
the applied structural load. Depending on the magnitude of the applied stress and
its duration, the deformation may become so large that a component can no longer
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perform its function. Creep is usually of concern to engineers and metallurgists when
evaluating components that operate under high stresses or high temperatures. The
temperature range in which creep deformation may occur differs in various materials.
For example, tungsten requires a temperature in the thousands of degrees before creep
deformation can occur while lead will creep near the room temperature 20 °C. The
effects of creep deformation generally become noticeable at approximately 30 %
of the melting point (as measured on a thermodynamic temperature scale such as
Kelvin) for metals and 40 % of melting point for alloys. For typical creep curve one
can distinguish three stages. In the initial stage, or primary creep, the strain rate is
relatively high, but slows with increasing time. This is due to work hardening. The
strain rate eventually reaches a minimum and becomes near constant. This is due
to the balance between work hardening and thermal softening. This stage is known
as secondary or steady-state creep. In tertiary creep, the strain rate exponentially
increases with stress because of necking phenomena.

Creep leads to the development of material damage process. There are two essen-
tial periods of such process:

e damage developing without microscopically visible cracks due to the nucleation
process and growth of the microvoids, and
e propagation of the dominant fissure up to failure.

At the end of the first stage, the macroscopically observed crack takes place in form
of one or several fissures. In the second stage of the rupture process the dominant
fissure propagates decreasing, as a consequence, loading admissible capacity of a
construction element and leading finally to its failure. In most cases the duration of the
second stage of damage process is negligible short in comparison to the exploitation
time of an element. Experiments concerning the processes of microcrack nucleation
and growth, which are responsible for the failure of materials during creep, exhibit
that failure mechanisms can be divided into the three following types (Hayhurst
1972, 1983; Dyson and Gibbons 1987; Abo El Ata and Finnie 1972; Browne et al.
1981; Ashby et al. 1979): brittle, ductile and mechanism being their combination.
For brittle failure mechanism the microdefects are created and developed on the grain
boundaries perpendicular to the maximum principal tension stress. During ductile
failure mechanism the microdefects are created on the grain boundaries and they
are developing due to grain boundary slides. Brittle failure mechanism is usually
dominant in the case of polycrystalline materials tested at low levels of the uni-
axial stress states. Material degradation during this mechanism has the intergranular
character. At high stress levels the rupture takes place mainly due to the ductile failure
mechanism, for which the damages have a transgranular character and develop due to
the slides passing through the grains. It is well known that there are no exact values,
which can be treated as the limits for particular failure mechanism domination. For
majority of real exploitation loading conditions the failure mechanism seems to be a
combination of the simultaneously developing brittle and ductile failure mechanisms.
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8.1.1 Uniaxial Creep Tests—Tool for Initial Material
Characterization

During manufacturing and exploitation processes most engineering structures or
some their elements are subjected to deformation. Therefore, it is important from
engineering point of view to know the influence of this deformation on such different
material properties at high temperatures as minimum creep rate, ductility, lifetime,
rupture and crack propagation. It has been found that plastic deformation at both
room and elevated temperatures prior to creep testing has either beneficial or detri-
mental effect on the material properties (Dyson and Rodgers 1974; Dyson et al.
1976; Kowalewski 1991a, 1992; Marlin et al. 1980; Murakami et al. 1990; Ohashi
et al. 1986; Pandey et al. 1984; Rees 1981; Trampczyriski 1982; Wilson 1973; Xia
and Ellyin 1993). Although the problem has been previously studied experimentally
for several materials, only limited amount of available data reflects the influence of
plastic predeformation on creep process up to rupture (Dyson and Rodgers 1974;
Dyson et al. 1976; Marlin et al. 1980; Pandey et al. 1984; Trampczyriski 1982). It is
well known that the problem is particularly important during fabrication or assem-
bly processes, where a number of materials used in critical elements of engineering
structures may receive such cold work, and as a consequence, it may change signif-
icantly their lifetime. Up to now the amount of experimental data is still insufficient
to estimate exactly whether the increase or decrease of creep strengthening occurs
up to a certain amount of prior deformation only, or whether this creep property is in
some way proportional to the amount of predeformation. Thus, in order to achieve
better understanding of this problem further systematic investigations are required.

In this paper in order to identify an influence of prior plastic deformation on the
basic creep parameters the results of uniaxial tensile tests obtained for aluminium
alloy will be presented.

8.1.2 Multiaxial Creep Tests—Advanced
Characterization of Materials

The results from uniaxial creep tests are not able to reflect complex material behav-
iour. Therefore, many efforts are focused on tests carrying out under multiaxial
loading conditions. Such experiments are very difficult not only in execution but
also in elaboration of the results.

A description of creep process requires the essential interrelations among stress,
strain, and time. The well known method depicting these interrelation-ships under
complex stress states, first proposed by McVetty (1934), is through isochronous
stress-strain curves obtainable from the standard creep curves. Since that time,
many graphical methods of the creep data presentation have been elaborated.
It has been found that multi-axial creep rupture results are conveniently plot-
ted in terms of isochronous surfaces (Piechnik and Chrzanowski 1970; Leckie and
Hayhurst 1977; Chrzanowski and Madej 1980; Hayhurst et al. 1980; Litewka and
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Hult 1989; Kowalewski et al. 1994; Kowalewski 2004) being loci of constant rupture
time in a stress space. Such approach especially simplifies theoretical and experimen-
tal creep results analysis giving comprehensive graphical representation of material
lifetime, and therefore, it will be used as a tool for the creep data presentation. The
paper demonstrates comparison of experimental creep data achieved for pure copper
(Kowalewski 1995, 1996; Lin et al. 2005) with the results for 2017 aluminium alloy
obtained. Theoretical approach for determination of the isochronous surfaces will be
discussed, and the data from creep tests will be used to illustrate how to construct an
experimental form of such surfaces.

8.1.3 New Concepts of Creep Analysis

Nowadays many new approaches and testing techniques are used for damage assess-
ments. Among them one can generally distinguish destructive (Hayhurst 1972,
1983; Krauss 1996; Lin 2003; Trampczynski and Kowalewski 1986; Dietrich and
Kowalewski 1997; Kowalewski 2002), and non-destructive methods (Sablik and
Augustyniak 1999; Narayan GR 1975; Fel et al. 2001; Martinez-Ona and Pérez 2000;
Ogi et al. 2000). Having the parameters of destructive and non-destructive methods
for damage development evaluation it is instructive to analyze their variation in order
to find possible correlations. This is because of the fact that typical destructive inves-
tigations, like creep or standard tension tests, give the macroscopic parameters char-
acterizing the lifetime, strain rate, yield point, ultimate tensile stress, ductility, etc.
without sufficient knowledge concerning microstructural damage development and
material microstructure variation. On the other hand, non-destructive methods pro-
vide information about damage at a particular time of the entire working period of an
element, however, without sufficient information about the microstructure and how it
varies with time. Therefore, it seems reasonable to plan future damage development
investigations in the form of interdisciplinary tests connecting results achieved using
destructive and non-destructive methods with microscopic observations in order to
find mutual correlations between their parameters. This issue will be demonstrated
on the basis of last own results.

8.2 Previous Attempts of Creep Analysis—Selected
Examples of Uniaxial and Biaxial Tests

8.2.1 Analysis of Prior Deformation Effect on Creep Under
Uniaxial Loading Conditions

It is commonly known that standard tensile creep tests are most often used to
characterize a majority of engineering materials. In this section such kind of material
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testing was applied to identify an influence of prior cold work on creep of 2017 alu-
minium alloy. Thin-walled tubular specimens of 40 [mm] gauge length, 22 [mm]
internal diameter, 0.75 [mm] wall thickness and 140 [mm] total length were used in
all tests. The experimental programme comprised creep tests under uniaxial tension
carried out at two different temperatures 423 and 473 K. Creep tests were performed
for the material in the as-received state and for the same material plastically pre-
strained at the room temperature. The aluminium alloy specimens were prestrained
up to 1.0, 2.0, 6.0 and 8.0 % for both creep test temperatures taken into account.

Investigations of the effect of prior plastic deformation on subsequent creep
process were carried out according to the following procedure. First of all, each
thin-walled tubular specimen was proportionally deformed up to the selected value
of plastic prestrain by uniaxial tension at the room temperature using an Instron test-
ing machine, and then unloaded. Subsequently, each specimen was mounted at the
standard creep testing machine, heated uniformly at the chosen test temperature for
24 [h] prior to creep testing, and then subjected to the constant stress level depending
on the creep testing temperature. Both creep stress levels selected for tested material
were smaller than the value of yield point of the material at the considered tempera-
tures. Diagram of the experimental procedure is schematically presented in Fig. 8.1.

The experimental results for aluminium alloy are presented in Fig.8.2. As it
is clearly seen from this figure, creep process under constant stress is generally
affected by prior plastic strain at the room temperature. Cold work preceding the
creep induced hardening effect expressed by significant decrease of the minimum
creep rate, Fig.8.3. Similar effect was earlier observed by Trampczynski (1982)
and Kowalewski (1991a) who tested copper. Taking into account the recovery creep
theory based on the Orowan’s equation in the following form

d —(a—a)d +(8—J)dt 8.1)
7= \%: )T s '

!
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Fig. 8.2 Creep curves of 2017 aluminium alloy at: a o = 300MPa, T = 423K; b 0 = 200MPa,
T = 473K (/ material in the as-received state; 2—5 material prestrained up to 1.0, 2.0, 6.0, 8.0 %,
respectively (Kowalewski 2005)

Fig. 8.3 Variation of the
dimensionless minimum
creep rate due to prior plastic
deformation for aluminium
alloy (Minimum creep rates
of nonprestrained material
are used as the reference
values (Kowalewski 2005))
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this is an expectable effect. According to this theory a balance between the recovery
rate do/dt and the rate of strain hardening do/de is responsible for constant value
of strain rate observed in the second period of the creep process.

Plastic predeformation of a material generates dislocations, the density of which
depends on the prestrain amount. Therefore, the plastically prestrained material
should creep at lower rate during second period of the process than the nonpre-
strained one. Taking into account the results of tests carried out at 423 K, Fig.8.3,
it is easy to note that the strain hardening effect observed exhibits gradual increase
with the plastic predeformation increase only up to the prior plastic deformation close
to 6 %. Over this value the hardening effect expressed by decrease of the secondary
creep rate was also remarkable, but its amount was not proportional to the magnitude
of prestraining. In the tests carried out for copper at 473 K similar tendency can be
observed.

On the basis of the results achieved for 2017 aluminium alloy it may be concluded
that the tensile plastic prestrains decrease the secondary creep rate, but the magnitude
of this decrease is not proportional to the amount of tensile plastic prestrain. Such
behaviour cannot be predicted by the recovery creep theory.
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Lifetime extension was obtained for prestrained aluminium alloy at both temper-
atures considered, Fig. 8.4. For relatively small values of prior plastic deformation
(up to 6 %) the mutual relation between the lifetime and the amount of prior plastic
deformation was almost proportional. For higher values of plastic prestraining the
lifetime extension can be also observed in comparison to the lifetime achieved for
the nonprestrained material, however, in these cases mutual relation between the
lifetime and the amount of prior plastic deformation was not proportional. It means
that for higher magnitudes of plastic deformation (>6 %) the creep lifetime becomes
to be smaller, and for sufficiently high magnitude it can reach the lower value than
that obtained for the material tested in the as-received state.

Prior plastic deformation also can change the duration of typical creep stages
(Table 8.1). The duration of the primary creep period was reduced, in practice, inde-
pendently on the amount of prior plastic deformation. The duration of secondary
creep stage was increased with the increase of the plastic prestrain magnitude.

The ductility during creep was also strongly affected by the prior plastic deforma-
tion at room temperature. For both temperatures considered an essential reduction
of the total creep strain at rupture was observed.

8.2.2 Creep Tests Under Complex Stress States

The vast majority of the creep-to-rupture investigations have been carried out
under uniaxial stress states (Norton 1929; Malinin and Rzysko 1981; Rabotnov
1969; Gittus 1975). Results of such tests have been subsequently used to deter-

Table 8.1 Creep parameters determined from tensile creep tests of 2017 aluminium alloy
o =300 (MPa), T =432 (K) o =200 (MPa), T =432 (K)
e (%) |0 1.0 2.0 6.0 8.0 0 1.0 2.0 6.0 8.0

& x 1.4 13 1.2 0.7 09 5.5 3.0 23 1.8 29
1073

(1/h)
ONED 60 50 50 40 1 2 2 4 3
) (160 (180  [200 [260 [250 |6 9 125 |17 12

rr (h) | 330 384 399 705 601 17.3 24.8 353 46.6 34.6
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mine material constants existing in different theoretical models with the objective
to precisely reflect creep behaviour of the material considered. These models are
often generalized into multi-axial stress states under assumption of the isotropy of
a body examined (Hayhurst 1983; Garofalo 1965; Kachanov 1958; Odqvist 1966).
However, the isotropic materials exist in practice rather seldom since manufacturing
processes used to produce semi-manufactures, such as rods, tubes, sheets etc., induce
anisotropy which cannot be often remove by any heat treatment subsequently applied.
In some cases the material can be isotropic in sense of plastic parameters such as yield
limit and ultimate tensile strength, but during creep can exhibit anisotropic properties
(Kowalewski 1991a,b). In these situations carrying out only uni-axial creep tests to
obtain material constants for constitutive model describing material behaviour may
lead to significant errors.

In this section the results of biaxial creep tests will be presented to identify
phenomena that should be reflected during elaboration of reasonable constitutive
equations.

The materials investigated were electrolytic copper of 99.9 % purity and 2017
aluminium alloy (notation according to ASTM). Creep investigations were carried
out on thin-walled tubular specimens (40 mm gauge length, 140 mm total length,
22 mm internal diameter, 1.5 mm (copper specimens) or 0.75 mm (aluminium alloy
specimens) wall thickness in the gauge length region) with the use of the biaxial
creep testing machine enabling realisation of plane stress conditions by simultane-
ous loading of the specimens by an axial force and twisting moment at elevated
temperature.

The experimental programme comprised creep tests up to rupture for copper
and aluminium alloy specimens subjected to biaxial stress state obtained by var-
ious combinations of tensile and torsional stresses: (o12/011 = 0,012/011 =
V3 /3,012/011 = oo. For each material tests were carried out at three effective
stress levels (o¢): 70.0; 72.5; and 75.0 [MPa] in the case of copper, and 280.0; 300.0;
and 320.0 [MPa] in the case of aluminium alloy. The effective stress was defined in
the following form:

1

1
3 z 3
e = (Esijsi,-) - (012] + 30122) , 8.2)

where S;j—stress deviator, o11—axial stress, ojo—shear stress.

Before creep test each specimen was heated uniformly at the test temperature
(523K in the case of copper, and 423K in the case of aluminium alloy) for 24 h.
Creep investigations were carried out until rupture of the specimens was achieved
giving as a consequence whole creep curves.
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8.2.2.1 Creep Results of Pure Copper

The creep curves up to rupture for copper are presented in Fig.8.5. The effective
creep strain was defined by the relation in the following form:

2 % 2 4 2
e = 58,']'81']' =./&11 + 5812, (8.3)

where €11 and €17 denote axial and shear strain, respectively.

The creep characteristics obtained at the same effective stress but under different
stress states exhibit drastic differences for all stress levels considered. In all cases
the shortest lifetimes, and moreover, the lowest ductility have been achieved for

Fig. 8.5 Creep curves for . I T T
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tensioned specimens. The opposite effect was observed for specimens subjected to
pure torsion. It has to be emphasized that differences in creep curves due to different
loading types applied are great, and they are reflected by variations of the basic
creep parameters. Microscopic examination showed that the majority of microcracks
were observed at those grain boundaries which were perpendicular to the maximum
principal stress. It was confirmed by the shapes of the specimen cross-section in places
where rupture occurred. The failure line in each creep rupture test was perpendicular
to the maximum principal stress. Since the maximum principal stress was not the
same for the same effective stress creep tests, it can be concluded that the resulting
variations in lifetimes for the same effective stress tests follow from the differences
in magnitude of the maximum principal stress. The longest lifetimes were achieved
for pure torsion creep tests for which the maximum principal stresses had the lowest
values.

8.2.2.2 Creep Results of 2017 Aluminium Alloy

The creep curves up to rupture for aluminium alloy are presented in Fig.8.6.
Similarly as for copper the creep characteristics of aluminium alloy, obtained at
the same effective stress but under different stress states, exhibit drastic differences.
In this case, however, the shortest lifetimes, and moreover, the lowest ductility were
achieved for specimens subjected to pure torsion. All of the creep parameters which
characterise macroscopically creep behaviour prove that the process is a stress state
sensitive. More importantly, it has to be noticed that creep behaviour depends on the
material type. Analysis of the results for both materials allows to conclude that for
some materials tested at the same effective stress the longest lifetime can be achieved
under uniaxial tension (e.g. aluminium alloy) whereas for the others under torsion
(e.g. copper). Microstructural observations of damage in aluminium alloy showed
narrow grain boundary cracks along some grain boundary facets perpendicular to the
direction of the maximum principal tension stress in both uniaxial and biaxial stress
creep tests. Similar observations were made by Johnson et al. (1962) and later by
Hayhurst (1972). These observations suggest that the growth of damage is dependent
on the maximum principal tension stress. However, the biaxial tests carried out by
both Hayhurst (1972); Johnson et al. (1962) unambiguously showed that the alu-
minium alloy studied did obey an effective stress criterion. Also, certain aspects of
the presented results for aluminium alloy support the latter thesis.

The failure lines of the ruptured specimens were not perpendicular to the maxi-
mum principal stress. More importantly, the shortest lifetimes were achieved for the
specimens subjected to pure torsion for which, taking into account the same effective
stress level, the maximum principal stresses were significantly lower than those at
uniaxial tension creep tests applied. The dichotomy between the observation of max-
imum principal stress controlled damage growth and the observed effective stress
rupture criterion is still being discussed, although a suggestion has been made that
it is a consequence of tertiary creep being controlled by more than a single damage
state variable only (Dyson and Gibbons 1987).
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8.2.2.3 Creep Rupture Data Analysis Using Isochronous
Surface Concept

The comprehensive presentation and comparison of the experimental data from tests
performed at complex stress states procure many difficulties, particularly for stress
states being a combination of tension and torsion. In these cases, the data comparison
is usually carried out for the effective strains defined in the form of a function of
the second invariant of strain tensor, since effects of the first as well as the third
invariants are relatively small and they can be often neglected.

Although creep curves in diagrams representing effective strains versus time can
be compared, it is difficult to evaluate precisely all differences in material response
due to the action of different stress state types. To overcome this deficiency, creep rup-
ture results are commonly presented in the form of isochronous surfaces (Hayhurst
1972, 1983; McVetty 1934; Piechnik and Chrzanowski 1970; Leckie and Hayhurst
1977; Chrzanowski and Madej 1980; Hayhurst et al. 1980; Litewka and Hult 1989;
Kowalewski et al. 1994; Kowalewski 1996, 2004; Lin et al. 2005), being loci of
constant rupture time in a stress space. This approach especially simplifies theoret-
ical creep results analysis giving the comprehensive graphical representation of the
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material lifetime. However, the accurate experimental determination of the shape of
these surfaces requires a large number of creep rupture data from tests carried out
under complex loading over a wide range of stress levels.

The curves of the same time to rupture determined on the basis of experimen-
tal programme are compared with theoretical predictions of the three well known
creep rupture hypotheses: (a) the maximum principal stress rupture criterion (8.4),
(b) the Huber-Mises effective stress rupture criterion (8.5), (c) the Sdobyrev creep
rupture criterion (8.6). For the biaxial stress state conditions, realised in the experi-
mental programme, the rupture criteria mentioned above are defined by the following

relations: |
OR = Omax = 5(011 + \/0121 +45122)7 (8.4)
OR = O¢ = ,/0121 + 30122, (8.5)

OR = BOmax + (1 — B)oe (8.6)

In Fig.8.7 the results for copper are shown, while in Fig. 8.8 for aluminium alloy.
The curves presented in the normalised co-ordinate system are referred to the rup-
ture time equal to 500 [h]. Tensile stress corresponding to the lifetime of 500 [h]
has been selected as the normalisation factor (oRr 500). In the case of copper it was
equal to 67.9 [MPa], whereas for aluminium alloy—288 [MPa]. As it is clearly seen
for copper, the best description of the experimental data has been achieved for the
Sdobyrev creep rupture criterion taken with the coefficient § = 0.4, calculated on
the basis of creep data from tests carried out. The value of § indicates that the damage
mechanism governed by the effective stress as well as the maximum principal stress
played a considerable role in the creep rupture of the copper tested. Contrary to the
results achieved for copper, the best fit of the aluminium alloy data is obtained using
the effective stress rupture criterion. It has to be noting however, that the lifetimes
predicted by this criterion are still quite far from experimental data.

Fig_8,7 Comparison()fthe 1.0 T s S R PP R
isochronous creep rupture =i L St Sl
surfaces (rg = 500 [h]) : ; bl
determined for copper (/
experimental results; 2—4
theoretical predictions using
the maximum principal stress
criterion; the effective stress
criterion; and the Sdobyrev
criterion, respectively)

Normalised shear stress

0.0 B
00 02 04 06 08 10
Normalised axial stress




8 Methods for Creep Rupture Analysis—Previous Attempts and New Challenges 175

Fig. 8.8 Comparison of the 1.0 paosropsenssnaeanoenag e
isochronous creep rupture e bt eei
surfaces (fr = 500 [h]) 0.8 F--ESi 0N St =
determined for aluminium L. o L
alloy (/ experimental results;
24 theoretical predictions
using the maximum principal
stress criterion; the effective
stress criterion; and the
Sdobyrev criterion,
respectively)

0.6

0.4

0.2

Normalised shear stress

. I " | L I . I . 1
00 02 04 06 08 1.0
Normalised axial stress

0.0

8.3 A Short Survey on Advances in Modelling
of Creep Damage Development

A definition of damage measure is treated as the essential problem taking place in
creep rupture analysis. In 1958 Kachanov has introduced a scalar measure of damage
in the form of parameter of cross-section continuity, which becomes to be 1 at the
beginning of the deformation process and 0 at a localized failure of the material
(Kachanov 1958). It corresponds to the assumption that the load is only carrying by
the effective part of the specimen cross-section being a difference between the initial
cross-section and the damage area, i.e. the area resulted from the sum of all voids
or fissures areas. Rabotnov (1969) modified the Kachanov’s damage measure giving
more convenient measure being the complementary parameter to that proposed by
Kachanov. It is defined in the following form

_A()—A

, 0<w<l1 8.7
Ao <w= (8.7)

w=1—¢

and physically can be interpreted as the area of all defects referred to the undam-
aged initial cross-sectional area. Using this damage parameter the creep constitutive
equation set for uniaxial stress state can be written in the following normalised form:

& 1 a\" 1) 1 o\’
—=—\=), == (8.8)
£0 (1 —w)™ \op wo (1 —w)? \op
where n, m, v, n, &, wo, 0 are material constants.
For constant stress level it is easy to integrate the equations in set (8.8) to give the

time variations of strain and damage. By applying the rupture condition w = 1, it is
possible to determine time to rupture tg (Leckie and Hayhurst 1977).



176 Z.L. Kowalewski

The generalisation of Eq. (8.8) to multiaxial stresses, proposed by Leckie and
Hayhurst (1977), has been achieved by making the assumption that the influence of
continuum damage on the deformation rate process is of a scalar character, and by
the introduction of the homogeneous stress function which reflects the stress state
effects on the time to rupture. Equation (8.8) can then be written as:

n—1 .
Gy _3 (2) (s_,) L (8.9)
& 2 \oo oo/ (1 —w)"
o I
S\ R — (8.10)
wo d+md —w)

where A = A(0ij/00) = Omax/00 for copper, and A = A(o;j/00) = 0c/00
for aluminium alloys. Integration of the damage evolution equation (8.10) for the
following boundary conditions: @ = 0, = 0 and w = 1,¢t = rR, yields after
normalisation to the relation describing time to rupture in the form:

R 1
— = — 8.11
PR (8.11)

Substitution of rrg = #y in Eq. (8.11) gives the equation of the isochronous surface.

It has been found convenient to present the rupture results in terms of the isochro-
nous surface representing stress states with the same rupture times. According to
(Johnson et al. 1956, 1962), the rupture criteria for aluminium alloy and pure copper
appear to represent the extremes of material behaviour, since the isochronous surface
for many metals lies somewhere between these criteria. They have shown that the
dependence of the rupture time upon the nature of the applied stress system for an
aluminium alloy can be described by the octahedral shear stress criterion, whereas
for pure copper—by the maximum principal stress criterion. In spite of the fact that
these observations have been made on the basis of a relatively limited amount of
the experimental data, and in certain cases did not give precise description of rup-
ture, they are still influencing the process of developing new creep damage models
(Hayhurst et al. 1980; Litewka and Hult 1989; Kowalewski et al. 1994; Kowalewski
2004; Lin et al. 2005; Dyson and McLean 1977; Sdobyrev 1959).

Multiaxial creep constitutive equations (8.9) and (8.10) describe phenomenologi-
cal aspect of the process. The material constants in this set do not have clear physical
meaning. Therefore, the physically-based constitutive equations have been devel-
oped in the last decades. Typical example of such equation set has been proposed by
Kowalewski et al. (1994) in the following form:
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dSij 3 A gij . Bo.(1 — H)
— =——————ginh{ ———),
dt 2 (1 —wp)" o 1—@
dH h A . (Boe(l—H) H
d_ = — sinh 1— = |
t oc 1l —wn 1-9 H (8.12)
do K. .
= ==t -o)
dr 3

dwy DA or\” . Bo.(1 — H)
——=———(—) Nsinph{————=),
dr (1 — wy)" \oe 1—@&

where A, B, H*, h, K., D—material constants and »n is given by

Bo.(1 — H) Bo.(1 — H)

n=————coth{ ———
1-@ 1-@

The stress level dependence of creep rate is described by a sinh function. Material

parameters which appear in this model may be divided into three groups, i.e.

e the constants 7, H* which describe primary creep;
e the constants A and B which characterise secondary creep;
e the constants K. and D responsible for damage evolution and failure.

The second equation in set (8.12) describes primary creep using variable H, which
varies from 0 at the beginning of the creep process to H*, where H* is the saturation
value of H at the end of primary period and subsequently maintains this value until
failure.

The equation set contains two damage state variables used to model tertiary soft-
ening mechanisms:

e @, which is described by the third equation in set (8.12), is defined from physics
of ageing to lie within the range 0—1 for mathematical convenience,

e wy, which is defined by the fourth equation in set (8.12), describes grain boundary
creep constrained cavitation, the magnitude of which is strongly sensitive to alloy
composition and the processing route.

The parameter N is used to indicate the state of loading; e.g. for o tensile N = 1; and
for o1 compressive, N = 0. In the equation set (8.12) a damage evolution depends
on the maximum principal stress as well as the effective stress. After appropriate
integration of the normalised form of equation set (8.12) the isochronous surfaces
can be achieved (Kowalewski et al. 1994). It has been shown that the shape of the
isochronous rupture loci is independent of the damage level (w;) for which they are
determined, but is dependent on the stress level. At lower stress levels the curves
become more dependent on the maximum principal stress.

It has been found from the experimental investigations that the minimum creep
rate, which is directly related to the primary creep controlled by H in equation set
(8.12), varies with stress-states for both materials. In the second equation of set
(8.12) H is only a function of o, and could not model the feature. In addition, the
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rupture lifetime is not a constant of o1 /o, for a given effective stress for both tested
materials. This indicates that both the primary hardening and damage rate equations
in (8.12) need to be modified. The modified equations are formulated based on set
of equations (8.12) by taking into account the influence of stress-states on primary,
secondary and tertiary creep. For the simplicity, only one damage state variable is
used here to model grain boundary creep constrained cavitation. The evolutionary
equations are given in the following form (Lin et al. 2005)

. A .
Ee = m sinh (BO'e(l — H)) ,
. 3. (Si')
Eij =z —
2\ (8.13)
47 _ o — mye
d[ - €

dw o1 Y .
— =D — ) Ne,
dt Oe

where Q = Q¢(01/0.)? and y = Boy. Parameter y varies linearly with the max-
imum principal stress. The constant § is used to express the stress-state effects on
the damage evolution of materials, and moreover, to model lifetimes and tertiary
creep deformation behaviour of materials. Relation 8 < 0 indicates that the damage
evolution of the material exceeds the effective stress control (a case typical for alu-
minium alloys), and, the presence of a low value of o1 would reduce the lifetime. If
B > 0 then the damage evolution is under controlled by the effective stress. In the
case of B = 0 the lifetime and tertiary creep of the material is controlled by effective
stress only. The parameter N is introduced in (8.13) to ensure @ = 0, when o7 is
compressive.

The evolution of the variable H in equation set (8.13) represents the primary hard-
ening of the materials, which is mainly due to the accumulation of dislocation density
during the primary creep process. As creep deformation proceeds, the increment of
dislocation density and its recovery under elevated temperature reaches a dynamic
balance condition. This is the steady-state, or, secondary creep, which is one of the
most important properties in creep deformation. In the equation, the parameter Q,
which indicates the end of primary creep and controls the secondary creep rate, is
stress-state dependent and defined as Q = Qo (o1/ 0e)?. For the stress-state indepen-
dent material, the constant ¢ = 0 and Q = Qg. Thus, Q is the saturation value of the
primary hardening variable H and also determines the secondary creep rates, i.e. the
minimum creep rate, &nin. However, if a material is stress-state dependent, ¢ # O,
the value of Q varies with the ratio of the maximum principal stress and effective
stress o1/0.. In consequence, the saturation value of the variable H changes with
a variation of the stress-state. Thus, the minimum effective creep rates can be con-
trolled according to the first equation of set (8.13). In this way, both primary and
secondary creep periods are modelled by the introduction of the internal variable H .
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The other material constants have the similar meanings as discussed for equation
set (8.12). Optimisation techniques for the determination of the material constants
arising in the constitutive equations are based on minimising the sum of the errors
between the computed and experimental data using Evolutionary Algorithms (EA)
(Lin and Yang 1999; Liet al. 2002). The fitness function used here for the optimisation
based on the concept developed by Li et al. (2002). In this method, errors are defined
by the shortest distance between computational and experimental data. An EA-based
optimisation software package was developed using C++- based (Li et al. 2002). The
multiaxial creep damage constitutive equations (equation set (8.13)) are implemented
into the optimisation software package through a user-defined subroutine.

Figures 8.9 and 8.10 show the comparison of the experimental (symbols), and
computed (solid curves) effective creep curves for the three stress-states for copper
and aluminium alloy, respectively. The curves are computed using the determined
material constants. It can be seen that there are some differences between the com-
puted and experimental data, although the overall fitting quality is good. The dif-
ference might be due to the errors of the experimental results coming from always
possible specimen-to-specimen variations of the material.

Presented here attempts for creep damage analysis reflect only advances in consti-
tutive equations development in which the scalar damage measures are used. There
are many papers devoted to creep damage where vector or tensor measures of damage
were applied. Due to limits required for this chapter such issue is not discussed here.
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8.4 New Attempts for Damage Development During Creep

There are many testing techniques for creep damage analysis. They can be gen-
erally divided into destructive and non-destructive methods. To assess damage
using destructive method the specimens after different amounts of prestraining were
stretched to failure (Kowalewski et al. 2008, 2009; Makowska et al. 2014). After-
wards, the selected tension parameters were determined and their variations were
used for identification of damage development. Ultrasonic and magnetic investiga-
tions were selected as the non-destructive methods for damage development evalu-
ation. For the ultrasonic method, the acoustic birefringence coefficient was used to
identify damage development in the tested steel. Two magnetic techniques for non-
destructive testing were applied, i.e. measurement of the Barkhausen effect (HBE)
and the magneto-acoustic emission (MAE). Both effects are due to an abrupt move-
ment of the magnetic domain walls depicted from microstructural defects when
the specimen is magnetised. The laboratory test specimens were magnetised by a
solenoid and the magnetic flux generated in the specimen was closed by a C-core
shaped yoke. The magnetizing current (delivered by a current source) had a trian-
gular like waveform and frequency of order 0.1 Hz. Its intensity was proportional to
the voltage Ug. Two sensors were used: (a) a pickup coil (PC), and (b) an acoustic
emission transducer (AET). A voltage signal induced in the PC was used for the
magnetic hysteresis loop B(H) evaluation (low frequency component) as well as for
the HBE analysis (high frequency component). The intensity of the HBE was given
by the rms (root mean square) voltage Ub envelopes. The maximal values (Ubpp)
of Ub for one period of magnetisation were compared. An analogous analysis was
performed for the MAE voltage signal from the AET. In this case the maximal values
(Uapp) of the Ua voltage envelopes were compared. The magnetic coercivity Hc,
evaluated from the B(H) hysteresis loop plots, was also compared.

8.4.1 Experimental Details

The X10CrMoVNDBO-1 steel commonly used in selected elements of Polish power
plants was investigated. Its chemical composition is presented in Table 8.2.

The experimental programme comprised tests for the material in the as-received
state and for the same material subjected to a range of selected magnitudes of prior
deformation due to creep at elevated temperatures, Fig. 8.11, and due to plastic flow
at room temperature, Fig. 8.12. Uniaxial tension creep tests were carried out for the

Table 8.2 Chemical composition of the X10CrMoVNb9-1 steel
C Mn Nb P S Cr Ni Mo v Cu
0.10 0.70 0.07 0.01 0.01 8.50 0.30 0.94 0.22 0.20
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X10CrMoVNb9-1 steel using plane specimens, Fig.8.13. All tests were conducted
in the same conditions: i.e. the stress level was 290 MPa, and the temperature was
773 K. Details of the destructive tests programme as well as its main results are
presented by Kowalewski et al. (2008).

In order to assess damage development during creep the tests for the X10CrMoV-
Nb9-1 steel were interrupted after 40h (0.85 %), 180h (1.85%), 310h (3.15 %),
390h (4.6 %), 425h (5.9 %), 440h (7.9 %) and 445h (9.3 %), which correspond to
increasing amounts of creep strain (values are presented in brackets). To check how
deformation type changes damage development, almost the same prestraining levels
as those under creep were induced by means of plastic flow: 2, 3, 4.5, 5.5, 7.5, 9,
and 10.5 %, Fig. 8.12. After each prestraining test the specimen damage was assessed
using the non-destructive methods. Two non-destructive methods were applied: mag-
netic (Augustyniak 2003) and ultrasonic (Szelazek 2001). In the next step of the
experimental procedure, the same specimens were mounted on a hydraulic servo-
controlled MTS testing machine and then stretched until failure was achieved.

8.4.1.1 Non-destructive Techniques

Magnetic properties were measured using the standard laboratory method of mag-
netisation, where hysteresis loops with the HBE and also the MAE can be tested
(Augustyniak 2003; Augustyniak et al. 2000). A block diagram of the magnetising
circuit is shown in Fig.8.14. A specimen (1) was magnetised with the driving coil
(2). A current amplifier provided a triangular wave-form with a frequency of about
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1 Hz. Magnetic measurements were made with a pickup coil of 200 turns wound
directly on the central part of the specimen. The voltage U induced in this coil was
used to determine the hysteresis loop and the HBE signal. The HBE signal was sep-
arated from the U signal using an ac amplifier. The output voltage was transformed
to the rms like voltage Ub (intensity envelope). This envelope of the HBE intensity
is presented when the HBE envelopes are compared. The MAE signal was detected
with a resonant PZT transducer. The output of the MAE voltage signal was amplified
and then transformed to the Ua voltage using the analogous rms integral circuit.
The HBE properties along the specimen were also investigated as well as the
relationships between the HBE and static load by means of bending. Figure8.15
illustrates the experimental setup used for measurement of the HBE stress depen-
dence. Here, the HBE intensity was measured not at the specimen central part, but
near the specimen end. Each specimen was loaded by means of bending. A probe
during the HBE tests contains ferrite with a pick-up coil. The probe was used for
the HBE intensity measurement along the specimen. It was connected to the MEB-1
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Fig. 8.15 Measuring set for stress dependence of HBE: / specimen, 2 HBE probe, 3 metal support,
F applied force (Augustyniak 2003)

meter. This meter provides not only an analog rms voltage, but also a signal pro-
portional to the pulse counting rate and total number of detected pulses (Nc¢) with
amplitudes higher than a certain threshold level.

Ultrasonic wave velocity and attenuation are acoustic parameters most often used
to assess material damage due to creep or fatigue. The results of investigations (Fel
et al. 2001; Martinez-Ona and Pérez 2000) show that the attenuation of ultrasonic
waves is in practice stable until the last creep or fatigue stages. It was also observed
that velocity changes due to creep or fatigue are small, and therefore, an application
of velocity measurement for damage evaluation, in industrial conditions, is very diffi-
cult. Difficulties in the attenuation and velocity measurements, or their combinations,
are caused by the heterogeneous acoustic properties of technical materials, such as
steel. The second reason is a dependence of both the attenuation and velocity of
ultrasonic waves on numerous factors other than material damage. This observation
is confirmed by the results of tests (Martinez-Ona and Pérez 2000) where the steel
specimens were subjected to 10 % plastic deformation and subjected to loading for
a period of 140,000 h at elevated temperature. The results showed that the ultrasonic
wave attenuation was not influenced by the plastic deformation or long term, high
temperature load exposure.

In order to evaluate damage progress in specimens made of X10CrMoVNb9-1
steel, instead of the velocity and attenuation measurement, the acoustic birefringence
B was measured (Kowalewski et al. 2008, 2009). Specimens were subjected to creep
according to the programme presented earlier in this paper.

The acoustic birefringence B is a measure of material acoustic anisotropy. It is
based on the velocity difference of two shear waves polarized in the perpendicular
directions. In specimens subjected to creep the shear waves were propagated in the
specimen thickness direction and were polarized along its axis and in the perpen-
dicular direction. The birefringence was measured in the fixtures, where a texture of
material was assumed to be unchanged during a creep test, and in the working part
of the specimen, Fig. 8.16. The birefringence B was calculated using the following
expression (Szelazek 2001):

B — 2( — tp)

=B B 8.14
. o+ Bp (8.14)

where: #;7—time of flight of ultrasonic shear wave pulse for the wave polarization
direction parallel to the sample axis, t,—time of flight of ultrasonic shear wave
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(a) (b)

Fig. 8.16 Set-up for measurements of the birefringence coefficient: a scheme showing positions
of probes (B probes at the griping part of specimen, A probes distributed along gauge length of
specimen); b general view of specimen before ultrasonic testing

pulse for the wave polarization perpendicular to the sample axis, Bp—acoustic bire-
fringence for the material in the virgin state (before creep test), Bp—acoustic bire-
fringence for the material after deformation.

8.4.2 Experimental Results and Discussion

8.4.2.1 Evaluation of Damage Development Using Destructive Tests

The tensile characteristics for the material after prestraining are presented in Fig. 8.17.
In diagrams the characteristics for the prestrained steel are compared to the tensile
curve of steel in the as-received state.

On the basis of these tensile characteristics, Fig.8.17, variations of the basic
mechanical properties of steel, due to deformation achieved by prior creep or plas-
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Fig. 8.17 Tensile characteristics of the X10CrMoVNDb9-1 steel: a material after prior deformation
due to creep interrupted in different phases of damage development, b material after prior deforma-
tion due to plastic flow interrupted in different phases of the process, (numbers correspond to those
in Figs.8.11 and 8.12 presented)
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Fig. 8.18 Variation of tensile parameters of the X10CrMoVNb9-1 steel due to creep (solid lines)
and plastic (broken lines) deformations: a Young’s modulus; b yield point; ¢ ultimate tensile strength;
d elongation

tic flow were determined, Fig.8.18. It was observed that the Young’s modulus,
Fig. 8.18a, is almost insensitive to the magnitude of creep and plastic deformations.

Contrary to the Young’s modulus the other considered tension test parameters,
especially the yield point, Fig.8.18b, and the ultimate tensile strength, Fig.8.18c,
exhibit clear dependence on the level of prestraining. Taking into account the results
presented for the steel a difference between magnitudes of such parameters as the
yield point or ultimate tensile strength observed for the same value of prior deforma-
tion induced by creep and plastic flow is quite significant. Prior plastic deformation
caused the hardening of the steel, while creep prestraining led to its softening. It is
important to note that the observed softening effect is only expressed on the basis
of the ultimate tensile strength variations since for the testing conditions applied in
these investigations the magnitude of the yield point is not sensitive to the amount
of prior creep deformation.

8.4.2.2 Evaluation of Damage Development Using Magnetic Techniques

An influence of plastic flow and creep damage on the basic magnetic properties
can be analysed using B(H) hysteresis loops. Representative results are presented
in Figs.8.19 and 8.20 for the X10CrMoVNb9-1 steel. The curves obtained for an
undamaged specimen (¢ = 0 %) and for the specimens after prior deformation are
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Fig. 8.19 Evaluated 15
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Fig. 8.20 Evaluated
magnetic hysteresis loops of
undamaged and damaged
specimens due to creep
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compared. The quantity Ug denotes the voltage proportional to the driving current
intensity, and hence—magnetic field strength H.

The broadening as well as the decrease of the slope of the B(H) loops for both
cases is evident. Taking into account the same prestrain levels the effects are much
more intensive in the case of plastic flow than those after creep. The coercivity Hc
was evaluated from the width of B(Ug) plot at B = 0, Fig.8.21. The observed
systematic increase of coercivity is due to an increase of pining force of the 180°
magnetic domain walls by damage induced modifications of microstructure. It should
be emphasised that there is a two times higher increase of the coercivity (about
+60 %) for the specimens after plastic flow than for the specimens after creep (about
+30%).

Modification of the hysteresis properties, as shown by the HBE intensity envelopes,
can be deduced from the series of plots presented in Figs. 8.22 and 8.23 for specimens
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after plastic flow and after creep, respectively. It has to be noticed that there is an
increase of the scale of the Ub values in Fig. 8.23. Such a presentation of the results
was made in order to show the very high increase of the HBE intensity after the first
step of the creep damage experiment in comparison to the initial stage signal. The
HBE intensity envelope for an undamaged sample is characterised by a shape con-
sisting of two peaks. The X10CrMoVNDB9-1 steel has a martensitic microstructure,
and thus, the first peak (positioned at lower field strength) can be attributed formally
to the ‘soft” component of the alloy while the second one to the ‘hard’ component
without detailed discussion about the microstructure reference, which can be done
after microscopic inspection of the magnetic domain structure.

The increase of the plastic strain after plastic flow leads to some general decrease
of the HBE intensity: for the first tested stage of deformation (¢ = 2 %) one narrow
peak appears and further plastic flow leads to a monotonic decrease of its amplitude
as well as to the decrease of the area under the signal envelope. A shift of the
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maximum towards a higher level of the magnetic field strength can also be clearly
seen. However, the behaviour of the U b properties when the samples are subjected to
creep damage is very different. Figure 8.23 shows that for a low level of creep damage
(¢ = 0.85 %) the plot of the Ub envelope appears as one very high, narrow peak.
Such behaviour can be explained by the increase of the 180° domain walls mobility
due to the decrease of internal stress level resulting from an annealing or—more
probably, by anisotropy of magnetic domain structure due to the tensile load applied,
enhanced by the high temperature. Further creep damage leads to the systematic
decrease of this peak amplitude as well as to its shift toward higher field strength.

The as described features of the HBE intensity are well presented by means of plots
showing a dependence between the amplitudes of Ub envelopes and magnitudes of
prior deformation—peak to peak values Ub,, in Fig. 8.24, and a dependence between
the integrals of the Ub envelopes and prior deformation (Fig.8.25) for specimens
after plastic flow (squares) and after creep (circles). Thus, one can say that the HBE
intensity as a function of the resulting prestrain either decreases monotonically (for
integrals) or peaks when amplitudes of the Ub envelopes are compared. These two
sets of plots reveal also that creep damage leads (at its final stage) to a ‘decrease’
of the HBE intensity which is much lower than that observed for specimens after
plastic flow. Comparing two plots in each figure it can be seen that the Ub signal
properties such as the amplitude or integral for the highest strain after creep damage
are roughly the same as for the analogous signals for the first stage of plastic flow.

The main features of the magnetoacoustic effect are shown in Fig.8.26 (after
plastic flow) and in Fig. 8.27 (after creep).

The MAE intensity envelope for undamaged specimens is also characterised by
the existence of two peaks. Comparing plots in Figs. 8.22 and 8.26 one can easily
check that the plot of the MAE intensity envelope (U a) is much broader than the plot
of the Ub intensity. It is due to the fact that the MAE is caused mainly by an abrupt
movement of ‘not” 180° domain walls. The first peak is usually attributed mainly
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to a creation of the magnetic domains, and the second one—to their annihilation.
Both processes are characterised by a high contribution of this type of domain walls
(Augustyniak et al. 2000). These pictures also show that plastic flow as well as creep
damage modifies the MAE intensity significantly.

The plastic flow modifies the MAE intensity in two ways: the two peaks observed
after the first step of flow (¢ = 2 %) are broader and their amplitudes are much
smaller. This means that the produced dislocations tangles have strongly blocked
the mobility of ‘not’ 180° domain walls. Further plastic flow leads to a monotonic
decrease of the MAE intensity.

Again, the results of creep damage show an influence of prior deformation on
the MAE properties, as shown by the plots in Fig. 8.27. The stage with small creep
deformation level (¢ = 0, 85 %) is characterised by a single, narrow peak. This



190 Z.L. Kowalewski

Fig. 8.26 Envelopes of the 9
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Fig. 8.27 Envelopes of the
MAE intensity as a function
of increasing field strength
for the undamaged specimen
(plot 1, e = 0) and for two
specimens after creep
damage

means that now the displacement of ‘not” 180° domain walls may become the main
contributor to the MAE instead of the creation and annihilation processes. A synthetic
description of the MAE properties as a function of prior deformation is given by
the two sets of plots shown in Fig.8.28 (amplitudes of the MAE envelopes) and
in Fig.8.29 (integrals of the MAE envelopes). Amplitudes of the MAE intensity
decrease for both cases, but the dynamics of their change is different, as is evident
from Fig. 8.28. Moreover, amplitudes of the MAE intensity envelopes do not decrease
so abruptly for the creep prestrained specimens, and do not reach the level obtained
for the first step of plastic deformation due to plastic flow at room temperature.
Figure 8.29 shows how integrals of the MAE intensity vary with the increas-
ing prior deformation. The dynamic of the integrals decrease is not as high as that
observed in the case of amplitudes. However, a difference between both types of
damage is still visible. It is easy to observe that a level of the MAE intensity (esti-
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mated by means of the integral) for the specimen after creep with a strain of order
& = 10 % is nearly the same as that detected for specimens after plastic deformation
with a strain level of order ¢ = 2 %. However, it does not mean that these two speci-
mens have the same microstructure. A difference in the microstructure for these two
stages is demonstrated well by different shapes of the Ua envelopes for ¢ = 2%
(Fig.8.26) and for ¢ = 10 % (Fig.8.27). The stresses which influence the MAE
activity are located inside the cells made by dislocation tangles. They are ‘created’
by these tangles and can be highly compressive in the case of plastic deformation.
The MAE intensity is also influenced by the precipitates developing mainly at grain
boundaries.
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8.4.2.3 Evaluation of Damage Development Using Ultrasonic Technique
and Correlations of Damage Sensitive Parameters

Figure 8.30 presents mean values of the acoustic birefringence measured in speci-
mens after creep or plastic deformation.

The birefringence was measured in the fixtures, where the texture of the material
was assumed to be unchanged during creep testing, and in the working part of the
specimen. The plots presented in Fig. 8.30 indicate that the acoustic birefringence is
sensitive to the amount of prior deformation. Another advantage of this parameter is
also well represented in Fig. 8.30. Namely, it is sensitive to the form of prior defor-
mation. For specimens prestrained due to plastic flow a decrease of this parameter
is observed with the increase of prior deformation. In the case of prior creep also
decrease of acoustic birefringence is observed, however, it is not as large as that after
plastic deformation obtained. The results show that the acoustic birefringence can be
a quite sensitive indicator of material degradation and can help to locate the regions
where material properties are changed due to creep. Measurements of the ultrasonic
wave attenuation and velocities carried out on the same steel did not exhibit such a
good sensitivity in the material damage assessments.

In the next step of analysis possible relations between the mechanical and magnetic
parameters were evaluated Figs. 8.31, 8.32, 8.33, 8.34 and 8.35.

Figures 8.31, 8.32, 8.33 and 8.34 show relationships between two magnetic para-
meters of MBE: i.e. Ubp, and Int(Up) and two mechanical parameters: i.e. yield
point and ultimate tensile strength. Figures 8.31 and 8.32 do not include results of
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the material prestrained due to creep, since the yield point of the X10CrMoVNb9-1
steel subjected to creep was insensitive to deformation level induced by this process.
The magnetic parameters are normalized to values captured for the non-deformed
specimen. Numbers in figures denote the level of prior deformation. Figures 8.31 and
8.32 allow concluding that both parameters (Ub, and Int(Up)) of the Barkhausen
noise may be used to estimate a level of the yield point of plastically deformed spec-
imens. Also, the ultimate tensile strength of the X10CrMoVNb9-1 steel subjected
to prior plastic flow may be assessed using relationships between Ry and Ubpp norm
or Int(Ub)porm (Figs.8.33 and 8.34), however, only for the material prestrained
due to plastic flow, since non-unique relationships between Ry, and Ubppnorm OF
Int(Ub)norm were found for the steel pre-strained by creep.

The relations in Figs. 8.31, 8.32, 8.33 and 8.34 indicate that the steel after plastic
deformation, leading to higher values of Ry and Ry, can be characterised by lower
values of magnetic parameters. This is because the prestrained material contains
more dislocation tangles that impede domain walls movement. On the other hand
the higher values of magnetic parameters can be attributed to the lower magnitudes
of Ry, for the steel after creep.

The results make evident that the MBE intensity varies significantly due to
microstructure modification, however, in different ways depending on prior defor-
mation type. This intensity decreases after plastic flow (for deformation higher than
2 %) and increases after creep. Strongly non-linear character of plots in Figs. 8.33
and 8.34 makes impossible direct estimation of mechanical parameters when only
single magnetic parameter is used. Addressing the issue for practical application of
the MBE measurement in assessment of mechanical properties for damaged steel
one can conclude that it is possible only then if at least two magnetic parameters
will be taken into account. It can be seen in Figs. 8.33 and 8.34 that relative decrease
of the Ub,, and Int(U,) with prestraining denotes plastic deformation while rapid
increase of the Int(Uj) associated with prestrain increase is observed for early stage
of creep damage development. The most difficult case for interpretation takes place
when advanced creep is in question. It should be emphasized that such analysis can
be done by simultaneous analysis of plots in Figs. 8.33 and 8.34 and the MBE peak
shape variations. The results obtained for such case are not consistent, i.e. points
representing subsequent magnitudes of prior deformation are not placed in order,
and therefore, cannot be described be an adequate function.

Better correlation was achieved between Ry, and coercivity H,, Fig.8.35. As it
is seen, except specimen prestrained up to 10.5 % due to plastic flow, all results are
ordered, and as a consequence, they can be well described by adequate functions
depending on the type of prior deformation. The main disadvantage of the relation-
ships between Ry, and H,, is related to the fact that it cannot distinguish a type of
prior deformation for small prestrain magnitudes.

Similar remarks can be formulated for the relationships between Ry, and acoustic
birefringence coefficient B, Fig. 8.36.

The relationships between selected destructive and non-destructive parameters
sensitive for damage development show a new feature that may improve dam-
age identification. In order to provide more thorough analysis reflecting physical
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interpretation of the relationships obtained further investigations are necessary.
Programmes of such tests should contain advanced microscopic observations using
not only optical techniques, but also SEM and TEM.

8.5 Concluding Remarks

This chapter is devoted to creep analysis using selected experimental methods. A
short survey dealing with theoretical aspects of creep investigations is also presented.

It is shown that prior plastic deformation changes significantly values of the typ-
ical creep parameters. Depending of the magnitude of prestraining some of these
parameters can be improved, the others however, become to be weaker than those for
the nonprestrained material achieved. The tensile creep resistance measured as the
value of steady creep rate was generally enhanced by plastic prestrain, which was
expressed by significant decrease of the steady creep rate. The effect has proportional
character up to certain limit value of plastic deformation, only. The creep data for
aluminium alloy exhibit essential lifetime variation due to prestraining in both tem-
peratures in question (423 and 473 K), namely, an extension of lifetime proportional
to the magnitude of plastic prestrain. It has to be noted however, that plastic pre-
strain magnitudes greater than 6 % led to the opposite effect, i.e. lifetime reduction.
The amount of creep deformation for both temperatures considered was markedly
reduced by prior tensile plastic strain, yielding very low levels. Elongation of the
testpieces was proportionally decreased when the magnitude of plastic prestrain was
increased.

The chapter emphasises significance of the multiaxial creep testing, and identifies
procedures for elaboration of data captured from such investigations.

This study also presents the results of interdisciplinary tests for damage assess-
ments as a new promising tool for damage identification.

It is shown that the same level of deformation induced due to different processes
does not guarantee the same mechanical properties of a material.
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The results clearly indicate that selected ultrasonic and magnetic parameters can
be good indicators of material degradation and can help to locate the regions where
material properties are changed due to prestraining. In order to evaluate damage
progress in specimens made of the X10CrMoVNb9-1 steel, instead of velocity and
attenuation measurements frequently applied, the acoustic birefringence B measure-
ments were successfully applied. In the case of magnetic investigations for damage
identification the measurements of the Barkhausen effect (HBE) and the magneto-
acoustic emission (MAE) were applied. Both effects show that the magnetic proper-
ties are highly influenced by prior deformation, and moreover, they are sensitive not
only to the magnitude of prior deformation, but also to the way it is introduced.

The results suggest that experimental investigations concerning creep problems
should be based on the interdisciplinary tests giving a chance to find mutual corre-
lations between parameters assessed by classical macroscopic destructive investiga-
tions and parameters coming from the non-destructive experiments. Such relation-
ships should be supported by thorough microscopic tests, thus giving more complete
understanding of the phenomena observed during creep damage development.
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Chapter 9

Strain Gradient Plasticity: A Variety

of Treatments and Related Fundamental
Issues

Mitsutoshi Kuroda

Abstract Different theoretical interpretations and possible mathematical expres-
sions for the higher-order strain gradient plasticity theory initiated by Aifantis are
investigated. These different interpretations of the theory result in different compu-
tational procedures. The effects of the orders of finite-element shape functions and
the number of Gaussian quadrature points on the qualities of numerical solutions are
examined for different formulations.

Keywords Size effect - Length scale - Phenomenological plasticity - Finite element
method * Constitutive relations

9.1 Introduction

Conventional plasticity theories can determine the onset of strain localization, but
they cannot deal with issues associated with the size of localization regions such as
the width of shear band (Aifantis 1984, 1987). Furthermore, the conventional theo-
ries cannot characterize experimental results on micron-size specimens that exhibit
a significant size-dependent mechanical response in the presence of plastic strain
gradients (e.g., Fleck et al. 1994; Stolken and Evans 1998). These are serious the-
oretical contradictions in the conventional plasticity theories, which originate from
the lack of intrinsic length-scale effects. Aifantis (1984, 1987) first modified the con-
ventional theories by introducing plastic strain gradient terms into the yield function,
which naturally account for the length-scale effects in bodies undergoing nonuniform
deformation. Since the studies of Aifantis (1984, 1987), a considerable number of
investigations on strain gradient plasticity theories have been conducted (e.g., Fleck
et al. 1994; Miihlhaus and Aifantis 1991; Fleck and Hutchinson 2001; Gudmundson
2004; Gurtin and Anand 2009; Kuroda and Tvergaard 2010; Hutchinson 2012).

M. Kuroda ()

Graduate School of Science and Engineering, Mechanical Systems Engineering, Yamagata
University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan

e-mail: kuroda@yz.yamagata-u.ac.jp

© Springer International Publishing Switzerland 2015 199
H. Altenbach et al. (eds.), From Creep Damage Mechanics

to Homogenization Methods, Advanced Structured Materials 64,

DOI 10.1007/978-3-319-19440-0_9



200 M. Kuroda

It is now widely recognized that strain gradient plasticity theories must be higher-
order in the sense that it should be possible to impose extra boundary conditions
with respect to plastic strains or their gradients. The theories in Fleck et al. (1994);
Miihlhaus and Aifantis (1991); Fleck and Hutchinson (2001); Gudmundson (2004);
Gurtin and Anand (2009); Kuroda and Tvergaard (2010); Hutchinson (2012) are all
explicitly higher-order, but their apparent mathematical forms appear to be different.
While some of them involve a set of higher-order stress quantities as a central part
of the theory (Fleck et al. 1994; Fleck and Hutchinson 2001; Gudmundson 2004;
Gurtin and Anand 2009; Hutchinson 2012), the others do not refer to such extra stress
quantities (Miihlhaus and Aifantis 1991; Kuroda and Tvergaard 2010). Although the
connections between such different treatments of strain gradient plasticity have been
discussed to some extent in Gudmundson (2004); Gurtin and Anand (2009); Kuroda
and Tvergaard (2010); Kuroda (2015) from their respective points of view, a more
systematic and unifying investigation seems to be needed for the further understand-
ing and development of scale-dependent strain gradient theories of plasticity.

In the present paper, different theoretical interpretations and possible mathemat-
ical expressions for the higher-order strain gradient plasticity theory initiated by
Aifantis (1984, 1987) are reviewed and systematically reexamined in detail. These
different interpretations of the theory result in different numerical procedures. In
the present study, the effects of the order of finite-element shape functions and the
number of Gaussian quadrature points on the qualities of numerical solutions are
investigated for different formulations of strain gradient plasticity.

9.2 Basic Relations Unchanged from Classical J> Theory

In a small strain context, the total strain rate is decomposed into elastic and plastic
parts as in classical theories of elastoplasticity:

E=@®V)yn=E +E ©.1)

where superscripts e and p denote elastic and plastic parts, respectively, # is the
displacement rate vector, V(= d/dx;e;; e; are Cartesian bases and x; are Cartesian
coordinates) is the gradient operator, ® is the tensor product, (...)sym denotes the
symmetric part of the tensor, and a superposed dot denotes the material-time deriva-
tive (assumed equal to the time derivative in the case of a small strain). Hooke’s law
is applied to model elasticity, and a simple coaxial flow rule is used for plasticity:

/
ES=C':6. E"=¢PNP, NP = % 9.2)

where o is a symmetric (Cauchy) stress tensor, C is a fourth-order elasticity tensor,
o’ is the deviatoric stress tensor, ¢P is a non-negative plastic multiplier, and |(...)]
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is the norm of a tensor, i.e., |(...)| = +/(...) : (...). The equivalent plastic strain is
defined as follows:

' 2.0 0 |2,
spz/ ePdr; P = |ZEPEP = [Z4P, (9.3)
0 3 3

where ¢ is the time.

The virtual work principle (VWP) is introduced simply as a weak form of the
equilibrium equation (V - ¢ = 0) with mechanical (Cauchy’s formula) and displace-
ment boundary conditions (neglect of the body force effect). An incremental version
of the VWP is written as

/d : SEAV =/1j~81)d$, (9.4)
\% S

where V is the volume of the solid considered, S is the surface of the solid, and £ is
the surface traction. An underbar (. ..) emphasizes that the quantity is prescribed on
the boundary. This notation will be used throughout the paper.

9.3 Introduction of Plastic Strain Gradient
into Yield Condition

Aifantis (1984, 1987) proposed a modified yield condition with a plastic strain gra-
dient effect as
Oe + BV2eP — R(P) = 0 (9.5)

for a plastic loading state, where o, = J3/2|6’|,Bisa positive coefficient, R(eP) is a
positive strain hardening function, and V? is the Laplacian operator (V> = divV =
V - V). The introduction of the gradient term into conventional plasticity theory was
mainly motivated by its ability to predict the postlocalization feature of material
behavior; i.e., the inclusion of the gradient term is necessary to determine the shear
band width in a softening-type material.

The physical basis for the introduction of BV2¢P is strengthened by an argument
based on dislocation theory as discussed in Kuroda and Tvergaard (2010); Kuroda
(2015); Kuroda and Tvergaard (2006). That is, a dislocation-induced long-range
internal stress arises in response to spatial gradients of the geometrically necessary
dislocation (GND) density (Groma et al. 2003; Evers et al. 2004), and the GND
density is equated with the spatial gradient of the crystallographic slip (Ashby 1970).
Thus, the internal stresses correspond to the second gradients of crystallographic
slips. The introduction of BV?¢P is consistent with this argument. The terms o, +
BV?2¢P, which can be interpreted as the superposition of stress due to external forces
and the effect of internal stress due to the distributions of GNDs, could represent a
net stress that activates plastic straining. Based on this view, the plastic dissipation
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D should be accounted for using D = (0. + BV?eP)éP = RéP > 0. Thus, the
gradient term BV?2eP is naturally interpreted as a recoverable or energetic quantity,
as also discussed in Kuroda and Tvergaard (2010).

The above simplest model uses the effective stress o, and equivalent plastic strain
€P to describe the primary effects of stresses due to external forces and internal
stresses originating from the non-uniform distribution of GNDs, respectively. Con-
sequently, the positive or negative direction of the resolved shear stress and slip,
which would be accounted for in the context of crystal plasticity, is not considered.
Thus, a Bauschinger-like effect cannot be represented using Eq. (9.5). More general-
ized strain gradient formulations in which the plastic strain gradients are accounted
for by a third-order tensor EP ® V, where

t
EP:/ Eds,
0

instead of V&P, can represent such unsymmetric mechanical behavior (e.g., Gurtin
and Anand 2005a; Niordson and Legarth 2010). The aim of the present study is not
to generalize strain gradient plasticity theories. Instead, the study mainly focuses on
issues related to a variety of theoretical interpretations of strain gradient plasticity
that give the same solution but appear to have different mathematical expressions.
For this purpose, we consider the simplest model given by Eq. (9.5).

Before proceeding, Eq. (9.5) is modified to the form

oe+V-g°P—R(P)=0 (9.6)

with the definition!
gP = BVeP. 9.7)

This modification is necessary to transform one treatment to the other treatments.
When g is chosen to be constant, Eqs. (9.5) and (9.6) are identical.

9.4 Different Treatments of Strain Gradient Plasticity

In this section, different interpretations and treatments for the simplest higher-order
strain gradient plasticity theory are examined. It is emphasized that these different
treatments give the same solution to the same problem provided that extra (uncon-
ventional) boundary conditions with respect to €P or V&P are equivalently imposed.

'In Kuroda and Tvergaard (2010), somewhat different definitions for gP were used;i.e.,g? = — VeP
without the inclusion of B for the simplest theory, and gP = —lfh VeP to discuss an alternative
formulation (corresponding to Treatment 4 in the present study) of Fleck-Hutchinson theory (Fleck
and Hutchinson 2001), where /, is a length-scale parameter. In the present paper, to enable a broader
and extended discussion, the more general definition given by Eq. (9.7) is employed.
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9.4.1 Treatment 1: Eq. (9.6) is Simply an Extra Balance Law

We consider that Eq. (9.6) cannot be simply constitutive and should be viewed as a
balance law. The physical origin of the gradient term in this balance law is sought in
configurational stresses produced by GNDs as discussed in Sect. 9.3. Equation (9.6)
should be associated with concomitant boundary conditions since Eq. (9.6) is viewed
as aPDE. In order to deduce such boundary conditions and obtain numerical solutions
to Eq. (9.6), its weak form is derived, starting from the following self-evident integral
relation:

/ (e + V - gP — R)5EPAV = 0, (9.8)
|4

where §£P is a scalar weighting function, which is arbitrary and thus may be regarded
as a virtual plastic strain rate, and V is the volume of the solid considered. Applying
integration by parts and the divergence theorem followed by time differentiation, Eq.
(9.8) becomes

/ {(R — 60)8:P + gP - V8£P}dV = /n - gP8EPdS, 9.9)
\%4 S

where S is the surface of the solid and n is a unit normal to the surface. In the
following, B is taken to be constant for simplicity, although it could be a variable.

Substituting the relation
/3
6. =,/=NP:¢o
2

and using the constitutive relations (Egs. (9.1) and (9.2)), Eq. (9.9) is rewritten as

3 .
—/\/jSépNP:C:EdV
y V2

3 .
+ / [Sép (ENP :C: NP+ h) &P 4 BVSEP . Vép] dv = / 8&Pn - gPdS,
14 S
(9.10)

where h = dR/deP.
Substituting the constitutive relations (9.2) and (9.1) into the incremental VWP
(Eq. (9.4)) gives

) ) 3 . )
/ SE :C : EdV —/ \/jSE:C : NPePQv Z/Sd -tdS. 9.11)
v v V2 s

In the present treatment, Egs. (9.11) and (9.10) are viewed as a set of simultaneous
equations to be solved to obtain the two independent variables, # and &P. This type
of treatment has recently been employed in Kuroda (2015) in the context of finite-
deformation strain localization analysis incorporating a corner-like plasticity effect.
In this treatment, neither the introduction nor the recognition of higher-order stresses
is necessary.
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9.4.2 Treatment 2: A Virtual Work Principle with
Higher-Order Quantities Is Introduced
as the Major Premise

In this treatment, unconventional internal virtual work and external virtual work
(Fleck and Hutchinson 2001; Gurtin and Anand 2009) are considered a priori without
the introduction of any balance law in PDE form. The argument of internal stresses
based on dislocation theory (Sect.9.3) is not quoted at the starting point of the
formulation.

The internal virtual work is assumed to be

8 Wing =/ {a (SE° + Q8P + 1 - vaép}dv, 9.12)
\%4

where ¢ : SE® is the conventional elastic virtual work, Q is defined as the work
conjugate to P, and T is introduced as a higher-order stress vector quantity that
is work-conjugate to VéP. The external virtual work for incremental problems is
assumed to be

SWext = / {g-(m +x8ép}ds, (9.13)
S X

where, as in conventional theories, the surface traction ¢ is work-conjugate to #, and
X 1s unconventionally introduced as a higher-order traction scalar quantity that is
work-conjugate to &P on the surface. Then, the internal virtual work is equated to the
external virtual work, i.e., § Wint = 8 Wext, in order to construct an extended VWP as

/ {azaEe+Q5éP+z.vaéP}dvz/
\%4

) [t oi+xser)as. ©14)

Noting the relation o : SE® = 6.86P, Eqg. (9.12) is integrated by parts and rewritten
as

5Wim=/ {-V-0-8u+(Q—0.—V-1)86P}dV
y

(9.15)
+ / {n-o-8u+n-zsiP}ds.
N
Subtracting Eq. (9.13) from Eq. (9.15) (cf. § Wit — § Wext = 0) gives
V.o =0, (9.16)

0e+V-T—Q=0 9.17)
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on V and
t=n-o, (9.18)

x=n-t (9.19)

on S.

To complete the theory, the constitutive relation for the higher-order stress
needs to be specified. Gudmundson (2004) and Gurtin and Anand (2009) proposed
the employment of the thermodynamic consistency.” Here, it is assumed that the
free energy v is composed of conventional elastic strain energy and unconventional
defect energy. The latter is postulated to be a quadratic function of the plastic strain
gradient as one of the simplest models,

1 1
V= EEe :C:E°+ 5a|v8P|2; >0, (9.20)

where « is a constant for dimensional consistency. The defect energy associated with
the plastic strain gradients is modeled as a recoverable quantity. From a physical point
of view, VeP is used as a macroscopic measure of the stored GNDs whose energy can
be released by elimination of the plastic strain gradients (Gurtin 2002; Hutchinson
2012). This thought is consistent with the argument given in Sect.9.3.

By the second law of thermodynamics, the temporal increase in the free energy
is less than or equal to the power expended. This leads to the inequality

V— (0 E 4+ QP +1-ViP) <0. (9.21)

Guided by this inequality, constitutive relations for the stress quantities and a condi-
tion of plastic dissipation are suggested to be

o =C:ES T =aVeP; Q&P > 0. (9.22)

Comparing Egs. (9.22) and (9.7), the higher order stress t is identified with gP in Egs.

(9.6) and (9.7) provided that the defect energy is assumed to be given by %a|Vap|2,

as in Eq. (9.20), and « = B. It is also obvious that Q is identified with R. It is

clear from the derivation that the quantity T and its divergence V - t are taken as

recoverable or energetic quantities (Gudmundson 2004; Gurtin and Anand 2009).
An incremental version of Eq. (9.14) is

/ {6 :8E° 4+ Q8P + 1 - V8£PYV = / {t - 8u + 3 5£P)dS (9.23)
\%4 S -

2This type of derivation of constitutive relations for the higher-order stresses was presented in the
context of gradient crystal plasticity theory (Gurtin 2002). The crystal plasticity version of Eq.
(9.14) also appeared in Gurtin (2002). Thermodynamical formulations of crystal plasticity were
also discussed in Forest et al. (2002).
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In Eq. (9.23), if we consider that s = 0 but §£P £ 0, and consequently
6 :0E° = —6 : SE” = —6.5:P,

then Eq. (9.23) reduces to
/{(Q — Ge)88P + T - V8EPHV = / x8&PdS. (9.24)
1% s

This is identical to Eq. (9.9) upon noting that ) = R, 7 = gPand y =n-t =n-gP.
Instead, if we consider that §¢P = 0 (consequently, SE° = SE ), Eq. (9.23) reduces
to the standard incremental VWP, Eq. (9.4). Therefore, Eqgs. (9.10) and (9.11) for
Treatment 1 are also valid for Treatment 2. Thus, the numerical strategy for Treatment
2 can be fundamentally the same as that for Treatment 1.

In summary, the extended VWP of (9.14) is introduced as the major premise in
this treatment. This statement of the VWP yields both the conventional equilibrium
equation (9.16) and the additional balance law (9.17) that is equivalent to the yield
function (9.6). The constitutive assumptions with respect to the gradient effect are
given in the representation of the free energy. The thermodynamic inequality with the
specific free energy representation can lead to constitutive relations for the standard
stress and nonstandard higher-order stress. The solution strategy can be the same as
that for Treatment 1.

9.4.3 Treatment 3: A Variational Principle Is Utilized

Following Miihlhaus and Aifantis (1991), a potential functional F is considered for
incremental boundary value problems as

F =/ @ (E°, &P, ViP)aV — /(t;-u + x&P)dS (9.25)
\% S -

with
. 1. e 1 1
®(ES, P, ViP) = EEG :C:E°+ Eh(ép)z + §n|Vép|2, (9.26)

where 7 is a coefficient for dimensional consistency. The first term of Eq. (9.26) is
the incremental elastic work rate density. The second term is the conventional plastic
work rate density. The third term introduces the effect of the plastic strain gradient,
which takes the simplest quadratic form following the first two terms. The condition
SF =0 gives
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/d :5EdV—/g-3uds+ {(hép—de)(SéP—i—(nVéP)-VBéP}dV—/ %88PdS =0,
\%4 S \4 -

s
(9.27)
and integration by parts and the divergence theorem lead to

—/(v-d)-5udv+/(n-d—g)-5uds

s (9.28)
— | {6e + V- (VEP) — (héP)}82PAV + /{n - (VEP) — 3}8£PdS = 0.
\%4 S -

The first and second terms correspond to the conventional equilibrium equation and
the mechanical boundary condition, respectively. Thus, the additional balance law
and the associated boundary condition are deduced to be

6o +V - (VEP) — heP =0, (9.29)
A =n- (V). (9.30)

Aside from the inclusion of the higher-order traction term, yx &P, on the surface, Eq.
(9.25) with (9.26) is fundamentally the same as the equation introduced by Miihlhaus
and Aifantis (1991) with 5 taken as a constant. They did not explicitly define higher-
order stress quantities and consequently only considered situations of n - VP = 0
or é&P = 0 on the boundary.

Obviously, the function @ in Eq. (9.26) involves all the factors of constitutive
modeling, which, in fact, leads to Eq. (9.29) that is the incremental form of Eq. (9.6)
with (9.7) (under the assumption that n(= g is constant). In general, it may not
be so simple to obtain sufficient insight into the physics (e.g., dislocation theory or
thermodynamics) when formulating a functional such as F. Miihlhaus and Aifantis
(1991) remarked on their variational principle that:*...we do not wish to provide
any specific physical meaning or interpretation to the functional. We simply treat it
as an intermediate quantity which can motivate the extra boundary conditions and
facilitate the finite element formulation of the problem.”

The principle of Eq. (9.25) with (9.26) yields Eq. (9.27) that is equivalent to Egs.
(9.4) and (9.9). Thus, the numerical strategy can be fundamentally the same as that
for Treatment 1.

For the specific choice of n = hli, the potential functional F in Eq. (9.26)
coincides with that introduced by Fleck and Hutchinson (2001). In their formulation,
the terms with respect to plastic strain were collected to give

h(EP)? +n|VEPE = hI(EP)? + FIVEPI*] = hE,

Ep =/ (eP)2 +12|VeP|2

where
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was defined a priori as a gradient dependent effective plastic strain with a length
scale I, for dimensional consistency. In this case, § F = 0 leads to

Ge 4+ V- (I2hVEP) — héP =0 9.31)
X =n-(ZhVEP). (9.32)

In Fleck and Hutchinson (2001), the constitutive relations for ¢ and Q were deter-
mined as ¢ = [2h V&P and O = héP, respectively, through a comparison between Eq.
(9.31) deduced from the variational principle with the specific gradient-dependent
quantity Ep and the incremental form of Eq. (9.17) that was derived from the extended
virtual work assumption. In Fleck and Hutchinson (2001), the higher-order stress T
was implicitly considered as a dissipative quantity. It has been noted by Gudmundson
(2004); Gurtin and Anand (2009); Hutchinson (2012) that - VP can be negative for
certain non-proportional strain histories and this violates thermodynamic restrictions.

The introduction of a specific choice of EP might have some quantitative effect
on predictions, but it is not critical in the fundamental structure of the formulation
as stated in Fleck and Hutchinson (2001) and also in Gurtin and Anand (2009).
This choice yields a consequence that the gradient effect is directly related to the
work-hardening rate, and for a non-hardening material the gradient effect completely
vanishes. This may not be acceptable from a physical point of view. It is doubtful
that the internal stresses due to the GND distribution have such a strong dependence
on the degree of work hardening that should be accounted for by statistically stored
dislocations (SSDs). We will not pursue the use of Ep in the present paper for this
reason and also for brevity.

To summarize this section, the functional given by Eq. (9.25) with (9.26) in the
quadratic form gives a relation equivalent to Eq. (9.6). Fleck-Hutchinson theory
(Fleck and Hutchinson 2001) is fundamentally based on the major premise of the
virtual work statement, Eq. (9.14) or (9.23), in Treatment 2. However, in the derivation
of the constitutive relations for higher-order stresses, the variational principle for
incremental problems is invoked in parallel.

9.4.4 Treatment 4: Eq. (9.6) is Merely a Constitutive Relation

In the present treatment, Eq. (9.6) is considered simply as a constitutive relation,
i.e., a yield function (Kuroda and Tvergaard 2010). We seek the physical origin
of the gradient term in the argument that internal stresses are caused by the GND
density distribution as discussed in Sect.9.3. As in the standard procedure used in
the conventional plasticity theories, the consistency condition is first applied to Eq.
(9.6), and then using Eq. (9.2), the plastic multiplier ¢P is calculated as

_ (30¢/d0) :CE+ V- gP
B A

&P >0 for plastic loading, (9.33)
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where

2
A = (00./30) : C : NP + \/;h; h =dR/deP. (9.34)
Considering Egs. (9.1), (9.2), and (9.33), the VWP is rewritten as
. . . 1 .
/SE:Cep:EdV—/(SE:C:NP—V-gPdV:/(Su-LdS (9.35)
% v A s

with |
CP® =C - X(C :NP?) ® (d0./00) : C. (9.36)

The elastic-plastic moduli tensor, C®P, in Eq. (9.36) is the same as that appearing in
conventional J; theory. In Eq. (9.35), gP is an extra independent variable in addition
to . To determine both # and gP, an additional governing equation to be solved
simultaneously with Eq. (9.35) is needed.

The gP has already been defined in Eq. (9.7). Now, this equation cannot be simply
viewed as a definition. It should be viewed as a balance law; i.e., the quantity gP
always exists in balance with SVeP,

g° — VP =0. (9.37)

One can imagine an analogy between this equation and the relation for the GND
density pg — 1178)/ /9x = 0 (Fleck et al. 1994; Ashby 1970), where pg is the density
of GNDs with the edge character, b is the magnitude of the Burgers vector, y is a
crystallographic slip on a slip system, and x is taken along the slip direction.

The weak form of the incremental version of Eq. (9.37) is derived starting from

/ (&P — BVEP) - swdV =0, (9.38)
v

where dw is an arbitrary vector-valued weighting function and f is again taken as a
constant. Applying integration by parts and the divergence theorem, and using Eq.
(9.3) with (9.33), Eq. (9.38) becomes

2 . 2
/\/jEV-Sw(aoe/aa):C:EdV+/(8w-gp+‘/—ﬁv-6wV~gp)dV
v V34 v 3A

=/ﬂ8w-n§PdS.
s (9.39)
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Equations (9.35) and (9.39) are solved simultaneously to determine & and gP. No
higher-order stress quantity appears in this formulation. A treatment similar to the
above has been used in the context of crystal plasticity by Evers et al. (2004) and
Kuroda and Tvergaard (2006).

9.5 Computational Aspects

9.5.1 Finite Element Procedure

As discussed in the previous section, in Treatments 1-3, &P is the additional inde-
pendent variable, while in Treatment 4 gP is the additional independent variable. In
this section, two benchmark problems, a constrained simple shear and a plane strain
tension of a passivated strip, are solved using finite element method. The effects
of the orders of shape functions used in the interpolation of the displacement rate
(&) and the additional nodal variable (&P or gP) on the qualities of the numerical
solutions are examined. We henceforth refer to the numerical method in which the
additional nodal variable is chosen to be £P 